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Abstract
The Alon-Edmonds-Luby distance amplification procedure (FOCS 1995) is an algorithm that
transforms a code with vanishing distance to a code with constant distance. AEL was invoked by
Kopparty, Meir, Ron-Zewi, and Saraf (J. ACM 2017) for obtaining their state-of-the-art LDC, LCC
and LTC. Cohen and Yankovitz (CCC 2021) devised a procedure that can amplify inverse-polynomial
distances, exponentially extending the regime of distances that can be amplified by AEL. However,
the improved procedure only works for LDC and assuming rate 1 ´ 1

poly log n
.

In this work we devise a distance amplification procedure for LCC with inverse-polynomial
distances even for vanishing rate 1

poly log log n
. For LDC, we obtain a more modest improvement and

require rate 1 ´ 1
poly log log n

. Thus, the tables have turned and it is now LCC that can be better
amplified. Our key idea for accomplishing this, deviating from prior work, is to tailor the distance
amplification procedure to the code at hand.

Our second result concerns the relation between linear LDC and LCC. We prove the existence
of linear LDC that are not LCC, qualitatively extending a separation by Kaufman and Viderman
(RANDOM 2010).
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1 Introduction

1.1 Distance amplification
It is a recurrent theme in coding theory that the construction of a code is done in two steps.
In the first step, a code with weak parameters is constructed, and typically it is the distance
of the code that is unsatisfactory. In the second step, one transforms the code obtained in
the first step to a code with the desired parameters, where typically, in the process, the other
parameters deteriorate only slightly. When the distance is the unsatisfactory parameter, the
second step is referred to as a distance amplification step.

Examples that fall into this framework include the breakthrough constructions of near-
optimal small-bias sets by Ta-Shma [19], and the state-of-the-art construction of locally
decodable codes (LDC), locally correctable codes (LCC), and locally testable codes (LTC) by
Kopparty, Meir, Ron-Zewi, and Saraf [17]. A prominent example from the (adjacent) PCP
literature is Dinur’s celebrated proof of the PCP Theorem by gap amplification [8]. It is
interesting to note that in all the above cases the first step is done using algebraic machinery
whereas the second step is based on combinatorial arguments.
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1.2 LDC and LCC

Informally, a linear pq, δq locally decodable code (LDC) is a code, given by an F-linear encoding
function Enc : Fk Ñ Fn, where F is a finite field, that is also equipped with a “local decoder”.
The latter is a randomized algorithm, denoted by Dec, with the following guarantee. Given
an oracle access to z P Fn that is within relative Hamming distance δ from some codeword
Encpxq, and given i P rks, Decz

piq “ xi with high probability. Moreover, Dec makes at most
q queries to z. That is, every message symbol can be decoded, with high probability, by
querying only few symbols of a corrupted codeword. A pq, δq locally correctable code (LCC) is
the variant in which one wishes to decode (or, more precisely, correct) the codeword symbols
rather than the message symbols.

Locally decodable codes were defined by Katz and Trevisan [15] who proved that asymp-
totically good LDC require q “ Ωplog nq queries. Whether or not this bound is tight is a
major open problem. An intensive research effort is devoted to the study and construction
of LDC and LCC. Of particular interest is the study of asymptotically good LDC and
LCC [18, 13, 14, 17, 12, 7] where the goal is to minimize the query complexity.

In their seminal work, Kopparty, Meir, Ron-Zewi and Saraf [17] constructed LDC and
LCC with sub-polynomial query complexity. For the first step, a code with vanishing distance
δ “ 1

polyplog nq
was used [18], having the desired query complexity, namely, q “ 2 rOp

?
log nq.

Then, in the second step the authors invoked a distance amplification procedure due to Alon,
Edmonds and Luby [2, 1], which was originally introduced in the context of linear-time
erasure codes, and observed that it converts an LDC (resp. LCC) with distance δ and
query complexity q to an LDC (resp. LCC) with constant distance and query complexity
qnew “ q ¨ polyp 1

δ q.

1.3 Improved distance amplification for LDC

Motivated by the key role that the distance amplification procedure plays in [17], Cohen
and Yankovitz [7] asked whether much lower distances can be amplified. Indeed, AEL’s
procedure is mostly relevant in the regime δ “ 1

polyplog nq
. In [7], the authors devised an

improved procedure that can amplify distances as low as 1
nα for any constant α ă 1 with

a fairly low cost in query complexity, qnew “ qOplog log nq 1 (and even for α “ 1 ´ op1q at a
small additional cost in query complexity). However, their improved distance amplification
procedure has two drawbacks:
1. Unlike the AEL distance amplification procedure, the improved procedure was only shown

to work for LDC (and it may or may not work for LCC).
2. Second, to amplify the distance, the original LDC must have rate close to one, more

precisely, rate 1 ´ 1
polyplog nq

.

2 Our contribution

We turn to present the two results of this work.

1 polyplog log nq factors in the exponent of the query complexity can be safely ignored given that, at
present, the lowest known query complexity is 2 rΘp

?
log nq. Such an overlook will matter only when (and

if) the query complexity will go below quasi-poly-logarithmic.
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2.1 Tailor-made distance amplification procedure
Our first contribution is a distance amplification procedure for LCC that can amplify distances
as low as those handled by [7] (for LDC). Moreover, our procedure works even for vanishing
rate LCC.

▶ Theorem 1 (Distance amplification for LCC; informal). Let h ě 1 ě α ą 0 be any constants.
There exists a transformation that takes a q-query LCC with distance 1

nα and rate 1
plog log nqh

to an asymptotically good LCC with query complexity

qnew “ qOpplog log nq
2h`2

q.

We chose to state our result in a somewhat informal manner. For the formal statement,
see Corollary 37.

An example usage of Theorem 1 is given by the next corollary. The corollary shows the
implication of a case that an LCC with query complexity meeting the Katz-Trevisan bound
is shown to exist - only with a vanishing rate and distance.

▶ Corollary 2 (Informal). If there exists a q-query LCC for q “ log n, with distance 1?
n

and
rate 1

log log n , then there exists an asymptotically good LCC with query complexity

qnew “ plog nqOpplog log nq
4

q.

We now turn to give further details on the result.

Explicitness

In the statement of Theorem 1 we ignore the issue of explicitness. Indeed, understanding
LDC and LCC is already interesting in the information-theoretic level. Having said that, our
transformation is fairly explicit: It is a zero error randomized transformation that runs in
polynomial-time. More precisely, for every “failure” parameter ε ą 0, our transformation
runs in time polypnq ¨ log 1

ε and produces an LCC with probability at least 1 ´ ε; otherwise, it
declares failure. We find this aspect to be a minor issue as, recall, LCC are anyhow randomized
in nature. Nonetheless, it will be interesting to obtain a deterministic transformation with
matching parameters.

Codes vs. family of codes

A second issue that we chose to sweep under the rug in the statement of Theorem 1 is
that the transformation operates on the level of family of codes rather than on the level
of individual codes. That is, in order to produce an asymptotically good LCC of a given
block-length n, our transformation requires as input a sufficiently dense family of codes. By
that we mean that the consecutive block-lengths in the family are not too far apart. The
density of the resulted family of codes is the same as that of the original family.

Amplifying lower distances

Like [7], we can even amplify sub-polynomial distances, in particular, distances of the form
1{n1´1{gpnq for an increasing function g, and assuming a certain technical relation between g

and the rate. In particular, for every constant m ě 1 we can handle gpnq “ plog log nqm, and
end up with query complexity

qnew “ qOpplog log nq
2h`2m`2

q.

We note that constructing a code for gpnq “ log n is trivial.

ICALP 2022
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Amplifying the distance of LDC

We also obtain an improvement for LDC by devising a distance amplification procedure
that requires rate 1 ´ 1

polyplog log nq
, modestly improving upon the 1 ´ 1

polyplog nq
rate required

by [7]. The reason that we can do much better for LCC is due to the rate amplification
procedure of [7] that, informally, can amplify rate ρ LCC with q queries to constant rate
LCC with query complexity qnew “ qpolyp 1

ρ q. Such a transformation is not known for LDC.

2.1.1 Proof idea
In this section we give a short and informal account on our proof technique, and start by
contrasting our technique with prior work. Both the AEL distance amplification procedure,
as was used in [17], and the one given by [7] are based on samplers and further involve a
“small” code, that is, a code with logarithmic block-length. The latter improves upon the
former by using unbalanced samplers (rather than balanced ones, or expander graphs as was
used originally [1, 2]) and using a recursive construction. To obtain our result, we deviate
from prior work and tailor the distance amplification procedure to the LCC at hand. That
is, our procedure is “white box” - it produces a new code with improved distance by first
examining the structure of the given code. To tailor the procedure to the LCC at hand, we
do not work directly with the definition of LCC as it lacks sufficient structure to work with.
Instead, we work with a more combinatorial characterization of LCC as was used in [7]. We
turn to elaborate on this.

Let C Ď Fn be a linear pq, δq-LCC. One can prove the following structural result. With
every coordinate i P rns one can associate a set, called a query set, Ai “ tQi

1, . . . , Qi
mu of

m “ δn{q disjoint subsets of rns, each of size at most q, such that the following holds: For
every c P C and t P rms, ci can be deduced from cQi

t
. Assume from here on, for simplicity,

that δ “ 1{
?

n and so m “
?

n{q. Denote Āi “
Ťm

t“1 Qi
t and note that |Āi| ď

?
n.

For our distance amplification procedure, we make use of a special partition π of rns

into
?

n parts P1, . . . , P?
n, each of size

?
n. We say that such a partition is a d-splitter for

C (more precisely, a d-splitter for the query sets A1, . . . , An obtained from C) if for every
s P r

?
ns and i P rns, |Ps X Āi| ď d. We wish to minimize d and thus consider a max load

balls into bins like problem: For every i P rns we place a ball with color i at each of the
coordinates in Āi. Note that a coordinate j P rns may contain many balls of different colors.
Indeed, the average number of balls at coordinate j P rns is

?
n. Our goal is to choose the

partition π in such a way that every part Pt will contain at most d balls of the same color.
It is easy to show that a d-splitter for C exists with d “ Op

log n
log log n q.

We construct a new code C 1 Ď Fn as follows. We take C 1 to be the code C 1 Ď C with
the property that for every part Ps of π, when C 1 is projected to the coordinate set Ps, the
obtained vectors consist of codewords of a code C?

n having block length
?

n, which is a
q1-query LCC. That is to say, we require that for every c P C 1 and s P r

?
ns, cPs

P C?
n.

Observe that C 1 can be constructed by adjoining to the parity checks of C, the parity checks
of C?

n when restricted to each block in π.
We show that if C?

n is a smooth LCC, which means that it queries each coordinate with
roughly the same probability, then so is C 1. Moreover, C 1 has query complexity qq1. Thus,
C can be transformed into a smooth LCC of length n given that a smooth LCC of length
?

n is at hand. This calls for a recursive construction which results with a smooth LCC with
query complexity qOplog log nq. After obtaining a smooth code, the final step is to invoke the
AEL distance amplification to end up with a good LCC. This final step has a minor effect on
the query complexity.
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The above recursive construction must start with LCC of rate 1 ´ 1
polyplog log nq

. This is
due to the rate deterioration throughout the log log n recursive calls. For amplifying rate

1
polyplog log nq

LCC, as stated in Theorem 1, we invoke the rate amplification procedure of [7]
before running the recursive construction described above. This has some effect on the
density of the LCC family that the recursion has access to which requires some care.

2.2 Refined separation between LDC and LCC
Understanding the relation between LDC and LCC is fundamental. Currently the only
regime in which the state of affairs is better understood is the 2-query regime [3, 4, 5]. In the
constant-query regime for q ě 3, q-LDC with sub-exponential length are known [20, 11, 9]
whereas it is not known if this can be matched for q-LCC. Recall that in the constant-rate
regime, the state of the art result of [17] achieves sub-polynomial query complexity and holds
for LDC and LCC alike.

In the general case, clearly, a systematic LCC is an LDC. As every linear code can be
made systematic (by applying Gaussian elimination to its generating matrix), a linear LCC
induces a linear LDC with the same parameters. Thus, informally, LCC are stronger than
LDC, at least for linear codes.

Are LDC and LCC “equivalent”?

As for the converse, Kaufman and Viderman [16] observed that an LDC is not necessarily an
LCC. Their proof starts with an LDC. If it is not an LCC to begin with, we are done. If
it is an LCC, the proof goes on by transforming it to a new code by appending to it one
additional entry that does not involve low-weight constraints (namely, every vector in the
dual code that does not vanish on the new entry is of large weight). In this way, one obtains
an LDC with an entry that cannot be corrected with few queries. Such an entry can be
shown to exist by a counting argument. This argument can be extended to produce many
new bits that cannot be corrected.

While, formally, the argument above establishes the existence of LDC that are not LCC,
it has a drawback which makes it somewhat less appealing. In the resulted code, the adjoined
bits that cannot be corrected are not needed for decoding the original bits. This means that
if one is given a code that is not an LCC because of the above transformation, with the
task of taking such a code and “convert” it to an LCC, this could be done easily: simply
by removing these coordinates, and this clearly would not harm the code’s dimension. This
raises the question: Can any linear LDC be so “easily” converted to an LCC of similar
dimension and query complexity?

The thought that the answer to this question may turn out to be in the affirmative is not
far fetched in the case of linear codes. Indeed, we know that the locality features of linear
codes “come from” linear relations between different bits of the codeword and of the message.
For example, if a linear code Enc : Fk Ñ Fn is a q-query LDC, and in particular the i-th bit of
each message m can be deduced from a subset Q Ď rns that consists of at most q coordinates
of c “ Encpmq, then there exists a linear map fi,Q which satisfies mi “ fi,QpcQq for any m.
Likewise, if mi can as well be deduced from another subset Q1 Ď rns, |Q1| ď q (as is expected
due to the distance guarantee), then there is a linear map fi,Q1 satisfying mi “ fi,Q1 pcQ1 q for
every m. It follows that in such a case, for every codeword c, fi,QpcQq “ fi,Q1 pcQ1 q. Since
fi,Q and fi,Q1 are linear maps (that, we may assume, depend on all their parameters) this
means that for every j P Q△Q1, there exists a linear map gj satisfying cj “ gjpcQj q for every
codeword c, where Qj “ pQ Y Q1qztju.

ICALP 2022



44:6 LCC and LDC: Tailor-Made Distance Amplification and a Refined Separation

Therefore, by the mere fact that j P rns is sometimes used in the local decoding process
of i P rks, it is implied that it is possible to “correct” the j-th coordinate by reading only a
few locations of the codeword (at most 2q ´ 1). Thus, the question of whether local decoding
implies local correction is in place, in the case of linear codes, and especially so in the setting
where k is close to n.

In light of this, the fact that in the separating result of [16] between linear LDC and LCC,
the coordinates which are shown to be uncorrectable are not used by the local decoding
process, calls for the question of whether there exists a linear LDC with uncorrectable
coordinates that are crucial for the decoding process.

Our result

The second contribution of this work is a proof for the existence of an LDC that is not an
LCC in the following stronger sense: It contains entries that cannot be corrected which
are crucial for the local decoder. This raises the question of what we mean by coordinates
that are “crucial”. The mere fact that it is possible for a set of coordinates to be queried
by the local decoding process should not qualify them as such, as what allows for a code
to be locally decodable or locally correctable is that there are many options to decode or
correct each symbol. Thus, a more suitable interpretation for a “crucial” set of coordinates
J Ď rns is the following: If every coordinate j P J is “zeroed out” from the code (i.e., for
every codeword c we override cj with zero) then the transformed code is no longer locally
decodable. With this we are ready to present our separation.

▶ Theorem 3 (Separation of LDC and LCC; Informal). Let C : Fk Ñ Fn for |F| ą 2 and
k “ Θpnq be a linear q-query LDC. Then, there exists a linear q2-query LDC pC : Fk2

Ñ Fn2

with the following property. There exists a subset of coordinates J Ď rn2s in which every
coordinate cannot be locally corrected with query complexity

?
n and correction radius 1{

?
n.

Moreover, if every coordinate j P J is zeroed out from the code, then the relative distance of
the obtained code is rOp1{

?
nq (and so it is certainly not an LDC).

For the formal, more general, statement, see Theorem 46. Note that our result does not
cover the binary field and it is an interesting question whether it can be extended to include
that case.

Proof idea

The underlying idea of the proof of Theorem 3 is an operation on two codes to which we call
weighted tensoring. The weighted tensoring of codes is similar to the standard tensoring of
codes. In the case of standard tensoring, the encoding of the tensor of two codes is done by
taking a matrix as input and applying the first code to each column and then applying the
second code to each row in the resulted matrix. In the encoding of a weighted tesnor, before
the second step, each entry of the matrix is multiplied by a non-zero field element, or weight.

We consider the case of weighted tensoring which is done with random weights. We show
that while the code resulted from this is an LDC (assuming that the two input codes were so),
with high probability there is a set of coordinates in the code that cannot be locally corrected,
while being crucial for the decoding. The analysis showing that the set of coordinates cannot
be locally corrected is done by considering the affect of the weights on the dual code. A
probabilistic argument is then used to show that the argued codes exist.
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Discussion

We end this section with a short discussion to clarify a potentially confusing point. While
LCC are, in a sense, more powerful than LDC (indeed, our second contribution, Theorem 3,
attempts to formalize that better), our first result, given by Theorem 1, transforms a vanishing
rate LCC with polynomially-small distance to an asymptotically good LCC–a result that is
not known for LDC. So, how can it be that we can do this for LCC and not for the weaker
LDC?

Of course, this should cause no confusion as the latter is a transformation that works for
LCC and not LDC, not a construction nor it is even a proof of existence. Put differently,
although the transformation generates the stronger object, the transformation is also given
it as its input.

3 Preliminaries

3.1 Notations and conventions
Unless stated otherwise, all logarithms are taken to the base 2. For n P N, we use rns to
denote the set t1, . . . , nu. For ease of readability, we sometimes avoid the use of floor and
ceiling. This does not affect the stated results. We use F to denote a field, and any referenced
field is assumed to be finite and of a constant size. When n and F are clear from context, we
use ei P Fn to denote the i-th vector of the standard basis. For q P N, we use Hq to denote
the q-ary entropy function, and H to denote the binary entropy function. For a vector v P Fn,
we denote by |v| the hamming weight of v, which is the number of its non-zero coordinates
|v| “ |tj P rns | vj ‰ 0u|, and the support of v is supppvq “ tj P rns | vj ‰ 0u. For two vectors
u, v P Fn, we denote their (absolute) hamming distance by distpu, vq. For a linear subspace
L Ď Fn, we denote by Lďq the set of vectors of weight at most q. For two vector u, v P Fn, we
use xu, vy to denote the inner product of u and v,

řn
i“1 uivi P F. For a vector v P Fn and a

sequence I “ pi1, . . . , imq P rnsm, we denote by vI the vector pvi1 , . . . , vim
q P Fm. For a linear

subspace L Ď Fn and a sequence I “ pi1, . . . , imq P rnsm, we denote by LI the subspace
tvI | v P Lu. Note that LI is indeed a subspace as it is given by a suitable projection.

A partition π of size k of rns is a set tP1, . . . , Pku of disjoint subsets of rns, such that
P1 Y ¨ ¨ ¨ Y Pk “ rns. A partition tP1, . . . , Pku is ordered if each Pi is a sequence rather than
a set (and the sequences, when viewed as sets, satisfy the same requirements). Throughout
this paper, any partition of rns will be an ordered partition (though we may not state it
explicitly) with the sequences defined by the natural increasing order of N.

3.2 Error correcting codes
We start by recalling the definition of an error correcting code, and of a family of error
correcting codes. In this work we only consider linear codes.

▶ Definition 4. For n P N and F a field, a code of length n over F is a linear subspace
C Ď Fn.2 The dimension of the code, denoted by k, is the dimension of C over F, dimF C.
The (non-local) distance of the code, denoted by d, is mincPC,c‰0 |c|. The rate of the code,
denoted by ρ, is k{n. The (non-local) relative distance of the code, denoted by ∆, is d{n. The
elements of C are called codewords.

2 We may omit the phrase “over F” if the underlying field is clear from context.

ICALP 2022
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We will also need to consider encodings of codes.

▶ Definition 5. We call a function Enc : Fk Ñ Fn an encoding of a code C if it is an
injective linear map and C “ ImpEncq.

▶ Definition 6. For a field F, a code family over F is a set of codes C “ tCnu, which
contains at most one code Cn of length n over F, for every possible length n P N. For every
n P N, we denote by VnWC the minimal length of a code in the family C of length at least n,
and by TnUC the maximal length of a code in the family of length at most n. For constants
n0 P N, c ě 1 and d ď 1, we say that the family is pn0, c, dq-dense if for every n ě n0,
VnWC ď cn and TnUC ě dn.

▶ Definition 7. For a field F, a code-encoding family over F is a set of pairs of codes and
corresponding encodings C “ tpCk, Enck

qu, which contains at most one code Ck of dimension
k over F, for every possible dimension k P N. For every k P N, we denote by VkWC the
minimal dimension of a code in the family C of dimension at least k, and by TkUC the
maximal dimension of a code in the family of dimension at most k. For constants k0 P N,
c ě 1 and d ď 1, we say that the family is pk0, c, dq-dense if for every k ě k0, VkWC ď ck

and TkUC ě dk.

▶ Definition 8. Let C be a code of length n over F. The dual code of C is defined to be its
orthogonal subspace CK.

▶ Definition 9. Let C be a code of length n over F, let i P rns and B Ď rns. We say that B

determines i in C if there exists a function f : F|B| Ñ F such that for every c P C, ci “ fpcBq.

We also need the following property of linear codes.

▶ Fact 10. Let C be a code of length n over F. Further let i P rns, Q Ď rns and x P F|Q|.
Then, one of the following cases must hold.
1. There is at most one α P F for which there exists some c P C satisfying cQ “ x and

ci “ α.
2. For every α P F there is an equal number of c P C for which ci “ α.
In particular, either no function (even randomized) of cQ can predict ci with probability larger
than 1{|F|, when c P C is randomly chosen uniformly, or cQ determines ci for all c P C.

3.3 Locally decodable codes and locally correctable codes
▶ Definition 11. For C Ď Fn, we say that a procedure f : A Ñ B is with oracle access to
c P C if when f is run, it gets besides an input a P A, access to c P C: f can query ci for
indices i P rns. To describe a specific run of f with input a P A and oracle access to c P C,
we either say that fpaq is run with oracle access to c, or write f cpaq for short. We say that
f is non-adaptive if the queries it makes are independent of c P C.

▶ Definition 12. For a code C of length n and dimension k over F, and Enc and encoding
of it, pC, Encq is called a pq, δ, εq-LDC (locally decodable code, abbreviated) if there exists a
randomized procedure Dec : rks Ñ F that is given an oracle access to z P Fn, and has the
following guarantee. For every i P rks, x P Fk and z P Fn satisfying distpz, Encpxqq ď δn,
Decz

piq “ xi with probability at least 1 ´ ε. Furthermore, Decz
piq always makes at most q

queries to z. We further require that Dec is non-adaptive. We call Dec a local decoder (or
decoder) for pC, Encq, and the parameter q is called the query complexity of pC, Encq.
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▶ Definition 13. A code-encoding family C “ tpCk, Enck
qu of codes over F is called a family

of good qpkq-LDC, or a a family of good LDC with query complexity qpkq, if every code
Ck in the family is a code with rate at least ρpkq, which is a pqpkq, δpkq, εpkqq-LDC, for
ρpkq “ Ωp1q, δpkq “ Ωp1q, and εpkq ď 1{3.

We have the following easy fact.

▶ Fact 14. If C is a code of length n and dimension k ą 0 over F and Enc is an encoding of
it, and if pC, Encq is a pq, δ, εq-LDC, then, provided that ε ă 1 ´ 1{|F|, the (non-local) relative
distance of C, ∆, satisfies ∆ ą δ.3

▶ Definition 15. A code C of length n over F is called a pq, δ, εq-LCC (locally correctable
code, abbreviated) if there exists a randomized procedure Cor : rns Ñ F that is given an oracle
access to z P Fn, and has the following guarantee. For every i P rns, y P C and z P Fn

satisfying distpz, yq ď δn, Corz
piq “ yi with probability at least 1 ´ ε. Furthermore, Corz

piq

always makes at most q queries to z. We further require that Cor is non-adaptive and that
Corpiq never queries i4. We call Cor a local corrector (or corrector) for C, and the parameter
q is called the query complexity of C.

▶ Definition 16. For a code C of length n over F (not necessarily a pq, δ, εq-LCC), and
i P rns, we say that i is a pδ, q, εq-correctable coordinate in C if there exists a procedure
Cor : rns Ñ F such that Corpiq satisfies the requirements in Definition 15.

▶ Definition 17. A family C “ tCnu of codes over F is called a family of good qpnq-LCC,
or a a family of good LCC with query complexity qpnq, if every code Cn in the family is a
code with rate at least ρpnq, which is a pqpnq, δpnq, εpnqq-LCC, for ρpnq “ Ωp1q, δpnq “ Ωp1q,
and εpnq ď 1{3.

The following well-known fact is an implication of the fact that every linear code has a
systematic encoding5.

▶ Fact 18. If a code C is a pq, δ, εq-LCC, then there exists an encoding Enc such that pC, Encq

is a pq, δ, εq-LDC.

4 Tailor made distance amplification

4.1 Characterization of LCC
In this section, we will need to use two characterizations of LCC, as was given by Definition 15.
The first, given next in Definition 19, is of a pq, τq-LCC, and resembles the definition of
smooth codes given by [15] for LDC. A pq, τq-LCC differs from a pq, δ, εq-LCC in that its
local correction is only required to succeed if it is given a codeword of the code, rather than
a possible corrupted codeword. Accordingly, the correction of a pq, τq-LCC has no “distance”
guarantee, but instead it is required not to query any coordinate with too high probability,
i.e., probability larger than τ . When we will construct an LCC, it will be easier to first argue
that it is a pq, τq-LCC and use that to show it can be made into a pq, δ, εq-LCC for any ε

and δ “ ε{pτnq.

3 Note that in the case that ε ă 1{2 a stronger bound ∆ ą 2δ holds.
4 The assumption that Corpiq never queries i is only for simplicity. Any LCC which defies this assumption

can be easily converted to one which does not, with a negligible effect on δ.
5 An encoding Enc is a systematic encoding if for some f : rks Ñ rns, for all x P Fk and i P rks,

Encpxqfpiq “ xi.
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The second characterization, which will be given in Definition 23, is of what we call a
pq, τq-query-set LCC. Informally, a code is pq, τq-query-set LCC if for every coordinate we
have a large enough set of disjoint subsets of rns, from which it can be decoded. The distance
amplification procedure that we define utilizes these query sets and so the properties of the
input code that we will use are that of its characterization as a pq, τq-query-set LCC. This is,
in a sense, a more “combinatorial” characterization of LCC which can be more conveniently
used when a manipulation of these objects is needed.

The three characterizations of LCC all imply each other, but some of the transitions are at
some cost to the parameters. Indeed, Claim 20 will show that a pq, τq-LCC is a pq, δ, εq-LCC
for δ “ ε{pτnq, Claim 24 will show that a pq, τq-query-set is a pq, τq-LCC, and Claim 25 will
complete the cycle and show that a pq, δ, εq-LCC is a pq, τq-query-set LCC for τ “ q{pδnq.

▶ Definition 19. A code C of length n over F is called a pq, τq-LCC if there exists a
randomized procedure Cor : rns Ñ F that is given an oracle access to c P C, and has the
following guarantee. For every i P rns and c P C, Corc

piq “ ci, with probability 1. Furthermore,
Corc

piq always makes at most q queries to c, and for every j P rns, the probability that cj is
queried by Corc

piq is at most τ . We further require that Cor is non-adaptive and that Corpiq
never queries i. We call the parameter q the query complexity and the parameter τ the
smoothness of the LCC.

▷ Claim 20. Let C be a code of length n which is a pq, τq-LCC. Then, for any ε ą 0, C is a
pq, δ, εq-LCC with δ “ ε{pτnq.

Proof. Let ε ą 0 and let Cor be a corrector of C. Let c P C and z P Fn such that
distpc, zq ď δn “ ε{τ , and set B “ tj P rns | zj ‰ cju. Fix i P rns. By the union bound over
j P B, except with probability ε, when Corpiq is run with oracle access to c P C, it does not
make a query to an index in B. If this is the case, then if Cor was given access to z instead
of c, it would successfully output ci, as well. Thus, C is indeed a pq, δ, εq-LCC as the same
corrector Cor can be used with oracle access to strings z P Fn, and given that distpc, zq ď δn,
Corpiq is promised to output ci with probability at least 1 ´ ε. ◁

▶ Definition 21. A set A “ tA1, . . . , Anu is called an n-query-set if for every i P rns, Ai is
a set of disjoint subsets of rnsztiu. For every i P rns we define ĎAi “

Ť

BPAi
B.

▶ Definition 22. Let C be a code of length n and let A “ tA1, . . . , Anu be an n-query-set.
A is said to be a query-set for C if for every i P rns and B P Ai, B determines i in C (see
Definition 9).

▶ Definition 23. Let C be a code of length n. C is said to be a pq, τq-query-set-LCC if
there exists a set A “ tA1, . . . , Anu which is a query-set for C, such that for every i P rns,
|Ai| ě 1{τ and for every B P Ai, |B| ď q.

▷ Claim 24. Let C be a code of length n over F which is a pq, τq-query-set LCC. Then C is
a pq, τq-LCC.

Proof. Let A “ tA1, . . . , Anu be a query set that corresponds to C being a pq, τq-query-set
LCC. The following corrector Cor shows that C is a pq, τq-LCC. Given i P rns, and oracle
access to c P C, Corpiq samples uniformly at random some B P Ai and queries cB. As B

determines i in C, there exists a function f satisfying fpcBq “ ci for every c P C, and so
Corpiq uses such a function and outputs its result. Thus, for every c P C, the output of Corpiq
is always equal to ci, and note that as any sampled B P Ai satisfies |B| ď q, Corpiq always
makes at most q queries. Since Ai is of size at least 1{τ and is composed of disjoint subsets
of rnsztiu, any coordinate is queried by Corpiq with probability at most τ , and Corpiq never
queries i. Thus, C is a pq, τq-LCC. ◁
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▷ Claim 25. Let C be a code of length n over F which is a pq, δ, εq-LCC, for ε ă 1 ´ 1{|F|.
Then, C is a pq, τq-query-set-LCC for τ “ q{pδnq.

The proof for the claim is similar to the proof in [15] to their Theorem 1 and to the proof
in [10] for Theorem 1.1.

Proof for Claim 25. To prove the claim, we need to show that there exists a set A “

tA1, . . . , Anu which is a query-set for C, such that for every i P rns, |Ai| ě 1{τ “ δn{q

and for every B P Ai, |B| ď q. We construct A with the required properties by constructing
each of the subsets separately. Let Cor denote a corrector promised by the fact that C is
a pq, δ, εq-LCC, and let i P rns. To construct Ai, we construct a sequence of disjoint sets
Bi

1, . . . , Bi
mi

Ď rnsztiu, in an iterative manner. We will eventually set Ai “ tBi
1, . . . , Bi

mi
u.

It will hold that for every j, Bi
j determines i in C, while satisfying |Bi

j | ď q, and that
mi ě δn{q, which will conclude the proof.

The construction of Bi
1, . . . , Bi

mi
Ď rns is done by the following procedure. Start by

setting Bi
0 “ H. For j “ 1, 2, . . ., set Si

j “ Bi
0 Y ¨ ¨ ¨ Y Bi

j´1. If |Si
j | ą δn halt and set

mi “ j ´ 1 and Ai “ tBi
1, . . . , Bi

mi
u. Otherwise, it holds that for every c P C, for every

modification of the coordinates in Si
j to some erroneous values, Corpiq correctly outputs ci

with probability at least 1 ´ ε. An equivalent description of this case is the following: for
every c P C and z : Si

j Ñ F, define cz P Fn such that for every r R Si
j , cz

r “ cr and for r P Si
j ,

cz
r “ zprq. The corrector Cor chooses a set of queries Q Ď rnsztiu, |Q| ď q, according to some

distribution6 and applies some function fQ on cz
Q. We know that with probability at least

1 ´ ε, fQpcz
Qq “ ci. Since Q is sampled in a manner that is independent of c and z, by an

averaging argument, there exists some fixed Q for which when c P C and z : Si
j Ñ F are

chosen randomly in a uniform manner, with probablity at least 1 ´ ε (this time over the
choice of c and z), fQpcz

Qq “ ci. Therefore, we can define another function f 1
Q that only gets

cQzSi
j
, chooses z uniformly at random, and outputs fQpcz

Qq. If c P C is chosen uniformly at
random, f 1

QpcQzSi
j
q “ ci with probability at least 1 ´ ε ą 1{|F|. By Fact 10, this implies that

QzSi
j determines i in C. We therefore set Bi

j “ QzSi
j

7, and proceed to the next j.
As this process only halts when |Si

j | ą δn, and for every j, |Si
j | ď qpj ´ 1q, we have that

mi ě δn{q. Further note that by the choice of each Bi
j , the sets Bi

1, . . . , Bi
mi

are disjoint,
and of size at most q, as required. This thus shows how each Ai can be constructed, and the
claim follows. ◁

4.2 Splitters for query sets
Splitters for query sets, that are defined as follows, are key ingredients in our distance
amplification procedure. Informally, a c-splitter for a query set A “ tA1, . . . , Anu is partition
of rns which satisfies that for every i, the intersection between ĎAi, the union all the sets in
Ai that correspond to an index i, and each part of the partition, is not too large, i.e., of
size at most c. In the distance amplification procedure, we will describe a corrector which
samples a set B P Ai, in some query set A, and then makes queries according to which parts
of the c-splitter intersect with B. For the resulted queries to be smooth, we will need the
partition to “split” A1, . . . , An, meaning that no part of the partition is too common within
any certain Ai.

6 As the corrector in non-adaptive, Corpiq naturally induces a distribution on subsets of rns which
correspond to the possible query sets.

7 Note that i R Bi
j , as i R Q, since Corpiq by definition never queries i.
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▶ Definition 26. Let n P N, A an n-query-set and c P N. A partition π of rns is called a
c-splitter of A if for every i P rns and P P π, |P X ĎAi| ď c.

The next claim shows that if each Ai is of size at most k, then c-splitters with k parts
exist, for c, the bound on the maximal intersection, being equal to roughly the minimal
intersection that is possible, up to a constant factor.

▷ Claim 27. Let n, k, q P N such that k{n ď 1 and q ě log n. Further let A “ tA1, . . . , Anu

be an n-query-set such that for every i P rns, |Ai| ď k and for every B P Ai, |B| ď q. Then,
there exists a partition π of rns with k parts, each of size n{k, which is a c-splitter of A for
c “ 2eq.

Proof. The proof is by a probabilistic argument. We randomly choose a partition π with k

equally-sized parts in a uniform manner among all such partitions. We bound the probability
that π is not a c-splitter for A: this is the case if |ĎAi X P | ą c for some i P rns and P a part
of π. Towards this end, we first fix some i P rns and t P rks, and let Pt denote the t-th part
of π. We have that for every j P ĎAi the probability that j P Pt is 1{k, and for every fixed
subset of ĎAi of size c, the probability that it is contained in Pt is at most p1{kqc (since for
distinct j, j1 P ĎAi, the events that j P Pt and j1 P Pt are negatively correlated). By a union
bound over the possible subsets of size c, the probability that |ĎAi X Pt| ą c is at most

ˆ

|ĎAi|

c

˙

p1{kqc ď

ˆ

e|ĎAi|

ck

˙c

ď

´eq

c

¯c

“

ˆ

1
2

˙2eq

.

By taking a union bound over all possible i, t, the probability that there exist i P rns and
t P rks such that |ĎAi X Pt| ą c is at most nk

` 1
2

˘2eq
ď n2 ` 1

2
˘2eq, which is less than 1 a

q ě log n, and the claim follows. ◁

4.3 The distance amplification procedure
We now turn to define the basic operation behind our distance amplification procedure. This
operation “composes”8 two codes of different lengths, a big code and a small code, in a way
that is parameterized by some partition of rns. The result is a code of the same length as
the big code, with an improved smoothness (if the partition satisfies certain requirements),
as we will have in the claims that follow the definition. The distance amplification procedure
(or perhaps, more directly, the smoothness amplification procedure) will be an iterative
application of this composition.

▶ Definition 28. Let C1 be a code of length n1, C2 a code of length n2, π a partition of rn1s

into n1{n2 parts of size n2. We define the π-composition of C1 and C2, which we denote by
C1 dπ C2, to be the code tc P C1 | @P P π cP P C2u.

A bound on the rate of the composition of two codes is given in the following claim.

8 Note that the term “composition” here is used in a different sense than the usual composition of two
codes in coding theory, which is achieved from the composition of the encoding functions.
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▷ Claim 29. If C1, C2 are codes with of lengths n1, n2 and rates ρ1, ρ2 respectively, then
C “ C1 dπ C2 is a code of length n1 and rate at least ρ1 ` ρ2 ´ 1.

Proof. That the length of C is n1 follows from the definition. As for the rate, by inspecting
the code dual to C, it can be seen that the dimension of CK is at most

d “ p1 ´ ρ1qn1 `
n1

n2
p1 ´ ρ2qn2.

From that, the rate of C is at least 1 ´ d{n1 “ ρ1 ` ρ2 ´ 1. ◁

We now show that if the partition used in the composition is a c-splitter for a query set
of the big code, the resulted code has smoothness roughly equal to the product of the two
smoothnesses.

▷ Claim 30. Let C1 be a code of length n1 and C2 a code of length n2 which is a pq2, τ2q-LCC.
Let A “ tA1, . . . , An1 u be a query-set for C1 such that for every i, |Ai| ě 1{τ1 and for every
B P Ai, |B| ď q1. If π is a c-splitter for A, then C “ C1 dπ C2 is a pq, τq-LCC for q “ q1q2
and τ “ cτ1τ2.

Proof. To show that C is a pq, τq-LCC we need to show a corrector Cor for it. We first set
up some notations. Let Cor2 be a corrector promised by the fact that C2 is a pq2, τ2q-LCC.
For every j P rns, let Pj denote the part of π that contains j, and let j̄ denote the index of j

in Pj with respect to the natural order. For i P rns, and B P Ai, let fi,B : F|B| Ñ F denote a
function satisfying fi,BpcBq “ ci for every c P C1. Such fi,B is guaranteed to exists as A is a
query-set for C1.

For i P rns, Corpiq with oracle access to c P C acts as follows: it first samples B P Ai

uniformally at random. Secondly, for every j P B, the procedure obtains cj by invoking
Cor2pj̄q with oracle access to cPj . After obtaining cj for every j P B, Corpiq outputs fi,BpcBq.

That Corpiq successfully outputs ci for every c P C is immediate, and follows from the
fact that for every j, cPj

is a codeword of C2 and so Cor2pj̄q with access to cPj
correctly

outputs cj , and from the fact c P C1 and so fi,BpcBq “ ci. Moreover, Corpiq makes at most
q1q2 queries to c, since |B| ď q1 by assumption, and Cor2 makes at most q2 queries.

It remains to bound the probability that a coordinate r P rns is queried by Corpiq for
i P rns. Let p be the probability that Corpiq queries r. Fix B P Ai. Conditioned on the event
that B was sampled by Corpiq in the first step, r is queried by Corpiq if one of the calls to
Cor2pj̄q, with oracle access to cPj

, queries cr for some j P B. That probability is at most
|B X Pr|τ2. Indeed, this follows by taking the union bound over the different j P B, noting
that if j R Pr, cr cannot be queried by Cor2pj̄q, and using that Cor2 queries any coordinate
with probability bounded above by τ2. Therefore,

p ď
ÿ

BPAi

PrrB is sampled by Corpiqs ¨ |B X Pr|τ2

“
ÿ

BPAi

1
|Ai|

¨ |B X Pr|τ2

ď
ÿ

BPAi

τ1 ¨ |B X Pr|τ2

“ τ1τ2|Pr X ĎAi|

ď cτ1τ2.

Note that we used the assumptions that |Ai| ě 1{τ1, and that π is a c-splitter for A. We
thus have that p ď cτ1τ2, which concludes the proof. ◁
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The following lemma concludes the properties of the code that is achieved by the
composition of two codes, when done with the c-splitter that is given by Claim 27.

▶ Lemma 31. Let n P N. Assume there exists a code C1 of length n over F, with rate ρ1,
which is a pq1, τ1q-query-set-LCC for q1 ě log n. Further assume that there exists a code C2
of length nτ1 over F, with rate ρ2, which is a pq2, τ2q-LCC. Then, there exists a code C of
length n, with rate ρ1 ` ρ2 ´ 1, which is a pq1q2, 2eq1τ1τ2q-LCC.

Proof. As C1 is a pq1, τ1q-query-set-LCC, there exists an n-query-set A “ tA1, . . . , Anu in
which for every i, |Ai| ě 1{τ1 and for every B P Ai, |B| ď q1. In particular, there exists
a query set A1 “ tA1

1, . . . , A1
nu in which every A1

i is of size exactly 1{τ1 (which is achieved
by, for each Ai, arbitrarily removing sets B P Ai until it is of size 1{τ1). By Claim 27
invoked with k “ 1{τ1, there exists a partition π of rns, in which every part is of size τ1n,
which is a c-splitter for A1, with c “ 2eq1. We take C “ C1 dπ C2 to be the code with the
claimed properties. Indeed, by Claim 29, C is of length n, and has rate at least ρ1 ` ρ2 ´ 1.
Furthermore, by applying Claim 30, and using that π is a c-splitter for A1, we get that C is
a pq, τq-LCC for q “ q1q2 and τ “ 2eq1τ1τ2, and the lemma follows. ◀

The following lemma, or more precisely, its proof, composes the distance amplification
procedure. It assumes a family of codes which are LCC, and describes the properties of the
code that is obtained by an iterative application of the composition, where at each iteration
a code of the family is composed with the “current” code.

▶ Lemma 32. Assume there exists a family of codes C “ tCnu over F, in which every code
Cn of length n in the family is a code of rate ρpnq “ 1 ´ rpnq, which is a pqpnq, τpnqq-query-
set-LCC for qpnq ě log n. Then, for every t P N, there exists a code family C 1 “ tpC 1qnu over
F which has a code pC 1qn of length n for every n which is a code length in C, and pC 1qn has the
following properties. Define n1 “ n and for i “ 2, . . . , t ` 1 let ni “ Vτpni´1qni´1WC . Then,
pC 1qn has rate ρ1pnq “ 1 ´

řt
i“1 rpniq, and is a pq1pnq, τ 1pnqq-LCC for q1pnq “

śt
i“1 qpniq

and

τ 1pnq “ p2eqt´1 nt`1

n

t´1
ź

i“1
qpniq.

Proof. To show the existence of a code family with the claimed properties, we describe how
for every n that is a length of a code in the family C, a code of the same length, of the
family C 1, can be constructed. Let Cn be a code of length n of the family C. Set n1 “ n

and for i “ 2, . . . , t ` 1, ni “ Vτpni´1qni´1WC , as defined in the claim. We construct a
sequence of codes C 1

1, . . . , C 1
t, where for each i P rts, C 1

i is a code of length ni and rate ρ1
i,

which is a pq1
i, τ 1

iq-LCC. We start by setting C 1
t “ Cnt , and for i “ t ´ 1, . . . , 1, we take C 1

i

to be a code which is the result of applying Lemma 31 on Cni and C 1
i`1. Note that Cni

is a pqpniq, τpniqq-query-set-LCC and C 1
i`1 is a code of length ni`1 ě τpniqni, and so in

particular Cni is indeed of smoothness ni`1{ni, as required for the lemma to be applicable.
From Lemma 31 it follows that C 1

i is a code of rate

ρ1
i “ ρpniq ` ρ1

i`1 ´ 1 “ ρ1
i`1 ´ rpniq

which is a pq1
i, τ 1

iq-LCC for

q1
i “ qpniqq

1
i`1,

τ 1
i “ 2eqpniqτ

1
i`1

ni`1

ni
.
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Recall that C 1
t “ Cnt and so ρ1

t “ 1 ´ rpntq, q1
t “ qpntq and τ 1

t “ τpntq. It follows inductively
that for every i P rts,

ρ1
i “ 1 ´

t
ÿ

j“i

rpnjq,

q1
i “

t
ź

j“i

qpnjq,

and

τ 1
i “ p2eqt´i

˜

t
ź

j“i

nj`1

nj

¸ ˜

t´1
ź

j“i

qpnjq

¸

“ p2eqt´i nt`1

ni

˜

t´1
ź

j“i

qpnjq

¸

.

We set C 1
1, which is indeed a code of length n, to be the code pC 1qn of C 1, and from the

account given above it follows that its rate, query complexity and smoothness are as stated,
i.e., that q1

1 “ q1pnq, ρ1
1 “ ρ1pnq and τ 1

1 “ τ 1pnq. We thus have that C 1 is a family of codes
with rate at least ρpnq that are pqpnq, τpnqq-LCC, and the lemma follows. ◀

4.4 Corollaries
In this part we present two corollaries of our distance amplification procedure that is given
by Lemma 32. As a special case of the first corollary, Corollary 34, we will have that if one
has a sufficiently dense code family of pqpnq, δpnq, εpnqq-LCC which is of high rate, meaning
that each code has rate ρpnq that approaches 1 “fast enough”, but with δpnq that is only
polynomially small in n, δpnq “ 1{nα, for some constant α P p0, 1q, then there exists a
good family of LCC with query complexity qpnqOplog log nq. In the general case, a weaker
guarantee on δpnq can also be handled by Corollary 34, meaning that a sub-polynomial
δpnq can also be amplified. More precisely, Corollary 34 will state that if δpnq “ 1{n1´1{gpnq

for a (non-decreasing) function gpnq, then a family of good LCC can be constructed, with
query complexity qpnqOpgpnq log log nq. The requirement of the rate function ρpnq, which we
described as approaching 1 “fast enough”, in more detail comes down to the requirement
that ρpnq ě 1 ´ 1{pgpnqpln ln nq2q.

The second corollary, Corollary 37, addresses the case that the family of pqpnq, δpnq, εpnqq-
LCC one starts with is of a much smaller rate, either of a constant rate or of a vanishing rate
of p1{ ln ln nqh for some constant h. In the case that δpnq “ 1{nα for some constant α P p0, 1q

and ρpnq ě p1{ ln ln nqh, as a special case Corollary 37 we will have that there exists a family
of good LCC with query complexity qpnqpolyplog log nq. Here too, sub-polynomial δpnq can
also handled by the corollary, as in a more general case, it is shown by Corollary 37 that
if δpnq “ 1{n1´1{gpnq for a non-decreasing gpnq ď log n, and if ρpnq is at least p1{ ln ln nqh

for some constant h, then a family of good LCC can be constructed, with query complexity
qpnqgpnqpolyplog log nq. The precise statement Corollary 37 is more generally stated and handles
a few more cases that may be of interest.

We remark that while in any case that Corollary 34 can be applied so can Corollary 37 be
used, the reason that we state both corollaries is that if one starts with an LCC that satisfies
the requirement of Corollary 34 then using it, rather than using Corollary 37, would result
in a better bound on the resulted query complexity. We further remark that the proof for
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Corollary 37 builds on Corollary 34. Lastly, another reason that Corollary 34 is of interest is
that it has an analogous corollary in the case of LDC (see Corollary 35), unlike Corollary 37
(whose proof relies on properties specific to LCC).

The proofs for the corollaries can be found in the full version of the paper (see [6]).

4.4.1 From high rate and low distance LCC to good LCC

The proof for the first corollary relies on the following lemma which states that any family
of pq, τq-LCC with constant rate can be converted to a family of good LCC by paying a
multiplicative factor of polypτnq in query complexity. This lemma follows from the AEL
distance amplification procedure [2, 1] and from the adaptation of it by [17] for LDC and
LCC. To derive this lemma with certain parameters, some adaptations to these techniques
are needed, and so we provide a full proof for Lemma 33 in the appendix of the full version.

▶ Lemma 33. Let C “ tCnu be a code family over F in which every code Cn is a pqpnq, τpnqq-
LCC with rate ρpnq “ Ωp1q. Then, there exists a code family C 1 “ tpC 1qnu over F which has
a code pC 1qn of length n for every Cn in C, such that pC 1qn is a pq1pnq, δ1pnq, εq-LCC for
q1pnq “ Opqpnqpnτpnqq2q, δ1pnq “ Ωp1q and ε “ 1{3, with rate ρ1pnq “ Ωp1q.

We now state our first corollary.

▶ Corollary 34. Let qpnq ě log n9 and gpnq ą 1 be two non-decreasing functions. Assume
there exists a family of codes C “ tCnu over F that is pn0, c, dq-dense, in which every code
Cn of length n has rate

ρpnq ě 1 ´
1

gpnqpln ln nq2 ,

and either Cn is a pqpnq, δpnq, εpnqq-LCC, for εpnq ă 1 ´ 1{|F| and δpnq “ 1{n1´1{gpnq, or
it is a pqpnq, τpnqq-query-set-LCC, for τpnq “ qpnq{n1{gpnq. Then, there exists a family of
codes C 1 “ tpC 1qnu over F that is pn0, c, dq-dense, which is a family of good LCC with query
complexity qnewpnq “ qpnqOpgpnq ln ln nq.

Note that Corollary 34 allows for the code family C in the hypothesis to be one of two
types, either a family of pq, δ, εq-LCC or a family of pq, τq-query-set-LCC. For the proof, what
we actually need is that C is of the second type. However, if one starts with a family C which
is known to be of the first (more standard) type, with the specified δpnq, by Claim 25 it will
follow that C is a family of query-set-LCC with the same smoothness τpnq that is stated in
the corollary in the second case. The corollary explicitly allows both of the types because it
is also possible that the base code is already known to be a query-set-LCC, as would be the
case in the proof of Corollary 37, which uses Corollary 34. It is preferable to avoid going
back and forth between the types, as this has some cost in the resulted parameters.

We further state a corollary analogous to Corollary 34, that holds in the case of LDC.
The proof for this corollary is straightforward given the result regarding LCC, and follows
the same lines.

9 We remark that while we assume for simplicity that qpnq ě log n, by the Katz-Trevisan bound
(instantiated for the case of rate and distance as specified by the corollary), lifting this assumption
would not yield an improvement in the obtained query complexity in any case.
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▶ Corollary 35. Let npkq ą k, qpkq ě log npkq and gpkq ą 1 be non-decreasing functions.
Assume there exists a code-encoding family C “ tpCk, Enck

qu over F that is pk0, c, dq-dense,
in which every code Ck of dimension k has rate

ρpkq ě 1 ´
1

gpkqpln ln kq2 ą
1
2 ,

and either pCk, Enck
q is a pqpkq, δpkq, εpkqq-LDC, for εpkqă1´1{|F| and δpkq“1{npkq1´1{gpkq.

Then, there exists a code-encoding family C 1 “ tppC 1qk, pEnc1
qkqu over F that is pk0, c, dq-dense,

which is a family of good LDC with query complexity qnewpkq “ qpkqOpgpkq ln ln kq.

4.4.2 From low rate and low distance LCC to good LCC

The proof for our second corollary uses the following proposition from [7]. This proposition
is basically Proposition 4.14 in [7] but for pq, τq-query-set-LCC rather than for a different
object10. That the proposition indeed applies to pq, τq-query-set-LCC is quite immediate
with the account given in [7].

▶ Proposition 36 (Implicit in [7]). Let C be a code of length n over F with rate ρ that is a
pq, τq-query-set-LCC. Then, for every ℓ P N, there exists a code C 1 of length n1 “ nℓ with
rate 1 ´ p1 ´ ρqℓ, which is a pq1, τq-query-set-LCC for q1 “ qℓ.

We now state our second corollary.

▶ Corollary 37. Let h ě 1 be an arbitrary constant, qpnq ě log n and gpnq P r1, log ns

non-decreasing functions, and ρpnq a non-increasing function, satisfying

1
pln ln nqh

ď ρpnq ď 1 ´
1

gpnqpln ln nq2

for every n. Assume further that

1
ρpn ` 1q

pln gpn ` 1q ` ln ln lnpn ` 1qq ´
1

ρpnq
pln gpnq ` ln ln ln nq “ O

ˆ

1
log n

˙

.

Assume there exists a family of codes C “ tCnu over F that is pn0, 1, 1q-dense11, in which
every code Cn of length n is a code of rate ρpnq, which is a pqpnq, δpnq, εpnqq-LCC, for
εpnq ă 1 ´ 1{|F| and

δpnq “
1

n1´1{gpnq
.

Then, there exists a family of codes C 1 “ tpC 1qnu over F, which is a family of good LCC with
query complexity qnewpnq “ qpnqepnq for

epnq “ O

ˆ

1
ρpnq2 pln gpnq ` ln ln ln nq2gpnq ln ln n

˙

.

10“dual SLR” in the terminology of [7].
11 Note that if one starts with a code family C that is pn0, c, dq for some constants c, d, then it can be

easily converted to a pn0, 1, 1q-dense family, with a constant multiplicative cost to the rate and with
little affect to the obtained parameters.

ICALP 2022
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5 LDC are not LCC via random weighted tensor codes

In this section we argue that there exist linear codes which are LDC but not LCC, in the
following strong sense. Not only are these codes LDC while not being LCC even for a weak
requirement of very high query complexity and very low correction radius, moreover, this
negative property that local correction with such parameters is impossible is maintained
in any puncturing of the code. We will be able to show this to be the case because in the
codes that we construct the uncorrectable coordinates are crucial for the distance of the code,
and in particular for the LDC feature of the code, thus any attempt to remove them while
keeping these properties, fails. In this section here we state the main claims required for
proving the result, the proofs for which can be found in the full version of the paper (see [6]).

We start with a few preliminaries for this section. In what follows we will sometimes need
to conveniently convert a pair of indices i1 P rm1s, i2 P rm2s to an index i P rm1m2s, and
so we set the following convention. Where m1, m2 P N are clear from context and i1 P rm1s,
i2 P rm2s, we denote by pi1; i2q the index pi2 ´ 1qm1 ` i1 P rm1m2s.

▶ Definition 38 (Trivial coordinates). For a code C of length n over F, we say that a coordinate
j P rns is trivial (in C) if for every c P C, cj “ 0.

▶ Definition 39 (Puncturing of codes). Let C be a code of length n and dimension k over
F and let J Ď rns. For every codeword c P C, we define the vector py1, . . . , ynq P Fn, where
yj “ cj if j R J and yj “ 0 otherwise, to be the J-puncturing of c, and we denote it by czJ .
We define tczJ | c P Cu to be the J-punctured code C, and denote it by CzJ . Note that CzJ

is indeed a code. Furthermore, given an encoding Enc of C, we define EnczJ : Fk Ñ Fn by
EnczJ pxq “ EncpxqzJ for all x P Fk.

5.1 Weighted tensors
We turn to define an operation to which we call the weighted tensor of two codes and state
several of its properties. The codes of Theorem 3 will be constructed using a weighted tensor.
This operation gets two input codes (more precisely, two codes and respective encodings),
and a matrix of non-zero entries, and results in a new code. To define the result of the
operation, we will define a new encoding function which depends on the encodings of the two
input codes and on the weight matrix. We will then take the resulted code to be the image
of that encoding. We begin by describing the encoding function of the weighted tensor.

Let Enc1 : Fk1 Ñ Fn1 and Enc2 : Fk2 Ñ Fn2 be a linear maps, and let B P Fn1ˆk2 be a
matrix with non-zero entries. We define the following function Enc : Fk1k2 Ñ Fn1n2 that acts
as follows on input x P Fk1k2 .

Action of Enc on x

1. Identify x with a matrix X P Fk1ˆk2 where for i1 P rk1s, i2 P rk2s, Xi1,i2 “ xpi1;i2q.
2. Use Enc1 to encode each column of X and set X 1 to be the resulted matrix, X 1 P Fn1ˆk2 .
3. For each j1 P rn1s, i2 P rk2s multiply the element X 1

j1,i2
by Bj1,i2 and set X2 to be the

resulted matrix.
4. Use Enc2 to encode each row of X2 and set X3 to be the resulted matrix, X3 P Fn1ˆn2 .
5. Output x1 P Fn1n2 where for j1 P rn1s, j2 P rn2s, x1

pj1;j2q
“ X3

j1,j2
.

▷ Claim 40. If Enc1 and Enc2 are injective then so is Enc.
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▷ Claim 41. Let A1 P Fn1ˆk1 and A2 P Fn2ˆk2 be the generating matrices of Enc1 and Enc2,
respectively. Then, for every x P Fk1k2 , Encpxq “ Ax, where A P Fn1n2ˆk1k2 is the matrix
where for i1 P rk1s, i2 P rk2s, j1 P rn1s, j2 P rn2s we have that Apj1;j2q,pi1;i2q “ A1

j1,i1
A2

j2,i2
Bj1,i2 .

In particular, Enc is a linear map.

We can now define the weighted tensor operation.

▶ Definition 42. Let Enc1, Enc2, B and Enc be as above. Let C1 be a code of length n1 and
dimension k1 over F such that Enc1 is an encoding of it, and let C2 be a code of length n2
and dimension k2 over F such that Enc2 is an encoding of it. Let C be the image of Enc. We
define the B-weighted tensor of pC1, Enc1q and pC2, Enc2q to be the pair pC, Encq, and denote
pC, Encq “ pC1, Enc1q bB pC2, Enc2q.

▷ Claim 43. Let pC, Encq “ pC1, Enc1q bB pC2, Enc2q. Then C is a code of length n “ n1n2
and dimension k “ k1k2 over F, and Enc is an encoding of it.

5.2 Local decodability and correctablity of weighted tensors

The weighted tensor of two LDC is an LDC with comparable parameters, regardless of the
weight matrix, as we have in the following claim.

▷ Claim 44. Let pC1, Enc1q be a pq1, δ1, ε1q-LDC, where C1 is a code of length n1 and
dimension k1 over F. Let pC2, Enc2q be a pq2, δ2, ε2q-LDC, where C2 is a code of length
n2 and dimension k2 over F, and let B P Fn1ˆk2 be a matrix with no zero entries. Then,
pC, Encq “ pC1, Enc1q bB pC2, Enc2q is a pq1q2, δ1δ2, 1 ´ p1 ´ ε1qp1 ´ ε2qq1 q-LDC.

In the next claim we argue that the weighted tensor of two codes, when performed with a
randomly chosen weight matrix is, with high probability, not locally correctable. In particular,
there exists a subset of the coordinates which cannot be locally corrected even with a small
correction radius guarantee, and cannot be removed from the code either if its decodablity is
to be preserved.

▷ Claim 45. Let pC1, Enc1q be a pq1, δ1, ε1q-LDC of length n1 and dimension k1 over F, and
let pC2, Enc2q be a pq2, δ2, ε2q-LDC of length n2 and dimension k2 over F. Assume that C1
and C2 have no non-trivial coordinates. Let B P Fn1ˆk2 be a random matrix of non-zero
weights, chosen uniformly and independently, and let pC, Encq “ pC1, Enc1q bB pC2, Enc2q.

For every t ă k2 and q̃, ˜̃q P N, δ ě q̃{n1, δ1 ě t{k2 and ε ă 1 ´ 1{|F|, with probability at least
1 ´ n1n2

`

n1n2
q̃

˘

|F|q̃{p|F| ´ 1qt over the choice of B, C satisfies the following. There exists a
set J̄ Ď rns such that every j P J̄ is not pq̃, δ, εq-locally correctable in C. Further, the relative
(non-local) distance of CzJ̄ is less than t{k2.

The main theorem of this part is an immediate consequence of Claim 45.

▶ Theorem 46. Let pC0, Enc0q be a pq0, δ0, ε0q-LDC for a code C0 of dimension k0 and length
n0 over F for |F| ą 2, such that ε0 ă 1 ´ 1{|F|, k

1{2
0 ą 10 log n0, and assume that C0 has no

trivial coordinates. Then, there exists a pq2
0 , δ2

0 , 1´p1´ε0qq0`1q-LDC pC, Encq for a code C of
dimension k “ k2

0 and length n “ n2
0 over F satisfying the following property. There exists a

set J Ď rns of coordinates such that every j P J , j is not pk1{4, k1{4{n1{2, εq-locally correctable
in C, for any ε ă 1 ´ 1{|F|. Moreover, the relative distance of CzJ is less than 5 logpnq{k1{4

(in particular for any ˜̃q P N and ε ă 1 ´ 1{|F|, CzJ is not a p˜̃q, 5 logpnq{k1{4, εq-LDC).

ICALP 2022
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