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—— Abstract

We initiate a systematic study of algorithms that are both differentially-private and run in sublinear

time for several problems in which the goal is to estimate natural graph parameters. Our main
result is a differentially-private (1 4 p)-approximation algorithm for the problem of computing the
average degree of a graph, for every p > 0. The running time of the algorithm is roughly the same
(for sparse graphs) as its non-private version proposed by Goldreich and Ron (Sublinear Algorithms,
2005). We also obtain the first differentially-private sublinear-time approximation algorithms for the
maximum matching size and the minimum vertex cover size of a graph.

An overarching technique we employ is the notion of coupled global sensitivity of randomized
algorithms. Related variants of this notion of sensitivity have been used in the literature in ad-hoc
ways. Here we formalize the notion and develop it as a unifying framework for privacy analysis of
randomized approximation algorithms.
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1 Introduction

Graphs are frequently used to model massive data sets (e.g., social networks) where the users
are the nodes, and their relationships are the edges of the graphs. These relationships often
consist of sensitive information, which drives the need for privacy in this setting.

Differential Privacy (DP) [12] has become the gold standard in privacy-preserving data
analysis due to its compelling privacy guarantees and mathematically rigorous definition.
Informally, a randomized function computed on a graph is differentially private if the
distribution of the function’s output does not change significantly with the presence or
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absence of an individual edge (or node). See [13] for a comprehensive tutorial on differential
privacy.

» Definition 1 (Differential-privacy). Let G, denote the set of all n-node graphs. An algorithm
A is (&,8) node-DP (resp. edge-DP) if for every pair of node-neighboring (resp. edge-
neighboring)t graphs Gi,Gs € Gn, and for all sets 8 of possible outputs, we have that
PrlA(Gy) € 8] < e® Pr[A(Gy) € 8] +6. When 6 = 0 we simply say that the algorithm is
e-DP.

Since the graphs appearing in modern applications are massive, it is also often desirable
to design sublinear-time algorithms that approximate natural combinatorial properties of
the graph, such as the average degree, the number of connected components, the cost of a
minimum spanning tree, the number of triangles, the size of a maximum matching, the size
of a minimum vertex cover, etc. For an excellent survey on sublinear-time algorithms for
approximating graph parameters, we refer the reader to [29)].

There has been a lot of work in developing differentially-private algorithms for esti-
mating graph parameters in polynomial-time, with respect to edge differential privacy, i.e.,
neighboring graphs that differ by a single edge in Definition 1. Nissim, Raskhodnikova,
and Smith [25] demonstrated the first edge-differentially private graph algorithms. They
showed how to estimate the cost of a minimum spanning tree and the number of triangles
in a graph by calibrating noise to a local variant of sensitivity called smooth sensitivity.
Subsequent works in designing edge differentially-private algorithms for computing graph
statistics include [21, 19, 23, 36]. Gupta, Ligett, McSherry, Roth and Talwar [18] gave the
first edge differentially-private algorithms for classical graph optimization problems, such as
vertex cover, and minimum s-t cut, by making clever use of the exponential mechanism in
existing non-private algorithms that solve the same problem.

An even more desirable notion of privacy in graphs is the notion of node differential privacy
i.e., neighboring graphs that differ by a single node and edges incident to it in Definition 1.
The concept of node differentially-private algorithms for 1-dimensional functions (functions
that output a single real value) on graphs was first rigorously studied independently by
Kasiviswanathan, Nissim, Raskhodnikova and Smith [22], as well as, Blocki, Blum, Datta,
and Sheffet [4], and Chen and Zhou [9]. Their techniques were later extended to higher-
dimensional functions on graphs [28, 6]. Subsequent works have focused on developing node
differentially-private algorithms for a family of network models: stochastic block models
and graphons [7, 30]. A more recent line of work has focused on the continual release of
graph statistics such as degree-distributions and subgraph counts in an online setting [33, 15].
Gehrke, Lui, and Pass [16] introduce a more robust notion of differential privacy called Zero-
Knowledge Differential Privacy (ZKDP), which tackles the problem of auxiliary information
in social networks. This work uses existing results from sublinear-time algorithms as a
building block to achieve ZKDP for several graph problems. However, it is important to note
that the final ZKDP mechanisms are not computable in sublinear-time.

The literature on designing differentially-private algorithms for estimating graph param-
eters in sublinear time is far less developed. The only paper we are aware of is due to
Sivasubramaniam, Li and He [32], who give the first sublinear-time differentially-private
algorithm for approximating the average degree of a graph. Our work addresses this gap

L Graphs G; = (V,E1), Go = (V, Ey) are node-neighboring, denoted by G ~, Ga, if there exists a
vertex v € V such that Eq(V \ {v}) = E2(V \ {v}). Graphs G; and G5 are edge-neighboring i.e.,
G ~¢ Gy if there exists an edge e such that E; \ {e} = Ez \ {e}.
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by initiating a systematic study of differentially-private sublinear-time algorithms for the
problems of estimating the following graph parameters: (1) the average-degree of a graph,
(2) the size of a maximum matching, and (3) the size of a minimum vertex cover. As an
overarching technique, we formally introduce the notion of Coupled Global Sensitivity and
use it to analyze the privacy of our randomized approximation algorithms.

1.1 Our Results
1.1.1 Privately Approximating the Average Degree

We obtain a differentially-private sublinear-time algorithm for estimating the average degree
dg = w, of a graph G = (V,E), with respect to edge-differential privacy, which
achieves a multiplicative approximation of (1 + p), for any constant p > 0. Specifically, our
algorithm outputs a value d such that w.h.p. we have (1—p)dg < d < (1+p)dg, for graphs
with dg = Q(1). Throughout the paper we denote |[V| = n.

We work in the neighbor-query model, in which we are given oracle access to a simple
graph G = (V,E), where the algorithm can obtain the identity of the i-th neighbor of a
vertex v € V in constant time. If i > deg(v) for a particular vertex v, then 1 is returned.
The algorithm may also perform degree queries, namely for any v € V it can obtain deg(v)
in constant time.

» Theorem 2. There is an e-edge differentially-private (1 + p)-approximation algorithm

for estimating the average degree dg > 1 of a graph G on M wertices that runs in time?

O(v/n - poly(log(n)/p) - poly(1/¢)) where e = o(log"/*(n)).

The problem of estimating the average degree of a graph was first studied by Feige [14],
who gave a sublinear time (2 + p)-approximation (multiplicative) for any constant p > 0,
making O(4/n/dp) many degree queries, where dg is a lower bound on the number of queries.
He also notes that Q(y/n/dg) queries are necessary for a 2 — o(1)-approximation, and hence,
for the interesting cases when we may assume dg > 1, Q(n) degree queries are necessary®.
Goldreich and Ron [17] subsequently gave a (1 + p)-approximation using both degree and
neighbor queries, running in time O((n/,/m) - poly(1/p)). This bound is also tight, since
every constant-factor approximation algorithm must make Q(n/,/pm) degree and neighbor
queries [17]. A simpler analysis achieving the same bounds was given by Seshadri [31].
Further, Dasgupta, Kumar and Sarlds [11] studied this problem in the model where access to
the graph is via samples, in the context of massive networks where the number of nodes may
not be known. They obtain a (1 + p)-approximation that uses roughly O(log dy, - loglog dy)
samples where dy is an upper bound on the maximum degree of the graph.

In recent work, Sivasubramaniam, Li and He [32] gave a sublinear-time differentially-
private algorithm for approximating the average degree of a graph using Feige’s [14] algorithm.
Their algorithm achieves a (2 + p + o(1))-approximation for every constant p > 0. They
achieve this by calculating a tight bound for the global sensitivity of the final estimate of
Feige’s algorithm and adding Laplace noise with respect to this quantity appropriately. By
contrast, we achieve a (1 + p)-approximation for any constant p > 0 — assuming that the
privacy parameter is ¢ 1 = o(log'/4n).

2 from here on, we use running time and number of queries interchangeably.

3 Observe that for dg = o(1) a multiplicative approximation algorithm that can distinguish between
two graphs on n vertices, one with 0 edges, and another with, say 1 edge, must sample Q (n) vertices,
and hence cannot be running in sublinear time.
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1.1.2 Privately Approximating the Size of a Maximum Matching and
Minimum Vertex Cover

Given an undirected graph, a set of vertex-disjoint edges is called a matching. A matching M
is mazimal if M is not properly contained in another matching. A matching M is mazimum
if for any other matching M’, [IM| > |M’|. A vertex cover of a graph is a set of vertices that
includes at least one endpoint of every edge of the graph. A minimum vertex cover is a
vertex cover of the smallest possible size. For a minimization problem, we say that a value
{ is an («, B)-approximation to y if y < § < ay + . For a maximization problem, we say
that a value § is an («, f)-approximation to y if % — B <Y <vy. An algorithm A is an
(o, B)-approximation for a value V(x) if it computes an («, 3)-approximation to V(x) with
probability at least 2/3 for any proper input x.

For a graph G = (V, E), we work in the bounded degree model, where one can query an
i-th neighbor (i € [d]) of a vertex in constant time; denote this query as Nbr(v,1). Here d is
the maximum degree of the graph. If i > deg(v) for a particular vertex v, then Nbr(v,1) =1.
We also assume query access to the degree of a vertex, i.e., one can query deg(v) for any
v € V in constant time.

» Theorem 3. There is an e-(node and edge) differentially-private algorithm for the mazimum
matching problem that reports a (2, pn)-approzimation with probability 1 —(2/n*+1/n192¢/e),

and runs in expected time O ((d + 1)/p2), where d is the average degree of the input graph.

» Theorem 4. There is an e-(node and edge) differentially-private algorithm for the minimum
vertex cover problem that reports a (2, pn)-approzimation with probability 1—(2/n*+1/n%¢/9),
and runs in expected time O ((d + 1)/p2), where d is the average degree of the input graph.

Typically, the privacy parameter ¢ is a constant, and so is the approximation parameter
p, in which case the success probability in the theorems above is 1 — 1/(poly(n)).

The question of approximating the size of a vertex cover in sublinear-time was first posed
by Parnas and Ron [27], who obtained a (2, pn)-approximation in time dOllegd/ "3), where
d is the maximum degree of the graph. Nguyen and Onak [24] improved upon this result
by giving a (2, pn)-approximation for the maximum matching problem, and consequently a
(2, pn)-approximation for the vertex cover problem, in time O(2°(4)/*). The result of [24]
was later improved by Yoshida, Yamamoto and Ito [35], who gave an ingenious analysis
of the original algorithm to achieve a running time of O(d*/p?). Onak, Ron, Rosen and
Rubinfeld [26] proposed a near-optimal time complexity of O(d - poly(1/p)), where d is the
average degree of a graph, but Chen, Kannan, and Khanna [10] identified a subtlety in their
analysis, which proved to be crucial to their improved time complexity claim. Very recently,
building on ideas from the analysis of [35], Behnezhad [3] gave a new analysis for achieving a
(2, pn)-approximation to the size of maximum matching and minimum vertex cover in time
O((d + 1)/p?). Behnezhad’s result nearly matches the lower bound given by Parnas and
Ron [27], who showed that Q(d+1) queries are necessary for obtaining a (O(1), pn)-estimate
in the case of the maximum matching or minimum vertex cover problem.

Our final DP algorithm simply runs the non-private approximation algorithm [3] and
then adds Laplace noise proportional to the Coupled Global Sensitivity (of the non-private
algorithm). Thus, our time complexity is identical to the non-private approximation algorithm.
We show that the added Laplace noise is small enough that it preserves the approximation
guarantees of the non-private approximation algorithm.
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1.2 Organization

We define and motivate the notion of Coupled Global Sensitivity as a privacy tool in
Section 1.3. Then we give a high-level overview of the techniques used for our results in
Section 1.4. The formal privacy and accuracy analysis of Theorem 2 are in Sections 2 and 4.
The formal analysis for Theorems 3 and 4 are in the full version [5]. We conclude with some
open problems in Section 5.

1.3 Coupled Global Sensitivity as a Tool in Privacy analysis

Background and Motivation. Given a query f: D — R¢ a general mechanism to answer
the query privately is to compute f(D) and then add noise. The global sensitivity of a
function was introduced in the celebrated paper by Dwork, McSherry, Nissim and Smith [12],
who showed that it suffices to perturb the output of the function with noise proportional to
the global sensitivity of the function in order to preserve differential privacy.

» Definition 5 (Global sensitivity). For a query f : D — R9, the global sensitivity of f (wrt
the £y -metric) is given by

GS¢ = A,Bgl%?%wB [[f(A) —f(B)]1 -

One can preserve differential privacy by computing f(D) and adding Laplacian noise*
scaled to the global sensitivity of f, where D is a database. However, in many contexts we
may not be able to compute the function f exactly. For example, if the dataset D is very
large and our algorithm needs to run in sublinear-time or if the function f is intractable
e.g., f(G) is the size of the minimum vertex cover. In cases where we cannot compute f
exactly, an attractive alternative is to use a randomized algorithm, say Ay, to approximate
the value of f. Given an approximation algorithm A¢ it is natural to ask whether or not
we can add noise to A¢(D) to obtain a differentially private approximation of f(D) and (if
possible) how to scale the noise. We first observe that computing A¢(D) and adding noise
scaled to the global sensitivity of f does not necessarily work. Intuitively, this is because the
sensitivity of A¢ can be vastly different from that of f. For example, suppose that GSy = 1,
f(D) =n =f(D’)+1 for neighboring datasets D ~ D’ and that our approximation algorithm
guarantees that 0.999 - f(D) < A¢(D) < 1.001 - f(D). It is possible that A¢(D) = 1.001n and
A¢(D’) =0.999(n — 1) so that |[A¢(D) — A¢(D’)| > 0.002n which can be arbitrarily larger
than GS; as n increases.

Coupled Global Sensitivity. We propose the notion of coupled global sensitivity of ran-
domized algorithms as a framework for providing general-purpose privacy mechanisms for
approximation algorithms running on a database D. In this framework, our differentially-
private algorithms can follow a unified strategy, in which in the first step a non-private
randomized approximation algorithm A¢(D) is run on the dataset, and privacy is obtained
by adding Laplace noise proportional with the coupled global sensitivity of A¢°. The concept
of coupled global sensitivity has been used implicitly in prior work on differential privacy
e.g., see [1, 8. Our work formalizes this notion as a general tool that can be used to design
and analyze differentially private approximation algorithms.

4 Here, the probability density function of the Laplace distribution Lap(A) is h(z) = ﬁ exp (—%)

5 We note that this is the simplest application of CGS, and as we will see in the analysis of estimating
the average degree, we can use CGS to add noise to intermediate quantities used by the randomized
algorithm as well.
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Notation. When A is a randomized algorithm we use the notation x := A(D;r) to denote
the output when running A on input D with fixed random coins r. Similarly, A(D) can be
viewed as a random variable taken over the selection of the random coins .

» Definition 6 (Coupling). Let Z and Z’ be two random variables defined over the probability
spaces Z and Z', respectively. A coupling of Z and Z', is a joint variable (Z.,Z.) taking
values in the product space (Z X Z') such that Z. has the same marginal distribution as Z
and Z[ has the same marginal distribution as Z'. The set of all couplings is denoted by
Couple(Z,27).

» Definition 7 (Coupled global sensitivity of a randomized algorithm). Let A: D x R — R* be
a randomized algorithm that outputs a real-valued vector. Then the coupled global sensitivity
of A is defined as

CGS,4 := max min max ||z —2z'||1

D;~D3y CeCouple(A(D;),A(D2)) (z,z’)eC
» Remark 8. We can try to relax the definition of Coupled Global Sensitivity as follows:
CGSy 5 is the minimum value, say x such that for all neighboring inputs D; ~ D3, there
exists a coupling C such that Pr(, ., .cllz —z'| > x] < 8. We need to be careful here as
we need to ensure that the minimum value x is always well-defined. If we can ensure this,
then we can also show that adding noise proportional to CGS 4 s preserves (e, d)-differential
privacy.

» Fact 9. Let A:D x R — R¥ be a randomized algorithm viewed as a function that takes
as input a dataset D and a random string in the finite set R, and outputs a real-valued
vector. For a finite set R, denote by Sym(R) the symmetric group of all permutations on the
elements in R. Then,
CGS4 € max  min max|A(D1;R) —A(D2;0(R))|1
D;i~D3 ceSym(R) RER

The following theorem formalizes the fact that adding noise proportional to the coupled
global sensitivity of a randomized algorithm preserves differential privacy (see full version [5]
for a formal proof).

» Theorem 10. Let A : D — R* be a randomized algorithm and define the Laplace mechanism
ML(D) = A(D)+(Y1,...,Yx), whereY; are i.i.d. random variables drawn from Lap(CGS 4 /¢).
The mechanism My preserves e-differential privacy.

How we use Coupled Global Sensitivity. In our algorithm for estimating the average
degree we divide the algorithm into randomized sub-routines and show that the CGS of these
sub-routines is small, therefore enabling us to add Laplacian noise proportional to the CGS
and ensure the privacy of each sub-routine, and by composition, the privacy of the entire
algorithm (See Theorem 13). Similarly, we show that the existing non-private sublinear-time
algorithms for maximum matching and minimum vertex cover have small CGS, therefore
enabling us to add Laplace noise proportional to the CGS to their outputs thus making them
differentially-private (See full version [5]).

1.4 Technical Overview

1.4.1 Privately Estimating the Average Degree

At a high-level, our private algorithm for estimating the average degree follows the non-private
variant of Goldreich and Ron [17]. However, there are several challenges that prevent us
from simply being able to add Laplacian noise to the output. We overcome these challenges
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by first obtaining a new non-private algorithm with the same approximation ratio as that
of [17], and then further add appropriate amounts of noise in several steps of the algorithm to
obtain both privacy and accuracy guarantees. We begin by describing the algorithm of [17].

The Goldreich-Ron algorithm [17]. The strategy of the original non-private algorithm
in [17] is to sample a set S of vertices and partition them into buckets S; based on their
degrees. In particular, for each i we set S; = By N'S where the set B; contains all vertices
of degrees ranging between ((1 + )1, (1 + B)!], where B = p/c for some constant ¢ > 1.
Intuitively, as long as |S;| is sufficiently large the quantity |S;|/|S| is a good approximation for
|Bil/n with high probability. Let I denote the indices 1 for which |S;| is sufficiently large. We
can partition edges from the graph into three sets (1) edges with both endpoints in ;. Bi,
ic1 Bi, and (3) edges with no endpoints in ;< Bs.
When the threshold for “large buckets” is tuned appropriately one can show that (whp) type

(2) edges with exactly one endpoint in | J

3 edges can be ignored as there are at most o(n) such edges.

We could use (1/|S]) ;1 1Sil(1 + B)*! as an approximation for % 2 icl 2vep, deg(v).
The previous sum counts type (1) edges twice, type (2) edges once and type (3) edges zero
times. While it is okay to ignore type (3) edges there could be a lot of type (2) edges which are
under-counted. To correct for type (2) edges we can instead try to produce an approximation
for the sum % 2 ic1 2vep, (1 + o)deg(v) where &, denotes the fraction of type (2) edges
incident to v. Intuitively, «, is included to ensure that type (2) edges are also counted twice.
For each sampled node v € S; we can pick a random neighbor r(v) of v and define X(v) =1
if 7(v) € Ui Bi; otherwise X(v) = 0. Observe that in the expected value of the random
variable is E[X(v)] = «,. Since |Si| is reasonably large for each 1 € I and deg(u) ~ deg(v)
for each pair u,v € S; we can approximate the fraction of type (2) edges incident to B; as
Wi/ISi| where Wi = 3 s X(v). Finally, we can use (1/[S]) 3_;<y 1Stl(1+Wi/ISil) (1 + B)i-1
as our final approximation for the average degree.

Challenges to making the original algorithm private by adding noise naively. The first
naive attempt to transform the algorithm of [17] into a differentially private approximation
would be to add noise to the final output. However, the coupled global sensitivity of this

algorithm is large enough that the resulting algorithm is no longer a (1 + p)-approximation.

A second natural strategy to make the above algorithm differentially private is to add
Laplace noise to the degree of each vertex and partition vertices in S based on their noisy
degrees d(v) = deg(v)+Y, where Y,, ~ Lap(6/¢). (Note: To ensure that the algorithm still runs

in sublinear time we could utilize lazy sampling and only sample Y,, ~ Lap(6/¢) when needed).

In particular, we can let S; = SN B; where B; denotes the set of all nodes v with noisy degree
d(v) ranging between ((1+p)1, (14+B)']. Now we can compute W; = Zi+ZVE§i X(v) where
Z; ~ Lap(6/¢) and return (1/|S]) 3 iy IS4](1 + “/S{i‘)(l + B)*!. While the above approach
would preserve differential privacy, the final output may not be accurate. The problem is

that the noise Y,, may cause a node v to shift buckets. It is not a problem if v € B; shifts
to an adjacent bucket i.e., v € Bi_1 or v € Biyq since (1 — )12 and (1 — B)H! are still
reasonable approximations for the original degree deg(v) € ((1+ B)* !, (1 + B)]. Indeed,
when deg(v) is sufficiently large we can argue that (1 — ) deg(v) < d(v) < (1 + B) deg(v)
with high probability. However, this guarantee does not apply when deg(v) is small. In

this case the Laplace noise Y,, might dominate deg(v) yielding an inaccurate approximation.

Sivasubramaniam et al. [32], made similar observations, and because of these technical
barriers, their paper analyzes the simpler strategy for estimating the average degree, which
yields a less accurate result. The crucial observation here is that we need to deal with vertices
having small degrees in our accuracy analysis separately.
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Modified non-DP algorithm achieving the same approximation ratio. To address the
challenges discussed above we first propose a modification to the strategy given by [17].
While the modified algorithm is still non-private it still achieves a (1 + p)-approximation for
any p > 0 and is amenable to differentially private adaptations. Our algorithm now samples
vertices S without replacement and puts them into buckets S; = B; N'S according to their
degrees. The key modification is that we merge all of the buckets with smaller degrees i.e.,
i < KO into one. We redefine B; to denote this merged bucket and S; = S N B; and we
redefine I to be the set of all indices i > K such that |Si| is sufficiently large. If By is not
too large then all of the edges incident to B; can simply be ignored as the total number of
these edges will be small. Otherwise, we can account for edges that are incident to By by
adding ﬁ 2 ves, (1+X(v))deg(v) to our final output. Since we merged all of the buckets
with smaller degrees we no longer have the guarantee that deg(u) ~ deg(v) for all u,v € Sy.
However, since deg(v) is reasonably small for each v € S; the variance is still manageable.
Intuitively, the sum ﬁ 2 ves, (1+X(v)) deg(v) approximates % 2 vep, (1+ o) deg(v) where
«, now denotes the fraction of edges incident to v whose second endpoint lies outside the set
B1UUic1 Bt

The differentially-private modified algorithm. We now introduce our sublinear-time
differentially-private algorithm to approximate the average degree in Algorithm 4. Al-
gorithm 4 relies on three subroutines given by Algorithms 1, 2, and 3. Splitting the algorithm
into separate modules simplifies the privacy analysis as we can show that each subroutine is
¢/3-differentially private — it follows that the entire algorithm is e-differentially private. In
Algorithm 1 we add Laplace noise to the degrees of all vertices in the graph and then return
a sample of vertices, say S (sampled uniformly without replacement) along with their noisy
degrees. For simplicity we describe Algorithm 1 in a way that the running time is linear in
the size of the input. We do this to make our privacy analysis simpler. However, we can
implement Algorithm 1 with lazy sampling of Laplace noise Y,, when required i.e., if node u
is in our sample S or if u = r(v) was the randomly selected neighbor of some node v € S.

Algorithm 1 NoisyDegree.

NoisyDegree takes G as input and returns a set of sampled vertices along with the noisy
degrees of every vertex in G.

1. Uniformly and independently select ©(y/n - poly(log(n)/p) - poly(1/¢)) vertices (without

replacement) from V and let S denote the set of selected vertices.
2. For every v € V(G),

d(v) =deg(v) +Y, ,

where Y, ~ Lap(6/¢).
3. Return {d(v)}yev(g),S

Given the output of Algorithm 1 we can partition the sample S into buckets Si=SNB;
using their noisy degree. Here, we define By = {v: d(v) e (1+B) 1 (1+pB)Y)} and we
also define a merged bucket S; =S N {v dd(v) < (14 B)Kil} containing all sampled nodes

6 where we fix K := (2 + 1o 2S1ve in the sequel
g1+[3 [Slogprﬁ(n)\/n\/logn a
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with noisy degree at most (1 + B)¥~!. Here, K is a degree threshold parameter that we can
tune. Now given a size threshold parameter T we can define [ = {i >K : |§1‘ >1.2T- ISI}
to be the set of big buckets. We remark that as a special case we define |S1| to be “small” if
IS1] < 1.2T - \/@ IS| instead of |S1| < 1.2T - |S|. As an intuitive justification we note that
(whp) for each node v with noisy degree d(v) < (14 B)X! the actual degree deg(v) will
not be too much larger than (1 + )<L, In this case we have 2 vid)<(iep)x deg(v) <
IS1lmax,,.3(y)<(14p)x—1 deg(v) = o(n) so that we can safely ignore the edges incident to S;.

Intuitively, for each large bucket i € I, Algorithm 2 computes &; = W;/|S;| our approxi-
mation of the fraction of type (2) edges incident to B;. If Sy is large then type (2) edges are
(re)defined to be the edges with exactly one endpoint in {v: d(v) < (1+ BI* 1} UUier B:.
To preserve differential privacy we add laplace noise to Wi i.e., Wi = Z; + 3 s X(v) where
Z; ~Lap(6/¢). We remark that (whp) we will have Z; = o(|Si|) for each large bucket i € 1.
Thus, the addition of laplace noise will have a minimal impact on the accuracy of the final
result.

Algorithm 2 NoisyBigSmallEdgeCount. Here M, ,, is a degree threshold parameter and T is
a size threshold parameter. Note that the relationship between the parameters K (used informally
as a degree threshold parameter in the overview) and M, » is K =2 4log(;,4,[6Mn/B].

NoisyBigSmallEdgeCount takes as input G, I,{Si}izl, S1,{a(v)}vev(g), Mon, T and re-
turns an approximation of the fraction of edges that are between big buckets and small
buckets.
1. For every i € I, > count the edges between buckets in I and small buckets
a. ForallveS;,
i. Pick a random neighbor of v, say r(v).
ii. If|S1] < 1.2T- \/@-\S\, i.e., if Sy is a small bucket. Then if d(r(v)) € ((14+B)* L, (1+
B)1] for some i ¢ I, then X(v) = 1, otherwise X(v) = 0.
iii. Otherwise, Sy is not small. Therefore, if d(r(v)) € (14 B)*L, (1 + B)!] for some
i¢Tandi>log,, g [(67\/[[;,7\ )W + 2, then X(v) = 1, otherwise X(v) = 0.
b. Define Wi := ) | s X(v) + Z; where Z; ~ Lap(6/¢) and &; := l"g‘/:l.
2. return {Wilier, {&ihier

If the merged bucket S; is small then we can ignore edges incident to S; and Algorithm 3
will simply output ﬁ D icl ISi|- (14 &) - (1+ B). In this case the output can be computed
entirely from the differentially private outputs that have already been computed by Algorithms
1 and 2 without even looking at the graph G. Intuitively, for any large bucket i € I
and v € S; we expect that (whp) IYy| = |d(v) — deg(v)] is small enough to ensure that
(1+p)2 < deg(v) < (14 B)HL. Thus, (1 + B)! is still a reasonable approximation for
deg(v).

If the merged bucket S; is sufficiently large, then we need to account for the edges within
S; itself as well as the fraction of edges between S; and small buckets. We introduce a
new estimator to approximate the fraction of edges between S; and small buckets given

by Z+ 3 ,cs,(1+X(v)) - deg/(v) where Z ~ Lap (36Mp,n (3 + B+ %)) and deg’(v) =

min{deg(v),6M, n (3 +B+ %)} (See Algorithm 3) — the relationship between the parameters
K and M, is K =2 +41log(;,5)[6Mpn/B]. The Laplace Noise term is added to preserve
differential privacy. We define the clamped degrees deg’(v) to ensure that the coupled
global sensitivity of the randomized subroutine computing } s (1+X(v)) -deg’(v) is upper
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bounded by 12M,, ,, (3 + B+ %) This way we can control the laplace noise parameters to

ensure that Z = 0o(|S1|) with high probability so that the noise term Z does not adversely
impact accuracy. Intuitively, we expect that Y, < M, ,, for all nodes v with high probability.

In this case for any node v € S; we will have deg’(v) = deg(v) < 6M, (3 + B+ %)

Algorithm 3 Noisy AvgDegree.

NoisyAvgDegree takes {Si}le,{a(v)}vev(G),{&i}iel, I, Mg n, T as input and returns the
noisy estimator for average degree of the graph.
L. I [Sy| < 1.2T - \/IS] - [S| then output i 3~y ISil- (1+ &) - (1+B)"
2. Else, for every v € Sy,
a. Pick a random neighbor of v, say r(v).
b. If a(r(v)) e ((1+p)V (1 +p)Y for somei¢landi> logy [(W%)] + 2, then
X(v) =1, otherwise X(v) = 0.
c. Output

% (Z ISil- (1+ &) - (1+B) +Z+ ) (1+X(v) deg’(v)) :

i€l veSy
where
1
Z ~Lap <36Mp,n (3 +B+ B))
and

deg/(\)) = min {deg(v), 6Mpn (3 + B+ é) }

Algorithm 4 Main DP Algorithm.

Main DP Algorithm that takes graph G as input and outputs an approximation of its
average degree.

1. {a(v)}vev(g), S := NoisyDegree(G) > see Algorithm 1
2. Fori=1,2...,t,letS;={veS: dv) e (1+p)" 1, (1+p)!]} where t := [log(14p)(M)].
I

S
3. Define M =1. /—p __ . DI .
e 3 ny/log(n) t’ 1<10g1+ﬁ(7ﬁMﬁp’")+2

logy g (61\%’“) +2 :|Si| > 1.2T - |S|} where T := %\/g T 1.

4. {Wilier,{&i)ier := NoisyBigSmallEdgeCount (G, I, {S;}!_,). > see Algorithm 2
5. NoisyAvgDegree(G, S, {Si}i_; {&i}ticr, L Mpn, T). > see Algorithm 3

S = U Si, and, I = {i >

The full analysis of Theorem 2 can be found in Sections 2 and 4.

» Remark 11. A simpler algorithm for estimating the average degree was given by Seshadri [31].
The main intuition behind this algorithm is that out of m edges of a graph, there are not
“too many” edges that contribute a high degree. Thus the algorithm samples vertices and
a random neighbor of each sampled vertex, but it only counts edges (scaled by a factor of
2 times the degree of the sampled vertex) for which the degree of the random neighbor is
higher than that of the degree of the sampled vertex.
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The Coupled Global Sensitivity of the final estimate returned by this algorithm is high
(proportional to the degree of the sampled vertex and its random neighbor); thus adding
Laplace noise directly to the estimate would result in a very inaccurate algorithm. It is
unclear how to mitigate this issue and make this algorithm differentially-private with a
reasonable accuracy guarantee.

1.4.2 Privately Estimating Maximum Matching and Vertex Cover Size

At a high-level our private algorithms for estimating the maximum matching and vertex
cover add laplace noise (to the outputs) proportional to the coupled global sensitivity of the
randomized non-private algorithms for the corresponding problems. The challenge lies in
proving the coupled global sensitivity of these non-private algorithms is small.

We first describe and analyze the coupled global sensitivity of the classical polynomial-time
greedy matching algorithm. This is helpful in our analysis of the non-private sublinear-time
algorithm for maximum matching in the sequel.

We then describe and give a proof sketch of the coupled global sensitivity of the non-
private sublinear-time matching algorithm [3]. The formal proofs for privately estimating
the maximum matching and minimum vertex cover size are in the full version [5]. Recall
that d is the maximum degree and d is the average degree of the graph .

The Polynomial-time Greedy Matching Algorithm Apnim. This algorithm takes as input
a graph G = (V,E) and a random permutation 7t on the set of pairs (x,y) € V x V, with
X # y, and processes each pair of vertices (x,y) in the increasing order of ranks given by
7, and greedily adds edges to a maximal matching whose size is finally output”. Since the
size of the maximal matching produced is known to be at least % of the size of a maximum
matching, this gives a non-private 2-approximation of the size of a maximum matching in G.

CGS of the Greedy Algorithm Apipm. We show that the CGS of the greedy algorithm
(with respect to node-neighboring graphs) is at most 1. Note that once the ranking on the
edges is fixed the maximal matching obtained by Amm is also fixed. Let o1 be the identity
permutation over the ranking of edges, i.e., we have o1(7) = 1. We use Fact 9 to observe
that,
CGSAun < max minmax | Amm(Gr; ) — Amm (Ga; o(m))]
G1~Gy O 7T

< max AMmm(G1;7) — Amm (Ge; o1(m))]

G1~Ga2
7

max MAMM(G1;7) — Amm (Ga; 7)) |

s
Therefore it is sufficient to analyze the relative size of the matching obtained on node-
neighboring graphs Gi, Go that are processed by the greedy algorithm in the order given by
the same 7.

Let Gy ~ Gg where v* is such that E(V;\{v*}) = E(Vo\{v*}). Denote the greedy matchings
obtained from Anim (G1, ) as My and from Apm (Go, 1) as My, Suppose edge e* is incident
to v* such that e* € E5, and e* ¢ E;. We will show that ||[M;| — [Ms|| < 1, which implies
that maxg,~g, MMmm(G1; ) — Amm (Ge; )| < 1, thus proving that CGS4,,,, < 1.

7T

7 We note that the non-private algorithms [24, 35, 26] only consider the ranking 7t over m edges of the
graph, whereas we consider the ranking over all (;) pairs of vertices. This is because we want to define
a “global” ranking so that we can define the same ranking consistently over neighboring graphs that
may have different edges.
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We first claim that if e* € My U My then [My| = [Ms|. Since the greedy algorithm
considers edges in the same order, the exact same edges must have been placed in M; as
in My before ex is processed. Since e* = (v*,u) is not chosen in My it must have been the
case that by this time u was matched in My, and thus the same matched edge must occur
in M. From here on the algorithm again must make the same choices for the edges to be
placed in M7 and M,.

Next, we claim that if e* € M; U My then M := M; @ M5® is one connected component
containing e*. Consequently, [[Mi| —|Mas|| < 1. Since e* € My and e* cannot be in My, it
is clear that e* € M. Suppose for the sake of contradiction, M consists of two connected
components Cy, C2 and WLOG e* € C;. Consider edges in Cy. By Berge’s Lemma [34], Co
is either an alternating path or an alternating even cycle, with alternating edges from M;
and M. Also, the edges in Cy exist in both G; and Gy with the same ranking. Observe that
since Cy is separate from C; containing e*, if we replace edges in Co belonging to My in the
original graph Gy by edges in Cy belonging to My, this is still a valid maximal matching for
the graph Go. In fact, the greedy algorithm considers edges in Cy in the same order for both
graphs Gq, Ga, so the edges in M; and My should be the same, in other words, C cannot
be a part of M = M; @& My, and hence M must have only one connected component, which
contains e*. Now, since M is either an alternating path or even cycle, ||[M1| — M|l < 1.

The Local Maximum Matching Algorithm As,p_mm- We describe the local algorithm
implemented by [3] in Algorithm 5. We modify the original algorithm to sample vertices
without replacement. The algorithm then calls the vertex cover oracle (denoted as OF;) on
each sampled vertex which subsequently calls the maximal matching oracle (denoted as 0%, )
on the incident edges to determine whether the sampled vertex is in the matching fixed by
the ranking of edges 7. Finally, the algorithm returns an estimate of the maximum matching
size based on the number of sampled vertices in the matching. We note that in [3] the same
sampling algorithm simultaneously outputs an approximation to maximum matching size
and minimum vertex cover size. We choose to write the sampling procedure for estimating
the maximum matching size and minimum vertex cover size separately so that it is easier to
understand the Coupled Global Sensitivity for outputting the two different estimators.

Algorithm 5 Local Maximum Matching algorithm Ag,,_mm using Oracle access.

Input. Input Graph G = (V, E).

1. Uniformly sample s = 16 - 24(Inn)/p? vertices from V without replacement.
2. Fori=1...s,if O (vi) = True then let X; = 1, otherwise let X; = 0.

3. return M = 5o (2 iers) Xi) — .

» Remark 12. [3] gives an efficient simulation of the matching and vertex cover oracles which
exposes edges incident to a vertex in batches only when they are needed. We assume the
efficient simulation of these oracles in our algorithms.

CGS of the Local Matching Algorithm Asyp_mm- Our main techniques involve identify-
ing the sources of randomness in the local algorithm itself and then coupling the random
coins of the runs of the algorithm on neighboring graphs. We follow the local algorithm given
by [3] which samples vertices for both matching and vertex cover size estimation. We show
that the identity coupling is sufficient in this case.

8 M, @ M, is the symmetric difference of sets and this is defined as the set of edges in either M, or
M but not in their intersection.
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In a previous version of our paper (before we were aware of the results of [3]), we analyzed
the Coupled Global Sensitivity of the local matching algorithm given by [24, 35] which
samples a set of edges uniformly at random, and calls a matching oracle on each sampled
edge. The matching oracle indicates whether the edge is in the greedy matching fixed by
the ranking 7 or not. Analyzing the Coupled Global Sensitivity of this algorithm is more
challenging, i.e., considering the identity permutation o] over the ranking of edges 7 and
sampled edges does not work. This is because for node-neighboring graphs Gi, Gs, it could
be the case that all the edges sampled from G; belong to the matching M; fixed by the
ranking 71, but the same edges sampled from G, may not be in the matching M, fixed by
the ranking 7t. Thus, we need to carefully define a bijection that maps edges in the matching
M, to edges in the matching Ma.

2  Privacy Analysis of Theorem 2

» Theorem 13. The Algorithm 4 is e-DP.

Proof. We will approach the privacy analysis in a modular fashion, i.e., we will analyze each
sub-routine separately and show that by composition, the entire algorithm is e-differentially
private.

In the sequel, when analyzing the coupled global sensitivity of intermediate randomized
quantities, we use Fact 9.

> Claim 14. Algorithm NoisyDegree (see Algorithm 1) is e¢/3-DP.

Proof. First, fix any sample S. Define the function froisy—deg = {a(v)}vev(g). Observe
that the degree of a node can change by at most 1 from adding or deleting an edge, and
therefore froisy—deg changes by at most 2 by adding or deleting an edge, in other words,
the GS¢, ..., 4., = 2 and we can add noise proportional to 2/e. <

> Claim 15. Algorithm NoisyBigSmallEdgeCount (Algorithm 2) is ¢/3-DP.

Proof. We fix noisy degrees {a(v)}vev(g], consequently fixing the buckets Sy, ..., S and set
L. Define the function f, 5 == {fgi,a(G;T)}ieh and the function fSi,&(G§r) = Zveéi H(r(v))
where H(w) = 1 if and only if we have d(w) € ((14B)* 1, (14 B)!] for some i ¢ I and |S;| <
1.2T- \m ISl or if d(w) € ((14+p)" 1, (1+B)Y for somei¢Iandi> log 4 p [(GNE"’" )1 +2;
here 1(-) defines the random coins used to sample a neighbor of v. We analyze CGS¢ s a0 and
argue that CGSlea < CGngiYa.

First, we show that for all fixed S, {d(v)}ves and i € I, the CGsti_;1 is at most 2. Consider
G and G’ such that edge (u*,v*) € G, but does not exist in G’. Fix any coupling such that
r(w) =1/(w) for all w £ u*, v*, where 7, v’ defines the random coins for sampling neighbors of
w in G and G’ respectively. Now we have X(w) = H(r(w)) = H(r'(w)) = X’(w) for all w #
u*,v*. Thus, CGSf§i‘a = |f§i7a(G;r) — fgha(G’;r’)\ = |Zve§i H(r(v)) — ZveSi H(r'(v))| =
[H(r(v*)) + H(r(u*)) — H(r'(v*)) — H(r’'(u*))| < 2. Now, since the differing endpoints u*, v*
can only appear in at most one of the i-th iterations simultaneously, it is clear to see that
CGSfLa is also at most 2. <

> Claim 16. Algorithm NoisyAvgDegree (Algorithm 3) is ¢/3-DP.

Proof. We fix noisy degrees {&(v)}vev(g), and sample S consequently fixing the buckets
S1,...,S¢ and set I, and we fix {&;}{_;. Note that the first output in Line 1 given by
Fll D ierlSil- (T46&4) - (1+ B)! is already private since the terms in the summation consist of
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parameters that are either noisy or public or both. We need to show that the second output in
Line 2c is private. In particular, define the function fg 5(G;r) == 2 ves, (1+H; (r(v)))-deg’ (v)

where deg’(v) = min{deg(v),6Mpn (3+ B+ %)} and Hy(w) = 1 if and only if d(w) €

(1+pB) 1, (14 B)Y for somei ¢ Iand i > log,p [(GNE"‘“ )] +2. We claim that for all fixed

S and {d(v)}ves, the CGstl,a is at most 12M, (3+ B+ %) Consider G and G’ such
that edge (u*,v*) € G, but does not exist in G’. Fix any coupling such that r(w) = 1/(w)
for all w # u*,v*, where 1,1’ defines the random coins for sampling neighbors of w in G and
G’ respectively. Now we have X(w) = Hi(r(w)) = Hy(r'(w)) = X/(w) for all w # u*,v*.
Thus, [fs, 4(Git) — s, 4(G'i )] = | yes, (1+ Hi (1)) - deg’(v) — s, (14 Ha (' () -
deg'(v)| = (1 +H(r(v*))) - deg’(v*) + (1 + H(r(u*))) - deg’(u*) — (1 +H(r'(v*))) - deg/ (v*) —
(1+ H(r(w)) deg ()] < 2+ 6Mpn (34 B+ 5) = 12Mpn (34 B+ £ ). Note that we

introduce deg’(v), to ensure that the sensitivity of fg, g remains small. <

By composition, we have that the main algorithm is e-DP. <

3 Preliminaries

We state the following tail bound for a random variable drawn from the Laplace Distribution.

» Fact 17. IfY ~ Lap(b), then
PrllY| > £ -b] = exp(—1{) .

Next, we state a well-known fact which implies that the concentration results for sampling
with replacement obtained using Chernoff bounds type methods (bounding moment generating
function + Markov inequality) can be transferred to the case of sampling without replacement.

» Fact 18 ([2, 20]). Let X = (x1,...,xN) be a finite population of N points and X1,..., X
be a random sample drawn without replacement from X, and Y1,...,Yn be a random sample
drawn with replacement from X. If f : R — R is continuous and convezx, then

(E)) = ()

4  Accuracy Analysis of Theorem 2

E <E

4.1 Proof Sketch of Theorem 2

In this section, we give a sketch of the accuracy analysis. The more formal proofs can be
found in the full version [5].

» Theorem 19. For every p < 1/4, p < p/8, and ¢ 1 = o(log"/*(n)), for sufficiently large
1, the main algorithm (see Algorithm 4) outputs a value d such that with probability at least
1—o0(1), it holds that

(1—p)-d<d<(1+p)-d

Proof. The main proof strategy conditions on S; being sufficiently large or not. First,
consider Case 1 when |S1| < 1.2T - +/|S| - |S| where T is a size threshold parameter. We first
show that for 1 € I the noisy buckets |Bi|/n are approximated well by |S;|/|S|. Next we show
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that the number of vertices in buckets that are significantly smaller than the size threshold
are of size O(y/n) (for buckets U’ :={v € By : i ¢ ) A (i > log; ., p (w%) + 2)}, and

of size O(n3/4) (for bucket By := 6Mp,n +21~3i. This leads to the corollary (see

Ui<10g1+ﬁ ( B
full version [5] for the formal statement) which bounds the number of edges between small
buckets as roughly O(pn +n3/4).

One of our main contributions is showing that the actual fraction of edges between
sufficiently large buckets and small buckets, denoted by «;, is approximated well by our
noisy estimator «;.

» Corollary 20. Assuming that e=* = o(log?/*(n)), for every i € 1, for sufficiently large n,
we have that with probability at least 1 — o(1),

1 Jog — ol < §og if o« > p/8.
2. & < p/4, if i < p/8.

Finally, we need to show that for sufficiently large noisy buckets, the actual degrees of
the vertices (sans noise) only shifts to an adjacent noisy bucket. This helps us bound the
number of edges whose one endpoint resides in a sufficiently large noisy bucket. We have
shown that with high probability, all approximations of edges between the different types of
buckets is good, which leads to the main Lemma for Case 1.

Now consider Case 2 when |S;| > 1.2T - \/E IS|. We show that the bucket |B;|/n
is now approximated well by |S{|/|S|. We introduce a different estimator for counting
edges between By and small buckets given by Z + 3 ¢ (1 + X(v)) - deg’(v), where Z ~

Lap (367\4me (3 +p+ %)) and deg’(v) = min{deg(v),6M n (3 + B+ %)} First, we show
that for every v € Sq, with high probability deg’(v) = deg(v). Our main contribution in this
case is showing that our estimator (sans noise) approximates the fraction of the sum of the

edges between By and all vertices in the graph (denoted by E;), and the edges between B
and vertices in small buckets in the graph (denoted by E}) well (see lemma below).

» Lemma 21. Let d; be the average degree of bucket By. If |By| > 1.5T - \/IS| - m,
1. If dy > 1, then with probability at least 1 — o(1),

P\ [Eu+I[E{l 1 P\ [E4l+IE{|
1—=) —L < — 14+X(v))-d 14+-) ——L
(1-8)- == <|5|v§1( +X(V) - degv) < (14 5) - =

2. Ifdy <1, and d > 1, then with probability at least 1 —o(1),

BB s LY (14 X)) - degv)

|S| veSy

E E{
CEIE
n

To complete this part of the proof, we show that the noise added to the estimator (denoted by
Z) is small and therefore, the noisy estimator also approximates the quantity (|E;|+ [E{])/n
well.

The rest of the analysis is similar to Case 1 and we invoke the same lemmas to show that
with high probability, the approximations of edges between the rest of the sufficiently large
buckets, and between the small buckets, as well as between the sufficiently large buckets and
small buckets is good, thus giving us the main Lemma for Case 2.

Combining these two main lemmas proves our main theorem statement. <
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5 Conclusions and open questions

In this work we give a differentially-private sublinear-time (1 + p)-approximation algorithm
for estimating the average degree of the graph. We achieve a running time comparable to
its non-private counterpart, which is also tight in terms of its asymptotic behaviour with
respect to the number of vertices of the graph. We also give the first differentially-private
approximation algorithms for the problems of estimating maximum matching size and vertex
cover size of a graph.

To analyze the privacy of our algorithms, we proposed the notion of coupled global
sensitivity, as a generalization of global sensitivity, which is applicable to randomized
approximation algorithms. We show that coupled global sensitivity implies differential
privacy, and use it to show that previous non-private algorithms from the literature, or
variants, can be made private by finely tuning the amounts of noise added in various steps of
the algorithms.

We propose several directions of investigation for developing the notion of coupled
global sensivity further and open problems pertaining to differentially-private sublinear-time
algorithms for graphs.

Other applications and limitations of CGS. In particular, what are the limitations of the
CGS method? Can we characterize the set of algorithms with small CGS? Are there other
natural problems for which we already have algorithms with small CGS, and hence that are
easily amenable to privacy analogues? Are there algorithms for which we can prove large
lower bounds on the CGS and yet they provide differential privacy?

Better approximations for maximum matching problems. In [24, 35], the authors also
give a (1, pn)-approximation of maximum matching size with a query complexity that is
exponential in d. Their analysis involves iterating over a sequence of oracles to augment
paths of small length, in increasing order of lengths. The matching oracle considered in
this work is used only in the first iteration. Analyzing the coupled global sensitivity of that
algorithm appears to be much more involved, and we leave it as an open problem.

Better time complexity guarantees for (2, pn)-approximation matching and vertex cover
algorithms. Note that our results in Theorems 3 and 4 achieve an expected running time. In
contrast, the results in [3] achieve a high-probability bound on the time-complexity. This can
be done by running multiple instances of the resulting approximation algorithm for enough
time and returning the output of the instance that terminates first (the analysis involves a
simple application of Markov inequality). Achieving this step in a way that preserves privacy
would result in a degradation of the privacy parameter ¢, due to composition. We leave it as
an open question to provide a tighter privacy vs time-complexity analysis.
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