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—— Abstract

We present an algorithm that constructs a deterministic Biichi automaton in polynomial time from
given sets of positive and negative example words. This learner constructs multiple DFAs using
a polynomial-time active learning algorithm on finite words as black box using an oracle that we
implement based on the given sample of w-words, and combines these DFAs into a single DBA. We
prove that the resulting algorithm can learn a DBA for each DBA-recognizable language in the limit
by providing a characteristic sample for each DBA-recognizable language. We can only guarantee
completeness of our algorithm for the full class of DBAs through characteristic samples that are, in
general, exponential in the size of a minimal DBA for the target language. But we show that for
each fixed k these characteristic samples are of polynomial size for the class of DBAs in which each
subset of pairwise language-equivalent states has size at most k.
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1 Introduction

The problem of constructing finite automata from example words (also referred to as passive
learning of automata) has been investigated since the 1970ies [8, 26, 14], see [17] for a survey.
The task is to develop an algorithm that infers a finite automaton from a given sample
S = (S4,5-) such that all words from the finite set S of positive examples are accepted,
and all words from the finite set S_ are rejected. Such an algorithm can be viewed as a
way of learning an automaton from a given set of examples, and we therefore refer to such
algorithms as learners in the following.

Besides the running time of a learner, it is also of interest for which languages it can
learn a finite automaton. In order to characterize learners that are robust and generalize
from the sample, Gold proposed the notion of “learning in the limit” [13]. Given a class C
of regular languages, a learner is said to learn every language in C in the limit, if for each
language L € C there is a characteristic sample S* that is consistent with L and such that
the learner returns a DFA for L for each sample that is consistent with L and contains all
examples from S”. In this case, we also say that the learner is complete for the class C.

In [14] Gold presents a learner that constructs in polynomial time a DFA for a given
sample and that can learn every regular language in the limit. Moreover, for each regular
language L there is a characteristic sample of size polynomial in the minimal DFA for L.
Such a learner is said to learn every regular language in the limit from polynomial data.
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The key property that is used in most learning algorithms for regular languages is the
characterization of regular languages by the Myhill/Nerode congruence: For a language L,
two words u,v are equivalent if they cannot be distinguished by the language, that is, if
for each word w, either both ww,vw are in L, or both are not in L. It is a basic result
from automata theory that L is regular iff the Myhill/Nerode congruence has finitely many
classes, and that these classes can be used as state set of the minimal DFA for L (see basic
textbooks on automata theory, e.g. [15]). The idea for Gold’s algorithm is to infer the
Myhill/Nerode congruence from the sample S = (S, S_) based on the following idea. Two
words u,v cannot be equivalent for any language that is consistent with S, if there is a
word w such that vw € S iff vw € S_. Roughly speaking, Gold’s algorithm uses such
“obviously distinguishable” words as states for a DFA. If the sample does not contain enough
information, it can happen that the resulting DFA is not consistent with the sample, and
then the algorithm simply defaults to returning a DFA for S;. The algorithm RPNT [21]
avoids this problem by starting from a tree-shaped DFA for Sy, and then trying to merge
states of this DFA in a specific order. If a merge leads to a DFA that is inconsistent with
the sample, then the merge is discarded. Otherwise, the two states are merged, and the
algorithm continues with this smaller DFA. This algorithm runs in polynomial time and
learns every regular language in the limit from polynomial data [21]. Since then, many
variations of such state merging techniques have been proposed and implemented, e.g., in
the framework learnlib [16] and the library flexfringe [27]

While there is a lot of work on construction of DFAs from samples, very little is known
about this problem for automata on infinite words, so called w-automata. These have been
studied since the early 1960s as a tool for solving decision problems in logic [11] (see also [24]),
and are nowadays used in procedures for formal verification and synthesis of reactive systems
(see, e.g., [6, 25, 19] for surveys and recent work). Syntactically, w-automata are very similar
to NFA resp. DFA (standard nondeterministic resp. deterministic finite automata on finite
words), and they also share many closure and algorithmic properties. However, while the
definition of the Myhill/Nerode congruence can easily be lifted to w-languages, it does not give
a characterization of the regular w-languages. In particular, deterministic w-automata may
need several different language equivalent states in order to accept some regular w-languages
(as opposed to DFAs). As a consequence, deterministic w-automata do not share the good
properties of DFAs, e.g., minimization of deterministic Biichi automata is NP-hard [23], and
also the methods for learning DFAs cannot be directly transferred to w-automata. In fact, the
current algorithms for constructing deterministic w-automata from examples are adaptions
of the algorithm of Gold [5] and of RPNI [9], and they are only known to learn w-languages
with informative right congruence (IRC) in the limit. The class IRC [4] consists of those
languages that can be accepted by deterministic w-automata without different language
equivalent states, and thus can be handled by an adaption of the methods from finite words.

In this paper we propose a passive learning algorithm that is complete for the class of
w-languages that can be accepted by deterministic Biichi automata (DBA) (meaning that it
can learn every language form that class in the limit). To the best of our knowledge, this is the
first learning algorithm that is complete for a relevant class of w-languages beyond languages
with TRC. While DBA languages still form a strict subclass of the regular w-languages, each
regular w-language is a finite Boolean combination of DBA languages [24], and therefore the
DBA languages form an important class for understanding learning problems for w-automata.

Our algorithm uses a learning algorithm for DFAs as sub-procedure, but interestingly
an active learning algorithm. Such algorithms have to infer the DFA of a target language
based on queries that are answered by an oracle. Angluin proposed an algorithm that learns
the minimal DFA for a target language L based on membership and equivalence queries
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in polynomial time [1]. A membership query asks for a specific word if it is in the target
language, and the oracle answers “yes” or “no”. An equivalence query asks if a hypothesis
DFA accepts the target language, and the oracle provides a word as counterexample if it does
not. We make use of such an active learning algorithm as black box in order to infer a set of
DFAs that are then used to build the DBA. Roughly, our algorithm works as follows for a
given w-sample S = (S, S_) consisting of ultimately periodic w-words (the use of ultimately
periodic words is standard in learning of w-automata [18, 3, 5, 9]):

Infer a right congruence ~ that is consistent with S. This can be done using the same

methods as for finite words.

For each class of ~ learn a DFA using an active learning algorithm as black box, answering

the queries of this algorithm based on the information in S.

Combine the DFAs into a DBA: Start in the DFA for the initial class of ~. Whenever a

DFA reaches an accepting state, redirect the transition into the initial state of the DFA

for the current class, and make this transition accepting for the Biichi condition.®
This algorithm runs in polynomial time and can learn every DBA language in the limit. The
characteristic sample for a DBA language L that we use for showing the learning in the
limit result can be of size exponential in a smallest DBA for L. But we also show that it is
polynomial if we fix the size of sets of pairwise language equivalent states in the DBAs. This
generalizes known results for learning in the limit from polynomial data for languages with
IRC [5, 9].

Besides the work on passive learning, there are also some papers on active learning of
w-languages from queries. In general, it seems that efficient active learning of deterministic
omega-automata is more difficult than efficient passive learning. This is witnessed by the
fact that a polynomial time active learner (with membership and equivalence queries) yields
an efficient passive learner, and that polytime active learning IRC w-languages is not easier
than polytime active learning general omega-languages (see [9] for both results). For this
reason, the currently known active learning algorithms either learn different representations
for w-languages, as for example families of DFAs in [3], or include syntactic information on
the target automaton in the form of loop index queries [20].

The remainder of the paper is structured as follows. In Section 2 we introduce basic
terminology and definitions used in the paper. Subsequently, in Section 3 we present our
learning algorithm and prove that it is a consistent polynomial time DBA-learner. In Section 4
we prove the completeness result that our algorithm can learn every DBA language in the
limit. In Section 5 we analyze the size of the characteristic samples from the completeness
proofs, and we conclude in Section 6.

2 Preliminaries

For a finite alphabet ¥ we denote by ¥* and X the set of all finite and infinite words over
¥, respectively and define ¥ = ¥* \ {€}, where £ denotes the empty word. A language
is a subset of ¥* and an w-language a subset of 3¥*. We sometimes simply write language
instead of w-language, the meaning should always be clear from the context. We use < to
denote the canonical or length-lexicographic order on finite words over X, in which words
are first ordered by length, and words of same length are ordered lexicographically for some
underlying linear order of the alphabet. For a finite word w and a finite or infinite word v,

! We use Biichi acceptance on transitions, i.e., a run is accepting if it passes infinitely many accepting
transitions.
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we write u C v if ux = v for some x € ¥* or « € X¥, respectively, and call u a prefiz of v.
We use Prf(w) to denote the set of all prefixes of a finite or infinite word w and extend this
notation to a set X of words in the natural way, i.e. Prf(X) =J Prf(w).

We say that (u,v) € ¥* x BF is a representation of w € X% if uv® = w. If an w-word
w has such a representation, we call w ultimately periodic, and we denote the set of all
possible representations ¥* x ¥ with UP. For a finite word u and a (w)-language L, we
define u='L = {w | uw € L}. Note that if L is an w-language, then u~1L is an w-language

weX

as well. For a word w, we use wli, j] to denote the infix of w from position i to position j
and set w(i,j] = ¢ if i > j. We write (u,v) < (v/,v") if u < u' or u =4 and v < v'. For a
set X C UP of representations, we define [X],, = {uv* | (u,v) € X}.

A deterministic transition system (TS) is given as a tuple T = (Q, X, (,d), where @ is
a finite, non-empty set of states, X is the finite alphabet, ¢ € @Q is the initial state and
J:Q x X — Q is the transition function. We use |T| to refer to the size of T, which is the
number of states in ). The run of 7 on some word w = wow; ... € 3* U X¥ is the unique
(possibly infinite) sequence p = run(7T,w) = gowoqrws ... with go = ¢ and ¢;+1 = d(g;, w;)
for i < |w|. For a finite word w, we use T (w) to denote the last state of run(7,w). We define
the infinity set, referred to as inf(p), of a run p = gowpqrw; ..., as the set containing all
pairs (g, a) such that there exist infinitely many positions ¢ with ¢; = ¢ and w; = a. For a
finite run p = qowyp . .. wy,—1¢, and a set X C Q x 3, we use p N X to denote the transitions
of p that are in X, i.e. pNX = {(q;,w;) € X | i <n}.

By equipping T with a set of final states F C ), we obtain a deterministic finite
automaton (DFA) A= (Q,%,t,6, F). The language accepted by A is denoted as L(.A) and
contains all words w € ¥* such that 7 (w) € F. By combining a transition system 7 with
a Biichi condition (on transitions), which is a set § C Q x X, we obtain a deterministic
Biichi automaton (DBA) A= (Q,X%,,9,5). Its accepted language L(A) contains all infinite
words w such that inf(run(7,w)) NG # . When we depict a DBA with acceptance condition
B in a figure, we underline the label a of a transition leaving the state ¢, if (¢,a) € S.
We can use the terminology for transition systems also for automata by simply ignoring
the acceptance component. Similarly, the size of an automaton is equal to the size of the
underlying transition system.

The class of DBA-recognizable languages is a strict subclass of the class of the regular
w-languages, which are defined in terms of nondeterministic Biichi automata. We do not
detail the definition here because it is not relevant for our paper (see [24] for a survey of the
topic). It is well known that two regular w-languages, and hence also two DBA-recognizable
languages, are equal iff they coincide on the ultimately periodic words [11] (see also [12]).

We call a relation ~ C ¥* x ¥* a right congruence if u ~ w implies ua ~ wa for all
a € ¥. For u € ¥* we write [u]., for the set of all v € ¥* with u ~ v, also referred to as the
equivalence class of u. For a language L C ¥* or L C ¥, we define the right congruence of
L, denoted by ~, as u ~p v iff u='L = v~ L.

A right congruence ~ defines the canonical TS 7. = (Q~, %, [¢]~,d~) where Q.. is the
set of classes in ~ and §([u]~,a) = [ua]~. Due to this correspondence, we write ¢ € Q.. to
denote that c is a class of ~. Similarly, we can associate with every TS 7 a congruence
~1 CX* x ¥, where u ~7 v iff T(u) =T (v). Let p, ¢ be states of some automaton A that
accepts the language L, and let ¢ be a class of ~1. By abuse of notation, we use q € ¢ if A
reaches g on some word u € c¢. Further, we write p ~ ¢ if p € ¢ and ¢ € ¢ for some class c.
We use L. for a class ¢ of ~;, to denote the language u~'L for a u € c.
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An w-sample is a pair S = (S;,S5_) with S, S_ C UP and [S_]w N[S_]. = 0. We
refer to words in Sy as positive, while those in S_ are called negative. Since we only use
w-samples in our algorithm, we often simply write sample instead of w-sample. We only
consider finite samples, and the size of S, denoted as | S|, is defined as the sum of all |u| + |v|
for (u,v) € S4 US_. Furthermore, we call a sample S = (S, .S_) consistent with a language
L,if LN[S_], =0 and [S4]w C L. Similarly, an automaton A is called consistent with S if
L(A) is consistent with S. We say that u,v € ¥* are separated by S if there exists a word
w € $¥ such that uw,vw € ([S4]w U[S-]u) and (vw € [Si]w < vw € [S-].). A DFA D
is called prefiz-consistent with the w-sample S = (S, S_) if for all w € [S4]. we have that
Prf(w) N L(D) # () and Prf([S_].) N L(D) = 0.

A right congruence ~ is consistent with S if u o4 v for all u,v € ¥* that are separated
by S. In a partial TS 7T, the transition function ¢ can have undefined values. While the
definition of run also applies to partial TS, it is possible that the run of a partial TS on some
words is undefined. A partial TS T has a conflict with a sample S if there are u,v € X* that
are separated by S but lead to the same state in 7 (which in particular means that the runs
of 7 on u and v must exist). Note that ~ is consistent with S iff the corresponding TS 7.
has no conflict with S.

A passive learner (for DBAs) is a function f that maps w-samples to DBAs. f is called a
polynomial-time learner if f can be computed in polynomial time. A learner f is consistent
if it constructs from each w-sample S = (S4,S_) a DBA A such that S is consistent with
L(A). We say that f can learn every DBA language in the limit if for each DBA language
L there is a characteristic sample ST such that L(f(ST)) = L and f(ST) = f(9) for each
sample S that is consistent with L and contains S* (so f produces the same DBA for L
for all samples containing S¥). For a class C of DBA languages we say that f can learn
every language in C in the limit from polynomial data if the characteristic samples for the

languages in C are of polynomial size (in the smallest DBA for the corresponding language).

We also consider the standard active learning scenario for DFAs, in which the learning
algorithm can obtain information on the target language L by posing membership and
equivalence queries to an oracle [1]. In the following let L be a regular language. An oracle T
for L answers a membership query mem(w) with either “yes” or “no”, depending on whether
the w is in the target language L or not. In an equivalence query equiv(Ag), the active
learner proposes a hypothesis Ag to T'. If Ay accepts precisely the target language L, the
oracle returns “yes”. Otherwise, T" answers “no” and additionally provides the learner with a
word from the symmetric difference of L(Ag) and L, which serves as a counterexample. We
make use of the following result.

» Theorem 1 ([1], Theorem 6). Let L be a regular language and T be an oracle for L. There
exists an active learner AL that returns the minimal DFA Ay, for L. Moreover, the runtime of
AL is polynomial in the size of the minimal DFA and the length of the longest counterexample
provided by T, and the size of all hypotheses used in equivalence queries is polynomial in the
size of Ar.

3 A Learner for DBAs

In this section we introduce DBAInf (for DBA inference), a passive learner for deterministic
Biichi automata, and describe how it constructs a DBA from a finite w-sample. We start
with an informal description of the underlying idea, then provide a formal description of the
learning algorithm, and finally show that DBAInf is a consistent polynomial time learner for
the class of DBAs.
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Figure 1 Illustrations for the high-level description of DBAInf. On the left a DBA A accepting
the words in which the infix aa appears infinitely often. The DFA D on the right is constructed in
an intermediate step of DBAInf from the w-sample given in Example 2.

High-Level Description of the Idea

DFA-learners for languages of finite words are based on the fact that for the minimal DFA of a
regular language, there is a one-to-one correspondence between states and equivalence classes
of the right congruence of the language. DFA-learners basically extract a right congruence
from the sample (consisting of finite words) that is then used for defining the transition
system for the resulting DFA. The central obstacle in passive learning for w-automata is
the lack of such a one-to-one correspondence between states and equivalence classes. For
example, the language L over the alphabet {a,b} consisting of all words in which the infix
aa occurs infinitely often cannot be recognized by a DBA with only one state. However, L
has only one equivalence class, since for all u € ¥* w € ¥“ we have uw € L if and only if
w € L. Thus, given an w-sample that is consistent with L, the extracted right congruence
will only have one class since the w-sample does not separate any words.

We explain the idea underlying DBAInf for languages with only one equivalence class
such as L, that is, if the sample does not separate any two words. The formal description
then also covers the general case.

Basically, DBAInf attempts to identify specific subwords, also referred to as the positive
patterns of L in the following description, that appear infinitely often precisely in words
belonging to L. Consider, for example, the DBA A depicted in Figure 1 on the left, which
accepts L. Regardless of which state A is in, reading the pattern aa makes A use an accepting
transition, which means aa is a positive pattern of L. On the right-hand side of Figure 1
a DFA D that accepts all positive patterns of L is depicted. From D we can now obtain a
DBA for L, which we refer to as DBA(D), by replacing each transition leading into a final
state (state aa in the example) with an accepting transition that leads to the initial state
(state € in the example). In the example in Figure 1, the operation DBA(D) returns a DBA
isomorphic to A.

The core idea of DBAInf is to learn such a DFA for the positive patterns. For this purpose,
given some w-sample S = (54, 5_), DBAInf uses an active learning algorithm AL for DFAs
as black-box, and answers the queries of this algorithm based on S. To ensure that DBA(D)
is consistent with S, we require that the active learning algorithm learns a DFA D that does
not accept any infix of a loop of a negative example, and that for any position in a positive
example an infix starting at this position is accepted. So whenever AL asks an equivalence
query for a hypothesis D, DBAInf checks whether D satisfies this condition and stops if yes.
Otherwise, a positive or negative example is found on which D violates the condition and a
corresponding finite word is returned.

» Example 2. Consider an w-sample S = (S4,S_) with [S4]., = {(aba)*} and [S_], =
{v¥, (ab)*}. Recall that [S;], refers to the w-words, while S, itself is specified by pairs
(u,v) of finite words representing uv”. The precise representation of the ultimately periodic
words in [Sy]. and [S_]. does not play any role. In the first step, DBAInf infers a right
congruence that is consistent with S. Since S does not separate any finite words, this
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Input: An w-sample S = (S.,5_).

Output: The deterministic Biichi automaton A.

1. Extract a right congruence ~ from S by constructing a TS 7.
2. Build a sample S for each ~-class ¢

3. Compute a DFA D, = PrfCons(S5(©)) for each class ¢ of ~

4. Return the DBA A := DBA(T., (D¢)ce~)

Figure 2 An overview of the algorithm DBAInf. The individual steps are explained in the text.

right congruence has only one class ¢ = [¢].. For this class, DBAInf now uses an active
learning algorithm AL for DFAs. In order to answer the queries of AL, DBAInf constructs an
w-sample S(©) with SS_C) = {(e, aad), (¢,aba), (¢,baa)}, representing all the suffixes of [S4 ],
and S = {(g, ), (g, ab), (¢,ba)}, representing all the suffixes of [S_],, starting at a position
in a loop (which is the same in this example as all suffixes of [S_],). The precise execution
of DBAInf now depends on the active learning algorithm AL that is used. We do not detail a
precise active learner here but simply explain how queries would be answered. The queries
that we use in this example correspond to a version of Angluin’s algorithm by Rivest and
Schapire [22], see also [7, Section 19.4].

AL starts by asking membership queries for ¢, a,b, which are all answered negatively
because these are all prefixes of [[S(_C)]}w (and hence infixes of loops of negative examples from
S). Then AL asks an equivalence query for the DFA that rejects all words. Since this DFA
does not accept prefixes of all words in [[SSFC)]}W, DBAInf selects the smallest (u,v) € SSFC)
such that no prefix of uv“ is accepted by the DFA. In this example this is (¢, aab). The
counterexample that is given to AL is the shortest prefix of [(¢, aab)]., = (aab)® that is not a
prefix of [[S@ﬂw, in this case aa. After this counterexample, AL asks a few more membership
queries, namely for ba, aaa, ab, aba, aaaa, aaba which are answered negatively for prefixes of
[[S@]]w (that is, ba, ab, aba), and positively for all other words. With this information, AL
asks an equivalence query for the DFA D shown in Figure 1. Since D accepts a prefix for

each word in [[S’Sf)}]w and rejects all prefixes of words in [[S(f)]]w, the execution of AL ends.

Then DBAInf returns the DBA obtained by the operation DBA(D), which is isomorphic to
A in Figure 1. <

This idea can be generalized to more than one equivalence class by first extracting a
right congruence ~ from S that is consistent with S, and then learning one DFA for each
equivalence class ¢ of ~ with a more refined definition of the samples S(©) that is illustrated
for a single class in Example 2. These DFAs are combined into a DBA by taking the product
of 7. with the union of the D,, and redirecting transitions of the DFAs that lead to an
accepting state into the initial state of the D, for the current class ¢ given by 7.. The details
are given in the formal description of the algorithm.

Formal Description of the Learner

The overall structure of the algorithm DBAInf in shown in Figure 2. The individual steps
are described in more detail below. In the description, S = (S4,S5_) always refers to the
w-sample that is the input for DBAInf. After the description, we illustrate the steps with an
example.

Step 1. The algorithm DBAInf starts by constructing a right congruence ~ that is consistent
with S, represented by a TS T = (Q~, %, [¢]~,d~). For obtaining an algorithm that can
learn every DBA language in the limit, it is important to use a method that can infer the right
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congruence ~, of any DBA language L in the limit. This is possible by slightly modifying
one of the algorithms described in [5, 10], which learn w-automata with an acceptance
condition, while we are only interested in a right congruence in this step. Because of this
different setting, we briefly describe a possible construction for 7. similar to the algorithm
in [10]. The transition system 7. is built incrementally by considering prefixes of positive
examples in [S4 ], that exit the transition system (via an undefined transition). In order to
guarantee termination in polynomial time, only prefixes up the length % - ¢? are considered,
with & = max{|u| | (u,v) € S;+} and £ = max{|v| | (u,v) € S;}. The construction of 7.
proceeds as follows:
Start with only the initial state € € Q. and no transitions. Then repeat:
Pick the smallest © and a in canonical order such that ua is a prefix of a positive
example word, |ua| < k- #2, and §-(u,a) is not yet defined. If no such ua exists, exit
the loop.
If there is v € Q. such that setting d..(u,a) = v does not lead to a conflict of 7 with
S, then define 0. (u,a) = v for the least such v in canonical order. Otherwise, add ua
to Q~ and let 0 (u,a) = ua.
If there remain positive examples in [S4 ], for which the run in 72 is not defined (because
of missing transitions), complete 7., by adding appropriate paths to disjoint loops for all
such elements of [S]..
Finally, add a sink state as target for all remaining undefined transitions.
This construction runs in polynomial time (because of the limit on the length of the considered
ua, and since all tests can be carried out in polynomial time). By construction, 7~ has no
conflict with S, and hence the associated right congruence ~ is consistent with S, as required.
In the following, we identify states in (). with the corresponding equivalence classes of ~.

Step 2. For each equivalence class ¢ € Q.., we define a sample S(¢) = (SSFC)7 S@) based on
the infixes of example words starting in positions ¢ such that 7. (w[1,i — 1]) = ¢. Formally,
we have that SSFC) contains for each zw € [Si], with 7.(z) = ¢ the minimal (u,v) € UP
such that w = uv®. We define 5 to contain for each zw € [S-]. with T_(x) = ¢ the
minimal (e, v) such that w = v* and T_(zv) = ¢, if such a word v exists.

Note that this definition formally ranges over infinitely many x, but for each (u,v) in S
it suffices to consider the prefixes x of length at most |u| + |v||@~| because the run of uv® in
7. has an initial part of length at most u followed by a period of length at most |v||@~].
This observation gives a polynomial bound on the number of elements in S(©) and also on
their size.

Step 3. In the third step, DBAInf constructs for each class ¢ of ~ a DFA D, that is
prefix-consistent with S(¢). This construction is achieved by passing S(®) to the algorithm
PrfCons, which is depicted in Algorithm 1. Given an w-sample R = (R, R_), PrfCons uses a
polynomial-time active learning algorithm AL for DFAs, and answers the queries of AL based
on R. We assume that R_ only contains periodic words, which is satisfied by the samples
S() on which PrfCons is applied.

» Lemma 3. For every w-sample R = (R, R_) with R_ C {e} x 3T, PrfCons terminates
in polynomial time and returns a DFA that is prefiz-consistent with R.

Proof. We first show that all answers given to AL during the execution of PrfCons are
consistent with the language P = ¥* \ Prf([R-].): If a membership query mem(z) is
answered positively, then ¢ Prf([R_].) and hence x € P. Analogously, a negative answer
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Algorithm 1 PrfCons.

Input: An w-sample R = (Ry, R_) with R_ C ({e} x 7).
Output: A DFA D that is prefix-consistent with R.
Simulate an active learning algorithm AL for DFAs that satisfies the properties of

Theorem 1, and answer its queries as follows:
Query mem(z)
if z € Prf(JR-].) then

| answer “no”
else

| answer “yes”
Query equiv(D)
if D is prefiz-consistent with R then

| stop simulation and output D
else if there exists a w € [R4]., with Prf(w) N L(D) = () then
pick the minimal (u,v) € Ry such that uv” N L(D) = )
return shortest © C uv” with « ¢ Prf([R_].) as counterexample
else
let (¢,v) € R_ be minimal such that Prf(v¥) N L(D) # 0

return shortest prefic x of v¥ with x € L(D) as counterezample

to mem(z) implies « € Prf([R-].,), meaning x ¢ P. For an equivalence query equiv(D), we
distinguish the two cases in PrfCons. In the first case, the returned counterexample x is
not accepted by D and is not in Prf([R_].,). So € P and giving = as counterexample
means that it should be accepted. In the other case, the query is answered with a prefix
x € Prf(v¥) N L(D) for some (¢,v) € R_ such that x is accepted by D. So x ¢ P and should
be accepted. Hence, all answers provided to AL are consistent with the language P.

Since a DFA that accepts P is prefix-consistent with R, the execution of AL either
terminates with a DFA for P, or it terminates earlier if a prefix-consistent DFA D is used in
an equivalence query. Therefore, all hypotheses D used by AL are of size polynomial in the
size of a minimal DFA for P (see Theorem 1). It is not hard to verify that P can be accepted
by a DFA whose size is polynomial in |R| using the prefixes of [R_]., as non-accepting states,
and introducing a loop on v for each (e,v) € R_ when reaching a prefix of v* that is not
a prefix of any other word in [R_],. Adding an accepting sink for all missing transitions
results in a DFA for P. (A similar construction is described in more detail in [5] for the
construction of the “table look-up DPA”.)

To conclude that the execution of AL terminates in polynomial time, it remains to
verify that the lengths of the provided counterexamples are indeed polynomial in |R|. The
counterexample for an equivalence query on D is a shortest word that is prefix of an example
from R and is accepted/rejected by D (depending on the case). These words are clearly
polynomial in the size of R and D, and hence polynomial in the size of R. <

Step 4. The constructed DFAs are combined into a DBA by taking the product of 7. with
the union of the D, and redirecting transitions of the DFAs that lead to an accepting state
into the initial state of the D, for the current class ¢ given by T..

Formally, we assume that the state sets of the D, are pairwise disjoint, and define
DBA(7., (Dc)eeq..) = (Q, 2, ¢, 6, 8) as follows:

Q:=Q. X UceQN Qe

t:= ([e]~, ). ) (note that ) is the initial state of Dy )
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I
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I

Figure 3 Illustrations for the execution of DBAInf on the sample S given in Example 4.

For (¢,q) € Q and a € X let ¢ = (g, a) for the unique é € Q. with ¢ € Qs, and let
¢ =6~(c,a). Then
(c,q') ifq ¢Fe
6((c,q),a) =4 e
(d i) ifq € Fp
((¢,q),a) € Bif ¢’ € Fa.

This DBA is returned by the algorithm DBAInf. Note that syntactically, a tuple of
the form (7=, (Dc)ceq..) is the same as a family of DFAs, which are considered for active
learning of w-languages in [3]. The semantics is, however, very different. Families of DFAs
can represent all regular w-languages but turning them into a deterministic w-automaton
for the represented language involves an exponential blow-up, in general [2]. So the way we
use these tuples of DFAs here is not related to these families of DFAs. Before we prove that
DBAInf is a consistent polynomial time DBA-learner, we illustrate it with an example.

» Example 4. As an example for the execution of DBAInf, consider S = (S, 5_) with

[S+]w = {a®, (ba)“, (ca)”,a(bc)?, a(beb)®, a(cbe)®} and
[S-]w = {b¥, ¢, (bc)”, aa(bc)”, ab”, ac’}.

DBAInf first extracts a right congruence ~ consisting of two equivalence classes. The
corresponding transition system 7. is shown in Figure 3 on the left. The words € and a are
separated by S, since a(bc)¥ € Sy and (bc)¥ € S_. The b, c-loops on [¢]. do not introduce
a conflict, as well as the a-transition from [a].. to [¢]~. The b-transition from [a]. cannot
go back to [¢]. because this would introduce a conflict for the words b and ab, which are
separated by S, again because of a(bc)¥ € Sy and (bc)* € S_. Hence, there is a b-loop on
[a]~. Similarly, for the c-transition from [a].. The resulting transition system is complete,
so no further states have to be added.

In the second step, the samples S~ and Sl%~ are computed. The positive components
of these samples are SE]N = {(g,a), (¢, ba), (g, ab), (¢, ca), (¢, ac), (a, be), (a, beb), (a, cbe)} and
Sf]N = {e} x {a, ba, ab, ca, ac, be, cb, beb, bbe, cbb, cbe, bee, ecb}

To illustrate how these samples are constructed, consider (ba)* € S;. It induces the
sequence of classes ([¢]~[e]~]a]~[a]~)¥ in T. and thus contributes (e, ba) and (e, ab) to both
SE]N and S7"~. The example a(bcb) induces the sequence [¢].([a]~ ), and hence contributes
(a,beb) to S~ and {e} x {beb, cbb, bbe} to S~ Similarly, for the other positive examples.

The negative components are S~ = {e} x {b,c,bc, cb} and slal~ = {e} x {b,c}. For
example, aa(bc)¥ induces the class sequence [g].[a]~([e]~)¥. This adds (e, bc) and (g, ¢b) to
S~ and nothing to S~ because the only position with class [a]~ after the first a is not in
the periodic part, and hence there is no v such that av* = aa(bc)®. Similarly, for the other
negative examples.
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Executing PrfCons on these samples gives rise to two DFAs Dy, and D|,), with 2 and 4
states, respectively, which are depicted in the middle of Figure 3. Next to that (on the right)
in Figure 3, the DBA A that is the result of DBA(7<, D] _, Dy, ) is shown. The states of A
are pairs of states of 7. and of the union of D) and D|,)_. Accepting transitions that reset
into Dy, are depicted in orange and those that reset into Dy, are colored teal. On the

very right of Figure 3, a minimal DBA B that accepts the same language as A is depicted.

The states of B are colored according to the class of ~ that they belong to.

Consistency
We now prove that DBAInf always infers a DBA that is consistent with the given w-sample.
» Theorem 5. DBAInf is a consistent polynomial time DBA-learner.

Proof. Let S = (S4,5_) be an w-sample and ~ be a right congruence that is consistent

with S, as constructed by DBAInf in the first step (represented by 7. = (Q~, %, [€]~, ~)).

As in Figure 2, let D, be the DFA constructed from S(® for each class ¢ of ~. Further, let

A = DBA(T., (D.)ceq..) be the DBA returned by DBAInf. The extraction of 7. and the
construction of the samples S(¢) can be done in polynomial time. By Lemma 3 PrfCons runs

in polynomial time for each class ¢ and returns a DFA D, whose size is polynomial in |S].

Hence, the construction of DBA(T., (D;)ccq..) and thus the overall procedure DBAInf can
be completed in polynomial time.

For consistency, first note that in the construction of A, the first component of the states
is always updated according to .. Therefore, for each u € ¥*, the state (¢, ¢) reached by A
after reading w is such that c is the class of u, i.e., 7. reaches ¢ when reading u.

We start by showing that A rejects all words in S_. Let w = wv® for a (u,v) € S_.

As w is ultimately periodic, we can write the run of A on w as pr*. Pick a position

i > max{|ul, |p|} such that A uses an accepting transition when reaching position i in w.

If no such position exists, then A uses only finitely many accepting transitions and hence
rejects w. It is easily verified that if such a position ¢ exists, we can write uv* = xy* and
pm® = p(7)¥ such that |z| = |p| =4 and |y| = |#|. Let ¢ be the class reached after reading
x, meaning 7. (x) = c and A is in state (¢, t.) after reading . This means 7 starts and
ends in (¢, ¢.) and thus §.(c,y) = ¢. Since xy* = wv® € [S_],,, we have (g,y) € 5') by the
definition of S(®). Because the DFA D, is prefix-consistent with S(¢) by Lemma 3, it does
not accept any prefix of y*. Thus, D, will never reach a final state when reading the suffix
of w starting at position i. By definition this means 4 uses no accepting transitions after
position ¢ in w, and hence rejects w.

Now let us show that A accepts all words in Sy. Let w = wv* € [S,]. and let p be the

w

run of A on w. Let i be a position such that p is in a state of the form (¢, ¢.) at position i.

Then A uses an accepting transition after position i: If p is in state (c,t.) at position 4, this
means that also 7. (w[1,7 — 1]) = ¢, and we can find words v € ¥*,w’ € £* such that |u| =
and w = vw’. By definition of S’Sf), we have that w' € [[S’Sf)]]w. Since D, is prefix-consistent
with S(¢)| there exists a prefix  C w’ that is accepted by D.. Hence, A uses an accepting
transition on the prefix x of w’. From that we can conclude that p uses infinitely many
accepting transitions since p starts in ([¢]~,¢[s].) and each accepting transition ends in a
state of the form (c,¢.) for a class ¢ of ~. <

4 Completeness of the Learning Algorithm

In this section we establish that the class of DBA languages can be learned in the limit
by DBAInf. For obtaining this completeness result, we show how to construct a sample S*
for a DBA language L such that DBAInf constructs a DBA for L from each sample S that
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contains S” and is consistent with L. We separate the construction of S* in two parts. The
first part ensures that DBAInf infers the right congruence ~, in the first step. The second
part ensures that, based on the correct right congruence ~, a DBA for L is constructed. We
keep the first part short as the idea for this is the same as for RPNI on finite words [21] and
the passive learner for w-automata from [9]. Roughly, the sample has to cover all transitions
and states of 7., and provide examples that separate all different states. This has to be
done in a specific way using minimal words reaching the states and transitions of 7., .

» Lemma 6. For every DBA language L there exists an w-sample S™L such that |S™E| is
polynomial in the size of L and DBAInf extracts ~j, from every sample that is consistent
with L and contains S™F.

The remainder of this section is about the second part of the construction of S¥: DBAInf
returns a DBA that consists of smaller DFAs D, for each class ¢ of the extracted congruence
~. We want to ensure that these DFAs satisfy certain conditions that are captured in the
definition of “safe” below.

» Definition 7. Let L be a DBA language and
K(L)={ue Xt | forally € ¥ if (uy) 'L = L then (uy)“ € L}.

We call a DFA D safe for L, if
1. for each word w € L, D accepts some prefix of w, and

2. L(D) C K(L).

Our goal is to build the sample S in such a way that the samples S(©) constructed in
the second step of DBAInf ensure that AL learns a DFA that is safe for L. according to
Definition 7 above. Then Lemma 10 further below shows that the DBA returned by DBAInf
accepts L. For this purpose, we consider for each class ¢ an execution of AL in which the
answers given to the queries of AL are consistent with /C(L.). The answers used in this run
of AL are used to define the part of the sample that ensures that PrfCons(S(%)) returns a
DFA that is safe for L. (see Algorithm 2, Lemma 11, and Lemma 12). In order to ensure
that the execution of AL terminates, we need to show that K(L.) is regular, which we do
first in Lemma 8 and Lemma 9. For this we assume that A = (Q, X, ¢, 6, 3) is some DBA
that accepts L. Let

Ky(A) ={ue x| forallve X*: if ¢ =5 g then run(A,uv) N B # 0}

be the set of all words u, that do not lie on a rejecting loop starting in the state gq. As
an example consider the DBA B on the right of Figure 3. We have K4 (B) = Y*aX*,
Kq (B) = X*(a + b)X*, and Ky, (B) = X*(a + ¢)X*. In general, a DFA for K,(A) can be
constructed by using A with initial state ¢, and one new accepting sink state to which all
accepting transitions of A are redirected, and all transitions from states p such that each
path from p to ¢ contains an accepting transition.

» Lemma 8. For every DBA A and each state q € Q, the language ICy(A) is regular and
can be recognized by a DFA of size at most |A| + 1.

Proof. To construct a DFA that recognizes ICy(A), we first extract the transition system 7
underlying A. Then we remove from T all transitions which are accepting in 4. Subsequently,
we build the set G consisting of all transitions ¢ — p such that p and ¢ lie in different SCCs
of 7. This allows us to finally define the DFA B = (QU{T},X,¢,0,{T}) with

{p if (4 p) ¢ (BUG)

¥ (q,a) =
(4:a) T otherwise.
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It is easily verified that the size of B is indeed linear in |Q| as only one state is added. Further,
we can show that B accepts K, (A) by considering both directions of the mutual inclusion:
Let w € L(B), then the run of B on w must end in the only final state, T. This state can
clearly only be reached if a transition 7 € beta U G is used. If 7 € 3, then A must use
the accepting transition 7 on w and hence any extension of w leading back to ¢ is also
guaranteed to use an accepting transition. Otherwise, 7 € G and thus from ¢ the word
w reaches a state p € T, which lies in a different SCC. This either happens if p and ¢
lie in different SCCs in A or if all paths leading from p to ¢ use at least one accepting
transition in G. Clearly in both cases we have w € IC;(A).
On any word w € Cy(A), the DBA A reaches from ¢ some state p such that either p is in
a different SCC or every path returning to ¢ uses an accepting transition. In the former
case the two states also lie in different SCCs and hence there exists some transition 7
connecting the SCCs. By construction, however, we know that 7 € G and hence it is
redirected to the final state T in B. On the other hand if both states lie in the same SCC,
then removing all accepting transitions guarantees that ¢ can no longer be reached from
p, as every path uses an accepting transition. Thus, p and ¢ are in different SCCs in T
and thus by an analogous argument, B accepts w. <
We can now express K(L.) as intersection of the languages /IC;(A) for states ¢ in class ¢. As
example, consider again the DBA B on the right of Figure 3. The states ¢; and ¢ belong
to the class [a]~. The intersection kg, (B) N Ky, (B) consists of all words that contain a or
contain both b and c. This is the language K(L(B)(4)..)-

> Lemma 9. Let A be a DBA, L = L(A) and ¢ be a class of ~.. Then K(Lc) = . Kq(A),
and in particular K(L.) is regular.

Proof. For the first inclusion of the equality, let u € K(L.). Assume to the contrary that
there is some ¢ € ¢ with u ¢ K ;(A). Then there is v € £* such that in A we have ¢ % ¢
without using an accepting transition. Note that ¢ € ¢ implies that A with initial state ¢
accepts L.. But then (uv)™'L. = L. and (uv)® ¢ L., which is a contradiction to u € K(L,).

For the inclusion from right to left, let u € K;(A) for all states ¢ with ¢ € ¢. Consider
an arbitrary v € ¥* with (uv) 'L, = L.. We need to show that (uv)* € L. because then
u € K(L.). We pick some state ¢g € ¢ and consider the run p = ¢ D e L of
A on (uv)® from go. For all i, we have ¢; € ¢ since (uv)~!L. = L.. There is some state ¢
such that the set of indices I = {i € N | ¢ = ¢;} is infinite. But then for any ¢,;5 € I with
i < j there must be an accepting transition between ¢; and ¢; in p by definition of I, (.A),
and hence (uwv)¥ € K (L).

Regularity of (L) follows as it is a finite intersection of languages that are regular by
Lemma 8. <

In the following Lemma, we show that if each constructed DFA D, for a class c satisfies
the conditions of Definition 7 with respect to the language L., then the resulting DBA
accepts precisely L.

» Lemma 10. Let L C 3 be a DBA-recognizable language, and for each ¢ € Q~., let D, be
a DFA that is safe for L.. Then DBA(T.,,(Dc)ceq., ) accepts L.

Proof. In the following let A = DBA(7~,, (Dc)ceq.., ). For the first inclusion consider a
word w € L. The run of A on w begins in (co, t¢, ), where ¢y = [¢]~, and ¢, refers to the
initial state of D.,. As w € L, we clearly also have that w € L, which by the first condition

in the definition of “safe” (Definition 7) implies that vy € L(D,,) for some prefix vg of w.

Thus, on the prefix vy, A uses an accepting transition and reaches some state (c1, t¢, ) for
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c¢1 =T~,(v9). Now let wy be the infinite word such that w = vow;. Since 7., reaches ¢;
on vg, we have that w; € L., and thus by the first condition there exists a prefix vy C w;
such that v; € L(D,,). Thus, the run of A from (c1,t.,) on v1 uses an accepting transition
and reaches the state (cg, tc,) for some class co with 72, (vgv1) = ca. Repeated application

of this argument yields a factorization w = vgvy ... and an infinite sequence (¢;);ey with
co = [€]l~,, such that c;41 = 0%, (¢;,v;) and v; € L(De,) for all i € N. The run p of A on
w = vouy ... can similarly be factorized into p = pgp1 ..., such that p; begins in (¢;, ¢(,) and

ends in (¢it1,te,,, ). Additionally, each of these factors p; uses an accepting transition. This
means that the run of A on w uses infinitely many accepting transitions and thus w € L(.A).
For the other inclusion, let w € L(.A) and p be the run of A on w. Since p uses infinitely

many accepting transitions, there exists a factorization w = vovy ... and a sequence (¢;);en
with co = [¢]~, such that (co, te,) —= (c1,te,) — ... in A and on each v; the last transition

is accepting and all the other transitions are non-accepting. By construction of A, each
v; is accepted by the DFA D,., and hence by the second condition of “safe” (Definition 7)
also v; € K(L.). Consider now any DBA B that accepts L. By Lemma 9 we know that
K(Le) = Nye. Kq(B) for all classes ¢ € Q.. Let m be the unique run of B on w = vgvs ...,

then 7 can be written as tp = ¢y — ¢1 — ---. As B has a finite number of states, we
know that there exists an infinite set I of indices such that ¢; = ¢; for all 4,j € I. Note
that because B accepts L, we have ¢; € ¢; for all i € N. But then since v; € K., (L) and
Ke, (L) C Ky, (B) (by Lemma 9) for all ¢ € I, between any two visits to a state ¢; with ¢ € I,
B uses an accepting transition. As [ is an infinite set, this guarantees that the run of B on
w uses infinitely many accepting transitions and hence w € L(B) = L. |

In the following, we describe how a sample can be constructed to guarantee that PrfCons
yields a DFA that is safe for some DBA language L. For this we use a specific execution of
the active learning algorithm AL, shown in Algorithm 2. We refer to this specific execution
as the L-run of AL and denote the sample that it produces with SA%L. We present the L-run

SALL and

in form of an algorithm, but we are only interested in the definition of the sample
not its computation. Therefore, we do not go into further detail regarding the computation
of each individual operation. Note that the L-run of AL is defined along the same lines as
the algorithm PrfCons shown in Algorithm 1, but now the queries are answered based on the
language L and not based on a sample. The w-words added to the sample SA-L ensure that
PrfCons will give the same answers to the queries of AL for any sample that includes SA-L

and is consistent with L.

» Lemma 11. For a DBA-recognizable language L, the size of SAST is polynomial in the
size of a minimal DFA for K(L). Furthermore, the DFA D returned by the L-run of AL is
safe for L.

Proof. We first explain why all the answers of the L-run to the queries of AL are consistent
with K(L). For the membership queries this is obvious from the definition of /C(L). For
equivalence queries, consider the first case. The word z that is given as counterexample
satisfies the definition of (L) and is not accepted by the current hypothesis D, so giving
this counterexample is consistent with /C(L). Let us argue that such a word = always exists.
Let A = (Q,%,,9,5) be a DBA with L(A) = L. Since uwv* € L, it is accepted from all
states that are equivalent to the initial state. So there is a prefix z C uv® such that for every
q that is equivalent to ¢, the run from ¢ on uv* uses an accepting transition on the prefix
z. Now assume that y is such that (zy) 'L = L. Then the run of A on (zy)* is accepting
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Algorithm 2 Definition of S*-% by a specific execution of AL, called L-run of AL.

Input: A DBA accepting L C ¥¥.
Output: The w-sample SAHL = (S_/T_L’L, SéL’L) and the DFA D
SEEE 0,8 g
Simulate an active learning algorithm AL that satisfies the properties of Theorem 1,
and answer its queries as follows:
Query mem(x)
if (zy)“ ¢ L for some y € ¥* with (vy) 'L = L then
‘ SALE AL (e, xy)} for the shortest such y and answer “no”
else
| answer “yes”
Query equiv(D)
if there exists a word w € L with Prf(w) N L(D) = () then
pick the minimal (u,v) such that uv” € L and Prf(uv®) N L(D) =0
ST S U { ()
choose minimal x C uv* with (zy) 'L = L = (2y)* € L for all y € ©*
forall ' C z with ¥’ # x do
choose the minimal y’ such that (z'y’)* ¢ L and (2'y')"'L =L
SﬁL’L - SéL’L U {(s,x’y’)}
return x as counterezample
else if there is some v € X1 with v* ¢ Lo~ L = L and Prf(v*)N L(D) # () then
pick v to be the minimal word with this property
AL SARE U {(e,0)}
return minimal © C v* such that x € L(D) as counterexample
else

terminate the execution of AL and output SAHY, D

because it uses an accepting transition on each z-segment. Hence, z is in (L) and there
exists a minimal prefix x of uv* with this property that can be given as counterexample. In
the second case of an equivalence query, the selected = C v* is accepted by D, but it is not
in K(L) because there is a y such that zy = v* for some k.

Thus, all answers to AL are consistent with (L), and therefore all hypothesis DFAs
D are of polynomial size in Ay (r) (since AL satisfies the conditions of Theorem 1). From
that one can derive that the counterexamples given to AL, and also the examples added to
SALL for equivalence queries are of polynomial size in Ak (). Hence, the computation time
taken by AL is also polynomial in Az, and the size of the words in membership queries is
polynomial in Ay (). This implies that also the size of the examples added to SALL for the
answers of membership queries is polynomial in Ak ().

It remains to show that the DFA D computed by the L-run of AL is safe for L (see
Definition 7). The first case of an equivalence query guarantees that for each w € L, some
prefix x C w is accepted by D. To verify that the second condition of Definition 7 is satisfied,
let u € L(D). If u ¢ K(L), then there exists a word y € ¥* such that (uy)™'L = L and
(uy)¥ ¢ L. This means that the second case of the equivalence query matches with v = uy,
and hence the simulation of D will not stop as long as D accepts a word outside K(L). <«
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For a DBA-recognizable language L, we now define the sample

St =85~ u( U re - SALe) for the smallest r. € £* such that 7., (r.) = ¢
cEQ~

where the union and concatenation operation on samples is done component wise, and
“smallest” refers to the length-lexicographic ordering. The next lemma establishes that each
DFA D, for a class ¢ that DBAInf constructs from a consistent sample containing S* is safe
for L.

» Lemma 12. Let L be a DBA language with right congruence ~. If S = (S4,5_) is
consistent with L and contains S, then for each class c, PrfCons(S(c)) returns a DFA D,
that is safe for L..

Proof. Since S is consistent with L, we know that [[S(f)]]w C L. and [[S@ﬂw NL.=0. We
show that PrfCons(S(®)) gives the same answers to AL as the L.-run.
For a membership query mem(x):
If “no” is answered during the L.-run of AL, then there exists some (e, zy) € GALLe
with (zy)* ¢ L. and (zy)"'L. = L.. By definition, we have r.(zy)* € [SL]. for
some 7, € ¥* with 7.(r.) = ¢. Because (zy) 'L, = L., it further holds that also
T (rexy) = c. This means (xy)* € [[S(_C)]]w and thus PrfCons(S(?)) also answers “no”.
If the L.-run of AL answers “yes”, then (zy)¥ € L. for all y € ¥* with (zy) ' L. = L.
But then z cannot be a prefix of [[S(_C )]]w because S\ contains only periodic words
and [$“], N L. = 0.
Consider an equivalence query equiv(D):
Whenever the L.-run goes to the first case, the minimal (u,v) with uwv* € L. and
Prf(uv?) N L(D) = P is in SﬁL’L“‘. By definition, this means (r.u,v) € S& C S, and
thus PrfCons(S(¢)) also goes to the first case. Note that there cannot be a (@, 9) € SSf)
with Prf(49*) N L(D) = 0 and (4,9) < (u,v), as otherwise (@, 9) would have been
selected by the L.-run. Further, PrfCons(S(®)) picks the same prefix o C uv®: For all
strict prefixes 2’ C x, we have (re,z'y’) € S™* for the minimal y/ € X* such that
(z'y')"'L. = L. and some r, € ¥* with 7.(r.) = c¢. But then 2’ € Prf([[S(f)]]w) and
thus PrfCons(S(®)) cannot return 2’ as a counterexample.
If the L.-run goes to the second case, then D accepts a prefix of all words in L. and
hence for each w € [[Sf)]]w we have Prf(w) N L(D) # (. Thus, PrfCons(S()) also goes
to the second case. By construction, we have that (¢,v) € AL for the minimal
v with v* ¢ L.,v"'L. = L. and Prf(v¥) N L(D) # 0. Thus, (r.,v) € SL C S_,
which guarantees that (e,v) € 5). There can be no (e,0) € $') with & < v and
Prf(6“) N L(D) # 0, since (¢,9) € S implies ©* ¢ L. and 9~'L. = L., which
would contradict the minimality of v. Therefore, PrfCons(S(®)) returns the same
counterexamples as the L.-run.
So PrfCons(S(®)) computes the same DFA as the L.-run and therefore this DFA is safe for
L. by Lemma 11. |

By combining the previous results, we are now able to establish that DBAInf can learn
all DBA-recognizable languages in the limit.

» Theorem 13. DBAInf is a polynomial-time DBA-learner that learns every DBA-recognizable
language in the limit.
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Proof. Let L be a DBA-recognizable language and S = (S;,S_) be a sample that is
consistent with L and contains S¥. Polynomial runtime of DBAInf was already established
in Theorem 5, so it remains to show that DBAInf constructs a DBA for L from the sample
S. By Lemma 6, we know that DBAInf extracts ~y from S. In the third step, DBAInf
constructs a DFA D, from S(¢) for each ~p-class c. It is guaranteed by Lemma 12 that each
D, is safe for L. Thus, we can conclude from Lemma 10 that L(DBA(7~,, (D¢)ceq..,)) = L
and hence DBAInf returns a DBA which accepts precisely L. <

5 Sample Size

As stated in Theorem 13, DBAInf can learn every DBA language in the limit, i.e., for each
DBA language L there is a characteristic w-sample S¥ such that DBAInf constructs a DBA
for L when executed on an w-sample S that is consistent with L and contains S”. In this
section, we analyze the size of this sample in terms of the size of L, which is the size of a
smallest DBA for L. The characteristic sample S” that is constructed in Section 4 consists
of the following components:

The sample S~ whose size is polynomial in the size of L, see Lemma 6.

The samples SA-%< (prefixed by a word r.) that ensure that the DFAs D, satisfy the

properties of Lemma 10. The size of these samples is polynomial in the size of a minimal

DFA for K(L.) according to Lemma 11.

This raises the question on the size of the minimal DFA for IC(L.) compared to the size of L.

It turns out that this size can be exponential in the size of L.

» Proposition 14.

1. Let L be recognizable by a DBA A with n states, and let ¢ be a class of ~. The number
of states of the minimal DFA for K(L.) is in O((n+ 1)¥) where k is the number of states
of A that are in class c.

2. There is a family (L(k))kzl of DBA languages such that ~px) has only one class, Ly
can be accepted by a DBA with k states, and the minimal DFA for IK(L™¥) has 2% many
states for each k > 1.

Proof (sketch). The first claim directly follows from K(L.) =, Kq(A) (see Lemma 9)
and Lemma 8. For the second claim, let ¥y = {1,...,k} for k¥ > 0, and define the language
L% C ¢ as the set of all w-words that contain infinitely many occurrences of each symbol
from Y. Since membership in L) does not depend on any finite prefix, each ~ Lk has only
one class. Each L) can be accepted by a DBA A®) with k states that repeatedly verifies
the occurrence of each symbol from ¥, in ascending order. The language KC(L(*)) consists of
all v that contain all letters from X;. It is not difficult to check that the minimal DFA for
KC(L*)) has 2F states. <

This means that the size of the characteristic sample for L that we construct in our
completeness proof can be of size exponential in the size of L. But if we fix the number of
states in each equivalence class, then we obtain a class of DBA languages that can be learned
in the limit from polynomial data by DBAInf. For this purpose, we say that a DBA language
L has a k-informative right congruence if it can be accepted by a DBA with at most k
different states per ~p, equivalence class. By k-IRC(DBA) we denote the corresponding class
of languages. The DBA languages with informative right congruence from [4] correspond
to the class 1-IRC(DBA). As a direct consequence of Proposition 14 and the fact that the
characteristic sample for L is polynomial in the size of L and (L), we obtain:

» Theorem 15. For every fized k, DBAInf can learn every language in k-IRC(DBA) in the
limit from polynomial data (the degree of the polynomial depends on k).
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The existing polynomial time learners for deterministic w-automata used with a Biichi
condition are known to learn every language in 1-IRC(DBA) from polynomial data [5, 9].
The algorithm in [5] cannot learn any DBA language outside of 1-TRC(DBA), and while the
algorithm in [9] can learn DBA languages outside 1-IRC(DBA), there are very simple DBA
languages that it cannot learn.

For understanding the worst-case exponential size of the characteristic sample for L, we
take a closer look at the operation DBA(7-, (D;)cecq..) that is used for constructing the DBA
A from the DFAs (D;)qcq.. computed in Step 3. (see Figure 2). Lemma 10 asserts that
A accepts L if each D, is safe for L. (see Definition 7). In the completeness proof we use
DFAs D, for the languages K(L.), which are safe of L. but can be of exponential size in A
as shown in Proposition 14. This raises the question whether DFAs that are safe for L. need
to be, in general, of exponential size. We show that this is not the case, formally stated in
Lemma 17 further below. For the proof of Lemma 17 we use the following lemma.

» Lemma 16. Let A be a DBA with n states and w € ¥* be word. If A uses n?+1 accepting
transitions on the run on w starting in a state q, then A uses at least one accepting transition
on its run on w from each state p with p ~p4) g

Proof (sketch). If this is not the case, one can find two language equivalent states p, g and
a word u € ¥* such that u loops on p without an accepting transition, and u loops on ¢ with
an accepting transition in the loop, contradicting the language equivalence of p and q. <«

» Lemma 17. Let A be a DBA with n states, L = L(A) and ~ be the right congruence of L.
For each class ¢ of ~ there is a DFA D, of size polynomial in |A| such that D, is safe for
L., and thus DBA(T<, (D.)ceq..) accepts L.

Proof (sketch). For a class ¢ of ~ pick a state ¢, € ¢ as initial state of D., and simulate
A while incrementing a counter each time A uses an accepting transition. If this counter
exceeds n? + 1, then go to an accepting sink. From Lemma 16 and Lemma 9 it follows that
D, is safe for L. <

This shows that the way how we compose a DBA from DFAs can, in principle, produce
polynomial size DBAs for each DBA language L. So the reason for the exponential size of
the characteristic sample of L in the completeness proof is not enforced by the operation
that is used to build the DBA from the DFAs, but is rather coming from the way how we
extract information from that sample to obtain the DFAs.

6 Conclusion

We have presented a passive learning algorithm DBAInf for DBAs that constructs a consistent
DBA in polynomial time for a given w-sample, and can learn every DBA language in the
limit. Previously, the only known class of w-languages learnable in the limit was the class of
languages with informative right congruence [5, 9], whose definition eliminates one of the
most difficult properties of w-automata, namely that deterministic w-automata often need
several language equivalent states for accepting a language. While the characteristic samples
for DBAInf that are used in the completeness proof are of exponential size in the worst-case,
we obtain learnability in the limit from polynomial data for the class of DBAs that have no
more than k states that are all pairwise language equivalent, for each fixed k. This includes
the class of DBA languages with informative right congruence for k£ = 1.



L. Bohn and C. Loding

Our algorithm uses an active learning algorithm for DFAs as black-box. Our first attempts

to build a DBA learner, following the same basic idea but using a passive learner for DFAs
instead of an active one, failed. The reason for this seems to be that one carefully needs to

select the information from the w-sample that used for building the DFAs, in order to obtain

a robust DBA learner with the learning in the limit property. An active learning algorithm

selects this information with its queries. In future work we plan to investigate whether these

ideas can be extended to deal with all regular w-languages by learning deterministic parity

automata. It is also an open question whether our approach can be improved in order to

obtain learnability in the limit from polynomial data for all DBA languages.
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