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Abstract

There is a simple O( n3

ϵ2T
) time algorithm for 1±ϵ-approximate triangle counting where T is the number

of triangles in the graph and n the number of vertices. At the same time, one may count triangles
exactly using fast matrix multiplication in time Õ(nω). Is it possible to get a negative dependency on
the number of triangles T while retaining the state-of-the-art nω dependency on n? We answer this
question positively by providing an algorithm which runs in time O

(
nω

T ω−2

)
· poly(no(1)/ϵ). This is

optimal in the sense that as long as the exponent of T is independent of n, T , it cannot be improved
while retaining the dependency on n. Our algorithm improves upon the state of the art when T ≫ 1
and T ≪ n.

We also consider the problem of approximate triangle counting in sparse graphs, parameterized
by the number of edges m. The best known algorithm runs in time Õϵ

(
m3/2

T

)
[Eden et al., SIAM

Journal on Computing, 2017]. An algorithm by Alon et al. [JACM, 1995] for exact triangle counting
that runs in time Õ(m2ω/(ω+1)). We again get an algorithm whose complexity has a state-of-the-art
dependency on m while having negative dependency on T . Specifically, our algorithm runs in time
O
(

m2ω/(ω+1)

T 2(ω−1)/(ω+1)

)
·poly(no(1)/ϵ). This is again optimal in the sense that no better constant exponent

of T is possible without worsening the dependency on m. This algorithm improves upon the state of
the art when T ≫ 1 and T ≪

√
m.

In both cases, algorithms with time complexity matching query complexity lower bounds were
known on some range of parameters. While those algorithms have optimal query complexity for the
whole range of T , the time complexity departs from the query complexity and is no longer optimal
(as we show) for T ≪ n and T ≪

√
m, respectively. We focus on the time complexity in this range

of T . To the best of our knowledge, this is the first paper considering the discrepancy between query
and time complexity in graph parameter estimation.
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1 Introduction

The problem of counting triangles in a graph is both a fundamental problem in graph
algorithms and a problem with many applications, for example in network science [5], biology
[8, 19, 21] or sociology [25, 15]. Triangle counting is, also for these reasons, one of the basic
procedures in graph mining. Consequently, triangle counting has received a lot of attention
both in the theoretical and applied communities.
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There are algorithms for exact triangle counting that have time complexity Õ(nω) 1 and
Õ(m2ω/(ω+1)) [3] where ω is the smallest constant such that two n × n matrices can be
multiplied in time nω+o(1).

A natural variant of this problem is approximate triangle counting. In this problem, we are
given a graph with T triangles and want to output T̂ = (1± ϵ)T with probability 2/3. Several
algorithms are known for approximate triangle counting that have negative dependence on
the number of triangles T . Assuming the algorithm may sample random vertices and edges,
there are algorithms that run in time Oϵ( n3

T ) 2 and Õϵ( m3/2

T ) [9]3. However, no algorithm is
known that would get the best of both worlds – algorithms with state-of-the-art dependency
on n or m while being negatively dependent on T . We show two such algorithms in this
paper. Moreover, our algorithms are optimal in the following sense: the dependence on T in
the time complexity of our algorithms cannot be improved without worsening the dependency
on n or m as long as the exponent of T is constant (i.e., is independent of n, m, T ). This
optimality follows from the lower bound shown by Eden, Levi, Ron, and Seshadhri [9], as we
show in the full version of this paper.

The main contribution of our paper is an algorithm for approximate triangle counting
that runs in time Õϵ

(
nω

T ω−2

)
. We then use it to give an algorithm for the same problem

running in time Õϵ

(
m2ω/(ω+1)

T 2(ω−1)/(ω+1)

)
. This improves upon our first algorithm for sparse graphs.

Note that both time complexities are sublinear for sufficiently large values of T . To the best
of our knowledge, this is the first work that uses fast matrix multiplication in sublinear-time
algorithms. Assuming constant ϵ, our algorithms improve upon the state-of-the-art when
T ≪ n, and T ≫ 1 or T ≪

√
m and T ≫ 1 (for Algorithm 4 and Algorithm 5, respectively).

In other words, our algorithms improve upon the state of the art when the time complexity
(of both our and the state-of-the-art algorithms) is ≫ n2 and ≫ m, respectively. Figure 1
shows a plot of the complexity of our algorithms, in comparison to other algorithms for
approximate triangle counting.

The basic approach we use is to sample vertices, recursively count triangles in the subgraph
induced by these sampled vertices, and estimate the total number of triangles based on
this count. The main hurdle in this approach is that when a vertex is contained in many
triangles (we call such a vertex triangle-heavy, and triangle-light otherwise), this results in a
poor concentration of the number of triangles in the induced subgraph as the inclusion of
one vertex can make a large difference in the number of triangles. We get around this by
introducing a procedure based on fast matrix multiplication which finds all vertices contained
in many triangles, and a procedure for approximately counting triangles that contain at
least one such vertex. We count triangles that consist of light vertices separately. The fact
that the vertices are light helps us ensure concentration of our estimate. These triangles are
counted using a recursive approach. An obstacle to overcome is that in some cases the time
spent in each successive level of recursion may grow exponentially.

1 We use Õ(f(x)) with the meaning that it ignores an f(x)o(1) factor; this is necessary as ω only
determines the time complexity up to no(1). This differs from the usual use in which Õ(f(x)) =
∪c>0O(f(x) logc f(x)). Õϵ in addition ignores poly( 1

ϵ ).
2 This algorithm follows from a paper of Lipton, Naughton, Schneider, and Seshadhri [20]. In this paper,

the authors show an algorithm that gives a relative approximation to the bias of a Bernoulli trial. One
may reduce approximate triangle counting to this problem by picking at random three vertices and
checking whether they form a triangle. See also the presentation of Watanabe [24].

3 The main result of the paper is an algorithm and lower bound in a slightly different setting. This
algorithm is only mentioned in the paper briefly.
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Figure 1 Comparison of the time complexities, assuming ϵ is constant. This plot assumes the
best currently known bound ω < 2.3728596 from [2]. For more detail, see Table 1.

We find it surprising that it is sufficient to use matrix multiplication to find the vertices
contained in many triangles. That is, the matrix multiplication is only used to decide which
triangles are going to be counted by which subroutine, while the counting itself is done
without the help of matrix multiplication.

The setting. When an algorithm runs in sublinear time, it is of importance how the
algorithm is allowed to access the graph. This is because the algorithm does not have the
time to pre-process the whole graph. We assume the following standard setting: the algorithm
may in constant time (1) get the i-th vertex, (2) get the j-th neighbor of a given vertex, (3)
query the degree of a given vertex, and (4) given two vertices, tell whether they are adjacent
or not (this is called the pair query). In the second part of this paper, we assume a setting
where instead of the query (1), we can in constant time (1’) get the i-th edge. This setting is
also standard in the area of sublinear algorithms. As the main contribution of this paper is
in the superlinear regime (as this is where we improve upon the state of the art), we do not
describe the settings in more detail. See, for example, [13] for a more detailed description.

Time complexity vs. query complexity. In the area of sublinear algorithms, it is customary
to focus on the query complexity (that is the number of queries, in the above sense, performed)
of an algorithm, as opposed to the time complexity. The time complexity is then usually
(near-)linear in the query complexity. However, this is the case only in the sublinear regime,
and it breaks down when the time complexity is superlinear4. In this case, one may always
read the whole graph in O(n + m) queries. The time complexity is then usually significantly
larger than the query complexity. This regime is our main focus.

Specifically, an algorithm is described in [9] that uses the edge access query (1’) and has
query complexity Õϵ(min(n + m, m3/2/T )). This is known to be near-optimal5 [11]. In the
sublinear regime (that is, for T large enough), the asymptotic time complexity is the same

4 It may seem confusing talking about a sublinear-time algorithm having superlinear time complexity.
The reason is that an algorithm is usually said to be sublinear time if its complexity is sublinear for
some setting of the parameters (but not necessarily for all).

5 Whenever we talk about optimality, we consider the case of ϵ being constant.

ICALP 2022
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as the query complexity and it is, therefore, also near-optimal. However, in the superlinear
regime, the time complexity is polynomially larger than the query complexity. Up until now,
nothing was known about whether the time complexity can be improved in this case. We
answer this question positively. In doing this, we give, to the best of our knowledge, the first
algorithm answering a question of this type (that is, a question regarding the discrepancy
between the time and query complexities in the superlinear regime).

1.1 Our results
The main contributions of this paper are the following two algorithms for approximate
triangle counting. The first algorithm (Algorithm 4) is suitable for dense graphs and its
time complexity is parameterized by n, T , and ϵ. The second algorithm (Algorithm 5) is
suitable for sparse graphs and its time complexity is parameterized by m and T . Both of our
algorithms have a state-of-the-art dependency on n, m while being negatively dependent on T .
Our algorithms improve upon the existing algorithms when 1≪ T ≪ n and 1≪ T ≪

√
m,

respectively.
We compare these results to the previous work in the following table. These time

complexities are also plotted in Figure 1.

Table 1 Algorithms for approximate triangle counting. Algorithms with complexity independent
of ϵ in fact solve exact triangle counting. (Note that algorithms with dependency on ϵ have the
dependency hidden in Oϵ in this table.)

Dense Sparse

This work Õϵ

(
nω

T ω−2

)
Õϵ

(
m2ω/(ω+1)

T 2(ω−1)/(ω+1)

)
Sampling algorithm [20] Oϵ( n3

T
)

Fast matrix multiplication Õ(nω)

Alon, Yuster, and Zwick[3] Õ(m2ω/(ω+1))

Eden et. al. [9] Ω
(

min(n2, n3

T
)
)

Õϵ( m3/2

T
), Ω

(
min(m, m3/2

T
)
)

1.2 Related work
Algorithms. The number of triangles in a graph can be trivially counted in time O(n3). Itai
and Rodeh [16] obtained an algorithm that runs in time O(m3/2), a significant improvement for
sparse graphs. A simpler algorithm with the same complexity, based on bounds on arboricity
has been given by Chiba and Nishizeki [7]. A more efficient algorithm for approximate
triangle counting has been obtained by Kolountzakis, Miller, Peng, and Tsourakakis [18]. In
their paper, the authors presented an algorithm that runs in time Õϵ(m + m3/2

T ). This has
been later improved by Eden et. al. [9] to Õϵ( n

T 1/3 + m3/2

T ) when having vertex queries and
not edge queries (having query (1) but not (1′)) and to Õϵ( m3/2

T ) when having edge queries
(query (1′)).

While fast matrix multiplication gives a Õ(nω) algorithm for exact triangle counting, it
is not immediately clear an improvement can be achieved in sparse graphs. In their paper,
Alon, Yuster, and Zwick [3] show an algorithm for exact triangle counting that runs in
time Õ(m2ω/(ω+1)). This algorithm works by counting triangles whose all vertices have high
degree using matrix multiplication while using a naïve algorithm for the rest of the graph.
We use a variant of this approach for approximate triangle counting in sparse graphs in
Section 3.
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Sampling from graphs in order to estimate the number of triangles has been considered
many times [23, 22, 17, 6]; for more details, see the introduction of [17]. The bounds then
often depend on an upper bound on the number of triangles containing any single edge or
similar parameters, for example in [22] or [23]. In this paper, we go further in the sense
that we use a similar sampling approach (in fact, we use the same sampling scheme that
was used in [6] but use a finer analysis) but explicitly ensure the bound on the number of
triangles containing any single vertex. In other papers using similar sampling schemes, it is
just assumed that this or a similar bound is already satisfied for the input instance.

Lower bounds. From the side of lower bounds, Eden et. al. [9] have proven a lower bound
on the query complexity, thus also implying a lower bound on the time complexity. This
lower bound is presented for the setting when random edge queries are not allowed, but the
lower bound of Ω(min(m, m3/2/T )) also holds in the setting when they are. This was made
explicit by Eden and Rosenbaum [12] who presented a significantly simpler proof based on
communication complexity.

▶ Theorem 1 (Theorem 4.7 of [12]). For any n, m ∈ O(n2), T ∈ O(m3/2), it holds that
any multiplicative-approximation algorithm for the number of triangles in a graph must
perform Ω

(
min

(
m, m3/2

T

))
queries, where the allowed queries are degree queries, pair

queries, random neighbor queries, random vertex queries, and random edge queries.

We use this lower bound to prove the claim that the exponent of T in Theorem 12 is optimal,
out of all algorithms running in time Õ(nω/T c) for some constant c and similarly the exponent
in Theorem 15 is optimal out of all algorithms running in time Õ(m2ω/(ω+1)/T c).

By choosing m = Θ(n2) in the above theorem, it follows that

▶ Corollary 2. For any n and T ∈ O(n3), it holds that any multiplicative-approximation
algorithm for the number of triangles in a graph must perform Ω

(
min

(
n2, n3

T

))
queries,

where the allowed queries are degree queries, pair queries, neighbor queries, random vertex
queries, and random edge queries.

Fast matrix multiplication. There is a large literature on fast matrix multiplication. We
only mention here the asymptotically most efficient matrix multiplication algorithm which
is currently the algorithm by Alman and Williams [2] which runs in time Õ(nω) for some
ω < 2.3728596.

1.3 Technical overview
1.3.1 Triangle counting in dense graphs
Sampling and (lack of) concentration. Suppose we sample each vertex independently
with some probability p. The expected number of triangles in the subgraph induced by the
sampled vertices is then p3T . If we were able to show concentration around the expected
value, we could count the number of triangles in this subgraph and based on that, estimate
the number of triangles in the original graph.

Unfortunately, the number of triangles is not concentrated; for example, in the case when
there is one vertex that is contained in all triangles. We show that we get concentration
if we limit the number of triangles containing any single vertex. We, therefore, have some
threshold τ and call all vertices that are contained in more than τ triangles triangle-heavy.
Assume that the graph does not have any triangle-heavy vertices. By choosing τ sufficiently

ICALP 2022
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small and by choosing p sufficiently large, we may get a good estimate of the number of
triangles in the original graph, based on the number of triangles in the subgraph induced by
the sampled vertices.

In the final algorithm, we separately count triangles that contain at least one triangle-
heavy vertex and triangles that do not. For this, we need to be able to find all triangle-heavy
vertices in the graph and then estimate the number of triangles that contain at least one
triangle-heavy vertex. We efficiently count triangles with no triangle-heavy vertex by reducing
the problem to one on a smaller graph by the sampling procedure we just described.

Finding triangle-heavy vertices by matrix multiplication. We now sketch how to find the
set of vertices that are contained in many triangles. We sample each vertex with some small
probability p′. This gives a subset of vertices of size ≈ p′n. We find all vertices that are
contained in a triangle in the subgraph induced by the sampled vertices in time O

(
(p′n)ω

)
by

using matrix multiplication. We repeat this experiment an appropriate number of times. We
report vertices that were contained in at least one triangle in at least one repetition of the
experiment. If a vertex is contained in few triangles, the probability that it is reported can
be bounded by using union bound over all triangles it is contained in and over all iterations.
The intuition for why vertices contained in many triangles are reported with good probability
is the following. We bound the variance of the total number of triangles that the vertex will
be in over all repetitions. The repetitions are independent, but there are correlations between
triangles within one repetition. If we set the probability p′ to be small enough, we can show
that these correlations are small. This allows us to show concentration of the number of
triangles containing any single vertex that are observed in the sampled subgraphs.

Counting triangles with triangle-heavy vertices. Suppose we are given a subset of vertices
such that each of those vertices is contained in many triangles. We now sketch how to give
a factor 3 + ϵ approximation to the number of triangles that contain at least one of these
vertices. In the body of the paper, we then give a (1 + ϵ)-approximation by a more careful
argument.

We estimate separately for each vertex the number of triangles it is contained in. The
fact that each vertex individually is in many triangles allows us to employ a concentration
argument separately for each vertex. We then use union bound over all vertices. Specifically,
for each vertex v from the set of vertices that is given to us, we perform the following
experiment many times: we sample two vertices and we check whether they form a triangle
with v. We use the proportion of the experiments that ended up with a triangle to estimate
the number of triangles v is contained in. We add together the estimates for all vertices in
the set. This is where the factor 3 comes from – a triangle may be counted from all its 3
vertices.

Recursive algorithm. The last trick we introduce is that we use recursion to approximately
count the triangles in the sampled subgraph. Doing this in such a way to give a correct
algorithm with the desired complexity is the technically most challenging part of our paper.
An obstacle is that we need the precision to be increasing in the depth of recursion. Specifically,
in our algorithm, the allowed error decreases at an exponential rate in the depth of recursion.
Moreover, we need to use probability amplification, meaning that the number of recursive
calls also grows exponentially with the depth of recursion. This leads, in some situations, to
the time complexity of the k-th level of recursion increasing exponentially in k; we bound
this time.
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1.3.2 Triangle counting in sparse graphs
We set a parameter θ and say a vertex is degree-heavy if its degree is at least θ and degree-light
otherwise. We count separately (a) triangles on the subgraph induced by the degree-heavy
vertices and (b) triangles that contain at least one degree-light vertex. This is basically the
idea used by Alon, Yester, and Zwick [3] for their exact triangle-counting algorithm. We
use our algorithm for approximate triangle counting in dense graphs to count the triangles
from case (a) and sampling to count the triangles (b). The sampling-based estimation is
based on ideas from [7, 9]. Specifically, we assign each triangle to its vertex with the lowest
degree (breaking ties arbitrarily). We then repeatedly perform the following experiment:
pick an edge uniformly at random; consider its endpoint v with the lower degree; pick one
of its neighbors at random; check whether it forms a triangle together with the edge we
have sampled and whether the triangle is assigned to v. If so, return d(v), otherwise return
0. We estimate the number of triangles based on the average of the returned values of the
experiments.

1.4 Notation
Throughout the paper, we denote the number of vertices and edges of a graph by n and m,
respectively. We use T to denote the number of triangles. We define a± b = [a− b, a + b].
This can be used for example in (1 ± ϵ)a which is then equal to [(1 − ϵ)a, (1 + ϵ)a]. We
call (1 ± ϵ)-approximation to a number a any number b such that b ∈ (1 ± ϵ)a. Similarly,
we call additive ±c approximation to a number a any number b such that b ∈ a ± c. We
call diamond a graph isomorphic to and butterfly a graph isomorphic to . By “the
number of diamonds in G” we mean the number of, not necessarily induced, subgraphs of G

isomorphic to a diamond. We similarly talk about “the number of butterflies in a graph”.
We denote the subgraph of G induced by V ′ ⊆ V by G[V ′].

2 Triangle counting in dense graphs

In this section, we present the main result of our paper – an algorithm for approximate
triangle counting, parameterized by n and the number of triangles T . In the lemmas that
follow, we prove, among other things, bounds on the expectation of the estimators. We do
this because our algorithm requires some “advice” and having a bound on the expectation
will allow us to remove the need for this advice, as we describe in Section 2.5. We now define
some notation that we will need.

We call a vertex triangle-dense for a parameter τ if there are at least τ triangles that
contain the vertex and triangle-light if at most τ/20 triangles contain it (there can thus be
vertices that are neither triangle-light nor triangle-heavy). We define Tv to be the number of
triangles containing the vertex v. We abuse notation and also denote by Tv the set of all
triangles containing v. We use Tv(G) instead when we want to explicitly specify the graph.
T denotes the number of triangles in G but we again abuse notation and use this to also
denote the set of triangles. Again, if we want to specify the graph, we use T (G).

We now prove a simple lemma on fractional moments of the binomial distribution. We
will use this to bound the time complexity of matrix multiplication executed on a random
subgraph of some given graph. Specifically, we will use it on a subgraph obtained by keeping
each vertex with some appropriately chosen probability and removing the other vertices. The
lemma also holds for other exponents than ω, but fixing the exponent allows for a simpler
proof.

ICALP 2022
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▶ Lemma 3. Assume p ≥ 1/n. It holds that E(Bin(n, p)ω) = O(nωpω).

Proof. Bin(n, p) has its third moment equal to

(n(n− 1)(n− 2)p3) + 3(n(n− 1)p2) + np = O(n3p3)

where the equality holds because p ≥ 1/n. Since ω < 3, the function xω/3 is concave. By the
Jensen’s inequality, we then get E(Bin(n, p)ω) ≤

(
E(Bin(n, p)3)

)ω/3 = O(nωpω). ◀

2.1 Triangle-light subgraph
We show a reduction from the problem of approximately counting triangles in a graph with
no triangle-heavy vertices to the problem of approximately counting triangles in a smaller
graph. Before that, we need to prove the following lemma.

▶ Lemma 4. Let G be a graph with T triangles such that any vertex is contained in at most
τ triangles and let D, B be the number of diamonds and butterflies in G, respectively. Then
D + B ≤ 3

2 τT .

Proof. Let S be the number of pairs (△1,△2) of triangles in G such that △1 and △2 share at
least one vertex. It holds D +B ≤ S/2 (the factor of 2 is there because the pairs are ordered).
Consider a fixed triangle △1 = uvw. How many triangles are there that share a vertex with
△1? Each of the vertices u, v, w can be contained in at most τ − 1 other triangles. There
can be, therefore, at most 3(τ − 1) incidences between △1 and other triangles containing at
least one of the vertices u, v, w. Therefore D + B ≤ S/2 ≤ 3T (τ − 1)/2. ◀

We are now ready to prove the following lemma. Note that to use it (in order to set the
probability p), one has to have a lower bound on the number of triangles. We resolve this
issue later.

▶ Lemma 5. Let G′ = (V ′, E′) be the induced subgraph of G resulting from keeping each vertex
with probability p ≥ max(5 1

3√
ϵ2T

, 10 1
ϵ
√

T/τ
) and removing it otherwise. Let T̂ = |T (G′)|/p3.

Then T̂ is an unbiased estimate of T . Moreover if any vertex v ∈ G is contained in at most
τ triangles, then T̂ ∈ (1± ϵ)T with probability at least 19/20.

Proof. Let △ be a triangle in G. Let X△ = 1 if △ ∈ T (G′) and 0 otherwise. Let T ′ = T (G′).
It holds that

E(T̂ ) = E(T ′/p3) =
∑
△∈T

E(X△)/p3 = T

and the estimate is, therefore, unbiased.
We now bound V ar(T ′). Recall that T (G) is the set of triangles in G. Let D(G) the set

of diamonds in G, B(G) the set of butterflies in G, and T̈ (G) the set of disjoint (unordered)
pairs of triangles in G. Let D = |D(G)|, B = |B(G)|, and T̈ = |T̈ (G)|. By {△1,△2} ∈ D(G)
we mean that △1 ∪△2 = A for some A ∈ D(G) and analogously for B(G) and T̈ (G).

We first bound the second moment of T ′

E(T ′2) =E

(( ∑
△∈T (G)

X△

)2
)

=E
( ∑

△∈T (G)

X2
△

)
+ E

( ∑
△1,△2∈T (G)

△1 ̸=△2

X△1X△2

)



J. Tětek 107:9

=E
( ∑

△∈T (G)

X2
△

)
+ E

(
2

∑
{△1,△2}∈D(G)

X△1X△2

)
+ E

(
2

∑
{△1,△2}∈B(G)

X△1X△2

)
+ E

(
2

∑
{△1,△2}∈T̈ (G)

X△1X△2

)
=p3T + 2p4D + 2p5B + 2p6T̈

≤p3T + 2(D + B)p4 + p6T 2

≤p3T + 3p4τT + p6T 2

where we have used that D + B ≤ 3
2 τT (by Lemma 4) and 2T̈ ≤ T 2. At the same time,

E(T ′) = p3T . Therefore,

V ar(T ′) = E(T ′2)− E(T ′)2 ≤ p3T + 3p4τT.

This means that E(T̂ ) = T and V ar(T̂ ) = V ar( 1
p3 T ′) = 1

p3 T + 3
p2 τT . Since p ≥

max(5 1
3√

ϵ2T
, 10 1

ϵ
√

T/τ
), it holds V ar(T̂ ) ≤ (1/53 + 3/102)ϵ2T 2 < 1

20 ϵ2T 2. It, therefore

holds by the Chebyshev inequality that P (|T̂ − T | ≥ ϵT ) ≤ 1/20. ◀

2.2 Triangle-heavy subgraph
We now show an algorithm that approximately counts triangles that contain at least one
vertex from set VH where VH is some given set that does not contain any triangle-light
vertices.

Algorithm 1 Count (1 ± ϵ)-approximately triangles in G containing a vertex from VH .

1 for v ∈ VH do
2 T̂v ← 0
3 repeat 360 n2 log n

ϵ2τ times
4 Sample u, w ∈ V

5 Let ℓ = |{u, v, w} ∩ VH}|
6 If uvw forms a triangle, increment T̂v by ϵ2τ

360ℓ log n

7 return
∑

v∈VH
T̂v

▶ Lemma 6. Given a set VH , Algorithm 1 returns an unbiased estimate of the number of
triangles containing at least one vertex from VH .

Assume VH contains all triangle-heavy vertices of G and no triangle-light vertices. Then
Algorithm 1 returns (1± ϵ)-approximation of the number of triangles that contain at least
one triangle-heavy vertex with probability at least 1−O( 1

n ). It runs in time O
(

T n2 log n
ϵ2τ2

)
.

Proof. We introduce charges on vertices. For any triangle △ that contains at least one vertex
that is in VH , we divide and charge single unit to the vertices in △∩ VH , dividing it fairly
(if there are, e.g., two vertices from VH in the triangle, they are both charged 1/2). Let χv

be the charge on vertex v. The total amount charged (that is,
∑

v∈VH
χv) is equal to the

number of triangles that contain at least one vertex from VH . Note that this is the quantity
we want to estimate.
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The algorithm considers v ∈ VH and samples one pair of vertices u, w. Consider the
amount charged by uvw to v; call it χ′

v. It holds that E(χ′
v) = χv/n2. When uvw form a

triangle, the algorithm increments T̂v by ϵ2τ
360ℓ log n = χ′

vϵ2τ
360 log n . Therefore, the increment is, in

expectation, equal to χvϵ2τ
360n2 log n . Since there are n2 log n

360ϵ2τ repetitions, it holds

E(T̂v) = 360n2 log n

ϵ2τ
· χvϵ2τ

360n2 log n
= χv.

By the linearity of expectation, we have E(
∑

v∈VH
T̂v) =

∑
v∈VH

χv which we said above is
equal to the number of triangles with empty intersection with VH .

We now prove concentration around mean. For each vertex, we have 360n2 log n
ϵ2τ independent

random variables corresponding to the increments in T̂ . These random variables have values
between 0 and ϵ2τ

360 log n and their sum has expectation χv ≥ Tv

3 ≥
τ
60 where the second

inequality holds from the assumption that VH contains no triangle-light vertices. By the
Chernoff bound,

P (|T̂v − Tv| ≥ ϵTv) ≤ 2 exp
(
− ϵ2τ/60

3ϵ2τ/(360 log n)

)
≤ 2

n2 .

By the union bound, it holds for all v that T̂v is an (1±ϵ)-approximate of Tv, with probability
at least 1− 2

n . On this event, the algorithm correctly gives a (1± ϵ)-approximation of the
number of triangles containing at least one triangle-heavy vertex. ◀

2.3 Finding the triangle-heavy subgraph
In this section, we show how to find a set of vertices that contains each triangle-heavy vertex
with probability at least 2/3 and each triangle-light vertex with probability at most 1/3.
This guarantee may be strengthened by probability amplification (applying the probability
amplification separately to each vertex) to make sure that, with high probability, all triangle-
heavy vertices are reported, and none of the triangle-light vertices are. This only adds a
O(log n) factor to the time complexity of this subroutine.

We solve separately the case τ ≤ n and τ ≥ n. On the range τ ≤ n, we get an algorithm
running in time Õ( nω

τω−2 ). On the range τ ≥ n, we get time complexity O(n3

τ ) ⊆ Õ( nω

τω−2 )
(the inclusion holds on this range of τ). This means that on this range, our bound is not
tight. However, this is the case only on the range of T for which a near-optimal algorithm
was already known, and we only show this for completeness; the reader may wish to skip the
case of τ ≥ n. Putting the guarantees for the two ranges together, it follows that

▶ Corollary 7. There is an algorithm that with probability at least 1 − O( 1
n ) reports all

triangle-heavy vertices and no triangle-light vertices while having time complexity Õ( nω

τω−2 ).

2.3.1 The case τ ≤ n

▶ Lemma 8. Assuming τ ≤ n, Algorithm 2 lists any triangle-heavy vertex with probability
at least 2/3 and any triangle-light vertex with probability at most 1/3. It has expected time
complexity Õ( nω

τω−2 ).

6 This may be done as follows. Raise the adjacency matrix of G[Vi] to the third power. Each diagonal
element in this matrix corresponds to a vertex (as rows and columns correspond to vertices and diagonal
vertices have both the row and column corresponding to the same vertex). Consider the vertices that
have a non-zero value on the corresponding diagonal position. These are exactly the vertices contained
in some triangle by standard equivalence between taking powers of adjacency matrices and between
counting walks in graphs.
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Algorithm 2 Distinguish triangle-heavy vertices from triangle-light vertices.

1 M← ∅
2 for i ∈ [k = 6τ2] do
3 Vi ← sample each vertex v ∈ V independently with probability p = τ−1

4 V ′
i ← find all vertices contained in a triangle in G[Vi] in time Õ(|Vi|ω) 6

5 M←M ∪ V ′
i

6 return M

Proof. Consider a triangle-light vertex v. That is, there are at most τ/20 triangles in G

containing v. The probability that a triangle is discovered in one iteration is, by the union
bound, at most τp3/20. Taking a union bound over the k iterations, the probability that a
triangle containing v is found (and thus v reported) is at most kτp3/20 < 1/3.

Consider a triangle-heavy vertex v. Let Xi for i ∈ [k] be the number of triangles containing
v discovered in the i-th iteration. For △ ∈ T , let X△,i be an indicator that triangle △ is
discovered in i-th iteration. It now holds Xi =

∑
△∈T,v∈△ X△,i. Let X =

∑k
i=1 Xi.

By the linearity of expectation, it holds that

E(X) = E
( k∑

i=1
Xi

)
= kp3Tv = 6Tv/τ.

We now bound the variance of X. We first bound

V ar(Xi) ≤ E(X2
i ) = E

( ∑
△1,△2∈Tv

X△1,iX△2,i

)
≤ p3Tv + p4T 2

v

where the last inequality holds because there are ≤ T 2
v terms (i.e. pairs of triangles containing

v) that are 1 with probability ≤ p4 (such pairs have at least 4 vertices) and there are Tv

terms (i.e. pairs of triangles containing v) that are 1 with probability p3 (these are pairs that
have △1 = △2 and the pair thus has 3 vertices). Since the iterations are independent, it
holds that

V ar(X) = V ar
( k∑

i=1
Xi

)
= kV ar(Xi) ≤ 6τ2(p3Tv + p4T 2

v ) = 6
τ

Tv + 6
τ2 T 2

v ≤
12T 2

v

τ2

where the last inequality holds because Tv ≥ τ . It, therefore, holds by the Chebyshev
inequality that

P (X = 0) ≤ V ar(X)
E(X)2 ≤

12T 2
v /τ2

(6Tv/τ)2 = 1/3.

We now argue the time complexity. It holds that |Vi| ∼ Bin(n, p). By Lemma 3, each
iteration has expected time complexity Õ(nωpω) because of the assumption p = 1/τ ≥ 1/n.
There are O(p−2) iterations. The total time complexity is thus Õ(p−2pωnω) = Õ

(
nω

τω−2

)
. ◀

2.3.2 The case τ > n

We repeat that this case only applies to the range where an optimal algorithm is already
known (see the beginning of Section 2.3) and we only show this for completeness; the reader
may wish to skip this part.
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Algorithm 3 Distinguish triangle-heavy vertices from triangle-light vertices.

1 M← ∅
2 for v ∈ V do
3 repeat k = 2n2/τ times
4 Sample u, w ∈ V

5 if uvw ∈ T then
6 M←M∪ {v}

7 return M

▶ Lemma 9. Algorithm 3 lists any triangle-heavy vertex with probability at least 2/3 and
any triangle-light vertex with probability at most 1/3. It runs in time Õ( n3

τ ).

Proof. Consider the probability that a triangle-light vertex v is reported. Similarly to the
case τ ≤ n, it holds by the union bound over all incident triangles and over the k iterations
that this probability is at most τ/20 · k · 1/n2 ≤ 1/3.

Consider now the probability a triangle-heavy vertex v is reported. In each iteration,
the probability that we find an incident triangle is Tv/n2 ≥ τ/n2. The probability that we
report v is now at least 1− (1− τ/n2)2n2/τ ≥ 1− 1/e2 ≥ 2/3. ◀

2.4 Recursive algorithm
We now take the subroutines presented above and put them together into one recursive
algorithm. Our proof of correctness works by induction on the depth of recursion. For this
reason, the statement assumes the input graph can be random, as we use the inductive
hypothesis on a sampled subgraph of the input graph. This algorithm requires advice T̃ such
that T̃ ≤ E(T ) (note that T is a random variable as the input graph may be random); we
will remove the need for advice later. As we already mentioned, for the advice removal, we
will need to prove a bound on the expectation of the estimate.

We show an algorithm that gives additive approximation. The reason is that this is better
suited for performing recursive calls. Specifically, the time complexity of getting relative
approximation is worse when T is small. If it happened that most triangles contained a
triangle-heavy vertex, we would recurse on a subgraph with few triangles, making it more
costly to get the relative approximation. We then show how this algorithm can be turned
into an algorithm that gives relative approximation.

Note that line 11 can be efficiently implemented as follows: We pick X ∼ Bin(n, p), then
sample X vertices without replacement, keep only the vertices from V \ VH .

▶ Lemma 10. Suppose G is a (possibly random) graph. Given parameters A, T̃ , Algorithm 4
returns T̂ such that E(T̂ ) ≤ E(T ) 7. Moreover, if T̃ ≥ E(T ), Algorithm 4 returns T̂ ∈ T ±A

with probability at least 4/5. It runs in expected time Õ
(

nω

(A2/T̃ )ω−2 + T̃ 4+1/3T n2

A6

)
.

Proof. The structure of the proof is as follows. We first prove that E(T̂ ) ≤ E(T ). We
prove this by induction. We then go on to prove correctness (that is, that the returned
answer is (1± ϵ)-approximation with probability 4/5), also by induction. In both cases, the
induction is on the depth of recursion. Note that, while the instances on which the algorithm

7 Since the graph can be random, T is a random variable
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Algorithm 4 Estimate the number of triangles in G, advice T̃ , and error parameter A.

1 q ← 1/ log(nT/A)
2 if A2 ≤ 107

q T̃ then
3 return number of triangles in G, computed using matrix multiplication
4 if T̃ < 1/5 then
5 return 0
6 q ← 1/ log

(
nT
A

)
7 T̃ ′ = 20T̃

8 τ ← A2q2

40000T̃ ′

9 VH ← triangle-heavy vertices w.r.t. τ using Corollary 7
10 T̂H ← estimate number of triangles with non-empty intersection with VH using

Algorithm 1 with ϵ = qA/(2T̃ ′)
11 V ′ ← sample each vertex from V \ VH independently with probability

p = 20
√

τT̃ ′

qA = 1/10
12 T̂V ′ ← estimate number of triangles in G[V ′] by a recursive call with A = (1− q)p3A

and with T̃ = T̃ p3; amplify success probability to 19/20 by taking median of 7
independent executions

13 return T̂H + T̂V ′/p3

is called in the recursive calls are random, the recursion tree is deterministic. This means
that performing induction on the depth of recursion is formally correct. Finally, we prove the
time complexity; in this part, we analyze the whole recursion tree instead of using induction.

Estimate’s expected value. We now prove E(T̂ |G) ≤ E(T |G). We prove this by induction
on the depth of recursion. If the condition on line 2 is satisfied, then T̂ = T and the inequality
thus holds. If the condition on line 4 is satisfied, then T̂ = 0 and the inequality also holds.
Consider now the case when neither of these conditions are satisfied. By the inductive
hypothesis, E(T̂V ′ |V ′, G) ≤ E(TV ′ |V ′, G). Moreover, by Lemma 5, E(TV ′/p3|VH , G) =
E(T (G[V \ VH ])|VH , G) and therefore

E(T̂V ′/p3|VH , G) = E(E(T̂V ′/p3|V ′, G)|VH , G)
≤ E(E(TV ′/p3|V ′, G)|VH , G)
= E(TV ′/p3|VH , G) = E(T (G[V \ VH ])|VH , G).

It follows from Lemma 6 that E(T̂H |VH , G) is an unbiased estimate of the number of triangles
in G containing at least one vertex from VH . This implies that E(T̂H |G) = T −T (G[V \VH ]).
We now put this all together:

E(T̂ ) = E
(
E(T̂H |VH , G) + E(T̂V ′/p3|VH , G)

)
≤ E

(
E(T̂H |VH , G)

)
+ E

(
E(T (G[V \ VH ])|VH , G)

)
= E(T − T (G[V \ VH ])) + E(T (G[V \ VH ])) = E(T ).

Note that this bound on the expectation is not using in any way that VH contains all
triangle-heavy vertices and no triangle-light vertices.
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Correctness. We first focus on the base case. Consider the case A2 ≤ T̃ . In this case, the
condition on line 2 is satisfied. The algorithm is then clearly correct.

We now focus on the case when the condition on line 4 is satisfied. Consider one call of
the algorithm in the tree of recursion where this is the case. Let k be the depth of this call
in the tree. We denote by G, T, n, A, T̃ , ϵ the respective values in this specific call. We use
the subscript 0 to denote the respective values in the original call. For example, T0 would be
the number of triangles in the whole graph on which the algorithm was executed.

It holds that E(T ) ≤ 1/103kT0 ≤ 1/103kT̃0 = T̃ . It holds by the Markov’s inequality
that P (5T̃ ≥ T ) ≥ 4/5. When T̃ < 1/5 (this is the condition on line 4), this means that
P (T = 0) ≥ 4/5, meaning that the algorithm is correct in this case and runs in time O(1).

We now prove the inductive step. Consider one recursive call, regardless of the level of
recursion. Again, we use G, T, n, A, T̃ , ϵ to denote the respective values. We assume that
T̃ ′ ≥ T in this call. This holds with probability at least 19/20 by the Markov inequality
as T̃ ′ = 20T̃ ≥ 20E(T ). We now bound the error probability by 3/20. Together with the
fact that P (T̃ ′ ≥ T ) ≥ 19/20, this gives a bound on the probability of the call returning an
invalid answer of 4/20. Let ϵ = qA

2T̃ ′ . It then holds ϵ ≤ qA
2T . We have p = 1/10. We show that

p ≥ max(5 1
3√

ϵ2T
, 10 1

ϵ
√

T/τ
) (this is the assumption of Lemma 5). It holds 1

10 ≥ 10 1
ϵ
√

T/τ

from the way we set τ . Because A2 ≥ 107

q T̃ , it also holds

5 1
3
√

ϵ2T
≤ 5

3
√

qA2/(4T̃ ′)
≤ 5

3
√

q 107

q T̃ /(4T̃ ′)
= 1

10 .

By Lemma 5, it holds with probability at least 19/20 that

T (G[V ′])/p3 ∈ (1± ϵ)T (G[V \ VH ]) ⊆ T (G[V \ VH ])± qA/2.

By the induction hypothesis, it holds that with probability at least 19/20, T̂V ′ = T (G[V ′])±
(1 − q)p3A. Note that E(Tk+1) = E(E(TV ′ |G)) ≤ E(T/103) ≤ T̃ /103 = T̃k+1, where the
subscript k+1 refers to the respective values at a call on recursion depth k + 1. This means
that the assumption on T̃ is satisfied. Also note that to get success probability 19/20,
it does suffice to take the median of 7 independent executions (as can be easily checked,
P (Bin(7, 1/5) ≥ g) < 1/20). Putting this together, with probability at least 18/20, it holds
that

T̂V ′/p3 ∈ T (G[V ′])/p3 ± (1− q)A ⊆ T (G[V \ VH ])± (1− q/2)A.

Moreover, with probability at least 19/20, T̂H = T (VH) ± ϵT (VH) ⊆ T (VH) ± qA/2 by
Lemma 6 where the inclusion holds because we have set ϵ = qA/(2T̃ ′) ≤ qA/(2T ) ≤
qA/(2T (VH)). By the union bound, with probability at least 17/20, |T̂H − T (VH)| ≤ qA/2
and |T (V ′)/p3−T (V \VH)| ≤ (1− q/2)A, in which case T̂H + T̂L/p3 = T ±A – the resulting
answer is correct. Including the probability that T̃ ′ ≤ T (we assumed in the analysis that
this is not the case), we get that the answer is correct with probability at least 16/20.

Time complexity. We again consider one recursive call and use G, T, n, A, T̃ , ϵ to denote the
respective values in this one call, and the subscript 0 is used to refer to the respective values
in the original call. We first show that we may ignore in the analysis the time spent on line 3.
Counting triangles exactly by using fast matrix multiplication takes Õ(nω) ⊆ Õ

(
nω

τω−2 + T̃ 4T n2

A6

)
time (the inclusion holds thanks to the assumption A2 ≤ T̃ which is satisfied on line 3). This
is equal to the bound on the time complexity of the call that we use below. In the rest of the
proof, we therefore ignore the time spent on line 3.
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The time complexity of line 9 is Õ( nω

τω−2 ) and complexity of line 10 is Õ( T n2

ϵ2τ2 ) = Õ( T̃ ′4T n2

q2A6 )
by Corollary 7 and Lemma 6, respectively (note that ϵ is defined on line 10). Since
p = 1/10, the number of vertices in a depth k recursive call is stochastically dominated by
Bin(n, 1/10k) 8 while the value of A is in a depth k recursive call multiplied by factor of(
(1− q)p3)k =

(
(1− q)/103)k and T̃ ′ = 1/103kT̃ ′

0. In each recursive call, we make 7 recursive
calls for the probability amplification. The number of calls at recursion depth k is then 7k.
The expected time spent in the depth k recursive calls on line 9 is

E
(

7k nω log n

τω−2

)
≤ Õ

(
7k nω

0 /10ωk

(q2ϵ2
0(1− q)k ∗ T̃ ′

0/103k)ω−2

)
= Õ

(
q4−2ω

( 7 · 103(ω−2)

(1− q)ω−210ω

)k

· nω
0

ϵ2
0T ω−2

0

)
.

This decreases exponentially since ω ≤ 2.5 9and, therefore, the time on line 9 is dominated
by the first call. (By changing constants in the algorithm, this argument can be made to
work even for asymptotically slower sub-cubic matrix multiplication algorithms.) However,
the time spent on line 10 is

E
(

7k T̃ ′4Tn2

q2A6

)
= 7k T̃ ′4E(T )n2

q2A6 ≤ 7k T̃ ′4
0/104·3k · T0/103k · n2/102k

q2A6
0(1− q)6k/106·3k

=
( 10

1− q

)k

· T̃ ′4
0T0n2

0
q2A6

0

which increases at an exponential rate. We now upper bound the number of recursive calls
(in other words, we upper bound k). In each subsequent recursive call, T̃ decreases by a
factor of 1/p3 = 103. This means that after log1000 T̃ + O(1) recursive calls, it will hold that
T̃ ≤ 1/20, in which case the algorithm finishes on line 4 in time O(1) with no additional
recursive calls. Therefore k ≤ log1000 T̃ + O(1). Since the amount of work at each level
of recursion increases exponentially, the work is dominated by the last level of recursion.
Thanks to our bound on k, the amount of time spent on line 8 is

O

(( 10
1− q

)log1000 T̃0+O(1)
· T̃ 4

0 T0n2

q2A6
0

)
=O
(

(1− q)− log1000 T̃0
T̃

4+1/3
0 T0n2

q2A6
0

)
=O
( T̃

4+1/3+log1000(1/(1−q))
0 T0n2

q2A6
0

)
and substituting q = 1/ log(nT/A), we get that the total time complexity is

Õ

(
q4−2ωnω

ϵ2T ω−2 + T̃ 4+1/3+log1000(1/(1−q))Tn2

q2A6

)
= Õ

(
nω

ϵ2T ω−2 + T̃ 4+1/3Tn2

A6

)
. ◀

We now get the following claim, which guarantees relative approximation, unlike Lemma 10.

▶ Proposition 11. There is an algorithm that, given ϵ > 0 and T̃ returns an estimate T̂ of
T , such that E(T̂ ) ≤ E(T ) of T and if, moreover, T ≤ T̃ ≤ 2T , it holds T̂ ∈ (1± ϵ)T with
probability at least 4/5. It runs in expected time Õ( nω

(ϵ2T )ω−2 + n2

ϵ6T 2/3 ).

Proof. By substituting A = ϵT̃ /2, it is sufficient to calculate approximation with additive
error A. This can be done by Lemma 10, giving us the desired bounds. ◀

8 This is the case as in each level of recursion, we keep each triangle-light vertex with probability p = 1/10
while removing all other vertices with high probability.

9 The argument works for ω > 2.5 if some constants in the algorithms are modified.
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2.5 Removing advice
We remove the dependency on T̃ by performing a geometric search. This method has been
used many times before, for example in [9, 14, 1, 10, 4, 11]. In our case, it is slightly more
complicated in that our algorithm requires both a lower and an upper bound on T . For
this reason, we describe the method in completeness. We also prove a variant that gives
a guarantee of absolute approximation. We will need this for triangle counting in sparse
graphs.

▶ Theorem 12. There is an algorithm that, given ϵ > 0 (respectively A) returns T̂ ∈
(1 ± ϵ)T (respectively T̂ ∈ T ± A) with probability at least 2/3. It runs in expected time
Õ( nω

(ϵ2T )ω−2 + n2

ϵ6T 2/3 ) (respectively Õ( nω

(A2/T̃ )ω−2 + T 5+1/3n2

A6 )).

Proof. We present the argument for the relative approximation. The exact same argument
gives the absolute approximation by using Lemma 10 in place of Proposition 11.

We start with T̃ =
(

n
3
)

and, in each step, divide T̃ by a factor of two. When it holds that
T̂ ≥ T̃ where T̂ is the estimate returned by the algorithm, we return T̂ as the final estimate
of T .

We now argue correctness. The estimate T̂ given by the algorithm is always non-negative
and it holds E(T̂ ) ≤ T . By Markov’s inequality, P (T̂ ≥ 2T ) ≤ 1/2, regardless of the
choice of T̃ . We amplify this probability to Θ(1/ log n) by taking the median of Θ(log log n)
independent executions. When T̂ ≥ T̃ (this is when we return T̂ as the final estimate), it
holds with probability at least 1 − O(1/ log n) that T̃ ≤ 2T as otherwise, it would be the
case that T̂ ≥ T̃ ≥ 2T which holds with probability O(1/ log n). Conditioned on T̃ ≤ 2T ,
the algorithm gives a (1± ϵ)-approximate estimate (respectively additive ±A estimate) by
Proposition 11 (respectively Lemma 10). By the union bound, the failure probability is then
arbitrarily small if we make the constants in Θ sufficiently small.

We now argue the time complexity. The probability amplification only increases the time
complexity by a O(log log n) factor. When T̃ ≤ T , with probability 1−O(1/ log n) we return
the estimate and quit. We now consider the calls of the algorithm with T̃ ≤ T . The time
complexity increases exponentially (as T is decreasing exponentially) while the probability
of performing a call is decreasing at a rate faster than exponential. Therefore, the time
complexity is dominated by the first call when T̃ ≤ T . This time complexity is as claimed by
Proposition 11 (respectively Lemma 10). ◀

2.6 Optimality
The lower bound of Eden et. al. [9] implies that our algorithm is in certain sense optimal.
Specifically, the exponent in the dependency on T cannot be improved without worsening
the dependency on n, as long as the exponent of T is constant. That still leaves open the
possibility of improving the dependency on n and getting an algorithm with a non-constant
exponent of T .

▶ Proposition 13. Suppose there is an algorithm which runs in time Õ
(

nω

T δ

)
for some constant

δ, and returns a constant-factor approximation of T with probability at least 2/3. Then
δ ≤ ω − 2.

Proof. Suppose δ > ω − 2. Then, for T = Θ(n), the algorithm runs in time o(n). This is in
contradiction to the lower bound of from [9] which states that any such algorithm has to run
in time Ω(n). ◀
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3 Triangle counting in sparse graphs

We now show how Algorithm 4 can be used to get an efficient algorithm for counting triangles
in a sparse graph. The algorithm finds all vertices with degree at least some parameter θ,
then it uses Algorithm 4 to count triangles in the subgraph induced by these vertices and
uses sampling in the rest of the graph. We set θ = m(ω−1)/(ω+1)

T (ω−3)/(ω+1)ϵ(2ω−6)/(ω+1) .
For sake of simplicity, we show an algorithm with an additional O(m) term in its

complexity. As the time complexity of the algorithm from [4] is lower in the sublinear regime
than what we claim, we may obtain an algorithm with the desired complexity by running
the two algorithms in parallel and terminating when one of them finishes. In this section, we
use a total order ≺ defined as u ≺ v if d(u) ≤ d(v) and ties broken arbitrarily in a consistent
way.

Algorithm 5 Estimate the number of triangles in G and advice T̃ .

1 θ ← m(ω−1)/(ω+1)

T (ω−3)/(ω+1)ϵ(2ω−6)/(ω+1)

2 VH ← find all vertices v with d(v) ≥ θ

3 T̂H ← count triangles in G[VH ] using Algorithm 4 with error ±ϵT̃ /2; amplify success
probability to 5

6

4 M ← 0
5 repeat k = 12 θm

ϵ2T̃
times

6 e← pick an edge uniformly at random
7 uv ← e, such that u ≻ v

8 w ← pick a random neighbor of v

9 if v ̸∈ VH and w ≻ v and uvw ∈ T then
10 M ←M + d(v)

11 T̂L = m
2k M

12 return T̂H + T̂L

We now prove the main theorem for triangle counting in sparse graphs. The last part in
the following theorem is there to enable us to remove advice like we did in Section 2.5.

▶ Lemma 14. Let us have a graph G. Given parameters 1 > ϵ > 0 and advice T̃ , Algorithm 5
returns T̂ such that P (T̂ ≥ 2T ) ≤ 2/3. Moreover, if T̃ ≤ T , Algorithm 5 returns T̂ ∈ (1± ϵ)T
with probability at least 4/5. It runs in expected time

Õ
( m2ω/(ω+1)

ϵ4(ω−1)/(ω+1)T̃ 2(ω−1)/(ω+1)
+ m4/(ω+1)

ϵ2(9+ω)/(ω+1)T 4(5−ω)/(3(ω+1)) + m
)

.

With the current best bound on ω, we get running time of Õ( m1.408

ϵ1.628T 0.814 + m1.186

ϵ6.744T 1.038 ). For
constant ϵ, the second term is significantly smaller than the first one.

Proof. Let TL be the set of triangles that are not contained in G[VH ] – or equivalently, that
have their ≺-minimal vertex outside of VH – and, by an abuse of notation, also the number
of such triangles. Let TH be the number of triangles contained in G[VH ].

Let Xi be the increment in M in the i-th iteration of the loop on line line 5. We now
calculate the expectation of M after all k iterations. Let us fix a triangle △ ∈ T and
define X ′

i = Xi if uvw = △ in the i-th iteration and X ′
i = 0 otherwise (note that u, v, w

are defined in the algorithm). If a is the vertex of △ minimal w.r.t. ≺, it now holds that
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E(X ′
i) = d(a)P (X ′

i = d(a)). It holds that X ′
i = d(a) if and only if v = a and uvw = △. For

this to happen, the algorithm has to sample in the i-th iteration the edge uv or wv. This
happens with probability 2/m. Then, it has to be the case that the random neighbor sampled
on line 7 is the single vertex of △ not in e. This happens with probability 1/d(a). This
gives us that E(X ′

i) = d(a)
md(a) = 2/m. By summing over all triangles in TL and by linearity of

expectation, it holds that E(Xi) = 2TL/m. Therefore, the estimate T̂L = m
2k M = m

2k

∑k
i=1 Xi

is an unbiased estimate of TL.
We now bound the variance. We use the inequality10 V ar(X) ≤ sup(X)E(X) to get

V ar(Xi) ≤ θE(Xi) = 2θTL/m. Therefore V ar(mXi/2) = 1
2 θmTL. Taking average of 12 θm

ϵ2T̃

independent trials, we get variance 1
24 ϵ2T̃ TL ≤ 1

24 ϵ2T 2. By the Chebyshev’s inequality, it
therefore holds that

P (|T̂L − TL| ≥ ϵT/2) ≤ V ar(T̂L)
(ϵT/2)2 ≤ 1/6.

At the same time, by Lemma 10, it holds that T̂H ∈ TH ± ϵT̃ /2 ⊆ TH ± ϵT/2 with
probability at least 5/6 (note that we have amplified the success probability). By the
union bound, with probability at least 2/3, it holds that both |T̂L − TL| ≤ ϵT/2 and
|T̂H − TH | ≤ ϵT/2. Therefore, the algorithm returns a (1 ± ϵ)-approximate answer with
probability at least 2/3.

We now argue the time complexity. We spend O(n) time on line 2. There are no more
than m/θ vertices with degree at least θ. Triangles in G[VH ] are therefore counted, by
Theorem 12, in time

Õ

(
(m/θ)ω

(A2/T̃ )ω−2
+T

5+1/3
H (m/θ)2

A6

)
≤ Õ

(
(m/θ)ω

(ϵ2T̃ )ω−2
+ (m/θ)2

ϵ6T 2/3

)
= Õ

( m2ω/(ω+1)

ϵ4(ω−1)/(ω+1)T̃ 2(ω−1)/(ω+1)
+ m4/(ω+1)

ϵ2(ω+1)/(ω+1)T (7−ω)/(ω+1)

)
.

The time spent in each iteration of the loop on line 5 is O(1). The total time spent in the
loop is therefore

O
( θm

A2/T̃

)
= O

( θm

ϵ2T̃

)
= O

( m2ω/(ω+1)

ϵ4(ω−1)/(ω+1)T̃ 2(ω−1)/(ω+1)

)
.

Putting these two time complexities together, we get the desired running time.
We now prove that P (T̂ ≥ 2T ) ≤ 2/3 11. Since ϵ < 1, it holds that P (T̂H ≥ 2TH) ≤

P (T̂H ≥ (1 + ϵ)TH) ≤ 1/6 as we have amplified the success probability of Algorithm 4 to 5
6 .

Moreover, as we have shown, E(T̂L) = TL and, therefore, P (T̂L ≥ 2TL) ≤ 1/2 ◀

By the same argument as in Section 2.5, we may remove the need for advice 12. We run
the algorithm in parallel with the algorithm from [4], resulting in an algorithm with its time
complexity being the minimum of the complexities of the two respective algorithms. This
gives us the following claim.

10 sup(X) is the smallest x such that P (X > x) = 0.
11 We cannot use the Markov’s inequality in a straightforward way. The reason is that it is not clear how

to bound the expectation of the estimate coming from Theorem 12. While we do have a bound on the
expectation of the estimate given by, Algorithm 4 it is not clear a bound of this type carries over when
we perform the advice removal.

12 Instead of directly using the Markov inequality in the argument, we may use the last part of Lemma 14
to get the same guarantee.
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▶ Theorem 15. There is an algorithm that returns a (1± ϵ)-approximation of the number
of triangles with probability at least 2/3. It runs in time

Õ
( m2ω/(ω+1)

ϵ4(ω−1)/(ω+1)T̃ 2(ω−1)/(ω+1)
+ m4/(ω+1)

ϵ2(9+ω)/(ω+1)T 4(5−ω)/(3(ω+1))

)
.

3.1 Optimality
Like in the case of dense graphs, we show that our algorithm is in certain sense optimal.

▶ Proposition 16. Suppose there is an algorithm that uses both random vertex and random
edge queries, which runs in time Õ

(
m2ω/(ω+1)

T δ

)
for some constant δ, and returns a constant-

factor approximation of T with probability at least 2/3. Then δ ≤ 2(ω − 1)/(ω + 1).

Proof. Suppose δ > 2(ω − 1)/(ω + 1). Then, for T = Θ(
√

m), the algorithm runs in time
o(m). This is in contradiction to the lower bound from [9] which states that any such
algorithms has to run in time Ω(m). ◀
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