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Abstract
Simple tabulation hashing dates back to Zobrist in 1970 and is defined as follows: Each key is viewed
as c characters from some alphabet Σ, we have c fully random hash functions h0, . . . , hc−1 : Σ →{

0, . . . , 2l − 1
}

, and a key x = (x0, . . . , xc−1) is hashed to h(x) = h0(x0) ⊕ . . . ⊕ hc−1(xc−1) where
⊕ is the bitwise XOR operation. The previous results on tabulation hashing by Pǎtraşcu and
Thorup [J.ACM’11] and by Aamand et al. [STOC’20] focused on proving Chernoff-style tail bounds
on hash-based sums, e.g., the number keys hashing to a given value, for simple tabulation hashing,
but their bounds do not cover the entire tail. Thus their results cannot bound moments. The paper
Dahlgaard et al. [FOCS’15] provides a bound on the moments of certain hash-based sums, but their
bound only holds for constant moments, and we need logarithmic moments.

Chaoses are random variables of the form
∑

ai0,...,ic−1 Xi0 · . . . · Xic−1 where Xi are independent
random variables. Chaoses are a well-studied concept from probability theory, and tight analysis
has been proven in several instances, e.g., when the independent random variables are standard
Gaussian variables and when the independent random variables have logarithmically convex tails.
We notice that hash-based sums of simple tabulation hashing can be seen as a sum of chaoses that
are not independent. This motivates us to use techniques from the theory of chaoses to analyze
hash-based sums of simple tabulation hashing.

In this paper, we obtain bounds for all the moments of hash-based sums for simple tabulation
hashing which are tight up to constants depending only on c. In contrast with the previous attempts,
our approach will mostly be analytical and does not employ intricate combinatorial arguments.
The improved analysis of simple tabulation hashing allows us to obtain bounds for the moments of
hash-based sums for the mixed tabulation hashing introduced by Dahlgaard et al. [FOCS’15]. With
simple tabulation hashing, there are certain inputs for which the concentration is much worse than
with fully random hashing. However, with mixed tabulation, we get logarithmic moment bounds
that are only a constant factor worse than those with fully random hashing for any possible input.
This is a strong addition to other powerful probabilistic properties of mixed tabulation hashing
proved by Dahlgaard et al.
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1 Introduction

Hashing is a ubiquitous tool of randomized algorithms which dates all the way back to
the 1950s [12]. A hash function is a random function, h : U → R, that assigns a random
hash value, h(x) ∈ R, to every key, x ∈ U . When designing algorithms and data structures,
it is often assumed that one has access to a uniformly random hash function that can be
evaluated in constant time. Even though this assumption is very useful and convenient,
it is unfortunately also unrealistic. It is thus a natural goal to find practical and efficient
constructions of hash functions that provably have guarantees akin to those of uniformly
random hashing.

If we want implementable algorithms with provable performance similar to that proven
assuming uniformly random hashing, then we have to find practical and efficient constructions
of hash functions with guarantees akin to those of uniformly random hashing. An example of
this is simple tabulation hashing introduced by Zobrist in 1970 [27]. The scheme is efficient
and easy to implement, and Pǎtraşcu and Thorup [22] proved that it could replace uniformly
random hashing in many algorithmic contexts. The versatility of simple tabulation does
not stem from a single probabilistic power like k-independence (it is only 3-independent),
but from an array of powers that have different usages in different applications. Having
one hash function with multiple powers has many advantages. One is that we can use the
same hash function implementation for many purposes. Another is that hash functions are
often an inner-loop bottleneck, and then it is an advantage if the same hash value can be
used for multiple purposes. Also, if we have proved that a simple hash function has some
very different probabilistic properties, then, morally, we would expect it to possess many
other properties to be uncovered as it has happened over the years for simple tabulation (see,
e.g., [3, 4]). Finally, when we hash a key, we may not even know what property is needed,
e.g., with weighted keys, we may need one property to deal with a few heavy keys, and
another property to deal with the many light keys, but when we hash the key, we may not
know if it is heavy or light.

One of the central powers proved for simple tabulation in [22] is that it has strong
concentration bounds for hash-based sums (will be defined shortly in Section 1.1). The
concentration holds only for quite limited expected values, yet this suffices for important
applications in classic hash tables. Recently, Aamand et al. [2] introduced tabulation-
permutation, which is only about twice as slow as simple tabulation, and which offers general
concentration bounds that hold for all hash-based sums regardless of the expected size. An
issue with tabulation-permutation is that it is not clear if it possesses the other strong powers
of simple tabulation.

A different way to go is to construct increasingly strong schemes, each inheriting all
the nice properties of its predecessors. In this direction, [21] introduced twisted tabulation
strengtening simple tabulation, and [9] introduced mixed tabulation strengthening twisted
tabulation. Each new scheme was introduced to get some powers not available with the
predecessor. In particular, mixed tabulation has some selective full-randomness that is
needed for aggregating statistics over hash-based k-partitions. These applications also needed
concentration bounds for hash-based sums, but [9] only provided some specialized suboptimal
concentration bounds.

In this paper, we do provide strong concentration bounds for mixed tabulation hashing
which can then be used in tandem with all the other strong properties of simple, twisted, and
mixed tabulation. In fact our bounds are more general than the strong concentration bounds
proved in [2] for tabulation-permutation. More precisely, the concentration bounds in [2]
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are Chernoff-style tail bounds that hold with high probability, while what we do is to show
moment bounds that imply such tail bounds as special cases. Indeed the key to our results
for mixed tabulation is a much stronger understanding of the moments of simple tabulation.

Below we proceed to describe our new mathematical understanding, including the relevance
of chaoses. We will contextualize this with other work later in Section 1.6.

1.1 Moment bounds for hash-based sums
In this paper, we will focus on analyzing hash-based sums. More precisely, we consider a
fixed value function, v : U × R → R, and define the random variable Xx = v(x, h(x)) for
every key x ∈ U . We are then interested in proving concentration bounds for the sum
X =

∑
x∈U Xx =

∑
x∈U v(x, h(x)). It should be noted that the randomness of X derives

from the hash function h, thus the results will depend on the strength of h.
This is quite a general problem, and at first glance, it might not be obvious why this is a

natural construction to consider, but it does generalize a variety of well-studied constructions:
1. Let S ⊆ U be a set of balls and assign a weight, wx ∈ R, for every ball, x ∈ S. The

goal is to distribute the balls, S, into a set of bins R = [m].1 For a bin, y ∈ [m],
we define the value function vy : U × [m] → R by vy(x, j) = wx [j = y] [x ∈ S], then
X =

∑
x∈U vy(x, h(x)) =

∑
x∈S wx [h(x) = y] will be the weight of the balls hashing to

bin y.2

2. Instead of concentrating on a single bin, we might be interested in the total weight of the
balls hashing below some threshold l. This is useful for sampling, for if h(x) is uniform
in [m], then Pr[h(x) < l] = l/m. We then define the value function v : U × [m] → R
by v(x, j) = wx [j < l] [x ∈ S], then X =

∑
x∈U v(x, h(x)) =

∑
x∈S wx [h(x) < l] will be

precisely the total weight of the balls hashing below l.
The first case appears when one tries to allocate resources, and the second case arises in
streaming algorithms, see, e.g., [1]. In any case, X ought to be concentrated around the
mean µ = E[X]. If h is a uniformly random hash function then this will be the case under
mild assumptions about v but it cannot otherwise be assumed a priori to be the case.

There are two natural ways to quantify the concentration of X, either we bound the
tail of X, i.e., we bound Pr[|X − µ| ≥ t] for all t ≥ 0, or we bound the central moments
of X, i.e., we bound the p-th moment E[|X − µ|p] for all p ≥ 2. If we have a bound on
the tail that is exponentially decreasing, we can bound the central moments of X for all
p ≥ 2. Unfortunately, some of the prior works [2, 11, 25] prove bounds on the tail that are
exponentially decreasing but also has an additive term of the form n−γ where γ = O(1). It
will then only be possible to give strong bounds for the central moments of X for p = O(1).
This is not necessarily a fault of the hash function but a defect of the analysis. In contrast,
if we prove strong bounds for the central moments of X for p = O(log n) then we can use
Markov’s inequality to prove a bound the tail that is exponentially decreasing but with an
additive term of the form n−γ where γ = O(1). Thus in some sense, it is more robust to
bound the moments compared to bounding the tail.

We can use the classic k-independent hashing framework of Wegman and Carter [26]
as an easy way to obtain a hash function that has bounds on the central moments as a
uniformly random hash function. A random hash function, h : U → R, is k-independent if
(h(x0), . . . , h(xk−1)) is uniformly distributed in Rk for any k distinct keys x0, . . . , xk−1 ∈ U .

1 For a positive integer m ∈ N we define [m] = {0, . . . , m − 1}.
2 For a statement P we let [P ] be 1 if P is true and 0 otherwise.

ICALP 2022
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The p-th central moment E[(X − µ)p] of X for a k-independent hash function h is the same
as the p-th central moment of X for a fully random hash function when p is an even integer
less than k. We shall, however, focus on simple and fast hashing schemes that are not even
4-independent, and yet we will show strong moment bounds.

1.2 Tabulation Hashing
Simple tabulation hashing dates back to 1970 and was first introduced by Zobrist for
optimizing chess computers [27]. In simple tabulation hashing, we view the universe, U , to be
of the form U = Σc for some alphabet, Σ, and a positive integer c. Let T : {0, . . . , c − 1}×Σ →
[2l] be a uniformly random table, i.e., each value is chosen independently and uniformly at
random from the set [2l]. A simple tabulation hash function, h : Σc → [2l], is then defined by

h(α0, . . . , αc−1) =
c−1⊕
i=0

T (i, αi) ,

where ⊕ is the bitwise XOR-operation, i.e., addition when [2l] is identified with the Abelian
group (Z/2Z)l. We say that h is a simple tabulation hash function with c characters. With
8- or 16-bit characters, the random table T fits in cache, and then simple tabulation is very
fast, e.g., in experiments, [22] found it to be as fast as two to three multiplications.

The moments of simple tabulation hashing have been studied in multiple papers. Braver-
man et al. [7] showed that for a fixed bin the 4th central moment is close to that achieved
by truly random hashing. Dahlgaard et al. [10] generalized this to any constant moment p.
Their proof works for any p but with a doubly exponential dependence on p, so their bound is
only useful for p = O(1). In this paper, we obtain bounds for all the moments of hash-based
sums for simple tabulation hashing which are tight up to constants depending only on c.

Previous work has just treated c as a constant, hidden in O-notation. However, c does
provide a fundamental trade-off between evaluation time with c lookups and the space cU1/c.
We therefore find it relevant to elucidate how our moment bounds depend on c even though
we typically choose c = 4.

Mixed tabulation hashing was introduced by Dahlgaard et al. [9]. As in simple tabulation
hashing, we view the universe, U , to be of the form U = Σc for some alphabet, Σ, and a
positive integer c. We further assume that the alphabet, Σ, has the form Σ = [2k]. Let
h1 : Σc → [2l], h2 : Σc → Σd, and h3 : Σd → [2l] be independent simple tabulation hash
functions. A mixed tabulation hash function, h : Σc → [2l], is then defined by

h(x) = h1(x) ⊕ h3(h2(x)) .

As in simple tabulation hashing, ⊕ is the bitwise XOR-operation. We call h a mixed
tabulation hash function with c characters and d derived characters. We note that h1 and
h2 can be combined in a single simple tabulation hash function Σc → [2l] × Σd, and then h

is implemented with only c + d lookups.
With simple tabulation hashing, there are certain inputs for which the concentration is

much worse than with fully random hashing. However, with mixed tabulation, even if we
have just d = 1 derived character, we get logarithmic moment bounds that, for c = O(1), are
only a constant factor worse than those with fully-random hashing for any input assuming
that hash range at most polynomial in the key universe.

Getting within a constant factor is very convenient within algorithm analysis, where we
typically only aim for O-bounds that are tight within a constant factor.
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1.3 Relation between Simple Tabulation and Chaoses
A chaos of order c is a random variable of the form∑

0≤i0<...<ic−1<n

ai0,...,ic−1

∏
j∈[c]

Xij
,

where (Xi)i∈[n] are independent random variables and (ai0,...,ic−1)0≤i0<...<ic−1<n is a multi-
indexed array of real numbers. And a decoupled chaos of order c is a random variable of the
form ∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

X
(j)
ij

,

where (X(j)
i )i∈[n],j∈[c] are independent random variables and (ai0,...,ic−1)i0,...,ic−1∈[n] is a

multiindexed array of real numbers. Chaoses have been studied in different settings, e.g., when
the variables are standard Gaussian variables [17, 18], when the variables have logarithmically
concave tails [5], and when the variables have logarithmically convex tails [16].

From the definition of a chaos and simple tabulation hashing it might not be immediately
clear that there is connection between the two. But we can rewrite the expression for
hash-based sums of simple tabulation hashing as follows∑

x∈Σc

v(x, h(x)) =
∑

α0,...,αc−1∈Σ
v((α0, . . . , αc−1), h(α0, . . . , αc−1))

=
∑

j0,...,jc−1∈[m]

∑
α0,...,αc−1∈Σ

v

(α0, . . . , αc−1),
⊕
i∈[c]

ji

 ∏
i∈[c]

[T (i, αi) = ji] .

We then notice that
∑

α0,...,αc−1∈Σ v
(

(α0, . . . , αc−1),
⊕

i∈[c] ji

)∏
i∈[c] [T (i, αi) = ji] is a de-

coupled chaos of order c for any (ji)i∈[c], thus hash-based sums of simple tabulation hashing
can be seen as a sum of chaoses. Now since the random variables, ([T (i, αi) = j])j∈[m], are
not independent then the chaoses are not independent either which complicates the analysis.
Nonetheless, this realization inspires us to use techniques from the study of chaoses to analyze
the moments of tabulation hashing, in particular, our approach will be analytical in contrast
with the combinatorial approach of the previous papers. We will expand further on the
techniques in Section 1.5.

1.4 Our Results
When proving and stating bounds for the p-th moment of a random variable it is often more
convenient and more instructive to do it in terms of the p-norm of the random variable. The
p-norm of a random variable is the p-th root of the p-th moment of the random variable and
is formally defined as follows:

▶ Definition 1 (p-norm). Let p ≥ 1 and X be a random variable with E[|X|p] < ∞. We then
define the p-norm of X by ∥X∥p = E[|X|p]1/p.

Our main contributions of this paper are analyses of the moments of hash-based sums of
simple tabulation hashing and mixed tabulation hashing. To do this we first had to analyze
the moments of hash-based sums of fully random hashing which as far as we are aware have
not been analyzed tightly before.

ICALP 2022
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1.4.1 The Moments of Fully Random Hashing
Previously, the focus has been on proving Chernoff-like bounds by using the moment
generating function but a natural, different approach would be to use moments instead. Both
the Chernoff bounds [8] and the more general Bennett’s inequality [6] bound the tail using
the Poisson distribution. More precisely, let v : U × [m] → R be a value function that satisfies
that

∑
j∈[m] v(x, j) = 0 and define the following two parameters Mv and σ2

v which will be
important throughout the paper as follows:

Mv = max
x∈U,j∈[m]

|v(x, j)| , (1)

σ2
v =

∑
x∈U,j∈[m] v(x, j)2

m
. (2)

Bennett’s inequality specialized to our setting then says that for a fully random hash
function h

Pr
[∣∣∣∣∣∑

x∈U

v(x, h(x))

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− σ2

v

M2
v

C
(

tMv

σ2
v

))

≤

2 exp
(

− t2

3σ2
v

)
if t ≤ σ2

v

Mv

2 exp
(

− t
2Mv

log
(

1 + tMv

σ2
v

))
if t >

σ2
v

Mv

, (3)

where C(x) = (x + 1) log(x + 1) − x.3
This inspires us to try to bound the p-norms of Xv with the p-norms of the Poisson

distribution. To do this we will introduce the function Ψp(M, σ2) which is quite technical
but we will prove that Ψp(1, λ) is equal up to a constant factor to the central p-norm of
a Poisson distributed variable with mean λ. One should think of Ψp(M, σ2) as a p-norm
version of σ2

v

M2
v

C
(

tMv

σ2
v

)
which appears in Bennett’s inequality.

▶ Definition 2. For p ≥ 2 we define the function Ψp : R+ × R+ → R+ as follows

Ψp(M, σ2) =


(

σ2

pM2

)1/p

M if p < log pM2

σ2

1
2
√

pσ if p < e2 σ2

M2

p

e log pM2
σ2

M if max
{

log pM2

σ2 , e2 σ2

M2

}
≤ p

.

▶ Remark 3. When p is small then case 1 and 2 apply while for large p case 3 applies. If
2 < e2 σ2

M2 then we always have that p > log pM2

σ2 for 2 ≤ p, hence only case 2 and 3 apply.
Similarly, if e2 σ2

M2 ≤ 2 then p ≥ e2 σ2

M2 for all 2 ≤ p, hence only case 1 and 3 apply. This
shows that the cases disjoint and cover all parameter configurations.

The definition Ψp(M, σ2) might appear strange but it does in fact capture the central
p-norms of Poisson distributed random variables. This is stated more formally in the following
lemma.

▶ Lemma 4. There exist universal constants K1 and K2 satisfying that for a Poisson
distributed random variable, X, with λ = E[X]

K2Ψp(1, λ) ≤ ∥X − λ∥p ≤ K1Ψp(1, λ) ,

for all p ≥ 2.

3 Here and throughout the paper log(x) will refer to the natural logarithm.
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Bennett’s inequality shows that we can bound the tail of
∑

x∈U v(x, h(x)) and Lemma 4
shows that Ψp(M, σ2) captures the central p-norms of the Poisson distribution. It is therefore
not so surprising that we are to bound the p-norms of

∑
x∈U v(x, h(x)) using Ψp(M, σ2).

▶ Theorem 5. Let h : U → [m] be a uniformly random function, let v : U × [m] → R be
a fixed value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U . Define the

random variable Xv =
∑

x∈U v(x, h(x)). Then for all p ≥ 2

∥Xv∥p ≤ LΨp

(
Mv, σ2

v

)
,

where L ≤ 16e is a universal constant.

To get a further intuition for Ψp(M, σ2) is is instructive to apply Markov’s inequality and
compare the tail bound to Bennett’s inequality. More precisely, assume that ∥Y − E[Y ]∥p ≤
LΨp(M, σ2) for a constant L and for all p ≥ 2. Then we can use Markov’s inequality to get
the following tail bound for all t > 0

Pr
[∣∣∣Y − E[Y ]

∣∣∣ ≥ t
]

≤
(∥Y − E[Y ]∥p

t

)p

≤


L2σ2

2t2 if t ≤ L max
{

M, eσ√
2

}
exp
(

− 4t2

e2L2σ2

)
if L eσ√

2 ≤ t ≤ L e2σ2

2M

exp
(
− t

LM log
( 2tM

Lσ2

))
if L max

{
e2σ2

2M , M
}

≤ t

. (4)

In order to obtain these bounds p is chosen as follows: If t ≤ max
{

M, eσ√
2

}
then p = 2 and

otherwise p is chosen such that ∥Y − E[Y ]∥p ≤ e−1t. More precisely, we have that

p =


2 if t ≤ L max

{
M, eσ√

2

}
4t2

e2L2σ2 if L eσ√
2 ≤ t ≤ L e2σ2

2M

t
LM log

( 2tM
Lσ2

)
if L max

{
e2σ2

2M , M
}

≤ t

.

We see that Equation (4) gives the same tail bound as Bennett’s inequality, Equation (3), up
to a constant in the exponent.

We also prove a matching lower bound to Theorem 5 which shows that Ψp(M, σ2) is the
correct function to consider.

▶ Theorem 6. Let h : U → [m] be a uniformly random function, then there exists a value
function, v : U × [m] → R, where

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U , such that the random

variable Xv =
∑

x∈U v(x, h(x)) satisfies that for all p ≤ L1 |U | log(m)∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≥ L2Ψp

(
Mv, σ2

v

)
,

where L1 and L2 are a universal constant.

1.4.2 The Moments of Tabulation Hashing
We analyze the p-norms of hash-based sums for simple tabulation hashing, and our analysis
is the first that provides useful bounds for non-constant moments. Furthermore, it is also
the first analysis of simple tabulation hashing that does not assume that c is constant. We

ICALP 2022
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obtain an essentially tight understanding of this problem and show that simple tabulation
hashing only works well when the range is large. This was also noted by Aamand et al. [2]
and they solve this deficiency of simple tabulation hashing by introducing a new hashing
scheme, tabulation-permutation hashing. We show that it is also possible to break the bad
instances of simple tabulation hashing by using mixed tabulation hashing.

We introduce a bit of notation to make the theorems cleaner. We will view a value
function v : Σc × [m] → R as a vector, more precisely, we let

∥v∥q =

∑
x∈Σc

∑
j∈[m]

|v(x, j)|q
1/q

for all q ∈ [1, ∞]. For every key x ∈ Σc we define v[x] to be the sub-vector v restricted to x,
more precisely, we let

∥v[x]∥q =

∑
j∈[m]

|v(x, j)|q
1/q

for all q ∈ [1, ∞].

1.4.2.1 Simple Tabulation Hashing

Our main result for simple tabulation hashing is a version of Theorem 5.

▶ Theorem 7. Let h : Σc → [m] be a simple tabulation hash function, v : Σc × [m] → R a
value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc. Define the random

variable V simple
v =

∑
x∈Σc v(x, h(x)). Then for all p ≥ 2∥∥V simple

v

∥∥
p

≤ L1Ψp

(
Kcγc−1

p Mv, Kcγc−1
p σ2

v

)
,

where Kc = (L2c)c−1, L1 and L2 are universal constants, and

γp =
max

{
log(m) + log

( ∑
x∈Σc ∥v[x]∥2

2

maxx∈Σc ∥v[x]∥2
2

)
/c, p

}
log
(

e2m
(

maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2

)−1
)

It is instructive to compare this result to Theorem 5 for fully random hashing. Ignoring
the constant Kc, the result for simple tabulation hashing corresponds to the result for fully
random hashing if we group keys into groups of size γc−1

p .
The definition of γp is somewhat complicated because of the generality of the theorem,

but we will try to explain the intuition behind it. The expression maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2
measures

how spread out the mass of the value function is. It was also noted in the previous analysis
by Aamand et al. [2] that this measure is naturally occurring. In fact, their result needs that
maxx∈Σc

∥v[x]∥2
1

∥v[x]∥2
2

≤ m1/4. If we consider the example from the introduction of hashing below
a threshold l ≤ m where each key, x ∈ Σc, has weight wx, then the value function, v, will be
v(x, j) = wx

(
[j < l] − l

m

)
for x ∈ Σc, j ∈ [m], and we then get that

max
x∈Σc

∥v[x]∥2
1

∥v[x]∥2
2

= 4l

(
1 − l

m

)
≤ 4l .

This correctly measures that the mass of the value function is mostly concentrated to the l

positions of [m].
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The expression
∑

x∈Σc ∥v[x]∥2
2

maxx∈Σc ∥v[x]∥2
2

is a measure for how many keys that have significant weight.
This also showed up in the previous analyses of simple tabulation hashing [2, 22]. If we again
consider the example from before, we get that∑

x∈Σc ∥v[x]∥2
2

maxx∈Σc ∥v[x]∥2
2

=
∑

x∈Σc w2
x

maxx∈Σc w2
x

.

We can summarize the example in the following corollary.

▶ Corollary 8. Let h : Σc → [m] be a simple tabulation hash function, assign a weight,
wx ∈ R, to every key, x ∈ Σc, and consider a threshold l ≤ m. Define the random variable
V simple

v =
∑

x∈Σc wx

(
[h(x) < l] − l

m

)
. Then for all p ≥ 2

∥∥V simple
v

∥∥
p

≤ Ψp

(
Kcγc−1

p max
x∈Σc

|wx| , Kcγc−1
p

(∑
x∈Σc

w2
x

)
l

m

(
1 − l

m

))
,

where Kc = L1 (L2c)c−1, L1 and L2 are universal constants, and

γp =
max

{
log(m) + log

( ∑
x∈Σc w2

x

maxx∈Σc w2
x

)
/c, p

}
log
(

e2m
4l

)
A natural question is how close Theorem 7 is to being tight. We show that if log(m) +

log
( ∑

x∈Σc ∥v[x]∥2
2

maxx∈Σc ∥v[x]∥2
2

)
/c = O

(
log
(

1 + m
(

maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2

)−1
))

then the result is tight up

to a universal constant depending only c. Formally, we prove the following lemma.

▶ Theorem 9. Let h : Σc → [m] be a simple tabulation hash function, and 2 ≤ p ≤
L1 |Σ| log(m), then there exists a value function, v : U × [m] → R, where

∑
j∈[m] v(x, j) = 0

for all keys x ∈ Σc, and for which∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≥ K ′
cΨp

(
γc−1

p Mv, γc−1
p σ2

v

)
,

where K ′
c = Lc

1 and L1 is a universal constant, and

γp = max

1,
p

log
(

e2m
(

maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2

)−1
)


1.4.2.2 Mixed Tabulation Hashing

The results of simple tabulation hashing work well when the range is large and when the
mass of the value function is on few coordinates. We show that mixed tabulation hashing
works well even if the range is small.

▶ Theorem 10. Let h : Σc → [m] be a mixed tabulation function with d ≥ 1 derived characters,
v : Σc × [m] → R a value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc.

Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). For all p ≥ 2 then∥∥V mixed

v

∥∥
p

≤ Ψp

(
Kcγc

pMv, Kcγc
pσ2

v

)
(5)

where Kc = L1 (L2c)c, L1 and L2 are universal constants, and

γp = max
{

1,
log(m)
log(|Σ|) ,

p

log(|Σ|)

}
.
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Usually, in hashing contexts, we do not map to a much larger domain, i.e., we will usually
have that m ≤ |U |γ for some constant γ ≥ 1. If this is the case then we can obtain the
following nice tail bound for mixed tabulation hashing by using Markov’s inequality.

▶ Corollary 11. Let h : Σc → [m] be a mixed tabulation function with d ≥ 1 derived characters,
v : Σc × [m] → R a value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc.

Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). If m ≤ |U |γ for a value γ ≥ 1 then

for all t ≥ 0

Pr
[∣∣V mixed

v

∣∣ ≥ t
]

≤ exp
(

− σ2
v

M2
v

C
(

tMv

σ2
v

)
/Kc,γ

)
+ |U |−γ

,

where C(x) = (x + 1) log(x + 1) − x, Kc,γ = L1
(
L2c2γ

)c, and L1 and L2 are universal
constants.

Proof. The idea is to combine Theorem 10 and Markov’s inequality. We use Theorem 10 for
2 ≤ p ≤ γ log |U | to get that∥∥V mixed

v

∥∥
p

≤ Ψp

(
Kcγc

pMv, Kcγc
pσ2

v

)
,

where we can bound γp by

γp = max
{

1,
log(m)
log(|Σ|) ,

p

log(|Σ|)

}
≤ cγ .

So we have that∥∥V mixed
v

∥∥
p

≤ Ψp

((
L2c2γ

)c
Mv,

(
L2c2γ

)c
σ2

v

)
.

Now by the same method as in Equation (4), we get the result. ◀

1.4.2.3 Adding a query element

In many cases, we would like to prove that these properties continue to hold even when
conditioning on a query element. An example would be the case where we are interested in
the weight of the elements in the bin for which the query element, q, hashes to, i.e., we would
like that

∑
x∈S wx [h(x) = h(q)] is concentrated when conditioning on q. Formally, this corres-

ponds to having the value function v : Σc × [m]× [m] defined by v(x, j, k) = wx [x ∈ S] [j = k]
and then proving concentration on

∑
x∈Σc\{q} v(x, h(x), h(q)) when conditioning on q. We

show that this holds both for simple tabulation and mixed tabulation.

▶ Theorem 12. Let h : Σc → [m] be a simple tabulation hash function and let q ∈ Σc

be a designated query element. Let v : Σc × [m] × [m] → R a value function, and assume
that

∑
j∈[m] v(x, j, k) = 0 for all keys x ∈ U and all k ∈ [m]. Define the random variable

V simple
v,q =

∑
x∈Σc\{q} v(x, h(x), h(q)) and the random variables

Mv,q = max
x∈Σc\{q},j∈[m]

|v(x, j, h(q))| ,

σ2
v,q = 1

m

∑
x∈Σc\{q}

∑
j∈[m]

v(x, j, h(q))2 ,

which only depend on the randomness of h(q). Then for all p ≥ 2

E
[(

V simple
v,q

)p
∣∣∣h(q)

]1/p

≤ Ψp

(
Kcγc−1

p Mv,q, Kcγc−1
p σ2

v,q

)
,
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where Kc = L1 (L2c)c−1, L1 and L2 are universal constants, and

γp =
max

{
log(m) + log

( ∑
x∈Σc ∥v[x]∥2

2

maxx∈Σc ∥v[x]∥2
2

)
/c, p

}
log
(

e2m
(

maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2

)−1
) .

▶ Theorem 13. Let h : Σc → [m] be a mixed tabulation hash function and let q ∈ Σc be
a designated query element. Let v : Σc × [m] × [m] → R a value function, and assume
that

∑
j∈[m] v(x, j, k) = 0 for all keys x ∈ U and all k ∈ [m]. Define the random variable

V simple
v,q =

∑
x∈Σc\{q} v(x, h(x), h(q)) and the random variables

Mv,q = max
x∈Σc\{q},j∈[m]

|v(x, j, h(q))| ,

σ2
v,q = 1

m

∑
x∈Σc\{q}

∑
j∈[m]

v(x, j, h(q))2 ,

which only depend on the randomness of h(q). For all p ≥ 2 then

E
[(

V simple
v,q

)p
∣∣∣h(q)

]1/p

≤ Ψp

(
Kcγc

pMv,q, Kcγc
pσ2

v,q

)
(6)

where Kc = L1 (L2c)c, L1 and L2 are universal constants, and

γp = max
{

1,
log(m)
log(|Σ|) ,

p

log(|Σ|)

}
.

1.5 Technical Overview
1.5.1 Fully Random Hashing
1.5.1.1 Sub-Gaussian bounds

A random variable X is said to be sub-Gaussian with parameter σ if ∥X∥p ≤ √
pσ for all

p ≥ 2. It is a well-known fact that the sum of independent bounded random variables are
sub-Gaussian. In the context of fully random hashing, we have that∥∥∥∥∥∑

x∈U

v(x, h(x))

∥∥∥∥∥
p

≤
√

4p

√∑
x∈U

∥v[x]∥2
∞ . (7)

A natural question is whether this is the best sub-Gaussian bound we can get. If we are just
interested in the contribution to a single bin, i.e., v(x, j) = wx([j = 0] − 1

m ), then we can
obtain a better sub-Gaussian bound. By using the result of Oleszkiewicz [20], we get that∥∥∥∥∥∑

x∈U

v(x, h(x))

∥∥∥∥∥
p

≤ L

√
p

log m

√∑
x∈U

w2
x , (8)

where L is a universal constant. This shows that Equation (7) can be improved in certain
situations. We improve on this by proving a generalization of Equation (8). We show that∥∥∥∥∥∑

x∈U

v(x, h(x))

∥∥∥∥∥
p

≤ L

√√√√ p

log
(

e2m
∑

x∈U
∥v[x]∥2

∞∑
x∈U

∥v[x]∥2
2

)√∑
x∈U

∥v[x]∥2
∞ , (9)

where L is a universal constant. It is easy to check that if v(x, j) = wx([j = 0] − 1
m ) then it

reduces to Equation (8) and that it is stronger than Equation (7).
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1.5.1.2 Moments for general random variables

As part of our analysis we develop a couple of lemmas for general random variables which
might be of independent interest. We prove a lemma that provides a simple bound for
weighted sums of independent and identically distributed random variables.

▶ Lemma 14. Let (Xi)i∈[n] and X be independent and identically distributed symmetric
random variables, and let (ai)i∈[n] be a sequence of reals.4 If p ≥ 2 is an even integer then∥∥∥∥∥∥

∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ K sup

p

s

(∑
i∈[n] as

i

p

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p

 ,

where K ≤ 4e is a universal constant.

If we consider Laplace distributed random variables then it is possible to show that
Lemma 14 is tight up to a universal constant. Thus a natural question to ask is whether
Lemma 14 is tight, i.e., can we prove a matching lower bound. But unfortunately, if you
consider Gaussian distributed variables then we see that Lemma 14 is not tight. It would be
nice if there existed a simple modification of Lemma 14 which had a matching lower bound.

1.5.1.3 Moments of functions of random variables

As part of the analysis of tabulation hashing, we will need to analyze random variables of
the form Ψp(X, Y ) where X and Y are random variables. More precisely, we have to bound
∥Ψp(X, Y )∥p. It is not immediately clear how one would do this but we prove a general
lemma that helps us in this regard.

▶ Lemma 15. Let f : Rn
≥0 → R≥0 be a non-negative function which is monotonically

increasing in every argument, and assume that there exist positive reals (αi)i∈[n] and (ti)i∈[n]
such that for all λ ≥ 0

f(λα0t0, . . . , λαn−1tn−1) ≤ λf(t0, . . . , tn−1) .

Let (Xi)i∈[n] be non-negative random variables. Then for all p ≥ 1 we have that

∥f(X0, . . . , Xn−1)∥p ≤ n1/p max
i∈[n]

(
∥Xi∥p/αi

ti

)1/αi

f(t0, . . . , tn−1) .

If we can choose ti = ∥Xi∥p/αi
for all i ∈ [n], then we get the nice expression

∥f(X0, . . . , Xn−1)∥p ≤ n1/pf(∥X0∥p/α0
, . . . , ∥Xn−1∥p/αn−1

) .

Now the result is natural to compare to the triangle inequality that says that ∥X + Y ∥p ≤
∥X∥p + ∥Y ∥p, which corresponds to considering f(x, y) = x + y, and to Cauchy-Schwartz
that says that ∥XY ∥p ≤ ∥X∥2p ∥Y ∥2p, which corresponds to f(x, y) = xy. These two
examples might point to that the n1/p is superfluous, but by considering f(x0, . . . , xn−1) =
max{x0, . . . , xn−1} and Gaussian distributed variables, it can be shown that Lemma 15 is
tight up to a constant factor.

4 A symmetric random variable, X, is a random variable that is symmetric around zero, i.e., Pr[X ≥ t] =
Pr[−X ≥ t] for all t ≥ 0.
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1.5.2 Tabulation Hashing

1.5.2.1 Symmetrization

The analyses of chaoses have mainly focused on two types of chaoses: Chaoses generated by
non-negative random variables and chaoses generated by symmetric random variables. It
might appear strange that focus has not been on chaoses generated by mean zero random
variables. The reason is that a symmetrization argument reduces the analysis of chaoses
generated by mean zero random variables to the analysis of chaoses generated by symmetric
random variables. More precisely, a standard symmetrization shows that

2−c

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

ε
(j)
ij

X
(j)
ij

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

X
(j)
ij

∥∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

ε
(j)
ij

X
(j)
ij

∥∥∥∥∥∥
p

,

where (ε(j)
i )i∈[n],j∈[n] are independent Rademacher variables.5

In our case, we can assume that v(x, h(x)) is a mean zero random variable but is not
necessarily symmetric. We can remedy this by using the same idea of symmetrization. We
define ε : Σc → {−1, 1} to be a simple tabulation sign function, more precisely, we have a fully
random table, Tε : [c]×Σ → {−1, 1}, and ε is then defined by ε(α0, . . . , αc−1) =

∏
i∈[c] T (i, αi).

We then prove that for all p ≥ 2

2−c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

. (10)

The power of symmetrization lies in the fact that we get to assume that v is symmetric in
the analysis without actually changing the value functions.

Somewhat surprisingly, we are able to improve the moment bound of Dahlgaard et al. [9]
just by using symmetrization. Their result has a doubly exponential dependence on the size
of the moment, p, which stems from a technical counting argument where they bound the
number of terms which does not have an independent factor when expanding the expression(∑

x∈Σc v(x, h(x))
)p. It appears difficult to directly improve their counting argument but by

using Equation (10) we are able to circumvent this. Thus, just by using symmetrization and
the insights of Dahlgaard et al. [9] we obtain the following result.

▶ Lemma 16. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a simple
tabulation sign function, and v : Σc × [m] → R be a value function. Then for every real
number p ≥ 2

∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤
√

4p
c
√∑

x∈Σc

∥v[x]∥2
∞ .

5 A Rademacher variable, ε, is a random variable chosen uniformly from the set {−1, 1}, i.e., Pr[ε = −1] =
Pr[ε = 1] = 1

2 .
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1.5.2.2 General value functions

For most applications of hashing, we are either interested in the number of balls landing
in a bin or in the number of elements hashing below a threshold. But we are studying the
more general setting where we have a value function. A natural question is whether it is
possible to obtain a simpler proof for the simpler settings. We do not believe this to be
the case since the general setting of value functions will naturally show up when proving
results by induction on c. More precisely, let us consider the case where we are interested
in the number of elements from a set, S ⊆ Σc, that hash to 0. We then want to bound∑

x∈S

(
[h(x) = 0] − 1

m

)
=
∑

x∈Σc [x ∈ S]
(
[h(x) = 0] − 1

m

)
. This can be rewritten as6∑

x∈Σc

[x ∈ S]
(
[h(x) = 0] − 1

m

)
=
∑
α∈Σ

∑
y∈Σc−1

[(y, α) ∈ S]
(
[h(y) ⊕ T (c − 1, α) = 0] − 1

m

)
.

So if we define the value function v′ : Σ × [m] → R by

v′(α, j) =
∑

y∈Σc−1

[(y, α) ∈ S]
(
[h ⊕ j = 0] − 1

m

)
,

then we get that
∑

x∈S

(
[h(x) = 0] − 1

m

)
=
∑

α∈Σ v′(α, T (c − 1, α)). Thus, we see that
general value functions are natural to consider in the context of tabulation hashing.

Instead of shying away from general value functions, we embrace them. This force us look
at the problem differently and guides us in the correct direction. Using this insight naturally
leads us to use Equation (9) and we prove the following moment bound, which is strictly
stronger than Lemma 16.

▶ Lemma 17. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a simple
tabulation sign function, and v : Σc × [m] → R be value function. Then for every real number
p ≥ 2∥∥∥∥∥∑

x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

√√√√√Kc
p (max{p, log(m)})c−1

log
(

1 +
m
∑

x∈Σc ∥v[x]∥2
∞∑

x∈Σc ∥v[x]∥2
2

)c

√∑
x∈Σc

∥v[x]∥2
∞ ,

where Kc = (Lc)c for a universal constant L.

This statement is often weaker than Theorem 7 but perhaps a bit surprisingly, we will
use Lemma 17 as an important step in the proof of Theorem 7.

1.5.2.3 Sum of squares of simple tabulation hashing

A key element when proving Theorem 7 is bounding the sums of squares

∑
j∈[m]

(∑
x∈Σc

v(x, h(x) ⊕ j)
)2

. (11)

This was also one of the main technical challenges for the analysis of Aamand et al. [2]. Instead
of analyzing Equation (11), we will analyze a more general problem: Let vi : Σc × [m] → R
be a value function i ∈ [k], we then want to understand the random variable.∑

j0,...,jk−1∈[m]⊕
i∈[k]

ji=0

∑
x0,...,xk−1∈Σc

∏
i∈[k]

vi(xi, ji ⊕ h(xi)) (12)

6 For a partial key y = (β0, . . . , βc−2) ∈ Σc−1, we let h(y) =
⊕

i∈[c−1] T (i, βi).
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If we have k = 2 and v0 = v1 then this corresponds to Equation (11). By using a decoupling
argument, it is possible to reduce the analysis of Equation (12) to the analysis of hash-based
sums for simple tabulation hashing. We can then use Lemma 17 to obtain the following
lemma.

▶ Lemma 18. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a simple
tabulation sign function, and vi : Σc × [m] → R be a value function for i ∈ [k]. For every real
number p ≥ 2

∥∥∥∥∥∥
∑

j∈[m]

(∑
x∈Σc

ε(x)v(x, h(x))
)2
∥∥∥∥∥∥

p

≤

 Lc max{p, log(m)}

log
(

e2m
∑

x∈Σc ∥v[x]∥2
2∑

x∈Σc ∥v[x]∥2
1

)


c ∑
x∈Σc

∥v[x]∥2
2 ,

where L is a universal constant.

1.5.2.4 Proving the main result

The proof of Theorem 7 is by induction on c. We will use Theorem 5 on one of the characters
while fixing the other characters. This will give us an expression of the form∥∥∥∥∥∥∥∥∥∥∥∥∥

Ψp


max

α∈Σ,j∈[m]

∣∣∣∣∣∣
∑

y∈Σc−1

v((y, α), h(y) ⊕ j)

∣∣∣∣∣∣ ,
∑

α∈Σ,j∈[m]

 ∑
y∈Σc−1

v((y, α), h(y) ⊕ j)

2

m



∥∥∥∥∥∥∥∥∥∥∥∥∥
p

.

By applying Lemma 15, we bound this by

Ψp


∥∥∥∥∥∥ max

α∈Σ,j∈[m]

∣∣∣∣∣∣
∑

y∈Σc−1

v((y, α), h(y) ⊕ j)

∣∣∣∣∣∣
∥∥∥∥∥∥

p

,

∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
α∈Σ,j∈[m]

 ∑
y∈Σc−1

v((y, α), h(y) ⊕ j)

2

m

∥∥∥∥∥∥∥∥∥∥∥∥∥
p


.

We will bound
∥∥∥maxα∈Σ,j∈[m]

∣∣∣∑y∈Σc−1 v((y, α), h(y) ⊕ j)
∣∣∣∥∥∥

p
by using the induction hypo-

thesis, and we bound

∥∥∥∥∥
∑

α∈Σ,j∈[m]

(∑
y∈Σc−1 v((y,α),h(y)⊕j)

)2

m

∥∥∥∥∥
p

by using Lemma 18. While

this sketch is simple, the actual proof is quite involved and technical since one has to be very
careful with the estimates.

1.6 Mixed Tabulation Hashing in Context
Our concentration bounds for mixed tabulation hashing are similar to those Aamand et
al. [2] for their tabulation-permutation hashing scheme and the schemes also have very
similar efficiency, roughly a factor 2 slower than simple tabulation and orders of magnitude
faster than any alternative with similar known concentration bounds. We shall make a more
detailed comparison with tabulation-permutation in Section 1.6.1.
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As mentioned in the beginning of the introduction, the big advantage of proving con-
centration bounds for mixed tabulation hashing rather than for tabulation-permutation
is that mixed tabulation hashing has many other strong probabilistic properties that can
now be used in tandem with strong concentration. This makes mixed tabulation an even
stronger candidate to replace abstract uniform hashing in real implementations of algorithms
preserving many of the asymptotic performance guarantees.

Mixed tabulation inherits all the nice probabilistic properties known for simple and
twisted tabulation7. Dahlgaard et al. [9] introduced mixed tabulation hashing to further
get good statistics over k-partitions as used in classic streaming algorithms for counting
of distinct elements by Flajolet et al. [13, 14, 15], and for fast set similarity in large-scale
machine learning by Li et al. [19, 23, 24].

Selective full randomness with mixed tabulation

The main result of Dahlgaard et al. [9] for mixed tabulation is that it has a certain kind of
selective full randomness (they did not have a word for it). An ℓ-bit mask M with don’t
cares is of the form {0, 1, ?}ℓ. An ℓ-bit string B ∈ {0, 1}ℓ matches M if it is obtained from
M by replacing each ? with a 0 or a 1. Given a hash function returning ℓ-bit hash values,
we can use M to select the set Y of keys that match M . Consider a mixed tabulation hash
function h : Σc → {0, 1}ℓ using d derived characters. The main result of Dahlgaard et al. [9,
Theorem 4] is that if the expected number of selected keys is less than |Σ|/2, then, w.h.p.,
the free (don’t care) bits of the hash values of Y are fully random and independent. More
formally,
▶ Theorem 19 (Dahlgaard et al. [9, Theorem 4]). Let h : Σc → {0, 1}ℓ be a mixed tabulation
hash function using d derived characters. Let M be an ℓ-bit mask with don’t cares. For a
given key set X ⊆ Σc, let Y be the set of keys from X with hash values matching M . If
E[|Y |] ≤ |Σ|/(1 + Ω(1)), then the free bits of the hash values in Y are fully random with
probability 1 − O(|Σ|1−⌊d/2⌋).
The above result is best possible in that since we only have O(|Σ|) randomness in the tables,
we cannot hope for full randomness of an asymptotically larger set Y .

In the applications from [9], we also want the size of the set Y to be concentrated around
its mean and by Corollary 11, the concentration is essentially as strong as with fully random
hashing and it holds for any d ≥ 1.

In [9] they only proved weaker concentration bounds for the set Y selected in Theorem 19.
Based on the concentration bounds for simple tabulation by Pǎtraşcu and Thorup [22], they
proved that if the set Y from 19 had E[Y ] ∈ [|Σ|/8, 3|Σ|/4], then within the same probability
of 1 − O(|Σ|1−⌊d/2⌋), it has

|Y | = E[Y ]
(

1 ± O

(√
log |Σ|(log log |Σ|)2

|Σ|

))
. (13)

With Corollary 11, for E[Y ] = Θ(|Σ|), we immediately tighten (13) to the cleaner

|Y | = E[Y ]
(

1 ± O

(√
log |Σ|

|Σ|

))
. (14)

7 This is not a black box reduction, but both twisted and mixed tabulation hashing applies simple
tabulation to a some changed keys, so any statement holding for arbitrary sets of input keys is still
valid. Moreover, mixed tabulation with one derived character corresponds to mixed tabulation applied
to keys with an added 0-character head, and having more derived characters does not give worse results.
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While the improvement is “only” a factor (log log |Σ|)2, the important point here is that (14)
is the asymptotic bound we would get with fully-random hashing. Also, while Dahlgaard et
al. only proved (13) for the special case of E[Y ] ∈ [|Σ|/8, 3|Σ|/4], our (14) is just a special
case of Corollary 11 which holds for arbitrary values of E[Y ] and arbitrary value functions.

Dahlgaard et al. presented some very nice applications of mixed tabulation to problems
in counting and machine learning and machine learning. The way they use Theorem 19 is
rather subtle.

1.6.1 Mixed Tabulation Hashing Versus Tabulation-Permutation
Hashing

As mentioned earlier, our new concentration bounds are similar to those proved by Aamand
et al. [2] for their tabulation-permutation hashing scheme. However, now we also have
moment bounds covering the tail, and we have the first understanding of what happens when
c is not constant. It is not clear if this new understanding applies to tabulation-permutation.
As discussed above, the advantage of having the concentration bounds for mixed tabulation
hashing is that we can use them in tandem with the independence result from Theorem 19,
which does not hold for tabulation-permutation.

Tabulation-permutation is similar to mixed tabulation hashing in its resource consumption.
Consider the mapping Σc → Σc. Tabulation-permutation first uses simple tabulation
h : Σc → Σc. Next it applies a random permutation πi : Σ 1−1→ Σ to each output character
h(x)i, that is, x 7→ (π1(h(x)1), . . . , πc(h(x)c). Aamand et al. [2] also suggest tabulation-
1permutation hashing, which only permutes the most significant character. This scheme does
not provide concentration for all value functions, but it does work if we select keys from
intervals.

Aamand et al. [2] already made a thorough experimental and theoretical comparison
between tabulation-permutation, mixed tabulation, and many other schemes. In this com-
parison, mixed tabulation played the role of a similar scheme with not as strong known
concentration bounds. In the experiments, mixed tabulation hashing with c derived characters
performed similar to tabulation-permutation in speed. Here we proved stronger concentration
bounds for mixed tabulation even with a single character, where it should perform similar
to tabulation-1permutation (both use c + 1 lookups). Both mixed tabulation hashing and
tabulation-permutation hashing were orders of magnitude faster than any alternative with
similar known concentration bounds. We refer to [2, 10] for more details. In particular, [10]
compares mixed tabulation with popular cryptographic hash functions that are both slower
and have no guarantees in these algorithmic contexts.

One interesting advantage of mixed tabulation hashing over tabulation-permutation
hashing is that mixed tabulation hashing, like simple tabulation hashing, only needs randomly
filled character tables. In contrast, tabulation-permutation needs tables that represent
permutations. Thus, all we need to run mixed tabulation hashing is a pointer to some
random bits. These could be in read-only memory shared across different applications.
Read-only memory is much less demanding than standard memory since there can be no
write-conflicts, so we could imagine some special large, fast, and cheap read-only memory,
pre-filled with random bits, e.g., generated by a quantum-device. This would open up for
larger characters, e.g., 16- or 32-bit characters, and it would free up the cache for other
applications.
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