Round-Optimal Lattice-Based Threshold
Signatures, Revisited

Shweta Agrawal &
Indian Institute of Technology, Madras, India

Damien Stehlé &
ENS de Lyon, France
Institut Universitaire de France, Paris, France

Anshu Yadav &
Indian Institute of Technology, Madras, India

—— Abstract

Threshold signature schemes enable distribution of the signature issuing capability to multiple users,
to mitigate the threat of signing key compromise. Though a classic primitive, these signatures have
witnessed a surge of interest in recent times due to relevance to modern applications like blockchains
and cryptocurrencies. In this work, we study round-optimal threshold signatures in the post-quantum
regime and improve the only known lattice-based construction by Boneh et al. [CRYPTO’18] as
follows:
Efficiency. We reduce the amount of noise flooding used in the construction from 2™ down
to /@, where @Q is the bound on the number of generated signatures and) is the security
parameter. By using lattice hardness assumptions over polynomial rings, this allows to decrease
the signature bit-lengths from 5()\3) to 6()\), bringing them significantly closer to practice. Our
improvement relies on a careful analysis using Rényi divergence rather than statistical distance
in the security proof.

Instantiation. The construction of Boneh et al. requires a standard signature scheme to be
evaluated homomorphically. To instantiate this, we provide a homomorphism-friendly variant
of Lyubashevsky’s signature [EUROCRYPT ’12] which achieves low circuit depth by being
“rejection-free” and uses an optimal, moderate noise flooding of v/@, matching the above.

Towards Adaptive Security. The construction of Boneh et al. satisfies only selective security,
where all the corrupted parties must be announced before any signing query is made. We improve
this in two ways: in the Random Oracle Model, we obtain partial adaptivity where signing queries
can be made before the corrupted parties are announced but the set of corrupted parties must
be announced all at once. In the standard model, we obtain full adaptivity, where parties can be
corrupted at any time but this construction is in a weaker pre-processing model where signers
must be provided correlated randomness of length proportional to the number of signatures, in
an offline preprocessing phase.

2012 ACM Subject Classification Security and privacy — Cryptography

Keywords and phrases Post-Quantum Cryptography, Lattices, Threshold Signatures
Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.8

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eprint.iacr.org/2022/634.pdf

Funding This work was partly supported by the DST “Swarnajayanti” fellowship, National Blockchain
Project, European Union Horizon 2020 Research and Innovation Program Grant 780701, BPI-France
in the context of the national project RISQ (P141580), and the ANR AMIRAL project (ANR-21-
ASTR-0016). The work is also partially supported by Microsoft Research Travel Grants to travel
and present the paper at the conference.

Acknowledgements Part of the research corresponding to this work was conducted while the authors
were visiting the Simons Institute for the Theory of Computing.
© Shweta Agrawal, Damien Stehlé, and Anshu Yadav;
oY licensed under Creative Commons License CC-BY 4.0
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).

Editors: Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 8; pp. 8:1-8:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:shweta.a@cse.iitm.ac.in
mailto:damien.stehle@ens-lyon.fr
mailto:anshu.yadav06@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://eprint.iacr.org/2022/634.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Round-Optimal Lattice-Based Threshold Signatures, Revisited

1 Introduction

A threshold signature [23] distributes the signature issuing capacity among several users, so
that a signature can be generated only if a sufficient number of users collaborate to sign
a message. In more detail, each of IV parties holds a partial signing key, and any set of
parties at least as large as a given threshold ¢ < N can participate in a protocol to generate
a signature. Security requires that a valid signature cannot be generated if fewer than ¢
parties cooperate.

A central motivation for constructing threshold signatures is to decentralize the trust
placed in the signing authority, thus reducing the risk of the signing key being compromised.
While threshold signatures have been studied for a long time [43, 24, 14, 33, 31, 44, 25, 20,
15, 13, 30, 21, 32, 7], they have received renewed attention in recent years due to numerous
applications in modern topics such as cryptocurrencies and blockchains. Most prior work has
focused on creating distributed versions of ECDSA or Schnorr signatures [44, 31, 25, 14, 15]
which are not quantum secure. From conjectured post-quantum assumptions such as those
related to Euclidean lattices, much less is known, especially with optimal round complexity.

1.1 Prior Work

The thresholdisation of lattice-based signatures from the NIST post-quantum cryptography
project has been investigated in [19] but the resulting candidates incur several rounds of
communication. A threshold signature restricted to ¢ = N was proposed in [22] but it
also involves possibly many rounds, because of aborts. To the best of our knowledge, the
only lattice-based, round-optimal threshold signature construction is by Boneh et al. [9]

(henceforth BGGJKRS), relying on the Learning With Errors problem (LWE). However, while

this construction provided the first feasibility result for a long-standing open problem, it

suffers from the following drawbacks:

1. Noise Flooding and Impact on Parameters. It makes use of the so-called “noise flooding”
technique [34, 6, 37], which aims to hide a noise term e € Z that possibly contains sensitive
information, by adding to it a fresh noise term ¢’ whose distribution has a standard
deviation that is much larger than an a priori upper bound on |e|. To get security against
attackers with success probability 27°(*) where X is the security parameter, the standard
deviation of ¢/ must be a factor 2(*) larger than the upper bound on |e|.
Unfortunately, this precludes the use of an efficient LWE parametrisation. Concretely,
one has to set the LWE noise rate a as 2=*(N) so that |¢/| remains small compared to
the working modulus g. As the best known algorithms for attacking LWE with (typical)
parameters n, g, @ have run-times that grow as exp(a(n log q/log® a)) (see, e.g., [38])
this leads to setting nlogq = ﬁ()\?’). As the signature shares have bit-sizes that grow
as Q(nlogq), this leads to ﬁ()\?’)-bit signature sizes — prohibitively expensive in practice.

2. Instantiating Underlying Signature. It requires a standard signature scheme to be
evaluated homomorphically. BGGJKRS do not suggest a candidate and existing lattice
based signatures are not suitable — the GPV signature scheme [35] and its practical
versions [27, 51, 28] seem ill-suited, as the signing algorithm is very sequential, and
the required 1-dimensional Gaussian samples are obtained via algorithms based on
rejection sampling (see, e.g., [39, 56]) that are costly to transform into circuits. The other
candidate is Lyubashevsky’s signature scheme [46, 47]. It has the advantage of being far
less sequential, but it also relies on rejection sampling: when some rejection test does not
pass, then one needs to restart the signing process.

S. Agrawal, D. Stehlé, and A. Yadav

3. Selective Security. It only achieves a very restricted notion of selective security, where all
the corrupted parties must be announced before any partial signing query is made. To
obtain security in the more realistic adaptive setting, one option is to invoke complexity
leveraging, which consists in guessing at the outset which parties will be corrupted. This
is not only dissatisfying as a solution but also leads to a further degradation of the
parameters.

1.2 Qur Contributions

In this work, we improve the construction from [9] as follows:

Efficiency. We decrease the noise flooding ratio from 2™ down to /@, where Q is the
bound on the number of generated signatures. This gives a one-round threshold signature
of bit-length growing as O(Alog? @), which is O()) for any polynomially bounded Q,! in
contrast with O(\3) for the construction from [9]. These bit-lengths are obtained when
relying on the ring variants of SIS and LWE [48, 50, 54, 49]. Additionally, we show that
the amount of noise flooding used in this construction is optimal, by exhibiting an attack
when a smaller noise flooding ratio is used.

Instantiation. To instantiate the signature underlying BGGJKRS, we provide a
homomorphism friendly variant of Lyubashevsky’s signature [EUROCRYPT ’12] which
achieves low circuit depth. We remove the rejection sampling at the expense of adding
moderate noise of size /@), matching the above. Again, we show that this amount of
flooding is optimal by demonstrating an attack when smaller flooding is used.

Selective versus Adaptive. As discussed above, the construction BGGJKRS satisfies only
selective security. We improve this in two ways: in the Random Oracle Model (ROM), in
which a hash function is being modeled as a uniformly sampled function with the same
domain and range, we obtain a notion of partial adaptivity where signing queries can be
made before the corrupted parties are announced. However, the set of corrupted parties
must be announced all at once. In the standard model, we obtain a construction with
full adaptivity, where parties can be corrupted at any stage in the protocol. However,
this construction is in a weaker pre-processing model where signers must be provided
correlated randomness of length proportional to the number of signing queries. The
informed reader may notice similarities with the “MPC with Preprocessing” model, please

see [29] and references therein 2.

1.3 Technical Overview

Recap of BGGJKRS Threshold Signatures. The round-optimal threshold signatures
provided by [9] are designed using a “universal thresholdizer” which enables the thresholdizing
of a number of primitives. This thresholdizer is itself instantiated using a threshold version
of “special” fully homomorphic encryption (FHE), which in turn can be constructed using the

For many applications, the bound @ is quite limited and can be considered to be a small polynomial
in . For example, for applications pertaining to cryptocurrencies, the bound) may capture the total
number of transactions made with a user’s wallet during the lifetime of a signing key. According
to statistics available at the URLs below, one transaction per day and per user is a generous
upper bound. This suggests that number of signing queries in the lifecycle of the key will be
quite limited. https://www.blockchain.com/charts/n-transactions, https://www.statista.com/
statistics/647374/worldwide-blockchain-wallet-users/

Note that we can trade the offline sharing of correlated randomness with an additional communication
round in the signing protocol — however, this would destroy round optimality.

8:3

ICALP 2022

https://www.blockchain.com/charts/n-transactions
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/

8:4

Round-Optimal Lattice-Based Threshold Signatures, Revisited

LWE assumption. In threshold fully homomorphic encryption (TFHE), the setup algorithm
takes as input a threshold ¢ and produces a set of decryption key shares skq,...,sky for the
parties such that every party can perform a partial decryption using its own decryption key
and any ¢ out of IV partial decryptions can be combined into a complete decryption of the
ciphertext in a single round.

In more detail, the TFHE construction of BGGJKRS leverages the fact that the decryption
in LWE based FHE schemes [12, 11, 36] requires to compute an inner product of the ciphertext
ct with the secret key sk, followed by a rounding operation. Since inner product is a linear
operation, a natural approach to thresholdize FHE decryption is by applying a Shamir
t-out-of- N secret sharing to sk. This will yield N keys sk, ..., sky, which can be distributed
to the NV users. Now, to decrypt a ciphertext ct, each user can compute the inner product
with its individual secret key sk; as its partial decryption m;. To combine any ¢ partial
decryptions into the final decryption, the combiner chooses Lagrange coefficients v1,..., 7
so that . v;sk; = sk. Then, she computes

Z%’mi = Z’Yi(CtSkz? = <Ctvz%5kz‘> = (ct, sk),

followed by rounding, as desired. However, this appealingly simple construction turns out
to be insecure. This is because each time a party computes a partial decryption, it leaks
information about its secret share sk; via the inner product with (the public) value ct.

To get around this insecurity, a natural approach is to add noise to the partial decryption
which quickly transforms a simple computation to intractable. However, care must be taken
to ensure that this added noise does not affect correctness, since it is later multiplied by
the Lagrange coefficients during reconstruction: the previous) . v;m,; will now become
> vi(m; + e;) for some noise terms e;. BGGJKRS propose two solutions — one to use a
secret sharing scheme whose reconstruction coefficients are binary, and another, to “clear
the denominators” by observing that since the Lagrange coefficients are rational numbers,
it is possible to scale them to be integers. The exact details are irrelevant for the current
discussion and hence omitted (please refer to [9] for more details).

To use this technique to construct threshold signatures, the authors propose the following.
Choose a signature scheme Sig, compute an FHE encryption ctg of its signing key Sig.sk and let
each signer homomorphically evaluate the signing algorithm for a message p on this ciphertext.
In more detail, given ctex = FHE.Enc(Sig.sk), each party first computes FHE.Eval(C, cts)
where C' is the circuit Sig.Sign(u,). By correctness of FHE, this yields an FHE encryption of
the signature o = Sig.Sign(Sig.sk, 1). To this ciphertext, the thresholdization trick described
above may now be applied.

Modeling the Adversary and Effect on Parameters. In their analysis, BGGJKRS consider
the complexity-theory security requirement of “no polynomial time attacks”, corresponding
to assuming attacks with advantage e = A=) and run-time A°(Y). However, for practically
motivated primitives like threshold signatures, it is more meaningful to consider attackers
with advantage 27°) and run-time 2°Y). We choose our adversarial model so that all
attacks should be exponential while all honest algorithms run in polynomial time. Compared
to the complexity-theory definition of security, this provides a much more significant (and
practically meaningful) hardness gap between honest and malicious parties.

For subexponentially strong attackers as described above, the noise flooding used in
BGGJKRS is exponential, severely damaging the practicality of the scheme, despite the
exciting developments in practical FHE [18, 57, 41, 17, 16, 26]. In more detail, the proof

S. Agrawal, D. Stehlé, and A. Yadav

requires to make the statistical distance between some noise terms e’ and e + ¢’ small, so
that knowing e + ¢’ is essentially the same as knowing e, which does not carry sensitive
information. To get security against attackers with advantage 2=°(*)| the statistical distance
must be set to 272M) and, as a result, the standard deviation of ¢’ must be a factor 22
larger than the upper bound on |e].

Tightening Analysis via Rényi divergence. In this work, we examine whether this flooding

noise can be improved so that the impact of flooding e by ¢’ on efficiency is minimised.

To this end, we explore using Rényi divergence rather than statistical distance to bound
the distance between distributions in the security proof. Rényi divergence has been used
in prior work as a replacement to the statistical distance in lattice based cryptography
[42, 45, 8, 52, 40, 4, 10, 3, 5]. To understand why this may be beneficial, let us first see
how statistical distance is used in typical security proofs of cryptography. Let P and Q be
two non-vanishing probability distributions over a common measurable support X. Typical
security proofs consider a hard problem relying on some ideal distribution @, and then
replace this ideal distribution by a real world distribution . When the statistical distance

A(Q,P) between the two distributions is small, the problem remains hard, implying security.

This is made rigorous by the so-called “probability preservation” property which says that
for any measurable event F C X, we have Q(F) > P(E) — A(Q,P).
Let us now define Rényi Divergence (RD). For a € (1, 00), the RD of order a is defined by
1

R.(P||Q) = (ZI cx %) BT enjoys an analogous probability preservation property,

though multiplicative as against additive. For E C X, we have Q(E) > P(E)a1 /Ro(P||Q).

Thus, if an event E occurs with significant probability under P, and if the SD or the RD is
small, then the event F also occurs with significant probability under Q. As discussed in [5],
probability preservation in SD is meaningful when the distance is smaller than any P(E)
that the security proof is required to deal with — if P(E) > € for some €, then we require
that A(Q,P) < e. The analogous requirement for RD is R, (P||Q) < poly(1/e¢). Bai et al. [5]
observed that RD is often less demanding than SD in proofs. This is because RD between
distributions may be small enough to suffice for RD probability preservation while SD may
be too large for the SD probability preservation to be applicable. Thus, RD can often serve
as a better tool for security analysis, especially in applications with search-type security
definitions, like signatures.

In this work, we study the applicability of RD analysis in the construction of threshold
signatures. Building upon the above approach, we show that a limited flooding growing as /@
suffices in BGGJKRS, where @ is the number of signing queries made by the attacker. We note
that this is a substantial improvement in practice, since the number of sign queries is typically
very different, and much smaller, than the run time of the adversary. Note that signature
queries require active participation by an honest user and there is no reason for an honest
user to keep replying after an overly high number of queries that clearly shows adversarial
behavior. As a concrete example, in the NIST post quantum project [1], adversarial runtimes

2256 in some security levels, but the number of signature queries is always

can go up to
bounded by 2% (which is itself an overly conservative bound in many scenarios). Thus,

dependence on the number of queries is significantly better than exponential dependence on

the security parameter, and this leads to a significant improvement in the signature bit size.

Optimality of our Moderate Flooding. We also show that this magnitude of flooding
is necessary for this construction, by exhibiting a statistical attack when smaller noise is
used. At a high level, our attack proceeds as follows. First we show that using legitimate

8:5

ICALP 2022

8:6

Round-Optimal Lattice-Based Threshold Signatures, Revisited

information available to her, the adversary can compute erry; + €1 s where erryy is the error
that results from homomorphically evaluating the signing algorithm for message M and e; s
is the flooding noise that is used in the partial signature of the first party. As a warmup,
consider the setting where the flooding noise is randomized. Now, since the signature scheme
is deterministic, the term errp; depends only on M and remains fixed across multiple queries
for the same message. On the other hand, the term e; 5 keeps changing. Using Hoeffding’s
bound, it is possible to estimate the average of e; »s across multiple queries and use this to
recover erry;, leading to an attack.

This attack may be avoided by making the flooding noise a deterministic function of
the message, e.g., by using a pseudo-random function evaluated on the message to generate
the noise. We show that this modification is not sufficient to make the threshold signature
construction secure. For this purpose, we design a signature scheme which includes “useless”
information in the signature: this information does not affect correctness nor security of the
signature itself, but allows us to recreate the attack described above on the resulting threshold
signature. We start with a secure signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify)
whose signing key is a uniform bit-string among those with the same number of 0’s and 1’s.
Now, let us consider a special signature scheme Sig’ = (Sig’.KeyGen, Sig’.Sign, Sig’.Verify)
derived from Sig by modifying the signing algorithm as follows: for i € [|Sig.sk|], if Sig.sk; = 0,
then append a 0 to the signature. Since our signing key has exactly half as many 0’s as 1’s,
this leads to a string of |Sig.sk|/2 zeroes being appended to every signature: this does not
leak any information and does not affect correctness (it is simply ignored during verification).
Now, consider using Sig’ to instantiate our threshold signature scheme. Then, for any
message M, the FHE ciphertext CT,,, now additionally includes homomorphically evaluated
encryptions of {Sig.sk; }ie[sig.sk|]:Sig.sk,—0- Note that these extra encryptions are designed to be
a deterministic function of the secret key so that across multiple messages, the corresponding
error term (obtained via homomorphic evaluation) will not change. On the other hand, the
message-dependent error terms can be assumed to change across messages. Due to this, the
error term recovered by the adversary will be a sum of a fixed term (dependent only on the
secret key) plus a fresh term per signature, which allows it to recreate the first attack. Please
see Section 3 for more details.

Homomorphism-Friendly Signature. Next, we provide a variant of Lyubashevsky’s signature
scheme [47] which enjoys low circuit depth and is homomorphism friendly. As discussed
above, Lyubashevsky’s signature contains a rejection sampling step, whose purpose is to
make the distribution of the resultant signature canonical, but this step is cumbersome to
implement homomorphically. We show that by using RD analysis in place of statistical
distance, analogously to the case of threshold signatures discussed above, the rejection
sampling step can be replaced by noise flooding of moderate magnitude /@Q. Additionally,
we show that this flooding is optimal — please see Section 4 for details.

Towards Adaptive Security. Another limitation of the construction of BGGJKRS is that
security is proved in the weak “selective” model where the adversary must announce all
corrupted users before receiving the public parameters and verification key. In contrast, the
more reasonable adaptive model allows the adversary to corrupt users based on the public
parameters, the verification key and previous user corruptions it may have made. We briefly
describe the difficulty in achieving adaptive security. At a high level, in the selective game,
the challenger proceeds by simulating the partial keys corresponding to the honest parties in
a “special way”. The challenge in the adaptive setting is that without knowing who are the
honest /corrupted parties, the challenger does not know which partial keys to program.

S. Agrawal, D. Stehlé, and A. Yadav

For more details, let us consider the case of an N-out-of-N threshold signature. In the

simulation, the challenger knows which party is honest at the start of the game, e.g., player N.

Now, the challenger can sample FHE secret keys ski,...,sky_1 randomly, implicitly setting
the last share as sk — Zze[N-1] sk;. To invoke the unforgeability of the underlying signature
scheme Sig, the challenger must “forget” the signing key Sig.sk at some point in the proof,
and rely on the Sig challenger to return signatures, which it then encrypts using the (public
key) FHE scheme. By correctness of FHE, this is the same as computing the signing circuit
for a given message on the ciphertext containing the secret key, which is what happens in
the real world. However, the FHE encryption of signing key Sig.sk is provided as part of the
public parameters in the real world, which in turn means that the FHE secret key must be

“forgotten” so that the FHE ciphertext of Sig.sk is indistinguishable from a dummy value.

Yet the challenger must return legitimate partial signatures of queried messages m; in the
security game, which in turn are (noisy) partial decryptions of the FHE ciphertexts &; of
signatures o;. Knowing all the corrupt secret keys ski,...,sky_; from the outset enables
the challenger to walk this tightrope successfully — it obtains o; from the Sig challenger,
computes an FHE encryption &; of this, computes partial decryptions using sk, ...,sky_1,
floods these with appropriate noise and returns these to the adversary.

In the adaptive game, the honest player is not known at the beginning of the game so the
challenger is unable to sample FHE secret key shares as described above. When requested
for a partial signatures for message m;, it can obtain the corresponding signature o; and

can FHE encrypt it, but cannot decrypt it using secret key shares which are unavailable.

To preserve correctness and indistinguishability from the real world, it is forced to return

(noisy) random secret shares {o; ; }ie[n],jepoly Of 0 as partial signatures, for unbounded j.

Later if user 1 is corrupted (say), the adversary receives the secret key share sk;. Now, to
preserve indistinguishability, the challenger must explain the partial signatures {o1 ;};cpoly
corresponding to user 1 as (0;,ski) ~ o1 ;, which seems impossible for unbounded j.

We overcome this hurdle in the ROM by having the challenger simulate all partial keys
as though corresponding to a corrupt user and when the list of corrupted parties becomes
available, “program” the ROM to “explain” the returned keys in a consistent way. This yields
an intermediate notion of “partial adaptivity”, in which the attacker can make signing queries
before corruption, but must announce its corrupted users all at once. In more detail, we
modify the signing key to additionally contain a random secret share of 0, i.e., each party is
provided a vector v; of length IV, such that Zie[N Vi = 0. In the scheme, to compute a partial
signature for a message m;, the partial signing algorithm first computes r; ; = H(j, K 7Ty
where H(j, K) is a random vector of length N, and K is a secret value required for a technical
reason that we will not discuss here. It then returns (7, ski) + noise; ; + 7; ;. By linearity,
it holds that 3,y H (7, K)T v; = 0, so correctness is not affected. But the unbounded

programmability of the ROM helps us overcome the aforementioned impasse in the proof.

Now, the challenger answers partial signature queries by returning (noisy) random secret
shares {ai)j}ie[N]’jepow of 0. When later, user 1 is corrupted, it can correctly explain the
returned signatures as follows: it samples skq, computes dy ; = (75, ski) + noise and sets
r1j = 01, —d1,;. Now we may program H (j, K) so that r; ; = H(j, K)T v; for all j — it can
be checked that there are enough degrees of freedom to satisfy these equations. However, since
all secrets of a user are revealed when it is corrupted, the value H(j, K) is fixed when even a
single user is corrupted. This is why we require that all corruptions be made simultaneously
and only achieve the restricted notion of “partial” adaptivity.

We also provide a construction in the standard model which achieves full adaptivity
where users can be corrupted at arbitrary points in the security game. But this construction
is only secure in a weaker pre-processing model where the signers must be provided correlated

8:7

ICALP 2022

8:8

Round-Optimal Lattice-Based Threshold Signatures, Revisited

randomness of length proportional to the number of signing queries, in an offline pre-processing
phase. We emphasize that the correlated randomness is independent of the messages to be
signed later. This model is reminiscent of the “MPC with Preprocessing” model (please
see [29] and references therein). We refer the reader to Section 5 for more details.

2 Preliminaries

In this section, we define some preliminaries used in our work. Please refer to the full version
of the paper [2] for additional preliminaries.

» Definition 1 (Threshold Signatures). Let P = {Py,...,Py} be a set of N parties.
A threshold signature scheme for a class of efficient access structures S on P is a
tuple of PPT algorithms denoted by TS = (TS.KeyGen, TS.PartSign, TS.PartSignVerify,
TS.Combine, TS.Verify) defined as follows:
TS.KeyGen(1*,A) — (pp, vk, {sk;}¥.,): On input the security parameter X\ and an access
structure A, the KeyGen algorithm outputs public parameters pp, verification key vk and
a set of key shares {sk;} ;.
TS.PartSign(pp, sk;, m) — o;: On input the public parameters pp, a partial signing key sk;
and a message m € {0,1}*, the partial signing algorithm outputs a partial signature o;.
TS.PartSignVerify(pp, m,0;) — accept/reject: On input the public parameters pp, a
message m € {0,1}* and a partial signature o;, the partial signature verification algorithm
outputs accept or reject.
TS.Combine(pp, {c:}ics) — om: On input the public parameters pp and the partial
signatures {o; }ics for S € A, the combining algorithm outputs a full signature o, .
TS Verify(vk, m, o,,) — accept/reject: On input a verification key vk, a message m and a
signature o,,, the verification algorithm outputs accept or reject.
A TS scheme should satisfy the following requirements.

» Definition 2 (Compactness). A TS scheme for S satisfies compactness if there exist
polynomials poly,(-),polyy(-) such that for all A\, A € S and S € A, the following
holds. For (pp, vk, {sk;}X)+ TS.KeyGen(1*,A), 0;<TS.PartSign(pp, ski,m) fori € S, and
0m<TS.Combine(pp, {0; }ics), we have that |omy,| < poly;(A) and |vk| < polyy(N).

» Definition 3 (Evaluation Correctness). A signature scheme TS for S satisfies evaluation
correctness if for all \,A € S and S € A, the following holds. For (pp,vk, {sk;}}V.,) «
TS.KeyGen(1*,A), o; < TS.PartSign(pp,sk;,m) for i € [N] and o,, < TS.Combine(pp,
{oi}ies), we have that Pr[TS.Verify(vk,m, 0,,) = accept] > 1 — A=<,

» Definition 4 (Partial Verification Correctness). A signature scheme TS for S satisfies partial
verification correctness if for all A and A € S, the following holds. For (pp, vk, {sk;}¥,) «
TS.KeyGen(1*, A), Pr[TS.PartSignVerify(pp, m, TS.PartSign(pp, sk;,m)) = 1] = 1 — A=<,

» Definition 5 (Unforgeability). A TS scheme is unforgeable if for any adversary A with run-

time 2°N) | the output of the following experiment ExptA)Ts’uf(l/\) is 1 with probability 2=

1. On input the security parameter A, the adversary outputs an access structure A € S.

2. Challenger runs the TS.KeyGen(1%) algorithm and generates public parameters pp,

verification key vk and set of N key shares {sk;}\.,. It sends pp and vk to A.

3. Adversary A then issues polynomial number of following two types of queries in any order
Corruption queries: A outputs a party i € [N] which it wants to corrupt. In response,
the challenger returns the key share sk;.

S. Agrawal, D. Stehlé, and A. Yadav

Stgnature queries: A outputs a query of the form (m,i), where m is a message
and i € [N], to get partial signature o; for m. The challenger computes o; as
TS.PartSign(pp, sk;, m) and provides it to A.
4. At the end of the experiment, adversary A outputs a message-signature pair (m*,c*).
5. The experiment outputs 1 if both of the following conditions are met: (i) Let S C [N] be
the set of corrupted parties, then S is a an invalid party set, i.e. S & A (ii) m* was not
queried previously as a signing query and TS.Verify(vk, m*, o*) = accept.
We also consider following weaker notions of unforgeability.

» Definition 6 (Partially Adaptive Unforgeability). Here, all the corruptions are done all at
once. That is, Step 3, is now changed as follows:
A issues polynomial number of signing queries of the form (m,i) adaptively and gets
corresponding ;’s.
A outputs a set S C [N] such that S & A. The challenger returns {sk;}ics.
A continues to issue polynomial number of more signing queries of the form (m,1)
adaptively, and gets corresponding o;.
Rest of the steps remain the same.

» Definition 7 (Selective Unforgeability). In this case, all the corruptions happen before any
signing query. That is, Step 3, is now further changed as follows:
A outputs a set S C [N] such that S & A. The challenger returns {sk;}ics.
A issues polynomial number of signing queries of the form (m,i) adaptively, and gets
corresponding o;.
Rest of the steps remain the same.

» Definition 8 (Robustness). A TS scheme for S satisfies robustness if for all A, the following
holds. For any adversary A with run-time 2°) | the following experiment ExptA,Ts_Tb(lk)
outputs 1 with probability 2~X) ; ’

On input the security parameter 1*, the adversary outputs an access structure A € S.
The challenger samples (pp, vk, ski,...,sky)«TS.KeyGen(1*,A) and provides

(pp, vk, sky,...,sky) to A.

Adversary A outputs a partial signature forgery (m*, o},).

The experiment outputs 1 if TS.PartSignVerify(pp, m*,0}) = 1 and o} # TS.PartSign(pp,
Ski, m*)

2.1 Rényi Divergence

» Definition 9 (Rényi Divergence). Let P and Q be any two discrete probability distributions
such that Supp(P) C Supp(Q). Then for a € (1,00), the Rényi Divergence of order a is
1

defined by: R.(P||Q) = (erSupp(P) %) i

The following lemma is borrowed from [5, Lemma 2.9], with the exception of the
multiplicativity property for non-independent variables, which is borrowed from [53,
Proposition 2].

» Lemma 10. Let a € [1,00]. Let P and Q denote distributions with Supp(P) C Supp(Q).
Then the following properties hold
Log Positivity: R,(P||Q) > R.(P||P) = 1.
Data Processing Inequality: R,(P7||Q') < R,(P||Q) for any function f, where Pf
(resp. QF) denotes the distribution of f(y) induced by sampling y<P (resp. y+Q).

8:9

ICALP 2022

8:10

Round-Optimal Lattice-Based Threshold Signatures, Revisited

Probability preservation: Let E C Supp(Q) be an arbitrary event. If a € (1,00), then
Q(E) > P(E)™T /Ry(P|Q).
Multiplicativity: Assume that P and Q are two distributions of a pair of random
variables (Y1,Y2). Fori € {1,2}, let P, (resp. Q;) denote the marginal distribution of Y;
under P (resp. Q), and let Poj1(-|y1) (resp. Qop1(-|y1)) denote the conditional distribution
of Yo given that Y1 = y1. Then we have:
R.(P||Q) = Ra(P1]|Q1) - Ra(P2]|Q2) if Y1 and Ya are independent for a € [1,00].
Ru(PIIQ) < Ra(P1]|Q1) - max,, v, Ra(Paps(ly)[[Qa1 (fyn))-
We will use the following RD bounds. Note that proof tightness can often be improved by
optimizing over a, as suggested in [55].

» Lemma 11 ([5]). For any n-dimensional lattice, A C R™ and s > 0, let P be the distribution
Dhs,c and Q be the distribution Dy s ¢ for some fized c,c’ € R™. Ifc,c’ € A, let ¢ = 0.
Otherwise fix € € (0,1) and assume that s > n.(A). Then for any a € (1,+00)

2 _2
1—¢€) o1 1+€ a—1 ||C_C/||2
- ex an————— | .
14¢€ "\1—¢ p 52

3 More Efficient Threshold Signatures from Lattices

R.(Pl|Q) €

In this section, we show how to drastically decrease the exponential flooding used in the
scheme by Boneh et al. [9]. We also show that the limited flooding that we use is in fact
optimal, and smaller noise would lead to an attack. For ease of exposition, the construction
below is for the special case of N out of N threshold and restricted to selective security. We
extend it to ¢ out of N threshold in the full version of the paper [2] and to adaptive security
in Section 5. In Section 4, we show how to instantiate the underlying signature scheme using
a variant of Lyubashevsky’s signature [47] with matching moderate flooding.

3.1 Optimizing the Boneh et al. scheme using the Rényi Divergence

Our scheme is similar to the one in [9] and is provided in Figure 1. The construction uses
the following building blocks:
A PRF F: K x{0,1}*—={0,1}", where K is the PRF key space and r is the bit-length of
randomness used in sampling from discrete Gaussian Ds.
A fully homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc, FHE.Dec,
FHE.Eval). As in [9], we also assume that the FHE.Dec can be divided into two sub-
algorithms: FHE.decodey and FHE.decode; .
A UF-CMA signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify).
A context hiding homomorphic signature scheme HS = (HS.PrmsGen, HS.KeyGen, HS.Sign,
HS.SignEval, HS.Process, HS.Verify, HS.Hide, HS.HVerify) to provide robustness.
An N out of N secret sharing scheme Share.

Correctness. From the correctness of FHE.Eval, CT, is an encryption of Cy(Sig.sk) =
Sig.Sign(Sig.sk, M) = oy, which decrypts with FHE.sk. So, FHE.decodey(FHE.sk,CT,) =
oum |g/2] + e. The signature computed by the TS.Combine algorithm is
N
FHE.decode (Y i) = FHE.decode: (3}, FHE.decodeo(ski, CTo) + 3 1", €f)
i=1

FHE.decode; (FHE.decodeo (Y 1 | sk, CTo) + S ef)
FHE.decode; (FHE.decodeo (FHE.sk, CTo) + 3 ' ¢})
FHE.decode (o [g/2] + e+ Zil e)) =oum.

S. Agrawal, D. Stehlé, and A. Yadav 8:11

TS.KeyGen(1*): Upon input the security parameter A, do the following.

1. For each party P;, sample a PRF key sprf, <.

2. Generate the signature scheme’s keys (Sig.vk, Sig.sk)«Sig.KeyGen(1*).

3. Generate the FHE keys (FHE.pk, FHE.sk)«+FHE.KeyGen(1*) and compute an FHE encryption

of Sig.sk as CTsig.sk<—FHE.Enc(FHE.pk, Sig.sk).

4. Generate the HS public parameters HS.pp«HS.PrmsGen(1*,1") and the public and
the signing keys (HS.pk,HS.sk)«HS.KeyGen(1* HS.pp). Here n is the bit-length of
(FHE.sk, sprf,).

Share FHE.sk as {sk;}i, < Share(FHE.sk) such that Zi\;l sk; = FHE.sk.
6. For each party P;, randomly choose a tag 7; € {0,1}* and compute

(7r;, mi)<—HS.Sign(HS sk, (sk;, sprf;), 7).

7. Output TSig.pp = {FHE.pk, CTsig.s, HS.pp, HS.pk, {7, 7, }/L1}, TSig.wvk = Sig.vk,
TSig.sk = {TSig.sk; = (skq, sprf,, m:) }r,.

o

TS.PartSign(TSig.pp, TSig.sk;, M): Upon input the public parameters TSig.pp, a partial signing
key TSig.sk; and a message M, parse TSig.pp as (FHE.pk, CTsig.sk, HS.pp, HS.pk, {7i, 7+, }7L1})
and TSig.sk; as (sks,sprf,, ;) and do the following.

1. Compute u = F(sprf;, M) and sample e;<D,(u), where Ds(u) represents sampling from
D; using u as the randomness.
2. Let Car be the signing circuit, with message M being hardwired. Compute CT, =

FHEEvaI(FHEpk,CM, CTSig.sk)-

Compute o; = FHE.decodeo(sk;, CT,) + €.

4. This step computes a homomorphic signature 7; on partial signature o; to provide robustness.
Let Cps be the circuit to compute FHE.decodeg(ski, CT,) + €5 in which CT, is hardcoded
and the FHE key share sk; and the PRF key sprf, are given as inputs.

Compute w; = HS.SignEval(HS.pp, Cps, 7+, , (ski, sprf;), 7).
Compute 7; = HS.Hide(HS.pk, o, 7}).
5. Output y; = (03, 7).

@

TS.Combine(TSig.pp, {y:}icin1): Upon input the public parameters TSig.pp and a set of partial
signatures {y; };c[n], parse y; as (o4, ;) and output op = FHE.decode; (Zf\] 1 0i).

TS.PartSignVerify(TSig.pp, M, y;): Upon input the public parameters TSig.pp, message M, and a
partial signature y;, parse y; as (0;,7;) and do the following.
1. Compute CT, = FHE.Eval(FHE.pk, Cas, CTsig.sk)-
2. Compute o = HS.Process(HS.pp, Cps), where Cps is as described above.
3. Parse y; as (0, 7:) and output HS.HVerify(HS.pk, v, 04, 74, (707,, 7i)).

TS.Verify(TSig.vk, M, oa): Upon input the verification key TSig.vk, a message M and a signature
oM, output Sig.Verify(TSig.vk, M, o).

In the above, we set s = Beyar - vVQA, where Beyar < poly(A) is a bound on the FHE decryption
noise after homomorphic evaluation of the signing circuit Cas, and @ is the bound on the number
of signatures.

Figure 1 Optimization of Boneh et al Threshold Signature Scheme.

3.1.1 Unforgeability

For security, we prove the following theorem.

» Theorem 12. Assume F' is a secure PRF, Sig is UF-CMA secure, FHE satisfies semantic
security , Share satisfies privacy and HS is context hiding. Then the construction of threshold
signatures in Figure 1 satisfies selective unforgeablity (Definition 7) if the flooding noise is of
the size poly(X\) - v/Q, where Q is the number of the signing queries.

ICALP 2022

8:12 Round-Optimal Lattice-Based Threshold Signatures, Revisited

The security of the construction can be argued using a sequence of hybrids. We assume
w.l.o.g. that the adversary A queries for all but the first key share, i.e., S = [N]\ {1}.

Hybrid,: This is the real world.

Hybrid,: Same as Hybrid, except that 7; in PartSign is now generated using HS simulator
as 71 = HS.Sim(HS.sk, a, 01, 71, 77,), where a = HS.Process(HS.pp, Cps).

Hybrid,: Same as Hybrid; except that to compute o7 = FHE.decodey(sky,CT,) + €,
the randomness u used to sample e]+D;(u) is chosen uniformly randomly instead
of computing it using the PRF.

Hybrids: Same as Hybrid,, except that now, for signing query for (M, 1), the challenger
simulates o7 as follows:

1. Computes CT, = FHE.Eval(FHE.pk, Cas, CTsig.sk) and
{0} = FHE.decodeg(sk;, CT,) }icf2, n1-

2. Computes oy = Sig.Sign(Sig.sk, M) and set o1 = op [2] — Ziz o, + €}, where
e} « Ds.

Hybrid,: Same as Hybrid; except that instead of sharing FHE.sk, now the challenger generates
the FHE key shares as {sk;}}¥.,<Share(0).

Hybrids: Same as Hybrid,, except that CTsjgs in TSig.pp is replaced by CTo =
FHE.Enc(FHE.pk, 0).

Detailed proofs of indistinguishability are provided in the full version [2]. Below, we provide
the proof for the main new claim in our work.

» Claim 13. If there is an adversary that can win the unforgeability game in Hybridy with
probability e, then its probability of winning the game in Hybrid, is at least €2 /2.

Proof. Let the number of signing queries that the adversary makes be . The two
hybrids differ only in the error term in o;, as shown below. In Hybrid,, we have
o1 = FHE.decodeq(sky, CT,) + €}, for €} + D;. In Hybrid;, we have:

N ’

o1 = oun.lg/2] - 2172 FHE.decodeo(ski, CTo) + €]
N /
— o le/2] - Z-,l FHE.decodeo (ski, CTo) + FHE.decodeo (ski, CTo) + €}

N
= owm.lq/2] - FHE.decodeo(Z_

1=

= om-|q/2] — FHE.decodeo(sk, CT,) + FHE.decodeo(ski,CTs) + el
= oM. Lq/ﬂ —OM- [q/2] + e+ FHE.deCOdeo(Sk1, CTU) + 8/1
= FHE.decodeo(sk1,CT,) + (e} +e),

ski, CTo) + FHE.decodeo(sk1, CTo) + €]
1

for some e satisfying |e| < Beyqi- Thus, in Hybrid,, the error term in oy is e}, while in
Hybrid,, it is €] + e, where, €] + D;, and e is the error in FHE ciphertext CT,.

Recall the distribution seen by the adversary — the public parameters TSig.pp, the
verification key TSig.vk, the corrupted secret key shares TSig.sk;, the messages M; and
corresponding partial signatures (o;,7;). Note that since messages are chosen adaptively,
their distribution depends on previous signature queries and responses, and in particular on
the differently generated error terms in both hybrids. On the other hand TSig.pp, TSig.vk,
{TSig.sk;}, {7;} are constructed identically in both hybrids and independently from the rest
(in particular these error terms): we implicitly assume that they are fixed and known, and
exclude them from the analysis. We refer to the distribution to be considered in Hybrid,
as Dy and in Hybrid; as Ds.

Let E; be the random variables corresponding to the error term in CT,, in the j-th
response and 5;2) and 5;3) be their distributions in Hybrids 2 and 3, respectively. Similarly,

let M; be the random variable corresponding to the queried message in j-th query and M§2)

S. Agrawal, D. Stehlé, and A. Yadav

and M§-3) be their distributions in Hybrids 2 and 3, respectively. Then, from the discussion
above, we have 8;2) =D, and 5}3) =D, for all j € [Q], where e; is the error in CT,, and
can depend upon previous queries and responses.
Overall, we have Dy = (€(k) ME) el P e® M(k)) for k € {2,3} and
3 k Q Q Q-1 Q-1 "¢ > 1)

Ra(D2||Ds) = Ra(€F MG, ... MP || €5, M ... &7 MP). (3.1)

Applying the multiplicativity property of the Rényi divergence (Lemma 10), we obtain
that R, (D3| D3) is bounded from above by

max Ry(65)1X = o | £51X =) Ru(MG,... 67 M | MG, 6, M)
= max Ry(D|X =@ || Dycg|X =) Ry(MG &P MP | MDD, e MP),
(3.2)

where X = (Mg, Eg_1,...,E1) and eq is the error term in CT,,,; note that eg may depend

on the sample from X (which differs in Hybrids 2 and 3) and is bounded by Beyq;. Then
applying Lemma 11 in Equation (3.2), we get

Ro(Dy||Ds) < explar|legl®/s?) - Ra(MP, .. €D MPD | MDD . e® mP)y
< exp(arB?,,,/s%) ~Ra(/\/lg),...,€1(2),/\/l§2) I M(s),...,é’l@),/\/{?)).

Further, since Mg is a function of Eg_1,Mg_1,..., E1, M1, the data processing inequality
(Lemma 10) gives

2 2 2 2 3 3 3 3
Ra(MG €51, & MP | MG €)1, e MP)
2 2 2 3 3 3
< R, (ED 1, &P MP | €SP MP),

Hence, we get

R,(D2||D3) exp(anB2,,,/s?) - Ra(f,’gzl, .. ,51(2), /\/lf) I Egzl, ... ,51(3), Mﬁ‘”)

exp(a’/TBgvalQ/82)’
where the last inequality follows from induction.

As s = Bepal - VQA, we get Ry(D2||Ds) < exp(am/X). Therefore, from the probability
preservzztion property of the Rényi divergence (Lemma 10), we have D3(E) > % >
Do (E)==T exp(—4F). The result is obtained by setting a = 2. <

<
<

3.2 On the Optimality of Our Flooding

We show that the flooding amount that we achieved is optimal for our threshold signature
scheme. To argue this, we show how to attack it if the flooding amount is below Q(/Q).
For simplicity, we restrict to the case of N = 2. Recall that in our construction,
TS.PartSign(TSig.pp, TSig.sk;, M) outputs o; rr = FHE.decodeg(sk;,CT,,,) + €} 5;, where
TSig.sk; = (sk;,sprf;).> W.lo.g, assume that the adversary gets the partial signing key
TSig.sky and the response for any signing query is a partial signature corresponding to party P;.
For any message M of its choice, the adversary receives 01,3 = FHE.decodeq(skq,CT,,,) +
€1+ From this the adversary can compute:

3 We focus only on the o; ps component of PartSign’s output since the second component, the HS signature
of 0 ar, is not relevant here.

8:13

ICALP 2022

8:14

Round-Optimal Lattice-Based Threshold Signatures, Revisited

o1,m + FHE.decodeg(sk2, CTo,,) = FHE.decodeo(FHE.sk,CT,,,) + €1 ar

!
= oM terrp + e,

where errys is the error in CT,,,. Note that if the adversary succeeds in computing erry; for
polynomially many M’s, then it can compute FHE.sk.

As a warm-up, we show that if the error 6’17 v is randomized, small and of center 0, then
the adversary can indeed compute erry;. Later, we will show that even for deterministic
flooding 611, > there exist secure signature schemes for which the attack can be extended.
Since the adversary knows the key share skg, it can compute o3 s on its own and hence
can compute oy = TS.Combine(TSig.pp, 01,0, 02,0). Hence, from ops + errpr + e’LM, the
adversary can compute errps + 6’17 M- Since, the signature scheme is deterministic, errps
depends only on M. Thus, if the same message is queried for signature multiple times, then
each time the term erry; remains the same, but since flooding is randomized, the term e} ,,
is different.

To compute erry;, the adversary issues all) signing queries for the same message M and
receives US])V[, . 7058\2[, where J@w denotes the partial signature returned for message M
in the ith query. From these responses the adversary gets) different values of the form

w' =erry +eff (3.3)

Since errys is same, taking average on both sides of Equation (3.3) over all the @ samples,

) w’t) e/’L i
we get Zl% =erry + %LM. If |$ >ic(o €1 m| < 1/2, then the adversary can
Tecover errys as errp; = L% Zie[Q] wi—‘. As 3/11,M7 ey e'lc?M are independently and identically

distributed with mean 0, by Hoeffding’s inequality, we have

<1/2} 2172exp<7Q).

252

%
E- €1, M
Pr HilE[Q] ’
Q

If Q > Q(s?log\), then 1 — 2exp(—Q/(25%)) > 1 — A~?(M in which case the adversary
can recover erry; with probability sufficiently close to 1 to recover sufficiently many erry;’s
to compute FHE.SK. To prevent this, we do need s to grow at least proportionally to /Q.

3.2.1 Attack for Deterministic Error

In the argument for randomized error, the fact that e} ,, is randomized is crucial. However,
as discussed in Section 1, we can extend the attack for the case of deterministic flooding
as well, by exhibiting a secure signature scheme (with deterministic flooding) for which a
variant of the attack can apply.

Consider a special (contrived) signature scheme Sig’ = (Sig’.KeyGen, Sig’.Sign, Sig’.Verify)
derived from a secure signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify) as follows:
1. Sig’ .KeyGen is identical to Sig.KeyGen. Let (Sig.sk, Sig.vk) be the signing and verification

keys, respectively, and Sig.sk; denote the ith bit of Sig.sk for i € [¢], where ¢ is the

bit-length of Sig.sk.
2. Sig’.Sign(Sig.sk, M) is modified as follows:
Compute o)y = Sig.Sign(Sig.sk, M). Set o}, 1= op.
For ¢ from 1 to ¢: if Sig.sk, = 0, then set o}, := o’,||Sig.sk;.
Output o,.

S. Agrawal, D. Stehlé, and A. Yadav

3. Sig'.Verify(Sig.vk, M, o) is defined as Sig.Verify(Sig.vk, M, o), where oy is obtained
from o', by removing all the bits after the kth bit, where k is the bit-length of signatures
in Sig.

Above, we assume that the signing key of Sig is a uniform bit-string among those with the
same number of 0’s and 1’s. Since Sig.sk has always ¢/2 bits equal to 0, the number of zeroes
appended to the signature will be £/2 and hence does not leak any extra information to the

adversary. Hence, it follows easily that if Sig is a secure signature scheme, then so is Sig’.

However, as discussed in Section 1, our attack can be generalized to work for this setting.

3.2.1.1 The Attack

Now, consider using Sig’ to instantiate our threshold signature scheme. Then, for any
message M, the FHE ciphertext CT,,,
encryptions of {Sig.sk; }ic[¢:sig.sk,—0- Let CTo,,,erryr, €}, respectively denote the encryption
of oy, the error in CT

now additionally includes homomorphically evaluated

o and the flooding noise added to partial decryption of CT,,,. Let
CT",err* and e}, denote the components corresponding to {Sig-sk; }ic[g:sig.sk,=0-

For any message M, the adversary can compute erry; + €}, as described previously, from
which the adversary gets err* +e},. If the adversary manages to compute err* (for sufficiently
many instances), then it can also recover FHE.sk.

Note that err* is independent of any message and hence is constant across different
messages, while e}, does depend on M and is different for different messages. This gives
an attack strategy. To compute err®, the adversary issues @ signing queries on different
messages { M, };c[q], and from the received partial signatures, derives the values for w
err +ey, forje[Q].

Observe that the above equation is of the same form as Equation (3.3). Heuristically,
one would expect the e*Mj to behave as independent and identically distributed random
variables with centre 0. Hence, we can argue in similar way that if Q > Q(s?log\) then the
adversary can recover err* with probability 1 — 1/ poly(\). This implies that for hiding err*,
the standard deviation parameter s must grow at least proportionally to /Q.

*

J

4 Instantiating Threshold Signatures: Rejection-Free Lyubashevsky

Here, we provide an FHE friendly variant of Lyubashevsky’s signature scheme from [47].

Our construction uses a hash function H : {0,1}*—Dy = {v:v € {-1,0,1}*; ||v|: < a},
modeled as a random oracle. Here « is a parameter, typically much smaller than k. The
signature scheme is described in Figure 2.

Correctness. Since z = y + Sc, where y<Dzm ,, we have ||z]| < 20v/m + ||Sc|| with
probability 1 —27%®) using standard Gaussian tail bounds . Since [|S|s < d and |c; < a,

we have ||Sc|| < day/m. This gives us ||z|| < (20 + da)+/m with overwhelming probability.

Finally, note that H(Az — Tc,u) = H(A(y + Sc) — ASc, u) = H(Ay, 1) = c.

Security. We establish security via the following theorem. Because of space constraints,
proof of the theorem is given in the full version of the paper [2].

» Theorem 14. Assume that m > X+ (nlogq)/log(2d + 1), o > adv/mQ@Q where Q is the
mazimum number of signing queries an attacker can make and |Dy| > 2*. Assume further
that SISy 1.m, g s hard for f = 2v 4 2day/m. Then the construction in Figure 2 satisfies
UF-CMA in the random oracle model.

8:15

ICALP 2022

8:16 Round-Optimal Lattice-Based Threshold Signatures, Revisited

KeyGen(1*): Upon input the security parameter X, set q,n,m, 3, k, d, o such that n = Q(\) and
the scheme is secure (see Theorem 14); then do the following:
1. Sample A«Z*™ and S<{—d,...,0,...,d}"™*.
2. Set T = AS.
3. Output vk = (A, T), sk =S.

Sign(sk, 1): Upon input the signing key sk and a message p, do the following:
1. Sample y+Dzm ,.
2. Set ¢ = H(Ay, p).
3. Set z=y + Sc.
4. Output (z,c).

Verify(vk, u, (z,¢)): Upon input the verification key vk, a message p, and a signature (z,c), do
the following:
1. Check if ||z]| < v, where v = (20 + ad)y/m.
2. Check if H(Az — Tc,) = c.
3. If both checks pass, then accept, else reject.

Figure 2 Lyubashevsky’s Signature Without Aborts.

5 Adaptive Security for Threshold Signatures

As discussed in Section 1, we provide two constructions to improve the selective security
achieved by [9]. Below, we describe our construction in the ROM, which satisfies partially
adaptive unforgeability (Definition 6). Due to space constraints, we provide our construction
in the standard model with pre-processing that satisfies fully adaptive unforgeability
(Definition 5) in the full version.

5.1 Partially Adaptive Unforgeability

We use the same building blocks as in Section 3.1 for construction. We also use two
keyed hash function modelled as random oracles: H : {0,1}* x {0,1}*—ZY and H; :
{0,1}* x {0,1}*—{0,1}". The construction is provided in Figure 3.

Correctness and Unforgeability. The proof of correctness is similar to that in Section 3.1
and is provided in the full version of the paper [2]. We prove partially adaptive unforgeability
via the following theorem.

» Theorem 15. Assume Sig satisfies unforgeability, FHE is semantically secure , HS is context
hiding and Share satisfies privacy. Then the TS construction in Figure 3 satisfies partially
adaptive unforgeability (Definition 6) in ROM if the flooding error is of size poly(A)v/Q,
where Q is the upper bound on the number of signing queries.

Proof. The security of the construction can be argued using the following hybrids:
Hybrid, and Hybrid, are the same as that in the proof of Theorem 12.

Hybrid,: Same as Hybrid;, except that the randomness u; used in sampling €} in o; p is
chosen uniformly randomly from {0, 1}" and then H; is programmed as Hy (hkey,, M) = u;.
For random oracle queries for hash H; by the adversary A on an input z, the challenger
first checks if Hy(z) is already set. If so, then returns that value else chooses a value
uniformly randomly from {0,1}" and saves and returns it.

S. Agrawal, D. Stehlé, and A. Yadav

TS.KeyGen(lA): Upon input the security parameter A, do the following:

1.
2.

w

gl

TS.PartSign(TSig.pp, TSig.sk;, M): Upon input the public parameters TSig.pp, the key share
TSig.sk, = (ski, K, v;, hkey,, ;) and a message M, do the following:
1.
2.

5.

Algorithms TS.PartSignVerify, TS.Combine and TS.Verify are identical to those in Section 3.1.

Randomly choose K <+ {0, 1}>‘ and N vectors vi,va,...,Vy € Zf]\/ such that Zf\;l v, =0.
Generate (Sig.vk, Sig.sk)«Sig.KeyGen(1*) and (FHE.pk, FHE.sk)+FHE.KeyGen(1*) and
share FHE.sk into N shares as (ski,sks,...,sky) < Share(FHE.sk) such that Zf\;l sk; =
FHE.sk.

Compute an FHE encryption of the signing key as CTsjg.s« = FHE.Enc(FHE.pk, Sig.sk).
For each party P;, randomly choose a tag 7; € {0,1}*, a hash key hkey,+{0,1}* and
generate HS public parameters HS.pp<HS.PrmsGen(1*,1™) and HS public and signing keys
as (HS.pk, HS.sk)<HS.KeyGen(1*, HS.pp). Here, n is the length of input to PartSign circuit
which depends on (FHE.sk, K, v;, hkey,).

Compute (7, ,m;) = HS.Sign(HS.sk, (sk;, K, v, hkey,), 7:).

Output TSig.pp = (FHE.pk, HS.pp, HS.pk, CTsig.sk, {7:, Tr; } o1), TSig.vk = Sig.vk, TSig.sk =
{TSig.sk; = (ski, K, Vi, hkey,,) } ;.

Compute u; = Hy(hkey;, M) and sample e;<Ds(u;).

Let Car be the signing circuit, with message M being hardcoded. Compute an FHE
encryption of signature oar as CT,,, = FHE.Eval(FHE.pk, Cas, CTsig.ck)-

Compute Ti,M = H(K, M)TVi and oM = FHE.decodeo(ski, CTGM) + 1+ 6;.

This step computes a homomorphic signature 7; a on o; p to provide robustness.

Let Cps be the circuit to compute FHE.decodeg(sk;, CTo,,) + H(K, M)"v; + €; in which
CT,,, is hardcoded and the key share TSig.sk; is given as the input. Compute 7}, =
HS.SignEval(HS.pp, Cps, 7, (ski, K, vi, hkey,), 7;) and #; ar = HS.Hide(HS.pk, o; ar, 77 ar)-
Output i, pr = (04,0, Tinr)-

Figure 3 Partially Adaptive Threshold Signature Scheme.

Hybrid,: Same as Hybrid, except that the value of H(K, M) for each M in pre corruption

signing query is set in the reverse order, i.e., firstly partial signatures are computed and

then H (K, M) is set accordingly as follows:

1.
2.

Hybrid,: Same as Hybrid;, except that now the signing queries are answered differently. For

The challenger computes CT,,, = FHE.Eval(FHE.pk,Cas, CTsig ok).
It then computes FHE.decodeq(FHE.sk, CT,,,) and generates N shares as {s; p }1¥.; <

Share(FHE.decodey (FHE.sk, CT,,,)).
N

. Returns partial signatures as {o;,m = sim + €}ii,. Also, if a message M
is repeated for signing query, then the challenger uses same {s; n}Y ; shares of

FHE.decodeo(FHE.sk,CT,,,) again.

. When the adversary A outputs the set S of corrupted parties, the challenger first
programs the value of H(K, M) for each M in pre corruption signing queries as

described next, and then provides key shares for i € S to A.

Programming H (K, M): Vi € [N], compute 7; ps = s; p — FHE.decodeg(sk;, CT,,,)

and solve for vector by € Z) such that Vi € [N], b}, v; = r;a. Set H(K, M) =

bys. Note that since there are N — 1 independent equations in N unknowns, such a

b exists and can be computed.

. To answer a random oracle query for hash function H on input x, the challenger first
checks if the value is already set, if so then returns that value, else randomly samples

a fresh vector r, and sets and returns H(x) = r,.

each pre-corruption signing query for a message M, o; s is computed as follows:

8:17

ICALP 2022

8:18

Round-Optimal Lattice-Based Threshold Signatures, Revisited

1. The challenger computes o) = Sig.Sign(Sig.sk, M) and generates random shares of

o |q/2] as {sim} N, < Share(oas | g/2]) such that Zil sim = o 1q/2].
2. Returns o; p = $; M + €, where e} < D,

When A outputs the set S of corrupted parties, the challenger does the following:

1. Let Pre@ be the set of messages for which signing queries were made before. Then
for each M € PreQ it does the following. For each i € S, computes r; p» = 55,0 —
FHE.decodeq(sk;, CT,,,). Computes bys such that V i € S, bl v, = r; y. Sets
H(K, M) =bys. Such a by exists and can be computed since there are only N — 1
equations to satisfy in N unknowns.

2. Returns the secret key shares {TSig.sk; }ies.

For each post corruption signing query on message M, the challenger does the following.

Let the honest party be P,, i.e. S =[N]\ {a}.

1. Computes CT,,, = FHE.Eval(FHE.pk,Cps, CTsig.sk) and o = Sig.Sign(Sig.sk, M).

2. For each i € S, computes o7), = FHE.decodey(ski, CT,,,) + H(K, M)"v; and oy ar =
o}y + €}, where ej<D;.

3. Returns o407 = o [q/2] — s O’;)M + ¢/, where e}, < D;.

oM

Hybrid; and Hybridg: are the same as Hybrid, and Hybrids, respectively, defined in the proof

In

of Theorem 12.
the full version of the paper we show that consecutive hybrids are indistinguishable

and that the probability of the adversary winning the unforgeability game (Definition 6) is

negligible in Hybridg. <
—— References
1 Submission requirements and evaluation criteria for the post-quantum cryptography

10

11

standardization process. URL: https://csrc.nist.gov/CSRC/media/Projects/Post—
Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf, 2017.
Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-based threshold
signatures, revisited. Cryptology eprint Archive, 2022.

Martin R Albrecht and Amit Deo. Large modulus ring-LWE > module-LWE. In ASIACRYPT,
2017.

Erdem Alkim, Léo Ducas, Thomas Péppelmann, and Peter Schwabe. Post-quantum key
exchange—a new hope. In USENIX Security, 2016.

Shi Bai, Tancréde Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien Stehlé, and Ron
Steinfeld. Improved security proofs in lattice-based cryptography: using the Rényi divergence
rather than the statistical distance. J. Cryptol., 2018.

Rikke Bendlin and Ivan Damgard. Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In T'C'C, 2010.

Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice trapdoor: threshold
protocols for signatures and (H) IBE. In ACNS, 2013.

Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the hardness
of learning with rounding over small modulus. In TCC, 2016.

Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomorphic
encryption. In CRYPTO, 2018.

Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko,
Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure
key exchange from LWE. In ACM CCS, 2016.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In ITCS, 2012.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

S. Agrawal, D. Stehlé, and A. Yadav

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27
28

29

30

31

32

33

34

35

36

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, 2011.

Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In C'CS, 2020.
Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Two-party ECDSA from hash proof systems and efficient instantiations. In CRYPTO, 2019.
Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold EC-DSA. In PKC, 2020.

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Bootstrapping
for approximate homomorphic encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT, 2018.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In ASTACRYPT, 2017.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. TFHE: fast fully
homomorphic encryption over the torus. Journal of Cryptology, 2020.

Daniele Cozzo and Nigel P. Smart. Sharing the LUOV: threshold post-quantum signatures. In
IMACC, 2019.

Anders Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shulman. Securing
DNSSEC keys via threshold ECDSA from generic MPC. In ESORICS, 2020.

Ivan Damgard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter, and
Michael Baksvang Ostergard. Fast threshold ECDSA with honest majority. In SCN, 2020.
Ivan Damgard, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-of-n
and multi-signatures and trapdoor commitment from lattices. In PKC, 2021.

Yvo Desmedt. Threshold cryptography. Furopean Transactions on Telecommunications, 1994.
Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In S& P, 2018.

Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In Sé&P, 2019.

Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less
than a second. In FEUROCRYPT, 2015.

Léo Ducas and Thomas Prest. Fast Fourier orthogonalization. In ISSAC, 2016.

Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,
Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon:
Fast-Fourier lattice-based compact signatures over NTRU. Specification v1.0, available at
https://falcon-sign.info/.

Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified
approach to MPC with preprocessing using OT. In ASTACRYPT, 2015.

Adam Gagol, Jedrzej Kula, Damian Straszak, and Michat Swietek. Threshold ECDSA for
decentralized asset custody. Cryptology ePrint Archive, 2020.

Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In CCS, 2018.

Rosario Gennaro and Steven Goldfeder. One round threshold ECDSA with identifiable abort.

TIACR Cryptol. ePrint Arch., 2020.
Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In ACNS, 2016.

Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

URL: crypto.stanford.edu/craig.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008.

Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

8:19

ICALP 2022

https://falcon-sign.info/
crypto.stanford.edu/craig

8:20

Round-Optimal Lattice-Based Threshold Signatures, Revisited

37

38

39

40

41

42

43
44

45

46

47
48

49

50

51

52

53

54

55

56

57

Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness
of the learning with errors assumption. In ICS, 2010.

Gottfried Herold, Elena Kirshanova, and Alexander May. On the asymptotic complexity of
solving LWE. Des. Codes Cryptogr., 2018.

James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Isochronous gaussian
sampling: From inception to implementation. In PQCrypto, 2020.

Andreas Hiilsing, Tanja Lange, and Kit Smeets. Rounded gaussians — fast and secure constant-
time sampling for lattice-based crypto. In PKC, 2018.

Kamil Kluczniak and Leonard Schild. Fdfb: Full domain functional bootstrapping towards
practical fully homomorphic encryption. arXiv preprint, 2021. arXiv:2109.02731.

Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient multilinear
maps from ideal lattices. In EUROCRYPT, 2014.

Yehuda Lindell. Fast secure two-party ECDSA signing. In CRYPTO, 2017.

Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In CCS, 2018.

San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-LWE and
applications in traitor tracing. In CRYPTO, 2014.

Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In ASTACRYPT, 2009.

Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, 2012.

Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision
resistant. In ICALP, 2006.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT, 2010.

Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions
on cyclic lattices. In T'CC, 2006.

Thomas Pornin and Thomas Prest. More efficient algorithms for the NTRU key generation
using the field norm. In PKC, 2019.

Thomas Prest. Sharper bounds in lattice-based cryptography using the Rényi divergence. In
ASIACRYPT, 2017.

Mélissa Rossi. Extended Security of Lattice-Based Cryptography. PhD thesis, Université PSL,
2020. URL: https://www.di.ens.fr/~mrossi/docs/thesis.pdf.

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key
encryption based on ideal lattices. In ASTACRYPT, 2009.

Katsuyuki Takashima and Atsushi Takayasu. Tighter security for efficient lattice cryptography
via the Rényi divergence of optimized orders. In ProvSec, 2015.

Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: compact and scalable arbitrary-
centered discrete Gaussian sampling over integers. In PQCrypto, 2020.

Ruiyu Zhu, Changchang Ding, and Yan Huang. Practical MPC+ FHE with applications in
secure multi-partyneural network evaluation. TJACR Cryptol. ePrint Arch., 2020.

http://arxiv.org/abs/2109.02731
https://www.di.ens.fr/~mrossi/docs/thesis.pdf

	1 Introduction
	1.1 Prior Work
	1.2 Our Contributions
	1.3 Technical Overview

	2 Preliminaries
	2.1 Rényi Divergence

	3 More Efficient Threshold Signatures from Lattices
	3.1 Optimizing the Boneh et al. scheme using the Rényi Divergence
	3.1.1 Unforgeability

	3.2 On the Optimality of Our Flooding
	3.2.1 Attack for Deterministic Error

	4 Instantiating Threshold Signatures: Rejection-Free Lyubashevsky
	5 Adaptive Security for Threshold Signatures
	5.1 Partially Adaptive Unforgeability

