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1 Extended Abstract

A multiple access channel is a shared channel which is used by processors to access a network,
a cloud server, or another shared resource. The processors do not communicate except by
listening to the channel. The mechanism of the channel is straightforward: If two or more
processors send messages to the channel at the same time, then these messages collide, and
are not delivered successfully. However, if during some time step exactly one processor
sends a message, then this message is successfully delivered and the processor receives an
acknowledgement of successful delivery. A contention-resolution protocol is a randomised
algorithm that each processor uses to decide when to send its message to the channel (and
when to wait because the channel is too busy).

We consider discrete-time contention resolution protocols in which processors communicate
by sending discrete messages (packets) to a multiple access channel. During each step, new
messages destined for the channel arrive at processors according to a probability distribution
with an overall arrival rate λ. The whole process (consisting of the arrivals, the waiting
messages, and the sends) can be viewed as a Markov chain. A contention-resolution protocol
is stable [7] if this Markov chain is positive recurrent, which means that the process has a
stationary distribution (so the expected build-up of waiting messages over time is bounded).

Two models of multiple access channels are the queueing model and the queue-free model.
In the queueing model, there are N fixed processors. Each processor maintains a queue
of messages which it is waiting to send – messages arrive at the tail of the queue and are
sent from the head. The queues assist with stability, and are appropriate for applications
with fixed networks. Dynamic networks (such as multiple access channels supporting cloud
computing) are better captured by the queue-free model. In the queue-free model, we
assume that processors join the network according to a probability distribution and that
each processor has a single message to send. Thus, we identify the processor with its message
– messages arrive at each step according to a Poisson distribution with rate λ and they stay
in the system until they are successfully sent.

Two kinds of contention-resolution protocol are full-sensing protocols [12] which constantly
listen the channel, obtaining partial information (such as which steps have no sends, which
steps have exactly one send, which steps have a collision, or some combination of these) and
acknowledgement-based protocols, which are appropriate for settings where this listening is
not feasible. In acknowledgement-based protocols, the only information that a processor gets
is whether its own sends are successful. A popular kind of acknowledgement-based protocol is
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3:2 Some New (And Old) Results on Contention Resolution

a backoff protocol. A backoff protocol is associated with a send sequence p = p0, p1, . . . where
each pi is interpreted as a probability in (0, 1]. During a given time step, a processor that
is trying to send a message that has already had i collisions flips a coin – with probability
pi, it sends. With probability 1 − pi, it instead waits for a later time step. One of the
best-known backoff protocol is binary exponential backoff, which has pi = 2−i and is the
basis for Ethernet [11].

The talk will mention some important recent results [13, 14, 3, 4] about full-sensing
protocols, however the main focus will be on acknowledgement-based protocols and specifically
on backoff protocols. In the queueing model, binary exponential backoff is known to be
stable for sufficiently small arrival rate λ [7, 1]. Unfortunately, this value of λ depends on N

and binary exponential backoff is unstable if λ is sufficiently large [8]. In a breakthrough
result, Håstad, Leighton and Rogoff [8] showed that there is a stable backoff protocol for
every λ ∈ (0, 1) – in particular polynomial backoff, with pi = i−α for some α > 1, is stable.

In the queue-free model, it is conjectured [2] that no backoff protocol is stable for any
positive arrival rate λ. This question was raised by MacPhee [10] and the same is conjectured
for all acknowledgement-based protocols. The conjecture for backoff protocols is known to
be true when λ ≥ 0.42 and the conjecture for acknowledgement-based protocols is known to
be true when λ ≥ 0.531 [5].

The evidence for the full conjecture concerning backoff protocols is that a backoff protocol
is known to be unstable for all positive arrival rates if its send sequence p = p0, p1, . . . decays
smoothly. In particular, for the case where 1/pj = o(cj) for all c > 1, instability follows
from work of Kelly and MacPhee [9] (which shows that in this case, with probability 1,
only finitely many messages are sucessfully sent). In the case where 1/pj = Θ(cj) for some
c > 1 instability can be proved by generalising the proof of Aldous’s seminal instability
result for binary exponential backoff [2]. In the case where the send sequences has an infinite
subsequence pj1 , pj2 , . . . satisfying 1/pjk

= ω(cjk ) for all c > 1 is also easily dealt with. This
appears as a lemma in [6] but the method was also known to the authors of [5].

The main issue which makes it difficult to prove the full conjecture is proving instability
for backoff protocols that have a send sequence that decays at an inconsistent rate or doesn’t
decay at all, with pjs that jump back and forth between large and small values as j increase.
The main part of this talk describes new work [6] with John Lapinskas that solves this
problem except in a special case. This special case has the property that the send sequences
alternates between pj ’s that are at least Ω(1) and pj ’s that are exponentially small (but
no smaller). Moreover, the large pj ’s have density 1 − o(1) in {p1, . . . , pn} as n → ∞. We
therefore refer to them as “LCED” send sequences (for “largely constant with exponential
decay”). These sequences are defined as follows.

▶ Definition 1. A send sequence p is LCED (“largely constant with exponential delay”) if it
satisfies the following properties:

(i) “Largely constant”: For all η > 0, there exists c > 0 such that for infinitely many n,
|{j ≤ n : pj > c}| ≥ (1 − η)n.

(ii) “with exponential decay”: p has an infinite subsequence (pℓ1 , pℓ2 , . . . ) which satisfies
log(1/pℓx

) = Θ(ℓx) as x → ∞.
(iii) “(but without super-exponential decay)”: log(1/pj) = O(j) as j → ∞.

The main Theorem of [6] is as follows.

▶ Theorem 2 ([6]). Let p be a send sequence which is not LCED. Then for every λ ∈ (0, 1)
the backoff protocol with arrival rate λ and send sequence p is unstable.

The theorem has the following consequences.
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▶ Corollary 3 ([6]). For every λ ∈ (0, 1) and every monotonically non-increasing send
sequence p = p0, p1, . . ., the backoff protocol with arrival rate λ and send sequence p is
unstable.

▶ Corollary 4 ([6]). Let p be a send sequence. Let mp(n) be the median of p0, . . . , pn.
Suppose that mp(n) = o(1). Then for every λ ∈ (0, 1) the backoff protocol with arrival rate λ

and send sequence p is unstable.

The talk will conclude with a discussion of the prospects for proving the full conjecture.
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