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Abstract
Range-aggregate query is an important type of queries with numerous applications. It aims to obtain
some structural information (defined by an aggregate function F (·)) of the points (from a point set
P ) inside a given query range B. In this paper, we study the range-aggregate query problem in high
dimensional space for two aggregate functions: (1) F (P ∩ B) is the farthest point in P ∩ B to a
query point q in Rd and (2) F (P ∩ B) is the minimum enclosing ball (MEB) of P ∩ B. For problem
(1), called In-Range Farthest Point (IFP) Query, we develop a bi-criteria approximation scheme: For
any ϵ > 0 that specifies the approximation ratio of the farthest distance and any γ > 0 that measures
the “fuzziness” of the query range, we show that it is possible to pre-process P into a data structure
of size Õϵ,γ(dn1+ρ) in Õϵ,γ(dn1+ρ) time such that given any Rd query ball B and query point q, it
outputs in Õϵ,γ(dnρ) time a point p that is a (1 − ϵ)-approximation of the farthest point to q among
all points lying in a (1 + γ)-expansion B(1 + γ) of B, where 0 < ρ < 1 is a constant depending
on ϵ and γ and the hidden constants in big-O notations depend only on ϵ, γ and Polylog(nd). For
problem (2), we show that the IFP result can be applied to develop query scheme with similar time
and space complexities to achieve a (1 + ϵ)-approximation for MEB. To the best of our knowledge,
these are the first theoretical results on such high dimensional range-aggregate query problems. Our
results are based on several new techniques, such as multi-scale construction and ball difference
range query, which are interesting in their own rights and could be potentially used to solve other
range-aggregate problems in high dimensional space.
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1 Introduction

Range search is a fundamental problem in computational geometry and finds applications in
many fields like database systems and data mining [4, 27]. It has the following basic form:
Given a set of n points P in Rd, pre-process P into a data structure so that for any query
range B from a certain range family (e.g., spheres, rectangles, and halfspaces), it reports or
counts the number of the points in P ∩B efficiently. Range search allows us to obtain some
basic information of the points that lie in a specific local region of the space.

In many applications, it is often expected to know more information than simply the
number of points in the range. This leads to the study of range-aggregate query [2, 3, 6,
10, 13, 20, 21, 23, 25, 26, 32], which is a relatively new type of range search. The goal of
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75:2 In-Range Farthest Point Queries in High Dimensions

range-aggregate query is to obtain more complicated structural information (such as the
diameter, the minimum enclosing ball, and the minimum spanning tree) of the points in
the query range. Range-aggregate query can be generally defined as follows: Given a point
set P , pre-process P into a data structure such that for any range B in a specific family, it
outputs F (P ∩B), where F (·) is a given aggregate function that computes a certain type of
information or structure of P ∩B like “diameter”,“minimum enclosing ball”, and “minimum
spanning tree”. Range-aggregate queries have some interesting applications in data analytics
and big data [16, 28, 29, 32], where it is often required to retrieve aggregate information of
the records in a dataset with keys that lie in any given (possibly high dimensional) range.

In this paper, we study the range-aggregate query problem in high dimensions for
spherical ranges. Particularly, we consider two aggregate functions for any Rd query ball B:
(1) F (P ∩B) is the farthest point in P ∩B to a query point q in Rd and (2) F (P ∩B) is the
minimum enclosing ball (MEB) of P ∩B. We will focus in this paper on problem (1), called
the In-Range Farthest Point (IFP) Query, and show that an efficient solution to IFP query
also yields efficient solutions to the MEB problems. We start with some definitions.

▶ Definition 1 (Approximate IFP (AIFP)). Let P be a set of n points in Rd, q be a point and
B be a d-dimensional (closed) ball. A point p ∈ P is a bi-criteria (ϵ, γ)-approximate in-range
farthest point (or AIFP) of q ∈ P in B, if there exists a point set P ′ such that the following
holds, where ϵ and γ are small positive constants, and B(1 + γ) is the ball concentric with
B and with radius (1 + γ)r: (1) P ∩ B ⊆ P ′ ⊆ P ∩ B(1 + γ); (2) p ∈ P ′; and (3) for any
p′ ∈ P ′, (1− ϵ)∥p′ − q∥ ≤ ∥p− q∥.

Defining AIFP in this way enables us to consider all points in B and exclude all points
outside of B(1 + γ). Points in the fuzzy region B(1 + γ) \B may or may not be included in
the farthest point query. Note that allowing fuzzy region is a commonly used strategy to deal
with the challenges in many high dimensional similarity search and range query problems. For
example, consider the classic near neighbor search problem, which is equivalent to spherical
emptiness range search: Given a query sphere B in Rd, report a data point p that lies in B

if such a data point exists. In high dimensional space, obtaining an exact solution to such a
query is very difficult. A commonly used technique for this problem is the Locality Sensitive
Hashing (LSH) scheme [12]. Given a query ball B, LSH could report a data point in B(1 + ϵ)
for some given factor ϵ > 0. In other words, a fuzzy region B(1 + ϵ) \B is allowed. Similarly,
we can define approximate MEB for points in a given range with a fuzzy region.

▶ Definition 2 (Minimum Enclosing Ball (MEB)). Let P be a set of n points in Rd. A
d-dimensional (closed) ball B is an enclosing ball of P if P ⊂ B and B is the minimum
enclosing ball (MEB) of P if its radius r is the smallest among all enclosing balls. A ball B′

is a (1 + ϵ)-approximate MEB of P for some constant ϵ > 0 if it is an enclosing ball of P

and its radius is no larger than (1 + ϵ)Rad(P ), where Rad(P ) is the radius of the MEB of P .

▶ Definition 3 (Approximate MEB (AMEB)). Let P be a set of n points and B be any ball
with radius r in Rd. A ball B′ with radius r′ is a bi-criteria (ϵ, γ)-approximate MEB (or
AMEB) of P in range B, if there exists a point set P ′ such that the following holds, where
γ and ϵ are small positive constants: (1) P ∩ B ⊆ P ′ ⊆ P ∩ B(1 + γ); and (2) B′ is a
(1 + ϵ)-approximate MEB of P ′.

In this paper, we will focus on building a data structure for P so that given any query
ball B and a point q ∈ Rd, an AIFP of q in P ∩ B can be computed efficiently (i.e., in
sub-linear time in terms of n). Below are the main theorems of this paper. Let ϵ > 0, γ > 0,
0 < δ < 1 be any real numbers.
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▶ Theorem 4. For any set P of n points in Rd, it is possible to build a data structure
of size Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) in Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) pre-processing time,
where 0 < ρ < 1 is a small constant depending on ϵ and γ. With this data structure,
it is then possible to find a (ϵ, γ)-AIFP of any given query point q and query ball B in
Oϵ,γ(dnρ log δ−1Polylog(nd)) time with probability at least 1− δ.

Note: In the above result, the relationship between ρ and ϵ, γ has a rather complicated
dependence on several constants of p-stable distribution, which is inherited from the underlying
technique of Locality Sensitive Hashing (LSH) scheme [12]. This indicates that for any ϵ, γ,
we have 0 < ρ < 1 and ρ approaches 1 as ϵ, γ approach 0.

We will also show how to use the AIFP data structure to answer MEB queries efficiently.

▶ Theorem 5. For any set P of n points in Rd, it is possible to build a data structure of size
Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) in Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) pre-processing time, where
0 < ρ < 1 is a small constant depending on ϵ and γ. With this data structure, it is then
possible to find a (ϵ, γ)-AMEB for any query ball B in Oϵ,γ(dnρ log δ−1Polylog(nd)) time
with probability at least 1− δ.

To our best knowledge, these are the first results on such range-aggregate problems in
high dimensions. Each data structure has only a near linear dependence on d, a sub-quadratic
dependence on n in space complexity, and a sub-linear dependence on n in query time.

Our Method. The main result on AIFP is based on several novel techniques, such as multi-
scale construction and ball difference range query. Briefly speaking, multi-scale construction is
a general technique that allow us to break the task of building an AIFP query data structure
into a number of “constrained” data structures. Each such data structure is capable of
correctly answering an AIFP query given that some assumption about the query holds (for
example, the distance from q to its IFP is within a certain range). Multi-scale construction
uses a number of “constrained” data structures of small size to cover all possible cases of a
query, which leads to a data structure that can handle any arbitrary queries. Multi-scale
construction is independent of the aggregate function, and thus has the potential be used
as a general method for other types of range-aggregate query problems in high dimensional
space. Another important technique is a data structure for the ball difference range query
problem, which returns a point, if there is one, in the difference of two given query balls. The
ball difference data structure is the building block for the constrained AIFP data structures,
and is interesting in its own right as a new high dimensional range search problem.

Related Work. There are many results for the ordinary farthest point query problem in
high dimensional space [11, 17, 19, 24]. However, to the best of our knowledge, none of them
is sufficient to solve the IFP problem, and our result is the first one to consider the farthest
point problem under the query setting. Our technique for the IFP problem also yields
solutions to other range-aggregate queries problems, including the MEB query problem.

A number of results exist for various types of the range-aggregate query problem in fixed
dimensional space. In [6], Arya, Mount, and Park proposed an elegant scheme for querying
minimum spanning tree inside a query range. They showed that there exists a bi-criteria
(ϵq, ϵw)-approximation with a query time of O(log n + (1/ϵqϵw)d). In [23], Nekrich and Smid
introduced a data structure to compute an ϵ-coreset for the case of orthogonal query ranges
and aggregate functions satisfying some special properties. Xue [30] considered the colored
closest-pair problem in a (rectangular) range and obtained a couple of data structures with
near linear size and polylogarithmic query time. Recently, Xue et. al. [31] further studied
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75:4 In-Range Farthest Point Queries in High Dimensions

more general versions of the closest-pair problem and achieved similar results. For the MEB
problem under the range-aggregate settings, Brass et al. are the first to investigate the
problem in 2D space, along with other types of aggregate functions (like width and the
size of convex hull) [10]. They showed that it is possible to build a data structure with
O(n · polylog(n)) pre-processing space/time and O(polylog(n)) query time.

All the aforementioned methods were designed for fixed dimensional space, and thus are
not applicable to high dimensions. Actually, range aggregation has rarely been considered
in high dimensions, except for a few results that may be viewed as loosely relevant. For
example, Abbar et al. [1] studied the problem of finding the maximum diverse set for points
inside a ball with fixed radius around a query point. Their ideas are seemingly useful to our
problem. However, since their ball always has the same fixed radius, their techniques are not
directly applicable. In fact, a main technical challenge of our problem is how to deal with
the arbitrary radius and location of the query range, which is overcome by our multi-scale
construction framework. Another related work by Aumüller et. al. [8] has focused on random
sampling in a given range. The technique is also not directly applicable to IFP.

1.1 Overviews of the Main Ideas

Below we describe the main ideas of our approaches. For simplicity, in the following we ignore
the fuzziness of the query range. We approach the AIFP query problem by first looking at
an easier version: given ball B and point q, find an approximate farthest point in P ∩ B

to q, with the (strong) assumption that the radius of B is a fixed constant rB > 0, and
that the distance between q and its IFP in P ∩B is within a range of (dmin, dmax], where
dmax > dmin > 0 are fixed constants. We call such a problem a constrained AIFP problem.
We use a tuple (rB , dmin, dmax) to denote such a constraint.

To solve the constrained AIFP problem, we develop a data structure for the ball difference
(BD) range query problem, which is defined as follows: given two balls Bin and Bout, find
a point that lies in P ∩Bin \Bout. With such a data structure, it is possible to reduce an
AIFP query with constraint (rB , dmin, dmax) to a series of BD queries. Below we briefly
describe the idea. Let r0 = dmin, and for i = 1, 2, 3 . . ., let ri = (1 + ϵ)ri−1, where ϵ > 0 is
an approximation factor. For i = 0, 1, . . ., we try to determine whether there is a point in
P ∩B whose distance to q is larger than ri. Note that this can be achieved by a BD query
with Bin := B and Bout being the ball centered at q and with radius ri. By iteratively doing
this, eventually we will reach an index j such that it is possible to find a point p ∈ B ∩ P

that satisfies the condition of ∥p− q∥ > rj , but no point lies in P ∩B whose distance to q

is larger than rj+1 = (1 + ϵ)rj . Thus, p is a (1−O(ϵ))-approximate farthest point to q in
P ∩B. From the definition of constrained AIFP query, it is not hard to see that this process
finds the AIFP after at most O(log1+ϵ

dmax

dmin
) iterations. Every BD data structure supports

only Bin and Bout with fixed radii. This means that we need to build O(log1+ϵ
dmax

dmin
) BD

data structures for answering any AIFP query with constraint (rB , dmin, dmax).
With the constrained AIFP data structure, we then extend it to a data structure for

answering general AIFP queries. Our main idea is to use the aforementioned multi-scale
construction technique to build a collection of constrained data structures, which can
effectively cover (almost) all possible cases of the radius of B and the farthest distance from
q to any point in B ∩P . More specifically, for any AIFP query, it is always possible to either
answer the query easily without using any constrained data structures, or find a constrained
data structure such that the AIFP query satisfies the constraint (rB , dmin, dmax), and thus
can be used to answer the AIFP query.
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For AMEB query, we follow the main idea of Badoiu and Clarkson [9], and show that an
AMEB query is reducible to a series of AIFP queries. More discussions are left to Section 5.

2 Constrained AIFP Query

In this section, we discuss how to construct a data structure to answer constrained AIFP
queries. Particularly, given any ball B and point q satisfying the constraint (rB , dmin, dmax),

the radius of B is rB ,
the distance from q to its farthest point to P ∩B is within the range of (dmin, dmax],

the data structure can find the AIFP to q in P ∩B in sub-linear time (with high probability).
In the following, we let ϵ > 0 be an approximation factor, γ > 0 be a factor that controls

the region fuzziness and 0 < δ < 1 be a factor controlling the query success probability. The
main result of this section is summarized as the following lemma.

▶ Lemma 6. Let P be a set of n points in Rd. It is possible to build a data structure for
P with size Oϵ,γ(dn1+ρ log δ−1 log(dmax/dmin)) in Oϵ,γ(dn1+ρ log δ−1 log(dmax/dmin)) time,
where 0 < ρ < 1 is a real number depending on ϵ and γ, and the constants hidden in the
big-O notation depend only on ϵ, γ. Given any query (B, q) that satisfies the constraint of
(rB , dmin, dmax), with probability at least 1− δ, the data structure finds an (ϵ, γ)-AIFP for q

in P ∩B within time Oϵ,γ(dnρ log δ−1 log(dmax/dmin)).

In the following, we consider an AIFP query that satisfies constraint (rB , dmin, dmax).
As mentioned in last section, it is possible to reduce a constrained AIFP query to a series
of ball difference(BD) range queries, which report a point in P that lies (approximately)
in Bin \Bout for a given pair of Rd balls (Bin and Bout), or return NULL if no such point
exists. Below, we describe the reduction using a ball-peeling strategy. We consider a series
of balls B0, B1, B2, . . . concentric at q with an exponentially increasing radius. Let ξ > 0 be
a to-be-determined approximation factor, and B0 := B(q, dmin) which is the ball centered at
q with radius dmin. For integer i > 0, let Bi+1 = Bi(1 + ξ) which is the ball obtained by
enlarging the radius of Bi by a factor of (1 + ξ). 1 For i = 0, 1, 2, . . ., repeatedly perform
a BD query with Bin := B and Bout := Bi, until an index j is encountered such that the
BD query reports a point pj that lies in P ∩B \Bj , but returns NULL when trying to find
a point in P ∩ B \ Bj+1. If ξ is a small enough constant, it is not hard to see that pj is
a good approximation of the IFP to q in P ∩ B. Note that in this process, no more than
log1+ξ(dmax/dmin) BD queries are required. This is because the distance between q and any
point in B is at most dmax. Thus, it is not necessary to increase the radius of Bout to be
more than dmax in the BD range query. The bound on the number of BD range queries
then follows from the facts that the series of BD range queries starts with a Bout ball of
radius dmin and each time the radius of Bout is increased by a factor of 1 + ξ. This process is
similar to peel a constant portion of Bin each time by Bout. See Figure 1 for an illustration.

The above discussion suggests that a constrained AIFP data structure can be built
through (approximate) BD query data structures, which have the following definition. Let
ξ > 0 be an approximation factor. A data structure is called ξ-error BD for a point set P , if
given any balls Bin and Bout, it answers the following query (with high success probability):

1 Throughout this paper we use similar notations. Let q be any point and x > 0 be real number. Then,
B(q, x) denotes the ball centered at q and with radius x. Let B be any ball. For real number y > 0, we
let B(y) denote the ball obtained by enlarging (or shrinking if y < 1) the radius of B by a factor of y.
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75:6 In-Range Farthest Point Queries in High Dimensions

Figure 1 An illustration of answering a constrained AIFP query using BD queries.

1. If there exists a point in P ∩ (Bin \ Bout), the data structure returns a point in P ∩
(Bin(1 + ξ) \Bout((1 + ξ)−1)).

2. Otherwise, it returns a point in P ∩ (Bin(1 + ξ) \Bout((1 + ξ)−1)) or NULL.

The details of how to construct a ξ-error BD data structure is left to the next subsection.
Below is the main result of the BD query data structure for ξ > 0, fixed constant rin >

0, rout > 0 and success probability controlling factor 0 < δ < 1.

▶ Lemma 7. It is possible to build a ξ-error BD query data structure of size Oξ(dn1+ρ log δ−1)
in Oξ(dn1+ρ log δ−1) time, where 0 < ρ < 1 depends only on ξ. The query time of this data
structure is Oξ(dnρ log δ−1). For any pair of query balls Bin and Bout with radius rin and
rout, respectively, the data structure answers the query with success probability at least 1− δ.

Note that each BD query data structure works only for query balls Bin and Bout with
fixed radii rin and rout, respectively. This means that the constrained AIFP data structure
should consist of multiple BD data structures with different values of rin and rout.

From the above discussion, we know that a constrained AIFP data structure can be
built by constructing a sequence of log(dmax/dmin) BD data sturctures with rin := rB and
rout being dmin, (1 + ξ)dmin, (1 + ξ)2dmin, . . .. Such a data structure will allow us to answer
constrained AIFP queries using the ball peeling strategy.

Given any constants ϵ > 0, γ > 0, 0 < δ < 1, and constraint (rB , dmin, dmax), the
following Algorithm 1 builds a constrained AIFP data structure for a given point set P . The
data structure is simply a collection of BD query data structures.

With such a collection of BD query data structures, we can answer any constrained AIFP
query satisfying (rB , dmin, dmax) by applying the ball peeling strategy mentioned before.
The algorithm is formally described as the Algorithm 2 below.
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Algorithm 1 Build-CAIFP(P ; ϵ, γ, δ; rB , dmin, dmax).

Input: A Rd point set P with cardinality n. Constants ϵ > 0, γ > 0, 0 < δ < 1. Constraint
tuple (rB , dmin, dmax).
Output: A number of BD-Query data structures built with different parameters.

1: Let ξ = min{(1−ϵ)−1/2−1, γ}. Construct a sequence of real numbers r0, r1, r2, . . . , rm, by
letting r0 = dmin, m be the integer such that r0(1+ξ)m−1 < dmax and r0(1+ξ)m ≥ dmax,
ri = (1 + ξ)ri−1 for i = 1, 2, . . . , m, and δ′ = δ/m.

2: FOR i = 0, 1, 2, . . . , m, build a ξ-error BD query data structure for query balls with
radii rin = rB and rout = ri, with query success probability at least 1− δ′.

Algorithm 2 Query-CAIFP(B, q).
Input: A constrained AIFP query (B, q) with constraint (rB , dmin, dmax).
Output: A point pans that is an approximate farthest point in B ∩Q to p, or NULL if no
such point exists.

1: Initialize variable pans ← NULL.
Note: In the following, we use m and ri for i = 0, 1, . . . , m as in Algorithm 1.

2: For i from 0 to m: Make a query (B, Bout,i) to the BD-Query data structure BDi, by
letting Bout,i := B(q, ri). If the query answer is NULL, Return pans. Otherwise update
pans to be the query answer.

3: Return pans.

By some simple calculation, we know that the probability that all the BD queries in
Algorithm 2 are successful is at least 1− δ, and when this happens, the output point pans is
an (ϵ, γ)-AIFP of q in B ∩ P . This is summarized as the following lemma.

▶ Lemma 8. With probability at least 1− δ, Algorithm 2 outputs a point pans ∈ B(1 + γ)
such that for any q ∈ B ∩ P , ∥pans − p∥ ≥ (1− ϵ)∥q − p∥.

Next we analyze the space/time complexity of the AIFP scheme. The query data structure
is a combination of m = Oϵ,γ(log(dmax/dmin)) BD data structures. From the discussion of
BD data structures (see Lemma 7), every BD query data structure we build has space/time
complexity Oϵ,γ(dn1+ρ log δ−1) where 0 < ρ < 1 depends only on ϵ, γ. Each BD query takes
Oϵ,γ(dnρ log δ−1) time. Lemma 6 then follows.

2.1 The BD Query Scheme
In this subsection we present the BD query scheme. To our best knowledge, this is the first
theoretical result to consider the BD range search problem. A very special case of BD query
called the “annulus queries” where the two balls are co-centered is studied in [7]. Nonetheless,
the technique is not directly applicable to general BD queries. Our BD range query scheme
is based on the classic Locality Sensitive Hashing (LSH) technique [15, 5, 12] which has been
a somewhat standard technique for solving the proximity problems in high dimensional space.
The main idea of LSH is to utilize a family of hash functions (called an LSH family) that
have some interesting properties. Given two points p and q in Rd, if we randomly pick a
function h from the LSH family, the probability that the event of h(p) = h(q) happens will
be high if ∥p− q∥ is smaller than a threshold value, and the probability for the same event
will be lower if ∥p − q∥ is larger. Such a property of the LSH family allows us to develop
hashing and bucketing based schemes to solve similarity search problems in high dimensional
space. Below is the definition of an LSH family.

ICALP 2022
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▶ Definition 9. Let 0 < r1 < r2 and 1 > P1 > P2 > 0 be any real numbers. A family
H = {h : Rd → U}, where U can be any set of objects, is called (r1, r2, P1, P2)-sensitive, if
for any p, q ∈ Rd.
1. if ∥p− q∥ ≤ r1, then PrH[h(p) = h(q)] ≥ P1,
2. if ∥p− q∥ > r2, then PrH[h(p) = h(q)] ≤ P2.

It was shown in [12] that for any dimension d and any r > 0, c > 1, an (r, cr, P1, P2)-
sensitive family H exists, where 1 > P1 > P2 > 0 depends only on c. Every hash function
h(p) : Rd → Z maps a point p in Rd to an integer, and h(p) has the form h(p) = ⌊a·p+b

r ⌋ for
some Rd vector a and integers b, r. It takes O(d) time to sample a hash function h from
such a family and compute h(p). Our data structure will make use of two such families.
Let Hin be an (rin, (1 + ξ)rin, P1, P2)-sensitive family, and Hout be a ((1 + ξ)−1rout, rout, P1,
P2)-sensitive family, where 0 < P1, P2 < 1 are constants depending only on ξ, as
described in [12]. Given any BD-query (Bin, Bout) with the centers of the balls being oin, oout

respectively, the family Hin helps us to identify points that are close enough to oin (and
therefore lie in Bin), and Hout helps us to identify points that are far away enough from oout

(and therefore lie outside of Bout).

High level idea. Our approach is based on a novel bucketing and query scheme that utilizes
the properties of the LSH family. Before presenting the technical details, We first illustrate
the high level idea. For convenience, we assume for now that the functions in Hin and Hout

have range {0, 1} (this is achievable by some simple modification to these hash function
families). We use a randomized process to create a hybrid random hash function S(·) that
maps any point in Rd to a bit string. Such a function S(·) is a concatenation of a number of
hash functions drawn from Hin and Hout. Given p ∈ Rd, S(·) applies the aforementioned
hash functions (drawn from Hin and Hout) on p to obtain a bit-string. With such a function
S(·), consider comparing the bit-strings of S(p), S(q) for points p, q ∈ R. Intuitively, based on
the properties of Hin and Hout, we know that if p, q are close enough, S(p) and S(q) should
have many common bits in positions that are determined by functions from Hin. Contrarily,
if p, q are far away, S(p) and S(q) should have only a few common bits in positions that are
determined by functions from Hout.

For every point p ∈ P , we use S(p) to compute a bit-string label for p, and put p into
the corresponding buckets (i.e., labeled with the same bit-strings). To answer a given BD
query Bin, Bout with centers of the balls being oin, oout, respectively, we compute S(oin) and
S(oout). Note that, based on the above discussion, we know that if a point p satisfies the
condition of p ∈ Bin \ Bout, then S(p) and S(oin) should have many common bits in the
positions determined by Hin, and S(p) and S(oout) should have few common bits in the
positions determined by Hout. Thus, by counting the number of common bits in the labels,
we can then locate buckets that are likely to contain points close to oin and far away from
oout, i.e., points are likely to be in Bin \Bout. To achieve the desired outcome, we will create
multiple set of buckets using multiple random functions S(p).

Details of the Algorithms. After understanding the above general idea, we now present the
data structure and the query algorithm along with the analysis. Let P′

1 = (1 + P1)/2, P′
2 =

(1+P2)/2, η = (P′
1−P′

2)/3, a = ⌈(2P′
1 ln 3)/η2⌉. P′′

1 = 2−2a·4/9, P′′
2 = 2−2a/3, b = ⌈log1/P′′

2
n⌉,

ρ = ln 1/P′′
1

ln 1/P′′
2

, and c = ⌈nρ/P′′
1⌉. Let FZ be a function that maps every element in Z randomly

to 0 or 1, each with probability 1/2. The following Algorithm 3 shows how to construct a
ξ-error BD range query data structure for any point set P and radii rin and rout. The data
structure consists of c groups of buckets, each created using a random function S(p) that
maps a point to a bit-string of total length 2ab.
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Algorithm 3 CreateBuckets(P, ξ, rin, rout).
Input: A point set P . Parameters ξ > 0, , rin > 0, rout > 0.
Output: G1,G2, . . .Gc. Each Gi is a collection of buckets (i.e., sets of points of P ). Each
bucket G ∈ Gi is labeled with a bit-string, which is a concatenation of sub-bit-strings
labin(G, 1), labout(G, 1), labin(G, 2), labout(G, 2), . . ., labin(G, b), labout(G, b). For
every p ∈ P and i = 1, 2, . . . , c, p appears in one of the buckets in Gi.

1: Initialize Gi, i = 1, 2, . . . , c, as empty sets. Each Gi will be used as a container for
buckets.

2: Randomly sample abc functions from family Hin, and also abc functions from family
Hout. Denote these functions as hin,i,j,k and hout,i,j,k, for integers 1 ≤ i ≤ a, 1 ≤ j ≤
b, 1 ≤ k ≤ c. For every hin,i,j,k, hout,i,j,k and every p ∈ Q, compute FZ(hin,i,j,k(p)) and
FZ(hout,i,j,k(p)).

3: FOR k from 1 to c:
For every point p ∈ P , we create a bit-string S(p) that concatenates
labin(p, 1), labout(p, 1), labin(p, 2), labout(p, 2), . . . , labin(p, b), labout(p, b): For j

from 1 to b, let labin(p, j), labout(p, j) be a pair of bit-strings of length a, each with
the i-th bit being FZ(hin,i,j,k(p)), FZ(hout,i,j,k(p)), respectively, for i = 1, 2, . . . a.
IF there is already a bucket G in Gk with label S(G) = S(p), DO: Put p into G.
ELSE, DO: Create a new bucket G and put G into Gk, set the label of G as
S(G) = S(p). Put p into G.

With the BD range query data structure created by the Algorithm 3, we can use the
Algorithm 4 below to answer a BD range query for any given pair of balls (Bin and Bout).
The main idea of the algorithm compute a bit-string label S for the query, then examine
points in buckets with labels that satisfy certain properties (e.g. should have enough common
bits with S). Due to the fact that we label these buckets using functions from two LSH
families, it can be shown that the chance for us to find a point in Bin(1 + ξ) \Bout((1 + ξ)−1)
from one of the examined buckets will be high if there exists a point in Bin \Bout.

In the following we show the correctness of Algorithm 4. Consider the for loop in Step 1
of Algorithm 4 when answering a query (Bin, Bout). Using the notations from Algorithm 4,
for any k from 1 to c in Step 1, we have the following lemma, which shows that if a point
in P lies in (or outside of) the query range, the number of common bits between its bucket
label and the label computed from the query would likely (or unlikely) be high, respectively.

▶ Lemma 10. Let p ∈ P be a point that lies in Bin \ Bout, and q ∈ P

be a point that does NOT lie in Bin(1 + ξ) \ Bout((1 + ξ)−1). Let S(p) =
labin(p, 1), labout(p, 1), labin(p, 2), labout(p, 2), . . . , labin(p, b), labout(p, b) and S(q) =
labin(q, 1), labout(q, 1), labin(q, 2), labout(q, 2), . . ., labin(q, b), labout(q, b) be the labels of
the bucket in Gk that contains p and q, respectively. For any j = 1, 2, . . . , b, the following
holds.

Pr[COM(labin(p, j), labin(oin, j)) ≥ t1 ∧ COM(labout(p, j), labout(oout, j)) ≥ t2] ≥
4/9.
Pr[COM(labin(q, j), labin(oin, j)) ≥ t1 ∧ COM(labout(q, j), labout(oout, j)) ≥ t2] ≤
1/3.

Proof. Since p ∈ Bin \ Bout, we have ∥p− oin∥ ≤ rin and ∥p− oout∥ ≥ rout. For any hash
function h1 ∈ Hin and h2 ∈ Hout, Pr[h1(p) = h1(oin)] ≥ P1 and Pr[h2(p) = h2(oout)] ≤
P2. Thus, we have Pr[FZ(h1(p)) = FZ(h1(oin))] ≥ (P1 + 1)/2 and Pr[FZ(h2(p)) = 1 −
FZ(h2(oout))] ≤ (1− P2)/2. This means that for any i = 1, 2 . . . , a, the probability that the
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Algorithm 4 BD-Query(Bin, Bout).

Input: Two Rd balls: Bin with center oin and radius rin, and Bout with center oout and
radius rout. Assume that collections G1,G2, . . .Gc have already been generated by algorithm
CreateBucket.
Output: A point p ∈ Q, or NULL.
Note: The algorithm probes a number of points in the buckets of G1,G2, . . .Gc until a suitable
point is found as the output, or terminates and returns NULL when no such point can be
found or the number of probes exceeds a certain limit.

1: Do the following, but terminate and return NULL when 3c points are examined: FOR
k from 1 to c:

Create a bit string S that concatenates labin(oin, 1), labout(oout, 1), labin(oin, 2),
labout(oout, 2), . . ., labin(oin, b), labout(oout, b): For j from 1 to b, let labin(oin, j),
labout(oout, j) be a pair of bit strings of length a, with the i-th bit of each string
being FZ(hin,i,j,k(oin)), 1− FZ(hout,i,j,k(oout)), respectively, for i = 1, 2, . . . a.
Create a bit string S′ that concatenates lab′

in(1), lab′
out(1), lab′

in(2), lab′
out(2), . . . ,

lab′
in(b), lab′

out(b): Each of these sub bit strings is a random bit string of length a,
drawn uniformly randomly from {0, 1}a.
If there exists some integer j such that COM(labin(oin, j), lab′

in(j)) < t1 or
COM(labout(oout, j), lab′

out(j)) < t2, where COM(x, y) counts the number of com-
mon digits of 2 bit strings x, y, t1 = P′

1a− ηa, t2 = (1− P2)a/2− ηa CONTINUE.
If there is no bucket in Gk that is labeled with S′, CONTINUE.
Examine all the points in the bucket G in Gk that is labeled with S′. Stop when there
a point p ∈ G such that p ∈ Bin(1 + ξ) \Bout((1 + ξ)−1). Return p.

2: Return NULL if no point is returned in the above process.

i-th bit of labin(p, j) is the same as that of labin(oin, j) is at least P′
1 = (P1 + 1)/2. Since

the hash functions to determine each of the bits are drawn independently, an estimation
of X = COM(labin(p, j), labin(oin, j)) can be obtained by Pr[FZ(h1(p)) = FZ(h1(oin))] ≥
(P1 + 1)/2 using the concentration inequalities for binomial distributions. Using a variant of
the Chernoff inequalities from [22], we have

Pr[X ≤ P′
1a− ηa] ≤ e−(ηa)2/(2P′

1a).

From the definition of the parameters, we know that Pr[X ≤ P′
1a − ηa] ≤ 1/3 (by simple

calculation). Thus, we have Pr[X ≥ t1] ≥ 2/3.
Let Y = COM(labout(p, j), labout(oout, j)). From Pr[FZ(h2(p)) = 1− FZ(h2(oout))] ≤

(1 − P2)/2 and using a similar argument as above, we can also obtain Pr[Y ≥ t2] ≥ 2/3
(the details are omitted). Since the hash functions are drawn independently, we have
Pr[X ≥ t1 ∧ Y ≥ t2] ≥ 4/9.

In the following we discuss the case that q ̸∈ Bin(1 + ξ) \Bout((1 + ξ)−1). This means
either ∥q − oin∥ ≥ (1 + ξ)rin or ∥q − oout∥ ≤ (1 + ξ)−1rout. We first consider the case
∥q − oin∥ ≥ (1 + ξ)rin. For any hash function h1 ∈ Hin, Pr[h1(q) = h1(oin)] ≤ P2. Thus,
we have Pr[FZ(h1(q)) = FZ(h1(oin))] ≤ (P2 + 1)/2. This means that for any i = 1, 2 . . . , a,
the probability that the i-th bit of labin(q, j) is the same as that of labin(oin, j) is at
most P′

2 = (P2 + 1)/2. Again, we use a concentration inequality to obtain an estimation of
X = COM(labin(q, j), labin(oin, j)). Using a variant of the Chernoff inequalities from [22],
we have

Pr[X ≥ P′
2a + ηa] ≤ e−(ηa)2/(2P′

2a+ηa/3).
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Note that a = (2P′
1 ln 3)/η2 ≥ ((2P′

2 + η/3) ln 3)/η2, which implies that e−(ηa)2/(2P′
2a+ηa/3) ≤

1/3 (by simple calculation). Thus, we have Pr[X ≥ P′
2a + ηa] ≤ 1/3. Also, since

P′
2a + ηa < P′

1a − ηa = t1, we get Pr[X ≥ t1] ≤ 1/3. This immediately implies that
Pr[COM(labin(q, j), labin(oin, j)) ≥ t1 ∧ COM(labout(q, j), labout(oout, j)) ≥ t2] ≤ 1/3.

The argument for the case ∥q − oout∥ ≤ (1 + ξ)−1rout is similar. Thus, we omit it here.
This completes the proof. ◀

From the above lemma, we can conclude the following by basic calculation. For any k

from 1 to c in Step 1 of Algorithm 4 (if the loop is actually executed), let p ∈ P be a point
that lies in Bin \Bout, and q ∈ P be a point that does NOT lie in Bin(1+ξ)\Bout((1+ξ)−1),
we have the following.

▶ Lemma 11. Let Gp and Gq be the buckets in Gk that contain p and q, respectively. The
probability for Gp to be examined is no smaller than 2−2ab(4/9)b = (P′′

1)b, and the probability
for the event “ALL such Gp for k from 1 to c are NOT examined” is at most (1−(P′′

1)b)c ≤ 1/e.
The probability for Gq to be examined is no larger than 2−2ab(1/3)b = (P′′

2)b ≤ 1/n.

With the above lemma, we can obtain the following lemma using an argument similar
to [15] for near neighbor search with LSH. This proves the correctness of the query scheme.

▶ Lemma 12. If there exists a point in P that lies in Bin \ Bout, with probability at least
1/4, Algorithm 4 reports a point in P that lies in Bin(1 + ξ) \Bout((1 + ξ)−1).

The complexity of the data structure is O(dabcn), which is Oξ(dn1+ρ log n) from a =
Oξ(1), b = Oξ(log n) and c = Oξ(nρ), and ρ and the constant hidden in the big-O notation
depends only on ξ. The query time is O(abcd), which is Oξ(dnρ log n). To achieve 1 − δ

success probability, it suffices to concatenate O(log δ) such data structures together.
Due to space limit. we leave the proof of the above 2 lemmas and the full proof of

Lemma 7 to the full version of the paper.

3 Multi-scale Construction

In this section, we present the multi-scale construction method, which is a standalone technique
with potential to be used to other high dimensional range-aggregate query problems.

The multi-scale construction method is motivated by several high dimensional geometric
query problems that share the following common feature: they are challenging in the general
settings, but become more approachable if some key parameters are known in advance. The
AIFP query problem discussed in this paper is such an example. In the previous section, we
have shown how to construct an AIFP data structure if we fix the size of the query ball and
know that the farthest distance lies in a given range.

The basic ideas behind multi-scale construction are the follows. Firstly, we know that if
a problem is solvable when one or more key parameters are fixed, a feasible way to solve the
general case of the problem is to first enumerate all possible cases of the problem defined by
(the combinations of) the values of the parameters. Then, solve each case of the problem,
and finally obtain the solution from that of all the enumerated cases. The multi-scale
construction method follows a similar idea. More specifically, to obtain a general AIFP query
data structure, the multi-scale construction method builds a set of constrained AIFP query
data structures that cover all possible radii of B and farthest distance value. Secondly, since
it is impossible to enumerate the infinite number of all possible values for these parameters,
our idea is to sample a small set of fixed radii (based on the distribution of the points in P )

ICALP 2022



75:12 In-Range Farthest Point Queries in High Dimensions

and build constrained AIFP data structures only for the set of sampled values. This will
certainly introduce errors. However, good approximations are achievable by using a range
cover technique.

Below we first briefly introduce two key ingredients of our method, Aggregation Tree and
Range Cover, and then show how they can be used to form a multi-scale construction.

3.1 Aggregation Tree and Range Cover
In this subsection, we briefly introduce the two components of the multi-scale construction
scheme: the aggregation tree and the range cover data structure. We first introduce aggreg-
ation tree, which is used in [18] as an ingredient of the range cover data structure. It is
essentially a slight modification of the Hierarchical Well-Separated Tree (HST) introduced
in [14]. Below is the definition of an aggregation tree: (1) Every node v (called aggregation
node) represents a subset P (v) of P , and the root represents P ; (2)Every aggregation node v

is associated with a representative point re(v) ∈ P (v) and a size s(v). Let Dia(P (v)) denotes
the diameter of P (v), s(v) is a polynomial approximation of Dia(P (v)): Dia(P (v)) ≤ s(v),
and s(v)

Dia(P ) is upper-bounded by a polynomial function PHST (n, d) ≥ 1 (called distortion
polynomial); (3) Every leaf node corresponds to one point in P with size s(v) = 0, and each
point appears in exactly one leaf node; (4) The two children v1 and v2 of any internal node v

form a partition of v with max{s(v1), s(v2)} < s(v); and (5) For every aggregation node v

with parent vp, s(vp)
rout

is bounded by the distortion polynomial PHST (n, d) ≥ 1, where rout is
the minimum distance between points in P (v) and points in P \ P (v).

The above definition is equivalent to the properties of HST in [14], except that we have
an additional distortion requirement (Item 5). See Figure 2 for example of an aggregate tree.

Figure 2 An illustration of an aggregation tree built for 6 points.

An aggregation tree can be constructed in O(dn log2 n) time using the method in [14]. It
is proved in [14] that the distortion polynomial is PHST (n, d) = dn. In the rest of the paper,
we always assume that the distortion of an aggregation tree is PHST (n, d) = dn.

In the following, we briefly introduce range cover. Range cover is a technique proposed
in [18] for solving the truth discovery problem in high dimensions. We utilize it in a completely
different way to form a multi-scale construction for the AIFP query problem. Below is the
algorithm (Algorithm 5). Given an aggregation tree Tp and real number parameters ∆ ≥ 8n

and 0 < λ < 1 (whose values will be determined later), the range cover algorithm creates a
number of buckets for the nodes of TP . Each bucket Bt is associated with an interval of real
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Algorithm 5 RangeCover(TP ; λ, ∆).

Input: An aggregation tree TP built over a set P of n points in Rd; controlling factors
0 < λ < 1 and an integer ∆ ≥ 4PHST (n, d).
Output: A number of buckets, where each bucket stores a number of tree nodes. Each
bucket Bt is indexed by an integer t and associated with an interval ((1 + λ)t, (1 + λ)t+1].

1: For every integer t create an empty bucket Bt associated with interval ((1+λ)t, (1+λ)t+1].
(Note that Bt will not be actually created until some tree node v is inserted into it.)

2: For every non-root node v of TP , let vp be its parent in TP , rH be s(vp)/λ, and rL be
max{s(v)/λ, s(vp)/∆}. Do

For every integer t satisfying inequality rL ≤ (1 + λ)t < rH , insert v into bucket Bt.

number ((1 + λ)t, (1 + λ)t+1]. If a value r lies in the interval of a bucket Bt, it can be shown
that the diameter of every aggregation node v is small compared to r, and thus all points
in P (v) can be approximately viewed as one “heavy” point located at the representative
point re(v). Intuitively, every bucket from the range cover algorithm provides a view of P

when observed from a distance r in the range of the bucket, where each node in the bucket
represents a “heavy” point that is formed by the aggregation of a set of close (compared to
the observing distance) clusters of points in P . Thus, the buckets of the range cover provides
views of the input point set at different scales of observing distances (see Figure 3 for an
illustration). The size of the output data structure is only O(n log n∆), as shown in [18].

Figure 3 An illustration of range cover. The nodes in every bucket can be viewed as “heavy”
points yielded by the aggregation of a set of close points. Every bucket provides a view of the input
point set when observed from a certain distance. All the buckets jointly form a complete set of
views of the input points at all possible scales.

Note that for many problems, fixing some key parameters also means fixing the “observing
distance” of P from the perspective of solving the problem. This allows us to solve the
problem based on the view of P provided by the bucket associated with the corresponding
observation distance. We will show that this idea also applies to the AIFP problem.

3.2 Multi-scale Construction for AIFP
In this subsection, we use AIFP problem as an example to show how to implement multi-scale
construction using the range cover data structure.

We first observe that every bucket of the range cover can be used to solve a constrained
AIFP problem (with the proof given later). Given an AIFP query (B, q), if the (approximate)
distance from q to a point in P ∩B is known and falls in the interval of ((1 + λ)t, (1 + λ)t+1],
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then the (approximate) distance from q to a point of Bt ∩B (where every node v in Bt is
viewed as a “heavy” point located at re(v)) is an AIFP of q in P ∩B. This means that Bt

provides a good “sketch” of P that allows more efficient computation of the AIFP of q in
P ∩B. This observation leads to the main idea of the multi-scale construction method. To
obtain a general AIFP query data structure, for every bucket Bt, we construct a constrained
AIFP data structure for Bt (viewed as a set of “heavy” points), exploiting the assumption
that the farthest distance is in the interval of ((1 + λ)t, (1 + λ)t+1]. To answer a general
AIFP query, we can find the AIFP for every bucket by querying the constrained AIFP data
structures associated with the bucket. In this way, we can compute AIFPs for all possible
radii. When answering a general AIFP query, we first determine an approximate farthest
distance of q to P ∩B, and then query the appropriate constrained AIFP data structures.
Despite the necessity of building multiple constrained data structures, the complexity of the
multi-scale construction is not high, as the total number of nodes in all buckets is only Õ(n).

However, the above idea is hard to implement, because each bucket Bt is only responsible
for a small range ((1 + λ)t, (1 + λ)t+1] of the possible farthest distance from q to P ∩P . This
means that we need an accurate estimation of this distance when answering the query, which
is almost as hard as the query itself. We resolve this issue by merging multiple consecutive
buckets into a larger one. The resulting bucket can account for a larger range of the possible
farthest distances. We then build a constrained data structure for each bucket.

This leads to the following Multi-Scale algorithm. Let Γ ≥ 1 be an integer constant to be
determined, andA be an algorithm for building a constrained data structure. In this algorithm,
for each integer t, we try to merge the aggregation nodes in buckets Bt, Bt+1, . . . , Bt+Γ from
the range cover (recall that these buckets are associated with farthest distance ranges
((1 + λ)t, (1 + λ)t+1], ((1 + λ)t+1, (1 + λ)t+2] . . . , ((1 + λ)t+Γ, (1 + λ)t+Γ+1], respectively) into
one bucket B+

t that could account for a larger range ((1 + λ)t, (1 + λ)t+Γ+1]. We then use A
to build a data structure St for every bucket B+

t (by viewing every node in B+
t as a point).

Algorithm 6 Multi-Scale(TP ; λ, ∆, Γ; A).

Input: An aggregation tree TP built over a set P of n points in Rd; controlling factors
0 < λ < 1, integer ∆ ≥ 4PHST (n, d) = 4dn, and integer Γ ≥ 1. A routine A which builds a
constrained data structure for any given bucket Bt and point set re(B+

t ) := {re(v) | v ∈ B+
t }.

Output: A number of buckets, with each storing a number of tree nodes. Each bucket B+
t is

indexed by an integer t and associated with an interval ((1 + λ)t, (1 + λ)t+Γ+1]. Each bucket
B+

t is associated with data structure St built by A.
1: Create a collection of buckets {Bt} by calling RangeCover(TP ; λ, ∆(1 + λ)Γ).
2: For each integer t create an empty bucket B+

t associated with ((1 + λ)t, (1 + λ)t+Γ+1].
3: For every non-root node v of TP , enumerated in a bottom-up manner in TP so that the

children of a node is always visited earlier than the parent node, put v into B+
t for every

t such that the following is satisfied:
s(v) ≤ λ(1 + λ)t, v appears in Bt′ ∈ {Bt} for some t ≤ t′ ≤ t + Γ, and none of v’s
descendants are put in B+

t previously.
4: For every non-empty bucket B+

t , create a data structure St using A for the point set
re(B+

t ) := {re(v) | v ∈ B+
t }.

For better understanding of this scheme, we first briefly discuss the geometric properties
of the buckets created by Algorithm 6. Intuitively speaking, the aggregation nodes of every
bucket provide a sketch of almost the whole input point set P , with the exception being
points that satisfying some special isolation property. This can be briefly described as follows:
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(1) The diameter of each the aggregation node (viewed as a point set) should be small to the
observation distances; (2) The aggregation nodes are mutually disjoint; and (3) Every point
p ∈ P is either in one of the nodes in the bucket, or it is in an aggregation node (not in the
bucket) whose distance to other nodes is large. These properties are formalized as follows.
(We leave the proofs of all the following claims and lemma to the full version of the paper.)

▷ Claim 13. Let v be any aggregation node v in a created bucket B+
t . Then, s(v) ≤ λ(1+λ)t.

▶ Lemma 14. For any p ∈ P and and bucket B+
t created by Algorithm 6, one of the following

holds:
1. There exists exactly one aggregation node v ∈ B+

t such that p ∈ P (v).
2. Either B+

t is empty or there exists no aggregation node v ∈ B+
t such that p ∈ P (v). There

exists an aggregation node v′ in TP such that s(v′)/λ ≤ (1 + λ)t. Furthermore, let q be
any point in P \ P (v′), then ∥p− q∥ > (∆/dn)(1 + λ)t+Γ.

Although the sketch does not fully cover P , in many problems (including AIFP) these
points are either negligible or easy to handle by other means due to their special properties.

From [18], we know that the running time of Algorithm 5 and the space complexity of
the output data structure is Oλ(n log n∆) (where the hidden constant in the big-O notation
depends only on λ). Algorithm 6 essentially merges Γ + 1 consecutive buckets Bt, Bt+1, . . .,
Bt+Γ created by Algorithm 5 into one bucket B+

t . Thus, we have the following lemma.

▶ Lemma 15. Excluding the time it takes for A to process each B+
t in Step 4, the running

time of Algorithm 6 and the total number of nodes in all buckets is Oλ(Γ2n log n∆), where
the hidden constant in big-O notation depends only on λ.

We conclude this subsection by providing a key lemma showing that, given a constrained
AIPF query (B, q) satisfying constraint (rB , dmin, dmax) with dmin ≤ rB ≤ dmax, if there
is a bucket B+

t such that (1 + λ)t+1/(1 − λ) < dmin < dmax ≤ (1 + λ)t+Γ − (2 + 2/λ)rB

(i.e. the range [dmin, dmax] falls in interval ((1 + λ)t, (1 + λ)t+Γ+1] with some gap), then,
with an easy-to-handle exception, an AIFP to q in B+

t (by viewing every node of B+
t as

one point) in (slightly enlarged) range B is also an AIFP of q to P ∩ B. Formally, let
re(B+

t ) := {re(v) | v ∈ B+
t }. Let pt be the farthest point to q in re(B+

t ) ∩ B(1 + λ) if
re(B+

t ) ∩B(1 + λ) ̸= ∅, and p be a (λ/6, λ/6)-AIFP of q in re(B+
t ) ∩B(1 + λ) 2. Let pN be

a (1 + λ)-approximate nearest neighbor of q in P .

▶ Lemma 16. One of the following holds: (1) pN is a (2λ, 2λ)-AIFP of q in P ∩B, or (2)
pt exists and (1 + λ)t ≤ ∥q − pt∥ ≤ (1 + λ)t+Γ+1, and p is a (2λ, 2λ)-AIFP of q in P ∩B.

The above lemma implies that, in Algorithm 6, if routine A builds a constrained AIFP
data structure for farthest distance lies in interval [(1 + λ)t, (1 + λ)t+Γ+1], then either this
data structure can be used to answer any query with constraint (rB , dmin, dmax) (with other
parameters, like rB and the approximate factors for constrained AIFP, set properly), or the
AIFP query can be solved easily using a nearest neighbor search. In the following section, we
will show how to build a general AIFP query data structure through multi-scale construction
by selecting appropriate parameters. With the multi-scale data structure (together with some
auxiliary data structures), we can answer an AIFP query by (1) obtaining a rough estimation
of the farthest distance, and (2) querying the bucket corresponding to the estimated range.

2 Note p could be NULL here. This could happen when bucket B+
t is empty or re(B+

t ) ∩ B(1 + λ) = ∅.
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4 General AIFP Query

In this section, we present a general (ϵ, γ)-AIFP query scheme. In the following, let B be a
closed ball with radius rB > 0 and q be an arbitrary point. Let 0 < ϵ < 1 and 0 < γ < 1
be any pair of constants and λ := min(ϵ, γ)/512. We assume that rB is λ-aligned, which
means that rB = (1 + λ)t for some integer t. The alignment assumption makes it easier
to implement the multi-scale construction. Note that if rB is not λ-aligned, we can always
enlarge B a little to make rB λ-aligned and still obtain a good approximation with carefully
chosen parameters.

Our main idea is to convert each query (B, q) into one or more AIFP queries (B′, q) such
that it is possible to find a lower bound dmin and an upper bound dmax on the farthest
distance between q and a point in B′∩P . With such bounds, the AIFP can then be found by
querying a pre-built constrained AIFP data structure. To ensure efficiency, the gap between
dmin and dmax cannot be too large, i.e., dmax/dmin should be bounded by a polynomial of n

and d. Since the complexity of a constrained data structure depends on dmax/dmin, a small
gap will also enable us to control the size of the data structure. We start with a simple claim.

▷ Claim 17. If the distance between q and the center oB of B is very large compared to rB ,
i.e. ∥q − oB∥ ≥ (3 + γ)ϵ−1rB , then any point in B(1 + γ/2) is an (ϵ, γ)-AIFP of q in P ∩B.

This claim suggests that we can safely assume that the farthest distance between q and
P ∩B is not too large (compared to rB), as otherwise the AIFP can be easily found with
a nearest neighbor query. This helps us establish an upper bound on the farthest distance.
In the following, we let dmax := (4 + 2γ)ϵ−1rB, and assume that ∥q − oB∥ ≤ (3 + γ)ϵ−1rB.
From simple calculation, this implies that for any p ∈ P ∩B(1 + γ), we have ∥p− q∥ ≤ dmax.

Next, we try to find a lower bound for the farthest distance. Since the full argument will
be rather complicated, we will thus describe only the general idea here, and leave the details
to the full version of the paper. We start with a simple case.

Case 1: ∥q − oB∥ ≥ (1 + γ/64)rB, i.e. q does not lie in B and is not very close to the
boundary of B. Then, clearly the farthest distance from q to any point in P ∩B is at least
(γ/64)rB . Recall that we have obtained an upper bound dmax := (4 + 2γ)ϵ−1rB . The ratio
dmax/(γrB/64) is clearly bounded by a polynomial of n, d.

In the following, we assume that ∥q − oB∥ ≤ (1 + γ/64)rB , which means that q lies in B

or is very close to the boundary of B. Let pN ∈ P be a 2-nearest neighbor of q in P (i.e. for
any p′ ∈ P , ∥pN − q∥ ≤ 2∥p′ − q∥) , and denote rN := ∥pN − q∥. We discuss another simple
case.

Case 2: rN > γrB/64. Since pN is a 2-approximate nearest neighbor, we conclude that the
distance from q to any point in P ∩B is at least γrB/128. Again, the ratio dmax/(γrB/128)
is well bounded.

In the following, we assume that rN ≤ γrB/64. In order to find a good lower bound on
the farthest distance, our general strategy is to examine points around pN and see whether
there exists a point p′ whose distance to q is sufficiently large, but still upper bounded by
(γ/64)rB . The upper bound (γ/64)rB ensures that p′ ∈ B(1 + γ/16), i.e. p′ “approximately”
lies in B, and because of the fuzziness of the region, ∥p′ − p∥ can be used as a lower bound
on the farthest distance. To efficiently implement this idea, we make use of an aggregation
tree TP with distortion polynomial PHST (n, d) = nd. Later, we will use this TP to construct
the query data structure. Let vN denote the leaf node of TP that correspond to singleton
set {pN}. We walk along the tree path from vN to the root of TP , and examine the nodes
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(and their associated point sets) on this path. Denote by v the highest (closest to the root)
node of TP such that pN ∈ P (v) and s(v) + rN ≤ γrB/64. Note that since rN ≤ γrB/64 and
s(vN ) = 0, such a node v must exist. Since s(v) is an upper bound on the diameter of P (v),
every point p′ ∈ P (v) satisfies inequality ∥p′ − q∥ ≤ γrB/64, and thus p′ ∈ B(1 + γ/16). See
Figure 4 for a illustrations of the relations between q and points in P (v). We consider two
more cases, depending on the value of s(v) + rN .

Figure 4 An illustration of points in P (v), P \ P (v) and q.

Case 3: s(v) + rN > γrB/512n2d2. This means that s(v) + rN is at least rB divided by a
polynomial of n, d. Note that from the low distortion property of TP , s(v) is a polynomial
approximation of the diameter of P (v). It is possible to show by standard inequality
arguments that, s(v) + rN is a polynomial approximation of q’s farthest distance to any point
in P (v). Since P (v) ⊂ B(1 + γ/16), we conclude that the farthest distance from q to any
point in B(1 + γ/16) ∩ P is lower bounded by rB divided by a polynomial of n, d. A careful
calculation gives us an estimated lower bound rB/2048n3d3. Since an upper bound for the
farthest distance is dmax = (4 + 2γ)ϵ−1rB, the quality of this lower bound is satisfactory
because the gap between it and dmax is a polynomial of n, d.

Case 4: s(v) + rN ≤ γrB/512n2d2. We show that in this case, either there is a lower bound
on the farthest distance, or the query can be reduced to another AIFP query where the
range of farthest distances can be bounded. Let vp be the parent of v (if v is the root of
TP , the following result still holds), then s(vp) + rN ≥ γrB/64. This means that s(vp) is
much larger than s(v). From the property of TP , we know that for any pout ∈ P \ P (v), the
ratio s(vp)/∥pout − pN∥ is upper bounded by the distortion polynomial PHST (n, d) = nd.
In the current case, s(vp)/s(v) is indeed much larger than nd. Thus ∥pout − pN∥ is very
large compared to s(v), which gives us a lower bound on ∥pout − q∥. In fact, by a careful
calculation, it is possible to show that ∥q − pout∥ ≥ γrB/256nd for any pout ∈ P \ P (v).
Furthermore, since the distance between q and any point in P (v) is at most γrB/512n2d2,
which is much smaller than γrB/256nd. This implies that it is possible to use a ball centered
at q to separate P (v) and P \ P (v). In fact, if let rsep := [s(v) + rN ]λ, where [x]λ denote the
smallest real number that can be written as (1 + λ)t for some integer t such that (1 + λ)t ≥ x,
then it can be shown that for every p ∈ P (v), p ∈ B(q, rsep) and for every p ∈ P \ P (v),
p ̸∈ B(q, (1 + γ)rsep).

With the above argument, we divide Case 4 into 2 sub-cases. Let pF be the actual
farthest point to q in P ∩ B. We first discuss Case 4a, where pF ∈ P \ P (v). From the
above discussion, we have ∥q − pF ∥ ≥ γrB/256nd, which gives a good lower bound on the
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farthest distance. For Case 4b where pF ∈ P (v), we know that the query reduces to a
problem of finding the farthest point in p ∩ B(q, rsep). For this problem, it is possible to
prove a rsep/8nd lower bound and rsep upper bound on the farthest distance. The ratio of
the two bounds is satisfactory.

To summarize, for Case 1,2 and 4a, let d
(1)
max := (4 + 2γ)ϵ−1rB, d

(1)
min := γrB/256nd

and r
(1)
B := rB , the AIFP query satisfies constraint (r(1)

B , d
(1)
min, d

(1)
max); for Case 3, the AIFP

query can be answered from constraint query (B(oB , [(1 + γ/16)rB]λ), q), which satisfies
constraint (r(2)

B , d
(2)
min, d

(2)
max), where d

(2)
min := γrB/2048n3d3, d

(2)
max := (4 + 2γ)ϵ−1rB and

r
(2)
B := [(1 + γ/16)rB]λ; for Case 4a, the AIFP query reduces to query (B(q, rsep), q), with

constraint (r(3)
B , d

(3)
min, d

(3)
max) where d

(3)
max := r

(2)
B := rsep, d

(3)
min := d

(3)
max/8nd. Any AIFP

query can be answered from one of the three constraint queries, and we have d
(i)
max/d

(i)
min no

larger than 2048(4 + 2γ)n3d3/ϵ for any i = 1, 2, 3.

4.1 Multi-scale Construction for General AIFP Query
In this subsection, we show how to build a Multi-Scale data structure to answer general AIFP
queries. Our goal is to choose the appropriate parameters Γ ≥ 1, 0 < λ < 1 and ∆ ≥ 4nd

for Algorithm 6 so that for every AIFP query with constraint (r(i)
B , d

(i)
min, d

(i)
max), there exists

a bucket B+
t whose range ((1 + λ)t, (1 + λ)t+Γ+1] wholly covers the interval [d(i)

min, d
(i)
max],

and the constrained AIFP data structure built for the bucket with dmin := (1 + λ)t and
dmax := (1 + λ)t+Γ+1 can be used to answer the query. Note that we have already defined
λ := min(ϵ, γ)/512 and ∆ := 4nd. The remaining task is to determine the value of Γ.

Observe that d
(i)
max/d

(i)
min is bounded by a polynomial Pgap(n, d) := 2048(4 + 2γ)n3d3/ϵ.

Let Γ′ := ⌈log1+λ Pgap(n, d)⌉, and ΓL ≥ Γ′ and ΓR ≥ Γ′ be integer parameters to be
determined later. Denote by Γ the sum of ΓL and ΓR, i.e., Γ := ΓL + ΓR. For every integer t,
define rmid(t) := (1 + λ)t+ΓL . Therefore, we have rmid(t)/(1 + λ)t ≥ (1 + λ)ΓL ≥ Pgap(n, d)
and (1+λ)t+Γ+1/rmid(t) ≥ (1+λ)ΓR ≥ Pgap(n, d). For any AIFP query (B, q) with constraint
(r(i)

B , d
(i)
min, d

(i)
max), it is always possible to find a bucket B+

t such that r
(i)
B = rmid(t). Clearly,

interval ((1+λ)t, (1+λ)t+Γ+1] wholly covers the interval [d(i)
min, d

(i)
max]. If a constrained AIFP

data structure is constructed for B+
t with constraint ((1 + λ)rmid(t), (1 + λ)t, (1 + λ)t+Γ+1),

it can be used to answer the AIFP query (B, q). (See Lemma 16.)
To summarize the above discussions, we set the parameters of Algorithm 6 as the following.

The algorithm then produces the data structure for (ϵ, γ)-AIFP query. Assume that a real
number 0 < δ < 1 is given and we would like to achieve 1− δ query success probability.

λ := min(ϵ, γ)/512, ΓL := Γ′ + ⌈log1+λ 8⌉, ΓR := Γ′ + ⌈log1+λ 8⌉, Γ := ΓL + ΓR, ∆ := 4nd.
Routine A: Given a non-empty bucket B+

t , A, it uses Algorithm 1 to creates a constrained
(λ/6, λ/6)-AIFP data structure for point set re(B+

t ) for constraint ((1 + λ)rmid(t), (1 +
λ)t, (1 + λ)t+Γ+1), with success probability at least 1− δ/4.

Note that we let ΓL := ΓR := Γ′ + ⌈log1+λ 8⌉. This allows more gap when fitting the
interval [d(i)

min, d
(i)
max] in ((1 + λ)t, (1 + λ)t+Γ+1], which is required by Lemma 16.

With the multi-scale data structure constructed by Algorithm 6 using the above
parameters, we are able to answer any general AIFP query by reducing it to at most
three constrained (λ/6, λ/6)-AIFP queries (where λ = min(ϵ, γ)/512) with constraints
(r(i)

B , d
(i)
min, d

(i)
max), i = 1, 2, 3. From Lemma 6 and the fact that the ratio dmax/dmin satisfies

dmax/dmin = (1+λ)t+Γ+1/(1+λ)t = (1+λ)Γ+1, which is bounded by a polynomial of n, d, we
know that log dmax/dmin is Oϵ,γ(log nd) and the query time is Oϵ,γ(dnρ log δ−1Polylog(nd))
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for some ρ < 1 depending on ϵ, γ. The multi-scale data structure consists of mul-
tiple AIFP structures built on buckets of points with total size Oλ(Γ2n log(n∆)) (from
Lemma 15). From Lemma 6, we know that the complexity of the data structure is
Oϵ,γ(dn1+ρ log δ−1Polylog(nd)). We leave the detailed analysis to the full version of the
paper.

5 MEB Range Aggregate Query

Given any query ball B, we find the AMEB of P ∩B using an iterative algorithm by Badoiu
and Clarkson [9]. Their algorithm was originally designed for finding an approximate MEB
for a fixed point set P . With careful analysis we show that their approach, after some
modifications, can still be used to find AMEB in any given range B. Briefly speaking,
our idea is to construct a small-size coreset of P ∩ B. The MEB of the coreset is then a
(ϵ, γ)-approximate MEB of P ∩B. The algorithm selects the coreset in an iterative fashion.
It starts with an arbitrary point p from P ∩B. At each iteration, it performs the following
operation to add a point to the coreset: (1) Compute an (approximate) MEB of the current
coreset (directly using the algorithm in [9]); (2) Identify the AIFP in P ∩B to the center of
the current MEB, and add it to the coreset. We can show that after Oϵ,γ(log n) iterations,
the MEB of the coreset is then a (ϵ, γ)-AMEB of P ∩B.

To answer an (ϵ, γ)-AMEB query with success probability at least 1 − δ, we will need
only one (ϵ′, γ′)-AIFP data structure with success probability 1− δ/Oϵ′(log n) (where ϵ′, γ′

depends on ϵ, γ polynomially), whose size is Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) for some ρ < 1
depending on ϵ, γ. Every AMEB query is reduced to Oϵ′(log n) AIFP queries (the time for
computing the MEB every iteration is negligible compared to AIFP queries). Thus, the
query time is Oϵ,γ(dnρ log δ−1Polylog(nd)). The detailed analysis is left to the full version of
the paper.
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