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Abstract
A linearly ordered (LO) k-colouring of an r-uniform hypergraph assigns an integer from {1, . . . , k}
to every vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently,
for r = 3, if two vertices in an edge are assigned the same colour, then the third vertex is assigned a
larger colour (as opposed to a different colour, as in classic non-monochromatic colouring). Barto,
Battistelli, and Berg [STACS’21] studied LO colourings on 3-uniform hypergraphs in the context of
promise constraint satisfaction problems (PCSPs). We show two results.

First, given a 3-uniform hypergraph that admits an LO 2-colouring, one can find in polynomial
time an LO k-colouring with k = O(

√
n log log n/ log n), where n is the number of vertices of the

input hypergraph. This is established by building on ideas from algorithms designed for approximate
graph colourings.

Second, given an r-uniform hypergraph that admits an LO 2-colouring, we establish NP-hardness
of finding an LO 3-colouring for every constant uniformity r ≥ 5. In fact, we determine the precise
relationship of polymorphism minions for all uniformities r ≥ 3, which reveals a key difference
between r = 3, 4 and r ≥ 5 and which may be of independent interest. Using the algebraic approach
to PCSPs, we actually show a more general result establishing NP-hardness of finding an LO
(k + 1)-colouring for LO k-colourable r-uniform hypergraphs for k ≥ 2 and r ≥ 5.
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1 Introduction

The computational complexity of the approximate graph colouring problem [16] is an out-
standing open problem in theoretical computer science. Given a 3-colourable graph G on n

vertices, is it possible to find a k-colouring of G? On the tractability side, the current best
is a polynomial-time algorithm of Kawarabayashi and Thorup [23] that finds a k-colouring
with k = k(n) = n0.199 colours. On the intractability side, the state-of-the-art for constant
k has only recently been improved from k = 4, due to Khanna, Linial, and Safra [24] and
Guruswami and Khanna [17] to k = 5, due to Barto, Bulín, Krokhin, and Opršal [5]. The
authors of [5] introduced a general algebraic methodology for studying the computational
complexity of so-called promise constraint satisfaction problems (PCSPs). Going beyond the
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work in [5], for graphs with a promised higher chromatic number than three, the current best
intractability results for constantly many extra colours is due to Wrochna and Živný [27],
building on the work of Huang [22].

The situation is much better understood for the approximate hypergraph colouring problem
with the classic notion of a colouring leaving no edge monochromatic. A celebrated result of
Dinur, Regev, and Smyth established that finding an ℓ-colouring of a 3-uniform hypergraph
that is k-colourable is NP-hard for every constant 2 ≤ k ≤ ℓ [14] (and this also implies the
same result on r-uniform hypergraphs for every constant uniformity r ≥ 3).

Different variants of approximate hypergraph colourings, such as rainbow colourings,
were studied, e.g. in [2, 10, 18, 19, 12], but most complexity classifications related to these
problems are open. Some intractability results are also known for colourings with a super-
constant number of colours. For graphs, conditional hardness was established by Dinur and
Shinkar [15]. For hypergraphs, intractability results were obtained by Bhangale [9] and by
Austrin, Bhanghale, and Potukuchi [1].

Barto, Battistelli, and Berg have recently studied systematically a certain type of PCSPs
on non-Boolean domains and identified a very natural variant of k-colourings of 3-uniform
hypergraphs, called linearly ordered (LO) k-colourings [4]. A k-colouring of a 3-uniform
hypergraph with colours [k] = {1, . . . , k} is an LO colouring if, for every edge, it holds that,
if two vertices are coloured with the same colour, then the third vertex is coloured with a
larger colour. (In the classic non-monochromatic colouring, the requirement is that the third
vertex should be coloured with a different colour, but not necessarily a larger one.) An LO
2-colouring is thus a “1-in-3” colouring. Barto et al. asked whether finding an LO k-colouring
of a 3-uniform hypergraph is NP-hard for a fixed k ≥ 3 if the input hypergraph is promised
to admit an LO 2-colouring.

Contributions

While we do not resolve the question raised in [4], we obtain non-trivial results, both positive
(algorithmic) and negative (hardness).

First, we present an efficient algorithm for finding an LO colouring of a 3-uniform
hypergraph with super-constantly many colours if an LO 2-colouring is promised to exist.
In more detail, for a given 3-uniform hypergraph H on n vertices that admits an LO 2-
colouring, we present a polynomial-time algorithm that finds an LO k-colouring of H with
k = k(n) = O(

√
n log log n/ log n) colours. As mentioned above, there are only a few results

on hypergraph colourings with super-constantly many colours.

Second, we establish intractability of finding an LO 3-colouring of an r-uniform hypergraph
if an LO 2-colouring is promised for every constant uniformity r ≥ 5. In fact, we prove
a more general result that finding an LO (k + 1)-colouring of an r-uniform hypergraph
admitting an LO k-colouring is intractable for every constant k ≥ 2 and r ≥ 5. This result
is based the algebraic approach to PCSPs and in particular on minions [5]. As a matter
of fact, we establish the precise relationships of the polymorphism minions of the LO 2- vs
3-colourings on r-uniform hypergraphs for r ≥ 3, which may be of independent interest. This
gives the advertised intractability result but also an impossibility result on certain types of
polynomial-time reductions (namely pp-constructions [5]) between LO 2- vs 3-colourings on
r-uniform hypergraphs for r ≥ 5 and r = 3, 4.
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2 Preliminaries

An r-uniform hypergraph H is a pair (V, E) where V is the set of vertices of the hypergraph,
and E ⊆ V r is the set of edges of the hypergraph. In our context the order of the vertices in
each edge is irrelevant. We will allow vertices to appear multiple times in edges; however, we
exclude edges of form (v, . . . , v) – such edges would be impossible in the problems we will
consider anyway. We say that two distinct vertices u, v are neighbours if they both belong to
some edge e ∈ E. Let N(u) be the set of neighbours of u. Call a set S an independent set of
a hypergraph H if and only if no two members of S are neighbours.

A linearly ordered (LO) k-colouring of an r-uniform hypergraph H = (V, E) is an
assignment c : V → [k] of colours from [k] = {1, . . . , k} to the vertices of H such that, for
each edge (v1, . . . , vr) ∈ E, the sequence c(v1), . . . , c(vr) has a unique maximum. We omit
the “k-” if the number of colours is unimportant.

▶ Example 1. Consider the hypergraph H = (V, E), where V = [4] = {1, 2, 3, 4} and
E = {(1, 2, 3), (1, 2, 4)}. The assignment c = {1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 2} is an LO
2-colouring, and c′(x) = x is an LO 4-colouring. On the other hand, c′′(x) = 3 − c(x) is
not an LO colouring at all, since both of the edges have two equal maximal elements when
mapped through c′′.

Finding an LO k-colouring, for constant k ≥ 3, of a 3-uniform hypergraph that admits an
LO 2-colouring was studied by Barto et al. [4] in the context of promise constraint satisfaction
problems (PCSPs), which we define next.

2.1 Promise CSPs

Promise CSPs have been introduced in the works of Austrin, Guruswami, and Håstad [3] and
Brakensiek and Guruswami [11]. We follow the notation and terminology of Barto, Bulín,
Krokhin, and Opršal [5], adapted to structures consisting of a single relation.

An r-ary structure is a pair D = (D, RD), where RD ⊆ Dr and D is finite. We call D the
domain of the structure, and RD the relation of the structure. For two r-ary structures A, B,
a homomorphism from A to B is a function h : A → B such that, for each (a1, . . . , ar) ∈ RA,
we have (h(a1), . . . , h(ar)) ∈ RB. This is written h : A → B. If we wish to assert only the
existence of such a homomorphism, we write A → B.

We now define the search version of the fixed-template PCSP problem. Given two r-ary
structures A → B, the problem PCSP(A, B) is the following: given an r-ary structure
I → A, find a homomorphism h : I → B. The decision version of this problem is: given an
r-ary structure I, output yes if I → B, and output no if I ̸→ A. Observe that the decision
version can be reduced to the search version: to solve the decision version, run an algorithm
for the search version, then check if it gives a correct answer. We will use PCSP(A, B) to
mean the decision version when proving hardness, and the search version when showing
algorithmic results.

LO colourings can be readily seen as PCSPs. First, observe that an r-uniform hypergraph
can be seen as an r-ary structure. Second, define an r-ary structure LOr

k with domain [k],
and whose relation contains a tuple (c1, . . . , cr) if and only if the sequence c1, . . . , cr has a
unique maximum. Then, an LO k-colouring of an r-uniform hypergraph H is the same as a
homomorphism from H (viewed as an r-ary structure) to LOr

k. Thus, the problem of finding
an LO k-colouring of an r-uniform hypergraph that has an LO 2-colouring is the same as
PCSP(LOr

2, LOr
k).

ICALP 2022
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In Section 3, we study the computational complexity of PCSP(LO3
2, LO3

k(n)), were k(n)
depends on the input size; here n denotes the number of vertices of the input (3-uniform)
hypergraph. As in Example 1, this is obviously possible for k(n) = n. As our first contribution,
we will present an efficient algorithm with k(n) = O(

√
n log log n/ log n).

In Section 5, we study the computational complexity of PCSP(LOr
k, LOr

k+1) for constant
uniformity r ≥ 3 and constant arity k ≥ 2. We establish intractability of PCSP(LOr

k, LOr
k+1)

for r ≥ 5 and k ≥ 2, cf. Corollary 23 (for k = 2) and Corollary 25 (for k ≥ 2) in
Section 5. These results are based on the algebraic theory of minions [5], briefly introduced
in Section 4. In fact, we establish the precise relationships of the polymorphism minions of
PCSP(LOr

2, LOr
3) for all r ≥ 3 (cf. Theorem 22 in Section 5).

In the full version of this paper [25] we show stronger results, namely NP-hardness of
PCSP(LOr

k, LOr
ℓ) for every constant k and ℓ with 2 ≤ k ≤ ℓ and every constant uniformity

r ≥ ℓ − k + 4.

3 Algorithmic results

Within this section, we will prove algorithmic results for finding LO colourings of 3-uniform
hypergraphs that have LO 2-colourings, using a non-constant number of colours. We will
describe two algorithms: a simpler one that uses O(

√
n) colours; and a more complicated

one that builds on the first, that uses O(
√

n log log n/ log n) colours. The initial algorithm is
inspired by Wigderson’s algorithm for the approximate graph colouring problem [26]: like
that algorithm it considers a “sparse case” and a “dense case”; however, our algorithm is
more complex due to the fact that an LO colouring is different to a normal graph colouring.
A particularly salient difference is that our algorithm picks a high-degree edge, whereas
Wigderson’s algorithm picks a high-degree vertex. Our second, more complex algorithm
refines the first one by selecting more than one edge at a time (similarly to the work of Berger
and Rompel [8], although, like Wigderson’s algorithm [26], they choose several vertices at a
time, not several edges as we do), and by using an improved algorithm for finding independent
sets (studied by Halldórsson [21]).

In both algorithms, the general strategy will be to colour some vertices with large colours,
then to recursively colour the rest of the hypergraph. The exact choice of “large colour” is
made only after the recursive colouring (since only at that point do we know how large the
colours need to be). We will not keep track of the bookkeeping needed to do this, in order to
make the algorithms easier to explain.

3.1 First algorithm
Fix some 3-uniform hypergraph H = (V, E), with n vertices and m edges. Suppose that this
hypergraph admits an LO 2-colouring c∗. We first show a way to extend a partial colouring
consistent with c∗ until it intersects each edge of H in zero, one or three vertices.

▶ Lemma 2. There exists a polynomial-time algorithm that, given a partial LO 2-colouring c

that coincides with c∗ on its domain, extends c into a partial LO 2-colouring extend(c) that
does not intersect any edge of H in exactly 2 vertices and remains consistent with c∗ on its
domain. The algorithm will also run in polynomial time even if c isn’t consistent with c∗ or
even an LO 2-colouring, in which case it will return an arbitrary extension of c.

Proof. The following algorithm suffices: while c intersects an edge (x, y, z) in precisely two
vertices (say x, y), extend c with z 7→ 4 − c(x) − c(y). This algorithm clearly extends c until
it intersects no edges in precisely 2 vertices. Furthermore, since c∗ is an LO 2-colouring, for



T.-V. Nakajima and S. Živný 128:5

each edge (x, y, z) we have c∗(x) + c∗(y) + c∗(z) = 4. Thus, if we assume that c is initially
consistent with c∗, we can show that each extension keeps c consistent with c∗. We conclude
by noting that each extension can be done in polynomial time, and that there are at most n

extensions – and that this is the case even if c doesn’t coincide with c∗ on its domain, or
isn’t even an LO colouring. ◀

We now show how to find a large independent set if the hypergraph is sparse enough.

▶ Lemma 3. If every edge in H contains a vertex with at most ∆ ≥ 0 neighbours, then we
can find an independent set with n/(∆ + 1) = Ω(n/∆) vertices in polynomial time. This
holds even if ∆ happens not to be an integer.

Proof. This condition implies that there exists at least one vertex with most ∆ neighbours: if
there exists at least one edge then one of the vertices in it must be this vertex; otherwise, all
vertices have 0 ≤ ∆ neighbours. By adding that vertex to the independent set, removing it
and its neighbours from the hypergraph, and repeating this process until no vertices remain,
we can find the required independent set. ◀

Our algorithm will colour a certain part of the hypergraph with O(1) colours, colouring
the rest recursively, with strictly smaller colours. The following lemma gives us a sufficient
goal for the size of what must be coloured in one step.

▶ Lemma 4. A recursive procedure that colours Ω(
√

n) vertices (where n refers to the current
size of the hypergraph, not the initial size) with O(1) colours at each step will use O(

√
n)

colours overall.

Proof. Let T (n) be the number of colours needed to colour a hypergraph with at most n

vertices. It is sufficient to prove that T (n) = O(
√

n) for n a power of two, since for arbitrary
n we can consider the next largest power of two, which is at most 2n. For some such n,
consider how many colours are needed to colour half the hypergraph. At each step until
the hypergraph is halved, we colour at least Ω(

√
n/2) = Ω(

√
n) vertices with O(1) colours.

Equivalently, we colour half the hypergraph with O(
√

n) colours. Thus we deduce that
T (n) ≤ T (n/2)+O(

√
n). Applying the Master method of Cormen et al. [13] to the recurrence

U(n) = U(n/2) + α
√

n, where α comes from the constant hidden in the recurrence for T , we
can deduce that T (n) = O(

√
n). (Applying this method requires satisfying the “regularity

condition”:
√

n/2 ≤ c
√

n for some c < 1 and large enough n; this holds for c = 1/
√

2.) ◀

These results together help us create the algorithm we want.

▶ Theorem 5. There exists a polynomial-time algorithm that finds an LO O(
√

n)-colouring
for a hypergraph with an LO 2-colouring.

Proof. We provide a recursive algorithm.
1. If the hypergraph has no edges (x, y, z) where all of x, y and z have at least

√
n neighbours,

then find an independent set with Ω(n/
√

n) = Ω(
√

n) vertices, colour that independent
set with a large colour, and recursively colour the rest of the hypergraph with smaller
colours. This is possible by Lemma 3.

2. Otherwise, let (x, y, z) be an edge where all of x, y and z have at least
√

n neighbours.
3. Iterate over u ∈ {x, y, z}.
4. Construct a partial colouring cu where cu(u) = 2 and cu(v) = 1 for v ∈ N(u).
5. Construct extend(cu), and check if it is a partial LO 2-colouring. This is possible by

Lemma 2.

ICALP 2022
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6. If it is, colour the vertices in the domain of extend(cu) with two large colours, depending
on the colours they got in extend(cu) (i.e. for some large enough C, colour v with
C + extend(cu)(v)), and then recursively colour the rest of the hypergraph with smaller
colours.

We establish the correctness of this algorithm by showing its soundness and completeness.
We begin by showing completeness. The only way we could possibly fail to return

something is if, for all u ∈ {x, y, z}, the function extend(cu) is not a proper partial LO
2-colouring. However, for at least one u ∈ {x, y, z}, it must be the case that c∗(u) = 2, and
thus that c∗(v) = 1 for v ∈ N(u). Thus, for this value of u, c∗ is consistent with cu on its
domain, and therefore extend(cu) must be a proper partial LO 2-colouring.

Now we show soundness: whenever we return a colouring, we return an LO O(
√

n)-
colouring. We first show that we return an LO colouring. Observe that in the case covered
in step 1, all the edges that do not intersect the independent set that we find are properly
coloured recursively. Furthermore all edges that do intersect the independent set intersect it
in exactly one vertex. This vertex is assigned a colour larger than the colours of the other
vertices in the edge, so all such edges are also properly coloured. In the case covered in steps
2–6, note that if we return anything, then extend(cu) is a proper partial LO 2-colouring. Note
that all edges intersecting the domain of extend(cu) in zero or three vertices are correctly
coloured (either recursively, or since extend(cu) is an LO colouring). Furthermore, since the
vertices in the domain of extend(cu) are assigned large colours, those edges that intersect this
domain in one vertex are also properly coloured. Thus in this case, since no edge intersects
extend(cu) in two vertices, we also return a proper LO colouring. Thus in all cases we return
an LO colouring.

To see that we return an LO O(
√

n)-colouring, note that in all cases we colour Ω(
√

n)
vertices with O(1) colours at each iteration (in the first case because we colour an independent
set with this size; in the second because cu must be defined on N(u), which has at least

√
n

vertices). Thus, by Lemma 4, we use O(
√

n) colours overall.
We conclude by noting that this algorithm has recursive depth at most n, and does

polynomial work at each step – thus it works in polynomial time. ◀

3.2 Second algorithm

As before, fix some 3-uniform hypergraph H = (V, E), with n vertices and m edges, and
suppose that this hypergraph admits an LO 2-colouring c∗. We first reduce our general
problem to the special case of finding an LO 3-colouring for a linear 3-uniform hypergraph
that admits an LO 2-colouring. We call a hypergraph linear if no pair of vertices belongs to
more than one edge.

▶ Example 6. The hypergraph from Example 1 is not linear since vertices 1 and 2 belong to
two edges.

The key property of linear hypergraphs we will use is the following: if a vertex v in an
r-uniform hypergraph has d neighbours v1, . . . , vd, then v is contained in at most d edges.
This is the case since each pair (v, vi) can belong to at most one edge, and (v, . . . , v) cannot
appear as an edge. If H weren’t linear, then v could have belonged to at least

(
d

r−1
)

edges,
one for each set of r − 1 of the d neighbours. (In fact, there are even more possible edges,
since vertices are allowed to appear multiple times.)
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▶ Theorem 7. If H is a 3-uniform hypergraph with an LO 2-colouring, then we can find, in
polynomial time, a linear 3-uniform hypergraph H ′ with an LO 2-colouring, such that an LO
3-colouring of H can be computed from an LO 3-colouring of H ′ in polynomial time.

Proof. The following procedure is sufficient: while H contains two edges of form (x, y, z) and
(x, y, z′), identify z with z′. This works because z and z′ must be coloured the same in any
LO 2-colouring of H (as, in any LO 2-colouring c, c(x) + c(y) + c(z) = c(x) + c(y) + c(z′) = 4,
and thus c(z) = c(z′)). Thus H ′ also remains LO 2-colourable. Furthermore, by reversing the
identifications, any LO 3-colouring of H ′ can be made into an LO 3-colouring of H. Finally,
this procedure clearly takes polynomial time and results in a linear hypergraph H ′. ◀

Thus we will assume that H is linear. We now show how to find a large independent
set when the hypergraph is sparse enough, using a series of lemmata and an algorithm of
Halldórsson [21].

▶ Lemma 8. Suppose each edge of H has at least one vertex with at most ∆ ≥ 1 neighbours.
Then H has Ω(n) vertices with at most ∆ neighbours.

Proof. Let x be the number of vertices with at most ∆ neighbours. We will show x = Ω(n)
by double counting |E|. Note that each edge in |E| contains at least one vertex with at most
∆ neighbours; furthermore, each such vertex belongs to at most ∆ edges (since H is linear).
Thus |E| ≤ x∆. Now note that each vertex with more than ∆ neighbours belongs to more
than ∆/2 edges, and each edge contains 3 vertices. Thus 3|E| > (n − x)∆/2. Therefore
(n − x)∆/6 < x∆, which implies x = Ω(n). ◀

▶ Lemma 9. Suppose all vertices in H have at most ∆ ≥ 1 neighbours. Then H has an
independent set with at least Ω(|E|/∆) vertices.

Proof. Let S be the set of values mapped to 2 by c∗; note that S is an independent set.
Consider the mapping f : V → N, where f(u) is zero if u ̸∈ S, and otherwise is equal to the
number of edges that u belongs to. Since each edge contains exactly one vertex mapped to 2
by c∗, we deduce that

∑
u∈V f(u) =

∑
u∈S f(u) = |E|. Now, each value of f(u) is at most ∆

(since H is linear); thus we deduce that |S|∆ ≥
∑

u∈S f(u) = |E|, and thus |S| ≥ |E|/∆. ◀

▶ Theorem 10 ([21, Theorem 4.4]). There exists a polynomial-time algorithm that, if given
a graph G with average degree d, which has an independent set with size s, can find an
independent set with size Ω(s log d/d log log d).

The primal graph P (H) of H is a graph with the same vertices as H, and where two
vertices are linked by an edge if and only if they are neighbours in H. Since the primal graph
preserves neighbours, an independent set in H is independent in P (H) and vice versa.

▶ Example 11. The primal graph P (H) of the hypergraph H from Example 1 has {1, 2, 3, 4}
as vertices and {(1, 2), (2, 3), (3, 1), (2, 4), (4, 1)} as edges.

▶ Theorem 12. There exists a polynomial-time algorithm that, if given a linear hypergraph
H with an LO 2-colouring where each vertex has most ∆ = O(

√
n/ log log n) neighbours, can

find an independent set with Ω(
√

n log n/
√

log log n) vertices.

ICALP 2022
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Proof. Consider the average degree d of the primal graph P (H) of H. Observe that the
independent sets of H and P (H) coincide. Suppose d ≤ 6

√
n. Thus P (H) has O(n 6

√
n) edges,

and thus O(n/ 6
√

n) = o(n) vertices of P (H) have degree larger than 3
√

n. By a simple greedy
algorithm applied to the Ω(n) vertices of P (H) with degree at most 3

√
n (repeatedly select

the vertex with minimum degree), we can find an independent set of P (H) (and thus of H)
with Ω(n/ 3

√
n) vertices, which is sufficient.

Now suppose d ≥ 6
√

n. Note that there exists an independent set with s = Ω(|E|/∆)
vertices. Since each edge of H gives rise to at most three edges of P (H), we deduce
that d = O(|E|/n). Thus s/d = Ω(|E|/∆)/O(|E|/n) = Ω(n/∆) = Ω(

√
n log log n). Also,

log d/ log log d ≥ log 6
√

n/ log log 6
√

n = Ω(log n/ log log n) for large enough n. Thus, the
independent set algorithm from [21] applied to P (H) will give us an independent set of P (H)
(and thus of H) with Ω(

√
n log n/

√
log log n) vertices. ◀

▶ Corollary 13. If we are given instead a hypergraph where each edge has a vertex with at
most ∆ = O(

√
n/ log log n) neighbours, then, by applying the algorithm of Theorem 12 to

the subhypergraph formed by taking only the Ω(n) vertices with at most ∆ neighbours, we can
still get an independent set with size Ω(

√
n log n/

√
log log n).

As before, our algorithm will be recursive. We now investigate how many vertices must
be coloured in one recursive step.

▶ Lemma 14. A recursive procedure that colours Ω
(√

n log n/
√

log log n
)

vertices (where n

refers to the current size of the hypergraph, not the initial size) with O(1) colours at each
step will use O(

√
n log log n/ log n) colours overall.

Proof. Use the same strategy and notation as in Lemma 4. For n a large power of two, until
halving n, in one step, we colour Ω(

√
n/2 log(n/2)/

√
log log(n/2)) = Ω(

√
n log n/

√
log log n)

vertices with O(1) colours. The “large enough” part is important to get n/2 to the interval
where x 7→

√
x log x/

√
log log x is increasing. Thus, with the same logic as before, T (n) ≤

T (n/2) + O(
√

n log log n/ log n) for large enough n. Applying the Master method of Cormen
et al. [13] in the same way as in Lemma 4, T (n) = O(

√
n log log n/ log n). (Again, we need

the regularity condition:
√

n/2 log log(n/2)/ log(n/2) ≤ c
√

n log log n/ log n for some c < 1
and large enough n; this can be shown for e.g. c = 0.9, n ≥ 6.) ◀

With this result in hand, we now give a stronger algorithm for our problem, inspired by
the strategy of Berger and Rompel [8]: we select multiple edges at once, not only one.

▶ Theorem 15. There is a polynomial-time algorithm that finds an LO O(
√

n log log n/ log n)-
colouring for a hypergraph that has an LO 2-colouring.

Proof. Consider the following nondeterministic, recursive algorithm.
1. Make H linear by identifying vertices.
2. Let k = ⌈log3 n⌉.
3. Let c0 be an empty partial colouring.
4. For i from 1 to k:

a. Let (xi, yi, zi) be an edge for which xi, yi and zi do not belong to the domain of ci−1,
and the minimum of the numbers of neighbours of xi, yi and zi not in the domain of
ci−1 is as large as possible. If such an edge does not exist, then exit this loop, setting
ck = ci−1.

b. Nondeterministically choose ui ∈ {xi, yi, zi}.
c. Augment ci−1 with ui 7→ 2 and v 7→ 1 for v ∈ N(ui); let the result of “extend”-ing this

new function be ci.
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5. If ck is not a proper LO 2-colouring, then this nondeterministic execution fails.
6. Colour the vertices in the domain of ck with two large colours according to ck (i.e. colour

u with C + ck(u) for some large enough C). Remove the domain of ck from H, letting
the result be H ′

7. If each edge in H ′ has a vertex with at most O(
√

n/ log log n) neighbours, then find an
independent set in H ′ with size Ω(

√
n log n/

√
log log n) and colour it with a large colour

(but smaller then those used in the previous step), removing it from H ′.
8. Recursively colour the rest of the hypergraph with smaller colours.
Since only logarithmically many nondeterministic choices from among a constant number of
options are made, and polynomial work is done otherwise, this algorithm can be made into a
polynomial-time deterministic one. Thus we show that it is correct, by showing that it is
sound and complete.

To show completeness we need to show that at least one sequence of nondeterministic
choices doesn’t fail. It is therefore sufficient to show that, for one choice of u1, . . . , uk, all
of ci are consistent with c∗. We see that, if ci−1 is consistent with c∗, then one choice of
ui exists that makes ci consistent with c∗ (the member of {xi, yi, zi} that is assigned 2 by
c∗). Since c0 is empty and thus consistent with c∗ on its domain, we deduce inductively that
one set of nondeterministic choices that keeps ci consistent with c∗ exists, and thus that the
algorithm is complete.

Now we show soundness. Just as in the first algorithm, we always colour either by
colouring the domain of some LO 2-colouring that doesn’t intersect any edges in precisely 2
vertices with two large colours, according to that colouring; or by colouring an independent
set with one large colour. (The LO colouring ck intersects each edge in zero, one or three
vertices due to the use of “extend”.) We showed in the first algorithm that these procedures,
followed by colouring what remains with smaller colours, lead to a proper LO colouring. We
now need to show that we use O(

√
n log log n/ log n) colours. To this end, we show that we

colour Ω(
√

n log n/
√

log log n) vertices in each iteration – since colouring this many vertices
with O(1) colours at each recursive step will lead to an O(

√
n log log n/ log n) colouring

overall, as shown in Lemma 14. If the condition in step 7 is satisfied, then we clearly colour
the required number of vertices; thus suppose it is not satisfied. In this case, there exists
an edge e in H ′ whose vertices have Ω(

√
n/ log log n) neighbours. This implies that, during

step a., the edge (xi, yi, zi) could have been selected to be e. Since the number of neighbours
of a vertex in H ′ is a lower bound for the number of neighbours of a vertex in H that do
not belong to the domain of ci−1, we find that selecting e would have made the minimum of
the numbers of neighbours of xi, yi and zi to have been at least Ω(

√
n/ log log n). Thus the

actual values of xi, yi and zi must all have at least this many neighbours not in the domain
of ci−1. Also, an edge is always found in step a. – since e can always be selected. This
implies that c0 is augmented by at least Ω(

√
n/ log log n) vertices at each of the k = Θ(log n)

iterations in step 4; thus ck is defined on Ω(
√

n log n/
√

log log n) vertices. We thus deduce
that in this case we also colour enough vertices. We conclude that the algorithm is sound.

Regarding the running time, note that if a (non-deterministic) guess in Step 4.b passes
the test in Step 5, then no more guesses are made in this recursive call because the recursive
call made in Step 8 cannot fail via our completeness proof. Thus the algorithm runs in
polynomial time. ◀

4 Algebraic theory of fixed-template promise CSPs

We recount the algebraic theory of fixed-template PCSPs developed in [5] and specialised to
structures with a single relation (of arity r).
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The p-the power of an r-ary structure A = (A, RA) is a structure Ap = (Ap, RAp) where

RAp

= {((a1
1, . . . , ap

1), . . . , (a1
r, . . . , ap

r)) | (a1
1, . . . , a1

r) ∈ RA, . . . , (ap
1, . . . , ap

r) ∈ RA}.

In other words, a tuple of RAp contains r vectors of p elements of A, such that if these are
written as a matrix with r rows and p columns, each column is a member of RA. For two
r-ary structures A, B, a p-ary polymorphism from A to B is a homomorphism f : Ap → B.

▶ Example 16. Consider the binary structure A = ([2], RA), where RA is the binary
disequality relation ̸= (restricted to [2]2). The power A5 has domain [2]5 and relation
{(a, b) | a, b ∈ [2]5, ai ̸= bi, i = 1, . . . , 5}. This relation is constructed as follows: (a, b)
belongs to the relation if and only if every column of a matrix with 5 columns and 2 rows
constructed out of a, b satisfies ̸=. The matrix is the following one:(

a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

)
.

Thus, for each column to satisfy ̸=, we must have ai ̸= bi for i = 1, . . . , 5, as indicated above.
Now, consider a quinary polymorphism f : A5 → A. This is a function f : [2]5 → [2]

that satisfies the following property: if given a matrix with 2 rows and 5 columns, such that
each column is a member of RA, then by applying f to the rows of this matrix we also get a
member of RA. For instance, for the matrix(

1 2 2 1 1
2 1 1 2 2

)
,

we deduce that the pair (f(1, 2, 2, 1, 1), f(2, 1, 1, 2, 2)) ∈ RA i.e. f(1, 2, 2, 1, 1) ̸= f(2, 1, 1, 2, 2).
One such polymorphism is given by selecting the values of f from [2] such that f(x1, . . . , x5) ≡∑5

i=1 xi (mod 2).

The real power of this theory comes from minions.1A minion M is a sequence of sets
M(0), M(1), . . ., equipped with an operation that, for f ∈ M(p) and π : [p] → [q], yields
fπ ∈ M(q). The operation must satisfy the following conditions:

For f ∈ M(p), if id : [p] → [p] is the identity on [p], then fid = f .
For f ∈ M(p), π : [p] → [q] and σ : [q] → [t], we have fσ◦π = (fπ)σ.

An important class of minion is the polymorphism minion. The polymorphism minion
M = Pol(A, B) for two structures A, B with the same arity is a minion where M(p) is the
set of p-ary polymorphisms from A to B, and where, for f : Ap → B, π : [p] → [q], fπ is
given by fπ(x1, . . . , xq) = f(xπ(1), . . . , xπ(p)). It is not difficult to check that, if f : Ap → B
and π : [p] → [q], then fπ : Aq → B, as required.

In order to be able to relate polymorphism minions with the complexity of PCSPs, we
use minion homomorphisms.2 A minion homomorphism from M to N is a mapping ξ that
takes each M(p) to N (p) and that satisfies the following condition: for any π : [p] → [q] and
f ∈ M(p), ξ(f)π = ξ(fπ). The following theorem links minion homomorphisms to PCSPs.
In particular, minion homomorphisms capture precisely a certain type of polynomial-time
reductions, know as primitive-positive constructions,3 studied for CSPs [6] and PCSPs [5].

1 In category-theoretic terms, a minion is a functor from the skeleton of the category of finite sets to the
category of sets. The objects of the first category are sets [p] for p ∈ N, and the arrows are functions
between them. The functor equivalent to a minion M takes [p] to M(p), and π : [p] → [q] to f 7→ fπ.

2 In category-theoretic terms, a minion homomorphism is just a natural transformation.
3 Primitive-positive constructions (or pp-constructions, for short) capture so-called “gadget reductions”,

cf. [6, Section 3].
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▶ Theorem 17 ([5, Theorems 3.1 and 4.12]). For r-ary structures A, B and r′-ary structures
A′, B′, a primitive-positive construction-based polynomial-time reduction from PCSP(A′, B′)
to PCSP(A, B) exists if and only if Pol(A, B) → Pol(A′, B′).

Unfortunately, it is usually a complex task to explicitly construct minion homomorphisms.
An auxiliary construction called the free structure allows us to construct them more easily. For
an arbitrary minion M and an r-ary structure A = (A, RA), the free structure F = FM(A)
is an r-ary structure whose domain is F = M(|A|). To construct its relation RF, first identify
A with [n] for n = |A|, and then enumerate the tuples of RA as vectors r1, . . . , rk, where
k = |RA|. Construct functions π1, . . . , πr : [k] → [n] where πi(j) = rj

i . (If we were to arrange
r1, . . . , rk into a matrix with r rows and k columns, then πi(1), . . . , πi(k) is the i-th row of
the matrix.) Now, the tuple (f1, . . . , fr), where f1, . . . , fr ∈ M(n), belongs to RF if and only
if, for some f ∈ M(k) we have fi = fπi

.

▶ Example 18. Consider some polymorphism minion M and the ternary structure LO3
3.

We will construct F = FM(LO3
3). The domain is M(3). To construct the relation of F, we

first arrange the 15 tuples of RLO3
3 into a matrix with 3 rows and 15 columns:2 1 1 3 1 1 3 2 3 1 2 1 3 2 2

1 2 1 1 3 1 2 3 1 3 1 2 2 3 2
1 1 2 1 1 3 1 1 2 2 3 3 2 2 3

 .

Row i of this matrix can be seen as a function πi : [15] → [3]. Now the relation RF contains
precisely the tuples (fπ1 , fπ2 , fπ3) for all f ∈ M(15). Substituting the definition for fπi

, we
find that these polymorphisms fπ1 , fπ2 , fπ3 are:

(x, y, z) 7→f (y, x, x, z, x, x, z, y, z, x, y, x, z, y, y)
(x, y, z) 7→f (x, y, x, x, z, x, y, z, x, z, x, y, y, z, y)
(x, y, z) 7→f (x, x, y, x, x, z, x, x, y, y, z, z, y, y, z)

Observe that the matrix and the arguments of f are actually arranged in the same configura-
tion, with 1 replaced by x, 2 by y and 3 by z.

The following theorem connects minion homomorphisms and the free structure.

▶ Theorem 19 ([5, Lemma 4.4]). If M is a minion and A, B are r-ary structures, the
homomorphisms h : FM(A) → B are in a (natural) 1-to-1 correspondence to the minion
homomorphisms ξ : M → Pol(A, B).4 As a consequence, FM(A) → B if and only if
M → Pol(A, B).

5 Hardness results

In this section we will investigate the hardness of PCSP(LOr
k, LOr

k+1). First, we will
establish that PCSP(LOr

k, LOr
k+1) is NP-hard for r ≥ 5 and k ≥ 2. In particular, this proves

intractability of PCSP(LOr
2, LOr

3) for r ≥ 5. Second, we will show that PCSP(LOr
2, LOr

3)
with r ≥ 5 cannot be reduced to PCSP(LOr

2, LOr
3) with r = 3 and r = 4 using primitive-

positive constructions (i.e. gadget reductions [5]).

4 In category-theoretic terms, F−(A) and Pol(A, −) are functors between (in opposite directions) the
category of r-ary structures and the category of minions, and F−(A) ⊣ Pol(A, −).
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We will use a hardness result of Guruswami and Trevisan [20] (stated as Theorem 20
below) on the 1-in-r exact hitting set. An instance of this problem is an r-uniform hypergraph,
and an admissible solution is a subset of its vertices. We are then asked to maximise the
number of edges e for which exactly one vertex of e belongs to the chosen subset. An instance
is called α-satisfiable if it is possible to find a subset of vertices such that a proportion of α

of all the edges satisfy this condition. An instance is called satisfiable if it is 1-satisfiable.
We will call the problem of distinguishing a satisfiable 1-in-r exact hitting set instance from
one that is not even α-satisfiable the α-gap 1-in-r exact hitting set problem. Guruswami
and Trevisan state a weaker version of the following theorem, but their proofs establish the
following.

▶ Theorem 20 ([20, Theorem 10, Theorem 12, Lemma 13]). For any ϵ > 0, for large enough
r, the (1/(e − ϵ))-gap 1-in-r exact hitting set problem is NP-hard.

▶ Corollary 21. PCSP(LOr
2, LOr

3) is NP-hard for large enough r.

Proof. Observe that the instances of (1/2)-gap 1-in-r exact hitting set and PCSP(LOr
2, LOr

3)
are both r-uniform hypergraphs. We show that the identity function is a reduction from the
first problem to the second. For completeness, note that a satisfiable instance of 1-in-r exact
hitting set is also immediately a Yes-instance of PCSP(LOr

2, LOr
3). For soundness, consider

a Yes-instance of PCSP(LOr
2, LOr

3) i.e. an r-uniform hypergraph with an LO 2-colouring
and thus also an LO 3-colouring. Under this colouring each edge either has a unique vertex
assigned 3, or a unique vertex assigned 2; thus, at least half of the edges must contain exactly
one 2, or at least half of the edges must contain exactly one 3. We deduce that taking either
the set of vertices assigned 2, or the set of vertices assigned 3, gives us a solution that satisfies
at least half the edges of the hypergraph, viewed as a hitting set instance. ◀

How can we now leverage this basic hardness result to other values of r? We will use
chains of minion homomorphisms to do this. We define Mr = Pol(LOr

2, LOr
3). Our main

result in this section is the following.

▶ Theorem 22. The relationships between the minions Mr = Pol(LOr
2, LOr

3) for r ≥ 3 are
as shown in Figure 1, i.e., all homomorphisms not drawn or implied do not exist.

M3

M5 M6 . . . Mr . . .

M4

Figure 1 Minion homomorphism order of minions Mr for r ≥ 3.

Combining Theorems 17 and 22 gives the following.

▶ Corollary 23. PCSP(LOr
2, LOr

3) is NP-hard for r ≥ 5. Moreover, there is no polynomial-
time reduction using pp-constructions from PCSP(LOr

2, LOr
3) to PCSP(LO3

2, LO3
3) and from

PCSP(LOr
2, LOr

3) to PCSP(LO4
2, LO4

3) for r ≥ 5.

A simple proof shows the following:

▶ Theorem 24. For every r ≥ 5 and ℓ > k ≥ 2, Pol(LOr
k+1, LOr

ℓ+1) → Pol(LOr
k, LOr

ℓ).
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Proof. Consider any p-ary polymorphism f ∈ Pol(LOr
k+1, LOr

ℓ+1)(p). Consider the value of
f for inputs a1, . . . , ap ∈ [k]; due to the following matrix with r ≥ 3 rows

a1 + 1 . . . ap + 1
a1 . . . ap

...
. . .

...
a1 . . . ap

 ,

we can deduce that f(a1, . . . , ap) < f(a1 + 1, . . . , ap + 1) ∈ [ℓ + 1]. This implies that
f(a1, . . . , ap) ∈ [ℓ]. We claim this implies that f , restricted to [k]p, is a polymorphism of
Pol(LOr

k, LOr
ℓ). Consider matrix of inputs aj

i where i ∈ [p], j ∈ [r], such that each column
a1

i , . . . , ar
i is a tuple of LOr

k. Thus each column is also a tuple of LOr
k+1. Since f is a

polymorphism of PCSP(LOr
k+1, LOr

ℓ+1), we deduce that

(f(a1
1, . . . , a1

p), . . . , f(ar
1, . . . , fr

p ))

is a tuple of LOr
ℓ+1 i.e. has a unique maximum. But we already know these values belong to

[ℓ]. Since they have a unique maximum, they are a tuple of LOr
ℓ . Thus f , restricted to [k]p,

is a polymorphism of Pol(LOr
k, LOr

ℓ).
We now claim that the map f 7→ f |[k]p taking a p-ary polymorphism to its restriction on

[k]p is a minion homomorphism Pol(LOr
k+1, LOr

ℓ+1) → Pol(LOr
k, LOr

ℓ). To see why, consider
any polymorphism f ∈ Pol(LOr

k+1, LOr
ℓ+1)(p) and a function π : [p] → [q]. What we need to

prove is that

(fπ)|[k]p = (f |[k]p)π.

But note that, for x1, . . . , xp ∈ [k],

((fπ)|[k]p)(x1, . . . , xp) = fπ(x1, . . . , xp) = f(xπ(1), . . . , xπ(p))

= (f |[k]p)(xπ(1), . . . , xπ(p)) = (f |[k]p)π(x1, . . . , xp).

This concludes the proof. ◀

Theorem 24 and Corollary 23 imply the following:

▶ Corollary 25. PCSP(LOr
k, LOr

k+1) is NP-hard for r ≥ 5 and k ≥ 2.

In order to construct the minion homomorphisms, we first exhibit a simple necessary and
sufficient condition for the existence of a minion homomorphism to Pol(LOr

2, LOr
k), and a

sufficient condition for such a homomorphism to not exist.

▶ Lemma 26. Fix r ≥ 3 and k ≥ 3. Consider any polymorphism minion M. For any
element f ∈ M(r), let f1(x, y) = f(y, x, . . . , x), f2(x, y) = f(x, y, x, . . . , x), . . . , fr(x, y) =
f(x, . . . , x, y). Now, M → Pol(LOr

2, LOr
k) if and only if there exists some ω : M(2) → [k]

such that, for all f ∈ M(r), there exists a unique maximum value among ω(f1), . . . , ω(fr).

Proof. We construct FM(LOr
2). The tuples of the relation of LOr

2 are all the r-dimensional
vectors containing exactly one 2, with the other entries equal to 1. We can arrange these
tuples into an r-by-r matrix where the diagonal contains 2 and all the other elements are 1.
Replacing 1 with x and 2 with y, and applying f , we get the definitions of f1, . . . , fr. Thus
the relation of FM(LOr

2) contains precisely the tuples of form (f1, . . . , fr) for f ∈ M(r).
Thus our condition amounts to the existence of a homomorphism ω : FM(LOr

2) → LOr
k.

By Theorem 19, this is equivalent to M → Pol(LOr
2, LOr

k). ◀
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For the next lemma, call a function f block-symmetric with respect to a partition of the
arguments of f into blocks if f is not changed by arbitrarily permuting the arguments in the
blocks. For instance (x, y, z) 7→ x + y is block-symmetric with respect to the blocks {x, y}
and {z}.

▶ Lemma 27. Fix r ≥ 3 and a polymorphism minion M. If M has a block-symmetric
polymorphism of arity r with respect to a partition in which all blocks consist of at least two
elements, then M ̸→ Mr.

Proof. We use the same notation as in the proof of Lemma 26. Let f be this block-symmetric
polymorphism, and note that no polymorphism among f1, . . . , fr appears exactly once, due
to block-symmetry. Thus, for any ω : M(2) → [3], the sequence ω(f1), . . . , ω(fr) does not
have a unique maximum. Applying the previous lemma gives us the required result. ◀

▶ Theorem 28. For any r ≥ 5, Mr → Mr+1.

Proof. We will establish the statement via Lemma 26. We will use the assignment ω :
M(2) → [3] given by ω(f) = f(1, 2). To check that this satisfies our condition, we need to
investigate M(r+1)

r . Observe that an (r + 1)-ary polymorphism f ∈ M(r+1)
r is a function

from [2]r+1 to [3]; if it is applied to the rows of an r × (r +1) matrix whose columns are tuples
of the relation of LOr

2 (i.e. they contain one 2 and otherwise are 1), then the resulting values
contain a unique maximum. Similarly to Barto et. al. [4], we view f as a function from the
powerset of [r + 1] to [3]. (Thus, the input tuple (1, 2, 1, 2) is seen as equivalent to the input
set {2, 4}.) Under this view, f is a polymorphism if and only if, for any partition A1, . . . , Ar

of [r + 1], the sequence f(A1), . . . , f(Ar) has a unique maximum element. (Observe that
each part Ai corresponds to a row in the matrix mentioned earlier). To show that ω satisfies
our condition, what we need to prove is that the sequence f{1}, . . . , f{r + 1} has a unique
maximum. We have three cases depending on the maximum of these values.

Maximum is 3. Suppose that at least one of f{1}, . . . , f{r+1} is 3. Without loss of generality,
say f{1} = 3. Suppose for contradiction that another of the values is also 3; without loss
of generality, say f{2} = 3. But consider the partition {1}, {2}, {3, . . . , r + 1}, ∅, . . . , ∅
of [r + 1] into r sets. Since f is a polymorphism, the images of these sets must have a
unique maximum value. But if f{1} = f{2} = 3 this is impossible! So if f{1} = 3, then
this is the unique maximum of the sequence f{1}, . . . , f{r + 1}.

Maximum is 2. Now, suppose that all of f{1}, . . . , f{r + 1} are either 1 or 2, and that at
least one of these (say f{1}) is 2. Suppose for contradiction that another value (say f{2})
is also 2. Due to the partitions {1}, {2}, {3, 4}, {5}, . . . , {r + 1}; {1}, {2}, {3}, {4},
{5, 6}, {7}, . . . , {r + 1} we deduce that f{3, 4} = f{5, 6} = 3. This is impossible because
of the partition {1, 2, 7, . . . , r + 1}, {3, 4}, {5, 6}, ∅, . . . , ∅. Thus in this case f{1} = 2 is
the unique maximum of the sequence f{1}, . . . , f{r + 1}.

Maximum is 1. Finally, suppose that f{1} = . . . = f{r + 1} = 1. Consider the partitions
{1, 2}, {3}, . . . , {r + 1}; {1}, {2}, {3, 4}, {5}, . . . , {r + 1}; and {1}, . . . , {4}, {5, 6}, {7},
. . . , {r + 1}. Since all the singletons have image 1, the two-element sets here must have
image 2 or 3. At least two of them must therefore have the same image; if that image is 3,
then we have a contradiction like in the last case. Thus suppose, without loss of generality,
that f{1, 2} = f{3, 4} = 2. Considering the partition {1, 2}, {3, 4}, {5}, . . . , {r + 1}, ∅,
we find that f(∅) = 3. But this cannot happen, due to partition ∅, . . . , ∅, {1, . . . , r + 1}.
Thus this case is impossible.

Our assignment of values to polymorphisms of M(2)
r is correct. Therefore we deduce that

Mr → Mr+1. ◀
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▶ Theorem 29. For any r ≥ 3, k ≥ 3, Pol(LOr+2
2 , LOr+2

k ) → Pol(LOr
2, LOr

k). In particular,
for k = 3, Mr+2 → Mr.

Proof. We use the same notation convention as in Theorem 28, and we take ω(f) = f(1, 2).
Thus, we want to prove that, if f is a function that takes subsets of [r] to [k] such that, for any
partition A1, . . . , Ar+2, the sequence f(A1), . . . , f(Ar+2) has a unique maximum, then the
sequence f{1}, . . . , f{r} has a unique maximum. But consider the partition {1}, . . . , {r}, ∅, ∅,
and note that the largest value cannot be f(∅) (since f(∅) appears twice). Thus we deduce
that one of f{1}, . . . , f{r} is the maximum, and furthermore that this maximum is strictly
larger than all the other values in this sequence. Thus, Mr+2 → M. ◀

Proof of Theorem 22. We have Mr+1 → Mr+2 → Mr, so Mr+1 → Mr for every r ≥ 5
by Theorems 28 and 29. Thus, M5 ⇄ M6 ⇄ . . .; furthermore, by Theorem 29, we have
M5 → M3. Finally, by Theorem 28 and Theorem 29, we have M5 → M6 → M4.

It remains to show that (i) M3 ̸→ Mr for any r ≥ 4 and that (ii) M4 ̸→ Mr for any
r ≥ 3, r ̸= 4. An auxiliary function will be useful for both: let f : N → N map 0 to 2, 1 to 1,
and all other values to 3.

Regarding (i), note that M3 has a quaternary block-symmetric polymorphism with
respect to a partition in which all blocks have size 2, viz. (a, b, c, d) 7→ f(a + b). Thus, by
Lemma 27, M3 ̸→ M4. Since Mr → M5 → M4 for r ≥ 4, we deduce that M3 ̸→ Mr.

Regarding (ii), note that M4 has a ternary symmetric polymorphism, viz. (a, b, c) 7→
f(a + b + c). Thus, by Lemma 27, M4 ̸→ M3. Since Mr → M5 → M3 for r ≥ 3, r ̸= 4, we
deduce that M4 ̸→ Mr. ◀

In Theorem 28, using Theorem 17, we showed that hardness of PCSP(LOr
2, LOr

3) for
some large r implies hardness of PCSP(LO5

2, LO5
3). We now show that the same is true

for PCSP(LOr
2, LOr

k): hardness of PCSP(LOr
2, LOr

k) for some large r implies hardness of
PCSP(LOr(k)

2 , LOr(k)
k ), for some r(k) that depends only on k.

▶ Theorem 30. For k ≥ 4, r ≥ 4k − 3, Pol(LOr
2, LOr

k) → Pol(LOr+1
2 , LOr+1

k ).

Note that the lower bound on r in the statement is 4k − 3, which is worse than the bound
for k = 3 in Theorem 28. We do not know whether a smaller bound is possible for k > 3.

Proof. Fix some k and let Nr = Pol(LOr
2, LOr

k). We show that Nr → Nr+1 for r ≥ 4k − 3.
Use the same notation as in Theorem 28, and the same choice of ω; what we want to show

is that if f ∈ N (r+1)
r then the sequence f{1}, f{2}, . . . , f{r + 1} has a unique maximum.

Recall that f satisfies the property that, if A1, . . . , Ar is a partition of {1, . . . , r + 1}, then
f(A1), . . . , f(Ar) has a unique maximum. We now split into three cases, depending on the
maximum of f{1}, . . . , f{r + 1}.
Maximum is k. The maximum must be unique in this case. If we suppose, contrarily and

without loss of generality, that f{1} = f{2} = k, then the partition {1}, {2}, {3, . . . , r +
1}, ∅, . . . , ∅ yields our contradiction.

Maximum is 1. This case is impossible. Consider the partitions {1, 2}, {3}, . . . , {r + 1};
{1}, {2}, {3, 4}, {5}, . . . , {r + 1}; . . . ; {1}, . . . , {4k − 3, 4k − 2}, {4k − 1}, . . . , {r + 1}.
These partitions exist since 4k − 2 ≤ r + 1. All of the two-element sets must be mapped
to some values in {2, . . . , k} (they cannot be 1 since then all the parts in the previous
partitions map to 1), and there are 2k −1 two-element sets. Thus by pidgeonhole principle
three sets must be mapped to the same value. Thus suppose f{1, 2} = f{3, 4} = f{5, 6}.
Considering the partition {1, 2}, {3, 4}, {5, 6}, {7}, . . . , {r + 1}, ∅, ∅ we find that none of
the images through f can be the unique maximum (since the first three and the last two
are equal, and all the rest are 1). Thus we have the required contradiction.
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Maximum is neither. Suppose that the maximum is 1 < k′ < k, and suppose that the
maximum is not unique. Thus without loss of generality let f{1} = f{2} = k′. Now
consider the partitions {1}, {2}, {3, 4}, {5}, . . . , {r + 1}; . . . ;{1}, {2}, . . . , {4k − 4}, {4k −
3, 4k − 2}, {4k − 1}, . . . , {r + 1}. The two-element sets must be mapped to a value from
{k′+1, . . . , k} i.e. to one of at most k−2 values, and there are 2k−2 sets. Thus at least three
of these sets are assigned the same value. Suppose without loss of generality that f{3, 4} =
f{5, 6} = f{7, 8}. Then the partition {1}, {2}, {3, 4}, {5, 6}, {7, 8}, {9}, . . . , {r + 1}, ∅, ∅
gives us a contradiction: the images of the first two sets, the next three sets, and the last
two sets form equal blocks; and all other sets have images that are not greater than the
images of the first two sets.

Thus, since our choice of ω is valid, by Lemma 26, we find that Nr → Nr+1. ◀

6 Conclusions

The question about the complexity of PCSP(LO3
2, LO3

k) for constant k ≥ 3 raised in [4]
stays open. The complexity of PCSP(LOr

k, LOr
ℓ) is open except for the hardness obtained

in our work. In this paper, we show NP-hardness for k ≥ 2, ℓ = k + 1, and any r ≥ 5. In the
full version of this paper [25], we show NP-hardness for 2 ≤ k ≤ ℓ and any r ≥ ℓ − k + 4.

The minion homomorphisms (and lack thereof) between the polymorphism minions
Pol(LOr

2, LOr
3) for various values of r have interesting implications for the complexity of

PCSPs more broadly. First, if one were to prove that this problem is hard for r = 3 or
r = 4, then our results imply that hardness in linearly ordered colourings does not necessarily
follow from minion homomorphisms and thus in particular cannot be obtained via “gadget
reductions” [5]. This is in contrast to the case of (non-promise) CSPs, where it is known [7]
(cf. also [6])5 that all NP hardness can be shown using minion homomorphisms.6 Second,
our results show that, if one proves that PCSP(LOr

2, LOr
ℓ) is hard for some large arity r,

then it is hard PCSP(LOr′

2 , LOr′

ℓ ) for some arity r′ = r′(ℓ) that depends only on ℓ.
Going beyond the realm of fixed-template PCSPs [5] (which limits the number of colours

by a constant), what is the smallest function k(n) for which PCSP(LO3
2, LO3

k(n)) is solvable
efficiently? There is no clear reason to believe that positive result from the present paper
with k(n) = O(

√
n log log n/ log n) is optimal.
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