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—— Abstract

For an n-vertex digraph G = (V, E) and integer parameter D, a D-shortcut is a small set H of
directed edges taken from the transitive closure of G, satisfying that the diameter of G U H is
at most D. A recent work [Kogan and Parter, SODA 2022] presented shortcutting algorithms
with improved diameter vs. size tradeoffs. Most notably, obtaining linear size D-shortcuts for
D = 5(111/3), breaking the y/n-diameter barrier. These algorithms run in O(n®) time, as they are
based on the computation of the transitive closure of the graph.

We present a new algorithmic approach for D-shortcuts, that matches the bounds of [Kogan and
Parter, SODA 2022], while running in o(n*) time for every D > n'/3. Our approach is based on a
reduction to the min-cost max-flow problem, which can be solved in 5(m + n3/2) time due to the
recent breakthrough result of [Brand et al., STOC 2021].

We also demonstrate the applicability of our techniques to computing the minimal chain covers
and dipath decompositions for directed acyclic graphs. For an n-vertex m-edge digraph G = (V, E),
our key results are:

An 5(711/3 -m 4 n®/?)-time algorithm for computing D-shortcuts of linear size for D = 5(n1/3),

and an 5(n1/4 -m 4 n"/*)-time algorithm for computing D-shortcuts of 5(n3/4) edges for

D = O0(n'/?).

For a DAG G, we provide 6(m +n%/ %)-time algorithms for computing its minimum chain covers,

maximum antichain, and decomposition into dipaths and independent sets. This improves

considerably over the state-of-the-art bounds by [Caceres et al., SODA 2022] and [Grandoni et

al., SODA 2021].

Our results also provide a new connection between shortcutting sets and the seemingly less related
problems of minimum chain covers and the maximum antichains in DAGs.
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1 Introduction

This paper is concerned with time-efficient algorithms for computing directed shortcut
sets. For a given n-vertex digraph G = (V, E) and an integer parameter D, a D-shortcut
set H is a subset of edges from the transitive closure of G, denoted as TC(G), satisfying
that the diameter of G U H is at most D. The diameter of the digraph is length of the
longest u-v shortest path in G over any pair (u,v) € TC(G). The key objective in this
setting is to optimize the diameter vs. size tradeoff. Since their introduction by Ullman and
Yannakakis [27] and Thorup [26], shortcutting sets have been studied extensively due to

© Shimon Kogan and Merav Parter;
oY licensed under Creative Commons License CC-BY 4.0
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).

Editors: Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 82; pp. 82:1-82:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany



mailto:shimon.kogan@weizmann.ac.il
mailto:merav.parter@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2022.82
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

82:2

Beating Matrix Multiplication for Directed Shortcuts

their wide-range of applications for parallel, distributed, dynamic and streaming algorithms
[18, 14, 11, 22, 10, 13, 4]. Their applicability is also demonstrated by the recent breakthrough
results, e.g., [22, 10, 13] that use shortcuts as their core component.

Diameter vs. Size Tradeoffs of Shortcuts. Thorup conjectured [26] that any n-vertex
digraph with m edges, has an D-shortcut of size O(m) for’ D = O(1). This has been shown
to hold for a restricted class of graphs, such as planar [26]. Hesse [15] refuted this conjecture
for general graphs by presenting a construction of an n-vertex digraph with m = @(n!%/17)
edges that requires Q(mn””) shortcut edges to reduce its diameter to below n'/7. Up to
very recently, the only known size vs. diameter tradeoff was given by a folklore randomized
algorithm, attributed to Ullman and Yannakakis [27], that for every integer D > 1, provides a
D-shortcut of size O((n/D)?log? n). Berman et al. [3] improved the size bound to O((n/D)?).
Setting D = O(y/n) provides D-shortcuts of linear size in the number of vertices of the
graph. This should be compared with the lower bound result by Huang and Pettie [16] that
admits an n-vertex graph for which any linear shortcut (in the number of vertices of the
graph) provides a diameter of Q(n'/%). Lu, Vassilevska-Williams, Wein and Xu have recently
improved the lower bound for D-shortcuts with O(m) edges to D = Q(n'/®).

Very recently, the authors [19] presented an improved tradeoff, breaking the y/n diameter
barrier for linear-size shortcuts. For any D < n'/3, they provide D-shortcuts of O(n2/D?)
edges. For any D > n'/3 they provide D-shortcuts with O((n/D)3/2?) edges, hence of
sublinear size. The algorithms of [19] are critically based on the precomputation the
transitive closure of the graph, whose O(n*)-time computation dominates the runtime of
their shortcut constructions.

Time-Efficient Shortcut Computation. Due to the algorithmic importance of shortcuts,
e.g., for reachability computation, much focus has been devoted to their time-efficient
computation, in almost any classical computational setting, e.g., sequential, parallel and
distributed, etc. In this algorithmic context, the primary objective is to compute shortcuts
faster than computing the transitive closure itself. The reason is that shortcuts are usually
used to provide faster algorithms for reachability related problems. The latter can be trivially
solved by computing the transitive closure. Hence, for shortcuts to become algorithmically
applicable, say in the sequential setting, their construction should run in o(n*) time. In a
sequence of breakthrough results, Liu, Jambulapati and Sidford [22] extended the framework
of Fineman [10] to compute, in nearly linear time, a shortcut set of 6(71) edges that reduces
the diameter of the graph to D = O(n'/?*°(M)) (i.e., almost as obtained by the folklore
algorithm). They also provide a parallel implementation of their algorithm leading to the
first parallel reachability algorithm with near linear work and n'/2+°(1) depth.

The algorithms of [19] are based on computing the transitive closure of the graph. Towards
making these structures applicable in the algorithmic context, e.g., for reachability, we ask:

» Question 1.1. Is it possible to break the \/n diameter barrier of shortcuts in o(n®) time?

We answer this question in the affirmative by providing a new algorithmic approach for
shortcuts, that is based on a reduction to the minimum-cost maximum-flow problem. Luckily,
the time complexity of the latter problem has only recently improved from 6(\/ﬁm) (by Lee
and Sidford [21]) to O(m + n3/2) by Brand et al. [29]. We observe that the key algorithmic
challenge is in computing a collection of ¢ vertex-disjoint dipaths P (possibly in TC(G))

! The 5() notation hides poly-logn factors.
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satisfying that the length of the longest path contained in the transitive closure induced
on the set of uncovered vertices, namely, U = V' \ [Jpcp V(P), is bounded by ©(n/f). Our
min-cost max-flow based approach for computing these dipaths finds broader applications
for the seemingly less related problems of minimum chain covers and maximum antichains
in directed acyclic graphs. Finally, we note our time complexity of shortcuts cannot be
expressed only as a function of the time complexity of the min-cost max-flow problem, due
to other computational steps that require 6(m +nd/ %) time.

Chains and Antichains: Covers and Decompositions. A chain is a dipath in the transitive
closure TC(G), and an antichain is subset of vertices I C V that form an independent set in
TC(G). The closely related notions of chains and antichains give rise to four classical graph
theoretical problems that have been studied thoroughly in the literature:

Minimum Chain Covers (MICC): A minimum set of chains covering all vertices in G.

Maximum Antichain (MA): An antichain of maximum size?.

Minimum Antichain Covers (MAC): A minimum set of antichains covering all

vertices in G.

Longest Chain (LC): A dipath of largest length in TC(G).

The cardinality of the MCC is also known as the width of the graph, denoted by w(G).
Dilworth [9] showed that the size of the MA is the same as the size of the MCC, namely,
w(@). In a somewhat dual manner, Mirsky [24] showed that the length of the LC equals to
the size of the MAC. Interestingly, while there are linear time algorithms for computing the
MAC and LC (e.g., by dynamic programming, [24]), no such algorithms are known for the
MCC and MA problems, at least for graphs with non-constant width. To date, the time
complexity of the existing algorithms has an inherent dependency in w(G). For example,
for the MCC problem, the classical approach computes the chains one-by-one by solving
w(G) max-flow instances. Recent work by Céaceres et al. [5, 6] has studied MCC algorithms
whose complexity is parametrized on w(G). The state-of-the-art is due to [6] that runs in
O(w(G)2n +m) time (for solving both MCC and MA). In light of the current gap in time
complexity gap for solving MAC and LC on the one hand, and for MCC and MA, on the
other hand, we ask:

» Question 1.2. [s it possible to also compute MCC and MA in (near) linear time?

We answer this question, at least partially, in the affirmative by presenting linear time MCC
and MA algorithms for moderately dense graphs. It is also known that MCC and MA
are at least as hard as computing maximum matching in bipartite graphs. Interestingly,
our algorithms use the shortcut algorithms in a black-box manner! That is, an interesting
take-home message is that the MCC and MA computations can be made faster by reducing
first the the diameter of the digraph.

1.1 Our Results

We provide new algorithms for diameter shortcutting that break the /n barrier without
using any matrix multiplication, running in o(n“) time3. For example, for sparse graphs,
our algorithms run in o(n?) for any diameter D = ﬁ(l) Our first result, which in fact also
serves as a building block later on, computes y/n-shortcuts in near linear time:

2 Le., maximum independent set in TC(G).
3 The state-of-the-art value for the matrix multiplication constant is w = 2.372 due to Alman and
Vassilevska Williams [1]
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Table 1 Prior work on MCC. (%) indicates that the MCC result is implicit.

Computation time Citation
O(n?) [17]
O(n? + w(G)"n) 7

O (max(my/n,w(G)%/?n)) 8]
O(w(G)mlogn) 2319
O(w(G)Pnlogn +m) 6109
O(m + n*/?) (this paper)

» Theorem 1.3 (©(y/n)-Shortcuts of Linear Size). There exists a randomized algorithm that
for every n-vertex digraph G with m edges~computes, w.h.p., in time O(m + n3/2) a shortcut
set H C TC(QG) satisfying that |E(H)| = O(n) and Diam(G U H) = O(y/n).

For dense graphs, with Q(n?/?) edges, this improves the diameter bound of Liu, Jambulapati
and Sidford [22] that yields D-shortcuts for diameter D = n'/2t°(1). We next use this
improved algorithm for computing D-shortcuts for any D = O(y/n), to provide the following:

» Theorem 1.4 (o(y/n)-Shortcuts). There exists a randomized algorithm that for every
n-vertex m-edge digraph G and D = O(y/n), computes, w.h.p., in time O(m -n/D? + n3/2)
a D-shortcut set H C TC(G) with |E(H)| = O(n?/D? + n) edges.

For example, for D = n'/3, we get D-shortcuts of near-linear size in O(m - n'/® + n3/2) time,
improving on the time complexity of O(n®) by [19].

We also consider faster algorithms for computing shortcuts with sublinear number of
edges. This turns out to be quite technically involved, as many of the tools used in Theorem
1.4 are based on adding a linear number of edges, which we cannot afford in the sublinear
regime. We show:

» Theorem 1.5 (w(n'/3)-Shortcuts of Sublinear Size). There exists a randomized algorithm
tizat for every n-vertex m-edge digraph G and D = w(n 1/3), computes, w. h.p., in time
O((m 4 n3/2)\/n/D) a D-shortcut set H C TC(G) with |E(H)| = O((n/D)3/?) edges.

For example, for D = n'/2, this provides D-shortcuts with O(n3/4) edges in O(m-n'/*4n7/4)
time, improving on the time complexity of O(n*) by [19].

Application to Decompositions and Covers of Chains and Antichains. Recall that a chain
(resp., antichain) is a dipath (resp., independent set) in TC(G). A minimum chain cover
(MCC) for a DAG G = (V, E) is a collection of vertex-disjoint chains that cover V(G). The
maximum antichain is the maximum independent set in TC'(G). We provide the first nearly
linear algorithms for moderately dense graphs, that in contrast to prior algorithms, do not
depend on the width of the graph.

» Theorem 1.6. For every n-vertex m-edge DAG G = (V, E), one can compute the minimum
chain cover, as well as, the mazimum antichain in time O(m +n®/?), w.h.p.

This improves over that very recent state-of-the-art running time of O((w(G))?*nlogn + m)
by [6] for graphs of large width w(G) = Q(n'/*). More conceptually this provides a near
linear-time algorithm for dense graphs, narrowing the gap to the related problems of MAC
and ML for which linear time algorithms are folklore. Finally, we consider the decomposition
of G into a collection of vertex-disjoint dipaths P and vertex-disjoint independent sets*.

4 Grandoni et al. [12] called this chain and antichain decomposition. Since this decomposition is in G' and
the notions of chain and antichains are usually defined in TC'(G), we use the terminology of dipaths
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» Definition 1.7 (Slight restatement of Def. 3.1 of [12]). An (a, b)-decomposition of a directed
acyclic graph (DAG) G consists of a collection P = {Py, ..., P,} of a vertex-disjoint directed
paths in G, and a collection Q = {Q1,...,Qp} of b vertez-disjoint independent sets of G
such that J_, V(P)UUS_, Q; = V(G).

Grandoni et al. [12] presented an O(n?)-time algorithm for computing an (¢, 2n/¢) decom-
position in G. In fact, the algorithm of [19] employed this decomposition on the transitive
closure of G. We observe that by reducing to the min-cost max-flow problem, one can break
the O(n?)-time complexity. We show:®

» Theorem 1.8. Let G = (V, E) be an n-vertex DAG. For every { € [1,n|, there is an
O(|E| + n?/?)-time randomized algorithm for computing an (¢,2 - n/f)-decomposition of G.

1.2 Technical Overview

1.2.1 A New Algorithmic Approach for Shortcuts

For the sake of presentation, we focus on the computation of a D = O(nl/g)—shortcut H of
near-linear size. We start by providing a succinct description of the Kogan-Parter algorithm
in [19]. Throughout, we assume, w.l.o.g., that the input graph G is a DAG, and denote its
transitive closure by TC(G). We note that in context of computing shortcuts of sublinear
size, we provide an alternative reduction to DAGS. For a dipath P, let H(P) be a 2-shortcut
set for P satisfying that Diam(P U H(P)) < 2. It is well-known that one can compute
H(P) in nearly-linear time and that |H(P)| = O(|P|log|P|). For a path collection P, let
V(P) = Upep V(P). Finally, for a set of elements X and probability p € [0,1], let X[p] be
the subset obtained by sampling each element of X into X|[p] independently w.p. p.

A Quick Recap of the O(n*)-Time Algorithm by [19]. The algorithm starts by computing
TC(G) in O(n*)-time. It then applies the decomposition algorithm Grandoni et al. [12] to
partition V(T'C(G)) into n?/® vertex-disjoint dipaths P (denoted as chains), and 2 - n'/?
vertex-disjoint antichains Q@ = {Q1,...,Qx}. Le., V = V(P)UV(Q). Letting U = V(Q),
the key property that we use in the diameter argument is that the length of a longest path of
the graph” TC(G)[U] is bounded by k = n'/3, which indeed follows by the definition of Q.

For a vertex v and a dipath P, let e(v, P) be the edge connecting v to the first vertex in
V(P) that is reachable from v (if such exists). Let P’ = P[p] and V' = Vp| for p = n=1/3
(i-e., subsamples of dipaths and vertices). Then the output shortcut set is H = H; U Ho,
where Hy = Jpep PUH(P) and Hy = {e(v, P) | v € V', P € P'}. Summarizing, the key
algorithmic steps can be summarized by:

Step 1. Computing a collection P of (at most) n?/3 vertez-disjoint dipaths such that

the length of the longest dipath of TC(G)[U] is of length O(n'/3), where U = V' \ V(P).

Step 2. Computing the edges e(v, P) for every v, P € P’ x V.
The implementation of [19] for both steps uses TC(G) in a strong manner. Before explaining
our approach, we sketch the size and diameter bounds of the above construction.

and independent sets.

We provide this as an independent observation. As this decomposition is w.r.t G (rather than TC(QG)),
it is not useful for our shortcut algorithms.

An alternative reduction is needed since the folklore approach of contracting each strongly connected
component in G introduces linear number of edges to the shortcut.

Le., the transitive closure TC(G) induced on the uncovered vertices U, namely, vertices that do not
appear on P.
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Size and Diameter Bound. _The size bound is immediate: the P are vertex-disjoint, thus
|Hy| = O(n). W.h.p., |V/| = O(n2/3) and |P'| = O(n!/3), therefore, |Hs| = O(n), as well.

Consider a u-v shortest path P in GU H; and denote its 7n'/3-length prefix (resp., suffix)
by P’, P, respectively. By Chernoff, w.h.p., there exists some sampled vertex u* € V(P')NV".
The challenge is in showing that P” intersects with Q(n'/3) distinct paths in P, and thus,
w.h.p., intersects with at least one sampled path in P’. This is shown by observing that (i)
P" contains at most 3 vertices from each dipath @ € P (due to the addition of the shortcut
H(Q)), and that (ii) P” contains at most n'/3 vertices in U. Altogether, we have some
Q* € P’ satisfying that V(Q*) NV (P") # (). The edge e(u*, Q*) € Hy then provides us an
O(n'/?)-hop length dipath from u* to w € V(Q*) NV (P").

New Approach: Shortcuts via Min-Cost Max-Flows. We focus on Step (1), as Step (2)
can be implemented in O(m - n'/3) time using e.g., dynamic programming. Our goal is to
show that Step (1) can be implemented in O(m + n3/2) time, which establishes Theorem 1.4
for D = n'/3. The challenge boils down into computing a nice collection of dipaths which
also has further independent applications, as illustrated in this paper. Denote by LP(G) to
be the length of a longest simple dipath in G.

Key Task: Compute in o(n®)-time a collection of (at most) n?/? vertex-disjoint dipaths
P in TC(G), such that LP(G’) = O(n'/?) where G' = TC(G)[U] and U = V \ V(P).

Note that the above requires to bound the length of the longest path in the graph®
TC(G)[U]. This task can also be viewed as a relaxed chain and antichain decomposition (see
Def. 1.7) for ¢ = n?/3, where it is required to output only chain part, while guaranteeing

1/3 anti-chains?. Clearly the

the remaining uncovered vertices, U, can be decomposed into n

challenge is that it is required to compute such (partial) decomposition in TC(G) without ever

computing it explicitly! While our goal is to solve it in O(m + n3/2) time, the decomposition

algorithm of [12] runs in O(n?) even when given TC(G). Our challenge is therefore two-folds.
We introduce ¢-covers which for a given input parameter ¢ € [1,n] provide a multiset

P ={P1,..., P} of £ dipaths in G. Letting, TotLen(P) = > p cp [P;| and U = V \ V(P)

(i.e., the total dipath lengths), then the ¢-cover satisfies:

1. TotLen(P) < min{¢,Diam(G)} - n,

2. LP(G') < 2n/¢ where G’ = TC(G)[U] .

Note that an ¢-cover for £ = n?/3, almost fits the key task, up to one major caveat: the total

path length, TotLen(P), might be super-linear, hence leading to shortcuts of super-linear

size'®. We put this technicality aside for a moment, explain first how to compute /-covers

without computing TC(G), and then show how to use them to solve the key task.

Computing ¢-Covers in Time O(m+n3/24+min{f,Dian(G)}-n). The algorithm is based
on a reduction to the min-cost max-flow problem. We define a flow-instance G= (V E,u, c)
corresponding to G, where |V| = O(n), |E| = O(m), u € ZE Soand c € ZF are the capacity
and cost functions, respectively. We then apply the recent algorithm of van den Brand
et al. [29] to compute the min-cost max-flow s-t flow in G for a given pair s,t € V. In
their breakthrough result, [29] provided an O(m + n3/2)-time randomized algorithm for this
problem, provided that the edge capacities and costs are integral.

8 The transitive closure of G' induced on the vertices of U.
9 By [24], a bounded longest path of TC(G)[U] indeed guarantees the antichain decomposition of U.
10 A5 we include in the output shortcut, the union of path shortcuts H(P) for every P € P.
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The desired ¢-cover collection is then obtained by computing the flow-decomposition of
the output integral flow. Since G is a DAG, this decomposition can be done in linear time in
the total length of the output path collection. Finally, we translate the collection of dipaths
in G into a collection of dipaths in GG, which provides the desired ¢-cover P. Importantly,
our flow-instance deviates from the classical flow-reductions!! by incorporating a special
gadget per vertex v; € V. We carefully set the capacity and the cost values in a way that
on the one hand, allows a given vertex to participate in multiple paths, while at the same
time bounding the total length of P, and most importantly bounds the longest path length
of the transitive closure induced on the uncovered vertices U, TC(G)[U]. Altogether, the
computation of the f-cover P takes O(m + n3/2 + TotLen(P)) time which by Property (1) is
bounded by O(m + n*/? + nmin{/, Diam(G)}).

2-Covers in O(m + n3/2) Time. To beat this dependency in TotLen(P), we take the
following strategy. First, we reduce the diameter of G to d = O(y/n) by computing a
d-shortcut set Hy of linear size. We show that this can be done using ¢-covers for £ = \/n,

hence taking O(m + n®/?) time. We then apply the (-cover algorithm on the graph G' U Hy.

Since the diameter of G U H is O(y/n), we have that TotLen(P) = O(n?/?), and the entire
computation takes O(m + n3/2) time.

Implementing Step (1) in O(m + n3/2) Time. So-far, we have computed a collection of
O(n?/?) dipaths P (in GU Hp) of total length O(n3/2), and such that the uncovered diameter
is at most O(n'/3). It remains to turn P into vertex-disjoint dipaths in TC(G). This can
be easily done by iterating over the dipaths of P, one by one, shortcutting the given dipath

by cutting out the vertices that appear in the currently collection of vertex-disjoint dipaths.

This works in O(TotLen(P)) = O(n3/2) time.

Shortcuts of Sublinear-Size. In [19], it was shown that for any D = w(n'/%), one can
compute D-shortcuts of size O((n/D)>?). Tt will be instructive to consider the case where
D = O(y/n) for which the construction provides shortcuts with O(n?/4) edges. The algorithm

of [19] for this setting is based on sampling a collection of landmarks V' = V[p] for p = n'/4.

It then defines the graph G’ = (V', E') where E' = {(u,v) | distg(u,v) < n'/*}, and applies
the above mentioned algorithm for computing D’ = |V'|*/3-shortcut H of size O(|V’|). Since
[V'| = O(n3/*), w.h.p., this provides a shortcut of O(n®/*) edges.

In our context, computing the graph G’ takes O(|V’|m) time which is too costly for
our purposes. Another challenge in provide a sublinear reduction into DAGs. So-far, we
assumed w.l.o.g. that G is a DAG, by using the following folklore reduction: shortcut each
strongly connected component C' to diameter 2, by connecting the all vertices of C' to center
vertex v € C. This allows one to restrict attention to the DAG obtained by contracting each

component. This reduction, however, adds ©(n) shortcut edges, which is above our budget.

Our algorithm provides an alternative reduction. Given G, we compute a DAG G’ of similar
size and show that any D-shortcut set H' for G’ can be translated into a D-shortcut set H
for G, where |H| = O(|H’)). This allows us to restrict attention to DAGs. We believe this
alternative reduction should be of general interest.

Our shortcut algorithm calls for a collection of additional refined tools. We introduce
partial ¢-covers that provide the desired properties (1,2), up to some slack, with respect to
a given subset of vertices. The shortcut algorithm is then based on iteratively computing
collections of partial /-covers, to mimic, in some way, the effect of the single application of a
shortcut computing on the virtual graph G'.

1E g where each vertex v; € V has two copies vi™ and v¢* connected by a directed edge of capacity 1.
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1.2.2 Minimum Chain Covers, Maximum Antichain, and More

Recall that a chain is a dipath in TC'(G) and an antichain is an independent set in TC(G).
The cardinality of the minimum chain cover (MCC) of a DAG G is denoted as the width of G,
w(G). An minimum path cover (MPC) is a minimum set of dipaths (not necessarily disjoint)
in G that cover V. Prior algorithms for computing the MCC are based on iteratively solving
a maximum s-t flow instance in the residual graph, each iteration provides one additional
dipath to the output collection. This dipath-by-dipath approach requires solving w(G) flow
computations. Note that computation of the value of the width, w(G), can be easily done
using only O(logn) max-flow computations (by binary search). Hence, the main challenge is
in the computation of chain cover itself.

Our approach is based on having a single application of the min-cost max-flow algorithm.
The starting observation is that thanks to our shortcut algorithms, we can assume, w.l.o.g.,
that the diameter of G is O(y/n). This is because we can apply the MCC algorithm on the
graph G U Hy where Hj is the O(y/n)-shortcut set for G, obtained by Thm. 1.3. Since we
aimed at computing chains, rather than dipaths in G, we can safely work on G U Hj.

Using our flow reduction, we are able to compute a collection P of w(G) dipaths (these
are dipaths in G U Hy), in time O(m + n3/2 + TotLen(P)). By the way that we set the cost
of the edges in our instance, P covers all vertices in G. lLe., it is an MPC in G U Hy. This by
itself is not enough as the dipaths of P are might not be vertex-disjoint, possibly with large
total length, TotLen(P).

To overcome this, we first provide an algorithm for computing a dipath cover of minimum
total length. We introduce the notion of minimum-length cover (MLC): a collection of w(G)
dipaths, that covers all vertices while minimizing the total length of the dipaths.

Then, we provide a combinatorial argument that shows that any n-vertex DAG admits an
MPC P of length TotLen(P) < n - Diam(G). Since Diam(G U Hy) = O(y/n), we end up with
having a collection of dipaths of total length O(n3/?). These dipaths can be transformed in
vertex-disjoint chains in time O(n3/2), in a brute-force manner (Lemma 1.15). This completes
the high-level approach.

1.3 Preliminaries

Graph Notations. For an n-vertex digraph G, let TC(G) denote its transitive closure. We
also denote TC(G). For a vertex pair u,v € V(G) where (u,v) € TC(G), let distg(u,v)
be the length (measured by the number of edges) of the shortest dipath from u to v. For
(u,v) ¢ TC(G), distg(u,v) = oo. For a subset V! C V, let G[V’] be the induced graph
on V'. The graph diameter is denoted by Diam(G) = max(, ,yerc(q) dista(u,v). We say
that u ~»¢ v if there is a directed path from v to v in G, i.e., (u,v) € TC(G). A shortcut
edge is an edge in TC(G). For a vertex v € G, let N;,(v,H) = {u | (u,v) € G} denote
the incoming neighbors of v in G. The set of outgoing neighbors Ny, (v, G) is defined
in an analogous manner. For a collection of paths P, the vertices of P is denoted by
V(P) = Upep V(P). For a dipath P = [ug,...,ur] C G, for j < g, let Pluy,u,] denote the
path segment Pluj,ujt1,...,U]. In the case where u; = ug (resp., uy = ug), we simply
write P[-,u,] (veps., Plu;,-]). For an a-b dipath P and an b-c dipath P’ the concatenation of
the paths is denoted by P o P’. Let |P| denote the number of edges on P (unless mentioned
otherwise). For a set of elements X and p € [0, 1], let X [p] be the set obtained by taking
each element of X into X[p] independently with probability p.

» Definition 1.9. For a digraph G, H C TC(G) is D-shortcut if Diam(G U H) < D.

The following lemma computes linear 2-shortcuts for directed paths:
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» Lemma 1.10 (Lemma 1.1, [25]). Given a directed path P, one can compute in O(|P|log|P|)
time, a 2-shortcut H(P) for P where |H| = O(|P|log|P|) edges.

Given a digraph G, by G we denote the result of contracting all strong components in G.
Note that G is acyclic directed graph (DAG) and can be computed in linear time.

» Proposition 1.11 (Lemma 3.2, [25]). Let H be a shortcut set for GT. One can compute in
O(|E(G)|+|H|)-time, a shortcut set H for G such that |H| = O(|[HT|+n) and Diam(GUH) =
O(Diam(Gt U H™)).

Algorithmic Tools for Flow Computation. In the minimum-cost mazimum-flow problem,
given is a connected directed graph G = (V, E,u,c) with edges capacities u € REZ, and
costs ¢ € R¥ (which can be negative). The vector x € R¥ is an s-t flow for s,t_E Vv if
z(e) € [0,u(e)] for all e in F, and for each vertex v & {s,t} the amount of flow entering v
equals the amount of flow leaving v, i.e., 35, ,) (€) = >_._(, 4 z(€). The cost of a flow
x is defined by c(x) = > _c(e)z(e). The value of an s-t flow is the amount of flow leaving
s, i.e., val(z) = Ze:(sw) z. (or equivalently, entering ¢, i.e., Ze:(w) x.). The objective is
to compute a maximum s-t flow of minimum cost denoted by > ceTe. The following

theorem was proven in [29)].

ecE

» Theorem 1.12 (Theorem 1.4 of [29]). There is an algorithm MinCostFlow(G, s,t) that,
given a n-vertex m-edge digraph G = (V, E, u, ¢), integral edge capacities u € Zgo and costs
c € Z¥, w.h.p., computes an integral minimum cost mazimum flow in time

0 (m1og(llullscllellc) + 7%/ 10g% ([ [ull o lel]sc)) -

We observe that even more recently, there have been additional breakthrough results [2, 28]
that provide improved running time for sparse graphs, this however, does not effect our final
time complexity.

» Definition 1.13. For a digraph G = (V, E) and a given valid s-t flow vector x € NE,, a
flow decomposition is a multiset of s-t dipaths in G given by Q = {Py,..., Py}, such that
for every e € E, it holds that x(e) = |{P; € Q | e € B;}|. Le., z(e) equals the number of
paths in the multiset containing e.

» Lemma 1.14. Let G = (V, E) be an n-vertex m-edge DAG and let x € NIZEO be an integral
s-t flow of value k for s,t € V, then one can compute a flow decomposition of x, denoted by
QinO(m+n+3) px(e)) time.

Dipaths to Chains. Throughout, we make use of the following procedure to translate a
collection of dipaths in G into a collection of vertex-disjoint chains. The proof of the next
lemma is in the full version.

» Lemma 1.15. Let P be a collection of dipaths in G, there is an algorithm DisjointChains

that in time O3 pcp |P|) computes a collection of vertex-disjoint chains C satisfying that:

(i) |C| < |P|, (i) V(C) = V(P) and (i) every C € C is a dipath in TC(G).

Roadmap. In Sec. 2, we introduce f-covers, that serve the key algorithmic part for

computing our shortcuts. In Sec. 3.1, we compute /n-shortcuts of linear size (proof of Thm.

1/3_shortcut of linear size in

1~.3). In Sec. 3.2, we provide an algorithm that computes n
O(mn'/3 4+ n3/?) time, and more generally prove Thm. 1.4. Then Sec. 3.3 considers the

constructions of shortcuts with sublinear number of edges establishing Thm. 1.5.
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2 New Notions of Dipath Decompositions

2.1 ¢-Covers

We introduce a new notion of dipath decomposition which we denote by ¢-covers. For a given
parameter ¢, the ¢-cover is given by a multiset of ¢ dipaths in G, P = {Py,..., P}, whose
vertices V(P) dominate long dipaths in G, in a way that becomes formal in Def. 2.1. As we
will see, this notion is strong enough to substitute the path collection obtained by computing
the chain-antichain decomposition in T'C'(G). Missing proofs of this section are deferred to
the full version. Recall that for a multiset of dipaths P, TotLen(P) = > p . |Pil.

» Definition 2.1 (¢-Covers). For a given n-vertex digraph G = (V,E) and an integer
parameter £ € [1,n], an L-cover for G is a multiset of £ paths P = {Py,..., P} (possibly
consisting of single vertices or empty), satisfying the following:

1. TotLen(P) < min(¢ - n,Diam(G) - n),

2. For any dipath P C G, it holds that [V(P) N (V\V(P))| < 2n/l .

Property (2) implies that LP(T'C(G)[U]) < 2n/{, that is the following holds:

» Corollary 2.2. Each path in TC(G)[V \ V(P] contains at most 2n/l vertices.

» Theorem 2.3. Let G be an n-vertex DAG with m edges, then for every £ > 1, there is
a randomized algorithm for computing an f-cover of G, w.h.p, in time O(m + n3/% + n -
min{Diam(G), ¢}).

For our purposes of computing shortcuts, we employ the algorithm of Thm. 2.3 only in
settings where min{Diam(G), ¢} = O(y/n), therefore spending only O(m + n®/?) time.

Path Decomposition via Min-Cost Max-Flow. The decomposition algorithm is based on a
reduction to the minimum cost mazimum flow problem (see Sec. 1.3). For the given DAG G,
the algorithm computes a corresponding min-cost flow instance G = (V, E,u, ¢). At the high
level, for each v; € V(G), the graph G contains three inter-connected copies v, v, v/. The
out-copy of the incoming G-neighbors of v; are connected to the in-copy of v;. In addition,
V includes also three additional vertices, s,s’ and ¢, where s and t are the source and target
vertices given to the min-cost flow algorithms. The precise definition of G are specified in

the pseudocode below, see also Fig. 1.

Let x € N|>EO| be the output flow solution for the instance G obtained by applying Alg.
MinCostFlow from Theorem 1.12. The algorithm then decomposes the flow z into a multiset
of s-t paths P = {P{,...,P}}. Since without loss of generality the flow values are integrals
and since G is a DAG, the flow decomposition of x can be computed efficiently by applying
Lemma 1.14.

Finally, the output ¢-cover P is obtained by mapping each é—dipath PJ'» € P into a
corresponding G-dipath P;. This mapping is done by applying Procedure Translate on every
P € P. The output G-path P; = Translate(P}) is defined as follows. The vertices s, s’
and t are omitted, and each appearance of a vertex u; € vin w2l ! is replaced by its
G-vertex v;, we omit multiple successive occurrences of a vertex in this translation. For
example, for P/ = [s,s’,v%”,vf“t,vén,t], Translate(P’) = [v;,v,]. For a path P” = [s,s,t],
Translate(P") = (.

The f-cover is then given by the multiset P = {Translate(P)) | j € {1,...,¢}}. We
need the following definition. For P; € P, denote Translate™* (P;) = Pj where P € P. Note

that while each path P € P is mapped to a unique G-path (given by Translate(F;)), it



S. Kogan and M. Parter

might be the case that two distinct paths P/, P' cP map to the same G-path. For example,
P} = [s,s', 0", vj,v{" 1] and P} = [s, s, v}", f“t t] both translate to the single vertex {v;}.

Therefore, we consider the Translate function as a bijection from the multiset P to the
multiset P. Le., each path P; € P is uniquely mapped to a path P} = Translatefl(Pi) in the
flow decomposition P and vice-versa.

Algorithm PathCover:

Input: An n-vertex DAG G and a parameter ¢ € N>;.
Output: An l-cover P of G.

1. Transformation to Min-Cost Max-Flow Instance. The instance G =
(V,E,u,c) with the designated source s and target t vertices are defined as fol-
lows.

/

For each vertex v; € V(G), include three copies vi", v?% v} in V. These copies

are connected by the edges Eq; = {(vi",v?"), (vi" vl), (v] vo’”)}

v, Yy i Y i Y

In addition, add three designated vertices s, s’ and t. So overall,
V= {ol" v v | v € V(G)}U{s, st} .

Connect the out-copy v"“t of every incoming neighbor v; € N;,(v;, G) to vi".
In the same manner, connect the in-copy v’" of every vy € Nyyi(vi, G) to vout.
Formally,

By = {(v7"",v]") | vj € Nin(vi, @)} and Bz = {(v]",07"") | vj € Now(vi, G)} -

J Y Z

Let B3 = {(s,v") | v; € V()Y U{(vgu',t) | v; € V(G)}U{(s,8),(s,t)}.
Then

E=|JEo;UE UE,UE;.

i

The edge capacities u € ZEO and costs ¢ € Z¥ are defined by:

a. u((s,s")) = £ and u(vi",v¢ut) =1 for every v; € V. All remaining edges e in E
have capacity of u(e) = £.

b. c(vim,v?%) = —n? and c(vi",v}) = 1 for every v; € V. All remaining edges e
in E have cost of c(e) = 0.

2. Apply Algorithm MinCostFIow(é,s,t) (Theorem 1.12), and let = € RIEl be the
output flow.

3. Flow Decomposition. Decompose = € R‘E‘ into s-t paths Pin G by Lem. 1.14.
4. The (-cover is given by the multiset P = {Translate(’) | P’ € P} (where [P|={
as each path corresponds to one unit flow in G).

Analysis. For a path P’ C G, denote the cost of P’ by ¢(P') = Y ecpr cle). We start
with observing that any path P’ in the flow decomposition P must have a non-positive
cost. Intuitively, this holds as one can replace P’, with the zero-cost path [s, s’,¢] that has a
sufficiently large capacity. Hence we have the following observation.

» Observation 2.4. Fvery path P’ € P has a non-positive cost, ¢(P") <0.

82:11

ICALP 2022



82:12

Beating Matrix Multiplication for Directed Shortcuts

u:f,c:0

Figure 1 An illustration for the min-cost max-flow reduction. The default values for the edge
capacities and costs are ¢ and 0, respectively.

Recall that P = {Pi, ..., Py} where P; might be equal to P;. A vertex v; in a path P; € P
is denoted as a principal vertex of P; if its corresponding flow path Translate_l(Pj) eP (i.e.,
the j** path in ’ﬁ) contains the edge (vi",v?%!). We denote the number of principal vertices
in P; € P by n(P;). Formally,

n(P;)=NHvieV | (vf",vf“t) c Translate_l(Pj)} . (1)

n p2ut) is 1, ie., ule) =1, we

Since in our flow instance C~}’, the capacity of any edge e = (vi", v§

have that a vertex v; € V' can be a principal vertex of at most one path in P, hence:
» Observation 2.5. ZPJGP n(P;) < n.
» Lemma 2.6. |P| = ¢ and TotLen(P) < min(¢ - n,Diam(G) - n).

Proof. The bound of the number of paths simply follows by the fact that x is an integral
flow of value ¢, and by the definition of flow decomposition (Def. 1.13). Furthermore as G is
a DAG every path of G is of length at most n — 1. Thus TotLen(P) < £-n. To show that
TotLen(P) < Diam(G) - n we make the following observation. Consider any P; € P and let
u and v be two consecutive principal vertices on P;, in the sense that the only principal
vertices on the segment P;[u,v] are v and v. We then claim that |P;[u,v]| < Diam(G).

Assume for the sake of contradiction that |P;[u,v]| > Diam(G), we will show that in this
case, we can replace the path Q = Translatefl(Pj) with an alternative path Q* C é, that
provides a strictly lower cost and the same value of flow, hence leading to a contradiction.
That is, in the alternative flow solution 2’ we will add one unit flow over Q* and omit one
unit flow from Q. Letting R = [ug = u, ..., ur = v] be the u-v shortest path in G, then the
alternative path Q* is defined as follows:

Q* _ Q[7 uout]o(uout’ u'{n)oTlo(u({ut7 ’Uén)OTQO(ugut, ugn)o. ) -Okalo(Uzlitl, ul;;nn)OQ[Uin, ] ;

where Tj = (uf*,u}) o (uf, uy*") for every j € {1,...,k —1}. Consider the flow solution '
defined by:

, for every e € Q,
, for every e € Q*,

(e), otherwise .
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We first show that 2’ is a legal flow, and with the same value as z. This holds as all edges
on the paths of T; for j € {1,...,k — 1}, have a sufficiently large capacity. Next, we show
that > c(e)z’(e) < Y, c(e)z(e), which will be in contradiction to the optimality of .

By the definition of u and v, ¢(Q[u°*,v™"]) = |Pj[u,v]| — 1. In the same manner,
c(Q*[ue*,v™]) = |R| — 1. Since |R| < |Pj[u,v]|, we conclude that ¢(Q) > ¢(Q*), and
consequently that Y~ _c(e)z’(e) < >, c(e)z(e) as desired. We therefore have that | P;j[u, v]| <
Diam(G), and |P;| < Diam(G) - n(P). Combining with Obs. 2.5, we have Zle |P;| <
Dian(G) - Y'_, n(P,) < Diam(G) - n. <

We next show that each long dipath in G is dominated by the vertices of V(P) (i.e., contains
a bounded number of uncovered vertices).

» Lemma 2.7. Any dipath in G contains at most 2n /L vertices of V '\ V(P).

Proof. Assume by contradiction that there exists a dipath @ C G that contains at least 2n/¢
vertices of U = V' \ V(P). Observe that as |P| = ¢, by Obs. 2.5, there exists a path P* € P
with n(P*) < n/f principal vertices. Therefore ¢(Translate ™ (P*)) > —n? - n/{ (recall that
c((vin,vgut)) = —n? for any i € {1,...,n}).

We next show that the path @ implies the existence of an s-t path Q' in G that has a
lower cost than that of Translate ! (P*). The path Q' is defined based on Q = [v1, vo, . .. 2 Vgl
as follows:

Q' = (s,8") o (s',01") 0 T 0 (7™, 03" ) 0 Th 0 (5™, v5™) o ... (Vg vy") 0 Ty o (V7™ 1)

where Tj = (vi",v}) o (v}, v*) for every v; € V(Q)\ U, and Tj = (v, v9*")) for every

v; € V(Q)NU. By the definition of U, z((vi",v?*!)) = 0 for every v; € U. In addition,
Q) < —n?-2n/l +n < —n®-n/l —n3 +n < c(Translate” ' (P*)) .

Consider an alternative flow solution z’ obtained by replacing the path P* with the path @’
in the flow decomposition. That is, let 2/(e) = 2(e) — 1 for every e € Translate™' (P*), and
2'(e) = z(e) + 1 for every e € Q'. Note that since z((vi", v}, v¢"!)) = 0 for every v; € U, we
have that x’ is a legal flow of the same value as that of x, but of a strictly lower cost, as
¢(Translate™*(P*)) > ¢(Q’). Ending with a contradiction to the optimality of z. <

2.2 Partial ¢-Covers

The construction of shortcut sets of sublinear size of Theorem 1.5 calls for a variant of the
{-covers that we call partial f-covers. These covers are defined w.r.t. a given subset V' of
vertices that we wish to cover, in the following sense:

» Definition 2.8 (Partial ¢-Covers). Given an n-vertex digraph G = (V, E), a subset V' CV,
and a parameter ¢, a partial £-cover for G w.r.t. V' is a multiset of £ paths P = {P1,..., P}
(possibly, singletons or empty), satisfying the following:

1. TotLen(P) < 8|V(P)NnV’|,

2. For any long dipath P C G, i.e., such that |P| > 8|V NV (P)|/¢, it holds that

V(P)n (VA V(P)] < [V(P)|/4 .

» Theorem 2.9. For any given n-vertex m-edge DAG G = (V,E), £ € [1,n] and V' C V,
there is a randomized algorithni PartialPathCover(G, V', £) for computing an (-partial cover
of G w.r.t. V', w.h.p, in time O(m + n3/?).
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Algorithm PartialPathCover. The algorithm is almost equivalent to Algorithm PathCover,
up to small adaptations of the min-cost max flow instance. Specifically, we define G =
(XN/, E,u’,c’), with the same edge and vertex set as in Algorithm PathCover. Letting, u,c
be the capacity (resp., cost) functions of Alg. PathCover, then in our reduction, we define:
¢ ((vim, v9ut)) = —7 for every v; € V, and ¢ (e) = ¢(e) for every other edge in G. In addition,
u' ((vim, vo"t)) = 0 for every v; € V \ V/, and v/(e) = u(e) for every other edge in G.

The remaining algorithm is identical as Algorithm PathCover. It applies Algorithm
MinCostFlow(G, s, t) using Theorem 1.12. The output flow solution is given by z. Then, it
computes the flow-decomposition P by applying Lemma 1.14 on z. Finally, the paths P are
translated into a multiset of G-paths P, which provides the output partial ¢-cover w.r.t. V’.

The function Translate provides the bijection from the multiset P to the multiset P.

3  Shortcut Algorithms via Path Covers

3.1 Shortcutting to Diameter D = O(n'/?)

We start by proving Theorem 1.3, by presenting an algorithm for computing linear-size
D-shortcuts for D = O(y/n). This algorithm will be used later on in order to provide
improved diameter bounds. By Proposition 1.11, it is sufficient to prove Theorem 1.4 for
DAGs. Before presenting the improved shortcut algorithm FasterShortcutSqrtN, we also need
the following definition. For a given directed path P = [ug,...,u;] and a vertex v, let u; be
the first vertex on P satisfying that (v,u;) € TC(G). The edge (v,u;) is denoted as the first
incoming edge from v to P, represented by e(v, P) = (v,u;). Note that the augmented path
PU{e(v, P)} provides a directed path from v to every vertex u € P such that (v,u) € TC(G).
The following result provided in [20].

» Lemma 3.1 (Restatement of Lemma 2 in [20]). Let Q be a collection of directed paths in a
DAG. Then, one can compute the edge set {e(v,Q) | v € V,Q € Q} within O(|Q|-m) time.

Algorithm FasterShortcutSqrtN:

Input: An n-vertex DAG G, N
Output: A shortcut set H C TC(G) such that |[E(H)| = O(n) and
Diam(G U H) = O(y/n).

1. Compute ¢-cover P = PathCover(G, ¢), for £ = ©(y/n) (using Theorem 2.3).

2. Let C = DisjointChains(P) (using Lemma 1.15).

3. For every C; € C, let H; = H(C;) be a shortcut set for reducing the diameter of C;
to 2 as obtained by Lemma 1.10.

4. Output H = Uciec C; UH,.

> Lemma 3.2 (Runtime and Size). Algozz'thm FasterShortcutSqrtN can be implemented in
time O(m +n3/2). In addition, E(H) = O(n), w.h.p.

Finally, we complete the diameter argument and establish Theorem 1.3.

» Lemma 3.3. The diameter of GU H is at most O(y/n), w.h.p.
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3.2 Shortcutting to Diameter D = o(n'/?)

In this subsection, we extend the algorithm of Sec. 3.1 to provide D-shortcuts for D = o(n'/2).
Obtaining a smaller diameter bound will entitle a cost both in terms of the running time
and in the size of the shortcut set. Again, we assume that G is a DAG.

Algorithm FasterShortcutSmallDiam:

Input: An n-vertex DAG G and a diameter bound D = o(n'/?).
Output: A shortcut set H C TC(G) satisfying that Diam(GU H) < D.

Let Hy < FasterShortcutSqrtN(G), (using Theorem 1.3).

Compute ¢-cover P = PathCover(G U Hy, {) for £ = 16n/D, (using Theorem 2.3).
Let C = DisjointChains(P) (using Lemma 1.15).

For every C; € C, let H(C;) be a 2-shortcut set for C; obtained by Lemma 1.10.
Let V' = V[p] and C" = C[p] where p = ©(logn/D).

Applying Lemma 3.1 to compute H = {e(v,C;) | ve V',C; € C'}.

~

Output H = HoUg,cc(Ci U H(Cs)) U H.

Nogkwb=

> Lemma 3.4 (Runtime and Size). Algorithm FasterShortcutSmallDiam can be implemented
in time O(m -n/D? +n>/?). In addition, E(H) = O(n?/D3), w.h.p.

» Lemma 3.5 (Diameter Bound). Dian(G U H) < D, w.h.p.

Consider a u-v shortest path P in G’ = G U Hy U |J(C; U H(C;)). Let P/, P” be the
(D/4)-length prefix (resp., suffix) of P.

» Lemma 3.6. P contains at most D/8 vertices from V \ V(C).
By the exact same argument as in the proof of Lemma 3.3, we also have:
» Observation 3.7. |V(P") NV (C;)| < 3 for every C; € C.

Therefore by Lemma 3.6, P” contains representatives vertices from (D) distinct paths in C.
That is, [{C; € C | V(C;) NV (P") # 0} = Q(D). As each chain in C is sampled into C’
independently with probability p, by the Chernoff bound, we have that w.h.p., P” contains
at least one vertex y € C; for some sampled chain C; = [ay,...,a;] € C'. In addition, w.h.p.,
the prefix P’ contains at least one sampled vertex x € V’/. We then have that the edge
e(z,C;) is in HC H. Let e(z,C;) = (z,z) for z € C;la1,y]. Therefore the augmented graph
G U H contains a u-v path @Q = Plu,z] o (x, 2) o C;[z,y] o Ply, v] where

QI = [Pu, z]| + 1+ |Cs[z,y]| + | Ply, v]|

<
< |Pl+1+ disto,um(cy) (2, y) + |P"|
< D/44+1+2+D/A<D/4+D/4+3<D.

distqum (u, v)

This concludes the proof of Theorem 1.4.

3.3 Shortcut Algorithms for Diameter D = Q(n'/3)

In this section, we provide a proof for Theorem 1.5 and compute D-shortcuts of sublinear
size for any input D = w(n'/?). We start by showing that in this case, as well, one can
assume that the input graph G in Theorem 1.5 is a DAG. The standard reduction to a
DAG is based on adding ©(n) shortcut edges, thus too costly for our setting. Then, we
present an algorithm that given a collection of dipaths P computes a D’-shortcut for each
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path such that the total size of the union of shortcuts in sublinear. Again, as we aimed at
obtaining sublinear shortcuts we cannot simply use Lemma 1.10 as is. Finally, we present
Alg. FasterShortcutlLargeD that computes the shortcuts given these tools.

Tool 1: Reduction to DAGs with Sublinear Size. In the full version, we show:

» Theorem 3.8. Given a digraph G = (V, E), one can compute in time O(|V| + |E|) a
DAG G' = (V' E') such that |[V'| = O(]V|) and |E'| = O(|E|), and in addition the following
holds: Given any D-shortcut set H' C TC(G') for G', one can compute in time O(|H'|) a
D-shorteut set H C TC(G) for G such that |H| < |H'|.

Tool 2: Shortcutting Dipaths with Sublinear Number of Edges. A crucial tool in our
prior constructions is based on computing 2-shortcuts of nearly linear size for dipaths. For
our purposes, we next provide an alternative scheme that provides shortcuts of sublinear size
at the cost of increasing the diameter.

» Lemma 3.9 (Shortcuts of Dipaths with Sublinear Size). There exists an algorithm
PathShortcut that given a DAG G, dipath collection P and integer parameter d, outputs
H C TC(Q) satisfying that for all 1 < i < t, we have Diam(P; U H[V(P;)]) = O(d) and
|H| = O(X%_, |P;|/d). The running time is O(Y pep [V (P)).

The Shortcut Algorithm. We are now ready to present Algorithm FasterShortcutLargeD.
The algorithm is given as input a DAG G and diameter bound D = w(n'/?). Define:

tp =+/n/D and sp=D3?/\/n . (2)

The algorithm consist of ¢* < tp iterations (as will be shown in the analysis), where in
each iteration ¢, the algorithm computes a partial tp-cover P; with respect to the set
Vi=V\ U;;E P;, namely, the set of vertices that are not yet covered by the current collection
of paths U;;E P;. It then computes an sp-shortcut H(P) for each P € P; by applying
Algorithm PathShortcut of Lemma 3.9, and adds {Jpcp, H(P) to the output shortcut H.

At the end of these iterations, we obtain ¢* < tp path collections Py, ..., P;«_1, where
|Pj_1| < tp for every j € {1,...,i*}. The algorithm then defines a collection of O(tp logn)
paths R as follows. The dipaths of the last path collection, namely, P;«_; is taken entirely
into R. In addition, each other dipath in U;:_IQ P; is sampled into R independently with
probability p = ©(logn/tp). By the Chernoff bound we get that, w.h.p., |[R| = ©(tp logn)
as desired. The algorithm then adds to H, the collection of e(v, P) edges for every v, P €
VIp'] x R where p’ = O(logn/D). This completes the description of the algorithm.

Algorithm FasterShortcutLargeD:

Input: An n-vertex DAG G = (V, E) and a diameter bound D = w(n'/3).
Output: A shortcut set H C T'C(G) satistying that Diam(G U H) = O(D) and
[H| = O((n/D)*?).

1. Set Vo=V, Up=V,i=0,p =10logn-D~ ! and p = 1010gn-t51.
2. While |U;| > ¢- do the following:

a. Set P; = PartialPathCover(G,V;,tp).

b. Set H; = PathShortcut(P;, sp).

C. Ui+1 — V('Pz) nv;, Vi+1 —V \ V(PZ), and i < i+ 1.




S. Kogan and M. Parter

3. Set R =U/ZP;, R' = R[p|UPi_1 and V' = V[p/].
4. H = {e(v, P)) | ve V', P, € R'} (using Lemma 3.1).
5. Output H = UJ 0H UH

Analysis. Recall that the index ¢* indicates the largest index of the application, where

» Observation 3.10. V = U;;()l V(P;) U V.

» Observation 3.11. For every Q € U;;_Ol Pj, for every u-v shortest path P C GU U;;_Ol H;
it holds that |[V(Q) NV (P)| = O(sp).

> Lemma 3.12 (Runtime and Size). Algorithm FasterShortcutLargeD can be implemented in
time O((m +n?/?) -tp). In addition, |E(H)| = O((n/D)3/?), w.h.p.

Proof. We first claim that the While loop is applied at most tp times. By definition,

U;NV; =0 and U; UV; = V;_;. In addition, since U; C V;_q, it holds that Uy, Us, ..., U;
are vertex-disjoint. Since the While loop continues only provided that |U;| > n/tp, there
can be at most tp applications of this loop. We will need the following observation.

» Observation 3.13. TotLen(R UP;«_1) = O(n).

Runtime. We focus on a single application of the While loop and show that it can be
implemented in 6(m + n3/2) time, since there are at most tp applications, the final runtime
is bounded by O((m + n®/2)tp). Step (a) is implemented in O(m + n3/2) time by Theorem
2.9. Step (b) runs in O(TotLen(R U P;_1)) = O(n), by Lemma 3.9 and Observation 3.13
(we note that in fact this is the total running time of Step (b) over all the iterations of the
While loop). Step (c¢) runs in O(n) time. The runtime bound of the ¢p applications of the
While loop follows. We next analyze the remaining steps of the algorithm. By Observation
3.13, Step 3 is implemented in O(n) time. Since [R'| = |R[p]| + |Pi-1|, w.h.p., we have that
|R'| = O(tp) as |R[p]| = O(tp) (this follows from the fact that |R| < t2, as there are at
most tp iterations of line 2(a) and at each iterations at most tp paths are created) and
|P;—1] < tp. Using Lemma 3.1, Step 4 is implemented in 6(m “tp).

Size. By the Chernoff bound, w.h.p., it holds that|H| = [V'|-|R/| = |V |- (IR [p]|+|Pi= -1
5(% (tp +tp)) = O((n/D)3/?). Furthermore, we also have ZJ S '|H;| = O((n/D)?
This follows from the fact proven in Observation 3.13 that > p.r p.  [V(P)| = O(n
Hence, by Lemma 3.9 and Step 2(b) of the algorithm, w.h.p., we have that

)
/2

=1

Z Hj|=0[sp'- >, IV(P)]=0(sp" -n) = O((n/D)*?).

PERUP;_1

We conclude that |H| = |U o H; U H| = O0((n/D)*?), wh.p. <
» Lemma 3.14 (Diameter Bound). Diam(G U H) = O(D), w.h.p.

Proof. Consider a u-v shortest dipath P in the graph G’ = U;:_Ol H; UG. Let P',P" be
the 8D-length prefix and suffix of P, respectively. By the Chernoff bound, it holds that
V(P)NV'# 0, and let u* be some arbitrary vertex in V(P') N V'. Recall that P;«_1 is the

last path collection obtained by applying Alg. PartialPathCover We next consider two cases.

).
)
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Case 1: V(P")NV(Pix_1) # 0. Let v* be some vertex in V(P"”) NV (P;«_1) and let
Q € P;»_1 be some path satisfying that v* € V(Q). Since Q € R/, the edge e(u*, Q) is in H,
and thus also in the output shortcut H. Let e(u*, Q) = (u*, z) where z is the first vertex on
@ such that there is a dipath from u* to z in G. We therefore have that:

disteum (u,v) < dister(u,u”) +dist , (", 2) + distquan,. _, (2,0") + diste (v*, v)(3)
< |P[+1+0(sp)+|P"|=0(D) . (4)

This holds as disteum,_, (#,v*) = O(sp) by Lemma 3.9 and sp = D - y/D/n < D.

Case 2: V(P")NV (Pi+_1) = 0. We will need the following observations.

Observation 1: V(P") C U;;OQ P; U Vi«. This observation follows from Obs. 3.10, as

V(P”) N V(Pi*fﬂ = (.

Observation 2: 8|U;-|/tp < 8D. This observation follows from the fact that |U;«| < n/tp.
Hence by property (2) of Definition 2.8 of the partial £-cover P;«_q1 w.r.t. Vix_1 (with £ = tp),
we have that:

[V(P")YNVi«_q| = |[V(P")NV;+| By Observation 1.

<|V(P")|/4 By property (2) of Definition 2.8 and Observation 2.

By Obs. 3.11, it holds that [V(Q) NV (P")| = O(sp) for every Q € U;;OQ P;. Therefore,
P must contain vertices from at least Q(D/sp) = Q(tp) distinct paths in P/ = U;:f P;.
Formally, let X = {Q € P’ | V(Q)NV(P") # 0}, then |X| = Q(tp).

Since each path in X is sampled into R’ independently with probability of p = ©(logn-t5'),
by the Chernoff bound, w.h.p., |[¥ N R/| # (. Letting Q* € X N'R’, we have that there is
a vertex y € V(Q*) NV(P”) and in addition, the edge e(u*, Q*) = (u*, 2) is in H, where z
is the first vertex on Q* from which there is an incoming path from u*. Altogether by the
same argument as in Case 1, we have that distqupy (u,v) = O(D). <

Due to lack of space, the applications of our ¢-covers and shortcut constructions (Theorems
1.6, 1.8) appear in the full version.
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