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Abstract
Zero-free based algorithms are a major technique for deterministic approximate counting. In
Barvinok’s original framework [4], by calculating truncated Taylor expansions, a quasi-polynomial
time algorithm was given for estimating zero-free partition functions. Patel and Regts [29] later
gave a refinement of Barvinok’s framework, which gave a polynomial-time algorithm for a class of
zero-free graph polynomials that can be expressed as counting induced subgraphs in bounded-degree
graphs.

In this paper, we give a polynomial-time algorithm for estimating classical and quantum partition
functions specified by local Hamiltonians with bounded maximum degree, assuming a zero-free
property for the temperature. Consequently, when the inverse temperature is close enough to zero by
a constant gap, we have a polynomial-time approximation algorithm for all such partition functions.
Our result is based on a new abstract framework that extends and generalizes the approach of Patel
and Regts.
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1 Introduction

Let Ω = [q]V be a finite space of configurations, where V is a set of n variables. Let
H1, . . . , Hm be a collection of local constraints, where each Hj : Ω → C is independent of all
but a small subset of variables, and let H =

∑m
j=1 Hj . The partition function of the given

system is defined by

ZH(β) =
∑
σ∈Ω

exp(−β · H(σ)), (1)

where the parameter β is usually called the inverse temperature.
The computational complexity of partition functions is one of the central topics in

theoretical computer science, which has been found wide applications in computational
counting, combinatorics, and statistical physics. To date, numerous algorithms as well
as hardnesses of approximation for the partition functions of various systems have been
established, to list a few [20, 32, 15, 21, 39, 37, 35, 36, 25, 34, 13, 26, 6, 10, 7]. The most
important question here is, what property captures the approximability of partition functions.
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It is widely believed that for various classes of partition functions of interests, the
hardness of approximation is captured by the locus of complex zeros. The study of the
locus of complex zeros has a rich history in statistical physics, for example, in the famous
Lee-Yang theorem [24]. In computer science, the absence of complex zeros may imply efficient
approximation algorithms for partition functions [4, 29, 31, 19, 27, 26, 30, 12, 17, 16, 18, 33,
9, 11]. This line of research was initiated by Barvinok’s pioneering works [1, 2, 3, 4, 5], which
used truncated Taylor expansions to approximate non-vanishing polynomials and established
quasi-polynomial time approximations of partition functions with no complex zeros within a
region. Later in a seminal work of Patel and Regts [29], this quasi-polynomial running time
was improved to polynomial time for a class of graph polynomials which can be expressed as
induced subgraph sums in graphs of constant maximum degree. And this polynomial-time
framework was further extended by Liu, Sinclair and Srivastava [27] to hypergraph 2-spin
systems with no complex-zeros for the external field.

For the quantum version, several (classical) algorithms have been proposed, including [23,
18, 28], to estimate the quantum generalization of the partition function defined as in (1)
where H is the Hamiltonian. Yet, an important question remains to answer is the polynomial-
time approximability of the quantum or classic partition function in the form of (1) assuming
its zero-freeness.

1.1 Our results
We show the polynomial-time approximability of partition functions assuming zero-freeness,
for both classical and quantum partition functions.

Let V be a set of n sites (also called vertices or particles). Let q ≥ 2 be an integer.
Throughout the paper, we assume that each site u ∈ V is associated with a q-dimensional
Hilbert space Vu, and let V =

⊗
u∈V Vu. A Hamiltonian H is a Hermitian matrix in V . The

support of a Hamiltonian H, denoted by supp(H), is the minimal set of sites on which H

acts non-trivially. Given a Hamiltonian H, exp(H) is defined by exp(H) =
∑∞

ℓ=1
1
ℓ! H

ℓ, and
the partition function ZH : C → C induced by H is defined as follows:

∀β ∈ C, ZH(β) ≜ Tr [exp(−βH)] . (2)

We are interested in partition functions induced by local Hamiltonians with bounded
maximum degrees.

▶ Definition 1 (local Hamiltonian). A Hamiltonian H ∈ V is said to be k-local if H can be
expressed as

H =
m∑

j=1
Hj ,

where each Hj acts non-trivially on at most k sites, i.e. |supp(Hj)| ≤ k. A Hamilto-
nian H ∈ V called a (k, d)-Hamiltonian if H is k-local and for every v ∈ V , deg(v) ≜
|{j | v ∈ supp(Hj)}| ≤ d.

Notice that if all Hj ’s are diagonal, then H is diagonal as well. The quantum partition
function ZH(β) then degenerates to the classical partition function defined in (1). Indeed, in
such diagonal case we have

ZH(β) =
∑

σ∈[q]V

exp(−β · H(σ)),
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where H(σ) =
∑m

j=1 Hj(σ) and Hj(σ) represents the σ-th diagonal entry of Hj . Since each
Hj is diagonal and acts non-trivially on subset supp(Hj) of at most k sites, the value of
Hj(σ) is determined by the variables in supp(Hj). Hence the ZH(β) above is precisely the
classical partition function defined in (1).

The quantum partition functions encode rich information about quantum systems, e.g. the
free energy and ground state energy. Meanwhile, the non-diagonal property, especially the
non-commutativity of multiplication for non-diagonal matrices, imposes great challenges for
the computation of partition functions.

We prove the following zero-free based approximability of quantum partition functions.

▶ Theorem 2 (Theorem 15, informal). Let Ω ⊆ C be a “well-shaped” complex region (formal-
ized by Definition 12) and k, d ≥ 1 be constants. There is a deterministic algorithm which
takes a (k, d)-Hamiltonian H on n sites and a β from interior of Ω as input, and outputs an
estimation of the quantum partition function ZH(β) in polynomial time in n, if ZH satisfies
the zero-free property such that |log ZH | ≤ poly(n) on Ω.

The formal statement (Theorem 15) is more general: it further takes into account the
measurement of the quantum system. Such generalization may encode broader classes
of partition functions, e.g. the ones with external fields, and also enable sampling from
Gibbs state. Following a recent major advance for quantum zero-freeness of Harrow et
al. [18], we give concrete applications (in Section 5), namely, polynomial-time algorithms for
approximating the quantum partition function (Theorem 21) and sampling from the Gibbs
state (Theorem 25) in a high-temperature regime (where β is close to zero by a constant gap),
improving the quasi-polynomial-time algorithms in [18]. A polynomial-time approximation
of the quantum partition functions in a slightly bigger high-temperature regime was obtained
in [28] using the cluster expansion technique [19], by transforming the quantum partition
function to a polymer model and showing the convergence of the cluster expansion assuming
high temperature.

We prove polynomial-time approximability of the quantum partition function directly
from a black-box property of zero-freeness, without further restricting the parameters of
the model. Moreover, our result is proved in a new abstract framework, namely, functions
specified by abstract neighborhood structures called dependency graphs. We prove the
following general result.

▶ Theorem 3 (Theorem 14, informal). Suppose that functions {fG} specified by dependency
graphs G satisfies certain boundedness property of its Taylor coefficients (formalized in
Definition 10). Let Ω ⊆ C be a “well-shaped” complex region. There is a deterministic
algorithm which takes a dependency graph G of O(1) max-degree and x from the interior of
Ω as input, and outputs an estimation of fG(x) in polynomial time in size n of G, if fG(0)
is easy to compute and fG satisfies the zero-free property such that |log fG| ≤ poly(n) on Ω.

The abstract framework is described in Definition 10. As verified in Section 3, our
framework subsumes previous polynomial-time frameworks for zero-free based algorithms
([29] and [27]) as special cases, and more importantly, it extends the previous frameworks to
become compatible with infinite-degree polynomials and non-commutative systems, which
are crucial for quantum partition functions.

ICALP 2022
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2 Preliminaries

2.1 Local Hamiltonians
Given a Hamiltonian H in V, we use supp(H) to denote the support of H, the minimal set
of sites on which H acts non-trivially. Formally, if S is the support of H, then S is the
minimal subset of V satisfying that H = HS ⊗ IV \S , where HS is a Hamiltonian in the
space

⊗
v∈S Vv and IV \S is the identity matrix in the space

⊗
v∈V \S Vv. Readers may refer

to [14, 22] for a thorough treatment.

2.2 Basic facts about complex functions
A complex-valued function f : Ω → C defined on a complex domain Ω ⊆ C is called
holomorphic if for every point z ∈ Ω, the complex derivative exists in a neighborhood of
z. A holomorphic function f : Ω → C is infinitely differentiable and equals locally to its
Taylor series. A biholomorphic function is a bijective holomorphic function whose inverse
is also holomorphic Furthermore, a function f : C → C is called an entire function if it
is holomorphic on C. A region Ω ⊆ C is simply connected if C \ Ω is connected, where
C = C ∪ {∞} denotes the extended complex plane.

The logarithm of a complex-valued function f , denoted by g = log f , is a function such
that f(z) = eg(z). For holomorphic function f : Ω → C \ {0} on simply connected region
Ω ⊆ C, such log f always exists (see e.g. [38]). Specifically, for an arbitrarily fixed pair
z0, c0 ∈ C satisfying that f(z0) = ec0 , we have

∀z ∈ Ω, log f(z) =
∫

P

f ′(w)
f(w) dw + c0, (3)

where P is an arbitrary path in Ω connecting z and z0. Throughout the paper, we mainly
deal with such holomorphic f on simply connected Ω that 0 ∈ Ω and f(0) ∈ R+. For such
case, the definition of log f is uniquely determined by z0 = 0 and the real c0 = ln(f(0)).

2.3 Approximation of non-vanishing function
We now recap the polynomial interpolation technique of Barvinok [4] to estimate values of
non-vanishing holomorphic functions.

For b ∈ R+, we use Db to denote the complex disc of radius b centered at the origin.
Formally,

Db = {z ∈ C| |z| < b} .

In particular, let D = D1 denote the unit disc.
For β ∈ C and δ ∈ R+, we use Sβ,δ to denote δ-strip of interval [0, β] = {tβ | t ∈ [0, 1]}.

Formally,

Sβ,δ = {z ∈ C | dist(z, [0, β]) < δ} .

where dist(·, ·) denotes Euclidean distance. It is clear that both Db and Sβ,δ are simply
connected.

The following is the key property of zero-freeness for complex-valued functions.

▶ Definition 4 (zero-freeness). Let M > 0 be finite positive real. A holomorphic function f

on a simply connected region Ω ⊆ C is M -zero-free on Ω if |log f(z)| ≤ M for all z ∈ Ω.
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Notice that the zero-freeness of f on Ω implies that f is non-vanishing on the same region.
A definition of log f is assumed in the context when this concept is used.

For any polynomial p ∈ C[z] that does not vanish on D, the polynomial p automatically
exhibits the above zero-freeness property with a bounded gap on Db for any b ∈ (0, 1).

▶ Lemma 5. Let p ∈ C[z] be a polynomial of degree d, and let b ∈ (0, 1). If p(z) ̸= 0 for all
z ∈ D, then p is M -zero-free on Db for M = d ln 1

1−b + |log p(0)|.

Proof. Let ζ1, ζ2, . . . , ζd ∈ C denote the roots of polynomial p. For any z ∈ Db,

|log p(z)| =

∣∣∣∣∣∣log p(0) +
d∑

j=1
log
(

1 − z

ζj

)∣∣∣∣∣∣
≤ |log p(0)| −

d∑
j=1

ln
(

1 −
∣∣∣∣ z

ζj

∣∣∣∣)
≤ |log p(0)| + d ln 1

1 − b
.

The inequalities are due to that all |ζj | > 1 since p(z) ̸= 0 for all z ∈ D. ◀

The following lemma of Barvinok says that any holomorphic function on D can be
approximated by its truncated Taylor expansion if it is zero-free on D.

▶ Lemma 6 (Barvinok [4]). Let g : D → C be holomorphic and M > 0. If |g(z)| ≤ M for all
z ∈ D, then for any z ∈ D and any m ∈ N+,∣∣∣∣∣g(z) −

m∑
k=0

g(k)(0)
k! zk

∣∣∣∣∣ ≤ M

δ
(1 − δ)m+1,

where δ = dist(z, ∂D) denotes the Euclidean distance between z and boundary of unit disc.

When Lemma 6 is applied to g = log f for some holomorphic f : D → C \ {0}, one can obtain
a multiplicative approximation of f on D assuming zero-freeness of f on D. To make such
approximation effective, we should be able to compute the Taylor coefficients of g = log f .

The following Newton’s identity relates the Taylor coefficients of g = log f to those of f .

▶ Lemma 7 (Newton’s identity). Let f(z) =
∑+∞

k=0 fkzk be an entire function such that
f(z) ̸= 0 for all z ∈ D. Then g(z) = log f(z) =

∑+∞
k=0 gkzk is well-defined on D, and

ngn = nfn −
n−1∑
k=1

kgkfn−k.

Proof. By the definition of g = log f , we have f ′ = g′f . Therefore,

nfn = 1
(n − 1)!f

(n)(0) = 1
(n − 1)!

n−1∑
k=0

(
n − 1

k

)
f (k)(0)g(n−k)(0)

=
n−1∑
k=0

(n − k)gn−kfk

=
n∑

k=1
kgkfn−k. ◀

ICALP 2022
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When the zero-free region is not unit disc, some preprocessing is needed. The following
polynomial transformation from D to any Sβ,δ is a consequence of [4, Lemma 2.2.3].

▶ Lemma 8. For any β ∈ C, δ ∈ (0, 1), there is an explicitly constructed polynomial pβ,δ of
degree d = d(β, δ) satisfying

pβ,δ(0) = 0 and pβ,δ(1 − δ0) = β for some δ0 ∈ (0, 1);
pβ,δ(D) ⊆ Sβ,δ;

The following proposition was proved in [4, Lemma 2.2.3], which explicitly gave a
polynomial mapping a disk with radius slightly larger than 1 to a strip.

▶ Proposition 9. Let δ ∈ (0, 1) be a constant, and let qδ ∈ C[z] be defined as follows:

qδ(z) = 1∑n
k=1

Ck

k

n∑
k=1

(Cz)k

k
,

where C = 1 − exp
(
− 1

δ

)
, n =

⌊(
1 + 1

δ

)
exp(1 + 1

δ )
⌋
.

Then for all |z| < ρ, where ρ = 1−exp(−1− 1
δ )

1−exp(− 1
δ ) > 1,

1. qδ(0) = 0, qδ(1) = 1,
2. Re (qδ(z)) ∈ [−δ, 1 + 2δ] and |Im (qδ(z))| ≤ 2δ.

Proof of Lemma 8. We now prove Lemma 8 using Proposition 9. Without loss of generality,
we assume that β ̸= 0. Note that the polynomial qδ defined in Proposition 9 satisfies
qδ(0) = 0, qδ(1) = 1, and qδ(Dρ) ⊆ S1,4δ.

Therefore, we can set pβ,δ(z) = βqδ′(ρ′z), where δ0 = δ
4|β| and ρ′ = 1−exp(−1− 1

δ′ )
1−exp(− 1

δ′ ) . We

conclude our proof by observing that pβ,δ(D) ⊆ Sβ,δ and pβ,δ(0) = 0, pβ,δ

(
1
ρ′

)
= β. ◀

3 Approximation of Zero-Free Holomorphic Function

We now introduce an abstraction for partition functions, namely, multiplicative holomorphic
functions specified by a class of abstract structures called dependency graphs.

A dependency graph is a vertex-labeled graph G = (V, E, L), where (V, E) is an undirected
simple graph, and L = (Lv)v∈V assigns each vertex v ∈ V a label Lv. Two labeled graphs
G = (V, E, L) and G′ = (V ′, E′, L′) are isomorphic if there is a bijection ϕ : V → V ′ such
that the two simple graphs (V, E) and (V ′, E′) are isomorphic under ϕ and Lv = L′

ϕ(v) for all
v ∈ V . Furthermore, we say that two labeled graphs G = (V, E, L) and G′ = (V ′, E′, L′) are
disjoint if V ∩ V ′ = ∅. A family G of dependency graphs is called downward-closed if for any
G = (V, E, L) ∈ G and any S ⊆ V we have G[S] ∈ G, where G[S] stands for the subgraph of
G induced by subset S ⊆ V preserving labels.

We use f· to denote an operator that maps each dependency graph G in G to an entire
function fG : C → C (i.e. fG is holomorphic on C), such that fG gives the same entire
function for isomorphic dependency graphs G. Such an f· is multiplicative if for any G that
is disjoint union of G1, G2, we have fG = fG1fG2 .

▶ Definition 10 (boundedness). Let G be a downward-closed family of dependency graphs.
Let α, β ≥ 1. A multiplicative f· is called (α, β)-bounded on G if for any G = (V, E, L) ∈ G,
we have fG(0) ∈ R+ and

fG(z) = fG(0) +
+∞∑
ℓ=1

∑
S⊆V

λG[S],ℓ

 zℓ,
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where the complex coefficients (λH,ℓ)H∈G,ℓ∈N+ are invariant for isomorphic dependency
graphs H, and satisfy that λH,ℓ ̸= 0 only if |VH | ≤ αℓ, and each λH,ℓ can be calculated within
βℓ · poly(ℓ) time.

For (α, β)-bounded f·, it always holds that fG(0) ∈ R+. Then we always fix the definition
of log f to be the one uniquely defined by Eq.(3) with z0 = 0 and c0 = ln(f(0)) being real.
Such log f is well defined within a neighborhood of the origin.

As we will formally verify in Section 3.2, this notion of bounded holomorphic functions
specified by dependency graphs generalizes the bounded induced graph counting polynomials
(BIGCPs) of Patel and Regts [29]. A major difference here is that fG may not be a polynomial
of finite degree.

We show that for (α, β)-bounded f·, the approach of Patel and Regts [29] based on
Newton’s identity and local enumeration of connected subgraphs can efficiently compute
Taylor coefficients of log fG, even though the function fG can now encode problems far
beyond counting subgraphs.

▶ Theorem 11 (efficient coefficient computing). Let G be a downward-closed family of
dependency graphs, and f· be (α, β)-bounded on G for α, β ≥ 1. There exists a deterministic
algorithm which given any G ∈ G and ℓ ∈ N+ as input, outputs the ℓ-th coefficient of the
Taylor series of log fG at the origin in time Õ

(
n(8eβ∆)αℓ

)
, where n is the number of vertices,

∆ is the maximum degree of G, and Õ(·) hides poly(∆, ℓ, log(n)).

The theorem will be proved in Section 4.
Due to Riemann mapping theorem in complex analysis, for any proper and simply

connected region Ω ⊂ C and any point z0 ∈ Ω, there is a biholomorphic function h from
D to Ω such that h(0) = z0. We are interested in those good regions Ω ⊆ C such that a
transformation h from D to Ω does not only exist but also has efficiently computable Taylor
coefficients.

▶ Definition 12 (good region). Let γ ≥ 1. A simply connected region Ω ⊆ C is γ-good if
0 ∈ Ω and given any x ∈ Ω, there exists a holomorphic function hx on D along with a zx ∈ D
such that:
1. hx(D) ⊆ Ω, hx(0) = 0 and hx(zx) = x;
2. for every ℓ ∈ N+, the ℓ-th Taylor coefficient hx,ℓ of hx at 0 can be determined in γℓpoly(ℓ)

time.
Given a γ-good region Ω ⊆ C and δ ∈ (0, 1), we use Ωδ to denote the set of all x ∈ Ω with
zx ∈ D1−δ.

Any convex region is 1-good, given access to an oracle that determines the distance to its
boundary.

▶ Fact 13. Let Ω ⊆ C be a convex region. Suppose that for any z ∈ Ω, dist(z, ∂Ω) can be
determined in O(1) time. Then Ω is 1-good.

Proof of Fact 13. The convexity of Ω implies that dist([zl, zr], ∂Ω) = min(dist(zl), dist(zr))
for arbitrary complex values zl, zr ∈ Ω, where [zl, zr] = {zl + t(zr − zl) | t ∈ [0, 1]}. Hence,
for each x ∈ Ω, we set fx = px,δ, a polynomial defined in Proposition 9. We conclude the
proof by observing that the k-th coefficient of px,δ can be determined in O(k) time. ◀

Applying our Theorem 11 to log fG, combining with Barvinok’s approximation (Lemma 6)
and our notion of good region, we obtain the following theorem for multiplicative approxima-
tion of zero-free fG’s.

ICALP 2022
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▶ Theorem 14 (efficient ε-approximation). Let α, β, γ ≥ 1. Let G be a downward-closed
family of dependency graphs, and f· be (α, β)-bounded on G. Let Ω ⊂ C be a γ-good region.

For any δ ∈ (0, 1), there is a deterministic algorithm which takes G ∈ G, x ∈ Ωδ

and an error bound ε ∈ (0, 1) as input, and outputs an estimation f̂G(x) of fG(x) within
ε-multiplicative error:

1 − ε ≤

∣∣∣f̂G(x)
∣∣∣

|fG(x)| ≤ 1 + ε,

in Õ
(

n
(

M
δε

)C
)

time with C = α
δ ln(8e∆(β + γ)), where ∆ is the maximum degree of G, if

provided that fG is M-zero-free on Ω ⊂ C and the value of fG(0) is also provided to the
algorithm.

Note that in above theorem, the zero-freeness property can be verified on any particular
class of dependency graphs, although the boundedness property should be guaranteed on
a downward-closed family. When applying this theorem, the value of fG(0) is usually
trivial to compute (e.g. fG(0) = 1), and the M -zero-freeness is usually established for some
M = poly(n) (e.g. M = O(n)) on n-vertex dependency graphs. In such typical cases, the
running time in Theorem 14 is bounded as

(
n
δε

)O( 1
δ log ∆).

Proof of Theorem 14. Let h = hx be a holomorphic function that transforms D to the
γ-good region Ω with h(zx) = x, where zx ∈ D1−δ since x ∈ Ωδ. And let fh

G = fG ◦ h.
First, observe that fh

G is M -zero-free on D, because
∣∣log fh

G(z)
∣∣ = |log fG(h(z))| ≤ M

holds for all z ∈ D since h(D) ⊆ Ω and fG is M -zero-free on Ω. Then by Lemma 6, for any
z ∈ D, the difference between log fh

G(z) and the truncated Taylor expansion at 0 is bounded
by ∣∣∣∣∣log fh

G(z) −
m∑

k=0

(
log fh

G

)(k) (0)
k! zk

∣∣∣∣∣ ≤ M

δ
(1 − δ)m+1 < ε, (4)

for m = ⌈ 1
δ ln M

δε ⌉.
It remains to verify that fh

· is (α, β + γ)-bounded on G. By Theorem 11, this will prove
the theorem.

For ℓ ∈ N+, let h
(ℓ)
k denote the k-th Taylor coefficient of h(z)ℓ at z = 0. Since h(0) = 0,

we have

h(z)ℓ =
(+∞∑

k=1
hkz

)ℓ

=
+∞∑
k=ℓ

h
(ℓ)
k zk

Since fG is (α, β)-bounded and h(0) = 0, we have

fh
G(z) = fG(0) +

+∞∑
ℓ=1

∑
S⊆V

λG[S],ℓ

h(z)ℓ

= fG(0) +
+∞∑
ℓ=1

∑
S⊆V

λG[S],ℓ

(+∞∑
k=ℓ

h
(ℓ)
k zk

)

= fG(0) +
+∞∑
k=1

∑
S⊆V

(
k∑

ℓ=1
h

(ℓ)
k λG[S],ℓ

)
zk

= fG(0) +
+∞∑
k=1

∑
S⊆V

λh
G[S],k

 zk,
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where λh
H,k for any H ∈ G and k ∈ N+ is defined as

λh
H,k ≜

k∑
ℓ=1

h
(ℓ)
k λH,ℓ.

Clearly, λh
H,k = 0 if |VH | > αk, where VH denotes the vertex set of H, since λH,ℓ = 0 if

|VH | > αℓ. And it can be verified that any λh
H,k can be determined within (β + γ)kpoly(k)

time. This is because within βkpoly(k) time, one can list all λH,1, . . . , λH,k, and for each
1 ≤ ℓ ≤ k, h

(ℓ)
k is just the coefficient of zk in

(
h1z + h2z2 + · · · + hkzk

)ℓ, which can be
calculated in poly(k) time given all h1, . . . , hk, which can be listed beforehand in γkpoly(k)
time. Overall, this takes at most (β + γ)kpoly(k) time.

Therefore, fh
· is (α, β + γ)-bounded. ◀

3.1 Quantum partition functions
We formally prove Theorem 2. Recall the definition of quantum partition function ZH in (2).
We extend this definition by considering measurement.

Recall that V =
⊗

u∈V Vu where V is the set of n sites and each Vu is a q-dimensional
Hilbert space. A measurement O is a positive operator in V . The quantum partition function
induced by Hamiltonian H under measurement O, both in V, is defined by

ZH,O(β) ≜ Tr [exp(βH)O] . (5)

Furthermore, a measurement O is tensorized if O =
⊗

v∈V Ov where supp(Ov) = {v}.
We show that under tensorized measurement O, the quantum partition functions ZH,O

defined by local Hamiltonians with O(1) maximum degree are (1, O(1))-bounded. Together
with Theorem 14 we obtain the following theorem.

▶ Theorem 15. Let Ω ⊂ C be a γ-good region for γ ≥ 1. For any δ ∈ (0, 1), there is a
deterministic algorithm such that given any (k, d)-Hamiltonian H and tensorized measurement
O, provided that 1

Tr[O] ZH,O is M-zero-free on Ω, for any temperature β ∈ Ωδ and error
bound ε ∈ (0, 1), the algorithm outputs an estimation of ZH,O(β) within ε-multiplicative error
in Õ

(
n
(

M
δε

)C
)

time with C = 1
δ ln

(
8ed

(
2q3k + γ

))
.

Note that when the measurement O is the identity, ZH,O is precisely the partition function
ZH , which implies Theorem 2. As discussed in the introduction, Theorem 15 covers all
classical partition functions (with or without external field) when temperature is the complex
variable.

Following a recent work of Harrow, Mehraban and Soleimanifar [18], Theorem 15 gives
polynomial-time approximations of quantum partition functions defined by local Hamiltonians
with O(1) maximum degree when the inverse temperature β is close to zero. And following a
standard routine of self-reduction, in the same regime, we have a polynomial-time approximate
sampler from the quantum Gibbs state after the measurement in the computational basis.
These applications are given in Section 5.

Proof of Theorem 15. Given a (k, d)-Hamiltonian H =
∑m

j=1 Hj , we can construct a de-
pendency graph GH = (U, E, L) as follows:
1. U = [m] is the vertex set;
2. E =

{
{x, y} ∈

(
U
2
)

| supp(Hx) ∩ supp(Hy) ̸= ∅
}

;
3. for any x ∈ U , its label is given by Lx = Hx.
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Let Gk denote the family of all such GH where H is a k-local Hamiltonian. It is obvious that
such Gk is downward-closed.

Let O =
⊗

v∈V Ov be a tensorized measurement. For any G = GH ∈ Gk, where
H =

∑m
j=1 Hj , define:

fG(z) = 1
Tr [O]ZH,O(z) = 1

Tr [O]Tr

exp

−z

m∑
j=1

Hj

O

 .

The rest of the proof verifies that such f· is (1, 2q3k)-bounded on Gk, which is sufficient
to prove the theorem by Theorem 14.

We first verify that such f· is multiplicative. For any G = (U, E, L) ∈ Gk that is
the disjoint union of G1 = (U1, E1, L1) and G2 = (U2, E2, L2), there exists a bipartition
V = V1 ⊎ V2 such that supp(Hx) ⊆ V1 for all x ∈ U1 and supp(Hy) ⊂ V2 for all y ∈ U2. Let
HUi =

∑
x∈Ui

Hx for i = 1, 2. We have,

fG(z) = 1
Tr[O]Tr [exp (−z(HU1 + HU2)) O]

= 1
Tr[O]Tr[exp(−zHU1) exp(−zHU2)O]

= 1
Tr[O]TrV1

[
exp(−zHU1)

⊗
v∈V1

Ov

]
TrV2

[
exp(−zHU2)

⊗
v∈V2

Ov

]

= 1
Tr2[O]

Tr[exp(−zHU1)O]Tr[exp(−zHU2)O]

= fG1(z)fG2(z)

Here the subscripts V1, V2 in TrV1 , TrV2 indicates the sets of sites that the operators act on.
Therefore, f· is multiplicative.

For any G = (U, E, L) ∈ Gk and any ℓ ∈ N+, define

λG,ℓ = 1
ℓ!

1
Tr[O]

∑
f :[ℓ]onto→ U

Tr

 ℓ∏
j=1

Hf(j)

O

 . (6)

Observe that λG,ℓ = 0 if |U | > ℓ as there is no surjection from [ℓ] to U . Moreover, for
H =

∑
x∈U Hx,

fG(z) = 1 +
+∞∑
ℓ=1

βℓ

ℓ! Tr
[
HℓO

]
= 1 +

+∞∑
ℓ=1

zℓ

ℓ!
∑

x1,x2,...,xℓ∈U

Tr

 ℓ∏
j=1

Hxj

O


= 1 +

+∞∑
ℓ=1

∑
S⊆U

λG[S],ℓ

 zℓ.

It remains to show that λG,ℓ can be determined within (2q3k)ℓpoly(ℓ) time.
Fix a G = (U, E, L) ∈ Gk. For any S ⊆ U , define

HS,ℓ ≜
∑

f :[ℓ]onto→ S

ℓ∏
j=1

Hf(j).
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Clearly, λG,ℓ = 1
ℓ!

1
Tr[O] Tr [HU,ℓO]. Moreover, the following recurrence holds for HS,ℓ:

HS,ℓ =
∑
j∈S

Hj

(
HS,ℓ−1 + HS\{j},ℓ−1

)
, (7)

where the boundary cases are given by H∅,0 = I, and HS,ℓ = 0 (the 0-matrix) if ℓ < |S|,
or S = ∅ but ℓ > 0. Note that HS,ℓ acts non-trivially on at most k |S| sites, where
each site corresponds to a q-dimensional Hilbert space, thus HS,ℓ can be represented as
a matrix of size at most qk|S| × qk|S| and the recursion step (7) can be evaluated in time
O(|S|q3k|S|). Therefore, for any S ⊆ U that 1 ≤ |S| ≤ ℓ, HS,ℓ can be computed in time
O(2|S|ℓ|S|q3k|S|) = O(ℓ22ℓq3kℓ) by a dynamic programming that constructs a 2S × [ℓ] table
according to the recurrence (7). And finally, λG,ℓ = 1

ℓ!
1

Tr[O] Tr [HU,ℓO] can be computed
from HU,ℓ in O(q3kℓ) time because HU,ℓ acts non-trivially on at most k|U | ≤ kℓ sites and O
is tensorized. ◀

3.2 Induced subgraph counting
Our framework (Definition 10) subsumes bounded induced graph counting polynomials
(BIGCP) defined by Patel and Regts [29].

A BIGCP p· defines multiplicative graph polynomials pG for all graphs G = (V, E).
Moreover, there exists integer α ≥ 1 and sequence λH,ℓ of complex values such that the
following conditions are satisfied.
1. For any graph G = (V, E), pG can be expressed as

pG(z) = 1 +
m(G)∑
ℓ=1

 ∑
H=(VH ,EH )

|VH |≤αℓ

λH,ℓ · ind(H, G)

 zℓ,

where ind(H, G) represents the number of induced subgraphs G[S], S ⊆ V , isomorphic
to H.

2. λH,ℓ can be determined in O(βℓ) time for some constant β ≥ 1.

For any G = (V, E), we define a dependency graph G∗ = (V, E, L) where L labels
every v ∈ V with a trivial symbol ∗. Let G denote the family of all G∗, which is clearly
downward-closed. We define fG∗ = pG.

Note that∑
H=(VH ,EH )

|VH |≤αℓ

λH,ℓind(H, G) =
∑
S⊆V

|S|≤αℓ

λG[S],ℓ.

Therefore, any BIGCP p· corresponds to an f· that is (α, β)-bounded on G∗.

3.3 Boolean CSP with external field
A Boolean-variate constraint satisfaction problem (Boolean CSP) is specified by a Φ =
(V, E, ϕ), where H = (V, E) is a hypergraph and ϕ = (ϕe)e∈E such that each ϕe : {0, 1}e → C
is a Boolean-variate complex-valued constraint function. Furthermore, Φ = (V, E, ϕ) is a
(k, d)-formula if |e| ≤ k for every e ∈ E and deg(v) = |{e ∈ E | v ∈ e}| ≤ d for every v ∈ V .
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The partition function for a Boolean CSP Φ = (V, E, ϕ) of external field λ is defined as:

ZΦ(λ) =
∑

σ∈{0,1}V

(∏
e∈E

ϕe(σ|e)
)

λ∥σ∥1 .

In [27], Liu, Sinclair and Srivastava formulated the above partition function as counting
hypergraph insects and gave a polynomial-time algorithm for such a partition function
assuming its zero-freeness. Such partition functions are also subsumed in our framework.

Given a Boolean CSP Φ = (V, E, ϕ), a dependency graph GΦ = (VΦ, EΦ, LΦ) can be
constructed as follows:
1. VΦ = V ;
2. for any distinct u, v ∈ VΦ = V , {u, v} ∈ EΦ iff {u, v} ⊆ e for some e ∈ E;
3. for any v ∈ VΦ = V , its label Lv = (ϕe)e∈E,v∈e.
Note that each constraint ϕe appears in labels of all v ∈ e, and the maximum degree of GΦ
is bounded by ∆ ≤ (k − 1)d for a (k, d)-formula Φ.

Let Gk,d denote the family of all such dependency graphs GΦ, where Φ = (V, E, ϕ) is a
(k, d)-formula, and all their induced subgraphs. Obviously, such Gk,d is downward-closed.

Let G ∈ Gk,d. Without loss of generality, suppose that G = GΦ[U ] is the subgraph of the
dependency graph GΦ induced by U ⊆ V , where Φ = (V, E, ϕ) is a Boolean CSP.

We define

fG(λ) =
∑

σ∈{0,1}U

∏
e∈E

e∩U ̸=∅

ϕU
e (σ|U∩e)λ∥σ∥1 ,

where ϕU
e : U ∩ e → C is defined as that for any τ ∈ {0, 1}U∩e,

ϕU
e (τ) = ϕe(τ∗),

where τ∗ ∈ {0, 1}e extends τ and assigns all v ∈ e \ U with 0. It is easy to verify that such
definition fG uses only the information stored in the dependency graph G, thus it is well
defined. Meanwhile, it is also easy to verify that f· is multiplicative and fG(λ) = ZΦ(λ) if
G = GΦ.

For G = GΦ[U ] where Φ = (V, E, ϕ) and U ⊆ V , define λG,ℓ, as

λG,ℓ =


∏

e∈E
e∩U ̸=∅

ϕU
e (1U∩e), |U | = ℓ

0, o.w.

Each λG,ℓ can be determined in poly(k, d, ℓ) time.
Observe that,

fG(λ) = 1 +
|U |∑
ℓ=1

∑
σ∈{0,1}U

∥σ∥1=ℓ

∏
e∈E

e∩U ̸=∅

ϕU
e (σ|U∩e)λℓ = 1 +

|U |∑
ℓ=1

∑
S⊆U
|S|=ℓ

∏
e∈E

e∩S ̸=∅

ϕS
e (1S∩e)λℓ

= 1 +
+∞∑
ℓ=1

∑
S⊆U

λG[S],ℓ

λℓ.

Therefore, f· is a (1, 1)-bounded on Gk,d.
Applying Theorem 14, we immediately obtain the following corollary. Similar bound has

been proved in [27], but here we only need to encode the problem in our framework.
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▶ Corollary 16. Let Ω ⊆ C be a γ-good region for γ ≥ 1. For any δ ∈ (0, 1), there is a
deterministic algorithm such that given any (k, d)-formula Φ for Boolean CSP, provided
that ZΦ is M-zero-free on Ω, for any external field λ ∈ Ωδ and error bound ε ∈ (0, 1), the
algorithm outputs an estimation of ZΦ(λ) within ε-multiplicative error in Õ

(
n
(

M
δε

)C
)

time
with C = 1

δ ln (8ekd(1 + γ)).

Since such ZΦ(λ) is a polynomial with finite degree, by Fact 13 and Lemma 5, if Ω ⊆ C is a
convex region and ZΦ does not vanish on a slightly larger region Ω′ = {(1 + δ)z | z ∈ Ω} for
some constant gap δ ∈ R+, then M = Oδ(n) and hence the algorithm in Corollary 16 runs
in
(

n
ε

)O(ln(kd)) time.

3.4 A barrier to non-multiplicative functions
Our framework based on functions fG induced by dependency graphs G is fairly expressive.
However, the current technique crucially relies on the multiplicative property of fG. The
current method would meet a barrier when dealing with systems lacking such property.

We explain this using a concrete example. Consider the following generalization of (1):

∀β ∈ C, ZH,H′(β) ≜ Tr [exp(−βH + H ′)] . (8)

Here, H and H ′ are two Hamiltonians in V. It encompasses the transverse Ising model and
XXZ model. Unfortunately, this partition function fails to fit in our framework due to its
non-multiplicative nature, even when H ′ is a tensorized operator. For Hamiltonians H1, H2
such that supp(H1) ∩ supp(H2) = ∅ and a tensorized operator H ′ =

⊗
v∈V H ′

v, the following
equality fails to hold in general: ZH1+H2,H′(β) = 1

Tr[exp(H′)] ZH1,H′(β)ZH2,H′(β).
For example, let

H1 = I
⊗1 0

0 0

, H2 =

1 0

0 0

⊗ I, H ′ = −

0 0

0 1

⊗0 0

0 1

.

For β = 1, it holds that ZH1+H2,H′(β) = Tr [exp(−H1 − H2 + H ′)] = 3e−1 + e−2 but
Tr [exp(H ′)] = e−1 + 3 and ZHi,H′(β) = Tr [exp(−Hi + H ′)] = 3e−1 + 1 for i ∈ {1, 2}.

The main obstacle comes from the non-commutativity of Hamiltonians and it remains open
to design a polynomial-time algorithm for such partition function assuming only zero-freeness.

4 Efficient Coefficient Computing

In this section we prove Theorem 11. First we need to establish the following lemma.

▶ Lemma 17. Let G be a downward-closed family of dependency graphs, and f· be (α, β)-
bounded on G for α, β ≥ 1. Recursively define the sequence (ζH,i)H∈G,ℓ∈N+ of complex
numbers as follows: for any H = (VH , EH , LH) ∈ G and any ℓ ∈ N+,

ζH,ℓ = λH,ℓ −
ℓ−1∑
s=1

s

ℓ

∑
S,T ⊆VH

S∪T =VH

ζH[S],sλH[T ],ℓ−s. (9)

It holds that ζH,ℓ ̸= 0 only if H is connected and |VH | ≤ αℓ. Moreover, for any G =
(V, E, L) ∈ G,

log fG(z) = log fG(0) +
+∞∑
ℓ=1

∑
S⊆V

ζG[S],ℓ

 zℓ. (10)

As in [29, 27], the following result of Borgs et al. [8] is used.
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▶ Fact 18 (Lemma 2.1 (c) in [8]). Let G = (V, E) be a graph with maximum degree ∆, v ∈ V

be a vertex and ℓ ∈ N≥1. Then the number of connected subgraphs of size ℓ containing v is at
most (e∆)ℓ−1

2 .

With this fact, we can enumerate all connected induced subgraphs G[S] of |S| ≤ ℓ vertices
efficiently.

▶ Lemma 19. There exists a deterministic algorithm which takes a dependency graph
G = (V, E, L) on n = |V | vertices with maximum degree ∆ and a positive integer ℓ ∈ N+ as
input, and outputs

C≤ℓ = {S ⊆ V | |S| ≤ ℓ, G[S] is connected}, (11)

in time Õ(n(e∆)ℓ), where Õ(·) hides poly(∆, ℓ, log(n)).

Proof. Let Cv
=ℓ denote the collection of such S ⊆ V containing v ∈ V that |S| = ℓ and G[S]

is connected. Clearly C≤ℓ =
⋃

v∈V
j≤ℓ

Cv
=j . Now construct each Cv

=ℓ inductively. When ℓ = 1,

Cv
=1 = {{v}}. For ℓ ≥ 2, we enumerate all S ∈ Cv

=ℓ−1 and u ∈ V \ S such that G[S ∪ {u}] is
connected, and include S ∪ {u} into Cv

=ℓ. It is easy to see that this correctly constructs Cv
=ℓ.

By Fact 18, |Cv
=ℓ| ≤ (e∆)ℓ−1/2. Representing each set S as a string of vertices in S sorted in

increasing order of vertices, the set Cv
=ℓ can be stored by a standard dynamic data structure

such as prefix trees, so that it takes O(∆ℓ(e∆)ℓ−1) time to iterate over all (S, u) ∈ Cv
=ℓ−1 × V

such that G[S ∪ {u}] may be connected, and for each such (S, u) pair it takes poly(∆, ℓ, log n)
time to check weather G[S ∪ {u}] is connected or S ∪ {u} is already in Cv

=ℓ, and insert S into
Cv

=ℓ if necessary. Overall, it takes Õ(n(e∆)ℓ) time to construct C≤ℓ. ◀

Combining the above algorithm with (9), we can compute coefficients ζH,ℓ for log fG

efficiently.

▶ Lemma 20. Let G be a downward-closed family of dependency graphs, and f· be (α, β)-
bounded on G for α, β ≥ 1. There exists a deterministic algorithm which takes a dependency
graph G = (V, E, L) ∈ G on n = |V | vertices with maximum degree ∆ and a positive integer
ℓ ∈ N+ as input, and outputs (ζG[S],ℓ)S∈C≤αℓ

within Õ
(
n(8eβ∆)αℓ

)
time, where C≤αℓ is

defined in Eq. (11).

The lemma follows by first enumerating all S ∈ C≤αℓ, which takes Õ
(
n(e∆)αℓ

)
time

according to Lemma 19, and second for every S ∈ C≤αℓ, taking H = G[S] and computing
ζH,ℓ using a dynamic programming given by Eq. (9), which takes Õ(8αℓβℓ) time.

Let log fG(z) = log fG(0) +
∑+∞

ℓ=1 gG,ℓz
ℓ. Due to Lemma 17, ζG[S],ℓ = 0 if G[S] is

disconnected or |S| > αℓ, thus due to Eq. (9), the ℓ-th Taylor coefficient of log fG is given by

gG,ℓ =
∑
S⊆V

ζG[S],ℓ =
∑

S∈C≤αℓ

ζG[S],ℓ.

Therefore, Theorem 11 is proved. It only remains to prove Lemma 17.

Proof of Lemma 17. Fix an arbitrary G ∈ G, and consider fG. Let log fG = log fG(0) +∑+∞
ℓ=1 gG,ℓz

ℓ denote the Taylor’s expansion of log fG at the origin, and fG(z) = fG(0) +∑+∞
ℓ=1 fG,ℓz

ℓ denote the Taylor’s expansion of fG at the origin. We prove by induction on
ℓ ≥ 1 that

gG,ℓ =
∑
S⊆V

ζG[S],ℓ, (12)

which implies (10).
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For the induction basis, when ℓ = 1, by Lemma 7 we have gG,1 = fG,1. by the definition
of bounded graph function in Definition 10, fG,1 =

∑
S⊆V λG[S],1; and it follows from (9)

that λG[S],1 = ζG[S],1. Altogether, we have

gG,1 = fG,1 =
∑
S⊆V

λG[S],1 =
∑
S⊆V

ζG[S],1.

Now suppose that the induction hypothesis (12) holds for all ℓ′ < ℓ. We have

∑
S⊆V

ζG[S],ℓ =
∑
S⊆V

λG[S],ℓ −
ℓ−1∑
s=1

s

ℓ

∑
L,R⊆V
L∪R=S

ζG[L],s · λG[R],ℓ−s


=
∑
S⊆V

λG[S],ℓ −
ℓ−1∑
s=1

s

ℓ

∑
L⊆V

ζG[L],s

∑
R⊆V

λG[R],ℓ−s


= fG,ℓ −

ℓ−1∑
s=1

s

ℓ
gG,sfG,ℓ−s (I.H.)

= gG,ℓ. (Lemma 7)

This finishes the inductive proof of (12).
Next, we prove that ζH,ℓ = 0 if H = (VH , EH , LH) ∈ G is disconnected or |VH | > αℓ.

Recall that f· is (α, β)-bounded, we have λH,ℓ = 0 for |VH | > αℓ. Then the fact that ζH,ℓ = 0
for |VH | > αℓ can be verified by induction on ℓ ≥ 1. Specifically, by Eq. (9),

ζH,ℓ = λH,ℓ −
ℓ−1∑
s=1

s

ℓ

∑
S,T ⊆VH

S∪T =VH

ζH[S],sλH[T ],ℓ−s.

For the basis, ζH,1 = λH,1 = 0 when |VH | > α. In general, observe that assuming |VH | > αℓ,
for any S ∪ T = VH , it must hold that either |S| > αs or |T | > α(ℓ − s). Therefore, assuming
|VH | > αℓ, ζH,ℓ = 0 follows from the induction hypothesis.

Finally, it remains to verify that ζH,ℓ = 0 if H is disconnected, which follows from the
multiplicative property of f·. By contradiction, assume that ζH,ℓ ≠ 0 for some disconnected
H ∈ G. Let S∗ ⊆ VH be a minimal subset of V such that H[S∗] is disconnected and
ζH[S∗],ℓ ̸= 0. Since H[S∗] is disconnected, there exist nonempty L, R ⊆ S∗ such that
L ∪ R = S∗ and L, R are disconnected in H[S∗]. Due to the multiplicative property of f·, we
have fG[S∗] = fG[L] · fG[R]. Therefore,

gG[S∗],ℓ = gG[L],ℓ + gG[R],ℓ =
∑
S⊆L

ζG[S],ℓ +
∑
S⊆R

ζG[S],ℓ, (13)

where the first equation can be formally verified for any disjoint dependency graphs G1, G2 ∈ G
and any z in the neighborhood of the origin, such that for an arbitrary path P in Ω connecting
z and the origin,

log fG1∪G2(z) = log fG1∪G2(0) +
∫

P

f ′
G1∪G2

(z)
fG1∪G2(z) dz

= log fG1(0) + log fG2(0) +
∫

P

(
f ′

G1
(z)

fG1(z) +
f ′

G2
(z)

fG2(z)

)
dz

= log fG1(z) + log fG2(z).
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On the other hand,

gG[S∗],ℓ =
∑

S⊆S∗

ζG[S],ℓ = ζG[S∗],ℓ +
∑

S⊂S∗

ζG[S],ℓ = ζG[S∗],ℓ +
∑
S⊆L

ζG[S],ℓ +
∑
S⊆R

ζG[S],ℓ, (14)

where the last equation is due to the minimality of S∗. Combining (13) and (14), we have
ζG[S∗],ℓ = 0, a contradiction. ◀

5 Applications

In this section, we prove that any zero-free partition function of local Hamiltonians with
bounded maximum degree is polynomial-time approximable if the inverse temperature is
close enough to 0. This is formally stated by the following theorem. Recall the definition of
the partition function ZH,O induced by Hamiltonian H under measurement O in (5).

▶ Theorem 21. Let k, d ∈ N+, h > 0, δ ∈ (0, 1) and β0 = 1
5ekdh . There is a deterministic

algorithm such that given any (k, d)-Hamiltonian H =
∑m

j=1 Hj on n sites satisfying ∥Hj∥ ≤ h

and tensorized measurement O, for any temperature β ∈ D(1−δ)β0 and error bound ε ∈ (0, 1),
the algorithm outputs an estimation of ZH,O(β) within ε-multiplicative error in Õ

((
n
δε

)C
)

time with C = 1
δ (ln 8ed + 3k ln q) + 1.

It was established in [18] that any partition function ZH(β) exhibits zero-freeness property
in a high-temperature regime (when the inverse temperature β is close to 0). A similar
lemma holds for partition functions ZH,O(β) under tensorized measurement O.

▶ Lemma 22 (high temperature zero-freeness). Let h ∈ R+, H =
∑m

j=1 Hj be a (k, d)-
Hamiltonian on n sites, and O be a tensorized measurement. If ∥Hj∥ ≤ h for all 1 ≤ j ≤ m,
then for any β ∈ Dβ0 where β0 = 1

5edkh , it holds that
∣∣∣log ZH,O(β)

Tr[O]

∣∣∣ ≤ n.

Theorem 21 follows directly from Lemma 22 and Theorem 15.
The proof of Lemma 22 extends the zero-freeness analysis in [18] to the case where a

tensorized measurement O is present. We will see that the same inductive proof based on
cluster expansion works for this more general case.

Define HX the Hamiltonian H restricted on X by

HX =
∑

i∈[m]
supp(Hi)⊆X

Hi,

and define the partition function ZH,O restricted on X by ZX
H,O(β) = TrX [exp(−βHX)OX ],

where OX =
⊗

v∈X Ov, and Z∅
H,O = 1 by convention. Here the subscript X in TrX indicates

that the operators act on the sites in X.
Moreover, recall the dependency graph GH = (U, E, L) defined in the proof of Theorem 15:

1. U = [m];
2. E = {(x, y) ∈ U × U | x ̸= y, supp(Hx) ∩ supp(Hy) ̸= ∅};
3. Lx = Hx for any x ∈ U .

We are now ready to introduce the cluster expansions of partition functions. The following
lemma was an extension of [18, Lemma 26] with tensorized measurement O.
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▶ Lemma 23 (high temperature expansion [18, Lemma 26]). Let h ∈ R+, H =
∑m

i=1 Hi be a
(k, d)-Hamiltonian, O be a tensorized measurement and β0 = 1

e(e−1)dh . If ∥Hi∥ ≤ h, then the
following holds for all Λ ⊆ V , x ∈ Λ and β ∈ Dβ0 .

ZΛ
H,O(β) = Tr[Ox]ZΛ\{x}

H,O (β) +
∑

S⊆[m]
∃j∈S,x∈supp(Hj)

GH [S] is connected

WS(β)ZΛ\RS

H,O (β),

where WS(β) =
∑+∞

l=|S|
(−β)l

l!
∑

(i1,...,il)∈Sl

∪l
j=1{ij}=S

TrRS

[∏l
j=1 Hij

ORS

]
, and RS =

⋃
j∈S supp(Hj).

We also need the following technical lemma from [18].

▶ Lemma 24 (Harrow, Mehraban and Soleimanifar [18, Lemma 27]). Let H =
∑m

i=1 Hi be a
(k, d)-Hamiltonian, and β0 = 1

5edkh , then for |β| < β0∑
S⊆[m]

∃j∈S,x∈supp(Hj)
GH [S] is connected

(
e|β|h − 1

)|S|
exp(dhe2 |β| |RS |) ≤ e(e − 1)dh |β| .

Proof Sketch of Lemma 22. Fix an arbitrary Λ ⊆ V . As observed in [18], it suffices to
prove that removal of any single site x ∈ Λ can only produce a bounded additive overhead to
log ZΛ

H,O(β). Formally, we are going to prove that when |β| < β0, for any x ∈ Λ,∣∣∣∣∣log

∣∣∣∣∣ 1
Tr[Ox]

ZΛ
H,O(β)

Z
Λ\{x}
H,O (β)

∣∣∣∣∣
∣∣∣∣∣ ≤ e2dh |β| . (15)

The proof is by induction on |Λ|. The induction basis with |Λ| = 1 is easy to establish.
Now suppose that (15) holds for all smaller Λ. By Lemma 23 and Lemma 24, we have

∣∣∣∣∣log

∣∣∣∣∣ 1
Tr[Ox]

ZΛ
H,O(β)

Z
Λ\{x}
H,O (β)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
log

∣∣∣∣∣∣∣∣∣∣∣
1 +

∑
S⊆[m]

∃j∈S,x∈supp(Hj)
GH [S] is connected

WS(β)
(

1
Tr[Ox]

Z
Λ\RS

H,O (β)

Z
Λ\{x}
H,O (β)

)∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
(∗)
≤ − log

1 −
∑

S⊆[m]
∃j∈S,x∈supp(Hj)

GH [S] is connected

|WS(β)|
(

exp
(
−e2dh |β|

)
Tr[ORS

]

)

≤ − log

1 −
∑

S⊆[m]
∃j∈S,x∈supp(Hj)

GH [S] is connected

(exp(|β| h) − 1)|S|

exp(e2dh |β|)


≤ − log(1 − e(e − 1)dh |β|) ≤ e2dh |β| ,

where (∗) follows from the induction hypothesis and the last inequality follows from the fact
that − log

(
1 − e−1

e y
)

≤ y for all y ∈ [0, 1]. ◀

ICALP 2022
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Besides estimation of partition function, another related important computational problem
is to sample according to the Gibbs state.

The quantum Gibbs state specified by Hamiltonian H ∈ V and inverse temperature
β ∈ R+ is:

ρH(β) = exp(−βH)
ZH(β) .

The classical distribution µH,β over [q]V is the quantum Gibbs state ρH(β) after meas-
urement in the computational basis, i.e.

∀σ ∈ [q]V , µH,β(σ) = ZH,Oσ
(β)

ZH(β) ,

where Oσ = |σ⟩⟨σ|. Note that µH,β is a well-defined distribution over [q]V . To see this, first
note that

∑
σ Oσ = I is the identity matrix in V, and hence

∑
σ ZH,Oσ

(β) = ZH(β); and
second, both Oσ and exp(βH) are positive semidefinite since H is Hermitian and β ∈ R+,
and hence ZH,Oσ

(β) = Tr [exp(βH)Oσ] ≥ 0.
In the same regime as Theorem 21, we have a polynomial-time approximate sampler from

µH,β , the classical distribution obtained after measurement of the quantum Gibbs state in
the computational basis.

▶ Theorem 25. Let k, d ∈ N+, h > 0, δ ∈ (0, 1) and β0 = 1
5ekdh . There is a randomized

algorithm such that given any (k, d)-Hamiltonian H =
∑m

j=1 Hj on n sites satisfying ∥Hj∥ ≤
h, for any temperature β ∈ D(1−δ)β0 and error bound ε ∈ (0, 1), the algorithm outputs an
approximate sample σ ∈ [q]V within ε total variation distance from the distribution µH,β, in
Õ
((

n
δε

)C
)

time with C = 1
δ (2 ln 8ed + 6k ln q) + 3.

Proof. We leverage the algorithm in Theorem 21 as a subroutine, and give the following
classical algorithm for approximate sampling from µH,β .

Without loss of generality, we may assume that V = [n]. Let Mj = |j⟩⟨j| for 1 ≤ j ≤ q,
and Mv,j =

(⊗v−1
ℓ=1 I

)
⊗ Mj ⊗

(⊗n
ℓ=v+1 I

)
. Our procedure for sampling σ ∈ [q]V is as

follows.
1. Initialize O with the identity operator on Hilbert space H;
2. Iterate v from 1 to n;
3. For each j from 1 to n, estimate zv,j = ZH,Ov−1Mv,j

(β) within ε0 = ε
10n -multiplicative

error.
4. samples j ∈ [q] proportional to z̃v,j , the estimation of zv,j , updates O with OMv,j , and

assigns σ(v) with j.
Note that O is a tensorized measurement during the process. Hence, Theorem 21 guar-
antees an estimation of zv,j within ε0-multiplicative error in Õ(

(
n
εδ

)C) time with C =
1
δ (2 ln 8ed + 6k ln q) + 2. Furthermore, note that for each configuration σ ∈ [q]V ,

Pr[σ is generated]
µH,O(σ) =

n∏
v=1

zv,σ(v)∑
j∈[q] zv,j

∑q
j=1 z̃v,j

z̃v,σ(v)
,

and for each v ∈ V and j ∈ [q],

1 − ε0 ≤ z̃v,j

zv,j
≤ 1 + ε0.
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Hence,

1 − ε
(∗)
<

(
1 − ε

1 + ε

)n

≤ Pr[σ is generated]
µH,O(σ) ≤

(
1 + ε0

1 − ε0

)n (⋆)
< 1 + ε,

where (⋆) follows from
(

1+ε0
1−ε0

)
≤ (1 + 3ε0)n < exp( 3

10 ε) < 1 + ε, and (∗) follows from (⋆)
and 1

1+ε > 1 − ε. Therefore, the total varaince distance between µH,O and the output from
our sampler will differ at most ε.

We conclude the proof by observing that our algorithm calls the subrountine O(nq) times
with parameter ε0 = ε

10n , which takes Õ
((

n
ε

)C
)

time with C = 1
δ (2 ln 8ed + 6k ln q) + 3 in

total. ◀
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