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Abstract
Box-simplex games are a family of bilinear minimax objectives which encapsulate graph-structured
problems such as maximum flow [41], optimal transport [29], and bipartite matching [5]. We develop
efficient near-linear time, high-accuracy solvers for regularized variants of these games. Beyond
the immediate applications of such solvers for computing Sinkhorn distances, a prominent tool in
machine learning, we show that these solvers can be used to obtain improved running times for
maintaining a (fractional) ϵ-approximate maximum matching in a dynamic decremental bipartite
graph against an adaptive adversary. We give a generic framework which reduces this dynamic
matching problem to solving regularized graph-structured optimization problems to high accuracy.
Through our reduction framework, our regularized box-simplex game solver implies a new algorithm
for dynamic decremental bipartite matching in total time Õ(m · ϵ−3), from an initial graph with m

edges and n nodes. We further show how to use recent advances in flow optimization [11] to improve
our runtime to m1+o(1) · ϵ−2, thereby demonstrating the versatility of our reduction-based approach.
These results improve upon the previous best runtime of Õ(m · ϵ−4) [6] and illustrate the utility of
using regularized optimization problem solvers for designing dynamic algorithms.
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1 Introduction

Efficient approximate solvers for graph-structured convex programming problems have led to
a variety of recent advances in combinatorial optimization. Motivated by problems related
to maximum flow and optimal transportation, a recent line of work [40, 30, 41, 42, 29, 13]
developed near-linear time, accelerated solvers for a particular family of convex programming
objectives we refer to in this paper as box-simplex games:

min
x∈∆m

max
y∈[−1,1]n

y⊤Ax + c⊤x− b⊤y where ∆m := {x ∈ Rm
≥0| ∥x∥1 = 1} . (1)

Box-simplex games, (1), are bilinear problems where a maximization player is constrained to
the box (the ℓ∞ ball) and a minimization player is constrained to the simplex (the nonnegative
ℓ1 shell). The problem provides a convenient encapsulation of linear programming problems
with ℓ1 or ℓ∞ structure; (1) can be used to solve box-constrained ℓ∞ regression problems
[41, 42] and maximizing over the box player yields the following ℓ1 regression problem

min
x∈∆m

c⊤x + ∥Ax− b∥1 . (2)

Furthermore, solvers for (1) and (2) are used in state-of-the-art algorithms for approxim-
ate maximum flow [41], optimal transport (OT) [29], (width-dependent) positive linear
programming [7], and semi-streaming bipartite matching [5].

One of the main goals of our work is to develop efficient algorithms for solving regularized
variants of the problems (1) and (2). An example of particular interest is the following

min
x∈∆m|B⊤x=d

c⊤x + µH(x), where µ ≥ 0 and H(x) :=
∑

i∈[m]

xi log xi. (3)

The case of (3) when B ∈ Rm×n is the (unsigned) edge-vertex incidence matrix of a complete
bipartite graph, and d is a pair of discrete distributions supported on the sides of the
bipartition, is known as the Sinkhorn distance objective. This is used in machine learning
[14] as an efficiently-computable approximation to optimal transport distances: c corresponds
to movement costs, and d encodes the prescribed marginals. This objective has favorable
properties, e.g. differentiability [44], and there has been extensive work by both theorists and
practitioners to solve (3) and analyze its properties (see e.g. [14, 4] and references therein).
Choosing A and b to be sufficiently large multiples of B⊤ and d, it can be shown that
solutions to the following regularized variant of (2) yield approximate solutions to (3),

min
x∈∆m

c⊤x + ∥Ax− b∥1 + µH(x) . (4)

Beyond connections to Sinkhorn distances, there are additional reasons why it may be
desirable to solve regularized box-simplex games. For example, regularization could speed
up algorithms and allow high-precision solutions to be computed more efficiently. Further,
obtaining a high-precision solution to a regularized version of the problem yields a more
canonical and predictable approximate solution than an arbitrary low-precision approximation
to the unregularized problem. Moreover, regularization potentially makes optimal solutions
more stable to input changes. For box-simplex games stemming from bipartite matching
we quantify this stability and show all of these properties allow regularized solvers to yield
faster algorithms for a particular dynamic matching problem.

Altogether, the main contributions of this paper are the following.
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1. We give improved running times for the problem of dynamic decremental bipartite matching
(DDBM) with an adaptive adversary, a fundamental problem in dynamic graph algorithms.
Our algorithm follows from a general black-box reduction we develop from DDBM to
solving (variants of) regularized box-simplex games to high precision.

2. We give efficient solvers for (variants of) the regularized box-simplex problems (3), (4).
3. As a byproduct, we also show how to apply our new solvers (and additional tools from

the literature) to obtain state-of-the-art methods for computing Sinkhorn distances.

Formally, the DDBM problem we consider is the following: given a bipartite graph
undergoing edge deletions, maintain an ϵ-approximate (maximum) matching,1 that is a
matching which has size at least a (1 − ϵ)-fraction of the maximum (for a pre-specified)
value of ϵ. Unless specified otherwise, we consider the adaptive adversary model where
edge deletions can be specified adaptively to the matching returned. Further, we allow the
matching output by the algorithm to be fractional, rather than integral.

We show how to reduce solving the DDBM problem to solving a sequence of regularized
box-simplex games. This reduction yields a new approach to dynamic matching; this approach
is inspired by prior work, e.g. [6], but conceptually distinct in that it decouples the solving
of optimization subproblems from characterizing their solutions. For our specific DDBM
problem, the only prior algorithm achieving an amortized polylogarithmic update time (for
constant ϵ) is in the recent work of [6], which derives their dynamic algorithm as an application
of the congestion balancing technique. Our reduction eschews this combinatorial tool and
directly argues, via techniques from convex analysis, that solutions to appropriate regularized
matching problems can be used dynamically as approximate matchings while requiring
few recomputations. We emphasize our use of fast high-accuracy solvers2 in the context
of our reduction to obtain our improved runtimes, as our approach leverages structural
characteristics of the exact solutions which we only show are inherited by approximate
solutions when solved to sufficient accuracy.

Our work both serves as a proof-of-concept of the utility of regularized linear programming
solvers as a subroutine in dynamic graph algorithms, and provides the tools necessary to
solve said problems in various structured cases. This approach to dynamic algorithm design
effectively separates a “stability analysis” of the solution to a suitable optimization problem
from the computational burden of solving that problem to high accuracy: any improved solver
would then have implications for faster dynamic algorithms as well. As a demonstration of
this flexibility, we give three uses of our reduction framework (which proceed via different
solvers) in obtaining our improved DDBM update time. We hope our work opens the door
to exploring the use of the powerful continuous optimization toolkit, especially techniques
originally designed for non-dynamic problems, for their dynamic counterparts.

Paper organization. We overview our contributions in Section 1.1, and related prior
work in Section 1.2. We state preliminaries in Section 2. In Section 3.1, we describe our
framework for reducing DDBM to a sequence of regularized optimization problems satisfying
certain properties, and in Section 3.2 we give three different instantiations of the framework,
obtaining a variety of DDBM solvers. Finally in Section 4 we provide our main algorithm
for regularized box-simplex games. In the full version we provide additional discussions on
a recent advancement for faster DDBM solvers, proofs for Section 3 and Section 4, and
additional results for approximating Sinkhorn distances efficiently.

1 This is sometimes also referred to as a (1 + ϵ)-multiplicatively approximate matching in the literature.
2 Throughout, we typically use the term “high-accuracy” to refer to an algorithm whose runtime scales

polylogarithmically in the inverse accuracy (as opposed to e.g. polynomially).
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1.1 Our results
A framework for faster DDBM. We develop a new framework for solving the DDBM
problem of computing an ϵ-approximate maximum matching in a dynamic graph undergoing
edge deletions from an adaptive adversary. Our framework provides a reduction from this
DDBM problem to solving various regularized formulations of box-simplex games.

To illustrate the reduction, suppose we have bipartite G = (V, E) and, for simplicity,
that we know M∗, the size of the (maximum cardinality) matching. As demonstrated in [5],
solving the ℓ1 regression problem minx∈M∗∆m −c⊤x + ∥Ax− b∥1, to ϵM∗ additive accuracy
for appropriate choices of A, b, and c yields an ϵ-approximate maximum cardinality matching.
Intuitively, A and b penalize violations of the matching constraints, and c is a multiple of
the all-ones vector capturing the objective of maximizing the matching size. However, ℓ1
regression objectives do not necessarily have unique minimizers: as such the output of directly
minimizing these objectives is difficult to characterize beyond (approximate) optimality. This
induces difficulty in using solutions to such problems directly in dynamic graph algorithms.

Our first key observation (building upon intuition from congestion balancing [6]) is that,
beyond enabling faster runtime guarantees, regularization provides more robust solutions
which are resilient to edge deletions in dynamic applications. We show that if

x∗
ϵ := min

x∈M∗·∆m
−c⊤x + ∥Ax− b∥1 + ϵH(x) (5)

is the solution to the regularized box-simplex formulation of bipartite matching, then x∗
ϵ

enjoys favorable stability properties allowing us to argue about its size under deletions.
The stability of solutions to (5) is fairly intuitive: the entropy regularizer encourages the

objective to spread the matching uniformly, when all else is held equal. For example, when
G is a complete bipartite graph on 2n vertices, standard linear programming relaxations of
matching do not favor either of (i) an integral perfect matching, and (ii) a fractional matching
spreading mass evenly across many edges, over the other. However, using (i) as our approx-
imate matching on a graph undergoing deletions is substantially more unstable; an adaptive
adversary can remove edges corresponding to our matching, forcing Ω(n) recomputations. On
the other hand, no deletions can cause this type of instability for strategy (ii): as each edge
receives weight 1

n in the fractional matching, the only way to reduce the fractional matching
size by ϵn is to remove O(ϵn2) edges: thus O(ϵ−1) recomputations intuitively suffice for
maintaining an ϵ-approximate matching. This distinction underlies the use of high-accuracy
solvers in our reduction; indeed, while they obtain large matching values in an original graph,
approximate solutions may not carry the same types of dynamic matching value stability.
We note similar intuition motivated the approach in [6].

To make this argument more rigorous, consider using x∗
ϵ as our approximate matching

for a number of iterations corresponding to edge deletions, until its size restricted to the
smaller graph has decreased by a factor of 1 − O(ϵ). By using strong convexity of (5) in
the ℓ1 norm, we argue that whenever the objective value of x∗

ϵ has worsened, the maximum
matching size itself must have gone down by a (potentially much smaller) amount. A tighter
characterization of this strong convexity argument shows that we only need to recompute a
solution to slight variants of (5) roughly Õ(ϵ−2) times throughout the life of the algorithm.
Combined with accelerated Õ( m

ϵ )-time solvers for regularized box-simplex games (which are
slight modifications of (5)), this strategy yields an overall runtime of Õ( m

ϵ3 ), improving upon
the recent state-of-the-art decremental result of [6].

We formalize these ideas in Section 3, where we demonstrate that a range of regularization
strategies (see Definition 5) such as (5) are amenable to this reduction. Roughly, as long
as our regularized objective is “at least as strongly convex” as the entropic regularizer, and
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closely approximates the matching value in the static setting, then it can be used in our
DDBM algorithm. Combining this framework with solvers for regularized matching problems,
we give three different results. The first two obtain amortized update times of roughly Õ(ϵ−3),
in Theorems 9 and 10 via box-simplex games and matrix scaling, respectively (though the
latter holds only for dense graphs). We give an informal statement of the former here.

▶ Theorem 1 (informal, see Theorem 9). Let G = (V, E) be bipartite, |V | = n, |E| = m, and
ϵ ≥ poly(m−1). There is a deterministic algorithm maintaining an ϵ-approximate matching
in a dynamic bipartite graph with adversarial edge deletions running in time O(m log5 m ·ϵ−3).

Notably, our algorithm (deterministically) returns a fractional matching. There is a
black-box reduction from dynamic integral matching maintenance to dynamic fractional
matching maintenance contained in [45], but this reduction is bottlenecked at an amortized
Õ(ϵ−4) runtime (see e.g. Appendix A.2, [6]). Improving this reduction is a key open problem.

High-accuracy solvers for regularized box-simplex games. To use our DDBM framework,
we give a new algorithm for solving regularized box-simplex games of the form:

min
x∈∆m

max
y∈[0,1]n

fµ,ϵ(x, y) := y⊤A⊤x + c⊤x− b⊤y + µH(x)− ϵ

2
(
y2)⊤ |A|⊤x, (6)

where ϵ and µ = Ω(ϵ) are regularization parameters and y2, |A| are entrywise. The terms
H(x) and (y2)⊤|A|⊤x in (6) are parts of a primal-dual regularizer proposed in [29] (and a
variation of a similar regularizer of [41]) used in state-of-the-art algorithms for approximately
solving (unregularized) box-simplex games. This choice of regularization enjoys favorable
properties over the joint box-simplex domain, and sidesteps the infamous ℓ∞-strong convexity
barrier that has limited previous attempts at acceleration for this problem. Under relatively
mild restrictions on problem parameters (see discussion at the start of Section 4), we develop
a high accuracy solver for (6), stated informally here.

▶ Theorem 2 (informal, see Theorem 25). Given an instance of (6), with µ = Ω(ϵ), ∥A∥∞ ≤ 1,
and σ ≥ poly(m−1) Algorithm 4 returns x with maxy∈[0,1]n fµ,ϵ(x, y) − fµ,ϵ(x⋆, y⋆) ≤ σ in
time Õ(nnz(A) · 1√

µϵ ) where (x⋆, y⋆) is the optimizer of (6).

Our solver follows recent developments in solving unregularized box-simplex games. We
analyze an approximate extragradient algorithm based on the mirror prox method of [37],
and prove that iterates of the regularized problem (6) enjoy multiplicative stability properties
previously shown for the iterates of mirror prox on the unregularized problem [13]. Leveraging
these tools, we also show the regularizer-operator pair satisfies technical conditions known as
relative Lipschitzness and strong monotonicity, thus enabling a similar convergence analysis
as in [13]. This yields an efficient algorithm for solving (6).

Roughly, when the scale of the problem (defined in terms of the matrix operator norm
∥A∥∞ and appropriate norms of b and c) is bounded,3 our algorithm for computing a
high-precision optimizer to (6) runs in Õ( 1√

µϵ ) iterations, each bottlenecked by a matrix-
vector product through A. When µ ≈ ϵ, the optimizer of the regularized variant is an
O(ϵ)-approximate solution to the unregularized problem (1), and hence Theorem 25 recovers
state-of-the-art runtimes (scaling as Õ(ϵ−1)) for box-simplex games up to logarithmic factors.
We achieve our improved dependence on µ in Theorem 25 by trading off the scales of the

3 Our runtimes straightforwardly extend to depend appropriately on these norms in a scale-invariant way.
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primal and dual domains. This type of argument is well-known for separable regularizers [9],
but a key technical novelty of our paper is demonstrating a similar analysis holds for non-
separable regularizers compatible with box-simplex games e.g. the one from [29], which has
not previously been done. To our knowledge, Theorem 25 is the first result for solving
general regularized box-simplex games to high accuracy in nearly-linear time. We develop
our box-simplex algorithm and prove Theorem 25 in Section 4.

Improved rates for the Sinkhorn distance objective. We apply our accelerated solver
for (6) in computing approximations to the Sinkhorn distance objective (3), a fundamental
algorithmic problem in the practice of machine learning, at a faster rate. It is well-known
that solving the regularized Sinkhorn problem (3) with µ scaling much larger than the
target accuracy ϵ enjoys favorable properties in practice [14] (compared to its unregularized
counterpart, the standard OT distance). In [3], the authors show that Sinkhorn iteration
studied in prior work solves (3) to additive accuracy ϵ at an unaccelerated rate of Õ( 1

µϵ ). For
completeness we provide a proof of this result (up to logarithmic factors) in Appendix C.3 in
the full version of this paper.

As a straightforward application of the solver we develop for (6), we demonstrate that we
can attain an accelerated rate of Õ( 1√

µϵ ) for approximating (3) to additive accuracy ϵ via a
first-order method. More specifically, the following result is based on reducing the “explicitly
constrained” Sinkhorn objective (3) to a “soft constrained” regression variant of the form (4),
where our box-simplex game solver is applicable. We now state our first result on improved
rates for approximating Sinkhorn distance objectives.

▶ Theorem 3 (informal, see Theorem 11 in full version). Let µ ∈ [Ω(ϵ), O(∥c∥∞
log m )] in (3)

corresponding to a complete bipartite graph with m edges. There is an algorithm based on the
regularized box-simplex game solver of Theorem 25 which obtains an ϵ-approximate minimizer
to (3) in time Õ(m · ∥c∥∞√

µϵ ).

By leveraging the particular structure of the Sinkhorn distance and its connection to a
primitive in scientific computing and theoretical computer science known as matrix scaling
[35, 12, 2], we give a further-improved solver for (3) in Theorem 4. This solver has a nearly-
linear runtime scaling as Õ( 1

µ ), which is a high-precision solver for the original Sinkhorn
objective. Our high-precision Sinkhorn solver applies powerful second-order optimization
tools from [12] based on the box-constrained Newton’s method for matrix scaling, yielding
our second result on improved Sinkhorn distance approximation rates.

▶ Theorem 4 (informal, see Theorem 12 in full version). Let µ, ϵ = O(∥c∥∞) in (3) correspond-
ing to a complete bipartite graph with m edges. There is an algorithm based on the matrix
scaling solver of [12] which obtains an ϵ-approximate minimizer to (3) in time Õ(m · ∥c∥∞

µ ).

We present both Theorems 3 and 4 because they follow from somewhat incomparable
solver frameworks. While the runtime of Theorem 3 is dominated by that of Theorem 4, it is
a direct application of a more general solver (Theorem 25), which also applies to regularized
regression or box-simplex objectives where the optimum does not have a characterization as
a matrix scaling. Moreover, the algorithm of Theorem 4 is a second-order method which
leverages recent advances in solving Laplacian systems, and hence may be less practical than
its counterpart in Theorem 3. Finally, we note that due to subtle parameterization differences
for our DDBM applications, the DDBM runtime attained by using our box-simplex solver
within our reduction framework is more favorable on sparse graphs (m≪ n2), compared to
that obtained by the matrix scaling solver.
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1.2 Prior work
Dynamic matching. Dynamic graph algorithms are an active area of research in the
theoretical computer science, see e.g. [27, 15, 6, 31, 17, 21, 1, 26, 19, 22, 36, 20] and references
therein. These algorithms have been developed under various dynamic graph models,
including the additions and deletions on vertices or edges, and oblivious adversary model
where the updates to the graph are fixed in advance (i.e. do not depend on randomness used
by the algorithm), and the adaptive adversary model in which updates are allowed to respond
to the algorithm, potentially adversarially. We focus on surveying deterministic dynamic
matching algorithms with edge streams, which perform equally well under oblivious and
adaptive updates; we remark the dynamic matching algorithms have also been studied under
vertex addition and deletion model in [8]. For a more in-depth discussion and corresponding
developments in other settings, see [45].

Many variants of the particular dynamic problem of maintaining matchings in bipartite
graphs have been studied, such as the fully dynamic [25], incremental [24, 23], and decremental
[6] cases. However, known conditional hardness results [28, 32] suggest that attaining a
polylogarithmic update time for maintaining an exact fully dynamic matching may be
unattainable, prompting the study of restricted variants which require maintaining an
approximate matching. The works most relevant to our paper are those of [24], which provides
a Õ(ϵ−4) amortized update time algorithm for computing an ϵ-approximate matching for
incremental bipartite matching, and [6], which achieves a similar Õ(ϵ−4) update time for
decremental bipartite matching. Our main DDBM results, stated in Theorems 9 and 10,
improve upon [6] by roughly a factor of ϵ−1 in the decremental setting.

Box-simplex games. Box-simplex games, as well as ℓ1 and ℓ∞ regression, are equivalent to
linear programs in full generality [33], have widespread utility, and hence have been studied
extensively by the continuous optimization community. Here we focus on discussing near-
linear time approximation algorithms, i.e. algorithms which run in time near-linear in the
sparsity of the constraint matrix, potentially depending inverse polynomially on the desired
accuracy. Interior point methods solve these problems with polylogarithmic dependence
on accuracy, but are second-order and often encounter polynomial runtime overhead in the
dimension (though there are exceptions, e.g. [43] and references therein).

A sequence of early works e.g. [37, 38, 39] on primal-dual optimization developed first-
order methods for solving games of the form (1). These works either directly operated
on the objective (1) as a minimax problem, or optimized a smooth approximation to the
objective recast as a convex optimization problem. While these techniques obtained iteration
complexities near-linear in the sparsity of the constraint matrix A, they either incurred an
(unaccelerated) ϵ−2 dependence on the accuracy ϵ, or achieved an ϵ−1 rate of convergence at
the cost of additional dimension-dependent factors. This was due to the notorious “ℓ∞ strong
convexity barrier” (see Appendix A, [42]), which bottlenecked classical acceleration analyses
over an ℓ∞-constrained domain. [41] overcame this barrier by utilizing the primal-dual
structure of (1) through a technique called “area convexity”, obtaining a Õ(ϵ−1)-iteration
algorithm. Since then, [13] demonstrated that fine-grained analyses of the classical algorithms
of [37, 39] also obtain comparable rates for solving (1). Finally, we mention that area convexity
has found applications in optimal transport and positive linear programming [29, 7].

Sinkhorn distances. Since [14] proposed Sinkhorn distances for machine learning applica-
tions, a flurry of work has aimed at developing algorithms with faster runtimes for (3). A
line of work by [4, 16, 34] has analyzed the theoretical guarantees of the classical Sinkhorn

ICALP 2022



77:8 Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching

matrix scaling algorithm for this problem, due to the characterization of its solution as
a diagonal rescaling of a fixed matrix. These algorithms obtain rates scaling roughly as
Õ(∥c∥2

∞ ϵ−2) for solving (3) to additive accuracy ϵ. Perhaps surprisingly, to our knowledge
no guarantees for solving (3) which improve as the regularization parameter µ grows are
currently stated in the literature, a shortcoming addressed by this work. Finally, we remark
that Sinkhorn iteration has also received extensive treatment from the theoretical computer
science community, e.g. [35], due to connections with algebraic complexity; see [18] for a
recent overview of these connections.

2 Preliminaries

General notation. We denote [n] := {1, 2, . . . , n} and let 0 and 1 denote the all-0 and all-1
vectors. Given v ∈ Rd, vi or [v]i denotes the ith entry of v, and for any subset E ⊆ [d] we
use vE or [v]E to denote the vector in Rd zeroing out v on entries outside of E. We use
([v]i)+ = max([v]i, 0) to denote the operation truncating negative entries. We use v ◦ w to
denote elementwise multiplication between any v, w ∈ Rd. Given matrix A ∈ Rm×n, we
use Aij to denote its (i, j)th entry, and denote its ith row and jth column by Ai: and A:j
respectively; its nonzero entry count is nnz(A). We use diag (v) to denote the diagonal
matrix where [diag (v)]ii = vi, for each i. Given two quantities M and M ′, for any c > 1 we
say M is a c-approximation to M ′ if it satisfies 1

c M ′ ≤M ≤ cM ′. For ϵ≪ 1, we say M is
an ϵ(-multiplicative)-approximation of M ′ if (1− ϵ)M ′ ≤M ≤ (1 + ϵ)M ′. Throughout the
paper, we use |A| to denote taking the elementwise absolute value of a matrix A, and v2 to
denote the elementwise squaring of a vector v when clear from context.

Norms. ∥·∥p denotes the ℓp norm of a vector or corresponding operator norm of a matrix.
In particular, ∥A∥∞ = maxi ∥Ai:∥1. We use ∥·∥ interchangeably with ∥·∥2. We use ∆m to
denote an m-dimensional simplex, i.e. x ∈ ∆m ⇐⇒ x ∈ Rd

≥0, ∥x∥1 = 1.

Graphs. A graph G = (V, E) has vertices V and edges E; we abbreviate n := |V | and
m := |E| whenever the graph is clear from context. For bipartite graphs, V = L ∪R denotes
the bipartition. We let B ∈ {0, 1}E×V be the (unsigned edge-vertex) incidence matrix with
Bev = 1 if v is an endpoint of e and Bev = 0 otherwise.

Bregman divergence. Given any convex distance generating function (DGF) q(x), we use
V q

x′(x) = q(x)− q(x′)− ⟨∇q(x′), x− x′⟩ ≥ 0 as its induced Bregman divergence. When the
DGF is clear from context, we abbreviate V := V q. By definition, V satisfies

⟨−∇Vx′(x), x− u⟩ = Vx′(u)− Vx(u)− Vx′(x) for any x, x′, u. (7)

Computational model. We use the standard word RAM model, where one can perform
each basic arithmetic operations on O(log n)-bit words in constant time.

3 Dynamic decremental bipartite matching

Here we provide a reduction from maintaining an approximately maximum matching in a
decremental bipartite graph to solving regularized matching problems to sufficiently high
precision. In Section 3.1 we give this framework and then, in Section 3.2, we provide various
instantiations of our framework based on different solvers, to demonstrate its versatility.
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3.1 DDBM framework
Here we provide our general framework for solving DDBM, which assumes that for bipartite
G = (V, E) and approximate matching value M there is a canonical regularized matching
problem with properties given in Definition 5; we later provide multiple such examples.
Throughout this section, MCM(E) denotes the size of the maximum cardinality matching
on edge set E; the vertex set V is fixed throughout, so we omit it in definitions.

▶ Definition 5 (Canonical regularized objective). Let G = (V, E0) be a bipartite graph and
M ≥ 0 be an 8-approximation of MCM(E0). For all E ⊆ E0 with MCM(E) ≥ M

8 , let
fM,E : RE

≥0 → R,

νE := min
x∈RE

≥0

fM,E(x) , and xE := argminx∈RE
≥0

fM,E(x). (8)

We call the set of {fM,E}MCM(E)≥ M
8

a family of (ϵ, β)-canonical regularized objectives (CROs)
for G(E0) and M if the following four properties hold.

1. For all E ⊆ E0 with MCM(E) ≥ M
8 , −νE is an ϵ

8 -approximation of MCM(E).
2. For all E ⊆ E0 with MCM(E) ≥ M

8 , fM,E is equivalent to fM,E0 with the extra constraint
that xE0\E is fixed to 0 entrywise.

3. For any E′ ⊆ E ⊆ E0 with MCM(E) ≥ M
8 and MCM(E′) ≥ M

8 ,

fM,E′(xE′
)− fM,E(xE) ≥ βV H

xE (xE′
) where H(x) :=

∑
e

xe log xe (9)

4. For any x ∈ RE
≥0 such that 8Mx is a feasible matching on (V, E),

8M ∥xE∥1 −
ϵ

128M ≤ −fM,E(x) ≤ 8M ∥xE∥1 + ϵ

128M. (10)

We further define the following notion of a canonical solver for a given CRO, which solves
the CRO to sufficiently high accuracy, and rounds the approximate solution to feasibility.

▶ Definition 6 (Canonical solver). For (ϵ, β)-CROs {fM,E}MCM(E)≥ M
8

, we call A an (ϵ, T )-
canonical solver if it has subroutines Solve and Round running in O(T ) time, satisfying:
1. Solve finds an approximate solution x̂E of fM,E satisfying(

1 + ϵ

8

)
νE ≤ fM,E(x̂E) ≤

(
1− ϵ

8

)
νE . (11a)∥∥x̂E − xE

∥∥
1 ≤

ϵ

1100 . (11b)

2. Round takes x̂E and returns x̃E where 8Mx̃E is a feasible matching for G(E), and:(
1 + ϵ

8

)
νE ≤ fM,E(x̃E) ≤

(
1− ϵ

8

)
νE . (12a)

x̃E ≤ x̂E monotonically. (12b)

Our DDBM framework, Algorithm 1, uses CRO solvers satisfying the approximation
guarantees of Definition 6 to dynamically maintain an approximately maximum matching.
We state its correctness and runtime in Proposition 7, and defer a proof to Appendix A.1 in
the full version.

In the following, we let E0 be the original graph’s edge set, and E1, E2, . . . , EK be the
sequence of edge sets recomputed in Line 8, before termination for EK+1 on Line 4.
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Algorithm 1 DecMatching(ϵ, G = (V, E)).

Input: ϵ ∈ (0, 1
8 ), graph G = (V, E)

Parameters : Family of CROs {fM,E}E is MP, (ϵ, T )-canonical solver (Solve, Round)
1 Compute M with 1

2 MCM(E) ≤M ≤ MCM(E), via the greedy algorithm
2 x̂E ← Solve(fM,E)
3 x̃E ← Round(x̂E), Mest ←M

4 while Mest > 1
4 M do

5 Edel ← ∅
6 while edge e is deleted and ∥x̃E

Edel
∥1 ≤ ϵ

8
∥∥x̃E

∥∥
1 do

▷ recompute whenever the deleted approximate matching size reaches a factor Θ(ϵ)
7 Edel ← Edel ∪ {e}
8 E ← E \ Edel, Edel ← ∅
9 x̂E ← Solve(fM,E) ▷ find high-accuracy minimizer of FM,E satisfying (11a) and (11b)

10 x̃E ← Round(x̂E) ▷ round to feasible matching satisfying (12a) and (12b)
11 Compute Mest with 1

2 MCM(E) ≤Mest ≤ MCM(E), via the greedy algorithm

▶ Proposition 7. Let ϵ ∈ (0, 1) and M ≥ 0. Given a family of (ϵ, β)-CROs {fM,E} for
G = (V, E0), and an (ϵ, T )-canonical solver for the family, Algorithm 1 satisfies the following.
1. When Mest > 1

4 M on Line 4, where Mest estimates MCM(Ek): at any point in the loop
of Lines 6 to 7, 8Mx̃Ek

Ek\Edel
is an ϵ-approximate matching of G(V, Ek \ Edel).

2. When Mest ≤ 1
4 M on Line 4, where Mest estimates MCM(E): MCM(E) ≤ 1

2 MCM(E0).
The runtime of the algorithm is O(m + (T + m) · M

βϵ ).

Proof sketch. We summarize proofs of the two properties, and our overall runtime bound.

Matching approximation properties. By the greedy matching guarantee in Line 4, it holds
that for any Ek (the edge set recomputed in the kth iteration of Line 8 before termination),
its true matching size MCM(Ek) must be no smaller than M

4 . Consequently, we can use the
CRO family to approximate the true matching size up to O(ϵ) multiplicative factors, and by
the guarantee (12a), this implies 8Mx̃Ek

Ek\Edel
is an O(ϵ) approximation of the true matching

size. Also, our algorithm’s termination condition and the guarantee on Mest immediately
imply MCM(EK+1) ≤ 1

2 MCM(E0).

Iteration bound. We use a potential argument. Given Ek+1 ⊂ Ek, corresponding to
consecutive edge sets requiring recomputation, we use the following inequalities:

fM,Ek+1

(
xEk+1

)
− fM,Ek

(
xEk
) (i)

≥ βV H
xEk

(
xEk+1

)
(13)

(ii)
≥ β

∑
i∈Edel

(
[xEk+1 ]i log[xEk+1 ]i − [xEk ]i log[xEk ]i −

(
1 + log[xEk ]i

)
·
(
[xEk+1 ]i − [xEk ]i

))
(iii)= β

∑
i∈Edel

[xEk ]i
(iv)
≥ β

(∥∥x̂
Ek
Edel

∥∥
1

−
∥∥x̂Ek − xEk

∥∥
1

) (v)
≥ β

(∥∥x̃
Ek
Edel

∥∥
1

−
∥∥x̂Ek − xEk

∥∥
1

)
,

where (i) uses the third property in (9), (ii) uses convexity of the scalar function c log c, (iii)
uses that x

Ek+1
Edel

is 0 entrywise, (iv) uses the triangle inequality, and (v) uses the monotonicity
property (12b). Moreover, between recomputations we have that the ℓ1-norm of deleted
edges satisfies

∥∥∥x̃Ek

Edel

∥∥∥
1

= Ω(ϵ), and our solver guarantees
∥∥x̂Ek − xEk

∥∥
1 = O(ϵ). Since the

overall function decrease before termination is O(M) given the stopping criterion in Line 4,
the algorithm terminates after O( M

βϵ ) recomputations. ◀
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Using this generic DDBM framework, we obtain improved decremental matching al-
gorithms by defining families of CROs fM,E(G) with associated (ϵ, T )-canonical solvers
satisfying Definition 6. In Appendix A.2, we give a regularized primal-dual construction
of fM,E , and adapt the solver of Section 4 to develop a canonical solver for the family
(specifically, as the subroutine Solve). Similarly, in Appendix A.3, we show how to construct
an appropriate family of fM,E using Sinkhorn distances, and apply the matrix scaling method
presented in Appendix C.2 (based on work of [12]) to appropriately instantiate Solve.

While both algorithms, as stated, only maintain an approximate fractional matchings, this
fractional matching can be rounded at any point to an explicit integral matching via e.g. the
cycle-canceling procedure of Proposition 3 in [5] in time O(m log m), or dynamically (albeit
at amoritized cost Õ(ϵ−4) using [45]). Moreover, our algorithm based on the regularized
box-simplex solver (Theorem 9) is deterministic, and both work against an adaptive adversary.
Repeatedly applying Proposition 7, we obtain the following overall claim.

▶ Corollary 8. Let G = (V, E(G)) be bipartite, and suppose for any subgraph (V, E0 ⊆ E(G)),
we are given a family of (ϵ, β)-CROs and an (ϵ, T )-canonical solver for the family. There is a
deterministic algorithm maintaining a fractional ϵ-approximate matching in a dynamic bipart-
ite graph with adversarial edge deletions, running in time O

(
m log3 n + (T + m) · M

βϵ · log n
)

.

Proof. It suffices to repeatedly apply Proposition 7 until we can safely conclude MCM(E) = 0,
which by the second property can only happen O(log n) times. ◀

3.2 DDBM solvers
In this section, we demonstrate the versatility of the DDBM framework in Section 3.1 by
instantiating it with different classes of CRO families, and applying different canonical solvers
on these families. By using regularized box-simplex game solvers developed in this paper
(see Section 4), we give an Õ(mϵ−3) time algorithm for maintaining a ϵ-multiplicatively
approximate fractional maximum matching in a m-edge bipartite graph undergoing a sequence
of edge deletions, improving upon the previous best running time of Õ(mϵ−4) [6]. We also use
our framework to obtain different decremental matching algorithms with runtime Õ(n2ϵ−3)
and O(m1+o(1)ϵ−2), building on recent algorithmic developments in the literature on matrix
scaling. The former method uses box-constrained Newton’s method solvers for matrix scaling
problems in [12] (these ideas are also used in Appendix C.2), and the latter uses a recent
almost-linear time high-accuracy Sinkhorn-objective solver in [11], a byproduct of their
breakthrough maximum flow solver. We defer readers to corresponding sections in Appendix
A for omitted proofs.

Given a bipartite graph initialized at G = (V, E0) with unsigned incidence matrix
B ∈ {0, 1}E×V ; we denote n := |V | and m := |E0|. The first family of CROs one can consider
is the regularized box-simplex game objective in form:

min
(x,ξ)∈∆E+1

max
y∈[0,1]V

fM,E(x, ξ, y) :=−1⊤
E(8Mx) − y⊤ (8MB⊤x − 1

)
+ γxH(x, ξ) + γy (y2)⊤ B⊤x,

where γx = Θ̃ (ϵM) , γy = Θ (ϵM) , and
fM,E(x) := min

ξ|(x,ξ)∈∆E+1
max

y∈[0,1]V
fM,E(x, ξ, y). (14)

We prove this is a family of (ϵ, γx)-CROs (see Lemma 8 in full version). The canonical
solver for this family uses RemoveOverflow (Algorithm 4, [5]) as Round and uses the regularized
box-simplex games developed later in this paper (see Section 4) as Solve, which finds an
ϵ-approximate solution of (14) in time Õ(m

ϵ ). Combining all these components with the
DDBM framework in Corollary 8 leads to the following DDBM solver based on regularized
box-simplex games.
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▶ Theorem 9. Let G = (V, E) be bipartite and let ϵ ∈ [Ω(m−3), 1). There is a deterministic
algorithm for the DDBM problem which maintains an ϵ-approximate matching, based on
solving regularized box-simplex games, running in time O

(
mϵ−3 log5 n

)
.

Our second CRO family is the following regularized Sinkhorn distance objective:

min
( x

xdum )∈RẼ
≥0 | 2|R|B̃⊤( x

xdum )=d

f sink
M,E(xtot) := 2|R|1⊤

Ex + γH
(
x, xdum) where γ = Θ̃ (ϵM) ,

f sink
M,E(x) := min

xdum∈RE\E0
≥0

f sink
M,E(x, xdum),

(15)

where we extend graph G = (V, E) to a balanced bipartite graph G̃ = (Ṽ , Ẽ) by introducing
dummy vertices and edges. The extended graph allows us to write the inequality constraint
B⊤x = 1V equivalently as the linear constraint 2|R|B̃⊤ ( x

xdum ) = d for some defined d ∈ RṼ

as some properly-extended vector of 1V . This allows us to apply known matrix scaling solver
to such approximating Sinkhorn distance objective in literature.

We prove this is a family of (ϵ, γ)-CROs (see Lemma 10 in full version). The canonical
solver for this family uses truncation to E as Round and uses the matrix scaling solver
from [12] based on box-constrained Newton’s method as Solve, which finds an ϵ-approximate
solution of (15) in time Õ(n2/ϵ). Combining all these components with the DDBM framework
in Corollary 8 leads to the following DDBM solver based on approximating Sinkhorn distances.

▶ Theorem 10. Let G = (V, E) be bipartite and ϵ ∈ [Ω(m−3), 1). There is a randomized
algorithm for the DDBM problem which maintains an ϵ-approximate matching with probability
1− n−Ω(1), based on matrix scaling solver of [12], running in time Õ

(
n2ϵ−3).

Alternatively, for the same (ϵ, γ)-CRO family as in (15), one can use the same Round
procedure and the recent high-accuracy almost-linear time graph flow problems solver of [11]
for Solve as a canonical solver. Since this new solver can find high-accuracy solutions of
entropic-regularized problems of the form (15) within a runtime of (|E0|+ O(|V |))1+o(1) =
m1+o(1), this gives a third DDBM solver, which yields and improved an dependence on ϵ−1.

▶ Theorem 11. Let G = (V, E) be bipartite and ϵ ∈ [Ω(m−3), 1). There is a randomized
algorithm for the DDBM problem which maintains an ϵ-approximate matching with probability
1− n−Ω(1), based on the Sinkhorn objective solver of [11], running in time m1+o(1)ϵ−2.

4 Regularized box-simplex games

In this section, we develop a high-accuracy solver for regularized box-simplex games:

min
x∈∆m

max
y∈[0,1]n

fµ,ϵ(x, y) := y⊤A⊤x + c⊤x− b⊤y + µH(x)− ϵ

2
(
y2)⊤ |A|⊤x,

where H(x) :=
∑

i∈[m]

xi log xi is the standard entropic regularizer,
(16)

where we recall absolute values and squaring act entrywise.
For ease of presentation, we make the following assumptions for some δ > 0.

1. Upper bounds on entries: ∥A∥∞ ≤ 1, ∥b∥∞ ≤ Bmax, ∥c∥∞ ≤ Cmax. For simplicity, we
assume Bmax ≥ Cmax ≥ 1; else, Cmax ← max(1, Cmax) and Bmax ← max(Cmax, Bmax).

2. Lower bounds on matrix column entries: maxi |Aij | ≥ δ for every j ∈ [n].
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We defer the detailed arguments of why these assumptions are without loss of generality
to Appendix B in the full version. Our algorithm acts on the induced (monotone) gradient
operator of the regularized box-simplex objective (16), namely (∇xfµ,ϵ(x, y),−∇yfµ,ϵ(x, y)),
defined as

gµ,ϵ(x, y) :=
(

Ay + c + µ(1 + log(x))− ϵ

2 |A| (y
2),−A⊤x + b + ϵ · diag (y) |A|⊤ x

)
. (17)

Further, it uses the following joint (non-separable) regularizer of

rµ,ϵ(x, y) := ρ
∑

i∈[m]

xi log xi + 1
ρ

x⊤ |A|
(
y2) where ρ =

√
2µ

ϵ
, (18)

variants of which have been used in [41, 29, 5, 13]. When clear from context, we drop
subscripts and refer to these as operator g and regularizer r. Our method is the first
high-accuracy near-linear time solver for the regularized problem (16), yielding an O(σ)-
approximate solution with a runtime scaling polylogarithmically in problem parameters and
σ. We utilize a variant of the mirror prox [37] method for strongly monotone objectives,
which appeared in [9, 13] for regularized saddle point problems with separable regularizers.

In Section 4.1, we present high-level ideas of our algorithm, which uses a mirror prox outer
loop (Algorithm 2) and an alternating minimization inner loop (Algorithm 3) to implement
outer loop steps; we also provide convergence guarantees. In Section 4.2, we state useful
properties of the regularizer (18), and discuss a technical detail ensuring iterate stability
in our method. In Section 4.3, we provide our full algorithm for regularized box-simplex
games, Algorithm 4 and give guarantees in Theorem 25. Omitted proofs are in Appendix B.

4.1 Algorithmic framework
In this section, we give the algorithmic framework we use to develop our high-precision solver,
which combines an outer loop inspired by mirror prox [37] with a custom inner loop for
implementing each iteration. We first define an approximate solution for a proximal oracle.

▶ Definition 12 (Approximate proximal oracle solution). Given a convex function f over
domain Z and σ ≥ 0, we say z′ ∈ Z is a σ-approximate solution for a proximal oracle if z′

satisfies ⟨∇f(z′), z′ − z⟩ ≤ σ. We denote this approximation property by z′ ←σ argminz∈Zf .

We employ such approximate solutions as the proximal oracle within our “outer loop“
method. Our outer loop is a variant of mirror prox (Algorithm 2) which builds upon both
the mirror prox type method in [41] for solving unregularized box-simplex games and the
high-accuracy mirror prox solver developed in [9, 13] for bilinear saddle-point problems
on geometries admitting separable regularizers. We first give a high-level overview of the
analysis, which requires bounds on two properties. First, suppose g is ν-strongly monotone
with respect to regularizer r, i.e.

for any w, z ∈ Z, ⟨g(w)− g(z), w − z⟩ ≥ ν ⟨∇r(w)−∇r(z), w − z⟩ . (19)

Further, suppose it is α-relatively Lipschitz with respect to r and Algorithm 4 (see Definition
1 of [13]), i.e. for any consecutive iterates zk−1, zk−1/2, zk of our algorithm,4〈

g(zk−1/2)− g(zk−1)), zk−1/2 − zk

〉
≤ α

(
Vzk−1/2(zk) + Vzk−1(zk−1/2)

)
. (20)

4 This property (i.e. relative Lipschitzness restricted to iterates of the algorithm) was referred to as “local
relative Lipschitzness” in [13], but we drop the term “local” for simplicity.
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With these assumptions, we show that the strongly monotone mirror prox step makes
progress by decreasing the divergence to optimal solution Vzk

(z⋆) by a factor of α
α+ν : this

implies Õ( α
ν ) iterations suffice for finding a high-accuracy solution. We provide the formal

convergence guarantee of MirrorProx in Proposition 13, which also accommodates the error
of each approximate proximal step used in the algorithm. This convergence guarantee is
generic and does not rely on the concrete structure of g, r in our box-simplex problem.

Algorithm 2 MirrorProx().

Input: σ
2 -approximate proximal oracle, operator and regularizer pair (g, r) such that
g is ν-strongly monotone and α-relatively Lipschitz with respect to r

Parameters : Number of iterations K

1 z0 ← argminz∈Zr(z)
2 for k = 1, . . . , K do
3 zk−1/2 ←σ/2 argminz∈Z

{
⟨g (zk−1) , z⟩+ αVzk−1(z)

}
4 zk ←σ/2 argminz∈Z

{〈
g
(
zk−1/2

)
, z
〉

+ αVzk−1(z) + νVzk−1/2(z)
}

5 return zK

▶ Proposition 13 (Convergence of Algorithm 2). Given regularizer r with range at most Θ,
suppose g is ν-strongly-monotone with respect to r (see (19)), and is α-relatively-Lipschitz with

respect to r (see (20)). Let zK be the output of Algorithm 2. Then, V r
zK

(z⋆) ≤
(

α
ν+α

)K

Θ+ σ
ν .

Given the somewhat complicated nature of our joint regularizer, we cannot solve the
proximal problems required by Algorithm 2 in closed form. Instead, we implement each
proximal step to the desired accuracy by using an alternating minimization scheme, similarly
to the implementation of approximate proximal steps in [41, 29].

To analyze our algorithm, we use a generic progress guarantee for alternating minimization
from [29] to solve each subproblem, stated below.

Algorithm 3 AltMin(γx, γy, A, θ, T, xinit, yinit).

Input: A ∈ Rm×n
≥0 , γx ∈ Rm, γy ∈ Rn, T ∈ N, θ > 0, xinit ∈ ∆m, yinit ∈ [0, 1]n

Output: Approximate minimizer to ⟨(γx, γy), z⟩+ θr(z) for r(z) in (18)
1 x(0) ← xinit, y(0) ← yinit;
2 for 0 ≤ t ≤ T do
3 x(t+1) ← argminx∈∆m

{
⟨γx, x⟩+ θr(x, y(t))

}
;

4 y(t+1) ← argminy∈[0,1]n

{
⟨γy, y⟩+ θr(x(t+1), y)

}
;

5 return (x(T +1), y(T ))

▶ Lemma 14 (Alternating minimization progress, Lemma 5 and Lemma 7, [29]). Let r : X×Y →
R be jointly convex, θ > 0, and γx and γy be linear operators on X ,Y. Define

xOPT, yOPT = argminx∈X argminy∈Yf(x, y) := ⟨γx, x⟩+ ⟨γy, y⟩+ θr(x, y). (21)

Suppose f(x, y) is twice-differentiable and satisfies: for all x′ ≥ 1
2 x entrywise, x′, x ∈ X and

y′, y ∈ Y, ∇2f(x′, y′) ⪰ 1
κ f(x, y). Then the iterates of Algorithm 3 satisfy

f(x(t+2), y(t+1))− f(xOPT, yOPT) ≤
(

1− 1
2κ

)(
f(x(t+1), y(t))− f(xOPT, yOPT)

)
.
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Combining this lemma with the structure of our regularizer (18), we obtain the following
guarantees, showing Algorithm 3 finds a σ

2 -approximate solution to the proximal oracle.

▶ Corollary 15 (Convergence of Algorithm 3). Let δ, σ ∈ (0, 1), ρ ≥ 1. Suppose we are given
γ ∈ Z∗ = X∗×Y∗ with max(∥γx∥∞ , ∥γy∥1) ≤ B, and define the proximal subproblem solution

xOPT, yOPT = argminx∈∆margminy∈[0,1]nf(x, y) := ⟨γx, x⟩+⟨γy, y⟩+θr(x, y) for some θ > 0.

If the Hessian condition in Lemma 14 holds with a constant κ > 0, and all simplex iterates x

of Algorithm 3 satisfy x ≥ δ elementwise, then the algorithm finds a σ
2 -approximate solution

to the proximal oracle within T = O
(

log
(

ρ(B+mnθ)2

δσθ

))
iterations.

4.2 Helper lemmas
Before providing our full method and analysis, here we list a few helper lemmas, which we rely
on heavily in our later development. The first characterizes a useful property of rµ,ϵ, showing
that its Hessian is locally well-approximated by a diagonal matrix, which induces appropriate
local norms for the blocks x ∈ X , y ∈ Y. We use this to prove the “strong monotonicity”
(Lemma 20) and “relative Lipschitzness” (Lemma 22) bounds required in Section 4.3.

▶ Lemma 16 (Bounds on regularizer). Suppose A ∈ Rm×n has ∥A∥∞ ≤ 1. For any
z = (x, y) ∈ ∆m × [0, 1]n, r = rµ,ϵ defined as in (18), and x̄ ∈ Rm

>0, ⟨x, Ay⟩ ≤
∥x∥diag( 1

x̄ ) ∥y∥diag(|A|⊤x̄) . Further, if ρ ≥ 3, the matrix

D(x) :=
(

ρ
2 diag

( 1
x

)
0

0 1
ρ diag

(
|A|⊤ x

)) (22)

satisfies the following relationship with the Hessian matrix of r(z):

D(x) ⪯ ∇2r(z) =
(

ρ · diag
( 1

x

) 2
ρ Adiag (y)

2
ρ diag (y) A⊤ 2

ρ diag
(
|A|⊤ x

)) ⪯ 4D(x). (23)

We also introduce the following notion of a padding oracle (cf. Definition 2 of [10]), which
helps us control the multiplicative stability of iterates when running our algorithm.

▶ Definition 17. Given δ > 0, and any z̄ = (x̄, y) ∈ ∆m × [0, 1]n, a padding oracle Oδ

returns z = (x, y) by setting x̂i = max(x̄i, δ) coordinate-wise and letting x = x̂
∥x̂∥1

.

This padding oracle has two merits which we exploit. First, the error incurred due
to padding is small proportional to the padding size δ, which finds usage in proving the
correctness of our main algorithm, Algorithm 4 (see Proposition 24).

▶ Lemma 18 (Error of padding, cf. Lemma 6, [10]). For δ > 0 and z̄ = (x̄, y) ∈ ∆m × [0, 1]n
let z = (x, y) ∈ ∆m × [0, 1]n where x = Oδ(x̄) (Definition 17), then for r in (18), and any
w ∈ Z = ∆m × [0, 1]n, V r

z (w)− V r
z̄ (w) ≤

(
ρ + 8

ρ

)
mδ.

Second, padding ensures that the iterates of our algorithm satisfy x = Ω(δ) entrywise, i.e.
no entries of our simplex iterates x are too small. This helps ensure the stability of iterates
throughout one call of Algorithm 3, formally through the next lemma.

▶ Lemma 19 (Iterate stability in Algorithm 3). Suppose ϵ ≤ 1, ρ ≥ 6, and α ≥ 36
ρ (µ log 4

δ +
3Cmax). Let (xk, yk) denote blocks of zk, the kth iterate of Algorithm 2. In any iteration k

of Algorithm 2, calling Algorithm 3 to implement Line 3, if xk−1 ≥ δ
2 entrywise, x(t+1) ∈

xk−1 ·
[
exp

(
− 1

9
)

, exp
( 1

9
)]

, for all t ∈ [T ]. Calling Algorithm 3 to implement Line 4, if
xk−1/2 ≥ δ

4 entrywise, x(t+1) ∈ x
α

α+ν

k−1 ◦ x
ν

α+ν

k−1/2 ·
[
exp

(
− 1

9
)

, exp
( 1

9
)]

for all t ∈ [T ].
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4.3 Regularized box-simplex solver and its guarantees

We give our full high-accuracy regularized box-simplex game solver as Algorithm 4, which
combines Algorithm 2, Algorithm 3, and a padding step to ensure stability. For space
considerations, we defer the complete statement of algorithm to the full version of the paper.

Algorithm 4 RegularizedBS(A, b, c, ϵ, µ, σ).

Input: A ∈ Rm×n, c ∈ Rm, b ∈ Rn, accuracy σ ∈ (m−10, 1), 72ϵ ≤ µ ≤ 1
Output: Approximate solution pair (x, y) to (16)

1 Global: δ ← ϵσ2

m2 , ρ←
√

2µ
ϵ , ν ← 1

2
√

µϵ
2 , α← 18Cmax + 32

√
µϵ
2 log 4

δ

2 Global: T ← O
(

log mnBmaxαρ
δσ

)
, K ← O

(
α
ν log

(
ν log m

σ

))
for appropriate constants

3 (x0, y0)← ( 1
m · 1m, 0n)

4 for k = 1 to K do
5 (γx, γy)← GradBS(xk−1, yk−1, xk−1, yk−1, 0)
6 (xk− 1

2
, yk− 1

2
)← AltminBS(γx, γy, α, xk−1, yk−1)

7 (γx, γy)← GradBS(xk− 1
2
, yk− 1

2
, xk−1, yk−1, ν)

8 (x(T +1), y(T ))← AltminBS(γx, γy, α + ν, xk− 1
2
, yk− 1

2
)

9 xk ← 1
∥max(x(T +1),δ)∥1

·max
(
x(T +1), δ

)
, yk ← y(T ) ▷ Implement padding Oδ(x(T +1))

10 function GradBS(x, y, x0, y0, Θ)
11 gx ← Ay + c + µ(1 + log(x))− ϵ

2 |A| (y
2), gy ← −A⊤x + b + ϵdiag (y) |A|⊤x

12 gx
r ← −αρ(1 + log x0)− α

ρ |A|y
2
0 −Θρ(1 + log x)− Θ

ρ |A|y
2

13 gy
r ← − 2α

ρ diag (y0) |A|⊤x0 − 2Θ
ρ diag (y) |A|⊤x)

14 return (gx + gx
r, gy + gy

r)
15 function AltminBS(γx, γy, θ, x(0), y(0)) ▷ Implement approximate proximal oracle via AltMin
16 for 0 ≤ t ≤ T do
17 x(t+1) ← 1∥∥exp

(
− 1

θρ γx− 1
ρ2 |A|(y(t))2)∥∥

1

· exp
(
− 1

θρ γx − 1
ρ2 |A|

(
y(t))2)

18 y(t+1) ← med
(

0, 1,− ρ
2θ ·

γy

|A|⊤x(t+1)

)
19 return (x(T +1), y(T ))

In order to analyze the convergence of Algorithm 4, we begin by observing that the
operator in (17) satisfies strong monotonicity with respect to our regularizer (18).

▶ Lemma 20 (Strong monotonicity). Let µ ≥ ϵ
2 and ρ :=

√
2µ
ϵ . The gradient operator

gµ,ϵ (17) is ν := 1
2
√

µϵ
2 -strongly monotone (see (19)) with respect to rµ,ϵ defined in (18).

Next, we show iterate stability through each loop of alternating minimization (i.e.
from Line 5 to Line 6, and Line 7 to Line 8 respectively), via Lemma 19.

▶ Corollary 21 (Iterate stability in Algorithm 4). Assume the same parameter bounds as
Lemma 19, and that δ ∈ (0, m−1). In the kth outer loop of Algorithm 4, xk−1 ≥ δ

2 entrywise.
Further, for all iterates x(t+1) computed in Line 5 to Line 6 and xOPT as defined in (21)
with θ = α, 1

2 xk−1 ≤ x(t+1), xOPT ≤ 2xk−1, and x(t+1), xOPT ≥ δ
4 , entrywise. Similarly, for

all iterates x(t+1) computed in Line 7 to Line 8 and xOPT as defined in (21) with θ = α + ν,
1
2 xk−1/2 ≤ x(t+1), xOPT ≤ 2xk−1/2 and x(t+1), xOPT ≥ δ

4 , entrywise.
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Under iterate stability, our next step is to prove that our operator gµ,ϵ is relatively
Lipschitz with respect to our regularizer rµ,ϵ (as defined in (20)).

▶ Lemma 22 (Relative Lipschitzness). Assume the same parameter bounds as in Lemma 19.
In the kth outer loop of Algorithm 4, let z̄k ← (x(T +1), y(T )) from Line 8 be zk before the
padding operation. Then, xk−1/2, x̄k ∈ [ 1

2 xk−1, 2xk−1] elementwise and

〈
g(zk−1/2)− g(zk−1), zk−1/2 − z̄k

〉
≤ α

(
Vzk−1(zk−1/2) + Vzk−1/2(z̄k)

)
for α = 4+32

√
µϵ

2 .

Next, we give a convergence guarantee on the inner loops (from Line 5 to Line 6, and Line 7
to Line 8) in Algorithm 4, as an immediate consequence of Corollary 15.

▶ Corollary 23 (Inner loop convergence in Algorithm 4). Assume the same parameter bounds
as in Lemma 19. For γ defined in Line 5, suppose for an appropriate constant T =
Ω
(

log mnBmaxαρ
δσ

)
. Then, for all k iterate zk−1/2 = (xk−1/2, yk−1/2) of Line 6 satisfies

〈
∇g(zk−1) + α∇Vzk−1(zk−1/2), zk−1/2 − w

〉
≤ νσ

4 , for all w ∈ Z.

Similarly, for γ defined in Line 7, iterate z̄k = (x(T +1), y(T )) of Line 8 satisfies

〈
∇g(zk−1) + α∇Vzk−1(z̄k) + ν∇Vzk−1/2(z̄k), z̄k − w

〉
≤ νσ

4 , for all w ∈ Z.

We now analyze the progress made by each outer loop of Algorithm 4. The proof is very
similar to that of Proposition 13; the only difference is controlling the extra error incurred in
the padding step of Line 9, which we bound via Lemma 18.

▶ Proposition 24 (Convergence of Algorithm 4). Assume the same parameter bounds as in
Lemma 19, and that δ ≤ σ

4ραm . Algorithm 4 returns zK satisfying V r
zK

(z⋆) ≤ 3σ
ν , letting (for

an appropriate constant) K = Ω( α
ν log( ν log m

σ )).

We are now ready to prove the main theorem of this section, which gives a complete
convergence guarantee of Algorithm 4 by combining our previous claims.

▶ Theorem 25 (Regularized box-simplex solver). Given regularized box-simplex game (16) with
72ϵ ≤ µ ≤ 1 and optimizer (x⋆, y⋆), and letting σ ∈ (m−10, 1), RegularizedBS (Algorithm 4)
returns xK satisfying

∥∥xK − x⋆
∥∥

1 ≤
σ

Cmax log2 m
and maxy∈[0,1]n fµ,ϵ(xK , y)−fµ,ϵ(x⋆, y⋆) ≤ σ.

The total runtime of the algorithm is O(nnz(A)·( Cmax√
µϵ +log( m

σϵ ))·log( Cmax log m
σ ) log( mnBmax

σ )).

As a corollary, we obtain an approximate solver for regularized box-simplex games in the
following form (which in particular does not include a quadratic regularizer):

min
x∈∆m

max
y∈[0,1]n

fµ(x, y) = y⊤A⊤x + c⊤x− b⊤y + µH(x), where H(x) :=
∑

i∈[m]

xi log xi. (24)

▶ Corollary 26 (Half-regularized approximate solver). Given regularized box-simplex game (24)
with regularization parameters 72ϵ ≤ µ ≤ 1 and optimizer (x⋆, y⋆), and letting ϵ ∈ (m−10, 1),
Algorithm 4 with σ ← ϵ

2 returns xK satisfying maxy∈[0,1]n fµ(xK , y)−fµ(x⋆, y⋆) ≤ ϵ. The total
runtime of the algorithm is O

(
nnz(A) · ( Cmax√

µϵ + log
(

m
ϵ

)
) · log

(
Cmax log m

ϵ

)
log
(

mnBmax
ϵ

))
.
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for optimal transport. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 11355–11366, 2019.

ICALP 2022

http://arxiv.org/abs/2101.07233
http://arxiv.org/abs/1909.06413
http://arxiv.org/abs/2102.11169


77:20 Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching

30 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 217–226, 2014.

31 Peter Kiss. Improving update times of dynamic matching algorithms from amortized to worst
case. CoRR, abs/2108.10461, 2021. arXiv:2108.10461.

32 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1272–1287, 2016.

33 Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear
programming. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 230–249, 2015.

34 Tianyi Lin, Nhat Ho, and Michael I. Jordan. On efficient optimal transport: An analysis of
greedy and accelerated mirror descent algorithms. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
pages 3982–3991, 2019.

35 Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents. In Proceedings of the Thirtieth
Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
pages 644–652, 1998.

36 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 950–961. IEEE Computer Society, 2017.

37 Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalit-
ies with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

38 Yurii Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–
152, 2005.

39 Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and
related problems. Math. Program., 109(2-3):319–344, 2007.

40 Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,
pages 263–269, 2013.

41 Jonah Sherman. Area-convexity, ℓ∞ regularization, and undirected multicommodity flow. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
452–460. ACM, 2017.

42 Aaron Sidford and Kevin Tian. Coordinate methods for accelerating ℓ∞ regression and faster
approximate maximum flow. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science, pages 922–933. IEEE, 2018.

43 Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly linear time
for dense instances. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 859–869, 2021.

44 François-Xavier Vialard. An elementary introduction to entropic regularization and proximal
methods for numerical optimal transport, 2019.

45 David Wajc. Rounding dynamic matchings against an adaptive adversary. In Proccedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 194–207, 2020.

http://arxiv.org/abs/2108.10461

	1 Introduction
	1.1 Our results
	1.2 Prior work

	2 Preliminaries
	3 Dynamic decremental bipartite matching
	3.1 DDBM framework
	3.2 DDBM solvers

	4 Regularized box-simplex games
	4.1 Algorithmic framework
	4.2 Helper lemmas
	4.3 Regularized box-simplex solver and its guarantees


