On Computing the k-Shortcut Fréchet Distance

Jacobus Conradi
Department of Computer Science, Universitat Bonn, Germany

Anne Driemel

Hausdorff Center for Mathematics, Universitat Bonn, Germany

—— Abstract

The Fréchet distance is a popular measure of dissimilarity for polygonal curves. It is defined as

a min-max formulation that considers all direction-preserving continuous bijections of the two
curves. Because of its susceptibility to noise, Driemel and Har-Peled introduced the shortcut Fréchet
distance in 2012, where one is allowed to take shortcuts along one of the curves, similar to the edit
distance for sequences. We analyse the parameterized version of this problem, where the number
of shortcuts is bounded by a parameter k. The corresponding decision problem can be stated as
follows: Given two polygonal curves T and B of at most n vertices, a parameter k and a distance
threshold 9, is it possible to introduce k£ shortcuts along B such that the Fréchet distance of the
resulting curve and the curve T is at most 67 We study this problem for polygonal curves in the
plane. We provide a complexity analysis for this problem with the following results: (i) assuming the
exponential-time-hypothesis (ETH), there exists no algorithm with running time bounded by n"(k);

(i) there exists a decision algorithm with running time in O(kn?**2

logn). In contrast, we also
show that efficient approximate decider algorithms are possible, even when k is large. We present a
(3 + ¢)-approximate decider algorithm with running time in O(kn?log®n) for fixed €. In addition,
we can show that, if k£ is a constant and the two curves are c-packed for some constant ¢, then the

approximate decider algorithm runs in near-linear time.
2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms

Keywords and phrases Fréchet distance, Partial similarity, Conditional lower bounds, Approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.46
Category Track A: Algorithms, Complexity and Games
Related Version Full Version: https://arxiv.org/abs/2202.11534 [19]

Funding This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — AA 1111/2-2 (FOR 2535 Anticipating Human Behavior).

1 Introduction

With the prevalence of geographical data collection and usage, the need to process and
compare polygonal curves stemming from this data arises. A popular versatile distance
measure for polygonal curves is the Fréchet distance [27]. The distance measure is very similar
to the well-known Hausdorff distance for geometric sets, except that it takes the ordering
of points along the curves into account by minimizing over all possible direction-preserving
continuous bijections between the two curves. Intuitively, the distance measure can be defined
as follows. Imagine two agents independently traversing the two curves with varying speeds.
Let § be an upper bound on the (Euclidean) distance of the two agents that holds at any
point in time during the traversal. The Fréchet distance corresponds to the minimum value
of § that can be attained over all possible traversals.

In practice, the distance measure may be distorted by outliers and measurement errors.
As a remedy, partial similarity and distance measures have been introduced which are
thought to be more robust. Buchin, Buchin and Wang define a partial Fréchet distance [14]
? Jacobus Conradi apd Anne Driemf.sl;

37 icensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).

Editors: Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 46; pp. 46:1-46:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8259-1187
https://orcid.org/0000-0002-1943-2589
https://doi.org/10.4230/LIPIcs.ICALP.2022.46
https://arxiv.org/abs/2202.11534
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2

On Computing the k-Shortcut Fréchet Distance

which maximizes the portions of the two curves matched to one-another within some given
distance threshold. Driemel and Har-Peled suggested the shortcut Fréchet distance [21] in
the spirit of the well-known edit distance for strings: a set of non-overlapping subcurves can
be replaced by straight edges connecting the endpoints (so-called shortcuts) to minimize
the Fréchet distance of the resulting curves. Akitaya, Buchin, Ryvkin and Urhausen [3]
introduced a variant of the Fréchet distance, where a certain number of “jumps” (backwards
and forwards) are allowed during the traversal of the two curves. We note that it has been
acknowledged in the literature that partial dissimilarity measures generally do not satisfy
metric properties [12, 25, 28].

It is conceivable that computing a partial dissimilarity based on the Fréchet distance
should be more difficult than the standard Fréchet distance because of the structure of the
optimization problems involved. We briefly discuss what is known for these problems. The
continuous Fréchet distance can be computed in O(n?polylog(n)) time for two polygonal
curves of n vertices [5, 13]. For the discrete Fréchet distance, slightly subquadratic time is
possible, as it can be computed in O(%{ﬁ(n)) time [2]. However, assuming the Strong-
Exponential-Time-Hypothesis (SETH), there is no algorithm, in either the discrete or the
continuous setting, for any £ > 0, with running time in O(n?~¢) [9, 11, 15]. Following these
works, we know that the complexity of computing the standard Fréchet distance is roughly
quadratic in the size of the input, both in the discrete and continuous setting, and this holds
for any dimension d > 1. Strongly subquadratic approximation algorithms are possible for
restricted classes of curves [6, 7, 10, 22] and for large approximation factors [17, 18].

Compared to the standard Fréchet distance, the overall picture of the computational
complexity of the partial variants is much more heterogeneous. De Carufel et al. [20] showed
that the problem of computing the partial Fréchet distance is not solvable by radicals over
Q and that the degree of the polynomial equations involved is unbounded in general. On
the other hand, some variants of the partial Fréchet distance can be computed exactly in
polynomial time [14]. Computing the shortcut Fréchet distance was shown to be NP-hard
[16] when shortcuts are allowed anywhere along the curve. On the other hand, the discrete
Fréchet distance with shortcuts was shown to be computable in strictly subquadratic time
by Avraham et al. [8], which is even faster than computing the standard variant without
shortcuts. The variant defined by Akitaya et al. [3] turns out to be NP-hard, but allows for
fixed-parameter tractable algorithms.

Our contribution. In this paper, we study the computational complexity of a parameterized
version of the shortcut Fréchet distance, where the maximum number of shortcuts that may
be introduced on the curve is restricted by a parameter k. We show that assuming the
Exponential-Time-Hypothesis (ETH), no fixed-parameter tractable running time is possible
with k£ being the parameter. For polygonal curves in the plane, we present an exponential-time
exact algorithm and we show that near-linear time approximation algorithms are possible
using certain realistic input assumptions on the two curves.

Previous work. Driemel and Har-Peled [21] introduced the shortcut Fréchet distance and
described a near-linear time (3 4 ¢)-approximation algorithm for the class of c-packed curves.
However, they only allowed shortcuts that start and end at wvertices of the base curve.
Buchin, Driemel and Speckmann [16] showed that, if shortcuts are allowed anywhere along
the curve, then the problem of computing the shortcut Fréchet distance exactly is NP-hard
via reduction from SUBSET-SUM. They also describe a 3-approximation algorithm for the
decision problem with running time in O(n3logn) for the case that shortcuts may start and

J. Conradi and A. Driemel

end in the middle of edges. Prior to our work, there has been no study of exact algorithms
for the shortcut Fréchet distance, with non-restricted shortcuts. Our analysis of the exact
problem therefore closes an important gap in the literature. Obtaining the exact algorithm
was surprisingly simple, once the relevant techniques were combined in the right way.

1.1 Basic definitions

» Definition 1 (curve). A curve T is a continuous map from [0,1] to R?, where T(t) denotes
the point on the curve parameterized by t € [0,1]. For 0 < s <t <1 we denote the subcurve
of T from T(s) to T(t) by T[s,t]. A polygonal curve of complexity n is given by a sequence
of n points in R%. The curve is then defined as the piecewise linear interpolation between
consecutive points.

» Definition 2 (Fréchet distance). Given two curves T and B in R%, their Fréchet distance
is defined as

dr(T,B) = max || T(f(t)) — B(g(t))ll,

inf
£>9:(0,1]=1[0,1] t€[0,1]
where f and g are monotone, continuous, non-decreasing and surjective. We call a pair of such
functions (f,g) a traversal. Any such traversal has the cost max,epo,1] | T(f()) — B(g(a))|l
associated to it.

In our definition of the Fréchet distance given above, we follow Alt and Godau [4]. Strictly
speaking, this definition does not use bijections as for the sake of convenience the strict
monotonicity of f and g is relaxed.

» Definition 3 (k-shortcut curve). We call a line segment between two arbitrary points B(s)
and B(t) of a curve B a shortcut on B, where s <t and denote it by B[s,t]. A k-shortcut
curve of B is the result of replacing k subcurves Bls;,t;] of B for 1 < i < k by shortcuts
Bls;, t;] connecting their start and endpoint, with t; < s;41 for 1 <i <k —1.

» Definition 4 (k-shortcut Fréchet Distance). Given two polygonal curves T and B, their
k-shortcut Fréchet distance d%(T, B) is defined as the minimum Fréchet distance between T
and any k'-shortcut curve of B for some 0 < k' < k. In this context, we call B the base curve
(where we take shortcuts) and T the target curve (which we want to minimize the Fréchet
distance to).

1.2 Overview of this paper

In Section 3 we present an exact algorithm for deciding if the k-shortcut Fréchet distance is
smaller than a given threshold ¢. The algorithm can also be used for the non-parameterized
variant by setting k = n. Our first main result is the following theorem.

» Theorem 5. Let T and B be two polygonal curves in the plane with overall complexity n,
together with a value § > 0. There exists an algorithm with running time in O(kn2k+2 log n)
and space in O(kn***2) that decides whether d%(T, B) < 4.

Our algorithm for Theorem 5 iterates over the free space diagram by Alt and Godau [5]
in k rounds. Within the free space diagram, a direction-preserving continuous bijection

between two curves corresponds to a monotone path starting at (0,0) and ending at (1,1).

In each round, we compute the set of points in the parametric space of the two curves that
are reachable by using one additional shortcut. For computing the set of eligible shortcuts

46:3

ICALP 2022

46:4

On Computing the k-Shortcut Fréchet Distance

spanning a fixed set of edges, we make use of the so-called line-stabbing wedge introduced by
Guibas et al. [23]. Line-stabbing wedges were also used in the approximation algorithm by
Buchin et al [16]. In our case, since we perform exact computations, the reachable space
may be fragmented into a number of components, and this number may grow exponentially
with the number of rounds.

In Section 5 we give some evidence that this high complexity due to fragmentation is
not an artifact of our algorithm, but may be inherent in the problem itself. For this, we
assume that the exponential time hypothesis (ETH) holds. The ETH states that 3-SAT
in n variables cannot be solved in 2°(") time [24]. Our second main result is the following
conditional lower bound.

» Theorem 6. Unless ETH fails, there is no algorithm for the k-shortcut Fréchet distance
k)

decision problem in R? for d > 2, with running time n°®*).

Our conditional lower bound of Theorem 6 is obtained via reduction from a variant of the
k-SUM problem, which is called k-Table-SUM. In particular, we construct a (4k + 2)-shortcut
Fréchet distance decision instance for a given k-Table-SUM instance. Our construction
is based on the NP-hardness reduction by Buchin, Driemel and Speckmann [16]. Their
reduction was from SUBSET-SUM and could not be directly applied to obtain our result.
The construction implicitly encodes partial solutions for the SUBSET-SUM instance as
reachable intervals on the edges of one of the curves. In this way, each shortcut taken by the
optimal solution implements a choice for an element to be included in the sum. The previous
reduction implemented this in the form of a binary choice, thereby leading to a number of
shortcuts that is linear in n. In our case, the number of shortcuts taken should only depend
on k and not n. Therefore, we give a new construction for a choice gadget, that allows to
choose an element from a set to be included in a partial solution while using only a constant
number of shortcuts for this choice. We remark that a tighter bound can be obtained when
assuming the k-SUM hypothesis [1].

In light of the above results, it is interesting to consider approximation algorithms and
realistic input assumptions for this problem. In Section 4 we show that there is an efficient
approximation algorithm for this problem. If we can assume that the input curves are
well-behaved, we even obtain a near-linear time algorithm for constant k. To formalize this,
we consider the class of c-packed curves, see also [22].

» Definition 7 (c-packed curves). For ¢ > 0, a curve X is called c-packed if the total length
of X inside any ball is bounded by c times the radius of the ball.

The following is our third main result. Since any polygonal curve of complexity n is
c-packed for some ¢ < 2n, the theorem also implies a running time of O (kn2e~°(log” (ne~1))
for polygonal curves in the plane — without any input assumptions.

» Theorem 8. Let T and B be two c-packed polygonal curves in the plane with overall
complexity n, together with values 0 < ¢ < 1 and § > 0. There exists an algorithm with
running time in (9(1{:671675 log? (nafl)) and space in (’)(/{:cns’4 log? (5’1)) which outputs one
of the following: (i) d%(T, B) < (3 +¢€)d or (ii) d%(T,B) > §. In any case, the output is
correct.

The main ideas that go into the proof of Theorem 8 can be sketched as follows. The
first observation is that a highly fragmented reachable space that leads to the high running
time of the exact algorithm of Theorem 5 can be approximated by limiting the number of
shortcuts that the algorithm may take. To show that the algorithm still takes the right

J. Conradi and A. Driemel

Figure 1 Free space diagram for a base curve B and a target curve T', with the d-free space in
gray. Marked are some grid lines with their corresponding vertex on each curve. The figure also
shows a feasible proper tunnel 7(p, q). The shortcut B[py,] is shown in purple, and the subcurve
T[ps,py] in green. The price of 7(p, q) is the Fréchet distance of the shortcut and the subcurve.

decisions (within the approximation bounds), we make use of a property of shortcut prices
that was first observed by Driemel and Har-Peled [21]. Namely, the price of a shortcut is
approximately monotone and it suffices in each round to take the ‘shortest‘ feasible shortcut
among all shortcuts that are available. Now, the main challenge as compared to the algorithm
in [21] is that this shortcut may still start in the middle of an edge. Thus, we would need to
invoke the line-stabbing wedges, but this would be too expensive. Instead, we use a data
structure by Driemel and Har-Peled [21] that allows to query the Fréchet distance of a line
segment to a subcurve. We combine this with a scheme to simulate an approximation of the
output of the line-stabbing wedge with queries to this data structure. In particular, we can
approximate the line-stabbing wedge with a convex hull of a set of grid points. However, this
is still not enough, as the free-space may have quadratic complexity. To obtain a near-linear
running time for small ¢, we make use of the property of c-packed curves as observed by
Driemel, Har-Peled and Wenk [22], that the complexity of the free space diagram of two
c-packed curves is only linear in ¢ - n when the curves are appropriately simplified.

2 Preliminaries

Our algorithm uses the free space diagram which was introduced by Alt and Godau [5] for
computing the standard Fréchet distance.

» Definition 9 (Free space diagram). Let T and B be two polygonal curves in R%. The free
space diagram of T and B is the joint parametric space [0,1]? together with a not necessarily
uniform grid, where each vertical line corresponds to a vertex of T and each horizontal line
to a vertex of B (refer to Figure 1). We call the cell of the parametric space corresponding to
the ith edge of the target curve and the jth edge of the base curve C; ;. The d-free space of T
and B is defined as

Ds(T,B) = {(z,y) € [0,1]* | |T(=) — B(y)|| < 6}

This is the set of points in the parametric space whose corresponding points on B and T are
at a distance at most §. Denote by Dgw)(T, B) =Ds(T,B) N C;; the d-free space inside the
cell C@j.

In the following 7" and B will often be fixed, thus we will simply write Ds. It is known
that D((;W) is convex and has constant complexity. More precisely, it is an ellipse intersected
with the cell C; ;. Furthermore the Fréchet distance between two curves is less than or equal

46:5

ICALP 2022

46:6

On Computing the k-Shortcut Fréchet Distance

to § if and only if there exists a monotone path (in z and y) in the free space that starts
in the lower left corner (0,0) and ends in the upper right corner (1,1) cf. [5]. In the case
of the k-shortcut Fréchet distance we need to also consider shortcuts when traversing the
parametric space. When considering any k-shortcut curve B’ of B and any traversal (f,g) of
B’ and T with associated cost d, then (f, g) induces traversals (f', ¢’) with associated cost at
most d on every shortcut Bls,t] and some corresponding subcurve T'[u,v] of T. To capture
this, we use the notion of tunnels which was introduced in [21] and is defined as follows.

» Definition 10 (Tunnel). A tunnel 7(p,q) is a pair of points p = (zp,yp) and ¢ = (T4, Yq)
in the parametric space of B and T, with x, < x4 and y, < yq. 7(p, q) is called feasible if p
and q are in Ds. We say that a tunnel is proper, if the endpoints of the shortcut do not lie
on the same edge of B. We say a tunnel has a price pre(T(p,q)) = dr(T[xp, 2], Blyp, Yql)s
refer to Figure 1.

» Observation 11. Given line segments ab and cd in R%, then for the Fréchet distance we
have dx(ab, cd) = max(||a — c||, ||b — d||).

» Definition 12 (Reachable space). We define the (9, s)-reachable free space of T and B
Rss(T, B) = {(xp, yp) € [0,1]* | d5(T[0,], B0, y]) < 6}

and again R((;f;j)(ﬂ B) =Rs,s(T,B)NC; ;. We call the intersection Rg’sj)(T, B)NCyyp for

any (a,b) € {(i—1,7),(5,5 —1),(i+1,7),(4,5 + 1)} a reachability interval of the cell C; ;.

In particular for (a,b) € {(i — 1,7), (4,7 — 1)} we call them incoming reachability intervals
1,J

and for (a,b) € {(i+1,7), (4,5 + 1)} we call them outgoing reachability intervals.

Note that the reachability intervals for every cell C; ; and s are contained in JC; ;, and
each reachability interval is described by a (possibly empty) single interval, since any two
points in the reachability interval can be connected via a monotone path that stays inside
the d-free space. We will simply write Rs s and R(m) whenever T and B are fixed. The
k-shortcut Fréchet distance of T and B is at most 6 if and only if (1,1) € R -

We want to reduce the problem of deciding the k-shortcut Fréchet distance to the problem
of deciding on the existence of a monotone path in the free space diagram with & tunnels
starting in (0,0) and ending in (1,1). Note that any tunnel 7(p,q) with p = (zp,y,) and
q = (z4,Y4), that is not proper, induces a traversal of Blyp,y,] = Blyp,y,] and T[z;, 4].
Thus we can omit the tunnel and replace it with a monotone path from p to ¢ in D;.
Therefore, in the following, we only consider monotone paths with proper tunnels.

» Definition 13 (Monotone path with tunnels). A monotone path with k proper tunnels in
the d-free space of two curves consists of k + 1 monotone (in x and y) paths in the d-free
space from s; to t; for 1 <i < k+1, with s = (0,0), such that t; lies to the left and below
Six1, for 1 <i < k. The k proper tunnels have the form 7(t;,s;+1) for 1 <i <k.

» Observation 14. Let T' and B be two polygonal curves. The set Rs (T, B) is exactly the
set of points p € Ds(T, B) such that there exists a monotone path ending in p with at most s
proper tunnels, each of price at most §. (By definition, these paths have to start at (0,0)).

To decide whether a cell is reachable by a tunnel, we need to check if there exists a
shortcut edge that stabs through an ordered set of disks centered at a subset of the vertices
of the other curve. To formalize this, we use the notion of ordered stabbers and line-stabbing
wedges as defined by Guibas et al. [23].

J. Conradi and A. Driemel

Figure 2 Example for the line-stabbing wedge for a line segment O; and disks Oz, ..., O¢. The
line-stabbing wedge is shown in gray, with its boundary in blue.

» Definition 15 (Line-stabbing wedge). Given a sequence of n convex objects Oy, ...,Oy, an
ordered stabber of this sequence is a line segment l(x) = (1 — x)s + xt from s to t, such that
points 0 < 1 <z < ... <z, <1 exist with p; = l(z;) € O;. We call p; the realising points
of l. We say that | stabs through O1,...,0,. We call the set of points t that are endpoints
of ordered stabbers of Oy, ..., Oy, the line-stabbing wedge of this sequence.

In their paper, Guibas et al. give an algorithm to compute the line-stabbing wedge for
a sequence of n unit disks as well as convex polygons of constant size, with running time
O(nlogn). This line-stabbing wedge is described by O(n) circular arcs, and two tangents
that go to infinity (see Figure 2). These instances can be scaled, such that we can use any
sequence of disks {bs(p1),-..,bs(pn)}, where all disks have the same radius (bs(p) denotes
the closed disk of radius § centered around p).

» Observation 16. Let T, B and § be given. Denote by vy the vertices of T'. For any feasible
tunnel 7(p,q) with p = (2p,yp) € Cap and q = (z4,Y,) € Cy j, it holds that Blyp,y,| stabs
through the ordered set {bs(vgt1),...,bs(vi)}, if and only if the price of T(p,q) is at most §.

3 Exact decider algorithm

In this section we describe an exact decider algorithm for the k-shortcut Fréchet distance for
two polygonal curves. The algorithm can also be used to solve the decision problem of the
(unparameterized) shortcut Fréchet distance by setting k = n. We first describe the algorithm
and then analyse its correctness and running time in Section 3.2. The full correctness proof
can be found in [19].

3.1 The Algorithm

We are given a parameter k, a value and the two polygonal curves T and B in the plane.

Our algorithm iterates over the d-free space diagram of T" and B in k rounds. In each round,
based on the computation of the previous round, we compute the set of points that are
reachable by using one additional shortcut. The goal is to compute the (4, s)-reachable space
Rs,s(T, B) in round s. In each round, we handle the cells of the free space diagram in a
row-by-row order, and within each row from left to right. For every cell C; ; we consider
three possible ways that a monotone path with proper tunnels can enter.

1. The monotone path could enter the cell C; ; from the neighboring cell C;_; ; to the left

or from the neighboring cell C; j_; below. This does not directly involve a tunnel.

46:7

ICALP 2022

46:8

On Computing the k-Shortcut Fréchet Distance

a) N}, b) V;® ¢) Q(D;,) NDYY d) Q(N;; UD;; UVE;) N DS

i,J

Figure 3 Example of the composition of the reachable space within a single free-space cell. The
lightblue sets in ¢) (resp. d)) contain all the points reachable via monotone paths inside the cell
reachable from D; ; (resp. N;; U D;; UV;%;) computed via Q(-) N Dgi‘”. The fragmentation of the
reachable space in this cell P;; = Q(N;; UD; ; UV)N Dgi’j) results in a large family of intervals I
on the edge of B.

2. The monotone path could reach C;; with a proper tunnel. We distinguish between
vertical and diagonal tunnels (compare [16, 21] for a similar distinction).
(i) The tunnel may start in any cell C,, with @ < ¢ and b < j. We call this a diagonal
tunnel.

(ii) The tunnel may start in any cell C; for b < j. We call this a vertical tunnel.

Using this distinction, we will describe how to compute the set of points reachable by
a monotone path with s proper tunnels, for each cell of the diagram. We denote the set
computed by the algorithm for cell C; ; in round s with P;;. The (4, s)-reachable space is

/

then obtained by taking the union of these sets over all rounds R((;ZSJ) = Uo<sr<s Bj-
After k rounds, the algorithm tests whether the point (1, 1) is contained in our computed
set of reachable points. If this is the case, then the algorithm returns “dg(T, B) < ¢7,

otherwise the algorithm returns “d% (T, B) > 4"

Propagating reachability within a cell. To simplify the description of the algorithm, we
use the following set function which receives a set P C C; ; for some cell C; ; and which
extends P to all points above and to the right of it.

Q(P) = {(x,y) € [0,1]* | 3(a,b) € P such that a < z and b < y}

We will usually intersect this set with D((;i’j) to obtain all points that are reachable from a
point of P by a monotone path that stays inside the J-free space of this cell. Figure 3 ¢)
shows an example of the resulting set. Note that the boundary of the resulting set can be
described by pieces of the boundary of Dgi’j), pieces of the boundary of P, and horizontal
and vertical line segments.

Step 1: Neighbouring cells. Since we traverse the cells of the diagram in a lexicographical
order, we have already computed the (possibly empty) sets P’ ; ; and P?;_;, by the time we
handle cell C; ; in round s. Therefore, we can compute the incoming reachability intervals
by intersecting P’ ; ; and P;;_; with C} ;. Now we apply the function @ to these sets and

denote the result with N, (refer to Figure 3 a):

Ng; = QP21 ;N Ciy) UQ(PE;_y N Cij)) NDS

J. Conradi and A. Driemel

Figure 4 Example of the set J (in red) computed by the DIAGONALTUNNEL procedure.

Step 2 (i): Diagonal tunnels. We invoke the following procedure for every a < i and b < j
with P[igl. We denote the union of resulting sets of points in D((;i’j) computed in this step
with D7 ;.

The procedure is given a set of points P;;l in the d-free space D((;a’b) and computes all
points in D((;i’j) that are endpoints of tunnels starting in P;;l with price at most §. The
procedure first projects P;’gl onto the edge e, of the base curve. The resulting set consists
of disjoint line segments I = {s1 t,...} along e, (refer to Figure 3 d)). The procedure then
computes the line-stabbing wedge W through s; ¢; and disks bs(vg41), ..., bs(v;) centered at
vertices of T'. W is then intersected with the edge e;, resulting in a set J on e; corresponding
to a horizontal slab in C; ; (compare Figure 3 ¢) and Figure 4). This resulting set is then
intersected with D((;i’j) to obtain all endpoints of feasible shortcuts with price at most §
starting in s; £;. The procedure performs the above steps for every line segment st € I and

returns the union of these sets. The resulting set may look as illustrated in Figure 3 c).

Step 2 (ii): Vertical tunnels. Let p denote a point in J,; P,L.‘fl_l with minimal z-
coordinate, i.e., a leftmost point in this set. A feasible vertical tunnel always has price at
most 4, as the Fréchet distance of two line segments is bounded by the maximal euclidean
distance of the start points or end points. Therefore, we simply take all points in the J-free
space to the right of p in the cell C; ;. To do this, we compute the intersection of a halfplane
that lies to the right of the vertical line at p with the J-free space in C; ;. We denote this set
with V;%;. Refer to Figure 3 b) for an example.

Putting things together. Finally, we compute the set P;; by taking the union of the
computed sets and extending this set by using the function @} defined above:

Pi; = Q(Ng; uD;; UV N DY)
It remains to specify the initialization: We define PP, = P9, = {(0,0)}, if (0,0) € D5, and
otherwise P, = P§; = (. In addition we define P, ' = {) for all 7, ;.

3.2 Analysis

We argue that the structure of F; as computed by the algorithm is indeed as claimed.
Namely for all 7,5 and s it holds that Rgf’sj) = Uogs/ <s Pf; The main argument of the

proof consists of considering any monotone path with s proper tunnels ending in some cell.

46:9

ICALP 2022

46:10

On Computing the k-Shortcut Fréchet Distance

Correctness then follows via induction over the lexicographical ordering of the cells in each
round, and by induction over all rounds. The full proof of correctness can be found in [19].
Here, we provide an analysis of the running time of the algorithm.

» Lemma 17. Let T and B be two polygonal curves in the plane with overall complexity n,
together with a distance threshold § > 0. The algorithm described in Section 3.1 has running
time in O(kn***2logn) and uses O(kn?**2) space.

Proof. Note that the sets N?

ig
intersections of ng) with halfplanes and horizontal slabs, and unions of these. For a fixed

D; ; and V;%; computed by the algorithm are described as

Pf, ; we define n; ; s as the total number of such operations from which Pf: ; was obtained. As
such, O(n; ; s) bounds the complexity of this set.

The complexity of N;; and V;?; is constant. The complexity of Dj ; is bounded by the
sum of the complexities of all cells to the lower left:

Ni.j,s € @ Z Z Na,b,s—1

0<a<i0<b<j

Asi,j <mn,and s <k, and ng 0 € O(1) for all @ and b, it holds that n; j s € O(n?*).
Computing D; ; takes O(3-, ; > opej Mab,s—110gn +n*logn) = O(n** logn) time. This
follows from the fact, that we compute O(n) line-stabbing wedges, and for every cell Cy
with @ < ¢ and b < j we handle n, 3 s—1 line segments based on P;El. Computing N, takes
O(ni—1,js + nij—1,s) = O(n?") time, as we need to compute the reachability intervals from
neighbouring cells. Computing V;%; takes O(32,_; nips—1) = O(n**~!) time, as we need to
compute the leftmost point lf;i 1- The space required to store P}, as required by latter
iterations and cells is in O(n?*). Computing Q(N;; UV UD; ;) takes linear time in the
complexity of N, UV, U Dy, ie. O(n?k). As we do this for every cell in every round, the
running time overall is O(kn?**2logn), and the space is bounded by O(kn?¥+2). <

Lemma 17 together with the claimed correctness then imply Theorem 5. The algorithm
can also be used for the (unparameterized) shortcut Fréchet distance by choosing k = n,
since there can be at most n proper tunnels. We obtain the following corollary.

» Corollary 18. Let T and B be polygonal curves in the plane with overall complexity n
and let 6 > 0. There exists an algorithm with running time in O(n2"+3 log n) and space in
(’)(n2”+3) that decides whether the shortcut Fréchet distance of T and B is at most §.

4 Approximate decision algorithm

In this section we describe a (3 + ¢)-approximation algorithm for the decision problem of
the k-shortcut Fréchet distance of two polygonal curves in the plane. The algorithm has
running time near-linear in n for c-packed curves. For general curves the running time is
still polynomial in n and linear in k.

4.1 The modified algorithm

We describe how to modify the algorithm of Section 3 to circumvent the exponential complexity
of the reachable space and obtain a polynomial-time approximation algorithm.

Let two polygonal curves T and B be given, together with a distance threshhold ¢ and
approximation parameter €. As before, the algorithm iterates over the cells of the free-space

diagram and computes sets N, V;°;, and D} ; for each cell C; ;. The main difference is

J. Conradi and A. Driemel

now that, instead of computing the exact set of points that can be reached by a diagonal
tunnel, we want to use an approximation for this set. For this, we define an approximate
diagonal tunnel procedure, see further below. This procedure is called with the rightmost
: s—1
point Ti 15—
the procedure has constant complexity and is sufficient to approximate the set D7 ;. We then
compute P7; = Q(N7; UD; UV?)N Dgi’j), similarly to Section 3. From this we compute
(¢) the leftmost point I ; in (J,<; P, based on P?; and If ;_;,
in Uy<ipej Pap based on P2y, vy 5 and rf;_, and (iii) the outgoing reachability intervals
of P;;. We store these variables to be used in the next round. Finally, after k& rounds, we

; in Ua<i,b<j P‘f;l7 e and &’ = 34. Crucially, the set resulting from one call to

(ii) the rightmost point r; ;

check if (1,1) is contained in the computed set of reachable points.

Our approximate diagonal tunnel procedure makes use of a data structure by Driemel
and Har-Peled, which is summarized in the following lemma. This data structure needs to
be built once on 7" in the beginning and is then available throughout the algorithm.

» Lemma 19 (distance oracle [21]). Given a polygonal curve Z with n vertices in R? and
e > 0, one can build a data structure F. in O(X2n10g2 n) time, that uses O(nxz) space
such that given a query segment pq and any two points u and v on the curve, one can
(1 + €)-approzimate dr(pq, Z[u,v]) in O(c~*lognloglogn) time, where x = e~ %log(e7!).

» Definition 20 (Grid). We define the scaled integer grid Gs = {(dz,6y) | (z,y) € Z*}.

Approximate diagonal tunnel procedure. The procedure is described by Algorithm 1.

The procedure is provided with parameters ¢, d, some 7’ = (rp,rg) in cell C,p and the
edge e; that is associated with a cell C; ;. We want to compute a set of stabbers starting
at r = B(rp) that contains every stabber through the disks bs(vgs1),---,bs(v;), and is
contained in the set of all stabbers through disks of radius (1 + £)2§ centered at the same
vertices. We approximate this set of stabbers as follows.

We iterate over all grid points t of G 3¢ inside the disk b(;4)s(vi), and make queries to

F. to determine if the Fréchet distance of the query segment ¢ to the subcurve of T' from
T'(rr) to v; is sufficiently small. We mark ¢ if the approximate distance returned by the data
structure is at most (1 +¢)26. We then compute the convex hull H of all marked grid points,
and the two tangents ¢; and to of H through B(rpg). The true set of endpoints of stabbers is
approximated by the set H' of points that lie inside and ’behind’ the convex hull H, from the
perspective of r. Figure 5 illustrates this. We then intersect H’ with the edge e; resulting in
3)

a single horizontal slab in C} ;, which is then intersected with D((Si and returned.

4.2 Correctness of the approximate diagonal tunnel procedure
We denote with {bs(v;)}; a sequence of disks {bs(v1),...,bs(v,)} for some m.

» Lemma 21. Let a,by, by € RY together with a sequence of vertices vy, ..., v, be given. If
aby stabs through disks {bs(v;)}i, and aby stabs through {bs(v;)}:, then for any t € [0,1] the
line segment a b(t) stabs through {bs(v;)};, where b(t) = (1 — t)by + tbs.

Proof. Refer to Figure 6. We can interpret the setting as a triangle with sides (b; — a),
(b2 — a), (by — b2), where the first two sides correspond to the original stabbers and the
last side to b(t). Note that any line segment a b(t) lies completely within this triangle with
(by — a) on the one and (by — @) on the other side. Hence, for every i and realising points
p; of aby and ¢; of a by, p; lies on the one and g; on the other side of a b(t). Since bs(v;) is

convex and p; and ¢; are inside this disk, the intersection of p; ¢; and a b(t) is inside the disk

46:11

ICALP 2022

46:12 On Computing the k-Shortcut Fréchet Distance

Hl
(s
H
p1 =
r = “
t ---H =&/
1 - | TN /
4(77_17777777# g N / /
) - _
N
T i Sevsas
to D -

Figure 5 Illustration to the approximate diagonal tunnel procedure. The true line-stabbing
wedge for disks with radius § is shown in blue. The convex hull of eligible grid points is shown in
red. The approximate line stabbing wedge is shown in green.

Figure 6 Linear interpolation between two J-stabbers starting in a. Ilustrations to the proof of
Lemma 21. In blue a b(t), and in red p; ¢; is illustrated. Their intersections form the realising points
r; of ab(t).

as well. Call this intersection point r;. The set {r;}; are realising points for ab(t). This
follows directly from the fact that {p;}; and {g;}; are ordered along their respective line
segments, and thus p; ¢; never crosses another p; q;. Thus for ¢ < j, r; appears before r;

along a b(t), implying the claim. <

» Lemma 22. Let ay,as,by, by € R? together with a sequence of vertices vy, ..., v, be given.
If a1 by stabs through {bs(v;)}i, and |la; — b1|| < & and ||ag — ba|| < &', then ay by stabs
through {bs+s (vi) }s-

Proof. By Observation 11, dr(a; by, as by) < &', via the reparametrizaion (f,g) with f(t) =
(1 —t)ag + tay and similarly g(¢t) = (1 — t)by + tba. As p = aq by stabs through {bs(v;)}.,
there exist realising points p; along p, with p; lying in the d-disk centered at v;. Then

lg(f~ (i) = will < [lg(f " (vi)) = pill + [lpi — vil| < &' + 6.

Additionally, ¢; = g(f~!(v;)) are ordered along ¢ = as by, proving the claim. <

» Lemma 23. Given 1’ = (rp,75) € Cqap, and edge e of B corresponding to the cell C; ;, €
and 0 like in the approximate diagonal tunnel procedure. Denote by Ss the set of endpoints
of all §-stabbers (that is, stabbers through bs(vy,) for a+1 < m <1i) on the edge e; starting
at r = B(rg) and let C' be the point set computed by the algorithm. Then

Ss € C" C Sate)ys-

J. Conradi and A. Driemel

Algorithm 1 Approximate Diagonal Tunnel.

1: procedure APXDIAGONALTUNNEL((rr,7g), (4,7), €, 0)

2 Let r = B(rg)

3 /1 is the starting point of the shortcut

4 for t € (G% N b3(1+5)5(vi)) do

5: Query F for the distance dx_(r¢, T[rr,v;]) and store the answer in §’
6 if 0’ < (1+¢)%$ then

7 Mark t as eligible

8 //t is an eligible endpoint of a shortcut

9: Compute the convex hull H of eligible points

10: if r € H then

11: Return C' = Dgi’j)

12: else

13: Let U be the cone with apex r formed by tangents t; and to from r to H

14: Let p; € H be a supporting point of the tangent ¢; for ¢ € {1,2}

15: Let L be the subchain of 0H with endpoints p; and ps which is facing r

16: Let H' C U be the set bounded by L and the rays supported by t; and t5 facing
away from r

17: Let C’ be the intersection of H' with e;

18: Return C' = (e; x C') N D((;i’j)

Proof. Let y € C’. Then q = B(y) € H' where H' is set of points computed by the algorithm.

Denote the intersection of 7q and the boundary of H' by h. h is then a linear combination
of at most two grid points whose stabbers from r have been marked as eligible i.e. who are
(1 + £)%5-stabber. Hence, Lemma 21 implies that 7q is also a (1 + ¢)?é-stabber, implying
C'" C S14e)25- Now let g € e be an arbitrary point such that 7q is a d-stabber. Let ¢ be
the last realising point of 7q. The line segment 7t is a d-stabber and ¢ lies in bs(v;). We
claim that ¢ lies in H. Consider the set G = G% Nbes(t). By the scale of the grid, ¢ lies

within the convex hull of G. Moreover G C b(4¢)5(v;). Lemma 22 implies that rt'is a
((1 + €)d)-stabber for any ¢’ € G. This in turn implies that for the first point s’ of r ¢/ inside
bs(14e)(Va), 8"t is a ((1 + €)d)-stabber, hence, t would have been marked as an eligible
endpoint of a ((1 + ¢)2d)-stabber. Since H is the convex hull of eligible points, it follows
that t € conv(G) C H. Therefore ¢ € H' and thus g € C". <

4.3 Result

We argue that the structure of P, as approximated by the algorithm is indeed as claimed.

Namely for all i, j and s it holds that RS C Uy<y<, P C R)05, The full proof can
be found in [19]. We again consider any monotone path with s proper tunnels ending in
some cell and show the set inclusion by induction. Indeed, it suffices to consider the tunnel
starting in the rightmost reachable point in the lower left quadrant of the cell, if we call the
approximate diagonal tunnel procedure with a distance threshold ¢’ = 3§. This is implied
by a lemma by Driemel and Har-Peled concerning the structure of prices of tunnels. The
lemma states that if a feasible tunnel 7(r, q) costs more than 30 then any feasible tunnel

7(p, q) with z;, <z, costs more than .

46:13

ICALP 2022

46:14

On Computing the k-Shortcut Fréchet Distance

» Lemma 24 (monotonicity of tunnels [21]). Given a value 6 > 0 and two curves Ty and
Ty such that Ts is a subcurve of Ty, and given two line segments By and Bs such that
d#(Ty, B1) < 6 and the start (resp. end) point of Ty is within distance § to the start (resp.
end) point of Bo, then dx(Ts, Bs) < 36.

The proof of the following theorem is very similar to the proof of Theorem 5. We invoke
the algorithm of Section 4.1 with approximation parameter ¢’ = £/9 and distance threshold §,
as 3(1 +¢')?2 < (3 +¢)d. The main difference is the approximation of the set of points
reachable by a diagonal tunnel.

» Theorem 25. Let T and B be two polygonal curves in the plane with overall complexity n,
together with values 0 < e <1 and § > 0. There exists an algorithm with running time in
(’)(k;nze_5 log? (ne_l)) and space in (’)(kn2€_4 log? (6_1)) which outputs one of the following:
(i) d&(T, B) < (3 +¢)§ or (ii) di(T,B) > §. In any case, the output is correct.

The running time of this algorithm can be improved even more for the special class
of c-packed curves. For this, we use a known approximation scheme (see [22, 21, 7]) that
uses p-simplifications, which are a kind of approximation of the input curves. Crucially,
the free-space diagram of two u-simplifications of c-packed curves consists of only O(cne™1)
many non-empty cells, if x4 is chosen in the right way. These non-empty cells can be found
using standard techniques in an output-sensitive manner.

Concretely, our algorithm first computes p-simplifications of T and B, with p = &”§”
where ¢” = £/20 and ¢” = (1 — 2¢”), and then invokes the algorithm of Section 4.1 on the
simplifications with distance threshold ¢ and approximation parameter €. From this, we
obtain the following theorem. The detailed analysis can be found in [19].

» Theorem 8. Let T and B be two c-packed polygonal curves in the plane with overall
complexity n, together with values 0 < ¢ < 1 and § > 0. There exists an algorithm with
running time in O(kcn£_5 log? (n&‘l)) and space in O(kcn€_4 log? (5_1)) which outputs one
of the following: (i) d%(T,B) < (3 +¢€)d or (ii) d%(T,B) > 6. In any case, the output is
correct.

5 Hardness

We prove that the decision problem cannot be solved in n°®*) time, unless ETH fails. The
full description can be found in [19]. We describe how to modify the NP-hardness reduction
by Buchin, Driemel and Speckmann from [16] to suit our needs.

5.1 General idea

Our reduction from ETH works via the following intermediate problem. This link is facilitated
by Pétragcu and Williams [26].

» Definition 26 (k-Table-SUM). We are given k lists Sy,..., Sk of n non-negative integers
{si1,---,Sin} and a non-negative integer o. We want to decide whether there are indices
L1y...,tg such that Zle Si, =0. Wecalloj =3"1_, s, the jth partial sum.

Based on a k-Table-SUM instance we describe how to construct a (4k + 2)-shortcut
Fréchet distance instance consisting of the target curve T" and the base curve B with the
property, that they have a distance of 1 if and only if the underlying instance has a solution.

J. Conradi and A. Driemel

TS
. 1
] dl_ C1 {l bJ by vh r—'ﬂi B
i a = aj
Vi
O
d; o
Cj 7
0

i—1 i1 qi—1 / el i
by vt a 1 €1 b X v, a

* * *

Figure 7 Schematic view of the path of a shortcut curve (in blue) through the gadget g; in
the case, where s; ; is selected from the ¢th list. Most top indices ¢ are omitted. Furthermore, for
presentation the mirror edges have horizontal overlap, while in the construction they do not.

The target curve T will lie on a horizontal line mostly going to the right. The only
exceptions being so called twists. Twists force shortcuts traversing it to go through precisely
one point, called its focal point. These twists are constructed by going a distance of 2 to the
left, before continuing rightwards. Refer to Figure 8, points pi,--- ,ps and Figure 7, points
pi’ e 7pZ

The set of points in R? which have a distance of at most 1 to the target curve we will call
the hippodrome. The base curve will consist of several horizontal edges going to the left close
to the boundary of the hippodrome. All other edges of the base curve will (essentially) lie
outside the hippodrome. Exceptions have to be considered carefully. Any shortcut curve of
B that has Fréchet distance of at most 1 to T we will call feasible. It is easy to see that any
feasible shortcut curve must lie completely in the hippodrome. Since any edge of the base
curve inside the hippodrome lies close to the boundary of it and is oriented in the opposite
direction of the base curve, no feasible shortcut curve contains a large subcurve of the base
curve. We will not place any edges of the base curve too close to twists, so that a shortcut
must be taken to traverse these.

Intuitively we can think of the horizontal edges of the base curve as mirrors that disperse

incoming light in all directions and focal points as a wall with a hole, like in a pinhole camera.
A shortcut curve can be thought of as the path of a photon that tries to traverse this instance.

It bounces from mirror to mirror, always passing through a focal point. A feasible shortcut
curve exists if and only if it is possible to send a photon from the beginning of the base curve
to the very end.

The instance as a whole can be segmented into gadgets, with a special gadget at the start
and end, used to initialize and verify the solution (c.f. [16]). In between these, k gadgets will
be placed, encoding one of the lists each from the k-Table-SUM instance.

5.2 Construction of the gadgets

In this section, we describe three gadgets: the encoding gadget g;, the initialization gadget go
and the terminal gadget gx41. The base curve and the target curve pieces of these gadgets are
then connected in the order of 7. The encoding gadget is the heart-piece of our construction
and constitutes the main difference to the NP-hardness reduction presented in [16].

Encoding gadget. The overall structure of a gadget g; for some 1 < ¢ < k is depicted in
Figure 8. This gadget will encode the ith table S; = {s;1,...,sin} of the k-Table-SUM
instance. As for the parameters, \! is the length of the entry edge, determined by the

46:15

ICALP 2022

On Computing the k-Shortcut Fréchet Distance

46:16

"/ Figure 8 Detailed view of the construction of the encoding gadget. Mirror edges are red, connector

edges blue and the target curve is green. Projection cones are black.

J. Conradi and A. Driemel

previous gadget g;_1, and 3 is a global spacing parameter. The parameters §* and 6" are
auxiliary parameters, with " = A’ + ¢ and ¢° = max(2e + 1, (n — 1)(* +) — §"*) where ¢
is a globally fixed spacing parameter for twists. Excluding the entry edge of the base curve,
B consists of 2n 4 2 mirror edges and O(n) connector edges. For 1 < j < n the first n mirror
edges e; are defined by c;'- and dé, and the second n mirror edges e;i are defined by c;fi and
d;’ The last two mirror edges are defined by a* and b?, and a’ and b%. The target curve T
has four twists centred at pj,...,p}. Since the index ¢ will not change other than for the
entry and exit edge, we will omit these indices in the construction of this gadget.

Intuition. The intuition behind the construction is as follows: We place the first projection
point p; at a distance from the entry edge, such that n 'well-spaced’ scaled copies of the entry
edge fit 'behind’ the projection point. These edges offer the choice, each edge corresponding
to a single element in the table S;. After this choice has been presented, we place another
n copies of the entry edge behind the second projection point ps. The two sets of copies
correspond one-to-one, and any line starting at one copy going through ps only ever hits
a single copy of the second set. The second set of copies is placed in such a way, such
that passing through the third projection point ps, any feasible shortcut curve receives an
additional offset of ys; ; on the edge ¢’ corresponding to the choice of edge e;. Lastly we
define the entry edge to the next gadget.

How a solution is encoded. A shortcut curve traversing this gadget will look as follows. A
shortcut curve reaches some point on the entry edge ei~!. From here it takes a shortcut to

some e’, where the number j corresponds to a choice of edge to end on. The next shortcuts

‘7’
are forced to land on e;’, then e and finally e’. The offset between the endpoint v of the
last shortcut and b® will be precisely the offset between vi~ and b’ plus vs; ; (refer to

Figure 7), thus the choice of which edge to land on encodes picking an item. After k choices

the offset will be approximately encoding the corresponding partial sum in the offset from b¥.

Initialization gadget. For the construction refer to Figure 9. Both the target curve T" and
the base curve B will start at z-coordinate 0 placing the start point for the base curve at
(0,1), and the start point for the target curve at (0,0). The target curve will go rightwards,
up to the first twist centred at (¢ + «,0) and continue rightwards after that. The base curve
will immediately leave the hippodrome to the left and connect to the first mirror edge from
al = (3y 4 2¢,—1) to b2 = (v + 2¢, —1).

Terminal gadget. The terminal gadget gi+1 is the dual to the initialization gadget (refer

to Figure 9). The entry edge from (b¥ + \¥, —1) to (b¥, —1) is defined by the previous gadget.
The target curve T has a single twist at (b¥ + A +¢,0) and ends at (b¥ + 2\ +2¢e — (o +1),0).

The base curve B connects the entry edge to (b* + 2\ + 2¢ — v(o + 1),1) from outside the
hippodrome. The final vertex B(1) of the base curve is placed such that a shortcut from the
entry edge e has to start precisely at z-coordinate b* 4 v(o + 1) to hit the vertex.

5.3 Result

In the full version [19] of this paper we show that the curves can be constructed in O(kn)
time. Furthermore, if we choose ¢ = %, B = max(32 + 4\, N1 + 1 and v = 16k + 6,

then the maximum numerical value of the coordinates constructed is in O(k*n Z?:o max S;).

We then analyse the structure of a feasible solution under this choice of parameters and
show that it properly encodes the partial sums, such that we can retain the solution to the
k-Table-SUM instance. From this analysis, we obtain the following theorem.

46:17

ICALP 2022

46:18 On Computing the k-Shortcut Fréchet Distance

y
|
|
. |
1
1
1
1
I
1
0 1=~ =
1
1
; .
1 1
1 - . i . !
. | Rl |)
| | |
1 1 1 .
0 P B0 ad
y el
1 | |
| | |
| | |
| |
1 1 1
1 1 1
I I |
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
: o :
1 1 1
1 1 1
1 1 1
I I |
1 1 1
1 1 1
1 1 1
I A A
A | et A—q(0+1))
4 I I
L L L x
bk ak p t

Figure 9 Construction of the Initialization and Terminal gadget. The first forced shortcut in
the Initialization gadget is drawn in black. Mirror edges are red, connector edges are blue, and the
target curve is green.

» Theorem 6. Unless ETH fails, there is no algorithm for the k-shortcut Fréchet distance
decision problem in R for d > 2, with running time n°®).

—— References

1 Amir Abboud and Kevin Lewi. Exact Weight Subgraphs and the k-Sum Conjecture. In
Proceedings of the 40th International Conference on Automata, Languages, and Programming —
Volume Part I, pages 1-12. Springer-Verlag, 2013. doi:10.1007/978-3-642-39206-1_1.

2 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the
Discrete Fréchet Distance in Subquadratic Time. In Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 156—167. Society for Industrial and
Applied Mathematics, 2013. doi:10.1137/1.9781611973105.12.

https://doi.org/10.1007/978-3-642-39206-1_1
https://doi.org/10.1137/1.9781611973105.12

J. Conradi and A. Driemel

10

11

12

13

14

15

16

17

18

19

Hugo Alves Akitaya, Maike Buchin, Leonie Ryvkin, and Jérome Urhausen. The k-Fréchet
Distance: How to Walk Your Dog While Teleporting. In 30th International Symposium on
Algorithms and Computation, volume 149, pages 50:1-50:15. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019. doi:10.4230/LIPIcs.ISAAC.2019.50.

Helmut Alt, Bernd Behrends, and Johannes Blémer. Approximate matching of polygonal shapes.
Annals of Mathematics and Artificial Intelligence, 13:251-265, 1995. doi:10.1007/BF01530830.

Helmut Alt and Michael Godau. Computing the Fréchet Distance between Two Polygonal

Curves. International Journal of Computational Geometry € Applications, 5:75-91, 1995.

doi:10.1142/50218195995000064.

Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of Distance Measures for Planar
Curves. Algorithmica, 38:45-58, 2003. doi:10.1007/s00453-003-1042-5.

Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
Distance for Curves, Revisited. In Proceedings of the 14th Conference on Annual European
Symposium - Volume 14, pages 52—-63. Springer-Verlag, 2006. doi:10.1007/11841036_8.
Rinat Ben Avraham, Omrit Filtser, Haim Kaplan, Matthew J. Katz, and Micha Sharir. The
Discrete and Semicontinuous Fréchet Distance with Shortcuts via Approximate Distance
Counting and Selection. ACM Transactions on Algorithms, 11(4):29:1-29:29, 2015. doi:
10.1145/2700222.

Karl Bringmann. Why Walking the Dog Takes Time: Frechet Distance Has No Strongly
Subquadratic Algorithms Unless SETH Fails. In 55th IEEE Annual Symposium on Foundations
of Computer Science, pages 661-670, 2014. doi:10.1109/F0CS.2014.76.

Karl Bringmann and Marvin Kiinnemann. Improved Approximation for Fréchet Distance on
c-Packed Curves Matching Conditional Lower Bounds. International Journal of Computational
Geometry & Applications, 27(1-2):85-120, 2017. doi:10.1142/50218195917600056.

Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.

Journal of Computational Geometry, 7(2):46-76, 2016. doi:10.20382/jocg.v7i2a4.
Alexander M Bronstein, Michael M Bronstein, Alfred M Bruckstein, and Ron Kimmel. Partial
Similarity of Objects, or How to Compare a Centaur to a Horse. International Journal of
Computer Vision, 84(2):163, 2009. doi:10.1007/s11263-008-0147-3.

Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets Walk
the Dog: Improved Bounds for Computing the Fréchet Distance. Discrete € Computational
Geometry, 58(1):180-216, 2017. doi:10.1007/s00454-017-9878-7.

Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 645—654. Society for Industrial and Applied Mathematics, 2009.

d0i:10.1137/1.9781611973068.71.

Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH Says: Weak Fréchet Distance
is Faster, but only if it is Continuous and in One Dimension. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2887—2901, 2019. doi:10.1137/
1.9781611975482.179.

Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance with
shortcuts is NP-hard. In Proceedings of the Thirtieth Annual Symposium on Computational

Geometry, pages 367-376. Association for Computing Machinery, 2014. doi:10.1145/2582112.

2582144.
Timothy M. Chan and Zahed Rahmati. An improved approximation algorithm for the discrete

Fréchet distance. Information Processing Letters, 138:72—74, 2018. doi:10.1016/j.ipl.2018.

06.011.

Connor Colombe and Kyle Fox. Approximating the (Continuous) Fréchet Distance. In 37th
International Symposium on Computational Geometry, volume 189, pages 26:1-26:14. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021. doi:10.4230/LIPIcs.SoCG.2021.26.

Jacobus Conradi and Anne Driemel. On Computing the k-Shortcut Fréchet Distance, 2022.

doi:10.48550/ARXIV.2202.11534.

46:19

ICALP 2022

https://doi.org/10.4230/LIPIcs.ISAAC.2019.50
https://doi.org/10.1007/BF01530830
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1007/s00453-003-1042-5
https://doi.org/10.1007/11841036_8
https://doi.org/10.1145/2700222
https://doi.org/10.1145/2700222
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1142/S0218195917600056
https://doi.org/10.20382/jocg.v7i2a4
https://doi.org/10.1007/s11263-008-0147-3
https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/10.1137/1.9781611973068.71
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1145/2582112.2582144
https://doi.org/10.1145/2582112.2582144
https://doi.org/10.1016/j.ipl.2018.06.011
https://doi.org/10.1016/j.ipl.2018.06.011
https://doi.org/10.4230/LIPIcs.SoCG.2021.26
https://doi.org/10.48550/ARXIV.2202.11534

46:20

On Computing the k-Shortcut Fréchet Distance

20

21

22

23

24

25

26

27

28

Jean-Lou De Carufel, Amin Gheibi, Anil Maheshwari, Jorg-Riidiger Sack, and Christian
Scheffer. Similarity of polygonal curves in the presence of outliers. Computational Geometry,
47(5):625-641, 2014. doi:10.1016/j.comgeo.2014.01.002.

Anne Driemel and Sariel Har-Peled. Jaywalking Your Dog: Computing the Fréchet Distance
with Shortcuts. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 318—-337. Society for Industrial and Applied Mathematics, 2012.
doi:10.1137/1.9781611973099.30.

Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet Distance for
Realistic Curves in near Linear Time. In Proceedings of the Twenty-Sizth Annual Symposium
on Computational Geometry, pages 365—374. Association for Computing Machinery, 2010.
doi:10.1145/1810959.1811019.

Leonidas Guibas, John Hershberger, Joseph Mitchell, and Jack Snoeyink. Approximating Poly-
gons and Subdivisions with Minimum-Link Paths. In International Journal of Computational
Geometry & Applications, volume 3, pages 151-162, 1994. doi:10.1007/3-540-54945-5_59.
Russell Impagliazzo and Ramamohan Paturi. The complexity of k-SAT. In Proceedings of
the Fourteenth Annual IEEE Conference on Computational Complezity, pages 237-240. IEEE
Computer Society, 1999. doi:10.1109/CCC.1999.766282.

David Jacobs, Daphna Weinshall, and Yoram Gdalyahu. Classification with Nonmetric
Distances: Image Retrieval and Class Representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(6):583-600, 2000. doi:10.1109/34.862197.

Mihai Patragcu and Ryan Williams. On the Possibility of Faster SAT Algorithms. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1065—1075.
Society for Industrial and Applied Mathematics, 2010. doi:10.1137/1.9781611973075.86.
Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation. The VLDB Journal, 29(1):3-32, 2020. doi:
10.1007/s00778-019-00574-9.

R.C. Veltkamp. Shape matching: similarity measures and algorithms. In Proceedings In-
ternational Conference on Shape Modeling and Applications, pages 188-197, 2001. doi:
10.1109/SMA.2001.923389.

https://doi.org/10.1016/j.comgeo.2014.01.002
https://doi.org/10.1137/1.9781611973099.30
https://doi.org/10.1145/1810959.1811019
https://doi.org/10.1007/3-540-54945-5_59
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1109/34.862197
https://doi.org/10.1137/1.9781611973075.86
https://doi.org/10.1007/s00778-019-00574-9
https://doi.org/10.1007/s00778-019-00574-9
https://doi.org/10.1109/SMA.2001.923389
https://doi.org/10.1109/SMA.2001.923389

	1 Introduction
	1.1 Basic definitions
	1.2 Overview of this paper

	2 Preliminaries
	3 Exact decider algorithm
	3.1 The Algorithm
	3.2 Analysis

	4 Approximate decision algorithm
	4.1 The modified algorithm
	4.2 Correctness of the approximate diagonal tunnel procedure
	4.3 Result

	5 Hardness
	5.1 General idea
	5.2 Construction of the gadgets
	5.3 Result

