
Characterization of Matrices with Bounded Graver
Bases and Depth Parameters and Applications to
Integer Programming
Marcin Briański #

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Martin Koutecký #Ñ

Computer Science Institute, Charles University, Prague, Czech Republic

Daniel Král’ # Ñ

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Kristýna Pekárková #Ñ

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Felix Schröder #

Institute of Mathematics, Technische Universität, Berlin, Germany

Abstract
An intensive line of research on fixed parameter tractability of integer programming is focused on
exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of
its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized
by the primal tree-depth and the entry complexity of A, and when parameterized by the dual
tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in
particular, the number of its non-zero entries is linear in the number of columns or rows, respectively.

We study preconditioners transforming a given matrix to an equivalent sparse matrix if it exists
and provide structural results characterizing the existence of a sparse equivalent matrix in terms of
the structural properties of the associated column matroid. In particular, our results imply that the
ℓ1-norm of the Graver basis is bounded by a function of the maximum ℓ1-norm of a circuit of A. We
use our results to design a parameterized algorithm that constructs a matrix equivalent to an input
matrix A that has small primal/dual tree-depth and entry complexity if such an equivalent matrix
exists.

Our results yield parameterized algorithms for integer programming when parameterized by the
ℓ1-norm of the Graver basis of the constraint matrix, when parameterized by the ℓ1-norm of the
circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry
complexity of a matrix equivalent to the constraint matrix, and when parameterized by the smallest
dual tree-depth and entry complexity of a matrix equivalent to the constraint matrix.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Math-
ematics of computing → Matroids and greedoids; Mathematics of computing → Combinatorial
algorithms

Keywords and phrases Integer programming, width parameters, matroids, Graver basis, tree-depth,
fixed parameter tractability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.29

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2202.05299

Funding The third author was supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 648509).
This publication reflects only its authors’ view; the ERC Executive Agency is not responsible for any

EA
T

C
S

© Marcin Briański, Martin Koutecký, Daniel Král’, Kristýna Pekárková, and
Felix Schröder;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 29; pp. 29:1–29:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcin.brianski@doctoral.uj.edu.pl
mailto:koutecky@iuuk.mff.cuni.cz
https://research.koutecky.name/
mailto:dkral@fi.muni.cz
https://fi.muni.cz/~dkral
mailto:kristyna.pekarkova@mail.muni.cz
https://fi.muni.cz/~xpekark1/
mailto:fschroed@math.tu-berlin.de
https://doi.org/10.4230/LIPIcs.ICALP.2022.29
https://arxiv.org/abs/2202.05299
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

use that may be made of the information it contains. The third and fourth authors were supported by
the MUNI Award in Science and Humanities (MUNI/I/1677/2018) of the Grant Agency of Masaryk
University. The second author was partially supported by Charles University project UNCE/SCI/004
and by the project by the project 19-27871X of GA ČR. First author was partially supported by the
Polish National Science Center grant (BEETHOVEN; UMO-2018/31/G/ST1/03718).

Acknowledgements All five authors would like to thank the Schloss Dagstuhl – Leibniz-Zentrum für
Informatik for hospitality during the workshop “Sparsity in Algorithms, Combinatorics and Logic”
in September 2021 where the work leading to the results contained in this paper was started.

1 Introduction

Integer programming is a problem of fundamental importance in combinatorial optimization
with many theoretical and practical applications. It is known to be computationally very
hard and is one of the 21 NP-complete problems in the original paper on NP-completeness by
Karp [34]; the problem is known to be NP-complete even when the entries of the constraint
matrix are zero and one only. On the positive side, Kannan and Lenstra [32,41] showed that
integer programming is polynomially solvable in fixed dimension, i.e., with a fixed number of
variables. Another prominent tractable case is when the constraint matrix is unimodular,
i.e., all determinants of its submatrices are equal to 0 or ±1, in which case all vertices of the
feasible region are integral and so linear programming algorithms can be applied.

Integer programming is known to be tractable for instances where the constraint matrix
of an input integer program (IP) enjoys a certain block structure. The two most important
cases are the cases of 2-stage IPs due to Hemmecke and Schultz [23], further investigated
in particular in [1, 12,27,36, 37,40], and n-fold IPs introduced by De Loera et al. [13] and
further investigated in particular in [10,11,16,22,31,40]. IPs of this kind appear in various
contexts, see e.g. [29,38,39,44]. These (theoretical) tractability results complement well a vast
number of empirical results demonstrating tractability of instances with a block structure,
e.g. [2–4,18,19,35,45–47].

A more general approach to tractability of IPs with sparse constraint matrices involves
depths/widths of graphs defined on columns or rows of the constraint matrices. Ganian and
Ordyniak [20] initiated this line of study by showing that IPs with bounded primal tree-depth
tdP (A) of a constraint matrix A and bounded coefficients and right hand sides ∥A, b∥∞ can
be solved efficiently. Levin, Onn and the second author [40] widely generalized this result by
showing that IPs with bounded coefficients ∥A∥∞ and bounded primal tree-depth tdP (A) or
dual tree-depth tdD(A) of the constraint matrix A can be solved efficiently; such IPs include
2-stage IPs, n-fold IPs, and their generalizations. The existence of efficient algorithms in the
case of constraint matrices A with bounded primal and dual tree-depth is closely linked to
bounds on the norm of elements of the Graver basis of A, which is formed by minimal integer
vectors of kerA in an orthant (see Section 2 for the rigorous definition). The maximum
ℓ1-norm and ℓ∞-norm of an element of the Graver basis of A is denoted by g1(A) and g∞(A),
respectively. In particular, the following holds [40], where ec(A) denotes the entry complexity
of a matrix A defined as the maximum number of bits needed to represent any of the entries
of A.

▶ Theorem 1. There exist functions fP , fD : N2 → N such that the following holds for every
matrix A: g∞(A) ≤ fP (tdP (A), ec(A)) and g1(A) ≤ fD(tdD(A), ec(A)).



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:3

Most of the existing algorithms for IPs assume that the input matrix is already given in
its sparse form. This is a substantial drawback as existing algorithms cannot be applied to
instances that are not sparse but can be transformed to a sparse instance, for example, the
matrix in the left, whose dual tree-depth is 5, can be transformed by row operations to the
matrix with dual tree-depth 2 given in the right.

2 2 1 2 1 3 1
2 1 1 1 2 1 1
2 2 2 2 2 2 1
2 1 1 2 2 1 1
2 2 1 2 1 3 2

 →


2 1 0 1 1 2 1
0 1 1 0 0 1 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 0 1


Such a transformation of an input matrix is a preconditioner as it changes an input matrix
to an equivalent one that is computationally more tractable.

Preconditioning a matrix to make the problem computationally simpler, e.g., to make
the feasible region not too flat in any direction, is a ubiquitous preprocessing step in
mathematical programming solvers. In this paper, we are concerned with the existence and
efficient computability of preconditioners to sparsity of matrices. Chan and Cooper together
with the second, third and fourth authors [7,8] gave a structural characterization of matrices
that are equivalent, i.e., can be transformed by row operations, to a matrix with small dual
tree-depth, and used their structural results to design a fixed parameter algorithm to find
such a matrix if it exists; we denote the smallest dual tree-depth of a matrix equivalent to A
by td∗

D(A).

▶ Theorem 2. There exists an algorithm parameterized by d and e that for an input matrix
A with entry complexity e

either outputs that td∗
D(A) > d, or

outputs a matrix A′ equivalent to A such that the dual tree-depth of A′ is td∗
D(A) and its

entry complexity is O(d222de).

The structural characterization given in [7, 8] exhibits an interesting link to matroid
theory: an equivalent matrix with small dual tree-depth exists if and only if the column
matroid of the matrix, which is invariant under row operations, has small contraction∗-depth
(see Theorem 3 below). We remark that the term branch-depth was used in [7, 8] following
the terminology from [33] but as there is a competing notion of branch-depth [14], we decided
to use a different name for this notion throughout the paper to avoid confusion.

In this paper, we provide a structural characterization of matrices that are equivalent
to a matrix with small primal tree-depth or small incidence tree-depth (Theorems 4 and 5).
We also study corresponding preconditioners and design fixed parameter algorithms for
constructing an equivalent matrix with small primal tree-depth and small entry complexity
and for constructing an equivalent matrix with small dual tree-depth and small entry
complexity, if such a matrix exists (Theorems 7 and 8). Finally, we employ our structural
results to resolve an open problem whether integer programming is fixed-parameter tractable
parameterized by the largest ℓ1-norm of the Graver basis element of a matrix A. Additionally,
we show that the ℓ1-norm of each element of the Graver basis of a matrix A is bounded by a
function of the largest ℓ1-norm of a circuit of the matrix A (Theorem 6). All these results
are stated more precisely in Subsection 1.1.

The existence of appropriate preconditioners that we establish in this paper implies that
integer programming is fixed parameter tractable when parameterized by

g1(A), i.e., the ℓ1-norm of the Graver basis of the constraint matrix,
c1(A), i.e., the ℓ1-norm of the circuits of the constraint matrix,

ICALP 2022



29:4 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

td∗
P (A) and ec(A), i.e., the smallest primal tree-depth and entry complexity of a matrix

equivalent to the constraint matrix, and
td∗

D(A) and ec(A), i.e., the smallest dual tree-depth and entry complexity of a matrix
equivalent to the constraint matrix.

We believe that our new tractability results significantly enhance the toolbox of tractable
IPs as the nature of our tractability conditions substantially differ from prevalent block-
structured sparsity-based tractability conditions. The importance of availability of various
forms of tractable IPs can be witnessed by n-fold IPs, which were shown fixed-parameter
tractable in [22], and, about a decade later, their applications has become ubiquitous, see
e.g. [5, 6, 9, 10,24,28,30,39].

1.1 Our contribution
We now describe the results presented in this paper in detail; we refer the reader for the
definitions of the notions not yet rigorously introduced to Section 2.

1.1.1 Characterization of depth parameters
The main structural result of [7,8] is the following structural characterization of the existence
of an equivalent matrix with small dual tree-depth in terms of the structural parameter of
the column matroid, which is invariant under row operations.

▶ Theorem 3. For every non-zero matrix A, it holds that the smallest dual tree-depth of a
matrix equivalent to A is equal to the contraction∗-depth of M(A), i.e., td∗

D(A) = c*d(A).

We discover structural characterizations of the existence of an equivalent matrix with
small primal tree-depth and the existence of an equivalent matrix with small incidence
tree-depth.

▶ Theorem 4. For every matrix A, it holds that the smallest primal tree-depth of a matrix
equivalent to A is equal to the deletion-depth of M(A), i.e., td∗

P (A) = dd(A).

▶ Theorem 5. For every matrix A, it holds that the smallest incidence tree-depth of a
matrix equivalent to A is equal to contraction∗-deletion-depth of M(A) increased by one, i.e.,
td∗

I(A) = c*dd(A) + 1.

1.1.2 Interplay of circuit and Graver basis complexity
As mentioned earlier, Graver bases play an essential role in designing efficient algorithms
for integer programming. A circuit of a matrix A is a support-wise minimal integral vector
contained in the kernel of A such that all its entries are coprime. Hence, every circuit of a
matrix A is an element of the Graver basis of A and so the maximum ℓ1-norm of an element
of the Graver basis, which is denoted by g1(A), is an upper bound on the maximum ℓ1-norm
of a circuit of A, which is denoted by c1(A).

One of the open problems in the area, e.g. discussed during the Dagstuhl workshop 19041
“New Horizons in Parameterized Complexity”, has been whether integer programming is
fixed parameter tractable when parameterized by g1(A), the ℓ1-norm of an element of the
Graver basis of the constraint matrix A. An affirmative answer to this question follows from
Theorems 6 and 8 below. We actually show that the maximum ℓ1-norm g1(A) of an element
of the Graver basis of a matrix A is small if and only if A is equivalent to a matrix with a
small dual tree-depth and small entry complexity; the implication from left to right is given



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:5

in Theorem 1 and the other implication in Theorem 12 (recall that c1(A) ≤ g1(A) for every
matrix). We summarize the relation between the the maximum ℓ1-norm of a circuit of a
matrix A, the maximum ℓ1-norm of an element of the Graver basis of A, and the existence
of an equivalent matrix with small dual tree-depth and small entry complexity in the next
theorem (the second part of the theorem is given in Corollary 13).

▶ Theorem 6. There exist a function f1 : N → N such that the following holds for every
matrix A with dim kerA > 0:

the matrix A is equivalent to a matrix A′ with tdD(A′) ≤ c1(A)2 and ec(A′) ≤ 2⌈c1(A)⌉,
and
c1(A) ≤ g1(A) ≤ f1(c1(A)).

Hence, informally speaking, the following statements are equivalent for every matrix A:
The matrix A is equivalent to a matrix with bounded dual tree-depth and bounded entry
complexity.
The contraction∗-depth of the matroid M(A) is bounded.
The ℓ1-norm of every circuit of A is bounded.
The ℓ1-norm of every element of the Graver basis of A is bounded.

1.1.3 Algorithms to compute matrices with small depth parameters
We design a parameterized algorithm for computing an equivalent matrix with small primal
tree-depth and small entry complexity if one exists.

▶ Theorem 7. There exists a function f : N2 → N and an FPT algorithm for the para-
meterization by d and e that, for a given rational matrix A with m rows and n columns,
m ≤ n:

either outputs that A is not equivalent to a matrix with primal tree-depth at most d and
entry complexity at most e, or
outputs a matrix A′ that is equivalent to A, its primal tree-depth is at most d and entry
complexity is at most f(d, e).

We also design a parameterized algorithm for computing an equivalent matrix with small
dual tree-depth and small entry complexity if one exists. Note that the algorithm described
in Theorem 2 for computing an equivalent matrix with small dual tree-depth is parameterized
by the dual tree-depth of the to be constructed matrix and the entry complexity of the input
matrix while the algorithm given below is parameterized by the entry complexity of the to
be constructed matrix and so the algorithm can be applied to a wider set of input matrices.

▶ Theorem 8. There exists a function f : N2 → N and an FPT algorithm for the parameter-
ization by d and e that, for a given rational matrix A:

either outputs that A is not equivalent to a matrix with dual tree-depth at most d and
entry complexity at most e, or
outputs a matrix A′ that is equivalent to A, its dual tree-depth is at most d and entry
complexity is at most f(d, e).

We remark that if a matrix A has entry complexity e and is equivalent to a matrix with
dual tree-depth d, then there exists an equivalent matrix with dual tree-depth d and entry
complexity bounded by a function of d and e (as implied by Theorem 2). However, the same
is not true in the case of primal tree-depth. The entry complexity of every matrix with
primal tree-depth equal to one that is equivalent to the following matrix A is linear in the
number of rows of A, quite in a contrast to the case of dual tree-depth.

ICALP 2022



29:6 Characterization of Matrices with Bounded Graver Bases and Depth Parameters



1 2 0 0 · · · 0 0 0 0
0 1 2 0 · · · 0 0 0 0
0 0 1 2 · · · 0 0 0 0
...

...
. . . . . .

...
...

...
...

. . . . . .
...

...
0 0 0 0 · · · 1 2 0 0
0 0 0 0 · · · 0 1 2 0
0 0 0 0 · · · 0 0 1 2


1.1.4 Hardness results
As our algorithmic results involve computing depth decompositions of matroids for various
depth parameters in a parameterized way, we establish the computational hardness of these
parameters in Theorem 18, primarily for the sake of completeness of our exposition. In
particular, computing the following matroid parameters is NP-complete:

deletion-depth,
contraction-depth,
contraction-deletion-depth,
contraction∗-depth, and
contraction∗-deletion-depth.

2 Preliminaries

In this section, we fix the notation used throughout the paper. We start with general notation
and we then fix the notation related to graphs, matrices and matroids.

The set of all positive integers is denoted by N and the set of the first k positive integers
by [k]. If A is a linear space, we write dimA for its dimension and if B is a set of vectors, we
write L (B) for the linear hull of the vectors contained in B. If A is a linear space and K is
a subspace of A, the quotient space A/K is the linear space of the dimension dimA− dimK

that consists of cosets of A given by K with the natural operations of addition and scalar
multiplication; see e.g. [21] for further details. The quotient space A/K can be associated
with a linear subspace of A of dimension dimA− dimK formed by exactly a single vector
from each coset of A given by K; we will often view the quotient space as such a subspace of
A and write w +K for the coset containing a vector w.

2.1 Graphs
All graphs considered in this paper are loopless simple graphs unless stated otherwise. If G is
a graph, then we write V (G) and E(G) for the vertex set and the edge set of G, respectively;
the number of vertices and edges of G is denoted by |G| and ∥G∥, respectively. If W is a
subset of vertices of a graph G, then G \W is the graph obtained by removing the vertices
of W (and all edges incident with them). If F is a subset of edges of a graph G, then G \ F
is the graph obtained by removing the edges contained in F and G/F is the graph obtained
by contracting all edges contained in F and removing resulting loops and parallel edges.

We next define the graph parameter tree-depth, which is the central graph parameter
in this paper. The height of a rooted tree is the maximum number of vertices on a path
from the root to a leaf, and the height of a rooted forest, i.e., a graph whose each component



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:7

is a rooted tree, is the maximum height of its components. The depth of a rooted tree is
the maximum number of edges on a path from the root to a leaf, and the depth of a rooted
forest is the maximum depth of its components. The closure cl(F ) of a rooted forest F is
the graph obtained by adding edges from each vertex to all its descendants. Finally, the
tree-depth td(G) of a graph G is the minimum height of a rooted forest F such that the
closure cl(F ) of the rooted forest F contains G as a subgraph.

2.2 Matroids
We next review basic definitions from matroid theory; for detailed information, we refer to
the book of Oxley [42]. A matroid M is a pair (X, I), where I is a non-empty hereditary
collection of subsets of X that satisfies the augmentation axiom, i.e., if X ′ ∈ I, X ′′ ∈ I and
|X ′| < |X ′′|, then there exists an element x ∈ X ′′ \X ′ such that X ′ ∪ {x} ∈ I. The set X is
the ground set of M and the sets contained in I are referred to as independent. The rank
of a subset X ′ of the ground set X, which is denoted by rM (X ′) or simply by r(X ′) if M
is clear from the context, is the maximum size of an independent subset of X ′ (it can be
shown that all maximal independent subsets of X ′ have the same cardinality); the rank of
the matroid M , which is denoted by r(M), is the rank of its ground set. A basis of a matroid
M is a maximal independent subset of the ground set of M and a circuit is a minimal subset
of the ground set of M that is not independent. In particular, if X ′ is a circuit of M , then
r(X ′) = |X ′| − 1 and every proper subset of X ′ is independent. An element x of a matroid
M is a loop if r({x}) = 0, an element x is a bridge if it is contained in every basis of M , and
two elements x and x′ are parallel if r({x}) = r({x′}) = r({x, x′}) = 1. If M is a matroid
with ground set X, the dual matroid, which is denoted by M∗ is the matroid with the same
ground set X such that X ′ ⊆ X is independent in M∗ if and only if rM (X \X ′) = r(M); in
particular, rM∗(X ′) = rM (X \X ′) + |X ′| − r(M) for every X ′ ⊆ X.

For a field F, we say that a matroid M is F-representable if every element of M can
be assigned a vector from Fr(M) in such a way that a subset of the ground set of M is
independent if and only if the set of assigned vectors is linearly independent. In particular,
an element of M is a loop if and only if it is assigned the zero vector and two elements of M
are parallel if and only if they are assigned non-zero multiples of the same non-zero vector.
Such an assignment of vectors of Fr(M) to the elements of M is an F-representation of M .
Observe that the rank of a subset X ′ of the ground set is the dimension of the linear hull
of the vectors assigned to the elements of X ′. We say that a matroid M is F-represented
if the matroid M is given by its F-representation. If a particular field F is not relevant in
the context, we just say that a matroid M is represented to express that it is given by its
representation.

Let M be a matroid with a ground set X. The matroid kM for k ∈ N is the matroid
obtained from M by introducing k − 1 parallel elements to each non-loop element and
k − 1 additional loops for each loop; informally speaking, every element of M is “cloned”
to k copies. If X ′ ⊆ X, then the restriction of M to X ′, which is denoted by M [X ′], is
the matroid with the ground set X ′ such that a subset of X ′ is independent in M [X ′]
if and only if it is independent in M . In particular, the rank of M [X ′] is rM (X ′). The
matroid obtained from M by deleting X ′ is the restriction of M to X \X ′ and is denoted
by M \X ′. The contraction of M by X ′, which is denoted by M/X ′, is the matroid with
the ground set X \X ′ such that a subset X ′′ of X \X ′ is independent in M/X ′ if and only
if rM (X ′′ ∪X ′) = |X ′′| + rM (X ′). If X ′ is a single element set and e is its only element, we
write M \ e and M/e instead of M \ {e} and M/{e}, respectively. If an F-representation of
M is given and X ′ is a subset of the ground set of M , then an F-representation of M/X ′

ICALP 2022



29:8 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

can be obtained from the F-representation of M by considering it in the quotient space by
the linear hull of the vectors representing the elements of X ′. This leads us to the following
definition: if M is an F-represented matroid and A is a linear subspace of Fr(M), then the
matroid M/A is the F-represented matroid with the representation of M in the quotient
space by A. Note that the ground sets of M and M/A are the same.

A matroid M is connected if every two distinct elements of M are contained in a common
circuit. If M is an F-represented matroid with at least two elements, then M is connected if
and only if M has no loops and there do not exist two non-trivial vector spaces A and B of
Fr(M) such that A ∩B contains the zero vector only and every element of M is contained in
A or B. A component of a matroid M is an inclusion-wise maximal connected restriction of
M ; a component is trivial if it consists of a single loop, and it is non-trivial otherwise. We
often identify components of a matroid M with their element sets. Using this identification,
it holds that a subset X ′ of a ground set of a matroid M is a component of M if and only if
X ′ is a component of M∗. We remark that (M∗)∗ = M for every matroid M , and if e is an
element of a matroid M , then (M/e)∗ = M∗ \ e and (M \ e)∗ = M∗/e.

2.3 Matrices
In this section, we define notation related to matrices. If F is a field, we write Fm×n for the
set of matrices with m rows and n columns over the field F. If A is a rational matrix, the
entry complexity ec(A) is the maximum length of a binary encoding of its entries, i.e., the
maximum of ⌈log2 (|p| + 1)⌉ + ⌈(log2 |q| + 1)⌉ taken over all entries p/q of A (where p and
q are always assumed to be coprime). A rational matrix A is z-integral for z ∈ Q if every
entry of A is an integral multiple of z. We say that two matrices A and A′ are equivalent if
one can be obtained from another by (equivalent) row operations, i.e., adding (a non-zero
multiple of) one row to another and multiplying a row by a non-zero element. Observe that
if A and A′ are equivalent matrices, then their kernels are the same. For a matrix A, we
define M(A) to be the represented matroid whose elements are the columns of A. Again, if
matrices A and A′ are equivalent, then the matroids M(A) and M(A′) are the same.

If A is a matrix, the primal graph of A is the graph whose vertices are columns of A and
two vertices are adjacent if there exists a row having non-zero elements in the two columns
associated with the vertices; the dual graph of A is the graph whose vertices are rows of A
and two vertices are adjacent if there exists a column having non-zero elements in the two
associated rows; the incidence graph of A is the bipartite graph with one part formed by
rows of A and the other part by columns of A and two vertices are adjacent if the entry
in the associated row and in the associated column is non-zero. The primal tree-depth of
A, denoted by tdP (A), is the tree-depth of the primal graph of A, the dual tree-depth of A,
denoted by tdD(A), is the tree-depth of the dual graph of A, and the incidence tree-depth
of A, denoted by tdI(A), is the tree-depth of the incidence graph of A. Finally, td∗

P (A)
is the smallest primal tree-depth of a matrix equivalent to A, td∗

D(A) is the smallest dual
tree-depth of a matrix equivalent to A, and td∗

I(A) is the smallest incidence tree-depth of a
matrix equivalent to A.

A circuit of a rational matrix A is a support-wise minimal integral vector contained in
the kernel of A such that all its entries are coprime; the set of circuits of A is denoted by
C(A). Note that a set X of columns is a circuit in the matroid M(A) if and only if C(A)
contains a vector with the support exactly equal to X. We write c1(A) for the maximum
ℓ1-norm of a circuit of A and c∞(A) for the maximum ℓ∞-norm of a circuit of A. Note if A
and A′ are equivalent rational matrices, then C(A) = C(A′) and so the parameters c1(·) and
c∞(·) are invariant under row operations. Following the notation from [17], we write κ̇A for
the least common multiple of the entries of the circuits of A. Observe that there exists a
function f : N → N such that κ̇A ≤ f(c∞(A)) for every matrix A.



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:9

If x and y are two d-dimensional vectors, we write x ⊑ y if |xi| ≤ |yi| for all i ∈ [d] and
x and y are in the same orthant, i.e., xi and yi have the same sign (or they both are zero)
for all i ∈ [d]. The Graver basis of a matrix A, denoted by G(A), is the set of the ⊑-minimal
non-zero elements of the integer kernel kerZ(A). We use g1(A) and g∞(A) for the Graver
basis of A analogously to the set of circuits, i.e., g1(A) is the maximum ℓ1-norm of a vector
in G(A) and g∞(A) is the maximum ℓ∞-norm of a vector in G(A). Again, the parameters
g1(·) and g∞(·) are invariant under row operations as the Graver bases of equivalent matrices
are the same. Note that every circuit of a matrix A belongs to the Graver basis of A, i.e.,
C(A) ⊆ G(A), and so it holds that c1(A) ≤ g1(A) and c∞(A) ≤ g∞(A) for every matrix A.

2.4 Matroid depth parameters
We now define matroid depth parameters that will be of importance further. We start with
the notion of deletion-depth and contraction-depth, which were introduced in [14].

The deletion-depth of a matroid M , denoted by dd(M), is defined recursively as follows.
If M has a single element, then dd(M) = 1. If M is not connected, then dd(M) is the
maximum deletion-depth of a component of M . Otherwise, dd(M) is 1 plus the minimum
deletion-depth of M \ e where the minimum is taken over all elements e of M .

The sequence of deletions of elements witnessing that the deletion-depth of a matroid M is
dd(M) can be visualized by a rooted tree, which we call a deletion-decomposition tree, defined
as follows. If M has a single element, then the deletion-decomposition tree of M consists of a
single vertex labeled with the single element of M . If M is not connected, then the deletion-
decomposition tree is obtained by identifying the roots of deletion-decomposition trees of the
components of M . Otherwise, there exists an element e such that dd(M) = dd(M \ e) + 1
and the deletion-decomposition tree of M is obtained from the deletion-decomposition tree
of M \ e by adding a new vertex adjacent to the root of the deletion-decomposition tree of
M \ e, changing the root of the tree to the newly added vertex and labeling the edge incident
with it with the element e. Observe that the height of the deletion-decomposition tree is
equal to the deletion-depth of M . In what follows, we consider deletion-decomposition trees
that need not to be of optimal height, i.e., its edges can be labeled by a sequence of elements
that decomposes a matroid M in a way described in the definition of the deletion-depth but
its height is larger than dd(M). In this more general setting, the deletion-depth of a matroid
M is the smallest height of a deletion-decomposition tree of M .

The contraction-depth of a matroid M , denoted by cd(M), is defined recursively as
follows. If M has a single element, then cd(M) = 1. If M is not connected, then cd(M)
is the maximum contraction-depth of a component of M . Otherwise, cd(M) is 1 plus the
minimum contraction-depth of M/e where the minimum is taken over all elements e of M .
It is not hard to show that dd(M) = cd(M∗) and cd(M) = dd(M∗) for every matroid M .
We define a contraction-decomposition tree analogously to a deletion-decomposition tree; the
contraction-depth of a matroid M is the smallest height of a contraction-decomposition tree
of M .

We next introduce the contraction-deletion-depth, which was studied under the name
of type in [15], but we decided to use the name from [14], which we find to describe the
parameter in the context considered here better. The contraction-deletion-depth of matroid
M , denoted by cdd(M), is defined recursively as follows. If M has a single element, then
cdd(M) = 1. If M is not connected, then cdd(M) is the maximum contraction-deletion-
depth of a component of M . Otherwise, cdd(M) is 1 plus the smaller among the minimum
contraction-deletion-depth of the matroid M \ e and the minimum contraction-deletion-depth
of the matroid M/e where both minima are taken over all elements e of M . Clearly, it holds
that cdd(M) = cdd(M∗), cdd(M) ≤ dd(M) and cdd(M) ≤ cd(M) for every matroid M .

ICALP 2022



29:10 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

One of the key parameters in our setting is that of contraction∗-depth; this parameter was
introduced under the name branch-depth in [33] and further studied in [8] but we decided to
use a different name to avoid a possible confusion with the notion of branch-depth introduced
in [14]. A contraction∗-depth of a matroid M , denoted by c*d(M), is the smallest depth of a
rooted tree T with exactly r(M) edges with the following property: there exists a function
f from the ground set of M to the leaves of T such that for every subset X of the ground
set of M the total number of edges contained in paths from the root to vertices of X is at
least r(X). There is an alternative equivalent definition of the parameter for represented
matroids. The contraction∗-depth of a represented matroid M can be defined recursively
as follows. If M has rank zero, then c*d(M) = 0. If M is not connected, then c*d(M) is
the maximum contraction∗-depth of a component of M . Otherwise, c*d(M) is 1 plus the
minimum contraction∗-depth of a matroid obtained from the matroid M by factoring along
an arbitrary one-dimensional subspace. As the contraction in the definition is allowed to be
by an arbitrary one-dimensional subspace, not only by a subspace generated by an element
of M , it follows that c*d(M) ≤ cd(M).

Kardoš et al. [33] established the connection between the contraction∗-depth and the
existence of a long circuit, which is described in Theorem 9.

▶ Theorem 9. Let M be a matroid and k the size of its largest circuit. It holds that
log2 k ≤ c*d(M) ≤ k2. Moreover, there exists a polynomial-time algorithm that for an input
oracle-given matroid M outputs a contraction∗-decomposition tree of depth at most k2.

All contractions used in the proof of the inequality c*d(M) ≤ k2 are contractions of
elements of a matroid M , i.e., the one-dimensional subspaces as in the definition of the
contraction∗-depth are all generated by elements of M . We remark that this implies that
cd(M) ≤ k2 + 1. The sequence of such contractions can be visualized by a contraction∗-
decomposition tree that is defined in the same way as a contraction-decomposition tree
except that one-vertex trees are associated with matroids of rank zero (rather than matroids
consisting of a single element), however, the edges of the tree are still labeled by some of
the elements of M . Note that the minimum depth of a contraction∗-decomposition tree of a
matroid M is an upper bound on its contraction∗-depth, however, in general, the contraction∗-
depth of a matroid M can be smaller than the minimum depth of contraction∗-decomposition
tree of M as the definition of the contraction∗-depth in the case of represented matroids
permits contractions by arbitrary one-dimensional subspaces.

We next introduce the parameter of contraction∗-deletion-depth, which we believe to
have not been yet studied previously, but which is particularly relevant in our context. To
avoid unnecessary technical issues, we introduce the parameter for represented matroids
only. The contraction∗-deletion-depth of a represented matroid M , denoted by c*dd(M), is
defined recursively as follows. If M has rank zero, then c*dd(M) = 0; if M has a single
non-loop element, then c*dd(M) = 1. If M is not connected, then c*dd(M) is the maximum
contraction∗-deletion-depth of a component of M . Otherwise, c*dd(M) is 1 plus the smaller
among the minimum contraction∗-deletion-depth of the matroid M \ e, where the minimum
is taken over all elements of M , and the minimum contraction∗-deletion-depth of a matroid
obtained from M by factoring along an arbitrary one-dimensional subspace. Observe that
c*dd(M) ≤ cdd(M) and c*dd(M) ≤ c*d(M) for every matroid M .

Finally, if A is a matrix, the deletion-depth, contraction-depth, etc. of A is the correspond-
ing parameter of the vector matroid M(A) formed by the columns of A, and we write dd(A),
cd(A), etc. for the deletion-depth, contraction-depth, etc. of the matrix A. Observe that the
deletion-depth, contraction-depth etc. of a matrix A is invariant under row operations as
row operations preserve the matroid M(A).



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:11

3 Structural results

In this section, we prove our structural results concerning optimal primal tree-depth and
optimal incidence tree-depth of a matrix. We start with presenting an algorithm, which uses
a deletion-decomposition tree of the matroid associated with a given matrix to construct a
matrix with small primal tree-depth that is equivalent to the given matrix.

▶ Lemma 10. There exists a polynomial-time algorithm that for an input matrix A and a
deletion-decomposition tree of M(A) with height d outputs a matrix A′ equivalent to A such
that tdP (A′) ≤ d.

Proof. We establish the existence of the algorithm by proving that tdP (A′) ≤ d in a
constructive (algorithmic) way. Due to space constraints, we omit some details in the
arguments that follow.

Fix a matrix A and a deletion-decomposition tree T of M(A) with height d. Let X be
the set of non-zero columns that are labels of the vertices of T . It can be shown that the
columns contained in X form a basis of the column space of the matrix A. In particular,
unless A is the zero matrix, the set X is non-empty. Let A′ be the matrix obtained from A

by row operations such that the submatrix of A′ induced by the columns of X is the unit
matrix with possibly some additional zero rows. We will prove by induction on the number
of columns of an input matrix A that the primal tree-depth of A′ is at most d.

The base of the induction is the case when A has a single column. In this case, the primal
tree-depth of A′ is one and the tree T is a single vertex labeled with the only column of A,
and so its height is one.

We next present the induction step. First observe that every label of a vertex of T is
either in X or a loop in M(A), and every label of an edge e is a linear combination of labels
of the vertices in the subtree delimited by e. It follows that if x is a label of the root of
T , then x is either a loop or a bridge in the matroid M(A). Let B be the matrix obtained
from A by deleting the column x, and let T ′ be the deletion-decomposition tree of M(B)
obtained from T by removing the label x from the root. Since the matrix B′ produced by
the algorithm described above for B and T ′ is the submatrix of A′ formed by the columns
different from x (possibly after permuting rows) and the vertex associated with the column
x is isolated in the primal graph of A′, it follows that tdP (A′) = tdP (B′) ≤ d (the inequality
holds by the induction hypothesis). Hence, we can assume that the root of T has no label.

We now analyze the case that the root of T has a single child and no label. Let x be the
label of the single edge incident with the root of T , and let B′ be the matrix obtained from
A′ by deleting the column x. By induction, the primal tree-depth of B′ is at most d − 1,
which implies that the primal tree-depth of A′ is at most tdP (B′) + 1 = d.

The final case to analyze is the case when the root of T has k ≥ 2 children (in addition to
having no label). Let Y1, . . . , Yk be the labels of the vertices and edges of the k subtrees of T
delimited by the k edges incident with the root of T , and let B1, . . . , Bk be the submatrices
of A formed by the columns contained in Y1, . . . , Yk. Since the support of the columns
contained in Yi contains only the unit entries of the columns of A′ contained in X ∩ Yi, the
primal graph of A′ contains no edge joining a column of Yi and a column of Yj for i ≠ j. It
follows that the primal tree-depth of A′ is at most the maximum primal tree-depth of Bi,
which is at most d by the induction hypothesis. It follows that tdP (A′) ≤ d as desired. ◀

We are now ready to establish the link between the optimal primal tree-depth of a matrix
and the deletion-depth of the matroid associated with the matrix. Due to space constraints,
the proof of Theorem 4 is sketched only.

ICALP 2022



29:12 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

Sketch of the proof of Theorem 4. Fix a matrix A. By Lemma 10, it holds that td∗
P (A) ≤

dd(A). So, we focus on proving that dd(A) ≤ td∗
P (A). We will show that every matrix B

satisfies that dd(B) ≤ tdP (B), which implies that dd(A) ≤ td∗
P (A).

The proof that dd(B) ≤ tdP (B) proceeds by induction on the number of columns. If B
has a single column, then both dd(B) and tdP (B) are equal to one. We next present the
induction step. If the matroid M(B) is not connected, we apply induction to each of its
components and derive that each component of M(B) has deletion depth at most tdP (B).
This implies that dd(B) ≤ tdP (B).

We next assume that the matroid M(B) is connected. It can be shown that the primal
graph of B is also connected, which yields that there exists a column such that the matrix
B′ obtained by deleting this column satisfies that tdP (B′) = tdP (B) − 1. The induction
assumption yields that dd(B′) ≤ tdP (B) − 1 and the definition of the deletion-depth yields
that the deletion-depth of M(B) is at most the deletion-depth of M(B′) increased by one.
This implies that dd(B) = dd(M(B)) ≤ tdP (B) as desired. ◀

Before proceeding with our structural result concerning incidence tree-depth, we use the
structural results presented in Lemma 10 and Theorem 4 to get a parameterized algorithm
for computing an optimal primal tree-depth of a matrix over a finite field. Due to space
constraints, several steps of the proof of Corollary 11 are sketched only.

▶ Corollary 11. There exists an FPT algorithm for the parameterization by a finite field F
and an integer d that for an input matrix A over the field F,

either outputs that td∗
P (A) > d, or

computes a matrix A′ equivalent to A with tdP (A′) ≤ d and also outputs the associated
deletion-decomposition tree of M(A) with height tdP (A′).

Proof. The property that a matroid M has deletion depth at most d can be expressed in
monadic second order logic. Specifically, there exists a monadic second order formula ψd(X)
that describes whether the deletion-depth of a restriction of the matroid M to a subset X
of the elements of M is at most d. In the formula that we present, small letters are used
to denote elements of a matroid and capital letters subsets of the elements. Assuming that
ψc(x, y) is a monadic second order formula describing the existence of a circuit containing
two elements x and y and ψC(X) is a monadic second order formula describing whether a
subset X is a component of a matroid, The sought formula ψd(·) is defined inductively (note
that ψd(∅) is true for all d):

ψ1(X) ≡ ∀x, y ∈ X : x ̸= y ⇒ ¬ψc(x, y) and
ψd(X) ≡ ∀X ′ ⊆ X : ψC(X ′) ⇒ ∃x ∈ X ′ : ψd−1(X ′ \ {x}) for d ≥ 2.

Hliněný [25, 26] proved that all monadic second order logic properties can be tested in a
fixed parameter way for matroids represented over a finite field F with branch-width at
most d when parameterized by the property, the field F and the branch-width d. Since the
branch-width of a matroid M is at most its deletion-depth, this establishes the existence of a
fixed parameter algorithm deciding whether td∗

P (A) = dd(M(A)) ≤ d (the equality follows
from Theorem 4).

To obtain the algorithm claimed to exist in the statement of the corollary, we need
to extend the algorithm for testing whether the deletion-depth of an input matroid M

represented over F is at most d to an algorithm that also outputs a deletion-decomposition
tree of M with height at most d. The deletion-depth of an input matroid M is one if and
only if every element of M is a loop or a bridge. Hence, if the deletion-depth of M is d = 1,
then the deletion-depth decomposition tree of height one consists of a single vertex labeled



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:13

with all elements of M . If the deletion-depth of M is at most d ≥ 2 and M is not connected,
we first identify its components, which can be done in polynomial time even in the oracle
model, then proceed recursively with each component of M and eventually merge the roots
of all deletion-depth decomposition trees obtained recursively. Finally, if the deletion-depth
of M is at most d ≥ 2 and M is connected, we loop over all elements e of M and test whether
dd(M \ e) ≤ d− 1. Such an element e must exist and when it is found, we recursively apply
the algorithm to M \ e to obtain a deletion-depth decomposition tree T of M \ e with height
d− 1, which is then extended to a deletion-depth decomposition tree of M of height d. ◀

We conclude this section by establishing a link between the optimal incidence tree-depth
and the contraction∗-deletion-depth of the matroid associated with the matrix. Due to space
constraints, the proof of Theorem 5 is sketched only.

Proof of Theorem 5. We prove the equality as two inequalities starting with the inequality
c*dd(A) ≤ td∗

I(A) − 1. To prove this inequality, we show that c*dd(A) ≤ tdI(A) − 1 holds for
every matrix A with m rows and n columns by induction on m+n. The base of the induction
is formed by the cases when all entries of A are zero, n = 1 or m = 1. We focus on describing
the induction step, which considers the case when A is non-zero, m ≥ 2 and n ≥ 2. First
suppose that the matroid M(A) is not connected. Let X1, . . . , Xk be the component of M(A)
and let A1, . . . , Ak be the submatrices of A formed by the columns X1, . . . , Xk, respectively.
The definition of the contraction∗-deletion-depth implies that c*dd(A) is the maximum of
c*dd(Ai). The induction hypothesis yields that c*dd(Ai) ≤ tdI(Ai) − 1. Since the incidence
graph of Ai is a subgraph of the incidence graph of A, it follows that tdI(Ai) ≤ tdI(A) and
so c*dd(Ai) ≤ tdI(A) − 1. We conclude that c*dd(A) ≤ tdI(A) − 1.

The core of the inductive argument showing that c*dd(A) ≤ tdI(A) − 1 is formed by the
case when the matroid M(A) is connected and the incidence graph of A is also connected.
The definition of the tree-depth implies that there exists a vertex w of the incidence graph
whose deletion decreases the tree-depth of the incidence graph by one. Let A′ be the matrix
obtained from A by deleting the row or the column associated with the vertex w and note
that tdI(A) = tdI(A′) + 1. If the vertex w is associated with a column x, the matroid M(A′)
is the matroid obtained from M(A) by deleting the element x. If the vertex w is associated
with a row x, the matroid M(A′) is the matroid obtained from M(A) by contracting by
the subspace generated by the unit vector with the entry in the row x. In either case,
the definition of the contraction∗-deletion-depth implies that c*dd(A) ≤ c*dd(A′) + 1. The
induction hypothesis applied to A′ yields that c*dd(A′) ≤ tdI(A′) − 1, which yields that
c*dd(A) ≤ tdI(A′) = tdI(A) − 1.

To complete the proof of the theorem, it remains to show that the inequality td∗
I(A) ≤

c*dd(A) + 1 holds for every matrix A. The proof proceeds by induction on the number n of
columns of A. The core of the argument is the inductive step when the matroid M(A) is
connected, which we present next. The definition of the contraction∗-deletion-depth implies
that there exists an element x of M(A) such that c*dd(M(A)\x) = c*dd(M(A))−1 = c*dd(A)−
1 or there exists a one-dimensional subspace such that the contraction by this subspace yields
a matroid M ′ such that c*dd(M ′) = c*dd(M(A)) − 1 = c*dd(A) − 1. In the former case, let
A′ be the matrix obtained from A by deleting the column x. By the induction hypothesis,
there exists a matrix A′′ equivalent to A′ such that tdI(A′′) ≤ c*dd(A′) + 1 = c*dd(A), and
let A′′′ be the matrix obtained from A by the same row operations using that A′′ is obtained
from A′. Observe that the incidence graph of A′′ can be obtained from the incidence graph
of A′′′ by deleting the vertex associated with the column x. Hence, tdI(A′′′) ≤ tdI(A′′) + 1.
Since A′′′ is equivalent to A, it follows that

td∗
I(A) ≤ tdI(A′′′) ≤ tdI(A′′) + 1 ≤ c*dd(A) + 1.

ICALP 2022



29:14 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

We now analyze the latter case, i.e., the case that there exists a one-dimensional subspace
such that the contraction by this subspace yields a matroid M ′ such that c*dd(M ′) =
c*dd(A) − 1. Let A′ be the matrix obtained from A by row operations such that the
contracted subspace used to obtain M ′ is generated by the unit vector with the non-zero
entry being the first entry, and let B be the matrix obtained from A′ by deleting the first
row. By the induction hypothesis, there exists a matrix B′ equivalent to B such that
tdI(B′) ≤ c*dd(A′) + 1 = c*dd(A), and let A′′ be the matrix consisting of the first row of A
and the matrix B′. Observe that A′′ is equivalent to A. Since the incidence graph of B′ can
be obtained from the incidence graph of A′′ by deleting the vertex associated with the first
row, it holds that tdI(A′′) ≤ tdI(B′) + 1. Hence, it follows that

td∗
I(A) ≤ tdI(A′′) ≤ tdI(B′) + 1 ≤ c*dd(A) + 1.

The proof of the theorem is now completed. ◀

4 Primal tree-depth

In this section, we present a parameterized algorithm for computing an equivalent matrix
with small primal tree-depth and bounded entry complexity if such a matrix exists. Due to
space constraints, details of some of the arguments used in the proof are omitted.

Proof of Theorem 7. Let fP (·, ·) be the function from the statement of Theorem 1 and set
κ0 to be the least common multiple of the integers 1, . . . , fP (d, e). Observe that the entry of
every circuit of a matrix B with tdP (B) ≤ d and ec(B) ≤ e divides κ0 as c∞(B) ≤ fP (d, e).

We next describe the algorithm from the statement of the theorem. Without loss of
generality, we can assume that the rank of the input matrix A is equal to the number of its
rows, in particular, A is non-zero. The algorithm starts with diagonalizing the input matrix
A by selecting an arbitrary basis of the column space and performing row-operations that
the selected columns form the identity matrix. The resulting matrix is denoted by AI . If
the numerator or the denominator of any (non-zero) entry of AI does not divide κ0, the
algorithm arrives at the first conclusion of the theorem. The algorithm next multiplies each
row of AI by κ0, This yields an integral matrix A0 with entries between −κ2

0 and κ2
0.

Let MQ be the column matroid of A0 when viewed as a matrix over rationals and let Mp

be the column matroid of A0 when viewed as a matrix over a field Fp for a prime p > κ2
0;

note that such a prime p can be found algorithmically as the algorithm is parameterized by
d and e. The elements of both matroids MQ and Mp are the columns of the matrix A0, i.e.,
we can assume that their ground sets are the same.

We argue that if A is equivalent to a matrix with primal tree-depth at most d and entry
complexity at most e, then the matroids MQ and Mp are the same. As this is the key step in
the proof, we present it in full detail. If a set X of columns forms a circuit in MQ, then there
exists a linear combination of the columns of X that has all coefficients integral and coprime,
i.e., not all are divisible by p, and that is equal to the zero vector (in fact, there exist such
coefficients that they all divide κ0 by the definition of κ0); it follows that the set X is also
dependent in Mp. If a set X of columns is independent in MQ, let BI be a square submatrix
of AI formed by the columns X and some of the rows such that BI is non-singular, and let
B0 be the square submatrix of A0 formed by the same rows and columns. By [17, Lemma
3.3], the matrix B−1

I is 1/κ̇A-integral and the absolute values of its entries are between
1/c∞(A) and c∞(A). Note that both c∞(A) and κ̇A divide κ0 (here, we use the definition of
κ0 and the assumption that A is equivalent to a matrix with primal tree-depth at most d and
entry complexity at most e) and so this the matrix B−1

I is 1/κ0-integral and the absolute
values of its entries are between 1/κ0 and κ0. Let B′ be the matrix obtained from B−1

I by



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:15

multiplying each entry by κ0; note that B′ is an integer matrix with entries between −κ2
0

and κ2
0. The definitions of the matrices BI , B0 and B′ yield that B′B0 is a diagonal matrix

with all diagonal entries equal to κ2
0. It follows that the columns X form a set independent

in Mp.
We now continue the description of the algorithm. As the next step, we apply the

algorithm from Corollary 11 to the matrix A0 viewed as over the field Fp. If the algorithm
determines that the deletion-depth of A0 is larger than d, we arrive at the first conclusion of
the theorem. If it determines that the deletion-depth of A0 is at most d, it also outputs a
deletion-decomposition tree of Mp with height at most d. If the output deletion-decomposition
tree is not valid for the matroid MQ, we again arrive at the first conclusion of the theorem.
If the output deletion-decomposition tree is also a deletion-decomposition tree of the matroid
MQ, we use the algorithm from Lemma 10 to obtain a matrix A′ equivalent to A such
that the primal tree-depth of A′ at most the height of the deletion-decomposition tree, i.e.,
tdP (A′) ≤ d. As the matrix A′ contains a unit submatrix formed by m rows and m columns,
each (non-zero) entry of A′ is a fraction that can obtained by dividing two entries of a circuit
of A. If the absolute value of the numerator or the denominator of any these fractions exceeds
κ0, we again arrive at the first conclusion of the theorem. Otherwise, we output the matrix
A′. Note that the primal tree-depth of A′ is at most d and its entry complexity is at most
2 ⌈log2 (κ0 + 1)⌉ and κ0 depends on d and e only. ◀

5 Dual tree-depth, circuit complexity and Graver basis

In this section, we link minimum dual tree-depth of a matrix to its circuit complexity. Due
to space constraints, details of some of the arguments used in the proof are omitted.

▶ Theorem 12. There exists a polynomial-time algorithm that for a given matrix A whose
rank is smaller than the number of its columns outputs an equivalent matrix A′ such that
tdD(A′) ≤ c1(A)2 and ec(A′) ≤ 2 ⌈log2 c1(A)⌉.

Proof. We start with the description of the algorithm from the statement of the theorem.
Let A be the input matrix. We apply the algorithm from Theorem 9 to the matroid M(A)
given by the columns of the matrix A. Let T be the contraction∗-decomposition tree output
by the algorithm, let d be its depth and let X be the set of columns of A that are the labels
of the edges of T , i.e., the elements of M(A) used in the contractions. Since the columns
contained in X form a base of the column space of A, we can perform row-operations on the
matrix A in a way that the submatrix formed by the columns of X is an identity matrix; let
A′ be the resulting matrix. The algorithm outputs the matrix A′.

We now analyze the matrix A′ that is output by the algorithm. Since the rank of A
is smaller than the number of its columns, the matrix A has at least one circuit and so
c1(A) ≥ 2. Observe that every circuit of M(A) contains at most c1(A) elements and so
it holds that d ≤ c1(A)2, i.e., the depth of T is at most c1(A)2. Let F be a rooted forest
obtained from T by removing the root and for each edge e, associating the vertex of e farther
from the root of T with the (unique) row of A′ that is non-zero in the column that is the
label of e. Hence, the vertex set of F is formed by the rows of A′. Since it can be shown
that the dual graph of A′ is a subgraph of cl(F ), it follows that that tdD(A′) ≤ c1(A)2 (note
that the height of F is at most c1(A)2).

It remains to analyze the entry complexity of A′. The entries of A′ in the columns of
X are zero or one. Every column z of A′ that is not contained in X forms a circuit with
some of the columns of X. The entries of A′ in the column z are equal to −cx/cz where cx,
x ∈ X, and cz are the corresponding integer entries of this circuit of A′ (and so of A). We
conclude that the entry complexity of A′ is at most 2 ⌈log2 c1(A)⌉. ◀

ICALP 2022



29:16 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

Theorem 12 implies that g1(A) ≤ fD

(
c1(A)2, 2 ⌈log2 c1(A)⌉

)
for every matrix A with

C(A) ̸= ∅, where fD is the function from Theorem 1. Note that the condition C(A) ̸= ∅ is
necessary as otherwise A has no circuit and so c1(A) is not defined. We state this bound as
a corollary.

▶ Corollary 13. There exists a function f : N → N such that g1(A) ≤ f(c1(A)) for every
matrix A with C(A) ̸= ∅.

We next combine the algorithms from Theorems 2 and 12.

▶ Corollary 14. There exists a function f : N → N and an FPT algorithm for the paramet-
erization by k that for a given rational matrix A:

either outputs that c1(A) > k, or
outputs a matrix A′ that is equivalent to A, its dual tree-depth is td∗

D(A) and its entry
complexity is at most f(k).

Proof of Corollary14. For an input matrix A, we apply the algorithm from Theorem 12
to get a matrix A′ equivalent to A. If the dual tree-depth of A′ is larger than k2 or the
entry complexity of A′ is larger than 2⌈log2 k⌉, then c1(A) > k and we arrive at the first
conclusion. Otherwise, we apply the algorithm from Theorem 2 with parameters d = k2

and e = 2⌈log2 k⌉ to compute a matrix A′′ equivalent to A′ and so to A such that the dual
tree-depth of A′′ is td∗

D(A) and the entry complexity of A′′ is O(k422k2 log k). ◀

Finally, the previous corollary together with Theorem 1 yields the parameterized algorithm
for testing whether an input matrix is equivalent to a matrix with small dual tree-depth and
small entry complexity as given in Theorem 8.

Proof of Theorem 8. Let fD be the function from the statement of Theorem 1 and set
k = fD(d, e). Apply the algorithm from Corollary 14 with the parameter k to an input
matrix A. If the algorithm reports that c1(A) > k, then A is not equivalent to a matrix with
dual tree-depth at most d and entry complexity at most e. If the algorithm outputs a matrix
A′ and tdD(A′) > d, then td∗

D(A) > d and so the matrix A is not equivalent to a matrix
with dual tree-depth at most d. Otherwise, the dual tree-depth of A′ is at most d and its
entry complexity is 2O(k2) = 2O(fD(d,e)2), i.e., it is bounded by a function of d and e only as
required. ◀

6 Computational hardness of depth parameters

In this section, we complement our algorithmic results by establishing computational hardness
of matroid depth parameters that we discussed in this paper. The hardness results apply
even when the input matroid is given by its representation over a fixed (finite or infinite)
field.

We start with defining a matroid MF(G) derived from a graph G. Fix a field F. For a
graph G, we define an F-represented matroid MF(G) as follows. The matroid MF(G) contains
|G| + ∥G∥ elements, which correspond to the vertices and the edges of G. We next associate
each element of MF(G) with a vector of FV (G). An element of MF(G) corresponding to a
vertex w of G is represented by ew and an element of MF(G) corresponding to an edge ww′

of G is represented by ew − ew′ .
We next define a graph G/A for a graph G and a linear subspace A of FV (G). Let W be

the subset of vertices of V (G) such that ew ∈ A for w ∈ W , and let F be a maximal subset
of edges ww′ ∈ E(G) such that



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:17

A contains a vector ew + αew′ for a non-zero element α ∈ F, and
the set containing all vectors ew, w ∈ W , and all vectors ew − ew′ , ww′ ∈ F , is linearly
independent.

The graph G/A is obtained by deleting all vertices of W and then contracting all edges
contained in F . The next lemma asserts that G/A is well-defined. We remark that the proof
of the next lemma as well as the proofs of Lemmas 16 and 17 are omitted due to space
constraints.

▶ Lemma 15. Let G be a graph, F a field and A a linear subspace of FV (G). The graph
G/A is well-defined, i.e., the graph G/A does not depend on the choice of the set F in its
definition.

The next lemma relates the number of components of the matroid MF(G)/A and the
number of components of the graph G/A for a graph G and a linear subspace A of FV (G).

▶ Lemma 16. Let G be a graph, F a field and A a linear subspace of FV (G). The number of
components of MF(G)/A is at most the number of components of the graph G/A.

We next link the existence of a balanced independent set in a bipartite graph to the
contraction∗-depth of a suitably defined matroid. We remark that the idea of using a bipartite
graph with cliques added between the vertices of its parts was used in [43] to establish that
computing tree-depth of a graph is NP-complete.

▶ Lemma 17. Let G be a bipartite graph with parts X and Y , let F be a field, and let k be
an integer. Let G′ be the graph obtained from G by adding all edges between the vertices of
X and between the vertices of Y . The following three statements are equivalent.

There exists an independent set containing k elements of X and k elements of Y .
The contraction∗-depth of MF(G′) is at most |X| + |Y | − k.
The contraction-depth of the matroid 2MF(G′) is at most |X| + |Y | − k + 1.

We are now ready to state and prove our hardness result.

▶ Theorem 18. For every field F, each of the following five decision problems, whose input
is an F-represented matroid M and an integer d, is NP-complete:

Is the contraction-depth of M at most d?
Is the contraction∗-depth of M at most d?
Is the contraction-deletion-depth of M at most d?
Is the contraction∗-deletion-depth of M at most d?
Is the deletion-depth of M at most d?

Proof. It is NP-complete to decide for a bipartite graph G with parts X and Y and an
integer k whether there exist k-element subsets X ′ ⊆ X and Y ′ ⊆ Y such that X ′ ∪ Y ′ is
independent [43]. For an input bipartite graph G, let G′ be the graph obtained from G by
adding all edges between the vertices of X and between the vertices of Y . We claim that the
existence of such subsets X ′ and Y ′ is equivalent to each of the following four statements:

The matroid 2MF(G′) has contraction-depth at most |X| + |Y | − k + 1.
The matroid MF(G′) has contraction∗-depth at most |X| + |Y | − k.
The matroid (|G′| + 1)MF(G′) has contraction-deletion-depth at most |X| + |Y | − k + 1.
The matroid (|G′| + 1)MF(G′) has contraction∗-deletion-depth at most |X| + |Y | − k.

ICALP 2022



29:18 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

The equivalence of the first and second statements follow directly from Lemma 17. Since
the rank of the matroid (|G′| + 1)MF(G′) is |G′|, its contraction-deletion-depth is at most
|G′| + 1 and its contraction∗-deletion-depth is at most |G′|. As each element of the matroid
(|G′| + 1)MF(G′) is parallel to (at least) |G′| elements of the matroid, it follows that the
contraction-deletion-depth of MF(G′) is the same as its contraction-depth and its contraction∗-
deletion-depth is the same as its contraction∗-depth. Lemma 17 now implies the equivalence of
the third and fourth statements. As the matroids 2MF(G′), MF(G′) and (|G′|+1)MF(G′) can
be easily constructed from the input graph G in time polynomial in |G|, the NP-completeness
of the first four problems listed in the statement of the theorem follows.

For an F-represented matroid M , it is easy to construct an F-represented matroid M∗

that is dual to M in time polynomial in the number of the elements of M [42, Chapter 2].
Since the contraction-depth of M is equal to the deletion-depth of M∗, it follows that the
fifth problem listed in the statement of the theorem is also NP-complete. ◀

References
1 Matthias Aschenbrenner and Raymond Hemmecke. Finiteness theorems in stochastic integer

programming. Foundations of Computational Mathematics, 7(2):183–227, 2007.
2 Cevdet Aykanat, Ali Pinar, and Ümit V. Çatalyürek. Permuting sparse rectangular matrices

into block-diagonal form. SIAM Journal on Scientific Computing, 25(6):1860–1879, 2004.
3 Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Furini, Marco E Lübbecke, Enrico

Malaguti, and Emiliano Traversi. Automatic Dantzig–Wolfe reformulation of mixed integer
programs. Mathematical Programming, 149(1-2):391–424, 2015.

4 Ralf Borndörfer, Carlos E Ferreira, and Alexander Martin. Decomposing matrices into blocks.
SIAM Journal on Optimization, 9(1):236–269, 1998.

5 Robert Bredereck, Aleksander Figiel, Andrzej Kaczmarczyk, Dušan Knop, and Rolf Nie-
dermeier. High-multiplicity fair allocation made more practical. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems, pages 260–268.
International Foundation for Autonomous Agents and Multiagent Systems, 2021.

6 Robert Bredereck, Andrzej Kaczmarczyk, Dušan Knop, and Rolf Niedermeier. High-multiplicity
fair allocation: Lenstra empowered by n-fold integer programming. In Proceedings of the 20th
ACM Conference on Economics and Computation, pages 505–523. Association for Computing
Machinery, 2019.

7 Timothy F. N. Chan, Jacob W. Cooper, Martin Koutecký, Daniel Král’, and Kristýna
Pekárková. Matrices of optimal tree-depth and row-invariant parameterized algorithm for
integer programming. To appear in SIAM Journal on Computing.

8 Timothy F. N. Chan, Jacob W. Cooper, Martin Koutecký, Daniel Král’, and Kristýna
Pekárková. Matrices of optimal tree-depth and row-invariant parameterized algorithm for
integer programming. In 47th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), volume 168 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 26:1–26:19, 2020.

9 Hua Chen, Lin Chen, and Guochuan Zhang. Fpt algorithms for a special block-structured
integer program with applications in scheduling. preprint arXiv:2107.01373, 2021.

10 Lin Chen and Dániel Marx. Covering a tree with rooted subtrees–parameterized and approx-
imation algorithms. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2801–2820. SIAM, 2018.

11 Jana Cslovjecsek, Friedrich Eisenbrand, Christoph Hunkenschröder, Lars Rohwedder, and
Robert Weismantel. Block-structured integer and linear programming in strongly polynomial
and near linear time. In 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1666–1681. SIAM, 2021.



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:19

12 Jana Cslovjecsek, Friedrich Eisenbrand, Michal Pilipczuk, Moritz Venzin, and Robert Weisman-
tel. Efficient sequential and parallel algorithms for multistage stochastic integer programming
using proximity. In 29th Annual European Symposium on Algorithms (ESA), volume 204 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:14, 2021.

13 Jesús A. De Loera, Raymond Hemmecke, Shmuel Onn, and Robert Weismantel. N -fold integer
programming. Discrete Optimization, 5(2):231–241, 2008.

14 Matt DeVos, O-joung Kwon, and Sang-il Oum. Branch-depth: Generalizing tree-depth of
graphs. European Journal of Combinatorics, 90:103186, 2020.

15 G. Ding, B. Oporowski, and J. Oxley. On infinite antichains of matroids. Journal of
Combinatorial Theory Series B, 63(1):21–40, 1995.

16 Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster Algorithms
for Integer Programs with Block Structure. In 45th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 107 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 49:1–49:13, 2018.

17 Farbod Ekbatani, Bento Natura, and László A. Végh. Circuit imbalance measures and linear
programming. preprint arXiv:2108.03616, 2021.

18 Michael C. Ferris and Jeffrey D. Horn. Partitioning mathematical programs for parallel
solution. Mathematical Programming, 80(1):35–61, 1998.

19 Gerald Gamrath and Marco E. Lübbecke. Experiments with a generic Dantzig–Wolfe decom-
position for integer programs. Experimental Algorithms, 6049:239–252, 2010.

20 Robert Ganian and Sebastian Ordyniak. The complexity landscape of decompositional
parameters for ILP. Artificial Intelligence, 257:61–71, 2018.

21 P.R. Halmos. Finite-Dimensional Vector Spaces. Undergraduate Texts in Mathematics.
Springer, 1993.

22 Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. N -fold integer programming in
cubic time. Mathematical Programming, 137:325–341, 2013.

23 Raymond Hemmecke and Rüdiger Schultz. Decomposition of test sets in stochastic integer
programming. Mathematical Programming, 94:323–341, 2003.

24 Danny Hermelin, Hendrik Molter, Rolf Niedermeier, and Dvir Shabtay. Equitable scheduling
for the total completion time objective. preprint arXiv:2112.13824, 2021.

25 Petr Hliněný. Branch-width, parse trees, and monadic second-order logic for matroids. In
20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 2607
of LNCS, pages 319–330, 2003.

26 Petr Hliněný. Branch-width, parse trees, and monadic second-order logic for matroids. Journal
of Combinatorial Theory Series B, 96(3):325–351, 2006.

27 Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota. The double exponential runtime is
tight for 2-stage stochastic ILPs. In Integer Programming and Combinatorial Optimization -
22nd International Conference (IPCO), volume 12707 of Lecture Notes in Computer Science,
pages 297–310. Springer, 2021.

28 Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. Empowering the
configuration-ip: new ptas results for scheduling with setup times. To appear in Mathematical
Programming.

29 Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. Empowering
the configuration-IP – new PTAS results for scheduling with setups times. preprint
arXiv:1801.06460, 2018.

30 Klaus Jansen, Alexandra Lassota, and Marten Maack. Approximation algorithms for scheduling
with class constraints. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures, pages 349–357. Association for Computing Machinery, 2020.

31 Klaus Jansen, Alexandra Lassota, and Lars Rohwedder. Near-linear time algorithm for n-fold
ILPs via color coding. SIAM Journal on Discrete Mathematics, 34(4):2282–2299, 2020.

32 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research, 12(3):415–440, August 1987.

ICALP 2022



29:20 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

33 František Kardoš, Daniel Král’, Anita Liebenau, and Lukáš Mach. First order convergence of
matroids. European Journal of Combinatorics, 59:150–168, 2017.

34 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer, 1972.

35 Taghi Khaniyev, Samir Elhedhli, and Fatih Safa Erenay. Structure detection in mixed-integer
programs. INFORMS Journal on Computing, 30(3):570–587, 2018.

36 Kim-Manuel Klein. About the complexity of two-stage stochastic IPs. To appear in Mathem-
atical Programming.

37 Kim-Manuel Klein and Janina Reuter. Collapsing the tower - on the complexity of multistage
stochastic ips. In 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
348–358. SIAM, 2022.

38 Dušan Knop and Martin Koutecký. Scheduling kernels via configuration LP. preprint
arXiv:2003.02187, 2018.

39 Dušan Knop and Martin Koutecký. Scheduling meets n-fold integer programming. Journal of
Scheduling, 21(5):493–503, 2018.

40 Martin Koutecký, Asaf Levin, and Shmuel Onn. A parameterized strongly polynomial
algorithm for block structured integer programs. In 45th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 107, pages 85:1–85:14, 2018.

41 Hendrik W. Lenstra, Jr. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8(4):538–548, 1983.

42 James Oxley. Matroid Theory. Oxford Graduate Texts in Mathematics. Oxford University
Press, 2011.

43 Alex Pothen. The complexity of optimal elimination trees. Technical Report CS-88-13,
Pennsylvania State University, 1988.

44 Rüdiger Schultz, Leen Stougie, and Maarten H. van der Vlerk. Solving stochastic programs with
integer recourse by enumeration: A framework using gröbner basis reductions. Mathematical
Programming, 83:229–252, 1998.

45 François Vanderbeck and Laurence A Wolsey. Reformulation and decomposition of integer
programs. In 50 Years of Integer Programming 1958-2008, pages 431–502. Springer, 2010.

46 Jiadong Wang and Ted Ralphs. Computational experience with hypergraph-based methods
for automatic decomposition in discrete optimization. In Proceedings of the 10th International
Conference on Integration of Constraint Programming, pages 394–402. Springer, 2013.

47 Roman L. Weil and Paul C. Kettler. Rearranging matrices to block-angular form for decom-
position (and other) algorithms. Management Science, 18(1):98–108, 1971.


	1 Introduction
	1.1 Our contribution
	1.1.1 Characterization of depth parameters
	1.1.2 Interplay of circuit and Graver basis complexity
	1.1.3 Algorithms to compute matrices with small depth parameters
	1.1.4 Hardness results


	2 Preliminaries
	2.1 Graphs
	2.2 Matroids
	2.3 Matrices
	2.4 Matroid depth parameters

	3 Structural results
	4 Primal tree-depth
	5 Dual tree-depth, circuit complexity and Graver basis
	6 Computational hardness of depth parameters

