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Abstract
We study distribution-free property testing and learning problems where the unknown probability
distribution is a product distribution over Rd. For many important classes of functions, such as
intersections of halfspaces, polynomial threshold functions, convex sets, and k-alternating functions,
the known algorithms either have complexity that depends on the support size of the distribution,
or are proven to work only for specific examples of product distributions. We introduce a general
method, which we call downsampling, that resolves these issues. Downsampling uses a notion of
“rectilinear isoperimetry” for product distributions, which further strengthens the connection between
isoperimetry, testing and learning. Using this technique, we attain new efficient distribution-free
algorithms under product distributions on Rd:
1. A simpler proof for non-adaptive, one-sided monotonicity testing of functions [n]d → {0, 1}, and

improved sample complexity for testing monotonicity over unknown product distributions, from
O(d7) [Black, Chakrabarty, & Seshadhri, SODA 2020] to Õ(d3).

2. Polynomial-time agnostic learning algorithms for functions of a constant number of halfspaces,
and constant-degree polynomial threshold functions;

3. An exp (O(d log(dk)))-time agnostic learning algorithm, and an exp (O(d log(dk)))-sample toler-
ant tester, for functions of k convex sets; and a 2Õ(d) sample-based one-sided tester for convex
sets;

4. An exp
(
Õ(k

√
d)
)

-time agnostic learning algorithm for k-alternating functions, and a sample-
based tolerant tester with the same complexity.
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1 Introduction

In property testing and learning, the goal is to design algorithms that use as little information
as possible about the input while still being correct (with high probability). This includes
using as little information as possible about the probability distribution against which
correctness is measured. Information about the probability distribution could be in the form
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of guarantees on this distribution (e.g. it is guaranteed to be uniform, or Gaussian), or in
the form of samples from the distribution. So we want to minimize the requirements on this
distribution, as well as the number of samples used by the algorithm.

Progress on high-dimensional property testing and learning problems is usually made by
studying algorithms for the uniform distribution over the hypercube {±1}d, or the standard
Gaussian distribution over Rd, as the simplest case. For example, efficiently learning
intersections of halfspaces is a major open problem in learning theory [23, 33], and progress
on this problem has been made by studying the uniform distribution over the hypercube
{±1}d and the Gaussian as special cases [30, 34, 38]. Another important example is the class
of degree-k polynomial threshold functions (PTFs). Unlike intersections of halfspaces, these
can be efficiently learned in the PAC model [33], but agnostic learning is more challenging.
Again, progress has been made by studying the hypercube [22]. An even more extreme
example is the class of convex sets, which are not learnable in the distribution-free PAC
model, because they have infinite VC dimension, but which become learnable under the
Gaussian [34]. The uniform distribution over the hypercube and the Gaussian are both
examples of product distributions, so the next natural question to ask is, can these results
be generalized to any unknown product distribution? A partial answer was given by Blais,
O’Donnell, & Wimmer [10] for some of these classes; in this paper we resolve this question.

Similar examples appear in the property testing literature. Distribution-free property
testing and testing functions with domain Rd are emerging trends in the field (e.g. [2, 21, 29,
19, 26, 9]). Testing monotonicity is one of the most well-studied problems in property testing,
and recent work [6] has extended this study to product distributions over domain Rd. Work
of Chakrabarty & Seshadhri [17], Khot, Minzer, & Safra [32], and Black, Chakrabarty, &
Seshadhri [5, 6] has resulted in efficient o(d)-query algorithms for the hypercube {±1}d [32]
and the hypergrid [n]d. Black, Chakrabarty, & Seshadhri [6] showed that testing monotonicity
over unknown product distributions on Rd could be done with Õ(d5/6) queries and O(d7)
samples. Their “domain reduction” method is intricate and specialized for the problem of
testing monotonicity. We improve1 the sample complexity to Õ(d3) using a much simpler
proof. We also generalize the testers of [18, 15] for convex sets and k-alternating functions,
respectively, and provide new testers for arbitrary functions of convex sets.

This paper provides a general framework for designing distribution-free testing and
learning algorithms under product distributions on Rd, which may be finite or continuous.
An algorithm is distribution-free under product distributions if it does not require any
prior knowledge of the probability distribution, except the guarantee that it is a product
distribution. The technique in this paper, which we call downsampling, improves upon
previous methods (in particular, [6, 10]), in a few ways. It is more general and does not apply
only to a specific type of algorithm [10] or a specific problem [6], and we use it to obtain
many other results. It is conceptually simpler. And it allows quantitative improvements over
both [10] and [6].

Organization

This paper is presented as an extended abstract, with the results, techniques, and definitions
described in the main text, and most of the proofs given in the full version of the paper.
We present our result for testing monotonicity in this extended abstract, as an example
application of our techniques. In Section 1.1, we describe the main results of this paper in

1 An early version of this paper proved a weaker result, with two-sided error and worse sample complexity.
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context of the related work. In Section 1.2, we briefly describe the main techniques in the
paper. Section 2 presents the definitions and lemmas required by the main results. Section 3
gives the proofs for our results on testing monotonicity. The remaining proofs are in the full
version. For simplicity, continuous distributions are treated in the main text and the method
for extending the results to finite distributions are handled separately.

1.1 Results
See Table 1 for a summary of our results on property testing, and Table 2 for a summary of
our results on learning. Some standard definitions are as follows.

For a set P of distributions over X and a set H of functions X → {±1}, a distribution-free
property testing algorithm for H under P is a randomized algorithm that is given a parameter
ϵ > 0. It has access to the input probability distribution D ∈ P via a sample oracle, which
returns an independent sample from D. It has access to the input function f : X → {±1} via
a query oracle, which given query x ∈ X returns the value f(x). A two-sided distribution-free
testing algorithm must satisfy:
1. If f ∈ H then the algorithm accepts with probability at least 2/3;
2. If f is ϵ-far from H with respect to µ then the algorithm rejects with probability at least

2/3.
A one-sided algorithm must accept with probability 1 when f ∈ H. An (ϵ1, ϵ2)-tolerant tester
must accept with probability at least 2/3 when ∃h ∈ H such that P

x∼µ
[f(x) ̸= h(x)] ≤ ϵ1 and

reject when f is ϵ2-far from H with respect to µ.
In the query model, the queries to the query oracle can be arbitrary. In the sample model,

the tester queries a point x ∈ X if and only if x was obtained from the sample oracle. A
tester in the query model is adaptive if it makes its choice of query based on the answers
to previous queries. It is non-adaptive if it chooses its full set of queries in advance, before
obtaining any of the answers. The sample complexity of an algorithm is the number of
samples requested from the sample oracle. The query complexity of an algorithm is the
number of queries made to the query oracle.

Let H be a set of functions X → {±1} and let P be a set of probability distributions
over X. A learning algorithm for H under P (in the non-agnostic or realizable) model is a
randomized algorithm that receives a parameter ϵ > 0 and has sample access to an input
function f ∈ H. Sample access means that the algorithm may request an independent
random example (x, f(x)) where x is sampled from some input distribution D ∈ P. The
algorithm is required to output a function g : X → {±1} that, with probability 2/3, satisfies
the condition P

x∼D
[f(x) ̸= g(x)] ≤ ϵ.

In the agnostic setting, the algorithm instead has sample access to an input distribution
D over X × {0, 1} whose marginal over X is in P (i.e. it receives samples of the form
(x, b) ∈ X × {0, 1}). The algorithm is required to output a function g : X → {±1} that, with
probability 2/3, satisfies the following condition: ∀h ∈ H,

P
(x,b)∼D

[g(x) ̸= b] ≤ P
(x,b)∼D

[h(x) ̸= b] + ϵ .

A proper learning algorithm is one whose output must also satisfy g ∈ H; otherwise it is
improper.

1.1.1 Testing Monotonicity
Testing monotonicity is the problem of testing whether an unknown function f : X → {0, 1}
is monotone, where X is a partial order. It is one of the most commonly studied problems in
the field of property testing. Previous work on this problem has mostly focused on uniform
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probability distributions (exceptions include [1, 28, 16, 9]) and finite domains. However,
there is growing interest in property testing for functions on domain Rd ([2, 21, 29, 19, 26, 9])
and [6] generalized the problem to this domain.

Testing monotonicity under product distributions has been studied a few times. Ailon
& Chazelle [1] gave a distribution-free monotonicity tester for real-valued functions under
product distributions on [n]d, with query complexity O( 1

ϵd2d logn). Chakrabarty et al. [16]
improved this to O( 1

ϵd logn) and gave a matching lower bound. This lower bound applies to
the real-valued case. For the boolean-valued case, monotonicity testers under the uniform
distribution on {±1}d [17, 32] and [n]d [5, 6] are known with query complexity o(d). In [6],
an o(d)-query tester was given for domain Rd. That paper showed that there is a one-sided,
non-adaptive, distribution-free monotonicity tester under product distributions on Rd, with
query complexity O

(
d5/6

ϵ4/3 poly log(d/ϵ)
)

and sample complexity O((d/ϵ)7). In this paper we

improve the sample complexity to Õ((d/ϵ)3), while greatly simplifying the proof.

▶ Theorem 1.1. There is a one-sided, non-adaptive ϵ-tester for monotonicity of functions
Rd → {0, 1} that is distribution-free under (finite or continuous) product distributions, using

O

(
d5/6

ϵ4/3 poly log(d/ϵ)
)

queries and O(d
3

ϵ3 log(d/ϵ)) samples.

The main result of [6] is a “domain reduction” lemma, which shows that for any function
f : [n]d → {0, 1}, the distance to monotonicity (under the uniform distribution) is not
significantly reduced by sampling a random subgrid S of [n]d with sides of length k = O(d7)
and restricting f to the domain S. To prove this lemma, [6] develops specialized structural
tools for analyzing the “violation graph” of f . The violation graph is a standard object in
the study of testing monotonicity. Its vertices are points in the domain, and its edges are
“violations of monotonicity”: pairs of points x ≺ y in the partial order where f(x) > f(y).
The distance of f to monotonicity is related to the size of the maximum matching in this
graph (due to a result of [25]). The main technical challenge of [6] is to show how to find large
matchings in the violation graph under the random restriction to a subgrid, for which they
do a “line-by-line analysis” to show how to preserve many of the matched endpoints on each
line in the grid. Compared to the technique in our paper, their proof is highly specialized to
testing monotone functions, and requires a much more technical analysis. Our result replaces
this domain reduction method with a simpler and more general 2-page argument, and gives
a different generalization to the distribution-free case. See Section 3 for the proofs.

1.1.2 Learning Functions of Halfspaces
Intersections of k halfspaces have VC dimension Θ(dk log k) [14, 20], so the sample complexity
of learning is known, but it is not possible to efficiently find k halfspaces whose intersection
is correct on the sample, unless P = NP [13]. Therefore the goal is to find efficient “improper”
algorithms that output a function other than an intersection of k halfspaces. Several learning
algorithms for intersections of k halfspaces actually work for arbitrary functions of k halfspaces.
We will write Bk for the set of all functions {0, 1}k → {0, 1}, and for any class F of functions
we will write Bk ◦ F as the set of all functions x 7→ g(f1(x), . . . , fk(x)) where g ∈ Bk and
each fi ∈ F . Then for H the class of halfspaces, Klivans, O’Donnell, & Servedio [33] gave
a (non-agnostic) learning algorithm for Bk ◦ H over the uniform distribution on {±1}d
with complexity dO(k2/ϵ2), Kalai, Klivans, Mansour, & Servedio [30] presented an agnostic
algorithm with complexity dO(k2/ϵ4) in the same setting using “polynomial regression”.
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Table 1 Testing results.

unif({±1}d) unif([n]d) Gaussian ∀ Products

1-Sided Testing Mono-
tonicity
(Query model)

Õ
(√

d
ϵ2

)
[32]

Õ
(
d5/6

ϵ4/3

)
[6]

Õ
(
d5/6

ϵ4/3

)
[6]

Õ
(
d5/6

ϵ4/3

)
queries,

Õ
((

d
ϵ

)3
)

samples
(Thm. 1.1)

1-Sided Testing Con-
vex Sets
(Sample model)

– –
(
d
ϵ

)(1+o(1))d

2Ω(d)

[18]

(
d
ϵ

)(1+o(1))d

(Thm. 1.4)

Tolerant Testing
Functions of k Con-
vex Sets
(Sample model)

– – –
(
dk
ϵ

)O(d) (Thm. 1.5)

Tolerant Testing k-
Alternating Functions
(Sample model)

–
(
dk
τ

)O( k
√

d
τ2

)
τ = ϵ2 − 3ϵ1

[15]

–
(
dk
τ

)O( k
√

d
τ2

)
τ = ϵ2 − ϵ1

(Thm. 1.8)

Polynomial regression is a powerful technique, so it is important to understand when it
can be applied. Blais, O’Donnell, & Wimmer [10] studied how to generalize it to arbitrary
product distributions. With their method, they obtained an agnostic learning algorithm
for Bk ◦ H with complexity (dn)O(k2/ϵ4) for product distributions X1 × · · · ×Xd where each
|Xi| = n, and complexity dO(k2/ϵ4) for the “polynomially bounded” continuous distributions.
This is not a complete generalization, because, for example, on the grid [n]d its complexity
depends on n. This prevents a full generalization to the domain Rd. Their algorithm also
requires some prior knowledge of the support or support size. We use a different technique
and fully generalize the polynomial regression algorithm to arbitrary product distributions.
See the full version for the proof.

▶ Theorem 1.2. There is an improper agnostic learning algorithm for Bk ◦ H, which
is distribution-free under (continuous or finite) product distributions over Rd, with time
complexity

min


(
dk

ϵ

)O( k2
ϵ4

)
, O

(
1
ϵ2

(
3dk
ϵ

)d) .

1.1.3 Learning Polynomial Threshold Functions
Degree-k PTFs are another generalization of halfspaces. A function f : Rd → {±1} is a
degree-k PTF if there is a degree-k polynomial p : Rd → R such that f(x) = sign(p(x)).
Degree-k PTFs can be PAC learned in time dO(k) using linear programming [33], but agnostic
learning is more challenging. Diakonikolas et al. [22] previously gave an agnostic learning
algorithm for degree-k PTFs in the uniform distribution over {±1}d with time complexity
dψ(k,ϵ), where

ψ(k, ϵ) := min
{
O(ϵ−2k+1

), 2O(k2) (log(1/ϵ)/ϵ2
)4k+2

}
.

The main result of that paper is an upper bound on the noise sensitivity of PTFs. Combined
with the reduction of [10], this implies an algorithm for the uniform distribution over [n]d
with complexity (dn)ψ(k,ϵ) and for the Gaussian distribution with complexity dψ(k,ϵ).

ICALP 2022



71:6 Downsampling for Testing and Learning in Product Distributions

Table 2 Learning results. All learning algorithms are agnostic except that of [38]. The
PTF result for the Gaussian follows from the two cited works but is not stated in either. All
statements are informal, see references for restrictions and qualifications. For PTFs, ψ(k, ϵ) :=
min

{
O(ϵ−2k+1

), 2O(k2) (log(1/ϵ)/ϵ2)4k+2
}

.

unif({±1}d) unif([n]d) Gaussian ∀ Products

Functions of k
Convex Sets

Ω(2d) – d
O
(√

d
ϵ4

)
, 2Ω(

√
d)

[34]
O
(

1
ϵ2

(
6dk
ϵ

)d)
(Thm. 1.6)

Functions of k
Halfspaces

d
O
(

k2
ϵ4

)
[30]

(dn)O
(

k2
ϵ4

)
[10]

d
O
(

log k

ϵ4

)
,

poly
(
d,
(
k
ϵ

)k)
[34, 38] (Intersections
only)

(
dk
ϵ

)O( k2
ϵ4

)
(Thm. 1.2)

Degree-k PTFs dψ(k,ϵ)

[22]
(dn)ψ(k,ϵ)

[22, 10]
dψ(k,ϵ)

[22, 10]

(
dk
ϵ

)ψ(k,ϵ)

(Thm. 1.3)

k-Alternating
Functions

2Θ
(

k
√

d
ϵ

)
[8]

(
dk
τ

)O( k
√

d
τ2

)
(Testing)
[15]

–
(
dk
ϵ

)O( k
√

d
ϵ2

)
(Thm. 1.7)

Our agnostic learning algorithm for degree-k PTFs eliminates the dependence on n and
works for any unknown product distribution over Rn, while matching the complexity of [22]
for the uniform distribution over the hypercube. See the full version for the proof.

▶ Theorem 1.3. There is an improper agnostic learning algorithm for degree-k PTFs, which
is distribution-free under (finite or continuous) product distributions over Rd, with time
complexity

min
{(

kd

ϵ

)ψ(k,ϵ)
, O

(
1
ϵ2

(
9dk
ϵ

)d)}
.

1.1.4 Testing & Learning Convex Sets
One of the first properties (sets) of functions Rd → {0, 1} to be studied in the property testing
literature is the set of indicator functions of convex sets, i.e. functions f : Rd → {0, 1} where
f−1(1) is convex. Write C for this class of functions. This problem has been studied in various
models of testing [36, 35, 18, 4, 7]. In this paper we consider the sample-based model of testing,
where the tester receives only random examples of the function and cannot make queries.
This model of testing has received a lot of recent attention (e.g. [2, 4, 12, 18, 27, 29, 37, 9]),
partly because it matches the standard sample-based model for learning algorithms.

Chen et al. [18] gave a sample-based tester for C under the Gaussian distribution on
Rd with one-sided error and sample complexity (d/ϵ)O(d), along with a lower bound (for
one-sided testers) of 2Ω(d). We match their upper bound while generalizing the tester to be
distribution-free under product distributions. See the full version for proofs.

▶ Theorem 1.4. There is a sample-based one-sided ϵ-tester for C which is distribution-free
under (finite or continuous) product distributions that uses at most O

(( 6d
ϵ

)d) samples.

A more powerful kind of tester is an (ϵ1, ϵ2)-tolerant tester, which must accept (with high
probability) any function that is ϵ1-close to the property, while rejecting functions that are
ϵ2-far. Tolerantly testing convex sets has been studied by [3] for the uniform distribution
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over the 2-dimensional grid, but not (to the best of our knowledge) in higher dimensions. We
obtain a sample-based tolerant tester (and distance) approximator for convex sets in high
dimension. In fact, recall that Bk is the set of all functions {0, 1}k → {0, 1} and B′ ⊂ Bk
any subset, so B′ ◦ C is any property of functions of convex sets. We obtain a distance
approximator for any such property:

▶ Theorem 1.5. Let B′ ⊂ Bk. There is a sample-based algorithm, which is distribution-
free under (finite or continuous) product distributions, that approximates distance to B′ ◦ C
up to additive error ϵ using O

(
1
ϵ2

( 3dk
ϵ

)d) samples. Setting ϵ = (ϵ2 − ϵ1)/2 we obtain an

(ϵ1, ϵ2)-tolerant tester with sample complexity O
(

1
(ϵ2−ϵ1)2

(
6dk
ϵ2−ϵ1

)d)
.

General distribution-free learning of convex sets is not possible, since this class has infinite
VC dimension. However, they can be learned under the Gaussian distribution. Non-agnostic
learning under the Gaussian was studied by Vempala [38, 39]. Agnostic learning under
the Gaussian was studied by Klivans, O’Donnell, & Servedio [34] who presented a learning
algorithm with complexity dO(

√
d/ϵ4), and a lower bound of 2Ω(

√
d).

Unlike the Gaussian, there is a trivial lower bound of Ω(2d) in arbitrary product distribu-
tions, because any function f : {±1}d → {0, 1} belongs to this class. However, unlike the
general distribution-free case, we show that convex sets (or any functions of convex sets) can
be learned under unknown product distributions.

▶ Theorem 1.6. There is an agnostic learning algorithm for Bk ◦ C, which is distribution-
free under (finite or continuous) product distributions over Rd, with time complexity
O
(

1
ϵ2 ·
( 6dk
ϵ

)d).

1.1.5 Testing & Learning k-Alternating Functions
A k-alternating function f : X → {±1} on a partial order X is one where for any chain
x1 < · · · < xm in X, f changes value at most k times. Learning k-alternating functions on
domain {±1}d was studied by Blais et al. [8], motivated by the fact that these functions
are computed by circuits with few negation gates. They show that 2Θ(k

√
d/ϵ) samples are

necessary and sufficient in this setting. Canonne et al. [15] later obtained an algorithm for
(ϵ1, ϵ2)-tolerant testing k-alternating functions, when ϵ2 > 3ϵ1, in the uniform distribution
over [n]d, with query complexity (kd/τ)O(k

√
d/τ2), where τ = ϵ2 − 3ϵ1.

We obtain an agnostic learning algorithm for k-alternating functions that matches the
query complexity of the tester in [15], and nearly matches the complexity of the (non-agnostic)
learning algorithm of [8] for the uniform distribution over the hypercube. See the full version
for proofs.

▶ Theorem 1.7. There is an agnostic learning algorithm for k-alternating functions, which
is distribution-free under (finite or continuous) product distributions over Rd, that runs in
time at most

min


(
dk

ϵ

)O( k
√

d
ϵ2

)
, O

(
1
ϵ2

(
3kd
ϵ

)d) .

We also generalize the tolerant tester of [15] to be distribution-free under product
distributions, and eliminate the condition ϵ2 > 3ϵ1.
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▶ Theorem 1.8. For any ϵ2 > ϵ1 > 0, let τ = (ϵ2 − ϵ1)/2, there is a sample-based (ϵ1, ϵ2)-

tolerant tester for k-alternating functions using
(
dk
τ

)O( k
√

d
τ2

)
samples, which is distribution-free

under (finite or continuous) product distributions over Rd.

1.2 Techniques
What connects these diverse problems is a notion of rectilinear surface area or isoperimetry
that we call “block boundary size”. There is a close connection between learning & testing
and various notions of isoperimetry or surface area (e.g. [17, 33, 34, 32]). We show that
testing or learning a class H on product distributions over Rd can be reduced to testing and
learning on the uniform distribution over [r]d, where r is determined by the block boundary
size, and we call this reduction “downsampling”. The name downsampling is used in image
and signal processing for the process of reducing the resolution of an image or reducing the
number of discrete samples used to represent an analog signal. We adopt the name because
our method can be described by analogy to image or signal processing as the following 2-step
process:
1. Construct a “digitized” or “pixellated” image of the function f : Rd → {±1} by sampling

from the distribution and constructing a grid in which each cell has roughly equal
probability mass; and

2. Learn or test the “low-resolution” pixellated function.
As long as the function f takes a constant value in the vast majority of “pixels”, the low
resolution version seen by the algorithm is a good enough approximation for testing or
learning. The block boundary size is, informally, the number of pixels on which f is not
constant.

This technique reduces distribution-free testing and learning problems to the uniform
distribution in a way that is conceptually simpler than in the prior work [10, 6]. However,
some technical challenges remain. The first is that it is not always easy to bound the number
of “pixels” on which a function f is not constant – for example, for PTFs. Second, unlike in
the uniform distribution, the resulting downsampled function class on [r]d is not necessarily
“the same” as the original class – for example, halfspaces on Rd are not downsampled to
halfspaces on [r]d, since the “pixels” are not of equal size. Thus, geometric arguments may
not work, unlike the case for actual images.

A similar technique of constructing “low-resolution” representations of the input has been
used and rediscovered ad-hoc a few times in the property testing literature, but only for the
uniform distribution over [n]d [31, 36, 24, 12, 15], or the Gaussian in [18]. With this paper,
we aim to provide a unified and generalized study of this simple and powerful technique.

1.3 Block Boundary Size
Informally, we define the r-block boundary size bbs(H, r) of a class H of functions Rd → {0, 1}
as the maximum number of grid cells on which a function f ∈ H is non-constant, over all
possible r × · · · × r grid partitions of Rd (which are not necessarily evenly spaced) – see
Section 2 for formal definitions. Whether downsampling can be applied to H depends on
whether

lim
r→∞

bbs(H, r)
rd

→ 0 ,

and the complexity of the algorithms depends on how large r must be for the non-constant
blocks to vanish relative to the whole rd grid. A general observation is that any function class
H where downsampling can be applied can be learned under unknown product distributions
with a finite number of samples; for example, this holds for convex sets even though the VC
dimension is infinite.
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▶ Proposition 1.9. Let H be any set of functions Rd → {0, 1} (measurable with respect to
continuous product distributions) such that

lim
r→∞

bbs(H, r)
rd

= 0 .

Then there is some function σ(d, ϵ) such that H is distribution-free learnable under product
distributions, up to error ϵ, with σ(d, ϵ) samples.

For convex sets, monotone functions, k-alternating functions, and halfspaces, bbs(H, r) is
easy to calculate. For degree-k PTFs, it is more challenging – it requires proving a bound on
the number of unevenly-spaced grid cells in Rd in which a degree-k multivariate polynomial
might take the value 0; this result may be of independent interest.

We obtain this result by proving a more general lemma. We say that a function f : Rd →
{0, 1} induces a connected component S if for every x, y ∈ S there is a continuous curve in
Rd from x to y such that f(z) = f(x) = f(y) for all z on the curve, and S is a maximal such
set. Then we prove a general lemma that bounds the block boundary size by the number of
connected components induced by functions f ∈ H.

▶ Lemma 1.10 (Informal, see full version). Suppose that for any axis-aligned affine subspace
A of affine dimension n ≤ d, and any function f ∈ H, f induces at most kn connected
components in A. Then for r = Ω(dk/ϵ), bbs(H, r) ≤ ϵ · rd.

This lemma in fact generalizes all computations of block boundary size in this paper (up
to constant factors in r). Using a theorem of Warren [40], we get the following corollary:

▶ Corollary 1.11 (Informal, see full version). Let p : Rd → R be a degree-k polynomial, and
let ϵ > 0. For r ≥ 3

√
24dk/ϵ and any r × · · · × r grid partition of Rd, p takes value 0 in at

most ϵrd grid cells.

1.4 Polynomial Regression
The second step of downsampling is to find a testing or learning algorithm that works for
the uniform distribution over the (not necessarily evenly-spaced) hypergrid. Most of our
learning results use polynomial regression. This is a powerful technique introduced in [30]
that performs linear regression over a vector space of functions that approximately spans the
hypothesis class. This method is usually applied by using Fourier analysis to construct such
an approximate basis for the hypothesis class [10, 22, 15]. This was the method used, for
example, by Blais, O’Donnell, & Wimmer [10] to achieve the poly(dn)-time algorithms for
intersections of halfspaces.

We take the same approach but we use the Walsh basis for functions on domain [n]d (see
e.g. [11]) instead of the bases used in the prior works. We show that if one can establish
bounds on the noise sensitivity in the Fourier basis for the hypothesis class restricted to the
uniform distribution over {±1}d, then one gets a bound on the number of Walsh functions
required to approximately span the “downsampled” hypothesis class. In this way, we establish
that if one can apply standard Fourier-analytic techniques to the hypothesis class over the
uniform distribution on {±1}d and calculate the block boundary size, then the results for
the hypercube essentially carry over to product distributions on Rd.

An advantage of this technique is that both noise sensitivity and block boundary size
grow at most linearly during function composition: for functions f(x) = g(h1(x), . . . , hk(x))
where each hi belongs to the class H, the noise sensitivity and block boundary size grow at
most linearly in k. Therefore learning results for H obtained in this way are easy to extend
to arbitrary compositions of H, which is how we get our result for intersections of halfspaces.

ICALP 2022
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Figure 1 Left: Random grid X (pale lines) with induced block partition (thick lines) and
blockpoint values (dots), superimposed on f−1(1) (gray polygon). Right: f coarse (grey) compared to
f (polygon outline).

2 Downsampling

We will now introduce the main definitions, notation, and lemmas required by our main
results. The purpose of this section is to establish the main conceptual component of the
downsampling technique: that functions with small enough block boundary size can be
efficiently well-approximated by a “coarsened” version of the function that is obtained by
random sampling. See Figure 1 for an illustration of the following definitions.

▶ Definition 2.1 (Block Partitions). An r-block partition of Rd is a pair of functions
block : Rd → [r]d and blockpoint : [r]d → Rd obtained as follows. For each i ∈ [d], j ∈ [r − 1]
let ai,j ∈ R such that ai,j < ai,j+1 and define ai,0 = −∞, ai,r = ∞ for each i. For
each i ∈ [d], j ∈ [r] define the interval Bi,j = (ai,j−1, ai,j ] and a point bi,j ∈ Bi,j. The
function block : Rd → [r]d is defined by setting block(x) to be the unique vector v ∈ [r]d
such that xi ∈ Bi,vi

for each i ∈ [d]. The function blockpoint : [r]d → Rd is defined
by setting blockpoint(v) = (b1,v1 , . . . , bd,vd

); note that blockpoint(v) ∈ block−1(v) where
block−1(v) = {x ∈ Rd : block(x) = v}.

▶ Definition 2.2 (Block Functions and Coarse Functions). For a function f : Rd → {±1},
we define fblock : [r]d → {±1} as fblock := f ◦ blockpoint and f coarse : Rd → R as f coarse :=
fblock ◦ block = f ◦ blockpoint ◦ block. For any set H of functions Rd → {±1}, we define
Hblock := {fblock | f ∈ H}. For a distribution µ over Rd and an r-block partition block :
Rd → [r]d we define the distribution block(µ) over [r]d as the distribution of block(x) for
x ∼ µ.

▶ Definition 2.3 (Induced Block Partitions). When µ is a product distribution over Rd, a
random grid X of length m is the grid obtained by sampling m points x1, . . . , xm ∈ Rd
independently from µ and for each i ∈ [d], j ∈ [m] defining Xi,j to be the jth-smallest
coordinate in dimension i among all sampled points. For any r that divides m we define
an r-block partition depending on X by defining for each i ∈ [d], j ∈ [r − 1] the point
ai,j = Xi,mj/r so that the intervals are Bi,j := (Xi,m(j−1)/r, Xi,mj/r] when j ∈ {2, . . . , r− 1}
and Bi,1 = (−∞, Xi,m/r], Bi,r = (Xi,m(r−1)/r,∞); we let the points bi,j defining blockpoint
be arbitrary. This is the r-block partition induced by X.
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▶ Definition 2.4 (Block Boundary Size). For a block partition block : Rd → [r]d, a distribution
µ over Rd, and a function f : Rd → {±1}, we say f is non-constant on a block v ∈ [r]d if
there are sets S, T ⊂ block−1(v) such that ∀s ∈ S, t ∈ T : f(s) = 1, f(t) = −1; and S, T have
positive measure (in the product of Lebesgue measures). For a function f : Rd → {±1} and a
number r, we define the r-block boundary size bbs(f, r) as the maximum number of blocks on
which f is non-constant, where the maximum is taken over all r-block partitions block : Rd →
[r]d. For a set H of functions Rd → {±1}, we define bbs(H, r) := max{bbs(f, r) | f ∈ H}.

The total variation distance between two distributions µ, ν over a finite domain X is
defined as

∥µ− ν∥TV := 1
2
∑
x∈X

|µ(x) − ν(x)| = max
S⊆X

|µ(S) − ν(S)| .

The essence of downsampling is apparent in the next proposition. It shows that the distance
of f to its coarsened version f coarse is bounded by two quantities: the fraction of blocks in the
r-block partition on which f is not constant, and the distance of the distribution block(µ) to
uniform. When both quantities are small, testing or learning f can be done by testing or
learning f coarse instead. The uniform distribution over a set S is denoted unif(S):

▶ Proposition 2.5. Let µ be a continuous product distribution over Rd, let X be a random
grid, and let block : Rd → [r]d be the induced r-block partition. Then, for any measurable
f : Rd → {±1}, the following holds with probability 1 over the choice of X:

P
x∼µ

[f(x) ̸= f coarse(x)] ≤ r−d · bbs(f, r) + ∥block(µ) − unif([r]d)∥TV .

Proof. We first establish that, with probability 1 over X and x ∼ µ, if f(x) ̸= f coarse(x) then
f is non-constant on block(x). Fix X and suppose there exists a set Z of positive measure
such that for each x ∈ Z, f(x) ̸= f coarse(x) but f is not non-constant on block(x), i.e. for
V = block−1(block(x)), either µ(V ∩ f−1(1)) = µ(V ) or µ(V ∩ f−1(−1)) = µ(V ). Then
there is v ∈ [r]d such that for V = block−1(v), µ(Z ∩ V ) > 0. Let y = blockpoint(v). If
µ(V ∩ f−1(f(y)) = µ(V ) then µ(Z ∩ V ) = 0, so µ(V ∩ f−1(f(y)) = 0. But for random X,
the probability that there exists v ∈ [r]d such that µ(V ∩ f−1(blockpoint(v))) = 0 is 0, since
blockpoint(v) is random within V .

Assuming that the above event occurs,

P
x∼µ

[f(x) ̸= f coarse(x)] ≤ P
x∼µ

[f is non-constant on block(x)]

≤ P
v∼[r]d

[f is non-constant on v] + ∥block(µ) − unif([r]d)∥TV .

Since v ∼ [r]d is uniform, the probability of hitting a non-constant block is at most r−d ·
bbs(f, r). ◀

Next we give a bound on the number of samples required to ensure that block(µ) is close
to uniform. We need the following lemma.

▶ Lemma 2.6. Let µ be continuous probability distribution over R, m, r ∈ N such that r
divides m, and δ ∈ (0, 1/2). Let X be a set of m points sampled independently from µ. Write
X = {x1, . . . , xm} labeled such that x1 < · · · < xm (and write x0 = −∞). Then for any
i ∈ [r],

P
[
µ
(
x(i−1)(m/r), xi(m/r)

]
<

1 − δ

r

]
≤ 4 · e− δ2m

32r .
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Proof. We assume that i− 1 ≤ r/2. If i− 1 > r/2 then we can repeat the following analysis
with the opposite ordering on the points in X. Write x∗ = x(i−1)mr

and β = µ(−∞, x∗]. First
suppose that (1 − δ/2) i−1

r < β < (1 + δ/2) i−1
r ≤ (1 + δ/2)/2; we will bound the probability

of this event later.
Let t ∈ R be the point such that µ(x∗, t] = (1 − δ)/r (which must exist since µ is

continuous). Let η = δ
1−δ ≥ δ. Write X∗ = {x ∈ X : x > x∗}. The expected value of

|X∗ ∩ (x∗, t]| is |X∗| 1−δ
r(1−β) =

(
1 − i−1

r

) 1−δ
r(1−β) , where the factor 1 − β in the denominator is

due to the fact that each element of X∗ is sampled from µ conditional on being larger than
x∗. The event µ(x∗, xi(m/r)] < (1 − δ)/r occurs if and only if |X∗ ∩ (x∗, t]| > m/r, which
occurs with probability

P
[
|X∗ ∩ (x∗, t]| > m

r

]
= P

[
|X∗ ∩ (x∗, t]| > m

(
1 − (i− 1)

r

)
1 − δ

r(1 − β) (1 + η)
]

where

1 + η = (1 − β)
(1 − δ)

(
1 − i−1

r

) ≥
(
1 − (1 + δ/2) i−1

r

)
(1 − δ)

(
1 − i−1

r

) = 1
1 − δ

(
1 − (δ/2)(i− 1)

r − (i− 1)

)
≥ 1 − δ/2

1 − δ
= 1 + δ

2(1 − δ) ≥ 1 + δ/2 .

Since the expected value satisfies

|X∗| 1 − δ

r(1 − β) ≥ m

r
(1 − i− 1

r
)2(1 − δ)

1 − δ/2 ≥ m

r
(1 − δ/2) ≥ m

2r ,

the Chernoff bound gives

P
[
|X∗ ∩ (x∗, t]| > m

r

]
≤ exp

(
− δ2|X∗|(1 − δ)

3 · 4 · r(1 − β)

)
≤ e− δ2m

3·4·2r .

Now let t ∈ R be the point such that µ(x∗, t] = (1+δ)/r. The expected value of |X∗∩(x∗, t]| is
now |X∗| 1+δ

r(1−β) . The event µ(x∗, xi(m/r)] > (1+δ)/r occurs if and only if |X∗∩(x∗, t]| < m/r,
which occurs with probability

P
[
|X∗ ∩ (x∗, t]| < m

r

]
= P

[
|X∗ ∩ (x∗, t]| < m

(
1 − i− 1

r

)
1 + δ

r(1 − β) (1 − η)
]

where

1 − η = 1 − β

(1 + δ)(1 − i−1
r )

≤
1 − (1 + δ/2) i−1

r

(1 + δ)
(
1 − i−1

r

) = 1
1 + δ

(
1 + (δ/2)(i− 1)

r − (i− 1)

)
≤ 1 + δ/2

1 + δ
= 1 − δ/2

1 + δ
≤ 1 − δ

4 .

The expected value satisfies |X∗| 1+δ
r(1−β) > m/r, so the Chernoff bound gives

P
[
|X∗ ∩ (x∗, t]| < m

r

]
≤ exp

(
− δ2|X∗|(1 + δ)

2 · 42 · r(1 − β)

)
≤ e− δ2m

2·42 .

It remains to bound the probability that (1 − δ/2) i−1
r < β < (1 + δ/2) i−1

r . Define t ∈ R
such that µ(−∞, t] = (1 + δ/2) i−1

r . β = µ(−∞, x∗] ≥ (1 + δ/2) i−1
r if and only if x∗ > t,

i.e. |X ∩ (−∞, t]| < i−1
r . The expected value of |X ∩ (−∞, t]| is m (1+δ/2)(i−1)

r , so for
η = δ/2

1+δ/2 ≥ δ/3, the Chernoff bound implies

P
[
|X ∩ (−∞, t]| < m

i− 1
r

]
= P

[
|X ∩ (−∞, t]| < m

(1 + δ/2)(i− 1)
r

(1 − η)
]

≤ e− δ2m(1+δ/2)(i−1)
18r ≤ e− δ2m

18r .
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Now define t ∈ R such that µ(−∞, t] = (1 − δ/2) i−1
r . β = µ(−∞, x∗] ≤ (1 − δ/2) i−1

r if and
only if x∗ < t, i.e. |X ∩ (−∞, t]| > i−1

r . The expected value of |X ∩ (−∞, t]| is m (1−δ/2)(i−1)
r ,

so for η = δ
2−δ ≥ δ/2,

P
[
|X ∩ (−∞, t]| > m

i− 1
r

]
= P

[
|X ∩ (−∞, t]| > m

(1 − δ/2)(i− 1)
r

(1 + η)
]

≤ e− δ2m(1−δ/2)(i−1)
2·4r ≤ e− δ2m

42r .

The conclusion then follows from the union bound over these four events. ◀

▶ Lemma 2.7. Let µ = µ1 × · · · × µd be a product distribution over Rd where each µi is
continuous. Let X be a random grid with length m sampled from µ, and let block : Rd → [r]d
be the r-block partition induced by X. Then

P
X

[
∥block(µ) − unif([r]d)∥TV > ϵ

]
≤ 4rd · e− ϵ2m

18rd2

Proof. For a fixed grid X and each i ∈ [d], write pi : [r] → [0, 1] be the probability distribution
on [r] with pi(z) = µi(Bi,z). Then block(µ) = p1 × · · · × pd.

Let δ = 4ϵ
3d . Suppose that for every i, j ∈ [d] × [r] it holds that 1+δ

r ≤ pi(j) ≥ 1−δ
r . Note

that dδ = 4ϵ
3 ≤ ln(1 + 2ϵ) ≤ 2ϵ. Then for every v ∈ [r]d,

P
u∼µ

[block(u) = v] =
d∏
i=1

pi(vi)
{

≤ (1 + δ)dr−d ≤ edδr−d ≤ (1 + 2ϵ)r−d

≥ (1 − δ)dr−d ≥ (1 − dδ)r−d ≥ (1 − 2ϵ)r−d .

So

∥block(µ) − unif([r]d)∥TV = 1
2
∑
v∈[r]d

| P
u∼µ

[block(u) = v] − r−d| ≤ 1
2
∑
v∈[r]d

2ϵr−d = ϵ .

By Lemma 2.6 and the union bound, the probability that there is some i ∈ [d], j ∈ [r] that
satisfies pi(j) < (1 − δ)/r is at most 4rd · e− ϵ2m

18rd2 . ◀

3 Testing Monotonicity

3.1 Testing Monotonicity on the Hypergrid
A good introduction to downsampling is the following short proof of the main result of Black,
Chakrabarty, & Seshadhri [6]. In an earlier work, [5], they gave an O((d5/6/ϵ4/3) poly log(dn))
tester for the domain [n]d, and in the later work they showed how to reduce the domain [n]d
to [r]d for r = poly(d/ϵ).

Our monotonicity tester will use as a subroutine the following tester for diagonal functions.
For a hypergrid [n]d, a diagonal is a subset of points {x ∈ [n]d : x = v + λ1⃗, λ ∈ Z} defined
by some v ∈ [n]d. A function f : [n]d → {0, 1} is a diagonal function if it has at most one
1-valued point in each diagonal.

▶ Lemma 3.1. There is an ϵ-tester with one-sided error and query complexity O
( 1
ϵ log2(1/ϵ)

)
for diagonal functions on [n]d.
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Proof. For each t ∈ [n] let Dt be the set of diagonals with length t. For any x ∈ [n]d let
diag(x) be the unique diagonal that contains x. For input f : [n]d → {0, 1} and any x ∈ [n]d,
let R(x) = |{y∈diag(x):f(y)=1}|

|diag(x)| .
Suppose that f is ϵ-far from diagonal. Then f must have at least ϵnd 1-valued points;

otherwise we could set each 1-valued point to 0 to obtain the constant 0 function. Now
observe

E
x∼[n]d

[R(x)] = E
x∼[n]d

[
n∑
t=1

∑
L∈Dt

1 [diag(x) = L] |{y ∈ L : f(y) = 1}|
t

]

=
n∑
t=1

∑
L∈Dt

P
x∼[n]d

[x ∈ L] |{y ∈ L : f(y) = 1}|
t

=
n∑
t=1

∑
L∈Dt

t

nd
|{y ∈ L : f(y) = 1}|

t

= 1
nd

|{y ∈ [n]d : f(y) = 1}| ≥ ϵ .

For each i, define Ai =
{
x ∈ [n]d : 1

2i < R(x) ≤ 1
2i−1

}
. Let k = log(4/ϵ). Then

ϵ ≤ E [R(x)] ≤
∞∑
i=1

|Ai|
nd

max
x∈Ai

R(x) ≤
∞∑
i=1

|Ai|
nd2i−1 ≤

k∑
i=1

|Ai|
nd2i−1 +

∞∑
i=k+1

1
2i−1

≤
k∑
i=1

|Ai|
nd2i−1 + 1

2k−1 ≤
k∑
i=1

|Ai|
nd2i−1 + ϵ

2

=⇒ ϵ

2 ≤
k∑
i=1

|Ai|
nd2i−1 .

Therefore there is some ℓ ∈ [k] such that |Aℓ| ≥ ϵnd2ℓ−1

2k .
The tester is as follows. For each i ∈ [k]:

1. Sample p = k
ϵ2i−2 ln(6) points x1, . . . , xp ∼ [n]d.

2. For each j ∈ [p], sample q = 2i+2 ln(12) points y1, . . . , yq from diag(xi) and reject if there
are two distinct 1-valued points in the sample.

The query complexity of the tester is
∑k
i=1 42 ln(6) ln(12) k

ϵ2i 2i = O
( 1
ϵ log2(1/ϵ)

)
.

The tester will clearly accept any diagonal function. Now suppose that f is ϵ-far from
having this property, and let ℓ ∈ [k] be such that |Aℓ| ≥ ϵnd2ℓ−2

k . On iteration i = ℓ, the
algorithm samples p = k

ϵ2ℓ−2 ln(6) points x1, . . . , xp. The probability that ∀j ∈ [p], xj /∈ Aℓ is
at most(

1 − |Aℓ|
nd

)p
≤
(

1 − ϵ2ℓ−2

k

)p
≤ exp

(
−ϵp2ℓ−2

k

)
≤ 1/6 .

Now assume that there is some xj ∈ Aℓ, so that R(xj) > 2−ℓ. Let A,B ⊂ diag(xj) be disjoint
subsets that partition the 1-valued points in diag(xi) into equally-sized parts. Then for y
sampled uniformly at random from diag(xj), P [y ∈ A] ,P [y ∈ B] ≥ 2−(ℓ+1). The probability
that there are at least 2 distinct 1-valued points in y1, . . . , yq sampled by the algorithm is at
least the probability that one of the first q/2 samples is in A and one of the last q/2 samples
is in B. This fails to occur with probability at most 2(1 − 2−(ℓ+1))q/2 ≤ 2e−q2−(ℓ+2) ≤ 1/6.
So the total probability of failure is at most 2/6 = 1/3. ◀

▶ Theorem 3.2. There is a non-adaptive monotonicity tester on domain [n]d with one-sided
error and query complexity Õ

(
d5/6

ϵ4/3

)
.
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Proof. Set r = ⌈4d/ϵ⌉, and assume without loss of generality that r divides n. Partition
[n] into r intervals Bi = {(i − 1)(n/r) + 1, . . . , i(n/r)}. For each v ∈ [r]d write Bv =
Bv1 × · · · × Bvd

. Define block : [n]d → [r]d where block(x) is the unique vector v ∈ [r]d
such that x ∈ Bv. Define block−↓(v) = min{x ∈ Bv} and block−↑(v) = max{x ∈ Bv},
where the minimum and maximum are with respect to the natural ordering on [n]d. For
f : [n]d → {0, 1}, write fblock : [r]d → {0, 1}, fblock(v) = f(block−↓(v)). We may simulate
queries v to fblock by returning f(block−↓(v)). We will call v ∈ [r]d a boundary block if
f(block−↓(v)) ̸= f(block−↑(v)).

The test proceeds as follows: On input f : [n]d → {0, 1} and a block v ∈ [r]d, define the
following functions:

g : [n]d → {0, 1}, g(x) =
{
fblock(block(x)) if block(x) is not a boundary block
f(x) if block(x) is a boundary block.

b : [r]d → {0, 1}, b(v) =
{

0 if v is not a boundary block
1 if v is a boundary block.

h : [r]d → {0, 1}, h(v) =
{
fblock(v) if v is not a boundary block
0 if v is a boundary block.

Queries to each of these functions can be simulated by 2 or 3 queries to f . The tester
performs:
1. Test whether g = f , or whether dist(f, g) > ϵ/4, using O(1/ϵ) queries.
2. Test whether b is diagonal, or is ϵ/4-far from diagonal, using Lemma 3.1, with

O
( 1
ϵ log2(1/ϵ)

)
queries.

3. Test whether h is monotone or ϵ/4-far from monotone, using the tester of Black, Chakra-
barty, & Seshadhri with Õ

(
d5/6

ϵ4/3

)
queries.

▷ Claim 3.3. If f is monotone, the tester passes all 3 tests with probability 1.

Proof of claim. To see that g = f , observe that if v = block(x) is not a boundary block
then f(block−↓(v)) = f(block−↑(v)). If f(x) ̸= fblock(block(x)) then f(x) ̸= f(block−↓(v))
and f(x) ̸= f(block−↑(v)) while block−↓(v) ⪯ x ⪯ block−↑(v), and this is a violation of the
monotonicity of f . Therefore f will pass the first test with probability 1.

To see that f passes the second test with probability 1, observe that if f had 2 boundary
blocks in some diagonal, then there are boundary blocks u, v ∈ [r]d such that block−↑(u) ≺
block−↓(v). But then there is x, y ∈ [n]d such that block(x) = u, block(y) = v and f(x) =
1, f(y) = 0; since x ⪯ block−↑(u) ≺ block−↓(v) ⪯ y, this contradicts the monotonicity of f .
So f has at most 1 boundary block in each diagonal.

To see that h is monotone, it is sufficient to consider the boundary blocks, since all other
values are the same as fblock. Let v ∈ [r]d be a boundary block, so there exist x, y ∈ [n]d such
that block(x) = block(y) and f(x) = 1, f(y) = 0. Suppose u ≺ v is not a boundary block
(if it is a boundary block then h(u) = h(v) = 0). If h(u) = 1 then f(block−↓(u)) = 1, but
block−↓(u) ≺ block−↓(v) ⪯ y while f(block−↓(u)) > f(y), a contradiction. So it must be that
h(u) = 0 whenever u ≺ v. For any block u ∈ [r]d such that v ≺ u, we have 0 = h(v) ≤ h(u),
so monotonicity holds. Since the tester of Black, Chakrabarty, & Seshadhri has one-sided
error, the test passes with probability 1. ◁

▷ Claim 3.4. If g is ϵ/4-close to f , b is ϵ/4-close to diagonal, and h is ϵ/4-close to monotone,
then f is ϵ-close to monotone.

ICALP 2022



71:16 Downsampling for Testing and Learning in Product Distributions

Proof of claim. Let hcoarse : [n]d → {0, 1} be the function hcoarse(x) = h(block(x)). Suppose
that f(x) ̸= hcoarse(x). If v = block(x) is not a boundary block of f then hcoarse(x) = h(v) =
fblock(v) = g(x), so f(x) ̸= g(x). If v is a boundary block then hcoarse(x) = h(v) = 0 so
f(x) = 1, and b(v) = 1.

Suppose for contradiction that there are more than ϵ
2r
d boundary blocks v ∈ [r]d, so there

are more than ϵ
2r
d 1-valued points of b. Any diagonal function has at most drd−1 1-valued

points. Therefore the distance of b to diagonal is at least

r−d
( ϵ

2r
d − drd−1

)
= ϵ

2 − d

r
= ϵ

2 − ϵ

4 = ϵ

4 ,

a contradiction. So f has at most ϵ
2r
d boundary blocks. Now

dist(f, hcoarse)=dist(f, g)+ P
x∼[n]d

[f(x) = 1, block(x) is a boundary block] ≤ ϵ

4 + r−d · ϵr
d

2 = 3
4 ϵ .

Let p : [r]d → {0, 1} be a monotone function minimizing the distance to h, and let pcoarse :
[n]d → {0, 1} be the function pcoarse(x) = p(block(x)). Then

dist(hcoarse, pcoarse) = P
x∼[n]d

[h(block(x)) ̸= p(block(x))] = P
v∼[r]d

[h(v) ̸= p(v)] ≤ ϵ/4 .

Finally, the distance of f to the nearest monotone function is at most

dist(f, pcoarse) ≤ dist(f, hcoarse) + dist(hcoarse, pcoarse) ≤ 3
4ϵ+ 1

4ϵ = ϵ . ◁

These two claims suffice to establish the theorem. ◀

3.2 Monotonicity Testing for Product Distributions
The previous section used a special case of downsampling, tailored for the uniform distribution
over [n]d. We will call a product distribution µ = µ1 × · · · × µd over Rd continuous if each
of its factors µi are continuous (i.e. absolutely continuous with respect to the Lebesgue
measure). The proof for discrete distributions is in the full version.

▶ Theorem 1.1. There is a one-sided, non-adaptive ϵ-tester for monotonicity of functions
Rd → {0, 1} that is distribution-free under (finite or continuous) product distributions, using

O

(
d5/6

ϵ4/3 poly log(d/ϵ)
)

queries and O(d
3

ϵ3 log(d/ϵ)) samples.

Proof. We follow the proof of Theorem 3.2, with some small changes. Let r = ⌈16d/ϵ⌉. The
tester first samples a grid X with length m = O

(
rd2

ϵ2 log(rd)
)

and constructs the induced
(r + 2)-block partition, with cells labeled {0, . . . , r + 1}d. We call a block v ∈ {0, . . . , r + 1}d
upper extreme if there is some i ∈ [d] such that vi = r + 1, and we call it lower extreme if
there is some i ∈ [d] such that vi = 0 but v is not upper extreme. Call the upper extreme
blocks U and the lower extreme blocks L. Note that [r]d = {0, . . . , r + 1}d \ (U ∪ L).

For each v ∈ [r]d, we again define block−↑(v), block−↓(v) as, respectively, the supremal
and infimal point x ∈ Rd such that block(x) = v. The algorithm will ignore the extreme
blocks U ∪ L, which do not have a supremal or an infimal point. Therefore it is not defined
whether these blocks are boundary blocks.
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By Lemma 2.7, with probability at least 5/6, we will have ∥block(µ) − unif({0, . . . , r +
1})∥TV ≤ ϵ/8. We define b, h as before, with domain [r]d. Define g similarly but with domain
Rd and values

g(x) =


1 if block(x) ∈ U

0 if block(x) ∈ L

f(x) if block(x) ∈ [n]d is a boundary block
fblock(block(x)) otherwise.

If f is monotone, it may now be the case f ̸= g, but we will have f(x) = g(x) for all x with
block(x) ∈ [r]d, where the algorithm will make its queries. The algorithm will test whether
f(x) = g(x) on all x with block(x) ∈ [r]d, or ϵ/8-far from this property, which can be again
done with O(1/ϵ) samples. Note that if f is ϵ/8-close to having this property, then

distµ(f, g) ≤ P
x∼µ

[
block(x) /∈ [n]d

]
+ ϵ/8

≤ d(r + 2)d−1

(r + 2)d + ϵ/8 + ∥block(µ) − unif([r]d ∪ U ∪ L)∥TV

≤ ϵ

16 + ϵ

8 + ϵ

4 ≤ ϵ

2 .

The algorithm then procedes as before, with error parameter ϵ/2. To test whether g = f ,
the algorithm samples from µ and throws away any sample x ∈ Rd with block(x) /∈ [r]d. It
then tests b and h using the uniform distribution on [r]d. It suffices to prove the following
claim, which replaces Claim 3.4.

▷ Claim 3.5. If g is ϵ/2-close to f , b is ϵ/16-close to diagonal, and h is ϵ/8-close to monotone,
then f is ϵ-close to monotone.

Proof of claim. Let p : [r]d → {0, 1} be a monotone function minimizing the distance to
h. Then p(v) ̸= h(v) on at most ϵrd

8 blocks v ∈ [r]d. Define pcoarse : Rd → {0, 1} as
pcoarse(x) = p(block(x)) when block(x) ∈ [r]d, and pcoarse(x) = g(x) when block(x) ∈ U ∪ L.
Note that pcoarse is monotone.

By the triangle inequality,

distµ(f, pcoarse) ≤ distµ(f, g) + distµ(g, pcoarse) .

From above, we know distµ(f, g) ≤ ϵ/2. To bound the second term, observe that since b is
ϵ/16-close to diagonal, there are at most

ϵ

16r
d + drd−1 ≤ ϵ

16r
d + d

r
rd ≤ ϵ

16r
d + ϵ

16r
d = ϵ

8r
d

boundary blocks. Then observe that if g(x) ̸= pcoarse(x) then block(x) ∈ [r]d and either
block(x) is a boundary block, or g(x) = fblock(block(x)) = h(block(x)) and h(block(x)) ̸=
p(block(x)). Then

distµ(g, pcoarse) ≤

 1
(r + 2)d

∑
v∈[r]d

1 [v is a boundary block, or h(v) ̸= p(v)]


+ ∥block(µ) − unif({0, . . . , r + 1}d)∥TV

≤ ϵrd

8rd + ϵrd

8rd + ϵ

4 ≤ ϵ

2 . ◁

◀
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