
Strongly Sublinear Algorithms for Testing Pattern
Freeness
Ilan Newman !

Department of Computer Science, University of Haifa, Israel

Nithin Varma !

Chennai Mathematical Institute, India

Abstract
For a permutation π : [k] → [k], a function f : [n] → R contains a π-appearance if there exists
1 ≤ i1 < i2 < · · · < ik ≤ n such that for all s, t ∈ [k], f(is) < f(it) if and only if π(s) < π(t). The
function is π-free if it has no π-appearances. In this paper, we investigate the problem of testing
whether an input function f is π-free or whether f differs on at least εn values from every π-free
function. This is a generalization of the well-studied monotonicity testing and was first studied
by Newman, Rabinovich, Rajendraprasad and Sohler [28]. We show that for all constants k ∈ N,
ε ∈ (0, 1), and permutation π : [k] → [k], there is a one-sided error ε-testing algorithm for π-freeness
of functions f : [n] → R that makes Õ(no(1)) queries. We improve significantly upon the previous
best upper bound O(n1−1/(k−1)) by Ben-Eliezer and Canonne [7]. Our algorithm is adaptive, while
the earlier best upper bound is known to be tight for nonadaptive algorithms.
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1 Introduction

Given a permutation π : [k] → [k], a function f : [n] → R contains a π-appearance if there
exists 1 ≤ i1 < i2 < · · · < ik ≤ n such that for all s, t ∈ [k] it holds that f(is) < f(it) if
and only if π(s) < π(t). In other words, the function restricted to the indices {i1, . . . , ik}
respects the ordering in π. The function is π-free if it has no π-appearance. For instance, the
set of all real-valued monotone non-decreasing functions over [n] is (2, 1)-free. The notion
of π-freeness is well-studied in combinatorics, where the famous Stanley-Wilf conjecture
about the bound on the number of π-free permutations f : [n] → [n] has spawned a lot of
work [13, 14, 5, 25, 3], ultimately culminating in a proof by Marcus and Tardos [26]. The
problem of designing algorithms to determine whether a given permutation f : [n] → [n]
is π-free is an active area of research [2, 1, 10], with linear time algorithms for constant k

[23, 20]. Apart from the theoretical interest, practical motivations to study π-freeness include
the study of motifs and patterns in time series analysis [11, 32, 24].

In this paper, we study property testing of π-freeness, first studied by Newman, Rabinovich,
Rajendraprasad and Sohler [28]. Specifically, given ε ∈ (0, 1), an ε-testing algorithm for
π-freeness accepts an input function f that is π-free, and rejects if at least εn values of
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98:2 Strongly Sublinear Algorithms for Testing Pattern Freeness

f need to be changed for it to become π-free1. This problem is a generalization of the
well-studied monotonicity testing on the line ((2, 1)-freeness), which was one of the first works
in combinatorial property testing, and is still being studied actively [17, 18, 12, 15, 6, 16, 31].

Newman, Rabinovich, Rajendraprasad and Sohler [28] showed that for a general permuta-
tion π of length k, the problem of π-freeness can be ε-tested using a nonadaptive2 algorithm of
query complexity Ok,ε(n1−1/k).3 Additionally, they showed that, for nonadaptive algorithms,
one cannot obtain a significant improvement on this upper bound for k ≥ 4. In a subsequent
work, Ben-Eliezer and Canonne [7] improved this upper bound to Ok,ε(n1−1/(k−1)), which
they showed to be tight for nonadaptive algorithms. For monotone permutations π of
length k, namely, either (1, 2, . . . , k) or (k, k − 1, . . . , 1), [28] presented an algorithm with
query complexity (ε−1 log n)O(k2) to ε-test π-freeness. This was improved, in a sequence of
works [8, 9], to Ok,ε(log n), which is optimal for constant ε even for the special case of testing
(2, 1)-freeness [19].

Despite the extensive study and advances in testing freeness of monotone permutations,
improving the complexity of testing freeness of arbitrary permutations has remained open all
this while. For arbitrary permutations of length at most 3, [28] gave an adaptive algorithm
for testing freeness with query complexity (ε−1 log n)O(1). However, the case of general k > 3
has remained elusive. In particular, the techniques of [28] for k = 3 do not seem to generalize
even for k = 4.

As remarked above, optimal nonadaptive algorithms are known for any k [7], but, their
complexity tends to be linear in the input length as k grows. For the special case of (2, 1)-
freeness, it is well-known that adaptivity does not help at all in improving the complexity
of testing [18, 19]. Adaptivity is known to help somewhat for the case of testing freeness
of monotone permutations of length k, where, every nonadaptive algorithm has query
complexity Ω((log n)log k) [8], and the Ok,ε(log n)-query algorithm of Ben-Eliezer, Letzter,
and Waingarten [9] is adaptive. Adaptivity significantly helps in testing freeness of arbitrary
permutations of length 3 as shown by [28] and [7].

Our results. In this work, we give adaptive ε-testing algorithms for π-freeness of permuta-
tions π of arbitrary constant length k with complexity Õk,ε(no(1)). Hence, testing π-freeness
has quite efficient sublinear algorithms even for relatively large patterns. Our result shows a
strong separation between adaptive and nonadaptive algorithms for testing pattern freeness.

▶ Theorem 1.1. Let ε ∈ (0, 1), k ∈ N and π : [k] → [k] be a permutation. There exists an
ε-tester for π-freeness of functions f : [n] → R with query complexity Õk,ε(nO(1/ log log log n)).

Discussion of our techniques. The algorithm that we design has one-sided error and rejects
only if it finds a π-appearance in the input function f : [n] → R. In the following paragraphs,
we present some ideas behind a Õ(

√
n)-query algorithm for detecting a π-appearance in a

function f that is ε-far from π-free, for a permutation π of length 4. The case of length-4
permutations is not much different from the general case (where, we additionally recurse
on problems of smaller length patterns). The Õ(

√
n) queries algorithm, however, is much

1 Algorithms in this area are typically randomized, and the decisions to accept and reject are with high
constant probability. See [33, 22] for definitions of property testing.

2 An algorithm whose queries do not depend on the answers to previous queries is a nonadaptive algorithm.
It is adaptive otherwise.

3 Throughout this work, we are interested in the parameter regime of constant ε ∈ (0, 1) and k. The
notation Ok,ε(·) hides a factor that is an arbitrary function of these parameters.
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simpler than the general one, but it outlines many of the ideas involved in the latter one.
A more detailed description appears in Section 3. The formal description of the general
algorithm is given in Section 4. The correctness proof and query complexity analysis of the
general algorithm can be found in the full version [30].

For a parameter ε ∈ (0, 1), a function f is ε-far from π-free if at least an εn of its values
needs to be changed in order to make it π-free. In other words, the Hamming distance of
f from the closest π-free real-valued function over [n] is at least εn. A folklore fact is that
the Hamming distance and the deletion distance of f to π-freeness are equal, where the
deletion distance of f to π-freeness is the cardinality of the smallest set S ⊆ [n] such that f

restricted to [n] \ S is π-free. By virtue of this equality, a function that is ε-far from π-free
has a matching of π-appearances of cardinality at least εn/4. This observation facilitates our
algorithm and all previous algorithms on testing π-freeness, including monotonicity testers.

The basic ingredient in our algorithms is the use of a natural representation of f : [n] → R
by a Boolean function over a grid [n] × R(f), where R(f) denotes the range of f . Specifically,
we visualize the function as a grid of n points in R2, such that for each i ∈ [n], the point
(i, f(i)) is a marked point of the grid. We denote this grid with marked points as Gn.
This view has been useful in the design of approximation algorithms for the related and
fundamental problem of estimating the length of Longest Increasing Subsequence (LIS) in a
real-valued array [35, 34, 27, 29]. Adopting this view, for any permutation π, a π-appearance
at places (i1, . . . , ik) in f corresponds naturally to a k-tuple of points {ij , f(ij)}, j = 1 . . . k

in Gn, for which their relative order (in Gn) forms a π-appearance. The converse is also true:
every π-appearance in the Boolean grid Gn corresponds to a π-appearance in f .

We note that the grid Gn is neither known to nor directly accessible by the algorithm,
and in particular, R(f) is not assumed to be known. A main first step in our algorithm is to
approximate the grid Gn by a coarser m × m grid of boxes, Gm,m, for m << n, a parameter
that will determine the query complexity. The grid Gm,m is defined as follows. Suppose
that we have a partition of R(f) into m disjoint contiguous intervals of increasing values,
referred here as “layers”, I1, . . . , Im, and let S1, . . . , Sm be a partition of [n] into m contiguous
intervals of equal length, referred to as “stripes”. These two partitions decompose Gn and
the f -points in it into m2 boxes which form the grid of cells Gm,m. The (i, j)-th cell of this
grid is the Cartesian product Si × Ij , and is denoted box(Si, Ij). We view the non-empty
cells in Gm,m as a coarse approximation of Gn (and of the input function, equivalently). The
grid Gm,m has a natural order on its boxes (viewed as points in [m] × [m]).

While Gm,m is also not directly accessible to the algorithm, it can be well-approximated
very efficiently. Fixing m, we use sampling by Õ(m) queries to identify and mark the boxes
in Gm,m that contain a non-negligible density of points of Gn. This provides a good enough
approximation of the grid Gm,m. For the rest of this top-level explanation, assume that we
have fixed m << n, and we know Gm,m; that is, we know the the number of points of Gn

belonging to each box in Gm,m, but not necessarily the points themselves.
If we find k nonempty boxes in Gm,m that form a π-appearance when viewed as points

in the [m] × [m] grid, then Gn (and hence f) contains a π-appearance for any set of k

points that is formed by selecting one point from each of the corresponding boxes. See
Figure 1(A) for such a situation, for π = (3, 2, 1, 4). We first detect such π-appearances by
our knowledge of Gm,m. However, the converse is not true: it could be that Gn contains
many π-appearances, where the corresponding points, called “legs”, are in boxes that share
layers or stripes, and hence do not form π-appearances in Gm,m. See e.g., Figure 1(B) for
such an appearance for π = (3, 2, 1, 4). Thus, assuming that the function is far from being
π-free, and no π-appearances are detected in Gm,m, there must be many π-appearances in

ICALP 2022



98:4 Strongly Sublinear Algorithms for Testing Pattern Freeness

which some legs share a layer or a stripe in Gm,m. In this case, the seminal result of Marcus
and Tardos [26], implies that only O(m) of the boxes in Gm,m are non-empty. An averaging
argument implies that if f is ε-far from being π-free, then after deleting layers or stripes
in Gm,m with ω(1) dense boxes, we are still left with a partial function (on the undeleted
points) that is ε′-far from being π-free, for a large enough ε′.

Now, to be specific, consider π = (3, 2, 1, 4) although all the following ideas work for any
specific 4-length permutation. Any π-appearance has its four legs spread over at most 4
marked boxes. This implies that there are only constantly many non-isomorphic ways of
arranging the marked boxes containing any particular π-appearance (in terms of the order
relation among the marked boxes, and the way the legs of the π-appearance are included
in them). These constantly many ways are called “configurations” in the sequel. Thus any
π-appearance is consistent with a certain configuration. Additionally, in case multiple points
in a π-appearance share some marked boxes, this appearance induces the appearances of
permutations of length smaller than 4 in each box (which are sub-permutations ν of π). If a
constant fraction of the π-appearances are spread across multiple marked boxes, there will
be many such ν-appearances in the marked boxes in the coarse grid. Hence, one phase of
our algorithm will run tests for ν-appearances for smaller patterns ν (which can be done
in polylog n queries using known testers for patterns of length at most 3) on each marked
box, and combine these ν-appearances to detect a π-appearance, if any. This phase, while
seemingly simple will require extra care, as combining sub-patterns appearances into a global
π-appearance is not always possible. This is a major issue in the general case for k > 4.

The simpler case is when there is a constant fraction of π-appearances such that all
4 points of each such appearance belong to a single marked box. This can be solved by
randomly sampling a few marked boxes and querying all the points in them to see if there
are any π-appearances. A special treatment has to be made in the case a constant fraction
of the π-appearances have their legs belonging to the same layer or the same stripe. But this
will be an easy extension of the “one-box” case.

To obtain the desired query complexity, consider first setting m = Õ(
√

n). Getting a good
enough estimate of Gm,m as described above take Õ(m) = Õ(

√
n) queries. Then, testing

each box for ν-freeness, for smaller permutations ν takes polylog n per test, but since this is
done for all marked boxes, this step also takes Õ(m) = Õ(

√
n). Finally, in the last simpler

case, we may just query all indices in a sampled box that contains at most n/m =
√

n indices,
by our setting of m. This results in a Õ(

√
n)-query tester for π-freeness.

To obtain a better complexity, we reduce the value of m, and, in the last step, we randomly
sample a few marked boxes and run the algorithm recursively. This is so, since, in the last
step, we are in the case that for a constant fraction of the π-appearances, all four legs of
each π-appearance belong to a single marked box (or a constant number of marked boxes
sharing a layer or stripe). The depth of recursion depends monotonically on n/m and the
larger it is the smaller is the query complexity. The bound we describe in this article is
nO(1/ log log n log n) which is due to the exponential deterioration of the distance parameter ε

in each recursive call. Our algorithm for permutations of length k > 4 uses, in addition to
the self-recursion, a recursion on k too.

Finally, even though it was not explicitly mentioned, we call ν-freeness or π-freeness
algorithms on marked boxes (or a collection of constantly many marked boxes sharing a
layer or stripe) and not the entire grid. Since we do not know which points belong to the
marked boxes, but only know that their density is significant, we can access points in them
only via sampling and treating points that fall outside the desired box as being erased.
This necessitates the use of erasure-resilient testers [16]. Such testers are known for all
permutation patterns of length at most 3 [16, 29, 28]. In addition, the basic tester we design
is also erasure-resilient, which makes it possible for it to be called recursively.
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Some additional complications we had to overcome. In the recursive algorithm for k-
length permutation freeness, k ≥ 4, we need to find ν-appearances that are restricted to
appear in specific configurations, for smaller length permutations ν. To exemplify this notion,
consider testing ν = (1, 3, 2)-freeness. In the usual (unrestricted) case, f : [n] 7→ R has a
ν-appearance if the values at any three indices have a ν-consistent order. In a restricted case,
we may ask ourselves whether f is free of ν-appearances where the indices corresponding to
the 1, 3-legs of a ν-appearance are at most n/2 (that is in the first half of [n]), while the index
corresponding to the 2-leg is larger than n/2. This latter property seems at least as hard to
test as the unrestricted one. In particular, for the ν-appearance as described above, it could
be that while f is far from being ν-free in the usual sense, it is still free of having restricted
ν-appearances. In our algorithm, we need to test (at lower recursion levels) freeness from
such restricted appearances. The extra restriction is discussed in Section 3 and Section 4.

Open questions. The major open question is to determine the exact (asymptotic) complexity
of testing π-freeness of arbitrary permutations π : [k] → [k], k ≥ 3. While the gaps for k = 3
are relatively small (within polylog n range), the gaps are yet much larger for k ≥ 4. We do
not have any reason to think that the upper bound obtained in this draft is tight. We did
not try to optimize the exponent of n in the Õ(no(1)) expression, but the current methods
do not seem to bring down the query complexity to polylog n. We conjecture, however, that
the query complexity is polylog n for all constant k. Another open question is whether the
complexity of a two-sided error testing might be lower than of one-sided error testing.

Finally, Newman and Varma [29] used lower bounds on testing pattern freeness of
monotone patterns of length k ≥ 3 (for nonadaptive algorithms), to obtain lower bounds
on the query complexity of nonadaptive algorithms for LIS estimation. Proving any lower
bound better than Ω(log n) for adaptively testing freeness, for arbitrary permutations of
length k for k ≥ 3, may translate in a similar way to lower bounds on adaptive algorithms
for LIS estimation.

Other definitions of π-freeness. In the definition of π-freeness, we required strict inequalities
on function values to have an occurrence of the pattern. A natural variant is to allow weak
inequalities, that is – for a set indices 1 ≤ i1 < i2 · · · < ik ≤ n a weak-π appearance is
when for all s, t ∈ [k] it holds that f(is) ≤ f(it) if and only if π(s) < π(t). Such a relaxed
requirement would mean that having a collection of k or more equal values is already a
π-appearance for any pattern π. For monotone patterns of length k, the deletion distance
equals to the Hamming distance, for any k, for this relaxed definition as well. We do not know
if this is true for larger k for non-monotone patterns in general, although we suspect that the
Hamming distance is never larger than the deletion distance by more than a constant factor.
Proving this will be enough to make our results true for testing freeness of any constant
size forbidden permutation, even with the relaxed definition. We show that the Hamming
distance is equal to the deletion distance for patterns of length at most 4. Hence, Theorem 1.1
also holds for weak-π-freeness for k ≤ 4.

Another variant that may seem related is when the forbidden order pattern is not
necessarily a permutation (that is, arbitrary function from [k] to [k] which is not one-
to-one). For example, for the 4-pattern α = (1, 2, 3, 1), an α-appearance in f at indices
i1 < i2 < i3 < i4 is when f(i1) < f(i2) < f(i3) and f(i4) = f(i1), as dictated by the order in
α. For testing freeness of such patterns, Ω(

√
n) adaptive lower bounds exist (due to a simple

probabilistic argument) even for the very simple case of (1, 1)-freeness, which corresponds to
the property of being a one-to-one function.

ICALP 2022



98:6 Strongly Sublinear Algorithms for Testing Pattern Freeness

An interesting point to mention, in this context, is that for testing freeness of forbidden
permutations, a major tool that we use is the Marcus-Tardos bound. Namely, that the
number of 1’s in an m × m Boolean matrix that does not contain a specific permutation
matrix of order k is O(m). For non-permutation patterns, similar bounds are not true in
general anymore, but do hold in many cases (or hold in a weak sense, e.g., only slightly more
than linear). In such cases, the Marcus-Tardos bound could have allowed relatively efficient
testing. However, the lower bounds hinted above for the (1, 1)-pattern makes the testing
problem completely different from that of testing forbidden permutation patterns.

Another area where we have significant gaps in our knowledge is about testing for pattern
freeness for functions of bounded or restricted range (for the special case of (2, 1)-freeness,
such a study was initiated by Pallavoor, Raskhodnikova and Varma [31] and followed upon
by others [6, 29]). We do know that in the very extreme case, that is, for functions from the
line [n] to a constant-sized range, pattern freeness is testable in constant time even for much
more general class of forbidden patterns [4].

Lastly, if we restrict our attention to functions f : [n] → [n] that are themselves
permutations, Fox and Wei [21] argued that for some special types of distance measures such
as the rectangular-distance and Kendall’s tau distance, testing π-freeness can be done in
constant query complexity. Testing π-freeness w.r.t. the Hamming or deletion distances is
very different, and still remains open for this setting.

Organization. Section 2 contains the notation, important definitions, and a discussion of
some key concepts related to testing π-freeness. Section 3 contains a high level overview of
an Õ(

√
n)-query algorithm for patterns of length 4. The formal description of our π-freeness

tester for permutations π of length k ≥ 4 and the proof ideas for a special case appear
in Section 4. All the missing proofs can be found in the full version [30].

2 Preliminaries and discussion

For a function f : [n] → R, we denote by R(f) the image of f . We often refer to the elements
of the domain [n] as indices, and the elements of R(f) as values. For S ⊆ [n], f |S denotes
the restriction of f to S. Throughout, n will denote the domain size of the function f .

We often refer to events in a probability space. For ease of representation, we will say
that an event E occurs with high probability, denoted “w.h.p.”, if Pr(E) > 1 − n− log n, to
avoid specifying accurate constants.

Let Sk denote the set of all permutations of length k. We view π = (a1, . . . , ak) ∈ Sk as
a function (and not as a cyclus), that is, where π(i) = ai, i ∈ [k]. We refer to ai as the ith
value in π, and as the ai-leg of π. Thus e.g., for π = (4, 1, 2, 3), the first value is 4, and the
third is 2, while the 4-leg of π is at the first place and its 1-leg is at the second place. We
often refer to π ∈ Sk as a k-pattern.

2.1 Deletion distance vs. Hamming distance
Let f : [n] → R. The deletion distance of f from being π-free is Ddistπ(f) = min{|S| : S ⊆
[n], f |[n]\S is π-free}. Namely, it is the cardinality of the smallest set S ⊆ [n] that intersects
each π-appearance in f . The Hamming distance of f from being π-free, Hdistπ(f) is the
minimum of dist(f, f ′) = |{i : i ∈ [n], f(i) ̸= f(i′)}| over all functions f ′ : [n] → R that
are π-free. For 0 ≤ ε < 1 we say that f is ε-far from π-freeness in deletion distance, or
Hamming distance, if distπ(f) ≥ εn, and otherwise we say that f is ε-close to π-freeness,
where distπ(f) is the corresponding distance.
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▷ Claim 2.1. Ddistπ(f) = Hdistπ(f)

Claim 2.1 is extremely important for testing π-freeness, and is what gives rise to all
testers of monotonicity, as well as π-freeness that are known. This is due to the fact that the
tests are really designed for the deletion distance, rather then the Hamming distance. The
folklore observation made in Claim 2.2 facilitates such tests, and Claim 2.1 makes the tests
work also for the Hamming distance. Due to Claim 2.1, we say that a function f is ε-far
from π-free without specifying the distance measure.

Let π ∈ Sk and f : [n] → R. A matching of π-appearances in f is a collection of
π-appearances that are pairwise disjoint as sets of indices in [n]. The following claim is
folklore and immediate from the fact that the size of a minimum vertex cover of a k-uniform
hypergraph is at most k times the cardinality of a maximal matching.

▷ Claim 2.2. Let π ∈ Sk. If f : [n] → R is ε-far from being π-free, then there exists a
matching of π-tuples of size at least εn/k.

All our algorithms have one-sided error, i.e., they always accept functions that are π-free.
For functions that are far from being π-free, using Claim 2.2, our algorithms aim to detect
some π-appearance, providing a witness for the function to not be π-free. Hence, in the
description below, and throughout the analysis of the algorithms, the input function is
assumed to be ε-far from π-free.

2.2 Viewing a function as a grid of points
Let f : [n] → R. We view f as points in an n × |R(f)| grid Gn. The horizontal axis of Gn

is labeled with the indices in [n]. The vertical axis of Gn represents the image R(f) and
is labeled with the distinct values in R(f) in increasing order, r1 < r2 < . . . < rn′ , where
|R(f)| = n′ ≤ n. We refer to an index-value pair (i, f(i)), i ∈ [n] in the grid as a point. The
grid has n points, to which our algorithms do not have direct access. In particular, we do
not assume that R(f) is known. The function is one-to-one if |R(f)| = n.

Note that if M is a matching of π-appearances in f , then M defines a corresponding
matching of π-appearances in Gn. We will always consider this alternative view, where the
matching M is a set of disjoint π-appearances in the grid Gn.

2.2.1 Coarse grid of boxes
For a pair of subsets (S, I), where S ⊆ [n] and I ⊆ R(f), we denote by box(S, I), the subgrid
S × I of Gn with the set of points in Gn (corresponding to f) in this subgrid. In most cases,
S and I will be intervals in [n] and R(f), respectively, and hence the name box. The length
of box(S, I) is defined to be |S|. A box is nonempty if it contains at least one point and is
empty otherwise.

Consider an arbitrary collection of pairwise disjoint contiguous value intervals L =
{I1, . . . Im}, such that I ⊆ ∪i∈[m]Ii. The set L naturally defines a partition of the points
in box(S, I) into m horizontal layers, Li = {(j, f(j)) : j ∈ S, f(j) ∈ Ii}, i ∈ [m]. A layer is
multi-valued if it has two points with different values. It is said to be single-valued otherwise.

Assume that, in addition to a set of layers L, we have a partition of S into disjoint intervals
S = ∪m

1 Si where Si = [ai, bi], and bi < ai+1, i = 1, . . . m−1, then S = (S1, . . . Sm) partitions
box(S, I) and the points in it, into m vertical stripes {St(S)}S∈S where St(S) = box(S, I)
contains the points {(i, f(i)) : i ∈ S}. The layering L together with the stripes S partition
box(S, I) into a coarse grid Gm,m of boxes {box(Si, Ij)}i,j∈[m] that is isomorphic to the

ICALP 2022
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Figure 1 Each rectangle represents a different grid Gn, where the green shaded boxes correspond
to some nonempty boxes in those grids. Each figure represents a different configuration type with
respect to the appearance of some 4-length pattern. The dots and the numbers indicate possible
splittings of the 4 legs of π. Figure (E) represents the pattern (4, 2, 1, 3) and all others represent the
pattern (3, 2, 1, 4).

grid [m] × [m]. Note that box(S, I) could even be the entire grid Gn. Given such a grid
Gm,m, the layer of box(Si, Ij), denoted L(box(Si, Ij)), is box(S, Ij) and its stripe, denoted
St(box(Si, Ij)), is box(Si, I).

We say that layer L is below layer L′, and write L < L′, if the largest value of a point
in L is less than the smallest value of a point in L′. For stripes St(S), St(S′), we write
St(S) < St(S′) if the largest index in S is smaller than the smallest index in S′. For the grid
Gm,m and two boxes B1, B2 in it, B1 < B2 if L(B1) < L(B2) and St(B1) < St(B2).

2.2.2 Patterns among and within nonempty boxes
Consider a coarse grid of boxes, Gm,m, defined as above on the grid of points Gn. There
is a natural homomorphism from the points in Gn to the nonempty boxes in Gm,m where
those points fall. For f and a grid of boxes Gm,m as above, we refer to this homomorphism
implicitly. This homomorphism defines when Gm,m contains a π-appearance in a natural
way. For example, consider the permutation π = (3, 2, 1, 4) ∈ S4. We say that Gm,m contains
π if there are nonempty boxes B1, B2, B3, B4 such that St(B1) < St(B2) < St(B3) < St(B4)
and L(B3) < L(B2) < L(B1) < L(B4) (see Figure 1(A)).

▶ Observation 2.3. Let L, S be a partition of Gn into layers and stripes as above, with
|L| = m, |S| = m then if Gm,m contains π then Gn (and equivalently f) has a π-appearance.

The converse of Observation 2.3 is not true; Gn may contain a π-appearance while Gm,m

does not. This happens when some of the boxes that contain the π-appearance share a layer
or a stripe. Two boxes are directly-connected if they share a layer or a stripe. The transitive
closure of the relation directly-connected is called connected. An arrangement of boxes where
every two boxes are connected is called a connected component, or simply, a component. The
size of a connected component is the number of boxes in it.

For π ∈ Sk, a π-appearance in Gn implies that the k points corresponding to such a
π-appearance are in i ≤ k distinct components in Gm,m, where the jth component Cj may
contain bj boxes each containing at least one point of the corresponding π-appearance. We
refer to the π-values in the corresponding boxes of the components as legs. For example, for
π = (3, 2, 1, 4), the π-appearance shown in Figure 1(B) is contained in two boxes that share
the same layer, and hence form one component. The left box contains the 3, 2 legs of the
π-appearance and other contains the 1, 4 legs. A different 1-component 2-boxed appearance
in the same two boxes has 3 appearing in B1 and all the other legs in B2 as in Figure 1(C).
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Examples for π = (3, 2, 1, 4)-appearances with two components C1, C2 are illustrated in
Figure 1(F) and Figure 1(H). In the first, C1, C2 contain 2 boxes each, where C1 contains the
(3, 4) legs of the appearance, each in one box, and C2 contains the (1, 2) legs. In the second,
each component is 1-boxed, where the first contains the (3, 2, 1)-legs and the other contains
the 4-leg of the appearance. Figure 1(A) contains a (3, 2, 1, 4)-appearance in 4 components.
Some other possible appearances with 1 component and 3 components are illustrated in
Figure 1(B), Figure 1(C), Figure 1(D) and Figure 1(G).

To sum up, each π-appearance in Gn defines an arrangement of nonempty boxes in
Gm,m that contain the legs of that appearance. This arrangement is defined by the relative
order of the layers and stripes among the boxes, and has at most k components. Such
a box-arrangement that can contain the legs of a π-appearance is called a configuration.
Note that there may be many different π-appearances in distinct boxes, all having the same
configuration C. Namely, in which, the arrangements of the boxes in terms of the relative
order of layers and stripes are identical. So, a configuration is just a set of boxes (or points)
in the k × k grid. An actual set of boxes in Gm,m forming a specific type of configuration is
referred to as a copy of that configuration.

Let c(k) be the number of all possible configurations that are consistent with a π-
appearance, for π ∈ Sk. For any fixed π, the number c(k) of distinct types of configurations
is constant as shown in the following observation.

▶ Observation 2.4. c(k) ≤ 2O(k log k)

A configuration C does not fully specify the way in which a π-appearance can be present.
It is necessary to also specify the way the k legs of the π-appearance are partitioned among
the boxes in a copy of C. Let B denote a set of boxes forming the configuration C. Let
ϕ : [k] → B denote the mapping of the legs of the π-appearance to boxes in B, where
ϕ(j), j ∈ [k] denotes the box in B containing the j-th leg of the π-appearance. We say that
the copy of C formed by the boxes in B contains a ϕ-legged π-appearance.

A configuration C in which the boxes form p ≥ 2 components, and that is consistent
with a π-appearance, defines ν1, . . . , νp -appearances, respectively, in the p components of C,
where νj for j ∈ [p] is the subpermutation of π that is defined by the restriction of π to the
j-th component. In addition, C defines the corresponding mappings ϕj , j = 1, . . . p, of the
corresponding legs of each νj to the corresponding boxes in the jth component. For example,
consider π = (3, 2, 1, 4) and the box arrangement shown in Figure 1(F). That arrangement
has two connected components: one that contains B1, B4 and the other that contains B2, B3,
where we number the boxes from left to right (by increasing stripe order). Further, the (only)
consistent partition of the legs of π into these boxes is π(i) ∈ Bi, i ∈ [4]. In particular, it
means that the component formed by B1, B4 contains the 3, 4 legs of π and the component
formed by B2, B3 contains the 2, 1 legs of π. Thus, in terms of the discussion above, the
component formed by B1, B4 has a ν1 = (1, 2)-appearance (corresponding to the 3, 4 legs
of π), with leg mapping ϕ1 mapping the 1-leg into B1 and the 2-leg into B4. Similarly, the
component formed by B2, B3 has a ν2 = (2, 1)-appearance (corresponding to the 2, 1 legs of
π) with corresponding leg mapping ϕ2 that maps the 2-leg into B2 and the 1-leg into B3.
Note that the converse is also true: every ν1 appearance in the component B1 ∪ B4, with a
leg-mapping ϕ1 (that is, in which the 1, 2 legs are in B1, B4 respectively), in addition to a ν2
appearance in B2 ∪ B3 with the leg-mapping ϕ2, results in a π-appearance in Gm,m.

This latter comment leads to the crucial observation that if π defines the corresponding
ν1, . . . , νp appearances in the p components of the configuration C, then, any ν1, . . . , νp-
appearances in the p components of any copy of C with consistent leg-mappings is a π-
appearance in C. This is formally stated below.
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▶ Definition 2.5. Let ν ∈ Sr. Let B1, . . . , Bp be a set of boxes forming one component C

and ϕ : [r] 7→ {B1, . . . , Bp} be an arbitrary mapping of the legs of a ν-appearance to boxes.
We say that C has a ϕ-legged ν-appearance if there is a ν-appearance in ∪p

j=1Bj in which for
each i ∈ [r], the i-th leg of ν appears in the box Bϕ(i).

▶ Observation 2.6. Let π ∈ Sk and assume that there exists a π-appearance in Gn that
in the grid of boxes Gm,m forms a configuration C that contains t components C1, . . . , Ct,
with Cj having rj boxes, j = 1, . . . , t respectively. Let the restriction of this π-appearance to
C1, . . . , Ct define the permutation patterns ν1, . . . νt in C1, . . . , Ct, with leg mappings ϕ1, . . . ϕt,
respectively.

Then, any collection of configuration copies of Cj , j = 1, . . . t, for which ∪t
1Cj is a copy

of C, and ϕj-legged νj-appearances in Ci, i = 1, . . . , t, defines a π-appearance in ∪t
1Cj. ⌟

2.3 Erasure-resilient testing
Erasure-resilient (ER) testing, introduced by Dixit, Raskhodnikova, Thakurta and Varma [16],
is a generalization of property testing. In this model, algorithms get oracle access to functions
for which the values of at most α fraction of the points in the domain are erased by an
adversary, for α ∈ [0, 1). As part of our algorithm for testing π-freeness for π ∈ Sk for k ≥ 4,
we call testers for smaller subpatterns on sub-regions of the grid Gn which may be defined by,
say, box(S, I) for some S ⊆ [n], I ⊆ R(f). In this case, the only access to points in box(S, I)
is by sampling indices from S and checking whether their values fall in I. If the values do
not fall in I, we can treat them as erasures. Given the assurance that the number of points
falling in box(S, I) is a constant fraction of |S|, we can simply run ER testers on f |S to test
for these smaller subpatterns.

3 High level description of the basic algorithm for π ∈ S4

Many of the high level ideas in the design of our π-freeness tester of complexity Õ(no(1)) are
described in this section. For simplicity, we describe first the ideas behind a Õ(

√
n)-query

tester for π-freeness of π ∈ S4. Towards the end of this section, we briefly describe how to
generalize these ideas to obtain the query complexity of Õ(no(1)) and for longer constant-
length permutations. For simplicity, we assume in what follows that the input function
f : [n] → R is one-to-one. The algorithm for functions that are not one-to-one differs in a
few places and these are explained in Section 4.1.

For the purposes of this high level description, we fix the forbidden permutation π =
(3, 2, 1, 4). The same algorithm works for any π ∈ S4. We view f as an (implicitly given)
n × |R(f)| grid Gn consisting of points (i, f(i)) for i ∈ [n], where, in particular, R(f) is
neither known nor bounded. Our first goal is to approximate Gn by a coarse grid of boxes
Gm,m, as described above, for m =

√
n. This is done by querying f on Θ̃(m) random indices,

after which we obtain a partition L of R(f) into m′ = Θ(m) horizontal layers (value intervals).
Then we partition the index set [n] into m′ contiguous intervals {Si}m′

i=1 of equal length.
This results in a grid Gm′,m′ in which we estimate the density of each box as the number of
sampled points falling in that box, normalized by n/m′. A box box(Si, Ij), i, j ∈ [m′] will
be tagged as dense if it contains Ω(1) fraction of sampled points. All of the above takes
Õ(m) = Õ(

√
n) queries, for the above choice of m. It satisfies the following properties with

high probability:
Each layer, that is box([n], Ij), j ∈ [m′], has approximately the same number of points.
It is either the case that the dense boxes contain all but an insignificant fraction of the
points in Gn, or the total number of marked boxes is larger than m′ log n.
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Next, we use the following lemma of Marcus and Tardos.

▶ Lemma 3.1 ([26]). For any π ∈ Sk, k ∈ N, there is a constant κ(k) ∈ N such that for any
r ∈ N, if a grid Gr,r contains at least κ(k) · r marked points, then it contains a π-appearance
among the marked points.

Let κ = κ(4). Using Lemma 3.1, we may assume that there are at most κ · m′ non-empty
boxes in Gm′,m′ , as otherwise, we already would have found a π-appearance in Gm′,m′ , which
by Observation 2.3, implies a π-appearance in Gn and in f as well. Hence, as a result of
the gridding, if we do not see a π-appearance among the sampled points, the second item
above implies that there are Θ(m′) dense boxes in Gm′,m′ and that these boxes cover a large
fraction of the points of Gn.

An averaging argument implies that, for an appropriate constant d = d(ε), only a small
constant fraction of layers (or stripes) contain more than d nonempty boxes. Therefore, since
the grid Gn is ε-far from being π-free, the restriction of Gn to the layers and stripes that
contain at most d boxes each, is also ε′-far from π-free for a large enough constant ε′ < ε.
This implies that Gn restricted to the points in dense boxes that belong to layers and stripes
containing at most d dense boxes each, has a matching M of π-appearances of size at least
ε′n/4. We assume in what follows that this is indeed the situation.

An important note at this point, is that every dense box B is contained in O(d3) (that is,
constantly many) 1-component configurations with at most 4 dense boxes. This implies that
there are O(m) such copies of 1-component configurations in Gm′,m′ .

Recall that every π-appearance in M defines a configuration of at most 4 components in
Gm′,m′ . Hence, the matching M of size |M | = Ω(n) can be partitioned into 4 sub-matchings
M = M1 ∪ M2 ∪ M3 ∪ M4, where Mi, i = 1, . . . , 4 consists of the π-appearances participating
in configurations having exactly i components. Since |M | = Ω(n) it follows that at least one
of Mi, i = 1, 2, 3, 4 is of linear size. Now, any π-appearance in M4 is an appearance in 4
distinct dense boxes in Gm′,m′ , where no two share a layer or a stripe. In that case, such an
appearance can be directly detected from the tagged Gm′,m′ with no further queries.

The description of the rest of the algorithm can be viewed as a treatment of several
independent cases regarding which of the constantly many configuration types contributes the
larger mass out of the Ω(n) π-appearances in M1 ∪ M2 ∪ M3. There are only two significant
cases, but to ease the reader, we split these two cases into the more natural larger number of
cases, and observe at the end that most cases can be treated conceptually in the same way.

Case 1: Assume that |M1| ≥ ε′n/3, and further, for simplicity, that a constant fraction of the
π-appearances in M1 are in a single-box component. Then, on average, a dense box, out of
the Θ(m′) dense boxes, is expected to contain at least Θ(n/m′) = Θ(m′) = Θ(

√
n) many

π-appearances. Thus a random dense box B is likely to have Θ(
√

n) many π-appearances,
and hence, making queries to all points of such a box will enable us to find one such
π-appearance. This takes an additional n/m′ = Θ(

√
n) queries, which is within the query

budget.
Next, consider the case that a constant fraction of the π-appearances in M1 belong to a
configuration C that has more than one dense box (but only one connected component).
By a similar argument, a random dense box is expected to participate in at least Θ(n/m′)
many π-appearances of copies of configuration-type C. Since each dense box is part
of at most O(d3) (constantly many) connected components of at most 4 dense boxes,
sampling a random dense box B and querying all the indices in each of the components
that contain at most 4 dense boxes and involve B, is likely to find a π-appearance with
high probability. Each connected component is over at most 4n/m′ indices, resulting in
O(n/m′) queries.
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Case 2: |M3| ≥ ε′n/3, and assume first that a constant fraction of the members in M3
belong to copies of a configuration C of 3 components B1, B2, B3, where each one is a
single box. For our current working example, π = (3, 2, 1, 4), assume further that B1
contains the 3, 2 legs of a π-appearance and B2, B3 contain its 1 and 4 legs, respectively
(see Figure 1(G) for an example). In this case B1 is not (2, 1)-free (as B1 contains the
(3, 2)-subpattern of π).
By an averaging argument, it follows that there is a dense box B for which: (a) B is far
from (2, 1)-free, and (b) there are corresponding dense boxes B2, B3 that, together with
B, form a copy of the configuration C. Now, a test follows easily. We test every dense
box for (2, 1)-freeness, which can be done in O(log n) queries per box, and hence in Õ(m)
in total. Then, by the guarantee above we will find the corresponding B and B2, B3 and
a π-appearance in it (by Observation 2.6 with the trivial mapping).
A similar argument holds for a 3-component configuration C′ in which one component
contains more than one box, and for any configuration of 3 components.

Case 3: Assume now that |M2| ≥ ε′n/3, and that the corresponding configurations of the
π-appearances in M2 contain two single-box components B1, B2, where B1 holds the
first 3 legs of π and B2 holds the 4-th leg. E.g., For π = (3, 2, 1, 4), the configuration
C contains two boxes B1, B2 where B1 contains the subpattern (3, 2, 1) and B2 is any
nonempty box such that B1 < B2, (see Figure 1(H) for an illustration). An averaging
argument, as made in Case 2, shows that there is a dense box B1 for which (a) B1 is far
from (3, 2, 1)-free, and (b) there is a corresponding dense box B2 that, together with B1,
forms a copy of the configuration C. This suggests a test that is conceptually similar to
the test in Cases 1 and 2. We test each box for being (3, 2, 1)-free. This can be done in
polylog n queries (e.g., [8]). Then once finding a (3, 2, 1) in B1 for which (a) and (b) hold,
B1 ∪ B2 contains a π-appearance.
We note here that for the example above, we ended by testing for (3, 2, 1)-freeness which is
relatively easy. For a different configuration or π, we might need to test B1 for a different
ν ∈ S3, but this can be done for any ν ∈ S3 using O(polylog n) queries [28]. Hence the
same argument and complexity guarantee hold for any 2-component configuration C as
above.

Case 4: A more complicated situation arises when |M2| ≥ ε′n/3, and the corresponding
configurations of the π-appearances in M2 are formed of two components D, B, with
D holding 3 legs of π in 2 or 3 boxes (rather than in one box as in Case 3). E.g.,
π = (4, 2, 1, 3), and the configuration C as illustrated in Figure 1(E).
By a similar averaging argument to that made in Case 2, it follows that there is a dense
box B1 for which (a) there are dense boxes B2, B3 forming a copy D′ of D with B1, and
a dense box B such that the configuration formed by D′, B is a copy of C, and (b) there
are Ω(n/m) = Ω(

√
n) ϕ-legged (3, 2, 1)-appearances in D′, where ϕ is consistent with the

leg mapping that is induced by the configuration C. This implies a conceptually similar
test to that of the simpler Case 3 above - we test each of the O(m) components D for
(3, 2, 1)-freeness, and then with the existence of the corresponding box B we find a π-
appearance. However, this is not perfectly accurate: the algorithm for finding ν = (3, 2, 1)
in D′, although efficient, might find a (3, 2, 1)-appearance where the 3 legs appear in
B1 or in B1 ∪ B2. But this does not extend with B to form a π-appearance, as the leg
mapping is not consistent with the one that is induced by C. Namely, unlike before, we
do not only need to find a ν-appearance in D but rather a ϕ-legged ν-appearance with
respect to a fixed mapping ϕ (that in this case maps each leg to a different box in the
component D′).
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To resolve the problem we need to efficiently test ϕ-legged ν-appearances in multi-boxed
components. This, however, we currently do not know how to do. Instead, we design a
test that either finds a ϕ-legged ν-appearance, or finds the original π-appearance. This is
done using the procedure AlgTestπ(ν, ϕ, D, m, ε) that will be described in Section 4.

Case 5: The last case that we did not consider yet is when most of the π-appearances are
in a configuration containing more than one component, with at least two components
containing two (or more) legs each. For π ∈ S4 the only such case is when the configuration
C contains exactly two components, each containing exactly two legs of π. Returning to
our working example with π = (3, 2, 1, 4), such examples are depicted e.g., in Figure 1(B)
or 1(F). For the explanation below, we will discuss the case that the configuration C is
as in Figure 1(F). Namely, it contains components D1 that is above D2, with two boxes
each D1 = {B1, B4} and D2 = {B2, B3}, and so that every box contains exactly one leg
of π (boxes are numbered by order from left to right in Gm′,m′). Our goal is to find two
copies D′

1, D′
2 of the components D1, D2 respectively, that form a copy of C, and to find a

ϕ1-legged appearance of (1, 2) in D′
1, and a ϕ2-legged appearance of (2, 1) in D′

2, so that
Observation 2.6 will implies that these two appearances form together a π appearance.
Indeed, an averaging argument shows that there are D′

1, D′
2 as above, with D′

i containing
Ω(n/m) ϕi-legged appearances of νi for i = 1, 2. However, we do not know that sampling
a pair D′

1, D′
2 in some way, will result in such a good pair. Rather, we are only assured of

the existence of only one such pair! Hence, in this case we need to test every component
D′, and for every ν ∈ S2, and for every leg mapping ϕ, for a ϕ-legged ν-appearance in D′

in order to find such an asserted pair of components. Such restricted ν-appearances can
be tested in O(log n) queries per component. Therefore, this takes Õ(m) queries in total.
The same argument holds for any π ∈ S4, and for every configuration that is consistent
with Case 5.

Concluding remarks

At some places in the algorithm above, we had to test for ν-appearances (or restricted
ν-appearances) in “dense” subgrids of Gn. For this, we need that all our algorithms
are ER, which will be implicitly clear from the description. We also need to take care
of reducing the total error when we do non-constant number of by tests, or want to
guarantee a large success probability for a large number of events - this is done by trivial
amplification that results in a multiplicative polylog n factor.
In Case 1, we reduced the problem of finding a π-appearance in Gn, that is assumed to
be ε-far from π-free, to the same problem on a subrange of the indices (formed by a small
component) of size Θ(n/m) (with a smaller but constant distance parameter ε′ < ε). For
the setting of m =

√
n, solving the problem on the reduced domain was trivially done by

querying all indices in the subrange. In the general algorithm, where our goal is a query
complexity of no(1), we set m = nδ for an appropriately small δ and apply self-recursion
in Case 1.
In Cases 2, 3, 4 we end up testing ν-freeness for ν ∈ S2 ∪ S3 in dense boxes, or ϕ-legged
ν-freeness of such ν in components of multiple dense boxes. An average argument shows
that this can simply be done by sampling one box or component, and making queries to
all indices therein. This however, is true only for π ∈ S4.
Case 5 is different: here sampling a small number of components does not guarantee an
expected large number of the corresponding appearances. This is the reason that we
need to test all components with at most 2 dense boxes, for ϕ-legged ν-freeness, and for
every ν ∈ S2 and leg mapping ϕ. Algorithm AlgTestπ(ν, ϕ, D, m, ε) can do this for any
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ν ∈ S2 ∪ S3 in nδ queries for an arbitrary small constant δ. Since we have to do it in
Case 5, we may do the same in cases 2, 3, 4 as well! As a result, the algorithm above will
contain only two cases: Case 1 where we reduce the problem to the same problem but on
a smaller domain, and the new Case 2 where we test every small component for ϕ-legged
ν-appearance for every ν ∈ S2 ∪ S3 and every leg mapping ϕ – namely a case in which we
reduce the problem to testing (restricted appearances) for smaller patterns.
In view of the comment above, the idea behind improving the complexity to nδ for
constant 0 < δ < 1 is obvious: Choosing m = nδ/2 will result in an m × m grid, where
Layering can be done in Õ(nδ/2) queries. Then, Case 2 will be done in an additional nδ

queries by setting a query complexity for AlgTestπ(ν, ϕ, D, m, ε) to be nδ/2 per component.
The self-recursion in Case 1 will result in the same problem over a range of n/m. For
the fixed m = nδ/2, this will result in a recursion depth of 2/δ, after which the domain
size will drop down to m and allow making queries to all corresponding indices. This
results in a total of Õ(nδ) queries, including the amplification needed to account for the
accumulation of errors and deterioration of the distance parameter at lower recursion
levels.
Generalized testing and testing beyond k = 4. Applying the same ideas to
π ∈ Sk, k ≥ 5 works essentially the same way, provided we can test for ϕ-legged ν-
freeness of ν ∈ Sr for r < k. This we know how to do for ν ∈ S3 but not beyond. In
particular, one difficulty is that after gridding, a superlinear number of non-empty boxes
do not guarantee such appearance, as Lemma 3.1 does not apply. However, for our goal
of testing π-freeness for π ∈ Sk, we can relax the task of finding ϕ-legged ν-freeness of
ν ∈ Sr, r ≤ k to the following problem which we call “generalized-testing ν w.r.t. π”,
denoted GeneralizedTestingπ(ν, D, ϕ): The inputs are a permutation ν ∈ Sr, a component
D, and a leg mapping ϕ. Our goal is to find either a ϕ-legged ν-appearance OR a π-
appearance in D. The way we solve this generalized problem is very similar, conceptually,
to the way we solve the unrestricted problem. This will be defined formally in the next
section.

4 Generalized testing of forbidden patterns

In this section, we formally define the problem of testing (or deciding) freeness from ν-
appearances with a certain leg-mapping. We then provide an algorithm for a relaxation of
this testing problem, which we call GeneralizedTestingπ(ν, ϕ, D). This will imply, in turn, our
algorithm for testing π-freeness.

Recall that Gn denotes the n × n grid that represents the input function f : [n] → R.
Let Gℓ,ℓ be a partition of Gn into a grid of boxes for arbitrary ℓ ≥ 1, and D be a connected
component in Gℓ,ℓ containing t boxes B1, . . . , Bt. Let ν ∈ Sr, and let ϕ : [r] 7→ [t] be
an arbitrary mapping of the legs of ν into the boxes of D, where t ≤ r. We say that
1 ≤ i1 ≤ . . . ≤ ir ≤ n is a ϕ-legged ν-appearance if (i1, . . . , ir) forms a ν-appearance in Gn

such that (ij , f(ij)) ∈ Bx for x = ϕ(j), j = 1, . . . , r. That is, the corresponding legs of the
ν-appearance are mapped into the boxes given by ϕ. For example, consider Figure 1(B),
ν = (3, 2, 1, 4), and D the component formed by the two boxes in the same layer. The
function ϕ maps the 3 and 2-legs of the appearance to the left box and the 1 and 4-legs to
the right box.

For ϕ, ν as above, the property of containing a ϕ-legged ν-appearance is a generalization
of the problem of pattern-freeness; taking ℓ = 1, Gℓ,ℓ is just Gn itself viewed as one single
box D. Any ν-appearance in Gn is a ϕ-legged ν-appearance for the constant function ϕ ≡ D.
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The complexity of testing ϕ-legged ν-freeness is not clear and was not previously explicitly
studied. For permutations of length 2 as well as for longer monotone permutations, its
complexity is identical to unrestricted testing and can be done in polylog n queries. For
length 3 non-monotone permutations it can be done in polylog n queries using similar ideas
as in [28]. For larger k ≥ 4 the complexity is open.

While testing ϕ-legged ν-freeness is interesting in its own, we encounter it only as a
sub-problem in the testing of standard π-freeness. This motivates the following definition.

Let π ∈ Sk, Gn be fixed. Further let Gℓ,ℓ be a decomposition of Gn into boxes and D

be a t-boxed one component over boxes (B1, . . . , Bt), t ≤ r, in Gℓ,ℓ. For inputs ν ∈ Sr,
and ϕ : [r] 7→ {B1, . . . , Bt}, the problem GeneralizedTestingπ(ν, ϕ, D), is to find a ϕ-legged
ν-appearance in D OR to find any (unrestricted) π-appearance. The distance of D from
being ϕ-legged ν-free is defined naturally. The distance for the generalized testing w.r.t
π, GeneralizedTestingπ(ν, ϕ, D), is defined as the distance from being free of ϕ-legged ν-
appearance regardless of the π-appearances.

Our algorithm for GeneralizedTestingπ(ν, ϕ, D) is called AlgTestπ(ν, ϕ, D, m, ε) (presented
in Algorithm 1), where π ∈ Sk is fixed. The algorithm has inputs: ν ∈ Sr, r ≤ k, a
component D in a decomposition Gℓ,ℓ of Gn that contain boxes B1, . . . , Bt, t ≤ r, and
a function ϕ : [r] → {B1, . . . Bt}. In addition, it gets a distance parameter ε, and a free
parameter m that that is used to control the query complexity which will be Õ(mr) for
m ≥ nΩ(1/ log log log n). With high probability, the algorithm either finds a π-appearance or a
ϕ-legged ν-appearance in D, if D is ε-far from being free of ϕ-legged ν-appearances.

The algorithm is recursive. A recursion is done by reducing ν to smaller length patterns,
and/or self-reduction to the same ν but on a smaller length box D′. The base cases are
when the length of D is small enough to allow queries to all indices in D, or when ν ∈ S2, in
which case the algorithm is reduced to testing monotonicity.

The permutation π ∈ Sk is fixed and hardwired into the algorithm. Gn is assumed to
fixed and not part of the recursion. The actual input is the t-boxed component D in a grid
of boxes Gℓ,ℓ over Gn (that is, a sub-function of the original function f).

In general, the complexity of testing ϕ-legged ν-appearances may depend on ϕ and ν.
Our algorithm does not use any structure of π. The only role of π in the algorithm is to
ensure that after gridding D, the resulting grid Dm,m contains only a linear in m number of
marked boxes (as otherwise, by Lemma 3.1, a π-appearance is guaranteed).

Finally, and as we already pointed out, the algorithm for GeneralizedTestingπ(ν, ϕ, D)
will allow us to test for π-freeness in Gn by calling AlgTestπ(π, ϕ, Gn, m, ε), where ϕ is the
constant function that maps each of the k legs to the single box Gn.

The following theorem asserts the correctness of AlgTestπ(π, ϕ, Gn, m, ε) and the corre-
sponding query complexity. We assume that ℓ and a corresponding component D in the grid
of boxes Gℓ,ℓ, inside Gn, is given.

▶ Theorem 4.1. Let ε ∈ (0, 1) and ν ∈ Sr, r ≤ k. Let D = box(S, I) be a connected
component in Gℓ,ℓ, composed of boxes B1, . . . , Bt, t ≤ r and ϕ : [r] → {B1, . . . Bt}. If D

is ε-far from being free of ϕ-legged ν-appearances, then AlgTestπ(ν, ϕ, D, m, ε) finds, either
a ϕ-legged ν-appearance or a π-appearance, with probability at least 1 − o(1). Its query
complexity is Õ(nηr), for η ∈ (0, 1) and m = nη.

We note that since AlgTestπ(ν, ϕ, D, m, ε) either finds π or a ϕ-legged ν-appearance in D,
then if D is free of ϕ-legged ν-appearance, the algorithm will never return such an appearance.
As a result, the corollary below follows by calling AlgTestπ(π, ϕ, Gn, m, ε).
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Algorithm 1 AlgTestπ(ν, ϕ, D, m, ε).

Input: pattern ν ∈ Sr; D is a component in Gℓ,ℓ containing boxes B1, . . . , Bt for 1 ≤ t ≤ r;
the function ϕ : [r] 7→ {B1, . . . , Bt} is a leg-mapping of ν into the boxes of D.

Goal: Find a ϕ-legged ν-appearance or an unrestricted π-appearance, in D.
1: Let S = ∪i∈[r] St(Bϕ(i)) and I = ∪i∈[r]L(Bϕ(i)) define box(S, I) in Gℓ,ℓ that contains D

(or the subcomponent of D where a ν-appearance should be found).
2: Base cases:

1. If |S| ≤ m query all indices in S. Output “π-appearance is found” or “ϕ-legged
ν-appearance is found” if one of these is found, otherwise output “not found”.

2. If r ≤ 2, use the test for restricted appearance of 2-patterns. This is easy and will not
be described in this manuscript. If r = 1, output “ϕ-legged ν-appearance is found” if
ϕ(1) contains a point. If k = 1, output “π is found” if D contains a point.

3. If the sampled points in D already contains a ϕ-legged ν-appearance, or contains a
π-appearance then output: “found ϕ-legged ν-appearance” or “found π-appearance”
respectively.

3: Gridding D: We set β = ε
200kκ(k) . Call Gridding on box(S, I) with parameters:

(S, I, m, β). The details on the procedure Gridding can be found in the full version [30].
As a result, we obtain a decomposition of box(S, I) (and D) into an m′ × m′ grid of
sub-boxes Dm′,m′ , m ≤ m′ ≤ 2m, where a subset of boxes are marked and a subset of
the marked boxes are dense.

4: Simple case: If Dm′,m′ contains more than κ(k) · m′ marked sub-boxes then output
“found π-appearance”.

5: Sparsification: Delete every stripe and layer in Dm′,m′ that contains more than
d = 100kκ(k)/ε marked sub-boxes. Delete all non-dense sub-boxes.

6: Multi-component configurations: For every possible configuration C of sub-boxes
that is consistent with ϕ such that C forms components C1, . . . Cp, p > 1, the pair (ν, ϕ)
define sub-permutations of ν : ν1, . . . , νp and subfunctions of ϕ : ϕ1, . . . , ϕp on C1, . . . Cp

respectively.
Let c denote the number of distinct configurations with at most r components.
Recursively call AlgTestπ(νi, ϕi, Di, m, ε′) with distance parameter ε′ = 9ε

10kcr2·r!·(2d)r

for every component Di, where Di is a copy of Ci in Dm′,m′ , and is contained in D. Note
that the recursive call is done for smaller length patterns νis.

Output “found ϕ-legged ν-appearance” if for a copy (D1, . . . , Dp) of (C1, . . . , Cp),
the region Di contains a ϕi-legged νi-appearance for each i = 1, . . . , p. Or output “found
π-appearance” if a π-appearance is found among the sampled points.

7: One component configurations: Let A be the set of all possible copies of configurations
C in Dm′,m′ for which C forms one component, and that are contained in D. Note that
A contains O(m) such copies.

8: loop log3 n
εr times:

9: Sample a member D′ from A. For each ϕ-consistent mapping ϕ′, recursively call
AlgTestπ(ν, ϕ′, D′, m, ε′′) with ε′′ = 9ε

20k·(2d)r·(r−1)!·rr .
▷ A mapping ϕ′ from the legs of a ν-appearance to the sub-boxes in Dm′,m′ , is

ϕ-consistent if for each i-leg, i = 1, . . . , r, the sub-box ϕ′(i) is contained in the box ϕ(i).
10: end loop
11: If no output is declared in any of the previous steps, output “not-found”.



I. Newman and N. Varma 98:17

1

3

2
1

3 2

1

3

2 1

3
2

(A) (B)

(C) (D)

1 3 2 2
1

3

1

3

1

32

2

(E) (F)

(G) (H)

Figure 2 Different configurations for (1,3,2)-appearances.

▶ Corollary 4.2. There is a 1-sided error test for π-freeness, for every π ∈ Sk of query-
complexity Õ(nδk) for arbitrary δ > 1/ log log log n.

4.1 Proof of Correctness
In this section, we give a description of the algorithm and the proof sketch for the first
non-base case of testing ϕ-legged ν-freeness of ν ∈ Sr, r = 3, with respect to an arbitrary
π ∈ Sk and for some fixed k ≥ 4. The full proof of Theorem 4.1 can be found in the full
version [30].

4.1.1 An example for ν ∈ S3

For this exposition, we fix ν = (1, 3, 2), and D being composed of 2 boxes B1 B2, in the same
layer, where B1 is to the left of B2, and ϕ maps the 1, 3 legs of ν to B1, and the 2-leg to B2.
See Figure 2(D) for illustration of one such case. In the figure, the green boxes represent B1
and B2. The orange boxes indicate the subboxes in the finer grid formed when gridding is
called on the green boxes.

We note that Figure 2(D) illustrates the hardest case for ν ∈ S3. There are additional
one-component configurations in which the boxes are in the same stripe or layer, but these
turn out to be much easier. We will set m = m(n) to be defined later and express the
complexity as a function of m. We do not specify π since, as explained above, π is only
needed at Step 4 when the number of marked boxes is superlinear in m′ in some recursive
call. The same argument holds for any π ∈ Sk, k ≥ 4.
Algorithm for ν = (1, 3, 2) and B1, B2 as above:
1. We assume that B1, B2 have at most s ≤ n indices each, and that the distance of B1 ∪ B2

from being free from ϕ-legged ν-appearance is at least ε = Ω(1). In particular B1, B2 are
dense. We start in Step 3 of Algorithm 1 where we do gridding of the union of B1 and
B2 into a m′ × m′ grid, Dm′,m′ , of sub-boxes (each having roughly at most s/m′ indices),
where m ≤ m′ ≤ 2m. We either find a π-appearance among the sampled points or we
may assume, after Steps 4, 5 that there are O(m′) dense sub-boxes in B1 ∪ B2 and that
each layer and each stripe contains O(1) dense boxes. This is obtained by an averaging
argument and is described in the formal proof in the full version. It shows that if B1 ∪ B2
contains a large matching of ϕ-legged ν-appearances, then so does the restricted domain
after deleting points from non-dense boxes, and deleting layers and stripes that contain
too many dense boxes. This steps takes Õ(m) queries (the complexity of gridding).

2. A ϕ-legged ν-appearance in B1 ∪B2 can be in 8 possible configurations in the grid Dm′,m′ ,
as depicted in Figure 2. Consider first C1, . . . , C4 as in Figure 2(A)-(D), that form 2 or 3
components each. For these, a ϕ-legged ν-appearance in B1 ∪ B2 decomposes into two
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or three subpatterns, and for which any restricted appearances in the corresponding
components results in a ϕ-legged ν-appearance. E.g., in Figure 2(B) the configuration
C2 contains one component D1 = (B1,3, B2,2), where B1,3 ∈ B1, B2,2 ∈ B2, and another
single boxed component B1,1 ∈ B1, where Bi,j is the orange subbox contained within the
green box Bi and such that the j-th leg belongs to Bi,j for i ∈ [2], j ∈ [3].
In Step 6, we test each of the O(m) many copies of D1 for a ϕ′-legged (2, 1)-appearance
for which ϕ′(2) = B1,3 and ϕ′(1) = B2,2. Then for any such D1-copy in which a such
ϕ′-legged (2, 1)-appearance is found, any nonempty dense box B1,1 forming with D1 a
copy of C2 results in a ϕ-legged ν-appearance.
Since this is a reduction to generalized 2-pattern appearance, the recursion stops here
with O(log n)-complexity per copy of D1. Hence, altogether this will contribute a total of
Õ(m) queries. The same argument holds for any of Ci, i = 1, 2, 3, 4.
If a desired appearance is found, then clearly a correct output is produced.
Finally, if indeed (B1, B2) contains Ω(s) (that is, linear in the length of B1 ∪ B2) many
ϕ-legged ν-appearances that are consistent with one of the configurations Ci, i = 1, 2, 3, 4,
then there will be such a D1 and corresponding B1,1 that together contribute Ω(s/m)
(that is – linear in the domain size of D1) such subpattern appearances by an averaging
argument.
We note that for the more general case of r > 3, the reduction will be done in higher
complexity per component (that is dependent on m rather than just O(log n)).

3. Consider now Ci, i = 5, 6, 7, 8 that form 1-component each (with 2 or 3 orange subboxes).
In these cases, if such appearances contribute ε′ to the total distance, then a simple
averaging argument shows that for a uniformly sampled component, its distance will be
linear from being free from ϕ-legged ν-appearances. Hence in Step 9, sampling such a
component will enable us to recursively find a ϕ-legged ν-appearance with high probability.
Since the length of a component on which the recursive call is made is Θ(s/m), the
complexity of this step is Õ(q(s/m)), where q(∗) is the complexity of the algorithm, for
the case of ν ∈ S3, in terms of the length of D.

The correctness of the algorithm follows from the fact that if D is indeed far from being
ϕ-legged ν-free, then it must be that there are linearly many ϕ-legged ν-appearances in at
least one of the 8 configurations discussed above, and for each case, either a π-appearance or
a ϕ-legged ν-appearance is found, by induction.

The base case is for m = n for which the trivial algorithm that queries all indices is
obviously correct, and has complexity n. To understand the query complexity for general
m, let a be the smallest integer for which ma ≥ n. We express the query complexity for
functions over a domain of length n, and parameter m as q(m, a) for a as defined above. We
get that, omitting polylogarithmic factors, q(m, 1) = m = s (that is the base case above),
and q(m, a) = m + m + q(m, a − 1) where the first summand is the number of queries made
by the gridding, the second is the number of queries made by Step 2 above (corresponding
to Step 6 in AlgTest), and the last is the query complexity of the recursive call on subbox of
length s/m with the same m, for which the corresponding a′ = a − 1.

The recursion equation implies that q(a, m) = Õ(am), which implies a query complexity
nδ by choosing m = nδ. We note that this is true as long as m (and hence δ) is large enough,
as the recursion depth is a and there is an exponential deterioration of the distance parameter
at each recursive call in Steps 2 and 3 above (corresponding to Steps 6 and 9 in AlgTest).
However, for arbitrary constant δ < 1 we can achieve complexity nδ and this is true even for
δ = 1/ log log log n for which the complexity becomes no(1).
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A final note that is due here, is that for ν ∈ Sr with r ≥ 4, the complexity of Step 2
above is not O(log n), and thus the complexity dependence on m becomes important.
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