
Sublinear-Round Parallel Matroid Intersection
Joakim Blikstad #

KTH Royal Institute of Technology, Sweden

Abstract
Despite a lot of recent progress in obtaining faster sequential matroid intersection algorithms, the fast-
est parallel poly(n)-query algorithm was still the straightforward O(n)-round parallel implementation
of Edmonds’ augmenting paths algorithm from the 1960s.

Very recently, Chakrabarty-Chen-Khanna [FOCS’21] showed the lower bound that any, possibly
randomized, parallel matroid intersection algorithm making poly(n) rank-queries requires Ω̃(n1/3)
rounds of adaptivity. They ask, as an open question, if the lower bound can be improved to Ω̃(n),
or if there can be sublinear-round, poly(n)-query algorithms for matroid intersection.

We resolve this open problem by presenting the first sublinear-round parallel matroid intersection
algorithms. Perhaps surprisingly, we do not only break the Õ(n)-barrier in the rank-oracle model,
but also in the weaker independence-oracle model. Our rank-query algorithm guarantees O(n3/4)
rounds of adaptivity, while the independence-query algorithm uses O(n7/8) rounds of adaptivity,
both making a total of poly(n) queries.

2012 ACM Subject Classification Theory of computation → Discrete optimization; Theory of
computation → Parallel computing models; Theory of computation → Approximation algorithms
analysis; Mathematics of computing → Matroids and greedoids

Keywords and phrases Matroid Intersection, Combinatorial Optimization, Parallel Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.25

Category Track A: Algorithms, Complexity and Games

Funding This project has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme under grant agreement No 71567.
The author is also supported by the Swedish Research Council (Reg. No. 2019-05622).

Acknowledgements I thank Danupon Nanongkai and Sagnik Mukhopadhyay for insightful discussions
and their valuable comments throughout the development of this work. Part of this work was done
while the author visited BARC and the University of Copenhagen.

1 Introduction

Matroid intersection. Given two matroids1 M1 = (V, I1) and M2 = (V, I2) over the same
n-element ground set V (but with different notions of independence I1, I2), the matroid
intersection problem is to find the largest common independent set S∗ ⊆ I1 ∩ I2. This is
a fundamental discrete optimization problem that has been studied for over half a century.
Matroid intersection can be used to model many important combinatorial optimization
problems, such as bipartite matching, finding arborescences, spanning tree packing, etc. As
such, matroid intersection is a natural avenue to study all these problems simultaneously.

Oracle access. There are two standard ways to access the matroids – independence oracles
and rank oracles – and we study both in this work. In an independence-query we may ask if
S ⊆ V is independent in one of the matroids, i.e. a query of the form “Is S ∈ I1?” or “Is
S ∈ I2?” In a rank-query we instead ask for the rank of S ⊆ V in one of the matroids. The

1 Matroids are a well-studied combinatorial structure which can be though of as a generalization of the
notion of linear independence in vector spaces. For a formally definition, see Definition 4.

EA
T

C
S

© Joakim Blikstad;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blikstad@kth.se
https://doi.org/10.4230/LIPIcs.ICALP.2022.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Sublinear-Round Parallel Matroid Intersection

rank rk1(S) with respect to the matroid M1 (similarly rk2 for M2) is the size of the largest
(or, equivalently, any maximal) independent set, w.r.t. I1, contained in S. Note that the
rank oracle is strictly more powerful than the independence oracle, since S ∈ I1 if and only
if rk1(S) = |S|.

Parallel matroid intersection. A parallel matroid intersection algorithm accesses the oracle
in rounds. In each round, a number of queries – that may only depend on the answers to
queries made in previous rounds – can be issued in parallel. There is certainly a trade-off
between (1) adaptivity, usually measured by the number of rounds, and (2) the total number
of queries. When constructing parallel algorithms the goal is often to have as few rounds of
adaptivity as possible while making only polynomially many queries in total.

Previous work. Edmonds [10] showed the first polynomial algorithm for matroid intersection
in the 1960s, using O(n3) independence-queries, and there has been a long line of research
since then e.g. [1,2,3,5,6,8,9,10,18,19,21]. Many of these are based on Edmonds’ framework
of finding augmenting paths in the exchange graph. In the sequential setting, only recently
was the quadratic O(n2)-query-barrier broken, first for rank-queries by Chakrabarty-Lee-
Sidford-Singla-Wong in FOCS 2019 [5] and subsequently also for independence-queries by
Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai in STOC 2021 [3]. The current state-of-the-
art in the sequential setting are the2 Õ(n

√
n) rank-query algorithm by [5] and the Õ(n7/4)

independence-query algorithm by [2].
When it comes to the parallel setting, there is a straightforward O(n)-round, poly(n)

independence-query implementation of Edmonds’ algorithm: find the (up to O(n) many)
augmenting paths one-by-one. Each augmenting path can be found in a single round by
querying all the potential edges in the exchange graph. In some special cases of matroid
intersection we can do much better: a sequence of work has shown that both bipartite
matching [11,16,20] and subsequently linear matroid intersection [13,20] are in RNC3 and
quasi-NC.4

Another line of relevant work is showing that, in the parallel setting, the search-problem
(finding a largest common independent set S) and the decision-problem (just finding the size
of the answer) are “equivalent” (with only O(polylog(n)) overhead). This is not at all obvious
in the parallel setting, however, a recent work from SODA 2022 by Ghosh-Gurjar-Ray [12]
shows that this is indeed the case for weighted matroid intersection, with rank-oracle access.

In FOCS 1985, Karp-Upfal-Wigderson [15] showed that any independence-query algorithm,
possibly randomized, that finds a maximum independent set (basis) in a single matroid must
use Ω̃(n1/3) rounds of adaptivity if it makes poly(n) queries. They also show algorithms to
find a basis of a (single) matroid in O(

√
n) rounds of independence-queries or a single round

of the more powerful rank-queries. Arguably, this polynomial gap between the independence-
query (Ω̃(n1/3) rounds) and rank-query (O(1) rounds) for the seemingly easy problem to
find a basis of a matroid illustrates that the independence-query is much weaker than the
rank-query when used in parallel algorithms.

Nevertheless, a recent result from FOCS 2021 by Chakrabarty-Chen-Khanna [4] shows
that even rank-query algorithms require a polynomial number of rounds to solve matroid
intersection. In particular, they show a lower bound of Ω̃(n1/3) rounds of adaptivity for any,
possibly randomized, poly(n) rank-query matroid intersection algorithm.

2 We use the usual convention of hiding polylog(n)-factors with Õ and Ω̃ throughout the paper.
3 Randomized polylog(n) rounds of adaptivity with poly(n) total work.
4 Deterministic polylog(n) rounds of adaptivity with nO(log n) total work.

J. Blikstad 25:3

Despite efficient algorithms for some special cases of matroid intersection, the trivial
O(n)-round algorithm has remained unbeaten in the general case. The major open question
(asked, for example, by [4]) is then whether it is possible to beat the O(n)-round barrier, or
if matroid intersection is inherently very sequential and requires Ω̃(n) rounds of adaptivity.

Our results. We answer the above question by showing the first sublinear-round parallel
matroid intersection algorithms, both in the rank-oracle and independence-oracle models. In
particular, we obtain the following theorem.

▶ Theorem 1 (Sublinear-round Matroid Intersection). There is a deterministic parallel al-
gorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V ,
finds a largest common independent set S ∈ I1 ∩ I2 using either

O(n3/4) rounds of polynomially many rank-queries, or
O(n7/8) rounds of polynomially many independence-queries.
Our results, together with the lower bounds of [4, 15], imply that the true adaptivity of

matroid intersection is somewhere between n1/3 and n3/4 (or n7/8 for independence queries).

▶ Remark 2. Although we focus on the query-complexity in this paper, we note that the
rounds and work in our algorithms are dominated, up to log-factors, by the oracle queries.

1.1 Technical Overview
The exchange graph and augmenting paths. Like many matroid intersection algorithms,
we work in Edmonds’ framework of finding augmenting paths in the exchange graph. The
exchange graph G(S) with respect to a common independent set S ∈ I1 ∩ I2 is a directed
bipartite graph, where finding a shortest (s, t)-path – called an augmenting path – means
that we can increase the size of S by one. In a single round of O(n2) independence (or rank)
queries, we can learn the entire exchange graph, and can thus find an augmenting path if
one exists. This immediately gives a straightforward O(n)-round algorithm: find the (up to
O(n) many) augmenting paths one-by-one.

The exchange graph depends on the current common independent set S, and changes
after each augmentation. In fact, if we have two disjoint augmenting paths p1 and p2 in G(S),
it is not necessarily the case that we can augment along both of these: augmenting along
p1 might destroy the path p2 even if they were disjoint.5 This forms the main difficulty in
trying to beat the O(n)-round barrier, and illustrates the need in finding several “compatible”
augmenting paths which can all be augmented along simultaneously.

Blocking flow. Cunningham [6] was the first to introduce blocking flow algorithms to
matroid intersection, similar to Hopcroft-Karp’s [14] bipartite matching or Dinitz’s [7] max-
flow algorithms. The idea is to run in phases, where after each phase the length of a shortest
augmenting path in the exchange graph has increased. This is done by finding a maximal
collection of compatible shortest augmenting paths. Both of the current state-of-the-art
sequential O(n

√
n)-rank-query [5] and O(n7/4)-independence-query [2] algorithms are based

on versions of these blocking flow ideas. The O(n
√

n)-rank-query algorithm still finds the
augmenting paths in a sequential way, so it does unfortunately not seem to parallelize well.

5 This is unlike the case of augmenting path algorithms for bipartite matching or maximum flow, where
one can indeed augment along disjoint paths simultaneously.

ICALP 2022

25:4 Sublinear-Round Parallel Matroid Intersection

The O(n7/4)-independence-query algorithm, on the other hand, is based on a recent notion
of augmenting sets introduced by Chakrabarty-Lee-Sidford-Singla-Wong [5]. This notion of
augmenting sets precisely captures what a collection of “compatible” shortest augmenting
paths looks like. The authors of [5] also present an algorithm to find such augmenting sets,
using independence-queries.

Our contribution is to show that a modified version of the augmenting sets algorithm
of [5, Section 6] (which was later improved by [2]) can be implemented in parallel when
combined with the parallel matroid-basis finding algorithms of Karp-Upfal-Wigderson [15].
Previous to this work, augmenting sets algorithms have before only been used in the sequential
setting, and only in the independence-oracle model. Nevertheless, augmenting sets are what
allows us to break the O(n)-round barrier also with rank-queries.

2 Preliminaries

We use the standard definitions of matroid M = (V, I); rank rk(X) for any X ⊆ V ; exchange
graph G(S) for a common independent set S ∈ I1 ∩ I2; and augmenting paths in G(S)
throughout this paper. For completeness, we define them below. We also need the notions of
augmenting sets introduced by [5], which we also define in later this section.

▶ Definition 3 (Set notation). We will use A + x and A− x to denote A ∪ {x} respectively
A \ {x}, as is usual in matroid intersection literature. We will also use A + B := A ∪B, and
A−B := A \B.

Matroids

▶ Definition 4 (Matroid). A matroid is a tuple M = (V, I) of a ground set V of n elements,
and non-empty family I ⊆ 2V of independent sets satisfying:
Downward closure: if S ∈ I, then S′ ∈ I for all S′ ⊆ S.
Exchange property: if S, S′ ∈ I, |S| > |S′|, then there exists x ∈ S \S′ such that S′ + x ∈ I.

▶ Definition 5 (Matroid rank). The rank of A ⊆ V , denoted by rk(A), is the size of the
largest (or, equivalently, any maximal) independent set contained in A. It is well-known
that the rank-function is submodular, i.e. rk(A + x)− rk(A) ≥ rk(B + x)− rk(B) whenever
A ⊆ B ⊆ V and x ∈ V \B. Note that rk(A) = |A| if and only if A ⊆ I.

▶ Definition 6 (Matroid Intersection). Given two matroids M1 = (V, I1) and M2 = (V, I2)
over the same ground set V , a common independent set S is a set in I1 ∩ I2. The matroid
intersection problem asks us to find the largest common independent set. We use rk1 and
rk2 to denote the rank functions of the corresponding matroids, and n = |V | to be the size
of the ground set.

The Exchange Graph

▶ Definition 7 (Exchange graph). Given two matroids M1 = (V, I1) and M2 = (V, I2) over
the same ground set, and a common independent set S ∈ I1 ∩I2, the exchange graph G(S) is
a directed bipartite graph on vertex set V ∪ {s, t} with the following arcs (or directed edges):
1. (s, b) for b ∈ V \ S when S + b ∈ I1.
2. (b, t) for b ∈ V \ S when S + b ∈ I2.
3. (a, b) for b ∈ V \ S, a ∈ S when S − a + b ∈ I1.
4. (b, a) for b ∈ V \ S, a ∈ S when S − a + b ∈ I2.
We will denote the set of elements at distance k from s by the distance-layer Dk. Note that
Dk ⊆ V \ S when k is odd and Dk ⊆ S when k is even.

J. Blikstad 25:5

▶ Definition 8 (Shortest augmenting path). A shortest (s, t)-path p = (s, b1, a2, b3, a4, . . . ,

aℓ−1, bℓ, t) (with bi ∈ V \S and ai ∈ S) in G(S) is called a shortest augmenting path. We can
augment S along the path p to obtain S′ = S + b1− a2 + b3− a4 . . . + bℓ, which is well-known
to also be a common independent set (with |S′| = |S|+ 1). Conversely, there must exist a
shortest augmenting path whenever S is not a largest common independent set.

Augmenting Sets

Augmenting Sets is a notion capturing a “blocking flow” in the exchange graph, and was
introduced by [5], and also subsequently used in the algorithms of [2,3]. In order to efficiently
find “good” augmenting sets, the algorithm works with a relaxed form of them instead, called
partial augmenting sets. The following definitions and key properties of (partial) augmenting
sets are copied from [5] where one can find the corresponding proofs.

▶ Definition 9 (Augmenting Sets, from [5, Definition 24]). Let S ∈ I1 ∩ I2 and G(S) be
the corresponding exchange graph with shortest (s, t)-path of length ℓ + 1 (ℓ must be odd)
and distance layers D1, D2, . . . , Dℓ. A collection of sets Πℓ := (B1, A2, B3, A4, . . . , Aℓ−1, Bℓ)6

form an augmenting set in G(S) if the following conditions are satisfied:
(a) Ak ⊆ Dk for even k, and Bk ⊆ Dk for odd k.
(b) |B1| = |A2| = |B3| = · · · = |Bℓ|
(c) S + B1 ∈ I1
(d) S + Bℓ ∈ I2
(e) For all even 1 ≤ k ≤ ℓ, we have S −Ak + Bk+1 ∈ I1
(f) For all odd 1 ≤ k ≤ ℓ, we have S −Ak+1 + Bk ∈ I2

▶ Definition 10 (Partial Augmenting Sets, from [5, Definition 37]). We say that Φℓ :=
(B1, A2, B3, A4, . . . , Aℓ−1, Bℓ) forms a partial augmenting set if it satisfies the conditions (a),
(c),7 and (e) of an augmenting set, plus the following two relaxed conditions :
(b) |B1| ≥ |A2| ≥ |B3| ≥ · · · ≥ |Bℓ|.
(f) For all odd 1 ≤ k ≤ ℓ, we have rk2(S −Ak+1 + Bk) = rk2(S).

▶ Theorem 11 (from [5, Theorem 25]). Let Πℓ := (B1, A2, B3, A4, · · · , Aℓ−1, Bℓ) be the an
augmenting set in the exchange graph G(S). Then the set S′ := S ⊕ Πℓ := S + B1 − A2 +
B3 − · · · −Aℓ−1 + Bℓ is a common independent set.8

We also need the notion of maximal augmenting sets, which naturally correspond to a
maximal ordered collection of shortest augmenting paths, where, after augmentation, the
(s, t)-distance must have increased. Together with a lemma from [6] (Lemma 14), we can see,
on a high-level, how to obtain (1− ε)-approximation algorithms: find “blocking flows” (i.e.
maximal augmenting sets) until the (s, t)-distance is Ω(1/ε).

▶ Definition 12 (Maximal Augmenting Sets, from [5, Definition 35]). Let Πℓ = (B1, A2, B3, · · · ,

Aℓ−1, Bℓ) and Π̃ℓ = (B̃1, Ã2, B̃3, · · · , Ãℓ−1, B̃ℓ) be two augmenting sets in G(S). We say Π̃ℓ

contains Πℓ if Bk ⊆ B̃k and Ak ⊆ Ãk, for all k. An augmenting set Πℓ is called maximal if
there exists no other augmenting set Π̃ℓ containing Πℓ.

6 Our indexing of the sets differ a bit from [2,5].
7 Note that we intentionally skip item (d), unlike [5] which includes it in the definition, however they do

not always maintain this property in their algorithms.
8 Note that |S′| = |S| + |B1|. In particular, an augmenting set with |B1| = 1 is exactly an augmenting

path. [5] shows that augmenting sets correspond exactly to a sequence of consecutive shortest augmenting
paths.

ICALP 2022

25:6 Sublinear-Round Parallel Matroid Intersection

▶ Lemma 13 (from [5, Theorem 36]). An augmenting set Πℓ is maximal if and only if there
is no augmenting path of length at most ℓ + 1 in G(S ⊕Πℓ).

▶ Lemma 14 (Cunningham [6]). If the length of the shortest (s, t)-path in G(S) is at least
2ℓ + 1, then |S| ≥ (1−O(1/ℓ))r, where r is the size of the largest common independent set.

3 Warm-up: Finding a Maximal Common Independent Set

Consider first the easier problem of finding a maximal (instead of maximum) common
independent set: that is we want to find a set S ∈ I1 ∩ I2 such that there is no x ∈ V \ S

for which S + x ∈ I1 ∩ I2. It is well-known that a maximal common independent set is also
a 1

2 -approximation for the matroid intersection problem, and indeed our algorithm for a
general (1− ε)-approximation (Section 4) will use similar ideas as our algorithm to find a
maximal common independent set in this section.

In the sequential setting there is a very easy O(n)-query greedy algorithm: Start with
S = ∅ and go through all elements x ∈ V and add them to S if S + x is independent in both
matroids. However, this greedy algorithm is inherently very sequential and does not seem
to adapt well to the parallel setting. Instead, we must somehow try to find several xs “in
parallel” which we can all add to S simultaneously without breaking independence.

3.1 One Matroid

Let us start even simpler, and consider how to find a maximal independent set9 S in a single
matroid M = (V, I). It turns out that in our final matroid intersection algorithm we will
many times, as a subroutinue, need to do exactly this.

Karp-Upfal-Wigderson [15] provides some simple parallel algorithms (both for rank- and
independence-oracle access), whose results we present in Lemma 15. We briefly sketch their
algorithms below, more details and full proofs can be found in [15,17].

Rank Oracle. The rank-query algorithm only needs a single round. Let {v1, v2, . . . , vn} = V

be the elements of the ground set, and let Vi = {v1, v2, . . . , vi−1, vi} (so that V0 = ∅ and
Vn = V). Now query rk(Vi) for all i, and return S = {vi : rk(Vi) > rk(Vi−1)}. Intuitively, we
can imagine that we go through all elements vi one-by-one and add them to S if and only if
the rank goes up.

Independence Oracle. The independence-query algorithm will need O(
√

n) rounds of O(n)
queries per round. Partition the elements of V into

√
n different groups of (almost) equal

size F1, F2, . . . F√
n. If any group is independent (say Fi), then we select it, and consider the

contracted matroid M/Fi. Note that this can only happen
√

n times. On the other hand, if
all Fi are dependent, then we will find one element per group (that is

√
n in total) which we

can safely discard: If {v1, v2, . . . , vk} = Fi are the elements of Fi, we query all prefixes, i.e.
“Is {v1, v2, . . . , vj} ∈ I?” for all j, and discard the first element vj for which the answer is
“No”.

9 Such a set S is usually called a basis of the matroid, and due to the exchange-property all the maximal
independent sets must have the same size.

J. Blikstad 25:7

▶ Lemma 15 (Parallel basis algorithm, [15]). There is a deterministic parallel algorithm which
given a matroids M = (V, I) finds a maximal independent set S ∈ I using either

O(1) round of O(n) many rank-queries, or
O(
√

n) rounds of O(n) many independence-queries.10

▶ Remark 16. Note that if we have a set X ∈ I and Y ⊆ V \ X, we can with the same
algorithms as above find a maximal Y ′ ⊆ Y such that X + Y ′ ∈ I, even though the above
algorithms are only stated as if X = ∅ and Y = V . This is since we can consider the
contracted and restricted matroidM′ = (M / X) \ (V \Y); and an independence/rank-query
on M′ can be simulated with the corresponding query on M.

3.2 Two Matroids
Now we return to our problem of finding a maximal common independent set S of two matroids
M1 = (V, I1) and M2 = (V, I2). Suppose we already have some common independent set
S ∈ I1 ∩ I2. We will try to add more elements to S until it becomes maximal.

Firstly, let us concentrate on the first matroid and pick a maximal set B ⊆ V such that
S + B ∈ I1 using Lemma 15. However, S + B is not necessarily independent in the second
matroid, so we would need to fix this: let B′ ⊆ B be a maximal subset such that S + B′ ∈ I2,
which we again can find using Lemma 15. Now we know S + B′ ∈ I1 ∩ I2 is a common
independent set, so we set S ← S + B′, and we have made some progress (unless B′ = ∅ of
course).

At this point we can make a crucial observation: we can safely discard the elements
x ∈ B \B′, since now S + x /∈ I2. Hence, for each element in B we have either (i) added it
to our common independent set or (ii) discarded it. As long as |B| is relatively large (say
≈
√

n), we have made significant progress.
On the other hand, if |B| is small, we may resort to a different strategy. By the exchange

property of matroids, we know that any A ⊆ V such that S + A ∈ I1 has size |A| ≤ |B|. So
we can add at most |B| more elements to our common independent set S before it becomes
maximal. We can thus simply find these remaining (up to |B| many) elements one-by-one,
using one round each.

We present this two-stage strategy below in Algorithm 1, which is parametrized by the
cut-off threshold p for when to consider |B| small. The optimal choice of p differs depending
on the oracle access (independence or rank) we have.

Adaptivity. The first stage of Algorithm 1 runs in O(n/p · Tbasis) rounds if Tbasis is the
number of rounds needed to find a maximal independent set for a single matroid (Lemma 15
gives T rank

basis = O(1) and T indep
basis = O(

√
n)). This is since the size of F will decrease by

|B| ≥ p each time the while-loop is run, which can happen at most n/p times. The second
stage of Algorithm 1 runs in O(p) rounds, both for independence and rank-oracle. Picking
p optimally gives: O(

√
n) rounds of rank-queries (with p =

√
n); or O(n3/4) rounds of

independence-queries (with p = n3/4). This proves Theorem 17, stated below.

▶ Theorem 17. There is a deterministic parallel algorithm which given two matroids
M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a maximal common
independent set S ∈ I1 ∩ I2 using either

O(
√

n) rounds of polynomially many rank-queries, or
O(n3/4) rounds of polynomially many independence-queries.

10 KUW [15] also provides a lower bound of Ω̃(n1/3) rounds for any independence-query algorithm which
uses only polynomial number of queries per round, even if randomization is allowed. It remains an open
problem to close this gap between Ω̃(n1/3) and O(

√
n).

ICALP 2022

25:8 Sublinear-Round Parallel Matroid Intersection

Algorithm 1 Maximal Common Independent Set.

1: Let S = ∅ and F = V .
2: while true do ▷ Stage 1
3: Find a maximal B ⊆ F such that S + B ∈ I1 (using Lemma 15).
4: if |B| ≤ p then break
5: Find a maximal B′ ⊆ B such that S + B′ ∈ I2 (using Lemma 15).
6: Update S ← S + B′ and F ← F −B.
7: while true do ▷ Stage 2
8: Query “Is S + x ∈ I1” and “Is S + x ∈ I2?” for all x ∈ F in parallel.
9: Pick an arbitrary x ∈ F such that S + x ∈ I1 and S + x ∈ I2.

10: if no such x exists then break
11: Update S ← S + x and F ← F − x.

4 Finding a Maximum Common Independent Set

In this section we present our sublinear-round matroid intersection algorithm.
The algorithm consists of two steps: first it finds an (1 − ε)-approximation, and then

it finds the remaining εn (which is sublinear if 1/ε is polynomially large in n) augmenting
paths one-by-one. Each such remaining augmenting path can be found in a single round
of n2 independence (or rank) queries: in parallel query each possible edge of the exchange
graph, and then see if there was an augmenting path. Indeed, when we know all the edges of
the exchange graph, we do not need any more (rounds of) queries to figure out if there was
an path.11 If we skipped the (1− ε)-approximation step and just found all the augmenting
paths one-by-one we obtain the straightforward O(n)-round algorithm.

The difficult part of the algorithm is how to find the (1− ε)-approximation in sublinear
number of rounds (even when 1/ε is polynomially large). To do this, we would need to find
many augmenting paths simultaneously, and indeed this is our strategy. Our main result of
this section is this approximation algorithm which we summarize in Theorem 18 below.

▶ Theorem 18 (Sublinear-round (1 − ε)-approximation). There is a deterministic parallel
algorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground
set V , finds a common independent set S ∈ I1 ∩ I2 of size |S| ≥ (1− ε)r, where r is the size
of the largest common independent set, using either

O(
√

n/ε) rounds of polynomially many rank-queries, or
O(n3/4/ε) rounds of polynomially many independence-queries.

Exact algorithm. By an appropriate choice of ε (ε = n−1/4 for rank-oracle and ε = n−1/8

for independence-oracle), together with our discussion above, the main result (Theorem 1,
restated below) of the paper – the sublinear-round exact algorithm – follows immediately
from Theorem 18. The remainder of this paper will go towards proving Theorem 18, i.e. the
(1− ε)-approximation algorithm.

▶ Theorem 1 (Sublinear-round Matroid Intersection). There is a deterministic parallel al-
gorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V ,
finds a largest common independent set S ∈ I1 ∩ I2 using either

O(n3/4) rounds of polynomially many rank-queries, or
O(n7/8) rounds of polynomially many independence-queries.

11 Note that if we also care about the number of rounds of work of the algorithm (and not just the
rounds of queries), we can find the augmenting path in the exchange graph in just poly(n) rounds, as
s, t-reachability is well-known to be in NC.

J. Blikstad 25:9

4.1 Blocking Flow

The approximation algorithm maintains a common independent set S and runs in O(1/ε)
phases, where in the i’th phase it eliminates all augmenting paths of length 2i by finding a
blocking flow, similar to the Hopcroft-Karp’s [14] bipartite matching algorithm and Dinitz’s [7]
max-flow algorithm. By blocking flow we mean a set of compatible shortest augmenting paths
after which augmenting along them the (s, t)-distance in the exchange graph has increased.
At the end, by Lemma 14, we will have found a common independent set S which is a
(1− ε)-approximation, since the shortest augmenting path will have length O(1/ε).

This idea of applying blocking flow algorithms to matroid intersection originates from
the algorithm of Cunningham [6], but has since been improved by Chakrabarty-Lee-Sidford-
Singla-Wong [5] and subsequently Blikstad [2], and it is the framework of these two later
algorithms which we will follow.

▶ Remark 19. In the first phase we will eliminate all augmenting paths of length 2. This
corresponds exactly to finding a maximal common independent set, like we did in Section 3.
In general, we will show that we can implement any phase in the same round-complexity as
the first phase, using similar ideas.

Beginning of a phase. In each phase, we consider a layered graph, where we let the distance-
layer Di denotes all the elements of distance i from the source node s in the exchange graph
G(S). At the beginning of a phase, the algorithm will use a single round (of O(n2) queries)
to find these distance layers: simply query all potential edges of the exchange graph.

Unfortunately, knowing all the edges in the exchange graph is not sufficient to find
a blocking flow, since a set of disjoint augmenting paths might not be compatible with
each other. The exchange graph G(S) does not capture the full structure of the matroid
intersection problem, and this is where the difficulty in obtaining sublinear-round matroid
intersection algorithms comes from. There is a need to be able to find many compatible
augmenting paths “in parallel”.

Augmenting sets. The notion of a collection of compatible12 augmenting paths is captured
by augmenting sets, as defined in Definition 9. So our goal in a phase is to find a maximal
augmenting set (see Definition 12), which is what we formally mean by “blocking flow”. After
augmenting along a maximal augmenting set, Lemma 13 implies that the (s, t)-distance has
increased, and we can move on to the next phase.

Our algorithm will follow the framework of [5] and [2], which are the state-of-the-art
sequential independence-query approximation algorithms. The overall idea can be seen as a
generalization of the warm-up maximal common independent set algorithm from Section 3.
Instead of working with just a single distance layer in the exchange graph we now have up to
O(1/ε) many layers. Fortunately, layers far apart from each other can be handled relatively
well in parallel, and we will see that the final adaptivity of our algorithm to find a blocking
flow in a phase will not depend on the number of layers.

We start by, on a high level, summarizing how the algorithm of [2, 5] implements a phase
in two stages. Our main result is how we can implement this algorithm efficiently in a
parallel.

12 That is they can all be augmented along simultaneously without breaking independence in either
matroid.

ICALP 2022

25:10 Sublinear-Round Parallel Matroid Intersection

1. The first stage keeps track of a partial augmenting set (Definition 10) which it keeps
refining by a series of operations on adjacent distance layers in the exchange graph, to
make it closer to a maximal augmenting set.

2. When we are “close enough” to a maximal augmenting set, the progress we make in
the first stage slows down. Then we fall back to the second stage in which we find the
relatively few remaining augmenting paths individually one at a time.

4.2 First Stage: Refining
The basic refining ideas and procedures in this section are the same as in [2,5]; our contribution
is to show how they can be implemented in a parallel fashion.

Say we are in the phase where the (s, t)-distance is ℓ + 1, that is we have ℓ layers
in our exchange graph. The algorithm keeps track of a partial augmenting set Φℓ =
(B1, A2, B3, . . . , Aℓ−1, Bℓ) (see Definition 10), which it makes local improvements to, called
refining. Essentially Φℓ looks like a stair-case: Bk+1 is a set which can be “matched” to some
subset of the previous layer Ak; and similarly Ai+1 can be “matched” to a subset of Bi. As
long as Φℓ is “far” from being a maximal augmenting set, the refinement procedures make
significant progress. When Φℓ becomes “close” to being a maximal augmenting set we move
on to the second stage.

We maintain three types of elements in each layer Dk in the exchange graph.
Selected. Sets Ak and Bk form the partial augmenting set Φℓ.
Removed. Sets Rk contain the discarded elements which we have deemed useless.
Fresh. Sets Fk contain the elements which are neither selected nor removed.

All elements are initially fresh, and for convenience we also define “imaginary” empty
boundary layers D0 = Dℓ+1 = ∅, with corresponding sets A0, R0, F0, Aℓ+1, Rℓ+1, Fℓ+1. Note
that (Ak, Rk, Fk) forms a partition of Dk ⊆ S when k is even, and that (Bk, Rk, Fk) partitions
Dk ⊆ V \ S when k is odd.

The idea of the refinement procedures is to make some local improvements to adjacent
distance-layers. While doing this, we make sure that elements only change their types from
fresh → selected → removed, but never in the other direction. In order to formalize that the
removed elements are actually useless, we maintain the following phase invariants.

▶ Definition 20 (Phase Invariants, from [5, Section 6.3.2]). The phase invariants are:
(a-b) Φℓ = (B1, A2, B3, . . . , Aℓ−1, Bℓ) forms a partial augmenting set.13

(c) For all even k, rk1(W −Rk) = rk1(W)− |Rk| where W = S −Ak + (Dk+1 −Rk+1).14

(d) For all odd k, rk2(W + Rk) = rk2(W) where W = S − (Dk+1 −Rk+1) + Bk.

▶ Remark 21. Invariant (c) and (d) essentially says that if Rk+1 is useless, then so is Rk, for
both even and odd layers, and thus, by induction, all removed elements are indeed useless.
For example, (d) says that any element x ∈ Rk does not increase the rank, even if we take
away all non-useless elements (Dk+1 −Rk+1) in the next layer. Hence such an x cannot be
“matched” to any non-useless element in the next layer, so it is safe to discard it, since we
will never be able to add it to Bk while maintaining that (. . . , Bk, Ak+1, . . .) form an partial
augmenting set.

13 The naming of this invariant as (a-b) is to be consistent with [5] where this condition is split up into
two separate items (a) and (b).

14 This invariant differs from [5], where it was written in the following equivalent form: For 1 ≤ k ≤ ℓ/2,
for any X ⊆ B2k+1 + F2k+1 = D2k+1 − R2k+1, if S − (A2k + R2k) + X ∈ I1 then S − A2k + X ∈ I1.

J. Blikstad 25:11

4.2.1 Refining Locally
We now present the basic refinement procedures from [5], which are operations on two neigh-
boring layers. We note that [2] improves upon the algorithm of [5] (in the sequential setting)
by considering refinement operations on three consecutive layers instead. Unfortunately,
the three-layer refinement procedures of [2] does not seem to work efficiently in the parallel
setting.

Intuitively, for an even k, RefineAB(k) tries to extend Bk+1 as much as possible while it
still can be “matched” from Ak in the previous layer (i.e. while S −Ak + Bk+1 ∈ I1). After
this, if |Ak| > |Bk+1|, we can remove elements from Ak and argue that they are useless (if
they were useful, then it should have been possible to “match” them to something more in the
next layer, but this is not the case since Bk+1 could not be extended more). So RefineAB(k)
extends Bk+1 and shrinks Ak so that they are the same size. Doing so, |Aold

k | − |Bold
k+1|

elements have changed types, and this crucial observation is what allows us to measure
progress. For an odd k, RefineBA(k) works very similarly, but now between the consecutive
layers (Bk, Ak+1).

Algorithm 2 RefineAB(k) for even k. (called Refine1 in [5, Algorithm 9])

1: Find a maximal B ⊆ Fk+1 s.t. S −Ak + Bk+1 + B ∈ I1
2: Bk+1 ← Bk+1 + B, Fk+1 ← Fk+1 −B

3: Find a maximal A ⊆ Ak s.t. S −Ak + Bk+1 + A ∈ I1
4: Ak ← Ak −A, Rk ← Rk + A

Algorithm 3 RefineBA(k) for odd k. (called Refine2 in [5, Algorithm 10])

1: Find a maximal B ⊆ Bk s.t. S − (Dk+1 −Rk+1) + B ∈ I2
2: Rk ← Rk + Bk −B, Bk ← B

3: Find a maximal A ⊆ Fk+1 s.t. S − (Dk+1 −Rk+1) + Bk + A ∈ I2
4: Ak+1 ← Ak+1 + Fk −A, Fk ← A

▶ Remark 22. When we are in the first phase, that is when there is only a single layer
between s and t in the graph, running RefineAB(0) and RefineBA(1) corresponds to our
warm-up algorithm to find a maximal common independent set from Section 3. In particular
RefineAB(0) finds a maximal B1 such that S + B1 ∈ I1, and RefineAB(1) shrinks B1 such
that S + B1 ∈ I2 too.

▶ Lemma 23. RefineAB and RefineBA can each be implemented in either:
O(1) rounds of polynomially many rank-queries, or
O(
√

n) rounds of polynomially many independence-queries.

Proof. The refine procedures only need to find a maximal independent set (for a single
matroid) twice, so we can apply Lemma 15. ◀

The following properties are proven in [5].

▶ Lemma 24 (from [5, Lemmas 40-42]). Both RefineAB and RefineBA preserve the phase
invariants. Also: after RefineAB(k) is run, we have |Ak| = |Bk+1| (unless k = 0). After
RefineBA(k) is run, we have |Bk| = |Ak+1| (unless k = ℓ).

ICALP 2022

25:12 Sublinear-Round Parallel Matroid Intersection

▶ Observation 25. Lemma 24 can be used to messure progress. In particular, after running
RefineAB(k), |Ak| = |Bk+1|, so a total of |Aold

k | − |Bold
k+1| elements must have changed types

(x ∈ Aold
k might have been removed, while a x ∈ F old

k+1 might have been selected). Similarly
RefineBA(k) will change types of |Bold

k | − |Aold
k+1| elements. Note that each element can only

change type at most twice (from fresh to selected to removed), so this observation can be
used to measure progress.

4.2.2 Refining Globally
In the sequential algorithms of [2, 5], a refinement pass consists of running RefineAB(k) and
RefineAB(k) for all k in sequence. However, in the parallel setting we can do better. Since
RefineAB and RefineBA only change things locally in two adjacent layers, we observe that
we can perform several of these refinement operations in parallel.

Algorithm 4 Refine().

1: In parallel, run RefineAB(k) for all even 0 ≤ k ≤ ℓ.
2: In parallel, run RefineBA(k) for all odd 0 ≤ k ≤ ℓ.

▶ Lemma 26. Refine can be implemented in either:
O(1) rounds of polynomially many rank-queries, or
O(
√

n) rounds of polynomially many independence-queries.

The following Lemma 27 will be useful to bound the number of Refine calls needed in
our final algorithm, and is similar to [5, Corollary 43].

▶ Lemma 27. Suppose that |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1 and that S + Bℓ ∈ I2,
before Refine is run. After Refine is run we have:

(i) |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1, still.
(ii) S + Bℓ ∈ I2, still.
(iii) |B′

1| − |Bℓ| elements have changed their type, where B′
1 is any maximal subset of

(D1 −R1) such that S + B′
1 ∈ I1.

Proof. Property (i) is true, since it is true just after we run RefineBA(k), by Lemma 27,
and this is what is done in the last step of Refine. Similarly property (ii) is true, since
RefineBA(ℓ) ensures this when “shrinking” Bℓ (see how B is picked in Algorithm 3 line 1).

What remains is to prove property (iii). Let (Bold
1 , Aold

2 , . . .) be the sets before Refine
is run. In the first line of Algorithm 4, we run RefineAB(2), RefineAB(4), RefineAB(6), . . . ,
which according to Lemma 24 and Observation 25, has incurred a total of

∑
|Aold

k |−|Bold
k+1| =

|Bold
1 | − |Bold

ℓ | type-changes (the sum telescopes since we assume |Bold
k−1| = |Aold

k |).
Also note that we run RefineAB(0), which extends B1 until it is a maximal subset of

D1 \ R1 such that S + B1 ∈ I1 (line 1 of Algorithm 2). This means that an additional
|B′

1| − |Bold
1 | elements have changed their type – from fresh to selected – in the first layer,

where B′
1 is the value of B1 we get after running RefineAB(0). Note that this B′

1 is a maximal
subset of (D1 −R1) such that S + B′

1 ∈ I1 (see line 1 of Algorithm 2).
Hence, in the first line of Algorithm 4, |B′

1| − |Bℓ| types have changed. We might
additionally change types of more elements when running the second line of Algorithm 4. ◀

▶ Remark 28. We measure progress in terms of Lemma 27. Since each element can only change
types twice (from fresh 7→ selected 7→ removed), there will be in total O(n) type-changes.
If we just run Refine, we might need to do so O(n) times (in the case when |B′

1| − |Bℓ| is

J. Blikstad 25:13

constant), so this is not good enough to obtain a sublinear round parallel algorithm. Like
we did in the easier case of maximal common independent set, we must swap to a different
strategy when the progress of refining stagnates, i.e. when |B′

1| − |Bℓ| is relatively small.

4.3 Second Stage: Finding the Remaining Augmenting Paths
When |B′

1| − |Bℓ+1| is relatively small, we fall back to finding a special kind of augmenting
paths one-by-one. We will show that we only need to find |B′

1| − |Bℓ+1| many such paths
before we get stuck and have found our maximal augmenting set (i.e. the desired blocking
flow). These special kind of augmenting paths we consider are essentially augmenting paths
in the exchange graph with respect to our partial augmenting set. They were first introduced
by [2], and are called valid paths.

▶ Definition 29 (Valid path, from [2, Definition 31]). (bi, ai+1, bi+2, . . . , aℓ−1, bℓ, t) is a valid
path (w.r.t. our partial augmenting set) starting at bi if for all k ≥ i:
(a) ak ∈ Fk for even k and bk ∈ Fk for odd k.
(b) S −Ai−1 + Bi + bi ∈ I1.
(c) S + Bℓ + bℓ ∈ I2.
(d) S −Ak+1 + Bk − ak+1 + bk ∈ I2 for odd k.
(e) S −Ak + Bk+1 − ak + bk+1 ∈ I1 for even k.

s

B1 A2

B3 A4

B5

t

b3 a4

b5

M1

M2 M2M1
M2M1

Figure 1 An example of a valid path (b3, a4, b5, t) starting at b3.

▶ Remark 30. Compare the definition of valid paths to the edges in the exchange graph
from Definition 7. Essentially, items (b-e) corresponds to edges of the exchange graph
G(S + B1 −A2 + B3 −A4 + · · ·+ Bℓ) of S after augmenting along our partial augmenting
set. Note also that item (b) can only hold when |Ai−1| > |Bi| (or, when i = 1 and A0 = ∅ is
an “imaginary” boundary set).

▶ Lemma 31 (Augmenting along a valid path [2, Lemma 33]). Suppose that |Bk| = |Ak+1|
for all odd 1 ≤ k ≤ ℓ− 1 and that S + Bℓ ∈ I2.15 If (bi, ai+1, bi+2, . . . , bℓ, t) is a valid path
starting at bi, then (B1, A2, . . . , Bi−2, Ai−1, Bi + bi, Ai+1 + ai+1, . . . , Bℓ + bℓ) is a partial
augmenting set satisfying the phase invariants and with S + Bℓ + bℓ ∈ I2.

Proof sketch. It is easy to verify that all the properties in the definition of a partial
augmenting set are still satisfied after the augmentation. Moreover, the phase invariants are
also true, since the sets Bk and Ak are only extended by the augmentation (so an element
deemed useless before remains useless). ◀

15 These conditions are actually redundant, since they are covered by items (d) and (c) in the definition of
the valid paths. However, they make the intuition slightly easier, and our algorithm maintains them.

ICALP 2022

25:14 Sublinear-Round Parallel Matroid Intersection

▶ Lemma 32. We can find a valid path, if one exists, in a single round of O(n2) queries.

Proof. Finding a valid path in a single round of queries is not very different from finding a
normal augmenting path. In a single round we query all potential “directed edges”, that is
all potential (ak, bk+1) or (bk, ak+1) pairs satisfying the items of Definition 29 (valid paths).
Then we can combine these edges to form a valid path, or else determine that no valid path
exist. ◀

▶ Remark 33. After augmenting along a valid path, |Bℓ| increases by one. Let B′
1 be any

any maximal subset of (D1 −R1) such that S + B′
1 ∈ I1. Note that we always know that

|B′
1| ≥ |B1| ≥ |Bℓ|. Hence, we need to only find at most |B′

1| − |Bℓ| many valid paths to
augment along after we finished the first stage.

We also need the following lemma saying that if, for an element x ∈ Fk, there is no
“partial” valid path (x, . . . , aℓ−1, bℓ, t) (satisfying all items of a valid path, except maybe item
(b) of Definition 29), then it is safe to delete x. We prove this by showing that if x has no
“out-edges” (of the form of items (c-e) in Definition 29), then it can be removed.

▶ Lemma 34. Suppose that |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1 and that S + Bℓ ∈ I2.
Then:

If bℓ ∈ Fk is such that S + Bℓ + bℓ ̸∈ I2, we can safely remove it.
For a given bk ∈ Fk, if there exist no ak+1 ∈ Fk+1 such that S−Ak+1+Bk−ak+1+bk ∈ I2,
then it is safe to remove bk.
For a given ak ∈ Fk, if there exist no bk+1 ∈ Fk+1 such that S−Ak+Bk+1−ak+bk+1 ∈ I1,
then it is safe to remove ak.

Proof sketch. We must argue that the phase invariants are preserved when the elements are
removed. It is straightforward to verify that phase invariants (c) and (d) hold in all these
three cases. As a black-box intuition, we can imagine temporarily selecting the element x we
want to remove, and then running either RefineAB or RefineBA and note that this procedure
can immediately remove x again (and the refine-procedures preserves the invariants). ◀

4.4 Combining the Stages
Now we present the full algorithm of a phase, whose goal is to find a maximal augmenting set,
that is a “blocking flow”. Pseudo-code can be found in Algorithm 5, which is parametrized
by a cut-off threshold p (which will be different for rank- and independence-query) for when
to move from the first to second stage.
▶ Remark 35. After the two stages, we will have some partial augmenting set (B1, A2, . . . , Bℓ)
such that there are no more valid paths. However, it is not yet an actual augmenting set,
for instance it can be the case that |Ak| > |Bk+1| for some k. Still, we can argue that
(B1, A2, . . . , Bℓ) contains some maximal augmenting set (B̃1, Ã2, . . . , B̃ℓ) with B̃ℓ = Bℓ. So
we will need a short extra clean-up step to reduce our partial augmenting set to such a
maximal augmenting set.

Note that it is possible to show that we actually can directly augment along our partial
augmenting set (B1, A2, . . . , Bℓ) which the algorithm finds (this relies on the extra properties
that |Bk| = |Ak+1| and S + Bℓ ∈ I2). That is S′ = S + B1−A2 + B2−· · ·+ Bℓ ∈ I1∩I2 is a
common independent set. Additionally |S′| = |S|+ |Bℓ|, so we have increased the size of S as
much as we would have if we found the the maximal augmenting set (B̃1, Ã2, . . . , B̃ℓ) instead.
However, there is a critical problem with this approach: there can be short augmenting paths
in G(S′). This means that such an approach will have failed to eliminate all (s, t)-paths of
length ≤ ℓ. Hence the clean-up step is actually necessary.

J. Blikstad 25:15

Algorithm 5 Implementation of phase (ℓ + 1)/2.

1: In parallel query all potential edges of the exchange graph G(S) (see Definition 7).
2: Find the distance layers D1, D2, . . . Dℓ.
3: Initialize Bk = ∅, Ak = ∅, Rk = ∅ and Fk = Dk for all k.

4: while true do ▷ Stage 1
5: Find a maximal B′ ⊆ D1 −R1 such that S + B′ ∈ I1 (using Lemma 15).
6: if |B′| − |Bℓ| ≤ p then break
7: Call Refine() (Algorithm 4).

8: while true do ▷ Stage 2
9: In a single round, find a valid path if one exists (Lemma 32).

10: if no valid path exists then break
11: Augment the partial augmenting set along the found valid path (Lemma 31).

▷ Clean-up
12: Remove all elements which do not have any partial valid path from them (see Lemma 34).
13: Sequentially, call RefineBA(ℓ), RefineAB(ℓ− 1), RefineBA(ℓ− 2), . . . RefineAB(0)
14: Augment along the maximal augmenting set Φ = (B1, A2, . . . , Bℓ):
15: that is, update S ← S + B1 −A2 + B3 + · · ·+ Bℓ.

Correctness. In the beginning of Algorithm 5 the following hold: (i) the phase invariants
(Definition 20); (ii) |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1; and (iii) S + Bℓ ∈ I2.

In the first stage, whenever we call Refine, the above properties (i-iii) are all preserved
according to Lemma 27. Similarly, in the second stage, whenever we augment along a valid
path, the above properties (i-iii) are also preserved, by Lemma 31.

What remains to be shown is that after the clean-up phase, Φ = (B1, A2, . . . , Bℓ) is a
maximal augmenting set. We prove this by showing that these refine calls cannot select any
new elements, that is they do not add any elements to the sets Bk or Ak. If we show this,
then we know that |Bℓ| = |Aℓ−1| = . . . = |B1| after all these refine calls, as RefineAB(ℓ− 1)
reduced |Aℓ−1| to match |Bℓ|; RefineBA(ℓ− 2) reduces |Bℓ−2| to match |Aℓ−1|; etc.

To argue that RefineAB(k) does not select any new elements, we note that if it added bk

to Bk, it meant that S −Ak+1 + Bk + bk ∈ I1. However, since bk was not removed in line 12
of the algorithm, there must have been a valid path starting from bk, which is a contradiction.
The argument for RefineBA(k) is the same. Note that since we only remove elements, no
new valid paths can occur.

Now, after |B1| = |A2| = . . . = |Bℓ|, (B1, A2, . . . , Bℓ) forms a maximal augmenting set.
If it did not, there must have been some path (b1, a2, . . . , bℓ) which we can add to it, but
this is impossible, since this path would have been a valid path (starting at b1).

Rounds of adaptivity. The first stage of Algorithm 5 runs in O(n/p·TRefine) rounds if TRefine

is the number of rounds needed to run Refine() once (Lemma 26 gives T rank
Refine = O(1) and

T indep
Refine = O(

√
n)). This is since each time we run refine we will have at least p type-changes

(Lemma 27), and in total each of the n elements can change types at most twice.
The second stage of Algorithm 5 runs in O(p) rounds, both for independence and rank-

oracle, by Lemma 32. Picking p optimally gives: O(
√

n) rounds of rank-queries (with p =
√

n)
or O(n3/4) rounds of independence-queries (with p = n3/4) for the first and second stages
combined.

ICALP 2022

25:16 Sublinear-Round Parallel Matroid Intersection

Finally the clean-up stage runs, sequentially, with O(ℓ) refinement operations. This takes
O(ℓ) rounds of rank-queries or O(ℓ

√
n) rounds of independence queries, so this depends on

the number of layers. However, we argue that we can ignore this term for the interesting
range of ℓ. This is because when ℓ is too large (>

√
n for rank-queries and > n1/4 for

independence-queries), we know by Lemma 14 that there are only O(1/ℓ) many augmenting
paths left in total, and we can instead find them one-by-one in at most O(

√
n) rounds for

rank-queries or O(n3/4) rounds for independence queries.
Concluding, we have argued that we can implement a blocking-flow phase in O(

√
n)

rounds of rank-queries or O(n3/4) rounds of independence-queries.

Approximation algorithm. Running Algorithm 5 for O(1/ε) phases eliminates all paths
in the exchange graph of length O(1/ε) (Lemma 13), so by Lemma 14 we know that the
common independent set S we end up with is a (1− ε)-approximation. The adaptivity is
thus O(

√
n/ε) rounds of rank-queries or O(n3/4/ε) rounds of independence-queries. Hence

we have shown a (1− ε)-approximation algorithm using O(
√

n/ε) rounds of (polynomially
many) rank-queries or O(n3/4/ε) rounds of (polynomially many) independence-queries, which
proves Theorem 18.

References
1 Martin Aigner and Thomas A. Dowling. Matching theory for combinatorial geometries.

Transactions of the American Mathematical Society, 158(1):231–245, 1971.
2 Joakim Blikstad. Breaking o(nr) for matroid intersection. In ICALP, volume 198 of LIPIcs,

pages 31:1–31:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.ICALP.2021.31.

3 Joakim Blikstad, Jan van den Brand, Sagnik Mukhopadhyay, and Danupon Nanongkai.
Breaking the quadratic barrier for matroid intersection. In STOC, pages 421–432. ACM, 2021.
doi:10.1145/3406325.3451092.

4 Deeparnab Chakrabarty, Yu Chen, and Sanjeev Khanna. A polynomial lower bound on the
number of rounds for parallel submodular function minimization and matroid intersection. In
FOCS, pages 37–48. IEEE Computer Society, 2021. doi:10.1109/FOCS52979.2021.00013.

5 Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.
Faster matroid intersection. In FOCS, pages 1146–1168. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00072.

6 William H. Cunningham. Improved bounds for matroid partition and intersection algorithms.
SIAM J. Comput., 15(4):948–957, 1986. doi:10.1137/0215066.

7 Efim A Dinic. Algorithm for solution of a problem of maximum flow in networks with power
estimation. In Soviet Math. Doklady, volume 11, pages 1277–1280, 1970.

8 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial
structures and their applications, pages 69–87. Gordon and Breach, 1970.

9 Jack Edmonds. Matroid intersection. In Annals of discrete Mathematics, volume 4, pages
39–49. Elsevier, 1979.

10 Jack Edmonds, GB Dantzig, AF Veinott, and M Jünger. Matroid partition. 50 Years of
Integer Programming 1958–2008, page 199, 1968.

11 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in
quasi-nc. SIAM J. Comput., 50(3), 2021. doi:10.1137/16M1097870.

12 Sumanta Ghosh, Rohit Gurjar, and Roshan Raj. A deterministic parallel reduction from
weighted matroid intersection search to decision. In SODA, pages 1013–1035. SIAM, 2022.
doi:10.1137/1.9781611977073.44.

13 Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. Comput.
Complex., 29(2):9, 2020. doi:10.1007/s00037-020-00200-z.

https://doi.org/10.4230/LIPIcs.ICALP.2021.31
https://doi.org/10.4230/LIPIcs.ICALP.2021.31
https://doi.org/10.1145/3406325.3451092
https://doi.org/10.1109/FOCS52979.2021.00013
https://doi.org/10.1109/FOCS.2019.00072
https://doi.org/10.1137/0215066
https://doi.org/10.1137/16M1097870
https://doi.org/10.1137/1.9781611977073.44
https://doi.org/10.1007/s00037-020-00200-z

J. Blikstad 25:17

14 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

15 Richard M. Karp, Eli Upfal, and Avi Wigderson. The complexity of parallel computation on
matroids. In FOCS, pages 541–550. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.
57.

16 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
NC. Comb., 6(1):35–48, 1986. doi:10.1007/BF02579407.

17 Richard M. Karp, Eli Upfal, and Avi Wigderson. The complexity of parallel search. J. Comput.
Syst. Sci., 36(2):225–253, 1988. doi:10.1016/0022-0000(88)90027-X.

18 Eugene L. Lawler. Matroid intersection algorithms. Math. Program., 9(1):31–56, 1975.
doi:10.1007/BF01681329.

19 Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its
implications for combinatorial and convex optimization. In FOCS, pages 1049–1065. IEEE
Computer Society, 2015. doi:10.1109/FOCS.2015.68.

20 László Lovász. On determinants, matchings, and random algorithms. In FCT, pages 565–574.
Akademie-Verlag, Berlin, 1979.

21 Huy L. Nguyen. A note on cunningham’s algorithm for matroid intersection. CoRR,
abs/1904.04129, 2019. arXiv:1904.04129.

ICALP 2022

https://doi.org/10.1137/0202019
https://doi.org/10.1109/SFCS.1985.57
https://doi.org/10.1109/SFCS.1985.57
https://doi.org/10.1007/BF02579407
https://doi.org/10.1016/0022-0000(88)90027-X
https://doi.org/10.1007/BF01681329
https://doi.org/10.1109/FOCS.2015.68
http://arxiv.org/abs/1904.04129

	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	3 Warm-up: Finding a Maximal Common Independent Set
	3.1 One Matroid
	3.2 Two Matroids

	4 Finding a Maximum Common Independent Set
	4.1 Blocking Flow
	4.2 First Stage: Refining
	4.2.1 Refining Locally
	4.2.2 Refining Globally

	4.3 Second Stage: Finding the Remaining Augmenting Paths
	4.4 Combining the Stages

