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Abstract

We give a nearly-linear time reduction that encodes any linear program as a 2-commodity flow
problem with only a small blow-up in size. Under mild assumptions similar to those employed by
modern fast solvers for linear programs, our reduction causes only a polylogarithmic multiplicative
increase in the size of the program, and runs in nearly-linear time. Our reduction applies to
high-accuracy approximation algorithms and exact algorithms. Given an approximate solution to
the 2-commodity flow problem, we can extract a solution to the linear program in linear time with
only a polynomial factor increase in the error. This implies that any algorithm that solves the
2-commodity flow problem can solve linear programs in essentially the same time. Given a directed
graph with edge capacities and two source-sink pairs, the goal of the 2-commodity flow problem is to
maximize the sum of the flows routed between the two source-sink pairs subject to edge capacities
and flow conservation. A 2-commodity flow problem can be formulated as a linear program, which
can be solved to high accuracy in almost the current matrix multiplication time (Cohen-Lee-Song
JACM’21). Our reduction shows that linear programs can be approximately solved, to high accuracy,
using 2-commodity flow as well.

Our proof follows the outline of Itai’s polynomial-time reduction of a linear program to a
2-commodity flow problem (JACM’78). Itai’s reduction shows that exactly solving 2-commodity
flow and exactly solving linear programming are polynomial-time equivalent. We improve Itai’s
reduction to nearly preserve the problem representation size in each step. In addition, we establish
an error bound for approximately solving each intermediate problem in the reduction, and show
that the accumulated error is polynomially bounded. We remark that our reduction does not run in
strongly polynomial time and that it is open whether 2-commodity flow and linear programming are
equivalent in strongly polynomial time.
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54:2 Two-Commodity Flow Is Equivalent to Linear Programming

1 Introduction

Multi-commodity maximum flow is a very well-studied problem, which can be formulated as
a linear program. In this paper, we show that general linear programs can be very efficiently
encoded as a multi-commodity maximum flow programs. Many variants of multi-commodity
flow problems exist. We consider one of the simplest directed variants, 2-commodity maximum
through-put flow. Given a directed graph with edge capacities and two source-sink pairs, this
problem requires us to maximize the sum of the flows routed between the two source-sink
pairs, while satisfying capacity constraints and flow conservation at the remaining nodes.
In the rest of the paper, we will simply refer to this as the 2-commodity flow problem. We
abbreviate this problem as 2CF. Our goal is to relate the hardness of solving 2CF to that of
solving linear programs (LPs). 2-commodity flow is easily expressed as a linear program,
so it is clearly no harder than solving LPs. We show that the 2-commodity flow problem
can encode a linear program with only a polylogarithmic blow-up in size, when the program
has polynomially bounded integer entries and polynomially bounded solution norm. Our
reduction runs in nearly-linear time. Given an approximate solution to the 2-commodity
flow problem, we can recover, in linear time, an approximate solution to the linear program
with only a polynomial factor increase in the error. Our reduction also shows that an exact
solution to the flow problem yields an exact solution to the linear program.

Multi-commodity flow problems are extremely well-studied and have been the subject
of numerous surveys [23, 38, 40, 1, 50], in part because a large number of problems can be
expressed as variants of multi-commodity flow. Our result shows a very strong form of this
observation: In fact, general linear programs can be expressed as 2-commodity flow problems
with essentially the same size. Early in the study of these problems, before a polynomial-time
algorithm for linear programming was known, it was shown that the undirected 2-commodity
flow problem can be solved in polynomial time [16]. In fact, it can be reduced to two
undirected single commodity maximum flow problems. In contrast, directed 2-commodity
flow problems were seemingly harder, despite the discovery of non-trivial algorithms for some
special cases [8, 9].

Searching for Multi-Commodity Flow Solvers. Alon Itai [17] proved a polynomial-time
reduction from linear programming to 2-commodity flow, before a polynomial-time algorithm
for linear programming was known. For decades, the only major progress on solving multi-
commodity flow came from improvements to general linear program solvers [24, 19, 43, 48].
Leighton et al. [33] showed that undirected capacitated k-commodity flow in a graph with
m edges and n vertices can be approximately solved in Õ(kmn) time, completely routing all
demands with 1 + ϵ times the optimal congestion, albeit with a poor dependence on the error
parameter ϵ. This beats solve-times for linear programming in sparse graphs for small k, even
with today’s LP solvers that run in current matrix multiplication time, albeit with much worse
error. This result spurred a number of follow-up works with improvements for low-accuracy
algorithms [14, 11, 35]. Later, breakthroughs in achieving almost- and nearly-linear time
algorithms for undirected single-commodity maximum flow also lead to faster algorithms
for undirected k-commodity flow [21, 45, 41], culminating in Sherman’s introduction of
area-convexity to build a Õ(mkϵ−1) time algorithm for approximate undirected k-commodity
flow [46].

Solving Single-Commodity Flow Problems. Single commodity flow problems have been an
area of tremendous success for the development of graph algorithms, starting with an era of
algorithms influenced by early results on maximum flow and minimum cut [12] and later
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the development of powerful combinatorial algorithms for maximum flow with polynomially
bounded edge capacities [7, 10, 15]. Later, a breakthrough nearly-linear time algorithm for
electrical flows by Spielman and Teng [47] lead to the Laplacian paradigm. A long line of
work explored direct improvements and simplifications of this result [25, 26, 22, 42, 28, 18].
This also motivated a new line of research on undirected maximum flow [3, 31, 21, 45],
which in turn lead to faster algorithms for directed maximum flow and minimum cost
flow [36, 37, 34, 20, 49, 13] building on powerful tools using mixed-ℓ2, ℓp-norm minimizing
flows [27] and inverse-maintenance ideas [2]. Certain developments are particularly relevant
to our result: For a graph G = (V, E) these works established high-accuracy algorithms with
Õ(|E|) running time for computing electrical flow [47] and O(|E|4/3) running time for unit
capacity directed maximum flow [36, 20], and Õ(min(|E|1.497, |E| + |V |1.5)) running time for
directed maximum flow with general capacities [13, 49].

Solving General Linear Programs. As described in the previous paragraphs, there has been
tremendous success in developing fast algorithms for single-commodity flow problems and
undirected multi-commodity flow problems, albeit in the latter case only in the low-accuracy
regime (as the algorithm running times depend polynomially on the error parameter). In
contrast, the best known algorithms for directed multi-commodity flow simply treat the
problem as a general linear program, and use a solver for general linear programs.

The fastest known solvers for general linear programs are based on interior point meth-
ods [19], and in particular central path methods [43]. Recently, there has been significant
progress on solvers for general linear programs, but the running time required to solve a linear
program with roughly n variables and Õ(n) constraints (assuming polynomially bounded
entries and polytope radius) is stuck at the Õ(n2.372...), the running time provided by LP
solvers that run in current matrix multiplication time [4]. Note that this running time is in
the RealRAM model, and this algorithm cannot be translated to fixed point arithmetic with
polylogarithmic bit complexity per number without additional assumptions on the input, as
we describe the paragraphs on numerical stability below. To compare these running times
with those for single-commodity maximum flow algorithms on a graph with |V | vertices and
|E| edges, observe that in a sparse graph with |E| = Õ(|V |), by writing the maximum flow
problem as a linear program, we can solve it using general linear program solvers and obtain
a running time of Õ(|V |2.372...), while the state-of-the art maximum flow solver obtains a
running time of Õ(|V |1.497) on such a sparse graph. On dense graphs with |E| = Θ(|V |2),
the gap is smaller but still substantial: The running time is Õ(|V |2) using maximum flow
algorithms vs. Õ(|V |2.372...) using general LP algorithms.

How Hard Is It to Solve Multi-Commodity Flow? The many successes in developing
high-accuracy algorithms for single-commodity flow problems highlight an important open
question: Can multi-commodity flow be solved to high accuracy faster than general linear
programs? We rule out this possibility, by proving that any linear program (assuming it
is polynomially bounded and has integer entries) can be encoded as a multi-commodity
flow problem in nearly-linear time. This implies that any improvement in the running time
of (high-accuracy) algorithms for sparse multi-commodity flow problems would directly
translate to a faster algorithm for solving sparse linear programs to high accuracy, with only
a polylogarithmic increase in running time.

Previous work by Kyng and Zhang [30] had shown that fast algorithms for multi-
commodity flow were unlikely to arise from combining interior point methods with special-
purpose linear equation solvers. Concretely, they showed that the linear equations that arise
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54:4 Two-Commodity Flow Is Equivalent to Linear Programming

in interior point methods for multi-commodity flow are as hard to solve as arbitrary linear
equations. This ruled out algorithms following the pattern of the known fast algorithms for
high-accuracy single-commodity flow problems. However, it left open the broader question if
some other family of algorithms could succeed. We now show that, in general, a separation
between multi-commodity flow and linear programming is not possible.

1.1 Background: Numerical Stability of Linear Program Solvers and
Reductions

Current research on fast algorithms for solving linear programs generally relies on assuming
bounds on (1) the size of the program entries and (2) the norm of all feasible solutions.
Generally, algorithm running time depends logarithmically on these quantities, and hence
to make these factors negligible, entry size and feasible solution norms are assumed to be
polynomially bounded, for example in [4]. We will refer to a linear program satisfying these
assumptions as polynomially bounded. More precisely, we say a linear program with N

non-zero coefficients is polynomially bounded if it has coefficients in the range [−X, X] and
∥x∥1 ≤ R for all feasible x (i.e. the polytope of feasible solutions has radius of R in ℓ1 norm),
and X, R ≤ O(N c) for some constant c. In fact, if there exists a feasible solution x satisfying
∥x∥1 ≤ R, then we can add a constraint ∥x∥1 ≤ R to the LP (which can be rewritten as
linear inequality constraints) so that in the new LP, all feasible solutions have ℓ1 norm at
most R. This only increases the number of nonzeros in the LP by at most a constant factor.

Interior Point Methods and Reductions With Fixed Point Arithmetic. Modern fast interior
point methods for linear programming, such as [4], are analyzed in the RealRAM model.
In order to implement these algorithms using fixed point arithmetic with polylogarithmic
bit complexity per number, instead of RealRAM, additional assumptions are required. For
example, this class of algorithms relies on computing matrix inverses, and these must
be approximately representable using polylogarithmic bit complexity per entry. This is
not possible, if the inverses have exponentially large entries, which may occur even in
polynomially bounded linear programs. For example, consider a linear program feasibility
problem Ax ≤ b, x ≥ 0, with constraint matrix A ∈ R2n×2n given by

A(i, j) =



1 if i < n and i = j

−2 if i < n and i + 1 = j

2 if i ≥ n and i = j

−1 if i ≥ n and i + 1 = j

0 o.w.

Such a linear program is polynomially bounded for many choices of b, e.g. b = e2n.
Unfortunately, for the vector x ∈ R2n given by

x(i) =
{

2−i−1 if i ≤ n

0 o.w.

we have Ax = 2−nen, and from this one can see that A−1 must have entries of size at least
Ω(2n/n). This will cause algorithms such as [4] to perform intermediate calculations with n

bits per number, increasing the running time by a factor roughly n.
Modern interior point methods can be translated to fixed precision arithmetic with various

different assumptions leading to different per entry bit complexity (see [4] for a discussion of
one standard sufficient condition). Furthermore, if the problem has polynomially bounded
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condition number (when appropriately defined), then we expect that polylogarithmic bit
complexity per entry should suffice, at least for highly accurate approximate solutions, by
relying on fast stable numerical linear algebra [5], although we are not aware of a complete
analysis of this translation.

If a linear program with integer entries is solved to sufficiently small additive error,
the approximate solution can be converted into an exact solution, e.g. see [43, 32, 4] for
a discussion of the necessary precision and for a further discussion of numerical stability
properties of interior point methods. Polynomially bounded linear programs with integer
coefficients may still require exponentially small additive error for this rounding to succeed.

We give a reduction from general linear programming to 2-commodity flow, and like [4],
we assume the program is polynomially bounded to carry out the reduction. We also use
an additional assumption, namely that the linear program is written using integral entries1.
We do not make additional assumptions about polynomially bounded condition number
of problem. This means we can apply our reduction to programs such as the one above,
despite [4] not obtaining a reasonable running time on such programs using fixed point
arithmetic.

Our analysis of our reduction uses the RealRAM model like [4] and other modern interior
point method analysis, however, it should be straightforward to translate our reduction and
error analysis to fixed point arithmetic with polylogarithmically many bits, because all our
mappings are simple linear transformations, and we never need to compute or apply a matrix
inverse.

Rounding Linear Programs to Have Integer Entries. It is possible to give some fairly
general and natural sufficient conditions for when a polynomially bounded linear program can
be rounded to have integral entries, one example of this is having a polynomially bounded
Renegar’s condition number. Renegar introduced this condition number for linear programs
in [44]. For a given linear program, suppose that perturbing the entries of the program by
at most δ each does not change the feasibility of the the linear program, and let δ∗ be the
largest such δ. Let U denote the maximum absolute value of entries in the linear program.
Then κ = U/δ∗ is Renegar’s condition number for the linear program.

Suppose we are given a polynomially bounded linear program max{c⊤x : Ax ≤ b, x ≥ 0}
(also referred to as (A, b, c)), with polytope radius at most R, and Renegar’s condition
number κ also bounded by a polynomial. We wish to compute a vector x ≥ 0 with an ϵ

additive error on each constraint and in the optimal value. We can reduce this problem for
instance (A, b, c) to a polynomially bounded linear program instance with integral input
numbers. Specifically, we round the entries of A down to Ã and those of b, c up to b̃, c̃ all
by at most min{ ϵ

3R , U
κR } such that each entry of Ã, b̃, c̃ only needs a logarithmic number of

bits. Suppose x̃ is a solution to (Ã, b̃, c̃) with ϵ
3 additive error on each constraint and in the

optimal value. Then,

Ax̃ = Ãx̃ + (A − Ã)x̃ ≤ b + ϵ1, c⊤x̃ ≥ c̃⊤x̃∗ − 2
3ϵ

where 1 is the all-one vector, x̃∗ is an optimal solution to (Ã, b̃, c̃). In addition, the optimal
value of (Ã, b̃, c̃) is greater than or equal to that of (A, b, c). So, x̃ is a solution to (A, b, c)
with ϵ additive error as desired. Since each entry of Ã, b̃, c̃ has a logarithmic number of bits,

1 W.l.o.g., by scaling, this is the same as assuming the program is written with polynomially bounded
fixed precision numbers of the form k/D where k is an integer, and D is an integral denominator shared
across all entries, and both k and D are polynomially bounded.
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we can scale all of them to polynomially bounded integers without changing the feasible set
and the optimal solutions. Thus we see that if we restrict ourselves to polynomially linear
programs with polynomially bounded Renegar’s condition number, and we wish to solve
the program with small additive error, we can assume without loss of generality that the
program has integer coefficients.

1.2 Previous Work
Our paper follows the proof by Itai [17] that linear programming is polynomial-time reducible
to 2-commodity flow. However, it is also inspired by recent works on hardness for structured
linear equations [30] and packing/covering LPs [29], which focused on obtaining nearly-linear
time reductions in somewhat related settings. These works in turn were motivated by the
last decade’s substantial progress on fine-grained complexity for a range of polynomial time
solvable problems, e.g. see [51]. Also notable is the result by Musco et al. [39] on hardness
for matrix spectrum approximation.

1.3 Our Contributions
In this paper, we explore the hardness of 2-commodity maximum throughput flow, which for
brevity we refer to as the 2-commodity flow problem or 2CF. We relate the difficulty of 2CF
to that of linear programming (LP) by developing an extremely efficient reduction from the
former to the latter. The main properties of our reduction are described by the informal
theorem statement below. We give a formal statement of Theorem 1.1 as Theorem 3.1 in
Section 3.

▶ Theorem 1.1 (Main Theorem (Informal)). Consider any polynomially bounded linear
program max{c⊤x : Ax ≤ b, x ≥ 0} with integer coefficients and N non-zero entries. In
nearly-linear time, we can convert this linear program to a 2-commodity flow problem which
is feasible if and only if the original program is. The 2-commodity flow problem has Õ(N)
edges and has polynomially bounded integral edge capacities. Furthermore, any solution to
the 2-commodity flow instance with at most ϵ additive error on each constraint and value at
most ϵ from the optimum can be converted to a solution to the original linear program with
additive error Õ(poly(N)ϵ) on each constraint and similarly value within Õ(poly(N)ϵ) of the
optimum.

This implies that, for any constant a > 1, if any 2-commodity flow instance with
polynomially bounded integer capacities can be solved with ϵ additive error in time
Õ (|E|a · poly log(1/ϵ)), then any polynomially bounded linear program can be solved to ϵ

additive error in time Õ (Na · poly log(1/ϵ)).

Note that in our definition any 2CF problem is already an LP, and so no reduction in the
other direction is necessary. Our notion of approximate solutions to LPs and 2CF problems
is also such that treating a 2CF problem as an LP and solving it approximately ensures that
the 2CF is approximately solved w.r.t. to the our approximate solution definition for 2CF.

We obtain Theorem 1.1, our main result, by making several improvements to Itai’s
reduction from LP to 2CF. Recall that a linear program with N non-zero coefficients is
polynomially bounded if it has coefficients in the range [−X, X] and ∥x∥1 ≤ R for all feasible
x, where X, R ≤ O(N c) for some constant c. Firstly, while Itai produced a 2CF with the
number of edges on the order of Θ

(
N2 log2 X

)
, we show that an improved gadget can reduce

this to O (N log X). Thus, in the case of polynomially bounded linear programs, where
log X = O(log N), we get an only polylogarithmic multiplicative increase in the number of
non-zero entries from N to Õ(N), whereas Itai had an increase in the number of nonzeros by
a factor Õ(N), from N to Õ(N2).
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Secondly, Itai used very large graph edge capacities that require O
(

(N log X)1.01
)

many
bits per edge, letting the capacities grow exponentially given an LP with polynomially
bounded entries. We show that when the feasible polytope radius R is bounded, we can
ensure capacities remain a polynomial function of the initial parameters N, R, and X. In
the important case of polynomially bounded linear programs, this means the capacities stay
polynomially bounded.

Thirdly, while Itai only analyzed the chain of reductions under the case with exact
solutions, we generalize the analysis to the case with approximate solutions by establishing an
error analysis along the chain of reductions. We show that the error only grows polynomially
during the reduction. Moreover, to simplify our error analysis, we observe that additional
structures can be established in many of Itai’s reductions. For instance, we propose the
notion of a fixed flow network, which consists of a subset of edges with equal lower and upper
bound of capacity. It is a simplification of Itai’s (l, u) network with general capacity (both
lower and upper bounds on the amount of flow).

Open Problems. Our reductions do not suffice to prove that a strongly polynomial time
algorithm for 2-commodity flow would imply a strongly polynomial time algorithm for linear
programming. In a similar vein, it is unclear if a more efficient reduction could exist for
the case of linear programs that are not polynomially bounded. We leave these as very
interesting open problems.

Finally, our reductions do not preserve the “shape” of the linear program, in particular, a
dense linear program may be reduced to a sparse 2-commodity flow problem with a similar
number of edges as there are non-zero entries in the original program. It would be interesting
to convert a dense linear program into a dense 2-commodity flow problem, e.g. to convert a
linear program with m constraints and n variables (say, m ≤ n) into a 2-commodity flow
problem with Õ(n) edges and Õ(m) vertices.

2 Preliminaries

2.1 Notation
Matrices and Vectors. We use parentheses to denote entries of a matrix or a vector:
Let A(i, j) denote the (i, j)th entry of a matrix A, and let x(i) denote the ith entry of a
vector x. Given a matrix A ∈ Rm×n, we use aaa⊤

i to denote the ith row of a matrix A and
nnz(A) to denote the number of nonzero entries of A. Without loss of generality, we assume
that nnz(A) ≥ max{m, n}. For any vector x ∈ Rn, we define ∥x∥max = maxi∈[n] |x(i)|,
∥x∥1 =

∑
i∈[n] |x(i)|. For any matrix A ∈ Rm×n, we define ∥A∥max = maxi,j |A(i, j)|.

We define a function X that takes an arbitrary number of matrices A1, . . . , Ak1 , vectors
b1, . . . , bk2 , and scalars K1, . . . , Kk3 as arguments, and returns the maximum of ∥·∥max of
all the arguments, i.e.,

X(A1, . . . , Ak1 , b1, . . . , bk2 , K1, . . . , Kk3)
= max {∥A1∥max , . . . , ∥Ak1∥max , ∥b1∥max , . . . , ∥bk2∥max , |K1| , . . . , |Kk3 |} .

2.2 Problem Definitions
In this section, we formally define the problems that we use in the reduction. These problems
fall into two categories: one is related to linear programming and linear equations, and the
other is related to flow problems in graphs. In addition, we define the errors for approximately
solving these problems.

ICALP 2022
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2.2.1 Linear Programming and Linear Equations With Positive Variables
For the convenience of our reduction, we define linear programming as a “decision” problem.
We can solve the optimization problem max{c⊤x : Ax ≤ b, x ≥ 0} by binary searching its
optimal value via the decision problem.

▶ Definition 2.1 (Linear Programming (lp)). Given a matrix A ∈ Zm×n, vectors b ∈ Zm

and c ∈ Zn, an integer K, and R ≥ max{1, max{∥x∥1 : Ax ≤ b, x ≥ 0}}, we refer to the
lp problem for (A, b, c, K, R) as the problem of finding a vector x ∈ Rn

≥0 satisfying

Ax ≤ b and c⊤x ≥ K

if such an x exists and returning “infeasible” otherwise.

We will reduce linear programming to linear equations with nonnegative variables (LEN),
and then to linear equations with nonnegative variables and small integer coefficients (k-LEN).

▶ Definition 2.2 (Linear Equations with Nonnegative Variables (len)). Given A ∈ Zm×n, b ∈
Zm, and R ≥ max{1, max{∥x∥1 : Ax = b, x ≥ 0}}, we refer to the len problem for (A, b, R)
as the problem of finding a vector x ∈ Rn

≥0 satisfying Ax = b if such an x exists and
returning “infeasible” otherwise.

▶ Definition 2.3 (k-LEN (k-len)). The k-len problem is an len problem (A, b, R) where
the entries of A are integers in [−k, k] for some given k ∈ Z+.

We employ the following additive error notion. We append a letter “A” to each problem
name to denote its approximation version, e.g., LP Approximate Problem is abbreviated to
LPA.

▶ Definition 2.4 (Approximation Errors). We always require x ≥ 0. In addition,
1. Error in objective: c⊤x ≥ K is relaxed to c⊤x ≥ K − ϵ;
2. Error in constraint:

a. The inequality constraint Ax ≤ b is relaxed to Ax −b ≤ ϵ1, where 1 is the all-1 vector;
b. The equality constraint Ax = b is relaxed to ∥Ax − b∥∞ ≤ ϵ.

Based on Definition 2.4, we can define the approximate version of lp. The approximate
version of len and k-len can be found in the full version of the paper [6].

▶ Definition 2.5 (LP Approximate Problem (lpa)). An lpa instance is given by an lp instance
(A, b, c, K, R) and an error parameter ϵ ∈ [0, 1], which we collect in a tuple (A, b, c, K, R, ϵ).
We say an algorithm solves the lpa problem, if, given any lpa instance, it returns a vector
x ≥ 0 such that

c⊤x ≥ K − ϵ

Ax ≤ b + ϵ1

where 1 is the all-1 vector, or it correctly declares that the associated lp instance is infeasible.

2.2.2 Flow Problems
A flow network is a directed graph G = (V, E), where V is the set of vertices and E ⊂ V × V

is the set of edges, together with a vector of edge capacities u ∈ Z|E|
>0 that upper bound the

amount of flow passing each edge. A 2-commodity flow network is a flow network together
with two source-sink pairs si, ti ∈ V for each commodity i ∈ {1, 2}.

Given a 2-commodity flow network (G = (V, E), u, s1, t1, s2, t2), a feasible 2-commodity
flow is a pair of flows f 1, f 2 ∈ R|E|

≥0 that satisfies
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1. capacity constraint: f 1(e) + f 2(e) ≤ u(e), ∀e ∈ E, and
2. conservation of flows:

∑
u:(u,v)∈E f i(u, v) =

∑
w:(v,w)∈E f i(v, w), ∀i ∈ {1, 2}, v ∈ V \

{si, ti}2.

Similar to the definition of LP, we define 2-commodity flow problem as a decision problem.
We can solve a decision problem by solving the corresponding optimization problem.

▶ Definition 2.6 (2-Commodity Flow Problem (2cf)). Given a 2-commodity flow network
(G, u, s1, t1, s2, t2) together with R ≥ 0, we refer to the 2cf problem for (G, u, s1, t1, s2, t2, R)
as the problem of finding a feasible 2-commodity flow f 1, f 2 ≥ 0 satisfying

F1 + F2 ≥ R

if such flows exist and returning “infeasible” otherwise.

To reduce lp to 2cf, we need a sequence of variants of flow problems.

▶ Definition 2.7 (2-Commodity Flow with Required Flow Amount (2cfr)). Given a 2-
commodity flow network (G, u, s1, t1, s2, t2) together with R1, R2 ≥ 0, we refer to the 2cfr
for (G, u, s1, t1, s2, t2, R1, R2) as the problem of finding a feasible 2-commodity flow f 1, f 2 ≥ 0
satisfying

F1 ≥ R1, F2 ≥ R2

if such flows exist and returning “infeasible” otherwise.

▶ Definition 2.8 (Fixed Flow Constraints). Given a set F ⊆ E in a 2-commodity flow network,
we say the flows f 1, f 2 ≥ 0 satisfy fixed flow constraints on F if

f 1(e) + f 2(e) = u(e), ∀e ∈ F.

Similarly, given a set F ⊆ E in a 1-commodity flow network, we say the flow f ≥ 0 satisfies
fixed flow constraints on F if

f (e) = u(e), ∀e ∈ F.

▶ Definition 2.9 (2-Commodity Fixed Flow Problem (2cff)). Given a 2-commodity flow
network (G, u, s1, t1, s2, t2) together with a subset of edges F ⊆ E, we refer to the 2cff
problem for the tuple (G, F, u, s1, t1, s2, t2) as the problem of finding a feasible 2-commodity
flow f 1, f 2 ≥ 0 which also satisfies the fixed flow constraints on F if such flows exist and
returning “infeasible” otherwise.

▶ Definition 2.10 (Selective Fixed Flow Problem (sff)). Given a 2-commodity network
(G, u, s1, t1, s2, t2) together with three edge sets F, S1, S2 ⊆ E, we refer to the sff problem for
(G, F, S1, S2, u, s1, t1, s2, t2) as the problem of finding a feasible 2-commodity flow f 1, f 2 ≥ 0
such that for each i ∈ {1, 2}, flow f i(e) > 0 only if e ∈ Si, and f 1, f 2 satisfy the fixed flow
constraints on F , if such flows exist, and returning “infeasible” otherwise.

▶ Definition 2.11 (Fixed Homologous Flow Problem (fhf)). Given a flow network with
a single source-sink pair (G, u, s, t) together with a collection of disjoint subsets of edges
H = {H1, . . . , Hh} and a subset of edges F ⊆ E such that F is disjoint from all the sets in
H, we refer to the fhf problem for (G, F, H, u, s, t) as the problem of finding a feasible flow
f ≥ 0 such that

2 Note that for commodity i, this constraint includes the case of v ∈ {sī, t̄i}, ī = {1, 2}\i.
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f (e1) = f (e2), ∀e1, e2 ∈ Hk, 1 ≤ k ≤ h,

and f satisfies the fixed flow constraints on F , if such flows exist, and returning “infeasible”
otherwise.

▶ Definition 2.12 (Fixed Pair Homologous Flow Problem (fphf)). An fphf is an fhf problem
(G, F, H, u, s, t) where every set in H has size 2.

Now, we define errors for the above flow problems.

▶ Definition 2.13 (Approximation Errors). We always require flows f ≥ 0 and f 1, f 2 ≥ 0. In
addition,
1. Error in congestion: the capacity constraints are relaxed to:

f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E.

There are several variants corresponding to different flow problems.
a. If e ∈ F is a fixed-flow edge, the fixed-flow constraints are relaxed to

u(e) − ϵ ≤ f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ F

b. If G is a 1-commodity flow network, we replace f 1(e) + f 2(e) by f (e).
2. Error in demand: the conservation of flows is relaxed to∣∣∣∣∣∣

∑
u:(u,v)∈E

f i(u, v) −
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2} (1)

There are several variants of this constraint corresponding to different flow problems.
a. If the problem is with flow requirement Fi, then besides Eq. (1), we add demand

constraints for si and ti with respect to commodity i:∣∣∣∣∣∣
∑

w:(si,w)∈E

f i(si, w) − Fi

∣∣∣∣∣∣ ≤ ϵ,

∣∣∣∣∣∣
∑

u:(u,ti)∈E

f i(u, ti) − Fi

∣∣∣∣∣∣ ≤ ϵ, i ∈ {1, 2} (2)

b. If G is a 1-commodity flow network, Eq. (1) can be simplified as∣∣∣∣∣∣
∑

u:(u,v)∈E

f (u, v) −
∑

w:(v,w)∈E

f (v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{s, t}

3. Error in type: the selective constraints are relaxed to

f ī(e) ≤ ϵ, ∀e ∈ Si, ī = {1, 2}\i.

4. Error in (pair) homology: the (pair) homologous constraints are relaxed to

|f (e1) − f (e2)| ≤ ϵ, ∀e1, e2 ∈ Hk, Hk ∈ H.

Based on Definition 2.13, we define the approximate version of 2cf. Again, the approx-
imate version of the rest flow problems can be found in the full version of the paper [6].
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▶ Definition 2.14 (2CF Approximate Problem (2cfa)). A 2cfa instance is given by a 2cf
instance (G, u, s1, t1, s2, t2, R) and an error parameter ϵ ∈ [0, 1], which we collect in a tuple
(G, u, s1, t1, s2, t2, R, ϵ). We say an algorithm solves the 2cfa problem, if, given any 2cfa
instance, it returns a pair of flows f 1, f 2 ≥ 0 that satisfies

f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E (3)∣∣∣∣∣∣
∑

u:(u,v)∈E

f i(u, v) −
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2} (4)

∣∣∣∣∣∣
∑

w:(si,w)∈E

f i(si, w) − Fi

∣∣∣∣∣∣ ≤ ϵ,

∣∣∣∣∣∣
∑

u:(u,ti)∈E

f i(u, ti) − Fi

∣∣∣∣∣∣ ≤ ϵ, i ∈ {1, 2} (5)

where F1 + F2 = R 3; or it correctly declares that the associated 2cf instance is infeasible.
We refer to the error in (3) as error in congestion, error in (4) and (5) as error in demand.

3 Main Results

▶ Theorem 3.1. Given an lpa instance (A, b, c, K, R, ϵlp) where A ∈ Zm×n, b ∈ Zm, c ∈
Zn, K ∈ Z, ϵlp ≥ 0 and A has nnz (A) nonzero entries, we can reduce it to a 2cfa instance
(G = (V, E), u, s1, t1, s2, t2, R2cf , ϵ2cf ) in time O(nnz(A) log X) where X = X(A, b, c, K),
such that

|V |, |E| = O(nnz(A) log X),
∥u∥max , R2cf = O(nnz3(A)RX2 log2 X),

ϵ2cf = Ω
(

1
nnz7(A)RX3 log6 X

)
ϵlp.

If the lp instance (A, b, c, K, R) has a solution, then the 2cf instance
(G2cf , u2cf , s1, t1, s2, t2, R2cf ) has a solution. Furthermore, if f 2cf is a solution to
the 2cfa (2cf) instance, then in time O(nnz(A) log X), we can compute a solution x to the
lpa (lp, respectively) instance, where the exact case holds when ϵ2cf = ϵlp = 0.

Our main theorem immediately implies the following corollary.

▶ Corollary 3.2. If we can solve any 2cfa instance (G = (V, E), u, s1, t1, s2, t2, R2cf , ϵ) in
time O

(
|E|c poly log

(
∥u∥1

ϵ

))
for some small constant c ≥ 1, then we can solve any lpa

instance (A, b, c, K, R, ϵ) in time O
(

nnzc(A) poly log
(

nnz(A)RX(A,b,c,K)
ϵ

))
.

3.1 Overview of Our Proof
In this section, we will explain how to reduce an LP instance to a 2-commodity flow (2cf)
instance by a chain of efficient reductions. In each step, we reduce a decision problem P to a
decision problem Q. We guarantee that (1) the reduction runs in nearly-linear time4, (2) the

3 If we encode 2cf as an lp instance, and approximately solve the lp with at most ϵ additive error. Then,
the approximate solution also agrees with the error notions of 2cf, except that we get F1 + F2 ≥ R − ϵ
instead of F1 + F2 ≥ R. This inconsistency can be eliminated by setting ϵ′ = 2ϵ, and slightly adjusting
F1, F2 to F ′

1, F ′
2 such that F ′

1 + F ′
2 ≥ R. This way, we obtain an approximate solution to 2cf with at

most ϵ′ additive error.
4 Linear in the size of problem P, poly-logarithmic in the maximum magnitude of all the numbers that

describe P, the feasible set radius, and the inverse of the error parameter if an approximate solution is
allowed.
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Table 1 A summary of notation used in the reduction from lp to 2cf.

Exact problems Input Output
lp (Def. 2.1) A, b, c, K, R x

len (Def. 2.2) Ã, b̃, R̃ x̃
2-len (Def. 2.3) Ā, b̄, R̄ x̄
1-len (Def. 2.3) Â, b̂, R̂ x̂
fhf (Def. 2.11) Gh, F h, Hh = {H1, · · · , Hh}, uh, s, t f h

fphf (Def. 2.12) Gp, F p, Hp = {H1, · · · , Hp}, up, s, t f p

sff (Def. 2.10) Gs, F s, S1, S2, us, s1, t1, s2, t2 f s

2cff (Def. 2.9) Gf , F f , uf , s1, t1, s2, t2 f f

2cfr (Def. 2.7) Gr, ur, s̄1, t̄1, s̄2, t̄2, R1, R2 f r

2cf (Def. 2.6) G2cf , u2cf , ¯̄s1, t̄1, ¯̄s2, t̄2, R2cf f 2cf

size of Q is nearly-linear in the size of P, and (3) that P is feasible implies that Q is feasible,
and an approximate solution to Q can be turned to an approximate solution to P with only
a polynomial blow-up in error parameters, in linear time.

We follow the outline of Itai’s reduction [17]. A summary of the problem notation used in
the reduction from lp to 2cf is given in Table 1. Itai first reduced an lp instance to a 1-len
instance (linear equations with nonnegative variables and ±1 coefficients). A 1-len instance
can be cast as a single-commodity flow problem subject to additional homologous constraints
and fixed flow constraints (i.e., fhf). Then, Itai dropped these additional constraints step
by step, via introducing a second commodity of flow and imposing lower bound requirements
on the total amount of flows routed between the source-sink pairs. However, in the worst
case, Itai’s reduction from 1-len to fhf enlarges the problem size quadratically and is
thus inefficient. One of our main contributions is to improve this step so that the problem
representation size is preserved along the reduction chain.

Our second main contribution is an upper bound on the errors accumulated during the
process of mapping an approximate solution to the 2cf instance to an approximate solution
to the lp instance. We show that the error only grows by polynomial factors. Itai only
considered exact solutions between these two instances.

We will explain the reductions based on the exact versions of the problems. At the end
of this section, we will discuss some intuitions of our error analysis.

3.1.1 Reducing Linear Programming to Linear Equations With
Nonnegative Variables and ±1 Coefficients

Given an lp instance (A, b, c, K, R) where R ≥ max{1, max{∥x∥1 : Ax ≤ b, x ≥ 0}}, we
want to compute a vector x ≥ 0 satisfying

Ax ≤ b, c⊤x ≥ K

or to correctly declare infeasible. We introduce slack variables s, α ≥ 0 and turn the above
inequalities to equalities:

Ax + s = b, c⊤x − α = K

which is an len instance (Ã, b̃, R̃). Comparing to Itai’s proof, we need to track two additional
parameters: the polytope radius R and the maximum magnitude of the input entries X.
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We then reduce the len instance to linear equations with ±2 coefficients (2-len) by
bitwise decomposition. For each bit, we introduce a carry term. Different from Itai’s
reduction, we impose an upper bound for each carry variable. We show that this upper
bound does not change problem feasibility and it guarantees that the polytope radius only
increases polynomially. The following example demonstrates this process.

5x1 + 3x2 − 7x3 = −1 ⇒ (x1 + x2 − x3)20 + (x2 − x3)21 + (x1 − x3)22 = −1 · 20

It can be decomposed to 3 linear equations, together with carry terms (ci − di), where
ci, di ≥ 0:

x1 + x2 − x3 − 2(c0 − d0) = −1
x2 − x3 + (c0 − d0) − 2(c1 − d1) = 0

x1 − x3 + (c1 − d1) = 0

Next, we reduce the 2-len instance (Ā, b̄, R̄) to a 1-len instance (Â, b̂, R̂) by replacing
each ±2 coefficient variable with two new equal-valued variables.

All the above three reduction steps run in nearly-linear time, and the problem sizes
increase nearly-linearly.

3.1.2 Reducing Linear Equations With Nonnegative Variables and ±1
Coefficients to Fixed Homologous Flow Problem

One of our main contributions is a linear-time reduction from 1-len to fhf (single-commodity
fixed homologous flow problem). Our reduction is similar to Itai’s reduction, but more efficient.

Itai observed that a single linear equation âaa⊤x̂ = b̂ with ±1 coefficients can be represented
as a fixed homologous flow network. We improve his construction by creating a sparser flow
network in which the number of edges is proportional to the number of nonzero coefficients
in the linear equations. Figure 1 depicts our gadget. Our gadget has a source vertex s, a sink
vertex t, and two additional vertices J+ and J−. Each variable x̂(i) with coefficient âaa(i) ̸= 0
corresponds to an edge: There is an edge from s to J+ if âaa(i) = 1, and there is an edge from
s to J− if âaa(i) = −1. The amount of flow passing this edge encodes the value of x̂(i). Thus,
the difference between the total amount of flow entering J+ and that entering J− equals to
âaa⊤x̂. To force âaa⊤x̂ = b̂, we add two edges e1, e2 from J+ to t and one edge e3 from J− to t;
we require e1 and e3 to be homologous and require e2 to be a fixed flow with value b̂.

s

J+

J−

t

e1

x̂(1)

x̂(n)

...

e2

e3

Figure 1 The gadget of reducing a single linear equation âaa⊤x̂ = b̂ with ±1 coefficients to a fixed
homologous flow network (fhf).

We can generalize this construction to encode a system of linear equations Âx̂ = b̂, where
Â ∈ Zm̂×n̂, b̂ ∈ Zm̂. Specifically, we create a gadget as above for each individual equation,
and then glue all the source (sink) vertices for all the equations together as the source (sink,
respectively) of the graph (see Figure 2). In addition to requiring e+

i , e−
i to be homologous

for each single linear equation, to guarantee the variable values to be consistent in these
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s

J+
1

J−
1

J+
m̂

J−
m̂

t

b̂(1)

b̂(m̂)

...

1st equation

m̂ th equation

x̂1(1)

x̂1(n̂)

· · ·

x̂m̂(n̂)

x̂m̂(1)

...

· · ·

e+1

e−1

e+
m̂

e−
m̂

Figure 2 The reduction from 1-len to fhf.

equations, we also require the edges corresponding to the same variable x̂(i) in different
equations to be homologous, i.e., {x̂1(i), . . . , x̂m̂(i)}. We can check that the number of the
vertices is linear in the number of equations; the number of the edges and the total size of the
homologous sets are both linear in the number of nonzero coefficients of the linear equation
system.

3.1.3 Dropping the Homologous and Fixed Flow Constraints
To reduce fhf to 2cf (2-commodity flow problem), we need to drop the homologous and
fixed flow constraints. The reduction has three main steps.

Reducing FHF to SFF. Given an fhf instance, we can reduce it to a fixed homologous
flow instance in which each homologous edge set has size 2 (fphf). To drop the homologous
requirement in fphf, we introduce a second commodity of flow with source-sink pair (s2, t2),
and for each edge, we carefully select the type(s) of flow that can pass through this edge.
Specifically, given two homologous edges (v, w) and (y, z), we construct a constant-sized
gadget (see Figure 3): We introduce new vertices vw, vw′, yz, yz′, construct a directed path

v w y z

s2 vw′vw yz′yz t2
evw eyz

Figure 3 The gadget of reducing a pair of homologous edges (v, w), (y, z) to a selective fixed flow
network (sff).

P : s2 → vw → vw′ → yz → yz′ → t2, and add edges (v, vw), (vw′, w) and (y, yz), (yz′, z).
Now, there is a directed path Pvw : v → vw → vw′ → w and a directed path Pyz : y →
yz → yz′ → z. Paths P and Pvw (Pyz) share an edge evw = (vw, vw′) (eyz = (yz, yz′),
respectively). We select evw and eyz for both flow f s

1 and f s
2, select the rest of the edges

along P for only f s
2, and select the rest of the edges along Pvw, Pyz for only f s

1. By this
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construction, in this gadget, we have f s
2(evw) = f s

2(eyz) being the amount of flow routed in
P , f s

1(evw) and f s
1(eyz) being the amount of flow routed in Pvw and Pyz, respectively. Next,

we choose evw and eyz to be fixed flow edges with equal capacity; this guarantees the same
amount of f s

1 is routed through Pvw and Pyz. The new graph is an sff instance.

Reducing SFF to 2CFF. Next, we will drop the selective requirement of the sff instance.
For each edge (x, y) selected for flow i, we construct a constant-sized gadget (see Figure 4):
We introduce two vertices xy, xy′, construct a direct path si → xy′ → xy → ti, and add

x xy xy′ y

ti si

Figure 4 The gadget of reducing a selective edge (x, y) for commodity i to a 2-commodity fixed
flow network (2cff).

edge (x, xy) and (xy′, y). This gadget simulates a directed path from x to y for flow f f
i , and

guarantees no directed path from x to y for flow f f

ī
so that f f

ī
cannot be routed from x to y.

We get a 2cff instance.

Reducing 2CFF to 2CF. It remains to drop the fixed flow constraints. The gadget we will
use is similar to that used in the last step. We first introduce new sources s̄1, s̄2 and sinks
t̄1, t̄2. Then, for each edge (x, y) with capacity u, we construct a constant-sized gadget (see
Figure 5).

x xy xy′ y

t̄1 t̄2 s̄1 s̄2

(0, u)
ti zi z′i si

t̄i s̄i

(0,M)(0, 2u− l) (0, u)

(0, u) (0, u) (0, u) (0, u)

(0,M) (0,M)

(0,M) (0,M)

Figure 5 The gadget of reducing 2cff to a 2-commodity flow with required flow amount (2cfr).
l, u are lower and upper edge capacity of (x, y), respectively: l = u if (x, y) is a fixed flow edge; l = 0
if (x, y) is a non-fixed flow edge.

We introduce two vertices xy, xy′, add edges (s̄1, xy′), (s̄2, xy′), (xy, t̄1), (xy, t̄2), (xy′, xy),
and (x, xy), (xy′, y). This simulates a directed path from x to y that both flow f r

1 and f r
2

can pass through. We let (xy′, xy) have capacity u if (x, y) is a fixed flow edge and 2u

otherwise; we let all the other edges have capacity u. Assume all the edges incident to the
sources and the sinks are saturated, then the total amount of flows routed from x to y in
this gadget must be u if (x, y) is a fixed flow edge and no larger than u otherwise. Moreover,
since the original sources and sinks are no longer sources and sinks now, we have to satisfy
the conservation of flows at these vertices. For each i ∈ {1, 2}, we create a similar gadget
involving s̄i, t̄i to simulate a directed path from ti to si (the original sink and source), and
let the edges incident to s̄i, t̄i have capacity M , the sum of all the edge capacities in the
2cff instance. This gadget guarantees that assuming the edges incident to s̄i and t̄i are
saturated, the amount of flow routed from ti to si through this gadget can be any number at
most M . To force the above edge-saturation assumptions to hold, we require the amount of
flow f r

i routed from s̄i to t̄i to be no less than 2M for each i ∈ {1, 2}.
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Now, this instance is close to a 2cf instance except that we require a lower bound for
each flow value instead of a lower bound for the sum of two flow values. To handle this, we
introduce new sources ¯̄s1, ¯̄s2 and for each i ∈ {1, 2}, we add an edge (¯̄si, s̄i) with capacity
2M , the lower bound required for the value of f r

i .
One can check that in each reduction step, the reduction time is nearly linear and the

problem size increases nearly linearly. In addition, given a solution to the 2cf instance, one
can construct a solution to the lp instance in nearly linear time.

3.1.4 Computing an Approximate Linear Program Solution From an
Approximate 2-Commodity Flow Solution

We establish an error bound for mapping an approximate solution to 2cfa to an approximate
solution to lpa. Below we outline the intuition behind our error analysis for flow problems.
We will keep track of multiple types of error (e.g., error in congestion, demand, selective
types, and homology depending on the problem settings). Now suppose we reduce problem
P to problem Q using a certain gadget, and then we map a solution to Q back to a solution
to P. We observe that each error notion of P is an additive accumulation of the multiple
error notions of Q. This is because we have to map the flows of Q passing through a gadget
including multiple edges back to a flow of P passing through a single edge. Each time we
remove an edge, various errors related to this edge and incident vertices get transferred to its
neighbors. Thus, the total error accumulation by the solution mapping can be polynomially
bounded by the number of edges. So, the final error only increases polynomially.
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