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Abstract
Deciding whether a diagram of a knot can be untangled with a given number of moves (as a part of
the input) is known to be NP-complete. In this paper we determine the parameterized complexity
of this problem with respect to a natural parameter called defect. Roughly speaking, it measures
the efficiency of the moves used in the shortest untangling sequence of Reidemeister moves.

We show that the II− moves in a shortest untangling sequence can be essentially performed
greedily. Using that, we show that this problem belongs to W[P] when parameterized by the defect.
We also show that this problem is W[P]-hard by a reduction from Minimum axiom set.
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1 Introduction

A classical and extensively studied question in algorithmic knot theory is to determine
whether a given diagram of a knot is actually a diagram of an unknot. This question is
known as the unknot recognition problem. The first algorithm for this problem was given by
Haken [12]. Currently, it is known that the unknot recognition problem belongs to NP ∩ co-
NP but no polynomial time algorithm is known. See [13] for the NP-membership and [19]
for co-NP-membership (co-NP-membership modulo Generalized Riemann Hypothesis was
previously established in [16]). In addition, a quasi-polynomial time algorithm for unknot
recognition has been recently announced by Lackenby [20].

One possible path for attacking the unknot recognition problem is via Reidemeister moves
(see Figure 2): if D is a diagram of an unknot, then D can be untangled to a diagram U with
no crossing by a finite number of Reidemeister moves. In addition, Lackenby [17] provided a
polynomial bound (in the number of crossings of D) on the required number of Reidemeister
moves. This is an alternative way to show that the unknot recognition problem belongs to
NP, because it is sufficient to guess the required Reidemeister moves for unknotting.
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Figure 1 An example of a diagram.

However, if we slightly change our viewpoint, de Mesmay, Rieck, Sedgwick, and Tancer [23]
showed that it is NP-hard to count the number of required Reidemeister moves exactly.
(An anologous result for links has been shown to be NP-hard slightly earlier by Koenig
and Tsvietkova [15].) More precisely, it is shown in [23] that given a digram D and a
parameter k as input, it is NP-hard to decide whether D can be untangled using at most k

Reidemeiser moves. For more background on unknotting and unlinking problems, we also
refer to Lackenby’s survey [18].

The main aim of this paper is to extend the line of research started in [23] by determining
the parameterized complexity of untangling knots via Reidemeister moves. On the one
hand, it is easy to see that if we consider parameterization by the number of moves, then
the problem is in FPT (class of fixed parameter tractable problems). This happens due to
a somewhat trivial reason: if a diagram D can be untangled with at most k moves, then
D contains at most 2k crossings, thus we can assume that the size of D is (polynomially)
bounded by k. In notions of parameterized complexity, this gives a kernel of size bounded by
k which immediately gives the FPT membership. In the full version, we provide a bit more
details; see Observation 1 in the full version.

On the other hand, we also consider parameterization with an arguably much more
natural parameter called the defect (used in [23]). This parameterization is also relevant
from the point of view of above guarantee parameterization introduced by Mahajan and
Raman [21]. Here we show that the problem is W[P]-complete with respect to the defect.
This is the core of the paper.

In order to state our main result more precisely, we need a few preliminaries on diagrams
and Reidemeister moves. For purposes of this part of the introduction, we also assume that
the reader is at least briefly familiar with complexity classes FPT and W[P]. Otherwise we
refer to the end of the introduction, where we briefly overview these classes.

Diagrams and Reidemeister moves. A diagram of a knot is a piecewise linear map
D : S1 → R2 in general position; for such a map, every point in R2 has at most two
preimages, and there are finitely many points in R2 with exactly two preimages (called
crossings). Locally at a crossing two arcs cross each other transversely, and the diagram
contains the information of which arc passes “over” and which “under”. This we usually
depict by interrupting the arc that passes under. Diagrams are always considered up-to
isotopy. The unique diagram without crossings is denoted U (untangled). See Figure 1 for
an example of a diagram.

Let D be a diagram of a knot. Reidemeister moves are local modifications of the diagram
depicted in Figure 2. We distinguish Reidemeister moves of types I, II, and III as depicted in
the figure. In addition, for types I and II, we distinguish whether the moves remove crossings
(types I− and II−) or whether they introduce new crossings (types I+ and II+).

A diagram D is a diagram of an unknot if it can be transformed to the untangled diagram
U by a finite sequence of Reidemeister moves. (This is well known to be equivalent to stating
that the lift of the diagram to R3, keeping the underpasses/overpasses, is ambient isotopic to
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Figure 2 Reidemeister moves.

the unknot, that is standardly embedded S1 in R3.) The diagram on Figure 1 is a diagram
of an unknot. Diagrams may be encoded purely combinatorially as 4-regular plane graphs
(with some additional combinatorial information) and the size of this encoding is comparable
to the number of crossings. Similarly, the Reidemeister moves can be encoded by purely
combinatorial data. For more details we refer to Sections 2 and 3 of the full version.

Parameterization via defect. As we discussed earlier, parameterization in the number of
Reidemeister moves has the obvious disadvantage that once we fix k, the problem becomes
trivial for arbitrarily large inputs (they are obviously a NO instance). We also see that if we
have a diagram D with n crossings and want to minimize the number of Reidemeister moves
to untangle D, presumably the most efficient way is to remove two crossings in each step,
thus requiring at least n/2 steps. This motivates the following definition of the notion of
defect.

Given a diagram D, by an untangling of D we mean a sequence D = (D0, . . . , Dℓ) such
that D = D0; Di+1 is obtained from Di by a Reidemeister move; and Dℓ = U is the diagram
with no crossings. Then we define the defect of an untangling D as above as

def(D) := 2ℓ − n

where n is the number of crossings in D. Note that ℓ is just the number of Reidemeister
moves in the untangling. It is easy to see that def(D) ≥ 0 and def(D) = 0 if and only if
all moves in the untangling are II− moves. Therefore, def(D) in some sense measures the
number of “extra” moves in the untangling beyond the trivial bound. (Perhaps, a more
accurate expression for this interpretation would be ℓ − n/2 = 1

2 def(D) but this is a minor
detail and it is more convenient to work with integers.) In addition, it is possible to get
diagrams with arbitrarily large number of crossings but with defect bounded by a constant
(even for defect 0 this is possible). The defect also plays a key role in the reduction in [23]
which suggests that the hardness of the untangling really depends on the defect.

As we have seen above, asking the question whether a diagram can be untangled with
defect at most k is same as asking if it can be untangled in k/2 moves above the trivial,
but tight lower bound of n/2. This fits perfectly in the framework of above guarantee
parameterization, which was introduced by Mahajan and Raman [21] for Max-Sat and
Max-Cut problems. In this framework, when there is a trivial lower bound for the solution
in terms of the size of the input, parameterizing by solution size trivially gives an FPT
algorithm by either giving a trivial answer if the input is large, or bounding size of the
input by a function of the solution size. Hence, for those problems, it makes more sense to
parameterize above a tight lower bound. The paradigm of above guarantee parameterization
has been very successful in the field of parameterized complexity and many results have been
obtained [1, 4, 5, 9, 10, 11, 22].

For these reasons, we find the defect to be a more natural parameter than the number of
Reidemeister moves. Therefore, we consider the following problem.

ICALP 2022
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▶ Problem (Unknotting via defect).
Input A diagram D of a knot.
Parameter k.
Question Can D be untangled with defect at most k?

▶ Theorem 1. The problem Unknotting via defect is W[P]-complete.

The proof of Theorem 1 consists of two main steps: W[P]-membership and W[P]-hardness.
Both of them are non-trivial.

For W[P]-membership, roughly speaking, the idea is to guess a small enough set of
special crossings on which we perform all possible Reidemeister moves, while we remove other
crossings in a greedy fashion. In order to succeed with such an approach we will need some
powerful and flexible enough lemmas on changing the ordering of Reidemeister moves in some
untangling by swapping them. In Section 2 we provide an algorithm for W[P]-membership
but we only sketch why it works correctly. For more details, we refer to Sections 4 and 5 of
the full version.

For W[P]-hardness, we combine some techniques that were quite recently used in showing
parameterized hardness of problems in computational topology [2, 3], along with the tools
in [23] for lower bounding the defect. Namely, we use a reduction from the Minimum axiom
set problem, which proved to be useful in [2, 3]. Roughly speaking, from an instance I of
the Minimum axiom set problem, we need to build a diagram which has a small defect if
and only if I admits a small set of axioms. For the “if” part, we use properties of Brunnian
rings to achieve our goal. For the “only if” part, we need to lower bound the defect of our
construction. We use the tools from [23] to show that the defect (of some subinstances) is at
least 1. Then we use the very simple but powerful boosting lemma (Lemma 9) that shows
that the defect is actually high. We describe the reduction in Section 4 and we sketch in a
bit more detail why it may work. We refer to the Section 6 of the full version for a proof of
correctness.

We conclude this part of introduction by proving a lemma on the properties of the defect
which we will use soon after. Given a Reidemeister move m, let us define the weight of this
move w(m) via the following table:

Type of the move II− I− III I+ II+

w(m) 0 1 2 3 4

▶ Lemma 2 (Lemma 3 in full version). Let D be an untangling of a diagram D. Then def(D)
equals to the sum of the weights of the Reidemeister moves in D.

The lemma is proved in the full version by a simple induction.

A brief overview of the parameterized complexity classes. Here we briefly overview the
notions from parameterized complexity needed for this paper. For further background, we
refer the reader to monographs [6, 7, 8]. A parameterized problem is a language L ⊆ Σ∗ × N,
where Σ∗ is the set of strings over a finite alphabet Σ and the input strings are of the form
(x, k). Here the integer k is called the parameter. In the rest of the paper, given an input
for a parameterized problem, n denotes the size of the input and k denotes the value of the
parameter on this input.

A parameterized problem belongs to the class FPT (fixed parameter tractable) if it can
be solved by a deterministic Turing machine in time f(k) · nc where c > 0 is some constant
and f(k) is some computable function of k. In other words, if we fix k, then the problem
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can be solved in polynomial time while the degree of the polynomial does not depend on
k. This is, of course, sometimes not achievable and there is a wider class XP of problems,
that can be solved in time O(nf(k)) by a deterministic Turing machine. The problems in
XP are still polynomial time solvable for fixed k, however, at the cost that the degree of the
polynomial depends on k.

Somewhere in between FPT and XP there is an interesting class W[P]. A parameterized
problem belongs to the class W[P] if it can be solved by a nondeterministic Turing machine in
time h(k) · nc provided that this machine makes only O(f(k) log n) non-deterministic choices
where f(k), h(k) are computable functions and c > 0 is some constant. Given an algorithm
for some computational problem Π, we say that this algorithm is a W[P]-algorithm if it is
represented by a Turing machine satisfying the conditions above.

Given two parameterized problems Π and Π′, we say that Π reduces to Π′ via an
FPT-reduction if there exist computable functions f : Σ∗ × N → Σ∗ and g : Σ∗ × N → N
such that (i) (x, k) ∈ Π if and only if (f(x, k), g(x, k)) ∈ Π′ for every (x, k) ∈ Σ∗ × N; (ii)
g(x, k) ≤ g′(k) for some computable function g′; and (iii) there exists computable function
h and a fixed constant c > 0 such that for all input string, f(x, k) can be computed by a
deterministic Turing-machine in O(h(k)nc) steps. Our definition of reduction is consistent
with [8, Definition 2.1] or [6, Definition 13.1], though some authors, e.g., [7, Definition 20.2.1]
require g(x, k) = g′(k) in (ii).

The classes FPT, W[P] and XP are closed under FPT-reductions. A problem Π is said
to be C-hard where C is a parameterized complexity class, if all problems in C can be
FPT-reduced to Π. Moreover, if Π ∈ C, we say that Π is C-complete.

2 An algorithm for W[P]-membership

In this section we provide the algorithm used to prove W[P]-membership in Theorem 1.

Brute force algorithm. First, let us however look at a brute force algorithm for Unknotting
via defect which does not give W[P]-membership. Spelling it out will be useful for explaining
the next steps. We will exhibit this algorithm as a non-deterministic algorithm, which will
be useful for comparison later on. In the algorithm, D is a diagram, and k is an integer,
not necessarily positive. Also, given a diagram D and a feasible Reidemeister move m, then
D(m) denotes the diagram obtained from D after performing m.

BruteForce(D, k):
1. If k < 0, then output No. If D = U is a diagram without crossings and k ≥ 0, then output

Yes. In all other cases continue to the next step.
2. (Non-deterministic step.) Enumerate all possible Reidemeister moves m1, . . . , mt in D up

to isotopy. Make a “guess” which move mi is the first to perform. Then, for such mi, run
BruteForce(D(mi), k − w(mi)).

Therefore, altogether, the algorithm outputs Yes, if there is a sequence of guesses in step
2 which eventually yields Yes in step 1.

It can be easily shown that the algorithm terminates because whenever step 2 is performed,
either k − w(mi) < k, or mi is a II− move, k − w(mi) = k, but D(mi) has fewer crossings
than D.

It can be also easily shown by induction that this algorithm provides a correct answer
due to Lemma 2. Indeed, step 1 clearly provides a correct answer, and regarding step 2,
if D(mi) can be untangled with defect at most k − w(mi), then Lemma 2 shows that D
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can be untangled with defect at most k. Because, this way we try all possible sequences of
Reidemeister moves, the algorithm outputs Yes if and only if D can be untangled with defect
at most k.

On the other hand, this algorithm (unsurprisingly) does not provide W[P]-membership
as there are at least n/2 Reidemeister moves, which is unbounded in k. Thus not all moves
can be guessed non-deterministically.

Naive greedy algorithm. In order to fix the problem with the previous algorithm, we want
to reduce the number of non-deteministic steps. It turns out that the problematic non-
deterministic steps in the previous algorithm are those where k does not decrease. (Because
the other steps appear at most k times.) Therefore, we want to avoid non-deterministic steps
where we perform a II− move. The naive way is to perform such steps greedily and hope
that if D untangles with defect at most k, there is also such a “greedy” untangling (and
therefore, we do not have to search through all possible sequences of Reidemeister moves).
This is close to be true but it does not really work in this naive way. Anyway, we spell this
naive algorithm explicitly, so that we can easily upgrade it in the next step, though it does
not always provide the correct answer to Unknotting via defect.

NaiveGreedy(D, k):
1. If k < 0, then output No. If D = U is a diagram without crossings and k ≥ 0, then output

Yes. In all other cases continue to the next step.
2. If there is a feasible Reidemeister II− move m, run NaiveGreedy(D(m), k) otherwise

continue to the next step.
3. (Non-deterministic step.) If there is no feasible Reidemeister II− move, enumerate all

possible Reidemeister moves m1, . . . , mt in D up to isotopy. Make a “guess” which mi is
the first move to perform and run NaiveGreedy(D(mi), k − w(mi)).

The algorithm must terminate for the same reason why BruteForce terminates. It can
be shown that this is a W[P]-algorithm. However, we do not do this here in detail as this is
not our final algorithm. The key is that the step 3 is performed at most (k + 1)-times.

If the algorithm outputs Yes, then this is a correct answer from the same reason as
in the case of BruteForce. However, as we hinted earlier, outputting No need not be a
correct answer to Unknotting via defect. Indeed, there are known examples of diagrams
of an unknot when untangling requires performing a II+ move, see for example [14]. With
NaiveGreedy, we would presumably undo such II+ move immediately in the next step, thus
we would not find any untangling using the II+ move. We have to upgrade the algorithm a
little bit to avoid this problem (and a few other similar problems).

Special greedy algorithm. The way to fix the problem above will be to guess in advance
a certain subset S of so-called special crossings. This set will be updated in each non-
deterministic step described above so that the newly introduced crossings will become special
as well. Then, in the greedy steps we will allow to perform only those II− moves which avoid
S. (This also means that a II+ move cannot be undone by a II− move avoiding S in the
next step.) It will turn out that we may also need to perform II− moves on S but there will
not be too many of them, thus such moves can be considered in the non-deterministic steps.

For the description of the algorithm, we introduce the following notation. Let D be a
diagram of a knot and S be a subset of the crossings of D; we will refer to crossings in S

as special crossings. Then we say that a feasible Reidemeister II− move m is greedy (with
respect to S), if it avoids S; that is, the crossings removed by m do not belong to S. On the
other hand, a feasible Reidemeister move m is special (with respect to S) if it is



C. Legrand-Duchesne, A. Rai, and M. Tancer 88:7

a I− or a II− move removing only crossings in S; or
a III move such that all three crossings affected by m are special; or
a I+ or a II+ move performed on the edges with all their endpoints in S.

Given a move m in D, special or greedy with respect to S, by S(m) we denote the
following set of crossings in D(m).

If m is a greedy II− move or if m is a III move, then S(m) = S (under the convention
that the three crossings affected by m persist in D(m)).
If m is a special II− move or a I− move, then S(m) is obtained from S by removing the
crossings removed by m.
If m is a I+ or a II+ move, then S(m) is obtained from S by adding the crossings
introduced by m.

Now, we can describe the algorithm.

SpecialGreedy(D, k):
0. (Non-deterministic step.) Guess a set S of at most 3k crossings in D. Then run Special

Greedy(D, S, k).

SpecialGreedy(D, S, k):
1. If k < 0, then output No. If D = U is a diagram without crossings and k ≥ 0, then output

Yes. In all other cases continue to the next step.
2. If there is a feasible greedy Reidemeister II− move m with respect to S, run Special

Greedy(D(m), S(m), k) otherwise continue to the next step.
3. (Non-deterministic step.) If there is no feasible greedy Reidemeister II− move with respect

to S, enumerate all possible special Reidemeister moves m1, . . . , mt in D with respect to S

up to isotopy. If there is no such move, that is, if t = 0, then output No. Otherwise, make
a guess which mi is performed first and run SpecialGreedy(D(mi), S(mi), k − w(mi)).

The bulk of the proof of W[P]-membership in Theorem 1 will be to show that the
algorithm SpecialGreedy(D, k) provides a correct answer to Unknotting via defect. Of
course, if the algorithm outpus Yes, then this is the correct answer by similar arguments for
the previous two algorithms. Indeed, Yes answer corresponds to a sequence of Reidemeister
moves performed in step 2 or guessed in step 3 (no matter how we guessed S in step 0 and
the role of S in the intermediate steps of the run of the algorithm is not important if we
arrived at Yes). The defect of the untangling given by this sequence of moves is at most k

by Lemma 2. On the other hand, we also need to show that if D untanlges with defect at
most k, then we can guess some such untangling while running the algorithm. This is based
on the following two auxiliary results.

For stating the results, we inductively define the notation D(m1, . . . , mk−1, mk) :=
D(m1, . . . , mk−1)(mk) provided that mk is a feasible Reidemeister move in D(m1, . . . , mk−1).
We also say that a sequence (m1, . . . , mk) is a feasible sequence of Reidemeister moves for
D if mi is a feasible Redemeister move in D(m1, . . . , mi−1) for every i ∈ [k]. Similarly,
we inductively define S(m1, . . . , mk−1, mk) := S(m1, . . . , mk−1)(mk), provided that the
move mk is special or greedy in D(m1, . . . , mk−1) with respect to S(m1, . . . , mk−1). Then
(m1, . . . , mk) is a feasible sequence of Reidemeister moves for the pair (D, S) if S(m1, . . . , mk)
is well defined this way; that is, each move mi in the sequence is special or greedy (with
respect to the intermediate set S(m1, . . . , mi−1) of special crossings).

▶ Lemma 3 (Lemma 8 in full version). Let D be a diagram of a knot and let (m1, . . . , mℓ) be
a feasible sequence of Reidemeister moves in D. Then there is a set of crossings S in D such
that (m1, . . . , mℓ) is feasible for (D, S).

In addition, if this sequence induces an untangling with defect at most k, then |S| ≤ 3k.

ICALP 2022
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▶ Theorem 4 (Theorem 9 in full version). Let D be a diagram of a knot and S be a set of
crossings in D. Let (m1, . . . , mℓ) be a feasible sequence of Reidemeister moves for (D, S),
inducing an untangling of D with defect k. Assume that there is a greedy move m̃ in D with
respect to S. Then there is a feasible sequence of Reidemeister moves for (D, S) starting with
m̃ and inducing an untangling of D with defect k.

Roughly speaking, the idea of the proof of Lemma 3 is to add into S all crossings that
will eventually become affected by some of the moves m1, . . . , mℓ which are not II− moves.
These moves must be special. However, if we have a II− move removing a crossing that we
have already added to S, then this move also has to be special and we add the other crossing
to S as well. This does not propagate further, and we can bound the number of special II−

moves which also provides a bound on S. Details are given in the full version. Proof of
Theorem 4 requires more work and we sketch it in Section 3.

Correctness of the algorithm. Here we explain that the algorithm SpecialGreedy(D, k)
provides the answer Yes whenever there is an untangling with defect at most k modulo
Lemma 3 and Theorem 4. We also need to know that this is a W[P]-algorithm (mainly) by
bounding the number of non-deterministic steps. This part is relatively straightforward and
we refer to Section 4 of full version for details.

Given an input (D, k) such that D admits an untangling with defect k, by Lemma 3,
there is a set of crossings S in D of size at most 3k such that there is a sequence M of
Reidemeister moves feasible for (D, S) inducing an untangling of D with defect at most k.
Thus it is sufficient to show that SpecialGreedy(D, S, k) outputs Yes if such a sequence for
a given S exists. (In fact this is if and only if but we only need the if case.) We will show
this by a double induction on k and cr(D), where cr(D) is the number of crossings in D.
The outer induction is on k, the inner one is on cr(D). It would be sufficient to start our
induction with the pair (k, cr(D)) = (0, 0); however, whenever cr(D) = 0, then the algorithm
outputs Yes in step 1. Thus we may assume that cr(D) > 0.

If (D, S) admits any greedy move, then we are in step 2. For every greedy move m there is
a sequence of Reidemeister moves starting with m feasible for (D, S) inducing an untangling
of D with defect at most k by Theorem 4. This move has weight 0. Thus by Lemma 2 there is
a sequence of Reidemeister moves feasible for (D(m), S(m)) inducing an untangling of D(m)
with defect at most k. In addition cr(D(m)) < cr(D), thus SpecialGreedy(D(m), S(m), k)
outputs Yes by induction.

If (D, S) does not admit any greedy move, then we are in step 3. We in particular
know that the first move in the sequence M must be special. We guess this move as
we are in a non-deterministic step and denote it mi (in consistence with the notation in
step 3). Now, if we remove mi from M, this is a feasible sequence for (D(mi), S(mi))
inducing an untangling of D(mi) with defect at most k − w(mi) by Lemma 2. Thus Special
Greedy(D(mi), S(mi), k − w(mi)) outputs Yes by induction, as we need.

3 Sketch for a proof of Theorem 4

Here we sketch a proof of Theorem 4. In general, the Reidemeister moves are not commutative:
if (m, m′) is a feasible sequence of Reidemeister moves in a diagram D, we cannot even
expect that m′ is feasible in D. A fortiori we cannot expect that (m′, m) is feasible in D

and that the resulting diagram would be the same when applying (m, m′). For the proof
of Theorem 4, we need commutativity of the greedy moves under certain circumstances.
In particular, we need to be able to swap the greedy moves with the neighbors so that we
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can shift them both forward and backward through the sequence. Hint that this might be
sometimes possible is the following: if m and m′ can be performed inside disjoint balls, then
they commute. In this section, we only state the lemmas on rearranging Reidemeister moves.
The proofs of these lemmas (and their corollaries) are in the full version. Then we deduce
Theorem 4 from the lemmas up to minor details explained in the full version.

First, we extend our earlier notation: Let D be a diagram of a knot, S be a set of crossings
and (m1, . . . , mk) be a sequence of Reidemeister moves feasible for a pair (D, S). Then by
(D, S)(m1, . . . , mk) we denote the pair (D′, S′) obtained by applying moves (m1, . . . , mk) to
(D, S). In our earlier notation, this means that D′ = D(m1, . . . , mk) and S′ = S(m1, . . . , mk).
We also denote a II− move removing crossings x and y by {x, y}II− .

The first lemma allows to perform a greedy move m earlier in a sequence (m′, m).

▶ Lemma 5 (Lemma 10 in full version). Let D be a diagram of a knot and S be a set of
crossings in D. Let m = {x, y}II− be a II− move in D, greedy with respect to S. Let m′ be a
feasible move for the pair (D, S) which avoids {x, y}. Then there is a move m̂′ feasible in
D(m) of same type as m′ and the following conditions hold:

(i) m is greedy in D(m′) with respect to S(m′), in particular m is feasible in (D, S)(m′)
(ii) m̂′ is feasible in (D, S)(m); and
(iii) (D, S)(m, m̂′) = (D, S)(m′, m).

Lemma 5 is proved by a careful local analysis depending on the type of m′. By a suitable
induction, Lemma 5 implies the following corollary for longer sequences of moves.

▶ Corollary 6 (Corollary 11 in full version). Let D be a diagram, S be a set of crossings in
D, ℓ ≥ 2, and (m1, . . . , mℓ) be a feasible sequence of Reidemeister moves for the pair (D, S).
Assume that mℓ is a II− move which is also feasible and greedy in D with respect to S. Then
there is a sequence of Reidemester moves (mℓ, m̂1, . . . , m̂ℓ−1) feasible for (D, S) such that

(i) (D, S)(m1, . . . , mℓ) = (D, S)(mℓ, m̂1, . . . , m̂ℓ−1); and
(ii) w(mi) = w(m̂i) for i ∈ [ℓ − 1].

We will also need a variant of Corollary 6 which allows to postpone a greedy move. The
following corollary allows us to do that. (this follows from a lemma analogous to Lemma 5
which we skip here).

▶ Corollary 7 (Corollary 13 in full version). Let D be a diagram, S be a set of crossings
in D, ℓ ≥ 2 and (m1, . . . , mℓ) be a feasible sequence of moves for (D, S). Assume that
m1 = {x1, y1}II− and mℓ = {xℓ, yℓ}II− are II− moves where x1, y1, xℓ, yℓ ̸∈ S (in particular
m1 is greedy in D with respect to S). Finally, assume also that {x1, xℓ}II− is a feasible
Reidemeister move for (D, S) (again, it must be greedy). Then, there is a feasible sequence
(m̂2, m̂3, . . . , m̂ℓ−1, m1) of moves for (D, S) such that

(i) (D, S)(m1, . . . , mℓ−1) = (D, S)(m̂2, m̂3, . . . , m̂ℓ−1, m1); and
(ii) w(mi) = w(m̂i) for i ∈ {2, . . . , ℓ − 1}.

Last, but not the least, both the corollaries above essentially only allow swapping the
moves. In the corollaries above, mi is essentially the same move as m̂i up to a combinatorial
description (not discussed in this extended abstract) which is a reason why we use a different
notation. Such corollaries cannot be sufficient for a proof of Theorem 4 in the case that m̃

(from the statement of the theorem) is not in the sequence (m1, . . . , mℓ). We also need to be
able to replace some greedy moves with different ones which is the content of the following
lemma.
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▶ Lemma 8 (Lemma 14 in full version). Let D be a diagram of a knot and let m = {x, y}II− ,
m̃ = {x, z}II− be two feasible Reidemeister moves in D where y ̸= z. Assume also that
m′ = {w, z}II− is feasible in D(m) with x, y, z, w mutually distinct. Then

(i) m̃′ = {w, y}II− is feasible in D(m̃); and
(ii) D(m, m′) = D(m̃, m̃′).

Lemma 8 is again proved by local analysis in the full version.

Proof of Theorem 4 (sketch). First, let us assume that m̃ = mj for some j ∈ [ℓ]. If j = 1,
there is nothing to prove, thus we may assume j ≥ 2. Then, by using Corollary 6 on the
sequence (m1, . . . , mj), we get a sequence of moves (mj , m̂1, . . . , m̂j−1) feasible for (D, S).
By item (i) of Corollary 6, the sequence (mj , m̂1, . . . , m̂j−1, mj+1, . . . , mℓ) is also feasible for
(D, S) and induces an untangling of D. By item (ii) of Corollary 6 and Lemma 2, the defect
of this sequence equals k, and that is what we need.

Thus it remains to consider the case where m̃ ≠ mj for every j ∈ [ℓ]. Because m̃ is greedy,
it is a II− move; say m̃ = {x, z}II− . Because the final diagram D(m1, . . . , mℓ) has no crossings,
the crossings x and z have to be removed by some moves in the sequence (m1, . . . , mℓ). Say
that a move mi removes x and mj removes z. Since m̃ is greedy with respect to S, we get
x, z /∈ S. This also implies that x /∈ S(m1, . . . , mi−1) (see the full version for details). Thus
mi has to be greedy move in D(m1, . . . , mi−1) with respect to S(m1, . . . , mi−1). Similarly,
mj is greedy in D(m1, . . . , mj−1) with respect to S(m1, . . . , mj−1). Because we assume that
m̃ is not in the sequence (m1, . . . , mℓ), we get i ≠ j; without loss of generality i < j. Let y

and w be such that mi = {x, y}II− and mj = {w, z}II− . As these moves are greedy, we get
y, w ̸∈ S (we again refer to the full version for more detail).

Let D′ := D(m1, . . . , mi−1) and S′ := S(m1, . . . , mi−1). By Corollary 7, applied
to D′, S′ and the sequence (mi, . . . , mj) feasible for (D′, S′), we get another sequence
(m̂i+1, . . . , m̂j−1, mi) feasible for (D′, S′). (For verifying the assumptions of the corollary
note that m̃ is feasible for (D′, S′) as all the moves m1, . . . , mi−1 are special or greedy,
thus they cannot remove x or z nor affect the arcs connecting them.) Then we get that
(m̂i+1, . . . , m̂j−1, mi, mj , . . . , mℓ) is also feasible for (D′, S′) by item (i) of Corollary 7.

Next, let D′′ := D′(m̂i+1, . . . , m̂j−1) and S′′ := S′(m̂i+1, . . . , m̂j−1). By a similar
argument as above, we get that m̃ is feasible in (D′′, S′′). (Note that the moves mi, mj

removing x and z have not been performed yet in order to get D′′.) By Lemma 8 used
in D′′, we get that m̃′ := {w, y}II− is feasible in (D′′, S′′)(m̃) and (D′′, S′′)(mi, mj) =
(D′′, S′′)(m̃, m̃′). Altogether, by expanding D′′ and D′

(m1, . . . , mi−1, m̂i+1, . . . , m̂j−1, m̃, m̃′, mj+1, . . . , mℓ) (1)

is an untangling of D, feasible for (D, S). We also get that the defect of this untangling is
equal to k by Lemma 2 and item (ii) of Corollary 7, when we used it. Note that all the
moves mi, mj , m̃ and m̃′ are II− moves, thus they do not contribute to the weight.

The sequence (1) is not the desired sequence yet, because it does not start with m̃.
However, it contains m̃, thus we can further modify this sequence to the desired sequence
starting with m̃ as in the first paragraph of this proof. ◀

4 W[P]-hardness

In this section we sketch a proof of W[P]-hardness part of Theorem 1. This is done by an
FPT-reduction from Minimum axiom set defined below.
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4.1 Minimum axiom set
It is well known that the Minimum axiom set problem is W[P]-hard; see [8, Exercise 3.20]
or [7, Lemma 25.1.3] (however, let us recall that our definition of FPT-reduction is consistent
with [8]).

▶ Problem (Minimum axiom set).
Input A finite set S, and

a finite set R which consists of pairs of form (T, t) where T ⊆ S and t ∈ S.
Parameter k.
Question Does there exist a subset S0 ⊆ S of size k such that if we define inductively

Si to be the union of Si−1 and all t ∈ S such that there is T ⊆ Si−1 with
(T, t) ∈ R, then

⋃∞
i=1 Si = S?

The problem above deserves a brief explanation. The elements of S are called sentences
and the elements of R are relations. A relation (T, t) with T = {t1, . . . , tm} should be
understood as an implication

t1 ∧ t2 ∧ · · · ∧ tm ⇒ t.

Given a set S0 ⊆ S, let us define the consequences of S0 as c(S0) :=
⋃∞

i=1 Si where Si is
defined as in the statement of the problem. Intuitively, c(S0) consists of all sentences that
can be deduced from S0 via the relations (implications) in R. As we work with finite sets,
c(S0) = Si for some high enough i. A set A is a set of axioms if c(A) = S. Therefore, the
goal of the minimum axiom set problem is to determine whether there is a set of axioms of
size k. Note that the axiom sets are upward-closed: If A is an axiom set and A ⊆ A′ ⊆ S,
then A′ is an axiom set as well.

The following boosting lemma is very useful in our reduction.

▶ Lemma 9 (Boosting lemma; Lemma 15 in full version). Let (S, R) be an input of the
minimum axiom set problem (ignoring the parameter for now). Let µ : S → Z be a non-
negative function. Given U ⊆ S, let µ(U) =

∑
s∈U µ(s). Assume that µ(U) ≥ 1 for all

U such that S \ U is not an axiom set. (Equivalently, U meets every axiom set.) Then
µ(S) ≥ k∗ where k∗ is the size of a minimum axiom set.

Proof. Let Z := {s ∈ S : µ(s) = 0} be the zero set of µ. Then µ(Z) = 0, thus S \ Z is a set
of axioms by the assumptions. This gives |S \ Z| ≥ k∗ and, in addition, µ(S) = µ(S \ Z) ≥
|S \ Z| ≥ k∗ because µ(s) ≥ 1 for every s ∈ S \ Z. ◀

4.2 Construction of the reduction
Our aim is to show that there is an FPT-reduction from the Minimum axiom set to
Unknotting via defect. It is not hard to see (see the full version) that we can assume that
the input (S, R, k) is preprocessed; i.e., (i) R does not contain relations of the form (∅, t); (ii)
for every s ∈ S there is a relation of a form (T, s) in R; and (iii) t ̸∈ T for every (T, t) ∈ R.

Doubling the instance. Now let (S, R, k) be a preprocessed instance of the Minimum
axiom set. We will need the following doubled instance: Let Ŝ := {ŝ : s ∈ S} be an
auxiliary copy of S. Given T = {t1, . . . , tm} ⊆ S, let T̂ := {t̂1, . . . , t̂m}. Then we define
R̂ := {(T̂ , t̂) : (T, t) ∈ R}. Then (S ∪ Ŝ, R ∪ R̂, 2k) is a double of the instance (S, R, k). The
proof of the following observation is straightforward and it is given in the full version; see
Observation 16 there.
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Figure 3 A Brunnian link.

▶ Observation 10. The pair (S, R) admits an axiom set of size k if and only if its double
(S ∪ Ŝ, R ∪ R̂) admits an axiom set of size 2k.

Brunnians. A Brunnian link is a nontrivial link that becomes trivial whenever one of the
link components is removed. We will use the following well known construction of a Brunnian
link with ℓ ≥ 2 components. We take an untangled unknot and we interlace it with two
“neighboring” unknots as in Figure 3, left. We repeat this ℓ-times and we get a Brunnian
link with ℓ components as in Figure 3, right.

Gadgets. From now on let (S, R, k) be a preprocessed instance of the Minimum axiom set
and (S ∪ Ŝ, R ∪ R̂, 2k) be its double. Our aim is to build a diagram D(S, R) such that
D(S, R) untangles with defect 2k if and only if (S, R) has an axiom set of size k. We will
build D(S, R) using several gadgets. Formally speaking, gadgets will be maps of a form
G : I1 ⊔ · · · ⊔ Ih → R2 where I1 ⊔ · · · ⊔ Ih stands for a disjoint union of intervals [0, 1]. We
will work with them in the same way as with diagrams. In particular, we assume the same
transversality assumptions on crossings as for diagrams and we mark the underpasses and
overpasses. We also extend the notion of arc to this setting: It is a set G(A), where A is a
closed subinterval of one of the intervals in I1 ⊔ · · · ⊔ Ih.

Sentence gadget. For each sentence s ∈ S we define a sentence gadget G(s) as follows.
(We will also create an analogous gadget G(ŝ) for ŝ ∈ Ŝ which we specify after describing
G(s).) We consider all relations R ∈ R of the form (T, s). Let ℓ = ℓ(s) be the number of
such relations and we order these relations as R1(s), . . . , Rℓ(s), or simply as R1, . . . , Rℓ if s

is clear from the context (which is the case now). Note that ℓ ≥ 1 due to preprocessing.
Now we take our Brunnian link with ℓ+1 components, which we denote by C0(s), . . . , Cℓ(s),

in the order along the Brunnians. We disconnect each component of this Brunnian link in an
arc touching the outer face and we double each such disconnected component. See Figure 4,
left. For the further description of the construction, we assume that our construction is
rotated exactly as in the figure. (If ℓ ̸= 2, then we just modify the length of C0(s) and insert
more or fewer components Ci(s) in the same way as C1(s) and C2(s) are inserted for ℓ = 2.)
Now we essentially have a collection of interlacing arcs where each former component of
Brunnians yields a pair of parallel arcs with four loose ends.

We merge each pair of arcs, coming from Ci(s) into a single arc γi(s) as follows; see
Figure 4, right. For the pair coming from Ci(s) for i ̸= 0, we connect the bottom loose ends
by a straight segment up to isotopy. In Figure 4, right, we have isotoped the figure a bit
which will be useful in further steps of the construction, and we call this subarc the head of
γi(s). For the pair coming from C0(s), we first cross the arcs next to the top loose ends as
well as next to the bottom loose ends as in the figure. Then we connect the bottom loose
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γ0(s)

γ1(s)

γ2(s)

former C0(s)

former C1(s)

former C2(s)

intermediate step in the construction G(s)

y(s)

head

head

Figure 4 The sentence gadget with ℓ = 2.

ends. Note that if we remove γ1(s), . . . , γl(s) from the figure, then the crossings on γ0(s) can
be removed by a II− move. This finishes the construction of G(s). The gadget G(ŝ) is a
mirror image of G(s) along the vertical line (y-axis).

Merging gadget. We will also need a merging gadget depicted on Figure 5. We order all
sentences as s1, . . . , sm. The merging gadget consists of subgadgets M(s1), M(ŝ1), M(s2), . . . ,

M(sm), M(ŝm) separated by the dotted lines in the figure. Each subgadget has several loose
ends. Two or four of them serve for connecting it to other subgadgets. The remaining ones
come in pairs and the number of pairs equals to ℓ(s) + 1. (Recall that this is the number
of components of the sentence gadget G(s).) These pairs of loose ends will be eventually
connected to the loose ends of γ0(s), . . . , γℓ(s)(s) in the top-down order.

Interconnecting the gadgets. Now, we describe how to interconnect the gadgets.
We place the sentence gadgets G(s1), . . . , G(sm) to the left of the merging gadget M in a

top-down ordering. Similarly, we place G(ŝ1), . . . , G(ŝm) to the right, again in a top-down
ordering. First, for any s̄ ∈ S ∪ Ŝ and i ∈ {0, 2, 3, . . . , ℓ(s̄)} (that is, i ̸= 1), we connect γi(s̄)
with the (i + 1)th pair of loose ends of M(s̄) by a pair of parallel arcs as directly as possible
without introducing new crossings; see Figure 7 (left).

Now we want to connect γ1(s̄) to the second pair of loose ends of M(s̄). For simplicity,
we describe this in the case s̄ = s ∈ S. The case s̄ ∈ Ŝ is mirror symmetric. We pull a pair
of parallel arcs from γ1(s) with the aim to reach M(s) while obeying the following rules:
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M(s1)

M(ŝ1)

M(s2)

M(ŝ2)

M(sm)

M(ŝm)

γ0(s1)γ1(s1)γ2(s1)

Figure 5 The merging gadget. The gadget is rotated. See also Figure 7 for correct orientation of
the gadget when connecting it to other gadgets.

γi(s
′)

γ1(s)

M(s)

Figure 6 Interlacing the parallel arcs pulled out of γ1(s) with γj(s′).

(R1) We are not allowed to cross the merging gadget or the sentence gadgets (except the
case described in the third rule below). We keep the newly introduced arcs on the left
side from the merging gadget.

(R2) We are allowed to cross other pairs of parallel arcs introduced previously (when
connecting γi(s′) to M(s′) for some i and s′). However, if we cross such a pair, we
require that all four newly introduced crossings are resolved simultaneously (for example
the new pair of parallel arcs is always above the older one). We even allow a self
crossing of the newly introduced parallel arcs (but we again require that four newly
introduced crossings are resolved simultaneously).

(R3) For every relation R = (T, s′) where s ∈ T , let R = Ri(s′). We interlace the newly
introduced parallel arcs with γi(s′) as in Figure 6.

(R4) The total number of crossing is of polynomial size in the size of our instance (S, R).

As we have quite some freedom how to perform the construction obeying the rules
above, the resulting construction is not unique. An example how to get this construction
systematically is sketched on Figure 7(right): The newly introduced pair of arcs is pulled
little bit to the right, then we continue down towards the level of G(sm), then up towards the
level of G(s1), and then back down to the original position. On this way we make a detour
towards γj(s′) whenever we need to apply the rule (R3). Finally, we connect the parallel
arcs to M(s) without any further detour. This finishes the construction of D(S, R).

A small set of axioms implies small defect. Now we very briefly sketch the easier implication
that if (S, R) admits an axiom set of size k, then D(S, R) can be untangled with defect 2k.
For every sentence s in some fixed minimum axiom set, we unscrew the loop next to y(s)
(compare with Figure 4, right) and we also unscrew the loops next to y(ŝ). This is altogether
2k I− moves. If we show that the remaining crossings can be removed by II− moves only,
then we are done via Lemma 2. It is not hard to see that for s in the minimum axiom set, the
initial unscrewing allows to simplify the gadget G(s) essentially to M(s) via II− moves. This
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M(s1)

M(ŝ1)

M(s2)

M(ŝ2)

M(sm)

M(ŝm)

γ0(s1)

γ1(s1)

γ2(s1)

G(s1)

γ0(sm)

γ1(sm)

γ2(sm)

G(sm)

γ0(s2)

γ1(s2)

G(s2)

M(s1)

M(ŝ1)

M(s2)

M(ŝ2)

M(sm)

M(ŝm)

γ0(s1)

γ1(s1)

γ2(s1)

G(s1)

γ0(sm)

γ1(sm)

γ2(sm)

G(sm)

γ0(s2)

γ1(s2)

G(s2)

Figure 7 Left: The first step of interconnecting the gadgets – connecting M(s) to the arcs
γi(s) for i ̸= 1. The mirror symmetric part for ŝ is not displayed. Right: The second step of
interconnecting the gadgets – connecting M(s) to the arc γ1(s).

in particular releases at least one of the heads (see Figure 4, right) of the gadgets implied
by the sentences in the minimum axiom set. Such a gadget can be then simplified again
by II− moves. By repeating this procedure we simplify all gadgets G(s1), . . . , G(sm) and
analogously G(ŝ1), . . . , G(ŝm). Then we remove remaining crossings by m more II− moves.

Big minimum axiom sets implies big defect. It turns out that the core of the second
implication in the reduction is to show the following: If the minimum axiom set for (S, R)
has size at least k, then any untangling of D(S, R) has defect at least 2k. For a proof of
this claim we use the approach from [23] that allows to show by a local analysis that for
some diagrams the defect of any untangling is strictly positive. On the other hand, this local
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analysis does not show much more than that the defect is at least 1 but we need 2k. In order
to circumvent this problem we use the boosting lemma (Lemma 9) and we verify, roughly
speaking, that the defect is at least 1 also for certain subdiagrams corresponding to sets of
sentences U such that S \ U is not an axiom set (as in the assumptions of Lemma 9). Then
Lemma 9 implies that the defect is as high as we need.
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