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Abstract
We design the first efficient sensitivity oracles and dynamic algorithms for a variety of parameterized
problems. Our main approach is to modify the algebraic coding technique from static parameterized
algorithm design, which had not previously been used in a dynamic context. We particularly build
off of the “extensor coding” method of Brand, Dell and Husfeldt [STOC’18], employing properties of
the exterior algebra over different fields.

For the k-Path detection problem for directed graphs, it is known that no efficient dynamic
algorithm exists (under popular assumptions from fine-grained complexity). We circumvent this
by designing an efficient sensitivity oracle, which preprocesses a directed graph on n vertices in
2k poly(k)nω+o(1) time, such that, given ℓ updates (mixing edge insertions and deletions, and vertex
deletions) to that input graph, it can decide in time ℓ22k poly(k) and with high probability, whether
the updated graph contains a path of length k. We also give a deterministic sensitivity oracle
requiring 4k poly(k)nω+o(1) preprocessing time and ℓ22ωk+o(k) query time, and obtain a randomized
sensitivity oracle for the task of approximately counting the number of k-paths. For k-Path detection
in undirected graphs, we obtain a randomized sensitivity oracle with O(1.66kn3) preprocessing time
and O(ℓ31.66k) query time, and a better bound for undirected bipartite graphs.

In addition, we present the first fully dynamic algorithms for a variety of problems: k-Partial
Cover, m-Set k-Packing, t-Dominating Set, d-Dimensional k-Matching, and Exact k-
Partial Cover. For example, for k-Partial Cover we show a randomized dynamic algorithm with
2k poly(k) polylog(n) update time, and a deterministic dynamic algorithm with 4k poly(k) polylog(n)
update time. Finally, we show how our techniques can be adapted to deal with natural variants on
these problems where additional constraints are imposed on the solutions.
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1 Introduction

The area of dynamic algorithms studies how to quickly and efficiently solve computational
problems when the input data is changing. For example, if P is a property of a graph, then
a dynamic graph algorithm for P is a data structure which maintains an n-node graph G,
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9:2 Parameterized Sensitivity Oracles and Dynamic Algorithms Using Exterior Algebras

and can handle updates which insert or remove an edge of G, and queries which ask whether
G currently satisfies P . Efficient dynamic algorithms, which handle updates and queries in
no(1) time, have been designed for many important problems, and they are used in many
applications, both as ways to analyze evolving data, and as subroutines of larger algorithms
which need to iterate over and check many similar possibilities. See, for instance, the recent
survey [16].

However, there are many prominent dynamic problems which would have many applica-
tions, but for which we do not have efficient algorithms. Often times, we even have conditional
lower bounds from fine-grained complexity, showing that efficient dynamic algorithms for
these problems are unlikely to exist (see e.g. [1, 17, 23] and [16, Section 2.1]). It has recently
become popular to circumvent such lower bounds by instead designing a sensitivity oracle
for the problem, a weaker notion which can still be used in many applications.

Let ℓ be a positive integer. A sensitivity oracle for a dynamic problem, with sensitivity ℓ,
preprocesses an initial input, and must answer queries where ≤ ℓ changes are made to the
initial input. For example, if P is a property of a graph, then a graph algorithm for P with
sensitivity ℓ is a data structure which preprocesses an initial graph G, and can handle queries
where ℓ edges are updated (inserted or removed) in the initial graph G, and asks whether P

is still satisfied. One can imagine “resetting” G back to its original state after each query1.
In this paper, we study dynamic algorithms and sensitivity oracles for parameterized

problems. Consider, for instance, the k-Path problem: given a positive integer k, in an
n-node graph G (directed or undirected), determine whether there is a path of length k.
This problem is NP-complete, so we should not hope for a dynamic algorithm with update
time no(1) (such a dynamic algorithm could be used to solve the static problem in n2+o(1)

time!). However, k-Path is known to be fixed-parameter tractable (FPT), and can be solved
in time 2O(k) · n2 [8, 26, 25], which is sufficiently efficient when k is small. We can thus hope
for dynamic parameterized algorithms for the problem, with update time f(k) · no(1). And
indeed, a recent line of work has designed efficient dynamic parameterized algorithms with
such a running time for many different problems, typically by using dynamic variants on
classic techniques from the parameterized algorithms literature like kernelization and color
coding. For the k-Path problem in undirected graphs, such an algorithm is known with
update time k! · 2O(k) · polylog(n) [2], and another with amortized update time 2O(k2) [11].

By contrast, no efficient dynamic parameterized algorithm for k-Path in directed graphs
is known. Moreover, Alman, Mnich and Vassilevska [2] proved a conditional lower bound,
that it does not have such an efficient dynamic parameterized algorithm assuming any one of
three popular conjectures from fine-grained complexity theory (the 3SUM conjecture, the
Triangle conjecture, and a “Layered Reachability Oracle” conjecture they introduce,
which concerns a special case of a more popular hypothesis about reachability oracles).

This leads naturally to the two main questions we address in this paper. The first asks
whether there is an analogue of the aforementioned line of work on sensitivity oracles for
problems without efficient dynamic algorithms in the parameterized setting.

▶ Question 1. Is there an efficient parameterized sensitivity oracle for k-Path in directed
graphs?

1 Sensitivity oracles are sometimes referred to as “fault-tolerant” or “emergency planning” algorithms in
the literature. For graph problems, these terms also sometimes refer to the decrement-only case (where
edge updates only remove edges), but following [18, Section A.1], we use “sensitivity oracle” to refer to
the fully dynamic case, where edges can be inserted and deleted.
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We say that a sensitivity oracle for a parameterized problem, with parameter k, is efficient
if its preprocessing time is f(k) · poly(n) for some computable function f , and its query time
is poly(ℓ) · g(k) · no(1) for some computable function g (where ℓ is the sensitivity parameter,
i.e., the number of updates allowed per query). In the case of k-Path in directed graphs,
and other graph problems, we specifically seek such an efficient sensitivity oracle in the fully
dynamic setting where queries can change any ℓ edges by inserting and deleting them.

It is natural to ask that the query time has a polynomial dependence on ℓ (rather than,
say, just a f(ℓ) dependence), as we do here, for two reasons. First, this is the dependence
one would get by converting an efficient dynamic algorithm into a sensitivity oracle. Second,
with our definition, any parameterized problem with an efficient sensitivity oracle is in FPT
via the algorithm where the sensitivity oracle preprocesses an empty graph and then gets
the full input graph as a query (but this would not be true if an arbitrary f(ℓ) term were
allowed in the query time). Along the way to answering Question 1, we will also address
more precisely the relationship between the classes of parameterized problems with efficient
dynamic algorithms, efficient sensitivity oracles, and efficient static algorithms (a.k.a. the
class FPT).

To our knowledge, such a fully dynamic notion of sensitivity oracles for parameterized
problems has not been previously studied. The closest prior work is very recent [6] which
considered a similar but only decremental setting, wherein queries may only delete edges
from the graph, and not insert new edges. They design very elegant decremental sensitivity
oracles for directed k-Path and for k-Vertex Cover, but their preprocessing and query times
have exponential dependence on ℓ and hence are not “efficient” as we defined above. We
also give evidence that the techniques of [6] cannot extend to the fully-dynamic setting; see
Section 1.2 below for more details.

The second question we address is inspired by prior work on static algorithms for k-
Path. Many fundamental techniques in the literature on parameterized algorithms were first
introduced to study the k-Path problem. One such technique, algebraic coding (sometimes
called “monomial testing” or “multilinear monomial detection”), is used in the current fastest
static randomized algorithms for k-Path, and has also been used in other applications in
algebraic complexity theory [22, 25, 10, 9, 8, 21]. Nonetheless, to our knowledge, these
techniques have not been used in a dynamic or sensitivity setting before.

▶ Question 2. Can algebraic coding techniques from the design of parameterized algorithms
be used to design efficient dynamic algorithms or sensitivity oracles?

A positive answer to Question 2 could lead to efficient dynamic algorithms or sensitivity
oracles for a host of parameterized problems.

1.1 Our results
Let ω < 2.373 be such that we can multiply two n × n matrices in O(nω) arithmetic
operations [3]. Our first main result gives a positive answer to Question 1.

▶ Theorem 3. The k-Path problem in directed graphs has an efficient parameterized
sensitivity oracle. It can be solved with2:

a Monte Carlo randomized algorithm with preprocessing time 2k poly(k)nω and query
time ℓ22k poly(k), or

2 We work in the word-RAM model of computation with w-bit words for w = O(log n). Hence, only
O(ℓ) words are needed to specify the ℓ edges to change in a query, and we can achieve query times
independent of n.
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9:4 Parameterized Sensitivity Oracles and Dynamic Algorithms Using Exterior Algebras

a deterministic algorithm with preprocessing time 4k poly(k)nω and query time ℓ22ωk.
In addition to edge insertion and deletions, these algorithms also allow for vertex failures as
part of the ℓ updates per query.

Although k-Path is known to not have an efficient dynamic parameterized algorithm
(assuming the aforementioned 3SUM, Triangle, or Layered Reachability Oracle
hardness assumptions from fine-grained complexity), Theorem 3 shows it does have an
efficient parameterized sensitivity oracle. Since the reductions used in [2] are still valid in
the sensitivity setting, one corollary is that the sensitivity versions of the 3SUM, Triangle,
and Layered Reachability problems have efficient algorithms (although there are simple
algorithms showing this for 3SUM and Triangle which do not go through k-Path; see
Section 4 for more details).

It follows from prior work [18] that assuming another popular conjecture, the Strong
Exponential Time Hypothesis (SETH), there are problems in FPT which do not have efficient
parameterized sensitivity oracles (one example is the counting version of the single-source
reachability problem; see again Section 4 for more details). Hence, assuming popular
conjectures from fine-grained complexity, it follows that the class of parameterized problems
with an efficient sensitivity oracle lies strictly between the class of parameterized problems
with an efficient dynamic algorithm, and the class FPT (i.e., both class inclusions are strict).

Our sensitivity oracle for Theorem 3 uses Θ(n2) space (for constant k), and it is natural
to wonder whether this can be improved, especially since known dynamic parameterized
algorithms for many other problems use much smaller space (e.g., many which dynamically
maintain a small kernel [2]). However, we prove unconditionally that the space usage of our
algorithm cannot be improved:

▶ Theorem 4. Any randomized or deterministic sensitivity oracle for k-Path in directed
graphs which handles edge insertion queries must use Ω(n2) space.

We also give three additional algorithmic results to complement Theorem 3. First, we
extend Theorem 3 to give an algorithm for approximately counting k-paths:

▶ Theorem 5. There is a randomized efficient parameterized sensitivity oracle which approx-
imately counts the number of k-paths in an n-node, m-edge directed graph. For any ϵ > 0,
it produces an estimate to the number of k-paths in the graph that, with probability > 99%,
is within ϵ relative error, with preprocessing time ϵ−2 · 4k poly(k) · min{mn, nω} and update
time O

(
ϵ−2 · ℓ2 · 2ωk

)
. In addition to edge insertion and deletions, it also allows for vertex

failures as part of the ℓ updates per query.

Second, we present a randomized sensitivity oracle with a better dependence on k, at the
cost of a worse dependence on ℓ, but only for undirected graphs:

▶ Theorem 6 (Undirected graphs). For the k-Path detection problem on an undirected
graph G on n vertices, there exists a randomized sensitivity oracle with preprocessing time
O(1.66kn3) and query time O(ℓ31.66k).

Third, we obtain the following corollary for bipartite graphs:

▶ Corollary 7 (Undirected bipartite graphs). For the k-Path detection problem on an undirected
bipartite graph, where the partition of the vertices V into the two sides V = S ∪ T is known
in advance and holds after any updates, there exists a sensitivity oracle with 2k/2 poly(k)n3

preprocessing time and ℓ32k/2 poly(k) query time.
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Our algorithm for Theorem 3 uses a new dynamic version of the algebraic coding technique,
and more specifically, a recent implementation called “extensor coding” by Brand, Dell, and
Husfeldt [10]. See Section 2.5 and 3 below for more background on this technique, and the
new ideas we introduce to be able to use it in a dynamic or sensitivity setting. We are
then able to use and further modify our approach to design efficient dynamic parameterized
algorithms for many problems for which no such algorithm was previously known, positively
answering Question 2. We present the definitions for the problems we consider, followed by
the results.

▶ Definition 8 (k-Partial Cover). Given a collection of subsets S1, ..., Sn ⊆ [N ], find the
minimum size of a sub-collection T of these, for which

∣∣⋃
S∈T S

∣∣ ≥ k, or declare that no
such T exists.

▶ Definition 9 (m-Set k-Packing). Given subsets S1, ..., Sn ⊆ [N ], all with size |Si| = m,
decide whether there exists a sub-collection of k sets, which are all pairwise disjoint.

▶ Definition 10 (t-Dominating Set). Given an undirected graph G on n vertices, find the
minimum size of a set of vertices S ⊆ V (G) such that |S ∪ N(S)| ≥ t where N(S) is the set
of neighbors of vertices in S, i.e., N(S) =

⋃
v∈S N(v).

▶ Definition 11 (d-Dimensional k-Matching). Fixing a universe U = U1 × U2 × . . . × Ud,
where Ui are pairwise disjoint of combined size |

⋃· i Ui| = N , and given a collection of tuples
T ⊆ U , decide whether T contains a sub-collection of k pairwise disjoint tuples. (We say the
tuples a, b ∈ U are disjoint if a[i] ̸= b[i] for all i = 1, 2, . . . , d.)

▶ Definition 12 (Exact k-Partial Cover). Given a collection of subsets S1, ..., Sn ⊆ [N ],
decide whether there is a sub-collection T of these, in which all sets are pairwise-disjoint,
and

∣∣⋃·S∈T S
∣∣ = k.

▶ Theorem 13. There are efficient dynamic parameterized algorithms for the following
problems. We write O∗ here to hide factors that are polynomial in the parameters (m, k, t)
and polylogarithmic in the size of the instance (n, N).

For k-Partial Cover there are dynamic algorithms, with either randomized O∗(2k) or
deterministic O∗(4k) update time.
For m-Set k-Packing there are dynamic algorithms, with either randomized O∗(2mk)
or deterministic O∗(4mk) update time.
For t-Dominating Set there are dynamic algorithms, with either randomized O∗(2t) or
deterministic O∗(4t) update time.
For d-Dimensional k-Matching there are dynamic algorithms, with either randomized
O∗(2(d−1)k) or deterministic O∗(4(d−1)k) update time.
For Exact k-Partial Cover there are dynamic algorithms, with either randomized
O∗(2k) or deterministic O∗(4k) update time.

For the proof of Theorem 13 we refer the reader to the full version.
We also explain how the results can be extended to problems with additional constraints.

As a simple example, we show how we can design an efficient sensitivity oracle for the problem
of detecting whether a directed graph contains a walk of length k which visits at least k − 1
vertices. As a second example, we discuss a different problem: given a directed graph G on
n vertices, two (possibly intersecting) subsets V1, V2 ⊆ V , and two positive integers µ1, µ2,

ICALP 2022



9:6 Parameterized Sensitivity Oracles and Dynamic Algorithms Using Exterior Algebras

decide whether G contains a k-path that contains at most µ1 vertices of V1 and at most µ2
vertices of V2. For this problem we give a static deterministic algorithm running in time
4k+min{k,|V1∩V2|} poly(k) · n2, as well as a sensitivity oracle counterpart. We refer the reader
to the full version for the full discussion.

1.2 Comparison with related work
Algorithms for k-Path

The static k-Path problem has a long history. The current best upper bounds for it are
a randomized 1.66k poly(n) algorithm in undirected graphs due to Björklund, Husfeldt,
Kaski and Koivisto [8], a randomized time 2k poly(n) in directed (and hence also undirected)
graphs due to Williams [26], and deterministic time 2.554k poly(n) in directed graphs due to
Tsur [25].

In comparison, our randomized sensitivity oracle for directed graphs in Theorem 3 has a
dependency on k (both in preprocessing and query time) of O∗(2k), so one cannot hope to
improve on it without improving the best static algorithm. For undirected graphs, we give
in Theorem 6 a sensitivity oracle with a dependency of O∗(1.66k), which matches the best
bound of [8]. Our deterministic sensitivity oracle has a dependency of O∗(4k); we leave open
the question of whether the techniques of [25] can be used in a sensitivity oracle setting to
achieve O∗(2.554k).

There has also been work on the dynamic version of k-Path. However, Alman, Mnich
and Vassilevska [2] showed that under the aforementioned fine-grained conjectures, there
is no dynamic algorithm for directed graphs. At the same time, they give a deterministic
dynamic algorithm for the case of undirected graphs, with update time k! · 2O(k) · polylog(n).
A subsequent result due to Chen et al. [11] presents a deterministic dynamic algorithm with
amortized update time 2O(k2).

In comparison, our sensitivity oracle works for directed graphs just as well as for undirected
graphs, and with a lower dependence on k (only 2O(k)). However, we obtain a sensitivity
oracle, rather than a dynamic algorithm.

Decremental Parameterized Sensitivity Oracles

A recent paper by Bilò et al. [6] constructs decremental sensitivity oracles (“fault tolerant”) for
the k-Path problem (i.e., where all updates are edge deletions). They give one construction
with a randomized kℓ2k poly(n) preprocessing time and O(ℓ min{ℓ, k + log ℓ}) update time,
and a second construction with a lower preprocessing time of 2k · (ℓ+k)ℓ+k

ℓℓkk · ℓ poly(n) at
the expense of an increased query time of O

(
(ℓ+k)ℓ+k

ℓℓkk · ℓ min{ℓ, k} log n
)

. They also give
a deterministic algorithm, requiring kℓ2.554k poly(n) preprocessing time and a very low
O(ℓ min{ℓ, k +log ℓ}) update time. Our Theorem 3 improves on the dependency on ℓ, making
it polynomial in both the preprocessing and update times, and allows for both increments
and decrements, while the methods of [6] are specific to decrements. We also achieve an
update time which is independent of n in the word-RAM model. In [6], preprocessing is
made aware of the value of ℓ, due to the superpolynomial dependence on it.

The techniques of Bilò et al. [6] also achieve a very low memory footprint for their
fault-tolerant oracle, attaining at most logarithmic space dependency on n in all variants,
when k and ℓ are considered constants. In contrast, we prove a lower bound, showing
that one cannot hope for such dependency if increments are allowed, and that any fully
dynamic sensitivity oracle must store at least Ω(n2) bits (see Theorem 4). This suggests
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that the methods used in [6] cannot be used to devise a fully dynamic sensitivity oracle.
Their algorithms are based on simple and elegant combinatorial arguments; for instance, in
their algorithm with a faster preprocessing time, they precompute a collection of k-paths in
the graph, in a way that ensures that with high probability, if there exists a path after ℓ

edge deletions, one of the precomputed paths is still valid. We instead take a very different
approach based on algebraic coding.

Cover, Matching, Dominating Set, and Packing problems

We are unaware of previous work on dynamic algorithms for the problems we study here
(other than k-Path in undirected graphs, which we discussed above). Instead, we compare
the dependence on k in the update times of our dynamic running times with the best known
dependence on k for static algorithms. In the cases where we match, it is impossible to speed
up the dependence on k in our dynamic algorithms without speeding up the fastest known
static algorithms.
1. For both k-Partial Cover and t-Dominating Set, the fastest known static randomized

running time is 2k poly(nk) by Koutis and Williams [22] (where for t-Dominating Set
we replace k with t in the running time), which our dynamic algorithm matches, and the
fastest known static deterministic running time is 2.554k poly(kn), stated by Tsur [25],
whereas our deterministic dynamic algorithm achieves query time O∗(4k).

2. The fastest known static randomized algorithm for m-Set k-Packing by Björklund,
Husfeldt, Kaski and Koivisto [8] has the intimidating running time of(

0.108157 · 2m(1 − 1.64074/m)1.64076−mm0.679625

(m − 1)0.679623

)k

n6 poly(N)

This is less than 2mk poly(n), and considerably so for smaller m. For example, when
m = 3, the running time is bounded by 1.49533kn6 poly(N). Due to the super-quadratic
dependence on n, these techniques are unlikely to be adaptable for the dynamic case.
In contrast, Koutis [20] proposes a static randomized algorithm running in time

2mkn poly(mk) polylog(n).

Our dynamic result matches this running time.
3. The fastest known static randomized algorithm for d-Dimensional k-Matching, by

Björklund, Husfeldt, Kaski, and Koivisto [8], runs in time 2(d−2)k poly(Nk)n. In con-
trast, we match only an earlier algorithm by Koutis and Williams [22], which runs in
time 2(d−1)k poly(kdn). The fastest known static deterministic algorithm runs in time
2.554(d−1)k poly(Nn), stated in Tsur [25], whereas we achieve deterministic dynamic
update time O∗(4(d−1)k).

4. Exact k-Partial Cover is a natural generalization of similar problems (such as m-Set
k-Packing), though we are unaware of explicit prior work on it. A slight modification of
the algorithm of Koutis [20] for m-Set k-Packing solves the static problem in randomized
O∗(2k) time, matching the dependence on k in our dynamic algorithm.

Dynamic Parameterized Algorithms

Efficient dynamic algorithms have previously been proposed for a number of parameterized
algorithms, often using dynamic versions of classic techniques from the design of fixed-
parameter tractable algorithms. These techniques include dynamic kernels [2, 5, 12, 19],

ICALP 2022
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color-coding [2], dynamic elimination forests [11], dynamic branching trees [2], sketching [12],
and other methods [14, 15]. To our knowledge, no previous work on dynamic parameterized
algorithms has used algebraic techniques.

2 Preliminaries

2.1 Notation
For a positive integer k, write [k] := {1, 2, . . . , k}.

We will use the asymptotic notation O∗(T ); its meaning will depend on context, so we
will define it each time it arises. Generally, in static algorithms and preprocessing times we
hide factors that are polynomial in the input parameters (k, n, etc), but when talking about
update times, we will only hide factors that are polylogarithmic in the input size.

Let ω be such that two n × n matrices can be multiplied using O(nω) field operations3; it
is known that we can take ω < 2.373 [3].

2.2 Sensitivity Oracles
▶ Definition 14 (sensitivity oracle). A sensitivity oracle is a data structure containing two
functions:
1. Initialization with an input instance of size n.
2. Query with ℓ changes (with problem-specific definition) to the original input. This returns

the desired output on the altered input.
The time spent in the initialization step is called the preprocessing time, and the time spent
in the query step is called the query time.

In random sensitivity oracles, we assume the queries are independent of the randomness of
the oracle, and thus cannot be used to fool a sensitivity oracle by obtaining the randomness
used at the preprocessing phase. We say that a random sensitivity oracle errs with probability
at most p, if for any pair of an initial configuration and a query, the probability of error is at
most p.

We say that a sensitivity oracle for a parameterized problem, with parameter k, is efficient
if its preprocessing time is f(k) poly(n) for some computable function f , and its query time
is poly(ℓ)g(k)no(1) for some computable function g.

2.3 Exterior algebra
A key technical tool we will make use of in our algorithms is the exterior algebra. We give a
brief introduction to its definition and properties which we will use.

Given a field F and a positive integer k, the exterior algebra Λ(Fk) is a non-commutative
ring over F. In this paper we will be interested in the cases where F is either the rational
numbers Q, or a finite field F2d of characteristic 2.

Following the terminology of Brand, Dell and Husfeldt [10], elements of the exterior
algebra are called extensors. Multiplication in Λ(Fk) is denoted by the wedge sign; for
x, y ∈ Λ(Fk), their product is x ∧ y. The generators of this ring are e1, e2, ..., ek, the standard
basis of Fk, and we impose the relations ei ∧ ej = −ej ∧ ei for all i, j ∈ [k] and ei ∧ ei = 0

3 This is a slight abuse of notation. The exponent of matrix multiplication ω is typically defined as the
smallest constant such that n × n matrices can be multiplied in nω+o(1) field operations, but we drop
the “o(1)” in the exponent here for simplicity.
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for all i ∈ [k] (while the latter equation follows from the former for fields of characteristic
different from 2, we still require it when charF = 2). We also require that the wedge product
is bilinear4. Furthermore, it can be seen that the wedge product is associative5.

Additionally, we consider any field element a ∈ F to be an element of Λ(Fk), with
multiplication defined simply by a ∧ ei = ei ∧ a = aei.

For example, we have

e1 ∧ (e5 − e2 + 3) ∧ e3 = e1 ∧ e5 ∧ e3 − e1 ∧ e2 ∧ e3 + 3e1 ∧ e3

= −e1 ∧ e3 ∧ e5 − e1 ∧ e2 ∧ e3 + 3e1 ∧ e3.

To simplify the notation, for I ⊆ [k] we also write eI :=
∧

i∈I ei, where the product is
over the elements of I in ascending order, with the convention e∅ = 1. We will sometimes
also replace the wedge sign by a simple product sign, when it is clear from context that we
mean the wedge product. For example, we can write eI :=

∏
i∈I ei. Thus, the above example

extensor can also be written as

e1 ∧ (e5 − e2 + 3) ∧ e3 = −e{1,3,5} − e{1,2,3} + 3e{1,3}

We see that two products of the basis elements that differ only by the order of the terms
can differ only in sign (e.g., e1 ∧ e2 ∧ e3 = −e2 ∧ e1 ∧ e3), and furthermore any product of eis
with a repeating factor vanishes (e.g., e1 ∧ e2 ∧ e2 = e1 ∧ 0 = 0). Thus, the set {eI : I ⊆ [k]}
spans Λ(Fk) as a vector space over F. It is in fact a basis of this vector space, and we have
dimF Λ(Fk) = 2k. That is, for any x ∈ Λ(Fk) there is a unique choice of the 2k coefficients αI

so that x =
∑

I⊆[k] αIeI . For any x ∈ Λ(Fk) and T ⊆ [k] we denote by [eT ]x the coefficient
of eT when x is represented in the basis {eI : I ⊆ [k]} (i.e., the value of αT as above).

If there is a d such that all I for which [eI ]x ̸= 0 have |I| = d, we say that x is a degree-d
extensor. The space of degree-d extensors is denoted by Λd(Fk).

We identify any vector v = (v[1], v[2], ..., v[k]) ∈ Fk with the exterior algebra element∑
i v[i]ei ∈ Λ1(Fk). A crucial property of the exterior algebra is that for any vector v ∈ Fk it

holds that v ∧ v = 0. Indeed,

v ∧ v =
∑
i,j

v[i]v[j]ei ∧ ej =
∑
i<j

v[i]v[j]ei ∧ ej +
∑
i<j

v[i]v[j]ej ∧ ei

=
∑
i<j

v[i]v[j]ei ∧ ej −
∑
i<j

v[i]v[j]ei ∧ ej = 0.

Similarly, for any two vectors u, v ∈ Fk, it holds that u∧v = −v ∧u. It is important to notice
that these properties do not hold for all elements in Λ(Fk). As an example, for x = e1 +e2 ∧e3
we have x ∧ x = (e1 + e2 ∧ e3) ∧ (e1 + e2 ∧ e3) = e1 ∧ e2 ∧ e3 + e2 ∧ e3 ∧ e1 = 2e1 ∧ e2 ∧ e3. In
fact, we can see that the wedge product of an even number of vectors commutes with any
extensor.

Another very useful property of the exterior algebra is its connection to determinants.
Let v1, v2, ..., vk ∈ Fk be k vectors of dimension k, and consider their product v1 ∧ v2 ∧ ... ∧ vk.
Replace each vi with its linear combination of the basis elements ej and expand the product.
We see that any monomial that repeats a basis element gets cancelled, and the others are all
e[k] up to a sign. We get

v1 ∧ v2 ∧ ... ∧ vk =
k∧

i=1

k∑
j=1

vi[j]ej =
∑

σ∈Sk

k∧
i=1

vi[σ(i)]eσ(i) =
∑

σ∈Sk

sgn(σ)e[k]

k∧
i=1

vi[σ(i)].

4 (a + b) ∧ c = (a ∧ c) + (b ∧ c) and a ∧ (b + c) = (a ∧ b) + (a ∧ c).
5 (a ∧ b) ∧ c = a ∧ (b ∧ c)
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We recognize a determinant in the right hand side, thus showing that

v1 ∧ v2 ∧ ... ∧ vk = det(v1|v2|...|vk)e[k]. (1)

2.4 Complexity of ring operations in the exterior algebra
We represent the elements of Λ(Fk) as the length-2k vector of coefficients of the basis elements
eI . Addition is performed by coordinate-wise addition, hence requires O(2k) field operations.
Multiplication is trickier, and there are a few important cases. All these cases were also
noted and used in [10].

▶ Proposition 15 (Skew product). Computing x ∧ v for a general extensor x ∈ Λ(Fk) and a
vector v ∈ Fk can be done in O(2k · k) field operations.

Proof sketch. This is accomplished by simply expanding the product. ◀

▶ Proposition 16 (General product over characteristic 2). Computing x∧y for any x, y ∈ Λ(Fk),
when char(F) = 2, can be done in O(2kk2) field operations.

Proof sketch. Here, the ring Λ(Fk) is commutative. Then we can write [eI ](x ∧ y) =∑
T ⊆I([eT ]x)([eI\T ]y), which can be seen as a subset convolution operation. Using the fast

subset convolution discovered by Björklund, Husfeldt, Kaski and Koivisto [7], we can compute
this with O(2kk2) field operations. ◀

▶ Proposition 17 (General product over any characteristic). Computing x ∧ y for x, y ∈ Λ(Fk),
for F of any characteristic, can be done in O(2ωk/2) field operations.

Proposition 17 is a result of Włodarczyk [27], which reduces computing x ∧ y over Λ(Fk) to
k2 multiplications in a Clifford algebra, which in turn can be embedded in matrices of size
2k/2 × 2k/2.

2.5 Extensor-coding
In this subsection, we give a brief overview of the techniques recently used by Brand, Dell and
Husfeldt [10] to design a randomized and a deterministic algorithm for the (static) k-Path
problem; we heavily build off of these techniques in this paper.

Given a directed graph G, we denote its vertex set V = {v1, ..., vn}, and we denote by
Ws(G) the set of all walks in G of length s. Recall that walks may repeat vertices, whereas
paths may not. For each edge e ∈ E(G) we have an edge variable ye, whose possible values
will be in a field F we will pick later.

Furthermore, we define vectors χ : V → Fk by χ(vi) = (1, j, j2, . . . , jk−1) where j = f(i)
for some injective function f : [n] → F. We call these Vandermonde vectors.

Given a walk in G of length s, w = (w1, w2, ..., ws) ∈ Ws(G), we define the corresponding
walk extensor to be χ(w1) ∧ yw1w2 ∧ χ(w2) ∧ yw2w3 ∧ χ(w3) ∧ ... ∧ yws−1ws ∧ χ(ws). We will
sometimes denote the walk extensor of a walk w by χ(w).

Our goal is to compute the sum of all walk extensors for walks of length k,

Z =
∑

(w1,w2,...,wk)∈Wk(G)

χ(w1) ∧ yw1w2 ∧ χ(w2) ∧ yw2w3 ∧ χ(w3) ∧ ... ∧ ywk−1wk
∧ χ(wk). (2)

The result of this sum is seen to be proportional to the single basis element e[k], and by
abuse of notation we will consider it as a scalar equal to that coefficient (or, more precisely,
a polynomial in the y variables).
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Any k-walk that is not a path does not contribute to Equation (2), because its walk
extensor repeats a vector in the product. Thus, any nonzero term in the sum Equation (2)
corresponds to a k-path.

The choice of χ(vi) is such that for any walk (w1, w2, ..., wk) that is a k-path, the walk-
extensor is a nonzero monomial in the y variables. This is seen using Equation (1), because
χ(w1) ∧ χ(w2) ∧ ... ∧ χ(wk) = e[k] det(χ(w1)|χ(w2)|...|χ(wk)), which is the determinant of a
Vandermonde matrix with unique columns, which is known to be nonzero.

Additionally, the monomial in the y variables given to each k-path is seen to uniquely
identify the k-path (since there is a different y variable for each edge). Hence, the monomials
of different k-paths cannot cancel, and we have proven:

▶ Lemma 18. For a directed graph G, the value of Z given in Equation (2) is a nonzero
polynomial in the y variables if and only if G contains a k-path.

We now recall the classical DeMillo-Lipton-Schwartz-Zippel Lemma:

▶ Lemma 19 ([13, 24, 28]). Let f ∈ F[x1, ..., xn] be a nonzero polynomial in n variables
with total degree at most d over some field F, and let S ⊆ F. For a1, a2, ..., an ∈ S chosen
uniformly at random, we have Pr(f(a1, a2, ..., an) = 0) ≤ d

|S| .

Using the DeMillo-Lipton-Schwartz-Zippel Lemma, we now obtain a randomized algorithm
for the k-Path detection problem, assuming we are able to efficiently compute Z. Namely,
for each e ∈ E(G) we randomly select ye ∈ Y for some fixed Y ⊆ F of size |Y | = 100k,
and compute Z as in Equation (2). If this value is nonzero, we know there is a k-path.
Otherwise, there might still be a k-path, and we might have been unlucky and had the
nonzero polynomial vanish for the specific choices of the ye variables. We output that there
is no k-path in this case. The probability of error is at most k

|Y | = 1
100 , and we can repeat

this process to lower the probability of error as much as required.
It remains to show how to compute Z efficiently. We do this using dynamic programming.

For any 1 ≤ s ≤ k and 1 ≤ i ≤ n we define Qs[i] as the sum of walk extensors of length
s that end in vi. Then Z =

∑
i Qk[i], and we can compute the vector Qs+1 from Qs by

Qs+1[i] =
∑

j:(vj ,vi)∈E(G) Qs[j] ∧ yvj ,vi
∧ χ(vi). This requires kn2 skew multiplications of

extensors, each of which can be done in time 2k poly(k) (see Proposition 15). Thus, we
can compute Z with 2k poly(k)n2 field operations, which is also the total running time of
the randomized algorithm. We note that this works over any sufficiently large field F with
|F| ≥ 100k.

Brand, Dell and Husfeldt [10] also give a deterministic variant of the algorithm, at the
cost of increasing the time complexity. This is done with the beautiful idea of, for each vertex
v, “lifting” the Vandermonde vector χ(v) to χ̄(v) =

(
χ(v)

0
)

∧
( 0

χ(v)
)
. By

(
χ(v)

0
)
, we mean the

vector of length 2k gotten by concatenating the vector χ(v) with k zeros. We then do the
calculations in Λ(F2k) instead of Λ(Fk). Walk extensors of non-path walks still vanish. Now,
as observed in [10], for any k-path we have

χ̄(w1) ∧ χ̄(w2) ∧ ... ∧ χ̄(wk) = e[2k] det
((

χ(w1)
0

)∣∣∣∣( 0
χ(w1)

)
...

∣∣∣∣(χ(wk)
0

)∣∣∣∣( 0
χ(wk)

))
By proper change of columns, the resulting determinant is equal to the determinant of a

2 × 2 block diagonal matrix, where the two diagonal blocks are identical. By basic properties
of determinants, we then obtain

χ̄(w1) ∧ χ̄(w2) ∧ ... ∧ χ̄(wk) = (−1)(
k
2)e[2k] det(χ(w1)|χ(w2)|...|χ(wk))2. (3)
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Therefore, choosing F = Q, the walk extensors of different k-paths all have the same
sign, and hence never cancel. The dynamic programming given above still works for this
case, but extensor operations require 22k poly(k) field operations (note we only need skew
multiplications). Additionally, all numbers involved are of size at most nO(k) = 2O(k log n),
and hence operations require only poly(k) polylog(n) time, or poly(k) time in the word-
RAM model which we assume. This produces a deterministic algorithm with running time
4k poly(k)n2.

3 Overview of our techniques

The key idea behind our algorithms is to identify appropriate sums of extensors which
encode the answer to the problem (e.g., one where candidate solutions correspond to nonzero
monomials), and which can be efficiently dynamically maintained. Similar to [10], we will
frequently make use of the properties of exterior algebras to “nullify” repetitions (for example,
of vertices in the k-Path problem, and of elements in the Exact k-Partial Cover problem).
In many cases, the extensors or similar algebraic coding expressions used by the fastest
known static algorithms seem difficult to efficiently maintain dynamically, and we will need
to modify them, and identify useful precomputed values, to speed up our update time. While
these techniques prove to be very well suited for designing sensitivity oracles and dynamic
algorithms, we are unaware of previous work that uses the exterior algebra in such a way.

3.1 k-Path
For this problem, we aim to maintain Z, the sum over walk extensors of length-k walks which
we defined in Equation (2) above. Employing properties of the exterior algebra as discussed
above, it is seen that any walk that is not a path (that is, a walk that repeats a vertex) does
not contribute to the sum, and we thus indirectly compute a sum over only paths.

As we discussed in Section 2.5 above, Brand, Dell and Husfeldt [10] showed that computing
this sum allows for extracting valuable information about the k-paths in a graph. In particular,
by carefully selecting vectors or degree-2 extensors χ(v) for each vertex v, it allows for the
design of randomized and deterministic algorithms for the k-path detection problem, as well
as for approximately counting the number of k-paths with high probability.

Let us focus, first, on the case when our sensitivity oracle only allows for edge increments.
We begin by precomputing, for each pair of vertices in the graph, a sum over the walk
extensors between those vertices, so that we can “stitch” them together appropriately when
new edges are inserted. Put precisely, let Ws(u, v) denote the set of walks of length s from
u to v, and let Qs[u, v] be the precomputed value of the sum of walk extensors for walks
in Ws(u, v) in the initial graph. Now suppose a new edge (v1, v2) is inserted. Then the
additional walk extensors for walks of length s between any pair of vertices (t1, t2) can be
computed as

∑
s′

 ∑
w∈Ws′ (t1,v1)

χ(w)

 ∧ yv1,v2 ∧

 ∑
w∈Ws−s′ (v2,t2)

χ(w)


=
∑

s′

Qs′ [t1, v1] ∧ yv1,v2 ∧ Qs−s′ [v2, t2].

At first, stitching might seem problematic, since we might need to iterate over the possible
lengths of each stitched part. This is not be a problem for a single edge insertion, but leads
to an exponential dependency on the number of edges inserted as we partition the total
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length k between them. While this issue can be efficiently resolved with proper dynamic
programming, we can circumvent this efficiently and more cleanly by instead working with
sums over the walks of all possible lengths, while finally inspecting only the coefficient of
e[k] in the resulting extensor, so that terms corresponding to paths of length other than k

will either cancel out or have too low degree. Indeed, we note that only walks of length k

contribute to this coefficient.
Another, more substantial problem occurs when one tries to “stitch” paths into a larger

path that uses several new edges: there are ℓ! different orders to pass through the ℓ new edges.
We combine properties of the exterior algebra with an algebraic trick (which we describe in
more detail shortly) to allow computing the sum of the effects of all of these cases with only
a polynomial dependence on ℓ.

In order to be able to work with only a small subset of the precomputed Q matrix, we
additionally precompute the sum of walk extensors ending and beginning at each vertex (i.e.,
sums of rows and columns of Q), and the original sum over walk extensors in the original
graph. This allows us to use only O(ℓ2) precomputed values in the updating phase.

Finally, by further employing properties of the exterior algebra, we are able to combine
these techniques with the inclusion-exclusion principle, to also allow edge removals, while
keeping the same time and space complexities for preprocessing and updates.

We now describe the ideas in some more detail. We refer the reader to the full version
for the full details. As a preprocessing, we compute an n × n matrix Q with extensor values,
defined by

Q[i, j] =
∑

(w1,w2,...,ws)∈W
w1=vi,ws=vj

χ(w1) ∧ yw1w2 ∧ χ(w2) ∧ yw2w3 ∧ χ(w3) ∧ ... ∧ yws−1ws
∧ χ(ws)

where W is the set of all walks in the graph, which can have any length greater than 0. This
is the sum of all walk extensors for walks from vi to vj . We then compute vectors S (resp.
F ) of length n, similarly computing in their ith entry the sum of walk extensors starting
(resp. finishing) at each vertex vi. That is, S[i] =

∑
j Q[i, j] and F [j] =

∑
i Q[i, j].

Finally, we compute Z =
∑

i,j Q[i, j], the sum of all walk extensors over all walks. e[k]Z
is exactly the value we aim to maintain after a query, as this is exactly the one used in the
extensor coding technique (Section 2.5). We explain how with proper dynamic programming
we can compute these values in preprocessing with 2k poly(k)n2 operations over F, using
only additions and skew multiplications.

Then, when prompted with a query, we aim to compute the sum over walk extensors in
the updated graph, denoted Znew. Inspecting whether e[k]Znew ̸= 0 will let us test whether
the updated graph contains a k-path.

We now begin handling a query. Given a list of ℓ updates that are each either an edge
insertion or edge deletion, there are n′ ≤ 2ℓ vertices at the endpoints of the updated edges.
We begin by extracting the n′ × n′ sub-matrix Q′ of Q, and length-n′ sub-vectors S′, F ′ of
S, F , gotten by taking entries corresponding to those endpoint vertices.

We next define an n′ × n′ matrix E+
r corresponding to the r-th edge insertion by setting

each of its entries to 0 except for E+
r [i, j] = yi,j , where (vi, vj) is the r-th inserted edge. We

similarly define E−
r in the same way, to be the 0 matrix except for E−

r [i, j] = yi,j where (vi, vj)
is the r-th deleted edge. We then define ∆+ =

∑
r E+

r , ∆− =
∑

r E−
r , and ∆ = ∆+ − ∆−.

We then compute that

Znew = Z +
k∑

i=1
F ′T ∆(Q′∆)i−1S′.

This formula is crucial to our query algorithm, so we explain it in some detail here.
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We first explain the correctness of this formula for the case of only increments. In this
case, Znew − Z is exactly the sum of walk-extensors for walks that use the new edges. Here,
upon expanding the expression when

∑
r E+

r is substituted for ∆+, we note that F ′T ∆+S′

counts the walks that use exactly one of the new edges. Indeed, for each r the term F ′T E+
r S′

accounts for walks passing through the r-th new edge exactly once. For counting walks that
use exactly two of the newly inserted edges, we now need to compute

∑
r1 ̸=r2

F ′T E+
r1

Q′E+
r2

S′.
Indeed, this expression correctly accounts for walks with nonzero walk extensors starting at
any vertex, continuing through one new edge, travelling to a new edge then through it, then
continuing to end at any vertex. We further note that any specific path is counted in this
way exactly once.

We note that by linearity and the fact that only paths produce nonzero walk extensors,
this is equal to F ′T ∆+Q′∆+S′. That is, upon expanding the expression when

∑
r E+

r is
substituted for ∆+, we get exactly the terms we intended, plus terms accounting for walks
passing through the new edges twice, which evaluate to zero in the exterior algebra. This
considerably simplifies the calculations. Continuing in the same fashion, we argue we obtain

Znew − Z =
k∑

i=1
F ′T ∆+(Q′∆+)i−1S′

in total for the incremental case.
Consider now the general case, with both increments and decrements. Suppose w is any

walk on the vertices which uses edges from the union of the original graph and the updated
graph. We assume w is a path, since otherwise its walk extensor vanishes, and we need not
worry about whether it appears in the sum Znew. Now suppose w has length at most k and
uses a inserted edges and b removed edges.

Consider first when a ≥ 1. In this case, w is not counted in the original sum Z. When
substituting ∆ =

∑
j E+

j −
∑

j E−
j into

∑k
i=1 F ′T ∆(Q′∆)i−1S′ and expanding, we see that

w is counted only when all the chosen E+
j factors exactly correspond to the a new edges

used by w, in the order they are used. It is also counted when choosing any b′ ≤ b factors of
type E−

j that appear in w, but they must also appear in the right order, and they contribute
the walk extensor of w with weight exactly (−1)b′ . In total, w is accounted for exactly∑b

b′=0
(

b
b′

)
(−1)b′ = (1 − 1)b = [b = 0] times6 in Znew, which is what we want.

Now suppose a = 0. Then a similar argument shows that the number of times it is
counted in

∑k
i=1 F ′T ∆(Q′∆)i−1S′ is exactly

∑b
b′=1

(
b
b′

)
(−1)b′ = (1 − 1)b − 1 = [b = 0] − 1.

However, it is also counted in Z exactly once, so in total is counted [b = 0] times, which is
also exactly what we want.

Using this formula, we explain how we are generally able to compute Znew in O(ℓ22ωk/2)
field operations. However, we come back to this running time once we describe the specifics
of the randomized and deterministic sensitivity oracles, each with its own details.

3.2 k-Partial Cover
We also make use of extensors to design fully dynamic algorithms for other parameterized
problems. We focus here on one example: designing a deterministic dynamic algorithm for
the k-Partial Cover problem. In this problem, we are given subsets S1, ..., Sn ⊆ [N ], and
wish to find the minimum number of such subsets whose union has size at least k (or report
that no such collection exists).

6 Here we use the notation [b = 0] :=
{

1 if b = 0,

0 otherwise.
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One could use a polynomial constructed by Koutis and Williams [22] for this problem,
combined with similar techniques to those we used above for k-Path, to devise a deterministic
dynamic algorithm with update time O(2ωk). However, we instead give a different polynomial
which is easier to dynamically maintain, achieving a faster O∗(4k) update time.

As in the k-Path problem, we give each element in the universe a ∈ [N ] a Vandermonde
vector χ(a) ∈ Qk, then lift it to χ̄(a) =

(
χ(a)

0
)

∧
( 0

χ(a)
)

∈ Λ(Q2k).
We introduce a single new variable z, and consider the polynomial

P (z) =
∏
S

(
1 + z

[∏
a∈S

(1 + χ̄(a)) − 1
])

.

We argue that the solution we seek is the minimum t for which [e[2k]z
t]P ̸= 0 (that is, the

coefficient of e[2k] in the coefficient of zt in P ). Our goal, then, will be to maintain the value
of P (z), and calculations will take place in polynomials over extensors, Λ(Q2k)[z]. We also
argue that deg P (z) ≤ k, and so is not too large to handle in update steps.

We first argue that the product in P should only be computed over sets S of cardinality
less than k, as larger sets can be treated separately, knowing that the optimal solution is 1 if
any such set exists in the collection. Since P (z) is defined as a product over sets, to update
it with a new set S of cardinality |S| < k, we can multiply P (z) by the corresponding factor
1+z

[∏
a∈S(1 + χ̄(a)) − 1

]
. This seems too slow at first, since general extensor multiplication

requires O(2ωk) time, which is more than our target O∗(4k). However, rather than computing
the factor and then using general extensor multiplication, we argue that we can indirectly
multiply by this factor using only additions and skew multiplications by rearranging the
contributing terms, thus requiring only O∗(4k) field operations. Indeed, the product of
P (z) with the new factor is (1 − z)P (z) + P (z)

∏
a∈S(1 + χ̄(a)), which can be performed

by separately computing (1 − z)P (z) and P (z)
∏

a∈S(1 + χ̄(a)), where the latter can be
computed by repeated skew-multiplications.

A new problem arises when a set S is removed. For this, we need to somehow cancel
the factor in P (z) corresponding to S. We show that in this case the corresponding factor
has an inverse in Λ(Q2k)[z]: we first note that it can be written as 1 + X for an element X

that contains only extensors of degree ≥ 2, which implies that Xk+1 = 0, and using this, we
observe that

(1 + X)(1 − X + X2 − . . . + (−X)k) = 1 − (−X)k+1 = 1,

so (1 + X)−1 = 1 − X + X2 − . . . + (−X)k. Similar to the previous case, we argue that
multiplying by this factor can also be done with poly(k) additions and skew multiplications,
and so can be done in O∗(4k) time.

This and all our other dynamic algorithms are described in detail in the full version.

4 Discussion on fixed-parameter complexity classes

We discuss the relationship between the following definitions.

▶ Definition 20 (FPT). A parameterized problem is in FPT if it is decidable in time
f(k) poly(n) for a computable function f .

▶ Definition 21 (FPD). A parameterized problem is in FPD (Fixed-Parameter Dynamic) if
there is a dynamic algorithm for it requiring f(k) poly(n) preprocessing time and g(k)no(1)

update time, for computable functions f and g.
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▶ Definition 22 (FPSO). A parameterized problem is in FPSO (Fixed-Parameter Sensitivity
Oracle) if there is a sensitivity oracle for it requiring f(k) poly(n) preprocessing time and
poly(ℓ)g(k)no(1) update time, for a computable function g.

We note that FPD ⊆ FPSO ⊆ FPT. We can show that the inclusions are strict, at
least under plausible hardness conjectures. For example, [2] shows that k-Path in directed
graphs does not admit a dynamic algorithm under hardness conjectures (which are shown in
this paper to be in FPSO). [18] shows that the #SSR problem does not have an efficient
sensitivity oracle, assuming SETH, which in turn can be used to show that, assuming SETH,
there exists an FPT problem that is not in FPSO.

We further note that many problems shown in [2] to not be in FPD can be shown to be
in FPSO. As a few examples:
1. Triangle Detection, which is the problem of detecting whether a graph contains

a triangle, can be solved efficiently by a sensitivity oracle by precomputing the square
of the graph’s adjacency matrix and computing the number of triangles in time O(nω),
then updating the number of triangles in time O(ℓω) (O(ℓ) for triangles that use a single
updated edge, O(ℓ2) for triangles using two updated edges, and O(ℓω) for those using
three updated edges).

2. Incremental st-Reachability, which is the problem of deciding whether two prede-
termined vertices s and t are connected in a directed graph, only allowing incremental
updates, can be solved efficiently by precomputing reachability between any two vertices
(for example by running BFS from all vertices in time poly(n)), then using dynamic
programming to answer a query in time poly(ℓ) by updating the connectivity information
only on the ≤ 2ℓ + 2 vertices that are either s, t or are part of any inserted edge

3. 3SUM, which is the problem of deciding whether there are 3 elements in a list that sum
to 0. Here it is possible to precompute the sums of all pairs in time O(n2) (counting
multiplicities), and the number of triples whose sum is 0. Then when adding or removing
ℓ numbers it is possible to compute in poly(ℓ) time the number of new solutions and
the number of previous solutions that should be removed, and checking if the remaining
number of solutions is nonzero.

4. k-Layered Reachability Oracle (k-LRO), the problem of deciding whether two
vertices u, v are connected in a directed k-layered graph (that is, a graph whose vertices
are partitioned into k parts, with edges only going from one part to the next), also has
an efficient sensitivity oracle, and in fact can be seen to be equivalent to the directed
k-Path problem. In particular, the same k-Path sensitivity oracle devised in this paper
can be used here without any changes.

5 Open questions

We briefly discuss a few natural questions that arise.

1. Is there a fully-dynamic k-Path detection algorithm on undirected graphs with f(k)nO(1)

preprocessing time for some computable function f , and update time 2O(k)no(1)?
This would beat the dynamic algorithm proposed in [2] that is a simple adaptation of the
original color-coding idea [4], while to the best of our knowledge, no improvement on this
original color-coding idea is known to transfer to the dynamic setting. While our work
shows a better dependency on k, we do not reach a truly dynamic algorithm, but rather
only a sensitivity oracle.
We note that it is unlikely that such an an algorithm exists for directed graphs, due to
the conditional lower bound presented in [2].
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2. Is there an efficient sensitivity oracle for the k-Tree problem?
The k-Tree problem is as follows: given an undirected graph G on n vertices and a
tree T on k vertices, determine whether T is a (not necessarily induced) subgraph of G.
This problem is known to be FPT, and for example is shown in [22] to be solvable in
time 2k poly(k) poly(n), with techniques similar to those applied for the k-Path problem.
However, it is unclear how to adapt the techniques here for an efficient sensitivity oracle.
We conjecture that there is, in fact, no efficient sensitivity oracle for this problem. More
specifically, we conjecture this for any k-Tree formed by connecting a single vertex to
the beginning of Θ(

√
k) paths of length Θ(

√
k). We note that the techniques of [6] for a

decremental sensitivity oracle work for any k-Tree just as well as they do for the k-Path
problem.

3. Brand [9] noted that the algebra generated by the lifts of Vandermonde vectors, which
is the algebra used in all the deterministic algorithms presented in this paper, has
dimension O(φ2k) where φ = 1+

√
5

2 - much smaller than the anticipated O(4k). It is
also commutative. It is an open problem whether, in light of this, multiplication in this
algebra can be reduced to below O(2ωk). Such an algorithm will immediately improve
the bounds discussed in this paper.

4. Can other techniques used to solve the static versions of the problems discussed in this
paper, or other parameterized problems, be used to design faster dynamic algorithms and
sensitivity oracles?
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