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Abstract
We consider the problem of subset selection for ℓp subspace approximation, that is, to efficiently find
a small subset of data points such that solving the problem optimally for this subset gives a good
approximation to solving the problem optimally for the original input. Previously known subset
selection algorithms based on volume sampling and adaptive sampling [16], for the general case of
p ∈ [1, ∞), require multiple passes over the data. In this paper, we give a one-pass subset selection
with an additive approximation guarantee for ℓp subspace approximation, for any p ∈ [1, ∞). Earlier
subset selection algorithms that give a one-pass multiplicative (1 + ϵ) approximation work under
the special cases. Cohen et al. [11] gives a one-pass subset section that offers multiplicative (1 + ϵ)
approximation guarantee for the special case of ℓ2 subspace approximation. Mahabadi et al. [31] gives
a one-pass noisy subset selection with (1+ϵ) approximation guarantee for ℓp subspace approximation
when p ∈ {1, 2}. Our subset selection algorithm gives a weaker, additive approximation guarantee,
but it works for any p ∈ [1, ∞).
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1 Introduction

In subset selection problems, the objective is to pick a small subset of the given data such that
solving a problem optimally on this subset gives a good approximation to solving it optimally
on the entire data. Many coreset constructions in computational geometry and clustering [22],
sampling-based algorithms for large matrices [24], algorithms for submodular optimization
and active learning [37] essentially perform subset selection. The main advantage of subset
selection lies in its interpretability, for example, in gene expression analysis, we would like
to find a representative subset of genes from gene expression data rather than just fitting a
subspace to the data [20, 33, 36, 32, 29]. In several machine learning applications such as
document classification, face recognition etc., it is desirable to go beyond dimension reduction
alone, and pick a subset of representative items or features [28, 33]. Subset selection has been
well studied for many fundamental problems such as k-means clustering [2, 14], low-rank
approximation [24, 17, 15, 28] and regression [13], to name a few. In low-rank and subspace
approximation, the subset selection approach leads to more interpretable solutions than
using SVD or random projections-based results. Therefore, subset selection has been a
separate and well-studied problem even within the low-rank approximation and subspace
approximation literature [28, 12].

EA
T
C
S

© Amit Deshpande and Rameshwar Pratap;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amitdesh@microsoft.com
mailto:rameshwar.pratap@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2022.51
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


51:2 One-Pass Additive-Error Subset Selection for ℓp Subspace Approximation

In the following, we formally state the ℓp subspace approximation problem for p ∈ [1,∞).
ℓp subspace approximation: In this problem, given a dataset X = {x1, x2, . . . , xn} of n

points in Rd, a positive integer 1 ≤ k ≤ d and a real number p ∈ [1,∞), the objective is to
find a linear subspace V in Rd of dimension at most k that minimizes the sum of p-th powers
of the Euclidean distances of all the points to the subspace V , that is, to minimize

errp(X , V ) :=
n∑

i=1
d(xi, V )p. (1)

Throughout this paper, we use V ∗ to denote the optimal subspace for ℓp subspace
approximation. The optimal solutions are different for different values of p but we do not
include that in the notation to keep the presentation simple, as our results hold for any
p ∈ [1,∞).

Before stating our results, we first explain what a small subset and a good approximation
means in the context of subset selection for ℓp subspace approximation.

For ℓp subspace approximation, we consider n and d to be large, k ≪ n, d, and p

to be a small constant. Thus, a small subset of X desired in subset selection has size
independent of n and d, and is bounded by poly(k/ϵ), where ϵ is a parameter that controls
the approximation guarantee (as explained later). Note that the trivial solution V = 0 gives
errp(X , V ) =

∑n
i=1 ∥xi∥p. Using the standard terminology from previous work [24, 15, 16], an

additive approximation guarantee means outputting V such that errp(X , V ) ≤ errp(X , V ∗) +
ϵ
∑n

i=1 ∥xi∥p, whereas a multiplicative approximation guarantee means errp(X , V ) ≤ (1 +
ϵ) errp(X , V ∗). Most subset selection algorithms for ℓp subspace approximation select a
poly(k/ϵ)-sized subset of X such that its span contains a subspace V of dimension at most k

that is close enough to V ∗ to obtain the above approximation guarantees.
Our objective in this paper is to propose an efficient, one-pass sampling algorithm that

performs subset selection for ℓp subspace approximation for p ∈ [1,∞) defined as above. We
note that the problem of one-pass subset selection for ℓp subspace approximation has been
studied for special values of p, for example, Cohen et al. [11] gives one-pass subset selection
for p = 2, Mahabadi et al. [31] suggest one-pass noisy subset selection for p = {1, 2}. To the
best of our knowledge this problem has not been studied in generality for p ∈ [1,∞). In this
work, we consider studying this problem. We state our results as follows.

1.1 Our results
Our main technical contribution is a one-pass MCMC-based sampling algorithm that can
approximately simulate multiple rounds of adaptive sampling. As a direct application
of the above, we get the following results for the ℓp subspace approximation problem:
For p ∈ [1,∞), our algorithm makes only one pass over the given data and outputs a
subset of poly(k/ϵ)p points whose span contains a k dimensional subspace with an additive
approximation guarantee for ℓp subspace approximation. This generalizes the well-known
squared-length sampling algorithm of Frieze et al. [24] that gives additive approximation
guarantee for ℓ2 subspace approximation (or low-rank approximation under the Frobenium
norm). Even though stronger multiplicative (1 + ϵ) approximation algorithms for ℓp subspace
approximation are known in the previous work, either they cannot do subset selection, or
they are not one-pass, or they do not work for all p ∈ [1,∞).

Organization of the paper. In Section 2, we compare and contrast our result with the
state-of-the-art algorithms, and explain the key technical challenges, and workarounds. In
Section 3, we state our MCMC based subset selection algorithm for subset selection for ℓp
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subspace approximation. In Section 4, we give theoretical bounds on the sample size and
approximation guarantee. Finally, in Section 5, we conclude our discussion and state some
potential open questions of the paper.

2 Related work

In this section, we discuss related work on sampling and sketching algorithms for ℓp subspace
approximation, and do a thorough comparison of our results with the state of the art.

2.1 Sampling-based ℓp subspace approximation

Frieze et al. [24] show that selecting a subset of O(k/ϵ) data points as an i.i.d. sample
from x1, x2, . . . , xn picked by squared-length sampling, i.e., xi is picked with probability
proportional to ∥xi∥2

2, gives an additive approximation for ℓ2 subspace approximation (also
known as low-rank approximation under the Frobenius norm). Squared-length sampling
can be implemented in one pass over X using reservoir sampling [35, 21]. It is known
how to improve the additive approximation guarantee to a multiplicative approximation
by combining two generalizations of squared-length sampling, namely, adaptive sampling
and volume sampling [15, 16] but it requires O(k log k) passes over the data. In adaptive
sampling, we pick points with probability proportional to the distance from the span of
previously picked points, and in volume sampling, we pick a subset of points with probability
proportional to the squared volume of the parallelepiped formed by them. Volume sampling
a subset of size k can itself be simulated with an approximation factor k! in k rounds of
adaptive sampling [15]. For p = 2, it is also known that picking a subset of O(k/ϵ) points
by volume sampling gives a bi-criteria (1 + ϵ) approximation for ℓ2 subspace approximation
[28]. For general p ∈ [1,∞), it is known that subset selection based on adaptive sampling
and volume sampling can be generalized to get a (1 + ϵ) multiplicative approximation for ℓp

subspace approximation, for any p ∈ [1,∞), where the subset is of size O ((k/ϵ)p) and it is
picked in O(k log k) passes over the data [16]. The main bottleneck for implementing this in
one pass is the inability to simulate multiple rounds of adaptive sampling in a single pass.

The only known workarounds to get one-pass subset selection for ℓp subspace approxima-
tion are known for the special cases p = 1 and p = 2. Cohen et al. [11] give a one-pass subset
selection algorithm with a multiplicative (1 + ϵ) approximation guarantee for ℓ2 subspace ap-
proximation based on ridge leverage score sampling. Their one-pass implementation crucially
uses deterministic matrix sketching [25] to approximate the SVD and ridge leverage scores,
and works only for p = 2, to the best of our knowledge. Braverman et al. [6] give online
algorithms for ℓ2 subspace approximation (or low-rank approximation) via subset selection
but their subset size O(k

ϵ log n log κ) is not independent on n and depends logarithmically
on the number of points n and the condition number κ. Recent work by Mahabadi et al.
[31] gives a one-pass algorithm with a multiplicative (1 + ϵ) approximation guarantee for ℓp

subspace approximation. However, their algorithm works only in the special cases p ∈ {1, 2}
and it outputs a subset of noisy data points instead of the actual data points.

A different objective for ℓp subspace approximation has also been studied in literature
[5, 9], namely, minimizing the entry-wise ℓp-norm low-rank approximation error. To state it
formally, given an input matrix A ∈ Rn×d and a real number p ∈ [0,∞), their objective is to
find a matrix B of rank at most k that minimizes

∑
i,j |Ai,j −Bi,j |p.

ICALP 2022
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2.2 Sketching-based ℓp subspace approximation
Sketching-based algorithms compute a sketch of a given data in a single pass, using which
one can compute an approximately optimal solution to a given problem on the original
data. The problem of ℓp subspace approximation has been well-studied in previous work
on sketching algorithms. However, a limitation of these results is that they do not directly
perform subset selection. We mention a few notable results as follows: For p = 2, extending
deterministic matrix sketching of Liberty [30], Ghashami et al. [27, 26] give a deterministic
one-pass sketching algorithm that gives a multiplicative (1 + ϵ) approximation guarantee
for ℓ2 subspace approximation (or low-rank approximation under the Frobenius norm).
Cormode et al. [19] extend the above deterministic sketching idea to p ̸= 2 and give a poly(k)
approximation for entry-wise ℓ1-norm low-rank approximation and an additive ϵ ∥b∥∞
approximation for ℓ∞ regression. There is another line of work based on sketching algorithms
using random projection. Random projection gives a multiplicative (1 + ϵ) approximation for
ℓ2 subspace approximation in running time O(nnz(X) · poly(k/ϵ)), subsequently improved to
a running time of O(nnz(X) + (n + d) · poly(k/ϵ)) by Clarkson and Woodruff [10]. Feldman
et al. [23] also give a one-pass algorithm for multiplicative (1 + ϵ) approximation for ℓp

subspace approximation, for p ∈ [1, 2]. However, these results do not provide a one-pass
subset selection.

2.3 Comparison with other MCMC-based sampling results
Theorem 4 of Anari et al. [1] gives a MCMC based sampling algorithm to approximate
volume sampling distribution. However, their algorithm requires a greedy algorithm to pick
the initial subset that requires k passes over the input.

The MCMC sampling has also been explored in the context of k-means clustering. The
D2-sampling proposed by Arthur and Vassilvitskii [2] adaptively samples k points – one
point in each passes over the input, and the sampled points give O(log k) approximation to
the optimal clustering solution. The results due to [4, 3] suggest generating MCMC sampling
distribution by taking only one pass over the input that closely approximates the underlying
D2 sampling distribution, and offer close to the optimal clustering solution. Building on
these MCMC based sampling techniques, Pratap et al. [34] gives one pass subset section for
spherical k-means clustering [18].

3 MCMC sampling algorithm

In this section, we state our MCMC based sampling algorithm for subset selection for ℓp

subspace approximation. We first recall the adaptive sampling algorithm[15, 16] for ℓp

subspace approximation.
Adaptive sampling [15, 16] w.r.t. a subset S ⊆ X is defined as picking points from X

such that the probability of picking any point x ∈ X is proportional to d(x, span (S))p. We
denote this probability by

pS(x) = d(x, span (S))p

errp(X , S) , for x ∈ X . (2)

For any subset S whose errp(X , S) is not too small, we show that adaptive sampling w.r.t.
S can be approximately simulated by an MCMC sampling algorithm that only has access to
i.i.d. samples of points x ∈ X picked from the following easier distribution:

q(x) =
d(x, span

(
S̃
)
)p

2 errp(X , S̃)
+ 1

2 |X | , (3)
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for some initial subset S̃. We give the above definition of q(x) using an arbitrary initial
or pivot subset S̃ because it will be useful in our analysis of multiple rounds of adaptive
sampling. However, our final algorithm uses a fixed subset S̃ = ∅ such that

q(x) =
∥x∥p

2
2
∑

x∈X ∥x∥
p
2

+ 1
2 |X | . (4)

Note that sampling from this easier distribution, namely, picking x ∈ X with probability q(x)
(mentioned in Equation (4)), can be done in only one pass over X using weighted reservoir
sampling [8]. Weighted reservoir sampling keeps a reservoir of finite items, and for every new
item, calculates its relative weight to randomly decide if the item should be added to the
reservoir. If the new item is selected, then one of the existing items from the reservoir is
picked uniformly and replaced with the new item. Further, given any non-negative weights
wx, for each point x ∈ X , weighted reservoir sampling can pick an i.i.d. sample of points,
where x is picked with probability proportional to its weight wx. Note that this does not
require the knowledge of

∑
x∈X wx. Thus, we can run two reservoir sampling algorithms

in parallel to maintain two samples, one that picks points with probability proportional to
||x||p2, and another that picks points with uniform probability. Our actual sampling with
probability proportional q(x) = ∥x∥p

2
2
∑

x∈X
∥x∥p

2
+ 1

2|X | picks from one of the two reservoirs with

probability 1/2 each. Therefore, our MCMC algorithm uses a single pass of X to pick a
small sample of i.i.d. random points from the probability distribution q(·), in advance. Note
that q(·) is an easier and fixed distribution compared to pS(·). The latter one depends on S

and could change over multiple rounds of adaptive sampling.
Let x ∈ X be a random point sampled with probability q(x). Consider a random walk

whose single step is defined as follows: sample another point y ∈ X independently with
probability q(y) and sample a real number r u.a.r. from the interval (0, 1), and if

d(y, span (S))p q(x)
d(x, span (S))p q(y) = pS(y) q(x)

pS(x) q(y) > r,

then move from x to y, else, stay at x. Essentially, this does rejection sampling using a
simpler distribution q(·). Observe that the stationary distribution of the above random
walk is the adaptive sampling distribution pS(·). We use P̃

(1)
m (· | S) to denote the resulting

distribution on X after m steps of the above random walk. Note that m steps of the above
random walk can be simulated by sampling m i.i.d. points from the distribution q(·) in
advance, and representing them implicitly as m-dimensional points.

Lemma 1 below shows that for any subsets S̃ ⊆ S ⊆ X (where S̃ is the initial subset, and
S is the current subset), either errp(X , S) is small compared to errp(X , S̃), or our MCMC
sampling distribution closely approximates the adaptive sampling distribution pS(·) in total
variation distance. Proof of Lemma 1 relies on Corollary 1 of Cai [7] that gives an upper
bound on the TV distance between these two distributions in terms of: 1) length of the
Markov chain, and 2) upper bound on the ratio between these two distributions for any input
point.

▶ Lemma 1. Let ϵ1, ϵ2 ∈ (0, 1) and S̃ ⊆ S ⊆ X . Let P (1)(· | S) denote the distribution over
an i.i.d. sample of t points picked from adaptive sampling w.r.t. S, and let P̃

(1)
m (· | S̃) denote

the distribution over t points picked by t independent random walks of length m each in our
one-pass adaptive sampling algorithm; see step 3(a). Then for m ≥ 1 + 2

ϵ1
log 1

ϵ2
, either

errp(X , S) ≤ ϵ1 errp(X , S̃) or
∥∥∥P (1)(· | S)− P̃

(1)
m (· | S)

∥∥∥
T V
≤ ϵ2t.

ICALP 2022
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One-pass (approximate MCMC) adaptive sampling algorithm:
Input: a discrete subset X ⊆ Rd and integer parameters t, l, m ∈ Z≥0.
Ouput: a subset S ⊆ X .
1. Pick an i.i.d. sample Y of size |Y| = ltm from X , without replacement, where the

probability of picking x ∈ X is

q(x) =
d(x, span

(
S̃
)
)p

2 errp(X , S̃)
+ 1

2 |X | .

We use the pivot subset S̃ = ∅ so the corresponding distribution is

q(x) = 1
2

∥x∥p
2∑

x∈X ∥x∥
p
2

+ 1
2 |X | .

%% This can be implemented in one pass over X using weighted
reservoir sampling [8]. Weighted reservoir sampling is a weighted
version of the classical reservoir sampling where the probability
of inclusion of an item in the sample is proportional to the weight
associated with the item.

2. Initialize S ← ∅.
3. For i = 1, 2, . . . , l do:

a. Pick an i.i.d. sample Ai of size |Ai| = t from X as follows. Each point in Ai

is sampled by taking m steps of the following random walk starting from a
point x picked with probability q(x). In each step of the random walk, we
pick another point y from X with probability q(y) and pick a real number r

uniformly at random from the interval (0, 1). If d(y, span (S))p q(x)
d(x, span (S))p q(y) > r then

move to y, else, stay at the current point.
%% Note that we add only the final point obtained after the
m-step random walk in the subset S.
%% We note that the steps 1-3 of the algorithm can be simulated
by taking only one pass over the input as discussed below.
Suppose we have a single-pass Algorithm A for sampling from a
particular distribution, we can design another Algorithm B that
runs in parallel to Algorithm A and post-processes its sample.
In our setting, once we know how to get an i.i.d. sample of
points, where point x is picked with probability q(x), we can run
another parallel thread that simulates a random walk whose each
step requires a point picked with probability q(x) and performs
Step 3.

b. S ← S ∪Ai.

4. Output S.

Proof. First, consider the l = 1, t = 1 case of the one-pass adaptive sampling algorithm
described above. In this case, the procedure outputs only one element of X . This random
element is picked by m steps of the following random walk starting from an x picked with
probability q(x). In each step, we pick another point y with probability q(y) and sample a real
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One-pass MCMC ℓp subspace approximation algorithm:
Input: a discrete subset X ⊆ Rd, an integer parameter k ∈ Z≥0 and an error
parameter δ ∈ R≥0.
Output: a subset S ⊆ X of Õ

(
(k/ϵ)p+1) points.

1. Repeat the following O(k log 1
ϵ ) times in parallel and pick the best sample, S that

minimizes
∑

x∈X d(x, span (S))p.

a. Call One-pass (approximate MCMC) adaptive sampling algorithm
with t = Õ((k/ϵ)p+1), l = k and m = 1 + 2

ϵ1
log 1

ϵ2
.

2. Output S.

number r u.a.r. from the interval (0, 1), and if pS(y)q(x)/pS(x)q(y) > r, then we move from
x to y, else, we stay at x. Observe that the stationary distribution of the above random walk
is the adaptive sampling distribution w.r.t. S given by pS(x) = d(x, span (S))p/errp(X , S).
Using Corollary 1 of [7], the total variation distance after m steps of the random walk is
bounded by(

1− 1
γ

)m−1
≤ e−(m−1)/γ ≤ ϵ2, where γ = max

x∈X

pS(x)
q(x) .

The above bound is at most ϵ2 if we choose to run the random walk for m ≥ 1 + γ log 1
ϵ2

steps. Now suppose errp(X , S) > ϵ1 errp(X , S̃). Then, for any x ∈ X

pS(x)
q(x) =

d(x, span (S))p

errp(X , S)
1
2

d(x, span
(
S̃
)
)p

errp(X , S̃)
+ 1

2 |X |

≤ 2 d(x, span (S))p errp(X , S̃)
d(x, span

(
S̃
)
)p errp(X , S)

≤ 2
ϵ1

,

using d(x, span (S))p ≤ d(x, span
(
S̃
)
)p because S̃ ⊆ S, and the above assumption errp(X , S) >

ϵ1 errp(X , S̃). Therefore, m > 2
ϵ1

log 1
ϵ2

ensures that m steps of the random walk gives a
distribution within total variation distance ϵ2 from the adaptive sampling distribution for
picking a single point.

Note that for t > 1 both the adaptive sampling and the MCMC sampling procedure pick
an i.i.d. sample of t points, so the total variation distance is additive in t, which means∥∥∥P (1)(· | S)− P̃ (1)

m (· | S)
∥∥∥

T V
≤ ϵ2t,

assuming errp(X , S) > ϵ1 errp(X , S̃). This completes a proof of the lemma. ◀

4 ℓp subspace approximation

In this section, we give our result for one pass subset selection for ℓp subspace approximation.
We first show (in Lemma 2) that the true adaptive sampling can be well approximated
by one pass (approximate) MCMC based sampling algorithm. Building on this result, in
Proposition 3 and Theorem 4, we show bounds on the number of steps taken by the Markov
chain, and on the sample size that gives an additive approximation for the ℓp subspace
approximation. Our MCMC-based sampling ensures that our problem statement’s single-pass
subset selection criteria are satisfied.

ICALP 2022
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First, let’s set up the notation required to analyze the true adaptive sampling as well
as our one-pass (approximate MCMC) adaptive sampling algorithm. For any fixed subset
S ⊆ X , we define

errp(X , S) =
∑
x∈X

d(x, span (S))p, (5)

P (1)(T |S) =
∏
x∈T

d(x, span (S))p

errp(X , S) , (6)

for any subset T of size t,

E
T

[errp(X , S ∪ T )] =
∑

T : |T |=t

P (1)(T | S) errp(X , S ∪ T ). (7)

Given a subset S ⊆ X , P (1)(T | S) denotes the probability of picking a subset T ⊆ X of
i.i.d. t points by adaptive sampling w.r.t. S. We use P (l)(T1:l|S) to denote the probability of
picking a subset T1:l = B1 ∪B2 ∪ . . . ∪Bl ⊆ X of tl points by l iterative rounds of adaptive
sampling, where in the first round we sample a subset B1 consisting of i.i.d. t points w.r.t.
S, in the second round we sample a subset B2 consisting of i.i.d. t points w.r.t. S ∪B1, and
so on to pick T1:l = B1 ∪B2 ∪ . . . ∪Bl over l iterations. Similarly, in the context of adaptive
sampling, we use T2:l to denote B2 ∪ . . . ∪Bl. We abuse the notation E

T1:l | S
[·] to denote the

expectation over T1:l picked in l iterative rounds of adaptive sampling starting from S.
Given a pivot subset S̃ ⊆ X and another subset S ⊆ X such that S̃ ⊆ S, consider the

following MCMC sampling with parameters l, t, m that picks l subsets A1, A2, . . . , Al of t

points each, where m denotes the number of steps of a random walk used to pick these points.
This sampling can be implemented in a single pass over X , for any l, t, m, and any given
subsets S̃ ⊆ S. For T1:l = A1 ∪A2 ∪ . . . ∪Al. We use P̃

(l)
m (T1:l | S) to denote the probability

of picking T1:l as the output of the following MCMC sampling procedure. Similarly, in the
context of MCMC sampling, we use T2:l to denote A2 ∪ . . . ∪ Al. We abuse the notation

Ẽ
T1:l | S

[·] to denote the expectation over T1:l picked using the MCMC sampling procedure

starting from S with a pivot subset S̃ ⊆ S.
We require the following additional notation in our analysis of the above MCMC sampling.

We use P̃
(1)
m (T | S) to denote the resulting distribution over subsets T of size t, when we use

the above sampling procedure with l = 1. We define the following expressions:

indp(X , S) = 1
(
errp(X , S) ≤ ϵ1 errp(X , S̃)

)
, (8)

Ẽ
T

[errp(X , S ∪ T )] =
∑

T : |T |=t

P̃ (1)
m (T | S) errp(X , S ∪ T ), (9)

Ẽ
T

[indp(X , S ∪ T )] =
∑

T : |T |=t

P̃ (1)
m (T | S) indp(X , S ∪ T ). (10)

The expression indp(X , S) (in Equation (8)) denotes an indicator random variable that takes
value 1 if error w.r.t. subset S is smaller than ϵ1 times error w.r.t. subset S̃, and 0 otherwise.
The expression Ẽ

T
[errp(X , S ∪ T )] (in Equation (9)) denotes the expected error over the

subset T picked using the MCMC sampling procedure starting from the set S such that the
initial subset S̃ ⊆ S.

Now Lemma 2 analyzes the effect of starting with an initial subset S0 and using the same
S0 as a pivot subset for doing the MCMC sampling for l subsequent iterations of adaptive
sampling, where we pick t i.i.d. points in each iteration using t independent random walks
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of m steps. Lemma 2 shows that the expected error for subspace approximation after doing
the l iterations of adaptive sampling is not too far from the expected error for subspace
approximation after replacing the l iterations with MCMC sampling.

▶ Lemma 2. For any subset S0 ⊆ X , any ϵ1, ϵ2 ∈ (0, 1) and any positive integers t, l, m with
m ≥ 1 + 2

ϵ1
log 1

ϵ2
,

Ẽ
T1:l | S0

[errp(X , S0 ∪ T1:l)] ≤ E
T1:l | S0

[errp(X , S0 ∪ T1:l)] + (ϵ1 + ϵ2tl) errp(X , S0).

Proof. We show a slightly stronger inequality than the one given above, i.e., for any S0 such
that S̃ ⊆ S0,

Ẽ
T1:l | S0

[errp(X , S0 ∪ T1:l)] ≤ E
T1:l | S0

[errp(X , S0 ∪ T1:l)]

+
(

ϵ1 Ẽ
T1:l | S0

[indp(X , S0 ∪ T1:l)] + ϵ2tl

)
errp(X , S̃).

The special case S0 = S̃ gives the lemma. We prove the above-mentioned stronger statement
by induction on l. For l = 0, the above inequality holds trivially. Now assuming induction
hypothesis, the above holds true for l − 1 iterations (instead of l) starting with any subset
S1 = S0 ∪A ⊆ X because S̃ ⊆ S0 ⊆ S1.

Ẽ
T1:l | S0

[errp(X , S0 ∪ T1:l)]

= Ẽ
S1 | S0

[
Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)]

]
=

∑
S1 : indp(X ,S1)=1

P̃ (1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)]

+
∑

S1 : indp(X ,S1)=0

P̃ (1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)] . (11)

If indp(X , S1) = 1 then errp(X , S1 ∪ T2:l) ≤ errp(X , S1) ≤ ϵ1 errp(X , S0), so the first part of
the above sum can be bounded as follows.∑

S1 : indp(X ,S1)=1

P̃ (1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)]

≤ ϵ1 errp(X , S0) ·
∑

S1 : indp(X ,S1)=1

P̃ (1)
m (S1 | S0) Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)] . (12)

We give an upper bound on the second part as follows.∑
S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)]

=
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)] .

≤
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) ·

(
E

T2:l | S1
[errp(X , S1 ∪ T2:l)] + (ϵ1 Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)] + ϵ2t(l − 1)) errp(X , S̃)

)
. (13)

(by applying the induction hypothesis to (l − 1) iterations starting from S1.)

≤
∑

S1 : indp(X ,S1)=0

P (1)(S1 | S0) E
T2:l | S1

[errp(X , S1 ∪ T2:l)]
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+ ϵ1 errp(X , S̃) ·
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃)
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0)

+
∑

S1 : indp(X ,S1)=0

∣∣∣P̃ (1)
m (S1 | S0) − P (1)(S1 | S0)

∣∣∣ · E
T2:l | S1

[errp(X , S1 ∪ T2:l)] .

(
by adding and subtracting the term

∑
S1 : indp(X ,S1)=0

P (1)(S1 | S0) E
T2:l | S1

[errp(X , S1 ∪ T2:l)] in Eq. (13).
)

≤
∑
S1

P (1)(S1 | S0) E
T2:l | S1

[errp(X , S1 ∪ T2:l)]

+ ϵ1 errp(X , S̃)
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) · Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃) +
∑

S1 : indp(X ,S1)=0

∣∣∣P̃ (1)
m (S1 | S0) − P (1)(S1 | S0)

∣∣∣ · errp(X , S̃).

by upper bounding the probability expression
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) by 1.


≤ E

T1:l | S0
[errp(X , S0 ∪ T1:l)]

+ ϵ1 errp(X , S̃)
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) · Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃) +
∥∥P̃ (1)(· | S0) − P (1)(· | S0)

∥∥
T V

errp(X , S̃).(
as E

T1:l | S0
[errp(X , S0 ∪ T1:l)] =

∑
S1

P (1)(S1 | S0) E
T2:l | S1

[errp(X , S1 ∪ T2:l)] by Eq. (7).

)
≤ E

T1:l | S0
[errp(X , S0 ∪ T1:l)]

+ ϵ1 errp(X , S̃)
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) · Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃) + ϵ2t errp(X , S̃). (14)

Finally, Equation (14) holds using Lemma 1 about the total variation distance between P (1)

and P̃ (1) distributions. Plugging the bounds (12) and (14) into (11), we get

Ẽ
T1:l | S0

[errp(X , S0 ∪ T1:l)]

≤ E
T1:l | S0

[errp(X , S0 ∪ T1:l)] + ϵ1 errp(X , S̃)
∑
S1

P̃ (1)
m (S1 | S0) · Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃) + ϵ2t errp(X , S̃).

= E
T1:l | S0

[errp(X , S0 ∪ T1:l)] +
(

ϵ1 Ẽ
T1:l | S0

[indp(X , S0 ∪ T1:l)] + ϵ2tl

)
errp(X , S̃).

≤ E
T1:l | S0

[errp(X , S0 ∪ T1:l)] + (ϵ1 + ϵ2tl) errp(X , S̃),

which completes the proof of Lemma 2. ◀
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Theorem 5 from [16] shows that in l = k rounds of adaptive sampling, where in each
round we pick t = Õ

(
(k/ϵ)p+1) points and take their union, gives an additive approximation

guarantee for ℓp subspace approximation with probability at least 1/2k. Repeating it multiple
times and taking the best can boost the probability further. We restate the main part of
this theorem below.

▶ Proposition 3 (Theorem 5, [16]). Let k be any positive integer, let ϵ ∈ (0, 1) and S0 = ∅.
Let l = k and t = Õ

(
(k/ϵ)p+1). If Sl = S0 ∪ T1:l is obtained by starting from S0 and

doing adaptive sampling according to the p-th power of distances in l iterations, and in each
iteration we add t points from X , then we have |Sl| = tl = Õ(k · (k/ϵ)p+1) such that

errp(X , S0 ∪ T1:l)1/p ≤ errp(X , V ∗)1/p + ϵ errp(X , ∅)1/p,

with probability at least 1/2k, and where V ∗ minimizes errp(X , V ) over all linear subspaces
V of dimension at most k. If we repeat this O(k log 1

ϵ ) times then the probability of success
can be boosted to 1− ϵ.

Combining Lemma 2 and Proposition 3 we get the following Theorem.

▶ Theorem 4. For any positive integer k, any p ∈ [1,∞), and any δ ∈ R≥0, starting from
S0 = ∅ and setting the following parameters in one-pass MCMC ℓp subspace approximation
algorithm (see Section 3)

ϵ = δ/4,

ϵ1 = δp/2p+1,

ϵ2 = δp/2p+1tl,

m = 1 + 2
δp

log k

δp
,

t = Õ((k/ϵ)p+1),
l = k,

we get a subset S of size Õ(k · (k/δ)p+1) with an additive approximation guarantee on its
expected error as errp(X , V ∗)1/p + δ errp(X , ∅)1/p. Further, the running time of the algorithm
is nd + k · Õ

((
k
δ

)p+1)
.

Proof. From Lemma 2 we know that

Ẽ
T1:l | ∅

[errp(X , T1:l)] ≤ E
T1:l | ∅

[errp(X , T1:l)] + (ϵ1 + ϵ2tl) errp(X , ∅).

Thus, for p ∈ [1,∞) we have

Ẽ
T1:l | ∅

[errp(X , T1:l)]1/p ≤ E
T1:l | ∅

[errp(X , T1:l)]1/p + (ϵ1 + ϵ2tl)1/p errp(X , ∅)1/p.

≤ (1− ϵ)
(

errp(X , V ∗)1/p + ϵ errp(X , ∅)1/p
)

+ ϵ errp(X , ∅)1/p

+ (ϵ1 + ϵ2tl)1/p errp(X , ∅)1/p.

(using Proposition 3.)

≤ errp(X , V ∗)1/p +
(

2ϵ + (ϵ1 + ϵ2tl)1/p
)

errp(X , ∅)1/p.

≤ errp(X , V ∗)1/p + δ errp(X , ∅)1/p,

using ϵ = δ/4, ϵ1 = δp/2p+1 and ϵ2 = δp/2p+1tl.
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We now give a bound on the running time of our algorithm. We require nd time to
generate the probability distribution q(x), for x ∈ X . Further, the running time of MCMC
sampling step is t · m · l = k · Õ

((
k
δ

)p+1). Therefore, the overall running time of the

algorithm is nd + k · Õ
((

k
δ

)p+1). ◀

5 Conclusion and open questions

In this work, we give an efficient one-pass MCMC algorithm that does subset selection
with additive approximation guarantee for ℓp subspace approximation, for any p ∈ [1,∞).
Previously this was only known for the special case of p = 2 [11]. For general case p ∈ [1,∞),
adaptive sampling algorithm due to [16] requires taking multiple passes over the input.
Coming up with a one-pass subset selection algorithm that offers stronger multiplicative
guarantees for p ∈ [1,∞) remains an interesting open problem.
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