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Abstract
We study a bilevel optimization problem which is a zero-sum Stackelberg game. In this problem,
there are two players, a leader and a follower, who pick items from a common set. Both the leader and
the follower have their own (multi-dimensional) budgets, respectively. Each item is associated with
a profit, which is the same to the leader and the follower, and will consume the leader’s (follower’s)
budget if it is selected by the leader (follower). The leader and the follower will select items in a
sequential way: First, the leader selects items within the leader’s budget. Then the follower selects
items from the remaining items within the follower’s budget. The goal of the leader is to minimize
the maximum profit that the follower can obtain. Let sA and sB be the dimension of the leader’s
and follower’s budget, respectively. A special case of our problem is the bilevel knapsack problem
studied by Caprara et al. [SIAM Journal on Optimization, 2014], where sA = sB = 1. We consider
the general problem and obtain an (sB + ϵ)-approximation algorithm when sA and sB are both
constant. In particular, if sB = 1, our algorithm implies a PTAS for the bilevel knapsack problem,
which is the first O(1)-approximation algorithm. We also complement our result by showing that
there does not exist any (4/3 − ϵ)-approximation algorithm even if sA = 1 and sB = 2. We also
consider a variant of our problem with resource augmentation when sA and sB are both part of the
input. We obtain an O(1)-approximation algorithm with O(1)-resource augmentation, that is, we
give an algorithm that returns a solution which exceeds the given leader’s budget by O(1) times, and
the objective value achieved by the solution is O(1) times the optimal objective value that respects
the leader’s budget.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Bilevel Integer Programming, Interdiction Constraints, Knapsack

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.39

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2204.11106 [7]

Funding Lin Chen: NSF No. 2004096
Guochuan Zhang: NSFC Key Program No. 12131003

1 Introduction

In recent years, there is an increasing interest in adopting the Stackelberg competition
model [16] to address the critical security concern that arises in protecting our ports, airports,
transportation, and other critical national infrastructures (see, e.g., [1, 29, 33]). In these
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problems, the attacker’s target is to maximize the illicit gain, while the defender tries to
mitigate the attack by minimizing the attacker’s objective through deploying defending
resources.

In this paper, we consider an abstract model for general defending problems called
interdiction with packing constraints (IPC). In IPC, given are a set of items, together with a
leader and a follower. Both the leader and the follower have their own (multi-dimensional)
budgets, respectively. Each item is associated with a profit, which is the same to the leader
and the follower, and will consume the leader’s (follower’s) budget if it is selected by the
leader (follower). The leader and the follower will select items in a sequential way: First,
the leader selects items within the leader’s budget. Then the follower selects items from
the remaining items within the follower’s budget. The goal of the leader is to minimize the
maximum profit that the follower can obtain. IPC captures the general setting where the
follower is the attacker who gets profit by attacking items, and the leader is the defender
who tries to minimize the attacker’s gain by protecting a subset of items.

IPC can be formulated as a bilevel integer program (IP) as follows. Denote by I =
{1, 2, · · · , n} the set of items. Each item j ∈ I is associated with a profit pj ∈ Q>0, an
sA-dimensional cost vector Aj ∈ QsA

≥0 to the leader and an sB-dimensional weight vector
Bj ∈ QsB

≥0 to the follower. The leader and the follower have their own budget vectors, denoted
by a ∈ QsA

≥0 and b ∈ QsB

≥0, respectively. We introduce 0-1 variables xj and yj for each j ∈ I

as the decision variables for the leader and the follower. More precisely, if the leader chooses
item j, then xj = 1, otherwise xj = 0. Similarly, yj = 1 if the follower chooses item j and
yj = 0 otherwise. Denote by x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), p = (p1, p2, . . . , pn)
and 1 = (1, . . . , 1︸ ︷︷ ︸

n

). IPC can be formulated as a bilevel program IPC(I, a, b) as follows:

IPC(I, a, b) : min
x

py (1a)

s.t. Ax ≤ a (1b)
x ∈ {0, 1}n (1c)

where y solves the following:
max

y
py (1d)

s.t. By ≤ b (1e)
x + y ≤ 1 (1f)
y ∈ {0, 1}n (1g)

where A = (A1, · · · , An) and B = (B1, · · · , Bn) are sA ×n and sB ×n non-negative rational
matrices, respectively.

The most relevant prior work to our IPC model is the well-known knapsack interdiction
problem introduced by DeNegre [14], which is the special case of IPC where sA = 1 and
sB = 1. Very recently, Caprara et al. [4] proved that DeNegre’s knapsack interdiction
problem is

∑p
2-complete and strongly NP-hard, which also implies the

∑p
2-completeness

and strongly NP-hardness for IPC. Caprara et al. showed a polynomial time approximation
scheme (PTAS) for a special case of knapsack interdiction problem where the profit of an
item is equal to its weight to the follower.

Except for the knapsack interdiction problem, we are not aware of any approximation
algorithms for other special cases of IPC. However, if we relax the follower’s problem by
allowing y to take fractional value, then there are several research works in the literature.
The most relevant work is the packing interdiction problem studied by Dinitz and Gupta [15],
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where the follower’s problem is given by max{
∑

j pj(1 − xj)yj : By ≤ b, y ≥ 0}, while the
leader’s constraints are the same as Equation 1b and Equation 1c except that sA = 1. Dinitz
and Gupta provided an approximation algorithm whose ratio depends on the sparsity of the
matrix B. Their techniques crucially rely on the fact that y can take fractional value, and
therefore duality theory can be applied to the follower’s problem, allowing the bilevel problem
to be transformed to a single level problem. Besides the packing interdiction problem, quite
a few graph interdiction problems have been studied in the literature, where the follower’s
problem is a standard graph optimization problem, and the leader can remove edges or
vertices to minimize the follower’s optimal objective value on the graph after edge-removal
or vertex-removal. On planar graphs, polynomial time approximation schemes (PTASs) were
obtained for network flow interdiction [32, 37] and matching interdiction [28]. On general
graphs, approximation algorithms were also obtained for, e.g., connectivity interdiction [38],
minimum spanning tree interdiction [26, 39], matching interdiction [15, 36], network flow
interdiction [3,9,10], etc. All of these algorithms crucially rely on the follower’s specific graph
optimization problem and do not apply directly to IPC.

Our Contributions

The main contribution of this paper is an (sB + ϵ)-approximation polynomial time algorithm
for IPC when sA and sB are both constant. In particular, when sB = 1, our algorithm is a
PTAS. Since the knapsack interdiction problem is a special case of IPC when sA = sB = 1,
our result gives the first O(1)-approximation algorithm for this problem. To complement our
result, we also show that IPC does not admit any (4/3 − ϵ)-approximation algorithm even if
sB = 2 and sA = 1, assuming P ̸= NP . This implies that the PTAS for sB = 1 cannot be
further extended to the case of sB ≥ 2.

We also consider a natural variant of IPC where the leader’s budget can be violated.
For this variant we obtain a ( ρ

1−α , 1
α )-bicriteria approximation algorithm for any α ∈ (0, 1),

which runs in polynomial time when sA and sB are arbitrary (not necessarily polynomial in
the input size). More precisely, the algorithm takes as input two oracles, a ρ-approximation
algorithm to the follower’s optimization problem max{py : By ≤ b, y ∈ {0, 1}n}; and a
separation oracle for the leader’s problem that given any x = x0, it either asserts that
Ax0 ≤ a or returns a violating constraint. Then in polynomial oracle time the algorithm
returns a solution x∗ for the leader such that Ax∗ ≤ 1

α a, and the objective value is at most
ρT ∗

1−α , where T ∗ is the optimal objective value with the leader’s budget being a. When we
take, e.g., α = 1/2, we achieve an objective of 2ρT ∗ with the leader’s budget augmented
to 2a.

In terms of techniques, our main contribution is a general method for bilevel optimization
problems where the leader’s and follower’s decision variables are both integral. Most prior
works on bilevel optimization require follower’s decision variables to take fractional values,
which accommodates the application of LP duality to transform the bilevel optimization
problem to a standard (single level) optimization, and are thus inapplicable when the
follower’s decision variables become integral. A common technique used in many single level
optimization problems is to first classify items into large and small based on whether they
can make a significant contribution to the objective value, then guess out large items via
enumeration, and handle small items fractionally via LP (see, e.g., [5, 21, 22]. However, such
a technique encounters a fundamental challenge in IPC: we can guess out all large items
selected by the leader, however, the follower may still select arbitrarily from the remaining
large items. In other word, the follower’s choice on large items can never be guessed out,
and therefore we cannot apply duality to the follower’s problem. We overcome the challenge
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based on the following two ideas: First, we show that given leader’s choice on large items,
there is a fixed number of “dominant choices” such that the follower’s choice on remaining
large items always belong to the dominant choices. Second, we show that there exists a
subset of “critical items” such that the follower’s choice on small items can be characterized
through linear constraints given that these critical items are known. The two observations
allow us to transform the bilevel program for IPC to an LP without utilizing duality.

The characterization of dominant choices and critical items become sophisticated in the
general case when sB is an arbitrary constant, but is much simpler in the special case sB = 1.
Hence, for ease of presentation, in the main part we present our algorithm for the special
case to give an overview on the technical insights, and meanwhile provide a proof sketch
towards generalizing the algorithm for the general case. Our techniques may be of separate
interest to other bilevel optimization problems.

Related work

Our IPC problem lies generally in the area of bilevel optimization, which has received extensive
research in the literature. Jeroslow [23] showed that in general, bilevel optimization problems
are NP-hard even when the objectives and the constraints are linear. We refer readers
to Colson et al. [11] for a comprehensive survey on bilevel optimization.

Within the area of bilevel optimization, Mixed-Integer Bilevel Linear Problem (MIBLP)
is related to our IPC. MIBLP is a bilevel optimization problem where the objective functions
and the constraints for the leader and follower are both linear. MIBLP has been studied
extensively in the literature, see, e.g., [19,20,35]. We also refer the reader to [18,25] for an
overview on MIBLP solvers and related applications. Most of these algorithmic results are
for finding exact solutions through, e.g., branch and bound based approach. For DeNegre’s
knapsack interdiction problem, an improved exact algorithm was derived by Federico Della
Croce and Rosario Scatamacchia [12].

It is worth mentioning that besides DeNegre’s knapsack interdiction problem (i.e., sA =
sB = 1 in IPC), other variants of bilevel knapsack problems have also been studied in which
the leader interferes the follower’s program in a different way. One kind of bilevel knapsack
problem was introduced by Dempe and Richter [13] where two players hold one knapsack, the
leader determines the knapsack’s capacity while the follower picks items into the knapsack to
maximize his own total profit. The goal is to maximize the objective of the leader. Brotcorne
et al. [2] gave a dynamic programming algorithm for both cases of this model. Chen and
Zhang [8] proposed a bilevel knapsack variant where two players hold their own knapsacks
and the leader can only influence the profit of the items. The follower is interested in his own
revenue while the leader aims at maximizing the total profit of both players. The improved
approximation results for this problem were derived by Xian Qiu and Walter Kern [34].
Another bilevel knapsack variant occurred in the work of Pferschy et al. [30] where the leader
controls the weights of a subset of the follower’s items and the follower aims at maximizing
his own profit. The leader’s payoff is the total weight of the items he controls and selected by
the follower. Very recently, Pferschy et al. [31] tackled a “symmetrical” problem in which the
leader can control the profits instead of item weights. In addition to these works, a matrix
interdiction problem was studied by Kasiviswanathan and Pan [24].

It is also worth mentioning that the continuous version of DeNegre’s knapsack interdiction
problem, where the leader and the follower can both fractionally choose an item, has also
been studied in recent years. Carvalho et al. [6] gave the first polynomial time optimal
algorithm. Later on, a faster optimal algorithm was proposed by Woeginger and Fischer [17].
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Some notations. We write column vectors in boldface, e.g. x, y, and their entries in
normal font. For a vector x, we either denote its entries by x = (x1, x2, · · · , xn), or by
x = (x[1], x[2], · · · , x[n]). Given two vectors x and y with the same dimension, we use xy to
represent their dot product, i.e., xy =

∑
j xjyj .

2 Hardness results

▶ Theorem 1. Assuming P ̸= NP , for arbitrary small ϵ > 0, there does not exist a
(4/3 − ϵ)-approximation polynomial time algorithm for IPC when sA ≥ 1 and sB ≥ 2.

Towards the proof, we need the 3 hitting set (3HS) problem.
Problem: 3 Hitting Set
Instance: A ground set U = {u1, u2, · · · , un}; a collection C of m subsets S1, S2, · · · , Sm

whose union is U , where each subset Sh contains exactly 3 elements; a positive integer k.
Question: Is there a hitting subset S ⊆ U such that |S| ≤ k, and S contains at least one

element from each subset in C?

Proof. Recall that 3HS problem is a natural generalization of the well-known Vertex Cover
problem, and both are NP-complete [27]. Our reduction is from the 3HS problem. Given an
instance of the 3HS, we construct an instance of the IPC where sA = 1, sB = 2 as follows.
Let E = 10 ·

∑n
i=1 10i, and Q be any sufficiently large integer, say, Q = 10E. Let a = k and

b = (E, 4Q − E). The profit of every item constructed below is 1. For every element ui, we
construct an element-item (item i) whose interdiction cost is 1, and whose weight vector is
(10i, Q − 10i). For every subset Sh = {ui, uj , uk}, we construct a set-item (item n + h) whose
interdiction cost is k + 1 (that is, the leader cannot interdict a set-item), and whose weight
vector is (E − 10i − 10j − 10k, Q − E + 10i + 10j + 10k). In total we construct n + m items.

We first claim that the objective value of any feasible solution for the IPC instance is
at most 4. Suppose on the contrary the claim is false, then the follower is able to select
at least 5 items under the budget b = (E, 4Q − E). Notice that for any 1 ≤ i ≤ n,
Q − 10i > Q − E ≥ 0.9Q, and for any 1 ≤ i, j, k ≤ n we have Q − E + 10i + 10j + 10k > 0.9Q,
if we sum up the weight vectors of any 5 items, then the second coordinate is at least 4.5Q,
which exceeds the budget 4Q − E, hence the claim is true.

Suppose the 3HS instance admits hitting set S of size at most k, we show that the optimal
objective value of the IPC instance is at most 3. Let S = {uℓ1 , uℓ2 , · · · , uℓk

} (if S contains
less than k elements, we simply add arbitrary elements to make it contain exactly k items),
then we consider the solution x where xℓi = 1 for 1 ≤ i ≤ k, and xj = 0 otherwise. We claim
that for any y satisfying x + y ≤ 1, py =

∑
j yj ≤ 3. Suppose on the contrary that the claim

is false, then the follower can select at least 4, and hence exactly 4 items (given our claim in
the above paragraph that shows the objective value cannot exceed 4). Notice that for every
item, if we add the first and second coordinate of its weight vector, then the sum is exactly
Q. Hence, if we add up the weight vector of the 4 items, it must be (z, 4Q − z) for some z,
and meanwhile, we have (z, 4Q − z) ≤ (E, 4Q − E), that is z ≤ E and 4Q − z ≤ 4Q − E.
Hence, z = E, which means the sum of the first coordinate of the weight vectors of the 4
items is exactly E = 10

∑
i 10i. We first observe that it is impossible for the 4 items to be all

element-items, this is because the first coordinate of the weight vector for any element-item is
at most 10n < 0.1E. We then observe that there cannot be two set-items among the 4 items,
because the first coordinate of the weight vector for any set-item is at least E − 0.1E = 0.9E.
Hence, among the 4 items, there must be exactly 1 set-item and 3 element-items. Let the 3
element-items be those corresponding to ui, uj , uk and the set-item be the one corresponding
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to {ui′ , uj′ , uk′}, then it follows that 10i + 10j + 10k + E − 10i′ − 10j′ − 10k′ = E, implying
that {i, j, k} = {i′, j′, k′}. However, this is not possible because the hitting set S contains at
least one element from {ui′ , uj′ , uk′} = {ui, uj , uk}, which implies that xi + xj + xk ≥ 1, and
whereas yi, yj , yk cannot be 1 simultaneously. Thus, the optimal objective value of the IPC
instance is at most 3.

Suppose the optimal objective value of the IPC instance is at most 3, we show that the
3HS problem admits a hitting set of size at most k. Let x∗ be the optimal solution for IPC.
Consider the set S∗ = {ui : x∗

i = 1}. Given that
∑

i xi ≤ k, we know |S∗| ≤ k. We claim that
S∗ is a hitting set. Suppose on the contrary that the claim is false, then there exists some
subset {ui, uj , uk} such that S∗ ∩ {ui, uj , uk} = ∅. Then we consider the 3 element-items
whose weight vectors are (10i, Q−10i), (10j , Q−10j), (10k, Q−10k), and the set-item whose
weight vector is (E − 10i − 10j − 10k, Q − E + 10i + 10j + 10k). It is easy to see that the
follower can select all the 4 items, leading to an objective value of 4, contradicting the fact
that the optimal objective value is at most 3.

Now suppose there exists a (4/3 − ϵ)-approximation polynomial time algorithm for the
IPC. We apply the algorithm to the IPC instance constructed from the 3HS instance. If the
3HS instance admits a hitting set of size at most k, then the approximation algorithm returns
a solution with objective value at most 4 − ϵ < 4, which means it must return a solution
with objective value at most 3. If the 3HS instance does not admit a hitting set of size at
most k, then the approximation algorithm returns a solution with objective value at least 4.
Hence the polynomial time approximation algorithm can be used to determine whether 3HS
problem admits a feasible solution, contradicting the NP-hardness of 3HS problem. ◀

3 A PTAS for IPC where sB = 1 and sA is a fixed constant

The goal of this section is to prove the following Theorem 2. Theorem 2 is a special case of
our main result, however, its proof shares similar key ideas as the general case (where sA and
sB are arbitrary fixed constants). Therefore, we provide a full presentation to demonstrate
the technical insights, and in the next section we will show how to extend the techniques
when sB ≥ 2.

▶ Theorem 2. When sB = 1 and sA is an arbitrary fixed constant, there exists a polynomial
time approximation scheme for IPC.

The rest of this section is dedicated to proving the following Lemma 3, which implies
Theorem 2 directly by scaling item profits (here we write IPC(I, a, b) instead of IPC(I, a, b)
as b becomes 1-dimensional given that sB = 1).

▶ Lemma 3. Let OPT be the optimal objective value of IPC(I, a, b). If OPT ≤ 1, then for
an arbitrarily small number ϵ > 0, there exists a polynomial time algorithm that returns a
feasible solution to IPC(I, a, b) with an objective value of at most 1 + O(ϵ).

3.1 Preprocessing
From now on we assume OPT ≤ 1. Without loss of generality, we further assume that
maxj pj ≤ 1.

Scaling. We scale the matrix A and B such that a = 1 and b = 1. From now on we
denote this IPC instance as IPC(I, 1, 1). Without loss of generality, we further assume that
maxj Bj ≤ 1.
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Rounding down the profits. We apply the standard geometric rounding. Let δ > 0 be
some small parameter to be fixed later (in particular, we can choose δ = ϵ2). Consider each
item profit pj . If pj ≤ δ2, we keep it as it is; otherwise pj > δ2, we round the profit down
to the largest value of the form δ2(1 + δ)h. For profits whose values are at least δ2, simple
calculation shows there are at most Õ(1/δ) distinct rounded profits. This rounding scheme
introduces an additive loss of at most O(δ) times the objective value. For simplicity, we still
denote the rounded profits by pj ’s.

Item classification. Recall that each item j is associated with a profit pj and a weight
vector Bj . Since sB = 1, we write Bj as its weight.

Classifying Weights: We say an item j has a large weight if Bj > δ; otherwise, it has a small
weight.

Classifying Profits: We say an item j has a large profit if pj > δ; a medium profit if
δ2 < pj ≤ δ; and a small profit if pj ≤ δ2.

We say an item is large if it has a large-profit, or a large-weight. Otherwise, the item is
small. Large items and small items will be handled separately.

Denote by S∗ the items selected by the leader in an optimal solution of IPC(I, 1, 1).

3.2 Handling Large Items

3.2.1 Determining the leader’s choice on large items
The goal of this subsection is to guess large items in S∗ in polynomial time.

Large-profit small-weight items. Notice that if there are at least 1/δ such items for the
follower to select, then selecting any 1/δ of them gives a solution with an objective value
strictly larger than 1, contradicting to the assumption that OPT ≤ 1. Thus S∗ must include
all except at most 1/δ − 1 such items, which can be guessed out via nO(1/δ) enumerations.
Hence, we have the following observation.

▶ Observation 4. With nO(1/δ) enumerations, we can guess out all large-profit small-weight
items in S∗.

Small-profit large-weight items. Notice that the follower can select at most 1/δ items from
this subgroup and their total profit is at most δ2 ∗ 1

δ = δ. Hence, even if the leader does
not select any such item, the objective value can increase by at most δ, which leads to the
following observation.

▶ Observation 5. With O(δ) additive error, we may assume that S∗ does not contain
small-profit large-weight items.

Large/medium-profit large-weight items. Notice that the follower can select at most 1/δ

items from this group. Since we are considering the case of sB = 1, if there are two items
that are not selected by the leader, and they have the same profit, then the follower always
prefers the one with a smaller weight. Hence, we have the following lemma.

▶ Lemma 6. With nÕ(1/δ2) enumerations, we can guess out all large/medium-profit large-
weight items in S∗.
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Proof. Recall that there are at most Õ(1/δ) distinct large/medium profits. Let Sh be the
set of large-weight items whose profits are all δ2(1 + δ)h. We observe two facts: (i). Among
items in Sh \ S∗, the follower always selects the ones with the smallest weights; (ii). The
follower can select at most 1/δ items from Sh \S∗. We claim that, S∗ ∩Sh can be determined
through guessing out the following 1/δ key items in Sh: among items in Sh \ S∗, which is
the item that has the k-th smallest weight for k = 1, 2, · · · , 1/δ?2 To see the claim, let wmax

h

be the weight of the item in Sh \ S∗ that has the 1/δ-th smallest weight. Consider any item
in Sh: if its weight is smaller than wmax

h , and is not one of the key items, then this item
must belong to S∗ (by the definition of key items); if its weight is larger than or equal to
wmax

h , and is not one of the key items, then it is not in S∗ (there is no need for the leader to
select such an item since the follower will never select this item even if it is available). Thus
via nO(1/δ) enumerations, we can guess out all large/medium-profit large-weight items in
S∗ ∩ Sh. Moreover, via total nÕ(1/δ2) enumerations, we can guess out all large/medium-profit
large-weight items in S∗. ◀

To summarize, our above analysis leads to the following lemma:

▶ Lemma 7. With O(δ) additive error, we can guess out all the large items in the optimal
solution S∗, i.e., all items that either have a large profit or a large weight, by nÕ( 1

δ2 )

enumerations.

Let Ī ⊆ I = {1, 2, · · · , n} be the set of small items, i.e., items of medium/small-profit
and small-weight. Then I \ Ī is the set of large items. Denote by x∗ the optimal solution to
IPC(I, 1, 1), which is corresponding to S∗. In the following we assume a correct guess on
large items. Hence, the values of {x∗

j : j ∈ I \ Ī} are known. We let a′ be the total cost of
these guessed-out large items.

3.2.2 Finding the follower’s dominant choices on large items
Consider all the large items. Even if the leader’s choice on large items is fixed, the follower
may still have exponentially many different choices on the remaining large items. The goal
of this subsection is to show that, among these choices of the follower, it suffices to restrict
our attention to a few “dominant” choices that always outperform other choices.

For simplicity, we re-index items such that Ī = {1, 2, · · · , n̄}, where n̄ ≤ n.
We further assume that items in Ī are sorted in decreasing order of the profit-weight

ratios pj/Bj . For any ā ≤ 1 and b̄ ≤ 1, denote by IPC(Ī , ā, b̄) the “residual instance” where
the item set is Ī, the budget vector of the leader is ā and the budget of the follower is b̄.

Denote by I ′ ⊆ I \ Ī the subset of large items which are not selected by the leader. Note
that due to the assumption OPT ≤ 1 and that we have guessed out correct large items
in S∗, the follower cannot select items from I ′ with total profit larger than 1. Hence, for
each integer k ∈ [1, 1 + 1/ϵ], we can define the following sub-problem: among items in I ′,
find out a subset of items with minimal total weight such that their total profit is within
[(k − 1)ϵ, kϵ). Denote by SP (k) this sub-problem and by KP (kϵ) its optimal solution, if it
exists. We claim that the follower can select at most O(1/δ) items from I ′, thus via nO(1/δ)

enumerations, we can return KP (kϵ) or assert there does not exist a feasible solution to
SP (k). The claim is guaranteed by the following two facts: (i). The total profit the follower
could obtain from I ′ is at most 1; (ii). Items in I ′ either have a large-profit, or a large-weight.

2 If there are less than 1/δ items in Sh, we can simply guess out all items in Sh\S∗ via nO( 1
δ

) enumerations.
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Let Θ = {KP (kϵ) : k ∈ {1, 2, · · · , 1 + 1
ϵ }}, which contains the follower’s O(1/ϵ) possible

choices on I ′. For ℓ ∈ {1, 2, · · · , 1 + 1
ϵ }, we let bℓ and Pℓ be the total weight and the total

profit of the items selected by the follower, respectively3. Then the follower has a residual
budget of 1 − bℓ for items in Ī. Recall that the leader has a residual budget vector of 1 − a′

for items in Ī.
Define y[Ī] = (y1, y2 · · · , yn̄). Recall that by guessing we already know the value of x∗

j

for j ∈ I \ Ī. Consider the following bilevel program:

Bi-IP(I, 1, 1) : min
x

Pℓ +
n̄∑

j=1
pjyj

s.t.

n̄∑
j=1

Ajxj ≤ 1 − a′ (2a)

xj = x∗
j , ∀j ∈ I \ Ī (2b)

xj ∈ {0, 1}, ∀j ∈ Ī (2c)
where integer ℓ, y[Ī] solves the following:

max
1≤ℓ≤1+ 1

ϵ

max
y[Ī]

Pℓ +
n̄∑

j=1
pjyj (2d)

s.t.

n̄∑
j=1

Bjyj ≤ 1 − bℓ (2e)

yj ≤ 1 − xj , ∀j ∈ Ī (2f)
yj ∈ {0, 1}, ∀j ∈ Ī (2g)

What is the difference between Bi-IP(I, 1, 1) and IPC(I, 1, 1), assuming the
correct guess of x∗

j for j ∈ I \ Ī? In Bi-IP(I, 1, 1), the follower’s choices on remaining
large items are restricted to the O(1/ϵ) choices in Θ, while in IPC(I, 1, 1), the follower can
choose any remaining large items. However, we observe that Θ contains all the follower’s
“dominant choices of remaining large items” in the sense that the follower uses the smallest
budget to achieve a profit within [(k − 1)ϵ, kϵ). Consequently, the objective value of Bi-
IP(I, 1, 1) differs by at most ϵ to that of IPC(I, 1, 1). A formal description is given below.

▶ Lemma 8. Let x̄ be any feasible solution to Bi-IP(I, 1, 1). Then x̄ is also feasible
to IPC(I, 1, 1). Let ObjBi(x̄) and Obj(x̄) be the objective values of Bi-IP(I, 1, 1) and
IPC(I, 1, 1) for x = x̄, respectively. We have

ObjBi(x̄) ≤ Obj(x̄) ≤ ObjBi(x̄) + ϵ.

Furthermore, let OPT Bi and OPT be the optimal objective values of Bi-IP(I, 1, 1) and
IPC(I, 1, 1), respectively, then we have

OPT Bi ≤ OPT ≤ OPT Bi + ϵ.

Proof. Compare the follower’s possible choices in Bi-IP(I, 1, 1) and IPC(I, 1, 1) when the
leader’s solution is fixed to x̄. It is easy to see that in IPC(I, 1, 1), the follower’s feasible
choices on the remaining large items contain Θ, it thus follows that ObjBi(x̄) ≤ Obj(x̄).
Particularly, since the optimal solution x∗ of IPC(I, 1, 1) is a feasible solution of Bi-IP(I, 1, 1)
and the optimal solution of Bi-IP(I, 1, 1) may achieve an even smaller value, it follows that
OPT Bi ≤ OPT . It remains to prove that Obj(x̄) ≤ ObjBi(x̄) + ϵ and OPT ≤ OPT Bi + ϵ.

3 If there is no feasible solution to SP (ℓ), we let bℓ = 1 and Pℓ = 0.
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Note that Obj(x̄) is exactly the optimal objective value of the following integer program:

IP(x̄) : max
y

py

s.t.

n∑
j=1

Bjyj ≤ 1

y ≤ 1 − x̄
y ∈ {0, 1}n

Let ȳ be an optimal solution of IP(x̄), then Obj(x̄) =
∑

j∈I\Ī pj ȳj +
∑

j∈Ī pj ȳj . Recall that
x∗ is an optimal solution of IPC(I, 1, 1), and x̄j = x∗

j for j ∈ I \ Ī by (2b). Consequently,
if we compare the follower in IPC(I, 1, 1) and the follower in Bi-IP(I, 1, 1), the subset of
items in I \ Ī available for the two followers to select is the same, and we let this subset be
R = {j : x∗

j = 0, j ∈ I \ Ī}. Given that we assume OPT ≤ 1, the maximal profit the follower
could obtain from R is at most 1, thus there exists some integer ℓ̄ ∈ [1, 1 + 1/ϵ] such that∑

j∈I\Ī pj ȳj ∈ [(ℓ̄ − 1)ϵ, ℓ̄ϵ). By the definitions of Pℓ̄ and bℓ̄, we have
∑

j∈I\Ī pj ȳj ≤ Pℓ̄ + ϵ

and bℓ̄ ≤
∑

j∈I\Ī Bj ȳj . Define y′ ∈ {0, 1}n such that the y′ is a combination of two partial
solutions: in I \ Ī, y′ is the same as KP (ℓ̄ϵ); and in Ī, y′ is the same as ȳ. Then y′ is a
feasible solution of the following program:

IP(x̄) : max
ℓ

max
y[Ī]

Pℓ +
n̄∑

j=1
pjyj

s.t.

n̄∑
j=1

Bjyj ≤ 1 − bℓ

yj ≤ 1 − x̄j , ∀j ∈ Ī

yj ∈ {0, 1}, ∀j ∈ Ī

Notice that the optimal objective value of IP(x̄) is ObjBi(x̄), thus py′ = Pℓ̄ +
∑n̄

j=1 pj ȳj ≤
ObjBi(x̄). To conclude, we have

Obj(x̄) =
∑

j∈I\Ī

pj ȳj +
n̄∑

j=1
pj ȳj ≤ Pℓ̄ + ϵ +

n̄∑
j=1

pj ȳj ≤ ObjBi(x̄) + ϵ

Particularly, given an optimal solution x̄∗ of Bi-IP(I, 1, 1), we have Obj(x̄∗) ≤ OPT Bi + ϵ.
Since the optimal solution of IPC(I, 1, 1) may achieve an even smaller objective value, it
follows that OPT ≤ OPT Bi + ϵ. Hence Lemma 8 is proved. ◀

3.3 Handling Small Items

According to Lemma 8, to solve IPC(I, 1, 1), it suffices to solve Bi-IP(I, 1, 1), which is the
goal of this subsection. Towards this, we first obtain a linear relaxation of Bi-IP(I, 1, 1)
where both the leader and the follower can select items fractionally. Then we reformulate this
bilevel linear relaxation as a single level linear program and find an extreme point optimal
fractional solution. Finally we round this fractional solution to obtain a feasible solution
to Bi-IP(I, 1, 1) with an objective value of at most 1 + O(ϵ), which is thus also a feasible
solution to IPC(I, 1, 1) with an objective value of at most 1 + O(ϵ).
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Replace (2c) and (2g) in Bi-IP(I, 1, 1) with xj ∈ [0, 1](∀j ∈ Ī) and yj ∈ [0, 1](∀j ∈ Ī),
respectively, we obtain a relaxation of Bi-IP(I, 1, 1) as follows.

Bi-IPr(I, 1, 1) : min
x

Pℓ +
n̄∑

j=1
pjyj

s.t.

n̄∑
j=1

Ajxj ≤ 1 − a′ (3a)

xj = x∗
j , ∀j ∈ I \ Ī (3b)

xj ∈ [0, 1], ∀j ∈ Ī (3c)
where integer ℓ, y[Ī] solves the following:

max
1≤ℓ≤1+ 1

ϵ

max
y[Ī]

Pℓ +
n̄∑

j=1
pjyj (3d)

s.t.

n̄∑
j=1

Bjyj ≤ 1 − bℓ (3e)

yj ≤ 1 − xj , ∀j ∈ Ī (3f)
yj ∈ [0, 1], ∀j ∈ Ī (3g)

Denote by OPT r
Bi the optimal objective value of Bi-IPr(I, 1, 1). Note that items in Ī are

sorted in decreasing order of the profit-weight ratios pj/Bj . Consider any fixed leader’s
solution x ∈ [0, 1]n and any fixed ℓ, the follower is solving a knapsack problem in the
remaining (fractional) items. The maximal objective value of the follower, given x ∈ [0, 1]n
and ℓ, is obtained by a simple greedy algorithm that selects remaining fractional items in Ī

in the natural order of indices (recall that items are re-indexed in non-increasing order of
ratios), until the budget 1 − bℓ is exhausted. Note that the greedy algorithm will stop at
some (fractional) item when the budget 1 − bℓ is exhausted4. We say this item is critical and
let its index be cℓ. Given any fixed x ∈ [0, 1]n and ℓ, the maximal objective value of program
(3d)-(3g) for x is

Pℓ +
cℓ−1∑
j=1

pj(1 − xj) + pcℓ

1 − bℓ −
∑cℓ−1

j=1 Bj(1 − xj)
Bcℓ

, (4a)

where cℓ is the critical item given x and ℓ. The following two formulas are directly given by
the definition of critical.

cℓ−1∑
j=1

Bj(1 − xj) ≤ 1 − bℓ (5a)

Bcℓ
+

cℓ−1∑
j=1

Bj(1 − xj) ≥ 1 − bℓ (5b)

We first show that the optimal objective value of the Bi-IPr(I, 1, 1) is at most OPT Bi +δ.

4 The greedy algorithm may pack all remaining (fractional) items without using up the budget 1 − bℓ. To
patch this case, we add a dummy item whose profit is 0, cost vector is 0 and weight is sufficiently large.
We assume the last item n̄ is the dummy item.
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▶ Lemma 9. Let OPT Bi and OPT r
Bi be the optimal objective values of Bi-IP(I, 1, 1) and

Bi-IPr(I, 1, 1), respectively, then OPT r
Bi ≤ OPT Bi + δ.

Proof. It is not straightforward if we compare Bi-IP(I, 1, 1) with Bi-IPr(I, 1, 1) directly,
as both the follower and the leader become stronger in the relaxation (in the sense they can
pack items fractionally). Towards this, we introduce an intermediate bilevel program Bi-
IPin(I, 1, 1), which is obtained by replacing (3c) in Bi-IPr(I, 1, 1) with xj ∈ {0, 1}(∀j ∈ Ī),
that is, we only allow the follower to select items fractionally but not the leader. Denote by
OPTin the optimal objective value of Bi-IPin(I, 1, 1).

First, we compare Bi-IPin(I, 1, 1) with Bi-IPr(I, 1, 1). We see that in Bi-IPr(I, 1, 1)
the follower is facing a stronger leader who is allowed to fractionally pack items, and it thus
follows that OPT r

Bi ≤ OPTin.

Next, we compare Bi-IPin(I, 1, 1) and Bi-IP(I, 1, 1). Note that the leader’s solution
must be integral in both programs. Any feasible solution of Bi-IPin(I, 1, 1) is a feasible
solution of Bi-IP(I, 1, 1), and vice versa. Let x̄∗ be an optimal solution of Bi-IP(I, 1, 1),
then x̄∗ is also a feasible solution of Bi-IPin(I, 1, 1). Once the leader fixes his solution as x̄∗

in Bi-IPin(I, 1, 1), there exist ℓ and cℓ ∈ Ī, such that the objective value of Bi-IPin(I, 1, 1) is

Objin = Pℓ +
cℓ−1∑
j=1

pj(1 − x̄∗
j ) + pcℓ

1 − bℓ −
∑cℓ−1

j=1 Bj(1 − x̄∗
j )

Bcℓ

,

where cℓ is the critical item corresponding to x̄∗ and ℓ. We have the following two observations:

OPT Bi ≥ Objin − pcℓ
≥ Objin − δ. This is because the follower in Bi-IP(I, 1, 1) can

guarantee an objective value of Pℓ +
∑cℓ−1

j=1 pj(1 − x̄∗
j ), and pj ≤ δ for j ∈ Ī;

OPTin ≤ Objin. This is because x̄∗ is just a feasible solution of Bi-IPin(I, 1, 1), while
the optimal solution of the leader may achieve an even smaller objective value.

To summarize, we know OPT r
Bi ≤ OPTin ≤ Objin ≤ OPT Bi + δ. Lemma 9 is proved. ◀

Given Lemma 9, we are still facing two questions: how can we solve Bi-IPr(I, 1, 1); and
even if we obtain a fractional solution to Bi-IPr(I, 1, 1), how can we transform it to an
integral solution without incurring a huge loss. Towards this, consider the optimal solution xr

to Bi-IPr(I, 1, 1). Note that leader’s choice on large items is guessed out in Bi-IPr(I, 1, 1).
Consider the scenario when the follower adopts the ℓ-th dominant choice on the remaining
large items, and recall the definition of critical items (see Equation 4a). Given solution xr,
for any ℓ ∈ {1, 2, · · · , 1 + 1

ϵ } there must exist a critical item. Therefore, there are 1 + 1
ϵ

critical items corresponding to xr. The crucial fact is that, while we cannot guess out xr

directly, we can guess out all the critical items corresponding to xr. More precisely, with
n̄O(1/ϵ) enumerations, we can guess out the critical item cr

ℓ for xr and each ℓ. Suppose we
have guessed out the correct cr

ℓ ’s corresponding to the optimal solution xr, we consider the
following LP:
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LPBi-IP : min
x,M

M

n̄∑
j=1

Ajxj ≤ 1 − a′

Pℓ +
cr

ℓ −1∑
j=1

pj(1 − xj) + pcr
ℓ

1 − bℓ −
∑cr

ℓ −1
j=1 Bj(1 − xj)
Bcr

ℓ

≤ M, ∀ ℓ ∈ {1, 2, · · · , 1 + 1
ϵ

}

cr
ℓ −1∑
j=1

Bj(1 − xj) ≤ 1 − bℓ, ∀ ℓ ∈ {1, 2, · · · , 1 + 1
ϵ

}

Bcr
ℓ

+
cr

ℓ −1∑
j=1

Bj(1 − xj) ≥ 1 − bℓ, ∀ ℓ ∈ {1, 2, · · · , 1 + 1
ϵ

}

xj = x∗
j , j ∈ I \ Ī

xj ∈ [0, 1], j ∈ Ī

We have the following simple observation.

▶ Observation 10. Let M∗ and OPT r
Bi be the optimal objective values of LPBi-IP and

Bi-IPr(I, 1, 1), respectively, then M∗ ≤ OPT r
Bi.

Let xr be an optimal solution to Bi-IPr(I, 1, 1). The observation follows directly as xr

together with OPT r
Bi form a feasible solution to LPBi-IP.

In the meantime, we also have the following observation.

▶ Observation 11. Let {xex, M∗} be an extreme point optimal solution to LPBi-IP, then
xex is also a feasible solution to Bi-IPr(I, 1, 1) whose objective value is at most M∗.

The observation follows since by the definition of critical, (4a) is the largest profit the follower
can achieve. Hence, when x = xex in Bi-IPr(I, 1, 1), the objective value is bounded by M∗.
Given the two observations above, we know xex is an optimal solution to Bi-IPr(I, 1, 1) and
we have M∗ = OPT r

Bi. Finally, a near-optimal solution to IPC(I, 1, 1) can be obtained
through the optimal solution to LPBi-IP, as implied by the following lemma.

▶ Lemma 12. Let {xex, M∗} be an extreme point optimal solution to LPBi-IP. Define x̃ such
that x̃j = 1 if xex

j = 1, and x̃j = 0 otherwise. Then x̃ is a feasible solution of IPC(I, 1, 1)
with an objective value of at most OPT + O(ϵ), where OPT is the optimal objective value of
IPC(I, 1, 1).

Proof. The feasibility of x̃ to IPC(I, 1, 1) is straightforward since
n∑

j=1
Aj x̃j =

∑
j∈I\Ī

Ajx∗
j +

∑
j∈Ī

Aj x̃j ≤ a′ +
∑
j∈Ī

Ajxex
j ≤ a′ + 1 − a′ ≤ 1.

Notice that x̃ is also feasible for Bi-IP(I, 1, 1) and Bi-IPr(I, 1, 1). Let Obj(x̃), ObjBi(x̃)
and Objr

Bi(x̃) be the objective values of IPC(I, 1, 1), Bi-IP(I, 1, 1) and Bi-IPr(I, 1, 1) by
taking x = x̃, respectively. Since in Bi-IPr(I, 1, 1), the leader is facing a stronger follower
who can select fractional items in Ī, it follows that ObjBi(x̃) ≤ Objr

Bi(x̃).
Now we compare the objective values of two solutions to Bi-IPr(I, 1, 1), xex and x̃. It is

easy to see that in xex, there are at most (sA + 3(1+ϵ)
ϵ ) variables taking fractional values,

and all these variables are in {xex
j : j ∈ Ī}. So the leader in xex selects at most (sA + 3(1+ϵ)

ϵ )
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more items in Ī, compared with the leader in x̃. Consequently, the follower in xex may
select at most (sA + 3(1+ϵ)

ϵ ) less items in Ī, compared with the follower in x̃. Given that the
objective value of xex is OPT r

Bi = M∗, we have that

Objr
Bi(x̃) ≤ OPT r

Bi + (sA + 3(1 + ϵ)
ϵ

)δ.

According to Lemma 8 and Lemma 9, we have Obj(x̃) ≤ ObjBi(x̃) + ϵ and OPT r
Bi ≤

OPT Bi + δ. In conclusion, we have

Obj(x̃) ≤ OPT Bi + (sA + 1 + 3(1 + ϵ)
ϵ

)δ + ϵ.

Furthermore, OPT Bi ≤ OPT by Lemma 8. By setting δ = ϵ2, Lemma 12 is proved. ◀

Hence, if OPT ≤ 1, then a feasible solution with objective value of at most OPT + O(ϵ) ≤
1 + O(ϵ) is found, thus Lemma 3 is proved, and Theorem 2 follows.

4 Approximation algorithm for IPC where sB and sA are constant

In this section, we prove our main result – Theorem 13.

▶ Theorem 13. When sB and sA are fixed constants, for an arbitrarily small number ϵ > 0,
there exists an (sB + O(ϵ))-approximation polynomial time algorithm for IPC.

Similar to the special case, by scaling item profits it suffices to show the following:

▶ Lemma 14. Let OPT be the optimal objective value of IPC(I, a, b). If OPT ≤ 1, then
for an arbitrarily small number ϵ > 0, there exists a polynomial time algorithm that returns
a feasible solution to IPC(I, a, b) with an objective value of at most sB + O(ϵ).

By further scaling the cost vectors and weight vectors, it suffices to find a near-optimal
solution for IPC(I, 1, 1).

Major technical challenge. Recall that the key to solving IPC for the special case of
sB = 1 is the establishment of Bi-IP(I, 1, 1), which is essentially equivalent to IPC(I, 1, 1).
Bi-IP(I, 1, 1) is built upon the observation that the follower admits only O( 1

ϵ ) dominant
choices on large items, where each dominant choice corresponds to the minimal budget
needed by the follower to ensure a profit of [(k − 1)ϵ, kϵ) where k ∈ {1, 2, · · · , 1 + 1

ϵ }. Because
the number of follower’s choices on large items is small, its relaxation Bi-IPr(I, 1, 1) has
a small number of constraints (see Equation 3e), and therefore we can further transform
Bi-IPr(I, 1, 1) to LPBi-IP with a small number of constraints whose extreme point solution
promises a good rounding. We aim to follow a similar method, however, when sB ≥ 2, we
can no longer bound the follower’s choices on large items. This is because to achieve a
profit of [(k − 1)ϵ, kϵ) where k ∈ {1, 2, · · · , 1 + 1

ϵ }, the follower may have a huge number of
different choices utilizing different budgets, where the budgets are now vectors instead of
numbers, and are thus incomparable. To handle the problem, we use the idea of rounding:
let b = (b[1], b[2], · · · , b[sB ]) and Bj = (Bj [1], B[2], · · · , B[sB ]). We call the first dimension
(b[1] and Bj [1]’s) the principal dimension. The principal dimension will be treated the same
as the special case and will not be rounded. The coordinates of other dimensions (b[h] and
Bj [h]’s for 2 ≤ h ≤ sB) will be rounded. Then, we will be able to compare follower’s different
choices on large items: if there are two choices both achieving profit within [(k − 1)ϵ, kϵ)
for the same k ∈ O( 1

ϵ ), and furthermore, the summation of their weight vectors share the
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same rounded value in each dimension h ∈ [2, sB ], then the choice with smaller value in the
principal dimension of the summed weight vectors dominates the other choice. By doing so,
our argument for the special case can be carried over to the principal dimension.

There is one problem with the idea of rounding above, that is, if we round up weight
vectors and meanwhile enlarge the follower’s budget vector in dimension h ∈ [2, sB] (to
accommodate the rounding up), the optimal objective value of IPC may increase. However,
we are able to show that the optimal objective value only increases by a factor of sB (see
Lemma 15). This explains our approximation ratio of sB + ϵ.

Below we give a very brief walk through and the reader is referred to the full version [7]
for details.

Step 1. We pick a small parameter δ as the rounding precision, keep the coordinates of
weight vectors on principal dimension intact, and round the coordinates on other dimensions.
We also round the profits. By doing so we obtain a rounded instance Ĩδ. Then we pick
another small parameter τ and enlarge the weight budget on dimension h ∈ [2, sB] by a
factor of 1 + τ . By doing so we obtain:

IPCτ (Ĩδ, 1, 1) : min
x

p̃y

s.t. Ax ≤ 1
x ∈ {0, 1}n

where y solves the following:
max

y
p̃y

s.t.

n∑
j=1

B̃j [1]yj ≤ 1

n∑
j=1

B̃j [i]yj ≤ 1 + τ, ∀2 ≤ i ≤ sB

x + y ≤ 1
y ∈ {0, 1}n

where B̃j [1] = Bj [1], B̃j [h], 2 ≤ h ≤ sB and p̃ are rounded weights and profits. We are
able to prove the following lemma which ensures that solving IPCτ (Ĩδ, 1, 1) gives a good
approximate solution to IPC(I, 1, 1):

▶ Lemma 15. Let 0 < τ ≤ 1/2. Let x̃ be any feasible solution to IPCτ (Ĩδ, 1, 1). Then
x̃ is a feasible solution to IPC(I, 1, 1). Let Õbjτ (x̃) and Obj(x̃) be the objective values of
IPCτ (Ĩδ, 1, 1) and IPC(I, 1, 1) for x = x̃, respectively. If 2δ ≤ τ ≤ 1/2, we have

Obj(x̃) ≤ (1 + δ)Õbjτ (x̃) ≤ sB(1 + δ)Obj(x̃).

Furthermore, let ÕPT τ and OPT be the optimal objective values of IPCτ (Ĩδ, 1, 1) and
IPC(I, 1, 1), respectively. We have

OPT ≤ (1 + δ)ÕPT τ ≤ sB(1 + δ)OPT.

Step 2. We handle large items. We first classify item profits into large, medium and small.
We then classify item weights into large and small based on the largest coordinate in the
weight vector, i.e., ∥Bj∥∞. We say an item is large if it has a large weight or a large profit,
and small otherwise. Let S∗ be the leader’s optimal solution in IPCτ (Ĩδ, 1, 1). Using a
similar argument as the special case, we can prove the following.

ICALP 2022



39:16 Approximation Algorithms for Interdiction Problem with Packing Constraints

▶ Lemma 16. With O(sBδ) additive error, we can guess out all items in S∗ that have a
large weight or a large profit by nÕ(sB/δsB +1) enumerations.

Utilizing the fact that coordinates in dimension h ∈ [2, sB] are all rounded, we can show
that the follower only has a small number (i.e. Õ(sB/ϵsB )) of dominant choices on large
items, denoted as Θ. By restricting the follower’s choices to Θ, we can obtain a new
bilevel integer programming MBi-IP(Ĩδ, 1, 1). Similar to Bi-IP(I, 1, 1) in the special case,
MBi-IP(Ĩδ, 1, 1) has a small number of constraints.

Step 3. We handle small items. Since MBi-IP(Ĩδ, 1, 1) has a small number of constraints,
we remove the integral constraint to obtain a relaxation MBi-IPr(Ĩδ, 1, 1). Next, we
transform this bilevel LP MBi-IPr(Ĩδ, 1, 1) to a standard (single level) LP, denoted as
cen-LPλ. Note that here the transformation is much more complicated than that in the
special case: in the special case we know that if the follower can choose items fractionally,
then its optimal fractional solution is always obtained greedily with respect to the ratio (i.e.,
profit to weight), whereas it suffices to guess one single critical item. In the general case,
if the follower can choose items fractionally, we can only guarantee that among all items
whose rounded weight vector are the same except for the principal dimension (i.e., Bj [h]’s
have the same rounded value for every 2 ≤ h ≤ sB), the follower selects items greedily with
respect to the principal ratio (i.e., profit to weight coordinate in the principal dimension).
Therefore, we need to guess a subset of critical items, and the subscript λ in cen-LPλ

corresponds to a set of parameters characterizing the subset of critical items. The most
technical part is to show that the optimal solution to cen-LPλ gives a good approximation to
MBi-IPr(Ĩδ, 1, 1) (see Lemma 31 in the full version [7]), where we need to create a sequence
of “intermediate” LPs. Finally, we obtain an extreme point solution to MBi-IPr(Ĩδ, 1, 1) by
solving cen-LPλ, and round it to an integral solution. The rounding error can be bounded
due to that MBi-IPr(Ĩδ, 1, 1) contains a small number of constraints.

5 Approximation algorithm for IPC where sB and sA are arbitrary

We consider the most general setting of IPC where sA and sB are arbitrary (not necessarily
polynomial in the input size).

We define max{py : By ≤ b, y ∈ {0, 1}n} as the follower’s problem. A separation oracle
for the leader’s problem is an oracle such that given any x = x0 ∈ [0, 1]n, it either asserts
that x0 ∈ {x : Ax ≤ a, x ∈ [0, 1]n}, or returns a violating constraint. The goal of this section
is to prove the following theorem.

▶ Theorem 17. Given a separation oracle OL for the leader’s problem, and an oracle OF

for the follower’s problem that returns a ρ-approximation solution, there exists a ( ρ
1−α , 1

α )-
bicriteria approximation algorithm for any α ∈ (0, 1) that returns a solution x∗ ∈ {0, 1}n

such that Ax∗ ≤ 1
α · a, and

max{py : By ≤ b, y ≤ 1 − x∗, y ∈ {0, 1}n} ≤ ρT ∗

1 − α
,

where T ∗ is the optimal objective value of IPC(I, a, b). Furthermore, the algorithm runs in
polynomial oracle time.

We omit the proof of Theorem 17 here, and refer the reader to the full version [7].
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6 Conclusions

In this paper, we consider a general two-player zero-sum Stackelberg game in which the
leader interdicts some items to minimize the total profit that the follower could obtain from
the remaining items. We obtain an (sB + ϵ)-approximation algorithm when sA and sB are
both constant, and show that there does not exist any (4/3 − ϵ)-approximation algorithm
when sB ≥ 2. Our algorithm is the best possible when sB = 1, however, it is not clear
whether it is the best possible when sB is larger than or equal to 2. In particular, it is not
clear whether an approximation algorithm with a ratio independent of sB can be obtained.
Furthermore, can we hope for a PTAS if sB ≥ 2 but the constraints of the leader or the
follower are not given by general inequalities but follow from common optimization problems?
For example, what if the follower’s optimization problem is a bin packing problem? It would
be interesting to investigate the bilevel generalization of well-known optimization problems,
e.g., scheduling and bin packing.
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