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Abstract
We study a generalization of the classic Online Joint Replenishment Problem (JRP) with Delays
that we call the Online Weighted Cardinality JRP with Delays. The JRP is an extensively studied
inventory management problem wherein requests for different item types arrive at various points
in time. A request is served by ordering its corresponding item type. The cost of serving a set of
requests depends on the item types ordered. Furthermore, each request incurs a delay penalty while
it is left unserved. The objective is to minimise the total service and delay costs. In the Weighted
Cardinality JRP, each item type has a positive weight and the cost of ordering is a non-decreasing,
concave function of the total weight of the item types ordered. This problem was first considered in
the offline setting by Cheung et al. (2015) but nothing is known in the online setting. Our main
result is a deterministic, constant competitive algorithm for this problem.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online Algorithms, Delay, Joint Replenishment Problem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.40

Category Track A: Algorithms, Complexity and Games

1 Introduction

The Joint Replenishment Problem (JRP) is a class of optimisation problems that are
fundamental to inventory management theory. The problem involves a sequence of requests
on items that arrive at various times. Serving a set of requests incurs a cost that is determined
by a given cost function that depends on the set of items the requests are on. The goal of
the problem is to serve all requests whilst minimising the total cost incurred. There are two
variants under which this problem is often studied. In the deadline variant, each request has
an associated deadline that is must be served before whilst in the more general delay variant,
each request incurs a delay penalty which must be paid. The delay is a non-decreasing,
continuous function of the time the request was left unserved. Under the delay model, the
goal is to minimise the total service and delay costs. We will be considering the JRP under a
make-to-order mechanism [18], where items must be made to serve some request and cannot
be held in inventory. In this paper, we consider the online setting. Here, requests arrive over
time together with their deadline or delay functions and at any point in time, the algorithm
may choose to serve some set of requests.

In the Classic JRP, each item type i has a corresponding item ordering cost Ki and there
is a fixed joint ordering cost K0. Whenever a set of items is served, the cost incurred is K0
plus Ki for each item type i served. We note that regardless of the number of units of an
item type i that gets served, only a fixed Ki is paid. This problem captures the well-known
TCP Acknowledgement Problem. Buchbinder et al. [15] gave a 3-competitive algorithm for
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40:2 Online Weighted Cardinality Joint Replenishment Problem with Delay

Online Classic JRP with Delays and a lower bound of 2.64. Then, Bienkowski et al. [10]
improved the lower bound to 2.754 and showed that the optimal competitive ratio for Online
Classic JRP with Deadlines is 2.

With the competitive ratio of Online Classic JRP with Delays mostly settled, there has
been a lot of interest in generalisations of the problem where different costs of serving requests
are considered. One of these generalizations is Multi-Level Aggregation [9, 14] where we
are given a rooted tree T with node costs and requests arrive at nodes of the tree. The
cost of serving a set of requests is the cost of the subtree of T induced by the root and the
nodes corresponding to the requests. Note that when T is depth 2, this captures JRP. The
current best upper bounds for this problem depends on either the depth of T [14, 7], or are
logarithmic in the number of vertices of T [8]. No super-constant lower bounds are known.

This problem was later generalized to Online Network Design with Delays [8] where we
are given a graph G with edge/node costs and receive connectivity requests over time. The
cost of serving a set of connectivity requests is the cost of the subgraph of G that satisfies
the requests. This captures a wide class of problems such as Multi-Level Aggregation and
Set Cover with Delay. Azar and Touitou [8] provided a framework to reduce a network
design problem with delay or deadline to the classic offline variant without delay or deadline
while incurring a logarithmic loss in the competitive ratio. Using this framework, they gave
polylogarithmic-competitive algorithms for many network design problems with delays or
deadlines. Recently, Touitou [30] recently showed that a sub-logarithmic competitive ratio is
not possible for Online Network Design with Delays in its full generality. Thus, as powerful
as this framework is, it cannot be used as is to improve the competitive ratios for problems
such as Multi-Level Aggregation. For these problems, we will need to take advantage of the
special structure of these problems to improve their competitive ratios.

In this paper, we introduce a natural generalisation of Online Classic JRP with Delays
called the Online Weighted Cardinality JRP with Delays and show that the Azar-Touitou
framework can be refined to give a constant competitive algorithm for the problem. In the
Online Weighted Cardinality JRP with Delays, each item type i has an associated weight
wi and we are also given a non-negative, non-decreasing concave function f . The cost of
serving a set of requests on a set λ of item types is f(

∑
i∈λ wi). The concave cost function

captures a natural type of economies-of-scale in the real-world production of goods. It has
also been considered in other optimization problems such as buy-at-bulk network design
(see Section 1.2 for details). The special case of unit weights (called Cardinality JRP) was
first studied by Cheung et al. [17] in the offline setting, and they gave a 5-approximation
algorithm. We remark that this problem captures the Classic JRP by setting f to be the
affine function f(x) = K0 + x and the weights wi = Ki.

The main technical result of this paper is a constant-competitive algorithm for the case
of unit weights.

▶ Theorem 1. There is an O(1)-competitive, deterministic polynomial time algorithm for
Online Cardinality JRP with Delay.

For the weighted variant, we design a pseudo-polynomial time reduction from Weighted
Cardinality JRP to Cardinality JRP to get the following result.

▶ Theorem 2. There exists an O(1)-competitive, deterministic algorithm for Online Weighted
Cardinality JRP with Delay.
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1.1 Our Techniques
We now outline the key ideas behind our algorithm for Online Cardinality JRP with Delay.
First, as is common when dealing with concave functions, we focus on the special case where
the function f(x) is the minimum of n affine functions gi(x) = σi + δix, and the σi’s are
geometrically increasing with i while the δi’s are geometrically decreasing with i. Moreover,
when we make a service, we specify which of these affine functions we use to pay for the
service. When we make a service λ using gi, we call it a level i service. The cost of the
service is gl(λ) = σi + δi|λ|; we call σi the shared cost of the service and δi its individual cost.
We call this the Piecewise Cardinality JRP. In the remainder of this section, we discuss our
approach for Piecewise Cardinality JRP.

In Classic JRP, the main challenge is to balance the competing demands of aggregating
requests into few orders to minimize the number of services and hence the total joint ordering
costs incurred, and of aggregating requests on the same item types to minimize the total item
ordering costs incurred. The additional challenge in Piecewise Cardinality JRP is deciding
which level each service serves at. Since 2σi ≤ σi+1 and δi ≥ 2δi+1 for all i ∈ [1, n), a lower
level service pays a lower shared cost but higher individual cost for each item type and is
hence preferred for services with fewer items. On the other hand, a higher level service must
pay a larger shared cost but can then serve items at a lower individual cost and should thus
be used when serving more item types.

Our algorithm is inspired by the Azar-Touitou framework [8] and augmented with ideas
from Gupta et al. [26] to decide which level we should make services at. In fact, we also show
that applying the Azar-Touitou framework directly leads to a logarithmic competitive ratio
at best (see full version). We first discuss how to handle the simpler deadline setting.

In the deadline setting, requests have levels which are initialised to 1 on arrival. When an
unserved request of level j reaches a deadline, it triggers a level j service. We then upgrade
its level to j + 1 if there are sufficient level j services made recently whose total individual
cost can pay for the shared cost of the upgraded services. This makes sense because if there
are too many level j services in a relatively small time period then the optimal solution could
have aggregated the requests served by these requests into fewer higher-level services and
incurred lower cost overall. While this seems to lead to a competitive ratio that depends
on the number of levels, by making a careful choice of which level j services to charge to,
we are able to achieve a constant competitive ratio. Once we have decided on the level of
the service, say at level j′, we set the budget of the service to its shared cost σj′ and serve
unserved requests of level at most j′ in ascending order of their deadline until the individual
cost of the service reaches or exceeds the budget.

To generalise the algorithm to the delay setting, we adapt and extend the idea of
investments used by [8]. Conceptually, instead of thinking of the delay penalty on requests
being paid off continuously as time progresses, online algorithms with delay normally pay off
the delay accumulated by requests when the request is served. However, with the notion of
investments, services will pay off the delay accumulated by all requests, regardless of whether
or not it serves it, and will also pay off and “invest” in the delay requests may accumulate in
the future. This can be thought of as services investing in the delay requests accumulate and
might accumulate in the future and incrementally paying it off as opposed to paying it all off
in one go at service time. Our key innovation to extend upon the idea of investments used
by [8] is to keep track of and utilise how much has been invested into each request. More
specifically, we will invest in requests and once a sufficient amount has been invested into a
set of requests of the same item type, we will serve the set of requests. To then generalise
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40:4 Online Weighted Cardinality Joint Replenishment Problem with Delay

the level updating condition used in the deadline variant, our algorithm will explicitly bound
the amount invested in requests of a particular level by recent services and use this bound to
determine when we update levels.

Our analysis uses similar ideas to [8] by defining service pointers to define different types
of services and then breaking up our algorithm’s cost into the costs of different types of
services. Using our extended notion of investments, we introduce a novel charging argument.
Previous works on online JRP and related problems often charge their algorithm’s delay
costs to the costs of its services which are then charged to the optimal solution. Our analysis
differs by instead charging the algorithm’s service costs to the delay costs we have invested
in and then charging these costs to the optimal solution.

1.2 Related work

Multi-Level Aggregation was first studied by Bienkowski et al. [9] who gave an algorithm
whose competitive ratio is exponential in the depth D of the tree T . This was later improved
to O(D) for the deadline setting by Buchbinder et al. [14] and then to O(D2) for the general
delay model by Azar and Touitou [7]. The framework of Azar-Touitou [8] yields a competitive
ratio that is logarithmic in the number of vertices of T .

Online Network Design with Delays was first studied by Azar and Touitou [8]. They proved
polylogarithmic competitive ratios for many network design problems with delay and gave a
Ω(

√
log|V |) lower bound for the case of online node-weighted Steiner tree with delay and

online directed Steiner tree with delay. This was recently improved to Ω(log |V |/ log log |V |)
by Touitou [30].

A related problem is Set Cover with Delays where we are given a universe of elements
and a collection of sets with costs, requests arrive on elements. The cost of serving a set of
requests is the min-cost set cover for the corresponding set of elements. This problem was
first studied by Carrasco et al. [16]. They gave a O(log N)-competitive algorithm (where N

is the number of requests) and proved a matching lower bound. Later, Azar et al. [3] gave
an algorithm that is polylogarithmic in the number of sets and elements.

Two other online problems with delay that have received a lot of attention are matching [19,
1, 20, 12, 4, 13, 11, 6] and k-server [5, 13, 7, 24]. In Matching with Delays, requests arrive
on points of a metric space and accumulate delay until they are matched. The objective is to
minimize the length of the matching and the total delay cost. In the k-Server with Delays
problem, we have k servers in a metric space and requests arrive on points of the metric
space. A request is served by moving a server to its location. The goal is to minimize the
total distance traveled by the servers and the delay incurred by the requests.

Concave cost functions have been widely-studied in the network design literature, both
in the offline and online settings. The problem that is most closely relevant to our paper
is Offline Single-Sink Buy-at-Bulk Network Design. We are given an undirected graph
G = (V, E) with edge lengths de, a concave cost function f , a sink t and a set of sources
si. The cost of routing xe units of flow on edge e is f(xe) · de. The total cost is the sum
of the routing cost over all edges. The goal is to route one unit of flow between from each
source si to the sink t with minimum total cost. The problem is known to be NP-hard and
admits constant-factor approximation algorithms [28, 23, 21, 29, 25, 22, 27]. In the online
setting, the sources arrive one-by-one. For the online problem, there is a tight deterministic
O(log k)-competitive algorithm [2, 31, 26].
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2 Preliminaries

As mentioned in the Introduction, we will be mainly dealing with Piecewise Cardinality JRP
with Delay. The Piecewise Cardinality JRP is a special case of Cardinality JRP where the cost
function is a concave, piecewise function defined by taking the minimum of n affine functions,
where n is arbitrary. More precisely, the cost of a service λ is g(λ) = mini{σi+δi|λ| : i ∈ [1, n]}
where the cardinality |λ| is the number of item types served in λ. The affine functions must
also satisfy 2σi ≤ σi+1 and δi ≥ 2δi+1 for all i ∈ [1, n). We will also require that σi ≥ δi for
all i. Requests will then arrive over time and upon arrival, they have an associated deadline
or delay function that is revealed.

When a service with cost σi + δi|λ| for some i is made, we will say that a level i service
has been made and call the σi paid the shared cost of the service and the δi|λ| cost paid
the individual cost of the service. Typically, a solution to Piecewise Cardinality JRP would
specify when services are made and what requests are served by these services. The cost
of this service would then be determined by taking the minimum of the piecewise affine
functions. Equivalently, we can also require the solution to specify for each service not only
the requests it serves but also the level it serves it in. This is a more useful formulation that
we will be using in the sequel.

For the delay variant, which is the variant under which we are studying this problem,
the delay penalty function dq(t) for a request q is a non-decreasing, continuous function of
the time the request has been left unserved. We will also assume that the delay penalty for
each request tends to infinity as the time tends to infinity which is a natural assumption also
made by [8] to ensure that all requests must eventually be served.

Using standard techniques for dealing with concave functions we can reduce Cardinality
JRP to Piecewise Cardinality JRP losing only a constant factor in the approximation ratio.
We defer the details to the full version.

3 Piecewise Cardinality JRP with Delay

We now prove the following theorem. Omitted proofs can be found in the full version.
▶ Theorem 3. There is a deterministic O(1)-competitive algorithm for Piecewise Cardinality
JRP with Delay.

3.1 Algorithm Intuition
We first introduce some terminology. We will say a request is active if it has arrived and is
unserved. We will also assign each request a request level which is initially set to 1 upon
arrival and is updated as the algorithm progresses. We say that an request is eligible for a
level l service at time t if it is active and has level at most l at time t. Our algorithm allows
services to incrementally pay off the delay that requests have accumulated in the past and
may accumulate in the future; we call the latter an investment cost. In particular, we say
that a service λ at time t invests an amount x into request q when λ pays off x amount of
the delay cost that may be incurred by q after t. The residual delay of a request q at time t

is defined as the amount of delay accumulated by the request up to time t that has not been
paid for by some service.

When do we make a service? A level l service λ is triggered when the set of requests E

eligible for a level l service accumulate a total residual delay of σl; we say that E are the
eligible requests of λ. The intuition here is that our algorithm will make level l services
whose total cost is O(1) · σl and hence waiting until σl unpaid delay accumulates means that
our delay cost will be comparable to the service cost.

ICALP 2022
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What level service should we make? When a level l service λ is triggered at time t, we
first check if we can upgrade it to l + 1. Roughly speaking, we upgrade to level l + 1 if the
amount invested by recent level l services so far is at least σl+1. This invariant allows us to
bound our investment costs. We then proceed to the next step of deciding which requests to
serve.

Which requests to serve? Next, the algorithm uses an investment process to decide which
requests to serve. For each item type we add to our service, we incur an additional cost of δl.
The investment process continually invests into the future delay of eligible requests. Once
the total investment into requests of an item type i, from this service as well as prior services,
reaches δl, we add i to the service, reset the counter to 0 and stop investing in requests of
type i. The entire investment process stops once the total amount invested by the service
reaches σl or the service contains the item types of all eligible requests, and we make the
service. Intuitively, this investment process allows us to serve requests by order of urgency.
Urgent requests can be interpreted as those that accumulate delay faster and hence will have
investment counters that reach the required service threshold faster.

3.2 Algorithm Description
We now formally describe the algorithm. Our algorithm maintains the following information.

Service and request pointers. Each request and service will be assigned a pointer that
points to some service. This will be specified in more detail later on. We classify services
into the following types.

▶ Definition 4 (Service types). A service λ is:
a primary service if it does not point to any service;
an upgrade service if it is triggered initially at level l and the algorithm decided to upgrade
it to level l + 1;
a tail service if it is neither a primary nor an upgrade service and no service points to λ;
a normal service if it is not one of the above types, i.e. it is not a primary nor an upgrade
service and there is a service pointing to it.

Note that a tail service can become a normal service later on.

Investment counters. The algorithm maintains an investment counter counter(l, i) for
level l and each item type i. This counter keeps track of the amount invested into requests
of type i since the last level l service containing type i or the beginning of time if there is no
such service.

Investment intervals. To decide whether to upgrade service, the algorithm needs to keep
track of the investments made by recent normal services. At the end of each service λ that is
neither primary nor upgrade, for each eligible request q, the algorithm creates a investment
interval [t, τ ] on q with cost equal to the amount that λ invested in q. Here, t is the service
time of λ. The interval also has a level, which is the level of the service. The details of the
investment process and the definition of τ will be specified later.

Our algorithm consists of the following components:

Initialisation. Before any requests arrive, the investment counters counter(l, i) are initialised
to 0. When a request q arrives, we set its level to 1, its pointer to NULL.
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Serving requests. A level l service λ is triggered when active requests of level at most l

accumulate a total of σl residual delay. The algorithm then proceeds through the following
four steps:

Step 1: Setting service pointer. The triggering requests for λ are the active level l requests
with positive residual delay. The service pointer of λ will be determined by looking at its
triggering requests. If all the triggering requests have a NULL pointer then the service
pointer will be NULL. Otherwise, the service pointer will be set to be any of the non-NULL
triggering request pointers. As will be shown later (Observation 8), all requests in the
triggering requests set with a non-NULL pointer must in fact point to the same service so it
does not matter which non-NULL triggering request pointer we choose.

Step 2: Determining the service level. When a level l service λ is triggered, if it is
non-primary and not of the highest level n already then it is eligible for a level upgrade. To
determine whether to upgrade the service, we use the following notion of witness sets.

▶ Definition 5 (Witness sets). Let λ be a level l service and aq be the earliest arrival time
among its eligible requests. The witness set of λ is the set Wλ of level l investment intervals
that begin after aq and were created by previous level l normal services. The cost of the
witness set Wλ is the total cost of the investment intervals in it and is denoted by c(Wλ).

If c(Wλ) ≥ σl+1, we upgrade λ’s level to l + 1; otherwise, it stays at level l. Note that
upgrading the level of a service will not change its triggering requests or pointer but after
upgrading, all requests of level l + 1 will now also be eligible for λ and hence λ’s set of eligible
requests Eλ may increase. Algorithm 1 gives the pseudocode for Steps 1 and 2.

Step 3: Making the service. Our level l service λ at time t first pays off the residual delay
that each eligible request q ∈ Eλ has accumulated up to the service time t. Let rq(t1, t2)
denote the residual delay accumulated by request q from times t1 to t2 then for each eligible
request q ∈ Eλ, we pay off all residual delay since their arrival time, that is, rq(aq, t).

Then the service begins the investment phase with an investment budget of σl where
it invests in the future residual delay that the eligible requests accumulate from t. This
begins with initializing the following variables: future time τ ← t, the previous time t′ ← t,
the set of served requests Qλ ← ∅ and the service investment counter to be 0. We then
continuously increase τ . Each time τ increases, the residual delay incurred from time t′ to
τ by each request q ∈ Eλ \Qλ is paid off and invested in. That is, we pay off rq(t′, τ) for
each q ∈ Eλ \Qλ. This residual delay rq(t′, τ) invested in is added to the level l investment
counter for q’s corresponding item type as well as the service investment counter. We also
add this amount to a variable Iq(λ) which keeps track of how much λ has invested in the
request q and will be used later to construct our investment intervals. If the investment
counter for an item type i reaches δl then all eligible requests of item type i are added to
the set Qλ to be served and we stop investing in these requests. Finally, we set t′ ← τ and
iteratively continue the process. This process terminates if all eligible requests have been
served and added to Qλ or if the service investment counter equals σl which signifies a total
of σl has been invested in future delay incurred by eligible requests. We note that at the end
of this process, all eligible requests will have their delay paid off until time τ and hence can
only accumulate residual delay beginning from time τ . To finish the service, we serve the
requests in Qλ, paying a fixed cost of σl as well as δl for each item type in Qλ. This process
is captured in Algorithm 2.

ICALP 2022
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Note that it is possible for Qλ to be empty.1 In this case, we say that λ is an empty
service. The delay costs paid off by the algorithm remains paid but it does not pay the
shared or individual cost.

Step 4: Updating request pointers, levels, investment counters and investment intervals.
At the end of the service, all eligible requests for λ left unserved have their pointers set to λ

and levels set to l. If λ serves item type i then the level l investment counter for item i is
reset to 0. If the service is not a primary or upgrade service then for each request that was
eligible for λ, we construct the level l investment interval [t, τ ] for this request with cost Iq(λ)
which is how much λ invested in the request. Note that all eligible requests for this service
will have the same investment interval start and end times but the cost of each interval may
differ. Pseudocode for these steps is given at the end of Algorithm 2.

Algorithm 1 Procedure to handle triggering and upgrading services.

Function OnTrigger(level l)
Start a new service λ at current time t;
/* determine service pointer using triggering requests */
Let Eλ be all eligible requests;
Let Qtrigger ⊆ Eλ be those with positive residual delay and level l;
pointer(λ)← pointer(q) for an arbitrary request q ∈ Qtrigger;
/* upgrade the service level if possible */
if pointer(λ) ̸= NULL and l ̸= n then

Let aq be the earliest arrival time among requests in Eλ;
Let Wλ be the set of investment intervals created by level l normal services
and begin after aq;

if
∑

c∈Wλ
cost(c) ≥ σl+1 then

l← l + 1;
Update Eλ to be the eligible requests for level l + 1;

level(λ)← l;
MakeService(λ, t);

3.3 Analysis
We will bound the costs of the different types of services individually: primary services,
normal services, upgrade services and tail services. By noting that every service must fall
under one of these categories, this will enable us to bound the total cost of our algorithm. In
the following, we abuse notation and use ALG to denote both the algorithm’s solution and
its cost, and OPT to denote both the optimal solution and its cost.

We first examine the structure and properties of our solution in Section 3.3.1. In particular,
we will argue that the directed graph induced by the services and service pointers consist of
node-disjoint directed paths and that all non-NULL pointers in a set of triggering requests
must be the same.

Next, we look at the structure of our costs in Section 3.3.2. Most importantly, we will
introduce the notion of charged costs which represent the costs of our services that need to
be charged to OPT and show that the charged cost of a level l service is at most 3σl.

1 This can happen, for instance, if there are many eligible requests on many different item types so the
service investment counter reaches σl before any of the counter(l, i) reaches δl.
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Algorithm 2 Procedure to handle serving requests and updating information post-service.

Function MakeService(service λ, service time t)
/* pay off all residual delay on eligible requests */
foreach q ∈ Eλ do

Pay off the residual delay rq(aq, t);
/* set up counter to track how much λ invests in each request */
Iq(λ)← 0;

/* Investment Phase */
l← level(λ); τ ← t; t′ ← t; Qλ ← ∅; invested← 0;
Let Eλ,i be the set of eligible requests of item type i;
while Qλ ̸= Eλ and invested < σl do

Continuously increment τ until either invested +
∑

q∈Eλ\Qλ
rq(t′, τ) = σl, or

for some type i not in Qλ, counter(l, i) +
∑

q∈Eλ,i\Qλ
rq(t′, τ) = δl;

/* Update investment counters and t′ */
invested← invested +

∑
q∈Eλ\Qλ

rq(t′, τ);
foreach item type i do

counter(l, i)← counter(l, i) +
∑

q∈Eλ,i\Qλ
rq(t′, τ);

foreach q ∈ Eλ \Qλ do
Iq(λ)← Iq(λ) + rq(t′, τ);
Pay off the residual delay rq(t′, τ);

t′ ← τ ;
if for some type i not in Qλ, counter(l, i) = δl then

Qλ ← Qλ ∪ Eλ,i;
counter(l, i)← 0;

Serve Qλ;
/* update pointers and levels of unserved eligible requests */
foreach q ∈ Eλ \Qλ do

level(q)← l and pointer(q)← λ;
/* construct investment intervals */
if λ is not a primary or upgrade service then

foreach q ∈ Eλ do
Construct a level l investment interval [t, τ ] on q with cost Iq(λ);

Section 3.3.3 will then begin our charging argument by showing that the charged cost of
all services can be bounded by the charged costs of the primary and normal services. This is
done by bounding the charged cost of the tail services by the charged cost of the primary and
upgrade services and then charging the charged cost of the upgrade services to the charged
cost of the normal services.

Finally, we finish our charging argument in Section 3.3.4 by charging the charged costs
of the primary and normal services to OPT. This is the crux of our analysis. The charged
cost of primary services is charged to OPT using a disjointness argument. The charged cost
of the normal services is charged to the cost of our investment intervals. These investment
intervals’ costs are then charged to OPT by showing that for any service λ∗ made by OPT
and any request q served in λ∗, the total cost of q’s investment intervals can be charged to
the costs of λ∗.

ICALP 2022
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To simplify our analysis, we assume that at most one service can be triggered at any
given time. This is without loss of generality since the delay functions can be perturbed by
an infinitesimal amount to ensure this holds.

3.3.1 Analysis: Solution Structure
We begin our analysis by proving properties of ALG’s solution structure.

▶ Observation 6. ALG serves all requests eventually. Moreover, when a request q is served
at time t, the algorithm would have paid off its delay up till at least time t by the end of the
service.

Proof. We first argue that ALG serves all requests. This is because the delay on each request
tends to infinity with time so each request will eventually accumulate enough delay to trigger
a service and then have enough invested to trigger the service of the requests. This is because
as the delay tends to infinity, ALG will never reach a scenario where it stops making services
or stops investing in requests. The second part of the observation follows from the fact it
was eligible for the service it was served in, and the service would have ensured that the
delay of q up till time t has been paid off entirely. ◀

The following lemma implies that service pointers belonging to services of the same level
are, in a sense, non-overlapping.

▶ Lemma 7. Suppose a service λ′ points to another service λ and their service times are
t′ > t, respectively. Let l be the level of λ. Then, there cannot be a service of level at least l

made between t and t′.

Proof. Suppose, towards a contradiction, that there is a level l service λ0 made between t

and t′. By definition of pointers, there exists a triggering request q for λ′ that pointed to λ

at the start of the service λ′; moreover, q is active and has level l between t and t′. Thus,
q is eligible for λ0. Since λ0 did not serve q, it must have overwritten q’s pointer and so q

would not have pointed to λ at the start of λ′, a contradiction. ◀

▶ Observation 8. A service’s set of triggering requests must be non-empty and all the
triggering requests with a non-NULL pointer must have the same pointer.

Proof. Consider any level l service λ. We first observe that the set of triggering requests
must be non-empty. If this was not the case, then by definition there is no level l eligible
request with positive residual delay when λ is triggered. Hence, all the requests whose
residual delay contributed to triggering λ would have a level less than l and since σl−1 < σl,
a lower level service should have been triggered instead. Therefore, λ should never have been
triggered in the first place.

Next we show that all triggering requests with a non-NULL pointer must point to the
same service. Let q1 be the triggering request whose pointer λ1 was used as the service
pointer for λ and let q2 be another triggering request with pointer λ2. Since q1 and q2 are
level l requests, they must point to level l services. Moreover, the pointer of q2 must have
been set after λ1 but before λ since otherwise it would have been eligible for λ1 and been
changed. Then, Lemma 7 implies that λ2 must in fact be λ1. ◀

From Observation 8, we know that a service pointer will always be uniquely defined and
not dependent on which triggering request was chosen to determine the pointer as alluded to
in the algorithm description. Next, we show that the directed graph induced by the services
and service pointers consist of node-disjoint directed paths, which we call service chains.
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▶ Lemma 9. Every service can only point to at most one other service and be pointed at by
at most one other service.

Proof. By construction, a service pointer can only be one other service and hence every
service can only point to at most one other service. Now we will argue that two services
cannot point to the same service λ′ of level l. Suppose there are two services λ1 and λ2 that
point at λ′. By construction of service pointers, λ1 and λ2 must have been level l when they
were triggered. By Lemma 7, we get that λ1 and λ2 must be the same service. Thus, each
service can be pointed to by at most one other service. ◀

The following lemma implies that at any time, only the last service of a level can become
normal in the future, all previous services of the level that are tail must remain tail. This
ensures that our witness sets will not exclude any investment intervals that belong to tail
services that later become normal services which is required later to prove Lemma 24.

▶ Lemma 10. Let λ1 and λ2 be two level l services with service times t1 < t2, respectively.
If λ1 is tail at time t2, then it will stay a tail service at all future times t > t2.

Proof. Suppose, towards a contradiction, that λ1 became normal later on. Then, at some
time t3 > t2, a level l service λ3 was triggered and λ3 pointed to λ1. However, this contradicts
Lemma 7 so λ1 must stay a tail. ◀

3.3.2 Analysis: Cost Structure
We now analyse the properties of different costs incurred by our algorithm.

▶ Definition 11 (Triggering, investment and charged costs). For each level l service λ, we
define the following three costs: (1) its triggering delay cost which is the residual delay on
all eligible requests that is paid off at the beginning of the service; (2) its investment cost
which are the delay costs invested in during the λ’s investment phase; (3) its charged cost
which is its shared cost plus its triggering delay cost plus its investment cost.

Note that the algorithm may make an “empty service” in which no requests are served, in
which case its charged cost is its triggering delay cost and its investment cost. We will first
show that in order to bound the cost of ALG, it suffices to look at the charged costs.

▶ Lemma 12. The total cost of ALG is at most twice the total charged cost of its services.

Proof. The total cost of ALG is the total shared cost of its services plus the total individual
cost of its services plus its delay cost. It suffices to bound the latter two costs in terms of
total investment and triggering delay costs. A level l service only serves an item type i when
the level l investment counter for i reaches δl and the counter is reset to 0 when it reaches δl.
So, the total individual cost is at most the total investment cost. Observation 6 implies that
the delay cost of ALG is at most the triggering delay cost plus investment cost. Putting the
above bounds together gives the lemma. ◀

Next, we will bound the charged cost of any service which will later allow us to charge
these costs to OPT.

▶ Observation 13. The triggering delay costs incurred by a level l service is at most σl.
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Proof. Let λ be a level l service made by ALG. If λ is not an upgrade service, then its
triggering delay cost is exactly σl, by construction. On the other hand, if λ is an upgrade
service, then it was triggered because the active requests of level at most l− 1 had a residual
delay of σl−1 but then its level was upgraded and its pool of eligible requests increased to
include the level l requests. However, the fact that a level l service was not triggered at this
time implies that the active requests of level at most l must have a residual delay less than
σl. Therefore, in either case, the triggering delay is at most σl as required. ◀

▶ Lemma 14. The charged cost of a level l service is at most 3σl.

Proof. The charged cost of a level l service as defined earlier is comprised of the triggering
delay cost, the shared cost and the investment cost. By Observation 13, the triggering delay
cost is at most σl. The shared cost is either σl or 0 in the case that no requests are served
and hence the shared cost does not need to be paid. Lastly, by construction of the algorithm,
the investment cost of the service is at most σl. Adding these three components up, the total
charged cost is at most 3σl as required. ◀

The following lemma bounds the investment cost of normal services which will be used
later to charge the costs of the normal services to OPT.

▶ Lemma 15. Every normal service of level l has investment cost σl.

Proof. The investment cost of a level l normal service λ is exactly σl. This is because by
construction, the investment cost of a level l service is at most σl and can only be less if λ

served all eligible requests. However, that would mean that λ is a tail service since there are
no unserved requests pointing to it. ◀

3.3.3 Analysis: Bounding charged costs
We now begin our charging argument by showing that the charged costs of ALG can be
bounded by the charged costs of the primary and normal services.

▶ Lemma 16. The total charged costs of the tail services are at most 3 times the total
charged costs of the primary and upgrade services.

Proof. Consider any tail service λ of level l. By definition, it ends a chain that has reached
level l and so the chain has an earlier service λ′ that is a level l upgrade service or a primary
service, in the case that l = 1. The service λ′ has an investment cost of exactly σl as otherwise
the service would have served all eligible requests and the chain would have ended already.
Therefore, λ′ has a charged cost of at least σl. By Lemma 14, λ’s charged cost is at most 3
times that of λ′. Lastly, Lemma 9 implies that each primary or upgrade service is charged
by at most one tail service. Summing up across all tail services, we get that their charged
costs are at most 3 times the charged costs of the primary and upgrade services. ◀

We now bound the charged cost of the upgrade services by the charged cost of the normal
services. In order to do so, we first show that the witness sets of our upgrade services must
be pairwise disjoint.

▶ Lemma 17. An investment interval cannot belong to the witness set of more than one
upgrade service.
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Proof. Suppose towards a contradiction that there is a request qc whose level l investment
interval [t, τ ] belongs to the witness sets of two upgrade services. Let the two level l + 1
upgrade services be λ1 and λ2 with service times t1 < t2.

By construction, the interval [t, τ ] was created by a service at time t. Since it belongs to
the witness set of λ1, it must have been created before t1, and thus, t < t1. Now consider
λ2. In order for [t, τ ] to belong to its witness set, λ2 must have an eligible request q2 that
arrived before t. The fact that q2 is eligible for λ2 at time t2 implies that it is at most level l

and active for all times prior to t2. Moreover, the fact that q2 arrives before t implies that it
also arrives before t1 > t. Therefore, at time t1, q2 has arrived, is active and of level at most
l which makes it eligible for λ1. After λ1, q2 would have its level set to l + 1 and hence it
would no longer be eligible for λ2 when λ2 is initially triggered (prior to upgrading). This
contradicts the fact that q2 is eligible for λ2. See Figure 1 for an illustration of this proof. ◀

qc

q2

t τ

level(q2) ≤ l

t1 t2

Figure 1 Illustration of the proof of Lemma 17.

▶ Lemma 18. The total charged costs of the upgrade services is at most 3 times the total
charged costs of the normal services.

Proof. Let λ be a level l upgrade service at time t. By construction, the cost of its witness
set Wλ is at least σl. By Lemma 14, λ has a charged cost of at most 3σl ≤ 3cost(Wλ). Using
Lemma 17, we get that the total charged costs of upgrade services is at most 3 times the
total investment costs made by normal services. Since the investment costs of the normal
services are at most the charged costs of the normal services, the lemma follows. ◀

3.3.4 Analysis: Charging to OPT
Having bounded the cost of ALG by the charged costs of the primary and normal services, it
remains to charge these costs to OPT.

▶ Lemma 19. The charged cost of the primary services is at most 3 OPT.

Proof. Let Λ1 be the set of primary services made by ALG. For each primary service λ ∈ Λ1,
let Iλ denote the interval [aλ, tλ] where aλ is the earliest arrival time among λ’s triggering
requests and tλ is the service time of λ. By definition of primary services, the set of intervals
I = {Iλ}λ∈Λ1 are pairwise disjoint.

Consider an interval Iλ ∈ I. If OPT made a service λ∗ during Iλ, the shared cost of λ∗ is
at least σ1. On the other hand, if OPT did not make a service during Iλ, then it must have
incurred a total delay of at least σ1 on the triggering requests of λ since they arrive no earlier
than the start of Iλ. In both cases, OPT pays a cost of at least σ1 during the interval Iλ.

Since the intervals I are disjoint, we have that OPT ≥ σ1|I|. Thus, by Lemma 14, the
charged cost of primary services is at most 3σ1|I| ≤ 3 OPT. ◀
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▶ Lemma 20. The charged cost of a normal service is at most 3 times its investment cost.

Proof. This follows from Lemmas 15 and 14. ◀

Using Lemma 20, the charged cost of any normal service is at most 3 times its investment
cost. Hence, to bound the charged costs of all normal services, it suffices to only look at the
investment costs incurred by the normal services which, by definition is equal to the cost of
the investment intervals made by normal services. Hence, we will show that the cost of every
investment interval made by a normal service can be charged to some distinct cost incurred
by OPT.

We will refer to investment intervals created by normal services as normal investment
intervals and will now analyse the properties of these intervals.

▶ Lemma 21. Let [t, τ ] be a level l normal investment interval created by the normal service
λ at time t. Then there cannot be a level l′ ≥ l service triggered between times t and τ

(inclusive) other than λ.

Proof. Since λ is a normal service, there exists a later service λs at time ts pointing to
λ. Thus, there is a request q that is eligible for λ but is left unserved and later became a
triggering request for λs. By definition of pointers and triggering requests, at time ts, q

points to λ and has positive residual delay. Since λ paid off the residual delay on eligible
requests (which includes triggering requests) until time τ , λs occurred at time ts > τ .

Now we show that after t and before ts, q is level l and there is no service for which q is
eligible. Since q points to λ at time ts, there cannot be a service between t (the service time
of λ) and ts for which q is eligible; otherwise, that service would have changed q’s pointer
and q would no longer be pointing to λ at time ts. Thus, the level of q between times t and
τ < ts is l, the level of λ, and so there is no service of level at least l between t and τ . ◀

▶ Lemma 22. For any request, its normal investment intervals are all disjoint.

Proof. Assume towards a contradiction there is a request q with two non-disjoint normal
investment intervals [t1, τ1] of level l1 and [t2, τ2] of level l2 where wlog t1 < t2 < τ1. We
first notice that l2 ≥ l1 since the level of a request can never decrease so after the service at
time t1, q is of level at least l1. By Lemma 21, there is no service of level at least l1 between
times t1 and τ1 which contradicts our assumption. ◀

▶ Lemma 23. Consider any two level l normal investment intervals that intersect. They
must be created by the same level l normal service.

Proof. Suppose this was not the case and that we have two intersecting level l investment
intervals [t1, τ1], [t2, τ2] created by distinct normal services where wlog t1 ≤ t2 ≤ τ1. This
would imply that we have a level l normal service at time t1 and another normal level l

service at time t2 ≥ t1. However, Lemma 21 implies that there cannot be another level l

service between times t1 and τ1 inclusive and hence the service at time t2 should not have
occurred, a contradiction. ◀

We now charge the cost of our normal investment intervals to OPT which will be the
crux of our analysis. For this lemma, we will refer to “normal investment intervals” simply as
“investment intervals” unless otherwise specified. The full proof of the lemma can be found
in the Appendix.

▶ Lemma 24. The total cost of normal investment intervals is at most 6 OPT.
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Proof sketch. Consider a service λ∗ made by OPT at level l∗ and time t∗ and let the set of
requests served by λ∗ be Qλ∗ .

For any request q ∈ Qλ∗ we will first consider its investment intervals ending before t∗.
These investment intervals ending before time t∗ correspond to delay costs incurred prior to
time t∗ that had been invested in by a normal service and is hence at most the total delay
accrued by the request up till time t∗. Since OPT pays the delay for the request q up till
time t∗, the cost of the investment intervals ending before time t∗ can be charged to the
delay costs paid by OPT.

Next we consider the investment intervals belonging to requests in Qλ∗ that contain
time t∗. There are two cases to consider: the intervals of level l < l∗ and the intervals of
level l ≥ l∗. For the intervals of a fixed level l < l∗ that intersect with time t∗ we know by
Lemma 23 that they must have all been created by the same normal service. Since a normal
service can only invest a maximum amount of σl, the total cost of these intervals of level l

must be at most σl. Summing up across all levels l < l∗ and noting that our σ values form a
geometric series, we conclude that the cost of all the intervals with level l < l∗ is at most σl∗

which is the shared cost that OPT must pay in serving λ∗. For the intervals of a fixed level
l ≥ l∗ we will consider a fixed item type i. Once again, by Lemma 23, these intervals must
have been created by the same normal service and since a normal service can only invest at
most δl in a particular item type before serving it, the total cost of the intervals at level l

and for item i requests is at most δl. Summing up across all levels l ≥ l∗ and noting that
our δ values form a geometric series, we conclude that the cost of all item i intervals of level
l ≥ l∗ is at most 2δ∗ which is 2 times the individual cost paid by λ∗ to serve the item type i.
This argument applies to all item types served by λ∗.

Lastly, we consider the investment intervals belonging to requests in Qλ∗ that begin after
time t∗. Once again we consider two cases: the intervals of level l < l∗ and the intervals of
level l ≥ l∗. For the intervals of level l < l∗, we consider a fixed level l and look at the latest
starting interval at time t. There must have been a normal service at time t that created
this interval and this implies that the witness set of this normal service cost less than σl+1
since it was a normal service as opposed to an upgrade service. Since all requests in Qλ∗

must arrive before t∗, the witness set of the service at time t is a superset of the intervals of
level l beginning after time t∗. Moreover, the intervals created by the service at time t must
cost at most σl since the service can only invest at most σl. Overall, the intervals of level l

that begin after time t∗ cost at most σl+1 + σl < 2σl+1. Summing up over all levels l < l∗

and using the geometric property of σ, we get a total investment interval cost of 4σ∗
l which

is 4 times the shared cost paid by λ∗. For the intervals of level l ≥ l∗ we once again fix a
level l ≥ l∗ and item type i. The cost of each of these item i, level l intervals must be added
to the same investment counter without the counter being reset to 0. This is because all
requests in Qλ∗ arrive before t∗, so if at any time after t∗, the level l investment counter for
item i is reset to 0, all requests on item i and of level at most l must have been served and
thus there is no way for a level l intervals to contribute to an investment counter after it has
been reset. Since the investment counter by design has a maximum value of δl, this implies
that the total cost of the level l, item i investment intervals is at most δl. Fixing the item i,
summing up across all levels l ≥ l∗ and utilising the geometric property of δ, we get that the
investment intervals of item i and of level l ≥ l∗ cost at most 2δl∗ which is 2 times what λ∗

pays for the item i. We can once again apply this argument for all item types i served by λ∗.
Hence, it follows that for any service λ∗, the cost of the investment intervals in Qλ∗ can

be charged to the cost of λ∗ and by applying this argument across all services made by OPT,
the lemma follows. ◀

ICALP 2022



40:16 Online Weighted Cardinality Joint Replenishment Problem with Delay

▶ Lemma 25. The charged cost of the normal services is at most 18 OPT.

Proof. This follows from Lemmas 20 and 24. ◀

We conclude by combining the above ingredients to show that the algorithm is constant-
competitive.Let P, U, T, N denote the charged service costs of primary services, upgrade
services, tail services and normal services, respectively. Using Lemma 12 and the fact that
the total charged service cost is P + U + T + N , we get

ALG ≤ 2(P + U + T + N)
≤ 2(4P + 4U + N) (Lemma 16)
≤ 2(4P + 13N) (Lemma 18)
≤ 24 OPT +26N (Lemma 19)
≤ 492 OPT (Lemma 25)

Hence, we get that ALG ≤ O(1)×OPT as desired.
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