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Abstract
Reachability, distance, and matching are some of the most fundamental graph problems that have
been of particular interest in dynamic complexity theory in recent years [8, 13, 11]. Reachability can
be maintained with first-order update formulas, or equivalently in DynFO in general graphs with
n nodes [8], even under O( log n

log log n
) changes per step [13]. In the context of how large the number

of changes can be handled, it has recently been shown [11] that under a polylogarithmic number
of changes, reachability is in DynFO[⊕](≤, +, ×) in planar, bounded treewidth, and related graph
classes – in fact in any graph where small non-zero circulation weights can be computed in NC.

We continue this line of investigation and extend the meta-theorem for reachability to distance
and bipartite maximum matching with the same bounds. These are amongst the most general classes
of graphs known where we can maintain these problems deterministically without using a majority
quantifier and even maintain witnesses. For the bipartite matching result, modifying the approach
from [15], we convert the static non-zero circulation weights to dynamic matching-isolating weights.

While reachability is in DynFO(≤, +, ×) under O( log n
log log n

) changes, no such bound is known for
either distance or matching in any non-trivial class of graphs under non-constant changes. We show
that, in the same classes of graphs as before, bipartite maximum matching is in DynFO(≤, +, ×)
under O( log n

log log n
) changes per step. En route to showing this we prove that the rank of a matrix

can be maintained in DynFO(≤, +, ×), also under O( log n
log log n

) entry changes, improving upon the
previous O(1) bound [8]. This implies a similar extension for the non-uniform DynFO bound for
maximum matching in general graphs and an alternate algorithm for maintaining reachability under
O( log n

log log n
) changes [13].
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1 Introduction

In traditional complexity theory it is assumed that the given input remains fixed throughout
the computation. However in real-life scenarios, many situations involve an evolving input
where parts of the data change frequently. Recomputing everything from scratch for these
large datasets after every change is not an efficient option. Therefore, the goal is to
dynamically maintain some auxiliary data structure to help us recompute the results quickly.

The dynamic complexity framework of Patnaik and Immerman [28] is one such approach
that has its roots in descriptive complexity [23] and is closely related to the setting of Dong,
Su, and Topor [14]. Here we would like to make the updates and queries by first-order logic
formulas. For example, by maintaining some auxiliary relations, the reachability relation
can be updated after every single edge modification in FO [8] i.e., the reachability query is
contained in the dynamic complexity class DynFO [28]. The motivation to use first-order
logic as the update method has connections to other areas. From the circuit complexity
perspective, this implies that such queries are highly parallelizable, i.e., can be updated by
polynomial-size circuits in constant-time due to the correspondence between FO and uniform
AC0 circuits [2]. From the perspective of database theory, such a program can be translated
into equivalent SQL queries.

The area has seen renewed interest in proving further upper bounds results, partly
after the resolution of the long-standing conjecture [28] that reachability is in DynFO under
single edge modifications [8]. A natural direction to extend this result is to see which other
fundamental graph problems also admit such efficient dynamic programs. The closely related
problems of maintaining distance and matching are two such examples, though a DynFO
bound for these problems in general graphs has been elusive so far. The best known bound
for distance is DynTC0 [20] and non-uniform DynAC0[⊕] [5]. Here, the updates are computed
in FO formulas with majority quantifiers (uniform TC0 circuits) and non-uniform FO formulas
with parity quantifiers (AC0[⊕] circuits), respectively. For matching, we have a non-uniform
DynFO bound for maintaining the size of the maximum matching [8]. The only non-trivial
class of graphs where both these problems are in DynFO is bounded treewidth graphs [12].

At the same time progress has been made to understand how large a modification to
the input can be handled by similar dynamic programs. It is of particular interest since, in
applications, changes to a graph often come as a bulk set of edges. It was shown that reach-
ability can be maintained in DynFO(≤, +, ×) under changes of size O(log n/ log log n) [13] in
graphs with n nodes. Here, the class DynFO(≤, +, ×) extends DynFO by access to built-in
arithmetic, which is more natural for bulk changes. To handle larger changes, it is known
that even for reachability, changes of size larger than polylogarithmic cannot be handled in
DynFO [11]. And for changes of polylogarithmic size, the previous techniques seem to require
extending DynFO by majority quantifiers [13]. Under bulk changes of polylog(n) size, we
can even maintain distance and the size of a maximum matching in the uniform and the
non-uniform version of DynFO[MAJ](≤, +, ×), respectively [13, 26].
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Making further progress in this direction, recently it has been shown in [11] that reach-
ability is in DynFO[⊕](≤, +, ×) (i.e., update formulas may use parity quantifiers) under
polylog(n) changes in the class of graphs where polynomially bounded non-zero circulation
weights can be computed statically in the parallel complexity class NC. A weight function
for the edges of a graph has non-zero circulation if the (alternate) sum of the weights of
the edges of every directed cycle is non-zero (see Section 2 for more details). Planar [29],
bounded genus [10], bounded treewidth [11], single crossing minor-free [4] are some of the
well-studied graph classes for which non-zero circulation weights can be computed in NC.

In this work, we first extend this result to prove similar meta-theorems for maintaining
distance (including a shortest path witness) and the search version of minimum weight
bipartite maximum matching (MinWtBMMSearch) in the same classes of graphs.

▶ Theorem 1. Distance and MinWtBMMSearch are in DynFO[⊕](≤, +, ×) under polylog(n)
edge changes on classes of graphs where non-zero circulation weights can be computed in NC.

Note that these are the only classes of graphs known where we can maintain both these
problems deterministically without using a majority quantifier and even maintain a witness
to the solution (in other words, maintain a solution to the search problem).

While reachability can be maintained in DynFO(≤, +, ×) under bulk changes in general
graphs, no such bound is known for either distance or matching in any non-trivial class of
graphs under a non-constant number of changes. Since maintaining the size of maximum
matching reduces to maintaining the rank of a matrix via bounded expansion first-order
truth-table (bfo-tt) reduction [8], the following gives a non-uniform DynFO(≤, +, ×) bound
for maintaining the size of maximum matching in general graphs to O( log n

log log n ) changes.

▶ Theorem 2. Rank of a matrix from Zn×n
p is in DynFO(≤, +, ×) under O( log n

log log n ) entry
changes.

Earlier it was known that the rank of a matrix with small integer entries can be maintained
in DynFO under changes that affect a single entry [8]. As reachability reduces to matrix
rank via bfo-reduction [8], Theorem 2 also gives an alternative algorithm for maintaining
reachability in DynFO(≤, +, ×) under O( log n

log log n ) changes. This is interesting in its own right
as it generalizes the rank-method for maintaining reachability [8] even under bulk changes
without going via the Sherman-Morrison-Woodbury identity [13].

Finally, building on Theorem 2, we show another meta theorem for maintaining the size
of a maximum matching in bipartite graphs (BMMSize) in DynFO(≤, +, ×) under slightly
sublogarithmic bulk changes, in the same class of graphs as in Theorem 1. Previously, no
DynFO(≤, +, ×) bound was known even in planar graphs under single edge changes.

▶ Theorem 3. BMMSize is in DynFO(≤, +, ×) under O( log n
log log n ) edge changes on classes of

graphs for which non-zero circulation weights can be computed in NC.

Main Technical Contributions. There are two major technical contributions of this work:
Converting the statically computed non-zero circulation weights for bipartite matchings to
dynamically isolating weights for bipartite matchings. Our main approach (described in
detail in Section 3) is to assign polynomially bounded isolating weights to the edges of
an evolving graph so that the minimum weight solution under these weights is unique.
While static non-zero circulation weights guarantee this under deletions, for insertions,
the dynamization is based on the seminal work of [15]. They construct isolating weights
for perfect matching for arbitrary bipartite graphs, but which are quasipolynomially

ICALP 2022
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Table 1 Previously known and new results in graphs with non-zero circulation weights in NC.

Problem #changes
O(1) O( log n

log log n
) logO(1) n

Reach DynFO [8] DynFO [13] DynFO[⊕] [11]
Distance DynFO[⊕] DynFO[⊕] DynFO[⊕]

BMMSize DynFO DynFO DynFO[⊕]

BMMSearch DynFO[⊕] DynFO[⊕] DynFO[⊕]

large in the size of the graphs. By assigning such weights only to the changed part
of the graph and carefully combining with the previously assigned weights, we make
sure the edge weights remain small as well as isolating throughout, using the Muddling
Lemma (see Section 2). Our construction parallels that of [11] where dynamic isolating
weights for reachability in non-zero circulation graphs were constructed based on the
static construction from [24]. In addition to extending the reachability result (Theorem 1)
this also enables us to prove a DynFO(≤, +, ×) bound (Theorem 3) for bipartite maximum
matching (previously, a rather straightforward application of non-zero circulation weights
in planar graphs could only achieve a DynFO[⊕] bound under single edge changes [26]).
Maintaining rank of a matrix under sublogarithmically many changes. This involves
non-trivially extending the technique from [8], which maintains rank under single entry
changes, and combining it with [13] which shows how to compute the determinant of a
small matrix of dimension O( log n

log log n ) in FO(≤, +, ×).

Organization. After some preliminaries in Section 2, in Section 3 we discuss the connection
between dynamic isolation and static non-zero circulation and show its applications for
matching and distance in Section 4 and Section 6, respectively. In Section 5, we describe
the DynFO(≤, +, ×) algorithm for maximum matching, which is built on the rank algorithm
under bulk changes from Section 7. Finally, we conclude with Section 8.

2 Preliminaries and Notations

Dynamic Complexity. The goal of a dynamic program is to answer a given query on an
input structure subjected to insertion or deletion of tuples. The program may use an auxiliary
data structure over the same domain. Initially, both input and auxiliary structures are empty;
and the domain is fixed during each run of the program.

For a (relational) structure I over domain D and schema σ, a change ∆I consists of
sets R+ and R− of tuples for each relation symbol R ∈ σ. The result I + ∆I is the input
structure where RI is changed to (RI ∪ R+) \ R−. The set of affected elements is the (active)
domain of tuples in ∆I. A dynamic program P is a set of first-order formulas specifying how
auxiliary relations are updated after a change. For a state S = (I, A) with input structure
I and auxiliary structure A we denote the state of the program after applying a change
sequence α and updating the auxiliary relations accordingly by Pα(S).

The dynamic program maintains a q-ary query Q under changes that affect k elements if
it has a q-ary auxiliary relation ans that at each point stores the result of Q applied to the
current input structure. I.e., for each non-empty sequence α of changes affecting k elements,
the relation ans in Pα(S∅) and the relation Q(α(I∅)) coincide, where the state S∅ = (I∅, A∅)
consists of an input structure I∅ and an auxiliary structure A∅ over some common domain
that both have empty relations, and α(I∅) is the input structure after applying α.
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If a dynamic program maintains a query, we say that the query is in DynFO. Similar
to DynFO, one can define the class of queries DynFO(≤, +, ×) that allows for auxiliary
relations initialized as a linear order, and the corresponding addition and multiplication
relations. One can further extend this class by allowing parity quantifiers to yield the
class DynFO[⊕](≤, +, ×) and majority quantifiers to yield the class DynFO[MAJ](≤, +, ×).
The parity and majority functions of n bits a1, . . . , an are true if

∑n
i=1 ai = 1 (mod 2)

and
∑n

i=1 ai ≥ n/2, respectively. As we focus on changes of non-constant size, we include
arithmetic in our setting. See [13, 11] for more details.

The Muddling Lemma [11] states that to maintain many natural queries, it is enough to
maintain the query for a bounded number of steps, that we crucially use in this paper. In
the following, we first recall the necessary notions before stating the lemma.

A query Q is almost domain-independent if there is a c ∈ N such that Q(A)[(adom(A) ∪
B)] = Q(A[(adom(A) ∪ B)]) for all structures A and sets B ⊆ A \ adom(A) with |B| ≥ c.
Here, adom(A) denotes the active domain, the set of elements that are used in some tuple of A.
A query Q is (C, f)-maintainable, for some complexity class C and some function f : N → R,
if there is a dynamic program P and a C-algorithm A such that for each input structure I
over a domain of size n, each linear order ≤ on the domain, and each change sequence α of
length |α| ≤ f(n), the relation Q in Pα(S) and Q(α(I)) coincide, where S = (I,A(I, ≤)).
ACi is the class of problems that can be solved using polynomial-size circuit of O(logi n)
depth and NC = ∪iACi.

▶ Lemma 4 (Muddling Lemma [11]). Let Q be an almost domain independent query, and let
c ∈ N be arbitrary. If the query Q is (ACd, 1)-maintainable under changes of size logc+d n

for some d ∈ N, then Q is in DynFO(≤, +, ×) under changes of size logc n.

There are several roughly equivalent ways to view the complexity class DynFO as capturing:
The dynamic complexity of maintaining a Pure SQL database under fixed (first-order)
updates and queries (the original formulation from [28]).
The circuit dynamic complexity of maintaining a property where the updates and queries
use uniform AC0 circuits (see [2] for the equivalence of uniform AC0 and FO).
The parallel dynamic complexity of maintaining a property where the updates and queries
use constant time on a CRCW PRAM (for the definition of Concurrent RAM, see [23]).

The first characterization is popular in the Logic and Database community, while the second
is common in more complexity-theoretic contexts. The third one is useful to compare and
contrast this class with dynamic algorithms, which essentially classify dynamic problems in
terms of the sequential time for updates and queries. Operationally, our procedure is easiest
to view in terms of the second or even the third viewpoint. We would like to emphasize that
modulo finer variations based on built-in predicates (like arithmetic and order) in the first
variation, uniformity in the second one and built-in predicates (like shift) in the third one,
the three viewpoints are entirely equivalent.

We refer the readers to [8, 13, 11] for more discussion on the basics of the dynamic
complexity framework.

Weight function and Circulation. Let G = (V, E) be an undirected graph with vertex set
V and edge set E. By G = (V, E⃗

⃗

) denote the corresponding graph where each of its edges is
replaced by two directed edges, pointing in opposite directions. Let |V | = n and we use the
natural interpretation of the universe i.e., the set of vertices as the natural numbers from [n].

A set system M on a universe U is a family of subsets of U i.e. M ⊆ 2U . Examples
include the family of s, t-shortest paths and perfect matchings in a graph. A weight function
w : U → Z≥0 (the set of non-negative integers) induces a weight of w(M) =

∑
e∈M w(e) on

ICALP 2022
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an element M ∈ M. Such a weight function is said to be isolating for M if there is at most
one element M0 ∈ M with the minimum weight. The notion of isolation can be extended to
a collection of families of graphs such as the collection of families of s, t-shortest paths for all
s, t ∈ V . The weight function w(e) = 2(n+1)u+v for e = {u, v}, u < v, is a trivial isolating
function – instead we want to give weights polynomially bounded in the size of the universe.
A randomized construction of such a weight function is known for arbitrary set systems [27].

A function w : E⃗

⃗

→ Z is called skew-symmetric if for all e ∈ E⃗

⃗

, w(e) = −w(er) (where er

represent the edge with its direction reversed). The circulation of a directed cycle under a
skew symmetric weight function is the absolute value of the sum of weights of the directed
edges in the cycle. The skew-symmetric weight function w induces a non-zero circulation on
the graph if every directed cycle in the graph gets a non-zero circulation under w.

We know from [3] that if w assigns non-zero circulation to every cycle that consists of
edges of E⃗

⃗

, then it isolates a directed path between each pair of vertices in G = (V, E⃗

⃗

). Also,
if G is a bipartite graph, then the weight function w can be used to construct a weight
function w′ : E → Z that isolates a perfect matching in G [29]. For planar [29], bounded
genus [10], bounded treewidth [11], and for any single crossing minor-free graph [4] non-zero
circulation weights can be computed deterministically in Logspace, which is a subclass of NC.

Our convention represents by ⟨w1, . . . , wk⟩ the weight function that on edge e takes weight∑k
i=1 wi(e)Bk−i, where w1, . . . , wk are weight functions such that maxk

i=1 (n · wi(e)) ≤ B.

Maintaining Witnesses. The proof of [27] for the construction of a perfect matching witness
carries over to the dynamic setting also and allow us to maintain a witness to the solution in
DynFO[⊕](≤, +, ×). Since the perfect matching is isolated, from its weight one can infer the
edges in the matching by deleting the edges one a time in parallel and see if the weight remains
unchanged and accordingly place the edge in the matching. This is doable in FO[⊕](≤, +, ×).
The extraction procedure for shortest path and maximum cardinality matching is similar.

3 Dynamic Isolation from Static Non-Zero Circulation

We know (from Section 2) that non-zero circulation weights are isolating weights. Thus,
statically (when the given graph does not change over time) we can use them to obtain
efficient parallel algorithm for distance and matching. However maintaining these weights
seems to be hard in an evolving graph. This is because even for planar graphs where static
non-zero circulation weights are easy to construct [3, 9, 29] maintaining them dynamically
seems to need a dynamic planar embedding algorithm. And that alone doesn’t seem to
suffice since even small changes in the input can lead to large changes in the embedding
and that will require us to change the weights of many edges (since weight of the edges are
determined by the embedding [3, 29]). This induces us to side-step maintaining non-zero
circulation weights.

In this paper, we circumvent this problem by modifying the approach of [15] to convert
the given static nonzero-circulation weights to dynamic isolating weights. Notice that [15]
yields a black box recipe to produce isolating weights of quasipolynomial magnitude for
bipartite graphs, which we label as FGT-weights in the following way. Let e1, e2, . . . be
the edges of a bipartite graph. Consider a non-zero circulation of exponential magnitude
viz. w0(ei) = 2i. Next, consider a list of ℓ = O(log n) primes p⃗ = (p1, . . . , pℓ), each of
O(log n) bits, which yield a weight function wp⃗(ei). This is defined by taking the ℓ weight
functions w0 mod pj for j ∈ {1, . . . , ℓ} and concatenating them with shifting the weights to
the higher-order bits appropriately, that is: wp⃗(e) = ⟨w0(e) mod p1, . . . , w0(e) mod pℓ⟩. This
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is so that there is no overflow from the j-th to the (j − 1)-th weight for any j ∈ {2, . . . , ℓ}.
In [15], it was proved that for every graph there exist some set of ℓ primes such that the
respective weight function wp⃗ isolates a perfect matching in the graph.

Suppose we start with a graph with static polynomially bounded weights ensuring non-
zero circulation. In a step, some edges are inserted or deleted. The graph after deletion is
a subgraph of the original graph; hence the non-zero circulation remains non-zero after a
deletion1, but we have to do more in the case of insertions. We aim to give the newly inserted
edges FGT-weights in the higher-order bits while giving weight 0 to all the original edges
in G again in the higher-order bits. Thus the weight of all perfect matchings that survive
the deletions in a step remains unchanged. Moreover, if none such survive but new perfect
matchings are introduced (due to insertion of edges) the lightest of them is determined solely
by the weights of the newly introduced edges. In this case, our modification of the existential
proof from [15] ensures that the minimum weight perfect matching is unique.

In order to handle bulk insertion of N = logO(1) n edges, we need to apply the FGT-recipe
described above to a set system with a universe of N elements. This yields quasipolyno-
mial (N logO(1) N ) weights in N which are therefore still subpolynomial in n (2(log log n)O(1) =
2o(log n) = no(1)). Further, the number of primes is polyloglog (logO(1) N = (log log n)O(1))
and so sublogarithmic (logo(1) n). Hence, the number of possible different weights is subpoly-
nomial, which allows us to derandomize our algorithm by going over all possible FGT-weight
functions defined above. We point out that in [11] a similar scheme is used for reachability
and bears the same relation to [24] as this section does to [15]. We have the following lemma,
which we prove in Section 3.1. Our proof of the lemma is crucially based on [15] but our
proof is self contained except for Lemma 9 which we assume as a black box.

▶ Lemma 5. Let G be a bipartite graph with non-zero circulation wold. Suppose N = logO(1) n

edges are inserted into G to yield Gnew. Then we can compute polynomially many weight
functions in FO(≤, +, ×) that have O(log n) bit weights, and at least one of them, wnew is
isolating. Furthermore, the weights of the original edges remain unchanged under wnew.

3.1 Details of Maintaining Dynamic Isolating Weights
We divide the edges of the graph into real and fictitious, where the former represents the
newly inserted edges and the latter original undeleted edges2.

Next, we follow the proof idea of [15] but focus on assigning weights to only real edges
which are N = logO(1) n in number. We do this in log N stages starting with a graph G0 = G

and ending with an acyclic graph Gℓ that contains a unique perfect matching if and only if
G contains a perfect matching, where ℓ = log N . At each step, we maintain the following.

▶ Invariant 6. For i ≥ 1, Gi contains no cycles with at most 2i+1 real edges.

Assuming this invariant we complete the proof of Lemma 5:

Proof of Lemma 5. From the invariant above Gℓ does not contain any cycle that consists
of real edges. From the construction of Gℓ, if G has a perfect matching, then so does Gℓ

and hence it is a perfect matching. Notice that Wℓ is obtained from p1, . . . , pℓ that include
O((log log n)2) = o(log n) many bits. Thus there are (sub)polynomially many such weighting
functions Wℓ, depending on the primes p⃗. Let w = B · Wℓ + wold where we recall that Wℓ(e)

1 If we merely had isolating weights, this would not necessarily preserve isolation.
2 We use the terms old ↔ fictitious and new ↔ real interchangeably in this section.
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is non-zero only for the new (real) edges and wold is non-zero only for the old (fictitious)
edges. Thus, any perfect matching that consists of only old edges is lighter than any perfect
matching containing at least one new edge. Moreover, if the real edges in two matchings
differ, then, from the construction of Wℓ (for some choice of p⃗) both matchings cannot be
the lightest as Wℓ real isolates a matching. Thus the only remaining case is that we have two
distinct lightest perfect matchings, which differ only in the old edges. But the symmetric
difference of any two such perfect matchings is a collection of cycles consisting of old edges.
But each cycle has a non-zero circulation in the old graph and so we can obtain a matching
of even lesser weight by replacing the edges of one of the matchings in one cycle by the edges
of the other one. This contradicts that both matchings were of least weight. ◀

Next we show how Invariant 6 is maintained. Notice that the case i = 0 follows from the
above discussion and the induction starts at i > 0.

We first show how to construct Gi+1 from Gi such that if Gi satisfies the inductive
invariant 6, then so does Gi+1. In the i-th step, let Ci+1 be the set of cycles that contain at
most 2i+2 real edges, for i > 1. For each such cycle C = f0, f1, . . . containing k ≤ 2i+2 real
edges (with f0 being the least numbered real edge in the cycle), edge-partition the cycle into
4 consecutive paths Pj(C) for j ∈ {0, 1, 2, 3} such that the first three paths contain exactly
⌊ k

4 ⌋ real edges and the last path contains the rest. In addition ensure that the first edge in
each path is a real edge. Let the first edge of the 4-paths be respectively f ′

0(= f0), f ′
1, f ′

2, f ′
3.

We identify each cycle in Ci+1 with these 4-tuples ⟨f ′
0, f ′

1, f ′
2, f ′

3⟩.
For a cycle C ∈ Ci+1, we define a set C ′ which consists of only real edges of C. Similarly,

C′
i+1 = {C ′ | C ∈ Ci+1 ∧ C ′ ̸= ∅}. Note that there can be many cycles in Ci+1 corresponding

to a single set in C′
i+1 (i.e., those cycles that contain the same set of real edges). We fix a

particular C ∈ Ci+1 for every C ′ ∈ C′
i+1 with which it is associated. The 4-tuple associated

with the cycle C is also associated with the corresponding set C ′. We have the following
which shows that the associated 4-tuples ⟨f ′

0, f ′
1, f ′

2, f ′
3⟩ uniquely characterise sets in C′

i+1.

▷ Claim 7. There is at most one set in C′
i+1 that has a given 4-tuple ⟨f ′

0, f ′
1, f ′

2, f ′
3⟩ associated

with it.

Proof. Suppose two distinct sets C ′
1, C ′

2 ∈ C′
i+1 have a common 4-tuple ⟨f ′

0, f ′
1, f ′

2, f ′
3⟩ associ-

ated with them. Let C1, C2 be two cycles corresponding to C ′
1 and C ′

2, respectively. Then for
at least one j ∈ {0, 1, 2, 3}, Pj(C1) ̸= Pj(C2). Hence, Pj(C1) ∪ Pj(C2) is a closed walk in Gi

containing at most 2 × ⌈ 2i+2

4 ⌉ = 2i+1 real edges, contradicting the assumption on Gi. ◁

This shows that there are at most N4 elements in C′
i+1 because that is the maximum

number of distinct 4-tuples of real edges. We define circulation for the sets in C′
i+1 via

the circulation for those in Ci+1. We know that for every C ′ ∈ C′
i+1 there is at least one

C ∈ Ci+1 corresponding to it. Let w be a weight function that gives non-zero weights to
only real edges of the graph. Circulation of C ′ ∈ C′

i+1 with respect to w is defined as
cw(C ′) = cw(C) = |w(e1) − w(e2) + w(e3) − . . . |, where ei ∈ C. This is well-defined since in
bipartite graphs the parity of the length of any two paths between the same pair of vertices
is the same. Thus, all C such that they have C ′ associated with it, have the same circulation
since the sign associated with a real edge does not change for any such C. Now we will use
the following lemma to ensure non-zero circulations to sets in C′

i+1.

▶ Lemma 8 (Based on Lemma 2 in [16]). For every constant k > 0 there is a constant k0 > 0
such that for every set S of m-bit integers with |S| ≤ mk, the following holds: There is a
k0 log m-bit prime number p such that for any x, y ∈ S, if x ̸= y then x ̸≡ y mod p.
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We apply the above lemma to the set cw0(C′
i+1) = {cw0(C ′) : C ′ ∈ C′

i+1}. Here, the weight
function w0 assigns weights w0(ej) = 2j to the real edges which are e1, e2, . . . , eN in an
arbitrary but fixed order. Notice that from the above claim, the size of this set is |C′

i+1| ≤ N4.
Since w0(ej) is j-bits long hence cw0(C) for any cycle C ∈ Ci that has less than 2i+2 real
edges is at most i + j + 2 < 4N -bits long. Thus, we obtain a prime pi+1 of length at most
k0 log (4N) by picking k = 4. We define wi+1(ej) = w0(ej) mod pi+1. By Lemma 8 we know
that circulation of each set in C′

i+1 is non-zero with respect to wi+1. Therefore, circulation
of all the cycles in Ci+1 is nonzero with respect to wi+1 (remember that wi+1 assign nonzero
weights to only real edges).

Now consider the following crucial lemma from [15]:

▶ Lemma 9 ([15]). Let G = (V, E) be a bipartite graph with a weight function w. Let C

be a cycle in G such that cw(C) ̸= 0. Let E1 be the union of all minimum weight perfect
matchings in G. Then the graph G1 = (V, E1) does not contain the cycle C. Moreover, all
the perfect matchings in G1 have the same weight.

Let B be a large enough constant (though bounded by a polynomial in N) to be specified
later. We shift the original accumulated weight function Wi and add the new weight function
wi+1 to obtain: Wi+1(e) = Wi(e)B + wi+1(e). Apply Wi+1 on the graph Gi to obtain the
graph Gi+1. Inductively suppose we have the invariant 6 that the graph Gi did not have
any cycles containing at most 2i+1 real edges. This property is preserved when we take all
the perfect matchings in Gi and apply Wi+1 yielding Gi+1. Moreover, from Lemma 9 and
the construction of wi+1, the cycles of Ci disappear from Gi+1 restoring the invariant. This
yields a weight function Wℓ using that ℓ = log n (see the discussion before Invariant 6).

Notice that it suffices to take B greater than the number of real edges times the maximum
of wi(e) over i, e. Showing that G1 contains no cycle with at most 4 real edges mimics the
above more general proof, and we skip it here. We say that a weight function that gives
non-zero weights to the real edges, real isolates M for a set system M if the minimum weight
set in M is unique with respect to that weight function. In our context, M will refer to the
set of perfect/maximum matchings.

4 Maximum Cardinality Matching Search in DynFO[⊕](≤, +, ×)

In this section, we convert the static algorithm for maximum matching search in bipartite
graphs into a dynamic algorithm with the help of the isolating weights from the previous
section. In the static setting [6] the problem reduces to determining non-singularity of an
associated matrix given a non-zero circulation for the graph.

The algorithm extracts what is called a min-weight generalized perfect matching (min-
weight GPM), that is, a matching along with some self-loops. The construction proceeds by
adding a distinct edge (v, tv) on every vertex v ∈ V (G) with a self-loop on the new vertex
tv to yield the graph G′. The idea is to match as many vertices as possible in G′ using
the actual edges of G while reserving the pendant edges (v, tv) to match vertices that are
unmatched by the maximum matching. If a vertex v is matched in a maximum matching of
G then the vertex tv is “matched” using a self-loop.

Given a non-zero circulation weight w′′′ for G the weight function for G′ is w =
⟨w′, w′′, w′′′⟩. Here we represent by w′ the function that is identically 0 for all the self
loops and is 1 for all the other edges. w′′(e) is zero except for pendant edges e = (v, tv), for
v ∈ V (G), which have w′′(e) = v (where v is interpreted as a number in {1, . . . , |V (G)|})
such that all vertices get distinct numbers. The paper [6] considers the weighted Tutte matrix
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T where for an edge (u, v) the entry T (u, v) = ±xw(u,v) (say, with a positive sign iff u < v)
and is zero otherwise. It shows that in the univariate determinant polynomial det(T ) the
least degree term xW with a non-zero coefficient must have this coefficient equal to ±1 and
the exponent W is the weight of the minimum weight generalized perfect matching in G′.
Further this min-weight GPM consists of a maximum cardinality matching in G along with
the edges (v, tv) for all the vertices v unmatched in the maximum matching. The edges in
the maximum matching can then be obtained by checking if, on removing the edge (u, v),
the weight of the min-weight maximum matching increases.

The idea behind the proof is as follows:
1. The most significant weight function w′ ensures that the cardinality of the actual edges

(i.e. edges from G) picked in the min-wight GPM in G′ equals the cardinality of the
maximum matching in G. This is because the GPM would cover as many of the tv

vertices with self-loops as possible to minimize the weight that ensures the corresponding
v must be covered by an actual edge.

2. The next most significant weight function w′′ is used to ensure that all the min-weight
GPMs use the same set of pendant edges. This is because, otherwise, there is an
alternating path in the symmetric difference of the two GPMs that starts and ends at
self-loops tu, tv. Then, the difference in the weights w′′ of the two matchings restricted
to the path is u − v ≠ 0 and we can find a GPM of strictly smaller weight by replacing
the edges of one matching with the edges of the other matching restricted to the path,
contradicting that both matchings were the lightest GPMs.

3. The least significant weight function w′′′ then isolates the GPM since all min-weight GPMs
are essentially perfect matchings restricted to the same set S of vertices, namely those
that are not matched by the corresponding pendant edges and the non-zero circulation
weights on G ensures that these are isolating weights on the induced graph G[S].

We claim that we just need isolating weights w′′′ instead of non-zero circulation weights
to ensure that the above technique works. Replacing non-zero circulations with isolating
weights does not affect the first two steps. It would seem, the third step does not work
since isolating weights for G might not be isolating weights for the subgraph G[S]. However,
Lemma 5 can be applied to the graph G[S] directly – notice that in the above proof sketch S

is determined by the first two weight functions w′, w′′ and does not depend on the third w′′′.
As described above, we need to maintain the determinant of a certain matrix A related

to the Tutte matrix in order to find the size of the maximum cardinality matching. For a
small change matrix B, the Matrix Determinant Lemma [30, 17]

det(A + UBV ) = det(I + BV A−1U) det(A)

allows us to maintain the determinant by reducing it to maintaining the inverse of the matrix.
To maintain the inverse, the Sherman-Morrison-Woodbury formula [19]

(A + UBV )−1 = A−1 − A−1U(I + BV A−1U)−1BV A−1

tells us how the task of recomputing the inverse of a non-singular matrix A under small
changes B reduces to that of computing the inverse of a small matrix (I +BV A−1U) statically.
So we need to ensure that the matrix remains invertible throughout which is what we achieve
below by tinkering with the definition of the Tutte matrix. We have the following definition:

▶ Definition 10. The generalized Tutte matrix is a matrix with rows and columns indexed
by V (G′) = V (G) ∪ {tv : v ∈ V (G)} and with the following weights on edges: T (tv, tv) = 1,
T (v, v) = xw∞ and T (a, b) = ±x⟨w′,w′′,w′′′⟩(a,b) whenever a, b ∈ V (G′), a ̸= b. It is ensured
in the above that T (a, b) = −T (b, a). Here w∞ is a polynomially bounded number larger than
the largest of the weights ⟨w′, w′′, w′′′⟩ (a, b).
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Note that the generalized Tutte matrix is not unique. We now have the following:

▶ Lemma 11. Let T be a generalized Tutte matrix defined above, then the highest exponent
w such that xw divides det(T ) is twice the weight of the min-weight GPM in G′. Further,
the matrix T is invertible.

Proof. From the properties of the weight function ⟨w′, w′′, w′′′⟩ we see that the minimum
weight generalized perfect matching is unique see [6, Lemma 9]. The exponent of the least
degree monomial is twice the weight of the min-weight GPM when we take superposition of
the unique min-weight GPM with itself [6, Observation 14]. The self loops on the vertices tv

appear only once in a monomial and twice in the superposition, but because their weight is
zero under ⟨w′, w′′, w′′′⟩ it will not affect the exponent.

In order to guarantee invertibility of T we just need to prove that the product of the
diagonal terms yields a monomial of much higher degree than any other monomial and of
coefficient one, since this implies that the matrix is non-singular because this monomial cannot
be canceled out by the rest of the monomials. Consider the product of the diagonal entries
viz. x

|V (G′)|
2 w∞ = x|V (G)|w∞ . Any monomial with less than |V (G)| diagonal entries T (v, v)

is bound to be of much smaller exponent. Now the monomials which use an off-diagonal
entry T (v, u) or T (v, tv) must miss out on the diagonal entry in the v-th row, making the
exponent much smaller. ◀

4.1 Maintaining the Determinant and Inverse of a Matrix
We need the following definitions and results about univariate polynomials, matrices of
univariate polynomials and operations therein over a finite field of characteristic 2. Let F2
be the field of characteristic 2 containing 2 elements. For (potentially infinite) power series
f, g ∈ F2[[x]], we say f m-approximates g (denoted by f ≈m g) if the first m terms of f

and g are the same. We will extend this notation to matrices and write F ≈m G where
F, G ∈ F2[[x]]ℓ×ℓ are matrices of power series. We will have occasion to use this notation
only when one of F, G is a matrix of polynomials, that is, a matrix of finite power series.

Notice that if A ∈ F2[x]n×n with the degree of entries bounded by w∞, then there exists
A−1 ∈ F2[[x]]n×n. For us, only the monomials with degrees at most w∞ are relevant. Thus
we will assume that we truncate A−1 at w∞ many terms to yield matrix A′ ≈w∞ A−1. Then
we have the following:

▶ Lemma 12 (Lemma 10 in [11]). Suppose A ∈ F2[x]n×n is invertible over F2[[x]], and
C ∈ F2[x]n×n is an m-approximation of A−1. If A + UBV is invertible over F2[[x]] with
U ∈ F2[x]n×ℓ, B ∈ F2[x]ℓ×ℓ, and V ∈ F2[x]ℓ×n, then (A + UBV )−1 ≈m C − CU(I +
BV CU)−1BV C. Furthermore, if ℓ ≤ logc n for some fixed c and all involved polynomials
have polynomial degree in n, then the right-hand side can be computed in FO[⊕](≤, +, ×)
from C and ∆A.

Similar to the above (using the closure of m-approximation under product), we get an
approximate version of the Matrix Determinant Lemma, that is:

▶ Proposition 13. Suppose A ∈ F2[x]n×n is invertible over F2[[x]], and C ∈ F2[x]n×n is
an m-approximation of A−1 and polynomial d(x) ≈m det(A) then d · det(I + BV CU) ≈m

det(A + UBV ).

We can now proceed to prove Theorem 1:
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Proof of Theorem 1. By putting m = w∞ and applying Lemma 12 and Propositions 13
to the generalized Tutte matrix from Lemma 11 and using the (Muddling) Lemma 4, we
complete the matching part of Theorem 1 (see Section 6 for the proof involving distance). ◀

5 Maximum Cardinality Matching in DynFO(≤, +, ×)

In this section we prove Theorem 3 by giving a DynFO(≤, +, ×) algorithm for maintaining
the size of a maximum matching under O( log n

log log n ) changes. Notice that the approach in the
previous section has the limitation that it only gives a DynFO[⊕](≤, +, ×) bound as we need
to maintain polynomials of large (polynomial in n) degree. Instead, the main ingredient here
is a new algorithm for maintaining the rank of a matrix in DynFO(≤, +, ×) under O( log n

log log n )
changes (Section 7). Our matching algorithm follows the basic approach of the non-uniform
DynFO algorithm of [8]. Here, since we use deterministic isolation weights (as opposed
to the randomized isolation weights of [27]), with some more work, we obtain a uniform
DynFO(≤, +, ×) bound under bulk changes.

The algorithm of [8] builds on the well-known correspondence between the size of maximum
matching and the rank of the Tutte matrix of the corresponding graph – if a graph contains
a maximum matching of size m then the associated Tutte matrix is of rank 2m [25]. The
dynamic rank algorithm from Section 7 cannot be applied directly since the entries of the
Tutte matrix are indeterminates. However, the rank can be determined by replacing each
xij by 2w(i,j). Here w assigns a positive integer weight to every edge (i, j) under which the
maximum matching gets unique minimal weight, i.e., it is matching-isolating. Using the
Isolation Lemma [27], it can be shown that the correspondence between the rank and the
size of the maximum matching does not change after such a weight transformation [22, 8].

Our algorithm diverges from [8] as we need to deterministically compute these isolating
weights and also, to somehow maintain those. Since we do not know how to maintain such
weights directly, as in Section 4, we convert the static non-zero circulation weights to dynamic
isolating weights using the Muddling Lemma 4. Given a graph G, let Bw be its weighted
Tutte matrix with each xij replaced by 2w(i,j) for an isolating weight function w. Initially,
the static non-zero circulation weights provide such weights. Since we are only interested
in computing the rank of Bw, we do not need to make the initial modifications of adding
pendant edges or self-loops to G as before. So the weight function w is just the non-zero
circulation weight ⟨w′′′⟩ here. In the dynamic process, similar to Section 4, we use the
FGT-weights wnew on top for the newly inserted edges. We have the following:

▶ Lemma 14. Given a dynamic algorithm for maintaining the rank of an integer matrix
under k = O(logc n) changes at each step for some fixed constant c, we can maintain the size
of the maximum matching in the same complexity class under O(k) changes for the class of
graphs where non-zero circulation weights can be computed in NC.

Proof. Given a graph G, assume we have an algorithm for computing the non-zero circulation
weight function w in NCi ⊆ AC[ logi n

log log n ] for some fixed integer i. Once these weights w are
available, rank(Bw) can be found in NC2 [1] which is contained in AC[ log2 n

log log n ]. Since O(k)
changes can occur at each step, during this time, total of O(k · ( logi n

log log n + log2 n
log log n )) many new

changes accumulate. As w assigns non-zero circulation weights to the edges of G, we can
assign weight 0 to the deleted edges and the weights remain isolating. For the newly inserted
edges, which are only polylog(n) many, we compute the polynomially bounded FGT-weights
in AC0 using Lemma 9. Thanks to Lemma 4, in O( logi n

log log n + log2 n
log log n )) many steps we can take

care of all the insertions by adding k new edges at each step along with k old ones in double
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the speed using our rank algorithm. Note that, during the static rank computation phase,
we do not restart the static algorithm for computing the weight w. Instead, we recompute
these weights once the rank computation using them finishes. More precisely, we can think
of a combined static procedure that computes the non-zero circulation weights followed by
the rank of the weighted Tutte matrix Bw in NCb for b=max(i, 2). And on this combined
procedure, we apply our Muddling Lemma 4. ◀

We can now prove Theorem 3:

Proof of Theorem 3. Similar to [8, Theorem 16] this implies a uniform bounded expansion
first-order truth-table (bfo-tt) reduction from maximum matching to rank in this special
case.3 Since DynFO(≤, +, ×) is closed under bfo-tt reductions [8, Proposition 4] and dynamic
rank maintenance is in DynFO(≤, +, ×) under O( log n

log log n ) changes (Theorem 2), in classes of
graphs where non-zero circulation weights can be computed in NC we have the result. ◀

6 Maintaining Distance under Bulk Changes

In this section, extending the reachability result of [11], we show that distances can be
maintained in DynFO[⊕](≤, +, ×) under polylog(n) changes in classes of graphs where non-
zero circulation can be computed in NC. We start with describing the reachability algorithm
of [11] followed by the necessary modifications needed for maintaining distance information.

6.1 Outline of the Approach for Reachability
Let G = (V, E) be the given n-node graph with an isolating weight assignment w. For
a formal variable x, let the corresponding weighted adjacency matrix A = A(G,w)(x) be
defined as follows: if (u, v) ∈ E, then A[u, v] = xw(u,v), and 0 otherwise. Consider the matrix
D = (I − A)−1, where I is the identity matrix. Notice that the matrix (I − A) is invertible
over the ring of formal power series (see [13]). Here D =

∑∞
i=0(A)i is a matrix of formal

power series in x and in the (s, t)-entry, the coefficient of the i-th terms gives the number of
walks from s to t of weight i.

As w isolates the minimal weight paths in G, it is enough to compute these coefficients
modulo 2 for all i up to some polynomial in n since there is a unique path with the minimal
weight if one exists. So, it is enough to compute and update the inverse of the matrix I − A.
Though to do it effectively, we compute the n-approximation C of D, which is a matrix of
formal polynomials that agrees with the entries of D up to degree i ≤ n terms. This precision
is preserved by the matrix operations we use, see [13, Proposition 14].

When applying a change ∆G to G that affects k nodes, the associated matrix A is updated
by adding a suitable change matrix ∆A with at most k non-zero rows and columns, and can
therefore be decomposed into a product UBV of suitable matrices U, B, and V , where B is
a k × k matrix. To update the inverse, we employ the Sherman-Morrison-Woodbury identity
(cf. [19]), which gives a way to update the inverse when A is changed to A + ∆A as follows:

(A + ∆A)−1 = (A + UBV )−1 = A−1 − A−1U(I + BV A−1U)−1BV A−1.

3 Intuitively, bounded expansion first-order (bfo) reductions are first-order reductions such that each
tuple in a relation and each constant of the input structure affects at most a constant number of tuples
and constants in the output structure. A bfo-tt reduction bears the same relation to a bfo-reduction as
a truth-table reduction bears to a many-one reduction. For a formal definition see [8, Section 3.2] where
it was first formalized.
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The right-hand side can be computed in FO[⊕](≤, +, ×) for k = logO(1) n since modulo
2 computation of (1) multiplication and iterated addition of polynomials over Z and (2)
computation of the inverse of I + BV A−1U which is also a k × k matrix is possible in
FO[⊕](≤, +, ×) for (matrices of) polynomials with polynomial degree [18]. Finally, we need
to assign weights to the changed edges as well so that the resulting weight assignment remains
isolating. We show how to achieve this starting with non-zero circulation weights. Using [11,
Theorem 5] we can assume that such a weight assignment is given, and that we only need to
update the weights once.

Let u be skew-symmetric non-zero circulation weights for G and let nk be the polynomial
bound on the weights. Further, let w be the isolating weight assignment that gives weight
nk+2 + u(e) to each edge e ∈ E. During the ACd initialization, we compute the weights u

and w and an nb-approximation matrix C of (I − A(G,w)(x))−1 mod 2 for some constant b.
When changing G via a change ∆E with deletions E− and insertions E+, the algorithm

proceeds as follows: To compute the isolating weights w−, the non-zero circulation weights
u− for G− are obtained from u by setting the weight of deleted edges e ∈ E− to 0. As u−

gives the same weight to all simple cycles in G− as u gives to these cycles in G, it has non-zero
circulation. To handle E+ it can be shown that [11, Lemma 11] there is a FO-computable
(from w, E+ and the reachability information in G) family W ′ of polynomially many weight
assignments such that ∃w′ ∈ W ′ isolating for (V, E \ E− ∪ E+).

Hence we need to maintain polynomially many different instances of the graph with
different weight functions from W ′ such that in at least one of them the paths are isolated.
The idea is that if there is an s-t-path using at least one inserted edge from E+, then there
is a unique minimal path among all s-t-paths that use at least one such edge, while ignoring
the weight of the paths that is contributed by edges from E. The edge weights from E+ are
multiplied by a large polynomial to ensure that the combined weight assignment with the
existing weights for edges in E remains isolating. Since the weights are constructed only for
a graph with N = logO(1) n many nodes, and although they are not polynomially bounded
in N , they are in n. Please refer to [11, Section 6] for more details.

From the above discussion, to prove a similar bound for distances, it suffices to show
that (1) after every polylog(n) changes, we can ensure the edge weights remain “shortest
path-isolating” and (2) under such weights the distance can be updated in FO[⊕](≤, +, ×).

6.2 Dynamic Isolation of Shortest Paths
In the following, we first describe how the isolating weights for reachability can be modified
to give weights for isolating shortest paths. Similar to maintaining reachability, our algorithm
handles deletions and insertions differently. In case of deletion, we set the weight of the deleted
edges e ∈ E− to 0 and due to the non-zero circulation weights, the weights remain isolating.
For insertions, the idea is to do a weight refinement by shifting the original edge weights
w(e) (1 in case of unweighted graphs) to the highest order bits in the bit-representation, in
the presence of other newly assigned weights to the edges.

We define a new weight functions w∗ = ⟨w, w′, u⟩ and assign these weights to the inserted
edges e ∈ E+. The existing edges E are not assigned any w′ weight and all those bits remain
zeroes. So we get a family of weight functions W ∗. Here w is the polynomially-bounded
original edge weights, w′ is one of the (polynomially many) isolating weights from the
family W ′ assigned to the newly added edges E+ during the dynamic process, and u are
the non-zero circulation weights that are computed statically. The combined weights w∗ is
FO-constructible from the weights w, w′ and u as all involving numbers are O(log n) bits long
(see [21, Theorem 5.1]). The correctness of the fact that these weights are indeed shortest
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path isolating follows from [11, Lemma 11] with the observation that since the original edge
weights are shifted to the highest-order bits, the minimum weight path with these combined
weights corresponds to the shortest path in the original graph.

The update algorithm for maintaining reachability can be extended to maintaining
distances also [13]. Here, instead of checking only the non-zeroness of the (s, t)-entry in the
polynomial matrix C, we compute the minimum degree term as well (with coefficient 1), which
can be done in FO[⊕](≤, +, ×). By construction, the degree of a term in this polynomial
is same as the weight of the corresponding walk under the dynamic isolating weights and
applying an easy transformation gives us back the original weights, that is, the weight of the
shortest path from s to t in G′. This proves the distance part of Theorem 1.

7 Maintaining Rank under Bulk Changes

In this section we prove Theorem 2. For ease of exposition, we build upon the algorithm
as described in [7, Section 3.1]. Before going into the details of the proof, we start with
defining some important notation, followed by our overall proof strategy. Let A be a n × n

matrix over Zp, where p = O(n3) is a prime. Let K be the kernel of A. For a vector v ∈ Zn
p ,

we define S(v) = {i ∈ n | (Av)i ̸= 0}, where (Av)i denotes the ith coordinate of the vector
Av. Let B be a basis of Zn

p . A vector v ∈ B is called i-unique with respect to A and B if
(Av)i ̸= 0 and (Aw)i = 0 for all other w ∈ B. A basis B is called A-good if all the vectors in
B − K are i-unique with respect to A and B. For a vector v ∈ B − K, the minimum i for
which it is i-unique is called the principal component of v, denoted as pc(v).

Starting with an A-good basis B, and introducing a small number of changes to yield A′

may lead to B losing its A-goodness. To restore this, we alter the matrix B in two phases
to obtain an A′-good basis B′. The first phase involves identifying a full rank submatrix in
A′ corresponding to the changed entries, inverting it, and restoring the pc’s of the columns
of that full rank submatrix. In the second phase, we restore the pc’s of the rest of vectors,
which had lost the pc’s either because of the changes or during Phase 1. The rough outline is
similar to that of [7] but in order to handle non-constant changes we have to make non-trivial
alterations and use efficient small matrix inversion from [13]. We have Theorem 2 from the
following lemma, whose proof is provided in Section 7.1:

▶ Lemma 15. Let A, A′ ∈ Zn×n
p be two matrices such that A′ differs from A in O( log n

log log n )
places. If B is an A-good basis then we can compute an A′-good basis B′ in FO(≤, +, ×).

▶ Proposition 16 ([8]). Let A ∈ Zn×n
p and B an A-good basis of Zn

p . Then rank(A) =
n − |B ∩ K| is the number of vectors in the basis that have a pc.

▷ Claim 17. If the rank of an n × n matrix A is r then there exists a prime p =
O(max(n, log N)3) such that the rank of A over Zp is also r, where N is the maximum
absolute value the entries of the matrix A contain.

Proof. We know that if the rank of A is r then there exists a r × r submatrix As of A such
that its determinant is nonzero. The value of this determinant is at most n!Nn, which can
be represented by O(n(log n + log N)) many bits. Therefore, this determinant is divisible by
at most O(n(log n + log N)) many primes. Thus by the prime number theorem, we can say
that for a large enough n there exists a prime p of magnitude O(max(n, log N)3) such that
determinant of As is not divisible by p. ◁

Hence, to compute the rank of A, it is sufficient to compute the rank of the matrices (A mod
p) for all primes p of size O(max(n, log N)3) and take the maximum among them. Below we
show how to maintain the rank of the matrix A mod p for a fixed prime p. We replicate the
same procedure for all the primes in parallel.
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A′ is the matrix that is obtained by changing k many entries of A. Notice that if B is
not A′-good basis, that means there are some vectors in B − K ′ which are not i-unique with
respect to B and A′, where K ′ is the kernel of A′. A vector w ∈ B − K ′ which was i-unique
(i ∈ [n]) with respect to A and B may no longer be i-unique with respect to A′ and B for
the following two reasons, (i) i /∈ S′(w), (ii) there may be more than one vector w′ such that
i ∈ S′(w′). For a vector v, S′(v) denotes the set of non-zero coordinates of the vector A′v.
Below we give an AC0 algorithm to construct an A′-good basis.

In several places we make use of the fact that sum and product of polylog(n) many
numbers each with of polylog(n) bits can be computed in AC0 [21, Theorem 5.1].

7.1 Construction of an A′-good basis

Let k = O( log n
log log n ) and M = (A′B)R,C be the n × n matrix where R is the set of rows and

C is the set of columns of M . We know that A′B differs from AB in a set R0 of at most k

many rows. Let MR0,∗ be the matrix M restricted to the rows in the set R0.

▷ Claim 18. There exists a prime q = O(log3 n) such that the rank of (MR0,∗ mod q) is
equal to the rank of (MR0,∗ mod p).

Proof. The proof follows from the proof of Claim 17. ◁

From the above claim, it follows that a row basis of (MR0,∗ mod p) remains a row basis of
(MR0,∗ mod q) for some O(log log n)-bit prime q. Next, we have two constructive claims:

▷ Claim 19. A row basis R1 of (MR0,∗ mod q) can be found in AC0.

Proof. Note that number of rows in R0 are O( log n
log log n ); thus, the number of the subsets of

the rows of R1 are polynomially many (in n), and each row in the set R0 can be indexed by
O(log log n) many bits. An element of Zq can also be represented by O(log log n) many bits.
Therefore, for a fixed subset S of R0, all the linear combinations of the rows of S can be
represented by O(log n) many bits. We try all the linear combinations in parallel. Also, we
do this for all the subsets in parallel. The subset with the maximum cardinality in which
all the linear combinations result in non-zero values will be the maximum set of linearly
independent rows in (MR0,∗ mod q). ◁

▷ Claim 20. A column basis C1 of (MR1,∗ mod q) can be found in AC0.

Proof. To find the maximum set of linearly independent columns in the matrix MR1,∗ we
just check in parallel if the rank of MR1,i is greater than the rank of MR1,i−1 for all i ∈ [m].
Let c1, c2 . . . cm be the columns in the matrix MR1,∗. Note that the set of columns ci such
that the rank of MR1,i is more than the rank of MR1,i−1, form a maximum set of linearly
independent columns in MR1,i. We can check this in AC0. ◁

We are going to construct four matrices D(1), E(1), D(2), E(2) successively such that the
product B′ = B × D(1) × E(1) × D(2) × E(2) is an A′-good basis. For this, we need to show
that each column ci of A′B′ is either an all zero-column or there exists a unique j such that
the j-th entry of the column is non-zero. In other words, each column of B′ is either i-unique
or it is in the kernel of A′. We will show how to obtain each of the four matrices above as
well as take their product in AC0. We need a technical lemma before we start.
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Combining Matrices. Here we state a lemma about constructing matrices from smaller
matrices that we we will use several times. Let X ∈ Zn×n

p be a matrix and let X1,1 ∈ Zℓ×ℓ
p ,

X1,2 ∈ Zℓ×(n−ℓ)
p , X2,1 ∈ Z(n−ℓ)×ℓ

p , X2,2 ∈ Z(n−ℓ)×(n−ℓ)
p be 4 matrices and let R, C ⊆ [n] be

two subsets of indices of cardinality ℓ each. Let R̄ = [n] \ R, C̄ = [n] \ C. Then we have:

▶ Lemma 21. Given the matrices Xi,j for I, J ∈ [2] and the sets R, C explicitly for
|R| = |C| = ℓ = (log n)O(1), we can construct, in AC0, the matrix Y such that YR,C = X1,1,
YR,C̄ = X1,2, YR̄,C = X2,1 and YR̄,C̄ = X2,2.

Proof. Notice that the sets R, C can be sorted in AC0 because computing the position
posR(r) of an element r ∈ R (i.e., the number of elements not larger than r) is equivalent to
finding the sum of at most ℓ bits (which are zero for elements of R larger than r and one
otherwise).

The position posR̄(r′) of an element r′ ∈ R̄ (i.e. the number of elements of R̄ not larger
than r′) can also be found in AC0. This is because we can first find the set R(r′) = {ri ∈
R : ri < r′} in AC0. Then posR̄(r′) = r′ − |R(r′)| because there are r′ rows with indices at
most r′ and out of these all but |R(r′)| are in R̄ and thus can be computed in AC0. We can
similarly compute posC(c), posC̄(c′) for c ∈ C and c′ ∈ C̄.

Finally given i, j ∈ [n] the element Yi,j is X1,1
posR(i),posC(j) if i ∈ R, j ∈ C. Similarly if

i ∈ R̄, j ∈ C then it is X2,1
posR̄(i),posC(j), if i ∈ R, j ∈ C̄ then it is X1,2

posR(i),posC̄ (j) and if
i ∈ R̄, j ∈ C̄ then it is X2,2

posR̄(i),posC̄(j). This completes the proof. ◀

Phase 1. First, we restore the i-uniqueness of the columns indexed by the set C1. Let
RC1 be the set of rows in R indexed by the same set of indices as C1 in C. We right
multiply M with another matrix D(1) ∈ Zn×n

p such that D
(1)
RC1 ,C1

is the inverse of MR1,C1

and D
(1)
R−RC1 ,C−C1

is the identity matrix and all the other entries of D(1) are zero. Since the
inverse of a k × k matrix can be computed in AC0 [11], matrix D(1) can be obtained in AC0

via Lemma 21.
Let M (1) = M × D(1), note that M (1)

R1,C1 is an identity matrix. Since M = A′ × B, we
have M (1) = M × D(1) = A′ × B × D(1). Note that since M (1)

R1,C1 is an identity matrix, the
vectors corresponding to the columns in C1 in the matrix B × D(1) can now easily be made
i-unique. Since M (1)

R1,C1 is an identity matrix, all columns in the matrix M (1)
R1,C−C1 can

be written as the linear combinations of columns of M (1)
R1,C1 . Let M̃ (1) be a matrix defined

as M̃ (1) = M (1) × E(1), where E(1) ∈ Zn×n
p is constructed as follows. (i) E

(1)
RC1 ,∗ is same as

M
(1)
R1,∗. (ii) E

(1)
R−RC1 ,C1

is the zero matrix. (iii) E
(1)
R−RC1 ,C−C1

is the negative identity matrix.
Using Lemma 21, we can construct E(1) in AC0. Note that M̃

(1)
R1,C1

is an identity matrix and
M̃

(1)
R1,C−C1

is a zero matrix. Thus we can say that vectors corresponding to columns in C1 in
the matrix B × D(1) × E(1) are i-unique for some i ∈ R1.

Next, we perform a procedure similar to Phase 1 for those vectors which lost their pc’s
when we changed the matrix from A to A′, i.e. those vectors w which were i-unique for some
i, but i /∈ S′(w).

Phase 2. There can be at most k vectors which lost their pc’s while changing the matrix
from A to A′. Some of these vectors might get their pc’s set in Phase 1. Let C̃2 be the
remaining set of vectors in B. Notice C1 ∩ C̃2 is empty. To set the pc’s of these vectors, we
repeat the above procedure for the matrix M̃

(1)
∗,C̃2

as follows.
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Find the column basis C2 of M̃
(1)
∗,C̃2

in AC0 recalling that |C̃2| ≤ k and using Claim 19

on the transpose of M̃
(1)
∗,C̃2

. By considering the transpose of M̃
(1)
∗,C2

and applying Claim 20

we can get a row basis R2 of M̃
(1)
∗,C2

. Notice that R1 ∩ R2 is empty. We construct a
matrix D(2) ∈ Zn×n

p in AC0 using Lemma 21 such that D
(2)
RC2 ,C2

contains the inverse of
M̃

(1)
R2,C2

, D
(2)
R−RC2 ,C−C2

is an identity matrix and the rest of the entries of D(2) are zero.
Here RC2 is the set of rows indexed by the same indices as in the set C2 of columns. Let
M̃ (2) = M̃ (1) × D(2) × E(2), where E(2) is constructed in AC0 (using Lemma 21) so that: (i)
M̃

(2)
R1∪R2,C1∪C2

is the identity matrix. (ii) M̃
(2)
R1,C−C1

and M̃
(2)
R−R1,C̃2−C2

are zero matrices.
Finally, we have B′ = B × D(1) × E(1) × D(2) × E(2). Since each column of the newly
constructed matrices contains at most (k + 1) non-zero entries, we can obtain B′ in AC0.

▷ Claim 22. B′ is an A′-good basis.

Proof. First, we prove that the vectors which lost their pc’s, either get new pc’s or they
are modified to be in the kernel of A′. Let w ∈ B be a vector that lost its pc and it is not
captured in both Phase 1 or Phase 2. Assume it is not captured in Phase 1, i.e. the vector
A′w does not belong to the column set indexed by C1. Then it will be captured in Phase 2.
If it is not captured in Phase 2 as well, then we can say that A′w does not belong to the
columns indexed by the set C2. Therefore it can be written as a linear combination of the
vectors in C2. In Phase 2, we modify such vectors in a way that A′w becomes a zero vector,
i.e. w goes into the kernel of A′. Also, note that the vector which did not lose their pc’s and
are not captured in Phase 1 and Phase 2, do not lose their pc’s in the procedure. ◁

We prove that we can maintain the number of pc’s in B in AC0 using the next claim. However,
we need to set up some notation first. Let P old, P new be respectively, the number of pc’s
before and after the phases. Let V new

R1
and V new

R2
denote the set of vectors that have their pc’s

in the rows R1 and R2, after the phases. Let V old
R0

denote the set of vectors that have their
pc’s in the rows R0 before starting of Phase 1 and V1 denotes the set of vectors which have
their pc’s in the rows R − R0 before the Phase 1 and attain pc’s in the rows R1 after Phase
2. Note that all the cardinalities of all the sets of vectors mentioned above are O( log n

log log n ).
Therefore, we can compute their cardinalities in AC0.

▷ Claim 23. P new = P old − |V old
R0

| + |V new
R1

| + |V new
R2

| − |V1|.

Proof. First, we assume that all the vectors in the set V old
R0

lose their pc’s after the phases
therefore we subtract |V old

R0
| from P . But some of these vectors get their pc’s in Phase 1

and Phase 2. Therefore, we add |V new
R1

| and |V new
R2

| back to the sum. Notice that V new
R1

may
contain those vectors as well that had their pc’s in the rows indexed by R − R0 before Phase
1. That means these vectors had a pc before and after the two phases, but we added their
number |V new

R1
|. Therefore, we subtract the number of such vectors by subtracting |V1| from

the total sum. ◁

This brings us to the proof of Lemma 15.

Proof of Lemma 15. The proof is complete from the above claims because the number of
pc’s is precisely the rank of the matrix as a consequence of Proposition 16. ◀
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8 Conclusion

In this work, we prove two meta-theorems for distance and maximum matching, which
provide the best known dynamic bounds in graphs where non-zero circulation weights can
be computed in parallel. This includes important graph classes like planar, bounded genus,
bounded treewidth graphs. We show how to non-trivially modify two known techniques and
combine them with existing tools to yield the best known dynamic bounds for more general
classes of graphs, and at the same time allow for bulk updates of larger cardinality. While for
bipartite matching we are able to show a DynFO(≤, +, ×) bound it would be interesting to
achieve this also for maintaining distances, even in planar graphs under single edge changes.
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