
(Re)packing Equal Disks into Rectangle
Fedor V. Fomin #

Department of Informatics, University of Bergen, Norway

Petr A. Golovach #

Department of Informatics, University of Bergen, Norway

Tanmay Inamdar #

Department of Informatics, University of Bergen, Norway

Meirav Zehavi #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric
problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.)
We consider the following algorithmic generalization of the equal disk packing problem. In this
problem, for a given packing of equal disks into a rectangle, the question is whether by changing
positions of a small number of disks, we can allocate space for packing more disks. More formally,
in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and
h, we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus
the problem of packing equal disks is the special case of our problem with n = h = 0.

While the computational complexity of packing equal disks into a rectangle remains open, we
prove that the repacking problem is NP-hard already for h = 0. Our main algorithmic contribution
is an algorithm that solves the repacking problem in time (h + k)O(h+k) · |I|O(1), where |I| is the
input size. That is, the problem is fixed-parameter tractable parameterized by k and h.
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1 Introduction

Packing of equal circles inside a rectangle or a square is one of the oldest packing problems.
In addition to many common-life applications, like packing bottles or cans in a box [16],
packings of circles have a variety of industrial applications, including circular cutting problems,
communication networks, facility location, and dashboard layout. We refer to the survey
of Castillo, Kampas, and Pintér [6] for an interesting overview of industrial applications of
circle packings.
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Figure 1 For a packing P of disks A–F , integers h = 2, and k = 2, the repacking P∗ of P is
obtained by relocating disks C and F , and by adding disks G and H.

The mathematical study of packing equal circles can be traced to Kepler [20]. Packing
of circles also poses exciting mathematical and algorithmic challenges. After the significant
efforts spent on packing for several decades [26, 29, 22, 24, 21, 28, 25, 12], optimal packings
of equal circles inside a square are known only for instances of up to tens of circles [9, 27].
The computational complexity of packing of equal circles (NP-hardness or membership in
NP) remains elusive. For packing circles with different radii, Demaine, Fekete, and Lang
claimed NP-hardness [11]. See also the work of Abrahamsen, Miltzow, and Seiferth [1] for a
generic framework for establishing ∃R-completeness for packing problems.

Our paper establishes several results on computational and parameterized complexity of a
natural generalization of packing equal circles inside a rectangle. A remark in the terminology
is in order. In the literature on packing, both terms, circles and disks, could be found. While
the term circle is much more popular than disk, we decided to use disks for the following
reason: In our hardness proof, it is more convenient to operate with open disks. Thus all
disks we consider are open and unit (that is of radius one). Let us remind, that a family
of disks forms a packing if they are pairwise nonintersecting.1 In our problem, we have a
packing of disks in a rectangle, and the question is whether we can allocate some space for
more disks by relocating a small amount of disks. More precisely, we consider the following
problem. See Figure 1 for an example.

Input: A packing P of n unit disks inside a rectangle R and two integers h, k ≥ 0.
Task: Decide whether there is a packing P∗ of n + k unit disks inside R obtained

from P by adding k new disks and relocating at most h disks of P to new
positions.

Disk Repacking

Thus when n = 0, that is, initially there are no disks inside the rectangle, this is the
classical problem of packing equal circles inside a rectangle.

Related Work on Geometric Packing. Packing problems have received significant attention
from the viewpoint of approximation algorithms. For the sake of illustration, let us mention
a few examples. In 2D Geometric Bin Packing, which is a variant of classical Bin Packing,
the goal is to pack a given collection of rectangles into the minimum number of unit square
bins. Typically, it is required that the rectangles be packed in an axis-parallel manner.
There has been a long series of results on this problem, culminating in the currently known
best approximation given by Bansal and Khan [4]. A related problem is that of 2D Strip

1 In the literature, it is often required for geometric packings that a packing should be maximal. In
particular, for disk packing, every disk should touch either the bounding rectangle or another disk.
However, in our problem, the task is to add a specified number of new disks to a given family and this
makes the maximality condition in our case very artificial.
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Packing problem, where the task is to pack a given set of rectangles into an infinite strip of
the given width, so as to minimize the height of packing. This problem has been studied
from the context of approximation [17, 19] as well as parameterized [2] algorithms. Finally,
we mention the Geometric Knapsack problem, which is also closely related to Geometric
Bin Packing. In Geometric Knapsack, we are given a collection of rectangles, where each
rectangle has an associated profit. The goal is to pack a subset of the given rectangles
(without rotation) in an axis-aligned square knapsack, so as to maximize the total profit of
the packed rectangles. Currently, the best approximation is given by Galvez et al. [14]. A
detailed survey of the literature on the results of these problems is beyond the scope of this
work – we direct an interested reader to the cited works and references therein and the survey
paper of Christensen et al. [7]. However, we would like to highlight an important difficulty
in Disk Repacking– which is the focus of this work – as compared to the aforementioned
geometric packing problems, namely, that packing disks in a rectangle requires the use of
intricate geometric arguments as compared to packing rectilinear objects (such as rectangles)
in a rectilinear container (such as a unit square, or an infinite strip).

Our Results. We show that Disk Repacking is NP-hard even if the parameter h = 0 – we
call this special case of problem Disk Appending.

▶ Theorem 1. Disk Appending is NP-hard when constrained to the instances (R, P, k)
where R = [0, a] × [0, b] for positive integers a and b and the centers of all disks in P have
rational coordinates. Furthermore, the problem remains NP-hard when it is only allowed to
add new disks to P with rational coordinates of their centers.

From the positive side, we show that Disk Repacking is FPT when parameterized by k

and h. As it is common in Computational Geometry, we assume the real RAM computational
model, that is, we are working with real numbers and assume that basic operations can be
executed in unit time. We use |I| to denote the input size.

▶ Theorem 2. The Disk Repacking problem is FPT when parameterized by k + h. Specifi-
cally, it is solvable in time (h + k)O(h+k) · |I|O(1).

Theorem 2 also appears to be handy for approximating the maximum number of disks
that can be added to a packing. In the optimization variant of Disk Repacking, called
Max Disk Repacking, we are given a packing P of n disks in a rectangle R and an integer
h, and the task is to maximize the number of new disks that can be added to the packing if
we are allowed to relocate at most h disks of P . By combining Theorem 2 with the approach
of Hochbaum and Maass [18], we prove that the optimization variant of Disk Repacking
admits the parameterized analog of EPTAS for the parameterization by h. More precisely,
we prove the following theorem.

▶ Theorem 3. For any 0 < ε < 1, there exists an algorithm that, given an instance (P, R, h)
of Max Disk Repacking, returns a packing P∗ into R with at least n + (1 − ε) · OPTh disks
in time

(
h+1

ε

)O(h/ε+1/ε2) · |I|O(1), where OPTh is the maximum number of disks that can be
added to the input packing if we can relocate at most h disks.

2 Preliminaries

Disks and rectangles. For two points A and B on the plane, we use AB to denote the line
segment with endpoints in A and B. The distance between A = (x1, y1) and B = (x2, y2)
or the length of AB, is |AB| = ∥A − B∥2 =

√
(x1 − x2)2 + (y1 − y2)2. The (open unit) disk

ICALP 2022
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with a center C = (c1, c2) on the plane is the set of points (x, y) satisfying the inequality
(x − c1)2 + (y − c2)2 < 1. Whenever we write “disk” we mean an open unit disk. Throughout
the paper, we assume that considered input rectangles R = [0, a] × [0, b] for some a, b > 0.

Parameterized Complexity. We refer to the book of Cygan et al. [10] for introduction to
the area and undefined notions. A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ∗ is a set of strings over a finite alphabet Σ. An input of a parameterized problem is a pair
(x, k), where x ∈ Σ∗ and k ∈ N is a parameter. A parameterized problem is fixed-parameter
tractable (or FPT) if it can be solved in time f(k) · |x|O(1) for some computable function f .

Systems of Polynomial Inequalities. In our algorithms, we will need to find suitable
locations for new disks that need to be added such that the locations are compatible with
an existing packing. We will achieve this by solving systems of polynomial inequalities. We
refer to the book of Basu, Pollack, and Roy [5] for basic tools. We use the following result.

▶ Proposition 4 (Theorem 13.13 in [5]). Let R be a real closed field, and let P ⊆ R[X1, . . . , Xℓ]
be a finite set of s polynomials, each of degree at most d, and let

(∃X1)(∃X2) . . . (∃Xℓ)F (X1, X2, . . . , Xℓ)

be a sentence, where F (X1, . . . , Xℓ) be a quantifier-free boolean formula involving P-atoms
of type P ⊙ 0, where ⊙ ∈ {=, ̸=, >, <}, and P is a polynomial in P. Then, there exists an
algorithm to decide the truth of the sentence with complexity sℓ+1dO(ℓ) in D, where D is the
ring generated by the coefficients of the polynomials in P.

Furthermore, a point (X∗
1 , . . . , X∗

ℓ ) satisfying F (X1, . . . , Xℓ) can be computed in the
same time by Algorithm 13.2 (sampling algorithm) of [5] (see Theorem 13.11 of [5]). Note
that because we are using the real RAM model in our algorithms, the complexity is stated
with respect to the natural parameters.

3 Hardness of Disk Appending

In this section, we prove that Disk Appending is NP-hard. Due to space constraints, we
only sketch the proof.

▶ Theorem 1. Disk Appending is NP-hard when constrained to the instances (R, P, k)
where R = [0, a] × [0, b] for positive integers a and b and the centers of all disks in P have
rational coordinates. Furthermore, the problem remains NP-hard when it is only allowed to
add new disks to P with rational coordinates of their centers.

Sketch of proof. We reduce from the Independent Set problem. In this problem, for
a given graph G and a positive integer k, the task is to decide whether G contains an
independent set, that is a set of pairwise nonadjacent vertices, of size at least k. It is
well-known that Independent Set is NP-complete on cubic planar graphs [15].

We only outline the main ideas of the reduction. Let G be a graph and assume that ℓe are
positive integers given for all e ∈ E(G). Suppose that G′ is obtained from G by subdividing
each edge e by 2ℓe times. Then it can be shown that G has an independent set of size k if
and only if G′ has an independent set of size k +

∑
e∈E(G) ℓe. We exploit this observation.

Given a rectilinear embedding of a cubic planar graph G, for each vertex of G, we create
a node area formed by surrounding disks. We can place an additional disk in such an area
and this encodes the inclusion of the corresponding vertex to an independent set. Then we
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join the areas created for vertices by channels corresponding to subdivided edges. Similarly
to node areas, channels are formed by surrounding disks. Each channel contains an even
number of positions where new disks can be placed, and these positions are divided into “odd”
and “even” in such a way that we can put disks in either all odd or all even positions but no
disks could be placed in adjacent even and odd positions. Thus node areas and channels are
used to encode a graph, and then we fill the space around them by filler disks that prevent
placing any new disk outside node areas and channels. Then placing new disks corresponds
to the choice of an independent set in a subdivided graph.

To construct channels, consider four touching disks with centers A, B, C, and D shown in
Figure 2 (a). Note that h = 2 +

√
3, ℓ = |AC| = |BC| = 2

√
2 +

√
3, and the angle α = π/12.

Given disks with centers in A, B and C, every disk with its center in the triangle ABC has
its center in D. Extending this, we make the following observation about the configuration
of disks shown in Figure 2 (b). We call such a configuration of disks a basic channel.

Xr−1

α
h

ℓ

A B

C

D 2

2

A1 Ar

B1

Yr

Br

a) b)

X1

Y2

Figure 2 The basic channel; the disks shown in red and blue are not parts of the channel – they
show places where new disks can be inserted.

▶ Observation 5. Given disks with centers in A1, . . . , Ar and B1, . . . , Br as it is shown in
Figure 2 (b), any additional disk with its center properly inside the quadrilateral A1B1BrAr

has its center in one of the points X1, . . . , Xr−1 or Y2, . . . , Yr. Furthermore, if a disk with
its center in Xi (Yi, respectively) is placed in the quadrilateral, then no other disk can have
its center in Yi or Yi+1 (Xi−1 or Xi, respectively).

It can be noted that the construction of basic channels is sufficiently robust to allow us
to insert gaps between disks to adjust distances and parities. Furthermore, we can “bend”
basic channels.

F

B

X Y

ZA C

h′

O

YX

ZA C

B D

E

αγ
U W

h

a) b)

Figure 3 Node area.

For construction of node areas, consider an equilateral triangle ABC with sides of length
two as shown in Figure 3 (a), h′ = 2

√
3. Suppose that there are disks with centers in A, B

and C. Then it is possible to place at most three disks with centers in the triangle ABC,
and if exactly three disks are placed, then they have their centers in X, Y and Z and touch
each other. Furthermore, if a disk having its center properly inside ABC is placed, then no
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other disk with its center inside the triangle can be added. We exploit this property and add
a basic channel as it is shown in Figure 3 (b). The point O is the center of ABC, that is,
|OA| = |OB| = |OC|. Recall that h = 2 +

√
3 and α = π/12. We set γ = π/3 − π/12 = π/4.

This gives us the configuration of disks with the following properties summarized in the next
observation.

▶ Observation 6. Given disks with centers in A, B, C, D, E and F as it is shown in
Figure 3 (b), the following is fulfilled:

(i) at most one disk with its center in BCD can be added,
(ii) if there is a disk with its center either in Y or U , then no other disk can have its center

properly in BCD,
(iii) if there are disks with their centers in O and W , then a disk with its center in BCD

can be added,
(iv) if there is a disk having its center properly inside ABC, then no other disk with its

center inside ABC can be added.

The node areas are connected by channels attached as it is shown in Figure 3 (b).

Note that in the described reduction, we used disks with algebraic coordinates of their
centers. In particular, the crucial parameters h = 2 +

√
3 and h′ = 3

√
3 are algebraic.

However, we can observe that our construction is robust to allow rounding of coordinates.
More precisely, we can choose a sufficiently small fixed constant δ > 0 and use rational
parameters ĥ and ĥ′ such that 2 +

√
3 = h < ĥ ≤ h + δ and 2

√
3 = h′ < ĥ′ ≤ h′ + δ in the

construction of the channels (see Figure 2) and the node areas (see Figure 3) instead of h

and h′, respectively. ◀

4 An FPT algorithm for Disk Repacking

In this section, we prove that Disk Repacking is FPT when parameterized by k + h.

▶ Theorem 2. The Disk Repacking problem is FPT when parameterized by k + h. Specifi-
cally, it is solvable in time (h + k)O(h+k) · |I|O(1).

Proof of Theorem 2: Overview. On a high-level, the idea behind the algorithm is as
follows. We first perform a greedy procedure to ensure that all “free” areas to place disks
can be intersected by a set H of at most k disks. Afterwards, we make use of a coloring
function of P with the objective to color all disks in P that are repacked by a solution (if one
exists) blue, and all disks in P that “closely surround” them by red. We need to ensure that,
while relying on the initial greedy procedure, it would suffice to correctly color only O(h + k)
disks. Indeed, this gives rise to the usage of a universal set, which is a “small” family of
coloring functions ensured to contain, if there exists a solution, at least one coloring function
that correctly colors all O(h + k) disks we care about.

Considering some coloring function (which expected to be “compatible” with some
solution), we identify “slots” and, more generally, “containers” in its coloring pattern. In
simple words, a slot is just a disk in R that does not intersect any red disk (from P), and a
container is a maximally connected region consisting of slots. We are able to prove that, if
the coloring is compatible with some solution, then, for any container, either all or none of
the disks in P that are contained in the container are repacked. This gives rise to a reduction
from the problem of finding a solution compatible with a given coloring to the Knapsack
problem (more precisely, an extended version of it), where each container corresponds to
an item whose weight is the number of disks in P that it contains, and whose value is the
number of disks that can be packed within it.
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Figure 4 An instance (P, R, h = 2, k =
7) of Disk Repacking. The disks in P are
colored black. The disks in some hole cover H
are colored green (using dashed lines).

Figure 5 A solution P∗ for the instance
on the left. The disks in P∗ \ P are drawn in
purple (using dashed lines).The set of (H, P∗)-
critical disks is the set of green disks from the
figure on the left and the purple disks from
the figure on the right.

To execute the reduction described above, we need to be able to compute the value of
each container. For this purpose, we first prove that a container can be “described” by only
O(h + k) many disks from P ∪ H; more precisely, we show that each container is the union
of disks contained in R that intersect at least one out of O(h + k) disks in P ∪ H, from
which we subtract the union of some other O(h + k) disks from P. Having this at hand, to
compute the value of a container, we first “guess”, for each disk packed by a (hypothetical)
optimal packing of disks in the container, a disk from P ∪ H contained in the container
(making use of its description) with whom it intersects. After that, we seek the corresponding
optimal packing by making use of a system of polynomial equations (inequalities) of degree
2, O(h + k) variables, and O((h + k)2) equations.

Proof of Theorem 2: Free areas. To execute the plan above, we start with the task
of handling the “free” areas. For this, we have the following definition and immediate
observation.

▶ Definition 7 (Holes and Hole Cover). Let (P, R, h, k) be an instance of Disk Repacking.
The set of holes, denoted by Holes, is the set of all disks contained in R that are disjoint from
all disks in P. A set H of disks contained in R such that the set of holes of (P ∪ H, R, h, k)
is empty is called a hole cover.

▶ Observation 8. Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole cover.
Then, every disk contained in R intersects at least one disk in P ∪ H.

Next, we present a definition and a lemma that will allow us to assume that we have a
hole cover of small size at hand.

▶ Definition 9 (Dense instance). Let (P, R, h, k) be an instance of Disk Repacking. We
say that the instance is dense if it has a hole cover of size smaller than k.

▶ Lemma 10. There exists a polynomial-time algorithm that, given an instance (P, R, h, k)
of Disk Repacking, either correctly determines that (P, R, h, k) is a yes-instance or correctly
determines that (P, R, h, k) is dense and returns a hole cover of size smaller than k.

ICALP 2022
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Figure 6 With respect to the instance and
solution described in Figures 4 and 5, the disks
(H, P∗)-forced to be blue are colored blue, and
the disks (H, P∗)-forced to be red are colored
red. Note that each of the disks colored black
can be colored either blue or red by an (H, P∗)-
compatible coloring.

Figure 7 Consider an (H, P∗)-compatible
coloring that colors blue all of the disks col-
ored black in Figure 6. Then, we have four
c-Containers, which roughly correspond to the
areas colored by grey.

Proof. We perform a simple greedy procedure. Initially, H = ∅. Then, as long as there exists
a disk D contained in R that is disjoint from all disks in P ∪ H, we add such a disk D to H.
The test for the existence of such a D can be performed by using a system of polynomial
equations of degree 2 with two variables denoting the x- and y-coordinates of the center
of D. For each disk in P ∪ H, we have an equation enforcing that the distance between
its center and the center of D is at least 2, and additionally we have two linear equations
to enforce that D is contained in R. By Proposition 4, testing whether this system has a
solution (which corresponds to the sought disk D) can be done is polynomial time.2 Once
the process terminates, the algorithm checks whether |H| ≥ k. If the answer is positive,
then adding H (or, more precisely, any subset of size k of it) to P is a solution, and so the
algorithm answers yes, and otherwise the instance is dense and the algorithm returns H
(which witnesses that). ◀

In the two following definitions, we identify the coloring functions that will be useful.

▶ Definition 11 ((H, P∗)-Critical Disks). Let (P, R, h, k) be a yes-instance of Disk Repack-
ing. Let H be a hole cover. Let P∗ be a solution to (P, R, h, k). The set of (H, P∗)-critical
disks, denoted by CritH,P∗ , is (P∗ \ P) ∪ H.

▶ Definition 12 ((H, P∗)-Compatible Colorings). Let (P, R, h, k) be a yes-instance of Disk
Repacking. Let H be a hole cover. Let P∗ be a solution to (P, R, h, k). Let c : P →
{blue, red}. We say that c is (H, P∗)-compatible if:
1. For every D ∈ P \ P∗, we have that c(D) = blue. We say that the disks in P \ P∗ are

(H, P∗)-forced to be blue.
2. For every D ∈ P ∩ P∗ whose center is at distance at most 4 from the center of some disk

in CritH,P∗ , we have that c(D) = red. We say that the disks in P ∩ P∗ whose center is at
distance at most 4 from the center of some disk in CritH,P∗ are (H, P∗)-forced to be red.

We proceed to show that the number of disks in P that should be colored “correctly” is
only O(h + k). This is done using the following easy observation, in the following lemma.

2 Additional details on the precise set of equations mentioned here and in other locations in this section
are omitted from this extended abstract due to space constraints.
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▶ Observation 13. The number of pairwise disjoint disks inside a circle of radius r is
at most πr2.

▶ Lemma 14. Let (P, R, h, k) be a dense yes-instance of Disk Repacking. Let H be a hole
cover of size smaller than k. Let P∗ be a solution to (P, R, h, k). Then, the number of disks
(H, P∗)-forced to be either blue or red is altogether bounded by O(h + k).

Proof. Because P∗ is a solution and |H| < k, we have that |P \ P∗| ≤ h. So, at most h disks
are (H, P∗)-forced to be blue. Further, |CritH,P∗ | = |(P∗ \ P) ∪ H| < h + 2k. Observe that
every disk in P ∩ P∗ whose center is at distance at most 4 from the center of some disk in
CritH,P∗ is contained inside a circle of radius 5 whose center is the center of some disk in
CritH,P∗ . So, due to Observation 13 and since the disks in P ∩ P∗ are pairwise disjoint, there
exist at most π · 52 · (h + 2k) = O(h + k) disks in P ∩ P∗ whose center is at distance at most
4 from the center of some disk in CritH,P∗ . In particular, this means that at most O(h + k)
disks are (H, P∗)-forced to be red. This completes the proof. ◀

Proof of Theorem 2: Values of containers. Next, we present the definition of slots and
containers, in which we will aim to (re)pack disks. The definition is followed by an observation
and a lemma, which, in particular, state that if we try to repack at least one disk in a
container, we can just repack all disks in that container.

▶ Definition 15 (c-Slots and c-Containers). Let (P, R, h, k) be an instance of Disk Repacking.
Let c : P → {blue, red}. The set of c-slots, denoted by Slotsc, is the set of disks contained
in R that are disjoint from all disks in P that are colored red by c. The set of c-containers,
denoted by Containersc, is the set of maximally connected regions in the union of all disks in
Slotsc.

▶ Observation 16. Let (P, R, h, k) be an instance of Disk Repacking. Let c : P →
{blue, red}. Then, the regions in Containersc are pairwise disjoint.

▶ Lemma 17. Let (P, R, h, k) be a yes-instance of Disk Repacking. Let H be a hole cover.
Let P∗ be a solution to (P, R, h, k). Let c : P → {blue, red} be (H, P∗)-compatible. Then, for
every region X ∈ Containersc, either all disks in P contained in X belong to P \ P∗ or none
of the disks in P ∪ P∗ contained in X belongs to (P \ P∗) ∪ (P∗ \ P).

Proof. Targeting a contradiction, suppose that there exists a disk D contained in X that
belongs to (P \ P∗) ∪ (P∗ \ P) and a disk D′ contained in X that belongs to P ∩ P∗. Let γ

be a curve connecting the centers of these disks that lies entirely inside X. By the definition
of a c-container and due to Observation 8, every point of this curve contained in a disk that
belongs to X and intersects a disk in P colored blue by c or a disk in H. So, there must
exist a point on γ that is the center of a disk D∗ that intersects both a disk A contained in
X that belongs to (P \ P∗) ∪ H and a disk A′ contained in X that belongs to P ∩ P∗. From
the definition of a c-container, A′ is colored blue by c. Moreover, note that the center of
A′ is at distance at most 4 from the center of A, since each of the centers of A and A′ is
at distance at most 2 from the center of D∗. However, since c is (H, P∗)-compatible, A′ is
(H, P∗)-forced to be red and hence it is colored red by c. Since c cannot color a disk both
blue and red, we have reached a contradiction. This completes the proof. ◀

We proceed to define the weight and value of a c-container, which will be required for the
reduction of our problem to Knapsack.
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▶ Definition 18 (Weight, Validity and Value of Containers). Let (P, R, h, k) be an instance
of Disk Repacking. Let c : P → {blue, red}. Let X ∈ Containersc. The weight of X is the
number of disks in P that it contains. We say that X is valid if its weight is at most h. The
value of X is the maximum number of disks that can be packed inside X.

The following is a corollary of Lemma 17.

▶ Corollary 19. Let (P, R, h, k) be a yes-instance of Disk Repacking. Let P∗ be a solution
to (P, R, h, k). Let c : P → {blue, red} be (H, P∗)-compatible. Then, every disk in (P \ P∗) ∪
(P∗ \ P) is a c-slot, and it is contained in a valid c-container.

Now, we define a way in which we can “easily” describe a container, and then prove that
this way can be encoded compactly.

▶ Definition 20 (Descriptions of Containers). Let (P, R, h, k) be an instance of Disk Repack-
ing. Let H be a hole cover. Let c : P → {blue, red}. An H-description (or, for short,
description) of a region X ∈ Containersc is a pair (D1, D2) of a subset D1 ⊆ P ∪ H and a
minimal subset D2 ⊆ P such that X equals the set of all points in R at distance less than 2
from at least one disk in D1 and at least 2 from all disks in D2.

▶ Lemma 21. Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole cover.
Let c : P → {blue, red}. Let X ∈ Containersc. Then, X has at least one description (D1, D2).
Moreover, every description (D1, D2) of X satisfies |D1| + |D2| = O(h′ + k′) where h′ is the
weight of X, and k′ is the number of disks in H contained in X.

Proof. By Observation 8, every c-slot intersects at least one disk in {D ∈ P : c(D) = blue}∪H
and is disjoint from all disks in {D ∈ P : c(D) = red}. Further, every point in every disk
in {D ∈ P : c(D) = blue} ∪ H is contained in a c-slot. So, it is immediate that X has a
description (D1, D2), and that |D1| = O(h′ + k′). Due to Observation 13 and since the disks
in P ∪ H are pairwise disjoint, any circle of radius 5 whose center is a center of some disk in
{D ∈ P : c(D) = blue}∪H can contain inside at most π · 52 disks from {D ∈ P : c(D) = red}.
Due to the minimality of D2 (which is a subset of {D ∈ P : c(D) = red}), every disk in
it must be contained inside a circle of radius 5 whose center is a center of some disk in
{D ∈ P : c(D) = blue} ∪ H. Hence, |D2| ≤ |D1| · π · 52 = O(h′ + k′). ◀

Next, we use a description in order to efficiently compute the value of a c-container.

▶ Lemma 22. There is an (h + k)O(h+k) · |I|O(1)-time algorithm that, given a dense instance
I = (P, R, h, k) of Disk Repacking, a hole cover H of size smaller than k, c : P →
{blue, red} and a valid region X with a description (D1, D2), computes the value of X.

Proof. Given I = (P, R, h, k), H, c, X and (D1, D2), the algorithm works as follows. For
ℓ = h+k, h+k −1, . . . , 1, and for every vector (D1, D2, . . . , Dℓ) ∈ D1 ×D1 ×· · ·×D1, it tests
whether there exist ℓ disks S1, S2, . . . , Sℓ such that, for every i ∈ {1, 2, . . . , ℓ}, Si intersects
Di, is contained in R and is disjoint from all disks in D2. The test is done by constructing a
system of polynomial equations of degree 2 with 2ℓ variables and ℓ · (|D2| + 2) equations as
follows. For every i ∈ {1, 2, . . . , ℓ}, we have two variables, denoting the x- and y-coordinates
of the center of Si, one equation enforcing that the distance between the center of Si and
the center of Di is smaller than 2, |D2| equations enforcing that the distance between the
center of Si and the center of each of the disks in D2 is at least 2, and two linear equations
enforcing that Si is contained inside R. If the answer is positive, then the algorithm returns
that the value of X is ℓ and terminates; else, it proceeds to the next iteration. Observe that,
when ℓ = 1, the algorithm necessarily terminates (since X contains at least one c-slot).
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The correctness of the algorithm is immediate from the definition of a description and the
exhaustive search that it performs. As for the running time, first observe that, by Lemma 21
and since X is valid and |H| < k, |D1| + |D2| ≤ O(h + k). So, for a given ℓ, we have
|D1|O(ℓ) = (h + k)O(h+k) choices of vectors. Now, consider the iteration corresponding to
some ℓ and some vector. Then, we solve a system of polynomial equations of degree 2 with
O(h + k) variables and O((h + k)2) equations. By Proposition 4, this can be done in time
(h + k)O(h+k) · |I|O(1). Thus, the algorithm indeed runs in time (h + k)O(h+k) · |I|O(1). ◀

The following definition captures the set of all descriptions.

▶ Definition 23 (Blueprint). Let (P, R, h, k) be an instance of Disk Repacking. Let H
be a hole cover. Let c : P → {blue, red}. An (H, c)-blueprint is a collection of pairs of sets
Blueprint ⊆ 2P∪H × 2P , where the first elements of the pair are pairwise-disjoint subsets of
P ∪ H, such that each region in Containersc has exactly one description in Blueprint, and
every pair in Blueprint is a description of a region in Containersc.

Next, we show how to compute blueprints.

▶ Lemma 24. There exists a polynomial-time algorithm that, given an instance (P, R, h, k)
of Disk Repacking, a hole cover H, and c : P → {blue, red}, outputs an (H, c)-blueprint.

Proof. We will perform a simple greedy procedure to identify, for each disk in {D ∈ P :
c(D) = blue} ∪ H, the description of the region that contains it. Observe that every c-
container contains at least one disk in {D ∈ P : c(D) = blue} ∪ H (due to Observation 8 and
the definition of a c-container). So, if for every disk D ∈ {D ∈ P : c(D) = blue} ∪ H we will
take exactly one description (D1, D2) among the descriptions we identified such that D is
contained in D1, we will obtain an (H, c)-blueprint.

To describe the greedy procedure, consider some D ∈ {D ∈ P : c(D) = blue} ∪ H. Let us
first show how to attain D1. For this purpose, we initialize D1 = {D}. Then, for every pair
of disks A ∈ D1 and B ∈ ({D ∈ P : c(D) = blue} ∪ H) \ D1, we test whether there exists a
pair of disks C and C ′ that are contained in R, intersect each other, are disjoint from all
disks in {D ∈ P : c(D) = red}, and such that C intersects A and C ′ intersects B. The test
for the existence of such a C is performed by using a system of polynomial equations of
degree 2 with four variables denoting the x- and y-coordinates of the centers of C and C ′.
For each disk in {D ∈ P : c(D) = red}, we have two equations enforcing that the distances
between its center and the centers of C and C ′ are each at least 2. Additionally, we have
three equations to enforce that the distance between the centers of C and C ′ is smaller than
2, the distance between the centers of C and A is smaller than 2, and the distance between
the centers of C ′ and B is smaller than 2, as well as four linear equations to enforce that C

and C ′ are contained in R. By Proposition 4, testing whether this system has a solution
(which corresponds to the sought disks C and C ′) can be done is polynomial time. If the
answer is positive, then we add B to D1. In case at least one pair (A, B) resulted in the
addition of B to D1, then we repeat the entire loop, iterating again over all pairs (A, B)
(where the domain from which they are taken is updated as a new disk was added to D1).
Notice that we can perform at most |P| repetitions, and that each repetition results in at
most |P ∪ H|2 many iterations, each taking polynomial time. Hence, the procedure, so far,
runs in polynomial time.

Now, let us show how to attain D2. For this purpose, we initialize D2 = {D ∈ P : c(D) =
red}. Now, for every A ∈ {D ∈ P : c(D) = red}, we test whether there exists a disk C that
is contained in R and intersects both A and at least one disk in D1, and is disjoint from
all disks in D2 \ {A}. The test can be performed by iterating over every disk B ∈ D1, and
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using a system of polynomial equations of degree 2 with two variables denoting the x- and
y-coordinates of the center of C. For each disk in D2 \ {A}, we have an equation enforcing
that the distance between its center and the center of C is at least 2, and additionally we have
two equations to enforce that the distance between the center of C and each of the centers of
A and B is smaller than 2, as well as two linear equations to enforce that C is contained in
R. By Proposition 4, testing whether this system has a solution (which corresponds to the
sought disk C) can be done is polynomial time. If the answer is positive, then we remove A

from D2. Notice that this phase of the procedure also runs in polynomial time. Moreover,
the correctness of the entire procedure directly follows from the definitions of a c-container
and a description. ◀

We proceed to define the (extended version of the) Knapsack problem and the instances
of this problem that our reduction produces.

▶ Definition 25 ((Extended) Knapsack). In the (Extended) Knapsack problem, we are
given a collection of n items U , where each item u ∈ U has a weight w(u) ∈ N0 and a value
v(u) ∈ N0, and an integer W ∈ N0. The objective is to find, for every W ′ ∈ {0, 1, . . . , W},
the maximum VW ′ ∈ N0 for which there exists a subset of items S ⊆ {1, 2, . . . , n} such that∑

i∈S w(u) ≤ W ′ and
∑

i∈S v(u) ≥ VW ′ .

▶ Definition 26 ((H, c)-Knapsack instance). Let (P, R, h, k) be an instance of Disk Repack-
ing. Let H be a hole cover. Let c : P → {blue, red}. The (H, c)-Knapsack instance is
the instance (U, w, v, W, V ) of Knapsack defined as follows: U is the set of all valid re-
gions in Containersc; for each X ∈ U , w(X) and v(X) are the weight and value of X (see
Definition 18); W = h; V = h + k.

▶ Proposition 27 ([8]). The (Extended) Knapsack problem is solvable in time O(|U | ·W ).

We now to prove the correspondence between our problem when we restrict the solution
set to solutions compatible with a given coloring and the Knapsack problem.

▶ Lemma 28. Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole cover.
Let c : P → {blue, red}. Then, there exists a solution P∗ to (P, R, h, k) such that c is
compatible with P∗ if and only if for the (H, c)-Knapsack instance (U, w, v, W, V ), there
exists W ′ ∈ {0, 1, . . . , W} such that VW ′ ≥ W ′ + k.

Proof. In one direction, suppose that there exists a solution P∗ to (P, R, h, k) such that c is
compatible with P∗. Let X1, X2, . . . , Xℓ be the c-containers that contain at least one disk
from (P \ P∗) ∪ (P∗ \ P). By Observation 16, these c-containers are pairwise disjoint, by
Lemma 17 and since c is compatible with P∗, all disks in P contained in X1 ∪ X2 ∪ · · · ∪ Xℓ

belong to P \ P∗, and by Corollary 19 and since c is compatible with P∗, all disks in
(P \ P∗) ∪ (P∗ \ P) are contained in X1 ∪ X2 ∪ · · · ∪ Xℓ and all of these c-containers are
valid. So, because P∗ can repack h disks from P , the total weight of these c-containers must
be some W ′ ∈ {0, 1, . . . , h} = {0, 1, . . . , W}, and since P∗ also packs k additional disks, the
total value of these c-containers must be at least W ′ + k (to accommodate all of the repacked
and k newly packed disks). Thus, VW ′ ≥ W ′ + k.

In the other direction, suppose that there exists W ′ ∈ {0, 1, . . . , W} such that VW ′ ≥
W ′ + k. This means that there exist c-containers X1, X2, . . . , Xℓ whose total weight is
W ′ ∈ {0, 1, . . . , h} and whose total value is at least W ′ + k. However, because these c-
containers are pairwise disjoint (by Observation 16), this means that we can construct a
solution P∗ such that c is compatible with P∗ by repacking all the disks in P that are
contained in X1, X2, . . . , Xℓ (there are at most h such disks) and, additionally, inserting k

new disks, within X1, X2, . . . , Xℓ. This completes the proof. ◀
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The following is a corollary of Lemmas 22 and 24.

▶ Corollary 29. There exists an (h + k)O(h+k) · |I|O(1)-time algorithm that, given a dense
instance I = (P, R, h, k) of Disk Repacking, a hole cover H of size smaller than k and
c : P → {blue, red}, computes the (H, c)-Knapsack instance.

To compute coloring functions, we will use the following definition and proposition.

▶ Definition 30 ((U, k)-Universal Set). For a universe U and k ∈ N, a (U, k)-universal set
is a collection C of functions f : U → {blue, red} such that for every pair of disjoint sets
B, R ⊆ U whose union has size at most k, there exists c ∈ C that colors all integers in B

blue and all integers in R red.

▶ Proposition 31 ([23]). There exists an algorithm that, given a universe U of size n and
k ∈ N, constructs a (U, k)-universal set of size 2k+O(log2 k) log n in time 2k+O(log2 k)n log n.

Based on the definition of a universal set, we define the collection of Knapsack instances
relevant to our reduction.

▶ Definition 32 ((H, C)-Knapsack Collection). Let (P, R, h, k) be an instance of Disk
Repacking. Let H be a hole cover. Let C be a (P, q(h + k))-universal set, where q is the
constant hidden in the O-notation in Lemma 14. Then, the (H, C)-Knapsack collection is
the collection of Knapsack instances that includes, for every c ∈ C, the (H, c)-Knapsack
instance.

The following is a corollary of Corollary 29.

▶ Corollary 33. There exists an (h + k)O(h+k) · |I|O(1)-time algorithm that, given a dense
instance I = (P, R, h, k) of Disk Repacking, a hole cover H of size smaller than k and a
(P, q(h + k))-universal set C, computes the (H, C)-Knapsack collection.

Next, we prove the correspondence between our problem and the collection of Knapsack
instances we have just defined.

▶ Lemma 34. Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole cover. Let
C be a (P, q(h + k))-universal set. Then, (P, R, h, k) is a yes-instance of Disk Repacking
if and only if the (H, C)-Knapsack collection contains an instance (U, w, v, W, V ) for which
there exists W ′ ∈ {0, 1, . . . , W} such that VW ′ ≥ W ′ + k.

Proof. In one direction, suppose that (P, R, h, k) is a yes-instance. By the definition of
a (P, q(h + k))-universal set and due to Lemma 14, there exists c ∈ C that is compatible
with P∗. So, the (H, c)-Knapsack instance is contained in the (H, C)-Knapsack collection
(U, w, v, W, V ), and by Lemma 28, for this instance there exists W ′ ∈ {0, 1, . . . , W} such that
VW ′ ≥ W ′ + k.

In the other direction, suppose that the (H, C)-Knapsack collection contains an instance
(U, w, v, W, V ) for which there exists W ′ ∈ {0, 1, . . . , W} such that VW ′ ≥ W ′ + k. This
instance is a (H, c)-Knapsack instance for some c ∈ C. So, by Lemma 28, (P, R, h, k) is, in
particular, a yes-instance of Disk Repacking. ◀

Proof of Theorem 2: Putting it all together. We are now ready to make the final step of
the proof of Theorem 2.

The algorithm works as follows. Given an instance (P, R, h, k) of Disk Repacking,
it calls the algorithm in Lemma 10 to either correctly determine that (P, R, h, k) is a
yes-instance or correctly determine that (P, R, h, k) is dense and obtain a hole cover H
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of size smaller than k. In the first case, the algorithm is done. In the second case, the
algorithm proceeds as follows. First, it calls the algorithm in Proposition 31 to obtain a
(P, q(h + k))-universal set C. Then, it calls the algorithm in Corollary 33 to obtain the
(H, C)-Knapsack collection. Afterwards, it uses the algorithm of Proposition 27 to determine
whether the (H, C)-Knapsack collection contains an instance (U, w, v, W, V ) for which there
exists W ′ ∈ {0, 1, . . . , W} such that VW ′ ≥ W ′ + k.

The correctness of the algorithm follows from Lemma 34. The runtime bound of (h +
k)O(h+k) · |I|O(1) follows from the runtimes bounds of the algorithms that the algorithm calls,
stated in Lemma 10, Proposition 31, Corollary 33, and Proposition 27.

This concludes the proof of Theorem 2.

5 An FPT approximation for Maximum Disk Repacking

In this section, we use Theorem 2 to show that the optimization variant of Disk Repacking,
where we maximize the number of added disks, admits an FPT-AS (i.e., Fixed Parameter
Tractable Approximation Scheme, a parameterized analog of EPTAS) when parameterized by
h. Let us remind that in the optimization problem, called Max Disk Repacking, we are
given a packing P of n disks in a rectangle R and an integer h, and the task is to maximize
the number of new disks that can be added to the packing if we are allowed to relocate at
most h disks of P.

We need an algorithm for the special case h = 0, that is, for the optimization version of
Disk Appending. The algorithm is based on the shifting technique, originally introduced
by Hochbaum and Maass [18] (also related to Baker’s technique [3]). We use OPT for the
maximum number of disks that can be added in a rectangle to complement a given packing P .

▶ Lemma 35. For any 0 < ε < 1, there exists an algorithm that for a packing of n disks in a
rectangle, returns a packing with at least n + (1 − ε) · OPT disks in time

( 1
ε

)O(1/ε2) · |I|O(1),
where |I| is the input size.

Proof. Let S∗, |S∗| = OPT, be the set of newly added disks in an optimal solution. Let
ℓ ≥ 1 be a fixed positive integer. Recall that the instance is contained inside a bounding
rectangle R. Let us assume that the bottom-left corner of R has Cartesian coordinates (0, 0).
For every 1 ≤ i, j ≤ 2ℓ, let Gi,j be a grid of side-length ℓ × ℓ, with origin at (−i, −j). Note
that there exists a pair (i, j) such that the number of disks of S∗ that do not intersect with
the boundary of the grid cells in Gi,j is at least (1 − 1

ℓ )2 · OPT.
For any 1 ≤ i, j ≤ n, and a grid cell C in Gi,j , let Π(C) be the following subproblem. Let

P(C) ⊆ P denote the packing of the original disks that are completely contained in C, or
partially intersect with C. The goal is to add the maximum number of new disks to obtain a
packing P∗(C). Note that the number of original disks in P, as well as the new disks that
can be added inside C, is upper bounded by ℓ2, which is a constant. Therefore, an optimal
solution to Π(C) can be found by solving a system of polynomial equations. Let OPTi,j

denote the sum of the optimal values for the subproblems Π(C), over all grid cells C in Gi,j .
Let P(C) denote the packing of the original disks that are completely contained in the

cell C, or partially intersect with C. Recall that C is a square of size ℓ × ℓ, and since P(C)
is a packing, |P(C)| = O(ℓ2). Furthermore, the number of new disks that can be added to C

to obtain a new packing is also upper bounded by p = O(ℓ2). We first “guess” the number
of new disks, by trying all possible values q between 1 and p = O(ℓ2). Now, we construct
a system of polynomial equations with 2q variables and q(|P| + 4) equations, as follows.
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For every new disk Di for 1 ≤ i ≤ q, we have two variables corresponding to the x and y

coordinates of its center in the new packing. For every new disk Di, we also add 4 linear
equations that restrict the center to lie at a horizontal/vertical distance of at least 1 from
the perimeter of the cell, so that the disk Di lies completely within the cell C. Finally, for
every disk D′

j in the original packing P , we have an equation that enforces that the distance
between the center of Di and that of D′

j must be at least 2. Now, we solve this system of
O(ℓ2) variables and O(ℓ4) equations in time O(ℓ)O(ℓ2) time, using Proposition 4.

Note that since the diameter of a unit disk is 2, by an averaging argument, there exists
an index 1 ≤ i ≤ ℓ, such that OPTi,j ≥

(
1 − 1

ℓ

)2 · OPT. This is because, there exists an
index i such that at most 1

ℓ disks from S∗ intersect the vertical lines x = aℓ + i for integers
a. Then, for this value of i, there exists an index j, such that at most 1

ℓ fraction of the disks
that are completely contained within the lines x = aℓ + i intersect horizontal lines bℓ + j for
integers b. We direct the reader to [18] for a formal argument of this type.

Therefore, for every 1 ≤ i, j ≤ 2ℓ, and for every grid cell C in Gi,j , we solve the subproblem
Π(C), and return the best solution. Note that if we are looking for an (1 − ε)-approximation
to the number of newly added disks, then (1 − ε) ≤

(
1 − 1

ℓ

)2 ≤ 1 − 1
ℓ That is, ℓ = 1/ε. Thus,

the running time of this algorithm is
( 1

ε

)O(1/ε2) · |I|O(1). ◀

Now we construct an algorithm for Max Disk Repacking in Theorem 3.

▶ Theorem 3. For any 0 < ε < 1, there exists an algorithm that, given an instance (P, R, h)
of Max Disk Repacking, returns a packing P∗ into R with at least n + (1 − ε) · OPTh disks
in time

(
h+1

ε

)O(h/ε+1/ε2) · |I|O(1), where OPTh is the maximum number of disks that can be
added to the input packing if we can relocate at most h disks.

Proof. Let 0 < ε < 1. Consider an instance (P, R, h) of Max Disk Repacking. We find
the maximum nonnegative integer k ≤ 10h/ε such that (P, R, h, k) is a yes-instance of Disk
Repacking using the algorithm from Theorem 2. This can be done in

(
h+1

ε

)O(h/ε) · |I|O(1)

time. Next, we run the algorithm from Lemma 35 for (G, R) for ε′ = 1
2 ε, i.e., assuming that

relocations of disks are not allowed. The algorithm runs in
( 1

ε

)O(1/ε2) ·|I|O(1) time and returns
a solution of size k′. We set k∗ = max{k, k′}. We claim that (1 − ε)OPTh ≤ k∗ ≤ OPTh.
The second inequality is trivial. To show that (1 − ε)OPTh ≤ k∗, we consider two cases.

Suppose that OPTh ≤ 10h/ε. Then OPTh = k as the algorithm from Theorem 2 is exact
and (1 − ε)OPTh ≤ OPTh = k ≤ k∗.

Assume that OPTh > 10h/ε. Let S be the set of added disks in an optimum solution
for (P, R, h) and let L ⊆ P be the set of relocated disks. Denote by OPT′ the maximum
number of disks that can be added to P without relocations. Observe that every disk in L
intersects at most 5 disks of S. Therefore, OPT′ ≥ |S| − 5|L| ≥ OPTh − 5h. By Lemma 35,
(1−ε/2)OPT′ ≤ k′. We obtain that (1−ε/2)(OPTh −5h) ≤ k′ ≤ k∗. Because OPTh > 10h/ε,
k∗ ≥ (1 − ε/2)(OPTh − εOPTh/2) = (1 − ε/2)2OPTh ≥ (1 − ε)OPTh. This proves the claim.

We conclude that k∗ is the required approximation of OPTh. To conclude the proof, note
that the algorithms from Theorem 2 and Lemma 35 can be adapted to return solutions, that
is, the sets of added and relocated disks. ◀

6 Conclusion and open questions

We have shown in Theorem 1 that Disk Repacking problem is NP-hard even if h = 0. On
the other hand, by Theorem 2, Disk Repacking is FPT when parameterized by k and
h. Both theorems naturally lead to the question about parameterization by k only. The
difficulty here is that even for adding one disk, one has to relocate many disks. Already for
k = 1, we do not know, whether the problem is in P or is NP-hard.
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Another natural question stemming from Theorem 2 is about kernelization of Disk
Repacking. Does Disk Repacking admit a polynomial kernel with parameters k and h?
(We refer to books [10, 13] for an introduction to kernelization).

Finally, approximation of Disk Repacking is an interesting research direction. In
Theorem 3 we demonstrated that our FPT algorithm can be used to construct an FPT-AS
with respect to h for Max Disk Repacking. We leave open the question about polynomial
approximation. Another open question concerns the approximability of the minimum number
of relocations h for a given k. Already for k = 1 finding a good approximation of h is a
challenging problem.
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