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—— Abstract

The role of symmetry in Boolean functions f : {0,1}" — {0,1} has been extensively studied in
complexity theory. For example, symmetric functions, that is, functions that are invariant under
the action of S,,, is an important class of functions in the study of Boolean functions. A function
f:{0,1}" — {0,1} is called transitive (or weakly-symmetric) if there exists a transitive group G of
S, such that f is invariant under the action of G. In other words, the value of the function remains
unchanged even after the input bits of f are moved around according to some permutation o € G.
Understanding various complexity measures of transitive functions has been a rich area of research
for the past few decades.

This work studies transitive functions in light of several combinatorial measures. The question
that we try to address in this paper is what are the maximum separations between various pairs of
combinatorial measures for transitive functions. Such study for general Boolean functions has been
going on for many years. Aaronson et al. (STOC, 2021) have nicely compiled the current best-known
results for general Boolean functions. But before this paper, no such systematic study had been
done on the case of transitive functions.

Separations between a pair of combinatorial measures are shown by constructing interesting
functions that demonstrate the separation. Over the past three decades, various interesting classes
of functions have been designed for this purpose. In this context, one of the celebrated classes of
functions is the “pointer functions”. Ambainis et al. (JACM, 2017) constructed several functions,
which are modifications of the pointer function in Goos et al. (SICOMP, 2018 / FOCS, 2015), to
demonstrate the separation between various pairs of measures. In the last few years, pointer functions
have been used to show separation between various other pairs of measures (Eg: Mukhopadhyay
et al. (FSTTCS, 2015), Ben-David et al. (ITCS, 2017), G6os et al. (ToCT, 2018 / ICALP, 2017)).

However, the pointer functions themselves are not transitive. Based on the various kinds of
pointer functions, we construct new transitive functions, which we use to demonstrate similar
separations between various pairs of combinatorial measures as demonstrated by the original pointer
functions. Our construction of transitive functions depends crucially on the construction of particular
classes of transitive groups whose actions, though involved, help to preserve certain structural features
of the input strings. The transitive groups we construct may be of independent interest in other
areas of mathematics and theoretical computer science.

We summarize the current knowledge of relations between various combinatorial measures of
transitive functions in a table similar to the table compiled by Aaronson et al. (STOC, 2021) for
general functions.
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Separations Between Combinatorial Measures for Transitive Functions

1 Introduction

For a Boolean function f : {0,1}" — {0,1} what is the relationship between its various
combinatorial measures, like deterministic query complexity (D(f)), bounded-error ran-
domized and quantum query complexity (R(f) and Q(f) respectively), zero -randomized
query complexity (Ro(f)), exact quantum query complexity (Qg(f)), sensitivity (s(f)), block
sensitivity (bs(f)), certificate complexity (C(f)), randomized certificate complexity (RC(f)),
unambiguous certificate complexity (UC(f)), degree (deg(f)), approximate degree (aevg( )
and spectral sensitivity (A(f))'? For over three decades, understanding the relationships
between these measures has been an active area of research in computational complexity
theory. These combinatorial measures have applications in many other areas of theoretical
computer science, and thus the above question takes a central position.

In the last couple of years, some of the more celebrated conjectures have been answered -
like the quadratic relation between sensitivity and degree of Boolean functions [21]. We refer
the reader to the survey [12] for an introduction to this area.

Understanding the relationship between various combinatorial measures involves two
parts:

Relationships — proving that one measure is upper bounded by a function of another

measure. For example, for any Boolean function f, deg(f) < s(f)? and D(f) < R(f)2.

Separations — constructing functions that demonstrates separation between two measures.

For example, there exists a Boolean function f with deg(f) > s(f)?. Also there exists

another Boolean function g with D(g) > R(g)?.

Obtaining tight bounds between pairs of combinatorial measures - that is, when the relation-
ship and the separation results match - is the holy grail of this area of research. The current
best-known results for different pairs of functions have been nicely compiled in [2].

For special classes of Boolean functions the relationships and the separations might be
different than that of general Boolean functions. For example, while it is known that there
exists f such that bs(f) = O(s(f)?) [26], for a symmetric function a more tighter result
is known, bs(f) = ©(s(f)). The best-known relationship of bs(f) for a general Boolean
functions is s(f)* [21]. How the various measures behave for different classes of functions has
been studied since the dawn of this area of research.

Transitive Functions. One of the most well-studied classes of Boolean functions is that of
the transitive functions. A function f: {0,1}"™ — {0, 1} is transitive if there is a transitive
group G < S,, such that the function value remains unchanged even after the indices of the
input is acted upon by a permutation from G. Note that, when G = S,, then the function is
symmetric. Transitive functions (also called “weakly symmetric” functions) has been studied
extensively in the context of various complexity measure. This is because symmetry is a
natural measure of the complexity of a Boolean function. It is expected that functions with
more symmetry must have less variation among the various combinatorial measures. A recent
work [7] has studied the functions under various types of symmetry in terms of quantum
speedup. So, studying functions in terms of symmetry is important in various aspects.

For example, for symmetric functions, where the transitive group is .S,, most of the
combinatorial measures become the same up to a constant 2. Another example of transitive
functions is the graph properties. The input is the adjacency matrix, and the transitive group

L For formal definitions of the various measures used in this paper please refer to the full version of this
paper [15].
2 There are still open problems on the tightness of the constants.
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is the graph isomorphism group acting on the bits of the adjacency matrix. [31, 29, 23, 17]
tried to obtain tight bounds on the relationship between sensitivity and block sensitivity for
graph properties. They also tried to answer how low can sensitivity and block sensitivity go
for graph properties?

In papers like [30, 14, 28, 16] it has been studied how low can the combinatorial measures
go for transitive functions. The behavior of transitive functions can be very different from
general Boolean functions. For example, while it is known that there are Boolean functions
for which the sensitivity is as low as ©(logn) where n is the number of effective variables?,
it is known (from [28] and [21]) that if f is a transitive function on n effective variables then
its sensitivity s(f) is at least Q(n'/'2)%. Similar behavior can be observed in other measures
too. For example, it is easy to see that for a transitive function, the certificate complexity
is Q(y/n), while the certificate complexity for a general Boolean function can be as low as
O(logn). Please see the full version of this paper [15] for a more detailed study.

A natural related question is:

What are tight relationships between various pairs of combinatorial measures
for transitive functions?

By definition, the known relationship results for general functions hold for transitive
functions. But tighter relationships may be obtained for transitive functions. On the other
hand, the existing separations don’t extend easily since the example used to demonstrate sep-
aration between certain pairs of measures may not be transitive. Some of the most celebrated
examples are not transitive. For example some of the celebrated function construction like
the pointer function in [4], used for demonstrating tight separations between various pairs
like D(f) and Ro(f), are not transitive. Similarly, the functions constructed using the cheat
sheet techniques [1] used for separation between quantum query complexity and degree, or
approximate degree, are not transitive. Constructing transitive functions which demonstrate
tight separations between various pairs of combinatorial measures is very challenging.

Our Results. We try to answer the above question for various pairs of measures. More pre-
cisely, our main contribution is to construct transitive functions that have similar complexity
measures as the pointer functions. Hence for those pairs of measures where pointer functions
can demonstrate separation for general functions, we prove that transitive functions can also
demonstrate similar separation.

Our results and the current known relations between various pairs of complexity measures
of transitive functions are compiled in Table 1. This table is along the lines of the table in [2]
where the best-known relations between various complexity measures of general Boolean
functions were presented.

Deterministic query complexity and zero-error randomized query complexity are two of
the most basic measures and yet the tight relation between these measures was not known
until recently. In [27] they showed that for the “balanced NAND-tree” function, A-tree,
D(A-tree) > Rg(A-tree)'33.  Although the function A-tree is transitive, the best-known
relationship was quadratic, that is for all Boolean function f, D(f) = O(Ro(f)?). In [4] a
new function, Al, was constructed for which deterministic query complexity and zero-error
randomized query complexity can have a quadratic separation between them, and this
matched the known relationship results. The function in [4] was a variant of the pointer

3 A variable is effective if the function is dependent on it.
% Tt is conjectured that the sensitivity of a transitive function is Q(n'/?).
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functions - a class of functions introduced by [20] that has found extensive usage in showing
separations between various complexity measures of Boolean functions. The function, Al,
also gave (the current best-known) separations between deterministic query complexity and
other measures like quantum query complexity and degree. But the function Al is not
transitive. Using the Al function we construct a transitive function that demonstrates
a similar gap between deterministic query complexity and zero-error randomized query
complexity, quantum query complexity, and degree.

» Theorem 1. There exists a transitive function Iy such that
D(F1) = QQ(F1)*),  D(F1) = Q(Ro(F1)*),  D(Fy) = Q(deg(F1)?).

The proof of Theorem 1 is presented in Section 4. In [4, 9] various variants of the pointer
function have been used to show separation between other pairs of measures like Ry with
R, Qg, deg, and Q, R with d’éé, deg, Qg and sensitivity. Inspired by these functions, we
construct transitive versions that demonstrate similar separation for transitive functions as
general functions.

» Theorem 2. There exists a transitive function Fy such that

Ro(F2) = QR(F2)*),  Ro(F2) = QQe(F2)?),  Ro(F) = Q(deg(F2)%).
» Theorem 3. There exists a transitive function F3 such that

R(F3) = Q(deg(F3)),  R(F3) = Q(deg(F3)*).

The construction of these functions, though more complicated and involved, are similar
in flavor to that of Fj. Due to lack of space, we skip the proofs of Theorem 2 and 3 in
this conference version of this paper. The proofs are available in the full version of this
paper [15]. Using standard techniques, we can also obtain the following theorems as corollaries
to Theorem 3.

» Theorem 4. There exists a transitive function Fy such that Ro(Fy) = Q(Q(Fy)3).
» Theorem 5. There exists a transitive function Fs such that R(Fs) = Q(Qg(Fs)'?).

» Theorem 6. There exists transitive functions Fg such that R(Fg) = Q(s(Fg)?).

Our proof techniques also help us make transitive versions of other functions like that
used in[1] to demonstrate the gap between Q and certificate complexity.

» Theorem 7. There exists a transitive function Fr such that Q(Fy) = Q(C(F7)?).

All our results are compiled (and marked in green) in Table 1.

One would naturally ask what stops us from constructing transitive functions analogous
to the other functions, like cheat sheet-based functions. In fact, one could ask why to use
ad-hoc techniques to construct transitive functions (as we have done in most of our proofs)
and instead why not design a unifying technique for converting any function into a transitive
function that would display similar properties in terms of combinatorial measures °. If one
could do so, all the separation results for general functions (in terms of separation between
pairs of measures) would translate to separation for transitive functions. In Section 5 we
have discussed why such a task is challenging. We argue the challenges of making transitive
versions of the cheat-sheet functions.

5 In [7] they have demonstrated a technique that can be used for constructing a transitive partial function
that demonstrates gaps (between certain combinatorial measures) similar to a given partial function
that need not be transitive. But their construction need not construct a total function even when the
given function is total.
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Table 1 best-known separations between combinatorial measures for transitive functions.

D Ro R C RC bs s A Qe deg Q deg
D 2;2 2;3 2;2 | 2;3 2;3 3;6 [ 4:;6 2:3 2D 4:4 | 44
: T:1 AoV | AoV | AoV T:6 T:3 T:2 T:1 T:1 T:3
Ro ; 2;2 1 2;3 2;3 3;6 | 4;6 2;3 2;3 3;4 | 4;4
: AoV | AoV | AoV T:6 T:3 T:2 T:2 T:4 T:3
R 151 2;2 1| 2;3 2;3 3;6 4;6' 1.5;3 2;3 2;4 [ 4;4
@ : T:5 T:3 A T:3
C 151 151 1.63;3 | 2;4 | 2;4
® > [25] A A
RC 1;1 1;1 1.63;2 ] 2;2 | 2;2
@ @ [25] A A
bs 1;1 1;1 1.63;2 | 2,2 2;2
® @ [25] A A
s 1;1 1;1 1.63;2 | 2,2 2;2
® > [25] A A
\ 1;1 1;1 1:1 1;1 | 151
@ @ (<] <] ]
1;11]133;2 2;2 | 233 ; 1;3 24 1;4
Qe @ A-tree A-tree | AoV | AoV | AoV T:7
deg 151 1;33;2 1;33;2 2;2 | 2;2 2;2 22
) N-tree N-tree AoV | NoV AoV AoV
1:1 1:1 151 2;2 | 2;3 2;3 2;6 1| 2;6
Q @ @ @ T:7 T:7 T:7 T:7 T:7
des 151 151 151 1;2] 1;2 1;2 1;2 1;2
¢l e ® ® @ ® @ @ @

@ Entry a;b in row A and column B represents: for any transitive function f, A(f) = O(B(f))b'*"’(l)7 and there exists a transitive
function g such that A(g) = Q(B(g))*.

@) Cells with a green background are those for which we constructed new transitive functions to demonstrate separations that
match the best-known separations for general functions. The previously known functions that gave the strongest separations were
not transitive. The second row (in each cell) gives the reference to the Theorems where the separation result is proved. Although
for these green cells, the bounds match that of the general functions, for some cells (with a light green color), there is a gap
between the known relationships and best-known separations.

(3) In the cells with a white background, the best-known examples for the corresponding separation were already transitive
functions. For these cells, the second row either contains the function that demonstrates the separation or a reference to the
paper where the separation was proved. So for these cells, the separations for transitive functions matched the current best-known
separations for general functions. Note that for some of these cells, the bounds are not tight for general functions.

) Cells with a yellow background are those where the best-known separations for transitive functions do not match the best-known
separations for general functions.

2 Notations and Background

2.1 Notations and basic definitions

We use [n] to denote the set {1,...,n}. {0,1}" denotes the set of all n-bit binary strings.

For any X € {0,1}" the Hamming Weight of X (denoted |X|) will refer to the number of 1
in X. 0™ and 1™ denotes all 0’s string of n-bit and all 1’s string of n-bit, respectively.

We denote by S,, the set of all permutations on [n]. Given an element o € S,, and a n-bit
string x1,...,x, € {0,1}"™ we denote by o[x1,...,x,] the string obtained by permuting the
indices according to o. That is o[z1,...,Zn] = Z5(), .., T4(,). This is also called the action
of o on the x1,...,x,.

Following are a couple of interesting elements of S,, that will be used in this paper.

» Definition 8. For any n = 2k the flip swaps (2 — 1) and 2i for all 1 < i < k. The
permutation Swap% swaps i with (k+1), for all 1 <1i < k. That is,

flip=(1,2)(3,4)...(n—1,n) & Swap%[ajl,...,x%}:xk+1,...,x2k,x1...,xk.

36:5
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Every integer ¢ € [n] has the canonical logn bit string representation. However the
number of 1’s and 0’s in such a representation is not same for all £ € [n]. The following
representation of ¢ € [n] ensures that for all £ € [n] the encoding has same Hamming weight.

» Definition 9 (Balanced binary representation). For any ¢ € [n], let {1,...,liogn be the
binary representation of the number ¢ where ¢; € {0,1} for all i. Replacing 1 by 10 and 0 by
01 in the binary representation of £, we get a 2logn-bit unique representation, which we call
Balanced binary representation of ¢ and denote as bb({).

In this paper all the functions considered are of form F : {0,1}" — {0,1}*. By Boolean
functions we would mean a Boolean valued function that is of the form f: {0,1}" — {0, 1}.

An input to a function F : {0,1}" — {0, 1}* is a n-bit string but also the input can be
thought of as different objects. For example, if the n = N M then the input may be thought
of as a (N x M)-matrix with Boolean values. It may also be thought of as a (M x N)-matrix.

If ¥ = {0, 1}* then X("*™) denotes an (n x m)-matrix with an element of 3 (that is, a
k-bit string) stored in each cell of the matrix. Note that £("*™) is actually {0,1}""*. Thus,
a function F : ©("*™) — (0,1} is actually a Boolean function from a {0,1}"™* to {0, 1},
where we think of the input as an (n X m)-matrix over the alphabet X.

One particular nomenclature that we use in this paper is that of 1-cell certificate.

» Definition 10 (1-cell certificate). Given a function f : *™) — {0,1} (where ¥ = {0,1}*)
the 1-cell certificate is a partial assignments to the cells which forces the value of the function
to 1. So a 1-cell certificate is of the form (XU {*})("*™) Note the here we assume that the
contents in any cell is either empty or a proper element of ¥ (and not a partial k-bit string).

Another notation that is often used is the following;:

» Notation 11. If A <S,, and B <S,,, are groups on [n] and [m] then the group A x B act
on the cells on the matriz. Thus for any (0,0') € A x B and a M € £"*™) by (a,0')[M]
we would mean the permutation on the cell of M according to (o,0’) and move the contains
in the cells accordingly. Note that the relative position of bits within the contents in each cell
is not touched.

Next, we define the composition of two Boolean functions.

» Definition 12 (Composition of functions). Let f : {0,1}"* — {0,1} and g : {0,1}™ —
{0,1}* be two functions. The composition of f and g, denoted by fog:{0,1}"™ — {0,1},
is defined to be a function on nm bits such that on input © = (x1,...,z,) € {0, 1}, where
each x; € {0,1}™, fog(xy,...,x,) = f(9(z1),...,9(x,)). We will refer f as outer function
and g as inner function.

2.2 Transitive Groups and Transitive Functions

The central objects in this paper are transitive Boolean function. We first define transitive
groups.

» Definition 13. A group G <'S,, is transitive if for alli,j € [n] there exists a 0 € G such
that o (i) = j.

» Definition 14. For f: A™ — {0,1} and G <S,, we say [ is invariant under the action of
G, if for all ay,...,a, € A.

flar, . an) = flasy, - Qo(m))-
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» Observation 15. If A <S,, and B < S,,, are transitive groups groups on [n] and [m] then
the group A X B is a transitive group acting on the cells on the matrix.

There are many interesting transitive groups. The symmetric group is indeed transitive.
The graph isomorphism group (that acts on the adjacency matrix - minus the diagonal - of a
graph by changing the ordering on the vertices) is transitive. The cyclic permutation over
all the points in the set is a transitive group. The following is another non-trivial transitive
group on [k] that we will use extensively in this paper.

» Definition 16. For any k that is a power of 2, the Binary-tree-transitive group Bty is a
subgroup of Si. To describe its generating set we think of group Bty acting on the elements
{1,...,k} and the elements are placed in the leaves of a balanced binary tree of depth logk -
one element in each leaf. Each internal node (including the root) corresponds to an element
in the generating set of Bty. The element corresponding to an internal node in the binary
tree swaps the left and right sub-tree of the node. The permutation element corresponding to
the root node is called the Root-swap as it swaps the left and right sub-tree to the root of the
binary tree.

We now state two claims whose proofs we skip in this version of the paper but are available
in the full version of the paper [15].

> Claim 17. The group Bty is a transitive group.

The following claim describes how the group Bty acts on various encoding of integers.
Recall the balance-binary representation (Definition 9).

> Claim 18. For all ¥ € Btaiogn there is a v € S,, such that for all ¢, j € [n], F[bb(7)] = bb(j)
iff (i) = J.

Now let us consider another encoding that we will using for the set of rows and columns
of a matrix.

» Definition 19. Given a set R of n rows ry,...,r, and a set C of n columns cy,...,c, we
define the balanced-pointer-encoding function € : (R x {0}) U ({0} x C) — {0,1}*1en g5
follows:

E(ri,0) = bb(i) - 018" and, £(0,¢;) = 021°8™ . bb(j).
The following is a claim that is easy to verify.

> Claim 20. Let R be a set of n rows rq,...,7, and C be a set of n columns ¢y, ..., ¢, and
consider the balanced-pointer-encoding function € : (R x {0}) U ({0} x C) — {0,1}41°8™ For
any elementary permutation & in Btyiog, (other than the Root-swap) there is a o € S,, such
that for any (r;,¢;) € (R x {0})U ({0} x C)

GlE(ri, ¢j)] = E(Toi)s Co(s))s

where we assume rg = ¢g = 0 and any permutation of in S,, sends 0 to 0.
If 5 is the root-swap then for any (r;,¢;) € (R x {0}) U ({0} x C)

glE(ri, ¢;)] = Swapy (E(ri, ¢;)) = E(cj,m4).

36:7
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2.3 Pointer function

For the sake of completeness first we will describe the “pointer function” introduced in [4] that
achieves separation between several complexity complexity measures like Deterministic query
complexity, Randomized query complexity, Quantum query complezity etc. This function was
originally motivated from a function in [20]. There are three three variants of the pointer
function that have some special kind of non-Boolean domain, which we call Pointer matriz.
Our function is a special “encoding” of that non-Boolean domain such that the resulting
function becomes transitive and achieves the separation between complexity measures that
matches the known separation between the general functions. Here we will define only the
first variant of the pointer function.

» Definition 21 (Pointer matrix over X). For m,n € N, let M be a (m xn) matriz with m rows
and n columns. We refer to each of the m x n entries of M as cells. Each cell of the matriz
is from a alphabet set X where ¥ = {0,1} x Px P x P and P = {(i,)|i € [m],j € [n]} U{L}.
We call P as set of pointers where, pointers of the form {(i,§)|i € [m],j € [n]} pointing
to the cell (i,7) and L is the null pointer. Hence,each entry x(; ;) of the matriz M is a
4-tuple from X. The elements of the 4-tuple we refer as value, left pointer, right pointer and
back pointer respectively and denote by Value(x(; ;)), LPointer(x(; ;)), RPointer(x(; ;) and
BPointer(x(; j)) respectively where Value € {0,1}, LPointer, RPointer, BPointer € P. We
call this type of matriz as pointer matrix and denote by X™*"™.

A special case of the pointer-matriz, which we call Type, pointer matrix over X, is when
for each cell of M, BPointer € {[n]U L} that is backpointers are pointing to the columns of
the matriz.

Also, in general when, BPointer € {(i,7)|i € [m],7 € [n]} U{L}, we call it a Type,
pointer matrix over X.

Now we will define some additional properties of the domain that we need to define the
pointer function.

» Definition 22 (Pointer matrix with marked column). Let M be an m x n pointer-matrix
over . A column j € [n] of M is defined to be a marked column if there exists exactly one
cell (i,7), i € [m], in that column with entry x(; ;) such that x¢; ;) # (1, L, L, L) and every
other cell in that column is of the form (1, L, 1, 1). The cell (i,7) is defined to be the special
element of the marked column j.

Let n be a power of 2. Let T be a rooted, directed and balanced binary tree with n-leaves
and (n — 1) internal vertices. We will use the following notations that will be used in defining
some functions formally.

» Notation 23. Let n be a power of 2. Let T be a rooted, directed and balanced binary tree
with n-leaves and (n — 1) internal vertices. Labels the edges of T as follows: the outgoing
edges from each node are labeled by either left or right. The leaves of the tree are labeled by
the elements of [n] from left to right, with each label used exactly once. For each leaf j € [n]
of the tree, the path from the root to the leaf j defines a sequence of left and right of length
O(logn), which we denote by T(j).

When n is not a power of 2, choose the largest k € N such that 28 < n, consider a
complete balanced tree with 2F leaves and add a pair of child node to to each n — 2F leaves
starting from left. Define T(j) as before.

Now we are ready to describe the Variant 1 of the pointer function.
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» Definition 24 (Variant 1 [4]). Let ¥™*™ be a Type; pointer matrix where BPointer is a
pointer of the form {j|j € [n]} that points to other column and LPointer, RPointer are as
usual points to other cell. Define Al(y, ) : ¥™*™ — {0,1} on a Type; pointer matrix such
that for all x = (x; ;) € ¥™*™, the function Aly, »)(z4;) evaluates to 1 if and only if it has
a 1- cell certificate of the following form:

1. there exists exactly one marked column j* in M,

2. There is a special cell, say (i*,5*) which we call the special element in the the marked
column j* and there is a balanced binary tree T rooted at the special cell,

3. for each non-marked column j € [n]\{j*} there exist a cell I; such that Value(l;) =0 and
BPointer(l;) = j* where l; is the end of the path that starts at the special element and
follows the pointers LPointer and RPointer as specified by the sequence T'(j). l; exists
for all j € [n]\ {j*} i.e. no pointer on the path is L. We refer l; as the leaves of the tree.

The above function achieves the separation between D vs. Ry and D vs. Q for m = 2n.

Here we will restate some of the results from [4] which we will use to prove the results for
our function:

» Theorem 25 ([4]). The function Al(y, ) in Definition 24 satisfies

D = Q(n?) for m = 2n where m,n € N,

Ro = O(m +n) for any m,n € N,
Q = O(vm + v/n) for any m,n € N.

Though [4] gives the deterministic lower bound for the function Al precisely for 2m x m
matrices following the same line of argument it can be proved that D(€2(n?)) holds for n x n
matrices also. For sake of completeness we give a proof for n X n matrices in the full version
of this paper [15].

» Theorem 26. D(Al, ,)) = Q(n?).

Also [20)’s function realises quadratic separation between D and deg and the proof goes

via UCyi, upper bound. But Al(, .y exhibits the same properties corresponding to UC,,p.

So, from the following observation it follows that Al, ) also achieves quadratic separation
between D and deg.

» Observation 27. deg(Al(, ,)) = O(n) for any n € N.
Another important observation that we need is the following:

» Observation 28 ([4]). For any input X"*" to the function Al, ny (in Definition 24) if
we permute the rows of the matrix using a permutation o, and permute the columns of the
matriz using a permutation o, and we update the pointers in each of the cells of the matriz
accordingly then the function value does not change.

3 High level description of our techniques

Pointer functions are defined over a special domain called pointer matriz, which is a m x n
grid matrix. Each cell of the matrix contains some labels and some pointers that point either
to some other cell or to a row or column . As described in [20], the high level idea of pointer

6 We naturally think of a pointer pointing to a cell as two pointers - one pointing to the row and the
other to the column.
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functions is the usage of pointers to make certificates unambiguous without increasing the
input size significantly. This technique turns out to be very useful to give separations between
various complexity measures as we see in [24], [19] and [4].

Now we want to produce a new function that possesses all the properties of pointer
functions, along with the additional property of being transitive. To do so, first, we will
encode the labels so that we can permute the bits (by a suitable transitive group) while
keeping the structure of unambiguous certificates intact so that the function value remains
invariant. One such natural technique would be to encode the contents of each cell in such a
way that allows us to permute the bits of the contents of each cell using a transitive group
and permute the cells among each other using another transitive group, and doing all of
these while ensuring the unambiguous certificates remains intact 7. This approach has a
significant challenge: namely how to encode the pointers.

The information stored in each cell (other than the pointers) can be encoded using
fixed logarithmic length strings of different Hamming weights - so that even if the strings
are permuted and/or the bits in each string are permuted, the content can be “decoded”.
Unfortunately, this can only be done when the cell’s contents have a constant amount of
information - which is the case for pointer functions (except for the pointers). Since the
pointers in the cell are strings of size O(logn) (as they are pointers to other columns or
rows), if we want to use the similar Hamming weight trick, the size of the encoding string
would need to be polynomial in O(n). That would increase the size of the input compared
to the unambiguous certificate. This would not give us tight separation results.

Also, there are three more issues concerning the encodings of pointers:

As we permute the cells of the matrix according to some transitive group, the pointers

within each cell need to be appropriately changed. In other words, when we move some

cell’s content to some other cell, the pointers pointing to the previous cell should point to
the current cell now.

If a pointer is encoded using a certain t-bit string, different permutations of bits of the

encoded pointer can only generate a subset of all ¢-bit strings.

For example: if we encode a pointer using a string of Hamming weight 10 then however

we permute the bits of the string, the pointer can at most be modified to point to cells (or

rows or columns) the encoding of whose pointers also have Hamming weight 10. (The
issue is that permuting the bits of a string cannot change the Hamming weight of a string).

The encoding of all the pointers should have the same Hamming weight.

The encoding of the pointers has to be transitive. That is, we should be able to permute

the bits of the encodings of the pointer using a transitive group in such a way that either

the pointer value does not change or as soon as the pointer values changes, the cells gets
permuted accordingly - kind of like an “entanglement”.

The above three problems are somewhat connected. Our first innovative idea is to use
binary balance representation (Definition 9) to represent the pointers. This way, we take care
of the second issue. For the first and third issues, we define the transitive group — both the
group acting on the contents of the cells (and hence on the encoding of the pointers) and the
group acting on the cells itself — in a “entangled” manner. For this we induce a group action

7 Here, we use the word “encode” since we can view the function defined only over codewords, and when
the input is not a codeword, then it evaluates to 0. In our setting, since we are trying to preserve the
one-certificates, the codewords are those strings where the unambiguous certificate is encoded correctly.
At the same time, we must point out that the encoding of an unambiguous certificate is not necessarily
unique.
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acting on the nodes of a balanced binary tree and generate a transitive subgroup in 5,, and
S210gn With the same action which will serve our purpose (Definition 16, Claim 18). This
helps us to permute the rows (or columns) using a permutation while updating the encoding
of the pointers accordingly.

By Claim 18, for every allowed permutation o acting on the rows (or columns), there
is a unique ¢ acting on the encodings of the pointers in each of the cells such that the
pointers are updated according to ¢. This still has a delicate problem. Namely, each pointer
is either pointing to a row or column. But the permutation & has no way to understand
whether the encoding on which it is being applied points to a row or column. To tackle this
problem, we think of the set of rows and columns as a single set. All of them are encoded by
a string of size (say) 2t, where for the rows, the second half of the encoding is all 0 while
the columns have the first ¢ bits all 0. This is the encoding described in Definition 19 using
binary balanced representation. However, this adds another delicate issue about permuting
between the first ¢ bits of the encoding and the second ¢ bits.

To tackle this problem, we modify the original function appropriately. We define a slightly
modified version of existing pointer functions called ModAl. This finally helps us obtain our
“transitive pointer function,” which has almost the same complexities as the original pointer
function.

We have so far only described the high-level technique to make the 1st variation of pointer
functions (Definition 24) transitive where there is the same number of rows and columns.
The further variations need more delicate handling of the encoding and the transitive groups
- though the central idea is similar.

4 Proof of Theorem 1

4.1 Transitive Pointer Function F; for Theorem 1

Our function Fy : I'"*™ — {0,1} is a composition of two functions - an outer function
ModAl(, ) : ¥rxn 5 10,1} and an inner function Dec : T' — . We will set T' to be
{07 1}96 logn.

The outer function is a modified version of the Al, , - pointer function described in [4]
(see Definition 24 for a description). The function Al(, ,) takes as input a (n x n)-matrix
whose entries are from a set ¥ and the function evaluates to 1 if a certain kind of 1-cell-
certificate exists. Let us define a slightly modified function ModAl, ;) : ynxn {0,1}
where ¥ = ¥ x {F,-}. We can think of an input A € £¥"*™ as a pair of matrices B € X"*"
and C € {F,+}""". The function ModAl(, ) is defined as

Either, (i) Al(,,n)(B) =1, and, all the cells in the
1-cell-certificate have I in the corresponding cells in C'
Or, (ii) Al(y,n)(B") = 1, and, all the cells in the
1-cell-certificate have H in the corresponding cells in C”

MOdAl(nyn)(A) =1iff

Note that both the two conditions (i) and (ii) cannot be satisfied simultaneously. From
this it is easy to verify that the function ModAl, ) has all the properties as Al(, ,) as
described in Theorem 25.

The inner function Dec (we call it a decoding function) is function from T to X, where
I' =96logn. Thus our final function is

Fy := (ModAl(, ) o Dec) : """ — {0,1}.

36:11
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4.1.1 Inner Function Dec

The input to Al, ) is a Type; pointer matrix ¥"*". Each cell of a Type; pointer matrix
contains a 4-tuple of the form (Value, LPointer, RPointer, BPointer) where Value is either 0 or
1 and LPointer, RPointer are pointers to the other cells of the matrix and BPointer is a pointer
to a column of the matrix (or can be a null pointer also). Hence, ¥ = {0, 1} x [n]? x [n]? x [n].
For the function Al, ) it was assumed (in [4]) that the elements of ¥ is encoded as a
k-length® binary string in a canonical way.

The main insight for our function Fj := (I\/IodAl(n,n) o Dec) is that we want to maintain
the basic structure of the function Al, ) (or rather of ModAl, y) but at the same time
we want to encode the ¥ = 3 x {F, -} in such a way that the resulting function becomes
transitive. To achieve this, instead of having a unique way of encoding an element in ¥ we
produce a number of possible encodings? for any element in ¥. The inner function Dec is
therefore a decoding algorithm that given any proper encoding of an element in ¥ will be
able to decode it back.

For the ease of understanding we start by describing the possible “encodings” of %, that
is by describing the pre-images of any element of ¥ in the function Dec.

“Encodings” of the content of a cell in ¥”*". We will encode any element of ¥ using a
string of size 96 log n bits. Recall that, an element in ¥ is of the form (V, (rz,cr), (rr, cr), (cB),
T), where V is the Boolean value, (ry,cr), (rr,cr) and cp are the left pointer, right pointers
and bottom pointer respectively and T" take the value - or 4. The overall summary of the
encoding is as follows:
Parts: We will think of the tuple as 7 objects, namely V', rp, cr, g, cgr, cg and T. We
will use 16 logn bits to encode each of the first 6 objects. The value of T will be encoded
in a clever way. So the encoding of any element of ¥ contains 6 parts - each a binary
string of length 16 logn.
Blocks: Each of 6 parts will be further broken into 4 blocks of equal length of 4logn.
One of the blocks will be a special block called the “encoding block”.

Now we explain, for a tuple (V, (rr,cr), (rr,cr), (cg),T) what is the 4 blocks in each part.
We will start by describing a “standard-form” encoding of a tuple (V, (rr,cr), (rr,cr), (¢cg),T)
when T =F. Then, we will extend it to describe the standard for encoding the tuple when
T =-. And finally we will explain all other valid encoding of the tuple by describing all the
allowed permutations on the bits of the encoding.

Standard-form encoding of (V, (rL,cr), ("r,cr), (c8),T) where T =F. For the stand-
ard form of encoding we will assume that the information of V,r,cr,rg, cr,cp are stored
in parts P1, P2, P3, P4, P5 and P6 respectively. For all ¢ € [6], the part P; with have blocks
By, By, B3 and By, of which the block B; will be the encoding-block. The encoding will
ensure that every parts within a cell will have distinct Hamming weight. The description is
also compiled in the Table 2.

For part P1 (that is the encoding of V') the encoding block By will store ¢ - ¢5 where ¢1 be
the 2logn bit binary string with Hamming weight 2logn and /5 is any 2logn bit binary
string with Hamming weight 2logn —1— V. The blocks By, Bs and By will store a 4 logn
bit string that has Hamming weight 4logn, 2logn 4+ 1 and 2logn + 2 respectively. Any

8 For the canonical encoding k = (1 + 5logn) was sufficient
9 We use the term “encoding” a bit loosely in this context as technically an encoding means a unique
encoding. What we actually mean is the pre-images of the function Dec.



S. Chakraborty, C. Kayal, and M. Paraashar 36:13

Table 2 Standard form of encoding of element (V, (rz,cL), (rr, cr),cB, ) by a 96logn bit string
that is broken into 6 parts Pi,..., Ps of equal size and each Part is further broken into 4 Blocks
Bi1, B2, Bz and Ba. So all total there are 24 blocks each containing a 4 log n-bit string. For the stand-
ard form of encoding of element (V, (rr,cr), (rr,cr),cr, ) we encode (V, (rr,cr), (rr,cr),cB,F)
in the standard form as described in the table and then apply the Swap 1 on each block. The last
column of the table indicates the Hamming weight of each Part.

cee B, “encoding”-block By Bs By Hamming weight
P1 || €149, where |¢1] = 2logn, and 4logn 2logn+1 | 2logn+2 || 12logn+2-V
|ta] =2logn —1—-V

P2 E(rr,0) 2logn+3 | 2logn+1 | 2logn + 2 Tlogn +6
P3 E(0,cr) 2logn+4 | 2logn+1 | 2logn + 2 Tlogn+7
P4 E(rg,0) 2logn+5 | 2logn+1 | 2logn + 2 Tlogn +8
P5 £(0,cR) 2logn+6 | 2logn+1 | 2logn + 2 Tlogn+9
P6 E(0,cp) 2logn+7 | 2logn+1 | 2logn + 2 Tlogn + 10

fixed string with the correct Hamming weight will do. We are not fixing any particular
string for the blocks Bs, B3 and By to emphasise the fact that we will be only interested
in the Hamming weights of these strings.

The encoding block B1 for parts P2, P3, P4, P5 and P6 will store the string &(ryp,0),
E(0,¢cr), E(rR,0), £(0,¢,) and £(0,Cp) respectively, where £ is the Balanced-pointer-
encoding function (Definition 19). For part P; (with 2 < i < 6) block By, B3 and By will
store any 4logn bit string with Hamming weight 2logn+ 1414, 2logn+ 1 and 2logn + 2
respectively.

Standard form encoding of (V, (rr,cL), (*r,cr), (cB),T) where T' =-. For obtain-
ing a standard-form encoding of (V,(rp,cr), (rr,cr),(cg),T) where T =, first we en-
code (V,(rp,cr),(rr,cr),(cp),T) where T =F using the standard-form encoding. Let
(P1, P2,..., P6) be the standard-form encoding of (V, (rr,cr), (Tr,cr), (cg),T) where T' =I.
Now for each of the block apply the Swap 1 operator.

Valid permutation of the standard form. Now we will give a set of valid permutations to

the bits of the encoding of any element of ¥. The set of valid permutations are classified

into into 3 categories:

1. Part-permutation: The 6 parts can be permuted using any permutation from Sg

2. Block-permutation: In each of the part, the 4 blocks (say Bi, Ba, Bs, B4) can be permuted
is two ways. (Bj1, Be, Bs, B4) can be send to one of the following:

(a) Slmple Block Swap: (Bg, B47 Bl, B2) (b) Block th (BQ, B17 ﬂlp(Bg), ﬂlp(B4))

The “decoding” function Dec : {0,1}°6los" _ 5,
Identify the parts containing the encoding of V', vy, ¢r, g, cr and cg. This is possible
because every part has a unique Hamming weight.
For each part identify the blocks. This is also possible as in any part all the blocks have
distinct Hamming weight. Recall, the valid Block-permutations, namely Simple Block
Swap and Block Flip. By seeing the positions of the blocks one can understand if flip was
applied and to what and using that one can revert the blocks back to the standard-form
(recall Definition 9).

ICALP 2022
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In the part containing the encoding of V' consider the encoding-block. If the block is of
the form {(¢1¢5) such that |¢1| = 2logn, [¢2] < 2logn — 1} then T' = {F}. If the block is
of the form {(¢3¢;)such that |[¢1] = 2logn, [¢3] < 2logn — 1} then T = {-}.

By seeing the encoding block we can decipher the original values and the pointers.

If the 96 logn bit string doesn’t have the form of a valid encoding, then decode it as
(0,L,1,1).

4.2 Proof of Transitivity of the function

We start with describing the transitive group for which F} is transitive.

The Transitive Group. We start with describing a transitive group T acting on the cells
of the matrix A. The matrix has rows rq,...,r, and columns cy,...,c,. And we use the
encoding function £ to encode the rows and columns. So the index of the rows and columns
are encoded using a 4logn bit string. A permutation from Btyiogn (see Definition 16) on
the indices of a 4logn bit string will therefore induce a permutation on the set of rows and
columns which will give us a permutation on the cells of the matrix. We will now describe
the group 7T acting on the cells of the matrix by describing the permutation group T acting
on the indices of a 4logn bit string. The group 7 will be the group Btyiogn acting on the set
[4logn]. We will assume that logn is a power of 2. The group 7 with be the resulting group
of permutations on the cells of the matrix induced by the group T acting on the indices on
the balanced-pointer-encoding. Note that 7 is acting on the domain of £ and T is acting on
the image of £. Also T is a transitive subgroup of S4iegn from Claim 17.

» Observation 29. For any 1 < i < 2logn consider the permutation “ith-bit-flip” in T that
applies the transposition (2i — 1,2i) to the indices of the balanced-pointer-encoding. Since the
E-encoding of the row (ry,0) uses the balanced binary representation of k in the first half and
all zero sting in the second half, the jth bit in the binary representation of k is stored in the
2j — 1 and 2j-th bit in the E-encoding of r;. So the j-th-bit-flip acts on the sets of rows by
swapping all the rows with 1 in the j-th bit of their index with the corresponding rows with
0 in the j-th bit of their index. Also, if i > logn then there is no effect of the i-th-bit-flip
operation on the set of rows. Similarly for the columns.

Using Observation 29 we have the following claim.

> Claim 30. The group T acting on the cells of of the matrix is a transitive group. That is,
for all 1 <y, 71,12, j2 < n there is a permutation o € T such that al€(i1,0)] = E(ia,0) and
a[€(0,71)] = (0, j2). Or in other words, there is a ¢ € T acting on the cell of the matrix that
would take the cell corresponding to row r;; and column c;, to the cell corresponding to row
T3, and column c;, .

From the Claim 30 we see the group 7 acting on the cells of of the matrix is a transitive.
But it does not touch the contents within the cells of the matrix. But the input to the
function Fy contains element of T' = {0,1}61°8™ in each cell. So we now need to extend the
group 7 to a group G that acts on all the indices of the bits of the input to the function F3.

Recall that the input to the function Fj is a (n x n)-matrix with each cell of matrix
containing a binary string of length 96 log n which has 6 parts of size 16logn each and each
part has 4 blocks of size 4logn each. We classify the generating elements of the group G
into 4 categories:

1. Part-permutation: In each of the cells the 6 parts can be permuted using any permutation
from Sg
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2. Block-permutation: In each of the Parts the 4 blocks can be permuted in the following
ways. (B1, Ba, B3, By) can be send to one of the following
a. Simple Block Swap: (Bs, B4, B1, B2)
b. Block Flip (#1): (Ba, By, flip(Bs), flip(By))
c. Block Flip (#2)1°: (flip(By), flip(B2), By, B3)
3. Cell-permutation: for any o € T the following two action has to be done simultaneously:
a. (Matrix-update) Permute the cells in the matrix according to the permutation o. This
keeps the contents within each cells untouched - it just changes the location of the
cells.
b. (Pointer-update) For each of blocks in each of the parts in each of the cells permute
the indices of the 4log n-bit strings according to o, that is apply & € T corresponding
to o.

We now have the following theorems that would prove that the function F} is transitive.

» Theorem 31. G is a transitive group and the function Fy is invariant under the action of
the G.

Proof of Theorem 31. To prove that the group G is transitive we show that for any indices
P, q € [96n? log n] there is a permutation o € G that would take p to g. Recall that the string
{0, 1}96”2 logn i a matrix T("*™) with T' = {0,1}61°¢™ and every element in T" is broken
into 6 parts and each part being broken into 4 block of size 4logn each. So we can think
of the index p as sitting in k,th position (1 < k, < 4logn) in the block B, of the part P,
in the (r}, ¢p)-th cell of the matrix. Similarly, we can think of ¢ as sitting in kysth position
(1 < kg <4logn) in the block B, of the part P, in the (ry, ¢g)-th cell of the matrix.

We will give a step by step technique in which permutations from G can be applied to
move p to q.

Step 1: Get the positions in the block correct: If k, # k, then take a permutation
& from 7 that takes k, to k4. Since 7T is a transitive so such a permutation exists. Apply
the cell-permutation o € T corresponding to . As a result the index p can be moved to
a different cell in the matrix but, by the choice of & its position in the block in which it

is will be k4. Without loss of generality, we assume the the cell location does not change.

Step 2: Get the cell correct: Using a cell-permutation that corresponds to a series of
“bit-flip” operations change r, to r4 and ¢, to ¢,. Since one bit-flip operations basically
changes one bit in the binary representation of the index of the row or column such a
series of operations can be made.

Since each bit-flip operation is executed by applying the bit-flips in each of the blocks so
this might have once again changed the position of the index p in the block. But, even
if the position in the block changes it must be a flip operation away. Or in other word,
since in the beginning of this step k, = kg, so if kq is even (or odd) then after the series
bit-flip operations the position of p in the block is either k, or (kg — 1) (or (kg +1)).
Step 3: Align the Part: Apply a suitable permutation to ensure that the part P,
moves to part F,. Note this does not change the cell or the block within the part or the
position in the block.

10 Actually this Block flip can be generated by a combination of Simple Block Swap and Block Flip (#1)
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Step 4: Align the Block: Using a suitable combination of Simple Block Swap and
Block Flip ensures the Block number gets matched, that is B, goes to B,. In this case
the cell or the Part does not change. But depending on whether the Block Flip operation
is applied the position in the block can again change. But, the current position in the
block k), is at most one flip away from £&,.

Step 5: Apply the final flip: It might so happen that already we a done after the last

step. If not we know that the current position in the block £, is at most one flip away

from k,. So we apply the suitable Block-flip operation. Thus will not change the cell
position, Part number, Block number and the position in the block will match.

Hence we have proved that the group G is transitive. Now we show that the the function Fj

is invariant under the action of G, i.e., for any elementary operations 7 from the group G

and for any input T("*™) the function value does not change even if after the input is acted

upon by the permutation 7.

Case 1: 7 is a Part-permutation: It is easy to see that the decoding algorithm Dec is
invariant under Part-permutation. This was observed in description of the decoding
algorithm Dec in Section 4.1.1. So clearly that the function F} is invariant under any
Part-permutation.

Case 2: 7 is a Block-permutation: Here also it is easy to see that the decoding algorithm
Dec is invariant under Block-permutation. This was observed in description of the decoding
algorithm Dec in Section 4.1.1. Thus Fj is also invariant under any Block-permutation.

Case 3: 7 is a Cell-permutation From Observation 28 it is enough to prove that when we
permute the cells of the matrix we update the points in the cells accordingly.

Let m € T be a permutation that permutes only the rows of the matrix. By Claim 20, we

see that the contents of the cells will be updated accordingly. Similarly if 7 only permute

the columns of the matrix we will be fine.

Finally, if © swaps the row set and the column set (that is if 7 makes a transpose
of the matrix) then for all ¢ row i is swapped with column 4 and it is easy to see that
7[€(3,0)] = £(0,4). In that case the encoding block of the value part in a cell also gets
swapped. This will thus be encoding the T value as . And so the function value will not be
affected as the T' = will ensure that one should apply the w that swaps the row set and the
column set to the input before evaluating the function. |

4.3 Properties of the Function
> Claim 32. Deterministic query complexity of Fy is Q(n?).

Proof. The function ModAl, ) is a “harder” function than Al, ,y. So D(ModAl, ) is at
least that of D(Al(, ). Now since, F is (ModAl(mn) o Dec) so clearly the D(Fy) is at least
D(Al(,,n))- Theorem 26 proves that D(Al(, ) is Q(n?). Hence D(Fy) = Q(n?). <

The following Claim 33 follows from the definition of the function ModAl,, ).

> Claim 33. The following are some properties of the function ModAl, )
1. Ro(MOdAl(nm)) < 2R0(A1(n7n)) + O(TL logn)

. Q(MOdAl(nm)) < QQ(Al(nﬁn)) + O(nlogn)

. deg(ModAl, ,,)) < 2deg(Al(, ) + O(nlogn)

w N

Finally, from “composition theorem” (formal proof of which is presented in the full version
of the paper [15]) we see that the Ro(F1), Q(F1) and deg(F) are at most O(Ro(ModAl,, ) -
logn), O(Q(ModAl, ,) - logn) and O(deg(ModAl, , - logn), respectively. So combining
this fact with Claim 32, Claim 33 and Theorem 25 (from [4]) we have Theorem 1.
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5 Challenges in transitive versions of “cheat sheet” based functions

In this section we show that it is not possible to give a quadratic separation between degree
and quantum query complexity for transitive functions by modifying the cheat sheet function
using the techniques in [1] which go via unambiguous certificate complexity.

Let us start by recalling the cheat sheet framework from [1]. Let f: {0,1}"™ — {0,1} be a
total Boolean function. Let C(f) be its certificate complexity and Q(f) be its bounded-error
quantum query complexity. We consider the following cheat sheet function, which we denote
by fCS,t . {O’1}n><logt+t><logt><0(f)><logn N {0’1}:

There are logt copies of f on disjoint sets on inputs denoted by f1,..., fiog:-

There are ¢t cheat sheets: each cheat sheet is a block of (logt x C(f) x logn) many bits

Let z1,...,%10g¢ € {0,1}" denote the input to the logt copies of f and let Yi,...,Y;

denote the t cheat sheets.

Let £ = (f(z1),..., f(z0gt)). foss evaluates to 1 if and only if Y7 is a valid cheat sheet.

Separations between various complexity measures was shown in [1] using the cheat sheet
framework. In [1], the separations that lower bound bounded-error quantum query complexity
in terms of other complexity measures, for example degree, are obtained as follows:

1. Start with a total function f: {0,1}" — {0,1} that has quadratic separation between

quantum query complexity and certificate complexity: Q(f) = Q(n) and C(f) = O(\/n).

Consider the cheat sheet version of this function fog, with t = n'0.

2. Lower bound Q(fcs,t), for t = n'% by Q(f). This uses the hybrid method ([10]) and
strong direct product theorem ([22]).

3. Upper bound degree of fcs+ by using the upper bound on the unambiguous certificate
complexity of fog+.

Instead of degree, one might use approximate degree in the third step above for a suitable

choice of f (see [1] for details).

A natural approach to obtain a transitive function with gap between a pair of complexity
measures is to modify the cheat sheet framework to make it transitive. One possible
modification is to allow a poly-logarithmic blowup in the input size of the resulting transitive
function while preserving complexity measures of the cheat sheet function that are of interest
(upto poly-logarithmic factors).

We show, however, that it is not possible to obtain a quadratic separation between degree
and quantum query complexity for transitive functions by modifying the cheat sheet function
using the techniques in [1] which go via unambiguous certificate complexity. The reason for
this is that the unambiguous certificate complexity of a transitive cheat sheet function on
N-bits is Q(v/N) (see Observation 34) whereas we show (see Lemma 35) that the quantum
query complexity of such a function is o(N).

Note that this does not mean that cheat sheet framework can not be made transitive
to show such a quadratic gap. If the cheat sheet version of a function that is being made
transitive has a better degree upper bound than that given by unambiguous certificate
complexity then a better gap might be possible.

To formalize the above discussion we first need the following observation that lower
bounds the certificate complexity of any transitive function.

» Observation 34 ([30]). Let f: {0,1}N — {0,1} be a transitive function, then C(f) > v/N.

Next, we upper bound on quantum query complexity of cheat sheet function using
quantum amplitude amplification ([11]). The details of proof of the following lemma can be
found in the full version of this paper [15].
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» Lemma 35. The quantum query complexity of fosy is O(Vt x logt x \/n x logn).

The cheat sheet version of f, fos., is a function on ©(n + C(f)t) many variables, where
t is polynomial in n. From the cheat sheet property the unambiguous certificate complexity
of fos.e, denoted by UC(fas.), is ©(C(f)).

Let f/c\;g be a modified transitive version of fcg: that preserves the quantum query
complexity and certificate complexity of fcs: upto poly-logarithmic factors, respectively.
From Observation 34 it follows that UC(]”/(;;) = Q(y/n+ C(f)t). On the other hand, since

—

fcs.t preserves the certificate complexity upto poly-logarithmic factors, UC(%) = 5(0 ().
This implies that ¢ = O(C(f)). Lemma 35 that Q(fcs,t) is at most O(C(f)Vt). Thus in
order to achieve quadratic separation between UC and Q, ¢ has to be Q(C(f)?).

We end this section by giving a concrete approach towards showing separation between
degree and quantum query complexity for a transitive functions using the cheat sheet
method. We believe the it is possible to start with fosy, for transitive function f and
t = \/n and convert it to a transitive function that preserves the unambiguous certificate
complexity and quantum query complexity upto poly-logarithmic factors, while incurring a
poly-logarithmic blowup in the input size. However, we do not know how to prove quantum
query complexity lower bound matching our upper bound from Lemma 35 for ¢ = y/n. We
make the following conjecture towards this end, which, if true, implies that for a transitive

function £, Q(f) = Q(deg(f)"/*).
» Conjecture 36. There exists a transitive function f : {0,1}" — {0,1} with C(f) = O(v/n)

and Q(f) = Q(n). Let fog sm be the cheat sheet version of f with \/n cheat sheets. Then
Q(fcs,ﬁ) = Q(n3/4)~

It was showed in [1] that the quantum query complexity of the cheat function fcgsy, i.e.
Q(fcs.t), is lower bounded by Q(f), when ¢ = n'%. Their proof goes via he hybrid method
([10]) and strong direct product theorem ([22]). Is is interesting to find the the constant
smallest ¢ such that Q(fosne) = QUQ(f)). We know that such a ¢ must be at least than 1
(from Lemma 35) and is at most 10 (from [1]). We state this formally below:

» Question 37. Let f:{0,1}" — {0,1} be a non-constant Boolean function and let fcsne
be its cheat sheet version with n® cheat sheets. What is the smallest ¢ such that the following

is true Q(fosne) = QQ(S)).

6 Conclusion

As far as we know, this is the first paper that presents a thorough investigation on the
relationships between various pairs of complexity measures for transitive function.

The current best-known relationships and best-known separations between various pairs
of measures for transitive functions are summarized in the Table 1. Unfortunately, a number
of cells in the table are not tight. In this context, we would like to point out some important
directions:

For some of these cells, the separation results for transitive functions are weaker than

that of the general functions. A natural question is the following: why can’t we design

a transitive version of the general functions that achieve the same separation? For

some cases, like the cheat sheet-based functions, we discuss the difficulties and possible

directions in Section 5. Thus following is a natural question.

» Open Problem 38. For a pair of complexity measures for Boolean functions whose best-
known separations are achieved via cheat sheets, obtain similar separations for transitive
Boolean functions.
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A total function was constructed in [13] that demonstrates quadratic separations between
approximate degree with sensitivity and several other complexity measures. It is thus
natural to investigate the following open problem.

» Open Problem 39. Come up with transitive functions that achieve similar separations
for those pair of measures whose best-known separations are shown by [13].

Recently [8], [5] and [6] came up with new classes of Boolean functions, starting with the
HEX (see [8]) and EAH (see [6]) functions, that exhibit improved separations between
certificate complexity and other complexity measures using the.

In light of these recent developments is important to ask whether similar separations can
be shown for transitive functions. Following open problem is a natural starting point.

» Open Problem 40. Can the HEX and FAH functions be modified to a transitive
functions, while preserving its desired complexity measures upto poly-logarithmic factors?

While we have been concerned only with lower bounds in this paper, it is an exciting
research direction to bridge the gap between complexity measures of transitive Boolean
functions by providing improved upper bounds.

» Open Problem 41. Bridge the gaps in Table 1 by coming up with better upper bounds
on complexity measures for transitive functions.

In the full version of this paper, [15], we summarize the results on how low can individual

complexity measures go for transitive function. Even with the recent results of [21] and [2],

there are significant gaps between the best-known lower and upper bounds in this case which

gives another set of open problems to investigate in the study of combinatorial measures of

transitive Boolean functions.
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