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Abstract
We study several questions related to diversifying search results. We give improved approximation
algorithms in each of the following problems, together with some lower bounds.

1. We give a polynomial-time approximation scheme (PTAS) for a diversified search ranking
problem [9] whose objective is to minimizes the discounted cumulative gain. Our PTAS runs
in time n2O(log(1/ϵ)/ϵ)

· mO(1) where n denotes the number of elements in the databases and m

denotes the number of constraints. Complementing this result, we show that no PTAS can run
in time f(ϵ) · (nm)2o(1/ϵ)

assuming Gap-ETH and therefore our running time is nearly tight.
Both our upper and lower bounds answer open questions from [9].

2. We next consider the Max-Sum Dispersion problem, whose objective is to select k out of n

elements from a database that maximizes the dispersion, which is defined as the sum of the
pairwise distances under a given metric. We give a quasipolynomial-time approximation scheme
(QPTAS) for the problem which runs in time nOϵ(log n). This improves upon previously known
polynomial-time algorithms with approximate ratios 0.5 [35, 16]. Furthermore, we observe
that reductions from previous work rule out approximation schemes that run in nõϵ(log n) time
assuming ETH.

3. Finally, we consider a generalization of Max-Sum Dispersion called Max-Sum Diversification. In
addition to the sum of pairwise distance, the objective also includes another function f . For
monotone submodular function f , we give a quasipolynomial-time algorithm with approximation
ratio arbitrarily close to (1−1/e). This improves upon the best polynomial-time algorithm which
has approximation ratio 0.5 [16]. Furthermore, the (1 − 1/e) factor is also tight as achieving
better-than-(1 − 1/e) approximation is NP-hard [26].
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7:2 Improved Approximation and Lower Bounds for Search-Diversification

1 Introduction

A fundamental task in databases in general and in search engines in particular is the selection
and ordering of the results to a given query. Suppose that we have already retrieved the set
of appropriate answers Sq to a query q by a certain preliminary process. Which item from
the (possibly huge) set Sq should be presented first? Which should be the first ten?

Besides the obvious approach of ranking the most relevant answers first, perhaps the
second most important consideration is that the output set should satisfy certain diversity
requirements. If a user searches for “Barcelona” it would be desirable that the first ten
results contain a mix of items containing, e.g. general details of the city, tourist information,
and news about the associated soccer team, even though the most relevant items in certain
absolute terms may only pertain to the latter. There are various natural ways to formalize
what makes a set of results diverse, and much research has gone into this Search Diversification
topic in the past two and a half decades in various context (see e.g. [19, 3, 33, 15, 9, 39,
50, 16, 24, 12, 31, 46, 34, 1, 36, 25, 52]). Recently, there have also been extensive research
efforts into algorithmic fairness (see e.g. a survey [47]). Some of these fairness notions
(e.g. [21, 7]) are also closely related to diversity: a set of results that is not diverse enough
(e.g. returning only pictures of members of one group when a user searches for “scientists”)
could be problematic in terms of fairness.

A well-known work on search diversification [19] suggests that a diverse set of results is
one that satisfies the following: The kth result in the list should maximize the sum1 of: (1)
the relevance to the query, and (2) the total distance to the first k − 1 results in the list.
The success of this natural notion of diversification may be attributed to the fact that it can
be computed efficiently with a greedy algorithm. However, it may be a bit too simplistic
and the objectives that real-world search engines seem to optimize for are actually closer
to other, more complicated (to compute) notions of diversity that have been proposed in
follow-up works (e.g. [9, 33, 16]).

The goal of this paper is to investigate the time complexity of computing these latter,
more intricate definitions of the search diversification task. Since such problems are NP-Hard
even for restricted settings, and since approximate solutions are typically acceptable in this
context, our focus is on understanding their time vs. approximation trade-offs. Our results
reduce the gaps in the literature, completely resolving the complexity of some of the most
natural notions.

1.1 Diversified Search Ranking
The first problem we study is a diversified search ranking problem formulated by Bansal et
al. [9]. Here we are given a collections S of subsets of [n] and, for each S ∈ S, a positive
integer kS . Our goal is to find a permutation π : [n] → [n] that minimizes the discounted
cumulative gain (DCG) defined as

DCGS,k(π) :=
∑
S∈S

1
log(tπ(S) + 1) , (1)

where tπ(S) is defined as the earliest time the set S is covered kS times, i.e. min{i ∈
[n]|S ∩ π([i])| ≥ kS}.

1 To be more precise, it is a weighted average of the two terms.



A. Abboud, V. Cohen-Addad, E. Lee, and P. Manurangsi 7:3

This formulation relates to diversification by viewing the output π as the ranking of the
documents to be shown, and each topic corresponds to a set S of documents related to that
topic. With this interpretation, the DCG favors rankings that display “diverse topics as
early in the ranking as possible”. Bansal et al. [9] gave a polynomial-time approximation
scheme (PTAS) for the problem in the special case that kS = 1 for all S ∈ S with running
time n2O(log(1/ϵ)/ϵ)

mO(1). On the other hand, for the case of general kS ’s, they give a
quasipolynomial-time approximation scheme with running time n(log log n)O(1/ϵ)

mO(1) and left
as an open question whether a PTAS exists. We resolve this open question by giving a PTAS
for the more general problem; the running time we obtain for this more general problem is
similar to the running time obtained by Bansal et al.’s PTAS for the special case kS = 1. We
then show that this is indeed the best possible (under some complexity assumption).

▶ Theorem 1. There is a randomized PTAS for maximizing DCG that runs in time
n2O(log(1/ϵ)/ϵ) ·mO(1).

The above running time is doubly exponential in 1/ϵ, and Bansal et al. [9] asked whether
this dependency is necessary even for the special case kS = 1. We also answer this question
by showing that the doubly exponential is necessary, assuming the Gap Exponential Time
Hypothesis (Gap-ETH)2:

▶ Theorem 2. Assuming Gap-ETH, for any function g, there is no PTAS for maximizing
DCG that runs in time g(ϵ) · (nm)2o(1/ϵ) . Moreover, this holds even when restricted to
instances with kS = 1 for all S ∈ S.

1.2 Max-Sum Dispersion
The second problem we consider is the so-called Max-Sum Dispersion problem where we are
given a metric space (U, d) where |U | = n and an integer p ≥ 2. The goal is to select S ⊆ U

of size p that maximizes

Disp(S) :=
∑

{u,v}⊆S

d(u, v).

Roughly speaking, if the metric determines how different the items are, then our goal is
to pick items that are “as diverse as possible” according to the Disp objective.

The Max-Sum Dispersion problem is a classic problem that has been studied since the
80s [45, 38, 49, 35, 16]. Previous works have given 0.5-approximation algorithm for the
problem in polynomial time [35, 16]. We observe that the known NP-hardness reduction,
together with newer hardness of approximation results for the Densest k-Subgraph problem
with perfect completeness, yields strong lower bounds for the problem. (Details are deferred to
the full version [2].) For example, if we assume the Strongish Planted Clique Hypothesis [43],
then no (0.5 + ϵ)-approximation algorithm is possible in no(log n) time. In other words,
to achieve an improvement over the known approximation ratio, the algorithm must run
in nΩ(log n) time. Complementing this, we provide a quasipolynomial-time approximation
scheme that runs in time nOϵ(log n):

▶ Theorem 3. There is a QPTAS for Max-Sum Dispersion that runs in time nO(log n/ϵ4).

2 Gap-ETH [23, 42] asserts that there is no 2o(n)-time algorithm to distinguish between a satisfiable
n-variable 3SAT formula and one which is not even (1 − ϵ)-satisfiable for some ϵ > 0

ICALP 2022



7:4 Improved Approximation and Lower Bounds for Search-Diversification

1.3 Max-Sum Diversification
Finally, we consider a generalization of Max-Sum Dispersion where, in addition to the metric
space (U, d), we are now also given a monotone set function f (which we can access via a
value oracle) and the goal is to select a set S ⊆ U of size p that maximizes

Div(S) := Disp(S) + f(S).

This problem is referred to as Max-Sum Diversification.
The Max-Sum Diversification problem is more expressive than Max-Sum Dispersion. For

example, the value f(S) in the objective may be used to encode how relevant the selected
set S is to the given query, in addition to the diversity objective expressed by Disp(S).

Borodin et al. [16] gave a 0.5-approximation algorithm for the problem when f is a
monotone submodular function. Since Max-Sum Diversification is a generalization of Max-
Sum Dispersion, our aforementioned lower bounds also imply that improving on this 0.5
factor requires at least nΩ(log n) time. Furthermore, submodular Max-Sum Diversification is
also a generalization of maximizing monotone submodular function subject to a cardinality
constraint. For this problem, an (1− 1/e)-approximation algorithm is known and it is also
known that achieving better than this ratio is NP-hard [26]. Therefore, it is impossible to
achieve a better-than-(1− 1/e) approximation even in (randomized) quasi-polynomial time,
assuming NP ⊈ RTIME(nO(log n)). Here we manage to provide such a tight quasi-polynomial
time approximation algorithm:

▶ Theorem 4. For any ϵ > 0, there exists a randomized nO(log n/ϵ4)-time (1 − 1/e − ϵ)-
approximation algorithm for submodular Max-Sum Diversification.

We remark that an interesting special case of submodular Max-Sum Diversification is
when f is linear, i.e. f(S) =

∑
u∈S f(u). In this case, Gollapudi and Sharma [33] provided an

approximation-preserving reduction from the problem to the Max-Sum Dispersion. Therefore,
our QPTAS for the latter (Theorem 3) also yields a QPTAS for this special case of Max-Sum
Dispersion.

2 Preliminaries

For a natural number n, we use [n] to denote {1, . . . , n}. We say that a randomized algorithm
for a maximization problem is an α-approximation if the expected objective of the output
solution is at least α times the optimum; note that we can easily get a high-probability bound
with approximation guarantee arbitrarily close to α by repeating the algorithm multiple
times and pick the best solution.

2.1 Concentration Inequalities
For our randomized approximation algorithms, we will need some standard concentration
inequalities. First, we will use the following version of Chernoff bound which gives a tail
bound on the sum of i.i.d. random variables. (See e.g. [44] for a proof.)

▶ Lemma 5 (Chernoff bound). Let X1, . . . , Xr ∈ [0, 1] be independent random variables,
S := X1 + · · ·+ Xr and µ := E[S]. Then, for any δ ∈ [0, 1], we have

Pr[|S − µ| > δµ] ≤ 2 exp
(
−δ2µ

3

)
.
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Furthermore, for any δ ≥ 0, we have

Pr[S > (1 + δ)µ] ≤ exp
(
− δ2µ

2 + δ

)
.

It will also be convenient to have a concentration of sums of random variables that are
drawn without replacement from a given set. For this, we will use (a without-replacement
version of) the Hoeffding’s inequality, stated below. (See e.g. [10].)

▶ Lemma 6 (Hoeffding’s inequality). Let X1, . . . , Xr be random variables drawn without
replacement from a multiset X ⊆ [0, 1], A := 1

r (X1 + · · ·+ Xr) and µ := E[A]. Then, for
any δ ∈ [0, 1], we have

Pr[|A− µ| > δ] ≤ 2 exp
(
−2δ2r

)
.

2.2 Densest k-Subgraph
For both our Max-Sum Dispersion and Max-Sum Diversification problems, we will use as a
subroutine algorithms for (variants of) the Densest k-Subgraph (DkS) problem. In DkS, we
are given a set V of nodes, weights w :

(
V
2
)
→ [0, 1] and an integer k, the goal is to find a

subset T ⊆ V with |T | = k that maximizes Den(T ) := 1
|T |(|T |−1)/2

∑
{u,v}⊆T w({u, v}). An

additive QPTAS is an algorithm running in quasipolynomial time for any fixed ϵ > 0 such
that its output T satisfies Den(T ) ≥ OPT−ϵ; Barman [11] gave such an algorithm for DkS.

We will in fact use a slightly generalized version of the problem where a subset I ⊆ V of
vertices is given as an input and these vertices must be picked in the solution T (i.e. I ⊆ T ).
To avoid cumbersomeness, we also refer to this generalized version as DkS. It is not hard to
see3 that Barman’s algorithm [11] extends easily to this setting:

▶ Theorem 7. There is an additive QPTAS for DkS that runs in time nO(log n/ϵ2).

DkS is a classic problem in approximation algorithms literature, and many approximation
algorithms [30, 51, 29, 28, 6, 32, 13, 11] and hardness results [27, 37, 48, 4, 14, 17, 40, 20]
have been proved over the years. Most of these works focus on multiplicative approximation;
the best known polynomial-time algorithm in this setting has an approximation ratio of
n1/4+ϵ for any constant ϵ > 0 [13] and there are evidences that achieving subpolynomial
ratio in polynomial time is unlikely [40, 14, 22]. As for additive approximation, it is known
that an approximation scheme that runs in time nõ(log n) would break the exponential time
hypothesis (ETH) [17]; therefore, the running time in Theorem 7 (in terms of n) is tight up
to poly log log n factor in the exponent. We provide additional discussions on related results
in the full version [2].

2.3 Submodular Maximization over a Matroid Constraint
For our approximation algorithm for Max-Sum Diversification, we will also need an approx-
imation algorithm for monotone submodular maximization under a matroid constraint. In
this problem, we are given a monotone submodular set function f : 2X → R≥0 over a ground
set X together with a matroid M = (X, I). The function f is given via a value oracle and
M can be accessed via a membership oracle (which answers questions of the form “does

3 In fact, in Section 5.1, we also give a more general algorithm than the one stated in Theorem 7 which
can also handle an additional monotone submodular function.

ICALP 2022



7:6 Improved Approximation and Lower Bounds for Search-Diversification

S belong to I?”). The goal is to find S ∈ I that maximizes f(S). Călinescu et al. gave a
randomized algorithm with approximation ratio (1− 1/e) for the problem, which we will use
in our algorithm.

▶ Theorem 8 ([18]). There exists a randomized polynomial-time (1− 1/e)-approximation
algorithm for maximizing a montone submodular function over a matroid constraint.

3 Diversified Search Ranking

In this section, we consider the diversified search ranking question as proposed in [9] and
prove our upper and lower bounds (Theorems 1 and 2).

3.1 Polynomial-time Approximation Scheme
We will start by presenting our PTAS. At a high-level, our PTAS is similar to that of Bansal
et al.’s: our algorithm use bruteforce to try every possible values of π(1), . . . , π(exp(Õ(1/ϵ))).
Once these are fixed, we solve the remaining problem using linear programming (LP). We
use the same LP as Bansal et al., except with a slightly more refined rounding procedure,
which allows us to achieve a better approximation guarantee.

The remainder of this section is organized as follows. In Section 3.1.1, we present our LP
rounding algorithm and its guarantees. Then, we show how to use it to yield our PTAS in
Section 3.1.2.

3.1.1 Improved LP Rounding
For convenience in the analysis below, let us also define a more generic objective function where

1
log(tπ(S))+1 in Equation (1) can be replaced by any non-increasing function f : [n]→ (0, 1]:

DCGf
S,k(π) :=

∑
S∈S

f(tπ(S)).

The main result of this subsection is the following polynomial time LP rounding algorithm
for the above general version of DCG:

▶ Lemma 9. There exists an absolute constant C such that for any α ∈ (0, 0.5) the following
holds: there is a polynomial-time algorithm that computes a ranking with expected DCG at
least (1− α) · τf,α times that of the optimum where

τf,α := min
t∈[n]

f
(

C log(1/α)
α · t

f(t)

)
f(t) .

Informally speaking, the term τf,α somewhat determines “how fast f increases”. In the
next section, once we fix the first u elements of the ranking, f will become f(t) := 1/ log(t+u)
which is “slowly growing” when u is sufficiently large. This allows us to ensure that the
guarantee in Lemma 9 yields an (1−O(ϵ))-approximation as desired.

3.1.1.1 LP Formulation

To prove Lemma 9, we use the same knapsack constraint-enhanced LP as in [9], stated below.
Note that the number of knapsack constraints can be super-polynomial. However, it is known
that such an LP can be solved in polynomial time; see e.g. [8, Section 3.1] for more detail.

Maximize
∑
S∈S

∑
t∈[n]

(yS,t − yS,t−1) · f(t)
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subject to
∑

e∈[n]

xe,t = 1 ∀t ∈ [n]

∑
t∈[n]

xe,t = 1 ∀e ∈ [n]

∑
e∈S⊆A

∑
t′<t

xe,t′ ≥ (kS − |A|) · yS,t ∀S ∈ S, A ⊆ S, t ∈ [n]

yS,t ≥ yS,t−1 ∀S ∈ S, t ∈ {2, . . . , n}
xe,t, yS,t ∈ [0, 1] ∀e, t ∈ [n], S ∈ S.

3.1.1.2 Rounding Algorithm

Let γ ∈ (0, 0.1) be a parameter to be chosen later. Our rounding algorithm works as follows:
1. π ← ∅
2. For i = 1, . . . , ⌈log n⌉ do:

a. Let ti = min{n, 2i}.
b. Let ze,i =

∑
t≤ti

x∗
e,t and pe,i = min{1,

ze,i

γ·f(ti)} for all e ∈ [n].
c. Let Ai be the set such that e ∈ [n] is independently included w.p. pe,i.

Finally, our permutation π is defined by adding elements from A1, . . . , A⌈log n⌉ in that order,
where the order within each Ai can be arbitrary and we do not add an element if it already
appears in the permutation.

Once again, we remark that our algorithm closely follows that of [9], except that Bansal
et al. simply chose their pe,i to be min{1, O(log2 n) · ze,i}, whereas our pe,i is a more delicate
min{1,

ze,i

γ·f(ti)}. This allows our analysis below to produce a better approximation ratio.

3.1.1.3 Analysis

We will now proceed to analyze our proposed randomized rounding procedure. Let η ∈ (0, 0.1)
be a parameter to be chosen later, and let (x∗, y∗) denote an optimal solution to the LP. For
each S, let t∗(S) be the largest positive integer t∗ such that

y∗
S,t∗−1 ≤ η · f(t∗). (2)

We start with the following lemma, which is a refinement of [9, Lemma 1].

▶ Lemma 10. OPT ≤ (1 + η) ·
∑

S∈S f(t∗(S)).

Proof. We have

OPT ≤
∑
S∈S

∑
t∈[n]

(y∗
S,t − y∗

S,t−1) · f(t)

=
∑
S∈S

t∗(S)−1∑
t=1

(y∗
S,t − y∗

S,t−1) · f(t) +
n∑

t=t∗(S)

(y∗
S,t − y∗

S,t−1) · f(t)


≤

∑
S∈S

t∗(S)−1∑
t=1

(y∗
S,t − y∗

S,t−1) +
n∑

t=t∗(S)

(y∗
S,t − y∗

S,t−1) · f(t∗(S))


≤

∑
S∈S

(
y∗

S,t∗(S)−1 + f(t∗(S))
)

(2)
≤

∑
S∈S

(1 + η) · f(t∗(S)). ◀

ICALP 2022



7:8 Improved Approximation and Lower Bounds for Search-Diversification

Next, we show via standard concentration inequalities that |Ai|’s has small sizes with a
large probability.

▶ Lemma 11. With probability 1− 2 exp
(
− 1

3γ

)
, we have |Ai| ≤ 2ti

γf(t∗) for all i ∈ [⌈log n⌉].

Proof. Notice that
∑

e∈[n] pe,i ≤
∑

e∈[n]
ze,i

γf(ti) = ti

γf(ti) . As a result, by Chernoff bound
(Lemma 5), we have

Pr
[
|Ai| >

2ti

γf(t∗)

]
≤ exp

(
− ti

3γf(t∗)

)
≤ exp

(
− ti

3γ

)
.

By union bound, we thus have |Ai| ≤ 2ti

γf(t∗) for all i ∈ [⌈log n⌉] with probability at least

1−
∑

i∈[⌈log n⌉]

exp
(
− ti

3γ

)
≤ 1− 2 exp

(
− 1

3γ

)
. ◀

Let i∗(S) denote the smallest i such that ti ≥ t∗(S). We now bound the probability that
S is covered (kS times) by the end of the i∗(S)-th iteration of the algorithm. Our bound is
stated below. We note that our bound here is not with high probability, unlike that of the
analysis of [9] which yields a bound of 1− o(1/n). We observe here that such a strong bound
is not necessary for the analysis because we are working with a maximization problem and
therefore such a high probability bound is not necessary to get a bound on the expectation
of the DCG.

▶ Lemma 12. Assume that η ≥ 2γ. For each S ∈ S, we have tπ(S) ≤ |A1|+ · · ·+ |Ai∗(S)|
with probability 1− exp

(
η

8γ

)
.

Proof. It suffices to show that at least kS elements of S are selected in Ai∗(S). Let Sg denote
the set of elements e ∈ S for which pe,i∗(S) = 1. If |Sg| ≥ kS , then we are done. Otherwise,
from knapsack constraint, we have∑

e∈S\Sg

ze,i∗(S) ≥ (kS − |Sg|)y∗
S,ti∗(S)

≥ (kS − |Sg|)y∗
S,t∗(S) ≥ η · f(t∗(S)) · (kS − |Sg|)

≥ η · f(ti∗(S)) · (kS − |Sg|),

where the third inequality follows from our choice of t∗(S). This implies that∑
e∈S\Sg

pe,i∗(S) ≥ η/γ · (kS − |Sg|).

Recall that η/γ ≥ 2. This means that the probability that at least kS elements of S are
selected in Ai∗(S) is at least

1− Pr[|(S \ Sg) ∩Ai∗(S)| ≤ 0.5η/γ · (kS − |Sg|)]

≤ 1− exp
(
−1

8 · η/γ · (kS − |Sg|)
)

≤ 1− exp
(
− η

8γ

)
,

where the first inequality follows from the Chernoff bound. ◀

Applying the union bound to the two previous lemmas, we immediately arrive at the
following:
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▶ Lemma 13. Assume that η ≥ 2γ. For all S ∈ S, we have

Eπ[f(tπ(S))] ≥
(

1− 2 exp
(
− 1

3γ

)
− exp

(
η

8γ

))
· f

(
8t∗(S)

γf(t∗(S))

)
Finally, combining Lemmas 10 and 13 and selecting η = 2α, γ = O(η/ log(1/η)) yields

Lemma 9.

3.1.2 From LP Rounding to PTAS
As stated earlier, we may now use bruteforce to try all possible values of the first few elements
in the ranking and then use our LP rounding to arrive at the PTAS:

Proof of Theorem 1. For any ϵ < 0.1, we use bruteforce for the first u = (4C/ϵ)100/ϵ

elements and then use Lemma 9 on the remaining instance but with f(t) := 1
log(t+u) . The

expected approximation ratio we have is at least

(1− 0.5ϵ) · τf,0.5ϵ

≥ (1− 0.5ϵ) · min
t∈[n]

f

(
4C log(1/ϵ)

ϵ
· t

f(t)

)
/f(t)

= (1− 0.5ϵ) · min
t∈[n]

log(t + u)
log

(
4C log(1/ϵ)

ϵ · t
f(t) + u

)
≥ (1− 0.5ϵ) · min

t∈[n]

log(t + u)
log

(
4C log(1/ϵ)

ϵ · (t + u) log(t + u)
)

= (1− 0.5ϵ) · min
t∈[n]

1

1 +
log

(
4C log(1/ϵ)

ϵ

)
log(t+u) + log log(t+u)

log(t+u)

= (1− 0.5ϵ) · 1

1 +
log

(
4C log(1/ϵ)

ϵ

)
log(u) + log log(u)

log(u)

≥ (1− 0.5ϵ) · 1
1 + 0.1ϵ + 0.1ϵ

≥ 1− ϵ,

as desired. ◀

3.2 Running Time Lower Bound
To prove our running time lower bound, we will reduce from the Maximum k-Coverage
problem. Recall that in Maximum k-Coverage, we are given a set T ⊆ [M ] and an integer
k; the goal is to find T ∗

1 , · · ·T ∗
k ∈ T that maximizes |T ∗

1 ∪ · · · ∪ T ∗
k |. We write Cov(T , k)

to denote this optimum. Furthermore, we say that a Maximum k-Coverage is regular if
|T | = M/k for all T ∈ T . Finally, we use N to denote |T | ·M which upper bound the “size”
of the problem.

Manurangsi [41] showed the following lower bound for this problem:

▶ Theorem 14 ([41]). Assuming the Gap Exponential Time Hypothesis (Gap-ETH), for any
constant δ > 0, there is no No(k)-time algorithm that can, given a regular instance (T , k)
distinguish between the following two cases:

(YES) Cov(T , k) ≥M .
(NO) Cov(T , k) ≤ (1− 1/e + δ)M .
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Proof of Theorem 2. Fix δ = 0.1. We reduce from the Maximum k-Coverage problem.
Suppose that (T , k) is a regular Maximum k-Coverage instance; we assume w.l.o.g. that k is
divisible by 10.

We construct the instance (S, {kS}S∈S) of the DCG maximization as follows:
Let n = |T | where we associate each j ∈ [n] with Tj ∈ T .
Let S = {S1, . . . , SM} where Si = {j ∈ [n] | i ∈ Tj}.
Let kS = 1 for all S ∈ S.

In the YES case, let Tj1 , . . . , Tjk
be such that |Tj1 ∪ · · · ∪ Tjk

| = M . Let π∗ : [n] → [n]
be any permutation such that π∗(ℓ) = jℓ for all ℓ ∈ [k]. From regularity of (T , k), there are
exactly q := M/k sets S ∈ S such that tπ∗(S) = i. Therefore, we have

DCGS,k(π∗) =
∑
i∈[k]

M

k
· 1

log(i + 1) .

Let OPT∗ denote the RHS quantity. Notice that

OPT∗ ≤ M

log(k + 1) . (3)

In the NO case, consider any permutation π : [n]→ [n]. Let ti denote the i-th smallest
value in the multiset {tπ(S)}S∈S . Regularity of (T , k) implies that

ti ≥ ti−q + 1 (4)

for all i > q. This in turn implies that

ti ≥ ⌈i/q⌉ . (5)

Furthermore, Cov(T , k) ≤ (1− 1/e− δ)M ≤ 0.8M implies that

t0.8M > k.

Furthermore, applying (4) to the above, we have

t0.9M ≥ t0.8M +
⌊

0.1M

q

⌋
= k + 0.1k = 1.1k. (6)

With the above notion, we may write DCGS,k(π)−OPT∗ as

DCGS,k(π)−OPT∗ =
M∑

i=1

1
log(ti + 1) −

M∑
i=1

1
log(⌈i/q⌉+ 1)

(5)
≥

M∑
i=0.9M

(
1

log(ti + 1) −
1

log(⌈i/q⌉+ 1)

)
(6)
≥

M∑
i=0.9M

(
1

log(1.1k + 1) −
1

log(⌈i/q⌉+ 1)

)

≥
M∑

i=0.9M

(
1

log(1.1k + 1) −
1

log(k + 1)

)
= 0.1M ·

(
1

log(1.1k + 1) −
1

log(k + 1)

)
= Θ

(
M

log2 k

)
.
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Finally, observe also that

OPT∗ = M

k
·

∑
i∈[k]

1
log(i + 1) = M

k
Θ

(
k

log k

)
= Θ

(
M

log k

)
.

Combining the above two inequalities, we have

DCGS,k(π) ≥
(

1 + Θ
(

1
log k

))
·OPT∗ .

Now, suppose that there is a PTAS for maximizing DCG that runs in time f(ϵ)·(nm)2o(1/ϵ) .
If we run the algorithm with ϵ = γ/ log k where γ > 0 is sufficiently small constant, then we
can distinguish between the YES case and the NO case in time f(1/ log k) · (nm)2o(log k) ≤
f(1/ log k) · (nm)o(k) = g(k) ·No(k) which, from Theorem 14, violates Gap-ETH. ◀

4 Max-Sum Dispersion

In this section, we provide a QPTAS for Max-Sum Dispersion (Theorem 3).
As alluded to earlier, our algorithm will reduce to the Densest k-Subgraph (DkS) problem,

for which an additive QPTAS is known [11]. Notice here that DkS is a generalization of the
Max-Dispersion problem because we may simply set V = U, k = p and w({u, v}) = d(u, v)/D

where D := maxu,v d(u, v) denote the diameter of the metric space. Note however that we
cannot apply Theorem 7 yet because the QPTAS in that theorem offers an additive guarantee.
E.g. if the optimum is o(1), then the QPTAS will not yield anything at all unless we set
ϵ = o(1), which then gives a running time nω(log n). This example can happen when e.g.
there is a single pair u, v that are very far away and then all the other pairs are close to u.

Our main technical contribution is to give a simple structural lemma that allows us to
avoid such a scenario. Essentially speaking, it allows us to pick a vertex and selects all
vertices that are “too far away” from it. Once this is done, the remaining instance can be
reduced to DkS without encountering the “small optimum” issue described in the previous
paragraph.

4.1 A Structural Lemma
Henceforth, we write Disp(S, T ) to denote

∑
u∈S,v∈T d(u, v) and Disp(u, T ) as a shorthand

for Disp({u}, T ). Furthermore, we use B(u, D) to denote {z ∈ U | d(z, u) ≤ D} and let
B(u, D) := U \ B(u, D).

We now formalize our structural lemma. It gives a lower bound on the objective based on
a vertex in the optimal solution and another vertex not in the optimal solution. Later on, by
guessing these two vertices, we can reduce to DkS while avoiding the “small optimum” issue.

▶ Lemma 15. Let SOPT be any optimal solution of Max-Sum Dispersion and let umin be the
vertex in SOPT that minimizes Disp(umin, SOPT). Furthermore, let v be any vertex not in
SOPT and let ∆ = d(umin, v). Then, we have

Disp(SOPT) ≥ p(p− 1)∆
16 .

Proof of Lemma 15. Let SOPT
close := SOPT ∩ B(umin, 0.5∆). Consider two cases, based on the

size of SOPT
close :
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Case I: |SOPT
close | ≤ p/2. In this case, we have

Disp(umin, SOPT) ≥ Disp(umin, SOPT \ SOPT
close ) ≥ (p/2)(∆/2) = ∆p/4.

Furthermore, by our definition of umin, we have

Disp(SOPT) = 1
2

∑
u∈S

Disp(u, SOPT) ≥ p

2 Disp(umin, SOPT).

Combining the two inequalities, we have Disp(SOPT) ≥ p2∆/8.
Case II: |SOPT

close | > p/2. In this case, since SOPT is an optimal solution, replacing any
z ∈ SOPT

close with v must not increase the solution value, i.e.

Disp(z, SOPT) ≥ Disp(v, SOPT \ {z})
≥ Disp(v, SOPT

close \ {z})
≥ ((p− 1)/2)(0.5∆),

where the second inequality uses the fact that for any z′ ∈ SOPT
close we have d(v, z′) ≥

d(u, v)− d(u, z′) ≥ ∆− 0.5∆. From this, we once again have

Disp(SOPT) = 1
2

∑
u∈S

Disp(u, SOPT) ≥ 1
2

∑
z∈SOPT

close

Disp(z, SOPT) ≥ |SOPT
close | ·

(p− 1)∆
8

>
p(p− 1)

16∆ ,

where the last inequality follows from our assumption of this case. ◀

4.2 QPTAS for Max-Sum Dispersion
We now present our QPTAS, which simply guesses umin and v = argmaxz /∈SOPT d(z, u) and
then reduces the problem to DkS. By definition of v, if we let ∆ = d(u, v), every point outside
B(umin, ∆) must be in SOP T . The actual reduction to DkS is slightly more complicated
than that described at the beginning of this section. Specifically, among points B(umin, ∆)
that surely belong to SOPT, we ignore all points outside B(umin, 20∆/ϵ) (i.e., they do not
appear in the DkS instance) and we let B(umin, 20∆/ϵ) \ B(umin, ∆) be the “must pick”
part. Ignoring the former can be done because the contribution to the objective from those
points can be approximated to within (1±O(ϵ)) regardless of the points picked in the ball
B(umin, ∆). This is not true for the latter, which means that we need to include them in our
DkS instance.

Proof of Theorem 3. Our algorithm works as follows:
1. For every distinct u, v ∈ U do:

a. Let ∆ := d(u, v) and ∆∗ = 20∆/ϵ.
b. If |B(u, ∆)| ≥ p, then skip the following steps and continue to the next pair u, v.
c. Otherwise, create a DkS instance where V := B(u, ∆∗), I := V \ B(u, ∆), k =

p− |B(u, ∆∗)| and w is defined as w({y, z}) := 0.5d(y, z)/∆∗ for all y, z ∈ V .
d. Use the additive QPTAS from Theorem 7 to solve the above instance to within an

additive error of ϵ′ := 0.00005ϵ2. Let T be the solution found.
e. Finally, let Su,v := T ∪ B(u, ∆∗).

2. Output the best solution among Su,v considered.
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It is obvious that the running time is dominated by the running time of the QPTAS
which takes nO(log n/(ϵ′)2) = nO(log n/ϵ4) as desired.

Next, we show that the algorithm indeed yields a (1− ϵ)-approximation. To do this, let
us consider SOPT, umin as defined in Lemma 15, and let u = umin, v := argmaxz /∈SOPT d(u, z).
Let T be the solution found by the DkS algorithm for this u, v and let T ′ := T \ I. We have

Disp(Su,v)

= Disp(B(u, ∆∗)) + Disp(B(u, ∆∗), T ) + Disp(T )

= Disp(B(u, ∆∗)) + Disp(B(u, ∆∗), I) + Disp(B(u, ∆∗), T ′) + Disp(T ). (7)

Similarly, letting S := SOPT ∩ B(u, ∆∗) and S′ := SOPT \ I, we have

Disp(SOPT)

= Disp(B(u, ∆∗)) + Disp(B(u, ∆∗), I) + Disp(B(u, ∆∗), S′) + Disp(S). (8)

Now, observe from the definition of the DkS instance (for this u, v) that for any J such
that I ⊆ J ⊆ V , we have

Den(J) = 1
k(k − 1)/2 ·

0.5
∆∗ Disp(J).

The additive approximation guarantee from Theorem 7 implies that Den(T ) ≥ Den(S)− ϵ′.
Using the above equality, we can rewrite this guarantee as

Disp(S)−Disp(T ) ≤ ϵ′ ·∆∗ · k(k − 1). (9)

Taking the difference between Equation (8) and Equation (7) and applying Equation (9),
we have

Disp(SOPT) − Disp(Su,v) ≤ Disp(B(z, ∆∗), S′) − Disp(B(z, ∆∗), T ′) + ϵ′ · ∆∗ · k(k − 1).

(Our choice of ϵ′) ≤ Disp(B(z, ∆∗), S′) − Disp(B(z, ∆∗), T ′) + 0.001ϵ∆ · p(p − 1)

(Lemma 15) ≤ Disp(B(z, ∆∗), S′) − Disp(B(z, ∆∗), T ′) + 0.1ϵ Disp(SOPT).

Now, since |S′| = |T ′| ≤ p and S′, T ′ ⊆ B(z, ∆), we have

Disp(B(z, ∆∗), S′)−Disp(B(z, ∆∗), T ′) ≤ |B(z, ∆∗)| · |S′| · ((∆∗ + ∆)− (∆∗ −∆))

≤ 2|B(z, ∆∗)| · |S′| ·∆

(Our choice of ∆∗) ≤ 0.1ϵ · |B(z, ∆∗)| · |S′| · (∆∗ −∆)

≤ 0.1ϵ ·Disp(B(z, ∆∗), S′)
≤ 0.1ϵ ·Disp(SOPT).

Combining the above two inequalities, we get Disp(Su,v) ≥ (1− 0.2ϵ) ·Disp(SOPT), as
desired. ◀

5 Max-Sum Diversification

In this section, we give our quasipolynomial-time approximation algorithm for the Max-Sum
Diversification with approximation ratio arbitrarily close to (1− 1/e) (Theorem 4). In fact,
we prove a slightly stronger version of the theorem where the approximation ratio for the
dispersion part is arbitrarily close to 1 and that of the submodular part is arbitrarily close
to 1− 1/e. This is stated more precisely below; note that this obviously implies Theorem 4.
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7:14 Improved Approximation and Lower Bounds for Search-Diversification

▶ Theorem 16. Let SOPT be any optimal solution of Max-Sum Diversification. There exists
a randomized nO(log n/ϵ4)-time algorithm that finds a p-size set S such that

E[Div(S)] ≥ (1− ϵ) Disp(SOPT) + (1− 1/e− ϵ)f(SOPT).

At a high-level, our algorithm for Max-Sum Diversification is very similar to that of
Max-Sum Dispersion presented in the previous section. Specifically, we use a structural
lemma (akin to Lemma 15) to reduce our problem to a variant of DkS. This variant of
DkS additionally has a submodular function attached to it. Using techniques from DkS
approximation literature, we give an algorithm for this problem by in turn reducing it to
the submodular maximization problem over a partition matroid, for which we can appeal to
Theorem 8.

5.1 Approximating Densest Subgraph and Submodular Function
We will start by giving an algorithm for the aforementioned extension of the DkS problem,
which we call Submodular DkS:

▶ Definition 17 (Submodular DkS). Given (V, I, w, k) (similar to DkS) together with a
monotone submodular set function h on the ground set V (accessible via a value oracle), the
goal is to find a size-k subset T where I ⊆ T ⊆ V that maximizes h(T ) + Den(T ).

We give a quasipolynomial-time algorithm with an approximation guarantee similar to
QPTAS for the original DkS (i.e. Theorem 7) while also achiving arbritrarily close to
(1− 1/e) approximation ratio for the submodular part of the objective:

▶ Theorem 18. For any set T OPT of size k such that I ⊆ T OPT ⊆ V , there is an nO(log n/γ2)-
time algorithm that output a size-k T such that I ⊆ T ⊆ V and

E[h(T ) + Den(T )] ≥ (1− 1/e− γ) h(T OPT) + Den(T OPT)− γ. (10)

In order to facilitate the subsequent discussion and proof, it is useful to define additional
notations. (Throughout, we view vectors as column vectors.)

Let W ∈ RV ×V denote the vector where Wu,v = w({u, v}) for u ̸= v and Wu,u = 0.
For every U ⊆ V , let 1(U) ∈ RV denote the indicator vector of U , i.e.

1(U)v =
{

1 if v ∈ U,

0 otherwise.

For every U ⊆ V , let w(U) = W · 1(U) ∈ RV .
Finally, for every non-empty U ⊆ V , let w(U) := 1

|U | · w(U) and 1(U) := 1
|U | · 1(U).

To understand our reduction, we must first describe the main ideas behind the QPTAS
of [11]. (Some of these ideas also present in previous works, e.g. [5].) Let us assume for
simplicity of presentation that I = ∅. Observe that DkS is, up to an appropriate scaling,
equivalent to find a size-k subset T that maximizes 1(T )T ·W ·1(T ) = 1(T )T w(T ). The main
observation is that, if we randomly pick a subset U ⊆ T OPT of size Θγ(log n), then with high
probability ∥w(U)−w(T OPT)∥∞ ≤ O(γ) and |1(T OPT)T w(T OPT)− 1(U)T w(U)| < O(γ).
Roughly speaking, [11] exploits this by “guessing” such a set U and then solves for T such
that ∥w(U) − w(T )∥∞ ≤ O(γ) and |1(T )T w(U) − 1(U)T w(U)| < O(γ); note that (the
fractional version of) this is a linear program and can be solved efficiently. [11] then shows
that a fractional solution to such a linear program can be rounded to an actual size-k set
without any loss in the objective function.
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We further push this idea by noting that, if we randomly partition V into V1, . . . , Vs

part where s = Oγ(k/ log n), then the intersections UOPT
i := Vi ∩ T OPT satisfy the two

conditions from the previous paragraphs (for T = UOPT
i ). Therefore, we may enumerate all

sets Ui ⊆ Vi of roughly expected size to construct a collection Pi of subsets that satisfies
these two conditions. Our goal now become picking U1 ∈ P1, . . . , Us ∈ Ps that maximizes
h(U1 ∪ · · · ∪ Us). This is simply monotone submodular maximization subject to a partition
matroid constraint and therefore we may appeal to Theorem 8. We remark here that the
two conditions that all subsets in Pi satisfy already ensure that the DkS objective is close to
optimum. The full proof of Theorem 18 is deferred to the full version [2].

5.2 From Submodular DkS to Max-Sum Diversification
Having provided an approximation algorithm for Submodular DkS, we can use it to ap-
proximate Max-Sum Diversification via a similar approach to the reduction from Max-Sum
Dispersion to DkS in the previous section. In particular, we can prove a structural lemma
for Max-Sum Diversification that is analogous to Lemma 15 for Max-Sum Dispersion. We
can then use the reduction nearly identical to the one in the proof of Theorem 3 to arrive at
Theorem 16. The full details are deferred to the full version [2].

6 Conclusion

In this work, we consider three problems related to diversification: DCG in diversified
search ranking, Max-Sum Dispersion and Max-Sum Diversification. For DCG, we give a
PTAS and prove a nearly matching running time lower bound. For Max-Sum Dispersion,
we give a QPTAS and similarly provide evidence for nearly matching running time lower
bounds. Finally, we give a quasi-polynomial time algorithm for Max-Sum Diversification
that achieves an approximation ratio arbitrarily close to (1 − 1/e), which is also tight
given the (1− 1/e + o(1)) factor NP-hardness of approximating Maximum k-Coverage [26].
Our algorithms for DCG and Max-Sum Diversification are randomized and it remains an
interesting open question whether there are deterministic algorithms with similar running
times and approximation ratios.
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