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—— Abstract

We study the impact of sub-array merging routines on merge-based sorting algorithms. More precisely,
we focus on the galloping sub-routine that TimSort uses to merge monotonic (non-decreasing) sub-
arrays, hereafter called runs, and on the impact on the number of element comparisons performed if
one uses this sub-routine instead of a naive merging routine.

The efficiency of TimSort and of similar sorting algorithms has often been explained by using the
notion of runs and the associated run-length entropy. Here, we focus on the related notion of dual
runs, which was introduced in the 1990s, and the associated dual run-length entropy. We prove, for
this complexity measure, results that are similar to those already known when considering standard
run-induced measures: in particular, TimSort requires only O(n + nlog(c)) element comparisons to
sort arrays of length n with o distinct values.

In order to do so, we introduce new notions of fast- and middle-growth for natural merge sorts
(i-e., algorithms based on merging runs). By using these notions, we prove that several merge sorting
algorithms, provided that they use TimSort’s galloping sub-routine for merging runs, are as efficient
as TimSort at sorting arrays with low run-induced or dual-run-induced complexities.
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1 Introduction

In 2002, Tim Peters, a software engineer, created a new sorting algorithm, which was
called TimSort [20] and was built on ideas from Mcllroy [17]. This algorithm immediately
demonstrated its efficiency for sorting actual data, and was adopted as the standard sorting
algorithm in core libraries of widespread programming languages such as Python and Java.
Hence, the prominence of such a custom-made algorithm over previously preferred optimal
algorithms contributed to the regain of interest in the study of sorting algorithms.

S =(12,7,6,5, 5,7,14,36, 3,3,5,21,21, 20,8,5,1)
—_—— ——— — — — —(—
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Figure 1 A sequence and its run decomposition computed by a greedy algorithm: for each run,
the first two elements determine if the run is non-decreasing or decreasing, then the run continues
with the maximum number of consecutive elements that preserve its monotonicity.
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Among the best-identified reasons behind the success of TimSort are the fact that this
algorithm is well adapted to the architecture of computers (e.g., for dealing with cache issues)
and to realistic distributions of data. In particular, the very conception of TimSort makes it
particularly well-suited to sorting data whose run decompositions [3, 9] (see Figure 1) are
simple. Such decompositions were already used in 1973 by Knuth’s NaturalMergeSort [14,
Section 5.2.4], which adapted the traditional MergeSort algorithm as follows: NaturalMergeSort
is based on splitting arrays into monotonic subsequences, also called runs, and on merging
these runs together. Thus, all algorithms sharing this feature of NaturalMergeSort are also
called natural merge sorts.

In addition to being a natural merge sort, TimSort includes many optimisations, which
were carefully engineered, through extensive testing, to offer the best complexity performances.
As a result, the general structure of TimSort can be split into three main components: (i) a
variant of an insertion sort, which is used to deal with small runs, e.g., runs of length less
than 32, (ii) a simple policy for choosing which large runs to merge, (iii) a sub-routine for
merging these runs, based on a so-called galloping strategy. The second component has been
subject to an intense scrutiny these last few years, thereby giving birth to a great variety
of TimSort-like algorithms, such as a-StackSort [2], a-MergeSort [7], ShiversSort [22] (which
predated TimSort), adaptive ShiversSort [13], PeekSort and PowerSort [19]. On the contrary,
the first and third components, which seem more complicated and whose effect might be
harder to quantify, have often been used as black boxes when studying TimSort or designing
variants thereof.

In what follows, we focus on the third component and prove that it is very efficient:
whereas TimSort requires O(n + nlog(p)) comparisons to sort arrays of length n that can be
decomposed as a concatenation of p non-decreasing arrays, this component makes TimSort
require only O(n + nlog(o)) comparisons to sort arrays of length n with o distinct values.

Context and related work

The success of TimSort has nurtured the interest in the quest for sorting algorithms that
would be both excellent all-around and adapted to arrays with few runs. However, its ad hoc
conception made its complexity analysis harder than what one might have hoped, and it is
only in 2015, a decade after TimSort had been largely deployed, that Auger et al. [2] proved
that TimSort required O(nlog(n)) comparisons for sorting arrays of length n.

This is optimal in the model of sorting by comparisons, if the input array can be an
arbitrary array of length n. However, taking into account the run decompositions of the
input array allows using finer-grained complexity classes, as follows. First, one may consider
only arrays whose run decomposition consists of p monotonic runs. On such arrays, the
best worst-case time complexity one may hope for is O(n + nlog(p)) [16]. Second, we
may consider even more restricted classes of input arrays, and focus only on those arrays
that consist of p runs of lengths r1,...,7,. In that case, every comparison-based sorting
algorithm requires at least nH + O(n) element comparisons on average, where H is defined
as H = H(ri/n,...,rp/n) and H(z1,...,2,) = — > t_; x;1logy(x;) is the general entropy
function [3, 13, 17]. The number H is called the run-length entropy of the array.

Since the early 2000s, several natural merge sorts were proposed, all of which were meant
to offer easy-to-prove complexity guarantees: ShiversSort, which runs in time O(nlog(n));
a-StackSort, which, like NaturalMergeSort, runs in time O(n + nlog(p)); a-MergeSort, which,
like TimSort, runs in time O(n 4+ nH); adaptive ShiversSort, PeekSort and PowerSort, which
run in time nH + O(n).
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Except TimSort, these algorithms are, in fact, described only as policies for deciding which
runs to merge, the actual sub-routine used for merging runs being left implicit: since choosing
a naive merging sub-routine does not harm the worst-case time complexities considered above,
all authors identified the cost of merging two runs of lengths m and n with the sum m + n,
and the complexity of the algorithm with the sum of the costs of the merges performed.

One notable exception is that of Munro and Wild [19]. They compared the running times
of TimSort and of TimSort’s variant obtained by using a naive merging routine instead of
TimSort’s galloping sub-routine. However, and although they mentioned the challenge of
finding distributions on arrays that might benefit from galloping, they did not address this
challenge, and focused only on arrays with a low entropy H. As a result, they unsurprisingly
observed that the galloping sub-routine looked slower than the naive one.

Galloping turns out to be very efficient when sorting arrays with few distinct values, a
class of arrays that had also been intensively studied. As soon as 1976, Munro and Spira [18]
proposed a complexity measure H* related to the run-length entropy, with the property that
H* < logy (o) for arrays with o values. They also proposed an algorithm for sorting arrays
of length n with o values by using O(n + nH*) comparisons. MclIlroy [17] then extended
their work to arrays representing a permutation =, identifying H* with the run-length
entropy of w1
O(n + nH*) comparisons in this generalised setting. Similarly, Barbay et al. [4] invented
the algorithm QuickSynergySort, which aimed at minimising the number of comparisons,
achieving a O(n + nH*) upper bound and further refining the parameters it used, by taking
into account the interleaving between runs and dual runs. Yet, all of these algorithms require

and proposing a variant of Munro and Spira’s algorithm that would use

w(n +nH) element moves in the worst case.

Furthermore, as a side effect of being rather complicated and lacking a proper analysis,
except that of [19] that hinted at its inefficiency, the galloping sub-routine has been omitted
in various mainstream implementations of natural merge sorts, in which it was replaced by
its naive variant. This is the case, for instance, in library TimSort implementations of the
programming languages Swift [8] and Rust [21]. On the contrary, TimSort’s implementation
in other languages, such as Java [6], Octave [24] or the V8 JavaScript engine [25], and
PowerSort’s implementation in Python [23] include the galloping sub-routine.

Contributions

We study the time complexity of various natural merge sort algorithms in a context where
arrays are not just parametrised by their lengths. More precisely, we focus on a decomposition
of input arrays that is dual to the decomposition of arrays into monotonic runs, and that
was proposed by Mcllroy [17].

Consider an array A that we want to sort in a stable manner, i.e., in which two elements
can always considered to be distinct, if only because their positions in A are distinct. Without
loss of generality, we identify the values A[1], A[2],..., A[n] with the integers from 1 to n,
thereby making A a permutation of the set {1,2,...,n}. A common measure of presortedness
consists in subdividing A into distinct monotonic runs, i.e., partitioning the set {1,2,...,n}
into intervals Ry, Ra, ..., R, on which the function x +— A[z] is monotonic.

Here, we adopt a dual approach, which consists in partitioning the set {1,2,...,n} into
the increasing runs Sy, Sa, ..., S, of the inverse permutation A~'. These intervals S; are
already known under the name of shuffled up-sequences [3, 15] or riffle shuffles [17]. In order
to underline their connection with runs, we say that these intervals are the dual runs of A,
and we denote their lengths by s;. The process of transforming an array into a permutation
and then extracting its dual runs is illustrated in Figure 2.
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Figure 2 The arrays A and B are lexicographically equivalent to the permutation 7. Their
dual runs, represented with gray and white horizontal stripes, have respective lengths 4, 3 and 3.
The mappings A — 7 and B + 7 identify them with the dual runs of 7, i.e., with the runs of the
permutation 7. Note that A has only 3 dual runs, although it takes 5 distinct values.

When A is not a permutation of {1,2,...,n}, the dual runs of A are simply the maximal
intervals S; such that A is non-decreasing on the set of positions {j: A[j] € S;} C {1,2,...,n}.
The length of a dual run is then defined as the cardinality of that set of positions. Thus, two
lexicographically equivalent arrays have dual runs of the same lengths: this is the case, for
instance, of the arrays A, B and 7 in Figure 2.

In particular, we may see 7 and B as canonical representatives of the array A: these are
the unique permutation of {1,2,...,n} and the unique array with values in {1,2,...,0} that
are lexicographically equivalent with A. More generally, an array that contains o distinct
values cannot have more than ¢ dual runs.

Note that, in general, there is no non-trivial connection between the runs of a permutation
and its dual runs. For instance, a permutation with a given number of runs may have
arbitrarily many (or few) dual runs, and conversely.

In this article, we prove that, by using TimSort’s galloping sub-routine, several natural
merge sorts require O(n + nH*) comparisons, or even nH* + O(n) comparisons, where
H* = H(s1/n,...,8,/n) < logy(o) is called the dual run-length entropy of the array, s; is the
length of the dual run S;, and H is the general entropy function already mentioned above.

This legitimates using TimSort’s arguably complicated galloping sub-routine rather than
its naive alternative, in particular when sorting arrays that are constrained to have relatively
few distinct values.

This also subsumes results that have been known since the 1970s. For instance, adapting
the optimal constructions for alphabetic Huffman codes by Hu and Tucker [12] or Garsia
and Wachs [10] to merge trees (described in Section 3) already provided sorting algorithms
working in time nH + O(n).

Our new results rely on notions that we call fast- and middle-growth properties, and
which are found in natural merge sorts like a-MergeSort, a-StackSort, adaptive ShiversSort,
ShiversSort, PeekSort, PowerSort or TimSort. More precisely, we prove that merge sorts
require O(n + nH) comparisons and element moves when they possess the fast-growth
property, thereby encompassing complexity results that were proved separately for each of
these algorithms [1, 7, 13, 19], and O(n + nH*) comparisons when they possess the fast- or
middle-growth property, which is a completely new result.
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Finally, we prove finer complexity bounds on the number of comparisons used by adaptive
ShiversSort, ShiversSort, NaturalMergeSort, PeekSort and PowerSort, which require only
nH* + O(n + nlog(H* 4+ 1)) comparisons, nearly matching the nH+O(n) (or nlogy(n)+O(n)
and nlog,(p) + O(n), in the cases of ShiversSort and NaturalMergeSort) complexity upper
bound they already enjoy in terms of comparisons and element moves. These results are
summarised in Table 1.

Table 1 Element moves and comparisons needed by various algorithms using appropriate galloping
sub-routines to sort arrays of length n with p runs, run-length entropy H and dual run-length
entropy H*.

Algorithm Element moves Element comparisons
ShiversSort nlogy(n) + O(n) nH* 4+ O(n + nlog(H* + 1))
a-StackSort O(n + nlogy(p)) O(n + nmin{logy(p), H*})
NaturalMergeSort nlogy(p) + O(n) | nmin{logy(p), H*} + O(n + nlog(H* + 1))
a-MergeSort O(n +nH) O(n +nmin{H, H*})
TimSort 3nH/2 + O(n) O(n + nmin{H, H*})
adaptive ShiversSort nH + O(n) nmin{H, H*} + O(n + nlog(H* + 1))
PeekSort nH + O(n) nmin{H, H*} + O(n + nlog(H* + 1))
PowerSort nH + O(n) nmin{H,H*} + O(n + nlog(H* + 1))

2 The galloping sub-routine for merging runs

Here, we describe the galloping sub-routine that the algorithm TimSort uses to merge adjacent

non-decreasing runs. This sub-routine is a blend between a naive merging algorithm, which

requires a + b — 1 comparisons to merge runs A and B of lengths a and b, and a dichotomy-

based algorithm, which requires O(log(a + b)) comparisons in the best case, and O(a + b)

comparisons in the worst case. It depends on a parameter t, and works as follows.

When merging runs A and B into one large run C, we first need to find the least integers k
and £ such that B[0] < A[k] < BI{]: the k + ¢ first elements of C are A[0], A[1],..., A[k — 1],
B[0], B[1],..., B[¢ — 1], and the remaining elements of C' are obtained by merging the sub-
array of A that spans positions k to a and the sub-array of B that spans positions ¢ to b.
Computing k and /¢ efficiently is therefore a crucial step towards reducing the number of
comparisons required by the merging sub-routine (and, thus, by the sorting algorithm).

This computation is a special case of the following problem: if one wishes to find a secret
integer m > 1 by choosing integers x > 1 and testing whether x > m, what is, as a function
of m, the least number of tests that one must perform? Bentley and Yao [5] answer this
question by providing simple strategies, which they number Bg, By, .. .:

Bg: choose x = 1, then = = 2, and so on, until one chooses x = m, thereby finding m in m
queries;

B,: first use By to find [logy(m)] + 1 in [logy(m)] + 1 queries, i.e., choose z = 2% until
x = m, then compute the bits of m (from the most significant bit of m to the least
significant one) in [logy(m)] — 1 additional queries; Bentley and Yao call this strategy a
galloping (or exponential search) technique;

Bj1: like By, except that one finds [log,(m)] + 1 by using By, instead of By.

Strategy Bp uses m queries, By uses 2[log,(m)| queries (except for m = 1, where it uses
one query), and each strategy By with k > 2 uses log,(m) + o(log(m)) queries. Thus, if m
is known to be arbitrarily large, one should favour some strategy By (with k& > 1) over the
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naive strategy By. However, when merging runs taken from a permutation chosen uniformly
at random over the n! permutations of {1,2,...,n}, the integer m is frequently small, which
makes By suddenly more attractive. In particular, the overhead of using B; instead of By is a
prohibitive +20% or +33% when m = 5 or m = 3, as illustrated in the black cells of Table 2.

Table 2 Comparison requests needed by strategies Bo and B to find a secret integer m > 1.

ml|1]2][3]als5]e6e]7[8]olto[1tn]12]13]14]15][16]17
Bo| 1|2 314567 s8|olwol1t]12]13[14a]15]16]17
B, | 1 | 2 4 g 6 | 6| 6|8 8|8 8888|810

Mcllroy [17] addresses this issue by choosing a parameter t and using a blend between

the strategies By and B;, which consists in two successive steps C; and Cs:

C;: one first follows By for up to t steps, thereby choosing © = 1, 2 =2, ..., x = t (if
m < t — 1, one stops after choosing x = m);

Co: if m >t + 1, one switches to By (or, more precisely, to a version of B; translated by t,
since the precondition m > 1 is now m >t + 1).

Once such a parameter t is fixed, Mcllroy’s mixed strategy allows retrieving m in costt(m)
queries, where costy(m) = m if m < t + 2, and costy(m) = t + 2[log,(m —t)] if m >t + 3.
In practice, however, we will replace this cost function by the following simpler upper bound.

» Lemma 1. For allt >0 and m > 1, we have costy(m) < costf(m), where
costy(m) = min{(1+ 1/(t + 3))m,t + 2 + 2logy(m + 1) }.

Proof. Since the desired inequality is immediate when m < t + 2, we assume that m >t + 3.
In that case, we already have costy(m) < t+2(logy(m—t)+1) < t+2+42logy(m+1), and we
prove now that costy(m) < m+1. Indeed, let u = m—t and let f: z — 2 —1—2log,(z). The
function f is positive and increasing on the interval [7,400). Thus, it suffices to check by hand
that (m+1)—costg(m) = 0,1,0,1 when u = 3,4, 5,6, and that (m+1) —costg(m) = f(u) >0
when u > 7. Tt follows, as expected, that costy(m) < m+1< (1+1/(t + 3))m. <

The above discussion immediately provides us with a cost model for the number of
comparisons performed when merging two runs.

» Proposition 2. Let A and B be two non-decreasing runs of lengths a and b, with values
in {1,2,...,0}. For each integer i < o, let a_,; (respectively, b_,;) be the number of elements
in A (respectwely, in B) with value i. Using a merging sub-routine based on Mcllroy’s mized
strategy for a fived parameter t, we need at most

1+ Z costy (a—y;) + costy (b—y;)

i=1
element comparisons to merge the runs A and B.

Proof. First, assume that a_,; = 0 for some i > 2. Replacing every value j > ¢ + 1 with
the value j — 1 in both arrays A and B does not change the behaviour of the sub-routine
and decreases the value of 0. Moreover, the function costf is sub-additive, i.e., we have
costf (m) + costi (m') > costf(m + m') for all m > 0 and m’ > 0. Hence, without loss of
generality, we assume that a_,; > 1 for all ¢ > 2. Similarly, we assume without loss of
generality that b_,; > 1 for all i <o — 1.
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Under these assumptions, the array C that results from merging A and B consists of a_,;
elements from A, then b_,; elements from B, a_,5 elements from A, b_,5 elements from B, ...,
a_,, elements from A and b_,, elements from B. Thus, the galloping sub-routine consists in
discovering successively the integers a_,1,b_1,a_2,b_9,...,a_,, each time using Mcllroy’s
strategy based on the two steps C; and Csy; checking whether a_,; = 0 requires one more
comparison than prescribed by Mcllroy’s strategy, and the integer b_,, does not need to be
discovered once the entire run A has been scanned be the merging sub-routine. <

We simply call t-galloping sub-routine the merging sub-routine based on Mcllroy’s mixed

strategy for a fixed parameter t; when the value of t is irrelevant, we simply omit mentioning it.

Then, the quantity

1+ Z costy (a;) + costy (b;)
i=1

is called the (t-)galloping cost of merging A and B. By construction, this cost never exceeds

14+ 1/(t + 3) times the naive cost of merging A and B, which is simply defined as a + b.

Below, we study the impact of using the galloping sub-routine instead of the naive one, which
amounts to replacing naive merge costs by their galloping variants.

Note that using this new galloping cost measure is relevant only if the cost of element
comparisons is significantly larger than the cost of element (or pointer) moves. For example,
even if we were lucky enough to observe that each element in B is smaller than each element
in A, we would perform only O(log(a + b)) element comparisons, but as many as O(a + b)
element moves.

Updating the parameter t

We assumed above that the parameter t did not vary while the runs A and B were being
merged with each other. This is not how t behaves in TimSort’s implementation of the
galloping sub-routine. Instead, the parameter t is initially set to a constant (t = 7 in Java),
and may change during the algorithm as follows. In step Co, after using the strategy Bi, and
depending on the value of m that we found, one may realise that using By might have been
less expensive than using By. In that case, the value of t increases by 1, and otherwise (i.e.,
if using By was indeed a smart move), it decreases by 1 (with a minimum of 0).

When sorting a random permutation, changing the value of t in that way decreases the
average overhead of sometimes using B; instead of By to a constant. More generally, even in
the worst case, this overhead is linear in n.

» Proposition 3. Let A be a stable natural merge sort algorithm, and let A be an array of
length n. Let ci be the number of comparisons that A requires to sort A when it uses the
naive sub-routine, and let co be the number of comparisons that A requires to sort A when it
uses the galloping sub-routine with TimSort’s update policy for the parameter t. We have
ce < ¢c1 +O(n).

Proof. Below, we group the comparisons that A performs while sorting A into steps, which
we will consider as individual units. Steps are formed as follows. Let R and R’ be consecutive
runs that A is about to merge, and let us subdivide their concatenation R - R’ into ¢ dual
runs S1,S9,...,5, (note that these are the dual runs of R - R’ and not the dual runs of A,
i.e., some elements of R may belong to a given dual run S; of R - R’ while belonging to
distinct dual runs or A).

68:7
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Each step consists of those comparisons used to discover the elements of R (resp., R’)
that belong to a given dual run S;. Thus, the comparisons used to merge R and R’ are
partitioned into 20 — 1 steps: in the first step, we discover those elements of R that belong
to S7; in the second step, those elements of R’ that belong to S7; then, those elements of R
that belong to Ss ; ...; and, finally, those elements of R that belong to S, .

Let s1, 89, ...,5¢ be the steps into which the comparisons performed by A are grouped.
By construction, each step s; consists in finding an integer m; > 1 (or, possibly, m; = 0 if s;
is the first step of a merge between two consecutive runs). If A uses TimSort’s update policy,
the step s; consists in using Mcllroy’s strategy for a given parameter t(s;) that depends
on s;. We also denote by t(syy1) the parameter value obtained after A has finished sorting
the array A.

Strategy Bg requires m; comparisons to find that integer m;, and Mcllroy’s strategy
requires m; comparisons if m; < t(s;), up to m; + 1 comparisons if t(s;) +1 < m; < t(s;) +6,
and up to m; — 1 comparisons if m; > t(s;) + 7. Since t(s;4+1) = t(s;) in the first case,
t(si+1) = t(s;) + 1 in the second case and t(s;+1) = max{0,t(s;) — 1} in the third case,
Mcllroy’s strategy never uses more than m; + t(s;4+1) — t(s;) comparisons. Consequently,
the overhead of using TimSort’s update policy instead of a naive merging sub-routine is at
most t(sp41) — t(s1)-

Moreover, let pu; = mi +mgo + ...+ m; for all ¢ < ¢. We show by induction on 7 that,
whenever t(s;) = t(s1) + 7, we have 2u; > 72. Indeed, if 7 > 1 and if s; is the first step for
which t(s;) = t(s1) + 7, we have t(s;_1) = t(s1) +7 — 1. It follows that 2u;_; > (7 — 1)?
and m; > t(s1) + 7 > 7, which proves that 2u; > (7 — 1)? + 27 = 72 4+ 1. Thus, we conclude
that t(sg + 1) — t(s1) < 20

Finally, p, is equal to the number of element comparisons that A would perform if it
used the naive merging strategy, i.e., uy = c;. No merge sort requires more than O(n?)
comparisons, and therefore i, = O(n?), which is why the overhead of using TimSort’s update

policy is at most t(se41) — t(s1) < 2ue = O(n). <

Deciding whether our results remain valid when t is updated like in TimSort remains
an open question. However, in Section 5.3, we propose and study the following alternative
update policy: when merging runs of lengths a and b, we set t = [log,(a + b)].

3 A fast-growth property and its consequences

In this section, we focus on two novel properties of stable natural merge sorts, which we call
fast-growth and middle-growth. These properties capture all TimSort-like natural merge sorts
invented in the last decade, and explain why these sorting algorithms require only O(n+nH)
element moves and O(n + nmin{H, H*}) element comparisons. We will prove in subsequent
sections that many algorithms have these properties.

When applying a stable natural merge sort on an array A, the elements of A are clustered
into monotonic sub-arrays called runs, and the algorithm consists in repeatedly merging
consecutive runs into one larger run until the array itself contains only one run. Consequently,
each element may undergo several successive merge operations. Merge trees [3, 13, 19] are a
convenient way to represent the succession of runs that ever occur while A is being sorted.

» Definition 4. The merge tree induced by a stable natural merge sort algorithm on an
array A is the binary rooted tree T defined as follows. The nodes of T are all the runs that
were present in the initial array A or that resulted from merging two runs. The runs of the
initial array are the leaves of T, and when two consecutive runs Ry and Ra are merged with
each other into a new run R, the run Ry spanning positions immediately to the left of those
of Ry, they form the left and the right children of the node R, respectively.
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Such trees ease the task of referring to several runs that might not have occurred
simultaneously. In particular, we will often refer to the i*" ancestor or a run R, which is
just R itself if i = 0, or the parent, in the tree 7, of the (i — 1) ancestor of R if i > 1. That
ancestor will be denoted by R().

Before further manipulating these runs, let us first present some notation about runs
and their lengths, which we will frequently use. We will commonly denote runs with capital
letters, possibly with some index or adornment, and we will then denote the length of such a
run with the same small-case letter and the same index or adornment. For instance, runs
named R, R;, Q' and S will have respective lengths r, 7;, ¢’ and 3.

» Definition 5. We say that a stable natural merge sort algorithm A has the fast-growth
property if it satisfies the following statement:

There exist an integer £ > 1 and a real number 0 > 1 such that, for every merge tree T
induced by A and every run at depth ¢ or more in T, we have r©) > 6r.

We also say that A has the middle-growth property if it satisfies the following statement:

There exists a real number k > 1 such that, for every merge tree T induced by A,

every integer h > 0 and every run R of height h in T, we have r > k™.

Since every node of height h > 1 in a merge tree is a run of length at least 2, each
algorithm with the fast-growth property also has the middle-growth property: indeed, it
suffices to choose kK = min{2, 0}1/£. As a result, the former property is stronger than the
latter one, and indeed it has stronger consequences.

» Theorem 6. Let A be a stable natural merge sort algorithm with the fast-growth property.
If A uses either the galloping or the naive sub-routine for merging runs, it requires O(n+nH)
element comparisons and moves to sort arrays of length n and run-length entropy H.

Proof. Let £ > 1 and 6 > 1 be the integer and the real number mentioned in the definition
of the statement “A has the fast-growth property”. Let A be an array of length n with p
runs of lengths r1,72,...,7,, let 7 be the merge tree induced by A on A, and let d; be the
depth of the run R; in the tree 7.

The algorithm A uses O(n) element comparisons and element moves to delimit the runs
it will then merge and to make them non-decreasing. Then, both the galloping and the naive
merging sub-routine require O(a + b) element comparisons and moves to merge two runs A
and B of lengths a and b. Therefore, it suffices to prove that ), 7 = O(n +nH).

Consider some leaf R; of the tree 7, and let k = [d;/£|. The (k¢)*™™ ancestor of R; is a
node R of size r > 0Fr;, and thus n > r > 0%r;. Hence, d; +1 < £(k+1) < £ (logg(n/r;) + 1),
and we conclude that

P
Z r= Z (d;+1)r EZ (rilogg(n/ri) + 1) = L(nH/logs(0) +n) = O(n+nH). <«
ReT i=1 i=1

A similar, weaker result also holds for algorithms with the middle-growth property.

» Theorem 7. Let A be a stable natural merge sort algorithm with the middle-growth property.
If A uses either the galloping or the naive sub-routine for merging runs, it requires O(nlog(n))
element comparisons and moves to sort arrays of length n.

Proof. Let us borrow the notations used when proving Theorem 6, and let £ > 1 be the real

number mentioned in the definition of the statement “.A has the middle-growth property”.

Like in the proof of Theorem 6, it suffices to show that ), 7 = O(nlog(n)).
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The d;*® ancestor of a run R; is the root of 7, and thus n > x%. Hence, d; < log, (n),
and we conclude that

Z r= Z (di +1)r Z log,.(n = (log,.(n) + 1)n = O(nlog(n)). <

ReT i=1

Theorems 6 and 7 provide us with a simple framework for recovering well-known results
on the complexity of many algorithms. By contrast, Theorem 8 consists in new complexity
guarantees on the number of element comparisons performed by algorithms with the middle-
growth property, provided that they use the galloping sub-routine.

» Theorem 8. Let A be a stable natural merge sort algorithm with the middle-growth property.
If A uses the galloping sub-routine for merging runs, it requires O(n + nH*) element
comparisons to sort arrays of length n and dual run-length entropy H*.

Proof. All comparisons performed by the galloping sub-routine are of the form A[i] <” A[j],
where ¢ and j are positions such that i < j. Thus, the behaviour of A, i.e., the element
comparisons and element moves it performs, is invariant under lexicographic equivalence, as
illustrated in Figure 2. Consequently, starting from an array A of length n with ¢ dual runs
S1,89,...,5,, we create a new array B of length n with o distinct values, setting B|[j] def
whenever A[j] belongs to the dual run S;, and we may now assume that A coincides with B.
This assumption allows us to directly use Proposition 2, whose presentation would have been
more complicated if we had referred to dual runs of an underlying array instead of referring
directly to distinct values.

Now, let k > 1 be the real number mentioned in the definition of the statement “A has
the middle-growth property”. Let A be an array of length n and whose values are integers
from 1 to o, let s1,s2,...,5, be the lengths of its dual runs, and let 7 be the merge tree
induced by A on A.

The algorithm A uses O(n) element comparisons to delimit the runs it will then
merge and to make them non-decreasing. We prove now that merging these runs requires
only O(n + nH*) comparisons. For every run R in T and every integer i < o, let r_,; be
the number of elements of R with value . In the galloping cost model, merging two runs R
and R’ requires at most

o
1+ ) cost; (1) + costy (')
=1

element comparisons. Since less than n such merge operations are performed, and since
n=>y7 s and nH* = > 7_ s;log(n/s;), it remains to show that

Z costy (1) = O(s; + s;log(n/s;))
ReT

for all ¢ < 0. Then, since costf(m) < (t + 1)costi(m) for all parameter values t > 0 and
all m > 0, we assume without loss of generality that t = 0.

Now, consider some integer h > 0, let Rp, be the set of runs at height h in 7T, and let
Co(h) = > rer, costy(r—i). Since no run in Ry, descends from another one, we already have

<2 Z r_; < 2s; and Z r<n

ReRy RERK

Moreover, by definition of x, each run R € Ry, is of length r > ", and thus |Ry| < n/k".
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Then, consider the constant A = [log, (n/s;)] and the functions f: z — t+2+2logy(x+1)
and g: ¢ — x f(s;/x). Both f and g are positive and concave on the interval (0, +00), thereby
also being increasing. It follows that, for all A > 0,

CoN+h) < D flroi) < Rosnl F(Zremy,n 7/ Ratnl) < g(IRanl)
RERA+n
< g(n//ﬁA+h) < g(sm_h) =(2+ 2log, (k" + 1))sim_h
<(2+2 log2(2nh))sm_h =4+ 2h10g2(m))sm_h.

The inequalities on the first line respectively hold by definition of cost], because f is
concave, and because f is increasing and ) Rer,, T—i < $i; the inequalities on the second
line hold because g is increasing and |Ry,| < n/x".

We conclude that

A—1
D costi(roi) =D Colh) =D Co(h) + > Co(A+h)
RET h>0 h=0 h>0
< 2Xs; + 4s; Z k" 2log, (K)s; Z he ="
h>0 h>0

< O(si(1+1log(n/si)) + O(s;) + O(si) = O(s; + s;log(n/s;)). <

4 PowerSort has the fast-growth property

In this section, we prove that PowerSort and many TimSort-like algorithms enjoy the fast- or
middle-growth properties. To that aim, we first define the run merge policy of PowerSort, by
introducing the notion of power of a run endpoint or of a run, and then characterising the
merge trees that PowerSort induces.

» Definition 9. Let A be an array of length n, whose run decomposition consists of runs
Ri, Ry, ..., R,, ordered from left to right. For all integersi < p, let e; =m1 4+ ... +1;. We
also abusively set e_1 = —00 and e,11 = n.

When 0 < i < p, we denote by I(3) the half-open interval (e;—1 + €;,€; +e;+1]. The power
of e;, which we denote by p;, is then defined as the least integer p such that 1(i) contains an
element of the set {kn/2P~1: k € Z}. Thus, we (abusively) have py = —oo and p, = 0.

Finally, let R;.. j be a run obtained by merging consecutive runs R;, Riy1,...,R;. The
power of the run R is defined as max{p;_1,p;}.

The notion of power quickly comes with nice properties, two of which we mention now.

» Lemma 10. For each non-empty sub-interval I of the set {0, ..., p}, there exists a unique
integer i € I such that p; < p; for all j € 1.

Proof. Assume that the integer i is not unique. Since eq is the only endpoint with power —oo,
we know that 0 ¢ I. Then, let a and b be elements of I such that a < b and p, = py < p; for
all j € I, and let p = p, = pp. By definition of p, and py, there exist odd integers k and £ such
that kn/2P~! € I(a) and ¢n/2P~! € I(b). Since £ > k + 1, the fraction (k + 1)n/2P~! belongs
to some interval I(j) such that a < j < b. But since k + 1 is even, we know that p; < p,
which is absurd. Thus, our initial assumption is invalid, which completes the proof. |

» Lemma 11. Let Ry,..., R, be the run decomposition of an array A. There is exactly one
tree T that is induced on A and in which every inner node has a smaller power than its children.
Furthermore, for every run R;._; in T, we have max{p;,_1,p;} < min{p;, pi+1,...,pj—1}
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Proof. Given a merge tree 7T, let us prove that the following statements are equivalent:

S1: each inner node of T has a smaller power than its children;

Sa: each run R;  ; that belongs to 7 has a power that is smaller than all of p;,...,pj_1;

S3: ifarun R, ; is an inner node of 7T, its children are the two runs R, and Ry41..; such
that py, = min{p;,...,p;—1}.

First, if S; holds, we prove S3 by induction on the height h of the run R; ;. Indeed, if the
restriction of Sz to runs of height less than h holds, let R; j and Rjy1..; be the children of
arun R;_ ; of height h. If ¢ < k, the run R; . j has two children R; , and Ryy;.. j such that
pe = min{p;,...,pr—1}, and the powers of these runs, i.e., max{p;_1,p¢} and max{py, px},
are greater than the power of R; j, i.e., max{p;_1,px}, which proves that p, > pi. It follows
that pr, = min{p;,...,pr}, and one proves similarly that p, = min{ps,...,p;—1}, thereby
showing that Ss also holds for runs of height h.

Then, if S3 holds, we prove Sy by induction on the depth d of the run R; ;. Indeed,
if the restriction of Sy to runs of depth less than d holds, let R; j and Ryy1.; be the
children of a run R;_; of depth d. Lemma 10 and Ss prove that py is the unique smallest
element of {p;,...,pj_1}, and the induction hypothesis proves that max{p;,_1,p;} < ps.
It follows that both powers max{p;,_1,pr} and max{py,p;} are smaller than all of
Diy -+ 3 Pk—1,Dk+1, - - - » Dj—1, thereby showing that S also holds for runs of depth d.

Finally, if So holds, let R;  ; be an inner node of T, with children R; j and Ryy1.. ;.
Property Sy ensures that max{p;_1,p;} < pi, and thus that max{p;_1,p;} is smaller than
both max{p;_1,pr} and max{pg,p;}, i.e., that R, ; has a smaller power that its children,
thereby proving S;.

In particular, once the array A and its run decomposition Ry, ..., R, are fixed, Sz provides
us with a deterministic top-down construction of the unique merge tree 7 induced on A and
that satisfies S;: the root of 7 must be the run R;.., and, provided that some run R;._ ;
belongs to 7, where i < j, Lemma 10 proves that the integer £ mentioned in S3 is unique,
which means that Sg unambiguously describes the children of R; ; in the tree 7.

This proves the first claim of Lemma 11, and the second claim of Lemma 11 follows from
the equivalence between the statements S; and Ss. <

This leads to the following characterisation of the algorithm PowerSort, which is proved
in [19, Lemma 4] and which we consider as an alternative definition of PowerSort.

» Definition 12. In every merge tree that PowerSort induces, inner nodes have a smaller
power than their children.

» Lemma 13. Let T be a merge tree induced by PowerSort, let R be a run of T with power p,
and let R?) be its grandparent. We have 2°~%r < n < 2Pr(2),

Proof. Let R; ; be the run R. Without loss of generality, we assume that p = p;, the case
p = p;—1 being entirely symmetric. Lemma 11 states that all of p;,...,p;—1 are larger than p.
Thus, the union of intervals I(¢) U... UI(j) = (e;—1 + ei, e; + €j+1] does not contain any
element of the set S = {kn/2P~2: k € Z}. The bounds e;_1 + ¢; and e; + e;41 are therefore
contained between two consecutive elements of S, i.e., there exists an integer ¢ such that

én/2p72 <e_1+e < €; + €jt+1 < (£+ 1)n/2p72,
and we conclude that

r=ej—ei—1 < (¢ +ej1) — (eim1 + ) <n/2P7%
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We prove now that n < 2Pr(?). To that end, we assume that both R and its parent are left
children, the other possible cases being symmetric. There exist integers v and v such that the
parent of R is R; ., and its grandparent is R; . Hence, max{p;_1,p.} < max{p;,_1,p;} = p,
which shows that p, < p; = p. Thus, both intervals I(j) and I(u), which are subintervals
of (2e;_1,2e,], contain elements of the set S’ = {kn/2P~1: k € Z}. This means that there
exist two integers k and ¢ such that 2e; 1 < kn/2P~1 < ¢n/2P~! < 2e,, from which we
conclude that

r® =e, —e;_1 > (0 —k)n/2P > n/2P. <
» Theorem 14. The algorithm PowerSort has the fast-growth property.

Proof. Let T be a merge tree induced by PowerSort. Then, let R be a run in 7, and let p and
p® be the respective powers of the runs R and R®). Definition 12 ensures that p > p® + 3,
and therefore Lemma 13 proves that

o+, <P << 2P 1. (5)
This means that 7®) > 2r, and therefore that PowerSort has the fast-growth property. <

For the sake of conciseness, we only list which algorithms were found to have the fast- or
middle-growth property. Proofs that they do can be found in the complete version of this
article [11].

» Theorem 15. The algorithms TimSort, a-MergeSort, PeekSort and adaptive ShiversSort
have the fast-growth property.

An immediate consequence of Theorems 6 and 8 is that these algorithms sort arrays of
length n and run-length entropy H in time O(n+nH) — which was already well-known — and
that, if used with the galloping merging sub-routine, they only need O(n+ nH*) comparisons
to sort arrays of length n and dual run-length entropy H* — which is a new result.

» Theorem 16. The algorithms NaturalMergeSort, ShiversSort and «a-StackSort have the
middle-growth property.

Theorem 8 proves that, if these three algorithms are used with the galloping merging
sub-routine, they only need O(n + nH*) comparisons to sort arrays of length n and dual
run-length entropy H*. By contrast, observe that they can be implemented by using a stack,
following TimSort’s own implementation, but where only the two top runs of the stack could
be merged. It is proved in [13] that such algorithms may require w(n + nH) comparisons to
sort arrays of length n and run-length entropy 7. Hence, Theorem 6 shows that these three
algorithms do not have the fast-growth property.

5 Refined complexity bounds for PowerSort

One weakness of Theorem 8 is that it cannot help us to distinguish the complexity upper
bounds of those algorithms that have the middle-growth property, although the constants
hidden in the O symbol could be dramatically different. In this section, we study these

constants, thereby focusing on upper bounds of the type cnH*+O(n) or cn(1+0(1))H*+O(n).

Since sorting arrays of length n, in general, requires at least log,(n!) = nlogy(n) + O(n)
comparisons, and since H* < log,(n) for all arrays, we already know that ¢ > 1 for any such
constant c. Below, we focus on finding matching upper bounds in two regimes: first using
a fixed parameter t, thereby obtaining a constant ¢ > 1, and then letting t depend on the
lengths of those runs that are being merged, in which case we reach the constant ¢ = 1.
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5.1 A tight middle-growth property

Below, we aim at computing the least constant that might lie hidden in the O(n + nH*)
upper bound of Theorem 8. If we were to simply extract that constant from the proof we
gave, this constant would depend directly on the real number x mentioned in the definition
of the statement “A has the middle-growth property”. To that aim, we make that statement
more precise.

» Definition 17. We say that a stable natural merge sort algorithm A has the tight middle-
growth property if it satisfies the following statement:

There exists an integer 0 > 0 such that, for every merge tree T induced by A, every
integer h > 0 and every run R of height h in T, we have r > 29,

Since every node of height A > 1 in a merge tree is a run of length at least 2, each
algorithm with the tight middle-growth property also has the middle-growth property: indeed,
it suffices to choose k = 21/(?+1) The tight middle-growth property is incomparable with
the fast-growth property since, for instance, adaptive ShiversSort and PeekSort fail to have
the tight middle-growth property. In practice, we might also introduce a related notion of
tight fast-growth property, which would be useful when evaluating the constant hidden in
the O(n + n#H) upper bound on the complexity of sorting algorithms.

» Theorem 18. The algorithm PowerSort has the tight middle-growth property.

Proof. Let 7 be a merge tree induced by PowerSort and let R be a run in 7 at depth at
least h. We will prove that (") > 2h—4,

If h < 4, the desired inequality is immediate. Then, if h > 5, let n be the length of the array
on which 7 is induced. Let also p and p("~2) be the respective powers of the runs R and R("~2) .
Definition 12 and Lemma 13 prove that op " T h—t < op=2 op=2p <y < TV

5.2 Using a fixed parameter t

Following the structure of Section 3, we prove now that each algorithm with the tight
middle-growth property, such as PowerSort, enjoys excellent upper bounds on the number of
element comparisons it requires.

» Theorem 19. Let A be a stable natural merge sort algorithm with the tight middle-growth
property. For each parameter t > 0, if A uses the t-galloping sub-routine for merging runs,
it requires at most (1 4+ 1/(t + 3))nH* + logy(t + 1)n + O(n) element comparisons to sort
arrays of length n and dual run-length entropy H*.

Proof. Let us follow a variant of the proof of Theorem 8. Let 6 be the integer mentioned
in the definition of the statement “A has the tight middle-growth property”, let T be the
merge tree induced by A on an array A of length n, and let s1, so,. .., 8, be the lengths of
the dual runs of A. Like in the proof of Theorem 8, we just need to prove that

Z costy (r—;) < (14 1/(t +3))s;logy(n/si) + silogy(t + 1) + O(s;)
ReT

for all i < o.
Then, let Ry, be the set of runs at height A in 7. By construction, no run in R, descends
from another one, which proves that

Z r_; < 8; and that Z r<n.
RERy, RERK
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Since each run R € Ry, is of length r > 2"=? it follows that |R;| < n/2"—9.
Then, consider the function

Ce(h) = ) costf(r_).

ReR

We noted above that

Ce(h) S (L +1/(6+3)) > roi < (L +1/(t+3))s;
RERy,

for all A > 0.
Let also f: z — t+2+2logy(x+1), g: . — x f(s;/z) and p = [logy((t+1)n/s;)]. Both
functions f and g are positive, concave and increasing on (0, +00), which shows that

Ce(p+0+h) < Z Fros) <IRpvornl F(Xper 1/ [Rutornl) < g(|Ruvosnl)

RER i 10+h
<g(n/2"™") < g(27"si/(t+1))
< (t+2+2logy (2"t +1)+1))27"si/(t + 1)
<(t+2+2h(t+1)+1))27" s /(t+1) < (4+2h)27"s;.

pn+0+h

We conclude that

p+6—1
D costi(roi) =Y Ce(h)= Y Ce(h)+ > Ce(u+0+h)
ReT h>0 h=0 h>0
SA+1/(6+3)(u+0)si +4s; » 27" +25; Y h2™"
h>0 h>0
< (1 +1/(t + 3))(logy(n/s:) +logy(t +1))si + O(si)
< (1 +1/(t+3))logy(n/s;)s; + logy(t + 1)s; + O(s;). <

5.3 Using a parameter t with logarithmic growth

The upper bound provided by Theorem 19 is minimal when t = ©(H*), in which case it
simply becomes nH* + log,(H* + 1)n + O(n). However, computing H* before starting the
actual sorting process is not reasonable. Instead, we update the parameter t as follows,
which will provide us with a slightly larger upper bound.

» Definition 20. We call logarithmic galloping sub-routine the merging sub-routine that,
when merging adjacent runs of lengths a and b, performs the same comparisons and element
moves as the t-galloping sub-routine for t = [logy(a + b)].

» Theorem 21. Let A be a stable natural merge sort algorithm with the tight middle-growth
property. If A uses the logarithmic galloping sub-routine for merging runs, it requires at
most nH* + 2log,(H* + 1)n + O(n) element comparisons to sort arrays of length n and dual
run-length entropy H*.

Proof. Let us refine and adapt the proofs of Theorems 8 and 19. Let 6 be the integer
mentioned in the definition of the statement “A has the tight middle-growth property”, let T
be the merge tree induced by A on an array A of length n, and let s1,s8s,...,8, be the
lengths of the dual runs of A.
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Using a parameter t = [logy(r)] to merge runs R’ and R” into one run R requires at most

LY €08t 197 (171) + €Oty (1 (171)

i=1

element comparisons. Given that

< min{(1 + 1/logy(r))r’,;,logy(r) + 3 + 2log,(r’,; + 1)}
< min{(1 4 1/logy(r))r’,;, 3logy(r 4 1) + 3},

and that ', + r”,, = r_,;, this makes a total of at most

o
1+ Z costiog (7, 7—i)
i=1
element comparisons, where costj,, (r,m) = min{(1 + 1/logy(r))m, 6 logy(r + 1) + 6}.
Then, let 7* denote the tree obtained after removing the leaves of 7. We focus on proving
that

Z Costiog (7, 75:) < silogy(n/si) + 2silogy(logy(2n/s)) + O(s;)
ReT*

for all 7 < 0. Indeed, finding the run decomposition Ry, Ry, ..., R, of A requires n — 1
comparisons, and p — 1 < n — 1 merges are then performed, which will make a total of up to

2n + Z Z costiyg (7, 75i) < 2n + Z silogy(n/s;) + 2s;logy(logy(n/s;) + 1) + O(s;)
RET™ i=1 i=1

<nH* + 2logy(H* + 1)n+ O(n)

comparisons, the latter inequality being due to the concavity of the function x — logy(z + 1).
Then, let Ry, be the set of runs at height A in 7, and let

Ciog(h) = Z oSty (7, 751).-
RER

No run in Ry descends from another one, and each run R € R}, has length r > 2max{1*h*0},
which proves that |Ry,| < n/2"~% and that

Clog(h) < D (141/logy(r))roi < Y (1+1/max{1, h—60})r_; < (1+1/max{1,h—0})s;.
RER), ReRy

Finally, let z =n/s; > 1, and consider the constant v = [log,(zlog,(22))] + 6 and the
functions f: z +— 1 +1logy(z+ 1) and ¢g: « — z f(n/x). Both functions f and g are concave,
positive and increasing on (0, +00), which proves that

Clog( +h)/6 < > F(r) < [Rosnl F(Xper, ., 7/ Rusnl) < 9| Rusnl) < g(n/2770)
RERy4n

< g(2’hsi/log2(2z)) = 27"5;,f(2"210g,(22))/ log, (22)
<2775 (1 +logy(2"(22)?)) /logy (22) = 27" (h + 1)s;/ logy(22) + 21 "s;
< (h+3)27"s,,
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where the inequality between the second and third line simply comes from the fact that
14 2"21ogy(22) < 1420122 <27 (1 4 222) < 2" x (22)?

whenever h > 0 and z > 1.
It follows that

6
> Clog(h) + > Clog(v +h) <205+ 6> (h+3)27"s; = O(s;),

h=1 h>0 h>0
whereas
v—0—1 v—1
> Cogl0+h) <Y (1+1/h)si < (v = 1)+ 1+ In(v —1))s; = (v+In(v))s;
h=1 h=1

Thus, we conclude that

Z costiog (7, 7i) Z Ciog(h (v+1In(v)) + O(s;)
ReT™ h>1
< silogy(2) + s;logy(logy (22)) + s;logs (logy (22%)) + O(sy)
< 8;1ogy(2) + 255 log, (logy (22)) + O(s;). <

It is of course possible to marginally improve our update policy in order to approach the
nH* +logy(H* + 1)n + O(n) upper bound. For instance, choosing t = 7[log,(a + b)] for a
given constant 7 > 1 provides us with an nH* 4+ (1 + 1/7) logy (H* + 1)n + logy (1) + O(n)
upper bound, and choosing t = [log,(a 4+ b)] x [logs(logs(a + b))] further improves that
upper bound. However, such improvements soon become negligible in comparison with the
overhead of having to compute the value of t.

Finally, and like in Section 4, we list a few algorithms that enjoy similar complexity upper
bounds. Proofs that they do can be found in the complete version of this article [11].

» Theorem 22. The algorithms NaturalMergeSort and ShiversSort have the tight middle-growth
property.

» Theorem 23. Theorems 19 and 21 remain valid if we consider the algorithms PeekSort
and adaptive ShiversSort instead of an algorithm with the tight middle-growth property.

By contrast, we conjecture that no choice policy for the parameters t would provide us
with (1 + o(1))nH* + O(n) upper bounds on the number of element comparisons performed
by TimSort, a-StackSort or a-MergeSort. However, finding precise characterisations of the
best constants ¢ that could be achieved for these algorithms is a wide open question.

6 Conclusion: An idealistic galloping cost model

In the above sections, we observed the impact of using a galloping sub-routine for a fixed or
a variable parameter t. Although choosing a constant value of t (e.g., t = 7, as advocated
in [17]) already leads to very good results, letting t vary, for instance by using the logarithmic
variant of the sub-routine, provides us with even better complexity guarantees, with an
often negligible overhead of O(nlog(H* 4+ 1) + n) element comparisons: up to a small error,
this provides us with the following idealistic cost model for run merges, allowing us to
simultaneously identify the parameter t with 400 and with a constant.
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» Definition 24. Let A and B be two non-decreasing runs with a_,; (respectively, b_,;)
elements of value i for all i € {1,2,...,0}. The idealistic galloping cost of merging A and B
is defined as the quantity

g

Z COStitieal(a’*?i) + Cos‘titieal (bﬁl)v
=1

where costly.. (m) = min{m, logy(m + 1) + O(1)}.

ideal

Indeed, abusively identifying the real number of element comparisons performed while
runs A and B with this idealistic galloping cost, we may prove that every stable natural merge
sort with the tight middle-growth property (but also related algorithms such as PeekSort
and adaptive ShiversSort) requires at most nH* + O(n) element comparisons to sort arrays of
length n and dual run-length entropy H*.

We think that this idealistic cost model is both simple and precise enough to allow
studying the complexity of natural merge sorts in general, provided that they use the
galloping sub-routine. Thus, it would be interesting to use that cost model in order to study,
for instance, the least constant c for which various algorithms such as TimSort or a-MergeSort
require up to cn(1 + o(1))H* + O(n) element comparisons.

We also hope that this simpler framework will foster the interest for the galloping merging
sub-routine of TimSort, and possibly lead to amending Swift and Rust implementations of
TimSort to include that sub-routine, which we believe is too efficient in relevant cases to be
omitted.
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