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—— Abstract

We survey recent progress and many open questions in the field of sampling high-dimensional

distributions, with specific focus on sampling with non-Euclidean metrics.
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1 Introduction

Sampling high-dimensional distributions is a fundamental problem of growing importance in
machine learning and related fields [7, 17, 2]. Progress on efficient algorithms for sampling has
led to new mathematical connections and insights into a number of areas such as probability,
convex geometry and analysis. The focus of this tutorial is to survey the state-of-the-art for
the most general results along with open problems. There are many interesting results for
special cases that are beyond the scope of this survey.

We begin by stating the most general version of the problem in Euclidean space.

» Definition 1 (Sampling Problem). Given oracle access to an integrable, real-valued function
f: R™ — R4, an initial point zy € R™ with f(zo) > 8 | f(y)dy and an error parameter
€ > 0, output a point  from a distribution that is within total variation distance € from the
distribution with density proportional to f(z).

A major discovery in the theory of algorithms is that the above problem can be solved
in randomized polynomial time for any logconcave function f. Recall that a function
f: R™ — R, is logconcave if its logarithm is concave, i.e., for any A € [0,1] and any
z,y € R™ we have f(Az+ (1—\)y) > f(x)*f(y)*~*. This class includes the important special
cases of the uniform density over a convex body and a Gaussian restricted to a convex set.
Note that we can alternatively think of a logconcave function as e~/(*) where now f is a
convex function. As in optimization, the traditional frontier of polynomial-time algorithms
for sampling has to do with convexity. In the past decade there has been progress on going
beyond convexity, with appropriate weaker assumptions. Two approaches are (a) to show
that isoperimetry of the target distribution suffices and (b) to use the convergence of the
continuous time diffusion as a basis for proving the convergence of the discrete-time algorithm.
We will illustrate these approaches later in this survey. Let us first introduce the main
algorithms for the most general oracle setting.
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Ball Walk

The ball walk with step-size parameter § > 0 is the following Markov Chain: at the current
point x, pick a uniform random point y from the ball of radius § centered at z; go to y with
probability min {1, f(y)/f(z)}. The starting point is chosen so that it satisfies f(xq) > 0.
When f is the indicator of a convex body K, this simply means that we start in K and at
each step go to the proposed y only if y is also in K.

Hit-and-Run

The Hit-and-Run Markov chain is the following: at the current point x, pick a uniform
random line ¢ through x, and go to a point y on the line with probability proportional to f
restricted to £. For a convex body, this means that we pick the next point uniformly from
the chord in a random direction through the current point.

2 Mixing rates in the general oracle model

For a more detailed introduction to Markov chains in continuous state spaces, and these
walks in particular, the reader is referred to [42, 36]. In this section by mixing rate we
mean the rate to halve the y2-divergence between the current distribution and the target
stationary distribution. We say that a distribution Qg is an M-warm start for a distribution

Q if sup dd%"((f)) < M. A weak M-warm start is when x?(Qo, @) < M. Recall that

eirar=sa( (556 -) )

A key parameter in the analysis of a Markov chain is its conductance. For a Markov
chain with state space K, transition kernel P and stationary distribution @, the conductance
of any measurable subset A of the state space is defined as

[y Pe(K\ A)dQ(x)
min {Q(A), Q(K \ A)}

and the conductance of the Markov chain itself is ¢ = inf 4 ¢(A). The conductance directly
bounds the mixing rate.

$(4) =

» Theorem 2 ([36]). For a time-reversible Markov chain with conductance ¢, the distribution
after t steps satisfies
o\’
XQ(Qt7Q) S (1 - 2) XQ(QOaQ)'

The paper [36] developed conductance-based analysis of the convergence of Markov chains in
the setting of continuous state spaces, including an important extension to the setting when
the conductance ¢(A) can only be bounded from below for sets A of measure larger than
some threshold.

2.1 Ball walk

The ball walk has the following convergence guarantee for a convex body. We use 5() to
suppress logarithmic terms.
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» Theorem 3 (Ball Walk from Warm Start in Convex Body [22]). Let K C R™ be a convex body
containing the unit Euclidean ball with R?* = Ex ( ||z — f||2) for T =Egx. Then the mizing
time of the ball walk in K with step size § = 1/+/n from an O(1)-warm start is bounded by

O(n?R?).
This guarantee generalizes cleanly to any logconcave density.

» Theorem 4 (Ball Walk from Warm Start for Logconcave Density [38]). The mizing time of
the ball walk for a target logconcave density v such that the level set of measure 1/8 contains

a unit ball and R? = EV(HQ? —§||2), with step size § = 1/+y/n from an O(1)-warm start is
bounded by O(n2R?).

The bound above is tight up to polylogarithmic factors; a cylinder with a unit ball cross
section and height R shows a lower bound of Q(n?R?). Can we reduce or eliminate the
dependence on R? Classical results tell us that for any convex body there is an affine
transformation (the John position) that ensures that the body is sandwiched between balls
of radii 1 and at most n. Since all we need to bound is the average squared distance, there is
a natural transformation of space that gives a bound of R = /n.

» Definition 5. A distribution with density v in R™ is said to be in isotropic position if a
random point X drawn from v satisfies E,(z) =0 and E, (zx ") = I.

Note that in isotropic position, R? = E(||z||?) = n and this implies a bound of n? on
the mixing rate for a logconcave distribution in isotropic position. As it turns out, it is
possible to show a better convergence rate, where the dependence on diameter is essentially
eliminated. The theorems below work also for near-isotropic position, by which we mean
that the eigenvalues of the covariance matrix are bounded below and above by constants
(rather than all being equal to 1).

» Theorem 6 (Ball Walk from Warm Start with Isotropic Target). The mizing time of the ball
walk applied to a logconcave density in isotropic position with step size § = 1/y/n from an
O(1)-warm start is bounded by O(n?).

The above theorem deserves some explanation and is the culmination of a quarter century of
progress on geometric isoperimetric inequalities. First, we state the corresponding theorem

which establishes the rate of convergence in terms of the isoperimetry of the target distribution.

For this we define the KLS constant.

» Definition 7. For a density v in R™, the KLS constant of v is defined as

i inf v(95)
¥,  scre min{v(S),1—v(9)}

and the KLS constant for logconcave densities in R" is 4, =
sup {¢,, : v isotropic logconcave in R™}.

We will discuss this constant and its significance presently. The following theorem [22]
shows how it bounds the mixing rate of the ball walk.

» Theorem 8 (Ball Walk and KLS [22]). The mizing time of the ball walk applied to a
logconcave density in isotropic position with step size 6 = 1/v/n from an O(1)-warm start is
bounded by O(n2y2).

4:3
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Kannan, Lovdsz and Simonovits [21] conjectured that v, = O(1) for any logconcave isotropic
density v. Recently, Klartag and Lehec [25], following a line of work [21, 13, 16, 12, 32, 3],
proved that ¢, = O(log5 n), which implies Theorem 6 above. Another way to state the
underlying isoperimetric inequality is the following.

» Theorem 9 (Euclidean Isoperimetry). For any logconcave density v in R™ whose covariance
matrix A has largest eigenvalue Ay and any two disjoint subsets S1,Se of R™ we have

d(517 ‘92)
Unv A1

where d(,) is Buclidean distance and v, is known to be O(log”®n) [25] and conjectured to be
O(1) [21].

V(K \ S\ S2) > min {v(51),v(52)}

An equivalent geometric way to state the KLS conjecture is that a hyperplane-induced subset
achieves the minimum isoperimetric coefficient up to a universal constant factor. For a
detailed discussion of the KLS conjecture, we refer the reader to [31]. Its full resolution
remains an intriguing and fruitful open problem.

More recently, it has been shown that the complexity of isotropic transformation and
volume computation can be reduced to the KLS constant.

» Theorem 10 (Rounding and Volume Computation [8, 19]). Given a convex body given in the
membership oracle model, it can be brought into near-isotropic position in O(n3?) queries
and its volume can be computed to within relative error € using O(n®/e?) additional queries.

We conclude this section with two questions about the analysis of the ball walk, which both
seem to require the development of new tools. The first has to do with the convergence of
the ball walk without a warm start. Although this does not converge quickly in general (e.g.,
when starting near a corner), it is conceivable that it does when started from a “nice” point.
After all, the result for a warm start effectively states that “most” points are good starting
points. But can we get our hands on one of them?

» Question 11. Show that the ball walk started from the centroid of a convex body converges
to its stationary distribution in polynomial time.

The second question has to do with verifying that the ball walk has converged. This has
value both theoretically and practically (to test convergence on an instance-by-instance basis
rather than simply running up to the worst-case bound).

» Question 12. Consider the ball walk in a convex body starting from a logconcave initial
distribution (e.g., uniform in a ball contained inside the body). Show that the distance between
the current distribution and the target can be bounded as a polynomial in the dimension and
the distance to stationarity of a random one-dimensional marginal of the current distribution.

A clean variant of this question, first proposed by Lovasz, is whether the expected squared
distance of a random point X; of the ball walk from its starting point X is a monotonic
increasing function.

2.2 Hit-and-Run

One advantage of hit-and-run is that there is no step-size parameter. A more important
property is that hit-and-run converges rapidly from any starting distribution (even a single
point), unlike the ball walk. To see that the ball walk does not, consider starting the ball
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walk near a corner, e.g., near a vertex of a cube; then the probability of making a proper
step (one that moves to a different point) can be arbitrarily small. Another way to see this is
to note that the conductance of small sets for the ball walk Markov chain cannot, in general,
be bounded from below. For hit-and-run, the picture is dramatically different — every subset
can be shown to have large conductance! In particular, hit-and-run started from an arbitrary
point in the interior (e.g., close to a corner) will quickly escape the corner.

» Theorem 13 (Conductance of Hit-and-Run [37]). The conductance of hit-and-run for any
convex body in R™ containing a unit ball and contained in a ball of radius R is Q(1/(nR)).

As a consequence it has the same general mixing rate as the ball walk, except that the
dependence on the warm start parameter is logarithmic rather than polynomial, and in
particular starting from any point z( in the interior of K, it is logarithmic in the inverse of
the distance of zq to the boundary of K. It is conjectured (and observed in practice [17, 2])
that Hit-and-Run also mixes in n? steps for a body/logconcave distribution in isotropic
position. However, it is an open problem to analyze this and show a bound better than n?3
as implied by the analysis in general position.

» Question 14. Analyze the mizing rate of Hit-and-Run for a logconcave density or conver
body in isotropic position.

To understand the difficulty of answering this question, it is useful to see the isoperimetric
inequality underlying the conductance bound for hit-and-run. This is our first departure

from Euclidean distance, and an indication that the natural underlying geometry is different.

For two points u, v in a convex body K, we define the cross-ratio distance as follows. Let
p,q be the endpoints of the chord induced by u,v inside K, so that their order along the
chord is p, u, v, q. Then,

_Ju=olllp—al
lp = ullllv =gl

While this distance is not a true distance in that it does not satisfy the triangle inequality,

the closely related Hilbert distance, dg(u,v) = In(1 + dx (u,v)), is a metric. We have the

following isoperimetric inequality.

dr (u,v)

» Theorem 15 (Cross-ratio/Hilbert Isoperimetry [35, 38]). For any logconcave density v in
R™ whose support is a convex body K and any two disjoint subsets S1,S2 of R™ we have

V(K \ Sl \52) Z dK(Sl,SQ)V(Sl)V(Sg).

This isoperimetric inequality is affine-invariant and already tight. So it is unclear how to
derive a more refined inequality that takes advantage of isotropic position.

» Question 16. Is there a corresponding KLS conjecture that would imply a better mizing
rate for hit-and-run?

2.3 A bottleneck

For both the ball walk and hit-and-run, the mixing rate from a warm start for an isotropic
target is 2(n?); this can be seen for a hypercube. The bottleneck for the ball walk is that
the largest value that the step-size parameter § can be set to is O(1/y/n). This is because
setting it to a larger value leads to most steps being rejected, i.e., WHP proposed steps are
outside the body. In the case of hit-and-run, we have the same bottleneck. This is because
the length of a random chord through a random point in a hypercube is still only O(1/4/n),
so this is the effective step-size on average.

4:5
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3 In search of a larger step: the Dikin walk

For the walks discussed so far, the step-size is limited by points near the boundary. This
suggests the idea of taking larger steps from points that are deeper inside, e.g., at the
current point, use the largest ball that has a constant probability of a random step being
accepted. So points deeper inside would take larger steps. However, this has the issue that
the resulting stationary distribution is no longer uniform. To correct this, one can use a
Metropolis filter based on the ratios of the volumes of the balls at the current point and the
proposed point. Unfortunately, this means that this effective radius or step-size must change
slowly. A smoother and more elegant approach is inspired by the seminal work of Dikin
for convex optimization [10]. To optimize a linear function over a polytope, he proposed
constructing a “maximal” ellipsoid around the current point that would be contained in
the body, taking a large, objective-improving step within this ellipsoid and repeating. This
was the first “interior-point” paradigm (now called Affine Scaling); it predates the central
path interior-point method pioneered by Karmarkar [24] and generalized by Nesterov and
Nemirovskii [41]. For a point x in the polytope defined by { Az > b}, the Dikin ellipsoid is
defined as follows:

m T
)T 2 aia;
—z) H —x)<r here H(z) = —
—{y: ( @)y -2)<r?} W =2 o mp
with a; being the i’th row (normal vector) of the constraint matrix A for i = 1,...,m.

This ellipsoid adapts to the local geometry of the polytope, and E(z,1) always fully con-
tained in it. It suggests the following Dikin random walk: at the current point x, pick
a random point y in the Dikin ellipsoid E(z,r); if z € E(y,r), go to y with probability
min {1, vol(E(z, r))/vol(E(y,r))}. Kannan and Narayanan [23] analyzed its mixing rate with
a suitable choice of the radius r.

» Theorem 17 (Dikin in Polytope [23]). The mizing rate of the Dikin walk from a warm
start in a polytope in R™ given by m inequalities is bounded by O(mn).

Notably, the mixing rate of the walk does not depend on the affine position of the body —
the process is affine-invariant, i.e., applying the walk to an affine transformation of the input
body is the same as applying the transformation to the output of the process on the same
body. This means in particular that one can assume for free that the polytope is in isotropic
position. This avoids dependence on the outer ball radius parameter R in the previous
section.

What should the step-size r be? It is chosen to be O(1/4/n) and this turns out to be
necessary to ensure that the rejection probability is not too high, i.e., that the volumes of
Ellipsoids corresponding to nearby points are within a constant factor. The change in the
ellipsoid can be bounded using the classical optimization property of self-concordance, i.e.,
when the matrix function H(z) is the Hessian of a convex function. Self-concordance is a
key property in the analysis of the interior-point method for linear programming [41]. In
fact, the ellipsoid matrix H(x) is the Hessian of the convex log barrier function at x,

Zln x—b

i.e., H(x) = D?¢(x). So the log-barrier interior-point method for optimization corresponds
to the Dikin walk for sampling!

To make this connection a bit more precise, let us define the norm of a vector v induced
by a matrix function H as ||v]|2 = v H(z)v.
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Figure 3.1 (a) Eu(1) C KN (2u — K) C Eu(y/v). (b) (Strong) self-concordance measures the
rate of change of Hessian.

» Definition 18. For a convex set K C R™, we say a matrix function H : K — R"*"™ is
self-concordant if for any x € K, we have

HH(x)*l/QDH(x)[h]H(z)*l/ZHop <2,

where DH(z)[h] is the directional derivative of H at z in the direction h, i.e., DH(z)[h] =
%H(x + th). We say H is symmetric v-self-concordant if H is self-concordant and for any
re K,

E(x,1) C KN (2r — K) C E(z,/v).

Self-concordance relates the change in H to the change in x. Many natural self-concordant
barriers, including the logarithmic barrier, satisfy a much stronger condition, replacing
the operator norm above by the Frobenius norm. While this makes no difference for the
worst-case bound for optimization, it turns out to be crucial for sampling.

» Definition 19 (Strong Self-Concordance). For a convex set K C R"™, we say a matrix
function H : K — R™*" is strongly self-concordant if for any = € K, we have

|H@)2DH@)WHE) 2| <208, .

The canonical barrier [18] satisfies strong self-concordance. The situation with two other
classical barriers, namely the universal and entropic barriers has a curious connection.

» Lemma 20 ([27]). Let H(z) be the Hessian of the universal or entropic barriers. Then,
|B@) 2D E@) 2| = o) 1Al

In fact, up to a logarithmic factor, the strong self-concordance of these barriers is equivalent
to the KLS conjecture.

» Lemma 21. Given any strongly self-concordant matriz function H on K C R™. For any
z,y € K with ||z — yl[» <1, we have

[EL()F (FE(y) — H())H(z)F | < 2V
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The following guarantee was shown for the convergence of the generalized Dikin walk in [27].

» Theorem 22 (Convergence of general Dikin walk [27]). The mizing rate of the Dikin walk
for a symmetric, strongly self-concordant matriz function with convex log determinant is
O(nv).

This implies faster mixing and sampling for polytopes using the LS barrier [28], which is
strongly self-concordant, has a convex log determinant and has 7 = O(nlog® m).

» Theorem 23 (Quadratic Convergence of Dikin [27]). The mizing rate of the Dikin walk
based on the LS barrier for any polytope in R™ is O(n?) and each step can be implemented in
O(mn*~1) arithmetic operations where w is the matriz multiplication exponent.

We note that the Dikin walk with the logarithmic barrier for a polytope {Axz > b} can be
implemented in time O(nnz(A) + n?) per step while maintaining the mixing rate of O(mn).

The isoperimetry of the metric induced by the matrix function H follows by simply
connecting it to the cross-ratio distance.

Hu—1 |u

» Lemma 24. For u,v € K, dg(u,v) >

3

From this lemma and Theorem 15, we have that the isoperimetric coefficient for the Hessian
norm distance is 2(1/+/v). This bound, as well as the bound of mn for the Dikin walk with
the log barrier are tight as shown by a hypercube with one of its facets duplicated m —n
times. However, the situation is far from clear for the weighted Dikin walk, where the log
barrier is replaced by one that weights each constraint, as in the LS barrier (and effectively
eliminates this bad example).

» Question 25. What is the isoperimetric coefficient of the Hessian distance induced by the
LS barrier? Does the corresponding weighted Dikin walk miz in O(n) steps?

4 Large steps via non-Euclidean geometries

The Dikin walk and its weighted version are based on exploiting local geometry, where the
norm is defined locally. As a direct consequence, this family of algorithms is affine-invariant.
However, to ensure the correct stationary distribution and keep the probability of acceptance
in the Metropolis filter reasonably large, the effective step-size is again 1/4/n, and the
convergence rate is n?. Is a larger step-size/smaller convergence rate possible?

To understand this, we delve further into the use of non-Euclidean geometry. So far, our
random walks have only taken straight line steps in Euclidean space. The distribution of
the direction of the next step depends on the current point in the case of the Dikin walk,
but the step itself is still a straight line. A more drastic departure would be to use curves
instead of straight lines. How?

First note that given a local metric such as the one induced by the Hessian of a convex
function defines a manifold and using this metric we can define the length of a curve (a
continuous path) and the distance between any two points (as the length of the shortest
curve between them). Since the local metric varies, the shortest path between two points
can be a curve (e.g., consider flight paths for the sphere metric). In the context of sampling
polytopes, we consider the metric defined by the Hessian of the log barrier. The support of
this manifold is the original polytope. Distances between points are magnified as the points
get closer to the boundary. So geodesic paths tend to avoid the boundary!



Y. T. Lee and S.S. Vempala 4:9

Figure 4.1 The Hessian manifold induced by the log barrier in a polytope.

How do we pick a random next step/direction? For this we can use the notion of tangent
space attached to every point in a Riemannian manifold, and pick a random (Gaussian)
vector in the tangent space. Then we go along the geodesic (locally shortest path) in the
direction of the chosen vector along the manifold. This is the curved step. We make these
notions more precise below. The main intuition for considering such a generalization is the
possibility of taking larger steps unimpeded by the boundary. This family of walks have
been called “geodesic” walks [31]. We will shortly see an even more natural variant. For
some quick background on Riemannian geometry, we refer the reader to the appendix.

4.1 Geodesic walks

Consider an explicit polytope P and a manifold M with support P and metric induced by
the Hessian of the log barrier in P. Moving to this manifold view allows us to avoid the
constraint of small steps near the boundary, as there is no longer a hard boundary constraint.
How large can we make the step size? This is limited by another factor, namely, when we
take large steps, the filter acceptance probability (to maintain the desired target distribution)
can become very small. Could we possibly avoid using a filter? To answer this, we first
consider the continuous time limit of the corresponding “diffusion” process.

dry = p(zy)dt + (2D%(x,)) " aw,.

The first term, called the drift, is given by

n
pite) =3 o (Folw)) ") =D (D%() )
=1 9% K
where D- is the divergence operator. The drift term is a deterministic vector field biasing
the walk locally. Its purpose is to ensure that the process converges to the desired target
uniform distribution. Notably, in the continuous setting, it replaces the Metropolis filter.
The precise form of the drift can be derived using the Fokker-Planck equation.

ICALP 2022
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» Theorem 26 (Fokker-Planck equation). For any stochastic differential equation (SDE) of
the form

dIt = ,LL(I'f)dt + H(It)th,

for a symmetric matriz function H, the probability density of the SDE is given by the diffusion
equation

0 "0 I e~ 02
Spe) = =3 S pa(@p()] + 5 S0 5[y (0)p()]
=1 It ‘
In discrete time, we consider the following geodesic walk:
G+1) Nt
x = exp,u (Vhw + iu(x ), (4.1)

where exp,;) is the exponential map from the tangent space at x0), T, M, back to the
manifold, w is a random Gaussian vector in the tangent space T, M, u(x9)) € T, M is
the drift term and h is the step size. The Gaussian vector w has mean 0 and variance 1 in
the metric at , i.e., for any u, E,(w,u)2 = ||z||2. We write it as w ~ N, (0, ). This discrete
walk converges to continuous diffusion as h — 0 and it converges at a rate faster than the
walk suggested by Euclidean coordinates, namely, 20+ = () + hw + hﬂ(x(j)).

Implementing this discretization leads to substantial challenges. The stationary distribu-
tion of the geodesic walk is not uniform. To get around this issue, we use rejection sampling.
For step-size h chosen in advance, let p(z — y) be the probability density of going from x to
y using the local step w.

Algorithm 1 Geodesic Walk.

At current point x:

Pick a Gaussian random vector w ~ N,(0,I).

Compute y = exp, (Vhw + 2p(z)).

Let p(z =5 y) be the probability density of going from x to y using the above step w.
Compute a corresponding w’ s.t. = exp,(vVhw' + 2u(y)).

With probability min ( 1, 2422 )| go to y; otherwise, stay at .
p(z—y)

In this algorithm, computing the exponential map and computing the transition probability
density are nontrivial steps that need the efficient solution of an ODE. Even though the walk
uses a Metropolis filter in the end, the parameter h can be made as large as n=3/4, and the
overall mixing time is O(m/h), leading to the first sub-quadratic mixing rate for sampling
polytopes. Note that this is effectively a step-size of vVh = n=3/8 > n=1/2_ the limitation of
previous methods.

» Theorem 27 (Convergence of Geodesic Walk [29]). The geodesic walk in a polytope with
the log barrier converges to the uniform density in the polytope in O(mn3/4) steps and each
step can be implemented in O(mn®~1Y) arithmetic operations.



Y.T. Lee and S.S. Vempala 4:11

Hit-and-Run

Geodesic walk

Hamiltonian Monte Carlo

Figure 4.2 An illustration of Hit-and-run/Dikin, Geodesic walk and Hamiltonian Monte Carlo.

4.2 Riemannian Hamiltonian Monte Carlo

In the geodesic walk inspired by diffusion, in each step we choose a random direction and the
drift along the entire step is determined by the (current) initial point. An even more natural
discretization is to let the drift evolve along the trajectory in the chosen direction. The
purpose of this modification would be to maintain the stationarity in spite of going to discrete
time without introducing an explicit Metropolis filter. Can this be done? The answer is the
method known as Hamiltonian Monte Carlo [40], and its manifold generalization [15]. To
sample from a general distribution e~ (%) Hamiltonian Monte Carlo uses curves instead
of straight lines in a time-reversible manner even if the target distribution is uniform.

» Definition 28. Given a continuous, twice-differentiable function H : M x R™ C R" x R" —
R called the Hamiltonian, where M is the x domain of H, we say (x(t),y(t)) follows a
Hamiltonian curve if it satisfies the Hamiltonian equations

de _ 0H(z,y)

a oy

dy ~ 0H(z,y)

at or *2)

We define the map Tjs(x,y) = (2(6),y(5)) where the (z(t),y(t)) follows the Hamiltonian
curve with the initial condition (x(0),y(0)) = (z,y).

Hamiltonian Monte Carlo is a sequence of randomly generated Hamiltonian curves.

Algorithm 2 Hamiltonian Monte Carlo.

Input: some initial point z(!) € M.

for k=1,2,---,T do
Sample y**2) according to e*H(m(k)’y)/w(x(k)) where m(z) = [, e @V dy.
With probability 3, set (z(*+1), y(b+1) = Ts(x®), y+2)),
Otherwise, (z*+1) y(*+1)) = 7_5(z() y(E+3)),

end

Output: (z(T+1) ¢T+1D),

» Lemma 29. HMC has the following properties:
1. Energy conservation. For any Hamiltonian curve (z(t),y(t)),
d

SH((0), (1) = 0.
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2. Measure preservation. For anyt > 0,
det (DTi(x,y)) =1

where DTy (x,y) is the Jacobian of the map T} at the point (x,y).
3. Time reversibility. For 7(z) = [, e~ H@Y)dy, the probability density p,(z') of one step
of HMC starting at x satisfies 7(x)p,(x') = 7(z")pw ().
Everything so far can be generalized to manifolds. To sample from the distribution e=/(*),
we define

H(r,u) = f(r) + 3 log((2n)" det g(x)) + 50T g() v (4.3)

where ¢ is the local metric of the manifold. In the Euclidean case, g(z) = I, and the
Euclidean Hamiltonian is H(z,v) = f(z) + 3 |v||* and the corresponding dynamics becomes
just % = —Vf(x). One can view x as the position and v as the velocity. The convergence
of HMC has been intensively studied in recent years, starting with [39], which established a
mixing rate of O(k?) for the case when f is strongly logconcave. For this setting it is now
known that the optimal rate is O(x) [4].

We now restate the HMC equation for manifolds, as Riemannian HMC, noting that

derivatives have to take the local metric into account.

» Lemma 30. In Euclidean coordinates, the Hamiltonian equation for (4.3) can be rewritten
as

dxr
D _ =
Yt
dr

“H0) N0, g(2) )

where p(z) = —g(x)"'Df(z) — 39(x) "' Tr [g(x) "' Dg(z)], and D, is the covariant derivative
(or Levi-Civita connection) on the manifold M with metric g.

(@),

With the above set-up, as long as we can compute the RHMC ODE accurately and efficiently,
there is no need for a filtering step, leading to a significantly simpler implementation than
that of the geodesic walk. In fact, it also gives a slightly improved mixing rate by allowing a
larger time step in each iteration.

» Theorem 31 (Convergence of RHMC [30]). Riemannian Hamiltonian Monte Carlo in a
polytope with the log barrier converges to the uniform density in the polytope in O(mn2/3)
steps.

» Question 32. Can the step-size of RHMC be improved so that the mizing rate is O(m~/n)?
Can the mizing rate be improved to O(n'-5) with a weighted log barrier?

RHMC appears to be quite practical, with recent implementations being able to sample from
constrained distributions in dimension as high as 10° [26].

5 From diffusion to sampling: the manifold perspective

Langevin Diffusion (LD) is the following stochastic process!:

dX, = —Df(X,)dt + v/2dB,

! In this section, we use D for Euclidean derivative and reserve V for manifold derivative.
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where B; is the standard Wiener process. The stationary distribution of this process is
the density v(z) proportional to e~f (#) "a fact that can be verified using the Fokker-Planck
equation for the time derivative of the density of X;. To understand the rate of convergence,
we recall two basic notions. First to measure the distance between distributions, we use the
relative entropy (or KL divergence), defined as follows:

p(x)
v(z)

In continuous time, the convergence will depend on what kind of isoperimetry is satisfied by
the target density. So far we have seen Cheeger isoperimetry, which results in convergence in
the y2-divergence. A stronger notion of isoperimetry is given by the Log-Sobolev Inequality.
The relative Fisher information is defined as

H,(p) = /p(ac) log dz =E, (logg) .

14

1.(0) = [ 61V 105(%) P

Note that this definition is for any Riemannian manifold.

» Definition 33. We say the distribution v satisfies a Log-Sobolev inequality with constant
« (called the log-Sobolev constant) if for every measure with density p we have

! Ju (p)-

2a

Hy,(p) <

For logconcave densities in R”, an equivalent definition up to absolute constants is the
following:

o in v(95)
Var= San,uf(S)gé v(S)4/log(1/v(S))

which looks like the Cheeger constant except for the additional log factor in the denominator
— LSI requires the isoperimetric coefficient to get larger as the measure of the subset gets
smaller.

A distribution that satisfies LSI has a strong convergence property in continuous time.

» Theorem 34. H,(p;) < e 2**H,(po).

This statement bears a remarkable resemblance to convergence of Gradient Descent to the
optimal solution for strongly convex functions. In fact, as noted by Wibisono [45] (see also
[20]), Langevin Diffusion is Gradient Flow in the space of measures with the Wasserstein
metric and the objective being the KL-divergence to the target density.

We discuss this in a bit more detail below, starting from the simple optimization per-
spective.

» Lemma 35. Let F' be a function satisfying “Gradient Dominance”:

IVF(x)|* > 2a(F(z) — min F(x)).

x

Then, the deterministic process doy = —V F(x;)dl converges exponentially, i.e.,

F(2;) —min F < e 2% (F(z0) — min F).
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Proof. We write

d . dzy
a(F(gpt) — min F(z)) = (VF(xy), E>
— | VF ()|

—2a- (F(xs) — mrln F(x)).

IN

The conclusion follows. |

For f: R™ — Ry, let v be the density proportional to e=#(*) and F(p) = H,(p). We will
apply the above lemma to this KL-divergence objective.

» Lemma 36. For any two densities p, v,

IV = [ o) \Dlog o H dx = J,(p).

» Theorem 37. Let f be a differentiable function with log-Sobolev constant . Then the
Langevin dynamics

dx; = —Df(x)dt + v/2dW,
converges exponentially in KL-divergence to the density v(z) e~ @) with mizing rate
O(1/a), i.e., H,(p:) < e ** Hy,(po).

Proof. First, note that the Langevin SDE, by Fokker-Planck, corresponds to the following
PDE:

@) _ b (o) DS) + Ap(a)

dt
=D (p(x)Dlog I’/’Eg)

= _vau(p)'

Note that the last step above refers to the derivative with respect to the Wassterstein metric
(see [44]). Next, we note that since v satisfies the log-Sobolev inequality, F(p) = H,(p)
satisfies the Gradient Dominance condition with parameter . The theorem follows from
Lemma 35. |

So far, we have only used the log-Sobolev inequality, not convexity or related properties.
Will this suffice for an efficient algorithm? It was shown in [43] that this is indeed the case.
The Unadjusted Langevin Algorithm (ULA) is the simple Euler discretization of Langevin
dynamics, namely,

Xp1 = Xi — 8- Df(Xy) + V207
where Z ~ N(0,1) is standard Gaussian. The next theorem is for R”.

» Theorem 38 (ULA converges under Isoperimetry [43]). Assume v = e~ satisfies LSI with
constant o > 0 and D f is L-Lipschitz. Then ULA with step size 0 < § < 477 satisfies

o 8onL?
Hy,(pr) < e MHV(F’O) + o
For any 0 < e < 4n, ULA with step size 6 < 1555 reaches error H,(py) < ¢ after at most

k> % log M”f(po) iterations.
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Due to the simplicity and generality of the approach, Langevin Algorithms have been
intensively studied in recent years for many special cases and under various additional
conditions on the input [9, 5, 11, 34, 46, 6]. Here we consider an extension: what is the
generalization of Langevin diffusion from Euclidean space to more general metrics?

» Definition 39 (Riemannian Langevin Diffusion (RLD)). Let M be a manifold with metric

g and measure dvy(z), whose density with respect to the Lebesgue measure is /| det(g)|.

For a distribution with density v = e~%, Riemannian Langevin Diffusion is given by the
following SDE whose stationary distribution is vdv,:

dX; = (V- (g7 (Xy)) = VF(X¢))dt + /2971 (Xe)dB:.

Here V- denotes the divergence with respect to the manifold and it is applied separately to
each row of a matrix. When written in local Euclidean coordinates, this becomes

dXe = (D - (971 (Xy)) — g~ (Xe) DF(Xe))dt + /2971 (X,)dBy

where f(z) = F(z) — 3 logdet g(z) and the derivative and divergence are Euclidean. When
f is constant, then Df = 0 and we get the equation for Brownian motion on the manifold.

RLD has the same convergence guarantee in continuous time as stated by Theorem 34, with
v being the manifold stationary measure. While LD can only be applied to smooth target
densities, RLD allows us to use the metric g to incorporate constraints and sample from e~f
subject to constraints. For example, by letting g be the log-barrier of a polytope we get to
sample from densities restricted to the polytope, in continuous time. We next define the
extension to a discrete time algorithm.

» Definition 40 (Riemannian Langevin Algorithm (RLA)). To sample from the distribution
vduvg(z) over the manifold M, for a fixed step size €, repeat:

y = exp,, (—eVF(zy))
Tp+1 = %(yv 6)

where B (g, t) samples from Brownian motion on the manifold, starting from ¢ after time ¢.

Recently, following work of [33, 1], [14] made progress on analyzing RLA in this general
setting, showing that an extension of self-concordance of the metric suffices to guarantee
convergence under the log-Sobolev inequality.

6 Discussion

The study of sampling has led to new tools, both for analysis and for algorithms, surprising
connections with convex geometry, functional analysis and optimization, and practical
algorithms in high dimension. We conclude by highlighting a few more open problems.

» Question 41. Is there a natural KLS conjecture for Hessian manifolds?

The close connection between diffusion and sampling raises an interesting sampling problem,
namely efficiently simulating Brownian motion on manifolds.

» Question 42. Given a metric g, an initial point o and a time interval t, give an algorithm
to sample from the distribution of Brownian motion on the manifold starting at xo for time
t. For a manifold with metric g, Brownian motion is given by:

dX; =V - (g7 1)dt + /29~ 1dB;.
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Riemannian metrics

A manifold M can be viewed as an n-dimensional “surface” in R for some k > n.

1.

Riemannian metric: For any v, u € T, M, the inner product (Riemannian metric) at p is
given by (v,u), and this allows us to define the norm of a vector |[v[|, = /(v,v),. We

call a manifold a Riemannian manifold if it is equipped with a Riemannian metric. When
it is clear from context, we define (v,u) = (v,u),. In R" , (v,u), is the usual {> inner
product.

. Tangent space T, M: For any point p, the tangent space T, M of M at point p is a linear

subspace of R* of dimension n. Intuitively, 7}, M is the vector space of possible directions
that are tangential to the manifold at x. Equivalently, it can be thought as the first-order
linear approximation of the manifold M at p. For any curve ¢ on M, the direction %c(t)
is tangent to M and hence lies in T,.(;) M. For any open subset M of R", we can identify

T,M with R™.

Tangent Vector

Manifold

Figure A.1 Riemannian Manifold and Tangent Space.

. Hessian manifold: We call M a Hessian manifold (induced by ¢) if M is an open subset

of R™ with the Riemannian metric at any point p € M defined by
_ T2
<U> U>p =v v ¢(p)u

where v,u € T, M and ¢ is a smooth convex function on M.

. Length: For any curve ¢ : [0,1] — M, we define its length by

d

c(t)

L(c):/o1

. Distance: For any x,y € M, we define d(z,y) be the infimum of the lengths of all paths

connecting x and y. In R™ | d(z,y) = ||z — yl|,-


http://proceedings.mlr.press/v75/wibisono18a.html
http://proceedings.mlr.press/v75/wibisono18a.html
http://arxiv.org/abs/2109.13055

Y.T. Lee and S.S. Vempala

6. Geodesic: We call a curve (t) : [a,b] = M a geodesic if it satisfies both of the following

10.

conditions:

a. The curve y(t) is parameterized with constant speed. Namely, | %y(t)Hv( 4 I8 constant
for ¢ € [a, b].

b. The curve is the locally shortest length curve between v(a) and ~(b). Namely, for any

family of curve c¢(t, s) with ¢(t,0) = v(t) and ¢(a, s) = v(a) and ¢(b, s) = v(b), we have
b
that % s=0 fa H%C(t’ S)Hc(t,s) dt = 0.

Note that, if v(¢) is a geodesic, then y(«at) is a geodesic for any «. Intuitively, geodesics
are local shortest paths. In R™, geodesics are straight lines.
Exponential map: The map exp,, : T, M — M is defined as

expy,(v) = 7o (1)

where v, is the unique geodesic starting at p with initial velocity ~,(0) equal to v. The
exponential map takes a straight line tv € T, M to a geodesic Vi, (1) = 7,(t) € M. Note
that exp, maps v and tv to points on the same geodesic. Intuitively, the exponential map
can be thought as point-vector addition in a manifold. In R", we have exp,(v) = p + v.
Parallel transport: Given any geodesic c(t) and a vector v such that (v,c'(0)),) = 0,
we define the parallel transport of v along ¢(t) by the following process: Take h to
be infinitesimally small and vg = v. For ¢ = 1,2,---,1/h, we let v;, be the vector
orthogonal to ¢/(ih) that minimizes the distance on the manifold between exp,(;,)(hvin)
and exp,((;_1) h)(hv(i,l) ). Intuitively, the parallel transport finds the vectors on the
curve such that their end points are closest to the end points of v. For general vector
v € Ty (o), we write v = ac’(0) + w and we define the parallel transport of v along c(t) is
the sum of ac’(t) and the parallel transport of w along ¢(¢). For non-geodesic curve, see
the definition in Fact 43.

Orthonormal frame: Given vector fields vy, va, -+ , v, on a subset of M, we call {v;}
is an orthonormal frame if (v;,v;) = 11if i = j and 0 otherwise. Given a curve c(t) and
an orthonormal frame at ¢(0), we can extend it along the curve by parallel transport and
it remains orthonormal on the whole curve.

Directional derivatives and the Levi-Civita connection: For a vector v € T,,M and a
vector field u in a neighborhood of p, let v, be the unique geodesic starting at p with
initial velocity v, (0) = v. Define

h) —u(0
Vo = Jim A =)
h—0 h
where u(h) € T, M is the parallel transport of u(v,(h)) from v(h) to «(0). Intuitively,
Levi-Civita connection is the directional derivative of u along direction v, taking the
metric into account. In particular, for R™, we have V,u(z) = %u(w + tv). When u is

defined on a curve ¢, we define Dyu = Vo (hu. In R™, we have Dyu(v(t)) = Lu(y(t)).
We reserve % for the usual derivative with Euclidean coordinates.

We list some basic facts about the definitions above.

» Fact 43. Given a manifold M, a curve c(t) € M, a vector v and vector fields u,w on M,
we have the following:

1.

(alternative definition of parallel transport) v(t) is the parallel transport of v along c(t) if
and only if Vo gyv(t) = 0.
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(alternative definition of geodesic) c is a geodesic if and only if V) c' (t) = 0.
(linearity) V,(u+ w) = Vyu + V,yw.

(product rule) For any scalar-valued function f, V,(f -u) = %u + - Vyu.

(metric preserving) - (u, W)y = (Drtr, ) oy + (U, Dyw) .-

(torsion free-ness) For any map c(t,s) from a subset of R? to M, we have that Ds% =
D, ¢ where Dy =V ge and Dy = Vg .

(alternative definition of Levi-Civita connection) V,u is the unique linear mapping from
the product of vector and vector field to vector field that satisfies (3), (4), (5) and (6).
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