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Abstract
In this paper, we consider reachability oracles and reachability preservers for directed graphs/networks
prone to edge/node failures. Let G = (V, E) be a directed graph on n-nodes, and P ⊆ V ×V be a set
of vertex pairs in G. We present the first non-trivial constructions of single and dual fault-tolerant
pairwise reachability oracle with constant query time. Furthermore, we provide extremal bounds for
sparse fault-tolerant reachability preservers, resilient to two or more failures. Prior to this work,
such oracles and reachability preservers were widely studied for the special scenario of single-source
and all-pairs settings. However, for the scenario of arbitrary pairs, no prior (non-trivial) results
were known for dual (or more) failures, except those implied from the single-source setting. One
of the main questions is whether it is possible to beat the O(n|P|) size bound (derived from the
single-source setting) for reachability oracle and preserver for dual failures (or O(2kn|P|) bound for
k failures). We answer this question affirmatively. Below we summarize our contributions.

For an n-vertex directed graph G = (V, E) and P ⊆ V × V , we present a construction of
O(n

√
|P|) sized dual fault-tolerant pairwise reachability oracle with constant query time. We

further provide a matching (up to the word size) lower bound of Ω(n
√

|P|) on the size (in bits)
of the oracle for the dual fault setting, thereby proving that our oracle is (near-)optimal.
Next, we provide a construction of O(n + min{|P|

√
n, n

√
|P|}) sized oracle with O(1) query

time, resilient to single node/edge failure. In particular, for |P| bounded by O(
√

n) this yields an
oracle of just O(n) size. We complement the upper bound with a lower bound of Ω(n2/3|P|1/2)
(in bits), refuting the possibility of a linear-sized oracle for P of size ω(n2/3).
We also present a construction of O(n4/3|P|1/3) sized pairwise reachability preservers resilient
to dual edge/vertex failures. Previously, such preservers were known to exist only under single
failure and had O(n + min{|P|

√
n, n

√
|P|}) size [Chakraborty and Choudhary, ICALP’20].

We also show a lower bound of Ω(n
√

|P|) edges on the size of dual fault-tolerant reachability
preservers, thereby providing a sharp gap between single and dual fault-tolerant reachability
preservers for |P| = o(n).
Finally, we provide a generic pairwise reachability preserver construction that provides a o(2kn|P|)
sized subgraph resilient to k failures, for any k ≥ 1. Before this work, we only knew of an
O(2kn|P|) bound implied from the single-source setting [Baswana, Choudhary, and Roditty,
STOC’16].
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1 Introduction

Networks in most real-life applications are prone to failures. These failures, though unpre-
dictable, are transient due to some simultaneous repair process that is undertaken in the
application. This motivates the research on designing fault-tolerant structures for various
graph problems. In the past few years, a lot of work has been done in designing fault-tolerant
structures for various graph problems like connectivity [34, 32, 4, 26, 11], finding shortest
paths [20], graph-structures preserving approximate distances [30, 19, 15, 22, 5, 6, 10, 3]
etc. Reachability is one of the fundamental graph properties which is as ubiquitous as
graphs themselves. In this paper, we study pairwise reachability structures under edge/node
failures. In particular, given any set P of node-pairs, we provide design of graph sparsification
structures, and sensitivity oracles for the reachability problem. We present our results in
terms of edge failures. However, all our upper bound results also hold for node failures.1

1.1 Sensitivity Oracle
In the Sensitivity oracle, the goal is to design a data structure for a network prone to
edge/vertex failures to efficiently answer queries pertaining to the graph structure (e.g.,
connectivity, reachability, distance, etc.). We first formally define the notion of Fault-Tolerant
Reachability Oracle (FTRO).

▶ Definition 1 (FTRO). Let P ∈ V × V be any set of pairs of vertices. For a graph G,
a data structure DS(G) is said to be a k-Fault-Tolerant Reachability Oracle of G for P,
denoted as k-FTRO(G, P), if given a query with any pair (s, t) ∈ P and any subset F ⊆ E

of at most k edges, DS(G) efficiently decides whether or not t is reachable from s in G \ F .

To date, no non-trivial bounds were known for FT-pairwise reachability oracle. The
only known results are for single-source setting (i.e., P = {s} × V ) and all-pairs setting
P = V × V .

For single-source setting, i.e., when P = {s}×V for some source vertex s ∈ V , under (single
and) dual failure, we have an O(n) size oracle with O(1) query time due to [29, 17]. As an
immediate corollary, for arbitrary P pairs, we get an O(n|P|)-sized single/dual failure pairwise
FTRO with constant query time. The bound is extremely bad for a large-sized set P. By
storing a subgraph that preserves pairwise reachability (to be discussed in detail in Section 1.2)
under single failure due to [11], we get an 1-FTRO of size O(n + min{

√
n|P|, n

√
|P|}) but

with O(n) query time. The O(n) query time is due to the fresh reachability computation over

1 In the input graph, each vertex v can be replaced by an edge (vin, vout), where all the incoming and
outgoing edges of v are directed into vin and directed out of vout respectively. Thus the failure of vertex
v is equivalent to failure of edge (vin, vout).
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the stored subgraph on each query, which is entirely undesirable in terms of the efficiency of a
data structure. For the special setting of all-pairs, i.e., P = V × V , Brand and Saranurak [37]
provided a O(n2) sized k-FTRO that has O(kω) query time, where ω is the constant of
matrix-multiplication.

One of the main questions is the following: Does there exist a pairwise reachability oracle
of size o(n|P|) and query time o(n) even for a single failure? In this paper, we answer this
question affirmatively. We provide an efficient construction of a O(n

√
|P|) sized FTRO with

constant query time that is resilient to dual failure (not just single failure).

▶ Theorem 2 (Upper Bound on 2-FTRO). A directed graph G = (V, E) with n vertices can
be processed in randomized polynomial time for a given set P ⊆ V × V of vertex-pairs, to
build a data structure of size O(n

√
|P|), such that for any pair (s, t) ∈ P and any set F of

(at most) two edge failure, it decides whether there is an s to t path in G \ F in time O(1).

We further show that the above size bound cannot be improved further by providing a
matching (up to the word size) lower bound for two failures. To date, no non-trivial (better
than linear) size lower bound is known for any pairwise FTRO.

▶ Theorem 3 (Lower Bound on 2-FTRO). For any positive integers n, r (r ≤ n2), there exists
an n-vertex directed graph with a vertex-pair set P of size r, such that any 2-FTRO(G, P)
must be of size Ω(n

√
|P|) (in bits).

In case of source-wise 2-FTRO for a source set S (i.e, when P = S × V ), our lower bound
construction provides a lower bound of Ω(n|S|) (in bits). It is again a matching (up to the
word size) lower bound because we know of an O(n|S|)-sized 2-FTRO for any source set S

due to [17]. It is also worth noting that our lower bound holds irrespective of the query time
and also for directed acyclic graphs.

The above lower bound does not hold for a single failure. So it is natural to ask whether
we can design a smaller data structure, more specifically, O(n)-sized oracle that is resilient
to a single failure. We provide a construction of O(n + min{|P|

√
n, n

√
|P|}) sized 1-FTRO

with constant O(1) query time. In particular, we show that as long as the number of pairs
is bounded by O(

√
n), we can achieve an oracle with O(n) size and O(1) query time. This

result provides us a sharp separation in optimum size of a FTRO between single and dual
failure. To the best of our knowledge, this is the first separation result between single and
dual failure reachability oracle.

▶ Theorem 4 (Upper Bound on 1-FTRO). A directed graph G = (V, E) with n vertices can
be processed in polynomial time for a given set P ⊆ V × V of vertex-pairs, to build a data
structure of size O(n + min{|P|

√
n, n

√
|P|}), such that for any pair (s, t) ∈ P and a failure

edge f , it decides whether there is an s to t path in G \ {f} in time O(1).

Note, the size bound of the above theorem matches the current best known bound for the
pairwise reachability preserving subgraph for single failure [11].

The above upper bound gives O(n) sized oracle only when the number of pairs is O(
√

n).
Is it always possible to get a linear-sized pairwise 1-FTRO? More specifically, does any n-
node graph G and a set P of node-pairs always possess a 1-FTRO(G, P) of size O(n + |P|)?2

In this paper, we refute this possibility by showing the following.

2 The presence of |P| term in the bound is justifiable by the fact that for non-failure case (i.e., the
standard static setting), we can get a trivial O(|P|) sized oracle.

ICALP 2022
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▶ Theorem 5 (Lower Bound on 1-FTRO). For any positive integers n, d ≥ 2, any p = p(n),
there exists an n-vertex directed graph and a node-pair set P of size p, such that any
1-FTRO(G, P) must be of size Ω

(
n2/(d+1)p(d−1)/d

)
(in bits).

By setting d = 2 in the above theorem, we get a lower bound of Ω(n2/3p1/2). This shows
us that for p = ω(n2/3), there is an n-node graph G and a pair set P of size p, for which
linear size 1-FTRO is not possible. Again, our lower bound holds irrespective of the query
time and also for DAGs. We show the lower bound by establishing a connection between the
optimal sized pairwise 1-FTRO and pairwise reachability preserving subgraph without any
failure. In general, we show that the optimal size of any pairwise k-FTRO must be at least
that of the reachability preserving subgraph with k − 1 failures. Instead of just deciding
the reachability between a pair of vertex, suppose the data structure is also asked to report
a path between them (if exists). Then by a standard information-theoretic argument, the
optimal size of any such data structure resilient to k failures must be of size at least that of
reachability preserving subgraph with k failures. Unfortunately, such a direct argument does
not work for a (Boolean) data structure that only decides the reachability. Ours is the first
such connection. Readers may note that there is a gap between our upper and lower bound
for pairwise 1-FTRO. We leave this as an interesting open question.

1.2 Reachability Preservers
In the context of graph sparsification, reachability preserver (or reachability subgraph) for a
directed graph G and a set P of vertex-pairs is a sparse subgraph H with as few edges as
possible so that for any pair (s, t) ∈ P there is a path from s to t in H if and only if there
is such a path in G. In the standard static setting (with no failure), this object has been
studied widely [18, 8, 1]. We study these objects in the presence of edge/node failures.

Let us formally define fault-tolerant reachability subgraph (FTRS) for a set of node-pairs.

▶ Definition 6 (FTRS). Let P ∈ V ×V be any set of pairs of vertices. A subgraph H of G is
said to be a k-Fault-Tolerant Reachability Subgraph of G for P, denoted as k-FTRS(G, P),
if for any pair (s, t) ∈ P and for any subset F ⊆ E of at most k edges, t is reachable from s

in G \ F if and only if t is reachable from s in H \ F .

For the particular case of single-source, i.e., P = {s} × V , Baswana, Choudhary, and
Roditty [4] provided a polynomial-time algorithm that, given any n-node directed graph,
constructs an O(2kn)-sized k-FTRS. As a corollary, to preserve reachability between
arbitrary P pairs, we get an O(2kn|P|)-sized k-fault-tolerant reachability preserver. For the
general setting of arbitrary pairs, the only previously known non-trivial result was for single
failure [11], wherein the authors gave an upper bound of O(n + min(|P|

√
n, n

√
|P|)) edges.

It was left open whether for dual or more failures whether keeping fewer than O(n|P|) edges
sufficient to preserve the pairwise reachability. In particular, does any n-node graph and a
set P of node-pairs always admit a k-FTRS of size o(2kn|P|)?

In this work, we answer the above question affirmatively. For dual failures, we provide an
upper bound of O(n4/3|P|1/3) edges on the structure of 2-FTRS(G, P).

▶ Theorem 7 (Upper Bound on 2-FTRS). For any directed graph G = (V, E) with n

vertices and a set P ⊆ V × V of vertex-pairs, there exists a 2-FTRS(G, P) having at most
O(n4/3|P|1/3) edges. Furthermore, we can find such a subgraph in polynomial time.

Clearly, for P of size ω(
√

n), the above result breaks below the O(n|P|) bound. We
complement our upper bound result the following lower bound.
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▶ Theorem 8 (Lower Bound on 2-FTRS). For every n, r (r ≤ n2), there exists an n-vertex
directed graph G and a vertex-pair set P of size r such that any 2-FTRS(G, P) requires
Ω(n

√
|P|) edges.

Again, we show a lower bound for source-wise 2-FTRS for a source set S (i.e, when P = S×V ),
of Ω(n|S|). This matches the O(n|S|) upper bound [4] of 2-FTRS for any source set S. So
for the source-wise preserver, we completely resolve the question regarding the size of an
optimal preserver resilient to two or more failures. For general k > 2 failures, we provide a
lower bound of Ω(2k/2n

√
|P|) on the size of pairwise k-FTRS.

Previously, seemingly a much weaker lower bound was known [11], where the authors
could only show a lower bound of Ω(n|P|1/8), for P of size nϵ with ϵ ≤ 2/3. Our result
provides a sharp separation between single and dual fault-tolerant reachability preservers for
any P satisfying ω(1) ≤ |P| ≤ o(n).

We also consider the question of beating O(2kn|P|) bound for general k-FTRS. We show
that for a certain regime of the size of P, it is indeed possible to attain o(2kn|P|) bound.

▶ Theorem 9 (Upper Bound on k-FTRS). For any k ≥ 1, a directed graph G = (V, E) with
n vertices and a set P ⊆ V × V of vertex-pairs satisfying |P| = ω(kn1− 1

k log n), there exists
a k-FTRS(G, P) having only o(2kn|P|) edges.

We summarize our results on single and dual failures in Table 1. Readers may note that
there is a gap between the size of 2-FTRO and 2-FTRS in our results. We pose closing this
embarrassing gap as an interesting open question.

Table 1 A comparison of size of FTRO and FTRS for single and dual failures.

Problem Single Failure Dual Failure

Reachability

Oracle

O(n + min(|P|
√

n, n
√

|P|))

Ω(n2/3|P|1/2) (in bits)

(New)

O(n
√

|P|)

Ω(n
√

|P|) (in bits)

(New)

Reachability

Preserver

O(n + min(|P|
√

n, n
√

|P|))

[11]

O(n4/3|P|1/3)

Ω(n
√

|P|)

(New)

1.3 Related Work
A simple version of reachability preserver is when there is a single source vertex s, and we
would like to preserve reachability from s to all other vertices. Baswana et al. [4] provided
an efficient construction of a k-fault-tolerant single-source reachability preserver of size
O(2kn). Further, they showed that this upper bound on the size of a preserver is tight up
to some constant factor. As an immediate corollary, we get a k-FTRS of size O(2kn|P|)
(by applying the algorithm of [4] to find subgraph for each source vertex in pairs of P and
then taking the union of all these subgraphs). We do not know whether this bound is
tight for general k. However, for the standard static setting (with no faulty edges) much
better bound is known. We know that even to preserve all the pairwise distances, not
just reachability, there is a subgraph of size O

(
n + min(n2/3|P|, n

√
|P|)

)
[18, 8]. Later

Abboud and Bodwin [1] showed that for any directed graph G = (V, E) given a set S of

ICALP 2022
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source vertices and a pair-set P ⊆ S × V we can construct a pairwise reachability preserver
of size O

(
n + min(

√
n|P||S|, (n|P|)2/3)

)
. It is further shown that for any integer d ≥ 2

there is an infinite family of n-node graphs and vertex-pair sets P for which any pairwise
reachability preserver must be of size Ω

(
n2/(d+1)|P|(d−1)/d

)
. Note, for undirected graphs,

storing spanning forests is sufficient to preserve pairwise reachability information, and thus
we can always get a linear size reachability preserver for undirected graphs. We would like to
emphasize that all our results in this paper hold for directed graphs.

By [4] we immediately get an oracle of size O(2kn) for k edge (or vertex) failures with
query time O(2kn). For just dual failures, we have an O(n) size oracle with O(1) query time
due to [17].

For undirected graphs, the optimal bound of O(kn) edges for k-fault-tolerant connectivity
preserver directly follows from k-edge (vertex) connectivity certificate constructions provided
by Nagamochi and Ibaraki [31]. For connectivity oracle, Pǎtraşcu and Thorup [35] presented
a data structure of O(m) size that can handle any k edge failures in O(k log2 n log log n)
time to subsequently answer connectivity queries between any two vertices in O(log log n)
time. For small values of k, Duan and Pettie [24] improved the update time of [35] to
O(k2 log log n) by presenting a data structure of Õ(m) size. For handling vertex failures,
Duan and Pettie [25] provided a data structure of O(mk log n) size with O(k3 log3 n) update
time and O(k) query time.

Other closely related problems that have been studied in the fault-tolerant model include
computing distance preservers [20, 33, 32, 12], depth-first-search tree [2], spanners [15, 22],
approximate distance preservers [5, 34, 7], approximate distance oracles [23, 16], compact
routing schemes [16, 14].

2 Preliminaries

For any integer n, we use [n] to denote the set {1, 2, · · · , n}. Given a directed graph
G = (V, E) on n = |V | vertices and m = |E| edges, the following notations will be used
throughout the paper.

V (H) : The set of vertices present in a graph H.
E(H) : The set of edges present in a graph H.
H \F : For a set of edges F , the graph obtained by deleting the edges in F from graph H.
s − t path : A directed path from a vertex s to another vertex t.
P ◦ Q : The concatenation of two paths P and Q, i.e., a path that first follows P and
then Q.
P [L] : The subpath of the path P containing the first L vertices of P .
P [−L] : The subpath of the path P containing the last L vertices of P .
P [u − v] : The u − v subpath of the path P .

Our algorithm for computing pairwise-reachability preservers (and oracles) in a fault
tolerant environment employs the concept of a single-source FTRS which is a sparse subgraph
that preserves reachability from a designated source vertex even after the failure of at most
k edges in G. Baswana et al. [4] provide a construction of sparse k-FTRS for any general
k ≥ 1 when there is a designated source vertex.

▶ Theorem 10 ([4]). For any directed graph G = (V, E), a designated source vertex s ∈ V ,
and an integer k ≥ 1, there exists a (sparse) subgraph H of G which is a k-FTRS(G, {s}×V )
and contains at most 2kn edges. Moreover, such a subgraph is computable in O(2kmn) time,
where n and m are respectively the number of vertices and edges in graph G.
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Note, in the FTRO definition we restrict ourselves to a data structure with constant
query time. (The term oracle came from its ability to answer a query in constant time.)
Unlike single-source k-FTRS, there is no non-trivial construction of single-source k-FTRO
for k ≥ 3. For k = 2, the following result by Choudhary [17] provides an O(n) size oracle.

▶ Theorem 11 ([17]). There is a polynomial time algorithm that given any directed graph
G = (V, E), a designated source vertex s ∈ V , constructs a 2-FTRO(G, {s} × V ) of size
O(n).

Our constructions will require the knowledge of the vertices reachable from a vertex s as
well as the vertices that can reach s. So we will use FTRS (and FTRO) defined with respect
to a source vertex ({s} × V case), as well as FTRS (and FTRO) defined with respect to a
destination vertex (V × {s} case).

In this paper, we consider fault-tolerant structures with respect to edge failures only.
Vertex failures can be handled by simply splitting a vertex v into an edge (vin, vout), where
the incoming and outgoing edges of v are respectively directed into vin and directed out
of vout.

3 Technical Overview

Construction of a 2-FTRS for a single pair

Our starting point is a simple construction of a linear (in the number of vertices) sized
2-FTRS for a single pair. Recall, we already know of such a subgraph by [4]. However,
this new alternate construction will shed more light on the specific structure of a 2-FTRS,
which will play a pivotal role in our constructions of pairwise 2-FTRS and 2-FTRO. Given
a directed graph G and a vertex-pair (s, t), we construct a subgraph H(s,t) as follows: First,
consider two “maximally disjoint” s−t paths P 1

(s,t) and P 2
(s,t) (that meet only at the cut-edges

and cut-vertices). We refer to these two paths as outer strands. Next, we add several coupling
paths between these two outer strands, which are edge-disjoint with the outer strands. For
each vertex v on the outer strands, we check for the “earliest” vertex on the strand P 1

(s,t)
(and P 2

(s,t)), from which there is a path Q1
(s,t),v (and Q2

(s,t),v) to v that is edge-disjoint with
both the outer strands. We refer to these path Qi

(s,t),v as coupling paths. Roughly speaking,
two outer strands together with the coupling paths constitute the subgraph H(s,t) (see
Figure 1). The actual construction is slightly different. Let us first briefly discuss why the
above subgraph is a 2-FTRS for the pair (s, t). Then we will comment on the issue with the
above simple construction and how we overcome that.

Consider any two failure edges f1, f2. W.l.o.g. assume, they do not form an s − t cut-set;
otherwise, after the failure there won’t be any s − t path. Thus if both f1, f2 lie on one
of the two outer strands (i.e., either on P 1

(s,t) or P 2
(s,t)), then since these two strands are

maximally disjoint, one of them will survive after the failures. So, let f1, f2 lie on the strand
P 1

(s,t), P 2
(s,t) respectively. Then consider the subpaths of P 1

(s,t), P 2
(s,t) above f1, f2, and the

subpaths of P 1
(s,t), P 2

(s,t) below f1, f2. Since by assumption f1, f2 does not form an s − t

cut-set, there must be a coupling path (edge-disjoint with P 1
(s,t), P 2

(s,t)) from one of the top
subpaths to one of the bottom subpaths in G. Since H(s,t) consists of all the coupling paths,
we get a surviving path in H(s,t) \ {f1, f2}. This shows that H(s,t) is a 2-FTRS(G, (s, t)).
Moreover, one may observe from the above argument that, after failure of any two edges,
one of the surviving paths in H(s,t) must be of the following form: It first follows one of the
outer strand from s to some vertex u, then takes a coupling path till some vertex v on one of

ICALP 2022



35:8 Pairwise Reachability Oracles and Preservers Under Failures

Figure 1 H(s,t)=2-FTRS for a single pair (s, t). Two black paths are the outer strands and the
purple paths are the coupling paths between them.

the outer strands, and finally follows the corresponding outer strand from v to t. We refer to
such a path as nice path. The existence of such nice paths helps us in proving the correctness
of our pairwise 2-FTRO and 2-FTRS construction in the subsequent sections.

As we mentioned earlier, our actual construction is slightly different. The main issue with
the above simple construction is that the constituted subgraph could be of size ω(n) after
adding all the coupling paths. To mitigate this issue, instead of adding all the coupling paths,
we only add the “essential” coupling paths. (See the full version for the details.) It allows us
to achieve O(n) size bound without affecting the correctness of 2-FTRS. The guarantee of
the existence of nice paths also remains unaffected. Of course, the correctness argument will
become slightly more intricate.

Next, we use the above construction of a 2-FTRS of a single pair to study the pairwise
dual fault-tolerant graph structures (reachability oracle and preserver). Our input is a
directed graph G = (V, E) with n nodes, and a node-pair set P ⊆ V × V .

Pairwise 2-FTRO: Upper bound

One of the main contributions of this work is a construction of a dual fault-tolerant pairwise
reachability oracle (2-FTRO) of size O(n

√
|P|). For simplicity, below, we briefly describe a

construction that provides a slightly weaker bound, in particular, O(n
√

|P| log n). Later we
will comment on how to remove this extra log n factor.

We start with the 2-FTRS H(s,t), for each pair (s, t) ∈ P. First, for all (s, t) ∈ P, we
consider the top and bottom Θ(n/

√
|P|) portion of the outer strands (P 1

(s,t), P 2
(s,t)). We

find a subset of vertices that intersects all these subpaths, i.e., acts as a “hitting set”. Using
a standard greedy algorithm we get a hitting set of size O(

√
|P| log n). (Note, one may

alternatively use random sampling to achieve the same bound for the hitting set with high
probability.) Then we compute linear-sized single-source and single-destination 2-FTRO
having query time O(1), for each of the vertices in the hitting set using [17]. For each
(s, t) ∈ P , in a table T(s,t), we store one vertex from each of the top and bottom Θ(n/

√
|P|)

length subpaths of P 1
(s,t), P 2

(s,t), that is also included in the hitting set. That constitutes the
first part of our data structure.

Observe, for any two failure edges f1, f2 and a pair (s, t) ∈ P, we know that there must
be a surviving nice s − t path in H(s,t) \ {f1, f2} (unless f1, f2 form an s − t cut-set). Now,
if that surviving path follows the bottom (or top) Θ(n/

√
|P|) length subpath of P j

(s,t) (for
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some j ∈ {1, 2}), it must also pass through one of the stored vertices in T(s,t), say v (due to
the hitting set property). In this scenario, we can easily check for presence of an s − v and
v − t path after the failure of f1, f2 in G by trying with all the (at most four) stored vertices
in T(s,t). For that, we only need O(1) time during query.

Now, it only remains to consider the case when the surviving nice path in H(s,t) \ {f1, f2}
passes though a coupling path Qi

(s,t),v, for some vertex v lying on the bottom Θ(n/
√

|P|)
length subpath of a outer strand, that starts from some vertex u lying on the top Θ(n/

√
|P|)

length subpath of a outer strand. Informally, we only need to consider the scenario when
both the outer strands are of length O(n/

√
|P|). For simplicity, from now on we continue

the description with this assumption. Intuitively, this enables us to look into a smaller graph
(which need not be a subgraph of the original graph). We build an auxiliary graph A(s,t)
(see Figure 2) from H(s,t). We define the auxiliary graph entirely on the vertex set of the
outer strands (P 1

(s,t), P 2
(s,t)). First, we add both the outer strands (i.e. all their edges) to

the auxiliary graph. Next, we add auxiliary edges between the vertices if and only if there
is a path between them in H(s,t) that is edge-disjoint with the outer strands. Then, We
construct a 2-FTRO (having query time O(1)) for A(s,t) using [17]. We do this for all pair
(s, t) ∈ P . Since each auxiliary graph is defined over a set of O(n/

√
|P|) sized vertex set, we

need total O(n
√

|P|) space. This finishes the description of our data structure. So, the final
data structure consists of 2-FTROs of the vertices in the hitting set and 2-FTRO computed
over A(s,t)’s. Hence, the size of the whole data structure is O(n

√
|P | log n).

{

{

}

}

L

L

L

L

P1
s,t P2

(s,t)

u1
(s,t),v u1

(s,t),vu2
(s,t),v u2

(s,t),v

v v

Auxiliary Edge

Path Edge

s s

t t

H(s,t) A(s,t)

Figure 2 Auxiliary graph A(s,t) constructed from H(s,t).

It is not hard to see that any s − t path of H(s,t) also leads to a valid s − t path in A(s,t)
and vice versa. However, it is not immediate that it will be the case even after the failure of
f1, f2. The difficulty arises because many paths in H(s,t) now map to one path in A(s,t). We
show that it is indeed the case that there is an s − t path in H(s,t) \ {f1, f2} if and only if
there is an s − t path in the auxiliary graph A(s,t) \ {f1, f2} (given P 1

(s,t), P 2
(s,t) are of length

at most O(n/
√

P )). The actual description is slightly more involved because we cannot make
any assumption on the length of P 1

(s,t), P 2
(s,t). Essentially, we need only to consider the top

and bottom O(n
√

|P|) portion of the outer strands and define the auxiliary graph over them.
Then we prove the above claim without any assumption on the length of the outer strands.
The guarantee on the existence of a nice s − t path in H(s,t) after at most two failures comes
handy in this case. Recall, in a nice path, there is at most one coupling sub-path. If both
the endpoints of this coupling sub-path lie on the top and bottom O(n

√
|P|) portion of the
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outer strands, we get an auxiliary edge. As a result, we get an s − t path in the auxiliary
graph after the failures. We refer the readers to the full version for the details. Note, without
the guarantee of a nice path, there could be many coupling sub-paths in a surviving s − t

path after failures. As a result, we may not get an auxiliary edge in our auxiliary graph.
During the query for a pair (s, t) ∈ P, it suffices to either place O(1) many reachability

queries on the first part of our data structure or check the presence of an s − t path in the
auxiliary graph A(s,t). Hence, we get the overall query time to be only O(1).

To remove the O(log n) factor from the size bound, we use the concept of sparsifier with
slack [13, 27, 21, 9]. The extra O(log n) factor was coming due to the construction of the
greedy hitting set. We show that if we prematurely terminate the same greedy hitting set
algorithm, we get a fractional hitting set that hits a constant fraction of the input sets.
As a consequence, we get a pairwise 2-FTRO with slack of size O(n

√
|P|). Then we use

an argument similar to that in [9] to get the same size bound for the (standard) pairwise
2-FTRO.

Optimality of pairwise dual fault-tolerant oracle

In this paper, we show that for pairwise 2-FTRO, our O(n
√

|P|) bound is essentially tight
up to the word size (Theorem 3). Actually, we show that for any source-wise 2-FTRO for a
designated source set S, the trivial O(n|S|) upper bound followed from [17], is tight. To do
that, we first provide a Ω(n|S|) lower bound for source-wise 2-FTRS (leading to Theorem 8)
by constructing a hard instance. Then we extend that lower bound to source-wise 2-FTRO
using communication complexity.

We construct the hard instance for 2-FTRS as follows. Take any integer N, r. We
consider two r-sized sets of vertex-disjoint (directed) paths each of length N . Then include a
(directed) complete bipartite graph between the left set of r vertices and the right set of r

vertices, for each level k ∈ [N ] (See Figure 3). The set S contains the start vertices of the
paths in the left set and the terminal vertices of the paths in the right set. So, |S| = 2r. The
number of vertices and the edges in this graph are n = 2Nr and Θ(Nr2) respectively. It is not
difficult to observe that each edge in this graph must be present in any 2-FTRS for this graph
with the pair set P = S × S (See Figure 3). Consequently, we get a Ω(n|S|) = Ω(n

√
|P|)

lower bound.

P1 Pi Pr Q1 Qj Qr

a1 ai ara2

b1 bj brb2

Ak Bk
All pairs in 

 are 
present in 

edge-set of 

Ak × Bk

G

pk,i qk,j

Figure 3 Dual fault-tolerant reachability preserver.

We then extend the above construction to 2-FTRO. Note, FTRO is a Boolean data
structure that only decides reachability between a pair of vertices - does not report a path (if
exists). If the data structure also reports a path (if exists), then using a standard information-
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theoretic argument, it is possible to show that the data structure must be of a size equal to
that of a FTRS. Such an argument does not work in general for FTRO. This is a general
hurdle that we need to overcome to extend the lower of FTRS to FTRO. Fortunately, the
hard instance we constructed for FTRS allows us to provide a reduction from (a close variant
of) the Index problem. Then we use the randomized one-way communication complexity
lower bound for the Index problem [28] to get a lower bound of Ω(n|S|) on the size (in bits)
of any 2-FTRO. It is worth mentioning that our lower bound holds irrespective of the query
time of 2-FTRO.

Pairwise 1-FTRO: Upper and lower bound

The above lower bound only holds for dual failures. So it remains open whether for single
failure we can attain better than O(n

√
|P|) size bound with o(n) (ideally, constant) query

time. In this section, we provide a construction of 1-FTRO of size O(n + |P|
√

n) and
query time O(1). We show the construction by first designing a reachability oracle of size
O(n + |P|

√
n) resilient to single vertex failure. Then we extend that vertex fault-tolerant

data structure to an edge fault-tolerant data structure of the same size.
One of the key ingredients of our construction is a clever data structure that could answer

all-pairs reachability query under single vertex failure as long as all three vertices involved
in the query belong to a cut-set. Formally, for a pair (s, t), let C be any subset of s − t

cut-vertices in the graph G. We build an O(|C|) size data structure that, for any three
vertices x, y, z ∈ C, decides the reachability between y, z upon failure of vertex x, in constant
time. This data structure is inspired by the loop-nesting-forest [36]. We consider the ordering
σ among the cut-vertices in C. Next, we build a predecessor forest and a successor forest
with respect to this ordering σ. In the predecessor forest, the parent of any node w is
the immediate predecessor u such that u, w are strongly connected even after the removal
of all the predecessors of u from G. We symmetrically build the successor forest. Using
constantly many Lowest Common Ancestor (LCA) and Level Ancestor (LA) queries on these
forests, we can now decide the reachability between y, z upon failure of the vertex x (for
any x, y, z ∈ C). By deploying any standard linear space LCA/LA data structure, we attain
O(|C|) space-bound and O(1) query time. We refer the readers to the full version for the
details.

Next, we use the above data structure to construct a pairwise fault-tolerant reachability
oracle for single vertex failure. Observe, to decide the reachability between a pair upon
failure, we need to check whether the failure vertex is a cut-vertex for that pair or not. At the
high level, we need to keep the information about the cut-vertex-set for each pair. However,
we cannot store them explicitly using small space. We first consider the cut-vertex-set for
all the pairs in P. Then we identify a core pair-set as follows: Take any pair in P with at
least

√
n cut-vertices, and add it into the core pair-set. Then iteratively add pairs from P

with at least
√

n new/uncovered (not part of the cut-vertex-set of any previously added pair)
cut-vertices. For each pair added in the core pair-set, it owns the corresponding cut-vertices
that were uncovered till then. Once we get the core pair-set, we are left with pairs each
having at most

√
n uncovered cut-vertices. Further note, the size of the core pair-set is at

most O(
√

n). Consider the union of all the cut-vertices of the core pair-set, and build the
previously mentioned data structure on it. For the remaining pairs, we store the uncovered
cut-vertices associated with them using any static dictionary data structure. Note, each pair
might have cut-vertices that are owned by some core pair. To keep track of them, for each
pair and each core pair, we store the first and the last cut-vertex shared by them. These all
constitute the final data structure. It is not hard to see that the size is O(n + |P|

√
n). We
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show that it suffices to either perform a query on the previously mentioned data structure or
check whether the failure vertex is a cut-vertex in the dictionary structure during the query.
(See the full version.)

Now, we extend the vertex fault-tolerant oracle to edge fault-tolerant oracle. We consider
the set C of all the cut-edges for all the pairs in P. Then we find the subset C0 that only
contains the edges whose endpoints are strongly connected in G, but not after the failure of
that edge. Observe, all the edges in C must be part of any strong-connectivity certificate,
and all the edges in C0 must be part of any reachability preserver without any failure. Thus
|C| = O(n) and |C0| = O(n + min{|P|

√
n, (n|P|)2/3}) by [1]. Next, we construct a new graph

with n + |C0| vertices such that checking the reachability upon an edge failure in the original
graph reduces to checking the reachability (perhaps between a different pair) upon vertex
failure in the new graph. As a consequence, we get an O(n + |P|

√
n) sized 1-FTRO with

constant query time.
We complement our upper bound result with a lower bound of Ω(n2/d+1|P|(d−1)/d) size

(in bits) for any d ≥ 2. We prove our lower bound by establishing a connection between the
optimal size of a pairwise k-FTRO and that of a pairwise (k − 1)-FTRS. In particular, we
show that the optimal size of FTRO for any n-node graph and p-sized pair-set is at least that
of (k − 1)-FTRS for any n/2-node graph and p-sized pair-set. Such a connection between
FTRO and FTRS is entirely new. To prove this relation, we use information-theoretic
encoding-decoding argument. (See the full version.) Then the lower bound of 1-FTRO
follows from the lower bound of reachability preserver without any failure by [1].

Pairwise 2-FTRS: Upper bound

We have already shown a lower bound of Ω(n
√

|P|) on the size of a pairwise 2-FTRS.
However, so far we only known of O(n|P|) size 2-FTRS for any n-node graph G and pair
set P. In this work, we provide a deterministic polynomial time construction of a pairwise
2-FTRS of size O(n4/3|P|1/3). For simplicity, below, we briefly describe a construction that
provides a slightly weaker bound, in particular, O(n

√
|P| log n). In the actual construction,

we get rid of the log n factor by constructing a preserver with slack and then using the result
of [9] - an idea similar to that used in pairwise 2-FTRO described earlier. Before proceeding
further, let us emphasize that the main underlying idea behind our construction could be
generalized to k-FTRS, for any k ≥ 1, albeit with the help of randomization. We describe
that generic construction later.

To get a sparse 2-FTRS for a node-pair set P , we perform two-step sparsification. First,
we apply our alternate construction of 2-FTRS for each of the pairs of P . Then take a union
of all of these subgraphs to get a O(n|P|) size intermediate subgraph Hinter, which is clearly a
2-FTRS for P . Next, we further sparsify this intermediate subgraph. Similar to the technique
used in oracle construction, we consider the top and bottom Θ(n2/3|P |−1/3) portions of the
outer strands (P 1

(s,t), P 2
(s,t)) of Hs,t, for each (s, t) ∈ P. Next, we construct a greedy hitting

set containing O(n1/3|P|1/3 log n) vertices that intersects all these subpaths. We compute
linear-sized single-source and single-destination 2-FTRS for each of these vertices in the
hitting set using [4]. Let H1 be the union of all these single-source and single-destination
2-FTRS. So, H1 is of size O(n4/3|P|1/3 log n).

Consider any two failure edges f1, f2 and a pair (s, t) ∈ P. If there is a surviving
path in G \ {f1, f2}, we know that there is a nice s − t path in H(s,t) \ {f1, f2}. Using
an argument similar to that in the oracle construction, if that nice path follows the top
or bottom Θ(n2/3|P |−1/3) portion of a outer strand, then there is also an s − t path in
H1 \ {f1, f2}. So now on, it suffices to look into the case when the surviving nice path in
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H(s,t) \ {f1, f2} passes though a coupling path Qi
(s,t),v, for some vertex v lying on the bottom

Θ(n2/3|P |−1/3) length subpath of a outer strand, that starts from some vertex u lying on
the top Θ(n2/3|P |−1/3) length subpath of a outer strand.

If we could include the top and bottom Θ(n2/3|P |−1/3) portion of the outer strands,
and all the “essential” coupling path Qi

(s,t),v’s with endpoints lying on the top and bottom
Θ(n2/3|P |−1/3) portions of the outer strands, we will be done. We indeed consider a union
of the top and bottom Θ(n2/3|P |−1/3) portion of the outer strands (for all (s, t) ∈ P),
and let us denote that by H2. So, H2 is of size O(n2/3|P |2/3). Unfortunately, we do not
have a guarantee on the length of the coupling paths. Thus, if we include all the required
coupling paths, we cannot argue about the sparsity of the final subgraph. (This portion of
the construction differs significantly from that of our oracle construction.) We consider the
subgraph obtained by taking a union of all the “essential” coupling paths with endpoints
lying on the top and bottom Θ(n2/3|P |−1/3) portions of the outer strands. (Let us denote
this union by B.) Then we sparsify this subgraph further. For that purpose, we first isolate
all the “high frequency” vertices (iteratively) and remove all the coupling paths containing
them. Since total number of coupling paths in this subgraph is only Θ(n2/3|P |2/3), we end
up with “a few” (O(n1/3|P |1/3)) high frequency vertices. Now, observe, in the remaining
subgraph (denoted as H4), degree of each vertex is “small” (at most O(n1/3|P |1/3)). Next, for
each of the high-frequency vertices, compute linear-sized single-source and single-destination
2-FTRS, and take a union of them to form a subgraph H3. The union of H1, H2, H3 and
H4 constitute the final subgraph.

It is not difficult to see that a surviving nice s − t path in H(s,t) \ {f1, f2} either passes
through one of the high frequency vertices, in which case we get an s − t path in H3; or is
included in H2 ∪ H4. Thus So, the union of all H1, H2, H3 and H4 will be a 2-FTRS for P.
It is worth mentioning that the correctness proof works only because of a guarantee of the
existence of the nice path. Note, a nice path follows at most one coupling path as a subpath.
Thus either that nice path follows the top or bottom Θ(n2/3|P |−1/3) portion of the outer
strands, or the coupling sub-path is part of B, which we further sparsify to get H3 and H4.
Without the guarantee of a nice path, there could be many coupling sub-paths in a surviving
s − t path after failures. Endpoints of these coupling sub-paths may not lie on the top or
bottom Θ(n2/3|P |−1/3) portion of the outer strands. As a result, we miss them in B. As a
consequence, H3 ∪ H4 could not capture those coupling sub-paths.

Observe, each of the Hi’s is of size at most O(n4/3|P|1/3 log n) (the log n factor is only
there for H1). So the total size is also O(n4/3|P |1/3 log n).

Pairwise k-FTRS: Beating the O(2kn|P|) bound

Currently, for any k ≥ 1, we only know there always exists a pairwise k-FTRS of size
O(2kn|P|) for any pair set P [4]. Previously, we beat the above bound for k = 2. We cannot
directly extend that bound for k-FTRS. The main obstacle is that for pairwise 2-FTRS, we
have used a particular structure of a 2-FTRS for a single pair (i.e., the subgraph H(s,t)). It
is pretty difficult get such kind of structure for k-FTRS for any k > 2. However, the main
underlying idea behind our pairwise 2-FTRS construction is to handle the “long” and “short”
surviving paths separately. Informally, in the case of 2-FTRS, the hitting set helps us to look
into only the short paths in H(s,t). We do a similar thing for k-FTRS using randomization.

Take a parameter ℓ, whose value we will fix later. We sample a uniformly random subset
W of vertices of size Õ(kn/ℓ). Then we build a single-source and single-destination k-FTRS
from those vertices. Let us denote the union of all these k-FTRSs as H1. The size of H1 is
O(k2kn2/ℓ) by [4]. Suppose, for any failure edge-set F of size at most k, the length of any
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shortest s − t surviving path in G \ F is at least ℓ. Consider an (arbitrarily chosen) shortest
surviving s − t path in G \ F (which is of length at least ℓ). Then it is not hard to argue that
W intersects that path with high probability. Thus we get an s − t path in H1 \ F . This
part is similar to what we get in 2-FTRS using greedy hitting set.

So now on, we only need to handle the case when a shortest surviving path is of length
at least ℓ. To do this, roughly speaking, we enumerate over all possible failure-set of size at
most k and add a shortest surviving path in the subgraph. Trivially, we get a bound of only
O(nk) on the number of possible failure edge-sets of size at most k. However, observe, we
only need to handle the case when a surviving shortest path is of length at most ℓ. So before
the failure also the length of a shortest path was at most ℓ. The initial shortest path (before
any failure) will get destroyed only if one or more failure edges lie on that shortest path.
This observation reduces the number of possible failure-set to O(ℓk). So, for each pair, we
add O(ℓk) paths, each of length at most ℓ. For all the pairs, the total number of added edges
is at most O(ℓk+1|P|). We can further improve this bound to O(ℓk|P|) by enumerating the
failure-set of size up to k − 1 and then adding two maximally edge-disjoint shortest paths.
(See the full version for the details.) At the end, we get a subgraph of size O(k2kn2/ℓ+ℓk|P|).
By optimizing the parameter ℓ, we get a size bound of Õ(k 2k n

2k
k+1 |P|

1
k+1 ). Note, this size

bound beats the O(2kn|P|) bound whenever |P| = ω(kn
k−1

k log n).

4 Conclusion

In this paper, we study compact oracle and sparse preservers for the problem of pairwise
reachability under failures. For dual failures, we provide a construction of O(n

√
|P|) sized

reachability oracle that has constant query time, along with a matching (up to the word
size) lower bound. It (almost) settles down the question on the optimal sized dual fault-
tolerant pairwise reachability oracle. For single failure, we achieve a bound of O(n +
min{|P|

√
n, n

√
|P|}) on the size of oracle with constant query time. We complement our

upper bound with a Ω(n2/3|P|1/2) size (in bits) lower bound, refuting the possibility of
getting a linear-sized oracle for a single failure. We would like to pose the problem of closing
the current gap between the upper and lower bound for a single fault-tolerant oracle as an
open problem.

In the case of reachability preserver, we show an upper bound of O(n4/3|P|1/3) edges
for any n-node graph and a vertex-pair set P, for dual failures setting. This improves the
naive bound of O(n|P|) preserver (obtained from the result known for single-source setting).
In addition, we obtain a lower bound of Ω(n

√
|P|) on the size of our reachability preserver

under dual failures. Prior to our work it was known that for single failure, we can have
preserver with O(n + min{|P|

√
n, n

√
|P|}) edges. Thus our lower bound provides a striking

difference between the single and dual fault-tolerant setting as it gives a separation of n1/4

factor for |P| = Θ(
√

n). One immediate open question after our work is whether a sparser
pairwise reachability preserver exists for dual failures.

Next, we go beyond the dual failures and consider the question of getting sparse pairwise
reachability preserver resilient up to k failures for any k ≥ 1. Can there always exist a
pairwise preserver of size o(2kn|P|) for any k failures? We answer this question affirmatively
by providing a randomized polynomial-time construction of a o(2kn|P|) size preserver. We
leave the question of finding an optimal k fault-tolerant pairwise preserver as an important
open problem.
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