The Fine-Grained Complexity of Graph Homomorphism Parameterized by Clique-Width

Robert Ganian \square (
Algorithms and Complexity Group, TU Wien, Austria
Thekla Hamm \square (ㅁ)
Algorithms and Complexity Group, TU Wien, Austria
Viktoriia Korchemna \square
Algorithms and Complexity Group, TU Wien, Austria
Karolina Okrasa \square (
Faculty of Matematics and Information Science, Warsaw University of Technology, Poland Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Kirill Simonov \square

Algorithms and Complexity Group, TU Wien, Austria

Abstract

The generic homomorphism problem, which asks whether an input graph G admits a homomorphism into a fixed target graph H, has been widely studied in the literature. In this article, we provide a fine-grained complexity classification of the running time of the homomorphism problem with respect to the clique-width of G (denoted cw) for virtually all choices of H under the Strong Exponential Time Hypothesis. In particular, we identify a property of H called the signature number $s(H)$ and show that for each H, the homomorphism problem can be solved in time $\mathcal{O}^{*}\left(s(H)^{\mathrm{cw}}\right)$. Crucially, we then show that this algorithm can be used to obtain essentially tight upper bounds. Specifically, we provide a reduction that yields matching lower bounds for each H that is either a projective core or a graph admitting a factorization with additional properties - allowing us to cover all possible target graphs under long-standing conjectures.

2012 ACM Subject Classification Theory of computation \rightarrow Parameterized complexity and exact algorithms

Keywords and phrases homomorphism, clique-width, fine-grained complexity
Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.66
Category Track A: Algorithms, Complexity and Games
Funding Robert Ganian: Robert Ganian acknowledges support by the Austrian Science Fund (FWF, projects Y1329 and P31336).
Thekla Hamm: Thekla Hamm acknowledges support by the Austrian Science Fund (FWF, projects P31336 and Y1329).
Viktoriia Korchemna: Viktoriia Korchemna acknowledges support by the Austrian Science Fund (FWF, project Y1329).
Karolina Okrasa: Karolina Okrasa acknowledges support by the European Research Council, grant agreement No 714704. Parts of this work were performed while visiting TU Wien, Vienna, Austria. Kirill Simonov: Kirill Simonov acknowledges support by the Austrian Science Fund (FWF, project P31336).

1 Introduction

A homomorphism from a graph G to a graph H is an edge-preserving mapping from the vertices of G to the vertices of H. Homomorphisms are fundamental constructs which have been studied from a wide variety of perspectives $[2,3,13]$. Our focus here will be on the

© Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
class of problems which ask whether an input n-vertex graph G admits a homomorphism to a fixed target graph H. This "meta-problem" - which we simply call $\operatorname{Hom}(H)$ - captures, among others, the classical c-Coloring problems when H is set to the complete graph on c vertices. Famously, Hell and Nešetřil [15] proved that $\operatorname{Hom}(H)$ is polynomial-time solvable if H is bipartite or has a loop, and NP-complete otherwise.

While the aforementioned result provides a basic classification of the complexity of $\operatorname{Hom}(H)$, it does not say much in terms of how quickly one can actually solve these problems. Indeed, the usual assumption that $\mathrm{P} \neq \mathrm{NP}$ is not sufficient to obtain tight bounds for the running times of algorithms. While upper bounds can be straightforwardly obtained by designing a suitable algorithm, the corresponding lower bounds usually rely on the Exponential Time Hypothesis (ETH) or the Strong Exponential Time Hypothesis (SETH), which allows for even tighter bounds [18,19,23]. It is not difficult to design a brute-force algorithm for the homomorphism problem that runs in time $\mathcal{O}^{*}\left(|V(H)|^{n}\right)$ for every choice of H, and thanks to the breakthrough result of Cygan et al. we now know that this running time is essentially tight under the Exponential Time Hypothesis (ETH) [6] as long as one considers only the dependency on n and $|V(H)|$.

Still, it is often possible to circumvent this lower bound and obtain significantly better runtime guarantees. One approach to do so is to consider restrictions on the class of targets: if H is a complete graph then $\operatorname{Hom}(H)$ can be solved in time $\mathcal{O}^{*}\left(2^{n}\right)$, and there are also several algorithms that achieve running times of the form $\mathcal{O}^{*}\left(\alpha(H)^{n}\right)$ where $\alpha(H)$ is some structural parameter of $H[12,29,30]$. The other is to exploit the properties of the input graph G, which are commonly captured by a suitably defined structural parameter. The most commonly used graph parameter in this respect is treewidth [28], which informally measures how "tree-like" a graph is.

When considering treewidth, it is once again not difficult to obtain an algorithm that runs in time $\mathcal{O}^{*}\left(|V(H)|^{\text {tw }}\right)$, where tw is the treewidth of G; as before, it was much more difficult to show that this is essentially optimal. The first SETH-based tight lower bound in this setting was actually shown for special cases of the related problem of $\operatorname{LHom}(H)$, where each vertex in the graph G comes with a list of admissible targets for the homomorphism [9]; this was later lifted to a full classification [24]. A nearly-complete SETH-based lower bound result for $\operatorname{Hom}(H)$ itself was only obtained recently by Okrasa and Paweł Rzążewski [25]; in particular, the result covers all targets which are so-called projective cores. It is known that almost all graphs are projective cores $[16,25,31]$, and it is worth noting that the authors showed that their result can be lifted to all targets under long-standing conjectures on the properties of projective cores [21,22].

While treewidth is the most prominent structural graph parameter, it is not the most general ${ }^{1}$ one that can be used to efficiently solve $\operatorname{Hom}(H)$. Indeed, standard dynamic programming techniques can be used to obtain a $\mathcal{O}^{*}\left(\left(2^{|V(H)|}\right)^{\mathrm{cw}}\right)$ time algorithm for the problem, where cw stands for clique-width [4]: a well-studied graph parameter that is bounded not only on all graph classes of bounded treewidth, but also on well-structured dense classes such as complete graphs. But is this basic algorithm generally optimal (mirroring the situation for treewidth [25]), or can one obtain better runtime dependencies on clique-width?

Contribution. Our aim is to obtain a detailed understanding of the fine-grained complexity of $\operatorname{Hom}(H)$ in terms of the clique-width of G and the fixed target H. As a starting point for our investigation, we note that Lampis used the SETH to obtain tight bounds for c-ColOring

[^0]with respect to clique-width [20]. Interestingly, already for this special case, the upper and lower bounds differ from those of the aforementioned simple dynamic programming algorithm: if H is a complete graph, then $\operatorname{Hom}(H)$ can be solved in time $\mathcal{O}^{*}\left(\left(2^{|V(H)|}-2\right)^{\mathrm{cw}}\right)$ [20] and this is tight under the SETH. However, as noted by Piecyk and Rzążewski [27], it was not at all obvious how these bounds can be lifted to general choices of H.

In order to achieve our goals we need to improve upon the basic dynamic programming idea to identify a "hopefully correct" base of the exponent for every choice of H. Towards our first result, we identify a structural property of H called the signature number (denoted $s(H)$) which, intuitively, captures the number of non-trivial neighborhood classes of vertex subsets in H (the signature set). We then obtain a non-trivial dynamic programming algorithm that solves $\operatorname{Hom}(H)$ in time where the base of the exponent is precisely the signature number. We note that $s(H)$ is $2^{|V(H)|}-2$ for complete graphs H, and so this result also provides a succinct and broader explanation for the running time of Lampis' algorithm [20].

- Theorem 1. Let H be a fixed graph. $\operatorname{HOM}(H)$ can be solved in time $\mathcal{O}^{*}\left(s(H)^{\operatorname{cw}(G)}\right)$ for each input graph G, assuming an optimal clique-width expression of G is provided as part of the input.

With this upper bound, we proceed to the main technical contribution of this paper: establishing a corresponding lower bound under the SETH. The main difficulty here is that we need a reduction that is delicate on one hand, since it needs to preserve the clique-width, but is on the other hand also flexible enough to work for many different choices of H; moreover, the reduction has to rely on the signature numbers of these graphs in some way.

To provide an intuitive description of the reduction, let us focus for now on the case where H is a projective core. On a high level, the main building block is an S-gadget which, given an arbitrary set S of pairs of vertices in H and two vertices p and q of the input graph G, ensures that every homomorphism f satisfies $(f(p), f(q)) \in S$. After providing a generic construction for such S-gadgets which is clique-width preserving and works for every valid choice of H, we use these to obtain implication gadgets and or gadgets which restrict how a solution homomorphism can behave on a selected set of vertices in G. The formalization of these gadgets is the main technical hurdle towards the desired result; once that is done, we can lift the idea used in the earlier reduction of Lampis [20] that established clique-width lower bounds for c-Coloring by reducing from Constraint Satisfaction (CSP) to $\operatorname{Hom}(H)$. One crucial distinction in our reduction is that we use elements of the signature set (as opposed to color sets) to represent domain values in the CSP instance.

To lift these considerations to cases where H is not a projective core, we unfortunately need to add an extra layer of complexity. Similarly as in the previous treewidth-based lower bound for $\operatorname{Hom}(H)$ [25], one can base this step on conjectures of Larose and Tardif [21,22] that classify all remaining targets as certain graph products with special properties (notably, all of the factors must be "truly projective"). The approach used for treewidth [25] was then to essentially repeat all steps of the proof for projective cores, with the added difficulty that one uses the properties of products instead of dealing directly with projective cores.

While this approach could be used here as well, instead we unify the two cases (H being a projective core, and H being a product) by defining the notion of W-projectivity for some factor W of H. In particular, if H is a projective core then it itself is H-projective, while if H is a product with truly projective factor H_{i} then it is H_{i}-projective. As our main result, we obtain an SETH-based lower bound which essentially shows that for each W-projective graph $H, s(W)$ is the optimal base of the clique-width exponent for solving $\operatorname{Hom}(H)$:

- Theorem 2. Let H be a fixed non-trivial core with prime factorization $H_{1} \times \ldots \times H_{m}$. Assume that H is H_{i}-projective for some $i \in[m]$. Then there is no algorithm solving $\operatorname{HOM}(H)$ in time $\mathcal{O}^{*}\left(\left(s\left(H_{i}\right)-\varepsilon\right)^{\mathrm{cw}(G)}\right)$ for any $\varepsilon>0$, unless the SETH fails.

By also deliberately considering prime factorizations in the algorithm which we provide for Theorem 1, we can obtain an upper bound on the complexity of $\operatorname{Hom}(H)$ that matches the lower bound from Theorem 2. For a discussion explicitly relating these complexity bounds in the context of the aforementioned conjectures of Larose and Tardif, we refer to Section 6.

2 Preliminaries

We use standard terminology for graph theory [7]. Let $[i]$ denote the set $\{1, \ldots, i\}$. For a mapping $f: A \rightarrow B$ and $A^{\prime} \subseteq A$, let $\left.f\right|_{A^{\prime}}$ denote the restriction of f to A^{\prime}. We will use the $\mathcal{O}^{*}(\cdot)$ notation to suppress factors polynomial in the input size.

Homomorphisms and Cores

For two graphs G and H, a homomorphism from G to H is a mapping $h: V(G) \rightarrow V(H)$, such that for every $u v \in E(G)$ we have $h(u) h(v) \in E(H)$. If there exists a homomorphism from G to H, we denote this fact by $G \rightarrow H$, and if h is a homomorphism from G to H, we denote that by $h: G \rightarrow H$. If there is no homomorphism from G to H, we write $G \nrightarrow H$. If $G \rightarrow H$ and $H \rightarrow G$, we say that G and H are homomorphically equivalent. In particular, since the composition of homomorphisms is a homomorphism, if G and H are homomorphically equivalent, then for every graph F we have that $F \rightarrow G$ if and only if $F \rightarrow H$. It is straightforward to verify that homomorphic equivalence is an equivalence relation on the class of all graphs. On the other hand, if $G \nrightarrow H$ and $H \nrightarrow G$ for some graphs G, H, we say that G and H are incomparable.

We say that a graph H is a core if every homomorphism $h: H \rightarrow H$ is an automorphism. Equivalently, H is a core if for every proper induced subgraph H^{\prime} of H it holds that $H \nrightarrow H^{\prime}$. We say that a core H^{\prime} is a core of H if H^{\prime} is an induced subgraph of H and $H \rightarrow H^{\prime}$. Clearly, each core graph is a core of itself. Each graph has a unique (up to isomorphism) core, and the core of H can be equivalently defined as the smallest (with respect to the number of vertices) graph that is homomorphically equivalent with H [16].

A graph H is ramified if $N(u) \nsubseteq N(v)$ for every two distinct vertices u, v of H. Observe that each core is ramified; otherwise one could define $f: H \rightarrow H$ that is an identity on all vertices of H but u and set $f(u)=v$. This would be a homomorphism to a proper subgraph of H, contradicting the fact that H is a core.

We say that a graph H is trivial if its core has at most two vertices.

- Observation 3 ([15]). A graph H is trivial if and only if it is either bipartite or contains a vertex with a loop.
Proof. It is straightforward to observe that there exist three trivial cores: K_{1}, K_{2}, and K_{1}^{*}, where by K_{1}^{*} we denote the graph that consists of one vertex with a loop.

If H contains a vertex with a loop, then K_{1}^{*} is the core of H. If H is bipartite, then the core of H is either K_{1} (if H has no edges) or K_{2} (since mapping the vertices of one bipartition class to one vertex of K_{2}, and another bipartition graph to the other, is a homomorphism).

For the other direction, assume that H is a non-bipartite loopless graph. Since it is loopless, K_{1}^{*} cannot be its core. Clearly, H has at least one edge, and therefore $H \nrightarrow K_{2}$ Moreover, H contains an odd cycle $C_{2 k+1}$ as a subgraph, hence, $C_{2 k+1} \rightarrow H$. If now $H \rightarrow K_{2}$, composition of these homomorphism gives that $C_{2 k+1} \rightarrow K_{2}$, which is equivalent to stating that $C_{2 k+1}$ is 2 -colorable, a contradiction.

Observe that trivial cores H correspond precisely to the polynomial cases of the $\operatorname{Hom}(H)$ problem. Since our aim is to focus on the NP-hard cases of the problem, from here onward we will assume that the target graph is non-trivial.

Signature Sets

For a vertex v of a graph H, let $N_{H}(v)$ denote the set of neighbors of v in H. If the graph is clear from the context, we will omit the subscript H and write $N(v)$.

For a non-empty set $T \subseteq V(H)$ we say that $S(T)$ is the signature set of T if $S(T)=$ $\bigcap_{t \in T} N(t)$. We say that a non-empty set $S \subseteq V(H)$ is a signature set, if there exists T such that $S=S(T)$. We denote by $\mathcal{S}(H)$ the set of all signature sets of H, and we note that $\{V(H), \emptyset\} \cap \mathcal{S}(H)=\emptyset$.

- Observation 4. If T is a proper non-empty subset of $V(H)$, and $a \in T, b \in S(T)$, then $a b \in E(H)$. Moreover, for non-empty subsets $A, B \subseteq V(H), S(A \cup B)=S(A) \cap S(B)$.

We note that the operation of taking a signature set is reversible on $\mathcal{S}(H)$:

- Observation 5. For every $A \in \mathcal{S}(H), S(S(A))=A$.

Proof. By the definition of signature set, $A \times S(A) \subseteq E(H)$, so $A \subseteq S(S(A))$. For the converse direction observe that as $A \in \mathcal{S}(H)$, there exists a non-empty subset T of $V(H)$ such that $A=S(T)$. Pick any $x \in S(S(A))$, then $E(H) \supseteq\{x\} \times S(A)=\{x\} \times S(S(T)) \supseteq\{x\} \times T$. Hence by definition $x \in S(T)=A$.

Let the signature number of H, denoted $s(H)$, be defined as $|\mathcal{S}(H)|$. As mentioned in the introduction, the signature number will play a crucial role in our upper and lower bounds.

Observe that, if H is a target and hence non-trivial, for every nonempty $T \subseteq V(H)$ we have that $S(T) \cap T=\emptyset$. From that it is easy to see that $V(H)$ never belongs to $\mathcal{S}(H)$. Since, by definition, $\emptyset \notin \mathcal{S}(H)$, we get the following bounds for $s(H)$.

- Observation 6. Let H be a graph with no loops. Then $s(H) \leqslant 2^{|V(H)|}-2$.

Notice that since $2^{|V(H)|}-2$ is the number of all proper non-empty subsets of $V(H)$, the equality in Observation 6 holds if and only if H is a clique.

If $S \in \mathcal{S}(H)$, we call T such that $S(T)=S$ a witness of S. Clearly, we can have distinct T_{1}, T_{2} such that $S\left(T_{1}\right)=S\left(T_{2}\right)$, however, notice that in such a case there exists $T=T_{1} \cup T_{2}$ such that $S(T)=S\left(T_{1}\right)=S\left(T_{2}\right)$. Hence, there exists a unique maximal (with respect to inclusion) witness of S, and we denote it by $M(S)$. In fact, it is not difficult to see that $M(S)=\left\{v \in V(H) \mid S \subseteq N_{H}(v)\right\}$; for $S(M(S))=S$ to hold, it is clearly necessary that $S \subseteq N_{H}(v)$ for all $v \in M(S)$. On the other hand, as $M(S)$ is maximal all v for which this is true are contained in $M(S)$.

In this way signature sets and their witnesses are in one-to-one correspondence. While not necessary to obtain our algorithmic and lower bounds for $\operatorname{Hom}(H)$ parameterized by clique-width, this offers an alternative perspective on the role of signatures in our results.

In fact, the signature number could equivalently be defined as the "maximal witness number" and signature sets could be replaced by maximal witnesses in all our proofs: Let $\mathcal{M}(H)=\{M(S): S \in \mathcal{S}(H)\}$.

- Observation 7. $\mathcal{S}(H)=\mathcal{M}(H)$.

Proof. Let T be a fixed non-empty subset of $V(H)$ such that $S(T) \neq \emptyset$. Observe that the definition and the maximality of $M(S(T))$ implies that $S(S(T))=\bigcap_{t \in S(T)} N(t)=M(S(T))$ Since T and $S(T)$ are non-empty, we get that $\mathcal{S}(H) \supset \mathcal{M}(H)$. For the other direction observe that $M(M(S(T)))=S(T)$. Assume the contrary, then there exists a vertex $v \notin S(T)$ such that $N(v) \supset M(S(T))$. However, $T \subset M(S(T)) \subset N(v)$ meaning that $v \in S(T)$, a contradiction. Thus, $\mathcal{S}(H)=\mathcal{M}(H)$.

We note that if H is a core graph, we can also bound the minimum cardinality of $\mathcal{S}(H)$.

- Observation 8. Let H be a core graph, $H \neq K_{1}$. Then $s(H) \geqslant|V(H)|$.

Proof. Observe that if H is a core distinct from K_{1}, then it does not contain isolated vertices. Therefore, for each $v \in V(H)$ we have $N(v) \in \mathcal{S}(H)$. On the other hand, since H is a core, it is ramified. In particular, for every distinct $v, w \in V(H)$ we have $N(v) \neq N(w)$. Hence different vertices give rise to different signature sets.

Clique-Width and Clique-Width Expressions

For a positive integer k, we let a k-graph be a graph whose vertices are labeled by $[k]$. For convenience, we consider a graph to be a k-graph with all vertices labeled by 1 . We call the k-graph consisting of exactly one vertex v (say, labeled by i) an initial k-graph and denote it by $i(v)$.

The clique-width of a graph G is the smallest integer k such that G can be constructed from initial k-graphs by means of iterative application of the following three operations:

1. Disjoint union (denoted by \oplus);
2. Relabeling: changing all labels i to j (denoted by $\rho_{i \rightarrow j}$);
3. Edge insertion: adding an edge from each vertex labeled by i to each vertex labeled by j $\left(i \neq j\right.$; denoted by $\left.\eta_{i, j}\right)$.
A construction of a k-graph G using the above operations can be represented by an algebraic term composed of $\oplus, p_{i \rightarrow j}$ and $\eta_{i, j}$ (where $i \neq j$ and $i, j \in[k]$). Such a term is called a k-expression defining G, and we often view it as a tree with each node labeled with the appropriate operation. Conversely, we call the k-graph that arises from a k-expression its evaluation. The clique-width of G is the smallest integer k such that G can be defined by a k-expression which we then also call a clique-width expression of G.

Many graph classes are known to have constant clique-width; examples include all graph classes of constant treewidth and co-graphs [5]. Moreover a fixed-parameter algorithm is known to compute a k-expression of the input where k is bounded in $f(\mathrm{cw})$ [26].

3 Algorithm

As our first contribution, we obtain an algorithm that will play a crucial role for upperbounding the fine-grained complexity of $\operatorname{Hom}(H)$.

- Theorem 1. Let H be a fixed graph. $\operatorname{Hom}(H)$ can be solved in time $\mathcal{O}^{*}\left(s(H)^{\mathrm{cw}(G)}\right)$ for each input graph G, assuming an optimal clique-width expression of G is provided as part of the input.

Proof. Assume, w.l.o.g., that G is connected and $|V(G)|>1$. We will describe a dynamic program that proceeds in a leaf-to-root fashion along the provided k-expression σ of G. For a subexpression $\tau \subseteq \sigma$, we denote the evaluation of τ by G_{τ}, and by $V_{\tau}^{i} \subseteq V\left(G_{\tau}\right)$ the vertex
set that has label i in G_{τ}. We say that i is a live label in τ if there is an edge of G which is incident to V_{τ}^{i} and does not appear in G_{τ}. Denote the set of live labels in τ by L_{τ}. Since G is connected, $L_{\tau} \neq \emptyset$ for any proper subexpression τ of σ.

For each subexpression τ of σ, we will compute a set P_{τ} consisting of functions $p: L_{\tau} \rightarrow$ $\mathcal{S}(H)$ where $p \in P_{\tau}$ if and only if there exists a homomorphism h_{p} from G_{τ} to H such that $p(i) \subseteq S\left(h_{p}\left(V_{\tau}^{i}\right)\right), i \in L_{\tau}$. We will say that $p \in P_{\tau}$ describes the homomorphism h_{p} in τ or, equivalently, that h_{p} witnesses p in τ. Intuitively, we will use $p(i)$ to preemptively store the images of the neighbors of V_{τ}^{i} in the final graph G - that is why we store not only the exact signature, but all signatures that occur as subsets. We remark that storing the "current" images of the neighbors of V_{τ}^{i} in G_{τ} would be sufficient to obtain a conceptually simpler fixed-parameter algorithm parameterized by clique-width, but in that case it is not obvious how one can avoid a quadratic dependency on clique-width in the exponent.

Observe that for any homomorhism $h: G_{\tau} \rightarrow H$, images of vertices with live labels should be connected in H with images of their future neighbors. In particular, for any $i \in L_{\tau}$, $S\left(h\left(V_{\tau}^{i}\right)\right) \neq \emptyset$ and hence $S\left(h\left(V_{\tau}^{i}\right)\right) \in \mathcal{S}(H)$. Therefore h is described in τ by some $p \in P_{\tau}$. By definition, $L_{\sigma}=\emptyset$ and hence G is homomorphic to H if and only if P_{σ} contains the empty mapping, i.e., if $P_{\sigma}=\{\emptyset\}$ (as opposed to $P_{\sigma}=\emptyset$). It remains to show how to correctly compute each P_{τ}. To do so, we distinguish based on the outermost operation of τ :
(a) $\tau=i(v)$ for some $i \in[\operatorname{cw}(G)]$. In this case $L_{\tau}=\{i\}$, and P_{τ} contains all functions $p:\{i\} \mapsto \mathcal{S}(H)$ such that $p(i) \subseteq N_{H}(u)$ for some $u \in V(H)$.
(b) $\tau=\rho_{i \rightarrow j}\left(\tau^{\prime}\right)$ and $P_{\tau^{\prime}}$ has already been computed. If $i \notin L_{\tau^{\prime}}$, we can correctly set $L_{\tau}=L_{\tau^{\prime}}$ and $P_{\tau}=P_{\tau^{\prime}}$. If $i \in L_{\tau^{\prime}}$ and $j \notin L_{\tau^{\prime}}$, then $L_{\tau}=\left(L_{\tau^{\prime}} \backslash\{i\}\right) \cup\{j\}$ and

$$
P_{\tau}=\left\{p: L_{\tau} \rightarrow \mathcal{S}(H) \mid \exists p^{\prime} \in P_{\tau^{\prime}}: \quad p(\ell)=\left\{\begin{array}{ll}
p^{\prime}(\ell) & \text { if } \ell \neq j \\
p^{\prime}(i) & \text { if } \ell=j
\end{array}\right\}\right.
$$

Finally, if $\{i, j\} \subseteq L_{\tau^{\prime}}$, then $L_{\tau}=L_{\tau^{\prime}} \backslash\{i\}$ and $P_{\tau}=\left\{\left.p^{\prime}\right|_{L_{\tau}} \mid p^{\prime} \in P_{\tau^{\prime}} \wedge p^{\prime}(i)=p^{\prime}(j)\right\}$.
For correctness in the last case, let h be a homomorphism from G_{τ} to H and $S_{\ell} \in \mathcal{S}(H)$ be such that $S_{\ell} \subseteq S\left(h\left(V_{\tau}^{\ell}\right)\right), \ell \in L_{\tau}$. Observe that $V_{\tau}^{\ell}=V_{\tau^{\prime}}^{\ell}$ for $\ell \in L_{\tau} \backslash\{j\}$ and $V_{\tau}^{j}=V_{\tau^{\prime}}^{j} \cup V_{\tau^{\prime}}^{i}$. In particular, $S_{j} \subseteq S\left(h\left(V_{\tau^{\prime}}^{i}\right)\right)$ and $S_{j} \subseteq S\left(h\left(V_{\tau^{\prime}}^{j}\right)\right)$. By definition of $P_{\tau^{\prime}}$, there exists $p^{\prime} \in P_{\tau^{\prime}}$ such that $p^{\prime}(\ell)=S_{\ell}$ for $\ell \in L_{\tau} \backslash\{j\}$ and $p^{\prime}(i)=p^{\prime}(j)=S_{j}$. The function $p \in P_{\tau}$, defined by $p=\left.p^{\prime}\right|_{L_{\tau}}$, satisfies $p^{\prime}(\ell)=S_{\ell}, \ell \in L_{\tau}$.

On the other hand, fix some $p \in P_{\tau}$. Let $p^{\prime} \in P_{\tau^{\prime}}$ be a function such that p arises from p^{\prime} in the construction of P_{τ}. Consider a witness h of p^{\prime} in τ^{\prime}. For every $\ell \in L_{\tau} \backslash\{j\}$ we have $V_{\tau}^{\ell}=V_{\tau^{\prime}}^{\ell}$ and so $p(\ell)=p^{\prime}(\ell) \subseteq S\left(h\left(V_{\tau}^{\ell}\right)\right)$. Moreover, $p(j)=p^{\prime}(j) \subseteq S\left(h\left(V_{\tau^{\prime}}^{j}\right)\right)$ and $p(j)=p^{\prime}(i) \subseteq S\left(h\left(V_{\tau^{\prime}}^{i}\right)\right)$. By Observation 4, we have $p(j) \subseteq S\left(h\left(V_{\tau^{\prime}}^{i}\right)\right) \cap S\left(h\left(V_{\tau^{\prime}}^{j}\right)\right)=$ $S\left(h\left(V_{\tau^{\prime}}^{i} \cup V_{\tau^{\prime}}^{j}\right)\right)=S\left(h\left(V_{\tau}^{j}\right)\right)$. Hence p witnesses h in τ.
(c) $\tau=\tau^{(1)} \oplus \tau^{(2)}$ where $P_{\tau^{(1)}}$ and $P_{\tau^{(2)}}$ have already been computed. In this case $L_{\tau}=L_{\tau^{(1)}} \cup L_{\tau^{(2)}}$. We define

$$
P_{\tau}=\left\{p=p_{1} \cup p_{2} \mid p_{1} \in P_{\tau^{(1)}} \wedge p_{2} \in P_{\tau^{(2)}} \wedge\left(\forall \ell \in L_{\tau^{(1)}} \cap L_{\tau^{(2)}}: p_{1}(\ell)=p_{2}(\ell)\right)\right\}
$$

Intuitively, we construct a homomorphism on the disjoint union of two subgraphs by "gluing together" the homomorphisms on the subgraphs. If the subgraphs share any live labels, after this step they will all be treated equally. For this reason we require the images of the neighbors of such labels to be the same in both subgraphs.

For correctness, let h be a homomorphism from G_{τ} to H and $S_{\ell} \in \mathcal{S}(H)$ be such that $S_{\ell} \subseteq S\left(h\left(V_{\tau}^{\ell}\right)\right)$, $\ell \in L_{\tau}$. Observe that for every $\ell \in L_{\tau^{(1)}} \cap L_{\tau^{(2)}}, V_{\tau}^{\ell} \supseteq V_{\tau^{(i)}}^{\ell}$, so $S_{\ell} \subseteq S\left(h\left(V_{\tau^{(i)}}^{\ell}\right)\right), i=1,2$. By definition, there exists $p_{i} \in P_{\tau^{(i)}}$ such that $p_{i}(\ell)=S_{\ell}$ for $\ell \in L_{\tau^{(i)}}, i=1,2$. For $p=p_{1} \cup p_{2}$ we have $p(\ell)=S_{\ell}, \ell \in L_{\tau}$.

For the converse, fix some $p \in P_{\tau}$. Let $p_{1} \in P_{\tau^{(1)}}, p_{2} \in P_{\tau^{(2)}}$ be functions such that $p=p_{1} \cup p_{2}$. Let h_{i} be a witness of p_{i} in $\tau^{(i)}, i=1,2$. We define $h=h_{1} \cup h_{2}$. Since G_{τ} doesn't contain edges between $V\left(G_{\tau^{(1)}}\right)$ and $V\left(G_{\tau^{(2)}}\right), h$ is a homomorphism from G_{τ} to H. For all $\ell \in L_{\tau^{(1)}} \backslash L_{\tau^{(2)}}$, we have $p(\ell)=p_{1}(\ell) \subseteq S\left(h_{1}\left(V_{\tau}^{\ell}\right)\right)=S\left(h\left(V_{\tau}^{\ell}\right)\right)$, similarly for $\ell \in L_{\tau^{(1)}} \backslash L_{\tau^{(2)}}$. For $\ell \in L_{\tau^{(1)}} \cap L_{\tau^{(2)}}$, we have $p(\ell)=p_{i}(\ell) \subseteq S\left(h_{i}\left(V_{\tau^{(i)}}^{\ell}\right)\right), i=1,2$, so $p(\ell) \subseteq S\left(h_{1}\left(V_{\tau^{(1)}}^{\ell}\right)\right) \cap S\left(h_{2}\left(V_{\tau^{(2)}}^{\ell}\right)\right)=S\left(h\left(V_{\tau}^{\ell}\right)\right)$. Hence h is a witness of p in τ.
(d) $\tau=\eta_{i, j}\left(\tau^{\prime}\right)$ and $P_{\tau^{\prime}}$ has already been computed. In this case $L_{\tau}=L_{\tau^{\prime}} \backslash I$ where $I \subseteq\{i, j\}$ is the set of live labels in τ^{\prime} that are no longer live labels in τ. We set $P_{\tau}=\left\{p: L_{\tau} \rightarrow\right.$ $\left.\mathcal{S}(H) \mid \exists p^{\prime} \in P_{\tau^{\prime}}:\left(\left.p^{\prime}(i) \supseteq S\left(p^{\prime}(j)\right) \wedge p\right|_{L_{\tau} \backslash\{i, j\}}=\left.p^{\prime}\right|_{L_{\tau} \backslash\{i, j\}} \wedge p(i) \subseteq p^{\prime}(i) \wedge p(j) \subseteq p^{\prime}(j)\right)\right\}$.

Intuitively, we can add the edges between two live labels if and only if there are edges between their images in H. Our restriction on p^{\prime} is an expression of this condition in terms of images of neighbors and their signatures. Indeed, for correctness, let h be a homomorphism from G_{τ} to H and $S_{\ell} \in \mathcal{S}(H)$ be such that $S_{\ell} \subseteq S\left(h\left(V_{\tau}^{\ell}\right)\right), \ell \in L_{\tau}$. There exists $p^{\prime} \in P_{\tau^{\prime}}$ such that $p^{\prime}(\ell)=S_{\ell}$ for all $\ell \in L_{\tau} \backslash\{i, j\}, p^{\prime}(i)=S\left(h\left(V_{\tau}^{i}\right)\right)$ and $p^{\prime}(j)=S\left(h\left(V_{\tau}^{j}\right)\right)$. As h is a homomorphism, we have $h\left(V_{\tau^{\prime}}^{i}\right) \times h\left(V_{\tau^{\prime}}^{j}\right) \subseteq E(H)$, which means that $S\left(h\left(V_{\tau^{\prime}}^{j}\right)\right) \supseteq h\left(V_{\tau^{\prime}}^{i}\right)$, i.e. $p^{\prime}(j) \supseteq h\left(V_{\tau^{\prime}}^{i}\right)$. Then $S\left(p^{\prime}(j)\right) \subseteq S\left(h\left(V_{\tau^{\prime}}^{i}\right)\right)=p^{\prime}(i)$ and hence p^{\prime} gives rise to $p \in P_{\tau}$ such that $p(\ell)=S_{\ell}, \ell \in L_{\tau}$.

On the other hand, let $p \in P_{\tau}$ arise from $p^{\prime} \in P_{\tau^{\prime}}$. Consider a witness $h: G_{\tau^{\prime}} \rightarrow H$ of p^{\prime} in τ^{\prime}. To see that h preserves edges between $V_{\tau^{\prime}}^{i}$ and $V_{\tau^{\prime}}^{j}$, recall that $p^{\prime}(i) \supseteq S\left(p^{\prime}(j)\right)$, so $S\left(h\left(V_{\tau^{\prime}}^{i}\right)\right) \supseteq p^{\prime}(i) \supseteq S\left(p^{\prime}(j)\right) \supseteq S\left(S\left(h\left(V_{\tau^{\prime}}^{j}\right)\right)\right) \supseteq h\left(V_{\tau^{\prime}}^{j}\right)$. Hence $h\left(V_{\tau^{\prime}}^{i}\right) \times h\left(V_{\tau^{\prime}}^{j}\right) \subseteq E(H)$ and h is a homomorphism from G_{τ} to H. By construction, for every $\ell \in L_{\tau}$ it holds that $p(\ell) \subseteq p^{\prime}(\ell) \subseteq S\left(h\left(V_{\tau}^{\ell}\right)\right)$, so h witnesses p in τ.

It is easy to verify that $\left|P_{\tau}\right| \leqslant s(H)^{\mathrm{cw}(G)}$ for each subexpression τ of σ. This means that in each step, the computation requires time $\mathcal{O}\left(\operatorname{cw}(G) s(H)^{2} s(H)^{\mathrm{cw}((G))}\right)$. Overall this yields a complexity of $\mathcal{O}\left(|V(G)| \operatorname{cw}(G) s(H)^{2} s(H)^{\mathrm{cw}((G))}\right) \subseteq \mathcal{O}^{*}\left(s(H)^{\mathrm{cw}(G)}\right)$.

4 On Products and Projectivity

While Theorem 1 will serve as the upper bound that will match our target SETH-based lower bounds for $\operatorname{HOM}(H)$ for the "most difficult" choices of H, in many cases one can in fact supersede the algorithm's runtime by exploiting well-known properties of target graphs.

As a simple example showcasing this, consider the wheel graph W_{6} (see Figure 1). Since W_{6} is 3-colorable, it holds that $W_{6} \rightarrow K_{3}$, and since K_{3} is a core and an induced subgraph of W_{6}, it is the core of W_{6}. We recall that if H is a core of H^{\prime}, then for every graph G it holds that $G \rightarrow H$ if and only if $G \rightarrow H^{\prime}$. Hence, having an instance G of $\operatorname{Hom}\left(W_{6}\right)$, we can compute a core of W_{6} (since we assume that the target graph is fixed, this can be done in constant time), and use Theorem 1 for $H=K_{3}$ to decide whether $G \rightarrow W_{6}$ in total running time $\mathcal{O}^{*}\left(s\left(K_{3}\right)^{\mathrm{cw}(G)}\right)$. As $s\left(K_{3}\right)<s\left(W_{6}\right)$ (as showcased in Figure 1), this yields a better running time bound than the direct use of Theorem 1. While this example shows that the signature number can decrease by taking an induced subgraph, we remark that it can never increase.

- Observation 9. Let H and H^{\prime} be graphs such that H is an induced subgraph of H^{\prime}. Then $s(H) \leqslant s\left(H^{\prime}\right)$.

Figure 1 The graphs W_{6} (left) and K_{3} (right). Colors on the vertices of W_{6} indicate the homomorphism $h: W_{6} \rightarrow K_{3}$. We note that $\{\{0\}\} \cup\{\{0, i\} \mid i \in[6]\} \subseteq \mathcal{S}\left(W_{6}\right)$. Since K_{3} is a clique, we have $s\left(K_{3}\right)=6<7 \leqslant s\left(W_{6}\right)$.

Proof. Given a connected graph Q without loops, one may consider an equivalence relation \sim_{Q} on the set of proper nonempty subsets of $V(Q)$ defined as follows: $V_{1} \sim_{Q} V_{2}$ if and only if V_{1} and V_{2} have the same signature sets in Q. Observe that $s(Q)$ is equal to the number of equivalence classes of \sim_{Q}. Hence to prove the claim, it suffices to show that whenever two sets belong to different equivalence classes of \sim_{H}, they also belong to different equivalence classes of $\sim_{H^{\prime}}$. For this, consider any two proper non-empty subsets V_{1} and V_{2} of $V(H)$ such that $V_{1} \propto_{H} V_{2}$. Without loss of generality, we assume that there exists $v \in\left(\bigcap_{t \in V_{1}} N_{H}(t)\right) \backslash\left(\bigcap_{t \in V_{2}} N_{H}(t)\right)$. Then $v t \in E(H) \subseteq E\left(H^{\prime}\right)$ for every $t \in V_{1}$, i.e., v belongs to the signature set of V_{1} in H^{\prime}. On the other hand, $v t_{0} \notin E(H)$ for some $t_{0} \in V_{2}$. As H is induced subgraph of H^{\prime}, it means that $v t_{0} \notin E\left(H^{\prime}\right)$, so v doesn't belong to the signature set of V_{2} in H^{\prime} and hence $V_{1}{\nsim H^{\prime}}^{\prime} V_{2}$.

At this point, we may ask whether the procedure of simply computing the unique core H of the fixed target H^{\prime} and then applying Theorem 1 for H could yield a tight upper bound for $\operatorname{Hom}\left(H^{\prime}\right)$. Unfortunately, the situation is more complicated than that, and we need to introduce a few important notions in order to capture the problem's fine-grained complexity.

Let the direct product $H_{1} \times H_{2}$ of graphs H_{1}, H_{2} be the graph defined as follows:

$$
\begin{aligned}
& V\left(H_{1} \times H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right) \\
& E\left(H_{1} \times H_{2}\right)=\left\{\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right): x_{i} y_{i} \in E\left(H_{i}\right) \text { for every } i \in\{1,2\}\right\}
\end{aligned}
$$

We call H_{1} and H_{2} the factors of $H_{1} \times H_{2}$. Clearly, the operation \times is commutative, and since it is also associative, we can naturally extend the definition of direct product to more than two factors, i.e., $H_{1} \times H_{2} \times \ldots \times H_{m}=H_{1} \times\left(H_{2} \times \ldots \times H_{m}\right)$. Note that for every graph H that contains at least one edge, it holds that $H \times K_{1}^{*}=H$.

In the remaining part of the paper we will often consider vertices that are tuples. If such a vertex is an argument of some function and in cases where this does not lead to confusion, we omit one pair of brackets; similarly, we omit internal brackets in nested tuples where this does not lead to confusion. Moreover, for any graph H and for an integer ℓ, we denote by H^{ℓ} the graph $\overbrace{H \times \ldots \times H}^{\ell}$. As an example, instead of writing $\left(\left(x_{1}, x_{2}\right), y_{1}\right) \in\left(\left(H_{1} \times H_{1}\right) \times H_{2}\right)$, we write $\left(x_{1}, x_{2}, y_{1}\right) \in\left(H_{1}^{2} \times H_{2}\right)$.

If $H=H_{1} \times \ldots \times H_{m}$ for some graphs H_{1}, \ldots, H_{m}, we say that $H_{1} \times \ldots \times H_{m}$ is a factorization of H. A graph H on at least two vertices is prime if the fact that $H=H_{1} \times H_{2}$ for some graphs H_{1}, H_{2} implies that $H_{1}=K_{1}^{*}$ or $H_{2}=K_{1}^{*}$. If H has a factorization $H_{1} \times \ldots \times H_{m}$ such that for every $i \in[m]$ the graph H_{i} is prime, we call $H_{1} \times \ldots \times H_{m}$ a prime factorization of H.

- Theorem 10 ([8,14]). Any connected non-bipartite graph with more than one vertex has a unique prime factorization (into factors with possible loops).

Consider a graph $H_{1} \times \ldots \times H_{m}$, and let $i \in[m]$. A mapping $\pi_{i}: V\left(H_{1} \times \ldots \times H_{m}\right) \rightarrow V\left(H_{i}\right)$ such that $\pi_{i}\left(x_{1}, \ldots, x_{\ell}\right)=x_{i}$ is called the (i-th) projection of $H_{1} \times \ldots \times H_{m}$. Clearly, such a mapping is always a homomorphism.

- Observation 11. Let G, H_{1}, \ldots, H_{m} be graphs. Then $G \rightarrow H_{1} \times \ldots \times H_{m}$ if and only if for every $i \in[m]$ we have $G \rightarrow H_{i}$.

Proof. Let $f: G \rightarrow H_{1} \times \ldots \times H_{m}$. Then for every $i \in[m]$ (by $[m]$ we denote the set of integers $\{1, \ldots, m\}$) we have a homomorphism $f_{i}: G \rightarrow H_{i}$. Conversely, if for every $i \in[m]$ we have $g_{i}: G \rightarrow H_{i}$, then we can define $g: G \rightarrow H_{1} \times \ldots \times H_{m}$ as $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$.

Crucially, in some cases Observation 11 allows us to improve the bounds given by Theorem 1 even if H is a core, simply by considering all possible factorizations of H.

- Corollary 12. Let H be a graph with factorization $H_{1} \times \ldots \times H_{m}$, and let G be an instance graph of $\operatorname{HOM}(H)$. Assuming that the clique-width expression σ of G of width $\mathrm{cw}(G)$ is given, the $\operatorname{Hom}(H)$ problem can be solved in time $\max _{i \in[m]} \mathcal{O}^{*}\left(s\left(H_{i}\right)^{\mathrm{cw}(G)}\right)$.
Proof. Observe that if G is an instance of $\operatorname{Hom}(H)$, by Theorem 1 for every $i \in[m]$ we can decide whether $G \rightarrow H_{i}$ in time $\mathcal{O}^{*}\left(s\left(H_{i}\right)^{\mathrm{cw}(G)}\right)$. Then, if G is a yes-instance of $\operatorname{Hom}\left(H_{i}\right)$ for every $i \in[m]$, we return that G is a yes-instance of $\operatorname{Hom}(H)$. Otherwise, we return that G is a no-instance of $\operatorname{Hom}(H)$. The correctness of this procedure follows from Observation 11.

On the other hand, the notion of signature sets we introduced in the previous section behaves multiplicatively with respect to taking direct product of graphs.

- Observation 13. Let $H=H_{1} \times H_{2}$. Then $\mathcal{S}(H)=\mathcal{S}\left(H_{1}\right) \times \mathcal{S}\left(H_{2}\right)$.

Proof. We prove that $\mathcal{S}(H)$ is of form $\left\{S\left(T_{1}\right) \times S\left(T_{2}\right): T_{i} \subseteq V\left(H_{i}\right), S\left(T_{i}\right) \neq \emptyset\right.$ for $\left.i=1,2\right\}$. Let T_{1} and T_{2} be some subsets of, respectively, $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$. Clearly,

$$
\begin{equation*}
S\left(T_{1}\right) \times S\left(T_{2}\right)=\left[\bigcap_{t \in T_{1}} N(t)\right] \times\left[\bigcap_{t^{\prime} \in T_{2}} N\left(t^{\prime}\right)\right]=\bigcap_{\left(t, t^{\prime}\right) \in T_{1} \times T_{2}} N\left(t, t^{\prime}\right)=S\left(T_{1} \times T_{2}\right) \tag{1}
\end{equation*}
$$

Therefore, if $S\left(T_{1}\right)$ and $S\left(T_{2}\right)$ are non-empty, we get that $S\left(T_{1}\right) \times S\left(T_{2}\right) \in \mathcal{S}(H)$.
To see that $\mathcal{S}(H) \subseteq \mathcal{S}\left(H_{1}\right) \times \mathcal{S}\left(H_{2}\right)$, we show that for every $T \subseteq V(H)$ set $S(T)$ is of the form $S\left(T_{1}\right) \times S\left(T_{2}\right)$ for some T_{1}, T_{2}. Define T_{1} and T_{2} to be minimal sets such that $T \subseteq T_{1} \times T_{2}$. Hence, by (1), $S\left(T_{1}\right) \times S\left(T_{2}\right)=S\left(T_{1} \times T_{2}\right) \subseteq S(T)$. On the other hand, for every $\left(s, s^{\prime}\right) \in S(T)$ we have $s \in \bigcap_{t \in T_{1}} N(t)$ and $s^{\prime} \in \bigcap_{t^{\prime} \in T_{2}} N\left(t^{\prime}\right)$, so the equality follows.

It follows from Observation 13 that if H is a graph with factorization $H_{1} \times \ldots \times H_{m}$, then $s(H)=s\left(H_{1}\right) \cdot \ldots \cdot s\left(H_{m}\right)$. Therefore if there exist at least two factors H_{i}, H_{j} such that $s\left(H_{i}\right), s\left(H_{j}\right)>1$, Corollary 12 yields a better running time than Theorem 1.

In order to analyze the possible matching lower bounds for our algorithms, in the remaining part of the section, we focus only on connected non-trivial cores H that are provided with their unique prime factorization $H_{1} \times \ldots \times H_{m}$; if H is prime, we technically consider this factorization to be $H \times K_{1}^{*}$ (noting that this is not a prime factorization, and that K_{1}^{*} is the only non-simple graph in this article). We note that the factors of a core must satisfy some necessary conditions.

- Observation 14 ([25]). Let H be a connected, non-trivial core with factorization $H=$ $H_{1} \times \ldots \times H_{m}$ such that $H_{i} \neq K_{1}^{*}$ for all $i \in[m]$. Then for every $i \in[m]$ the graph H_{i} is a connected non-trivial core, incomparable with H_{j} for $j \in[m]-\{i\}$.

Observation 14 in particular implies that if H is a connected non-trivial graph with factorization $H_{1} \times \ldots \times H_{m}$, then at least one of the factors H_{i} must be non-trivial, and that K_{1} and K_{2} never appear as factors of a connected non-trivial graph.

In the remaining part of this section we introduce a few more important definitions, in particular, the well-established notion of projectivity for non-trivial graphs H.

We say that a homomorphism $f: H^{\ell} \rightarrow H$, for some $\ell \geqslant 2$, is idempotent if for each $x \in V(H)$ it holds that $f(x, \ldots, x)=x$. Graph H is projective if for every $\ell \geqslant 2$, every idempotent homomorphism $f: H^{\ell} \rightarrow H$ is a projection. We note that every projective graph on at least three vertices must be connected, ramified, non-bipartite and prime [22].

Here, we introduce a generalization of the projectivity property for non-trivial cores, which turns out to be the central component required to establish the lower bound for our problem. As a first step towards this, we lift the notion of idempotency as follows. Let H be a connected, non-trivial prime core, and let W be either a connected core on at least three vertices incomparable with H, or the graph K_{1}^{*}. Let $f: A \rightarrow H$ be a homomorphism where $A=H^{\ell} \times W$; observe that ℓ is uniquely determined by either W being incomparable with the prime core H, or W being K_{1}^{*}. We say that f is H-idempotent if for each $x \in V(H), y \in V(W)$ it holds that $f(x, \ldots, x, y)=x$.

Now, let us consider a non-trivial core H which admits a prime factorization $H_{1} \times \ldots \times H_{m}$ and let $i \in[m]$. We say that H is H_{i}-projective if H_{i} is non-trivial and every H_{i}-idempotent homomorphism $f: H_{1} \times \ldots \times H_{i-1} \times H_{i}^{\ell} \times H_{i+1} \times \ldots \times H_{m} \rightarrow H_{i}$ is a projection. In other words, for every homomorphism $f: H_{1} \times \ldots H_{i-1} \times H_{i}^{\ell} \times H_{i+1} \times \ldots \times H_{m} \rightarrow H_{i}$ such that for every $x \in V\left(H_{i}\right), y_{j} \in V\left(H_{j}\right)$ for $j \in[m]-\{i\}$ it holds that $f\left(y_{1}, \ldots, y_{i-1}, x, \ldots, x, y_{i+1}, \ldots, y_{m}\right)=$ x, we must have that there exists $q \in\{i, \ldots, i+\ell-1\}$ such that $f \equiv \pi_{q}$. Recall that if H is a non-trivial projective core, then it must be prime, so $H \times K_{1}^{*}$ is its only possible factorization. It is straightforward to verify that in a such case H is H-projective.

Since the direct product of graphs is commutative, if $H=H_{1} \times \ldots \times H_{m}$ is H_{i}-projective for some $i \in[m]$, to simplify the notation we will often assume w.l.o.g. that $i=1$.

5 Hardness

In this section, we focus on establishing the desired lower bounds, stated below.

- Theorem 2. Let H be a fixed non-trivial core with prime factorization $H_{1} \times \ldots \times H_{m}$. Assume that H is H_{i}-projective for some $i \in[m]$. Then there is no algorithm solving $\operatorname{HOM}(H)$ in time $\mathcal{O}^{*}\left(\left(s\left(H_{i}\right)-\varepsilon\right)^{\mathrm{cw}(G)}\right)$ for any $\varepsilon>0$, unless the SETH fails.

We divide our proof into two main steps. First, we show that in our setting, instead of considering the $\operatorname{Hom}(H)$ problem, we may focus on the Homomorphism Extension problem, denoted $\operatorname{HomExt}(H)$. For a fixed H, $\operatorname{HomExt}(H)$ takes as an instance a pair $\left(G^{\prime}, h^{\prime}\right)$, where $h^{\prime}: V^{\prime} \rightarrow V(H)$ is a mapping from some $V^{\prime} \subseteq V\left(G^{\prime}\right)$. We ask whether there exists an extension of h^{\prime} to G^{\prime}, i.e., a homomorphism $h: G^{\prime} \rightarrow H$ such that $\left.h\right|_{V^{\prime}} \equiv h^{\prime}$.

The $\operatorname{HomExt}(H)$ is clearly a generalization of the $\operatorname{Hom}(H)$ problem. However, as the first step of our proof, we show that if H is a fixed non-trivial core, each instance $\left(G^{\prime}, h^{\prime}\right)$ of $\operatorname{HomExt}(H)$ can be transformed in polynomial time into an instance G of $\operatorname{Hom}(H)$, such that $\mathrm{cw}\left(G^{\prime}\right)$ and $\mathrm{cw}(G)$ differ only by a constant.

- Theorem 15. Let H be a fixed non-trivial core. Given an instance $\left(G^{\prime}, h^{\prime}\right)$ of $\operatorname{HomExt}(H)$, we can construct an equivalent instance G of $\operatorname{Hom}(H)$ such that $\mathrm{cw}(G) \leqslant \mathrm{cw}\left(G^{\prime}\right)+|V(H)|$.

Proof. Let $V^{\prime} \subseteq V\left(G^{\prime}\right)$ be the domain of h^{\prime}. We construct G by taking a copy \hat{G}^{\prime} of G^{\prime} and a copy \hat{H} of H. Then, for every $v \in V^{\prime}$ we add all the edges with one endpoint in v and another one in $N_{\hat{H}}\left(h^{\prime}(v)\right)$.

Observe that if there exists an extension $h: G^{\prime} \rightarrow H$ of h^{\prime}, then h can be also extended to G, by setting $h(v)=v$ for every $v \in V(\hat{H})$. Indeed, let $u v \in E(G)$. If $u, v \in V\left(\hat{G}^{\prime}\right)$, then $h(u) h(v) \in E(H)$, by definition of the extension of h^{\prime} to G^{\prime}. If $u, v \in V(\hat{H})$, then $h(u) h(v)=$ $u v \in E(H)$. Finally, assume that $u \in V\left(\hat{G}^{\prime}\right), v \in V(\hat{H})$. Note that, by definition of G, this can happen only if $u \in V^{\prime}$ and v is adjacent to $h^{\prime}(u)$. Hence, $h(u) h(v)=h^{\prime}(u) v \in E(H)$.

For the reverse direction, assume that there exists a homomorphism $f: G \rightarrow H$. We show that there exists an extension $h: G^{\prime} \rightarrow H$ of h^{\prime}. Let $\sigma: H \rightarrow H$ be a restriction of f to H. Since H is a core, σ is an automorphism of H. We claim that $g=\sigma^{-1} \circ f: G \rightarrow H$, restricted to G^{\prime}, is an extension of h^{\prime}. Clearly, g is a composition of homomorphisms, so also a homomorphism. Therefore, it remains to show that for every $v \in V^{\prime}$ we have $h^{\prime}(v)=g(v)$. Since H is a core, and $N_{H}\left(h^{\prime}(v)\right) \subseteq N_{G}(v)$, we have that $f(v)=f\left(h^{\prime}(v)\right)$. It follows that $g(v)=\sigma^{-1} \circ f(v)=\sigma^{-1} \circ f\left(h^{\prime}(v)\right)=g\left(h^{\prime}(v)\right)$. However, recall that for every $u \in V(H)$ we have that $g(u)=u$, so in particular, $g\left(h^{\prime}(v)\right)=h^{\prime}(v)$.

To see that $\mathrm{cw}(G) \leqslant \mathrm{cw}\left(G^{\prime}\right)+|V(H)|$, observe that we added exactly $|V(H)|$ vertices to G^{\prime}. This means we can modify a clique-width expression σ for G^{\prime} to obtain a clique-width expression of G as follows. Each added vertex is introduced with a designated label that is distinct from all labels used in σ. Then each subexpression of σ that introduces a vertex of G^{\prime} can be replaced by an expression that introduces the vertex and inserts all required edges to the added vertices. Finally, one can insert the missing edges between added vertices.

As the second step, we prove the following theorem.

- Theorem 16. Let H be a fixed non-trivial core with prime factorization $H_{1} \times \ldots \times H_{m}$. Assume that H is H_{i}-projective for some $i \in[m]$. Then there is no algorithm solving $\operatorname{HomExt}(H)$ in time $\mathcal{O}^{*}\left(\left(s\left(H_{i}\right)-\varepsilon\right)^{\mathrm{cw}\left(G^{\prime}\right)}\right)$ for any $\varepsilon>0$, unless the SETH fails.

Before we proceed to the proof of Theorem 16, we show that it implies Theorem 2.
Theorem $16 \rightarrow$ Theorem 2: Let H be a non-trivial core with a prime factorization $H_{1} \times \ldots \times H_{m}$. W.l.o.g. assume that H is H_{1}-projective. Suppose that Theorem 2 does not hold, i.e., there exists an algorithm A that solves every instance G of $\operatorname{Hom}(H)$ in time $\mathcal{O}^{*}\left(\left(s\left(H_{1}\right)-\varepsilon\right)^{\mathrm{cw}(G)}\right)$.

Let $\left(G^{\prime}, h^{\prime}\right)$ be an instance of $\operatorname{HomExt}(H)$. We use Theorem 15 to transform $\left(G^{\prime}, h^{\prime}\right)$ into an equivalent instance G of $\operatorname{Hom}(H)$, such that $\mathrm{cw}(G) \leqslant \mathrm{cw}\left(G^{\prime}\right)+|V(H)|$. Then, we use A to decide whether $G \rightarrow H$ in time

$$
\mathcal{O}^{*}\left(\left(s\left(H_{1}\right)-\varepsilon\right)^{\mathrm{cw}(G)}=\mathcal{O}^{*}\left(\left(s\left(H_{1}\right)-\varepsilon\right)^{\mathrm{cw}\left(G^{\prime}\right)} \cdot\left(s\left(H_{1}\right)-\varepsilon\right)^{|V(H)|}\right) .\right.
$$

Since H is a fixed graph, $\left(s\left(H_{1}\right)-\varepsilon\right)^{|V(H)|}$ is a constant, and therefore $\mathcal{O}^{*}\left(\left(s\left(H_{1}\right)-\varepsilon\right)^{\mathrm{cw}(G)}\right)=$ $\mathcal{O}^{*}\left(\left(s\left(H_{1}\right)-\varepsilon\right)^{\mathrm{cw}\left(G^{\prime}\right)}\right)$. Since $G \rightarrow H$ if and only if $\left(G^{\prime}, h^{\prime}\right)$ is a yes-instance of $\operatorname{HomExT}(H)$, we get a contradiction with Theorem 16.

We will prove Theorem 16 for $i=1$, which covers other cases by commutativity of direct products. We begin by constructing certain gadgets that will be used later. Let H be a fixed core with factorization $H_{1} \times \ldots \times H_{m}$. We define $W=H_{2} \times \ldots \times H_{m}$ if $m \geqslant 2$, and $W=K_{1}^{*}$ otherwise. Clearly, $H_{1} \times W$ is a (not necessarily prime) factorization of H. Moreover, if for some graph G we have a homomorphism $f: G \rightarrow H_{1} \times \ldots, \times H_{m}$, for $i \in[m]$ we denote by f_{i} the homomorphism $\pi_{i} \circ f: G \rightarrow H_{i}$.

Let S be a set of pairs of vertices of H_{1}, and let $w, w^{\prime} \in V(W)$. We say that a tuple $\left(F, h^{\prime}, p, q\right)$, such that F is a graph, $h^{\prime}: V^{\prime} \rightarrow H$ is a mapping with domain $V^{\prime} \subseteq V(F)$, and $p, q \in V(F)$, is an $\left(S, w, w^{\prime}\right)$-gadget if
(S1) for every extension $h: F \rightarrow H$ of h^{\prime}, it holds that $\left(h_{1}(p), h_{1}(q)\right) \in S$,
(S2) for every pair $\left(s_{1}, s_{2}\right) \in S$ there exists an extension $h: F \rightarrow H$ of h^{\prime} such that $h(p)=\left(s_{1}, w\right)$ and $h(q)=\left(s_{2}, w^{\prime}\right)$.

- Lemma 17. Let H be a non-trivial connected core with factorization $H_{1} \times W$, let $S \subseteq$ $V\left(H_{1}\right)^{2}$, and let $w, w^{\prime} \in V(W)$. Assume that H is H_{1}-projective. Then there exists an (S, w, w^{\prime})-gadget.

Proof. Let $S=\left\{\left(s_{1}^{1}, s_{2}^{1}\right), \ldots,\left(s_{1}^{\ell}, s_{2}^{\ell}\right)\right\}$. Define

$$
F=H_{1}^{\ell} \times W, \quad \text { and } p=\left(s_{1}^{1}, \ldots, s_{1}^{\ell}, w\right), \quad \text { and } q=\left(s_{2}^{1}, \ldots, s_{2}^{\ell}, w^{\prime}\right)
$$

Let $V^{\prime}=\left\{(x, x, \ldots, x, y) \mid x \in V\left(H_{1}\right), y \in V(W)\right\}$, and let $h^{\prime}(x, \ldots, x, y)=(x, y)$. We claim that $\left(F, h^{\prime}, p, q\right)$ is an $\left(S, w, w^{\prime}\right)$-gadget.

The condition 1 follows from the fact that H is H_{1}-projective. Indeed, observe that if $h: F \rightarrow H_{1} \times W$ is an extension of h^{\prime}, then h_{1} must be H_{1}-idempotent, and hence a projection on one of the ℓ first coordinates. Therefore, we must have $\left(h_{1}(p), h_{1}(q)\right) \in S$.

For (S2), take any $\left(s_{1}^{i}, s_{2}^{i}\right) \in S$ and let $h: F \rightarrow H_{1} \times W, h(x)=\left(\pi_{i}(x), \pi_{\ell+1}(x)\right)$. Clearly, h is an extension of h^{\prime}, and it is easy to verify that $h(p)=\left(s_{1}^{i}, w\right)$ and $h(q)=\left(s_{2}^{i}, w^{\prime}\right)$.

We say that $S \subseteq V\left(H_{1}\right)^{2}$ is proper, if for every coordinate there exist two elements is S that differ on that coordinate, i.e., S is not of the form $\{s\} \times U$ nor $U \times\{s\}$ for some $s \in V\left(H_{1}\right)$ and $U \subseteq V\left(H_{1}\right)$. Note that if S is proper and $\left(F, h^{\prime}, p, q\right)$ is an $\left(S, w, w^{\prime}\right)$-gadget, then neither p nor q belong to the domain of h^{\prime}.

For fixed vertices $a, b \in V\left(H_{1}\right)$, let $S_{a, b}=\left\{\left(a^{\prime}, b^{\prime}\right): a^{\prime} \neq a, b^{\prime} \in V\left(H_{1}\right)\right\} \cup\{(a, b)\}$. We call the $\left(S_{a, b}, w, w^{\prime}\right)$-gadget $\left(F, h^{\prime}, p, q\right)$ an $\left((a, b), w, w^{\prime}\right)$-implication-gadget. Intuitively, an $\left((a, b), w, w^{\prime}\right)$-implication-gadget works as the implication $a \Rightarrow b$, since in every homomorphism $h: F \rightarrow H$ that extends h^{\prime}, if $h_{1}(p)=a$, then $h_{1}(q)=b$.

Let $a, b, c \in V\left(H_{1}\right), w \in V(W)$, and let t be an integer. A triple $\left(F, h^{\prime}, R\right)$ such that F is a graph, $h^{\prime}: V^{\prime} \rightarrow H_{1} \times W$ is a partial mapping from some $V^{\prime} \subseteq V(F)$, and R is a subset of $V(F)$ of cardinality t is an t-or-gadget with domain $((a, b, c), w)$ if
(O1) for every homomorphism $h: F \rightarrow H$ that is an extension of h^{\prime}, and for every $u \in R$ we have that $h_{1}(u) \in\{a, b, c\}$ and there exists $v \in R$ such that $h_{1}(v)=a$,
(O2) for every $v \in R$ there exists a homomorphism $h: F \rightarrow H$ that is an extension of h^{\prime}, such that $h(v)=(a, w)$ and for every $u \in R-\{v\}$ it holds that $h(u) \in\{(b, w),(c, w)\}$.

- Lemma 18. Let H be a non-trivial core with factorization $H_{1} \times W$. Assume that H is H_{1}-projective. Then for every distinct $a, b, c \in V\left(H_{1}\right)$, every $w \in V(W)$ and every t, there exists a t-or-gadget $\left(F, h^{\prime}, R\right)$ with domain $((a, b, c), w)$.

Proof. We consider separately the cases $t=1$ and $t=2$. Observe that in case $t=1$ our gadget needs to be a graph that has a vertex $r \in R$ that is always mapped to (a, w). Hence, we set $F=K_{1}, R=V(F)$, and $h^{\prime}(v)=(a, w)$ for $v \in V(F)$.

If $t=2$, let $S=\{(a, b),(b, a),(a, a)\}$, we introduce an independent set $R=\left\{r_{1}, r_{2}\right\}$ and (S, w, w)-gadget $\left(F, h^{\prime}, r_{1}, r_{2}\right)$. To see that $\left(F, h^{\prime}, R\right)$ satisfies 1 , consider any extension $f: F \rightarrow$ H of h^{\prime}. As $\left(F, h^{\prime}, r_{1}, r_{2}\right)$ is (S, w, w)-gadget, we have $\left(f_{1}\left(r_{1}\right), f_{1}\left(r_{2}\right)\right) \in\{(a, b),(a, a),(b, a)\}$. For 2 , recall that by the property 2 of S-gadget there exist extensions $f^{(1)}$ and $f^{(2)}$ of h^{\prime} such that $\left(f_{1}^{(1)}\left(r_{1}\right), f_{1}^{(1)}\left(r_{2}\right)\right)=(a, b)$ and $\left(f_{1}^{(2)}\left(r_{1}\right), f_{1}^{(2)}\left(r_{2}\right)\right)=(b, a)$.

$$
\begin{aligned}
& \text { Assume then that } t \geqslant 2 \text {, and let } \\
& S=\{a, b, c\}^{2}-\{(b, c),(c, b)\}, \\
& S_{\text {left }}=\{(a, a),(a, b),(a, c),(c, a),(c, c)\}, \\
& S_{\text {right }}=\{(a, a),(a, b),(b, a),(b, b),(c, a)\}
\end{aligned}
$$

be subsets of $V\left(H_{1}\right)^{2}$. We introduce an independent set $R=\left\{r_{1}, \ldots, r_{t}\right\}$ of t vertices and one copy of $\left(S_{\text {left }}, w, w\right)$-gadget $\left(F_{1}, h_{1}^{\prime}, p_{1}, q_{1}\right)$ from r_{1} to r_{2}. Then, for $j \in\{2, \ldots, t-2\}$, we introduce an (S, w, w)-gadget $\left(F_{j}, h_{j}^{\prime}, p_{j}, q_{j}\right)$ from r_{j} to r_{j+1} (we note that if $t \leqslant 3$, we do not introduce these). Last, we introduce one copy of ($\left.S_{\text {right }}, w, w\right)$-gadget $\left(F_{t-1}, h_{t-1}^{\prime}, p_{t-1}, q_{t-1}\right)$ from r_{t-1} to r_{t}. We note that sets $S, S_{\text {left }}$, and $S_{\text {right }}$ are proper, so the domains of the partial mappings $h_{j}^{\prime}, j \in\{1, \ldots, t-1\}$, are pairwise disjoint. In particular, the union $h^{\prime}=\bigcup_{j=1}^{t} h_{j}^{\prime}$ is a well-defined mapping. We define F to be the union of all the graphs from the introduced gadgets and claim that $\left(F, h^{\prime}, R\right)$ is a t-or-gadget. We first show that 1 holds. Assume that there exists an extension $f: F \rightarrow H$ of h^{\prime}, and $j^{\prime} \in[t]$ such that $f_{1}\left(r_{j^{\prime}}\right) \notin\{a, b, c\}$. This implies that there exists $j \in\left\{j^{\prime}-1, j^{\prime}\right\}$ such that $\left(f_{1}\left(r_{j}\right), f_{1}\left(r_{j+1}\right)\right) \notin S^{\prime}$ for any $S^{\prime} \in\left\{S_{\text {left }}, S, S_{\text {right }}\right\}$. This is a contradiction with $\left(F, h_{j}^{\prime}, p_{j}, q_{j}\right)$ being an $\left(S^{\prime}, w, w\right)$-gadget, as it violates 1.

Now assume that there exists an extension $f: F \rightarrow H$ of h^{\prime} such that for every $j \in[t]$ we have that $f_{1}\left(r_{j}\right) \in\{b, c\}$. The definition of $S_{\text {left }}$ and $S_{\text {right }}$, respectively, implies that $f_{1}\left(r_{1}\right)=c$ and $f_{1}\left(r_{t}\right)=b$. Hence, there exists $j \in[t-1]$ such that $f_{1}\left(r_{j}\right)=c$ and $f_{1}\left(r_{j+1}\right)=b$. However, observe that the pair (c, b) does not belong to set S^{\prime}, for $S^{\prime} \in\left\{S_{\text {left }}, S, S_{\text {right }}\right\}$, and since we introduced an S^{\prime}-gadget from r_{j} to r_{j+1}, this leads to a contradiction.

To see that 2 holds as well, fix some $r_{j} \in R$ and define

$$
f^{\prime}\left(r_{\ell}\right)= \begin{cases}(a, w), & \text { if } \ell=j \\ (c, w), & \text { if } \ell<j \\ (b, w), & \text { if } \ell>j\end{cases}
$$

If $j=1$, then since $(a, b) \in S_{\text {left }},(b, b) \in S$ and $(b, b) \in S_{\text {right }}$, the property 2 asserts that we can construct a homomorphism $f: F \rightarrow H$ that extends h^{\prime} and f^{\prime}. The same holds also if $j=t$, (since $(c, c) \in S_{\text {left }},(c, c) \in S$ and $(c, a) \in S_{\text {right }}$), and if $1<j<t$ (since $(c, c) \in S_{\text {left }}$, $(c, c),(c, a),(a, b),(b, b) \in S$ and $\left.(b, b) \in S_{\text {right }}\right)$.

Finally, all that remains is to prove Theorem 16. Our reduction generalizes the construction used by Lampis [20] to reduce an SETH lower-bounded constraint satisfaction problem to k-Coloring. Intuitively speaking, in that construction possible variable assignments are encoded by mapping specified vertices to arbitrary non-trivial subsets of the colors. The straightforward generalization of this approach to our setting would be to map to non-trivial subsets of $V(H)$. However, the structure of H allows only certain configurations of subsets as images for the specified vertices in a solution for $\operatorname{Hom}(H)$ - which is precisely where the signature sets come into play.

Let $q, B \geqslant 2$ be integers. We will reduce from the q-CSP- B problem that is defined as follows. An instance of q-CSP- B consists of a set X of variables and a set C of q-constraints A q-constraint $c \in C$ is a q-tuple of elements from X and a set $P(c)$ of q-tuples of elements from $[B]$ (i.e., $P(c) \subseteq[B]^{q}$). The q-CSP- B problem asks whether there exists an assignment $\gamma: X \rightarrow[B]$, such that each constraint is satisfied, i.e., if $c=\left(\left(x_{1}, \ldots, x_{q}\right), P(c)\right) \in C$, then $\left(\gamma\left(x_{1}\right), \ldots, \gamma\left(x_{q}\right)\right) \in P(c)$. Note that we can assume that q-constraints in our q-CSP- B instance may have less than q vertices, as it is always possible to add at most $q-1$ dummy variables to X and add them to constraints that are of smaller size.

We will use the following theorem.

- Theorem 19 ([20]). For any $B \geqslant 2, \varepsilon>0$ we have the following: assuming the SETH, there exists q such that n-variable $q-C S P-B$ cannot be solved in time $\mathcal{O}^{*}\left((B-\varepsilon)^{n}\right)$.

We have all the tools to perform the final reduction.
Proof of Theorem 16. Recall that it is sufficient to prove the theorem when $H=H_{1} \times W$ is non-trivial H_{1}-projective core $\left(W=K_{1}^{*}\right.$ if $\left.H=H_{1}\right)$. Fix $\varepsilon>0$ and set $B=s\left(H_{1}\right)$. As H is H_{1}-projective, H_{1} is non-trivial and hence contains at least three distinct vertices a, b and c. In particular, $B \geqslant 3$ by Observation 8 . Since $H=H_{1} \times W$ is a non-trivial core, W must have at least one edge $w w^{\prime}$ (it may happen that $w=w^{\prime}$). From now on a, b, c, w and w^{\prime} are fixed. Let q be the smallest number such that q-CSP- B on n variables cannot be solved in time $\mathcal{O}^{*}\left((B-\varepsilon)^{n}\right)$ assuming the SETH, given by Theorem 19.

Let φ be an instance of q-CSP- B, where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is the set of variables and $C=\left\{c_{0}, \ldots, c_{m-1}\right\}$ is the set of constraints. For every $j \in\{0, \ldots, m-1\}$ denote by X_{j} the set of variables that appear in the constraint c_{j}. Let $P\left(c_{j}\right)=\left\{f_{1}^{j}, \ldots, f_{p_{j}}^{j}\right\}$ be the set of assignments from X_{j} to $[B]$ that satisfy the constraint c_{j}. Let $L=m\left(n\left|H_{1}\right|+1\right)$, and let $\lambda:[B] \rightarrow \mathcal{S}\left(H_{1}\right)$ be some fixed bijection.

We construct the instance G_{φ} of $\operatorname{HomExt}(H)$. For each $j \in\{0, \ldots L-1\}$, let $j^{\prime}=j$ $\bmod m$. Let $R_{j}=\left\{r_{1}^{j}, \ldots, r_{p_{j^{\prime}}}^{j}\right\}$, where each vertex r_{k}^{j} corresponds to the assignment $f_{k}^{j^{\prime}}$. We introduce the $p_{j^{\prime}}$-or-gadget $\left(F_{j}, h_{j}^{\prime}, R_{j}\right)$ with domain $((a, b, c), w)$.

For each $x_{i} \in X_{j^{\prime}}$, and for each $f_{k}^{j^{\prime}} \in P\left(c_{j^{\prime}}\right)$ we do the following:

1. Let $y=f_{k}^{j^{\prime}}\left(x_{i}\right) \in[B]$. Construct an independent set $V_{i}^{j, k}$ of $|\lambda(y)|$ vertices and an independent set $U_{i}^{j, k}$ of $|S(\lambda(y))|$ vertices.
2. For each $d \in \lambda(y)$ select a distinct vertex $z \in V_{i}^{j, k}$ and add an ($\left.(a, d), w, w^{\prime}\right)$-implicationgadget from r_{k}^{j} to z. For each $d \in S(\lambda(y))$ select a distinct vertex $z \in U_{i}^{j, k}$ and add an $\left((a, d), w, w^{\prime}\right)$-implication-gadget from r_{k}^{j} to z.
3. Connect all vertices of $U_{i}^{j, k}$ with all vertices of previously constructed sets $V_{i}^{\ell, k^{\prime}}$ for $\ell<j$ and $k^{\prime} \in\left[p_{\ell}\right]$.
The partial mapping h^{\prime} is the union of all the partial mappings that are introduced by all the gadgets. This finishes the construction of the instance $\left(G_{\varphi}, h^{\prime}\right)$ of $\operatorname{HomExt}(H)$.
\triangleright Claim 20. If φ is a yes-instance of q-CSP- B, then there exists a homomorphism $h: G_{\varphi} \rightarrow H$ that extends h^{\prime}.

Proof of Claim. If φ is a yes-instance of q-CSP- B, then there exists an assignment $\gamma: X \rightarrow[B]$ satisfying each constraint. We define $h: G_{\varphi} \rightarrow H$ as follows.

Fix $j \in\{0, \ldots, L-1\}$, and consider the or-gadget $\left(F_{j}, h_{j}^{\prime}, R_{j}\right)$. Recall that the set $P\left(c_{j^{\prime}}\right)$ consists of all assignments of variables in $X_{j^{\prime}}$ that satisfy the constraint $c_{j^{\prime}}$. Therefore, there exists an assignment $f_{k}^{j^{\prime}} \in P\left(c_{j^{\prime}}\right)$ such that $\left.\gamma\right|_{X_{j^{\prime}}} \equiv f_{k}^{j^{\prime}}$. Consider the vertex r_{k}^{j} that corresponds to that assignment. By the property 2 of the or-gadget, we know that there exists a H-coloring of F_{j} that extends h^{\prime}, such that (i) $h_{1}\left(r_{k}^{j}\right)=a$ and (ii) for every $r_{k^{\prime}}^{j} \in R_{j}, k^{\prime} \neq k$ we have that $h_{1}\left(r_{k^{\prime}}^{j}\right) \in\{b, c\}$.

Let $x_{i} \in X_{j^{\prime}}$ and let $y=f_{k}^{j^{\prime}}\left(x_{i}\right) \in[B]$. Since for each $d \in \lambda(y)$ there exists a vertex $z \in V_{i}^{j, k}$ such that there is an $\left((a, d), w, w^{\prime}\right)$-implication-gadget from r_{k}^{j} to z, the condition (i) implies that $h_{1}\left(V_{i}^{j, k}\right)=\lambda(y)$. We color the vertices of $V_{i}^{j, k}$ in a way that $h\left(V_{i}^{j, k}\right)=\lambda(y) \times\{w\}$.

Also, since for each $d \in S(\lambda(y))$ there exists a vertex $z \in U_{i}^{j, k}$ such that there is an (a, d)-implication-gadget from r_{k}^{j} to z, the condition (i) implies that $h_{1}\left(U_{i}^{j, k}\right)=S(\lambda(y))$. We color the vertices of $U_{i}^{j, k}$ in a way that $h\left(U_{i}^{j, k}\right)=S(\lambda(y)) \times\left\{w^{\prime}\right\}$.

Because of (ii), the implication gadgets from $r_{k^{\prime}}$ to the vertices of $V_{i}^{j, k^{\prime}} \cup U_{i}^{j, k^{\prime}}$ do not put any constraints on the coloring of the sets $V_{i}^{j, k^{\prime}}$ and $U_{i}^{j, k^{\prime}}$. Therefore, for each $v \in V_{i}^{j, k^{\prime}}$ we set $h(v)$ to be any vertex from $\lambda(y)$. Similarly, for each $u \in U_{i}^{j, k^{\prime}}$ we set $h(u)$ to be any vertex from $S(\lambda(y))$. Since $(b, x),(c, x) \in S_{a, b}$ for any $x \in V\left(H_{1}\right)$, property 2 applied to the implication gadgets asserts that since $h\left(r_{k^{\prime}}\right) \in\{b, c\}$, we can always extend this mapping to a homomorphism of the whole gadget to H.

It remains to argue that the edges between the sets $V_{i}^{j_{1}, k_{1}}$ and $U_{i}^{j_{2}, k_{2}}$ are mapped to edges of H, for any $j_{1}<j_{2}$ and k_{1}, k_{2}. However, observe that since γ is an extension of some $f_{k_{1}}^{j_{1}^{\prime}} \in S_{j_{1}^{\prime}}$ and $f_{k_{2}}^{j_{2}^{\prime}} \in S_{j_{2}^{\prime}}$, we must have $f_{k_{1}}^{j_{1}^{\prime}}\left(x_{i}\right)=f_{k_{2}}^{j_{2}^{\prime}}\left(x_{i}\right)=y$. Hence, h maps every $v \in V_{i}^{j_{1}, k_{1}}$ to some element of $\lambda(y) \times\{w\}$, and every $u \in U_{i}^{j_{2}, k_{2}}$ to some element of $S(\lambda(y)) \times\left\{w^{\prime}\right\}$. By Observation 4, and since $w w^{\prime} \in E(W)$, we get that $h(v) h(u) \in E(H)$. That concludes the proof of the claim.
\triangleright Claim 21. If there exists a homomorphism $h: G_{\varphi} \rightarrow H$ that extends h^{\prime}, then φ is a yes-instance of q-CSP- B.

Proof of Claim. We will define the assignment $\gamma: X \rightarrow[B]$ that makes every constraint from C satisfied.

Fix $j \in\{0, \ldots, L-1\}$, and consider the $p_{j^{\prime}}$-or-gadget $\left(F_{j}, h_{j}^{\prime}, R_{j}\right)$. By the property 1 of the or-gadget, there exists $k_{j} \in\left[p_{j^{\prime}}\right]$ such that $h_{1}\left(r_{k_{j}}^{j}\right)=a$. Implication gadgets whose p-vertices were identified with $r_{k_{j}}^{j}$ assert that $h_{1}\left(V_{i}^{j, k_{j}}\right) \in \mathcal{S}(H)$ and $h_{1}\left(U_{i}^{j, k_{j}}\right)$ is the signature of $h_{1}\left(V_{i}^{j, k_{j}}\right)$. Then, by Observation $5, h_{1}\left(V_{i}^{j, k_{j}}\right)$ is a signature of $h_{1}\left(U_{i}^{j, k_{j}}\right)$. Denote $h_{1}\left(U_{i}^{j, k_{j}}\right)$ by T_{i}^{j}, then $h_{1}\left(V_{i}^{j, k_{j}}\right)=S\left(T_{i}^{j}\right)$ and $S\left(S\left(T_{i}^{j}\right)\right)=T_{i}^{j}$ Let $y_{i}^{j}=f_{k_{j}}^{j^{\prime}}\left(x_{i}\right)$ be the candidate assignment for $x_{i} \in X_{j^{\prime}}$ at index j, recall that $y_{i}^{j}=\lambda^{-1}\left(S\left(T_{i}^{j}\right)\right)$.

Let $i \in[n]$ be fixed and let $j_{1}, j_{2} \in[L], j_{1}<j_{2}$ be such that $x_{i} \in X_{j_{1}^{\prime}} \cap X_{j_{2}^{\prime}}$. Observe that in such case $T_{i}^{j_{1}} \supseteq T_{i}^{j_{2}}$. Indeed, denote $k_{1}=k_{j_{1}}, k_{2}=k_{j_{2}}$, then we have (1) $h_{1}\left(V_{i}^{j_{1}, k_{1}}\right)=$ $S\left(T_{i}^{j_{1}}\right)$ and $h_{1}\left(U_{i}^{j_{1}, k_{1}}\right)=T_{i}^{j_{1}}$, and (2) $h_{1}\left(V_{i}^{j_{2}, k_{2}}\right)=S\left(T_{i}^{j_{2}}\right)$ and $h_{1}\left(U_{i}^{j_{2}, k_{2}}\right)=T_{i}^{j_{2}}$. Recall that each vertex from $U_{i}^{j_{2}, k_{2}}$ is adjacent to each vertex from $V_{i}^{j_{1}, k_{1}}$. Since h_{1} is a homomorphism, the same holds for their images: each vertex from $T_{i}^{j_{2}}$ is adjacent to each vertex from $S\left(T_{i}^{j_{1}}\right)$. Then $S\left(T_{i}^{j_{2}}\right) \supseteq S\left(T_{i}^{j_{1}}\right)$, so $T_{i}^{j_{1}}=S\left(S\left(T_{i}^{j_{1}}\right)\right) \supseteq S\left(S\left(T_{i}^{j_{2}}\right)\right) \supseteq T_{i}^{j_{2}}$.

We say that the index $j_{1} \in\{0, \ldots, L-1\}$ is problematic for i if there is $j_{2}>j_{1}$ such that $x_{i} \in X_{j_{1}^{\prime}} \cap X_{j_{2}^{\prime}}$ and $T_{i}^{j_{1}} \neq T_{i}^{j_{2}}$. Since for each variable we have at most $\left|H_{i}\right|$ problematic indices, there are at most $\left|H_{i}\right| \cdot n$ problematic indices for all variables. Since $L=m\left(\left|H_{i}\right| \cdot n+1\right)$, by pigeonhole principle we get that there exists a set $J \subseteq\{0, \ldots, L-1\}$ of m consecutive indices such that none of them is problematic for any i. For every $i \in[n]$, we fix some $j \in J$ such that $x_{i} \in X_{j^{\prime}}$ and set $\gamma\left(x_{i}\right)=y_{i}^{j}$ (observe that the choice of j does not matter).

We claim that γ is an assignment that satisfies every constraint from φ. Indeed, for any $j^{\prime} \in[m]$ there exists $j \in J$ such that $j^{\prime}=j \bmod m$. For every $i \in X_{j^{\prime}}$, we have $\gamma\left(x_{i}\right)=y_{i}^{j}=f_{k_{j}}^{j^{\prime}}\left(x_{i}\right)$, so γ satisfies the constraint $c_{j^{\prime}}$.

Finally, it remains to adapt the arguments of Lampis [20] to establish the desired linear clique-width bound.
\triangleright Claim 22. $\quad G_{\varphi}$ can be constructed in time polynomial in $|\varphi|$, and we have $\mathrm{cw}\left(G_{\varphi}\right) \leqslant$ $n+f(\varepsilon, \nu)$ for some function f, where $\nu=|V(H)|$.

Proof of Claim. Observe that any $\left(S, w, w^{\prime}\right)$-gadget constructed as in Lemma 17 for $i=1$ has at most $\left|V\left(H_{i}\right)\right|^{|S|-1} \cdot|V(H)| \leqslant \nu^{|S|}$ vertices. In particular, we can ensure that every implication gadget in G_{φ} has at most $\nu^{\mathcal{O}\left(\nu^{2}\right)}$ vertices. Moreover, we will assume that all the
or-gadgets of G_{φ} are constructed as in Lemma 18 and the subgadgets for $S, S_{\text {left }}$ and $S_{\text {right }}$ contain at most ν^{7} vertices. Then for every $j \in\{0, \ldots, L-1\}, p_{j^{\prime}}$-or-gadget $\left(F_{j}, h_{j}^{\prime}, R_{j}\right)$ has at most $\left(p_{j^{\prime}}-1\right) \cdot \nu^{7}$ vertices.

For fixed H and $\varepsilon>0$ we have that $B=s\left(H_{i}\right) \leqslant 2^{\left|V\left(H_{i}\right)\right|}-2$ and q is a constant that only depends on B, ε (that is, on $\left|V\left(H_{i}\right)\right|, \varepsilon$). Each constraint of the q - CSP - B instance has at most B^{q} satisfying assignments. In particular, the number of vertices in each or-gadget is upper-bounded by $B^{q} \cdot \nu^{7}$. Therefore, it is not hard to see that the whole construction can be performed in polynomial time, if H is fixed and ε is a constant. For clique-width we use the following labels:

1. n main labels, representing the variables of φ.
2. A single done label. Its informal meaning is that a vertex that receives this label will not be connected to anything else not yet introduced in the graph.
3. $B^{q} \cdot \nu^{7}$ constraint work labels.
4. $q B^{q} \cdot \nu^{\mathcal{O}\left(\nu^{2}\right)}$ variable-constraint incidence work labels.

To give a clique-width expression we will describe how to build the graph, following essentially the steps given in the description of the construction by maintaining the following invariant: before starting iteration j, all vertices of the set $W_{i}^{j}=\bigcup_{j^{\prime}<j} \bigcup_{k \in\left[p_{j^{\prime}}\right]} V_{i}^{j^{\prime}, k}$ have label i, and all other vertices have the done label. This invariant is vacuously satisfied before the first iteration, since the graph is empty. Suppose that for some $j \in\{0, \ldots, L-1\}$ the invariant is true. We use the $B^{q} \cdot \nu^{7}$ constraint work labels to introduce the vertices of the $p_{j^{\prime}}$-or-gadget $\left(F_{j}, h_{j}^{\prime}, R_{j}\right)$, giving each vertex a distinct label. We use join operations to construct the internal edges of the or-gadget. Then, for each variable x_{i} that appears in the current constraint we do the following: we use $B^{q} \cdot \nu^{\mathcal{O}\left(\nu^{2}\right)}$ of the variable-constraint incidence work labels to introduce for all $k \in\left[p_{j^{\prime}}\right]$ the vertices of $V_{i}^{j, k}$ and $U_{i}^{j, k}$ as well as the implication gadgets connecting these to r_{k}^{j}. Again we use a distinct label for each vertex, but the number of vertices (including internal vertices of the implication gadgets) is $B^{q} \cdot \nu^{\mathcal{O}\left(\nu^{2}\right)}$, so we have sufficiently many labels to use distinct labels for each of the q variables of the constraint. We use join operations to add the edges inside all implication gadgets. Then we use join operations to connect $U_{i}^{j, k}$ to all vertices W_{i}^{j}. This is possible, since the invariant states that all the vertices of W_{i}^{j} have the same label i. We then rename all the vertices of $U_{i}^{j, k}$ for all k to the done label, and do the same also for internal vertices of all implication gadgets. We proceed to the next variable of the same constraint and handle it using its own $B^{q} \cdot \nu^{\mathcal{O}\left(\nu^{2}\right)}$ labels. Once we have handled all variables of the current constraint, we rename all vertices of each $V_{i}^{j, k}$ to label i for all k. We then rename all vertices of the $p_{j^{\prime}}$-or-gadget $\left(F_{j}, h_{j}^{\prime}, R_{j}\right)$ gadget to the done label and increase j by 1 . It is not hard to see that we have maintained the invariant and constructed all edges induced by the vertices introduced in steps up to j, so repeating this process constructs the graph.

Together the claims imply Theorem 16 in the following way: For an arbitrary instance of q-CSP- B, our construction produces an instance of $\operatorname{HomExt}(H)$, and the instances are equivalent by Claim 20 and Claim 21. If one could solve $\operatorname{HomExt}(H)$ in $\mathcal{O}^{*}\left(\left(s\left(H_{i}\right)-\varepsilon\right)^{\mathrm{cw}(G)}\right)$ for some $\varepsilon>0$, one could use our construction to solve q-CSP- B, and by our choice of B and Claim 22 this procedure would have complexity $\mathcal{O}^{*}\left((B-\varepsilon)^{n+c}\right)$ for some constant c. By our choice of q according to Theorem 19, this contradicts the SETH.

6 Summary and Concluding Remarks

Extensions and Corollaries. We observe that Corollary 12 can be combined with Theorem 2 to obtain the following statement, which summarizes our results.

- Theorem 23. Let H^{\prime} be a fixed graph with the non-trivial connected core H. Let $H_{1} \times$ $\ldots \times H_{m}$ be the prime factorization of H. Let $i \in[m]$ be such that $s\left(H_{i}\right)=\max _{j \in[m]} s\left(H_{j}\right)$. Let G be an instance of $\operatorname{Hom}\left(H^{\prime}\right)$.

1. Assuming a clique-width expression σ of G of width $\mathrm{cw}(G)$ is given, the $\operatorname{Hom}\left(H^{\prime}\right)$ problem can be solved in time $\max _{i \in[m]} \mathcal{O}^{*}\left(s\left(H_{i}\right)^{\mathrm{cw}(G)}\right)$.
2. Assuming that H is H_{i}-projective, there is no algorithm to solve $\operatorname{Hom}\left(H^{\prime}\right)$ in time $\max _{i \in[m]} \mathcal{O}^{*}\left(\left(s\left(H_{i}\right)-\varepsilon\right)^{\mathrm{cw}(G)}\right)$ for any $\varepsilon>0$, unless the SETH fails.

We note that the restriction to connected targets can be avoided by known properties of homomorphisms to disconnected graphs [25]; on the algorithmic side, one branches over all connected components of H, while for the lower bound one considers the component with maximum signature number.

It is clear that obtaining a full complexity classification with respect to clique-width may require weakening the assumption in the second statement of Theorem 23. We recall that an analogous situation occurs in the work of Okrasa and Rzazżewski [25]; as mentioned in the introduction, the authors obtain the SETH-conditioned tight complexity bound for the $\operatorname{Hom}(H)$ problem parameterized by treewidth for all targets H, assuming two conjectures of Larose and Tardif [21,22]. The notion of H_{i}-projectivity allows us to restate these conjectures as one, which is not only sufficient in our setting but is also weaker in the sense of it being implied by the former two conjectures, but not necessarily equivalent to them.

- Conjecture 1. Let H be a non-trivial core with prime factorization $H_{1} \times \ldots \times H_{m}$ and let $i \in[m]$. Then H is H_{i}-projective.

Using Conjecture 1, we can restate our main result as follows.

- Theorem 24. Let H^{\prime} be a fixed graph with the non-trivial connected core H. Let $H_{1} \times$ $\ldots \times H_{m}$ be the prime factorization of H. Let G be an instance of $\operatorname{HOM}\left(H^{\prime}\right)$.

1. Assuming the clique-width expression σ of G of width $\mathrm{cw}(G)$ is given, the $\operatorname{HOM}\left(H^{\prime}\right)$ problem can be solved in time $\max _{i \in[m]} \mathcal{O}^{*}\left(s\left(H_{i}\right)^{\mathrm{cw}(G)}\right)$.
2. Assuming that Conjecture 1 holds, there is no algorithm to solve $\operatorname{HOM}\left(H^{\prime}\right)$ in time $\max _{i \in[m]} \mathcal{O}^{*}\left(\left(s\left(H_{i}\right)-\varepsilon\right)^{\mathrm{cw}(G)}\right)$ for any $\varepsilon>0$, unless the SETH fails.

We also observe that since each non-trivial projective core H is H-projective, in this case we already obtain a tight complexity bound.

- Corollary 25. Let H^{\prime} be a fixed graph with the non-trivial connected projective core H. Let G be an instance of $\operatorname{HOM}\left(H^{\prime}\right)$.

1. Assuming the clique-width expression σ of G of width $\mathrm{cw}(G)$ is given, the $\operatorname{HOM}\left(H^{\prime}\right)$ problem can be solved in time $\mathcal{O}^{*}\left(s(H)^{\mathrm{cw}(G)}\right)$.
2. There is no algorithm to solve $\operatorname{HOM}\left(H^{\prime}\right)$ in time $\mathcal{O}^{*}\left((s(H)-\varepsilon)^{\mathrm{cw}(G)}\right)$ for any $\varepsilon>0$, unless the SETH fails.

Generalizations and Other Research Directions. We remark that our hardness reduction is via $\operatorname{Hom} \operatorname{Ext}(H)$, and in fact our algorithm can also easily be adapted to this setting (by removing all records that do not adhere to the partial mapping from the input graph to H) without an increase in complexity. However, since the dichotomy between P and NP-complete cases of $\operatorname{HomExt}(H)$ is more complicated (see [11], studied as the graph-retract problem) there exist target graphs H that are not covered by Theorem 24. On a similar note, let us also point out that setting up the SETH-conditioned tight complexity bounds for clique-width for a more general list problem $\operatorname{LHOM}(H)[10,27]$ is widely open.

Another direction that is very closely related to our results is to determine similarly tight complexity bounds for the rank-width (rw) of the input graph: rank-width [17, 26] is a graph parameter that is known to be asymptotically equivalent to clique-width and is in fact used as an approximation of clique-width that can be computed in fixed-parameter tractable time. Our results together with the known relationship between clique-width and rank-width imply an upper bound of $\mathcal{O}^{*}\left(s(H)^{2^{r w+1}}\right)$ and a SETH lower bound of $(s(H)-\varepsilon)^{\text {rw }}$ on the complexity of $\operatorname{Hom}(H)$ for projective H parameterized by the rank-width of the input.

References

1 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy distinguishes treewidth from pathwidth. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 14:1-14:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
2 Jan Böker. Graph similarity and homomorphism densities. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48 th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 32:1-32:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
3 Andrei A. Bulatov and Amineh Dadsetan. Counting homomorphisms in plain exponential time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47 th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 21:1-21:18. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2020.
4 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125-150, 2000.
5 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1-3):77-114, 2000.
6 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socała. Tight lower bounds on graph embedding problems. J. ACM, 64(3):18:1-18:22, 2017. doi:10.1145/3051094.
7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
8 Willibald Dörfler. Primfaktorzerlegung und Automorphismen des Kardinalproduktes von Graphen. Glasnik Matematički, 9:15-27, 1974.
9 László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from boundedtreewidth graphs to reflexive graphs: a complete complexity characterization. In 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, pages 27:1-27:15, 2018.
10 Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homomorphisms. J. Graph Theory, 42(1):61-80, 2003. doi:10.1002/jgt. 10073.
11 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput., 28(1):57-104, 1998. doi:10.1137/S0097539794266766.
12 Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. Exact algorithms for graph homomorphisms. Theory Comput. Syst., 41(2):381-393, 2007. doi:10.1007/s00224-007-2007-x.
13 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. $A C M, 54(1): 1: 1-1: 24,2007$.
14 Richard H. Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product graphs. CRC press, 2011.
15 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B, 48(1):92-110, 1990. doi:10.1016/0095-8956(90)90132-J.

16 Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discret. Math., 109(1-3):117-126, 1992.
17 Sang il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B, 96(4):514-528, 2006. doi:10.1016/j.jctb.2005.10.006.
18 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001.
19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. doi:10.1006/jcss. 2001. 1774.

20 Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math., 34(3):1538-1558, 2020. doi:10.1137/19M1280326.
21 Benoît Larose. Families of strongly projective graphs. Discuss. Math. Graph Theory, 22(2):271292, 2002. doi:10.7151/dmgt. 1175.
22 Benoît Larose and Claude Tardif. Strongly rigid graphs and projectivity. Multiple-Valued Logic, 7:339-361, 2001.
23 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential time hypothesis. Bull. EATCS, 105:41-72, 2011.
24 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 74:1-74:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs . ESA.2020.74.
25 Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of the graph homomorphism problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487-508, 2021.
26 Sang-il Oum. Approximating rank-width and clique-width quickly. In Dieter Kratsch, editor, Graph-Theoretic Concepts in Computer Science, pages 49-58, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
27 Marta Piecyk and Paweł Rzążewski. Fine-grained complexity of the list homomorphism problem: Feedback vertex set and cutwidth. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 56:1-56:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
28 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J. Algorithms, 7(3):309-322, 1986.
29 Paweł Rzążewski. Exact algorithm for graph homomorphism and locally injective graph homomorphism. Inf. Process. Lett., 114(7):387-391, 2014.
30 Magnus Wahlström. New plain-exponential time classes for graph homomorphism. Theory Comput. Syst., 49(2):273-282, 2011. doi:10.1007/s00224-010-9261-z.
31 Tomasz Łuczak and Jaroslav Nešetřil. Note on projective graphs. J. Graph Theory, 47(2):81-86, 2004.

[^0]: ${ }^{1}$ There is a hierarchy of graph parameters (see, e.g., [1, Figure 1]), where parameter \mathbb{A} is more general than parameter \mathbb{B} if there are graph classes of bounded \mathbb{A} and unbounded \mathbb{B} but the opposite is not true.

