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Abstract
Two of the most common models for channels with synchronisation errors are the Binary Deletion
Channel with parameter p (BDCp) – a channel where every bit of the codeword is deleted i.i.d with
probability p, and the Poisson Repeat Channel with parameter λ (PRCλ) – a channel where every
bit of the codeword is repeated Poisson(λ) times.

Previous constructions based on synchronisation strings yielded codes with rates far lower than
the capacities of these channels [6, 9], and the only efficient construction to achieve capacity on
the BDC at the time of writing this paper is based on the far more advanced methods of polar
codes [23].

In this work, we present a new method for concatenating synchronisation codes and use it to
construct simple and efficient encoding and decoding algorithms for both channels with nearly
optimal rates.
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1 Introduction

The theory of error-correcting–codes deals with methods for encoding messages to be sent
over noisy media in such a manner that they can be correctly decoded afterwards. Initially
introduced by Shannon [22], this field has proven to be instrumental in understanding the
theory of computation, and has had a wide variety of applications in other fields, such as
communications, and computational biology [24].

The most commonly considered models are “Synchronous Models” - models where the
message may be altered or erased, but every letter that was received can be traced back to
its original position in the transmitted message. This category includes models such as the
Binary Symmetry Channel (BSC) where some of the bits in the transmitted message are
flipped (i.e. changed from 1 to 0 or vice versa), and the Binary Erasure Channels (BEC)
where some of the bits of the transmitted message are replaced with a question mark (but
are not removed, thus preserving the alignment between the transmitted message and the
received message). These models can be adversarial (such as [14]), where the code must
correct any error the channel may produce, or average-case (such as [22]), where the effect of
the channel is random and decoding only needs to succeed w.h.p.
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Synchronous models are very well researched, and have a variety of efficient encoding
and decoding algorithms [24]. The main method used for such channels are linear error-
correcting–codes and they rely heavily on the fact that the letters of the received messages
can be mapped back into letters of the transmitted messages.

However, in many real world applications, deletions and insertions can cause the received
codewords to be misaligned and the decoder must also deal with synchronisation errors [18, 17].
Perhaps the most intuitive asynchronous channel is the Binary Deletion Channel. This is a
channel where every transmitted bit is deleted i.i.d with probability p (where 1 > p > 0 is a
parameter of the channel).

Here, unlike with the binary erasure channel, deleted bits are not replaced with a question
mark, but are completely removed from the sequence, shifting the rest of the received
codeword. For instance, when transmitting the codeword w = (1, 0, 0, 0, 1, 1), the BEC may
result in the received codeword rBEC = (1, 0, ?, ?, 1, ?) while a similar pattern of deletions
would result in the received codeword rBDC = (1, 0, 1).

This channel represents a simple model for many real-life systems in which there is a loss
of information due to synchronisation errors. Moreover, the tools developed for this channel
have been instrumental in a variety of other fields [18, 17].

A slightly more complex model which we will also consider, is the Poisson Repeat Channel
with parameter λ > 0 (PRCλ). This is a channel where every transmitted bit is received
Poisson(λ) times. While originally used to help prove lower bounds on the capacity of binary
deletion channels, Poisson repeat channels are interesting in their own right. Indeed, Poisson
repeats can model every-day examples like a sticky key in a keyboard, as well as deeper
technological issues such as errors in single photon generation (a crucial step in light-based
quantum computing) [2].

However, the PRC also presents a slightly greater challenge. This is because bits
can now be received more than once, resulting in several new types of synchronisation
errors. Continuing with our previous example where the codeword w = (1, 0, 0, 0, 1, 1) was
transmitted, the received codeword in the BDC model will always start with at most a single
1 bit, unless all three 0s were deleted. In the Poisson repeat channel, this is not the case and
the received codeword rPRC = (1, 1, 0, 1) is a possible outcome.

Several previous results have shown an interesting connection between these two noise
models. For instance, Mitzenmacher and Drinea’s lower bound for the capacity of the BDC
channel [19] is based on their previous lower bound for the capacity of the PRC channel, and
Con and Shpilka’s constructive codes for the BDC channel [6] are also applicable to the PRC
channel.

In this paper we will focus our attention on these two channels, but we believe our tools
and approaches can be applicable to other asynchronous channels as well.

1.1 Previous Work

Asynchronous channels present us with a varied field of research, and we will not be able to
cover all of its results here. The excellent surveys by Mitzenmacher, Cheraghchi et al and
Mercier et al [18, 17, 5] give a more detailed background.

Determining the capacity of the BDCp channel, remains an open problem, and so far it
has been answered only for some extremal cases. When p→ 0, the capacity of this channel is
1−h(p) [15] (where h(·) is the binary entropy function), when p→ 1, the capacity is µ(1− p)
where 1

9 < µ ≤ 0.4143− o(1) [19, 8] (where o(1) is w.r.t the block size n), and [25] give lower
bounds for some of the intermediate values of p.
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However, the lower bound on the capacity by Mitzenmacher and Drinea [19] is not
based on an efficient construction. Recently, Con and Shpilka constructed a family of
error-correcting-codes with rate r ≥ 1−p

16 for the BDCp channel and r ≥ λ
17 for the PRCλ

(when λ < 1
2 ) [6], improving upon the results of Guruswami and Li who presented the first

explicit codes with rate Θ(1− p) in [9]. This was improved upon by, Tal et al and by Pfister
and Tal who showed that polar codes can be used to construct efficiently decodable codes
with optimal rates for the BDC channel [23, 20].

Haeupler and Shahrasbi [13] construct a family of efficient codes for InsDel channels with
a sufficiently large alphabet, and Haeupler, Rubinstein and Shahrasbi improve the decoder
in [12], reaching quasi-linear complexity.

In the adversarial model, Guruswami and Wang [10] showed that there are codes with
rate 1− Õ

(√
δ
)

that can correct up to δn errors. This rate was improved by Cheng et al. [3]
and further by Haeupler [11]. More recently it was shown by Con, Shpilka and Tamo [7] that,
surprisingly, linear error correcting codes are also effective for adversarial InsDel channels.

1.2 Main Contribution
In this work we will construct a family of codes, with efficient encoding and decoding
algorithms, whose rates are arbitrarily close to the capacities of the BDC and PRC channels.
Unlike the previous results of Tal et al. and of Pfister and Tal [23, 20], this construction
does not require the more advanced machinery of polar codes. Furthermore, the construction
presented has a decoding error probability of exp

(
−Θ

(
n

1
6

))
(where n is the block length)

with a quasi-linear complexity decoder, while Pfister and Tal’s code requires n
3
2 +ε time for

the same error probability.
Both our code and Pfister and Tal’s construction assume that we are given some inner

code which achieves a high rate on the channel but which does not necessarily have efficient
encoding and decoding algorithms, and both methods produce a new version of this code
with efficient encoding and decoding. However, Pfister and Tal’s construction requires this
code to be generated by a hidden-Markov distribution, while the construction presented here
can be used with any inner code. Li et al. proved that there exists a finite hidden-Markov
distribution code that achieves capacity for this channel [16] and this model can clearly be
found in O(1) time using an enumeration technique similar to the one described in Section 4.1,
but such a code has not been found yet.

▶ Theorem 1 (Main Result (informal)). Any (possibly inefficient) family of codes for either
the BDC or the PRC channel can be converted into a family of codes for the same channel
with an arbitrarily close rate, that has encoding and decoding algorithms with a quasi-linear
complexity.

It should be noted that while this complexity is asymptotically very good, it hides within
it a very large constant factor, and while we do not have an exact bound on it, we expect it
to grow as the rate of the code approaches the capacity of the channel.

Nonetheless, this allows us to construct to construct a family of efficient codes which
achieve rates of 1−p

9 for the BDCp channel, thus completing the line of works started by
Guruswami and Li [9] and continued by Con and Shpilka [6].

Our construction is based on a new technique for tracking inner codewords in a concaten-
ation of synchronisation codes, which we hope may be useful in other cases as well:

Most previous constructions use buffers of 0s as the delimiters between inner codewords.
Then, by bounding the probability that the channel would transform any substring of the
inner codeword into a sufficiently long sequence of 0s, they can ensure that long sequences of
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0s in the received codeword mostly correspond to delimiters. In other words, when separating
the received codeword into inner codewords, one searches the entire string for patterns that
may have come from a delimiter.

In our construction, we will use delimiters in a very different manner. Instead of searching
the entire codeword for the delimiters, we will use our knowledge of the length of the inner
codeword and the average expansion of the channel to produce a prior estimate for the
distance between consecutive delimiters. Using this prior estimate, we are able to find the
delimiters one after another, without looking at the entire codeword.

This new method allows us to drastically reduce the probability that even a single inner
delimiter will be missed, while reducing the overhead of the delimiters to a negligible fraction
of the codeword. The ability to decode under the assumption that all delimiters will be
found simplifies the outer code in our construction, and the fact that we will not search for
a delimiter within an inner codeword allows us to use a general inner code, resulting in a
nearly optimal rate.

1.3 An Overview of Con and Shpilka’s Construction
Since our approach will be similar to that of [6], we will begin with a short overview of their
construction, which is based on a concatenation of codes.

Initially, the message is divided into segments of length σ = O(1). These are thought of
as members of an alphabet Σ of size |Σ| = 2σ and can be encoded using [13]. Each letter in
the encoded message is then converted back to a string of σ binary symbols and is encoded
using an inner code. Since the inner code is only applied to strings of length σ = O(1), it
can be inefficient without affecting the asymptotic complexity of the encoding / decoding
algorithms. The encoded strings are appended and separated by delimiters - in this case
buffers of 0s.

Con and Shpilka’s construction has a quasi-linear encoding algorithm and a quadratic
decoding algorithm, where the computational bottleneck of the decoding algorithm comes
from decoding the outer code. The improved decoding algorithm for Haupler and Shahrasbi’s
code [12] can be used with Con and Shpilka’s code to reduce the complexity of their decoding
algorithm to a quasi-linear time as well.

1.4 Sketch of the Proof
Our construction will be based on a similar strategy, but with a few key differences. Firstly,
we note that most of the overhead of this code is caused by the fact that the inner code is
designed to preserve a certain structure.

By removing this structure we are able to significantly increase the rate of our code.
However, this comes at a cost - separating unstructured codewords from the delimiters is
made far more difficult. We overcome this using a slightly more complex construction of
delimiters and a careful analysis.

In addition, the delimiters themselves account for another constant fraction of the overhead
of Con and Shpilka’s code. By using a recursive concatenation, we are able to reduce the
cost of these delimiters to a negligible fraction of the overhead.

At each step of this recursion, we will assume that there exists a BDC/PRC code with
message length k and block length n, and we will construct a code with message length k2

and block length n′ = (1 + o(1)) nk.
We will do this by separating the k2 bit message into k strings of k bits each. We will

think of each of these k-bit strings as a member of an alphabet of size |Σ| = 2k and use a
ReedSolomon [k + 2t, k, t]2k code to give it some redundancy (i.e. a Reed-Solomon code over
a field of size 2k, message length k and block length k + 2t with distance t = o(k)).
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If we were constructing a code for a discrete memoryless channel (DMC) such as the
BEC, this step might not be very surprising, because without synchronisation errors we could
map the received codeword back into the letters of the Reed-Solomon codeword. However,
in our case this might seem somewhat counter-intuitive, since Reed Solomon codes offer
no protection against the synchronisation errors we are trying to correct. This step works
for asynchronous channels as well because our delimiters are designed to fully preserve the
synchronisation between inner codewords and the Reed Solomon code will only need to
compensate for a small number of local decoding failures of inner codewords.

We will encode each of the k + 2t letters of the Reed Solomon codeword using our inner
code. This will output a list of k + 2t strings of length n bits each. Finally, we will append
these strings after inserting a delimiter between each two.

The delimiters will be made up of two parts: a positioning string which will help us find
the delimiter and two partitioning strings which will help us separate between the delimiters
and the inner codewords themselves. The reason that we need partitioning strings, is that
we make no assumptions about the structure of the inner code. Therefore, any sequence of
bits that originated from the delimiter could have originated from the inner codeword.

For instance, suppose we had used buffers of 0s as our delimiters. Since we make no
assumptions about the structure of the inner code, we have no way of knowing whether or
not the inner codeword begins with a sequence of 0s, so we can’t tell where the delimiter
ends and the inner codeword begins.

This makes separating the two a very difficult task and will be at the heart of our
construction. Our separation between inner codewords and delimiters will not be completely
accurate, but we will be able to bound the effect this has on the decoding failure probability
by using the fact that the inner code is designed to deal with (some) deletions.

Both parts of the delimiter will be based on an idea we call “valleys”. Similar to the
markers defined by Cheraghchi et al [4], we will define valleys to be a long sequence of 0s
followed by a long sequence of 1s (when looking at the cumulative sum of the string minus
1
2 , these translate to local minima - see Figure 1). Unless one of these two sequences is
completely deleted by the channel, a valley in the transmitted message will result in a valley
in the received message.

We will use this observation to align indices within the received message to their source
in the transmitted message. We will start with an estimate of where the center of some
valley from the transmitted message should be in the received message, and then we will go
downhill to the nearest local minima (see Algorithm 1). By bounding both the probability
that one of these sequences was removed and the probability that our initial estimate was
outside the bounds of the received valley, we can correlate the center of the received valley
to the center of the transmitted valley with high probability.

Each positioning string will be a long valley, and each partitioning string will be a short
valley. We set the positioning string to be long, because we need to be able to find its center,
given only a very rough estimate. On the other hand, setting the partitioning strings this
long would reduce the accuracy of its separation from the inner codewords.

The decoding algorithm will be similar to the encoding algorithm, but in a reversed order.
First, we will align the received message by locating the centers of the positioning strings.
Then we will use the partitioning strings to separate the delimiters from the inner codewords,
and apply the inner code decoding to obtain the inner codewords. Finally, we use the Reed
Solomon decoding to correct up to t errors that may have occurred.

ICALP 2022
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1.5 Organization
In Section 2 we will define basic notations, show some well-known inequalities that we will use
in our analysis and present the basic building block of our construction. Section 3 contains
the construction of our recursive step and in Section 4 we will prove the basis of the recursion
and show how we can connect it to the recursive step. In Section 5 we will extend our results
to the Poisson repeat channel. Finally, in Section 6 we will discuss the implications and
limitations of these results, as well as potential avenues for future research. We leave the
slightly more technical proof that of our bound for the decoding failure probabilities to the
full version (see Section 6 of the full version [21]).

2 Preliminaries

2.1 Average-case Codes
▶ Definition 2. Let Σ be a finite set and let k, n ∈ N be positive integers.

We will say that C is a random channel acting on the alphabet Σ and block-length n if
it maps any member of Σn to a distribution on some set Y.

Furthermore, we will say that encoding and decoding algorithms E : Σk → Σn, D : Y →
Σk for this channel with message length k have rate ρ = k

n and a decoding falure probability
(DFP) of

δ = max
m∈{0,1}k

{Pr [D(C(E(m))) ̸= m]} .

In other words, the DFP of a code is the probability that a message will be decoded
incorrectly if the message was chosen adversarially, but the effects of the channel were
random.

▶ Definition 3. Let C be a random channel. We will say that F = {(Ei, Di)}i∈N is a family
of codes for C if:

The message lengths ki of Ei, Di are unbounded (ki −−−→
i→∞

∞).
The DFPs δi of Ei, Di in C are vanishing (δi −−−→

i→∞
0).

Throughout the decoding process we will often attempt to align the received message
with the transmitted codeword.

▶ Definition 4. When the channel acts independently on each letter of the input (i.e. when
C (b1, . . . , bn) = C (b1) . . . C (bn)), we will say that the ith coordinate of a message transmitted
over some asynchronous channel and the jth coordinate of the received message are aligned,
if the first i− 1 letters of the transmitted message were mapped to a string of length at most
j by the channel and the first i letters of message were mapped to at least j letters by the
channel.

2.2 Probability Inequalities
Throughout this paper we will bound the probability that several parts of our construction
will fail. This will require several bounds on the tails of Poisson and binomial distributions,
which we will present in this section. Perhaps the most important tool at our disposal will
be the Chernoff bound.
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▶ Theorem 5 (Chernoff Bound for Binomial and Poisson Distributions). For all 1
2 > ε, p > 0,

n ∈ N and λ > 0:

Pr [|Bin (p, n)− pn| > εpn] ≤ 2 exp
(
−1

4ε2pn

)

Pr [|Poisson (λ)− λ| > ελ] ≤ 2 exp
(
−1

4ε2λ

)
.

This theorem is based on the Chernoff bound (see Section 2.2 of [1]) and an analysis of
entropy functions. We leave its slightly technical proof to the full version (see Appendix 8.1
of [21]).

Another special case of the Chernoff bound (see Appendix 8.2 of [21]) is

▶ Theorem 6 (Binomial Tail). For all α > e2, 1
α+1 > p > 0 and n ∈ N:

Pr [Bin (p, n) > (α + 1)pn] ≤ exp
(
−1

2 log (α) αpn

)
.

2.3 Aligning Valleys
Our main tool in aligning the messages will be an idea we call valleys.

▶ Definition 7. We will define a valley with faces of length x and y to be a string of x 0s
followed by y 1s.

In other words Valley(x, y) = 0x1y.
We will define the center of a valley to be the index where it transitions from 0s to 1s

(i.e. the index of the last 0 bit).

Suppose the codeword contains some valley V = Valley(x, y). This is encoded by the
channel into a valley whose face lengths are i.i.d Bin(1− p, x) and Bin(1− p, y) (or Pois(λ, x)
and Pois(λ, y) for the PRC channel). Assuming neither side of the valley was completely
deleted, the center of the received valley and the center of the transmitted valley should be
aligned.

Our definition of valleys is similar to the markers considered in [4], but we will view our
valleys very differently. Cheraghchi et al construct their inner code so that is is unlikely to
contain a long sequence of 0s. This allows them to find the delimiters by searching for the
next sequence of 0s and then use the marker to zero in on the center of the delimiter.

In our decoding algorithm, we will produce an approximate estimate for where the center
of a certain valley should be, and by finding its actual center we will be able to align that
index to a position within the transmitted message. We will do so using Algorithm 1.

Intuitively, this algorithm works by using the observation that if the valley was not
distorted by the channel too much and our initial estimate for its center was not off by too
much, then we known whether or not our guess was to the right or to the left (since the left
face of the valley has 0s and the right face has 1s). We can then correct our position. If we
are on the left face, go right until we reach the center and vice versa.

In order to clarify this approach we will consider a simple example. Suppose we are
building a code for the BDCp channel with parameter p = 1

2 and we decide to use a valley of
length 32 on either side to align some index.

That is, our transmitted message would be as follows (where the bold digit signifies the
center of the valley).

m = [. . .]0000000000000000000000000000000011111111111111111111111111111111[. . .]

ICALP 2022
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Algorithm 1 Align Valley.

Input : a received codeword w ∈ {0, 1}∗, estimated center of valley j

Output : the center of the valley j′

j′ ← j;
if w[j] = 0 then

while w[j′] ̸= 1 do
i← i + 1 ;

end
return j′ − 1 ;

else
while w[j′] ̸= 0 do

i← i− 1 ;
end
return j′ ;

end

Suppose the channel made the following deletions:

d = [. . .] · · · 0 · · · · · ·000 · 0 · ·00 · · · ·0 · 0 · 0 · ·0 · ·1 · 1 · 11 · 11 · 1 · · · 111 · 1111111 · · · · · 1[. . .]

Furthermore, assume that we have some prior estimate that the center of the received
valley should be 5 bits from its actual position.

Then the received codeword would be as follows, where the underlined digit signifies our
prior estimate for the center of the valley.

w = [. . .]00000000000111111111111111111[. . .]

Algorithm 1 would start from this initial estimate and advance to the left, returning the
correct center of the valley.

w = [. . .]00000000000111111111111111111[. . .]

In Figure 1 we show a geometric representation of this algorithm.

3 Recursive Step

In this section we will define the recursive step in our construction, explain the rationale
behind it and begin to prove its correctness. Intuitively, the main theorem we will prove here
is that any error correcting code for the BDC with message length k can be transformed
into a code with message length k2 and that the DFP, rate and complexity of the new code
“scale well”. More formally we will show that:

▶ Theorem 8 (Recursive Step). For some constants c1, c2, c3, k0, δ0 > 0 and for all k > k0,
d > 0, 2k−1−k > t > 0, δ0 > δ > 0, 1 > p > 0 and any error correcting code C for the BDCp

channel with message length k, block length n and DFP δ, there exists an error correcting
code C ′ for the BDCp with message length k2, block length n′ ≤ (k + 2t)(n + d

1−p ) and DFP:

δ′ ≤ Pr [Bin (δc1 , k + 2t) > t] + c3 (k + 2t) exp
(
−c2 min {d,

d2

k
}
)

.

Furthermore, there exist an encoder and decoder for C ′ with time complexity Õ (n′) using
up to k + 2t calls to the encoder and decoder of C.
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Figure 1 A visual representation of the algorithm for aligning valley centers on a specific example
of a valley with parameters (32, 32), being sent over a BDCp channel with parameter p = 1

2 . The
plots go up by 1

2 whenever the relevant string has a 1 and down by 1
2 whenever it has a 0. A) The

transmitted message, with the green dot representing the center of the valley. B) First, the channel
deletes some of the bits resulting in a skewed valley. We are given some prior estimate for the center
of the valley (red arrow). The algorithm goes down the valley (blue arrow), until it terminates at
the center (green dot).

We will use this construction in two scenarios: to improve the base of the recursion and
for the steps of the recursion. In Table 1, we present the parameters of Theorem 8 and the
asymptotic values for both use cases.

Table 1 The parameters of Theorem 8, and their asymptotic values in the two use cases.

Parameter Description Recursion Base | Step

k Message Length

n Block Length Θ
(

k
1−p

)
d Delimiter Length Θ

(
k

2
3

)
t Reed Solomon Redundancy o (k) | Θ

(
k

2
3

)
δ Inner Code DFP o(1) | exp

(
− c2

2 k
1
6

)
c1, c2, c3 Constants 1

34 , 1
256 , 6

The first set of values is used for improving of the base of the recursion. In this case, our
only bound on δ will be that it is an arbitrarily small constant, but its relation to k will
not be exactly known. Our goal in this step of the construction will be to reduce the error
probability at the cost of an arbitrarily small but non-negligible cost to the rate of the code,
and we will accomplish this by setting t to be of the order of Θ

(
δ

c1
2 k
)

.

ICALP 2022
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The second scenario is that of a step in our recursion. We will construct our recursion in
such a manner that the DFP of the inner code will be bounded by δ < exp

(
− c2

2 k
1
6

)
. By

setting t = d = Θ
(

k
2
3

)
we will be able ensure that on the one hand, the DFP of the final

code will be δ′ ≪ exp
(
− c2

2
(
k2) 1

6
)

while on the other, the rate of the code will be reduced

by only a factor of 1−O
(

t+d
k

)
= 1−O

(
k

1
3

)
= 1− o(1).

The construction of the code C ′ : {0, 1}k2 → {0, 1}n′ is as described in the introduction.
First, the input string is split into k parts of length k each. These are considered as elements
in an alphabet of size 2k and a Reed Solomon encoding with parameters [k + 2t, k, t]2k is
applied to them. Each of these is encoded using the encoder of C, a delimiter is appended to
each codeword and the concatenation of all of these strings is outputted.

Similarly, the decoding algorithm works by locating the delimiters, separating them from
the inner codewords and then decoding each inner codeword using the decoder of C. The
decoded inner codewords are once again viewed as letters in an alphabet of size 2k and the
Reed Solomon decoding is applied.

We will define a delimiter with parameters α, β to be a valley of length β surrounded by
two valleys of length α. In other words

Delimiter (α, β) = Valley (α) Valley (β) Valley (α) = 0α1α0β1β0α1α

The exact values of α and β are presented in the full version (see Section 6 of [21]), but

they will be of the order of α = Θ
(

log ( 1
δ )

1−p

)
and β = d

2(1−p) − 2α = Θ
(

k
2
3

1−p

)
.

In order to complete the construction, we still need to provide methods of locating the
delimiters in the received codeword and separating them from the inner codewords. These
steps will be explained in the following subsections.

3.1 Positioning Strings

We will use the positioning strings to locate the delimiters one at a time.
Let us denote by Li the location of the center of the ith positioning string in the received

codeword. We can estimate the location of the center of the first positioning string as being
around E [L1] = (1 − p)(n + 2α + β) bits from the beginning of the received codeword.
However, this is only a rough estimate and in reality L1 ∼ Bin (n + 2α + β, 1− p). We want
to find the exact center.

This is where the valleys come into play. With high probability, |L1 − E [L1] | will not be
much larger than σL1 =

√
p(1− p)(n + 2α + β) (where σL1 is the standard deviation of L1),

and at least 1−p
2 β of the bits on either side of the valley will survive the channel. Therefore,

so long as
√

p(1− p)(n + 2α + β)≪ 1−p
2 β, we can expect Algorithm 1 to find the value of

L1 w.h.p.
Once we have found the ith delimiter, we go on to search for the i + 1-th. At each step

we use the aligned center of the previous positioning string Li to obtain an estimate for
Li+1 ∼ Li + Bin (n + 4α + 2β, 1− p), and use its valley to correct our estimate. In the full
version we show that the probability that even a single positioning string will not be correctly
found is at most (k + 2t) exp

(
−c2 min {d, d2

k }
)

(see Section 6 of [21]).
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3.2 Partitioning Strings

Once we have located the centers of all of the delimiters, we still need to separate them
from the inner codewords. This step is surprisingly difficult, because, unlike Con and
Shpilka [6] who designed their inner code to preserve a certain structure that would help
them differentiate it from the delimiters, we reduce our overhead precisely by making no
assumptions about the structure of the inner code.

For instance, if we were to use buffers of 0s as our delimiters and the inner codewords
surrounding the delimiter happened to start / end with sequences of 0s, then we would have
had a hard time telling which of the 0s belonged to the delimiter and which belonged to the
inner codeword. The same applies for any choice of the delimiters.

Our solution to this problem will be based on two ideas. First, we will attempt to
approximate the correct separation as accurately as possible. However, this will not yield a
perfect separation and we will need to mitigate the effects of this inaccuracy.

The first step will be accomplished by surrounding the positioning string with two valleys.
When decoding we can find the centers of these valleys by going from the positioning string
until the ends of its valley and then proceeding to the bottom of the next/previous valleys.

Once we have found the center of a partitioning string, we can estimate the length of
the faces of its valley. Each of those will be i.i.d distributed according to F ∼ Bin (1− p, α).
By guessing f = (1 − p)α we will get a good approximation of F (to within an error of
Θ
(√

p(1− p)α
)

).

If we were to use this estimate as the separation between the delimiter and the inner
codeword we would have a two sided error probability, either due to overshooting (attributing
some bits of the inner codeword to the delimiter) or due to undershooting.

In the former case, this would cause us to delete some additional bits from the inner
codeword. Since the inner code is designed to deal with deletions, it stands to reason that it
might also be able to decode received messages if they were also subject to a small amount
of additional deletions. This claim is not straightforward, since the inner code deals with
random deletions and we will be subjecting it to a very structured set of deletions. However,
with a careful analysis we can bound the effect these deletions can have on the DFP of the
inner code.

However, in the latter case we would end up erroneously inserting part of the delimiter
to one end of the inner codeword. Since the inner code is for a deletion channel, it might
not be able to correctly decode the inner codeword, even after a small number of insertions.
Therefore, we have no way of bounding the effect this could have on its DFP.

That is why we want to reduce the probability of undershooting significantly more than
the probability of overshooting. To do this, instead of taking the estimate f = EF , we will
use the estimate f = E [F ] + ησF for some parameter η (where σF is the standard deviation
of F ).

If F was at most η standard deviations from its expectancy, then we would have f − F ∈
[0, 2ησF ]. The lower bound means that no bits from the delimiter would ever trickle into the
inner codeword, and the upper bound limits the number of bits from the inner codeword we
will delete by accidentally attributing them to the delimiter.

In the full version of the paper we bound both the probability that f −F /∈ [0, 2ησF ] and
the effect these deletions could have on the DFP of the inner code (see Section 6 of [21]).
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4 The Recursive Construction

In the previous section we defined the manner in which we recursively concatenate our code
to increase the message length at a negligible cost to the rate of the code and the complexity
of its encoder and decoder. In this section we will construct the base of this recursion and
set the parameters for the recursive steps.

4.1 The Base of the Recursion
When choosing the base of the recursion we are in essence transforming a lower bound on the
capacity of the channel to an actual error correcting code. We will do this in a very inefficient
manner, but as with Con and Shpilka’s inner code, since this code will have message and
block length of O(1), this does not affect the asymptotic complexity of our construction.

In order to begin our recursion, we will need a base code with sufficiently low DFP and
sufficiently large message length. By definition, a lower bound on the capacity of the channel
is a proof that there exists a family of codes for the channel with r ≥ capacity− ε for any
ε > 0. Therefore for any k0, δ0 > 0 there are some codes in that family with message length
k > k0 and DFP δ < δ0. Let κ be the smallest such block length. Since κ is determined by k0
and δ0, and since k0 and δ0 are constant parameters of our construction, κ = f (k0, δ0) = O(1)
must also be constant.

We will enumerate over values of k > k0 and for each of them we will attempt to construct
a base code. This process will terminate when k = κ, so it will require only a finite number
of iterations.

Since we are looking for an encoding map from some finite set of messages {0, 1}k (where
k is the message length) to some finite set of codewords {0, 1}n (where n < 9

1−p k = O(1) is
the block length), and a decoding map from {0, 1}≤n → {0, 1}k, there are only finitely many
pairs of this form. By enumerating over all of these pairs and evaluating their DFP, we will
be able to find a base code with message length k if one exists.

Since all of the steps in this process had a constant complexity, our construction of
the inner code had a constant O(1) complexity. It should be noted that this algorithm is
extremely inefficient and that we do not even know how to bound its complexity (except
that it is O(1)). We hope that future research will address this issue.

4.2 Connecting the Recursive Steps
All that remains now is to combine the recursive step shown in Section 3 with the base case
constructed in the previous subsection.

Throughout most of the recursion we will use the recursive step defined in Theorem 8 in
the following setting:

δk < exp
(
−c2

2 k
1
6

)
dk = k

2
3

tk = k
2
3 .

(1)

Applying the recursion Theorem 8, for sufficiently large k, we have:

δk2 ≤ Pr [Bin (δc1 , k + 2t) > t] + c3 (k + 2t) exp
(
−c2 min {d,

d2

k
}
)

. (2)
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We use Theorem 6 to bound the first term in the new decoding failure probability for
sufficiently small δ, by

Pr [Bin (δc1 , k + 2t) > t] ≤ exp
(
−c1

4 log
(

1
δ

)
t

)
≤ 1

2 exp
(
−c2

2 t
)

and the second term for sufficiently large k by

(k + 2t) exp
(
−c2 min {d,

d2

k
}
)

= exp
(
−c2k

1
3 + O (log (k))

)
≤ 1

2 exp
(
−c2

2 k
1
3

)
.

Combining these inequality gives us a bound on the new DFP:

δk2 ≤ exp
(
−c2

2 k
1
3

)
. (3)

The overhead of the code can also be easily bounded. From the recursion theorem, we
know that nk2 ≤

(
nk + dk

1−p

)
(k + 2tk). Since nk ≥ k

1−p (from the upper bounds on the
capacity of these channels) and dk = tk = k

2
3 , we have:

nk2 ≤
(

1 + k− 1
3

)2 k2

k
nk ≤

[(
1 + k− 1

3

)
·
(

1 + k− 1
6

)]2 k2
√

k
n√

k =

=
[(

1 + k− 1
3

)
·
(

1 + k− 1
6

)
· . . . ·

(
1 + (kbase)− 1

3
)]2

︸ ︷︷ ︸
=:X

k2

kbase
nkbase .

(4)

Since nkbase = 1
rbase

kbase (where rbase is the rate of the base code), it is easy to see that
rk2 = k2

nk2
= 1

X rbase. By bounding the value of X, we can bound the increase in the overhead
of the code due to the recursion.

X =
[(

1 + k− 1
3

)
·
(

1 + k− 1
6

)
· · · · ·

(
1 + (kbase)− 1

3
)]2

≤ exp
(

2k− 1
3 + 2k− 1

6 + · · ·+ 2(kbase)− 1
3
)
≤ exp

(
2 (kbase)− 1

3

1− (kbase)− 1
3

)
.

(5)

For a sufficiently large kbase, it is clear that this value can be set arbitrarily close to 1,
giving our code a nearly optimal rate.

However, this does not conclude our construction, since in each step of the recursion we
assumed that δk ≤ exp

(
− c2

2 k
1
3

)
, but our base construction only produced a code with an

arbitrarily small δbase and its relationship to kbase is unknown.

4.3 Completing the Construction
In order to bridge this gap, we apply the recursive step to the base code one more time,
with slightly different parameters. We will denote by k0, δ0, d0, t0, n0 the parameters of the
first application of the recursive step and by kbase = k0

2, nbase, δbase the parameters of the
resulting code.

As before, we will set d = k
2
3 , but unlike the previous setting, since δ0 is not necessarily

as small as we would want it to be, we will need to set the value of t to be somewhat larger.
In particular, we will set t0 = ⌈δ0

c1
2 k0⌉. Theorem 6 shows that, for sufficiently small δ0,

the probability that a binomial variable with parameters [δ0, k0 + 2t0] will be greater than t0
is of the order of exp (−Θ(k0)). Therefore, for sufficiently large k0, the DFP after the first
step of the recursion would be:

δbase < exp (−Θ(k0)) + exp
(
−c2k0

1
3 + o

(
k0

1
3

))
< exp

(
−c2

2 kbase
1
6

)
. (6)
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Finally, we need to bound the rate of the entire code. Using Equations (4) and (5), we
are able to bound the rate:

rk2 < Xrbase ≤ exp
(

2 (kbase)− 1
3

1− (kbase)− 1
3

)
rbase

≤ exp
(

2 k0
− 1

3

1− k0
− 1

3

)(
1 + δ0

c1
2

)
r0.

(7)

For sufficiently large k0 and sufficiently small δ0, this can be arbitrarily close to r0 which
in turn can be arbitrarily close to the capacity of the channel, obtaining an arbitrarily close
to optimal rate for our code.

4.4 Decoding Complexity

The recursive step promises at most k + 2t calls to the lower level of the construction and
Õ (n′) other operations. Let Tbase be the encoding / decoding complexity of the base scenario,
let Tk be the total complexity of the operation for our code with message length k and Ik be
the complexity due to operations which are not part of the lower levels of the recursion (i.e.
finding the delimiters, separating them from the inner codewords and decoding the Reed
Solomon encoding).

Similar to our bound on the rate of the code, we can bound the decoding / encoding
complexities by:

Tk2 = (k + 2t)Tk + Ik2 = Ik2 +
(

k + 2k
2
3

)
Tk

= Ik2 +
(

k + 2k
2
3

)
Ik +

(
k + 2k

2
3

)(√
k + 2k

1
3

)
T√

k

≤ Ik2 + exp
(

2 k0
− 1

3

1− k0
− 1

3

)
k2

k
Ik +

(
k + 2k

2
3

)(√
k + 2k

1
3

)
T√

k ≤ . . .

· · · ≤ exp
(

2 k0
− 1

3

1− k0
− 1

3

)(
k2

k
Ik + k2

√
k

I√
k + · · ·+ k2

kbase
Ikbase + k2

kbase
Tbase

)
.

(8)

The recursive step can have at most a quasi-linear complexity on top of its calls to the
inner code (see Theorem 8). Therefore, Ik = Õ (n). Inserting this into Equation (8), we are
can see that Tk2 = Õ (n′).

5 Adaptation to the Poisson Repeat Channel

In this section we will adapt the construction of our code for the BDC channel detailed
in the last two sections, to the PRC channel. Adapting the recursive step will be fairly
straightforward. However, adapting the base step will be a bit more tricky.

When working with the BDC, we used the fact that the received message could not be
longer than the transmitted one. This allowed us to build a decoding table that can return
some value for any of the possible received messages. However, the PRC could (with very
low probability) expand a transmitted message to an arbitrarily long received message, and
we will need to adapt our construction to address this issue.
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5.1 Adapting the Recursive Step

▶ Theorem 9 (Recursive-Step for the PRC). There exist some constants c1, c2, k0, δ0 > 0,
such that for any k > k0, d > 0, 2k−1 − k > t > 0, δ0 > δ > 0, λ > 0 and any error
correcting code C for the PRCλ channel with block length k, message length n and DFP δ,
there exists an error correcting code C ′ for the PRCλ with block length k2, message length
n′ ≤ (k +2t)(n+ d

λ ) and DFP δ′ ≤ Pr [Bin (δc1 , k + 2t) > t]+(k + 2t) exp
(
−c2 min {d, d2

k }
)

.

Furthermore, there exist an encoder and decoder for C ′ with time complexity Õ (n′) using
up to k + 2t calls to the encoder and decoder of C.

We will construct the recursive step almost exactly as in Section 3, only changing 1− p

to λ in our conversion of lengths of bits over the channel.

5.2 Adapting the Base of the Recursion

In this section, we will adapt our construction of the base of our recursion from Section 4 to
the PRC. It is easy to see that for any λ > 0, there exists a family of codes for this channel
with some non-negligible rate ρ = Θ(1) w.r.t the message length (for instance, by applying
the jigsaw construction of [19] with the Morse code distribution). We will set k0, δ0 to be
the minimal value of the message length k and DFP δ for which there exists such a base
code that will suffice for our construction.

Unlike the previous construction, here we will only be able to approximate the DFP of
our base code, so we will need to set two bounds. Let κ1 ≥ k0 be the minimal message length
for which there is a code in the family of codes such that it has a DFP of at most δ0, and let
κ2 ≥ k0 be the minimal message length for which there is a code in the family of codes such
that it has a DFP of at most δ0

2 . Similar to the construction in Section 4.1, we do not have
an explicit bound on κ1, κ2, but we know that they are bounded by some O(1) constant.

As in Section 4.1, we will enumerate over values of k ≥ k0, but this time we only promise
that our enumeration will end somewhere between κ1 and κ2. For each such k, we enumerate
over all n ≤ ρk, encoders C : {0, 1}k → {0, 1}n and decoders D : {0, 1}m → {0, 1}k, where
m is the smallest integer for which:

Pr [Poisson(λn) ≥ m] ≤ δ

2 .

For each of these encoder-decoder pairs, we enumerate over all messages in {0, 1}k and
encode them using the encoder. For each codeword, we enumerate over all possible results of
applying the channel to the codeword that have output length at most m.

We sum the probabilities of the eventualities where this process would result in a decoding
failure (cases where the channel outputted more than m bits are counted as failures), and
take the message with the highest DFP. This gives us an approximation of

DFPactual ≤ DFPestimate ≤ DFPactual + δ

2 .

If the estimated DFP is at most δ, then we output the pair of encoder-decoder tables. It
is easy to see that if the actual DFP is at most δ

2 then the estimate DFP is at most δ and
we will output it. Therefore our process either terminates before κ2 or at κ2 and must have
a constant complexity.
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6 Discussion

In this paper we presented several new techniques for constructing error-correcting–codes for
asynchronous channels, and used them to prove a method of transforming lower bounds on
the capacities of the BDC and PRC channels to efficient encoding and decoding algorithms.
This answers the main question considered [6] and [9].

However, this construction is far from practical. For instance, the inner code at the basis
of our recursion is constructed in a doubly exponential time in the size of the inner codes
message length. Even our bound on the decoding failure of the inner code is δ

1
34 = exp

(
k

1
6

34

)
which is technically o(1) but converges extremely slowly.

Furthermore, this work deals only with BDC and PRC channels. While these channels
offer us a chance to model the behaviour of asynchronous channels, they do not represent
the more realistic channels which contain both synchronisation errors and bit-flipping errors.
To this end, the binary InsDel channel offers a more comprehensive model and it remains an
open question whether the methods described here can be used to construct efficient codes
for it as well.

Finally, now that we have a framework for efficient encoding and decoding for the BDC
and PRC channels, we can return to the question of the capacity of these channels. We know
that when p→ 1 this capacity scales proportionally to 1− p, but the factor of this conversion
is still unknown. Mitzenmacher and Drinea [19] showed that these capacities are at least
1−p

9 , and [8] gave an upper bound of 0.4143(1− p)± on(1), but this gap is far from closed.
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