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Abstract
A cut sparsifier is a reweighted subgraph that maintains the weights of the cuts of the original
graph up to a multiplicative factor of (1 ± ϵ). This paper considers computing cut sparsifiers
of weighted graphs of size O(n log(n)/ϵ2). Our algorithm computes such a sparsifier in time
O(m · min(α(n) log(m/n), log(n))), both for graphs with polynomially bounded and unbounded
integer weights, where α(·) is the functional inverse of Ackermann’s function. This improves upon
the state of the art by Benczúr and Karger (SICOMP 2015), which takes O(m log2(n)) time. For
unbounded weights, this directly gives the best known result for cut sparsification. Together with
preprocessing by an algorithm of Fung et al. (SICOMP 2019), this also gives the best known result for
polynomially-weighted graphs. Consequently, this implies the fastest approximate min-cut algorithm,
both for graphs with polynomial and unbounded weights. In particular, we show that it is possible
to adapt the state of the art algorithm of Fung et al. for unweighted graphs to weighted graphs,
by letting the partial maximum spanning forest (MSF) packing take the place of the Nagamochi-
Ibaraki (NI) forest packing. MSF packings have previously been used by Abraham at al. (FOCS
2016) in the dynamic setting, and are defined as follows: an M -partial MSF packing of G is a
set F = {F1, . . . , FM }, where Fi is a maximum spanning forest in G \

⋃i−1
j=1 Fj . Our method for

computing (a sufficient estimation of) the MSF packing is the bottleneck in the running time of our
sparsification algorithm.
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1 Introduction

In many applications, graphs become increasingly large, hence storing and working with
such graphs becomes a challenging problem. One strategy to deal with this issue is graph
sparsification, where we model the graph by a sparse set of (reweighted) edges that preserve
certain properties. Especially because the aim is to work with large input graphs, this
process should be efficient with respect to the graph size. Among the different types of
graph sparsifiers, there are spanners (preserving distances, see e.g. [26, 2, 4, 11]), resistance
sparsifiers (preserving effective resistances, see e.g. [10]), cut sparsifiers (preserving cuts,
see e.g. [6, 7, 13]), and spectral sparsifiers (preserving Laplacian quadratic forms, see
e.g. [28, 27, 21, 23]). This paper focuses on cut sparsifiers, as first introduced by Benczúr
and Karger in [6]. We say that a (reweighted) subgraph H ⊆ G is a (1± ϵ)-cut sparsifier for
a weighted graph G if for every cut C, the total weight wH(C) of the edges of the cut in H is
within a multiplicative factor of 1± ϵ of the total weight wG(C) of the edges of the cut in G.
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61:2 Faster Cut Sparsification of Weighted Graphs

The main approach to compute cut sparsifiers uses the process of edge compression:
each edge e ∈ E is part of the sparsifier with some probability pe, and if selected obtains
weight w(e)/p(e). It is immediate that such a scheme gives a sparsifier in expectation, but it
has to be shown that the result is also a sparsifier with high probability. The main line of
research has been to select good connectivity estimators λe for each edge such that sampling
with pe ∼ 1/λe yields a good sparsifier. The simplest such result is by Karger [18], where
we sample uniformly with each λe equal to the weight of the min cut. Continuing along
these lines are parameters as: edge connectivity [13], strong connectivity [6, 7], electrical
conductance [27], and Nagamochi-Ibaraki (NI) indices [24, 25, 13]. The challenge within the
approach of edge compression is to find a connectivity estimator that results in a sparse
graph, but can be computed fast.

For weighted graphs, there are roughly three regimes for sparsification. The first re-
gime consists of cut sparsifiers of size O(n log2(n)/ϵ2). Fung, Hariharan, Harvey, and
Panigrahi [12, 13] show that sparsifiers of this asymptotic size can be computed in linear
time for polynomially-weighted graphs. For this they introduce a general framework of
cut sparsification with a connectivity estimator, see Section 2.1. For unbounded weights,
Hariharan and Panigrahi [16] give an algorithm to compute a sparsifier of size O(n log2(n)/ϵ2)
in time O(m log2(n)/ϵ2).

The second regime consists of cut sparsifiers of size O(n log(n)/ϵ2). Benczúr and Karger
[6, 7] show that these can be computed in time O(m log2(n)) for polynomially-weighted
graphs, and in time O(m log3(n)) for graphs with unbounded weights. Note that these results
can be optimized by preprocessing with the algorithms for the first regime.

A third regime, consists of sparsifiers of size O(n/ϵ2). The known constructions in
this regime yield spectral sparsifiers, which are more general than cut sparsifiers. Spectral
sparsification was first introduced by Spielman and Teng in [28]. It considers subgraphs
that preserve Laplacian quadratic forms. Lee and Sun [23] give an algorithm for finding
(1± ϵ)-spectral sparsifiers of size O(n/ϵ2) in time O(m · poly(log(n), 1/ϵ)). Analyzing their
results, we believe that the poly-logarithmic factor contributes at least a factor of log10(n).
While this is optimal in size, both for spectral sparsifiers [5] and cut sparsifiers [3], it is not
in time.

In this paper, we improve on the results in the second regime, both for graphs with
polynomially bounded and unbounded weights1. For an overview of the previous best running
times and our results, see Figure 1. We present our sparsification algorithm in Section 4, for
the special treatment of unbounded weights we refer to the full version of the paper. Our
algorithm improves on the algorithm of Benczúr and Karger [6, 7] for bounded weights, which
has been unchallenged for the last 25 years. It also improves on the algorithm of Hariharan
and Panigrahi [16] for unbounded weights, which has been unchallenged for the last 10 years.
We obtain the following theorem, where α(·) refers to the functional inverse of Ackermann’s
function, for a definition see e.g. [29]. For any realistic value x, we have α(x) ≤ 4.

▶ Theorem 1. There exists an algorithm that, given a weighted graph G and a freely chosen
parameter ϵ ∈ (0, 1), computes a graph Gϵ, which is a (1± ϵ)-cut sparsifier for G with high
probability. The running time of the algorithm is O(m ·min(α(n) log(m/n), log(n))) and the
number of edges of Gϵ is O

(
n log(n)/ϵ2).

Using preprocessing with a result from Fung et al. [13] (see Theorem 23), we obtain the
following corollary for polynomially-weighted graphs.

1 See Section 2.2 for our assumptions on the computational model in case of unbounded weights.
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Algorithm Size Running time
Unweighted
Fung et al. [13] O

(
n log(n)/ϵ2) O (m)

Polynomial weights
Benczúr and Karger [7] O

(
n log(n)/ϵ2) O

(
m log2(n)

)
Fung et al. [13] O

(
n log2(n)/ϵ2) O (m)

[13] + [7] O
(
n log(n)/ϵ2) O

(
m + n log4(n)/ϵ2)

This paper O
(
n log(n)/ϵ2) O(m log(n))

This paper O
(
n log(n)/ϵ2) O(mα(n) log(m/n))

[13] + this paper O
(
n log(n)/ϵ2) O

(
m + n

(
log2(n)/ϵ2)α(n) log(log(n)/ϵ)

)
Unbounded weights
Hariharan and Panigrahi [16] O

(
n log2(n)/ϵ2) O

(
m log2(n)/ϵ2)

Benczúr and Karger [7] O
(
n log(n)/ϵ2) O

(
m log3(n)

)
[16] + [7] O

(
n log(n)/ϵ2) O

(
m log2(n)/ϵ2 + n log5(n)/ϵ2)

Lee and Sun [23] O
(
n/ϵ2) O (m · poly(log(n), 1/ϵ))

This paper O
(
n log(n)/ϵ2) O(m log(n))

This paper O
(
n log(n)/ϵ2) O(mα(n) log(m/n))

Figure 1 An overview of the state of the art algorithms for computing cut sparsifiers for undirected
graphs with integer weights. Algorithm A + B indicates that algorithm B is preprocessed with
algorithm A.

▶ Corollary 2. There exists an algorithm that, given a polynomially-weighted graph G

and a freely chosen parameter ϵ ∈ (0, 1), computes a graph Gϵ, which is a (1 ± ϵ)-
cut sparsifier for G with high probability. The running time of the algorithm is O(m +
n
(
log2(n)/ϵ2)α(n) log(log(n)/ϵ)) and the number of edges of Gϵ is O(n log(n)/ϵ2).

Following Benczúr and Karger [7], the computation of cut sparsifiers of graphs with
fractional or even real weights can be reduced to integer weights. For the reduction see
Appendix C. Thus our algorithm also gives a speedup for such graphs. Since the integer case
is the essential one, we follow prior works and only formulate our results for this particular
case.

As a direct application of the cut sparsifier, we can use Theorem 1 and Corollary 2 to
replace m by n log(n)/ϵ2 in the time complexity of algorithms solving cut problems, at the
cost of a (1± ϵ)-approximation. We detail the effects for the minimum cut problem. Recently,
Gawrychowski, Mozes, and Weiman [14] showed that one can compute the minimum cut of a
weighted graph in O(m log2(n)) time. Using the existing sparsification techniques [7, 13] for
preprocessing, the state of the art for (1 + ϵ)-approximate min-cut is O(m + n log4(n)/ϵ2).
When we use our new sparsification results, we obtain faster (1 + ϵ)-approximate min-cut
algorithms when m = Ω(n log(n)/ϵ2).

▶ Corollary 3. There exists an algorithm that, given a polynomially-weighted graph G and a
freely chosen parameter ϵ ∈ (0, 1), with high probability computes an (1 + ϵ)-approximation
of the minimum cut in time O(m + n log3(n)/ϵ2).

There exists an algorithm that, given a weighted graph G and a freely chosen parameter
ϵ ∈ (0, 1), with high probability computes an (1 + ϵ)-approximation of the minimum cut in
time O(m ·min(α(n) log(m/n), log(n)) + n log3(n)/ϵ2).

ICALP 2022
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For unweighted graphs, even faster minimum cut algorithms exist: Ghaffari, Nowicki, and
Thorup [15] show that we can find the minimum cut in O(min{m+n log3(n), m log(n)}) time.
Combining this with the linear time cut sparsifier of Fung et al. [13], we get (1+ϵ)-approximate
minimum cut in unweighted graphs in O(m + n log(n) min{1/ϵ + log2(n), log(n)/ϵ}) time.

The remainder of this article is organized as follows. The rest of the introduction
consists of a technical overview of our algorithms. Section 2 contains a review of the general
sparsification framework from Fung et al. [13] tailored to our needs, and can be skipped by
readers that are already familiar with this work. We present our algorithm to compute the
MSF indices in Section 3. This is used as a black box in our algorithm, which is presented
and analyzed in Section 4.

Technical Overview
The high-level set-up of our sparsification algorithm is similar to the algorithm for unweighted
graphs of Fung et al. [13]. Our main contribution consists of showing how to generalize this
technique to weighted graphs, by using maximum spanning forest (MSF) indices instead of
Nagamochi-Ibaraki (NI) indices. On a less significant note, we prove that by a tightening of
the analysis one can show that the size and time bounds hold with high probability, and not
only in expectation.

NI indices are defined by means of an NI forest packing: view graphs with integer weights
as unweighted multigraphs, and repeatedly compute a spanning forest. The NI index is the
(last) forest in which an edge appears (for details see Definition 22). The MSF index is also
defined by a forest packing, but in this case the MSF packing: we say F = {F1, . . . , FM} is
an M -partial maximum spanning forest packing of G if for all i = 1, . . . , M , Fi is a maximum
spanning forest in G \

⋃i−1
j=1 Fj . Now, we say that an edge e has MSF index i (w.r.t. to some

(partial) MSF packing F) if e appears in the i-th forest Fi of the (partial) MSF packing F .
The MSF index has been used previously in the context of dynamic graph sparsifiers (see
Abraham et al. [1]). However, there it was only used because it rendered a faster running
time, but using NI indices in the corresponding static construction would have been possible
as well. In this paper, we use distinctive properties of the MSF index, and the NI index would
not suffice. We show that using the MSF index, we can generalize the sparsification algorithm
for unweighted graphs to an algorithm for weighted graphs, thereby demonstrating that the
MSF index is a natural analogue for the NI index in the weighted setting. We provide an
algorithm to compute an M -partial MSF packing in time O(m ·min(α(n) log(M), log(n)))
for polynomially-weighted graphs. We show that for unbounded weights we can compute a
sufficient estimation, also in time O(m ·min(α(n) log(M), log(n))).

An important distinction between the unweighted algorithm of Fung et al. and our
weighted algorithm, is that the use of contractions to keep running times low throughout
the algorithm is no longer possible: edges of different weights have to be treated differently,
hence cannot be contracted. By using multiple iterations with an exponentially decreasing
precision parameter we can overcome this problem.

In the case of a polynomially-weighted input graph, the algorithm consists of two main
phases. In the first phase, we compute sets F0, F1, . . . , FΓ ⊆ E, where edges satisfy some
lower bound on the weight of any cut separating their endpoints. In the second phase, we
sample edges from each set Fi with a corresponding probability.

We set a parameter ρ = Θ
(

ln(n)
ϵ2

)
and start by computing a 2ρ-partial maximum spanning

forest packing for G. We define F0 to be the union of these 2ρ forests. We add the edges of
F0 to Gϵ, which will become our sparsifier. We sample each of the remaining edges E \ F0
with probability 1/2 to construct X1. To counterbalance for the sampling, we will boost
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the weight of each sampled edge with a factor 2. Now we continue along these lines, but
in each iteration we let Fi consist of an exponentially growing number of spanning forests:
Fi is defined as the union of the forests in a (2i+1 · ρ)-partial MSF packing packing of Xi.
Then, Xi+1 is sampled from the remaining edges Xi \ Fi, where again each edge is included
with probability 1/2. We continue this process until there are sufficiently few edges left in
Xi+1. We add these remaining edges to Gϵ.

The second phase of the algorithm is to sample edges from the sets Fi and add these
sampled edges to Gϵ. Hereto, note that an edge e of Fi (for i ≥ 1) was not part of Fi−1,
meaning it was not part of any spanning forest in a (2i · ρ)-partial MSF packing of Xi−1.
This implies that for an edge e ∈ Fi the weight of any cut C in Xi−1 containing e is at least
2i ·ρ ·w(e). Now we use the general framework for cut sparsification of Fung et al. [13], which
boils down to the fact that this guarantee on the weights of cuts implies that we can sample
edges from Fi with probability proportional to 1/(2iw(e)). We show that this results in a
sufficiently sparse graph.

Intuitively, it might seem redundant to sample edges from Xi \ Fi to form Xi+1. This is
indeed not necessary to guarantee that the resulting graph is a sparsifier. However, it ensures
that the number of iterations is limited, which leads to better bounds on the size of the
sparsifier and the running time. Since we sample edges with probability 1/2 in each phase,
we need to repeat the sampling O(log(m/(m0)) times to get the size of Xi down to O(m0).
As this number of steps depends on the initial number of edges m, we get better bounds for
size and running time if m is already small. We will exploit this by preprocessing the graph
with an algorithm from Fung et al. [13] that gives a cut sparsifier of size O(n log2(n)/ϵ2)
in linear time. Moreover, we can show that repeatedly calling our algorithm has no worse
asymptotic time bound than calling it once, since the input graph becomes sparser very
quickly. By doing so, we obtain a sparsifier of size O(n log(n)/ϵ2).

Since we only use that the MSF index gives a guaranteed lower bound on the connectivity
of an edge, one might wonder why the NI index does not work here. After all, the NI indices
of a graph can be computed in linear time, which would result in a significant speed-up.
However, when computing the NI index, the weight of an edge influences the number of
forests necessary, while computing the MSF index only requires the comparison of weights.
Moreover, the number of trees in a MSF packing is always bounded by n. We can use this to
bound the number of edges in the created sparsifier. The same technique with NI indices
would make the size of the sparsifier depend on the maximum weight in the original graph.

To show that the algorithm outputs a cut sparsifier, it needs to be proven that both the
sampling in the first and the second phase preserve cuts. We follow the lines of the analysis
of Fung et al. [13], which makes use of cut projections and Chernoff bounds. We show that by
partitioning the edge sets according to their weight this method extends to weighted graphs.

One part of the algorithm has remained unaddressed: the computation of the maximum
spanning forests. The approach we use here is related to Kruskal’s algorithm for computing
minimum spanning trees [22]. We start by sketching the M -partial MSF packing algorithm
for polynomial weights. We sort the edges according to their weights using radix sort in
O(m) time. We create M empty forests on n vertices. Starting with the heaviest edge, we
add each edge e to the first forest in which it does not create a cycle. We can find this
forest using a binary search in log(M) steps. By using a disjoint-forest representation for
the union-find data structure necessary to carry out these steps, we achieve a total time of
O(mα(n) log(M)).

When working with unbounded weights, the bottleneck is the initial sorting of the edges.
Radix sort does not guarantee to be efficient for unbounded weights. Instead we could use a
comparison-based algorithm, such as merge sort, which takes time O(m log(n)). By employing
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61:6 Faster Cut Sparsification of Weighted Graphs

a different data structure than before, we can guarantee total running time O(m log(n)).
However, we do not need the exact MSF indices for our sampling procedure, an estimate
suffices. We can adapt a “windowing” technique from Benczúr and Karger [7] to split the
graph into subgraphs, where we can rescale the weights to polynomial weights and apply our
previously mentioned algorithm. We then achieve a total running time of O(mα(n) log(M)),
as before. For more details on this, we refer to the full version. So in total we have running
time O(m ·min(α(n) log(m/n), log(n))).

2 Notation and Review

Throughout this paper, we consider G = (V, E) to be an undirected, integer weighted graph
on |V | = n vertices with |E| = m edges. We define a set of edges C ⊆ E to be a cut if there
exists a partition of the vertices V in two non-empty subsets A and B, such that C consists
of all edges with one endpoint in A and the other endpoint in B. The weight of the cut is
the sum of the weights of the edges of the cut: wG(C) =

∑
e∈C wG(e). The minimum cut is

defined as the cut with minimum weight. We say that a (reweighted) subgraph H ⊆ G is a
(1 ± ϵ)-cut sparsifier for a weighted graph G if for every cut C in H, its weight wH(C) is
within a multiplicative factor of 1± ϵ of its weight wG(C) in G. A key concept in the realm
of cut sparsification is the connectivity of an edge.

▶ Definition 4. Let G = (V, E) be a graph, possibly weighted. We define the connectivity of
an edge e = (u, v) ∈ E to be the minimal weight of any cut separating u and v. We say that
e is k-heavy if it has connectivity at least k. For a cut C, we define the k-projection of C to
be the k-heavy edges of the cut C.

The following theorem from Fung et al. [13] bounds the number of distinct k-projections
of a graph, it is a generalization of a preceding theorem by Karger, see [17, 20]. This result
can be useful when showing that cuts are preserved by a sampling scheme. This is due to
the fact that while there may be exponentially many different cuts, this theorem shows that
there are only polynomially many cut projections. Hence if one can reduce a claim for cuts
to their k-projections, a high probability bound can be obtained through the application of a
Chernoff bound.

▶ Theorem 5. For any k ≥ λ and any η ≥ 1, the number of distinct k-projections in cuts of
weight at most ηk in a graph G is at most n2η, where λ is the weight of a minimum cut in G.

Throughout this paper, we say a statement holds with high probability (w.h.p.) if it holds
with probability at least 1 − nc, for some constant c. This constant can be modified by
adjusting the constants hidden in asymptotic notation.

2.1 A General Framework for Cut Sparsification
We review the general framework for cut sparsification as presented in [13]. This section
does not contain new results, and can be skipped by readers that are only interested in our
contribution.

The framework shows that edges can be sampled using different notions of connectivity
estimators. Although this scheme provides one proof for the validity of multiple parameters,
it might be worth noting that an analysis tailored to the used connectivity estimator might
provide a better result. For example, when the framework is applied with “edge strengths”,
it produces a sparsifier of size O(n log2(n)/ϵ2), a log(n) factor denser than the edge strength-
based sparsifier of Benczúr and Karger [7].
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Let G = (V, E) be a graph with integer weights, and let ϵ ∈ (0, 1), c ≥ 1 be parameters.
Given a parameter γ (possibly depending on n) and an integer-valued parameter λe for each
e ∈ E. We obtain Gϵ from G by independently compressing each edge e with parameter

pe = min
(

1,
16(c + 7)γ ln(n)

0.38λeϵ2

)
.

Compressing an edge e with weight w(e) consists of sampling re from a binomial distribution
with parameters w(e) and pe. If re > 0, we include the edge in Gϵ with weight re/pe.

In the following we describe a sufficient condition on the parameters γ and λe such that
Gϵ is a (1± ϵ)-cut sparsifier for G with probability at least 1− 4/nc. Hereto we partition
the edges according to their value λe:

Λ :=
⌊

log
(

max
e∈E
{λe}

)⌋
;

Ri := {e ∈ E : 2i ≤ λe ≤ 2i+1 − 1}.

Let G = {Gi = (V, Ei) : 1 ≤ i ≤ Λ} be a set of integer-weighted subgraphs such that Ri ⊆ Gi.
Moreover suppose that wGi

(e) ≥ wG(e) for each e ∈ Ri. For a given set of parameters
Π = {π1, . . . , πΛ} ⊆ RΛ, we define

Π-connectivity: each edge e ∈ Ri is πi-heavy in Gi;
γ-overlap: for any cut C,

Λ∑
i=0

e
(C)
i 2i−1

πi
≤ γ · e(C),

where e(C) =
∑

e∈C wG(e) and e
(C)
i =

∑
e∈C∩Ei

wGi(e).

The following theorem shows that compressing with parameters adhering to these condi-
tions gives a cut sparsifier with high probability.

▶ Theorem 6 (See [13, Theorem 1.14]). Fix the parameters γ and λe for each edge e. If
there exists G satisfying Π-connectivity and γ-overlap for some Π, then Gϵ is a (1± ϵ)-cut
sparsifier for G, with probability at least 1− 4/nc, where Gϵ is obtained by edge compression
using parameters γ and λe’s.

2.2 The Computational Model
If we have an input graph G = (V, E) with weights w : E → {1, . . . , W}, we assume our
computational model has word size Θ(log(W ) + log(n)). Note that for polynomial weights,
this comes down to a word size of Θ(log(n)). Moreover, we assume that basic operations on
such words have uniform cost, i.e., they can be performed in constant time. In particular,
these basic operations are addition, multiplication, inversion, logarithm, and sampling a
random bit string of word size precision. Such assumptions are in line with previous work
[7, 13], where they are made implicitly.

3 A Maximum Spanning Forest Packing

An important primitive in our algorithm is the use of the maximum spanning forest (MSF)
index. The concept is similar to the Nagamochi-Ibaraki index, the important difference is
that an edge e with weight w(e) appears in w(e) different NI forests. This means that the

ICALP 2022



61:8 Faster Cut Sparsification of Weighted Graphs

number of NI forests depends on the numerical values of the edge weights, and thus can
grow far beyond O(n). On the other hand, the number of maximum spanning forests in
a MSF packing is bounded by the maximum degree in the graph, hence also by n. While
this already has noteworthy implications for polynomially-weighted graphs, it is even more
significant for superpolynomially-weighted graphs. We believe that this property might make
them suitable for applications other than presented here.

▶ Definition 7. Let G = (V, E) be a weighted graph. We say F = {F1, . . . , FM} is an
M -partial maximum spanning forest packing of G if for all i = 1, . . . , M , Fi is a maximum
spanning forest in G \

⋃i−1
j=1 Fj. If we have that

⋃M
i=1 Fi = G, then we call F a (complete)

maximum spanning forest packing of G. Moreover, for e ∈ E we denote the MSF index of e

(w.r.t. F) by fe, i.e., fe is the unique index such that e ∈ Ffe
.

Note that we do not demand the Fi ∈ F to be non-empty, as this suits notation bests in
our applications. Also note that a (partial) MSF packing is fully determined by the MSF
indices.

The following theorem states that computing the MSF indices up to M takes
O(mα(n) log(M)) time for polynomially-weighted graphs.

▶ Theorem 8. Let G = (V, E) be a polynomially weighted graph, where we allow parallel
edges but no self-loops, and we suppose m ≤ n2. Then, for any M > 0, there exists an
algorithm that computes an M -partial MSF packing in O(m ·min(α(n) log(M), log(n))) time.

The outline of the algorithm is as follows, for a complete proof see the full version.
1. Sort the edges by weight in descending order using radix sort in base n.2
2. Create empty forests F1, . . . , FM .
3. Iterate over the edges in descending order and for each edge e = (u, v) do the following:

a. Find the smallest index i such that u and v are not connected in Fi.
b. Store i as the MSF index fe of e. If u and v are connected in every Fi, store fe > M .
c. Add e to Fi.

We need at most M trees, since we only compute an M -partial MSF packing. By using
radix sort, the initial sorting takes time O(m) time (for a time bound of radix sort, see
e.g. [9]). In the full version, we show that the remainder of the algorithm can be executed
in O(mα(n) log(M)) time or O(m log(n)), depending on the data-structure used. There we
also consider an algorithm for sparse graphs with unbounded weights.

4 Cut Sparsification for Weighted Graphs

In this section, we present our algorithm for computing a (1 ± ϵ)-cut sparsifier Gϵ for a
weighted graph G. This makes use of the framework as presented in Section 2.1 and the
maximum spanning forest packing as treated in Section 3. This section works towards proving
the following theorem for polynomially-weighted graphs. In the full version, we generalize
the techniques of this section to graphs with unbounded weights.

▶ Theorem 9. There exists an algorithm that, given a weighted graph G = (V, E), and freely
chosen parameter ϵ > 0, computes a graph Gϵ, which is a (1± ϵ)-cut sparsifier for G with high
probability. The algorithm runs in time O(m ·min(α(n) log(m/n), log(n))) and the number
of edges of Gϵ is O

(
n
(
log(n)/ϵ2) log

(
m/(n log(n)/ϵ2)

))
.

2 Note that conversion to base n takes time O(logn(w(e))) ≤ O(logn(nc)) = O(c) for each edge if the
weights are bounded by nc, so total time O(mc).
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To be precise, we give an algorithm where the given bounds on both running time and size of
the sparsifier hold with high probability. By simply halting when the running time exceeds
the bound, and outputting an empty graph if we exceed the size bound, this gives the result
above.

To achieve a better bound on the size of the sparsifier, we repeatedly apply this theorem
to the input graph, with an exponentially decreasing precision parameter. The proof of this
can be found in the full version.

▶ Theorem 1 (Restated). There exists an algorithm that, given a weighted graph G = (V, E),
and freely chosen parameter ϵ ∈ (0, 1), computes a graph Gϵ, which is a (1± ϵ)-cut sparsifier
for G with high probability. The algorithm runs in time O(m ·min(α(n) log(m/n), log(n)))
and the number of edges of Gϵ is O

(
n log(n)/ϵ2).

4.1 The Algorithm

To sparsify the graph, two methods of sampling are used. One of which is the framework
presented in Section 2.1. However, instead of applying the framework to the graph directly,
there is another sampling process that precedes it.

To simplify equations, let us set ρ := (7+c)1352 ln(n)
0.38ϵ2 . If |E| ≤ 4ρn log

(
m/(n log(n)/ϵ2)

)
,

we do nothing. That is, we return Gϵ = G. If not, we start by an initialization step and
continue with an iterative process, which ends when the remaining graph becomes sufficiently
small.

In the initialization step, we define X0 := E. We compute an ⌊2ρ⌋-partial maximum
spanning forest packing T1, . . . , T⌊2ρ⌋ and we define F0 :=

⋃⌊2ρ⌋
j=1 Tj . The remaining edges

Y0 := X0 \ F0 move on to the next phase.
In iteration i, we create Xi+1 from Yi by sampling each edge with probability 1/2. Next,

we compute ki := ρ · 2i+1 maximum spanning forests T1, . . . , Tki . We define Fi :=
⋃ki

j=1 Tj ,
and Yi := Xi \ Fi.

We continue until Yi has at most 2ρn edges, and set Γ to be the number of iterations.
We retain all edges in F0. In other words: add each edge e ∈ F0 to Gϵ with weight w(e).
The edges of YΓ are also retained, but they need to be scaled to counterbalance the Γ− 1
sampling steps: add each edge e ∈ YΓ to Gϵ with weight 2Γ−1w(e).

Any other edge e ∈ Fi is at least kiw(e)-heavy in Xi−1, as e /∈ Fi−1. We exploit this
heavyness to sample from these edges using the framework. For each e ∈ Fi we:

Define ne := 2iw(e) and pe := min
(

1, 384
169

1
4iw(e)

)
;

Generate re from the binomial distribution with parameters ne and pe;

If re is positive, add e to Gϵ with weight re/pe.
The factor 2i in calling upon the binomial distribution can be seen as boosting the weight of
the edge by a factor 2i, which is needed to counterbalance the i sampling steps in creating
Fi.

Pseudocode of this algorithm can be found in Algorithm 1. Up to the computation
method of the MSF packing, the presented algorithm is the same for polynomially and
superpolynomially-weighted graphs. For the unbounded case, we use the MSF index estimator
as presented in the full version. There we also detail how this influences the correctness of
the algorithm, and the bounds on size and running time.
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Algorithm 1 Sparsify(V, E, w, ϵ, c).

Input: An undirected graph G = (V, E), with integer weights w : E → N+, and
parameters ϵ ∈ (0, 1), c ≥ 1.

Output: An undirected weighted graph Gϵ = (V, Eϵ).
1 Set ρ← (7+c)1352 ln(n)

0.38ϵ2 .
2 if |E| ≤ 4ρn log

(
m/(n log(n)/ϵ2)

)
then

3 return Gϵ = G.
4 end
5 Compute an ⌊2ρ⌋-partial maximum spanning forest packing T1, T2, . . . , T⌊2ρ⌋ for G.
6 Set i← 0.
7 Set X0 ← E.
8 Set F0 ←

⋃⌊2ρ⌋
j=1 Tj .

9 Set Y0 ← X0 \ F0.
10 while |Yi| > 2ρn do
11 Sample each edge in Yi with probability 1/2 to construct Xi+1.
12 i← i + 1.
13 Set ki ← ρ · 2i+1.
14 Compute an ki-partial maximum spanning forest packing T1, T2, . . . , Tki

for the
graph Gi := (V, Xi).

15 Set Fi ←
⋃ki

j=1 Tj

16 Set Yi ← Xi \ Fi.
17 end
18 Set Γ← i. // Γ is the number of elapsed iteration in the previous while-loop.
19 Add each edge e ∈ YΓ to Gϵ with weight 2Γ−1w(e).
20 Add each edge e ∈ F0 to Gϵ with weight w(e).
21 for j = 1, . . . , Γ do
22 foreach e ∈ Fj do
23 Set pe ← min

(
1, 384

169
1

4jw(e)

)
.

24 Generate re from Binom(2jw(e), pe).
25 if re > 0 then
26 Add e to Gϵ with weight re/pe.
27 end
28 end
29 end
30 return Gϵ = (V, Eϵ).

4.2 Correctness
We will prove that Gϵ constructed in Sparsify(V, E, w, ϵ,c) is a (1± ϵ)-cut sparsifier for G

with probability at least 1− 8/nc. Following the proof structure of [13], we first define

S :=
( Γ⋃

i=0
2iFi

)
∪ 2ΓYΓ,

where Γ is the maximum number such that Fi ̸= ∅. We define GS := (V, S). And we prove
the following two lemmas, that together yield the desired result.

▶ Lemma 10. GS is a (1± ϵ/3)-cut sparsifier for G with probability at least 1− 4/nc.
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▶ Lemma 11. Gϵ is a (1± ϵ/3)-cut sparsifier for GS with probability at least 1− 4/nc.

Let us start by proving Lemma 10. The omitted proofs of the lemmas and corollaries
used can all be found in the full version. In creating the sets Fi, we repeatedly makes use of
the MSF indices. The MSF index of an edge immediately ensures a certain connectivity of
that edge. The following lemma makes this precise.

▶ Lemma 12. Let i ≥ 0 and e ∈ Yi be an edge, and set ki := ρ · 2i+1. Then e is w(e)ki-
heavy in G′

i,e = (V, X ′
i,e), where X ′

i,e := {e′ ∈ Xi : w(e′) ≥ w(e)}. Consequently, e is also
w(e)ki-heavy in Gi = (V, Xi).

Next, we show in a general setting that certain ways of sampling preserve cuts. The
following lemma is a generalization of Lemma 5.5 in [13].

▶ Lemma 13. Let R ⊆ Q be subsets of weighted edges on some set of vertices V , satisfying
0 < w(e) ≤ 1 for all e ∈ Q. Moreover, assume that each edge in R is π-heavy in (V, Q).
Suppose that each edge e ∈ R is sampled with probability p ∈ (0, 1], and if selected, given a
weight of w(e)/p to form a set of edges R̂. We denote, for every cut C:

r(C) :=
∑

e∈R∩C

w(e), q(C) :=
∑

e∈Q∩C

w(e), r̂(C) :=
∑

e∈=R̂∩C

w(e)/p.

Let ζ ∈ N≥5, and δ ∈ (0, 1] such that δ2pπ ≥ ζ ln(n)
0.38 , then∣∣∣r(C) − r̂(C)

∣∣∣ ≤ δq(C)

for all cuts C, with probability at least 1− 4/nζ−4.

We want to apply this lemma to our sampling procedure. We do this by considering
different weight classes separately. We define Xi,k := {e ∈ Xi : 2k ≤ w(e) ≤ 2k+1 − 1}, and
x

(C)
i,k =

∑
e∈Xi,k∩C w(e). We define Yi,k and y

(C)
i,k analogously. Some rescaling is necessary to

ensure that all weights lie in (0, 1], as Lemma 13 requires. For A ⊆ E and β > 0, we write
βA to indicate we multiply the weight of the edges by a factor of β.

▶ Lemma 14. With probability at least 1− 4/n4+c, for every cut C in Gi,∣∣∣2−kx
(C)
i+1,k − 2−k−1y

(C)
i,k

∣∣∣ ≤ ϵ/13
2i/2+1

∞∑
k′=k

2−k′−1x
(C)
i,k′ .

Now we look at the general case, for which we sum all weight classes. Hereto, we define
x

(C)
i =

∑
e∈Xi∩C w(e), x

(C)
i+1 =

∑
e∈Xi+1∩C w(e), and y

(C)
i =

∑
e∈Yi∩C w(e).

▶ Corollary 15. With probability at least 1− 4/n1+c, for every cut C in Gi,∣∣∣2x
(C)
i+1 − y

(C)
i

∣∣∣ ≤ ϵ/13
2i/2 · x

(C)
i .

We will repeatedly apply this lemma. To show that the accumulated error does not grow
beyond ϵ/3, we use the following fact. For a proof we refer to [13].

▶ Lemma 16. Let x ∈ (0, 1] be a parameter. Then for any k ≥ 0,
k∏

i=0

(
1 + x/13

2i/2

)
≤ 1 + x/3,

k∏
i=0

(
1− x/13

2i/2

)
≥ 1− x/3.
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As a final step towards proving Lemma 10, we prove a lemma that focusses on the
sparsification occurring in the last Γ− j + 1 iterative steps of our algorithm.

▶ Lemma 17. Let

Sj =

 Γ⋃
i=j

2i−jFi

 ∪ 2Γ−jYΓ

for any j ≥ 0. Then, Sj is a
(
1± (ϵ/3)2−j/2)-cut sparsifier for Gj = (V, Xj), with probability

at least 1− 4/nc.

Note that setting j = 0 gives us Lemma 10.
To prove Lemma 11, we will invoke the framework from [13], as given in Section 2.1.

More specifically, we will apply Theorem 6. We set the parameter γ := 64/3, and for each
e ∈ Fi we set λe := ρ · 4iw(e). This is in line with our choice for pe:

min
(

1,
16(c + 7)γ ln(n)

0.38λeϵ2

)
= min

(
1,

16(c + 7)γ ln(n)
0.38ρ · 4iw(e)eϵ2

)
= min

(
1,

384
169

1
4iw(e)

)
= pe.

We have to provide a set of subgraphs G and a set of parameters Π such that Π-connectivity
and γ-overlap are satisfied.

To explore the connectivity of edges in Ri := {e ∈ E : 2i ≤ λe ≤ 2i+1 − 1} we partition
these sets as follows:

Rj,k := {e ∈ Fj : 2k ≤ ρw(e) ≤ 2k+1 − 1}.

We will view these edges in the subgraph:

Ej,k :=
Γ⋃

j′=j−1

∞⋃
k′=k

ρ · 4Γ−j′+12Λ−k′+j′
Rj′,k′ .

▶ Lemma 18. Each edge e ∈ Rj,k is π := ρ · 4Γ2Λ-heavy in (V, Ej,k).

Now we take all weight classes together to find the set of subgraphs G for which Π-
connectivity is satisfied.

▶ Corollary 19. Each edge in e ∈ Ri is ρ · 4Γ2Λ-heavy in Gi = (V, Ei), with Ei :=⋃min(⌊i/2⌋,Γ)
j=1 Ej,i−2j.

It remains to show that γ-overlap is satisfied.

▶ Lemma 20. For any cut C,

Λ∑
i=0

e
(C)
i 2i−1

ρ · 4Γ2λ
≤ 64/3 · e(C),

where e(C) =
∑

e∈C wGS
(e) and e

(C)
i =

∑
e∈C∩Ei

wGi(e).

Together Corollary 19 and Lemma 20 show that the conditions of Theorem 6 are met
with the given parameters. This proves Lemma 11, and then Theorem 9 follows.
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4.3 Size of the Sparsifier
The sparsifier Gϵ consists of F0, YΓ, and F ′, where F ′ = ∪Γ

i=1F ′
i , with F ′

i the sampled edges
of Fi. First of all, note that |F0| = O(cn ln(n)/ϵ2) and |YΓ| = O(cn ln(n)/ϵ2). Now take
e ∈ Fi. This edge results to an edge in Gϵ if the sample from the binomial distribution with
parameters ne = 2iw(e) and pe = min

(
1, 384

169
1

4iw(e)

)
is positive. The probability that this

happens is

P[Binom(ne, pe) > 0] =
ne∑

k=1
P[Binom(ne, pe) = k] ≤

ne∑
k=1

k P[Binom(ne, pe) = k]

=
ne∑

k=0
k P[Binom(ne, pe) = k] = E[Binom(ne, pe)]

= nepe ≤ 384
1692−i.

Note that this probability is equal for all e ∈ Fi. Since Fi is the union of ki = ρ · 2i+1

spanning forests, we know that |Fi| ≤ ρ2i+1n. Hence the expected size of F ′
i , the sampled

edges in Fi, equals

E[|F ′
i |] =

∑
e∈Fi

P[Binom(ne, pe) > 0] ≤
∑
e∈Fi

384
1692−i = |Fi|

384
1692−i ≤ ρ2i+1n

384
1692−i

= ρ
768
169n.

We have that the total number of sampled edges equals

E[|F ′|] =
Γ∑

i=1
E[|F ′

i |] ≤ Γρ
768
169n,

so it remains to bound Γ, i.e., the number of Fi’s. Hereto, note that the while loop of lines
10–17 ends if |Yi| ≤ 2ρn. We bound the number of edges in Yi by bounding the number of
edges of Xi, of which Yi is a subset. Each edge in Yi−1 ⊆ Xi−1 is sampled with probability
1/2 to form Xi. So E[|Xi|] ≤ |Xi−1|/2. Now by a Chernoff bound (see Theorem 26) we
obtain:

P
[
|Xi| >

2
3 |Xi−1|

]
≤ exp

(
−0.38

36 |Xi−1|
)

> exp
(
−cn ln(n)

36

)
= n−cn/36,

since |Xi−1| ≥ |Yi−1| ≥ 2ρn = 2 · (7+c)1352 ln(n)
0.38ϵ2 n ≥ cn ln(n)

0.38 . We have at most n2 sets Xi, so
we can conclude that with high probability |Xi| ≤ 2

3 |Xi−1| in each step, and by induction
|Yi| < |Xi| ≤

( 2
3
)i

m. We see that

m

(
2
3

)Γ
≤ 2ρn = 21632

0.38ϵ2 cn ln(n),

which is equivalent to

Γ ≥ log
(

m
21632
0.38ϵ2 cn ln(n)

)
/ log(3/2).

So, we can conclude Γ = O
(

log
(

m
cn log(n)/ϵ2

))
. This gives that the total number of sampled

edges is, in expectation,

E[|F ′|] ≤ Γρ
768
169n = O(cn log(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2).
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This compression process can also be seen as the sum of m independent random variables
that take values in {1, 0}.3 We have just calculated that the expected value µ is at most
Bcn ln(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2, for some B > 0. Using this, we apply a Chernoff bound

(Theorem 26) to get an upper limit for the number of sampled edges:

P
[
|F ′| > 2Bcn ln n log

(
m/(cn log(n)/ϵ2)

)
/ϵ2]

≤ exp
(
−0.38Bcn ln(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2)

= n−0.38cnB log(m/(cn log(n)/ϵ2))/ϵ2
.

We conclude that, with high probability, the number of sampled edges is

O(2Bcn ln(n) log
(
m/(cn log(n)/ϵ2)

)
/ϵ2) = O(cn log(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2).

And finally, we conclude that with high probability the number of edges of Gϵ is bounded by
|E(Gϵ)| = |F0|+ |YΓ|+ |F ′| = O(cn log(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2).

4.4 Time Complexity
First off, if m ≤ 4ρn log

(
m/(n log(n)/ϵ2)

)
= O(cn log(n)/ϵ2 log

(
m/(n log(n)/ϵ2)

)
), the

algorithm does nothing and returns the original graph. So for this analysis we can assume
m > 4ρn log

(
m/(n log(n)/ϵ2)

)
. We analyze the time complexity of the algorithm in two

phases. The first phase consists of computing the probabilities pe for all e ∈ E. The second
one is compressing edges, given these probabilities.

The first phase contains i iterations of the while loop (lines 10–17). In each iteration we
sample edges from Yi ⊆ Xi with probability 1/2 to form Xi+1. This takes time at most O(|Xi|).
Next, we compute a maximum spanning forest packing of the graph Gi+1 = (V, Xi+1). We
know that we can compute a M -partial maximum spanning forest packing of a polynomially-
weighted graph with n vertices and m0 edges in O(m0 ·min(α(n) log(M), log(n))) time (see
Theorem 8). So this iteration takes at most O(|Xi+1| · (min(α(n) log(ki+1), log(n)))) time.
As noted earlier, we have with high probability that |Xi| ≤

( 2
3
)i

m. If mα(n) log(m/n) ≤
m log(n), we conclude w.h.p. that the first phase takes total time at most

Γ∑
i=0

O(|Xi|) + O(|Xi+1|α(n) log(ki+1)) =
Γ∑

i=0

(2
3

)i

O(m) +
(2

3

)i+1
O(mα(n) log(ρ2i+2))

≤ 3O(m) + 3O(mα(n) log(ρ2Γ))
= O(mα(n) log(m/n)).

And if m log(n) < mα(n) log(m/n), we have that w.h.p. the first phase takes total time at
most

Γ∑
i=0

O(|Xi|) + O(|Xi+1| log(n)) =
Γ∑

i=0

(
2
3

)i

O(m) +
(

2
3

)i+1
O(m log(n))

≤ 3O(m) + 3O(m log(n))
= O(m log n).

In the second phase, we sample each edge e from the binomial distribution with parameters
ne and pe. We will show this can be done with a process that takes T = O(m) time with
high probability.

3 To be precise, we set the probability of an edge e /∈
⋃

i
Fi to exist to 0.
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▶ Lemma 21. With high probability, the sampling phase of Algorithm 1 takes O(m) time.

For the proof, see the full version. Concluding, the algorithm takes

O(m ·min(α(n) log(m/n), log(n)) + O(m) = O(m ·min(α(n) log(m/n), log(n))

time in total for polynomially-weighted graphs.

5 Conclusion

In this paper, we presented a faster (1 ± ϵ)-cut sparsification algorithm for weighted
graphs. We have shown how to compute sparsifiers of size O(n log(n)/ϵ2) in O(m ·
min(α(n) log(m/n), log(n))) time, for integer weighted graphs. Both algorithms apply a
sampling technique where the MSF index is used as a connectivity estimator.

We have shown that we can compute an M -partial MSF packing in O(mα(m) log(M))
time for polynomially-weighted graphs. For graphs with unbounded integer weights, we have
shown that we can compute a complete MSF packing in O(m log(n)) time, and a sufficient
estimation of an M -partial MSF packing can be computed in time O(mα(m) log(M)). An
open question is whether a more efficient computation is possible. This would improve on
our sparsification algorithm, but might also be advantageous in other applications. The NI
index has shown to be useful in various applications. We believe to have shown that the
MSF index is a natural analogue.

To develop an algorithm to compute an MSF packing, one might be inclined to build
upon one of the algorithms that compute a minimum spanning tree faster than Kruskal’s
algorithm, such as the celebrated linear-time algorithm of Karger, Klein, and Tarjan [19].
However, this algorithm and many other fast minimum spanning tree algorithms make use of
edge contractions. It is far from obvious how to generalize this to a packing: in that case, we
need to work simultaneously on multiple trees, hence we cannot simply contract the input
graph in favor of any single one. To make this work, a more meticulous use of data structures
seems necessary.

Computation of the MSF indices in linear time would be an ultimate goal. However,
for our application a slightly looser bound suffices. If we can reduce the running time to
compute the MSF indices to O(m + n log(n)), then we obtain a time bound of O(m) for cut
sparsification. Moreover, we do not need the exact MSF index, an estimate suffices. This can
either be a constant-factor approximation of the MSF index for each edge, or an estimate
in the weights used in the forests, as done for graphs with unbounded weights in the full
version.
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A Review: A First Application of the Sparsification Framework

In this section, we review the application of the framework of Section 2.1 with Nagamochi-
Ibaraki (NI) indices as parameters, as presented by Fung et al. [13]. As the name suggests,
NI indices were first introduced by Nagamochi and Ibaraki [24, 25]. The algorithm they
provide gives a graph partitioning into forests, and subsequently a corresponding index for
each edge, called the NI index.

▶ Definition 22. Let G = (V, E) be a graph, possibly weighted. We say an edge-disjoint
sequence F1, F2, . . . of forests is a Nagamochi-Ibaraki forest packing for G if Fi is a spanning
forest for G \

⋃i−1
j=1 Fi, where the weights of

⋃i−1
j=1 Fi are subtracted of G. If G is a weighted

graph, each edge e must be contained in w(e) contiguous forests. We define the NI index,
denoted by le, to be the index of the (last if weighted) forest in which e appears.

Nagamochi and Ibaraki show that the NI indices can be computed in linear time for
unweighted graphs and in O(m+n log(n)) time for weighted graphs, see [25, 24]. As is shown
in [13], we can use the NI index as the connectivity estimator in the sparsification framework
to obtain the following result.

▶ Theorem 23. Let G = (V, E) be a weighted graph, and let ϵ > 0 be a constant. Let Gϵ be
obtained by independently compressing each edge with parameter pe = min(1, ρ/le), where
ρ = 224

0.38 ln(n)/ϵ2. Then Gϵ is a (1± ϵ)-cut sparsifier for G with high probability.

The sampling itself takes at most O(m) time, as explained in Lemma 21. As the NI
indices can be computed in O(m + n log(n)) time, this implies that the total running time is
O(m+n log(n)). As a graph with m ≤ n log(n) is already sparse, we can assume m > n log(n).
Thus, for our purposes, the total running time is simply O(m).

Next we provide a bound for the number of edges in the sparsifier Gϵ. Fung et al. [13] prove
this same bound in expectation, we provide a proof for this bound “with high probability”.

▶ Lemma 24. With high probability, the size of the graph Gϵ in Theorem 23 is
O(n log2(n)/ϵ2).

Proof. Let v ∈ V be a vertex with degree dv ≥ O(log2(n)/ϵ2) in G. We denote the degree
of v in Gϵ by d′

v and we write d′ := maxv∈V d′
v. For each neighbor u of v in G, we compress

the edge e = (u, v) with parameter pe = min
(

1, 224 ln(n)
0.38ϵ2le

)
, where le is the NI index of e.

For each edge, the probability that it remains after compression is 1 − (1 − pe)we . From
Bernoulli’s inequality we see 1− (1− pe)we ≤ wepe. Let Ye be the random variable that is
1 if e remains, and 0 else. We note that E

[∑
e:v∈e Ye

]
≤ 224

0.38 ln2(n)/ϵ2. Now we apply a
Chernoff bound (Theorem 26) to obtain

P
[
d′

v ≥ δ
224
0.38 ln2(n)/ϵ2

]
≤ exp

(
−0.38δ

224
0.38 ln2(n)/ϵ2

)
= n−224δ ln(n)/ϵ2

.
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Using a union bound we get the desired result

P
[
d′ ≤ δ

224
0.38 ln2(n)/ϵ2

]
≥ 1− n1−224δ ln(n)/ϵ2

.

Consequently, we obtain that with high probability the number of edges of the sparsifier is
at most O(n log2(n)/ϵ2). ◀

The state of the art for polynomially-weighted graphs is achieved by postprocessing this
result with the algorithm by Benczúr and Karger [7]. Thus our improvement on Benczúr
and Karger leads to an overall improved result.

B Tail bounds

To analyze the sampling methods used in Section 4, we make use of the well-known Chernoff
bound to get a grasp on the tail of various distributions [8].

▶ Theorem 25. Let Y1, . . . , Yn be n independent random variables such that each Yi takes
values in [0, 1]. Let µ =

∑n
i=1 E[Yi] and ξ = 2 ln(2) > 0.38. Then for all ϵ > 0

P

[∣∣∣∣∣
n∑

i=1
Yi − µ

∣∣∣∣∣ > ϵµ

]
≤ 2 exp

(
−ξ min(ϵ, ϵ2)µ

)
.

At times, the expected value µ itself is not known. Fortunately an upper bound on the
expected value also suffices.

▶ Theorem 26. Let Y1, . . . , Yn be n independent random variables such that Yi takes values
in [0, 1]. Let µ =

∑n
i=1 E[Yi] and ξ = 2 ln(2) > 0.38. Suppose µ′ ≥ µ. Then for all δ ≥ 2

P

[
n∑

i=1
Yi > δµ′

]
≤ 2 exp (−ξ(δ − 1)µ′) .

Proof. Let ϵ := (δ − 1)µ′

µ . We have ϵ ≥ 1, so min(ϵ, ϵ2) = ϵ. The statement now follows
directly from Theorem 25. ◀

C Reduction from Real to Integer Weights

In this section, we show how to reduce the computation of a cut sparsifier of a graph
with non-negative real weights to integer weights, formalizing the procedure sketched by
Benczúr and Karger [7]. Let G = (V, E, w) be a weighted graph, where w : E → R. Denote

Wmax := max
e∈E

w(e) and Wmin := min
{

1, min
e∈E

w(e)
}

. Then the reduction consists of the

following steps:
1. Compute Wmin and r := −⌊log( ϵ

2 Wmin)⌋.
2. Create w′ : E → R by rounding the weights w(e) to the closest multiple of 2−r, and define

G′ := (V, E, w′).
3. Create ŵ : E → R by ŵ(e) := 2rw′(e).
4. Compute a (1± ϵ/3)-cut sparsifier Ĥ = (V, EH , ŵH) of Ĝ = (V, E, ŵ).
5. Output H = (V, EH , wH) where wH(e) := 2−rŵH(e).
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First, we show that the graph H is indeed a (1 + ϵ)-cut sparsifier of G. Hereto, we note
that for any cut C we have

wH(C) = 2−rwĤ(C) ≤ 2−r(1 + ϵ/3)wĜ(C) = (1 + ϵ/3)wG′(C) ≤ (1 + ϵ)wG(C),

where the last inequality holds as each weight w′(e) has at most an additive error of 2−r ≤
ϵ
2 Wmin ≤ ϵ

2 with respect to w(e), hence at most an multiplicative error of ϵ
2 . Analogously

we obtain wH(C) ≥ (1− ϵ)wG(C).
By construction, Ĝ has integer weights, which are bounded by O( Wmax

ϵWmin
). Steps 1, 2, 3,

and 5 can be implemented in O(m) time. So indeed we have reduced the problem to finding
a cut sparsifier of a graph with integer weights. Moreover, note that if G has polynomially
bounded real weights, in the sense that Wmax = O(poly(n)) and Wmin = Ω(1/ poly(n)), then
the graph Ĝ has polynomially bounded integer weights. We can state this independent of ϵ,
since for ϵ ≤ 1/m we can always output the entire input graph as a cut sparsifier of optimal
size O(n/ϵ2) [3].
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