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Abstract
Over twenty years ago, Goldmann and Russell initiated the study of the complexity of the equation
satisfiability problem (PolSat) and the NUDFA program satisfiability problem (ProgramSat)
in finite groups. They showed that these problems are in P for nilpotent groups while they are
NP-complete for non-solvable groups.

In this work we completely characterize finite groups for which the problem ProgramSat can
be solved in randomized polynomial time under the assumptions of the Randomized Exponential
Time Hypothesis and the Constant Degree Hypothesis. We also determine the complexity of PolSat
for a wide class of finite groups. As a by-product, we obtain a classification for ListPolSat, a
version of PolSat where each variable can be restricted to an arbitrary subset. Finally, we also
prove unconditional algorithms for these problems in certain cases.
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1 Introduction

Non-uniform deterministic finite automata (NUDFA) are a well-known concept introduced by
Barrington [1], which proves its usefulness in describing important classes of languages defined
by Boolean circuits such as NC1 [2], ACC0 and AC0 [6]. Formally, a NUDFA (also called G-
program) over a group G “ pG, ¨ q computing an n-ary function f : t0, 1un

ÞÝÑ t0, 1u consists
of an l-ary polynomial p over G (i.e. the term over G with some variables replaced with
constants from G), a set S Ď G (the accepting set) and a sequence of l triples (instructions)
of the form xij , g

j
0, g

j
1y where 1 ď ij ď n and gj

0, g
j
1 P G for 0 ď j ď l (the number of the

triple) such that fpxq “ 1 iff ppg1
xi1
, g2

xi2
, . . . , gl

xil
q P S. Note that this definition of NUDFA

is not exactly the same as the one introduced in [1] but it is equivalent to the original one. In
particular, there are obvious linear time transformations between the two program definitions.
Moreover, this new definition does not change the class of languages recognized by NUDFA’s
over a fixed group.
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127:2 Satisfiability Problems for Finite Groups

The natural problem to decide whether the language recognized by a given NUDFA over
a fixed group is non-empty (ProgramSat) was introduced in [14] and considered together
with the problem of the existence of a solution to a given equation of polynomials over
some fixed finite group (PolSat – here the input consists of polynomials p and q with
variables x1, . . . , xn, the question is whether there is some a P Gn with ppaq “ qpaq). In
the case of (finite) groups PolSat can be reduced to ProgramSat. In [14] Goldmann and
Russell established a polynomial-time algorithm for ProgramSat in nilpotent groups and
concluded that also PolSat for nilpotent groups is in P. On the other hand, their proof that
PolSat for non-solvable groups is NP-complete implies NP-completeness of ProgramSat
for such groups. This last fact was proved directly in [4]. These results reflect the ability of
expressing all the functions ANDn by short polynomials of a particular group or by short
NUDFA programs. It was known that over any fixed non-solvable group ANDn can be
computed by NUDFAs (of size polynomial in n) [2], while over nilpotent groups NUDFAs
are able to compute ANDn only of bounded arity n [5]. Note also that over solvable but
non-nilpotent groups NUDFA programs are in fact able to compute all of the ANDn’s [2],
but sometimes these programs are of exponential length, namely 2Ωpnq [5].

It turned out that for a fixed group G the length of the shortest NUDFA program (over
G) computing ANDn plays a crucial role in classifying the computational complexity of
ProgramSatpGq. On the one hand, it was proved in [4] that, if the size of the shortest
NUDFA program over a group G computing ANDn is 2Ωpnq (following [4] we say that G is
AND-weak), then there exists a quasi-polynomial time algorithm solving ProgramSatpGq.
On the other hand, the same paper shows that, if G is AND-strong (i.e. for every n there
exists an efficiently computable NUDFA over G of polynomial size computing ANDn), then
ProgramSat for a wreath product G ≀ Zk is NP-complete if k ě 4. The problem is that
determining the length of a shortest NUDFA program over a fixed group G computing
ANDn is often highly non-trivial. Because of this difficulty with estimating the size of ANDn

(occurring, in fact, in many models of computations), [5] introduced the so-called Constant
Degree Hypothesis (CDH). In a circuit language it can be stated as follows: Consider a
circuit of depth three where the input gates are connected to bounded fan-in AND gates
followed by a layer of MODp gates and a MODq gate as output gate. Under CDH such a
circuit needs size 2Ωpnq for computing ANDn (see [15, 16]). In this paper we will only use
that CDH implies that groups of the form G “ Gp ¸N, where Gp is a p-group and N is a
nilpotent group, are AND-weak (see Theorem 10 in [5]).

The difficulty of determining which groups are AND-weak is probably the reason why
for almost 20 years after publishing [14] and [4] not too much progress has been made in
characterizing the complexity of ProgramSat and PolSat for solvable but non-nilpotent
groups. A number of results [19, 18, 11] were proved but all of them were restricted to
showing polynomial time algorithms solving PolSat for some subclasses of groups with
so-called Fitting length at most 2 (groups G having a nilpotent normal subgroup N such
that G{N is nilpotent), see [12] for a most comprehensive result. An important step towards
the full classification of the computational complexity of ProgramSat for finite groups was
made in 2020 when we proved in [20, 30, 23] that for every finite group of Fitting length at
least 3 the problem PolSat (and in a consequence also ProgramSat) is not in P, unless
the Exponential Time Hypothesis (ETH) fails. Shortly thereafter in [21] the first three
authors gave examples of groups with Fitting length 2 and non-tractable PolSat (and
ProgramSat), again, under the assumption of ETH.

This paper (among other things) gives a full characterization of finite groups for which
ProgramSat is tractable in randomized polynomial time. Our classification also works for a
related problem we call ListPolSatpGq: given polynomials p and q with variables x1, . . . , xn
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and a list of subsets A1, . . . , An Ď G, decide whether there is a “ pa1, . . . , anq P A1ˆ . . .ˆAn

with ppaq “ qpaq. While we are not aware of any previous results on ListPolSat for finite
algebras, it has been studied in the form of equations with rational constraints in [29] for
word equations and in [10] for groups. Our classification of the complexity of these problems
relies on both above-mentioned complexity assumptions (hypotheses): rETH and CDH.

▶ Theorem 1. Under the assumption of rETH and CDH, the problems ProgramSatpGq
and ListPolSatpGq for a finite group G are in RP if and only if there is a prime p and a
normal p-subgroup Gp of G with G{Gp being nilpotent.

Note that our results partially confirm the intuition behind CDH, which was stated over
30 years ago: we show that in all cases in which there is a chance for AND-weakness, it is
implied by CDH.

The proof of Theorem 1 is based on two main ideas. The first one is to show that, if
some group G is AND-weak, then ProgramSatpGq satisfies what we call the none-or-many
property: if a language recognized by a given program over G is not empty, then this
language contains at least a polynomial fraction of all words (see Lemma 10). This gives
us a randomized polynomial time algorithm solving ProgramSatpGq for groups which are
AND-weak. Now, assuming CDH we immediately obtain the upper bound from Theorem 1.
The second idea is to use polynomials witnessing the non-nilpotency of G to produce relatively
short (of subexponential size) programs (and polynomials) expressing CNF-formulas. This,
together with rETH ensures us that there is no polynomial time randomized algorithm
solving ProgramSat for a group G which does not have a normal p-subgroup Gp with
a nilpotent quotient G{Gp. In fact, we prove the main lemmas of this part of the proof
(Lemma 14 and Theorem 16) in the much more general setting of solvable algebras (in a
sense universal algebraic sense) from a so-called congruence permutable variety. We use two
powerful universal algebraic tools: Tame Congruence Theory [17] and Commutator Theory
[13] to prove Lemma 14, which tells us how to use non-nilpotency to produce polynomials
over non-nilpotent algebras which imitate polynomials over finite fields. We conclude with
a subexponential reduction from 3-CNF-SAT to ProgramSat which is based on the
polynomials of small degree from [3] that describe symmetric periodic functions and were
used to construct relatively small modular circuits for AND.

The situation for PolSat is more involved: indeed, we are far from getting full classifica-
tion. The main reason is that in this case we cannot restrict the arguments of a polynomial
to certain values. Hence, we need much more control to be able to use the polynomials from
[3] in the proof of Theorem 16. In order to state Theorem 16 in the group case, we write
CGpAq “ t g P G | ga “ ag for all a P A u for the centralizer of a normal subgroup A of G:

▶ Theorem 2. Let G be a finite solvable group with two minimal non-trivial normal subgroups
A and B such that |A| and |B| are coprime and CGpAq ¨ CGpBq ‰ G. Then the problem
PolSatpGq is not in RP under rETH.

▶ Corollary 3. If a finite group rG has a quotient as in Theorem 2, then PolSatp rGq is not
in RP under rETH.

Notice that the conditions for hardness in Theorem 1 and Theorem 2 are quite similar.
Indeed, if we are not in the RP-case of Theorem 1, then there are two different primes in
|rG,Gs| witnessed by two normal subgroups A and B of G (but contained in rG,Gs) of
coprime order with CGpAq ‰ G ‰ CGpBq as opposed to CGpAq ¨ CGpBq ‰ G in Theorem 2.
This subtle difference prevents us from giving a classification as Theorem 1 for the case of
PolSat (for details, we refer to the proof of Theorem 16). Moreover, Theorem 4 shows that
this is not due to our ignorance but there are indeed groups for which PolSat is in RP and
ProgramSat is not (under rETH).

ICALP 2022



127:4 Satisfiability Problems for Finite Groups

▶ Theorem 4. Let G be the semidirect product N¸H of nilpotent groups N and H and let
|G| have at most two prime factors. Then PolSatpGq is in RP under CDH. Moreover, if H
is abelian, PolSatpGq is in RP unconditionally.

Note here that the last sentence of Theorem 4 gives an unconditional upper bound
for the complexity of PolSat. This together with Theorem 1 enables us to classify the
computational complexity of PolSat for dihedral groups (i.e the groups of symmetries of
regular polygons, where Dm “ Zm ¸ Z2 denotes the symmetry group of the m-gon).

▶ Corollary 5 (Classification of dihedral groups).
(i) If m “ 2αpβ for α, β P N and an odd prime p, then PolSatpDmq is in RP.
(ii) Otherwise PolSatpDmq cannot be solved in RP under rETH (resp. P under ETH).

Furthermore, based on Theorem 2 we obtain (under the assumption of CDH and rETH)
a classification of PolSat for wreath products of nilpotent groups.

▶ Corollary 6. Let G and H be nilpotent groups. Under CDH and rETH, PolSatpG ≀ Hq
is in RP if an only if G is a p-group or |G| ¨ |H| has at most two prime divisors.

In [12] a question was asked about the computational complexity of PolSat for several
examples of groups. Among them were four groups of order 24 (complexity of PolSat for
groups of smaller order was known previously). In this paper we determine the computational
complexity of PolSat for three of these groups: D12, pZ2 ˆ Z2 ˆ Z3q ¸ Z2 and Z3 ¸Q,
where Q is the quaternion group. It turns out that PolSat for these groups is in RP (see
Corollary 5 and Example 21). On the other hand, S4, the fourth of the groups mentioned
above, was shown in [20, 23] to have non-tractable PolSat problem (assuming ETH).

2 Preliminaries

We use rm.. ns to denote the interval of integers tm, . . . , nu, the difference of sets is denoted
by A ´ B. We use standard notation from complexity theory, which can be found in any
textbook on complexity, e.g. [27]. In particular, we write RP for randomized polynomial
time (with one-sided error).

ETH and rETH. The Exponential Time Hypothesis (ETH) and its randomized version
rETH (see e.g. [9]) is the conjecture that there is some δ ą 0 such that every (randomized)
algorithm for 3-CNF-SAT needs time Ωp2δnq in the worst case where n is the number of
variables of the given 3-CNF-SAT instance. By the Sparsification Lemma [25, Thm. 1]
this is equivalent to the existence of some ϵ ą 0 such that every algorithm for 3-CNF-SAT
needs (randomized) time Ωp2ϵpm`nqq in the worst case where m is the number of clauses of
the given 3-CNF-SAT instance (see also [8, Thm. 14.4]). In particular, under ETH/rETH
there is no (randomized) algorithm for 3-CNF-SAT running in time 2opn`mq. Here we only
consider one-sided errors; clearly our results also remain true when understanding rETH
with two-sided error.

Group Theory. Throughout, we only consider finite groups G with underlying set (universe)
G. We follow the notation of [28]. For groups G and H we write H ď G if H is a subgroup
of G and H ă G if H is a proper subgroup of G. For a subset X Ď G we write ⟨X⟩ for the
subgroup generated by X. We write rx, ys “ x´1y´1xy for the commutator. The commutator
of subgroups X,Y ď G is defined by rX,Ys “ ⟨ rx, ys | x P X, y P Y ⟩.
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Let N ď H be a normal subgroup of G. We define the centralizer of H modulo N as
CGpH{Nq “ t g P G | rg, hs P N for all h P H u. The center of a group is ZpGq “ CGpGq.
Nilpotent groups can be defined inductively: G is nilpotent of class 1 if it is abelian; G is
nilpotent of class c if G{ZpGq is nilpotent of class c ´ 1. A group is called a p-group (for
p prime) if its order is pk for some k P N. It is well-known that a finite group is nilpotent
iff it is a direct product of p-groups (see e.g. 5.1.3 and 5.2.4 in [28]). We will use this fact
without further reference. If G “ NH where N is a normal subgroup of G and H a subgroup
with N XH “ t1u, G is called a semidirect product and we write G “ N¸H. Notice that
G{N “ H in this case. Elements of N¸H can be viewed as pairs pn, hq with n P N and
h P H with the multiplication rule pn1, h1qpn2, h2q “ pn1

h1n2, h1h2q where h1n2 “ h1n2h
´1
1

is an action (via automorphisms) of H on N. We will use the following classical result (see
e.g. [28, 9.1.2]):

▶ Fact 7 (Schur-Zassenhaus Theorem). If G is a group with a normal subgroup N and |N |
and |G{N| are coprime, then G “ N¸G{N.

To define the wreath product G ≀ H of groups G and H, we start with the direct power
GH “ t f : H Ñ G u. Now H has a natural left action on GH given by phfqpyq “ fph´1yq for
f P GH , h P H and y P H. Now the wreath product G ≀ H is defined to be the corresponding
semidirect product GH ¸H.

Algebra. A finite algebra A is a finite universe A together with a finite number of ki-ary
fundamental operations fi : Aki Ñ A for i P I. A term is a composition of fundamental
operations and a polynomial is a term with some variables replaced by constants from A; we
write PolpAq for the set of polynomials over A. An equivalence relation which preserves all
operations of A is called a congruence (more precisely, an equivalence relation α Ď AˆA is a
congruence iff for every fundamental operation f , say r-ary, of A and pa1, b1q, . . . , par, brq P α

we have pfpaq, fpbqq P α). We usually write a α
” b to express that pa, bq P α. For a congruence

relation α on A the congruence class containing an element a is denoted by a{α and A{α is
the set of all congruence classes of α. The congruences of an algebra A, when ordered by
inclusion (denoted by α ď βq, form the complete lattice with the top element 1A “ AˆA

and the bottom element 0A consisting of all pairs pa, aq for a P A. We frequently omit the
subscripts in 0A and 1A. Given two congruences β and γ, we write β_γ for the join, which is
the smallest congruence containing both β and γ. A congruence α is called join-irreducible iff,
whenever α “ β_ γ for congruences β and γ, already α P tβ, γu. Note that a join-irreducible
α has a unique congruence α´ such that α´ ă α and there is no β with α´ ă β ă α.

A normal subgroup N of a group G defines a congruence αN “
␣

pa, bq P G2
ˇ

ˇ a´1b P N
(

.
As G{N “ G{αN, we do not distinguish between congruences and normal subgroups.

The commutator rH,Ks of normal subgroups of a group has been generalized as an
operation on congruences for arbitrary algebras (see [13]) and then used to extend notions of
solvability and nilpotency onto such algebras. For a precise definition of the commutator
rα, βs of congruences α and β we refer to [13] and simply note that for groups it is the usual
commutator. We say that a congruence α centralizes β modulo γ iff rα, βs ď γ. The biggest
α which centralizes β modulo γ is denoted by pγ : βq and called the centralizer of β modulo
γ. In the group case this agrees exactly with the usual definition of the centralizer.

Another important concept of universal algebra derived from group theory is a Malcev
term: it is a term d satisfying dpy, x, xq “ dpx, x, yq “ y. The existence of such a term implies
many nice properties of an algebra (e.g. connected with the behaviour of commutators and
the congruence lattice). In the group case, the term dpx, y, zq “ xy´1z is an example of a
Malcev term. An algebra with a Malcev term is called a Malcev algebra.

ICALP 2022



127:6 Satisfiability Problems for Finite Groups

Some of our proofs use advanced tools of universal algebra: the Commutator Theory and
the Tame Congruence Theory as presented in the books [13] and [17]. The reader may find a
not too long introduction to the needed notions and facts from these theories in [24].

Satisfiability problems. For the definition of a G-program (aka. NUDFA over G) and
ProgramSat we refer to the introduction. Usually, we denote both polynomials and
G-programs by p and, for a simpler notation, also use p to denote the function f :
t0, 1un Ñ t0, 1u computed by the G-program. For a unified treatment of ListPolSat
and ProgramSat, we further define 2-ListPolSat which is like ListPolSat but the Ai

all may contain only two elements. Notice that in groups, as we can multiply by inverses, we
can assume that the input for these problems consists of only one polynomial (plus the lists
restricting variables). Thus, in the group setting we call a P Gn a solution to an instance ppxq
for PolSatpGq if ppaq “ 1. Likewise, we call some a P t0, 1un a solution for a G-program p
if ppaq “ 1 (recall that p computes a function t0, 1un Ñ t0, 1u). It is obvious that we can
treat 2-ListPolSat as a “subproblem” of ProgramSat in which NUDFA’s programs have
the following property: for every two instructions pij , gj

0, g
j
1q, pik, gk

0 , g
k
1 q of the program, if

ij “ ik, then gj
0 “ gk

0 and gj
1 “ gk

1 . Also note that even for general algebras PolSatpAq is
the special case of ListPolSatpAq where all the Ai are A. These observations and some
other well-known results are summarized as follows (see also [14, 4]):

▶ Lemma 8. Let G be a group. Then
If H “ G{N, then PolSatpHq ďdtt PolSatpGq.
If H ď G or H “ G{N, then ProgramSatpHq ďm ProgramSatpGq and
ListPolSatpHq ďm ListPolSatpGq.
PolSatpGq ďm 2-ListPolSatpGq
2-ListPolSatpGq ďm ProgramSatpGq and 2-ListPolSatpGq ďm ListPolSatpGq.

Here A ďm B denotes a polynomial-time many-one reduction and A ďdtt B denotes a
polynomial-time disjunctive truth-table reduction: one instance x for A is reduced to several
instances y1, . . . , yk of B such that x P A if and only if there is some i with yi P B.

3 CDH and the Many-Solutions Property

We wish to treat NUDFA programs and polynomials (with variables restricted to lists)
in a unified setting. For this we have to face the problem that programs are defined on
Boolean domains whereas the domain of a variable of a polynomial is (a subset of) a group.
So with an instance of ListPolSat {ProgramSat we associate an indicator function
f :

śn
i“1 Ai Ñ t0, 1u with |Ai| ě 2 (Ai Ď G resp. Ai “ t0, 1u) such that fpxq “ 1 iff x is a

solution to the corresponding NUDFA program/polynomial equation with lists. In these cases
we measure the size of f (denoted by sizepfq) by the size of the smallest program/polynomial
representing it (in the second case together with the sizes of lists). More precisely, in the
definition of the size we take the smallest possible representation for f .

Note that independently of the model the function f was created in, if we replace some
variables by constants, or restrict some of the Ai’s from the domain to smaller sets A1

i Ď Ai

with |A1
i| ě 2, we still obtain an indicator function (of possibly smaller arity) for another

ListPolSat {ProgramSat instance. Moreover, the size of a function after such operations
does not increase. This is the crucial property we use in Proposition 9 below. We will use
the following notation:
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f rxJ{as for a function obtained from f by substituting xj by aj for all j P J ,
f|B for a function obtained from f by restricting the domain of f , that is

śn
i“1 Ai, to

B “
śn

i“1 Bj (for Bj Ď Aj),
f rxi{as for the substitution of one variable.

Also we combine these notations, e.g. by writing f rxI{b, xi{as|B.
Our aim is to bound the size of a general function using previous knowledge about the size

for describing the AND function. In order to do so, we call f :
śn

i“1 Ai Ñ t0, 1u with |Ai| ě 2
for all i an n-ary spike if there is some a P

śn
i“1 Ai with fpaq “ 1 and for all x ‰ a we have

fpxq “ 0. Let γ : NÑ N be the function γpnq “ min t sizepfq | f is an n-ary spike u. Notice
that γ is monotone. Thus, its inverse γ´1pmq “ max tn P N | γpnq ď m u as a function
NÑ N is well-defined and also monotone.

Sometimes we will also write γProg,G or γPol,G when we want to specify the model.

▶ Proposition 9. Let f be an n-ary indicator function with domain A “
śn

i“1 Ai. Then
either f is constant zero or

ˇ

ˇf´1p1q
ˇ

ˇ { |A| ě 1{ |A|γ
´1

psizepfqq. In particular, if γpnq P 2Ωpnq,
then

ˇ

ˇf´1p1q
ˇ

ˇ { |A| ě 1{sizepfqOp1q.

Proof. Our proof relies on the same idea as [21, Theorem 6.1]; however, we have to overcome
the difficulty to deal with non-boolean domains. If f is constantly 1 the statement holds;
otherwise f is non-nonstant. The idea is to successively substitute constants for variables
while not increasing the density of f´1p1q in the full domain: If there is some i P r1 .. ns
such that for all a P Ai the function f rxi{as is not constant 0, we choose b P Ai such that
ˇ

ˇf rxi{bs
´1p1q

ˇ

ˇ is minimal among all
ˇ

ˇf rxi{as
´1p1q

ˇ

ˇ for a P Ai. Observe that f rxi{bs is not
a constant function and

ˇ

ˇf rxi{bs
´1p1q

ˇ

ˇ ď
ˇ

ˇf´1p1q
ˇ

ˇ { |Ai|. Now, we proceed by induction
eventually obtaining some I Ď r1 .. ns and b P

ś

iPI Ai such that f rxI{bs is not constant,
1 ď

ˇ

ˇf rxI{bs
´1p1q

ˇ

ˇ ¨
ś

iPI |Ai| ď
ˇ

ˇf´1p1q
ˇ

ˇ, and for every i P r1 .. ns ´ I there is some a P Ai

such that f rxI{b, xi{as is constant zero. Now, we can restrict all remaining variables to
two-element sets and we obtain a pn´ |I|q-ary spike. As during this process the size of f
does not increase, we obtain:

ˇ

ˇf´1p1q
ˇ

ˇ

|A|
ě

ś

iPI |Ai|
śn

i“1 |Ai|
“

1
ś

r1..ns´I |Ai|
ě

1
|A|n´|I|

ě
1

|A|γ
´1psizepfqq

. ◀

We say that ProgramSatpGq, ListPolSatpGq or PolSatpGq has the none-or-many
property if for any instance p of length m either p has no solution or a random assignment will
be a solution with 1{mOp1q probability (recall that we call a P Gn a solution to an instance
ppxq for PolSatpGq if ppaq “ 1 and similarly for ListPolSatpGq and ProgramSat).

▶ Lemma 10. Let G be a group with γProg,Gpnq P 2Ωpnq. Then, the problems
ProgramSatpGq, ListPolSatpGq and PolSatpGq have the none-or-many property.

In particular, ProgramSatpGq, ListPolSatpGq and PolSatpGq are in RP.

For the proof of Lemma 10 notice that a G-program for a spike is never longer than a
polynomial for a spike. Therefore, the requirement γProg,Gpnq P 2Ωpnq also can be used
for ListPolSat. The result for PolSat then follows by Lemma 8. For some polynomial
or G-program p we use Proposition 9 to get a bound

ˇ

ˇp´1p1q
ˇ

ˇ { |Gn| ě 1{ |G|γ
´1

p|p|q
P

1{ |G|Oplog|p|q
Ď 1{|p|Op1q.

▶ Remark 11. Notice that, if G is a group with γProg,Gpnq P 2Ωpnq, then by [4, Theorem 2]
ProgramSatpGq, ListPolSatpGq and PolSatpGq also can be solved in deterministic
quasi-polynomial time (notice that [4, Theorem 2] technically is not for ListPolSatpGq but
the proof can easily be adapted).

ICALP 2022
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CDH-based conditional algorithms. Let us recall the consequence of the constant degree
hypothesis (CDH) which has been proved in Theorem 10 of [5]:
(A) Let Gp be a p-group, N a nilpotent group and G “ Gp ¸N. If CDH is true, then every

G-program computing the n-ary AND function has length 2Ωpnq.
Note that [5] gives a proof of CDH in the case that N is abelian, see (C) in Section 6 below.
As an immediate consequence of Lemma 10 and (A), we obtain our next result.

▶ Corollary 12. Let Gp be a p-group, N a nilpotent group and G “ Gp¸N. If CDH is true,
then ProgramSatpGq, ListPolSatpGq or PolSatpGq have the none-or-many property.

In particular, if CDH is true, then ProgramSatpGq, ListPolSatpGq and PolSatpGq
are in RP.

4 Lower Bounds

In this section we will prove our hardness conditions. Instead of ProgramSat we will prove
intractability of 2-ListPolSat. For that we need go deeply into the local structure of finite
algebras (called sometimes as Tame Congruence Theory) as described in [17]. In our setting,
i.e. solvable Malcev algebras, this local structure, (relative to a pair of congruences α ă β,
i.e. α ă β with no congruence γ in between: α ă γ ă β) reduces to a vector space over a
finite field. The prime that is the characteristic of this field, is also called the characteristic
of the pair pα, βq. For a join-irreducible congruence γ we define its characteristic to be the
characteristic of the pair pγ´, γq.

Different characteristics of two join-irreducible congruences is one of two important
ingredients we use in the proof of Theorem 16. The second one is what we call congruence
collaboration: Two congruences α and β of an algebra A are called collaborating if there are
3 different elements a, c, b P A satisfying a α´β— c

β— b or a α— c
β´α— b, where x R— y stands for

px, yq P R. Notice that in a group case any two distinct non-trivial normal subgroups are
collaborating. We will also use following easy observation.

▶ Lemma 13. For two congruences φ ‰ 1A ‰ ψ of an algebra A we have φY ψ ‰ 1A.

Proof. Suppose φ Y ψ “ 1A ‰ φ. To see that then pa, bq P ψ for all a, b P A, note first
that pa, bq P ψ whenever pa, bq R φ. Now let pa, bq P φ. Obviously φ ‰ 1A gives an element
c P A ´ a{φ “ A ´ b{φ. But the previous case puts both pc, aq and pc, bq into ψ, so that
pa, bq P ψ as claimed. ◀

Note that Lemma 13 cannot be extended to more than 2 congruences: in a finitely dimensional
vector space the union of all 1-dimensional subspaces covers the entire space.

In the next Lemma we use the polynomial which witnesses the lack of a centralization to
produce a polynomial of the algebra which imitates a given polynomial over the field GF ppq.
A similar argument was used in [22].

▶ Lemma 14. Let A be a finite solvable Malcev algebra. Moreover, let γ be a join-irreducible
congruence of characteristic p such that pγ´ : γq ‰ 1. Then for:

every pair pe, aq P γ of different elements,
every subset J Ď A that is a union of pγ´ : γq-cosets,
and every n-ary polynomial wpxq of degree s over the field GF ppq that sends the set
t0, 1un to t0, 1u

there is an n-ary polynomial rwsγ,J,a,e of the algebra A such that
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both the size of rwsγ,J,a,e and the time needed to compute it are bounded by 2Ops¨log nq,
for any tuple x P An we have

rwsγ,J,a,epxq “

"

a, if wpbJpx1q, . . . , bJpxnqq “ 1,
e, if wpbJpx1q, . . . , bJpxnqq “ 0,

where bJ : A ÝÑ t0, 1u is defined by bJpxq “ 1 iff x P J.

Proof. First put γ‹ “ pγ´ : γq and let td0, d1, . . . , dru be a transversal of the quotient A{γ‹.
Moreover, pick a pγ´, γq-minimal set V and two elements pe1, a1q P γ|V ´ γ´. By N denote
the trace of V containing both e1 and a1. Note that pA|N q{γ´ is polynomially equivalent to
a one-dimensional vector space over a field of characteristic p. In fact we will use only its
additive structure ppA|N q{γ´,`q which is isomorphic to a certain power of pZp,`q. We can
assume that e1{γ´ is the neutral element of this group and that addition in this group is
realized (modulo γ´) by the polynomial x` y “ dpx, e1, yq, where d is a Malcev term for A.
Note that, despite the fact that the addition defined above is guaranteed to behave nicely
only modulo γ´, the properties of the Malcev term give us that e1 ` e1 “ dpe1, e1, e1q “ e1.
Since we will be summing the large amount of summands, to keep the sum relatively short
(i.e. of the length which is polynomial in the sum of the summands’ lengths) we will compose
the addition in a balanced binary way, i.e. the tree of a polynomial realizing the sum of m
summands is supposed to be the complete binary tree with m leaves – we will point out
when this is necessary. Now we use the argument for the second half of Lemma 3.1 in [22] to
show that for any pair pc, dq R γ‹ there is a binary polynomial scdpx, yq of A, satisfying

scdpe
1, yq “ e1, for all y P A,

scdpa
1, cq

γ´

” e1, (1)
scdpa

1, dq “ a1.

Because pe1, a1q R γ´ and γ is join-irreducible, we know that γ “ Θpe1, a1q. Now if pc, dq R γ‹

then rΘpc, dq,Θpe1, a1qs ę γ´ so that Exercise 6.6 in [13] supplies us with a binary polynomial

spx, yq of A such that spe1, cq
γ´

” spa1, cq but spe1, dq
γ´

ı spa1, dq. The second property gives
Θpspe1, dq, spa1, dqq “ γ Q pe1, a1q and therefore there is a unary polynomial p of A that takes
the pair pspe1, dq, spa1, dqq to pe1, a1q (see e.g. Lemma 3.2 in [24]). Now it should be easy to
check that for the polynomial scdpx, yq “ dppspx, yq,pspe1, yq, e1q we have

scdpe
1, yq “ dppspe1, yq,pspe1, yq, e1q “ e1,

scdpa
1, cq “ dppspa1, cq,pspe1, cq, e1q

γ´

” dppspe1, cq,pspe1, cq, e1q “ e1,

scdpa
1, dq “ dppspa1, dq,pspe1, dq, e1q “ dpa1, e1, e1q “ a1,

as claimed in (1).
Using the fact that rγ, γ‹s ď γ´ we can keep conditions (1) modulo γ´ by varying the

second variable modulo γ‹:

scdpe
1, yq “ e1, for each y P A,

scdpa
1, yq

γ´

” e1, for each y P c{γ‹,

scdpa
1, yq

γ´

” a1, for each y P d{γ‹.

(2)

Now we want c and d to range over our transversal of A{γ‹ so that for i ‰ j we put
sijpx, yq “ eV sdidj

peV pxq, yq, where eV is the unary idempotent polynomial of A with range
V . Obviously sij satisfies all the properties of sdidj listed in (2), but the polynomial sij has
its range contained in V and for any fixed y P A the mapping V Q v ÞÝÑ sijpv, yq P V is
either a permutation of the pγ´, γq-minimal set V or collapses γ|V to γ´, i.e. it is constant
modulo γ´ on γ|V -classes.
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Hence, as for v P N and y P di{γ´ the map v ÞÝÑ sijpv, yq is not a permutation, we have
si,jpv, yq

γ´

” si,jpa
1, yq

γ´

” e1 “ si,jpe
1, yq, which allows us to replace the second line in (2) by:

sijpv, yq
γ´

” e1, for each v P N and y P di{γ
‹. (3)

Now for each j “ 0, . . . , r put sjpv, yq “ si1jp. . . sir´1jpsirjpv, yq, yq . . . , yq, with ti1, . . . , iru “
t0, 1, . . . , ru ´ tju. Obviously sj has its range contained in V . We will show that

sjpe
1, yq “ e1, for each y P A,

sjpv, yq
γ´

” e1, for each v P N and y P A´ dj{γ
‹,

sjpa
1, yq

γ´

” a1, for each y P dj{γ
‹.

(4)

Indeed, the first and the last item follow directly from the definition of sj . For the middle
one, note that for v P N , y P diℓ

{γ‹, and v1 “ siℓ`1jp. . . sir´1jpsirjpv, yq, yq . . . , yq we have
v1

γ
” siℓ`1p. . . sir´1jpsirjpe

1, yq, yq . . . , yq “ e1, i.e. v1 P N so that (2) yields siℓjpv
1, yq

γ´

” e1, and
consequently sjpv, yq “ si1jp. . . siℓ´1jpsiℓjpv

1, yq, yq . . . , yq
γ´

” si1jp. . . siℓ´1jpe
1, yq . . . , yq “ e1.

This establishes (4).

Now for a positive integer m and a γ‹-block, i.e. the product Qi1,...,in “ di1{γ
‹ ˆ . . .ˆ

dim
{γ‹ Ď Am we define p1`mq-ary polynomial qi1,...,im

pv, y1, . . . , ymq by putting

qi1,...,im
pv, y1, . . . , ymq “ sim

psim´1p. . . si2psi1pv, y1q, y2q . . . , ym´1q, ymq.

Then we observe that due to (4) we have

qi1,...,im
pe1, yq “ e1, for all y P Am,

qi1,...,im
pv, yq

γ´

” e1, for v P N and y R Qi1,...,im
,

qi1,...,im
pa1, yq

γ´

” a1, for y P Qi1,...,im
.

(5)

Note that the length of the polynomial qi1,...,im is bounded by 2Opmq, as it is a composition
of m polynomials of the form sj each of which having the size bounded by the same constant
that depends only on A.

Now, if Q “ Q1 Y . . .YQl, with each Qi being a single n-dimensional γ‹-block, we sum
up (in a balanced binary way) the polynomials qipxq produced, as above, separately for each
block Qi to get qQpxq satisfying

qQpe
1, xq “ e1, for each x P Am,

qQpv, xq
γ´

” e1, if v P N and x R Q,

qQpa
1, xq

γ´

” a1, if x P Q.
(6)

The balanced way in which the qi’s are summed up guaranties that the resulting polyno-
mial qQ has its length bounded by 2Opmq, even if there are exponentially many summands
determined by the blocks contained in Am.

Now, let w be an n-ary polynomial over the field GF ppq of degree s. To produce the
associated polynomial rwsγ,J,a,e of A we first produce rwsγ,J,a1,e1 and then compose it with
a unary polynomial ppxq that maps a1 to a and e1 to e (the algebra A has such a polynomial
p as pe, aq P γ “ Θpe1, a1q). To produce the required n-ary polynomial rwsγ,J,a1,e1 we first
construct a p1` nq-ary polynomial pwqγ,J,a1,e1 satisfying

pwqγ,J,a1,e1pe1, xq “ e1, for each x P An,

pwqγ,J,a1,e1pv, xq “ e1, if v P N and wpbJpx1q, . . . , bJpxnqq “ 0,
pwqγ,J,a1,e1pv, xq “ v, if v P V and wpbJpx1q, . . . , bJpxnqq “ 1,

(7)

to put rwsγ,J,a1,e1pxq “ pwqγ,J,a1,e1pa1, xq, which, by the last two lines in (7), will do the job.
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To transform the polynomial wpxq over the field GF ppq into pwqγ,J,a1,e1pa1, xq, we first
assume that wpxq is given as sum of monomials and that the monomials of wpxq are of the
form xi1 ¨ . . . ¨ xim

(with m ď s) or are constant 1 (i.e., the monomials carry no leading
constant – we can achieve this by replacing 2x by x ` x etc.). When passing from w to
pwqγ,J,a1,e1pa1, xq the constant 1 will be represented by the unary polynomial eV pvq, while
the monomial xi1 ¨ . . . ¨ xim turns into qT mpv, xi1 , . . . ximq. Since J has been assumed to be
a join of γ‹-cosets, Jm is obviously a sum of γ‹-blocks. Note also that for y P Am we have
qJmpyqpa1, yq Ď e1{γ´ Y a

1{γ´ and, due to (6), we have

qJmpyqpa1, yq
γ´

” a1 iff y P Jm iff bJpy1q ¨ bJpy2q ¨ . . . ¨ bJpymq “ 1. (8)

Now we sum up (appropriate amount of) the polynomials eV pvq and appropriate polynomials
qQpv, xi1 , . . . xim

q to get pwqγ,J,a1,e1pa1, xq (again we have to be careful to use a balanced
summation tree). Next we are using the fact that there is an isomorphism of the group Zp

with the subgroup of ppA|N q{γ´,`q generated by a1{γ´ that sends 1 to a1{γ´. Applying
this isomorphism to (8) we get

pwqγ,J,a1,e1pe1, xq “ e1, for each x P Am,

pwqγ,J,a1,e1pa1, xq
γ´

” e1, if wpbJpx1q, . . . , bJpxnqq “ 0,
pwqγ,J,a1,e1pa1, xq

γ´

” a1, if wpbJpx1q, . . . , bJpxnqq “ 1.
(9)

Since there are at most Opnsq “ Op2s¨log nq monomials of degree at most s, while the
polynomials qJm representing them has sizes bounded by 2Opsq the length of pwqγ,J,a1,e1pv, xq

is at most 2Ops¨log nq.
Finally to pass from (9) to (7) we start with reminding that for a fixed x P An the

mapping V Q v ÞÝÑ pwqγ,J,a1,e1pv, xq P V either permutes the set V or collapses γ|V to γ´,
i.e. it is constant modulo γ´ on γ|V -classes. Thus, iterating pwqγ,J,a1,e1pv, xq in the first
variable a sufficient number of times, we may additionally assume that pwqγ,J,a1,e1pv, xq is
either the identity map on V or it is constant, modulo γ´, on γ|V -classes, depending on
whether wpbpxqq is 1 or 0. Thus, wpbpxqq “ 1 gives us the third equality in (7).

In the other case, pwqγ,J,a1,e1pv, xq collapses the entire trace N to e1{γ´ so that we have
pwqγ,J,a1,e1pv, xq

γ´

” e1 for v P N . Now we go down along the chain 0 “ θ0 ă θ1 ă . . . ă

θl “ γ´ to show that pwqγ,J,a1,e1pv, xq
θi
” e1 yields pwqγ,J,a1,e1pv, xq

θi´1
” e1. Since the unary

polynomial f : V Q v ÞÝÑ pwqγ,J,a1,e1pv, xq P V does not permute V , fpAq “ fpV q Ĺ V . This
gives that for each i “ l, . . . , 1 the polynomial f collapses θi to θi´1, as otherwise V would
properly contain a pθi´1, θiq-minimal set. But this is impossible in view of Lemma 4.30 in
[17]. Therefore, composing l times the polynomial f we get that this composition satisfies
pwqγ,J,a1,e1pv, xq “ e1 so that (7) is shown. This iteration inflates the size of pwqγ,J,a1,e1pv, xq

by raising it to the l-th power so that it is still bounded by 2Ops¨log nq. ◀

We are going to use the following fact that is borrowed from [3] (see [21, Fact 3.4] for a
recent proof).

▶ Fact 15. Let p be a prime and ν ě 1 be an integer. Then there is a polynomial wpxq P
GF ppqrxs of degree at most pν ´ 1, such that for x P t0, 1un

Ď Zn
p we have

wpxq “

"

0, if
ˇ

ˇx´1 p0q
ˇ

ˇ ” 0 modulo pν ,
1, else.

Now we are in a position to prove the following.
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▶ Theorem 16. Let A be a finite solvable Malcev algebra and α, β be two collaborating
join-irreducible congruences of different characteristics. Then, assuming the (randomized)
Exponential Time Hypothesis, the following hold:

if pα´ : αq _ pβ´ : βq ă 1, then PolSatpAq is not in P (resp. RP),
if pα´ : αq ă 1 and pβ´ : βq ă 1, then 2-ListPolSatpAq is not in P (resp. RP).

More precisely, we show that under rETH there is no randomized algorithm of running time
2opplog n{ log log nq

2
q for these problems. Before we prove Theorem 16, let us point out how it

implies Theorem 2 from the introduction:

Proof of Theorem 2. As A and B are minimal normal subgroups, they are join-irreducible.
As A ‰ B, they are collaborating and by assumption they are of different characteristic.
The condition CGpAq ¨ CGpBq ‰ G is just the same as pα´ : αq _ pβ´ : βq ă 1 written in a
group language (here A “ α, B “ β and α´ “ β´ “ t1u). Now we apply Theorem 16. ◀

Proof of Theorem 16. Since α, β are collaborating, without loss of generality we may assume
that there are 3 different elements a, e, b P A such that pa, eq P α and pe, bq P β ´ α. Let d
denote a Malcev term for A. Observe here that
(*) for u P ta, eu and v P tb, eu we have dpu, e, vq “ e iff u “ e “ v.
Indeed, dpa, e, eq “ a and dpe, e, bq “ b, while dpa, e, bq “ e would give b “ dpe, e, bq α

”

dpa, e, bq “ e, contrary to our choice of pb, eq P β ´ α.
To unify our arguments for both PolSatpAq and 2-ListPolSatpAq, observe that

α˚ “ pα´ : αq ă 1 and β˚ “ pβ´ : βq ă 1 gives α˚ Y β˚ ‰ 1, by Lemma 13. This allows us
to pick a pair pc, dq P A2 satisfying
[P] pc, dq R α˚ _ β˚,
[LP] pc, dq R α˚ Y β˚,
depending on which of the two problems PolSatpAq , 2-ListPolSatpAq we are considering.

With the help of Lemma 14 and Fact 15, to each 3-CNF-SAT formula Φpxq having n
variables x “ px1, . . . , xnq and ℓ clauses we are going to associate two n-ary polynomials
tΦpxq and sΦpxq of length 2Op

?
ℓ¨log ℓq such that

[P] Φpxq is satisfiable iff the equation tΦpxq “ e has a solution x in An,
[LP] Φpxq is satisfiable iff the equation sΦpxq “ e has a solution x in the set tc, dun.
To do that, let p and q be the characteristics of α and β, respectively, and pick µ, ν P N with
pµ´1 ď

?
ℓ ă pµ and qν´1 ď

?
ℓ ă qν . Now Fact 15 supplies us with ℓ-ary polynomials (with

their variables ci’s later to be substituted by the clauses Ci’s of the formula Φpxq):
wppc1, . . . , cℓq P GF ppqrcs, with degree bounded by pµ ´ 1,
wqpc1, . . . , cℓq P GF pqqrcs, with degree bounded by qν ´ 1,

which on c P t0, 1uℓ take values from t0, 1u, such that wppcq “ 0 iff
ˇ

ˇc´1 p0q
ˇ

ˇ ” 0 mod pµ

(resp. wqpcq “ 0 iff
ˇ

ˇc´1 p0q
ˇ

ˇ ” 0 mod qµ).
With a 3-ary clause Cpz1, z2, z3q we associate a polynomial C 1pz1, z2, z3q of degree 3 over

GF ppq (resp. GF pqq) in an obvious way, so that for example the clause z1 _ z2 _␣z3 goes
to 1´ pp1´ z1q ¨ p1´ z2q ¨ z3q. Now for Φpxq “

Źℓ
i“1 Ci we feed up the polynomials wp and

wq by substituting C 1
i for the variable ci to produce (at most 3ℓ-ary) polynomials wΦ

p pzq and
wΦ

q pzq of degrees bounded by 3ppµ ´ 1q and 3pqν ´ 1q, respectively. Note that again the new
polynomials wΦ

p (or wΦ
q ) on arguments from t0, 1u return values from the same set t0, 1u,

but this time 0 is taken exactly on valuations of variables in Φ under which the number of
unsatisfied clauses is divisible by pµ (or by qν , respectively). The important feature is that
(**) the polynomials wΦ

p and wΦ
q simultaneously return 0 on a valuation from the set t0, 1u

iff this valuation satisfies Φ.
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Indeed, wΦ
p pzq “ 0 “ wΦ

q pzq tells us that the number of unsatisfied clauses in Φ is divisible
both by pµ and qν . Since p ‰ q, this number is divisible by pµ ¨ qν ą ℓ. However, there are
only ℓ clauses, so that none of them is unsatisfied by z.

Now with the help of Lemma 14 we are able to define

tΦpxq “ d
´

“

wΦ
p

‰

α,Jα,a,e
pxq, e,

“

wΦ
q

‰

β,Jβ ,b,e
pxq

¯

,

where a and b are as above and the sets Jα,Jβ ‰ H, A are chosen to be sums of α˚- or β˚-
cosets, respectively. Since our assumption for the problem PolSat says that α˚_β˚ ă 1, one
way to ensure this is by putting Jα “ Jβ to be a single α˚_β˚-coset, e.g. d{pα˚_β˚q. Now,
combining Lemma 14 with the properties (*) and (**), we know that for x “ px1, . . . , xnq P A

n

we have tΦpxq “ e iff Φpbpx1q, . . . , bpxnqq “ 1, where b “ bJα
“ bJβ

.
In case of 2-ListPolSat the polynomial sΦ is defined in a similar way, i.e. we put

sΦpxq “ d
´

“

wΦ
p

‰

α,Jα,a,e
pxq, e,

“

wΦ
q

‰

β,Jβ ,b,e
pxq

¯

,

but this time we cannot ensure α˚ _ β˚ ă 1. Instead we can bound the range for the xi’s in
A to be smaller. In fact, we restrict these ranges to tc, du so that, by the very same argument
as before, the sets Jα “ d{α˚ and Jβ “ d{β˚ will do the job.

Finally, Fact 15 together with Lemma 14 ensure us that the sizes of
“

wΦ
p

‰

α,Jα,a,e
, and

“

wΦ
q

‰

β,Jβ ,b,e
, and therefore of both tΦpxq and sΦpxq, are bounded by 2Op

?
ℓ¨log ℓq. Thus,

ETH (resp. rETH) puts both the problems PolSatpAq and 2-ListPolSatpAq outside
P (resp. RP). Indeed, assume that PolSatpAq or 2-ListPolSatpAq could be decided in
(randomized) time 2opplog m{ log log mq

2
q where m is the length of the input polynomial. Then

we could decide a 3-CNF-SAT instance of length ℓ in (randomized) time

2opplog 2Op
?

ℓ¨log ℓq
{ log log 2Op

?
ℓ¨log ℓq

q
2

q “ 2op
?

ℓ
2

¨log2 ℓ{ log2
p
?

ℓ¨log ℓqq “ 2opℓq. ◀

5 A Dichotomy for ProgramSat

Proof of Theorem 1. First, consider the case that G has a normal p-subgroup Gp such
that G{Gp is nilpotent (possibly Gp is trivial). Then G{Gp “ Hp ˆH for some maximal
p-group Hp (also Hp might be trivial). We denote the preimage of Hp in G by rGp “ HpGp.
Since |H| and

ˇ

ˇ

ˇ

rGp

ˇ

ˇ

ˇ
are coprime, by the Schur-Zassenhaus theorem (Fact 7), we conclude

that G “ rGp ¸H and so, by Corollary 12, ListPolSatpGq and ProgramSatpGq are in
RP under CDH.

On the other hand, assume that G is not of the above form. If G is non-solvable,
ListPolSatpGq and ProgramSatpGq are NP-complete by [14], hence, not in RP under
rETH. If G is solvable but does not have a nilpotent normal subgroup N with nilpotent
quotient G{N, then [23] (for certain cases also [20, 30]) shows that PolSatpGq (hence, also
ListPolSatpGq and ProgramSatpGq) is not in P under ETH. The same proof shows that
these problems are not in RP under rETH (as a randomized algorithm for ListPolSatpGq
or ProgramSatpGq would lead to a randomized algorithm for 3-CNF-SAT).

Finally, let N denote the smallest normal subgroup such that G{N is nilpotent. Such an
N exists and it is nilpotent as we excluded already all the other cases. Moreover, we know
that |N | has at least two distinct prime divisors p and q since otherwise, we would be in the
RP case. Notice that N is the direct product of its Sylow subgroups. Thus, after taking
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a quotient (recall that ListPolSatpG{Hq ď ListPolSatpGq and ProgramSatpG{Hq ď
ProgramSatpGq, see Lemma 8), we may assume that there are precisely two non-trivial
normal subgroups A and B of G below N and |A| “ pα and |B| “ qβ for some α, β ě 1 and
N “ AˆB. Clearly A and B are join-irreducible.

Now assume for a contradiction that CGpAq “ G. Observe that CGpAq “ CGpN{Bq
because rg, as “ 1 if and only if rg, abs P B for b P B. This means that N{B is in the center
of G{B. Thus, as G{N “ pG{Bq{pN{Bq is nilpotent, this implies that G{B is nilpotent
contradicting that N is the smallest normal subgroup such that G{N is nilpotent.

By symmetry we also have CGpBq ‰ G. Since A and B are collaborating, we have verified
the requirements of Theorem 16 showing that 2-ListPolSatpGq is not in RP under rETH.
By Lemma 8 also ListPolSatpGq and ProgramSatpGq are not in RP under rETH. ◀

6 Unconditional Algorithms

Proving lower bounds for a non-trivial computational model is usually a challenging task.
Rare examples of results of such kind are either proven in some very restricted settings,
or rely on additional assumptions. The same issue affects programs over groups and their
expressiveness of AND, where essentially our knowledge can be summarized as follows:
(B) For a nilpotent group N there is a constant dN such that there is no N-program for the

n-ary AND function for n ě dN ([5, Corollary to Theorem 6]).
(C) If Q “ Gq ¸A for some q-group Gq and abelian group A, then γProg,Qpnq P 2Ωpnq

([5, Corollary to Theorem 9], recall the definition of γProg,Qpnq in Section 3).
Lemma 10 implies that these two cases lead to RP algorithms for ProgramSat, ListPolSat,
and PolSat. In fact, for ProgramSat for nilpotent groups and for PolSat, in both cases
(B) and (C), even polynomial time algorithms have been obtained [14, 12]; however, as for
now, ProgramSat in case (C) is only known to have quasi-polynomial time algorithms [4].

The main aim of the next theorem is to present a new lower bound result for groups that
are direct products of these presented in (B), (C), which then by Lemma 10 also leads to RP
algorithms. To the best of our knowledge this is the first result going beyond the cases (B)
and (C) in this direction.

▶ Theorem 17. Let N be a nilpotent group, A an abelian group, Q “ Gq ¸A for some
q-group Gq and let G ď NˆQ. Then γProg,Gpnq P 2Ωpnq.

The fact that this lower bound applies also to subgroups of the product will allow us to
construct a series of natural examples of groups for which we achieve efficient algorithms. Of
particular interest is the case that A is also a subgroup of N, so there is some non-trivial
interaction between N and Q.

The proof of Theorem 17 relies on a similar construction as used in [7] for showing that
for every low degree polynomial there is a large affine subspace on which the polynomial is
constant. For the proof we need some preparation: For a, b P

śn
i“1 |Ai| with a “ pa1, . . . , anq

and b “ pb1, . . . , bnq we define HammingDistpa, bq “ |t i P r1 .. ns | ai ‰ bi u|. The following
easy combinatorial observation has been used in slightly different forms in [4, Theorem 2] or
[21, Theorem 6.1].

▶ Fact 18. Let f be an n-ary indicator function with domain A “
śn

i“1 Ai with |Ai| ě 2
for all i and sizepfq ă γpnq. Let b P f´1p1q. Then there is some a P f´1p1q with b ‰ a and
HammingDistpa, bq ď γ´1psizepfqq ` 1.
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Proof. As sizepfq ă γpnq, there is some c P f´1p1q with c ‰ b. Writing b “ pb1, . . . , bnq and
c “ pc1, . . . , cnq that means bi ‰ ci for some i. Now, set b1

“ pb1, . . . , bi´1, ci, bi`1, . . . , bnq,
i.e., b1 agrees with b on all but the i-th coordinate. Consider some a with f rxi{cispaq “ 1 of
minimal Hamming distance k to b1 (note that possibly a “ b

1). Then setting all variables on
which a and b

1 agree to this constant and restricting all other variables xj (with aj ‰ bj) to
taj , bju, we obtain a k-ary spike. Thus, sizepfq ě γpkq and Fact 18 follows. ◀

Proof of Theorem 17. It is enough to consider G “ NˆQ, as lower bounds for subgroups
are inferred from their containing group. We can think of a G-program in the direct product
as a system of two separate programs sharing the same variables. Thus, let p be an N-
program and q a Q-program with variables x1, . . . , xn for a spike (i.e., the n-ary AND
function). Without loss of generality, we can assume that the all-zero vector 0 is the only
satisfying assignment to the conjunction of p and q (we can achieve this by simply replacing
variables by their negations if necessary – this does not increase the size of the programs).
Thus, we can also associate p,q with one-element accepting sets tspu, tsqu respectively. Now
we show that |q| P 2Ωpnq.

We will identify a vector b P t0, 1un with the subset b´1
p1q of r1 .. ns. By (B) there is a

constant d such that no N-program can be a d-ary spike. We are going to exploit this fact
by proving that, if q is relatively short, then there must be a relatively large boolean cube
on which p behaves like an AND. Note that for b1, . . . , bd P t0, 1un with bi X bj “ H for all
i ‰ j we can simulate the behaviour of p on B “

!

řd
i“1 αibi

ˇ

ˇ

ˇ
αi P t0, 1u

)

by creating a

new d-ary program p̂py1, . . . , ydq “ pp
řd

i“1 yibiq. Indeed, consider an instruction xj, g, hy of
p: if j is not in any of the bi just replace it with constant g and if j P bi for some i replace it
with the instruction xi, g, hy. To find a cube of our interest we start with the following claim.

▷ Claim 19. Let Q̃ “ Q2d . If |q| ă γProg,Q̃pn{d´ 1q, then there are b1, . . . , bd P t0, 1un with
bi X bj “ H for all i ‰ j such that qpxq “ 1 for all x P

!

řd
i“1 αibi

ˇ

ˇ

ˇ
αi P t0, 1u

)

Ď t0, 1un.

Proof. For k P r1 .. ds consider the group Qk “ Q2k . As having more coordinates clearly
gives more expressive power to a program, we have γProg,Q̃pnq ď γProg,Qk

pnq.
Assume we already constructed b1, . . . , bk for some k P r0 .. d´ 1s (for k “ 0 that means

we have no bi’s). Let Xk “
Ťk

i“1 bi. We additionally require by induction that |Xk| ď kn{d.
First observe that a new vector bk`1 which could extend the sequence b1, . . . , bk needs to
satisfy a system of 2k equations qpα1b1 ` α2b2 ` . . .` αkbk ` xq “ 1, one equation for each
α P t0, 1uk. As we expect bk`1 to have disjoint support with all preceding bi’s, we just put
xi “ 0 for i P Xk, so that each qαpxq “ qpα1b1 ` . . .` αkbk ` xq is of arity n´ |Xk|. Notice
that we can encode those 2k conditions as one program condition in the group Qk “ Q2k . To
produce a program q̂pxq “ pqαpxqqαPt0,1uk with associated accepting set tsqu

2k , we replace
each instruction of q with one in the new domain: whenever j R Xk we just replace xj, g, hy
with xj, pg, . . . , gq, ph, . . . , hqy and whenever j P bi (for some i P r1 .. ks) we replace it by the
constant pcαqαPt0,1uk , where cα “ g when αi “ 0 and cα “ h when αi “ 1.

Since |q̂| ď |q| ď γProg,Q̃pn{d ´ 1q and n ´ |Xk| ě
n
d , we know by Fact 18 that not

only 0 is a solution to q̂pxq “ 1 but we have another solution with Hamming weight at
most γ´1

Prog,Q̃p|q̂|q ` 1 ď γ´1
Prog,Q̃pγProg,Q̃pn{d ´ 1qq ` 1 “ n{d. We can clearly choose this

solution to become bk`1 and finish the induction by noticing that |Xk`1| “ |Xk| `
ˇ

ˇbk`1
ˇ

ˇ ď

kn{d` n{d “ pk ` 1qn{d. ◁

Finally, by (C), we know that γProg,Q̃pnq ě 2δn´C for some suitable constants δ and C.
Assume for a contradiction that |q| ď 2δn{d´C´d´1 ď γProg,Q̃pn{d ´ 1q. By Claim 19 we
obtain a boolean cube B “

!

řd
i“1 αibi

ˇ

ˇ

ˇ
pα1, . . . , αdq P t0, 1ud

)

Ď t0, 1un with qpBq “ t1u.
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It means that the equation ppxq “ 1 has only one solution 0 in the set B, otherwise the
system pppxq,qpxqq would not define the spike (with accepting set tpsp, sqqu). But now to
get a contradiction define a program p̂py1, . . . , ydq “ ppy1b1 ` . . .` ydbdq, which must be a
d-ary spike – contrary to the choice of d. ◀

As an immediate consequence of Theorem 17 and Lemma 10 we get the following.

▶ Corollary 20. Let N be a nilpotent group, A abelian, Q “ Gq ¸A for some q-group Gq

and let G ď N ˆQ. Then ProgramSatpGq, ListPolSatpGq or PolSatpGq have the
none-or-many property.

In particular, ProgramSatpGq, ListPolSatpGq and PolSatpGq are in RP.

Proof of Corollary 5. We can apply Corollary 20 to dihedral groups of order 2αpβ . Indeed,
each such group is a subgroup of D2α ˆDpβ , where D2α is nilpotent and Dpβ is isomorphic
to the semidirect product Zpβ ¸ Z2. So for each such group PolSat is in RP (if α P t0, 1u it
is even in P by [18, Corollary 2]). On the other hand, all other dihedral groups Dm have a
quotient Dk where k is odd and has exactly two different prime divisors. By [21, Theorem
7.1], PolSatpDkq is not in P under ETH. The same argument also shows that it is not in
RP under rETH. By Lemma 8 this transfers to Dm. We can see this also as a consequence
of Theorem 2: the minimal normal subgroups A and B are just cyclic subgroups of Zm of
coprime odd order. The centralizer of both of them is Zm ă Dm. Hence, Theorem 2 tells us
that PolSatpDmq is not in RP under rETH. ◀

The positive case of the proof of Corollary 5 obviously generalizes to groups G with a
nilpotent normal subgroup N of order pαqβ such that G{N is abelian of order pγ (just apply
the Schur-Zassenhaus Theorem, Fact 7). In particular, this applies as follows:

▶ Example 21. Note that the complexity of PolSat for three natural examples of order 24,
namely the dihedral group D12, the quaternion group Q acting over Z3 (i.e. Z3 ¸Q), and
the group pZ2 ˆ Z2 ˆ Z3q ¸ Z2 was left unsolved in [12, Problem 3]. Now our Corollary 20
covers all of these examples.

7 Extending Randomized Algorithms for PolSat

The smallest example of a group of Fitting length two for which we know superpolynomial
lower bounds under ETH is D15 [21]. We can embed D15 into the group D3 ˆD5 which has
polynomial-time decidable PolSat. On the contrary, both ProgramSat and ListPolSat
share superpolynomial complexities under ETH in this case. Moreover, for a given group
G, under assumption of CDH and ETH the problem ProgramSatpGq is in P whenever
ListPolSatpGq is. So, in a sense, complexities of ProgramSat and ListPolSat seem to
coincide, while the complexity of PolSat may differ in certain cases. It is due to the fact
that upper bounds for PolSat are not inherited by the subgroups in a very strong way:

▶ Observation 22. Every group of Fitting length two can be embedded into a group with
PolSat in RP under CDH. Moreover, if G is nilpotent-by-abelian, it can be embedded into
a group with PolSat in P (unconditionally).

Proof. Let G be a group of Fitting length two. Thus, there is some nilpotent normal
subgroup N such that G{N is nilpotent. Since N is nilpotent, we can write it as a direct
product N “ Gp1 ˆ ¨ ¨ ¨ ˆ Gpk

for pi-groups Gpi . Let Ni “
ś

j‰i Gpj . Then Gpi is a
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normal nilpotent subgroup of G{Ni and pG{Niq{Gpi is nilpotent. Thus, by Theorem 1
PolSatpG{Niq is in RP under CDH. Finally, notice that G embeds into the direct product
śk

i“1 G{Ni, which by Lemma 8 has also PolSat in RP under CDH.
For the second part just observe that, if G is nilpotent-by-abelian, G{Ni has a normal

pi-subgroup with abelian quotient and so by [12, Theorem 1] PolSat is in P. ◀

The unusual properties of PolSat allow us to create larger classes of groups with
polynomial time algorithms than for the other two problems.

Proof of Theorem 4. We start with some preparation and decompose G into smaller groups.
Since |G| has only two prime factors, say p and q, we can write N “ NqˆNp and H “ HpˆHq

where Np,Hp are p-groups and Nq,Hq are q-groups. Notice that Np and Nq are also normal
in G (this is because they are characteristic subgroups of N). We define subsets L,R, P,Q of
G by putting L “ NqHp, R “ NpHq, P “ NpHp and Q “ NqHq. Notice that we defined
indeed subgroups L,R,P, and Q since each of them is a product of a normal subgroup and
a subgroup (though they might not be normal subgroups) and LR “ G “ PQ. In particular,
we can write each g P G uniquely as g “ ℓr where ℓ P L and r P R. Moreover, they are all
semidirect products: L “ Nq ¸Hp, R “ Np¸Hq, P “ Np¸Hp and Q “ Nq ¸Hq, where
the actions of Hp and Hq on Np and Nq are the restrictions of the actions of H on N.

We will now prove the many-solutions property for G by restricting the variables to
the subgroups L and R. However, we cannot apply Corollary 12 directly; instead, we will
construct another group G1 with the desired properties for which we can apply Corollary 12
for ListPolSat.

We define G1 “ P¸Q where the action is given by the action of Hq ď Q on Np ď P
(and P and Nq ď Q commute). Notice that there is a canonical bijection (in general not an
isomorphism) between G and G1 and we have R ď G1. Moreover, notice that G1 meets the
requirements of Corollary 12 and G{Nq “ pNp ¸ pHp ˆHqq “ pNp ¸Hpq ¸Hq “ G1{Nq.

Our next step is to transform a polynomial q P PolpGq to a polynomial θpqq P PolpG1q

which, when restricting variables to R, has the same solution set (this makes sense as R is
both a subgroup of G and G1).

In order to do so, write qpxq “ g0h0ξ1g1h1 ¨ ¨ ¨ ξmgmhm where gi P Nq and hi P Hp

(i.e., gihi P L) and the ξi are constants from R “ Np ¸ Hq or variables. We define
θ : PolpGq Ñ PolpG1q by θpqq “ g0h0ξ1p

h0g1qh1 ¨ ¨ ¨ ξmp
h0¨¨¨hm´1gmqhm, where hg “ hgh´1

denotes the action of h P Hp on g P Nq (considered in G); we view hg as a fixed element of
Nq ď G1 and forget that it comes from the action in G. Notice that up to a constant factor
|θpqq| and |q| are equal. We say x is a solution of q if qpxq “ 1.

▷ Claim 23. Let x P Rn. Then x is a solution of q if and only if x is a solution of θpqq.

Proof. As G{Nq “ G1{Nq, we may assume that qpxq and θpqqpxq are both in Nq. Then, in
G we have

qpxq “ g0h0ξ1g1h1 ¨ ¨ ¨ ξmgmhm

“ g0
h0ξ1g1 ¨ ¨ ¨

h0ξ1¨¨¨hm´1ξmgm ¨ h0ξ1 ¨ ¨ ¨hm´1ξmhm

“ g0
h0ξ1g1 ¨ ¨ ¨

h0ξ1¨¨¨hm´1ξmgm.

On the other hand, in G1 we have

θpqqpxq “ g0h0ξ1p
h0g1qh1 ¨ ¨ ¨ ξmp

h0¨¨¨hm´1gmqhm

“ g0
ξ1ph0g1q ¨ ¨ ¨

ξ1¨¨¨ξmph0¨¨¨hm´1gmq ¨ h0ξ1 ¨ ¨ ¨hm´1ξmhm

“ g0
ξ1ph0g1q ¨ ¨ ¨

ξ1¨¨¨ξmph0¨¨¨hm´1gmq.

ICALP 2022



127:18 Satisfiability Problems for Finite Groups

Now, we can read the last line as an element of G interpreting hg “ hgh´1 again as the
action of h P Hp on g P Nq. As in G the ξi commute with hi modulo Np, which is contained
in the centralizer of Nq in G, we conclude that as an equality in G we have

θpqqpxq “ g0
h0ξ1g1 ¨ ¨ ¨

h0ξ1¨¨¨hm´1ξmgm.

This proves the claim. ◁

If a polynomial q P PolpGq has a solution with variables restricted to R, by Claim 23,
θpqq also has a solution with variables restricted to R. Now, we can apply Corollary 12
(in the CDH case) or Corollary 20 (if H is abelian), which gives us that a polynomial
fraction 1{|θpqq|Op1q of all assignments y P Rn are satisfying for θpqq (i.e., there are at least
|R|

n
{|θpqq|Op1q satisfying assignments among |R|n possible assignments). By Claim 23 also

at least a polynomial fraction 1{|q|Op1q of all assignments y P Rn are satisfying for q.
By symmetry the same argument applies to a polynomial with variables restricted to L:

if a polynomial q P PolpGq with variables restricted to L has a solution, at least 1{|q|Op1q of
all assignments y P Ln are satisfying for q.

Since G “ LR, we can show the none-or-many property for G as follows: assume p
is a polynomial with a solution a “ pa1, . . . , anq. We can write each ai “ ℓiri with ℓi P L

and ri P R. Let q be the polynomial obtained from p by substituting every variable xi

by ℓiyi where yi is a new variable. We know that q has a solution when restricting all
variables to R – hence, it has at least |R|n{|p|Op1q solutions in Rn. For each of these solutions
r1 “ pr1

1, . . . , r
1
nq P R

n again we obtain a polynomial r from p by replacing each variable
xi by zir

1
i where zi is a new variable restricted to L. Now, r has at least |L|n{|p|Op1q

many solutions. Since any of these solutions gives us a solution to p, we obtain at least
|R|

n
{|p|Op1q

¨ |L|
n
{|p|Op1q solutions for p.

Therefore, picking random assignments leads to an RP algorithm (like in Lemma 10). ◀

A straightforward (though not the smallest) example for Theorem 4 not covered by
previous results is the wreath product Z6 ≀ Z6 “ pZ6q

6 ¸ Z6. By Theorem 4 we know
that PolSat is in RP for this group, whereas ProgramSat is not in RP under rETH by
Theorem 1.

As we show in Corollary 6, we can even classify the complexity of PolSat for arbitrary
wreath products. Before we outline the proof, let us remark that, if G is nilpotent and H
abelian, then PolSatpG ≀ Hq is in RP as soon as G is a p-group or |G| and |H| only have
the same two prime divisors – without requiring CDH. This is an immediate consequence of
Corollary 20 and Theorem 4.

Proof sketch of Corollary 6. The CDH-based RP algorithms are due to Corollary 12 and
Theorem 4. Being not in the RP case, |G| has at least two prime divisors q ‰ r. Moreover,
|H| has a third prime divisor p ‰ q, r. Thus, we will find a wreath product pZq ˆ Zrq ≀ Zp

as a subgroup of a quotient of G ≀ H. By [26, Theorm 4.1.10] neither Zq ≀ Zp nor Zr ≀ Zp is
nilpotent. Thus, we can find covering pairs of normal subgroups Bq,Aq and Br,Ar such
that CZq≀Zp

pBq{Aqq ‰ Zq ≀ Zp. It remains to lift them to G ≀ H and apply Corollary 3. ◀

8 Conclusion

In this paper, under the assumptions of rETH and CDH, we fully classified in which cases
the computational complexity of ProgramSat and ListPolSat for finite groups is in RP.
It seems that eliminating the assumptions (especially rETH) can be really hard, but there is
still a chance to improve Theorem 1 by showing polynomial time deterministic algorithms
instead of the randomized ones:
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▶ Problem 1. Is there a polynomial time deterministic algorithm solving ProgramSatpGq
and ListPolSatpGq for G such that there is a prime p and a normal p-subgroup Gp of G
with G{Gp being nilpotent?

We took a step towards full classification of the complexity of PolSat for finite groups.
Our study reveals that the interactions of normal subgroups of different characteristics play
a crucial role. To conclude we present an example of a group of Fitting length 2 for which
the complexity of PolSat can not be resolved by our results.

▶ Problem 2. What is the computational complexity of PolSatpGq for

G “ pZ3 ˆ Z5 ˆ Z7q ¸ pZ2 ˆ Z2q,

where the first Z2 acts on Z3 ˆ Z5 by inversion and the second Z2 acts on Z5 ˆ Z7 by
inversion?

Note that the group G from Problem 2 has Z3, Z5, and Z7 as normal subgroups of different
characteristics with CGpZpq ‰ G for p “ 3, 5, 7 and CGpZpq ¨ CGpZqq “ G for p ‰ q. In
particular, the last property prevents us from using Theorem 2 or Corollary 3. On the other
hand, four different primes dividing the size of G blocks Theorem 4 from being applied here.
Moreover, also Corollary 12 cannot be applied here since the largest nilpotent quotient of G
is Z2 ˆ Z2 and the kernel of the projection is clearly not a p-group.
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