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Abstract
This is an introduction to the notion of twin-width, with emphasis on how it interacts with first-
order model checking and enumerative combinatorics. Even though approximating twin-width
remains a challenge in general graphs, it is now well understood for ordered graphs, where bounded
twin-width coincides with many other complexity gaps. For instance classes of graphs with linear
FO-model checking, small classes, or NIP classes are exactly bounded twin-width classes. Some
other applications of twin-width are also presented.
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1 Introduction

One of the most natural ways to understand discrete structures is to measure their complexity.
A reasonable expectation is that the class of structures with bounded measure is not too
difficult to understand and manipulate. Ideally, bounded measure classes should be simple
with respect to several points of view such as “computationally hard problems can be solved
efficiently” or “the number of structures of size n is a small function of n” and should
also enjoy some stability like “the measure should stay bounded if one performs moderate
deterministic changes to the structures”.

The first difficulty to provide a general purpose complexity measures on graphs is that
it quickly boils down to the basic question: What is a simple 01-matrix? Fortunately this
problem has already been addressed long ago and the answer is very simple: a matrix M is
complex if it contains all small matrices up to some (large) size. Consequently, the complexity
measure vc(M) could be the maximum k for which all 01-valued k × k-matrices appear in M .
This is equivalent to the well-known Vapnik-Cervonenkis dimension and indeed classes of
matrices with bounded VC-dimension have moderate growth O(2n2−ε) and some problems are
computationally easier (for instance the minimum hitting set problem can be approximated).
Interestingly, these two properties characterize bounded VC-dimension for classes of matrices
closed under submatrices. This is the bounded/unbounded VC-dimension gap, which is
(arguably) the first question one should ask when investigating a class of structures.

The exact same idea can be used to measure the complexity of a permutation matrix
M (exactly one 1 per row and per column): let mt(M) be the maximum k for which all
k × k permutation matrices appear in M . Marcus and Tardos [17], proving the Stanley-Wilf
conjecture, showed that the growth of a class of permutation matrices with bounded measure
mt is cn. Using their method, Guillemot and Marx [14] showed that checking if a fixed
k × k permutation matrix F is contained in an n × n permutation matrix P can be done
in linear time f(k)n (when both coded as permutations). Their breakthrough method was
a completely new win/win scheme: they showed that unless one can detect F in P , then
P can be iteratively contracted in linear time and the contraction scheme allows then to
test if indeed F is a subpermutation of P . Note that permutation matrices are ordered
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matrices, where rows and columns are linearly ordered. We showed in Twin-width IV [9] that
the natural generalization of the mt parameter to general ordered matrices is the following:
a matrix M has grid rank k if this is the maximum value for which M has a k × k block
division in which every block has rank at least k.

Guillemot and Marx concluded their paper by asking if their technique for permutations
could be generalized for graphs. This was the goal of our paper Twin-width I [12] where we
defined the twin-width of a graph G as the minimum degree of error in a contraction sequence
of G (we iteratively contract pairs of vertices, two contracted groups of vertices forming an
error edge if there is both an edge and a non edge between them). Precisely, the twin-width
tww(G) of a graph G on n vertices is the minimum k such that: there exists a sequence of
partitions Pn, . . . , P1 of V (G) where each Pi−1 is obtained from Pi by merging two parts, and
such that for every part X in Pj , the number of parts Y in Pj which are not homogeneous
with X is at most k. Here two disjoint sets X, Y are homogeneous if the relation between
x ∈ X and y ∈ Y does not depend of the choices of x, y (therefore homogeneity, and hence
twin-width, is also defined for binary multirelations). So bounded twin-width corresponds
to maximum degree in every error graph Gj which vertices are the parts of Pj and edges
are the non homogeneous pairs. If we impose further that all components of graphs Gj

have bounded size, we have shown in Twin-width VI [10] that the obtained parameter is
equivalent to rank-width. Hence twin-width generalizes rank-width but also captures strict
minor closed classes, or strict permutation graphs.

Mimicking Guillemot and Marx argument for permutations, it is not hard to show that if
one has access to such a sequence Pn, . . . , P1 certifying twin-width k, then one can test if
some fixed graph H of size t is an induced subgraph of G in linear time f(k, t).n. One of
the main result of Twin-width I is that we can moreover test any FO-formula of depth t in
time f(k, t).n. Also, generalizing Marcus-Tardos’ result on permutations, we could prove in
Twin-width II [6] that the number of (labelled) graphs of size n with twin-width bounded by
some constant is at most cn.n! (we call this a small class). This result implies in particular
that the class of (sub)cubic graphs (degree at most 3) does not have bounded twin-width,
since it is not small. But so far we have no “deterministic” construction of a cubic graph with
arbitrarily high twin-width. One can naturally wonder if these two implications (easyness of
FO-model checking and small property) could be equivalent to bounded twin-width.

This is unfortunately not the case: since FO-model checking can be solved in linear
time on bounded degree graphs, there are classes of graphs on which FO-model checking
is tractable and for which twin-width is unbounded. From the counting point of view, we
conjectured in [6] the equivalence between bounded twin-width and being a small class. Sadly
again, we could prove in Twin-width VII [8] that there are (countable) Cayley graphs of
finitely generated groups with unbounded twin-width, while any such Cayley graph defines a
small class. Thus bounded twin-width for general graphs does not seem to be equivalent to
some computational complexity class, nor it seems to be definable via counting. Nevertheless,
bounded twin-width is a particularly stable notion since every first order interpretation of
a bounded twin-width class has also bounded twin-width. For instance squares of planar
graphs have bounded twin-width.

We still have a very limited understanding of twin-width, and especially for bounded
degree graphs: not only we do not have an algorithm to approximate it, but we do not know
what could be a certificate of high twin-width, and we are not even able to construct by
hand a cubic graph of high twin-width. So why twin-width is so hard to handle, given that
it enjoys so many nice properties? The answer is that twin-width indeed corresponds to a
crucial complexity gap, but for ordered graphs (a binary birelation consisting of a graph and
a linear order on its vertices) rather than for graphs.
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Indeed, in Twin-width IV [9] we could show that for classes of ordered graphs, bounded
twin-width, linear FO-model checking and being a small class are equivalent. Moreover
these three characterizations are in turn equivalent to the fact that the adjacency matrices
of the graphs, ordered by their linear order, have bounded grid-rank. Finally, approxim-
ating twin-width for ordered graphs can be done in polynomial time. In particular, the
bounded/unbounded twin-width gap for ordered matrices is as fundamental as the one of
VC-dimension as it has many equivalent formulations coming from other domains. For
instance, for ordered graphs, the NIP property in model theory coincides with bounded
twin-width. Since any graph G with twin-width k has a linear order L for which (G, L) has
twin-width k, the difficulty of twin-width for general graphs seems to come from the fact
that we have lost the information encoded in the linear order.

Hence an appealing strategy to show that a graph G has (reasonably) bounded twin-width
is to be able to guess a suitable linear order T on its vertices since we have the machinery to
efficiently approximate the twin-width of the ordered graph (G, T ). For instance, we could
prove that minor closed classes have bounded twin-width by using a Lex-DFS to provide the
linear order. We can also take advantage of the stability of twin-width by FO-interpretation.
Let us illustrate this on some example: Assume that we want to approximate the twin-width
of a bipartite graph G with bipartition A, B in which B is linearly ordered by <. We would
not have a clue if B would not have been ordered, and we can directly conclude if both
A and B are ordered, so what about this “semi-ordered” case? The answer is quite easy:
associate to each vertex a ∈ A the characteristic 01 vector of its neighbors in B, ordered by
<, and sort A by lexicographic order. This is a first-order interpretation, so the order we
find on A cannot increase twin-width too much. Hence now A is ordered, and twin-width
can be approximated. Note that if several vertices of A have the same neighborhood, we
can pairwise contract them since this does not affect twin-width. This is probably the best
advice to try to compute twin-width: find an order. Is there a general algorithm to find it?

To conclude, let us observe that as a way to characterize simple matrices, twin-width is a
very general tool which can apply to many topics. For instance bounded twin-width is a group
invariant and finitely generated groups can have either bounded or unbounded twin-width
(but again we have no explicit presentation of any unbounded twin-width group). Another
field where matrices are central is linear programming. We have showed in Twin-width
III [7] that when a matrix has bounded twin-width, there is a constant duality gap between
minimum hitting set and maximum packing (while bounded VC-dimension only bridges the
fractional gap for hitting set). We provide in the references a list of recent publications with
better bounds on twin-width of classes ([1, 2, 3, 15, 18]), on computing twin-width ([4, 5]),
on using twin-width for algorithms ([11, 16]) and for data-structures [20], and more topics
([13, 19, 21, 22]) that we cannot unfortunately cover here. We believe that there are many
other aspects of twin-width waiting to be discovered.
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