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Abstract
The Weisfeiler–Leman (WL) algorithm is a combinatorial procedure that computes colorings on
graphs, which can often be used to detect their (non-)isomorphism. Particularly the 1- and 2-
dimensional versions 1-WL and 2-WL have received much attentionattention, due to their numerous
links to other areas of computer science.

Knowing the expressive power of a certain dimension of the algorithm usually amounts to
understanding the computed colorings. An increase in the dimension leads to finer computed
colorings and, thus, more graphs can be distinguished. For example, on the class of planar graphs,
3-WL solves the isomorphism problem. However, the expressive power of 2-WL on the class is poorly
understood (and, in particular, it may even well be that it decides isomorphism).

In this paper, we investigate the colorings computed by 2-WL on planar graphs. Towards this
end, we analyze the graphs induced by edge color classes in the graph. Based on the obtained
classification, we show that for every 3-connected planar graph, it holds that: a) after coloring all
pairs with their 2-WL color, the graph has fixing number 1 with respect to 1-WL, or b) there is a
2-WL-definable matching that can be used to transform the graph into a smaller one, or c) 2-WL
detects a connected subgraph that is essentially the graph of a Platonic or Archimedean solid, a
prism, a cycle, or a bipartite graph K2,ℓ. In particular, the graphs from case (a) are identified by
2-WL.
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1 Introduction

The Weisfeiler–Leman (WL) algorithm [41] is a combinatorial procedure that given a graph G,
computes a coloring on G which respects (and sometimes also detects) the symmetries in the
graph. Its most prominent application is in theoretical [6, 8, 31] and practical approaches
[2, 10, 30, 35, 36] to the graph isomorphism problem. The original algorithm by Weisfeiler
and Leman is the 2-dimensional version and it colors pairs of vertices. Its generalization
yields for every natural number k the k-dimensional WL algorithm k-WL, which iteratively
refines a coloring of vertex k-tuples by aggregating local structural information encoded
in the colors. Its final output is a coloring that is stable with respect to the criterion for
partitioning the color classes, and graphs with different final colorings are never isomorphic.

Over the decades, fascination for the algorithm has persisted. This is to a large extent
due to the discovery of numerous connections to other areas in computer science that are
still being explored. For example, the algorithm has close links to linear and semidefinite
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programming [4, 5, 25], homomorphism counting [11, 12], and machine learning [1, 21, 37,
39, 43]. Its expressive power can be characterized via winning strategies for the players
in a particular type of Ehrenfeucht-Fraïssé game [8, 27]. Moreover, it is known that two
graphs receive different final colorings with respect to k-WL if and only if the graphs can be
distinguished via a formula in the counting-logic fragment Ck+1 [8, 29].

In this work, we focus on the original version 2-WL, as introduced by Weisfeiler and
Leman [41]. Besides the connections outlined for k-WL above, 2-WL has a precise corre-
spondence to coherent configurations (see, e.g., [9]). Despite the simple and very natural
concept behind the algorithm, its behavior is not well-understood and there is an extensive
line of study to capture its expressive power. For example, one branch of research aims at
understanding which graph properties can be detected by 2-WL. In this direction, Fürer
[16] as well as Arvind et al. and Fuhlbrück et al. [3, 15] obtained insights concerning the
ability of 2-WL to detect and count small subgraphs. Furthermore, the algorithm is able to
detect 2-separators in graphs and implicitly computes the decomposition of a graph into its
3-connected components [32].

A related line of research analyzes which graphs are identified by 2-WL, i.e., on which
graphs 2-WL serves as a complete isomorphism test. Positive examples include interval
graphs [13] and distance-hereditary graphs [17] as well as almost all regular graphs [7]. In
the light of the upper bound of 3 on the dimension of the algorithm needed to identify all
planar graphs [34], there is hope that the class of planar graphs can eventually be added to
the list. Towards a complete characterization of the expressive power of 2-WL, Fuhlbrück,
Köbler, and Verbitsky [14] developed an algorithmic characterization of the graphs of color
class size at most 4 that are identified by 2-WL.

Our Contribution. In this work, we investigate 2-WL on planar graphs. We are interested
in analyzing the stable output coloring computed by 2-WL and deducing symmetries and
other properties of the input graph from properties of the coloring.

As a starting point, we precisely characterize the planar graphs in which all edges receive
the same color with respect to 2-WL. Since the coloring that 2-WL computes is preserved
by automorphisms, edge-transitive planar graphs clearly fall into this category. As our first
main result, we prove the converse of this statement: every planar graph in which all edges
receive the same color with respect to 2-WL is edge-transitive. To show the implication, we
reprove the classification of edge-transitive planar graphs (see, e.g., [26]) building solely on
the 2-WL coloring.

Using the classification, we continue to analyze the WL coloring on general planar graphs.
Since, by [32], the algorithm 2-WL implicitly computes the graph decomposition into 3-
connected components, understanding 2-WL on planar graphs essentially amounts to a study
of 3-connected planar graphs. Here, we can exploit a theorem due to Whitney [42], which
says that all embeddings of a 3-connected planar graph are combinatorially equivalent.

Our focus lies on the following three tasks: (i) classify the subgraphs induced by edges of
the same 2-WL color that can occur, (ii) analyze how these subgraphs interleave, and (iii)
establish connections to properties of the entire graph G.

Let G be a 3-connected planar graph and let CE(G) denote the set of 2-WL colors that
correspond to edges of G. For every c ∈ CE(G), denote by G[c] the subgraph induced by all
edges of 2-WL color c. To describe our results, it turns out to be useful to partition edge
colors into three types depending on the number of faces per connected component of G[c].
We say that c has Type I if every connected component of G[c] has one face, Type II if every
connected component of G[c] has two faces, and Type III if every connected component of
G[c] has at least three faces. (By the properties of 2-WL, these types indeed cover all cases
that can occur.)
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First, we analyze the graphs induced by edge colors c of Type III. It is not hard to see
that every edge in such a graph G[c] receives the same 2-WL color (when applying 2-WL
to G[c]), and thus, by our classification, G[c] is edge-transitive. However, it turns out that
much stronger statements are possible, since, in the end, many edge-transitive planar graphs
cannot appear as a graph G[c]. For example, we show that G[c] is always connected. As
our central result for colors of Type III, we obtain a precise classification of the possible
graphs G[c]. An interesting consequence of this classification is that the automorphism group
Aut(G) of G is always isomorphic to a subgroup of Aut(G[c]). More precisely, we show that
fixing the images of all vertices of G[c] uniquely determines the image of every vertex of G

under any automorphism of G. Hence, by only looking at the subgraph induced by a single
edge color of Type III, we obtain strong insights about the symmetries of the entire graph.

On the other side of the spectrum, we prove that if all edge colors are of Type I, then G

has fixing number at most 1, where the fixing number is the minimum number of vertices
that need to be fixed pointwise so that the identity mapping is the only automorphism of G.
It is known that 3-connected planar graphs have fixing number at most 3, and there is a
complete characterization of those graphs of fixing number exactly 3 [34]. In our analysis
of 3-connected planar graphs G in which all edge colors are of Type I, we only use 1-WL
to prove that G has no non-trivial automorphisms after fixing a certain single vertex. This
implies that 2-WL identifies all such graphs.

If neither of the above cases applies, then there is an edge color of Type II. Let us first
remark that the graphs of many Archimedean solids fall into this category (while the edge
colors in the graph of all Platonic solids are of Type III). In such a situation, the graph of the
Archimedean solid is defined by edge colors c, d where one of the two colors has Type II. With
this in mind, towards solving task (ii), we analyze how edge colors of Type II interleave with
other edge colors. More precisely, similarly as for Type III, we aim at identifying a connected
subgraph defined by two colors c, d ∈ CE(G), where c has Type II, that corresponds to one of
the Archimedean solids, or stems from a small number of infinite graph families. We remark
that, similar to the case of edge colors of Type III, if we have such a subgraph G[c, d], then
Aut(G) is isomorphic to a subgroup of Aut(G[c, d]).

We show that either this goal can be achieved, or G has fixing number 1 or there is a
WL-definable matching. Such a matching is given by an edge color c such that G[c] is a
matching graph (i.e., every vertex has degree 1) and the endpoints of every edge receive
different colors. Such matchings also play a crucial role in the analysis of 2-WL on graphs of
color class size 4 [14], and contracting all matching edges preserves many crucial properties
related to WL such as the stable coloring, identifiability by WL, as well as the automorphism
group of G. As a result, finding a WL-definable matching is beneficial since we can proceed
to a smaller graph without affecting the problem at hand.

Towards the WL Dimension of Planar Graphs. The WL dimension of a graph class C is
the minimal k such that k-WL identifies every graph from C, i.e., k-WL serves as a complete
isomorphism test for the class C. Many classes of graphs are known to have a finite WL
dimension, for example, interval graphs [13], graphs of bounded rank-width [24] as well as
graphs of bounded genus [22] and, more generally, all graph classes that exclude a fixed
graph as a minor [19, 20].

For planar graphs, the quest for bounds on their WL dimension was initiated by Immerman
already over three decades ago [28]. In a first step, Grohe [18] proved that the dimension
is finite. Analyzing Grohe’s proof in detail, Redies [38] showed an upper bound of 14 on
the WL dimension of planar graphs. This was further improved in [34], where it is shown
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Figure 1 The visualization shows a 3-connected planar graph G and an edge color c ∈ CE(G)
(shown in black) such that G[c] is isomorphic to K4. Also, C1, C2, C3, C4 are the vertex sets of the
connected components of G − V (G[c]). Using regularity constraints specific to the case G[c] ∼= K4,
one can show that the graphs induced by the Ci are all indistinguishable by 2-WL. More strongly,
it actually holds for all i, j ∈ [4], v ∈ N(Ci) and w ∈ N(Cj) that {{χ(v, v′) | v′ ∈ N(v) ∩ Ci}} =
{{χG(w, w′) | w′ ∈ N(w) ∩ Cj}}, where χ denotes the 2-WL coloring. (In the picture, this multiset
contains one green edge, i.e., every v ∈ V (G[c]) has exactly one neighbor via a green edge in each
adjacent Ci.)

that already 3-WL identifies all planar graphs, thus narrowing down the WL dimension of
planar graphs to 2 or 3. Moreover, it was recently shown that a constant dimension of the
WL algorithm suffices to identify all planar graphs in a logarithmic number of refinement
rounds [23], extending previous results for 3-connected planar graphs [40]. Still, the task to
determine the precise WL-dimension of the class of planar graphs remains open. A central
motivation for our work is to find out whether 2-WL identifies every planar graph.

Our results suggest an inductive approach to this question. Indeed, building on the
fact that 2-WL is able to detect the decomposition into 3-connected components [32], we
can restrict our attention to 3-connected graphs. Given a 3-connected planar graph G, by
combining the results described above, we always obtain that G has one of the following:
(A) fixing number 1 under 1-WL, i.e., individualizing a single vertex and performing 1-WL

(after coloring all pairs with their 2-WL color) results in a discrete coloring,
(B) a WL-definable matching, or
(C) a connected subgraph induced by at most two edge colors that corresponds to a Platonic

or Archimedean solid or stems from a small number of infinite graph families.
In Case A, the graph G is identified by 2-WL. In Case B, we can follow the strategy outlined
in [14] and move to a smaller graph by contracting the definable matching. Therefore,
determining the WL dimension of the class of planar graphs boils down to defeating Case C.
In this case, we obtain a connected subgraph H that is defined by at most two edge colors
c and d and which we can classify precisely. Let C1, . . . , Cs denote the vertex sets of the
connected components of G − V (H), the graph G with the vertices in H removed (see also
Figure 1). Also, let G′ be a second graph that cannot be distinguished from G by 2-WL. Let
H ′ denote the subgraph of G′ induced by c and d and let C ′

1, . . . , C ′
s denote the vertex sets

of the connected components of G′ − V (H ′). Presupposing by induction that the statement
holds for smaller graphs, we may assume that 2-WL identifies the subgraphs induced by
C1, . . . , Cs. This implies that G[Ci] is isomorphic to G′[C ′

i] for all i ∈ [s] (possibly after
reordering the sets C ′

1, . . . , C ′
s). It is not hard to see that 2-WL identifies H and, thus, H is

isomorphic to H ′. Now, ideally, we want to glue all these partial isomorphisms together to
obtain a global isomorphism from G to G′. Towards this end, it is our intuition that the
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options for the interplay between H and the sets Ci are extremely limited due to G being
planar and H being defined by few edge colors, which enforces strong regularity conditions
on the interaction between H and the surrounding graph. A formalization of such a strategy
for all subcases that can appear in Case C should yield that 2-WL identifies every planar
graph.

2 Preliminaries

Graphs. An (undirected) graph is a pair G = (V (G), E(G)) of a finite vertex set V (G) and
an edge set E(G) ⊆

{
{u, v}

∣∣ u ̸= v ∈ V (G)
}

. Unless stated explicitly otherwise, graphs are
undirected. For a directed graph G′, we write undir(G′) to denote its undirected version.
For v, w ∈ V (G), we also write vw as a shorthand for {v, w}. The neighborhood of v in
G is denoted by NG(v) and the degree of v in G is degG(v) := |NG(v)|. If the graph G is
clear from the context, we usually omit the index and simply write N(v) and deg(v). For
W ⊆ V (G), we also define N(W ) :=

(⋃
v∈W N(v)

)
\ W . We denote by G[W ] the induced

subgraph of G on the vertex set W , and define G − W := G[V (G) \ W ]. A set S ⊆ V (G) is a
separator of G if G − S has more connected components than G. A k-separator of G is a
separator of G of size k. The graph G is k-connected if it is connected and has no separator
of size at most k − 1.

In our definitions of vertex sets of graphs, we use the notation ⊎ to denote a formal
disjoint union. More precisely, for sets V and W , the set V ⊎ W contains |V | + |W | vertices,
one distinct copy of each vertex in V and one distinct copy of each vertex in W . (For ease of
notation, we refer to the vertices by their original names in V and W instead of renaming
them first.)

A vertex-colored graph is a tuple (G, λ) where G is a graph and λ : V (G) → C is a vertex
coloring, a mapping from V (G) into some set C of colors. We define the set of arcs of a
graph G as A(G) := {(v, v) | v ∈ V (G)} ∪ {(v, w) | {v, w} ∈ E(G)}. Observe that for each
vw ∈ E(G), there are the two arcs (v, w), (w, v). An arc-colored graph is a tuple (G, λ),
where G is a graph and λ : A(G) → C is a mapping from A(G) into some set C of colors.
Similarly, a pair-colored graph is a tuple (G, λ), where G is a graph and λ : (V (G))2 → C is
a mapping into some set of colors C.

Typically, the set C is chosen to be an initial segment [n] of the natural numbers. We
say a coloring λ is discrete if it is injective, i.e., all color classes have size 1. Finally, for a
coloring λ and distinct vertices v1, . . . , vℓ, we denote by (G, λ, v1, . . . , vℓ) the colored graph
where each vi for i ∈ [ℓ] is individualized. To be more precise, if λ is a vertex coloring, then
(G, λ, v1, . . . , vℓ) := (G, λ̃) where λ̃(vi) = (1, i) for all i ∈ [ℓ], and λ̃(v) = (0, λ(v)) for all
v ∈ V (G)\{v1, . . . , vℓ}. The definitions for arc and pair colorings are analogous. We generally
assume that all graphs are arc-colored even if not explicitly stated. Every (uncolored) graph
can be interpreted as an arc-colored graph by assigning to every diagonal arc (v, v) the color
1 and assigning to every non-diagonal arc the color 2.

A graph is called planar if it can be embedded into the plane R2. A plane graph is a
graph embedded into the plane. As the following statement shows, all plane realizations of a
planar graph have the same number of faces, i.e., regions bounded by edges.

▶ Theorem 1 (Euler’s formula). Let G be a connected plane graph with n vertices, m edges,
and f faces. Then n − m + f = 2.

We will also fall back on the following famous theorem due to Whitney.

ICALP 2022
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▶ Theorem 2 (Whitney’s theorem [42]). Up to homeomorphism, a 3-connected planar graph
has a unique embedding into the plane.

The theorem allows us to speak about faces of 3-connected planar graphs as abstract
objects, since it implies that in a 3-connected planar graphs, the set of faces does not depend
on a specific embedding and thus, the faces can be viewed as combinatorial objects associated
with G and are uniquely defined by their sets of vertices V (F ) and the edges E(F ) bounding
F . We will therefore not draw a clear distinction between this combinatorial view and the
topological view of F as a region and just use whichever is most suitable for our purpose.

The Weisfeiler–Leman Algorithm. Let χ1, χ2 : (V (G))k → C be colorings of the k-tuples
of vertices of a graph G. We say χ1 refines χ2, denoted χ1 ⪯ χ2, if χ1(v̄) = χ1(w̄) implies
χ2(v̄) = χ2(w̄) for all v̄, w̄ ∈ (V (G))k. The colorings χ1 and χ2 are equivalent, denoted
χ1 ≡ χ2, if χ1 ⪯ χ2 and χ2 ⪯ χ1.

Given a graph G, the algorithm 1-WL iteratively computes an isomorphism-invariant
coloring of the vertices of G. In this work, we actually require an extension of 1-WL, which
also takes arc colors into account. For an arc-colored graph (G, λ), we define the initial
coloring computed by the algorithm via χ1

0[G](v) := λ(v, v) for all v ∈ V (G). This coloring is
refined via χ1

i+1[G](v) := (χ1
i[G](v), Mi(v)), where Mi(v) is a multiset defined as

Mi(v) :=
{{(

χ1
i[G](w), λ(v, w), λ(w, v)

) ∣∣∣ w ∈ NG(v)
}}

.

By definition, χ1
i+1[G] ⪯ χ1

i[G] holds for all i ≥ 0. Hence, there is a minimal value i∞ such
that χ1

i∞
[G] ≡ χ1

i∞+1[G]. We call χ1
i∞

[G] the stable coloring of G and denote it by χ1
WL[G].

The algorithm 1-WL takes an arc-colored graph (G, λ) as input and returns χ1
WL[G].

We can also apply 1-WL to a pair-colored graph (G, λ). This can be done by defining
λ̃(v1, v2) := (1, λ(v1, v2)) for all v1, v2 ∈ V (G) with v1v2 ∈ E(G), and λ̃(v1, v2) := (0, λ(v1, v2))
for all v1, v2 ∈ V (G) with v1v2 /∈ E(G). Then we define χ1

WL[G, λ] := χ1
WL[H, λ̃] where H is a

complete graph on vertex set V (G).
Next, we describe the k-dimensional Weisfeiler–Leman algorithm (k-WL) for k ≥ 2. For

an input graph G, let χk
0[G] : (V (G))k → C be the coloring where each tuple is colored

with the isomorphism type of its underlying ordered subgraph. vi = vj ⇔ v′
i = v′

j and
vivj ∈ E(G) ⇔ v′

iv
′
j ∈ E(G). If the graph comes equipped with a coloring, the initial coloring

χk
0[G] also takes the input coloring into account. More formally, for an arc coloring λ, for

χk
0[G](v1, . . . , vk) = χk

0[G](v′
1, . . . , v′

k) to hold, we have the additional conditions λ(vi, vj) =
λ(v′

i, v′
j) for all i, j ∈ [k] with (vi, vj) ∈ A(G). For a pair coloring λ, we have the additional

conditions λ(vi, vj) = λ(v′
i, v′

j) for all i, j ∈ [k].
We then recursively define the coloring χk

i[G] obtained after i rounds of the algorithm.
For v̄ = (v1, . . . , vk) ∈ (V (G))k, let χk

i+1[G](v̄) :=
(
χk

i[G](v̄), Mi(v̄)
)
, where

Mi(v̄) :=
{{(

χk
i[G](v̄[w/1]), . . . , χk

i[G](v̄[w/k])
) ∣∣∣ w ∈ V (G)

}}
and v̄[w/i] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from substituting the i-th
entry of v̄ with w. Again, there is a minimal i∞ such that χk

i∞
[G] ≡ χk

i∞+1[G], and we set
χk

WL[G] := χk
i∞

[G].
The algorithm k-WL takes a (pair- or arc-)colored graph G as input and returns χk

WL[G].
Given graphs G and H, the algorithm distinguishes G and H if {{χk

WL[G](v̄) | v̄ ∈ (V (G))k}} ̸=
{{χk

WL[H](w̄) | w̄ ∈ (V (H))k}}. Also, k-WL identifies G if it distinguishes G from every other
non-isomorphic graph.
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▶ Definition 3. Let G be a graph and let k ≥ 2. Then k-WL determines arc orbits on
G if for every (v1, v2) ∈ A(G), every graph H, and every (w1, w2) ∈ A(H) such that
χk

WL[G](v1, v2, . . . , v2) = χk
WL[H](w1, w2, . . . , w2), there is an isomorphism φ : G ∼= H such

that φ(vi) = wi holds for both i ∈ {1, 2}.
Moreover, k-WL determines pair orbits of G if for all v1, v2 ∈ V (G), every graph H,

and all w1, w2 ∈ V (H) such that χk
WL[G](v1, v2, . . . , v2) = χk

WL[H](w1, w2, . . . , w2), there is an
isomorphism φ : G ∼= H such that φ(vi) = wi holds for both i ∈ {1, 2}.

Observe that if k-WL determines arc or pair orbits of G, then it identifies G. Indeed, if
for a second graph H, there is no isomorphism from G to H, the multisets of χk

WL-colors in
the two graphs must be disjoint by Definition 3.

3 Edge-Transitive Planar Graphs

In this section, we classify planar graphs where all edges receive the same color with respect
to 2-WL. We call an undirected graph G edge-transitive if for all uv, u′v′ ∈ E(G), there is
an automorphism φ : V (G) → V (G) with φ(u) = u′ and φ(v) = v′. It is well-known that
there are only nine edge-transitive connected planar graphs of minimum degree 3 [26]. Based
on this result, one can easily classify all edge-transitive planar graphs. Clearly, all of these
graphs have the property that all edges receive the same color with respect to 2-WL. In this
section, we show the converse of this statement, i.e., every planar graph in which all edges
receive the same color with respect to 2-WL is edge-transitive. Towards this goal, we reprove
the classification from [26] relying only on 2-WL colors. More precisely, the main result in
this section is the following theorem (see also Figure 2). Since 2-WL colors directed pairs and
it may happen that a pair (u, v) receives a different color than (v, u), it is more convenient to
consider directed graphs and demand that all directed edges receive the same color (rather
than saying the pair of colors for both orientations is the same for all undirected edges).

▶ Theorem 4. Let G be a connected planar (directed or undirected) graph of minimum degree
at least 3 such that χ2

WL[G](v1, w1) = χ2
WL[G](v2, w2) for all (v1, w1), (v2, w2) ∈ E(G). Then

one of the following holds:
(A) G is isomorphic to a tetrahedron (Figure 2a), a cube (Figure 2b), a dodecahedron (Figure

2d), or an icosahedron (Figure 2e),
(B) the undirected version undir(G) is isomorphic to an octahedron (Figure 2c), a cubocta-

hedron (Figure 2f), or an icosidodecahedron (Figure 2g), or
(C) the undirected version undir(G) is isomorphic to a cube (Figure 2h), a rhombic dodeca-

hedron (Figure 2i), or a rhombic triacontahedron (Figure 2j).

Note that the classification includes the graphs of all Platonic solids. To prove the
theorem, we distinguish two cases. Let χ := χ2

WL[G] and let CV (G, χ) := {χ(v, v) | v ∈ V (G)}
denote the set of vertex colors. Since χ(u, u) = χ(u′, u′) and χ(v, v) = χ(v′, v′) whenever
χ(u, v) = χ(u′, v′), we conclude that 1 ≤ |CV (G, χ)| ≤ 2. First suppose |CV (G, χ)| = 1.
Then undir(G) is d-regular for some d ≥ 3. Since G is planar, d ≤ 5 and thus, d ∈ {3, 4, 5}.
A deep analysis of these three cases leads to the graphs listed in Parts A and B. Let us
remark at this point that obtaining such a classification is much more challenging than for
edge-transitive graphs. Indeed, the proofs for edge-transitive graphs highly exploit that
the multiset of sizes of faces incident to an edge (and a vertex, respectively) is always the
same. However, we cannot immediately deduce information about the size of faces from
considering WL-colors and hence, we cannot directly rely on this type of argument. Instead,
our arguments exploit the fact that 2-WL can detect 2-separators [32] as well as the existence
of certain short cycles [15].

ICALP 2022
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(a) Tetrahedron. (b) Cube. (c) Octahedron. (d) Dodecahedron.

(e) Icosahedron. (f) Cuboctahedron. (g) Icosidodecahedron.

(h) Bicolored cube. (i) Rhombic dodecahedron. (j) Rhombic triacontahedron.

Figure 2 All edge-transitive connected planar graphs of minimum degree 3.

Also, note that the graphs listed in Part A are always undirected since d is odd. On the
other hand, every graph listed in Part B also has at least one directed version that is also
edge-transitive (we refer the reader to the full version [33] for details).

Finally, for the case |CV (G, χ)| = 2, it is possible to perform a reduction to the first case
by defining an auxiliary graph on one of the two vertex-color classes. This results in the
graphs listed in Part C. Here, it is notable that the cube appears for a second time because
it is bipartite and directing all edges from one bipartition class to the other one also leads to
an edge-transitive graph.

In Theorem 4, we restrict ourselves to graphs that are connected and have minimum
degree at least 3. Both of these restrictions can easily be lifted as follows. Let us first
consider the restriction on the degree and let G be a connected planar graph such that
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χ2
WL[G](v1, w1) = χ2

WL[G](v2, w2) holds for all (v1, w1), (v2, w2) ∈ E(G). If G has maximum
degree 2 or contains a vertex of degree at most 1, then it is easy to see that G is either a
cycle or isomorphic to a star K1,h for some h ≥ 0 (h = 0 covers the special case that G

consists of a single vertex).

▶ Definition 5. Let H be a graph and s ≥ 1. The s-subdivision of H is the graph H(s)

obtained from H by replacing each edge with s parallel paths of length 2. Formally, H(s) is
the graph with vertex set V (H(s)) := V (H) ⊎ (E(H) × [s]) and edge set

E(H(s)) :=
{

v(e, i)
∣∣∣ e ∈ E(H), v ∈ e, i ∈ [s]

}
.

In the remaining case, G has maximum degree at least 3 and minimum degree 2. Then it
is easy to see that G is one of the graphs from Theorem 4, or an s-subdivision of one of the
graphs from Parts A and B for some s ≥ 1, a cycle Cℓ for some ℓ ≥ 3, or the complete graph
on two vertices K2.

Finally, if G is not connected, then it is isomorphic to the disjoint union of ℓ copies of
one of its connected components for some ℓ ≥ 2, because all graphs listed above can be
distinguished from each other by 2-WL. Actually, it can be checked that all of the graphs
are even identified by 2-WL. Overall, this gives the following corollary.

▶ Corollary 6. Let G be a directed planar graph such that {{χ2
WL[G](v, w), χ2

WL[G](w, v)}} =
{{χ2

WL[G](v′, w′), χ2
WL[G](w′, v′)}} holds for all (v, w), (v′, w′) ∈ E(G). Then 2-WL determines

arc orbits on G. In particular, G is edge-transitive.

4 Graphs Induced by a Single Edge Color

After considering planar graphs with a single edge color with respect to 2-WL, we now
wish to analyze the 2-WL coloring of arbitrary planar graphs. Since, by [32], the algorithm
2-WL implicitly computes the decomposition of a graph into 3-connected components1,
understanding 2-WL on planar graphs essentially amounts to a study of 3-connected planar
graphs. Hence, we restrict our attention to those.

4.1 Edge Types
Let G be a 3-connected planar graph and set χ := χ2

WL[G]. To analyze the coloring χ, we
focus on subgraphs induced by a single edge color. Towards this end, let CV := CV (G, χ) =
{χ(v, v) | v ∈ V (G)} denote the set of vertex colors. Similarly, let CE := CE(G, χ) =
{χ(v, w) | vw ∈ E(G)} be the set of edge colors. For C ⊆ CE , we define the graph G[C] with

V (G[C]) := {v1, v2 | χ(v1, v2) ∈ C} and E(G[C]) := {v1v2 | χ(v1, v2) ∈ C}.

In case C = {c1, . . . , cℓ}, we also write G[c1, . . . , cℓ] instead of G[{c1, . . . , cℓ}]. Observe that
G[C] is defined as an undirected graph. However, it may be that χ(v1, v2) ̸= χ(v2, v1) holds
for some v1v2 ∈ E(G). Since this information turns out to be relevant in some cases, we
always assume that G[C] is equipped with an arc coloring where colors are inherited from χ.

As indicated, we are particularly interested in the case C = {c} for a single color c.
Observe that the ends of c-colored edges have the same vertex color, i.e., if χ(v1, w1) =
χ(v2, w2) = c, then χ(v1, v1) = χ(v2, v2) and χ(w1, w1) = χ(w2, w2). This implies that
1 ≤ |CV (G[c], χ)| ≤ 2. We say that G[c] is unicolored if |CV (G[c], χ)| = 1. Otherwise, we say
that G[c] is bicolored.

1 For the formal and quite technical definition of this notion, we refer to [32].
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To analyze 2-WL on 3-connected planar graphs, we consider the graphs G[c] for suitable
edge colors c ∈ CE . Towards this end, it turns out to be useful to group the graphs G[c]
according to the number of faces of each connected component of G[c]. Note that 2-WL
detects connected components of graphs. More precisely, it holds that

all connected components in G[c] have the same size because 2-WL detects, for every
w ∈ V (G[c]), the set of vertices reachable in the arc-colored graph (G, χ) from w via
edges uv of color c (i.e., χ(u, v) = c or χ(v, u) = c), and
all connected components in G[c] have the same multiset of vertex degrees in G[c] since
otherwise the vertex colors and, thus, also the arc colors would be different.

In combination, all connected components of G[c] have the same number of vertices and
edges and hence, by Euler’s formula, they also have the same number of faces. We distinguish
between three types in CE .

Type I. For the first category, we consider those graphs G[c] that have only one face. To
be more precise, we say that c ∈ CE has Type I if (G[c])[A] has a single face for every vertex
set A of a connected component of G[c]. It is not difficult to see that G[c] is isomorphic to a
disjoint union of stars K1,h for h ∈ [n].

Type II. For the second category, we consider those graphs G[c] where every connected
component has exactly two faces. Formally, we say that c ∈ CE has Type II if (G[c])[A] has
exactly two faces for every vertex set A of a connected component of G[c]. In this case, G[c]
is a disjoint union of cycles of the same length. Also, it is not difficult to see that every
connected component of G[c] is either a directed cycle (i.e., χ(v1, v2) ̸= χ(v2, v1) holds for
every edge v1v2 ∈ E(G[c])), or an undirected cycle in which all vertices have the same color
with respect to 2-WL, or an undirected cycle with two vertex colors that alternate along the
cycle.

Type III. Finally, for the last category, we consider those graphs G[c] where each connected
component has at least three faces. Again, to be precise, we say that c ∈ CE has Type III if
(G[c])[A] has at least three faces for every vertex set A of a connected component of G[c].

Also, we define the type of an edge v1v2 ∈ E(G) as the type of its color χ(v1, v2) (note
that the type of χ(v1, v2) is equal to the type of χ(v2, v1)).

In the following, we derive several properties of the graphs G[c] depending on the type
of c, as well as properties of G depending on which types of edge colors occur. Towards this
end, we also define the type of G as the maximal type of any edge color c ∈ CE . So we say
that G has Type III if there is some c ∈ CE of Type III. The graph G has Type II if there is
some c ∈ CE of Type II, but there is no c′ ∈ CE of Type III. Lastly, G has Type I if every
c ∈ CE has Type I. Two example graphs are displayed in Figure 3.

4.2 Graphs of Fixing Number One
We start by investigating 3-connected planar graphs of Type I (see Figure 3a for an example).
It turns out that such graphs have fixing number 1 with respect to 1-WL (after coloring all
edges with their 2-WL colors), which in particular implies that 2-WL identifies all graphs of
Type I. The proof is based on the following result.

▶ Theorem 7 ([34, Lemma 23]). Let G be a 3-connected planar graph and suppose v1, v2, v3 ∈
V (G) are pairwise distinct vertices lying on a common face of G. Then χ1

WL[G, v1, v2, v3] is
discrete.
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(a) A graph G of Type I. Each edge color c ∈ CE

defines a graph G[c] that is isomorphic to a disjoint
union of stars. Individualizing an arbitrary blue
vertex and performing 1-WL results in a discrete
coloring. Hence, the graph is identified by 2-WL.

(b) A graph G of Type III. The edge colors black
and green have Type III, yellow has Type II, and
pink has Type I. Note that G[c] is connected for
every edge color c of Type III whereas the other
edge colors induce non-connected subgraphs.

Figure 3 Two 3-connected planar graphs where all vertices and edges are colored by their 2-WL
color. For visualization purposes, we only color edges and do not distinguish between potentially
different colors of two arcs (v, w) and (w, v).

Here, χ1
WL[G, v1, v2, v3] denotes the coloring computed by 1-WL after individualizing v1, v2,

and v3. For a vertex coloring λ : V → C and v ∈ V , we define [v]λ := {w ∈ V | λ(v) = λ(w)}
as the color class of v and Singles(λ) := {v ∈ V | |[v]λ| = 1}. For a graph G and vertices
v1, . . . , vℓ ∈ V (G), we define

SinglesG(v1, . . . , vℓ) := Singles(χ1
WL[G, χ2

WL[G], v1, . . . , vℓ]).

In other words, SinglesG(v1, . . . , vℓ) is the set of all vertices appearing in a singleton color
class after performing 1-WL on G where every pair is colored with its 2-WL-color, and where
v1, . . . , vℓ are individualized.

▶ Lemma 8. Let G be a graph and let v1, . . . , vℓ ∈ V (G) such that SinglesG(v1, . . . , vℓ) =
V (G). Also define k := max{2, ℓ + 1}. Then k-WL determines pair orbits in G.

The following lemma provides a sufficient condition for a 3-connected planar graph to
have fixing number 1.

▶ Lemma 9. Let G be a 3-connected planar graph and suppose there is a face F such that every
edge e ∈ E(F ) has Type I. Then there is a vertex v ∈ V (G) such that SinglesG(v) = V (G).

Proof. Let H be a directed graph with vertex set V (H) := V (G) and edge set

E(H) := {(v, w) | vw ∈ E(G) ∧ degG[χ2
WL[G](v,w)](v) = 1}.

Intuitively speaking, we add a directed edge (v, w) to the graph H if w is the only neighbor
of v reachable via an edge of color χ2

WL[G](v, w). In particular, if v is individualized, then w

is also fixed after performing 1-WL.
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For every edge vw ∈ E(G) of Type I, it holds that (v, w) ∈ E(H) or (w, v) ∈ E(H). Hence,
there are three vertices v1, v2, v3 ∈ V (G) lying on the face F of G such that (v1, v2), (v2, v3) ∈
E(H) or (v1, v2), (v1, v3) ∈ E(H).

Now consider the coloring λ := χ1
WL[G, χ2

WL[G], v1]. Let c := χ2
WL[G](v1, v2). By definition

of the edge set of H, it holds that v2 is the only neighbor of v1 which is adjacent via an edge
of color c. Hence, |[v2]λ| = 1. By the same argument, |[v3]λ| = 1. Since v1, v2, v3 all lie on the
face F , it follows from Theorem 7 that λ is discrete. In other words, SinglesG(v1) = V (G). ◀

▶ Corollary 10. Let G be a 3-connected planar graph of Type I. Then there is a vertex
v ∈ V (G) such that SinglesG(v) = V (G). In particular, 2-WL determines pair orbits of G.

We also record the following useful lemma, which is another consequence of Theorem 7.

▶ Lemma 11. Let G be a 3-connected planar graph. Suppose v1, . . . , vℓ ∈ V (G) form a cycle
in G, i.e., v1vℓ ∈ E(G) and vivi+1 ∈ E(G) holds for all i ∈ [ℓ−1]. Let w ∈ V (G)\{v1, . . . , vℓ}.
Then SinglesG(v1, . . . , vℓ, w) = V (G).

The lemma says that in a 3-connected planar graph G, it suffices to fix a cycle and one
additional vertex in order to fix the entire graph. For example, this allows us to extract from
the presence of certain 2-WL-detectable subgraphs bounds on the fixing number of the entire
3-connected planar graph G. Note that in the case that the fixing number in the subgraph is
1, Lemma 8 yields that 2-WL determines pair orbits in G.

4.3 Three Faces
We now turn to edge colors of Types II and III. For both types, it is not difficult to see that
it is impossible to bound the fixing number by 1 in general. Instead, our focus here lies on
investigating how edge colors of the corresponding type can appear within a 3-connected
planar graph.

We first focus on edge colors of Type III (see Figure 3b for an example). Let G be
a 3-connected planar graph and let c ∈ CE(G, χ) be an edge color of Type III, where
χ := χ2

WL[G]. By Corollary 6, the graph G[c] is edge-transitive, which already puts severe
restrictions on G[c]. However, as it turns out, due to the planarity and 3-connectedness of G,
many edge-transitive graphs can in fact not appear as subgraphs G[c]. In the following, we
classify the graphs G[c] induced by an edge color c of Type III. The following lemma is a
useful tool for the proof of our classification in Theorem 13, but also an interesting insight
by itself, since it also yields restrictions on how different colors c, c′ of Type III can appear
together in one graph G.

▶ Lemma 12. Let G be a 3-connected planar graph and let c ∈ CE(G, χ2
WL[G]) be an edge

color of Type III. Then G[c] is connected. Moreover, for every edge color c′ ∈ CE(G, χ2
WL[G])

of Type III, it holds that V (G[c]) ∩ V (G[c′]) ̸= ∅.

Proof Idea. We focus on the first part of the lemma. The second part can be proved using
similar arguments. Let c ∈ CE(G, χ2

WL[G]) be an edge color of Type III and suppose for
simplicity that G[c] is unicolored. Also let A1, . . . , Aℓ denote the vertex sets of the connected
components of G[c] and suppose towards a contradiction that ℓ ≥ 2. Consider the auxiliary
graph H with vertex set V (H) := {A1, . . . , Aℓ} and edges AiAj whenever there is a path
from a vertex vi ∈ Ai to a vertex vj ∈ Aj that is internally disjoint from A1 ∪ · · · ∪ Aℓ. Note
that H is connected because G is connected. Also, we have χ2

WL[H](Ai, Ai) = χ2
WL[H](Aj , Aj)

for all i, j ∈ [ℓ], by exploiting known properties of 2-WL (see, e.g., [9, Theorem 3.1.11]). So
H is 2-connected with [32, Theorem 3.15].
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Now, consider the graph G−A1. Since H is 2-connected, all sets A2, . . . , Aℓ are contained
in the same connected component of G − A1. Let X denote the vertex set of this component.
We claim that NG(X) = A1. Note that NG(X) ̸= ∅ since G is connected. Let v ∈ NG(X)
and let w ∈ A1. Since G[c] is unicolored, we conclude that χ2

WL[G](v, v) = χ2
WL[G](w, w). Also,

since v ∈ NG(X), there is a path from v to another vertex v′ ∈ A2 ∪· · ·∪ Aℓ that is internally
disjoint from A1 ∪ · · · ∪ Aℓ. Since this property can be detected by 2-WL, such a path also
exists starting in w. But this is only possible if w ∈ NG(X). So overall, NG(X) = A1.

By contracting the set X to a single vertex, we obtain that adding a universal vertex to
(G[c])[A1] still results in a planar graph. However, by Theorem 4, we have that (G[c])[A1] is
isomorphic to one of the graphs from Figure 2a – 2g. But this gives a contradiction since it
is not possible to add a universal vertex to any of those graphs while preserving planarity.
So ℓ = 1, which means that G[c] is connected. ◀

▶ Theorem 13. Let G be a 3-connected planar graph and let c ∈ CE(G, χ2
WL[G]) be of Type

III. Then one of the following holds.
1. G[c] is bicolored and isomorphic to K2,ℓ for some ℓ ≥ 3,
2. G[c] is bicolored and isomorphic to a 2-subdivision of a cycle Cℓ for some ℓ ≥ 3,
3. G[c] is bicolored and isomorphic to a graph from Fig. 2h – 2j,
4. G[c] is unicolored and isomorphic to a graph from Fig. 2a – 2g,
5. G[c] is bicolored and isomorphic to a 1-subdivision of a graph from Fig. 2a – 2g, or
6. G[c] is bicolored and isomorphic to a 2-subdivision of a graph from Fig. 2a – 2e.

Observe that this classification is optimal in the sense that every graph listed in the
theorem can actually appear as a graph G[c] for some edge color c within a 3-connected
planar graph. An easy way to see this is to take one of the graphs listed in the theorem,
embed this graph H in the plane, place a fresh vertex vF into every face F and connect it to
all vertices lying on F . The resulting graph G is 3-connected and planar, and H = G[c] for
some edge color c ∈ CE(G, χ2

WL[G]).
Also note that for a 3-connected planar graph G and an edge color c ∈ CE(G, χ2

WL[G])
of Type III, the automorphism group Aut(G) is isomorphic to a subgroup of Aut(G[c]).
Indeed, every automorphism γ ∈ Aut(G) naturally restricts to an automorphism γ|V (G[c]) of
G[c] since the coloring computed by 2-WL is invariant. This gives rise to a homomorphism
φ : Aut(G) → Aut(G[c]) : γ 7→ γ|V (G[c]). By Theorem 13 and Lemma 11, we obtain that
SinglesG(w1, . . . , wℓ) = V (G) where {w1, . . . , wℓ} = V (G[c]). This implies that the kernel of
φ is trivial, which implies that Aut(G) is isomorphic to a subgroup of Aut(G[c]).

5 Disjoint Unions of Cycles

In this section, we consider 3-connected planar graphs of Type II. Let G be a 3-connected
planar graph and let χ := χ2

WL[G] be the coloring computed by 2-WL. Suppose that G has
Type II, i.e., there is an edge color c ∈ CE(G, χ) of Type II, but there is no edge color of
Type III. As before, we wish to understand in which ways edge colors of Type II can occur
in G. More precisely, similarly to the case where G has Type III, our goal is to identify and
classify connected subgraphs defined by few edge colors. Towards this end, we define three
subcategories of edge colors of Type II. Let c ∈ CE(G, χ) be of Type II. If G[c] is unicolored
and {(v, w) | χ(v, w) = c} ≠ {(v, w) | χ(w, v) = c} (i.e., G[c] is a disjoint union of directed
cycles), then we say that c has Type IIc. If c does not have Type IIc, but G[c] is connected,
then we say that c has Type IIb. If c does not have Type IIc, and G[c] is not connected,
then we say that c has Type IIa.
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(a) A graph G of Type IIa where each edge color
has Type IIa. The black and green edges induce a
connected subgraph that is isomorphic to a parallel
subdivision of a truncated tetrahedron.

(b) A graph G of Type IIb. The color black has
Type IIb, yellow, violet and pink have Type IIa, and
green has Type I. Note that Aut(G) is isomorphic to
(Aut(G[black])) × Z2 because, after individualizing
all red vertices, we can only swap the “interior” and
the “exterior” region of the black cycle.

Figure 4 Two 3-connected planar graphs of Type II. All vertices and edges are colored by
their 2-WL color. For visualization purposes, we only color edges and do not distinguish between
potentially different colors of two arcs (v, w) and (w, v).

Let us remark that the main point of the subtypes is to distinguish between edge colors c

of Type II that induce non-connected subgraphs (Type IIa) and those that induce connected
subgraphs (Type IIb). The reason why we additionally single out the directed cycles (Type
IIc) is that the existence of an edge color of Type IIc almost always (i.e., with the exception
of one graph family) implies that the graph has fixing number 1, because individualizing a
single vertex in a directed cycle fixes all other vertices on the cycle as well. In particular, we
can show that every graph that contains an edge color of Type IIc is identified by 2-WL.

We also point out that the existence of an edge color of Type IIb immediately puts severe
restrictions on the structure of G. For example, if c ∈ CE(G, χ) is an edge of Type IIb, it
can be shown that Aut(G) is isomorphic to a subgroup of (Aut(G[c])) × Z2 because, after
individualizing all vertices of G[c], an automorphism of G can only swap the “interior” and
the “exterior” region of the cycle (see also Figure 4b).

Recall that the type of G is defined as the maximal type of any of its edge colors. We
extend this definition to subtypes in the natural way. For example, G has Type IIb if there
is an edge color c ∈ CE(G, χ) of Type IIb, but no edge color of Type III or IIc. Two example
graphs of Type II are given in Figure 4.

5.1 Directed Cycles
We start by analyzing graphs that contain an edge color c of Type IIc. As indicated above,
this is a particularly well-behaved case because we can precisely classify those graphs that do
not have fixing number 1. The bipyramid (of order m ≥ 3) is the graph P ∗

m with vertex set
V (P ∗

m) := {u1, u2} ∪ {vi | i ∈ [m]} and edge set E(P ∗
m) = {uivj | i ∈ [2], j ∈ [m]} ∪ {vivi+1 |

i ∈ [ℓ − 1]} ∪ {v1vℓ}.

▶ Lemma 14. Let G be a 3-connected planar graph. Also let c ∈ CE(G, χ2
WL[G]) be an edge

color of Type IIc. Then there is a vertex v ∈ V (G) such that SinglesG(v) = V (G), or G is
isomorphic to a bipyramid.
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(a) Bicolored cube. (b) Chamfered tetrahedron.

Figure 5 A chamfered tetrahedron is obtained from a bicolored cube by truncating all red vertices.

▶ Corollary 15. Let G be a 3-connected planar graph and suppose G contains an edge color
of Type IIc. Then 2-WL determines pair orbits in G.

Proof. If there is a vertex v ∈ V (G) such that SinglesG(v) = V (G), then 2-WL determines
pair orbits in G by Lemma 8. Otherwise, G is a bipyramid and it is easy to check that 2-WL
determines pair orbits in G. ◀

5.2 Connected Substructures
In the remainder of this section, we analyze graphs of Type IIa and, similarly as before, aim
at finding highly regular connected substructures. (Observe that if G has Type IIb, then a
witnessing edge color already provides such an object). Unfortunately, we need to allow for
two further possible outcomes. First, we are again satisfied with finding a vertex v ∈ V (G)
such that SinglesG(v) = V (G), which in particular implies that 2-WL determines pair orbits
on G (see Lemma 8). As the other potential outcome, we consider definable matchings.

▶ Definition 16. Let G be a graph and let χ := χ2
WL[G]. A color c ∈ CE(G, χ) defines a

matching if for every (v, w) ∈ χ−1(c), it holds that χ(v, v) ̸= χ(w, w), {v′ ∈ V (G) | χ(v′, w) =
c} = {v}, and {w′ ∈ V (G) | χ(v, w′) = c} = {w}.

Suppose there is some c ∈ CE(G, χ) that defines a matching. Such a situation is generally
beneficial since we can simply contract all edges of color c and move to a smaller graph. This
operation neither changes the 2-WL coloring (see, e.g., [9, Theorem 3.1.11]) nor identification
of the graph by 2-WL, as shown in the next lemma (see also [14]).

Let c ∈ CE(G, χ) and let A1, . . . , Aℓ be the vertex sets of the connected components of
G[c]. We define G/c as the graph obtained from contracting every set Ai to a single vertex.
Formally, V (G/c) := {{v} | v ∈ V (G) \ V (G[c])} ∪ {A1, . . . , Aℓ} and E(G/c) := {X1X2 |
X1, X2 ∈ V (G/c), ∃v1 ∈ X1, v2 ∈ X2 : v1v2 ∈ E(G)}. We also define the pair coloring χ/c

by setting (χ/c)(X1, X2) := {{χ(v1, v2) | v1 ∈ X1, v2 ∈ X2}} for all X1, X2 ∈ V (G/c).

▶ Lemma 17. Let G be a graph and let χ := χ2
WL[G]. Also, let c ∈ CE(G, χ) be an edge

color that defines a matching. Suppose that 2-WL determines arc orbits (resp. pair orbits) on
the arc-colored graph (G/c, λ), where λ(X1, X2) := (χ/c)(X1, X2) for all (X1, X2) ∈ A(G/c).
Then 2-WL determines arc orbits (resp. pair orbits) on G.

We now provide the main classification result of this section. We start by defining the
graphs that appear in it. Let G be a 3-connected planar graph and let W ⊆ V (G) be a set
of vertices. We define H to be the graph obtained from G as follows. Let w be a vertex in
W . First, subdivide each edge incident to w once. This gives ℓ := degG(w) new vertices,
which we call w1, . . . , wℓ according to the unique cyclic order in any embedding of G. We
then remove all edges wwi and insert edges wiw(i+1) mod ℓ for i ∈ [ℓ], turning w1, . . . , wℓ into
a cycle. Each wi inherits the color of w. We call these steps the truncation of w. One by
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one, we then truncate each vertex in W . (Note that their order does not matter for the
final result.) The obtained graph is H; see Figure 5 for an example. Now, we can define the
following graphs.

For every 3-connected planar graph G, the truncated G is obtained from G by truncating
all vertices.
A chamfered tetrahedron (Figure 5b) is obtained from a bicolored cube (Figure 5a) by
truncating all red vertices2.
A chamfered cube is obtained from a rhombic dodecahedron (Figure 2i) by truncating all
blue vertices.
A chamfered octahedron is obtained from a rhombic dodecahedron (Figure 2i) by truncating
all red vertices.
A chamfered dodecahedron is obtained from a rhombic triacontahedron (Figure 2j) by
truncating all blue vertices.
A chamfered icosahedron is obtained from a rhombic triacontahedron (Figure 2j) by
truncating all red vertices.

Next, let G be a planar graph. We define the C4-subdivision of G to be the graph obtained
from G by replacing each edge vw ∈ E(G) with four vertices (vw, 1), (vw, 2), (vw, 3), (vw, 4)
and edges (vw, 1)(vw, 2), (vw, 2)(vw, 3), (vw, 3)(vw, 4), (vw, 4)(vw, 1) and v(vw, 1), w(vw, 3).

Also, for m ≥ 2, we define the graph C∗
m with vertex set V (C∗

m) := [m] × [4] and edge set

E(C∗
m) := {(i, 1)(i, 2), (i, 2)(i, 3), (i, 3)(i, 4), (i, 4)(i, 1) | i ∈ [m]}

∪ {(i, 3)(i + 1, 1) | i ∈ [m − 1]} ∪ {(m, 3)(1, 1)}.

Finally, for h ≥ 3, we define K∗
2,h to be the graph with vertex set V (K∗

2,h) := {u1, u2} ⊎
([h] × [4]) and edge set

E(K∗
2,h) := {(i, 1)(i, 2), (i, 2)(i, 3), (i, 3)(i, 4), (i, 4)(i, 1) | i ∈ [h]}

∪ {u1(i, 1) | i ∈ [h]} ∪ {u2(i, 3) | i ∈ [h]}.

Examples for the last three constructions can be found in Figure 6.
Let H be a graph and f : E(H) → N be a function. The f-subdivision of H is the

graph H(f) obtained from H by replacing each edge e with f(e) parallel paths of length
2 (if f(e) = 0, the edge e remains unaltered). Formally, H(f) is the graph with vertex set
V (H(f)) := V (H) ⊎ {(e, i) | e ∈ E(H), i ∈ [f(e)]} and edge set E(H(s)) := {e ∈ E(H) |
f(e) = 0} ∪ {v(e, i) | e ∈ E(H), v ∈ e, i ∈ [f(e)]}. A graph G is a parallel subdivision of H if
there is a function f : E(H) → N such that G is isomorphic to H(f).

▶ Theorem 18. Let G be a 3-connected planar graph of Type IIa and let χ := χ2
WL[G] be the

coloring computed by 2-WL. Then one of the following options holds.
(A) There is a vertex v ∈ V (G) such that SinglesG(v) = V (G),
(B) there is an edge color c ∈ CE(G, χ) that defines a matching, or
(C) there are colors c, d ∈ CE(G, χ) such that G[c, d] is isomorphic to a parallel subdivision

of one of the following graphs:
1. a truncated tetrahedron, a truncated cube, a truncated octahedron, a truncated dodec-

ahedron, a truncated icosahedron,
2. an m-side prism for m ≥ 3,

2 The name chamfered tetrahedron comes from an alternative construction that obtains a chamfered
tetrahedron by truncation of all edges of a tetrahedron.
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(a) C4-subdivision of a cube. (b) C∗
4 . (c) K∗

2,3.

(d) Rhombicuboctahedron. (e) Rhombicosidodecahedron.

Figure 6 Examples for the constructions from the classification for graphs of Type IIa.

3. a cuboctahedron (with two edge colors), a rhombicuboctahedron, a rhombicosidodeca-
hedron,

4. a C4-subdivision of one of the graphs from Figure 2a – 2e,
5. a C∗

m for m ≥ 2,
6. a K∗

2,h for h ≥ 3,
7. a chamfered tetrahedron, a chamfered cube, a chamfered octahedron, a chamfered

dodecahedron, or a chamfered icosahedron.

▶ Remark 19. There are four Archimedean solids that are explicitly listed neither in Theorem
13 nor in Theorem 18. These are the truncated cuboctahedron, the truncated icosidodec-
ahedron, the snub cube, and the snub dodecahedron. The graphs corresponding to these
solids have fixing number 1 under 1-WL and hence, they implicitly appear in Theorem 18,
Option A.

Note that for Option C from Theorem 18, using the same arguments as for edge colors of
Type III, we obtain that Aut(G) is isomorphic to a subgroup of Aut(G[c, d]).

Overall, by combining Lemmas 9 and 14 and Theorems 13 and 18, we obtain that every
3-connected planar graph G satisfies one of the following options.
(A) There is some v ∈ V (G) such that SinglesG(v) = V (G), which implies that 2-WL

determines pair orbits of G by Lemma 8,
(B) there is an edge color c ∈ CE(G, χ2

WL[G]) that defines a matching, or
(C) there is a set C ⊆ CE(G, χ2

WL[G]) such that |C| ≤ 2 and G[C] is essentially a Platonic
or Archimedean solid, or stems from a small number of infinite families of connected
graphs.

Option C contains the graphs listed in Theorems 13 and 18, as well as the class of bipyramids
from Lemma 14 and the class of cycles to cover graphs of Type IIb.

ICALP 2022
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It remains an important open question whether 2-WL identifies every planar graph. With
the structural insights from this paper, it now suffices to focus on Case C and, as explained
above, the classification of the subgraphs G[C] appearing in this case should be a crucial
step to determining the WL dimension of planar graphs.
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