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Abstract
Given 1 ≤ ℓ < k and δ ≥ 0, let PM(k, ℓ, δ) be the decision problem for the existence of perfect
matchings in n-vertex k-uniform hypergraphs with minimum ℓ-degree at least δ

(
n−ℓ
k−ℓ

)
. For k ≥ 3,

the decision problem in general k-uniform hypergraphs, equivalently PM(k, ℓ, 0), is one of Karp’s 21
NP-complete problems. Moreover, for k ≥ 3, a reduction of Szymańska showed that PM(k, ℓ, δ) is
NP-complete for δ < 1 − (1 − 1/k)k−ℓ. A breakthrough by Keevash, Knox and Mycroft [STOC ’13]
resolved this problem for ℓ = k − 1 by showing that PM(k, k − 1, δ) is in P for δ > 1/k. Based on
their result for ℓ = k − 1, Keevash, Knox and Mycroft conjectured that PM(k, ℓ, δ) is in P for every
δ > 1 − (1 − 1/k)k−ℓ.

In this paper it is shown that this decision problem for perfect matchings can be reduced to the
study of the minimum ℓ-degree condition forcing the existence of fractional perfect matchings. That
is, we hopefully solve the “computational complexity” aspect of the problem by reducing it to a
well-known extremal problem in hypergraph theory. In particular, together with existing results on
fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for ℓ ≥ 0.4k.
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1 Introduction

As arguably the most natural extension of graph objects to hypergraphs, matchings have
attracted a great deal of attention from both mathematicians and theoretical computer
scientists. However, the study of hypergraph matching problems is still a challenging task.
One particular reason for this is that finding the maximal matchings in k-uniform hypergraphs
for k ≥ 3 (e.g. 3-partite 3-uniform hypergraphs) is famously NP-complete [14], in contrast to
the tractability in the graph case (Edmonds’ blossom algorithm [5]).

Hypergraph matchings also find exciting applications in other fields, e.g. the Existence
Conjecture of Block Designs [16, 8], Ryser’s Conjecture on Latin Squares and Samuels’
Conjecture in Probability Theory. For applications on practical problems, one prime example
is that Asadpour, Feige and Saberi [2] used hypergraph perfect matchings to study the Santa
Claus problem.

In this paper we continue the study of the decision problem of perfect matchings in dense
hypergraphs, initiated by Karpiński, Ruciński and Szymańska [15]. Given k ≥ 2, a k-uniform
hypergraph (or k-graph) H consists of a vertex set V (H) and an edge set E(H), where each
edge in E(H) is a set of k vertices of H. A subset M ⊆ E(H) is a matching if every two
edges from M are vertex-disjoint. A matching in H is called perfect if it covers all vertices
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of H. Given a k-graph H with an ℓ-element vertex set S (where 0 ≤ ℓ ≤ k − 1) we define
degH(S) to be the number of edges containing S. The minimum ℓ-degree δℓ(H) of H is the
minimum of degH(S) over all ℓ-element sets of vertices in H.

The following decision problem was raised by Keevash, Knox and Mycroft [18], generalizing
a problem of Karpiński, Ruciński and Szymańska [15] for the case ℓ = k − 1.

▶ Problem 1. Given integers ℓ < k and δ ∈ [0, 1], denote by PM(k, ℓ, δ) the problem of
deciding whether there is a perfect matching in a given k-graph H on n ∈ kN vertices with
δℓ(H) ≥ δ

(
n−ℓ
k−ℓ

)
.

The motivating fact is that for k ≥ 3, PM(k, ℓ, 0) is equivalent to the problem for general
k-graphs, so is NP-complete; on the other hand PM(k, ℓ, δ) is trivially in P when δ is large
(e.g., when δ > 1−1/k by the result of [9]) because all such k-graphs contain perfect matchings.
Therefore, it is natural to ask for the point where the behavior changes. A reduction of
Szymańska [22] showed that PM(k, ℓ, δ) is NP-complete for k ≥ 3 and δ < 1 − (1 − 1/k)k−ℓ.
In a breakthrough paper, Keevash, Knox and Mycroft [18] conjectured that 1 − (1 − 1/k)k−ℓ

is the turning point and verified the case ℓ = k − 1.

▶ Conjecture 2 (Keevash, Knox and Mycroft [18]). For 1 ≤ ℓ < k, PM(k, ℓ, δ) is in P for
every δ > 1 − (1 − 1/k)k−ℓ.

Recently, Han and Treglown [13] showed that the conjecture holds for 0.5k ≤ ℓ ≤
(1 + ln(2/3))k ≈ 0.59k. In this paper we verify Conjecture 2 for all ℓ ≥ 0.4k. In fact, our
main result reduces the conjecture to the study of the minimum-degree-type threshold for
the existence of a perfect fractional matching in k-graphs. To illustrate this, we introduce
the following definitions.

Given a k-graph H = (V, E), a fractional matching in H is a function ω : E → [0, 1] such
that for each v ∈ V (H) we have that

∑
e∋v w(e) ≤ 1. Then

∑
e∈E(H) w(e) is the size of w. If

the size of w in H is n/k then we say that w is a perfect fractional matching. Given k, ℓ ∈ N
such that ℓ ≤ k − 1, define c∗

k,ℓ to be the smallest number c such that every k-graph H on n

vertices with δℓ(H) ≥ (c + o(1))
(

n−ℓ
k−ℓ

)
contains a perfect fractional matching. The following

is our main result.

▶ Theorem 3. Suppose k, ℓ ∈ N such that 1 ≤ ℓ ≤ k − 1. Then for any δ ∈ (c∗
k,ℓ, 1],

PM(k, ℓ, δ) is in P . That is, for any δ ∈ (c∗
k,ℓ, 1], there exists a constant c = c(k) such that

there is an algorithm with running time O(nc) which given any n-vertex k-graph H with
δℓ(H) ≥ δ

(
n−ℓ
k−ℓ

)
, determines whether H contains a perfect matching.

In fact, in [13] a similar result was proved for δ ∈ (δ∗, 1] where δ∗ = max{c∗
k,ℓ, 1/3}.

Comparing with their result, Theorem 3 drops the extra 1/3 and thus extends the result to
large values of ℓ, e.g., for ℓ > (1 + ln(2/3))k.

For the parameter c∗
k,ℓ, Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [1] in 2012

made the following conjecture.

▶ Conjecture 4 ([1]). For all ℓ, k ∈ N, c∗
k,ℓ = 1 − (1 − 1/k)k−ℓ.

They [1] verified the case k − ℓ ≤ 4. The conjecture was further validated by Kühn, Osthus
and Townsend [19, Theorem 1.7] for ℓ ≥ k/2 and by Han [10, Theorem 1.5] for ℓ = (k − 1)/2.
In a recent work, Frankl and Kupavskii [6] verified this conjecture for ℓ ≥ 0.4k. Unfortunately,
despite the efforts from experts in the field, Conjecture 4 is still open and appears to be
very challenging for small values of ℓ. In fact, Conjecture 4 is also closely related to an old
conjecture of Erdős on the size of the largest matching in hypergraphs (in particular, results
of [6, 10] are corollaries of the corresponding progresses on the conjecture of Erdős).

Combining Theorem 3 with the current status on c∗
k,ℓ we get the following corollary.
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▶ Corollary 5. Conjecture 2 holds for ℓ ≥ 0.4k and for k − ℓ ≤ 4.

Thus, by Theorem 3, Conjecture 2 holds for all cases when c∗
k,ℓ = 1 − (1 −1/k)k−ℓ, that is,

whenever Conjecture 4 holds. Indeed, it is not hard to show that if δ > c∗
k,ℓ, then the k-graph

contains a matching that covers all but exactly k vertices (see Theorem 11). Given this, our
result can be viewed as the efficient detection of a certain class of divisibility constructions
that prevents the existence of perfect matchings. As a consequence, we reduce the decision
problem to an extremal problem on the existential problem of a perfect fractional matching,
which can be recognized as a resolution on the “computational complexity” aspect of this
problem.

We now give an overview of the minimum-degree-type conditions as well as the divisibility
constructions.

1.1 Minimum degree conditions and divisibility barriers

The minimum degree conditions forcing a perfect matching have been studied extensively
over the last two decades. Focusing on the asymptotical thresholds, all known results support
the following conjecture raised by Hàn, Person and Schacht [9]. Note that this corresponds to
the case when the decision problem is trivially in P (a trivial algorithm that always outputs
yes).

▶ Conjecture 6 (Hàn–Person–Schacht, [9]). Given 1 ≤ ℓ < k, if a k-graph H on n vertices
satisfies δℓ(H) ≥ (max{1/2, c∗

k,ℓ} + o(1))
(

n−ℓ
k−ℓ

)
, then H contains a perfect matching.

The conjecture has attracted a great deal of attention and so far has been verified for
ℓ ≥ 3k/8 by Frankl and Kupavskii [6] and a handful of pairs (k, ℓ). Note that this conjecture
is slightly weaker than our problem, as e.g. for certain values of ℓ, it suffices to show that
c∗

k,ℓ ≤ 1/2, rather than determining the precise value of c∗
k,ℓ (and this is the reason that the

known record on Conjecture 6 by [6] is slightly wider than that for the conjecture on c∗
k,ℓ).

In fact under the assumption δℓ(H) ≥ (c∗
k,ℓ + o(1))

(
n−ℓ
k−ℓ

)
, Chang, Ge, Han and Wang [3]

recently proved that one can find a matching in H of size n/k −1 (see Theorem 11). However,
such H may or may not have a perfect matching, and, prior to this work, it is not clear how
to characterize these two types of k-graphs. To understand this, what is interesting to our
problem is the divisibility constructions that achieve the bound 1/2 in the above conjecture.
Consider an n-vertex set V with a bipartition X∪̇Y , where X and Y have almost equal
size subject to that |Y | is odd. Now define a k-graph H0 on V with the edge set consisting
of all k-tuples that contain an even number of vertices in Y . It is not hard to see that
δℓ(H) ≈ 1

2
(

n−ℓ
k−ℓ

)
and H0 has no perfect matching. To see this, note that any matching in H0

covers an even number of vertices in Y , so not the entire Y .
One can actually construct such partitions for an arbitrary number of parts. For certain

sizes of parts, divisibility conditions similar to the parity issue in the above example prevent
the existence of perfect matchings. Thus, our result and algorithm can be viewed as efficient
detection of such constructions. Indeed, in the Keevash–Knox–Mycroft proof of Conjecture 2
for ℓ = k − 1, they designed efficient algorithms to exhibit a number of (O(nk+1)) such
partitions and tested the divisibility (solubility) for each of them. In contrast, we show that
one can focus on one partition and prove a sufficient and necessary condition for the existence
of a perfect matching solely on that partition. This will be made clear in Section 2.

ICALP 2022
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1.2 Related work
The decision problem for perfect matchings in dense hypergraphs was first raised by Karpiński,
Ruciński and Szymańska [15] for the case ℓ = k − 1, where they formulated the problem
as PM(k, δ) which is equivalent to PM(k, k − 1, δ) in this paper. They showed that
PM(k, 1/2 − ε) is in P for some absolute ε > 0, thus showing that 1/2 is not the turning
point for the change of behavior, while Szymańska’s [22] reduction showed that PM(k, δ)
is NP-complete when δ < 1/k. This leaves a hardness gap for δ ∈ [1/k, 1/2). Significant
progress was made by Keevash–Knox–Mycroft [17, 18] who showed that PM(k, δ) is in P for
δ > 1/k. This hardness problem was fully settled by Han [11] who proved that PM(k, 1/k)
is in P. Very recently, this result was strengthened by Han and Keevash [12], who showed
that the minimum (k − 1)-degree condition can be weakened to n/k − c for any constant
c > 0 and their algorithm can actually output the perfect matching provided that one exists.

The similar decision problem for Hamilton cycles (spanning cycles) has also been studied.
First, it is well-known that it is NP-complete to determine if a (2-)graph has a Hamilton cycle.
A k-graph C is called a tight cycle if its vertices can be listed in a cyclic order so that the
edges are all consecutive k-tuples. For tight Hamilton cycles in dense k-graphs, it is shown
that there is no such hardness gap as for perfect matchings. That is, it is showed that by
Rödl, Ruciński and Szemerédi [21] for n-vertex k-graph H, if δk−1(H) ≥ (1/2+o(1))n then H

contains a tight Hamilton cycle, i.e., the decision problem is trivially in P; on the other hand,
Garbe and Mycroft [7] showed that there exists a constant C such that if δk−1(H) ≥ n/2−C,
then the decision problem of tight Hamilton cycles is NP-complete. However, such hardness
gap is shown to exist for looser cycles [7].

Han and Treglown [13] considered the similar decision problem for F -factors2 in graphs
and k-graphs. In particular, they determined the turning point for the F -factor problem for
graphs and thus disproved a conjecture of Yuster [23].

2 A partition lemma and a structural theorem

To prove Theorem 3, we shall establish a structural theorem (Theorem 9) for perfect matchings,
namely, we exhibit a sufficient and necessary condition for the existence of perfect matchings,
which, in addition, can be checked in polynomial time. In turn, the heart of the proof of
the structural theorem is the lattice-based absorption method developed by Han [11], which
features a vertex partition of the given k-graph (Lemma 8).

The first key definition is the reachability introduced by Lo and Markström [20] for the
absorption property we need for building the perfect matching.

2.1 Reachability
Let H be an n-vertex k-graph. For i ∈ N and β ∈ (0, 1), we say that two vertices u and v in
V (H) are (β, i)-reachable in H if there are at least βnik−1 (ik − 1)-sets S such that both
H[S ∪ {u}] and H[S ∪ {v}] have perfect matchings. We refer to such a set S as a reachable
(ik − 1)-set for u and v. We say a vertex set U ⊆ V (H) is (β, i)-closed in H if any two
vertices u, v ∈ U are (β, i)-reachable in H. Given any v ∈ V (H), define Ñβ,i(v, H) to be the
set of vertices in V (H) that are (β, i)-reachable to v in H.

2 Given k-graphs F and H, an F -factor in H is a set of vertex-disjoint copies of F whose union covers
V (H).
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2.2 Index vector and robust vector

Given an n-vertex k-graph H and integer r ≥ 0, let P = {V0, V1, . . . , Vr} be a partition of
V (H) into disjoint vertex sets, namely,

⋃̇
0≤i≤rVi = V (H). In this paper, every partition has

an implicit ordering of its parts.
Next we introduce the index vectors and edge-lattices. Given a k-graph H and a partition

P = {V0, V1, . . . , Vs, Vs+1, . . . , Vr} of V (H), the index vector iP(e) ∈ Zr of an edge e ∈ E(H)
with respect to P is the vector whose coordinates are the sizes of the intersections of e with
each part of P except V0, namely, iP(e)|i = |e ∩ Vi| for i ∈ [r], where v|i is defined as the ith
digit of v. For any v = {v1, . . . , vr} ∈ Zr, let |v| :=

∑r
i=1 vi. Here we say that v ∈ Zr is a

k-vector if it has non-negative coordinates and |v| = k. In previous works, for µ > 0, the set
of µ-robust vectors (denoted by Iµ

P(H)) is defined as the vectors i ∈ Zr such that H contains
at least µnk edges whose index vectors are equal to i. In this paper we need a more detailed
description of robust vectors – where we need to distinguish the roles of two different groups
of Vi.

▶ Definition 7 (µ-robust vectors). Let P = {V0, V1, . . . , Vs, Vs+1, . . . , Vr} be a partition of
V (H). Given µ > 0, define Iµ

P(H) := Iµ
P,1(H) ∪ Iµ

P,2(H) as the union of the following two
sets:
1. the set Iµ

P,1(H) consists of all k-vectors i ∈ Zr such that i|i = 0 for i ∈ {0, 1, . . . , s} and
H contains at least µnk edges e with iP(e) = i;

2. the set Iµ
P,2(H) consists of all k-vectors i ∈ Zr such that i|i = 1 for some i ∈ [s], i|j = 0

for j ∈ {0, 1, . . . , s} \ {i} and every vertex v ∈ Vi is in at least µnk−1 edges e with
iP(e) = i.

The new ingredient of this definition is the assumption (2), which helps us to classify the
vertices which do not enjoy the reachability information.

Now we are ready to state our partition lemma, which outputs a refined partition compared
to the partition lemmas in [11, 13]. Throughout the paper, we write α ≪ β ≪ γ to mean
that it is possible to choose the positive constants α, β, γ from right to left. More precisely,
there are increasing functions f and g such that, given γ, whenever we choose some β ≤ f(γ)
and α ≤ g(β), the subsequent statement holds. Hierarchies of other lengths are defined
analogously.

▶ Lemma 8. Given integers k ≥ 3, C > 0 and real δ > 0, suppose we have 1/n0 ≪ µ ≪
β ≪ δ′ ≪ δ, 1/k, 1/C. Given an n-vertex k-graph H with n ≥ n0 and δℓ(H) ≥ δ

(
n−ℓ
k−ℓ

)
, there

is a partition P of V (H) as

P = {V0, V1, . . . , Vs, Vs+1, . . . , Vr}

such that with c := ⌊1/δ⌋
1. s ≤ 2(c+k−2

k−1 ) and r − s ≤ c,

2. |V0| ≤ k2(
c+k−2

k−1 )
(

k
(

k+2(
c+k−2

k−1 )+c−1
k

)
+
(

c+k−2
k−1

)
C

)
and |

⋃
0≤i≤s Vi| ≤ cδ′n,

3. for 1 ≤ i ≤ s, |Vi| ≥ (k − 1)|V0| + k
(

k+2(
c+k−2

k−1 )+c−1
k

)
+
(

c+k−2
k−1

)
C,

4. for 1 ≤ i ≤ s, there exists i ∈ Iµ
P,2(H) such that i|i = 1,

5. for s + 1 ≤ i ≤ r, |Vi| ≥ δ′n/2 and Vi is (β, 2c)-closed in H[
⋃

s+1≤i≤r Vi].
In particular, such a partition P of H can be found in time O(n2c−1k+1).

ICALP 2022
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2.3 Lattices, solubility and the structural theorem
Keevash, Knox and Mycroft [18] introduced the following notions, which help us to transfer
the divisibility problem to an algebraic setting as follows.

Given a partition P of m parts, denote by Lµ
P(H) the lattice (additive subgroup) in

Zm generated by Iµ
P(H). We write Lm

max for the lattice generated by all k-vectors, that is,
Lm

max := {v ∈ Zm : k divides |v|}.
Suppose L ⊂ L

|P|
max is a lattice in Z|P|, where P is a partition of a set V . The coset group

of (P, L) is Q = Q(P, L) := L
|P|
max/L. For any i ∈ L

|P|
max, the residue of i in Q is RQ(i) := i+L.

For any A ⊆ V of size divisible by k, the residue of A in Q is RQ(A) := RQ(iP(A)).
Let q ∈ N. A (possibly empty) matching M in H of size at most q is a q-solution for

(P, Lµ
P(H)) (in H) if iP(V (H) \ V (M)) ∈ Lµ

P(H); we say that (P, Lµ
P(H)) is q-soluble if it

has a q-solution. We also need a strengthening of this definition as follows. Given a set
U ⊂ V (H), we define that (P, Lµ

P(H)) is (U, q)-soluble if there is a matching M in H such
that M covers U and M is a (|U | + q)-solution.

In our proof, we shall pick a suitable µ > 0 and let q be an upper bound of the order of
the coset group Q = L

|P|
max/Lµ

P(H) (then a trivial bound is q =
(

r+k−1
k

)
, the number of ee)

and U be the part V0. Then we show that H has a perfect matching if and only if (P, Lµ
P(H))

is (V0, q)-soluble.

▶ Theorem 9 (Structural Theorem). Let k, ℓ, q ∈ N where ℓ ≤ k − 1 and let γ > 0 be given.
There exist n0, C := C(k, q) ∈ N and β, µ > 0 such that

1/n0 ≪ β, µ ≪ δ′ ≪ γ, c∗
k,ℓ, 1/q, 1/C, 1/k. (1)

Let H be an n-vertex k-graph with δℓ(H) ≥ (c∗
k,ℓ + γ)

(
n−ℓ
k−ℓ

)
, where n ≥ n0 and k divides

n. Suppose P is a partition of V (H) satisfying Lemma 8 (1)-(5) with δ = c∗
k,ℓ. Moreover,

suppose |Q(P, Lµ
P(H))| ≤ q. Then H contains a perfect matching if and only if (P, Lµ

P(H))
is (V0, q)-soluble.

3 Highlights of the proof: a comparison with the Han–Treglown proof

The basic idea for establishing the structural theorem is to distinguish the roles of robust
and non-robust edges: to avoid the divisibility barriers, we may have to use edges with
certain (combination of) index vectors. For some index vectors v there are many edges e

with iP(e) = v, namely, there are many “replacements” even when we are forbidden from
using, say, a small number of such edges. For other index vectors v there are few edges e

with iP(e) = v, so we have to be careful when using such edges. In fact, the algebraic setting
allows us to show that one can restrict the attention to only a constant number of such
non-robust edges (using the lattice and coset group arguments), and thus this can be tested
by brute force. Then the rest of the proof follows from the lattice-based absorption argument.
Roughly speaking, it reserves a small matching which can be used to turn an almost perfect
matching to a perfect matching given certain divisibility condition on the leftover vertices.

In [13] Han and Treglown proved our Theorem 3 under the additional assumption that
δ > 1/3, which gives a resolution of Conjecture 2 for 0.5k ≤ ℓ ≤ 0.59k. Embarrassingly, this
does not solve the conjecture for ℓ = k − 2, which might be considered as the easiest case
after the resolution of the case ℓ = k − 1. Below we shall first outline the proof in [13], and
then explain our innovation compared with their approach and how such an improvement is
achieved.
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The partition lemma used in [13] is Lemma 12 in this paper (which we use as a building
block to establish our partition). The key problem is that when ℓ < k − 1, one can not apply
Lemma 12 directly to the k-graph H, as in H there might be a set W of vertices v which are
not reachable to many vertices, namely, |Ñβ,i(v, H)| is small for any proper choice of β > 0
and i ∈ N. However, it is straightforward to show that |W | is small, and (after some work)
we can apply Lemma 12 with S = V (H) \ W and get a partition of V (H) \ W . Now we face
the following challenge.

▶ Problem. Suppose |W | = Ω(n). How do we find a matching M covering W so that
H − V (M) has a perfect matching (or conclude that none exists)?

The problem is trivial if |W | is a constant, for which we can do brute force search for a
matching M of constant size, which involves O(n|W |) possibilities; otherwise it is hopeless
without further assumptions.

Furthermore, it was not clear how to deal with the vertices of W by absorption, as
|W | might be smaller than the threshold for µ-robustness but still a small linear size, i.e.,
εn ≤ |W | < µn, so that every vector touching W will not be recorded as a µ-robust vector.
The proof in [13] avoided the “decision” part of the problem by assuming δ > 1/3, so that
when W is non-empty V (H)\W is closed, in which case H always contains a perfect matching
(so any matching M covering W will work). Therefore, the problem is left open for δ < 1/3
(i.e., for ℓ > (1 + ln(2/3))k ≈ 0.595k).

We also note that the existence of W is not a problem in the existential results in the
literature. For previous works on sufficient (minimum-degree-type) conditions for perfect
matchings, those vertices can be put into a small matching of small linear size, whose removal
does not affect much the minimum-degree conditions, guaranteeing that the absorption can
proceed after the removal of this small matching.

Our new proof can be seen as a considerable refinement to the previous approach, where
we strengthen our control on both the partition and the µ-robust vectors. As mentioned
earlier, our new proof features a finer partition lemma (Lemma 8) than previous ones, where
we classify vertices in W as well. More precisely, we first partition S := V (H) \ W , the
set of vertices which are 1-reachable to Ω(n) other vertices, by Lemma 12 and denote the
partition by P1 = {W1, . . . , Wd}. Then we classify vertices of W according to their edge
distributions in P1, that is, we obtain a partition of W by collecting vertices with common
robust edge vectors together, so that the partition satisfies Definition 7 (2). Next we put the
clusters that are too small (smaller than a certain constant) to a trash set V0 in a recursive
manner. This results a trash set V0 of constant order, and because we have no control on V0
at all, we will check how to match V0 by brute force in time O(n|V0|). Now the good point is
that all clusters survived from this greedy process have a good (though still constant) size
(Lemma 8 (3)), which is enough (and crucial) for a (refined) absorption argument to work
in later proofs. Since all the above procedures can be done in polynomial time, we get the
desired polynomial-time algorithm for the decision problem PM(k, ℓ, δ).

4 Proof of Theorem 3

Now we prove Theorem 3. Recall that c∗
k,ℓ ≥ c∗

k,k−1 = 1/k. Then ⌊1/c∗
k,ℓ⌋ ≤ k. Let

C := C(k, q) be given by Theorem 9 and let

q :=
(

k + 2(2k−2
k−1 ) + k − 1

k

)
.

Suppose we have constants satisfying the hierarchy (1).

ICALP 2022
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Both Lemma 8 and Theorem 9 require that n is larger than a constant n0, and by custom
k-graphs with less than n0 vertices can be tested by brute force. By Lemma 8, in time
O(n2k−1k+1) we can find a partition P satisfying Lemma 8 (1)-(5). Because of Lemma 8
(1), we know r ≤ k + 2(2k−2

k−1 ) and obtain that |Q(P, Lµ
P(H))| ≤

(
r+k−1

k

)
≤ q (no matter what

Lµ
P(H) actually is). Then by Theorem 9, to determine if H contains a perfect matching

it suffices to test if (P, Lµ
P(H)) is (V0, q)-soluble. This can be done by testing whether

any matching M of size at most |V0| + q covering V0 is a solution of (P, Lµ
P(H)), in time

O(n|V0|+q). The overall time is polynomial in n because

q =
(

k + 2(2k−2
k−1 ) + k − 1

k

)
and

|V0| ≤ k2(
2k−2
k−1 )

(
k

(
2(2k−2

k−1 ) + 2k − 1
k

)
+
(

2k − 2
k − 1

)
C

)
,

where we recall that C := C(k, q) only depends on k.

Organization. The rest of this paper is organized as follows. Note that it remains to prove
Lemma 8 and Theorem 9. We collect and prove a number of auxiliary results in Section 5,
and give a proof of Lemma 8 in Section 6. In Section 7, we prove an absorbing lemma, which
is an important component of the proof of Theorem 9. The proof of Theorem 9 is presented
in Section 8.

5 Useful tools

In this section we collect together some results that will be used in our proof of Theorem 9.
When considering ℓ-degree together with ℓ′-degree for some ℓ′ ̸= ℓ, the following proposition
is very useful.

▶ Proposition 10. Let 0 ≤ ℓ ≤ ℓ′ < k and H be a k-graph. If δℓ′(H) ≥ x
(

n−ℓ′

k−ℓ′

)
for some

0 ≤ x ≤ 1, then δℓ(H) ≥ x
(

n−ℓ
k−ℓ

)
.

Proof. Since ℓ ≤ ℓ′, we count δℓ(H) by

δℓ(H) ≥ δℓ′(H)
(

n − ℓ

ℓ′ − ℓ

)
1(

k−ℓ
ℓ′−ℓ

)
≥ x

(
n − ℓ′

k − ℓ′

)(
n − ℓ

ℓ′ − ℓ

)
1(

k−ℓ
ℓ′−ℓ

)
≥ x

(
n − ℓ

k − ℓ

)(
k − ℓ

ℓ′ − ℓ

)
1(

k−ℓ
ℓ′−ℓ

) = x

(
n − ℓ

k − ℓ

)
where the last inequality is from

(
a
b

)(
b
c

)
=
(

a
c

)(
a−c
b−c

)
. ◀

5.1 Almost perfect matchings
Let k, ℓ ∈ N where ℓ ≤ k − 1. Given D ∈ N, define δ(k, ℓ, D) as the smallest number δ such
that every k-graph H on n ∈ kN vertices with δℓ(H) ≥ (δ + o(1))

(
n−ℓ
k−ℓ

)
contains a matching

covering all but at most D vertices. It is proved in [13] that δ(k, ℓ, k) ≤ max{1/3, c∗
k,ℓ}. We

need the extra term 1/3 removed, which was very recently proved by Chang, Ge, Han and
Wang [3].
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▶ Theorem 11 ([3]). Let k, ℓ be integers such that 1 ≤ ℓ ≤ k − 1 and γ > 0, then there
exists n0 ∈ N such that the following holds for n ≥ n0. Suppose H is an n-vertex k-graph
with δℓ(H) ≥ (c∗

k,ℓ + γ)
(

n−ℓ
k−ℓ

)
, then H contains a matching M that covers all but at most

2k − ℓ − 1 vertices. In particular, when n ∈ kN, M is a perfect matching or covers all but
exactly k vertices, namely, δ(k, ℓ, k) ≤ c∗

k,ℓ.

To build the partition, we need the following partition lemma from [13].

▶ Lemma 12 ([13, Lemma 6.3]). Given δ′ > 0, integers c, k ≥ 2 and 0 < α ≪ 1/c, δ′, there
exists a constant β > 0 such that the following holds for all sufficiently large n. Assume H is
an n-vertex k-graph and S ⊆ V (H) is such that |Ñα,1(v, H)∩S| ≥ δ′n for any v ∈ S. Further,
suppose every set of c + 1 vertices in S contains two vertices that are (α, 1)-reachable in H.
Then in time O(n2c−1k+1) we can find a partition P of S into V1, . . . , Vr with r ≤ min{c, 1/δ′}
such that for any i ∈ [r], |Vi| ≥ (δ′ − α)n and Vi is (β, 2c−1)-closed in H.

To deal with the vertices that are reachable to few other vertices, we collect them by the
following greedy process. Note that a similar lemma was used in [4].

▶ Lemma 13. Let integers c, k ≥ 2 be given and suppose 1/n ≪ δ′ ≪ α, 1/k, 1/c. Assume
that H is a k-graph on n vertices satisfying that every set of c + 1 vertices contains two
vertices that are (2α, 1)-reachable in H. Then in time O(cnk+1) we can find a set of vertices
S ⊆ V (H) with |S| ≥ (1 − cδ′)n such that |Ñα,1(v, H[S])| ≥ δ′n for any v ∈ S.

We remark that in the above lemma it is important to obtain the conclusion on
Ñα,1(v, H[S]) rather than Ñα,1(v) ∩ S. Indeed, in the latter one the reachable sets are
still defined in H, so may contain vertices in V (H) \ S. This is not strong enough in our
later proof (see Lemma 14 and its proof).

Proof. Let H be a k-graph on n vertices satisfying the condition of Lemma 13. We greedily
identify vertices with few “reachable neighbors” and remove the vertex together with the
vertices reachable to it from H. Set V0 := V (H). First, for every two vertices u, v ∈ V (H),
we determine if they are (α, 1)-reachable in H, which can be done by testing if any (k − 1)-set
is a reachable set in time O(nk−1). Summing over all pairs of vertices, this step can be done
in time O(nk+1). Then we check if there is a vertex v0 ∈ V0 such that |Ñα,1(v0, H)| < δ′n

in time O(n2). If there exists such a vertex v0, then let A0 := {v0} ∪ Ñα,1(v0, H) and
let V1 := V0 \ A0. Next, we check V1, that is, if there exists a vertex v1 ∈ V1 such that
|Ñα,1(v1, H[V1])| < δ′n, then let A1 := {v1} ∪ Ñα,1(v1, H[V1]) and let V2 := V1 \ A1 and
repeat the procedure until no such vj exists.

Suppose we stop and obtain a set of vertices v0, . . . , vs. We claim that s < c and thus
|
⋃

0≤i≤s Ai| ≤ cδ′n. Indeed, otherwise consider v0, . . . , vc, the first c+1 of them and we shall
show that every pair of them is not (2α, 1)-reachable in H, contradicting our assumption.
Given 0 ≤ i < j ≤ c, as vj /∈ Ñα,1(vi, H[Vi]), vi and vj have less than αnk−1 1-reachable sets
in H[Vi]. Also, because δ′ ≪ α, 1/c, there are at most cδ′n · nk−2 ≤ αnk−1 1-reachable sets
in H \ H[Vi]. These two together yield that vi and vj are not (2α, 1)-reachable in H.

This greedy procedure needs to recompute Ñα,1(v, H[Vi]) at each time and can be
done in time O(cnk+1). Set S := V (H) \ (

⋃
0≤i≤s Ai). We have |S| ≥ (1 − cδ′)n and

|Ñα,1(v, H[S])| ≥ δ′n for every v ∈ S. ◀

6 Proof of Lemma 8

Let H be an n-vertex k-graph and define

1/n0 ≪ µ ≪ β ≪ α ≪ γ, δ′ ≪ δ, 1/k, 1/C.
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Assume n ≥ n0 and k divides n. Write c := ⌊1/δ⌋, then by Proposition 10 we have

(c + 1)δ1(H) > (c + 1)δ
(

n − 1
k − 1

)
> (1 + γ)

(
n − 1
k − 1

)
.

Thus every set of c + 1 vertices of V (H) contains two vertices that are (2α, 1)-reachable, as
otherwise, by the inclusion-exclusion principle and α ≪ γ, δ

n ≥ (c + 1)δ1(H) −
(

c + 1
2

)
· 2αnk−1 ≥ (1 + γ)

(
n − 1
k − 1

)
− (c + 1)2αnk−1 > n

a contradiction.
By Lemma 13, we find S ⊆ V (H) with |S| ≥ (1 − cδ′)n such that |Ñα,1(v, H[S])| ≥ δ′n

for any v ∈ S, in time O(nk+1). Let V ′ := V (H) \ S and thus |V ′| ≤ cδ′n. Apply Lemma 12
to H[S], and in time O(n2c−1k+1) we find a partition P1 of S into W1, . . . , Wd with d ≤ c

such that for i ∈ [d], |Wi| ≥ (δ′ − α)n and Wi is (β, 2c−1)-closed in H[S].
Let Ik−1

d be the set of all (k − 1)-vectors on P1 and note that |Ik−1
d | =

(
d+k−2

d−1
)
. Let I

be the collection of all subsets of Ik−1
d and clearly |I| = 2|Ik−1

d
| = 2(d+k−2

d−1 ). We classify the
vertices in V ′ by the types of the edges in which they are contained. Indeed, for I ∈ I, let
VI be the collection of vertices v ∈ V ′ such that the following two properties hold:

for every i ∈ I, there are at least µnk−1 edges e of H such that v ∈ e and iP1(e \ {v}) = i;
for every i /∈ I, there are fewer than µnk−1 edges e of H such that v ∈ e and iP1(e\{v}) = i.

Clearly this defines a partition of V ′. Moreover, note that V∅ = ∅ – this is because any vertex
in V∅ has vertex degree at most 2

(
d+k−2

d−1
)
µnk−1 < δ1(H), violating the minimum degree

assumption. In particular, this implies 4. Note that this partition can be built by reading
the edges for each v ∈ V ′, so in time O(nk). Next we collect the parts that are too small
and put them into a trash set V0 in a recursive manner.

We first sort VI , I ∈ I such that |VI | is increasing. Next, starting from V0 = ∅, we
recursively check in time O(|I|n) if next VI , I ∈ I in the sequence satisfies that

|VI | < (k − 1)|V0| + b, where b := k

(
k + 2(c+k−2

c−1 ) + c − 1
k

)
+
(

c + k − 2
c − 1

)
C

and if yes, put all vertices of VI to V0 (note here that V0 is dynamic). Because |I| = 2(d+k−2
d−1 ),

straightforward computation shows that after the process we have

|V0| ≤ k|I| − 1
k − 1 b ≤ k2(

c+k−2
c−1 )

(
k

(
k + 2(c+k−2

c−1 ) + c − 1
k

)
+
(

c + k − 2
c − 1

)
C

)
.

At last, in constant time we remove the empty clusters and relabel the parts VI ’s to
V1, . . . , Vs, and relabel the parts of P1 as Vs+1, . . . , Vr. The resulting partition satisfies all
desired properties in the lemma and the overall running time is O(n2c−1k+1).

7 An absorption lemma

The following result guarantees our collection Eabs of absorbing sets in the proof of Theorem 9.
The absorption method is by now a standard way to turn an almost spanning structure to a
spanning one. Here we use a variant called lattice-based absorption method, developed by
Han [11]. We remark that the following lemma is very similar to that [11, Lemma 3.4], and
the only difference is because of our refined definition of robust vectors Iµ

P(H).
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▶ Lemma 14 (Absorption Lemma). Suppose k ≥ 3, δ > 0 and let t := 2⌊1/δ⌋. Suppose that

1/n ≪ 1/c′ ≪ β, µ ≪ 1/t, 1/k.

Let H be an n-vertex k-graph with a partition P of V (H) satisfying Lemma 8 (1)-(5), where
n ≥ n0 and k divides n. Let n1 := |

⋃
s+1≤i≤r Vi| (where r, s are from the statement of

Lemma 8). Then there is a family Eabs consisting of at most c′ log n1 disjoint tk2-sets such
that for each A ∈ Eabs, H[A] contains a perfect matching and every k-set S ⊆ V (H) with
iP(S) ∈ Iµ

P(H) has at least
√

log n1 absorbing tk2-sets in Eabs.

Proof. Roughly speaking, in the proof we first exhibit a large number of absorbing sets
for each k-set S with iP(S) ∈ Iµ

P(H), and then show that the desired family Eabs can be
obtained by standard probabilistic arguments. Our first task is to prove the following claim.

▷ Claim 15. Any k-set S with iP(S) ∈ Iµ
P(H) has at least µt+1βk+1ntk2

1 absorbing tk2-sets
which consist of vertices in

⋃
s+1≤i≤r Vi only.

Proof. We split the proof into two cases regarding to Iµ
P,1(H) and Iµ

P,2(H). Note that all
reachable sets will be constructed with vertices in

⋃
s+1≤i≤r Vi only.

▶ Case 1. Suppose i ∈ Iµ
P,1(H).

For a k-set S = {y1, . . . , yk} with iP(S) = i, we construct absorbing tk2-sets for S as follows.
We first fix an edge W = {x1, . . . , xk} in H such that iP(W ) = i and W ∩ S = ∅. Note that
we have at least µnk − knk−1

1 > µ
2 nk choices for such an edge. Without loss of generality, we

may assume that for all i ∈ [k], xi, yi are in the same part Vj of P for j > s. Recall that by
Lemma 8 (5) Vj is (β, t)-closed in H[

⋃
s+1≤i≤r Vi]. Since xi is (β, t)-reachable to yi, there

are at least βntk−1
1 (tk − 1)-sets Ti such that both H[Ti ∪ {xi}] and H[Ti ∪ {yi}] have perfect

matchings. We pick disjoint reachable (tk − 1)-sets for each xi, yi, i ∈ [k] greedily, while
avoiding the existing vertices. Since the number of existing vertices is at most tk2 + k, we
have at least β

2 ntk−1
1 choices for such (tk − 1)-sets in each step. Note that W ∪ T1 ∪ · · · ∪ Tk

is an absorbing set for S. First, it contains a perfect matching because each Ti ∪ {xi} for
i ∈ [k] spans t vertex-disjoint edges. Second, H[W ∪ T1 ∪ · · · ∪ Tk ∪ S] also contains a perfect
matching and each Ti ∪ {yi} for i ∈ [k] spans t vertex-disjoint edges. There were at least
µ
2 nk

1 choices for W and at least β
2 ntk−1

1 choices for each Ti. Thus we find at least

µ

2 nk × βk

2k
ntk2−k

1 × 1
(tk2)! ≥ µβk+1ntk2

1

absorbing tk2-sets for S.

▶ Case 2. Suppose i ∈ Iµ
P,2(H).

Suppose S = {v1, y2, . . . , yk} with iP(S) = i and v1 ∈ Vi for some i ∈ [s]. We construct
absorbing tk2-sets for S as follows. We fix an edge with vertex set W = {v1, x2, . . . , xk} for
x2, . . . , xk ∈

⋃
s+1≤j≤r Vj \ {y2, . . . , yk} such that iP(W ) = iP(S) = i and W ∩ S = {v1}.

Note that by Lemma 8 (4) we have at least µnk−1 − (k − 1)nk−2
1 > µ

2 nk−1 choices for W

(and x2, . . . , xk are in
⋃

s+1≤i≤r Vi, by the definition of Iµ
P,2(H)). Without loss of generality,

we may assume that for all i ∈ {2, . . . , k}, xi, yi are in the same part Vj of P, j > s. Since
xi is (β, t)-reachable to yi, there are at least βntk−1

1 (tk − 1)-sets Ti in V (H) \ V0 such
that both H[Ti ∪ {xi}] and H[Ti ∪ {yi}] have perfect matchings. We pick disjoint reachable
(tk − 1)-sets in V (H) \ V0 for each xi, yi, i ∈ {2, . . . , k} greedily, while avoiding the existing
vertices. Since the number of existing vertices is at most tk(k − 1) + (k − 1), we have at least
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β
2 ntk−1

1 choices for such (tk − 1)-sets in each step. At last, let us pick a matching M of size t

in H that is vertex disjoint from the existing vertices (the purpose is to let the absorbing
set contain exactly tk2 vertices). For the number of choices for V (M), we can sequentially
choose disjoint edges satisfying any µ-robust edge vector i ∈ Iµ

P,1(H) and infer that there are
at least 1

2 µtntk choices.
Note that each choice of (W \{v1})∪T2 ∪· · ·∪Tk ∪V (M) is an absorbing set for S. First,

it contains a perfect matching because each Ti ∪ {xi} for i ∈ {2, . . . , k} spans t vertex-disjoint
edges and M is a matching. Second, H[W ∪T1 ∪· · ·∪Tk ∪S] also contains a perfect matching
as each Ti ∪ {yi} for i ∈ {2, . . . , k} spans t vertex-disjoint edges, W is an edge and M is a
matching. There were at least µ

2 nk−1
1 choices for W and at least β

2 ntk−1
1 choices for each Ti

and 1
2 µtntk choices for V (M). Thus we find at least

µ

2 nk ×
(

β

2 ntk−1
1

)k−1
× 1

2µtntk × 1
(tk2)! ≥ µt+1βkntk2

1

absorbing tk2-sets for S, with vertices from
⋃

s+1≤i≤r Vi only. ◁

Continuing the proof of Lemma 14, we pick a family E of tk2-sets by including every
tk2-subset of

⋃
s+1≤i≤r Vi with probability p = c′n−tk2

1 log n1 independently, uniformly at
random. Then the expected number of elements in E is p

(
n1
tk2

)
≤ c′

tk2 log n1 and the expected
number of intersecting pairs of tk2-sets is at most

p2
(

n1

tk2

)
× tk2 ×

(
n1

tk2 − 1

)
≤ c′2(log n1)2

n1
= o(1).

Then by Markov’s inequality, with probability at least 1 − 1/(tk2) − o(1), E contains at most
c′ log n1 sets and they are pairwise vertex disjoint.

For every k-set S with iP(S) ∈ Iµ
P(H), let XS be the number of absorbing sets for S in

E . Then by Claim 15,

E(XS) ≥ pµt+1βk+1ntk2

1 = µt+1βk+1c′ log n1.

By Chernoff’s bound,

P
(

XS ≤ 1
2E(XS)

)
≤ exp

{
−1

8E(XS)
}

≤ exp
{

−µt+1βk+1c′ log n1

8

}
= o(n−k),

since 1/c′ ≪ β, µ ≪ 1/m. Thus, with probability 1 − o(1), for each k-set S with iP(S) ∈
Iµ

P(H), there are at least

1
2E(XS) ≥ µt+1βk+1c′ log n1

2 >
√

log n1

absorbing sets for S in E . We obtain Eabs by deleting the elements of E that are not absorbing
sets for any k-set S and thus |Eabs| ≤ |E| ≤ c′ log n1. ◀

8 Proof of Theorem 9

Now we are ready to prove Theorem 9. Let H be an n-vertex k-graph, and let P be a
partition given by Lemma 8 satisfying (1)-(5). We first prove the forward implication.
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8.1 Proof of the forward implication of Theorem 9
If H contains a perfect matching M , then iP(V (H) \ V (M)) = 0 ∈ Lµ

P(H). Let M ′ be the
smallest submatching of M that covers V0, so |M ′| ≤ |V0|. We shall show that there exists
a matching M ′′ ⊂ (M \ M ′) such that |M ′′| ≤ q and iP(V (H) \ V (M ′ ∪ M ′′)) ∈ Lµ

P(H),
implying that (P, Lµ

P(H)) is (V0, q)-soluble.
Indeed, suppose that M ′′ ⊂ (M \ M ′) is a smallest matching such that iP(V (H) \ V (M ′ ∪

M ′′)) ∈ Lµ
P(H) and |M ′′| = m ≥ q. Let M ′′ = {e1, . . . , em} and consider the m + 1 partial

sums

j∑
i=1

iP(ei) + Lµ
P(H),

for j = 0, 1, . . . , m. Since |Q(P, Lµ
P(H))| ≤ q ≤ m, two of the sums must be in the same

coset. That is, there exist 0 ≤ j1 < j2 ≤ m such that

j2∑
i=j1+1

iP(ei) ∈ Lµ
P(H).

So the matching M∗ := M ′ \ {ej1+1, . . . , ej2} satisfies that iP(V (H) \ V (M∗ ∪ M ′)) ∈ Lµ
P(H)

and |M∗| < |M ′′|, a contradiction.

8.2 Proof of the backward implication of Theorem 9
We first introduce the following useful constant. Given a set I of k-vectors in Zr, and
m ∈ N, consider the set J of all m′-vectors that are in the lattice in Zr generated by I with
0 ≤ m′ ≤ m. That is, for any v ∈ J , there exist ai ∈ Z, i ∈ I such that

v =
∑
i∈I

aii

Then let C∗ := C∗(r, k, I, m) be the maximum of |ai| over all such v. Furthermore, let
Cmax := Cmax(k, m) be the maximum of C∗ = C∗(r, k, I, m) over all r ≤ r0(k) := 2(2k−1

k−1 ) + k

and all families of k-vectors I ⊆ Zr.
Now we start the proof. Recall that c∗

k,ℓ ≥ c∗
k,k−1 = 1/k. Then ⌊1/c∗

k,ℓ⌋ ≤ k. Define
constants

t := 2k and C := Cmax(k, kq + k).

Define an additional constant c′ > 0 so that

1/n0 ≪ 1/c′ ≪ β, µ ≪ δ′ ≪ 1/k, 1/q, 1/C, 1/t.

Let n ≥ n0 be a multiple of k. Let H be as in the statement of the theorem and P be a
partition of V (H) satisfying Lemma 8 (1)-(5), where the C therein is as defined above. In
particular, Property (5) and the choice of t imply that for s + 1 ≤ i ≤ r, |Vi| ≥ δ′n/2 and Vi

is (β, t)-closed in H[
⋃

s+1≤i≤r Vi]. Furthermore, assume that (P, Lµ
P(H)) is (V0, q)-soluble,

that is, there is a matching M1 of size at most |V0| + q such that M1 covers V0 and it is a
(|V0| + q)-solution, that is,

iP(V (H) \ V (M1)) ∈ Lµ
P(H).
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Let n1 := |
⋃

s+1≤i≤r Vi|. We first apply Lemma 14 to H and get a family Eabs consisting of
at most c′ log n1 disjoint tk2-sets such that every k-set S of vertices with iP(S) ∈ Iµ

P(H) has
at least

√
log n1 absorbing tk2-sets in Eabs.

Note that V (M1) may intersect V (Eabs) in at most (|V0| + q)k absorbing sets of Eabs. Let
E0 be the subfamily of Eabs obtained from removing the tk2-sets that intersect V (M1). Let
M0 be the perfect matching on V (E0) that is the union of the perfect matchings on each
member of E0. Note that every k-set S with iP(S) ∈ Iµ

P(H) has at least
√

log n1 − (|V0| + q)k
absorbing sets in E0.

Next we want to “store” some disjoint edges for each k-vector in Iµ
P(H) for later steps,

and at the same time we also cover the rest vertices of
⋃

1≤i≤s Vi (recall that V0 is covered
by M1). More precisely, set C ′ := C∗(r, k, Iµ

P(H), kq + k) ≤ C. Note that Lemma 8 (3)
guarantees that for each i ∈ [s], Vi has at least

(2k−2
k−1

)
C uncovered vertices. We construct

a matching M2 in H \ V (M0 ∪ M1) which consists of C ′ disjoint edges e with iP(e) = i for
every i ∈ Iµ

P(H) and also cover the rest vertices of
⋃

1≤i≤s Vi by µ-robust edges. So

|M2| ≤
(

k + r − 1
k

)
C ′ +

∣∣∣∣∣∣
⋃

1≤i≤s

Vi

∣∣∣∣∣∣ .
Note that the process is possible because H contains at least µnk edges for each i ∈ Iµ

P,1(H)
and every vertex in

⋃
1≤i≤s Vi is in at least µnk−1 edges for i ∈ Iµ

P,2(H) and

|V (M0∪M1∪M2)| ≤ tk2c′ log n1+(|V0|+q)k+

(k + r − 1
k

)
C ′ +

∣∣∣∣∣∣
⋃

1≤i≤s

Vi

∣∣∣∣∣∣
 k < µn1 < µn,

(2)

which allow us to choose desired edges in a greedy manner. Moreover, for every i ∈ [s], the
number of µ-robust index vectors i such that i|i = 1 is at most

(2k−2
k−1

)
, and thus the process

above needs at most
(2k−2

k−1
)
C uncovered vertices from Vi, which is okay by our construction3.

Let H ′ := H \ V (M0 ∪ M1 ∪ M2) and n′ := |H ′|. So n′ ≥ n − µn and by δ(k, ℓ, k) ≤ c∗
k,ℓ

due to Theorem 11,

δℓ(H ′) ≥ δℓ(H) − µnk−ℓ ≥ (δ(k, ℓ, k) + γ/2)
(

n′ − ℓ

k − ℓ

)
.

By the definition of δ(k, ℓ, k), we have a matching M3 in H covering all but at most k vertices.
Let U be the set of vertices in H ′ uncovered by M3. We are done if U = ∅. Otherwise
because k divides n we have |U | = k.

We write Q := Q(P, Lµ
P(H)) for brevity. Recall that iP(V (H) \ V (M1)) ∈ Lµ

P(H).
Note that by definition, the index vectors of all edges in M2 are in Iµ

P(H). So we have
iP(V (H) \ V (M1 ∪ M2)) ∈ Lµ

P(H), namely, RQ(V (H) \ V (M1 ∪ M2)) = 0 + Lµ
P(H). Thus,∑

e∈M0∪M3

RQ(e) + RQ(U) = 0 + Lµ
P(H).

Suppose RQ(U) = v0 + Lµ
P(H) for some v0 ∈ Ld

max; so∑
e∈M0∪M3

RQ(e) = −v0 + Lµ
P(H).

3 Remark. This is where we need Lemma 8 (3), the lower bound of |Vi|, i ∈ [s].
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We use the following claim proved in [13] (earlier versions appeared in [11, 18]). Its proof
is via the coset arguments and is very similar to the one used in the proof of the forward
implication.

▷ Claim 16 ([13, Claim 5.1]). There exist e1, . . . , ep ∈ M0 ∪ M3 for some p ≤ q − 1 such that∑
i∈[p]

RQ(ei) = −v0 + Lµ
P(H). (3)

That is, we have
∑

i∈[p] iP(ei) + iP(U) ∈ Lµ
P(H). Let Y :=

⋃
i∈[p] ei ∪ U and thus

|Y | = pk + k ≤ qk + k. We now complete the perfect matching by absorption. Since
iP(Y ) ∈ Lµ

P(H), we have the following equation

iP(Y ) =
∑

v∈Iµ
P (H)

avv,

where av ∈ Z for all v ∈ Iµ
P(H). Since |Y | ≤ qk+k, by the definition of C ′, we have |av| ≤ C ′

for all v ∈ Iµ
P(H). Noticing that av may be negative, we can assume av = bv − cv such that

one of bv, cv is |av| and the other is zero for all v ∈ Iµ
P(H). So we have∑

v∈Iµ
P (H)

cvv + iP(Y ) =
∑

v∈Iµ
P (H)

bvv.

This equation means that given a family E = {W v
1 , . . . , W v

cv
: v ∈ Iµ

P(H)} of disjoint k-subsets
of V (H) \ Y such that iP(W v

i ) = v for all i ∈ [cv], we can regard V (E) ∪ Y as the union of
disjoint k-sets {Sv

1 , . . . , Sv
bv

: v ∈ Iµ
P(H)} such that iP(Sv

j ) = v, j ∈ [bv] for all v ∈ Iµ
P(H).

Since cv ≤ C ′ for all v and V (M2) ∩ Y = ∅, we can choose the family E as a subset of M2.
In summary, starting with the matching M0 ∪ M1 ∪ M2 ∪ M3 leaving U uncovered, we delete
the edges e1, . . . , ep from M0 ∪ M3 given by Claim 16 and then leave Y =

⋃
i∈[p] V (ei) ∪ U

uncovered. Next we delete the family E of edges from M2 and leave V (E) ∪ Y uncovered.
Finally, we regard V (E) ∪ Y as the union of at most

|M2| + qk + k ≤
√

log n1/2

k-sets S each with iP(S) ∈ Iµ
P(H).

Note that by definition, Y may intersect at most qk + k absorbing sets in E0, which
cannot be used to absorb those sets we obtained above. Since each k-set S has at least√

log n1 − (|V0| + q)k >
√

log n1/2 + qk + k absorbing tk2-sets in E0, we can greedily match
each S with a distinct absorbing tk2-set ES ∈ E0 for S. Replacing the matching on V (ES)
in M0 by the perfect matching on H[ES ∪ S] for each S gives a perfect matching in H.
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