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Abstract
In this work, we prove new results concerning the combinatorial properties of random linear codes.
By applying the thresholds framework from Mosheiff et al. (FOCS 2020) we derive fine-grained
results concerning the list-decodability and -recoverability of random linear codes.

Firstly, we prove a lower bound on the list-size required for random linear codes over Fq ε-close
to capacity to list-recover with error radius ρ and input lists of size ℓ. We show that the list-size
L must be at least logq (q

ℓ)−R

ε
, where R is the rate of the random linear code. This is analogous

to a lower bound for list-decoding that was recently obtained by Guruswami et al. (IEEE TIT
2021B). As a comparison, we also pin down the list size of random codes which is logq (q

ℓ)
ε

. This
result almost closes the O( q log L

L
) gap left by Guruswami et al. (IEEE TIT 2021A). This leaves open

the possibility (that we consider likely) that random linear codes perform better than the random
codes for list-recoverability, which is in contrast to a recent gap shown for the case of list-recovery
from erasures (Guruswami et al., IEEE TIT 2021B).

Next, we consider list-decoding with constant list-sizes. Specifically, we obtain new lower bounds
on the rate required for:

List-of-3 decodability of random linear codes over F2;
List-of-2 decodability of random linear codes over Fq (for any q).

This expands upon Guruswami et al. (IEEE TIT 2021A) which only studied list-of-2 decodability of
random linear codes over F2. Further, in both cases we are able to show that the rate is larger than
that which is possible for uniformly random codes.

A conclusion that we draw from our work is that, for many combinatorial properties of interest,
random linear codes actually perform better than uniformly random codes, in contrast to the
apparently standard intuition that uniformly random codes are best.
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1 Introduction

Coding theory is concerned with developing efficient means to makes data robust to noise.
The mathematical objects used for this purpose are (error-correcting) codes, which are just
subsets C ⊆ Σn, where Σ is a finite alphabet of size q. It is often convenient to set Σ = Fq,
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104:2 Threshold Rates of Code Ensembles: Linear Is Best

where Fq is the finite field of order q,1 in which case we can insist that C be a subspace of Fn
q .

We call such a code linear and denote it C ≤ Fn
q . As we are mostly concerned with linear

codes in the sequel we will always set Σ = Fq.2
In order for a code to be useful for information transmission in noisy environments, we

require C to satisfy noise-resilience properties, which amounts to insisting that the codewords
are “difficult to confuse.” A basic way to do this is to define a distance metric on Fn

q and
then insist that the codewords are not too clustered. The standard choice is the (relative)
Hamming distance which is defined as d(x⃗, y⃗) = 1

n |{i ∈ [n] : xi ̸= yi}| for x⃗, y⃗ ∈ Fn
q : in

words, it is the fraction of coordinates on which the vectors x⃗ and y⃗ differ. The minimum
distance of a code is then the minimum distance between two distinct codewords, i.e.,
δ := min{d(c⃗, d⃗) : c⃗, d⃗ ∈ C, c⃗ ̸= d⃗}.

Beyond the minimum distance, there are other proxies for a code’s noise-resilience that
are widely studied. First and foremost, a popular relaxed notion of noise-resilience is provided
by list-decodability, which informally asks that the code not be “too” clustered around any
one point. More precisely, a code is said to be (ρ, L)-list-decodable if there are never L or
more codewords that are all within distance ρ of some vector z ∈ Fn

q , i.e.,

∀z⃗ ∈ Fn
q , |{x⃗ ∈ C : d(x⃗, z⃗) ≤ ρ}| < L .

The integer L is called the list-size. This notion, originally introduced by Elias and Wozen-
craft [6, 35], finds uses within coding theory and beyond in, e.g., complexity theory [27, 2, 33],
cryptography [25], and learning theory [8].

We will also investigate another relaxation of list-decoding: list-recovery. Here, we are
given a collection of input lists S1, . . . , Sn ⊆ Fq of bounded size, and the requirement is that
there are not too many codewords that agree too much with these input lists. More precisely,
for an integer ℓ ≤ q we require that

∀S⃗ = (S1, . . . , Sn) ∈
(
Fq

ℓ

)n

, |{x⃗ ∈ C : d(x⃗, S⃗) ≤ ρ}| < L .

In the above, we are denoting by
(Fq

ℓ

)
the family of all ℓ-element subsets of Fq, and we are

extending the Hamming distance notation d(·, ·) via

d(x⃗, S⃗) = 1
n

|{i ∈ [n] : xi /∈ Si}| .

Note that (ρ, 1, L)-list-recovery is equivalent to list-decoding, demonstrating that list-
recoverability is indeed a generalization of list-decodability. While list-recovery was initially
introduced as a stepping stone towards list-decoding [11, 12, 13, 14] it has since found many
new uses in theoretical computer science more broadly [20, 24, 29, 7, 22, 23].

In order for a code to provide for efficient information transmission, we would like for
the code’s rate to be as large as possible, which is a measure of the amount of information
transmitted per symbol of a codeword. More precisely, the code’s rate R is defined as logq |C|

n ;
when the code is linear, this is simply dim(C)

n .
At its core, coding theory is concerned with determining the achievable tradeoffs between

a code’s rate and its noise-resilience for various noise models. In this work, we focus upon
the list-decodability and list-recoverability of codes. An important question we ask is how

1 In this case, we will of course insist that q be a prime power.
2 For nonlinear codes this does potentially lose some generality, as the alphabet size in that case could

be any integer. We do remark that our results concerning arbitrary codes hold for all integer q, but
emphasizing this point is not relevant to our purposes.
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large the list-size L must be for these tasks. This is useful in practice, as the main constraint
on the run time of most list-decoding/recovery algorithms is due to the need to process the
list. Further, in applications of list-recoverable codes to constructions of expanders [20] the
quality of the expansion is directly governed by the list-size.

Random Ensembles of Codes. As a stepping-stone towards a thorough understanding
of the achievable tradeoffs (which is believed to be a very challenging problem), we take
cues from much of the literature and study the behaviour of “typical” codes. That is, we
sample codes of a prescribed rate according to natural distributions and investigate their
list-decodability/-recoverability. In particular, we consider random linear codes, which are
uniformaly sampled subspaces of Fn

q of the prescribed dimension. We also study uniformly
random subsets of Fn

q of the prescribed size, which we call random codes.
In our work, we endeavour to provide a more fine-grained understanding of the combina-

torial properties of these code ensembles. In this way, we help to uncover the landscape of
achievable parameters for various code properties of interest. Beyond its theoretical interest,
many code constructions [14, 19, 22, 23] use (small) linear codes as a component, and better
list-decodability/recoverability of these inner codes improves these constructions.

In our results, we highlight a (perhaps surprising) fact: for list-decoding/recovery, random
linear codes seem to perform better than uniformly random codes. On the one hand, even
for the basic property of minimum distance it has already been observed that random linear
codes (which achieve the Gilbert-Varshamov bound) outperform uniformly random codes.
On the other hand, for problems such as list-decoding and list-recovery much of the literature
appears to be focused on showing that random linear codes are “not too much worse” than
uniformly random codes. We hope our work encourages the coding theory community to
change perspective and endeavour to prove that random linear codes are in fact better.

1.1 Our Results
List-Recoverability of Random Linear Codes. As a first result, we provide a new lower
bound on the list-size of random linear codes for list-recoverability. For context, we recall
the list-recoverability capacity theorem, which gives us some coarse-grained information
regarding achievable tradeoffs. For an integer 1 ≤ ℓ < q, error-radius ρ ∈ (1 − ℓ/q) and ε > 0
it states the following:

If R ≤ 1 − hq,ℓ(ρ) − ε, there exist (ρ, ℓ, L)-list-recoverable codes with L = O(ℓ/ε).
If R ≥ 1 − hq,ℓ(ρ) + ε, there do not exist (ρ, ℓ, L)-list-recoverable codes with L = o(qεn).

In the above, the function hq,ℓ(·) is the (q, ℓ)-entropy function; its precise definition is not
important at the moment so we defer it to Section 2. Informally, when studying codes of
rate ε below the capacity for a small ε > 0 we refer to them as capacity-approaching and call
ε as the gap-to-capacity.

This already tells us that the capacity for (ρ, ℓ, L)-list-recovery is 1 − hq,ℓ(ρ) if we insist
that L be subexponential in n. However, we can ask for more fine-grained information:
in particular, exactly how large must the list-size L be as a function of ε and the other
parameters?

For random linear codes, we prove the following lower bound.

▶ Theorem 1 (List-Recoverability Lower Bound for Random Linear Codes). Let 1 ≤ ℓ ≤ q be
integers with q a prime power and fix ρ ∈ (0, 1 − ℓ/q). Fix δ > 0. For sufficiently small ε > 0,

a random linear code in Fn
q of rate 1 − hq,ℓ(ρ) − ε is whp not

(
ρ, ℓ, ⌊ logq (q

ℓ)−(1−hq,ℓ(ρ))
ε − δ⌋

)
-

list-recoverable.

ICALP 2022
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Table 1 This table summarizes much of the work on the list-recoverability of random linear codes
(RLC) and random codes (RC). The lower bound of [15] only applies when q = pΩ(1/ε) for a prime
p, and in [32] η > 0 is viewed as a small constant. [15] also offers a similar lower bound for the case
of list-recovery from erasures.

Source Model Radius Rate List-size bound

Folklore RC ρ > 0 1 − hq,ℓ(ρ) − ε ≤ O(ℓ/ε)
[37] RLC ρ > 0 1 − hq,ℓ(ρ) − ε ≤ qO(ℓ/ε)

[32] RLC ρ = 1 − ℓ
q

− η 0.99(1 − hq/ℓ(α) − logq(ℓ)) ≤ qO(ln2(ℓ/η))

[15] RLC ρ = 0 1 − logq(ℓ) − ε ≥ ℓΩ(1/ε)

Theorem 1 RLC ρ > 0 1 − hq,ℓ(ρ) − ε >
logq (q

ℓ)−(1−hq,ℓ(ρ))
ε

Theorem 2 RC ρ > 0 1 − hq,ℓ(ρ) − ε ≈ logq (q
ℓ)

ε

For context, we consider the case of uniformly random codes. In this case, we obtain a
tight result.

▶ Theorem 2 (List-Recoverability for Random Codes). Let 1 ≤ ℓ ≤ q be integers with q a
prime power and fix ρ ∈ (0, 1 − ℓ/q). Fix δ > 0. For sufficiently small ε > 0, a random code

in Fn
q of rate 1 − hq,ℓ(ρ) − ε is whp not

(
ρ, ℓ, ⌊ logq (q

ℓ)
ε − δ⌋

)
-list-recoverable.

On the other hand, for any ε > 0 and n sufficiently large, a random code in Fn
q of rate

1 − hq,ℓ(ρ) − ε is whp
(

ρ, ℓ, ⌈ logq (q
ℓ)

ε ⌉ + 1
)

-list-recoverable.

In this way, we pin down the list-recoverability for random codes to one of two or three
possible values: ⌊ logq (q

ℓ)
ε + 0.99⌋, ⌈ logq (q

ℓ)
ε ⌉ (if it’s different) or ⌈ logq (q

ℓ)
ε ⌉ + 1.

Comparing Theorems 1 and 2 we see that our lower bound on random linear codes is less
than the precise bound we have on random codes. One could potentially draw the conclusion
that Theorem 1 should be improved. However, we believe that it is in fact tight. For the case
of list-decoding binary codes it has already been shown that random linear performs better
than uniformly random, and the bounds we obtain are the natural generalizations of the
(tight) results for that case. We therefore conjecture that Theorem 1 is indeed tight. This
stands in stark contrast to erasure list-recovery:3 for this model, it is known that random
linear codes can require lists of size ℓΩ(1/ε) [15] (at least, if the field has large characteristic),
whereas the lists for random codes can be just O(ℓ/ε). A summary of the state-of-the-art for
list-recovery of RLCs and RCs is provided in Table 1.

▶ Remark 3. It might appear that our conjecture that random linear codes outperform
random codes for list-recovery is contradicted by the result of [15]. However, we emphasize
that the capacity for erasure list-recovery is larger, so if a code is ε-close to capacity for
list-recovery from erasures for small ε > 0 it is above capacity for list-recovery from errors,
the model we study. Hence, this lower bound does not contradict our conjecture. One can
also consider the model where ρ approaches the limit 1 − ℓ/q as is done in [32]; in this case
we still suspect that random linear codes outperform uniformly random codes, but this is
just speculation and further investigation is required.

3 Here, the requirement is that for all subsets S1, . . . , Sn ⊆ Fq where at least (1 − ρ)n of the Si’s satisfy
|Si| ≤ ℓ (and the others may be all of Fq), the number of codewords in S1 × · · · × Sn is less than L.



N. Resch and C. Yuan 104:5

List-decoding with small lists. Next, we turn our attention to the challenge of list-decoding
when the output list-size L is a (small) constant. Thus, we are no longer in the regime where
we can expect to approach the list-decoding capacity, and we are interested to know by how
much we are required to back off if, say, L = 3, 4.

First, we consider the case where L = 4 for the binary field, which we also refer to
as list-of-3 decoding. Here and throughout, we also use the following notation (which
is slightly abusive): for q ≥ 2 and nonnegative reals x1, . . . , xt with x1 + · · · + xt ≤ 1,
Hq(x1, . . . , xt) =

∑t
i=1 xi logq

1
xi

+ (1 − x1 − · · · − xt) logq
1

1−x1−···−xt
.

We first prove the following possibility result for random linear codes. In the following,

Bρ =
{

(x1, x2) ∈ R2 : x1 + 2x2 ≤ 4ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0
}

.

▶ Theorem 4 (List-of-3 decoding Random Linear Binary Codes). Let ρ ∈ (0, 5/16)4 and suppose

R < 1 − max
(x1,x2)∈Bρ

H2(x1, x2) + 2x1 + x2 log2 3
3 .

Then a random linear code over Fq of rate R is whp (ρ, 4)-list-decodable.

For context, we also study the list-of-3 decodability of random codes over the binary
alphabet. In this case, we can prove the following:

▶ Theorem 5 (List-of-3 decoding Random Binary Codes). Let ρ ∈ (0, 5/16) and suppose

R > 1 − max
(x1,x2)∈Bρ

1 + H2(x1, x2) + 2x1 + x2 log2 3
4 .

Then a random code over {0, 1} of rate R is whp not (ρ, 4)-list-decodable.
On the other hand, if

R < 1 − max
(x1,x2)∈Bρ

1 + H2(x1, x2) + 2x1 + x2 log2 3
4 ,

then a random code over {0, 1} is whp (ρ, 4)-list-decodable.

As 1+F
4 ≥ F

3 whenever F ≤ 3, we see that the bound in Theorem 4 is greater than the
bound from Theorem 5. Using terminology that we later make precise, we see that the
threshold rate for list-of-3 decoding binary random linear codes strictly exceeds that of binary
random codes.

Next, we study list-of-2 decoding over alphabets of size q > 2. And again, our theorems
demonstrate that random linear codes strictly outperform random codes. Define

Dρ := {(x1, x2) ∈ R2 : x1 + x2 ≤ 3ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0}.

▶ Theorem 6 (List-of-2 decoding Random Linear q-ary Codes). Let ρ ∈ (0, 1/3) and suppose

R < 1 − max
(x1,x2)∈Dρ

Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)
2 .

Then a random linear code over Fq of rate R is whp (ρ, 3)-list-decodable.

4 If ρ ≥ 5/16 it is known that there are no (ρ, 4)-list-decodable codes with postive rate [1].

ICALP 2022
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▶ Theorem 7 (List-of-2 decoding Random q-ary Codes). Let Fq be an alphabet of size q. Let
ρ ∈ (0, 1/3) and suppose

R > 1 − max
(x1,x2)∈Dρ

1 + Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)
3 .

Then a random code over Fq of rate R is whp not (ρ, 3)-list-decodable.
On the other hand, if

R < 1 − max
(x1,x2)∈Dρ

1 + Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)
3 ,

then a random code over Fq is whp (ρ, 3)-list-decodable.

Again, we can see that the bound from Theorem 6 is greater than the bound from Theo-
rem 7. We therefore conjecture that this phenomenon of random linear codes outperforming
random codes extends to more values of L. To provide more evidence for this conjecture, we
extend an argument for binary random linear codes of [10, 26] to larger values of L, and by
comparing it to a computation of the threshold rate for random binary codes, show that for
many parameter regimes of interest we do indeed have random linear codes outperforming
random codes.

1.2 Techniques
In order to obtain our results, we rely on a recently developed toolkit for proving threshold
rates for combinatorial properties of random (linear) codes. This toolkit was developed by
Mosheiff et al. [28] on the way to proving that LDPC codes achieve list-decoding capacity;
recent works [15, 16] have found further uses for the techniques in investing combinatorial
properties of random linear codes. An analogous threshold toolkit for random codes was
provided in [17].

Broadly speaking, the techniques of [28, 17] apply when considering a property of codes
defined by forbidding a family of “bad” subsets, each of which have constant cardinality
(independent of n). For example, the property of (ρ, L)-list-decodability is defined by
forbidding all L-element subsets B = {x1, . . . , xL} of a Hamming ball B(z, ρ) = {x ∈ Fn

q :
d(x, z) ≤ ρ} from appearing in the code. In [28], it is proved that for any such local property
there is a threshold rate R∗ such that:

If R < R∗, a random linear code satisfies the property with high probability;
If R > R∗, a random linear code fails to satisfy the property with high probability.

The theorem furthermore characterizes the threshold rate R∗ as the solution to a certain
optimization problem. In this work, we endeavour to compute new bounds on the threshold
rate R∗ for various properties of interest.

In the remainder, we provide intuition for the characterization of the threshold rate from
[28]. First, we identify subsets B ⊆ Fn

q of size L with the matrix in Fn×L
q whose columns are

given by B (the choice of ordering is immaterial), and we say that a matrix M is contained
in a code C if C contains all of M ’s columns. For a collection of matrices M ⊆ Fn×L

q , we
would like to compute the threshold rate R∗ for “M-freeness,” i.e., the code property of not
containing a matrix in M.

As we are interested in list-decoding/recovery, we define a set of matrices M such that
if C contains a matrix from M then C is not list-decodable/recoverable. We say that the
collection M is “bad” for list-decoding/recovery. As intuition, for list-decoding we can just
take the set of matrices where each column lies in some ball B(z, ρ). Next, we would like
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to show that M is “abundant” in the sense that it is very likely that C contains a matrix
M ∈ M. In other words, if XM denotes the indicator random variable for the event M ⊆ C,
then we should expect XM :=

∑
M∈M XM ≥ 1.

It is relatively easy to compute E[XM] and see when it exceeds 1; however, to conclude
that XM is likely to be large one needs a concentration bound. Such a bound is often
provided by estimating the variance of XM. Broadly construed, [28] applies the second
moment method to demonstrate that there is really only one reason that XM would fail to
be concentrated: it is because for some compressing matrix A ∈ FL×L′

q with L′ ≤ L the set
{MA : M ∈ M} is too small.

List-Recovery. First, we endeavour to prove a lower bound on the list-size for list-recovery.
This means that we need to say that if the list-size is too small then the random linear code
quite likely contains a matrix from a set M of bad matrices for list-recovery. In light of the
above, to conclude our argument we need to show that for any compressing matrix A, the
set {MA : M ∈ M} remains large.

To do this, we use information-theoretic techniques: we identify each of our bad matrices
M ∈ M with an appropriate type, which is a distribution τ ∼ FL

q defined as the empirical
distribution of M ’s rows. A lower bound on {MA : M ∈ M} is then implied by a lower
bound on the entropy of the random variable Au⃗ for u⃗ ∼ τ . We are also free to choose the
type τ which is “bad” for a certain property, in the sense that if a code contains a matrix of
type τ then it fails to satisfy the property.

For the case of (ρ, ℓ, L)-list-recovery, the following type is bad: one samples uniformly
S ∈

(Fq

ℓ

)
and then outputs u⃗ = (u1, . . . , uL) ∈ FL

q , where each ui is independently uniform
over S with probability 1 − ρ and uniform over Fq \ S otherwise. It thus follows that a
lower bound on {AM : M ∈ M} is implied by a lower bound on the entropy of the random
variable Au⃗ for u⃗ ∼ τ .

Obtaining this lower bound requires a rather lengthy argument; we overview the main
ideas now. We begin by partitioning the coordinates of Au⃗ into subsets J1, . . . , Jk ⊆ [L′],
where each Ji depends on at least 2 “fresh” coordinates from u⃗, along with (perhaps) a set
of leftover coordinates Jk+1. We then provide two arguments depending on the maximum
size of a part. If, say, |J1| is large, then we can show that (Au⃗)J1 already experiences a
large entropy increase. This is shown by demonstrating that these coordinates alone already
allow us to nontrivially guess the subset S. Otherwise, we argue that all the parts provide a
nontrivial increase in the entropy, and since there must be a large number of parts in this
case, by summing over all the parts we provide an adequate lower bound.

This result generalizes the list-decoding lower bound that was provided in [15, Theorem
IV.1]. The argument in that paper exploited the fact that a sample from the bad type for
list-decoding has a simpler structure: it looks like v⃗ + α1⃗, where v⃗ is a q-ary Bernoulli
random variable and α ∈ Fq is uniformly random. In our case, we do not have this nice
linear structure,5 making the analysis more intricate.

List-Decoding with Small Lists. For our results concerning list-decoding with small lists,
we again use the thresholds framework. In this case, we need to consider any type that is
bad for (ρ, 3) or (ρ, 4)-list-decoding. For these small values of L, we are able to identify the
linear map A which leads to the maximum relative entropy Hq(Aτ)

dim(Aτ) : in each case, it is given
by the map sending (x1, . . . , xL) 7→ (x1 − xL, . . . , xL−1 − xL).

5 One might be tempted to look at v⃗ + w⃗ where v⃗ is q-ary Bernoulli and w⃗ is uniform over S, but note
that for ℓ − 1 choices for vi ∈ F∗

q the sum vi + wi still lies in S.

ICALP 2022
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To provide the proof, we break up the vector spaces based on the number of distinct
coordinates of the entries, and observe that a type which is bad for list-decodability can
only put so much probability mass on each of these parts. To conclude, we rely on the
concavity of the entropy function as well as some combinatorial reasoning concerning the
subspaces of F4

2 and F3
q . Even for these small values of L we need to be quite careful to avoid

a massive explosion in the number of cases to consider, as we must look at all compressing
linear maps A.

Random Codes. For the case of random codes, we can compute the threshold rates for all
the properties of interest in a relatively straightforward way, as the characterization from [17]
does not require us to consider any sort of compressing mapping on the types. Quite notably,
in all cases we see that random linear codes appear to perform better than random codes.
This is perhaps in contrast to commonly held beliefs: in this sense, a main goal of our work
is to disseminate this counterintuitive phenomenon.

1.3 Related Work
In Section 1.2 we outlined the works [28, 15, 17] which developed and studied the thresholds
toolkit that we apply. In this section, we provide more context for the study of random
linear codes and their list-decodability/-recoverability. In what follows, q always denotes the
alphabet size and ε the “gap-to-capacity” for a capacity-approaching code.

List Size Lower Bounds for Random (Linear) Codes. As we provide lower bounds for list-
recovery of random linear codes, we briefly survey the known lower bounds for list-decoding.
First, Guruswami and Narayanan [21] showed that capacity-approaching random (linear)
codes require lists of size Ωρ,q(1/ε): by inspecting the proof one can note that the implied
constant tends to 0 as ρ → 1−1/q, or if q → ∞. While on the surface their approach appears
very different to ours, their use of a second-moment method is akin to the proofs underlying
the thresholds framework from [28], so the approaches are in fact somewhat similar. Later,
Li and Wootters [26] gave a ∼ 1/ε list-size lower bound for capacity-approaching random
codes. Again, the argument relies on the second-moment method.

In [15], a lower bound for the list-decodability of capacity-approaching random linear
codes is given, showing that lists of size ∼ hq(ρ)

ε are required: our list-recovery list-size
lower bound is a generalization of this result. Lastly, in [17] the threshold rate for (ρ, 2)-
list-decodability is computed, providing a lower bound and an upper bound: this segues us
nicely into a discussion of the work on computing upper bounds on list-sizes.

List Size Upper Bounds for Random Linear Codes. There has been a long line of work [37,
10, 9, 5, 34, 31, 32, 26, 17] studying the list-decodability of capacity-approaching random
linear codes, and we now highlight some relevant results. First, Zyablov and Pinkser [37]
demonstrated that capacity-approaching RLCs are indeed (ρ, L)-list-decodable, albeit with
L = qΩ(1/ε). Subsequent work has endeavoured to prove list-decodability with L = O(1/ε).
The existence of such linear codes over F2 was first demonstrated by [10]; later, [26] showed
that this holds with high probability for randomly sampled linear codes, and subsequently [15]
showed this is true for average-radius6 list-decoding.

6 In this model, it is required that the code does not contain L points whose average distance from a
centre is less than ρ. Thus, it is a stricter requirement than standard list-decoding.
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As for larger alphabets, [9] showed that lists of size Oρ,q(1/ε) do indeed suffice for random
linear codes. We further remark that their argument uses a certain Ramsey-theoretic concept
called a 2-increasing sequence to choose the order in which to reveal coordinates, which
is vaguely reminiscent of the “fresh” coordinates that we have defined by the Ji’s in our
list-recovery lower bound argument. A drawback of this work is that the implied constant in
the Oρ,q(·) notation degrades as ρ → 1−1/q or if q grows too large. In light of this restriction,
a line of works [5, 34, 31] has studied the “high noise regime,” where ρ = 1 − 1/q − η and one
endeavours to show that lists of size O(1/η2) suffice for codes of rate Ω(η2). These results
are still not quite optimal in the sense that the implied constants (even for the rate) lag
behind the parameters achievable by random codes. Lastly, for list-recoverability with input
list-size ℓ it appears that the best upper bound on the list-size is due to [32], where it is
shown that lists of size (qℓ)O(log(ℓ)/ε) suffice.

Lower Bounds for List Sizes of Arbitrary Codes. While we exclusively study random
(linear) codes, we view these as a proxy for determining the actual achievable tradeoffs. As
lists of size Θ(1/ε) are required for random codes, it is natural to wonder if all capacity-
approaching (ρ, L)-list-decodable codes require lists of size Ω(1/ε). Blinovsky [4, 3] has shown
a lower bound of Ωρ(log(1/ε)). In the high noise regime, viz., ρ = 1 − 1/q − η, Guruswami
and Vadhan [21] provided a Ωq(1/η2) lower bound on the list size. Lastly, for average-radius
list-decoding Guruswami and Narayanan [18] proved a Ωρ(1/

√
ε) lower bound.

1.4 Open Problems
In this work, we have progressed our understanding of combinatorial properties of random
(linear) codes. A main conclusion of our work is that for list-decoding/recovery, random
linear codes perform better.7

There are many open problems which remain to be studied and we list some below.
Provide the corresponding upper bounds on the threshold rate for (ρ, 4)-list-decoding
binary random linear codes, and the threshold rate for (ρ, 3)-list-decoding q-ary random
linear codes.
Provide the corresponding lower bound on the threshold rate for (ρ, ℓ, L)-list-recovery
in the capacity-approaching regime. In fact, for q > 2, the threshold rate for (ρ, L)-list-
decoding is still open. This is quite likely a very challenging problem; the only tight
argument we have is due to [10, 26] (see also [15]) which only applies to list-decoding
over the binary field, and this argument appears too “rigid” to apply in more generality.
Get a better understanding for worst-case codes. In particular, to the best of our
knowledge the Plotkin points for (ρ, L)-list-decoding for q > 2 are not known. That is,
compute the minimum value ρ∗ such that for all ρ > ρ∗, there are no q-ary (ρ, L)-list-
decodable code families with positive rate. (Recent work [36] expresses the Plotkin point
as a solution to a certain optimization problem, but we do not see how to extract a simple
expression from this.)

1.5 Organization
In the subequent section, we introduce the necessary notations and definitions that we will
use in this work, along with the tools from [28, 17] that we apply. In Section 3, we provide
our lower bound on the list-size for the list-recoverability of random linear codes which

7 For list-recovery, we admittedly only provide some evidence in this direction.
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approach capacity. In Section 4, we lower bound the threshold rate for list-of-2 decoding (for
general q) and list-of-3 decoding (in the binary case). We also compare random linear codes
to random codes over the binary alphabet for more values of L. For space reasons, most of
the technical proofs are deferred to the full version.

2 Prelimaries

Miscellaneous Notations. For an integer n ≥ 1, we denote [n] := {1, 2, . . . , n}. For a set X

we denote by
(

X
ℓ

)
the family of all subsets of X with ℓ elements, and similarly

(
X
≤ℓ

)
denotes

the family of all subsets of X with ≤ ℓ elements. Throughout, Fq denotes the finite field
with q elements, for q a prime power.

For clarity, vectors are typically denoted with an arrow overtop. Given a vector x⃗ ∈ Fn
q

and a subset I ⊆ [n] we denote by x⃗I the length |I| vector (xi : i ∈ I) ∈ F|I|
q . We reserve 1⃗

for the all-1’s vector; if we wish to emphasize its length we subscript it, i.e., 1⃗D is the all-1’s
vector of length D. Random variables are typically written in boldface, e.g., x, y, etc. In
particular, random vectors are denoted, e.g., u⃗.

Coding Theory Terminology. A code C is a subset of Fn
q for Fq the finite field of order

q, a prime power. Elements c⃗ ∈ C are called codewords, the integer n is the block-length,
and the integer q is the alphabet size; such a code is also called q-ary. When q = 2 the
code is deemed binary. We are typically interested in linear codes, which are C ≤ Fn

q ,
i.e., they are subspaces. The rate of a code C is R = R(C) := logq |C|

n and its minimum
distance is δ = δ(C) := min{d(c⃗, d⃗) : c⃗ ̸= d⃗, c⃗, d⃗ ∈ C}, where d(x⃗, y⃗) = 1

n |{i ∈ [n] : xi ̸= yi}|
is the (relative) Hamming distance from x⃗ to y⃗. We also slightly extend this notation as
follows: for a vector x⃗ ∈ Fn

q and a tuple of subsets S⃗ = (S1, . . . , Sn), Si ⊆ Fq, we define
d(x⃗, S⃗) := 1

n |{i ∈ [n] : xi /∈ Si}|, i.e., the fraction of coordinates i for which x⃗ “disagrees”
with the corresponding subset of S⃗.

A random linear code of rate R is a uniformly random subspace of Fn
q of dimension

Rn.8 As this concept will arise regularly in this work, we occasionally use the abbreviation
RLC. A random code of rate R is a random subset of Fn

q obtained by including each element
independently with probability q(R−1)n.9 For this concept, we use the abbreviation RC.

2.1 List-decodability and List-recoverability
In this work, we study combinatorial properties of linear codes. Of primary interest to us
are list-decodability and list-recoverability, which we now define.

▶ Definition 8 (List-decodability). Let ρ ∈ (0, 1 − 1/q) and L ≥ 1. A code C ⊆ Fn
q is called

(ρ, L)-list-decodable if for all z⃗ ∈ Fn
q ,

|{c⃗ ∈ C : d(c⃗, z⃗) ≤ ρ}| < L .

8 In fact, there are different ways to sample linear codes. For concreteness, we typically implicitly use the
model where a random parity check matrix H ∈ F(1−R)n×n

q is sampled and we output C = ker(H). Of
course, there is a small chance C has rate larger than R, but as this probability is exponentially small
in n it is immaterial to our conclusions. We also briefly use the model where a random G ∈ FRn×n

q is
sampled and we output C = im(G).

9 By Chernoff bounds, such a code as rate R ± o(1) with high probability.
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We also use the terminology “list-of-L-decoding” for (ρ, L + 1)-list-decoding, e.g., list-of-2-
decoding corresponds to (ρ, 3)-list-decoding.

The list-decoding capacity is the value R∗(ρ) such that for any R < R∗(ρ) there exists
L > 1 such that infinite families of (ρ, L)-list-decodable codes of rate at least R exist, but for
any R > R∗(ρ) such an infinite family does not exist. It is known that

R∗(ρ) = 1 − hq(ρ) ,

where

hq(ρ) = ρ logq

q − 1
ρ

+ logq

1
1 − ρ

is the q-ary entropy function.

▶ Definition 9 (List-recoverability). Let ρ ∈ (0, 1−1/q), 1 ≤ ℓ ≤ q and L ≥ 1. A code C ⊆ Fn
q

is called (ρ, ℓ, L)-list-recoverable if for all tuples of subsets S⃗ = (S1, . . . , Sn) ∈
(Fq

≤ℓ

)n,

|{c⃗ ∈ C : d(c⃗, S⃗) ≤ ρ}| < L .

In analogy to the list-decoding capacity, the list-recovery capacity is the value R∗(ρ, ℓ)
such that for any R < R∗(ρ, ℓ) there exists L > 1 such that infinite families of (ρ, ℓ, L)-list-
recoverable codes of rate at least R exist, but for any R > R∗(ρ, ℓ) such an infinite family
does not exist. It is known that

R∗(ρ, ℓ) = 1 − hq,ℓ(ρ) ,

where

hq,ℓ(ρ) = ρ logq

q − ℓ

ρ
+ (1 − ρ) logq

ℓ

1 − ρ

is the (q, ℓ)-entropy function.

2.2 Information-Theoretic Concepts
For a random variable x over a domain X we denote its entropy by

H(x) =
∑
x∈X

Pr[x = x] log 1
Pr[x = x] ,

where we use the convention 0 log 1
0 = 0. If τ is a distribution then we define H(τ) to be the

entropy of a random variable distributed according to τ .
Given another random variable y supported on a set Y, the conditional entropy of x

given y is

H(x|y) = E
y∼y

[H(x|y = y)] =
∑

x∈X ,y∈Y
Pr[x = x, y = y] log Pr[x = x]

Pr[x = x, y = y] .

Intuitively, this is the expected amount of entropy remaining in x after revealing y. Condi-
tional entropy satisfies the chain rule H(x, y) = H(x|y) + H(y), which can be extended by
induction to larger collections of random variables.

We also use the notion of mutual information, which is a measure of the amount of
information one random variable gives about another and is defined as follows:

I(x; y) = H(x) − H(x|y) = H(y) − H(y|x) = H(x, y) − H(x) − H(y) .
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(The equalities are justified by the chain rule.) We also consider the conditional mutual
information, defined as follows:

I(x; y|z) = H(x|z) − H(x|y, y) = H(y|z) − H(y|x, z) = H(x, y|z) − H(x|z) − H(y|z) ,

where z is another random variable.
Conditional entropy, mutual information and conditional mutual information all satisfy

the data-processing inequality: for any function f supported on Y (the domain of Y ), we
have

H(x|f(y)) ≥ H(x|y) , I(x; y) ≥ I(x; f(y)) , I(x; y|z) ≥ I(x; f(y)|z) .

We will also use Fano’s inequality.

▶ Theorem 10 (Fano’s Inequality.). Let x be a random variable supported on X , y a random
variable supported on Y and f : Y → X . Define perr := Pr[f(y) ̸= x]. Then,

H(x|y) ≤ h(perr) + perr · log(|X | − 1) .

When we wish to change the base of the logarithm with which the entropy or mutual
information, the desired base is subscripted. That is,

Hq(x) := H(x)
log q

, Iq(x; y) := I(x; y)
log q

,

and similarly for the conditional versions of these quantities. Finally, as a slight abuse of
notation, we also write

Hq(x1, . . . , xt) =
t∑

i=1
xi logq

1
xi

+ (1 − x1 − · · · − xt) logq

1
1 − x1 − · · · − xt

if x1, . . . , xt are positive numbers satisfying
∑t

i=1 xi ≤ 1. (We caution that for q > 2,
Hq(x) ̸= hq(x).)

2.3 Thresholds
We now introduce the specialized notations and tools that we will need in order to apply
the machinery of [28]. First, for a distribution τ ∼ Fb

q and a linear map A : Fb
q → Fc

q, we let
Aτ denote the distribution of the random vector Au⃗ for u⃗ ∼ τ . In more detail, Aτ has the
following probability mass function:

Pr
v⃗∼Aτ

[v⃗ = y⃗] =
∑

x⃗∈A−1(y⃗)

Pr
u⃗∼τ

[u⃗ = x⃗] .

While we are generally concerned with understanding the probability that certain “bad sets”
lie in our code, it is in fact more convenient to work with matrices. For a matrix M ∈ Fn×b

q

and a code C ⊆ Fn
q we say that C contains M if the columns of M are contained in C.

Every matrix is assigned a type, and the type of a matrix is determined by the matrix’s
empirical row distribution as follows:

▶ Definition 11 (τM , dim(τ), Mn,τ ). For a matrix M ∈ Fn×b
q , we define its type τM to be

the distribution given by the empirical distribution of M ’s rows. That is, for all v⃗ ∈ Fb
q we

have

τM (v⃗) := |{i ∈ [n] : ith row of M equals v⃗}|
n

.
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For a distribution τ on Fb
q, dim(τ) denotes the dimension of the span of τ ’s support, i.e.,

dim(τ) := dim(span(supp(τ))).

We denote by Mn,τ the set of all matrices in Fb×n
q with empirical row distribution τ . We

call a type τ b-local if τ ∼ Fb
q; note that a b-local type has dim(τ) ≤ b.

▶ Remark 12. Technically, for a distribution τ ∼ Fb
q it could be the case that Mn,τ is empty

just because, for some v⃗ ∈ Fb
q, τ(v⃗) /∈ {0, 1/n, 2/n, . . . , (n − 1)/n, 1}. For such τ , we can

define Mn,τ to consist of those matrices which contain either ⌊n · τ(v⃗)⌉ or ⌈n · τ(v⃗)⌉ copies
of v⃗. As we are always dealing with the setting where n is assumed to be sufficiently large
compared to all other parameters, this does not affect the analysis. Hence, we may safely
ignore this technicality, which we do for the clarity of exposition.

Our target is an understanding of the threshold rate for a combinatorial property of
random linear codes. The combinatorial properties that we will study are those that are
defined by excluding a set of types, as follows.

▶ Definition 13 (τ -freeness, local properties). Given a code C and a type τ , we say that C is
τ -free if C does not contain any matrix M ∈ Mn,τ , i.e., no matrix M of type τ .

For a set T of types, where each τ ∼ Fb
q for some b ∈ N, we say that C is T -free if it is

τ -free for all τ ∈ T . We refer to T -freeness as a b-local property of codes.

For a more in-depth discussion of the definition, we refer the reader to, [28, Section 2] or
[30, Chapter 3]. To provide some intuition, we demonstrate how (ρ, ℓ, L)-list-recoverability
may be described as an L-local property. We define T to be the set of all types τ ∼ FL

q such
that for some (correlated) distribution ν ∼

(Fq

ℓ

)
,

∀i ∈ [L], Pr
(u⃗,S)∼(τ,ν)

[ui /∈ S] ≤ ρ (1)

and furthemore we require

∀1 ≤ i < j ≤ L, Pr
u⃗∼τ

[ui ̸= uj ] > 0 .

(This second condition amounts to requiring that any matrix of type τ has distinct columns.)
We refer to the collection of all these types as Tρ,ℓ,L.

We now characterize (up to o(1) terms) the threshold rate of a property.

▶ Theorem 14 ([30], Theorem 3.3.9: Thresholds for Random Linear Codes). Fix b ∈ N and let
T be a set of b-local types. Then the threshold rate for T -freeness is

1 − max
τ∈T

min
A

{
Hq(Aτ)
dim(Aτ)

}
± on→∞(1) , (2)

where the minimum is taken over all surjective linear maps A : Fb
q → Fc

q with c ≤ b.

Let us specialize to the case of τ -freeness for a single type τ . Suppose that R >

1 − minA

{
Hq(Aτ)
dim(Aτ)

}
. Theorem 14 tells us that it is unlikely that a RLC of rate R is τ -free.

Stated differently, we can expect that there is at least one matrix of type τ contained in
such an RLC. In fact, while we do not prove this, it is in fact likely that there will be
many such matrices. For this reason, we use the following terminology for types τ satisfying
R > 1 − minA

{
Hq(Aτ)
dim(Aτ)

}
: we call them abundant.
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In proving an upper bound Rupper on the threshold rate for a property of interest (e.g.,
(ρ, ℓ, L)-list-recovery), we will follow the following steps. First, we define an appropriate set
type τ and prove that a code satisfies the property of interest only if it is τ -free. Informally,
we refer to this as a proof that τ is bad for the property of interest. Next, we show that
for RLCs of rate Rupper, the type τ is abundant. This is the more challenging part of the
theorem, as the minimization over the set of all linear maps A is quite challenging to control.
Nonetheless, we are able to carry out this program for (ρ, ℓ, L)-list-recovery, as advertised.

In proving a lower bound on Rlow on the threshold rate for a property of interest (e.g.,
(ρ, 3)-list-decoding), we need to consider any type that is bad for list-decoding, and then
show that it is implicitly rare: that is, for some matrix A, there are relatively few matrices
of type Aτ , and hence it is likely no matrix of that type lies in the RLC. That is, we must
upper bound the ratio of the entropy of Aτ with the dimension of Aτ . Here, we have the
freedom to choose A, but the argument must apply to all types τ . This is especially tricky
when given a type τ whose support is contained in a strict subspace, as then the bound on
the entropy must be commensurately smaller. It is for this reason that we only consider
small values of L, as one suffers from a combinatorial explosion in the number of possible
support spaces for the types.

Thresholds for Random Codes. For thresholds of random codes, the characterization
theorem is simpler in the sense that we do not have to minimize over compressive mappings,
at least if the property satisfies certain technical conditions. Fortunately, the characterization
applies to list-recoverability, and hence also list-decodability.

▶ Theorem 15 ([17], Theorem 2: Thresholds for Random Codes). Let b ∈ N and let T be
a set of b-local types. Let T be a convex approximation for T . Then the threshold rate for
T -freeness is

1 − maxτ∈T Hq(τ)
b

.

▶ Proposition 16 ([17], Lemma 1). Tρ,ℓ,L is a convex approximation for the property of
(ρ, ℓ, L)-list-recoverability.

3 Lower Bound on List-Size for List-Recovery

Througout this section, the following notations are fixed:
q ∈ N is a (fixed) prime power;10

ℓ ∈ N satisfies 1 ≤ ℓ < q;
ρ ∈ R satisfies 0 < ρ < 1 − ℓ

q ; and
δ > 0 is a small constant.

All these parameters are constants, independent of the growing parameter n. Our main
result in this section is the following theorem.

▶ Theorem 17. There exists εq,ℓ,ρ,δ > 0 such that for all 0 < ε < εq,ℓ,ρ,δ and n sufficiently

large, a random linear code in Fn
q of rate 1−hq,ℓ(ρ)−ε is not

(
ρ, ℓ, ⌊ logq (q

ℓ)−(1−hq,ℓ(ρ))
ε − δ⌋

)
-

list-recoverable with probability 1 − o(1).

10 When we discuss random codes, q may be any positive integer.
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The proof of this theorem follows the same outline as has been used in, e.g., [15]. Namely,
we begin by defining a L-local type which we show is bad for (ρ, ℓ, L)-list-recovery. Later, we
prove that the type is indeed abundant, which is the more challenging part of the theorem.

The bad L-local type is defined as follows.

▶ Definition 18 (The bad type for (ρ, ℓ, L)-list-recoverability). Fix L ∈ N. Define the distribu-
tion τ ∼ FL

q via the following procedure for sampling a random vector u⃗ = (u1, . . . , uL):
First, S ∼

(Fq

ℓ

)
is sampled uniformly at random;

Second, for i = 1, . . . , L, we sample ui ∼ Fq as

Pr[ui = x|S = S] =
{

1−ρ
ℓ if x ∈ S
ρ

q−ℓ if x /∈ S
,

and conditioned on S = S, the coordinates u1, . . . , uL are independent.

Note that such a type does indeed lie in the set Tρ,ℓ,L. Indeed, if ν ∼ S we clearly have

∀i ∈ [L], Pr
(u⃗,S)∼(τ,ν)

[ui /∈ S] = ρ

and we also readily have Pru⃗∼τ [ui ̸= uj ] > 0. From [17], we conclude that τ is bad for
(ρ, ℓ, L)-list-recovery.

We now claim that the type τ is indeed abundant, i.e., that it has sufficiently large
(relative) entropy. This is the more technical part of the proof, and its proof is deferred to
the full version.

▶ Lemma 19. There exists an integer Lρ,q,ℓ,δ such that for all integers L ≥ Lρ,q,ℓ,δ, the
following holds. Let u⃗ ∼ τ , and let A ∈ FL′×L

q with L′ ≤ L and rank(A) = L′. Then

Hq(Au⃗) ≥ L′·hq,ℓ(ρ)+logq

(
q

ℓ

)
−1+hq,ℓ(ρ)−δ ≥ L′·

(
hq,ℓ(ρ) +

logq

(
q
ℓ

)
− 1 + hq,ℓ(ρ) − δ

L

)
.

Assuming Lemma 19, we now show that this does indeed yield our target Theorem 17.

Proof of Theorem 17. Let Lρ,q,ℓ,δ/2 be the promised constant from Lemma 19, and choose

εq,ℓ,ρ,δ := logq (q
ℓ)−1+hq,ℓ(ρ)

Lρ,q,ℓ,δ/2+1 . Let ε < εq,ℓ,ρ,δ. Let L =
⌊ logq (q

ℓ)−1+hq,ℓ(ρ)
ε − δ

⌋
, and define τ as

in Definition 18 with this choice of L.
By Lemma 19, as L ≥ Lρ,q,ℓ,δ/2 we have that for all surjective linear maps A : FL

q → FL′

q

Hq(Aτ)
L′ ≥ hq,ℓ(ρ) +

logq

(
q
ℓ

)
− 1 + hq,ℓ(ρ) − δ/2

L
.

We note further that as τ has full support the same is true for Aτ , i.e., dim(Aτ) = L′. Thus,
by Theorem 14 we have that the threshold rate for τ -freeness is at most

1 − hq,ℓ(ρ) −
logq

(
q
ℓ

)
− 1 + hq,ℓ(ρ) − δ/2

L
− on→∞ < 1 − hq,ℓ(ρ) − ε ,

where the last inequality holds for large enough n. In other words, a random linear code of
rate 1 − hq,ℓ(ρ) − ε contains a matrix M ∈ Mn,τ with probability 1 − o(1). As we know that
a code C which contains a matrix of type τ is not (ρ, ℓ, L)-list-recoverable, our theorem is
proved. ◀
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3.1 List-recoverability lower bound for random codes
For context, we provide nearly matching upper and lower bounds for list-recovery for
uniformly random codes. There is a similar result for list-recovery provided in [17], but it is
not optimized for the case of capacity-approaching codes.

▶ Theorem 20. There exists εq,ℓ,ρ,δ such that for all 0 < ε < εq,ℓ,ρ,δ and n sufficiently large,

a random code in Fn
q of rate 1 − hq,ℓ(ρ) − ε is not

(
ρ, ℓ, ⌊ logq (q

ℓ)
ε − δ⌋

)
-list-recoverable.

On the other hand, for any ε > 0 and n sufficiently large, a random code in Fn
q of rate

1 − hq,ℓ(ρ) − ε is
(

ρ, ℓ, ⌈ logq (q
ℓ)

ε + 1⌉
)

-list-recoverable.

In this way, we can essentially pin-down the list size of a rate 1 − hq,ℓ(ρ) − ε random code
to one of three possible values. This is similar to the result on the list-decodability of binary
random linear codes from [15]. Again, the proof is deferred to the full version.

4 List-Decoding with Small Lists

In this section, we investigate the list-decodability of random codes and random linear codes
with constant list size. Specifically, for list-of-3 decoding over the binary field, we can show
that the threshold rate for list-decoding of random linear codes is strictly better than that
for list-decoding uniformly random codes. Further, for larger field sizes we are able to show
that the threshold rate for list-of-2 decoding over Fq is strictly better for random linear
codes than for uniformly random codes. This extends the result of [17] which only applies to
list-of-2 decoding for binary codes.

For our lower bound on the threshold rates for RLCs, we follow the following procedure.
First, we consider any type that is bad for, e.g., (ρ, 3)-list-decoding, i.e., a type from Tρ,1,3.
For any such type τ , we upper bound Hq(Aτ)

dim(Aτ) for the linear map A sending (x1, x2, x3) 7→
(x1 − x3, x2 − x3). This is straightforward when the dim(Aτ) is full (requiring essentially
only the concavity of the entropy function); when it is smaller, more careful reasoning is
required. For space reasons, all the proofs of this section are deferred to the full version.

As a final contribution, we recall that in [15] it is shown that over the binary field the
threshold rate for random linear codes is strictly better than random codes in the capacity-
approaching regime. We observe that their techniques can be extended to show that such a
trend holds for any constant list size L (assuming the decoding radius ρ is not too large). To
do this, we first prove a lower bound on the threshold rate of binary random linear codes by
applying the argument in [26] and an upper bound on the threshold rate of binary random
codes following the argument in [15]. Although our proof resorts to known techniques, such
results were not stated before and greatly strengthen our belief that random linear codes
perform better than random codes. In light of the available evidence, a reasonable conjecture
would be that the for all alphabet sizes, the threshold rate of random linear codes is strictly
better than that of random codes.

4.1 List-of-3 Decoding for Binary Alphabet
In this section, we study the threshold rate for list-of-3 decoding binary codes. We recall
that the Plotkin point for list-of-3 decoding binary codes, i.e., the maximum value of ρ for
which (ρ, 4)-list-decoding with positive rate is possible, is 5/16 [1]. Our main theorem is the
following:
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▶ Theorem 21. Let ρ ∈ (0, 5/16). The threshold rate for (ρ, 4)-list-decoding a random linear
code over F2 is at least

1 − max
{

H2(x1, x2) + 2x1 + x2 log2 3
3 : x1 + 2x2 ≤ 4ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0

}
.

Next, for context, we consider the threshold rate for (ρ, 4)-list-decoding uniformly random
codes.

▶ Theorem 22. Let ρ ∈ (0, 5/16). The threshold rate for (ρ, 4)-list decoding random code
over {0, 1} is

1 − max
{

1 + H2(x1, x2) + 2x1 + x2 log2 3
4 : x1 + 2x2 ≤ 4ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0

}
.

As 1+F
4 ≥ F

3 for all F ≤ 3, the lower bound on the threshold rate provided by Theorem 21
is greater than the exact value from Theorem 22. This demonstrates that random linear
codes do indeed perform better.

4.2 List-of-2 Decoding for Arbitrary Alphabets
We now study list-of-2 decoding over Fq for q ≥ 3. Here, the Plotkin point is to the best of
our knowledge unknown, and we just prove our result for ρ < 1/3.

▶ Theorem 23. Let ρ ∈ (0, 1/3). The threshold rate for (ρ, 3)-list decoding random linear
code over Fq with q ≥ 3 is at least

1 − max
{

Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)
2

: x1 + 2x2 ≤ 3ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0
}

.

For context, we again consider random codes.

▶ Theorem 24. Let ρ ∈ (0, 1/3). The threshold rate for (ρ, 3)-list decoding random code over
Fq is

1 − max
{ 1 + Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)

3
: x1 + 2x2 ≤ 3ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0

}
.

Again, by noting 1+F
3 ≥ F

2 for all F ≤ 2, we conclude that random linear codes do indeed
perform better: the lower bound on the threshold rate furnished by Theorem 23 is strictly
greater than the exact threshold rate of Theorem 24.

4.3 List Decoding for Binary Alphabets with Larger Lists
In this subsection, we observe that the list-decodability of random linear codes is better than
random codes over the binary field for any list size L.

We begin by stating our possibility result for random linear codes. The proof is an
adaptation of the argument from [10, 26] which we omit due to the space limit.

▶ Theorem 25. For any fixed list size L and δ > 0, a random linear code over the binary
field of rate 1 − h2(ρ) − h2(ρ)

L−1−2δ − δ is (ρ, L)-list decodable with probability 1 − 2−Ωδ,L(n).

Next, we provide an upper bound on the list size of a random code. The proof, which
appears in the full version, uses the threshold framework.

ICALP 2022
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▶ Theorem 26. Let L be a fixed constant list size and δ be any positive constant. With high
probability, a random code with rate L−1

L (1 − h2(ρ)) − h2(2ρ−2ρ2)−h2(ρ)
L + δ is not (ρ, L)-list

decodable.

From these two theorems, we note the following. If we let δ tend to 0, the upper bound
provided by Theorem 26 is smaller than that provided by Theorem 25 as (3 + 1

L−1 )h2(ρ) −
h2(2ρ − 2ρ2) < 1, assuming ρ is not too large.
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