
Near-Optimal Decremental Hopsets with
Applications
Jakub Łącki #

Google Research, New York, NY, USA

Yasamin Nazari #

Universität Salzburg, Austria

Abstract
Given a weighted undirected graph G = (V, E, w), a hopset H of hopbound β and stretch (1 + ϵ)
is a set of edges such that for any pair of nodes u, v ∈ V , there is a path in G ∪ H of at most β

hops, whose length is within a (1 + ϵ) factor from the distance between u and v in G. We show the
first efficient decremental algorithm for maintaining hopsets with a polylogarithmic hopbound. The
update time of our algorithm matches the best known static algorithm up to polylogarithmic factors.
All the previous decremental hopset constructions had a superpolylogarithmic (but subpolynomial)
hopbound of 2logΩ(1) n [Bernstein, FOCS’09; HKN, FOCS’14; Chechik, FOCS’18].

By applying our decremental hopset construction, we get improved or near optimal bounds for
several distance problems. Most importantly, we show how to decrementally maintain (2k − 1)(1 + ϵ)-
approximate all-pairs shortest paths (for any constant k ≥ 2), in Õ(n1/k) amortized update time1

and O(k) query time. This improves (by a polynomial factor) over the update-time of the best
previously known decremental algorithm in the constant query time regime. Moreover, it improves
over the result of [Chechik, FOCS’18] that has a query time of O(log log(nW)), where W is the aspect
ratio, and the amortized update time is n1/k · (1

ϵ
)Õ(

√
log n)). For sparse graphs our construction

nearly matches the best known static running time / query time tradeoff.
We also obtain near-optimal bounds for maintaining approximate multi-source shortest paths

and distance sketches, and get improved bounds for approximate single-source shortest paths. Our
algorithms are randomized and our bounds hold with high probability against an oblivious adversary.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic Algorithms, Data Structures, Shortest Paths, Hopsets

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.86

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2009.08416

Funding Yasamin Nazari: This work was conducted in part while the author was an intern at Google
and a PhD student at Johns Hopkins University. Supported in part by NSF award CCF-1909111
and by Austrian Science Fund (FWF) grant P 32863-N.

Acknowledgements The authors would like to thank Michael Dinitz and Sebastian Forster for the
helpful discussions.

1 Introduction

Given a weighted undirected graph G = (V, E, w), a hopset H of hopbound β and stretch
(1 + ϵ) (or, a (β, 1 + ϵ)-hopset) is a set of edges such that for any pair of nodes u, v ∈ V ,
there is a path in G ∪ H of at most β hops, whose length is within a (1 + ϵ) factor from the
distance between u and v in G (see Definition 5 for a formal statement).

1 Throughout this paper we use the notation Õ(f(n)) to hide factors of O(polylog (f(n))).

EA
T
C
S

© Jakub Łącki and Yasamin Nazari;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 86; pp. 86:1–86:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jlacki@google.com
mailto:ynazari@cs.sbg.ac.at
https://doi.org/10.4230/LIPIcs.ICALP.2022.86
https://arxiv.org/abs/2009.08416
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

86:2 Near-Optimal Decremental Hopsets with Applications

Hopsets, originally defined by [13], are widely used in distance related problems in various
settings, such as parallel shortest path computation [13, 15, 18, 28], distributed shortest path
computation [10,17,29], routing tables [16], and distance sketches [14,16]. In addition to their
direct applications, hopsets have recently gained more attention as a fundamental object
(e.g. [1, 4, 17,23]), and are known to be closely related to several other fundamental objects
such as additive (or near-additive) spanners and emulators [19].

A key parameter of a hopset is its hopbound. In many settings, after constructing a
hopset, we can approximate distances in a time that is proportional to the hopbound. For
instance, in parallel or distributed settings a hopset with a hopbound of β allows us to
compute approximate single-source shortest path in β parallel rounds (e.g. by using Bellman-
Ford). For many applications, such as approximate APSP (all-pairs shortest paths), MSSP
(multi-source shortest paths), computing distance sketches, and diameter approximation,
where we require computing distances from many sources, we are interested in the regime
where the hopbound is polylogairthmic. Indeed, we obtain improved (and in some cases
near-optimal) bounds for several of these problems in decremental settings.

In this paper, we study the maintenance of hopsets in a dynamic setting. Namely, we
give an algorithm that given a weighted undirected graph G maintains a hopset of G under
edge deletions. Our algorithm covers a wide range of hopbound/update time/hopset size
tradeoffs. Importantly, we get the first efficient algorithm for decrementally maintaining a
hopset with a polylogarithmic hopbound. In this case, assuming G initially has m edges and
n vertices, our algorithm takes O(mnρ) time, given any constant ρ > 0, and maintains a
hopset of polylogarithmic hopbound and 1 + ϵ stretch. This matches (up to polylogarithmic
factors) the running time of the best known static algorithm [17,18] for computing a hopset
with polylogarithimic hopbound and (1 + ϵ) stretch.

▶ Theorem 1. Given an undirected graph G = (V, E) with polynomial weights2, subject
to edge deletions, we can maintain a (β, 1 + ϵ)-hopset of size Õ(n1+ 1

2k−1) in total expected
update time Õ(β

ϵ · (m + n
1+ 1

2k−1)nρ), where β = (O(log n
ϵ · (k + 1/ρ)))k+1/ρ+1, k ≥ 1 is an

integer, 0 < ϵ < 1 and 2
2k−1 < ρ < 1.

In the decremental setting, to the best of our knowledge, the previous state-of-the art
hopset constructions have a hopbound of 2Õ(log3/4 n) [21], or (1/ϵ)Õ(

√
log n) [5, 12]. As a

special case, by setting ρ = (2k − 1)−1 = log log n√
log n

, we can maintain a hopset with hopbound

2Õ(
√

log n) in 2Õ(
√

log n) amortized time. More importantly, by setting ρ and k to a constant,
we can maintain a hopset of polylogarithmic hopbound.

While hopsets are extensively studied in other models of computation (e.g. distributed
and parallel settings), their applicability in dynamic settings is less understood. Examples of
results utilizing hopsets include the state-of-the art decremental SSSP algorithm for undirected
graphs by Henzinger, Krinninger and Nanongkai [21], and implicit hopsets considered in [5,12].
As stated, these decremental hopset algorithms as stated only provide a superpolylogarithmic
hopbound. It may be possible (while not discussed) to use the hop-reduction techniques
of [21] (inspired by a similar technique in [5]) to obtain a wider-range of tradeoffs, however
to the best of our knowledge these techniques do not lead to near-optimal size/hopbound
tradeoffs3. Hence our result constitutes the first near-optimal decremental algorithm for
maintaining hopsets with in a wide-range of settings including polylogarithmic hopbound.

2 If weights are not polynomial the log n factor will be replaced with log W in the hopbound, and a factor
of log2 W will be added to the update time, where W is the aspect ratio.

3 In particular, in all regimes the algorithm of [21] gives a hopset with size that is super-linear in number

J. Łącki and Y. Nazari 86:3

Discussion on hopset limitations and alternative techniques. In [1] it was shown that for a
(β, 1 + ϵ)-hopset with size n

1+ 1
2k−1

−δ for any fixed k, ϵ and δ > 0 we must have4 β = Ωk(1
ϵ)k.

Their lower bound suggests that we cannot construct a (β, 1 + ϵ)-hopset of size Õ(n) with
β = poly log(n) hopbound, implying that hopsets cannot be used for obtaining optimal time
(i.e. polylog amortized time) for sparse graphs and very small ϵ. However when the graph is
slightly denser (|E| = n1+Ω(1)), the approximation factor is slightly larger (see e.g. [4,15]), or
we aim to compute distances from many sources (in APSP or MSSP), using hopsets may still
lead to optimal algorithms. Indeed, we show that our decremental hopsets allow us to obtain
a running time matching the best static algorithm (up to polylogarithmic factors) both in
(2k − 1)-APSP and (1 + ϵ)-MSSP. We leave it as an open problem if hopsets can be used to
obtain linear time algorithms for SSSP with larger approximation factors (e.g. ϵ ≥ 1), since
as stated, the lower bound of [1] does not apply in this case.

It is worth noting that in Theorem 12 we first give a decremental algorithm that maintains
static hopsets of [18] that matches the size/hopbound tradeoff in the lower bound of [1].
However, as we will see, this algorithm has a large update time, and thus we propose a
new hopset with slightly worse size/hopbound tradeoff that can be maintained much more
efficiently. This efficient variant has additional polylogarithmic (in aspect ratio) factors in
the hopbound relative to the existentially optimal construction.

Finally, for single source shortest path computation in other models recently algorithms
based on continuous optimization techniques are proposed (e.g. [2, 3,25]) that outperform
algorithms based only on combinatorial objects such as hopsets/emulators. These optimization
techniques lead to much better dependence on ϵ, but are less suitable when there are many
sources, as the running time scales with the number of sources. Interestingly, the authors
of [2] use low-hop combinatorial structures with larger (polylogrithmic) stretch as a subroutine
in their continuous optimization framework. Hence understanding both combinatorial and
optimization directions seems crucial for distance computation in general.

1.1 Applications of Our Decremental Hopsets
To illustrate applicability of our decremental hopset algorithm, we show how it yields improved
algorithms for decremetanlly maintaining shortest paths from a fixed set S of sources. We
consider different variants of the problem which differ in the size of S: the single-source
shortest paths (SSSP) problem (|S| = 1), all-pairs shortest paths (APSP) problem (S = n,
where n is the number of vertices of the input graph), as well as the multi-source shortest
paths (MSSP) problem (S is of arbitrary size), which is a generalization of the previous two.

Near-Optimal approximate APSP. We give a new decremental algorithm for maintaining
approximate all-pairs shortest paths (APSP) with constant query time.

▶ Theorem 2 (Approximate APSP). For any constant integer5 k ≥ 2, there is a data
structure that can answer (2k − 1)(1 + ϵ)-approximate distance queries in a given a weighted
undirected graph G = (V, E, w) subject to edge deletions. The total expected update time

of edges m (e.g. m1+p for a parameter p), while our hopset size is O(n1+p) for some (other but similar)
parameter p, which is a constant when the hopbound is polylogarithmic. Moreover, our techniques
lead to near-optimal approximate APSP, whereas it is unclear how to get comparable bounds using
techniques in [21], as they do not maintain Thorup Zwick-based clusters.

4 Ωk hides exponential a factor of roughly 1/(k2k). As written in [1] they assume k is constant (and
hence the sparse hopset regime is not covered), but they also indicate that a tighter analysis could
change the exact relationship between k and ϵ and hence allow a better k dependence and covering the
sparse case (see Theorem 4.6 and Remark 4.7 in [1]).

5 The k here should not be confused with the parameter k in the hopset size.

ICALP 2022

86:4 Near-Optimal Decremental Hopsets with Applications

over any sequence of edge deletions is Õ(mn1/k) and the expected size of the data structure
is Õ(m + n1+1/k). Each query for the distance between two vertices is answered in O(k)
worst-case time.

Our result improves upon a decremental APSP algorithm by Chechik [12] in a twofold
way. First, for constant k, our update time bound is better by a (1/ϵ)O(

√
log n) factor. Second,

we bring down the query time from O(log log(nW)) to constant. We note that in the area of
distance oracles a major goal is to preprocess a data structure that can return a distance
estimate in constant time [11,27,30,36]6.

Our results match the best known static algorithm with the same tradeoff (up to (1 + ϵ)
in the stretch and polylog in time) by Thorup-Zwick [34] for sparse graphs. For dense graphs
there have been improvements by [36] in static settings.

Prior to [12], Roditty and Zwick [31] gave an algorithm for maintaining Thorup-Zwick
distance oracles in total time Õ(mn), stretch (2k − 1)(1 + ϵ) and O(k) query time for
unweighted graphs. Later on, Bernstein and Roditty [9] gave a decremental algorithm for
maintaining Thorup-Zwick distance oracles in O(n2+1/k+o(1)) time using emulators also only
for unweighted graphs.

Distance Sketches. Another application of our hopsets with polylogarithmic hopbound is a
near-optimal decremental algorithm for maintaining distance sketches (or distance labeling);
an important tool in the context of distance computation. The goal is to store a small amount
of information, a sketch, for each node, such that the distance between any pair of nodes
can be approximated only using their sketches (without accessing the rest of the graph).
Distance sketches are particularly important in networks, and distributed systems [16,32],
and large-scale graph processing [14]. Their significance is that at query time we only need to
access/communicate the small sketches rather than having to access the whole graph. This is
specially useful for processing large data when queries happen more frequently than updates.

The Thorup-Zwick [34] algorithm can be used to obtain distance sketches of expected size
O(kn1/k) (for each node) that supports (2k − 1)-approximate queries in O(k) time (in static
settings), and this is known to be tight assuming a well-known girth conjecture. Our approx-
imate APSP data structure has the additional property that the information stored for each
node is a distance sketch of expected size O(kn1/k) that supports (2k − 1)(1 + ϵ)-approximate
queries. Hence we can maintain distance sketches that almost match the guarantees of the
best static algorithm. More specifically, for a fixed size our algorithm matches the best
known static construction up to a (1 + ϵ)-factor in the stretch and polyloagrithmic factors
in the update time. In decremental settings, distance oracles of [34], and hence distance
sketches with the guarantees described are studied by [9,31], but our total update time of
Õ(mn1/k) (for constant k ≥ 2) significantly improves over these results. In particular [31]
maintains these distance sketches in a total update time of Ω(mn), and [9] requires total
update time of O(n2+1/k+o(1)).

Near-Optimal (1 + ϵ)-MSSP. Our next result is a near-optimal algorithm for multi-source
shortest paths.

6 We need to store the original graph in addition to the distance oracle in order to update the distances
and maintain correctness, however we do not need the whole graph for querying distances as we will
also point out in describing the applications in maintaining distance sketches.

J. Łącki and Y. Nazari 86:5

▶ Theorem 3 (MSSP). There is a data structure which given a weighted undirected graph
G = (V, E) explicitly maintains (1 + ϵ)-approximate distances from a set of s sources in
G under edge deletions, where 0 < ϵ < 1

2 is a constant. Assuming that |E| = n1+Ω(1) and
s = nΩ(1), the total expected update time is Õ(sm). The data structure is randomized and
works against an oblivious adversary.

We note that total update time matches (up to polylogarithmic factors) the running
time of the best known static algorithm for computing (1 + ϵ)-approximate distances from s

sources for a wide range of graph densities. While for very dense graphs, using algorithms
based on fast matrix multiplication is faster, the running time of our decremental algorithm
matches the best known results in the static settings (up to polylogarithmic factors) whenever
ms = nδ, for a constant δ ∈ (1, 2.37).

In the dynamic setting, our algorithm improves upon algorithms obtained by using hopsets
of Henzinger, Krinninger and Nanongkai [21], or emulators of Chechik [12], both of which
give a total update time of O(sm · 2Õ(logγ n)), 0 < γ < 1 (for a constant γ). In particular,
by maintaining a hopset with polylogarithmic hopbound in Õ(sm) time, we can maintain
approximate SSSP from each source in Õ(m) time. In contrast, in [12, 21] with hopset of
hopbound 2Õ(logγ n) is maintained, which if one simply applies existing techniques, results
in a total update time of m2Õ(logγ n). In the general case, i.e., for very sparse graphs, the
update bound of our algorithm is sm2Õ(

√
log n), which is similar but slightly better than the

bound obtained by [21], and slightly improves over dependence on ϵ over [12].

Improved bounds for (1 + ϵ)-SSSP. Finally, in order to better demonstrate how our
techniques compare to previous work, we show that we can obtain a slightly improved bound
for decremental single-source shortest paths.

▶ Theorem 4. Given an undirected and weighted graph G = (V, E), there is data structure
for maintaining (1 + ϵ)-approximate distances from a source s0 ∈ V under edge deletions,
where 0 < ϵ < 1 is a constant and |E| = n · 2Ω̃(

√
log n). The total expected update time of the

data structure is m · 2Õ(
√

log n). There is an additional factor of O(1
ϵ)

√
log n

log log n in the running
time for non-constant ϵ.

The amortized update time of our algorithm over all m deletions is 2Õ(
√

log n). This
improves upon the state-of-the art algorithm of [21], whose amortized update time is
2Õ(log3/4 n). We note that the techniques of [12] can also be used to obtain (1 + ϵ)-SSSP in
amortized update time Õ(1/ϵ)

√
log n. This is close to our update time, but we get a better

bound with respect to the dependence on ϵ.

Recent developments on decremental shortest paths. Recently and after a preprint of
this paper was published, a decremental deterministic (1 + ϵ)-SSSP also with amortized
update time of no(1) was proposed by [8]. Several other recent results have also focused
on deterministic dynamic shortest path algorithms or algorithms that work against an
adaptive adversary (e.g. [6–8, 20]) most of which also use hopsets or related objects such
as emulators. Our work leaves an open problem on whether hopsets with small hopbound
can also be maintained and utilized deterministically7. This could have applications in

7 One possible direction is considering derandomization of Throup-Zwick based clustering in static
settings [34] combined with our techniques.

ICALP 2022

86:6 Near-Optimal Decremental Hopsets with Applications

deterministic approximate all-pairs shortest paths, which could in turn have implications in
using decremental shortest path algorithms for obtaining faster algorithms in classic/static
settings (e.g. see [26]).

Hopsets vs. emulators. A majority of the previous work on dynamic distance computation
are based on sparse emulators (e.g. [5, 9, 12]). For a graph G = (V, E), an emulator
H ′ = (V, E′) is a graph such that for any pair of nodes x, y ∈ V , there is a path in H ′ that
approximates the distance between x and y on G (possibly with both multiplicative and
additive factors). While there are some similarities in algorithms for constructing these
objects, their analysis is different. More importantly, their maintenance and utilization for
dynamic shortest paths have significant differences. An emulator approximates distances
without using the original graph edges and hence we can restrict the computation to a sparser
graph, whereas for using hopsets we also need the edges in the original graph. On the other
hand, hopsets allow one to only consider paths with few hops.

1.2 Preliminaries and Notation
Given a weighted undirected graph G = (V, E, w), and a pair u, v ∈ V we denote the
(weighted) shortest path distance by dG(u, v). We denote by d

(h)
G (u, v) the length of the

shortest path between u and v among the paths that use at most h-hops, and call this the
h-hop limited distance between u and v.

In this paper, we are interested in designing decremental algorithms for distance problems
in weighted graphs. In the decremental setting, the updates are only edge deletions or weight
increases. This is as opposed to an incremental setting in which edges can be inserted, or a fully
dynamic setting, in which we have both insertions and deletions. Specifically, given a weighted
graph G = (V, E, w), we want to support the following operations: Delete((u, v)), where
(u, v) ∈ E, which removes the edge (u, v), Distance(s, u), which returns an (approximate)
distance between a source s and any u ∈ V , and Increase((u, v), δ), which increases the
weight of the edge (u, v) by δ > 0. While our results also allow handling weight increases, in
stating our theorems for simplicity we use the term total update time to refer to a sequence
of up to m deletions.

▶ Definition 5. Let G = (V, E, w) be a weighted undirected graph. Fix d, ϵ > 0 and an integer
β ≥ 1. A (d, β, 1 + ϵ)-hopset is a graph H = (V, E(H), wH) such that for each u, v ∈ V ,
where dG(u, v) ≤ d, we have dG(u, v) ≤ d

(β)
G∪H(u, v) ≤ (1 + ϵ)dG(u, v). We say that β is the

hopbound of the hopset and 1 + ϵ is the stretch of the hopset. We also use (β, 1 + ϵ)-hopset
to denote a (∞, β, 1 + ϵ)-hopset.

We sometimes call a (d, β, 1 + ϵ)-hopset a d-restricted hopset, when the other parameters
are clear. We also sometimes consider hopset edges added for a specific distance range
(2j , 2j+1], which we call a hopset for a single distance scale.

In analyzing dynamic algorithms we sometimes also use a time subscript t to denote a
distance (or a weight) after the first t updates. In particular we use dt,G(u, v) to denote
the distance between u and v after t updates, and similarly use d

(h)
t,G(u, v) to denote h-hop

limited distance between u and v at time t.

2 Overview of Our Algorithms

The starting point of our algorithm is a known static hopset construction [18, 23]. We
first review this construction. As we shall see, maintaining this data structure dynamically
directly would require update time of up to O(mn). Our first technical contribution is another

J. Łącki and Y. Nazari 86:7

hopset construction that captures some of the properties of the hopsets of [18,23], but can
be maintained efficiently in a decremental setting. We then explain how by hierarchically
maintaining a sequence of data structures we can obtain a near-optimal time and stretch
tradeoff.

2.1 Static Hopset of [16]
In this section we outline the (static) hopset construction of Elkin and Neiman [18]8 (which
is similar to [23]). We will later give a new (static) hopset algorithm that utilizes some of the
properties of this construction but with modifications that allows us to maintain a similar
hopset dynamically.

▶ Definition 6 (Bunches and clusters). Let G = (V, E, w) be a weighted, n-vertex graph, k

be an integer such that 1 ≤ k ≤ log log n and ρ > 0. We define sets V = A0 ⊇ A1 ⊇ ... ⊇
Ak+1/ρ+1 = ∅. Let ν = 1

2k−1 . Each set Ai+1 is obtained by sampling each element from Ai

with probability qi = max(n−2i·ν , n−ρ).
Fix 0 ≤ i ≤ k + 1/ρ + 1 and for every vertex u ∈ Ai \ Ai+1, let p(u) ∈ Ai+1 be the node

of Ai+1, which is closest to u, and let d(u, Ai+1) := d(u, p(u)) (assume d(u, ∅) = ∞). We
call p(u) the pivot of u. We define a bunch of u to be a set B(u) := {v ∈ Ai : d(u, v) <

d(u, Ai+1)}. Also, we define a set C(v), called the cluster of v ∈ Ai \ Ai+1, defined as
C(v) = {u ∈ V : d(u, v) < d(u, Ai+1)}.

Note that if v ∈ B(u) then u ∈ C(v), but the converse does not necessarily hold. The way
we define the bunches and clusters here follows [18], but differs slightly from the definitions
in [31,34], where each vertex has a separate bunch and cluster defined for each level i (and
stores the union of these for all levels).

The clusters are connected in a sense that if a node u ∈ C(v) then any node z on the
shortest path between v and u is also in C(v). This property is important for bounding the
running time (as also noted in [31,34]):

▷ Claim 7. Let u ∈ C(v), and let z ∈ V be on a shortest path between v and u. Then
z ∈ C(v).

Proof. Let v ∈ Ai. If z ̸∈ C(v) then by definition d(z, Ai+1) ≤ d(v, z). On the other
hand, since z is on the shortest path between u and v: d(u, Ai+1) ≤ d(z, u) + d(z, Ai+1) ≤
d(u, z) + d(z, v) = d(u, v), which contradicts the fact that u ∈ C(v). ◁

The hopset is then obtained by adding an edge (u, v) for each u ∈ Ai \ Ai+1 and
v ∈ B(u) ∪ {p(u)}, and setting the weight of this edge to be d(u, v). These distances can be
computed by maintaining the clusters.

▶ Lemma 8 ([18, 23]). Let G = (V, E, w) be a weighted, n-vertex graph, k be an integer
such that 1 ≤ k ≤ log log n and 0 < ρ, 0 < ϵ < 1. Assume the sets Ai and bunches are
defined as in Definition 6. Define a graph H = (V, EH , wH), such that for each u ∈ Ai \ Ai+1
and v ∈ B(u) ∪ {p(u)}, we have an edge (u, w) ∈ EH with weight dG(u, v). Then H is a
(β, 1 + ϵ)-hopset of size O(n1+ 1

2k−1), where β = (O(k+1/ρ
ϵ)k+1/ρ+1.

8 In [18] two algorithms with different sampling probabilities are given, where one removes a factor of k
in the size. This factor does not impact our overall running time, so we will use the simpler version.

ICALP 2022

86:8 Near-Optimal Decremental Hopsets with Applications

For reference we sketch a proof of the hopset properties in the full version. Our main
result is based on a new construction consisted of a hierarchy of hopsets. Our dynamic hopset
requires a new stretch analysis as estimates on the shortest paths are obtained from different
data structures, but the size analysis is basically the same.

While we are generally interested in a hopset that is not much denser than the input,
as we will see the running time (both in static and dynamic settings) is mainly determined
by the number of clusters a node belongs to, rather than the size of the hopset. Moreover,
unlike an emulator, for computing the distances using a hopset, we also need to consider the
edges in G, and a small hopbound is the key to efficiency rather than the sparsity.

The hopset of [18] has some structural similarities to the emulators of [35]. One main
difference is that the sampling probabilities are adjusted (lower-bounded by n−ρ) to allow
for efficient construction of these hopsets in various models, at the cost of slightly weaker
size/hopbound tradeoffs. This adjustment is also crucial for our efficient decremental
algorithms. Inspired by the construction described, in Section 2.2 we describe a new static
hopset algorithm, and later in Section 2.3 we adapt it to decremental settings.

2.2 New static hopset based on path doubling and scaling
As a warm-up, before moving to our new dynamic hopset construction, we provide a simple
static hopset and explain why we expect to maintain such a structure more efficiently than
the structure in Section 2.1 in dynamic settings. Our main contribution is to maintain a
dynamic hopset efficiently using ideas in the simple algorithm described in this section.

At a high level, computing one of the main components of the hopset of Lemma 8 involves
multiple single-source shortest paths computations. Maintaining single-source shortest paths
is easy in the decremental setting, if we limit ourselves to paths of low length (or allow
approximation). Namely, assuming integer edge weights, one can maintain single source
shortest paths up to length d under edge deletions in total O(md) time.

If we simply modified the construction of the hopset of Lemma 8, and computed shortest
paths up to length d instead of shortest paths of unbounded length, we would obtain a
d-restricted hopset. We describe this idea in more detail in Section 3, where we show
that an adaptation of the techniques by [31] allows us to maintain a d-restricted hopset in
deceremental settings, in total time O(dmnρ), for a parameter 0 < ρ < 1

2 . However, for
large d such a running time is prohibitive. In order to address this challenge, in this section
we describe a static hopset, which can be computed using shortest path explorations up to
only a polylogarithmic depth, yet can be used to approximate arbitrarily large distances. In
the next sections we leverage this property to maintain a similar hopset in the decremental
setting efficiently. This will require overcoming other obstacles, notably the fact that the
dynamic shortest path problems that we need to solve are not decremental.

Path doubling. Assume that we are given a procedure Hopset(G, β, d, ϵ) that constructs a
(d, β, 1 + ϵ) hopset. In Section 3, we provide such an algorithm that uses only shortest path
computation up to polylogarithmic depth. We argue that by applying the Hopset(G, β, d, ϵ)
procedure repeatedly we can compute a full hopset, and in this process by utilizing the
previously added hopset edges we can restrict our attention to short-hop paths only.

More formally, we construct a sequence of graphs H0, . . . , Hlog W , such that Hj is a hopset
that handles pairs of nodes with distance in range [2j−1, 2j), for 0 ≤ j ≤ log W . This implies
that

⋃j
r=0 Hr is a (2j , β, (1+ ϵ)j)-hopset of G. Note that for 0 ≤ j ≤ log β we can set Hj = ∅,

since G covers these scales. We would like to use G ∪j−1
r=0 Hr to construct Hj based on the

following observation that has been previously used in other (static) models (e.g. parallel
hopsets of Cohen [13]).

J. Łącki and Y. Nazari 86:9

Consider u, v, dG(u, v) ∈ [2j−1, 2j), and let π be the shortest path between u and v in
G. Then π can be divided into three segments π1, π2 and π3, where π1 and π3 have length
at most 2j−1 and π2 consists of a single edge. But we know there is a path in G ∪j−1

r=0 Hr

with at most β-hops that approximates each of π1 and π2. Hence for constructing Hj we
can compute approximate shortest paths by restricting our attention to paths of consisting
of at most 2β + 1 hops in G ∪j−1

r=0 Hr.
This idea, which we call path doubling, has been previously used in hopset constructions in

distributed/parallel models (e.g. [13,17,18]), but to the best of our knowledge this is the first
use of this approach in a dynamic setting. Applying this idea in parallel/distributed settings is
relatively straight-forward, since having bounded hop paths already leads to efficient parallel
shortest path explorations (e.g. by using Bellman-Ford). However, utilizing it efficiently in
dynamic settings is more involved for several reasons: we have to simultaneously maintain the
clusters (including their connectivity property), apply a scaling idea on the whole structure,
and handle insertions in our hopset algorithm and its analysis.

But first we describe a scaling idea that at a high-level allows to go from h-hop-bounded
explorations to h-depth bounded explorations on a scaled graph.

Scaling. We review a scaling algorithm that allows us to utilize the path doubling idea.
Similar scaling techniques are used in dynamic settings [5, 9, 21] for single-source shortest
paths, but as we will see, using the scaling idea in our setting is more involved since it has to
be carefully combined with other components of our construction.

This idea can summarized in the following scaling scheme due to Klein and Sub-
ramanian [24], which, roughly speaking, says that finding shortest paths of length ∈ [2j−1, 2j)
and at most ℓ hops, can be (approximately) reduced to finding paths of length at most O(ℓ)
in a graph with in integral weights. This is done by a rounding procedure that adds a small
additive term of roughly ϵ0w(e)

ℓ to each edge e. Then for a path of ℓ hops the overall stretch
will be (1 + ϵ0).

▶ Lemma 9 ([24]). Let G = (V, E, w) be a weighted undirected graph. Let R ≥ 0 and ℓ ≥ 1 be
integers and ϵ0 > 0. We define the scaled graph to be a graph Scale(G, R, ϵ0, ℓ) := (V, E, ŵ),
such that ŵ(e) = ⌈ w(e)

η(R,ϵ0) ⌉, where η(R, ϵ0) = ϵ0R
ℓ . Then for any path π in G such that π has

at most ℓ hops and weight R ≤ w(π) ≤ 2R we have,
ŵ(π) ≤ ⌈2ℓ/ϵ0⌉,
w(π) ≤ η(R, ϵ0) · ŵ(π) ≤ (1 + ϵ0)w(π).

Similar scaling ideas have been used in the h-SSSP algorithm for maintaining approximate
shortest paths [5]. The algorithm maintains a collection of trees and to return a distance
estimate, it finds the tree that best approximates a given distance. But we note that in
utilizing the scaling techniques in our final dynamic hopset construction we cannot simply
maintain a disjoint set of bounded hop shortest path trees. We need to maintain the whole
structure of the hopset on the scaled graphs together: firstly, based on definition of bunches
in Lemma 8, nodes keep on leaving and joining clusters, so we cannot simply maintain a set
of shortest trees from a fixed set of roots. We need to maintain the connectivity of clusters as
described in Section 2.1 at the same time as maintaining the shortest path trees. Additionally,
while we are maintaining distances over the set of clusters we also need to handle insertions
introduced by smaller scales.

To maintain these efficiently, we need to apply the scaling to the whole structure, including
the hopset edges added so far. But when we utilize the smaller scale hopset edges (for applying
path doubling) insertions or distance decreases are introduced. As we will see, handling
insertions at the same time the clusters (and the corresponding distances) are updated makes
the stretch/hopbound analysis more involved.

ICALP 2022

86:10 Near-Optimal Decremental Hopsets with Applications

Next we combine the scaling with the path doubling techniques. The path doubling
property states that we can restrict our attention to (2β + 1)-hop limited shortest path
computation, and the scaling idea ensures that such (2β+1)-hop bounded paths in G∪

⋃j−1
r=0 Hr

correspond to paths bounded in depth by d = ⌈ 2ℓ
ϵ0

⌉ = O(β
ϵ0

) in the scaled graph Gscaled =
Scale(G ∪

⋃j−1
r=0 Hr, 2j , ϵ0, 2β + 1). Informally, this mean it is enough to construct shortest

path trees up to depth ℓ on the scaled graphs in our hopset construction.
We can now summarize our new static hopset construction in Algorithm 1. Simil-

arly to Scale, for a graph G = (V, E, w) we define Unscale(G, R, ϵ, ℓ) to be a graph
(V, E, w′), where for each e ∈ E, w′(e) = η(R, ϵ) · w(e). In static settings, the procedure
Hopset(G, β, d, ϵ) for constructing a d-restricted hopset can be performed by running a
(β, 1 + ϵ)-hopset construction algorithm in which the shortest path explorations are restricted
to depth ℓ. In Section 3 we describe a decremental algorithm for this procedure, and describe
how it leads to a (d, β, 1 + ϵ)-restricted hopset. Note that we can set β = poly log n, and so
the shortest path explorations can be bounded by a polylogairthmic value.

Algorithm 1 Simple static hopset.

1 for j = 1 to ⌈log W ⌉ do
2 Gscaled := Scale(G ∪

⋃j−1
r=0 Hr, 2j , ϵ0, 2β + 1)

3 Ĥ := Hopset(Gscaled, β, ⌈ 2(2β+1)
ϵ0

⌉, ϵ)
4 Hj := Unscale(Ĥ, 2j , ϵ0, 2β + 1))
5 H := H ∪ Hj

It is not hard to see that in such a static construction, three different approximation
factors are combined in each scale: a (1 + ϵ)-stretch due to the Hopset procedure, a (1 + ϵ1)-
factor from the restricted hopset, and a (1 + ϵ0)-factor due to scaling. This is summarized in
the following lemma.

▶ Lemma 10. Let G be a graph and H be a (d, β, 1 + ϵ1) hopset of G. Let Gscaled =
Scale(G ∪ H, d, ϵ0, 2β + 1) and let H ′ = Unscale(Hopset(Gscaled, d, ⌈ 2(2β+1)

ϵ0
⌉, ϵ2)). Then

H ∪ H ′ is a (2d, β, (1 + ϵ)(1 + ϵ1)(1 + ϵ0)) hopset of G.

Obtaining such a guarantee in dynamic settings is going to be more involved, since we
also need to handle insertions, and at the same time ensure that the update time remains
small. Moreover the stretch analysis will require combining estimates obtained by different
procedures.

2.3 Near-Optimal Decremental Hopsets

In this section we describe how we can overcome the challenges of the dynamic settings in
order to maintain a decremental hopset in near-optimal update-time.

The first step of our algorithm is constructing a d-restricted version of the hopset
described in Section 2.1. As discussed, for this we can use the techniques by [31] to maintain
a (d, β, 1 + ϵ)-hopset in Õ(dmnρ) total update time, where 0 < ρ < 1

2 . Now in order to
remove the time dependence on d, we use the path doubling and scaling ideas described as
follows: we maintain this data structure on a sequence of scaled graphs simultaneously, and
argue that this data structure gives us a hopset on G after unscaling the edge weights.

J. Łącki and Y. Nazari 86:11

Sequence of restricted hopsets. Similiar to Section 3.1, our decremtnal algorithm maintains
the sequence of graphs H0, . . . , Hlog W , where for each 0 ≤ j ≤ log W ,

⋃j
r=0 Hr is a (2j , β, (1+

ϵ)j)-hopset of G. For each scale we show the following:

▶ Lemma 11. Consider a graph G = (V, E, w) subject to edge deletions, and parameters 0 <

ϵ < 1, ρ < 1
2 . Assume that we have maintained H̄j := H1, ..., Hj, which is a (2j , β, (1 + ϵ)j)-

hopset of G. Then given the sequence of changes to G and H̄j, we can maintain a graph
Hj+1, such that H̄j ∪ Hj+1 is a (2j+1, β, (1 + ϵ)j+1)-hopset of G. This restricted hopset can
be maintained in Õ((m + ∆)nρ · β

ϵ) total time, where m is the initial size of G, and ∆ is the
number of edges inserted to H̄j over all updates, β = (1

ϵ·ρ)O(1/ρ).

Note that the lemma does not hold for any restricted hopset, and in dynamic settings we
need to use special properties of our construction to prove this.

To prove this lemma we use the techniques of [31] to maintain the clusters. For obtaining
near-optimal update time, we combine this algorithm with the path doubling and scaling
ideas described earlier. However, in order to utilize these ideas, we need to deal with the fact
that inserting hopset edges from smaller scales introduces insertions.

Handling insertions. In addition to maintaining clusters and distances decrementally, in our
final construction we need to handle edge insertions. This is because we run it on a graph
G ∪

⋃j−1
r=0 Hr (after applying scaling of Lemma 9). While edges of G can only be deleted, new

edges are added to the H that we need to take into account for obtaining faster algorithms.
At a high-level, the algorithm of Roditty and Zwick [31] decrementally maintains a

collection of single-source shortest path trees (up to a bounded depth) using the Even-
Shiloach algorithm (ES-tree) [33] at the same time as maintaining a clustering. To handle
edge insertions, we modify the algorithm to use the monotone ES-tree idea proposed by [21,22].

The goal of a monotone ES-tree is to support edge insertions in a limited way. Namely,
whenever an edge (u, v) is inserted and the insertion of the edge causes a distance decrease
in the tree, we do not update the currently maintained distance estimates. Still the inserted
edge may impact the distance estimates in later stages by preventing some estimates from
increasing after further deletions.

While it is easy to see that this change keeps the running time roughly the same as in
the decremental setting, analyzing the correctness is a nontrivial challenge. This is because
the existing analyses of a monotone ES-tree work under specific structural assumptions and
do not generalize to any construction. Specifically, while [21] analyzed the stretch incurred
by running monotone ES-trees on a hopset, the proof relied on the properties of the specific
hopset used in their algorithm. Since the hopset we use is quite different, we need a different
analysis, which combines the static hopset analysis, with the ideas used in [21], and also take
into account the stretch incurred due to the fact that the restricted hopsets are maintained on
the scaled graphs. Note also that our main hopset is not a simply a decremental maintenance
of hopsets of [16], as our estimates are obtained from a sequence of hopsets and insertions in
one scale introduce insertions in the next scale. This is why we need a new argument and
cannot simply rely on arguments in [21] and [16].

Putting it together. We now go back to the setting of Lemma 11, and use a procedure
similar to Algorithm 1. Given a 2j-restricted hopset H̄j = H1 ∪ ... ∪ Hj for distances up to
2j , we can now construct a graph Gj by applying the scaling of Lemma 9 to G ∪ H̄j and
setting R = 2j , ℓ = 2β + 1. Then we can efficiently maintain an ℓ-restricted hopset on Gj .
Then by Lemma 11 we can use this to update Hj+1. Importantly, ℓ is independent of R, and

ICALP 2022

86:12 Near-Optimal Decremental Hopsets with Applications

thus we can eliminate the factor R to get Õ(βmnρ) total update time. Our final algorithm
is a hierarchical construction that maintains the restricted hopsets on scaled graphs and the
original graph simultaneously.

Stretch and hopbound analysis. As discussed, applying the path-doubling idea to the
hopset analysis is straightforward in static settings (and can be to some extent separated
from the rest of the analysis) as is the case in [18]. However in our adapted decremental
hopset algorithm this idea needs to be combined with the properties of the monotone ES tree
idea and the fact that distance estimate are obtained from a sequence of hopsets on the scaled
graph. In particular, in our stretch analysis we need to divide paths into smaller segments,
such that the length of some segments is obtained from smaller iterations i, and the length of
some segments are obtained from this combination of monotone ES tree estimates based on
path doubling and scaling. We need a careful analysis to show that the stretch obtained from
these different techniques combine nicely, which is based on a threefold inductive analysis:
1. An induction on i, the iterations of the base hopset, which controls the sampling rate

and the resulting size and hopbound tradeoffs.
2. An induction on the scale j, which allows us to cover all ranges of distances [2j , 2j+1] by

maintaining distances in the appropriate scaled graphs.
3. An induction on time t that allows us to handle insertions by using the estimates from

previous updates in order to keep the distances monotone.
The overall stretch argument needs to deal with several error factors in addition to the
base hopset stretch. First, the error incurred by using hopsets for smaller scales, which we
deal with by maintaining our hopsets by setting ϵ′ = ϵ

log n . This introduces polylogarithmic
factors in the hopbound. The second type of error comes from the fact that the restricted
hopsets are maintained for scaled graphs, which implies the clusters are only approximately
maintained on the original graph. This can also be resolved by further adjusting ϵ′. Finally,
since we use an idea similar to the monotone ES tree of [21,22], we may set the level of nodes
in each tree is to be larger than what it would be in a static hopset. But we argue that the
specific types of insertions in our algorithm will still preserve the stretch. At a high-level
this is because in case of a decrease we use an estimate from time t − 1, which we can show
inductively has the desired stretch. We note that while the monotone ES tree is widely used,
we always need a different construction-specific analysis to prove the correctness.

Technical differences with previous decremental hopsets. We note that while the use of
monotone ES tree and the structure of the clusters in our construction are similar to [21], our
algorithm has several important technical differences. First, our hopset algorithm is based on
different base hopset with a polylogarithmic hopbound, which as noted is crucial for obtaining
near-optimal bounds in most of our applications. Additionally, we use a different approach to
maintain the hopset efficiently by using path doubling and maintaining restricted hopsets on a
sequence of scaled graphs. Among other things, in [21] a notion of approximate ball is used that
is rather more lossy with respect to the hopbound/stretch tradeoffs. By maintaining restricted
hopsets on scaled graphs, we are also effectively preserving approximate clusters/bunches
with respect to the original graph, but as explained earlier, the error accumulation combines
nicely with the path-doubling idea. Moreover, [21] uses an edge sampling idea to bound the
update time, which we can avoid by utilizing the sampling probability adjustments in [18],
and the ideas in [31]. Finally, our algorithm is based on maintaining the clusters up to a low
hop, whereas they directly maintain bunches/balls.

J. Łącki and Y. Nazari 86:13

2.4 Applications in Decremental Shortest Paths

Our algorithms for maintaining approximate distances under edge deletions are as follows.
First, we maintain a (β, 1 + ϵ)-hopset. Then, we use the hopset and Lemma 9 to reduce the
problem to the problem of approximately maintaining short distances from a single source.
For our application in MSSP and APSP the best update time is obtained by setting the
hopbound to be polylgarithmic whereas for SSSP the best choice is β = 2Õ(

√
log n). Using this

idea for SSSP and MSSP mainly involves using the monotone ES tree ideas described earlier.
Maintaining the APSP distance oracle is slightly more involved but uses the same techniques
as in our restricted hopset algorithm. This algorithm is based on maintaining Thorup-Zwick
distance oracle [34] more efficiently. At a high-level, we maintain both a (β, 1 + ϵ)-hopset
and Thorup-Zwick distance oracle simultaneously, and balance out the time required for
these two algorithms. The hopset is used to improve the time required for maintaining the
distance oracle from O(mn) (as shown in [31]) to O(βmn1/k), but with a slightly weaker
stretch of (2k − 1)(1 + ϵ). Querying distances is then the same as in the static algorithm
of [34], and takes O(k) time. In the full version of this paper, we explain how our hopset can
be used for applications in approximate shortest paths and distance sketches.

3 Decremental Hopset

In this section we describe two decremental hopset algorithms with different tradeoffs. The
starting-point of our constructions are the static hopsets described in Section 2.1. But in
order to get an efficient dynamic algorithm, we need to modify this construction in several
ways. First we explain how we can adapt ideas by Roditty-Zwick [31] to obtain an algorithm
for computing a d-restricted hopset. The total running time of this algorithm is O(dmnρ)
(where ρ < 1 is a constant). While existentially this construction matches the state-of-the-art
static hopsets with respect to size and hopbound tradeoffs, the update time is undesirable
for large values of d, and thus in Section 3.1 we explain how we can remove this dependence
from the running time at the cost of a slightly worst hopbound guarantee.

Maintaining a restricted hopset. We start by adapting the decremental algorithm by [31]
that maintains the Thorup-Zwick distance oracles [34] with stretch (2k − 1) for pairs of nodes
within distance d in Õ(dmn1/k) total time, but we use it to obtain a d-restricted hopset. In
particular, using ideas in [31], and by restricting the shortest path trees up to depth d, we
can maintain a variant of the hopset defined in Lemma 8 in which the hopset guarantee
only holds for nodes within distance d. In the full version, we describe how we adapt the
algorithm of [31] to our settings to prove the following theorem.

▶ Theorem 12. Fix ϵ > 0, k ≥ 2 and ρ ≤ 1. Given a graph G = (V, E, w) with integer
and polynomial weights, subject to edge deletions we can maintain a (d, β, 1 + ϵ)-hopset,
with β = O

(
(1

ϵ · (k + 1/ρ))k+1/ρ+1)
in O(d(m + n

1+ 1
2k−1)nρ) total time. The size/hopbound

guarantee holds with high probability against an oblivious adversary.

This algorithm has a large update time for d-restricted hopsets, when d is large. Next we
show how we can eliminate this update time dependence on d, which is the main technical
component of this work.

ICALP 2022

86:14 Near-Optimal Decremental Hopsets with Applications

3.1 Decremental hopsets with improved update time
Next we provide a new hopset algorithm that is based on maintaining these restricted hopsets
on a sequence of scaled graphs, and show how this improves the update time, in exchange
for a small (polylogarithmic) loss in the hopbound.

Recall that our algorithm maintains a sequence of graphs H0, . . . , Hlog W , where for each
1 ≤ j ≤ log W , H0 ∪ . . . ∪ Hj is a 2j-restricted hopset of G. Instead of computing each Hj

separately, we use G ∪
⋃j−1

r=0 Hr to construct Hj . The first technical challenge is making the
running time independent of the distance bound 2j , which is what we would get by directly
using the algorithm of [31]. We observe that at the cost of some small approximation errors,
any path of length ∈ [2j−1, 2j) in G can be approximated by a path of at most 2β + 1 hops in
G ∪

⋃j−1
r=0 Hr. This relies on having the 2j-restricted hopset H̄j , which allows us to maintain

the hopset H̄j+1.
Second, while G is undergoing deletions, Hj may be undergoing edge insertions incurred

by restricted hopset edges added for smaller scales, which we discuss next. All the missing
details in this section can be found in the full-version of this paper.

Handling edge insertions. We handle edge insertions by combining of the monotone ES-tree
algorithm [21] (and further used in the hopset construction of [22]). We summarize this
idea and the relevant properties in the full version. As stated earlier, the algorithm itself
is a simple extension of the Even-Schiloach tree. At a high-level we maintain an ES tree
for each cluster and when an insertion causes the level of a node in an ES tree to decrease,
we ignore the insertion and keep the same level. The more challenging aspect of using the
monotone ES tree idea is proving the correctness (stretch), as this does not extend to all
types of insertions but only for insertion with certain inductive structural properties. That
is why even though this idea is widely used, we always need a construction-specific proof of
correctness. In Theorem 14 we prove that specifically for the insertions in our final hopset
algorithm the use of monotone ES tree does not violate our stretch argument.

Path doubling and scaling. We first state the path doubling idea more formally for a
static hopset in the following lemma. However for utilizing this idea dynamically we need to
combine it with other structural properties of our hopsets and the two algorithms described
above.

▶ Lemma 13. Given a graph G = (V, E), 0 < ϵ1 < 1, the set of (β, 1 + ϵ1)-hopsets
Hr, 0 ≤ r < j for each distance scale (2r, 2r+1], provides a (1 + ϵ1)-approximate distance for
any pair x, y ∈ V , where d(x, y) ≤ 2j+1 using paths with at most 2β + 1 hops.

This implies that it is enough to compute (2β + 1)-hop limited distances in restricted
hopsets for each scale. For using this idea in dynamic settings we have to deal with some
technicalities. We should show that we can combine the rounding with the modification
needed for handling insertions.

A hierarchy of restricted hopsets. We define a scaled graph using Lemma 9 as follows:
Gj := Scale(G ∪

⋃j
r=0 Hr, 2j , ϵ2, 2β + 1). Here we set R = 2j , ℓ = 2β + 1, and ϵ2 is a

parameter that we tune later. We first describe the operations performed on this scaled
graph. We then explain how we can put things together for all scales to get the desired
guarantees. The key insight for scaling G ∪

⋃j
r=0 Hr, 2j is that we can obtain Hj+1 by

computing an O(ℓ)-restricted hopset of Gj (using the algorithm of Lemma 11) and scaling
back the weights of the hopset edges.

J. Łącki and Y. Nazari 86:15

In addition to the graph G undergoing deletions, our decremental algorithm maintains
the following data structures for each 1 ≤ j ≤ log W :

The set H̄j =
⋃j

r=0 Hr, union of all hopset edges for distance scales up to [2j , 2j+1].
The scaled graphs G1, ..., Gj .
Data structure obtained by constructing an O(β/ϵ2)-restricted hopset on Gj using
Theorem 12 for the appropriate parameter ϵ2 < 1. We denote this data structure by Dj .

We update the data structures described as follows: we maintain d-restricted hopsets
for d = ⌈ 2(2β+1)

ϵ2
⌉ starting on j = 0, ..., log W in increasing order of j to compute hopset

edges Hj . After processing all the changes in scaled graph Gj , we add the inserted edges
to Gj+1. Then we process the changes in Gj+1 by computing a d-restricted hopset again
and repeat until all distance scales of covered. As described, when the distances increase a
node may join a new cluster which will lead to a set of insertions in H and in turn insertions
in a sequence of graphs Gj . Note that we need to update both the restricted hopsets on
the scaled graphs (denoted by Dj) and the hopset Hj for G obtained by scaling back the
distances using Lemma 9. A pseudocode of this algorithm and its running time analysis can
be found in the full version.

Hopset stretch and hopbound. We next show the stretch and hopbound of the hopset
algorithm described for a single-scale by combining properties of the monotone ES-tree
algorithm with the static hopset argument and the rounding framework.

▶ Theorem 14. Given a graph G = (V, E), and 0 ≤ ϵ2 < 1, assume that we have maintained
a (2j , β, (1 + ϵj))-restricted hopset H̄j, and let Hj+1 be the hopset obtained by running the
above algorithm on G ∪ H̄j. Fix 0 < δ ≤ 1

8(k+1/ρ+1) , and consider a pair x, y ∈ V where
dt,G(x, y) ∈ [2j , 2j+1]. Then for 0 ≤ i ≤ k + 1/ρ + 1, either of the following conditions holds:
1. d

((3/δ)i)
G∪H̄j+1

(x, y) ≤ (1 + 8δi)(1 + ϵj)(1 + ϵ2)dt,G(x, y) or,
2. There exists z ∈ Ai+1 such that,

d
((3/δ)i)
G∪H̄j+1

(x, z) ≤ 2(1 + ϵj)(1 + ϵ2)dt,G(x, y).

Moreover, by maintaining a monotone ES tree on Gj+1 up to depth ⌈ 2(2β+1)
ϵ2

⌉, and applying
the rounding in Lemma 9, we can maintain (1 + ϵj+1)-approximate single-source distances
up to distance 2j+2 from a fixed source s on G, where 1 + ϵj+1 = (1 + ϵj)(1 + ϵ2)2(1 + ϵ) and
β = (3/δ)k+1/ρ+1.

Proof. The stretch argument is based on a threefold induction on i, j-th scale, and time t.
By fixing i, j, t, and a source node s, we show that there is a (1 + ϵj)-stretch path between s

and any other node with β hops (or if we are using previous scale 2β + 1-hops) such that
each segment of this path has the desired stretch based on the inductive claim on one of
these three factors. At a high level induction on i and j follows from static properties of our
hopset. To show that bounded depth monotone ES tree maintains the approximate distances,
we note that any segment of the path undergoing an insertion consistent of a single shortcut
and the weight on such an edge is a distance estimate between its endpoints.

It is easy to see that we never underestimate distances. Roughly speaking, we either
obtain an estimate from rounding estimates obtained from smaller scales, which is an upper
bound on the original estimate, or we ignore a distance decrease.

We use a double induction on i and time t, and also rely on distance computed up to
scaled graph Gj . First, using these distance estimates for smaller scales, we argue that when
we add an edge to H̄j+1 it has the desired stretch. Let Lt,j(u, v) denote the level of node v

ICALP 2022

86:16 Near-Optimal Decremental Hopsets with Applications

in the tree rooted at u after running the monotone ES tree up to depth D = ⌈ 2(2β+1)
ϵ ⌉ on

graph Gj . This proof is based on a cyclic argument: assuming we have correctly maintained
distances up to a given scale using our hopset, we show how we can compute the distances
for the next scale. In particular, we first assume that based on the theorem conditions we are
given H̄j and have maintained all the clusters and the corresponding distances in G1, ..., Gj

with stretch 1 + ϵj . This lets us analyze Hj+1. Then to complete the argument, we show
how given the hopsets of scale [2j , 2j+1], we can compute approximate SSSP distances for
the next scale based on the monotone ES tree on Gj+1.

First, in the following claim, we observe that the edge weights inserted in the latest scale
have the desired stretch by using our inductive assumption that all the shortest path trees
on each cluster on G1, ..., Gj are approximately maintained. We use such distance to add
edges in each cluster to construct Hj+1, and we observe the following about the weights on
these edges:

▶ Observation 15. Let v ∈ B(u) such that dt,G(u, v) ≤ 2j+1. Consider an edge (u, v)
added to Hj+1 after running the algorithm on G1, ..., Gj for D = ⌈ 2(2β+1)

ϵ2
⌉ rooted at node v.

Let wj+1(u, v) := minj
r=1 η(2r, ϵ2)Lr(u, v), that is the unscaled edge weight. Then we have

dt,G(u, v) ≤ wj+1(u, v) ≤ (1 + ϵj)(1 + ϵ2)dt,G(u, v).

This claim implies that the weights of hopset edges assigned by the algorithm correspond
to approximate distance of their endpoints. Let dt,j(x, y) := minj

r=1 η(2r, ϵ2)Lt,j(x, y) which
would be the estimate we obtain by for distance between x and y after scaling back distances
on Gj . In other words this is the hop-bounded distance after running monotone ES tree on
Gj and scaling up the weights.

For any time t and the base case of i = 0, we have three cases. If y ∈ B(x) then edge
(x, y) is in the hopset Hj+1, and by Observation 15 the weight assigned to this edge is
at most (1 + ϵj)(1 + ϵ2)dt,G(x, y). In this case the first condition of the theorem holds.
Otherwise if x ∈ A1, then z = x trivially satisfies the second condition. Otherwise we have
x ∈ A0/A1, and by setting z = p(x) we know that there is an edge (x, z) ∈ H̄j such that
dt,j(x, z) ≤ (1 + ϵ2)dG∪H̄j

(x, y) (by definition of p(x) and using the same argument as above).
Hence the second condition holds.

By inductive hypothesis assume the claim holds for i. Consider the shortest path π(x, y)
between x and y. We divide this path into 1/δ segments of length at most δdt,G(x, y) and
denote the a-th segment by [ua, va], where ua is the node closest to x (first node of distance
at least aδdt,G(x, y)) and va is the node furthest to x on this segment (of distance at most
(a + 1)δdt,G(x, y)).

We then use the induction hypothesis on each segment. First consider the case where for
all the segments the first condition holds for i, then there is a path of (3/δ)i(1/δ) ≤ (3/δ)i+1

hops consisted of the hopbounded path on each segment. We can show that this path satisfies
the first condition for i + 1. In other words,

d
((3/δ)i+1)
t,G∪H̄j+1

(x, y) ≤
1/δ∑
a=1

d
((3/δ)i)
t,G∪H̄j+1

(ua, va)+d
(1)
t,G(va, ua+1) ≤ (1+8δi)(1+ϵj)(1+ϵ2)dt,G(x, y)

Next, assume that there are at least two segments for which the first condition does not
hold for i. Otherwise, if there is only one such segment a similar but simpler argument can
be used. Let [ul, vl] be the first such segment (i.e. the segment closest to x, where ul is the
first and vl is the last node on the segment), and let [ur, vr] be the last such segment.

J. Łącki and Y. Nazari 86:17

First by inductive hypothesis and since we are in the case that the second condition holds
for segments [ul, zl] and [ur, vr], we have,

d
((3/δ)i)
t,G∪H̄j+1

(ul, zl) ≤ 2(1 + ϵ2)(1 + ϵj)dt,G(ul, vl), and,

d
((3/δ)i)
t,G∪H̄j+1

(vr, zr) ≤ 2(1 + ϵ2)(1 + ϵj)dt,G(ur, vr)

Again, we consider two cases. First, in case zr ∈ B(zl) (or zl ∈ C(zr)), we have added
a single hopset edge (zr, zl) ∈ H̄j+1. Note that dt,G(zr, zl) ≤ 2j+1, since dt,G(zr, zl) ≤
dt,G(x, y) ≤ 2j+1. Hence by Observation 15 the weight we assign to (zr, zl) is at most
(1 + ϵ2)(1 + ϵj)dt,G(zr, zl).

On the other hand, by triangle inequality, and the above inequalities (which are based on
the induction hypothesis) we get,

d
(1)
H̄j+1

(zl, zr) ≤ (1 + ϵ2)(1 + ϵj)dG(zl, zr) (1)

≤ (1 + ϵ2)(1 + ϵj)[d((3/δ)i)
G∪H̄j+1

(ul, zl) + dG(ul, vr) + d
((3/δ)i)
G∪H̄j+1

(zr, vr)] (2)

By applying the inductive hypothesis on segments before [ul, vl], and after [ur, vr], we
have a path with at most (3/δ)i for each of these segments, satisfying the first condition for
the endpoints of the segment. Also, we have a 2(3/δ)i +1-hop path going through ul, zl, zr, vr

that satisfies the first condition for ul, vr.
Putting all of these together, we argue that there is a path of hopbound (3/δ)i+1 satisfying

the first condition. In particular, we have (the subscript t is dropped in the following),

d
(3/δ)(i+1)
G∪H̄j+1

(x, y) ≤
l−1∑
a=1

[d((3/δ)i)
G∪H̄j+1

(ua, va) + d
(1)
G (va, ua+1)] + d

((3/δ)i)
G∪H̄j+1

(ul, zl) (3)

+ d
(1)
H̄j+1

(zl, zr) + d
((3/δ)i)
G∪H̄j+1

(zr, vr) + d
(1)
G (vr, ur+1) (4)

+
1/δ∑

a=r+1
[d((3/δ)i)

G∪H̄j+1
(ua, va) + d

(1)
G (va, ua+1)] (5)

≤ (1 + 8δi)(1 + ϵj)(1 + ϵ2)[dG(x, ul) + dG(vr, y)] + dG(ul, vr) (6)
+ (1 + ϵ2)(1 + ϵj)[2dG(ul, zl) + 2dG(zr, vr)] (7)
≤ (1 + ϵ2)(1 + ϵj)[8δdG(x, y) + (1 + 8δi)dG(x, y)] (8)
≤ (1 + 8δ(i + 1))(1 + ϵ2)(1 + ϵj)dG(x, y) (9)

In the first inequality we used the induction on i for each segment, and triangle inequality.
In the second inequality we are using the fact that nodes uj , vj for all j are on the shortest
path between x and y in G, and we are replacing d

(1)
H̄j+1

(zl, zr) with inequality 2. In line 8 we
used the fact that the length of each segment is at most δ · dG(x, y). Hence we have shown
that the first condition in the lemma statement holds.

Finally, consider the case where zr ̸∈ B(zl). If zl ̸∈ Ai+2, we consider z = p(zl), where
zl ∈ Ai+2. We now claim that this choice of z satisfies the second lemma condition.

We have added the edge (zl, z) to the hopset. Since zr ̸∈ B(zl), we have dt−1,G(zl, p(zl)) ≤
dt−1,G(zl, zr) ≤ dt,G(x, y) ≤ 2j+1. Therefore we can use Observation 15 on the edge (zl, p(zl)).

ICALP 2022

86:18 Near-Optimal Decremental Hopsets with Applications

d
(3/δ)(i+1)
G∪H̄j+1

(x, y) ≤
l−1∑
a=1

[d((3/δ)i)
G∪H̄j+1

(ua, va) + d
(1)
G (va, ua+1)] (10)

+ d
((3/δ)i)
G∪H̄j+1

(ul, zl) + (1 + ϵ2)(1 + ϵj)d(1)
H̄j+1

(zl, z) (11)

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)dG(x, ul) + d
((3/δ)i)
G∪H̄j+1

(ul, zl) (12)

+ (1 + ϵ2)(1 + ϵj)dH̄j+1
(zl, zr) (13)

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)dG(x, ul) + d
((3/δ)i)
G∪H̄j+1

(ul, zl) (14)

+ (1 + ϵ2)(1 + ϵj)[2d
((3/δ)i)
G∪H̄j+1

(zl, ul) + dG(ul, vr) + d
(3/δ)i

G∪H̄j+1
(vr, zr)] (15)

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)d((3/δ)i)
G∪H̄j+1

(x, vr) + 6δ(1 + ϵj)dG(x, y) (16)

≤ 2(1 + ϵ2)(1 + ϵj)dG(x, y) (17)

In the last inequality we used the fact that we set δ < 1
8(k+1/ρ+1) and thus 8δi < 1. The

only remaining case is when zℓ ∈ Ai+2, in which case a similar reasoning follows by setting
z = zl.

Next, we need to prove that after adding hopset edges Hj+1 we can maintain approximate
single-source shortest path distances from a given source s to conclude the proof of this
theorem. For this we need to use scaling again, and by Lemma 9 an additional (1 + ϵ2)-factor
will be added to the stretch. This enables us to show that Observation 15 can be used for
the next scale, i.e. that we can set the weights for the next scale by maintaining the clusters
and (1 + ϵj+1) approximate distance rooted at a source s when we have d(s, v) ∈ [2j+1, 2j+2],
and hence close the inductive cycle in the argument. This argument uses a similar type of
case-by-case analysis as the above argument combined with path-doubling. We omit this
argument here due to space limitations. The complete proof can be found in the full version
of this paper. ◀

Theorem 14 allows us to hierarchically use the restricted hopsets for smaller scales to
compute the distance for larger scales, that is in turn used to update the hopset edges in
the larger scales. Finally, for getting the final stretch and hopbound we set the parameters
ϵ′ = ϵ

6 log W , ϵ2 = ϵ′ (error incurred by rounding), and δ = ϵ
8(k+1/ρ+1) (details can be found

in the full version). Putting it all together we get the following theorem:

▶ Theorem 16. The total update time in each scaled graph Gj, 1 ≤ j ≤ log W , over all
deletions is Õ((β/ϵ′)(n1+ 1

2k−1 + m)nρ), and hence the total update time for maintaining
(β, 1 + ϵ)-hopset with hopbound β = O(log W

ϵ · (k + 1/ρ))k+1/ρ+1 is Õ(β
ϵ · mnρ · log W).

4 Applications in Decremental Approximate Shortest Path

In the full version of this paper, we use our hopsets to maintain approximate shortest paths
and distance sketches. At a high level, we maintain a (β, 1 + ϵ)-hopset using the appropriate
parameter settings in Theorem 16. The applications in (1 + ϵ)-SSSP and (1 + ϵ)-MSSP are
straightforward extensions of Theorem 14.

In our approximate APSP data structure we simultaneously maintain a (β, 1 + ϵ)-hopset
for by setting β to be polylogarithmic and a Thorup-Zwick distance oracle [34]. Our algorithm
for maintaining distance oracles of [34] is similar to the restricted hopset algorithm, combined

J. Łącki and Y. Nazari 86:19

with the rounding procedure in Lemma 9 that allows us to maintain clusters up to O(β/ϵ)
hops. One main difference between these algorithms is in the information/distances stored
and the fact that the sampling probabilities stay fixed in case of distance oracles. In order to
maintain (2k − 1)(1 + ϵ)-approximate APSP, we set the parameters ρ and k in such a way
that updating the hopset and the distance oracle are roughly the same. By maintaining the
distance oracle, querying distances is the same as in the static algorithm of [34], and takes
O(k) time, which is constant when k is constant.

References
1 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear

additive spanners. SIAM Journal on Computing, 47(6):2203–2236, 2018.
2 Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest

paths via low hop emulators. In Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, pages 322–335, 2020.

3 Ruben Becker, Sebastian Forster, Andreas Karrenbauer, and Christoph Lenzen. Near-optimal
approximate shortest paths and transshipment in distributed and streaming models. SIAM
Journal on Computing, 50(3):815–856, 2021.

4 Uri Ben-Levy and Merav Parter. New (α, β) spanners and hopsets. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1695–1714. SIAM,
2020.

5 Aaron Bernstein. Fully dynamic (2+ ε) approximate all-pairs shortest paths with fast query
and close to linear update time. In 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, pages 693–702. IEEE, 2009.

6 Aaron Bernstein. Deterministic partially dynamic single source shortest paths in weighted
graphs. In 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, page 44. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing,
2017.

7 Aaron Bernstein and Shiri Chechik. Deterministic partially dynamic single source shortest
paths for sparse graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 453–469. SIAM, 2017.

8 Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental sssp and approximate min-cost flow in almost-linear time. In 62 Annual IEEE
Symposium on Foundatios of Computer Science (FOCS 2022), 2021.

9 Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining approximate
shortest paths under deletions. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 1355–1365. SIAM, 2011.

10 Keren Censor-Hillel, Michal Dory, Janne H Korhonen, and Dean Leitersdorf. Fast approximate
shortest paths in the congested clique. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, pages 74–83, 2019.

11 Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 654–663, 2014.

12 Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 170–181. IEEE,
2018.

13 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. Journal of the ACM (JACM), 2000.

14 Michael Dinitz and Yasamin Nazari. Massively parallel approximate distance sketches. OPODIS,
2019.

15 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths and pram distance
oracles in weighted graphs. arXiv preprint, 2019. arXiv:1907.11422.

ICALP 2022

http://arxiv.org/abs/1907.11422

86:20 Near-Optimal Decremental Hopsets with Applications

16 Michael Elkin and Ofer Neiman. Near-optimal distributed routing with low memory. In
Proceedings of the ACM Symposium on Principles of Distributed Computing. ACM, 2018.

17 Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to
approximate shortest paths. SIAM Journal on Computing, 2019.

18 Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and constant-
hopbound hopsets in rnc. In The 31st ACM Symposium on Parallelism in Algorithms and
Architectures, pages 333–341, 2019.

19 Michael Elkin and Ofer Neiman. Near-additive spanners and near-exact hopsets, a unified
view. arXiv preprint, 2020. arXiv:2001.07477.

20 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Deterministic algorithms for
decremental approximate shortest paths: Faster and simpler. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2522–2541. SIAM, 2020.

21 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear total update time. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 146–155. IEEE, 2014.

22 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate
all-pairs shortest paths: Breaking the o(mn) barrier and derandomization. SIAM Journal on
Computing, 45(3):947–1006, 2016.

23 Shang-En Huang and Seth Pettie. Thorup–zwick emulators are universally optimal hopsets.
Information Processing Letters, 142:9–13, 2019.

24 Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for single-source
shortest paths. Journal of Algorithms, 1997.

25 Jason Li. Faster parallel algorithm for approximate shortest path. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pages 308–321, 2020.

26 Aleksander Madry. Faster approximation schemes for fractional multicommodity flow problems
via dynamic graph algorithms. In Proceedings of the forty-second ACM symposium on Theory
of computing, pages 121–130, 2010.

27 Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. Journal of
the European Mathematical Society, 9(2):253–275, 2007.

28 Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Proceedings of the Symposium on Parallelism in Algorithms and
Architectures. ACM, 2015.

29 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In
Proceedings of the ACM Symposium on Theory of computing. ACM, 2014.

30 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In International Colloquium on Automata, Languages, and
Programming, pages 261–272. Springer, 2005.

31 Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected
graphs. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 499–508.
IEEE, 2004.

32 Atish Das Sarma, Michael Dinitz, and Gopal Pandurangan. Efficient distributed computation
of distance sketches in networks. Distributed Computing, 28(5):309–320, 2015.

33 Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. Journal of the ACM
(JACM), 28(1):1–4, 1981.

34 Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005.

35 Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance errors. In
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
802–809, 2006.

36 Christian Wulff-Nilsen. Approximate distance oracles with improved preprocessing time. In
Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages
202–208. SIAM, 2012.

http://arxiv.org/abs/2001.07477

	1 Introduction
	1.1 Applications of Our Decremental Hopsets
	1.2 Preliminaries and Notation

	2 Overview of Our Algorithms
	2.1 Static Hopset of [16]
	2.2 New static hopset based on path doubling and scaling
	2.3 Near-Optimal Decremental Hopsets
	2.4 Applications in Decremental Shortest Paths

	3 Decremental Hopset
	3.1 Decremental hopsets with improved update time

	4 Applications in Decremental Approximate Shortest Path

