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—— Abstract

We construct indistinguishability obfuscation (iO) solely under circular-security properties of encryp-
tion schemes based on the Learning with Errors (LWE) problem. Circular-security assumptions were
used before to construct (non-leveled) fully-homomorphic encryption (FHE), but our assumption
is stronger and requires circular randomness-leakage-resilience. In contrast with prior works, this
assumption can be conjectured to be post-quantum secure; yielding the first provably secure iO
construction that is (plausibly) post-quantum secure.

Our work follows the high-level outline of the recent work of Gay and Pass [STOC 2021], who
showed a way to remove the heuristic step from the homomorphic-encryption based iO approach of
Brakerski, Dottling, Garg, and Malavolta [EUROCRYPT 2020]. They thus obtain a construction
proved secure under circular security assumption of natural homomorphic encryption schemes —
specifically, they use homomorphic encryption schemes based on LWE and DCR, respectively. In this
work we show how to remove the DCR assumption and remain with a scheme based on the circular
security of LWE alone. Along the way we relax some of the requirements in the Gay-Pass blueprint
and thus obtain a scheme that is secure under a different assumption. Specifically, we do not require
security in the presence of a key-cycle, but rather only in the presence of a key-randomness cycle.

An additional contribution of our work is to point out a problem in one of the building blocks
used by many iO candidates, including all existing provable post-quantum candidates. Namely, in
the transformation from exponentially-efficient iO (XiO) from Lin, Pass, Seth and Telang [PKC 2016].
We show why their transformation inherently falls short of achieving the desired goal, and then
rectify this situation by showing that shallow XiO (i.e. one where the obfuscator is depth-bounded)
does translate to iO using LWE.

2012 ACM Subject Classification Theory of computation — Cryptographic primitives
Keywords and phrases Cryptography, Obfuscation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.28

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eprint.iacr.org/2020/1024

Funding Zvika Brakerski: Supported by the Israel Science Foundation (Grant No. 3426/21), and
by the European Union Horizon 2020 Research and Innovation Program via ERC Project REACT
(Grant 756482) and via Project PROMETHEUS (Grant 780701).

Nico Déttling: Supported by the Helmholtz Association within the project "Trustworthy Federated
Data Analytics” (TFDA) (funding number ZT-I- OO1 4).

Sanjam Garg: Supported in part by DARPA under Agreement No. HR00112020026, AFOSR, Award
FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foundation, and
Visa Inc. Any opinions, findings and conclusions or recommendations ex- pressed in this material
are those of the author(s) and do not necessarily reflect the views of the United States Government
or DARPA.

© Zvika Brakerski, Nico Déttling, Sanjam Garg, and Giulio Malavolta;
37 licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).

Editors: Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff;

Article No. 28; pp. 28:1-28:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany



mailto:zvika.brakerski@weizmann.ac.il
mailto:doettling@cispa.de
mailto:sanjamg@berkeley.edu
mailto:giulio.malavolta@hotmail.it
https://doi.org/10.4230/LIPIcs.ICALP.2022.28
https://eprint.iacr.org/2020/1024
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2

Factoring and Pairings Are Not Necessary for 10: Circular-Secure LWE Suffices

Giulio Malavolta: The work described in this paper has been partially supported by the German
Federal Ministry of Education and Research BMBF (grant 16K15K042, project 6GEM).

1 Introduction

The goal of program obfuscation [4, 28] is to transform an arbitrary circuit IT into an
unintelligible but functionally equivalent circuit II. The aforementioned works showed
that strong simulation-based notions of obfuscation were impossible for general purpose
functionalities. However, the seemingly weaker indistinguishability obfuscation (i0) was not
ruled out by prior work (and has in fact been shown to be the same as the best possible
notion of obfuscation [27]). In broad terms, iO requires that if two circuits Iy and Iy
are two implementations of the same function, then their obfuscations are computationally
indistinguishable.

Garg et al. [19,21] presented the first candidate for general purpose iO, paving the way
for numerous other candidates based on a variety of mathematical structures. Although iO
appears to be a weak notion of security, it has been shown to be sufficient for numerous
cryptographic applications, including ones that were previously not known to exist under
other assumptions (see [6,20,41] for examples). The first realizations of obfuscation relied
an a new algebraic object called multilinear maps [15,19,24], which had only recently been
constructed. Furthermore, the security of these objects relied on new (and poorly understood)
computational intractability assumptions, or more commonly on plain heuristics. In fact,
several attacks on multilinear map candidates [14,30] and on obfuscation constructions based
on multilinear maps [12,39] were demonstrated. To defend against these attacks, several
safeguards have been (e.g., [5,13,17,22,38]) proposed. Even with these heuristic safeguards,
all but the schemes based on the Gentry et al. [24] multilinear maps are known to be broken
against quantum adversaries.

Towards the goal of avoiding heuristics and obtaining provably secure constructions,
substantial effort was made towards obtaining iO while minimizing (with the ultimate goal of
removing) the use of multilinear maps [3,33,34,36,37]. These efforts culminated in replacing
the use of multilinear maps with just bilinear maps [1,2,31], together with an additional
pseudorandom generators of constant locality over the integers with polynomial stretch. Very
recently this last limitation was removed by Jain, Lin and Sahai [32]. Specifically, they
obtained iO based on the combined (sub-exponential) hardness of the Learning with Errors
problem (LWE), a large-modulus variant of the Learning Parity with Noise problem (LPN),
the existence of a pseudorandom generator in NCj, and in addition the hardness of the
external Diffie-Hellman problem in bilinear groups (SXDH). We note that the use of the
pairings makes these construction insecure against quantum adversaries.

A different approach towards provably secure iO, which is more relevant to this work, was
presented by Brakerski et al. [9]. They showed an iO candidate that is based on combining
certain natural homomorphic encryption schemes. However, their construction was heuristic
in the sense that the security argument could only be presented in the random oracle model.
In a recent work, Gay and Pass [23] showed a way to remove the heuristic step and instead
rely on a concrete assumption. Their construction is proved secure under the circular security
of natural homomorphic encryption schemes — specifically, they use homomorphic encryption
schemes based on LWE and Decisional Composite Residuosity (DCR, also known as Paillier’s
assumption). In terms of assumptions, their construction assumes sub-exponential security
of (i) the Learning with Error (LWE) assumption, (ii) the Decisional Composite Residuosity
(DCR) assumption, and (iii) a new notion of security that they call “shielded randomness
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leakage” (SRL). The latter essentially requires that a fully homomorphic encryption scheme
(specifically the GSW encryption scheme [26]) remains secure even in the presence of a
key-cycle with the Damgard-Jurik encryption scheme [16]. Moreover, the notion of security
is not the standard semantic security, but rather a new notion of security with respect to
leakage of ciphertext randomness. We note that this construction is insecure against quantum
attackers because of the use of the Damgard-Jurik encryption scheme [16].> In this work, we
ask:

Can we realize provably secure constructions of iO with (plausible) post-quantum
security?

1.1 Our results

We obtain a general purpose iO construction based solely on the circular security of LWE-based
encryption schemes. On a technical level, we achieve this by introducing a “packed” variant
of the dual-Regev LWE-based encryption scheme, and showing novel ways of manipulating
ciphertexts of this variant in conjunction with ciphertexts of an FHE scheme. This allows us
to remove the need for DCR-based encryption from the construction of [9,23]. Furthermore,
our technique allows us to relax the SRL security property that is required, so that we no
longer need to require SRL security with respect to a key-cycle, but rather only with respect
to a key-randomness cycle. We put forth this potentially weaker assumption as an object for
further study.

More concretely, the circular security assumption made in [23], and thus also in this
work, is that a scheme (in particular a leveled FHE scheme) maintains this property even
in the presence of some leakage on the randomness of the ciphertext. In [23] it is shown
that standard GSW encryption [26] satisfies SRL security (under the LWE assumption),
and the additional assumption is therefore that SRL security is maintained in the presence
of a key-randomness cycle, connecting GSW to another encryption scheme. While this
assumption falls into the category of “circular security assumptions”, similarly to the ones
that underlie bootstrapping in FHE, the concrete assumption is quite different. While in
the FHE setting it was only assumed that (standard) CPA security is preserved given a key
cycle, here we assume that the stronger SRL property remains intact.

Let us now state our results somewhat more precisely.

» Theorem 1 (Informal). Assume the (sub-exponential) hardness of the LWE problem, and
the SRL security of GSW in the presence of a randomness-key cycle with a packed variant of
dual-Regev, then there exists indistinguishability obfuscation for all circuits.

We note that if we further assume that circular security also maintains post-quantum security,
then our assumption becomes post-quantum secure; yielding the first provably secure iO
construction that is post-quantum secure.

Shallow XiO. As an additional contribution, we identify a gap in the transformation of
“exponentially efficient i0” (XiO), a notion introduced by Lin, Pass, Seth and Telang [35]
that was used almost universally in prior work. We show that this transformation has an
inherent problem that does not allow to recover the result as stated. This gap affects most
known iO constructions and, in particular, all post-quantum provably secure candidates. We
rectify this situation by showing that a fairly simple technical modification (i.e. constraining

! Concurrently, [23] updated their manuscript to also include a solution based on LWE. See Section 1.3
for additional discussion.

28:3

ICALP 2022



28:4

Factoring and Pairings Are Not Necessary for 10: Circular-Secure LWE Suffices

the compiler to be shallow) allows us to recover the prior results. Along the way, we develop
a framework for analyzing composition of compressing encodings, which can be a useful
perspective for future research in this area.

1.2 Technical Overview

We now provide a technical outline of our construction and its properties.

Obfuscation via Homomorphic Encryption. The connection between (fully) homomorphic
encryption and obfuscation is fairly straightforward. Given a program II to be obfuscated,
we can provide a ciphertext cr; which encrypts II under an FHE scheme. This will allow to
use homomorphism to derive ¢, = Enc(Il(z)) for all . Now all that is needed is a way to
decrypt ¢, in a way that does not reveal any information on II. Early works (e.g. [21] and
followups) attempted to use this approach and provide a “defective” version of the secret key
of the FHE scheme, but a different approach was suggested in [9].

Specifically, [9] considered a homomorphic evaluation that takes ¢y to crr, an encryption
of the entire truth table of II, i.e. to an encryption of a multi-bit value. By relying on
prior generic transformations [35], they showed that one can reduce the task of constructing
general-purpose obfuscation to the task of computing a “decryption” hint for ¢yt with the
following properties:

Succinctness: The size of the decryption hint must be sublinear in the size of the truth

table |TT].

Simulatability: The decryption hint should not reveal any additional information besides

the truth table TT.

The reason why this is helpful is that some so-called “packed-encryption” schemes have the
property that a short ciphertext-dependent decryption hint suffices in order to decrypt the
ciphertext, in a way that does not seem to leak the secret key of the scheme itself. While
standard FHE schemes do not natively support packed encryption, it was shown in [8] that
it is possible to use the so-called key-switching technique to switch from an FHE scheme into
a packed-encryption scheme.

Alas, when instantiating the components of the [9] approach in its simplistic form
described above, the decryption hint leaks information that renders the scheme insecure. To
counter this issue, [9] proposed to inject another source of randomness: By adding freshly
sampled ciphertexts of the packed-encryption scheme (which in their case was instantiated
with the Damgard-Jurik scheme [16]) one can smudge the leakage of the decryption hint.
However the size of these fresh ciphertext would largely exceed the size of the truth table TT.
Therefore, [9] proposed to heuristically sample them from a random oracle, leveraging the
fact that the ciphertexts of [16] are dense, i.e. a uniformly sampled string lies in the support
of the encryption algorithm with all but negligible probability. This led to a candidate, but
without a proof of security.

A Provably Secure Scheme. In a recent work, Gay and Pass [23] observed that for the
purpose of constructing obfuscation, it suffices to consider schemes in the common random
string (CRS) model where, importantly, the size of the CRS can exceed the size of the truth
table. This allowed them to place the Damgérd-Jurik ciphertexts in the CRS and therefore
avoid relying on random-oracle-like heuristics.

They propose a new method to prove the security of this approach: Leveraging the
structural property of the GSW scheme [26]. They showed that adding a GSW encryption
of 0 to the evaluated FHE ciphertext (before key-switching to Damgard-Jurik) allows one
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to program the FHE ciphertext in the security proof. To sample these GSW encryptions
of 0, they propose to draw the random coins r* again from the CRS and let the evaluator
recompute the correct ciphertext GSW.Enc(0;1*).

Taken together, these new ideas allow them to prove their construction secure against the
shielded randomness leakage (SRL) security of the resulting FHE scheme. Loosely speaking,
SRL security requires that semantic security of an encryption scheme is retained in the
presence of an oracle that leaks the randomness ry of the homomorphic evaluation of the
function f over the challenge ciphertext. However the randomness r; is not revealed in plain
to the adversary, instead it is “shielded” by the random coins of a fresh GSW ciphertext
¢ = GSW.Enc(0;r*). That is, the adversary is given (r; —r*,¢). In fact, the adversary can
obtain polynomially-many samples from this distribution, for any function f, conditioned on
the fact that the adversary knows the output of f(m*), where m* is the hidden message.

To gain confidence in the veracity of the assumption, [23] show that the GSW encryption
scheme satisfies SRL security if the (plain) LWE assumption holds. However, their obfuscation
scheme requires one to publish a key cycle of GSW and Damgérd-Jurik (i.e. an encryption of
the GSW secrey key under Damgérd-Jurik and vice versa). Thus their final assumption is
that SRL security is retained in the presence of such a key cycle.

Obfuscation from Circular-Secure LWE. We wish to remove the need for the Damgard-
Jurik encryption scheme from the above construction paradigm. The major obstacle to
overcome consists in designing an LWE-based encryption scheme that simultaneously satisfies
three properties.

Linear Homomorphism: In order to key switch the GSW ciphertext into this form, the

scheme must satisfy some weak notion of homomorphism. Specifically, it must support

the homomorphic evaluation of linear functions.

Succinct Randomness: The scheme must allow us to encrypt a long message string with

a short randomness, that can then function as the decryption hint.

Dense Ciphertexts: A uniformly sampled string must lie in the support of the encryption

algorithm with all but negligible probability. This will allow us to parse the CRS as a

collection of ciphertexts.?
Unfortunately all natural lattice-based candidates seem to fail to satisfy all of these properties.
In particular, for all LWE-based schemes linear homomorphism seems to be at odds with dense
ciphertexts: To ensure that the noise accumulated during the homomorphic evaluation does
not impact the decryption correctness, one needs to ensure a gap between the noise bound and
the modulus. More concretely, ciphertext are typically of the form (a,a-s+e+q/2-m) € Zg“
where e < ¢, which makes them inherently sparse.

Our Solution: A Packed Variant of Dual-Regev that is also Dense-Friendly. We show
that the above requirements can be relaxed. Our starting point is devising a “packed” version
of the dual-Regev encryption scheme [25]. This scheme will not have dense ciphertexts so
it does not fit the requirements from previous works. However, we will show how we can
define, for the same scheme, a family of ciphertexts which are both “almost dense” and can
inter-operate with the non-dense scheme, so as to allow to construct the obfuscator.

2 Note that for the purpose of constructing the obfuscator, one could make do with a common reference
string which can have an arbitrary distribution. However, the string needs to be parsed as a ciphertext
with respect to all public-keys. Requiring dense ciphertexts is a simple requirement that implies this
property.

28:5
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Let us start with our packed dual-Regev scheme. To pack a k-bit plaintext m € {0, 1}*
in a dual-Regev ciphertext we construct the public key as a matrix A € Z7*", which is
statistically close to uniform but is sampled together with a trapdoor 7 (whose role will
be explained below), and another uniformly sampled matrix B € Z’qfx”. The encryption
algorithm computes a the ciphertext as

(A-r+e;,B-r+¢/2-m+e)

where r < Zy is the encryption randomness and the vectors ep and e are the encryption
noises, where the norm of both vectors is bounded by some B <« q. The property of the
trapdoor 7 is that it allows to recover r from A - r + ep. The (semantic) security of the
scheme follows directly by definition of LWE. To decrypt, therefore, one can first use the
trapdoor 7 to recover r from the first m elements of the ciphertext, and then recompute the
mask B - r and recover each individual bit by rounding to the closest multiple of ¢/2. Setting
the parameters appropriately, we can guarantee that the decryption is always successful. One
important property of this scheme is that the random coins r € Zj are sufficient to recover

the entire message and furthermore the size of r is succinct (in particular independent of k).
In terms of homomorphism, the scheme is straightforwardly additively homomorphic.

Furthermore, it supports key switching from any scheme with almost-linear decryption as

per [8].3 In particular it is possible to take a (long) message encrypted under an FHE scheme

such as GSW and convert it to an encryption of the same message under packed dual-Regev,
using precomputed key-switching parameters.*

As explained above, this scheme does not have dense ciphertexts. At this point we make
two crucial observations that will allow us to bypass this hurdle.

(1) In order to construct the obfuscator using the [9] approach, dense ciphertexts only need
to enjoy a very limited form of homomorphism, they only need to support a single
addition with a non-dense ciphertext.

This is essentially because the obfuscator has the following outline. It starts by considering the

dense ciphertext from the CRS (or oracle in the case of the original [9]), and homomorphically

bootstraps it into a non-dense FHE ciphertext by evaluating the decryption circuit. Let

m be the (random) message that is induced by the process. Then, the FHE encryption of

m is processed in order to create a non-dense packed encryption of m @ TT, where TT is

the truth table of the program to be obfuscated (or, more accurately, a chunk of this truth

table, partitioning into chunks is required in order to allow reusability of the keys). Then a

single homomorphic addition between the dense and non-dense ciphertext would imply a

packed encryption of the truth table. All of this can be performed by the evaluator of the

obfuscated program, so all that is needed is the decryption hint for this final ciphertext, that
would allow to recover TT.

We note importantly, that in prior approaches (including the [23] blueprint) the afore-
mentioned bootstrapping creates a key cycle, since a packed ciphertext is bootstrapped into
an FHE ciphertext, which is afterwards key-switched into a packed ciphertext. However, we
notice that it suffices to provide an encryption of the (succinct) randomness of the dense
ciphertext in order to apply bootstrapping, thus leading to a relaxed key-randomness circular
assumption. Interestingly, this observation is not very useful for actual dense ciphertexts
(since finding the randomness would require using the key), however, our relaxed notion of
density described below will allow to apply it and thus relax the circularity notion as well.

3 This is done using the by-now-standard technique of encrypting powers-of-two of the elements of the
secret key of the latter scheme, so that it is possible to evaluate any inner product homomorphically.

4 We note that the key switching parameters are quite long so it is required for our method that they are
reusable.
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(2) A notion of almost-everywhere density suffices. A ciphertext distribution is almost-
everywhere dense if it is dense except for a non-dense part whose length is independent
of k (the message length).

The reason that this is sufficient is that the non-dense part of the ciphertext, which we refer
to as the header, can be generated by the obfuscator and provided to the evaluator as a
part of the obfuscated program. Since the header is short, and in particular the message
length k£ can be selected to be much longer than the header, the effect on the length of the
obfuscated program will be minimal. As hinted above, since the obfuscator generates the
header, it in particular also samples the randomness for the final almost-everywhere dense
ciphertext. This means that the obfuscator can generate the bootstrapping parameters using
this randomness without requiring a key cycle.

Dense Encryption Mode. With these observations in mind we describe an alternative
encryption mode (DenseEnc) for the packed variant of dual-Regev where the bulk of the
ciphertext is dense. On input a message m € {0,1}*, the encryption algorithm in dense
mode computes the following ciphertext

(A-r+e,B-r+¢/2-m+u)

where r and ey are sampled as before and u «$ [—¢/4,+q/4]*. For convenience, we are
going to split the ciphertexts into two blocks: The header hg € Z7" and the message carrier
(h1,...,h) € Z’;. Foremost, observe that the decryption algorithm as described before
still returns the correct message with probability 1, since it recovers the same r from hy.
Furthermore, note that (for a fixed header) all vectors (hq,...,hg) € Z(’; are in the support
of the encryption algorithm. Since k& > m, most of the elements of the ciphertext in the
alternative encryption mode are dense.

One can verify that the aforementioned limited form of homomorphism indeed holds,
namely that

dR.Enc(m) + dR.DenseEnc(m’) € dR.DenseEnc(m & m’).
This is the case since

(Ar+ep,B-r+q/2-m+e)+(A-r'+e,B-r'+¢/2-m'+u)
=(A-(r+1)+e+ey,B-(r+1r)+¢q/2-(mdm’)+e+u)
=(A-7T4+&,B-f+¢/2-(mdm’)+q)

where @1 = e + u € [—q/4, +q/4]* with all but negligible probability over the random choice
of u, for an appropriate choice of the parameters.

Doing Away with the Header. We notice that given our two observations above, the
goal of the header in the obfuscation scheme is quite minimal. The header is not needed
for homomorphism, and is only needed for the purpose of extracting the randomness r at
decryption time. We then observe that decrypting packed ciphertext is done in two contexts
in the scheme. The first is when we bootstrap the almost-everywhere dense ciphertext into
an FHE ciphertext, and the other is when the evaluator of the obfuscated program recovers
TT from the final ciphertext. For the latter there is no need for a header since the decryption
hint, i.e. the respective r value, is provided within the obfuscated program. For the former
we do not need a header of a specific structure, but rather simply an encryption of r that
allows bootstrapping the almost-dense ciphertext. It therefore suffices to provide GSW.Enc(r)
directly, which makes the header completely redundant.

28:7
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On the Assumption. Equipped with the newly developed packed version of dual-Regev
we can follow the [9,23] approach, with the aforementioned modifications, to construct the
obfuscator. The resulting construction can be shown secure against the assumption that the
SRL security of GSW is retained in the presence of a key cycle with the packed dual-Regev
encryption scheme as presented above.

We then observe that it suffices to assume SRL security with respect to key-randomness
cycles, rather than key cycles. We note that this assumption is no-stronger than key-cycle
SRL since given a key-cycle it is possible to homomorphically generate a key-randomness
cycle, but the converse is not known to be true.

Adding this to our observation about the redundancy of the header, the assumption we
require is that SRL security is retained in the presence of a key-randomness cycle between
GSW and packed dual-Regev, i.e.

(GSW.EnC(I‘), dR.EnC(SkGSW; I')) .

Since dual-Regev is randomness recoverable, this assumption is syntactically weaker than
SRL security in the presence of a key-cycle: Given a GSW encryption of the dual-Regev
secret key, one can homomorphically compute the randomness recovery circuit to obtain a
GSW encryption of the randomness r.

1.3 Related and Follow-up Work

Subsequently to the posting of this manuscript online (but concurrently and independ-
ently) [23] updated their manuscript to include a solution based on LWE in the place of
DCR. They do not make the observations that a relaxed notion of density suffices (and is
preferable) and thus they explicitly construct an encryption scheme with dense ciphertexts
based on the (primal) Regev encryption scheme. The resulting scheme is more involved and
in particular requires the two-key circular SRL security of GSW and (primal) Regev rather
than the relaxed key-randomness circularity notion.

Wee and Wichs [42], again concurrently, presented another instantiation of the [9] approach
which is arguably post-quantum secure. They rely on an indistinguishability assumption
between two distributions and not directly on circular security. However, the underlying
machinery developed shares many similarities with our approach. Specifically, while we
essentially rely on randomness that is embedded in the CRS by interpreting it as an obliviously
sampled ciphertext (which thus corresponds to one encrypted with fresh randomness), their
approach is to use a pseudorandom function to transform the CRS into a randomizer for the
output hint.

A follow-up work by Hopkins, Jain, and Lin [29] shows counterexamples to SRL security
for general functions in the presence of a 2-key cycle, as stated in [23], and the conjecture
from [42]. We stress that their findings do not imply an attack against the corresponding
obfuscation scheme of [42] and [23] (as also pointed out by the authors in [29]). Rather, their
results show that the veracity of SRL security depends on the concrete circuit representation
of the functions under consideration. As a consequence of their findings, we updated the
statement of our assumption (and adapted the analysis of our scheme) with a refined version,
that further restricts the power of the adversary and more tightly characterize the security
of our construction. However, the iO construction is unchanged from previous versions of
this work.

A few remarks about the susceptibility of our scheme to the [29] attack are in order.
In short, the attack exploits the randomness homomorphism of GSW to compute a biased
leakage. The SRL function consists of a bootstrapping followed by a modular reduction
(modulo 2). On the other hand, our admissible class of leakage functions consists of linear
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functions (modulo ¢) followed by a rounding (i.e. outputting the most significant bit). We are
not aware of a method to establish the same correlations exploited by [29] without violating
the admissibility criteria for the leakage functions. Thus, we conjecture that SRL security
with respect to such leakage function holds for all natural FHE candidates (see Section 3.1
for further details).

2 Preliminaries

We denote by A € N the security parameter. We say that a function negl is negligible if
it vanishes faster than any inverse polynomial. Given a set .S, we denote by s <$ .S the
uniform sampling from S. We say that an algorithm is PPT if it can be implemented by a
probabilistic Turing machine M running in time poly(A). The execution of a Turing machine
M on input z and with random coins fixed to r is denoted by M (x;r). We say that two
distributions (Dg, D;) are computationally (statistically, resp.) indistinguishable if for all
PPT (unbounded, resp.) distinguishers, the probability to tell Dy an Dy apart is negligible.
Matrices are denoted by M and vectors are denoted by v. For convenience, we define Bit(-)
as the bit decomposition operation. We denote the infinity norm of a vector v by || v]|e. We
recall the smudging lemma.

» Lemma 2 (Smudging). Let By = Bi(\) and By = Ba(\) be positive integers and let
e1 € [—B1, B1] be a fized integer. Let eq <5 [—Ba, Ba] chosen uniformly at random. Then the
distribution of es is statistically indistinguishable to that of es+eq as long as By/Bs = negl()).

2.1 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO) from [4].

» Definition 3 (Indistinguishability Obfuscation). A PPT machine iO is an indistinguishability
obfuscator for a circuit class {€x}ren if the following conditions are satisfied:

(Functionality) For all X\ € N, all circuit T1 € €y, all inputs = it holds that: TI(z) = TI(x),
where 11 +s iO(1I).

(Indistinguishability) For all A € N, all pairs of circuit (I, I11) € € such that || = |14 |
and o(z) = Iy (z) on all inputs x, it holds that the following distributions are computationally
indistinguishable: 10(Ily) ~ iO(I1y).

Shallow XiO. In this work we construct a weaker version of iO called (shallow) XiO, which
however is sufficient (along with the LWE assumption) to construct fully-fledged iO. Loosely
speaking, a shallow XiO is a indistinguishability obfuscator (with pre-processing) for P'°% /poly
with non-trivial efficiency. Here P'° /poly denotes the class of polynomial-size circuits with
inputs of length n = O(log()\)) and by non-trivial efficiency we mean that the size of the
obfuscated circuit is bounded by poly(\, [TI|) - 27" (1=%) for some constant ¢ > 0. The runtime
of the obfuscator can be any polynomial in A, [II], and 27, except that its depth should not
depend on 2". Furthermore, we allow the obfuscator to access a large uniform random string
(the pre-processing) of size even larger than the truth table of the circuit. For a formal
statement, we refer the reader to the full version [10].
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2.2 The GSW Fully-Homomorphic Encryption

In the following we briefly recall the encryption scheme by Gentry, Sahai, and Waters [26]
(henceforth, GSW). We denote by n = n()) the lattice dimension and by ¢ = ¢(\) the
modulus (which we assume for simplicity to be even). Throughout the rest of this paper, we
set m = (n + 1)(log(q) + 1) and d = d(\) as a bound on the depth of the arithmetic circuit
to be evaluated.

KeyGen(1*): Sample a uniform matrix A s Zy*™ and a vector s <—$ x". Set the public
key to (A, b =sTA 4 e’), where e +$ x™. The secret key is set to (—s, 1).
Enc(pk, m): On input a message m € {0, 1}, sample a uniform R +s {0, 1}"**™ and compute

C=(Ab) R+m-G

where G = (1,2,...,21°8@~1)T @ [, 4y and I(,41) € {0,1}"FDX(+D) denotes the
identity matrix.

Eval(pk, IT, (c1,...,¢.)): There exists a (deterministic) polynomial-time algorithm that
allows one to compute any d-bounded depth arithmetic circuit II : {0,1}" — {0,1}
homomorphically over a vector of ciphertexts (c1,...,¢,). For details about this algorithm,
we refer the reader to [26]. For the purpose of this work, the only relevant information is
that the evaluated ciphertext cyy € Z((;H'l) is an (n + 1)-dimensional vector. For multiple
bits of output, the resulting ciphertext is defined to be the concatenation of the single-bit
ciphertexts.

Dec(sk, c): We assume without loss of generality that the input ciphertext ¢ € Z((lnﬂ) is the

output of the evaluation algorithm. Such a ciphertext defines a linear function £, such
that

Lo(sk) =q/2-m+e

where |e| < B = (m + 1)%mB. The message m is recovered by returning the most
significant bit of the output.
Note that the decryption routine of GSW consists of the application of a linear function,
followed by a rounding and we refer to this property as to almost-linear decryption. In a slight
abuse of notation, we sometimes write KeyGen(1*;¢) to denote the above key generation
algorithm with a fixed modulus gq.

Alternate Encryption. For convenience we also define a modified encryption algorithm,
where the output ciphertexts consists of a single column vector. An additional difference is
that we sample the randomness with norm B = 2* - B.

ColEnc(pk, m): On input a message m, sample a uniform r +$ [— B, +B]™ and compute
c=(A,b) -r+(0"¢/2) m.

This algorithm is going instrumental for our scheme, although ciphertexts in this form no
longer support the homomorphic evaluation of arbitrary circuits. The multi-bit version
of such an algorithm is defined accordingly to output the concatenation of independently
sampled ciphertexts. We now recall a useful Lemma from [23].
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» Lemma 4 (GSW Smudging). Let B = 2*- B. For all A\ € N, for all (sk, pk) in the support
of KeyGen(1%), for all messages m = (my,...,m,), for all depth-d circuit (I, ... I1;), the
following distributions are statistically indistinguishable

Cly vy Cuy Yy, T,
Eval(pk,II4, (c1, . .., ¢cu)) + ColEnc(pk, 0;r}), . . .,
Eval(pk,II., (¢1, ..., ¢cu)) + ColEnc(pk, 0; r¥)
¢1,...,¢u, ry — RandEval(pk,II;, m, (Rq,...,R,)), ...,
~ | r*— RandEval(pk,II;,m, (R4,...,R,)),
ColEnc(pk, II; (m1,...,m,);r}),. .., ColEnc(pk, IL; (m1,...,m,);r})

where ¢; <8 Enc(pk, m;; R;), r¥ < [~ B, +B]™, and R; +s {0, 1}™*™.

Randomness Homomorphism. We recall a useful property of the GSW scheme, namely
that one can alternatively evaluate functions directly over the randomness of a ciphertext
to obtain the same result. More formally, we say that a homomorphic encryption scheme
(KeyGen, Enc, Eval, Dec) has randomness homomorphism for the circuit class {€) }en if there
exists an efficient algorithm RandEval such that for all IT € €, all (sk, pk) in the support of
KeyGen, all vectors of messages m = (my,...,m,) and R = (Rq,...,R}), all ciphertexts
(c1,...,¢y) in the support of (Enc(pk, mq;R1),. .., Enc(pk,m,;R,,)) it holds that

Eval(pk,IL, (¢1, ..., cu)) = ColEnc(pk, II(m); RandEval(pk, II, m, R)).

Circuit Privacy. It is well known that the GSW encryption scheme satisfies the following
notion of circuit privacy [7,18,40] (with a randomized evaluation algorithm).

» Definition 5 (Circuit Privacy). For all A € N, all all I € €y, all (sk, pk) in the support
of KeyGen, and all messages m, it holds that the following distributions are statistically
indistinguishable

(pk, Enc(pk, II(m))) ~ (pk, Eval(pk, IT, Enc(pk, m);r)).

where 1 +$ {0, 1}*.

3 Packed Encryption from LWE

In the following we describe a packed version of the dual-Regev encryption scheme [25].
We denote by n = n(\) the lattice dimension, by ¢ = ¢(\) the modulus (which we assume
for simplicity to be a power of 2), and by k = k()\) the expansion factor. We require the
existence of a public-key encryption scheme (PKE.KeyGen, PKE.Enc, PKE.Dec).

KeyGen(1*, 1%): Sample a uniform k x n matrix B ¢$ ZZX" and a key pair of a public-
key encryption scheme (skpyg, pkpkg) <$ PKE.KeyGen(1*). The public key consists of
(B, pkpkg) and the secret key is set to skpgg-

Enc(pk, m): To encrypt a k-bit message m € {0,1}*, sample a uniform randomness vector

r «$ Z; a noise vector e <= x* and return the ciphertext
¢ = (PKE.Enc(pkpkg;r),B-r+¢/2-m+e).

Dec(sk, ¢): Parse ¢ as (¢pke, ¢1,---,¢k) and recover the random coins by decrypting r =
PKE.Dec(skpkg, cpke)- Let b; be the i-th row of B. For ¢ = 1...k, compute m; =
Round(¢; — b; - r), where Round rounds to the nearest multiple of ¢/2, i.e. it returns 1 if
the input is closer to ¢/2 and 0 otherwise. Output m = (my,..., mg).
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Clearly, the scheme is perfectly correct since

(Round(¢; — by - 1),...,Round(ci, — by - 1))

= (Round(g/2-m; +e€1),...,Round(g/2 - my + ex))
= (Round(g/2 - my),...,Round(gq/2 - my))
=(my,...,mg)

= m.

Extended Encryption. It is not hard to see that the scheme presented above is (bounded)
additively homomorphic over Z5. To lift the class of computable functions to all linear

functions over ZF, we adopt the standard trick of encrypting the message multiplied by

q’

all powers of two (1,2,..., 2log()) " For convenience, we define the following augmented
encryption algorithm.
ExtEnc(pk, m): On input an (-dimensional message m € Z¢, let g = (1,2,...,2e@-1)T
and define
mp-g ms - g L. OIOg(q)
Olog(e) Qlogle) . Qlos(a)
M = c ka@-kdog(q)
: : - : q '
Oles(@) qlogl@) = m,.g
Sample a uniform randomness matrix R < ZZM'k'log(q) and a uniform noise matrix

E s **¢*108(@) | Compute

and return the ciphertext (PKE.Enc(pkpkg, R), C).
Decryption works, as before, by recovering R from the public-key encryption scheme and
then decrypting m component-wise.

Almost-Everywhere Dense Encryption. For convenience, we also define an alternative
encryption algorithm in the following. Note that the encryption algorithm does not take as
input any message, instead it encrypts a uniform k-bit binary vector. Syntactically, this is
the equivalent of a key-encapsulation mechanism.

DenseEnc(pk): Sample a uniform randomness vector r < Zj and return the ciphertext
¢ = (¢pkg, €1, - - -, k) = (PKE.Enc(pkpkg,r),B-r+u).

where u +$ Z’;.

We highlight two facts about this algorithm that are going to be important for our later
construction: (i) The decryption algorithm works for both Enc and DenseEnc algorithms,
where the plaintext of DenseEnc corresponds to (Round(uy),...,Round(ug)). In fact, the
scheme satisfies perfect correctness in both cases. (ii) The domain of the elements (c1, ..., ck)
is dense, i.e. the support of the scheme spans the entire vector space Z’;. Since the element
cpke is small (i.e. independent of k) for an appropriate choice of the public-key encryption
scheme, we refer to such a property as almost-everywhere density.
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Semantic Security. We argue that the scheme satisfies a strong form of semantic security,
i.e. the honestly computed ciphertexts are computationally indistinguishable from uniform
vectors in ZZ. Semantic security for the extended encryption ExtEnc and the dense encryption
DenseEnc follows along the same lines.

» Theorem 6 (Semantic Security). If (PKE.KeyGen, PKE.Enc, PKE.Dec) is semantically secure
and the LWE assumption holds, then for all A € N and all messages m it holds that the
following distributions are computationally indistinguishable

(pk, Enc(pk, m)) = (pk, PKE.Enc(pkpkg,z), u).

where (sk, pk) < KeyGen(1*,1%), z «s Ly, and u < Zf;.

Proof. The security of the scheme follows routinely by an invocation of semantic security of
the public-key encryption scheme and an invocation of the LWE assumption. |

3.1 Key-Randomness SRL Security

We state a version of SRL security [23] tailored for our specific instance and adapted to the
randomness-key circularity assumption (rather than the 2-key circularity, as stated in [23]).

» Definition 7 (Key-Randomness SRL Security). Let (GSW.KeyGen, GSW.Enc, GSW.Eval,
GSW.Dec) be the GSW encryption scheme and (dR.KeyGen, dR.Enc, dR.Eval,dR.Dec) be the
packed dual-Regev encryption scheme. Fiz messages (mg, my), polynomials 7 = 7(\) and
k= k() and an adversary A = (A1, A2). Consider the following experiment.
Expgl,;)L(A):
Sample (sk, (pk, B)) s dR.KeyGen(1*, 1%) and (sk, pk) <$ GSW.KeyGen(1*)
Compute ¢ <% GSW.Enc(pk, m;)
{Pi,pi}i=1..r = Ai(pk, B, c) B
Compute (Esk, Csk) = dR.ExtEnc(pk, sk; S) and cg <s GSW.Enc(pk, S; Rg)
Forallt=1...7:
Sample C} = ColEnc(0;r}) where r} s [~ B, +B]™*
Sample t; < Zy
Sample c; » = GSW.Enc(pk, S - Bit(¢;) + t;; R;) <% GSW.Eval(pk, -Bit(¢;) + t;, cs)
Output .Ag(ésk, {cir, C i, b5, vy, — 1 }izi 1)
Here, letting ¢; be the linear function associated with C; +P; + q/2 - v;, we set

ry,; = RandEval(pk,v;, S - Bit(¢;) + t;, R;) and
¥i(Z) = Round (B - t; + q/2 - p; + w; — Cy - Bit(¢;) — B - Z)

where w; < [—q/4,q/4]%, v; s {0,1}*, and w; = w; +q/2 - v;, foralli=1...7. We say
that an adversary A is admissible if for alli = 1...7 it holds that P; € GSW.Enc(pk, p;)-
The KR-SRL assumption conjectures that it holds for all admissible PPT adversaries A, all
messages (mg, my) and all polynomials 7 = 7(\) and k = k(\) that

| Pr[ExpSh (A) = 1] — Pr[Expl (A) = 1]] < negl()).

Since the SRL leakage depends on the specific circuit representation of the functions
(11 ...%;), we propose a natural implementation for a class of functions that suffices to
capture all possible leakage functions. Specifically, observe that 1; consist of a linear function
(computed over Z,) followed by a rounding to the nearest multiple of ¢/2. Since all inputs are
bit-wise encrypted the computation of modular additions (and multiplication by constants)
is done via a canonical boolean circuit (see [11] for a concrete example) and the rounding is
obtained by simply returning the ciphertext containing the most significant bit of the output.
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4  Constructing (Shallow) XiO

In the following we present the construction of shallow XiO from the GSW scheme
(GSW.KeyGen, GSW.Enc, GSW.Eval, GSW.Dec) and the packed version of the dual-Regev
encryption (dR.KeyGen, dR.Enc,dR.Eval,dR.Dec) as described in Section 3.

4.1 Construction

The scheme assumes a long uniform string that is, for convenience, split in two chunks:

A sequence of randomization vectors (r7, ..., T}, 1)) for the GSW scheme GSW.PubCoin,
where each rj = (r];,...,r7;) € [-B, +B]™k,
A sequence of dense ciphertexts (hi,...,Rqn 10sx)) for packed dual-Regev scheme

dR.PubCoin, where each h; = (h;1,...,hik) € Z’;.

On input the security parameter 1* and the circuit IT : {0,1}" — {0,1}, the obfuscator

proceeds as follows.

Setting the Public Keys: Sample a dual-Regev key pair (sk, pk) < dR.KeyGen(1*,1¥) and
GSW key pair (sk, pk) <$ GSW.KeyGen(1*;¢), where ¢ is the modulus defined by the
dual-Regev scheme. Compute a bit-by-bit GSW encryption crp +$ GSWEnc(pk, IT) of the
binary representation of the circuit II.

Compute a Key Encryption: Compute a dual-Regev extended encryption of the GSW secret
key (s Csk) = dR.ExtEnc(pk, sk; S). where sk € Z+! and S ¢ Zg 501+

Decryption Hints: For all indices i € {0,1}7719¢(®) do the following.

Evaluate the Circuit: Let ®; ; : {0,1}/™ — {0,1} be the universal circuit that, on input
a circuit description II, returns the j-th bit of the i-th block (where each block consists
of k bits) of the corresponding truth table. Compute

GSWEV3|(pk7 (I)i,la CH)
C; = € Zk* (),
GSW.Eval(pk, ®; x, crr)

Compute the Low-Order Bits: Sample r; < Z; and compute c; , +$ GSW.Enc(pk, r;).
Parse the i-th block of dR.PubCoin as

(hi,17~-~7hi,k) =B-r; + (ui71,...7ui’k) € Zg

for some (ui1,...,uix) € ZE. Let W;; : {0,1}* — {0,1} be the circuit that, on
input r;, computes the decryption of the j-th bit encrypted in (h;1,..., R x). Le. it
computes Round((h;1,...,hix) — B -r;). Compute homomorphically the matrix of
ciphertexts

GSW.Eval(pk, ¥, 1, c; r)
Ci round = c Zl;x(n+1).

GSW.Eval(pk, ¥, 1, c; )

Rerandomize the Ciphertext: Parse the i-th block of GSW.PubCoin as (r];,...,r};) €
[—B,+B]"™"* and compute

GSW.ColEnc(pk, 0; 1} 1)
!

kX 1
i,Round = Ci,Round + €z,

GSW.ColEnc(pk, 0517 )
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Proxy Re-Encrypt: Define D; as the vector of GSW ciphertexts resulting from the
homomorphic sum of Cj g, g and C;, i.e. D; = Cjg g + Ci. Observe that D;
consists of & GSW ciphertexts and let £; ; € Zénﬂ)
with the decryption of the j-th ciphertext. Define €; = (€;1,...,%; ) and compute

be the linear function associated

éi = Csk . Blt(£1> + (hi,17 cee h%k) € ZZ

where the function Bit : ZZ'(HH) — {0, 1}1°8(9) k- (n+1) j5 the bit decomposition operator.

Release Hint: Compute the i-th decryption hint as
pi=S- Blt(&) +r; € ZZ

Output: The obfuscated circuit consists of the public keys (pk, pk), the matrix Cg, the
GSW encryption of the circuit cry, the encryption headers (cir,. .., Con-tosr) ), and the
decryption hints (p1,. .., Pan—test) ).

To evaluate the obfuscated circuit on input z, let i be the index of the block of the truth
table of II that contains II(z). The evaluator computes ¢; as specified above (note that
all the operations are public, given the information included in the obfuscated circuit) and
recovers I1() (the i-th block of the truth table of IT) by computing

1) = Round(c; — B - p;)

where Round : ZF — {0,1}* rounds the input to the nearest multiple of ¢/2.

Correctness. To see why the evaluation algorithm is correct, recall that

éi = Csk - Blt(lez) + (hi,17 LR hi,k)'

First observe that (r;,h;1,...,h; ) define a ciphertext in the support of the algorithm
dR.DenseEnc(pk), which we rewrite as

dR.DenseEnc(pk) = (PKE.Enc(pkpkg, i), B - 1; + (wi1, ..., uig))
= (PKE.Enc(pkpkg,ri), B - r; + u;).

Thus C; goung and C; are in the support of
GSW.ColEnc(pk, Round(u1)) GSW.ColEnc(pk, TT{")
e and e
GSW.ColEnc(pk, Round(u)) GSW.ColEnc(pk, H,(;))

respectively, by the evaluation correctness of the GSW scheme and by Lemma 2. Furthermore,
recall that D; = C/

i.Round T Ci- By an invocation of Lemma 2, we have that D; is in the
support of

GSW.ColEnc(pk, Round(uy1)) GSW.ColEnc(pk, H(li))
+ R _
GSW.ColEnc(pk, H,(;))

GSW.ColEnc(pk, Round(u1) & H(li))

GSW.ColEnc(pk, Round(ug))

~
~

GSW.ColEnc(pk, Round(uy,) @ II(")
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with all but negligible probability. By the almost-linear decryption of GSW, it follows that

Coc - Bit(€:) = B8 + & + ¢ + ¢/2 - (Round(w) @ 1", ..., Round(uy) & 11{")

where &; is the decryption noise of the packed dual-Regev scheme (i.e. the subset sum of
the noise terms of Cg) and ¢; is the decryption noise of the GSW ciphertext. It follows
that ||&]lec < B -log(q) - k- (n+ 1) and, by Lemma 2, ||¢;|lc < B with all but negligible
probability. Note that, by linearity we have that §; = S - Bit(¢;). Consequently, it holds that

=B -§+&+C+q/2 (Round(ul) a1, ... Round(uy) & Hﬁj)) +B -1 +u

=B -(8;+r)+&+¢+q/2- (Round(ul) @ Hgi), ..., Round(uy) ® Hl(f)) +u
=B -pi+q/2-1Y +v,;

where v; = u; +¢/2-Round(u;) + &; + ¢; and ||v;]lec < ¢/4 with all but negligible probability,
over the random choice of u;. This is because D; is statistically close to a fresh GSW
encryption of (Round(uy), ..., Round(ug)) @ I, by Lemma 4. Therefore we have that

Round (c; — B - p;) = Round (B “pi+q/2- n% +v, —B- pi)

= Round (q/2 9 4 Vi)
= Round (q/? . H(i))
= 11

with the same probability. Due to space constraints, we defer the analysis of our scheme to
the full version [10].
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