
Circuit Extraction for ZX-Diagrams Can Be
#P-Hard
Niel de Beaudrap #

University of Sussex, UK

Aleks Kissinger #

University of Oxford, UK

John van de Wetering #Ñ

Radboud University Nijmegen, The Netherlands
University of Oxford, UK

Abstract
The ZX-calculus is a graphical language for reasoning about quantum computation using ZX-
diagrams, a certain flexible generalisation of quantum circuits that can be used to represent linear
maps from m to n qubits for any m, n ≥ 0. Some applications for the ZX-calculus, such as quantum
circuit optimisation and synthesis, rely on being able to efficiently translate a ZX-diagram back into
a quantum circuit of comparable size. While several sufficient conditions are known for describing
families of ZX-diagrams that can be efficiently transformed back into circuits, it has previously
been conjectured that the general problem of circuit extraction is hard. That is, that it should
not be possible to efficiently convert an arbitrary ZX-diagram describing a unitary linear map into
an equivalent quantum circuit. In this paper we prove this conjecture by showing that the circuit
extraction problem is #P-hard, and so is itself at least as hard as strong simulation of quantum
circuits. In addition to our main hardness result, which relies specifically on the circuit representation,
we give a representation-agnostic hardness result. Namely, we show that any oracle that takes as
input a ZX-diagram description of a unitary and produces samples of the output of the associated
quantum computation enables efficient probabilistic solutions to NP-complete problems.
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1 Introduction

Quantum circuit notation is widely used in the field of quantum computing to denote
computations to be executed on a quantum computer. While quantum circuits are a useful
tool for representing computations on a quantum computer, they are somewhat inconvenient
for reasoning about computations (such as proving equalities or doing simplifications); and for
representing computations in alternative models like the one-way model of measurement-based
quantum computation (MBQC) [40], or surface code lattice surgery [31].
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119:2 Circuit Extraction for ZX-Diagrams Can Be #P-Hard

ZX-diagrams are an alternative, more general representation of quantum computations,
which allow complex operations to be described using a few simple generating operators.
ZX-diagrams come with an equational theory, called the ZX-calculus [11], which allows
one to perform many useful calculations graphically, without resorting to concrete matrix
computations. While ZX-diagrams can be seen as an extension of circuits [12], they also
readily admit encodings of the one-way model [23] and lattice surgery [20], and allow one to
reason more easily about such procedures. There are several known complete axiomatisations
of the ZX-calculus [37, 49], where any true equality of linear maps can be proved graphically.
For a review on the ZX-calculus we refer to [47].

The ZX-calculus has been used in a variety of areas. It was used to optimise T-count [34,
18], braided circuits [29] and MBQC [4]; to find a new normal form for Clifford circuits [22]; to
do more effective classical simulation using stabiliser decompositions [35]; and to reason about
surface codes [26, 27], mixed-state quantum computations [9], natural language processing [10],
condensed matter systems [14], counting problems [21, 44] and spin-networks [24].

As a strict extension of quantum circuit language, ZX-diagrams may express operations
in a form that do not correspond directly to a quantum circuit. This added flexibility makes
it easier to find novel strategies to simplify quantum circuits, but it comes at a cost: given
a ZX-diagram representing a unitary linear map, it might be non-trivial to transform it
back into a circuit of comparable size. Such a translation might however be necessary if,
for instance, we want to run the computation described by a ZX-diagram on a gate-based
quantum computer.

We refer to the above problem, as the circuit extraction problem: given a ZX-diagram
which denotes a unitary operator U , find a unitary circuit (i.e., a quantum circuit without
measurements) that implements U . In recent years, some progress has been made on this
problem [22, 34, 4, 41, 33, 19]. However, all known methods for efficient extraction of circuits
from ZX-diagrams rely on additional conditions, in particular requiring there to be some
kind of flow on the diagram, a concept imported from MBQC [6]. Such conditions allow
the diagram to be rewritten incrementally into a unitary circuit. Since many ZX-calculus
rewrites preserve these conditions, it is possible to perform optimisation of quantum circuits
using ZX-calculus rules and still recover circuits efficiently.

However, it is worth trying to generalise these conditions as much as possible, or even
remove them. For instance, it was noted in [34] that a certain transformation of ZX-diagrams
would decrease the T-count (an important metric for quantum circuit optimisation), but in
the process broke the invariant (the existence of a gflow), preventing a circuit from being
extracted efficiently using known techniques. Given all this it is then natural to wonder
about the following question:

Is there some efficient procedure to translate any
unitary ZX-diagram into a quantum circuit?

In this paper we present strong evidence that there is no such efficient procedure, by
showing that the circuit extraction problem is #P-hard in the worst case. The complexity
class #P contains for instance the problem of strong simulation of quantum circuits, and
counting the number of satisfying solutions to a Boolean formula, so #P-hard problems
are expected to be intractable. We prove #P-hardness by giving an encoding of Boolean
formulae into unitary ZX-diagrams in such a way that extracting a polysize circuit provides
a solution to the associated #SAT instance. A consequence of our result is that if there were
a polynomial time algorithm for circuit extraction, then P = NP.

Alternatively, since there is an evident translation from a ZX-diagram into a quantum
circuit with postselection, this result can equivalently be seen as expressing the hardness
of translating a postselected circuit that is promised to be proportional to a unitary into a
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circuit without postselection. While intuitively this seems likely to be hard, particularly in
light of Aaronson’s landmark result that PostBQP = PP [1], our hardness result seems to
be quite different in nature due to the unitarity promise. In particular, the postselection does
not seem to be the “source of power” in our proof: the measurement outcomes corresponding
to the post-selections in our circuits occur with some bounded probability, independent of
the problem size.

One could ask how much our hardness result is tied to the fact that we require a procedure
that produces quantum circuits from ZX-diagrams. Especially, when considering that in
most cases we are not interested in the circuit itself, but instead we simply want to sample
the output of the quantum computation. Perhaps one could find some other procedure to
“program” a quantum computer using a ZX-diagram describing a unitary and obtain samples
of measurement outcomes. We show that an efficient such procedure is unlikely to exist for
arbitrary ZX-diagrams, by finding that such a procedure allows you to probabilistically solve
NP-hard problems. So if there were some way to generically translate unitary ZX-diagrams
into procedures which could be realised in polynomial time on a quantum computer, it would
follow that the entire polynomial hierarchy is in BQP, and in particular that NP ⊆ BQP.

The paper is structured as follows. We start by covering preliminaries on quantum
circuits, ZX-diagrams and the necessary complexity theory in Section 2. Then in Section 3
we formally define the circuit extraction problem and prove it is hard. Section 4 considers
several variations on circuit extraction, and in Section 5 we find some upper bounds on the
hardness of circuit extraction. We end with some concluding remarks in Section 6.

2 Preliminaries

2.1 Quantum circuits
Since we wish to extract “a circuit” from a ZX-diagram, it will be helpful to first consider
what we actually mean by a circuit.

In quantum computational theory, a “circuit” is a description of a computational process
consisting of operations which may be decomposed as a sequence of primitive “gates” and
“measurements”, which act on one or more qubits to change the states of those qubits. The
state-space of a qubit is identified with unit vectors of the finite-dimensional Hilbert space
H2 ∼= C2; the state of k qubits in parallel is described by the tensor product H⊗k

2 . A
“gate” is an operation which is applied to one or more qubits and implements a unitary
transformation U : H⊗k

2 → H⊗k
2 on the associated state space. A “measurement” is an

operation which transforms a state |ψ⟩ ∈ H⊗k
2 to some state p−1/2

j Πj |ψ⟩ where {Π1,Π2, . . .}
is a set of projections that sum up to the identity operator I, the pj gives the probability
of observing that particular measurement outcome and is given by pj = ⟨ψ|Πj |ψ⟩, and the
index j provides the classical “outcome” indicating which transformation occurred. A gate
or measurement acting on a small number of qubits can be applied to a larger set of qubits
by taking the tensor product with an appropriate number of identity operators. A “circuit”
is then a composition of such gates and measurements on some number of qubits, acting in
sequence or in parallel, to describe more complex (and in general, non-deterministic and
irreversible) transformations of a quantum state-space. To define a reasonable model of
computational complexity using quantum circuits, one usually elaborates the above with a
description of how one would specify a circuit as part of a family of unitary operators, acting
on inputs of various sizes. For our purposes, it will suffice to require that the coefficients of the
gates be efficiently computable, and in particular provided explicitly in some representation
which suffices to approximate them to O(poly(n)) bits of precision in time O(poly(n)) for an
n qubit circuit.

ICALP 2022



119:4 Circuit Extraction for ZX-Diagrams Can Be #P-Hard

It will be convenient to refer to one specific such gate-set – an infinite set B of gates,
consisting of the single-qubit gates Zα for arbitrary angles α, the single-qubit Hadamard
gate H and the two-qubit gate CNOT:

Zα =
(

1 0
0 eiα

)
H = 1√

2

(
1 1
1 −1

)
CNOT =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (1)

This gate set forms a universal gate set, meaning that a unitary acting on any number of
qubits can be written as a circuit consisting of these gates [38]. Other universal gate-sets
exist, but so long as one considers gate sets whose parameters are efficiently computable
from some input parameters and which act only on a bounded numbers of qubits (e.g., at
most two or three qubits), the size of a circuit to represent a given unitary operator can only
vary by a constant factor, so that for the purpose of complexity theory, the details of the
specific gate set chosen are not important.

A circuit which contains no measurements, and therefore consists entirely of unitary gates,
is called a “unitary circuit”. A unitary circuit is reversible, and “deterministic” in the sense
that an idealised realisation of such a circuit will transform the state-space in the same way
each time. As this is a convenient feature for the design and analysis of quantum algorithms,
much of the literature on quantum algorithms concerns itself with unitary circuits, and much
of the design of quantum computers is concerned with how to reliably implement unitary
circuits.

2.2 ZX-diagrams

We provide a brief overview of ZX-diagrams. For a review see [47], and for a book-length
introduction see Ref. [13].

ZX-diagrams form a diagrammatic language similar to the familiar quantum circuit
notation. A ZX-diagram (or simply diagram) consists of wires and spiders. Wires entering
the diagram from the left are inputs; wires exiting to the right are outputs. Given two
diagrams we can compose them by joining the outputs of the first to the inputs of the second,
or form their tensor product by simply stacking the two diagrams [11, 12].

Spiders are linear operations which can have any number of input or output wires. There
are two varieties: Z-spiders depicted as green dots and X-spiders depicted as red dots:

α... ... := |0 · · · 0⟩⟨0 · · · 0| + eiα |1 · · · 1⟩⟨1 · · · 1|

α... ... := |+ · · · +⟩⟨+ · · · +| + eiα |- · · · -⟩⟨- · · · -|

(2)

Here |0⟩ and |1⟩ represent the standard basis vectors of C2 which are the eigenvectors of the
Pauli Z matrix; the states |±⟩ := 1√

2 (|0⟩ ± |1⟩) are sometimes referred to as the “Hadamard
basis”, and are eigenvectors of the Pauli X matrix. If you are reading this document in
monochrome or otherwise have difficulty distinguishing green and red, Z spiders will appear
lightly-shaded and X darkly-shaded. Note that here the number of inputs and outputs do
not have to match. When α = 0, we will not write the phase on the spider.
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▶ Example 2.1. We can immediately write down some simple state preparations and unitaries
in the ZX-calculus:

= |0⟩ + |1⟩ =
√

2 |+⟩

= |+⟩ + |-⟩ =
√

2 |0⟩

α = |0⟩⟨0| + eiα |1⟩⟨1| =: Zα

α = |+⟩⟨+| + eiα |-⟩⟨-| =: Xα

(3)

We can also represent the effects that are dual to the states above using spiders:

= ⟨0| + ⟨1| =
√

2 ⟨+|

= ⟨+| + ⟨-| =
√

2 ⟨0| (4)

In the diagrams above we write explicit scalars to represent a proportionality constant. In
this paper (non-zero) scalar factors will not be important. However, do note it is always
possible to represent any scalar as an explicit ZX-diagram (of constant size). For this reason,
our results will also apply to other proposed normalisations of the ZX generators, such as
those in Refs. [17, 14, 24].

We can compose ZX-diagrams in two ways, either horizontally by connecting the wires
together, which corresponds to the regular composition of linear maps, or vertically, which
corresponds to the tensor product of linear maps. Any ZX-diagram is built by composing
spiders (and permutations of wires) together in these ways.

On a formal level we consider a ZX-diagram D with n inputs and m outputs as a morphism
D : n → m in a category. This category is the compact-closed PROP (symmetric monoidal
category where the objects correspond to natural numbers and the tensor is addition) freely
generated by the Z- and X-spider generators. The interpretation as a linear map is then a
strongly monoidal functor into the category of Hilbert spaces, which is fully specified by the
interpretation of the spiders (2). This level of formality won’t be needed in this paper. The
interested reader can look at for instance Refs. [11, 9, 8].

A more intuitive way to view ZX-diagrams is as tensor networks [39]: the spiders are the
tensors, and a connection between spiders denotes a contracted index.

The Z- and X-spiders satisfy the following symmetries:

α = α
...

...

...... ...

= = ... α
... =α

... ......

...α
...

α = α
...

...

...... ...

= = ... α
... =α

... ......

...α
...

(5)

Here we are writing an equality of ZX-diagrams. This is to be understood as saying that
the linear maps these ZX-diagrams represent are equal. In particular: in each equality the
number of open wires extending to the left is the same, and similarly for the number of
open wires extending to the right. Because of these symmetries we can treat ZX-diagrams as
(labeled) undirected graphs: if we attach labeled nodes to the open wires at the input and
output to distinguish their roles, arbitrary topological deformations of the diagram do not
affect its interpretation as a linear map.

ICALP 2022
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It is often convenient to introduce a symbol – a yellow square – for the Hadamard gate.
This is defined by the equation:

=:π
2

π
2

π
2H = e−iπ/4 (6)

The CNOT gate also has a straightforward representation as a ZX-diagram:

CNOT =
√

2 (7)

Here we are allowed to draw a horizontal wire as per the symmetries (5) whether this wire is
an input or an output is irrelevant.

Seeing as we can represent Zα, H and CNOT gates as ZX-diagrams, we can represent
the gate set B of Eq. (1), and hence we can in fact represent any unitary as a ZX-diagram.
The above demonstrates that ZX-diagrams can be used as an alternative representation
for quantum circuits. However, ZX-diagrams are also more versatile than unitary circuits.
Consider for example the following construction of the CZ gate as a ZX-diagram:

CZ ∝ = . (8)

The right-hand-side demonstrates a different diagrammatic construction for CZ, that does not
immediately look circuit-like, with the Hadamard-box representing some sort of interaction
of two qubits rather than the evolution of a single qubit.

In fact, this versatility is reflected in the property that ZX-diagrams are universal for
all linear maps between any number of qubits [11]. To see this, note that we can represent
states as in Eq. (3). By composing tensor products of these states with some unitary we can
write down any quantum state. By the map-state duality of quantum theory (i.e. the Choi-
Jamiołkowski isomorphism), we can then also write every linear map, see for instance [47]
for the details.

The universality of the gate-set B and of the ZX-calculus means that any unitary operator
on some fixed number of qubits may be represented by some “gadget” in the ZX calculus,
consisting of some fixed diagram of finite size – though as the example of CZ in Eq. (8)
shows, there may also be “gadgets” which represent a unitary operator which do not consist
of sequential and parallel composition of gates. Indeed, even the representation of the CNOT
is by a simple “gadget” of two nodes, which is not describable as a composition of the other
single-node “gadgets”. In this respect, ZX-diagrams represent a more versatile notation than
a conventional circuit notation. This raises the question of how, given a representation of
some unitary U as a ZX-diagram, one might find another representation of U which consists
of just compositions from the universal gate-set B. This is the problem that this paper is
concerned with.

ZX-diagrams are more than just a notation for unitary circuits (and non-unitary operators
more generally): they may be used to perform computations. Specifically, ZX-diagrams come
with a set of graphical rewrite rules, which may be used to find equivalent diagrams which
represent the same state or operator, just as one might manipulate an algebraic expression.
This rewrite system is complete [37, 49]: unlike other circuit diagrams, one may show that
two equivalent ZX-diagrams are equivalent though transformations of diagrams alone. The
possible advantage of this is that ZX-diagrams can often concisely represent operators which
have a very large number of non-zero coefficients, and so that this reasoning can be done
efficiently while it could not be done using the matrices directly. For instance, one of the
rewrite rules we will use in this paper is spider fusion:
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β... ...

α ...... =... ... ...α+β

β... ...

α ...... =... ... ...α+β (9)

These rules say that we can fuse together adjacent spiders of the same colour.
While these rewrite rules are not immediately relevant to our results, the fact that it

is possible to compute with ZX-diagrams is the motivation for considering this particular
representation of unitary circuits, and also motivates the concept of considering different
ZX-diagrams which represent the same unitary transformation. We refer the interested
reader to [47] for an overview.

2.3 Circuit extraction

In the above section we saw that we can get ZX-diagrams directly from quantum circuits. We
can also get ZX-diagrams from considering measurement patterns in the one-way model [40].
In the one-way model of quantum computation we start with a large graph state, on which
we then do subsequent measurements, where the choice of measurement angle and axis
may depend on previous measurement outcomes. This leads to another universal model
of quantum computation. The one-way model can be straightforwardly represented in the
ZX-calculus [23, 4].

An important property of a one-way computation is that we can perform a computation
deterministically, so that we perform the same overall computation regardless of individual
measurement outcomes. A sufficient property for ensuring that deterministic processes are
possible on a given resource state is that its underlying graph has a property known as
gflow [6]. This is an efficiently verifiable combinatorial condition on the entangled resource.

When we represent a one-way computation with gflow as a ZX-diagram, the gflow ensures
that certain “local” parts of the diagram correspond to individual unitary gates, in a way
which can be iteratively translated into an actual unitary circuit. In this case we can
hence extract a unitary quantum circuit from the ZX-diagram that represents the one-way
computation. See for instance [22, 4, 41] for several variations on this idea.

Measurement-based quantum computation like the one-way model is a type of non-unitary
quantum computation. Another type of non-unitary model is given by doing lattice surgery
in the surface code [30, 20]. A lattice surgery procedure can also be represented as a ZX-
diagram [20]. Just as in the one-way model, there is a flow condition that ensures such a
calculation is deterministic, and that the resulting ZX-diagram can be step-by-step rewritten
into a unitary circuit [19].

We see that there are several quantum computational models that can be written in
terms of ZX-diagrams, which can be rewritten into a unitary quantum circuit efficiently
when they satisfy some condition. The type of flow condition required for these procedures
ensures that the diagram can’t get “too wild” in the middle, so that we can stepwise rewrite
the diagram into something that looks more like a circuit. A natural question to ask then is
how much we can weaken such additional conditions, and in particular if we can transform a
ZX-diagram into a circuit efficiently in the most general setting, where the only condition we
require of the ZX-diagram is that it is proportional to a unitary. The main result of this
paper is that such a general efficient procedure most likely does not exist.

ICALP 2022
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2.4 Background on computational complexity
Finally, we provide some background on computational complexity. We assume knowledge
of P, the boolean satisfiability problem SAT, oracle machines, NP and nondeterministic
Turing machines (NTMs) in general. Our results concern Cook reductions (in fact, usually
Cook[1] reductions). A Cook reduction from a problem X to another problem Z is an
algorithm for solving X using a deterministic Turing machine which halts in polynomial
time, but which may query an oracle (in the case of a Cook[1] reduction, exactly once) for Z.
This implies that, modulo some polynomial-time computation, the problem Z is at least as
hard as X; and that if Z ∈ P, we also have X ∈ P. In symbols we may write X ∈ PZ. Our
results will generally concern problems Z related to ZX-diagrams and problems X which are
at least NP-hard (i.e., they suffice to solve SAT).

Quantum circuits form a model of computation, which may be considered to generate
random outcomes through measurement operations. Note that, just as with the study of
boolean circuits as a model of computation, one often considers a quantum circuit to be
described by some polynomial-time computable procedure (a sort of “effective blueprint”),
which for a given n ≥ 0 requires time poly(logn) to produce a circuit taking inputs of
size n. While this constraint is not essential when considering a single circuit on its own
(the description of the circuit itself is a finite specification), this constraint prevents us
from considering what might otherwise seem like “quantum algorithms” for uncomputable
problems (in the same way that one must for boolean circuits). Additionally, to prevent
unbounded computational power from being hidden elsewhere in the description of a quantum
circuit, one often imposes constraints on the gates and measurements allowed in a circuit.
For instance, requiring that gates only act on a small constant number of qubits, and that for
parametrised gates like Zα the parameter α is efficiently computable. The class BQP consists
of decision problems which can be decided with bounded error (with error probability less
than, say, 1

3 ) by quantum circuit families satisfying these reasonable constraints. This class
represents the decision problems that can be practically solved by an (idealised) quantum
computer.

It is not expected that either of NP or BQP contain the other. So if we can reduce
in polynomial time (by many-to-one or oracle reductions) an NP-complete problem to
some problem X, then we expect X to be intractable for quantum computers. Certain
modifications of the quantum computational model do allow for more difficult problems to be
solved, however. For instance, PostBQP is the class of problems which may be solved with
bounded error by a uniform quantum circuit family, conditioned on some other measurement
yielding a specific outcome (which occurs with non-zero probability). This “conditioning”
restriction is known as postselection, and appears to be operationally very powerful, as
PostBQP coincides with the class PP, of decision problems for which a “yes” instance is
accepted on more than half of the branches of some NTM halting in polynomial time.

The class P is closed under oracles: a deterministic Turing machine equipped with an
oracle for some problem in P cannot decide more problems in polynomial time than a
normal Turing machine, so that PP = P. The same is true for BQP: any decision problem
solvable (with bounded error) by a uniform family of quantum circuits, can also be solved
(with bounded error) by some other family of quantum circuits without oracle access, so
that BQPBQP = BQP. The same is not true, however, for NP: it is not known whether
NPNP (the class of decision problems, for which there is an NTM with an oracle for a
problem in NP, halts in polynomial time and accepts in some branch precisely for “yes”
instances) is equal to NP. It is widely conjectured that Σp

2 := NPNP ≠ NP, and indeed
that Σp

3 := NPΣp
2 = NPNPNP

≠ NPNP, and so forth. The union of Σp
n := NPΣp

n−1 for all
n > 1, defines the class PH, called the polynomial hierarchy [42].
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The hardness results which we are most concerned with involve problems in #P: the
class of problems which may be reduced to counting the number of accepting branches of
some NTM on a given input. In particular, we are interested in the problem #SAT, of
counting the number of “solutions” x ∈ {0, 1}n to an instance of SAT, presented as a formula
for a function f : {0, 1}n → {0, 1}, where a “solution” satisfies f(x) = 1. The problem
#SAT is #P-complete [46], as is tensor contraction over the natural numbers [15], and
“strong simulation” (i.e., precise estimation of explicit measurement probabilities) of uniform
quantum circuit families [48]. The #P-completeness here means that a Cook reduction from
any of these problems to some problem Z, establishes that there is a Cook reduction from
any problem X ∈ #P to Z. in this case we say then that Z is “#P-hard”. The computational
power of #P is considered to be significantly greater than that of NP. In particular, Toda [43]
showed that PH ⊆ P#P.

3 Proof of hardness of Circuit extraction

We now present the central problem of our work.

CircuitExtraction
Input: A ZX-diagram D with n inputs and outputs and at most k wires and/or
spiders, and a set G of unitary gates (each acting on at most O(1) qubits).
Promise: The operator denoted by D is proportional to a unitary.
Output: Either (a) a poly(n, k)-size circuit C, expressed as a sequence of gates from
G and expressing an n-qubit unitary that is proportional to the operator denoted by
D, if such a circuit exists; or (b) a message that no such circuit exists, if that is the
case.

Note that here we make no assumptions on the specific gate set G, apart from the
computability of the coefficients as described in Section 2.1, and that the number of qubits
which is bounded by some constant. One might object to the requirement that the output
list of gates must be polynomially related to the size of the input ZX-diagram: however, as
we are interested in whether the extraction problem can be solved efficiently, the restriction
on the size of C follows from the time required to represent it as a list of gates.
▶ Remark 3.1. For a finite gate set we can consider the gate set G as being supplied as
concrete matrices, while for an infinite set we could consider it as being supplied as an
efficient procedure for translating a “gate label” into a matrix. For concreteness sake we can
take G = B, the gate set (1). This gate set contains the parametrised gate Zα. Formally a
circuit will then specify these phases α via some efficiently computable procedure.

The above problem can of course also be stated for any related graphical language for
quantum operations, such as the ZH-calculus [3] or the ZW-calculus [28]. Since such diagrams
can be efficiently translated into one another, these problems are of equivalent hardness.
There are some other reasonable variations we can consider of CircuitExtraction that we
will discuss in the next section.

We will now show that CircuitExtraction is #P-hard. We do this by building a diagram
that is proportional to a unitary based on a SAT instance, and showing that the resulting
matrix the diagram represents is uniquely determined by the number of solutions of the
instance.

Let f : {0, 1}n → {0, 1} be a Boolean formula with poly(n) terms. We say a bit string
x ∈ {0, 1}n is a solution to f when f(x) = 1. The first step will be to build a ZX-diagram
that implements the linear map Lf that takes n qubits to 1 qubit by Lf |x⟩ = |f(x)⟩. We
can of course represent f as a tree of AND and NOT operations so that to construct Lf it
suffices to find linear maps that implement AND and NOT on |x⟩.
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We may consider ZX diagrams for “quantum” versions of the boolean logical AND
gate and NOT gate, i.e., linear operators such that NOT|0⟩ = |1⟩, NOT|1⟩ = |0⟩, and
AND|x, y⟩ 7→ |x · y⟩. We could just appeal to the universality of ZX-diagrams to establish
that there are diagrams that represent these operations, but for completeness sake let us
give some concrete diagrams to realise these operations (up to a constant factor):

NOT = π AND ∝ - π
4 - π

2

- π
4

- π
4

π
4

The NOT gate is just an Xπ gate, but the AND is more complicated. It is based on the
representation of the CCZ gate from [35] that uses 4 T gates. Its correctness can be verified
by inputting |0⟩ and |1⟩ on the inputs and seeing that it has the correct action on all these
inputs.

By combining these diagrammatic gadgets for NOT and AND we can build the operation
Lf as a ZX-diagram using poly(n) spiders. Now, note that:

Lf

... =
∑

x

Lx|x⟩ =
∑

x

|f(x)⟩ = N0

2n
|0⟩ + N1

2n
|1⟩ =: a0|0⟩ + a1|1⟩ (10)

where N1 is the number of solutions of f , N0 = 2n −N1 is the number of “non-solutions” of
f , and we set a0 = N0/N and a1 = N1/N for N := 2n = N0 +N1. The resulting state is not
normalised: to normalise it we should multiply both sides by (a2

0 + a2
1)−1/2.

We use the “state” described in Eq. (10) as the input of a controlled operation. By
choosing the controlled operation appropriately, we will be left with something proportional
to a unitary. We may for instance consider the following diagram:

Lf

...
− π

2 (11)

To see this is unitary first recall that a Y rotation over an angle α applied to |0⟩ gives
Yα|0⟩ = cos( α

2 )|0⟩ + sin( α
2 )|1⟩. Hence the state of Eq. (10), when properly normalised, can

be written as Yα|0⟩ for α = 2 sin−1 ( a1√
a2

0+a2
1
). We can then calculate:

Lf

... − π
2

− π
2

∝ Yα =
− π

2

− π
2 α π

2 = α = α

(12)

In the above, we use the relation Yα = Z− π
2
XαZπ

2
, and some simple ZX-calculus rewrites

(namely that β = and α −α = ). Hence, the diagram of Eq. (11) is
proportional to an Xα rotation where α is uniquely determined by the number of solutions
to f . Note that this operation can be easily represented (with at most three gates) using a
gate-set such as {H,Zα,CNOT}, in which the set of values of allowed angles α include those
that may arise in the diagram of Eq. (12) for some number of solutions N1 to the formula f ;
such an operation will be representable using other gate-sets as well.1

1 Note that the gate-set described here cannot be a single, finite gate set for all values of n. However, the
angles α arising out of instances of satisfiability in this way can be specified in O(n) bits, precisely by
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▶ Theorem 3.2. CircuitExtraction is #P-hard.

Proof. #SAT is a #P-complete problem, so it suffices to show that we can count the number
of solutions to a Boolean formula using a call to an oracle which solves CircuitExtraction.
Given a Boolean formula f : {0, 1}n → {0, 1} with poly(n) terms, construct the diagram of
Eq. (11). The diagram here for Lf uses poly(n) of the diagrammatic gadgets for NOT and
AND, and hence the complete diagram consists of poly(n) spiders, each of which may be
restricted to having at most 3 wires. We may apply the CircuitExtraction oracle on this
diagram subject to a suitable gate set that can exactly generate the possible X-rotations Xα

which may arise. As C is a single-qubit circuit with at most poly(n) gates, we can calculate
the unitary it implements, up to any required precision 2−O(poly(n)), in polynomial time.
We know that the operation realised is of the form Xα, so to determine the value of N1, it
suffices to estimate the entries of the resulting Xα to within an error of 1

2
√

2 . Determining
the value of a1/

√
a2

0 + a2
1 to 2n bits of precision is sufficient to do this. ◀

▶ Corollary 3.3. If there is a polynomial time algorithm for CircuitExtraction, then
P = P#P. In particular, the polynomial hierarchy collapses to the first level: P = NP = PH.

Proof. If CircuitExtraction can be done in polynomial time, then the above shows that
we can solve #SAT in polynomial time, and hence NP ⊆ P#P = P. ◀

▶ Remark 3.4. Our construction of the diagram we use to prove our result might seem
somewhat arbitrary. To motivate it some more, first realise that instead of the function Lf ,
we could have used the standard unitary quantum oracle for a Boolean function Uf which
acts on n+ 1 qubits via Uf |x, b⟩ = |x, b⊕ f(x)⟩. We can get Lf out of Uf by post-selecting
the top n qubits to ⟨+|. Using the language of post-selection, we may then present a circuit
version of Eq. (11):

Uf

|+⟩

|+⟩

...

|0⟩

iX

⟨+|

⟨+|

⟨+|

...

(13)

The top part is calculating the number of solutions, while the bottom part ensures that this
information is fed into a qubit in such a way that the overall operation is proportional to a
unitary. The choice of iX is for the sake of simplicity: any unitary U that satisfies U = −U†

would also suffice, such as iY or iZ.
▶ Remark 3.5. Even though we can view the diagram as a post-selected circuit, this does not
seem to be where the power of the procedure comes from, as it is for instance in Aaronson’s
characterisation PostBQP = PP [1]. In our setting the probability of observing the “correct”
outcome is bounded from below by a constant, and does not depend on n. This means in
particular that by doing repeat-until-success we could with high probability implement the
circuit Eq. (13) on a quantum computer. However, this does not allow you to solve #SAT,
as adjacent possibilities of the rotation angle α are exponentially close. So rather, the power
of the procedure comes from getting an explicit description of the circuit which allows us to
exactly calculate the rotation angle.

characterising them in the way we have, by relating some integer ranging in {0, 1, . . . , 2n} via inverse
trigonometric functions. For remarks on what can be achieved with finite gate-sets, the reader may be
interested in the related problem ApproxCircuitExtraction, in Section 4.
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4 Variations on extraction

There are several variations on circuit extraction which we can consider, all of which also
turn out to be hard.

The essential trick we used in our proof is that our resulting circuit has just one qubit,
and hence a description of a unitary on it can easily be transformed into the actual unitary it
implements by just multiplying all the resulting matrices. But of course the same statement
remains true if we have slightly more than one qubit, say a logarithmic amount in the size of
the SAT instance. We also see that it then doesn’t matter if our circuit contains auxiliary
qubits, measurements, or classically-controlled corrections. All of these can be efficiently
calculated as long as the number of qubits is small enough. Therefore, let’s define the
following variant of circuit extraction.

AuxCircuitExtraction
Input: A ZX-diagram D with n inputs and outputs and at most k wires and/or
spiders, and a set G of unitary gates (each acting on at most O(1) qubits).
Promise: The operator denoted by D is proportional to a unitary.
Output: Either (a) a deterministic n-qubit circuit implementing the unitary of
the input ZX-diagram, described as a poly(n, k) length list of gates, auxiliary qubit
preparations, measurements, and classical corrections, with at most O(log k) auxiliary
qubits; or (b) a message that no such circuit exists, if that is the case.

▶ Theorem 4.1. AuxCircuitExtraction is #P-hard.

Proof. We construct the same diagram as in the proof of Theorem 3.2 to solve a #SAT
instance, except that we can no longer assume that the final circuit will act only on a single
qubit: instead it may act on up to O(log k) qubits, including the operations on the auxiliary
qubits. The size of the matrices involved when trying to calculate the resulting unitary is
O(2log poly(k)) = O(poly(k)), where here k is the size of the input diagram. We may then still
multiply the matrices together in polynomial time to obtain sufficiently precise estimates of
the coefficients. ◀

One might also object that requiring the output unitary to exactly represent the ZX-
diagram is too strong – in particular, impossible in general even with an approximately
universal, finite gate set – and wish for an approximate output instead. We say that a unitary
operator Ũ is an ε-approximation of another unitary U for some ε > 0, if ∥Ũ − eiαU∥ < ε

for some global phase α. Here, ∥M∥ denotes the operator norm of M : the largest singular
value of M .

ApproxCircuitExtraction
Input: A ZX-diagram D with n inputs and outputs and at most k wires and/or
spiders, a set G of unitary gates (each acting on at most O(1) qubits), and a precision
parameter ε > 0.
Promise: The operator denoted by D is proportional to a unitary.
Output: Either (a) a poly(n, k, log(1/ε))-size circuit C, expressed as a sequence of
gates from G and expressing an n-qubit unitary Ũ which is an ε-approximation to
either the operator denoted by D, or some operator proportional to it; or (b) a message
that no such circuit exists, if that is the case.

▶ Theorem 4.2. ApproxCircuitExtraction is #P-hard.
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Proof. For a given SAT instance f : {0, 1}n → {0, 1} we again construct the same diagram
as in the proof of Theorem 3.2 which denotes a unitary Xα , where α allows us to determine
the number of solutions to f . This diagram has poly(n) spiders. Set ε = 2−cn for some
large enough constant c. Then applying ApproxCircuitExtraction gives rise to a circuit,
which has poly(poly(n), log(1/2−cn)) = poly(n) gates. We can hence just multiply out the
matrices in order to determine the unitary U it implements. This unitary U approximates
Xα to degree 2−cn. Since the top left entry of Xα is real, we can first multiply U by the
appropriate global phase to ensure it is also real. If we have picked c large enough then the
entries of U are then within 1

2 2−n of that of Xα so that we can determine α by rounding to
the nearest allowed value. ◀

Note that, even for exponentially small angles α as might arise when f has few solutions,
circuits of polynomial size do exist for Xα when G is an approximately universal gate-set:
using the Solovay–Kitaev algorithm [36, 16] or any of its many refinements (see e.g. Ref. [5]
and references therein), we may synthesise circuits approximating Xα to any precision ε in
time scaling polynomially in log(1/ε). The difficulty of ApproxCircuitExtraction stems
from determining which angle α to approximate. One might nevertheless want to consider a
variation on ApproxCircuitExtraction with a polynomial dependence on 1/ε instead of
log 1/ε. We believe this variant will still be hard: see Remark 4.4.

Let us consider one final variation on extraction. One could argue that the reason that
we end up with a hard problem in these instances, is because requiring the output to be
some kind of circuit is too restrictive. The ultimate goal of circuit extraction is that we wish
for the ZX-diagram to be run on a quantum computer in order to obtain some probability
distribution over outcomes; but the complexity of CircuitExtraction and its variations
seems to arise from the complexity of finding a precise description of the procedure to do so.
Cutting out the middle-man, we may consider any process which takes as input a unitary
ZX-diagram, and produces bit strings as output whose distribution conforms with the one
we expect from the unitary.

UnitaryZXSampling
Input: A ZX-diagram D with n inputs and outputs and at most k wires and/or
spiders.
Promise: The operator denoted by D is proportional to some unitary U .
Output: A sample x ∈ {0, 1}n from a probability distribution, given by (or sufficiently
close to) |⟨x|U |0· · · 0⟩|2.

It is clear that UnitaryZXSampling is at least as hard as BQP: we could just input
a ZX-diagram that directly represents a quantum circuit, in which case this problem is
equivalent to simulating that circuit. The reason we write here that the probabilities just
have to be “sufficiently close” is because the exact number doesn’t matter for the following
theorem. (For instance: we could allow the probability to additively deviate by 1/3 from the
true value.)

▶ Theorem 4.3. There is a randomised polynomial reduction from NP to UnitaryZX-
Sampling. In other words: with access to a PromiseUnitaryZXSampling oracle – which
produces the expected output if the input diagram is unitary and arbitrary output otherwise –
we can with high probability solve NP-complete problems.
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Proof. SAT is an NP-complete problem. To randomly reduce NP it however suffices
to consider the problem USAT by the Valiant–Vazirani theorem [45]. USAT asks us to
determine whether a Boolean formula is satisfiable, given the promise that it has at most one
solution. Using the randomised reduction from SAT to USAT, we consider how to solve
USAT using a PromiseUnitaryZXSampling oracle.

Let f : {0, 1}n → {0, 1} be a Boolean formula that has at most one solution. Construct
the diagram Eq. (11) as in the previous proofs: as a unitary this implements the identity iff
f is not satisfiable, and Xα for some fixed angle α > 0 when f is satisfiable. In the latter
case, the value of α is exponentially small, but known precisely, as f has exactly one solution
in this case. So we can say the circuit implements Xs·α where s ∈ {0, 1} encodes whether f
is satisfiable or not.

Let M be the one-qubit (non-unitary) matrix that maps |0⟩ 7→ |0⟩ and Xα|0⟩ 7→ |1⟩,
so that in particular MXs·α|0⟩ = |s⟩. By universality of ZX-diagrams we can find some
(constant sized) diagram to represent M . We can then calculate:

Lf

...
− π

2

M
s · α M

=
(12) sπ

= sπ= (14)

Here the last step is just spider fusion (9). We see then that the ZX-diagram on the left in
Eq. (14) implements either the identity, or an Xπ operation (that is to say, a NOT operation),
depending on whether f is satisfiable. When we feed this ZX-diagram to an oracle for
PromiseUnitaryZXSampling, we get either the output 0 or 1, where a 0 indicates with
high probability that the circuit is the identity, and a 1 indicates that the circuit is a NOT
operation. We can repeatedly call the oracle to get additional samples to increase our
confidence in the result.

Now suppose f is a general instance of SAT, which may have more than one solution.
Using the Valiant–Vazirani reduction multiple times we probabilistically produce different
Boolean formulae f1, . . . , fm. If f is not satisfiable, then none of the fj will be satisfiable
either and this is what the PromiseUnitaryZXSampling will tell us as well. If f is
satisfiable, then a significant fraction of the fj will have a unique solution, so that our oracle
tells us they are satisfiable. For the other fj the oracle will return some arbitrary output. So
by picking m large enough there will with high probability be some fj that will be uniquely
satisfiable, and so we can conclude that f is satisfiable as well.

Hence, we can determine with arbitrary high probability whether a SAT instance is
satisfiable using enough calls to PromiseUnitaryZXSampling. ◀

▶ Remark 4.4. For ApproxCircuitExtraction we allowed a polynomial dependence on
log 1/ε for the circuit size. We believe this is reasonable as the Solovay–Kitaev algorithm
allows you to find a poly(log 1/ε)-sized circuit when approximating a unitary. However, one
can also consider the hardness of the problem when we allow the circuit size to depend on
poly(1/ε), or even when the circuit size does not depend at all on the error. One might
suspect that this could change the hardness of the problem. (As an analogy: one may compute
the permanent of an n×n matrix with positive entries to within a multiplicative error of ε in
time poly(n, 1/ε) [32], despite the exact problem being #P-complete.) However, note that if
we can approximately do circuit extraction up to some constant error (say ε = 1/10), we can
feed the resulting circuit to a quantum computer in order to solve UnitaryZXSampling.
Hence, even if we were to relax ApproxCircuitExtraction to allow an output circuit
of size poly(1/ε), an efficient algorithm for ApproxCircuitExtraction would imply that
NP ⊆ BQP by Theorem 4.3.
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▶ Remark 4.5. If we knew that the number of solutions to the SAT instance was some other
fixed number, then we could pick a different matrix M ′ to boost the state up to Xπ gate
as in the proof of Theorem 4.3. If we pick M ′ “slightly wrong”, then the resulting diagram
will just be close to Xπ. One might think that we could use such a procedure to try and
determine the number of solutions to f by doing binary search on the number of solutions,
and so boost the power of UnitaryZXSampling to #P. However, the problem with this is
that the resulting diagrams are not proportional to a unitary most of the time. There might
be some way around this issue, so that UnitaryZXSampling is still #P-hard: we leave this
as an open problem.

▶ Remark 4.6. Note that if we were to consider a version of UnitaryZXSampling, without
the promise of unitarity, such an oracle would be as powerful as PostBQP, since we can
represent any ZX-diagram as a post-selected quantum circuit (and conversely). In our case,
the power again comes not so much from postselection, as being able to take advantage of the
versatility of ZX-diagrams to gain access, in some way, to extract very precise information
regarding a #P problem.

5 Upper bounding the complexity of CircuitExtraction

Given that CircuitExtraction is #P-hard, one might ask whether or not the problem is
#P-complete (or more precisely: FP#P-complete since we are not making a decision but
rather outputting a circuit), in the sense that a Turing machine with access to a #P oracle
would be able to solve it, for some given polynomial upper bound on circuit size and some
given gate-set (perhaps with suitable restrictions), in polynomial time. We have not managed
to prove such a completeness result. We will however present the following upper bounds
on decision problem versions of circuit extraction, relying on techniques from [2] that relate
calculating amplitudes of quantum circuits to counting complexity problems.

First, consider the following decision problem: given a ZX-diagram, and a circuit,
determine whether the circuit implements a unitary which is proportional to that represented
by the ZX-diagram (whether by a factor of eiθ for some angle θ, or a more general complex
number). This problem is in coNP#P. To sketch why this is, consider a circuit C representing
a unitary U , and a ZX diagram D representing an operator V . If a0 and a1 are two non-zero
coefficients from U , and b0 and b1 are the corresponding (non-zero) pair of coefficients from
the matrix V represented by D, then U ∝ V only if a0/b0 = a1/b1 for all possible such pairs.
We also require that for any coefficient a in U which is zero, the corresponding coefficient b
of V is also zero. Taken together, this implies that for all corresponding pairs of coefficients
of U and V we should have a0b1 = a1b0. This is also sufficient for U ∝ V to hold. Now, a
#P oracle allows one to calculate coefficients2 of ZX-diagrams and circuits. Hence, if U ̸∝ V ,
an NTM with access to a #P oracle can non-deterministically find a witness that these
two operators are not in fact proportional to one another. Thus, determining whether a
circuit does not represent a unitary which is denoted (up to scalar factors) by a ZX-diagram,
is in NP#P.

The above result has a simple corollary: determining whether a ZX-diagram is proportional
to a unitary itself belongs to coNP#P. We may see this by the fact that a ZX-diagram
denoting an operator V , which is proportional to a unitary, satisfies V V † ∝ I. We may

2 In this case, it is not necessary to compute complete information about a0, a1, b0, and b1: it suffices
to compute information about individual components of the products a0b1 and a1b0 when considering
these as numbers in some number field over Q. See Ref. [2] for the details.
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represent V V † by composing the diagram D with its adjoint (which is the left-to-right mirror
image of D, with all phase angles negated). This composite diagram may easily be computed,
at which point we may ask whether the operator it represents is proportional to the identity
by a non-zero scalar factor. As we note above, this problem is in coNP#P.

Finally, using these ideas, we may consider the decision problem of determining for a
ZX-diagram D denoting an operator V and some gate set G and polynomial length bound
N , whether there exists a circuit of at most N gates over G which implements V (up to a
scalar). This problem is in NPNP#P

: for an NTM with access to an NP#P oracle, it suffices
to make a nondeterministic guess at a circuit of length N (where each gate may be the
identity operator, or some gate G ∈ G acting on a non-deterministically chosen set of qubits)
and then query the oracle to determine whether the circuit realises V . A deterministic Turing
machine, with access to an oracle for this problem, could then solve CircuitExtraction
in polynomial time using standard techniques, using the oracle to facilitate a search for a
circuit to realise D.

These observations represent the most straightforward approach to determining an upper
bound for the circuit extraction problem, and seem to place it at a level of complexity
significantly higher than P#P. If we conceive of #P as broadly representing the complexity of
evaluating a tensor network, a superficial analogy between CircuitExtraction and boolean
circuit minimisation [25, 7] would seem to suggest that CircuitExtraction is likely to be
hard for some complexity class higher than P#P (barring some collapse of complexity classes).

6 Conclusion

In this paper we studied the problem of extracting a quantum circuit description from a
unitary ZX-diagram. We’ve shown that this problem is #P-hard by reducing #SAT to an
application of circuit extraction. We’ve also studied some variations where we allow auxiliary
qubits, classical control, and/or approximate synthesis of the desired unitary, and have shown
that these problems are also #P-hard. In addition, we studied the hardness of a machine that
takes in a unitary ZX-diagram and outputs measurement samples from that ZX-diagram,
and have shown that such a machine allows one to probabilistically solve NP-hard problems.

A conclusion to be drawn from our results is that if we want some efficient procedure
to transform a unitary ZX-diagram into a quantum circuit, then we will have to have some
additional information about the structure of the ZX-diagram. In the known procedures for
efficient circuit extraction [4, 41, 19], this additional information takes the form of a kind
of “flow” on the diagram that prevents parts of the diagram from becoming too unwieldy.
An immediate question then is if there are other types of, more general, promises on the
structure of the diagram which then allow you to extract a circuit from it.

Aaronson showed that sampling from a post-selected quantum circuit is hard [1]. Our
results imply that some other tasks surrounding unitary post-selected circuits (that is,
circuits which perform a unitary transformation conditioned on some post-selection) are hard.
However, this hardness seems to stem not from the post-selection itself, as the post-selections
can be simulated with high probability in our case. Rather, the hardness seems to stem from
a hypothetical ability to find an equivalent, deterministic way to realise the same operation –
which implies an ability to extract difficult-to-access information about the input diagram.

A question related to circuit extraction from ZX-diagrams is circuit extraction from
deterministic measurement patterns (in for instance the one-way model or lattice surgery).
When we have a deterministic measurement pattern, we can represent each branch of the
computation by a ZX-diagram denoting a unitary. Our hardness proof does however not
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immediately translate to this setting, as it might be that the fact that all of these ZX-diagrams
are branches of the same measurement pattern forces some kind of structure on the diagrams
that might make it easier to rewrite them into circuits. The diagrams we used to show
hardness of circuit extraction are as far as we are aware not representable as branches of
some deterministic measurement pattern, so that we can’t use the same proof. We leave it
for future work to determine the hardness of extracting unitary circuits from deterministic
measurement patterns.
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