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—— Abstract

The topological properties of a set have a strong impact on its computability properties. A striking
illustration of this idea is given by spheres and closed manifolds: if a set X is homeomorphic to a
sphere or a closed manifold, then any algorithm that semicomputes X in some sense can be converted
into an algorithm that fully computes X. In other words, the topological properties of X enable one
to derive full information about X from partial information about X. In that case, we say that X
has computable type. Those results have been obtained by Miller, Iljazovié, Susi¢ and others in the
recent years. A similar notion of computable type was also defined for pairs (X, A) in order to cover
more spaces, such as compact manifolds with boundary and finite graphs with endpoints.

We investigate the higher dimensional analog of graphs, namely the pairs (X, A) where X is a
finite simplicial complex and A is a subcomplex of X. We give two topological characterizations
of the pairs having computable type. The first one uses a global property of the pair, that we call
the e-surjection property. The second one uses a local property of neighborhoods of vertices, called
the surjection property. We give a further characterization for 2-dimensional simplicial complexes,
by identifying which local neighborhoods have the surjection property.

Using these characterizations, we give non-trivial applications to two famous sets: we prove that
the dunce hat does not have computable type whereas Bing’s house does. Important concepts from
topology, such as absolute neighborhood retracts and topological cones, play a key role in our proofs.
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1 Introduction

Computable analysis is a theory formalizing computations on real numbers using finite
but arbitrary precision, and allowing to investigate the theoretical possibility of solving
problems on real numbers. The computable aspects of topology are an important research
topic in computable analysis. Computability of homology groups was investigated in [10],
computability of planar continua in [18], computability of the Brouwer fixed-point theorem
was studied in [20] and [3], and computability of Polish spaces is addressed in [11].

A particularly rich topic is the computability of subsets of the plane and of Fuclidean
spaces. For instance, the computability of Julia sets has thoroughly been studied [4], the
computability of the Mandelbrot set is still an open problem [13] and the computability of
the set of solutions of a computable equation is generally a non-trivial problem [21].
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These studies reveal that many natural definitions of sets induce a semi-algorithm, and
finding a proper algorithm computing the set can be challenging. Informally, a compact
subset of the plane is semicomputable if there is an algorithm that for each pixel, semidecides
whether the pixel is disjoint from the set, i.e. halts exactly in that case. A compact subset
of the plane is computable if there is an algorithm that decides, for each pixel, whether it
intersects the set. This idea can be generalized to higher dimensions, and to subsets of many
mathematical spaces.

Although semicomputability of compact sets is strictly weaker than computability in
general, it turns out that they are equivalent for many natural sets, and that this phenomenon
comes from the topological properties of these sets. For instance, it was prove by Miller [19]
that semicomputability and computability are equivalent for spheres, and for every set that is
homeomorphic to a sphere. This result leads to the following definition: say that a compact
space X has computable type if any semicomputable set Y that is homeomorphic to X is
actually computable. This property has been intensively studied by Miller [19] and more
recently by Iljazovié and his co-authors [5, 17, 9, 15, 6, 7] in the recent years. A striking
aspect of this property is that it builds a bridge between computability theory and topology.
The following results were obtained:

The n-dimensional sphere S,, (which is the higher dimensional analog of the circle) has

computable type [19],

Every closed n-manifold (these are compact spaces which are locally homeomorphic to R™,

e.g. the n-dimensional sphere and the n-dimensional torus) has computable type [17].
A line segment or a disk fails to have this property: it is not difficult to build a semicomputable
disk which is not computable. However, a similar result can be proved if one requires in addi-
tion that the boundary of the set is semicomputable. It leads to the following generalization
from compact spaces X to pairs (X, A) where X and A C X are compact: a pair (X, A) has
computable type if for any semicomputable pair (Y, B) that is homeomorphic to (X, 4), Y
is computable. The following results have been obtained for pairs:

The n-dimensional ball (which is the higher dimensional analog of the disk) with its

bounding sphere (B,,,S,_1) has computable type [19],

Every compact manifold with boundary (M, M) has computable type [17],

Every finite (topological) graph (G, V7), where V] is the set of vertices of degree 1, has

computable type [15].

Our goal in this paper is to study the property of having computable type for a broader
class of spaces, to characterize the pairs having computable type and to develop a unifying
argument for the known examples. Our first observation is that graphs and manifolds have
the common property that they are locally topological cones as follows (see Figure 1 for an
illustration of this idea):

A finite graph is locally a cone of a finite set,

A 2-dimensional manifold is locally a disk, which is the cone of a circle, and more generally

an n-dimensional manifold is locally an n-ball, which is the cone of an (n — 1)-sphere.

In this article, we study the class of finite simplicial complexes which is a large class of
spaces that are also locally topological cones, as illustrated in Figure lc.

Finite simplicial complexes are the higher dimensional analogs of finite graphs. They
are made of simplices that are attached together along their faces. This class of compact
topological spaces is large enough to include many examples (e.g., most common compact
manifolds, geometrical models from computer graphics) and can be easily described using finite
combinatorial information, so we can hope to obtain a full characterization of computable
type for them. We do not consider infinite simplicial complexes because the usual topologies
make them non-compact.
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(a) A local cone in a graph. (b) A local cone in a 2- (c) A local cone in a sim-
manifold. plicial complex.

Figure 1 Examples of local cones in 3 types of spaces.

Let (X, A) be a pair consisting of a finite simplicial complex X and a subcomplex A. We
call such a pair a simplicial pair. Our main problem is to understand which simplicial
pairs (X, A) have computable type. We give a thorough answer, by giving two topological
characterizations of the simplicial pairs (X, A) having computable type. One of them is
global whereas the other one is local. The local characterization makes it very easy to check
whether a simplicial pair (X, A) has computable type, by inspecting the neighborhoods
of each vertex separately. Those neighborhoods are called local cones, because they are

topological cones with the vertex as the tip (precise definitions will be given in the article).

We then use the local characterization to prove or disprove that specific sets, such as Bing’s
house and the dunce hat, have computable type. The previous techniques developed in
the literature were too specific to be applied to these sets. Our techniques not only make it
possible to treat any simplicial complex, but also provide a simple and visual way to settle
the question for many sets.

The proofs are non-trivial but the statements are elegant and easy to apply. For instance

it is very easy to apply our results to show that the dunce hat does not have computable type.

However, the internals of the proofs of the theorems are rather involved and we are not aware
of any simpler, more direct argument. Therefore our results provide significant progress in
the understanding of the computable type property. Moreover, our approach in this article
is new in the sense that the proofs are very different from the arguments developed in the
literature on the computable type property.

It turns out that the computability property we are studying is intimately related
to topology, so we need to use topology in our investigation. However, we only assume
familiarity with basic topology (e.g., continuity and compactness). When we use more
advanced topological notions, we give the necessary background (e.g. cones, simplicial
complexes).

The results. Let us summarize the main results of this paper. We will be working with
pairs (X, A) consisting of a compact metric space X and a compact subset A, to be informally
thought as the boundary of X. A typical example is given by the pair (B,+1,S,,) consisting
of the (n + 1)-dimensional ball and the n-dimensional sphere:

By = {z e R ||z <1},
S, = {z e R"" . ||z|| = 1},

where ||| is the Euclidean norm or any equivalent norm. We introduce two important
properties of pairs, given in Definition 3.1 and restated here.

» Definition. A pair (X, A) has the surjection property if every continuous function f :
X — X satisfying f|a = ida is surjective.

Let € > 0. A pair (X, A) has the e-surjection property if every continuous function f :
X — X satisfying f|a = ida and d(f,idx) < € is surjective.
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For instance, a consequence of Brouwer’s fixed-point theorem is that the pair (B,t1,S,)
has the surjection property.

The main result of the paper is Theorem 3.4, which relates computable type with these
two properties. We restate it here. We recall that a simplicial pair (X, A) consists of a
finite simplicial complex X and a subcomplex A C X.

» Theorem. Let (X, A) be a simplicial pair such that A has empty interior in X. The
following conditions are equivalent:

1. (X, A) has computable type,
2. There exists € > 0 such that (X, A) has the e-surjection property,
3. Every local cone pair of (X, A) has the surjection property.

Condition 2. is the global property mentioned above and condition 3. is the local one.
This theorem reduces a computability-theoretic property to purely topological ones. We
develop further techniques to determine whether a pair has computable type, by applying
this theorem or by analyzing when the topological properties are satisfied. The first one is
stability under finite unions (Theorem 4.1 and Corollary 4.2).

» Theorem (Finite union). Let (X, A) be a simplicial pair and (X;, A;)i<n be pairs of
subcompleves such that X = Uz‘gn X; and A = Uign A;. If each (X;, A;) has computable
type, then (X, A) has computable type.

The second one is a further characterization of the 2-dimensional simplicial pairs having
computable type, by reducing the surjection property for local cone pairs to a simple property
of graphs (Theorem 4.4). We demonstrate the strength of that result by giving non-trivial
applications to two famous sets: the dunce hat (Figure 4a) and Bing’s house (Figure 5).

In order to make the paper understandable to a larger audience, we give informal proofs
of the main results. The detailed proofs can be found in the full version [14].

The paper is organized as follows. In Section 2, we give the needed background on
computability of sets, simplicial complexes and cone spaces. In Section 3, we define the
surjection property and the e-surjection property, state and prove our main result. In
Section 4, we present techniques to prove or disprove the (e-)surjection property. As an
application, we prove that the dunce hat does not have computable type whereas the Bing’s
house does, by studying the local cones of each of the two sets. In Section 5, we briefly discuss
the possible notions of boundary X of a simplicial complex X that make the pair (X, 0X)
have computable type. We finally formulate open questions and discuss a generalization of
our results in Section 6.

2 Preliminaries

We give here some necessary preliminaries in computability theory and topology. We start
with this central definition.

» Definition 2.1. A pair (X, A) consists of a compact metrizable space X and a compact
subset A C X. A copy of a pair (X, A) in a topological space Z is a pair (Y,B) such
that Y C Z is homeomorphic to X and A is sent to B by the homeomorphism.
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2.1 Computability of sets

We recall definitions and results about the Hilbert cube and computable type. We will
mainly use the following notion from computability theory: a set A C N is computably
enumerable (c.e.) if there exists a Turing machine that, on input n € N, halts if and only
if n € A. This notion immediately extends to subsets of countable sets, whose elements can
be encoded by natural numbers.

Computability in the Hilbert cube. We work in the Hilbert cube because it is universal
among the separable metrizable spaces, in particular every compact metrizable space embeds
in the Hilbert cube.

» Definition 2.2. The Hilbert cube is the space Q = [0,1]" endowed with the metric d(z,y) =
27w — yi|l. We let (Bi)ien be a computable enumeration of the open balls B(z,r)
where x € Q has finitely many non-zero rational coordinates and r > 0 is rational; these B;s
are called rational balls.

» Notation 1. If X C @ and f,g: X — Q, then let dx(f,9) = sup,ex d(f(x), g(z)).

We recall definitions of computability of compact subsets of the Hilbert cube. The reader
can find more details about computability of sets in [2, 16].

» Definition 2.3 (Computability of sets). A compact set X C Q is:
Semicomputable if there exists a c.e. set E CN such that Q\ X = ;e Bi,
Computable if it is semicomputable and {i e N: X N B; # 0} is c.e.

A pair (X, A) in Q is semicomputable if both X and A are semicomputable.

Intuitively, X is semicomputable if there is an algorithm that takes any rational cube as
input (a voxel) and semidecides whether that cube is disjoint from X, i.e. halts exactly in
this case. X is computable if there is an algorithm that decides whether a cube intersects
the set.

For instance, the Mandelbrot set is semicomputable because its definition gives an
algorithm that can eventually detect that a point is outside this set; whether it is computable
is an open problem, see [13].

» Example 2.4. The line segment I = [0, 1], embedded in the simplest way as [0, 1] x {¢} C @
where ¢ = (0,0, ...), is computable. However, if A C N is the halting set (a non-computable
ce.set) and x4 =) ., 27", then [z4,1] x {¢} is a copy of I which is semicomputable but
not computable.

The Hilbert cube itself is a computable subset of itself. A compact set X C Q is
semicomputable if and only if the set {(1,...,4,) e N*: X C B;, U...UB; } isc.e., and it

is computable if and only if in addition it contains a dense computable sequence. A function f :
Q — Q is computable if there exists a c.e. set E C N2 such that f~(B;) = U(ij)eE B;.

The image of a (semi)computable set under a computable function is a (semi)computable

set. Semicomputable sets have very useful properties: if X C @ is semicomputable and f, g :

X — @ are computable, then {g € Q : dx(f,g) < ¢} is c.e.

Computable type. The next definition is the main notion of this article (see [17]).

» Definition 2.5. A pair (X, A) has computable type if for every semicomputable copy (Y, B)
of the pair in the Hilbert cube, Y is computable.
A compact space X has computable type if the pair (X,0) has.
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» Remark 2.6. In fact, in [17] computable type was defined separately for copies in computable
metric spaces and computably Haudorff spaces. In a forthcoming article, we show that taking
the copies in computably Hausdorff spaces, computable metric spaces or the Hilbert cube are
all equivalent using the fact that computable metric spaces embed effectively in the Hilbert
cube, as well as Schréder’s computable metrization theorem [22].

2.2 Topology

We recall some notions which will be used, like simplicial complexes and cone spaces. We will
work with compact metrizable spaces only, and may omit this assumption in the statements.

» Definition 2.7. Let (X, A) be a pair. A retraction r: X — A is a continuous function
such that r| 4 = ida. If a retraction exists, then we say that A is a retract of X.

Simplicial complex. Let V = {0,...,n} and P (V) be the set of non-empty subsets of
V. An abstract finite simplicial complex is a set S C P, (V) such that if 0 € S
and ) # ¢’ C o, then ¢’ € S. Its elements o € S are called the simplices of S. If 0 € S
has n + 1 elements, then ¢ is an n-simplex. The vertices of S are the singletons {i} € S.
o € S is free if there exists exactly one ¢’ € S with ¢ C ¢/. A subcomplex of S is an
abstract simplicial complex contained in S.

The support of a vector = = (g, ...,z,) € [0,1]""! is supp(x) = {i:z; # 0} . The
standard realization of an abstract simplicial complex S is the set

|S| = {x = (w0,...,2n) € [0,1]" sz = 1,supp(z) € S}'

Any space homeomorphic to the standard realization of an abstract finite simplicial complex
is called a finite simplicial complex. We often identify an abstract simplicial complex and
its standard realization.

A simplicial pair (X, A) consists of a finite simplicial complex X and a subcomplex A.

» Remark 2.8. For technical reasons, we will implicitly assume that A contains all the free
vertices of X (those are the points x having a neighborhood homeomorphic to [0,1) with a
homeomorphism sending x to 0).

In a simplicial complex, each vertex has a neighborhood which is usually called a star
and is topologically a cone. Our main result will relate the computable type property with
a property of these local cones. Because we are dealing with pairs, we need to define local
cone pairs, as follows.

» Definition 2.9. Let (X, A) be the standard realization of a simplicial pair and v; =
(0,...,0,1,0,...,0) be a vertex. The local cone pair at v; is (K;, M;) defined by:

KZ:{m6X$121/2}a
M,={reX:z;=1/2} U(K;NA).

Note that the coefficient 1/2 is arbitrary and could be replaced by any number in (0, 1).

» Remark 2.10. We call (K;, M;) a cone pair because K is a topological cone: let L, = {z €
X :x; =1/2}, K; is a copy of the cone of L;, obtained from L; x [0, 1] by identifying all the
points (1,0) together. The point obtained by this identification is the tip of the cone and
corresponds to the vertex v;. If N; = {x € A : x; = 1/2}, then M; is the union of L; and of
the cone of N;.



D. E. Amir and M. Hoyrup

In the language of simplicial complexes, K; corresponds to the star of v; and L; to the
link of v;. K; is homeomorphic to the union of simplices containing v;. Each such simplex
has a face that does not contain v;, and L; is the union of these faces.

3 The (e-)surjection property and computable type for simplicial pairs

We now present the main result of this paper, that identifies which simplicial pairs have
computable type, using the following topological properties.

» Definition 3.1. A pair (X, A) has the surjection property if every continuous function f :
X — X satisfying fla =ida is surjective.

A pair (X, A) in Q has the e-surjection property for some € > 0, if every continuous
function f: X — X satisfying fla =ida and dx(f,idx) < € is surjective.

» Example 3.2.
For every n € N, the (n+ 1)-dimensional ball and its bounding n-dimensional sphere form
a pair (B,+1,S,) that has the surjection property. It is a consequence of an equivalent
formulation of Brouwer’s fixed-point theorem that S,, is not a retract of B,,.1 (Corollary
2.15 in [12]).
The pair (S,,,?) does not have the surjection property (take a constant function f : S, —
Sp), but has the e-surjection property if € is sufficiently small. It can be proved using
classical results in topology, or as a consequence of Theorem 3.4 below.
If A C X is aretract of X, then the pair (X, A) does not have the surjection property, as
witnessed by the retraction.

Although the e-surjection property depends on the particular copy of a pair (X, A),
quantifying over € yields a topological invariant, i.e. a property of the pair that is satisfied
either by all copies or by none of them.

» Proposition 3.3. Whether there exists € > 0 such that (X, A) has the e-surjection property
does not depend on the copy of (X, A) in Q.

Proof. If (Y, B) is a copy of (X, A), then let ¢ : X — Y be a homeomorphism such
that ¢(A) = B. By compactness of X, ¢ is uniformly continuous so given ¢ > 0, there
exists & > 0 such that if d(z,z’) < § then d(¢(x),d(x")) < e. If (Y, B) has the e-surjection
property, then we show that (X, A) has the d-surjection property. Let f : X — X be
continuous, satisfying f|4 =ids and dx(f,idx) < 6. Define g = po fodp™!1:Y — Y: one
has g|p = idp and dy (g,idy) < € by choice of d so g is surjective, hence f is surjective. <«

We now state the main result of this paper.

» Theorem 3.4 (The main theorem). Let (X, A) be a simplicial pair such that A has empty
interior in X. The following statements are equivalent:

1. (X, A) has computable type,

2. (X, A) has the e-surjection property for some € > 0,

3. All the local cone pairs (K;, M;) have the surjection property.

We separate the proof into several independent parts.

» Remark 3.5. A single topological space X has many different simplicial decompositions,
i.e. many abstract simplicial complexes whose realizations are homeomorphic to X. For
instance, a triangle can be decomposed into many smaller triangles. At first sight, the third
condition in Theorem 3.4 depends on the choice of the decomposition, because the local
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cone pairs are taken at the vertices of the decomposition. However, the theorem implies that
the choice of the simplicial decomposition is irrelevant, because conditions 1. and 2. do not
depend on the decomposition: if all the cone pairs in a simplicial decomposition have the
surjection property, then it is still true for all other simplicial decompositions of the space.

For a simplicial pair that is itself homeomorphic to a cone pair, we obtain a further
equivalence, which is a consequence of Theorem 3.4.

Let (L, N) be a simplicial pair. The simplicial cone pair induced by (L, N) is the
pair (K, M) defined by K = Cone(L) and N = L U Cone(N), as in Remark 2.10.

» Corollary 3.6. Let (K, M) be a simplicial cone pair such that M has empty interior in K.
The following statements are equivalent:

1. (K, M) has computable type,

2. (K, M) has the e-surjection property for some € > 0,

3. (K, M) has the surjection property.

Proof. The surjection property implies the e-surjection property for any pair. Conversely, if
the pair (K, M) has the e-surjection property then each local cone pair has the surjection
property, but (K, M) is itself homeomorphic to one of its local cone pairs. |

The rest of this section is devoted to the proof of this result. We will give several
applications in the next section.

3.1 The e-surjection property implies computable type

In this section we give an informal idea of the proof of 2. = 1. in Theorem 3.4. The idea of
the proof is that if A has empty interior in X and (X, A) has the e-surjection property, then
for an open set U the following conditions are equivalent:

U intersects X,

There exists a continuous non-surjective function g : (X \U)UA — X such that g|4 = ida

and dx(g,idx) <.

This equivalence is straightforward. If U intersects X, then let g be the inclusion map.
Conversely, if such a g exists then (X \ U)U A must differ from X by the e-surjection property
for (X, A), so U intersects X.

The finite simplicial complex X has good topological properties because it is a compact
Absolute Neighborhood Retract (ANR), which means that any copy of X in @ is a retract of
some neighborhood of that copy. The detailed proof consists in showing how to use these
properties to prove that the existence of such a function g can be detected by an algorithm
if (X, A) is semicomputable. The main idea is that one does not need to search for an
arbitrary continuous function g, but for a computable one. Therefore, one can test whether
an open set U intersects X, which makes X computable.

3.2 The e-surjection property is equivalent to the local surjection
property

In this section we give an informal proof of the equivalence 2. < 3. in Theorem 3.4

The e-surjection property implies the local surjection property. It is easy to see that if
a local cone pair does not have the surjection property, then for any € > 0, the pair (X, A)
does not have the e-surjection property. It relies on the particular property of a cone that
it contains arbitrarily small copies of itself, obtained by scaling it down: for any A € (0, 1),
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the set K;(A) = {z € X : x; > A} is a copy of K; and it has arbitrarily small diameter as A
approaches 1. Given € > 0, consider A such that K;(\) has diameter less than e. Take a
non-surjective function f from K;(\) to itself which is the identity on the corresponding
set M;(X), and extend it to a non-surjective function g : X — X by simply defining g(z) = «
for x outside K; (). One has d(g,idx) < €, showing that (X, A) does not have the e-surjection

property.

The local surjection property implies the e-surjection property. Now, assume that for
every € > 0, (X, A) does not have the e-surjection property. We show that some local
cone pair does not have the surjection property. The idea is to start from a sufficiently
small € > 0, to be defined later, and a non-surjective function i : X — X such that h|4 = idg
and d(h,idx) < € and consider its restriction hg to a local cone K which is not contained
in the image of h. This function hg does not immediately disprove the surjection property
for the local cone pair (K, M) because ho(K) may not be contained in K and hy may not
be the identity on M. However, hy almost satisfies these properties: ho(K) is at distance e
from K and hg is e-close to the identity on M. Again, using the fact that K is a compact
Absolute Neighborhood Retract (ANR) and the properties derived from that, if one takes €
sufficiently small, then one can transform A into a continuous function G that sends K to
itself, is the identity on M and is still non-surjective. Therefore, (K, M) does not have the
surjection property.

3.3 Computable type implies the e-surjection property

We prove 1. = 2. in Theorem 3.4. We show that if a simplicial pair (X, A) does not have

the e-surjection property for any € > 0, then it has a semicomputable copy in @) that is not

computable. In order to build that semicomputable copy, we show that the pair fails in a

computable way to have the e-surjection property, which is expressed by Definition 3.7.
For two non-empty compact sets A, B C @, their Hausdorff distance is

dy(A,B) = max(r[fleajc d(a, B), max d(b, A)).
» Definition 3.7. Let € > 0 and (X, A) C Q fail to have the e-surjection property. Say
that 6 > 0 is an e-witness if there exists a continuous function f : X — X such that f|a =
ida, dx(f,idx) < e and dp(f(X),X) > 4.

Say that (X, A) has computable witnesses if there is a computable function € — §(¢)
such that for every e > 0, d(€) is an e-witness.

For a compact pair (X, A) (not necessarily simplicial), having computable witnesses is
sufficient to build a semicomputable copy which is not computable.

» Theorem 3.8. Let (X, A) C Q be a computable pair having computable witnesses. (X, A)
does not have computable type.

Informal proof. In order to give some intuition, let us show precisely another but related
result: if we only assume that (X, A) does not have the surjection property, then one can

encode the halting problem for one program p in a copy of (X, A), in the following sense.

Given p, one can produce an algorithm that semicomputes a copy (X,, A,) of (X, A); any
algorithm computing X, could be used to decide whether p halts.
Let (X, Ag) C @ be a semicomputable copy of (X, A) and 6 > 0 be such that there exists a

non-surjective continuous function f: Xy — Xo such that f|a, = ida, and dy(Xo, f(Xo)) > 9.
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Given a program p, we define a copy (X, 4,). If p does not halt, then (X,, A,) = (Xo, Ao)-
If p halts, then (X, 4,) is another copy (X1, A1) defined by the following algorithm.

Start enumerating the complements of Xy and Ay. If p eventually halts then consider a
copy (X1, A1) of (Xo, Ag) with the following properties:

(X1, Ay) is compatible with (i.e. disjoint from) the current enumeration of the complements

of Xy and Ag,

dH(Xl,Xo) > .

The existence of f implies the existence of (X7, A1), which can be effectively found. We then
continue enumerating the complements of X7 and A;.

We have just given an algorithm that semicomputes a copy (X,,A4,) of (X, A), be
it (Xo, Ao) or (X1, A1). Any algorithm that computes X, could be used to know whether p
halts: p halts if and only if dg(X,, Xo) > 6, which can be decided from the computable
information about X,.

Now, assuming that (X, A) does not have the e-surjection property for any ¢, and using
the assumption that a witness d(€) can be computed from any €, we apply this strategy
against all the programs in parallel and at infinitely many scales. The idea is simple but the
details are rather technical. <

Note that the standard realization of a simplicial pair is computable. We now show that
if it has witnesses, then it always have computable witnesses, which together with Theorem
3.8 concludes the proof of 1. = 2. in Theorem 3.4.

» Proposition 3.9. If a simplicial pair (X, A) does not have the e-surjection property for
any € > 0, then its standard realization has computable witnesses.

Proof. By 3. = 2. in Theorem 3.4, there exists a local cone pair (K;, M;) which does not
have the surjection property, so there exists a non-surjective function fy : K; — K; such
that fo|p, = idps;. One can assume w.l.o.g. that dx(fo,idx) < 1. Let d9 > 0 be such
that dg (fo(X), X) > dp. Given € > 0, the number § = dpe can be computed from e and is
an e-witness. Indeed, the function f obtained by applying fy to a version of K; scaled by a
factor € and extended as the identity elsewhere satisfies all the conditions. |

4  Techniques for the (e-)surjection property

Theorem 3.4 enables one to reduce the computable type property to topological properties,
namely the e-surjection property and the surjection property for local cone pairs. Proving or
disproving these properties may not be straightforward, so we develop a few techniques that
help in many cases.

4.1 Finite union

The first result is a way to prove that a simplicial pair has the e-surjection property by
decomposing it as a finite union of pairs that all have the e-surjection property.

» Theorem 4.1 (Finite union). Let (X, A) be a finite simplicial pair and (X;, A;)i<n be
pairs of subcomplexzes such that X = J,.,, Xi and A = |J,.,, Ai. If every pair (X;, A;)
has the e-surjection property for some e > 0, then (X, A) has the §-surjection property for
some § > 0.
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Informal proof. We are using good topological properties of finite simplicial complexes. For
each i, there exists a neighborhood U; of X; and a retraction r; : U; — X; with a special
property: if x belongs to the topological interior of X;, then the only preimage of x by r;
is x.

Let ¢ be sufficiently small and assume that (X, A) does not have the §-surjection property.
Let f: X — X be continuous, non-surjective and satisfy f|4 = ids and dx(f,idx) < .
There must be ¢ < n and z in the interior of X; that is not in the image of f. We can then
create a function f; : X; — X; as follows: f; is the restriction of r; o f to X; (it is possible
if ¢ is sufficiently small, so that f(X;) C U;).

The special property of r; implies that = is not in the image of f;. Moreover, f; is
continuous, is the identity on A; and is e-close to idx, if § is sufficiently small. <

» Corollary 4.2. Let (X, A) be a simplicial pair and (X;, A;)i<n be pairs of subcomplezes such
that X =J,.,, X; and A = Uign A;. If every pair (X;, A;) has computable type, then (X, A)
has computable type.

i<n

For instance, if a finite simplicial complex X is a finite union of subcomplexes that are
homeomorphic to spheres, then X has computable type. More generally, if a finite simplicial
pair (X, A) is a finite union of pairs of subcomplexes (X;, A;) that are homeomorphic to
pairs (Sp,,0) or (Bn+1,Sy), then (X, A) has computable type.

4.2 Cone of a graph

In a 2-dimensional simplicial pair, the local cones are cones of graphs. We obtain a charac-
terization of the surjection property for such cones. In order to state the result, we need
to define the cone pair induced by a pair, already informally discussed in Remark 2.10.
Let (L, N) be a pair. We define the cone pair (K, M) := Cone(L, N) as follows:

K = Cone(L) is the quotient of L x [0, 1] by the equivalence relation (z,0) ~ (y,0),

M = LU Cone(N), where L is embedded in K as L x {1}.
The space L is called the base of the cone K = Cone(L), and the equivalence class L x {0}
is called the tip of K.

» Example 4.3. Let us illustrate this notion on the usual example of balls and spheres:
Cone(S,,,0) = (B,41,S,) with the tip at the center of B, 11,
Cone(B,,,S,—1) = (B,,41,S,) with the tip in S,,.

Here is the main result of this section.

» Theorem 4.4. Let (L, N) be a pair such that L is a finite graph and N is a subset of its
vertices. The following statements are equivalent:

1. Cone(L, N) has the surjection property,

2. Ewvery edge is in a cycle or a path starting and ending in N.

We follow the usual convention that in a graph, a path and a cycle do not visit a vertex
twice, i.e. they are topologically a line segment and a circle respectively. In particular, a
path connects two different points.

» Example 4.5 (Star pair). Fix some n > 1 and let X be the star with n branches and A be
the n endpoints of these branches (see Figure 2), with a special case for n = 1: Cone({v},0) =
(B1,Sp). The pair (X, A) is precisely Cone(A,#). As A has no edge, it satisfies the conditions
of Theorem 4.4, therefore (X, A) has the surjection property. One can then obtain Iljazovié’s
result that every finite graph has computable type [15], because the local cones of a finite
graph are stars, which have the surjection property.
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[ ] L]
L]
L] L]
L]
L]
(a) Star with 5 branches. (b) Star with 1 branch.

Figure 2 The star pairs (X, A) have the surjection property (Example 4.5) (X in yellow, A in
black).

» Example 4.6 (n squares). Fix some n > 2 and let X be the union of n squares which all meet
in one common edge and A be the union of all the other edges (see Figure 3). The pair (X, A)
has the surjection property. Indeed, (X, A) = Cone(A, ) and A is a graph which is a union
of circles (each circle is the boundary of the union of two squares). Therefore, Cone(A, §)) has
the surjection property by Theorem 4.4. Finally, (X, A) has computable type by Corollary
3.6.

Figure 3 A union of 5 squares is the cone of a graph; the tip is at the center, the graph is in
black (Example 4.6).

We expect a generalization of Theorem 4.4 to cones of arbitrary simplicial complexes, by
using the notions of n-cycles and relative n-cycles from homology, generalizing cycles and
paths respectively [12].

In the next section we apply Theorem 4.4, giving an example of a cone pair of a graph
which does not have the surjection property.

4.3 The dunce hat

The dunce hat D is the space obtained from a solid triangle by gluing its three sides
together, with the orientation of one side reversed (see Figure 4a). It is a classical example,
introduced by Zeeman [23], of a space that is contractible but not intuitively so. It is a
2-dimensional simplicial complex with no free edge, i.e. no edge that belongs to one triangle
only.

» Theorem 4.7. The dunce hat does not have computable type.

Proof. First, it is possible to turn the dunce hat into a simplicial complex, so we can apply
our results. The vertices of the triangle are identified to a point v, and we show that the
local cone pair at that point does not have the surjection property. Indeed, in Figure 4c
one can see that the local cone pair at v is Cone(L, )) = (Cone(L), L) where L is the graph
consisting of two circles joined by a line segment.

We apply Theorem 4.4: L is a finite graph containing an edge which is neither in a cycle
nor in a path from N to N (N is empty), therefore Cone(L, N) does not have the surjection
property. Theorem 3.4 then implies that the dunce hat does not have computable type. <
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v v v

(a) Dunce hat. (b) Local cone pair. (c) Local cone pair.

Figure 4 (a) The dunce hat is obtained by gluing the edges with the indicated orientations; (b)
and (c) a local cone pair (Cone(L), L) = Cone(L, ) with tip at v, with L in black.

As far as we know, there is no simple and visual way of building a semicomputable copy
of the dunce hat that is not computable, i.e. the involved construction carried out in the
proof of Theorem 3.4 cannot be avoided. The same remark applies to the pair (Cone(L), L)
depicted in Figure 4c.

If A is the identified edges of the triangle, then it can be proved, by analyzing its local
cone pairs, that the pair (D, A) has computable type. In particular, the local cone pair
at v is Cone(L, N) where N consists of the two endpoints of the middle interval, so L is the
union of two circles and a line segment between two points of N, hence Cone(L, N) has the
surjection property by Theorem 4.4.

» Remark 4.8 (Quotient vs pair). It is proved in [8] that for any compact pair (X, A) where A
has empty interior, if the quotient space X/A has computable type then the pair (X, A) has
computable type. It is also proved that the converse implication fails, the counter-example is
given by the circle X and a subset A consisting of a converging sequence together with its
limit. The pair (X, A) has computable type, simply because X itself has computable type.
However, X/A is homeomorphic to the Hawaiian earring which does not have computable
type. This quotient is not a finite simplicial complex.

We give another counter-example of a quotient space which is a finite simplicial complex.
Let L =C1 VIV Cy X be the cylinder of L and A the two bases of the cylinder. Inspecting
the local cones one can show that (X, A) has computable type but X/A does not.

4.4 Bing's house, or the house with two rooms

All the known examples of sets having computable type are non-contractible (note that we
are not considering pairs, but single sets), and one might conjecture that no contractible set
has computable type. We give a counter-example, which is a famous space that was defined
as a counter-example for other properties. It was invented by Bing [1] and is now called
Bing’s house, or the house with two rooms. The set is depicted in Figure 5, together with
a half-cut to help visualizing it. It is an example of a space which is contractible but not
intuitively so. It can be endowed with a simplicial complex structure (by triangulating each
flat surface). It is then a 2-dimensional simplicial complex with no free edge, which means
that every edge belongs to at least two triangles.

Using our results we easily show that this set has computable type as a single set,
i.e. without adjoining a boundary to it.

» Theorem 4.9. Bing’s house has computable type.

It is worth noticing that thanks to our results, it can be proved by looking at pictures
only, although the argument can be formalized.
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(a) Bing’s house. (b) Half-cut.

Figure 5 Bing’s house with two rooms and a half-cut of it (the full house is obtained by adding
the symmetric reflection of the half-cut through the front vertical plane). It consists of two rooms,
each of which can be accessed from outside through a tunnel crossing the other room. Each tunnel
is linked by an internal wall to a side wall.

Proof. Using Theorem 3.4, it is sufficient to inspect the possible local cones. One easily sees
that there are three types of possible cones, depicted in Figure 6. The basis of each cone
is a graph which is a union of 1, 2 or 3 cycles, so by Theorem 4.4 each cone pair has the
surjection property, therefore Bing’s house has computable type by Theorem 3.4.

T
1
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CI /’ | ’
[} 7
-1~z T-|— ¢
b //k | //lc
‘ a4 1
1
|
|
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Figure 6 The local cones in Bing’s house: their bases (in black) are graphs that are unions of
cycles. Each point of Bing’s house is the tip of one of these three cones: two points are tips of the
third cone, all the other points on the dashed lines are tips of the second cone, all the other points
are tips of the first cone. <

5 Boundary

Given a simplicial complex X, a natural problem is to understand whether there is a minimal
notion of boundary X such that the pair (X,0X) has computable type. We make a few
observations about three possible candidates. Let
01X be the union of simplices that are contained in ezactly one simplex of the next
dimension, i.e. 01 X is the union of the free simplices of X,
04+ X be the union of simplices that are contained in at least one simplex of the next
dimension,
OodaX be the union of simplices that are contained in an odd number of simplices of the
next dimension.

In the proofs of the next results, we say that a simplex M in X is maximal if it is not
contained in a higher-dimensional simplex of X.

» Proposition 5.1. Every simplicial pair (X,0+X) has computable type.



D. E. Amir and M. Hoyrup

Proof. Let (M;);<n be an enumeration of the maximal simplices of X. M; is a ball, let OM;
be its bounding sphere, which is a subcomplex of M;. One has X =J,.,, M; and 0; X =
U<, ®M;. Each pair (M;, OM;) has the surjection property (Example 3.2), so (X, 9, X) has
the e-surjection property for some e by Theorem 4.1. As a result, (X, 04+X) has computable
type by Theorem 3.4. <

» Proposition 5.2. Let X be a finite simplicial complex and A a subcomplex. If (X, A) has
computable type, then A contains 01X .

Proof. Assume that some simplex A belongs to 9; X but not to A. We show that for
every € > 0, (X, A) does not have the e-surjection property, implying that (X, A) does
not have computable type by Theorem 3.4. Let ¢ > 0. Let A’ be the unique maximal
simplex having A as a face (A’ has one more vertex than A). There is a non-surjective
function f : A’ — A’ which is e-close to the identity and is the identity on the other faces
of A’: f slightly pushes points of A’ away from A. We extend f as the identity on the rest
of X, which gives a continuous function because A is free. As A is not in A, f is the identity
on A. |

The following observations can be made:

Although (X,0;X) has computable type when X is a 1-dimensional complex (i.e., a
graph), it is no more true for 2-dimensional complexes. For the dunce hat D, one
has &; D = () but we saw in Theorem 4.7 that (D, ) does not have computable type.

While (X, 04 X) always has computable type by Proposition 5.1, 91 X is far from optimal.

For instance, it is always non-empty (unless X is a single point), but for any sphere S,,,
the pair (S,,#) already has computable type.

In a subsequent paper we prove that (X, doqaX ) always has computable type, using
homology. Observe that J,qqX is in general not optimal, as the example of graphs
shows: (X,0;X) has computable type and 9; X is usually smaller than 9,49 X, which
contains all the vertices of odd degrees.

6 Open questions and generalization

We leave two open questions.

» Question 1. Is there a canonical notion of boundary 0X for a simplicial complex X, such
that (X,0X) always has computable type, and 0X is minimal in some sense?

» Question 2. For simplicial pairs (L, N), is it possible to characterize the surjection property
for Cone(L, N) in terms of the homology of (L,N)?

We finally mention that the proof of the main result actually applies to more general
spaces. For instance one can prove that if (M,0M) is a compact manifold with boundary,
then Cone(M, OM) has computable type because it satisfies the surjection property, although
it is not always a simplicial complex. These results will appear in a forthcoming article.
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