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Abstract
The p-processor cup game is a classic and widely studied scheduling problem that captures the
setting in which a p-processor machine must assign tasks to processors over time in order to ensure
that no individual task ever falls too far behind. The problem is formalized as a multi-round game
in which two players, a filler (who assigns work to tasks) and an emptier (who schedules tasks)
compete. The emptier’s goal is to minimize backlog, which is the maximum amount of outstanding
work for any task.

Recently, Kuszmaul and Westover (ITCS, 2021) proposed the variable-processor cup game, which
considers the same problem, except that the amount of resources available to the players (i.e., the
number p of processors) fluctuates between rounds of the game. They showed that this seemingly
small modification fundamentally changes the dynamics of the game: whereas the optimal backlog in
the fixed p-processor game is Θ(log n), independent of p, the optimal backlog in the variable-processor
game is Θ(n). The latter result was only known to apply to games with exponentially many rounds,
however, and it has remained an open question what the optimal tradeoff between time and backlog
is for shorter games.

This paper establishes a tight trade-off curve between time and backlog in the variable-processor
cup game. We show that, for a game consisting of t rounds, the optimal backlog is Θ(b(t)) where

b(t) =


t if t ≤ log n

t1/3 log2/3
(

n3

t
+ 1
)

if log n < t ≤ n3

n if n3 < t.

An important consequence is that the optimal backlog is Θ(n) if and only if t ≥ Ω(n3). Our techniques
also allow for us to resolve several other open questions concerning how the variable-processor cup
game behaves in beyond-worst-case-analysis settings.
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1 Introduction

The classical p-processor cup game. The p processor cup game captures the general
problem in which there are some number n of tasks competing for a smaller number p of
processors [7, 21, 8, 33, 31, 37, 6, 24, 34, 35, 17, 10, 27, 1, 16, 32, 25]. A scheduler must
assign tasks to processors over time in order to ensure that no individual task ever falls too
far behind.

Formally, this is captured as a game with n cups, each capable of holding an arbitrarily
large amount of water, and two competing players, a filler and an emptier. In each round of
the game, the filler distributes p new units of water into the cups, placing at most 1 unit
of water into any particular cup. The emptier then selects p distinct cups and removes up
to 1 unit of water from each of them. Note that, whereas the filler may place their p units
of water in fractional amounts across arbitrarily many cups, the emptier can only choose p

cups per step to empty from. The emptier’s goal is to minimize the backlog of the system,
which is the amount of water in the fullest cup.

If one views the cup game as a scheduling problem, then the cups represent tasks, the
water represents work, the filler represents an adversary that determines when work arrives,
and the emptier represents a scheduler that can select p tasks to run on a given time step
(we will use the terms “round” and “time step” interchangeably). Although we will primarily
be interested in the cup game as a scheduling problem [7, 21, 8, 33, 31, 37, 6, 24, 34, 35, 1,
32, 17], it has also found applications to many other problems (e.g. deamortization of data
structures [2, 17, 16, 3, 38, 23, 18, 26, 9], network-switch buffer management [22, 4, 39, 20],
quality-of-service guarantees [7, 1, 32], etc.).

Beginning in the late 1960s, much of the early work on the p-processor cup game focused
on the fixed-rate version of the game, in which the filler’s behavior is the same at every
round [7, 21, 8, 33, 31, 37, 6, 24, 34, 35]. In this version of the game, it is possible for the
emptier to achieve a backlog of O(1), both in the single-processor cup game (i.e., p = 1)
[34, 35] and in the multi-processor cup game (i.e., p > 1) [7]. In recent decades, much of the
research has shifted to focus on the non-fixed-rate version of the game, in which the filler is an
adaptive adversary that can change their behavior from step to step [1, 16, 27, 32, 5, 19, 15].
In this setting, it is possible for the emptier to achieve backlog O(log n) [1, 16, 27], and
this is known to be asymptotically optimal for all p ≤ n −

√
n [27]. There is also a

long history of researchers applying techniques from beyond-worst-case analysis to cup
games, e.g., resource augmentation [10, 27, 32, 17], smoothed analysis [27, 10], adversary
restrictions [10, 27, 14, 28, 17], semi-clairvoyance [32], etc.

A repeating theme in these directions of work has been the relative difficulty of analyzing
the multi-processor case in comparison to the single-processor case. As Liu discussed in his
seminal 1969 paper [34], and as many later authors have subsequently reiterated [32, 7, 24,
10, 27], the difficulty of the multi-processor case stems from the fact that the emptier must
remove water from p distinct cups, even if the vast majority of the water is in a smaller
number of cups. For both the fixed-rate and the non-fixed-rate games, the optimal backlog
in the multi-processor version of the game [7, 27] was proven decades after the corresponding
result for the single-processor game was first shown [34, 16].
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The variable-processor cup game. Recent work by Kuszmaul and Westover [29] has
considered the question of what happens if the parameter p is permitted to change over
time, with the filler adaptively determining both what value of p will be used at each round
and where the p new units of water are placed. The resulting game, which is known as the
variable-processor cup game, captures settings in which the amounts of resources available to
the players fluctuate over time.1

The problem of what to do when computing resources fluctuate has received increasing
attention in recent years due to the proliferation of shared-computing systems in which
multiple users and virtual operating systems simultaneously run on a single physical multi-
core machine; the fact that the machine is shared means that the amount of resources
(eg., cache, processors, memory bandwidth, etc.) available to each user is constantly
changing, depending on the current demands of other users. This phenomenon has led
researchers to revisit problems in which computing resources have traditionally been viewed
as static [36, 11, 12, 13, 30, 29].

Intuitively, the variable-processor cup game would seem to be relatively similar to its
classical p-processor counterpart. Indeed, the backlog in the p-processor cup game is O(log n)
regardless of the value of the parameter p, suggesting that the same should be true if p is
permitted to vary. The central result of [29] is that this intuition turns out to be completely
wrong: given sufficiently many time steps, the filler can actually force a backlog of Ω(n) in
the variable-processor cup game, and this backlog is asymptotically optimal.

In order to achieve the backlog of Ω(n), the authors [29] construct a strategy for the filler
in which the number of processors p follows a recursive “fractal-like” pattern. The recursive
structure requires a relatively large number of time steps to complete – to achieve the full
backlog of Ω(n), the construction requires exponentially many time steps.

The unexpectedly large backlog prompts several questions. The main open question is
the problem of determining the optimal trade-off between backlog and time in the variable-
processor cup game, and, in particular, what the optimal backlog is in games of polynomial
lengths. In this setting, it is not even known whether the filler can achieve polynomial backlog
– the best known filler strategy in this case [29] achieves backlog 2O(

√
log n). Understanding

the optimal trade-off between time and backlog in polynomial-length games is especially
important since, for instance, one may have a bound on the number of rounds in a given
scheduling application, which may allow for a much better guarantee on the backlog.

The authors of [29] also raise the question of whether smaller bounds on backlog can be
achieved via beyond-worst-case analysis. Based on their results, they propose two directions,
in particular, that seem promising. One is to place an additional restriction on the filler that
p can only change at a certain rate; this would thwart the recursive structure of their lower
bound construction which changes p dramatically between levels of recursion. The other is
to consider the use of resource augmentation, meaning that the emptier is allowed to remove
slightly more water in each time step than the filler is permitted to place into the cups. This
direction seems promising due to the large amount of time required by the filling strategy
of [29], since over such a large amount of time, the resource augmentation would potentially
offer a large advantage to the emptier.

1 As discussed in [29], there is no fundamental reason why the amount p of resources should fluctuate in
the same way for the filler as it does for the emptier over time. However, by assuming that p is always
the same for both players, one ensures that there is a fair playing field: neither player has an advantage
over the other in terms of their resources.
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Our results. The main result of this paper is a tight trade-off curve between time and
backlog in the variable-processor cup game. We show that, for a game consisting of t rounds,
the optimal backlog is Θ(b(t)) where

b(t) =


t if t ≤ log n

t1/3 log2/3
(

n3

t + 1
)

if log n < t ≤ n3

n if n3 < t.

(1)

By optimal, we mean that there exists an emptying strategy such that no filler can achieve
backlog greater than Ω(b(t)) after t rounds, and there exists a filling strategy such that no
emptier can achieve backlog less than O(b(t)) after t rounds. In the case of the emptying
strategy, we show that this tradeoff curve is achieved by the greedy emptying algorithm (i.e.,
always empty from the fullest cups).

Equation (1) comes with several interesting takeaways. The first is that in short games,
of length o(n3), the emptier can achieve sub-linear backlog – prior to this result, it remained
open whether the emptier could even ensure o(n) backlog for only n rounds. The second is
that in games of size Ω(n3), the optimal backlog is Θ(n) – this resolves the open question
of [29] as to whether linear backlog can be achieved in polynomial time. The third is that
the optimal tradeoff between backlog and time has a somewhat unexpected polylogarithmic
low-order term, which disappears only when t grows to be Ω(n3).

By examining the inverse of the function b(t), another way to think about (1) is that, for
any quantity b ≤ n, the amount of time t(b) needed for an optimal filler to force a backlog of
Ω(b) against an optimal emptier is

t(b) = Θ
(

b + b3

log2 n
b

)
, (2)

and that backlogs b = ω(n) are not achievable by the filler (the latter fact, of course, is
already known due to [29]).

The second contribution of this paper is to analyze the variable-processor cup game under
two forms of beyond-worst-case analysis, each of which resolves an open question posed
by [29]. We begin by considering the setting in which the rate at which the filler can change
p is severely limited: p is permitted to change by most ±1 per time step, and the filler
can only change p every poly(n) time steps. Remarkably, this has no effect on the optimal
backlog, and the filler can still force a backlog of n/2 in polynomial time. Next, we consider
the setting in which the emptier has ε > 0 resource augmentation, meaning that, in each
time step, the emptier is permitted to remove up to 1 + ε (rather than 1) units of water from
each of p cups. This has a dramatic effect on the optimal backlog, reducing it to O( 1

ε log n),
which asymptotically matches the optimal backlog of the standard p-processor cup game
when ε = Ω(1).

Techniques and paper outline. We formally describe the necessary preliminaries in Section
2, and provide a detailed overview of the technical ideas in the paper in Section 3.

In Section 4, we prove a result that ends up being useful in many of the later sections,
namely that the greedy emptying algorithm is actually the exact optimal online algorithm,
and that this holds no matter what the starting state of the cups is. Interestingly, our proof
of greedy emptying being the optimal emptying strategy also applies to the fixed p-processor
cup game, for which the result was also not previously known: in this setting, the greedy
emptying algorithm was previously only known to be asymptotically optimal [27], and this
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was only known for the starting state with all empty fills. We remark that, although the fact
that greedy emptying is optimal is certainly intuitive, it actually isn’t true for every variant
of the cup game; notably, the greedy emptying algorithm isn’t even asymptotically optimal
for the fixed-rate version of the game [1].

In Section 5, we construct an asymptotically optimal strategy for the filler. The strategy
achieves the bound in (1) no matter what strategy the emptier follows, and the strategy
also easily generalizes the case where the filler is restricted to change p at a slow rate. This
implies that the optimal backlog b(t) is at least that in (1). While the filling algorithm works
against any emptier, we focus on the filler working against the greedy emptier, which we
know is optimal. We start with a warm-up (subsection 5.1) proving that one can establish
Ω(n) backlog in O(n3) time, and we then generalize our techniques to apply to games of
arbitrary lengths.

The remainder of the paper has been deferred to the extended version of this paper2. In
Section 6 in the extended version, we turn our attention to proving a tight upper bound for
the maximum backlog against a greedy emptier, that is, we show that b(t) is at most that
in (1). We begin by creating a variation of the variable-processor cup game, which we call
the stone game, in which the filler’s behavior is limited in a certain combinatorially natural
way. We analyze the maximum backlog of any filling strategy for the stone game by devising
two potential functions and comparing their growth rates; this allows us to establish that
Ω(n3) time steps are needed to achieve backlog Ω(n) in the stone game. We then tighten the
bound on backlog when there are fewer time steps by partitioning the cups into levels and
arguing that a constant fraction of the levels interact especially nicely with the potential
functions; this yields (1) for the stone game. Finally, we show that, if the emptier behaves
greedily, then this stone game encapsulates the main problem, that is, is always advantageous
to the filler in the variable-processor cup game to act as though they are in the stone game.
Thus we can transfer out bounds on the stone game into bounds on the variable-processor
cup game.

Section 6 is, in our opinion, the most technically involved section in our work. Perhaps
the most interesting mathematical contribution in this section is to analyze the furthest
backlog in the stone game by constructing two different potential functions and comparing
their relative growth rates. While individual potential functions have been used to analyze
cup games [10], this is the first time that comparing two potential functions has been applied
to cup games.

Finally, in Section 7 in the extended version, we give a very simple analysis of the
variable-processor cup game in the presence of resource augmentation. Our argument is
non-constructive, employing the probabilistic method in order to show that there exists an
emptying algorithm that achieves backlog O( 1

ε log n) (interestingly, the same argument also
gives a nontrivial bound of O(

√
t log n) in the resource-augmentation-free setting). Since the

greedy emptying algorithm is optimal, it must also achieve the same bound. To the best of
our knowledge, this is the first example of the probabilistic method being used to analyze
cup games.

2 Preliminaries

We first formally define the variable-processor cup game. In this game, there are n

cups of real-valued fills x1, . . . , xn, all starting at 0, and two adaptive players, a filler and
an emptier. At each round, the filler chooses an integer 1 ≤ p ≤ n, chooses real numbers

2 Available at https://arxiv.org/abs/2205.01722
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a1, . . . , an such that 0 ≤ ai ≤ 1 for all i and
∑n

i=1 ai = p, and replaces xi with x′
i = xi + ai

for all 1 ≤ i ≤ n. The emptier then chooses a set S ⊂ [n] of size p, and for each i ∈ S,
replaces x′

i with max(0, x′
i − 1) but does not change x′

i for i ̸∈ S. A single round (which
we also call time step) consists of both the filler’s and emptier’s moves. We define the
state of the cups at a fixed round to be the current sequence {x1, x2, . . . , xn} of the values
of cups. Since the filler and emptier are adaptive, we note that two states are equivalent if
the sequences are equal up to permutation. We will also say that the fills are x1, x2, . . . , xn

(we think of xi as the fill of the ith cup). Finally, for any state X = {x1, . . . , xn}, we define
the backlog of X as the maximum fill, or max1≤i≤n xi. The goal of the filler is to maximize
the backlog after t rounds for some fixed t, whereas the goal of the emptier is to minimize it.
We also define the variable-processor cup game with ε resource augmentation as the
same as the variable-processor cup game, except that the emptier, for each i ∈ S, replaces x′

i

with max(0, x′
i − (1 + ε)).

Next, we define the negative-fill variable-processor cup game as the same as the
variable-processor cup game, except that the emptier, for each i ∈ S, replaces x′

i with x′
i − 1.

This may mean that some of the fills in a state become negative, which is allowed. We
analogously define round, state, fills, and backlog (note that the backlog is max1≤i≤n xi, not
max1≤i≤n |xi|).

Unless explicitly stated otherwise, the standard game refers to the variable-processor
cup game, and the negative-fill game refers to the negative-fill variable-processor cup game.
We will explicitly state whenever we talk about the fixed p-processor cup game (where
p =

∑n
i=1 ai is fixed for every round), or the variable-processor cup game with ε > 0 resource

augmentation.
We conclude this section by briefly commenting on the relationship between the standard

game and the negative-fill game. It is easy to see that the optimal backlog in the standard
game is at least as large as the optimal backlog in the negative-fill game. What is less obvious,
but worth noting, is that the optimal backlogs in the two games are actually asymptotically
equal. We provide a proof of this in Appendix A in the extended version. Thus, in general,
either version of the game is equally valid (although the only place where we will take
advantage of this in any nontrivial way will be Section 6 in the extended version).

3 Technical Overview

In this section, we provide a technical overview for both the lower and upper bound for the
variable-processor cup game, as well as the upper bound for the variable-processor cup game
with resource augmentation.

3.1 Overview of the Lower Bound on Backlog
In Section 5, we provide a lower bound on the backlog that the filler can achieve over t rounds.
For now, let us assume that we are playing the negative-fill game and that the emptier is
greedy, i.e., at each time step, if the filler fills p units of water, then the emptier empties 1
unit from the p fullest cups. We shall remove these assumptions at the end of the subsection.

Achieving backlog Ω(n) in n3 steps. Why is this type of move good for the filler? Consider
the potential function measuring the sum of squares of the fills, i.e., Φ(x1, . . . , xn) :=

∑n
i=1 x2

i .
If we let q = j−i+1

2 , so that q of the fills go up by 1/2 and q of the fills go down by 1/2, then
it is not hard to show that Φ increases by q

2 ≥ 1
2 . If the filler can force this to happen for n3

consecutive time steps, then Φ will increase to Ω(n3), which means that at least one of the
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|xi|’s must be Ω(n). If the filler is careful, then it turns out they can further ensure that the
cups are symmetric (i.e., for every cup with fill s there is another cup with fill −s). Thus if
|xi| ≥ Ω(n) for some n, then a backlog of Ω(n) has been achieved.

The only way that the filler might be prevented from performing this type of move for
n3 consecutive time steps is if, at some time step, no two cups have the same fills as each
other. Note, however, that the filler always adds half-integer values to cups and the emptier
always subtracts integer values, which means that x1, . . . , xn are always half-integers. So,
if the xi’s are all distinct, then max1≤i≤n |xi| ≥ n−1

4 = Ω(n). Recalling that the filler can
ensure symmetry of the cups, it follows that in this case the filler has also achieved an Ω(n)
backlog in only n3 time steps.

Considering smaller backlogs. What if we only want to reach some backlog o(n)? We will
now describe how the filler can achieve backlog Ω(t log(n/t)) in O(t3 log(n/t)) time steps.
Combining this with some edge cases (which we defer to Section 5) results an optimal filling
strategy for any backlog.

First, we claim that within t3 steps, the filler can cause Θ(n) cups to have fills Ω(t). To
see this, note that if at least half of the cups have fills less than t, then by the pigeonhole
principle, there must exist some half-integer s with |s| ≤ t and Ω(n/t) cups of fill exactly
s. If the filler causes half of these cups to go up in fill by 1/2 and half of them to go down
in fill by 1/2, then the net effect on Φ will be that it increases by Ω(n/t). The filler can
repeatedly force Φ to increase by Ω(n/t), while keeping the maximum backlog at t, until
either t3 steps have passed and Φ = Ω(n · t2) or until at least half of the cups have reached
backlog ±t. Either way, at least Θ(n) of the cups must have fills more than Ω(t) or less than
−Ω(t), and recalling again that the filler can also ensure a symmetry of the cups, it follows
that a constant fraction of the cups have fills Ω(t).

Once we have cn cups of fill Ω(t), for some constant c > 0, the filler can focus on these
cups, and force c2n of these cups to fill 2 · Ω(t), then c3 · n to fill 3 · Ω(t), and so on for a
logarithmic number of phases. Overall, one can achieve backlog Ω(t log(n/t)) in O(t3 log(n/t))
time steps.3

The final piece: establishing that greedy emptying is optimal. To conclude our overview
of the lowerbound, let us revisit the assumptions that (a) we are playing the negative-fill
game, and (b) the emptier is playing greedily. The first assumption is trivial to remove, since
the filler in the standard game is strictly better off than the filler in the negative-fill game.
The second assumption, that the emptier is playing greedily, requires us to prove that the
greedy emptying algorithm is always optimal (this ends up being useful to have for later
results as well).

To prove the greedy emptying is optimal, in Section 4, we construct a specially designed
poset on the possible states X of the system. Say that a state X = {x1, . . . , xn} weakly
monopolizes a state Y = {y1, . . . , yn} if it is possible to order the cups such that either:

xi ≥ yi for all i;
or we have (a) that xi = yi for all i > 2, that (b) x1 > y2, and that (b) we can get from X

to Y by removing exactly 1 unit of water from cup 1 and placing some quantity 0 ≤ c ≤ 1
of water into cup 2.

3 Note that one can only do log(n/t) phases, rather than the more intuitive log n phases, since we need
at least t cups to reach fill a · t in order for anything to reach fill (a + 1) · t.

ICALP 2022
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The transitive closure of weak monopolization induces a partial ordering on the set of all
possible system states, where A ≥ B if there is a sequence A = A1, A2, . . . , Aj = B such that
each Ai weakly monopolizes each Ai+1.

We prove that, given the choice between two states A, B with A ≥ B, the emptier should
always prefer state B. Furthermore, starting from any state X, greedy emptying always
results in a state B that satisfies B ≤ A for every other state A that the emptier could have
reached from X. Thus the greedy emptying algorithm is optimal.

3.2 Overview of the Upper Bound on Backlog
In Section 6 in the extended version, we show that the greedy emptying algorithm achieves
an upper bound on backlog matching the lower bound of Section 5. We first consider a filler
that is restricted to only making moves of the form described in Subsection 3.1, that is,
so that the net effect of each round is that some number 2q of cups at some height k are
replaced with q cups at height k + 1/2 and q cups at height k − 1/2. We will later show
that these types of moves are (essentially) always optimal for the filler, which means this
restriction is actually without loss of generality. Considering this restricted filler along with a
greedy emptier leads to the following simple combinatorial problem, which we call the stone
game (we call it the stone-variant cup game in Section 6):

Suppose you have n stones on a number line, all starting at 0. At each time step t,
you may pick any point k on the number line with 2 or more stones, choose any integer
q ≥ 1 such that there are at least 2 · q stones at k, and move q of the stones at position
k to position k − 1 and q of the stones at position k to position k + 1. If you repeat
this for T time steps, what is the furthest that any of the n stones may be from the
origin?

Analyzing the time to get a stone to position Ω(n). To analyze the stone game, we start
by considering how long it takes for some stone to reach b := n/10 in absolute value. Our
goal is to show that one needs at least T = Ω(n3) time steps. To highlight the relationship
between the cup game and the stone game, we shall sometimes refer to the distance of the
furthest stone from the origin simply as the backlog.

Let the positions of the stones be x1, . . . , xn. We start by recalling the potential function
Φ =

∑n
i=1 x2

i . One would naturally hope that Φ could help us establish a bound of T = Ω(n3)
(just as it helped us with the T = O(n3) bound in Subsection 3.1). For example, one way to
prove the Ω(n3) time bound would be to show that Φ increases by at most O(1) in each step,
and that Φ takes a value of at least Ω(n3) after the final step (i.e., when backlog b = n/10
is achieved). Unfortunately, we run into two problems. The first problem is that even if
max |xi| = b = n/10, we may still have that

∑n
i=1 x2

i is just O(n2) after the final step (as
opposed to the desired Ω(n3)). The second, more difficult problem is that the number of
stones we move in each direction could be large at each time step. If we move q stones right
and q stones left, Φ increases by 2q (rather than the desired O(1)), which could be as large
as n. Together, these two problems mean that, a priori, we can only get a trivial T = Ω(n)
bound, since the change in the potential function Φ is up to n at each time step and the
final potential may be as small as Θ(n2).

The first problem can be resolved with a more careful analysis: in particular, one can
show that a backlog of Ω(n) actually does imply Φ = Ω(n3). The key is to prove that there
can never be large gaps between consecutive stones. Namely, one can show that if there
exists a stone at some position k > 0, there must be at least one stone at position k − 1
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or k − 2, and likewise, if there exists a stone at k < 0, there must be at least one stone at
position k + 1 or k + 2. As a result, if there is a stone at b = n/10, there must be a stone
at position either b − 1 or b − 2, at either b − 3 or b − 4, and so on, so one can show that
there are Ω(b) stones at positions b/2 or greater. Thus, if there is a stone at position b, then
Φ ≥ Ω(b) · (b/2)2 ≥ Ω(n3), as desired.

The more difficult piece of the analysis is to show that, even though Φ can grow significantly
in a single step, Φ only increases on average by O(1) per step. An important insight here
is to create a second potential function, Ψ, and compare the growth rates of Ψ and Φ. We
define this new potential function Ψ :=

∑
i<j |xi − xj |, where x1, . . . , xn are the locations

of the n stones. In a given step of the stone game, if we move q stones up from k to k + 1
and q stones down from k to k − 1, the first potential function Φ increases by 2q. However,
one can show that Ψ must increase by at least 2q2 – the core reason for this is that the q

stones that moved up now each have distance 2 from the q stones that moved down, whereas
before they had distance 0. Now suppose for contradiction that Φ grows on average by some
amount q = ω(1) per step. This would mean that the average growth of Ψ per step is at
least Ω(q2), so the final values of Ψ and Φ must satisfy Ψ = ω(Φ). However, we know that
Φ = Ω(n3) at the end of the game, and it is not hard to see that Ψ must be O(n3), since all
of the xi’s are bounded in the range [−O(n), O(n)]. Thus we have a contradiction, and the
average growth of Φ per step is actually O(1). The fact that Φ is Ω(n3) at the end of the
game and grows by O(1) on average per step is sufficient to show that the time T needed to
achieve backlog b = n/10 in the stone game is at least Ω(n3) time steps.

Considering smaller backlogs in the stone game. But what happens if we wish to analyze
the time needed to achieve backlog k in the stone game, for k ≪ n? If, at the end of the
game, we knew that at least a constant fraction of the stones were in positions Ω(k), then we
could use the same argument as the one above to show that the average growth rate of Φ is
O(1). Unfortunately, the number of stones at positions Ω(k) might be as small as O(k). In
this case, Φ could be as small as O(k3), whereas Ψ must be at least Ω(k2n). If the average
growth of Φ were Θ(n/k) and the average growth of Ψ were Θ((n/k)2), these values of Φ
and Ψ could be obtained in O(k4/n) rounds, which is much smaller than our desired bound
of Ω(k3/ log2(n/k)).

To obtain the optimal bound of Ω(k3/ log2(n/k)), we introduce another variant of the
stone game that has what we call checkpoints: namely, we choose an integer ℓ and play the
same game but now, once a stone has reached a position a · ℓ for any a ≥ 0, it can never
go below it. In other words, if we move q stones from a · ℓ to a · ℓ + 1, rather than moving
q stones from a · ℓ down to a · ℓ − 1, we keep them as is. A key insight is that, if a player
wishes to get a stone to position 10 log n · ℓ, the player must have the property that, for the
majority of the checkpoints, the player gets at least half of the stones that reach checkpoint
a · ℓ all the way up to checkpoint (a + 1) · ℓ.

We can think of the steps of the stone game (with checkpoints) as being split into
subgames, where each subgame takes place between two checkpoints a · ℓ and (a + 1) · ℓ. We
analyze each subgame individually by creating potential functions Φa, Ψa between each pair
of checkpoints at a · ℓ and (a + 1) · ℓ. At least half of the subgames have the property that
at least half of their stones make it to the next checkpoint, and this property makes each
such subgame amenable to being analyzed using Φa and Ψa. By analyzing the subgames
individually, we can show that the total length of the full stone game (which is the sum of
the lengths of the subgames) is at least Ω(k3/ log2(n/k)).
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Finally, one can show that adding the checkpoints to the original stone game only makes
it easier for the player to achieve a large backlog. This involves proving that if states X and
Y have xi ≥ yi for all i, then given any stone-game operation on Y to obtain a state Y ′, we
can generate a corresponding (but perhaps different) stone-game operation on X to obtain
X ′, and preserve the ordering x′

i ≥ y′
i for all i. Thus, the T = Ω(k3/ log2(n/k)) bound also

applies to the original stone game.

Transferring bounds from the stone game to the cup game. Overall, the potential-
function arguments above get optimal bounds for the stone game but they do not directly
give bounds for the more general variable-processor cup game. The main issue is that in
certain time steps in the cup game, it might be possible for the filler to make “backward”
moves where both Φ and Ψ decrease considerably: in the worst case, Ψ can even decrease by
up to n2. Our analysis of the stone game relied heavily on the fact that the change in Ψ
was comparable to the square of the change in Φ (in a given step), but if Ψ can decrease
significantly in a single step, then our comparison of growth rates no longer works. Our fix
for this is not to modify the potential functions, but rather to show that these backward
moves, or any other “non-stone game” moves, are never advantageous to the filler, even in
the long run.

To show that non-stone-game moves are never advantageous for the filler, we analyze
the relationship between the stone game and the variable-processor cup game. Say that a
sequence X = {x1, . . . , xn} of real numbers majorizes another sequence Y = {y1, . . . , yn}
(where x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn) if x1 + · · · + xi ≥ y1 + · · · + yi for all 1 ≤ i ≤ n,
and if

∑
i xi =

∑
i yi. We prove that, for any sequence of cup game rounds, one can create

a corresponding sequence of stone game rounds such that after every round, the sequence
of stone positions majorizes the sequence of cup fills. Since X majorizing Y implies that
x1 ≥ y1, we get that the maximum backlog after T steps of the cup game is at most the
maximum backlog after T steps of the stone game. Therefore, even if we cannot utilize the
potential functions on the general cup game, it suffices to look at the stone game as it will
have a greater maximum backlog.

The main technical claim needed to show this majorization result is to show that if a
sequence X majorizes a sequence Y , and if Y can be converted to a sequence Y ′ in one
round of filling/greedy-emptying in the variable-processor cup game, then it is possible to
convert X into some X ′ (also with a single round of filling/greedy emptying) such that X ′

majorizes Y ′. This claim is quite casework-heavy and crucially uses the fact that we are
in the variable-processor cup game. Indeed, the choice of p may have to differ between the
round performed on X and the round performed on Y , and perhaps surprisingly, the claim
is actually false in the fixed p-processor cup game.

3.3 Overview of Resource-Augmentation Analysis
In Section 7 in the extended version, we analyze the variable-processor cup game with ε

resource augmentation (and non-negative fills), meaning that in each time step, the emptier
is permitted to remove up to 1 + ε units of water from each of p cups (rather than just 1
unit of water).

We prove that even a very small amount of resource augmentation significantly decreases
backlog of the game: the greedy emptying algorithm achieves backlog O(ε−1 log n).

The proof uses the probabilistic method. Rather than analyzing the greedy emptying
algorithm directly, we instead construct a randomized emptying algorithm that, at any
given moment, achieves backlog O(ε−1 log n) with non-zero probability. (Importantly, the
randomized algorithm is against an adaptive filler, not an oblivious one.) The existence
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of such a randomized algorithm non-constructively implies the existence of a deterministic
emptying algorithm with the same guarantee. But we already know that the best deterministic
emptying algorithm is the greedy one. Thus greedy emptying achieves backlog O(ε−1 log n)
(deterministically).

To simplify our discussion here, let us consider only games of polynomial length (in
Section 7 in the extended version we will consider arbitrary game lengths). In this case, our
randomized emptying algorithm can simply take an approach that we call proportional
emptying: in each time step of the game, if the filler places some amount qj of water into
cup j, then the emptier empties from cup j with probability exactly qj .

To analyze proportional emptying, we show that, at any given moment, each cup has fill
O(ε−1 log n). Roughly speaking, the amount of water in each cup can then be modeled as
a biased random walk: in each time step, the expected amount of water that the emptier
removes is a factor of 1 + ε larger than the amount of water that the filler inserts. The
bias in the random walk prevents it from ever reaching a large fill. The result is that a
simple Chernoff-style analysis (modified using a variation on Azuma’s martingale inequality
to handle the fact that the filler is an adaptive adversary) can be used to bound the fill in
each cup by O(ε−1 log n) (with high probability).

Interestingly, the above argument also immediately yields a nontrivial bound in the
resource-augmentation-free setting. Now the amount of water in each cup follows an unbiased
random walk. At any given time step t, one can bound the height of such random walk by
O(

√
t log n) with high probability. Using the fact that greedy emptying is as good as any

randomized emptying strategy, it follows that greedy emptying achieves backlog O(
√

t log n)
in a t time step game.

4 The Greedy Emptier is Always Optimal

Intuitively, the greedy emptying algorithm (i.e., always empty from the fullest cups) should
be the optimal deterministic emptying algorithm (for both the p-processor cup game and the
variable-processor cup game). This intuition is known to be true for the single-processor cup
game starting in a state with all empty cups (in particular, the lower and upper bounds on
backlog match in this case [1]), but whether or not the intuition is correct in general has
remained an open question. (We remark that there are variants of the game, for example the
fixed-rate cup game, where greedy emptying is not optimal, even asymptotically [1].) In this
section, we prove that greedy emptying is, in fact, optimal for both of the p-processor cup
game and the variable-processor cup game.. That is, for any starting state of the cups, and
for any game length, greedy emptying is the best possible algorithm for minimizing backlog
against an adaptive filler.

For any state S and any length t, define OPT(S, t) to be the supremum backlog that
a filler can achieve at the end of a t-step game starting at state S assuming the emptier
plays optimally. That is, OPT(S, 0) is just the amount of water in the fullest cup of S, and
OPT(S, t) for t > 0 is defined by induction as

sup
S′ reachable from S by filler

min
S′′ reachable from S′ by emptier

OPT(S′′, t − 1).

Note that this also allows for us to talk about the optimal emptier , which is the emptier
that achieves backlog at most OPT(S, t) in any t-step game starting at any state S.
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Define GREEDY(S, t) to be the supremum backlog that a filler can achieve at the end of
a t-step game starting at state S, assuming the emptier plays greedily. We wish to prove
that OPT(S, t) = GREEDY(S, t) for all S, t. Throughout the section we shall prove all of
our results for both the versions of the games with non-negative fills and the versions of the
games with negative fills.

We say that a state A monopolizes a state B if it is possible to assign labels 1, 2, . . . , n

to the cups in A and B such that:
cups 3, 4, . . . , n contain the same amounts of water in both states;
cup 1 in A contains more water than cup 2 in B;
cup 1 in A contains one more unit of water than cup 1 in B;
cup 2 in B contains c more units of water than cup 2 in A for some 0 ≤ c ≤ 1.

In other words, you can get from A to B by removing 1 unit of water from cup 1 and and
placing c ≤ 1 units into cup 2, and cup 1 in A contains more water than cup 2 in B.

We say that A dominates B if it is possible to label the cups such that each cup i in A

contains at least as much water as cup i in B. Finally, we say that A weakly monopolizes
B if either A monopolizes B, or A dominates B.

We now prove several properties of weak monopolization in the p-processor cup game
(for any p). Our first lemma says that, if A weakly monopolizes B, then for any filler move
on B, there is some filler move on A that preserves the weak monopolization of A over B.

▶ Lemma 1. Suppose A weakly monopolizes B. Suppose that there is a p-processor filler
move that transforms B into some B′. Then there exists a p-processor filler move that
transforms A into some A′ such that A′ weakly monopolizes B′.

Proof. If A dominates B, then the lemma is trivial. Thus we can assume that A monopolizes
B. Let q be the amount by which cup 1 in A contains more water than cup 2 in B.

Define X to be a state that we reach from A if we perform the same filler move that
transforms B into B′. If cup 1 in X contains more water than cup 2 in B′ then we can set
A′ = X and be done.

Suppose cup 1 in X does not contain more water than cup 2 in B′. Then, in the
transformation from B to B′, the filler must have placed at least q more water into cup
2 than into cup 1. Let r be the amount of water that the filler placed into cup 1, and let
r + q + s (for some s ≥ 0) the amount of water that the filler placed into cup 2.

Now define A′ to be the state that one would reach from A by performing the following
p-processor filler move: place r + s units of water into cup 1 and q + r units of water into
cup 2 (and then place water into cups 3, 4, . . . , n in the same way as to transform B to B′).
Cup 1 in A′ contains the same amount of water as cup 2 in B′, and cup 2 and A′ contains
the same amount of water as cup 1 in B′. Thus A′ and B′ are equivalent states, meaning
that A′ weakly monopolizes B′. ◀

Our next lemma says that, if A weakly monopolizes B, and if A is then greedily emptied
from, then it is possible to empty from B in such a way that the monopolization relationship
is preserved.

▶ Lemma 2. Suppose A weakly monopolizes B. Let A′ be the state reached if a p-processor
emptier greedily empties from A. Then there exists a valid p-processor emptier move on B

that achieves some state B′ such that A′ weakly monopolizes B′.

Proof. If A dominates B, then the lemma is trivial. Thus we can assume that A monopol-
izes B.
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Let a1, a2 denote the fills of cups 1 and 2 in A, and let b1, b2 denote the fills of cups 1
and 2 in B. So a1 = b1 + 1, b2 = a2 + c for some 0 ≤ c ≤ 1, and a1 > b2. Furthermore, let
a′

1, a′
2 the fills of cups 1 and 2 in A′, and let b′

1, b′
2 denote the fills of cups 1 and 2 in B′ (once

we’ve defined it).
If the greedy emptier on A empties from neither cup 1 nor cup 2, then the same set of

empties on B results in a B′ that is weakly monopolized by A′.
Next consider the case where the greedy emptier on A empties from both cups 1 and 2.

Then we empty from the same set of cups in B to arrive at a state B′. In the negative-fill
game, is immediate to see that A′ monopolizes B′. In the standard game, we must be careful
about the fact that one of b1 or a2 might be less than 1. If b1 < 1, then b′

1 = 0 ≤ a′
2, and

since a1 > b2, we also have a′
1 ≥ b′

2; thus A′ dominates B′ in this case. If a2 < 1 but b1 ≥ 1,
then we have a′

1 = b′
1 + 1 and b′

2 = a′
2 + c′ for some 0 ≤ c ≤ 1; we also have a′

1 ≥ b′
2 (since

a1 ≥ b2), so A′ monopolizes B′ in this case.
Finally, consider the case where the greedy emptier on A empties from only one of the

cups 1 or 2. Since a1 > b2 ≥ a2, the emptier must empty from cup 1. Suppose we construct
B′ by performing the same set of empties on B as were performed on A, but we remove
water from cup 2 instead of cup 1. Then a′

1 = b′
1 and a′

2 ≥ b′
2, so A′ dominates B′. This

completes the proof. ◀

By combining the previous two lemmas, we can arrive at the following.

▶ Lemma 3. Consider either the p-processor cup game, for some p, or the variable processor
cup game (and consider either the negative-fill case or the non-negative-fill case). Suppose A

weakly monopolizes B. Then for any t,

GREEDY(A, t) ≥ OPT(B, t).

Proof. We prove the lemma by induction on t. In the base case of t = 0, the lemma reduces
to showing that A has backlog at least as large as B; this follows from the fact that A weakly
monopolizes B.

Now consider some t > 0, and suppose the result holds for t − 1. For each state B′ that
the filler can reach from B, Lemma 1 tells us that there must exist a state A′ that the filler
can reach from A in such that A′ weakly monopolizes B′. Moreover, Lemma 2 tells us that,
if greedy emptying from A′ results in some state A′′, then there must be an emptying move
on B′ that results in a state B′′ such that A′′ weakly monopolizes B′′.

Note that, in the previous paragraph, the filler’s move from B to B′ (i.e., the choice
of B′) fully determines A′ (by the construction in Lemma 1), A′′ (by greedy emptying on
A′), and B′′ (by the construction in Lemma 2). Thus, we will think of A′, A′′, B′′ as being
functions of B′.

Expanding out GREEDY(A, t), we have

GREEDY(A, t) ≥ sup
B′

GREEDY(A′′, t − 1).

By the inductive hypothesis, since each A′′ weakly monopolizes B′′, we have GREEDY(A′′, t−
1) ≥ OPT(B′′, t − 1). Thus

GREEDY(A, t) ≥ sup
B′

OPT(B′′, t − 1).

Since supB′ OPT(B′′, t − 1) ≥ OPT(B, t), the lemma follows. ◀
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Recall that our goal is to upperbound GREEDY(A, t) by OPT(A, t) for all A, t. Thus
Lemma 3 may at first seem to be backward progress, since the lemma establishes a lower
bound on GREEDY(A, t). The trick to using Lemma 3 is that we will only ever apply
the lemma to states A and game lengths t for which we have already proven by induction
that OPT(A, t) = GREEDY(A, t); in this setting, the lemma establishes that OPT(A, t) ≥
OPT(B, t) which, as we shall see, ends up being critical to the proof.

▶ Theorem 4. Consider either the p-processor cup game, for some p, or the variable-processor
cup game (and consider either the negative-fill case or the non-negative-fill case). For all
states A and game lengths t,

GREEDY(A, t) = OPT(A, t).

Proof. We prove the theorem by induction on t with a trivial base case of t = 0. Consider
t > 0, and suppose the theorem holds for t − 1.

Consider any state A′ that the filler can reach from A. Let A′′ be the state reached from
A′ if the emptier empties greedily, and let B be the state reached from A′ if the emptier
empties according to OPT. Since the transformation from A′ to A′′ empties from cups with
at least as much water as the transformation from A′ to B, there must be a sequence of
states X0, X1, . . . , Xk, with X0 = B and Xk = A′′, such that each Xi weakly monopolizes
Xi−1. In particular, one can define the Xi’s such the only difference between each Xi and
Xi+1 is that, to get from A′ to Xi+1 instead of from A′ to Xi, the emptier removes water
from a cup j instead of a cup k, where cup j contains less water than cup k in state A′. It is
straightforward to verify that this results in each Xi+1 weakly monopolizing each Xi: if cup
k (in state A′) has fill at least 1, then Xi+1 monopolizes Xi; and otherwise, both cups k and
j (in state A′) have fills less than 1, and thus Xi+1 dominates Xi.

By the inductive hypothesis, we know that OPT(Xi, t−1) = GREEDY(Xi, t−1) for each
Xi. Thus Lemma 3 tells us that OPT(Xi, t−1) ≥ OPT(Xi−1, t−1). By transitivity, it follows
that OPT(Xk, t − 1) ≥ OPT(X0, t − 1), and thus OPT(B, t − 1) ≥ OPT(A′′, t − 1). Again
applying the inductive hypothesis to deduce that OPT(A′′, t − 1) = GREEDY(A′′, t − 1), we
have that

OPT(B, t − 1) ≥ GREEDY(A′′, t − 1).

Thus

GREEDY(A, t) = sup
A′′

GREEDY(A′′, t − 1) ≤ sup
B

OPT(B, t − 1) = OPT(A, t).

Finally, as GREEDY(A, t) ≥ OPT(A, t) trivially, we have GREEDY(A, t) = OPT(A, t). ◀

▶ Corollary 5. Theorem 4 continues to hold for the game with non-negative fills even if the
emptier is given 1 + ε resource augmentation.

Proof. The proof of Theorem 4 continues to hold without modification. The only difference
is that, now, we say that a state A monopolizes a state B if there is a ordering of the cups
for which two properties hold: (1) we can take 1 + ε unit of water from some cup 1 in A,
place some amount 0 ≤ c ≤ 1 + ε of water into some other cup 2 in A, and in doing so arrive
at B; and (2) cup 1 in A contains more water than cup 2 in B. ◀
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5 Lower Bounding Backlog

In this section, we prove the optimal lower bound on the backlog. In other words, we show
that for any integer t ≥ 1, there exists a filling strategy that can guarantee a backlog of
Ω(b(t)) against any emptying strategy, after t rounds of the variable-processor cup game,
where b(t) is defined as in Equation (1) in the introduction (Section 1). This result can be
captured compactly in the following theorem:

▶ Theorem 6. For some absolute constant c > 0 and any k ≤ c · n, the filler in the variable-
processor cup game can force a maximum backlog of Ω(k) using only O

(
k + k3

log2(n/k)

)
time

steps.

We remark that due to the optimality of greedy emptying, which we proved in the previous
section, we focus in this section on designing filling strategies that are effective against the
greedy emptier.

In Subsection 5.1, we give a simple proof for obtaining Ω(n) backlog in O(n3) rounds. In
Subsection 5.2, we generalize Subsection 5.1 and develop the full proof of Theorem 6.

5.1 Warmup: Achieving a Θ(n) Backlog Quickly Against a Greedy
Emptier

In this subsection, we show that in only n3 rounds, a filler can achieve a backlog of n−1
2

against a greedy emptier. While the following argument is simpler than the more refined lower
bound in Subsection 5.2, it conveys much of the intuition behind the general lower bound.
Here, we only consider the standard variable-processor cup game, though in subsection 5.2
we will consider both the standard and negative-fill games.

▶ Theorem 7. Against a greedy emptier in the standard variable-processor cup game, the
filler can achieve a backlog of n−1

2 in only n3 rounds.

Proof. The filler follows the following simple strategy, which will guarantee that the fills at
the end of each round are half integers (i.e., integer multiples of 1

2 ). Suppose the cups after
some round, in sorted order, are x1 ≥ x2 ≥ · · · ≥ xn, which are all half-integers.

If xi > xi+1 for all 1 ≤ i ≤ n − 1, then we must have that xi ≥ xi+1 + 1
2 for all i ≤ n − 1,

so x1 ≥ n−1
2 . In this case, we have already achieved a backlog of n−1

2 .

Otherwise, we consider the potential function Φ =
∑n

i=1 x2
i , i.e., the sum of the squares of

the backlogs. Consider the smallest p such that xp = xp+1. We set the number of processors
for the round to be p, we place 1 unit of water into each of cups x1, . . . , xp−1 and we place
1/2 unit of water into each of cups xp, xp+1. Then, the greedy emptier will empty 1 unit
from each of the first p − 1 cups and will choose to empty 1 unit from either the pth cup
or the (p + 1)th cup (WLOG, they choose the (p + 1)-th cup). This means that, over the
course of the entire round, the first p − 1 cups are unchanged, the pth cup goes up by 1

2 , and
(p + 1)th cup goes down by 1

2 . The only exception is if xp = xp+1 = 0 at the beginning, in
which case one of these two cups will go up to 1/2 and the other remains at 0. Clearly, all of
the fills remain half-integers at the end of each round. If we replace xp and xp+1 = xp with
xp + 1

2 and xp − 1
2 , then the sum of the squares of the backlogs increases by 1/2. Otherwise,

if we replace xp = xp+1 = 0 with 0 and 1/2 in some order, then the sum of the squares of
the backlogs increases by 1/4. Thus, at the end of each round, unless one of the backlogs
was already n−1

2 or greater, Φ increases by at least 1
4 .

Therefore, after n3 rounds, either at some point we will have achieved x1 > x2 > · · · > xn

and thus a backlog of n−1
2 , or we have that

∑n
i=1 x2

i ≥ n3

4 , which would mean that max xi ≥ n
2 ,

since all of the xi’s are nonnegative. As a result, there exists a filling strategy that can
guarantee a n−1

2 backlog against a greedy emptier in at most n3 rounds. ◀
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5.2 The General Lower Bound
In this subsection, we prove the lower bound on the backlog for the variable-processor cup
game after t rounds, showing that the optimal backlog is Ω(b(t)) for b(t) defined as in
Equation (1). Equivalently, we show that for any integer k ≤ n, a filler can achieve backlog
Ω(k) in O

(
k + k3

log2(n/k)

)
rounds against any emptying strategy. We remark that if we are

playing t rounds of the game and the filler has achieved backlog b by round t′ < t, the filler
can ensure the backlog stays at b by setting p = n and filling every cup for steps t′ + 1, . . . , t.

Thus, we just need to show the filler can obtain this backlog within this many rounds.
Throughout this subsection, we assume that we are playing the negative-fill game, and

that the emptier is always greedy. We remove both of these assumptions at the end in
Theorem 6.

▶ Lemma 8. Assume that the emptier is always greedy, and that at the beginning of some
round, the fills are all (possibly negative) half-integers. For some integer k ∈ Z and positive
integer q ∈ N, suppose there are at least 2q cups having fill exactly k/2. Then, the filler can
ensure that at the end of the round (i.e., after both the filler and emptier move), exactly q of
the cups of fill exactly k/2 have increased to (k + 1)/2, exactly q of the cups of fill exactly
k/2 have decreased to (k − 1)/2, and all remaining cups are unchanged.

Proof. Suppose the cups are sorted in order x1 ≥ x2 ≥ · · · ≥ xn, such that xi = xi+1 =
· · · = xi+2q−1 = k/2. Also, suppose i is the smallest integer such that xi = k/2, so either
xi−1 > k/2 or i = 1. Then, the filler will set p = i − 1 + q and fill the first i − 1 cups with 1
unit of water and the cups xi, . . . , xi+2q−1 each with 1/2 unit of water. Then, if i > 1, the
emptier is forced to empty 1 unit of water from each of the first i − 1 cups. In addition, we
have that the cups i, i + 1, . . . , i + 2q − 1 all have fills (k + 1)/2, which is at least 1/2 unit of
water more than all later cups, which means that the emptier will remove 1 unit of water
from exactly q of the cups i, i+1, . . . , i+2q −1. Therefore, all cups 1, . . . , i−1 are unchanged
(since 1 unit of water is added and then removed) and all cups i + 2q, . . . , n are unchanged
(since water is never added nor removed). Finally, among the cups i, i + 1, . . . , i + 2q − 1,
exactly q of them will end up at (k − 1)/2 and exactly q of them will end up at (k + 1)/2. ◀

▶ Lemma 9. Suppose that k, m are positive integers such that 4k|m, and suppose there are
at least m cups that currently have fill 0 (where n ≥ m is the total number of cups). Then,
against a greedy emptier, the filler can ensure that at least m/4 cups will have fill exactly
k/2 after O(k3) rounds.

Proof. WLOG assume that the first m cups have fills x1, x2, . . . , xm, and at the start,
x1 = x2 = · · · = xm = 0. (We do not assume the cups are sorted in order of fill.) We only
ever modify the first m cups, and after each step, we will maintain the following invariants:
1. All of the fills are half-integers.
2. For each integer j, the number of cups of fill j/2 equals the number of cups of fill −j/2.
3. For each integer j, the number of cups of fill j/2 is always a multiple of m

4k .
4. No cup has fill greater than k/2 or less than −k/2.

Trivially, all 4 of these invariants are true at the beginning, since all the fills are 0 and
m
4k |m. Our procedure is the following. Suppose that there exists some integer j such that
−k < j < k and the number of cups of fill j/2 is at least m

2k . Then, we use Lemma 8 to move
m
4k of these cups to fill (j + 1)/2 and move m

4k of these cups to fill (j − 1)/2. In addition, if
j ̸= 0, then we know the number of cups of fill −j/2 is at least m

2k . So, in the next step,
we move m

4k of these cups to fill (−j + 1)/2 and move m
4k of these cups to fill (−j − 1)/2.
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When j ̸= 0, we perform these two steps consecutively as a pair. We keep repeating these
types of steps (and pairs of steps) until we can no longer do so. It is clear that the first three
invariants are preserved, and the last is preserved since we only modify cups that have fill
between −(k − 1)/2 and (k − 1)/2, and we change their fills by at most 1/2 per round.

Now, we note that at each step, the potential function Φ =
∑m

i=1 x2
i increases by m

8k , since

m

4k
·
(

j + 1
2

)2
+ m

4k
·
(

j − 1
2

)2
− m

2k
·
(

j

2

)2
= m

8k
.

This also means that if we do a pair of steps (i.e., modifying cups of fill j/2 and −j/2), the
potential function Φ increases by m

4k .

Now, after 4k3 steps (and pairs of steps), Φ is at least 4k3 · m
8k = 1

2 · mk2. But this
is impossible, since all of the fills of cups 1 through m are between k/2 and −k/2, so the
maximum possible value of Φ is 1

4 ·mk2. This means that before reaching 4k3 of steps or pairs
of steps, we must not be able to do any more steps. That is, for all j such that −k < j < k,

there are less than m
2k cups of fill exactly j/2, and because of our third invariant, this means

there are at most m
4k cups of fill exactly j/2. Therefore, the number of cups of fill between

−k + 1 and k − 1 is at most (2k − 1) · m
4k ≤ m

2 . So, at least m
2 cups must have fill ± k

2 , and
by the second invariant, this means at least m

4 cups must have fill k
2 . Reaching this stage

required at most 4k3 steps and pairs of steps, which means the filler can succeed in at most
8k3 steps. ◀

▶ Corollary 10. Suppose k, m are positive integers such that 4k|m, and suppose there are
at least m cups that currently have fill exactly t for some real number t. Then, after O(k3)
time steps, the filler can force at least m/4 of these cups to have fill exactly t + k

2 , against a
greedy emptier.

Proof. We can apply same argument as in Lemma 9, where all of the fills are shifted up by
the same number t. So, after at most 8k3 time steps, at least m/4 of the cups will have fill
exactly t + k

2 . ◀

From here, we are able to conclude with our main result of this section.

▶ Theorem 6. For some absolute constant c > 0 and any k ≤ c · n, the filler in the variable-
processor cup game can force a maximum backlog of Ω(k) using only O

(
k + k3

log2(n/k)

)
time

steps.

Proof. For now we will assume that the emptier is greedy, and that we are playing the
negative-fill cup game. We will remove both assumptions at the end of the proof.

First, suppose k ≥ c log n. In this case, let k′ :=
⌈

k
c log(n/k)

⌉
≥ 2. Also, let n′ be such

that n ≥ n′ > n
4 and n′ = k′ · 4r for some integer r ≥ 1.

Since there are at least n′ = k′ ·4r cups of fill 0 at the beginning of the game, we can apply
Corollary 10 with t = 0 and m = n′ to make sure there are at least k′ · 4r−1 cups of fill k′

after O(k′3) time steps, since 4k′|n′. Then, we can again apply Corollary 10 with t = k′ and
m = n′/4 to make sure there are at least k′ · 4r−2 cups of fill 2k′ after an additional O(k′3)
time steps. We can repeat this r times until we have at least k′ cups of fill r · k′ after a total
of O(r · k′3) time steps. But since r = log4(n′/k′) = Θ(log(n/k · log(n/k))) = Θ(log(n/k)),
this means that the filler can achieve a maximum backlog of r · k′ = Θ(k) using only
O(r · k′3) = O(k3/ log2(n/k)) time steps.

Next, suppose k < c log n. In this case, set n′ = 2k: if c < 1 then n′ < n. By Lemma 8,
we can send 2k−1 cups to fill 1 during the first round, then 2k−2 of those cups to fill 2 during
the second round, and so on until we have 1 cup at fill k after k rounds.

ICALP 2022
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Up until now we have assumed that the filler was operating against a greedy emptying
algorithm in the negative-fill cup game. However, by Theorem 4, if the emptier uses a
different emptying algorithm, the filler could always modify their strategy to get equal or
greater backlog in the same amount of time. So, regardless of the emptying strategy, the
filler can force a maximum backlog of Θ(k) using O

(
k + k3

log2(n/k)

)
time steps, assuming we

are playing the negative-fill cup game. Finally, recall that the maximum backlog that the
filler can ensure in the negative-fill game is at most the maximum backlog that the filler can
ensure in the standard game for any fixed number of time steps. Thus, if the filler can force a
maximum backlog of Θ(k) using O

(
k + k3

log2(n/k)

)
time steps in the negative-fill game, then

the filler can force the same backlog using the same number of time steps in the standard
game, which completes the theorem. ◀

Finally, to conclude the section, we use the optimality of greedy emptying to resolve an
open question of [29] concerning whether a filler who is limited in the speed at which they
can change p can still force a large backlog.

▶ Proposition 11. Consider the variable-processor cup game, starting with all empty cups
(and with negative fills either allowed for disallowed). Suppose the filler is restricted to only
change p once every nc steps, for some constant c ≥ 0, and to only change p by ±1 at a time.
Then the filler can still force a backlog of Ω(n) in polynomial time.

Proof. Call this version of the game the change-limited variable-processor cup game. Notice
that the proof of optimality for greedy emptying never changes the value of p used in any
given step. Thus the same proof implies that greedy emptying is optimal in the change-limited
variable-processor cup game. Henceforth we will assume that the emptier is greedy.

Next, observe that, no matter the value of p, the filler can always “skip” a step in the
following way: the filler simply places 1 unit of water into each of the p fullest cups, forcing
the greedy emptier to remove water from those cups, so that the step has no net effect.

We have already proven that, in the standard variable-processor cup game, the filler can
cause backlog Ω(n) in polynomial time. The filler can use the same strategy here, but with
the following modification: between any two consecutive steps that use p and q processors,
respectively, the filler spends |p − q|nc steps changing the number of processors from p to q.
That is, for each i ∈ [p, q], the filler spends nc steps with i processors, and renders each of
those steps to have no net effect. The result is that, in polynomial time, the filler can force
backlog Ω(n), as desired. ◀
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