
Graph Reconstruction from Random Subgraphs
Andrew McGregor #

University of Massachusetts, Amherst, MA, USA

Rik Sengupta #

University of Massachusetts, Amherst, MA, USA

Abstract
We consider the problem of reconstructing a graph G in two natural sampling models: 1) each
sample corresponds to a random induced subgraph and 2) for a fixed adjacency matrix AG for G,
each sample corresponds to a random principal submatrix (i.e., a submatrix formed by deleting the
same set of rows and columns) of AG. We refer to these models as the “unordered” and “ordered”
models respectively. The two models are motivated by work on the reconstruction conjecture in
combinatorics and trace reconstruction in theoretical computer science. Despite the superficial
similarities between the models, we show that the sample complexity of reconstruction can be
exponentially different. Our main results are as follows:

In the unordered model, we show that almost all graphs can be reconstructed with Θ(p−2 log n)
samples if each node is included in the random subgraph with any constant probability p; this
is optimal. We show our upper bound extends to smaller values of p as well. In contrast,
for arbitrary graphs, we show that exp(Ω(n)) samples are required for reconstruction even for
2-regular graphs. One of the key technical steps in the first result is showing that, with high
probability, any subgraph isomorphism in a random graph has at most O(log n) non-fixed points.
In the ordered model, we show that any graph with constant arboricity or degeneracy (i.e., every
induced subgraph has constant average degree) can be reconstructed with exp(Õ(n1/3)) samples
and that arbitrary graphs can be reconstructed with exp(Õ(n1/2)) samples. The results about
almost all graphs in the first model carry over to the second. One of the key technical steps in the
first result is showing that reconstruction of low degeneracy graphs can be reduced to learning a
small number of moments of sets of the form {i−j : j < i, (i, j) ∈ E} and {j −i : i < j, (i, j) ∈ E}
where G = ([n], E) is the unknown graph.
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1 Introduction

We consider the problem of reconstructing an undirected graph G on n nodes in the following
two natural sampling models:

Unordered Model: Each node is sampled independently with probability p. The
returned sample is the induced subgraph G[A] where A is the set of sampled nodes. We
wish to reconstruct G up to isomorphism.
Ordered Model: Let AG be a fixed adjacency matrix for G. Each node is sampled
independently with probability p. For each node not sampled, the corresponding row and
column of AG are deleted and the returned sample corresponds to the resulting submatrix.
We wish to reconstruct AG.
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96:2 Graph Reconstruction from Random Subgraphs

We are interested in the sample complexity of reconstruction in each model, i.e., the number
of samples required to reconstruct the original graph with high probability. When p = 1/2,
the problem in the unordered model is how many uniformly random induced subgraphs
are required to reconstruct a graph. The problem in the ordered model is how many
random principal submatrices (i.e., submatrices formed by symmetric row/column deletions)
are required to reconstruct a symmetric binary matrix with 0s on the diagonal. We will
be interested in reconstructing both arbitrary graphs and random graphs (i.e., almost all
graphs). In the ordered model, we are also interested in reconstructing low-degeneracy graphs.
Degeneracy is perhaps the most natural notion of sparsity in graphs and sparsity has played
an important role in other reconstruction problems such as compressed sensing [12] and trace
reconstruction [20].

Unordered Model and Reconstruction from k-Decks. Reconstruction in the unordered
model is closely connected to the problem of reconstruction from k-decks. Given an undirected
graph G, its k-deck is the multiset of all

(
n
k

)
induced subgraphs on k of the vertices of G.

The (n − 1)-deck is typically referred to as just the deck. The Reconstruction Conjecture,
due to Kelly [17] and Ulam [31], asks whether there exist two different graphs with at
least three nodes, that have the same deck. Bollobas [3] proved that almost all graphs
can be reconstructed by taking three graphs from its deck. Furthermore, almost all sets of
three graphs from the deck of G suffice to reconstruct it. Recently, Spinoza and West [30]
generalized this result to the following. Let ε > 0 be an arbitrarily small constant and let
ℓ ≤ (1 − ε)n/2. Then, almost all graphs can be reconstructed from some subset of

(
ℓ+2

2
)

induced subgraphs from the (n − ℓ)-deck. Note that if a k-deck is sufficient to reconstruct a
graph, then one approach to bounding the sample complexity in our problem is to analyze the
sample complexity of reconstructing the k-deck; this could be done by repeatedly sampling
subgraphs of the appropriate size and estimating the number of copies of each such subgraph
in the graph. However, the results above suggest it might be possible to reconstruct random
graphs more efficiently. Many of the above results rely on showing that for almost all graphs
G, any two “large” subgraphs of G are not isomorphic. In our problem we need to consider
subgraphs of G that are significantly smaller and have to bound the number of isomorphisms
rather than ensuring there are none.

Ordered Model and Trace Reconstruction. There is also a natural variant of the k-deck
problem for matrices where now the k-deck corresponds to the multiset of all submatrices
or principal submatrices. For example, reconstruction from such k-decks was studied by
Kós et al. [18] and they showed that the O(n2/3)-deck was sufficient for reconstruction. Our
problem in the ordered model can be thought of a stochastic variant of this problem.

Our problem is also closely related to the trace reconstruction problem. In this problem
the goal is to reconstruct an unknown binary string x ∈ {0, 1}n from independent random
subsequences, or “traces”, where each subsequence is formed by deleting each bit with
probability q = 1 − p and then concatenating the remaining bits. The trace reconstruction
problem was first proposed by Batu et al. [2]. Since then, the problem attracted a lot
of attention and ended up branching out into several directions and variants [4, 10, 10, 11,
13–16, 20–22, 26, 27, 29, 32]. The best upper and lower bounds known for this problem are
exp(Õ(n1/5)) and Ω̃(n2/3) traces respectively, and were both proved recently by Chase [6, 7].
Our approach for reconstructing arbitrary graphs is very similar to the approach in [20,27],
but the result on reconstructing low-degenerary graphs requires combining those ideas with
a “peeling” approach that iteratively reconstructs the neighborhood of low degree nodes,
removes these nodes, and recurses on the remaining graph.
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There is a natural variant of the classical string trace reconstruction problem where
we have an unknown n × n binary matrix, and each trace is a sub-matrix obtained by
deleting each row and column independently with probability q. The best known upper
bound for this variant is exp(Õ(n1/2)) traces [20]. The matrix variant is different from
the string version because there are now dependencies between the bits that are deleted.
The matrix variant is very closely related to the ordered model we consider; the only slight
difference is that in the ordered model there is the symmetric constraint when deleting
rows and columns of the adjacency matrix. There has also recently been work on tree
reconstruction [4, 10, 21] that, although related somewhat to our work, primarily deals with
different models of deletion channels that are only defined for rooted trees. There have
been recent advances in a “smoothed” variant of the problem where each bit of the string is
replaced by a uniform random bit with some probability [8]. Another variant, coded trace
reconstruction, involving efficiently encodable codes that can be recovered despite some
constant probability of edit errors, has also been studied extensively [5, 9, 10]. A generalized
formulation of the problem where instead of a single unknown string, we draw a string at
random from some distribution over strings and pass it through a deletion channel, has also
garnered some recent interest [1,25]. Note that in both the ordered and unordered model, the
main challenge to reconstruction is that the nodes are not labelled. However, we note that
are also other interesting reconstruction problems arising in the context of labelled graph,
see e.g., Mossel and Ross [23], but these consider very different models from those considered
here.

1.1 Our Results
1. Unordered Model: We show that for almost all graphs, Θ(p−2 log n log(1/δ)) traces

(where in this model a trace is a randomly induced subgraph) suffice for reconstruction
with probability at least 1 − δ, as long as the retention probability p is Ω̃(1/n1/6). Note
that this is optimal for the range of p considered since Θ(p−2 log n) traces are required to
ensure every edge appears in at least one trace.1 In contrast, we show that reconstructing
arbitrary graphs is hard: even distinguishing between a pair of 2-regular graphs may
require exp(Ω(n)) traces. We show, however, that if the maximum degree of G is at most
one, then it can be reconstructed with Θ(n) traces. One of the key technical steps in
the first result is showing that, with high probability, any subgraph isomorphism in a
random graph has at most O(log n) non-fixed points. This contrasts with a classic result
by Müller [31] that shows that there are isomorphic subgraphs (where the isomorphism
may contain an unbounded number of non-fixed points) of size n/2 but no isomorphic
subgraphs of size n(1 + ε)/2 for any constant ε > 0.

2. Ordered Model: Our main result in the ordered model is that exp(Õ(n1/3)) samples
(i.e., a random principal submatrix of the adjacency matrix) suffice to reconstruct graphs
of constant degeneracy, as long as the retention probability p is a constant. Recall that
the degeneracy of a graph is the smallest k ∈ N such that every induced subgraph has a
vertex of degree at most k.2 One of the key technical steps in the first result is showing

1 This follows by considering a graph that consists of n/2 vertex-disjoint edges. The edges of such
a graph appear in a trace independently of one another. Hence, the probability that every edge
appears in at least one of t traces is (1 − (1 − p2)t)n/2 and this is at most (1 − 2/n)n/2 ≤ 1/e if
t < log1−p2 (2/n) = Ω(log(n)/p2).

2 Note that the degeneracy of a graph is constant factor related to the arboricity of the graph. It is a
robust notion of the sparsity of a graph in that it ensures that the induced subgraph on any r nodes
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that reconstruction of low degeneracy graphs can be reduced to learning a small number of
moments of sets of the form {i − j : j < i, (i, j) ∈ E} and {j − i : i < j, (i, j) ∈ E}. These
moments can then be learned via an extension of methods from complex analysis that
have been developed for the trace reconstruction problem. Our results represents a strong
separation between sample complexity of reconstruction in the ordered and unordered
models since 2-regular graphs are a special case of low degeneracy graphs. Finally, we
show that any graph can be reconstructed with exp(Õ(n1/2)) traces. The upper bound
is established via a slight modification of a result by Krishnamurthy et al. [20]; they
considered independent row/column deletions and the modification is required to deal
with the fact that in our setting a row is deleted iff the corresponding column is deleted.

2 Reconstruction of Almost All Graphs in the Unordered Model

For reconstructing almost all graphs in the unordered model, the high level approach is:
1. Determine a consistent labeling of all nodes in the traces such that two nodes receive the

same label iff they correspond to the same node in the unknown graph G. Determining
this labelling will be the main technical challenge in our approach and it is especially
challenging in the unordered model (compared to the ordered model) because there is no
apparent ordering of the nodes that are observed in a trace.

2. If each pair of nodes of G appears together in some trace, we know whether or not there
exists an edge between these two nodes. Note that

T := 3p−2 log n

traces are sufficient to ensure this second condition with high probability.3

The natural question is how to determine a consistent labeling. We do this by considering
all pairs of traces and for each node in the first trace of the pair we determine which node, if
any, it corresponds to in the second trace. If we do this for all pairs of traces and every node
of G appears in at least one trace, then for each node of G we identify all of its occurrences
amongst the traces. Hence, the problem of finding a consistent labeling reduces to the
problem of finding corresponding nodes in two traces.

How do we find and label corresponding nodes between two traces? Suppose one trace is
the induced subgraph on a set of nodes A and the second trace is the induced subgraph on a
set of nodes B. To find the corresponding nodes, a possible approach is the find the largest
subgraph in G[A] that is isomorphic to a subgraph in G[B]. If this subgraph were G[A ∩ B]
and G[A ∩ B] were asymmetric, i.e., had no non-trivial automorphisms, then this would
allow us to identify corresponding nodes. If G is random, there is indeed reason to hope that
G[A ∩ B] is the largest common subgraph. In fact, if the probability p used in the generation
of the traces is strictly greater than 1/

√
2 we can show that this approach works exactly as

stated, via a classic graph theory result by Müller [24]. His result establishes that for any
constant ε > 0, for almost every graph G, the induced subgraphs with at least (1 + ε)n/2
vertices have no nontrivial automorphisms and are pairwise non-isomorphic. We omit the
details as we will instead prove a more general result that applies even when p < 1/

√
2. To

has O(r) edges.
3 Throughout this paper, we will mean a “high probability” bound to be one that holds with probability

1 − 1/poly(n). In this case, the high probability bound follows because the probability that there exists
a pairs of nodes that does not appear up in the same trace is at most

(
n
2

)
(1 − p2)T ≤ n2e−p2T .
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prove the more general result, in the next section we will define a family of graphs called
distinctive graphs and prove that a random graph is distinctive with high probability. In the
following section, we show that it is possible to find corresponding nodes between two traces
with high probability if the graph G is distinctive. This will require more than just finding
the largest pair of isomorphic subgraphs, as described below.

2.1 Active Isomorphisms and Distinctive Graphs
Strengthening Müller’s result to apply to subgraphs of size less than n/2 would give a possible
approach to finding corresponding nodes when p < 1/

√
2. Unfortunately this is not possible:

a random graph contains two isomorphic subgraphs on n/2 nodes with probability at least
1/2. For example, for any pair of nodes u and v, G[C ∪ {u}] ∼= G[C ∪ {v}] where C consists
of nodes that are neighbors of both u and v or neighbors of neither, and the expected size
of C ∪ {u} is n/2. However, note that the isomorphism in this example will consist almost
entirely of fixed points. And indeed, this turns out to be a constraint that we can leverage
to our benefit: if we disallow isomorphisms with many fixed points, we can break the n/2
barrier in Müller’s result.

▶ Definition 1 (Active Isomorphisms). Given a graph G and two subsets A, B of vertices,
say A and B have an active isomorphism if there exists an isomorphism between G[A] and
G[B] with no fixed points. Say G has an active subgraph isomorphism of size M if there
exist vertex subsets A and B with |A| = |B| = M with an active isomorphism.

We next show that a random graph drawn from G(n, 1/2) is unlikely to have large active
subgraph isomorphisms.

▶ Theorem 2. For all sufficiently large n, with high probability, a random graph on n vertices
has no active subgraph isomorphisms of size M = 20 log n.

Proof. Let G be a random graph drawn from G(n, 1/2), and let A, B ⊆ V (G) be subsets
of size M and let φ : A → B be a bijection that has no fixed points. Consider the pairs
A := {{a1, a2} : a1, a2 ∈ A, a1 ̸= a2} and B := {{b1, b2} : b1, b2 ∈ B, b1 ̸= b2}. Note that
φ naturally induces a bijection φ′ from A to B. Each vertex pair A is either an edge or a
non-edge; we think of these as the two types of pairs. The map φ is an isomorphism precisely
when φ′ preserves types. Note that while φ has no fixed points, φ′ may have fixed points. In
particular, {u, v} is a fixed point of φ′ iff φ(u) = v and φ(v) = u. Hence, if t is the number
of non-fixed points of φ′, it follows that t ≥

(
M
2

)
− M/2. Define a directed graph G on the

vertex set A ⊔ B with:
An arc from {u, u′} ∈ A to {v, v′} ∈ B if φ′({u, u′}) = {v, v′}.
An arc from {v, v′} ∈ B to {w, w′} ∈ A if {v, v′} = {w, w′}.

See Figure 1 for an example. Since each node has out-degree and in-degree at most 1
(where every node in A has out-degree exactly 1), G is a disjoint union of even cycles and
odd paths that start in A and end in B. For φ to be an isomorphism, all nodes in the same
connected component of G must have the same type. If the component is a path with k

nodes in B, the probability all nodes of the component have the same type is 1/2k. If the
component is a cycle with k nodes in B, the probability is 1/2k−1. Hence, the probability of
φ being an isomorphism is 1/2|B|−c where c is the number of cycles. Note that there are at
most |B| − t cycles with exactly one node in B and the rest have at least two nodes in B.
Hence, (|B| − t) + 2(c − |B| + t) ≤ |B| and this implies |B| − c ≥ t/2. Hence, the probability
φ is an isomorphism is at most 1/2t/2.

ICALP 2022
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The probability of A and B having an active isomorphism is bounded above by the total
number of bijections from A to B with all points non-fixed, times the probability of such
a bijection being an isomorphism, which is bounded above by M ! · 2−t/2 ≤ 2M log M−t/2 ≤
2M log M− 1

2 (M
2 )+M/4. Taking the union bound over all subgraphs of size M still gives

(
n
M

)2 ·
2M log M− 1

2 (M
2 )+M/4 ≤ 23M log n+M/4− 1

2 (M
2 ) = 2−40 log2 n+10 log n ≤ 2−30 log2 n = n−Ω(log n).

◀

{v1, v2} {v3, v4} {v4, v5} {v3, v6} {v1, v3} {v2, v4}

{v1, v2} {v3, v4} {v3, v6} {v4, v7} {v2, v4} {v1, v3}

A

B

fixed pairs non-fixed pairs

Figure 1 A construction from the proof of Theorem 2. Here, the blue arcs represent the
isomorphism φ′ between pairs in A and pairs in B, while red arcs represent the same pair of vertices.

▶ Corollary 3 (Extension to Müller). For all sufficiently large n, with high probability, there
are no two isomorphic subgraphs of a random n-vertex graph G for which the isomorphism
has 20 log n or more non-fixed points.

Proof. Theorem 2 immediately implies there does not exist a subgraph isomorphism with
more than M non-fixed points because a subgraph isomorphism with M non-fixed points
implies the existence of a size M active subgraph isomorphism. ◀

Suppose a graph G has a subgraph H that has no nontrivial automorphisms. We can
now fix a canonical ordering τ of V (H), and define the signature of a vertex v ∈ V (G) with
respect to H as the length-|V (H)| binary vector whose ith entry is 1 if and only if v is
adjacent to the ith vertex of H in the ordering τ . For a fixed asymmetric subgraph H, we
say vertices u, v ∈ V (G) are distinguishable with respect to H if and only if they have distinct
signatures with respect to H.

▶ Definition 4 (Distinctive Graphs). We say that a graph G on n vertices is distinctive if the
following conditions are met:
1. Any subgraph of G on 200 log n or more vertices is asymmetric.
2. For any two subsets A, B ⊆ V (G) satisfying G[A] ∼= G[B], there are at most 200 log n

non-fixed points in the isomorphism between them.
3. For all but a 1/n fraction of subgraphs H of G with |V (H)| ≥ 200 log n, the vertices in

V (G) are pairwise distinguishable with respect to H.

Note that the isomorphism in the second condition in the definition is well-defined and unique,
because G[A] and G[B] of size more than 200 log n are asymmetric by the first condition;
similarly, the third condition is well-defined, because H is asymmetric, also by the first
condition.

▶ Theorem 5. Almost all graphs are distinctive.
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Proof. Consider a random graph G. The probability that any particular k-node random
subgraph has a non-identity isomorphism is at most 2k log k−k2/100 (see e.g. Theorem 3.1
in [28]). Taking the union bound over all

(
n
k

)
subgraphs of G and all possible sizes of the

subgraph from k to n, the probability of G having a non-asymmetric subgraph on k or more
vertices is at most 2log n(1+2k)+k−k2/100, which is 1/poly(n) for k ≥ 200 log n. The second
follows directly from Corollary 3 above. The third is due to the following counting argument.
Fix a random subgraph H of G of size at least 200 log n. For a fixed v ∈ V (G), the probability
of there being an edge to any given vertex of H is 1/2, and these are independent for different
vertices v. Therefore, the signature of a vertex v with respect to a fixed H corresponds to a
uniformly random binary string if v ̸∈ H. If v ∈ H, the string is uniformly random aside
from the index corresponding to v, which is deterministically 0. The probability that two
of these signatures match is at most 2−|V (H)|+1 ≤ 2−200 log n+1 ≤ n−199. Therefore, by the
union bound, the probability that two vertices in G have the same signature with respect
to H is at most

(
n
2
)
/n199 ≤ 1/n197. Therefore, the expected fraction of random subgraphs

H of size at least 200 log n with the property that there are two distinct vertices that are
indistinguishable with respect to H is at most 1/n197. The probability this fraction exceeds
1/n is at most 1/n196 by an application of the Markov bound. ◀

2.2 Reconstruction of Distinctive Graphs
Let G be a distinctive graph on n vertices. In this section, we will show an upper bound on the
sample complexity of reconstructing G from uniformly random induced subgraphs, obtained
by retaining each vertex independently with probability p ≥ 12n−1/6 log2/3 n. Recall that
if we take T := 3p−2 log n samples uniformly at random, then we see each pair of vertices
appear together in some trace.

Consider first just two such random induced subgraphs G[A] and G[B] where A and B

are subsets of the nodes formed independently by sampling each node in G with probability
p. Let H be the largest graph that appears as an induced subgraph of both G[A] and G[B].
Let A′ ⊆ A and B′ ⊆ B be the nodes in A and B that induce H. Note that it could be
that A′ = B′ = A ∩ B, but while G[A ∩ B] is a subgraph of both G[A] and G[B], we do not
know if it is the largest subgraph that appears in both. However, since |A′| = |B′| ≥ |A ∩ B|
and E[|A ∩ B|] = p2n ≫ 200 log n by our choice of p we know |A′| = |B′| ≥ 200 log n with
high probability. Then, by Distinctive Property 1, we can assume that G[A′] and G[B′] are
asymmetric and that there is a unique isomorphism φ between the copy of H in G[A] and
the copy of H in G[B].

Let us now subsample the vertices in G[A′] with probability

α := 1
1200T 2 log n

,

and call the resulting set of vertices C ′ ⊂ A′. Observe that the number of vertices not fixed
by φ is at most 200 log n by Distinctive Property 2. So by Markov’s inequality, the probability
that we subsample such a non-fixed point is at most 200α log n. So with probability at least
1 − 200α log n, the set C ′ consists entirely of fixed points in φ and is therefore entirely in the
intersection A ∩ B.

Let DC′ be the distribution of C ′, i.e., we sample A, find H, and then subsample the
nodes of H. For the sake of analysis, suppose we can identify the nodes in A ∩ B and let C

be the set formed by sampling from A ∩ B with probability α. Let DC be the distribution of
C. Both the definition of DC′ and DC is with respect to some fixed A and B.

▶ Theorem 6. The variational distance between DC and DC′ is at most 200α log n.

ICALP 2022
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Proof. Let x, y ∈ {0, 1}|(A∩B)∪A′| be the characteristic vectors of C and C ′ respectively,
where we have padded each of their domains up with zeros if necessary, for notational
convenience. Let γi(b) := P(xi = b) and βi(b) := P(yi = b) where b ∈ {0, 1}. Define
S1 := A ∩ B, and S2 := A′. Then, ℓ1(DC , DC′) is∑

z∈{0,1}|(A∩B)∪A′|

∣∣∣∣ ∏
i

γi(zi) −
∏

i

βi(zi)
∣∣∣∣

≤
∑

i

∑
b∈{0,1}

∣∣∣∣γi(b) − βi(b)
∣∣∣∣

=
∑

i∈S1∩S2

∑
b∈{0,1}

∣∣∣∣γi(b) − βi(b)
∣∣∣∣ +

∑
i∈S1\S2

∑
b∈{0,1}

∣∣∣∣γi(b) − βi(b)
∣∣∣∣

+
∑

i∈S2\S1

∑
b∈{0,1}

∣∣∣∣γi(b) − βi(b)
∣∣∣∣.

where the first inequality follows from the fact the ℓ1-distance between two product distribu-
tions is at most the sum of the ℓ1 distance between the marginals.4

Of these, the first term vanishes, as the inner difference is zero, whereas the two other terms
are bounded by 2α for each term, giving us ℓ1(X, Y ) ≤ 2α(|S1 \S2|+ |S2 \S1|) ≤ 2α ·200 log n.
Since the variational distance is half the ℓ1-distance, the stated result follows. ◀

▶ Corollary 7. If p ≥ 12n−1/6 log2/3 n, then with probability at least 1 − 400α log n (where
the probability is taken over the choice of A, B and the subsampling of A), C ′ satisfies the
condition in distinctive property 3.

Proof. Let S be the event that the graph we draw satisfies Distinctive Property 3. Then,
by Theorem 6, we know PDC

(S) − PDC′ (S) ≤ ∥DC − DC′∥T V ≤ 200α log n. Recall that
T = 3p−2 log n and α = 1/(1200T 2 log n). Therefore,

E[|C|] = p2nα = p2n

1200T 2 log n
= p2n · p4

1200 · 9 log2 n · log n
> 250 log n

for p ≥ 12n−1/6 log2/3 n. By an application of the Chernoff bound, |C| ≥ 200 log n with high
probability. Because G is distinctive, this implies that C satisfies the condition in Distinctive
Property 3. Note that for p = Ω̃(n−1/6), we have 200α log n = Ω̃(n−2/3) ≫ 1/n, and so it
follows that PDC′ (S) is at least 1 − 1/n − 200α log n ≫ 1 − 400α log n. So, with the stated
probability, C ′ satisfies the property of condition 3. ◀

This gives rise to our main result, the following algorithm for reconstructing G.

▶ Theorem 8. Let G be a distinctive graph on n vertices and δ > 0. We can reconstruct
G with probability at least 1 − δ from Θ(p−2 · log n · log(1/δ)) traces, when the retention
probability p satisfies p = Ω̃(n−1/6).

4 This can be verified via induction of the number of marginals since by the triangle inequality:∣∣∣∣ ∏
i≥1

γi(zi) −
∏
i≥1

βi(zi)
∣∣∣∣ ≤

∣∣∣∣ ∏
i≥1

γi(zi) − α1(z1)
∏
i≥2

βi(zi)
∣∣∣∣ +

∣∣∣∣α1(z1)
∏
i≥2

βi(zi) −
∏
i≥1

βi(zi)
∣∣∣∣
.

where the second term when summed over z equals the ℓ1 distance between the first marginal and we
apply the induction hypothesis to the first term.
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Proof. The proof relies on the following observation. Suppose that for any two traces G1
and G2, and any vertices x ∈ G1 and y ∈ G2, we can identify whether or not x and y are
the “same” in the sense of corresponding to the same original vertex in G. Now, if we have
enough traces so that each vertex in the original graph G appears in at least one of them,
then we can consistently cluster all the vertices in all the traces into n clusters, with the
vertices in each cluster corresponding to the same vertex in G. These clusters give rise to a
“labeling” of the nodes in the traces with labels 1 through n. If now, in addition, each pair of
vertices in G appear together in some trace, we have a way of identifying whether there is an
edge between the pair of nodes in G, and therefore we can recover the isomorphism class of
G, which is equivalent to reconstructing G in the unordered setting. This corresponds to the
approach highlighted in the high level description at the start of this section.

Formally, we have the following algorithm for reconstructing G given T = 3p−2 log n

random induced subgraphs of G. For any two of these subgraphs, we can find the largest
common subgraph to both of them, and then subsample from it with probability α as defined
above. By Corollary 7, this subsampled subgraph satisfies the third distinctive property
with high probability, and so we can use it to obtain the signatures of all vertices in A ∪ B,
enabling us to label the two sampled subgraphs consistently with respect to each other. With
high probability, every pair of vertices will appear together in one of the sampled subgraphs.
Therefore, as long as we have a consistent labeling of all vertices in these subgraphs with
respect to each other, we will have a consistent labeling of the entire graph G, and therefore
be able to reconstruct it.

The probability of this happening, by union bounding over the at most T 2 pairs of random
subgraphs we generated, is at least 1 − 400T 2α log n = 1 − 400T 2 log n · 1

1200T 2 log n = 1 − 1
3 =

2/3. We can now reduce the failure probability to δ by repeating the process O(log 1/δ)
times and taking the most commonly reconstructed graph. This requires an additional factor
of O(log 1/δ) in the number of traces. ◀

▶ Corollary 9. Let n be a sufficiently large integer and p = Ω̃(n−1/6). For almost all n-node
graphs, Θ(p−2 · log n · log(1/δ)) traces suffice for reconstruction with probability at least 1 − δ.

3 Reconstruction of Arbitrary Graphs in the Unordered Model

We next consider reconstructing arbitrary graphs and show that even distinguishing two
fixed graphs may require 2Ω(n) random induced subgraphs, highlighting the vast gap between
random graphs and arbitrary graphs. In fact the lower bound even applies to distinguishing
between two graphs with maximum degree 2. This immediately implies a lower bound
for reconstruction. Note that for any constant p, the entire graph is selected as a random
subgraph with probability pn and therefore O(1/pn) = 2O(n) is a trivial upper bound on the
sample complexity for full reconstruction. So the following lower bound establishes that this
trivial upper bound is optimal.

▶ Theorem 10. Distinguishing the cycle C2n with high probability from two disjoint copies
of the cycle Cn requires 2Ω(n) traces in the unordered model.

Proof. Let D1 be the distribution over subgraphs generated when the original graph is C2n.
Let D′1 be the distribution conditioned on the event A that we now define. Partition the
vertices of C2n into n pairs of “opposite” nodes (i.e. pairs of nodes at a distance exactly n

from each other). Let A be the event that there exists an opposite pair in which both nodes
are deleted. Note that Pr(A) = 1 − (1 − q2)n where q is the deletion probability.
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· · ·

· · ·
C2n

· · ·

· · ·

· · ·

· · ·
Cn Cn

Figure 2 The construction for the proof of Theorem 10. The event A is the deletion of a pair of
“opposite” nodes, such as the pair shown in red on the left; the even B is the deletion of a pair of
nodes, one from each of the cycles, such as the pair shown in red on the right. Observe that these
two events leave us with the same graph.

Now suppose the input graph is two copies of Cn. Let D2 be the distribution over
subgraphs generated. Let D′2 be the distribution conditioned on the following event B.
Partition the vertices into pairs of nodes where each pair consists of exactly one node from
each Cn. Let B be the event that there exists a pair in which both nodes are deleted. Note
that Pr(B) = 1 − (1 − q2)n. Therefore, by the triangle inequality, we can bound the total
variational distance between D1 and D2 as follows:

∥D1−D2∥T V ≤ ∥D1−D′1∥T V +∥D′1−D′2∥T V +∥D′2−D2∥T V = O(Pr(A)+Pr(B)) = 2−Ω(n)

where we used the fact that D′1 = D′2 and substituted q = 1/2. Hence, we need at least 2Ω(n)

samples to distinguish between D1 and D2. ◀

It is worth remarking here that we needed degree-2 graphs for the example in Theorem
10, as evidenced by the following observation, which we state as a theorem.

▶ Theorem 11. For any δ > 0, a graph with maximum degree one can be reconstructed with
probability at least 1 − δ in Θ(n log(1/δ)) samples.

Proof. A graph with maximum degree one is a matching and some isolated vertices. It
suffices, therefore, to learn the size k ≤ n/2 of the matching. This size in the random
subgraph is distributed as Bin(k, 1/4). But the unknown value k can be determined by
taking the average matching observed over t = O(n) traces. Specifically, let X be defined to
be the average matching size. Then, because k is an integer, if we have |X − k/4| < 1/8, then
4X rounded to the nearest integer is exactly k. We have E[X] = k/4 and V[X] ≤ k/(4t).
Hence, by Chebyshev’s inequality, we have Pr[|X − k/4| ≥ 1/8] ≤ k/(4t)

1/82 ≤ 1/10, where
t = cn for some sufficiently large constant c. We can boost the probability up as before for
an additional log(1/δ) factor. ◀

4 Reconstruction of Low Degeneracy Graphs in the Ordered Model

In this section, we turn our attention to the ordered model. We show that the sample
complexity of reconstructing graphs with constant degeneracy is exp(Õ(n1/3)), as long as the
retention probability p is a constant. Recall that the degeneracy of an undirected graph is
the smallest value d such that every induced subgraph has a node of degree at most d. Note
that the degeneracy is within a factor 2 of the arboricity, i.e., the minimum number of forests
into which its edges can be partitioned. Hence, the result applies to a natural and large class
of graphs, that includes all trees, planar graphs, and indeed, all graphs of bounded treewidth.
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4.1 Discussion of Challenges
Given a graph G and its adjacency matrix A, let us first consider what happens structurally
to the matrix A when we pass it through a deletion channel. For instance, consider the
degree sequence, viewed as the sequence of row weights of the matrix A. Of course, the
number of terms in the degree sequence in general decreases (and we would expect about pn

terms to survive in expectation), but observe that the terms that do survive may also change
in value. In fact, each surviving vertex v now contributes a term to the degree sequence that
is drawn from the distribution Bin(deg(v), p). However, the value of a particular element
of the degree sequence in the trace is not in general independent of its position within that
trace. This is because the decrease in its value is not independent of the total number of
neighbors that are deleted in the channel. The shift in position, on the other hand, is only
dependent on the number of neighbors that appear before the corresponding row that are
deleted. This is the main difficulty that our approach circumvents.

4.2 The Offset Method
We assume that we have a fixed n-vertex graph G with a fixed adjacency matrix A. For any
vertex i ∈ [n], we define the backward and forward offsets.

A←(i) = {i − j : j < i, (i, j) ∈ E} A→(i) = {j − i : i < j, (i, j) ∈ E}

For example, if

A =

 0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


then we have backward offsets A←(1) = ∅, A←(2) = {1}, A←(3) = {1}, and A←(4) = {1, 2},
and forward offsets A→(1) = {1}, A→(2) = {1, 2}, A→(3) = {1}, and A→(4) = ∅. Of course,
A←(1) = A→(n) = ∅ for any adjacency matrix.

Let ai,k =
∑

x∈A←(i) xk and bi,k =
∑

x∈A→(i) xk, where by convention we set 00 = 0 and
10 = 1. These are the offset moments of order k for vertex i. Note that ai,0 + bi,0 is the
degree of vertex i.

We need the following result due to Krasikov and Roddity, whose proof follows from
Corollaries 2.4 and 2.5 in [19].

▶ Theorem 12 (Krasikov-Roddity, 1997). Let S = {u1, . . . , ud} be any subset of {0, 1, . . . , n−1}
of size d. Then, S is uniquely determined by the system

ur
1 + . . . + ur

d = nr, r = 1, . . . , d.

Now we state the core idea of our proof, which relies on the following observation about
the quantities {ai,k} and {bi,k} that we just defined.

▶ Theorem 13. Let G have degeneracy d. Then, the values {ai,k}i∈[n] and {bi,k}i∈[n] for
k = 0, . . . , d uniquely determine G. In other words, reconstructing {ai,k} and {bi,k} with
high probability suffices to reconstruct G with high probability.

Proof. We use induction on the number of non-isolated nodes. The base case when the
number of non-isolated nodes is 0 is trivial. Suppose the Theorem is true when there are up
to t non-isolated nodes. Let G be a d-degenerate graph with t + 1 non-isolated nodes. There
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exists a node i with degree at most d, with backward and forward offsets A←(i) and A→(i)
respectively, and offset moments ai,k and bi,k for k = 0, . . . , d. By Theorem 12, given ai,k

and bi,k we can reconstruct A←(i) and A→(i).
The idea is to identify this vertex i and reconstruct its neighbors, and induct on the

remaining graph with these edges between node i and its neighbors removed. Clearly, i is
identifiable from the zeroth moment. Let G′ be the graph formed by removing all edges
incident to i. For all remaining vertices j, let a′j,k and b′j,k be the corresponding offset
moments. Observe that a′j,k and b′j,k can be computed from i, aj,k, bj,k, A←(i), and A→(i);
furthermore, G′ itself is a d-degenerate graph with at most t − 1 non-isolated nodes, and so
by induction, there is no other such graph with t − 1 non-isolated nodes with the same offset
moments. We can now reconstruct G′ precisely by induction, and add in the missing edges
from vertex i using A←(i) and A→(i). ◀

▶ Remark 14. Note that the quantities ai,k and bi,k for k = 0, 1, . . . , d would suffice to learn
the neighborhood of node i directly (given Theorem 12) if the degree of node i were at most
d, and we could bypass induction altogether. But if the degree is strictly bigger than d,
we would have to first reconstruct other parts of the graph so that, after doing so, there
are at most d unknown edges incident to i. This is where the inductive argument becomes
necessary.

We now state the main result of this section. We relegate the somewhat technical proof to
the next subsection. This proof uses similar complex analytic techniques as in [27], which are
now standard in the literature, which involve bounding the values of Littlewood polynomials
on the unit circle in the complex plane. In our case, crucially, we need to understand how
the moments behave, which requires additional work.

▶ Theorem 15. {ai,k}i∈[n] and {bi,k}i∈[n] can be reconstructed with high probability using
exp(Õ(d2/3n1/3)) traces.

4.3 Computing Offset Moments: Proof of Theorem 15
Recall that p and q are the retention and deletion probability respectively, so that p + q = 1.
In this subsection, we make a simplification: if p ∈ (1/m, 1/(m − 1)] for some integer m, we
assume, without loss of generality, that p = 1/m. This makes the analysis easier. Of course,
given a deletion channel corresponding to retention probability p, we can always manually
simulate one with any lower retention probability, so this is a valid assumption.

Recall that the object of interest in this subsection is the kth moment, where k can go up
to the degeneracy d, which suffices by Theorem 13. We denote by ãj,k and b̃j,k the observed
(i.e., sampled) values of aj,k and bj,k respectively from our traces. Consider the polynomial∑

i≥1 bi,kwi−1, and consider its expected value when we look at the trace from the deletion
channel. We have, by linearity of expectation,

E

∑
i≥1

b̃i,kwi−1

 =
∑
i≥1

wi−1E[̃bi,k]. (1)

Consider the event that the ith row of the trace comes from the jth row of the original
adjacency matrix A, for some i ≤ j ≤ n. This happens precisely when exactly i − 1 of the
first j − 1 rows are retained, and the jth row is also retained, which happens with probability(

j−1
i−1

)
piqj−i. However, the value of bj,k changes as well, which we need to account for.
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To analyze this change, the first key thing to observe is that the shift in the eventual
position of bj,k is independent of the change in its value; the former is a function of the rows
before j that are deleted, while the latter is a function of the rows after j that are deleted,
and we assert independence in the deletion probability of each row.

It remains to analyze the expected value of bj,k after A is passed through the deletion
channel. Recall that bj,k =

∑
x∈A→(j) xk, the sum of kth powers of the forward offsets in row

j. Now, for a given offset x in the row under consideration, it survives with probability p,
and if so, ends up as the offset 1 + y, where y is a random variable that follows a Bin(x − 1, p)
distribution, since each of the x − 1 columns between the diagonal and the original offset can
be deleted with probability p. Therefore, the value of bj,k is∑

x∈A→(j)

p(1 + y)k, (2)

where y ∼ Bin(x − 1, p). Since each offset is bounded above by n, and there are at most n of
them, this expression is bounded above by O(nk+1).

We also need a lower bound: ignoring the extra factor of p, each of the k + 1 terms in the
expansion of (2) is an integer multiple of a power of y, and so the expected value of each
such term is an integer multiple of m−k (since the terms less than 1 are all products of the
form prqs, where r + s ≤ k). Therefore, each nonzero term in the expectation is bounded
away in absolute value from 0 by m−k−1.

An exactly symmetric argument holds for the expected value of aj,k as well, by “indexing”
in the opposite direction to bj,k. Denote by Φa(j, k) and Φb(j, k) these expected values of
aj,k and bj,k respectively, where Φa(j, k) and Φb(j, k) are between Ω(m−k−1) and O(nk+1).
The lower bound is necessary, as we do not want these expected values to be (exponentially)
close to zero.

It follows from the arguments above that (1) reduces to (using backward offsets instead
of forward ones, by a symmetric argument):

E

∑
i≥1

ãi,kwi−1

 =
∑
i≥1

wi−1
n∑

j=i

(
j − 1
i − 1

)
piqj−iΦa(j, k)

=
∑
j≥1

Φa(j, k)
j∑

i=1

(
j − 1
i − 1

)
piwi−1qj−i.

With a change of variables, this becomes

∑
j≥1

Φa(j, k)p
j−1∑
i′=0

(
j − 1

i′

)
(pw)i′qj−1−i′ =

∑
j≥1

Φa(j, k)p(pw + q)j−1

We write pw + q = z. To obtain a lower bound on the variational distance between two
distributions coming from two different matrices, say A and A′ with ãi,k and ã′i,k denoting
the distribution of backward offsets from them respectively, we obtain

E

∑
i≥1

(ãi,k − ã′i,k)wi−1

 =
n∑

j=1
(Φa(j, k) − Φ′a(j, k))pzj−1. (3)

The right side of equation (3) is a polynomial in z of degree less than n, where by the triangle
inequality, each nonzero coefficient is upper bounded in absolute value by O(nk+1), and lower
bounded by Ω(m−k−1).
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We now need a technical and non-trivial lemma. This is a generalization of Theorem 7
in [20], which in turns adapts a lemma in [27]. The arguments in those papers can be
extended in a straightforward way to apply the same results to powers higher than 2, which
is the core idea of this lemma. We use a localized lower bound on a generalized version of
Littlewood polynomials, where the coefficients can be (up to) polynomially large instead of
being in {−1, 0, 1}. We omit the proof here.

▶ Lemma 16 (Generalized Littlewood polynomial bound). Let G(z) be a nonzero complex
polynomial in z with its degree bounded by n, integer coefficients, and each coefficient bounded
in absolute value by O(nr). Then, for any fixed positive L, there is some z⋆ ∈ {eiθ : −π/L ≤
θ ≤ π/L} such that |G(z⋆)| ≥ n(1−L)(r+1).

This lemma enables us to conclude the following.

▶ Lemma 17. We have,∑
i≥1

∣∣E [
ãi,k − ã′i,k

] ∣∣ ≥ exp
(

−Ω̃(k + k2/3n1/3)
)

.

Proof. Multiplying both sides of (3) by mk+1 yields a polynomial precisely of the kind
described in Lemma 16 on the right hand side. Therefore, applying Lemma 16, we conclude
that for some z⋆ ∈ {eiθ : −π/L ≤ θ ≤ π/L},

mk+1
∑
i≥1

∣∣E [
ãi,k − ã′i,k

] ∣∣ · |(z⋆)i−1| ≥
∣∣∣∣E[ ∑

i≥1
mk+1(ãi,k − ã′i,k)(z⋆)i−1]∣∣∣∣

≥ n(1−L)(k+2+ log m
log n (k+1)).

Noting that |z⋆| < exp(C1/L2) for some finite constant C1, we now obtain

mk+1
∑
i≥1

∣∣E [
ãi,k − ã′i,k

] ∣∣ ≥ n(1−L)(k+2+ log m
log n (k+1)) exp(−C1n/L2)

= exp
(
−C2kL log n − C1n/L2)

for some constant C2. Here, C2 is dependent on log m, which is constant when the retention
probability p is a constant. The right hand side of this equation is maximized when L is
Õ(n1/3/k1/3). We then conclude∑

i≥1

∣∣E [
ãi,k − ã′i,k

] ∣∣ ≥ m−k−1 · exp
(

−Ω̃(k2/3n1/3)
)

= exp
(

−Ω̃(k + k2/3n1/3)
)

,

where k = O(n) can be absorbed into the second term. ◀

To finish the proof of Theorem 15, we just need a standard union bound argument.

▶ Theorem 18 (Folklore). Let F be a family of distributions where any two distributions
A, B ∈ F have variational distance at least ε, for some ε > 0. Then, we can distinguish any
member of F using O(log(|F|)/ε2) samples.

Using Theorem 18 directly on the distributions defined in the proof of Theorem 15 proves
that we can recover {ai,k}i∈[n] in exp(Õ(k2/3n1/3)) traces. This holds for {bi,k}i∈[n] as well,
proving Theorem 15.
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5 Reconstructing Arbitrary Graphs in the Ordered Model

In this section, we prove that arbitrary adjacency matrices can be reconstructed with high
probability using exp(Õ(n1/2)) samples in the ordered model. This is in contrast to the
unordered model where we showed, in Theorem 10, that exp(Ω(n)) samples were necessary.
The proof is a small modification of an existing result by Krishnamurthy et al. [20] on the
problem on reconstructing arbitrary binary matrices when rows and columns are deleted
independently.

▶ Theorem 19. For graph reconstruction, exp(O(n1/2√
q log n/p)) traces suffice with high

probability to recover an arbitrary adjacency matrix A ∈ {0, 1}n×n, where p is the retention
probability and q = 1 − p.

Proof Sketch. In our problem, the ith row is deleted iff the ith column is deleted, while the
proof in [20] breaks when there are such dependencies. However, it is possible to make a
small modification in the existing proof to handle this. The idea is to re-index the entries
of the matrices such that the probability the entry in position (i′, j′) of the original matrix
ends up in position (i, j) can be expressed conveniently in terms of two independent random
variables. Let us formalize the change and sketch the rest of the approach.

For a matrix A ∈ {0, 1}n×n, let Ã denote a matrix trace. Let us denote the (i, j)th
entry of the matrix as Ai,j , for i, j = 0, 1, . . . , n − 1, an indexing protocol we adhere to for
every matrix. We restrict our attention to the entries above the diagonal, which suffices
for reconstruction. For complex numbers w1, w2 ∈ C, similar to the proof of Theorem 15,
observe that

E

 n−1∑
i,j=0

Ãi,i+jwi
1wj

2

 = p2
∑
i,j

wi
1wj

2

∑
ki≥i,kj≥j

Aki,ki+kj

(
ki

i

)(
kj − 1
j − 1

)
piqki−ipj−1qkj−j

= p2
n−1∑

k1=0,k2=1
Ak1,k1+k2(pw1 + q)k1(pw2 + q)k2

Thus, for two adjacency matrices A, B, we have

1
p2E

 n−1∑
i,j=0

(Ãi,i+j − B̃i,i+j)wi
1wj

2

 =
n−1∑
k1=0
k2=1

(Ak1,k1+k2 − Bk1,k1+k2)(pw1 + q)k1(pw2 + q)k2

≜ f(z1, z2),

where z1 = pw1 + q and z2 = pw2 + q. The rest of the argument is identical to the proof of
Krishnamurthy et al. [20]. Specifically, since all the coefficients of f(z1, z2) are in {−1, 0, 1},
and the degree is n − 1 in each variable it can be shown that for any L > 0 there exist
z⋆

1 , z⋆
2 ∈ {eiθ : |θ| ≤ π/L} such that |f(z⋆

1 , z⋆
2)| ≥ exp(−C1L2 log n) for some constant C1. If

z⋆
1 = pw⋆

1 + q and z⋆
2 = pw⋆

2 + q then |w⋆
1 |, |w⋆

2 | ≤ exp(C2q/(Lp)2) for some constant C2.
Substituting these bounds and applying the triangle inequality gives,

1
p2

∑
i,j

∣∣∣∣E[Ãi,i+j − B̃i,i+j ]
∣∣∣∣ ≥ f(z⋆

1 , z⋆
2)

|w⋆
1 |n|w⋆

2 |n

≥ exp
(

−C1L2 log n − 2C2qn

L2p2

)
≥ exp

(
−C

√
nq log n

p

)
≜ ε
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where the second inequality follows by optimizing for L, similar to our approach in the
previous section. So if we estimate each E[Ãi,i+j ] and E[B̃i,i+j ] up to additive error bounded
above by p2ε/(2n2), we can distinguish between A and B. This immediately leads to the
claimed bound via a union bound over all possible pairs and adjacency matrices. ◀

It seems difficult to construct lower bounds the sample complexity of reconstruction in
the ordered model, beyond an obvious reduction from string trace reconstruction as follows.
Given a binary string σ = (x1, . . . , xn), we can create the ordered graph Gσ on n + 1 vertices
v1, . . . , vn+1 by adding edges of the form (vi, vn+1) if and only if xi = 1. Clearly, there is an
injective map from length-n binary strings to (n + 1)-vertex ordered graphs. Furthermore,
taking a trace of a binary string by passing it through a deletion channel with probability q of
deletion corresponds exactly to taking a trace from the ordered subgraph conditioned on the
vertex n + 1 being preserved. This automatically implies a lower bound of Ω̃(n3/2) samples
for graph reconstruction in the ordered model due to [6]. On the surface, the ordered graph
reconstruction problem seems to be fundamentally harder than the string trace reconstruction
problem as well, but it is significantly harder to improve the lower bound.

6 Conclusion and Open Problems

We considered two natural graph reconstruction problems: reconstructing a graph from
random induced subgraphs (the unordered model) and reconstructing an graph adjacency
matrix via random symmetric submatrices (the ordered model). We showed that for almost
all graphs G on n nodes, Θ(p−2 log n) random induced subgraphs are necessary and sufficient
to reconstruct G with high probability if each subgraph is formed by deleting each node with
probability 1 − p. In contrast, we showed that there exist pairs of graphs that require 2Ω(n)

random induced subgraphs to distinguish even when p = 1/2. We showed that exp(Õ(n1/3)
random symmetric submatrices are sufficient to construct sparse graphs (specifically, graphs
with constant degeneracy or arboricity) and observed that exp(Õ(n1/2)) random symmetric
submatrices are sufficient to reconstruct arbitrary graphs.

Some Open Questions. In a fairly general sense, our results resolve the sample complexity
of graph reconstruction in the unordered model. However, it may interesting to also consider
time complexity. For example, the current approach requires isomorphism testing for an
exponential number of pairs of subgraphs and it seems plausible that a more efficient approach
could exist. For the ordered model, it is natural to ask whether the sample complexity of our
upper bounds can be improved. Proving lower bounds for trace construction type problems
is notoriously difficult and there is currently an exponential gap between the best lower
and upper bounds. However, more tractable open questions include whether our results are
optimal for mean-based algorithms [27], i.e., algorithms that only use the expected value of
each bit in the trace. Another potential direction is whether it is possible to adapt ideas from
Chase’s recent work [7] to improve the exponential dependence on n or the degeneracy d.
This may require substantial work in finding the two-dimensional extensions to several results.
Of course, while d-degenerate graphs are a robust class of structures in themselves, it would
be a natural next step to try to relax that condition altogether. Removing this constraint
means denser rows of the adjacency matrix, which seems to require many more samples to
effectively reconstruct, as well as novel ideas that go beyond the Krasikov-Roddity methods
of set reconstruction from [19]. However, there may well be other classes of graphs that our
current approach is suitable for and easily generalizable to. For instance, graphs with high
girth are a natural candidate for trying to reconstruct using the techniques of this paper, as
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small-diameter neighborhoods in an arbitrary high-girth graph are acyclic, and therefore the
high-girth condition is akin to a “local” bounded-degeneracy condition. It seems natural to
try and extend our approach to this class of graphs as well. Yet another direction to explore
would be to consider lower values of p in the unordered model. Our current bounds are
good enough for p = Ω̃(1/n1/6), but we suspect this bound is an artifact of our approach
rather than being inherent to the problem. While the majority of the related literature on
similar problems typically concern themselves with constant p, which are covered by our
work, exploring e.g., p = O(poly log n)/n may require new techniques.
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