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Preface

This volume contains the papers presented at the 49th EATCS International Conference
on Automata, Languages and Programming (ICALP 2022), held hybrid in Paris France,
during July 4–8, 2022. ICALP is a series of annual conferences of the European Association
for Theoretical Computer Science (EATCS), which first took place in 1972.

This year, the ICALP program consisted of two tracks:
Track A: Algorithms, Complexity, and Games
Track B: Automata, Logic, Semantics, and Theory of Programming

In response to the call for papers, a total of 433 submissions were received: 350 for Track
A and 83 for Track B. Each submission was assigned to at least three program committee
members, aided by 641 external subreviewers or experts providing a quick opinion. The
committees decided to accept 127 papers for inclusion in the scientific program: 103 papers
for Track A and 24 for Track B. The selection was made by the program committees based
on originality, quality, and relevance to theoretical computer science. The quality of the
manuscripts was very high indeed, and many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper in each of
the two tracks, selected by the program committees.
The best paper awards were given to the following papers:
Track A: Ian Newman and Nithin Varma. Strongly Sublinear Algorithms for Testing Pattern

Freeness.
Track B: Jakub Gajarský, Michał Pilipczuk, Wojciech Przybyszewski and Szymon Toruńczyk.

Twin-width and types.

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:
Track A: Joakim Blikstad. Sublinear-round Parallel Matroid Intersection, and

Jakub Tětek. Approximate Triangle Counting via Sampling and Fast Matrix Multiplica-
tion.

Track B: Gaëtan Douéneau-Tabot. Hiding pebbles when the output alphabet is unary.

Apart from the contributed talks, ICALP 2022 included invited presentations by Leslie
Ann Goldberg (Professor of Computer Science at the University of Oxford), Madhu Sudan
(Gordon MacKay Professor of Computer Science at Harvard University), Albert Atserias
(Professor at the Universitat Politècnica de Catalunya), Constantinos Daskalakis (Professor
in MIT’s Electrical Engineering and Computer Science Department), Stéphan Thomassé
(Professor at the Computer Science Department at Ecole Normale Supérieure de Lyon),
Santosh Vempala (Frederick Storey Chair in Computing and Professor at Georgia Tech).

This volume contains all the contributed papers presented at the conference, and an
abstract or paper accompanying each of the invited talks by Albert Atserias, Constantinos
Daskalakis, Leslie Ann Goldberg, Madhu Sudan, Stéphan Thomassé, and Santosh Vempala.

The program of ICALP 2022 also included presentations of the EATCS Award 2022 to
Patrick Cousot, the Alonzo Church Award 2022 to Dexter Kozen, the Presburger Award
2022 to Dor Minzer, the EATCS Distinguished Dissertation Awards 2022 to Alexandros
Hollender, Jason Li and Jan van den Brand, as well as the announcement of new EATCS
Fellows Samson Abramsky and Orna Kupferman.
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The following workshops were held as satellite events of ICALP 2022 on July 4, 2022:
Parameterized Approximation Algorithms (PAAW)
Combinatorial Reconfiguration
Recent Advances on Total Search Problems
LearnAut: 4th edition of the Learning and Automata
Algorithmic Aspects of Temporal Graphs V
Trends in Arithmetic Theories
Structure Meets Power 2022
Straight-Line Programs, Word Equations and their Interplay
Graph Width Parameters: from Structure to Algorithms (GWP 2022)

We wish to thank all authors who submitted extended abstracts for consideration, the
program committees for their scholarly effort, and all the referees who assisted the program
committees in the evaluation process.

We are also grateful to the Conference General Chair, Thomas Colcombet, and his
colleagues from the Research Institute on the Foundations of Computer Science, Université
Paris Cité, and Fondation Sciences Mathématiques de Paris, for organizing ICALP 2022, and
to CNRS, Inria, and Nomadic Lab. for sponsorships.

We would like to thank Anca Muscholl, the Chair of the ICALP Steering Committee, for
her continuous support and Artur Czumaj, the president of EATCS, for his generous advice
on the organization of the conference.

July 2022 Mikołaj Bojańczyk
Emanuela Merelli
David P. Woodruff
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Towards a Theory of Algorithmic Proof Complexity
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Abstract
A possibly unexpected by-product of the mathematical study of the lengths of proofs, as is done
in the field of propositional proof complexity, is, I claim, that it may lead to new polynomial-time
algorithms. To explain this, I will first recall the origins of proof complexity as a field, and then
explain why some of the recent progress in it could lead to some new algorithms.
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As is well known, the formulation of the P vs. NP problem has its origins in mathematical
logic. Cook’s original interest on the satisfiability problem for logic formulas came from its
applications to automated theorem proving; this is clearly reflected in the title of his 1971
paper “On the Complexity of Theorem Proving Procedures” [4]. By viewing the satisfiability
of a formula and the tautologyhood of its negation as dual concepts, it can be argued that
Cook established the grounds of a general theory of duality for any problem in NP. In this
general framework, satisfying assignments and formal proofs would play the roles of dual
certificates, with the obvious caveat that proofs typically appear to be exponentially longer
than their duals. The question whether this empirical observation about the lengths of proofs
is a true fact called for a theory of proof complexity on which to build what later came to be
known as Cook’s Program [5, 6].

The development of Cook’s Program since its formulation in the early 1970’s led to many
insights on the combinatorial intricacies of formal proofs. The strongest results in the area
typically take the form of exponential lower bounds on the length of proofs for proof systems
of practical use, including Resolution [9], Cutting Planes [13], and a few others [1, 12, 11].
To achieve this, a deep theory that explains what causes a propositional tautology to not
have short proofs was developped. As part of this theory we find certain tight semantic
characterizations of resource-bounded proofs [14, 2, 10] much in the same way that the
completeness theorem of mathematical logic equalizes truth with proof.

In this talk I want to argue that the semantic study of proof complexity for these proof
systems could also lead to new insights of algorithmic nature. Perhaps paradoxically, the
starting point for this is the recent discovery that the problem of automating their proof-
search is NP-hard [3, 8, 7]. In a nutshell, what these NP-hardness reductions show is that
every instance of any problem in NP can be efficiently encoded into a propositional formula
that is either a tautology that has a short proof, or is indistinguishable in a formal sense from
a falsifiable formula. The existence of a short proof clearly comes with a short certificate.
The main point is, however, that the indistinguishability from a falsifiable formula can often,
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1:2 Towards a Theory of Algorithmic Proof Complexity

but not always, be also certified efficiently, no less than through the tools of the theory that
studies which formulas fail to have short proofs.

As applications, I will discuss how this phenomenon could be used, potentially, to develop
new polynomial-time algorithms for a couple of well-known combinatorial problems not
obviously related to propositional logic.
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Equilibrium Computation, Deep Learning, and
Multi-Agent Reinforcement Learning
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Abstract
Machine Learning has recently made significant advances in challenges such as speech and image
recognition, automatic translation, and text generation, much of that progress being fueled by
the success of gradient descent-based optimization methods in computing local optima of non-
convex objectives. From robustifying machine learning models against adversarial attacks to causal
inference, training generative models, multi-robot interactions, and learning in strategic environments,
many outstanding challenges in Machine Learning lie at its interface with Game Theory. On this
front, however, gradient-descent based optimization methods have been less successful. Here, the
role of single-objective optimization is played by equilibrium computation, but gradient-descent
based methods commonly fail to find equilibria, and even computing local approximate equilibria
has remained daunting. We shed light on these challenges through a combination of learning-
theoretic, complexity-theoretic, game-theoretic and topological techniques, presenting obstacles and
opportunities for Machine Learning and Game Theory going forward. I will assume no Deep Learning
background for this talk and present results from joint works with S. Skoulakis and M. Zampetakis [2]
as well as with N. Golowich and K. Zhang [1].
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Abstract
This is an extended abstract of my talk at ICALP 2022, based on joint work with John Lapinskas.
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1 Extended Abstract

A multiple access channel is a shared channel which is used by processors to access a network,
a cloud server, or another shared resource. The processors do not communicate except by
listening to the channel. The mechanism of the channel is straightforward: If two or more
processors send messages to the channel at the same time, then these messages collide, and
are not delivered successfully. However, if during some time step exactly one processor
sends a message, then this message is successfully delivered and the processor receives an
acknowledgement of successful delivery. A contention-resolution protocol is a randomised
algorithm that each processor uses to decide when to send its message to the channel (and
when to wait because the channel is too busy).

We consider discrete-time contention resolution protocols in which processors communicate
by sending discrete messages (packets) to a multiple access channel. During each step, new
messages destined for the channel arrive at processors according to a probability distribution
with an overall arrival rate λ. The whole process (consisting of the arrivals, the waiting
messages, and the sends) can be viewed as a Markov chain. A contention-resolution protocol
is stable [7] if this Markov chain is positive recurrent, which means that the process has a
stationary distribution (so the expected build-up of waiting messages over time is bounded).

Two models of multiple access channels are the queueing model and the queue-free model.
In the queueing model, there are N fixed processors. Each processor maintains a queue
of messages which it is waiting to send – messages arrive at the tail of the queue and are
sent from the head. The queues assist with stability, and are appropriate for applications
with fixed networks. Dynamic networks (such as multiple access channels supporting cloud
computing) are better captured by the queue-free model. In the queue-free model, we
assume that processors join the network according to a probability distribution and that
each processor has a single message to send. Thus, we identify the processor with its message
– messages arrive at each step according to a Poisson distribution with rate λ and they stay
in the system until they are successfully sent.

Two kinds of contention-resolution protocol are full-sensing protocols [12] which constantly
listen the channel, obtaining partial information (such as which steps have no sends, which
steps have exactly one send, which steps have a collision, or some combination of these) and
acknowledgement-based protocols, which are appropriate for settings where this listening is
not feasible. In acknowledgement-based protocols, the only information that a processor gets
is whether its own sends are successful. A popular kind of acknowledgement-based protocol is
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3:2 Some New (And Old) Results on Contention Resolution

a backoff protocol. A backoff protocol is associated with a send sequence p = p0, p1, . . . where
each pi is interpreted as a probability in (0, 1]. During a given time step, a processor that
is trying to send a message that has already had i collisions flips a coin – with probability
pi, it sends. With probability 1 − pi, it instead waits for a later time step. One of the
best-known backoff protocol is binary exponential backoff, which has pi = 2−i and is the
basis for Ethernet [11].

The talk will mention some important recent results [13, 14, 3, 4] about full-sensing
protocols, however the main focus will be on acknowledgement-based protocols and specifically
on backoff protocols. In the queueing model, binary exponential backoff is known to be
stable for sufficiently small arrival rate λ [7, 1]. Unfortunately, this value of λ depends on N

and binary exponential backoff is unstable if λ is sufficiently large [8]. In a breakthrough
result, Håstad, Leighton and Rogoff [8] showed that there is a stable backoff protocol for
every λ ∈ (0, 1) – in particular polynomial backoff, with pi = i−α for some α > 1, is stable.

In the queue-free model, it is conjectured [2] that no backoff protocol is stable for any
positive arrival rate λ. This question was raised by MacPhee [10] and the same is conjectured
for all acknowledgement-based protocols. The conjecture for backoff protocols is known to
be true when λ ≥ 0.42 and the conjecture for acknowledgement-based protocols is known to
be true when λ ≥ 0.531 [5].

The evidence for the full conjecture concerning backoff protocols is that a backoff protocol
is known to be unstable for all positive arrival rates if its send sequence p = p0, p1, . . . decays
smoothly. In particular, for the case where 1/pj = o(cj) for all c > 1, instability follows
from work of Kelly and MacPhee [9] (which shows that in this case, with probability 1,
only finitely many messages are sucessfully sent). In the case where 1/pj = Θ(cj) for some
c > 1 instability can be proved by generalising the proof of Aldous’s seminal instability
result for binary exponential backoff [2]. In the case where the send sequences has an infinite
subsequence pj1 , pj2 , . . . satisfying 1/pjk

= ω(cjk ) for all c > 1 is also easily dealt with. This
appears as a lemma in [6] but the method was also known to the authors of [5].

The main issue which makes it difficult to prove the full conjecture is proving instability
for backoff protocols that have a send sequence that decays at an inconsistent rate or doesn’t
decay at all, with pjs that jump back and forth between large and small values as j increase.
The main part of this talk describes new work [6] with John Lapinskas that solves this
problem except in a special case. This special case has the property that the send sequences
alternates between pj ’s that are at least Ω(1) and pj ’s that are exponentially small (but
no smaller). Moreover, the large pj ’s have density 1 − o(1) in {p1, . . . , pn} as n → ∞. We
therefore refer to them as “LCED” send sequences (for “largely constant with exponential
decay”). These sequences are defined as follows.

▶ Definition 1. A send sequence p is LCED (“largely constant with exponential delay”) if it
satisfies the following properties:

(i) “Largely constant”: For all η > 0, there exists c > 0 such that for infinitely many n,
|{j ≤ n : pj > c}| ≥ (1 − η)n.

(ii) “with exponential decay”: p has an infinite subsequence (pℓ1 , pℓ2 , . . . ) which satisfies
log(1/pℓx

) = Θ(ℓx) as x → ∞.
(iii) “(but without super-exponential decay)”: log(1/pj) = O(j) as j → ∞.

The main Theorem of [6] is as follows.

▶ Theorem 2 ([6]). Let p be a send sequence which is not LCED. Then for every λ ∈ (0, 1)
the backoff protocol with arrival rate λ and send sequence p is unstable.

The theorem has the following consequences.
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▶ Corollary 3 ([6]). For every λ ∈ (0, 1) and every monotonically non-increasing send
sequence p = p0, p1, . . ., the backoff protocol with arrival rate λ and send sequence p is
unstable.

▶ Corollary 4 ([6]). Let p be a send sequence. Let mp(n) be the median of p0, . . . , pn.
Suppose that mp(n) = o(1). Then for every λ ∈ (0, 1) the backoff protocol with arrival rate λ

and send sequence p is unstable.

The talk will conclude with a discussion of the prospects for proving the full conjecture.
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We survey recent progress and many open questions in the field of sampling high-dimensional
distributions, with specific focus on sampling with non-Euclidean metrics.
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1 Introduction

Sampling high-dimensional distributions is a fundamental problem of growing importance in
machine learning and related fields [7, 17, 2]. Progress on efficient algorithms for sampling has
led to new mathematical connections and insights into a number of areas such as probability,
convex geometry and analysis. The focus of this tutorial is to survey the state-of-the-art for
the most general results along with open problems. There are many interesting results for
special cases that are beyond the scope of this survey.

We begin by stating the most general version of the problem in Euclidean space.

▶ Definition 1 (Sampling Problem). Given oracle access to an integrable, real-valued function
f : Rn → R+, an initial point x0 ∈ Rn with f(x0) > β

∫
f(y)dy and an error parameter

ε > 0, output a point x from a distribution that is within total variation distance ε from the
distribution with density proportional to f(x).

A major discovery in the theory of algorithms is that the above problem can be solved
in randomized polynomial time for any logconcave function f . Recall that a function
f : Rn → R+ is logconcave if its logarithm is concave, i.e., for any λ ∈ [0, 1] and any
x, y ∈ Rn,we have f(λx+(1−λ)y) ≥ f(x)λf(y)1−λ. This class includes the important special
cases of the uniform density over a convex body and a Gaussian restricted to a convex set.
Note that we can alternatively think of a logconcave function as e−f(x) where now f is a
convex function. As in optimization, the traditional frontier of polynomial-time algorithms
for sampling has to do with convexity. In the past decade there has been progress on going
beyond convexity, with appropriate weaker assumptions. Two approaches are (a) to show
that isoperimetry of the target distribution suffices and (b) to use the convergence of the
continuous time diffusion as a basis for proving the convergence of the discrete-time algorithm.
We will illustrate these approaches later in this survey. Let us first introduce the main
algorithms for the most general oracle setting.
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4:2 The Manifold Joys of Sampling

Ball Walk

The ball walk with step-size parameter δ > 0 is the following Markov Chain: at the current
point x, pick a uniform random point y from the ball of radius δ centered at x; go to y with
probability min {1, f(y)/f(x)}. The starting point is chosen so that it satisfies f(x0) > 0.
When f is the indicator of a convex body K, this simply means that we start in K and at
each step go to the proposed y only if y is also in K.

Hit-and-Run

The Hit-and-Run Markov chain is the following: at the current point x, pick a uniform
random line ℓ through x, and go to a point y on the line with probability proportional to f
restricted to ℓ. For a convex body, this means that we pick the next point uniformly from
the chord in a random direction through the current point.

2 Mixing rates in the general oracle model

For a more detailed introduction to Markov chains in continuous state spaces, and these
walks in particular, the reader is referred to [42, 36]. In this section by mixing rate we
mean the rate to halve the χ2-divergence between the current distribution and the target
stationary distribution. We say that a distribution Q0 is an M -warm start for a distribution
Q if sup dQ0(x)

dQ(x) ≤ M . A weak M -warm start is when χ2(Q0, Q) ≤ M . Recall that

χ2(P,Q) = EQ

((
dP (x)
dQ(x) − 1

)2
)
.

A key parameter in the analysis of a Markov chain is its conductance. For a Markov
chain with state space K, transition kernel P and stationary distribution Q, the conductance
of any measurable subset A of the state space is defined as

ϕ(A) =
∫

A
Px(K \A)dQ(x)

min {Q(A), Q(K \A)}

and the conductance of the Markov chain itself is ϕ = infA ϕ(A). The conductance directly
bounds the mixing rate.

▶ Theorem 2 ([36]). For a time-reversible Markov chain with conductance ϕ, the distribution
after t steps satisfies

χ2(Qt, Q) ≤
(

1 − ϕ2

2

)t

χ2(Q0, Q).

The paper [36] developed conductance-based analysis of the convergence of Markov chains in
the setting of continuous state spaces, including an important extension to the setting when
the conductance ϕ(A) can only be bounded from below for sets A of measure larger than
some threshold.

2.1 Ball walk
The ball walk has the following convergence guarantee for a convex body. We use Õ(·) to
suppress logarithmic terms.
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▶ Theorem 3 (Ball Walk from Warm Start in Convex Body [22]). Let K ⊆ Rn be a convex body
containing the unit Euclidean ball with R2 = EK

(
∥x− x∥2

)
for x = EKx. Then the mixing

time of the ball walk in K with step size δ = 1/
√
n from an O(1)-warm start is bounded by

Õ(n2R2).

This guarantee generalizes cleanly to any logconcave density.

▶ Theorem 4 (Ball Walk from Warm Start for Logconcave Density [38]). The mixing time of
the ball walk for a target logconcave density ν such that the level set of measure 1/8 contains
a unit ball and R2 = Eν

(
∥x− x∥2

)
, with step size δ = 1/

√
n from an O(1)-warm start is

bounded by Õ(n2R2).

The bound above is tight up to polylogarithmic factors; a cylinder with a unit ball cross
section and height R shows a lower bound of Ω(n2R2). Can we reduce or eliminate the
dependence on R? Classical results tell us that for any convex body there is an affine
transformation (the John position) that ensures that the body is sandwiched between balls
of radii 1 and at most n. Since all we need to bound is the average squared distance, there is
a natural transformation of space that gives a bound of R =

√
n.

▶ Definition 5. A distribution with density ν in Rn is said to be in isotropic position if a
random point X drawn from ν satisfies Eν(x) = 0 and Eν(xx⊤) = I.

Note that in isotropic position, R2 = E(∥x∥2) = n and this implies a bound of n3 on
the mixing rate for a logconcave distribution in isotropic position. As it turns out, it is
possible to show a better convergence rate, where the dependence on diameter is essentially
eliminated. The theorems below work also for near-isotropic position, by which we mean
that the eigenvalues of the covariance matrix are bounded below and above by constants
(rather than all being equal to 1).

▶ Theorem 6 (Ball Walk from Warm Start with Isotropic Target). The mixing time of the ball
walk applied to a logconcave density in isotropic position with step size δ = 1/

√
n from an

O(1)-warm start is bounded by Õ(n2).

The above theorem deserves some explanation and is the culmination of a quarter century of
progress on geometric isoperimetric inequalities. First, we state the corresponding theorem
which establishes the rate of convergence in terms of the isoperimetry of the target distribution.
For this we define the KLS constant.

▶ Definition 7. For a density ν in Rn, the KLS constant of ν is defined as

1
ψν

= inf
S⊂Rn

ν(∂S)
min {ν(S), 1 − ν(S)}

and the KLS constant for logconcave densities in Rn is ψn =
sup {ψν : ν isotropic logconcave in Rn}.

We will discuss this constant and its significance presently. The following theorem [22]
shows how it bounds the mixing rate of the ball walk.

▶ Theorem 8 (Ball Walk and KLS [22]). The mixing time of the ball walk applied to a
logconcave density in isotropic position with step size δ = 1/

√
n from an O(1)-warm start is

bounded by Õ(n2ψ2
ν).
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Kannan, Lovász and Simonovits [21] conjectured that ψn = O(1) for any logconcave isotropic
density ν. Recently, Klartag and Lehec [25], following a line of work [21, 13, 16, 12, 32, 3],
proved that ψn = O(log5 n), which implies Theorem 6 above. Another way to state the
underlying isoperimetric inequality is the following.

▶ Theorem 9 (Euclidean Isoperimetry). For any logconcave density ν in Rn whose covariance
matrix A has largest eigenvalue λ1 and any two disjoint subsets S1, S2 of Rn we have

ν(K \ S1 \ S2) ≥ d(S1, S2)
ψn

√
λ1

min {ν(S1), ν(S2)}

where d(, ) is Euclidean distance and ψn is known to be O(log5 n) [25] and conjectured to be
O(1) [21].

An equivalent geometric way to state the KLS conjecture is that a hyperplane-induced subset
achieves the minimum isoperimetric coefficient up to a universal constant factor. For a
detailed discussion of the KLS conjecture, we refer the reader to [31]. Its full resolution
remains an intriguing and fruitful open problem.

More recently, it has been shown that the complexity of isotropic transformation and
volume computation can be reduced to the KLS constant.

▶ Theorem 10 (Rounding and Volume Computation [8, 19]). Given a convex body given in the
membership oracle model, it can be brought into near-isotropic position in Õ(n3ψ2

n) queries
and its volume can be computed to within relative error ε using Õ(n3/ε2) additional queries.

We conclude this section with two questions about the analysis of the ball walk, which both
seem to require the development of new tools. The first has to do with the convergence of
the ball walk without a warm start. Although this does not converge quickly in general (e.g.,
when starting near a corner), it is conceivable that it does when started from a “nice” point.
After all, the result for a warm start effectively states that “most” points are good starting
points. But can we get our hands on one of them?

▶ Question 11. Show that the ball walk started from the centroid of a convex body converges
to its stationary distribution in polynomial time.

The second question has to do with verifying that the ball walk has converged. This has
value both theoretically and practically (to test convergence on an instance-by-instance basis
rather than simply running up to the worst-case bound).

▶ Question 12. Consider the ball walk in a convex body starting from a logconcave initial
distribution (e.g., uniform in a ball contained inside the body). Show that the distance between
the current distribution and the target can be bounded as a polynomial in the dimension and
the distance to stationarity of a random one-dimensional marginal of the current distribution.

A clean variant of this question, first proposed by Lovász, is whether the expected squared
distance of a random point Xt of the ball walk from its starting point X0 is a monotonic
increasing function.

2.2 Hit-and-Run
One advantage of hit-and-run is that there is no step-size parameter. A more important
property is that hit-and-run converges rapidly from any starting distribution (even a single
point), unlike the ball walk. To see that the ball walk does not, consider starting the ball
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walk near a corner, e.g., near a vertex of a cube; then the probability of making a proper
step (one that moves to a different point) can be arbitrarily small. Another way to see this is
to note that the conductance of small sets for the ball walk Markov chain cannot, in general,
be bounded from below. For hit-and-run, the picture is dramatically different – every subset
can be shown to have large conductance! In particular, hit-and-run started from an arbitrary
point in the interior (e.g., close to a corner) will quickly escape the corner.

▶ Theorem 13 (Conductance of Hit-and-Run [37]). The conductance of hit-and-run for any
convex body in Rn containing a unit ball and contained in a ball of radius R is Ω(1/(nR)).

As a consequence it has the same general mixing rate as the ball walk, except that the
dependence on the warm start parameter is logarithmic rather than polynomial, and in
particular starting from any point x0 in the interior of K, it is logarithmic in the inverse of
the distance of x0 to the boundary of K. It is conjectured (and observed in practice [17, 2])
that Hit-and-Run also mixes in n2 steps for a body/logconcave distribution in isotropic
position. However, it is an open problem to analyze this and show a bound better than n3

as implied by the analysis in general position.

▶ Question 14. Analyze the mixing rate of Hit-and-Run for a logconcave density or convex
body in isotropic position.

To understand the difficulty of answering this question, it is useful to see the isoperimetric
inequality underlying the conductance bound for hit-and-run. This is our first departure
from Euclidean distance, and an indication that the natural underlying geometry is different.
For two points u, v in a convex body K, we define the cross-ratio distance as follows. Let
p, q be the endpoints of the chord induced by u, v inside K, so that their order along the
chord is p, u, v, q. Then,

dK(u, v) = ∥u− v∥ ∥p− q∥
∥p− u∥ ∥v − q∥

.

While this distance is not a true distance in that it does not satisfy the triangle inequality,
the closely related Hilbert distance, dH(u, v) = ln(1 + dK(u, v)), is a metric. We have the
following isoperimetric inequality.

▶ Theorem 15 (Cross-ratio/Hilbert Isoperimetry [35, 38]). For any logconcave density ν in
Rn whose support is a convex body K and any two disjoint subsets S1, S2 of Rn we have

ν(K \ S1 \ S2) ≥ dK(S1, S2)ν(S1)ν(S2).

This isoperimetric inequality is affine-invariant and already tight. So it is unclear how to
derive a more refined inequality that takes advantage of isotropic position.

▶ Question 16. Is there a corresponding KLS conjecture that would imply a better mixing
rate for hit-and-run?

2.3 A bottleneck
For both the ball walk and hit-and-run, the mixing rate from a warm start for an isotropic
target is Ω(n2); this can be seen for a hypercube. The bottleneck for the ball walk is that
the largest value that the step-size parameter δ can be set to is O(1/

√
n). This is because

setting it to a larger value leads to most steps being rejected, i.e., WHP proposed steps are
outside the body. In the case of hit-and-run, we have the same bottleneck. This is because
the length of a random chord through a random point in a hypercube is still only O(1/

√
n),

so this is the effective step-size on average.
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3 In search of a larger step: the Dikin walk

For the walks discussed so far, the step-size is limited by points near the boundary. This
suggests the idea of taking larger steps from points that are deeper inside, e.g., at the
current point, use the largest ball that has a constant probability of a random step being
accepted. So points deeper inside would take larger steps. However, this has the issue that
the resulting stationary distribution is no longer uniform. To correct this, one can use a
Metropolis filter based on the ratios of the volumes of the balls at the current point and the
proposed point. Unfortunately, this means that this effective radius or step-size must change
slowly. A smoother and more elegant approach is inspired by the seminal work of Dikin
for convex optimization [10]. To optimize a linear function over a polytope, he proposed
constructing a “maximal” ellipsoid around the current point that would be contained in
the body, taking a large, objective-improving step within this ellipsoid and repeating. This
was the first “interior-point” paradigm (now called Affine Scaling); it predates the central
path interior-point method pioneered by Karmarkar [24] and generalized by Nesterov and
Nemirovskii [41]. For a point x in the polytope defined by {Ax ≥ b}, the Dikin ellipsoid is
defined as follows:

E(x, r) =
{
y : (y − x)⊤H(x)(y − x) ≤ r2} where H(x) =

m∑
i=1

aia
⊤
i

(a⊤
i x− bi)2

with ai being the i’th row (normal vector) of the constraint matrix A for i = 1, . . . ,m.
This ellipsoid adapts to the local geometry of the polytope, and E(x, 1) always fully con-
tained in it. It suggests the following Dikin random walk: at the current point x, pick
a random point y in the Dikin ellipsoid E(x, r); if x ∈ E(y, r), go to y with probability
min {1, vol(E(x, r))/vol(E(y, r))}. Kannan and Narayanan [23] analyzed its mixing rate with
a suitable choice of the radius r.

▶ Theorem 17 (Dikin in Polytope [23]). The mixing rate of the Dikin walk from a warm
start in a polytope in Rn given by m inequalities is bounded by O(mn).

Notably, the mixing rate of the walk does not depend on the affine position of the body –
the process is affine-invariant, i.e., applying the walk to an affine transformation of the input
body is the same as applying the transformation to the output of the process on the same
body. This means in particular that one can assume for free that the polytope is in isotropic
position. This avoids dependence on the outer ball radius parameter R in the previous
section.

What should the step-size r be? It is chosen to be O(1/
√
n) and this turns out to be

necessary to ensure that the rejection probability is not too high, i.e., that the volumes of
Ellipsoids corresponding to nearby points are within a constant factor. The change in the
ellipsoid can be bounded using the classical optimization property of self-concordance, i.e.,
when the matrix function H(x) is the Hessian of a convex function. Self-concordance is a
key property in the analysis of the interior-point method for linear programming [41]. In
fact, the ellipsoid matrix H(x) is the Hessian of the convex log barrier function at x,

ϕ(x) = −
m∑

i=1
ln(a⊤

i x− bi),

i.e., H(x) = D2ϕ(x). So the log-barrier interior-point method for optimization corresponds
to the Dikin walk for sampling!

To make this connection a bit more precise, let us define the norm of a vector v induced
by a matrix function H as ∥v∥2

x = v⊤H(x)v.
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Figure 3.1 (a) Eu(1) ⊆ K ∩ (2u − K) ⊆ Eu(
√
ν). (b) (Strong) self-concordance measures the

rate of change of Hessian.

▶ Definition 18. For a convex set K ⊂ Rn, we say a matrix function H : K → Rn×n is
self-concordant if for any x ∈ K, we have∥∥∥H(x)−1/2DH(x)[h]H(x)−1/2

∥∥∥
op

≤ 2 ∥h∥x

where DH(x)[h] is the directional derivative of H at x in the direction h, i.e., DH(x)[h] =
d
dt H(x+ th). We say H is symmetric ν-self-concordant if H is self-concordant and for any
x ∈ K,

E(x, 1) ⊆ K ∩ (2x−K) ⊆ E(x,
√
ν).

Self-concordance relates the change in H to the change in x. Many natural self-concordant
barriers, including the logarithmic barrier, satisfy a much stronger condition, replacing
the operator norm above by the Frobenius norm. While this makes no difference for the
worst-case bound for optimization, it turns out to be crucial for sampling.

▶ Definition 19 (Strong Self-Concordance). For a convex set K ⊂ Rn, we say a matrix
function H : K → Rn×n is strongly self-concordant if for any x ∈ K, we have∥∥∥H(x)−1/2DH(x)[h]H(x)−1/2

∥∥∥
F

≤ 2 ∥h∥x .

The canonical barrier [18] satisfies strong self-concordance. The situation with two other
classical barriers, namely the universal and entropic barriers has a curious connection.

▶ Lemma 20 ([27]). Let H(x) be the Hessian of the universal or entropic barriers. Then,∥∥∥H(x)−1/2DH(x)[h]H(x)−1/2
∥∥∥

F
= O(ψn) ∥h∥x .

In fact, up to a logarithmic factor, the strong self-concordance of these barriers is equivalent
to the KLS conjecture.

▶ Lemma 21. Given any strongly self-concordant matrix function H on K ⊂ Rn. For any
x, y ∈ K with ∥x− y∥x < 1, we have

∥H(x)− 1
2 (H(y) − H(x))H(x)− 1

2 ∥F ≤ ∥x− y∥x

(1 − ∥x− y∥x)2 .
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The following guarantee was shown for the convergence of the generalized Dikin walk in [27].

▶ Theorem 22 (Convergence of general Dikin walk [27]). The mixing rate of the Dikin walk
for a symmetric, strongly self-concordant matrix function with convex log determinant is
O(nν̄).

This implies faster mixing and sampling for polytopes using the LS barrier [28], which is
strongly self-concordant, has a convex log determinant and has ν̄ = O(n log3 m).

▶ Theorem 23 (Quadratic Convergence of Dikin [27]). The mixing rate of the Dikin walk
based on the LS barrier for any polytope in Rn is Õ(n2) and each step can be implemented in
Õ(mnω−1) arithmetic operations where ω is the matrix multiplication exponent.

We note that the Dikin walk with the logarithmic barrier for a polytope {Ax ≥ b} can be
implemented in time O(nnz(A) + n2) per step while maintaining the mixing rate of O(mn).

The isoperimetry of the metric induced by the matrix function H follows by simply
connecting it to the cross-ratio distance.

▶ Lemma 24. For u, v ∈ K, dK(u, v) ≥ ∥u−v∥u√
ν̄

.

From this lemma and Theorem 15, we have that the isoperimetric coefficient for the Hessian
norm distance is Ω(1/

√
ν). This bound, as well as the bound of mn for the Dikin walk with

the log barrier are tight as shown by a hypercube with one of its facets duplicated m− n

times. However, the situation is far from clear for the weighted Dikin walk, where the log
barrier is replaced by one that weights each constraint, as in the LS barrier (and effectively
eliminates this bad example).

▶ Question 25. What is the isoperimetric coefficient of the Hessian distance induced by the
LS barrier? Does the corresponding weighted Dikin walk mix in Õ(n) steps?

4 Large steps via non-Euclidean geometries

The Dikin walk and its weighted version are based on exploiting local geometry, where the
norm is defined locally. As a direct consequence, this family of algorithms is affine-invariant.
However, to ensure the correct stationary distribution and keep the probability of acceptance
in the Metropolis filter reasonably large, the effective step-size is again 1/

√
n, and the

convergence rate is n2. Is a larger step-size/smaller convergence rate possible?
To understand this, we delve further into the use of non-Euclidean geometry. So far, our

random walks have only taken straight line steps in Euclidean space. The distribution of
the direction of the next step depends on the current point in the case of the Dikin walk,
but the step itself is still a straight line. A more drastic departure would be to use curves
instead of straight lines. How?

First note that given a local metric such as the one induced by the Hessian of a convex
function defines a manifold and using this metric we can define the length of a curve (a
continuous path) and the distance between any two points (as the length of the shortest
curve between them). Since the local metric varies, the shortest path between two points
can be a curve (e.g., consider flight paths for the sphere metric). In the context of sampling
polytopes, we consider the metric defined by the Hessian of the log barrier. The support of
this manifold is the original polytope. Distances between points are magnified as the points
get closer to the boundary. So geodesic paths tend to avoid the boundary!
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Figure 4.1 The Hessian manifold induced by the log barrier in a polytope.

How do we pick a random next step/direction? For this we can use the notion of tangent
space attached to every point in a Riemannian manifold, and pick a random (Gaussian)
vector in the tangent space. Then we go along the geodesic (locally shortest path) in the
direction of the chosen vector along the manifold. This is the curved step. We make these
notions more precise below. The main intuition for considering such a generalization is the
possibility of taking larger steps unimpeded by the boundary. This family of walks have
been called “geodesic” walks [31]. We will shortly see an even more natural variant. For
some quick background on Riemannian geometry, we refer the reader to the appendix.

4.1 Geodesic walks
Consider an explicit polytope P and a manifold M with support P and metric induced by
the Hessian of the log barrier in P. Moving to this manifold view allows us to avoid the
constraint of small steps near the boundary, as there is no longer a hard boundary constraint.
How large can we make the step size? This is limited by another factor, namely, when we
take large steps, the filter acceptance probability (to maintain the desired target distribution)
can become very small. Could we possibly avoid using a filter? To answer this, we first
consider the continuous time limit of the corresponding “diffusion” process.

dxt = µ(xt)dt+
(
2D2ϕ(xt)

)−1/2
dW t.

The first term, called the drift, is given by

µi(xt) =
n∑

j=1

∂

∂xj

((
∇2ϕ(xt)

)−1
)

ij
= D · (D2ϕ(xt)−1)i

where D· is the divergence operator. The drift term is a deterministic vector field biasing
the walk locally. Its purpose is to ensure that the process converges to the desired target
uniform distribution. Notably, in the continuous setting, it replaces the Metropolis filter.
The precise form of the drift can be derived using the Fokker-Planck equation.

ICALP 2022



4:10 The Manifold Joys of Sampling

▶ Theorem 26 (Fokker-Planck equation). For any stochastic differential equation (SDE) of
the form

dxt = µ(xt)dt+
√
H(xt)dWt,

for a symmetric matrix function H, the probability density of the SDE is given by the diffusion
equation

∂

∂t
p(x) = −

n∑
i=1

∂

∂xi
[µi(x)p(x)] + 1

2

n∑
i=1

n∑
j=1

∂2

∂xixj
[Hij(x)p(x)].

In discrete time, we consider the following geodesic walk:

x(j+1) = expx(j)(
√
hw + h

2µ(x(j))), (4.1)

where expx(j) is the exponential map from the tangent space at x(j), Tx(j)M , back to the
manifold, w is a random Gaussian vector in the tangent space Tx(j)M , µ(x(j)) ∈ Tx(j)M is
the drift term and h is the step size. The Gaussian vector w has mean 0 and variance 1 in
the metric at x, i.e., for any u, Ew⟨w, u⟩2

x = ∥x∥2
x. We write it as w ∼ Nx(0, I). This discrete

walk converges to continuous diffusion as h → 0 and it converges at a rate faster than the
walk suggested by Euclidean coordinates, namely, x(j+1) = x(j) +

√
hw + hµ(x(j)).

Implementing this discretization leads to substantial challenges. The stationary distribu-
tion of the geodesic walk is not uniform. To get around this issue, we use rejection sampling.
For step-size h chosen in advance, let p(x w→ y) be the probability density of going from x to
y using the local step w.

Algorithm 1 Geodesic Walk.
At current point x:
Pick a Gaussian random vector w ∼ Nx(0, I).
Compute y = expx(

√
hw + h

2µ(x)).
Let p(x w→ y) be the probability density of going from x to y using the above step w.
Compute a corresponding w′ s.t. x = expy(

√
hw′ + h

2µ(y)).

With probability min
(

1, p(y
w′
→x)

p(x
w→y)

)
, go to y; otherwise, stay at x.

In this algorithm, computing the exponential map and computing the transition probability
density are nontrivial steps that need the efficient solution of an ODE. Even though the walk
uses a Metropolis filter in the end, the parameter h can be made as large as n−3/4, and the
overall mixing time is O(m/h), leading to the first sub-quadratic mixing rate for sampling
polytopes. Note that this is effectively a step-size of

√
h = n−3/8 ≫ n−1/2, the limitation of

previous methods.

▶ Theorem 27 (Convergence of Geodesic Walk [29]). The geodesic walk in a polytope with
the log barrier converges to the uniform density in the polytope in O(mn3/4) steps and each
step can be implemented in Õ(mnω−1) arithmetic operations.
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Figure 4.2 An illustration of Hit-and-run/Dikin, Geodesic walk and Hamiltonian Monte Carlo.

4.2 Riemannian Hamiltonian Monte Carlo
In the geodesic walk inspired by diffusion, in each step we choose a random direction and the
drift along the entire step is determined by the (current) initial point. An even more natural
discretization is to let the drift evolve along the trajectory in the chosen direction. The
purpose of this modification would be to maintain the stationarity in spite of going to discrete
time without introducing an explicit Metropolis filter. Can this be done? The answer is the
method known as Hamiltonian Monte Carlo [40], and its manifold generalization [15]. To
sample from a general distribution e−H(x,y). Hamiltonian Monte Carlo uses curves instead
of straight lines in a time-reversible manner even if the target distribution is uniform.

▶ Definition 28. Given a continuous, twice-differentiable function H : M×Rn ⊂ Rn ×Rn →
R called the Hamiltonian, where M is the x domain of H, we say (x(t), y(t)) follows a
Hamiltonian curve if it satisfies the Hamiltonian equations

dx

dt
= ∂H(x, y)

∂y
,

dy

dt
= −∂H(x, y)

∂x
. (4.2)

We define the map Tδ(x, y) def= (x(δ), y(δ)) where the (x(t), y(t)) follows the Hamiltonian
curve with the initial condition (x(0), y(0)) = (x, y).

Hamiltonian Monte Carlo is a sequence of randomly generated Hamiltonian curves.

Algorithm 2 Hamiltonian Monte Carlo.

Input: some initial point x(1) ∈ M.
for k = 1, 2, · · · , T do

Sample y(k+ 1
2 ) according to e−H(x(k),y)/π(x(k)) where π(x) =

∫
Rn e

−H(x,y)dy.
With probability 1

2 , set (x(k+1), y(k+1)) = Tδ(x(k), y(k+ 1
2 )).

Otherwise, (x(k+1), y(k+1)) = T−δ(x(k), y(k+ 1
2 )).

end
Output: (x(T +1), y(T +1)).

▶ Lemma 29. HMC has the following properties:
1. Energy conservation. For any Hamiltonian curve (x(t), y(t)),

d

dt
H(x(t), y(t)) = 0.
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2. Measure preservation. For any t ≥ 0,

det (DTt(x, y)) = 1

where DTt(x, y) is the Jacobian of the map Tt at the point (x, y).
3. Time reversibility. For π(x) =

∫
Rn e

−H(x,y)dy, the probability density px(x′) of one step
of HMC starting at x satisfies π(x)px(x′) = π(x′)px′(x).

Everything so far can be generalized to manifolds. To sample from the distribution e−f(x),
we define

H(x, v) def= f(x) + 1
2 log((2π)n det g(x)) + 1

2v
T g(x)−1v (4.3)

where g is the local metric of the manifold. In the Euclidean case, g(x) = I, and the
Euclidean Hamiltonian is H(x, v) = f(x) + 1

2 ∥v∥2 and the corresponding dynamics becomes
just d2x

dt2 = −∇f(x). One can view x as the position and v as the velocity. The convergence
of HMC has been intensively studied in recent years, starting with [39], which established a
mixing rate of O(κ2) for the case when f is strongly logconcave. For this setting it is now
known that the optimal rate is O(κ) [4].

We now restate the HMC equation for manifolds, as Riemannian HMC, noting that
derivatives have to take the local metric into account.

▶ Lemma 30. In Euclidean coordinates, the Hamiltonian equation for (4.3) can be rewritten
as

Dt
dx

dt
=µ(x),

dx

dt
(0) ∼N(0, g(x)−1)

where µ(x) = −g(x)−1Df(x) − 1
2g(x)−1Tr

[
g(x)−1Dg(x)

]
, and Dt is the covariant derivative

(or Levi-Civita connection) on the manifold M with metric g.

With the above set-up, as long as we can compute the RHMC ODE accurately and efficiently,
there is no need for a filtering step, leading to a significantly simpler implementation than
that of the geodesic walk. In fact, it also gives a slightly improved mixing rate by allowing a
larger time step in each iteration.

▶ Theorem 31 (Convergence of RHMC [30]). Riemannian Hamiltonian Monte Carlo in a
polytope with the log barrier converges to the uniform density in the polytope in O(mn2/3)
steps.

▶ Question 32. Can the step-size of RHMC be improved so that the mixing rate is O(m
√
n)?

Can the mixing rate be improved to Õ(n1.5) with a weighted log barrier?

RHMC appears to be quite practical, with recent implementations being able to sample from
constrained distributions in dimension as high as 105 [26].

5 From diffusion to sampling: the manifold perspective

Langevin Diffusion (LD) is the following stochastic process1:

dXt = −Df(Xt)dt+
√

2dBt

1 In this section, we use D for Euclidean derivative and reserve ∇ for manifold derivative.
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where Bt is the standard Wiener process. The stationary distribution of this process is
the density ν(x) proportional to e−f(x), a fact that can be verified using the Fokker-Planck
equation for the time derivative of the density of Xt. To understand the rate of convergence,
we recall two basic notions. First to measure the distance between distributions, we use the
relative entropy (or KL divergence), defined as follows:

Hν(ρ) =
∫
ρ(x) log ρ(x)

ν(x) dx = Eρ

(
log ρ

ν

)
.

In continuous time, the convergence will depend on what kind of isoperimetry is satisfied by
the target density. So far we have seen Cheeger isoperimetry, which results in convergence in
the χ2-divergence. A stronger notion of isoperimetry is given by the Log-Sobolev Inequality.
The relative Fisher information is defined as

Jν(ρ) =
∫
ρ∥∇ log(ρ

ν
)∥2dx.

Note that this definition is for any Riemannian manifold.

▶ Definition 33. We say the distribution ν satisfies a Log-Sobolev inequality with constant
α (called the log-Sobolev constant) if for every measure with density ρ we have

Hν(ρ) ≤ 1
2αJν(ρ).

For logconcave densities in Rn, an equivalent definition up to absolute constants is the
following:

√
α ≃ inf

S⊆Rn, ν(S)≤ 1
2

ν(∂S)
ν(S)

√
log(1/ν(S))

which looks like the Cheeger constant except for the additional log factor in the denominator
– LSI requires the isoperimetric coefficient to get larger as the measure of the subset gets
smaller.

A distribution that satisfies LSI has a strong convergence property in continuous time.

▶ Theorem 34. Hν(ρt) ≤ e−2αtHν(ρ0).

This statement bears a remarkable resemblance to convergence of Gradient Descent to the
optimal solution for strongly convex functions. In fact, as noted by Wibisono [45] (see also
[20]), Langevin Diffusion is Gradient Flow in the space of measures with the Wasserstein
metric and the objective being the KL-divergence to the target density.

We discuss this in a bit more detail below, starting from the simple optimization per-
spective.

▶ Lemma 35. Let F be a function satisfying “Gradient Dominance”:

∥∇F (x)∥2 ≥ 2α(F (x) − min
x
F (x)).

Then, the deterministic process dxt = −∇F (xt)dt converges exponentially, i.e.,

F (xt) − minF ≤ e−2αt(F (x0) − minF ).

.
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Proof. We write
d

dt
(F (xt) − min

x
F (x)) = ⟨∇F (xt),

dxt

dt
⟩

= − ∥∇F (xt)∥2

≤ −2α · (F (xt) − min
x
F (x)).

The conclusion follows. ◀

For f : Rn → R+, let ν be the density proportional to e−f(x) and F (ρ) = Hν(ρ). We will
apply the above lemma to this KL-divergence objective.

▶ Lemma 36. For any two densities ρ, ν,

∥∇ρHν(ρ)∥2
ρ =

∫
ρ(x)

∥∥∥∥D log ρ(x)
ν(x)

∥∥∥∥2
dx = Jν(ρ).

▶ Theorem 37. Let f be a differentiable function with log-Sobolev constant α. Then the
Langevin dynamics

dxt = −Df(x)dt+
√

2dWt

converges exponentially in KL-divergence to the density ν(x) ∝ e−f(x) with mixing rate
O(1/α), i.e., Hν(ρt) ≤ e−2αtHν(ρ0).

Proof. First, note that the Langevin SDE, by Fokker-Planck, corresponds to the following
PDE:

dρ(x)
dt

= D · (ρ(x)Df) + ∆ρ(x)

= D ·
(
ρ(x)D log ρ(x)

ν(x)

)
= −∇ρHν(ρ).

Note that the last step above refers to the derivative with respect to the Wassterstein metric
(see [44]). Next, we note that since ν satisfies the log-Sobolev inequality, F (ρ) = Hν(ρ)
satisfies the Gradient Dominance condition with parameter α. The theorem follows from
Lemma 35. ◀

So far, we have only used the log-Sobolev inequality, not convexity or related properties.
Will this suffice for an efficient algorithm? It was shown in [43] that this is indeed the case.
The Unadjusted Langevin Algorithm (ULA) is the simple Euler discretization of Langevin
dynamics, namely,

Xk+1 = Xk − δ ·Df(Xk) +
√

2δZ

where Z ∼ N(0, I) is standard Gaussian. The next theorem is for Rn.

▶ Theorem 38 (ULA converges under Isoperimetry [43]). Assume ν = e−f satisfies LSI with
constant α > 0 and Df is L-Lipschitz. Then ULA with step size 0 < δ ≤ α

4L2 satisfies

Hν(ρk) ≤ e−αδkHν(ρ0) + 8δnL2

α
.

For any 0 < ε < 4n, ULA with step size δ ≤ αε
16nL2 reaches error Hν(ρk) ≤ ε after at most

k ≥ 1
αδ log 2Hν (ρ0)

ε iterations.
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Due to the simplicity and generality of the approach, Langevin Algorithms have been
intensively studied in recent years for many special cases and under various additional
conditions on the input [9, 5, 11, 34, 46, 6]. Here we consider an extension: what is the
generalization of Langevin diffusion from Euclidean space to more general metrics?

▶ Definition 39 (Riemannian Langevin Diffusion (RLD)). Let M be a manifold with metric
g and measure dvg(x), whose density with respect to the Lebesgue measure is

√
| det(g)|.

For a distribution with density ν = e−F , Riemannian Langevin Diffusion is given by the
following SDE whose stationary distribution is νdvg:

dXt = (∇ · (g−1(Xt)) − ∇F (Xt))dt+
√

2g−1(Xt)dBt.

Here ∇· denotes the divergence with respect to the manifold and it is applied separately to
each row of a matrix. When written in local Euclidean coordinates, this becomes

dXt = (D · (g−1(Xt)) − g−1(Xt)Df(Xt))dt+
√

2g−1(Xt)dBt

where f(x) = F (x) − 1
2 log det g(x) and the derivative and divergence are Euclidean. When

f is constant, then Df = 0 and we get the equation for Brownian motion on the manifold.

RLD has the same convergence guarantee in continuous time as stated by Theorem 34, with
ν being the manifold stationary measure. While LD can only be applied to smooth target
densities, RLD allows us to use the metric g to incorporate constraints and sample from e−f

subject to constraints. For example, by letting g be the log-barrier of a polytope we get to
sample from densities restricted to the polytope, in continuous time. We next define the
extension to a discrete time algorithm.

▶ Definition 40 (Riemannian Langevin Algorithm (RLA)). To sample from the distribution
νdvg(x) over the manifold M, for a fixed step size ϵ, repeat:

y = expxk
(−ϵ∇F (xk))

xk+1 = B(y, ϵ)

where B(x0, t) samples from Brownian motion on the manifold, starting from x0 after time t.

Recently, following work of [33, 1], [14] made progress on analyzing RLA in this general
setting, showing that an extension of self-concordance of the metric suffices to guarantee
convergence under the log-Sobolev inequality.

6 Discussion

The study of sampling has led to new tools, both for analysis and for algorithms, surprising
connections with convex geometry, functional analysis and optimization, and practical
algorithms in high dimension. We conclude by highlighting a few more open problems.

▶ Question 41. Is there a natural KLS conjecture for Hessian manifolds?

The close connection between diffusion and sampling raises an interesting sampling problem,
namely efficiently simulating Brownian motion on manifolds.

▶ Question 42. Given a metric g, an initial point x0 and a time interval t, give an algorithm
to sample from the distribution of Brownian motion on the manifold starting at x0 for time
t. For a manifold with metric g, Brownian motion is given by:

dXt = ∇ · (g−1)dt+
√

2g−1dBt.
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A Riemannian metrics

A manifold M can be viewed as an n-dimensional “surface” in Rk for some k ≥ n.
1. Riemannian metric: For any v, u ∈ TpM , the inner product (Riemannian metric) at p is

given by ⟨v, u⟩p and this allows us to define the norm of a vector ∥v∥p =
√

⟨v, v⟩p. We
call a manifold a Riemannian manifold if it is equipped with a Riemannian metric. When
it is clear from context, we define ⟨v, u⟩ = ⟨v, u⟩p. In Rn , ⟨v, u⟩p is the usual ℓ2 inner
product.

2. Tangent space TpM : For any point p, the tangent space TpM of M at point p is a linear
subspace of Rk of dimension n. Intuitively, TpM is the vector space of possible directions
that are tangential to the manifold at x. Equivalently, it can be thought as the first-order
linear approximation of the manifold M at p. For any curve c on M , the direction d

dtc(t)
is tangent to M and hence lies in Tc(t)M . For any open subset M of Rn, we can identify
TpM with Rn.

p

Tangent VectorTpM

Manifold

Figure A.1 Riemannian Manifold and Tangent Space.

3. Hessian manifold: We call M a Hessian manifold (induced by ϕ) if M is an open subset
of Rn with the Riemannian metric at any point p ∈ M defined by

⟨v, u⟩p = v⊤∇2ϕ(p)u

where v, u ∈ TpM and ϕ is a smooth convex function on M .
4. Length: For any curve c : [0, 1] → M , we define its length by

L(c) =
∫ 1

0

∥∥∥∥ ddtc(t)
∥∥∥∥

c(t)
dt.

5. Distance: For any x, y ∈ M , we define d(x, y) be the infimum of the lengths of all paths
connecting x and y. In Rn , d(x, y) = ∥x− y∥2.

http://proceedings.mlr.press/v75/wibisono18a.html
http://proceedings.mlr.press/v75/wibisono18a.html
http://arxiv.org/abs/2109.13055
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6. Geodesic: We call a curve γ(t) : [a, b] → M a geodesic if it satisfies both of the following
conditions:

a. The curve γ(t) is parameterized with constant speed. Namely,
∥∥ d

dtγ(t)
∥∥

γ(t) is constant
for t ∈ [a, b].

b. The curve is the locally shortest length curve between γ(a) and γ(b). Namely, for any
family of curve c(t, s) with c(t, 0) = γ(t) and c(a, s) = γ(a) and c(b, s) = γ(b), we have
that d

ds

∣∣
s=0

∫ b

a

∥∥ d
dtc(t, s)

∥∥
c(t,s) dt = 0.

Note that, if γ(t) is a geodesic, then γ(αt) is a geodesic for any α. Intuitively, geodesics
are local shortest paths. In Rn, geodesics are straight lines.

7. Exponential map: The map expp : TpM → M is defined as

expp(v) = γv(1)

where γv is the unique geodesic starting at p with initial velocity γ′
v(0) equal to v. The

exponential map takes a straight line tv ∈ TpM to a geodesic γtv(1) = γv(t) ∈ M . Note
that expp maps v and tv to points on the same geodesic. Intuitively, the exponential map
can be thought as point-vector addition in a manifold. In Rn, we have expp(v) = p+ v.

8. Parallel transport: Given any geodesic c(t) and a vector v such that ⟨v, c′(0)⟩c(0) = 0,
we define the parallel transport of v along c(t) by the following process: Take h to
be infinitesimally small and v0 = v. For i = 1, 2, · · · , 1/h, we let vih be the vector
orthogonal to c′(ih) that minimizes the distance on the manifold between expc(ih)(hvih)
and expc((i−1)h)(hv(i−1)h). Intuitively, the parallel transport finds the vectors on the
curve such that their end points are closest to the end points of v. For general vector
v ∈ Tc′(0), we write v = αc′(0) + w and we define the parallel transport of v along c(t) is
the sum of αc′(t) and the parallel transport of w along c(t). For non-geodesic curve, see
the definition in Fact 43.

9. Orthonormal frame: Given vector fields v1, v2, · · · , vn on a subset of M , we call {vi}n
i=1

is an orthonormal frame if ⟨vi, vj⟩x = 1 if i = j and 0 otherwise. Given a curve c(t) and
an orthonormal frame at c(0), we can extend it along the curve by parallel transport and
it remains orthonormal on the whole curve.

10. Directional derivatives and the Levi-Civita connection: For a vector v ∈ TpM and a
vector field u in a neighborhood of p, let γv be the unique geodesic starting at p with
initial velocity γ′

v(0) = v. Define

∇vu = lim
h→0

u(h) − u(0)
h

where u(h) ∈ TpM is the parallel transport of u(γv(h)) from γ(h) to γ(0). Intuitively,
Levi-Civita connection is the directional derivative of u along direction v, taking the
metric into account. In particular, for Rn, we have ∇vu(x) = d

dtu(x + tv). When u is
defined on a curve c, we define Dtu = ∇c′(t)u. In Rn, we have Dtu(γ(t)) = d

dtu(γ(t)).
We reserve d

dt for the usual derivative with Euclidean coordinates.
We list some basic facts about the definitions above.

▶ Fact 43. Given a manifold M , a curve c(t) ∈ M , a vector v and vector fields u,w on M ,
we have the following:

1. (alternative definition of parallel transport) v(t) is the parallel transport of v along c(t) if
and only if ∇c′(t)v(t) = 0.
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2. (alternative definition of geodesic) c is a geodesic if and only if ∇c′(t)c
′(t) = 0.

3. (linearity) ∇v(u+ w) = ∇vu+ ∇vw.
4. (product rule) For any scalar-valued function f, ∇v(f · u) = ∂f

∂vu+ f · ∇vu.
5. (metric preserving) d

dt ⟨u,w⟩c(t) = ⟨Dtu,w⟩c(t) + ⟨u,Dtw⟩c(t).
6. (torsion free-ness) For any map c(t, s) from a subset of R2 to M , we have that Ds

∂c
∂t =

Dt
∂c
∂s where Ds = ∇ ∂c

∂s
and Dt = ∇ ∂c

∂t
.

7. (alternative definition of Levi-Civita connection) ∇vu is the unique linear mapping from
the product of vector and vector field to vector field that satisfies (3), (4), (5) and (6).
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In this article we survey the current state of knowledge on the approximability of constraint
satisfaction problems (CSPs) using small space streaming and sketching algorithms. We start
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as the type of constraints allow to determine the level of approximability that is feasible. In
this survey we describe our knowledge of the approximability of CSPs when restricted to
streaming and sketching algorithms with limited space.

We start by describing CSPs more formally. For positive integer n we use [n] to denote
the set {1, . . . , n} and Zn to denote the set {0, . . . , n − 1}. A CSP problem is described by
positive integers k, q and a family of functions F ⊆ {f : Zk

q → {0, 1}}. Since k, q are implicit
in F , we refer to this problem as Max-CSP(F). Given variables X1, . . . , Xn, an assignment to
the variables is a sequence a = (a1, . . . , an) ∈ Zn

q . A constraint C on these variables is given
by a pair (f, (j1, . . . , jk)) where the first element of the pair f ∈ F is the choice of the type
of constraint and the second element is a sequence of k distinct indices with ji, . . . , jk ∈ [n].
An assignment a satisfies C = (f, (j1, . . . , jk)) if and only if f(aj1 , . . . , ajk

) = 1. We use C(a)
to denote the quantity f(Xj1 , . . . , Xjk

). An instance of Max-CSP(F) on n variables and m

constraints is given by Ψ = (C1, . . . , Cm) with Ci being a constraint on X1, . . . , Xn for every
i ∈ [m]. Given a assignment a to the variables, the value on the instance Ψ at a, denoted
valΨ(a), is the quantity 1

m

∑
i∈[m] Ci(a), i.e., the value is the fraction of constraints of Ψ that

are satisfied by a. The value of the instance valΨ is defined to be the maximum value over
all assignments, i.e., valΨ = maxa∈[q]n{valΨ(a)}. The goal of CSP optimization algorithms is
to compute, or approximate, valΨ given Ψ.1

Example. We illustrate the definition with the example of the Max-CUT problem, where
given an undirected graph on vertex set [n], the goal is to find a “cut” S ⊔ S = [n] that
maximizes the number of edges crossing the cut (i.e, with one endpoint each in S and S).
This problem is captured by q = k = 2 and the family F = {⊕} where ⊕(u, v) = u + v

(mod 2).
Note that in the example above, we could get positive integer weighted graphs also

since there is no requirement that the constraints themselves be distinct. For simplicity
we will assume the length on the stream is polynomial in n so that the weights are also
polynomial, though as we point out later this restriction does not alter the complexity of
the approximation problems much. But the graphs will not have any self-loops due to the
“restriction” that the variables in a constraint have to be distinct. If one wished to consider
the Max-CUT problem where self-loops are also allowed (though in the case of Max-CUT this
would make no sense - since a self-loop can never be cut), then one could consider instances
Max-CSP(F ′) where F ′ = {⊕, F} and F (u, v) = ⊕(u, u) for all u, v. (So v is just a dummy
variable and u is a variable which supplies both arguments to the cut function ⊕.) Thus while
the requirement that the variables are distinct may appear as a restriction, it is not: For
every family F there exists a family F ′ such that Max-CSP(F ′) captures the Max-CSP(F)
problem where variables are allowed to repeat.

We also remark that in some prior works in the Boolean setting, i.e., when q = 2,
constraints may be applied to “literals”, rather than “variables”. We refer to these results
as applying to Boolean CSPs over literals. In our setting we apply constraints only to
variables. Again, our setting is more general than the setting of Boolean CSPs over literals
in that for every family F ⊆ {f : Zk

2 → {0, 1}} there is a family F ′ such that CSP with
constraints from F applied to literals is the same problem as Max-CSP(F ′). For example
consider the Max-2-LIN problem, i.e., the CSP whose constraints are given by linear equations

1 Throughout this paper we assume that F does not include the all 0 function. Such a function corresponds
to placing constraints that are never satisfiable. Inclusion of such constraints in the family does not
change the complexity of any of the tasks we consider since these constraints are easy to ignore.
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modulo 2 on two distinct variables. Max-2-LIN is the Boolean CSP over literals over the
family F = {⊕}. But if we let F ′ = {⊕, ⊕} where ⊕(u, v) = u + v + 1 (mod 2), then
Max-2-LIN = Max-CSP(F ′). On the other hand Max-CSP(F) is the Max-CUT problem which
can not be expressed as a Boolean CSP over literals. Thus our setting is strictly richer in
expressibility.

2.1 Why study CSPs?
Before going on to giving more precise descriptions of the approximation versions of CSPs
and models of streaming algorithms, we digress to comment on why study CSPs at all.

CSPs do capture a host of natural optimization problems: Some familiar names of
problems include the Maximum Cut problem in (undirected) graphs, the Maximum Dicut
problem in directed graphs, the Maximum q-colorability problem in graphs, the Unique
Games problem, etc. Each one of these problems on their own right has probably been
the topic of multiple papers, and the umbrella of CSPs unifies their study. That being
said this reason on its own is not as compelling as some of the other reasons we describe
next – after all the study of CSPs does exclude many other natural optimization problems
including problems based on connectivity in graphs such as flow maximization or congestion
minimization. It also excludes global considerations such as balanced cuts or sparse cuts;
and of course there are a host of non-graph-theoretic problems.

To this author, the real reason to study CSPs is that they tend to allow for finite
classification. The first such result dates back to Schaefer [29] who studied the satisfiability
of Boolean CSPS and showed that they exhibit a dichotomy. Feder and Vardi [17] explored
the expressibility of different logics and arrived at a morally “broadest” set of problems
(“Monotone Monadic SNP”) that could potentially exhibit a dichotomy, and showed that
this set of problems was essentially equivalent to CSPs over arbitrary finite alphabets. They
posed the dichotomy of this class as an open question which was eventually resolved by
Bulatov [7] and Zhuk [31] after many years of sustained attack. Subsequent works extended
such classification quests to other classes of problems including optimization and counting.
(See Creignou, Khanna and Sudan [15] for some of the early lines of work.) Many of these
bodies are extensive, see e.g. the recent monograph by Cai and Chen [8] and references
therein for vast explorations of counting problems. In optimization and approximation the
work of Raghavendra [28] gives a fine dichotomy, under the “Unique Games Conjecture”,
that inspires some of the streaming work we describe in this survey.

Finite classifications are interesting in that they highlight the generality of some algorithms.
Even the weak classification of the approximability of CSPs pointed to the general utility
of the randomized rounding and Max Flow algorithms [25]. The sharp characterizations
in [28] point to the power of semidefinite programming and specifically to the sum-of-
squares framework of algorithms. One could also ask similar questions in the context of
streaming: The dichotomy work presented in this survey does highlight the role of norm
estimation algorithms in streaming optimization. Other algorithms might emerge with further
exploration.

Finite classifications also point to interesting phenomena. For instance in the context
of polynomial time approximability most natural problems have approximability in well
separated bands of functions: constant factor approximations, polylogarithmic approxim-
ations, and polynomial approximations are common whereas very few have intermediate
approximability, say to within a factor of 2

√
log n. A finite classification implies this phe-

nomenon - the entire infinite class of functions only shows finitely many distinct behaviors. A
similar phenomenon again seems to occur with streaming algorithms – many problems have
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polylogarithmic space approximation algorithms while others require polynomially growing
space. Intermediate complexity is rare. CSPs again seems to validate this separation, at
least in the context of sketching algorithms, as we will see in the rest of this survey.

3 Preliminaries: Approximation and Streaming

We formalize some basic notions related to approximation problems and streaming algorithms.
While a reader familiar with the notion might skip ahead we recommend they make sure
they understand the notions (and notations) of: (i) trivial approximation algorithms, (ii)
gapped optimization problems and the notation: (γ, β)-Max-CSP(F) (iii) approximability
and approximation-resistance and (iv) sketching algorithms.

3.1 Approximating CSPs
Since solving Max-CSP(F) exactly can be quite hard for most F we turn often to algorithms
that produce approximate solutions. We discuss some basic definitions regarding these in
this section. All definitions restrict algorithms to come from some resource-bounded class
C. While we defer the discussion of the specific classes considered to later sections, here we
consider definitions for a generic such class C.

The most common notion of approximation is an α-approximation algorithm for some
α ∈ [0, 1]. An α-approximation algorithm ALG for Max-CSP(F) is one that for every instance
Ψ outputs a value ALG(Ψ) satisfying α · valΨ ≤ ALG(Ψ) ≤ valΨ.2 We say Max-CSP(F)
is α-approximable in C if there exists ALG ∈ C that is an α-approximation algorithm for
Max-CSP(F).

A more refined notion of approximation that is more common in the literature proving
non-existence of algorithms is associated with gapped problems. Given 0 ≤ β < γ ≤ 1,
we say that an algorithm ALG solves the “(γ, β)-approximation version of Max-CSP(F)”,
abbreviated (γ, β)-Max-CSP(F), if the following two conditions hold: (1) For every Ψ such
that valΨ ≥ γ, we have ALG(Ψ) = 1 and (2) For every Ψ such that valΨ ≤ β, we have
ALG(Ψ) = 0. We say that (γ, β)-Max-CSP(F) is solvable in C if there exists an ALG ∈ C
solving (γ, β)-Max-CSP(F).

Assuming C satisfies mild closure properties the latter notion roughly captures α-
approximability precisely, while giving more detailed information. To see some flavor of the
translation between the two notions, suppose Max-CSP(F) is α-approximated by ALG. Now
consider a pair γ, β with β < αγ. Then the algorithm ALG′ that outputs ALG′(Ψ) = 1
if ALG(Ψ) > β and 0 otherwise solves (γ, β)-Max-CSP(F). And if C satisfies the closure
property that ALG′ ∈ C whenever ALG ∈ C then it follows that α-approximability in
C implies (γ, β)-Max-CSP(F) is solvable in C for every β < αγ. A rough converse is also
true, again assuming some (this time more stronger) closure properties of C that we leave
unspecified: If for some α we have that for every γ ∈ [0, 1], the (γ, β)-Max-CSP(F) is solvable
in C for β = αγ, then for every ϵ > 0 we have that Max-CSP(F) is α − ϵ approximable in C.
(See [13, Proposition 2.21] for a detailed statement and proof.)

The discussion above explains why the study of (γ, β)-Max-CSP(F) (for every γ, β and F)
is at least as rich as the study of α-approximability of Max-CSP(F). But it can provide more
detailed information. For instance researchers are often interested in approximating the value

2 Note that a small space streaming algorithm has very little hope of outputting a near-optimal solution
which might take Ω(n) space to represent. So we require our algorithms only to output the value
achieved by the optimal, or approximately-optimal, solution.
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on satisfiable, or nearly satisfiable, instances. (See for instance, [16, 4, 27] for such works in
the setting of C being all polynomial time algorithms.) We can understand these corner cases
by focussing on γ = 1 or γ → 1 and exploring the maximal β such that (γ, β)-Max-CSP(F)
is solvable in C. For instance recent results show that for every β < 1, (1, β)-Max-DICUT is
solvable in C when C is the class of polylog space bounded sketching algorithms – a result
that is not captured by the single parameter approximability of the problem.

Before concluding we also highlight what is a “non-trivial” approximation. For families
F where every constraint has at least one satisfying assignment this notion is quite simple.
We say that an algorithm that outputs a constant (independent of the input Ψ) is a trivial
algorithm. Note that trivial algorithms are still legitimate approximation algorithms. For
instance the algorithm that always outputs 1/2 is a 1/2-approximation for Max-CUT – this is
so since no instance Ψ of Max-CUT has valΨ < 1/2. We say that an approximation ratio is non-
trivial if it is not achieved by a trivial algorithm. Similarly we say that a (γ, β)-approximation
is non-trivial if γ < 1 and there exists an instance Ψ with valΨ ≤ β. To quantify this notion
of non-triviality we define ρmin(F) to be infΨ instance of Max-CSP(F){valΨ}. We say that a
Max-CSP(F) is approximation resistant to C if for every α > ρmin(F) no algorithm ALG ∈ C
is an α-approximation to Max-CSP(F). Equivalently for every ρmin(F) < β < γ < 1 it is the
case that (γ, β)-Max-CSP(F) is not solvable in C. We say Max-CSP(F) is approximable in C
if it is not approximation resistant to C.

In what follows we will describe works exploring the various approximation factors
achievable for Max-CSP(F) for different F with streaming algorithms that have bounded
space. We shall also explore some restrictions of streaming algorithms known as sketching
algorithms. We introduce these terms below.

3.2 Streaming and Sketching algorithms
We consider the approximability of Max-CSP(F) when the input instance Ψ = (C1, . . . , Cm)
is presented as sequence of constraints to the approximating algorithm. The algorithm is
restricted in the amount of space it is provided. We allow the algorithm to be randomized:
in all upper bounds the algorithm will be expected to generate and store any randomness in
the restricted space it is given, while in the lower bounds we will rule out algorithms that
are a distribution over deterministic algorithms (and so strictly more general).

Formally a space s(n)-streaming algorithm for (γ, β)-Max-CSP(F) on n variables is given
by a pair of functions (τ, ν) where Γ : {0, 1}s(n) × Λn → {0, 1}s(n) is the state transition
function and output function ν : {0, 1}s(n) → {0, 1}s(n), where Λn = Λn(F) denotes the set of
all possible constraints of Max-CSP(F) on n variables.On input a stream σ = (C1, . . . , Cm) ∈
Λm

n the algorithm first computes the state S(σ) = Sm where Si = Γ(Si−1, Ci) for i ∈ [m]
and S0 = 0 in the deterministic case. It then outputs ν(S(σ)). A randomized streaming
algorithm is the same except that now the initial state S0 is distributed uniformly randomly
over {0, 1}s(n).

In this paper we will also focus on a restriction of streaming algorithms known as
sketching algorithms. To define this notion consider the concatenation of two streams
σ ◦ τ . By definition of a streaming algorithm the final state S(σ ◦ τ ) can be determined
from S(σ) and τ . A sketching algorithm is one that is restricted even further in that
S(σ ◦ τ ) can be determined from S(σ) and S(τ ), i.e., there exists a composer function
C : {0, 1}s(n) × {0, 1}s(n) → {0, 1}s(n) such that for every σ, τ ∈ Λ∗

n, we have S(σ ◦ τ ) =
C(S(σ), S(τ )).

Most common sketching algorithms are obtained from so called “linear-sketching al-
gorithms” where C ∈ Γn is viewed as a vector in v ∈ RN for some large N , and a stream
(C1, . . . , Cm) represents the sum of the m corresponding vectors v1 + · · · + vm. The sketch
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of a vector v is given by Av where A ∈ RN×s projects v down to some low-dimensional
subspace. Ignoring bit precision issues this compresses large N dimensional inputs into small
s dimensional sketches that end up giving significant information about the original input,
surprisingly often. It is easy to see that such linear sketching algorithms indeed satisfy the
definition of sketching.

In the rest of this article we describe the surprising effectiveness of sketching algorithms
in approximating Max-CSP(F). We also describe matching lower bounds for sketching
algorithms that often generalize also to give streaming lower bounds.

4 Results on Streaming CSPs

Prior to 2010, despite extensive work on streaming algorithms and lower bounds for other
problems, there were no works covering CSPs. This was even noted at a workshop at
Bertinoro in 2011 [21].

Lower bounds for Max-CUT

The first works focussed on lower bounds for the Max-CUT problem in independent works by
Kogan and Krauthgamer [26] and Khanna, Kapralov and Sudan [22]. The former showed
that there existed α < 1 such that α-approximating Max-CUT requires Ω(

√
n)-space. The

latter showed the tighter result showing that for every α > 1/2, α-approximating Max-CUT
requires Ω(

√
n)-space in the streaming setting. In other words Max-CUT is approximation

resistant to o(
√

n) space streaming algorithms. Subsequent works focussed on the space
complexity and pushed it higher. Khanna, Kapralov, Sudan and Velingker [23] pushed
the space requirement up to linear at the cost of a weaker approximation; specifically they
showed that there exists α < 1 such that α-approximating Max-CUT requires Ω(n)-space.
Finally, in a tour-de-force work, Kapralov and Krachun [24] settled the approximability
of Max-CUT essentially completely by showing it is approximation resistant to o(n) space
streaming algorithms.

An aside is in order here: The input to a Max-CSP(F) has length O(m log n) and even
if we forbid repeated constraints m can be as large as nk. So, a priori one could imagine
space complexities of streaming algorithms being much higher than O(n). But a folklore
observation shows that it suffices for the streaming algorithm to maintain a random sample
of O(n/ϵ2) constraints and the optimum value on the sampled constraints is a (1 − ϵ)
approximation to the optimum value on the input instance.3 Since this sample of constraints
takes only O(n log n) space to store and the optimal value for this sample can be computed
in O(n) space (though using exponential time), it follows that O(n log n) space suffices to get
α-approximation for every Max-CSP(F) problem for every α < 1. In particular, returning to
the Max-CUT problem, the space lower bound from [24] is optimal to within a logarithmic
factor.

Upper bounds for Max-DICUT

While the lower bounds for Max-CUT are technically hard (especially [24]) arguably these
results are not very surprising: A streaming algorithm with limited (say polylogarithmic)
space seems hardly capable of understanding the global structure imposed by the many

3 This observation also relies on the fact that the value of every instance is bounded away from 0, which
in turn relies on the fact that 0 is not a constraint function in F .
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different constraints and understanding how well they can be satisfied simultaneously. Indeed
the lower bounds of [22] show that o(

√
n) space streaming algorithms can not distinguish

random graphs from random bipartite graphs with a planted bipartition. In view of such
limited power to understand the global structure it would not have surprised some researchers
(notably this author) if every Max-CSP(F) problem had turned out to be approximation
resistant to o(n)-space streaming algorithms. In other words – it was conceivable in 2015
that there were no non-trivial streaming algorithms for CSPs.

A striking paper of Guruswami, Velingker and Velusamy [19] changed the picture by
giving an elegant and simple algorithm for approximating Max-DICUT, the problem whose
input is a directed graph on vertex set [n] and the goal is to find a cut S ⊔ S that maximized
the number of edges going from S to S. (This problem is expressible as Max-CSP(F) for
F = {u∧v}.) The “trivial” approximability of this problem is 1/4, but [19] gave a non-trivial
0.4-approximation algorithm for this problem using polylogarithmic space.4 The key insight
to their algorithm is that one can estimate some non-trivial global information about the
input by appealing to norm estimation algorithms that have been well explored in the
sketching community. In particular their work relies on algorithms for estimating the ℓ1
norm of a vector in the “turnstile” model which go back to the work of Indyk [20]. As we will
discuss later, this algorithm can be generalized arguably quite surprisingly to many other
CSPs.

Tight bounds and classification of Boolean binary CSPs

While the lower bound for Max-CUT is obviously tight, the Max-DICUT approximability of
.4 from [19] was not known to be tight. From the 1/2 + ϵ-inapproximability of Max-CUT
one can deduce a (1/2 + ϵ)-inapproximability, for every ϵ > 0, for Max-DICUT as well (by a
reduction which maps every edge from an instance of Max-CUT to a pair of directed edges
between the same vertices). Neither the algorithm nor the analysis appear tight. Indeed in a
subsequent work, Chou, Golovnev and Velusamy [14] managed to improve both the algorithm
and the lower bound to get a tight approximability of 4/9 for Max-DICUT. Specifically they
give a polylog space algorithm achieving this approximation ratio and also prove that no
streaming algorithm with o(

√
n) space can do better! This tight result for Max-DICUT may

appear accidental, but [14] go further and classify the approximability of every Boolean
(i.e., with q = 2) CSP on literals on binary constraints (i.e., k = 2). In doing so their
work points to some remarkable phenomena: For every α ∈ [0, 1], every CSP in the finite,
but nevertheless diverse, class they consider either is α-approximable in polylogarithmic
space, or is not α − ϵ approximable (for every ϵ > 0) with o(

√
n) space. And in all cases

the approximation algorithm uses the ℓ1-norm approximator in a manner similar to [19].
Together these results suggest a broader phenomenon explored and somewhat confirmed in
the further work reported next.

Sketching complexity of CSPs

In joint work with Chou, Golovnev and Velusamy [13] we give a dichotomy result for all
(γ, β)-Max-CSP(F) (i.e., for every k, q, F and every γ, β ∈ [0, 1]) for o(

√
n)-space sketching

algorithms, as described below.

4 Throughout this article we will not spell out the exponent in polylogarithmic terms though of course
the original papers give more detailed answers.
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▶ Theorem 1 ([13, Theorem 1.1]). For every q, k ∈ N, 0 ≤ β < γ ≤ 1, and every F ⊆ {Zk
q →

{0, 1}}, one of the following two conditions holds: Either (γ, β)-Max-CSP(F) can be solved
by a polylogarithmic space sketching algorithm, or for every ϵ > 0, every sketching algorithm
for (γ − ϵ, β + ϵ)-Max-CSP(F) requires Ω(

√
n)-space. Furthermore there is a polynomial space

algorithm that decides, given γ, β and F , which of the two conditions holds.

A corollary to approximation resistance is the following: For every F , either Max-CSP(F)
is approximable by a polylogarithmic space sketching algorithm, or it is approximation
resistant to o(

√
n)-space sketching algorithms.5 In the special case of k = q = 2 the

lower bound above extends beyond sketching algorithms to all streaming algorithms ([13,
Theorem 1.3]). Put together these results subsume all previous works with the exception
of the linear space lower bound for Max-CUT from [24]. Even in the case of k = q = 2 the
dichotomy is more detailed than the one in [14] in that it covers all CSPs, not just CSPs on
literals, and it also talks about the solvability of all (γ, β)-Max-CSP(F) and not only the best
approximation ratio. For example the results show that for every sufficiently small ϵ > 0,
(1 − ϵ, 1 − 2ϵ)-Max-DICUT is solvable by a polylogarithmic space sketching algorithm while
(1 − ϵ, 1 − 2ϵ + δ)-Max-DICUT requires Ω(

√
n) space for every streaming algorithm for every

δ > 0. In particular it asserts that nearly satisfiable instances are detectable by small space
sketching algorithms.

The sketching algorithms used for the positive result in Theorem 1 builds on the algorithm
of [14], which we refer to as a “bias-based algorithm” here. We will discuss that algorithm
further later, but highlight one major difference. Rather than appealing to ℓ1-norm estimation
algorithms, the new algorithm appeals to a matrix norm estimation algorithm, this time
from the work of Andoni, Krauthgamer and Onak [1]. (Roughly the ℓ1 norm given by
∥(x1, . . . , xn)∥1 = maxb1,...,bn∈{−1,+1}

∑
i=1 bixi optimizes over a Boolean domain. The

matrix norm estimators allow us to optimize some problems over q-ary domains.)
While the theorem holds out the possibility that there are non-trivial approximation

algorithms for (infinitely) many CSPs, this is not immediate from the theorem statement due
to the lack of “explicitness” of the classification. Specifically there is no simple relationship
that says given F what range of γ and β are “easy” (i.e., solvable in polylog space) and which
ones are not. This is unfortunately inevitable. As F gets more complex the relationships do
seem to get more complex. The results of [13] show that γ and β are determined by optimizing
some O(qk) real variable linear function over the reals subject to some degree k polynomial
constraints. Even in the case of Max-DICUT this leads to some degree 2 polynomials in γ

and β that determine the complexity. (See [13, Example 1, Pages 21-23] for more details.)
Nevertheless the conditions can be analyzed computationally, and in particular using the
quantified theory of reals (using only the existential theory does not seem to suffice) to
understand the complexity of (γ, β)-Max-CSP(F) for any given γ, β, F .

Remarkably some subsequent work has managed to extract explicit results, even for
infinite families of functions, by exploring the decision conditions arising from the proof
of Theorem 1. For instance, Boyland, Hwang, Prasad, Singer and Velusamy [6], analyze
the approximability of Max-kAND for every k ∈ N – the problem where constraints are
the conjunctions of k-literals – and give an exact expression for the approximation ratio of
Max-kAND. (They show Max-kAND is approximable to within a factor that roughly looks
like 2−(k−1)(1 − O(1/k)) - see [6] for an exact expression.) In particular this gives an infinite
subfamily of CSPs that is non-trivially approximable by the algorithm from [13]. [6] also
pin down the approximability of some other symmetric functions. Another work, by Chou,

5 This corollary is not immediate from the theorem statement, but uses some additional aspects of the
proof. See [13, Theorem 2.14] for details.
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Golovnev, Shahrasbi, Sudan and Velusamy [10], also analyzes the sketching approximability of
some linear threshold functions, giving some infinite families that are approximation-resistant
to o(

√
n)-space sketching algorithms and other infinite families that are approximable by

polylog space sketching algorithms.

Streaming Lower Bounds

While the classification essentially only rules out sketching algorithms using o(
√

n)-space
for the hard problems, for a broad class of problems it even rules out non-trivial streaming
algorithms. In fact for all problems it pins down the polylogarithmic space approximability
to within a factor of q – we expand on this later below, but first speak about broad classes
of approximation resistant problems. We start with some definitions.

We say that a distribution D on Zk
q is one-wise independent if for every i ∈ [k] we have

that when X = (X1, . . . , Xk) is sampled according to D, then Xi is distributed uniformly
over Zq. We say that f : Zk

q → {0, 1} supports one-wise independence if there is a one-wise
independent distribution D supported on a subset of the satisfying assignments of f , i.e., if
a ∈ Zk

q has positive probability under D then f(a) = 1. We say that F supports one-wise
independence if every function f ∈ F supports one-wise independence. We say that F weakly
supports one-wise independence if there exists F ′ ⊆ F such that ρmin(F ′) = ρmin(F) and F ′

supports one-wise independence.

▶ Theorem 2 ([13, Theorem 2.17]). If F weakly supports one-wise independence, then F is
approximation-resistant to o(

√
n)-space streaming algorithms.

Many natural families support one-wise independence. For readers familiar with some of
these problems, we name some here without definitions: Max-Exact-kSAT for k ≥ 2, Max-kOR,
Max-CUT, Max-qColoring, Max-Unique-Gamesq to name a few. All of these problems turn
out to be approximation-resistant by the above theorem.

Linear space lower bounds

Another direction of work has tried to extend the results of [24], i.e., Ω(n)-space streaming
lower bounds, to problems beyond Max-CUT. Here, we are far from a full understanding,
but we do get approximation resistance for a (strict) subclass of families supporting one-wise
independence. We define the families next.

For a function f : Zk
q → {0, 1} and a ∈ Zk

q we define the width of f at a to be
ωa(f) = 1

q |{θ ∈ Zq|f(a + (θ, θ, · · · , θ)) = 1}|. We define the width of f to be the quantity
ω(f) = maxa∈Zk

q
{ωa(f)}, i.e. the maximum over a of the width of f at a. (Roughly the set

La = {a + (θ, θ, · · · , θ)|θ ∈ Zq} is a line through Zk
q and ωa(f) measures the density of the

intersection of this line with f−1(1), and the width of f is the widest such intersection.) We
define the width of F , denoted ω(F), to be the minimum over f ∈ F of the width of f . Note
that 1/q ≤ ω(F) ≤ 1 for every F . Finally we say that F is wide if ω(F) = 1, i.e., the width
is maximal.

A simple example of a wide family is the k-equality function fkEQ where fkEQ(u1, . . . , uk) =
1 if and only u1 = · · · = uk. Note that every wide family supports one-wise independence.
But there exist functions supporting one-wise independence that are not wide: For example
⊕3 : Z3

2 → {0, 1} given by ⊕3(a, b, c) = a + b + c (mod 2) supports one-wise independence
but has width 1/2.

The following theorem is shown in joint work with Chou, Golovnev, Velingker and
Velusamy [11].

▶ Theorem 3 ([11, Theorem 1.1]). For every wide family F , Max-CSP(F) is approximation-
resistant to o(n)-space streaming algorithms.
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We will not cover any aspects of the proof of this theorem in this article, except to say
that it builds on the proof of [24] following exactly the same sequence of steps, while replacing
every step in their proof with ingredients needed to handle k-ary functions over non-Boolean
alphabets. While the class of functions covered by this theorem is even smaller than the
set covered by Theorem 2, it suffices to imply the following theorem which pins down the
approximability of every Max-CSP(F) to within a factor of q.

▶ Theorem 4 ([11, Theorem 4.3]). For every family F and every ϵ > 0, (ω(F) − ϵ, ρ(F) + ϵ)-
Max-CSP(F) requires Ω(n) space for every streaming algorithm. Consequently, for every F
the largest α for which Max-CSP(F) is α-approximable by a o(n)-space streaming algorithm
satisfies α ∈

[
ρmin(F), ρmin(F)

ω(F)

]
.

We remark that while Theorem 4 immediately implies Theorem 3, the proof in [11]
essentially derives the former from the latter using simple arguments.

4.1 Aside: Ordering CSPs
Before turning to some of the technical ingredients in the proofs we take a brief detour to cover
an application of the results described above to a somewhat different class of optimization
problems called ordering CSPs. We describe this class informally first: Recall that the solution
space of the standard CSPs (the ones we work with in the rest of this paper) comes from a
product set, namely an n-tuple of variables (X1, . . . , Xn) takes values from Zq ×Zq ×· · ·×Zq.
A variation of this theme considers the setting where the variables need to be ordered, i.e., the
(X1, . . . , Xn) take on values from Symn = {π : [n] → [n] | π is one-to-one}. (I.e., Xi = π(i)
where π is a permutation.) The natural notion of local constraints on ordering problems pick
sequences of k distinct variables out of the n variables (as in standard CSPs) and look at
the ordering from Symk induced by these k variables and constrain them. Thus a constraint
function in ordering CSPs is given by Π : Symk → {0, 1} and constraint families are a set of
constraint functions. Thus for every k and every family F ⊆ {Π : Symk → {0, 1}} we get
an ordering CSP, denoted Max-OCSP(F). (Note that unlike in standard CSPs, there is no
notion of an alphabet or q in the case of ordering CSPs.)

Two examples of ordering CSPs include the Maximum Acyclic Subgraph (MAS) problem
and the Betweenness problem. The former asks, given a directed graph G, to find the largest
acyclic subgraph in it. This problem is captured as Max-OCSP({<}) where <: Sym2 → {0, 1}
satisfies < (π) = 1 if and only if π(1) < π(2). By placing the constraint < (i, j) for every
directed edge (i, j) in a graph G, we get an Max-OCSP(<) instance that exactly captures
the MAS instance. Betweenness is the ordering problem where constraints are given by a
triple of variables and require that the ordering place the middle variable between the first
and third (though allowing either of the first or the third to be the higher ranked variable).
Once again it can be naturally formulated as an ordering CSP.

With ordering CSPs again, one can ask what is the trivial approximability of an ordering
CSP and when can a ordering CSP be solved non-trivially. Both questions turn out to have
simple answers though somewhat disappointing ones from the algorithmic point of view.
Note that a random ordering satisfies a constraint Π with probability ρ(Π) def= 1

k! · |Π−1(1)|.
Letting ρ(F) = minΠ∈F {ρ(Π)} we get that every instance of Max-OCSP(F) has value at
least ρ = ρ(F), and thus ρ-approximation is trivial. It turns out that there are no algorithms
(that can do better for any F running in o(n)-space), as shown in the following theorem from
joint work with Singer and Velusamy [30].

▶ Theorem 5. For every k, every family F ⊆ {Π : Symk → {0, 1}} and every ϵ > 0, every
streaming (ρ(F) + ϵ)-approximation algorithm for Max-OCSP(F) requires Ω(n) space.



M. Sudan 5:11

5 Some ideas behind the proofs

5.1 The Ω(
√

n) space lower bound for Max-CUT
We start with the lower bound from [22] on the Max-CUT problem. We start with some
basic ideas about lower bounds. Lower bounds in streaming are typically “distributional”.
To prove a lower bound on (γ, β)-Max-CSP(F) for some γ, β, F , for every sufficiently large n

we construct two distributions of instances on n variables – the YES and NO distributions.
The YES distributions are supported with probability 1 − o(1) on instances from the set
Γ = {Ψ|valΨ ≥ γ}. Similarly, the NO distributions are supported with probability 1 − o(1)
on instances from the set B = {Ψ|valΨ ≤ β}. In the case of Max-CUT we will thus consider
a YES distribution supported (with probability one) on bipartite graphs, and NO instances
will have cut value at most 1/2 + o(1) (with probability 1 − o(1)). The goal is to prove that
for any space s algorithm ALG with s = o(

√
n) the distribution of the final state of ALG

in the YES and NO cases are very close in total variation distance. (For distributions D, D′

supported on some set Ω the total variation distance, denoted ∥D − D′∥tv, is the quantity
1
2

∑
ω∈Ω |D(ω) − D′(ω)|.) Since the inputs are random, it suffices to consider deterministic

s(n)-space bounded algorithms.
Both distributions are parameterized by two constants: a small α ∈ (0, 1) and large, but

constant, integer T . The graphs are defined on vertex set [n] and have roughly (α/2) · T · n

edges. These edges come as the union of T matchings M ′
1, . . . , M ′

T , each with roughly αn/2
edges.In the NO distribution these matchings will just be uniform matchings of the right
size (we will get to the exact distribution of size shortly). In the YES distribution a random
cut of [n] is chosen by picking a vector x ∈ {0, 1}n uniformly at random and letting the cut
be {i|xi = 1}. The matchings M1, . . . , Mt are uniform subject to the condition that every
matched edge crosses the cut. The lower bound is proved by a “hybrid argument” involving
T steps. For t ∈ {0, . . . , T } let SY

t denote the state of ALG after seeing the first t matchings
from the YES distribution, and similarly let SN

t denote the state of ALG after the first t

matchings from the NO distribution. By definition we have SY
0 = SN

0 . The key step is to
prove that for every t,

∥SY
t − SN

t ∥tv is small assuming ∥SY
t−1 − SN

t−1∥tv is small, (1)

and to use this result inductively to conclude ∥SY
T − SN

T ∥tv is small which shows that the
two distributions are not distinguishable by small space algorithms. By construction the
YES distribution is supported on bipartite graphs. If αT is sufficiently large then it can
be argued by a standard Chernoff plus union bound that with probability 1 − o(1), a graph
from the NO distribution also has value at most 1/2 + o(1) and together these suffice for
the lower bound on Max-CUT. We thus turn to the proof of Equation (1).

The upper bound works by designing two-party one way communication problem that
captures the added distinguishability of YES from NO conditioned on knowing SY

t−1 ≈d SN
t−1

(where ≈d indicates that the two random variables are close in terms of total variation
distance). A rough abstraction of this problem is as follows: Alice, who knows x must send
some information about it to Bob. This information may capture information such as SY

t−1
and/or SN

t−1, both of which may in principle depend on x, but should be limited to o(
√

n)
bits. Now Bob, who gets to see Mt which is either (in the YES case) a random matching
crossing the cut given by x or (in the NO case) a random matching, must distinguish the
two.

It turns out a problem very similar to this was already defined and studied in the literature.
Specifically, Gavinksy, Kempe, Kerenedis, Raz and de Wolf [18] define the Boolean Hidden
Matching (BHP) problem where Alice is given a uniform vector x ∈ Zn

2 and Bob is given a
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matching M̃ with m = αn edges on vertex set [n] drawn uniformly among all such matchings,
and a 0/1 labelling w ∈ Zm

2 on the edges where in the YES case, the label we of an edge
e = (i, j) satisfies we = xi + xj (mod 2), while in the NO case we’s are uniformly random
and independent. The goal of the communication is for Bob to distinguish the YES case
from the NO case. [18] show that this problem requires Ω(

√
n) bits of communication to

achieve constant advantage in distinguishing. (The advantage of a protocol is the probability
that the protocol outputs 1 in the YES distribution minus the probability it does so in
the NO distribution. Specifically the [18] result shows that for every δ > 0 there exists
τ > 0 such that for every α < 1/2 and every sufficiently large n, every protocol that achieves
advantage δ must communicate at least τ

√
n bits. These quantifiers are somewhat important

as we will see below.)

To use the BHM lower bound from [18] we need to address two issues. First the input
to Bob in the BHM problem is not the same as coming from the streaming problem. This
problem is easy to deal with – Bob is getting more information in the BHM problem than in
the motivating Max-CUT based problem, and this only makes the lower bound even stronger.
Formally Bob can reduce an instance of BHM to the streaming inspired-problem by dropping
all the edges e that have label we = 0. This gives Bob roughly αn/2 edges (since each
edge crosses the cut with probability roughly 1/2 and these are roughly independent events)
reducing exactly to the setting in the streaming-inspired problem.

The second and more important issue is that the BHM problem was only “roughly”
motivated by the streaming problem above – we need a more careful and formal argument
connecting the two. Formally we consider the random variables, SY

t , SN
t and a hybrid variable

S̃, where S̃ is the state of ALG on receiving M1, . . . , Mt−1 from the YES distribution and
Mt from the NO distribution. The BHM lower bound immediately implies that S̃ ≈d SY

t :
The only difference between the two states is the tth input which comes from the YES
distribution for SY

t and from the NO distribution for S̃; and the setup of BHM allows Alice
to generate and communicate SY

t−1 to Bob allowing Bob to compute the final state and use
ALG to distinguish them. To complement we also have ∥S̃ −SN

t ∥tv ≤ ∥SY
t−1 −SN

t−1∥tv by the
data processing inequality: S̃ is determined by SY

t−1 and Mt ∼ NO while SN
t is determined

from SN
t−1 and Mt. We stress a subtle point here: It is crucial that Mt is independent of SY

t−1
and SN

t−1 for this inequality to be applicable, and this does hold in our case since the NO
distribution is independent of x which is the only variable connecting the different matchings
in the YES case. (This subtlety is the reason why extensions of this proof apply only to
families supporting one-wise independence, or only give sketching lower bounds.)

We also comment briefly on the choice of various parameters such as α, T , ϵ (where our
goal is to prove hardness of (1, 1/2 + ϵ)-Max-CUT), δ (the advantage allowed in BHM) and τ

(where the space lower bound is τ
√

n). We want our bound to hold for every ϵ > 0 so given
ϵ, we first pick α small enough for the BHM lower bound to hold. In our case it holds for
every α < 1/2. Given this choice of α we pick T large enough so that a graph from the NO
distribution with αTn edges is very likely not to have a Max-CUT of fractional size more
that 1/2 + ϵ. Given this choice we pick δ small enough so that T applications of the hybrid
argument still lead to negligible advantage in distinguishing YES from NO. Finally the τ

we obtain is whatever is guaranteed by the BHM lower bound for this choice of δ.

Our eventual streaming and sketching lower bounds will extend the ideas from above,
but we will return to those after describing the algorithms for Max-DICUT from [19, 14].
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5.2 Bias-based algorithms for Max-DICUT

The key ingredient in the algorithm of [19] for Max-DICUT is the notion of the “bias” of a
graph on vertex set [n]. For a vertex v in a directed graph, let in-deg(v) denote the number
of incoming edges into v and let out-deg(v) denote the number of outgoing edges. Now
define bias(v) = in-deg(v) − out-deg(v), and define bias(G) = 1

2m

∑
v∈[n] |bias(v)|. Thus if we

term the vector (bias(v))v∈[n] ∈ Rn to be the bias-vector of the graph, then the bias of the
graph is essentially the ℓ1 norm of this vector up to normalization. As mentioned already,
the ℓ1-norm and hence the bias of a graph can be estimated arbitrarily well by a streaming
algorithm presented with a stream of edges using an algorithm from [20]. The key to the
algorithms of [19] and [14] are inequalities relating the bias of a graph to the dicut value,
that allow them to output lower bounds of the value of the dicut. (For uniformity we will
only talk about the fractional value here and later and use valG to denote this quantity.)

Note that by definition 0 ≤ bias(G) ≤ 1 for every graph G on m vertices. [19] show that
valG ≤ 1+bias(G)

2 . This inequality follows easily from the observation that every cut must
leave at least |in-deg(v)−out-deg(v)| of the edges incident to v uncut. Since every uncut edge
may be counted twice by this process, we get a lower bound of 1

2
∑

v |in-deg(v) − out-deg(v)|
on the number of uncut edges.

[19] complement upper bound above with a lower bound: For every G we must have
valG ≥ bias(G). This is “constructive” (though not in streaming sublinear space) – the greedy
cut which puts all vertices with positive bias on the sink side of the cut and the rest on the
source side achieves this. (A simple argument to see is iterative: Remove directed cycles
from the graph one at a time till we get a DAG. This does not alter the bias. Now remove
maximal length directed paths - each such path contributes one to the non-normalized bias,
and also contributes at least one edge to the dicut since by maximality the source of the
path must have zero indegree and the sink must have zero out degree.)

Combining the two bounds above with the lower bound valG ≥ 1/4 for every G gives a .4
approximation algorithm: The algorithm computes bias(G) and outputs max{bias(G), 1/4}.
To improve on this [14] give an improved lower bound on valG when bias(G) ≤ 1/3. Their
bound is also “constructive” - they consider a random dicut where each vertex of positive
bias is placed on the sink side with probability 1/2 + δ independently (for some parameter δ

that we will optimize later). Remaining vertices are placed on the sink side with probability
1/2 − δ independently. They analyze the cut produced by this rounding after optimizing
over δ and use the expected size as an additional lower bound. We won’t reproduce their
bound or analysis here, but only comment that the analysis involves optimizing degree two
rational functions in δ. This already gives them a 4/9 approximation algorithm.

The choice of a single rounding probability for all vertices in the graph is somewhat
surprising. (This probability may depend on the graph and bias, but once the graph is fixed
all vertices get rounded with the same probability.) It seems like a choice made for ease of
analysis - optimizing a single variable δ is easier than optimizing n variables! One could
nevertheless ask – could we have done better with more careful choices? The surprising
result from [14] is that this won’t help and indeed no o(

√
n)-space algorithm can improve

on the bound above! So somehow bias(G) is the right quantity to compute, and rounding
independently with the same probability for all vertices (upto the choice of the preferred
side) is the right algorithm!
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5.3 The framework of [13]

To extend the algorithm of the previous section to problems beyond Max-DICUT, we need to
understand what are notions of bias of a variable and of the whole instance for Max-CSP(F)
for general F . (In this discussion we will assume F has a single function f though extensions
to more functions are straightforward.) Recall that in the Max-DICUT problem constraints
arrive as pairs (i, j) where the edge goes from vertex i to vertex j. Thus the in-degree of a
vertex could be abstract as the number of constraints in which it is the second variable, and
out-degree as the number of constraints where it is the first variable. We use this to motivate
a new notion of bias of a variable Xi, denoted d-bias(i) (for detailed bias): This will be a
k dimensional vector whose jth coordinate d-bias(i)j records the number of constraints in
which Xi appears as the jth variable in a constraint. Considering all the biases of all vertices
gives us an n × k matrix B = B(Ψ) with B(i, j) = d-bias(i)j that “represents” an instance Ψ.

The main idea in [13] can roughly be captured as follows: If there exists t ∈ N and
instances Ψg and Ψb on t variables with B(Ψg) = B(Ψb) such that valΨg

≥ γ and valΨb
≤ β

then Max-CSP(F) can not be solved in o(
√

n) space by a sketching algorithm. Else it can be
solved by a polylogarithmic space linear sketching algorithm. A priori neither statement
should be obvious and we will give some idea below as to why they are true. Furthermore
even if the statements are true it is not clear how to decide which of the two conditions hold
(since a priori one may have to enumerate over all n and all pairs of instances to determine
if the condition is true). It turns out all the issues get answered rather nicely jointly. It
turns out that it suffices to consider (weighted) instances on kq variables to answer the final
question, and studying the space of these instances also leads to the algorithms and the lower
bounds.

Below we elaborate on this and in particular why it suffices to consider instances on a
finite number of variables. We work with the simpler setting of Boolean CSPs (so q = 2) on
literals, i.e., when constraints can be applied to variables as well as their negations. We note
that the resulting setting (|F| = 1, q = 2 and constraints on literals) is the case considered in
a preliminary work [12], whereas the more general result comes from [13]. While the latter is
a stronger result, the former offers more intuition into the proofs.

In this setting of constraints over Boolean literals, we show we only need to consider
instances involving k variables – and we explain how this happens. Suppose there are two
instances on n variables: Ψg with valΨg

≥ γ and Ψb with valΨb
≤ β satisfying B(Ψg) = B(Ψb).

We show how to simplify the two CSPs. From now onwards it will be convenient to think
of a weighted CSP instance as being a distribution on constraints - where a constraint is
chosen with probability proportional to its weight. Now, since we are considering Boolean
CSPs on literals we can flip variables as necessary (by flipping literals in all constraints) till
we get that 1n is the assignment achieving valΨg

(1n) ≥ γ. To preserve B(Ψg) = B(Ψb) we
flip variables in Ψg and Ψb together. Note that this flipping preserves valΨb

≤ β. Next we
observe that we can assume Ψg and Ψb are symmetric under permutations: I.e. if some
constraint C(X1, . . . , Cn) appears in Ψg with some probability p then for every permutation
π : [n] → [n] the constraint C(Xπ(1), . . . , Xπ(n)) also appears in Ψg with the same probability
p. (We can convert any Ψ to a Ψ′ satisfying this feature as follows: To pick a random
constraint of Ψ′, pick a random constraint C of Ψ and a uniformly random permutation
and let the constraint produced by C(Xπ(1), . . . , Xπ(n)).) This transformation preserves
valΨg

≥ γ since 1n, the assignment achieving the maximum value is fixed under permutations.
We also have that Ψb is closed under permutations since the (empty!) set of assignments that
achieves value greater than β is also closed under permutations. The fact that Ψg and Ψb are
symmetric under permutations make them very simple: All that determines these instances
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is the distribution supported on Zk
2 indicating the pattern of negations of the k variables in

a randomly chosen constraint. The names of the variables are no longer relevant – since they
are just a uniformly random sequence of k distinct variables! Suppose DY represents the
distribution on Zk

2 given by Ψg and DN the distribution given by Ψb. We now study these
distributions further and they will lead us to the answers to the three issues raised earlier.

The space of DY and DN

We can go back from distributions D over Zk
2 to instances ΨD of Max-CSP(F) on k variables

X1, . . . , Xk as follows: A random constraint of ΨD is of the form f(X1 ⊕ b1, . . . , Xk ⊕ bk)
where b = (b1, . . . , bk) ∼ D. Now the fact that DY came from an instance Ψg of value at
least γ implies that the all 1’s assignment satisfies ΨDY

. The fact that B(Ψg) = B(Ψb)
implies that DY and DN have the same marginals. It remains to interpret the implication
that Ψb ≤ β: We stress that it does not mean ΨDN

has value less than β - indeed ΨDN
can

have value much larger than that or even γ! The implication turns out to be exactly the
following: “For every p ∈ [0, 1] if X1, . . . , Xk are assigned values identically and independently
according to Bern(p) (i.e., they take values in Z2 with Pr[Xi = 1] = p), then the expected
value valΨDN

(X1, . . . , Xk) ≤ β.” I.e., no identical and independent probabilistic assignment
to the variables satisfies many constraints.

It turn out we can now capture these considerations on DY and DN in a nice mathematical
framework and that will lead to matching algorithms and lower bounds. Note that a
distribution on Zk

2 can be viewed as a vector in R2k in a natural way, and the space
of all distributions is a convex set in R2k . Now let SY

γ (f) denote the subset of this set
representing distributions D such that valΨD (1k) ≥ γ. Similarly let SN

β (f) denote the subset
of distributions D such that for every p ∈ [0, 1], Eb∈Bern(p)k [valΨD (b)] ≤ β. Both these sets
are convex sets! (In particular for every p, the constraint Eb∈Bern(p)k [valΨD (b)] ≤ β is a
linear constraint on D, though we have infinitely many such constraints.) By construction
the two sets are disjoint for β < γ, but they may still contain distributions with matching
marginals! To see this we may project these two sets to their marginals: So let KY

γ (f) ⊆ Rk

be the set of marginals of all distributions in SY
γ (f) and similarly let KN

β (f) be the marginals
of SN

β (f). The discussion thus far has reduced the question: “Do there exist n and instances
Ψ1 and Ψ2 on n variables with B(Ψ1) = B(Ψ2) such that valΨ1 ≥ γ and valΨ2 ≤ β?” to
the much simpler and finite dimensional question “Do KY

γ (f) and KN
β (f) intersect?”. (An

affirmative answer to one question implies an affirmative answer to the other.)
Before turning to show why this leads to algorithms or lower bounds we first point out

that the question of the intersection of these two sets is decidable. Specifically the intersection
question can be posed as polynomial inequalities in 2k + 1 variables (2k from D and one from
p) of degree at most k + 1 with one variable (p) being universally quantified and the rest
being existentially quantified. Results in the quantified theory of reals [5] easily show how to
decide this question in space polynomial in the input size, which in our case is roughly 2k to
represent the function f (and whatever else is needed to specify γ and β).

Sketching lower bound when KY
γ (f) ∩ KN

β (f) ̸= ∅

It turns out that the existence of two distributions with matching marginals is the crux of
the Max-CUT lower bound of [22] and so extending to other settings is a reasonable hope.
Specifically the Max-CUT lower bound relies on DY = Unif({00, 11}) and DN = Unif(Z2

2).
To extend to other problems and distributions, we use the same approach of dividing a long
stream of constraints into T substreams of length αn. A communication problem captures

ICALP 2022



5:16 Streaming and Sketching Complexity of CSPs: A Survey

the additional information gained by a substream while a hybrid argument combines the
information gained from the substreams. Both steps turn out to be different though and we
elaborate on them below.

The BHM problem could be interpreted as arising from the associated distributions above
in two different ways. In both Alice gets x ∈ Zn

2 and Bob’s first input is a matching on [n],
which specifies potential constraints: Bob’s second input can be interpreted in two ways:
(1) For each constraint, he gets information on whether x satisfies the constraint or not,
(2) Using the fact that DY is uniform on a subgroup of Z2

2, Bob gets input on which coset
the variables in the constraint come from. The first interpretation doesn’t seem naturally
amenable to the lower bound techniques which seem more tailored to understanding inputs
that are uniform in the NO case. The second interpretation seems restricted to groups and
cosets and in particular does not seem to support DY not being uniform on a set, leave
alone a subgroup. However it is possible to extend this approach beyond such algebraic
settings and this is what is done in [13]. To do so they introduce the (DY , DN )-Randomized
Mask Detection Problem (RMD) which is again a distribution distinguishability problem
in the one-way communication setting: Here Alice gets a vector x ∈ Zn

2 and Bob gets a k

hypermatching with m = αn edges. Additionally Bob gets a vector w ∈ Zkm
2 , or equivalently,

one vector in Zk
2 associated with each hyperedge of the matching. In the YES case this

vector associated with a hyperedge is the labels of x restricted to the vertices incident to the
hyperedge masked (i.e., xor-ed, or summed in Z2) by a vector b ∈ Zk

2 drawn according to
DY . Each mask vector b is drawn independently for every hyperedge. The NO distribution
is similar with the difference that now b ∼ DN independently for each edge.

[13] give a Ω(
√

n) communication lower bound for this problem to achieve any constant
advantage (this time for α < 1/k). The lower bound works in two parts. First the extend the
proof from [18] to general k in the setting where DN is uniform on Zk

2 . (As noted above this
setting seems amenable to their proof technique). The second part of the proof shows how
to use the first part to show hardness of RMD on distributions D1 and D2 that differ in a
“simple” way (in particular they differ in probabilities of at most four structured points in their
support). They then complement this by showing that one can move from every DY to every
DN (with matching marginals) using a finite number of steps (as a function of q and k) where
each step creates a “simple” difference in the sense above. A series of triangle inequalities
now shows that (DY , DN )-RMD is also indistinguishable to o(

√
n)-communication protocols.

To convert the RMD lower bound into a lower bound on Max-CSP(F) we first need to
interpret the RMD inputs as constraints of a Max-CSP(F) problem, and then to prove that
combining T substreams preserves indistinguishability by streaming algorithms. The first
step is natural: We apply constraints so that the hidden vector x is expected to satisfy
γ fraction of the constraints in the YES case: Specifically if a hyperedge gives Bob the
information x|S + b corresponding to the restriction of x to some sequence S of k variables
masked by b, then the resulting constraint negates literals according to x|S + b, so that
after the negations are applied, the input to the constraint is b which, by the condition
that DY ∈ SY

γ (f) is expected to satisfy the constraint with probability γ. Similarly in the
NO case every assignment is expected to satsify the constraint with probability at most β.
Taking sufficiently many constraints (i.e., αT → ∞) allows us to apply Chernoff bounds and
the union bound to conclude tight bounds on the value of the resulting CSPs in the YES
and NO case.

The tricky part turns out to be the combination. When DN is uniform, the same hybrid
argument as in the Max-CUT case works and using this twice we conclude that if DY and DN

have uniform marginals then the resulting CSP instances are indistinguishable by o(
√

n) space
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streaming algorithms. [13] also cover some slight extensions that allow them to cover hardness
of Max-DICUT where the underlying distributions do not have uniform marginals. But for
general DY and DN with non-uniform marginals the method truly breaks down and produces
instances of Max-CSP(f) that are distinguishable by polylogspace algorithms as pointed
out by [9]. However in such cases it is possible to show that no sketching algorithm can
work. This relies on an easy reduction from RMD to a T -player simultaneous communication
problem where T players each get inputs independently according to the distribution of Bob’s
input and then need to communicate short messages to a referee whose goal is to distinguish
the inputs being all from the YES distribution or from the NO distribution. This yields the
lower bound of Theorem 1.

A sketching algorithm when KY
γ (f) ∩ KN

β (f) = ∅

We now turn to the complementary result, giving a sketching algorithm when KY
γ (f) ∩

KN
β (f) = ∅. If the sets do not intersect then there must be a hyperplane in Rk separating

them. Let this plane be given by λ1, . . . , λk and τ so that {a ∈ Rk|
∑

i∈[k] λiai ≥ τ} contains
KY

γ (f). Since KY
γ (f) and KN

β (f) are closed sets if they are disjoint there must be a gap
separating them and so we also have θ > 0 so that {a ∈ Rk|

∑
i∈[k] λiai ≤ τ − θ} contains

KN
β (f).

It is natural to think of λi as representing a preference that the ith variable in this
constraint has for taking the value 1 with higher λi’s representing higher preferences. When
the ith variable in a constraint is negated we let −λi capture its preference. These preferences
allow aggregation across constraints and yield the definition: For j ∈ [n], let bias(Ψ, j)
be the sum of the appropriate λ values over all constraints that variable j participates
in. Define bias(Ψ) = 1

m

∑n
j=1 |bias(Ψ, j)|. (We note that these definitions extend the

Max-DICUT notions exactly). bias(Ψ) can be estimated as previously by appealing to ℓ1
norm estimation algorithms. The algorithm for (γ, β)-Max-CSP(F) now reports YES if and
only if bias(Ψ) ≥ τ − θ/2. This algorithm turns out to be correct, using analysis ideas that
follow in a straightforward way from the construction of the convex sets. In case the reader
wonders where the ℓ1 estimator is suggested in the construction of the convex sets, this
happens in the step where we passed from a general Ψ1 and Ψ2 with matching detailed bias
matrix B, to assuming 1n achieves the maximum value of Ψ1. The computational challenge
behind this vertex is to compute the maximal satisfying assignment, flipping literals of Ψ1
according to this, and then computing its bias. This step is achieved computationally by the
ℓ1 norm estimation algorithm!

The general case

Up to now we focussed on the simpler case of F = {f}, q = 2 and constraints being applied
to literals. It turns out that this is the exact setting considered in the early version [12]. The
extension to the general case, where F is not a singleton, constraints are applied only to
variables, and q is general, appears in [13]. The extensions do manage to work out with no
surprises (at least no unpleasant ones).

The elimination of the need to work with literals is the conceptually hard step but works
out by working with qk variables which is different from k even in the Boolean case. Roughly
our simplified picture of the extremal examples Ψ1 and Ψ2, uses two variables for each of the
k positions in constraint that a variable can appear in: one corresponding to the unnegated
variable X and one to the negated variable. To extend to general q we now use q variables per
coordinate i ∈ [k] – with variable Xi,σ roughly capturing the “literal” Xi + σ (mod q). The
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extension to larger sets F is simple, we augment the detailed-bias information as well as the
marginals to include information about which function f ∈ F the constraint is working with.
This leads to sets SY

γ (f), SN
β (f) that are extended to capture distributions over F × Zk

q and
the marginals KY

γ (f), KN
β (f) now project to F × [k]×Zq dimensions. Somewhat surprisingly

both the algorithm and the lower bounds extend to this setting with the ℓ1 norm estimator
replaced by an ∥ · ∥1,∞-norm estimator6 of [1]. Deciding intersection of the two sets reduces
to quantified systems with 2 alternations, and roughly |F|qk variables and degree k. Perhaps
the most complex part of the extension is the extension of the streaming lower bounds which
work with two variants of the RMD problem. Also the reduction of the communication
problems to the streaming problems is a bit delicate due to the absence of literals but works
out in the end. We omit the many details, referring the reader to the original paper [13] for
those.

6 Future directions

One can hope for many possible extensions to the dichotomy reported in Theorem 1. Perhaps
the dichotomy extends as is to streaming algorithms (i.e., beyond sketching), perhaps even
for linear space, perhaps even for randomly ordered streams, and maybe even for multipass
algorithms. Unfortunately, while several extensions are still possible, the clean dichotomy
does seem to fray quite a bit for each possible extension.

At the moment it is still plausible that the dichotomy extends as is to all o(
√

n) space
streaming algorithms though there is no strong evidence in either direction. For space beyond√

n there do seem to be a number of new candidate algorithms so our expectation would be
that the current dichotomy won’t hold and there may exist more than two classes of problems.
We note that we don’t have concrete theorems proving this though. For randomly ordered
streams as well as multipass algorithms there seem to be new algorithms in polylogarithmic
space. This is the subject of an upcoming work by the author with Saxena, Singer and
Velusamy. Finally the multipass setting seems to be the most challenging for the lower
bounds. Here some remarkable works [2, 3], have shown strong space lower bounds but for
progressively weak approximations. Here an interesting challenge is to establish a tight lower
bound for any non-trivial CSP for arbitrarily large (but constant) number of passes.
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Abstract
This is an introduction to the notion of twin-width, with emphasis on how it interacts with first-
order model checking and enumerative combinatorics. Even though approximating twin-width
remains a challenge in general graphs, it is now well understood for ordered graphs, where bounded
twin-width coincides with many other complexity gaps. For instance classes of graphs with linear
FO-model checking, small classes, or NIP classes are exactly bounded twin-width classes. Some
other applications of twin-width are also presented.
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1 Introduction

One of the most natural ways to understand discrete structures is to measure their complexity.
A reasonable expectation is that the class of structures with bounded measure is not too
difficult to understand and manipulate. Ideally, bounded measure classes should be simple
with respect to several points of view such as “computationally hard problems can be solved
efficiently” or “the number of structures of size n is a small function of n” and should
also enjoy some stability like “the measure should stay bounded if one performs moderate
deterministic changes to the structures”.

The first difficulty to provide a general purpose complexity measures on graphs is that
it quickly boils down to the basic question: What is a simple 01-matrix? Fortunately this
problem has already been addressed long ago and the answer is very simple: a matrix M is
complex if it contains all small matrices up to some (large) size. Consequently, the complexity
measure vc(M) could be the maximum k for which all 01-valued k × k-matrices appear in M .
This is equivalent to the well-known Vapnik-Cervonenkis dimension and indeed classes of
matrices with bounded VC-dimension have moderate growth O(2n2−ε) and some problems are
computationally easier (for instance the minimum hitting set problem can be approximated).
Interestingly, these two properties characterize bounded VC-dimension for classes of matrices
closed under submatrices. This is the bounded/unbounded VC-dimension gap, which is
(arguably) the first question one should ask when investigating a class of structures.

The exact same idea can be used to measure the complexity of a permutation matrix
M (exactly one 1 per row and per column): let mt(M) be the maximum k for which all
k × k permutation matrices appear in M . Marcus and Tardos [17], proving the Stanley-Wilf
conjecture, showed that the growth of a class of permutation matrices with bounded measure
mt is cn. Using their method, Guillemot and Marx [14] showed that checking if a fixed
k × k permutation matrix F is contained in an n × n permutation matrix P can be done
in linear time f(k)n (when both coded as permutations). Their breakthrough method was
a completely new win/win scheme: they showed that unless one can detect F in P , then
P can be iteratively contracted in linear time and the contraction scheme allows then to
test if indeed F is a subpermutation of P . Note that permutation matrices are ordered

EA
T

C
S

© Stéphan Thomassé;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 6; pp. 6:1–6:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.thomasse@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.ICALP.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 A Brief Tour in Twin-Width

matrices, where rows and columns are linearly ordered. We showed in Twin-width IV [9] that
the natural generalization of the mt parameter to general ordered matrices is the following:
a matrix M has grid rank k if this is the maximum value for which M has a k × k block
division in which every block has rank at least k.

Guillemot and Marx concluded their paper by asking if their technique for permutations
could be generalized for graphs. This was the goal of our paper Twin-width I [12] where we
defined the twin-width of a graph G as the minimum degree of error in a contraction sequence
of G (we iteratively contract pairs of vertices, two contracted groups of vertices forming an
error edge if there is both an edge and a non edge between them). Precisely, the twin-width
tww(G) of a graph G on n vertices is the minimum k such that: there exists a sequence of
partitions Pn, . . . , P1 of V (G) where each Pi−1 is obtained from Pi by merging two parts, and
such that for every part X in Pj , the number of parts Y in Pj which are not homogeneous
with X is at most k. Here two disjoint sets X, Y are homogeneous if the relation between
x ∈ X and y ∈ Y does not depend of the choices of x, y (therefore homogeneity, and hence
twin-width, is also defined for binary multirelations). So bounded twin-width corresponds
to maximum degree in every error graph Gj which vertices are the parts of Pj and edges
are the non homogeneous pairs. If we impose further that all components of graphs Gj

have bounded size, we have shown in Twin-width VI [10] that the obtained parameter is
equivalent to rank-width. Hence twin-width generalizes rank-width but also captures strict
minor closed classes, or strict permutation graphs.

Mimicking Guillemot and Marx argument for permutations, it is not hard to show that if
one has access to such a sequence Pn, . . . , P1 certifying twin-width k, then one can test if
some fixed graph H of size t is an induced subgraph of G in linear time f(k, t).n. One of
the main result of Twin-width I is that we can moreover test any FO-formula of depth t in
time f(k, t).n. Also, generalizing Marcus-Tardos’ result on permutations, we could prove in
Twin-width II [6] that the number of (labelled) graphs of size n with twin-width bounded by
some constant is at most cn.n! (we call this a small class). This result implies in particular
that the class of (sub)cubic graphs (degree at most 3) does not have bounded twin-width,
since it is not small. But so far we have no “deterministic” construction of a cubic graph with
arbitrarily high twin-width. One can naturally wonder if these two implications (easyness of
FO-model checking and small property) could be equivalent to bounded twin-width.

This is unfortunately not the case: since FO-model checking can be solved in linear
time on bounded degree graphs, there are classes of graphs on which FO-model checking
is tractable and for which twin-width is unbounded. From the counting point of view, we
conjectured in [6] the equivalence between bounded twin-width and being a small class. Sadly
again, we could prove in Twin-width VII [8] that there are (countable) Cayley graphs of
finitely generated groups with unbounded twin-width, while any such Cayley graph defines a
small class. Thus bounded twin-width for general graphs does not seem to be equivalent to
some computational complexity class, nor it seems to be definable via counting. Nevertheless,
bounded twin-width is a particularly stable notion since every first order interpretation of
a bounded twin-width class has also bounded twin-width. For instance squares of planar
graphs have bounded twin-width.

We still have a very limited understanding of twin-width, and especially for bounded
degree graphs: not only we do not have an algorithm to approximate it, but we do not know
what could be a certificate of high twin-width, and we are not even able to construct by
hand a cubic graph of high twin-width. So why twin-width is so hard to handle, given that
it enjoys so many nice properties? The answer is that twin-width indeed corresponds to a
crucial complexity gap, but for ordered graphs (a binary birelation consisting of a graph and
a linear order on its vertices) rather than for graphs.
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Indeed, in Twin-width IV [9] we could show that for classes of ordered graphs, bounded
twin-width, linear FO-model checking and being a small class are equivalent. Moreover
these three characterizations are in turn equivalent to the fact that the adjacency matrices
of the graphs, ordered by their linear order, have bounded grid-rank. Finally, approxim-
ating twin-width for ordered graphs can be done in polynomial time. In particular, the
bounded/unbounded twin-width gap for ordered matrices is as fundamental as the one of
VC-dimension as it has many equivalent formulations coming from other domains. For
instance, for ordered graphs, the NIP property in model theory coincides with bounded
twin-width. Since any graph G with twin-width k has a linear order L for which (G, L) has
twin-width k, the difficulty of twin-width for general graphs seems to come from the fact
that we have lost the information encoded in the linear order.

Hence an appealing strategy to show that a graph G has (reasonably) bounded twin-width
is to be able to guess a suitable linear order T on its vertices since we have the machinery to
efficiently approximate the twin-width of the ordered graph (G, T ). For instance, we could
prove that minor closed classes have bounded twin-width by using a Lex-DFS to provide the
linear order. We can also take advantage of the stability of twin-width by FO-interpretation.
Let us illustrate this on some example: Assume that we want to approximate the twin-width
of a bipartite graph G with bipartition A, B in which B is linearly ordered by <. We would
not have a clue if B would not have been ordered, and we can directly conclude if both
A and B are ordered, so what about this “semi-ordered” case? The answer is quite easy:
associate to each vertex a ∈ A the characteristic 01 vector of its neighbors in B, ordered by
<, and sort A by lexicographic order. This is a first-order interpretation, so the order we
find on A cannot increase twin-width too much. Hence now A is ordered, and twin-width
can be approximated. Note that if several vertices of A have the same neighborhood, we
can pairwise contract them since this does not affect twin-width. This is probably the best
advice to try to compute twin-width: find an order. Is there a general algorithm to find it?

To conclude, let us observe that as a way to characterize simple matrices, twin-width is a
very general tool which can apply to many topics. For instance bounded twin-width is a group
invariant and finitely generated groups can have either bounded or unbounded twin-width
(but again we have no explicit presentation of any unbounded twin-width group). Another
field where matrices are central is linear programming. We have showed in Twin-width
III [7] that when a matrix has bounded twin-width, there is a constant duality gap between
minimum hitting set and maximum packing (while bounded VC-dimension only bridges the
fractional gap for hitting set). We provide in the references a list of recent publications with
better bounds on twin-width of classes ([1, 2, 3, 15, 18]), on computing twin-width ([4, 5]),
on using twin-width for algorithms ([11, 16]) and for data-structures [20], and more topics
([13, 19, 21, 22]) that we cannot unfortunately cover here. We believe that there are many
other aspects of twin-width waiting to be discovered.
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Abstract
We study several questions related to diversifying search results. We give improved approximation
algorithms in each of the following problems, together with some lower bounds.

1. We give a polynomial-time approximation scheme (PTAS) for a diversified search ranking
problem [9] whose objective is to minimizes the discounted cumulative gain. Our PTAS runs
in time n2O(log(1/ϵ)/ϵ)

· mO(1) where n denotes the number of elements in the databases and m

denotes the number of constraints. Complementing this result, we show that no PTAS can run
in time f(ϵ) · (nm)2o(1/ϵ)

assuming Gap-ETH and therefore our running time is nearly tight.
Both our upper and lower bounds answer open questions from [9].

2. We next consider the Max-Sum Dispersion problem, whose objective is to select k out of n

elements from a database that maximizes the dispersion, which is defined as the sum of the
pairwise distances under a given metric. We give a quasipolynomial-time approximation scheme
(QPTAS) for the problem which runs in time nOϵ(log n). This improves upon previously known
polynomial-time algorithms with approximate ratios 0.5 [35, 16]. Furthermore, we observe
that reductions from previous work rule out approximation schemes that run in nõϵ(log n) time
assuming ETH.

3. Finally, we consider a generalization of Max-Sum Dispersion called Max-Sum Diversification. In
addition to the sum of pairwise distance, the objective also includes another function f . For
monotone submodular function f , we give a quasipolynomial-time algorithm with approximation
ratio arbitrarily close to (1−1/e). This improves upon the best polynomial-time algorithm which
has approximation ratio 0.5 [16]. Furthermore, the (1 − 1/e) factor is also tight as achieving
better-than-(1 − 1/e) approximation is NP-hard [26].
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7:2 Improved Approximation and Lower Bounds for Search-Diversification

1 Introduction

A fundamental task in databases in general and in search engines in particular is the selection
and ordering of the results to a given query. Suppose that we have already retrieved the set
of appropriate answers Sq to a query q by a certain preliminary process. Which item from
the (possibly huge) set Sq should be presented first? Which should be the first ten?

Besides the obvious approach of ranking the most relevant answers first, perhaps the
second most important consideration is that the output set should satisfy certain diversity
requirements. If a user searches for “Barcelona” it would be desirable that the first ten
results contain a mix of items containing, e.g. general details of the city, tourist information,
and news about the associated soccer team, even though the most relevant items in certain
absolute terms may only pertain to the latter. There are various natural ways to formalize
what makes a set of results diverse, and much research has gone into this Search Diversification
topic in the past two and a half decades in various context (see e.g. [19, 3, 33, 15, 9, 39,
50, 16, 24, 12, 31, 46, 34, 1, 36, 25, 52]). Recently, there have also been extensive research
efforts into algorithmic fairness (see e.g. a survey [47]). Some of these fairness notions
(e.g. [21, 7]) are also closely related to diversity: a set of results that is not diverse enough
(e.g. returning only pictures of members of one group when a user searches for “scientists”)
could be problematic in terms of fairness.

A well-known work on search diversification [19] suggests that a diverse set of results is
one that satisfies the following: The kth result in the list should maximize the sum1 of: (1)
the relevance to the query, and (2) the total distance to the first k − 1 results in the list.
The success of this natural notion of diversification may be attributed to the fact that it can
be computed efficiently with a greedy algorithm. However, it may be a bit too simplistic
and the objectives that real-world search engines seem to optimize for are actually closer
to other, more complicated (to compute) notions of diversity that have been proposed in
follow-up works (e.g. [9, 33, 16]).

The goal of this paper is to investigate the time complexity of computing these latter,
more intricate definitions of the search diversification task. Since such problems are NP-Hard
even for restricted settings, and since approximate solutions are typically acceptable in this
context, our focus is on understanding their time vs. approximation trade-offs. Our results
reduce the gaps in the literature, completely resolving the complexity of some of the most
natural notions.

1.1 Diversified Search Ranking
The first problem we study is a diversified search ranking problem formulated by Bansal et
al. [9]. Here we are given a collections S of subsets of [n] and, for each S ∈ S, a positive
integer kS . Our goal is to find a permutation π : [n] → [n] that minimizes the discounted
cumulative gain (DCG) defined as

DCGS,k(π) :=
∑
S∈S

1
log(tπ(S) + 1) , (1)

where tπ(S) is defined as the earliest time the set S is covered kS times, i.e. min{i ∈
[n]|S ∩ π([i])| ≥ kS}.

1 To be more precise, it is a weighted average of the two terms.
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This formulation relates to diversification by viewing the output π as the ranking of the
documents to be shown, and each topic corresponds to a set S of documents related to that
topic. With this interpretation, the DCG favors rankings that display “diverse topics as
early in the ranking as possible”. Bansal et al. [9] gave a polynomial-time approximation
scheme (PTAS) for the problem in the special case that kS = 1 for all S ∈ S with running
time n2O(log(1/ϵ)/ϵ)

mO(1). On the other hand, for the case of general kS ’s, they give a
quasipolynomial-time approximation scheme with running time n(log log n)O(1/ϵ)

mO(1) and left
as an open question whether a PTAS exists. We resolve this open question by giving a PTAS
for the more general problem; the running time we obtain for this more general problem is
similar to the running time obtained by Bansal et al.’s PTAS for the special case kS = 1. We
then show that this is indeed the best possible (under some complexity assumption).

▶ Theorem 1. There is a randomized PTAS for maximizing DCG that runs in time
n2O(log(1/ϵ)/ϵ) ·mO(1).

The above running time is doubly exponential in 1/ϵ, and Bansal et al. [9] asked whether
this dependency is necessary even for the special case kS = 1. We also answer this question
by showing that the doubly exponential is necessary, assuming the Gap Exponential Time
Hypothesis (Gap-ETH)2:

▶ Theorem 2. Assuming Gap-ETH, for any function g, there is no PTAS for maximizing
DCG that runs in time g(ϵ) · (nm)2o(1/ϵ) . Moreover, this holds even when restricted to
instances with kS = 1 for all S ∈ S.

1.2 Max-Sum Dispersion
The second problem we consider is the so-called Max-Sum Dispersion problem where we are
given a metric space (U, d) where |U | = n and an integer p ≥ 2. The goal is to select S ⊆ U

of size p that maximizes

Disp(S) :=
∑

{u,v}⊆S

d(u, v).

Roughly speaking, if the metric determines how different the items are, then our goal is
to pick items that are “as diverse as possible” according to the Disp objective.

The Max-Sum Dispersion problem is a classic problem that has been studied since the
80s [45, 38, 49, 35, 16]. Previous works have given 0.5-approximation algorithm for the
problem in polynomial time [35, 16]. We observe that the known NP-hardness reduction,
together with newer hardness of approximation results for the Densest k-Subgraph problem
with perfect completeness, yields strong lower bounds for the problem. (Details are deferred to
the full version [2].) For example, if we assume the Strongish Planted Clique Hypothesis [43],
then no (0.5 + ϵ)-approximation algorithm is possible in no(log n) time. In other words,
to achieve an improvement over the known approximation ratio, the algorithm must run
in nΩ(log n) time. Complementing this, we provide a quasipolynomial-time approximation
scheme that runs in time nOϵ(log n):

▶ Theorem 3. There is a QPTAS for Max-Sum Dispersion that runs in time nO(log n/ϵ4).

2 Gap-ETH [23, 42] asserts that there is no 2o(n)-time algorithm to distinguish between a satisfiable
n-variable 3SAT formula and one which is not even (1 − ϵ)-satisfiable for some ϵ > 0

ICALP 2022
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1.3 Max-Sum Diversification
Finally, we consider a generalization of Max-Sum Dispersion where, in addition to the metric
space (U, d), we are now also given a monotone set function f (which we can access via a
value oracle) and the goal is to select a set S ⊆ U of size p that maximizes

Div(S) := Disp(S) + f(S).

This problem is referred to as Max-Sum Diversification.
The Max-Sum Diversification problem is more expressive than Max-Sum Dispersion. For

example, the value f(S) in the objective may be used to encode how relevant the selected
set S is to the given query, in addition to the diversity objective expressed by Disp(S).

Borodin et al. [16] gave a 0.5-approximation algorithm for the problem when f is a
monotone submodular function. Since Max-Sum Diversification is a generalization of Max-
Sum Dispersion, our aforementioned lower bounds also imply that improving on this 0.5
factor requires at least nΩ(log n) time. Furthermore, submodular Max-Sum Diversification is
also a generalization of maximizing monotone submodular function subject to a cardinality
constraint. For this problem, an (1− 1/e)-approximation algorithm is known and it is also
known that achieving better than this ratio is NP-hard [26]. Therefore, it is impossible to
achieve a better-than-(1− 1/e) approximation even in (randomized) quasi-polynomial time,
assuming NP ⊈ RTIME(nO(log n)). Here we manage to provide such a tight quasi-polynomial
time approximation algorithm:

▶ Theorem 4. For any ϵ > 0, there exists a randomized nO(log n/ϵ4)-time (1 − 1/e − ϵ)-
approximation algorithm for submodular Max-Sum Diversification.

We remark that an interesting special case of submodular Max-Sum Diversification is
when f is linear, i.e. f(S) =

∑
u∈S f(u). In this case, Gollapudi and Sharma [33] provided an

approximation-preserving reduction from the problem to the Max-Sum Dispersion. Therefore,
our QPTAS for the latter (Theorem 3) also yields a QPTAS for this special case of Max-Sum
Dispersion.

2 Preliminaries

For a natural number n, we use [n] to denote {1, . . . , n}. We say that a randomized algorithm
for a maximization problem is an α-approximation if the expected objective of the output
solution is at least α times the optimum; note that we can easily get a high-probability bound
with approximation guarantee arbitrarily close to α by repeating the algorithm multiple
times and pick the best solution.

2.1 Concentration Inequalities
For our randomized approximation algorithms, we will need some standard concentration
inequalities. First, we will use the following version of Chernoff bound which gives a tail
bound on the sum of i.i.d. random variables. (See e.g. [44] for a proof.)

▶ Lemma 5 (Chernoff bound). Let X1, . . . , Xr ∈ [0, 1] be independent random variables,
S := X1 + · · ·+ Xr and µ := E[S]. Then, for any δ ∈ [0, 1], we have

Pr[|S − µ| > δµ] ≤ 2 exp
(
−δ2µ

3

)
.
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Furthermore, for any δ ≥ 0, we have

Pr[S > (1 + δ)µ] ≤ exp
(
− δ2µ

2 + δ

)
.

It will also be convenient to have a concentration of sums of random variables that are
drawn without replacement from a given set. For this, we will use (a without-replacement
version of) the Hoeffding’s inequality, stated below. (See e.g. [10].)

▶ Lemma 6 (Hoeffding’s inequality). Let X1, . . . , Xr be random variables drawn without
replacement from a multiset X ⊆ [0, 1], A := 1

r (X1 + · · ·+ Xr) and µ := E[A]. Then, for
any δ ∈ [0, 1], we have

Pr[|A− µ| > δ] ≤ 2 exp
(
−2δ2r

)
.

2.2 Densest k-Subgraph
For both our Max-Sum Dispersion and Max-Sum Diversification problems, we will use as a
subroutine algorithms for (variants of) the Densest k-Subgraph (DkS) problem. In DkS, we
are given a set V of nodes, weights w :

(
V
2
)
→ [0, 1] and an integer k, the goal is to find a

subset T ⊆ V with |T | = k that maximizes Den(T ) := 1
|T |(|T |−1)/2

∑
{u,v}⊆T w({u, v}). An

additive QPTAS is an algorithm running in quasipolynomial time for any fixed ϵ > 0 such
that its output T satisfies Den(T ) ≥ OPT−ϵ; Barman [11] gave such an algorithm for DkS.

We will in fact use a slightly generalized version of the problem where a subset I ⊆ V of
vertices is given as an input and these vertices must be picked in the solution T (i.e. I ⊆ T ).
To avoid cumbersomeness, we also refer to this generalized version as DkS. It is not hard to
see3 that Barman’s algorithm [11] extends easily to this setting:

▶ Theorem 7. There is an additive QPTAS for DkS that runs in time nO(log n/ϵ2).

DkS is a classic problem in approximation algorithms literature, and many approximation
algorithms [30, 51, 29, 28, 6, 32, 13, 11] and hardness results [27, 37, 48, 4, 14, 17, 40, 20]
have been proved over the years. Most of these works focus on multiplicative approximation;
the best known polynomial-time algorithm in this setting has an approximation ratio of
n1/4+ϵ for any constant ϵ > 0 [13] and there are evidences that achieving subpolynomial
ratio in polynomial time is unlikely [40, 14, 22]. As for additive approximation, it is known
that an approximation scheme that runs in time nõ(log n) would break the exponential time
hypothesis (ETH) [17]; therefore, the running time in Theorem 7 (in terms of n) is tight up
to poly log log n factor in the exponent. We provide additional discussions on related results
in the full version [2].

2.3 Submodular Maximization over a Matroid Constraint
For our approximation algorithm for Max-Sum Diversification, we will also need an approx-
imation algorithm for monotone submodular maximization under a matroid constraint. In
this problem, we are given a monotone submodular set function f : 2X → R≥0 over a ground
set X together with a matroid M = (X, I). The function f is given via a value oracle and
M can be accessed via a membership oracle (which answers questions of the form “does

3 In fact, in Section 5.1, we also give a more general algorithm than the one stated in Theorem 7 which
can also handle an additional monotone submodular function.
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S belong to I?”). The goal is to find S ∈ I that maximizes f(S). Călinescu et al. gave a
randomized algorithm with approximation ratio (1− 1/e) for the problem, which we will use
in our algorithm.

▶ Theorem 8 ([18]). There exists a randomized polynomial-time (1− 1/e)-approximation
algorithm for maximizing a montone submodular function over a matroid constraint.

3 Diversified Search Ranking

In this section, we consider the diversified search ranking question as proposed in [9] and
prove our upper and lower bounds (Theorems 1 and 2).

3.1 Polynomial-time Approximation Scheme
We will start by presenting our PTAS. At a high-level, our PTAS is similar to that of Bansal
et al.’s: our algorithm use bruteforce to try every possible values of π(1), . . . , π(exp(Õ(1/ϵ))).
Once these are fixed, we solve the remaining problem using linear programming (LP). We
use the same LP as Bansal et al., except with a slightly more refined rounding procedure,
which allows us to achieve a better approximation guarantee.

The remainder of this section is organized as follows. In Section 3.1.1, we present our LP
rounding algorithm and its guarantees. Then, we show how to use it to yield our PTAS in
Section 3.1.2.

3.1.1 Improved LP Rounding
For convenience in the analysis below, let us also define a more generic objective function where

1
log(tπ(S))+1 in Equation (1) can be replaced by any non-increasing function f : [n]→ (0, 1]:

DCGf
S,k(π) :=

∑
S∈S

f(tπ(S)).

The main result of this subsection is the following polynomial time LP rounding algorithm
for the above general version of DCG:

▶ Lemma 9. There exists an absolute constant C such that for any α ∈ (0, 0.5) the following
holds: there is a polynomial-time algorithm that computes a ranking with expected DCG at
least (1− α) · τf,α times that of the optimum where

τf,α := min
t∈[n]

f
(

C log(1/α)
α · t

f(t)

)
f(t) .

Informally speaking, the term τf,α somewhat determines “how fast f increases”. In the
next section, once we fix the first u elements of the ranking, f will become f(t) := 1/ log(t+u)
which is “slowly growing” when u is sufficiently large. This allows us to ensure that the
guarantee in Lemma 9 yields an (1−O(ϵ))-approximation as desired.

3.1.1.1 LP Formulation

To prove Lemma 9, we use the same knapsack constraint-enhanced LP as in [9], stated below.
Note that the number of knapsack constraints can be super-polynomial. However, it is known
that such an LP can be solved in polynomial time; see e.g. [8, Section 3.1] for more detail.

Maximize
∑
S∈S

∑
t∈[n]

(yS,t − yS,t−1) · f(t)
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subject to
∑

e∈[n]

xe,t = 1 ∀t ∈ [n]

∑
t∈[n]

xe,t = 1 ∀e ∈ [n]

∑
e∈S⊆A

∑
t′<t

xe,t′ ≥ (kS − |A|) · yS,t ∀S ∈ S, A ⊆ S, t ∈ [n]

yS,t ≥ yS,t−1 ∀S ∈ S, t ∈ {2, . . . , n}
xe,t, yS,t ∈ [0, 1] ∀e, t ∈ [n], S ∈ S.

3.1.1.2 Rounding Algorithm

Let γ ∈ (0, 0.1) be a parameter to be chosen later. Our rounding algorithm works as follows:
1. π ← ∅
2. For i = 1, . . . , ⌈log n⌉ do:

a. Let ti = min{n, 2i}.
b. Let ze,i =

∑
t≤ti

x∗
e,t and pe,i = min{1,

ze,i

γ·f(ti)} for all e ∈ [n].
c. Let Ai be the set such that e ∈ [n] is independently included w.p. pe,i.

Finally, our permutation π is defined by adding elements from A1, . . . , A⌈log n⌉ in that order,
where the order within each Ai can be arbitrary and we do not add an element if it already
appears in the permutation.

Once again, we remark that our algorithm closely follows that of [9], except that Bansal
et al. simply chose their pe,i to be min{1, O(log2 n) · ze,i}, whereas our pe,i is a more delicate
min{1,

ze,i

γ·f(ti)}. This allows our analysis below to produce a better approximation ratio.

3.1.1.3 Analysis

We will now proceed to analyze our proposed randomized rounding procedure. Let η ∈ (0, 0.1)
be a parameter to be chosen later, and let (x∗, y∗) denote an optimal solution to the LP. For
each S, let t∗(S) be the largest positive integer t∗ such that

y∗
S,t∗−1 ≤ η · f(t∗). (2)

We start with the following lemma, which is a refinement of [9, Lemma 1].

▶ Lemma 10. OPT ≤ (1 + η) ·
∑

S∈S f(t∗(S)).

Proof. We have

OPT ≤
∑
S∈S

∑
t∈[n]

(y∗
S,t − y∗

S,t−1) · f(t)

=
∑
S∈S

t∗(S)−1∑
t=1

(y∗
S,t − y∗

S,t−1) · f(t) +
n∑

t=t∗(S)

(y∗
S,t − y∗

S,t−1) · f(t)


≤

∑
S∈S

t∗(S)−1∑
t=1

(y∗
S,t − y∗

S,t−1) +
n∑

t=t∗(S)

(y∗
S,t − y∗

S,t−1) · f(t∗(S))


≤

∑
S∈S

(
y∗

S,t∗(S)−1 + f(t∗(S))
)

(2)
≤

∑
S∈S

(1 + η) · f(t∗(S)). ◀
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Next, we show via standard concentration inequalities that |Ai|’s has small sizes with a
large probability.

▶ Lemma 11. With probability 1− 2 exp
(
− 1

3γ

)
, we have |Ai| ≤ 2ti

γf(t∗) for all i ∈ [⌈log n⌉].

Proof. Notice that
∑

e∈[n] pe,i ≤
∑

e∈[n]
ze,i

γf(ti) = ti

γf(ti) . As a result, by Chernoff bound
(Lemma 5), we have

Pr
[
|Ai| >

2ti

γf(t∗)

]
≤ exp

(
− ti

3γf(t∗)

)
≤ exp

(
− ti

3γ

)
.

By union bound, we thus have |Ai| ≤ 2ti

γf(t∗) for all i ∈ [⌈log n⌉] with probability at least

1−
∑

i∈[⌈log n⌉]

exp
(
− ti

3γ

)
≤ 1− 2 exp

(
− 1

3γ

)
. ◀

Let i∗(S) denote the smallest i such that ti ≥ t∗(S). We now bound the probability that
S is covered (kS times) by the end of the i∗(S)-th iteration of the algorithm. Our bound is
stated below. We note that our bound here is not with high probability, unlike that of the
analysis of [9] which yields a bound of 1− o(1/n). We observe here that such a strong bound
is not necessary for the analysis because we are working with a maximization problem and
therefore such a high probability bound is not necessary to get a bound on the expectation
of the DCG.

▶ Lemma 12. Assume that η ≥ 2γ. For each S ∈ S, we have tπ(S) ≤ |A1|+ · · ·+ |Ai∗(S)|
with probability 1− exp

(
η

8γ

)
.

Proof. It suffices to show that at least kS elements of S are selected in Ai∗(S). Let Sg denote
the set of elements e ∈ S for which pe,i∗(S) = 1. If |Sg| ≥ kS , then we are done. Otherwise,
from knapsack constraint, we have∑

e∈S\Sg

ze,i∗(S) ≥ (kS − |Sg|)y∗
S,ti∗(S)

≥ (kS − |Sg|)y∗
S,t∗(S) ≥ η · f(t∗(S)) · (kS − |Sg|)

≥ η · f(ti∗(S)) · (kS − |Sg|),

where the third inequality follows from our choice of t∗(S). This implies that∑
e∈S\Sg

pe,i∗(S) ≥ η/γ · (kS − |Sg|).

Recall that η/γ ≥ 2. This means that the probability that at least kS elements of S are
selected in Ai∗(S) is at least

1− Pr[|(S \ Sg) ∩Ai∗(S)| ≤ 0.5η/γ · (kS − |Sg|)]

≤ 1− exp
(
−1

8 · η/γ · (kS − |Sg|)
)

≤ 1− exp
(
− η

8γ

)
,

where the first inequality follows from the Chernoff bound. ◀

Applying the union bound to the two previous lemmas, we immediately arrive at the
following:



A. Abboud, V. Cohen-Addad, E. Lee, and P. Manurangsi 7:9

▶ Lemma 13. Assume that η ≥ 2γ. For all S ∈ S, we have

Eπ[f(tπ(S))] ≥
(

1− 2 exp
(
− 1

3γ

)
− exp

(
η

8γ

))
· f

(
8t∗(S)

γf(t∗(S))

)
Finally, combining Lemmas 10 and 13 and selecting η = 2α, γ = O(η/ log(1/η)) yields

Lemma 9.

3.1.2 From LP Rounding to PTAS
As stated earlier, we may now use bruteforce to try all possible values of the first few elements
in the ranking and then use our LP rounding to arrive at the PTAS:

Proof of Theorem 1. For any ϵ < 0.1, we use bruteforce for the first u = (4C/ϵ)100/ϵ

elements and then use Lemma 9 on the remaining instance but with f(t) := 1
log(t+u) . The

expected approximation ratio we have is at least

(1− 0.5ϵ) · τf,0.5ϵ

≥ (1− 0.5ϵ) · min
t∈[n]

f

(
4C log(1/ϵ)

ϵ
· t

f(t)

)
/f(t)

= (1− 0.5ϵ) · min
t∈[n]

log(t + u)
log

(
4C log(1/ϵ)

ϵ · t
f(t) + u

)
≥ (1− 0.5ϵ) · min

t∈[n]

log(t + u)
log

(
4C log(1/ϵ)

ϵ · (t + u) log(t + u)
)

= (1− 0.5ϵ) · min
t∈[n]

1

1 +
log

(
4C log(1/ϵ)

ϵ

)
log(t+u) + log log(t+u)

log(t+u)

= (1− 0.5ϵ) · 1

1 +
log

(
4C log(1/ϵ)

ϵ

)
log(u) + log log(u)

log(u)

≥ (1− 0.5ϵ) · 1
1 + 0.1ϵ + 0.1ϵ

≥ 1− ϵ,

as desired. ◀

3.2 Running Time Lower Bound
To prove our running time lower bound, we will reduce from the Maximum k-Coverage
problem. Recall that in Maximum k-Coverage, we are given a set T ⊆ [M ] and an integer
k; the goal is to find T ∗

1 , · · ·T ∗
k ∈ T that maximizes |T ∗

1 ∪ · · · ∪ T ∗
k |. We write Cov(T , k)

to denote this optimum. Furthermore, we say that a Maximum k-Coverage is regular if
|T | = M/k for all T ∈ T . Finally, we use N to denote |T | ·M which upper bound the “size”
of the problem.

Manurangsi [41] showed the following lower bound for this problem:

▶ Theorem 14 ([41]). Assuming the Gap Exponential Time Hypothesis (Gap-ETH), for any
constant δ > 0, there is no No(k)-time algorithm that can, given a regular instance (T , k)
distinguish between the following two cases:

(YES) Cov(T , k) ≥M .
(NO) Cov(T , k) ≤ (1− 1/e + δ)M .
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Proof of Theorem 2. Fix δ = 0.1. We reduce from the Maximum k-Coverage problem.
Suppose that (T , k) is a regular Maximum k-Coverage instance; we assume w.l.o.g. that k is
divisible by 10.

We construct the instance (S, {kS}S∈S) of the DCG maximization as follows:
Let n = |T | where we associate each j ∈ [n] with Tj ∈ T .
Let S = {S1, . . . , SM} where Si = {j ∈ [n] | i ∈ Tj}.
Let kS = 1 for all S ∈ S.

In the YES case, let Tj1 , . . . , Tjk
be such that |Tj1 ∪ · · · ∪ Tjk

| = M . Let π∗ : [n] → [n]
be any permutation such that π∗(ℓ) = jℓ for all ℓ ∈ [k]. From regularity of (T , k), there are
exactly q := M/k sets S ∈ S such that tπ∗(S) = i. Therefore, we have

DCGS,k(π∗) =
∑
i∈[k]

M

k
· 1

log(i + 1) .

Let OPT∗ denote the RHS quantity. Notice that

OPT∗ ≤ M

log(k + 1) . (3)

In the NO case, consider any permutation π : [n]→ [n]. Let ti denote the i-th smallest
value in the multiset {tπ(S)}S∈S . Regularity of (T , k) implies that

ti ≥ ti−q + 1 (4)

for all i > q. This in turn implies that

ti ≥ ⌈i/q⌉ . (5)

Furthermore, Cov(T , k) ≤ (1− 1/e− δ)M ≤ 0.8M implies that

t0.8M > k.

Furthermore, applying (4) to the above, we have

t0.9M ≥ t0.8M +
⌊

0.1M

q

⌋
= k + 0.1k = 1.1k. (6)

With the above notion, we may write DCGS,k(π)−OPT∗ as

DCGS,k(π)−OPT∗ =
M∑

i=1

1
log(ti + 1) −

M∑
i=1

1
log(⌈i/q⌉+ 1)

(5)
≥

M∑
i=0.9M

(
1

log(ti + 1) −
1

log(⌈i/q⌉+ 1)

)
(6)
≥

M∑
i=0.9M

(
1

log(1.1k + 1) −
1

log(⌈i/q⌉+ 1)

)

≥
M∑

i=0.9M

(
1

log(1.1k + 1) −
1

log(k + 1)

)
= 0.1M ·

(
1

log(1.1k + 1) −
1

log(k + 1)

)
= Θ

(
M

log2 k

)
.
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Finally, observe also that

OPT∗ = M

k
·

∑
i∈[k]

1
log(i + 1) = M

k
Θ

(
k

log k

)
= Θ

(
M

log k

)
.

Combining the above two inequalities, we have

DCGS,k(π) ≥
(

1 + Θ
(

1
log k

))
·OPT∗ .

Now, suppose that there is a PTAS for maximizing DCG that runs in time f(ϵ)·(nm)2o(1/ϵ) .
If we run the algorithm with ϵ = γ/ log k where γ > 0 is sufficiently small constant, then we
can distinguish between the YES case and the NO case in time f(1/ log k) · (nm)2o(log k) ≤
f(1/ log k) · (nm)o(k) = g(k) ·No(k) which, from Theorem 14, violates Gap-ETH. ◀

4 Max-Sum Dispersion

In this section, we provide a QPTAS for Max-Sum Dispersion (Theorem 3).
As alluded to earlier, our algorithm will reduce to the Densest k-Subgraph (DkS) problem,

for which an additive QPTAS is known [11]. Notice here that DkS is a generalization of the
Max-Dispersion problem because we may simply set V = U, k = p and w({u, v}) = d(u, v)/D

where D := maxu,v d(u, v) denote the diameter of the metric space. Note however that we
cannot apply Theorem 7 yet because the QPTAS in that theorem offers an additive guarantee.
E.g. if the optimum is o(1), then the QPTAS will not yield anything at all unless we set
ϵ = o(1), which then gives a running time nω(log n). This example can happen when e.g.
there is a single pair u, v that are very far away and then all the other pairs are close to u.

Our main technical contribution is to give a simple structural lemma that allows us to
avoid such a scenario. Essentially speaking, it allows us to pick a vertex and selects all
vertices that are “too far away” from it. Once this is done, the remaining instance can be
reduced to DkS without encountering the “small optimum” issue described in the previous
paragraph.

4.1 A Structural Lemma
Henceforth, we write Disp(S, T ) to denote

∑
u∈S,v∈T d(u, v) and Disp(u, T ) as a shorthand

for Disp({u}, T ). Furthermore, we use B(u, D) to denote {z ∈ U | d(z, u) ≤ D} and let
B(u, D) := U \ B(u, D).

We now formalize our structural lemma. It gives a lower bound on the objective based on
a vertex in the optimal solution and another vertex not in the optimal solution. Later on, by
guessing these two vertices, we can reduce to DkS while avoiding the “small optimum” issue.

▶ Lemma 15. Let SOPT be any optimal solution of Max-Sum Dispersion and let umin be the
vertex in SOPT that minimizes Disp(umin, SOPT). Furthermore, let v be any vertex not in
SOPT and let ∆ = d(umin, v). Then, we have

Disp(SOPT) ≥ p(p− 1)∆
16 .

Proof of Lemma 15. Let SOPT
close := SOPT ∩ B(umin, 0.5∆). Consider two cases, based on the

size of SOPT
close :
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Case I: |SOPT
close | ≤ p/2. In this case, we have

Disp(umin, SOPT) ≥ Disp(umin, SOPT \ SOPT
close ) ≥ (p/2)(∆/2) = ∆p/4.

Furthermore, by our definition of umin, we have

Disp(SOPT) = 1
2

∑
u∈S

Disp(u, SOPT) ≥ p

2 Disp(umin, SOPT).

Combining the two inequalities, we have Disp(SOPT) ≥ p2∆/8.
Case II: |SOPT

close | > p/2. In this case, since SOPT is an optimal solution, replacing any
z ∈ SOPT

close with v must not increase the solution value, i.e.

Disp(z, SOPT) ≥ Disp(v, SOPT \ {z})
≥ Disp(v, SOPT

close \ {z})
≥ ((p− 1)/2)(0.5∆),

where the second inequality uses the fact that for any z′ ∈ SOPT
close we have d(v, z′) ≥

d(u, v)− d(u, z′) ≥ ∆− 0.5∆. From this, we once again have

Disp(SOPT) = 1
2

∑
u∈S

Disp(u, SOPT) ≥ 1
2

∑
z∈SOPT

close

Disp(z, SOPT) ≥ |SOPT
close | ·

(p− 1)∆
8

>
p(p− 1)

16∆ ,

where the last inequality follows from our assumption of this case. ◀

4.2 QPTAS for Max-Sum Dispersion
We now present our QPTAS, which simply guesses umin and v = argmaxz /∈SOPT d(z, u) and
then reduces the problem to DkS. By definition of v, if we let ∆ = d(u, v), every point outside
B(umin, ∆) must be in SOP T . The actual reduction to DkS is slightly more complicated
than that described at the beginning of this section. Specifically, among points B(umin, ∆)
that surely belong to SOPT, we ignore all points outside B(umin, 20∆/ϵ) (i.e., they do not
appear in the DkS instance) and we let B(umin, 20∆/ϵ) \ B(umin, ∆) be the “must pick”
part. Ignoring the former can be done because the contribution to the objective from those
points can be approximated to within (1±O(ϵ)) regardless of the points picked in the ball
B(umin, ∆). This is not true for the latter, which means that we need to include them in our
DkS instance.

Proof of Theorem 3. Our algorithm works as follows:
1. For every distinct u, v ∈ U do:

a. Let ∆ := d(u, v) and ∆∗ = 20∆/ϵ.
b. If |B(u, ∆)| ≥ p, then skip the following steps and continue to the next pair u, v.
c. Otherwise, create a DkS instance where V := B(u, ∆∗), I := V \ B(u, ∆), k =

p− |B(u, ∆∗)| and w is defined as w({y, z}) := 0.5d(y, z)/∆∗ for all y, z ∈ V .
d. Use the additive QPTAS from Theorem 7 to solve the above instance to within an

additive error of ϵ′ := 0.00005ϵ2. Let T be the solution found.
e. Finally, let Su,v := T ∪ B(u, ∆∗).

2. Output the best solution among Su,v considered.
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It is obvious that the running time is dominated by the running time of the QPTAS
which takes nO(log n/(ϵ′)2) = nO(log n/ϵ4) as desired.

Next, we show that the algorithm indeed yields a (1− ϵ)-approximation. To do this, let
us consider SOPT, umin as defined in Lemma 15, and let u = umin, v := argmaxz /∈SOPT d(u, z).
Let T be the solution found by the DkS algorithm for this u, v and let T ′ := T \ I. We have

Disp(Su,v)

= Disp(B(u, ∆∗)) + Disp(B(u, ∆∗), T ) + Disp(T )

= Disp(B(u, ∆∗)) + Disp(B(u, ∆∗), I) + Disp(B(u, ∆∗), T ′) + Disp(T ). (7)

Similarly, letting S := SOPT ∩ B(u, ∆∗) and S′ := SOPT \ I, we have

Disp(SOPT)

= Disp(B(u, ∆∗)) + Disp(B(u, ∆∗), I) + Disp(B(u, ∆∗), S′) + Disp(S). (8)

Now, observe from the definition of the DkS instance (for this u, v) that for any J such
that I ⊆ J ⊆ V , we have

Den(J) = 1
k(k − 1)/2 ·

0.5
∆∗ Disp(J).

The additive approximation guarantee from Theorem 7 implies that Den(T ) ≥ Den(S)− ϵ′.
Using the above equality, we can rewrite this guarantee as

Disp(S)−Disp(T ) ≤ ϵ′ ·∆∗ · k(k − 1). (9)

Taking the difference between Equation (8) and Equation (7) and applying Equation (9),
we have

Disp(SOPT) − Disp(Su,v) ≤ Disp(B(z, ∆∗), S′) − Disp(B(z, ∆∗), T ′) + ϵ′ · ∆∗ · k(k − 1).

(Our choice of ϵ′) ≤ Disp(B(z, ∆∗), S′) − Disp(B(z, ∆∗), T ′) + 0.001ϵ∆ · p(p − 1)

(Lemma 15) ≤ Disp(B(z, ∆∗), S′) − Disp(B(z, ∆∗), T ′) + 0.1ϵ Disp(SOPT).

Now, since |S′| = |T ′| ≤ p and S′, T ′ ⊆ B(z, ∆), we have

Disp(B(z, ∆∗), S′)−Disp(B(z, ∆∗), T ′) ≤ |B(z, ∆∗)| · |S′| · ((∆∗ + ∆)− (∆∗ −∆))

≤ 2|B(z, ∆∗)| · |S′| ·∆

(Our choice of ∆∗) ≤ 0.1ϵ · |B(z, ∆∗)| · |S′| · (∆∗ −∆)

≤ 0.1ϵ ·Disp(B(z, ∆∗), S′)
≤ 0.1ϵ ·Disp(SOPT).

Combining the above two inequalities, we get Disp(Su,v) ≥ (1− 0.2ϵ) ·Disp(SOPT), as
desired. ◀

5 Max-Sum Diversification

In this section, we give our quasipolynomial-time approximation algorithm for the Max-Sum
Diversification with approximation ratio arbitrarily close to (1− 1/e) (Theorem 4). In fact,
we prove a slightly stronger version of the theorem where the approximation ratio for the
dispersion part is arbitrarily close to 1 and that of the submodular part is arbitrarily close
to 1− 1/e. This is stated more precisely below; note that this obviously implies Theorem 4.
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▶ Theorem 16. Let SOPT be any optimal solution of Max-Sum Diversification. There exists
a randomized nO(log n/ϵ4)-time algorithm that finds a p-size set S such that

E[Div(S)] ≥ (1− ϵ) Disp(SOPT) + (1− 1/e− ϵ)f(SOPT).

At a high-level, our algorithm for Max-Sum Diversification is very similar to that of
Max-Sum Dispersion presented in the previous section. Specifically, we use a structural
lemma (akin to Lemma 15) to reduce our problem to a variant of DkS. This variant of
DkS additionally has a submodular function attached to it. Using techniques from DkS
approximation literature, we give an algorithm for this problem by in turn reducing it to
the submodular maximization problem over a partition matroid, for which we can appeal to
Theorem 8.

5.1 Approximating Densest Subgraph and Submodular Function
We will start by giving an algorithm for the aforementioned extension of the DkS problem,
which we call Submodular DkS:

▶ Definition 17 (Submodular DkS). Given (V, I, w, k) (similar to DkS) together with a
monotone submodular set function h on the ground set V (accessible via a value oracle), the
goal is to find a size-k subset T where I ⊆ T ⊆ V that maximizes h(T ) + Den(T ).

We give a quasipolynomial-time algorithm with an approximation guarantee similar to
QPTAS for the original DkS (i.e. Theorem 7) while also achiving arbritrarily close to
(1− 1/e) approximation ratio for the submodular part of the objective:

▶ Theorem 18. For any set T OPT of size k such that I ⊆ T OPT ⊆ V , there is an nO(log n/γ2)-
time algorithm that output a size-k T such that I ⊆ T ⊆ V and

E[h(T ) + Den(T )] ≥ (1− 1/e− γ) h(T OPT) + Den(T OPT)− γ. (10)

In order to facilitate the subsequent discussion and proof, it is useful to define additional
notations. (Throughout, we view vectors as column vectors.)

Let W ∈ RV ×V denote the vector where Wu,v = w({u, v}) for u ̸= v and Wu,u = 0.
For every U ⊆ V , let 1(U) ∈ RV denote the indicator vector of U , i.e.

1(U)v =
{

1 if v ∈ U,

0 otherwise.

For every U ⊆ V , let w(U) = W · 1(U) ∈ RV .
Finally, for every non-empty U ⊆ V , let w(U) := 1

|U | · w(U) and 1(U) := 1
|U | · 1(U).

To understand our reduction, we must first describe the main ideas behind the QPTAS
of [11]. (Some of these ideas also present in previous works, e.g. [5].) Let us assume for
simplicity of presentation that I = ∅. Observe that DkS is, up to an appropriate scaling,
equivalent to find a size-k subset T that maximizes 1(T )T ·W ·1(T ) = 1(T )T w(T ). The main
observation is that, if we randomly pick a subset U ⊆ T OPT of size Θγ(log n), then with high
probability ∥w(U)−w(T OPT)∥∞ ≤ O(γ) and |1(T OPT)T w(T OPT)− 1(U)T w(U)| < O(γ).
Roughly speaking, [11] exploits this by “guessing” such a set U and then solves for T such
that ∥w(U) − w(T )∥∞ ≤ O(γ) and |1(T )T w(U) − 1(U)T w(U)| < O(γ); note that (the
fractional version of) this is a linear program and can be solved efficiently. [11] then shows
that a fractional solution to such a linear program can be rounded to an actual size-k set
without any loss in the objective function.
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We further push this idea by noting that, if we randomly partition V into V1, . . . , Vs

part where s = Oγ(k/ log n), then the intersections UOPT
i := Vi ∩ T OPT satisfy the two

conditions from the previous paragraphs (for T = UOPT
i ). Therefore, we may enumerate all

sets Ui ⊆ Vi of roughly expected size to construct a collection Pi of subsets that satisfies
these two conditions. Our goal now become picking U1 ∈ P1, . . . , Us ∈ Ps that maximizes
h(U1 ∪ · · · ∪ Us). This is simply monotone submodular maximization subject to a partition
matroid constraint and therefore we may appeal to Theorem 8. We remark here that the
two conditions that all subsets in Pi satisfy already ensure that the DkS objective is close to
optimum. The full proof of Theorem 18 is deferred to the full version [2].

5.2 From Submodular DkS to Max-Sum Diversification
Having provided an approximation algorithm for Submodular DkS, we can use it to ap-
proximate Max-Sum Diversification via a similar approach to the reduction from Max-Sum
Dispersion to DkS in the previous section. In particular, we can prove a structural lemma
for Max-Sum Diversification that is analogous to Lemma 15 for Max-Sum Dispersion. We
can then use the reduction nearly identical to the one in the proof of Theorem 3 to arrive at
Theorem 16. The full details are deferred to the full version [2].

6 Conclusion

In this work, we consider three problems related to diversification: DCG in diversified
search ranking, Max-Sum Dispersion and Max-Sum Diversification. For DCG, we give a
PTAS and prove a nearly matching running time lower bound. For Max-Sum Dispersion,
we give a QPTAS and similarly provide evidence for nearly matching running time lower
bounds. Finally, we give a quasi-polynomial time algorithm for Max-Sum Diversification
that achieves an approximation ratio arbitrarily close to (1 − 1/e), which is also tight
given the (1− 1/e + o(1)) factor NP-hardness of approximating Maximum k-Coverage [26].
Our algorithms for DCG and Max-Sum Diversification are randomized and it remains an
interesting open question whether there are deterministic algorithms with similar running
times and approximation ratios.
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Abstract
Threshold signature schemes enable distribution of the signature issuing capability to multiple users,
to mitigate the threat of signing key compromise. Though a classic primitive, these signatures have
witnessed a surge of interest in recent times due to relevance to modern applications like blockchains
and cryptocurrencies. In this work, we study round-optimal threshold signatures in the post-quantum
regime and improve the only known lattice-based construction by Boneh et al. [CRYPTO’18] as
follows:

Efficiency. We reduce the amount of noise flooding used in the construction from 2Ω(λ) down
to
√

Q, where Q is the bound on the number of generated signatures and λ is the security
parameter. By using lattice hardness assumptions over polynomial rings, this allows to decrease
the signature bit-lengths from Õ(λ3) to Õ(λ), bringing them significantly closer to practice. Our
improvement relies on a careful analysis using Rényi divergence rather than statistical distance
in the security proof.

Instantiation. The construction of Boneh et al. requires a standard signature scheme to be
evaluated homomorphically. To instantiate this, we provide a homomorphism-friendly variant
of Lyubashevsky’s signature [EUROCRYPT ’12] which achieves low circuit depth by being
“rejection-free” and uses an optimal, moderate noise flooding of

√
Q, matching the above.

Towards Adaptive Security. The construction of Boneh et al. satisfies only selective security,
where all the corrupted parties must be announced before any signing query is made. We improve
this in two ways: in the Random Oracle Model, we obtain partial adaptivity where signing queries
can be made before the corrupted parties are announced but the set of corrupted parties must
be announced all at once. In the standard model, we obtain full adaptivity, where parties can be
corrupted at any time but this construction is in a weaker pre-processing model where signers
must be provided correlated randomness of length proportional to the number of signatures, in
an offline preprocessing phase.
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1 Introduction

A threshold signature [23] distributes the signature issuing capacity among several users, so
that a signature can be generated only if a sufficient number of users collaborate to sign
a message. In more detail, each of N parties holds a partial signing key, and any set of
parties at least as large as a given threshold t ≤ N can participate in a protocol to generate
a signature. Security requires that a valid signature cannot be generated if fewer than t

parties cooperate.
A central motivation for constructing threshold signatures is to decentralize the trust

placed in the signing authority, thus reducing the risk of the signing key being compromised.
While threshold signatures have been studied for a long time [43, 24, 14, 33, 31, 44, 25, 20,
15, 13, 30, 21, 32, 7], they have received renewed attention in recent years due to numerous
applications in modern topics such as cryptocurrencies and blockchains. Most prior work has
focused on creating distributed versions of ECDSA or Schnorr signatures [44, 31, 25, 14, 15]
which are not quantum secure. From conjectured post-quantum assumptions such as those
related to Euclidean lattices, much less is known, especially with optimal round complexity.

1.1 Prior Work
The thresholdisation of lattice-based signatures from the NIST post-quantum cryptography
project has been investigated in [19] but the resulting candidates incur several rounds of
communication. A threshold signature restricted to t = N was proposed in [22] but it
also involves possibly many rounds, because of aborts. To the best of our knowledge, the
only lattice-based, round-optimal threshold signature construction is by Boneh et al. [9]
(henceforth BGGJKRS), relying on the Learning With Errors problem (LWE). However, while
this construction provided the first feasibility result for a long-standing open problem, it
suffers from the following drawbacks:
1. Noise Flooding and Impact on Parameters. It makes use of the so-called “noise flooding”

technique [34, 6, 37], which aims to hide a noise term e ∈ Z that possibly contains sensitive
information, by adding to it a fresh noise term e′ whose distribution has a standard
deviation that is much larger than an a priori upper bound on |e|. To get security against
attackers with success probability 2−o(λ) where λ is the security parameter, the standard
deviation of e′ must be a factor 2Ω(λ) larger than the upper bound on |e|.
Unfortunately, this precludes the use of an efficient LWE parametrisation. Concretely,
one has to set the LWE noise rate α as 2−Ω(λ) so that |e′| remains small compared to
the working modulus q. As the best known algorithms for attacking LWE with (typical)
parameters n, q, α have run-times that grow as exp(Õ(n log q/ log2 α)) (see, e.g., [38])
this leads to setting n log q = Ω̃(λ3). As the signature shares have bit-sizes that grow
as Ω(n log q), this leads to Ω̃(λ3)-bit signature sizes – prohibitively expensive in practice.

2. Instantiating Underlying Signature. It requires a standard signature scheme to be
evaluated homomorphically. BGGJKRS do not suggest a candidate and existing lattice
based signatures are not suitable – the GPV signature scheme [35] and its practical
versions [27, 51, 28] seem ill-suited, as the signing algorithm is very sequential, and
the required 1-dimensional Gaussian samples are obtained via algorithms based on
rejection sampling (see, e.g., [39, 56]) that are costly to transform into circuits. The other
candidate is Lyubashevsky’s signature scheme [46, 47]. It has the advantage of being far
less sequential, but it also relies on rejection sampling: when some rejection test does not
pass, then one needs to restart the signing process.
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3. Selective Security. It only achieves a very restricted notion of selective security, where all
the corrupted parties must be announced before any partial signing query is made. To
obtain security in the more realistic adaptive setting, one option is to invoke complexity
leveraging, which consists in guessing at the outset which parties will be corrupted. This
is not only dissatisfying as a solution but also leads to a further degradation of the
parameters.

1.2 Our Contributions
In this work, we improve the construction from [9] as follows:

Efficiency. We decrease the noise flooding ratio from 2Ω(λ) down to
√

Q, where Q is the
bound on the number of generated signatures. This gives a one-round threshold signature
of bit-length growing as Õ(λ log2 Q), which is Õ(λ) for any polynomially bounded Q,1 in
contrast with Õ(λ3) for the construction from [9]. These bit-lengths are obtained when
relying on the ring variants of SIS and LWE [48, 50, 54, 49]. Additionally, we show that
the amount of noise flooding used in this construction is optimal, by exhibiting an attack
when a smaller noise flooding ratio is used.
Instantiation. To instantiate the signature underlying BGGJKRS, we provide a
homomorphism friendly variant of Lyubashevsky’s signature [EUROCRYPT ’12] which
achieves low circuit depth. We remove the rejection sampling at the expense of adding
moderate noise of size

√
Q, matching the above. Again, we show that this amount of

flooding is optimal by demonstrating an attack when smaller flooding is used.
Selective versus Adaptive. As discussed above, the construction BGGJKRS satisfies only
selective security. We improve this in two ways: in the Random Oracle Model (ROM), in
which a hash function is being modeled as a uniformly sampled function with the same
domain and range, we obtain a notion of partial adaptivity where signing queries can be
made before the corrupted parties are announced. However, the set of corrupted parties
must be announced all at once. In the standard model, we obtain a construction with
full adaptivity, where parties can be corrupted at any stage in the protocol. However,
this construction is in a weaker pre-processing model where signers must be provided
correlated randomness of length proportional to the number of signing queries. The
informed reader may notice similarities with the “MPC with Preprocessing” model, please
see [29] and references therein 2.

1.3 Technical Overview
Recap of BGGJKRS Threshold Signatures. The round-optimal threshold signatures
provided by [9] are designed using a “universal thresholdizer” which enables the thresholdizing
of a number of primitives. This thresholdizer is itself instantiated using a threshold version
of “special” fully homomorphic encryption (FHE), which in turn can be constructed using the

1 For many applications, the bound Q is quite limited and can be considered to be a small polynomial
in λ. For example, for applications pertaining to cryptocurrencies, the bound Q may capture the total
number of transactions made with a user’s wallet during the lifetime of a signing key. According
to statistics available at the URLs below, one transaction per day and per user is a generous
upper bound. This suggests that number of signing queries in the lifecycle of the key will be
quite limited. https://www.blockchain.com/charts/n-transactions, https://www.statista.com/
statistics/647374/worldwide-blockchain-wallet-users/

2 Note that we can trade the offline sharing of correlated randomness with an additional communication
round in the signing protocol – however, this would destroy round optimality.
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LWE assumption. In threshold fully homomorphic encryption (TFHE), the setup algorithm
takes as input a threshold t and produces a set of decryption key shares sk1, . . . , skN for the
parties such that every party can perform a partial decryption using its own decryption key
and any t out of N partial decryptions can be combined into a complete decryption of the
ciphertext in a single round.

In more detail, the TFHE construction of BGGJKRS leverages the fact that the decryption
in LWE based FHE schemes [12, 11, 36] requires to compute an inner product of the ciphertext
ct with the secret key sk, followed by a rounding operation. Since inner product is a linear
operation, a natural approach to thresholdize FHE decryption is by applying a Shamir
t-out-of-N secret sharing to sk. This will yield N keys sk1, . . . , skN , which can be distributed
to the N users. Now, to decrypt a ciphertext ct, each user can compute the inner product
with its individual secret key ski as its partial decryption mi. To combine any t partial
decryptions into the final decryption, the combiner chooses Lagrange coefficients γ1, . . . , γt

so that
∑

i γiski = sk. Then, she computes∑
i

γimi =
∑

i

γi⟨ct, ski⟩ = ⟨ct,
∑

i

γiski⟩ = ⟨ct, sk⟩,

followed by rounding, as desired. However, this appealingly simple construction turns out
to be insecure. This is because each time a party computes a partial decryption, it leaks
information about its secret share ski via the inner product with (the public) value ct.

To get around this insecurity, a natural approach is to add noise to the partial decryption
which quickly transforms a simple computation to intractable. However, care must be taken
to ensure that this added noise does not affect correctness, since it is later multiplied by
the Lagrange coefficients during reconstruction: the previous

∑
i γimi will now become∑

i γi(mi + ei) for some noise terms ei. BGGJKRS propose two solutions – one to use a
secret sharing scheme whose reconstruction coefficients are binary, and another, to “clear
the denominators” by observing that since the Lagrange coefficients are rational numbers,
it is possible to scale them to be integers. The exact details are irrelevant for the current
discussion and hence omitted (please refer to [9] for more details).

To use this technique to construct threshold signatures, the authors propose the following.
Choose a signature scheme Sig, compute an FHE encryption ctsk of its signing key Sig.sk and let
each signer homomorphically evaluate the signing algorithm for a message µ on this ciphertext.
In more detail, given ctsk = FHE.Enc(Sig.sk), each party first computes FHE.Eval(C, ctsk)
where C is the circuit Sig.Sign(µ, ·). By correctness of FHE, this yields an FHE encryption of
the signature σ = Sig.Sign(Sig.sk, µ). To this ciphertext, the thresholdization trick described
above may now be applied.

Modeling the Adversary and Effect on Parameters. In their analysis, BGGJKRS consider
the complexity-theory security requirement of “no polynomial time attacks”, corresponding
to assuming attacks with advantage ϵ = λ−O(1) and run-time λO(1). However, for practically
motivated primitives like threshold signatures, it is more meaningful to consider attackers
with advantage 2−o(λ) and run-time 2o(λ). We choose our adversarial model so that all
attacks should be exponential while all honest algorithms run in polynomial time. Compared
to the complexity-theory definition of security, this provides a much more significant (and
practically meaningful) hardness gap between honest and malicious parties.

For subexponentially strong attackers as described above, the noise flooding used in
BGGJKRS is exponential, severely damaging the practicality of the scheme, despite the
exciting developments in practical FHE [18, 57, 41, 17, 16, 26]. In more detail, the proof
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requires to make the statistical distance between some noise terms e′ and e + e′ small, so
that knowing e + e′ is essentially the same as knowing e′, which does not carry sensitive
information. To get security against attackers with advantage 2−o(λ), the statistical distance
must be set to 2−Ω(λ) and, as a result, the standard deviation of e′ must be a factor 2Ω(λ)

larger than the upper bound on |e|.

Tightening Analysis via Rényi divergence. In this work, we examine whether this flooding
noise can be improved so that the impact of flooding e by e′ on efficiency is minimised.
To this end, we explore using Rényi divergence rather than statistical distance to bound
the distance between distributions in the security proof. Rényi divergence has been used
in prior work as a replacement to the statistical distance in lattice based cryptography
[42, 45, 8, 52, 40, 4, 10, 3, 5]. To understand why this may be beneficial, let us first see
how statistical distance is used in typical security proofs of cryptography. Let P and Q be
two non-vanishing probability distributions over a common measurable support X. Typical
security proofs consider a hard problem relying on some ideal distribution Q, and then
replace this ideal distribution by a real world distribution P. When the statistical distance
∆(Q,P) between the two distributions is small, the problem remains hard, implying security.
This is made rigorous by the so-called “probability preservation” property which says that
for any measurable event E ⊆ X, we have Q(E) ≥ P(E)−∆(Q,P).

Let us now define Rényi Divergence (RD). For a ∈ (1,∞), the RD of order a is defined by

Ra(P||Q) =
(∑

x∈X
P(x)a

Q(x)a−1

) 1
a−1 . It enjoys an analogous probability preservation property,

though multiplicative as against additive. For E ⊆ X, we have Q(E) ≥ P(E)
a

a−1 /Ra(P||Q).
Thus, if an event E occurs with significant probability under P, and if the SD or the RD is
small, then the event E also occurs with significant probability under Q. As discussed in [5],
probability preservation in SD is meaningful when the distance is smaller than any P(E)
that the security proof is required to deal with – if P(E) ≥ ϵ for some ϵ, then we require
that ∆(Q,P) < ϵ. The analogous requirement for RD is Ra(P||Q) ≤ poly(1/ϵ). Bai et al. [5]
observed that RD is often less demanding than SD in proofs. This is because RD between
distributions may be small enough to suffice for RD probability preservation while SD may
be too large for the SD probability preservation to be applicable. Thus, RD can often serve
as a better tool for security analysis, especially in applications with search-type security
definitions, like signatures.

In this work, we study the applicability of RD analysis in the construction of threshold
signatures. Building upon the above approach, we show that a limited flooding growing as

√
Q

suffices in BGGJKRS, where Q is the number of signing queries made by the attacker. We note
that this is a substantial improvement in practice, since the number of sign queries is typically
very different, and much smaller, than the run time of the adversary. Note that signature
queries require active participation by an honest user and there is no reason for an honest
user to keep replying after an overly high number of queries that clearly shows adversarial
behavior. As a concrete example, in the NIST post quantum project [1], adversarial runtimes
can go up to 2256 in some security levels, but the number of signature queries is always
bounded by 264 (which is itself an overly conservative bound in many scenarios). Thus,
dependence on the number of queries is significantly better than exponential dependence on
the security parameter, and this leads to a significant improvement in the signature bit size.

Optimality of our Moderate Flooding. We also show that this magnitude of flooding
is necessary for this construction, by exhibiting a statistical attack when smaller noise is
used. At a high level, our attack proceeds as follows. First we show that using legitimate
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information available to her, the adversary can compute errM + e1,M where errM is the error
that results from homomorphically evaluating the signing algorithm for message M and e1,M

is the flooding noise that is used in the partial signature of the first party. As a warmup,
consider the setting where the flooding noise is randomized. Now, since the signature scheme
is deterministic, the term errM depends only on M and remains fixed across multiple queries
for the same message. On the other hand, the term e1,M keeps changing. Using Hoeffding’s
bound, it is possible to estimate the average of e1,M across multiple queries and use this to
recover errM , leading to an attack.

This attack may be avoided by making the flooding noise a deterministic function of
the message, e.g., by using a pseudo-random function evaluated on the message to generate
the noise. We show that this modification is not sufficient to make the threshold signature
construction secure. For this purpose, we design a signature scheme which includes “useless”
information in the signature: this information does not affect correctness nor security of the
signature itself, but allows us to recreate the attack described above on the resulting threshold
signature. We start with a secure signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify)
whose signing key is a uniform bit-string among those with the same number of 0’s and 1’s.
Now, let us consider a special signature scheme Sig′ = (Sig′.KeyGen, Sig′.Sign, Sig′.Verify)
derived from Sig by modifying the signing algorithm as follows: for i ∈ [|Sig.sk|], if Sig.ski = 0,
then append a 0 to the signature. Since our signing key has exactly half as many 0’s as 1’s,
this leads to a string of |Sig.sk|/2 zeroes being appended to every signature: this does not
leak any information and does not affect correctness (it is simply ignored during verification).
Now, consider using Sig′ to instantiate our threshold signature scheme. Then, for any
message M , the FHE ciphertext CTσM

now additionally includes homomorphically evaluated
encryptions of {Sig.ski}i∈[|Sig.sk|]:Sig.ski=0. Note that these extra encryptions are designed to be
a deterministic function of the secret key so that across multiple messages, the corresponding
error term (obtained via homomorphic evaluation) will not change. On the other hand, the
message-dependent error terms can be assumed to change across messages. Due to this, the
error term recovered by the adversary will be a sum of a fixed term (dependent only on the
secret key) plus a fresh term per signature, which allows it to recreate the first attack. Please
see Section 3 for more details.

Homomorphism-Friendly Signature. Next, we provide a variant of Lyubashevsky’s signature
scheme [47] which enjoys low circuit depth and is homomorphism friendly. As discussed
above, Lyubashevsky’s signature contains a rejection sampling step, whose purpose is to
make the distribution of the resultant signature canonical, but this step is cumbersome to
implement homomorphically. We show that by using RD analysis in place of statistical
distance, analogously to the case of threshold signatures discussed above, the rejection
sampling step can be replaced by noise flooding of moderate magnitude

√
Q. Additionally,

we show that this flooding is optimal – please see Section 4 for details.

Towards Adaptive Security. Another limitation of the construction of BGGJKRS is that
security is proved in the weak “selective” model where the adversary must announce all
corrupted users before receiving the public parameters and verification key. In contrast, the
more reasonable adaptive model allows the adversary to corrupt users based on the public
parameters, the verification key and previous user corruptions it may have made. We briefly
describe the difficulty in achieving adaptive security. At a high level, in the selective game,
the challenger proceeds by simulating the partial keys corresponding to the honest parties in
a “special way”. The challenge in the adaptive setting is that without knowing who are the
honest/corrupted parties, the challenger does not know which partial keys to program.
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For more details, let us consider the case of an N -out-of-N threshold signature. In the
simulation, the challenger knows which party is honest at the start of the game, e.g., player N .
Now, the challenger can sample FHE secret keys sk1, . . . , skN−1 randomly, implicitly setting
the last share as sk−

∑
i∈[N−1] ski. To invoke the unforgeability of the underlying signature

scheme Sig, the challenger must “forget” the signing key Sig.sk at some point in the proof,
and rely on the Sig challenger to return signatures, which it then encrypts using the (public
key) FHE scheme. By correctness of FHE, this is the same as computing the signing circuit
for a given message on the ciphertext containing the secret key, which is what happens in
the real world. However, the FHE encryption of signing key Sig.sk is provided as part of the
public parameters in the real world, which in turn means that the FHE secret key must be
“forgotten” so that the FHE ciphertext of Sig.sk is indistinguishable from a dummy value.
Yet the challenger must return legitimate partial signatures of queried messages mj in the
security game, which in turn are (noisy) partial decryptions of the FHE ciphertexts σ̂j of
signatures σj . Knowing all the corrupt secret keys sk1, . . . , skN−1 from the outset enables
the challenger to walk this tightrope successfully – it obtains σj from the Sig challenger,
computes an FHE encryption σ̂j of this, computes partial decryptions using sk1, . . . , skN−1,
floods these with appropriate noise and returns these to the adversary.

In the adaptive game, the honest player is not known at the beginning of the game so the
challenger is unable to sample FHE secret key shares as described above. When requested
for a partial signatures for message mj , it can obtain the corresponding signature σj and
can FHE encrypt it, but cannot decrypt it using secret key shares which are unavailable.
To preserve correctness and indistinguishability from the real world, it is forced to return
(noisy) random secret shares {σi,j}i∈[N ],j∈poly of σj as partial signatures, for unbounded j.
Later if user 1 is corrupted (say), the adversary receives the secret key share sk1. Now, to
preserve indistinguishability, the challenger must explain the partial signatures {σ1,j}j∈poly
corresponding to user 1 as ⟨σ̂j , sk1⟩ ≈ σ1,j , which seems impossible for unbounded j.

We overcome this hurdle in the ROM by having the challenger simulate all partial keys
as though corresponding to a corrupt user and when the list of corrupted parties becomes
available, “program” the ROM to “explain” the returned keys in a consistent way. This yields
an intermediate notion of “partial adaptivity”, in which the attacker can make signing queries
before corruption, but must announce its corrupted users all at once. In more detail, we
modify the signing key to additionally contain a random secret share of 0, i.e., each party is
provided a vector vi of length N , such that

∑
i∈[N ] vi = 0. In the scheme, to compute a partial

signature for a message mj , the partial signing algorithm first computes ri,j = H(j, K)T vi

where H(j, K) is a random vector of length N , and K is a secret value required for a technical
reason that we will not discuss here. It then returns ⟨σ̂j , ski⟩+ noisei,j + ri,j . By linearity,
it holds that

∑
i∈[N ] H(j, K)T vi = 0, so correctness is not affected. But the unbounded

programmability of the ROM helps us overcome the aforementioned impasse in the proof.
Now, the challenger answers partial signature queries by returning (noisy) random secret
shares {σi,j}i∈[N ],j∈poly of σj . When later, user 1 is corrupted, it can correctly explain the
returned signatures as follows: it samples sk1, computes d1,j = ⟨σ̂j , sk1⟩ + noise and sets
r1,j = σ1,j − d1,j . Now we may program H(j, K) so that ri,j = H(j, K)T vi for all j – it can
be checked that there are enough degrees of freedom to satisfy these equations. However, since
all secrets of a user are revealed when it is corrupted, the value H(j, K) is fixed when even a
single user is corrupted. This is why we require that all corruptions be made simultaneously
and only achieve the restricted notion of “partial” adaptivity.

We also provide a construction in the standard model which achieves full adaptivity
where users can be corrupted at arbitrary points in the security game. But this construction
is only secure in a weaker pre-processing model where the signers must be provided correlated
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randomness of length proportional to the number of signing queries, in an offline pre-processing
phase. We emphasize that the correlated randomness is independent of the messages to be
signed later. This model is reminiscent of the “MPC with Preprocessing” model (please
see [29] and references therein). We refer the reader to Section 5 for more details.

2 Preliminaries

In this section, we define some preliminaries used in our work. Please refer to the full version
of the paper [2] for additional preliminaries.

▶ Definition 1 (Threshold Signatures). Let P = {P1, . . . , PN} be a set of N parties.
A threshold signature scheme for a class of efficient access structures S on P is a
tuple of PPT algorithms denoted by TS = (TS.KeyGen, TS.PartSign, TS.PartSignVerify,

TS.Combine, TS.Verify) defined as follows:
TS.KeyGen(1λ, A)→ (pp, vk, {ski}N

i=1): On input the security parameter λ and an access
structure A, the KeyGen algorithm outputs public parameters pp, verification key vk and
a set of key shares {ski}N

i=1.
TS.PartSign(pp, ski, m)→ σi: On input the public parameters pp, a partial signing key ski

and a message m ∈ {0, 1}∗, the partial signing algorithm outputs a partial signature σi.
TS.PartSignVerify(pp, m, σi) → accept/reject: On input the public parameters pp, a
message m ∈ {0, 1}∗ and a partial signature σi, the partial signature verification algorithm
outputs accept or reject.
TS.Combine(pp, {σi}i∈S) → σm: On input the public parameters pp and the partial
signatures {σi}i∈S for S ∈ A, the combining algorithm outputs a full signature σm.
TS.Verify(vk, m, σm)→ accept/reject: On input a verification key vk, a message m and a
signature σm, the verification algorithm outputs accept or reject.

A TS scheme should satisfy the following requirements.

▶ Definition 2 (Compactness). A TS scheme for S satisfies compactness if there exist
polynomials poly1(·), poly2(·) such that for all λ, A ∈ S and S ∈ A, the following
holds. For (pp, vk, {ski}N

i=1)←TS.KeyGen(1λ, A), σi←TS.PartSign(pp, ski, m) for i ∈ S, and
σm←TS.Combine(pp, {σi}i∈S), we have that |σm| ≤ poly1(λ) and |vk| ≤ poly2(λ).

▶ Definition 3 (Evaluation Correctness). A signature scheme TS for S satisfies evaluation
correctness if for all λ, A ∈ S and S ∈ A, the following holds. For (pp, vk, {ski}N

i=1) ←
TS.KeyGen(1λ, A), σi ← TS.PartSign(pp, ski, m) for i ∈ [N ] and σm ← TS.Combine(pp,
{σi}i∈S), we have that Pr[TS.Verify(vk, m, σm) = accept] ≥ 1− λ−ω(1).

▶ Definition 4 (Partial Verification Correctness). A signature scheme TS for S satisfies partial
verification correctness if for all λ and A ∈ S, the following holds. For (pp, vk, {ski}N

i=1)←
TS.KeyGen(1λ, A), Pr[TS.PartSignVerify(pp, m, TS.PartSign(pp, ski, m)) = 1] = 1− λ−ω(1).

▶ Definition 5 (Unforgeability). A TS scheme is unforgeable if for any adversary A with run-
time 2o(λ), the output of the following experiment ExptA,TS,uf (1λ) is 1 with probability 2−Ω(λ):
1. On input the security parameter λ, the adversary outputs an access structure A ∈ S.
2. Challenger runs the TS.KeyGen(1λ) algorithm and generates public parameters pp,

verification key vk and set of N key shares {ski}N
i=1. It sends pp and vk to A.

3. Adversary A then issues polynomial number of following two types of queries in any order
Corruption queries: A outputs a party i ∈ [N ] which it wants to corrupt. In response,
the challenger returns the key share ski.
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Signature queries: A outputs a query of the form (m, i), where m is a message
and i ∈ [N ], to get partial signature σi for m. The challenger computes σi as
TS.PartSign(pp, ski, m) and provides it to A.

4. At the end of the experiment, adversary A outputs a message-signature pair (m∗, σ∗).
5. The experiment outputs 1 if both of the following conditions are met: (i) Let S ⊆ [N ] be

the set of corrupted parties, then S is a an invalid party set, i.e. S ̸∈ A (ii) m∗ was not
queried previously as a signing query and TS.Verify(vk, m∗, σ∗) = accept.

We also consider following weaker notions of unforgeability.

▶ Definition 6 (Partially Adaptive Unforgeability). Here, all the corruptions are done all at
once. That is, Step 3, is now changed as follows:
A issues polynomial number of signing queries of the form (m, i) adaptively and gets
corresponding σi’s.
A outputs a set S ⊆ [N ] such that S ̸∈ A. The challenger returns {ski}i∈S.
A continues to issue polynomial number of more signing queries of the form (m, i)
adaptively, and gets corresponding σi.

Rest of the steps remain the same.

▶ Definition 7 (Selective Unforgeability). In this case, all the corruptions happen before any
signing query. That is, Step 3, is now further changed as follows:
A outputs a set S ⊆ [N ] such that S ̸∈ A. The challenger returns {ski}i∈S.
A issues polynomial number of signing queries of the form (m, i) adaptively, and gets
corresponding σi.

Rest of the steps remain the same.

▶ Definition 8 (Robustness). A TS scheme for S satisfies robustness if for all λ, the following
holds. For any adversary A with run-time 2o(λ), the following experiment ExptA,TS,rb(1λ)
outputs 1 with probability 2−Ω(λ):

On input the security parameter 1λ, the adversary outputs an access structure A ∈ S.
The challenger samples (pp, vk, sk1, . . . , skN )←TS.KeyGen(1λ, A) and provides
(pp, vk, sk1, . . . , skN ) to A.
Adversary A outputs a partial signature forgery (m∗, σ∗

i , i).
The experiment outputs 1 if TS.PartSignVerify(pp, m∗, σ∗

i ) = 1 and σ∗
i ̸= TS.PartSign(pp,

ski, m∗).

2.1 Rényi Divergence
▶ Definition 9 (Rényi Divergence). Let P and Q be any two discrete probability distributions
such that Supp(P ) ⊆ Supp(Q). Then for a ∈ (1,∞), the Rényi Divergence of order a is

defined by: Ra(P ||Q) =
(∑

x∈Supp(P )
P (x)a

Q(x)a−1

) 1
a−1

.

The following lemma is borrowed from [5, Lemma 2.9], with the exception of the
multiplicativity property for non-independent variables, which is borrowed from [53,
Proposition 2].

▶ Lemma 10. Let a ∈ [1,∞]. Let P and Q denote distributions with Supp(P ) ⊆ Supp(Q).
Then the following properties hold

Log Positivity: Ra(P ||Q) ≥ Ra(P ||P ) = 1.
Data Processing Inequality: Ra(P f ||Qf ) ≤ Ra(P ||Q) for any function f , where P f

(resp. Qf ) denotes the distribution of f(y) induced by sampling y←P (resp. y←Q).
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Probability preservation: Let E ⊆ Supp(Q) be an arbitrary event. If a ∈ (1,∞), then
Q(E) ≥ P (E)

a
a−1 /Ra(P∥Q).

Multiplicativity: Assume that P and Q are two distributions of a pair of random
variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal distribution of Yi

under P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote the conditional distribution
of Y2 given that Y1 = y1. Then we have:

Ra(P ||Q) = Ra(P1||Q1) ·Ra(P2||Q2) if Y1 and Y2 are independent for a ∈ [1,∞].
Ra(P ||Q) ≤ Ra(P1||Q1) ·maxy1∈Y1 Ra(P2|1(·|y1)||Q2|1(·|y1)).

We will use the following RD bounds. Note that proof tightness can often be improved by
optimizing over a, as suggested in [55].

▶ Lemma 11 ([5]). For any n-dimensional lattice, Λ ⊆ Rn and s > 0, let P be the distribution
DΛ,s,c and Q be the distribution DΛ,s,c′ for some fixed c, c′ ∈ Rn. If c, c′ ∈ Λ, let ϵ = 0.
Otherwise fix ϵ ∈ (0, 1) and assume that s > ηϵ(Λ). Then for any a ∈ (1, +∞)

Ra(P ||Q) ∈
[(

1− ϵ

1 + ϵ

) 2
a−1

,

(
1 + ϵ

1− ϵ

) 2
a−1

]
· exp

(
aπ
||c− c′||2

s2

)
.

3 More Efficient Threshold Signatures from Lattices

In this section, we show how to drastically decrease the exponential flooding used in the
scheme by Boneh et al. [9]. We also show that the limited flooding that we use is in fact
optimal, and smaller noise would lead to an attack. For ease of exposition, the construction
below is for the special case of N out of N threshold and restricted to selective security. We
extend it to t out of N threshold in the full version of the paper [2] and to adaptive security
in Section 5. In Section 4, we show how to instantiate the underlying signature scheme using
a variant of Lyubashevsky’s signature [47] with matching moderate flooding.

3.1 Optimizing the Boneh et al. scheme using the Rényi Divergence
Our scheme is similar to the one in [9] and is provided in Figure 1. The construction uses
the following building blocks:

A PRF F : K× {0, 1}∗→{0, 1}r, where K is the PRF key space and r is the bit-length of
randomness used in sampling from discrete Gaussian Ds.
A fully homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc, FHE.Dec,

FHE.Eval). As in [9], we also assume that the FHE.Dec can be divided into two sub-
algorithms: FHE.decode0 and FHE.decode1.
A UF-CMA signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify).
A context hiding homomorphic signature scheme HS = (HS.PrmsGen, HS.KeyGen, HS.Sign,
HS.SignEval, HS.Process, HS.Verify, HS.Hide, HS.HVerify) to provide robustness.
An N out of N secret sharing scheme Share.

Correctness. From the correctness of FHE.Eval, CTσ is an encryption of CM (Sig.sk) =
Sig.Sign(Sig.sk, M) = σM , which decrypts with FHE.sk. So, FHE.decode0(FHE.sk, CTσ) =
σM ⌊q/2⌉+ e. The signature computed by the TS.Combine algorithm is

FHE.decode1(
N∑

i=1

σi) = FHE.decode1(
∑N

i=1 FHE.decode0(ski, CTσ) +
∑N

i=1 e′
i)

= FHE.decode1(FHE.decode0(
∑N

i=1 ski, CTσ) +
∑N

i=1 e′
i)

= FHE.decode1(FHE.decode0(FHE.sk, CTσ) +
∑N

i=1 e′
i)

= FHE.decode1(σM ⌊q/2⌉+ e +
∑N

i=1 e′
i) = σM .
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TS.KeyGen(1λ): Upon input the security parameter λ, do the following.
1. For each party Pi, sample a PRF key sprfi←K.
2. Generate the signature scheme’s keys (Sig.vk, Sig.sk)←Sig.KeyGen(1λ).
3. Generate the FHE keys (FHE.pk, FHE.sk)←FHE.KeyGen(1λ) and compute an FHE encryption

of Sig.sk as CTSig.sk←FHE.Enc(FHE.pk, Sig.sk).
4. Generate the HS public parameters HS.pp←HS.PrmsGen(1λ, 1n) and the public and

the signing keys (HS.pk, HS.sk)←HS.KeyGen(1λ, HS.pp). Here n is the bit-length of
(FHE.sk, sprfi).

5. Share FHE.sk as {ski}N
i=1←Share(FHE.sk) such that

∑N

i=1 ski = FHE.sk.
6. For each party Pi, randomly choose a tag τi ∈ {0, 1}∗ and compute

(πτi , πi)←HS.Sign(HS.sk, (ski, sprfi), τi).
7. Output TSig.pp = {FHE.pk, CTSig.sk, HS.pp, HS.pk, {τi, πτi}N

i=1}, TSig.vk = Sig.vk,
TSig.sk = {TSig.ski = (ski, sprfi, πi)}N

i=1.

TS.PartSign(TSig.pp, TSig.ski, M): Upon input the public parameters TSig.pp, a partial signing
key TSig.ski and a message M , parse TSig.pp as (FHE.pk, CTSig.sk, HS.pp, HS.pk, {τi, πτi}N

i=1})
and TSig.ski as (ski, sprfi, πi) and do the following.
1. Compute u = F (sprfi, M) and sample e′

i←Ds(u), where Ds(u) represents sampling from
Ds using u as the randomness.

2. Let CM be the signing circuit, with message M being hardwired. Compute CTσ =
FHE.Eval(FHE.pk, CM , CTSig.sk).

3. Compute σi = FHE.decode0(ski, CTσ) + e′
i.

4. This step computes a homomorphic signature π̃i on partial signature σi to provide robustness.
Let CPS be the circuit to compute FHE.decode0(ski, CTσ) + e′

i in which CTσ is hardcoded
and the FHE key share ski and the PRF key sprfi are given as inputs.

Compute π∗
i = HS.SignEval(HS.pp, CPS, πτi , (ski, sprfi), πi).

Compute π̃i = HS.Hide(HS.pk, σi, π∗
i ).

5. Output yi = (σi, π̃i).

TS.Combine(TSig.pp, {yi}i∈[N ]): Upon input the public parameters TSig.pp and a set of partial
signatures {yi}i∈[N ], parse yi as (σi, π̃i) and output σM = FHE.decode1(

∑N

i=1 σi).

TS.PartSignVerify(TSig.pp, M, yi): Upon input the public parameters TSig.pp, message M , and a
partial signature yi, parse yi as (σi, π̃i) and do the following.
1. Compute CTσ = FHE.Eval(FHE.pk, CM , CTSig.sk).
2. Compute α = HS.Process(HS.pp, CPS), where CPS is as described above.
3. Parse yi as (σi, π̃i) and output HS.HVerify(HS.pk, α, σi, τi, (πτi , π̃i)).

TS.Verify(TSig.vk, M, σM ): Upon input the verification key TSig.vk, a message M and a signature
σM , output Sig.Verify(TSig.vk, M, σM ).

In the above, we set s = Beval ·
√

Qλ, where Beval ≤ poly(λ) is a bound on the FHE decryption
noise after homomorphic evaluation of the signing circuit CM , and Q is the bound on the number
of signatures.

Figure 1 Optimization of Boneh et al Threshold Signature Scheme.

3.1.1 Unforgeability
For security, we prove the following theorem.

▶ Theorem 12. Assume F is a secure PRF, Sig is UF-CMA secure, FHE satisfies semantic
security , Share satisfies privacy and HS is context hiding. Then the construction of threshold
signatures in Figure 1 satisfies selective unforgeablity (Definition 7) if the flooding noise is of
the size poly(λ) ·

√
Q, where Q is the number of the signing queries.
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The security of the construction can be argued using a sequence of hybrids. We assume
w.l.o.g. that the adversary A queries for all but the first key share, i.e., S = [N ] \ {1}.
Hybrid0: This is the real world.
Hybrid1: Same as Hybrid0, except that π̃1 in PartSign is now generated using HS simulator

as π̃1 = HS.Sim(HS.sk, α, σ1, τ1, πτ1), where α = HS.Process(HS.pp, CPS).
Hybrid2: Same as Hybrid1 except that to compute σ1 = FHE.decode0(sk1, CTσ) + e′

1,
the randomness u used to sample e′

1←Ds(u) is chosen uniformly randomly instead
of computing it using the PRF.

Hybrid3: Same as Hybrid2, except that now, for signing query for (M, 1), the challenger
simulates σ1 as follows:
1. Computes CTσ = FHE.Eval(FHE.pk, CM , CTSig.sk) and
{σ′

i = FHE.decode0(ski, CTσ)}i∈[2,N ].
2. Computes σM = Sig.Sign(Sig.sk, M) and set σ1 = σM

⌊
q
2
⌉
−

∑N
i=2 σ′

i + e′
1, where

e′
1 ← Ds.

Hybrid4: Same as Hybrid3 except that instead of sharing FHE.sk, now the challenger generates
the FHE key shares as {ski}N

i=1←Share(0).
Hybrid5: Same as Hybrid4, except that CTSig.sk in TSig.pp is replaced by CT0 =

FHE.Enc(FHE.pk, 0).
Detailed proofs of indistinguishability are provided in the full version [2]. Below, we provide
the proof for the main new claim in our work.

▶ Claim 13. If there is an adversary that can win the unforgeability game in Hybrid2 with
probability ϵ, then its probability of winning the game in Hybrid3 is at least ϵ2/2.

Proof. Let the number of signing queries that the adversary makes be Q. The two
hybrids differ only in the error term in σ1, as shown below. In Hybrid2, we have
σ1 = FHE.decode0(sk1, CTσ) + e′

1, for e′
1 ← Ds. In Hybrid3, we have:

σ1 = σM . ⌊q/2⌉ −
∑N

i=2
FHE.decode0(ski, CTσ) + e′

1

= σM . ⌊q/2⌉ −
∑N

i=1
FHE.decode0(ski, CTσ) + FHE.decode0(sk1, CTσ) + e′

1

= σM . ⌊q/2⌉ − FHE.decode0(
∑N

i=1
ski, CTσ) + FHE.decode0(sk1, CTσ) + e′

1

= σM . ⌊q/2⌉ − FHE.decode0(sk, CTσ) + FHE.decode0(sk1, CTσ) + e′
1

= σM . ⌊q/2⌉ − σM . ⌊q/2⌉+ e + FHE.decode0(sk1, CTσ) + e′
1

= FHE.decode0(sk1, CTσ) + (e′
1 + e),

for some e satisfying |e| ≤ Beval. Thus, in Hybrid2, the error term in σ1 is e′
1, while in

Hybrid3, it is e′
1 + e, where, e′

1 ← Ds, and e is the error in FHE ciphertext CTσ.
Recall the distribution seen by the adversary – the public parameters TSig.pp, the

verification key TSig.vk, the corrupted secret key shares TSig.ski, the messages Mj and
corresponding partial signatures (σj , π̃j). Note that since messages are chosen adaptively,
their distribution depends on previous signature queries and responses, and in particular on
the differently generated error terms in both hybrids. On the other hand TSig.pp, TSig.vk,
{TSig.ski}, {π̃j} are constructed identically in both hybrids and independently from the rest
(in particular these error terms): we implicitly assume that they are fixed and known, and
exclude them from the analysis. We refer to the distribution to be considered in Hybrid2
as D2 and in Hybrid3 as D3.

Let Ej be the random variables corresponding to the error term in CTσj
in the j-th

response and E(2)
j and E(3)

j be their distributions in Hybrids 2 and 3, respectively. Similarly,
let Mj be the random variable corresponding to the queried message in j-th query and M(2)

j
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and M(3)
j be their distributions in Hybrids 2 and 3, respectively. Then, from the discussion

above, we have E(2)
j = Ds and E(3)

j = Ds,ej
for all j ∈ [Q], where ej is the error in CTσj

and
can depend upon previous queries and responses.

Overall, we have Dk = (E(k)
Q ,M(k)

Q , E(k)
Q−1,M(k)

Q−1, . . . , E(k)
1 ,M(k)

1 ) for k ∈ {2, 3} and

Ra(D2∥D3) = Ra(E(2)
Q ,M(2)

Q , . . . , E(2)
1 ,M(2)

1 ∥ E(3)
Q ,M(3)

Q , . . . , E(3)
1 ,M(3)

1 ). (3.1)

Applying the multiplicativity property of the Rényi divergence (Lemma 10), we obtain
that Ra(D2∥D3) is bounded from above by

max
x∈X

Ra(E(2)
Q |X = x ∥ E(3)

Q |X = x) ·Ra(M(2)
Q , . . . , E(2)

1 ,M(2)
1 ∥ M(3)

Q , . . . , E(3)
1 ,M(3)

1 )

= max
x∈X

Ra(Ds|X = x ∥ Ds,eQ
|X = x) ·Ra(M(2)

Q , . . . , E(2)
1 ,M(2)

1 ∥ M(3)
Q , . . . , E(3)

1 ,M(3)
1 ),

(3.2)

where X = (MQ, EQ−1, . . . , E1) and eQ is the error term in CTσQ
; note that eQ may depend

on the sample from X (which differs in Hybrids 2 and 3) and is bounded by Beval. Then
applying Lemma 11 in Equation (3.2), we get

Ra(D2∥D3) ≤ exp(aπ∥eQ∥2/s2) ·Ra(M(2)
Q , . . . , E(2)

1 ,M(2)
1 ∥ M(3)

Q , . . . , E(3)
1 ,M(3)

1 )

≤ exp(aπB2
eval/s2) ·Ra(M(2)

Q , . . . , E(2)
1 ,M(2)

1 ∥ M(3)
Q , . . . , E(3)

1 ,M(3)
1 ).

Further, since MQ is a function of EQ−1, MQ−1, . . . , E1, M1, the data processing inequality
(Lemma 10) gives

Ra(M(2)
Q , E(2)

Q−1, . . . , E(2)
1 ,M(2)

1 ∥ M(3)
Q , E(3)

Q−1, . . . , E(3)
1 ,M(3)

1 )

≤ Ra(E(2)
Q−1, . . . , E(2)

1 ,M(2)
1 ∥ E(3)

Q−1, . . . , E(3)
1 ,M(3)

1 ),

Hence, we get

Ra(D2∥D3) ≤ exp(aπB2
eval/s2) ·Ra(E(2)

Q−1, . . . , E(2)
1 ,M(2)

1 ∥ E(3)
Q−1, . . . , E(3)

1 ,M(3)
1 )

≤ exp(aπB2
evalQ/s2),

where the last inequality follows from induction.
As s = Beval ·

√
Qλ, we get Ra(D2∥D3) ≤ exp(aπ/λ). Therefore, from the probability

preservation property of the Rényi divergence (Lemma 10), we have D3(E) ≥ D2(E)
a

a−1

Ra(D2∥D3) ≥
D2(E)

a
a−1 exp(−aπ

λ ). The result is obtained by setting a = 2. ◀

3.2 On the Optimality of Our Flooding
We show that the flooding amount that we achieved is optimal for our threshold signature
scheme. To argue this, we show how to attack it if the flooding amount is below Ω(

√
Q).

For simplicity, we restrict to the case of N = 2. Recall that in our construction,
TS.PartSign(TSig.pp, TSig.ski, M) outputs σi,M = FHE.decode0(ski, CTσM

) + e′
i,M , where

TSig.ski = (ski, sprfi).3 W.l.o.g, assume that the adversary gets the partial signing key
TSig.sk2 and the response for any signing query is a partial signature corresponding to party P1.
For any message M of its choice, the adversary receives σ1,M = FHE.decode0(sk1, CTσM

) +
e′

1,M . From this the adversary can compute:

3 We focus only on the σi,M component of PartSign’s output since the second component, the HS signature
of σi,M , is not relevant here.
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σ1,M + FHE.decode0(sk2, CTσM ) = FHE.decode0(FHE.sk, CTσM ) + e′
1,M

= σM + errM + e′
1,M ,

where errM is the error in CTσM
. Note that if the adversary succeeds in computing errM for

polynomially many M ’s, then it can compute FHE.sk.
As a warm-up, we show that if the error e′

1,M is randomized, small and of center 0, then
the adversary can indeed compute errM . Later, we will show that even for deterministic
flooding e′

1,M , there exist secure signature schemes for which the attack can be extended.
Since the adversary knows the key share sk2, it can compute σ2,M on its own and hence
can compute σM = TS.Combine(TSig.pp, σ1,M , σ2,M ). Hence, from σM + errM + e′

1,M , the
adversary can compute errM + e′

1,M . Since, the signature scheme is deterministic, errM

depends only on M . Thus, if the same message is queried for signature multiple times, then
each time the term errM remains the same, but since flooding is randomized, the term e′

1,M

is different.
To compute errM , the adversary issues all Q signing queries for the same message M and

receives σ
(1)
1,M , . . . , σ

(Q)
1,M , where σ

(i)
1,M denotes the partial signature returned for message M

in the ith query. From these responses the adversary gets Q different values of the form

wi = errM + e′i
1,M (3.3)

Since errM is same, taking average on both sides of Equation (3.3) over all the Q samples,

we get
∑

i∈[Q]
wi

Q = errM +
∑

i∈[Q]
e′i

1,M

Q . If | 1
Q

∑
i∈[Q] e′i

1,M | < 1/2, then the adversary can

recover errM as errM =
⌊

1
Q

∑
i∈[Q] wi

⌉
. As e′1

1,M , . . . , e′Q
1,M are independently and identically

distributed with mean 0, by Hoeffding’s inequality, we have

Pr
[∣∣∣∑

i∈[Q] e′i
1,M

Q

∣∣∣ < 1/2
]
≥ 1− 2exp

(
− Q

2s2

)
.

If Q ≥ Ω(s2 log λ), then 1− 2exp(−Q/(2s2)) ≥ 1− λ−Ω(1), in which case the adversary
can recover errM with probability sufficiently close to 1 to recover sufficiently many errM ’s
to compute FHE.SK. To prevent this, we do need s to grow at least proportionally to

√
Q.

3.2.1 Attack for Deterministic Error
In the argument for randomized error, the fact that e′i

1,M is randomized is crucial. However,
as discussed in Section 1, we can extend the attack for the case of deterministic flooding
as well, by exhibiting a secure signature scheme (with deterministic flooding) for which a
variant of the attack can apply.

Consider a special (contrived) signature scheme Sig′ = (Sig′.KeyGen, Sig′.Sign, Sig′.Verify)
derived from a secure signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify) as follows:
1. Sig′.KeyGen is identical to Sig.KeyGen. Let (Sig.sk, Sig.vk) be the signing and verification

keys, respectively, and Sig.ski denote the ith bit of Sig.sk for i ∈ [ℓ], where ℓ is the
bit-length of Sig.sk.

2. Sig′.Sign(Sig.sk, M) is modified as follows:
Compute σM = Sig.Sign(Sig.sk, M). Set σ′

M := σM .
For i from 1 to ℓ: if Sig.ski = 0, then set σ′

M := σ′
M∥Sig.ski.

Output σ′
M .
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3. Sig′.Verify(Sig.vk, M, σ′
M ) is defined as Sig.Verify(Sig.vk, M, σM ), where σM is obtained

from σ′
M by removing all the bits after the kth bit, where k is the bit-length of signatures

in Sig.

Above, we assume that the signing key of Sig is a uniform bit-string among those with the
same number of 0’s and 1’s. Since Sig.sk has always ℓ/2 bits equal to 0, the number of zeroes
appended to the signature will be ℓ/2 and hence does not leak any extra information to the
adversary. Hence, it follows easily that if Sig is a secure signature scheme, then so is Sig′.
However, as discussed in Section 1, our attack can be generalized to work for this setting.

3.2.1.1 The Attack

Now, consider using Sig′ to instantiate our threshold signature scheme. Then, for any
message M , the FHE ciphertext CTσM

now additionally includes homomorphically evaluated
encryptions of {Sig.ski}i∈[ℓ]:Sig.ski=0. Let CTσM

, errM , e′
M respectively denote the encryption

of σM , the error in CTσM
and the flooding noise added to partial decryption of CTσM

. Let
CT∗, err∗ and e∗

M denote the components corresponding to {Sig.ski}i∈[ℓ]:Sig.ski=0.
For any message M , the adversary can compute errM + e′

M as described previously, from
which the adversary gets err∗ + e∗

M . If the adversary manages to compute err∗ (for sufficiently
many instances), then it can also recover FHE.sk.

Note that err∗ is independent of any message and hence is constant across different
messages, while e∗

M does depend on M and is different for different messages. This gives
an attack strategy. To compute err∗, the adversary issues Q signing queries on different
messages {Mj}j∈[Q], and from the received partial signatures, derives the values for w∗

j =
err∗ + e∗

Mj
for j ∈ [Q].

Observe that the above equation is of the same form as Equation (3.3). Heuristically,
one would expect the e∗

Mj
to behave as independent and identically distributed random

variables with centre 0. Hence, we can argue in similar way that if Q ≥ Ω(s2 log λ) then the
adversary can recover err∗ with probability 1− 1/ poly(λ). This implies that for hiding err∗,
the standard deviation parameter s must grow at least proportionally to

√
Q.

4 Instantiating Threshold Signatures: Rejection-Free Lyubashevsky

Here, we provide an FHE friendly variant of Lyubashevsky’s signature scheme from [47].
Our construction uses a hash function H : {0, 1}∗→DH := {v : v ∈ {−1, 0, 1}k; ∥v∥1 ≤ α},
modeled as a random oracle. Here α is a parameter, typically much smaller than k. The
signature scheme is described in Figure 2.

Correctness. Since z = y + Sc, where y←DZm,σ, we have ∥z∥ ≤ 2σ
√

m + ∥Sc∥ with
probability 1− 2−Ω(λ), using standard Gaussian tail bounds . Since ∥S∥∞ ≤ d and ∥c∥1 ≤ α,
we have ∥Sc∥ ≤ dα

√
m. This gives us ∥z∥ ≤ (2σ + dα)

√
m with overwhelming probability.

Finally, note that H(Az−Tc, µ) = H(A(y + Sc)−ASc, µ) = H(Ay, µ) = c.

Security. We establish security via the following theorem. Because of space constraints,
proof of the theorem is given in the full version of the paper [2].

▶ Theorem 14. Assume that m > λ + (n log q)/ log(2d + 1), σ ≥ αd
√

mQ where Q is the
maximum number of signing queries an attacker can make and |DH | ≥ 2λ. Assume further
that SISq,n,m,β is hard for β = 2γ + 2dα

√
m. Then the construction in Figure 2 satisfies

UF-CMA in the random oracle model.
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KeyGen(1λ): Upon input the security parameter λ, set q, n, m, β, k, d, σ such that n = Ω(λ) and
the scheme is secure (see Theorem 14); then do the following:
1. Sample A←Zn×m

q and S←{−d, . . . , 0, . . . , d}m×k.
2. Set T = AS.
3. Output vk = (A, T), sk = S.

Sign(sk, µ): Upon input the signing key sk and a message µ, do the following:
1. Sample y←DZm,σ.
2. Set c = H(Ay, µ).
3. Set z = y + Sc.
4. Output (z, c).

Verify(vk, µ, (z, c)): Upon input the verification key vk, a message µ, and a signature (z, c), do
the following:
1. Check if ∥z∥ ≤ γ, where γ = (2σ + αd)

√
m.

2. Check if H(Az−Tc, µ) = c.
3. If both checks pass, then accept, else reject.

Figure 2 Lyubashevsky’s Signature Without Aborts.

5 Adaptive Security for Threshold Signatures

As discussed in Section 1, we provide two constructions to improve the selective security
achieved by [9]. Below, we describe our construction in the ROM, which satisfies partially
adaptive unforgeability (Definition 6). Due to space constraints, we provide our construction
in the standard model with pre-processing that satisfies fully adaptive unforgeability
(Definition 5) in the full version.

5.1 Partially Adaptive Unforgeability
We use the same building blocks as in Section 3.1 for construction. We also use two
keyed hash function modelled as random oracles: H : {0, 1}λ × {0, 1}∗→ZN

q and H1 :
{0, 1}λ × {0, 1}∗→{0, 1}r. The construction is provided in Figure 3.

Correctness and Unforgeability. The proof of correctness is similar to that in Section 3.1
and is provided in the full version of the paper [2]. We prove partially adaptive unforgeability
via the following theorem.

▶ Theorem 15. Assume Sig satisfies unforgeability, FHE is semantically secure , HS is context
hiding and Share satisfies privacy. Then the TS construction in Figure 3 satisfies partially
adaptive unforgeability (Definition 6) in ROM if the flooding error is of size poly(λ)

√
Q,

where Q is the upper bound on the number of signing queries.

Proof. The security of the construction can be argued using the following hybrids:
Hybrid0 and Hybrid1 are the same as that in the proof of Theorem 12.
Hybrid2: Same as Hybrid1, except that the randomness ui used in sampling e′

i in σi,M is
chosen uniformly randomly from {0, 1}r and then H1 is programmed as H1(hkeyi, M) = ui.
For random oracle queries for hash H1 by the adversary A on an input x, the challenger
first checks if H1(x) is already set. If so, then returns that value else chooses a value
uniformly randomly from {0, 1}r and saves and returns it.
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TS.KeyGen(1λ): Upon input the security parameter λ, do the following:
1. Randomly choose K ← {0, 1}λ and N vectors v1, v2, . . . , vN ∈ ZN

q such that
∑N

i=1 vi = 0.
2. Generate (Sig.vk, Sig.sk)←Sig.KeyGen(1λ) and (FHE.pk, FHE.sk)←FHE.KeyGen(1λ) and

share FHE.sk into N shares as (sk1, sk2, . . . , skN ) ← Share(FHE.sk) such that
∑N

i=1 ski =
FHE.sk.

3. Compute an FHE encryption of the signing key as CTSig.sk = FHE.Enc(FHE.pk, Sig.sk).
4. For each party Pi, randomly choose a tag τi ∈ {0, 1}∗, a hash key hkeyi←{0, 1}λ and

generate HS public parameters HS.pp←HS.PrmsGen(1λ, 1n) and HS public and signing keys
as (HS.pk, HS.sk)←HS.KeyGen(1λ, HS.pp). Here, n is the length of input to PartSign circuit
which depends on (FHE.sk, K, vi, hkeyi).

5. Compute (πτi , πi) = HS.Sign(HS.sk, (ski, K, vi, hkeyi), τi).
6. Output TSig.pp = (FHE.pk, HS.pp, HS.pk, CTSig.sk, {τi, πτi}N

i=1), TSig.vk = Sig.vk, TSig.sk =
{TSig.ski = (ski, K, vi, hkeyi, πi)}N

i=1.

TS.PartSign(TSig.pp, TSig.ski, M): Upon input the public parameters TSig.pp, the key share
TSig.ski = (ski, K, vi, hkeyi, πi) and a message M , do the following:
1. Compute ui = H1(hkeyi, M) and sample e′

i←Ds(ui).
2. Let CM be the signing circuit, with message M being hardcoded. Compute an FHE

encryption of signature σM as CTσM = FHE.Eval(FHE.pk, CM , CTSig.sk).
3. Compute ri,M = H(K, M)T vi and σi,M = FHE.decode0(ski, CTσM ) + ri,M + e′

i.
4. This step computes a homomorphic signature π̃i,M on σi,M to provide robustness.

Let CPS be the circuit to compute FHE.decode0(ski, CTσM ) + H(K, M)T vi + e′
i in which

CTσM is hardcoded and the key share TSig.ski is given as the input. Compute π∗
i,M =

HS.SignEval(HS.pp, CPS, πτi , (ski, K, vi, hkeyi), πi) and π̃i,M = HS.Hide(HS.pk, σi,M , π∗
i,M ).

5. Output yi,M = (σi,M , π̃i,M ).

Algorithms TS.PartSignVerify, TS.Combine and TS.Verify are identical to those in Section 3.1.

Figure 3 Partially Adaptive Threshold Signature Scheme.

Hybrid3: Same as Hybrid2 except that the value of H(K, M) for each M in pre corruption
signing query is set in the reverse order, i.e., firstly partial signatures are computed and
then H(K, M) is set accordingly as follows:
1. The challenger computes CTσM

= FHE.Eval(FHE.pk, CM , CTSig.sk).
2. It then computes FHE.decode0(FHE.sk, CTσM

) and generates N shares as {si,M}N
i=1 ←

Share(FHE.decode0(FHE.sk, CTσM
)).

3. Returns partial signatures as {σi,M = si,M + e′
i}N

i=1. Also, if a message M

is repeated for signing query, then the challenger uses same {si,M}N
i=1 shares of

FHE.decode0(FHE.sk, CTσM
) again.

4. When the adversary A outputs the set S of corrupted parties, the challenger first
programs the value of H(K, M) for each M in pre corruption signing queries as
described next, and then provides key shares for i ∈ S to A.

Programming H(K, M): ∀i ∈ [N ], compute ri,M = si,M − FHE.decode0(ski, CTσM
)

and solve for vector bM ∈ ZN
q such that ∀ i ∈ [N ], bT

M vi = ri,M . Set H(K, M) =
bM . Note that since there are N − 1 independent equations in N unknowns, such a
bM exists and can be computed.

5. To answer a random oracle query for hash function H on input x, the challenger first
checks if the value is already set, if so then returns that value, else randomly samples
a fresh vector rx and sets and returns H(x) = rx.

Hybrid4: Same as Hybrid3, except that now the signing queries are answered differently. For
each pre-corruption signing query for a message M , σi,M is computed as follows:
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1. The challenger computes σM = Sig.Sign(Sig.sk, M) and generates random shares of
σM ⌊q/2⌉ as {si,M}N

i=1 ← Share(σM ⌊q/2⌉) such that
∑N

i=1 si,M = σM ⌊q/2⌉.
2. Returns σi,M = si,M + e′

i, where e′
i ← Ds

When A outputs the set S of corrupted parties, the challenger does the following:
1. Let PreQ be the set of messages for which signing queries were made before. Then

for each M ∈ PreQ it does the following. For each i ∈ S, computes ri,M = si,M −
FHE.decode0(ski, CTσM

). Computes bM such that ∀ i ∈ S, bT
M vi = ri,M . Sets

H(K, M) = bM . Such a bM exists and can be computed since there are only N − 1
equations to satisfy in N unknowns.

2. Returns the secret key shares {TSig.ski}i∈S .

For each post corruption signing query on message M , the challenger does the following.
Let the honest party be Pa, i.e. S = [N ] \ {a}.
1. Computes CTσM

= FHE.Eval(FHE.pk, CM , CTSig.sk) and σM = Sig.Sign(Sig.sk, M).
2. For each i ∈ S, computes σ′

i,M = FHE.decode0(ski, CTσM
) + H(K, M)T vi and σi,M =

σ′
i,M + e′

i, where e′
i←Ds.

3. Returns σa,M = σM ⌊q/2⌉ −
∑

i∈S σ′
i,M + e′

a, where e′
a←Ds.

Hybrid5 and Hybrid6: are the same as Hybrid4 and Hybrid5, respectively, defined in the proof
of Theorem 12.

In the full version of the paper we show that consecutive hybrids are indistinguishable
and that the probability of the adversary winning the unforgeability game (Definition 6) is
negligible in Hybrid6. ◀
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Abstract
We design the first efficient sensitivity oracles and dynamic algorithms for a variety of parameterized
problems. Our main approach is to modify the algebraic coding technique from static parameterized
algorithm design, which had not previously been used in a dynamic context. We particularly build
off of the “extensor coding” method of Brand, Dell and Husfeldt [STOC’18], employing properties of
the exterior algebra over different fields.

For the k-Path detection problem for directed graphs, it is known that no efficient dynamic
algorithm exists (under popular assumptions from fine-grained complexity). We circumvent this
by designing an efficient sensitivity oracle, which preprocesses a directed graph on n vertices in
2k poly(k)nω+o(1) time, such that, given ℓ updates (mixing edge insertions and deletions, and vertex
deletions) to that input graph, it can decide in time ℓ22k poly(k) and with high probability, whether
the updated graph contains a path of length k. We also give a deterministic sensitivity oracle
requiring 4k poly(k)nω+o(1) preprocessing time and ℓ22ωk+o(k) query time, and obtain a randomized
sensitivity oracle for the task of approximately counting the number of k-paths. For k-Path detection
in undirected graphs, we obtain a randomized sensitivity oracle with O(1.66kn3) preprocessing time
and O(ℓ31.66k) query time, and a better bound for undirected bipartite graphs.

In addition, we present the first fully dynamic algorithms for a variety of problems: k-Partial
Cover, m-Set k-Packing, t-Dominating Set, d-Dimensional k-Matching, and Exact k-
Partial Cover. For example, for k-Partial Cover we show a randomized dynamic algorithm with
2k poly(k) polylog(n) update time, and a deterministic dynamic algorithm with 4k poly(k) polylog(n)
update time. Finally, we show how our techniques can be adapted to deal with natural variants on
these problems where additional constraints are imposed on the solutions.
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and can handle updates which insert or remove an edge of G, and queries which ask whether
G currently satisfies P . Efficient dynamic algorithms, which handle updates and queries in
no(1) time, have been designed for many important problems, and they are used in many
applications, both as ways to analyze evolving data, and as subroutines of larger algorithms
which need to iterate over and check many similar possibilities. See, for instance, the recent
survey [16].

However, there are many prominent dynamic problems which would have many applica-
tions, but for which we do not have efficient algorithms. Often times, we even have conditional
lower bounds from fine-grained complexity, showing that efficient dynamic algorithms for
these problems are unlikely to exist (see e.g. [1, 17, 23] and [16, Section 2.1]). It has recently
become popular to circumvent such lower bounds by instead designing a sensitivity oracle
for the problem, a weaker notion which can still be used in many applications.

Let ℓ be a positive integer. A sensitivity oracle for a dynamic problem, with sensitivity ℓ,
preprocesses an initial input, and must answer queries where ≤ ℓ changes are made to the
initial input. For example, if P is a property of a graph, then a graph algorithm for P with
sensitivity ℓ is a data structure which preprocesses an initial graph G, and can handle queries
where ℓ edges are updated (inserted or removed) in the initial graph G, and asks whether P

is still satisfied. One can imagine “resetting” G back to its original state after each query1.
In this paper, we study dynamic algorithms and sensitivity oracles for parameterized

problems. Consider, for instance, the k-Path problem: given a positive integer k, in an
n-node graph G (directed or undirected), determine whether there is a path of length k.
This problem is NP-complete, so we should not hope for a dynamic algorithm with update
time no(1) (such a dynamic algorithm could be used to solve the static problem in n2+o(1)

time!). However, k-Path is known to be fixed-parameter tractable (FPT), and can be solved
in time 2O(k) · n2 [8, 26, 25], which is sufficiently efficient when k is small. We can thus hope
for dynamic parameterized algorithms for the problem, with update time f(k) · no(1). And
indeed, a recent line of work has designed efficient dynamic parameterized algorithms with
such a running time for many different problems, typically by using dynamic variants on
classic techniques from the parameterized algorithms literature like kernelization and color
coding. For the k-Path problem in undirected graphs, such an algorithm is known with
update time k! · 2O(k) · polylog(n) [2], and another with amortized update time 2O(k2) [11].

By contrast, no efficient dynamic parameterized algorithm for k-Path in directed graphs
is known. Moreover, Alman, Mnich and Vassilevska [2] proved a conditional lower bound,
that it does not have such an efficient dynamic parameterized algorithm assuming any one of
three popular conjectures from fine-grained complexity theory (the 3SUM conjecture, the
Triangle conjecture, and a “Layered Reachability Oracle” conjecture they introduce,
which concerns a special case of a more popular hypothesis about reachability oracles).

This leads naturally to the two main questions we address in this paper. The first asks
whether there is an analogue of the aforementioned line of work on sensitivity oracles for
problems without efficient dynamic algorithms in the parameterized setting.

▶ Question 1. Is there an efficient parameterized sensitivity oracle for k-Path in directed
graphs?

1 Sensitivity oracles are sometimes referred to as “fault-tolerant” or “emergency planning” algorithms in
the literature. For graph problems, these terms also sometimes refer to the decrement-only case (where
edge updates only remove edges), but following [18, Section A.1], we use “sensitivity oracle” to refer to
the fully dynamic case, where edges can be inserted and deleted.
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We say that a sensitivity oracle for a parameterized problem, with parameter k, is efficient
if its preprocessing time is f(k) · poly(n) for some computable function f , and its query time
is poly(ℓ) · g(k) · no(1) for some computable function g (where ℓ is the sensitivity parameter,
i.e., the number of updates allowed per query). In the case of k-Path in directed graphs,
and other graph problems, we specifically seek such an efficient sensitivity oracle in the fully
dynamic setting where queries can change any ℓ edges by inserting and deleting them.

It is natural to ask that the query time has a polynomial dependence on ℓ (rather than,
say, just a f(ℓ) dependence), as we do here, for two reasons. First, this is the dependence
one would get by converting an efficient dynamic algorithm into a sensitivity oracle. Second,
with our definition, any parameterized problem with an efficient sensitivity oracle is in FPT
via the algorithm where the sensitivity oracle preprocesses an empty graph and then gets
the full input graph as a query (but this would not be true if an arbitrary f(ℓ) term were
allowed in the query time). Along the way to answering Question 1, we will also address
more precisely the relationship between the classes of parameterized problems with efficient
dynamic algorithms, efficient sensitivity oracles, and efficient static algorithms (a.k.a. the
class FPT).

To our knowledge, such a fully dynamic notion of sensitivity oracles for parameterized
problems has not been previously studied. The closest prior work is very recent [6] which
considered a similar but only decremental setting, wherein queries may only delete edges
from the graph, and not insert new edges. They design very elegant decremental sensitivity
oracles for directed k-Path and for k-Vertex Cover, but their preprocessing and query times
have exponential dependence on ℓ and hence are not “efficient” as we defined above. We
also give evidence that the techniques of [6] cannot extend to the fully-dynamic setting; see
Section 1.2 below for more details.

The second question we address is inspired by prior work on static algorithms for k-
Path. Many fundamental techniques in the literature on parameterized algorithms were first
introduced to study the k-Path problem. One such technique, algebraic coding (sometimes
called “monomial testing” or “multilinear monomial detection”), is used in the current fastest
static randomized algorithms for k-Path, and has also been used in other applications in
algebraic complexity theory [22, 25, 10, 9, 8, 21]. Nonetheless, to our knowledge, these
techniques have not been used in a dynamic or sensitivity setting before.

▶ Question 2. Can algebraic coding techniques from the design of parameterized algorithms
be used to design efficient dynamic algorithms or sensitivity oracles?

A positive answer to Question 2 could lead to efficient dynamic algorithms or sensitivity
oracles for a host of parameterized problems.

1.1 Our results
Let ω < 2.373 be such that we can multiply two n × n matrices in O(nω) arithmetic
operations [3]. Our first main result gives a positive answer to Question 1.

▶ Theorem 3. The k-Path problem in directed graphs has an efficient parameterized
sensitivity oracle. It can be solved with2:

a Monte Carlo randomized algorithm with preprocessing time 2k poly(k)nω and query
time ℓ22k poly(k), or

2 We work in the word-RAM model of computation with w-bit words for w = O(log n). Hence, only
O(ℓ) words are needed to specify the ℓ edges to change in a query, and we can achieve query times
independent of n.
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a deterministic algorithm with preprocessing time 4k poly(k)nω and query time ℓ22ωk.
In addition to edge insertion and deletions, these algorithms also allow for vertex failures as
part of the ℓ updates per query.

Although k-Path is known to not have an efficient dynamic parameterized algorithm
(assuming the aforementioned 3SUM, Triangle, or Layered Reachability Oracle
hardness assumptions from fine-grained complexity), Theorem 3 shows it does have an
efficient parameterized sensitivity oracle. Since the reductions used in [2] are still valid in
the sensitivity setting, one corollary is that the sensitivity versions of the 3SUM, Triangle,
and Layered Reachability problems have efficient algorithms (although there are simple
algorithms showing this for 3SUM and Triangle which do not go through k-Path; see
Section 4 for more details).

It follows from prior work [18] that assuming another popular conjecture, the Strong
Exponential Time Hypothesis (SETH), there are problems in FPT which do not have efficient
parameterized sensitivity oracles (one example is the counting version of the single-source
reachability problem; see again Section 4 for more details). Hence, assuming popular
conjectures from fine-grained complexity, it follows that the class of parameterized problems
with an efficient sensitivity oracle lies strictly between the class of parameterized problems
with an efficient dynamic algorithm, and the class FPT (i.e., both class inclusions are strict).

Our sensitivity oracle for Theorem 3 uses Θ(n2) space (for constant k), and it is natural
to wonder whether this can be improved, especially since known dynamic parameterized
algorithms for many other problems use much smaller space (e.g., many which dynamically
maintain a small kernel [2]). However, we prove unconditionally that the space usage of our
algorithm cannot be improved:

▶ Theorem 4. Any randomized or deterministic sensitivity oracle for k-Path in directed
graphs which handles edge insertion queries must use Ω(n2) space.

We also give three additional algorithmic results to complement Theorem 3. First, we
extend Theorem 3 to give an algorithm for approximately counting k-paths:

▶ Theorem 5. There is a randomized efficient parameterized sensitivity oracle which approx-
imately counts the number of k-paths in an n-node, m-edge directed graph. For any ϵ > 0,
it produces an estimate to the number of k-paths in the graph that, with probability > 99%,
is within ϵ relative error, with preprocessing time ϵ−2 · 4k poly(k) · min{mn, nω} and update
time O

(
ϵ−2 · ℓ2 · 2ωk

)
. In addition to edge insertion and deletions, it also allows for vertex

failures as part of the ℓ updates per query.

Second, we present a randomized sensitivity oracle with a better dependence on k, at the
cost of a worse dependence on ℓ, but only for undirected graphs:

▶ Theorem 6 (Undirected graphs). For the k-Path detection problem on an undirected
graph G on n vertices, there exists a randomized sensitivity oracle with preprocessing time
O(1.66kn3) and query time O(ℓ31.66k).

Third, we obtain the following corollary for bipartite graphs:

▶ Corollary 7 (Undirected bipartite graphs). For the k-Path detection problem on an undirected
bipartite graph, where the partition of the vertices V into the two sides V = S ∪ T is known
in advance and holds after any updates, there exists a sensitivity oracle with 2k/2 poly(k)n3

preprocessing time and ℓ32k/2 poly(k) query time.



J. Alman and D. Hirsch 9:5

Our algorithm for Theorem 3 uses a new dynamic version of the algebraic coding technique,
and more specifically, a recent implementation called “extensor coding” by Brand, Dell, and
Husfeldt [10]. See Section 2.5 and 3 below for more background on this technique, and the
new ideas we introduce to be able to use it in a dynamic or sensitivity setting. We are
then able to use and further modify our approach to design efficient dynamic parameterized
algorithms for many problems for which no such algorithm was previously known, positively
answering Question 2. We present the definitions for the problems we consider, followed by
the results.

▶ Definition 8 (k-Partial Cover). Given a collection of subsets S1, ..., Sn ⊆ [N ], find the
minimum size of a sub-collection T of these, for which

∣∣⋃
S∈T S

∣∣ ≥ k, or declare that no
such T exists.

▶ Definition 9 (m-Set k-Packing). Given subsets S1, ..., Sn ⊆ [N ], all with size |Si| = m,
decide whether there exists a sub-collection of k sets, which are all pairwise disjoint.

▶ Definition 10 (t-Dominating Set). Given an undirected graph G on n vertices, find the
minimum size of a set of vertices S ⊆ V (G) such that |S ∪ N(S)| ≥ t where N(S) is the set
of neighbors of vertices in S, i.e., N(S) =

⋃
v∈S N(v).

▶ Definition 11 (d-Dimensional k-Matching). Fixing a universe U = U1 × U2 × . . . × Ud,
where Ui are pairwise disjoint of combined size |

⋃· i Ui| = N , and given a collection of tuples
T ⊆ U , decide whether T contains a sub-collection of k pairwise disjoint tuples. (We say the
tuples a, b ∈ U are disjoint if a[i] ̸= b[i] for all i = 1, 2, . . . , d.)

▶ Definition 12 (Exact k-Partial Cover). Given a collection of subsets S1, ..., Sn ⊆ [N ],
decide whether there is a sub-collection T of these, in which all sets are pairwise-disjoint,
and

∣∣⋃·S∈T S
∣∣ = k.

▶ Theorem 13. There are efficient dynamic parameterized algorithms for the following
problems. We write O∗ here to hide factors that are polynomial in the parameters (m, k, t)
and polylogarithmic in the size of the instance (n, N).

For k-Partial Cover there are dynamic algorithms, with either randomized O∗(2k) or
deterministic O∗(4k) update time.
For m-Set k-Packing there are dynamic algorithms, with either randomized O∗(2mk)
or deterministic O∗(4mk) update time.
For t-Dominating Set there are dynamic algorithms, with either randomized O∗(2t) or
deterministic O∗(4t) update time.
For d-Dimensional k-Matching there are dynamic algorithms, with either randomized
O∗(2(d−1)k) or deterministic O∗(4(d−1)k) update time.
For Exact k-Partial Cover there are dynamic algorithms, with either randomized
O∗(2k) or deterministic O∗(4k) update time.

For the proof of Theorem 13 we refer the reader to the full version.
We also explain how the results can be extended to problems with additional constraints.

As a simple example, we show how we can design an efficient sensitivity oracle for the problem
of detecting whether a directed graph contains a walk of length k which visits at least k − 1
vertices. As a second example, we discuss a different problem: given a directed graph G on
n vertices, two (possibly intersecting) subsets V1, V2 ⊆ V , and two positive integers µ1, µ2,
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decide whether G contains a k-path that contains at most µ1 vertices of V1 and at most µ2
vertices of V2. For this problem we give a static deterministic algorithm running in time
4k+min{k,|V1∩V2|} poly(k) · n2, as well as a sensitivity oracle counterpart. We refer the reader
to the full version for the full discussion.

1.2 Comparison with related work
Algorithms for k-Path

The static k-Path problem has a long history. The current best upper bounds for it are
a randomized 1.66k poly(n) algorithm in undirected graphs due to Björklund, Husfeldt,
Kaski and Koivisto [8], a randomized time 2k poly(n) in directed (and hence also undirected)
graphs due to Williams [26], and deterministic time 2.554k poly(n) in directed graphs due to
Tsur [25].

In comparison, our randomized sensitivity oracle for directed graphs in Theorem 3 has a
dependency on k (both in preprocessing and query time) of O∗(2k), so one cannot hope to
improve on it without improving the best static algorithm. For undirected graphs, we give
in Theorem 6 a sensitivity oracle with a dependency of O∗(1.66k), which matches the best
bound of [8]. Our deterministic sensitivity oracle has a dependency of O∗(4k); we leave open
the question of whether the techniques of [25] can be used in a sensitivity oracle setting to
achieve O∗(2.554k).

There has also been work on the dynamic version of k-Path. However, Alman, Mnich
and Vassilevska [2] showed that under the aforementioned fine-grained conjectures, there
is no dynamic algorithm for directed graphs. At the same time, they give a deterministic
dynamic algorithm for the case of undirected graphs, with update time k! · 2O(k) · polylog(n).
A subsequent result due to Chen et al. [11] presents a deterministic dynamic algorithm with
amortized update time 2O(k2).

In comparison, our sensitivity oracle works for directed graphs just as well as for undirected
graphs, and with a lower dependence on k (only 2O(k)). However, we obtain a sensitivity
oracle, rather than a dynamic algorithm.

Decremental Parameterized Sensitivity Oracles

A recent paper by Bilò et al. [6] constructs decremental sensitivity oracles (“fault tolerant”) for
the k-Path problem (i.e., where all updates are edge deletions). They give one construction
with a randomized kℓ2k poly(n) preprocessing time and O(ℓ min{ℓ, k + log ℓ}) update time,
and a second construction with a lower preprocessing time of 2k · (ℓ+k)ℓ+k

ℓℓkk · ℓ poly(n) at
the expense of an increased query time of O

(
(ℓ+k)ℓ+k

ℓℓkk · ℓ min{ℓ, k} log n
)

. They also give
a deterministic algorithm, requiring kℓ2.554k poly(n) preprocessing time and a very low
O(ℓ min{ℓ, k +log ℓ}) update time. Our Theorem 3 improves on the dependency on ℓ, making
it polynomial in both the preprocessing and update times, and allows for both increments
and decrements, while the methods of [6] are specific to decrements. We also achieve an
update time which is independent of n in the word-RAM model. In [6], preprocessing is
made aware of the value of ℓ, due to the superpolynomial dependence on it.

The techniques of Bilò et al. [6] also achieve a very low memory footprint for their
fault-tolerant oracle, attaining at most logarithmic space dependency on n in all variants,
when k and ℓ are considered constants. In contrast, we prove a lower bound, showing
that one cannot hope for such dependency if increments are allowed, and that any fully
dynamic sensitivity oracle must store at least Ω(n2) bits (see Theorem 4). This suggests
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that the methods used in [6] cannot be used to devise a fully dynamic sensitivity oracle.
Their algorithms are based on simple and elegant combinatorial arguments; for instance, in
their algorithm with a faster preprocessing time, they precompute a collection of k-paths in
the graph, in a way that ensures that with high probability, if there exists a path after ℓ

edge deletions, one of the precomputed paths is still valid. We instead take a very different
approach based on algebraic coding.

Cover, Matching, Dominating Set, and Packing problems

We are unaware of previous work on dynamic algorithms for the problems we study here
(other than k-Path in undirected graphs, which we discussed above). Instead, we compare
the dependence on k in the update times of our dynamic running times with the best known
dependence on k for static algorithms. In the cases where we match, it is impossible to speed
up the dependence on k in our dynamic algorithms without speeding up the fastest known
static algorithms.
1. For both k-Partial Cover and t-Dominating Set, the fastest known static randomized

running time is 2k poly(nk) by Koutis and Williams [22] (where for t-Dominating Set
we replace k with t in the running time), which our dynamic algorithm matches, and the
fastest known static deterministic running time is 2.554k poly(kn), stated by Tsur [25],
whereas our deterministic dynamic algorithm achieves query time O∗(4k).

2. The fastest known static randomized algorithm for m-Set k-Packing by Björklund,
Husfeldt, Kaski and Koivisto [8] has the intimidating running time of(

0.108157 · 2m(1 − 1.64074/m)1.64076−mm0.679625

(m − 1)0.679623

)k

n6 poly(N)

This is less than 2mk poly(n), and considerably so for smaller m. For example, when
m = 3, the running time is bounded by 1.49533kn6 poly(N). Due to the super-quadratic
dependence on n, these techniques are unlikely to be adaptable for the dynamic case.
In contrast, Koutis [20] proposes a static randomized algorithm running in time

2mkn poly(mk) polylog(n).

Our dynamic result matches this running time.
3. The fastest known static randomized algorithm for d-Dimensional k-Matching, by

Björklund, Husfeldt, Kaski, and Koivisto [8], runs in time 2(d−2)k poly(Nk)n. In con-
trast, we match only an earlier algorithm by Koutis and Williams [22], which runs in
time 2(d−1)k poly(kdn). The fastest known static deterministic algorithm runs in time
2.554(d−1)k poly(Nn), stated in Tsur [25], whereas we achieve deterministic dynamic
update time O∗(4(d−1)k).

4. Exact k-Partial Cover is a natural generalization of similar problems (such as m-Set
k-Packing), though we are unaware of explicit prior work on it. A slight modification of
the algorithm of Koutis [20] for m-Set k-Packing solves the static problem in randomized
O∗(2k) time, matching the dependence on k in our dynamic algorithm.

Dynamic Parameterized Algorithms

Efficient dynamic algorithms have previously been proposed for a number of parameterized
algorithms, often using dynamic versions of classic techniques from the design of fixed-
parameter tractable algorithms. These techniques include dynamic kernels [2, 5, 12, 19],
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color-coding [2], dynamic elimination forests [11], dynamic branching trees [2], sketching [12],
and other methods [14, 15]. To our knowledge, no previous work on dynamic parameterized
algorithms has used algebraic techniques.

2 Preliminaries

2.1 Notation
For a positive integer k, write [k] := {1, 2, . . . , k}.

We will use the asymptotic notation O∗(T ); its meaning will depend on context, so we
will define it each time it arises. Generally, in static algorithms and preprocessing times we
hide factors that are polynomial in the input parameters (k, n, etc), but when talking about
update times, we will only hide factors that are polylogarithmic in the input size.

Let ω be such that two n × n matrices can be multiplied using O(nω) field operations3; it
is known that we can take ω < 2.373 [3].

2.2 Sensitivity Oracles
▶ Definition 14 (sensitivity oracle). A sensitivity oracle is a data structure containing two
functions:
1. Initialization with an input instance of size n.
2. Query with ℓ changes (with problem-specific definition) to the original input. This returns

the desired output on the altered input.
The time spent in the initialization step is called the preprocessing time, and the time spent
in the query step is called the query time.

In random sensitivity oracles, we assume the queries are independent of the randomness of
the oracle, and thus cannot be used to fool a sensitivity oracle by obtaining the randomness
used at the preprocessing phase. We say that a random sensitivity oracle errs with probability
at most p, if for any pair of an initial configuration and a query, the probability of error is at
most p.

We say that a sensitivity oracle for a parameterized problem, with parameter k, is efficient
if its preprocessing time is f(k) poly(n) for some computable function f , and its query time
is poly(ℓ)g(k)no(1) for some computable function g.

2.3 Exterior algebra
A key technical tool we will make use of in our algorithms is the exterior algebra. We give a
brief introduction to its definition and properties which we will use.

Given a field F and a positive integer k, the exterior algebra Λ(Fk) is a non-commutative
ring over F. In this paper we will be interested in the cases where F is either the rational
numbers Q, or a finite field F2d of characteristic 2.

Following the terminology of Brand, Dell and Husfeldt [10], elements of the exterior
algebra are called extensors. Multiplication in Λ(Fk) is denoted by the wedge sign; for
x, y ∈ Λ(Fk), their product is x ∧ y. The generators of this ring are e1, e2, ..., ek, the standard
basis of Fk, and we impose the relations ei ∧ ej = −ej ∧ ei for all i, j ∈ [k] and ei ∧ ei = 0

3 This is a slight abuse of notation. The exponent of matrix multiplication ω is typically defined as the
smallest constant such that n × n matrices can be multiplied in nω+o(1) field operations, but we drop
the “o(1)” in the exponent here for simplicity.



J. Alman and D. Hirsch 9:9

for all i ∈ [k] (while the latter equation follows from the former for fields of characteristic
different from 2, we still require it when charF = 2). We also require that the wedge product
is bilinear4. Furthermore, it can be seen that the wedge product is associative5.

Additionally, we consider any field element a ∈ F to be an element of Λ(Fk), with
multiplication defined simply by a ∧ ei = ei ∧ a = aei.

For example, we have

e1 ∧ (e5 − e2 + 3) ∧ e3 = e1 ∧ e5 ∧ e3 − e1 ∧ e2 ∧ e3 + 3e1 ∧ e3

= −e1 ∧ e3 ∧ e5 − e1 ∧ e2 ∧ e3 + 3e1 ∧ e3.

To simplify the notation, for I ⊆ [k] we also write eI :=
∧

i∈I ei, where the product is
over the elements of I in ascending order, with the convention e∅ = 1. We will sometimes
also replace the wedge sign by a simple product sign, when it is clear from context that we
mean the wedge product. For example, we can write eI :=

∏
i∈I ei. Thus, the above example

extensor can also be written as

e1 ∧ (e5 − e2 + 3) ∧ e3 = −e{1,3,5} − e{1,2,3} + 3e{1,3}

We see that two products of the basis elements that differ only by the order of the terms
can differ only in sign (e.g., e1 ∧ e2 ∧ e3 = −e2 ∧ e1 ∧ e3), and furthermore any product of eis
with a repeating factor vanishes (e.g., e1 ∧ e2 ∧ e2 = e1 ∧ 0 = 0). Thus, the set {eI : I ⊆ [k]}
spans Λ(Fk) as a vector space over F. It is in fact a basis of this vector space, and we have
dimF Λ(Fk) = 2k. That is, for any x ∈ Λ(Fk) there is a unique choice of the 2k coefficients αI

so that x =
∑

I⊆[k] αIeI . For any x ∈ Λ(Fk) and T ⊆ [k] we denote by [eT ]x the coefficient
of eT when x is represented in the basis {eI : I ⊆ [k]} (i.e., the value of αT as above).

If there is a d such that all I for which [eI ]x ̸= 0 have |I| = d, we say that x is a degree-d
extensor. The space of degree-d extensors is denoted by Λd(Fk).

We identify any vector v = (v[1], v[2], ..., v[k]) ∈ Fk with the exterior algebra element∑
i v[i]ei ∈ Λ1(Fk). A crucial property of the exterior algebra is that for any vector v ∈ Fk it

holds that v ∧ v = 0. Indeed,

v ∧ v =
∑
i,j

v[i]v[j]ei ∧ ej =
∑
i<j

v[i]v[j]ei ∧ ej +
∑
i<j

v[i]v[j]ej ∧ ei

=
∑
i<j

v[i]v[j]ei ∧ ej −
∑
i<j

v[i]v[j]ei ∧ ej = 0.

Similarly, for any two vectors u, v ∈ Fk, it holds that u∧v = −v ∧u. It is important to notice
that these properties do not hold for all elements in Λ(Fk). As an example, for x = e1 +e2 ∧e3
we have x ∧ x = (e1 + e2 ∧ e3) ∧ (e1 + e2 ∧ e3) = e1 ∧ e2 ∧ e3 + e2 ∧ e3 ∧ e1 = 2e1 ∧ e2 ∧ e3. In
fact, we can see that the wedge product of an even number of vectors commutes with any
extensor.

Another very useful property of the exterior algebra is its connection to determinants.
Let v1, v2, ..., vk ∈ Fk be k vectors of dimension k, and consider their product v1 ∧ v2 ∧ ... ∧ vk.
Replace each vi with its linear combination of the basis elements ej and expand the product.
We see that any monomial that repeats a basis element gets cancelled, and the others are all
e[k] up to a sign. We get

v1 ∧ v2 ∧ ... ∧ vk =
k∧

i=1

k∑
j=1

vi[j]ej =
∑

σ∈Sk

k∧
i=1

vi[σ(i)]eσ(i) =
∑

σ∈Sk

sgn(σ)e[k]

k∧
i=1

vi[σ(i)].

4 (a + b) ∧ c = (a ∧ c) + (b ∧ c) and a ∧ (b + c) = (a ∧ b) + (a ∧ c).
5 (a ∧ b) ∧ c = a ∧ (b ∧ c)

ICALP 2022



9:10 Parameterized Sensitivity Oracles and Dynamic Algorithms Using Exterior Algebras

We recognize a determinant in the right hand side, thus showing that

v1 ∧ v2 ∧ ... ∧ vk = det(v1|v2|...|vk)e[k]. (1)

2.4 Complexity of ring operations in the exterior algebra
We represent the elements of Λ(Fk) as the length-2k vector of coefficients of the basis elements
eI . Addition is performed by coordinate-wise addition, hence requires O(2k) field operations.
Multiplication is trickier, and there are a few important cases. All these cases were also
noted and used in [10].

▶ Proposition 15 (Skew product). Computing x ∧ v for a general extensor x ∈ Λ(Fk) and a
vector v ∈ Fk can be done in O(2k · k) field operations.

Proof sketch. This is accomplished by simply expanding the product. ◀

▶ Proposition 16 (General product over characteristic 2). Computing x∧y for any x, y ∈ Λ(Fk),
when char(F) = 2, can be done in O(2kk2) field operations.

Proof sketch. Here, the ring Λ(Fk) is commutative. Then we can write [eI ](x ∧ y) =∑
T ⊆I([eT ]x)([eI\T ]y), which can be seen as a subset convolution operation. Using the fast

subset convolution discovered by Björklund, Husfeldt, Kaski and Koivisto [7], we can compute
this with O(2kk2) field operations. ◀

▶ Proposition 17 (General product over any characteristic). Computing x ∧ y for x, y ∈ Λ(Fk),
for F of any characteristic, can be done in O(2ωk/2) field operations.

Proposition 17 is a result of Włodarczyk [27], which reduces computing x ∧ y over Λ(Fk) to
k2 multiplications in a Clifford algebra, which in turn can be embedded in matrices of size
2k/2 × 2k/2.

2.5 Extensor-coding
In this subsection, we give a brief overview of the techniques recently used by Brand, Dell and
Husfeldt [10] to design a randomized and a deterministic algorithm for the (static) k-Path
problem; we heavily build off of these techniques in this paper.

Given a directed graph G, we denote its vertex set V = {v1, ..., vn}, and we denote by
Ws(G) the set of all walks in G of length s. Recall that walks may repeat vertices, whereas
paths may not. For each edge e ∈ E(G) we have an edge variable ye, whose possible values
will be in a field F we will pick later.

Furthermore, we define vectors χ : V → Fk by χ(vi) = (1, j, j2, . . . , jk−1) where j = f(i)
for some injective function f : [n] → F. We call these Vandermonde vectors.

Given a walk in G of length s, w = (w1, w2, ..., ws) ∈ Ws(G), we define the corresponding
walk extensor to be χ(w1) ∧ yw1w2 ∧ χ(w2) ∧ yw2w3 ∧ χ(w3) ∧ ... ∧ yws−1ws ∧ χ(ws). We will
sometimes denote the walk extensor of a walk w by χ(w).

Our goal is to compute the sum of all walk extensors for walks of length k,

Z =
∑

(w1,w2,...,wk)∈Wk(G)

χ(w1) ∧ yw1w2 ∧ χ(w2) ∧ yw2w3 ∧ χ(w3) ∧ ... ∧ ywk−1wk
∧ χ(wk). (2)

The result of this sum is seen to be proportional to the single basis element e[k], and by
abuse of notation we will consider it as a scalar equal to that coefficient (or, more precisely,
a polynomial in the y variables).
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Any k-walk that is not a path does not contribute to Equation (2), because its walk
extensor repeats a vector in the product. Thus, any nonzero term in the sum Equation (2)
corresponds to a k-path.

The choice of χ(vi) is such that for any walk (w1, w2, ..., wk) that is a k-path, the walk-
extensor is a nonzero monomial in the y variables. This is seen using Equation (1), because
χ(w1) ∧ χ(w2) ∧ ... ∧ χ(wk) = e[k] det(χ(w1)|χ(w2)|...|χ(wk)), which is the determinant of a
Vandermonde matrix with unique columns, which is known to be nonzero.

Additionally, the monomial in the y variables given to each k-path is seen to uniquely
identify the k-path (since there is a different y variable for each edge). Hence, the monomials
of different k-paths cannot cancel, and we have proven:

▶ Lemma 18. For a directed graph G, the value of Z given in Equation (2) is a nonzero
polynomial in the y variables if and only if G contains a k-path.

We now recall the classical DeMillo-Lipton-Schwartz-Zippel Lemma:

▶ Lemma 19 ([13, 24, 28]). Let f ∈ F[x1, ..., xn] be a nonzero polynomial in n variables
with total degree at most d over some field F, and let S ⊆ F. For a1, a2, ..., an ∈ S chosen
uniformly at random, we have Pr(f(a1, a2, ..., an) = 0) ≤ d

|S| .

Using the DeMillo-Lipton-Schwartz-Zippel Lemma, we now obtain a randomized algorithm
for the k-Path detection problem, assuming we are able to efficiently compute Z. Namely,
for each e ∈ E(G) we randomly select ye ∈ Y for some fixed Y ⊆ F of size |Y | = 100k,
and compute Z as in Equation (2). If this value is nonzero, we know there is a k-path.
Otherwise, there might still be a k-path, and we might have been unlucky and had the
nonzero polynomial vanish for the specific choices of the ye variables. We output that there
is no k-path in this case. The probability of error is at most k

|Y | = 1
100 , and we can repeat

this process to lower the probability of error as much as required.
It remains to show how to compute Z efficiently. We do this using dynamic programming.

For any 1 ≤ s ≤ k and 1 ≤ i ≤ n we define Qs[i] as the sum of walk extensors of length
s that end in vi. Then Z =

∑
i Qk[i], and we can compute the vector Qs+1 from Qs by

Qs+1[i] =
∑

j:(vj ,vi)∈E(G) Qs[j] ∧ yvj ,vi
∧ χ(vi). This requires kn2 skew multiplications of

extensors, each of which can be done in time 2k poly(k) (see Proposition 15). Thus, we
can compute Z with 2k poly(k)n2 field operations, which is also the total running time of
the randomized algorithm. We note that this works over any sufficiently large field F with
|F| ≥ 100k.

Brand, Dell and Husfeldt [10] also give a deterministic variant of the algorithm, at the
cost of increasing the time complexity. This is done with the beautiful idea of, for each vertex
v, “lifting” the Vandermonde vector χ(v) to χ̄(v) =

(
χ(v)

0
)

∧
( 0

χ(v)
)
. By

(
χ(v)

0
)
, we mean the

vector of length 2k gotten by concatenating the vector χ(v) with k zeros. We then do the
calculations in Λ(F2k) instead of Λ(Fk). Walk extensors of non-path walks still vanish. Now,
as observed in [10], for any k-path we have

χ̄(w1) ∧ χ̄(w2) ∧ ... ∧ χ̄(wk) = e[2k] det
((

χ(w1)
0

)∣∣∣∣( 0
χ(w1)

)
...

∣∣∣∣(χ(wk)
0

)∣∣∣∣( 0
χ(wk)

))
By proper change of columns, the resulting determinant is equal to the determinant of a

2 × 2 block diagonal matrix, where the two diagonal blocks are identical. By basic properties
of determinants, we then obtain

χ̄(w1) ∧ χ̄(w2) ∧ ... ∧ χ̄(wk) = (−1)(
k
2)e[2k] det(χ(w1)|χ(w2)|...|χ(wk))2. (3)
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Therefore, choosing F = Q, the walk extensors of different k-paths all have the same
sign, and hence never cancel. The dynamic programming given above still works for this
case, but extensor operations require 22k poly(k) field operations (note we only need skew
multiplications). Additionally, all numbers involved are of size at most nO(k) = 2O(k log n),
and hence operations require only poly(k) polylog(n) time, or poly(k) time in the word-
RAM model which we assume. This produces a deterministic algorithm with running time
4k poly(k)n2.

3 Overview of our techniques

The key idea behind our algorithms is to identify appropriate sums of extensors which
encode the answer to the problem (e.g., one where candidate solutions correspond to nonzero
monomials), and which can be efficiently dynamically maintained. Similar to [10], we will
frequently make use of the properties of exterior algebras to “nullify” repetitions (for example,
of vertices in the k-Path problem, and of elements in the Exact k-Partial Cover problem).
In many cases, the extensors or similar algebraic coding expressions used by the fastest
known static algorithms seem difficult to efficiently maintain dynamically, and we will need
to modify them, and identify useful precomputed values, to speed up our update time. While
these techniques prove to be very well suited for designing sensitivity oracles and dynamic
algorithms, we are unaware of previous work that uses the exterior algebra in such a way.

3.1 k-Path
For this problem, we aim to maintain Z, the sum over walk extensors of length-k walks which
we defined in Equation (2) above. Employing properties of the exterior algebra as discussed
above, it is seen that any walk that is not a path (that is, a walk that repeats a vertex) does
not contribute to the sum, and we thus indirectly compute a sum over only paths.

As we discussed in Section 2.5 above, Brand, Dell and Husfeldt [10] showed that computing
this sum allows for extracting valuable information about the k-paths in a graph. In particular,
by carefully selecting vectors or degree-2 extensors χ(v) for each vertex v, it allows for the
design of randomized and deterministic algorithms for the k-path detection problem, as well
as for approximately counting the number of k-paths with high probability.

Let us focus, first, on the case when our sensitivity oracle only allows for edge increments.
We begin by precomputing, for each pair of vertices in the graph, a sum over the walk
extensors between those vertices, so that we can “stitch” them together appropriately when
new edges are inserted. Put precisely, let Ws(u, v) denote the set of walks of length s from
u to v, and let Qs[u, v] be the precomputed value of the sum of walk extensors for walks
in Ws(u, v) in the initial graph. Now suppose a new edge (v1, v2) is inserted. Then the
additional walk extensors for walks of length s between any pair of vertices (t1, t2) can be
computed as

∑
s′

 ∑
w∈Ws′ (t1,v1)

χ(w)

 ∧ yv1,v2 ∧

 ∑
w∈Ws−s′ (v2,t2)

χ(w)


=
∑

s′

Qs′ [t1, v1] ∧ yv1,v2 ∧ Qs−s′ [v2, t2].

At first, stitching might seem problematic, since we might need to iterate over the possible
lengths of each stitched part. This is not be a problem for a single edge insertion, but leads
to an exponential dependency on the number of edges inserted as we partition the total
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length k between them. While this issue can be efficiently resolved with proper dynamic
programming, we can circumvent this efficiently and more cleanly by instead working with
sums over the walks of all possible lengths, while finally inspecting only the coefficient of
e[k] in the resulting extensor, so that terms corresponding to paths of length other than k

will either cancel out or have too low degree. Indeed, we note that only walks of length k

contribute to this coefficient.
Another, more substantial problem occurs when one tries to “stitch” paths into a larger

path that uses several new edges: there are ℓ! different orders to pass through the ℓ new edges.
We combine properties of the exterior algebra with an algebraic trick (which we describe in
more detail shortly) to allow computing the sum of the effects of all of these cases with only
a polynomial dependence on ℓ.

In order to be able to work with only a small subset of the precomputed Q matrix, we
additionally precompute the sum of walk extensors ending and beginning at each vertex (i.e.,
sums of rows and columns of Q), and the original sum over walk extensors in the original
graph. This allows us to use only O(ℓ2) precomputed values in the updating phase.

Finally, by further employing properties of the exterior algebra, we are able to combine
these techniques with the inclusion-exclusion principle, to also allow edge removals, while
keeping the same time and space complexities for preprocessing and updates.

We now describe the ideas in some more detail. We refer the reader to the full version
for the full details. As a preprocessing, we compute an n × n matrix Q with extensor values,
defined by

Q[i, j] =
∑

(w1,w2,...,ws)∈W
w1=vi,ws=vj

χ(w1) ∧ yw1w2 ∧ χ(w2) ∧ yw2w3 ∧ χ(w3) ∧ ... ∧ yws−1ws
∧ χ(ws)

where W is the set of all walks in the graph, which can have any length greater than 0. This
is the sum of all walk extensors for walks from vi to vj . We then compute vectors S (resp.
F ) of length n, similarly computing in their ith entry the sum of walk extensors starting
(resp. finishing) at each vertex vi. That is, S[i] =

∑
j Q[i, j] and F [j] =

∑
i Q[i, j].

Finally, we compute Z =
∑

i,j Q[i, j], the sum of all walk extensors over all walks. e[k]Z
is exactly the value we aim to maintain after a query, as this is exactly the one used in the
extensor coding technique (Section 2.5). We explain how with proper dynamic programming
we can compute these values in preprocessing with 2k poly(k)n2 operations over F, using
only additions and skew multiplications.

Then, when prompted with a query, we aim to compute the sum over walk extensors in
the updated graph, denoted Znew. Inspecting whether e[k]Znew ̸= 0 will let us test whether
the updated graph contains a k-path.

We now begin handling a query. Given a list of ℓ updates that are each either an edge
insertion or edge deletion, there are n′ ≤ 2ℓ vertices at the endpoints of the updated edges.
We begin by extracting the n′ × n′ sub-matrix Q′ of Q, and length-n′ sub-vectors S′, F ′ of
S, F , gotten by taking entries corresponding to those endpoint vertices.

We next define an n′ × n′ matrix E+
r corresponding to the r-th edge insertion by setting

each of its entries to 0 except for E+
r [i, j] = yi,j , where (vi, vj) is the r-th inserted edge. We

similarly define E−
r in the same way, to be the 0 matrix except for E−

r [i, j] = yi,j where (vi, vj)
is the r-th deleted edge. We then define ∆+ =

∑
r E+

r , ∆− =
∑

r E−
r , and ∆ = ∆+ − ∆−.

We then compute that

Znew = Z +
k∑

i=1
F ′T ∆(Q′∆)i−1S′.

This formula is crucial to our query algorithm, so we explain it in some detail here.
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We first explain the correctness of this formula for the case of only increments. In this
case, Znew − Z is exactly the sum of walk-extensors for walks that use the new edges. Here,
upon expanding the expression when

∑
r E+

r is substituted for ∆+, we note that F ′T ∆+S′

counts the walks that use exactly one of the new edges. Indeed, for each r the term F ′T E+
r S′

accounts for walks passing through the r-th new edge exactly once. For counting walks that
use exactly two of the newly inserted edges, we now need to compute

∑
r1 ̸=r2

F ′T E+
r1

Q′E+
r2

S′.
Indeed, this expression correctly accounts for walks with nonzero walk extensors starting at
any vertex, continuing through one new edge, travelling to a new edge then through it, then
continuing to end at any vertex. We further note that any specific path is counted in this
way exactly once.

We note that by linearity and the fact that only paths produce nonzero walk extensors,
this is equal to F ′T ∆+Q′∆+S′. That is, upon expanding the expression when

∑
r E+

r is
substituted for ∆+, we get exactly the terms we intended, plus terms accounting for walks
passing through the new edges twice, which evaluate to zero in the exterior algebra. This
considerably simplifies the calculations. Continuing in the same fashion, we argue we obtain

Znew − Z =
k∑

i=1
F ′T ∆+(Q′∆+)i−1S′

in total for the incremental case.
Consider now the general case, with both increments and decrements. Suppose w is any

walk on the vertices which uses edges from the union of the original graph and the updated
graph. We assume w is a path, since otherwise its walk extensor vanishes, and we need not
worry about whether it appears in the sum Znew. Now suppose w has length at most k and
uses a inserted edges and b removed edges.

Consider first when a ≥ 1. In this case, w is not counted in the original sum Z. When
substituting ∆ =

∑
j E+

j −
∑

j E−
j into

∑k
i=1 F ′T ∆(Q′∆)i−1S′ and expanding, we see that

w is counted only when all the chosen E+
j factors exactly correspond to the a new edges

used by w, in the order they are used. It is also counted when choosing any b′ ≤ b factors of
type E−

j that appear in w, but they must also appear in the right order, and they contribute
the walk extensor of w with weight exactly (−1)b′ . In total, w is accounted for exactly∑b

b′=0
(

b
b′

)
(−1)b′ = (1 − 1)b = [b = 0] times6 in Znew, which is what we want.

Now suppose a = 0. Then a similar argument shows that the number of times it is
counted in

∑k
i=1 F ′T ∆(Q′∆)i−1S′ is exactly

∑b
b′=1

(
b
b′

)
(−1)b′ = (1 − 1)b − 1 = [b = 0] − 1.

However, it is also counted in Z exactly once, so in total is counted [b = 0] times, which is
also exactly what we want.

Using this formula, we explain how we are generally able to compute Znew in O(ℓ22ωk/2)
field operations. However, we come back to this running time once we describe the specifics
of the randomized and deterministic sensitivity oracles, each with its own details.

3.2 k-Partial Cover
We also make use of extensors to design fully dynamic algorithms for other parameterized
problems. We focus here on one example: designing a deterministic dynamic algorithm for
the k-Partial Cover problem. In this problem, we are given subsets S1, ..., Sn ⊆ [N ], and
wish to find the minimum number of such subsets whose union has size at least k (or report
that no such collection exists).

6 Here we use the notation [b = 0] :=
{

1 if b = 0,

0 otherwise.
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One could use a polynomial constructed by Koutis and Williams [22] for this problem,
combined with similar techniques to those we used above for k-Path, to devise a deterministic
dynamic algorithm with update time O(2ωk). However, we instead give a different polynomial
which is easier to dynamically maintain, achieving a faster O∗(4k) update time.

As in the k-Path problem, we give each element in the universe a ∈ [N ] a Vandermonde
vector χ(a) ∈ Qk, then lift it to χ̄(a) =

(
χ(a)

0
)

∧
( 0

χ(a)
)

∈ Λ(Q2k).
We introduce a single new variable z, and consider the polynomial

P (z) =
∏
S

(
1 + z

[∏
a∈S

(1 + χ̄(a)) − 1
])

.

We argue that the solution we seek is the minimum t for which [e[2k]z
t]P ̸= 0 (that is, the

coefficient of e[2k] in the coefficient of zt in P ). Our goal, then, will be to maintain the value
of P (z), and calculations will take place in polynomials over extensors, Λ(Q2k)[z]. We also
argue that deg P (z) ≤ k, and so is not too large to handle in update steps.

We first argue that the product in P should only be computed over sets S of cardinality
less than k, as larger sets can be treated separately, knowing that the optimal solution is 1 if
any such set exists in the collection. Since P (z) is defined as a product over sets, to update
it with a new set S of cardinality |S| < k, we can multiply P (z) by the corresponding factor
1+z

[∏
a∈S(1 + χ̄(a)) − 1

]
. This seems too slow at first, since general extensor multiplication

requires O(2ωk) time, which is more than our target O∗(4k). However, rather than computing
the factor and then using general extensor multiplication, we argue that we can indirectly
multiply by this factor using only additions and skew multiplications by rearranging the
contributing terms, thus requiring only O∗(4k) field operations. Indeed, the product of
P (z) with the new factor is (1 − z)P (z) + P (z)

∏
a∈S(1 + χ̄(a)), which can be performed

by separately computing (1 − z)P (z) and P (z)
∏

a∈S(1 + χ̄(a)), where the latter can be
computed by repeated skew-multiplications.

A new problem arises when a set S is removed. For this, we need to somehow cancel
the factor in P (z) corresponding to S. We show that in this case the corresponding factor
has an inverse in Λ(Q2k)[z]: we first note that it can be written as 1 + X for an element X

that contains only extensors of degree ≥ 2, which implies that Xk+1 = 0, and using this, we
observe that

(1 + X)(1 − X + X2 − . . . + (−X)k) = 1 − (−X)k+1 = 1,

so (1 + X)−1 = 1 − X + X2 − . . . + (−X)k. Similar to the previous case, we argue that
multiplying by this factor can also be done with poly(k) additions and skew multiplications,
and so can be done in O∗(4k) time.

This and all our other dynamic algorithms are described in detail in the full version.

4 Discussion on fixed-parameter complexity classes

We discuss the relationship between the following definitions.

▶ Definition 20 (FPT). A parameterized problem is in FPT if it is decidable in time
f(k) poly(n) for a computable function f .

▶ Definition 21 (FPD). A parameterized problem is in FPD (Fixed-Parameter Dynamic) if
there is a dynamic algorithm for it requiring f(k) poly(n) preprocessing time and g(k)no(1)

update time, for computable functions f and g.
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▶ Definition 22 (FPSO). A parameterized problem is in FPSO (Fixed-Parameter Sensitivity
Oracle) if there is a sensitivity oracle for it requiring f(k) poly(n) preprocessing time and
poly(ℓ)g(k)no(1) update time, for a computable function g.

We note that FPD ⊆ FPSO ⊆ FPT. We can show that the inclusions are strict, at
least under plausible hardness conjectures. For example, [2] shows that k-Path in directed
graphs does not admit a dynamic algorithm under hardness conjectures (which are shown in
this paper to be in FPSO). [18] shows that the #SSR problem does not have an efficient
sensitivity oracle, assuming SETH, which in turn can be used to show that, assuming SETH,
there exists an FPT problem that is not in FPSO.

We further note that many problems shown in [2] to not be in FPD can be shown to be
in FPSO. As a few examples:
1. Triangle Detection, which is the problem of detecting whether a graph contains

a triangle, can be solved efficiently by a sensitivity oracle by precomputing the square
of the graph’s adjacency matrix and computing the number of triangles in time O(nω),
then updating the number of triangles in time O(ℓω) (O(ℓ) for triangles that use a single
updated edge, O(ℓ2) for triangles using two updated edges, and O(ℓω) for those using
three updated edges).

2. Incremental st-Reachability, which is the problem of deciding whether two prede-
termined vertices s and t are connected in a directed graph, only allowing incremental
updates, can be solved efficiently by precomputing reachability between any two vertices
(for example by running BFS from all vertices in time poly(n)), then using dynamic
programming to answer a query in time poly(ℓ) by updating the connectivity information
only on the ≤ 2ℓ + 2 vertices that are either s, t or are part of any inserted edge

3. 3SUM, which is the problem of deciding whether there are 3 elements in a list that sum
to 0. Here it is possible to precompute the sums of all pairs in time O(n2) (counting
multiplicities), and the number of triples whose sum is 0. Then when adding or removing
ℓ numbers it is possible to compute in poly(ℓ) time the number of new solutions and
the number of previous solutions that should be removed, and checking if the remaining
number of solutions is nonzero.

4. k-Layered Reachability Oracle (k-LRO), the problem of deciding whether two
vertices u, v are connected in a directed k-layered graph (that is, a graph whose vertices
are partitioned into k parts, with edges only going from one part to the next), also has
an efficient sensitivity oracle, and in fact can be seen to be equivalent to the directed
k-Path problem. In particular, the same k-Path sensitivity oracle devised in this paper
can be used here without any changes.

5 Open questions

We briefly discuss a few natural questions that arise.

1. Is there a fully-dynamic k-Path detection algorithm on undirected graphs with f(k)nO(1)

preprocessing time for some computable function f , and update time 2O(k)no(1)?
This would beat the dynamic algorithm proposed in [2] that is a simple adaptation of the
original color-coding idea [4], while to the best of our knowledge, no improvement on this
original color-coding idea is known to transfer to the dynamic setting. While our work
shows a better dependency on k, we do not reach a truly dynamic algorithm, but rather
only a sensitivity oracle.
We note that it is unlikely that such an an algorithm exists for directed graphs, due to
the conditional lower bound presented in [2].
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2. Is there an efficient sensitivity oracle for the k-Tree problem?
The k-Tree problem is as follows: given an undirected graph G on n vertices and a
tree T on k vertices, determine whether T is a (not necessarily induced) subgraph of G.
This problem is known to be FPT, and for example is shown in [22] to be solvable in
time 2k poly(k) poly(n), with techniques similar to those applied for the k-Path problem.
However, it is unclear how to adapt the techniques here for an efficient sensitivity oracle.
We conjecture that there is, in fact, no efficient sensitivity oracle for this problem. More
specifically, we conjecture this for any k-Tree formed by connecting a single vertex to
the beginning of Θ(

√
k) paths of length Θ(

√
k). We note that the techniques of [6] for a

decremental sensitivity oracle work for any k-Tree just as well as they do for the k-Path
problem.

3. Brand [9] noted that the algebra generated by the lifts of Vandermonde vectors, which
is the algebra used in all the deterministic algorithms presented in this paper, has
dimension O(φ2k) where φ = 1+

√
5

2 - much smaller than the anticipated O(4k). It is
also commutative. It is an open problem whether, in light of this, multiplication in this
algebra can be reduced to below O(2ωk). Such an algorithm will immediately improve
the bounds discussed in this paper.

4. Can other techniques used to solve the static versions of the problems discussed in this
paper, or other parameterized problems, be used to design faster dynamic algorithms and
sensitivity oracles?
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Abstract
We continue a line of work on extracting random bits from weak sources that are generated by simple
processes. We focus on the model of locally samplable sources, where each bit in the source depends
on a small number of (hidden) uniformly random input bits. Also known as local sources, this model
was introduced by De and Watson (TOCT 2012) and Viola (SICOMP 2014), and is closely related to
sources generated by AC0 circuits and bounded-width branching programs. In particular, extractors
for local sources also work for sources generated by these classical computational models.

Despite being introduced a decade ago, little progress has been made on improving the entropy
requirement for extracting from local sources. The current best explicit extractors require entropy
n1/2, and follow via a reduction to affine extractors. To start, we prove a barrier showing that
one cannot hope to improve this entropy requirement via a black-box reduction of this form. In
particular, new techniques are needed.

In our main result, we seek to answer whether low-degree polynomials (over F2) hold potential
for breaking this barrier. We answer this question in the positive, and fully characterize the power
of low-degree polynomials as extractors for local sources. More precisely, we show that a random
degree r polynomial is a low-error extractor for n-bit local sources with min-entropy Ω(r(n log n)1/r),
and we show that this is tight.

Our result leverages several new ingredients, which may be of independent interest. Our
existential result relies on a new reduction from local sources to a more structured family, known as
local non-oblivious bit-fixing sources. To show its tightness, we prove a “local version” of a structural
result by Cohen and Tal (RANDOM 2015), which relies on a new “low-weight” Chevalley-Warning
theorem.
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10:2 Low-Degree Polynomials Extract from Local Sources

1 Introduction

Randomness is a fundamental resource in many areas in computer science, such as algorithm
design and cryptography. However, such tasks often assume access to a source of independent
and uniform bits, while real-world physical processes (e.g., electromagnetic noise, timings of
user keystrokes) generate randomness that is far from perfect. This state of affairs motivates
the problem of randomness extraction. The goal is to design a deterministic function, called
an extractor, that can distill a (nearly) uniform bit from any source belonging to a certain
family.

▶ Definition 1.1 (Extractor). A function Ext : {0, 1}n → {0, 1} is an extractor for a family
of distributions X over {0, 1}n with error ε if, for every X ∈ X ,∣∣∣∣Pr[Ext(X) = 1] − 1

2

∣∣∣∣ ≤ ε.

Besides their practical motivation, randomness extractors (and other related pseudoran-
dom objects such as dispersers, condensers, and expander graphs) have deep connections to
coding theory, combinatorics, and complexity theory.

In order to construct an extractor for a family X of sources, the most general assumption
one can make about X is that each X ∈ X has some “randomness.” Here, it is typical to
measure the randomness of a source X by its min-entropy H∞(X) := − log maxx Pr[X = x].
However, even if we assume each X ∈ X has a very high amount of this very strong notion
of entropy, extraction is still impossible: indeed, one cannot hope to extract from X even if
each source X ∈ X is guaranteed to have min-entropy k ≥ n− 1 [6]. To enable extraction,
one must make additional assumptions on the structure of each X ∈ X .

Extractors for local sources, AC0 sources, and small-space sources

In a seminal work, Trevisan and Vadhan [18] initiated the study of randomness extraction
from sources that can be sampled by “simple” processes. In addition to the generality of
such sources, it can be argued that they serve a reasonable model of randomness that might
actually be found in nature.

More formally, Trevisan and Vadhan studied sources that can be sampled by polynomial
size circuits that are given uniform bits as input. However, extracting randomness from this
class of sources requires strong computational hardness assumptions. This motivated De and
Watson [9] and Viola [21] to consider unconditional extraction from sources sampled by more
restricted, but still natural, circuit families. To this end, they introduced the notion of local
sources. Intuitively, a local source X is one that can be sampled by a low-depth circuit with
bounded fan-in (a low-complexity process).

▶ Definition 1.2 (Local source [9, 21]). A distribution X ∼ {0, 1}n is a d-local source
if X = g(Um), where Um is the uniform distribution over m bits (for some m), and
g : {0, 1}m → {0, 1}n is a function where each output bit depends on at most d input bits.

Local sources are closely connected to other models of sources sampled by simple pro-
cesses. Viola [21] proved that every source generated by AC0 circuits is (close to) a convex
combination of local sources with small locality and slightly lower min-entropy. More recently,
Chattopadhyay and Goodman [3] showed a similar result for sources generated by bounded-
width branching programs [13]. Thus, extractors for local sources also work for sources
generated by these classical computational models. In fact, the current state-of-the-art
extractors for sources generated by AC0 circuits and bounded-width branching programs are
extractors for 1-local sources.
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A barrier at
√

n min-entropy

Despite the applications above and being introduced over a decade ago, little progress has
been made on constructing extractors for local sources [9, 21, 16]. In particular, all known
constructions require min-entropy at least

√
n, and follow via a reduction to extractors for

affine sources (i.e., sources that are uniform over affine subspaces of Fn
2 ). Thus, there appears

to be a “barrier” at
√
n min-entropy, at least when using affine extractors [23]. It is natural

to ask how we might break this
√
n barrier, which raises the question:

Can affine extractors be used to extract from local sources with min-entropy k ≪
√
n?

As motivation, we start by providing strong evidence that the answer to the above
question is negative. In particular, we prove the following.

▶ Theorem 0 (Barrier result). It is not possible to extract randomness from 2-local sources
with min-entropy k ≥

√
n by applying an affine extractor in a black-box manner.

Thus, if we would like to construct extractors for local sources with min-entropy signific-
antly below

√
n, new techniques are needed.

Towards breaking the
√

n barrier using low-degree polynomials

While explicit extractors that break the
√
n min-entropy barrier for local sources are the

end goal, these still seem beyond reach. We believe that the next best thing are non-explicit
extractors that are of “low complexity”. Our hope is that such extractors may help us
eventually construct truly explicit extractors, as non-explicit extractors are more likely to
be easier to derandomize if they belong to a low complexity class. At the same time, such
non-explicit extractors may have applications in complexity theory (i.e., since the current
state-of-the-art circuit lower bounds are against extractors [15]). There is a long line of
work [20, 11, 5, 17, 19, 2, 5, 10, 12, 7] on the power of low-complexity computational models
for extracting from various families of sources.

From the forefront of “low complexity” classes, we choose to study in this work the
class of low-degree F2-polynomials. In particular, we ask whether (non-explicit) low-degree
polynomials can help break the

√
n barrier for extracting from local sources, and more

generally we seek to answer the following question:

▶ Question 1. How powerful are low-degree F2-polynomials as extractors for local sources?

Beyond being a natural algebraic class, low-degree F2-polynomials have a natural com-
binatorial interpretation. We can represent a degree-2 F2-polynomial f as a graph Gf on n

vertices, with edges representing monomials included in f . Then, f being a good extractor
for local sources translates into a parity constraint on the number of edges in certain induced
subgraphs of Gf . Likewise, a degree-3 F2-polynomial can be represented as a 3-hypergraph,
and so on. Given the correspondence between low-degree polynomials and hypergraphs
with small edge sizes, we hope that tools from combinatorics can be leveraged to make our
constructions explicit and break the

√
n min-entropy barrier for extracting from local sources

(which would also give improved extractors for small-space sources).
Our motivation to study low-degree polynomials as our “low complexity” model also

comes from the work of Cohen and Tal [7], which studied the same question in the context
of affine sources. In their work, they showed that there exist degree-r F2-polynomials that
extract from affine sources with min-entropy O(rn

1
r−1 ), and that this is tight. To answer

Question 1, we aim to provide a local source analogue of this result.

ICALP 2022
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1.1 Summary of our results
In this paper, we fully characterize the power of low-degree polynomials as extractors for
local sources, answering Question 1 and proving a local-source analogue of Cohen-Tal. Along
the way, we rely on several new ingredients which may be of independent interest. We present
these results in Section 1.1.1 and Section 1.1.2, respectively.

1.1.1 Main result
Our main result gives a tight characterization of the power of low-degree polynomials as
extractors for local sources. We state it formally, below.

▶ Theorem 1 (Main result). For every d, r ∈ N there exist constants C, c > 0 such that the
following holds. For every n ∈ N there exists a (not necessarily explicit) degree r polynomial
f ∈ F2[x1, . . . , xn] that is an 2−Ω(k)-extractor for d-local sources with min-entropy

k ≥ C(n log n)1/r,

but for every degree r polynomial g ∈ F2[x1, . . . , xn] there exists a d-local source with min-
entropy

k ≥ c(n log n)1/r

on which it is constant.

Theorem 1 implies that degree-3 polynomials are already enough to extract from min-
entropy k = O((n log n)1/3), which (non-explicitly) breaks the

√
n min-entropy barrier on

previous techniques (Theorem 0). Furthermore, given known reductions from AC0 sources
and small-space sources to local sources [21, 3], it also follows that low-degree polynomials
can be used to break existing min-entropy barriers for extracting from these other models
of weak sources. We refer the reader to the full version of this paper for a more in-depth
discussion, where we also outline a different application of our result to sampling lower
bounds against AC0 (generalizing a result of Viola [22]).

While Theorem 1 is stated for constant locality d and constant degree r, we actually
prove stronger results that hold for superconstant d, r. In particular, Theorem 1 follows
immediately from the following two results, which provide upper and lower bounds on the
entropy required to extract from d-local sources using a degree ≤ r polynomials (where d, r
need not be constant).

▶ Theorem 1.1 (Technical version of Theorem 1, Upper Bound). There are universal constants
C, c > 0 such that for all n, d, r ∈ N, the following holds. With probability at least 0.99
over the choice of a random degree ≤ r polynomial f ∈ F2[x1, . . . , xn], it holds that f is an
ε-extractor for d-local sources with min-entropy

k = C2dd2r · (2dn log n)1/r,

where ε = 2− ck

r32dd2 .

▶ Remark 1.3. If instead of extractors we aim to construct dispersers,1 then we are able
to improve the dependency on the locality d in Theorem 1.1 to hold for min-entropy
k = Cd2r · (dn log n)1/r.

1 A function Disp : {0, 1}n → {0, 1} is a disperser for a class of sources C if the support of Disp(X) is
{0, 1} for all sources X ∈ C.
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▶ Theorem 1.2 (Technical version of Theorem 1, Lower Bound). There are constants C, c > 0
such that for all n, d, r ∈ N with r ≤ c log(n) and d ≤ 2

√
log n, the following holds. For

any degree ≤ r polynomial f ∈ F2[x1, . . . , xn], there is a d-local source X ∼ {0, 1}n with
min-entropy at least

k ≥ Cr(dn log n)1/r

such that f(X) is constant.

1.1.2 Key new ingredients

Our main result follows from a collection of new ingredients, which may be of independent
interest. In order to prove our upper bound on min-entropy (Theorem 1.1), we prove a new
reduction from d-local sources to d-local non-oblivious bit fixing (NOBF) sources. Informally,
a d-local NOBF source X ∼ {0, 1}n of min-entropy k′ is a source that has k′ uniform
independent bits, with all other bits depending on at most d of the k′ bits.

▶ Theorem 2 (Reduction from d-local sources to d-local NOBF sources). There exists a
universal constant c > 0 such that for any n, k, d ∈ N, the following holds. Let X ∼ {0, 1}n

be a d-local source with min-entropy ≥ k. Then X is ε-close to a convex combination of
d-local NOBF sources with min-entropy ≥ k′, where ε = 2−ck′ and

k′ = ck

2dd2 .

The family of d-local NOBF sources, introduced in [4], is a significant specialization of
d-local sources. The above reduction shows that, at least for constant locality d, we can just
focus on extracting from this simpler class - even in future explicit constructions.

To prove our lower bound on min-entropy (Theorem 1.2), we actually prove this lower
bound for the special class of d-local sources known as d-local affine sources: such a source
X ∼ Fn

2 is uniform over a d-local affine subspace X ⊆ Fn
2 , which is a special type of affine

subspace that admits a basis v1, . . . , vk ∈ Fn
2 where each coordinate i ∈ [n] holds the value 1

in at most d of these vectors. For this special class of sources, our lower bound is actually
tight, and can be viewed as a “local” version of a result by Cohen and Tal [7].

▶ Theorem 3 (Local version of Cohen-Tal). There exist universal constants C, c > 0 such
that for every n, r, d ∈ N such that r ≤ c log(n) and d ≤ 2

√
log n, the following holds. For

any degree r polynomial f ∈ F2[x1, . . . , xn], there exists a d-local affine subspace X ⊆ Fn
2 of

dimension

k ≥ Cr(dn log n)1/r

on which f is constant.
This is tight: there exists a degree r polynomial g ∈ F2[x1, . . . , xn] which is an extractor

for d-local affine sources of dimension k ≥ Cr(dn log n)1/r, which has error ε = 2−ck/r.

We prove Theorem 3 by extending the techniques of Cohen and Tal [7], while leveraging
a key new ingredient: a “low-weight” Chevalley-Warning theorem. This result, which may
be of independent interest, shows that any small system of low-degree polynomials admits a
(nontrivial) solution of low Hamming weight.

ICALP 2022



10:6 Low-Degree Polynomials Extract from Local Sources

▶ Theorem 4 (Low-weight Chevalley-Warning). Let {fi} ⊆ F2[x1, . . . , xn] be a set of polyno-
mials with degree2 at most D < n and nonlinear degree3 at most ∆ such that 0 is a common
solution. Then there is a common solution x ̸= 0 of Hamming weight

w ≤ 24∆ + 2D/ log(n/D).

1.2 Open problems
Our work leaves open several interesting avenues for future work. We highlight three of them:

For any constant r ≥ 2, does there exist an explicit F2-polynomial of degree r that
extracts from 2-local sources of min-entropy o(n)?
In Theorem 2, we showed a reduction from a d-local source of min-entropy k to a d-local
non-oblivious bit fixing (NOBF) source of min-entropy Ω(k/2d). It would be interesting
to show a reduction to show a reduction from a d-local source of min-entropy k to a
d-local NOBF source of min-entropy Ω(k/poly(d)) (or show that such a reduction is
impossible).
Theorem 4 shows that if a collection of low-degree polynomials of total degree D and
nonlinear degree ∆ has the zero vector as a solution, then there exists a nonzero solution
of weight at most O(∆ +D/ log(n/D)). When ∆ = 0, this becomes asymptotically tight
by the Hamming bound. Moreover, when D = ∆, this will also be tight by picking the
polynomial f(x) =

∑
1≤|S|≤∆

∏
i∈S xi. However, if we had ∆/2 quadratic polynomials,

will the upper bound of O(∆) be tight?

2 Overview of our techniques

In this section, we provide an overview of the techniques that go into our three main results:
An entropy upper bound for low-degree extraction from local sources (Theorem 1.1).
An entropy lower bound for low-degree extraction from local sources (Theorem 1.2).
A barrier for extracting from local sources using black-box affine extractors (Theorem 0).

Along the way, we will overview the several new key ingredients (Theorems 2, 3, and 4)
that go into these main results.

2.1 Upper bounds
We begin by discussing our entropy upper bounds for low-degree extraction from local sources.
By this, we mean that we upper bound the entropy requirement for extracting from d-local
sources using degree ≤ r polynomials. In other words, we show that low-degree polynomials
extract from local sources.

2.1.1 Low-degree extractors for local sources
We start by sketching the techniques behind our main upper bound (Theorem 1.1), which
shows that most degree ≤ r polynomials are low-error extractors for d-local sources with
min-entropy at least

k = O(2dd2r · (2dn log n)1/r).

2 The degree D is the sum of the degrees of the fi’s.
3 The nonlinear degree is the sum of the degrees of the fi’s which have degree at least 2.
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A strawman application of the probabilistic method

A natural first attempt at proving our result would use a standard application of the
probabilistic method, which looks something like the following. First, let f ∈ F2[x1, . . . , xn]
be a uniformly random polynomial of degree ≤ r, meaning that each monomial of size ≤ r

is included in f with probability 1/2. Then, we let X be the family of d-local sources over
{0, 1}n, each with min-entropy at least k. To prove that most of these polynomials are
low-error extractors for this family, a standard application of the probabilistic method would
suggest that we:
1. Prove that f is an extractor for a single X ∈ X with extremely high probability.
2. Show that the family X does not contain too many sources.
3. Conclude, via the union bound, that f is an extractor for every X ∈ X with high

probability.

It is not too hard to complete Steps 2 and 3 in the above framework, but Step 1 turns
out to be much more challenging. To see why, let us consider an arbitrary d-local source
X ∼ {0, 1}n with min-entropy at least k. By definition of d-local source, there exists some
m ∈ N and functions g1, . . . , gn : {0, 1}m → {0, 1} such that each gi depends on just d of its
inputs, and such that given a uniform Y ∼ {0, 1}m, we have

X = (g1(Y), g2(Y), . . . , gn(Y)).

Now, we want to argue that a random degree ≤ r polynomial f ∈ F2[x1, . . . , xn] is a low-error
extractor for X. To do so, consider the function F : {0, 1}m → {0, 1} defined as

F (y1, . . . , ym) := (f ◦ g)(y1, . . . , ym) = f(g1(y1, . . . , ym), . . . , gn(y1, . . . , ym)).

Notice that by the definition of X and by Definition 1.1 of extractor, we know that F is an
extractor for X with error ε if

|bias(F )| :=
∣∣∣∣ Pr
y∼Um

[F (y) = 1] − Pr[F (y) = 0]
∣∣∣∣ ≤ 2ε.

Thus, to argue that a random degree ≤ r polynomial f ∈ F2[x1, . . . , xn] is a low-error
extractor for X, it suffices to argue that the function F = f ◦ g has low bias (with high
probability over the selection of f).

Of course, the question now becomes: how can we ensure that F has low bias? We can
start by noticing some properties of F . First, we know F = f ◦ g, where f is a random
degree ≤ r polynomial and g is a fixed function where each output bit depends on ≤ d input
bits. Thus, it is not hard to argue that F will have degree ≤ rd. Furthermore, since f is
random and g is fixed, one may hope to argue that F is a uniformly random polynomial of
degree ≤ rd: in this case we would be done, since it is well-known that uniformly random
low-degree polynomials have extremely low bias (with extremely high probability) [1].

Unfortunately, it is too much to hope that F is a uniformly random low-degree polynomial.
Indeed, it is not hard to see that the distribution of F over degree ≤ rd polynomials depends
heavily on the exact selection of g. Furthermore, for most selections of g, the random function
F is not uniformly distributed over degree ≤ t polynomials for any t.

Thus, there is no obvious way to apply [1] in order to argue that F will have low bias.
To proceed, it seems like we will somehow need to argue that the distribution of F over
low-degree polynomials is guaranteed to have some specific structure, and then somehow
argue that a random polynomial from any such structured distribution is guaranteed to have
low-bias. Each of these steps seems quite challenging.

ICALP 2022
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Reductions to the rescue

As it turns out, there is a simple trick we can use to greatly simplify the above approach.
The key idea is to reduce local sources to a simpler class of sources. Given two familes
X ,Y of distributions over {0, 1}n, we say that X reduces to Y if each X ∈ X is (close to) a
convex combination of Y ∈ Y.4 Reductions are extremely useful, because of the following
well-known fact: if X reduces to Y , and f : {0, 1}n → {0, 1} is an extractor for Y, then f is
also an extractor for X .

Thus, in order to show that low-degree polynomials extract from d-local sources, a key
new ingredient we use is a reduction from d-local sources to a simpler class of sources called
d-local non-oblivious bit-fixing (NOBF) sources [4]. Using the above discussion, it then
suffices to show that low-degree polynomials extract from d-local NOBF sources. Thus, we
proceed by:
1. Defining local NOBF sources, and showing how we can appropriately tailor our previous

attempt at the probabilistic method so that it works for local NOBF sources.
2. Providing a new reduction from local sources to local NOBF sources.

Low-degree extractors for local NOBF sources

A d-local NOBF source X ∼ {0, 1}n is a natural specialization of a d-local source where
the entropic bits of the source must show up “in plain sight” somewhere in the source.5

More formally, a d-local NOBF source with min-entropy k is a random variable X ∼ {0, 1}n

for which there exist functions g1, . . . , gn : {0, 1}k → {0, 1} such that the following holds:
each gi, i ∈ [n] depends on ≤ d input bits; for every i ∈ [k] there is some i′ ∈ [n] such that
gi′(y) = yi; and for uniform Y ∼ {0, 1}k we have

X = (g1(Y), g2(Y), . . . , gn(Y)).

In other words, some k “good” bits in X are uniform, and the remaining n− k “bad” bits
are d-local functions of the good bits.

We must now show that a random degree ≤ r polynomial f ∈ F2[x1, . . . , xn] extracts from
d-local NOBF sources with entropy k. As in our strawman application of the probabilistic
method, consider an arbitary d-local NOBF source X = (g1(Y), . . . , gn(Y)) and let f ∈
F2[x1, . . . , xn] be a uniformly random degree ≤ r polynomial. To show that f extracts from all
d-local NOBF sources, recall that we just need to show that the function F : {0, 1}k → {0, 1}
defined as

F (y) := (f ◦ g)(y) = f(g1(y), . . . , gn(y))

has extremely low bias with extremely high probability. Furthermore, recall that if we can
show that F itself is a uniformly random low-degree polynomial, then we know via [1] that
this is true.

It is still too much to hope that F is a uniform low-degree polynomial, but F is now “close
enough in structure” to one so that we can make this work. To see why, we can first assume
without loss of generality (by definition of local NOBF source) that g1(y) = y1, . . . , gk(y) = yk.
Thus, we can define cS ∼ {0, 1} as an independent uniform bit (for each S ⊆ [n] of size ≤ r)
and write

4 By this we mean that each X ∈ X can be written in the form X =
∑

i
piYi, where each Yi ∈ Y,∑

i
pi = 1, and X samples from Yi with probability pi.

5 The relationship between local sources and local NOBF sources is not dissimilar to the relationship
between error-correcting codes and systematic error-correcting codes.
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F (y) =
∑

S⊆[k]:|S|≤r

cS

∏
i∈S

gi(y) +
∑

S⊆[n]:|S|≤r,S ̸⊆[k]

cS

∏
i∈S

gi(y) = A(y) +B(y),

where A ∈ F2[y1, . . . , yk] is a uniformly random polynomial of degree ≤ r, and B ∈
F2[y1, . . . , yk] is a random polynomial whose selection of monomials is not uniformly random,
but is nevertheless independent of the selections made by A.

Thus, to show that F has extremely low bias, it suffices to show that A+B has extremely
low bias. And to show that A+B has extremely low bias, it suffices to show that A+B′ has
low bias for any fixed polynomial B′ induced by fixing the random monomials selected by B.

To conclude, we actually show something stronger: recalling that A ∈ F2[y1, . . . , yk]
is a uniformly random polynomial of degree ≤ r, we show that: for any fixed function
B∗ : {0, 1}k → {0, 1}, it holds that A+B∗ has low bias. This does not follow immediately
from the result [1] that a random low-degree polynomial has low bias: indeed, it is more
general, since [1] is the special case where B∗ = 0. However, it does follow immediately from
known upper bounds on the list size of Reed-Muller code [14].

In the language we are using here, an upper bound on the list size of a Reed-Muller code
is equivalent to saying that for any fixed function D ∈ F2[x1, . . . , xk], A will differ from D on
many inputs, with very high probability. Thus, such bounds tell us that A differs from B∗

on many inputs with very high probability, and A differs from 1 +B∗ (or rather, equals B∗)
on many inputs with very high probability. In other words, A is completely uncorrelated
with B∗, meaning that bias(A+B∗) is extremely small, as desired.

Thus a random low-degree polynomial f extracts from the d-local NOBF source X with
min-entropy k with very high probability. In other words, it fails to do so with some very
small probability δ = δ(k) which decreases rapidly as k grows. By applying the union
bound, we get that f extracts from the entire family X of d-local NOBF sources, provided
δ(k) · |X | ≪ 1. All that remains is to upper bound the size of X , which can easily be done
using the d-locality of the sources.

A reduction to local NOBF sources

Above, we saw that random low-degree polynomials extract from local NOBF sources. To
complete the proof that they also extract from more general local sources, recall that we
need to provide a reduction from local sources to local NOBF sources. In other words, we
need to show that every d-local source with min-entropy k is (close to) a convex combination
of d-local NOBF sources with min-entropy k′ ≈ k. This is the main key ingredient in our
result that low-degree polynomials extract from local sources (Theorem 1.1).

Our reduction works as follows. First, pick an arbitrary d-local source X ∼ {0, 1}n with
min-entropy k. Let k′ be a parameter which is slightly smaller than k, which will be picked
later. We start by arguing that X is (close to) a convex combination of d-local NOBF sources
where there are k′ good bits, but the good bits may be biased (but not constant).

Towards this end, recall that X = (g1(Y), . . . , gn(Y)) for some d-local functions g1, . . . , gn :
{0, 1}m → {0, 1} and uniform Y ∼ {0, 1}m. The key idea is to consider the largest possible
set T ⊆ [n] of “good bits,” i.e., such that {Xi}i∈T are independent (and none are constants).
Then, we let T ′ ⊆ [m] be the bits of Y on which {Xi}i∈T depend. The key observation is
that every bit in X depends on some bit in {Yi}i∈T ′ , by the maximality of T . Using this
observation, there are two possible cases, over which we perform a win-win analysis.
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10:10 Low-Degree Polynomials Extract from Local Sources

First, it is possible that T contains ≥ k′ bits. In this case, we consider fixing all bits
{Yi}i/∈T ′ . It is then not too hard to show that X becomes a source which contains ≥ k′

good bits (which are mutually independent and not constants), and the remaining bad bits
in X are deterministic d-local functions of these good bits.6 Thus in this case, we get that X
is a convex combination of NOBF sources of the desired type.

Second, it is possible that T contains < k′ bits. In this case, we consider fixing all bits
{Yi}i∈T ′ . But since all bits in X depend on some bit in this set, this fixing decrements the
locality d → d− 1. And furthermore, since this fixes |T ′| ≤ d|T | < dk′ bits, the entropy only
decreases from k → k − dk′ by the entropy chain rule. We then recurse until we hit the first
case, or until we hit d = 1. If we eventually hit the first case, we already know that X is a
convex combination of NOBF sources of the desired type. On the other hand, it is easy to
show that a 1-local source is actually a 1-local NOBF source! Thus we will always arrive at
a (biased) d′-local NOBF source with d′ ≤ d, proving that X is always convex combination
of NOBF sources of the desired type. Depending on when this recursion stops, we will arrive
at an NOBF source with the number of good bits equal to at least

min{k′, k − dk′, k − d(d− 1)k′, . . . , k − k′
∏

i∈[d]

i} ≥ min{k′, k − d2k′},

which is always at least k′ provided k′ ≤ k
2d2 .

Thus we see that any d-local source with min-entropy k can be written as a convex
combination of d-local NOBF source with Ω(k/d2) good bits, where the good bits are
mutually independent (and nonconstant), but they may be heavily biased. So all that
remains is to show that such biased d-local NOBF sources can be written as a convex
combination of unbiased d-local NOBF sources (as they were originally defined). This step is
not difficult, by applying a standard Chernoff bound. However, since each good bit depends
on up to d bits, each such good bit Xi may have |bias(Xi)| = 1 − 2 · 2−d. As a result, we end
up with Ω( k

d22d ) unbiased good bits.
This completes the reduction from local to local NOBF sources. Given our earlier proof

sketch that low-degree polynomials extract from local NOBF sources, we finally get that
low-degree polynomials also extract from local sources, as desired.

2.1.2 Low-degree dispersers for local sources
We now proceed to sketch the proof of Remark 1.3, which shows that most degree ≤ r

polynomials are dispersers for d-local sources with min-entropy at least

k = O(d2r · (dn log n)1/r).

This improves our min-entropy requirement for extractors (which was k = O(2dd2r ·
(2dn log n)1/r)) by removing two terms of the form 2d. We use a different key idea to
remove each 2d term. While the outer exponential term 2d is the more dramatic one to
remove, it turns out that it is also the easier one. To do this, we simply note that for
dispersers, we can forego the last step in our local to local NOBF reduction, which incurs a
factor of 2d by making the biased local NOBF source into an unbiased one. This improves
the entropy requirement for dispersers from

k = O(2dd2r · (2dn log n)1/r) → k = O(d2r · (2dn log n)1/r).

6 Technically we need to fix a little more randomness to make this happen, but this can be done without
much trouble by invoking some standard tricks from the extractor literature.
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Removing the inner exponential term

Next, we focus on improving the entropy requirement for dispersers from

k = O(d2r · (2dn log n)1/r) → k = O(d2r · (dn log n)1/r),

turning the inner exponential term 2d into d. This improvement is more challenging: while our
first improvement relied on improving the local to local-NOBF reduction, this improvement
relies on improving the entropy requirement for dispersing from local NOBF sources.

In order to show that low-degree polynomials extract from local NOBF sources, recall
that we: (1) showed that a random low-degree polynomial extracts from an arbitrary local
NOBF source with extremely high probability; and (2) used a union bound over the family
X of local NOBF sources to conclude that it extracts from all local NOBF sources with high
probability. To get our second improvement on the min-entropy requirement for dispersers,
we get improved upper bounds on the size of X , so that our union bound is over fewer terms.

Towards this end, the key new idea is to show that in order to disperse from the family of
d-local NOBF sources X , it actually suffices to disperse from the much smaller family X ′ of
so-called d-local, degree ≤ r NOBF sources.7 This source family is the exact same as d-local
NOBF sources, except it has the added restriction that the bad bits (which still depend on
≤ d good bits each) can each be written as a degree ≤ r polynomials. However, this family
is significantly smaller: natural estimates on the sizes of X ,X ′ give

|X | ≤
(
n

k

)
·
((

k

d

)
· 22d

)n−k

,

|X ′| ≤
(
n

k

)
·
((

k

d

)
· 2( d

≤r)
)n−k

.

After plugging in these improved size bounds, it is straightforward calculation to see that
the inner 2d term from the entropy requirement drops out. So all that remains is to show
the above claim that a disperser for d-local, degree ≤ r NOBF sources automatically works
for the more general family of d-local NOBF sources.

The key ingredient that goes into this claim is a simple lemma on polynomial decomposi-
tion. We show the following: for any function f : {0, 1}n → {0, 1}, any degree ≤ r polynomials
a1, . . . , an : {0, 1}k → {0, 1}, and any polynomials b1, . . . , bn : {0, 1}k → {0, 1} that have no
monomials of size ≤ r, the following holds. There exists a polynomial h : {0, 1}k → {0, 1}
with no monomials of size ≤ r such that

f(a1(y) + b1(y), . . . , an(y) + bn(y)) = f(a1(y), . . . , an(y)) + h(y).

Then, given an arbitrary d-local NOBF source X ∼ {0, 1}n, the idea is to write it in the form

X = (a1(Y) + b1(Y), . . . , an(Y) + bn(Y)),

where Y ∼ {0, 1}k is uniform and ai, bi are as before. Using our polynomial decomposition
lemma, it then (roughly) holds that f is a disperser for X if f is a disperser for the simpler
class of d-local, degree ≤ r NOBF sources. More precisely, we actually require from f a
property that is ever-so-slightly stronger than being a disperser: we require that for any
d-local, degree ≤ r NOBF source X′ = (a1(Y), . . . , an(Y)), it holds that the polynomial

7 Technically, we require something slightly stronger than dispersion from such sources, but this does not
make a huge difference. We will go into more details below.
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10:12 Low-Degree Polynomials Extract from Local Sources

f(a1, . . . , an) has a monomial of degree ≤ r. Our polynomial decomposition lemma then
guarantees that f will also have this property for the more general d-local source, since
the polynomial h in our decomposition lemma does not have any monomials of degree ≤ r.
Intuitively, h is not able to “destroy” the monomial of degree ≤ r guaranteed to pop out of
f(a1(y), . . . , an(y)).

Thus, it suffices to “disperse” from d-local, degree ≤ r NOBF sources in order to disperse
from more general d-local NOBF sources, meaning that we can leverage our improved bound
on the size of X ′ to get our claimed improvement on the disperser’s entropy requirement.

2.2 Lower bounds
We now discuss our entropy lower bounds for low-degree extraction from local sources. By
this, we mean that for every degree ≤ r polynomial f ∈ F2[x1, . . . , xn] we can find a d-local
source X ∼ {0, 1}n with relatively high min-entropy k on which f is constant. In other
words, we show that in order to disperse (and thus extract) from d-local sources, they must
have min-entropy exceeding this value k.

We show that every degree r ≤ Ω(log n) polynomial f ∈ F2[x1, . . . , xn] must admit a
d-local source X ∼ {0, 1}n of min-entropy at least

k = Ω(r(dn log n)1/r)

on which it is constant. That is, we sketch the proof of our lower bound (Theorem 1.2).
In order to prove this result, we actually prove a slightly stronger result: we show that we

can find a d-local source X ∼ {0, 1}n with the above parameters such that it is also affine.
Our starting point is a tight result of Cohen and Tal [7], which shows that any degree ≤ r

polynomial f : Fn
2 → F2 admits a subspace V ⊆ Fn

2 of dimension Ω(rn1/(r−1)) on which it is
constant. Here, we obtain a (tight) granular version of their result, and show that any degree
≤ r polynomial f admits a d-local subspace X ⊆ Fn

2 of dimension k = Ω(r(dn log n)1/r)
on which it is constant. Here, we say that V is d-local if V has a basis v1, . . . , vk ∈ Fn

2
such that for any index i ∈ [n], at most d of these basis vectors equal 1 at this index. It is
straightforward to verify that the uniform distribution X over V is a d-local source with
min-entropy k, so we focus now on proving the existence of such a V .

At a high level, the proof of Cohen and Tal proceeds by iteratively growing a subspace V
on which f is constant. At each phase, they define a set A ⊆ Fn

2 such that f is constant over
span(V, x) for every x ∈ A. They note that if |A| has size > 2dim(V ), then of course there is
some x ∈ A \ V and furthermore we already know that f is constant on span(V, x). Thus,
they can grow their monochromatic subspace by one dimension.

In order to get a lower bound on |A|, they note that this set can be defined as the common
solutions to a small collection of low-degree polynomials. A classical result known as the
Chevalley-Warning theorem (Theorem 5.1) then shows that |A| ≥ 2n−t, where t is the sum
of degrees across the collection of polynomials. To complete their proof, they grow their
subspace V until they are no longer able to show |A| > 2dim(V ).

In our lower bound, we show that f is monochromatic on a d-local subspace. To prove
this, we start with the same approach as Cohen and Tal. However, at each phase, we add
extra constraints to A which guarantee the following: if we take any x ∈ A and add it to our
current subspace V (with basis, say, v1, . . . , v| dim(V )|), then the location of the 1s appearing
in vectors x, v1, . . . , v| dim(V )| satisfy the d-locality constraint defined above. Again, as long as
A is large enough, we can find some x ∈ A that grows the dimension of our d-local subspace.
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In order to ensure that A remains large for as many iterations as possible, we would like
to minimize the impact of the new “locality” constraints that we have added to A. Given
the description of these constraints above, we observe that these constraints are minimized
if we grow V by carefully selecting vectors that have the lowest possible Hamming weight.
However, we now need an upper bound on the Hamming weight of the lightest (nontrivial)
common solution to a system of polynomial equations. Thus, our key new ingredient will be
a result of this type, which we call a “low-weight Chevalley-Warning theorem.”

A low-weight Chevalley-Warning theorem

Above, we saw how the classical Chevalley-Warning theorem is critical in lower bounding
the size of A, thereby showing that there is some (nontrivial) vector v ∈ A by which we can
grow our monochromatic subspace. Now, we need an additional guarantee that there is such
a v ∈ A that also has low Hamming weight. We prove such a result, and call it a low-weight
Chevalley-Warning theorem. Our theorem roughly says the following. Given a collection of
polynomials that have cumulative degree D (and a common solution 0), if most of these
polynomials have degree ≤ 1 then they admit a nontrivial solution of Hamming weight

w ≤ O(D/ log(n/D)).

In order to prove our result, we start by using the CLP lemma [8] (a result which was
instrumental in the recent resolution of the cap set conjecture) in order to show that for any
large enough set A ⊆ Fn

2 of common solutions to a system of polynomial equations, it holds
that A+A also contains a (nontrivial) common solution to this system. We then combine
this result with an argument that is similar in flavor to the classical proof of the Hamming
bound, and thereby obtain our low-weight Chevalley-Warning theorem. Equipped with this
new ingredient, our entropy lower bound for low-degree extraction from d-local affine spaces
follows immediately via the proof sketch described above.

2.3 A barrier
To conclude our overview, we provide a proof sketch of our barrier result (Theorem 0),
which shows that affine extractors (applied in a black-box manner) cannot extract from local
sources with min-entropy k = Ω(

√
n), even if the locality is 2. More formally, to show that

an affine extractor also extracts from a different family Q of distributions with min-entropy
k, the standard technique is to show that each source Q ∈ Q with min-entropy k is (close
to) a convex combination of affine sources with min-entropy slightly less than k. Here, we
show that this is simply not possible for local sources with min-entropy

√
n. In particular,

we show that there is a very simple 2-local source Q ∼ {0, 1}n with min-entropy Ω(
√
n) that

has statistical distance exponentially close to 1 from any convex combination of affine sources
with min-entropy k′.

In more detail, we consider the 2-local “clique” source Q ∼ {0, 1}n defined as follows:
first, pick any ℓ ∈ N and set n := ℓ +

(
ℓ
2
)
. Then, pick uniform and independent bits

q1, . . . ,qℓ ∼ {0, 1} and set Q to be the concatenation of all qi over 1 ≤ i ≤ n and qi · qj over
1 ≤ i < j ≤ ℓ. Now, let X ∼ {0, 1}n be a convex combination of affine sources, each with
min-entropy ℓ′. We argue that |Q − X| ≥ 1 − 2−Ω(ℓ′) by showing that for any ℓ′-dimensional
affine F2-subspace S ⊆ {0, 1}n, it holds that |supp(Q) ∩ S|/|S| ≤ 2−Ω(ℓ′). That is, we wish
to show that Q = supp(Q) is subspace-evasive.

To show that cliques are subspace-evasive, we use the following key observation: For
any nonempty set Q′ ⊆ Q of cliques, the set Q′ + Q′ := {u + v : u ∈ Q′, v ∈ Q′, u ≠ v}
(where the sum is over Fn

2 ) has a “Sidon property:” each element x in Q′ +Q′ has a unique
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pair u, v ∈ Q′ such that x = u+ v. This observation is proven by noticing that by making
another copy of each coordinate of the form qi · qj , the set Q will correspond precisely to
the symmetric rank-1 matrices of Fℓ×ℓ

2 . Thus all the elements in Q′ +Q′ would correspond
to symmetric Fℓ×ℓ

2 matrices of rank at most 2. Hence by looking at the row space of
x ∈ Q′ + Q′, we can precisely find its symmetric rank-1 decomposition. That is, we can
find u, v ∈ Q′ such that x = u + v. Now, pick Q′ = Q ∩ S. Since addition is closed in S,
we see that Q′ +Q′ ⊆ S. Thus |S| ≥ |Q′ +Q′| ≥

(|Q′|
2

)
≥ Ω(|Q ∩ S|2). Hence we find that

|Q ∩ S|/|S| ≤ O(
√

|S|/|S|) = O(1/
√

|S|), which is 2−Ω(ℓ′) as |S| = 2ℓ′ .
For more details, we refer the reader to the full version of this paper.

3 Preliminaries

We briefly outline some basic notation, definitions, and facts that will be used throughout
the paper. We first discuss some notation. We use log to denote the base-2 logarithm, we
define [n] := {1, 2, . . . , n}, and we write

(
n

≤r

)
:=

∑r
i=0

(
n
i

)
. Given a random variable X, we

let supp(X) denote its support and write X ∼ S to denote that supp(X) ⊆ S. Finally, we
use Um to denote the uniform distribution over {0, 1}m.

We now discuss some basic notions from probability. First, the statistical distance
between two random variables X,Y ∼ S is denoted by ∆(X,Y) and defined as ∆(X,Y) :=
maxT ⊆S | Pr[X ∈ T ] − Pr[Y ∈ T ]| = 1

2
∑

s∈S | Pr[X = s] − Pr[Y = s]|. Moreover, we say
X and Y are ε-close, denoted X ≈ε Y, if ∆(X,Y) ≤ ε. Finally, recalling the definition of
min-entropy from the introduction, we will use the following simple fact about this quantity.
The proof is straightforward, and can be found in the full version.

▶ Lemma 3.1. Suppose X and Y are arbitrary random variables such that Y is uniformly
distributed over its support. Then, for every y ∈ supp(Y), it holds that

H∞(X|Y = y) ≥ H∞(X) − log |supp(Y)|.

4 Entropy upper bounds

In this section, we obtain upper bounds on the entropy required to extract from d-local sources
using degree ≤ r polynomials (Theorem 1.1). To do so, we combine two key ingredients. Our
first key ingredient reduces d-local sources to d-local NOBF sources:

▶ Theorem 4.1 (Theorem 2, restated). There exists a universal constant c > 0 such that for
any n, k, d ∈ N, the following holds. Let X ∼ {0, 1}n be a d-local source with min-entropy
≥ k. Then X is ε-close to a convex combination of d-local NOBF sources with min-entropy
≥ k′, where ε = 2−ck′ and

k′ = ck

2dd2 .

Our second key ingredient gives upper bounds on the entropy required to extract from
d-local NOBF sources using degree ≤ r polynomials.

▶ Theorem 4.2 (Low-degree polynomials extract from d-local NOBF sources). There are
universal constants C, c > 0 such that for all n, d, r ∈ N, the following holds. With probability
at least 0.99 over the choice of a random degree ≤ r polynomial f ∈ F2[x1, . . . , xn], it holds
that f is an ε-extractor for d-local NOBF sources of min-entropy

k = Cr · (2d · n log n)1/r

with error ε = 2−ck/r3 .
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By combining the above two theorems, we immediately get Theorem 1.1. Moreover, if we
only care about dispersing (instead of extracting), it turns out that we can streamline our
arguments and remove the 2d terms in Theorems 4.1 and 4.2, yielding Remark 1.3.

In the remainder of this section, we focus on proving our reduction, Theorem 4.1. But
before doing so, we briefly note that to prove Theorem 4.2, the main idea is to show that a
random low-degree polynomial has low correlation with any fixed function. This observation
follows quite readily from known bounds [14] on the list-size of Reed-Muller codes, and
Theorem 4.2 is not too hard to show given this observation. For a formal proof of Theorem 4.2,
we refer the reader to Section 2 and the full version of this paper, where one can also find
more details regarding Remark 1.3.

4.1 A reduction from d-local sources to d-local NOBF sources
We now turn towards proving our reduction, Theorem 4.1. In order to reduce d-local sources
to d-local NOBF sources, we use an intermediate model called a biased d-local NOBF source.

▶ Definition 4.3 (Biased local NOBF sources). A random variable X ∼ {0, 1}n is a (δ, k)-
biased d-local NOBF source if there exists a set S ⊆ [n] of size k such that both of the
following hold:

The bits in XS are mutually independent (but need not be identically distributed), and
each Xi, i ∈ S has bias | Pr[Xi = 1] − Pr[Xi = 0]| ≤ δ.
Every other bit Xj , j /∈ S is a deterministic function of at most d bits in XS.

▶ Remark 4.4. A d-local NOBF source with entropy k is a (0, k)-biased d-local NOBF source.

Given this intermediate model, we prove Theorem 4.1 by combining two lemmas. The
first lemma reduces d-local sources to biased d-local NOBF sources:

▶ Lemma 4.5. Let X ∼ {0, 1}n be a d-local source with min-entropy ≥ k. Then X is a convex
combination of (δ, k′)-biased d-local NOBF sources, where δ ≤ 1 − 2−d and k′ ≥ k/(2d2).

The second lemma reduces biased d-local NOBF sources to (unbiased) d-local NOBF sources.

▶ Lemma 4.6. Let X ∼ {0, 1}n be a (δ, k′)-biased d-local NOBF source. Then X is ε-close
to a convex combination of (0, k′′)-biased d-local NOBF sources, where k′′ ≥ (1 − δ)k′/4 and
ε = 2−k′′/4.

By combining these two lemmas, Theorem 4.1 follows immediately. Lemma 4.6 is not too
difficult to prove by simulating each biased bit with two consecutive independent coin flips
(one with bias |1 − 2δ| and one with bias 0) and applying a standard Chernoff bound over
the result of the first coin flip. We refer to the full version for more details, and conclude
this section by proving Lemma 4.5.

Proof of Lemma 4.5. Let X ∼ {0, 1}n be a d-local source with min-entropy ≥ k. The key
observation that we will prove is that for any t, one of the following must hold: either

X is a convex combination of (δ, t)-biased d-local NOBF sources, for δ ≤ 1 − 2−d; or
X is a convex combination of (d− 1)-local sources with min-entropy > k − td.

Before we prove this key observation, let us see how we can use it to prove the desired result.
First, recall that convex combinations “stack” in the following sense: if a source X is a
convex combination of convex combinations of sources from a family X , then X is just a
convex combination of sources from X . Thus, by repeatedly applying the key observation
until either the first item becomes true or we arrive at a 1-local source (the “base case”), we
see that X is a convex combination of sources {Zi}, where each Zi is either:
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A (δ, t)-biased d-local NOBF source, for δ ≤ 1 − 2−d; or
A 1-local source with min-entropy > k − t · (d+ (d− 1) + · · · + 2) = k − t · (d2 + d− 2).

However, it is clear from the definitions that a 1-local source with min-entropy k′ is
a 1-local NOBF source with min-entropy k′. Furthermore, it is easy to see that a 1-local
NOBF source with min-entropy ≥ k′ is a convex combination of 1-local NOBF sources with
min-entropy exactly k′, by fixing any additional random “good” bits. Thus, for any t ≤ k′,
we know that a 1-local source with min-entropy ≥ k′ is a convex combination of (δ, t)-biased
d-local NOBF sources, for δ ≤ 1 − 2−d.

By the above discussion, we see that for any t ≤ k − t · (d2 + d − 2), X is a convex
combination of (δ, t)-biased d-local NOBF sources, where δ ≤ 1 − 2−d. Setting t = k

2d2 yields
the result.

Thus, all that remains is to prove the key observation stated at the beginning of the proof.
Towards this end, let X ∼ {0, 1}n be a d-local source with min-entropy ≥ k. By definition of
d-local source, there exists some ℓ and f : {0, 1}ℓ → {0, 1}n such that X = f(Y) for uniform
Y ∼ Uℓ, such that each bit Xi is a deterministic function of at most d bits in Y. In other
words, there exist sets S1, . . . , Sn ⊆ [ℓ] of size d and functions f1, . . . , fn : {0, 1}d → {0, 1}n

such that

X = (X1,X2, . . . ,Xn) = (f1(YS1), f2(YS2), . . . , fn(YSn
)).

Now, let T ⊆ [n] be any set of coordinates of maximal size such that:
H∞(Xi) > 0 for all i ∈ T ; and
Si ∩ Sj = ∅ for any distinct i, j ∈ T .

Suppose T has size τ . Without loss of generality, assume T = [τ ]. We conclude with two
cases.
Case (i): τ < t. In this case, we fix the random variable YS1 , . . . ,YSτ . We know that with

probability 1 over this fixing, all bits Xi, i ∈ [n] become deterministic functions of at
most d− 1 unfixed variables in Y, by the maximality of T and its intersection property.
In other words, X becomes a (d− 1)-local source. Furthermore, by Lemma 3.1, we know
that with probability 1 over this fixing, X loses

∑
i∈[τ ] |Si| = dτ < dt bits of min-entropy.

Thus in this case, X is a convex combination of (d − 1)-local sources of min-entropy
> k − dt.

Case (ii): τ ≥ t. In this case, define S := [n] − (
⋃

i∈[τ ] Si) and notice that S1, S2, . . . , Sτ , S

partition the coordinates of Y. Next, define the random variables Zi := YSi for each
i ∈ [τ ], and define Z := YS . Notice that Xi = fi(Zi) for each i ∈ [τ ]. Furthermore, it
is straightforward to verify that for all j > τ , there exists a set Qj ⊆ [τ ] of size at most
d and a deterministic function f ′

j such that Xj = f ′
j(ZQj

,Z). In other words, we can
rewrite X as

X = (X1, . . . ,Xτ ,Xτ+1, . . . ,Xn)
= (f1(Z1), . . . , fτ (Zτ ), f ′

τ+1(ZQτ+1 ,Z), . . . , f ′
n(ZQn

,Z)).

Now, for each i ∈ [τ ], define Ai := fi(Zi). Furthermore, it is straightforward to show
that we can define a new random variable B independent of Y, and for each i ∈ [τ ] a
deterministic function gi such that gi(Ai,B) = Zi for all i ∈ [τ ]. Thus, for any subset
Q ⊆ [τ ] we have ZQ = g′

Q(AQ,B) for some deterministic function g′
Q. And finally, for

each j > τ there must be some deterministic function ψj such that

f ′
j(ZQj

,Z) = ψj(AQj
,B,Z).
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Thus we can rewrite X as:

X = (A1, . . . ,Aτ , ψτ+1(AQτ+1 ,B,Z), . . . , ψn(AQn
,B,Z)).

Notice that the collection {Ai}i∈[τ ] are mutually independent, and each has bias at most
1 − 2−d since it is a non-constant deterministic function of d uniform bits. Thus no matter
how B,Z are fixed, X becomes a (δ, t)-biased d-local NOBF source, for δ ≤ 1 − 2−d. ◀

5 Entropy lower bounds

In this section, we obtain lower bounds on the entropy required to extract from d-local sources
using degree ≤ r polynomials (Theorem 1.2). To do so, we actually prove a stronger theorem,
which can be viewed as a local version of a result by Cohen and Tal [7]. In particular, Cohen
and Tal show that any low degree polynomial admits a large subspace on which it is constant.
We show that this holds even for this special subclass of local subspaces.

▶ Theorem 3 (Theorem 3, restated). There exist universal constants C, c > 0 such that for
every n, r, d ∈ N such that r ≤ c log(n) and d ≤ 2

√
log n, the following holds. For any degree

r polynomial f ∈ F2[x1, . . . , xn], there exists a d-local subspace X ⊆ Fn
2 of dimension

k ≥ Cr(dn log n)1/r

on which f is constant.
This is tight: there exists a degree r polynomial g ∈ F2[x1, . . . , xn] which is an extractor

for d-local affine sources of dimension k ≥ Cr(dn log n)1/r, which has error ε = 2−ck/r.

Notice that this immediately implies Theorem 1.2, since (the uniform distribution over) a
d-local subspace is not only an affine source, but it is also a d-local source.

The tightness claim in Theorem 3 is not too difficult to prove. To do so, one can simply
use Gaussian elimination to observe that a d-local affine source is actually a d′-local NOBF
source (for some d′ that is not guaranteed to be equal to d). Then, the tightness claim follows
via a standard application of the probabilistic method, using known bounds [1] on the bias
of a random degree ≤ r polynomial.

The main part of Theorem 3 (preceding the tightness claim) is much more challenging
to prove. The key new ingredient we rely on is a so-called “low-weight Chevalley-Warning
theorem,” which may be of independent interest. We present and prove this theorem in
the following subsection. As discussed in Section 2, it is then not too difficult to use our
low-weight Chevalley-Warning theorem to obtain Theorem 3, and we refer the reader to the
full version for more details.

5.1 A low-weight Chevalley-Warning theorem

The classical Chevalley-Warning theorem guarantees that a small set of low-degree polynomials
admits a common nontrivial solution:

▶ Theorem 5.1 (Chevalley-Warning theorem [24]). Let {fi} ⊆ F2[x1, . . . , xn] be a set of
polynomials with degree at most D such that 0 is a common solution. Then there are at least
2n−D common solutions to {fi}. In particular, if D < n, then there must be a nontrivial
common solution.

ICALP 2022
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In this subsection, we prove a “low-weight” version of this theorem. In particular, it is
natural to ask not only if {fi} contains a nontrivial common solution, but if {fi} contains
a nontrivial common solution of low Hamming weight w. It is straightforward to use
Theorem 5.1 to show that w ≤ D + 1, and we remark that this is tight in general. However,
we show that if most of the polynomials in {fi} are linear, then we can improve this bound
to roughly w ≤ O(D/ log(n/D)).

▶ Theorem 5.2. Let {fi} ⊆ F2[x1, . . . , xn] be a set of polynomials with degree at most D < n

and nonlinear degree at most ∆ such that 0 is a common solution. Then for any w satisfying(
n

≤ ⌊w/2⌋

)
> 2D+1 ·

(
n

≤ ⌊∆/2⌋

)
, (1)

there exists a nontrivial common solution with Hamming weight at most w.

It is straightforward to show that w = 24∆ + 2D/ log(n/D) satisfies inequality 1, yielding
Theorem 4. The main ingredient that goes into the proof of Theorem 5.2 is the following
lemma, which says that for any big enough set A ⊆ Fn

2 of common solutions to a system of
low-degree polynomials, it holds that A+A also contains a (nontrivial) common solution.

▶ Lemma 5.3. Let {fi} ⊆ F2[x1, . . . , xn] be a set of polynomials with nonlinear degree at
most ∆ such that 0 is a common solution. Then for any set A ⊆ Fn

2 of common solutions of
size

|A| > 2
(

n

≤ ⌊∆/2⌋

)
it holds that A+A contains a nontrivial common solution.

In order to prove this, we will make use of the CLP lemma, which was instrumental in
the recent resolution of the cap set conjecture.

▶ Lemma 5.4 (CLP lemma [8]). Let f ∈ F2[x1, . . . , xn] be a polynomial of degree at most r,
and let M denote the 2n × 2n matrix with entries Mx,y = f(x+ y) for x, y ∈ Fn

2 . Then

rank(M) ≤ 2
(

n

≤ ⌊r/2⌋

)
.

Next, we show how to prove Lemma 5.3 using Lemma 5.4. Then, we conclude this section
by showing how to obtain Theorem 5.2 from Lemma 5.3.

Proof of Lemma 5.3. First, let {gi} ⊆ {fi} be the set of polynomials in {fi} that have
degree > 1. Notice that if A+A contains a nontrivial common solution to the system {gi},
then it also contains a nontrivial common solution to {fi}: this follows from the linearity
of the polynomials of {fi} − {gi} and the fact that every a ∈ A is a common solution (by
definition of A). Thus, it suffices to show the result for the set {gi}.

Next, consider the polynomial g ∈ F2[x1, . . . , xn] defined as

g(x) :=
∏

i

(1 + gi(x)).

It is straightforward to verify that g has degree at most ∆, and that g(x) = 1 if and only
if x is a common solution to {gi}. Now, suppose for contradiction that A + A contains
no nontrivial common solution to {gi}: that is, for every distinct x, y ∈ A it holds that
g(x+ y) = 0. Then, consider the 2n × 2n matrix M with entries Mx,y = g(x+ y) for every
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x, y ∈ Fn
2 . Define k := |A|, and let M [A,A] denote the k × k submatrix of M obtained by

taking the rows and columns of M indexed by A. Since 0 is a common solution to {gi}, we
get that M [A,A] = Ik and thus

rank(M) ≥ rank(M [A,A]) = rank(Ik) = k > 2
(

n

≤ ⌊∆/2⌋

)
which directly contradicts Lemma 5.4. ◀

Finally, we conclude this subsection with our proof of Theorem 5.2.

Proof of Theorem 5.2. Let A ⊆ Fn
2 be the collection of common solutions to {fi}. Fix any

w ∈ [1, n] such that all nonzero common solutions to {fi} have weight > w. Then for any
Hamming ball B ⊆ Fn

2 of radius ⌊w/2⌋, it must hold that

|B ∩A| ≤ 2
(

n

≤ ⌊∆/2⌋

)
, (2)

because otherwise Lemma 5.3 tells us there exist distinct x, y ∈ B ∩A such that x+ y ∈ A,
and x+ y is a nonzero vector with weight at most 2⌊w/2⌋ ≤ w (by the triangle inequality).

Now, given any vector v ∈ Fn
2 , let B(v) denote the Hamming ball around v of radius ⌊w/2⌋.

We consider the quantity
∑

v∈A |B(v)|, and seek to sandwich it between two inequalities. By
definition of Hamming ball we know that each |B(v)| =

(
n

≤⌊w/2⌋
)
, and by Theorem 5.1 we

know that |A| ≥ 2n−D. Combining these observations with inequality 2, we get that

2n−D

(
n

≤ ⌊w/2⌋

)
≤

∑
v∈A

|B(v)| ≤ 2n · 2
(

n

≤ ⌊∆/2⌋

)
,

since each u ∈ Fn
2 is contained by at most 2

(
n

≤⌊∆/2⌋
)

balls (with radius ⌊w/2⌋) centered at a
common solution a ∈ A, by inequality 2 (i.e., consider the set B(u) ∩A). Thus(

n

≤ ⌊w/2⌋

)
≤ 2D+1 ·

(
n

≤ ⌊∆/2⌋

)
.

In summary, we have shown that any w ∈ [1, n] for which all nonzero common solutions to
{fi} have weight > w must satisfy the above inequality. The result follows. ◀
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Abstract
We consider the problem of maintaining an approximate maximum integral matching in a dynamic
graph G, while the adversary makes changes to the edges of the graph. The goal is to maintain a
(1 + ε)-approximate maximum matching for constant ε > 0, while minimizing the update time. In
the fully dynamic setting, where both edge insertion and deletions are allowed, Gupta and Peng
(see [29]) gave an algorithm for this problem with an update time of O(

√
m/ε2).

Motivated by the fact that the Oε(
√

m) barrier is hard to overcome (see Henzinger, Krinninger,
Nanongkai, and Saranurak [30]; Kopelowitz, Pettie, and Porat [34]), we study this problem in the
decremental model, where the adversary is only allowed to delete edges. Recently, Bernstein, Probst-
Gutenberg, and Saranurak (see [9]) gave an O(poly(log n/ε)) update time decremental algorithm for
this problem in bipartite graphs. However, beating O(

√
m) update time remained an open problem

for general graphs.
In this paper, we bridge the gap between bipartite and general graphs, by giving an Oε(poly(log n))

update time algorithm that maintains a (1 + ε)-approximate maximum integral matching under
adversarial deletions. Our algorithm is randomized, but works against an adaptive adversary.
Together with the work of Grandoni, Leonardi, Sankowski, Schwiegelshohn, and Solomon [26] who
give an Oε(1) update time algorithm for general graphs in the incremental (insertion-only) model,
our result essentially completes the picture for partially dynamic matching.
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1 Introduction

In dynamic graph algorithms, the main goal is to maintain a key property of the graph while
an adversary makes changes to the edges of the graph. An algorithm is called incremental if
it handles only insertions, decremental if it handles only deletions and fully dynamic if it
handles both insertions as well as deletions. The goal is to minimize the update time of the
algorithm, which is the time taken by the algorithm to adapt to a single adversarial edge
insertion or deletion and output accordingly. For incremental/decremental algorithms, one
typically seeks to minimize the total update time, which is the aggregate sum of update times
over the entire sequence of edge insertions/deletions.

We consider the problem of maintaining a (1+ε)-approximation to the maximum matching
in a dynamic graph. In the fully dynamic setting, the best known update time for this problem
is O(

√
m/ε2) (see Gupta and Peng [29]), and the conditional lower bounds proved in the works
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of Henzinger, Krinninger, Nanongkai, and Saranurak (see [30]) and Kopelowitz, Pettie, and
Porat (see [34]) suggest that O(

√
m) is a hard barrier to break through. For this reason,

several relaxations of this problem have been studied. For example, one line of research has
shown that we can get considerably faster update times if we settle for large approximation
factors (see for example [13, 14, 16, 11, 41, 37, 6, 33, 27, 5, 39, 15, 8, 12, 10, 11, 7]). Another
research direction has been to consider the more relaxed incremental or decremental models.
In the incremental (insertion-only) setting, there have been a series of upper and lower
bound results (see [17, 19, 28]), culminating in the result of Grandoni, Leonardi, Sankowski,
Schwiegelshohn, and Solomon (see [26]), who gave an optimal Oε(m) total update time
(amortized Oε(1)) for (1 + ε)-approximate maximum matching.

The decremental (deletion-only) setting requires an entirely different set of techniques. In
fact, even for the special case of bipartite graphs, Oε(m

√
m) total time (Oε(

√
m) update time)

remained the best known until recently, when Bernstein, Probst-Gutenberg, and Saranurak
(see [9]) gave an poly(log n/ε) amortized update time algorithm for the case of bipartite graphs.
However, achieving a similar result for general graphs remained an open problem. Our main
theorem essentially closes the gap between bipartite and general graphs.

▶ Theorem 1. Let G be an unweighted graph and ε ∈ (0, 1). There is a decremental algorithm
with total update time Oε(m · poly(log n)) (amortized Oε(poly(log n))) that maintains a
matching M of size at least (1− ε) · µ(G) with high probability. Here G refers to the current
version of the graph and µ(G) is the size of the maximum matching of G. The algorithm is
randomized but works against an adaptive adversary. The dependence on ε is 2O(1/ε2).

The guarantees of our algorithm hold against an adaptive adversary: which is allowed to
choose an update sequence adaptively. This is in contrast to an oblivious adversary which
cannot decide its updates based on the algorithm’s output. Deterministic algorithms are
more desirable because they are robust against such updates, which allows them to be used
as a black-box in other static/dynamic algorithms. This property doesn’t hold when we have
the weaker oblivious adversary assumption. Thus, even though our algorithm is randomized
(Monte Carlo), it has has the same power as a deterministic algorithm. We refer the reader
to Section 1 of [41] and the references therein for a detailed discussion on this.

Our result largely completes the picture for partially dynamic matching by showing that in
general graphs one can achieve poly(log n) update time in both incremental and decremental
settings. But there are a few secondary considerations that remain. Firstly, our update time
is Oε(poly(log n)), rather than the Oε(1) for the incremental setting (see [26]). Secondly,
both the incremental result of [26] and our decremental result for general graphs have an
exponential dependence on 1/ε, whereas incremental/decremental algorithms for bipartite
graphs have a polynomial dependence on 1/ε (see [26, 28]). Optimizing the dependence on ε

and poly(log(n)) factors thus remains an interesting open question for future work.
In algorithms literature, it has been the case that efficient matching algorithms for

bipartite graphs do not easily extend to general graphs. Existence of blossoms (among
other things), poses a technical challenge to obtaining analogous results for the general
case. Consider the polynomial time algorithms for maximum matching for bipartite graphs,
the most efficient algorithm, using alternating BFS, was discovered by Hopcroft and Karp;
Karzanov (see [31, 32]) in 1973. However, several new structural facts and algorithmic insights
were used by Micali and Vazirani to get the same runtime for general graphs (see [36]). This
is also a feature of recent work in different models, such as the streaming (see [1, 22] and [24]),
fully dynamic (see [10, 11] and [14, 7]), and parallel models (see [23, 40] and [35, 3]). We
refer the reader to Section 1.3 of [2] for a detailed discussion of this phenomenon.
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2 High-Level Overview

Our algorithm for Theorem 1 follows the high-level framework of congestion balancing
introduced in [9]. They used it to solve approximate decremental matching in bipartite
graphs, and also to solve more general flow problems. But the framework as they used it
was entirely limited to cut/flow problems. As we discuss below, extending this framework to
general graphs introduces significant technical challenges. Moreover, our result shows how the
key subroutine of congestion balancing is naturally amenable to a primal-dual analysis, which
we hope can pave the way for this technique to be applied to other decremental problems.
Throughout this paper, we will use Õ(·) to hide poly(log n) factors in big-oh notations.

2.1 Previous Techniques
A fractional matching is a non-negative vector x⃗ ∈ R⩾0 satisfying fractional matching
constraints: for all v ∈ V ,

∑
e∋v x(e) ⩽ 1. The starting point of [9] is that it is sufficient to

develop an Õε(m) algorithm that does the following: it either maintains a fractional matching
of size at least (1− 2ε) · µ(G) or certifies that µ(G) has dropped by a (1− ε) factor because
of adversarial deletions. Since a result of [41] enables us to round any bipartite fractional
matching to an integral matching of almost the same value, such a fractional algorithm
yields an algorithm to maintain an integral matching of size at least (1− 3ε) · µ(G) in Õε(m)
total time under adversarial deletions. To motivate why [9] consider computing a fractional
matching, consider the following “lazy” algorithm that works with an integral matching:
compute an (1 + ε) approximate integral matching M of G using a static O(m/ε) algorithm,
wait for ε · µ(G) edges of M to be deleted and then recompute the matching. Since we
assume an adaptive adversary, the update time could be as large as Ω(m2

/ε·n); this is because
the adversary could proceed by only deleting edges of M . As a result, the goal should be
to maintain a robust matching that can survive many deletions. Thus, the algorithm in [9]
maintains a “balanced” fractional matching x⃗ that attempts to put a low value on every
edge. In order to reduce the value of x⃗ by ε · µ(G), the adversary will have to delete a lot of
edges from every large matching.

Balanced Fractional Matching in Bipartite Graphs. In order to ensure that the fractional
matching is spread out and robust, the algorithm in [9] imposes a capacity function κ on
the edges of the graph (initially, all edges have low capacity) and compute a fractional
matching obeying these capacities. The main ingredient of the algorithm is the subroutine
M-or-E*(G, ε, κ) which returns one of the following in Õε(m) time:
1. A fractional matching x⃗ with

∑
e∈E x(e) ⩾ (1− ε) · µ(G), x(e) ⩽ κ(e) for all e ∈ E, or,

2. A set of edges E∗ with the following two properties.
a. The total capacity through E∗ must be small: κ(E∗) = O(µ(G) log n) and,
b. For all |M | ⩾ (1− 3ε) · µ(G), |M ∩ E∗| ⩾ ε · µ(G).

Property 2a ensures that the total capacity increase is small, while Property 2b ensures
that we only increase capacity on important edges that are actually needed to form a large
matching. The authors of [9] show that M-or-E*() can be used as a black-box to solve
decremental matching: at each step, M-or-E*() is used to find a large fractional matching x⃗

(this matching is then rounded using [41] to get an integral matching), or to output the set
E∗ along which we increase capacities. They are able to show that because of Properties 2a
and 2b, the edge capacities remain small on average.

The congestion balancing framework of [9] consists of an outer algorithm that uses M-
or-E*() as a subroutine. The outer algorithm for bipartite graphs, with some challenges,
carries over to general graphs as well. But, M-or-E*() is significantly more challenging to
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implement for general graphs, so this subroutine will be our focus for the rest of the high
level review. For bipartite graphs the algorithm M-or-E*() is easier to implement because
maximum fractional matchings correspond to max flows in bipartite graphs. Hence, existing
algorithms for approximate maximum flows can be used to find the approximate maximum
fractional matching obeying capacity κ. Moreover, if such a fractional matching is not large,
then in bipartite graphs, the set of bottleneck edges E∗ is exactly a minimum cut of the
graph. For general graphs, due to the odd set constraints, max flow, which was the key
analytic and algorithmic tool in [9], no longer corresponds to a maximum fractional matching
that avoids the integrality gap.

2.2 Our Contribution: Implementing M-or-E*() in General Graphs
At a high-level, there are several structural and computational challenges to implementing
M-or-E*() in the case of general graphs. We explain what the potential impediments are,
and detail how our techniques circumvent these.

Fractional Matchings in General Graphs. In general graphs, not all fractional matchings
have a large integral matching in their support and therefore, cannot be rounded to give
a large matching. While fractional matchings that obey odd set constraints do avoid the
integrality gap, it seems hard to compute such a matching that also obeys capacity function
κ. In order to get past this, we define a candidate fractional matching that is both easy
to compute as well as contains a large integral matching in its support. More concretely,
our fractional matching either puts flow one through an edge, or a flow of value at most ε

(technically, we put flow much smaller than ε, but for this discussion, ε is sufficient). It is
known that such a fractional matching has an integrality gap of at most 1 + ε, since it obeys
all small odd set constraints. Our main contributions are two structural lemmas which show
that we can find our candidate matching efficiently.
1. First, given a graph G with capacity κ, we want to determine if the value of the maximum

fractional matching obeying κ and odd set constraints (denoted µ(G, κ)) is at least
(1 − ε) · µ(G). In general graphs, we do this by giving a sampling theorem: let Gs

be the graph created by sampling edge e with probability proportional to κ(e), then
µ(Gs) ⩾ µ(G, κ)− ε · n with high probability. Thus, µ(Gs) is a good proxy for µ(G, κ)
and it can be estimated efficiently by running any integral matching algorithm on Gs.

2. Suppose we have determined at some point that µ(G, κ) is large, we are still left with
the task of finding a fractional matching. Our next contribution is a structural theorem
that enables us to deploy existing flow algorithms to find such a matching. Let M

be an approximate maximum matching of Gs. Let ML = {e ∈M | κ(e) ⩽ β} and
MH = {e ∈M | κ(e) > β}, where L and H are for low and high respectively and β =
O(1/poly log n). Let VL = V (ML) and VH = V (MH). Intuitively, M breaks up our
vertex set into two parts: vertices matched by low capacity edges (denoted VL) and
those that are matched by high capacity edges (denoted VH). By adding some slack to
our capacity constraints (we show that some slack can be incorporated in congestion
balancing framework), we are able to treat the high-capacity edges as integral and
compute a matching on G[VH ] using a black box for integral matching in general graphs.
Additionally, we show that the maximum fractional matching on low capacity edges of
G[VL] has value at least as much as |ML| up to an additive error of ε · n. To compute
this fractional matching f⃗ , we show that since we are only considering edges of small
capacity, small odd set constraints are automatically satisfied, so we can transform G[VL]
into a bipartite graph and then use an existing flow algorithm. We then output MH + f⃗ ,
which has the property that either the flow through an edge is 1 or at most ε.
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The second obstacle is finding the set E∗. Recall, for bipartite graphs, the max flow-min
cut theorem gives us an easy characterization of the bottleneck edges. However, for general
graphs, this characterization is unclear. To overcome this, we consider the dual of the
matching LP of Gs, and show that the bottleneck edges can be identified by considering the
dual constraints associated with the edges. This generalizes the cut-or-matching approach of
[9]. We compute an integral matching in Gs, and since the algorithm of [20] is primal-dual,
we are also able to compute approximate duals for Gs.

Additionally, there are some secondary technical challenges as well. As mentioned before,
our structural theorems only guarantee preservation of matching sizes up to an additive error
of ε · n. When µ(G) = o(n), then the results, applied directly are insufficient for us. To
get around this, we use a vertex sparsification technique to get Oε(log n) multigraphs which
preserve all large matchings of G, but contain only O(µ(G)/ε) vertices (this reduction was first
used in [4, 18]). However, we now have to show that all of our ideas work for multigraphs
as well. In proving the second structural result, we need to introduce some slack in the
capacities (see Definition 19). We show that congestion balancing extends to multigraphs,
and is flexible enough to handle slack in capacities. Finally, the rounding scheme of [41]
cannot be applied as a black-box to any fractional matching in a general graph. Thus, unlike
in the bipartite case, we instead have to embed its techniques into the congestion balancing
framework.
▶ Note 2. All our structural theorems (see Lemma 15 and Lemma 26) apply to graphs G

with µ(G) ⩾ Ω(ε · n). A reduction used by the authors of [18, 4] allows us to construct
Oε(log n) multigraphs H1, · · · , Hλ with O(µ(G)/ε) vertices, such that for every M of G with
|M | ⩾ (1− ε) ·µ(G) at least (1− ε) · |M | edges of M are present in some Hi. Thus, at a high
level, we have reduced our problem to the problem of decremental matching on multigraphs
with large matchings. So, it is enough to prove our structural theorems for multigraphs with
large matchings. We justify this assumption formally in the full version.

3 Preliminaries

We consider the problem of maintaining an approximate maximum integral matching in a
graph G in the decremental setting. Throughout the paper, we will use G to refer to the
current version of the graph, and let V and E be the vertex and edge sets of G respectively.
Additionally, µ(G) denotes the size of the maximum integral matching of G. During the
course of the algorithm, we will maintain a fractional matching x⃗. For a set S ⊆ E, we let
x(S) =

∑
e∈S x(e). Given a capacity function κ(e), we say that x obeys κ if x(e) ⩽ κ(e)

for all e ∈ E. For a vector x⃗, we use supp(x⃗) to be set of edges that are in the support
of x⃗. For a fractional matching x⃗, we say that x⃗ satisfies odd set constraints if for every
odd-sized B ⊆ V ,

∑
e∈G[B] x(e) ⩽ |B|−1

2 . Given a capacity function κ on the edges of G, we
use µ(G, κ) to denote the value of the maximum fractional matching of G that obeys the
capacity function κ and the odd set constraints. Throughout this paper, for any ε ∈ (0, 1),
we will let αε = log n · 260/ε2 and ρε = log n · 240/ε2 . We also need the following algorithm
computing (1 + ε)-approximate matching in general graphs.

▶ Lemma 3 ([20, 25]). There is an O(m/ε) time algorithm Static-Match() that takes as
input a graph G, and returns an integral matching M of G with |M | ⩾ (1− ε) · µ(G).

Roadmap for Extended Abstract. As mentioned in the overview, the main technical
contribution of our paper is an algorithm for M-or-E*() in general graphs. The rest of the
extended abstract focuses exclusively on this algorithm; the details of how M-or-E*() can
be used a black box to attain Theorem 1 are left for the full version.
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4 Main Contribution: M-or-E*() In General Graphs

As mentioned in the overview, we need our congestion balancing framework to act on
multigraphs. This motivates our next few definitions.

▶ Definition 4. Given a multigraph G, for a pair of vertices u and v, define D(u, v) to be the
set of edges between u and v. Similarly, if e is an edge between u, v, then D(e) := D(u, v).

▶ Definition 5. Let G be a multigraph with n vertices and m edges. Let κ be a capacity
function on the edges. Suppose x⃗ is a fractional matching of G (x⃗ is a vector of length m).
Then, we define x⃗C to be a vector of support size at most min

{
m,
(

n
2
)}

, where for a pair of
vertices, u and v, xC(u, v) :=

∑
e∈D(u,v) x(e). Essentially, if x⃗ is a fractional matching on

a multigraph, then x⃗C is a fractional matching obtained by “collapsing” all edges together.
Similarly, if y⃗ is a vector of support at most

(
n
2
)
, then we define y⃗D to be an m length vector

such that for every e ∈ E between a pair of vertices u and v, yD(e) := y(u,v)·κ(e)
κ(D(e)) (D is for

distributed, and we distribute the flow among the edges in proportion to their capacity).

▶ Remark 6. Note that in doing the transformations in Definition 5, the support size of the
transformed vector is always at most m. Thus, it doesn’t negatively affect our runtime.

We now state our core ingredient, which either finds a balanced fractional matching of
the multigraph G, or gives a set of edges E∗ along which we can increase capacity.

▶ Lemma 7. Let G be a multi-graph with µ(G) ⩾ ε·n/16. Let κ be a capacity function on
the edges of G. There is an algorithm M-or-E*(), that takes as input G, κ, ε ∈ (0, 1/2) and
µ ⩾ (1− ε) · µ(G) and in time O(m·log n/ε) returns one of the following.
(a) A fractional matching x⃗ of value at least (1− 20ε) · µ with the following properties.

(i) For any e ∈ supp(x⃗) with κ(D(e)) > 1/α2
ε, x(e) = κ(e)

κ(D(e)) , and x(D(e)) = 1.
(ii) For any e ∈ supp(x⃗) with κ(D(e)) ⩽ 1/α2

ε, x(e) ⩽ κ(e) ·αε and x(D(e)) ⩽ κ(D(e)) ·
αε.

(b) A set E∗ of edges such that κ(E∗) = O(µ log n) such that for any integral matching M

with |M | ⩾ (1 − 3ε) · µ, we have |M ∩ E∗| ⩾ εµ. Moreover, κ(e) < 1 for all e ∈ E∗.
Additionally, for every pair of vertices u, v ∈ V , either D(u, v)∩E∗ = ∅ or D(u, v) ⊆ E∗.

We give some intuition for Lemma 7. Recall that we need a balanced fractional matching
that contains a large integral matching in its support. However, as mentioned before, in the
case of general graphs, finding such a balanced fractional matching is not straightforward. In
order to get past this obstacle, we define a balanced fractional matching that is easy to find
and also avoids the integrality gap. We will explain how to find it in the subsequent sections.
For now, we explain at a high-level, why the fractional matching x⃗ found by Lemma 7 avoids
the integrality gap. Consider x⃗C . Observe from Lemma 7(a), that for any pair of vertices
u, v ∈ G, either xC((u, v)) = 1 or xC((u, v)) ⩽ 1/αε ⩽ ε. Thus, x⃗ satisfies odd-set constraints
for all odd sets of size at most 1/ε. By a folklore lemma, we can then argue that x⃗ contains
an integral matching of size at least (1 + ε)−1 ·

∑
u ̸=v xC((u, v)).

As mentioned before M-or-E*() will be used as a subroutine in our decremental
algorithm. The fractional matching output by M-or-E*() will have certain properties, we
state these properties now, since they will be helpful in visualizing the fractional matching.
We give a proof of these in the full version.

▶ Property 8. In our decremental algorithm, M-or-E*(G, µ, κ, ε) outputs a fractional
matching x⃗ with the following property: consider any u, v ∈ V and let e, e′ be edges between
u, v (recall that G is a multigraph). Then, κ(e′) = κ(e) at all times during the algorithm.
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▶ Definition 9. Let G be a multigraph, let ε ∈ (0, 1), let κ be a capacity function on the
edges of G and let x⃗ be a fractional matching obeying κ. Then, we split x⃗ into two parts,
x⃗f and x⃗i, where x⃗ = x⃗f + x⃗i, and supp(x⃗f ) = {e ∈ E | κ(D(e)) ⩽ 1/α2

ε} and supp(x⃗i) =
{e ∈ E | κ(D(e)) > 1/α2

ε} (x⃗f stands for fractional and x⃗i stands for integral. Though the
edges in x⃗i do not have integral capacity, they are large enough to round them to 1).

We briefly give the implications of this definition, since it is instructive to state them.

▶ Property 10. Let G be any multigraph and x⃗ be the matching output by M-or-E*(G, µ, κ, ε),
(a) For x⃗, we have x(e) ⩽ κ(e) ·α2

ε for all e ∈ E. This follows immediately from Lemma 7(a).
(b) For any pair of vertices u, v, either D(u, v) ⊆ supp(x⃗i) and D(u, v) ∩ supp(x⃗f ) = ∅ or,

D(u, v) ⊆ supp(x⃗f ) and D(u, v) ∩ supp(x⃗i) = ∅.
(c) Consider z⃗ = x⃗i. Then supp(z⃗C) is a matching. This is implied by Lemma 7(ai).

5 Ingredients for Algorithm M-or-E*()

Recall we use µ(G, κ) to denote the value of the maximum fractional matching of G obeying
capacity function κ and the odd set constraints. As in the congestion balancing set up
of [9], we want to check if µ(G, κ) ⩾ (1 − ε) · µ(G). But, unlike in bipartite graphs,
where we can use flows to find fractional matching, there is no simple way to check if
µ(G, κ) ⩾ (1− ε)µ(G) in general graphs. Our first structural result circumvents this. Let Gs

be obtained by sampling every edge e with probability p(e) = min {1, κ(e) · ρε}. We show
that µ(Gs) ⩾ µ(G, κ)− εµ(G). Thus, Static-Match(Gs, ε) is used to estimate µ(G, κ).

At a high level, M-or-E*() proceeds in three phases. In Phase 1, it creates Gs and
computes µ(Gs). If µ(Gs) is large, then by the above µ(G, κ) must also be large, so the
algorithm proceeds to Phase 2, where it finds a fractional matching satisfying Lemma 7(a).
On the other hand, if µ(Gs) is small, then it proceeds to Phase 3, where it finds the set
of edges E∗ satisfying Lemma 7(b), along which it increases capacity. In the subsequent
sections, we will state the main structural properties we use in each of the phases. Finally,
in Section 6, we put together these ingredients to give M-or-E*(), and prove Lemma 7.

5.1 Phase 1 of M-or-E*()
Before we formally state the main guarantees of Phase 1, we will state some standard results
in matching theory, that we will use in our main result for Phase 1.

5.1.1 Some Standard Ingredients For Phase 1
The first ingredient we use is the Tutte-Berge formula.

▶ Definition 11. For any multigraph G and U ⊆ V , oddG(V \U) denotes the number of odd
components in G[V \ U ].

▶ Lemma 12 (Tutte-Berge Formula). [38] The size of a maximum matching in a graph
G = (V, E) is equal to 1

2 min
U⊆V

(|U |+ |V | − oddG(V \ U)).

Additionally, we will use some properties of the matching polytope.

▶ Lemma 13 ([38]). Let G be any multigraph, let x⃗ be a fractional matching that in addition
to the fractional matching constraints, also satisfies the following for all odd-sized U ⊆ V :∑
e∈G[U ]

x(e) ⩽ |U |−1
2 . Then, there is an integral matching M ⊆ supp(x) with |M | =

∑
e∈E x(e).
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▶ Definition 14. Let G be any multigraph, and let S, T ⊆ V , then δG(S, T ) is defined as the
set of edges that have one endpoint in S and the other in T . Additionally, for S ⊆ V , we
define δG(S) to be the set of edges that have one end point in S, and the other in V \ S.

Figure 1 The figure shows the graph G, and a partition P = {U, E1, · · · , Eq, O1, · · · , Ot}
satisfying properties (a) and (b) mentioned in proof of Lemma 15. The thick edges (in red and
purple), are the edges in supp(x⃗), where x⃗ is the fractional matching realizing µ(G, κ). The purple
edges (edges between the odd components, or between odd and even components) correspond to
EP

miss, and
∑

e∈EP
miss

x(e) ⩾ 2 · ε · µ(G).

5.1.2 Main Lemma for Phase 1
As mentioned earlier, in Phase 1 of M-or-E*(), we first create a sampled graph Gs. In the
following lemma, we show that µ(Gs) is a good estimate for µ(G, κ) with high probability.

▶ Lemma 15. Let G be a multigraph with µ(G) ⩾ ε·n/16 where ε ∈ (0, 1/2). Let κ be a
capacity function on the edges of G, and let Gs be obtained by sampling every edge e ∈ G

with probability p(e) = min {1, κ(e) · ρε}. Let µ(G, κ) be the value of the maximum fractional
matching of G obeying the capacities κ, and the odd set constraints. Then, with high
probability, µ(Gs) ⩾ µ(G, κ)− ε · µ(G).

Proof. We want to show that with high probability, µ(Gs) ⩾ µ(G, κ) − ε · µ(G). In or-
der to do this, by Lemma 12, it is sufficient to show that with high probability, 1 − 1/n2,
1
2 min

U⊆V
(|U |+ |V | − oddGs

(V − U)) ⩾ µ(G, κ)− ε · µ(G). Towards this, we consider a fixed

partition P of V into sets U, O1, · · · , Ot, E1, · · · , Eq with the following properties (see Fig-
ure 1).
(a) We have, q ⩾ 0 and t > n− 2 · µ(G, κ) + 2ε · µ(G) + |U |.
(b) Sets Oi for i ∈ [t] are odd-sized sets and sets El for l ∈ [q] are even-sized sets.
If µ(Gs) < µ(G, κ)− ε · µ(G), then there is a partition P = {U, O1, · · · , Ot, E1, · · · , Eq} of
Gs (from Lemma 12), satisfying (a) and (b) such that Gs[V \U ] is the union of disconnected
components O1, · · · , Ot, E1, · · · , Eq. If Gs[V \ U ] is the union of disconnected components
O1, · · · , Ot, E1, · · · , Eq then δGs

(Oi, Ol) = ∅ for all i ̸= l and δGs
(Oi, El) = ∅ for all i ∈ [t],
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l ∈ [q]. Thus, to upper bound the probability that µ(Gs) < µ(G, κ)− ε · µ(G), it is sufficient
to upper bound the probability that there exists a partition P = {U, O1, · · · , Ot, E1, · · · , Eq}
satisfying (a) and (b), such that none of the edges EP

miss = {e | e ∈ δG(Oi, Ol) for i ̸= l} ∪
{e | e ∈ δG(Oi, El) for i ∈ [t], l ∈ [q]} are sampled in Gs. In order to bound this probability,
we make the following claim.

▷ Claim 16. For a partition P satisfying (a) and (b), κ(EP
miss) ⩾ 2 · ε · µ(G).

Proof. Let x⃗ be a fractional matching obeying odd set constraints and capacity function κ such
that

∑
e∈E x(e) = µ(G, κ). We show that if κ(EP

miss) < 2 · ε · µ(G), then, x(EP
miss) > κ(EP

miss),
which will contradict the fact that x⃗ is a fractional matching obeying κ.

With this proof strategy in mind, for contradiction assume that κ(EP
miss) < 2 · ε · µ(G) ⩽

n−2 ·µ(G, κ) + 2 · ε ·µ(G). The last inequality follows from the fact that µ(G, κ) corresponds
to the value of the maximum fractional matching, so, µ(G, κ) ⩽ n

2 . Since x⃗ obeys odd set
constraints,

∑
l⩽t x(δG(Ol)) ⩾ t. Note that

∑
l⩽t x(δG(Ol, U)) ⩽ |U |, otherwise for some

v ∈ U ,
∑

e∋v x(e) > 1, violating the fact that x⃗ is a fractional matching. Next, we observe
that

∑
l⩽t x(δG(Ol)) = x(EP

miss) +
∑

l⩽t x(δG(Ol, U)). This follows from the fact that all
edges emanating out of Oi in G, are incident on Oj for j ̸= i, or Ek for some k ∈ [q], or U .
We have the following set of inequalities.

x(EP
miss) =

∑
l⩽t

x(δG(Ol))−
∑
l⩽t

x(δG(Ol, U)) ⩾ t− |U | > n− 2 · µ(G, κ) + 2 · ε · µ(G)

The last inequality is because P satisfies (a) and (b). Thus, x(EP
miss) > κ(EP

miss). ◁

We also have a claim which allows us to only focus on P for which all e ∈ EP
miss have

κ(e) < 1/ρε. Let HP
miss denote the event that none of the edges of EP

miss are sampled.

▶ Observation 17. Suppose κ(e) ⩾ 1/ρε for any e ∈ EP
miss, then, Pr

(
HP

miss
)

= 0.

The above observation follows from the fact that an edge e is sampled with probability
min {1, κ(e) · ρε}. From the above claim, it is sufficient to focus on EP

miss where all edges e

have κ(e) < 1/ρε, since these are the only P that contribute non-zero probability.

Pr
(
HP

miss
)
⩽

∏
e∈EP

miss

(1− p(e)) ⩽ exp

− ∑
e∈EP

miss

p(e)

 = exp

− ∑
e∈EP

miss

κ(e) · ρε


= exp

(
−ε · 240/ε2 · µ(G) · log n

)
⩽ exp

(
−239/ε2 · µ(G) · log n

)
.

Note that number of partitions P satisfying (a) and (b) are upper bounded by the number
of ways of partitioning V , and it is known that a set of size n has 2n·log n partitions. Since
n ⩽ 16·µ(G)/ε, the bound on the number of partitions is at most 216µ(G)/ε·log n (by assumption
of Lemma 15).

Thus, applying the equation above and taking a union bound over all the partitions,
we know that the with probability 1 − exp (−µ(G)·log n/ε), in Gs, we have no partition
P = {U, O1, · · · , Ot, E1, · · · , Eq} satisfying (a) and (b) such that Gs[V \ U ] is a union of
disconnected components O1, · · · , Ot, E1, · · · , Eq. Thus, by Lemma 12, with high probability,
µ(Gs) ⩾ µ(G, κ)− ε · µ(G). ◀
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5.2 Phase 2 of M-or-E*()
The algorithm proceeds to Phase 2 only if the integral matching Ms found in Gs is close
to µ(G, κ). But note that although Phase 1 gives us a way to estimate the value of µ(G, κ)
via µ(Gs) (by Lemma 15), it is unclear how to actually compute a corresponding fractional
matching x⃗ that obeys capacities and odd set constraints. That is the goal of Phase 2: we
show how to compute x⃗ and show that it is close in value to µ(Gs) with high probability,
and therefore it is close to µ(G, κ) as well (by Lemma 15).

5.2.1 Preliminaries for Phase 2
Phase 2 starts by computing Ms = Static-Match(Gs, ε) and then uses Ms to compute the
desired fractional matching. We will split Ms into low capacity edges and high capacity edges,
and as a result split V into vertices matched using high capacity edges, and low capacity
edges. We begin by giving a formal definition of low capacity edges.

▶ Definition 18. Let G be any multigraph, and let κ be a capacity function on the edges of G.
Let ε ∈ (0, 1/2). Define EL(G, κ) = {e ∈ E | e ∈ D(u, v) and κ(D(u, v)) ⩽ 1/α2

ε}. Intuitively,
EL(G, κ) is the set of low total capacity edges.

As mentioned in the high-level overview, in order to prove our probabilistic claims, we
will give some slack to the capacities. This motivates our next definition.

▶ Definition 19. Let G be a multigraph, and let κ be a capacity function on the edges of
G. Let ε ∈ (0, 1/2). We define the capacity function κ+ as follows: for all e ∈ EL(G, κ),
κ+(e) = κ(e) · αε and for all e ∈ E \ EL(G, κ), κ+(e) = κ(e).

To make our analysis easier to follow, we need the following definition of a bipartite
double cover of G.

▶ Definition 20 (Bipartite Double Cover). Let G be a multigraph and κ be a capacity function
on the edges of G. We define the bc(G) to be the following bipartite graph with capacity
function κbc.
(a) For every vertex v ∈ V (G), make two copies v and v′ in V (bc(G)).
(b) If e is an edge between u, v ∈ V (G), then for each such e we add two edges e′ and e′′,

one between u and v′ and the other between v and u′. We let κbc(e′) = κbc(e′′) = κ(e).
We defer the proof of the following claim, relating µ(G) and µ(bc(G)) to the full version.

▷ Claim 21. For any multigraph G, µ(bc(G)) ⩾ 2 · µ(G).

Next, we state the following lemma, which follows from standard techniques, and we give a
formal proof of it in the full version. The lemma essentially states that a fractional matching
which has low flow on all edges has a very small integrality gap.

▶ Lemma 22. Let G be a multigraph, and let ε ∈ (0, 1). Let κ be a capacity function on the
edges of G, with κ(D(e)) ⩽ 1/αε for all e ∈ E(G). Then, µ(bc(G), κbc) ⩽ 2 · (1 + ε) ·µ(G, κ),
where µ(G, κ) is the maximum fractional matching of G obeying κ and the odd set constraints,
and µ(bc(G), κbc) is the maximum fractional matching of bc(G) obeying κbc.

Additionally, we will need the following lemma, which follows as a corollary of Lemma 12.

▶ Proposition 23 (Extended Hall’s Theorem). Let G = (L ∪ R, E) be a bipartite graph
with n = |L| = |R|, then µ(G) = n − maxS⊆L (|S| − |NG(S)|), where NG(S) refers to the
neighbourhood of S in G.
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In order to prove Lemma 26, we will use the following version of Chernoff bound.

▶ Lemma 24 (Chernoff Bound). [21] Let X1, · · · , Xk be negatively correlated random variables,
and let X denote their sum, and let µ = E [X]. Suppose µmin ⩽ µ ⩽ µmax, then for all δ > 0,
Pr (X ⩾ (1 + δ)µmax) ⩽

(
eδ

(1+δ)δ

)µmax
.

Additionally, we state the following observation. The proof follows from an application of
the max-flow min-cut theorem (see [9]).

▶ Observation 25. Let G be any bipartite multigraph, with vertex bipartitions S and T and
capacity κ on the edges. Then, for any C ⊆ S, and D ⊆ T , we have, |S|− |C|+ |D|+κ(C, T \
D) ⩾ µ(G, κ). Moreover, there are sets C ⊆ S and D ⊆ T such that equality holds.

5.2.2 Main Result for Phase 2
We briefly give some intuition about the statement of next lemma. Recall in the high level
review, we mentioned that M , the integral matching of Gs has two parts MH , which is
the high capacity part, and ML, the low capacity part, and we defined VH = V (MH) and
VL = V (ML). We said that congestion balancing allows us to give slack to capacities (κ+ in
Definition 19), and therefore, we can round up the capacities of MH to 1. However, we still
want to compute a fractional matching of G[VL]. In order to do this, we observe that if the
fractional matching in G[VL] is only on low capacity edges, then we can use flow algorithm
on the low capacity edges of the bipartite graph bc(G[VL]) to compute such a matching.
Therefore, our main structural result for Phase 2 states that if y⃗ is a maximum fractional
matching with support on the low capacity edges of G[VL], then with high probability∑

e∈E y(e) ⩾ |ML| − ε · µ(G). We now state this result formally.

▶ Lemma 26. Let G be a multigraph and let ε ∈ (0, 1/2) and suppose µ(G) ⩾ ε·n/16. Let κ be
a capacity function on the edges, and let Gs be the graph obtained from G by sampling each
edge e with probability p(e) = κ(e) · ρε. Let EL := EL(G, κ). Then, with high probability, for
all W ⊆ V , we have µ(bc (Gs[W ] ∩ EL)) ⩽ µ(bc (G[W ] ∩ EL) , κ+

bc) + 8 · εµ(G).

▶ Remark 27. Note that by definition of EL, all edges e ∈ G[W ]∩EL have κ(e) ⩽ 1/α2
ε. Thus,

κ+
bc(e) = κbc(e) · αε for all e ∈ bc(G[W ] ∩ EL) (recall Definition 19 and Definition 18).

Before we prove it, we have the following statement as a corollary of Lemma 26.

▶ Corollary 28. Let G be a multi-graph, and let ε ∈ (0, 1). Let κ be a capacity function
on the edges of G with κ(e) ⩽ 1/αε for all e ∈ E(G). Then, with high probability, for all
W ⊆ V , µ(Gs[W ] ∩ EL) ⩽ µ(G[W ] ∩ EL, κ+) + 5 · εµ(G).

Proof. The inequality in the statement follows due to the following line of reasoning.

2 · µ(Gs[W ] ∩ EL) ⩽ µ(bc (Gs[W ] ∩ EL))
(since 2 · µ(H) ⩽ µ(bc(H)), see Claim 21)
⩽ µ(bc(G[W ] ∩ EL), κ+

bc) + 8 · εµ(G)
(by Lemma 26)
⩽ 2 · (1 + ε) · µ(G[W ] ∩ EL, κ+) + 8εµ(G)
(by Lemma 22)
⩽ 2 · µ(G[W ] ∩ EL, κ+) + 10 · εµ(G).

The second to last inequality follows from the fact that any fractional matching in G obeying
κ+ and odd set constraints is upper bounded by µ(G) (by Lemma 13). ◀
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11:12 Decremental Matching in General Graphs

Figure 2 In the left panel, we consider the graph G, and W = {a, b, c, d, e}. The red edges
correspond to the low capacity edges of G[W ], denoted G[W ] ∩ EL. On the right panel, we have the
bipartite graph bc(G[W ] ∩ EL), which has bipartitions W1 and W2. The solid red edges are the
edges going between C and W2 \ D, and these edges have capacity κ(C, W2 \ D).

Proof of Lemma 26. Throughout this proof we refer the reader to Figure 2. Consider a fixed
W ⊆ V . From now, we will use H to denote bc(G[W ]∩EL) and let Hs denote bc(Gs[W ]∩EL).
For the bipartite graph H, we will use W1 and W2 to denote the two bipartitions of H

corresponding to W . We now want to prove that µ(Hs) ⩽ µ(H, κ+
bc) + 8εµ(G). To prove this,

it is sufficient to show a set C ⊆W1 such that |C| − |NHs
(C)| ⩾ |W1| − µ(H, κ+

bc)− 8εµ(G)
with high probability. Then, by Proposition 23, we have the following inequality: |W1| −
µ(H, κ+

bc)− 8εµ(G) ⩽ |C| − |NHs
(C)| ⩽ |W1| −µ(Hs). This would prove our claim. Towards

this, we consider the set C ⊆W satisfying the following equation (applying Observation 25
to H and κ+

bc), and show that this is the required set.

|W1| − |C|+ |D|+ κ+
bc(C, W2 \D) = µ(H, κ+

bc). (1)

We want to show that |C|− |NHs
(C)| ⩾ |W1|−µ(H, κ+

bc)−8εµ(G) with high probability. Let
L be the set of vertices in NHs(C)∩W2 \D. We know that |NHs(C)| ⩽ |D|+ |L|. If we show
that |L| ⩽ κ+

bc(C, W2 \D) + 8 · εµ(G), then, |NHs
(C)| − 8ε · µ(G) ⩽ |D|+ κ+

bc(C, W2 \D).
Substituting in Equation (1), we have |W1| − |C|+ |NHs(C)| − 8ε · µ(G) ⩽ µ(H, κ+

bc), which
implies that |C| − |NHs

(C)| ⩾ |W1| − 8 · εµ(G)− µ(H, κ+
bc). We now focus on bounding |L|.

Let EH(C, W2 \D) be the set of edges in H between C and W2 \D. Let X be the random
variable that denotes the number of edges in EH(C, W2 \D) that are sampled in Hs. Note
that X is not a sum of independent random variables. Recall that H is a subgraph of bc(G),
and suppose e ∈ G[W ]∩EL is included in Gs, then e′ and e′′ (recall e′ and e′′ are copies of e

in bc(G), Definition 20) are both included in Hs else both are excluded. Thus, the random
variables associated with e′ and e′′ are correlated with each other. We instead consider an
arbitrary subset of E∗

H(C, W2 \D) of EH(C, W2 \D) that satisfies the following properties.
(a) For e ∈ G[W ], if {e′, e′′} ⊂ EH(C, W2 \D), then exactly one of e′ or e′′ is included in

E∗
H(C, W2 \D).

(b) For e ∈ G[W ], if {e′, e′′}∩EH(C, W2\D) = {e′}, then only e′ is included in E∗
H(C, W2\D)

and if {e′, e′′} ∩ EH(C, W2 \D) = {e′′}, then only e′′ is included in E∗
H(C, W2 \D).

We consider the random variable Y that denotes the number of edges in E∗
H(C, W2 \D) that

are included in Hs. Observe that Y is a sum of independent random variables satisfying the
condition of Lemma 24. Moreover, X ⩽ 2Y . Thus, it is sufficient to upper bound the value
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Y can take with high probability. Note that for any e ∈ EH(C, W2 \D), using the definition
of H, κbc(e) < 1/α2

ε. Since ρε < αε, p(e) = ρε · κbc(e) < 1. So, we have,

E [Y ] ⩽
∑

e∈E∗
H

(C,W2\D)

p(e) ⩽ ρε · κbc(C, W2 \D) ⩽ κ+
bc(C, W2 \D)

220/ε2 .

The last inequality follows from the fact that in H, κ+
bc(e) = κbc(e) · αε for all e ∈ H

(see Definition 19). This is because by definition of H and Definition 19, for all edges
e ∈ H, the corresponding original edge in G is in EL(G, κ). We want to bound the
Pr
(

Y ⩾ κ+
bc(C,W2\D)

220/ε2 + 4 · εµ(G)
)

. Applying Lemma 24 with δ = 4·εµ(G)·220/ε2

κ+
bc(C,W2\D) , we have,

Pr
(

Y ⩾
κ+

bc(C, W2 \ D)
220/ε2 + 4 · εµ(G)

)
= exp

(
εµ(G) − εµ(G) log

(
1 + 4 · εµ(G) · 220/ε2

κ+
bc(C, W2 \ D)

))
⩽ exp

(
εµ(G) − εµ(G) log

(
1 + ε · 220/ε2

))
(Since κ+

bc(C, W2 \ D) ⩽ 4 · µ(G) as proved below.)

⩽ exp
(

εµ(G) − εµ(G) log
(

1 + 219/ε2
))

(Using the fact that 21/ε2
⩾ 1/ε)

= exp (εµ(G) − 19µ(G)/ε)

(Using the fact that 219/ε2
⩽ 219/ε2

+ 1).

To see why κ+
bc(C, W2 \D) ⩽ 4 · µ(G), consider Equation (1), κ+

bc(C, W2 \D) is equal to

µ(H, κ+
bc)− |W1|+ |C| − |D| ⩽ 2 · (1 + ε) · µ(G[W ] ∩ EL(G, κ), κ+)− |W1|+ |W1|

⩽ 4 · µ(G).

The first inequality is due to Lemma 22, and the fact that H = bc(G[W ] ∩ EL(G, κ)), and
κ+ satisfies the hypothesis. Finally, observe that |L| ⩽ X ⩽ 2Y ⩽ κ+

bc(C, W2 \D) + 8 · εµ(G)
with probability at least exp (−19µ(G)/ε). Taking a union bound over all W , which are at most
216·µ(G)/ε many (since by statement of the lemma, µ(G) ⩾ ε·n/16), we have our bound. ◀

5.3 Phase 3: Finding set E∗

The algorithm M-or-E*() proceeds to Phase 3 if the matching found in Gs in Phase 1 is
small, and hence µ(G, κ) is too small. In this case, we need to find a set E∗ satisfying the
properties of Lemma 7(b). In particular, we need to find a set E∗ with κ(E∗) = O(µ(G) log n)
such that for every large matching M , there are a lot of edges going through E∗. In order to
do this, we rely on the properties of the dual variables associated with the matching problem.
The algorithm Static-Match(), luckily for us, solves both the primal as well as the dual
solution. We first begin by stating the properties of the dual program, and then we state the
properties of dual variables guaranteed by Static-Match().

▶ Definition 29 ([38]). We consider the dual of the matching linear program:
1. Every edge e = (u, v) has a dual constraint yz((u, v)) := y(u) + y(v) +

∑
B∈Vodd,
e∈G[B]

z(B).

2. We use f(y, z) :=
∑

v∈V y(u) +
∑

B⊆Vodd

|B|−1
2 z(B) to denote the dual objective function.

We now describe some properties of the Static-Match(). All of the properties except
Lemma 30(c) are given by the algorithm in [20]. We then show how to ensure property (c)
as well by modifying the dual; see full version for details.
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▶ Lemma 30. There is an O(m/ε) time algorithm Static-Match() that takes as input a
graph G with m edges and a parameter ε > 0, and returns a matching M , and dual vectors y⃗

and z⃗ that have the following properties.
(a) It returns an integral matching M such that |M | ⩾ (1− ε) · µ(G).
(b) A set Ω of laminar odd-sized sets, such that {B | z(B) > 0} ⊆ Ω.
(c) For all odd-sized B with |B| ⩾ 1/ε + 1, z(B) = 0.
(d) Each y(v) is a multiple of ε and z(B) is a multiple of ε.
(e) For every edge e ∈ E, yz(e) ⩾ 1− ε. We say that e is approximately covered by y⃗ and z⃗.
(f) The value of the dual objective, f(y, z) is at most (1 + ε) · µ(G).

5.3.1 Main Guarantees of Phase 3
We now state the following helper lemma is instrumental in proving one of the two main
properties of E∗, namely, that every large matching has a lot of edges passing through E∗.

▶ Lemma 31. Suppose G is a graph, and let H ⊂ G be a subgraph of G. Let y⃗, z⃗ be the dual
variables returned on execution of Static-Match(H, ε). Let EH = {e ∈ G | yz(e) ⩾ 1− ε}.
For any matching M of G, then |M ∩ E \ EH | ⩾ |M | − (1 + ε)2 · µ(H).

Proof. Suppose we scale up the dual variables y⃗ and z⃗ by a factor of 1 + ε. Then, y⃗ and z⃗

is a feasible solution for the dual matching program for the graph EH . Thus, using weak
duality, we have that µ(EH) ⩽ (1 + ε)f(y, z) ⩽ (1 + ε)2 · µ(H) (this inequality follows from
Lemma 30(f)). Suppose M is a matching of G with |M ∩E \EH | < |M |− (1+ε)2 ·µ(H) then,
this implies that |M ∩ E \ EH | < |M | − µ(EH). Thus, |M | = |M ∩ EH |+ |M ∩ E \ EH | <
µ(EH) + |M | − µ(EH) = |M |, which is a contradiction. ◀

We now define set E∗, and show that it has the property that κ(E∗) = O(µ(G) log n).

▶ Lemma 32. Let G be a graph multi-graph such that µ(G) ⩾ ε·n/16, and let κ be a capacity
function on the edges of the graph. Suppose Gs is the graph obtained by sampling every
edge e ∈ E with probability p(e) = min {1, κ(e) · ρε}. Let y⃗, z⃗ be the output of Static-
Match(Gs, ε). Let E∗ = {e ∈ E | yz(e) < 1− ε}. Then, for all e ∈ E∗, κ(e) < 1 and with
high probability, κ(E∗) = O(µ(G) log n).

Proof. We consider the set D of assignments y⃗, z⃗ to the vertices and odd components that
satisfy the following properties.
(a) For all v ∈ V , y(v) is a multiple of ε, and for all B ⊂ V , z(B) is a multiple of ε.
(b) Let Ω = {B ⊂ V | z(B) > 0}, then Ω is laminar.
(c) If z(B) > 0 for some B ⊆ V , then |B| ⩽ 1/ε.
Observe that,

|D| ⩽
2n∑

i=0

(
n1/ε

i

)
·
(

1
ε

)n

·
(

1
ε

)2n

⩽ n ·
(

n1/ε

2n

)
·
(

1
ε

)n

·
(

1
ε

)2n

⩽ 2(4/ε)·n log n.

This number follows from the following argument. Since Ω is laminar, it can contain at most
2n sets. Moreover, from (c), we deduce that these 2n sets are chosen from among n1/ε sets.
Further, from (a), we deduce that each y(v) can be assigned at most 1/ε values, and for every
B ∈ Ω, z(B) can be assigned 1/ε values. Therefore, for a given choice of Ω, there are at
most (1/ε)n · (1/ε)2n choices for y⃗ and z⃗. Moreover, the above number also upper bounds the
number of possible duals that can be a returned by the algorithm Static-Match(), since
the duals in D satisfy a subset of the properties given in Lemma 30. Since µ(G) ⩾ ε·n/16, we
can upper bound |D| by 2(32/ε2)·µ(G) log n.
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Now consider a fixed y⃗, z⃗ that satisfies the above-mentioned properties, and let E∗ be
the set of edges that are not approximately covered by y⃗, z⃗. Note that for any e ∈ E∗,
κ(e) ⩽ 1/ρε. If not, then, p(e) = 1, and then it would be sampled in Gs, and be approximately
covered by y⃗, z⃗ (by Lemma 30(e)). Thus, for any e ∈ E∗, p(e) = κ(e) · ρε. Now, suppose
κ(E∗) > µ(G) log n. Then, observe that if y⃗, z⃗ is output by Static-Match(Gs, ε) (denote
this event by Ey,z) then none of the edges in E∗ were sampled (denote this event by E2).
Thus,

Pr (Ey,z) ⩽ Pr (E2)

⩽
∏

e∈E∗

(1− p(e))

⩽ exp
(
−
∑

e∈E∗

κ(e) · ρε

)
⩽ exp

(
−240/ε2 · µ(G) log n

)
.

Our lemma follows by taking an upper bound over the set D:

Pr

 ⋃
y⃗,z⃗∈D

Ey,z

 ⩽ exp
(
−240/ε2 · µ(G) log n

)
· 2(32/ε2)·µ(G)·log n

= exp
(
−O(21/ε2 · µ(G) · log n)

)
. ◀

6 Algorithm M-or-E*()

In this section, we give the main subroutine M-or-E*() (see Lemma 7). We first define a
few terms, and then state algorithm Frac-Match(), which follows almost directly from
known results, with some very minor modifications; see full version for details.

▶ Definition 33. Recall Definition 18, and consider an integral matching M , define
EM

L (G, κ) = EL(G, κ) ∩M , and let V M
L be the endpoints of EM

L (G, κ).

▶ Lemma 34. Given a multigraph G (possibly non-bipartite), with edge capacities κ and
ε ∈ (0, 1), such that κ(D(e)) ⩽ 1/αε for all e ∈ E, then there is an algorithm Frac-
Match() that takes as input G, κ and ε, and returns a fractional matching x⃗ such that∑

e∈E x(e) ⩾ (1 − ε) · µ(G, κ), obeying the capacities κ and the odd set constraints. The
runtime of this algorithm is O(m·log n/ε).

For the purpose of the algorithm recall κ+ in Definition 19. We now formalize M-or-
E*() from Lemma 7 in Algorithm 1 below; recall that the input is a multigraph G with
µ(G) ⩾ ε·n/16.

We now show Lemma 7 holds.

Proof of Lemma 7. We first show the runtime of the algorithm. Graph Gs can be computed
in time O(m). Using Lemma 30, we conclude that we can compute E∗ in order O(m/ε) time
by running Static-Match(Gs, ε) and Lemma 34 implies that Algorithm 1 takes O(m·log n/ε)
time.

We show Lemma 7((a)). First observe that V M
L and V (MI) are disjoint, and since y⃗

and x⃗ are fractional matchings, z⃗ is also a fractional matching. Note that |M | ⩾ µ − 7εµ.
Moreover,

∑
e∈E x(e) ⩾ (1− ε) · µ(G[V M

L ] ∩ EL, κ+). This follows from applying Lemma 34

ICALP 2022



11:16 Decremental Matching in General Graphs

Algorithm 1 M-or-E*(G, κ, ε, µ).

Include each e ∈ E(G) independently with probability p(e) = min {1, κ(e) · ρε} into
graph Gs.
Let M and y⃗, z⃗ be the output of Static-Match(Gs, ε). ▷ Phase 1
if |M | < µ− 7εµ then ▷ Phase 3

Return E∗ = {e ∈ E(G) | yz(e) < 1− ε}.
else ▷ Phase 2

MI ←M \ EL(G, κ)
y⃗ ←MD

I ▷ See Definition 5
x⃗← Frac-Match(G[V M

L ] ∩ EL(G, κ), κ+, ε)
Return z⃗ ← y⃗ + x⃗.

to G[V M
L ]∩EL(G, κ) with capacity function κ+. Recall Definition 19 and Definition 18 to see

that κ+(D(e)) ⩽ 1/αε for e ∈ G[V M
L ]∩EL(G, κ), thus satisfying the requirements of Lemma 34.

Next, applying Corollary 28, we have, µ(Gs[V M
L ] ∩ EL) ⩽ µ(G[V M

L ] ∩ EL, κ+) + 5 · εµ(G).
Thus, we have

∑
e∈E x(e) ⩾ (1− ε) ·

(
µ(Gs[V M

L ] ∩ EL)− 5εµ
)
⩾ (1− ε) · (|M \MI | − 5εµ).

This is because M \MI is a matching of Gs[V M
L ] ∩ EL. So,

∑
e∈E z(e) ⩾ |MI | + (1 − ε) ·

(|M \MI | − 5εµ) ⩾ (1− ε) · (µ− 12εµ) ⩾ µ− 13εµ.
We now show Lemma 7(ai) and (aii). Consider any edge e ∈ supp(z⃗) with κ(D(e)) ⩽ 1/α2

ε,
e ∈ G[V M

L ] ∩ EL(G, κ). Thus, e ∈ supp(x⃗), and therefore, from Lemma 34, z(e) = x(e) ⩽
κ+(e) ⩽ κ(e) · αε and z(D(e)) = x(D(e)) ⩽ κ(D(e)) · αε. Similarly, for any e ∈ supp(z⃗) with
κ(D(e)) > 1/α2

ε, e ∈ supp(y⃗). By definition of y⃗, z(e) = y(e) = κ(e)/κ(D(e)) (recall Definition 5)
and z(D(e)) = 1. This proves our claim.

Next, we show Lemma 7(b). First recall from the assumption of Lemma 7 that µ ⩾ (1−ε)·
µ(G). From this fact and Lemma 32, we can conclude that κ(E∗) = O(µ log n) and that for all
e ∈ E∗, κ(e) < 1. Next, observe that µ(Gs) ⩽ (1+ε) · |M | ⩽ (1−6ε) ·µ. Applying Lemma 31
with H = Gs, we have, that for any matching M ′ of G, |E∗∩M ′| ⩾ |M ′|−(1+ε)2 ·(1−6ε) ·µ.
If |M ′| ⩾ (1− 3ε) · µ, then we have |E∗ ∩M ′| ⩾ ε · µ. Finally, consider any pair of vertices
u, v and let e′, e′′ ∈ D(u, v). Then, either both e′, e′′ are both approximately covered by y⃗, z⃗

or neither of them are. This implies that either D(u, v) ⊆ E∗ or D(u, v) ∩ E∗ = ∅. ◀
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Abstract
We study the online bin packing problem under two stochastic settings. In the bin packing problem,
we are given n items with sizes in (0, 1] and the goal is to pack them into the minimum number of
unit-sized bins. First, we study bin packing under the i.i.d. model, where item sizes are sampled
independently and identically from a distribution in (0, 1]. Both the distribution and the total
number of items are unknown. The items arrive one by one and their sizes are revealed upon
their arrival and they must be packed immediately and irrevocably in bins of size 1. We provide
a simple meta-algorithm that takes an offline α-asymptotic proximation algorithm and provides a
polynomial-time (α + ε)-competitive algorithm for online bin packing under the i.i.d. model, where
ε > 0 is a small constant. Using the AFPTAS for offline bin packing, we thus provide a linear time
(1 + ε)-competitive algorithm for online bin packing under i.i.d. model, thus settling the problem.

We then study the random-order model, where an adversary specifies the items, but the order
of arrival of items is drawn uniformly at random from the set of all permutations of the items.
Kenyon’s seminal result [SODA’96] showed that the Best-Fit algorithm has a competitive ratio of at
most 3/2 in the random-order model, and conjectured the ratio to be ≈ 1.15. However, it has been
a long-standing open problem to break the barrier of 3/2 even for special cases. Recently, Albers et
al. [Algorithmica’21] showed an improvement to 5/4 competitive ratio in the special case when all
the item sizes are greater than 1/3. For this special case, we settle the analysis by showing that
Best-Fit has a competitive ratio of 1. We also make further progress by breaking the barrier of 3/2
for the 3-Partition problem, a notoriously hard special case of bin packing, where all item sizes lie in
(1/4, 1/2].
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1 Introduction

Bin Packing (BP) is a fundamental NP-hard combinatorial optimization problem. In BP,
we are given a set of items I := (x1, x2, . . . , xn) with their associated weights (also called
sizes) xi’s in (0, 1] and the goal is to partition them into the minimum number of sets (bins)
such that the total weight of each set is at most 1. The problem has numerous applications
in logistics, scheduling, cutting stock, etc. [10]. Theoretically, bin packing has been the
cornerstone for approximation and online algorithms and the study of the problem has led
to the development of several interesting techniques [31, 15, 33].

Generally, the performance guarantee of an offline (resp. online) bin packing algorithm
A is measured by asymptotic approximation ratio (AAR) (resp. competitive ratio (CR)).
Let Opt(I) and A(I) are the objective values returned by the optimal (offline) algorithm
and algorithm A, respectively, on input I. Then AAR (resp. CR) is defined as R∞

A :=
lim sup
m→∞

(
supI:Opt(I)=m

A(I)
Opt(I)

)
. Note that R∞

A focuses on instances where Opt(I) is large

and avoids pathological instances with large approximation ratios where Opt(I) is small.
Best-Fit (BF), First-Fit (FF), and Next-Fit (NF) are the three most commonly used

algorithms for BP. Given xi as the present item to be packed, they work as follows:
BF: Pack xi into the fullest possible bin; open a new bin if necessary.
FF: Pack xi into the first possible bin; open a new bin if necessary.
NF: Pack xi into the most recently opened bin; open a new bin if necessary.

Johnson et al. [28] studied several heuristics for bin packing such as Best-Fit (BF), First-Fit
(FF), Best-Fit-Decreasing (BFD), First-Fit-Decreasing (FFD) and showed their (asymptotic)
approximation guarantees to be 17/10, 17/10, 11/9, 11/9, resp. Bekesi et al. [7] gave an
O(n) time 5/4-asymptotic approximation algorithm. Another O(n log n) time algorithm is
Modified-First-Fit-Decreasing (MFFD) [29] which attains an AAR of 71/60 ≈ 1.1834. Vega
and Lueker [15] gave an asymptotic fully polynomial-time approximation scheme (AFPTAS)
for BP: For any 1/2 > ε > 0, it returns a solution with at most (1 + ε)Opt(I) + O(1) 1 bins in
time Cε + Cn log 1/ε, where C is an absolute constant and Cε depends only on ε. Karmarkar
and Karp [31] gave an algorithm that returns a solution using Opt(I) + O(log2 Opt(I)) bins.
The present best approximation is due to Hoberg and Rothvoss [25] which returns a solution
using Opt(I) + O(log Opt(I)) bins.

3-Partition problem is a notoriously hard special case of BP where all item sizes are larger
than 1/4. Eisenbrand et al. [17] mentioned that “much of the hardness of bin packing seems
to appear already in the special case of 3-Partition when all item sizes are in (1/4, 1/2]”.
This problem has deep connections with Beck’s conjecture in discrepancy theory [45, 38].
In fact, Rothvoss [25] conjectured that these 3-Partition instances are indeed the hardest
instances for bin packing and the additive integrality gap of the bin packing configuration
LP for these 3-Parition instances is already Θ(log n).

In online BP, items appear one by one and are required to be packed immediately and
irrevocably. Lee and Lee [33] presented the Harmonic algorithm with competitive ratio
T∞ ≈ 1.691, which is optimal for O(1) space algorithms. For general online BP, the present
best upper and lower bounds for the CR are 1.57829 [4] and 1.54278 [5], respectively.

In this paper, we focus on online BP under a stochastic setting called the i.i.d. model [11]
where the input items are sampled from a sequence of independent and identically distributed
(i.i.d.) random variables. Here, the performance of an algorithm is measured by the

1 In bin packing and related problems, the accuracy parameter ε is assumed to be a constant. Here, the
term O(1) hides some constants depending on ε.
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expected competitive ratio (ECR) ERA := E[A(In(F ))]/E[Opt(In(F ))], where In(F ) :=
(X1, X2, . . . , Xn) is a list of n random variables drawn i.i.d. according to some unknown
distribution F with support in (0, 1]. Mostly, bin packing has been studied under continuous
uniform (denoted by U [a, b], 0 ≤ a < b ≤ 1, where item sizes are chosen uniformly from
[a, b]) or discrete uniform distributions (denoted by U{j, k}, 1 ≤ j ≤ k, where item sizes are
chosen uniformly from {1/k, 2/k, . . . , j/k}). For U [0, 1], Coffman et al. [13] showed that NF
has an ECR of 4/3 and Lee and Lee [34] showed that the Harmonic algorithm has an ECR
of π2/3 − 2 ≈ 1.2899. Interestingly, Bentley et al. [8] showed that the ECR of FF as well
as BF converges to 1 for U [0, 1]. It was later shown that the expected wasted space (i.e.,
the number of needed bins minus the total size of items) is Θ(n2/3) for First-Fit [44, 12]
and Θ(

√
n log3/4 n) for Best-Fit [44, 35]. Rhee and Talagrand [42] exhibited an algorithm

that w.h.p. achieves a packing in Opt + O(
√

n log3/4 n) bins for any distribution F on (0, 1].
However, note that their competitive ratio can be quite bad when Opt≪ n. A distribution
F is said to be perfectly packable if the expected wasted space in the optimal solution is
o(n) (i.e., nearly all bins in an optimal packing are almost fully packed). Csirik et al. [14]
studied the Sum-of-Squares (SS) algorithm and showed that for any perfectly packable
distribution, the expected wasted space is O(

√
n). However, for distributions that are not

perfectly packable, the SS algorithm has an ECR of at most 3 and can have an ECR of 3/2
in the worst-case [14]. For any discrete distribution, they gave an algorithm with an ECR of
1 that runs in pseudo-polynomial time in expectation. Gupta et al. [24] also obtained similar
o(n) expected wasted space guarantee by using an algorithm inspired by the interior-point
(primal-dual) solution of the bin packing LP. However, it remains an open problem to obtain
a polynomial-time (1 + ε)-competitive algorithm for online bin packing under the i.i.d. model
for arbitrary general distributions. In fact, the present best polynomial-time algorithm for
bin packing under the i.i.d. model is BF which has an ECR of at most 3/2. However, Albers
et al. [1] showed that BF has an ECR ≥ 1.1 even for a simple distribution: when each item
has size 1/4 with probability 3/5 and size 1/3 with probability 2/5.

We also study the random-order model, where the adversary specifies the items, but the ar-
rival order is permuted uniformly at random. The performance measure in this model is called
asymptotic random order ratio (ARR): RR∞

A := lim sup
m→∞

(
supI:Opt(I)=m(E[A(Iσ)]/Opt(I))

)
.

Here, σ is drawn uniformly at random from Sn, the set of permutations of n elements, and
Iσ := (xσ(1), . . . , xσ(n)) is the permuted list. Random-order model generalizes the i.i.d. model
[1], thus the lower bounds in the random-order model can be obtained from the i.i.d. model.
Kenyon in her seminal paper [32] studied Best-Fit under random-order and showed that
1.08 ≤ RR∞

BF ≤ 3/2. She conjectured that RR∞
BF ≤ 1.15. The conjecture, if true, raises the

possibility of a better alternate practical offline algorithm: first shuffle the items randomly,
then apply Best-Fit. This then beats the AAR of 71/60 of the present best practical algorithm
MFFD. The conjecture has received a lot of attention in the past two decades and yet, no
other polynomial-time algorithm is known with a better ARR than BF. Coffman et al. [30]
showed that RR∞

NF = 2. Fischer and Röglin [21] achieved analogous results for Worst-Fit
[27] and Smart-Next-Fit [39]. Recently, Fischer [9] presented an exponential-time algorithm,
claiming an ARR of (1 + ε).

Monotonicity is a natural property of BP algorithms, which holds if the algorithm never
uses fewer bins to pack Î when compared I, where Î is obtained from I by increasing the
item sizes. Murgolo [37] showed that while NF is monotone, BF and FF are not.

Several other problems have been studied under the i.i.d. model and the random-order
model [16, 23, 18, 22, 19, 2, 20, 36, 24].

ICALP 2022
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1.1 Our Contributions
Bin packing under the i.i.d. model. We achieve near-optimal performance guarantee for
the bin packing problem under the i.i.d. model, thus settling the problem. For any arbitrary
unknown distribution F on (0, 1], we give a meta-algorithm (see Algorithm 1) that takes
an α-asymptotic approximation algorithm as input and provides a polynomial-time (α + ε)-
competitive algorithm. Note that both the distribution F as well as the number of items n

are unknown in this case.

▶ Theorem 1. Let ε ∈ (0, 1) be a constant parameter. For online bin packing under
the i.i.d. model, where n items are sampled from an unknown distribution F , given an
offline algorithm Aα with an AAR of α and runtime β(n), there exists a meta-algorithm
(Algorithm 1) which returns a solution with an ECR of (α + ε) and runtime O(β(n)). 2

Using an AFPTAS for bin packing (e.g. [15]) as Aα, we obtain the following corollary.

▶ Corollary 2. Using an AFPTAS for bin packing as Aα in Theorem 1, we obtain an
algorithm for online bin packing under the i.i.d. model with an ECR of (1 + ε) for any
ε ∈ (0, 1/2).

Most algorithms for bin packing under the i.i.d. model are based on the following idea.
Consider a sequence of 2k items where each item is independently drawn from an unknown
distribution F , and let A be a packing algorithm. Pack the first k items using A; denote the
packing by P ′. Similarly, let P ′′ be the packing of the next k items using A. Since each item
is drawn independently from F , both P ′ and P ′′ have the same properties in expectation; in
particular, the expected number of bins used in P ′ and P ′′ are the same. Thus, intuitively, we
want to use the packing P ′ as a proxy for the packing P ′′. However, there are two problems.
First, we do not know n, which means that there is no way to know what a good sample
size is. Second, we need to show the stronger statement that w.h.p. P ′ ≈ P ′′. Note that
the items in P ′ and P ′′ are expected to be similar, but they may not be the same. So, it is
not clear which item in P ′ is to be used as a proxy for a newly arrived item in the second
half. Due to the online nature, erroneous choice of proxy items can be quite costly. Different
algorithms handle this problem in different ways. Some algorithms exploit the properties of
particular distributions, some use exponential or pseudo-polynomial time, etc.

Rhee and Talagrand [41, 42] used upright matching to decide which item can be considered
as a proxy for a newly arrived item. They consider the model packing Pk of the first k items
(let’s call these the proxy items) using an offline algorithm. With the arrival of each of the
next k items, they take a proxy item at random and pack it according to the model packing.
Then, they try to fit in the real item using upright matching. They repeat this process until
the last item is packed. However, they could only show a guarantee of Opt + O(

√
n log3/4 n).

The main drawback of [42] is that their ECR can be quite bad if Opt≪ n (say, Opt =
√

n).
One of the reasons for this drawback is that they don’t distinguish between small and large
items; when there are too many small items, the ECR blows up.

Using a similar approach, Fischer [9] obtained a (1+ε)-competitive randomized algorithm
for the random-order model, but it takes exponential time, and the analysis is quite complic-
ated. The exponential time was crucial in finding the optimal packing which was then used
as a good proxy packing. However, prior to our work, no polynomial-time algorithm existed
which achieves a (1 + ε) competitive ratio.

2 As mentioned in an earlier footnote, the O(·) notation hides some constants depending on ε here.
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To circumvent these issues, we treat large and small items separately. However, a
straightforward adaptation faces several technical obstacles. Thus our analysis required
intricate applications of concentration inequalities and sophisticated use of upright matching.
First, we consider the semi-random case when we know n. Our algorithm works in stages.
For a small constant δ ∈ (0, 1], the first stage contains only δ2n items. These items give us
an estimate of the distribution. If the packing does not contain too many large items, we
show that the simple Next-Fit algorithm suffices for the entire input. Otherwise, we use a
proxy packing of the set of first δ2n items to pack the next δ2n items. In the process, we
pack the small and large items differently. Then we use the proxy packing of the first 2δ2n

items to pack the next 2δ2n items and so on. In general, we use the proxy packing of the
first 2iδ2n items to pack the next 2iδ2n items.

Finally, we get rid of the assumption that we know n using a doubling trick (we guess n

first and keep doubling the guess if it turns out to be incorrect). However, there are several
difficulties (e.g. input stopping midway of two consecutive guesses, large wasted space in the
past stages). Yet, with involved technical adaptations, we can handle them (see Section 2.2).

Our algorithm is simple, polynomial-time (in fact, O(n) time), and achieves essentially
the best possible competitive ratio. It is relatively simpler to analyze when compared to
Fischer’s algorithm [9]. Also, unlike the algorithms of Rhee and Talagrand [42] as well as
Fischer [9], our algorithm is deterministic. This is because, unlike their algorithms, instead
of taking proxy items at random, we pack all the proxy items before the start of a stage
and try to fit in the real items as they come. This makes our algorithm deterministic. Our
algorithm is explained in detail in Section 2.1. The nature of the meta-algorithm provides
flexibility and ease of application. See Table 1 for the performance guarantees obtained using
different offline algorithms.

See Section 2 for the details of the proof and the description of our algorithm. In
fact, our algorithm can easily be generalized to d-dimensional online vector packing [6], a
multidimensional generalization of bin packing. See the full version for a d(α + ε) competitive
algorithm for d-dimensional online vector packing where the ith item Xi can be seen as a
tuple

(
X

(1)
i , X

(2)
i , . . . , X

(d)
i

)
where each X

(j)
i is independently sampled from an unknown

distribution D(j).

Bin packing under the random-order model. Next, we study BP under the random-order
model. Recently, Albers et al. [1] showed that BF is monotone if all the item sizes are greater
than 1/3. Using this result, they showed that in this special case, BF has an ARR of at most
5/4. We show that, somewhat surprisingly, in this case, BF actually has an ARR of 1 (see
Section 3.1 for the detailed proof).

▶ Theorem 3. For online bin packing under the random-order model, Best-Fit achieves an
asymptotic random-order ratio of 1 when all the item sizes are in (1/3, 1].

Next, we study the 3-partition problem, a special case of bin packing when all the item
sizes are in (1/4, 1/2]. This is known to be an extremely hard case [25]. Albers et al. [1]
mentioned that “it is sufficient to have one item in (1/4, 1/3] to force Best-Fit into anomalous
behavior.” E.g., BF is non-monotone in the presence of items of size less than 1/3. Thus the
techniques of [1] do not extend to the 3-Partition problem. We break the barrier of 3/2 in
this special case, by showing that BF attains an ARR of ≈ 1.4941.

▶ Theorem 4. For online bin packing under the random-order model, Best-Fit achieves an
asymptotic random-order ratio of ≈ 1.4941 when all the item sizes are in (1/4, 1/2].

ICALP 2022
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Table 1 Analysis of Algorithm 1 depending on Aα. In the first row, C is an absolute constant
and Cε is a constant that depends on ε.

Aα Time Complexity Expected Competitive Ratio

AFPTAS [15] O(Cε + Cn log 1/ε) (1 + ε)
Modified-First-Fit-Decreasing [29] O(n log n) (71/60 + ε)
Best-Fit-Decreasing [26] O(n log n) (11/9 + ε)
First-Fit-Decreasing [26] O(n log n) (11/9 + ε)
Next-Fit-Decreasing [3] O(n log n) (T∞ + ε)
Harmonic [33] O(n) (T∞ + ε)
Next-Fit O(n) (2 + ε)

We prove Theorem 4 in Section 3.2. As 3-partition instances are believed to be the hardest
instances for bin packing, our result gives a strong indication that the ARR of BF might be
strictly less than 3/2.

2 Online Bin Packing Problem under the i.i.d. Model

In this section, we provide the meta algorithm as described in Theorem 1. For the ease of
presentation, we split this into two parts. In Section 2.1, we assume a semi-random model,
i.e., we assume that the number of items n is known beforehand and design an algorithm.
Later, in Section 2.2, we get rid of this assumption.

Let the underlying distribution be F . Without loss of generality, we assume that the
support set of F is a subset of (0, 1]. For any set of items J , we define W(J) as the sum
of weights of all the items in J . For any k ∈ N+, we denote the set {1, 2, . . . , k} by [k]. Let
ε ∈ (0, 1) be a constant parameter and let 0 < δ < ε/8 be a constant. Let Aα be an offline
algorithm for bin packing with an AAR of α > 1 and let Opt denote the optimal algorithm.
For any i ∈ [n], we call xi to be a large item if xi ≥ δ and a small item otherwise. Let Iℓ

and Is denote the set of large and small items in I, respectively.

2.1 Algorithm Assuming that the Value of n is Known
We now describe our algorithm which assumes the knowledge of the number of items. For
simplicity, in this section we assume both n and 1/δ2 to be powers of 2. Otherwise, we
can round down δ ∈ [1/2i+1, 1/2i), i ∈ N to 1/2i+1. Also, we will anyway get rid of the
assumption on the knowledge of n in the next subsection, and there we do not need n to
be a power of 2. We denote this algorithm by Alg. First, we give a high level idea of the
algorithm. We divide the entire input into stages as follows: we partition the input set I

into m :=
(
log(1/δ2) + 1

)
stages T0, T1, . . . , Tm−1. The zeroth stage T0, called the sampling

stage, contains the first δ2n items, i.e., x1, x2, . . . , xδ2n. For j ∈ [m − 1], Tj contains the
items with index starting from 2j−1δ2n + 1 till 2jδ2n. In essence, T0 contains the first δ2n

items, T1 contains the next δ2n items, T2 contains the next 2δ2n items, and so on. Note
that the number of stages m is a constant. In any stage Tj , we denote the set of large items
and small items by Lj and Sj , respectively. For j ∈ [m− 1], let Tj denote the set of items
which have arrived before the stage Tj , i.e., Tj = T0 ∪ T1 ∪ · · · ∪ Tj−1. Similarly, we define
Lj and Sj as the set of large items and small items, respectively, in Tj . Note that for any
j ∈ [m − 1], |Tj | =

∣∣Tj

∣∣ and since all the items are sampled independently from the same



N. Ayyadevara, R. Dabas, A. Khan, and K. V. N. Sreenivas 12:7

distribution, we know that with high probability, the optimal solutions of Tj and Tj are quite
similar. Since Tj would have arrived before Tj , we compute an almost optimal packing of Tj

(in an offline manner) and use it as a blueprint to pack Tj .
The algorithm is as follows: first, we pack T0, the sampling stage using Next-Fit. The

sampling stage contains only a small but a constant fraction of the entire input set; hence it
uses only a few number of bins when compared to the final packing but at the same time
provides a good estimate of the underlying distribution. If the number of large items in the
sampling stage is at most δ3W(T0), then we continue using Next-Fit for the rest of the entire
input too. Intuitively, NF performs well in this case as most of the items are small. Thus,
from now on, let us assume otherwise. Now assume that we are at an intermediate point
where Tj has arrived and Tj is about to arrive (j ≥ 1). We create Dj , the set of proxy items,
which is just a copy of Tj . We pack Dj using Aα. Let this packing be denoted by Pj . Let
B

(k)
j denote the kth bin in the packing Pj . We iterate over k and remove all the small items

in the bin B
(k)
j and create a slot in the free space of B

(k)
j . We call this slot to be an S-slot.

When an item xi ∈ Tj arrives, we check if xi is small or large
If xi is small, we pack it in one of the S-slots greedily, using Next-Fit. If it doesn’t fit in
any of the S-slots, then we create a new bin with only one S-slot spanning the entire bin
(so, this bin will only be used to pack small items), and pack it there.
If xi is large, we remove the smallest proxy item with a size more than xi in the packing
Pj and pack it there. If no such proxy item exists, we open a new bin, pack xi in there
and close it, meaning that it will not be used to pack any further items.

After Tj is packed completely, we just discard the proxy items in the packing that haven’t
been replaced and move to the next stage. For more formal details and pseudocode for the
algorithm, please refer to Algorithm 1.

We will proceed to analyze the algorithm. But first, we will discuss stochastic upright
matching and a standard result on it. Using a standard probabilistic concentration lemma,
we will formulate a few lemmas which are going to be very important for the analysis of the
algorithm.

Stochastic Upright Matching. Rhee and Talagrand [43] studied stochastic upright
matching problem in the context of analysis of bin packing algorithms. Consider a set
P = {(xi, yi)}i∈[2n] of 2n points where each xi is either +1 or −1 with equal probability
and y1, y2, . . . , y2n are sampled according to an i.i.d. distribution. We can define a bipartite
graph G as follows: the vertex set is P , viewed as a set of points in R × R. Two points
P1 = (x1, y1), P2 = (x2, y2) share an edge iff x1 = 1, x2 = −1 and y1 ≥ y2.

The objective of the problem is to find a maximum matching in G or, in other words,
minimize the number of unmatched points which we denote by U(P ). We denote this
matching variant by M. The following lemma shows that w.h.p., the number of unmatched
points is O(

√
n(log n)3/4). The proof of the lemma follows from Lemma 3.1 in [43].

▶ Lemma 5 ([43]). Let P be an instance for M. Then there exist constants a, C, K > 0
such that, P

[
U(P ) ≥ K

√
n(log n)3/4] ≤ C exp

(
−a(log n)3/2) .

Concentration Inequalities. Now we state the concentration inequalities.

▶ Lemma 6 (Bernstein’s Inequality). Let X1, X2, . . . , Xn be independent random variables
such that each Xi ∈ [0, 1]. Then, for any λ > 0, the following inequality holds.

P

[∣∣∣∣∣
n∑

i=1
Xi −

n∑
i=1

E [Xi]

∣∣∣∣∣ ≥ λ

]
≤ 2 exp

(
− λ2

2 (
∑n

i=1 E [Xi] + λ/3)

)
.
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Algorithm 1 Alg(x1, x2, . . . , xn): A nearly optimal algorithm for online bin packing assuming
that the number of items n is known before-hand.

1: Input: In(D) = {x1, x2, ..., xn}.
2: for i= 1 to δ2n do ▷ Sampling Stage, T0
3: Pack xi using NF.
4: end for
5: if |L0| ≤ δ3W(T0) then ▷ Very few large items
6: Use NF for all remaining stages.
7: else
8: for j= 1 to m− 1 do
9: Dj ← Tj ; L(Dj)← set of large items in Dj .

10: Pack Dj using Aα.
11: Let the packing be denoted by Pj . ▷ Packing of proxy items
12: Sj ← ϕ. ▷ the set of S-slots
13: for bin B in Pj do
14: Remove the small items in B.
15: Create an S-slot H of size equal to (1−weight of all the large items in B).
16: Sj ← Sj ∪H.
17: end for
18: for xi ∈ Tj do
19: if xi is large then
20: if ∃d ∈ L(Dj) such that d ≥ xi then
21: Find smallest such d.
22: L(Dj)← L(Dj) \ {d}.
23: Pack xi in place of d in the packing Pj .
24: else
25: Open a new bin and pack xi and close the bin.
26: end if
27: else
28: Try packing xi in Sj using Next-Fit.
29: if xi couldn’t be packed then
30: Open a new bin B′ with a single S-slot of unit capacity.
31: Sj ← Sj ∪B′.
32: Pack xi in B′.
33: end if
34: end if
35: end for
36: end for
37: end if

The following lemma is a direct implication of the results of [42, 40].

▶ Lemma 7. For any t ∈ [n], let I(1, t) denote the first t items of the input set I. Then
there exist constants K, a > 0 such that, P

[
Opt(I(1, t)) ≥ t

nE [Opt(I)] + K
√

n(log n)3/4] ≤
exp

(
−a(log n)3/2) .

The following lemmas are about how a property of a part of the input (say, the total size)
compares to that of the entire input.
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▶ Lemma 8. For an input set I of n items drawn from a distribution independ-
ently, for any arbitrary set J ⊆ I we have, P

[∣∣∣W(J)− |J|
n E [W(I)]

∣∣∣ ≥ E [W(I)]2/3
]
≤

2 exp
(
− 1

3E [W(I)]1/3
)

.

▶ Lemma 9. Let I be an input set of n items drawn from a distribution independently and
let J be any subset of I. Suppose Jℓ (resp. Iℓ) denote the set of large items in J (resp. I).
Then we have, P

[∣∣∣|Jℓ| − |J|
n E [|Iℓ|]

∣∣∣ ≥ E [W(I)]2/3
]
≤ 2 exp

(
− δ

3E [W(I)]1/3
)

.

▶ Lemma 10. For any t ∈ {1, 2, . . . , n}, Suppose I(1, t) denote the first t items of the
input set I. Then there exist constants C, a > 0 such that with probability at least 1 −
exp

(
−a (logE [Opt(I)])1/3

)
, we have Opt(I(1, t)) ≤ (1 + 2δ) t

nE [Opt(I)] + CE [Opt(I)]2/3
.

Lemma 7 (resp. Lemmas 8 and 9) intuitively states that the optimal solution for (resp.
the weight of the items of, and the number of large items in) a part of the input is almost a
linear function of the length of the part. This makes sense because each item comes from the
same distribution. Lemma 10 further tries to improve on Lemma 7 by bounding the lower
order terms in terms of E [Opt(I)] instead of n while losing only a small factor of 1 + 2δ.
This is crucial since we need to bound the number of additional bins used by our algorithm
in terms of E [Opt(I)] and not in terms of n. We give the proofs of Lemmas 7–10 in the
full version. As mentioned, Lemma 7 follows from [42, 40]. Lemmas 8 and 9 are simple
applications of Bernstein’s inequality. The high-level proof of Lemma 10 goes as follows:
first we consider the optimal packing of the large items in I(1, t), then we pack the small
items in I(1, t) greedily. If the small items open new bins then it means that all the bins
(except one) are filled up to a level at least 1− δ. Otherwise, we don’t use any extra bins. So,
Opt(I(1, t)) ≤ max{Opt(Iℓ(1, t)), (1 + 2δ)W(I(1, t)) + 1}. Then we use Lemmas 7, 8 and 9
to prove Lemma 10.

With these helpful lemmas, we now proceed to analyze the algorithm. We split the
analysis into the following two cases: when |L0| ≤ δ3 · W(T0) and when |L0| > δ3 · W(T0).

2.1.1 Case 1: |L0| ≤ δ3 · W(T0)
Recall that in this case, we just continue with Next-Fit for all the remaining items. To bound
the Next-Fit solution, we first consider the number of bins that contain at least one large
item. For this, we bound the value of |Iℓ|. Then we consider the bins that contain only small
items and bound this value in terms of weight of all items W(I).

▷ Claim 11. Let K := E [Opt(I)]. For some positive constants C1, C2, a, we have that
P
[
|Iℓ| ≤ δ · W(T0) + C1K2/3] ≥ 1− C2 exp

(
−aK1/3) .

Proof. As the sampling stage contains δ2n items, E [|L0|] = δ2E [|Iℓ|]. From Lemma 9, we
have P

[
|L0| ≤ δ2E [|Iℓ|]− E [W(I)]2/3

]
≤ 2 exp

(
−(δ/3) · (E [W(I)])1/3), and

P
[
|Iℓ| ≥ E [|Iℓ|] + E [W(I)]2/3

]
≤ 2 exp

(
−(δ/3) · E [W(I)]1/3

)
. From the above inequal-

ities we have, |Iℓ| ≤ 1
δ2 |L0| +

(
1 + 1

δ2

)
E [W(I)]2/3 with probability at least 1 −

4 exp
(
− δ

3E [W(I)]1/3
)

. We can use the inequalities E [Opt(I)] ≥ E [W(I)] and |L0| ≤
δ3 · W(T0) to conclude the proof of this claim. ◁

Now we bound the number of bins that are closed by small items. Note that Next-Fit
fills each such bin up to a capacity at least (1− δ). So, the number of such bins is at most

1
1−δW(I) when all items are packed by Next-Fit. Also, there can be at most one bin that
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can be open. Thus combining all these results, (and using inequality 1
1−δ ≤ 1 + 2δ for

δ < 1
2 ) with high probability, NF(I) ≤ |Iℓ|+ (1 + 2δ)W(I) + 1 ≤ δ · W(T0) + (1 + 2δ)W(I) +

KE [Opt(I)]2/3 , for some constant K.
Using Lemma 8, we get that with high probability, W(I) ≤ E [W(I)]+E [W(I)]2/3. Using

the facts W(I) ≥ W(T0) and E [Opt(I)] /2 ≤ E [W(I)] ≤ E [Opt(I)], we get,

NF(I) ≤ (1 + 3δ)E [Opt(I)] + C3E [Opt(I)]2/3 (1)

with probability of at least 1−C4 exp
(
−a1E [Opt(I)]1/3

)
for some constants C3, C4, a1 > 0.

When the low probability event occurs, we can use the upper bound of NF(I) ≤ 2Opt(I)− 1
to obtain the competitive ratio. Let p = C4 exp

(
−a1E [Opt(I)]1/3

)
.

E [NF(I)] ≤ (1− p)
(

(1 + 3δ)E [Opt(I)] + KE [Opt(I)]2/3 + 1
)

+ p(2E [Opt(I)]− 1)

= (1 + 3δ + 2p)E [Opt(I)] + o(E [Opt(I)])

Since p = o(1) when E [Opt(I)] tends to infinity, we obtain that the expected competitive
ratio tends to at most 1 + 3δ < 1 + ε.

2.1.2 Case 2: |L0| > δ3 · W(T0)
We split our analysis in this case into two parts. We first analyze the number of bins used in
the sampling stage T0 and then analyze the number of bins used in the remaining stages.

Using Lemma 9, we obtain w.h.p. that |L0| ≤ δ2E [|Iℓ|] + E [W(I)]2/3. Hence,

E [|Iℓ|] ≥
1
δ2 |L0| −

1
δ2E [W(I)]2/3

≥ δW(T0)− 1
δ2E [W(I)]2/3 (since |L0| > δ3 · W(T0))

≥ δ3E [W(I)]−
(

δ + 1
δ2

)
E [W(I)]2/3 (2)

The last inequality follows from Lemma 8. For any j ≥ 1, using |Tj |/n ≥ δ2 and using
Lemma 9, we get,

|Lj | ≥ δ5E [W(I)]− (2 + δ3)E [W(I)]2/3 (3)

Each of the Eqs. (2),(3) holds with a probability of at least 1− C exp
(
−aE [W(I)]1/3

)
for some constants C, a > 0.

Note that W(I) ≥ Opt(I)/2. So from now on we assume that there exist constants
C1, C2 > 0 which depend on δ such that w.h.p. both the following inequalities hold.

E [|Iℓ|] ≥ C1 · E [Opt(I)] (4)
|Lj | ≥ C2 · E [Opt(I)] (5)

Analysis of the Sampling Stage: Recall that the number of items considered in the
sampling phase is δ2n. We will bound the number of large items and the weight of items
in this stage using Bernstein’s inequality.

1. Since sampling phase has δ2n items, E [|L0|] = δ2E [|Iℓ|]. By applying Bernstein’s
inequality for X1, X2, . . . , X|T0| where Xi takes value 1 is xi is large and 0 otherwise,
we get,
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P
[
|L0| ≥ 2δ2E [|Iℓ|]

]
= P

[
|L0| ≥ E [|L0|] + δ2E [|Iℓ|]

]
≤ 2 exp

(
− δ4E [|Iℓ|]2

2E [|L0|] + 2
3 δ2E [|Iℓ|]

)
≤ 2 exp

(
−1

3δ2E [|Iℓ|]
)

≤ 2 exp (−a1 · E [Opt(I)]) (from Equation (4))

for some constant a1 > 0. So, with high probability, |L0| ≤ 2δ2E [|Iℓ|] ≤ 2δE [Opt(I)].
2. Similarly, E [W(T0)] = δ2E [W(I)]. By applying Bernstein’s inequality for

X1, X2, . . . , X|T0| where Xi takes value xi, we get,

P
[
W(T0) ≥ 2δ2E [W(I)]

]
= P

[
W(T0) ≥ E [W(S0)] + δ2E [W(I)]

]
≤ 2 exp

(
−δ4E [W(I)]2

2δ2E [W(T0)] + 2
3 δ2E [W(I)]

)

≤ 2 exp
(
−δ2

3 E [W(I)]
)
≤ 2 exp

(
−δ2E [Opt(I)]

6

)
So, with high probability we have, W(T0) ≤ 2δ2E [W(I)]≤ 2δ2E [Opt(I)].

Since the number of bins opened by Next-Fit NF(T0) is at most |L0|+ 1
1−δW(T0) + 1,

using the bounds on the number of large items and weight of small items in sampling
phase, w.h.p. we have,

NF(T0) ≤ 2δE [Opt(I)] + 2δ2

1− δ
E [Opt(I)] ≤ 4δE [Opt(I)] (6)

Analysis of the Remaining Stages: Consider any stage Tj (j > 0) after the sampling
stage. Note that

∣∣Tj

∣∣ = |Tj |. A bin can be opened in three different ways.
1. When a new bin is opened while packing the set of proxy items Dj using Aα (see the

algorithm description in Section 2.1).
2. When a large item can’t replace a proxy item and hence a new bin is opened for it.
3. When a small item can’t fit in the set of S-slots and hence a new bin is opened with a

single S-slot spanning the entire bin.
In our analysis, first we bound the number of bins opened by Aα for proxy items; we use
Lemma 10 to obtain this bound. Then we show that the number of large items which
cannot replace a proxy item would be very small by using upright matching arguments
(Lemma 5). For small items, we bound the number of new bins opened by using the fact
that W(Sj) and W(Sj) are very close which will be proved using Bernstein’s inequality.

Now we analyze the number of bins opened in the first way (say Aj
proxy). This is nothing

but the number of bins opened by Aα to pack Tj . Since, Aα has an AAR of α, by using
Lemma 10, we have,

Aj
proxy = Aα(Tj) ≤ αOpt(Tj) + o(Opt(Tj))

≤ α(1 + 2δ)(
∣∣Tj

∣∣/n)E [Opt(I)] + C3E [Opt(I)]2/3 + o(Opt(I)) (7)

with probability at least 1− exp
(
−a2 log(E [Opt(I)])1/3), for some constants C3, a2 > 0.

We now bound the number of bins opened in the second way. Using Lemma 9, we get
that w.h.p.,

∣∣Lj

∣∣ ≥ |Tj|
n E [|Iℓ|]− E [W(I)]2/3, and |Lj | ≤ |Tj |

n E [|Iℓ|] + E [W(I)]2/3. Since∣∣Tj

∣∣ = |Tj | we have,

|Lj | ≤
∣∣Lj

∣∣+ 2E [W(I)]2/3
. (8)
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So, w.h.p. the number of large items in Tj doesn’t exceed that of those in Tj by a large
number. Now consider the number of bins opened because there is no feasible proxy item
that can be replaced. Let this number be Aj

unmatch. We can interpret this number as the
number of unmatched items when we use the stochastic matching variant M from [43]
as follows. We can interpret each item t ∈ Lj as a point Pt := (+1, t) and each point
t ∈ Lj as a point Pt := (−1, t). For simplicity, let’s call the points with +1 as their first
coordinate as plus points and the points with −1 as their first coordinate as minus points.
We match a point Pt with Pt iff t replaced t in our algorithm. It is shown in [44] that such
matching is always maximum. Hence the number of items that open new bins is at most
the number of unmatched points in this maximum matching. There are two differences
though. First,

∣∣Lj

∣∣ may not be greater than |Lj |; but as we have shown, w.h.p, the
difference can at most be 2E [W(I)]2/3. Secondly, in the matching variantM, every point
has equal chance to be a plus point or minus point. However, this is also inconsequential,
since using concentration bounds for binomial random variables, we can show that the
number of plus points/minus points lie in the range

(
E
[∣∣Lj

∣∣]± E
[∣∣Lj

∣∣]2/3) w.h.p. Hence
by Lemma 5, we obtain that there exist constants a3, C4, K1 s.t.

P
[
Aj

unmatch ≥ K1

√∣∣Lj

∣∣ (log
∣∣Lj

∣∣)3/4 + 2E [W(I)]2/3 + 2E
[∣∣Lj

∣∣]2/3
]

≤ C4 exp
(
−a3(log

∣∣Lj

∣∣)3/2
)

We can simplify the above inequality using Equations (5) and (8) and the fact that
Opt(I) ≤ 2W(I) to obtain that there exist constants a4, C4, K2 > 0 such that,

P
[
Aj

unmatch ≥ K2E [Opt(I)]2/3
]
≤ C4 exp

(
−a4(logE [Opt(I)])3/2

)
(9)

The only part left is to bound the number of bins opened by small items in third
way. Let this number be Aj

small. We will bound this by using the concentration of
weights of small items in Tj and Tj . Consider the random variables X1, X2 . . . Xn where
Xi = 0 if xi is large, and Xi = xi otherwise. We have that W(Sj) =

∑
Xi:xi∈Tj

Xi

and W(Sj) =
∑

Xi:xi∈Tj

Xi. By applying Bernstein’s inequality (similar to Lemma 8)

we get, W(Sj) ≤ |Tj |
n W(Is) + E [W(I)]2/3

, and W(Sj) ≥ |Tj|
n W(Is)− E [W(I)]2/3 with

a probability of at least 1 − C5 exp
(
−a5E [W(I)]1/3

)
for some constants C5, a5 > 0.

Combining both, we get,

W(Sj) ≤ W(Sj) + 2E [W(I)]2/3 (10)

The initial allocated space for small items at the start of stage j in the packing Pj is
W(Sj). Recall that B

(k)
j denotes the kth bin in the packing of Pj . While packing the

small items, if the S-slot in B
(k)
j cannot accommodate a small item, this means that

the remaining space in this S-slot is at most δ. So, the weight of small items which
overflow the space allocated in packing Pj is at most W(Sj)−W(Sj) + δ |Pj | and this
entire weight is packed in new bins opened exclusively for small items. Each of these bins
(except possibly one) have an occupancy of at least (1− δ). Since Aα is α-approximation
algorithm, |Pj | = Aα(Tj) ≤ αOpt(Tj) + o(Opt(I)). Using Equations (7) and (10) we get,
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Aj
small ≤

1
1− δ

(
W(Sj)−W(Sj) + δ · αOpt(Tj) + o(Opt(I))

)
+ 1

≤ 2δ · α
∣∣Tj

∣∣
n

E [Opt(I)] + C3E [Opt(I)]2/3 + o(Opt(I)) (11)

with high probability. Combining Equations (7), (9), and (11), the number of bins, Aj ,
opened in the stage j is bounded as,

Aj = Aj
proxy + Aj

unmatch + Aj
small

≤ α(1 + 4δ)
∣∣Tj

∣∣
n

E [Opt(I)] + C6E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + 4δ) |Tj |
n

E [Opt(I)] + C6E [Opt(I)]2/3 + o(Opt(I)) (12)

w.h.p., for some constant C6. To bound the sum of all Ajs, first note that the number
of “remaining stages” is m− 1 which is a constant dependent on δ. Hence, with high
probability,

m−1∑
j=1

Aj ≤ α(1 + 4δ)
m−1∑
j=1

∣∣Tj

∣∣
n

E [Opt(I)] + (m− 1) · C6E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + 4δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I)) (13)

for some constant C7 > 0 dependent on δ.
In the sampling phase, we have NF(T0) ≤ 4δE [Opt(I)] with high probability and in all the
remaining phases we have

∑m−1
j=1 Aj ≤ α(1 + 4δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I)).

Combining both the results we get that w.h.p. the number of bins opened by Alg is,

Alg(I) ≤ α(1 + 8δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + ε)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I)) (14)

In the low probability event when Equation (14) may not hold, we can bound Alg(I)
as follows. In the sampling stage, we have that Alg(T0) ≤ 2Opt(I)− 1. For the remaining
stages, we bound the number of bins containing at least one large item and the number of
bins containing only small items. Because we create a proxy packing at the start of each
stage, each large item is packed at most m times. So, the number of bins containing at least
one large item is at most m |Iℓ|. In each stage, with one possible exception, every bin opened
which has only small items has an occupancy of at least (1−δ). Combining over all the stages,
the number of bins which contain only small items is at most 1

1−δW(Is) + m. Thus, we can
bound the total number of bins used by Alg to be at most 2Opt(I) + m |Iℓ|+ 1

1−δW(Is) + m.
On the other hand, we know that Opt(I) ≥ W(I) ≥ δ |Iℓ|+W(Is). Hence, we obtain that
m |Iℓ|+ 1

1−δW(Is) ≤ m
δ(1−δ) Opt(I). Combining all these, we obtain that

Alg(I) ≤
(

2 + m

δ(1− δ)

)
Opt(I) + m (15)

Now, to obtain the competitive ratio, suppose Equation (14) holds with probability p(=
1− o(1)). We combine Equations (14) and (15) similar to the case when |L0| ≤ δ3 · W(T0).

E [Alg(I)] ≤ p(α(1 + 8δ)E [Opt(I)] + o(E [Opt(I)]))

+ (1− p)
((

2 + m

δ(1− δ)

)
E [Opt(I)] + m

)
≤ α(1 + ε)E [Opt(I)] + o(E [Opt(I)]) (since 1− p = o(1))

Scaling the initial value ε to ε/α before the start of the algorithm, we obtain a competitive
ratio of α + ε.
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Figure 1 Doubling trick visualized. We start off with an estimate of n to be n0 and keep doubling
it. The first and second super-stages contain n0 items each. The third super-stage contains 2n0

items and so on. Each super-stage is packed individually using Alg. The stages in each super-stage
are marked by • (for simplicity, only the stages in the last two super-stages are marked). The ×
mark indicates the point where the input abruptly stopped. Notice how the fifth stage of the last
super-stage is not full. Just before packing this stage, Alg constructs a proxy packing of χ by using
Aα. But this is very lossy since χ is large compared to this last stage.

2.2 Getting Rid of the Assumption on the Knowledge of the Input Size
In this subsection, we will extend Alg for online bin packing with i.i.d. items to devise an
algorithm that guarantees essentially the same competitive ratio without knowing the value
of n. We denote this algorithm by ImpAlg.

We use a doubling trick as follows. We first guess the value of n to be a constant
n0 := 1/δ3. Then, we run Alg until min{n, n0} items arrive (here, if min{n, n0} = n, then it
means that the input stream has ended). If n > n0, i.e., if there are more items to arrive,
then we revise our estimate of n by doubling it, i.e., the new value of n is set as n1 := 2n0.
We start Alg afresh on the next min{n, n1} − n0 items. If n > 2n0, then we set the new
guess of n to be n2 := 2n1 = 22n0 and start Alg afresh on the next min{n, n2} − n1 number
of items. We continue this process of doubling our estimate of n until all the items arrive.
See Figure 1 for an illustration. The pseudocode is provided in the full version.

We consider the following partition of the entire input into super-stages as follows: The
first super-stage, Γ0, contains the first n0 items. The second super-stage, Γ1, contains the next
n1 − n0 items. In general, for i > 0, the (i + 1)th super-stage, Γi, contains min{ni, n} − ni−1
items which are given by xni−1+1, xni−1+2, . . . , xmin{n,ni}. So, essentially, ImpAlg can be
thought of running Alg on each super-stage separately. The number of super-stages is given
by κ := ⌈log(n/n0)⌉. The last super-stage might not be full, i.e., ideally, it should contain
n/2 items but it may not. An even worse case would be when the last stage of the last
super-stage is not full, i.e., when it contains fewer than |Γτ−1| /2 items where Γτ−1 is the
last super-stage. To see why this is bad, note that since we had assumed the value of n in
Alg, it was possible to make sure that the last stage had exactly n/2 items. This is crucial
because our analysis heavily relied on the fact that |Tj | =

∣∣Tj

∣∣ for any stage Tj . This meant
that the item set Tj fit almost perfectly in the proxy packing of Tj . But if the last stage
Tm−1 contains far fewer items than Tm−1, then we might be opening far too many proxy
bins than required (see the description of the last super-stage in Figure 1). Hence, we need a
slight tweak in Alg in the way it packs a stage.

2.2.1 A Tweak to Alg in the Way in which a Stage is Packed
Recall that for any j > 1, we pack Tj as follows. Just before the stage Tj starts, we pack Tj

using Aα (the proxy packing). Instead of packing the entire set Tj at once, we do this in
chunks. We divide the entire set Tj into η := 1/δ number of equal chunks. Let’s denote these
chunks by Tj

(1)
, Tj

(2)
, . . . , Tj

(η). Suppose each chunk contains cj number of items. We first
pack Tj

(1) using Aα . Let this packing be denoted by P(1)
j . We pack the first cj items of Tj

by fitting them in the packing P(1)
j just like we packed a stage in Alg by creating S-slots for

small items and replacing a proxy item if we need to pack a large item. Then, we pack Tj
(2)
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using Aα and fit the next cj items of Tj in this packing just like before. We continue this
process until all the items in Tj are packed. This way, if the size of Tj is very small compared
to that of Tj , then we only compute the proxy packing of only a few chunks and not of the
entire set Tj . On the other hand, if |Tj | is significant when compared to

∣∣Tj

∣∣, then we are
anyway good since the number of chunks η is a constant. Intuitively, the optimal solution
for Tj and the union of optimal solutions for η chunks Tj

(1)
, Tj

(2)
, . . . , Tj

(η) are close enough
when η is a constant. See the pseudocode of PackStage in the full version for details.

2.2.2 Analysis
The analyses of both ImpAlg and the tweak to Alg can be found in the full version. The
intuition to why the tweak to Alg doesn’t cause much problem has already been provided
above. The analysis of ImpAlg is a bit complicated though. When n was known we had O(1)
stages. However, now we can have κ := ⌈log(n/n0)⌉ number of super-stages. There can arise
two problems:

We can not analyze each super-stage individually and then sum up the performance
guarantees, as we can not use union bound for a super-constant number of events.
Moreover, we can’t even use the analysis of Alg for the first few super-stages since they
might only have a constant number of items. So, we consider the κ1 :=

⌈
log(δ7n)

⌉
number

of the initial super-stages at a time. We show that these initial super-stages contain
only a small fraction of the entire input. Each of the final (κ− κ1) super-stages can be
individually analyzed using the analysis of Alg.
For each super-stage, we can have a constant number of S-bins (bins which contain
only small items) with less occupancy. However, since the number of super-stages itself
is a super-constant, this can result in a lot of wasted space. For this, we exploit the
monotonicity of NF to ensure that we can pack small items from a super-stage into empty
slots for small items from the previous stages.

See the full version for the details.

3 Best-Fit under the Random-Order Model

In this section, we will prove Theorems 3 and 4.

3.1 When Item Sizes are Larger than 1/3
First, let us recall upright matching and a related result that we will be using.

Upright Matching Problem. For a positive integer k, let Sk denote the set of all permuta-
tions of [k]. Consider a set of points P in the two-dimensional coordinate system. Suppose
each item is marked as a plus point or a minus point. Let P + denote the set of plus points
and let P − denote the set of minus points. An edge exists between two points p+, p− iff
p+ ∈ P +, p− ∈ P − and iff p+ lies above and to the right of p−, i.e., both the coordinates of
p+ are greater than or equal to the corresponding coordinates of p−. The objective is to find
a maximum matching in this graph or, in other words, minimize the number of unmatched
points. We denote the number of unmatched points by U(P ).

We will use the following variant of upright matching to prove the final result. Refer
to [9] for the proof of the following lemma.

▶ Lemma 12 ([9]). Let k ∈ N and let A = {a1, a2, . . . , a2k} such that ai ≥ ak+i for
all i ∈ [k]. Define a set of plus points P + = {(i, ai) : i ∈ [k]} and a set of minus
points P − = {(i, ai) : k < i ≤ 2k}. Suppose we randomly permute the x-coordinates of
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P + ∪ P −, i.e., for a uniform random permutation π ∈ S2k, we redefine P + and P − as
P + = {(π(i), ai) : i ∈ [k]} and P − = {(π(i), ai) : k < i ≤ 2k}. Let P = P + ∪ P −. Then,
there exist universal constants a, C, K > 0 such that

P
[
U(P ) ≥ K

√
k(log k)3/4

]
≤ C exp(−a(log k)3/2) (16)

▶ Remark 13. In the above lemma, if we change the definitions of P +, P − to be P +
new =

{(−π(i), ai) : i ∈ [k]}, P −
new = {(−π(i), ai) : k < i ≤ 2k}, the guarantee given by Equa-

tion (16) doesn’t change since the new set P +
new ∪P −

new can be constructed by taking a mirror
image of the original set P + ∪ P − with respect to the y-axis. Since we consider random
permutations, the probability of a set and its mirror image is the same.
With the above lemma and remark at hand, we now proceed to prove Theorem 3. Albers et
al. [1] showed that the asymptotic random order ratio of the Best-Fit algorithm is at most
1.25 when all the item sizes are more than 1/3. In this section, we improve it further and show
that, Best-Fit for this special case under the random-order model is nearly optimal. We first
show that the Modified Best-Fit algorithm [11] is nearly optimal and we analyze this using
the above variant of stochastic upright matching. The Modified Best-Fit (MBF) algorithm is
the same as BF except that it closes a bin if it receives an item of size less than 1/2. Shor[44]
showed that MBF dominates BF, i.e., for any instance I, BF(I) ≤ MBF(I). MBF can
be easily reduced to upright matching as follows. Given an instance I = {x1, . . . , xn}, for
any item xi ∈ I, xi ∈ P − if xi ≤ 1/2 with x-coordinate as −i and y-coordinate as xi, and
xi ∈ P + if xi > 1/2 with x-coordinate as −i and y-coordinate as 1− xi. So, any item xs of
size ≤ 1/2 can be matched with an item xℓ of size > 1/2 if and only if, xℓ arrives before xs

and the remaining space in the bin occupied by xℓ is more than the size of xs.
Define an item xi as a large item (L) if xi > 1/2; otherwise, as a medium item (M) if

xi ∈ (1/3, 1/2]. We define a bin as LM -bin if it contains one large item and one medium
item. We use the following lemma which was proved in [1] using the monotonicity property
of BF when all item sizes are more than 1/3.

▶ Lemma 14 ([1]). Let I be any list that can be packed into Opt(I) number of LM -bins. If
Best-Fit has an AAR of α for I, then it has an AAR of α for any list of items larger than
1/3 as well.

Consider an input instance which has an optimal packing containing only LM -bins.
Consider the number of bins opened by MBF for such instances. Each large item definitely
opens a new bin, and a medium item opens a new bin if and only if it can not be placed
along with a large item, i.e., it is “unmatched”. So, the number of bins opened by MBF
equals (number of large items+number of unmatched medium items).

Now, we will prove our result.

▶ Theorem 15. For any list I of items larger than 1/3, the asymptotic random order ratio
RR∞

BF = 1.

Proof. From Lemma 14, it is enough to prove the theorem for any list I that can be packed
in Opt(I) LM -bins. So, we can assume that I has k large items and k medium items where
Opt(I) = k. Now consider the packing of MBF for a randomly permuted list Iσ. We have,
MBF(Iσ) = (k+number of unmatched medium items). Since the optimal packing has all the
items matched, we can reduce the following case into the matching variant in Lemma 12: Let
ℓi, mi denote the sizes of the large item and the medium item respectively in the ith bin of the
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optimal solution. For i ∈ [k], we let ai = 1− ℓi and ak+i = mi and let A = {a1, a2, . . . , a2k}.
Note that the required condition in Lemma 12, i.e., ai ≥ ak+i is satisfied. The arrival order
is randomly sampled from S2k. So, we have

MBF(Iσ) = k + U(P )
2 ≤ k + K

√
k(log k)3/4

with probability of at least 1−C exp(−a(log k)3/2) for some universal constants a, C, K > 0.
Since MBF dominates BF we have

P
[
BF(Iσ) ≤ k + K

√
k(log k)3/4

]
≥ 1− C exp(−a(log k)3/2).

In case the high probability event does not occur, we can use the bound of BF(I) ≤
1.7Opt(I) + 2. Let p := C exp(−a(log k)3/2). Then

E [BF(Iσ)] ≤ p(1.7E [k] + 2) + (1− p)(E [k] + K
√
E [k](logE [k])3/4)

≤ E [Opt(I)] + o(E [Opt(I)]) (since p = o(1))

So, we get: RR∞
BF = lim sup

k→∞

(
sup

I:Opt(I)=k

(E[BF(Iσ)]/Opt(I))
)

= 1. This completes the

proof. ◀

3.2 The 3-Partition Problem under Random-Order Model
In this section, we analyze the Best-Fit algorithm under the random-order model given that
the item sizes lie in the range (1/4, 1/2], and thus prove Theorem 4. We call an item small if
its size lies in the range (1/4, 1/3] and medium if its size lies in the range (1/3, 1/2]. Let I be
the input list of items and let n := |I|. Recall that given σ, a uniform random permutation
of [n], Iσ denotes the list I permuted according to σ. We denote by Opt(Iσ), the number of
bins used in the optimal packing of Iσ and by BF(Iσ), the number of bins used by Best-Fit
to pack Iσ. Note that Opt(Iσ) = Opt(I).

If there exists a set of three small items in Iσ such that they arrive as three consecutive
items, we call that set to be an S-triplet. We call a bin to be a k-bin if it contains exactly
k items, for k ∈ {1, 2, 3}. We sometimes refer to a bin by mentioning its contents more
specifically as follows: An MS-bin is a 2-bin which contains a medium item and a small
item. Similarly, an SSS-bin is a 3-bin which contains three small items. Likewise, we can
define an M -bin, S-bin, MM -bin, SS-bin, MMS-bin, and MSS-bin.

Since the item sizes lie in (1/4, 1/2], any bin in the optimal packing contains at most
three items. For the same reason, in the packing by Best-Fit, every bin (with one possible
exception) contains at least two items. This trivially shows that the ECR of Best-Fit is at
most 3/2. To break the barrier of 3/2, we use the following observations.

Any 3-bin must contain a small item.
So, if the optimal solution contains a lot of 3-bins, then it means that the input set
contains a lot of small items.

We will prove that if there exist many small items in the input, then with high probability,
in a random permutation of the input, there exist many disjoint S-triplets.

▷ Claim 16. Let m be the number of small items in the input set I, and let Xσ denote the
maximum number of mutually disjoint S-triplets in Iσ. Suppose m ≥ cn where c = 0.00033,
then the following statements hold true:
1. E [Xσ] ≥ m3/(3n2)≥ c3n/3.
2. Xσ ≥ c3n/3− o(n) with high probability.
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Then, we prove that Best-Fit packs at least one small item from an S-triplet in a 3-bin
or in an SS-bin.

▷ Claim 17. Let {S1, S2, S3} be an S-triplet in I such that S3 follows S2 which in turn
follows S1. Then, in the final packing of Best-Fit of I, at least one of S1, S2, S3 is packed in
a 3-bin or in an SS-bin.

But the number of SS-bins in the final packing of Best-Fit can be at most one. So, we obtain
that the number of 3-bins in the Best-Fit packing is significant. With these arguments,
the proof of Theorem 4 follows. The detailed proofs of the above two claims and the final
theorem is given in the full version.

4 Conclusion

We studied online bin packing under two stochastic settings, namely the i.i.d. model, and
the random-order model. For the first setting, we devised a meta-algorithm which takes any
offline algorithm Aα with an AAR of α (where α can be any constant ≥ 1), and produces an
online algorithm with an ECR of (α + ε). This shows that online bin packing under the i.i.d.
model and offline bin packing are almost equivalent. Using any AFPTAS as Aα results in an
online algorithm with an ECR of (1 + ε) for any constant ε > 0. An interesting question of
theoretical importance is to find whether achieving an ECR of 1 is possible or not. Another
related open question is if we can settle online bin packing under the random-order model as
well.

Then, we studied the analysis of the well-known Best-Fit algorithm under the random-
order model. First, we proved that the ECR of Best-Fit is equal to one if all the item sizes
are greater than 1/3. Then, we improved the analysis of the Best-Fit from 1.5 to ≈ 1.4941,
for the special case when the item sizes are in the range (1/4, 1/2]. An open question is to
further improve this analysis since these instances are conjectured to be the hardest (offline)
instances of bin packing. Another interesting problem would be to improve the lower bound
on the ECR of Best-Fit in this model (which is currently 1.1 due to [2]).
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Abstract
Motivated by placement of jobs in physical machines, we introduce and analyze the problem of

online recoloring, or online disengagement. In this problem, we are given a set of n weighted vertices
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1 Introduction

The following situation is not uncommon in server farms, such as a data center of a cloud
provider: Jobs (or virtual machines) are created and located at various physical machines,
and then it turns out that some of the jobs cannot co-exist on the same machine. Such
restrictions may be due to various reasons, e.g., conflicting resource requirements, security
considerations etc. (cloud providers allow users to express these constraints using so-called
“anti-affinity rules:” see, e.g., [1]). When such a conflict arises between co-located jobs, at least
one of these jobs must migrate to another machine, at a cost. Motivated by such scenarios,
in this paper we introduce and study the Disengagement Problem, in which disengagement
(anti-affinity) requests arrive on-line, and the goal is to minimize the overall cost of job
migrations.
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13:2 Competitive Vertex Recoloring

More specifically, we abstract the problem as follows (more details in Section 2). We
view the problem as an online graph coloring problem with recourse. Initially, we are given
a vertex-weighted graph G0 = (V, ∅) of n isolated vertices, and a coloring c0 : V → [k],
where k ∈ N is a given parameter.1 (Vertices correspond to jobs and colors correspond to
machines.) The input is a sequence of edges e1, e2, . . . that arrive one at each step. After
each step i, we are required to output a new coloring ci : V → [k] such that under ci, no
edge in e1, . . . , ei is monochromatic. The cost of a given sequence of colorings c0, c1, . . . is the
total weight of recolorings, i.e., the sum over all vertices of vertex weight times the number
of times that vertex was recolored. Due to this formalization, in this paper we refer to the
problem interchangeably as Vertex Recoloring or Disengagement.

Our results. We study online disengagement from the competitive analysis viewpoint [14].
(Note that an optimal offline solution never recolors a vertex more than once.) Since vertex
coloring is a hard problem [16], we focus on two cases which are polynomially solvable, namely
2-colorable graphs and (∆ + 1)-coloring, where ∆ denotes the maximum vertex degree.

1. For 2-coloring, we give a deterministic, O(log n)-competitive algorithm. We also show a
matching lower bound of Ω(log n) on the competitiveness of randomized algorithms.

2. For (∆ + 1)-coloring, we present:
A deterministic, O(∆)-competitive algorithm, and a matching Ω(∆) lower bound.
A randomized, O(log ∆)-competitive algorithm, and a matching Ω(log ∆) lower bound.

In all the above cases, our algorithms work with weighted vertices, and our lower bounds
apply even to unweighted instances.

We briefly consider the variant of fully-dynamic online disengagement, in which conflicts
are temporary, as opposed to the semi-dynamic disengagement in which conflicts never
disappear (see formalization in Section 2). It turns out that fully-dynamic disengagement
is substantially harder than semi-dynamic disengagement. More specifically, even though
in this case the offline cost is not bounded by n, all lower bounds of the semi-dynamic case
apply as well. We also show that the special case of fully-dynamic disengagement with two
colors on an odd cycle (which is of course not 2-colorable in the semi-dynamic case) is at least
as hard as a certain metrical task system on an odd cycle, and hence admits a lower bound
of Ω(n)-competitiveness for deterministic algorithms (whereas the semi-dynamic problem on
even cycles is solvable by an O(log n)-competitive deterministic algorithm).

Our Techniques. For the bipartite (2-coloring) problem, our algorithm maintains a partition
of the vertices into connected components. Since there are 2 colors, each connected component
has exactly two legal colorings. When two components merge due to the arrival of a
monochromatic edge, the algorithm must choose between the two legal colorings for that
new component, where each coloring implies recoloring one of the joined components. There
are two natural heuristics for choosing which component to recolor. The greedy approach
is to recolor the lighter component; another approach, with an eye to the offline solution
(which, knowing all future edges, recolors every vertex at most once), is to recolor so as
to minimize the change from the initial coloring of the graph (as measured in weighted
Hamming distance). Unfortunately, it can be shown that each of these algorithms has Ω(n)
competitive ratio. However, perhaps surprisingly, by a balanced combination of these two
noncompetitive approaches, we obtain an O(log n)-competitive deterministic algorithm. The
competitive ratio is bounded using amortized analysis.

1 We use the notation [k] def= {1, 2, . . . , k}.
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For (∆ + 1)-coloring, key observation is that vertices that are recolored by the optimal
algorithm must be incident on all edges which are monochromatic by their initial coloring.
Therefore, our algorithm maintains a vertex cover of the edges which are monochromatic by
their initial coloring. In our algorithm, upon the arrival of an edge, only vertices in that vertex
cover are allowed to change their color. This way, we limit the set of vertices that change their
color. Coupling this with an upper bound on the total number of recolorings which a vertex
undergoes (using ∆), we can prove a bound on the competitive ratio. Specifically, we maintain
a 2-approximate weighted vertex cover using the primal-dual (local ratio) 2-competitive
algorithm; when a monochromatic edge arrives, an appropriate vertex from the vertex cover
is recolored by a color not taken by any of its neighbors. In the deterministic case, which
achieves O(∆)-competitiveness, the new color is an arbitrary available color, and in the
randomized case, the new color is a random (uniformly chosen) available color. In the latter
case, some subtle probabilistic analysis shows O(log ∆)-competitiveness.

Related Work. We do not know of previous work on competitive recoloring of vertices:
some considered recoloring, some considered competitive coloring, but this is the first work
to consider both simultaneously. We review some relevant results below.

Competitive coloring. Let us start with competitive coloring. Work on online vertex
coloring, starting with the paper of Lovász et al. [13], assume that vertices arrive one by one,
each vertex with all its incident edges. When a vertex arrives it must be assigned a color
irrevocably, maintaining a legal vertex coloring at all times. The goal is to minimize the
number of colors used by the algorithm. It is known that the competitive ratio in this case is
Θ(n/ log n) [9, 10].

Dynamic algorithms for recoloring. Recoloring has also been considered in the dynamic
data structures setting, in which one seeks to maintain a proper coloring while minimizing the
number of recolorings per vertex/edge update (arrival or departure); see, e.g., [8, 5, 15, 12].
This model differs from ours in that we do not measure costs w.r.t. the number of steps,
but w.r.t. an optimal recoloring algorithm opt for the input sequence. In particular, when
opt≪ T , where T is the length of the input sequence, we remain competitive against opt
(rather than T ); however, in dynamic recoloring (or recoloring with recourse), a constant
number of recolorings per edge arrival results in Ω(T ) cost.

For general graphs, coloring a graph using a competitively-small palette (w.r.t. its
chromatic number) is NP-hard; thus, restricting the set of graphs or their chromatic number
is necessary for polynomial running time. This is the case for the work of Kashyop et al. [12]
(who focus on bipartite graphs, max-degree bounded graphs, and graphs with bounded
arboricity), and Bosek et al. [8] (who focus on interval graphs). Indeed, our work also
focuses on coloring problems which can be tackled in polynomial time, namely 2-coloring
and (∆ + 1)-coloring. However, one can also consider coloring in general graphs, using an
(exponential time) oracle for graph coloring. This is the case for the works of Barba et al. [5]
and Solomon and Wein [15]. The best current result, due to [15], is a deterministic algorithm
that maintains a graph which is O( log3 n

d )-competitive with respect to the number of colors
(against the graph’s chromatic number), while using O(d) amortized recolorings per update,
where d is a free parameter (allowing randomization improves this result slightly).

Dynamic graph partitioning. A problem closely related to online disengagement is “dynamic
balanced graph partitioning,” introduced by Avin et al. [3, 2]. In this problem vertices
are located in finite-capacity clusters (servers), and communication requests arrive online.
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13:4 Competitive Vertex Recoloring

Communication between vertices incurs cost unless the vertices are located in the same cluster.
Vertices can migrate to other clusters, at a (larger) cost, and the algorithm is required to find
a placement of the vertices in clusters at each step. The goal is to minimize cost, and the
overall measure is the competitive ratio, possibly with resource augmentation (i.e., assuming
that the capacity available to the algorithm is larger than the capacity available to the
adversary). Intuitively, this problem is the flip side of disengagement: In partition, requests
are to collocate vertices (subject to capacity constraints), whereas in disengagement, requests
are to separate them. In [3], the fully-dynamic variant of the partition problem is considered,
where collocation requests are temporary: a pair of vertices may be collocated by a request
and later separated. It is shown in [3] that the competitive ratio of deterministic algorithms
for the dynamic case is O(k log k) and Ω(k), where k is the capacity of a cluster (both
bounds allow for resource augmentation). Recently, the semi-dynamic variant of the partition
problem was considered, in which it is guaranteed that there exists a feasible placement
of the vertices to clusters so that all communication is local (i.e., occurs within a cluster).
In [11], tight bounds on the competitive ratios of deterministic and randomized algorithms
for semi-dynamic partition are given: Θ(ℓ log W ) and Θ(log ℓ + log W ), respectively, where ℓ

is the number of servers and W is the server capacity .

Paper organization. The remainder of this paper is organized as follows. In Section 2
we formalize the model and introduce some notation. In Section 3 we study the bipartite
case. In Section 4 we study (∆ + 1)-disengagement. In Section 5 we consider fully-dynamic
disengagement. We conclude in Section 6 with a few interesting open problems.

2 Model and Notation

Preliminaries. Given a natural number k, we use [k] to denote {1, 2, . . . , k}. In this paper
we are concerned with colorings of vertices in graphs. Given an undirected simple graph
G = (V, E), a proper k-coloring of G is an assignment c : V → [k] such that c(u) ̸= c(v) for
all (u, v) ∈ E.

We shall use the following definition extensively.

▶ Definition 1. Let G = (V, E) be a graph, and let w : V → R+ be a vertex weight function.
Let c, c′ be two colorings of a graph G. The weighted Hamming distance between c and c′,
denoted δH(c, c′), is defined as follows: δH(c, c′) =

∑
v : c(v)̸=c′(v)

w(v).

Problem statement. In this paper, we study the following problem.

Online Disengagement (Vertex Recoloring)
Initial Input:

A set V of n vertices with weights w : V → R+

The number of colors k ∈ N
A k-coloring c0 of V

Online Input: In each step i = 1, . . . , M , an edge ei between two vertices of V .
Output: After each step i, a proper k-coloring of the vertices ci w.r.t edges
{e1, . . . , ei}.
Goal: Minimize the total weight of vertex recolorings, i.e.,

∑M
i=1 δH(ci−1, ci).

We use Ei = {e1, e2, ..., ei} to denote the set of edges that have arrived up to and including
the ith step, and we use Gi = (V, Ei) to denote the known graph after step i.
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Note that in Online Disengagement, as is the case for any semi-dynamic graph problem,
the input sequence length can be assumed to be finite without loss of generality, as there are
only

(
n
2
)

possible distinct edges connecting vertices of V .

Special cases. In this 1paperwe consider some special cases of online disengagement. The
variants we consider are the following.

In Unweighted Online Disengagement, all vertices have weight 1.
In Bipartite Online Disengagement, we are guaranteed that the input graph is 2-colorable.
In (∆ + 1) Online Disengagement, we are guaranteed that the maximum degree of the
input graph does not exceed ∆, and the available number of colors is ∆ + 1.

Fully-dynamic disengagement. The problem, as stated above, is called semi dynamic, in
the sense that edges only arrive and never leave. However, in some cases, the presence of
edges restricting the solution may be temporary. In the fully-dynamic online disengagement
variant, edges may leave too. The input and the output to the problem, as well as the cost
measure, are the same, but the feasibility requirement is different: The coloring output by
the algorithm after each step need be a proper coloring for Gi = (V, E′

i), where E′
i ⊆ Ei. We

discuss several different definitions of E′
i in Section 5.

3 Bipartite Disengagement

In this section we consider disengagement for bipartite graphs and k = 2. In other words, we
are promised that the final graph G (and hence every intermediate graph) is 2-colorable, and
the requirement is to find, at each step, a legal 2-coloring, while minimizing the overall cost.

Note that this case is stricter than (∆ + 1)-disengagement, since the maximum degree
∆ is typically large (the case ∆ = 1 is trivial). Indeed, we show in this section that the
competitive ratio in this case is Θ(log n). We start with an O(log n)-competitive deterministic
algorithm for the weighted case, and then prove an Ω(log n) lower bound on the competitive
ratio of any (randomized) algorithm that holds even in the unweighted case.

3.1 Simple approaches
Any algorithm for 2-coloring maintains, throughout its execution, the partition of the nodes
into connected components. Since there are only 2 colors, each connected component has
two possible proper colorings. Whenever two components are joined by a new edge, if their
colorings agree (i.e. the two ends of the arriving edge are colored differently), the algorithm
may output the previous coloring unaltered. Otherwise, when the edge is monochromatic, the
algorithm must decide which of the two colorings is adopted by the newly created component:
each coloring implies recoloring all nodes in one of the components being joined. There are
two natural approaches one can consider. One approach we call “greedy” is to recolor the
component of the smaller weight; another approach we call “conservative” is to choose the
colorings which is closer to the initial coloring. Both approaches are not competitive, as we
show below. For convenience, we refer to the two colors as red and blue.

The Greedy algorithm. First, consider the algorithm that always flips the color of the
smaller component (weight-wise). Consider an input sequence of a connected component in
the form of a double star:
1. Create an edge between two arbitrary red nodes. The node that stays red becomes the

red hub, and the other one becomes the blue hub.
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2. Do until there are no isolated nodes:
a. Let v be some isolated node.
b. Create a monochromatic edge between v and its matching hub.

Every isolated node is a component of size 1. When it is connected via an edge to the
component of the hubs (which is at least of size 2) the algorithm flips its color. In fact, the
online algorithm flips the color of every node in the graph except for the red hub (paying a
cost of n− 1), while the optimal algorithm only chooses the other coloring for the two hubs,
paying a cost of 1. We conclude that the competitive ratio of the greedy algorithm is Ω(n).

The Conservative algorithm. Consider now the algorithm which always prefers the coloring
that is closer (i.e, smaller Hamming distance) to the initial coloring. Assume w.l.o.g. that
initially, at least half of the nodes are red. Now, we subject it to the following input sequence,
which creates a connected component in the form of a chain:
1. Create an edge between two red nodes
2. Do until there are no isolated red nodes:

a. Let v be some red, isolated node.
b. If one of the chain end-nodes u is red, create an edge (u, v).
c. Otherwise, create an edge between v and any of the chain end-nodes

The chain grows by one node each iteration; in half of the iterations is has an equal number
of blue and red nodes. When that happens, the following holds:
1. One of the chain end-nodes is red (since the chain is of even length)
2. Flipping the colors of all of the nodes in the chain does not increase the distance from

the initial coloring
Therefore, in every even iteration, a new edge connects two red nodes, to which the algorithm
responds by flipping the color of every node in the chain. Overall, the algorithm pays a cost
of Ω(n2), while an optimal algorithm colors at most half of the nodes exactly once, or a cost
of O(n). It follows that the competitive ratio of the conservative algorithm is Ω(n) as well.

3.2 A Competitive Algorithm
While each approach discussed in Section 3.1 resulted in Ω(n) competitive ratio, the following
combination of them is O(log n)-competitive: If one of the two possible coloring is such that
at least two-thirds of the weighted nodes will have their original color c0 (and therefore that
coloring has less than half the Hamming distance to the original coloring than the alternative),
that alternative is chosen by the algorithm. Otherwise, no coloring has a significantly smaller
Hamming distance, and in this case the algorithm prefers the “cheaper” coloring, i.e., the
algorithm recolors the component with the smaller weight.

Pseudocode of the algorithm to be executed upon the arrival of a new edge ei is given in
Algorithm 1. For a subset of nodes V ′, we use c↾V ′ to denote the restriction of the coloring
c to the set of nodes V ′. For convenience, we write δ(c) as a shorthand for δH(c, c0). We
also use δ(c↾V ′) to refer to δH(c↾V ′ , c0↾V ′), i.e. the weighted Hamming distance between the
coloring c and the initial coloring c0 restricted to the set of nodes V ′.

We consider the partition of V into connected components. Let Pi be the set of connected
components after the arrival of ei, and define P0 = {{v} | v ∈ V }. Note that in the
bipartite case, the color of one node determines the coloring of all nodes in its connected
component. Therefore, if ei is monochromatic upon arrival, it necessarily connects two
connected components S1, S2 ∈ Pi−1 into a new component S (cf. line 5).

We now analyze the algorithm. Specifically, we prove the following theorem.
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Algorithm 1 Recoloring for bipartite graphs, invoked upon arrival of edge ei = (u, v).

1: if ci−1(u) ̸= ci−1(v) then
2: ci := ci−1

3: return // no recoloring
4: end if // otherwise, u and v belong in different components
5: Let S1, S2 be the components of u and v in Gi−1, and let S be their common component in Gi

6: Let w(Si) be the sum of the weights of the nodes in the set Si

7: Define colorings γ1 and γ2 by flipping the colors of components S1 and S2, respectively, i.e., for
all z ∈ V :

γ1(z) =

{
ci−1(z), if z /∈ S1

3− ci−1(z), if z ∈ S1
and γ2(z) =

{
ci−1(z), if z /∈ S2

3− ci−1(z), if z ∈ S2

8: if δ(γ1↾S) ≥ 2δ(γ2↾S) then
9: ci := γ2

10: else if δ(γ2↾S) ≥ 2δ(γ1↾S) then
11: ci ← γ1

12: else if w(S1) ≥ w(S2) then
13: ci ← γ2

14: else
15: ci ← γ1

16: end if

▶ Theorem 2. Algorithm 1 is O(log n)-competitive.

Fix an input sequence {ei}i and an optimal coloring c∗, i.e., δ(c∗) is minimal among all legal
colorings of the final graph G. Denote r := δ(c∗), and let alg denote the cost of Algorithm 1
on the given input sequence. We prove the theorem by showing that alg ≤ O(r log r).

We need some additional terminology.
Given a connected component S and a coloring c, we say that S is well colored by c if
c↾S= c∗↾S is consistent with c∗. Otherwise, we say that S is badly colored.
Let R ⊆ V be the subset of nodes v such that c∗(v) ̸= c0(v). By definitions, w(R) = r.

The following claim says that in every badly colored component, a significant fraction of the
weight is contributed by nodes recolored by the optimum.

▶ Proposition 3. For all i and all S ∈ Pi, if S is badly colored then w(S) < 3w(S ∩R).

Proof. We prove the claim by induction on i, the number of edges inserted. For i = 0 we
have that P0 is a collection of singletons. Let S = {v} ∈ P0. If S is badly colored then by
definitions, v ∈ R, and hence S ∩R = S, proving the base case.

Assume now that the claim holds for all components in Pi−1. It suffices to show that
if a new component is created by the arrival of edge ei = (v1, v2), the claim holds for that
component. So assume that S is created by merging S1, S2 ∈ Pi−1, where v1 ∈ S1 and
v2 ∈ S2.

If ci−1(v1) ̸= ci−1(v2), then ci = ci−1, and thus the component S is badly colored iff the
components S1, S2 are both badly-colored (note that it cannot be that only one is badly
colored, since that would imply the infeasibility of c∗). Using the induction hypothesis, if S

is badly colored then

w(S) = w(S1) + w(S2) < 3(w(S1 ∩R) + w(S2 ∩R)) = 3w(S ∩R) ,

completing the proof for the case that ci−1(v1) ̸= ci−1(v2).
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13:8 Competitive Vertex Recoloring

Assume henceforth that ci−1(v1) = ci−1(v2). When the component S is formed, the
algorithm considers the two colorings γ1 and γ2 for S, where γ1 and γ2 are formed from
ci−1 by recoloring S1 and S2, respectively. Thus, the colorings of S under γ1 and γ2 are
negations of one another. One of these colorings, wlog γ1, is consistent with c∗, and thus
δ(γ1↾S) = w(S ∩R). Since γ2 is the negation of γ1, it holds that δ(γ2↾S) = w(S)−w(S ∩R).

If the component S is badly colored, it must be that γ2 is chosen. For this to happen, it
must hold that δ(γ2↾S) < 2δ(γ1↾S). Simplifying, we get w(S) < 3w(S ∩R), completing the
proof. ◀

▶ Corollary 4. If a component has weight larger than 3r, then the component is well-colored.

Proof. By Proposition 3 and the fact that for any component S, w(S ∩R) ≤ r. ◀

▶ Lemma 5. The weight of nodes recolored by Algorithm 1 throughout the execution is at
most 3r.

Proof. Clearly, the total weight of nodes in R which change color during the algorithm is at
most w(R) = r. It remains to bound the weight of nodes that change color in V \R; denote
the set of those nodes by U .

Let B ⊆ 2V be the collection of subsets of V which were badly-colored components in the
algorithm at some point. We claim that B is a laminar collection – that is, for every two
components S1, S2 ∈ B it holds that either S1 ⊆ S2, S2 ⊆ S1 or S1 ∩ S2 = ∅. Indeed, B is
laminar since it is contained in the collection of all connected components which are formed
in the algorithm, which is itself laminar.

Since B is a laminar collection, there exists a subcollection B′ ⊆ B of disjoint components
such that

⋃
S∈B S =

⋃
S∈B′ S.

Consider any node v ∈ U . The coloring c∗ is consistent with c0 on this node v; thus,
for this node to change color during the algorithm, it must be part of some badly-colored
component at some point during the algorithm. This implies that U ⊆

⋃
S∈B S =

⋃
S∈B′ .

w(U) =
∑

S∈B′

w(U ∩ S) ≤
∑

S∈B′

w((V \R) ∩ S)

=
∑

S∈B′

w(S \R)

≤ 2
∑

S∈B′

w(S ∩R) by Proposition 3

≤ 2w(R) = 2r . ◀

Next, we define a potential function ϕ such that ϕ(i) = 6δ(ci). Note that ϕ(0) = 0, and
that ϕ is nonnegative. Following the conventional notation, denote ∆ϕi = ϕ(i)− ϕ(i− 1) for
every i > 0.

For every i ∈ N, let algi be the cost incurred by the algorithm in step i, i.e., δH(ci, ci−1).
Define

I+ def= {i | algi + ∆ϕi > 0} .

Then we have

alg =
∑

i

algi ≤
∑

i

(algi + ∆ϕi) ≤
∑
i∈I+

(algi + ∆ϕi) ≤
∑
i∈I+

7algi , (1)

where the last inequality uses the fact that changing the coloring of nodes of total weight s

increases the coloring’s weighted Hamming distance from c0 by at most s, and thus increases
ϕ by at most 6s.
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▶ Proposition 6. If v ∈ V is recolored in step i ∈ I+, then the weight of the connected
component of v grows by a factor of at least 5

4 in step i. That is, denoting by S, S′ the old
and new components of v respectively, it holds that w(S′) ≥ 5

4 w(S).

Proof. Node v changes color when some components S1, S2 ∈ Pi−1 are merged to form
S ∈ Pi, and one of these components, wlog S2, changes color, where v ∈ S2. We now must
show that w(S) ≥ 5

4 w(S2). Denote by γ1 and γ2 the colorings formed from ci−1 by recoloring
S1 and S2 respectively; since S2 is recolored, the algorithm chose γ2.

If γ2 is chosen in line 13 of Algorithm 1, then trivially w(S) ≥ 2w(S2) ≥ 5
4 w(S2) and the

proof is complete.
Otherwise, the algorithm chose γ2 in line 9 because δ(γ1↾S) ≥ 2δ(γ2↾S). Let us denote

s1 = w(S1), s2 = w(S2), x1 = δ(ci−1↾S1) and x2 = δ(ci−1↾S2). It holds that δ(γ1↾S) =
s1 − x1 + x2 and δ(γ2↾S) = s2 − x2 + x1. Thus,

s1 + x2 ≥ s1 − x1 + x2 ≥ 2(s2 − x2 + x1) ≥ 2(s2 − x2) ,

and therefore s1 ≥ 2s2 − 3x2. Adding s2 to both sides, we have that

s1 + s2 ≥ 3(s2 − x2) . (2)

Now, recall that i ∈ I+, and thus

0 ≤ algi + ∆ϕi = s2 + 6((s2 − x2)− x2) = 7s2 − 12x2 . (3)

Eq. (3) implies that x2 ≤ 7
12 s2. Plugging into (2), we get w(S) = s1 + s2 ≥ 3s2 − 3x2 ≥

3s2 − 7
4 s2 = 5

4 s2 = 5
4 w(S2) which completes the proof of the proposition. ◀

Proof of Theorem 2. By Eq. (1), it is enough to bound 7
∑

i∈I+ algi. Consider any step
i in which some component S ∈ Pi−1 is recolored, upon being connected to a second
component in Pi−1. Consider the subset W

def=
{

u ∈ S | w(u) < w(S)
2n

}
. It holds that

w(W ) ≤ n · w(S)
2n = w(S)

2 , and thus w(S) ≤ 2w(S \W ). Therefore,

algi = w(S) ≤ 2w

({
u ∈ S | w(u) ≥ w(S)

2n

})
. (4)

Plugging Eq. (4) into Eq. (1), and denoting by Si ∈ Pi−1 the component that was recolored
in step i, it thus remains only to bound the term

14
∑
i∈I+

w

({
u ∈ Si | w(u) ≥ w(Si)

2n

})
. (5)

Using Lemma 5, and denoting by U the set of nodes recolored by the algorithm, we know
that w(U) ≤ 3r. Consider a node u ∈ U : each time the node u is recolored in a step from I+,
the weight of the component containing u grows by a factor of at least 5

4 (by Proposition 6).
Thus, each node can be recolored in steps from I+ at most O(log n) times before the weight
of u’s component exceeds 2n · w(u). This implies that the term in Eq. (5) can be bounded
by O(log n) · w(U) = O(log n) · r, and thus alg ≤ O(log n) · r, completing the proof. ◀

3.3 A Lower Bound
We present a general lower bound in the unweighted case. We note that a similar argument
is used in [12] by Kashyop et al., where it is shown in the context of data structures that any
deterministic algorithm that maintains a 2-coloring must perform Ω(n log n) recolorings for
the worst-case O(n) edge insertions.
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▶ Theorem 7. The competitive ratio of any randomized algorithm for recoloring bipartite
graphs is Ω(log(n)).

Let A(I) be the cost of algorithm A on an instance (input sequence) I. According to Yao’s
principle, it suffices to show an instance distribution D such that the expected cost of every
deterministic algorithm A is E[A(I)] = Ω(log n), where the expectation is for instances
chosen by D. In the proof below we construct such a distribution.

Proof. Assume w.l.o.g. that n is a power of 2 (otherwise, we work only with 2⌊log n⌋ nodes,
leaving the others isolated). We construct an input sequence in log n phases, while maintaining
the following invariant:

After each phase h: (i) there are n/2h connected components, and (ii)each connected
component is a chain of 2h nodes.

Clearly, the invariant holds before the execution begins, when there are n isolated nodes.
Note that we allow for any initial coloring.

In each phase h, for h = 1, . . . , log n, we connect segments in pairs by introducing n/2h

edges: each edge connects random endpoints of two segments (this is the only randomization
we use). This obviously maintains the invariant after phase h is completed.

Consider phase h for h > 1. The merging segments are of even length 2h−1 each, and
hence each segment has exactly one endpoint of each color. It follows that by construction,
each new edge is monochromatic with probability 1/2. Therefore the expected cost incurred
in phase h > 1 for any deterministic algorithm is

n

2h
· 1

2 · 2
h−1 = n

4 ,

because in phase h there are n/2h merges, and each merge has expected cost 1
2 · 2

h−1. In
summary, the cost of any deterministic algorithm on a random instance defined as above,
over all phases, is at least (log n− 1) · n/4 = Θ(n log n) (the cost of phase 1 depends on the
initial coloring). On the other hand, the optimal cost for any n-node graph is never more
than n: every node needs to be colored at most once, according to the final graph. The
result follows. ◀

4 ∆ + 1 Disengagement

In this section we consider (∆ + 1)-coloring, where ∆ is an upper bound on the number of
neighbors a node may have. We show that in this case, the competitive ratio of deterministic
disengagement is Θ(∆) and that the randomized competitive ratio is Θ(log ∆).

4.1 Algorithms
We now present our algorithms for the ∆ + 1 disengagement problem. Algorithm 2 is used in
both the deterministic and randomized versions: The only difference is the implementation of
the “recolor” subroutine it invokes (Algorithm 3 and Algorithm 4). To see how the algorithm
works, let us define an auxiliary graph G′

i = (V, E′
i) as follows:

(u, v) ∈ E′
i ⇐⇒ (u, v) ∈ Ei and c0(u) = c0(v) ,

i.e., the auxiliary graph G′
i includes only edges that connect nodes with the same initial color.

The underlying idea of Algorithm 2 is to maintain a small-weight vertex cover of G′, denoted
C, and apply recoloring only to nodes in C. (It turns out that there is no need to remember
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Algorithm 2 ∆ + 1 disengagement: Upon arrival of edge (u, v) in step i.

1: if ci−1(u) ̸= ci−1(v) then
2: return // ci = ci−1, no recoloring
3: else if | {u, v} ∩ C | = 1 then
4: let x ∈ {u, v} be the node in C; recolor(x)
5: else if | {u, v} ∩ C | = 2 then
6: let x ∈ {u, v} be the node with the higher degree; recolor(x) // break ties arbitrarily
7: else if {u, v} ∩ C = ∅ then
8: wi(u)← wi−1(u)−min(wi−1(u), wi−1(v)) // w0(v) = w(v) for all v ∈ V

9: wi(v)← wi−1(u)−min(wi−1(u), wi−1(v))
10: if wi(u) = 0 then
11: C ← C ∪ {u}; x← u

12: end if
13: if wi(v) = 0 then
14: C ← C ∪ {v}; x← v

15: end if
16: recolor(x)
17: end if

the initial coloring.) For a deterministic algorithm, we recolor using the procedure given
in Algorithm 3: change the node’s color to the first available color, where a color is said
to be available if it is not taken by any neighbor. For a randomized algorithm, we choose
uniformly at random among the available colors (Algorithm 4).

To maintain a light vertex cover, we use the classical 2-approximation algorithm of
Bar-Yehuda and Even [4] (we can use any other algorithm which processes edges one at
a time). Whenever an uncovered edge is considered, the residual weights of its endpoints
are reduced by the same amount so that one of them reaches zero. The node with residual
weight 0 (possibly both) is then added to C.

▶ Theorem 8. Algorithm 2 with Algorithm 3 is a deterministic algorithm for ∆ + 1
disengagement with competitive ratio O(∆). Algorithm 2 with Algorithm 4 is a randomized
algorithm for ∆ + 1 disengagement with expected competitive ratio O(log ∆).

We first analyze the general framework of Algorithm 2.

▶ Lemma 9. After every step, C is a vertex cover of G′. Moreover, w(C) is at most twice
the weight of any vertex cover of G′.

Proof. We first argue that C is a vertex cover of G′. Let ei = (u, v) ∈ E′. We consider two
cases. If ei is monochromatic upon arrival, then Algorithm 2 makes sure that if none of its
endpoints are in C, then at least one of them enters C (lines 7-17), so ei is covered by C in
this case. If ci(u) ̸= c0(u), then node u was necessarily recolored at some point in the past.
However, since Algorithm 2 recolors only nodes in C, we must have u ∈ C, so ei is covered
by C in this case too. Finally, the approximation bound of w(C) follows from [4]. ◀

Algorithm 3 recolor(u): deterministically
recolor node u with the first available color.

1: Let S = {c(v) | (u, v) ∈ E}
2: Let c ∈ {1, . . . , ∆ + 1} \ S // choose

arbitrarily
3: c(u)← c

Algorithm 4 recolor(u): randomly recolor
node u with an available color.

1: Let S = {c(v) | (u, v) ∈ E}
2: Let c ∈R {1, . . . , ∆ + 1} \ S // choose

randomly
3: c(u)← c
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▶ Lemma 10. Every algorithm pays a cost of at least w(C)/2.

Proof. Consider any solution to the given input. The edges in E′ are monochromatic by
the initial coloring, so every disengagement algorithm has to recolor at least one endpoint
of every edge in E′ at least once. Therefore, the set of nodes recolored by any solution is a
vertex cover of G′. The result follows now from Lemma 9. ◀

We now consider the way recoloring is done. First, the deterministic version.

▶ Lemma 11. Algorithm 2 with Algorithm 3 pays at most ∆ · w(C).

Proof. By the code, Algorithm 2 recolors only nodes in C. Observe that a node may be
recolored only when a new incident edge is introduced. Since the maximum degree of a node
is ∆, the result follows. ◀

If we use randomized recoloring, we have the following. Let H∆ = 1 + 1
2 + · · ·+ 1

∆ .

▶ Lemma 12. The expected cost of Algorithm 2 with Algorithm 4 is at most H∆ · w(C)

▶ Proposition 13. Consider any two distinct nonadjacent nodes u, v ∈ C. At any iteration,
it holds that

Pr(c(u) = c(v)) ≤ max
{

1
∆ + 1− deg(u) ,

1
∆ + 1− deg(v)

}
.

Proof. Let w ∈ {u, v} be the node that changed its color last (since both u, v ∈ C, they
both changed colors so w is always defined). It holds that:

Pr(c(u)=c(v)) = Pr(w=v)·Pr(c(u)=c(v) | w=v) + Pr(w=u)·Pr(c(u)=c(v) | w=u) .

Let Av denote the event that w = v, and assume that Av holds. Let t′ denote the last
iteration in which v changed its color, and let deg′(v) be its degree at time t′. Then v chose
its color uniformly at random from a set of available colors S whose size is at least

(∆ + 1− deg′(v)) ≥ (∆ + 1− deg(v)) ≥ min{∆ + 1− deg(u), ∆ + 1− deg(v)} .

Thus:

Pr(cu = cv | Av) =
∑

S′⊆[∆+1]

∑
s∈S′

Pr (S =S′ | Av) · Pr (cu =cv =s | S =S′, Av)

≤
∑

S′⊆[∆+1]

∑
s∈S′

Pr (S =S′ | Av) · Pr (cu =s | S =S′, Av) · Pr (cv =s | cu =s, S =S′, Av)︸ ︷︷ ︸
= 1

|S′|

=
∑

S′⊆[∆+1]

Pr (S =S′ | Av) · 1
|S′|
·

(∑
s∈S′

Pr(cu =s | S =S′, Av)
)

︸ ︷︷ ︸
≤1

≤
∑

S′⊆[∆+1]

Pr (S =S′ | Av) ·max
{

1
∆ + 1− deg(u) ,

1
∆ + 1− deg(v)

}

= max
{

1
∆ + 1− deg(u) ,

1
∆ + 1− deg(v)

}
. ◀

▶ Proposition 14. Consider any two nonadjacent nodes v ∈ C and u /∈ C. At any iteration,
it holds that

Pr(c(u) = c(v)) ≤ 1
∆ + 1− deg(v) .
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Proof. The proof is similar to that of Proposition 13. Observe the last iteration in which v

had changed its color, and denote its degree at that iteration as deg′(v). At that time, v chose
a random color from a set S of available colors, such that |S| ≥ ∆+1−deg′(v) ≥ ∆+1−deg(v).
Additionally, since u /∈ C, it has its initial coloring c(u) = c0(u). Therefore:

Pr(cu =cv) ≤
∑

S′⊆[∆+1]

Pr(S =S′) · Pr(cv =cu | S =S′)

≤
∑

S′⊆[∆+1]

Pr(S =S′) · 1
|S′|

≤ 1
∆ + 1− deg(v)

∑
S′⊆[∆+1]

Pr(S =S′) = 1
∆ + 1− deg(v) ,

where the second inequality is due to the fact that Pr(cv =cu | S =S′) equals 0 if c(u) /∈ S′

and equals 1
|S′| otherwise. ◀

Proof of Lemma 12. Fix the input sequence. Let X be a random variable representing the
overall cost of running the algorithm, and let Xv be a random variable representing the cost
incurred by recoloring a given node v ∈ V . We bound E[Xv].

Since Algorithm 2 recolors only the nodes in C, consider v ∈ C. Let ev
1, . . . , ev

deg(v) be
the subsequence of input edges incident on v. Let Xv

j denote the expected cost of recoloring
v due to edge ev

j . We bound E[Xv
j ] as follows. Suppose that v is recolored for the first

time when ej0 is input (if none exists, we are trivially done). Then for j = j0 we have
E[Xv

j0
] = w(v). For j > j0, consider the arrival of ev

j = (v, u).
If u /∈ C, then v changes its color w.p ≤ 1

∆+1−j (according to Proposition 14)
If u ∈ C and j < deg(u), then v does not change its color
If u ∈ C and j ≥ deg(u), then v changes its color w.p ≤ 1

∆+1−j (according to
Proposition 13)

Therefore, the expected cost incurred by v due to ev
j is at most w(v)

∆+1−j .
It follows that the expected cost incurred by the recoloring of node v ∈ C is at most

E[Xv] = E

deg(v)∑
j=1

Xv
j

 ≤ w(v)+
deg(v)∑

j=j0+1
E
[
Xv

j

]
≤ w(v)+

deg(v)∑
j=2

w(v)
∆ + 1− j

≤ w(v)·Hdeg(v) .

We can therefore summarize that the expected cost due to all nodes is at most

E[X] = E

[∑
v∈V

Xv

]
= E

[∑
v∈C

Xv

]
=
∑
v∈C

E [Xv] ≤
∑
v∈C

w(v) ·Hdeg(v) ≤ w(C)·H∆ .◀

Proof of Theorem 8. Follows from the lower bound on the optimum cost of Lemma 10, and
from the upper bounds on the cost of the deterministic algorithm (Lemma 11), and on the
expected cost of the randomized algorithm (Lemma 12). ◀

We note that our deterministic algorithm does not require knowledge of ∆, but the
randomized one does.

4.2 Lower Bounds for (∆ + 1)-Recoloring
We now state lower bounds on the competitive ratios of deterministic and randomized
algorithms for (∆ + 1)-recoloring. We prove the lower bounds in unweighted instances, i.e.,
the weight of each node is one. We start with a deterministic lower bound.
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▶ Theorem 15. The competitive ratio of any deterministic algorithm solving (∆+1)-recoloring
is Ω(∆), for any initial coloring.

We need the following lemma.

▶ Lemma 16. The optimal algorithm’s cost after the i-th step is at most the number of
non-isolated nodes in Gi = (V, Ei).

Proof. Since edges are constantly added to the graph Gi, any coloring that is proper for Gi

is also proper for Gj , where j ≤ i. The optimal offline algorithm can color Gi greedily using
∆ + 1 colors, and use this coloring until the i-th step. Since every node is recolored at most
one time, and the optimal algorithm might only recolor the non-isolated nodes, its cost is at
most the number of such nodes. ◀

Proof of Theorem 15. Let a deterministic algorithm be given. We construct an input
sequence in phases as follows. First we choose a set of some ∆ + 2 nodes, denoted V ′.
Note that since |V ′| > ∆ + 1, according to the pigeonhole principle, there must be at least
two nodes u, v ∈ V ′ with the same color. We then proceed in phases, where each phase is
described as follows.
1. Do until ∃v ∈ V ′ with deg(v) = ∆:

a. Select two nodes u1, u2 ∈ V ′ s.t. c(u1) = c(u2)
b. Add edge (u1, u2)

2. Let V∆ = {v ∈ V ′ | deg(v) = ∆} (note that 1 ≤ |V∆| ≤ 2)
3. Let V0 ⊆ V be a set of |V∆| isolated nodes
4. V ′ ← V0 ∪ V ′ \ V∆
Note that the number of phases can be as large as we wish, since it is bounded only by the
number of nodes, regardless of k and ∆. Consider the cost of the online algorithm. Every
new edge is monochromatic, so it pays a cost of 1 for each new edge. After s phases, at least
s nodes have left V ′, each with a degree of ∆. It follows that the cost of the online algorithm
for s phases is at least s ·∆/2 (since every edge could be counted twice).

On the other hand, by Lemma 16, the optimal cost is no more than the number of
non-isolated nodes. This number is bounded by the number of nodes that ever were in V ′,
and hence, in s phases, it is at most 2s + ∆ + 2: at most 2s nodes were removed from V ′,
and at most ∆ + 2 nodes are in V ′ after s phases. It follows that for s ≫ ∆ phases, the
competitive ratio of any deterministic algorithm is Ω(∆). ◀

Intuitively, in the Ω(∆) lower-bound proof, both Online and Offline always have to pay
(a cost of at least 1) when the new edge creates a new connected component (of size 2), since
it involves two nodes that still have their initial coloring. However, the Offline algorithm
does not have to pay when the edge is incident on a node that Offline had already changed.
We now present a lower bound for randomized algorithms.

▶ Theorem 17. The competitive ratio of any randomized algorithm for (∆ + 1)-coloring is
Ω(log(∆)), assuming that in the initial coloring there are at least two nodes of each color.

Proof of Theorem 17. Let A(I) be the cost of algorithm A on an instance (input sequence)
I. According to Yao’s principle, if there is an instance distribution, for which the expected
cost of every deterministic algorithm A is E[A(I)] ≥ L, then for every randomized algorithm
there exists an instance I such that the algorithm’s expected cost on I is at least L. We
construct a distribution over input sequences as follows. First we pick a random permutation
σ : [∆ + 1]→ [∆ + 1] of the colors. We then introduce the edges in phases as follows. In the
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first phase we pick two nodes v0, v1 ∈ V of color σ(1) and connect them with an edge. In
each subsequent phase i, i ≥ 2, we pick a node vi of color σ(i) and connect it to all nodes
v0, . . . , vi−1. Clearly, after phase i, the input edges constitute a clique over v0, v1, . . . , vi.
After phase ∆ we stop (we can repeat the construction with a fresh set of ∆ + 1 isolated
nodes).

For the cost analysis, let Ci denote the set of colors used by nodes v0, . . . , vi after phase
i. Clearly |Ci| = i + 1. In particular, for any deterministic algorithm, there exists at least
one color c∗

i ∈ Ci \ {σ(1), . . . , σ(i)}. Consider now the node vi+1, added in phase i + 1. Its
color is σ(i + 1), which is uniformly distributed over [∆ + 1] \ {σ(1), . . . , σ(i)}, and hence
Pr[σ(i + 1) = c∗

i ] = 1
∆+1−i . It follows that the expected number of monochromatic edges

(which is the expected cost of the deterministic algorithm) in phase i + 1 is at least 1
∆+1−i .

Also by construction, the number of monochromatic edges in the first phase is 1. Therefore,
the total expected cost across all phases is

E[cost] ≥ 1 +
∆−1∑
i=1

1
∆ + 1− i

= H∆ = O(log ∆) ,

where Hn denotes the nth harmonic sum. On the other hand, an optimal algorithm would
pay a cost of 1 by recoloring only a single node in the first iteration with the single color
that is never used, namely color σ(∆ + 1). ◀

5 Fully-Dynamic Disengagement

In previous sections, we considered the semi-dynamic variant of the disengagement problem,
in which every new edge is an additional, permanent constraint. In this section,we consider
the fully-dynamic variant of the online disengagement problem (abbreviated FD below),
where at every iteration i, the edge constraints may also be deleted (in FD, input sequences
may be of unbounded length). It turns out that FD is more difficult than semi-dynamic
disengagement. In this section we first discuss various plausible models of FD and show their
equivalence, and then show that even a very simple dynamic instance forces an Ω(n) lower
bound on the competitiveness of deterministic algorithms. The latter result is obtained by
reduction from Metrical Task Systems.

5.1 Dynamic Models
There are several (yet equivalent) ways to define the fully-dynamic Disengagement problem:
The single edge model (SE): At iteration i upon the arrival of edge ei = (u, v), the

algorithm must make sure that ci(u) ̸= ci(v), i.e, only the coloring of the last edge
must be maintained.

Expiration time model (ET): Every edge arrives with a prescribed expiration time - after
which it is deleted.

Edge insertions and deletions model (InD): In this model, at every iteration either an
existing edge in the graph is deleted, or an non-existing one appears. The algorithm is
required at every iteration to maintain a proper coloring of the graph.

We first argue that the models are essentially equivalent.

▶ Theorem 18. A lower bound on the competitive ratio of (randomized) algorithms under
one of the three models of dynamic disengagement, holds under the other two models as well.

Theorem 18 is proven using the following three lemmas.
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▶ Lemma 19. If ρ1 is a lower bound on the deterministic (or randomized) competitive ratio
for the “SE” model, then ρ1 is a lower bound on the deterministic (respectively, randomized)
competitive ratio for the “ET” model.

Proof. It can be easily shown that any input sequence of the “SE” model is also an input
sequence of the “ET” model, with the expiration time of every edge set to 1. Since the lower
bound for the special case also holds for the general case, the claim holds. ◀

▶ Lemma 20. If ρ2 is a lower bound on the deterministic (or randomized) competitive ratio
for the “ET” model, then ρ2 is a lower bound on the deterministic (respectively, randomized)
competitive ratio for the “InD” model.

Proof. It can also be demonstrated that any input sequence of the “ET” model can be
represented using the “InD” model. Each time an edge is presented (or expires) in the former
model, it is inserted (or deleted) in the latter model. ◀

▶ Lemma 21. If ρ3 is a lower bound on the deterministic (or randomized) competitive ratio
for the “InD” model, then ρ3 is a lower bound of the deterministic (respectively, randomized)
competitive ratio for the “SE” model.

To prove Lemma 21, we first prove the following lemma:

▶ Lemma 22. Let A be a (possibly randomized) disengagement algorithm in the “SE” model,
with a bounded competitive ratio. Then for any input sequence I in the “InD” model, there
exists an input sequence ID in the “SE” model such that with probability 1, A, when run on
ID, outputs a proper coloring of Gi, where Gi = (V, Ei) is the graph in the “InD” model,
after iteration i.

Proof. We construct ID by repeating the edges of Ei cyclically. Specifically, for each i, ID

contains a sequence of phases, where in each phase, all edges of Ei are introduced (in any
order). The number of phases depends on A: we claim that for any ε > 0 there exists Mε

such that the probability that A outputs a proper coloring of Gi after Mε phases is least
1− ε. To prove the claim, suppose, for contradiction, that for some ε > 0, the probability of
A outputting a proper coloring of Gi after any number of phases is never more 1− ε. Then,
with probability of at least ε, A pays at least 1 in each phase (when a monochromatic edge
is inserted). The total expected cost of A is therefore unbounded. On the other hand, the
optimal cost is at most |V |, contradicting the assumption that A has bounded competitive
ratio. ◀

Proof of Lemma 21. Assume, for contradiction, that there exists an algorithm Ad for the
“SE” model with a competitive ratio strictly smaller than ρ3. We construct an algorithm As

for the “InD” model as follows. Given input I = {G1, G2, . . .} (in the “InD” model), As runs
Ad on input ID (in the “SE” model) as defined in Lemma 22. According to Lemma 22, since
Ad has a bounded competitive ratio, then Ad outputs a solution to Ei w.p. 1. Hence, As is
well defined.

To analyze the cost, consider iteration i of As. Let cm
i denote the output of Ad after Ei

was input to it for m-th time, and let ci denote the output of As in the i-th step.
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Let opts denote an optimal solution to I and let optd denote an optimal solution to Id.
Then we have

cost(As(I)) =
∑
i=1

δH(ci, ci−1)

≤
∑
i=1

M∑
m≥1

δH

(
cm

i , cm−1
i

)
by construction

= cost(Ad(Id))
< ρ3 · cost(optd(Id)) by assumption on competitiveness of Ad

≤ ρ3 · cost(opts(I)) because opts(I) is also a solution to Id,

contradicting the assumption that ρ3 is a lower bound on the competitiveness of deterministic
algorithms for the “InD” model. ◀

We note that FD is at least as hard as the semi-dynamic model.

▶ Corollary 23. If ρ is a lower bound on the deterministic (or randomized) competitive ratio
for semi-dynamic disengagement, then ρ is a lower bound of the deterministic (respectively,
randomized) competitive ratio for fully-dynamic disengagement.

Proof. The SD disengagement model can be directly represented by the FD “ET” model,
with the expiration time of every edge set to ∞. Hence, the lower bound for the SD case
also holds for the “ET” model, and according to Theorem 18, such bound holds for any of
the other FD models. ◀

5.2 Full-Dynamic Disengagement and Metrical Task Systems
We now give evidence to the hardness of FD disengagement using a reduction from metrical
task systems (MTS). Let us first define the terms.

In the MTS problem [7], a metric space M of n points is given. A server is always located
at some point in the metric space. Requests arrive in an online fashion, where the i’th
request is a cost function fi : M → R+. The algorithm responds to a request fi by moving
the server from its current location u ∈ M to a new location v ∈ M , paying the distance
between the locations in the metric space (or not moving the server, and paying nothing).
Then, the algorithm must pay the cost of the current location of the server, which is fi(v).
We show that FD is as hard as a particular type of an MTS.

▶ Theorem 24. If there exists an O(f(n))-competitive algorithm for FD disengagement for
every graph of n nodes with 2 colors, then there exists an O(f(n))-competitive algorithm for
metrical task system on an odd cycle on length n.

In [7], a lower bound of Ω(n)-competitive was presented for every deterministic algorithm for
MTS on every set of n points. Hence we have the following.

▶ Corollary 25. Any deterministic algorithm for FD disengagement with n nodes is Ω(n)-
competitive.

A lower bound of Ω(log n/log log n)-competitiveness for every randomized algorithm for
MTS on every set of n points was given in [6]. This implies the following corollary.

▶ Corollary 26. Any randomized algorithm for FD disengagement with n nodes is Ω
(

log n
log log n

)
-

competitive.
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Proof of Theorem 24. We assume without loss of generality that the functions in the MTS
input are in fact Kronecker delta functions: they are supported on only one point, and the
cost of that point is 1. We also assume w.l.o.g. that the FD disengagement algorithm is lazy,
i.e., it only recolors endpoints of the current request.

We now describe the reduction. Suppose we are given an instance M of MTS with an
odd-cycle metric space C1 of n points. We construct an instance D of FD with n points
arranged in a cycle, such that the nodes of C1 correspond to the n edges of C2 in the natural
way. The intended interpretation of nodes in C1 is colorings in D, where a node x of C1
means in C2 that only the edge corresponding to x is monochromatic (and all other edges in
C2 are bichromatic). The initial coloring in D is such that the only monochromatic edge in
D is the edge corresponding to the initial position of the server in M. Thereafter, whenever
a point x ∈ C1 is requested in M, the corresponding edge in C2 is requested in D. To see
that the intended interpretation is maintained, consider any algorithm ALGD for FD. Easy
induction shows that after every step, there is exactly one monochromatic edge in the odd
cycle C2: The base case holds by the initial coloring; for the induction step, note that if a
non-monochromatic edge is requested, no recoloring takes place. Otherwise, the currently
monochromatic edge e is requested, and ALGD must recolor exactly one endpoint of e. If
the clockwise (say) endpoint of e is recolored, then e is no longer monochromatic, and the
next edge clockwise from e becomes monochromatic (and similarly for counter-clockwise),
and the induction is proved.

Given the reduction, algorithm ALGM for the MTS problem is obtained from a given
algorithm ALGD for FD by taking the MTS instance M, reducing it online to the FD
instance D as desribed above, running ALGD on D, and interpreting the responses of ALGD

back in M. That is, whenever ALGD moves the monochromatic edge clockwise, ALGM

moves the server clockwise, and the same for counter-clockwise. Clearly, we have that ALGD

has the same cost on D as ALGM has on M.
Finally, denoting by OPTM and OPTD the optimal solutions to M and D respectively,

note that OPTD ≤ 2 OPTM : OPTD can move the monochromatic edge whenever OPTD

moves the server, and can move the monochromatic edge clockwise and then immediately
counter-clockwise to simulate paying a penalty (at a cost of 2). This completes the proof of
Theorem 24. ◀

6 Conclusion

In this paper we have introduced the problem of online disengagement and determined its
competitive ratio in the case that conflicts are permanent and either that the final graph is
bipartite or that the number of colors is larger than the maximum degree. Many problems
remain open.

A major problem we leave open is the competitive ratio in the fully-dynamic case, where
conflicts are temporary.

Other natural variants that we leave for future research are the following.
Explore further the capacitated disengagement case. Using the coloring formalism, in this
case we assume that each color l comes with prescribed maximal capacity Wl such that
in any coloring output by the algorithm, the total number (or, more generally, weight) of
nodes assigned to color l does not exceed Wl.
The list recoloring variant represents the case where jobs have both affinities and anti-
affinities, i.e., each job is given both a subset of machines on which it may run, and
disengagement requests express job separation constraints. Formally, this is modeled by
requiring the colorings output by the algorithm to be list colorings. The lists may be
fixed or change on-line.
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In multiple disengagement, disengagement requests are arbitrary sets of jobs. If the
requirement is that at least one of the jobs in a conflict set is not collocated with all
others, we have a hypergraph recoloring problem.
Both Kashyop et al. [12] and Solomon and Wein [15] provide dynamic-coloring algorithms
in the case of bounded (or constant) arboricity. Their methods might prove useful for the
competitive recoloring case as well.

Note that all versions listed above make sense in either the static or the dynamic variants of
the disengagement problem.
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Abstract
The well-known Komlós conjecture states that given n vectors in Rd with Euclidean norm at most
one, there always exists a ±1 coloring such that the ℓ∞ norm of the signed-sum vector is a constant
independent of n and d. We prove this conjecture in a smoothed analysis setting where the vectors
are perturbed by adding a small Gaussian noise and when the number of vectors n = ω(d log d).
The dependence of n on d is the best possible even in a completely random setting.

Our proof relies on a weighted second moment method, where instead of considering uniformly
randomly colorings we apply the second moment method on an implicit distribution on colorings
obtained by applying the Gram-Schmidt walk algorithm to a suitable set of vectors. The main
technical idea is to use various properties of these colorings, including subgaussianity, to control the
second moment.
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1 Introduction

A central question in discrepancy theory is the following Komlós problem: given vectors
v1, . . . , vn ∈ Rd with Euclidean length at most 1, i.e., ∥vi∥2 ≤ 1 for all i ∈ [n], find signs
xi ∈ {−1, 1} for i ∈ [n] to minimize the discrepancy ∥

∑n
i=1 xivi∥∞. The long-standing

Komlós conjecture says that the discrepancy of any collection of such vectors is O(1),
independent of n and d. An important special case (up to scaling by t1/2) is the Beck-Fiala
problem, where the vectors v1, . . . , vn ∈ {0, 1}d and each vi has at most t ones, so ∥vi∥2 ≤ t1/2.
Here, the Komlós conjecture reduces to the Beck-Fiala conjecture [8], which says that the
discrepancy is O(t1/2). The question of either proving or disproving these conjectures has
received a lot of attention, and after a long line of work, the current best bounds for the
Komlos and the Beck-Fiala problem are O((log n)1/2) and O((t log n)1/2) respectively, due
to Banaszczyk [4].
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14:2 Smoothed Analysis of the Komlós Conjecture

Motivated by the lack of progress for general worst-case instances, there has been a
lot of recent work on these problems for random instances, with several interesting results
and techniques, see e.g., [9, 7, 13, 10, 16, 18, 3, 14]. In this work, we consider the Komlós
problem in the more general setting of smoothed analysis, where the input is generated by
taking an arbitrary worst case Komlós instance and perturbing it randomly. The smoothed
analysis model was first introduced by Spielman and Teng [17], and it interpolates nicely
between worst case and average case analysis, and has been used extensively since then to
study various problems. Recently smoothed analysis models have also been considered in
discrepancy theory in a few other works [6, 11] – however the setting and focus of these
results is quite different, and in particular they are not directly related to the Komlós or
Beck-Fiala conjectures.

Random instances. To put our results in the proper context, we first describe the results on
random instances. In general, these results depend on the different regimes of the parameters
d, n and t, and we focus here on the more interesting case of n ≫ d.

A natural model for random Beck-Fiala instances is where each entry is 1 with probability
p = t/d, so that each column has t ones in expectation. In a surprising result, Hoberg and
Rothvoss [13] showed that disc(A) ≤ 1 w.h.p.1 if n = Ω(d2 log d). Independently, Franks
and Saks [10] showed that disc(A) ≤ 2 w.h.p. if n = Ω(d3 log2 d), for a more general class of
instances. Both these results use interesting Fourier analysis based techniques.

It is not hard to see2 that n = Ω(d log d) is necessary for O(1) discrepancy (provided
p is not too small). An important step towards obtaining this optimal dependence was
made by Potukuchi [15], who showed that disc(A) ≤ 1 if n = Ω(d log d) for the dense case of
p = 1/2, using the second moment method. However, the sparse setting with p ≪ 1 turns
out to be more subtle, and was only recently resolved by Altschuler and Weed [3] using
a more sophisticated conditional second moment method together with Stein’s method of
exchangeable pairs. They show that disc(A) ≤ 1 w.h.p. for n ≥ Ω(d log d), for every p.

The case of Gaussian matrices with i.i.d. N (0, 1) entries has also been considered, where
Turner, Meka and Rigollet [18] give almost tight bounds for the entire regime, and in
particular show that for n = Ω(d log d) a discrepancy bound of 1/poly(d) holds.

The smoothed Komlós model. We now define our model formally. The input matrix is of
the form A = M + R, where M ∈ Rd×n is some worst-case matrix with columns of ℓ2-norm
at most 1 and R ∈ Rd×n is a random matrix with i.i.d. Gaussian entries distributed as
N (0, σ2/d), where σ ≤ 1. The σ2/d variance ensures that each column of R has ℓ2-norm
roughly σ (and hence much less than that of M). Our goal is to understand the discrepancy
of A. We will only be interested in showing the existence of a low discrepancy coloring for A,
and not in algorithmically finding it (this seems far beyond the current techniques).

1.1 Results and Techniques
Our main result is the following.

▶ Theorem 1 (Smoothed Komlós). Let σ > 0 and n = ω(d log d)
σ4/3 . Then with probability

1 − od(1), the discrepancy of M + R is at most 1/poly(d), where M ∈ Rd×n is an arbitrary
Komlós instance and R ∈ Rd×n has i.i.d. N (0, σ2/d) entries.

1 This is much better than the O(t1/2) bound in the Beck-Fiala conjecture.
2 If we fix any coloring x and consider a random instance, a fixed row has discrepancy O(1) with probability

≈ (pn)−1/2, so the probability that each row has discrepancy O(1) is (pn)−Ω(d). As there are (only) 2n

possible colorings, a first moment argument already requires that 2n(pn)−d = Ω(1).
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An interpretation of Theorem 1 is that any counter-example to the Komlós conjecture (if
it exists) will be rigid, or have n ≈ d. Also, notice that dependence of n on d in Theorem 1 is
essentially the best possible, as already evident in the very special case of M = 0 and σ = 1,
i.e., a random matrix with i.i.d. N (0, 1) entries, where n = Ω(d log d) is necessary to achieve
1/poly(d) discrepancy, as discussed earlier.

▶ Remark 2. Our proof techniques also give a high probability bound when n = Ωσ(d1+ϵ) for
any constant ϵ > 0. However, we do not explore this direction here. It would be interesting
to know if the result also holds with high probability when n = ω(d log d), as in the (fully)
random setting.

▶ Remark 3. The dependence on the noise parameter σ in n = Ωd(1/σ) in Theorem 1 is
necessary, otherwise this would imply an O(1) bound for the worst case Komlós problem.
In particular, each row of the random part R must at least have enough ℓ1 norm to offset
the discrepancy from the worst case part M (which can be O((log n)1/2) given the currently
known results). As each entry of R has magnitude about σd−1/2, we thus require n = Ωd(1/σ)
for each row of M + R to have discrepancy O(1).

The proof of Theorem 1 is based on the classical second moment method, however, it
requires several additional ideas beyond those used for random instances, to handle the effect
of the worst case part and its interplay with the random part. We describe these briefly next,
and discuss them in more detail in Section 1.2.

Weighted second moment method. Instead of applying the second moment method to
the uniform distribution on the 2n colorings, we consider a distribution on low-discrepancy
colorings for M . This is necessary as for a random coloring x ∈ {−1, 1}n, a typical entry
of Mx will scale as

√
n/d, which is very unlikely to be cancelled by the discrepancy of

the random part Rx, which typically scales as σ
√

n/d (note that we want to show the
existence of some x such that (Rx)i ≈ −(Mx)i for each coordinate i ∈ [d]).
Subgaussianity of colorings. To ensure that ∥Mx∥∞ is typically small, we consider
the (implicit) distribution on colorings produced by the Gram-Schmidt (GS) algorithm [5]
applied to M , which ensures that Mx is a 1-subgaussian vector [12] (details in Section 1.2).
However, apriori the GS algorithm only guarantees that Mx is subgaussian, and says
nothing about the distribution on the colorings x. For instance, it could be that any two
colorings in the support have the first 9n/10 coordinates identical, and thus look very
non-random. This makes the second moment bounds much worse and harder to control.
To handle this, we use a simple but useful trick to ensure that the distribution on the
colorings x produced by the GS algorithm is also O(1)-subgaussian. Roughly, this allows
us to pretend that colorings x in the GS distribution behave randomly.
Exploiting subgaussianity to get cancellations across rows. Most importantly,
due to the worst case part M , doing a row by row analysis as is typically done in
second moment computations for random instances, only works when n = Ω(d2/σ2)
(details in Section 1.2). Roughly, the problem is that considering each coordinate of Mx

separately completely ignores the global properties across the different coordinates that
subgaussianity of Mx implies.
To get the optimal dependence of n on d, a key conceptual idea is to analyze all the rows
together and use the subgaussianity of Mx and x carefully to get various cancellations
across the different rows in the second moment computation. Exploiting subgaussianity
also leads to various technical difficulties, as subgaussian vectors can differ from fully
random Gaussian vectors in various non-trivial ways.

ICALP 2022



14:4 Smoothed Analysis of the Komlós Conjecture

Notation. Throughout this paper, log denotes the natural logarithm. We use the asymptotic
notation ω(·) or o(·) where the growth is always with respect to d – sometimes to emphasize
this dependence we will also write ωd(·) or od(·). We write Ex∼G [f(x)] to denote the
expectation of a function f where x is sampled from the distribution G and we abbreviate this
to E[f(x)] when the distribution is clear from the context. For reals a, b ∈ R, the notation
[a ± b] is used as a shorthand to denote the interval [a − b, a + b]. For a set S ∈ Rd, we write
δS = {δx | x ∈ S} to denote the δ scaling of S.

1.2 Overview and Preliminaries
We now give a more detailed overview of the proof and the ideas. We also briefly describe the
second moment method and some concepts we need such as subgaussianity and properties of
the Gram-Schmidt algorithm.

Second moment method. The second moment method (e.g. [2]) is based on the following
Paley-Zygmund inequality. For any non-negative random variable Z, we have that

P[Z > 0] ≥ (E[Z])2

E[Z2] .

So, if E[Z2] = (1 + o(1))(E[Z])2, then this implies that P[Z > 0] ≥ 1 − o(1).
For constraint satisfaction problems, a standard way to use this to show that most random

instances are feasible is by defining S = S(R) as the number of solutions to an instance R,
and showing that

ER[S2] = (1 + o(1))(ER[S])2, (1)

which gives that PR[S(R) > 0] = PR[S(R) ≥ 1] ≥ 1 − o(1).
Let us consider (1) more closely and define S(R, x) = 1 if x is a valid solution for instance

R, and 0 otherwise. Then S(R) =
∑

x S(R, x) and (1) can be written as

ER

[
Px,y∼U

[
S(R, x) = 1 , S(R, y) = 1

]]
= (1 + o(1)) (ER [Px∼U [S(R, x) = 1]])2

, (2)

where U is the uniform distribution over all inputs.

Second moment method for smoothed Komlós. Let ∆ denote the desired discrepancy
bound. In our setting, denote by S(R, x) = 1 that x ∈ {±1}n is a feasible coloring for the
smoothed Komlós instance M + R, that is, if ∥(M + R)x∥∞ ≤ ∆. Roughly, this condition
means that Rx = −Mx and hence the discrepancy of the random part R cancels that of the
worst case part M .

However, if x is chosen uniformly from {±1}n, it is not hard to see that this cannot work.
The entries (Mx)i will be distributed roughly as N (0, m2

i ) where mi = (
∑

j M2
ij)1/2 is the

ℓ2-norm of row i of M , and in general will be much larger (around 1/σ ≫ 1 times) than the
entries (Rx)i.

Weighted second moment. To allow a reasonable probability of Rx cancelling Mx, a
natural idea is to consider a distribution that is mostly supported over colorings x with
low discrepancy on M . So, we will show (2) where x, y are sampled from some another
suitable distribution G instead of the uniform distribution U . Similar ideas have also been
used in other contexts such as [1]. Notice that this does not affect Rx, as for any fixed
x, the contribution of the random part (Rx)i is still distributed as N(0, nσ2/d) (over the
randomness of R).
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A natural candidate is the distribution on colorings produced by the Gram-Schmidt (GS)
walk algorithm [5]. In particular, we use the following result.

▶ Theorem 4 ([12]). Given vectors v1, . . . , vn ∈ Rm with ∥vj∥2 ≤ 1, the Gram-Schmidt walk
algorithm outputs a random coloring x ∈ {−1, 1}n such that

∑n
j=1 xjvj is 1-subgaussian.

Recall that a random vector Y ∈ Rm is α-subgaussian if for all test vectors θ ∈ Rm,

E
[

exp(⟨θ, Y ⟩)
]

≤ exp
(

α2∥θ∥2
2

2

)
.

Roughly, this means that Y looks like a Gaussian with variance at most α2 in every direction.
Let G denote the (implicit) distribution over the colorings output by the GS walk algorithm.

For a coloring x, let us denote Px := PR[S(R, x) = 1] and for two colorings x and y, let

Px,y := PR

[
S(R, x) = 1 , S(R, y) = 1

]
.

Then changing the order of expectation in (2) and substituting, our goal is to show that

Ex,y∼G [Pxy] = (1 + o(1)) · Ex,y∼G [PxPy]. (3)

However, the set of low discrepancy colorings for M and the distribution G can be quite
complicated and hard to work with. Later, we will ensure that G is also O(1)-subgaussian,
which will suffice for our purposes. Let us first consider (3) more closely.

The key computation. As R has i.i.d. Gaussian entries, the quantities Px and Pxy can be
written in a very clean way. In particular, as (Rx)i ∼ N (0, σ2n/d) for any coloring x, and
the (Rx)i are independent for i ∈ [d], we can write

Px = PR

[ d⋂
i=1

((Rx)i ∈ (Mx)i ± ∆)
]

=
d∏

i=1
PR

[
gi ∈ (Mx)i ± ∆

]
,

where gi ∼ N(0, σ2n/d) and gi’s are independent.
Similarly, for any fixed colorings x and y, writing gi = (Rx)i and g′

i = (Ry)i we have

Pxy =
d∏

i=1
PR

[
gi ∈ (Mx)i ± ∆ , g′

i ∈ (My)i ± ∆
]
,

where gi and g′
i are correlated with E[gig

′
i] = ⟨x, y⟩ · σ2/d.

A standard computation of 2-dimensional gaussian probabilities over rectangles (and
ignoring some less crucial terms for the discussion here) gives

P
[
gi ∈ (Mx)i ± ∆ , g′

i ∈ (My)i ± ∆
]

P
[
gi ∈ (Mx)i ± ∆

]
· P

[
g′

i ∈ (My)i ± ∆
] ≈ exp

(
d⟨x, y⟩(Mx)i(My)i

σ2n2

)
. (4)

So to prove (3), we could try to show that for each i ∈ [d],

Ex,y∼G

[
d⟨x, y⟩(Mx)i(My)i

σ2n2

]
= o

(
1
d

)
. (5)

Indeed, as |⟨x, y⟩| ≤ n and (Mx)i, (My)i are typically O(1) (as Mx and My are subgaus-
sian), setting n = ω(d2/σ2) would suffice to complete the second moment proof. However,
this does not give us the optimal d log d dependence.

Next, we sketch the two ideas to obtain the optimal dependence.
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14:6 Smoothed Analysis of the Komlós Conjecture

Subgaussianity of the distribution G. If x and y were random colorings, we would typically
expect that |⟨x, y⟩| ≈

√
n instead of n above. To achieve this, we apply the GS walk algorithm

to the (d + n) × n matrix with M in top d rows and In in the bottom n rows. (Note that
each column still has O(1) length.) This ensures that the resulting distribution G on the
colorings x is O(1)-subgaussian, while ensuring that Mx is also O(1)-subgaussian.

Handling the rows together. Next, to exploit the subgaussianity of Mx and My, we look
at all the rows together in (5) and consider∑

i

Ex,y∼G

[
d⟨x, y⟩(Mx)i(My)i

σ2n2

]
= Ex,y∼G

[
d⟨x, y⟩⟨Mx, My⟩

σ2n2

]
. (6)

By the subgaussianity of the colorings x, y and discrepancy vectors Mx, My, we expect
that Ex,y∼G |⟨x, y⟩| ≈

√
n and Ex,y|⟨Mx, My⟩| ≈

√
d. Roughly speaking, this implies that

the right side of (6) is typically d3/2/(σ2n3/2), and hence n ≫ d/σ4/3 suffices.
The formal argument needs some more care as ⟨x, y⟩ and ⟨Mx, My⟩ are correlated, and

as we need to bound the exponential moment of d⟨x, y⟩⟨Mx, My⟩/(σ2n2) in (4), instead of
the expectation, which gives the additional (necessary) logarithmic factor of log d.

2 Proof of the Smoothed Komlós Conjecture

We use a weighted version of the second moment method as mentioned in the proof overview.
Let G be a distribution over coloring that will be specified later. We define the following
random variable S which depends only on the randomness of R,

S = S(R) := Ex∼G [1{∥(M + R)x∥∞ ≤ ∆}],

for some parameter ∆ = 1/poly(d) to be chosen later. The purpose of this variable is that
the event {S > 0} implies there exists a coloring x ∈ supp(G) with discrepancy at most ∆.
Our goal is to show that P(S > 0) = 1 − o(1). As explained in the proof overview, this would
follow from the Paley-Zygmund inequality if we can establish that the first moment ER[S] is
always positive, and the second moment satisfies ER[S2] = (1 + o(1)) · (ER[S])2. We next
compute the moments.

First moment computation. We can compute

ER[S] = Ex∼GER[1{∥(M + R)x∥∞ ≤ ∆}] > 0,

where the strict inequality follows because fixing any outcome x ∼ G, the event {∥(M +
R)x∥∞ ≤ ∆} happens with positive probability (recall that R is a Gaussian random matrix
with each entry N (0, σ2/d)).

Second moment computation. For any i ∈ [d], denote by mi and ri the ith row of the
matrices M and R respectively. The second moment is given by

ER[S2] = ER [Ex[1{∥(M + R)x∥∞ ≤ ∆}] · Ey[1{∥(M + R)y∥∞ ≤ ∆}]]
= EREx,y [1 {∥(M + R)x∥∞ ≤ ∆, ∥(M + R)y∥∞ ≤ ∆}]
= Ex,y [PR (∥(M + R)x∥∞ ≤ ∆, ∥(M + R)y∥∞ ≤ ∆)] = Exy[Pxy],

where we define

Px,y := PR(∥(M + R)x∥∞ ≤ ∆, ∥(M + R)y∥∞ ≤ ∆).
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Similarly, denoting

Px := PR(∥(M + R)x∥∞ ≤ ∆),

we also have

(ER[S])2 = (ExPR(∥(M + R)x∥∞ ≤ ∆)) · (EyPR(∥(M + R)y∥∞ ≤ ∆))
= Ex,y [PR(∥(M + R)x∥∞ ≤ ∆) · PR(∥(M + R)y∥∞ ≤ ∆)]
= Exy[Px · Py].

To compare the quantities ER[S2] and (ER[S])2, we first consider a distribution over
colorings. A natural distribution to consider is the distribution on colorings derived from the
Gram-Schmidt walk which ensures that the discrepancy vector Mx is 1-subgaussian if x is
sampled from this distribution. However, we shall also need that the colorings x themselves
have a subgaussian tail as well as some additional nice properties that will be useful to
compute the second moment. In particular, we prove the following lemma in Section 2.1.

▶ Lemma 5 (Truncated Gram-Schmidt Distribution). Let M ∈ Rd×n be a worst-case Komlós
instance. Then, for any constant C ′ > 1 there exists a distribution G over colorings x ∈ {±1}n

satisfying the following properties:
Almost Constant Euclidean Norm for the discrepancy vectors: for every x ∈ supp(G) , we
have ∥Mx∥2 ∈ [r ± ∆] where r = O(d1/2) and ∆ = d−C′ .
Almost subgaussian tails for the colorings and discrepancy vectors: there exists a constant
C depending on C ′, such that for every u ∈ Sn−1,

Px∼G [|⟨x, u⟩| ≥ t] ≤ 2dC · e−t2/8 and Px∼G [|⟨Mx, u⟩| ≥ t] ≤ 2dC · e−t2/8.

Since the colorings sampled from the above distribution are subgaussian, |⟨x, y⟩| ≤ n/2
holds with high probability. To compute the second moment to a good precision, we need a
careful comparison of the ratio Pxy/(Px · Py) for any two colorings x and y where this event
occurs. We show the following bound in this case (proof in Section 2.2).

▷ Claim 6 (Strong bound). For any two colorings x, y ∈ supp(G), denote ϵ = ϵ(x, y) = ⟨x, y⟩/n.
If |ϵ| ≤ 1/2, then we have

Px,y ≤ PxPy · β(x, y) where β(x, y) = exp
(
δ1 + dϵ2 + dδ2ϵ2 + δ2ϵ · ⟨Mx, My⟩

)
,

where the scaling factor δ :=
√

d
σ

√
n

and the error parameter δ1 ≤ 1/poly(d).

When the low probability event |ϵ| ≥ 1/2 occurs, we use the weak bound Pxy ≤
min{Px, Py}.

As x is sampled from the truncated Gram-Schmidt distribution, the probabilities Px turn
out to be almost constant for all colorings x ∈ supp(G) as the following claim shows.

▷ Claim 7. For any coloring x ∈ supp(G),

Px = exp(δx) · p where p :=
(

δ∆√
2π

)d

exp
(

−δ2r2

2

)
, (7)

with the scaling factor δ :=
√

d
σ

√
n

and the error parameter δx satisfying |δx| ≤ δ1 ≤ 1/poly(d).

The proof of this claim is in Section 2.2.
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We now focus on the case when |ϵ| ≤ 1/2. When we take x, y ∼ G, as Px and Py are
essentially constant, by Claim 6, applying the second moment method reduces to bounding
β(x, y) as defined in Claim 6. To do this, we will use the properties, as described in Lemma 5,
of the underlying random variables x and Mx. The following technical lemma gives a bound
on the exponential moment for such random variables.

▶ Lemma 8. Let X be a non-negative random variable X that satisfies

P(X ≥ t) ≤ dC1 · e−t2/8 for any t > 0,

for some fixed constant C1 > 0. Then for any λ = c2
√

log d with c2 ≥
√

32C1,

E[exp(X2/λ2)] ≤ 1 + 32C1/c2
2 + od(1).

We shall prove this lemma in Section 2.1.
We can now complete the proof of Theorem 1 by comparing ER[S2] and (ER[S])2. We

show that

▶ Lemma 9. For n = ω(d log d)σ−4/3, we have

(ER[S])2 = p2(1 − od(1)) and ER[S2] = p2(1 + od(1)).

The above implies that ER[S2] = (1 + o(1))(ER[S])2, and thus the Paley-Zygmund
inequality implies Theorem 1 as discussed in the proof overview.

Proof of Lemma 9. For the first moment, Claim 7 implies that

(ER[S])2 = Ex,y∼G [PxPy] = p2E[exp(δx + δy)] ≥ p2 exp(−2δ1).

Since 0 < δ1 ≤ 1/poly(d), the bound follows.
To compute the second moment, ER[S2] = Ex,y∼G [Pxy], we define E to be the event that

the colorings x, y ∼ G satisfy |⟨x, y⟩| > n/2 and compute the contribution to the expectation
under E and its complement separately. In particular, using Claim 7 and Claim 6, we have

ER[S2] = Ex,y∼G [Px,y] ≤ Px,y∼G [E ] · p + Ex,y∼G
[
PxPyβ(x, y) · 1[E ]

]
(8)

For the first term in (8), since n ≥ d, Lemma 5 implies that

Px,y∼G [E ] ≤ poly(d) · e−n/4 ≤ e−n/8.

Thus, using the exact bound for p from Claim 7 and that δ∆ ≤ poly(σ/d), the first term

Px,y∼G [E ] · p = p2 · P[E ] · p−1 ≤ p2 · e−n/8 ·
(√

2π

δ∆

)d

exp
(

δ2r

2

)
≤ p2 · e−n/8 · exp

(
O

(
d log(dn/σ) + d2/(σ2n)

))
= p2 · od(1), (9)

when n = ω(d log d)σ−4/3. In particular, as σ ≤ 1, we have n/8 ≫ d log(dn/σ) + d2/(σ2n).
For the second term in (8), using Claim 7, we have that Px = p · exp(δx) where |δx| ≤

|δ1| ≤ 1/poly(d). Thus,

Ex,y∼G
[
PxPyβ(x, y) · 1[E ]

]
≤ p2 · exp(2|δ1|) · E

[
β(x, y) · 1[E ]

]
≤ exp(2|δ1|) · E

[
β(x, y)

]
, (10)
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since β(x, y) is a non-negative random variable. Recall from Claim 6 that β(x, y) ≤ exp(δ1) ·
exp(Z) where δ1 ≤ 1/poly(d) and

Z = dϵ2 + 2δ2ϵ2r2 + 2δ2|ϵ⟨Mx, My⟩|.

Renormalizing ϵ = ⟨x, n−1/2y⟩ and θ = ⟨Mx, r−1My⟩ and using that δ =
√

d
σ

√
n

and r ≤
√

d,
we have

Z ≤
(

d

n
+ 2d2

σ2n2

)
· ϵ2 + 2d

√
d

σ2n
√

n
· |ϵ · θ| ≤ (|ϵ| + |θ|)2/λ2

min,

where we denote

λmin = 1
3

√
min

{
n

d
,

σ2n2

2d2 ,
σ2n1.5

2d1.5

}
.

Note that λmin = ωd(1) ·
√

log d when n = ω(d log d)σ−4/3.
We now bound the tails of ϵ and θ, which will allow us to bound E[exp(Z)]. Conditioned

on any outcome of y ∼ G, and as ∥y∥n−1/2 = 1, the second property in Lemma 5 gives that
Px∼G [|⟨x, n−1/2y⟩| ≥ t] ≤ 2dC exp(−t2/8). Averaging over y thus gives that

P [|ϵ| ≥ t] ≤ 2dC · e−t2/8.

Similarly, as ∥My∥r−1 ≤ 1 for any y in the support of G, we have that Px∼G [|⟨Mx, r−1My⟩| ≥
t] ≤ 2dC exp(−t2/8), and averaging over y gives that

P
[
|θ| ≥ t

]
≤ 2dC · e−t2/8.

By a union bound, it follows that the random variable X := |ϵ| + |θ| satisfies the tail
condition of Lemma 8 with constant C1 = 2C. So when λmin = ωd(1) ·

√
log d, the parameter

c2 := λmin/
√

log d in Lemma 8 satisfies 32C1/c2
2 = od(1). Therefore, Lemma 8 implies that

E[β(x, y)] ≤ exp(δ1) · E[exp(Z)] ≤ (1 + od(1))(1 + od(1)) = 1 + od(1).

Plugging the above in (10), it follows that the second term

Ex,y∼G
[
PxPyβ(x, y) · 1[E ]

]
≤ p2(1 + od(1)).

Combining this with (8) and (9), we get that ER[S2] ≤ p2(1 + od(1)). ◀

We now prove the lemmas and claims used in the proof of Theorem 1 above.

2.1 Truncated Gram-Schmidt Distribution and Exponential Moments
Proof of Lemma 5. Consider running the Gram-Schmidt walk algorithm on the matrix M

stacked with the identity matrix, i.e.
(

M

In

)
, and let G0 be the distribution over colorings

obtained as an output of the algorithm.
Since each column of the stacked matrix has Euclidean norm at most 2, the properties of

the Gram-Schmidt walk (Theorem 4) guarantees that (x, Mx) ∈ Rn+d where x ∈ {±1}n and
Mx ∈ Rd is 2-subgaussian. It follows that both x and Mx are 2-subgaussian as well when
(x, Mx) ∼ G0.

ICALP 2022



14:10 Smoothed Analysis of the Komlós Conjecture

To obtain a distribution G where ∥Mx∥2 is almost constant for each coloring x ∈ supp(G),
we will truncate the distribution G0 in such a way that the tails are also preserved up to
poly(d) factors. Towards this end, we first note that with probability 1 − e−cd, we have
that ∥Mx∥2 ≤ c′

√
d for constants c and c′. This is because for any σ-subgaussian mean-zero

random vector X, the Euclidean norm of ∥X∥ has a subgaussian tail (e.g. Exercise 6.3.5
in [19]). In particular, P[∥X∥2 ≥ c1σ

√
d + t] ≤ e−c2t2/σ2 for some universal constants

c1, c2 > 0. Now, by a pigeonhole argument, for a large enough constant C ′ there exist an
annulus W with width ∆ = d−C′ and inner radius r ≤ c′

√
d such that Px∼G0(x ∈ W ) ≥ d−C

for a constant C depending on C ′.
We take the distribution G to be the probability measure of G0 conditioned on the event

that Mx ∈ W . It then follows that for any coloring x ∼ G, we have |∥Mx∥2 − r| ≤ ∆.
Moreover, since x and Mx were 2-subgaussian prior to conditioning, and the probability
mass of the annulus is at least d−C , conditioning can only increase the probability of any
event by a factor of dC . Thus, the tail bounds as stated in the statement of the lemma also
follow. ◀

Proof of Lemma 8. The assumption on X implies that for any t ≥ 4 ·
√

C1 log d, we have

P(X ≥ t) ≤ exp(−t2/16). (11)

We express the expectation as an integration

E[exp(X2/λ2)] =
∫ ∞

0
P[exp(X2/λ2) > s]ds =

∫ ∞

0
P(X ≥ λ

√
log s)ds

≤ 1 + c3 +
∫ ∞

1+c3

P(X ≥ λ
√

log s)ds.

Let us set c3 = 32C1/c2
2, so that c3 ≤ as c2 ≥

√
32C1. For s ≥ 1 + c3, we have

λ
√

log s ≥ c2
√

log d ·
√

c3/2 ≥ 4 ·
√

C1 log d

using that
√

log(1 + x) ≥
√

x/2 for x ∈ [0, 1] and as c3 ≤ 1. So the condition t ≥ 4·
√

C1 log d

for (11) is satisfied whenever s ≥ 1 + c3, and applying (11) to the above integration gives∫ ∞

1+c3

P(X ≥ λ
√

log s)ds ≤
∫ ∞

1+c3

exp(−λ2 log s/16)ds

=
(

λ2

16 − 1
)−1

· (1 + c3)−λ2/16+1 ≤ exp(−c2
2c3 log d/16).

By our choice of c3, the above is at most d−2C1 . Thus, it follows that E[exp(X2/λ2)] ≤
1 + 32C1/c2

2 + d−2C1 . This proves the lemma. ◀

2.2 Proof of Claims from Section 2
Proof of Claim 6. Since the rows of R are independent, to compute the above ratio, it suffices
to compute the ratio for a single row of M + R. Fix i ∈ [d], and let m = mi and r = ri

denote the ith row and define a = ai(x) := −m⊤x and b = bi(y) := −m⊤y. We want to
compare the ratio of P(r⊤x ∈ [a ± ∆], r⊤y ∈ [b ± ∆]) to P(r⊤x ∈ [a ± ∆]) · P(r⊤y ∈ [b ± ∆]).

Notice that r⊤x and r⊤y are Gaussian random variables with mean 0, variance 1/δ2, and
covariance Er[r⊤xr⊤y] = Er[x⊤rr⊤y] = ϵ/δ2. Denoting the square K := [a ± ∆] × [b ± ∆],
we have that

P(r⊤x ∈ [a ± ∆], r⊤y ∈ [b ± ∆]) = µϵ(δK),
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where µϵ is the 2-dimensional centered Gaussian measure with covariance matrix
(

1 ϵ

ϵ 1

)
and δK denotes the δ scaling of K. Similarly, we can write P(r⊤x ∈ [a ± ∆]) · P(r⊤y ∈
[b ± ∆]) = µ(δK), where µ is the standard 2-dimensional Gaussian measure.

We will compare the ratio µϵ(δK))/µ(δK) by approximating the Gaussian measure over
δK with the density at the center and show the following bound

µϵ(δK))/µ(δK) ≤ exp
(
3α + ϵ2 + δ2ϵ2(a2 + b2) + 2δ2ϵab

)
. (12)

Since (a1(x), . . . , ad(x)) = Mx and (b1(x), . . . , bd(x)) = My, using the above bound for
all the rows i ∈ [d], we have

Px,y

PxPy
≤ exp

(
3dα + dϵ2 + δ2ϵ2 · (∥Mx∥2

2 + ∥My∥2
2) + δ2ϵ · ⟨Mx, My⟩

)
.

Since ∥Mx∥2
2 ≤ d + poly(1/d) for every x ∈ supp(G), taking δ1 = 4dα gives the statement of

the claim. To finish the proof we prove (12) now.
Abusing notation and denoting by µ(s, t) and µϵ(s, t) the corresponding densities at

(s, t) ∈ R2, we have the following explicit formula for the density µϵ:

µϵ(s, t) = 1
2π

√
1 − ϵ2

· exp
(

−s2 + t2 − 2ϵst

2(1 − ϵ2)

)
.

Since the edge length of the square δK is 2δ∆, whenever |ϵ| ≤ 1/2, a direct calculation
with the densities shows that

sup(s,t)∈δK µ(s, t)
inf(s,t)∈δK µ(s, t) = exp

(
2δ2∆(|a| + |b|)

)
≤ exp

(
2δ2∆(|a| + |b| + 2∆)

)
≤ exp(δ1),

and that
sup(s,t)∈δK µϵ(s, t)
inf(s,t)∈δK µϵ(s, t) ≤ exp(4δ2∆(|a| + |b| + 2∆)) ≤ exp(2δ1),

where δ1 is as defined in the claim. It follows that whenever |ϵ| ≤ 1/2, we can use the density
at the center of K to obtain

µϵ(K)
µ(K) ≤ exp(3δ1) · µϵ(δa, δb)

µ(δa, δb) = 1√
1 − ϵ2

· exp
(

3δ1 + δ2ϵ2(a2 + b2)
2(1 − ϵ2) + δ2ϵab

1 − ϵ2

)
≤ exp

(
3δ1 + ϵ2 + δ2ϵ2(a2 + b2) + 2δ2ϵab

)
,

thus proving (12). ◁

Proof of Claim 7. We have Px =
∏

i∈[d] P[r⊤
i x ∈ [ai ± ∆]]. For any fixed i ∈ [d], r⊤

i x is
distributed as N (0, 1/δ2), so after scaling the quantity P[r⊤

i x ∈ [ai ± ∆]] = µ(δ · I) where
I = [ai ±∆] and µ is the standard Gaussian measure in R. Analogous to the proof of Claim 6,
one can approximate the Gaussian density at any at the point in I by the center point a,
and compute similarly to the proof of Claim 6 that

Px =
∏

i∈[d]

P[r⊤
i x ∈ [ai ± ∆]] =

(
δ∆√
2π

)d

exp
(

αx − δ2∥Mx∥2
2

2

)
,

for some small error |αx| ≤ 2δ2∆(∥Mx∥1 +d∆). As ∥Mx∥2 ∈ [r±∆] and r = O(
√

d), we have
that ∥Mx∥1 = O(d) and the statement of the claim follows for some δx ≤ |αx| + 1/poly(d) ≤
1/poly(d). ◁
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3 Conclusion

For the Komlós problem, as studied in this paper, Gaussian noise is a natural way to model
a smoothed analysis setting since the input vectors have Euclidean norm at most one. One
can wonder whether similar results can be obtained with more general noise models, for
instance, Bernoulli or other discrete noise models. Such noise models are also more conducive
for smoothed analysis in other discrepancy settings, such as for the Beck-Fiala problem.
The weighted second moment approach used here can also handle Bernoulli noise when the
number of vectors n ≫ d2 but the second moment becomes difficult to control when n is
smaller. It remains an interesting open problem to see if Bernoulli or other discrete noise
models can be handled for the regime n ≫ d log d.
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Abstract
Let G be a directed multi-graph on n vertices and m edges with a designated source vertex s and

a designated sink vertex t. We study the (s, t)-cuts of capacity minimum+1 and as an important
application of them, we give a solution to the dual edge sensitivity for (s, t)-mincuts – reporting the
(s, t)-mincut upon failure or addition of any pair of edges.

Picard and Queyranne [Mathematical Programming Studies, 13(1):8-16, 1980] showed that there
exists a directed acyclic graph (DAG) that compactly stores all minimum (s, t)-cuts of G. This
structure also acts as an oracle for the single edge sensitivity of minimum (s, t)-cut. Dinitz and
Nutov [STOC, pages 509-518, 1995] showed that there exists an O(n) size 2-level cactus model that
stores all global cuts of capacity minimum+1. However, for minimum+1 (s, t)-cuts, no such compact
structures exist till date. We present the following structural and algorithmic results on minimum+1
(s, t)-cuts.

1. There exists a pair of DAGs of size O(m) that compactly store all minimum+1 (s, t)-cuts of G.
Each minimum+1 (s, t)-cut appears as a (s, t)-cut in one of the 2 DAGs and is 3-transversal – it
intersects any path in the DAG at most thrice.

2. There exists an O(n2) size data structure that, given a pair of vertices {u, v} which are not
separated by an (s, t)-mincut, can determine in O(1) time if there exists a minimum+1 (s, t)-cut,
say (A, B), such that {s, u} ∈ A and {v, t} ∈ B; the corresponding cut can be reported in O(|B|)
time.

3. There exists an O(n2) size data structure that solves the dual edge sensitivity problem for
(s, t)-mincuts. It takes O(1) time to report the value of a resulting (s, t)-mincut (A, B) and
O(|B|) time to report the cut.

4. For the data structure problems addressed in (2) and (3) above, we also provide a matching
conditional lower bound. We establish a close relationship among three seemingly unrelated
problems – all-pairs directed reachability problem, the dual edge sensitivity problem for (s,t)-
mincuts, and 2 × 2 maximum flow. Assuming the directed reachability hypothesis, this leads to
Ω̃(n2) lower bounds on the space for the latter two problems.
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15:2 Minimum+1 (s,t)-cuts and Dual Edge Sensitivity Oracle

1 Introduction

The concept of cuts of a graph is very fundamental in graph theory and has many algorithmic
applications as well. There are mainly two types of cuts – global cuts and (s, t)-cuts. A
set of edges whose removal disconnects a given undirected graph is called a global cut. Let
G = (V, E) be a directed multi-graph (E is a multiset) consisting of n = |V | vertices and
m = |E| edges with a designated source vertex s and a designated sink vertex t. An (s, t)-cut
of G is defined as follows.

▶ Definition 1 ( (s, t)-cut). For a subset C ⊂ V with s ∈ C and t /∈ C, the set of outgoing
edges of C is called an (s, t)-cut.
It follows from Definition 1 that for each (s, t)-cut, there exists at least one subset C ⊂ V

that defines it. For the simplicity of exposition and without causing any confusion, henceforth
we shall use C to denote the corresponding (s, t)-cut as well. An edge is said to contribute to
an (s, t)-cut C if it is an outgoing edge of C. The set of edges that have one endpoint in C

and another endpoint in C is known as the edge-set of C, denoted by E(C).
A (s, t)-cut (likewise a global cut) consisting of least number of contributing edges is

called an (s, t)-mincut (likewise a global mincut ).
There has been extensive research in designing efficient algorithms for global mincuts

([15, 18, 19]) as well as (s, t)-mincuts ([10, 16]). In addition, elegant graph structures have
been invented that compactly store and characterize these cuts – Cactus graph for all global
mincuts given by Dinitz, Karzanov, and Lomonosov [5], and a directed acyclic graph (DAG)
given by Picard and Queyranne [23] for all (s, t)-mincuts. These structures can also serve as
an efficient data structure for single edge sensitivity problem – to report the (s, t)-mincut (or
global mincut) after the insertion/failure of an edge.

It is very natural to ask if there exists any compact structure for cuts of value greater than
the value of the minimum cuts. For global minimum+1 cuts, Dinitz and Nutov answered this
question in affirmative. In a seminal work [7], they showed that there exists an O(n) size
2-level cactus model that stores all minimum+1 cuts; they also gave a characterization of
these cuts. An incremental maintenance of this structure solves the problem of maintaining
minimum+2 edge connected components for any value of minimum cuts under insertion of
edges; generalizing the results of Galil and Italiano [12] and Dinitz [6].

However, for minimum+1 (s, t)-cuts, to the best of our knowledge, no such compact
structure exists till date. Note that the approach taken by Picard and Queyranne [23]
for (s, t)-mincuts does not seem extendable for minimum+1 (s, t)-cuts. This is because
their structure is based on the residual network resulting from a maximum (s, t)-flow and
thus crucially exploits the equivalence between maximum flow and minimum cut (Ford
and Fulkerson [10]); unfortunately, for a given minimum+1 (s, t)-cut, there is no equivalent
(s, t)-flow.

While a compact structure for minimum+1 (s, t)-cuts is of significant importance from a
graph theoretic perspective, equally important is a compact data structure that can efficiently
answer the following fundamental query for any given edge (u, v) ∈ E.

Q(u, v): report a minimum+1 (s, t)-cut C, if exists, such that u ∈ C, v ∈ C.

Interestingly, the DAG structure of Picard and Queyranne [23] for (s, t)-mincuts can
answer efficiently the question stated above in case of (s, t)-mincuts. For this purpose, it
crucially exploits the property that the set of (s, t)-mincuts are closed under intersection and
union operations. Unfortunately, this property no longer holds for minimum+1 (s, t)-cuts,
thus making it quite nontrivial to design a data structure for answering query Q.
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The study of minimum+1 (s, t)-cuts has an immediate application as well. As is evident
from the following fact, their study is indispensable for efficiently solving the dual edge
sensitivity problem for (s, t)-mincuts.

▶ Fact 2. The failure of a given pair of edges will reduce the value of (s, t)-mincut if and
only if there is a minimum (s, t)-cut containing any failed edge or a minimum+1 (s, t)-cut
containing both the failed edges.

Sensitivity data structure for a given graph problem is motivated by the fact that graphs
in the real world are prone to failures of vertices/edges. These failures are transient in
nature. So while the set of failed vertices/edges keep changing with time, at any stage of
time, the number of failed vertices/edges remains quite small. Therefore, the aim is to have
a compact data structure that can efficiently report the solution of the given problem for a
given set of failed vertices/edges. In a similar manner, we would like to efficiently report the
solution of the given problem for a given set of newly added vertices/edges. This may help
us determine which newly added vertex/edge changes the solution most significantly. In the
past, many elegant fault-tolerant structures have been designed for various classical problems,
like single-source reachability [17], shortest paths [4], breadth-first search [21], (s, t)-mincuts
[23], all-pairs mincuts [1] etc, which can handle the failure of a single vertex/edge. It is
certainly interesting and important to handle more than a single failure/addition. In this
endeavour, it is quite natural to first design data structures that can handle dual failures
(or dual insertions). This either helps, or exposes the difficulty, in solving the problem in
its generality. It has turned out that the data structures that handle dual failures are often
more complex and require deeper insight into the problem than the data structures that
handle only single failure. This is evident at least for the following problems – single-source
reachability [3], breadth-first search [20], shortest paths [9] etc. For the case of (s, t)-mincuts,
note that the 40 years old data structure of Picard and Queyranne [23] is the only known
sensitivity data structure and it can handle only a single edge failure/addition. It occupies
O(m) space and can report the value of the resulting (s, t)-mincut and the corresponding cut
in O(1) and O(m) time, respectively. No nontrivial data structure exists for the dual-edge
sensitivity of (s, t)-mincuts till date.

1.1 New results and their overview
Let λ be the value of the (s, t)-mincut in G. Henceforth, we use (λ + k) (s, t)-cut to denote
a minimum+k (s, t)-cut, k ∈ {0, 1}. Using just the sub-modularity of (s, t)-cuts (Lemma
10) and the relation between any pair of (s, t)-mincuts, we first present an alternate DAG
structure, denoted by Dλ, that compactly stores and characterizes all (s, t)-mincuts as follows.
An (s, t)-cut in G is a (s, t)-mincut if and only if it appears as a 1-transversal cut in Dλ – the
edge-set of an (s, t)-cut intersects any path in Dλ at most once. It can be easily observed that
Dλ, upon reversal of its edges, is identical to the DAG of Picard and Queyranne [23]. The
major advantage of the approach taken for designing this alternate DAG is that it shows a
way to design compact structures for (λ+1) (s, t)-cuts using only the properties of (s, t)-cuts
without exploiting the relation between cuts and flows. We now present an overview of our
main results on the (λ + 1) (s, t)-cuts.

The set of minimum cuts are closed under intersection and union. This property has played
a crucial role in designing compact structure as well as characterization of these mincuts –
cactus graph for global mincuts by Dinitz, Karzanov, Lomonosov [5], the skeleton structure
for Steiner mincuts by Dinitz and Vainshtein [8], and DAG for (s, t)-mincuts described in
this paper. However, it turns out that (λ + 1) (s, t)-cuts are not closed under intersection as
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well as union. Therefore, in order to design compact structure for (λ + 1)(s, t)-cuts and their
characterization, we analyse the relation between a pair of (λ + 1)(s, t)-cuts. On the basis
of the capacity of the cuts resulting from the intersection and union, each pair of (λ + 1)
(s, t)-cuts is classified into exactly one of the three types – Type-1, Type-2, and Type-3.
While designing compact structure for (λ + 1) (s, t)-cuts, the presence of pairs of Type-1 cuts
poses a challenge in characterizing them. Likewise the presence of pairs of Type-2 cuts poses
a challenge in determining the (s, t)-mincut upon the failure/addition of any pair of edges.
A natural idea to conquer these challenges is to partition the set of (λ + 1) (s, t)-cuts into a
small number of sets so that there is no pair of cuts from Type-1 (likewise Type-2) in a set.
It can be observed that any arbitrary partitioning may produce a large number of sets which
may defeat our objective of designing compact structures.

We present a technique called covering of (s, t)-cuts using which we can build a pair of
graphs that cover all (s, t)-cuts of G and each of them has no pair of cuts from Type-1. It
also helps in carefully handling pairs of cuts from Type-2. However, the covering technique
works only for a graph with at most two (s, t)-mincuts, and hence can not be applied directly.
In order to tackle this problem we introduce the concept of (λ + 1) (s, t)-class as follows.

▶ Definition 3. A (λ + 1) (s, t)-class is a maximal set of vertices A ⊂ V such that any pair
of vertices from A are not separated by any (s, t)-mincut.

It can be observed that the set of vertices of G that are assigned to a vertex of Dλ corresponds
to a (λ + 1) (s, t)-class. We first form a partition of the set of all (λ + 1) (s, t)-cuts (excluding
a set of degenerate cuts) with respect to the (λ + 1) (s, t)-classes. For each (λ + 1) (s, t)-class
W , we construct a new graph G(W) that preserves all (λ + 1) (s, t)-cut of G that subdivides
W and has at most two (s, t)-mincuts. We show that it is sufficient to work with G(W) for
each W to design compact structure for (λ + 1) (s, t)-cuts as well as dual edge sensitivity
data structure for (s, t)-mincuts.

1. A 2-level DAG structure for (λ + 1) (s, t)-cuts. Along similar lines of Dλ, we build a
compact graph Dλ+1 that stores all (λ + 1) (s, t)-cuts of G(W). In order to establish the
1-transversality property of (s, t)-mincuts in Dλ, the acyclicity of Dλ played a crucial role.
Therefore, at first sight, we would expect Dλ+1 to be acyclic and a (λ + 1) (s, t)-cut C in
G(W) to be a ℓ-transversal cut in Dλ+1 – edge-set of C intersects any path in Dλ+1 at most
ℓ times, for some constant ℓ. We find that Dλ+1 is not necessarily acyclic and, surprisingly
enough, a (λ + 1) (s, t)-cut may appear in Dλ+1 as an Ω(n)-transversal cut. The root cause
of non-acyclicity is the presence of pairs of cuts from Type-1. In order to tackle pairs of
cuts from Type-1, we exploit the fact that G(W) has at most two (s, t)-mincuts. We use
the covering technique to construct a pair of graphs G(W)I and G(W)U that are Type-1
free. Now applying the same approach that was applied to obtain Dλ, we construct a pair of
DAGs – Dλ+1 for graph G(W)I and Dλ+1 for graph G(W)U . This pair of DAGs is capable of
characterizing each (λ + 1) (s, t)-cut in G that subdivides W as follows. A (λ + 1) (s, t)-cut in
G(W) appears as a 3-transversal cut in exactly one of the two DAGs. In this way we obtain
an O(m) size structure for compactly storing and characterizing all (λ + 1) (s, t)-cuts and
it consists of two levels – (i) DAG Dλ and (ii) a pair of DAGs for each (λ + 1) (s, t)-class
associated with a vertex of Dλ.

Now we attempt to answer query Q(u, v) using our 2-level DAG structure. Note that each
1-transversal cut in Dλ is also a (s, t)-mincut in G. Hence for the set of (s, t)-mincuts the
query can be answered efficiently using a topological ordering of Dλ. However, a 3-transversal
cut in the pair of DAGs needs not be a (λ + 1) (s, t)-cut because of the existence of certain
pairs of cuts from Type-2.
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2. Data structure for (λ + 1) (s, t)-cuts. For each vertex u, there exists a unique
(s, t)-mincut C, called nearest (s, t)-mincut, that keeps u on the side of s such that C ⊆ C ′

for every other (s, t)-mincut C ′ that keeps u on the side of s. We can use this nearest
(s, t)-mincut of u to determine if there exists a (s, t)-mincut C such that u ∈ C and v ∈ C

for any pair of vertices {u, v}. Unfortunately, there are multiple nearest (λ + 1) (s, t)-cuts
that keep u on the side of s, and hence this approach fails.

Let W be the (λ + 1) (s, t)-class to which u belongs. Let C and C ′ be any pair of nearest
(λ + 1) (s, t)-cuts of u. We show that C and C ′ do not cross in W , that is, C ∪ C ′ ∩ W = ∅.
Using this crucial insight, we are able to design an O(n2) size data structure summarized in
the following theorem.

▶ Theorem 4. Let G be a directed multi-graph on n vertices and m edges with a designated
source vertex s and a designated sink vertex t. There exists a data structure occupying O(n2)
space that can determine in O(k) time whether there exists a (λ + 1) (s, t)-cut C such that
u ∈ C and v1, . . . , vk ∈ C for any given vertices u, v1, . . . , vk belonging to a (λ+1) (s, t)-class.
It can also report C in O(|C|) time.

3. An oracle for dual edge sensitivity for (s, t)-mincuts. We show that there is a data
structure {F , I} occupying O(n2) space which is capable of answering dual edge sensitivity
query for (s, t)-mincuts in O(1) time. The data structure F for handling dual edge failure
query is obtained as follows.

When both failed edges are not belonging to the same (λ + 1) (s, t)-class, data structures
for (s, t)-mincuts are sufficient to answer the query. The main challenge arises when endpoints
of both failed edges are belonging to the same (λ + 1) (s, t)-class W. Notice that the data
structure for (λ + 1) (s, t)-cut from Theorem 4 can determine whether there is a (λ + 1)
(s, t)-cut in which a single failed edge is contributing, but cannot answer if both edges are
contributing to a single (λ+1) (s, t)-cut. Suppose there is a (λ+1) (s, t)-cut C∗ of G in which
both failed edges, say (x, y) and (x′, y′), are contributing. Then the necessary condition is
that y′ must not belong to the nearest (λ + 1) (s, t)-cut from x to y, and y must not belong
to the nearest (λ + 1) (s, t)-cut from x′ to y′. Therefore, if necessary condition holds then
both edges are contributing to the union of the two nearest (λ + 1) (s, t)-cuts. However, the
union needs not necessarily be a (λ + 1) (s, t)-cut because of the existence of certain pairs of
(λ + 1) (s, t)-cuts from Type-2.

We employ the covering technique to tackle pairs of cuts from Type-2. Unfortunately,
covering does not necessarily eliminate all Type-2 pairs of cuts like the way it does in case of
Type-1 pairs. In order to tackle the problem arising due to the prevailing Type-2 pairs, we
exploit the insight into the structure of G(W)I and G(W)U . The end result is that, in order
to determine whether any given pair of edges are contributing to a single (λ + 1) (s, t)-cut,
we only have to perform a couple of nearest (λ + 1) (s, t)-cuts queries on G(W)I and G(W)U .

4. Lower bound for various mincut data structures: We establish a close relationship
between two seemingly unrelated problems – all-pairs directed reachability problem and
dual edge sensitivity problem for (s, t)-mincuts. The classical problem of all-pairs directed
reachability is defined as follows – Given a directed graph G on n vertices and m edges,
preprocess it to form a data structure which can efficiently report if any given vertex v is
reachable from another given vertex u. The problem becomes interesting when the underlying
graph is sparse, that is, m = o(n2). It is natural to ask whether there is any data structure
for the all-pairs directed reachability that takes o(n2) space and o(m) query time ? Goldstein
et al. [14], following the seminal work of Patrascu [22], stated a conjecture that concisely
conveys the belief.
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15:6 Minimum+1 (s,t)-cuts and Dual Edge Sensitivity Oracle

▶ Conjecture 5 (Directed Reachability Hypothesis [14]). Any data structure for the all-pairs
reachability in a directed graph must either use Ω̃(n2) space or Ω̃(m) query time. ( Ω̃(.)
denotes complexity upto polylogarithmic factors)

We provide an O(m) time reduction from any instance of the all-pairs directed reachability
problem for a given graph on n vertices and m edges to an instance of the dual edge sensitivity
data structure for (s, t)-mincuts on a graph with O(n) vertices and O(m) edges. Thus,
assuming Conjecture 5 holds, our O(n2) size data structure for dual edge sensitivity for
(s, t)-mincuts is indeed the optimal size data structure for achieving O(1) query time. As a
byproduct of this reduction, we establish conditional lower bounds on 2 × 2 flow tree. In
particular, we show that if conjecture 5 holds, any data structure that can report the value
of ({s, u}, {v, t})-mincut for s, u, v and t being any four vertices of the graph must either
use Ω̃(n2) space or Ω̃(m) query time. An interesting implication of this result is a matching
conditional lower bound for the data structure described in Theorem 4.

1.2 Related work
Benczur [2] gave an O(n2) space geometric representation for all the global cuts of value
within 6

5 times the global minimum cut value. As an important application, this structure
leads to the improvement in the time complexity of splitting algorithms [11].

Vazirani and Yannakakis [24] addressed the following fundamental question about (s, t)-
cuts. – Is there a polynomial time algorithm to compute an (s, t)-cut of second minimum
weight? They answered this question in the affirmative by showing that there is an algorithm
which can compute a kth minimum weight (s, t)-cut using only O(n2(k−1)) maximum flow
computations. This algorithm gives an implicit structure for all (s, t)-cuts – a binary tree
with ℓ leaves, that stores all (s, t)-cuts of G and the number of (s, t)-cuts is ℓ.

Another related work is on characterizing (s, t)-cuts using the polyhedron corresponding
to the dual of linear programming (LP) formulation on maximum (s, t)-flow. Vazirani and
Garg [13] showed that not all (s, t)-cuts can be characterized as the vertices of this polyhedron.
Moreover, they modify the dual of the LP formulation by adding a polynomial number of
constraints such that the corresponding polyhedron of the resulting LP formulation has all
(s, t)-cuts as its vertices.

1.3 Organisation of the paper
Section 2 contains the basic preliminaries and the construction of a quotient graph for a set
of (λ + k) (s, t)-cuts. The technique of covering (s, t)-cuts is explained in Section 3. Section
4 contains the construction and properties of the alternate DAG structure for (s, t)-mincuts.
The structure for (λ + 1) (s, t)-cuts and their characterization is discussed in Section 5. The
data structure for reporting (λ + 1) (s, t)-cuts is constructed in Section 6. Section 7 contains
the Oracle for dual-edge sensitivity of (s, t)-mincuts. Finally in Section 8 we give the lower
bounds. Missing proofs of lemmas and theorems are provided in the full version.

2 Preliminaries

For any X, Y ⊆ V , the capacity of (X, Y ) (denote by c(X, Y )) is the number of edges leaving
X and entering Y ; for brevity we use c(X) to denote c(X, X) where X = (V \ X). We say
that an (s, t)-cut C subdivides X ⊆ V if C ∩ X and C ∩ X are non empty.
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▶ Definition 6 (Nearest (λ + k) (s, t)-cut of a vertex). The set A ⊂ V with s ∈ A and t ∈ A

is said to be the nearest (λ + k) (s, t)-cut of a vertex u if u ∈ A and there is no (λ + k)
(s, t)-cut B ⊂ V such that u ∈ B and B ⊂ A. The set of all nearest (λ + k) (s, t)-cuts of u

is denoted by Nk(u).

▶ Definition 7 (Nearest (λ + k) (s, t)-cut for a pair of vertices). Let A be a nearest (λ + k)
(s, t)-cut of a vertex u. For each vertex v ∈ A, A is said to be a nearest (λ + k) (s, t)-cut
from vertex {u} to a vertex {v}. The set of all nearest (λ + k) (s, t)-cuts from u to v is
denoted by Nk(u, v).

When |N1(u)| = 1 (likewise |N1(u, v)| = 1), without causing any ambiguity we use N1(u)
(likewise N1(u, v)) to denote the corresponding cut as well.

▶ Definition 8 (ℓ-transversal cut). A (s, t)-cut in a directed graph H is said to be ℓ-transversal,
ℓ ≥ 1, if any path in H intersects with the edge-set of the (s, t)-cut at most ℓ times.

▶ Definition 9 (transpose of a graph). Let H be a directed multi-graph with designated
source vertex s and designated sink vertex t. The transpose of graph H (denoted by (H)T ) is
obtained by reversing the orientation of each edge of H with role of s and t swapped.

▶ Lemma 10 (Submodularity of cuts). For any A, B ⊆ V , c(A) + c(B) ≥ c(A∩B) + c(A∪B).

▶ Lemma 11. Let A and B be any two (s, t)-mincuts in G that are crossing, that is, A \ B

as well as B \ A are non-empty. There is no edge of G between A \ B and B \ A.

2.1 Quotient graph for a family of (s, t)-cuts
Let C be a set of (λ + k) (s, t)-cuts in graph G = (V, E) where k ∈ {0, 1}. We define the
following binary relation on the vertex set of G.

▶ Definition 12 (Relation Rλ+k). Any two vertices {x, y} ∈ V are said to be related by Rλ+k

if and only if x and y are not separated by any (λ + k) (s, t)-cut from C.

It is a simple exercise to show that Rλ+k defines an equivalence relation on the vertex
set. We call each equivalence class defined by Rλ+k as a (λ + k + 1) (s, t)-class. It can be
observed that any (s, t)-cut that subdivides a (λ + k + 1) (s, t)-class has capacity strictly
larger than λ + k. The following lemma states how a (λ + k) (s, t)-class is related to a (λ + k)
(s, t)-cut.

▶ Lemma 13. A (λ + k) (s, t)-cut can subdivide at most one (λ + k) (s, t)-class.

Since Rλ+k is an equivalence relation, the (λ + k + 1) (s, t)-classes form a partition of
the vertex set of G into disjoint subsets. Let Gλ+k be the quotient graph of G obtained by
contracting each of these subsets into single vertices. We call each vertex of the quotient
graph as nodes. The node of Gλ+k containing source s is denoted by S and the node
containing sink t is denoted by T . We call an (S, T )-cut of Gλ+k as (s, t)-cut without causing
any ambiguity. The following theorem is immediate from the construction.

▶ Theorem 14. For a directed multi-graph G and a set of (λ + k) (s, t)-cuts C for any
k ∈ {0, 1}, there exists a quotient graph Gλ+k of G such that C ∈ C is an (s, t)-cut in G if
and only if C is a (λ + k) (s, t)-cut in Gλ+k.

An edge of Gλ+k is classified as normal or inverted using the following definition.

▶ Definition 15 (inverted edge for (λ + k) (s, t)-cut). An edge (x, y) of Gλ+k is said to be an
inverted edge if there exists no (λ + k) (s, t)-cut C ∈ C such that x ∈ C and y ∈ C.
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▶ Fact 16. For a directed multi-graph H and a set of (λ + k) (s, t)-cuts C, let Hλ+k be the
quotient graph of H. Given a pair of nodes µ, ν in graph Hλ+k, the contraction of all vertices
which are mapped to µ or ν into a single vertex in H eliminates precisely all those (λ + k)
(s, t)-cuts from C that separate µ and ν.

Consider two sets of (λ + k) (s, t)-cuts C and C′ such that C ⊂ C′. Let Gλ+k and G′
λ+k

be the quotient graphs for C and C′ respectively. It follows from construction of quotient
graphs that there exists equivalence classes of Gλ+k which are further split into multiple
equivalence classes of G′

λ+k. Therefore, the following lemma is immediate.

▶ Lemma 17. Given a directed multi-graph G, let Gλ+k and G′
λ+k be a pair of quotient

graphs formed on the sets of (λ + k) (s, t)-cuts C and C′ respectively. If C ⊂ C′ then Gλ+k is
a quotient graph of G′

λ+k.

3 A covering of all (s, t)-cuts of a special graph

We first formalize the notion of covering the (s, t)-cuts of a graph using the following definition.

▶ Definition 18 (Covering all (s, t)-cuts). Given a directed multi-graph H with a designated
source vertex s and a designated sink vertex t, let F = {H1, H2, . . . , Hℓ} be a finite set of
directed multi-graphs, each defined on the same vertex set as that of H. F is said to cover
all (s, t)-cuts of H if and only if the following conditions hold.
1. For each (s, t)-cut C in H, there exists a (s, t)-cut C ′ in Hi for a unique 1 ≤ i ≤ ℓ such

that C = C ′.
2. For each (s, t)-cut C of finite capacity in Hi for any 1 ≤ i ≤ ℓ, there exists a (s, t)-cut C ′

in H such that C = C ′.

Let H be a directed multi-graph with a designated source vertex s and a designated sink
vertex t that has at most two (s, t)-mincuts – {s} and (complement of) {t}. Our aim is to
compute a small family F = {H1, H2, . . . , Hℓ} that covers all (s, t)-cuts of H and satisfies
the following condition – for each pair C, C ′ of (s, t)-cuts in Hi for any 1 ≤ i ≤ ℓ, either their
intersection or union is not a λ (s, t)-cut.

We shall show that there exists a family F = {HU , HI} of only two graphs that covers
all (s, t)-cuts of H and satisfies the said property. We build two graph HU and HI from H

as follows. Let x be any arbitrary vertex other than s and t of H. HI is formed by adding
infinite capacity edge from vertex s to x. In a similar way, HU is formed by adding infinite
capacity edge from vertex x to t. The following lemma ensures that HU and HI together
cover all (λ + k) (s, t)-cuts of H. It exploits the following simple fact – Let x be a vertex of
graph H and C be any (s, t)-cut; either x ∈ C or x ∈ C.

▶ Lemma 19. Let λ′ > 0 be a finite number. C is an (s, t)-cut in H of capacity λ′ if and
only if C is a cut of capacity λ′ in HU or HI .

It follows from the construction that the first (s, t)-mincut of H , that is {s}, is present in
HU while the second (s, t)-mincut of H, that is (complement of) {t} is present in HI . So
using Lemma 19, we can state the following theorem.

▶ Theorem 20. Let H = (V, E) be a directed multi-graph on n vertices and m edges with
a designated source vertex s and a designated sink vertex t. Suppose H has at most two
(s, t)-mincuts, {s} and V \ {t}. There exists a set of graphs F = {HI , HU } satisfying the
following properties:
1. F covers all (λ + k) (s, t)-cuts of H.
2. V \ {t} is the only λ (s, t)-cut in HI , and {s} is the only λ (s, t)-cut in HU .
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▶ Note 21. Covering technique cannot be applied to a graph H that has more than two
(s, t)-mincuts. This is because, for any vertex x in H, there will be more than one (s, t)-
mincuts that keep x on side of s and/or more than one (s, t)-mincuts that keep x on side of
t. Therefore, there will be multiple (s, t)-mincuts in HI or multiple (s, t)-mincuts in HU ,
hence violating Theorem 20(2).

4 An alternate DAG structure storing all (s, t)-mincuts

We now present an alternate compact structure Dλ for representing and characterizing all
(s, t)-mincuts of G.

Construction of Dλ: Let Gλ be the quotient graph defined by all λ (s, t)-cuts of G

(Theorem 14). Dλ is the graph obtained by reversing the direction of each inverted edge
of Gλ. Exploiting just the elementary properties of (s, t)-mincuts alone (Lemma 11 and
submodularity of cuts), we show that Dλ is acyclic. As the reader may notice, Dλ is related
to the DAG of Picard and Queyranne [23] – the mapping of vertices to the nodes of the DAG
is identical while the direction of each edge is flipped. Each (s, t)-mincut of G is characterized
by a 1-transversal cut in Dλ as stated in the following lemma.

▶ Lemma 22 (1-transversality property). An (s, t)-cut is an (s, t)-mincut of G if and only if
it appears as a 1-transversal cut in Dλ.

The following lemma can be proved along similar lines as Lemma 22.

▶ Lemma 23. An (s, t)-cut of G is an (s, t)-mincut if and only if it appears as an (s, t)-cut
with no incoming edge in Dλ.

Interestingly, Dλ can serve as a compact data structure for efficiently answering the query
Q(u, v) for (s, t)-mincuts as follows. Let τ be a topological ordering of Dλ. For each edge
(µ, ν) of Dλ, τ(µ) < τ(ν). Hence, it is a simple corollary of Lemma 22 that every prefix
of τ is a (s, t)-mincut. Therefore, given any edge (u, v) ∈ E, there is a (s, t)-mincut in G

containing it if u and v appear in different nodes of Dλ and the node containing u appears
before the node containing v.

5 Structure of (λ + 1) (s, t)-cuts

In order to construct a compact structure for (λ + 1) (s, t)-cuts, we take an approach similar
to the construction of Dλ for (s, t)-mincuts and construct a graph Dλ+1 as follows.

Construction of Dλ+1: Let Gλ+1 be the quotient graph defined by all (λ + 1) (s, t)-cuts
(Theorem 14). Dλ+1 is the graph obtained by reversing the direction of each inverted edge
of Gλ+1. Henceforth Dλ+1 for a graph H is denoted by Dλ+1(H).

Dλ characterizes (s, t)-mincuts of G as 1-transversal cuts. Unfortunately, it turns out
that Dλ+1(G) is not sufficient for characterizing (λ + 1) (s, t)-cuts in terms of ℓ-tranversal
cuts for some constant ℓ as stated in the following theorem.

▶ Theorem 24 (Ω(n)-transversality). There exists a directed multi-graph H on n vertices with
a designated source vertex s and a designated sink vertex t having only two (s, t)-mincuts
and a (λ + 1) (s, t)-cut C such that C appears as a Ω(n)-transversal cut in Dλ+1(H).
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Figure 1 Contributing edges of a pair of (s, t)-cuts A and B between different regions.

We now provide a classification of all-pairs of (λ + 1) (s, t)-cuts. This classification will
act as a crucial tool in the analysis of Dλ+1(G) as well as establishing properties of the
compact structure for (λ + 1) (s, t)-cuts in Section 5.1.

Suppose A and B are any two (λ+1) (s, t)-cuts. Using sub-modularity of cuts (Lemma 10),
we arrive at the following inequality, c(A ∩ B) + c(A ∪ B) ≤ c(A) + c(B) = 2(λ + 1). Note
that c(A ∩ B) ≥ λ and c(A ∪ B) ≥ λ. This implies that the value of c(A ∩ B) + c(A ∪ B) will
always belong to {2λ, 2λ + 1, 2λ + 2}. Therefore, each pair (A, B) of (λ + 1) (s, t)-cuts can
be classified uniquely into one of the three types based on the value of c(A ∩ B) + c(A ∪ B).
We now state the following lemma that will provide an alternate characterization of these
three types based on the number of edges between A \ B and B \ A.

▶ Lemma 25. Suppose A and B are any two (λ + 1) (s, t)-cuts. Let γ1 and γ2 denote the
number of edges from A\B to B \A and from B \A to A\B respectively. If c(A∩B) = λ+p

and c(A ∪ B) = λ + q for some p, q ≥ 0, then γ1 + γ2 = 2 − p − q.

Proof. The cuts A and B partition G into at most 4 regions. Refer to Figure 1 for the
illustration of these regions and the edges contributing to the respective cuts.

The following equations follow directly from Figure 1.

c(A ∩ B) = α1 + α2 + δ = λ + p (1)
c(A ∪ B) = β1 + β2 + δ = λ + q (2)
c(B) = β1 + α2 + γ2 + δ = λ + 1 (3)
c(A) = β2 + α1 + γ1 + δ = λ + 1 (4)

Using equations (1) and (3) we get α1 = β1 + γ2 + p − 1. Similarly using equations
(1) and (4) we get α2 = β2 + γ1 + p − 1. By combining these two equalities, we get
α1 +α2 = β1 +β2 +γ1 +γ2 +2p−2. Hence γ1 +γ2 = 2−p−q, since α1 +α2 = β1 +β2 +p−q

from equations (2) and (1). ◀

Refer to Table 1 for two ways to characterize the three types of pairs of (λ + 1) (s, t)-cuts.

Table 1 Classification of any pair (A, B) of (λ + 1) (s, t)-cuts.

c(A ∩ B) + c(A ∪ B) c(A \ B, B \ A) + c(B \ A, A \ B)

Type-1 2λ 2
Type-2 2λ + 2 0
Type-3 2λ + 1 1
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Figure 2 (i) An example of Dλ+1(G) with cycle ⟨a, b, c, d, e, f, a⟩. Note that here Dλ+1(G) turns
out to be same as G. (ii) Cycle O in graph Dλ+1(H) from the proof of Lemma 27.

It follows from Theorem 24 that transversality of (λ + 1) (s, t)-cuts cannot be bounded by
a constant even if a graph has at most two (s, t)-mincuts – {s} and (complement of) {t}. In
the following section, we shall first give a compact structure for (λ + 1) (s, t)-cuts for graph
G assuming that G has at most two (s, t)-mincuts. Finally, we shall extend it to general
graphs with the help of the structure of Dλ in Section 5.1.1.

5.1 Compact representation and characterization of (λ + 1) (s, t)-cuts
The characterization of (s, t)-mincuts crucially exploits the fact that Dλ is a DAG. Unfortu-
nately, as shown in Figure 2(i), Dλ+1(G) can have cycles. The following lemma states the
source of any 2-length cycle in Dλ+1.

▶ Lemma 26. If graph G does not have any pair of cuts from Type-1, then Dλ+1(G) cannot
have a cycle of length two.

Proof. Suppose we have a 2-length cycle ⟨µ, ν, µ⟩ in Dλ+1(G). It follows from construction
of Dλ+1 that there exists a (λ + 1) (s, t)-cut C for the edge (µ, ν) such that µ ∈ C and
ν ∈ C. In a similar manner there exists a (λ + 1) (s, t)-cut C ′ for the edge (ν, µ) such that
ν ∈ C ′ and µ ∈ C ′. It can be observed that (C, C ′) forms a pair of cuts from Type-1, a
contradiction. ◀

In fact, the absence of pairs of (λ + 1) (s, t)-cuts from Type-1 is a sufficient condition for
acyclicity as stated in the following lemma.

▶ Lemma 27 (acyclicity property). If graph G does not have any pair of cuts from Type-1,
then Dλ+1(G) is a directed acyclic graph.

Proof. We begin with stating the following assertion.
A(i): For any graph H that has no pair of (λ + 1) (s, t)-cuts from Type 1, there is no cycle
of length i in Dλ+1(H).
We shall now prove, by induction on i, that A(i) holds for all i ≥ 2, and this would establish
the lemma. The base case, A(2) follows directly from Lemma 26. Suppose A(j) holds for all
j < i. We shall now prove that A(i) holds.

Suppose there is a cycle O of length i in Dλ+1(H) (see Figure 2(ii)). Consider any
arbitrary edge (µ, ν) in this cycle. It follows from construction of Dλ+1(H) that there exists
a (λ + 1) (s, t)-cut C of H such that µ ∈ C and ν ∈ C. Let U be the set of vertices of H

that are mapped to either µ or ν. Contracting the set U into a single vertex we obtain a new
graph H ′ from H.
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It follows from Fact 16 and Lemma 17 that Dλ+1(H ′) has to be a quotient graph of
Dλ+1(H). As a result, cycle O in Dλ+1(H) will be mapped to either a cycle of length strictly
less than i or a single node in Dλ+1(H ′). The Induction Hypothesis rules out the possibility
of the former case. We shall now rule out the possibility of the latter case. This will establish
the validity of A(i).

The cut C must contain at least one more edge, say (µ′, ν′), of cycle O because the
cycle O must intersect the edge-set of C at least twice. It follows from the construction
of Dλ+1(H) that there exists a (λ + 1) (s, t)-cut, say C ′, in Dλ+1(H) such that µ′ ∈ C ′

and ν′ ∈ C ′. Since µ′ and ν′ belong to the same node in Dλ+1(H ′), the cut C ′ is not
present in H ′. This observation, in the light of Fact 16, implies that C ′ must separate
µ and ν (dashed curve in Figure 2). This would imply that for the pair of cuts (C, C ′),
c(C \C ′, C ′ \C)+c(C ′ \C, C \C ′) = 2. Hence (C, C ′) forms a Type-1 pair of (λ+1) (s, t)-cut
in H, a contradiction. ◀

In order to have acyclic structures that collectively preserve all (λ+1) (s, t)-cuts, Lemma 27
raises the following question – can we partition the set of (λ + 1) (s, t)-cuts such that each
partition does not contain any pair of (λ + 1) (s, t)-cut from Type-1? The covering technique
(Theorem 20) gives an affirmative answer to this question. In particular, it outputs just a
pair of graphs {GI , GU } such that all (λ + 1) (s, t)-cuts of G are covered by GI and GU

together. Moreover, both GU and GI will contain exactly one (s, t)-mincut each, and this
ensures that there are no pairs of (λ + 1) (s, t)-cuts from Type-1 in GI or GU . Therefore, it
follows from Lemma 27 that Dλ+1(GI) and Dλ+1(GU ) are acyclic. In the case when G has
exactly one (s, t)-mincut, Dλ+1(G) itself is acyclic.

Not only Dλ+1(GI) and Dλ+1(GU ) are acyclic but also help in characterizing (λ + 1)
(s, t)-cuts as follows.

We show that each (λ + 1) (s, t)-cut of G is 3-transversal in Dλ+1(GI) or in Dλ+1(GU ).
Without loss of generality let us consider the graph Dλ+1(GU ). In order to accomplish 3-
transversality of (λ+1) (s, t)-cuts in Dλ+1(GU ), we first show that for any path in Dλ+1(GU )
whose first node is not S, there is no (λ + 1) (s, t)-cut which can keep both the first and the
last node of the path on side of S, and remaining nodes on side of T . As a warm-up, the
following lemma validates this assertion for all paths of length two.

▶ Lemma 28. Let P = ⟨v0 ̸= S, v1, v2⟩ be a path in Dλ+1(GU ). There can not exist any
(λ + 1) (s, t)-cut C such that v0, v2 ∈ C and v1 ∈ C.

Proof. We give a proof by contradiction. Assume that there is such a (λ + 1) (s, t)-cut C. It
follows from the construction of Dλ+1(GU ) that there is a (λ + 1) (s, t)-cut C ′ for the edge
(v1, v2) such that v1 ∈ C ′ and v2 ∈ C ′. It can be observed that the edge (v1, v2) is an edge
from C ′\C to C\C ′. Therefore, {C, C ′} cannot be a pair from Type-2. {C, C ′} cannot be
pair from Type-1 as well since there is no pair of (λ + 1) (s, t)-cuts from Type-1 in Dλ+1(GU ).
So, {C, C ′} must be a pair from Type-3. Notice that C ∪ C ′ has capacity λ + 1 since the only
λ (s, t)-cut in GU is {s}. Hence, C ∩ C ′ must be containing the node S only. Since v0 ∈ C,
therefore, v0 cannot belong to C ′ and hence the edge-set of C ′ must intersect path P again
at edge (v0, v1). Then, in that case, there are two edges (v0, v1) and (v1, v2) between C \ C ′

and C ′ \ C. This implies that (C, C ′) are from Type-1, a contradiction. ◀

Generalizing Lemma 28 for any arbitrary length path, we give the following lemma which
will provide the foundation for establishing 3-transversality of (λ + 1) (s, t)-cuts.

▶ Lemma 29. Let P = ⟨v0 ̸= S, v1, . . . , vi⟩ be a simple path in Dλ+1(GU ). There does not
exist a (λ + 1) (s, t)-cut C such that v0, vi ∈ C and v1, . . . , vi−1 ∈ C.
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Figure 3 C: dash-dot curve, C′: solid curve, C ∪ C′: dashed curve, (vi−1, vi) is in E(C) ∩ E(C′).

Proof. We begin with stating the following assertion.
A(i) : There does not exist a (λ+1) (s, t)-cut C such that v0, vi ∈ C and v1, . . . , vi−1 ∈ C

for a path P = ⟨v0 ̸= S, v1, . . . , vi−1, vi⟩ of length i.
We shall use proof by induction on the length of the path i ≥ 2 to show that A(i) holds.

The base case, A(2) follows directly from Lemma 28.
Let us now assume that A(j) holds for all 2 ≤ j < i. We shall prove that A(i) holds

using a proof by contradiction. Assume to the contrary that there is a (λ + 1) (s, t)-cut C

such that v0, vi ∈ C and v1, . . . , vi−1 ∈ C (refer to Figure 3). It follows from the construction
of Dλ+1(GU ) that there is a (λ + 1) (s, t)-cut C ′ for the edge (vi−1, vi) such that vi−1 ∈ C ′

and vi ∈ C ′. Along similar lines of the proof of Lemma 28 we can argue that (C, C ′) are
pairs from Type-3 with c(C ∪ C ′) = λ + 1, and edge-set of C ′ must be intersecting path
P at least one more time before the edge (vi−1, vi). So, let (vk, vk+1), 0 ≤ k < i − 1,
be the first edge on P that intersects edge-set of C ′. Now, there are two possible cases,
either k = 0 and vk+1 = v1 or k > 0. In the former case, it is easy to observe that two
edges (v0, v1) and (vi−1, vi) lie between C ′ \ C and C \ C ′. Therefore, (C, C ′) must be from
Type-1, a contradiction. In the latter case, observe that v0, . . . , vk /∈ C ′ and vk+1 ∈ C ′

because (vk, vk+1) is the nearest edge from v0 in P that intersects edge-set of C ′. Therefore,
v0, vk+1 ∈ C ∪C ′ and v1, . . . , vk /∈ C ∪C ′. So, we get a path P ′ = ⟨v0, . . . .vk+1⟩ and a (λ+1)
(s, t)-cut C ∪ C ′ such that v0, vk+1 ∈ C ∪ C ′ and v1, . . . , vk ∈ C ∪ C ′. Moreover, path P ′

has length strictly smaller than i because k < i − 1. Therefore, A(k + 1) fails to hold and
k + 1 < i, a contradiction. ◀

Now in the following lemma, using Lemma 29 we argue that there cannot exist any (λ+1)
(s, t)-cut C in Dλ+1(GU ) such that edge-set of C intersects a path P more than thrice.

▶ Lemma 30 (3-transversality property). Each (λ + 1) (s, t)-cut of G is 3-transversal in
Dλ+1(GI) or in Dλ+1(GU ).

Proof. Without loss of generality let us consider Dλ+1(GU ). The proof is along similar lines
for Dλ+1(GI). We give a proof by contradiction. Assume to the contrary that there exists a
(λ + 1) (s, t)-cut C in G and a path P in Dλ+1(GU ) such that edge-set of C intersects path P

more than thrice. Then, path P can be divided into at least 5 contiguous disjoint subpaths
{P1, P2, P3, P4, P5}. For the cut C, observe that either each node of Pi is on side of S for all
odd i and each node of Pi is on side of T for all even i or vice versa. In the former case, let us
consider the subpath P ′ = ⟨P3, P4, P5⟩ of P . For this path P ′, we have each node of P3, P5
in C and each node of P4 in C. Moreover, S cannot belong to P3 because by construction of
Dλ+1(GU ) there is no incoming edge to S. Therefore, we have a path P ′ with first node (not
S) and last node in (λ + 1) (s, t)-cut C and other nodes are in C. This contradicts Lemma
29. In a similar way we can argue the latter case using subpath P ′ = ⟨P2, P3, P4⟩. ◀
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Figure 4 (i) The edge-set of (λ + 1) (s, t)-cut A intersects path ⟨S, v1, v2, T ⟩ thrice; A and B are
(λ + 1) (s, t)-cuts from Type-3. (ii) A 1-transversal cut C = A ∩ B with capacity greater than λ + 1.

We also show that there are (λ + 1) (s, t)-cuts which may not appear in Dλ+1 as
1-transversal cut (refer to Figure 4(i)). This is because, for each 3-transversal (λ + 1) (s, t)-
cut A, there exists a (λ + 1) (s, t)-cut B such that A, B are pairs from Type-3. Therefore,
our bound of 3-transversality is tight.

5.1.1 Extension to general graphs
The compact structure and characterization of (λ + 1) (s, t)-cuts are valid if the graph has
at most two (s, t)-mincuts. However, in general, graphs can have exponential number of
(s, t)-mincuts. To tackle this difficulty we explore how a (λ + 1) (s, t)-cut is related to the
(λ + 1) (s, t)-classes of a graph G. There are (λ + 1) (s, t)-cuts in G which do not subdivide
any (λ + 1) (s, t)-class. We call them degenerate (λ + 1) (s, t)-cuts. These cuts appear in Dλ

and have the following characterization.

▶ Lemma 31. An (s, t)-cut of G is a degenerate (λ + 1) (s, t)-cut if and only if it appears as
an (s, t)-cut with exactly one incoming edge in Dλ.

Henceforth, our main focus is on the non-degenerate (λ + 1) (s, t)-cuts – cuts that
subdivide (λ + 1) (s, t)-classes. It follows from Lemma 13 that each such (λ + 1) (s, t)-cut
subdivides precisely one (λ + 1) (s, t)-class. Therefore, the set of all (λ + 1) (s, t)-cuts can be
partitioned into disjoint subsets where each subset subdivides exactly one (λ + 1) (s, t)-class.
This partitioning allows us to work separately with each (λ + 1) (s, t)-class. Let W be a
(λ + 1) (s, t)-class. In order to build a compact structure that stores all (λ + 1) (s, t)-cuts
that subdivide W, we now define a graph G(W) associated with W as follows.

Construction of G(W): Let τ be a topological ordering of Dλ where source node S (likewise
T ) has the smallest (likewise highest) topological number. G(W) is obtained by forming a
quotient graph of G using τ as follows. Let µ be the node of Dλ corresponding to W. All
nodes that precede µ in the topological ordering τ are contracted into a single source node
S′ and every node that succeeds µ are contracted to a single sink node T ′.

It is easy to observe that s ∈ S′ (likewise t ∈ T ′) since s ∈ S (likewise t ∈ T ). Henceforth
without causing any ambiguity we denote an (S′, T ′)-cut in G(W) as an (s, t)-cut in G(W).
The following lemma establishes the mapping between the (λ + 1) (s, t)-cuts of G and G(W).

▶ Lemma 32. A (λ+1) (s, t)-cut C in G subdivides a (λ+1) (s, t)-class W into (W1, W \W1)
if and only if there exists a (λ + 1) (s, t)-cut C ′ = W1 ∪ {S′} in G(W).
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It is easy to observe that graph G(W) can have at most two (s, t)-mincuts – S′ and complement
of T ′. Therefore, we construct pair of DAGs, Dλ+1((G(W))I) and Dλ+1((G(W))U ), for each
(λ + 1) (s, t)-class W . Now we summarize these structural and characterization results in the
following theorem.

▶ Theorem 33. For any directed multi-graph G, on n vertices and m edges with a designated
source vertex s and a designated sink vertex t, there exists a 2-level DAG structure of O(m)
size–(i) Dλ and (ii) a pair of DAGs associated with each node of Dλ, such that all (λ + 1)
(s, t)-cuts of G are compactly stored and characterized as follows.
1. a non-degenerate (λ+1) (s, t)-cut of G subdividing a (λ+1) (s, t)-class W is a 3-transversal

cut in one of the two DAGs associated with W, and
2. an (s, t)-cut of G is a degenerate (λ+1) (s, t)-cut if and only if it has exactly one incoming

edge in Dλ.

We now explore the possibility of answering query Q(u, v) using the pair of DAGs,
Dλ+1(GI) or Dλ+1(GU ). Recall that for the case of (s, t)-mincuts, just storing a topological
ordering of Dλ is sufficient to answer query Q(u, v) because each 1-transversal cut in Dλ is
also an (s, t)-mincut. However, a 1-transversal cut in Dλ+1(GI) or Dλ+1(GU ) needs not be a
(λ + 1) (s, t)-cut. For example, cut A ∩ B as shown in Figure 4(ii) is 1-transversal but has
capacity λ + 2. Note that A and B form a (λ + 1) (s, t)-cuts from Type-2. In the following
section, we provide a compact data structure that can answer query Q(u, v) even when (u, v)
is not necessarily an edge.

6 Compact data structures for reporting (λ + 1) (s, t)-cuts

In this section we address the very fundamental problem of reporting any (λ + 1) (s, t)-cut C

for a given pair of vertices {u, v} such that u ∈ C and v ∈ C, if exists. In order to answer the
query it is sufficient to verify if v is separated by at least one of the cuts from N1(u). Note
that in case of (s, t)-mincut, it suffices to store the N0(u) which turns out to be unique for
each vertex u. This structure occupies O(n2) space and achieves O(|C|) time for reporting
the (s, t)-mincut C such that u ∈ C and v ∈ C. Unfortunately, N1(u) can have more than
one elements (as shown in Figure 4 that both A and B belong to N1(ν)). This is because
unlike for (s, t)-mincuts, the set of all (λ + 1) (s, t)-cuts that keep a vertex u on the side of s

is not closed under intersection and union operations.
In order to design compact data structure for reporting (λ + 1) (s, t)-cut, as discussed

in Section 5.1.1, we work on each (λ + 1) (s, t)-class. Let W be a (λ + 1) (s, t)-class in
graph G and u, v ∈ W. Although N1(u) can have multiple elements, it can be shown
using sub-modularity of cuts (Lemma 10) that N1(u, v) is unique. However, this fact alone
guarantees O(|W|3) space data structure for determining the existence of N1(u, v) for any
pair of vertices u, v ∈ W. In order to achieve more compact data structure we explore how
N1(u, v) is related to N1(u, w) for any w ∈ W . The following lemma provides an important
insight into this relationship.

▶ Lemma 34. If N1(u, v) ̸= N1(u, w) for any {u, v, w} in W, then W ⊆ N1(u, v) ∪ N1(u, w).

Proof. The proof is by contradiction. Let C = N1(u, v) and C ′ = N1(u, w). Assume that
there is a vertex in W which is also in C ∪ C ′. In that case both C ∩ C ′ and C ∪ C ′ subdivide
W; therefore, capacity of each of them is strictly larger than λ. So it immediately follows
from sub-modularity of cuts (Lemma 10) that c(C ∩ C ′) is (λ + 1). Therefore we have a
(λ + 1) (s, t)-cut C ∩ C ′ which is a proper subset of at least one of C and C ′. Therefore, C

or C ′ fails to satisfy Definition 7 – a contradiction. ◀
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Now let N1(u) = {C1, C2, . . . , Cl}. Consider any vertex v ∈ W. If v belongs to
⋂l

i=1 Ci,
then N1(u, v) does not exist; otherwise, Lemma 34 implies that v is separated from u by
exactly one of the cuts from N1(u). As a result the sets Ci ∩ W for each i ∈ [l] are disjoint.
In order to determine the position of any other vertex, w ∈ W , with respect to N1(u, v), we
formulate the following query.

belong(u, v, w) =
{

1 if N1(u, v) exists and w ∈ N1(u, v)
0 otherwise.

For each vertex x ∈ W \ {u}, if x ∈ Ci for any i ∈ [l] then mark x with label i. Now if label
of v and w are same, then w is not present in N1(u, v), otherwise w belongs to N1(u, v). In
this way we can answer query belong(u, v, w) in O(1) time. Therefore, the following lemma
is immediate.

▶ Lemma 35. Let W be a (λ + 1) (s, t)-class and u ∈ W. There exists an O(|W|) size data
structure Nλ+1(u) that can determine in O(k) time whether there exists a (λ + 1) (s, t)-cut C

such that u ∈ C and v1, . . . , vk ∈ C for any v1, . . . , vk ∈ W. If C exists, the data structure
can output C ∩ W in O(|C ∩ W|) time.

Moreover, given vertices u, v1, . . . , vk ∈ W, Nλ+1(u) can be used to report a (λ + 1) (s, t)-
cut C, if exists, in O(|C|) time using an auxiliary O(n) space topological ordering of Dλ of
G such that u ∈ C and v1, . . . , vk ∈ C. Now based on Lemma 35 we construct the following
data structure for (λ + 1) (s, t)-class W.

Description of Nλ+1: It consists of Nλ+1(u) for each u in W.

Nλ+1 for a (λ + 1) (s, t)-class W occupies O(|W|2) space. Each (λ + 1) (s, t)-class is
disjoint from each other. Hence by constructing Nλ+1 for each (λ + 1) (s, t)-class of G we
get an O(n2) size data structure and it completes the proof of Theorem 4. We complement
this result with a conditional lower bound of Ω̃(n2) space based on Conjecture 5.

7 Dual edge sensitivity oracle for (s, t)-mincuts

In this Section we shall present an oracle that can efficiently report (s, t)-mincut upon the
failure of a pair of edges in graph G. We say that an edge (u, v) belongs to a (λ+1) (s, t)-class
W if both u, v ∈ W .

7.1 Handling dual edge failures
Consider the failure of two edges e = (x, y), e′ = (x′, y′) in G. Suppose at least one of {e, e′}
does not belong to any (λ + 1) (s, t)-class. In this case the value of (s, t)-mincut decreases by
at least 1 if N0(x, y) or N0(x′, y′) exists. The value of (s, t)-mincut decreases by exactly 2 if
and only if both e, e′ are contributing to a single (s, t)-mincut. To determine the existence of
such an (s, t)-mincut, since (s, t)-mincuts are closed under union operation, it is sufficient to
verify whether y /∈ N0(x′, y′) and y′ /∈ N0(x, y). So we construct a data structure, denoted
by Nλ, which consists of N0(u) for each vertex u of G. This O(n2) space data structure
achieves O(1) time to report the resulting value of (s, t)-mincut on failure of {e, e′} in this
case.

If e and e′ belong to distinct (λ + 1) (s, t)-classes, then it follows from Lemma 13 that
the (s, t)-mincut value remains unchanged. Let us consider case when both e and e′ belong
to the same (λ + 1) (s, t)-class, say W . It follows as a simple corollary of Lemma 32 that we
just need to verify if there is a (λ + 1) (s, t)-cut in G(W) in which e and e′ are contributing.
Note that the only (λ + 1) (s, t)-class of G(W) is W.
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Figure 5 Graph (i) has no λ + 1 (s, t)-cut containing edges (x, y) and (x′, y′), but Graph (ii)
does have one such cut shown by dashed curve.

Consider the data structure Nλ+1 for W in G(W). For the existence of a (λ + 1) (s, t)-
cut in which both e and e′ are contributing, observe that a necessary condition is that
y /∈ N1(x′, y′) and y′ /∈ N1(x, y). These conditions can be verified using Nλ+1 in O(1) time.
Upon checking these conditions, a natural approach would be to explore whether the union
of these two cuts is a (λ + 1) (s, t)-cut. Unfortunately, we can not infer anything conclusively
from the union of these cuts as illustrated by the two graphs in Figure 5. In both these
graphs, N1(x, y) ∪ N1(x′, y′) is not a (λ + 1) (s, t)-cut . However, for graph (i), no (λ + 1)
(s, t)-cut exists that contains the two edges; for graph (ii), there is still a (λ + 1) (s, t)-cut
containing the two edges. Note that in these graphs, N1(x, y) and N1(x′, y′) are pairs of
(λ + 1) (s, t)-cuts from Type-2. Looking at this hurdle carefully, we get the following insight.
Since y, y′ both lie outside N1(x′, y′) ∪ N1(x, y), hence c(N1(x, y) ∪ N1(x′, y′)) has to be
> λ. Therefore, if c(N1(x, y) ∩ N1(x′, y′)) is also > λ, then using sub-modularity of cuts
(Lemma 10), their union is bound to be a (λ + 1) (s, t)-cut and this will serve our purpose.
Unfortunately, G(W) does not ensure that c(N1(x, y) ∩ N1(x′, y′)) is greater than λ as shown
in Figure 5.

In order to materialize the above insight, we use covering technique (Theorem 20) to
build the pair of graphs {G(W)I , G(W)U } that partition all (λ + 1) (s, t)-cuts of G(W). It
follows from Theorem 20(2) that the capacity of the intersection (likewise union) of each pair
of (λ + 1) (s, t)-cut in G(W)I (likewise G(W)U ) is greater than λ. This is because the only
(s, t)-mincut of G(W)I is T ′ and the only (s, t)-mincut of G(W)U is S′. Theorem 20(1) states
that {G(W)I , G(W)U } covers all the (λ + 1) (s, t)-cuts of G(W). Therefore, if y′ /∈ N1(x, y)
and y /∈ N1(x′, y′) in G(W)I or x /∈ N1(y′, x′) and x′ /∈ N1(y, x)) in (G(W)U )T then there
is a (λ + 1) (s, t)-cut in G(W) in which e, e′ are contributing. Now we shall establish the
converse of this assertion.

Suppose there exists a (λ + 1) (s, t)-cut C in G(W) to which both edges (x, y) and
(x′, y′) are contributing. Without loss of generality assume that C is present in G(W)I . It
can be observed that the cuts N1(x, y) and N1(x′, y′) in G(W)I are subsets of C. Hence
y /∈ N1(x′, y′) and y′ /∈ N1(x, y) in G(W)I . If C is present in G(W)U , exactly the same
analysis can be carried out on (G(W)U )T . So we can state the following lemma.

▶ Lemma 36. A pair of edges e = (x, y), e′ = (x′, y′) from (λ + 1) class W are outgoing
edges of a (λ + 1) (s, t)-cut in G(W) if and only if (i) y /∈ N1(x′, y′) and y′ /∈ N1(x, y) in
G(W)I or (ii) x /∈ N1(y′, x′) and x′ /∈ N1(y, x) in (G(W)U )T .

Using the data structure Nλ+1, it requires a constant number of belong queries to
verify the conditions mentioned in Lemma 36. Therefore, the data structure F for dual edge
failure is as follows.
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F consists of the following data structures:
Nλ for graph G.
Nλ+1 for G(W)I and (G(W)U )T for each (λ + 1) (s, t)-class W.

It can be observed that the resulting (s, t)-mincut value can be reported in O(1) time upon
failure of any pair of edges from G using F . Handling of dual edge insertion is covered in the
full version of this paper. We summarize the results of this section in the following theorem.

▶ Theorem 37. A directed multi-graph G = (V, E), on |V | = n vertices and |E| = m edges
with a designated source vertex s and a designated sink vertex t, can be preprocessed for
constructing O(n2) space Oracle {F , I} that takes O(1) time to report the value of resultant
(s, t)-mincut upon
1. failure of any given pair of edges (x, y), (x′, y′) ∈ E using F , or
2. insertion of any given pair of edges (x, y), (x′, y′) ∈ V × V using I.
▶ Remark 38. For a (λ + 1) (s, t)-class W and any pair of disjoint subsets A, B ⊂ W, F
can determine in O(|A||B|) time if there exists a (λ + 1) (s, t)-cut C such that A ⊆ C and
B ⊆ C. If C exists, then it is possible to report C using F in O((|A| + |B|)|W| + |C|) time.

8 Conditional lower bound for dual edge sensitivity for (s, t)-mincuts

The problem of reachability in directed graph is as follows – Given a simple directed graph
G with n vertices and m edges, preprocess it to form a data structure which can efficiently
report if a given vertex v is reachable from another vertex u. The reachability in G is same
as reachability in GSCC , a directed acyclic graph which can be obtained by contracting each
of the Strongly Connected Components to a single vertex. Henceforth, we shall assume that
G is a directed acyclic graph. We transform the directed acyclic graph G into a graph D as
follows.

Construction of D: Create two additional vertices, namely s and t. Suppose ∆v denotes
the difference in the number of incoming and outgoing edges of any vertex v of G. For each
vertex v in G, if ∆v > 0 we add ∆v edges from v to t. Likewise, if ∆v < 0 we add ∆v edges
from s to v. Lastly, add two additional edge(s) from s to v and v to t for all v in G. Observe
that the number of edges in this graph is only O(m). Thus, we state the following lemma.

▶ Lemma 39. For a directed graph G with n vertices and m edges, there exists a directed
acyclic multi-graph D with O(m) edges and n + 2 vertices such that a vertex v is reachable
from a vertex u in G if and only if vertex v is reachable from vertex u in D.

The graph D, that we have constructed, has a very interesting property. D is identical
to the DAG Dλ that stores all (s, t)-mincuts in graph D. We crucially exploit this property
to derive an equivalence between reachability queries in graph D and dual edge failure (or
insertion) query for (s, t)-mincut in D. Since, the reachability structure of D and G is
identical, we state the following lemma.

▶ Lemma 40. Let G be a directed graph. A vertex v is reachable from a vertex u in G if and
only if the value of (s, t)-mincut reduces by exactly 1 on removal of the edges {(s, u), (v, t)}
from graph D which is obtained from G using Lemma 39.

Proof sketch. We know that D is same as Dλ of D. So, removal of any edge from D reduces
value of (s, t)-mincut by 1. Any (s, t)-cut in which both edges, {(s, u), (v, t)}, are contributing
cannot be 1-transversal because of the u to v path. Every (s, t)-mincut is 1-transversal
(Lemma 22), therefore, there cannot exist (s, t)-mincut in which both edges are contributing.
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If there is no path from u to v, then both edges contribute to (s, t)-cut C = R({u}) ∪ T ;
where R({u}) defines the set of vertices reachable from u. We can show that C is also an
(s, t)-mincut. Thus, upon removal of edges {(s, u), (v, t)} the value of (s, t)-mincut reduces
by 2. ◀

Using Conjecture 5 and Lemma 40 we state the following conditional lower bound.

▶ Theorem 41. Assuming Directed Reachability Hypothesis holds, any data structure that
can report the value of (s, t)-mincut for a designated source s and a designated sink t upon
failure or addition of any pair of edges in a directed multi-graph with n vertices and m edges
must either use Ω̃(n2) space, or Ω̃(m) time.
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Abstract
We consider the problem of enumerating optimal solutions for two hypergraph k-partitioning problems
– namely, Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. The input in hypergraph
k-partitioning problems is a hypergraph G = (V, E) with positive hyperedge costs along with a fixed
positive integer k. The goal is to find a partition of V into k non-empty parts (V1, V2, . . . , Vk) –
known as a k-partition – so as to minimize an objective of interest.
1. If the objective of interest is the maximum cut value of the parts, then the problem is known as

Minmax-Hypergraph-k-Partition. A subset of hyperedges is a minmax-k-cut-set if it is the
subset of hyperedges crossing an optimum k-partition for Minmax-Hypergraph-k-Partition.

2. If the objective of interest is the total cost of hyperedges crossing the k-partition, then the
problem is known as Hypergraph-k-Cut. A subset of hyperedges is a min-k-cut-set if it is
the subset of hyperedges crossing an optimum k-partition for Hypergraph-k-Cut.

We give the first polynomial bound on the number of minmax-k-cut-sets and a polynomial-time
algorithm to enumerate all of them in hypergraphs for every fixed k. Our technique is strong
enough to also enable an nO(k)p-time deterministic algorithm to enumerate all min-k-cut-sets in
hypergraphs, thus improving on the previously known nO(k2)p-time deterministic algorithm, where
n is the number of vertices and p is the size of the hypergraph. The correctness analysis of our
enumeration approach relies on a structural result that is a strong and unifying generalization of
known structural results for Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. We
believe that our structural result is likely to be of independent interest in the theory of hypergraphs
(and graphs).
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1 Introduction

In hypergraph k-partitioning problems, the input consists of a hypergraph G = (V, E) with
positive hyperedge-costs c : E → R+ and a fixed positive integer k (e.g., k = 2, 3, 4, . . .).
The goal is to find a partition of the vertex set into k non-empty parts V1, V2, . . . , Vk so
as to minimize an objective of interest. There are several natural objectives of interest in
hypergraph k-partitioning problems. In this work, we focus on two particular objectives:
Minmax-Hypergraph-k-Partition and Hypergraph-k-Cut:
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16:2 Counting and Enumerating Optimum Hypergraph Cut Sets

1. In Minmax-Hypergraph-k-Partition, the objective is to minimize the maximum cut
value of the parts of the k-partition – i.e., minimize maxk

i=1 c(δ(Vi)); here δ(Vi) is the set
of hyperedges intersecting both Vi and V \ Vi and c(δ(Vi)) =

∑
e∈δ(Vi) c(e) is the total

cost of hyperedges in δ(Vi).
2. In Hypergraph-k-Cut1, the objective is to minimize the cost of hyperedges crossing the

k-partition – i.e., minimize c(δ(V1, . . . , Vk)); here δ(V1, . . . , Vk) is the set of hyperedges
that intersect at least two sets in {V1, . . . , Vk} and c(δ(V1, . . . , Vk)) =

∑
e∈δ(V1,...,Vk) c(e)

is the total cost of hyperedges in δ(V1, . . . , Vk).
If the input G is a graph, then we will refer to these problems as Minmax-Graph-k-
Partition and Graph-k-Cut respectively. We note that the case of k = 2 corresponds to
global minimum cut in both objectives. In this work, we focus on the problem of enumerating
all optimum solutions to Minmax-Hypergraph-k-Partition and Hypergraph-k-Cut.

Motivations and Related Problems. We consider the problem of counting and enumerating
optimum solutions for partitioning problems over hypergraphs for three reasons. Firstly,
hyperedges provide more powerful modeling capabilities than edges and consequently, several
problems in hypergraphs become non-trivial in comparison to graphs. Although hypergraphs
and partitioning problems over hypergraphs (including Minmax-Hypergraph-k-Partition)
were discussed as early as 1973 by Lawler [33], most of these problems still remain open. The
powerful modeling capability of hyperedges has been useful in a variety of modern applications,
which in turn, has led to a resurgence in the study of hypergraphs with recent works focusing
on min-cuts, cut-sparsifiers, spectral-sparsifiers, etc. [6, 8, 12, 15, 17, 18, 20, 21, 28, 32, 38]. Our
work adds to this rich and emerging theory of hypergraphs.

Secondly, hypergraph k-partitioning problems are special cases of submodular k-
partitioning problems. In submodular k-partitioning problems, the input is a finite ground
set V , a submodular function2 f : 2V → R provided by an evaluation oracle3 and a
positive integer k (e.g., k = 2, 3, 4, . . .). The goal is to partition the ground set V into
k non-empty parts V1, V2, . . . , Vk so as to minimize an objective of interest. Two nat-
ural objectives are of interest: (1) In Minmax-Submod-k-Partition, the objective is
to minimize maxk

i=1 f(Vi) and (2) In Minsum-Submod-k-Partition, the objective is to
minimize

∑k
i=1 f(Vi). If the given submodular function is symmetric4, then we denote the

resulting problems as Minmax-SymSubmod-k-Partition and Minsum-SymSubmod-k-
Partition respectively. Since the hypergraph cut function is symmetric submodular, it
follows that Minmax-Hypergraph-k-Partition is a special case of Minmax-SymSubmod-
k-Partition. Moreover, Hypergraph-k-Cut is a special case of Minsum-Submod-
k-Partition (this reduction is slightly non-trivial with the submodular function in the
reduction being asymmetric – e.g., see [36] for the reduction). Queyranne claimed, in
1999, a polynomial-time algorithm for Minsum-SymSubmod-k-Partition for every fixed
k [37], however the claim was retracted subsequently (see [24]). The complexity status
of submodular k-partitioning problems (for fixed k ≥ 4) are open, so recent works have
focused on hypergraph k-partitioning problems as a stepping stone towards submodular
k-partitioning [8, 12, 13, 24, 36, 41, 42]. Our work contributes to this stepping stone by ad-
vancing the state of the art in hypergraph k-partitioning problems. We emphasize that the

1 We emphasize that the objective of Hypergraph-k-Cut is not equivalent to minimizing
∑k

i=1 c(δ(Vi)).
2 A real-valued set function f : 2V → R is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) ∀ A, B ⊆ V .
3 An evaluation oracle for a set function f over a ground set V returns the value of f(S) given S ⊆ V .
4 A real-valued set function f : 2V → R is symmetric if f(A) = f(V \ A) ∀ A ⊆ V .
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complexity status of two other variants of hypergraph k-partitioning problems which are
also special cases of Minsum-Submod-k-Partition are still open (see [36,41,42] for these
variants).

Thirdly, counting and enumeration of optimum solutions for graph k-partitioning problems
are fundamental to graph theory and extremal combinatorics. They have found farther
reaching applications than initially envisioned. We discuss some of the results and applications
for k = 2 and k > 2 now. For k = 2 in connected graphs, it is well-known that the number of
min-cuts and the number of α-approximate min-cuts are at most

(
n
2
)

and O(n2α) respectively,
and they can all be enumerated in polynomial time for constant α. These combinatorial
results have been the crucial ingredients of several algorithmic and representation results
in graphs. On the algorithmic front, these results enable fast randomized construction of
graph skeletons which, in turn, plays a crucial role in fast algorithms to solve graph min-
cut [29]. On the representation front, counting results form the backbone of cut sparsifiers
which in turn have found applications in sketching and streaming [2–4, 32]. A polygon
representation of the family of 6/5-approximate min-cuts in graphs was given by Benczur and
Goemans in 1997 (see [9–11]) – this representation was used in the recent groundbreaking
(3/2 − ϵ)-approximation for metric TSP [31]. On the approximation front, in addition to
the (3/2 − ϵ)-approximation for metric TSP [31], counting results also led to the recent
1.5-approximation for path TSP [40]. For k > 2, we note that fast algorithms for Graph-
k-Cut have been of interest since they help in generating cutting planes while solving
TSP [5, 19]. A recent series of works aimed towards improving the bounds on the number of
optimum solutions for Graph-k-Cut culminated in a drastic improvement in the run-time
to solve Graph-k-Cut [25–27]. Given the status of counting and enumeration results for
k-partitioning in graphs and their algorithmic and representation implications that were
discovered subsequently, we believe that a similar understanding in hypergraphs could serve
as an important ingredient in the algorithmic and representation theory of hypergraphs.

The Enumeration Problem. There is a fundamental structural distinction between hy-
pergraphs and graphs that becomes apparent while enumerating optimum solutions to
k-partitioning problems. In connected graphs, the number of optimum k-partitions for
Graph-k-Cut and for Minmax-Graph-k-Partition are nO(k) and nO(k2) respectively
and they can all be enumerated in polynomial time, where n is the number of vertices
in the input graph [14, 16, 25, 27, 30, 39]. In contrast, a connected hypergraph could have
exponentially many optimum k-partitions for both Minmax-Hypergraph-k-Partition
and Hypergraph-k-Cut even for k = 2 – e.g., consider the hypergraph with a single
hyperedge containing all vertices; we will denote this as the spanning-hyperedge-example.
Hence, enumerating all optimum k-partitions for hypergraph k-partitioning problems in
polynomial time is impossible. Instead, our goal in the enumeration problems is to enumerate
k-cut-sets corresponding to optimum k-partitions. We will call a subset F ⊆ E of hyperedges
to be a k-cut-set if there exists a k-partition (V1, . . . , Vk) such that F = δ(V1, . . . , Vk); we
will call a 2-cut-set as a cut-set. In the enumeration problems that we will consider, the
input consists of a hypergraph G = (V, E) with positive hyperedge-costs c : E → R+ and a
fixed positive integer k (e.g., k = 2, 3, 4, . . .).
1. For an optimum k-partition (V1, . . . , Vk) for Minmax-Hypergraph-k-Partition in

(G, c), we will denote δ(V1, . . . , Vk) as a minmax-k-cut-set. In Enum-MinMax-
Hypergraph-k-Partition, the goal is to enumerate all minmax-k-cut-sets.

2. For an optimum k-partition (V1, . . . , Vk) for Hypergraph-k-Cut in (G, c), we will
denote δ(V1, . . . , Vk) as a min-k-cut-set. In Enum-Hypergraph-k-Cut, the goal is to
enumerate all min-k-cut-sets.
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We observe that in the spanning-hyperedge-example, although the number of optimum
k-partitions for Minmax-Hypergraph-k-Partition (as well as Hypergraph-k-Cut) is
exponential, the number of minmax-k-cut-sets (as well as min-k-cut-sets) is only one.

1.1 Results
In contrast to graphs, whose representation size is the number of edges, the representation
size of a hypergraph G = (V, E) is p :=

∑
e∈E |e|. Throughout, our algorithmic discussion

will focus on the case of fixed k (e.g., k = 2, 3, 4, . . .).
There are no prior results regarding Enum-MinMax-Hypergraph-k-Partition in the

literature. We recall the status of Minmax-Hypergraph-k-Partition. As mentioned
earlier, Minmax-Hypergraph-k-Partition was discussed as early as 1973 by Lawler [33]
with its complexity status being open until recently. We note that the objective here could be
viewed as aiming to find a fair k-partition, i.e., a k-partition where no part pays too much in
cut value. Motivated by this connection to fairness, Chandrasekaran and Chekuri (2021) [13]
studied the more general problem of Minmax-SymSubmod-k-Partition. They gave the
first (deterministic) polynomial-time algorithm to solve Minmax-SymSubmod-k-Partition
and as a consequence, obtained the first polynomial-time algorithm to solve Minmax-
Hypergraph-k-Partition. Their algorithm does not show any bound on the number of
minmax-k-cut-sets since it solves the more general problem of Minmax-SymSubmod-k-
Partition for which the number of optimum k-partitions can indeed be exponential (recall
the spanning-hyperedge-example). Focusing on hypergraphs raises the question of whether
all k-cut-sets corresponding to optimum solutions can be enumerated efficiently for every
fixed k. We answer this question affirmatively by giving the first polynomial-time algorithm
for Enum-MinMax-Hypergraph-k-Partition.

▶ Theorem 1. There exists a deterministic algorithm to solve Enum-MinMax-Hypergraph-
k-Partition that runs in time O(kn4k2−2k+1p), where n is the number of vertices and p is
the size of the input hypergraph. Moreover, the number of minmax-k-cut-sets in a n-vertex
hypergraph is O(n4k2−2k).

We emphasize that our result shows the first polynomial bound on the number of minmax-
k-cut-sets in hypergraphs for every fixed k (in addition to a polynomial-time algorithm
to enumerate all of them for every fixed k). Our upper bound of nO(k2) on the number of
minmax-k-cut-sets is tight – there exist n-vertex connected graphs for which the number
of minmax-k-cut-sets is nΘ(k2).

Next, we briefly recall the status of Hypergraph-k-Cut and Enum-Hypergraph-
k-Cut. Hypergraph-k-Cut was shown to be solvable in randomized polynomial time
only recently [15, 20]; the randomized algorithms also showed that the number of min-k-
cut-sets is O(n2k−2) and they can all be enumerated in randomized polynomial time. A
subsequent deterministic algorithm was designed to solve Hypergraph-k-Cut in time
nO(k)p by Chandrasekaran and Chekuri [12]. Chandrasekaran and Chekuri’s techniques
were extended to design the first deterministic polynomial-time algorithm to solve Enum-
Hypergraph-k-Cut in [8]. The algorithm for Enum-Hypergraph-k-Cut given in [8] runs
in time nO(k2)p. We note that this run-time has a quadratic dependence on k in the exponent
of n although the number of min-k-cut-sets has only linear dependence on k in the exponent
of n (since it is O(n2k−2)). So, an open question that remained from [8] is whether one can
obtain an nO(k)p-time deterministic algorithm for Enum-Hypergraph-k-Cut. We resolve
this question affirmatively.
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▶ Theorem 2. There exists a deterministic algorithm to solve Enum-Hypergraph-k-Cut
that runs in time O(n16k−25p), where n is the number of vertices and p is the size of the
input hypergraph.

Our algorithms for both Enum-MinMax-Hypergraph-k-Partition and Enum-
Hypergraph-k-Cut are based on a structural theorem that allows for efficient recovery
of optimum k-cut-sets via minimum (s, t)-terminal cuts (see Theorem 4). Our structural
theorem builds on structural theorems that have appeared in previous works on Minmax-
Hypergraph-k-Partition and Hypergraph-k-Cut [8, 12,13]. Our structural theorem
may appear to be natural/incremental in comparison to ones that appeared in previous
works, but formalizing the theorem and proving it is a significant part of our contribution.
Moreover, our single structural theorem is strong enough to enable efficient algorithms for
both Enum-Hypergraph-k-Cut as well as Enum-MinMax-Hypergraph-k-Partition in
contrast to previously known structural theorems. In this sense, our structural theorem can
be viewed as a strong and unifying generalization of structural theorems that have appeared
in previous works. We believe that our structural theorem will be of independent interest in
the theory of cuts and partitioning in hypergraphs (as well as graphs).

1.2 Technical overview and main structural result
We focus on the unit-cost variant of Enum-Hypergraph-k-Cut and Enum-MinMax-
Hypergraph-k-Partition in the rest of this work for the sake of notational simplicity –
i.e., the cost of every hyperedge is 1. Throughout, we will allow multigraphs and hence, this
is without loss of generality. Our algorithms extend in a straightforward manner to arbitrary
hyperedge costs. They rely only on minimum (s, t)-terminal cut computations and hence,
they are strongly polynomial-time algorithms.

Notation and background. Let G = (V, E) be a hypergraph. Throughout this work, n

will denote the number of vertices in G, m will denote the number of hyperedges in G, and
p :=

∑
e∈E |e| will denote the representation size of G. We will denote a partition of the

vertex set into h non-empty parts by an ordered tuple (V1, . . . , Vh) and call such an ordered
tuple as an h-partition. For a partition P = (V1, V2, . . . , Vh), we will say that a hyperedge e

crosses the partition P if it intersects at least two parts of the partition. We will refer to a
2-partition as a cut. For a non-empty proper subset U of vertices, we will use U to denote
V \ U , δ(U) to denote the set of hyperedges crossing the cut (U, U), and d(U) := |δ(U)| to
denote the cut value of U . We observe that δ(U) = δ(U), so we will use d(U) to denote
the value of the cut (U, U). More generally, given a partition P = (V1, V2, . . . , Vh), we
denote the set of hyperedges crossing the partition by δ(V1, V2, . . . , Vh) (also by δ(P) for
brevity) and the number of hyperedges crossing the partition by |δ(V1, V2, . . . , Vh)|. We will
denote the optimum value of Minmax-Hypergraph-k-Partition and Hypergraph-k-Cut
respectively by

OPTminmax-k-partition := min
{

max
i∈[k]

|δ(Vi)| : (V1, . . . , Vk) is a k-partition of V

}
and

OPTk-cut := min {|δ(V1, . . . , Vk)| : (V1, . . . , Vk) is a k-partition of V } .

A key algorithmic tool will be the use of fixed-terminal cuts. Let S, T be disjoint non-
empty subsets of vertices. A 2-partition (U, U) is an (S, T )-terminal cut if S ⊆ U ⊆ V \ T .
Here, the set U is known as the source set and the set U is known as the sink set. A
minimum-valued (S, T )-terminal cut is known as a minimum (S, T )-terminal cut. Since there
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could be multiple minimum (S, T )-terminal cuts, we will be interested in source minimal
minimum (S, T )-terminal cuts. For every pair of disjoint non-empty subsets S and T of
vertices, there exists a unique source minimal minimum (S, T )-terminal cut and it can be
found in deterministic polynomial time via standard maxflow algorithms. In particular, the
source minimal minimum (S, T )-terminal cut can be found in time O(np) [17].

Our technique to enumerate all minmax-k-cut-sets and all min-k-cut-sets will build
on the approaches of Chandrasekaran and Chekuri for Hypergraph-k-Cut and Minmax-
SymSubmod-k-Partition [8, 12,13]. We need the following structural theorem that was
shown in [8].

▶ Theorem 3 ([8]). Let G = (V, E) be a hypergraph and let OPTk-cut be the optimum value
of Hypergraph-k-Cut in G for some integer k ≥ 2. Suppose (U, U) is a 2-partition of V

with d(U) < OPTk-cut. Then, for every pair of vertices s ∈ U and t ∈ U , there exist subsets
S ⊆ U \ {s} and T ⊆ U \ {t} with |S| ≤ 2k − 3 and |T | ≤ 2k − 3 such that (U, U) is the
unique minimum (S ∪ {s}, T ∪ {t})-terminal cut in G.

Enum-Hypergraph-k-Cut. We first focus on Enum-Hypergraph-k-Cut. We note that
Theorem 3 will allow us to recover those parts Vi of an optimum k-partition (V1, . . . , Vk)
for which d(Vi) < OPTk-cut. However, recall that our goal is not to recover all optimum
k-partitions for Hypergraph-k-Cut, but rather to recover all min-k-cut-sets (i.e., not to
recover the parts of every optimum k-partition, but rather only to recover the k-cut-set of every
optimum k-partition). The previous work [8] that designed an nO(k2)p-time deterministic
enumeration algorithm achieved this by proving the following structural result: suppose
(V1, . . . , Vk) is an optimum k-partition for Hypergraph-k-Cut for which d(V1) = OPTk-cut.
Then, they showed that for every subset T ⊆ V1 satisfying T ∩ Vj ̸= ∅ for all j ∈ {2, . . . , k},
there exists a subset S ⊆ V1 with |S| ≤ 2k such that the source minimal minimum (S, T )-
terminal cut (A, A) satisfies δ(A) = δ(V1). This structural theorem in conjunction with
Theorem 3 allows one to enumerate a candidate family F of nO(k2) subsets of hyperedges
such that every min-k-cut-set is present in the family. The drawback of their structural
theorem is that it is driven towards recovering the cut-set δ(Vi) of every part Vi of every
optimum k-partition (V1, . . . , Vk). Hence, their algorithmic approach ends up with a run-time
of nO(k2)p. In order to improve the run-time, we prove a stronger result: we show that for an
arbitrary cut (U, U) with cut value OPTk-cut (as opposed to only those sets Vi of an optimum
k-partition (V1, . . . , Vk)), its cut-set δ(U) can be recovered as the cut-set of any minimum
(S, T )-terminal cut for some S and T of small size. The following is the main structural
theorem of this work.

▶ Theorem 4. Let G = (V, E) be a hypergraph and let OPTk-cut be the optimum value of
Hypergraph-k-Cut in G for some integer k ≥ 2. Suppose (U, U) is a 2-partition of V with
d(U) = OPTk-cut. Then, there exist sets S ⊆ U , T ⊆ U with |S| ≤ 2k − 1 and |T | ≤ 2k − 1
such that every minimum (S, T )-terminal cut (A, A) satisfies δ(A) = δ(U).

We encourage the reader to compare and contrast Theorems 3 and 4. The former helps
to recover cuts whose cut value is strictly smaller than OPTk-cut while the latter helps to
recover cut-sets whose size is equal to OPTk-cut. So, the latter theorem is weaker since it
only recovers cut-sets, but we emphasize that this is the best possible that one can hope to
do (as seen from the spanning-hyperedge-example). However, proving the latter theorem
requires us to work with cut-sets (as opposed to cuts) which is a technical barrier to overcome.
Indeed, our proof of Theorem 4 deviates significantly from the proof of Theorem 3 since
we have to work with cut-sets. Our proof also deviates from the structural result in [8]
that was mentioned in the paragraph above Theorem 4 since our result is stronger than
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their result – our result helps to recover the cut-set δ(U) of an arbitrary cut (U, U) whose
cut value is d(U) = OPTk-cut while their result helps only to recover the cut-set δ(Vi) of a
part Vi of an optimum k-partition (V1, . . . , Vk) for Hypergraph-k-Cut whose cut value is
d(Vi) = OPTk-cut; moreover, their proof technique crucially relies on a containment property
with respect to the part Vi, whereas under the hypothesis of our structural theorem, the
containment property fails with respect to the set U and consequently, our proof technique
differs from theirs.

Theorems 3 and 4 lead to a deterministic nO(k)-time algorithm to enumerate all min-k-
cut-sets via a divide-and-conquer approach. We describe this algorithm now: For each
pair (S, T ) of disjoint subsets of vertices S and T with |S|, |T | ≤ 2k − 1, compute the
source minimal minimum (S, T )-terminal cut (A, A); (i) if G − δ(A) has at least k connected
components, then add δ(A) to the candidate family F ; (ii) otherwise, add the set A to a
collection C. We note that the sizes of the family F and the collection C are O(n4k−2). Next,
for each subset A in the collection C, recursively enumerate all min-k/2-cut-sets in the
subhypergraphs induced by A and A respectively5 – denoted G[A] and G[A] respectively –
and add δ(A) ∪ F1 ∪ F2 to the family F for each F1 and F2 being min-k/2-cut-set in G[A]
and G[A] respectively. Finally, return the subfamily of k-cut-sets from the family F that are
of smallest size.

We sketch the correctness analysis of the above approach: let F = δ(V1, . . . , Vk) be a
min-k-cut-set with (V1, . . . , Vk) being an optimum k-partition for Hypergraph-k-Cut.
We will show that the family F contains F . Let U := ∪k/2

i=1Vi. We note that δ(U) ⊆ F .
We have two possibilities: (1) Say d(U) = |F |. Then, d(U) = OPTk-cut. Consequently,
by Theorem 4, the min-k-cut-set F will be added to the family F by step (i). (2) Say
d(U) < |F |. Then, by Theorem 3, the set U = ∪k/2

i=1Vi will be added to the collection C
by step (ii); moreover, F1 := F ∩ E(G[U ]) and F2 := F ∩ E(G[U ]) are min-k/2-cut-sets
in G[U ] and G[U ] respectively and they would have been enumerated by recursion, and
hence, the set δ(U) ∪ F1 ∪ F2 = F will be added to the family F . The size of the family F
can be shown to be nO(k log k) and the run-time is nO(k log k)p. Using the known fact that
the number of min-k-cut-sets in a n-vertex hypergraph is O(n2k−2), we can improve the
run-time analysis of this approach to nO(k)p.

Enum-MinMax-Hypergraph-k-Partition. Next, we focus on Enum-MinMax-
Hypergraph-k-Partition. There is a fundamental technical issue in enumerating
minmax-k-cut-sets as opposed to min-k-cut-sets. We highlight this technical issue
now. Suppose we find an optimum k-partition (V1, . . . , Vk) for Minmax-Hypergraph-
k-Partition (say via Chandrasekaran and Chekuri’s algorithm [13]) and store only
the minmax-k-cut-set F = δ(V1, . . . , Vk) but forget to store the partition (V1, . . . , Vk);
now, by knowing a minmax-k-cut-set F , can we recover some optimum k-partition for
Minmax-Hypergraph-k-Partition (not necessarily (V1, . . . , Vk))? Or by knowing a
minmax-k-cut-set F , is it even possible to find the value OPTminmax-k-partition without
solving Minmax-Hypergraph-k-Partition from scratch again – i.e., is there an advantage
to knowing a minmax-k-cut-set in order to solve Minmax-Hypergraph-k-Partition?
We are not aware of such an advantage. This is in stark contrast to Hypergraph-k-Cut
where knowing a min-k-cut-set enables a linear-time solution to Hypergraph-k-Cut6.

5 Subhypergraph G[A] has vertex set A and contains all hyperedges of G which are entirely contained
within A.

6 Suppose we know a min-k-cut-set F . Then consider the connected components Q1, . . . , Qt in G − F
and create a partition (P1, . . . , Pk) by taking Pi = Qi for every i ∈ [k − 1] and Pk = ∪t

j=kQj ; such a
k-partition (P1, . . . , Pk) will be an optimum k-partition for Hypergraph-k-Cut.

ICALP 2022



16:8 Counting and Enumerating Optimum Hypergraph Cut Sets

Why is this issue significant while solving Enum-MinMax-Hypergraph-k-Partition?
We recall that in our approach for Enum-Hypergraph-k-Cut, the algorithm computed
a polynomial-sized family F containing all min-k-cut-sets and returned the ones with
smallest size – the smallest size ones will exactly be min-k-cut-sets. It is unclear if a
similar approach could work for enumerating minmax-k-cut-sets: suppose we do have an
algorithm to enumerate a polynomial-sized family F containing all minmax-k-cut-sets;
now, in order to return all minmax-k-cut-sets (which is a subfamily of F), note that we
need to identify them among the ones in the family F – i.e., we need to verify if a given
subset F ∈ F of hyperedges is a minmax-k-cut-set; this verification problem is closely
related to the question mentioned in the previous paragraph. We do not know how to
address this verification problem directly. So, our algorithmic approach for Enum-MinMax-
Hypergraph-k-Partition has to overcome this technical issue.

Our ingredient to overcome this technical issue is to enumerate representatives for
minmax-k-cut-sets. For a k-partition (V1, . . . , Vk) and disjoint subsets U1, . . . , Uk ⊆ V , we
will call the k-tuple (U1, . . . , Uk) to be a k-cut-set representative of (V1, . . . , Vk) if Ui ⊆ Vi

and δ(Ui) = δ(Vi) for all i ∈ [k]. We note that a fixed k-partition (V1, . . . , Vk) could
have several k-cut-set representatives and a fixed k-tuple (U1, . . . , Uk) could be the k-
cut-set representative of several k-partitions. Yet, it is possible to efficiently verify if
a given k-tuple (U1, . . . , Uk) is a k-cut-set representative. Moreover, knowing a k-cut-set
representative (U1, . . . , Uk) of a k-partition (V1, V2, . . . , Vk) allows one to recover the k-cut-set
F := δ(V1, . . . , Vk) since F = ∪k

i=1δ(Ui). Thus, in order to enumerate all minmax-k-cut-sets,
it suffices to enumerate k-cut-set representatives of all optimum k-partitions for Minmax-
Hypergraph-k-Partition. At this point, the astute reader may wonder if there exists a
polynomial-sized family of k-cut-set representatives of all optimum k-partitions for Minmax-
Hypergraph-k-Partition given that the number of optimum k-partitions for Minmax-
Hypergraph-k-Partition could be exponential. For example, is there a polynomial-sized
family of k-cut-set representatives of all optimum k-partitions for Minmax-Hypergraph-k-
Partition in the spanning-hyperedge-example? Indeed, in the spanning-hyperedge-example,
even though the number of optimum k-partitions for Minmax-Hypergraph-k-Partition is
exponential, there exists a (k!

(
n
k

)
)-sized family of k-cut-set representatives of all optimum k-

partitions: consider the family {({v1}, . . . , {vk}) : v1, . . . , vk ∈ V, vi ̸= vj ∀ distinct i, j ∈ [k]}.
It turns out that Theorems 3 and 4 are strong enough to enable efficient enumeration of k-

cut-set representatives of all optimum k-partitions for Minmax-Hypergraph-k-Partition.
We describe the algorithm to achieve this: For each pair (S, T ) of disjoint subsets of
vertices with |S|, |T | ≤ 2k − 1, compute the source minimal minimum (S, T )-terminal cut
(U, U) and add U to a candidate collection C. We note that the size of the collection C
is O(n4k−2). Next, for each k-tuple (U1, . . . , Uk) ∈ Ck, verify if (U1, . . . , Uk) is a k-cut-set
representative and if so, then add the k-tuple to the candidate family D. Finally, return
arg min{maxk

i=1 d(Ui) : (U1, . . . , Uk) ∈ D}, i.e., prune and return the subfamily of k-cut-set
representatives (U1, . . . , Uk) from the family D that have minimum maxk

i=1 d(Ui).
We note that the size of the family D is nO(k2) and consequently, the run-time is nO(k2)p.

We sketch the correctness analysis of the above approach: let (V1, . . . , Vk) be an optimum k-
partition for Minmax-Hypergraph-k-Partition. We will show that the family D contains
a k-cut-set representative of (V1, . . . , Vk). By noting that OPTminmax-k-partition ≤ OPTk-cut
and by Theorems 3 and 4, for every i ∈ [k], we have a set Ui in the collection C with Ui ⊆ Vi

and δ(Ui) = δ(Vi). Hence, the k-tuple (U1, . . . , Uk) ∈ Ck is a k-cut-set representative and it
will be added to the family D. The final pruning step will not remove (U1, . . . , Uk) from the
family D and hence, it will be in the subfamily returned by the algorithm.
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Significance of our technique. As mentioned earlier, our techniques build on the structural
theorems that appeared in previous works [8, 12, 13]. The main technical novelty of our
contribution lies in Theorem 4 which can be viewed as the culmination of structural theorems
developed in those previous works. We also emphasize that using minimum (s, t)-terminal
cuts to solve global partitioning problems is not a new technique per se (e.g., minimum
(s, t)-terminal cut is the first and most natural approach to solve global minimum cut). This
technique of using minimum (s, t)-terminal cuts to solve global partitioning problems has a
rich variety of applications in combinatorial optimization: e.g., (1) it was used to design the
first efficient algorithm for Graph-k-Cut for fixed k [23], (2) it was used to design efficient
algorithms for certain constrained submodular minimization problems [22,35], and (3) more
recently, it was used to design fast algorithms for global minimum cut in graphs as well as to
obtain fast Gomory-Hu trees in unweighted graphs [1,34]. The applicability of this technique
relies on identifying and proving appropriate structural results. Our Theorem 4 is such a
structural result. The merit of the structural result lies in its ability to solve two different
enumeration problems in hypergraph k-partitioning which was not possible via structural
theorems that were developed before. Moreover, it leads to the first polynomial bound on
the number of minmax-k-cut-sets in hypergraphs for every fixed k.

Organization. In Section 1.3, we recall properties of the hypergraph cut function. In
Section 2, we prove a special case of Theorem 4. In Section 3, we use this special case to
prove Theorem 4. We refer the reader to the full version [7] for a discussion of related work,
our algorithms to prove Theorems 1 and 2, and a lower bound example. We conclude with
some open questions in Section 4.

1.3 Preliminaries

Let G = (V, E) be a hypergraph. Throughout, we will follow the notation mentioned in the
second paragraph of Section 1.2. For disjoint A, B ⊆ V , we define E(A, B) := {e ∈ E : e ⊆
A ∪ B, e ∩ A ̸= ∅, e ∩ B ̸= ∅}, and E[A] := {e ∈ E : e ⊆ A}. We will repeatedly rely on the
fact that the hypergraph cut function d : 2V → R+ is symmetric and submodular. We recall
that a set function f : 2V → R is symmetric if f(U) = f(U) for all subsets U ⊆ V and is
submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for all subsets A, B ⊆ V .

We will need the following partition uncrossing theorem that was proved in previous works
on Hypergraph-k-Cut and Enum-Hypergraph-k-Cut (see Figure 1 for an illustration
of the sets that appear in the statement of Theorem 5):

▶ Theorem 5 ([8, 12]). Let G = (V, E) be a hypergraph, k ≥ 2 be an integer and ∅ ≠
R ⊊ U ⊊ V . Let S = {u1, . . . , up} ⊆ U \ R for p ≥ 2k − 2. Let (Ai, Ai) be a minimum
((S ∪ R) \ {ui}, U)-terminal cut. Suppose that ui ∈ Ai \ (∪j∈[p]\{i}Aj) for every i ∈ [p]. Then,
the following two hold:
1. There exists a k-partition (P1, . . . , Pk) of V with U ⊊ Pk such that

|δ(P1, . . . , Pk)| ≤ 1
2 min{d(Ai) + d(Aj) : i, j ∈ [p], i ̸= j}.

2. Moreover, if there exists a hyperedge e ∈ E such that e intersects W := ∪1≤i<j≤p(Ai ∩Aj),
e intersects Z := ∩i∈[p]Ai, and e is contained in W ∪Z, then the inequality in the previous
conclusion is strict.

ICALP 2022



16:10 Counting and Enumerating Optimum Hypergraph Cut Sets

Figure 1 Illustration of the sets that appear in the statement of Theorem 5.

2 A special case of Theorem 4

The following is the main theorem of this section. Theorem 6 implies Theorem 4 in the
special case where the 2-partition (U, U) of interest to Theorem 4 is such that |U | ≤ 2k − 1.

▶ Theorem 6. Let G = (V, E) be a hypergraph and let OPTk-cut be the optimum value of
Hypergraph-k-Cut in G for some integer k ≥ 2. Suppose (U, U) is a 2-partition of V

with d(U) = OPTk-cut. Then, there exists a set S ⊆ U with |S| ≤ 2k − 1 such that every
minimum (S, U)-terminal cut (A, A) satisfies δ(A) = δ(U).

Proof. Consider the collection

C := {Q ⊆ V : U ⊊ Q, d(Q) ≤ d(U), and δ(Q) ̸= δ(U)}.

Let S be an inclusion-wise minimal subset of U such that S ∩ Q ̸= ∅ for all Q ∈ C, i.e., the set
S is completely contained in U and is a minimal transversal of the collection C. Proposition
7 and Lemma 8 complete the proof of Theorem 6 for this choice of S. ◀

▶ Proposition 7. Every minimum (S, U)-terminal cut (A, A) has δ(A) = δ(U).

Proof. Let (A, A) be a minimum (S, U)-terminal cut. If A = U , then we are done, so we may
assume that A ̸= U . This implies that S ⊆ A and U ⊊ A. Since (U, U) is a (S, U)-terminal
cut, we have that d(A) = d(A) ≤ d(U). Since S intersects every set in the collection C, we
have that A ̸∈ C. Hence, δ(A) = δ(U), and by symmetry of cut-sets, δ(A) = δ(U). ◀

▶ Lemma 8. The size of the subset S is at most 2k − 1.

Proof. For the sake of contradiction, suppose |S| ≥ 2k. Our proof strategy is to show the
existence of a k-partition with fewer crossing hyperedges than OPTk-cut, thus contradicting
the definition of OPTk-cut. Let S := {u1, u2, . . . , up} for some p ≥ 2k. For notational
convenience, we will use S − ui to denote S \ {ui} and S − ui − uj to denote S \ {ui, uj}. For
a subset X ⊆ U , we denote the source minimal minimum (X, U)-terminal cut by (HX , HX).

Our strategy to arrive at a k-partition with fewer crossing hyperedges than OPTk-cut is
to apply the second conclusion of Theorem 5. The next few claims will set us up to obtain
sets that satisfy the hypothesis of Theorem 5.

▷ Claim 9. For every i ∈ [p], we have HS−ui
∈ C.
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Proof. Let i ∈ [p]. Since S is a minimal transversal of the collection C, there exists a set
Bi ∈ C such that Bi ∩ S = {ui}. Hence, (Bi, Bi) is a (S − ui, U)-terminal cut. Therefore,

d(HS−ui) ≤ d(Bi) ≤ d(U).

Since (HS−ui , HS−ui) is a (S − ui, U)-terminal cut, we have that U ⊆ HS−ui . If d(HS−ui) <

d(U), then δ(HS−ui
) ̸= δ(U) and U ⊊ HS−ui

, and consequently, HS−ui
∈ C. So, we will

assume henceforth that d(HS−ui
) = d(U).

Since (HS−ui
∩ Bi, HS−ui

∩ Bi) is a (S − ui, U)-terminal cut, we have that

d(HS−ui ∩ Bi) ≥ d(HS−ui).

Since (HS−ui ∪ Bi, HS−ui ∪ Bi) is a (S − ui, U)-terminal cut, we have that

d(HS−ui
∪ Bi) ≥ d(HS−ui

).

Therefore, by submodularity of the hypergraph cut function, we have that

2d(U) ≥ d(HS−ui
) + d(Bi) ≥ d(HS−ui

∩ Bi) + d(HS−ui
∪ Bi) ≥ 2d(HS−ui

) = 2d(U). (1)

Therefore, all inequalities above should be equations. In particular, we have that d(HS−ui ∩
Bi) = d(U) = d(Bi) = d(HS−ui

) and hence, (HS−ui
∩ Bi, HS−ui

∩ Bi) is a minimum
(S − ui, U)-terminal cut. Since (HS−ui , HS−ui) is a source minimal minimum (S − ui, U)-
terminal cut, we must have HS−ui

∩ Bi = HS−ui
, and thus HS−ui

⊆ Bi. Therefore,
Bi ⊆ HS−ui . Since Bi ∈ C, we have δ(Bi) ̸= δ(U). However, d(Bi) = d(U). Therefore
δ(U) \ δ(Bi) ̸= ∅. Let e ∈ δ(U) \ δ(Bi). Since e ∈ δ(U), but e ̸∈ δ(Bi), and U ⊆ Bi, we have
that e ⊆ Bi, and thus e ⊆ HS−ui

. Thus, we conclude that δ(U) \ δ(HS−ui
) ̸= ∅, and so

δ(HS − ui) ̸= δ(U). This also implies that U ⊊ HS−ui
. Thus, HS−ui

∈ C. ◁

Claim 9 implies the following Corollary.

▶ Corollary 10. For every i ∈ [p], we have ui ∈ HS−ui
.

Proof. By definition, S − ui ⊆ HS−ui
, so S ∩ HS−ui

⊆ {ui}. By Claim 9 we have that
HS−ui

∈ C. Since S is a transversal of the collection C, we have that S ∩ HS−ui
̸= ∅. So, the

vertex ui must be in HS−ui . ◀

Having obtained Corollary 10, the next few claims (Claims 11, 13, 14, and 15) are similar
to the claims appearing in the proof of a structural theorem that appeared in [8]. Since the
hypothesis of the structural theorem that we are proving here is different from theirs, we
present the complete proofs of these claims here. The way in which we use the claims will
also be different from [8].

The following claim will help in showing that ui, uj ̸∈ HS−ui−uj
, which in turn, will be

used to show that the hypothesis of Theorem 5 is satisfied by suitably chosen sets.

▷ Claim 11. For every i, j ∈ [p], we have HS−ui−uj
⊆ HS−ui

.

Proof. We may assume that i ̸= j. We note that (HS−ui−uj
∩ HS−ui

, HS−ui−uj
∩ HS−ui

) is
a (S − ui − uj , U)-terminal cut. Therefore,

d(HS−ui−uj ∩ HS−ui) ≥ d(HS−ui−uj ). (2)

Also, (HS−ui−uj
∪ HS−ui

, HS−ui−uj
∪ HS−ui

) is a (S − ui, U)-terminal cut. Therefore,

d(HS−ui−uj
∪ HS−ui

) ≥ d(HS−ui
). (3)
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By submodularity of the hypergraph cut function and inequalities (2) and (3), we have that

d(HS−ui−uj
) + d(HS−ui

) ≥ d(HS−ui−uj
∩ HS−ui

) + d(HS−ui−uj
∪ HS−ui

)
≥ d(HS−ui−uj

) + d(HS−ui
).

Therefore, inequality (2) is an equation, and consequently, (HS−ui−uj
∩

HS−ui , HS−ui−uj ∩ HS−ui) is a minimum (S−ui−uj , U)-terminal cut. If HS−ui−uj \HS−ui ̸=
∅, then
(HS−ui−uj ∩ HS−ui , HS−ui−uj ∩ HS−ui) contradicts source minimality of the minimum
(S − ui − uj , U)-terminal cut (HS−ui−uj

, HS−ui−uj
). Hence, HS−ui−uj

\ HS−ui
= ∅ and

consequently, HS−ui−uj
⊆ HS−ui

. ◁

Claim 11 implies the following Corollary.

▶ Corollary 12. For every i, j ∈ [p], we have ui, uj ̸∈ HS−ui−uj
.

Proof. By Corollary 10, we have that ui ̸∈ HS−ui
. Therefore, ui, uj ̸∈ HS−ui

∩ HS−uj
. By

Claim 11, HS−ui−uj
⊆ HS−ui

and HS−ui−uj
⊆ HS−uj

. Therefore, HS−ui−uj
⊆ HS−ui

∩
HS−uj

, and thus, ui, uj ̸∈ HS−ui−uj
. ◀

The next claim will help in controlling the cost of the k-partition that we will obtain by
applying Theorem 5.

▷ Claim 13. For every i, j ∈ [p], we have d(HS−ui
) = d(U) = d(HS−ui−uj

).

Proof. Let a, b ∈ [p]. We will show that d(HS−ua) = d(U) = d(HS−ua−ub
). Since (U, U)

is a (S − ua, U)-terminal cut, we have that d(HS−ua
) ≤ d(U). Since (HS−ua

, HS−ua
) is a

(S − ua − ub, U)-terminal cut, we have that d(HS−ua−ub
) ≤ d(HS−ua) ≤ d(U). Thus, in

order to prove the claim, it suffices to show that d(HS−ua−ub
) ≥ d(U).

Suppose for contradiction that d(HS−ua−ub
) < d(U). Let ℓ ∈ [p] \ {a, b} be an arbitrary

element (which exists since we have assumed that p ≥ 2k and k ≥ 2). Let R := {uℓ}, S′ :=
S −ua −uℓ , and Ai := HS−ua−ui for every i ∈ [p]\{a, ℓ}. We note that |S′| = p−2 ≥ 2k −2.
By definition, (Ai, Ai) is a minimum (S − ua − ui, U)-terminal cut for every i ∈ [p] \ {a, ℓ}.
Moreover, by Corollary 12, we have that ui ∈ Ai \ (∪j∈[p]\{a,i,ℓ}Aj) for every i ∈ [p] \ {a, ℓ}.
Hence, the sets U , R, and S′, and the cuts (Ai, Ai) for i ∈ [p] \ {a, ℓ} satisfy the conditions
of Theorem 5. Therefore, by the first conclusion of Theorem 5, there exists a k-partition P ′

with

|δ(P ′)| ≤ 1
2 min{d(HS−ua−ui) + d(HS−ua−uj ) : i, j ∈ [p] \ {a, ℓ}}.

By assumption, d(HS−ua−ub
) < d(U) and b ∈ [p] \ {a, ℓ}, so min{d(HS−ua−ui

) : i ∈ [p] \
{a, ℓ}} < d(U). Since (U, U) is a (S − ua − ui, U)-terminal cut, we have that d(HS−ua−ui

) ≤
d(U) for every i ∈ [p] \ {a, ℓ}. Therefore,

1
2 min{d(HS−ua−ui) + d(HS−ua−uj ) : i, j ∈ [p] \ {a, ℓ}} < d(U) = OPTk-cut.

Thus, we have that |δ(P ′)| < OPTk-cut, which is a contradiction. ◁

The next two claims will help in arguing the existence of a hyperedge satisfying the
conditions of the second conclusion of Theorem 5. In particular, we will need Claim 15. The
following claim will help in proving Claim 15.
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▷ Claim 14. For every i, j ∈ [p], we have

d(HS−ui
∩ HS−uj

) = d(U) = d(HS−ui
∪ HS−uj

).

Proof. Since (HS−ui ∩ HS−uj , HS−ui ∩ HS−uj ) is a (S − ui − uj , U)-terminal cut, we have
that d(HS−ui

∩ HS−uj
) ≥ d(HS−ui−uj

). By Claim 13, we have that d(HS−ui−uj
) = d(U) =

d(HS−ui
). Therefore,

d(HS−ui
∩ HS−uj

) ≥ d(HS−ui
). (4)

Since (HS−ui
∪ HS−uj

, HS−ui
∪ HS−uj

) is a (S − uj , U)-terminal cut, we have that

d(HS−ui ∪ HS−uj ) ≥ d(HS−uj ). (5)

By submodularity of the hypergraph cut function and inequalities (4) and (5), we have that

d(HS−ui) + d(HS−uj ) ≥ d(HS−ui ∩ HS−uj ) + d(HS−ui ∪ HS−uj ) ≥ d(HS−ui) + d(HS−uj ).

Therefore, inequalities (4) and (5) are equations. Thus, by Claim 13, we have that

d(HS−ui
∩ HS−uj

) = d(HS−ui
) = d(U),

and

d(HS−ui
∪ HS−uj

) = d(HS−uj
) = d(U). ◁

▷ Claim 15. For every i, j, ℓ ∈ [p] with i ̸= j, we have HS−uℓ
⊆ HS−ui

∪ HS−uj
.

Proof. If ℓ = i or ℓ = j the claim is immediate. Thus, we assume that ℓ ̸∈ {i, j}. Let
Q := HS−uℓ

\ (HS−ui
∪ HS−uj

). We need to show that Q = ∅. We will show that
(HS−uℓ

\ Q, HS−uℓ
\ Q) is a minimum (S − uℓ, U)-terminal cut. Consequently, Q must be

empty (otherwise, HS−uℓ
\Q ⊊ HS−uℓ

and hence, (HS−uℓ
\Q, HS−uℓ

\ Q) contradicts source
minimality of the minimum (S − uℓ, U)-terminal cut (HS−uℓ

, HS−uℓ
)).

We now show that (HS−uℓ
\ Q, HS−uℓ

\ Q) is a minimum (S − uℓ, U)-terminal cut. Since
HS−uℓ

\ Q = HS−uℓ
∩ (HS−ui ∪ HS−uj ), we have that S − ui − uj − uℓ ⊆ HS−uℓ

\ Q. We
also know that ui and uj are contained in both HS−uℓ

and HS−ui
∪ HS−uj

. Therefore,
S − uℓ ⊆ HS−uℓ

\ Q. Thus, (HS−uℓ
\ Q, HS−uℓ

\ Q) is a (S − uℓ, U)-terminal cut. Therefore,

d(HS−uℓ
∩ (HS−ui

∪ HS−uj
)) = d(HS−uℓ

\ Q) ≥ d(HS−uℓ
). (6)

We also have that (HS−uℓ
∪ (HS−ui ∪ HS−uj ), HS−uℓ

∪ (HS−ui ∪ HS−uj )) is a (S − ui, U)-
terminal cut. Therefore, d(HS−uℓ

∪ (HS−ui
∪ HS−uj

)) ≥ d(HS−ui
). By Claims 13 and 14,

we have that d(HS−ui
) = d(V1) = d(HS−ui

∪ HS−uj
). Therefore,

d(HS−uℓ
∪ (HS−ui

∪ HS−uj
)) ≥ d(HS−ui

∪ HS−uj
). (7)

By submodularity of the hypergraph cut function and inequalities (6) and (7), we have that

d(HS−uℓ )+d(HS−ui ∪ HS−uj ) ≥ d(HS−uℓ ∩ (HS−ui ∪ HS−uj ))+d(HS−uℓ ∪ (HS−ui ∪ HS−uj ))
≥ d(HS−uℓ ) + d(HS−ui ∪ HS−uj ).

Therefore, inequalities (6) and (7) are equations, so (HS−uℓ
\ Q, HS−uℓ

\ Q) is a minimum
(S − uℓ, U)-terminal cut. ◁
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Let R := {up}, S′ := S − up, and (Ai, Ai) := (HS−ui , HS−ui) for every i ∈ [p − 1]. By
definition, (Ai, Ai) is a minimum (S − ui, U)-terminal cut for every i ∈ [p − 1]. Moreover,
by Corollary 10, we have that ui ∈ Ai \ (∪j∈[p−1]\{i}Aj). Hence, the sets U , R, and S′,
and the cuts (Ai, Ai) for i ∈ [p − 1] satisfy the conditions of Theorem 5. We will use the
second conclusion of Theorem 5. We now show that there exists a hyperedge satisfying the
conditions mentioned in the second conclusion of Theorem 5. We will use Claim 16 below
to prove this. Let W := ∪1≤i<j≤p−1(Ai ∩ Aj) and Z := ∩i∈[p−1]Ai as in the statement of
Theorem 5.

▷ Claim 16. There exists a hyperedge e ∈ E such that e ∩ W ≠ ∅, e ∩ Z ̸= ∅, and e ⊆ W ∪ Z.

Proof. We note that S ⊆ (S − ui) ∪ (S − uj) ⊆ HS−ui ∪ HS−uj for every distinct i, j ∈ [p − 1].
Therefore, S ∩ (Ai ∩ Aj) = ∅ for every distinct i, j ∈ [p − 1], and thus S ∩ W = ∅. Since S is
a transversal of the collection C, it follows that the set W is not in the collection C.

By definition, U ⊆ Ai for every i ∈ [p−1], and thus U ⊆ W . Since W ̸∈ C, either d(W ) >

d(U) or δ(W ) = δ(U). By Claim 9, we have that HS−up
∈ C, and thus, d(HS−up

) ≤ d(U)
and δ(HS−up) ̸= δ(U). Consequently, d(W ) ≥ d(HS−up), and δ(W ) ̸= δ(HS−up), and thus,
δ(W ) \ δ(HS−up

) ̸= ∅. Let e ∈ δ(W ) \ δ(HS−up
). We will show that this choice of e achieves

the desired properties.
For each i ∈ [p], let Yi := HS−ui

\W . By Claim 15, for every i, j, ℓ ∈ [p] with i ̸= j we have
that HS−uℓ

⊆ HS−ui
∪HS−uj

. Therefore HS−ui
∩HS−uj

⊆ HS−uℓ
for every such i, j, ℓ ∈ [p],

and hence W ⊆ HS−uℓ
for every ℓ ∈ [p]. Thus, W ⊆ HS−up

. Since e ∈ δ(W ) \ δ(HS−up
), we

have that e ⊆ W ∪ Yp, e ∩ W ̸= ∅ and e ∩ Yp ̸= ∅. Therefore, in order to show that e has the
three desired properties as in the claim, it suffices to show that Yp ⊆ Z. We prove this next.

By definition, Yp∩W = ∅. By Claim 15, for every i ∈ [p−1], we have that HS−up
∩HS−ui

⊆
HS−u1 and HS−up ∩ HS−ui ⊆ HS−u2 , so HS−up ∩ HS−ui ⊆ HS−u1 ∩ HS−u2 ⊆ W . Thus,
for every i ∈ [p − 1], Yp ∩ Yi ⊆ HS−up

∩ HS−ui
⊆ W , so since Yp ∩ W = ∅, we have that

Yp ∩ Yi = ∅ for every i ∈ [p − 1]. Therefore,

Yp ⊆ W ∪

(
p−1⋃
i=1

Yi

)
=

p−1⋃
i=1

HS−ui
=

p−1⋂
i=1

HS−ui
= Z. ◁

By Claim 16, there is a hyperedge e satisfying the conditions of the second conclusion of
Theorem 5. Therefore, by Theorem 5, there exists a k-partition P ′ with

|δ(P ′)| <
1
2 min{d(Ai) + d(Aj) : i, j ∈ [p − 1], i ̸= j}

= d(U) (By Claim 13)
= OPTk-cut. (By assumption of the theorem)

Thus, we have obtained a k-partition P ′ with |δ(P ′)| < OPTk-cut, which is a contradiction.
◀

3 Proof of Theorem 4

We prove Theorem 4 in this section. Applying Theorem 6 to (U, U) yields the following
corollary.

▶ Corollary 17. Let G = (V, E) be a hypergraph and let OPTk-cut be the optimum value of
Hypergraph-k-Cut in G for some integer k ≥ 2. Suppose (U, U) is a 2-partition of V

with d(U) = OPTk-cut. Then, there exists a set T ⊆ U with |T | ≤ 2k − 1 such that every
minimum (U, T )-terminal cut (A, A) satisfies δ(A) = δ(U).
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We now restate Theorem 4 and prove it using Theorem 6 and Corollary 17.

▶ Theorem 4. Let G = (V, E) be a hypergraph and let OPTk-cut be the optimum value of
Hypergraph-k-Cut in G for some integer k ≥ 2. Suppose (U, U) is a 2-partition of V with
d(U) = OPTk-cut. Then, there exist sets S ⊆ U , T ⊆ U with |S| ≤ 2k − 1 and |T | ≤ 2k − 1
such that every minimum (S, T )-terminal cut (A, A) satisfies δ(A) = δ(U).

Proof. By Theorem 6, there exists a subset S ⊆ U with |S| ≤ 2k − 1 such that every
minimum (S, U)-terminal cut (A, A) has δ(A) = δ(U). By Corollary 17, there exists a
subset T ⊆ U with |T | ≤ 2k − 1 such that every minimum (U, T )-terminal cut (A, A) has
δ(A) = δ(U). We will show that every minimum (S, T )-terminal cut (A, A) has δ(A) = δ(U).
We will need the following claim.

▷ Claim 18. Let (Y, Y ) be the source minimal minimum (S, T )-terminal cut. Then
δ(Y ) = δ(U).

Proof. Since (U, U) is a (S, T )-terminal cut, and (Y, Y ) is a minimum (S, T )-terminal cut,
we have that

d(U) ≥ d(Y ).

Since (U ∩ Y, U ∩ Y ) is a (S, U)-terminal cut, we have that

d(U ∩ Y ) ≥ d(U).

Since (U ∪ Y, U ∪ Y ) is a (U, T )-terminal cut, we have that

d(U ∪ Y ) ≥ d(U).

Thus, by the submodularity of the hypergraph cut function we have that

2d(U) ≥ d(U) + d(Y ) ≥ d(U ∩ Y ) + d(U ∪ Y ) ≥ 2d(U).

Therefore, we have that d(U ∩ Y ) = d(U), so (U ∩ Y, U ∩ Y ) is a minimum (S, T )-terminal
cut. Since (Y, Y ) is the source minimal (S, T )-terminal cut, we have that U ∩ Y = Y , and
hence Y ⊆ U . Therefore, (Y, Y ) is a minimum (S, U)-terminal cut. By the choice of S, we
have that δ(Y ) = δ(U). ◁

Applying Claim 18 to both sides of the partition (U, U), we have that the source minimal
minimum (S, T )-terminal cut (Y, Y ) has δ(Y ) = δ(U), and the source minimal minimum
(T, S)-terminal cut (Z, Z) has δ(Z) = δ(U). Therefore, for every e ∈ δ(U), we have that
e ∩ Y ̸= ∅ and e ∩ Z ̸= ∅.

Let (A, A) be a minimum (S, T )-terminal cut. Since (Y, Y ) is the source minimal minimum
(S, T )-terminal cut, we have that Y ⊆ A. Since (Z, Z) is the source minimal minimum (T, S)-
terminal cut, we have that Z ⊆ A. Since every e ∈ δ(U) intersects both Y and Z, it follows
that every e ∈ δ(U) intersects both A and A, and hence, δ(U) ⊆ δ(A). Since (A, A) is a
minimum (S, T )-terminal cut, d(A) ≤ d(U), and thus we have that δ(A) = δ(U). ◀

4 Conclusion

We showed the first polynomial bound on the number of minmax-k-cut-sets in hypergraphs
for every fixed k and gave a polynomial-time algorithm to enumerate all minmax-k-cut-sets
as well as all min-k-cut-sets in hypergraphs for every fixed k. Our main contribution is
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a structural theorem that is the backbone of the correctness analysis of our enumeration
algorithms. In order to enumerate minmax-k-cut-sets in hypergraphs, we introduced
the notion of k-cut-set representatives and enumerated k-cut-set representatives of all
optimum k-partitions for Minmax-Hypergraph-k-Partition. Our technique builds on
known structural results for Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition
[8, 12,13].

The technique underlying our enumeration algorithms is not necessarily novel – we simply
rely on minimum (s, t)-terminal cuts. Using fixed-terminal cuts to address global partitioning
problems is not a novel technique by itself – it is common knowledge that minimum (s, t)-
terminal cuts can be used to solve global minimum cut. However, there are several problems
where naive use of this technique fails to lead to efficient algorithms: e.g., multiway cut does
not help in solving Graph-k-Cut since multiway cut is NP-hard. Adapting this technique for
specific partitioning problems requires careful identification of structural properties. In fact,
beautiful structural properties have been shown for a rich variety of partitioning problems in
combinatorial optimization in order to exploit this technique: for example, it was used (1) to
design the first efficient algorithm for Graph-k-Cut [23], (2) to solve certain constrained
submodular minimization problems [22, 35], and (3) more recently, to design fast algorithms
for global minimum cut in graphs and for Gomory-Hu tree in unweighted graphs [1, 34]. Our
use of this technique also relies on identifying and proving a suitable structural property,
namely Theorem 4. The advantage of our structural property is that it simultaneously
enables enumeration of min-k-cut-sets as well as minmax-k-cut-sets in hypergraphs
which was not possible via structural theorems that were developed before. Furthermore,
it helps in showing the first polynomial bound on the number of minmax-k-cut-sets in
hypergraphs for every fixed k.

We also emphasize a limitation of our technique. Although it helps in solving Enum-
Hypergraph-k-Cut and Enum-MinMax-Hypergraph-k-Partition, it does not help in
solving a seemingly related hypergraph k-partitioning problem – namely, given a hypergraph
G = (V, E) and a fixed integer k, find a k-partition (V1, . . . , Vk) of the vertex set that
minimizes

∑k
i=1 |δ(Vi)|. Natural variants of our structural theorem fail to hold for this

objective. Resolving the complexity of this variant of the hypergraph k-partitioning problem
for k ≥ 5 remains open.

We mention an open question concerning Hypergraph-k-Cut and the enumeration of
min-k-cut-sets in hypergraphs for fixed k. We recall the status in graphs: the number of
minimum k-partitions in a connected graph was known to be O(n2k−2) via Karger-Stein’s
algorithm [30] and Ω(nk) via the cycle example, where n is the number of vertices; recent
works have improved on the upper bound to match the lower bound for fixed k – this
improvement in upper bound also led to the best possible O(nk)-time algorithm for Graph-
k-Cut for fixed k [25–27]. For hypergraphs, the number of min-k-cut-sets is known to be
O(n2k−2) and Ω(nk). Can we improve the upper/lower bound? Is it possible to design an
algorithm for Hypergraph-k-Cut that runs in time O(nkp)?
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Abstract
We investigate adaptive sublinear algorithms for finding monotone patterns in sequential data. Given
fixed 2 ≤ k ∈ N and ε > 0, consider the problem of finding a length-k increasing subsequence
in a sequence f : [n] → R, provided that f is ε-far from free of such subsequences. It was shown
by Ben-Eliezer et al. [FOCS 2019] that the non-adaptive query complexity of the above task is
Θ((log n)⌊log2 k⌋). In this work, we break the non-adaptive lower bound, presenting an adaptive
algorithm for this problem which makes O(log n) queries. This is optimal, matching the classical
Ω(log n) adaptive lower bound by Fischer [Inf. Comp. 2004] for monotonicity testing (which cor-
responds to the case k = 2). Equivalently, our result implies that testing whether a sequence
decomposes into k monotone subsequences can be done with O(log n) queries.
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1 Introduction

Pattern avoidance and detection in sequential data is a central problem in theoretical
computer science and combinatorics [57], dating back to the seminal work of Knuth [38]
(from a computer science perspective), and Simion and Schmidt [55] (from a combinatorial
perspective). Studying the computational problem within the framework of sublinear
algorithms, Newman, Rabinovich, Rajendraprasad, and Sohler [44, 45] considered the problem
of property testing for forbidden order patterns in a sequence, where one of the central
special cases they considered was that of monotone patterns. The property testing problem
of detecting monotone patterns generalizes classical monotonicity testing in sequences, and
is tightly connected to the longest increasing subsequence (LIS) problem [46].

For an integer k ∈ N and a sequence f : [n] → R, a length-k monotone subsequence of
f is a tuple of k indices, (i1, . . . , ik) ∈ [n]k, such that i1 < · · · < ik and f(i1) < · · · < f(ik).
More generally, for a permutation π : [k] → [k], a π-pattern of f is given by a tuple of k

indices i1 < · · · < ik such that f(ij1) < f(ij2) whenever j1, j2 ∈ [k] satisfy π(j1) < π(j2). A
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sequence f is π-free if there are no subsequences of f with order pattern π. For a fixed k ∈ N
and a pattern π of length k, the goal is to test whether a function f : [n] → R is π-free or
ε-far from π-free (that is, any π-free function g differs from f on at least εn inputs). The
algorithmic task proposed in [45] and studied in this paper is as follows.

For 2 ≤ k ∈ N and ε > 0, design a randomized algorithm that, given query access to
a function f : [n] → R, distinguishes with probability at least 9/10 between the case
that f is free of length-k monotone subsequences and the case that it is ε-far from free
of length-k monotone subsequences.

The above algorithmic formulation is equivalent to the following property testing problem
(with one-sided error). For a given 2 ≤ k ∈ N and f : [n] → R, test whether there exists
a decomposition of f into fewer than k non-increasing subsequences, or f is ε-far from
having such a decomposition. The equivalence of the two formulations is a consequence
of Dilworth’s theorem [22]. One direction is trivial: if there exists a length-k increasing
subsequence (i1, . . . , ik) ∈ [n]k, then any partition of f into fewer than k subsequences must
contain two indices ij and ij′ within the same subsequence, hence, the subsequences are not
non-increasing. The other direction follows from considering the poset ([n], ≺f ), where i ≺f j

iff i ≤ j and f(i) ≥ f(j); every anti-chain of ≺f is an increasing subsequence of f , and every
chain of ≺f is a non-increasing subsequence. If there are no length-k increasing subsequences,
the maximum anti-chain of ≺f has size at most k − 1, and by Dilworth’s theorem, there is a
partition of ([n], ≺f ) into at most k − 1 chains, i.e., non-increasing subsequences.1

This paper gives an algorithm with optimal dependence in n for the above problems. We
state the main theorem next, and discuss connections to monotonicity testing and to the
longest increasing subsequence (LIS) problem shortly after.

▶ Theorem 1. Fix k ∈ N and ε > 0. There exists an algorithm that, given query access to a
function f : [n] → R which is ε-far from free of length-k monotone subsequences, outputs a
length-k monotone subsequence of f with probability 9/10, with query complexity and running
time of(

kk · (log(1/ε))k · 1
ε

· log(1/δ)
)O(k)

· log n.

Thus, for fixed k and ε, the query complexity and running time are of order O(log n). The
above result can be stated analogously in the language of monotone decompositions.

▶ Corollary 2. Fix k ∈ N and ε > 0. There is an algorithm with query complexity and
running time O(log n) for ε-testing whether a sequence f : [n] → R is decomposable into k

monotone subsequences.

The algorithm underlying Theorem 1 is adaptive2 and solves the testing problem with
one-sided error, since a length-k monotone subsequence is evidence for not being free of such
subsequences. The algorithm improves on a recent result of Ben-Eliezer, Canonne, Letzter

1 A similar equivalence, between being decomposable into k increasing (or decreasing) subsequences and
not containing non-increasing (or non-decreasing, respectively) patterns of length k + 1 holds as well.
We note that all results stated here in terms of “strong” monotonicity, e.g., being increasing, will also
hold for their “weak” monotonicity analogue, e.g., being non-decreasing.

2 An algorithm is non-adaptive if its queries do not depend on the answers to previous queries, or,
equivalently, if all queries to the function can be made in parallel. Otherwise, if the queries of an
algorithm may depend on the outputs of previous queries, then the algorithm is adaptive.
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and Waingarten [7] who gave a non-adaptive algorithm for finding length-k monotone patterns
with query complexity Ok,ε((log n)⌊log2 k⌋), which in itself improved upon a Ok,ε((log n)O(k2))
upper bound by [45]. The focus of [7] was on non-adaptive algorithms, and they gave a
lower bound of Ω

(
(log n)⌊log2 k⌋)

queries for non-adaptive algorithms achieving one-sided
error. Hence, Theorem 1 implies a natural separation between the power of adaptive and
non-adaptive algorithms for finding monotone subsequences.

Theorem 1 is optimal, even among two-sided error algorithms. In the case k = 2,
corresponding to monotonicity testing, there is a Ω(log n/ε) lower bound (as long as, say,
ε > n−0.99) for both non-adaptive and adaptive algorithms [25, 27, 15], even with two-
sided error. A simple reduction suggested in [45] shows that the same lower bound (up
to a multiplicative factor depending on k) holds for any fixed k ≥ 2. Thus, an appealing
consequence of Theorem 1 is that the natural generalization of monotonicity testing, which
considers forbidden monotone patterns of fixed length longer than 2, does not affect the
dependence on n in the query complexity by more than a constant factor. Interestingly, [27]
shows that for any adaptive algorithm for monotonicity testing on f : [n] → R there is a
non-adaptive algorithm which is at least as good in terms of query complexity (even if we
only restrict ourselves to one-sided error algorithms). That is, adaptivity does not help at all
for k = 2. In contrast, the separation between our O(log n) adaptive upper bound and the
Ω

(
(log n)⌊log2 k⌋)

non-adaptive lower bound of [7] means this is no longer true for k ≥ 4.
While our work settles the dependence in n in the query complexity of adaptive monotone

pattern testing, and [7] settles the non-adaptive dependence in n, the following interesting
question remains wide open.

▶ Question 3. What is the optimal dependence of the query complexity in k and ε for the
monotone subsequence testing problem discussed in this paper?

Thus far, all known (adaptive and non-adaptive) results on this problem have a kO(k2) type
dependence in k in the query complexity; see Theorem 3.1 in [45] and Lemma 3.2 in [7]. The
best known dependence in ε is of the form (1/ε)log2 k+O(1) for fixed k [7].

On the role of adaptivity in order pattern detection

Harnessing adaptivity to improve algorithmic performance is a notoriously difficult problem in
many branches of property testing, typically requiring a good structural understanding of the
task at hand. In the context of testing for forbidden order patterns, non-adaptive algorithms
are quite weak: the non-adaptive query complexity is Ω(n1/2) for all non-monotone order
patterns [45], and as high as n1−1/(k−Θ(1)) for almost all patterns of length k [6]. A recent
(and independent) work of [47] gave new adaptive algorithms for general patterns with query
complexity no(1) for fixed constant ε > 0 and k ∈ N, showing that for non-monotone patterns,
too, adaptive algorithms may significantly improve upon non-adaptive ones. We note that
the query complexity obtained in [47] is not polylogarithmic in n, and so their result is
incomparable to ours. Their proof techniques are also very different from ours: at the core of
their proof is a sophisticated sparsification framework, which makes use of a beautiful result
of Marcus and Tardos [40] on pattern-avoidance in matrices.

Connections to the Longest Increasing Subsequence (LIS) problem

As an immediate consequence, Theorem 1 gives an optimal testing algorithm for the longest
increasing subsequence (LIS) problem in a certain regime. The classical LIS problem
asks to determine, given a sequence f : [n] → R, the maximum k for which f contains a

ICALP 2022
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length-k increasing subsequence. It is very closely related to other fundamental algorithmic
problems in sequences, such as computing the edit distance, Ulam distance, or distance
from monotonicity (for example, the latter equals n minus the LIS length), and has been
thoroughly investigated from the perspective of classical algorithms [29, 50], sublinear-time
algorithms [49, 1, 54, 52, 46, 42, 2], streaming algorithms [34, 56, 30, 53, 24, 43], dynamic
algorithms [18, 31, 39, 41] and massively parallel computation [36, 12]. In the property
testing regime, the corresponding decision task is to distinguish between the case where f

has LIS length at most k (where k is given as part of the input) and the case that f is ε-far
from having such a LIS length. Theorem 1 in combination with the aforementioned Ω(log n)
lower bounds (which readily carry over to this setting) yield a tight bound on the query
complexity of testing whether the LIS length is a constant.

▶ Corollary 4. Fix 2 ≤ k ∈ N and ε > 0. The query complexity of ε-testing whether
f : [n] → R has LIS length at most k is Θ(log n).

1.1 Related Work
Considering general permutations π of length k and exact computation, [35] showed how
to find a π-pattern in a sequence f in time 2O(k2 log k)n, later improved by [28] to 2O(k2)n.
In the regime k = Ω(log n), an algorithm of [8] running in time nk/4+o(k) provides the
state-of-the-art. The analogous counting problem has also been actively studied, see [26] and
the references within.

For approximate computation of general patterns π, the works of [45, 6] investigate the
query complexity of property testing for forbidden order patterns. When π is of length 2,
the problem considered is equivalent to testing monotonicity, one of the most widely-studied
problems in property testing, with works spanning the past two decades. Over the years,
variants of monotonicity testing over various partially ordered sets have been considered,
including the line [n] [25, 27, 3, 48, 5], the Boolean hypercube {0, 1}d [23, 10, 13, 14, 20, 19,
37, 4, 16, 21, 17], and the hypergrid [n]d [11, 15, 9]. We refer the reader to [32, Chapter 4]
for more on monotonicity testing, and a general overview of the field of property testing
(introduced in [51, 33]).

1.2 Main Ideas and Techniques
We now describe some intuition behind the proof of Theorem 1. We note that the algorithm
considers several cases and combines ideas from [45] and [7] with new structural and al-
gorithmic components. In this overview, technical details established in [45] and [7] are noted
but excluded; the purpose is to highlight the challenges and novel ideas arising specifically
from this work. (See the Appendix in the full-version of the work for a short technical
overview of these previous results.)

Fix k ∈ N and ε > 0, and suppose that f : [n] → R is ε-far from (12 . . . k)-free, that is,
ε-far from free of length-k increasing subsequences. Notice that f must contain a collection
C of at least εn/k pairwise-disjoint increasing subsequences of length k; indeed, otherwise,
greedily eliminating these subsequences gives a (12 . . . k)-free function differing in strictly
fewer than εn inputs.

For simplicity in this overview, assume that k is even and that all εn/k length-k increasing
subsequences of f in C, (x1, x2, . . . , xk) ∈ [n]k, satisfy that |xk/2+1 − xk/2| ≥ |xi+1 − xi|
for all i ∈ [k − 1] (the non-adaptive lower bound of Ωε((log n)⌊log2 k⌋) holds even in this
restricted case) – intuitively, the largest “gap” in successive indices is between the k/2-th
and (k/2 + 1)-th position. A goal, common to [45, 7] and this work, is to recursively
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[n]

x1

y1

x2

y2

y3

x3

x4
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ℓ

Figure 1 A sequence f : [n] → R with two disjoint monotone subsequences of length 4, and an
index ℓ ∈ [n]. The sequences are x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4). Note that both x and y

have the largest gap between consecutive elements at index 2, i.e., |x3 − x2| and |y3 − y2| are the
largest gaps between consecutive indices in x and y. Furthermore, ℓ cuts both x and y with slack.

find a (12 . . . k/2)-pattern of indices (i1, . . . , ik/2) ∈ [n]k/2, as well as (12 . . . k/2)-pattern of
indices (ik/2+1, . . . , ik) ∈ [n]k/2 that can be combined into one (12 . . . k)-pattern. Toward
this recursive approach, we say that an index ℓ ∈ [n] cuts (x1, . . . , xk) with slack if

xk/2 +
xk/2+1 − xk/2

3 ≤ ℓ ≤ xk/2+1 −
xk/2+1 − xk/2

3 ,

or, informally, if ℓ lies “roughly in the middle” between xk/2 and xk/2+1 – which, by the above
assumption, form the largest gap among consecutive indices of the increasing subsequence
(see Figure 1). The index ℓ ∈ [n] allows us to recurse on an interval before ℓ, as well as an
interval after ℓ. Additionally, the width of (x1, . . . , xk) is set to be ⌊log(xk/2+1 − xk/2)⌋. We
consider the subset of C consisting of length-k monotone subsequences of width w which are
cut by ℓ with slack,

Cℓ,w = {(x1, . . . , xk) ∈ C : width(x1, . . . , xk) = w, ℓ cuts (x1, . . . , xk) with slack},

and note that if (x1, . . . , xk) ∈ Cℓ,w, then x1, . . . , xk/2 ∈ [ℓ − k · 2w, ℓ] and xk/2+1, . . . , xk ∈
[ℓ, ℓ + k · 2w], since |xk/2+1 − xk/2| was maximal. Motivated by this observation, the density
of width-w copies in C around ℓ is measured by

τC(ℓ, w) = 1
2w

· |Cℓ,w|,

and the total density (over all widths) of C around ℓ is measured by

τC(ℓ) =
log n∑
w=1

τC(ℓ, w).

The algorithms (ours and those in [45, 7]) proceed in a recursive manner. Each step
considers an index ℓ ∈ [n] where the total density τC(ℓ) is high, namely at least Ωk(ε), as
well as a width w where τC(ℓ, w) is high. At a very high level, the algorithm can recurse on
the sub-intervals [ℓ − k · 2w, ℓ] and [ℓ, ℓ + k · 2w], where the lower bound on τC(ℓ, w) implies
sufficiently many increasing subsequences exist in each interval. If we choose the index ℓ

and width w correctly, we have reduced the problem of finding a (12 . . . k)-pattern to finding
two (12 . . . k/2)-patterns in subsequences of size k · 2w to the left and right of ℓ which are
themselves Ωε,k(1)-far from free of (12 . . . , k/2)-patterns.

While ℓ may be chosen randomly, choosing the correct width w becomes analytically
trickier, and is the step where the algorithms differ. The number of possible widths w is
Θ(log n) (since these are powers of 2 between 1 and n), and a non-adaptive algorithm cannot
know what a correct choice of w is. The non-adaptive algorithms consider all Θ(log n) options
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and recursively apply the algorithm for each width, thereby losing a Θ(log n) factor in the
query complexity at each recursive step. The main challenge of [45, 7] is obtaining the “best”
lower bound on τC(ℓ, w) for some w ∈ [log n] and determining the number of recursive steps
necessary. The fact that a non-adaptive algorithm must explore Ω(log n) widths is inevitable,
and what the non-adapive lower bound in [7] formalizes.

With adaptivity, the hope is that an algorithm considering an index ℓ ∈ [n] with
τC(ℓ) = Ωk(ε) can choose one width w satisfying τC(ℓ, w) = Ωk(ε), and recurse only on that
width. The algorithm may devote Θk,ε(log n) queries to consider all Θ(log n) possible widths,
and the benefit is that recursing on a single width incurs a Θk,ε(log n) additive loss in the
query complexity, as opposed to the Θk,ε(log n) multiplicative loss incurred by [45, 7]. We
describe how we accomplish this next.

First, there is a simple Ok,ε(log n)-query procedure which can choose a width ŵ where
ŵ ≥ w. For example, for every possible width w0, the algorithm queries Ok,ε(1) randomly
sampled indices from [ℓ − k · 2w0 , ℓ] and [ℓ, ℓ + k · 2w0 ]. Then, let ŵ be the largest w0 where
some increasing pair is found. The fact that the unknown w ∈ [log n] satisfies τC(ℓ, w) ≥ Ωk(ε)
implies that with high constant probability, there exists two (x1, . . . , xk), (y1, . . . , yk) ∈ Cℓ,w

where indices x1 and yk are sampled and by an observation from [45], with high enough
probability, f(x1) ≤ f(yk) (see the appendix in the full-version for a more thorough discussion
on this point). This, in turn, implies ŵ ≥ w.

If the simple procedure happened to choose ŵ which is not much larger than w, then
we may recurse on ŵ, similarly to [45, 7]; we call this the fitting case. The problem is that
ŵ may be too large, a case we refer to as overshooting. Consider the execution selecting a
width ŵ which is too large, in particular, the “correct” width w satisfies w ≪ ŵ. Intuitively,
the problem is the following: the promise that τC(ℓ, w) ≥ Ωk(ε) ensures that the subsequence
[ℓ − k · 2w, ℓ + k · 2w] is sufficiently dense with (12 . . . k)-patterns; however, when ŵ is
much larger, the subsequence [ℓ − k · 2ŵ, ℓ + k · 2ŵ] is much larger than the subsequence
[ℓ − k · 2w, ℓ + k · 2w]; hence, the length-k increasing subsequences in [ℓ − k · 2w, ℓ + k · 2w]
constitute a tiny (at most Ok(2w−ŵ)) fraction of the interval [ℓ − k · 2ŵ, ℓ + k · 2ŵ] the
algorithm would recurse on.

Due to the density τC(ℓ, ŵ) being potentially very small, at this point, it is not clear
how to proceed with our wrong (too large) choice of ŵ as the width to recurse on. To
overcome this, we prove a robust structural theorem, drawing a much more favorable picture
as to which widths are good for recursion. The robust structural theorem asserts the
following. For sufficiently many possible ℓ ∈ [n] and widths w where τC(ℓ, w) ≥ Ωk(ε), every
interval J containing [ℓ − k · 2w, ℓ + k · 2w] has Ωk(ε|J |) pairwise-disjoint length-k increasing
subsequences. At a high level, the prior structural results ensured that [ℓ − k · 2w, ℓ + k · 2w]
is dense with (12 . . . k)-patterns cut by ℓ; our robust version ensures that any interval J

containing [ℓ − k · 2w, ℓ + k · 2w] remains dense with (12 . . . k)-patterns. In particular, the
choice of interval is robust to picking a width ŵ which is larger than w. These length-k
increasing subsequences are not cut with slack by ℓ, a condition which was crucial for [45, 7];
however, the algorithm’s choice of ŵ means it found an increasing pair at distance Θk(2ŵ).
We exploit this with an adaptive algorithm in a somewhat surprising manner, which we
expand on now.

New algorithm when overshooting

Let ℓ ∈ [n] be an index with τC(ℓ) ≥ Ωk(ε), and let w be the unknown width where
τC(ℓ, w) ≥ Ωk(ε) with the above-mentioned robustness property. Suppose that the widest
increasing pair (x, y) found by the algorithm (which sets ŵ ≈ log2 |y − x|), satisfies ŵ ≫ w.
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Even though the algorithm has “committed” to a width ŵ which is too large, we will
algorithmically exploit the fact that (x, y) is an increasing pair lying very far apart, and
containing the interval [ℓ − k · 2w, ℓ + k · 2w]. Specifically, since (x, y) are very far away, the
algorithm may fit k − 2 intervals J1, . . . , Jk−2 between x and y which lie adjacent to each
other, satisfying the following conditions:

J1 contains the interval [ℓ − k · 2w, ℓ + k · 2w].
Ji+1 lies immediately after Ji, for any i ∈ [k − 3].
|Ji+1| ≥ |Ji| · αk,ε for all i ∈ [k − 3], and a large fixed constant αk,ε > 1.

A consequence of the robust structural theorem, and the fact that J1, . . . , Jk−2 have
exponentially increasing lengths is that each Ji contains a collection Ti of Ωk(ε|Ji|) disjoint
length-k increasing subsequences. For each i ∈ [k − 2], define two sets Ai and Bi as follows.
Let Ai be the collection of prefixes (a1, . . . , ai+1) of Ti with f(ai+1) < f(y), and let Bi be the
collection of suffixes (ai+1, . . . , ak) of Ti with f(ai+1) ≥ f(y). As |Ti| = |Ai| + |Bi|, one of Ai

and Bi is large (i.e. has size at least Ωk(ε|Ji|)). This seemingly innocent combinatorial idea
can be exploited non-trivially to find an increasing subsequence of length k. Specifically, the
algorithm to handle overshooting aims to (recursively) find shorter increasing subsequences
in J1, . . . , Jk−2, with the hope of combining them together into an increasing subsequence
of length k. Concretely, for any i ∈ [k − 2], we make two recursive calls of our algorithm
on Ji: one for an (i + 1)-increasing subsequence in Ji, with values smaller than f(y),3 and
a second one for a (k − i)-increasing subsequence in Ji whose values are at least f(y). By
induction, the first recursive call succeeds with good probability if |Ai| is large, while the
second call succeeds with good probability if |Bi| is large. Since for any i either |Ai| or |Bi|
must be large, at least one of the following must hold.

B1 is large. In this case we are likely to find a length-(k − 1) monotone pattern in J1 with
values at least f(y) > f(x), which combines with x to form a length-k monotone pattern.
Ak−2 is large. Here we are likely to find a length-(k − 1) monotone pattern in Jk−2 whose
values lie below f(y), which combines with y to form a length-k monotone pattern.
There exists i ∈ [k − 3] where both Ai and Bi+1 are large. Here we will find, with
good probability, a length-(i + 1) monotone pattern in Ji with values below f(y), and a
length-(k − i − 1) monotone pattern in Ji+1 with values at or above f(y); together these
two patterns combine to form a (12 . . . k)-pattern.

In all cases, a k-increasing subsequence is found with good probability. See Figure 2 for an
example. The benefit is that the algorithm spends Θk,ε(log n) queries to identify one fixed
width ŵ ∈ [log n]. Then, there are 2(k − 2) recursive calls each aiming to find an increasing
subsequence of length strictly less than k. The Θε,k(log n) loss in the query complexity is
additive per recursive step; this leads to the Θε,k(log n) query complexity bound which was
impossible in the non-adaptive algorithms of [45, 7], as these had to explore all possible
widths ŵ ∈ [log n] in each recursive step.

Organization

The rest of the paper is organized as follows. Relevant notation can be found in Section 1.3.
Section 2 establishes the stronger structural result required for our adaptive algorithm.
Section 3 contains the new algorithmic components and the formal statements regarding the

3 Technically speaking, our algorithm can be configured to only look for increasing subsequences whose
values lie in some range; we use this to make sure that shorter increasing subsequences obtained from
the recursive calls of the algorithm can eventually be concatenated into a valid length-k one.
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Figure 2 We consider the “overshooting case” for k = 5. Specifically, the algorithm considers an
index ℓ ∈ [n] with τC(ℓ) = Ωk(ε) and, for some unknown w ∈ [log n], τC(ℓ, w) = Ωk(ε). Furthermore,
in trying to identify a correct width ŵ, the algorithm samples an increasing pair (x, y) with
log2 |x − y| ≈ ŵ ≫ w. The algorithm will consider at least k − 2 geometrically increasing intervals
between x and y; these are displayed as J1, J2, and J3; by virtue of the robust structural theorem,
each Ji contains Ωk(ε|Ji|) disjoint length-k monotone subsequences. Ai contains those length-k
monotone subsequences where the (i+1)-th index is above f(y) and Bi contains those whose (i+1)-th
index is below f(y). As an example, (z1, z2, z3, z4, z5) ∈ B4 and (v1, v2, v3, v4, v5) ∈ A4. The crucial
properties are: (i) for all i ∈ [k − 2] any (12 . . . i)-pattern in Ai and any (12 . . . (k − i))-pattern
in Bi+1 may be combined into a (12 . . . k)-pattern, (ii) any (12 . . . (k − 1))-pattern in B1 may be
combined with x since f(y) > f(x), and (iii) any (12 . . . (k − 1))-pattern in A4 may be combined
with y. The reasoning may proceed as follows: if |B1| is large, we find a (12 . . . (k − 1))-pattern and
combine it with x; so, assume |B1| is small, which implies |A1| must be large. If |B2| is large, then
a (12)-pattern from A1 and a (12 . . . (k − 2))-pattern from B2 may be combined; so assume |B2| is
small which implies |A2| is large, . . . . Eventually, we deduce that we may assume |Ak−2| is large,
and a (12 . . . (k − 1))-pattern in Ak−2 may be combined with y.

correctness of our algorithm and its query complexity. The appendices in the full-version
provide a brief description of the previous (non-adaptive) testing results on (12 . . . k)-freeness
from [45, 7], as well as the remaining proofs, relegated from the main body due to space
constraints.

1.3 Notation

All logarithms considered are base 2. We consider functions f : I → R, where I ⊆ [n],
as the inputs and main objects of study. An interval in [n] is a set I ⊆ [n] of the form
I = {a, a + 1, . . . , b}. At many places throughout the paper, we think of augmenting the
image with a special character ∗ to consider f : I → R∪ {∗}. The character ∗ can be thought
of as a masking operation: In many cases, we will only be interested in entries x of f so
that f(x) lies in some prescribed (known in advance) range of values R ⊆ R, so that entries
outside this range will be marked by ∗. Whenever the algorithm queries f(x) and observes ∗,
it will interpret this as an incomparable value (with respect to ordering) in R. As a result,
∗-values will never be part of monotone subsequences. We note that augmenting the image
with ∗ was unnecessary in [45, 7] because they only considered non-adaptive algorithms.
We say that for a fixed f : I → R ∪ {∗}, the set T is a collection of disjoint monotone
subsequences of length k if it consists of tuples (i1, . . . , ik) ∈ Ik, where i1 < · · · < ik and
f(i1) < · · · < f(ik) (in particular, f(i1), . . . , f(ik) ̸= ∗), and furthermore, for any two tuples
(i1, . . . , ik) and (i′

1, . . . , i′
k), their intersection (as sets) is empty. We also denote E(T ) as the

union of indices in k-tuples of T , i.e., E(T ) = ∪(i1,...,ik)∈T {i1, . . . , ik}. Finally, we let poly(·)
denote a large enough polynomial whose degree is (bounded by) a universal constant.
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2 Stronger Structural Dichotomy

In this section, we prove a robust structural dichotomy for functions f : [n] → R that are
ε-far from (12 . . . k)-free, which strengthens the dichotomy proved in [7]. In their paper, it is
shown that any f which is ε-far from (12 . . . k)-free satisfies at least one of two conditions:
either f contains many growing suffixes, or it can be decomposed into splittable intervals. In
Section 2.1, we define and describe these notions and state the original (non-robust) structural
result from [7]. Then, in Section 2.2, we establish a substantially stronger structural dichotomy,
better suited for our purposes. The proof of the stronger dichotomy combines the original
one as a black-box with additional combinatorial ideas.

2.1 The Non-Robust Structural Decomposition
For completeness, we first introduce the non-robust structural result from [7]. As the formal
definitions are somewhat complicated, we start with an informal description of the growing
suffixes and splittable intervals conditions. For the purpose of this discussion, let C be any
collection of Θk,ε(n) disjoint (12 . . . k)-copies in f . We use the notation from Section 1.2.

Growing suffixes: there exist Ωk,ε(n) values of ℓ ∈ [n] where τC(ℓ) ≥ Θk(ε) and
τC(ℓ, w) ≪ τC(ℓ) for every w ∈ [log n]. In words, many ℓ ∈ [n] are such that the sum of
local densities, τC(ℓ), of (12 . . . k)-patterns in intervals of growing widths is not too small,
and furthermore, the densities are not concentrated on any small set of widths w. Any
such ℓ is said to be the starting point of a growing suffix.
Splittable intervals (non-robust): there exist c ∈ [k − 1] and a collection of pairwise-
disjoint intervals I1, . . . , Is ⊂ [n] with

∑s
i=1 |Ii| = Θk,ε(n), so that each Ii contains a

dense collection of disjoint (12 . . . k)-patterns of a particular structure. Specifically, each
such interval Ii can be partitioned into three disjoint intervals Li, Mi, Ri (in this order),
each of size Ωk(|Ii|), where Ii fully contains Ωk,ε(|Ii|) disjoint copies of (12 . . . k)-patterns,
in which the first c entries lie in Li, the last k − c entries lie in Ri (none of these entries
lies in Mi), and every such c entry lies below every c + 1 entry.

Informally, the non-robust structural dichotomy from [7] asserts that any f that is ε-
far from (12 . . . k)-free either satisfies the growing suffixes condition, or the non-robust
splittable intervals condition (or both). These two notions are formally defined next; the
precise definition for growing suffixes is slightly more complicated than described above (but
understanding it is not essential for this work, as the growing suffixes procedure from [7]
will eventually only be used as a black box). For what follows, for an index ℓ ∈ [n] define
ηℓ = ⌈log2(n − ℓ)⌉, and for any t ∈ [ηℓ] set St(ℓ) = [a + 2t−1, a + 2t) ∩ [n]. Note that the
intervals S1, . . . , Sηℓ

are a partition of (ℓ, n] into intervals of geometrically increasing length
(except for maybe the last one). Finally, the tuple S(ℓ) = (St(ℓ))t∈[ηℓ] is called the growing
suffix starting at ℓ.

▶ Definition 5 (Growing suffixes (see [7], Definition 2.4)). Let α, β ∈ [0, 1]. We say that an
index ℓ ∈ [n] starts an (α, β)-growing suffix if, when considering the collection of intervals
S(ℓ) = {St(ℓ) : t ∈ [ηℓ]}, for each t ∈ [ηℓ] there is a subset Dt(ℓ) ⊆ St(ℓ) of indices such that
the following properties hold.
1. We have |Dt(ℓ)|/|St(ℓ)| ≤ α for all t ∈ [ηℓ], and

∑ηℓ

t=1 |Dt(ℓ)|/|St(ℓ)| ≥ β.
2. For every t, t′ ∈ [ηa] where t < t′, if a ∈ Dt(ℓ) and a′ ∈ Dt′(ℓ), then f(a) < f(a′).

The second definition, also from [7], describes the (non-robust) splittable intervals setting.
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▶ Definition 6 (Splittable intervals (see [7], Definition 2.5)). Let α, β ∈ (0, 1] and c ∈ [k − 1].
Let I ⊆ [n] be an interval, let T ⊆ Ik be a set of disjoint, length-k monotone subsequences of
f lying in I, and define

T (L) = {(i1, . . . , ic) ∈ Ic : (i1, . . . , ic) is a prefix of a k-tuple in T}, and

T (R) = {(j1, . . . , jk−c) ∈ Ik−c : (j1, . . . , jk−c) is a suffix of a k-tuple in T}.

We say that the pair (I, T ) is (c, α, β)-splittable if |T |/|I| ≥ β; f(ic) < f(j1) for every
(i1, . . . , ic) ∈ T (L) and (j1, . . . , jk−c) ∈ T (R); and there is a partition of I into three consecutive
intervals L, M, R ⊆ I (that appear in this order, from left to right) of size at least α|I|,
satisfying T (L) ⊆ Lc and T (R) ⊆ Rk−c.

A collection of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts) is called a (c, α, β)-
splittable collection of T if each (Ij , Tj) is (c, α, β)-splittable and the sets (Tj : j ∈ [s])
partition T .

The following theorem presents the growing suffixes versus (non-robust) splittable intervals
dichotomy, which is among the main structural results of [7]. We remark that in their paper,
the theorem is stated with respect to two parameters, k, k0; for our purpose it suffices to set
k0 = k. Also, here we allow f to take the value ∗, which is not the case in [7]. Nevertheless,
as their proof takes into account only the elements of a given family T 0 of disjoint length-k
increasing subsequences, which in particular are non-∗ elements, the same proof works here.

▶ Theorem 7 ([7], Theorem 2.2). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let I ⊆ [n] be an
interval. Let f : I → R ∪ {∗} be a function and let T 0 ⊆ Ik be a set of at least ε|I| disjoint
monotone subsequences of f of length k. Then there exist α ∈ (0, 1) and p > 0 satisfying
α ≥ Ω(ε/k5) and p ≤ poly(k log(1/ε)) such that at least one of the following conditions holds.
1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α, Ckα)-growing

suffix, satisfying α|H| ≥ (ε/p)n.
2. Splittable intervals (non-robust): There exist a positive integer c < k, a set T of

disjoint length-k monotone subsequences satisfying E(T ) ⊆ E(T 0), and a (c, 1/(6k), α)-
splittable collection of T consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts),
such that α

∑s
h=1 |Ih| ≥ |T 0|/p.

2.2 Robustifying the Structural Result
We are now ready to establish the robust structural foundations – specifically, a growing
suffixes versus robust splittable intervals dichotomy – lying at the heart of our adaptive
algorithm. The next lemma will eventually imply that the splittable intervals condition can
be robustified by merely throwing away a subset of “bad” splittable intervals.

▶ Lemma 8. Let α ∈ (0, 1) and let I ⊂ N be an interval. Suppose that I1, . . . , Is ⊂ I are
disjoint intervals such that

∑s
h=1 |Ih| ≥ α|I|. Then there exists a set G ⊂ [s] such that∑

h∈G |Ih| ≥ (α/4)|I|, and for every interval J ⊂ I that contains an interval Ih with h ∈ G,∑
h∈[s] : Ih⊂J |Ih| ≥ (α/4)|J |.

The full proof appears in the Appendix of the full verion. The idea is to consider a
minimal subset J of the collection of all “problematic” intervals J which do not satisfy
the conditions of the lemma. For each J ∈ J , less than an α/4-fraction of J is covered
by intervals from I = {I1, . . . , Is}. Conversely, as we show, the minimality of J entails
that any element in I is covered by at most three intervals from J . The combination of
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these conditions implies that, if we remove from I all intervals Ij contained in some interval
J ∈ J , then at the end of the process

∑
Ij∈I |Ij | = Ω(α|I|), and no “problematic” choices of

J survive. Thus, the set of surviving intervals from I satisfy the conditions of the lemma.
The robust version of the structural dichotomy is stated below; for the proof, combining

the basic structural dichotomy with the last lemma, see the appendices of the full-version.

▶ Theorem 9 (Robust structural theorem). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let
I ⊆ [n] be an interval. Let f : I → R ∪ {∗} be an array and let T 0 ⊆ Ik be a set of at least
ε|I| disjoint length-k monotone subsequences of f . Then there exist α ∈ (0, 1) and p > 0 with
α ≥ Ω(ε/k5) and p ≤ poly(k log(1/ε)) such that at least one of the following holds.
1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α, Ckα)-growing

suffix, satisfying α|H| ≥ (ε/p)n.
2. Robust splittable intervals: There exist an integer c with 1 ≤ c < k, a set T , with

E(T ) ⊆ E(T 0), of disjoint length-k monotone subsequences, and a (c, 1/(6k), α)-splittable
collection of T , consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α
s∑

h=1
|Ih| ≥ ε

p
· |I|.

Moreover, if J ⊂ I is an interval where J ⊃ Ih for some h ∈ [s], then J contains at least
(ε/p)|J | disjoint (12 . . . k)-patterns from T 0.

3 The Algorithm

In this section we prove the existence of a randomized algorithm, Find-Monotonek(f, ε, δ),
that receives as input a function f : I → R∪{∗} (where I ⊂ N is an interval), and parameters
ε, δ ∈ (0, 1), and satisfies the following: if f contains ε|I| disjoint (12 . . . k)-patterns, then
the algorithm outputs such a pattern with probability at least 1 − δ. The running time
is Ok,ε(log n). The algorithm is described in Figure 5 below. It uses three subroutines:
Sample-Suffix, Find-Within-Interval, and Find-Good-Split, the first of which is given
in [7], and the latter two are described below, in Figures 3 and 4. The majority of the section
is devoted to the proof that Find-Monotone indeed outputs a (12 . . . k)-pattern with high
probability as claimed. Specifically, we shall prove the following theorem.

▶ Theorem 10. Let k ∈ N. The randomized algorithm Find-Monotonek(f, ε, δ), described in
Figure 5, satisfies the following. Given a function f : I → R∪{∗} and parameters ε, δ ∈ (0, 1),
if f contains at least ε|I| disjoint (12 . . . k)-patterns, then Find-Monotonek(f, ε, δ) outputs a
(12 . . . k)-pattern of f with probability at least 1 − δ.

Our proof proceeds by induction on k. It relies on Lemmas 12, 13, 14, the former is taken
from [7] whereas the proofs of the latter two assume that Theorem 10 holds for smaller k.
We first state and prove these lemmas, and then we prove Theorem 10.

To complete the picture, in the following lemma we provide an upper bound on the query
complexity and running time of Find-Monotone. For the proof, see the appendices of the
full version.

▶ Lemma 11. Let f : I → R ∪ {∗}, where I is an interval of length at most n. The query
complexity and running time of Find-Monotonek(f, ε, δ) are at most(

kk · (log(1/ε))k · 1
ε

· log(1/δ)
)O(k)

· log n.
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3.1 The Sample-Suffix Sub-Routine
We restate Lemma 3.1 from [7] which gives the Sample-Suffixk subroutine, with a few
adaptations to fit our needs.

▶ Lemma 12 ([7]). Fix k ∈ N and let C > 0 be a large enough constant. There exists a
non-adaptive and randomized algorithm, Sample-Suffixk(f, ε, δ) which takes three inputs:
query access to a function f : I → R∪{∗}, where I ⊂ N is an interval, a parameter ε ∈ (0, 1),
and an error probability bound δ ∈ (0, 1). Suppose there exists α ∈ (0, 1), and a set H ⊆ I of
(α, Ckα)-growing suffixes of f satisfying α|H| ≥ ε|I|. Then, Sample-Suffixk(f, ε, δ) finds a
length-k monotone subsequence of f with probability at least 1 − δ. The query complexity of
Sample-Suffixk(f, ε, δ) is at most log(1/δ) · polylog(1/ε) · 1

ε · log n.

For additional technical remarks about Lemma 12 and Sample-Suffix, see the appendices
of the full versions.

3.2 Handling Overshooting: The Find-Within-Interval Sub-Routine
In this section, we describe the Find-Within-Interval subroutine, addressing the over-
shooting case as explained in Section 1.2. As the algorithm may appear unintuitive, let us

Subroutine Find-Within-Intervalk(f, ε, δ, x, y, J ).
Input: Query access to a function f : I → R∪ {∗}, parameters ε, δ ∈ (0, 1), two inputs
x, y ∈ I where x < y and f(x) < f(y), and J = (J1, . . . , Jk−2) which is a collection of
disjoint intervals appearing in order inside [x, y].
Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.
1. For every κ ∈ [k − 2], let fκ, f ′

κ : Jκ → R ∪ {∗} be given by:

fκ(i) =
{

f(i) f(i) < f(y)
∗ o.w. and f ′

κ(i) =
{

f(i) f(i) ≥ f(y)
∗ o.w. (1)

2. Call Find-Monotoneκ+1(fκ, ε/2, δ/(2k)) for every κ ∈ [k − 2].
3. Call Find-Monotonek−κ(f ′

κ, ε/2, δ/(2k)) for every κ ∈ [k − 2].
4. Consider the set of all indices that are output in Lines 2 and 3, together with x

and y. If S contains a length-k increasing subsequence among these indices, output
it. Otherwise, output fail.

Figure 3 Description of the Find-Within-Interval subroutine.

remind the reader of the setup in which this subroutine is relevant (see also Section 1.2). By
Theorem 9, either the growing suffixes condition or the splittable intervals condition hold.
The former case is handled by Lemma 12, so we assume that the latter holds. Now assume
that we sampled an element x which is the first element of a length-c increasing subsequence
from a set Li as described in Definition 6. We then sample, uniformly at random, elements
y from [x, x + 2t]. The splittable intervals condition implies that we will find, with high
probability, an element y which is the last element of a length-(k − c) increasing subsequence
from Ri. In particular, f(y) > f(x). However, even if we did indeed sample such y, we
may have sampled many other values of y′ with f(y′) > f(x), and we do not know of a
way of determining which of these values is the “correct” one. Instead, we take y0 to be the
largest sampled y′ such that f(y′) > f(x). The case where y0 is close to y is taken care of
by Lemma 13, so we assume that y0 is much larger than y.
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We now have elements x and y0, and all that we know is that they contain a large portion
of an interval Ii from the splittable intervals condition. It is not hard to see (this is shown in
the proof of Theorem 10) that [x, y0] can be partitioned into k − 2 intervals J1, . . . , Jk−2,
each of which contains many disjoint length-k increasing subsequences. To continue, out
only hope is use the induction hypothesis to find shorter increasing subsequences in the
intervals. For example, if there are many disjoint length-(k − 1) increasing subsequences in
J1 that lie above x, then one such subsequence is likely to be detected by a recursive call
to the main algorithm, and together with x it will form a length-k increasing subsequence.
If there are few such length-(k − 1) subsequences, this means that there are many disjoint
length-2 increasing subsequences in J1 that lie below x (because for every length-k increasing
subsequence, either its (k − 1)-suffix lies above x, or its 2-prefix lies above x). We can
then use a recursive call to detect such a sequence, and hope to complete it to a length-k
subsequence using a length-(k − 2) subsequnece from J2 that lies above x. Continuing with
this logic, it follows that with high probability we can find an increasing subsequence of
length k using x and J1, Ji and Ji+1 for some i, or Jk−2 and y0.

▶ Lemma 13. Consider the randomized algorithm, Find-Within-Intervalk(f, ε, δ, x, y, J ),
described in Figure 3, which takes six inputs:

Query access to a function f : I → R ∪ {∗},
Two parameters ε, δ ∈ (0, 1),
Two points x, y ∈ I where x < y and f(x) < f(y), and
A collection J = (J1, . . . , Jk−2) of k − 2 disjoint intervals that appear in order (i.e., Jκ

comes before Jκ+1) within the interval [x, y],
and outputs either a length-k increasing subsequence of f , or fail.

Suppose that for every κ ∈ [k−2], the function f |Jκ
: Jκ → R∪{∗}, contains ε|Jκ| disjoint

(12 . . . k)-patterns. Then, assuming that Theorem 10 holds for every k′ with 1 ≤ k′ < k, the
procedure Find-Within-Intervalk(f, ε, δ, x, y, J ) outputs a length-k monotone subsequence
of f with probability at least 1 − δ.

The full proof appears in the appendices of the full version.

3.3 Handling the Fitting Case: The Find-Good-Split Sub-Routine
In this section, we describe the Find-Good-Split subroutine, which corresponds to the
fitting case from Section 1.2. The proof of the lemma below appears in the appendices of the
full version.

▶ Lemma 14. Consider the randomized algorithm Find-Good-Splitk(f, ε, δ, c, ξ), described
in Figure 4, which takes as input five parameters: (i) query access to a function f : I → R∪{∗};
(ii) two parameters ε, δ ∈ (0, 1); (iii) an integer c ∈ [k − 1]; and (iv) a parameter ξ ∈ (0, 1];
and outputs either a length-k increasing subsequence or fail.

Suppose that there exists an interval-tuple pair (I ′, T ) which is (c, 1/(6k), ε)-splittable and
|I ′|/|I| ≥ ξ. Then, the algorithms Find-Good-Splitk(f, ε, δ, c, ξ) finds a (12 . . . k)-pattern
of f with probability 1 − δ.

3.4 The Main Algorithm
Consider the description of the main algorithm in Figure 5. The proof uses Lemma 12,
Lemma 13, and Lemma 14.
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Subroutine Find-Good-Splitk(f, ε, δ, c, ξ).
Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1), and
c ∈ [k − 1]. We let c1 > 1 be a large enough (absolute) constant.
Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.
1. Repeat the following procedure t = c1k/(εξ2) · log(1/δ) times:

a. Sample w, z ∼ I, and consider the functions fz,w : I ∩ (−∞, z) → R ∪ {∗} and
f ′

z,w : I ∩ [z, ∞) → R ∪ {∗} given by

fz,w(i) =
{

f(i) f(i) < f(w)
∗ o.w. and f ′

z,w(i) =
{

f(i) f(i) ≥ f(w)
∗ o.w. . (2)

b. Run Find-Monotonec(fz,w, εξ/3, δ/3) and Find-Monotonek−c(f ′
z,w, εξ/3, δ/3).

2. If both runs of Line 1b are successful for some iteration and some w, z and c,
then we output the combination of their outputs which forms a length-k increasing
subsequence of f ; otherwise, output fail.

Figure 4 Description of the Find-Good-Split subroutine.

Proof of Theorem 10. The proof is by induction on k. For the base case of k = 1, recall
that f has at least ε|I| non-∗ values. Thus, with probability at least 1 − δ, a non-∗ value is
observed after sampling x ∼ I at least (1/ε) · log(1/δ) times. It follows that with probability
at least 1 − δ, Line 2a of our main algorithm, given in Figure 5, samples x ̸= ∗ in one of its
iterations. We next proceed to the inductive Step: namely, we prove Theorem 10 for k ≥ 2,
under the assumption that it holds for every k′ with 1 ≤ k′ < k.

Let p = P (k log(1/ε)) (recall that P (·) is a polynomial of sufficiently large (constant)
degree). Apply Theorem 9 to f .

Suppose, first, that (1) of Theorem 9 holds. So, there exists a set H ⊂ [n] of indices that
start an (α, Ckα)-growing suffix, with α|H| ≥ (ε/p)n, for some α ∈ (0, 1). By Lemma 12,
the call for Sample-Suffixk(f, ε/p, δ) in Line 1 outputs a length-k monotone subsequence
of f with probability at least 1 − δ.

Now suppose that (2) of Theorem 9 holds, and let (I1, T1), . . . , (Is, Ts) be a (c, 1/(6k), α)-
splittable collection for some α ≥ Ω(ε/k5) and c ∈ [k − 1], satisfying the robust splittable
intervals condition and, moreover, that any J ⊂ I with J ⊃ Ih for some h ∈ [s] contains
(ε/p)|J | disjoint (12 . . . k)-patterns. Let Event be the event that, for a particular iteration of
Lines 2a and 2b, x is the 1-entry of some k-tuple from Th, for some h ∈ [s], and yt is the
(c + 1)-entry of some (possibly other) k-tuple in Th, where t is such that |Ih| ≤ 2t < 2|Ih|.

▷ Claim 15. Pr[Event] ≥ εα/(2p).

Proof. For each h ∈ [s], let Ah and Bh be the collections of 1- and (c + 1)-entries of patterns
in Th. Then

s∑
h=1

|Ah| =
s∑

h=1
|Th| ≥ α

s∑
h=1

|Ih| ≥ ε

p
· |I|.

The first inequality follows from the assumption that (Ih, Th) is (c, 1/(6k), α)-splittable, and
the second inequality follows from the assumption that the robust splittable condition of
Theorem 9 holds.
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Subroutine Find-Monotonek(f, ε, δ).
Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1). We let
c1, c2, c3 > 0 be large enough constants, and let p = P (k log(1/ε)), where P : R→ R

is a polynomial of large enough (constant) degree.
Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.
1. Run Sample-Suffixk(f, ε/p, δ).
2. Repeat the following for c1 log(1/δ) · p · k5/ε2 many iterations:

a. Sample x ∼ I uniformly at random. If f(x) = ∗, proceed to the next iteration.
Otherwise, if k = 1 output x and proceed to Step 3, and if k ≥ 2 proceed to the
next step.

b. For each t ∈ [log n], sample yt ∼ [x + 2t/(12k), x + 2t] uniformly at random. If
there exists at least one t where f(yt) > f(x), set

y = max {yt : t ∈ [log n] and f(yt) > f(x)} , (3)

let t∗ ∈ [log n] be the index for which yt∗ = y, and continue to the next line.
Otherwise, i.e. if f(yt) ̸> f(x) for every t, continue to the next iteration.

c. If k = 2, output (x, y) and proceed to Step 3. If k > 2, continue to the next line.
d. Here k ≥ 3. Set ℓ = 4p/ε and perform the following.

i. Consider the collection J of k − 2 intervals J1, . . . , Jk−2 appearing in order
within [x, y], given by setting, for every i ∈ [k − 2],

Ji =
[
x + 2t∗

12k
· ℓ−(k−1−i), x + 2t∗

12k
· ℓ−(k−2−i)

)
, (4)

and run Find-Within-Intervalk(f, ε/2p, δ/2, x, y, J ).
ii. For each t′ ∈ [t∗ − 3k log ℓ, t∗] do the following.

Consider the interval Jt′ = [x − 2t′
, x + 2t′ ], and the restricted function

gt′ : Jt′ → R ∪ {∗} given by gt′ = f |Jt′ . For every c0 ∈ [k − 1], run
Find-Good-Splitk(gt′ , ε/(c2k5), δ/2, c0, 1/4).

3. If a length-k monotone subsequence of f is found, output it. Otherwise, output fail.

Figure 5 Description of the Find-Monotone subroutine.

As a result, the probability over the draw of x ∼ I in Line 2a that x ∈ Ah is at least
ε/p. Fix such an x, and consider t ∈ [log n] for which |Ih| ≤ 2t < 2|Ih|. Notice that
Bh ⊂ [x + 2t/(12k), x + 2t] since 2t−1 ≤ |Ih| < 2t, and that the distance between any
index of Ah and Bh is at least |Ih|/(6k) ≥ 2t/(12k) since (Ih, Th) is (c, 1/(6k), α)-splittable.
Therefore, the probability over the draw of yt ∼ [x + 2t/(12k), x + 2t] that yt ∈ Bh is at
least |Bh|/2t ≥ |Th|/(2|Ih|) ≥ α/2. ◁

By the previous claim, since we have c1 · log(1/δ) · p · k5/ε2 iterations of Lines 2a and
2b, with probability at least 1 − δ/2, Event holds in some iteration (using the lower bound
α ≥ Ω(ε/k5) and the choice of c1 as a large constant).
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Consider the first execution of Line 2a and Line 2b where Event holds (assuming such
an execution exists). Let h ∈ [s] and t ∈ [log n] be the corresponding parameters, i.e., h

and t are set so x is the first index of a k-tuple in Th, yt is the (c + 1)-th index in another
k-tuple in Th, and |Ih| ≤ 2t < 2|Ih|. We consider this iteration of Line 2, and assume that
Event holds with these parameters for the rest of the proof. Notice that y, as defined in (3),
satisfies y ≥ yt (as f(y) > f(x)) and hence t∗ ≥ t.

Note that if k = 2, the pair (x, y), which is a (12)-pattern in f , is output in Line 2c, so
the proof is complete in this case. From now on, we assume that k ≥ 3. We break up the
analysis into two cases: t∗ ≥ t + 3k log ℓ and t∗ < t + 3k log ℓ.

Suppose t∗ ≥ t + 3k log ℓ. We now observe a few facts about the collection J specified in
(4). First, notice that J1, . . . , Jk−2 appear in order from left-to-right, and they lie in [x, y] (as
y = yt∗ ∈ [x + 2t∗

/(12k), 2t∗ ]). Second, in the next claim we show that for every i ∈ [k − 2],
the interval Ji contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.

▷ Claim 16. Ji contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.

Proof. Let J ′
i be the interval given by J ′

i = Ih ∪
[
x, x + 2t∗

12k · ℓ−(k−2−i)
]

. Observe that

|J ′
i \ Ji| ≤ 2t + 2t∗

12k
· ℓ−(k−1−i) ≤ 2t∗

6k
· ℓ−(k−1−i) = 2

ℓ
· 2t∗

12k
· ℓ−(k−2−i) ≥ 2

ℓ
· |J ′

i | = ε

2p
· |J ′

i |,

where for the second inequality we used the bound t∗ − t ≥ 3k log ℓ ≥ log(12) + log k +
(k − 2) log ℓ, and that ℓ = 4p/ε. By Theorem 9, J ′

i contains at least (ε/p)|J ′
i | disjoint

(12 . . . k)-patterns in f . Hence, the number of disjoint (12 . . . k)-patterns in Ji is at least:
ε

p
· |J ′

i | − |J ′
i \ Ji| ≥ ε

2p
· |J ′

i | ≥ ε

2p
· |Ji|,

as required. ◁

By Lemma 13, Line 2(d)i outputs a (12 . . . k)-pattern in f with probability at least 1−δ/2.
By a union bound, we obtain the desired result.

Suppose, on the other hand, that t∗ ≤ t + 3k log ℓ. In this case, as 2t−1 ≤ |Ih| ≤ 2t∗ (by
choice of t), for one of the values of t′ considered in Line 2(d)ii we have 2t′−1 ≤ |Ih| < 2t′ ; fix
this t′. The interval Jt′ , defined in Line 2(d)ii, hence satisfies |Ih|/|Jt′ | ≥ 1/4. As a result, and
since Ih ⊂ Jt′ (because t ≤ t∗), the function g : J → R ∪ {∗} contains an interval-tuple pair
(Ih, Th) which is (c, 1/(6k), α)-splittable. By Lemma 14, once Line 2(d)ii considers c0 = c,
the sub-routine Find-Good-Splitk(g, ε/(c2k5), δ/2, c, 1/4) will output a (12 . . . k)-pattern
of gt′ (which is also a (12 . . . k)-pattern of f) with probability at least 1 − δ/2. Hence, we
obtain the result by a union bound. ◀
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Abstract
We show that determining if an n-vertex graph has twin-width at most 4 is NP-complete, and
requires time 2Ω(n/ log n) unless the Exponential-Time Hypothesis fails. Along the way, we give
an elementary proof that n-vertex graphs subdivided at least 2 log n times have twin-width at
most 4. We also show how to encode trigraphs H (2-edge colored graphs involved in the definition
of twin-width) into graphs G, in the sense that every d-sequence (sequence of vertex contractions
witnessing that the twin-width is at most d) of G inevitably creates H as an induced subtrigraph,
whereas there exists a partial d-sequence that actually goes from G to H. We believe that these
facts and their proofs can be of independent interest.
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1 Introduction

A trigraph is a graph with some edges colored black, and some colored red. A (vertex)
contraction consists of merging two (non-necessarily adjacent) vertices, say, u, v into a vertex w,
and keeping every edge wz black if and only if uz and vz were previously black edges.
The other edges incident to w become red (if not already), and the rest of the trigraph
stays the same. A contraction sequence of an n-vertex graph G is a sequence of trigraphs
G = Gn, . . . , G1 = K1 such that Gi is obtained from Gi+1 by performing one contraction.
A d-sequence is a contraction sequence where all the trigraphs have red degree at most d.
The twin-width of G, denoted by tww(G), is then the minimum integer d such that G admits
a d-sequence. See Figure 1 for an example of a graph admitting a 2-sequence. The red
graph of a trigraph is obtained by simply deleting its black edges. A partial d-sequence is
similar to a d-sequence but ends on any trigraph Gi, instead of on the 1-vertex (tri)graph G1.
Twin-width can be naturally extended to matrices over a finite alphabet (in an unordered [6],
or an ordered setting [4]), and hence to any binary structure.

Surprisingly many classes turn out to be of bounded twin-width. Such is the case of graphs
with bounded clique-width, H-minor free graphs for any fixed H, posets with antichains of
bounded size, strict subclasses of permutation graphs, map graphs, bounded-degree string
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Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

graphs [6], as well as Ω(log n)-subdivisions of n-vertex graphs, and some classes of cubic
expanders [3]. One of the main algorithmic interests with twin-width is that first-order
(FO) model checking, that is, deciding if a first-order sentence φ holds in a graph G, can be
decided in fixed-parameter time (FPT) f(|φ|, d) · |V (G)| for some computable function f ,
when given a d-sequence of G [6]. As for most classes known to have bounded twin-width,
one can compute O(1)-sequences in polynomial time for members of the class, the latter
result unifies and extends several known results [14, 17, 18, 16, 21] for hereditary (but not
necessarily monotone) classes.

For monotone (i.e., subgraph-closed) classes, the FPT algorithm of Grohe, Kreutzer,
and Siebertz [20] for FO model checking on nowhere dense classes, is complemented by
W[1]-hardness on classes that are somewhere dense (i.e., not nowhere dense) [11], and even
AW[∗]-hardness on classes that are effectively somewhere dense [9]. The latter results mean
that, for monotone classes, FO model checking is unlikely to be FPT beyond nowhere dense
classes.

The missing piece for an FO model-checking algorithm in FPT time on any class of
bounded twin-width is a polynomial-time algorithm and a computable function f , that given
a constant integer bound c and a graph G, either finds an f(c)-sequence for G, or correctly
reports that the twin-width of G is greater than c. The running time of the algorithm
could be ng(c), for some function g. However to get an FPT algorithm in the combined
parameter size of the sentence + bound on the twin-width, one would further require that
the approximation algorithm takes FPT time in c (now seen as a parameter), i.e., g(c)nO(1).
We know such an algorithm for instance on ordered graphs (more generally, ordered binary
structures) [4], graphs of bounded clique-width, proper minor-closed classes [6], but not in
general graphs.

On the other hand, prior to this paper, no algorithmic lower bound was known for
computing the twin-width. Our main result rules out an (exact) XP algorithm to decide
tww(G) ⩽ k, that is, an algorithm running in time nf(k) for some computable function f .
Indeed we show that deciding if the twin-width of a graph is at most 4 is intractable. We
refer the reader to Section 2 for some context on the Exponential-Time Hypothesis (ETH),
which implies that n-variable 3-SAT cannot be solved in time 2o(n).

▶ Theorem 1. Deciding if a graph has twin-width at most 4 is NP-complete. Furthermore,
no algorithm running in time 2o(n/ log n) can decide if an n-vertex graph has twin-width at
most 4, unless the ETH fails.

As far as approximation algorithms are concerned, our result only rules out a ratio
better than 5/4 for determining the twin-width. This still leaves plenty of room for an
f(OPT)-approximation, which would be good enough for most of the (theoretical) algorithmic
applications. Note that such algorithms exist for treewidth in polytime [12] and FPT time [27],
for pathwidth [12], and for clique-width via rank-width [30].

Is Theorem 1 surprising? On the one hand, it had to be expected that deciding, given
a graph G and an integer k, whether tww(G) ⩽ k would be NP-complete. This is the
case for example of treewidth [1], pathwidth [29, 26, 28], clique-width [13], rank-width [23],
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mim-width [32], and bandwidth [19]. On the other hand, the parameterized complexity
of these width parameters is more diverse and harder to predict. Famously, Bodlaender’s
algorithm is a linear FPT algorithm to exactly compute treewidth [2] (and a non-uniform
FPT algorithm came from the Graph Minor series [31]). In contrast, while there is an XP
algorithm to compute bandwidth [33], an FPT algorithm is highly unlikely [10]. It is a
long-standing open whether an FPT or a mere XP algorithm exist for computing clique-width
exactly, or even simply if one can recognize graphs of clique-width at most 4 in polynomial
time (deciding clique-width at most 3 is indeed tractable [7]).

Theorem 1 almost completely resolves the parameterized complexity of exactly computing
twin-width on general graphs. Two questions remain: can graphs of twin-width at most 2,
respectively at most 3, be recognized in polynomial time. Graphs of twin-width 0 are
cographs, which can be recognized in linear time [22], while it was recently shown that
graphs of twin-width at most 1 can be recognized in polynomial time [5]. In the course of
establishing Theorem 1 we show and generalize the following, where an (⩾ s)-subdivision of
a graph is obtained by subdividing each of its edges at least s times.

▶ Theorem 2. Any (⩾ 2 log n)-subdivision of an n-vertex graph has twin-width at most 4.

That those graphs have bounded twin-width was known [3], but not with the explicit bound
of 4. Another family of graphs with twin-width at most 4 is the set of grids, walls, their
subgraphs, and subdivisions. Even if there is no proof of that fact, sufficiently large grids,
walls, or their subdivisions likely have twin-width at least 4; it is actually surprising that the
6 × 8 grid still has twin-width 3 [34]. We also believe that long subdivisions of “sufficiently
complicated” graphs have twin-width at least 4. That would make graphs of twin-width at
most 3 considerably simpler than those of twin-width at most 4, especially among sparse
graphs.

Contrary to the hardness proof for treewidth [1], which involves some structural charac-
terizations by chordal completions, and the intermediate problems Minimum Cut Linear
Arrangement, Max Cut, and Max 2-SAT [19], our reduction is “direct” from 3-SAT.
This makes the proven hardness of twin-width more robust, and easier to extend to restricted
classes of graphs, especially sparse ones. Theorem 1 holds for bounded-degree input graphs.
For instance, performing our reduction from Planar 3-SAT produces subgraphs of constant
powers of the planar grid (while admittedly weakening the ETH lower bound from 2Ω(n/ log n)

to 2Ω(
√

n/ log n)). Hence, while the complexity status of computing treewidth on planar
graphs is a famous long-standing open question, one can probably extend the NP-hardness
of twin-width at most 4 to planar graphs, by tuning and/or replacing the few non-planar
gadgets of our reduction.

Let us point out that, in contrast to subset problems, there is no 2O(n)-time algorithm
known to compute twin-width. The exhaustive search takes time n2n+O(1) by considering all
sequences of n − 1 pairs of vertices. We leave as an open question whether the ETH lower
bound of computing twin-width can be brought from 2Ω(n/ log n) to 2Ω(n), or even 2Ω(n log n).
The latter lower bound is known to hold for Subgraph Isomorphism [8] (precisely, given a
graph H and an n-vertex graph G, deciding if H is isomorphic to a subgraph of G requires
time 2Ω(n log n), unless the ETH fails), or computing the Hadwiger number [15] (i.e., the size
of the largest clique minor).

1.1 Outline of the proof of Theorem 1
We propose a quasilinear reduction from 3-SAT. Given an n-variable instance I of 3-SAT,
we shall construct an O(n log n)-vertex graph G = G(I) which has twin-width at most 4 if
and only if I is satisfiable.

ICALP 2022
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Half of our task is to ensure that no 4-sequence will exist if I is unsatisfiable. This is
challenging since many contraction strategies are to be considered and addressed. We make
this task more tractable by attaching fence gadgets to some chosen vertex subsets. The effect
of the fence enclosing S is that no contraction can involve vertices in S with vertices outside
of S, while S is not contracted into a single vertex. The maximal or outermost fences (we
may nest two or more fence gadgets) partition the rest of the vertices. This significantly
tames the potential 4-sequences of G.

Our basic building block, the vertical set, consists of a pair of vertices (vertical pair)
enclosed by a fence. It can be thought of as a bit set to 0 as long as the pair is not contracted,
and to 1 when the pair gets contracted. It is easy to assemble vertical sets as prescribed by
an auxiliary digraph D (of maximum degree 3), in such a way that, to contract (by a partial
4-sequence) the pair of a vertical set V , one first has to contract all the vertical sets that can
reach V in D. This allows to propagate and duplicate a bit in a so-called wire (corresponding
to an out-tree in D), and to perform the logical AND of two bits.

The bit propagation originates from a variable gadget (we naturally have one per variable
appearing in I) that offers two alternatives. One can contract the “top half” of the gadget of
variable xi, which then lets one contract the vertical sets in the wire of literal xi, or one can
contract instead the “bottom half” of the gadget, as well as the vertical sets in the wire of
literal ¬xi. Concretely, these two contraction schemes represent the two possible assignments
for variable xi. A special “lock” on the variable gadget (called half-guards) prevents its
complete contraction, and in particular, performing contractions in both the wires of a literal
and its negation.

The leaves of the literal wires serve as inputs for 3-clause gadgets. One can contract the
output (also a vertical set) of a clause gadget if and only if one of its input is previously
contracted. We then progressively make the AND of the clauses via a “path” of binary AND
gadgets fed by the clause outputs. We eventually get a vertical set, called global output,
which can be contracted by a partial 4-sequence only if I is satisfiable. Indeed at this point,
the variable gadgets are still locked so at most one of their literals can be propagated. This
ticks one of our objective off. We should now ensure that a 4-sequence is possible from there,
when I is satisfiable.

For that purpose, we add a wire from the global output back to the half-guards (or locks)
of the variable gadgets. One can contract the vertical sets of that wire, and in particular the
half-guards. Once the variable gadgets are “unlocked,” they can be fully contracted. As a
consequence, one can next contract the wires of literals set to false, and all the remaining
vertical sets involved in clause gadgets.

At this point, the current trigraph H roughly has one vertex per outermost fence with
red edges linking two adjacent gadgets (and no black edge). We will guarantee that the (red)
degree of H is at most 4, its number of vertices of degree at least 3 is at most βn, for some
constant β. Besides we will separate gadgets by degree-2 wires of length 2 log(βn) beforehand.
This is crucial so that the red graph of H is a (2 log n′)-subdivision of an n′-vertex graph.
We indeed show that such trigraphs have twin-width at most 4. A complicated proof in [3]
shows that Θ(log n′)-subdivisions of n′-vertex graphs have bounded twin-width. Here we
give an elementary proof of a similar fact with an explicit upper bound of 4.

This finishes to describe our overall plan for the reduction and its correctness. It happens
that fence gadgets are easier to build as trigraphs, while the rest of the gadgetry can be
directly encoded by graphs. We thus show how to encode trigraphs by graphs, as follows.
For any trigraph J whose red graph has degree at most d, and component size at most h,
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there is a graph G on at most f(d, h) · |V (J)| vertices such that J has twin-width at most 2d

if and only if G has twin-width at most 2d. This uses some local replacements and confluence
properties of certain partial contraction sequences.

The proofs of the theorems and lemmas marked with a ⋆ can be found in the full version.

2 Preliminaries

For i and j two integers, we denote by [i, j] the set of integers that are at least i and at
most j. For every integer i, [i] is a shorthand for [1, i]. We use the standard graph-theoretic
notations: V (G) denotes the vertex set of a graph G, E(G) denotes its edge set, G[S] denotes
the subgraph of G induced by S, etc. An (⩾ s)-subdivision (resp. s-subdivision) of a graph
G is obtained by subdividing every edge of G at least s times (resp. exactly s times).

2.1 Definitions and notations related to twin-width
A trigraph G has vertex set V (G), black edge set E(G), red edge set R(G). Its red graph
(V (G), R(G)) may be denoted R(G). The red degree of a trigraph is the degree of its red
graph. We say that u ∈ V (G) is a black neighbor (respectively red neighbor) of v ∈ V (G)
when (u, v) ∈ E(G) (respectively (u, v) ∈ R(G)). A trigraph G′ is an induced subtrigraph of
trigraph G if V (G′) ⊆ V (G), E(G′) = E(G) ∩

(
V (G′)

2
)
, and R(G′) = R(G) ∩

(
V (G′)

2
)
. Then

we say that G is a supertrigraph of G′, and we may also denote G′ by G[V (G′)]. A (partial)
d-sequence of a (tri)graph G is a (partial) contraction sequence starting at G and admitting
trigraphs of red degree at most d.

The twin-width of a graph, introduced in [6], can be defined in the following way.
A partition sequence of an n-vertex graph G, is a sequence Pn, . . . , P1 of partitions of its
vertex set V (G), such that Pn is the set of singletons {{v} : v ∈ V (G)}, P1 is the singleton
set {V (G)}, and for every 2 ⩽ i ⩽ n, Pi−1 is obtained from Pi by merging two of its parts
into one. Two parts P, P ′ of a same partition P of V (G) are said homogeneous if either every
pair of vertices u ∈ P, v ∈ P ′ are non-adjacent, or every pair of vertices u ∈ P, v ∈ P ′ are
adjacent. Finally the twin-width of G, denoted by tww(G), is the least integer d such that
there is partition sequence Pn, . . . , P1 of G with each part P of each Pi (1 ⩽ i ⩽ n) being
homogeneous to every part of Pi \ {P} but at most d.

The reason we gave two (equivalent) definitions of twin-width is that both viewpoints
are incomparably useful and convenient. To navigate between these two worlds, we use the
following notations and vocabulary.

Assume there is a partial contraction sequence from (tri)graph G to trigraph H . If u is a
vertex of H, then u(G) denotes the set of vertices eventually contracted into u in H. We
denote by P(H) the partition {u(G) : u ∈ V (H)} of V (G). If G is clear from the context, we
may refer to a part of H as any set in {u(G) : u ∈ V (H)}. We say that a contraction of two
vertices u, u′ ∈ V (H) involves a vertex v ∈ V (G) if v ∈ u(G) or v ∈ u′(G). A contraction
involves a pair of vertices v, v′ if v ∈ u(G) and v′ ∈ u′(G) (or v ∈ u′(G) and v′ ∈ u(G)). A
contraction involves a set S, if it involves a vertex of S, or a pair of sets S, T if it involves a
pair in S × T .

2.2 Useful observations
The twin-width can only decrease when taking induced subgraphs or turning red into black.

▶ Observation 3. Let G′ be an induced subtrigraph of trigraph G. Then tww(G′) ⩽ tww(G).

ICALP 2022
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▶ Observation 4. Let G be a trigraph and G′ another trigraph obtained from G by turning
some non-edges and some edges into red edges. Then tww(G′) ⩾ tww(G).

Trees admit a simple 2-sequence, that gives a d-sequence on red trees of degree at most d.

▶ Lemma 5 ([6]). Every (black) tree has twin-width at most 2. Every red tree has twin-width
at most its maximum degree.

2.3 The Exponential-Time Hypothesis
The Exponential-Time Hypothesis (ETH) was proposed by Impagliazzo and Paturi [24] and
asserts that there is no subexponential-time algorithm solving 3-SAT. More precisely, there
is an ε > 0 such that n-variable 3-SAT cannot be solved in time 2εn. A classic reduction [35]
linear in the number of clauses, and the Sparsification Lemma [25] imply that:

▶ Theorem 6 ([35, 25]). The n-variable 3-SAT problem where each variable appears at most
twice positively, and at most twice negatively, is NP-complete, and cannot be solved in time
2o(n), unless the ETH fails.

3 Long subdivisions have twin-width at most four

In [3], it is proved that the Ω(log n)-subdivision of any n-vertex graph has bounded twin-
width. The proof is rather involved, relies on a characterization by mixed minors established
in [6], and does not give an explicit constant bound. Here we give an elementary proof that
any (⩾ 2⌈log n⌉ − 1)-subdivision of an n-vertex graph has twin-width at most 4.

▶ Theorem 7. Let G be a trigraph obtained by subdividing each edge of an n-vertex graph H

at least 2⌈log n⌉ − 1 times, and by turning red any subset of its edges as long as the red
degree of G remains at most 4, and no vertex with red degree 4 has a black neighbor. Then
tww(G) ⩽ 4.

Proof. By no more than doubling the number of vertices of H, we can assume that n is a
power of 2. Indeed, padding H with isolated vertices up to the next power of 2 does not
change the quantity ⌈log |V (H)|⌉.

Let G′ be a supertrigraph of G obtained by arbitrarily arranging the vertices of H (in G)
at the leaves of a “virtual” full binary tree of height log n. So that the red degree does not
exceed 4, we so far omit the edges of the tree incident to a leaf (i.e., a vertex of H), while we

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2 Contracting the pairs of vertices with the same color, from the greenest to the bluest, is
a partial 4-sequence, which acts as a deletion of the subdivided edge (3, 11).
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put in red all the other edges of the tree. (The missing edges of the tree will naturally appear
in red.) The internal nodes of the tree are all fresh vertices, not present in G. See Figures 2
and 3 for an illustration. We show that tww(G′) ⩽ 4, hence by Observation 3, tww(G) ⩽ 4
since G is an induced subtrigraph of G′.

We label 1, 2, . . . , n the vertices of H . If there is an edge ij ∈ E(H), it is subdivided into
a path, say, i, s(ij, 1), s(ij, 2), . . . , s(ij, z), j in G with z ⩾ 2 log n − 1. First, we repeatedly
contract adjacent vertices in the middle of this path until it consists of exactly 2 log n edges.
If z > 2 log n − 1, we had to contract at least one pair of adjacent vertices. Thus the vertex
in the middle of the path necessarily has now two red edges incident to it. Note that the
other edges of the path can be black or red indifferently. To avoid cumbersome notations, we
rename the inner vertices of the path s(ij, 1), s(ij, 2), . . . , s(ij, z) with now z = 2 log n − 1.

▷ Claim 8. There is a partial 4-sequence from G′ to G′ − {s(ij, 1), . . . , s(ij, z)}.

Proof. Intuitively we “zip” the subdivision of ij with the walk made by the union of the
path from leaf i to the root, and the path from the root to leaf j. Let i, v1, v2, . . . , vz, j be
the concatenation of the simple path from i to the root of the tree, and the simple path from
the root to j. Its length is thus 2 log n = z + 1. For h going from 1 to z = 2 log n − 1, we
contract vh and s(ij, h) (see Figure 2). After each contraction, the newly formed vertex has
red degree at most 4. The red degree of vertices that are neither the new vertex nor a leaf of
the tree is either unchanged or at most 2. The red degree of a leaf ℓ of the tree may increase
by 1. This may only happen the first time a neighbor of ℓ is involved in a contraction, and
that contraction merges a black neighbor of ℓ with the parent of ℓ in the tree (like is the
case for leaf 3 from Figure 2 to Figure 3). By assumption, this implies that ℓ had red degree
at most 3, thus its red degree does not exceed 4. Thus, what we defined is indeed a partial
4-sequence. One can finally notice that after these z contractions, we indeed reach trigraph
G′ − {s(ij, 1), . . . , s(ij, z)}. ◁

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3 The picture after the first three contractions. The newly formed vertex has red degree 4.

We apply Claim 8 for each edge of H (or rather, subdivided edge in G). We are then
left with a red full binary tree which admits a 3-sequence by Lemma 5. Hence there is a
4-sequence for G′, and in particular, for G. ◀

We will only use the following consequence.

▶ Lemma 9. Let G be a trigraph obtained by subdividing at least 2⌈log n⌉ − 1 times each
edge of an n-vertex graph H of degree at most 4, and by turning red all its edges. Then
tww(G) ⩽ 4.

ICALP 2022



18:8 Deciding Twin-Width at Most 4 Is NP-Complete

4 Hardness of determining if the twin-width is at most four

Here we show the main result of the paper.

▶ Theorem 1. Deciding if a graph has twin-width at most 4 is NP-complete. Furthermore,
no algorithm running in time 2o(n/ log n) can decide if an n-vertex graph has twin-width at
most 4, unless the ETH fails.

The membership to NP is ensured by the d-sequence: a polynomial-sized certificate that
a graph has twin-width at most d, checkable in polynomial time. We thus focus on the
hardness part of the statement, and design a quasilinear reduction from 3-SAT.

4.1 Foreword to the reduction
Let us start by a construction allowing to encode trigraphs into (plain) graphs. Given a
trigraph H with red degree at most d, we can produce a graph G such that H admits a
2d-sequence iff G admits a 2d-sequence.

▶ Lemma 10 (⋆). Given any trigraph H whose red graph has degree at most d and con-
nected components of size at most h, one can compute in time Od,h(|V (H)|) a graph G on
Od,h(|V (H)|) vertices such that H has a 2d-sequence if and only if G has a 2d-sequence.

In what follows, we only need the following scaled-down version.

▶ Lemma 11. Given any trigraph H whose red graph is a disjoint union of 12-vertex paths
and isolated vertices, one can compute in polynomial time a graph G on O(|V (H)|) vertices
such that H has twin-width at most 4 if and only if G has twin-width at most 4.

Our task is now slightly simpler. Given a 3-SAT instance I, we may design a trigraph
satisfying the requirements of Lemma 11 with twin-width at most 4 if and only if I is
satisfiable.

We will motivate all the gadgets along the way, by exhibiting key properties that they
impose on a potential 4-sequence. These properties readily lead to a satisfying assignment
for I. We also describe partial 4-sequences to reduce most of the gadgets. However some
preconditions (specifying the context in which a particular gadget stands) tend to be technical,
and make more sense after the construction of G. In those cases, to avoid unnecessarily
lengthy lemmas, we only give an informal strategy, and postpone the adequate contraction
sequence.

4.2 Fence gadget
The vertex set of a fence gadget is A ∪ B with A = {a1, a2, a3, a4, a5, a6} and B =
{b1, b2, b3, b4, b5, b6}. Its black edge set consists of 13 edges: the cycles a1a2a3a4a5a6a1
and b1b2b3b4b5b6b1, plus the edge b1a6. Its red edge set consists of 11 edges: aibi for each
i ∈ [6], and aibi+1 for each i ∈ [5]. A fence gadget is attached to a vertex subset S by making
A fully adjacent to S. See Figure 4 for an illustration.

We will later nest fence gadgets. Thus we have to tolerate that F has other neighbors
than S in G. Actually we even allow V (F ) to have neighbors outside of S and the fence
gadgets surrounding F . We however always observe the following rule.

▶ Definition 12 (Attachment rule). A fence gadget F with vertex bipartition (A, B), and
attached to S, satisfies the attachment rule in a trigraph H if F is a connected component
of R(H), and there is a set X ⊆ V (H) \ (A ∪ B ∪ S) such that:
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b1

a1

b2

a2

b3a3

b4

a4

b5

a5

b6 a6

e

Figure 4 The fence gadget F , with A = {ai | 1 ⩽ i ⩽ 6} and B = {Bi | 1 ⩽ i ⩽ 6}.

∀x ∈ A, N(x) \ V (F ) = X ∪ S,
∀x ∈ B, N(x) \ V (F ) = X, and
∀x ∈ X, S ⊂ N(x).

Initially in G, we make sure that all the fence gadgets satisfy the attachment rule. This
will remain so until we decide to contract them.

For each fence gadget F satisfying the attachment rule, there is only one adequate set X,
it is X = N(F ) \ (V (F ) ∪ S). We denote by Y the set V (G) \ (V (F ) ∪ S ∪ X). We make the
following observations on the three possible neighborhoods that vertices outside of F have
within V (F ).

▶ Observation 13. The fence gadget definition and the attachment rule implies:
∀x ∈ S, it holds N(x) ∩ V (F ) = A,
∀x ∈ X, it holds N(x) ∩ V (F ) = V (F ) = A ∪ B, and
∀x ∈ Y , it holds N(x) ∩ V (F ) = ∅.

Henceforth we will represent every fence gadget as a brown rectangle surrounding the
set S it is attached to. The vertices of X are linked to the brown rectangle, as they are fully
adjacent to S ∪ V (F ). See Figure 5 for an illustration of the attachment rule, and a compact
representation of fence gadgets.

A

B

S

X

Y

V (F )

X

Y ∩ N(S)

S

Figure 5 Left: The forced adjacencies (solid lines, all edges between the two sets) and non-
adjacencies (dashed lines, no edge between the two sets), as specified by the attachment rule. Right:
Symbolic representation of the fence gadget attached to S by a brown rectangle.

Constraints of the fence gadget on a 4-sequence. The following lemmas are preparatory
steps for the milestone that no part in a 4-sequence of G can overlap S (that is, intersects S

without containing it).

▶ Lemma 14 (⋆). The first contraction involving two vertices of F results in a vertex of red
degree at least 5, except if it is a contraction of some ai ∈ A with some bj ∈ B.
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▶ Lemma 15 (⋆). If the first contraction involving two vertices of F is of some ai ∈ A with
some bj ∈ B, the red degree within F of the created vertex is at least 3.

The last preparatory step is this easy lemma.

▶ Lemma 16. Before a contraction involves two vertices of V (F ), the following holds in a
partial 4-sequence:

no part intersects both X and S,
no part intersects both Y and S, and
no part intersects both X and Y .

Proof. By Observation 13, such a part would have red degree |B| = 6, |A| = 6, and
|A ∪ B| = 12, respectively. ◀

As a consequence we obtain the following.

▶ Lemma 17. In a partial 4-sequence of G, the first contraction involving a vertex in V (F )
and a vertex in V (F ) ∪ S has to be done after S is contracted into a single vertex.

Proof. We consider the first time a vertex u ∈ V (F ) is involved in a contraction with a vertex
of V (F ) ∪ S. Either (case 1) the part of u, Pu, is contracted with a part Pv containing
v ∈ V (F ), or (case 2) Pu is contracted with a part P intersecting S but not V (F ).

In case 1, by Lemma 14, u and v hit both A and B. Thus, by Lemma 15, the red degree
within F of the resulting vertex z is at least 3. Moreover z is linked by a red edge to every
part within S, since S is fully adjacent to A, and fully non-adjacent to B. Thus S should at
this point consist of a single part.

We now argue that case 2 is impossible in a partial 4-sequence. By Lemma 16, part P

cannot intersect X ∪ Y (nor V (F ), by construction). Thus P ⊆ S. If u ∈ A, then the
contraction of Pu and P has incident red edges toward at least 5 vertices: three vertices of A

non-adjacent to u and two private neighbors of u (in the total graph) within B. If instead
u ∈ B, the red degree of the contracted part is at least 6, as witnessed by two neighbors of u

in B, and four non-neighbors of u in A. ◀

We can now establish the main lemma on how a fence gadget constrains a 4-sequence.
Lemmas 16 and 17 have the following announced consequence: While S is not contracted into
a single vertex, no part within S can be contracted with a part outside of S, and similarly
vertices of X cannot be contracted with vertices of Y .

▶ Lemma 18 (⋆). In a partial 4-sequence, while S is not contracted to a single vertex,
(i) no part intersects both S and V (G) \ S, nor
(ii) both X and Y .

Contracting the fence gadget. The previous lemmas establish some constraints that the
fence gadget imposes on a supposed (partial) 4-sequence. We now see how a partial 4-sequence
actually contracts a fence gadget.

Every time we are about to contract a fence gadget F attached to S, we will ensure that
the following properties hold:

no prior contraction has involved a vertex of V (F ),
no red edge has one endpoint in V (F ) and one endpoint outside V (F ), and
S is contracted into a single vertex with red degree at most 3.

In particular, the fence gadget F still satisfies the attachment rule.
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▶ Lemma 19 (⋆). Let H be a trigraph containing a fence gadget F attached to a single vertex
s of red degree at most 3. We assume that F satisfies the attachment rule in H.

Then there is a partial 4-sequence from H to H ′, where H ′ is the trigraph obtained from H

by contracting V (F ) into a single vertex.

4.3 Propagation, wire, and long chain
A vertical set V consists of two vertices x, y combined with a fence gadget F attached to
{x, y}. Thus V = {x, y} ∪ V (F ). We call vertical pair the vertices x and y. We will usually
add a superscript to identify the different copies of vertical sets: Every vertex whose label is
of the form uj belongs to the vertical set V j .

The propagation gadget from V j to V k puts all the edges between V j and xk (and no
other edge). We call these edges an arc from V j to V k. We also say that the vertical set V k

is guarded by V j . The pair V j , V k is said adjacent. Here, singleton {xk} plays the role of X

(Definition 12) for the attachment rule of vertical set Vj .
The propagation digraph of G, denoted by D(G), has one vertex per vertical set and an

arc between two vertical sets linked by an arc (in the previous sense). A (maximal) wire W

is an induced subgraph of G corresponding in D(G) to a (maximal) out-tree on at least two
vertices. See Figure 6 for an illustration of a wire made by simply concatenating propagation
gadgets. Eventually D(G) will have out-degree at most 2, in-degree at most 2, and total
degree at most 3.

x1

y1

x2

y2

x3

y3

x4

y4

Figure 6 Left: A non-branching wire made of 4 vertical sets and 3 propagation gadgets. Every
vertical set is guarded by the vertical set just to its left. Center: A more compact representation,
which corresponds to the propagation digraph. Right: Symbolic representation of the long chain,
that is, of the represented wire if L = 4.

The children of a vertical set V are the vertical sets that V guards. The root of wire W

is the unique vertical set of in-degree 0 in D(W ). The leaves of wire W are the vertical sets
of out-degree 0 in D(W ). A wire is said primed when the vertical pair of its root has been
contracted.

A wire W is non-branching if every vertex of D(W ) has out-degree at most 1; hence,
D(W ) is a directed path. A long chain is a wire W such that D(W ) is a directed path on L

vertices, where integer L will be specified later (and can be thought as logarithmic in the
total number of fences which do not belong to vertical sets). Otherwise, if D(W ) has at least
one vertex with out-degree at least 2, wire W is said branching. A vertical set with two
children is also said branching.

Constraints of the propagation gadget on a 4-sequence. We provide the proof that
a contraction in a vertical set V is only possible when the vertical pair of all the vertical sets
V ′ with a directed path to V in D(G) has been contracted.

▶ Lemma 20. Let V j and V k be two vertical sets with an arc from V j to V k. In a partial
4-sequence from G, any contraction involving two vertices of V k has to be preceded by the
contraction of xj and yj.
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Proof. We recall the notations of Section 4.2. Let F be the fence gadget attached to
S = {xj , yj}, X the neighborhood of V (F ) outside of S ∪ V (F ), and Y the vertices that are
not in S ∪ V (F ) ∪ X. (We always assume that the attachment rule is satisfied.) We have
xj′ ∈ X and yk ∈ Y , therefore by the second item of Lemma 18, their contraction has to be
preceded by the contraction of xj and yj . Now applying the first item of Lemma 18 to the
fence gadget F ′ attached to S′ = {xk, yk}, and Lemma 17, any contraction involving a pair
of V k distinct from S′ has to be preceded by the contraction of xk and yk. ◀

Henceforth, when we say that a contraction is preceded by another contraction, it includes
the case that the two contractions are in fact the same. By a straightforward induction, we
obtain the following from Lemma 20 (and Lemma 17).

▶ Lemma 21. In a partial 4-sequence from G, any contraction involving a pair of vertices in
a vertical set V has to be preceded by the contraction of the vertical pair of every vertical set
V ′ such that there is a directed path from V ′ to V in D(G).

Contracting wires. As the roots and leaves of wires will be connected to other gadgets, we
postpone the description of how to contract wires until after building the overall construc-
tion G. Intuitively though, contracting a wire (in the vacuum) consists of contracting the
vertical pair of its root, then its fence gadget by applying Lemma 19, and finally recursively
contracting the subtrees rooted at its children. Since D(G) has total degree at most 3, every
vertex has red degree at most 4 (for the at most 3 adjacent vertical sets, plus the pendant
vertex of the fence gadget).

4.4 Binary AND gate
The binary AND gate (AND gadget, for short) simply consists of three vertical sets V 1, V 2, V 3

with an arc from V 1 to V 3, and an arc from V 2 to V 3. As usual, the vertical pairs of V 1, V 2,
and V 3, are {x1, y1}, {x2, y2}, and {x3, y3}, respectively. We call the vertical sets V 1, V 2

the inputs of the AND gadget, and the vertical set V 3 the output of the AND gadget.

Constraint of the AND gadget on a 4-sequence. By Lemma 20, we readily derive:

▶ Lemma 22. Assume G contains an AND gadget with inputs V 1, V 2, and output V 3. In
a partial 4-sequence from G, any contraction involving two vertices of V 3 has to be preceded
by the contraction of x1 and y1, and the contraction of x2 and y2.

Contraction of an AND gadget. Once V 1 and V 2 are contracted into single vertices, one
can contract the vertical pair x3, y3. This results in a vertex of red degree 2. Thus one can
contract the fence gadget of V 3 by applying Lemma 19.

4.5 Binary OR gate
The binary OR gate (OR gadget) is connected to three vertical sets: two inputs V 1, V 2, and
one output V 3. We start by building two vertical sets V, V ′ whose vertical pairs are {a, b}
and {c, d}, respectively. The edges ac and bd are added, as well as a vertex e adjacent to a

and to c. Finally a fence is attached to {e} ∪ V ∪ V ′.
The OR gadget is connected to its inputs and output, in the following way. Vertex a is

made adjacent to x1 and to y1 (but not to their fence gadget). Similarly vertex b is linked to
x2 and y2. Finally x3 is adjacent to all the vertices of the OR gadget, that is, {e} ∪ V ∪ V ′

plus the vertices of the outermost fence. See Figure 7 for a representation of the OR gadget.
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x1

y1 a

b

x2

y2c

d

e

x3

y3

OR

Figure 7 An OR gadget attached to inputs V 1, V 2 and output V 3, and its symbolic representation.
These vertical sets are technically not part of the OR gate, so we represent them slightly dimmer.

Constraint of the OR gadget on a 4-sequence. By design, one can only start contracting
the OR gadget after the vertical pair of at least one of its two inputs has been contracted.
This implies that no contraction can involve V 3 before at least one the vertical pairs {x1, y1}
and {x2, y2} is contracted.

▶ Lemma 23. Assume G contains an OR gadget attached to inputs V 1 and V 2. In a partial
4-sequence from G, the contractions of a, b and of c, d have to be preceded by the contraction
of x1, y1 or the contraction of x2, y2.

Proof. Assume none of the pairs {a, b}, {c, d}, {x1, y1}, {x2, y2} have been contracted. Be-
cause of the fences, by Lemma 18, all the vertices x1, y1, a, b, c, d, x2, y2 and e are in distinct
parts. Therefore contracting a and b would create a vertex of red degree at least 5, considering
the (singleton) parts of x1, y1, c, d, e. Symmetrically contracting c and d yields at least five
red neighbors, considering the (singleton) parts of x2, y2, a, b, e. ◀

From Lemma 23 we get the following.

▶ Lemma 24. Assume G contains an OR gadget attached to inputs V 1 and V 2. In a partial
4-sequence from G, no contraction involving a vertex of V 3 can happen before either the pair
x1, y1 or the pair x2, y2 is contracted.

Proof. Suppose neither x1, y1 nor x2, y2 is contracted. By Lemma 23, the pairs {a, b} and
{c, d} cannot be contracted. By the first item of Lemma 18, no contraction can involve
a vertex of {a, b, c, d, e}. As x3 is adjacent to all these vertices but not y3, one cannot contract
the vertical pair {x3, y3}. Hence by Lemma 17 no contraction can involve a vertex of V 3. ◀

Contraction of the OR gadget. We now show how to contract the OR gate when the
vertical pair of one of its inputs has been contracted.

▶ Lemma 25. Assume that x1 and y1 have been contracted into z1, and that z1, x2, and y2

all have red degree at most 3. Then there is a partial 4-sequence that contracts the whole
OR gadget to a single vertex with only three red neighbors: z1, x2, and y2. (The same holds
symmetrically if x2 and y2 have been contracted into a single vertex.)

Proof. First contract a and b into vertex α of red degree 4. At this point the fence of {a, b}
cannot be contracted yet, as this would make the red degree of α go above 4. Hence we next
contract c and d into γ, decreasing the red degree of α to 3. Note that γ has only 4 red
neighbors: α, e, x2, y2.
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By Lemma 19, we can now contract the fence gadget of {a, b} to a single vertex. Next we
contract this latter vertex with α, and the resulting vertex with t; we call α′ the obtained
vertex. Now γ has only red degree 3, so we can contract the fence gadget of {c, d} to a single
vertex that we further contract with γ; we call γ′ the obtained vertex. We contract α′ and γ′

in a vertex ε of red degree 3; its three red neighbors are z1, x2, and y2. Again by Lemma 19,
the outermost fence of the OR gadget can be contracted into a single vertex, that we finally
contract with ε. This results in a vertex with three red neighbors: z1, x2, and y2.

Throughout this process the red degree of z1, x2, and y2 never goes above 4. Indeed the
red degree of these vertices is initially at most 3, while they have exactly one black neighbor
in the entire OR gadget (so at most one part to be in conflict with). ◀

4.6 Variable gadget
The variable gadget is represented in Figure 8 (see long version for a textual description).

x1

y1

x2

y2

⊥

x

⊤

a⊥

b⊥

g⊥

f⊥

c⊥

d⊥

e⊥

a⊤

b⊤

g⊤

f⊤

c⊤

d⊤

e⊤

x3

y3

x4

y4

U

T

⊤

⊥

Figure 8 A variable gadget half-guarded by V 1, V 2, and with outputs V 3, V 4, and its compact
representation (right).

Constraints of the variable gadget on a 4-sequence. Because of the fence gadget attached
to {⊤, x, ⊥}, one has at some point to contract ⊤ and ⊥ (be it with or without x). A first
observation is that this has to wait that the vertical pair of V 1 or V 2 is contracted.

▶ Lemma 26. Assume G has a variable gadget half-guarded by vertical sets V 1 and V 2. In
a partial 4-sequence from G, the contraction of ⊤ and ⊥ has to be preceded by the contraction
of the pair x1, y1 or of the pair x2, y2.

Proof. The pairs {x1, y1}, {x2, y2}, and {⊤, ⊥} are contained in three disjoint sets S1, S2, S,
respectively, to which a fence is attached. Thus before any of these pairs are contracted,
by Lemma 18, a vertex outside S1 ∪ S2 ∪ S, like a⊥, is in a different part than the six
vertices x1, y1, x2, y2, ⊤, ⊥. Therefore contracting ⊤ and ⊥ would create a vertex with five
red neighbors, considering the parts of x1, y1, x2, y2, a⊥. ◀

We next show that no contraction is possible in U (resp. in T ), while x and ⊥ (resp. x

and ⊤) are not contracted.
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▶ Lemma 27. In a partial 4-sequence, the contractions of a⊥ and b⊥ (resp. a⊤ and b⊤) and
of c⊥ and d⊥ (resp. c⊤ and d⊤) have to be preceded by the contraction of x and ⊥ (resp. x

and ⊤). Therefore no contraction is possible in U (resp. T ) before x and ⊥ (resp. x and ⊤)
are contracted.

Proof. Since the two statements are symmetric, we only show it with ⊥. Assume none of
the pairs {x, ⊥}, {a⊥, b⊥}, {c⊥, d⊥} are contracted. Because of the fence gadgets, by the
first item of Lemma 18, the vertices x, ⊥, a⊥, b⊥, c⊥, d⊥, e⊥, f⊥ are pairwise in distinct parts.
Therefore contracting a⊥ and b⊥ or c⊥ and d⊥ would create a vertex of red degree at least 5.
The structure of the fence gadgets in U thus prevents any contraction. ◀

We deduce that priming the wire of ¬x (resp. +x) can only be done after x and ⊥
(resp. x and ⊤) are contracted.

▶ Lemma 28. Assume that G has a variable gadget with outputs the vertical sets V 3 (root
of the wire of +x) and V4 (root of the wire of ¬x). In a partial 4-sequence from G, the
contraction of x4 and y4 (resp. x3 and y3) has to be preceded by the contraction of x and ⊥
(resp. x and ⊤).

Proof. By the second item of Lemma 18 applied to the fence attached to U , the pair x4, y4

cannot be contracted until U is not contracted to a single vertex. Thus by Lemma 27, the
pair x4, y4 can only be contracted after the pair x, ⊥ is contracted. The other statement is
obtained symmetrically. ◀

Contraction of the variable gadget. We show two options to contract a “half” of the
variable gadget, either T and its fence, or U and its fence, into a single vertex.

▶ Lemma 29. There is a partial 4-sequence that contracts x and ⊤ together, and T ∪F ⊤ into
a single vertex. Symmetrically there is a partial 4-sequence that contracts x and ⊥ together,
and U ∪ F ⊥ into a single vertex.

Proof. We first contract x and ⊤ into a vertex +x. Observe that +x has exactly three red
neighbors: x1, y1, and a⊥. Thus {a⊤, b⊤, c⊤, d⊤, e⊤} and their three fences can be contracted
exactly like an OR gadget. So by Lemma 25, there is a partial 4-sequence that contracts all
these vertices to a single vertex u, with three red neighbors (+x, f⊤, and g⊤). We can now
contract u and f⊤ into u′, followed by contracting their fence gadget F ′⊤ into a single vertex,
by Lemma 19. That pendant vertex can be contracted to u′, and the result to g⊤, forming
vertex v. Finally, again by Lemma 19, the fence F ⊤ attached to T can be contracted into
a single vertex, which can be contracted with v.

The other sequence is the symmetric. ◀

The second “half” of the variable gadget can be contracted once the vertical pairs of the
half-guards V 1, V 2 have been contracted.

▶ Lemma 30. Assume T ∪ F ⊤ (resp. U ∪ F ⊥) has been contracted into a single vertex u,
and that the pairs {⊤, x} (resp. {⊥, x}), {x1, y1}, and {x2, y2} have been contracted into +x

(resp. ¬x), z1, and z2, respectively. We further assume that the red degree of z2 (resp. z1)
is at most 3. Then there is partial 4-sequence that contracts ⊤, x, ⊥ and their fence into
a single vertex, and U ∪ F ⊥ (resp. T ∪ F ⊤) into a single vertex.

Proof. We contract ⊥ with +x into v of red degree 4. This increases the red degree of z2

by one, which remains at most 4. We then contract U ∪ F ⊥ into a single vertex w, like
in Lemma 29. We contract u and w into y, a vertex of red degree at most 3. Now v has
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degree 3. So we can contract its fence gadget by Lemma 19. We further contract v with
its pendant neighbor, and finally with y. What results is a unique vertex with four red
neighbors.

The other partial sequence is symmetric. ◀

4.7 Clause gadget
A 3-clause gadget (or simply clause gadget) has for inputs three vertical sets V 1, V 2, V 3, and
for output one vertical set V 4. It consists of combining two OR gadgets, and using long
chains to make the OR gadgets distant enough. We add an OR gadget with input V 1 and
V 2, and output V . We then add a long chain from V to V ′, and an OR gadget with input V ′

and V 3, and output V 4. The clause gadget is depicted in Figure 9. We call first OR gadget
of the clause gadget, the one with output V , and second OR gadget, the one with output V 4.

OR

OR
C

Figure 9 Left: A 3-clause gadget. Right: A shorthand for the gadget.

Constraint of the clause gadget on a 4-sequence. As a consequence of Lemmas 21 and 24,
we get that once a contraction involves the output, at least one of the vertical pairs of the
inputs has been contracted.

▶ Lemma 31 (⋆). Assume G contains a clause gadget with inputs V 1, V 2, V 3 and output
V 4. In a partial 4-sequence from G, any contraction involving a vertex of V 4 is preceded by
the contraction of the vertical pair of one of V 1, V 2, or V 3.

Contraction of the clause gadget. The OR gates of the clause gadgets will be contracted
as specified in Lemma 25, while we wait the overall construction to describe the contraction
of the wires.

4.8 Overall construction and correctness
Let I = (C1, . . . , Cm) be an instance of 3-SAT, that is, a collection of m 3-clauses over the
variables x1, . . . , xn. We further assume that each variable appears at most twice positively,
and at most twice negatively in I. The 3-SAT problem remains NP-complete with that
restriction, and without 2o(n)-time algorithm unless the ETH fails; see Theorem 6. We build
a trigraph H that has twin-width at most 4 if and only if I is satisfiable. As trigraph H will
satisfy the condition of Lemma 11, it can be replaced by a graph G on O(|V (H)|) vertices.
We set L the length of the long chain to 2⌈log(5n+3m)⌉ = O(log n), so that G has O(n log n)
vertices. We now piece the gadgets described in the previous sections together.

Variable to clause gadgets. For every variable xi, we add a variable gadget half-guarded by
V 1

i , V 2
i , and with outputs V 3

i , V 4
i . We add a long chain starting at vertical set V 3

i (resp. V 4
i ),

and ending at a branching vertical set from which starts two long chains stopping at vertical
sets V ⊤,1

i and V ⊤,2
i (resp. V ⊥,1

i and V ⊥,2
i ). Vertical set V ⊤,1

i (resp. V ⊥,1
i ) serves as the



P. Bergé, É. Bonnet, and H. Déprés 18:17

⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥

C C C C C C C C

o

Figure 10 An example of the overall construction G on a 3-SAT instance with 6 variables and
8 clauses. The first two clauses are ¬x1 ∨ x3 ∨ x4 and x1 ∨ x2 ∨ ¬x5.

input of the first clause gadget in which xi appears positively (resp. negatively), while V ⊤,2
i

(resp. V ⊥,2
i ) becomes the input of the second clause gadget in which xi appears positively

(resp. negatively). If a literal has only one occurrence, then we omit the corresponding
vertical set, and the long chain leading to it. We nevertheless assume that each literal has at
least one occurrence, otherwise the corresponding variable could be safely assigned.

Clause gadgets to global output. For every j ∈ [m], we add a long chain from the output
of the clause gadget of Cj , to a vertical set, denoted by V c

j . For every j ∈ [2, m], we then add
a long chain starting at V c

j and ending at V c
j−1. We add an arc from V c

1 to a new vertical set
V o, which we call the global output.

Global output back to half-guarding the variable gadgets. For every i ∈ [n], we add two
vertical sets V 1,r

i , V 2,r
i , and puts a long chain starting at V 1,r

i and ending at V 2,r
i . We add a

long chain from V o to V 1,r
1 . We also add a long chain from V 2,r

i to V 2,r
i+1, for every i ∈ [n − 1].

Finally we add a long chain from V a,r
i to V a

i for every a ∈ {1, 2} and every i ∈ [n]. Recall
that V 1

i and V 2
i are half-guarding the variable gadget of xi.

This finishes the construction of the graph G = G(I). See Figure 10 for an illustration.

If G has twin-width at most 4, then I is satisfiable. Let us consider the trigraph H

obtained after the vertical pair of the global output V o is contracted. This has to happen in
a 4-sequence by the first item of Lemma 18 applied to the fence of V o. By Lemma 21, no
contraction involving vertices of the vertical sets V 1

i , V 2
i can have happened (for any i ∈ [n]).

This is because there is a directed path in the propagation digraph D(G) from V o to V 1
i

and V 2
i .

Thus by Lemmas 26 and 28, for every variable xi (i ∈ [n]), at most one of the wire of +xi

and the wire of ¬xi has been primed. We can define the corresponding truth assignment A:
xi is set to true if the wire of ¬xi is not primed, and to false if instead the wire of +xi is
not primed. Besides, by Lemma 21 applied to the contraction in V o, every vertical pair of
a clause-gadget output has been contracted. Then Lemma 31 implies that the vertical pair
of at least one input of each clause gadget has been contracted. But such a vertical pair can
be contracted only if it corresponds to a literal set to true by A. For otherwise, the root of
the wire of that literal cannot be contracted. This implies that A is a satisfying assignment.
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If I is satisfiable, then G has twin-width at most 4. In what follows, when we write that
we can contract a vertex, a set, or make a sequence of contractions, we mean that there
is a partial 4-sequence that does the job. Let A be a satisfying assignment of I. We start
by contracting “half” of the variable gadget of each xi. We add a subscript matching the
variable index to the vertex and set labels of Figure 8. For every i ∈ [n], we contract vertices
xi and ⊤i together, and Ti ∪ F ⊤

i to a single vertex vi, if A sets variable xi to true, and xi and
⊥i together, and Ui ∪ F ⊥

i to a single vertex vi, if instead A sets xi to false. By Lemma 29,
this can be done by a partial 4-sequence.

Next we contract the wire of +xi if A(xi) is true, or the wire of ¬xi if A(xi) is false. This
is done as described in the end of Section 4.3. We contract the vertical pair of the root of the
wire into zi (the red degree of vi goes from 1 to 2). We then contract its fence by Lemma 19.
We can now contract the resulting vertex with zi. Inductively, we contract the children of
the current vertical set to single vertices, in a similar fashion. As the propagation digraph
has degree at most 3, this never creates a vertex of red degree more than 4.

At the leaves of the wire (the vertical sets V ⊤,1
i , V ⊤,2

i or V ⊥,1
i , V ⊥,2

i ), we make an exception,
and only contract the vertical pair. We then contract, by Lemma 25, all the (non-already
reduced) OR gadgets (involved in clause gadgets) at least one input of which has its vertical
pair contracted. After that, applying Lemma 19, we finish the contraction of the OR inputs
whose vertical pairs was contracted. Next we contract each output of a contracted OR gadget
into a single vertex.

In those clauses where the third literal is not satisfied by A, the output of the clause
gadget is not contracted at that point. However, as A is a satisfying assignment, the output
of the first OR gate of the gadget is contracted. We then contract each vertical set of the
long chain leading to the input of the second OR gate. We only contract the vertical pair
of that input, and contract the incident OR gadget, by Lemma 25. We finally proceed by
contracting the input vertical set into a single vertex, and the output vertical set into a single
vertex.

At this point, each output of the clause gadgets is contracted into a single vertex. The
(not strongly) connected component C of the propagation digraph D(G) containing the
global output Vo is acyclic and has total degree at most 3. All the vertical sets of C with
in-degree 0 (ant out-degree 1) in D(G) are the clause outputs, which have been contracted to
single vertices. Thus each vertical set of C can be contracted to single vertices, by repeated
use of Lemma 19, followed by contracting the pendant vertex (resulting from the fence
contraction) with its unique (red) neighbor. Note that this process terminates by contracting
the half-guards V 1

i , V 2
i (for every i ∈ [n]). The conditions of Lemma 30 are now satisfied,

so we can finish contracting each variable gadget into two vertices that we further contract
together. This results in a vertex of red degree 4.

We can then contract the wire of the literal that was set to false by A. Again, we only
contract the vertical pair of the inputs of OR gates that are not contracted yet. Then we
contract those OR gadgets, and finish by fully contracting the vertical set of those inputs.
We next contract each output of the newly contracted OR gates. We eventually contract
into a single vertex each vertical set of the long chain in clause gadgets where this was not
already done.

At this point, the current trigraph H has only red edges. Thus it can be interpreted
as a graph, and we write degree instead or red degree. H has 4n + 3m vertices of degree 3,
n vertices of degree 4, and the rest of its vertices have degree 2. Because we added long chains
to separate what now corresponds to vertices of degree at least 3, H is an (⩾ L)-subdivision
of a graph on 5n + 3m vertices. Since L = 2⌈log(5n + 3m)⌉, by Lemma 9, H finally admits a
4-sequence.
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Abstract
We study the basic problem of assigning memoryless workers to tasks with dynamically changing
demands. Given a set of w workers and a multiset T ⊆ [t] of |T | = w tasks, a memoryless worker-task
assignment function is any function ϕ that assigns the workers [w] to the tasks T based only on
the current value of T . The assignment function ϕ is said to have switching cost at most k if, for
every task multiset T , changing the contents of T by one task changes ϕ(T ) by at most k worker
assignments. The goal of memoryless worker task assignment is to construct an assignment function
with the smallest possible switching cost.

In past work, the problem of determining the optimal switching cost has been posed as an open
question. There are no known sub-linear upper bounds, and after considerable effort, the best known
lower bound remains 4 (ICALP 2020).

We show that it is possible to achieve polylogarithmic switching cost. We give a construction via
the probabilistic method that achieves switching cost O(log w log(wt)) and an explicit construction
that achieves switching cost polylog(wt). We also prove a super-constant lower bound on switching
cost: we show that for any value of w, there exists a value of t for which the optimal switching cost
is w. Thus it is not possible to achieve a switching cost that is sublinear strictly as a function of w.

Finally, we present an application of the worker-task assignment problem to a metric embeddings
problem. In particular, we use our results to give the first low-distortion embedding from sparse
binary vectors into low-dimensional Hamming space.
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1 Introduction

The general problem of distributed task allocation, where a group of agents must
collectively allocate themselves to tasks, has been studied in a wide variety of settings where
the agents have varying degrees of communication, memory, knowledge of the system, and
faultiness (see Georgiou and Shvartsman’s book [15] for a survey). In this paper we are
interested in the dynamic version of a distributed task allocation problem, that is, where
the demands for each task are changing over time. Dynamic task allocation has been the
focus of a great deal of both empirical and theoretical work in areas such as swarm robotics
[20, 32, 26, 27, 21, 23, 34] and collective insect behavior [4, 31, 30, 33, 34].

Although there are many possible variations of the dynamic task allocation problem (in
particular, in terms of what the capabilities of the workers are), most share a basic common
structure. For positive integers w and t, there are w workers 1, 2, . . . , w, and there is a
multiset T ⊆ [t] of |T | = w tasks.1 The multiset T changes gradually over time: in each time
step, one new task is added and one old task is removed. The goal is to maintain a dynamic
assignment of workers {1, 2, . . . , w} to tasks T such that the switching cost is as small as
possible, i.e., the number of worker-task assignments that change each time that T changes
is bounded by some small quantity.

The goal of studying dynamic distributed task allocation is to answer the following
question: to what degrees are various capabilities (i.e., memory, communication, knowledge
of the system, computational power, etc.) needed for the workers to guarantee a small
switching cost?

Motivated in part by applications to swarm robotics and collective ant behavior, recent
work [33, 34] has focused on the question of what happens when workers are completely
memoryless. At any given moment each worker i ∈ {1, 2, . . . , w} must determine which task
τ ∈ T they are assigned to solely as a function of the current task multiset T ; the workers do
not remember anything about the past system states or worker assignments. Note that this
memoryless-ness requirement is sufficiently strong that it also implies communicationless-ness
– indeed, if workers cannot remember where they were in previous steps, and all that each
worker knows is the current multiset of tasks, then there is no worker-specific information
to be shared. Being memoryless and communicationless is especially important to settings
where a worker might suffer a fault and thus “reboot”; in this case, the worker can determine
which task they are assigned to without relying on what was stored in its memory and
without knowledge of which tasks other workers are assigned to at the moment [34].

1 If a task j appears mT (j) times in the multiset T , then one should think of the task as having a current
demand of mT (j) workers. By writing T ⊆ [t] we mean that the elements of multiset T are from
{1, 2, . . . , t}, but the multiplicity of each element can be arbitrarily large.
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It remains an open question [34, 33] whether memoryless workers can achieve even a
sub-linear switching cost. In this paper we show that, not only is sub-linear switching cost
possible, but it is even possible to achieve a polylogarithmic switching cost of polylog(wt).
We also prove a lower bound for any algorithm that wishes to parameterize by only w and
not t: for any w, if t ≫ w is sufficiently large, then the trivial switching cost of w becomes
optimal.

Formal problem statement. Throughout this paper, we shall refer to the memoryless
dynamic distributed task allocation problem simply as the worker-task assignment
problem. Formally, the worker-task assignment problem is defined as follows. There are
w workers 1, 2, . . . , w and t tasks 1, 2, . . . , t. A worker-task assignment function ϕ is a
function that takes as input a multiset T of w tasks, and produces an assignment of workers
to tasks such that the number of workers assigned to a given task τ ∈ T is equal to the
multiplicity of τ in T .

Two task multisets T1, T2 of size w are said to be adjacent if they agree on exactly w − 1
elements; that is, |T1 \ T2| = |T2 \ T1| = 1.2 The switching cost between two adjacent task
multisets T1, T2 of size w is defined as the number of workers whose assignment changes
between ϕ(T1) and ϕ(T2). The switching cost of ϕ is defined to be the maximum switching
cost over all pairs of adjacent task multisets. The goal of the worker-task assignment problem
is to design a worker-task assignment function with the minimum possible switching cost.

Prior work in the memoryless setting. The optimal switching cost is trivially between 1
and w. Improving either of these bounds substantially has proven difficult, however.

Su, Su, Dornhaus, and Lynch [33] initiated the study of the worker-task assignment
problem and observed that assigning the workers to tasks in numerical order achieves a
switching cost of min(t− 1, w). They also proved a lower bound of 2 on switching cost, and
showed a matching upper bound in the case where w ≤ 6 and t ≤ 4.

Subsequent work by Su and Wein [34], in ICALP 2020, pushed further on the lower-bound
side of the problem. They proved that a switching cost of 2 is not always possible in general.
They show that, if t ≥ 5 and w ≥ 3, then any worker-task assignment function must have
switching cost at least 3; and if t is sufficiently large in terms of w (i.e., it is a tower of height
w − 1), then the switching cost must be at least 4.

The bounds by [33] and [34] have until now remained state-of-the-art. It remains unknown
whether the optimal switching cost is small (it could be as small as 4) or large (it could be
as large as min(t− 1, w)). And even achieving a lower bound of 4 on switching cost [34] has
required a quite involved argument.

1.1 This paper
The contributions of this paper are twofold. First, we present significant progress on the
worker-task assignment problem, resulting in both a polylogarithmic upper bound and a
super-constant lower bound for the optimal switching cost – our results are interesting in
part because of their use of randomized techniques to construct a deterministic assignment
function. Second, we explore a natural connection between the worker-task assignment
problem and the metric embedding problem of densification into Hamming space, and we
transform our progress on the former into new results for the latter.

2 Let mA(i) denote the number of times element i appears in multiset A. Then, for any two multisets
A and B, we define multisets A\B, A∪B, and A∩B to be such that mA\B(i) = max(0, mA(i)−mB(i)),
mA∪B(i) = max(mA(i), mB(i)), and mA∩B(i) = min(mA(i), mB(i)), for every element i.

ICALP 2022
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Results on worker-task assignment. Our first result establishes that it is possible to
construct a worker-task assignment function with O(logw log(wt)) switching cost. This
resolves the open question as to whether memoryless worker can allocate themselves to tasks
with strong worst-case guarantees.

▶ Theorem 1. There exists a worker-task assignment function that achieves switching cost
O(logw log(wt)).

Theorem 1 is proven via the probabilistic method and is thus non-constructive. By
replacing random hash functions with strong dispersers, however, we show that one can
construct an explicit worker-task assignment function with polylogarithmic switching cost.

▶ Theorem 2. There is an explicit worker-task assignment function that achieves switching
cost O(polylog(wt)).

Both Theorems 1 and 2 continue to hold in the more general setting where the size of T
changes over time. That is, T is permitted to be any multiset of [t] of size w or smaller. Two
task multisets T1, T2 of different sizes are considered adjacent if they satisfy

∣∣|T1| − |T2|
∣∣ = 1

and |(T1 ∪ T2) \ (T1 ∩ T2)| = 1. If |T | < w, then our worker-task assignment function assign
workers 1, . . . , |T | to tasks, and leaves workers |T | + 1, . . . , w unassigned.

Finally, from the lower bounds side, we prove that no algorithm can achieve sub-linear
switching cost as a function of only w. Theorem 3 says that, if t is sufficiently larger than
w, then for any worker-task assignment function, there must exist a pair of adjacent task
multi-sets that forces all of the w workers to be reassigned. In the statement of the theorem,
and throughout the paper, tow(n) is defined to be a tower of twos of height n (i.e., the
inverse of the log∗ function).

▶ Theorem 3. For every w and t ≥ tow(Ω(w)), every worker-task assignment function has
switching cost w.

This represents the first super-constant lower bound for the switching cost of a worker-task
assignment function. Another way to think about the theorem is that for every t, there is
some w for which any worker-task assignment function has switching cost at least Ω(log∗(t)).
Therefore our bounds leave a gap between log∗ and polylog in terms of dependence on t.

An application to metric embeddings: Densification into Hamming space. The problem
of embedding one metric space M1 into another metric space M2 with small distortion
has been widely studied in many contexts and has found many algorithmic applications
[29, 7, 9, 8, 13, 2, 6, 10, 1, 5, 19, 24, 3, 22].

Bourgain [5] initiated the study of metric embeddings (into normed spaces) by showing
that O(log |M |)-distortion embeddings into ℓ2 are possible for any space M . Much of the
subsequent work has focused either on embeddings between exponentially large metric spaces
[29, 7, 9, 8, 13, 2, 10, 3], or on embeddings with sub-logarithmic distortion [19, 24, 3, 10].

One natural question is that of densification: can one embed sparse vectors from a high-
dimensional ℓ1-space into a low-dimensional ℓ1-space? That is, if V k

n is the set of n-dimensional
vectors with k non-zero entries, what is the smallest m for which V k

n can be embedded
into m-dimensional ℓ1-space with low distortion? Charikar and Sahai [10] were the first to
consider this problem, and showed how to achieve an output dimension of m = O((k/ϵ)2 log n)
with distortion 1 + ϵ. They also showed how to apply densification to the related problem of
embedding arbitrary tree metrics into low-dimensional ℓ1-space [10]. Subsequently, Berinde
et al. [3] used expander graphs in order to achieve m = O(k log(n/k)/ϵ2) with distortion
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1 + ϵ. They then used their densification embedding as a tool to perform sparse signal
recovery [3, 17, 16, 18]. Both of the known densification algorithms [10, 3] rely on linear
sketches, in which each vector x⃗ ∈ V k

n is mapped to a vector of the form
∑

i xib⃗i for some
set of vectors b⃗1, . . . , b⃗n.

The prior work on densification [10, 3] has focused on embedding into ℓ1-space. In
Section 5, we consider the same problem over Hamming space, where the distance between
two vectors x⃗, y⃗ is given by Ham(x⃗, y⃗) = |{i | xi ̸= yi}|. Densification over Hamming space
requires new techniques due to the fact that summations of vectors (and thus linear sketches)
do not behave well in Hamming space.

Let Hk
n denote the set of n-dimensional binary vectors with k ones. Let Hk(n) denote

the set of k-dimensional vectors with entries from [n]. We show that Hk
n can be embedded

into Hk(n) with distortion O(log n log k).

▶ Theorem 4. There exists a map ϕ : Hk
n → Hk(n) such that, for every x⃗, y⃗ ∈ Hk

n,

Ham(x⃗, y⃗)/2 ≤ Ham(ϕ(x⃗), ϕ(y⃗)) ≤ O(log n log k) Ham(x⃗, y⃗).

The densification embedding is a simple application of the worker-task assignment problem.
In order to embed a vector x⃗ ∈ Hk

n into Hk(n), we simply assign the workers {1, 2, . . . , k}
to the task set T = {i | x⃗i = 1}, and then we construct the vector y⃗ whose i-th coordinate
denotes the task in T to which worker i is assigned. This map transforms the switching cost
in the worker-task assignment problem into the distortion of the metric embedding.

The densification embedding is optimal in two senses. First, the target space of the
embedding must have Ω(k) coordinates simply in order to allow for distances of Ω(k). Second,
when k ≪ n, any embedding of Hk

n to k-dimensional Hamming space must use Ω(log n) bits
per coordinate, simply in order so that the embedding is an injection. It is not clear whether
the distortion achieved by our embedding is optimal, however, and it remains open whether
smaller distortion can be achieved by allowing for a larger target-space dimension.

We remark that the basic relationship between worker-task assignment and densification
embeddings problem has already implicitly been observed in previous work on lower bounds,
as a way to formalize what makes the worker-task assignment problem difficult [34]. In
contrast, here we are using the relationship as an avenue to obtain improved upper bounds
for the densification problem.

2 Technical overview

This section gives an overview of the main technical ideas in the paper. For simplicity, the
section will treat the task multiset T ⊆ [t] as always being a set (rather than a multiset). As
discussed in Section 3, one can formally reduce from the multiset case to the set case, at the
cost of t being replaced with t′ = wt.

2.1 A warmup: The random-permutation algorithm

We begin by describing a simple assignment function that we call the random-permutation
algorithm. The random-permutation algorithm does not necessarily achieve small switching
cost, but it does have the property that for any two adjacent task sets T1, T2 ⊆ [t], the
switching cost between T1 and T2 is O(logw) with high probability in w.

ICALP 2022



19:6 Memoryless Worker-Task Assignment with Polylogarithmic Switching Cost

The algorithm. The random-permutation algorithm assigns to each worker i ∈ [w] a random
permutation

σi = ⟨σi(1), σi(2), . . . , σi(t)⟩

of the numbers [t]. We think of worker i as preferring task σi(j) over task σi(j + 1) for all
j ∈ [t− 1].

Suppose we wish to assign workers to tasks T . The random-permutation algorithm assigns
the workers 1, 2, . . . , w to tasks τ1, τ2, . . . , τw ∈ T one by one in order of worker ID, assigning
worker i to the task that it most prefers out of the tasks in T that have not yet been assigned
a worker.

For each i ∈ [w], we define the i-remainder tasks to be the tasks T \ {τ1, . . . , τi}. That
is, the i-remainder tasks are the tasks that remain after the first i workers are assigned. This
means that worker i+ 1 is assigned to the i-remainder task that it most prefers.

Analyzing expected switching cost. Let T1, T2 ⊆ [t] be adjacent task sets of size w. We
begin by showing that the expected switching cost from T1 to T2 is O(logw).

Let r and s be such that T1 = (T2 ∪ {r}) \ {s}. Let ψ1 and ψ2 denote the assignments
produced by the random permutation algorithm for T1 and T2, respectively. Let Ai and Bi

denote the set of i-remainder tasks during the constructions of ψ1 and ψ2, respectively.
The key to analyzing the random-permutation algorithm is to compare the i-remainder

sets Ai and Bi for each i ∈ [w]. We claim that |Ai \ Bi| ≤ 1 for all i ∈ [w]. We prove this
by induction on i: suppose that Ai−1 = (Bi−1 ∪ {a}) \ {b}, and suppose for contradiction
that |Ai \Bi| ≥ 2. If either ψ1 assigns worker i to task a, or ψ2 assigns worker i to task b,
then we would be guaranteed that |Ai \Bi| ≤ 1, a contradiction. Thus ψ1 and ψ2 must each
assign worker i to a task in Ai−1 ∩Bi−1. But this means that, in both assignments, worker i
is assigned to the task in Ai−1 ∩ Bi−1 that worker i most prefers. Thus ψ1 and ψ2 assign
worker i to the same task, again contradicting that |Ai \Bi| ≥ 2.

We now analyze the probability of ψ1 and ψ2 differing in their assignment of worker i.
Since Ai contains at most one element a not in Bi, the probability that worker i prefers a
over all elements in Bi is at most 1/|Bi| = 1/(w− i+ 1). Similarly, since Bi contains at most
one element b not in Ai, the probability that worker i prefers b over all elements in Ai is at
most 1/|Ai| = 1/(w − i+ 1). By the union bound, it follows that the probability of ψ1 and
ψ2 assigning worker i to different tasks is at most 2/(w − i+ 1).

By linearity of expectation, the expected switching cost between T1 and T2 is at most

w∑
i=1

2
w − i+ 1 = O(logw).

Why a union bound fails for worst-case switching cost. By using Chernoff-style bounds,
one can modify the above analysis of the random-permutation algorithm to show that, with
high probability in w (i.e., probability 1 − 1/ polyw), the switching cost between T1 and T2
is O(logw).

On the other hand, achieving a switching cost of O(logw) for all pairs (T1, T2) of adjacent
task sets presents a challenge because there are

(
w+1

2
)(

t
w+1

)
such pairs that must be considered.

When w = t/2, the number of distinct pairs (T1, T2) of adjacent task sets exceeds 2t ≥ 2w.
Thus, the probability bounds achieved by the random-permutation algorithm are nowhere

near high enough to enable a union bound over all adjacent worker-set pairs. We call this
the union-bound magnitude issue.
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2.2 An algorithm with small switching cost
We now describe a randomized assignment algorithm A that, with high probability in t,
achieves switching cost O(logw log t) on all adjacent task-sets T1, T2 ⊆ [t] of size w. That
is, with high probability, A produces an assignment function satisfying the requirements of
Theorem 1. The algorithm A is called the multi-round balls-to-bins algorithm.

The multi-round balls-to-bins algorithm essentially flips the approach taken by the random-
permutation algorithm. One can think of the random-permutation algorithm as consisting of
w phases in which each phase deterministically assigns exactly one worker to a task, and
then the phases probablistically incur small switching cost. In contrast, the multi-round
balls-to-bins algorithm consists of O(logw) phases, where each phase probabilistically assigns
some number of workers to tasks, and each phase deterministically incurs small switching
cost. Whereas the failure mode of the random-permutation algorithm is that a high-switching
cost may occur, the failure mode of the multi-round balls-to-bins algorithm is that some
workers may be left unassigned. As we shall see later, this distinction plays an important
role in solving the union-bound magnitude issue.

Structure of the multi-round balls-to-bins algorithm. We begin with a succinct description
of the algorithm A. For each i from 1 to log1.1 w, repeat the following hashing procedure
c log t many times. Initialize a hash table consisting of w/(1.1)i bins and randomly hash each
unassigned worker and each unassigned task into this table. For each bin that contains at
least one worker and one task, assign the minimum worker in that bin to the minimum task
in that bin.

In more detail, the algorithm A is the composition of O(logw) sub-algorithms A1,A2, . . ..
Each of A1,A2, . . . are partial-assignment algorithms, meaning that Ai assigns some subset
of the workers to some subset of the tasks in T , possibly leaving workers and tasks unassigned.
Note that the input to algorithm Ai is the set of workers/tasks that remain unassigned by
A1, . . . ,Ai−1. Thus one can think of the input to Ai as being a pair (W,T ) where W ⊆ [w]
is a set of workers, T ⊆ [t] is a set of tasks, and |W | = |T |.

The algorithm A1’s responsibility is to assign enough workers to tasks so that at most
w/1.1 workers remain unassigned. Algorithm A2 is then executed on the remaining (i.e.,
not-yet-assigned) workers and tasks, and is responsible for assigning enough workers to
tasks so that at most w/(1.1)2 workers remain unassigned. Continuing like this, algorithm
Ai is executed on the workers/tasks that remain unassigned by all of A1, . . . ,Ai−1, and is
responsible for assigning enough workers to tasks that at most ri = w/(1.1)i workers in W

remain unassigned.
Each of the Ai’s are randomized algorithms, meaning that they have some probability of

failure. The failure mode for Ai is not high-switching cost, however. In fact, as we shall see
later, each Ai deterministically contributes at most O(logw) to the switching cost. Instead,
the way in which Ai can fail is that it may leave more than ri workers unassigned. This
means that the failure mode for the full algorithm A is that it may fail to assign all of the
workers in W to tasks in T .

Applying the probabilistic method to A1, A2, . . .. Before describing the partial-assignment
algorithms Ai in detail, we first describe how our analysis of algorithm A overcomes the
union-bound magnitude issue.

Recall that each algorithm Ai is responsible for reducing the number of remaining workers
to ri = w/(1.1)i. We will later see that each Ai has a failure probability pi that is a function
of ri and t, namely,

pi = 1
tΩ(ri) .
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As i grows, the failure probability pi of Ai becomes larger, making it impossible to union-
bound over exponentially many pairs of task sets T1, T2.

An important insight is that, if all of A1, . . . ,Ai−1 succeed (i.e., they each assign the
number of workers that they are responsible for assigning) then the number of workers
and tasks that Ai−1 is executed on is only O(ri). That is, if we think of the inputs to
Ai as being pairs (W,T ) where W ⊆ [w] is a set of workers and T ⊆ [t] is a set of tasks,
the set of inputs (W,T ) that algorithm Ai−1 must succeed on is only the inputs for which
|W | = |T | ≤ O(ri). The number of such inputs is at most tO(ri). In other words, even though
the failure probability pi of algorithm Ai increases with i, the number of inputs over which
we must apply a union bound decreases. By a union bound, we can deduce that Ai has a
high probability in t of succeeding on all relevant inputs (W,T ). Combining this analysis over
all of the partial-assigning algorithms A1,A2, . . ., we get that the full assignment algorithm
A also succeeds with high probability in t. In particular, we have proven that there exists a
deterministic assignment function with the desired switching cost, and that such a function
can be obtained with high probability by the randomized algorithm A.

Designing Ai. Each algorithm Ai is a composition of Θ(log t) algorithms Ai,1,Ai,2,Ai,3, . . .,
each of which individually is a partial assignment algorithm.

Each algorithm Ai,j takes a simple balls-in-bins approach to assigning some subset of the
remaining workers to some subset of the remaining tasks.

In particular, Ai,j places the workers into bins 1, 2, . . . , ri by hashing each worker to a
bin (using a random function from [w] to [ri]). Similarly, the tasks are placed into bins
1, 2, . . . , ri by hashing each task to a bin. If a bin b contains both at least one worker and at
least one task, then the smallest-numbered worker in bin b is assigned to the smallest-number
task in bin b.

Note that each of the algorithms Ai,1,Ai,2,Ai,3, . . . are identical copies of one-another,
except using different random bits. Also note all of the Ai’s are defined in the same way as
each other, except the number of bins hashed to decreases as i increases. As we shall see
shortly, the reason for having Ai consist of Θ(log t) sub-algorithms is to enable probability
amplification later in the analysis.

Bounding the switching cost. The partial assignment algorithms Ai,j are designed to satisfy
two essential properties, which we prove formally in the full proof. These two properties can
then be combined to bound the switching cost of the full algorithm A.

Compatibility: Let I1 = (W1, T1) and I2 = (W2, T2) be inputs to Ai,j . Suppose I1 and I2
are unit distance, meaning that

|W1 \W2| + |W2 \W1| + |T1 \ T2| + |T2 \ T1| ≤ 2.

Let I ′
1 = (W ′

1, T
′
1) and I ′

2 = (W ′
2, T

′
2) be the workers and tasks that remain unassigned

when Ai,j is executed on each of I1 and I2, respectively. Then I ′
1 and I ′

2 are guaranteed
to also be unit-distance.

Low Switching Cost: The switching cost of Ai,j is O(1). That is, if I1 = (W1, T2) and
I2 = (W2, T2) are inputs to Ai,j , and I1 and I2 are unit-distance, then the worker-task
assignments made by Ai,j on each of I1 and I2 differ by at most O(1) assignments.

Consider two adjacent task sets T1 and T2. When we execute A on T1 and T2, respectively,
we use Ii,j

1 and Ii,j
2 , respectively, to denote the worker/task input that are given to partial-

assignment algorithm Ai,j .
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The Compatibility property of the Ai,j ’s guarantees by induction that, for each Ai,j the
worker/task inputs Ii,j

1 and Ii,j
2 are unit-distance (or zero-distance). The Low-Switching-Cost

property then guarantees that each Ai,j contributes at most O(1) to the switching cost
of A. Since there are O(log t logw) Ai,j ’s, this bounds the total switching cost of A by
O(log t logw).

Deriving the success probabilities. Next we analyze the probability of Ai failing on a given
worker/task input (W,T ). Recall that the only way in which Ai might fail is if more than ri

workers remain unassigned after Ai finishes. Additionally, since we need only consider cases
where Ai−1 succeeds, we can assume that ri ≤ |W |, |T | ≤ 1.1ri.

Let q denote the number of workers that Ai,1 assigns to tasks. Given that ri ≤ |W |, |T | ≤
1.1ri, a simple analysis of Ai,1 shows that E[q] ≥ ri/5. On the other hand, using McDiarmid’s
inequality, one can perform a balls-in-bins style analysis in order to show that Pr[E[q] − q >

ri/10] ≤ 2−Ω(ri). This means that Ai,1 has probability at most 2−Ω(ri) of leaving more than
ri workers unassigned.

In order for Ai to fail (i.e., A leaves more than ri workers unassigned), all of sub-algorithms
Ai,1,Ai,2, . . . would have to individually fail. Since there are Θ(log t) sub-algorithms, the
probability of them all failing is

pi = 2−Ω(ri log t) = t−Ω(ri).

This allows us to apply the probabilistic method to the Ai’s in order to bound the probability
of any Ai failing on any input, as desired.

An explicit construction with polylogarithmic switching cost. The multi-round balls-to-
bins algorithm gives a non-explicit approach to constructing an assignment function with low
switching cost. The approach is non-explicit because it relies on the probabilistic method.

In the full version of the paper3 we show how to obtain an explicit algorithm with
switching cost polylogwt. The basic idea is to replace random hash functions, used to place
workers and tasks into bins, with functions obtained from pseudorandom objects called strong
dispersers. Instead of trying a number of random hash functions within the Ai,j ’s, we instead
iterate over all of the hash functions from a small family given by a strong disperser [28].

2.3 A lower bound on switching cost
Define sw,t to be the optimal switching cost for assignment functions that assign workers
1, 2, . . . , w to multisets of w tasks from the universe [t]. The upper bounds in this paper
establish that sw,t ≤ O(logw log(wt)). It is natural to wonder whether smaller bounds can
be achieved, and in particular, whether a small switching cost that depends only on w can
be achieved.

It trivially holds that sw,t ≤ w. We show that when t is sufficiently large relative to
w, there is a matching lower bound of sw,t ≥ w. In fact, our lower bound only uses the
evaluation of the assignment function on sets (as opposed to multisets).

Consider an assignment function ϕ that, given a multiset T of tasks with elements from
[t] of w tasks, produces an assignment of workers [w] to tasks T . Our goal will be to find
tasks τ1 < τ2 < · · · < τw+1 such that if ϕ({τ1, . . . , τw}) assigns worker i to task τπ(i) for some
permutation π of [w], then ϕ({τ2, . . . , τw+1}) assigns worker i to task τπ(i)+1. The existence
of such a configuration immediately implies that ϕ has switching cost w.

3 https://arxiv.org/abs/2008.10709
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We use an application of the hypergraph Ramsey theorem to show that, when t is large
enough, a configuration of the type described in the above paragraph must exist. Let K(w)

t

denote the complete w-uniform hypergraph on t vertices. This is just the set of w-element
subsets of [t], which correspond to sets of tasks. For each hyperedge T = {τ1, . . . , τw}, where
1 ≤ τ1 < · · · < τw ≤ t, we color the hyperedge T by a color π where τπ(i) is the task assigned
to worker i.

This gives a coloring of the hyperedges of K(w)
t by w! colors, each color being a permutation

of [w]. By the hypergraph Ramsey theorem, if t is large enough in terms of w, there must exist
w+ 1 vertices τ1, . . . , τw+1 so all the hyperedges formed by the vertices have the same color π.
By examining the hyperedges {τ1, . . . , τw} and {τ2, . . . , τw+1}, it follows that ϕ({τ1, . . . , τw})
assigns each worker i to task τπ(i) and that ϕ({τ2, . . . , τw+1}) assigns each worker i to task
τπ(i)+1, as desired.

3 Achieving switching cost O(log w log(wt))

In this section, we prove the following theorem.

▶ Theorem 1. There exists a worker-task assignment function that achieves switching cost
O(logw log(wt)).

We demonstrate the existence of such a function via the probabilistic method, showing
that there is a randomized construction that produces a low-switching cost worker-task
assignment function with nonzero probability. In the full version of the paper, we also show
how to derandomize the construction at the cost of a few extra log factors.

From multisets to sets. We begin by showing that, without loss of generality, we can
restrict our attention to task multisets T that are sets (rather than multisets). We reduce
from the multiset version of the problem with w workers and t tasks to the set version of the
problem with w workers and wt tasks.

▶ Lemma 5. Define n = wt. Let ϕ be a worker-task assignment function that assigns workers
[w] to task sets T ⊆ [n] (note that ϕ is defined only on task sets T , and not on multisets).
Let s be the switching cost of ϕ (considering only pairs of adjacent subsets of [n], rather than
adjacent sub-multisets). Then there exists a worker-task assignment function ϕ′ assigning
workers [w] to task multisets T ⊆ [t], such that ϕ′ also has switching cost s.

Proof. When discussing the assignment function ϕ, we think of its input task-set T as
consisting of elements from [t] × [w] rather than elements of [tw].

With this in mind, we construct ϕ′ as follows. Given a task multiset T ⊆ [t], define the
set S(T ) ⊆ [t] × [w] to be

⋃t
i=1

{
(i, 1), . . . , (i,mT (i))

}
, where mT (i) is the multiplicity of i in

T . The worker-task assignment ϕ produces some bijection ψS(T ) : [w] → S(T ). Similarly, ϕ′

should produce some bijection ψ′
T : [w] → T . This bijection is defined naturally by projection:

if ψS(T ) assigns worker j to task (i, x), let ψ′
T assign worker j to task i.

We now compute the switching cost of ϕ′. Let T and T ′ be two adjacent task multisets,
so T ′ = T ∪{a}\{b} for some a, b ∈ [t]. Then S(T ′) = S(T )∪{(a,mT (a)+1)}\{(b,mT (b))},
and so S(T ′) is adjacent to S(T ). Since ϕ has switching cost s, ψS(T ) and ψS(T ′) agree on
w − s workers. By construction, ψ′

T and ψ′
T ′ must agree on these w − s workers as well, and

so it too has switching cost at most s. ◀
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In the remainder of the section, we will make the assumption that T is a subset of [n],
and we will show how to design an assignment function with switching cost O(logw log n)
on all pairs of adjacent subsets of [n]. By Lemma 5, setting n = wt then implies Theorem 1.

Designing an assignment function as an algorithm. It will be helpful to think of the
function we construct for assigning workers to tasks as an algorithm A, which we call the
multi-round balls-to-bins algorithm. The algorithm A takes as input a set T ⊆ [n] of
tasks with |T | = w and must produce a bijection from the workers [w] to T .

The algorithm constructs this bijection in stages. Each stage is what we call a partial
assignment algorithm, which takes as input the current sets of workers and tasks that
have yet to be matched and assigns some subset of these workers to some subset of the tasks.
Formally, we define a partial assignment algorithm to be any function ψ which accepts as
input any pair of sets T ⊆ [n],W ⊆ [w] with |T | = |W | and produces a matching between
some subset of T and some subset of W . After applying ψ to (T,W ), there may remain some
unmatched elements T ′ ⊆ T , W ′ ⊆ W . We call (T,W ) the worker-task input to ψ and
(T ′,W ′) the worker-task output. Since a matching must remove exactly as many elements
from T as it does from W , we must also have |W ′| = |T ′|. Consequently, there is a natural
notion of the composition of two partial assignment algorithms: the composition ψ′ ◦ ψ
applies ψ and then ψ′, letting the worker-task output of ψ be the worker-task input to ψ′.

The algorithm. We recall the description of the algorithm A. For each i from 1 to c logw,
repeat the following hashing procedure c log n many times. Initialize a hash table consisting
of w/(1.1)i bins and randomly hash each unassigned worker and each unassigned task into
this table. For each bin that contains at least one worker and one task, assign the minimum
worker in that bin to the minimum task in that bin.

In more detail, our algorithm A is the composition of log1.1 w partial-assignment algo-
rithms,

A = A1 ◦ A2 ◦ · · · ◦ Alog1.1 w.

Let c be a large positive constant. Each Ai is itself the composition of c log n partial-
assignment algorithms,

Ai = Ai,1 ◦ Ai,2 ◦ · · · ◦ Ai,c log n.

Designing the parts. Each Ai,j assigns workers to tasks using what we call a w/(1.1)i-bin
hash, which we define as follows.

For a given parameter k, a k-bin hash selects functions h1 : [w] → [k] and h2 : [n] → [k]
independently and uniformly at random. For each worker ω ∈ [w], we say that ω is assigned
to bin h1(ω). Similarly, for each τ ∈ [n] we say τ is assigned to h2(τ). These functions are
then used to construct a partial assignment. Given a worker-task input (W,T ), we restrict
our attention to only the assignments of workers in W and tasks in T . In each bin κ ∈ [k]
with at least one worker and one task assigned, match the smallest such worker to the
smallest such task. Importantly, once h1 and h2 are fixed, the algorithm Ai,j uses this same
pair of hash functions for every worker-task input, which (as we will see later) is what allows
it to make very similar assignments for similar inputs and achieve low switching cost.

We set each Ai,j to be an independent random instance of the k-bin hash, where
k = w/(1.1)i. Formally, this means that the algorithm A = A1,1 ◦ · · · ◦ Alog1.1 w,c log n is a
random variable whose value is a partial-assignment function. Our task is thus to prove that,
with non-zero probability, A fully assigns all workers to tasks and has small switching cost.
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Analyzing the algorithm. In Section 3.2, we show that A deterministically has switching
cost O(logw log n).

Although A always has small switching cost, the algorithm is not always a legal worker-
task assignment function. This is because the algorithm may sometimes act as a partial
worker-task assignment function, leaving some workers and tasks unassigned.

In Section 3.1, we show that with probability greater than 0 (and, in fact, with probability
1−1/ polyn), the algorithm A succeeds at fully assigning workers to tasks for all worker-task
inputs (W,T ). Theorem 1 follows by the probabilistic method.

3.1 Bounding the probability of failure
Call a partial-assignment algorithm ψ fully-assigning if for every worker/task input (W,T ),
ψ assigns all of the workers in W to tasks in T . That is, ψ never leaves workers unassigned.

▶ Proposition 6. The multi-round balls-to-bins algorithm A is fully-assigning with high
probability in n. That is, for any polynomial p(n), if the constant c used to define A is
sufficiently large, then A is fully-assigning with probability at least 1 −O(1/p(n)).

Proposition 6 tells us that with high probability in n, A succeeds at assigning all workers
on all inputs. We remark that this is a much stronger statement than saying that A succeeds
with high probability in n on a given input (W,T ).

The key to proving Proposition 6 is to show that each Ai performs what we call
(
w/(1.1)i

)
-

halving. A partial-assignment function ψ is said to perform k-halving if for every worker/-
task input (W,T ) of size at most 1.1k, the worker-task output (W ′, T ′) for ψ(W,T ) has size
at most k.

If every Ai performs w/(1.1)i-halving, then it follows that

A1 ◦ · · · ◦ Alog1.1 w

is a fully-assigning algorithm. Thus our task is to show that each Ai performs w/(1.1)i-halving
with high probability in n.

We begin by analyzing the k-bin hash on a given worker/task input (W,T ).

▶ Lemma 7. Let ψ a randomly selected k-bin hash. Let (W,T ) be a worker/task input
satisfying |W | = |T | ≤ 1.1k, and let (W ′, T ′) be the worker/task output of ψ(W,T ). The
probability that (W ′, T ′) has size k or larger is 2−Ω(k).

Proof. We may assume that |W | = |T | ≥ k, else the conclusion is trivially true. Let X be
the random variable denoting the number of worker/task assignments made by ψ(W,T ).
Equivalently, X counts the number of bins to which at least one worker is assigned and at
least one task is assigned – call these the active bins. We will show that Pr[X < k

8 ] ≤ 2−Ω(k).
Since |W | = |T | ≤ 1.1k, this immediately implies that |W ′| = |T ′| ≤ 1.1k − 0.125k ≤ k with
probability 1 − 2−Ω(k), as desired.

We begin by computing E[X]. For each bin j ∈ [k], the probability no workers are
assigned to bin j is (1 − 1/k)|W | ≤ (1 − 1/k)k ≤ 1/e. Similarly, the probability that no tasks
are assigned to bin j is at most (1 − 1/k)|T | ≤ 1/e. The probability of bin j being active is
therefore at least 1 − 2/e ≥ 1/4. By linearity of expectation, E[X] ≥ k/4.

Next we show that the random variable X is tightly concentrated around its mean.
Because the bins that are active are not independent of one-another, we cannot apply a
Chernoff bound. Instead, we employ McDiarmid’s inequality:
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▶ Theorem 8 (McDiarmid ’89 [25]). Let A1, . . . , Am be independent random variables over
an arbitrary probability space. Let F be a function mapping (A1, . . . , Am) to R, and suppose
F satisfies,

sup
a1,a2,...,am,ai

|F (a1, a2, . . . , ai−1, ai, ai+1, . . . , am)−F (a1, a2, . . . , ai−1, ai, ai+1, . . . , am)| ≤ R,

for all 1 ≤ i ≤ m. That is, if A1, A2, . . . , Ai−1, Ai+1, . . . , Am are fixed, then the value of Ai

can affect the value of F (A1, . . . , Am) by at most R. Then for all S > 0,

Pr[|F (A1, . . . , Am) − E[F (A1, . . . , Am)]| ≥ R · S] ≤ 2e−2S2/m.

The number of active bins X is a function of at most 2.2 ·k independent random variables
(namely, the hashes h1(ω) for each ω ∈ W and the hashes h2(τ) for each τ ∈ T ). Each of
these random variables can individually change the number of active bins by at most one.
It follows that we can apply McDiarmid’s inequality with R = 1 and m = 2.2k. Taking
S = k/8, we obtain

Pr[|X − E[X]| ≥ k/8] ≤ e−Ω(k).

Since E[X] ≥ k/4, we have that Pr[X < k/8] ≤ e−Ω(k), which completes the proof of the
lemma. ◀

Our next lemma shows that each Ai is k-halving with high probability in n, where
k = w/(1.1)i.

▶ Lemma 9. Let ψ1, . . . , ψc log n be independent random k-bin hashes, and let ψ = ψ1 ◦ · · · ◦
ψc log n. With high probability in n, ψ is k-halving. That is, every worker-task input (W,T )
with |W | = |T | ≤ 1.1k has a worker task output (W ′, T ′) with |W ′| = |T ′| ≤ k.

Proof. Fix an arbitrary worker-task input (W,T ) with |W | = |T | ≤ 1.1k. Let (Wi, Ti) denote
the worker-task output after applying the first i rounds, ψ1 ◦ · · · ◦ ψi. Let pi denote the
probability that |Wi| = |Ti| > k.

First, we observe that pi ≤ e−Ω(k)pi−1 for all i > 1. Indeed, for |Wi| = |Ti| > k, we
must necessarily have |Wi−1| = |Ti−1| > k, which occurs with probability pi−1, but in this
situation, the probability that ψi produces a worker-task output of size greater than k is a
further e−Ω(k) by Lemma 7.

The probability that ψ fails to reduce the size of (W,T ) to k or smaller is thus at most

pc log n ≤ e−Ω(ck log n) ≤ n−Ω(ck), (1)

where c is treated as a parameter.
On the other hand, the number of possibilities for input pairs (W,T ) satisfying |W | =

|T | ≤ 1.1k is

1.1k∑
j=0

(
w

j

)(
n

j

)
≤ 1.1k · w1.1kn1.1k ≤ nO(k). (2)

Combining (1) and (2), the probability that there exists any pair (W,T ) of size 1.1k or
smaller which fails to have its size reduced to k or smaller is at most nO(k)−cΩ(k). If c is
selected to be a sufficiently large constant, then it follows that ψ performs k-halving with
probability at least 1 − n−Ω(k). ◀
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We now prove Proposition 6.

Proof of Proposition 6. By Lemma 9, each algorithm Ai is
(
w/(1.1)i

)
-halving with high

probability in n. By a union bound, it follows that all of Ai ∈ {A1, . . . ,Alog1.1 w} are(
w/(1.1)i

)
-halving with high probability in n. If this occurs, then

A = A1 ◦ · · · ◦ Alog1.1 w

is fully-assigning, as desired. ◀

3.2 Bounding the switching cost
Recall that two worker/task inputs (W1, T1) and (W2, T2) are said to be unit distance if

W1 \W2| + |W2 \W1| + |T1 \ T2| + |T2 \ T1| ≤ 2.

A partial-assignment algorithm ψ is s-switching-cost bounded if for all unit-distance
pairs of worker/task inputs (W1, T1) and (W2, T2), the set of assignments made by ψ(W1, T1)
deterministically differs from the set of assignments made by ψ(W2, T2) by at most s.

In this section, we prove the following proposition.

▶ Proposition 10. The multi-round balls-to-bins algorithm is O(logw log n)-switching-cost
bounded.

We begin by showing that each of the algorithms Ai,j are O(1)-switching-cost bounded.

▶ Lemma 11. For any k, the k-bin hash algorithm is O(1)-switching-cost bounded.

Proof. Let ψ denote the k-bin hash algorithm. Consider unit-distance pairs of worker/task
inputs (W1, T1) and (W2, T2). Changing W1 to W2 can change the assignments made by ψ for
at most a constant number of bins. Similarly changing T1 to T2 can change the assignments
made by ψ for at most a constant number of bins. Thus ψ(W1, T1) differs from ψ(W2, T2) by
at most O(1) assignments. ◀

Recall that A is the composition of the O(logw log n) partial-assignment algorithms Ai,j ’s.
The fact that each Ai,j is O(1)-switching-cost bounded does not directly imply that A is
O(logw log n)-switching-cost bounded, however, because switching cost does not necessarily
interact well with composition. In order to analyze A, we show that each Ai,j satisfies an
additional property that we call being composition-friendly.

A partial-assignment algorithm ψ is composition-friendly, if for all unit-distance pairs
of worker/task inputs (W1, T1) and (W2, T2), the corresponding worker/task outputs (W ′

1, T
′
1)

and (W ′
2, T

′
2) are also unit-distance.

Lemma 12 shows that each Ai,j is composition-friendly.

▶ Lemma 12. For any k, the k-bin hash is composition-friendly.

Proof. Although the algorithm ψ is formally only defined on input (W,T ) for which |W | = |T |,
we will abuse notation here and consider ψ even on worker/task input (W,T ) satisfying
|W | ̸= |T |.4 Define the difference-score of a pair of worker/task inputs I1 = (W1, T1), I2 =
(W2, T2) to be the quantity

d(I1, I2) = |W1 \W2| + |W2 \W1| + |T1 \ T2| + |T2 \ T1|.

4 Indeed, the definition of the k-bin hash does not require a worker-task input with |W | = |T |. The only
reason we require this equality in general is to simplify calculations, as in practice the algorithm will
only be run on worker-task inputs of equal size.
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We will show the stronger statement that the difference-score d(O1, O2) of the correspond-
ing worker/task outputs O1 = (W ′

1, T
′
1), O2 = (W ′

2, T
′
2) satisfies

d(O1, O2) ≤ d(I1, I2). (3)

It suffices to consider only two special cases: the case in which W2 = W1 ∪ {ω} for some
worker ω and T2 = T1; and the case in which T2 = T1 ∪ {τ} for some task τ and W2 = W1.
Iteratively applying these two cases to transform I1 into I2 implies inequality 3.

For this purpose, the roles of W and T are identical, so suppose without loss of generality
that W2 = W1 ∪ {ω} for some worker ω and T2 = T1. Recall that the assignment of workers
and tasks to buckets is determined by some hash functions h1, h2 and in particular is the
same whether we input W1 or W2. We first assign (only) the elements of W1 and T1 to
their respective buckets, and then look at how including the assignment of ω changes the
worker-task output. If h1 assigns ω to either a bin with no tasks or a bin which already has
some lexicographically smaller worker, then we will have W ′

2 = W ′
1 ∪ {w} and T ′

2 = T ′
1. If h1

assigns worker ω to a bin with no other workers and at least one task, we let the smallest
such task be τ and see W ′

2 = W ′
1 and T ′

2 = T ′
1 \ {τ}. Finally, if h1 assigns ω to a bin with

only larger workers and at least one task, we let the minimal such worker be γ, and we see
W ′

2 = W ′
1 ∪ {γ} and T ′

2 = T ′
1. In all three cases, d(O1, O2) = 1, as desired. ◀

Next, we will show that composing composition-friendly algorithms has the effect of
summing switching costs.

▶ Lemma 13. Suppose that partial-assignment algorithms ψ1, ψ2, . . . , ψk are all composition-
friendly, and that each ψi is si-switching-cost bounded. Then ψ1 ◦ψ2 ◦ · · · ◦ψk is composition-
friendly and is (

∑
i si)-switching-cost-bounded.

Proof. By induction, it suffices to prove the lemma for k = 2. Let I1 = (W1, T1) and
I2 = (W2, T2) be unit-distance worker/task inputs.

For i ∈ {1, 2}, let I ′
i = (W ′

i , T
′
i ) be the worker/task output for ψ1(Wi, Ti), and let

I ′′
i = (W ′′

i , T
′′
i ) be the worker/task output for ψ2(W ′

i , T
′
i ).

Since ψ1 is composition friendly, its outputs I ′
1 and I ′

2 are unit distance. Since I ′
1 and I ′

2
are unit distance, and since ψ2 is composition friendly, the outputs I ′′

1 and I ′′
2 of ψ2 are also

unit distance. Thus ψ1 ◦ ψ2 is composition friendly.
Since the inputs I1 and I2 to ψ1 are unit-distance, ψ1(I1) and ψ1(I2) differ in at most

s1 worker-task assignments. Since the inputs I ′
1 and I ′

2 to ψ2 are also unit distance, ψ2(I ′
1)

and ψ2(I ′
2) differ in at most s2 worker-task assignments. Thus the composition ψ1 ◦ ψ2 is

(s1 + s2)-switching-cost bounded, as desired. ◀

We can now prove Proposition 10.

Proof of Proposition 10. By Lemma 11, each Ai,j is O(1)-switching-cost bounded. By
Lemma 12, each Ai,j is composition friendly. Since A is the composition of the O(logw log n)
different Ai,j ’s, it follows by Lemma 13 that A is O(logw log n)-switching-cost bounded. ◀

4 Lower bounds on switching cost

Define sw,t to be the optimal switching cost for assignment functions that assign workers
1, 2, . . . , w to multisets of w tasks from the universe [t]. The upper bounds in this paper
establish that sw,t ≤ O(logw log(wt)). It is natural to wonder whether smaller bounds can
be achieved, and in particular, whether a small switching cost that depends only on w can
be achieved.
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It trivially holds that sw,t ≤ w. We show that when t is sufficiently large relative to w,
there is a matching lower bound of sw,t ≥ w.

▶ Theorem 3. For every w and t ≥ tow(Ω(w)), every worker-task assignment function has
switching cost w.

Proof. Given any worker-task assignment function ϕ, we can actually find high switching
cost between a pair of task subsets, in which all demands are 0 or 1. For each T ⊆ [t] of w
tasks, ϕ produces a bijection of workers [w] to tasks T . In order to lower-bound the switching
cost, we produce a coloring of the complete w-uniform hypergraph with t vertices. The
coloring will be designed so that, if it contains a monochromatic clique on w + 1 vertices,
then the assignment function ϕ must have worst-possible switching cost w. By applying the
hypergraph Ramsey theorem, we deduce that, if t is large enough, then the coloring must
contain a monochromatic (w + 1)-clique, completing the lower bound.

Coloring the complete w-uniform hypergraph on t vertices. Let K(w)
t denote the complete

w-uniform hypergraph on t vertices. Note that the hyperedges of K(w)
t are just the w-element

subsets of [t], which correspond to sets of tasks.
For a task set T = {τ1, . . . , τw}, where 1 ≤ τ1 < · · · < τw ≤ t, we color the hyperedge T

with the tuple π = ⟨π(1), π(2), . . . , π(w)⟩, where τπ(i) is the task assigned to worker i. One
can think of π as a permutation of numbers {1, 2, . . . , w}, and thus the coloring consists of
at most w! colors.

Monochromatic (w + 1)-cliques imply high switching cost. The key property of the
coloring C is that, if K(w)

t contains a monochromatic (w+ 1)-vertex clique (i.e., K(w)
w+1), then

ϕ must have switching cost w.
Namely, if K(w)

t contains a monochromatic (w+ 1)-clique, then we can find w+ 1 vertices,
τ1 < τ2 < · · · < τw+1, such that every w-element subset T of these tasks is assigned the same
permutation π as its color. In particular, this means that for the task-set T1 = {τ1, . . . , τw}
each worker i is assigned to task τπ(i), but for the task-set T2 = {τ2, . . . , τw+1} that same
worker i is assigned to a different task τπ(i)+1. Thus there is a pair of adjacent task sets
T1, T2 that exhibit switching cost w.

Finding a monochromatic clique. In order to complete the lower bound, we wish to show
that, if t is sufficiently large, then the coloring contains a monochromatic K(w)

w+1. To do this,
we employ the hypergraph Ramsey theorem.

▶ Theorem 14 (Theorem 1 in [12]). Let k ≥ 2 and N ≥ n ≥ 2 be positive integers. The
hypergraph Ramsey number R(k, n,N) is defined to be the least positive integer M such that
for every k-coloring of the hyperedges of K(n)

M , the complete n-uniform hypergraph on M

vertices, contains a monochromatic copy of K(n)
M . This quantity satisfies

R(k, n,N) ≤ k(kn−1)(kn−2)···(k2)k(N−n)+1

.

Applying Theorem 14, we see that if t ≥ R(w!, w, w + 1), then the (w!)-coloring of K(w)
t

contains a monochromatic (w+ 1)-clique, and the assignment function ϕ must have switching
cost w, as desired. By Theorem 14, R(w!, w, w + 1) ≤ tow(O(w)). which implies that that
every worker-task assignment function has switching cost w when t ≥ tow(Ω(w)). This
completes the proof of Theorem 3. ◀



A. Berger, W. Kuszmaul, A. Polak, J. Tidor, and N. Wein 19:17

Another way of viewing this argument is that a worker-task assignment function with
switching cost less than w gives rise to a proper (w!)-coloring of a certain graph, with vertex
set

([t]
w

)
and edges of the form ({τ1, . . . , τw}, {τ2, . . . , τw+1}) for τ1 < τ2 < · · · < τw+1. Such

graphs are studied under the name of shift-graphs, see, e.g., [14, Section 3.4], where the
definition and proofs of basic properties are attributed to [11]. In particular, the chromatic
number of shift-graphs is known to be (1 + o(1)) · log(w−1) t (with the superscript denoting
iteration). This gives an alternative way to complete the proof of Theorem 3 and it gives the
same asymptotic bound on t in terms of w. While the chromatic number lower bound suffices
to prove the switching cost bound, the nearly matching upper bound (on chromatic number)
suggests that an entirely different technique would be needed in order to asymptotically
improve the switching cost bound.

5 Densification into Hamming space

In this section, we apply our results on worker-task assignment to the problem of densification.
In particular, we show how to embed sparse high-dimensional binary vectors into dense
low-dimensional Hamming space.

Let Hk
n denote the set of n-dimensional binary vectors with k ones. Let Hk(n) denote

the set of k-dimensional vectors with entries from [n]. We show that Hk
n can be embedded

into Hk(n) with distortion O(log n log k).

▶ Theorem 4. There exists a map ϕ : Hk
n → Hk(n) such that, for every x⃗, y⃗ ∈ Hk

n,

Ham(x⃗, y⃗)/2 ≤ Ham(ϕ(x⃗), ϕ(y⃗)) ≤ O(log n log k) Ham(x⃗, y⃗).

Proof. Using Theorem 1, let ψ be a worker-task assignment function mapping workers
1, 2, . . . , k to a task set T ⊆ [n] with switching-cost O(log n log k).

For x⃗ ∈ Hk
n, define T (x⃗) = {i | x⃗i = 1} to be the task set consisting of the positions in x⃗

that are 1. Define ϕ(x⃗) to be the k-dimensional vector whose i-th coordinate denotes the
task t ∈ T (x⃗) to which ψ(T (x⃗)) assigns worker i. For example, if k = 3, x⃗ = ⟨0, 1, 0, 1, 1, 0⟩,
and ψ(T (x⃗)) assigns workers 1, 2, 3 to tasks 4, 2, 5, respectively, then ϕ(x⃗) = ⟨4, 2, 5⟩.

Since the coordinates of ϕ(x⃗) are a permutation of the positions T (x⃗) in which x⃗ is
non-zero, it is necessarily the case that

Ham(ϕ(x⃗), ϕ(y⃗)) ≥ |T (x⃗) \ T (y⃗)| ≥ Ham(x⃗, y⃗)/2.

On the other hand, since ψ has switching cost O(log n log k), it is also the case that ψ(x⃗)
and ψ(y⃗) differ by at most O(log n log k) Ham(x⃗, y⃗) assignments, meaning that,

Ham(ϕ(x⃗), ϕ(y⃗)) ≤ O(log n log k) Ham(x⃗, y⃗).

This completes the proof of the theorem. ◀

We remark that Theorem 4 can be generalized to allow for the the domain space Hk
n to

have non-binary entries. In particular, if Lk
n is the set of vectors with non-negative integer

entries that sum to k, then there is an embedding ϕ : Lk
n → Hk(n) such that, for x, y ∈ Lk

n,

ℓ1(x⃗, y⃗)/2 ≤ Ham(ϕ(x⃗), ϕ(y⃗)) ≤ O(log n log k)ℓ1(x⃗, y⃗).

This follows from the same argument as Theorem 4, except that now T (x) is the multiset
for which each element i ∈ [n] has multiplicity x⃗i, and now ψ is the worker-task assignment
mapping workers 1, 2, . . . , k to a task multiset T ⊆ [n].

ICALP 2022



19:18 Memoryless Worker-Task Assignment with Polylogarithmic Switching Cost

6 Open problems

We leave open the question of closing the gap between upper and lower bounds for the
worker-task assignment problem: the upper bound is polylog(wt) and the lower bound is
log∗(t).

One interesting parameter regime is when w and t are comparable in size (say within a
polynomial factor of each other). In this regime, no super-constant lower bound is known.

Another interesting direction is the problem of densification into Hamming space. Our
upper bound for the worker-task assignment problem implies an upper bound for this problem,
but our lower bound does not carry over. We leave open the problem of whether there is a
better upper bound or a super-constant lower bound for this problem.
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Abstract
Designing efficient dynamic graph algorithms against an adaptive adversary is a major goal in
the field of dynamic graph algorithms and has witnessed many exciting recent developments in,
e.g., dynamic matching (Wajc STOC’20) and decremental shortest paths (Chuzhoy and Khanna
STOC’19). Compared to other graph primitives (e.g. spanning trees and matchings), designing such
algorithms for graph spanners and (more broadly) graph sparsifiers poses a unique challenge since
there is no fast deterministic algorithm known for static computation and the lack of a way to adjust
the output slowly (known as “small recourse/replacements”).

This paper presents the first non-trivial efficient adaptive algorithms for maintaining many
sparsifiers against an adaptive adversary. Specifically, we present algorithms that maintain
1. a polylog(n)-spanner of size Õ(n) in polylog(n) amortized update time,
2. an O(k)-approximate cut sparsifier of size Õ(n) in Õ(n1/k) amortized update time, and
3. a polylog(n)-approximate spectral sparsifier in polylog(n) amortized update time.
Our bounds are the first non-trivial ones even when only the recourse is concerned. Our results
hold even against a stronger adversary, who can access the random bits previously used by the
algorithms and the amortized update time of all algorithms can be made worst-case by paying
sub-polynomial factors. Our spanner result resolves an open question by Ahmed et al. (2019)
and our results and techniques imply additional improvements over existing results, including (i)
answering open questions about decremental single-source shortest paths by Chuzhoy and Khanna
(STOC’19) and Gutenberg and Wulff-Nilsen (SODA’20), implying a nearly-quadratic time algorithm
for approximating minimum-cost unit-capacity flow and (ii) de-amortizing a result of Abraham et
al. (FOCS’16) for dynamic spectral sparsifiers.

Our results are based on two novel techniques. The first technique is a generic black-box reduction
that allows us to assume that the graph is initially an expander with almost uniform-degree and,
more importantly, stays as an almost uniform-degree expander while undergoing only edge deletions.
The second technique is called proactive resampling: here we constantly re-sample parts of the
input graph so that, independent of an adversary’s computational power, a desired structure of the
underlying graph can be always maintained. Despite its simplicity, the analysis of this sampling
scheme is far from trivial, because the adversary can potentially create dependencies between the
random choices used by the algorithm. We believe these two techniques could be useful for developing
other adaptive algorithms.
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1 Introduction

Dynamic graph algorithms maintain information in an input graph undergoing edge updates,
which typically take the form of edge insertions and deletions. Many efficient algorithms
have been developed in this setting, such as those for maintaining a minimum spanning tree,
maximum matching, shortest distances, and sparsifiers. However, many of these algorithms
are randomized and, more importantly, make the so-called oblivious adversary assumption,
which assumes that each update given to the algorithm cannot depend on answers of the
algorithm to earlier queries. In other words, the entire update sequence is fixed by some
adversary in advance, and then each update is given to the algorithm one by one. This
assumption is crucial for many recent advances in the design of efficient randomized algorithms
for dynamic problems (e.g. [68, 63, 35, 22, 10, 1, 82, 9, 25]).

The oblivious-adversary assumption significantly limits the use of dynamic algorithms
in certain interactive environments and, in particular, the setting where these dynamic
algorithms are employed as subroutines for other algorithms. For example, the recent
partially-dynamic single-source shortest paths algorithm without this assumption [21] has
been used to obtain an almost-linear time approximate min-cost flow and balanced separator
algorithm in the static setting (see also, e.g., [17, 16, 61, 62, 42, 43], for prior attempts in this
direction). In addition, [40] pointed out that their goal of computing a (static) short cycle
decomposition could have been achieved easily using existing dynamic spanner algorithms,
if such algorithms worked without the oblivious-adversary assumption. Because of this,
designing dynamic algorithms without the oblivious adversary assumption has become a
major goal in the field of dynamic graph algorithms in recent years. We call such algorithms
adaptive and say that they work against an adaptive adversary.

Thanks to the recent efforts in developing adaptive algorithms, such algorithms now
exist for maintaining a number of graph primitives, such as minimum spanning trees with
bounded worst-case update time [41, 77, 76, 88], partially-dynamic single-source shortest
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paths [50, 42, 17, 18, 16, 62, 61, 60], and fully-dynamic matching [26, 27, 28, 29, 87]. This
line of research on dynamic graph algorithms has also brought new insights on algorithm
design in the static setting (e.g. flow, vertex connectivity, matching, and traveling salesman
problem [73, 42, 86, 37, 38]). One very recent exciting application is the use of an adaptive
dynamic algorithm called expander decomposition to compute maximum-weight matching
and related problems in nearly-linear time on moderately dense graphs [86].

Graph sparsifiers

Despite the fast recent progress, very little was known for certain important primitives, like
maintaining graph sparsifiers against an adaptive adversary. To formalize our discussion, we
say that a sparsifier of a graph G = (V, E) is a sparse graph H = (V, E′) that approximately
preserves properties of G, such as all cuts (cut sparsifiers), all-pairs distances (spanners),
and spectral properties (spectral sparsifiers). For any integer α ≥ 1, an α-spanner of graph
G = (V, E) is a subgraph H such that for any pair of nodes (u, v), the distance between u

and v in H is at most α times their distance in G. An α-cut sparsifier of G is a sparse graph
H that preserves all cut sizes up to an α factor: that is, δH(S) ∈ [δG(S), αδG(S)] for every
S ⊆ V , where δG(S) (respectively δH(S)) is the total weight of edges between S and V \ S

in G (respectively H) for any S ⊂ V . An α-spectral sparsifier is a sparse graph that provides
an even stronger guarantee than an α-cut sparsifier (see full version for the definition).

A dynamic algorithm for maintaining a spanner or a cut sparsifier is given a weighted
undirected n-node graph G to preprocess, and returns a spanner or cut-sparsifier H of G.
After this, it must process a sequence of updates, each of which is an edge insertion or deletion
of G. After each update, the algorithm outputs edges to be inserted and deleted to H so that
the updated H remains an α-spanner or cut-sparsifier of the updated G. The algorithm’s
performance is measured by the preprocessing time (the time to preprocess G initially); the
update time (the time to process each update); the stretch (the value of α); and the size
of the spanner (the number of edges). The update time is typically categorized into two
types: amortized case update time and worst case update time. The more desirable one is
the worst-case update time which holds for every single update. This is in contrast to an
amortized update time which holds “on average”; i.e., for any t, an algorithm is said to have
an amortized update time of t if, for any k, the total time it spends to process the first k

updates is at most kt.
Spanners and cut sparsifers are fundamental objects that have been studied extensively

in various settings (e.g., [5, 79, 11, 78, 44, 58, 57, 15, 53, 3, 4]). In the dynamic setting,
they have been actively studied since 2005 (e.g. [7, 51, 8, 48, 23, 10, 31, 20]). A fairly tight
algorithm with amortized update time for maintaining dynamic spanners was known in 2008
due to Baswana et al. [10]. For any k ≥ 1, their algorithm maintains, with high probability,
a (2k − 1)-spanner of size Õ(kn1+1/k) in O(k2 log2 n) amortized update time1. The stretch
and size tradeoff is almost tight assuming Erdős’ girth conjecture, which implies that a
(2k − 1)-spanner must contain Ω(n1+1/k) edges. Recently, Bernstein et al. [20] showed how
to “de-amortize” the result of Baswana et al. [10], giving an algorithm that in O(1)k log3(n)
worst-case update time maintains, w.h.p., a (2k − 1)-spanner of size Õ(n1+1/k).

We refer the reader to the full version for other related results and clear comparison. For
dynamic cut sparsifiers, the only result we are aware of is [1], which maintains a (1 + ϵ)-cut
sparsifier in polylogarithmic worst-case update time. [1] can also maintain a (1 + ϵ)-spectral
sparsifier within the same update time, but this holds only for the amortized update time.

1 Throughout, Õ hides O(polylog(n)) factors. With high probability (w.h.p.) means with probability at
least 1 − 1/nc for any constant c > 1.
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Similar to other dynamic algorithms, most existing dynamic spanner and cut sparsifier
algorithms are not adaptive. The exceptions are the algorithms of [7], which can maintain a
3-spanner (respectively a 5-spanner) of size O(n1+1/2) (respectively O(n1+1/3)) in O(∆) time,
where ∆ is the maximum degree. These algorithms are deterministic, and thus work against
an adaptive adversary. Since ∆ can be as large as Ω(n), their update time is rather inefficient
as typically polylog(n) or no(1) update times are desired. Designing dynamic algorithms for
this low update time is one of the major objectives of our paper.

Challenges

Developing efficient adaptive algorithms for maintaining graph sparsifiers poses great chal-
lenges in the general research program towards adaptive dynamic algorithms. First, computing
many sparsifiers inherently relies on the use of randomness. Even in the static setting, ex-
isting fast algorithms for constructing cut and spectral sparsifiers are all randomized, and
known deterministic algorithms require Ω(n4) time [12, 89]. In fact, a nearly-linear time
deterministic algorithm for a certain cut sparsifier would resolve a major open problem
about computing the minimum cut deterministically [70, 56, 75]. Thus, in contrast to other
primitives, such as the minimum spanning tree or approximate maximum matching, for
which efficient deterministic algorithms exist in the static setting, there is little chance to
dynamically maintain sparsifiers deterministically. (Deterministic dynamic algorithms always
work against adaptive adversaries.)

Secondly, even if we allowed infinite update time and focused on the strictly simpler
objective of minimizing the changes in the maintained sparsifier (the so-called recourse
or replacements in online algorithms), it is unclear from existing techniques whether it is
possible to maintain such a sparsifier against an adaptive adversary while only making
(amortized) polylog(n) changes to the sparsifier per update to the input graph. For example,
an O(log n)-spanner of Õ(n) edges can be easily maintained with Õ(n) recourse per update
by replacing the entire spanner by a new one after every update. Is it possible that an
adversary who can see the output spanner can make a few changes to the graph so that a
new O(log n)-spanner has to change completely? An answer to this question is unclear. This
is in contrast to many dynamic graph primitives where bounding the changes is obvious
even against adaptive adversaries. For example, it can be easily shown that maintaining the
minimum spanning tree requires at most one edge insertion and one edge deletion after each
update to the input graph.

Designing algorithms with low recourse is a prerequisite for fast dynamic algorithms, and
there are several graph problems where low-recourse algorithms were the crucial bottleneck,
e.g. maximal independent set [33, 6, 36, 13, 74], planar embeddings [65, 66], and topological
sorting [19].The lack of recourse-efficient algorithms makes it very challenging to maintain
sparsifiers against an adaptive adversary.

1.1 Our Results
We show how to dynamically maintain both spanners, cut sparsifiers, and spectral sparsifiers
against an adaptive adversary in poly-logarithmic update time and recourse. We summarize
these results as follows:

▶ Theorem 1 (Adaptive Spanner). There is a randomized adaptive algorithm that, given
an n-vertex graph undergoing edge insertions and deletions, with high probability, explicitly
maintains a polylog(n)-spanner of size Õ(n) using polylog(n) amortized update time.



A. Bernstein et al. 20:5

▶ Theorem 2 (Adaptive Cut Sparsifier). There is a randomized adaptive algorithm that, given
an n-vertex graph undergoing edge insertions and deletions and a parameter k ≥ 1, with high
probability, maintains an O(k)-cut sparsifier of size Õ(n) using Õ(n1/k) amortized update
time, which is polylog(n) time when k = log n.

▶ Theorem 3 (Adaptive Spectral Sparsifier). There is a randomized adaptive algorithm
that, given an n-vertex graph undergoing edge insertions and deletions, with high probability,
maintains a polylog(n)-spectral sparsifier of size Õ(n) using polylog(n) amortized update
time.

All results above hold even against a stronger adversary, called randomness-adaptive
in [76]. This adversary can access the random bits previously used by our algorithms (but
not the future random bits). Theorem 1 is the first algorithm with o(n) update time against
an adaptive adversary, and answers the open problem in [2]. The only previous adaptive
algorithm is by [7] which can take O(n) update time. No non-trivial dynamic adaptive
algorithm for cut sparsifiers and spectral sparsifiers is known before Theorems 2 and 3.

Compared to results assuming the oblivious-adversary assumption (e.g. [10, 20, 1]),
our bounds are not as tight. For example, Theorem 1 does not achieve the standard
(2k − 1)-spanner with O(n1+1/k) edges. One reason for this limitation is that it is not
clear if such trade-off is possible even when we focus on the recourse, as discussed above.
Maintaining spanners or other sparsifiers against adaptive adversaries with tight trade-offs
and polylogarithmic recourse is a challenging barrier that is beyond the scope of this paper.
Additionally, the sparse-spanner regime studied in this paper is generally the most useful for
applications to other problems (see discussion in Section 1.2); getting a sharper trade-off
would not lead to significant improvements for most of these applications.

All the above results can be deamortized.2 For example, a 2O(
√

log n log log(n))-spanner of
size Õ(n) can be maintained in 2O(

√
log n log log(n)) worst-case update time. Also, for any k, a

2O(k polylog(k))-cut sparsifier of size Õ(n) can be maintained in Õ(n1/k) worst-case time. In
particular, we can maintain an O(log∗ n)-cut sparsifier and an O(1)-cut sparsifier in no(1)

and nϵ time for any constant ϵ, respectively.
Our deamortization technique also implies, as a side result, the first non-trivial algorithm

with worst-case update time against an oblivious adversary for maintaining spectral sparsifiers.

▶ Theorem 4 (Oblivious Spectral Sparsifier). There is a randomized algorithm against an
oblivious adversary that, given an n-vertex graph undergoing edge insertions and deletions
and ϵ ≥ 1/ polylog(n), with high probability, maintains a (1 + ϵ)-spectral sparsifier of size
n · 2O(

√
log n) using 2O(log3/4 n) worst-case update time.

The previous algorithm by Abraham et al. [1] maintains a (1 + ϵ)-spectral sparsifier of size
Õ(n) using polylog(n) amortize update time. Further [1] asked if the update time can be
made worst-case. Theorem 4 answers this open question modulo no(1) factors.

1.2 Applications
Our results imply several interesting applications. Our first set of applications are for the
decremental (1 + ϵ)-approximate single-source shortest paths (SSSP) problem. There has
been a line of work [17, 16, 18, 62] on fast adaptive algorithms for solving this problem.

2 To do this, we use, e.g., the sparsification technique [49] and a sophisticated dynamic expander
decomposition; see Section 2.3 for an overview.
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Although all these algorithms are adaptive, they share a drawback that they cannot return the
shortest path itself; they can only maintain distance estimates. Very recently, Chuzhoy and
Khanna [42] showed a partial fix to this issue for some algorithms [17, 16] and consequently
obtained impressive applications to static flow algorithms. Unfortunately, this fix only applies
in a more restricted setting, and moreover it is not clear how the technique from [42] can be
used to fix the same issue in other algorithms (e.g. [18, 62]).

We show that our main result from Theorem 1 can be employed in a consistent and simple
way, such that the path-reporting issue in all previous algorithms in [17, 16, 18, 62] can be
fixed. This resolves an open question posed in multiple papers [16, 62, 42]. We summarize
these applications below:

▶ Corollary 5 (Fixing the path-reporting issue of [18, 62]). For any decremental unweighted
graph G = (V, E), fixed source s, and constant ϵ > 0, there is an adaptive algorithm B
that maintains the (1 + ϵ)-approximate distances from vertex s to every vertex v ∈ V and
supports corresponding shortest path queries. The algorithm B has expected total update time
mn0.5+o(1), distance estimate query time O(log log n) and shortest path query time Õ(n).

Corollary 5 gives the first adaptive algorithm without the path-reporting issue that
can take o(n2) total update time. The next algorithm works on weighted graphs and is
near-optimal on dense graphs:

▶ Corollary 6 (Fixing the path-reporting issue of [17, 16]). For any decremental weighted graph
G = (V, E, w) with W being the ratio between maximum and minimum edge weight, fixed
source s, and ϵ > 0, there is an adaptive algorithm A that maintains the (1 + ϵ)-approximate
distances from vertex s to every vertex v ∈ V and supports corresponding shortest path
queries. The algorithm A has expected total update time Õ(n2 log W ), distance estimate
query time O(log log(nW )) and shortest path query time Õ(n log W ).

Corollary 6 can be compared to two previous results [42, 43]. In [42], their algorithm
requires slower n2+o(1) log W total update time, and needs to assume that the input graph
undergoes only vertex deletions which is more restrictive. So Corollary 6 strictly improves the
algorithm by [42]. In [43], they use very different techniques than ours and show an algorithm
with n2+o(1) log W total update time, distance query time O(log log(nW )), shortest path
query time O(|P |no(1)) when a path P is returned, and is deterministic. This algorithm
is incomparable to Corollary 6. Our result has slightly faster total update time, but their
algorithm is deterministic and guarantees faster shortest path query time.

By plugging Corollary 6 into the standard multiplicative weight update framework (e.g.
[55, 52, 42, 73]), we get the following:

▶ Corollary 7. There exist (1 + ϵ)-approximate algorithms with expected running time Õ(n2)
for the following problems:
1. minimum-cost maximum s-t flow in undirected vertex-capacitated graphs, and
2. minimum-cost maximum s-t flow in undirected unit-edge-capacity graphs.

Corollary 7 slightly reduces the n2+o(1) run time from [42, 43] to Õ(n2).3
The second set of applications are faster algorithms for variants of multi-commodity

flow problems using Theorem 1. For example, we achieve a static Õ((n + k)n)-time
polylog(n)-approximation algorithm for the congestion minimization problem with k de-
mand pairs on unweighted vertex-capacitated graphs. This improves the Õ((m + k)n)-time
O(log(n)/ log log(n))-approximation algorithms implied by Karakostas [69] in terms of the
running time at the cost of a worse approximation ratio. See the full version for more detail.

3 We note that the result of [43] is deterministic.
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Finally, we apply Theorem 4 to the problem of maintaining effective resistance. Durfee
et al. [47, 46] presented a dynamic algorithm with Õ(n6/7) amortized update time for (1 + ϵ)-
approximately maintaining the effective resistance between a fixed pair of nodes. Plugging
our result in the algorithm of Durfee et al. leads to an n6/7+o(1) worst-case update time.
(Both of these results assume an oblivious adversary.)

1.3 Techniques
To prove the above results, the first key tool is the black-box reduction in Theorem 8 that
allows us to focus on almost-uniform-degree expanders4. Theorem 8 works for a large class
of problems satisfying natural properties (defined in Section 2) which includes spanners,
cut sparsifiers, and spectral sparsifiers. Hence the theorem uses the term “α-approximate
sparsifier” without defining the exact type of sparsifier.

▶ Theorem 8 (Informal Blackbox Reduction, see full version for the formal statements). Assume
that there is an algorithm A that can maintain an α-approximate sparsifier on an n-vertex
graph G with the following promises:

G undergoes batches of edge deletions5 (isolated nodes are automatically removed),
G is unweighted,
after each batch of deletions, G is an expander graph, and
after each batch of deletions, G has almost uniform degree, i.e. the maximum degree ∆max
and the minimum degree ∆min are within a polylog(n) factor.

Then, there is another algorithm B with essentially the same amortized update time for
maintaining an α-approximate sparsifier of essentially the same size on a general weighted
graph undergoing both edge insertions and deletions. If A is adaptive or deterministic, then
so is B.

As it is well-known that many problems become much easier on expanders (e.g., [84,
83, 81, 67, 34, 72]), we believe that this reduction will be useful for future developments
of dynamic algorithms. For example, if one can come up with an adaptive algorithm for
maintaining (1 + ϵ)-cut sparsifiers on expanders, then one can immediately obtain the same
result on general graphs.

Our second technique is a new sampling scheme called proactive resampling: here we
constantly re-sample parts of the input graph so that, independent of an adversary’s com-
putational power, a desired structure of the underlying graph can be always maintained;
see Section 2 for a high-level discussion of this technique. Since there are still few known
tools for designing algorithms that work against an adaptive adversary, we expect that our
technique will prove useful for the design of other adaptive algorithms in the future.

We further extend the black-box reduction from Theorem 8 to algorithms with worst-case
update time, which allows us to deamortize both Theorem 1 and Theorem 2 with slightly
worse guarantees. It also easily implies Theorem 4.

1.4 Subsequent Development
Since this paper has appeared in April 2020, there have been exciting subsequent developments
based on techniques of this paper.

4 Expanders are graphs with high conductance (see Section 2). Intuitively, they are “robustly connected”
graphs.

5 That means, in each iteration the algorithm is given a set D ⊂ E of edges that are to be deleted.
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Our dynamic spectral sparsifiers with (1 + ϵ)-approximation but large query time (see full
version) has been employed as a blackbox subroutine in a line of work on faster algorithms for
exact max-flow [86, 85, 54], and also in [39] for making a dynamic polylog(n)-approximate
all-pairs max flow algorithm work against an adaptive adversary. In [14], the authors opened
the blackbox of our spectral sparsifier and combined our dynamic expander decomposition
with our sparsification techniques to obtain the first dynamic algorithms with o(n) update
time against an adaptive adversary for (1 + ϵ)-approximate global min cuts and all-pairs
effective resistances. Our almost-uniform-degree expander decomposition is also used in the
context of online algorithms [59].

Our proactive resampling technique has been extended in a follow-up work [30] for main-
taining fully dynamic 3-spanners against an adaptive adversary, in contrast with polylog(n)-
spanners.

2 Overview

All our algorithms use a common framework based on expanders, which results in a reduction
from fully dynamic algorithms on general graphs to the special case of decremental algorithms
on expander graphs. The reduction holds for a general class of graph problems that satisfy
some criteria. These criteria are satisfied for spectral-sparsifiers, cut-sparsifiers and spanners.
In this section, we define the abstract criteria needed for our reduction (See Conditions 1-5
below), so that we only need to prove our algorithm once and apply it to all these types of
sparsifiers.

The overview is split into three parts. In Section 2.1 we show the reduction for amortized
update time. In Section 2.2 we show how to take advantage of the reduction by designing
efficient algorithms on expanders. Finally, in Section 2.3 we finish the overview with a sketch
of how to extend the reduction to worst-case update-time algorithms.

2.1 Reduction to Expanders: Amortized Update Time
We now outline our black-box reduction, which can preserve several nice properties of the
algorithms. That is, given an algorithm with property x running on expander, we obtain
another algorithm with property x with essentially the same running time and approximation
guarantee, where the property x can be “deterministic”, “randomized against an adaptive
adversary”, or “worst-case update time”. In this subsection, we focus on amortized update
time: see Section 2.3 for an overview of how to extend the reduction to apply to worst-case
algorithms.

The reduction holds for any graph problem that satisfies a small number of conditions.
We formalize a graph problem as a function H that maps (G, ϵ) for a graph G and parameter
ϵ > 0 to a set of graphs. We say a dynamic algorithm A solves H(ϵ) if for every input graph
G, algorithm A maintains/computes a graph H ∈ H(G, ϵ). For example we could define
H(G, ϵ) to be the set of all (1 + ϵ)-cut sparsifiers. So then saying “data structure A solves
H(ϵ)” means that A maintains for any input graph an (1 + ϵ)-cut sparsifier.

Pertubation Property

The first property required by our reduction allows us to slightly perturb the edges, i.e. scale
each edge {u, v} by some small factor fu,v bounded by 1 ≤ fu,v ≤ eϵ. Define ζ · G to be the
graph G with all edge-weights multiplied by ζ.

Let G′ be G scaled by up to eϵ, then G′ ∈ H(G, ϵ) and eϵ · G ∈ H(G′, ϵ). (1)
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Property (1) implies that G ∈ H(G, ϵ) for all ϵ > 0. For example any graph is a (potentially
dense) spectral approximation or spanner of itself. The property is also useful when we
want to discretize the edge weights. A common technique is to round edge weights to the
nearest power of eϵ in order to discretize the set of possible edge weights without changing
graph properties such as the spectrum or distances too much. Combined with the following
union property, this also allows us to generalize algorithm for unweighted graphs to support
weighted graphs.

Union Property

Say that G =
⋃k

i=1 Gi for some k and that s1, ..., sk ∈ R. Then the union property is defined
as follows:

If Hi ∈ H(Gi, ϵ) and 0 ≤ si, then
⋃

i

si · Hi ∈ H

(⋃
i

si · Gi, ϵ

)
. (2)

Combining this property with the previous pertubation property (1) gives us the following
reduction. Given a graph G with real edge weights from [1, W ], one can decompose G

into graphs G1, ..., Gk, such that each Gi contains edges with weights in [e(i−1)ϵ, eiϵ). One
can then use any algorithm that solves H on unweighted graphs to obtain Hi ∈ H(G′

i, ϵ)
for all i = 1, ..., k, where G′

i is the graph Gi when ignoring the edge weights. Then⋃
i eiϵ · Hi ∈ H(

⋃
i eiϵ · Gi, ϵ) ⊂ H(G, ϵ) by combining property (2) and (1). Thus one obtains

an algorithm that solves H on weighted graphs.

Reduction for Amortized Update Time

Loosely speaking, our black-box states the following. Say that we have a data structure
AX on a graph X that at all times maintains a sparsifier in H(X, ϵ) with amortized update
time T (AX), but assumes the following restricted setting: 1) Every update to X is an edge
deletion (no insertion), and 2) X is always an expander. We claim that AX can be converted
into a fully dynamic algorithm A that works on any graph G, and has amortized update
time T (A) = Õ(T (AX)).

We first outline this black-box under the assumption that we have a dynamic algorithm
that maintains a decomposition of G =

⋃
i Gi into edge disjoint expander graphs G1, G2, ....

This dynamic algorithm will have the property that whenever the main graph G is updated
by an adversarial edge insertion/deletion, each expander Gi receives only edge deletions,
though occasionally a new expander Gj is added to the decomposition. Thus one can simply
initialize AX on the expander Gj to obtain some Hj ∈ H(G, ϵ), when Gj is added to the
decomposition. Then whenever an edge deletion is performed to Gj , we simply update the
algorithm AX to update the graph Hj . By the union property (2) we then have that

H :=
⋃

i

Hi ∈ H

(⋃
i

Gi, ϵ

)
= H(G, ϵ).

So we obtain an algorithm A that can maintain a sparsifier H of G. We are left with proving
how to obtain this dynamic algorithm for maintaining the expander decomposition of G.

Dynamic Expander Decomposition

The idea is based on the expander decomposition and expander pruning of [80]. Their
expander decomposition splits V into disjoint node sets V1, V2, ..., such that the induced
subgraphs G[Vi] on each Vi are expanders, and there are only o(m) edges between these
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expanders. In the full version we show that by recursively applying this decomposition on
the subgraph induced by the inter-expander edges, we obtain a partition of the edges of
G into a union of expanders. This means, we can decompose G into subgraphs G1, G2, ...,
where each Gi is an expander and

⋃
i Gi = G. We show in the full version that the time

complexity of this decomposition algorithm is Õ(m).
We now outline how we make this decomposition dynamic in the full version. Assume

for now, that we have a decomposition of G into G =
⋃

i G(i), where for all i, the graph
G(i) has at most 2i edges, but each G(i) is not necessarily an expander. Further, each G(i)

is decomposed into expanders G(i) =
⋃

j G
(i)
j . To make this decomposition dynamic, we

will first consider edge insertions where we use a technique from [64]. Every edge insertion
performed by the adversary is fed into the graph G(1). Now, when inserting some edges into
some G(i), there are two cases: (i) the number of edges in G(i) remains at most 2i. In that
case recompute the expander decomposition G(i) =

⋃
j G

(i)
j of G(i). Alternatively we have

case (ii) where G(i) has more than 2i edges. In that case we set G(i) to be an empty graph
and insert all the edges that previously belonged to G(i) into G(i+1). Note that on average it
takes 2i−1 adversarial insertions until G(i) is updated, and we might have to pay Õ(2i) to
recompute its decomposition, so the amortized update time for insertions is simply Õ(1).

For edge deletions we use the expander pruning technique based on [80] (refined from
[77, 76, 88]). An over-simplified description of this technique is that, for each update to the
graph, we can repeatedly prune (i.e. remove) some Õ(1) edges from the graph, such that
the remaining part is an expander. So whenever an edge is deleted from G, we remove the
edge from its corresponding G

(i)
j , and remove/prune some Õ(1) extra edges from G

(i)
j , so

that it stays an expander graph. These pruned edges are immediately re-inserted into G(1)

to guarantee that we still have a valid decomposition G =
⋃

i G(i). In summary, we are able
to maintain a decomposition G =

⋃
i,j G

(i)
j of G into expander graphs. This decomposition

changes only by creating new expanders and removing edges from existing expanders, so we
can run the decremental expander algorithm AX on each G

(i)
j .

Contraction Property and Reduction to Uniform Degree Expanders

Many problems are easier to solve on graphs with (near) uniform degree. Thus, we strengthen
our reduction to work even if the decremental algorithm AX assumes that graph X has
near-uniform degree. On its own, the expander decomposition described above is only able
to guarantee that for each expander the minimum degree is close to the average degree;
the maximum degree could still be quite large. In order to create a (near) uniform degree
expander, we split these high degree nodes into many smaller nodes of smaller degree. In
order to perform this operation, we need the condition that whichever graph problem H we
are trying to solve must be able to handle the reverse operation, i.e. when we contract many
small degree nodes into a single large degree node.

When contracting W ⊂ V in both G and H ∈ H(G, ϵ),
let G′ and H ′ be the resulting graphs, then H ′ ∈ H(G′, ϵ). (3)

All in all, our black-box reduction shows that in order to solve a sparsification problem
H in the fully dynamic model on general graphs, we need to 1) show that H satisfies the
perturbation, union, and contraction properties above (Properties 1-3) AND 2) Design an
algorithm AX for H in the simpler setting where the dynamic updates are purely decremental
(only edge deletions), and where the dynamic graph G is always guaranteed to be a near-
uniform degree expander.



A. Bernstein et al. 20:11

We now present the second main contribution of our paper, which is a new adaptive
algorithm AX on expanders. We conclude the overview with a discussion of the worst-case
reduction (Section 2.3), for which we will need two additional properties of the problem H.

2.2 Adaptive Algorithms on Expanders
We showed above that maintaining a sparsifier in general graphs can be reduced to the same
problem in a near-uniform-degree expander. Thus, for the rest of this section we assume that
G = (V, E) is at all times a ϕ-expander with max degree ∆max and min-degree ∆min, and
that G is only subject to edge deletions. Let n = |V |, m = |E|. In this overview, we assume
that 1/ϕ and ∆max/∆min are O(polylog n), and we assume ∆min ≫ 1/ϕ. Define IncG(v) to
the edges incident to v in G.

We now show how to maintain a O(log(n))-approximate cut-sparsifier H in G against
an adaptive adversary; it is not hard to check that H is also a spanner of stretch Õ(1/ϕ),
because a cut-sparsifier of a ϕ-expander is itself a Ω̃(ϕ)-expander, and hence has diameter
Õ(1/ϕ). See full version for details.

Static Expander Construction

We first show a very simple static construction of H ⊆ G. Define ρ = Θ̃
(

∆max
∆2

minϕ2

)
= Θ̃

(
1

∆min

)
,

with a sufficiently large polylog factor. Now, every edge is independently sampled into H

with probability ρ, and if sampled, is given weight 1/ρ. To see that H is a cut sparsifier,
consider any cut X, X̄, with |X| ≤ n/2. We clearly have E[|EH(X, X̄)|] = ρ|EG(X, X̄)|, so
since every edge in H has weight 1/ρ, we have the same weight in expectation. For a high
probability bound, want to show that Pr[|EH(X, X̄)| ∼ ρ|EG(X, X̄)|] ≥ 1 − n−2|X|; we can
then take a union bound over the O(n|X|) cuts of size |X|.

Since the graph is an expander, we know that |EG(X, X̄)| ≥ volG(X) ·ϕ ≥ |X| ·∆min ·ϕ =
Ω̃(|X|∆min). Thus, by our setting of ρ = Θ̃(1/∆min), we have E[|EH(X, X̄)|] ≥ |X| log2(n).
Since each edge is sampled independently, a chernoff bound yields the desired concentration
bound for |EH(X, X̄)|.

Naive Dynamic Algorithms

The most naive dynamic algorithm is: whenever the adversary deletes edge (u, v), resample
all edges in IncG(u) and IncG(v): that is, include each such edge in H with probability
ρ. Efficiency aside, the main issue with this protocol is that the adversary can cause some
target vertex x to become isolated in H , which clearly renders H not a cut sparisifer. To see
this, let y1, . . . , yk be the neighbors of x. The adversary then continually deletes arbitrary
edges (y1, z) ̸= (y1, x), which has the effect of resampling edge (x, y1) each time. With very
high probability, the adversary can ensure within log(n) such deletions (y1, z) that (x, y1) is
NOT included in H; the adversary then does the same for y2, then y3, and so on.

Slightly Less Naive Algorithm

To fix the above issue, we effectively allow vertices u and v to have separate copies of edge
(u, v), where u’s copy can only be deleted if u itself is resampled. Formally, every vertex v

will have a corresponding set of edges Sv and we will always have H =
⋃

v∈V Sv, where all
edges in H have weight 1/ρ. We define an operation SampleVertex(v) that independently
samples each edge in IncG(v) into Sv with probability ρ. The naive implementation of
SampleVertex(v) takes time O(degG(v)) = O(∆max) time, but an existing technique used
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in [71, 45, 32] allows us to implement SampleVertex(v) in time O(ρ∆max log(n)) = Õ(1).
(The basic idea is that the sampling can be done in time proportional to the number of edges
successfully chosen, rather than the number examined.)

The dynamic algorithm is as follows. At initialization, construct each Sv by calling
SampleVertex(v), and then set H =

⋃
v∈V Sv. Whenever the adversary deletes edge (u, v),

replace Su and Sv with new sets SampleVertex(u) and SampleVertex(v), and modify
H =

⋃
v∈V Sv accordingly. By the above discussion, the update time is clearly Õ(1). We

now show that this algorithm effectively guarantees a good lower bound on the weight of
each cut in H, but might still lead to an overly high weight. Consider any cut (X, X̄).
By the expansion of G, the average vertex x ∈ X has IncG(x) ∩ EG(X, X̄) ≥ ϕ∆min. For
simplicity, let us assume that every vertex x ∈ X has IncG(x) ∩ EG(X, X̄) = Ω̃(ϕ∆min) =
Ω̃(∆min), as we can effectively ignore the small fraction of vertices for which this is false.
Now, say that an operation SampleVertex(x) succeeds if it results in |Sx ∩ EG(X, X̄)| ∼
ρ|IncG(x) ∩ EG(X, X̄)|. Because of our setting for ρ and our assumption that IncG(x) ∩
EG(X, X̄) = Ω̃(∆min), a Chernoff bound guarantees that each SampleVertex(x) succeeds
with probability 1−n−10. Now, since the adversary makes at most m updates before the graph
is empty, each SampleVertex(x) is called at most n2 times, so there is a 1−n−8 probability
that every call SampleVertex(x) is successful; we call such vertices always-successful. A
simple probability calculation shows that Pr[at least |X|/2 vertices in X are always-successful]
≥ 1 − n−2|X|, which allows us to union bound over all cuts of size X. Thus, at all times, half
the vertices in X have |Sx ∩ EG(X, X̄)| ∼ ρ|IncG(x) ∩ EG(X, X̄)|; assuming for simplicity
that this is an “average” half of vertices, i.e. that these vertices have around half of the edges
crossing the cut, we have |EH(X, X̄)| ≥ |

⋃
x∈X Sx ∩ EG(X, X̄)| ≳ ρ|EG(X, X̄)|/2.

The above idea already implies that we can maintain a sparse graph H where each cut is
expanding, i.e. a sparse expander, against an adaptive adversary. As an expander has low
diameter, H is a spanner. Therefore, we are done if our goal is a dynamic spanner algorithm.

Unfortunately, this algorithm is not strong enough for maintaining cut sparsifiers, as
the algorithm may result in |EH(X, X̄)| ≫ ρ|EG(X, X̄)|. Let ∆max ∼

√
n, and consider

the following graph G. There is a set X of size
√

n such that G[X] is a clique and G[X̄] is√
n-degree-expander. There is also a

√
n-to-1 matching from X to X̄: so every vertex in

y ∈ X̄ has exactly one edge ey crossing the cut. It is easy to check that G is an expander.
The adversary then does the following. For each y ∈ X̄, it keeps deleting edges in E(y, X̄)
until ey is sampled into Sy; with high probability, this occurs within O(log(n)/ρ) deletions
for each vertex y. Thus, at the end, H ⊇

⋃
y∈X̄ Sy contains all of EG(X, X̄).

Better Algorithm via Proactive Sampling

We now show how to modify the above algorithm to ensure that w.h.p., |EH(X, X̄)| =
Õ(ρ|EG(X, X̄)|); we later improve this to |EH(X, X̄)| = O(ρ log(n)|EG(X, X̄)|). We let time
t refer to the tth adversarial update. As before, we always have H =

⋃
v∈V Sv, and if the

adversary deletes edge (u, v) at time t, the algorithm immediately calls SampleVertex(u)
and SampleVertex(v). The change is that the algorithm also calls SampleVertex(u)
and SampleVertex(v) at times t + 1, t + 2, t + 4, t + 8, t + 16, . . .; we call this proactive
sampling. The proof that |EH(X, X̄)| ≳ ρ|EG(X, X̄)|/2 remains basically the same as before.
We now upper bound |EH(X, X̄)|.

The formal analysis is somewhat technical, but the crux if the following key claim:
for any (u, v) ∈ G, we have that after t adversarial updates, Pr[(u, v) ∈ H at time t] ≤
2ρ log(t) ≤ 2ρ log(m). We then use the key claim as follows: consider any cut (X, X̄). If every
edge in EG(X, X̄) was independently sampled into H with probability at most 2ρ log(m),
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then a Chernoff bound would show that |EH(X, X̄)| ≤ 4ρ log(m)|EG(X, X̄)| with probability
at least 1 − n−2|X|, as desired. Unfortunately, even though every individual edge-sampling
occurs with probability ρ, independent of everything that happened before, it is NOT the
case that event e ∈ H is independent from event e′ ∈ H: the adversary is adaptive, so its
sampling strategy for e′ can depend on whether or not e was successfully sampled into H

at an earlier time. Nonetheless, we show in the full proof that these dependencies can be
disentangled.

Let us now sketch the proof for the key claim. The edge (u, v) can appear in H because
it is in Su or Sv at the time t. Let us bound the probability that (u, v) ∈ Su at time t.
Let Tschedule(u) be all times before t for which SampleVertex(u) has been scheduled by
proactive sampling: so whenever the adversary updates an edge (u, v) at time t′, times
t′, t′ + 1, t′ + 2, t′ + 4, t′ + 8, . . . are added to Tschedule(u). Let T t′

schedule(u) ⊂ [t′, t] be the
state of Tschedule(u) at time t′. Now, we say that a call to SampleVertex(u) at time t′

is relevant if T t′+1
schedule(u) = ∅. Observe that for (u, v) to be in Su at time t, it must have

been added during some relevant call SampleVertex(u), because every non-relevant call is
followed by another call before time t which invokes again SampleVertex(u) and thereby
deletes the previously sampled set Su and replaces it by a new one. We complete the proof
by claiming that there are at most log(t) relevant calls SampleVertex(u). This is because
if a relevant call occurs at t′, then proactive sampling adds some time t∗ to Tschedule(u) such
that (t′ + t)/2 ≤ t∗ ≤ t; thus, there can be no relevant calls in time interval [t′, (t′ + t)/2]. So
each relevant call halves the possible time interval for other relevant calls, so there are at
most log(t) relevant calls.

We now briefly point out why this modified algorithm has |EH(X, X̄)| = Õ(ρ|EG(X, X̄)|),
rather than the desired |EH(X, X̄)| = O(ρ log(n)|EG(X, X̄)|). Consider again the graph G

consisting of a vertex set X of size
√

n such that G[X] is a complete graph, and let X be a√
n-degree expander in G[X]. Additionally, we have a

√
n-to-one matching, i.e. every vertex

in X is matched to
√

n vertices in X. The graph is still an expander as argued before.
Now observe that ∆max = 2

√
n and we obtain a first sparsifier H at time 0 of G where

we have weight on the cut, i.e. |EH(X, X̄)|/ρ, of size ∼ n (which is the number of edges
crossing). In particular, the weight on edges in |EH(X, X̄) ∩

⋃
x∈X Sx|/ρ ∼ n, i.e. the

vertices in X carry half the weight of the cut in the sparsifier. But over the course of the
algorithm, the adversary can delete edges in the cut (X, X) that are in G \ H. Observe
that the resampling events do not affect edges in EH(X, X̄) ∩

⋃
x∈X Sx since none of the

deleted edges is incident to any such edge (recall the
√

n-to-one matching). The adversary
can continue until the cut only has weight in G of |X|∆minϕ without violating the expander
and min-degree guarantees. But then the weight in H on the cut is still ∼ n while the weight
in G is only ∼ n(∆max/∆min)ϕ. Thus, we only obtain a ∼ (∆max/∆min)ϕ-approximation
(plus a log n-factor from proactive sampling might appear).

Final Algorithm

To resolve the issue above, we would like to ensure that the edges in EH(X, X̄) are resampled
when |EG(X, X̄)| changes by a large amount. We achieve this with one last modification
to the algorithm: for every v ∈ V , whenever degG(v) decreases by ζ = ϕ∆min, we run
SampleVertex(w) for every edge (v, w) ∈ G. It is not hard to check that each vertex will
only resampled a total of O(∆2

max/ζ) = Õ(∆max) additional times as a result of this change
which is subsumed by Õ(m) when summing over the vertices. (A naive implementation of
the above modification only leads to small amortized update time, but this can easily be
worst-case by staggering the work over several updates using round-robin scheduling.) We
leave the analysis of the approximation ratio for the full version.
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By using the convenient lemma which says that any cut sparsifier on an expander is also
a spectral sparsifier, we also obtain an adaptive algorithm for spectral sparsifier.

2.3 Reduction to Expanders: Worst-Case Update Time

We now outline how to extend our black-box reduction to work with worst-case update time.
We again assume there exists some algorithm AX that maintains for any graph G a sparsifier
H ∈ H(G, ϵ), provided that G stays a uniform degree expander throughout all updates, all
of which are only edge deletions.

The condition that G always remains an expander is too strong, but we can use expander
pruning to maintain the property from the perspective of AX . Consider some deletion in G:
although G may not be an expander, we can use pruning to find a subset of edges P ⊂ E(G),
such that G \ P is an expander. We then input all edges in P as deletions to AX , so the
graph G \ P in question is still an expander: AX thus returns H ∈ H(G \ P, ϵ). Then based
on property (1) and (2) it can be shown that H ∪ P ∈ H(G, ϵ). So by taking all the pruned
edges together with the sparsifier H of G \ P we obtain a sparsifier of G, even when G itself
is no longer an expander.

Unfortunately this dynamic sparsifier algorithm has two downsides: (i) The maintained
sparsifier is only sparse for a short sequence of updates, as otherwise the set of pruned edges
becomes too large and thus the output H ∪ P becomes too dense. (ii) The algorithm only
works on graphs that are initially an expander.

Extending the algorithm to general graphs

To extend the previous algorithm to work on general graphs, we run the static expander
decomposition algorithm. As outlined before, we can decompose G into subgraphs G1, G2, ...,
where each Gi is an expander and

⋃
i Gi = G. We can then run the algorithm, outlined

in the previous paragraph, on each of these expanders and the union of all the obtained
sparsifiers will be a sparsifier of the original input G.

Similar as before, one downside of this technique is that the size of the sparsifier will
increase with each update, because more and more edges will be pruned. Thus, the resulting
dynamic algorithm can only maintain a sparsifier for some limited number of updates.

Extending the number of updates

A common technique for dynamic algorithms, which only work for some limited number
of updates (say k updates), is to reset the algorithm after k updates. If the algorithm has
preprocessing time p and update time u, then one can obtain an algorithm with amortized
update time O(p/k + u). However, the worst-case complexity would be quite bad, because
once the reset is performed, the old sparsifier (from before the reset) must be replaced by
the new one. Listing all edges of the new sparsifier within a single update would be too
slow. There is a standard technique for converting such an amortized bound to an equivalent
worst-case bound. The idea is to slowly translate from the old sparsifier to the new one,
by only listing few edges in each update. For this we require another property for H that
guarantees that the sparsifier stays valid, even when removing a few of its edges.
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Transition Property

Consider some H1, H2 ∈ H(G, ϵ), and we now want to have a slow transition from H1 to H2,
by slowly removing edges from H1 from the output (and slowly inserting edges of H2). The
exact property we require is as follows:

Let H1, H2 ∈ H(G, ϵ) and H ⊂ H1, then (eδ − 1)H ∪ H2 ∈ H(G, ϵ + δ). (4)

Here H ⊂ H1 represents the remaining to be removed edges (or alternatively H1 \ H are the
remaining to be inserted edges). Exploiting this property we are able to obtain a O(p/k + u)
worst-case update time.

As the output grows with each update, we must perform the reset after k = O(n) updates,
otherwise the output becomes too dense. This is unfortunate as the preprocessing time is
p = Ω(m), because one must read the entire input, which is too slow to obtain a subpolynomial
update time. This issue can be fixed via a sparsification technique based on [49], presented
in the full version. By using this technique, we can make sure that m = O(n1+o(1)) and thus
the preprocessing time will be fast enough to allow for O(no(1)) update time.

For this sparsification technique we require the following transitivity property.

Transitivity Property

If H ∈ H(G, ϵ), then H (H, δ) ⊂ H (G, δ + ϵ) . (5)

Intuitively this means that an approximation H of G and an approximation H ′ of H, then
H ′ is also a (slightly worse) approximation of G.

Properties 1-5 above are precisely the properties required of a graph problem by our black-
box reduction for worst-case update time. We show in the full version that the sparsifiers
discussed in this paper (spectral sparsifier, cut sparsifier, spanner) satisfy all these properties.

Sparsification Technique

We now outline the sparsification technique, whose formal proof is presented in the full
version. Let G be an arbitrary graph. We partition the edges of G into equally sized
subgraphs G1, G2, ..., Gd for some d > 1. Note that, if we have ε-approximate sparsifiers
H1, ..., Hd of G1, ..., Gd, then

⋃
i Hi is a ε-approximate sparsifier of G by property (2). In

addition, if we have a ε-approximate sparsifier H of
⋃

i Hi, then H is a (2ε)-approximate
sparsifier of G by property (5). This allows us to obtain a faster algorithm as follows: If G

has m edges, then each Gi has only m/d edges, so the dynamic algorithm runs faster on
these sparse Gi. Further, since the Hi are sparse (let’s say O(n) edges), the graph

⋃
i Hi has

only O(dn) edges and maintaining H is also faster than maintaining a sparsifier of G directly,
if dn = o(m). The next idea is to repeat this trick recursively: We repeatedly split each Gi

into d = no(1) graphs, until the graphs have only O(n1+o(1)) edges. This means we obtain
some tree-like structure rooted at G, where each tree-node G′ represents a subgraph of G and
its tree-children are the d subgraphs G′

1, ..., G′
d of G′. For the graphs that form leaves of this

tree, we run our dynamic sparsifier algorithm. We also obtain a sparsifier H ′ of any non-leaf
tree-node G′, by running our dynamic algorithm on

⋃d
i=1 H ′

i, where the H ′
i are sparsifiers of

the child-tree-nodes G′
i of the tree-node G′. Thus all instances of our dynamic algorithm

always run on sparse input graphs. However, there is one downside: When some sparsifier
H ′

i changes, the sparsifier H ′ must also change. Let’s say some edge is deleted from G, then
the edge is deleted from one leaf-node of the tree-structure, and this update will propagate
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from the leaf-node all the way to the root of the tree. This can be problematic because
when the dynamic algorithm changes some c > 1 many edges of the sparsifier for each edge
update, then the number of updates grows exponentially with the depth of the tree-like
structure. In [49] Eppstein et al. circumvented this issue by assuming an extra property
which they call stability property, which essentially says that this exponential growth does
not occur. Our modified sparsification technique no longer requires this assumption, instead
we balance the parameter d carefully to make sure the blow-up of the propagation is only
some sub-polynomial factor.
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Abstract
Spectral independence is a recently-developed framework for obtaining sharp bounds on the conver-
gence time of the classical Glauber dynamics. This new framework has yielded optimal O(n log n)
sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called
uniqueness regime, including, for example, the problems of sampling independent sets, matchings,
and Ising-model configurations.

Our main contribution is to relax the bounded-degree assumption that has so far been important
in establishing and applying spectral independence. Previous methods for avoiding degree bounds
rely on using Lp-norms to analyse contraction on graphs with bounded connective constant (Sinclair,
Srivastava, Yin; FOCS’13). The non-linearity of Lp-norms is an obstacle to applying these results to
bound spectral independence. Our solution is to capture the Lp-analysis recursively by amortising
over the subtrees of the recurrence used to analyse contraction. Our method generalises previous
analyses that applied only to bounded-degree graphs.

As a main application of our techniques, we consider the random graph G(n, d/n), where
the previously known algorithms run in time nO(log d) or applied only to large d. We refine these
algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics
that apply to all constant d, throughout the uniqueness regime.
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1 Introduction

Spectral independence method was introduced by Anari, Liu, and Oveis Gharan [2] as a
framework to obtain polynomial bounds on the mixing time of Glauber dynamics. Originally
based on a series of works on high-dimensional expansion [17, 9, 21, 18, 1], it has since then
been developed further using entropy decay by Chen, Liu, and Vigoda [8] who obtained
optimal O(n log n) mixing results on graphs of bounded maximum degree ∆ whenever the
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21:2 Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs

framework applies. This paper focuses on relaxing the bounded-degree assumption of [8], in
sparse graphs where the maximum degree is not the right parameter to capture the density
of the graph.

As a running example we will use the problem of sampling (weighted) independent sets,
also known as the sampling problem from the hard-core model. For a graph G = (V, E), the
hard-core model with parameter λ > 0 specifies a distribution µG,λ on the set of independent
sets of G, where for an independent set I it holds that µG,λ(I) = λ|I|/ZG,λ where ZG,λ is the
partition function of the model (the normalising factor that makes the probabilities add up
to 1). For bounded-degree graphs of maximum degree d + 1 (where d ≥ 2 is an integer), it is
known that the problems of sampling and approximately counting from this model undergo a
computational transition at λc(d) = dd

(d−1)d+1 , the so-called uniqueness threshold [29, 27, 12]:
they are poly-time solvable when λ < λc(d), and computationally intractable for λ > λc(d).
Despite this clear complexity picture, prior to the introduction of spectral independence, the
algorithms for λ < λc(d) were based on elaborate enumeration techniques whose running
times scale as nO(log d) [29, 19, 22, 23]. The analysis of Glauber dynamics1 using spectral
independence in the regime λ < λc(d) yielded initially nO(1) algorithms for any d [2], and
then O(n log n) for bounded-degree graphs [8] (see also [7]). More recently, Chen, Feng, Yin,
and Zhang [5] obtained O(n2 log n) results for arbitrary graphs G = (V, E) that apply when
λ < λc(∆G − 1), where ∆G is the maximum degree of G (see also [14] for related results
when ∆G grows like log n).

The maximum degree is frequently a bad measure of the density of the graph, especially
for graphs with unbounded-degree. One of the most canonical examples is the random graph
G(n, d/n) where the maximum degree grows with n but the average degree is d, and therefore
one would hope to be able to sample from µG,λ for λ up to some constant, instead of λ = o(1)
that the previous results yield. In this direction, [26, 24] obtained an nO(log d) algorithm
based on correlation decay that applies to all λ < λc(d) for all graphs with “connective
constant” bounded by d (meaning, roughly, that for all ℓ = Ω(log n) the number of length-ℓ
paths starting from any vertex is bounded by dℓ). The result of [24] applies to G(n, d/n) for
all d > 0. In terms of Glauber dynamics on G(n, d/n), [20] showed an n1+Ω(1/ log log n) lower
bound on the mixing time in the case of the Ising model; this lower bound actually applies
to most well-known models, and in particular rules out O(n log n) mixing time results for
the hard-core model when λ = Ω(1). The mixing-time lower bound on G(n, d/n) has only
been matched by complementary fast mixing results in models with strong monotonicity
properties, see [20] for the ferromagnetic Ising model and [4] for the random-cluster model.
Such monotonicity properties unfortunately do not hold for the hard-core model, and the
best known results [10, 11] for Glauber dynamics on G(n, d/n) give an nC algorithm for
λ < 1/d and sufficiently large d (where C is a constant depending on d).

Our main contribution is to obtain nearly linear-time algorithms on G(n, d/n), for all of
the models considered in [24], i.e., the hard-core model, the monomer-dimer model (weighted
matchings), and the antiferromagnetic Ising model. Key to our results are new spectral
independence bounds for any d > 0 in the regime λ < λc(d) for arbitrary graphs G = (V, E)
in terms of their “d-branching value” (which resembles the connective-constant notion of [24]).
To state our main theorem for the hard-core model on G(n, d/n), we first extend the definition

1 Recall, for a graph G, the Glauber dynamics for the hard-core model iteratively maintains a random
independent set (It)t≥0, where at each step t a vertex v is chosed u.a.r. and, if It ∪ {v} is independent,
it sets It+1 = It ∪ {v} with probability λ

λ+1 , otherwise It+1 = It\{v}. The mixing time is the maximum
number (over the starting I0) of steps t needed to get within total variation distance 1/4 of µG,λ, see
Section 4.1 for the precise definitions.
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of λc(d) to all reals d > 0 by setting λc(d) = dd

(d−1)d+1 for d > 1, and λc(d) = ∞ for d ∈ (0, 1).
We use the term “whp over the choice of G ∼ G(n, d/n)” as a shorthand for “as n grows large,
with probability 1 − o(1) over the choice of G(n, d/n)”. An ε-sample from a distribution µ

supported on a finite set Ω is a random σ ∈ Ω whose distribution ν satisfies ∥ν − µ∥TV ≤ ε,
where ∥ν − σ∥TV = 1

2
∑

σ∈Ω |ν(σ) − µ(σ)|.

▶ Theorem 1. Let d, λ > 0 be such that λ < λc(d). For any arbitrarily small constant θ > 0,
there is an algorithm such that, whp over the choice of G ∼ G(n, d/n), when the algorithm is
given as input the graph G and an arbitrary rational ε > 0, it outputs an ε-sample from µG,λ

in time n1+θ log 1
ε .

The reader might wonder why is there no constant in front of the running time (in
Theorems 1, 2, and 3) or why is there no requirement that n is sufficiently large? The
assumption that n is sufficiently large is taken care of in the whp condition: there is
a function fd,λ,θ : Z → R such that limn→∞ fd,λ,θ(n) = 0 and the “whp” means with
probability ≥ 1 − fd,λ,θ(n) (the function fd,λ,θ will have value ≥ 1 for small n, making the
conclusion trivial for such n). Moreover, the family of O(n1+θ) algorithms from Theorem 1
can be turned into an n1+o(1) algorithm as follows. The function fd,λ,θ is computable (and
efficiently invertible), see Remark 35 in the full version for a discussion. Let n0 = 1 and
nk > nk−1 be such that fd,λ,1/k(n) ≤ 1/k for all n ≥ nk. We are going to run the algorithm
of Theorem 1 with θ = 1/k for n ∈ {nk−1, . . . , nk − 1}. Note that the “combined” algorithm
succeeds with probability 1 − o(1) and runs in time n1+o(1).

We further remark here that the algorithm of Theorem 1 (as well as Theorems 2 and 3
below) can also recognise in time n1+o(1) whether the graph G ∼ G(n, d/n) is a “good” graph,
i.e., we can formulate graph properties that guarantee the success of the algorithm, are
satisfied whp, and are also efficiently verifiable, see Section C.4 in the full version for details.

The key to obtaining Theorem 1 is to bound the spectral independence of G(n, d/n).
The main strategy that has been applied so far to bound spectral independence is to adapt
suitably correlation decay arguments and, therefore, it is tempting to use the correlation
decay analysis of [24]. This poses new challenges in our setting since [24] uses an Lp-norm
analysis of correlation decay on trees, and the non-linearity of Lp-norms is an obstacle to
converting their analysis into spectral independence bounds (in contrast, for bounded-degree
graphs, the L∞-norm is used which can be converted to spectral independence bounds using
a purely analytic approach, see [7]). Our solution to work around that is to “linearise”
the Lp-analysis by taking into account the structural properties of subtrees. This allows
us to amortise over the tree-recurrence using appropriate combinatorial information (the
d-branching values) and to bound subsequently spectral independence; details are given in
Section 3, see Lemmas 10 and 12 (and equation (2) that is at the heart of the argument).
Once the spectral independence bound is in place, further care is needed to obtain the
fast nearly linear running time, paying special attention to the distribution of high-degree
vertices inside G(n, d/n) and to blend this with the entropy-decay tools developed in [8], see
Section 4.2 for this part of the argument.

In addition to our result for the hard-core model, we also obtain similar results for the
Ising and the matchings models. The configurations of the Ising model on a graph G = (V, E)
are assignments σ ∈ {0, 1}V which assign the spins 0 and 1 to the vertices of G. The Ising
model with parameter β > 0 corresponds to a distribution µG,β on {0, 1}V , where for an
assignment σ ∈ {0, 1}V , it holds that µG,β(σ) = βm(σ)/ZG,β where m(σ) is the number of
edges whose endpoints have the same spin assignment under σ, and ZG,β is the partition
function of the model. The model is antiferromagnetic when β ∈ (0, 1), and ferromagnetic
otherwise. For d ≥ 1, let βc(d) = d−1

d+1 ; for d ∈ (0, 1), let βc(d) = 0. It is known that on

ICALP 2022
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bounded-degree graphs of maximum degree d + 1 the sampling/counting problem for the
antiferromagnetic Ising model undergoes a phase transition at β = βc(d), analogous to that
for the hard-core model [25, 19, 28, 13].

▶ Theorem 2. Let d, β > 0 be such that β ∈ (βc(d), 1). For any constant θ > 0, there is an
algorithm such that, whp over the choice of G ∼ G(n, d/n), when the algorithm is given as
input the graph G and an arbitrary rational ε > 0, it outputs an ε-sample from µG,β in time
n1+θ log 1

ε .

For a graph G = (V, E), the matchings model with parameter γ > 0, also known as the
monomer-dimer model, corresponds to a distribution µG,γ on the set of matchings of G, where
for a matching M , it holds that µG,γ(M) = γ|M |/ZG,γ where ZG,γ is the partition function.
For general graphs G = (V, E) and γ = O(1), [15, 16] gave an O(n2m log n) algorithm (where
n = |V |, m = |E|), which was improved for bounded-degree graphs to O(n log n) in [8] using
spectral independence. For G(n, d/n), [24] gave an O(nlog d) deterministic algorithm using
correlation decay, and [14] showed that Glauber dynamics mixes in n2+o(1) steps in the case
that γ = 1.

▶ Theorem 3. Let d, γ > 0. For any constant θ > 0, there is an algorithm such that, whp
over the choice of G ∼ G(n, d/n), when the algorithm is given as input the graph G and an
arbitrary rational ε > 0 outputs an ε-sample from µG,γ in time n1+θ log 1

ε .

In the next section, we give the main ingredients of our algorithm for the hard-core model
and we give the proof of Theorem 1. The proofs of Theorems 2 and 3 build on similar ideas,
though there are some modifications needed to obtain the required spectral independence
bounds. We give their proofs in Section B.3 of the full version.

Before proceeding let us finally mention that, to go beyond the 2-spin models studied
here, the main obstacle is to establish the spectral independence bounds for graphs with
potentially unbounded degrees. As it is pointed out in [24, Section 7], their correlation-decay
analysis in terms of the connective constant using Lp-norms does not extend to other models
in a straightforward manner, and hence it is natural to expect that the same is true for
spectral independence as well.

2 Proof outline for Theorem 1

Our algorithm for sampling from the hard-core model on a graph G = (V, E) is an adaptation
of Glauber dynamics on an appropriate set of “small-degree” vertices U , the details of the
algorithm are given in Figure 1. Henceforth, analogously to the Ising model, it will be
convenient to view the hard-core model as a 2-spin model supported on Ω ⊆ {0, 1}V , where
Ω corresponds to the set of independent sets of G (for an independent set I, we obtain
σ ∈ {0, 1}V by setting σv = 1 iff v ∈ I).

Note that for general graphs G, implementing Steps 2 and Steps 3 of the algorithm might
be difficult. The following lemma exploits the sparse structure of G(n, d/n) and in particular
the fact that high-degree vertices are sparsely scattered. We will use this in the proof of our
main theorems to show that the algorithm Sample(G, T ) can be implemented very efficiently
for appropriate D, paying only O(log n) per loop operation in Step 2 and only O(n log n) in
Step 3. The tree-excess of a graph G = (V, E) is defined as |E| − |V | + 1.

▶ Lemma 4. Let d > 0 be an arbitrary real. There exist constants D, ℓ > 0 such that the
following holds whp over the choice of G = (V, E) ∼ G(n, d/n). Each of the connected
components of G[V \U ], where U is the set of vertices of degree ≤ D, has size O(log n) and
tree-excess at most ℓ.
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Algorithm Sample(G, T ).

Parameters: D > 0 (threshold for small/high degree vertices).
Input: Graph G = (V, E), integer T ≥ 1 (number of iterations).

1. Initialisation: Let U be the set of all vertices with degree ≤ D.
Let X0 be the empty independent set on U .

2. Main loop: For t = 1, . . . , T ,
Pick a vertex u uniformly at random from U .
For every vertex v ∈ U\{u}, set Xt(v) = Xt−1(v).
Sample the spin Xt(u) according to µG,λ

(
σu | σU\{u} = Xt(U\{u})

)
, i.e., update

u according to the hard-core distribution on the whole graph G, conditioned on
the spins of U\{u}.

3. Finalisation: Sample σ ∼ µG,λ

(
·

∣∣ σU = XT

)
, i.e., extend XT to the whole vertex

set of G by sampling from µG,λ conditioned on the configuration on U .

Figure 1 The Sample(G, T ) subroutine for sampling from the hard-core distribution µG,λ. We
use the analogue of this algorithm for the Ising model with parameter β (replacing µG,λ by µG,β).
For the monomer-dimer model, the only difference is that the algorithm needs to update (single)
edges in F , where F is the set of vertices whose both endpoints lie in U (i.e., degree ≤ D).

Lemma 4 follows using relatively standard techniques from random graphs and is proved
in Section C of the full version. Later, we will establish a more refined version of this property
that will allow us to bound the mixing time of the single-site dynamics that we consider (the
main loop of Sample(G, T )).

The key ingredient needed to prove our main result is to show that the main loop of our
sampling algorithm returns a good sample on the induced hard-core distribution on the set
U . More precisely, for a graph G = (V, E) and U ⊆ V , we let µG,λ,U (·) denote the induced
distribution on the spins of U , i.e., the marginal distribution µG,λ(σU = ·).

▶ Lemma 5. Let d, λ > 0 be constants such that λ < λc(d). For any arbitrarily small constant
θ > 0, there is D > 0 such that the following holds whp over the choice of G ∼ G(n, d/n).

Let U be the set of vertices in G of degree ≤ D. Then, for any ε > 0, for T =
⌈n1+θ/2 log 1

ε ⌉, the main loop of Sample(G, T ) returns a sample XT from a distribution
which is ε-close to µG,λ,U .

We will prove Lemma 5 in Section 4.2. With these two lemmas we are ready to prove
Theorem 1.

Proof of Theorem 1. We give first the details for the more interesting case d ≥ 1. Consider
arbitrarily small θ > 0 and D, ℓ as in Lemmas 4 and 5, so that whp G satisfies the properties
therein. Let ε > 0 be the desired accuracy for sampling from µG,λ; it is sufficient to consider
ε < 1/e. Let U be the set of vertices with degree ≤ D, and set T = ⌈n1+θ/2 log 1

ε ⌉.
By Lemma 5, whp over the choice of G, the main loop of Sample(G, T ) returns a

configuration XT : U → {0, 1} that is ε-close to µG,λ,U . Note that each iteration of the main
loop of Sample(G, T ) can be implemented in O(log n) time since G[V \U ] has components
of size O(log n) and tree excess at most ℓ. In particular, any vertex u ∈ U can be adjacent
to at most D of these components, and therefore the component of u in G[(V \U) ∪ {u}] has
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21:6 Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs

size O(log n) and tree excess at most k = D ⌈ℓ⌉ = O(1). We can therefore sample the spin of
u under µG,λ conditioned on the spins of U\{u} in time O(4k log n) = O(log n).2 Therefore,
the main loop of Sample(G, T ) runs in time O(T log n). Analogously, the finalisation step of
Sample(G, T ), i.e., extending the configuration XT on U to a configuration σ on the whole
vertex set V , can be implemented in time O(n log n) by iterating over the vertices in V \U

and using the fact that the components of G[V \U ] have excess at most ℓ. Therefore, the
overall running time of the algorithm is bounded by O(T log n) + O(n log n), which is less
than ⌈n1+θ log 1

ε ⌉ for all sufficiently large n. It remains to note that, since XT is ε-close to
the marginal distribution of µG,λ on U , and the finalisation step is done perfectly conditioned
on the configuration on U , the final configuration σ is ε-close to the distribution µG,λ.

For d < 1, whp G consists of tree-like components of size O(log n), and therefore we can
obtain a perfect sample from µG,λ in time O(n log n) by going through the vertices one by
one and, for each vertex, taking O(log n) time to compute its marginal, conditioned on the
spins already sampled. ◀

3 Spectral independence via branching values

We first introduce the notions of spectral independence and pairwise vertex influences, which
we will later use to bound the mixing time of the main loop of Sample(G, T ), i.e., to prove
Lemma 5. We will define the terminology in a general way that will be useful both for our
analysis of the hard-core model, and for our later analysis of other models.

Let q ≥ 2 be an integer indicating the number of spins and let V be a set of size
n. We will consider distributions µ supported on a set Ω ⊆ [q]V .3 For S ⊆ V , let
ΩS = {τ ∈ [q]S | µ(σS = τ) > 0} be the set of all partial configurations on [q]S that
have non-zero marginal under µ. For τ ∈ ΩS , let µτ be the conditional distribution on Ω
induced by τ , i.e., µτ (·) = µ(· | σS = τ). Let µmin = minσ∈Ω µ(σ).

For S ⊆ V and τ ∈ ΩS , the influence matrix conditioned on τ is the matrix Ψτ whose
rows and columns are indexed by Ṽτ = {(v, i) | v ∈ V \S, µτ (σv = i) > 0}, where the entry
indexed by (v, i), (w, k) equals µτ (σw = k | σv = i) − µτ (σw = k) if v ̸= w, and 0 otherwise.
It is a standard fact that the eigenvalues of the matrix Ψ are all real ([2]), and we denote by
λ1(Ψ) its largest eigenvalue.

▶ Definition 6. Let q ≥ 2 be an integer and V be a set of size n ≥ 2. Let µ be a distribution
supported over Ω ⊆ [q]V . Let η, b > 0. We say that µ is η-spectrally independent if for all
S ⊂ V and τ ∈ ΩS, it holds that λ1(Ψτ ) ≤ η. We say that µ is b-marginally bounded if
for all S ⊂ V , v ∈ V \S, τ ∈ ΩS, and i ∈ [q], it either holds that µτ (σv = i) = 0 or else
µτ (σv = i) ≥ b.

Following [2, 7], for distributions µ induced by 2-spin systems, we work with the following
notion of pairwise vertex-influence, which can be used to bound the spectral independence.
For a graph G = (V, E) and τ ∈ {0, 1}S for some S ⊂ V , for vertices u, v with u ∈ V \S and
0 < µτ (σu = 1) < 1, we define the influence of u on v (under µτ ) as

Iτ
G(u → v) = µτ (σv = 1 | σu = 1) − µτ (σv = 1 | σu = 0).

2 One “naive” way to do this is by considering a spanning tree and then brute-forcing over all ≤ 4k

possibilities for the endpoints of the excess edges (the spins on each edge can be set in at most 4
ways). For each of these, the marginal probability at u and the corresponding partition function can be
computed using dynamic programming on the left-over tree.

3 For an integer k ≥ 1, we denote by [k] the set {0, 1, . . . , k − 1}.
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For matchings, we will work with an analogous notion from the perspective of edges (see
Section B.2 of the full version). For all these models, spectral independence will be bounded
by summing the absolute value of the influences of an arbitrary vertex u to the rest of the
graph.

In turn, it has been shown in [7] that summing the influences of a vertex u in a graph
G reduces to summing the sum of influences on the self-avoiding walk tree emanating from
u, see Lemma 22 in the full version. Therefore, we only need to focus on trees arising as
self-avoiding walk trees.

3.1 The branching value
We will need the following notion to capture the growth of the self-avoiding walk tree from a
vertex.

▶ Definition 7. Let d > 0 be a real number and G = (V, E) be a graph. For a vertex v in G,
the d-branching value Sv equals

∑
ℓ≥0 Nv,ℓ/dℓ, where Nv,ℓ is the number of (simple) paths

with a total of ℓ + 1 vertices starting from v (for convenience, we set Nv,0 = 1).

We will show the following lemma in Section C.1 which bounds the d′-branching value of
G(n, d/n) for any d′ > d.

▶ Lemma 8. Let d ≥ 1. Then, for every d′ > d and ε > 0, whp over the choice of
G ∼ G(n, d/n), the d′-branching value of every vertex in G is at most ε log n.

3.2 Spectral independence for the hard-core model
In this section, we bound the spectral independence of G(n, d/n) in the hard-core model
when λ < λc(d). We will need the following technical lemma that can be derived from [24].
The derivation details are similar to an analogous lemma for matchings (cf. Lemma 26 in
the full version), which can be found in [3, Lemma 15].

▶ Lemma 9 ([24]). Let d > 1 and λ > 0 be constants such that λ < λc(d). Let χ ∈ (1, 2)
be given from 1

χ = 1 − d−1
2 log

(
1 + 1

d−1

)
and set a = χ

χ−1 . Consider also the function
Φ(y) = 1√

y(1+y)
for y > 0. Then, there is a constant 0 < κ < 1/d such that the following

holds for any integer k ≥ 1.
Let x1, . . . , xk be reals and x = λ

∏k
i=1

1
1+xi

. Then (Φ(x))a
∑k

i=1

(
x

(1+xi)Φ(xi)

)a

≤ κa/χ.

We will show the following.

▶ Lemma 10. Let d > 1 and λ > 0 be constants such that λ < λc(d). Then, there is a
constant χ > 1 such that the following holds.

Let T = (V, E) be a tree rooted at ρ, whose d-branching value is ≤ α and whose root has
k children. Then, for the hard-core distribution on T with parameter λ, any S ⊆ V \{ρ} and
τ ∈ ΩS with 0 < µτ (σρ = 1) < 1, it holds that∑

v∈V

∣∣Iτ
T (ρ → v)

∣∣ ≤ Wkα1/χ,

where Wk > 0 is a real depending only on the degree k of the root (and the constants d, λ).

Proof. Let κ ∈ (0, 1/d) and χ ∈ (1, 2) be the constants from Lemma 9, and Φ(x) = 1√
x(1+x)

be also as in Lemma 9.
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21:8 Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs

We may assume without loss of generality that S is empty (and τ is trivial) by truncating
the tree T using the following procedure: just remove vertices u ∈ S with τu = 0, and for
u ∈ S with τu = 1 remove u and all of its neighbours. Note that for all the removed vertices
v it holds that Iτ

T (ρ → v) = 0, so the removal procedure does not decrease the sum of the
absolute influences, while at the same time decreasing the d-branching value of the tree T .
Henceforth, we will drop τ and S from notation.

To prove the lemma, we will work inductively on the depth of the tree. To this end, we
first define for each vertex u in T the following values αu and Ru; the α’s capture a rooted
analogue of the branching value of internal vertices within T , while the R’s the marginals
of the vertices in the corresponding subtrees. More precisely, if v is a leaf, set αv = 1 and
Rv = λ; otherwise set αv = 1 + 1

d

∑k
i=1 αvi

and Rv = λ
∏k

i=1
1

1+Rvi
, where v1, . . . , vk are

the children of v. Note that for the root ρ we have that αρ = Sρ ≤ α, where Sρ is the
d-branching value of ρ in the tree T . Moreover, if we denote by Tv the subtree of T rooted
at v and by u the parent of v in T , then it holds that

Rv = µTv,λ(σv = 1)
µTv,λ(σv = 0) and IT (u → v) = − Rv

Rv + 1 . (1)

The first equality is fairly standard and can be proved using induction on the height of the
tree, while the second one is [7, Lemma 15] (it also follows directly from the definition of
influence and the first equality).

For an integer h ≥ 0, let L(h) be the nodes at distance h from the root ρ. Let Mk =√
1 + (1 + λ)k/λ, where recall that k is the degree of the root ρ. We will show that

∑
v∈L(h)

(αv

αρ

)1/χ
∣∣IT (ρ → v)

∣∣
RvΦ(Rv) ≤ Mk(dκ)h/χ. (2)

Since αv ≥ 1 for v ∈ V , αρ ≤ α and RvΦ(Rv) ≤ 1, (2) yields
∑

v∈L(h)
∣∣IT (ρ → v)

∣∣ ≤
Mkα1/χ(dκ)h/χ for all integer h ≥ 0, and therefore summing over h, we obtain that

∑
v∈V

∣∣IT (ρ → v)
∣∣ ≤ Mkα1/χ

∑
h≥0

(dκ)h/χ ≤ Mkα1/χ

1 − (dκ)1/χ
,

which proves the result with Wk = Mk

1−(dκ)1/χ . So it only remains to prove (2).
We will work inductively. The base case h = 0 is equivalent to Mk ≥ 1/(RρΦ(Rρ)) =√

1 + 1/Rρ, which is true since from the recursion for Rρ we have that Rρ ≥ λ/(1 + λ)k. For
the induction step, consider v ∈ L(h − 1) and suppose it has kv ≥ 0 children, denoted by vi

for i ∈ [kv]. Then, for each i ∈ [kv], since v is on the unique path joining ρ to vi, it holds
that (see [2, Lemma B.2])

IT (ρ → vi) = IT (ρ → v)IT (v → vi),

so we can write

∑
v∈L(h)

(αv

αρ

)1/χ
∣∣IT (ρ → v)

∣∣
RvΦ(Rv) =

∑
v∈L(h−1)

(αv

αρ

)1/χ |IT (ρ → v)|
RvΦ(Rv)

∑
i∈[kv ]

(αvi

αv

)1/χ

RvΦ(Rv) |IT (v → vi)|
Rvi

Φ(Rvi
) .

(3)
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Consider an arbitrary v ∈ L(h − 1). Then, since 1
χ + 1

a = 1, by Hölder’s inequality we have
that∑

i∈[kv ]

(αvi

αv

)1/χ

RvΦ(Rv) |IT (v → vi)|
Rvi

Φ(Rvi
) ≤

( ∑
i∈[kv ]

αvi

αv

)1/χ(
(RvΦ(Rv))a

∑
i∈[kv ]

( |IT (v → vi)|
Rvi

Φ(Rvi
)

)a
)1/a

.

(4)

Note that for x = Rv and xi = Rvi , i ∈ [kv], we have from (1) that |IT (v→vi)|
Rvi

= 1
1+xi

and
x = λ

∏
i∈[kv ]

1
1+xi

, so by Lemma 9 we have that(
(RvΦ(Rv))a

∑
i∈[kv ]

( |IT (v → vi)|
RviΦ(Rvi)

)a
)1/a

≤ κ1/χ.

By definition of the d-branching value we also have αv = 1 + 1
d

∑
i∈[kv ] αvi

≥ 1
d

∑
i∈[kv ] αvi

,
so plugging these back into (4) yields∑

i∈[kv ]

(αvi

αv

)1/χ

RvΦ(Rv) |IT (v → vi)|
Rvi

Φ(Rvi
) ≤ (dκ)1/χ.

In turn, plugging this into (3) and using the induction hypothesis yields (2), finishing the
proof. ◀

▶ Remark 11. For simplicity, and since it is not important for our arguments, the constant
Wk in the proof depends exponentially on the degree k of the root. With a more careful
inductive proof (cf. [7, Proof of Lemma 14]), the dependence on k can be made linear.
In either case, because of the high-degree vertices in G(n, d/n), both bounds do not yield
sufficiently strong bounds on the spectral independence of the whole distribution µG,λ, and
this is one of the reasons that we have to consider the spectral independence on the induced
distribution on low-degree vertices.

Recall that for a graph G = (V, E) and U ⊆ V , we let µG,λ,U (·) denote the marginal
distribution on the spins of U , i.e., the distribution µG,λ(σU = ·).

▶ Lemma 12. Let d ≥ 1 and λ > 0 be constants such that λ < λc(d). Then, for any constants
D, ε > 0, whp over the choice of G ∼ G(n, d/n), the marginal hard-core distribution µG,λ,U ,
where U is the set of vertices in G with degree ≤ D, is (ε log n)-spectrally independent.

Proof. Let D, ε > 0 be arbitrary constants, and let d′ > d be such that λ < λc(d′); such
d′ exists because the function λc(·) is continuous in the interval (1, ∞) and λc(d) → ∞ for
d ↓ 1. Let χ ∈ (1, 2) and W = max{W1, . . . , WD} where χ and the Wk’s are as in Lemma 10
(corresponding to the constants d′, λ). By Lemma 8, whp all of the vertices of the graph
G = (V, E) ∼ G(n, d/n) have d′-branching value less than ε log n. We will show that the
result holds for all such graphs G (for sufficiently large n).

Let U be the set of vertices in G with degree ≤ D, and let for convenience µ = µG,λ,U .
Consider arbitrary S ⊂ U and τ ∈ ΩS . It suffices to bound the largest eigenvalue of
the influence matrix Ψτ by ε log n. Analogously to [2, 7], we do this by bounding the
absolute-value row sums of Ψτ . Recall that the rows and columns of Ψτ are indexed by
Ṽτ = {(v, i) | v ∈ U\S, µτ (σv = i) > 0}, where the entry indexed by (v, i), (w, k) equals
µτ (σw = k | σv = i) − µτ (σw = k) if v ̸= w, and 0 otherwise. Consider arbitrary (v, i) ∈ Ṽτ ;
our goal is to show
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∑
(w,k)∈Ṽτ

∣∣µτ (σw = k | σv = i) − µτ (σw = k)
∣∣ ≤ ε log n. (5)

Henceforth, we will also assume that µτ (σv = i) < 1 (in addition to µτ (σv = i) > 0),
otherwise the sum on the l.h.s. is equal to 0. Then, by the law of total probability, for any
(w, k) ∈ Ṽτ we have∣∣µτ (σw = k | σv = i) − µτ (σw = k)

∣∣ ≤
∣∣µτ (σw = k | σv = 1) − µτ (σw = k | σv = 0)

∣∣
=

∣∣Iτ
G(v → w)

∣∣,
where the last equality follows from the fact that µ is the marginal distribution of µG,λ on U .
Therefore, we can bound∑

(w,k)∈Ṽτ

∣∣µτ (σw = k | σv = i) − µτ (σw = k)
∣∣ ≤

∑
w∈U

∣∣Iτ
G(v → w)| ≤

∑
w∈V

∣∣Iτ
G(v → w)

∣∣.
By Lemma 22 in the full version, for the self-avoiding walk tree T = (VT , ET ) from v, there

is a subset Z ⊆ VT \{ρ} and a configuration ϕ ∈ {0, 1}Z such that∑
w∈V

∣∣Iτ
G(v → w)

∣∣ ≤
∑

w∈VT

∣∣Iϕ
T (v → w)

∣∣,
where Iϕ

T (v → ·) denotes the influence of v on the vertices of T (in the hard-core distribution
µT,λ conditioned on ϕ). Since the d′-branching value of v (and any other vertex of G) is
bounded by ε log n and the degree of v is ≤ D, by Lemma 10 applied to T , we have that∑

w∈VT

∣∣Iϕ
T (v → w)

∣∣ ≤ W (ε log n)1/χ.

Since χ > 1, for all sufficiently large n we have that W (ε log n)1/χ ≤ ε log n, which proves (5).
◀

We also record the following corollary of the arguments in Lemma 10.

▶ Corollary 13. Let λ > 0 and D > 0 be real numbers. For a graph G = (V, E), let U be
the set of vertices in G with degree ≤ D and suppose that |U | ≥ 2. Then, the distribution
µ := µG,λ,U is b-marginally bounded for b = λ

λ+(1+λ)D .

Proof. By Lemma 22 in the full version, for any vertex v ∈ U and any boundary condition
τ on (a subset of) U\{v}, there is a corresponding tree T and a boundary condition ϕ on T

such that µτ (σv = ·) = νϕ(σv = ·). Since v has degree ≤ D, from the proof of Lemma 10,
see in particular equation (1), we have that νϕ(σv = ·) ≥ b, where b is as in the lemma
statement. ◀

4 Entropy factorisation for bounded-degree vertices

In this section, we show how to convert the spectral independence results of the previous
section into fast mixing results for Glauber dynamics on the set of small-degree vertices on
G(n, d/n). Our strategy here follows the technique of [8], though to obtain nearly linear
results we have to pay attention to the connected components induced by high-degree vertices
and how these can connect up small-degree vertices.
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4.1 Preliminaries

Entropy factorisation for probability distributions

For a real function f on Ω ⊆ [q]V , we use Eµ(f) for the expectation of f with respect to
µ and, for f : Ω → R≥0, Entµ(f) = Eµ[f log f ] − Eµ(f) log Eµ(f), with the convention
that 0 log 0 = 0. Finally, for S ⊂ V , let EntS

µ(f) = Eτ∼µV \S

[
Entµτ

(f)
]

i.e., EntS
µ(f) is the

expected value of the conditional entropy of f when the assignment outside of S is chosen
according to the marginal distribution µV \S (the induced distribution of µ on V \S). For
convenience, when S = V , we define EntS

µ(f) = Entµ(f). The following inequality of entropy
under tensor product is a special case of Shearer’s inequalities.

▶ Fact 14. Let q, k ≥ 2 be integers and suppose that, for i ∈ [k], µi is a distribution supported
over Ωi ⊆ [q]Vi , where V1, . . . , Vk are pairwise disjoint sets. Let µ = µ1 ⊗ · · · ⊗ µk be the
product distribution on Ω = Ω1 × · · · × Ωk. Then, for any f : Ω → R≥0, it holds that
Entµ(f) ≤

∑k
i=1 EntVi

µ (f).

To bound the mixing time of Markov chains such as the Glauber dynamics, we will be
interested in establishing inequalities for factorisation of entropy, defined as follows.

▶ Definition 15. Let q ≥ 2, r ≥ 1 be integers and V be a set of size n ≥ r + 1. Let
µ be a distribution supported over Ω ⊆ [q]V . We say that µ satisfies the r-uniform-block
factorisation of entropy with multiplier4 Cr if for all f : Ω → R≥0 it holds that r

n Entµ(f) ≤
Cr

1
(n

r)
∑

S∈(V
r ) EntS

µ(f).

The following lemma will be useful to bound the (r-uniform-block) factorisation multiplier
for conditional distributions on sets with small cardinality.

▶ Lemma 16 ([8, Lemma 4.2]). Let q ≥ 2 be an integer and V be a set of size n ≥ 2.
Let µ be a distribution supported over Ω ⊆ [q]V which is b-marginally bounded for some
b > 0. Then, for any S ⊆ V and τ ∈ ΩV \S, for f : Ω → R≥0, it holds that Entµτ

(f) ≤
2|S|2 log(1/b)

b2|S|+2

∑
v∈S Entv

µτ
(f).

The r-uniform-block Glauber dynamics and its mixing time

For an integer r = 1, . . . , n, the r-uniform-block Glauber dynamics for µ is a Markov chain
(Xt)t≥0 where X0 ∈ Ω is an arbitrary configuration and, for t ≥ 1, Xt is obtained from Xt−1
by first picking a subset S ∈ V of size r uniformly at random and updating the configuration
on S according to

µ
(
σS = · | σV \S = Xt−1(V \S)

)
.

For ε > 0, the mixing time of the r-uniform-block Glauber dynamics is defined as Tmix(ε) =
maxσ∈Ω min

{
t
∣∣ X0 = σ, ∥νt − µ∥TV ≤ ε

}
, where νt denotes the distribution of Xt. Note,

the case r = 1 corresponds to the single-site dynamics, where at every step the spin of a
single vertex, chosen u.a.r., is updated conditioned on the spins of the remaining vertices.

4 We note that in related works Cr is usually referred to as the “factorisation constant”; we deviate from
this terminology since for us Cr will depend on n (cf. Corollary 19 and Lemma 21), and referring to it
as a constant could cause confusion.
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▶ Lemma 17 (See, e.g., [8, Lemma 2.6 & Fact 3.5(4)] or [6, Lemma 3.2.6 & Fact 3.4.2]). Let
q ≥ 2, r ≥ 1 be integers and V be a set of size n ≥ r + 1. Let µ be a distribution supported
over Ω ⊆ [q]V that satisfies the r-uniform-block factorisation of entropy with multiplier Cr.
Then, for any ε > 0, the mixing time of the r-uniform-block Glauber dynamics on µ satisfies

Tmix(ε) ≤
⌈

Cr
n

r

(
log log 1

µmin
+ log 1

2ε2

)⌉
, where µmin = minσ∈Ω µ(σ).

We remark that to deduce the lemma from [8] or [6], which refer to the so-called “entropy
decay constant κ”, one needs to use the equality Crκ = r/n from [8, Lemma 2.6] or [6,
Lemma 3.2.6].

From spectral independence to r-uniform-block factorisation multipliers

The following theorem is shown in [8]; while the version that we state here cannot be found
verbatim in [8], we explain in the appendix how to combine the results therein to obtain it.

▶ Theorem 18 ([8]). Let q ≥ 2 be an integer and V be a set of size n ≥ 2. Let µ be
a distribution supported over Ω ⊆ [q]V that is η-spectrally independent and b-marginally
bounded for η, b > 0.

Then, for all integers r = 1, . . . , n, the distribution µ satisfies the r-uniform-block

factorisation of entropy with multiplier Cr = r

n

∑n−1
k=0 Γk∑n−1

k=n−r Γk

, where Γk =
∏k−1

j=0 αj for

k ∈ [n]5 and αk = max
{

0, 1 − 4η
b2(n−1−k)

}
for k ∈ [n − 1].

4.2 Entropy factorisation for bounded-degree vertices in the hard-core
model

The first step of the analysis of Glauber dynamics for the hard-core model on the set of
small-degree vertices will be to employ spectral independence results of Section 3.2 to conclude
fast mixing for the r-uniform block Glauber dynamics for r = θ|U | for any arbitrarily small
constant θ. This step will follow by applying the recent technology of entropy factorisation
described above.

The second step is the more challenging for us. Here we need to conclude fast mixing
for r = 1, and in particular prove that C1/Cr = no(1). This is done roughly by studying
the connected components of G that arise when resampling an r-subset of the low-degree
vertices; the factorisation multiplier of these components controls the ratio C1/Cr. While
this resembles the approach of [8], there is a key difference here, in that high-degree vertices
are not resampled. This can not only cause potentially large components, but also imposes
a deterministic lower bound on components sizes (since a component consisting of high-
degree vertices will be deterministically present in the percolated graph consisting of the
r-subset of low-degree vertices and all of the high-degree vertices). This lower bound on the
component sizes is actually more significant than it might initially seem since the relatively
straightforward bound of Ω(log n) would unfortunately give a relatively large factorisation
multiplier of nΩ(1) (through Lemma 16). Instead, we need to show that components have size
o(log n), which in turn requires more delicate estimates for the distribution of high-degree
vertices in connected sets (see Lemma 20 below).

5 We note that for k = 0, the product defining Γk is empty and therefore Γ0 = 1.
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We start with the following corollary of Lemma 12, which converts a spectral independence
bound into a bound on the factorisation multiplier for the r-uniform-block Glauber dynamics
when r scales linearly with small-degree vertices. This is analogous to [8, Lemma 2.4], where
they obtain a 2O(η/b2) bound on Cr when r = Θ(n) via Theorem 18 (where η is the spectral
independence bound and b is the bound on the marginals). By restricting to small-degree
vertices, we obtain that b is a constant, which combined with the bound η = o(log n) from
Lemma 12 gives the bound Cr = no(1), as detailed below. The proof of the corollary is given
for completeness in Section D of the full version.

▶ Corollary 19. Let d ≥ 1 and λ > 0 be constants such that λ < λc(d). Then, for any
constants D, θ > 0, whp over the choice of G ∼ G(n, d/n), the marginal hard-core distribution
µG,λ,U , where U is the set of vertices in G with degree ≤ D, satisfies for any integer
r ∈

[
θ|U |, |U |

]
the r-uniform block factorisation of entropy with multiplier Cr ≤ nθ.

Note that the reason that we are able to use the same θ in the bounds for r and Cr is that
the bound on Cr is loose (we can obtain a sharper result since we have a bound on the
spectral independence of ε log n for any ε > 0).

We will now refine the bound of Corollary 19 down to r = 1 by exploiting the fact that
high-degree vertices are sparsely scattered. In particular, we will need the following lemma
which is a refinement of Lemma 4. For a graph G = (V, E), we say that a set S ⊆ V is
connected if the induced subgraph G[S] is connected.

▶ Lemma 20. Let d > 0 be an arbitrary real. There exists an L > 0 such that for
any δ ∈ (0, 1), the following holds whp over the choice of G = (V, E) ∼ G(n, d/n). For
∆ = 1/(δ log 1

δ ), for all integers k ≥ δ log n and any v ∈ V , there are ≤ (2e)∆Lk connected
sets S ⊆ V containing v with |S| = k. Moreover, every such set contains ≥ k/2 vertices with
degree less than L∆.

The proof of Lemma 20 is given in Section C.3 of the full version. We are now ready to
show the following.

▶ Lemma 21. Let d ≥ 1 and λ > 0 be constants such that λ < λc(d). For any θ > 0,
there is a constant D > 0 such that whp over the choice of G ∼ G(n, d/n), the marginal
hard-core distribution µG,λ,U , where U is the set of vertices in G with degree ≤ D, satisfies
the 1-uniform-block factorisation of entropy with multiplier C1 ≤ nθ.

Proof. Let L > 0 be as in Lemma 20, and consider an arbitrarily small constant θ > 0. Let
δ ∈ (0, 1) be a sufficiently small constant so that for D = L/(δ log 1

δ ) and b = λ
λ+(1+λ)D it

holds that 1
b2δ < eθ/4; such a constant exists since b2δ → 1 as δ ↓ 0. Let ∆ = 1/(δ log 1

δ ) and
ζ > 0 be a small constant so that 2(2e)L∆(2ζ)1/2 ≤ b2/2.

Let U be the vertices in G with degree ≤ D, and let r = ⌊ζ|U |⌋ + 1. Let µ = µG,λ,U . By
Corollary 19, we have that whp over the choice of G, there is Cr ≤ nθ/3 such that for every
f : Ω → R≥0 it holds that

r

|U |
Entµ(f) ≤ Cr

1(|U |
r

) ∑
S∈(U

r)
EntS

µ(f). (6)

For S ⊆ U , let C′(S) denote the collection of the connected components of the graph
G[S ∪ (V \U)], viewed as vertex sets, and let C(S) =

⋃
R∈C′(S){R ∩ U} be the restriction of

these components to the set U . Note that, for S ⊆ U and τ ∈ ΩU\S , µτ factorises over the
components of G[S ∪ (V \U)] and in particular, applying Fact 14, we have that

EntS
µ(f) = Eτ∼µU\S

[
Entµτ

(f)
]

≤ Eτ∼µU\S

[ ∑
R∈C(S)

EntR
µτ

(f)
]
.
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Using the bound in Lemma 16, we further obtain that

EntS
µ(f) ≤ Eτ∼µU\S

[ ∑
R∈C(S)

2|R|2 log(1/b)
b2|R|+2

∑
u∈R

Entu
µτ

(f)
]

=
∑

R∈C(S)

∑
u∈R

2|R|2 log(1/b)
b2|R|+2 Entu

µ(f),

where the last equality follows by linearity of expectation and the fact that
Eτ∼µU\S

[Entu
µτ

(f)] = Entu
µ(f). Plugging this bound into (6), we obtain that

Entµ(f) ≤ 2Cr log(1/b)
b2

(|U |−1
r−1

) ∑
S∈(U

r)

∑
R∈C(S)

∑
u∈U

|R|2

b2|R| Entu
µ(f).

which yields that

Entµ(f) ≤ 2Cr log(1/b)
b2

∑
u∈U

Entu
µ(f)

n∑
k=1

k2

b2k
Pr[Cu(S) = k], (7)

where Pr[Cu(S) = k] denotes the probability that u belongs to a set of size k in the set
C(S), when we pick S uniformly at random from {S ∈

(
U
r

)
| u ∈ S}. Define analogously

Pr[C′
u(S) = k] to be the probability that u belongs to a connected component of size k in

the set C′(S). By Lemma 20, whp over G ∼ G(n, d/n), for all vertices u and any integer
t ≥ δ log n, there are at most (2e)L∆t connected sets of size t containing a given vertex
u, and each of them contains at least t/2 vertices from U . In particular, for any integer
k ≥ δ log n, it holds that Pr[Cu(S) = k] ≤ Pr[k ≤ C′

u(S) ≤ 2k]. For all k ≤ 2|U |, the
probability that a specific subset of k/2 vertices of U is present in G[S ∪ (V \U)] is at most
(|U|−⌈k/2⌉

r−⌈k/2⌉ )
(|U|−1

r−1 ) ≤
(

r
|U |

)k/2 ≤ (2ζ)k/2. Therefore, for all k ≥ δ log n, by a union bound over the
connected sets of size k, we have

Pr[C′
u(S) = k] ≤ (2e)L∆k2k(2ζ)k/2 =

(
2(2e)L∆(2ζ)1/2)k ≤ (b2/2)k,

where in the first inequality the first factor is the number of size-k connected sets T of G

containing u, the second factor is an upper bound on the number of size k/2 subsets W of U

that might be included in T and the final factor is the probability that W is included in S.
The last inequality is by the choice of ζ. It follows that

Pr[Cu(S) = k] ≤ Pr[k ≤ C′
u(S) ≤ 2k] ≤ 2k(b2/2)k.

From this bound and the inequality 1/b2δ < eθ/4 by the choice of δ, we can split and bound
the rightmost sum in (7) by

n∑
k=1

k2

b2k
Pr[Cu(S) = k] ≤ (δ log n)2

b2δ log n
+

∑
k≥δ log n

2k3

2k
≤ nθ/3,

where the last inequality holds for all sufficiently large n. In turn, plugging this into
(7), we obtain that µ satisfies the 1-uniform block factorisation of entropy with multiplier
C1 = 2Cr log(1/b)

b2 nθ/3 ≤ nθ for all sufficiently large n (since b is a constant and Cr ≤ nθ/3),
as needed. ◀

Lemma 5 now follows easily by combining Lemmas 17 and 21. This was the last ingredient
needed in the proof of Theorem 1.
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Abstract
We construct data structures for extremal and pairwise distances in directed graphs in the presence of
transient edge failures. Henzinger et al. [ITCS 2017] initiated the study of fault-tolerant (sensitivity)
oracles for the diameter and vertex eccentricities. We extend this with a special focus on space
efficiency. We present several new data structures, among them the first fault-tolerant eccentricity
oracle for dual failures in subcubic space. We further prove lower bounds that show limits to
approximation vs. space and diameter vs. space trade-offs for fault-tolerant oracles. They highlight
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from scratch even if the number of edge failures is bounded. A commonly adopted solution
is that of designing f -edge fault-tolerant oracles, that is, compact data structures that can
quickly report exact or approximate extremal and pairwise distances in the network after up
to f edges failed. These structures are also known as sensitivity oracles, where the sensitivity
is the maximum number f of supported failures.

Many known fault-tolerant data structures are randomized. The algorithm that prepro-
cesses the underlying network may depend on random bits or the correctness of the oracle’s
answers is only guaranteed with some probability. Besides the practical difficulties of working
with (true) randomness in computing, it is an interesting question to what extend randomness
as a resource is needed to obtain efficient fault-tolerant oracles. In this paper, we show
that for a wide range of applications randomness can be removed with only a slight loss of
performance, or even none at all in some cases. For this, we develop a novel derandomization
framework and combine it with known techniques to obtain the following results.

We present new deterministic f -edge fault-tolerant oracles that report the exact/approxi-
mate diameter and vertex eccentricities in directed graphs and we show lower bounds
charting the limits of approximation vs. space and diameter vs. space trade-offs.
We derandomize the single-failure distance sensitivity oracle (DSO) of Ren [32] that can
report exact distance for any pair of vertices in constant time. Our result gives the first
deterministic exact DSO with truly sub-cubic processing time and constant query time.
We derandomize the algorithm of Chechik and Magen [12] for the Single-Source Replace-
ment Paths (SSRP) problem on directed graphs, that is, the task of finding a shortest
path from a distinguished source vertex to every target, for every possible edge failure.

We believe that our techniques are of independent interest and can help derandomize also
other algorithms and data structures in the fault-tolerant domain. Throughout the paper,
the underlying network is modeled by a directed graph G = (V, E), possibly with weights on
its edges, where V is the set of n vertices and E the set of m edges.

1.1 Diameter and Eccentricity Oracles in Directed Graphs
In Section 3, we discuss fault-tolerant oracles for the diameter and vertex eccentricities of a
directed graph. We abbreviate f-edge fault-tolerant diameter oracle as f -FDO and f-edge
fault-tolerant eccentricity oracle as f -FEO. In case of a single failure, f = 1, we shorten this
to FDO and FEO, respectively. The problem of designing FDOs was originally raised by
Henzinger et al. [26] and recently received some renewed interest by Bilò et al. [6]. Although
the major focus of the latter work was on undirected graphs, the authors also showed that,
for directed graphs, one can compute, in Õ(mn + n2/ε) time,1 an oracle of size2 O(m) and
constant query time that guarantees a stretch of 1 + ε, that is, it reports an upper bound on
the value of the diameter within a factor of 1+ε, for any ε > 0.

Bilò et al. [6] also gave a complementary space lower bound showing that any fault-tolerant
diameter oracle with a sufficiently small stretch must take Ω(m) bits of space. However, this
is not the full picture in that their construction only holds for diameter 2. We show here that
in reality there is a transition happening: the larger the diameter, the more space we can
save, up to a point where even o(m)-space oracles become possible. We aim at pinpointing
this transition, starting with a generalization of the bound in [6] to diameter up to n/

√
m .

1 For a non-negative function g = g(n), we use Õ(g) to denote O(g · polylog(n)).
2 Unless stated otherwise, we measure the space in the number of O(log n)-bit machine words.
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▶ Theorem 1. Let n, m, D ⩾ 3 be integers with D = O( n√
m

). Any FDO with stretch
σ < 3

2 −
1
D on n-vertex, m-edge unweighted directed graphs of diameter D requires Ω(m) bits

of space, regardless of the query time.

Given an oracle for the fault-tolerant eccentricities with query time q, one can emulate a
diameter oracle with query time nq by taking the maximum over all vertices. The information-
theoretic lower bound of Theorem 1 is independent of the query time and therefore every
FEO also must have size Ω(m).

Notably, Theorem 1 implies that, for any 0 < δ ⩽ 1 and all digraphs with n1+δ edges and
a relatively small diameter of O(

√
n1−δ ), an FDO of stretch essentially 3/2 takes Ω(n1+δ)

bits of space. As hinted above, this approximation vs. space trade-off no longer holds when
we consider directed graphs with large diameter of ω(n5/6), for which we can design FDOs
of quasi-linear (in n) space and negligible stretch.

▶ Theorem 2. Let G be a directed graph with n vertices, m edges, and diameter D = ω(n5/6)
and let ε = n5/6

D = o(1). There is an FDO for G with stretch 1 + ε, preprocessing time
Õ(mn), space O(n log2 n), and constant query time.

The gap between the stretch-size trade-offs provided in Theorem 1 and Theorem 2,
respectively, suggests that there must be a threshold between n/

√
m and n5/6 where low-

stretch FDOs of sub-linear size and constant query time become possible. We further narrow
this gap and aim to find the smallest value for the diameter for which one can design an
FDO with o(m) space and constant query time. We show that this is possible for directed
graphs with diameter ω((n4/3 log n)/

√
m ). We leave it as an open problem to determine the

smallest function g such that directed graphs with diameter g(n)/
√

m admit an FDO with
o(m) space. Our results show that g is of order ω(n) and O(n4/3 log n).

▶ Theorem 3. Let G be be a directed graph with n vertices, m edges, and diameter
ω((n4/3 log n)/(ε

√
m )). For any ε = ε(n, m) > 0, there is an FDO for G with stretch

1 + ε, preprocessing time Õ(mn), space o(m), and constant query time.

For the sake of readability, the FDOs in Section 3 are randomized. Later, in Section 4,
we describe our derandomization framework and show how to apply it to both FDOs.

We now move our attention to the case multiple edge failures and give bounds in terms
of f and n on the minimum space requirement of f -FDOs. Bilò et al. [6] designed an f -FDO
for undirected graphs of stretch f + 2 that takes space Õ(fn). The size of this oracle is
optimal up to polylogarithmic factors. In the next theorem, we show that such compact
oracles are impossible for directed graphs, even when allowing arbitrarily large stretch

▶ Theorem 4. Let n, f be positive integers such that 2f/2 = O(n). Any f-FDO with an
arbitrary finite stretch on n-vertex directed graphs requires Ω(2f/2 n) bits of space, regardless
of the query time.

The lower bound of Theorem 4 marks an exponential-in-f separation between the
undirected and directed setting. The directed graph used in the proof is inspired by the
lower-bound construction used by Baswana et al. [3] for the f -edge fault-tolerant Single-Source
Reachability problem. This problem asks to compute the sparsest subgraph H of a directed
graph G that preserves reachability from a designated source vertex s, that is, for every
vertex v and every set F of |F | ⩽ f edge failures, there is path from s to v in H that avoids
every edge in F if and only if there is such a path in G. Baswana et al. [3] provided a class of
directed graphs for which any subgraph preserving single-source reachability with sensitivity
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f has Ω(2f n) edges. Our lower bound requires non-trivial extensions of their construction as
it needs to satisfy several additional properties. For example, the directed graph in [3] has
unbounded diameter, while any lower bound for FDOs requires strongly connected graphs.

We also consider the design of fault-tolerant eccentricity oracles for general directed
graphs as well as directed acyclic graphs (DAGs). For the single-failure case and exact
eccentricities, there is a folklore solution using the DSO of Bernstein and Karger [4] that
runs in Õ(n3) time. Henzinger et al. [26] showed how to trade stretch for running time and
presented an (1+ε)-approximate solution with preprocessing time Õ(mn + n3/2

√
Dm/ε ),

where D denotes the diameter of the underlying graph. Both oracles build a look-up table
of size O(n2) using the fact that, for any vertex v, only the failure of an edge on a shortest
path tree rooted in v can change the eccentricity of v. The table allows for a constant query
time but generalizing this to multiple failures f ⩾ 2 would take Ω(nf+1) space. We show
how to do better than that. We give a meta-theorem that turns any exact or approximate
DSO for pairwise distances into an FEO for eccentricities. Plugging in any compact DSO for
multiple failures then immediately gives a space improvement for the FEO. In the following,
with stretch σ = 1, we mean exact oracles.

▶ Theorem 5. Let G be a (undirected or directed and possibly edge-weighted) graph with
n vertices and m edges. Given access to a DSO for G with sensitivity f , stretch σ ⩾ 1,
preprocessing time P , space S, and query time Q, one can construct an f -FEO for G with
stretch 1 + σ, preprocessing time O(mn + P ), space O(n + S), and O(f ·Q) query time.

There are multiple distance oracles to choose from, all with different strengths and
weaknesses. When using the DSO for of Duan and Pettie [15], we get in polynomial time a
2-approximate 2-FEO with space O(n2 log3 n). To the best of our knowledge, this is the first
eccentricity oracle for dual failures in subcubic space. Van den Brand and Saranurak [8] gave
a DSO supporting an arbitrary number of failures f . On directed graphs with integer edge
weights in the range [−M, M ] it has polynomial space and preprocessing time, but a query
time that depends both on the sensitivity and the graph size. Let ω < 2.37286 be the matrix
multiplication exponent [1]. Plugging the DSO in [8] into our reduction gives an f -FEO with
stretch 2, O(Mn3) space3, and query time O(Mnfω+1). On undirected graphs, we can make
the query time independent of n by applying the very recent DSO by Duan and Ren [17] with
O(fn4) space and a query time of fO(f). However, the preprocessing of the latter is only
polynomial for constant f . Since our reduction also applies to approximate oracles, we get,
for any f = o(log n/ log log n) and ε > 0, an f -FEO in polynomial time with stretch (2 + ε),
space O(n2((log n)/ε)f f) and query time O(f6 log n) via the DSO by Chechik et al. [11].

As already mentioned above, the Ω(2f/2 n)-bits lower bound in Theorem 4 also holds for
FEOs. On DAGs, however, we can improve upon this and obtain a space requirement that is
reminiscent of the one Bilò et al. [6] gave for undirected graphs. Note that in a DAG at most
one vertex can have bounded eccentricity.

▶ Theorem 6. Let G be a directed acyclic graph with, m real-weighted edges, n vertices, and
a distinguished source vertex s. For any integer f , there is an f -FEO for G with stretch f ,
preprocessing time Õ(m), space O(nf), and O(f) query time.

All the results for f -FDOs and f -FEOs are presented for edge failures. However, they
also hold for vertex failures using well-known transformation techniques for directed graphs.4

3 In [8], the space of the DSO is phrased as O(Mn3 log n) bits.
4 Indeed, we can transform the directed graph G into some graph G′ with 2n vertices. We represent each

vertex v of G with an edge (v−, v+) in G′, and replace each edge (u, v) of G with the edge (u+, v−)
in G′. For edge-weighted G, the weight of the new vertex-edge is set to 0 keeping eccentricities. For
unweighted G, the eccentricity of v in any subgraph H of G is half the eccentricity of v− in H ′ ⊆ G′.
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1.2 Derandomization Technique
We now turn to the derandomization of fault-tolerant data structures. In Section 4, we
develop the Hierarchical Double Pivots Hitting Sets (HDPH) algorithm as the center piece of a
framework to derandomize known replacement paths algorithms and oracles. The aim of the
HDPH algorithm is to compute a sequence of sets B1, . . . , Blog n ⊆ V (G) such that each Bi

has size Õ(n/2i) and hits a set Pi of (replacement) paths each of length Ω(2i). Unfortunately,
the paths Pi that need to be hit by Bi are not known in advance. Our algorithm fixes this
issue by iteratively computing the set of paths Pi using the previous sets B0, . . . , Bi−1. The
algorithm relies on the ability of the oracle we want to derandomize to be path-reporting,
that is, to report a path representing the exact or approximate distance between the queried
vertices for DSOs, the diameter for FDOs, or the vertex eccentricity for FEOs. We show
how to implement the HDPH algorithm to derandomize the FDOs in Theorems 2 and 3, the
DSO of Ren [32] for directed graphs with integer edge weights in the range [1, M ], and the
algorithm of Chechik and Magen [12] for the SSRP problem in directed graphs.

Distance Sensitivity Oracles. The concept of DSOs was introduced by Demetrescu et
al. [13] who showed how to compute an exact DSO of size O(n2 log n) and constant query
time in Õ(mn2) time. Later, Bernstein and Karger [4] improved the preprocessing time
to Õ(mn) and Duan and Zhang [18] reduced the space to O(n2), which is asymptotically
optimal. Algebraic algorithms are known to further improve the preprocessing times, if one
is willing to employ fast matrix multiplication, see [10, 23] and the references therein. For
more results on approximate DSOs for both single and multiple failures, see [11, 14, 15].

We combine the HDPH framework with a recent breakthrough result by Karthik and
Parter [28] to derandomize the path-reporting DSO of Ren [32] for directed graphs with
integer edge weights in the range [1, M ]. This was the first DSO that achieved a constant
query time with a randomized subcubic preprocessing time of O(Mn2.7233). On undirected
graphs, the preprocessing improves to Õ(Mn(ω+3)/2) = O(Mn2.6865). Our derandomization
of Ren’s DSOs in both settings incurs a slight loss of efficiency. Nevertheless, we obtain the
first deterministic DSO with constant query time and truly sub-cubic preprocessing. This
improves significantly over the result by Alon, Chechik, and Cohen [2] who designed a DSO
with O(mn4−α) preprocessing time and Õ(n2α) query time, for any α ∈ (0, 1).

▶ Theorem 7. For any n-vertex directed graph G with integer edge weights in the range
[1, M ], there exists a deterministic path-reporting DSO with O(Mn2.8068) preprocessing
time and constant query time. If G is undirected, the preprocessing time decreases to
Õ(Mn(ω+6)/3) = O(Mn2.7910).

Recently, Gu and Ren [23] presented a new randomized DSO with a preprocessing time
of O(Mn2.5794). Unfortunately, our HDHP algorithm cannot be used to derandomize it for
the following two reasons. First, the DSO of Gu and Ren is not path-reporting. Secondly,
it internally relies on probabilistic polynomial identity testing. It is a long-standing open
question how to derandomize this, far beyond the field of fault-tolerant data structures.

Single Source Replacement Paths Problem. In the SSRP problem we want to compute
replacement paths from a designated source to each destination vertex, under each possible
edge failure. Grandoni and Vassilevska Williams [21, 22] first developed an algorithm for
both directed and undirected graphs with integer edge weights in the range [1, M ] that uses
fast matrix multiplication and runs in Õ(Mnω) time. Chechik and Cohen [9] presented an
Õ(m

√
n + n2) time SSRP algorithm for undirected graphs that was later simplified and

generalized to deal with multiple sources by Gupta et al. [24]. In this paper we use our
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HDPH framework to derandomize the recent Õ(m
√

n + n2) time randomized algorithm
for directed graphs developed by Chechik and Magen [12], without any loss in the time
complexity. Specifically, we prove the following result.

▶ Theorem 8. There exists a deterministic algorithm for the Single Source Replacement
Path problem in unweighted directed graphs running in time Õ(m

√
n + n2).

2 Preliminaries

We let G = (V, E) denote a directed graph on n vertices and m edges, potentially edge-
weighted by some function w : E → R. We tacitly assume that G is strongly connected, in
particular, m = Ω(n). For any (weighted) directed graph H (possibly different from G),
we denote by V (H) and E(H) the set of its vertices and edges, respectively. Let P be a
path in H from s ∈ V (H) to t ∈ V (H), we say that P is an s-t-path in H. We denote by
|P | =

∑
e∈E(P ) w(e) the length of P , that is, its total weight. If H is unweighted, we let

|P | = |E(P )| denote the number of its edges. For u, v ∈ V (P ), we let P [u..v] denote the
subpath of P from u to v. For s, t ∈ V (H), the distance dH(s, t) is the minimum length
of any s-t-path in H; if s and t are disconnected, we set dH(s, t) = +∞. When talking
about the base graph G, we drop the subscripts if this does not create any ambiguities.
The eccentricity of a vertex s ∈ V (H) is eccH(s) = maxt∈V (H) dH(s, t), the diameter is
diam(H) = maxs∈V (H) eccH(s). For a set F ⊆ E(H) of edges, let H − F be the graph
obtained from H by removing all edges in F . A replacement path PH(s, t, F ) is a shortest
path from s to t in H − F . Its length dH(s, t, F ) = |PH(s, t, F )| is the replacement distance.
The fault-tolerant eccentricity of a vertex s ∈ V of the base graph with respect to F is
eccG − F (s), the fault-tolerant diameter is diam(G− F ).

For a positive integer f , an f -edge fault-tolerant eccentricity oracle (f -FEO) for G reports,
upon query (s, F ) with |F | ⩽ f , the value eccG−F (s). An f-edge fault-tolerant diameter
oracle returns diam(G−F ) upon query F . For a single edge failure, we write FEO for 1-FEO
and abbreviate F = {e} to e. For any real number σ = σ(n, m, f) ⩾ 1, an f -FEO is said to
have stretch σ, or be σ-approximate, if the returned value êcc(s, F ) on query (s, F ) satisfies
eccG−F (s) ⩽ êcc(s, F ) ⩽ σ · eccG−F (s), analogously for f -FDOs. The preprocessing time is
the time needed to compute the data structure, its query time is the time needed to return
an answer. For weighted graphs, we assume the weight function being such that all distances
can be stored in a single word on O(log n) bits. Unless stated otherwise, we measure the
space of the oracles in the number of words. The oracles cannot access features of graph G

except those stored during preprocessing. The size of the input does not count against the
space of the data structures.

3 Diameter and Eccentricity Oracles

This section discusses fault-tolerant oracles for the diameter and vertex eccentricity in directed
graphs. We start by presenting space lower bounds for FDOs that guarantee a certain stretch
when supporting single or multiple edge failures, respectively. In the single-failure case, the
bound depends on the diameter of the graph. Roughly speaking, if the base graph has low
diameter, we cannot save much space over just storing all edges. The picture changes if the
diameter grows larger. We show that then we can obtain FDOs with o(m) space, or even
Õ(n). We then turn the discussing to eccentricity oracles for dual and multiple failures. Note
that there we need to report not only one value per graph G− F , but one per vertex in each
of those, so special techniques are needed to handle the space increase.
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3.1 Space Lower Bounds for Diameter Oracles
Bilò et al. [6] showed that any FDO with a stretch σ < 3/2 on undirected m-edge graphs
must take Ω(m) bits of space. In particular, any data structure that can distinguish between
a fault-tolerant diameter of 2 and 3 has this size. Their construction transfers to directed
graphs (by merely doubling each undirected edge into two directed ones). However, they do
not parameterize the graphs by their diameter, namely, if the FDO has to distinguishing
between diameter D and 3D/2 for some D ⩾ 3. We generalize their result by showing that
there is an intermediate range of D where the Ω(m)-bit bound still applies. However, here the
situation is more intricate in that large values of D do allow for significant space reductions.

The construction5 by Bilò et al. [6] cannot be extended to D ⩾ 3. The proof of the next
lemma had to be deferred to the full version due to space reasons.

▶ Lemma 9. Let n, m, D be integers such that n2 ⩾ m ⩾ n ⩾ 4, and n/
√

m > D ⩾ 3. There
exists a family G of n-vertex directed graphs with diameter D and Θ(m) edges such that any
data structure for graphs in G that decides whether the fault-tolerant diameter remains at D

or increases to (3D−1)/2 for odd D (or (3D/2)− 1 for even D) requires Ω(m) bits of space.

It is now easy to obtain the Ω(m)-bit lower bound of Theorem 1 since any FDO of stretch
σ < 3

2 −
1
D must tell the two cases apart.

We now turn to diameter oracles that support more than one edge failure, f > 1. Theorem 4
states that they require space that is exponential in f , even if we allow the stretch and query
time to be arbitrarily large (but finite). It follows from the next lemma together with the
observation that such f -FDOs have to detect whether the edge failures disconnect the graph.

▶ Lemma 10. Any data structure for n-vertex digraphs that decides for at most 2f = O(log n)
edge failures whether the fault-tolerant diameter is finite requires Ω(2f n) bits of space.

3.2 Improved Upper Bounds
The above discussion shows that for graphs with small diameter, there is no hope to obtain
an FDO whose space is much smaller than what is needed to store the full graph. At least
not while retaining good stretch at the same time. The lower bound in Theorem 1, however,
breaks down for a large diameter. Indeed, we show next that in this regime we can do much
better in terms of space, without sacrificing stretch or query time.

Theorems 2 and 3 will follow from the same construction. The initial way we present it
in Lemma 12 uses randomization in the form of a well-known sampling lemma, see [22, 33].
We will later discuss how to derandomize the oracles.

▶ Lemma 11 (Sampling Lemma). Let H be a n-vertex directed graph, c > 0 a positive
constant, and L ⩾ c ln n. Define a random set B ⊆ V (H) by sampling each vertex of H

independently with probability (c ln n)/L. With probability at least 1− 1
nc , the cardinality of

B is O((n log n)/L). Let further P be a set of ℓ simple paths in H, each of which spans L

vertices. With probability at least 1− ℓ
nc , we have V (P ) ∩B ̸= ∅ for every P ∈ P.

▶ Lemma 12. For any n-vertex, m-edge unweighted directed graph G with diameter D =
ω(log n) and any ε = ε(n, m, D) > 0, we can compute in time Õ(mn + n4/(ε3D3)) an FDO
with 1 + ε stretch, O(n + (n8/3 log2 n)/(ε2D2)) space, and constant query time.

5 The graph used in the proof of [6, Lemma 12] has the property that failing any edge can increase the
diameter by at most 1.
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Proof. Let D = diam(G), b = n/(εD), and c > 0 a sufficiently large constant. We sample
a set B ⊆ V of pivots by including each vertex independently with probability (2bc ln n)/n.
By Lemma 11 with L = n/2b = εD/2, there are O(b log n) many pivots w.h.p.

For the graph G, compute in Õ(mn) time the O(1)-query time distance sensitivity oracle
of Bernstein and Karger [4]. We further compute a subgraph H of G that is just the union
of |B| shortest-path trees, one rooted at each pivot. We iterate over the edges of H and
compute the collection X of all those e ∈ E(H) such that d(b1, b2, e) > d(b1, b2) for some
pair (b1, b2) ∈ B ×B. The time to compute X is O(n|B|3) = Õ(n4/(ε3D3)) since processing
an edge in H requires |B|2 calls to the DSO. Observe that any subgraph of G that exactly
preserves distances between all pairs in B ×B must contain all the edges of X . Bodwin [7]
showed that there are distance-preserving subgraphs with respect to B × B with at most
O(n + n2/3|B|2) edges. Thus, the size of X is bounded by O(n + n2/3|B|2).

Next, we build a dictionary DX in which we store the the edges in X together with the
maximum distance between any pair of pivots if the edge fails (or diam(G) if this is larger).
In other words, for each e ∈ X , we store ϕ(e) = max{maxb1,b2∈B d(b1, b2, e), diam(G)}. Let
Y be the set of all edges in E such that G−e is no longer strongly connected. We build a
dictionary DY in which we store information about the edges Y. It is well-known that Y
contains O(n) edges and can be computed in time O(m) [27].

Recall that b = n/(ε diam(G)). The oracle’s output D̂(e) is defined as follows: if
e ∈ Y, then D̂(e) = ∞; if e ∈ X , D̂(e) = ϕ(e) + n/b; otherwise, the oracle outputs
D̂(e) = diam(G) + n/b = (1 + ε) diam(G).

Evidently, the oracle is correct for all e ∈ Y . It is also easy to verify that all outputs are at
most ϕ(e) + n/b ⩽ diam(G− e) + n/b = diam(G− e) + ε diam(G) ⩽ (1 + ε) diam(G− e). To
prove that they are also at least diam(G− e), consider a vertex pair (u, v) ∈ V ×V such that
d(u, v, e) = diam(G− e) <∞. With high probability6 by Lemma 11, there exists a shortest
u-v-path in G− e and two pivots bu, bv ∈ B on that path such that d(u, bu, e), d(bv, v, e) ⩽
L = n/2b. We have diam(G−e) = d(u, bu, e)+d(bu, bv, e)+d(bv, v, e). Suppose e /∈ X . Then,
d(bu, bv, e) = d(bu, bv) ⩽ diam(G) holds and therefore diam(G− e) ⩽ diam(G) + n/b = D̂(e).
If e ∈ X , then d(bu, bv, e) ⩽ ϕ(e) and diam(G− e) ⩽ ϕ(e) + n/b = D̂(e).

There are k-element dictionaries of size O(k) and O(1) query time computable in time
Õ(k) [25]. The dictionaries have total size O(n+n2/3|B|2) = O(n+(n8/3 log2 n)/(ε2D2)). ◀

The oracle in Lemma 12 can also be extended to handle vertex failures. The only
modification required is to add to set X those vertices v ∈ V that satisfy d(b1, b2, v) > d(b1, b2)
for some (b1, b2) ∈ B × B, and to add to Y to be those vertices v for which G − v is not
strongly connected. Suppose D = ω(n5/6), inserting any ε ⩾ n5/6/D = o(1) above gives an
FDO with near linear space and 1 + o(1) stretch that is computable in time Õ(mn), which
proves Theorem 2. Furthermore, for graphs with diameter ω((n4/3 log n)/(ε

√
m )), we obtain

in Õ(mn) time an FDO with constant query time and o(m) space (Theorem 3).

3.3 Eccentricity Oracles
We now prove Theorem 5 that constructs an f -edge fault-tolerant eccentricity oracle from a
DSO supporting f failures. The improved f -FEO for DAGs can be found in the full version.

6 We say an event occurs with high probability (w.h.p.) if it has success probability 1 − n−c for some
constant c > 0 that can be made arbitrarily large.
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Let D be a DSO with sensitivity f and stretch σ that, on (un-)directed possibly weighted
graphs, can be computed in time P , uses S space, and has a query time of Q. For any given
source s ∈ V and query set F of |F | ⩽ f edges, our oracle reports an (1+σ)-approximation of
the eccentricity of s in G−F . We simply store D and, for each x ∈ V , the value eccG(x). All
eccentricities in the base graph G can be obtained with a BFS from each vertex in O(mn).

Upon query (s, F = {(x1, y1), . . . , (xf , yf )}), we use D to compute d(s, yi, F ), for all
1 ⩽ i ⩽ f . Our estimate is êccG−F (s) = eccG(s) + max1⩽i⩽f d(s, yi, F ). The time taken to
compute êccG−F (s) is O(f ·Q) and the space requirement of the oracle is O(n + S).

Now we show that êccG−F (s) is a (1 + σ)-approximation of eccG−F (s). Let F0 be the
subset of F consisting of those edges in F that lie on some shortest-path tree T rooted
in s. If F0 is empty, we immediately get eccG−F (s) = eccG(s) ⩽ êccG−F (s). Otherwise,
for any v ∈ V , either d(s, v) = d(s, v, F ) or there exists an (x, y) ∈ F0 such that y is an
ancestor of v in T . In this latter case d(y, v, F ) ⩽ eccG(s). This proves that d(s, v, F ) ⩽
d(s, y, F ) + d(y, v, F ) ⩽ d(s, y, F ) + eccG(s) ⩽ êccG−F (s). Thus, eccG−F (s) ⩽ êccG−F (s).
Next observe that eccG(s) ⩽ eccG−F (s) and max1⩽i⩽f d(s, yi, F ) ⩽ σ · eccG−F (s), which
proves that êccG−F (s) ⩽ (1 + σ) · eccG−F (s).

4 Derandomization Framework

The fault-tolerant diameter oracles in Theorems 2 and 3 are randomized. They both follow
from Lemma 12 which in turn relies on a random hitting set to intersect all replacement paths
of a certain length. In fact, many more data structures and algorithms in the fault-tolerant
setting follow a sampling-based approach similar to Lemma 11, see e.g. [9, 12, 22, 32, 33, 35]. It
is an interesting question whether these algorithms can be derandomized efficiently. Currently
there is no single approach to derandomize Lemma 11 in the same O(n) time it uses to go
through all vertices. Therefore, the literature focuses on the specific applications. The goal
is to replace the sampling step by a deterministic construction of the hitting set that, while
taking ω(n) time, does not (or only marginally) increase the asymptotic running time of the
whole algorithm. Recently, there was some progress on notable special cases. Karthik and
Parter [28] gave a derandomization for the algebraic version of the distance sensitivity oracle
of Weimann and Yuster [35] with a slightly higher running time (for a detailed discussion
see Lemma 15 below). Bilò et al. [5] derandomized the SSRP algorithms of Grandoni and
Vassilevska Williams [22] as well as Chechik and Cohen [9]. Their derandomization succeeds
in the same time bounds as the original randomized algorithm, but the technique only works
for undirected graphs. Here, we develop a framework for directed graphs. We first apply it
to our own FDOs and then show its versatility by also derandomizing the DSO of Ren [32]
and the SSRP algorithm of Chechik and Magen [12].

We build on the work of Alon, Chechik, and Cohen [2]. We first review some technical
details of their result and then describe our additions. For now, we assume the base graph G

to be unweighted and only later (in Section 5) incorporate positive integer edge weights. For
concreteness, consider the task in Lemma 12 of finding a set B ⊆ V , the pivots, such that
for all s, t ∈ V and edge e ∈ E with replacement distance d(s, t, e) at least L = ε diam(G)/2,
there exists some replacement path P (s, t, e) that contains a pivot x ∈ B. Other fault-tolerant
algorithms pose similar requirements on B. The technique in [2] consists of computing a
small set of critical paths, much smaller than the set of all O(mn2) replacement paths. Once
we have those, a hitting set can be computed with the folklore greedy algorithm, called
GreedyPivotSelection in [2], that always selects a vertex that is contained in the most unhit
paths.7 Alternatively, one can use the blocker set algorithm of King [29].

7 To achieve the performance of Lemma 13, one has to truncate all paths by selecting L vertices arbitrarily
from each P ∈ P. This is non-issue for us as, by construction, all our paths will have length Θ(L).
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▶ Lemma 13 (Alon, Chechik, and Cohen [2]). Let 1 ⩽ L ⩽ n and 1 ⩽ q = poly(n) be
two integers. Let P1, . . . , Pq ⊆ V be sets of vertices that, for every 1 ⩽ k ⩽ q, satisfy
|Pk| ⩾ L. The algorithm GreedyPivotSelection computes in time Õ(qL + n2/L) a set B ⊆ V

of |B| = O((n log q)/L) = Õ(n/L) pivots such that, for every index k, it holds that B∩Pk ̸= ∅.

The crucial part is to quickly find the paths Pk such that hitting them is sufficient to
hit all long replacement path. Of course, this could be done by computing all-pairs shortest
paths in each graph G−e in total time Õ(m2n) using Dijkstra’s algorithm (or Õ(mn2.5302)
if one is willing to use fast rectangular matrix multiplication [20, 36]). However, this is
much more than the Õ(mn + n4/(ε3 diam(G)3)) time bound we had in Lemma 12. For the
applications in [2], a single set of paths and therefore a single hitting set was sufficient. Bilò
et al. [5] (with slightly different requirements on the set B) were able to make do with three
sets, exploiting the undirectedness of the underlying graph.

We extend this to directed graphs using a hierarchical approach to find the critical paths.
Observe how the length parameter L in Lemma 13 serves two roles. The longer the paths, the
longer it takes to compute B, but the fewer vertices suffice to intersect all paths. Additionally,
we have to compute the set of critical paths which takes (at least) linear time in their length.
So L has to fall just in the right range for the computation to be fast. To achieve this, we
use an exponentially growing sequence of lengths L1, L2, . . . , LO(log n) and, instead of a single
set, compute a sequence B1, B2, . . . of exponentially shrinking sets such that, in the i-th
stage, Bi hits, again for all s, t ∈ V and e ∈ E, some replacement path of length at least Li.
However, this poses some new difficulties because now the collection of critical paths has
to be computed step by step. Imagine in the i-th stage, we have already obtained the all
the subsets Pj , j < i, of paths with respective lengths Lj . The key observation is that the
hitting sets Bj from the previous rounds carry valuable information that can be harnessed
to find the new set Pi faster, this then offsets the run time penalty incurred by the greater
length of the new paths.

The HDPH Algorithm. We now describe the Hierarchical Double Pivots Hitting Sets
(HDPH) algorithm that makes these ideas concrete. It can be seen as a “reference implemen-
tation” of the framework. For a specific application, one still has to adapt the details. The
algorithm is more general than what is needed for diameter oracles in Theorems 2 and 3.
For example, it also pertains to vertex failures. Later, in Section 5, we show an example how
to modify the algorithm for other problems (more are found in the full version).

Let C ⩾ 3/2 be a constant. The aim of the HDPH algorithm is to compute a sequence
of sets B1, . . . , B⌈logC n⌉ ⊆ V of size |Bi| = Õ(n/Ci) such that for all vertices s, t ∈ V and
failure f ∈ E ∪ V with d(s, t, f) ∈ (Ci, Ci+1] there exists a replacement path P (s, t, f) that
contains a pivot z ∈ Bi. It assumes access to the “APSP data” of the original graph G, that
is, the distance d(s, t) for all s, t and a corresponding shortest path P (s, t). Also, it requires
a deterministic path-reporting distance sensitivity oracle with constant query time (both for
the distance and each reported edge) as a black box.

The HDPH algorithm is sketched in Algorithm 1. In lines 1 and 2 it initializes Bi = V for
i ⩽ 2. In lines 3-12, for 3 ⩽ i ⩽ ⌈logC n⌉, we iteratively compute the hitting sets Bi by using
the hitting sets from the previous 3 iterations to obtain a set of shortest and replacement
paths Pi of length Θ(n/Ci) that one needs to hit, and then use the greedy algorithm
GreedyPivotSelection to compute the set of pivots Bi which hits this set of paths Pi. The
paths are defined as follows. First, in line 4 we add to Pi shortest paths P (x, y) whose length is
in the range (Ci, Ci+1] such that x, y ∈ Bi−3∪Bi−2∪Bi−1 are pivots from the last 3 iterations.
Then, in lines 5-11, for every pair of pivots x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1 whose shortest path
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Algorithm 1 Hierarchical Double Pivots Hitting Sets (HDPH) Algorithm.

Input: APSP data and a deterministic path-reporting DSO with O(1) query time.
Output: The hitting sets B0, . . . , B⌈logC n⌉.

1 for i ∈ [0, 2] do
2 Bi ← V

3 for i ∈ [3, ⌈logC n⌉] do
4 Let Pi = {P (x, y) | x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1 such that d(x, y) ∈ (Ci−6, Ci+1]}
5 for x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1 do
6 if d(x, y) ⩽ Ci+1 then
7 for f ∈ E(P (x, y)) ∪ V (P (x, y)) do
8 query the DSO for d(x, y, f)
9 if d(x, y, f) ∈ (Ci−6, Ci+1] then

10 query the DSO for P (x, y, f)
11 Pi ← Pi ∪ {P (x, y, f)}

12 Bi ← GreedyPivotSelection(Pi)
13 return B0, . . . , B⌈logC n⌉

P (x, y) is of length at most Ci+1, and for every edge or every f ∈ E(P (x, y))∪V (P (x, y)) we
query the DSO with (x, y, f) to compute the distance d(x, y, f). If d(x, y, f) ∈ (Ci−6, Ci+1]
then we use the DSO to also report a replacement path P (x, y, f) and add it to Pi.

The next lemma proves the properties of the resulting hitting sets and the run time.

▶ Lemma 14. Given the APSP data and a deterministic path-reporting DSO with O(1)
query time, the HDPH algorithm deterministically computes, in Õ(n2) time, all the hitting
sets Bi, with 0 ⩽ i ⩽ ⌈logC n⌉. For every 0 ⩽ i ⩽ ⌈logC n⌉, it holds that |Bi| = Õ(n/Ci).
For every pair of vertices s, t ∈ V and for every failing edge or vertex f ∈ E ∪ V such that
d(s, t, f) ∈ (Ci, Ci+1] there exists a pivot z ∈ Bi such that d(s, t, f) = d(s, z, f) + d(z, t, f).
Finally, for every pair of vertices s, t ∈ V such that d(s, t) ∈ (Ci, Ci+1], there exists a pivot
z ∈ Bi such that d(s, t) = d(s, z) + d(z, t).

Proof. We first prove by induction that for every i ∈ [0, ⌈logC n⌉] it holds that |Bi| = Õ(n/Ci).
The claim trivially holds for i ⩽ 2 as B0 = B1 = B2 = V . For the inductive step,
we assume that |Bj | = Õ(n/Cj) for every j < i. We show that the set of paths Pi

contains Õ(n2/Ci) paths, each of length Θ(Ci), and thus the result of the greedy algorithm
Bi ← GreedyPivotSelection(Pi) contains, by Lemma 13, at most Õ(n/Ci) vertices. Moreover,
the runtime of the GreedyPivotSelection procedure is Õ(n2).

For every s, t ∈ V , let P (s, t) denote the shortest s-t-path in the APSP data. There
are two places where paths are added to Pi. In line 4, the algorithm adds shortest paths
between vertices x, y ∈ Bi−3 ∪ Bi−2 ∪ Bi−1 whenever d(x, y) = |P (x, y)| ∈ (Ci−6, Ci+1],
and by the induction hypothesis there are Õ(n2/C2(i−1)) = Õ(n2/Ci) such pairs of vertices
(since |Bj | = Õ(n/Cj) for every j < i). Thus, the claim holds for the paths in line 4. In
line 11, the algorithm adds paths P (x, y, f) to Pi only for pairs x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1
and edges or vertices f ∈ E(P (x, y)) ∪ V (P (x, y)) with d(x, y) ⩽ Ci+1, there are Õ(Ci+1 ·
(n2/C2(i−1))) = Õ(n2/Ci) such triples (x, y, f). The only paths added there are such that
d(x, y, f) ∈ (Ci−6, Ci+1] (due to the condition in line 9) and thus the length of P (x, y, f) is
Θ(Ci). So the claim holds here as well.
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Next, we prove that the runtime of the algorithm is Õ(n2). We show that a single
iteration of the for loop in lines 4-16 takes Õ(n2) time, and as there are O(log n) iterations
for i ∈ [3, ⌈logC n⌉]. The number of pairs x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1 is Õ(n2/C2(i−1)). The
inner loop in lines 7-11 is executed only if d(x, y) ⩽ Ci+1, therefore the number of edges
e ∈ P (x, y) is bounded by Ci+1 and hence the loop is executed at most O(Ci) times. Each
iteration of this loop uses the black-box DSO to compute d(x, y, f) in O(1), and only if
d(x, y, f) ∈ (Ci−6, Ci+1] then we use the DSO to actually obtain the path P (x, y, f) in
O(|P (x, y, f)|) = O(Ci) time. This gives Õ(n2) for the second-most outer loop. We have
already seen that computing GreedyPivotSelection(Pi) in line 12 takes Õ(n2) time as well.

We claim that for all s, t ∈ V and every edge or vertex f ∈ E ∪ V such that d(s, t, f) ∈
(Ci, Ci+1], there exists a pivot z ∈ Bi such that d(s, t, f) = d(s, z, f) + d(z, t, f). That
means, there is some s-t-replacement path that contains z. This is clear for i ⩽ 2. Let
3 ⩽ i ⩽ ⌈logC n⌉ and suppose the claim holds for every j < i. Let P (s, t, f) = (v0 =
s, v1, . . . , vk = t) be an replacement path with k = d(s, t, f) ∈ (Ci, Ci+1]. We define the
prefix P1 = P (s, t, f)[s..v⌈k/C3⌉] and suffix P2 = P (s, t, f)[v⌈(1−1/C3)k⌉..t]. Both subpaths
have length in (Ci−3, Ci−2]. It follows that there are pivots x1, x2 ∈ Bi−3 with x1 ∈ V (P1),
x2 ∈ V (P2). (Strictly speaking, we are merely guaranteed some s-v⌈k/C3⌉-replacement path
that contains x1, but we can choose P (s, t, f) so that its prefix is that path; same with P2.)

Let P (x1, x2, f) be the replacement paths returned by the DSO on query (x1, x2, f).
We claim that it is added to Pi. Observe that d(x1, x2, f) ⩾ d(s, t, f) − |P1| − |P2| ⩾
(1− 2

C2 )Ci > Ci−6, where we used the assumption C ⩾ 3/2 and thus 1− 2
C2 > C−6. Also,

we have d(x1, x2) ⩽ d(x1, x2, f) ⩽ d(s, t, f) ⩽ Ci+1. If d(x1, x2, f) = d(x1, x2), we may
assume P (x1, x2, f) = P (x1, x2), whence it was added in line 4. Otherwise, the failure
f ∈ V (P (x1, x2)) is on the path. Since x1, x2 ∈ Bi−3 ∪ Bi−2 ∪ Bi−1, d(x1, x2) ⩽ Ci+1,
and d(x1, x2, f) ∈ (Ci−6, Ci+1] the path P (x1, x2, f) is indeed added to Pi in line 11. Due
to Bi ← GreedyPivotSelection(Pi), there exists a vertex z ∈ Bi such that z is on the path
P (x1, x2, f) ⊆ P (s, t, f) and thus d(s, t, f) = d(s, z, f) + d(z, t, f).

The proof that for all s, t ∈ V with d(s, t) ∈ (Ci, Ci+1], there exists a pivot z ∈ Bi such
that d(s, t) = d(s, z) + d(z, t) follows the same argument but is somewhat simpler because
the subpaths P1 and P2 are guaranteed to be added in line 4. ◀

Derandomizing Theorems 2 and 3. Recall that the oracle in Lemma 12 has preprocessing
time Õ(mn + n4/(ε3 diam(G)3)). For its derandomization, and that of Theorems 2 and 3, it
is enough to choose C = 2, compute APSP only in the original graph G, and preprocess the
DSO of Bernstein and Karger8 [4], which takes Õ(mn) time. Let i∗ be the largest integer
i such that 2i < L = ε diam(G)/2. The set Bi∗ then hits, for all s, t ∈ V and e ∈ E with
d(s, t, e) = Θ(L), some replacement path P (s, t, e), and it has the desired cardinality Õ(n/L).

5 Derandomizing Existing Sensitivity Oracles and Algorithms

We now show how the HDPH algorithm can be adapted to derandomize existing sensitivity
oracles. In addition to our own technique, we also extensively use a recent breakthrough by
Karthik and Parter [28] in the derandomization of fault-tolerant algorithms. We combine
both tools and apply them to the distance sensitivity oracle of Ren [32] and the SSRP
algorithm of Chechik and Magen [12] In the main part, we concentrate on the DSO because
we think that it is a good illustration of the combination of our work and that of Karthik
and Parter [28]. The treatment of the SSRP algorithm had to be deferred to the full version.

8 Bernstein and Karger [4] derandomized their own DSO using a technique by King [29].
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5.1 The Distance Sensitivity Oracle of Ren
We start with the oracle of Ren [32]. Recall that, for any two vertices s, t ∈ V and edge e ∈ E,
the replacement distance d(s, t, e) is the length of a shortest s-t-path in G− e. A distance
sensitivity oracle (DSO) is a data structure that answers query (s, t, e) with d(s, t, e). Ren [32]
presented an algebraic DSO with a randomized preprocessing time of O(Mn2.7233) on graphs
with positive integer edge weights in the range [1, M ] and Õ(Mn(ω+3)/2) = O(Mn2.6865)
time on undirected graphs. Notably, this was the first DSO with both constant query time
and subcubic preprocessing, improving over previous work [2, 4, 22, 35]. We derandomize it
with a slight increase in running time and obtain a deterministic DSO in time O(Mn2.8068)
on directed graphs and Õ(Mn(ω+6)/3) = O(Mn2.7910) on undirected graphs.

The construction starts with a Core oracle that only reports very small distances, this is
then grown iteratively to cover longer paths until the distance between all pairs of vertices
are correctly determined. More formally, for a positive real r, let an r-truncated DSO report,
upon query (s, t, e), the value d(s, t, e) if it is at most r, and +∞ otherwise. The Core is an
nα-truncated DSO for some carefully chosen exponent α ∈ (0, 1). Each iteration invokes the
procedure Extend to turn an r-truncated DSO into an (3/2)r-truncated DSO. Note that we
can assume M = Õ(n(3−ω)/2) as otherwise the deterministic oracle in [4] with an Õ(mn)
preprocessing time already achieves Õ(Mn(ω+3)/2), even on directed weighted graphs. Hence,
log3/2(Mn) = O(log n) rounds of growing suffice to built the full oracle.

The iterative approach has the advantage that r-truncated DSOs for small r can be
computed fast. A bridging-set idea, see [36], is used for the extension. This significantly
increases the query time as the oracle has to cycle through the whole bridging set to compute
the distance. Ren [32] uses a clever observation, there attributed to Bernstein and Karger [4],
to reduce the query time of the extended DSO back to a constant, called the Fast procedure.

Randomness is employed at two points. First, the Core uses a series random subgraphs
of G. Secondly, Extend randomly samples a set of pivots to hit all replacement paths of
length between r and (3/2)r. The subsequent reduction in query time is deterministic.9 The
Core can be derandomized using a recent result by Karthik and Parter [28]. To derandomize
Extend, we adapt our technique introduced above. The key differences are that we now have
to take care of the edge weights, that is, the number of vertices of a path may be much
smaller than its length. Also, due to the iterative approach of not only the derandomization
but the actual construction via truncated DSOs, we cannot assume to have access to all
relevant paths right from the beginning. Instead, we have to make sure that all intermediary
oracles are path-reporting and that for the construction of the current hitting set we only use
paths of length at most r. The deterministic Core oracle hinges on the following lemma.

▶ Lemma 15 (Karthik and Parter [28]). Given a (possibly weighted) graph G on n vertices
and a positive real r = nα for some α ∈ (0, 1), there is a deterministic algorithm computing
k = O(r2) spanning subgraphs G1, . . . , Gk of G in time Õ(kn2) such that for any pair of
vertices s, t ∈ V , edge e ∈ E, and replacement path P (s, t, e) on at most r edges, there exists
an index i such that Gi does not contain the edge e but all edges of P (s, t, e).

This derandomizes a construction by Weimann and Yuster [35] with the crucial difference
that the latter is only required to produce subgraphs such that for all pairs of vertices s, t

and edges e that admit possibly multiple replacement paths on at most r edges at least
one (instead of all) of them survives in one of the graphs Gi in which e was removed. This

9 The relevant [32, Section 3] is phrased as randomized, but based on the derandomizable algorithm in [4].
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relaxed condition is actually enough to build an r-truncated DSO and allows one to make
do with only Õ(r) random subgraphs, while we have O(r2) deterministic graphs. See also
the discussion in Section 1.3 of [28]. This is the sole reason for the increased running time
compared to the original result of Ren [32].

Given a graph G with integer edge weights in the range [1, M ], we invoke Lemma 15 to
obtain the subgraphs Gi. Recall that r = nα and let ω(1−α) be the infimum over all w such
that rectangular integer matrices with dimensions n× n1−α and n1−α × n can be multiplied
using O(nw) arithmetic operations, ω = ω(1) is the usual square matrix multiplication
coefficient. Using a variant of Zwick’s algorithm [36],10 we compute APSP restricted to paths
on at most r edges in time Õ(Mnω(1−α)r) per subgraph. If G is undirected, then this can
be done faster, namely, in Õ(Mnω) per graph with the algorithm of Shoshan and Zwick [34].
Both algorithms in [34, 36] can be adjusted to also compute the actual paths, represented as
predecessor trees, which increases the running time only by logarithmic factors.

To answer a query (s, t, e) we cycle through the Gi and, in case the edge e is missing,
retrieve the distance dGi

(s, t). By Lemma 15, the minimum over all retrieved distances is the
correct replacement distance d(s, t, e). If this minimum is larger than r or no distance has
been retrieved at all (as the paths take more than r edges), we return +∞. Since the edge
weights are positive integers, every path of length at most r uses at most r edges, so we indeed
obtain an r-truncated DSO. If an actual replacement path is requested, we return a shortest
s-t-path in one of the Gi that attain the minimum. The resulting oracle has query time Õ(r2)
and a Õ(n2r2 +Mnω(1−α)r3) = Õ(Mnω(1−α)r3) preprocessing time on directed graphs (using
ω(1− α) ⩾ 2). On undirected graphs, this improves to Õ(n2r2 + Mnωr2) = Õ(Mnωr2).

As a technical subtlety, the Fast procedure needed to reduce the query time requires unique
shortest paths11 of the original graph G. They can be computed in time Õ(M1/2 n(ω+3)/2) [16,
32]. We will see later that this is not the bottleneck of the preprocessing.

▶ Lemma 16 (Ren [32]). From a directed graph G with integer edge weights in [1, M ], unique
shortest paths, and an r-truncated DSO with preprocessing time P and query time Q, one
can built in deterministic time P + Õ(n2) ·Q a r-truncated DSO for G with O(1) query time.

Without access to unique paths, the running time increases to P + Õ(Mn2) ·Q, see [31]. If
the oracle with query time Q (for the distance) is path-reporting (in O(1) time per edge),
then the new oracle is path-reporting with O(1) query time (for distances and edges) [32].

We now turn to the main part, where we derandomize the Extend procedure that turns
an r-truncated DSOs into (3/2)r-truncated DSOs. We adapt our technique to the iterative
manner of construction and to the integer weights on the edges. In each stage, we only
have access to a truncated DSO. Still, we show how to deterministically compute a sequence
B1, B2, . . . of smaller and smaller sets, where Bi is used to derandomize the i-th application
of Extend. Again, the construction of Bi depends on the previous sets of pivots, namely,
on Bi−2. We first describe how to obtain the Bi satisfying certain useful properties and
afterwards verify that these properties indeed suffice to make Extend deterministic.

▶ Lemma 17. Let r1 ⩾ 1 be a real number and define ri+1 = (3/2)ri. For a graph G with
integer edge weights in [1, M ], let {Bi}i⩾1 be a family of subsets of V , such that, for each i,

(i) |Bi| = Õ(Mn/ri);

10 The algorithm in [36] is also phrased as randomized, in the same work it is explained how to derandomize
it, increasing the running time only by polylogarithmic factors. The same holds for [34].

11 By unique shortest paths, we mean a collection P containing one shortest path for each pair of vertices
such that, for all s, t ∈ V , if P (s, t) ∈ P is the shortest path from s to t, then for every vertex u on
P (s, t), the path P (s, u) ∈ P is the prefix P (s, t)[s..u] and P (u, t) ∈ P is the suffix P (s, t)[u..t].
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(ii) for every pair of s, t ∈ V and e ∈ E with ri/2 −M ⩽ d(s, t, e) ⩽ ri, there exists a
replacement path P (s, t, e) that contains a vertex of Bi.

With access to the shortest paths, a path-reporting ri-truncated DSO with O(1) query time, and
the sets Bj with j < i, one can compute each Bi deterministically in time Õ(M2 n2 + n2r2

1).

Proof. The proof is by induction over i. For the construction of Bi, we use the previous set
Bi−2. We set B−1 = B0 = V to unify notation. Following the outline of the derandomization
technique, we first assemble a set P of paths and then greedily compute a hitting set.

For each pair of vertices x, y ∈ Bi−2, we check whether the x-y-distance in the base graph
G is at most ri and, if so, retrieve a shortest path P (x, y). If P (x, y) additionally has length
at least ri/18, we add it to P . For each edge e on P (x, y) (regardless of the path being added
to P), we query the ri-truncated DSO whether the replacement distance is d(x, y, e) ∈ [ ri

18 , ri].
If so, we request a corresponding replacement path P (x, y, e) to add it to P.

Due to the positive weights, those paths have at most ri edges and can be obtained in
time O(ri). Assembling P thus takes time O(|Bi−2|2 r2

i ). If i ⩽ 2, this is O(n2 r2
1) since

r2 = (3/2)r1. For i ⩾ 3, we get Õ((Mn/ri−2)2 · r2
i ) = Õ(M2 n2) instead.

We deterministically compute a hitting set Bi for P. Since P contains at most |Bi−2|2 ·
ri paths with at least ri/(18M) edges each, whence Ω(ri/M) vertices, the set Bi has
Õ(n/(ri/M)) = Õ(Mn/ri) vertices and is computable in time Õ(|P| · (ri/M)). As before, for
i ⩽ 2, this is Õ(n2r2

1/M); and Õ(Mn2) otherwise. We get a running time of Õ(M2 n2 +n2r2
1).

It is left to prove that Bi indeed hits at least one replacement path for all s, t ∈ V and
e ∈ E that satisfy d(s, t, e) ∈ [ ri

2 −M, ri]. Let P (s, t, e) be such a path and define u to be the
first vertex on P (s, t, e) (starting from s) such that d(s, u, e) ⩾ (2/9)ri −M . If i ⩾ 3, then
ri−2 = (4/9)ri, whence d(s, u, e) ∈ [ ri−2

2 −M, ri−2
2 ) and the induction hypothesis implies

that there is some replacement path P ′ from s to u avoiding the edge e such that Bi−2
contains one vertex of P ′. Otherwise, if i ⩽ 2, the same fact simply follows from Bi−2 = V .

The path P ′ is not necessarily equal to the prefix of P (s, t, e)[s..u] (but they have the
same length d(s, u, e)). Replacing P (s, t, e)[s..u] with P ′ gives a new replacement path that
now has a pivot x ∈ Bi−2 on its prefix. Slightly abusing notation, we use P (s, t, e) to denote
also the updated path. Let v be the last vertex on P (s, t, e) with d(v, t, e) ⩾ (2/9)ri−M . By
the same argument, we can assume that the suffix of P (s, t, e)[v..t] contains a pivot y ∈ Bi−2.
In the remainder, we show that there is some replacement path P (x, y, e) that is hit by a
vertex in Bi. If so, replacing the middle part P (s, t, e)[x..y] with P (x, y, e) finally proves the
existence of a replacement path from s to t avoiding e and containing a vertex of Bi.

By the choice of the pivots x, y and the assumption d(s, t, e) ∈ [ ri

2 −M, ri], the replacement
distance d(x, y, e) satisfies

ri ⩾ d(s, t, e) ⩾ d(x, y, e) ⩾ d(s, t, e)−d(s, u, e)−d(v, t, e) ⩾ d(s, t, e)−2
(

2ri

9 −M

)
⩾

ri

18 .

First, assume that the shortest path P (x, y) in the base graph G does not contain the edge e.
Then, P (x, y) can serve as the replacement path. It has length d(x, y) = d(x, y, e) between
ri/18 and ri, and we added it to P. Otherwise, it holds that e ∈ P (x, y). Observe that
d(x, y) ⩽ d(x, y, e) ⩽ ri remains true. Therefore, we have queried the ri-truncated DSO
with the triple (x, y, e). Due to d(x, y, e) ⩾ ri/18, we received a replacement path P (x, y, e),
which we added to P. In both cases, some replacement path is hit by Bi, as desired. ◀

At first glance, it looks like the quadratic dependence on M is too high to be used in the
derandomization. However, recall that we can assume M = Õ(n(3−ω)/2). Over the O(log n)
rounds with i ⩾ 3 and with access to the appropriately truncated DSOs, we can compute
the sets B3, B4, . . . in total time Õ(M2 n2) = Õ(Mn(7−ω)/2) = Õ(Mn2.5) even if ω = 2.

The next lemma is the last tool we need to construct the deterministic DSO.

ICALP 2022
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▶ Lemma 18. Let G be a graph with integer edge weights in the range [1, M ], r ⩾ 1 a real
number, and B ⊆ V a set of Õ(Mn/r) vertices such that for every pair of s, t ∈ V and
e ∈ E with r/2−M ⩽ d(s, t, e) ⩽ r, there exists a replacement path P (s, t, e) that contains a
vertex of B. Given an r-truncated DSO for G with O(1) query time and the set B, one can,
without further preprocessing, construct an (3/2)r-truncated DSO with query time Õ(Mn/r).
Moreover, if the r-truncated DSO is path-reporting, so is the (3/2)r-truncated one.

Proof. For any query (s, t, e), let D(s, t, e) denote the returned value by the r-truncated DSO.
If D(s, t, e) ̸= +∞, we also take this as the answer of the (3/2)r-truncated DSO. Otherwise,
define ℓ = minz∈B{D(s, z, e) + D(z, t, e)}. If ℓ ⩽ (3/2)r, we return ℓ, and +∞ else. Path
queries are handled in the same fashion. In the case of D(s, t, e) ̸= +∞, we pass on the path
P (s, t, e) returned by the r-truncated DSO. If ℓ ⩽ (3/2)r, we return the concatenation of
P (s, z, e) and P (z, t, e) for some pivot z ∈ B that attains the minimum ℓ. The query time is
O(|B|) = Õ(Mn/r) for the distance, after which the path can be returned in O(1) per edge.

It is clear that the query algorithm is correct whenever d(s, t, e) ⩽ r as those queries are
entirely handled by the given truncated DSO. Moreover, even if d(s, t, e) > r, then ℓ is an
upper bound for d(s, t, e) because all sums D(s, z, e) + D(z, t, e) correspond to some path
from s to t avoiding e, but not necessarily a shortest path.

Let P = P (s, t, e) be a replacement path of length between r and (3/2)r, u the first
vertex on P (seen from s) with d(u, t, e) ⩽ r, and v the last vertex on P with d(s, v, e) ⩽ r.
Note that v lies between u and t on the path, whence d(u, v, e) ⩽ r. We further have

d(u, v, e) ⩾ d(s, t, e)−d(s, u, e)−d(v, t, e) = d(u, t, e)+d(s, v, e)−d(s, t, e) ⩾ 2r− 3
2r = r

2 .

By the properties of B, there exists some replacement path from u to v avoiding e that
contains a pivot z ∈ B. With the usual argument of swapping parts of the path, we can
assume z lies on the middle section of P (s, t, e) between u and v. By construction, we
have max{d(s, z, e), d(z, t, e)} ⩽ r so both distances (and corresponding paths) are correctly
determined by the r-truncated DSO. In summary, we get ℓ ⩽ d(s, z, e) + d(z, t, e) = d(s, t, e)
and the returned value ℓ is indeed the correct replacement distance. ◀

We are left to prove the final running time of the construction. Let r = nα be the cut-off
point for the distances at which we start the iterative growing. We build the Core DSO using
the O(r2) subgraphs, compute unique shortest paths in G, followed by O(log n) iterations of
Extend and Fast invocations, including the computation of the Bi. First, suppose the graph
G is undirected. The total time is then

Õ(Mnωr2) + Õ(M1/2n(ω+3)/2) + Õ(Mn2.5 + n2r2) + Õ(n2) ·
O(log n)∑

i=1
Õ

(
Mn

(3/2)i r

)
= Õ

(
M1/2 n(ω+3)/2 + Mn2.5 + Mnωr2 + Mn3

r

)
= Õ

(
M1/2 n(ω+3)/2 + Mnmax{2.5, ω+2α, 3−α}

)
.

This is minimum for α = 1− (ω/3), where we get a running time of Õ(Mn(ω+6)/3).
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For directed graphs, determining the best α is a bit more involved. Recall that O(nω(1−α))
is the time needed to multiply a n×n1−α matrix with an n1−α×n matrix. Computing the Core
oracle takes time Õ(Mnω(1−α) r3) = Õ(Mnω(1−α)+3α). With a similar calculation as above,
we obtain a total preprocessing time of Õ

(
M1/2 n(ω+3)/2 + Mnmax{2.5, ω(1−α)+3α, 3−α})

.
This is minimized if α solves the equation ω(1−α) = 3− 4α. Le Gall and Urrutia [19] gave
the current-best estimates for the values of the function ω. This shows that 1−α is between
0.8 and 0.85, and we have ω(0.8) ⩽ 2.222256 as well as ω(0.85) ⩽ 2.258317. We exploit the
fact that ω is convex [30], giving

ω(1− α) ⩽ (α− 0.15)ω(0.8) + (0.2− α)ω(0.85)
0.85− 0.8 ⩽ 2.3665− 0.72122α

Equating the latter with 3− 4α yields the estimate α ⩽ 0.193212, which in turn implies a
preprocessing time of Õ(Mn2.806788).
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1 Introduction

The dth combinatorial Laplacian of a simplicial complex K is a linear operator that acts on
vectors of real numbers associated to the d-simplices of K. The dth combinatorial Laplacian
is defined as

Ld = ∂T
d ∂d + ∂d+1∂T

d+1,

where ∂d : Cd(K) → Cd−1(K) is the dth boundary map of K, and Cd(K) is the dth chain
group of K. The dth Laplacian encodes the incidence of (d − 1)-, d- and (d + 1)-simplices. In
particular, the 0th Laplacian L0 is composed of a constant map ∂T

0 ∂0, and the well-known
graph Laplacian ∂1∂T

1 . The graph Laplacian matrix and its algebraic properties have been
extensively studied in algebraic and spectral graph theory, a topic that has flourished into a
rich field with many applications in computer science such as graph clustering [25,27], graph
sparsification [29], and max flow solvers [9] (see Spielman’s book and references therein [28]).
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A highlight of recent advances in algorithmic spectral graph theory is nearly-linear time
solvers for linear systems on the graph Laplacian that emerged as a result of decades of
research [2,4,11,19,21–23,30,34]. These results imply nearly-linear time solvers for the more
general class of symmetric diagonally dominant matrices. They also have triggered research
to find out which classes of linear systems admit nearly-linear time solvers [24]. Moreover,
these solvers are used for different application areas such as approximation algorithm design
and numerical analysis [5, 9].

Recent work has attempted to extend the success of graph Laplacian solvers to higher
dimensional Laplacians. Cohen et al. initiated this line of work by introducing a nearly-linear
solver for the 1-Laplacian of collapsible complexes embedded in R3 [10]. Black et al. continued
this work by considering complexes with trivial first homology that were subcomplexes of
collapsible complexes embedded in R3 [3]. The solver of Black et al. implies a nearly quadratic
solver for any complex with trivial first homology embedded in R3; they show that a complex
embedded in R3 can be extended to a collapsible embedded complex with at most quadratic
complexity.

In this paper, we extend the work of Cohen et al. and Black et al. to any subcomplex of a
collapsible complex embedded in R3, regardless of the rank of its first homology group. The
running time of our solver is nearly-linear with respect to the size of the collapsible complex,
and polynomial with respect to the rank of its first homology group. The main tool in our
paper is a new algorithm for computing the Hodge Decomposition of a 1-chain.

Computing the Hodge decomposition is a problem of independent interest since the Hodge
decomposition has found a myriad of applications in topological data analysis, numerical
analysis, and computer graphics among other areas [1, 8, 12, 13, 16, 20, 32, 33, 35]. The Hodge
decomposition can be computed exactly in O(nω) time by solving a constant number of
systems of linear equations, where ω is the matrix multiplication constant. (Approximately)
computing the Hodge decomposition in nearly-linear time has been an open question with
many possible applications.

Cohen et al. describe nearly-linear projection operators into the coboundary space and
cycle space, which implies Hodge decomposition for complexes with trivial homology as the
boundary and cycle spaces are identical in this case. In this paper, we describe projection
operators into the boundary and harmonic spaces for an arbitrary subcomplex of a collapsible
simplicial complex embedded in R3. Our boundary projection operator is key to our solver.
Our results imply 1-Laplacian solvers and projection operators for any simplicial complex
embedded in R3 that are quadratic in the size of the complex and polynomial in the first
Betti number; these follow from the fact that any complex in R3 can be extended to a
collapsible complex in R3 with a quadratic number of simplices [3, Corollary 3.3].

While this paper presents a positive result on extending graph Laplacian solvers to a
more general class of Laplacians, a recent work by Ding et al. [15] shows that solving linear
equations in arbitrary 1-Laplacians (and therefore arbitrary d-Laplacians) is as hard as
solving arbitrary sparse linear equations with bounded integer entries and bounded condition
number. An interesting open question is whether or not there exist fast solvers for other
classes of simplicial complexes.

1.1 Our Results
Let X be a collapsible simplicial complex with a known collapsing sequence embedded in R3,
and let K be a subcomplex of X. The first result of this paper is a 1-Laplacian solver for K.
Recall that L1 = ∂2∂T

2 + ∂T
1 ∂1. We define Lup

1 = ∂2∂T
2 and Ldown

1 = ∂T
1 ∂1. We refer to Lup

1
and Ldown

1 as the up-Laplacian and down-Laplacian, respectively.
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▶ Theorem 1. Let X be a collapsible simplicial complex with a known collapsing sequence
linearly embedded in R3, and let K ⊂ X be a subcomplex of X. For any ε > 0, there is an
operator LaplacianSolver(X, K, ε) such that

(1 − ε)(L1[K])+ ⪯ LaplacianSolver(X, K, ε) ⪯ (L1[K])+.

where (L1[K])+ is the pseudoinverse of the 1-Laplacian L1[K]. Fur-
ther, for any x ∈ C1, LaplacianSolver(X, K, ε) · x can be computed in
Õ

(
β3 · n · log n · log(n/(λmin(K) · λmin(X) · ε))

) 1 time, where n is the total number
of simplices in X, λmin(K) and λmin(X) are the smallest nonzero eigenvalues of Lup

1 (K)
and Lup

1 (X) respectively, and β is the rank of the first homology group of K.

This result is a generalization of Theorem 1.1 of Black et al. [3] that requires K to
have trivial first homology. Their running time depends on log(nκ/ε), with κ being the
condition number of Lup

1 (K) within the boundary space. The condition number is defined
κ = λmax(K)/λmin(K), where λmax(K) is the largest eigenvalue of Lup

1 (K), and λmin(K) is
the smallest nonzero eigenvalue of Lup

1 (K). We observe that λmax(K) is polynomially bounded
with respect to the size of the complex (Lemma 29 in the full paper.) Therefore, the log
dependence of the running time of Black et al.’s solver can be simplified to log(n/(λmin(K)·ε)).
The running time of Theorem 1, in contrast, has an extra dependence to λmin(X) within the
log, in addition to a polynomial dependence to β. For the special case that β = 0, we can
eliminate the dependence on λmin(X) with a more careful analysis and match the running
time of Black et al.

The new ingredient that makes Theorem 1 possible is an approximate projection operator
onto the boundary space. Lacking this operator, the previous papers had to assume that K

has trivial homology and use a projection into the cycle space instead.

▶ Lemma 2. Let K be a simplicial complex linearly embedded in a collapsible complex X

with a known collapsing sequence that is embedded in R3, and let Πbd be the orthogonal
projection operator into the space of boundary 1-chains in K. For any ε > 0, there is an
operator Π̃bd(ε), such that

(1 − ε)Πbd ⪯ Π̃bd(ε) ⪯ (1 + ε)Πbd.

Further, for any 1-chain x, Π̃bd(ε) · x can be computed in Õ(β3 · n · log n · log( n
λmin(X)·ε )) time,

where β is the rank of the first homology group of K, n is the total number of simplices in
X, and λmin(X) is the smallest nonzero eigenvalue of Lup

1 (X).

A key technical challenge to achieve our projection operator onto the boundary space
is computing a projection into the space of harmonic chains, formalized in part (ii) of the
following lemma. Note that our approximation guarantee for projection into the harmonic
space is weaker than the one for projection into the boundary space (more on this in the
overview).

▶ Lemma 3. Let K be a subcomplex of a collapsible simplicial complex X with a known
collapsing sequence that is linearly embedded in R3. Let β be the rank of the first homology
group of K, n be the total number of simplices in X, and λmin(X) be the smallest nonzero
eigenvalue of Lup

1 (X).

1 The Õ(·) notations hides a factor of log log n.
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(i) For any ε > 0, there is an Õ(β2 · n · log n · log( n
λmin(X)·ε )) time algorithm to compute an

orthonormal set of vectors {g̃1, . . . , g̃β} such that there exists an orthonormal harmonic
basis {g1, . . . , gβ} with ∥gi − g̃i∥ ≤ ε for all 1 ≤ i ≤ β.

(ii) For any ε > 0, there exists a symmetric matrix Π̃hr(ε) such that,

Πhr − εI ⪯ Π̃hr(ε) ⪯ Πhr + εI,

where Πhr is the orthogonal projection into the harmonic space. Moreover, for any
1-chain x, Π̃hr(ε) · x can be computed in Õ(β2 · n · log n · log( n

λmin(X)·ε )) time.

Our projection operators into the harmonic and boundary space, along with the projection
operator of Cohen et al. [10] into the coboundary space, give all the projection operators
needed to compute the Hodge decomposition of 1-chains in K.

Our harmonic projection operator is built using an orthonormal approximate harmonic
basis (part (i) of Lemma 3). Dey [14] describes a nearly-linear time algorithm for computing a
homology basis for a complex linearly embedded in R3. Black et al. [3] describe a nearly-linear
time algorithm for computing a cohomology basis for subcomplexes of collapsible complexes
embedded in R3. Our harmonic basis, though approximate, can be viewed as a complement
to these two results.

1.2 Paper organization
In addition to this introduction, the main body of this paper is a background and overview
section. To simplify the presentation, the bulk of the technical details are left for the full
version of this paper, and the overview provides a high-level description of our approaches as
well as the technical challenges and contribution of this paper. In the overview, we included
references to the technical lemmas to enable easy access to the full paper.

The background section introduces standard definitions of the concepts used in this paper.
We hope this section provides easy lookup for the reader while reading the overview section
as well as the technical part of the paper.

2 Background

In this section, we review basic definitions from linear algebra and algebraic and combinatorial
topology that are used in this paper; see references [7, 17,18,31] for further background.

2.1 Linear Algebra
Span, Basis. Let V = {v1, . . . , vk} be a set of vectors in Rn. The span of V , denoted
span(V ), is the subspace of Rn of all linear combinations of V . In particular, V spans Rn if
any vector in Rn is a linear combination of the vectors in V . We say that V is a basis for
its span if the dimension of its span equals the cardinality of V .

Linear map, projection, inverse. Let A : Rn → Rm be a linear map, represented by an
m × n matrix. Typically, we don’t make a distinction between a linear map and its matrix
representation and denote both as A. The kernel of A is ker(A) := {x ∈ Rn : Ax = 0}, and
the image of A is im(A) = {Ax : x ∈ Rm}. The rank of a linear map is the dimension of
its image.

We say that U and V orthogonally decompose W , denoted W = U ⊕ V , if (i) any
vector in U is orthogonal to any vector in V , and (ii) any vector in x ∈ W is a unique sum
of vectors in xU ∈ U and xV ∈ V , i.e. x = xU + xV . The fundamental theorem of linear
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algebra states that Rn = im(AT ) ⊕ ker(A) and Rm = im(A) ⊕ ker(AT ), where AT is the
transpose of A obtained by flipping A over its diagonal. In particular, if A : Rn → Rn is
symmetric (i.e., A = AT ), then Rn = im(A) ⊕ ker(A).

A linear map A : Rn → Rn is a projection if it is the identity for the vectors in its image,
or equivalently, AA = A. The map A is an orthogonal projection if it maps each point
of Rn to its closest point in im(A), or equivalently, AT = A = AA. Note for any subspace
U of Rn there is a unique orthogonal projection into U , denoted ΠU . If {u1, . . . , uk} is an
orthonormal basis for U , the orthogonal projection into U is the linear map ΠU =

∑k
i=1 uiu

T
i .

If a linear map A : Rn → Rm is bijective, it has a well-defined inverse denoted A−1 :
Rm → Rn where Ax = b ⇐⇒ A−1b = x. More generally, the pseudoinverse of A is
the unique linear map A+ : Rm → Rn with the following properties: (i) AA+A = A, (ii)
A+AA+ = A+, (iii) (AA+)T = AA+, and (iv) (A+A)T = A+A. Admittedly, the definition
of the pseudoinverse is not very intuitive. A more intuitive description is that A+ is the
unique linear map with the following properties: (1) A+ maps any vector y ∈ im(A) to the
unique vector x ∈ im(AT ) such that Ax = y, and (2) A+ maps any vector y ∈ ker(AT ) to 0.
While it is not true in general that (A + B)+ = B+ + A+ for linear maps A and B, this is
true if AT B = BT A = 0; see Campbell [7], Theorem 3.1.1.

Matrix norm, singular values, Loewner order. A symmetric matrix A is positive semi-
definite if xT Ax ≥ 0 for each x ∈ Rn. The Loewner Order is a partial order on the set
of n × n symmetric matrices. For symmetric matrices A and B, we say A ⪯ B if B − A is
positive semidefinite.

Let x ∈ Rn. Let p be a positive integer. The p-norm of x is ∥x∥p = (
∑n

i=1 |x[i]|p)
1
p . We

use the 1-norm and 2-norm in this paper. An important fact we will use throughout this paper
is that ∥x∥2 ≤ ∥x∥1 ≤

√
n∥x∥2. For any norm ∥·∥ on Rn, there is an accompanying operator

norm of a matrix A defined ∥A∥ = maxx:∥x∥=1∥Ax∥, or equivalently, ∥A∥ = max
x ̸=0

(∥Ax∥/∥x∥).
Unless otherwise specified, all norms in this paper will be the 2-norm.

The singular value decomposition of A : Rn → Rm for m ≥ n (resp. m ≤ n) is a
set of n (resp. m) orthornomal vectors {u1, . . . , un} ⊂ Rm called left singular vectors,
n (resp. m) orthornomal vectors {v1, . . . , vn} ⊂ Rn called right singular vectors, and n

(resp m) real numbers {σ1, . . . , σn} ⊂ R called singular values such that A =
∑n

i=1 σiuiv
T
i .

The condition number of a linear map A : Rn → Rn is κ(A) = |σmax(A)|/|σmin(A)|, where
σmax(A) and σmin(A) are the largest and smallest non-zero singular values of A.

The eigenvectors and eigenvalues of a matrix A : Rn → Rn are n vectors {v1, . . . , vn} ⊂
Rn and n real numbers {λ1, . . . , λn} such that Avi = λivi. The singular values and right
singular vectors (resp. left singular values) of a matrix A : Rn → Rn are the square roots
of the eigenvalues and eigenvectors of AT A (resp. AAT ). If a matrix A is symmetric, the
eigenvectors of A are orthogonal, and the eigenvectors and eigenvalues of A are the left and
right singular vectors and the singular values.

Determinant, Cramer’s rule, unimodularity. For any 1 ≤ i ≤ n, the determinant of
an n × n matrix A = [ai,j ]1≤i,j≤n can be defined via its Laplace expansion as det(A) =∑n

j=1
(
(−1)i+j · ai,j · det(Ai,j)

)
, where Ai,j is the (n − 1) × (n − 1) matrix obtained by

removing the ith row and jth column of A. It is well known that det(A) ̸= 0 if and only if
A is bijective. In that case, Cramer’s rule give an explicit formula for the solution of the
linear system Ax = b, which is x[i] = det(Ai)/ det(A) where Ai is the matrix obtained by
replacing the ith column of A with b.

ICALP 2022



23:6 Hodge Decomposition and General Laplacian Solvers

An n × n matrix A is unimodular if det(A) ∈ {−1, +1}. By Cramer’s rule, Ax = b

has an integer solution if A is unimodular and A and b have integer coefficients. An n × m

matrix B is totally unimodular if for any square submatrix A of B, det(A) ∈ {−1, 0, +1}.
The 1-boundary matrix of a simplicial complex (defined below) is totally unimodular [26].

2.2 Topology
Simplicial complexes. A simplicial complex K is a set of finite sets such that if τ ∈ K

and σ ⊂ τ , then σ ∈ K. A subcomplex of K is a subset L ⊂ K such that L is a simplicial
complex. The vertices of K is the set ∪σ∈Kσ. We assume there is a fixed but arbitrary
order (v1, . . . , vn) on the vertices of K.

An element σ ∈ K with |σ| = d + 1 is a d-simplex. A 0-simplex is a vertex, a 1-simplex
is an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. The set of all
d-simplices in K is denoted Kd. For two simplices τ ⊂ σ, we say that τ is a face of σ.

Hodge decomposition, homology, cohomology. The dth chain group of a simplicial
complex K is the vector space Cd(K) over R with orthonormal basis Kd, and an element of
Cd(K) is a d-chain. The dth boundary map is the linear map ∂d : Cd(K) → Cd−1(K)
defined ∂dσ =

∑d
i=0(−1)i(σ \ {vki

}) for each simplex σ = {vk0 , . . . , vkd
} ∈ Kd, where we

assume vki < vkj for i < j. The dth coboundary map is ∂T
d+1 : Cd(K) → Cd+1(K).

Elements of ker ∂d (resp. ker ∂T
d+1) are cycles (resp. cocyles), and elements of im ∂d+1 (resp.

im ∂T
d ) are boundaries or null-homologous cycles (resp. coboundaries.) Two cycles

(resp. cocycles) γ1 and γ2 are homologous (resp. cohomologous) if their difference γ1 − γ2
is a boundary (resp. coboundary.)

The dth Laplacian is the linear map Ld : Cd(K) → Cd(K) defined Ld = ∂T
d ∂d+∂d+1∂T

d+1.
The dth up-Laplacian is the linear map Lup

d = ∂d+1∂T
d+1, and the dth down-Laplacian is

the linear map Ldown
d = ∂T

d ∂d.
A key fact of algebraic topology is that ∂d∂d+1 = 0, hence im ∂d+1 ⊂ ker ∂d, and

im ∂T
d ⊂ ker ∂T

d+1. The dth homology group is the quotient group Hd(K) = ker ∂d/ im ∂d+1,
and the dth cohomology group is the quotient group Hd(K) = ker ∂T

d+1/ im ∂T
d . Since

im ∂T
d ⊕ker ∂d and im ∂d+1 ⊕ker ∂T

d+1 are two orthogonal decompositions of the d-chain space,
the dth homology group and the dth cohomology group have the same rank, which is the
dth Betti number of the complex, denoted βd(K). We say two cycles are homologous
(resp. cohomologous) if they are in the same homology (resp. cohomology) class, or
equivalently, if their difference is a boundary (resp. coboundary.)

The Hodge Decomposition is the orthogonal decomposition of the dth chain group into
Cd(K) = im(∂d+1) ⊕ ker(Ld) ⊕ im(∂T

d ). The subspace ker(Ld) are the harmonic chains.
Thus, any chain x ∈ Cd(K) can be uniquely written as the sum x = xbd + xhr + xcbd where
xbd ∈ im(∂d+1), xhr ∈ ker(Ld), and xcbd ∈ im(∂T

d ).
A d-boundary basis, d-coboundary basis and d-harmonic basis are bases for the

boundary, coboundary and harmonic spaces. A d-homology basis is a maximal set of cycles
such that no linear combination of these cycles is a boundary. Similarly, a d-cohomology
basis is a maximal set of cocycles such that no linear combination of these cocycles is a
coboundary. We have the following fact.

▶ Fact 4. A set of cycles (resp. cocycles) is a homology (resp. cohomology) basis if and only
if their projection into the harmonic space is a harmonic basis.

Two cycles (resp. cocycles) are homologous (resp. cohomologous) if they have the same
harmonic part, as then their difference is a boundary (resp. coboundary). Accordingly,
the previous fact implies that for any cycle (resp. cocycle) x and any homology basis
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(resp. cohomology basis) Γ, there is a unique linear combination of the elements of Γ that is
homologous (resp. cohomologous) to x; this is the linear combination of Γ with the same
harmonic component as x.

A useful property of cohomology bases is they can be used to tell when two cycles are
homologous, as described by the following fact.

▶ Fact 5 (Busaryev et al. [6]). Let x and y be cycles (resp. cocycles), and let P be a cohomology
basis (resp. homology basis.) Then y is homologous (resp. cohomologous) to x if and only if
x · p = y · p for all p ∈ P .

Collapsibility. Let K be a simplicial complex, σ a d-simplex of K, and τ a (d−1)-simplex of
K that is a face of σ. If τ is not the face of any other simplex, we say that K collapses into
K\{σ, τ}; we refer to (σ, τ) as a collapse pair. Moreover, we say that a complex collapses
to itself. Inductively, we say that a complex K collapses into a complex K ′ if there is a
complex K ′′ such that K collapses to K ′′ and K ′′ collapses to K ′. We say that a complex
K is collapsible if it collapses to a single vertex.

When a complex K collapses to a complex K ′, we obtain a sequence of complexes
K = K0 ⊃ K1 ⊃ . . . ⊃ Kt = K ′, where for each 1 ≤ i ≤ t, Ki can be obtained from Ki−1
by removing one collapse pair. We refer to this sequence as a collapsing sequence. The
complexes K and K ′ are homotopy equivalent if one collapses to the other, thus, K and K ′

have isomorphic homology group. In particular, a collapsible complex has trivial homology
groups in every nonzero dimension.

Embeddability. A d-dimensional simplicial complex K is embedded if K ⊂ R for R a
triangulation of Rd+1. Furthermore, K is linearly embedded if there is a homeomorphism
from the underlying space |R| to Rd+1 that is linear on each simplex, i.e. each 1-simplex
is mapped to a line segment, each 2-simplex is mapped to a triangle, etc. All embedded
complexes in this paper will be linearly embedded.

We will make use of the dual graph of an embedded complex. Informally, the dual graph
of an embedded complex is the graph K∗ with vertices that are the connected components of
R \ K and edges between two vertices if there is a d-simplex in K incident to both connected
components. Alternatively, the dual graph can be defined with vertices corresponding to a
generating set of d-cycles of K. For this construction, see the definition of Lefschetz set in
the paper [3].

3 Overview

Let X be a collapsible simplicial complex embedded in R3, and let K ⊆ X be a subcomplex
of X. We study two closely related problems: (i) computing the Hodge decomposition of
the 1-chains of K, and (ii) solving a linear system L1x = b, where L1 is the 1-Laplacian
of K (in the overview section, all the operators are with respect to K unless mentioned
otherwise.) These two problems are related, as our approximate Laplacian solver uses an
approximate Hodge decomposition of the input vector x. More generally, understanding
the Hodge decomposition is key to understanding this paper as many proofs rely on some
property of the Hodge decomposition. Therefore, we begin our overview with an introduction
to the Hodge decomposition.

ICALP 2022
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3.1 The Hodge Decomposition

The Hodge decomposition is a decomposition of the chain group Cd(K) in terms of the
kernels and images of the boundary operators ∂d and ∂d+1 and their transposes. Specifically,
the problems in this paper consider the first chain group C1(K), the two boundary operators
∂2 and ∂1, and their corresponding coboundary operators ∂T

2 and ∂T
1 . The boundary operator

∂2 maps each (oriented) triangle to the edges in its boundary; similarly, ∂1 maps each edge
to its two endpoints. A key fact is that ∂1∂2 = 0, or equivalently, im(∂2) ⊆ ker(∂1). This
implies im(∂2) is orthogonal to im(∂T

1 ). The former subspace im(∂2) is called the boundary
subspace, and the latter subspace im(∂T

1 ) is called the coboundary subspace. If K has
trivial 1-homology, then im(∂2) = ker(∂1), and the boundary and coboundary spaces give a
full orthogonal decomposition of C1(K), called the Helmholtz decomposition. Otherwise,
there is a third subspace orthogonal to both the boundary and coboundary subspaces, called
the harmonic subspace. The harmonic subspace is exactly ker(L1) = ker(∂1) ∩ ker(∂T

2 ).
The boundary, coboundary, and harmonic subspaces give a full orthogonal decomposition

of C1(K) called the Hodge decomposition, which generalizes the Helmholtz decomposition.
Thus, we can express any 1-chain x as x = xcbd + xbd + xhr, where xcbd, xbd and xhr are
the coboundary, boundary and harmonic part of x and are pairwise orthogonal. The chains
xbd + xhr and xcbd + xhr are called the cyclic and cocyclic parts of x respectively. Similarly,
the space spanned by harmonic and boundary chains is called the cycle space, and the
space spanned by harmonic and coboundary chains is called the cocycle space. It is implied
by ∂1∂2 = 0 that the cycle space and cocycle space are the kernels of ∂1 and ∂T

2 , respectively.
The following figure is an illustration of the Hodge decomposition. Boundary, coboundary,
harmonic, cycle, and cocycle spaces are shown using the abbreviations bd, cbd, hr, cyc, and
cocyc respectively.

To compute the Hodge decomposition, one seeks orthogonal projection operators into
the coboundary, boundary and harmonic subspaces. Let Πcbd, Πbd, and Πhr denote these
projection operators. Cohen et al. show that for any 1-chain x, its projection into the
coboundary space, Πcbdx, and cycle space, Πcycx, can be approximated quickly with operators
Π̃cbd and Π̃cyc. These projection operators are a key ingredient of their 1-Laplacian solver, as
well as the more recent 1-Laplacian solver described by Black et al.; however, both papers are
restricted to cases where the first homology group H1(K) = 0. In this paper, we show that for
any x, its projection into the boundary space, Πbdx, can also be approximated quickly. This
new projection operator will allow us to generalize the 1-Laplacian solver of Black et al. to
complexes with arbitrary first homology. We also give an approximate projection operator
into the harmonic space, but our approximation guarantee for this projection operator is
weaker (more below).
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3.2 Laplacian Solvers
The 1-Laplacian matrix is defined L1 = ∂2∂T

2 + ∂T
1 ∂1. To solve a linear system L1x = b, one

seeks to approximate L+
1 , the pseudoinverse of L1. As the images of ∂2∂T

2 and ∂T
1 ∂1 are

orthogonal, then L+
1 = (∂2∂T

2 )+ + (∂T
1 ∂1)+ (see Campbell [7, Theorem 3.1.1]). Therefore,

one can approximate L+
1 by approximating (∂2∂T

2 )+ and (∂T
1 ∂1)+ individually. Computing

(∂T
1 ∂1)+ is purely a graph problem as ∂1 is only defined with respect to the vertices and edges of

a complex. Cohen et al. show how to approximate (∂T
1 ∂1)+ for general complexes [10, Lemma

3.2]. Approximating (∂2∂T
2 )+ is a more challenging problem that requires taking into account

the relationship between triangles and the edges. Our algorithm for approximating (∂2∂T
2 )+

relies on our new boundary projection operator, the collapsibility of X, and the embedding
of X in R3.

Cohen et al. show how to approximate (∂2∂T
2 )+ for collapsible complexes embedded in

R3. Black et al. generalize their work to obtain an approximate solver for a subcomplex of
a collapsible complex in R3 provided the subcomplex has trivial homology. Their solver is
based on the following general lemma regarding approximations of (BBT )+ for a general
matrix B.

▶ Lemma 6 (Black et al. [3], Lemma 4.1). Let B be a linear operator, let 0 ≤ ε < 1, and
let Π̃im(B) and Π̃ker⊥(B) be symmetric matrices such that (1 − ε)Πim(B) ⪯ Π̃im(B) ⪯ Πim(B),
and (1 − ε)Πker⊥(B) ⪯ Π̃ker⊥(B) ⪯ Πker⊥(B). Also, let U be a linear map such that for any
y ∈ im(B), BUy = y. We have

(1 − (2κ + 1)ε)(BBT )+ ⪯ Π̃im(B)U
T Π̃ker⊥(B)UΠ̃im(B) ⪯ (1 + κε)(BBT )+,

where κ is the condition number of BBT within the image of B.

This lemma shows the following linear operators are sufficient for approximating (∂2∂T
2 )+.

(i) An operator U that for 1-boundary y ∈ im(∂2) returns a 2-chain x = Uy such that
∂2x = y. For other vectors z /∈ im(∂2), U can return anything as long as U is still
linear.

(ii) An approximate orthogonal projection operator into im(∂T
2 ), the coboundary space of

2-chains.
(iii) An approximate orthogonal projection operator into im(∂2), the boundary space of

1-chains.

Black et al. describe an algorithm for computing U that uses the collapsibility and
embedding of the supercomplex X. Cohen et al. show that the 2-coboundary space of
embedded complexes is dual to the 1-cycle space of the dual graph, hence projection into
this space can be approximated using Π̃cyc. Finally, lacking an approximate projection into
the boundary space of 1-chains, they needed to assume that their complex has trivial first
homology (i.e. that im(∂2) = ker(∂1)) so that they can instead use the projection operator
into the cycle space of Cohen et al. The boundary projection operator described in this
paper allow us to remove that assumption to obtain a solver for any subcomplex K of X.
The running time of our new solver polynomially depends on the rank of the homology group
and nearly-linearly depends on the size of the complex. We give a complete analysis of our
solver in Appendix D of the full paper.

In the rest of this section, we sketch the high level ideas for computing our approximate
projection operators. But before we can do that, we need to explain the two notions of
approximations that are used in this paper.
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3.3 Loewner order approximation
We use the Loewner order on positive semidefinite matrices to specify the approximation
quality of our projection and pseudoinverse operators. We see two types of approximation
guarantees in this paper for an operator A: input-relative error bounds of the form
−εI ⪯ A − Ã ⪯ εI and output-relative error bounds of the form −εA ⪯ A − Ã ⪯ εA.
Note for any vector x, an input relative error bound implies ∥(A − Ã)x∥ ≤ ε∥x∥ – the
error is bounded relative to the size of the input x – while an output-relative error bound
implies ∥(A − Ã)x∥ ≤ ε∥Ax∥ – the error is bounded relative to the size of the output
Ax. An approximate operator with a small input-relative error can have arbitrarily large
output-relative error, for example when x is in the kernel of A. Further, output-relative error
bounds are stronger if the norm of ∥A∥ is at most one, i.e. ∥Ax∥ ≤ ∥x∥, which is the case for
the orthogonal projection operators of the Hodge decomposition.

We achieve an output-relative error bound for our approximation of (L1[K])+. Further, we
achieve an output-relative error bound for our approximation Π̃bd of Πbd, but an input-error
bound for our approximation Π̃hr of Πhr:

−εI ⪯ −εΠbd ⪯ Πbd − Π̃bd(ε) ⪯ εΠbd ⪯ εI, (1)

and

−εI ⪯ Πhr − Π̃hr(ε) ⪯ εI. (2)

Previously, Cohen et al. had shown approximation operators Π̃cbd and Π̃cyc for projecting
into the coboundary and cycle spaces with output-relative error bounds:

−εI ⪯ −εΠcbd ⪯ Πcbd − Π̃cbd(ε) ⪯ εΠcbd ⪯ εI, (3)

and

−εI ⪯ −εΠcyc ⪯ Πcyc − Π̃cyc(ε) ⪯ εΠcyc ⪯ εI. (4)

We use these operators multiple times in our algorithms. For simplification, we drop the
explicit mention of the parameter ε when it is clear from the context.

3.4 Projection operators
We first describe our algorithm for computing Π̃hr (an overview of Appendices A and B of
the full version of the paper). Based on that and the operator Π̃cbd of Equation (3), we show
how to compute Π̃bd (an overview of Appendix C of the full version of the paper).

3.4.1 Harmonic projection
We compute our approximate harmonic projection operator Π̃hr by computing an approximate
orthonormal basis G̃ = {g̃1, . . . , g̃β} of the harmonic space. We then define the approximate
projection into the harmonic space to be the linear map Π̃hr =

∑β
i=1 g̃ig̃i

T .
To compute G̃, our algorithm starts with a cohomology basis P = {p1, . . . , pβ}; the

algorithm for computing P is given at the end of this section. From P , it computes
H̃ = {h̃1, . . . , h̃β}, where h̃i = Π̃cycpi and Π̃cyc is the projection operator of Equation (4).
The set H̃ is an approximate harmonic basis, but it is not orthonormal. Next, we normalize
H̃ to obtain Ñ = {h̃1/∥h̃1∥, . . . , h̃β/∥h̃β∥}. Finally, we run Gram-Schmidt on Ñ to obtain G̃.
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To see why G̃ is an approximate basis for the harmonic space, let us consider a much
easier analysis assuming we can use the exact projection in the cycle space Πcyc instead
of the approximate projection Π̃cyc. Instead of H̃, Ñ and G̃, let H = {h1, . . . , hβ}, N =
{h1/∥h1∥, . . . , hβ/∥hβ∥} and G = {g1, . . . , gβ} be the sets of vectors we obtain when we use
the exact projection operator. In that case, hi = Πcycpi is the harmonic part of pi; this is
because pi is a cocycle, so projecting it into the cycle space is the same as projecting it into
the harmonic space. It follows from Fact 4 in Section 2 that G is an exact orthonormal basis
of the harmonic space, thus it defines an exact projection operator into the harmonic space.

In the real scenario where we work with the approximate projection operator Π̃cyc, two
undesirable things can happen. First, we can no longer guarantee that the vectors in Ñ are
purely harmonic, as the error introduced by the approximate operator Π̃cyc may be part
boundary. However, this is not an issue, as we can make the boundary components of Ñ

sufficiently small by approximating Π̃cyc more accurately. Second, and more importantly for
our application, the spaces spanned by N and Ñ can be very different, even if the vectors
N and Ñ are pairwise close. As an example, imagine that we have two pairs of vectors
N = {η1, η2} and Ñ = {η̃1, η̃2} such that ∥ηi − η̃i∥ < ε for i = 1, 2. We might guess that the
two spaces spanned by N and Ñ are similar as the vector are close, but if η1 and η2 are also
close, then the two vectors spaces can be drastically different. Figure 1 gives an illustration
of this, where N is the set of blue vectors and Ñ is the set of red vectors. As illustrated in
the figure, the space spanned by N and the space spanned by Ñ can be drastically different.

Figure 1 Pairwise closeness between a set of vectors N and Ñ is not enough to guarantee the
spaces spanned by N and Ñ are close! The red and blue vectors are pairwise close, but the spaces
they span are very different.

We can remedy this if we approximate Ñ within a sufficiently small error ε of N , but this
new error bound needs to take into account the similarity of the vectors in N . The question
is how accurately we need to approximate Π̃cyc to obtain a sufficently small approximation
error for Ñ . To answer this question, we define a measure of linear independence of N called
its δ-independence. Formally, we say that N is δ-independent if each vector hi/∥hi∥ ∈ N

is at distance at least δ from the span of the other vectors of N . Intuitively, larger δ means
N is more independent, in the sense that the elements are well-separated. The smaller the δ,
the more accurately we need to approximate Π̃cyc to ensure that N and Ñ will span similar
spaces. This intuition is summarized by the following lemma, showing the error in projection
into N as a function of δ, ε, and β, where ε bounds the difference between N and Ñ .
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▶ Corollary 7. Let 0 < δ < 1, and let 0 < ε <
(

δ
8β

)β

. Let N = {η1, . . . , ηβ} be a set of

δ-linearly independent unit vectors, and let Ñ = {η̃1, . . . , η̃β} be a set of unit vectors such that
∥ηi − η̃i∥ < ε. Let G = {g1, . . . , gβ} be the orthonormal basis that is the output of running
Gram-Schmidt on N , and let G̃ = {g̃1, . . . , g̃β} be the output of running Gram-Schmidt on

Ñ . Then
∥∥∥Πspan N − Πspan Ñ

∥∥∥ =
∥∥∥∑β

i=1 gig
T
i − g̃ig̃

T
i

∥∥∥ < 2 · β ·
(

8β
δ

)β

ε.

The difficulty here is actually determining a lower bound on the δ-independence of N .
We have access to the cohomology basis P , but we need the (normalized) harmonic parts
of P to be δ-independent. Note that P can be composed of vectors that are very strongly
independent, yet their harmonic parts may only be weakly independent, for example, when
the vectors of P have similar harmonic parts but very different coboundary parts.

We show that if P is composed of integer vectors with maximum length pmax, then P

being linearly independent implies that H is δ-independent for a δ ∼ 1/(pmax · n1)β , where
n1 is the number of edges in K. In addition to the properties of P , our proof of Lemma 8
relies on the total unimodularity of ∂1.

▶ Lemma 8. Let K be a simplicial complex with n1 edges such that H1(K) = β. Let
{p1, . . . , pβ} be a 1-cohomology basis for K such that each pi is an integer vector with
maximum Euclidean norm pmax. Let hi be the harmonic part of pi for 1 ≤ i ≤ β. Then

(i) ∥hi∥ ≥ 1/(√n1 · pmax)β for each 1 ≤ i ≤ β, and
(ii) {h1/∥h1∥, . . . , hβ/∥hβ∥} is

(
1/(√n1 · pmax)β

)
-independent.

Computing a Cohomology Basis. The question remains of how to find the cohomology
basis P . For this, we use an algorithm on Black et al. Dey [14] describes a nearly-linear
time algorithm for computing a homology basis composed of vectors with coordinates in
{−1, 0, +1}. Black et al. [3] describe an operator C(X, K) that when applied to a homology
basis returns a cohomology basis. We use the cohomology basis P obtained by applying the
operator C to Dey’s homology basis.

▶ Lemma 9 (Dey, Lemma [14]). For a 2-dimensional simplicial complex K linearly embedded
in R3, there exists an algorithm computing a basis for H1(K,R) in O(n log n + nβ1) time,
where n is the complexity of K. Further, the basis is composed of vectors with all coordinates
from {−1, 0, +1}.

▶ Lemma 10 (Black et al., Lemma 1.1 [3]). Let X be a collapsible simplicial complex in R3,
and let K ⊂ X be a subcomplex of X. Let β be the rank of H1(K) and let n be the total
number of simplices of X. Let Γ = {γ1, . . . , γβ} be a homology basis for K. There is a linear
operator C(X, K) such that the set CΓ = {C(X, K) · γ1, . . . , C(X, K) · γβ} is a cohomology
basis for K. Furthermore, CΓ can be computed in O(β · n) time.

While Black et al. introduced the algorithm for computing the cohomology basis P , we
bound the length of the vectors in P . We bound the length of P by combining a bound on
the length of the homology basis with the following bound on the operator norm ∥C(X, K)∥.

▶ Lemma 11. There is a constant α such that ∥C(X, K)∥ ≤ α ·n2
1n4

2/ (λmin(Lup
1 [X])) , where

λmin(L1(X)) is the smallest non-zero eigenvalue of L1(X) and n1 and n2 are the number of
edges and triangles in X respectively.

Note that the vectors in Dey’s homology basis have bounded length as they have coefficients
{−1, 0, 1}. By combining this observation, Lemma 8, and Lemma 11, we prove that the
harmonic part of P are δ-independent for an appropriate value of δ. This is summarized in
the following corollary.
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▶ Corollary 12. Let X be a collapsible complex embedded in R3 with a known collapsing
sequence and let K ⊂ X be a subcomplex of X. Let β be the rank of H1(K) and let n be the
total number of simplices in X. There is an O(n log n + βn) time algorithm for computing a
cohomology basis {p1, . . . , pβ} of K with harmonic parts {h1, . . . , hβ} such that

(i) each hi has length at least δ, and
(ii) the set {h1/∥h1∥, . . . , hβ/∥hβ∥} is δ-linearly independent,

where δ = (λmin(Lup
2 (X))/(α · n3

1n4
2))β for a constant α.

Passing this cohomology basis P to the algorithm above, we obtain H̃, Ñ , G̃, Π̃hr as
desired. The exact approximation quality of the approximate harmonic basis and approximate
harmonic projection are given in Lemma 3 in the introduction.

3.4.2 Boundary projection
It follows from the Hodge decomposition that the the projection into the boundary space
can be written Πbd = I − Πcbd − Πhr. We have approximate projections Π̃cbd and Π̃hr with
input-relative error bounds (Equations (3) and (2) respectively), so we immediately obtain a
boundary projection Πbd with input-relative error bound defined

Πbd = I − Π̃cbd − Π̃hr =⇒ −εI ⪯ Πbd − Πbd ⪯ εI.

However, we need a boundary projection operator with an output-relative bound for our solver.
Unfortunately, the operator Πbd can have arbitrarily bad output-relative error. Specifically,
for any vector x that is orthogonal to the boundary space, this operator has unbounded
output-relative error as Πbdx = 0.

We instead use Πbd as a starting point for a projection operator with bounded output-
relative error. To that end, let’s revisit the issue of input vs. output relative error. Let
x = xbd + xcocyc be any vector decomposed into its boundary and cocycle parts. The
input-relative error bound of Πbd is proportional to ∥x∥ = ∥xbd +xcocyc∥, while for an output-
relative error bound, we need the bound to be proportional to ∥Πbdx∥ = ∥xbd∥. Therefore, a
problem arises if xcocyc is much larger than xbd; provided a bound on ∥xcocyc∥/∥xbd∥, we can
accordingly modify the accuracy of our projection operators Π̃cbd(ε) and Π̃hr(ε) to ensure
Πbd has small output-relative error for x. Unfortunately, ∥xcocyc∥/∥xbd∥ can be unbounded.
To counteract this, we show that we can map x to a different vector x′ before passing it to
Πbd such that (1) x′ has the same boundary component as x (so Πbd · x = Πbd · x′), and (2)
∥x′

cocyc∥/∥x′
bd∥ is bounded.

Specifically, our boundary projection operator is defined Π̃bd = (I − PΓ)(I − PT )Πbd(I −
PT )T (I − PΓ)T , defined based on two operators PT and PΓ. The former was introduced by
Cohen et al. to obtain Π̃cyc, and the latter is introduced in this paper; we sketch the ideas of
both in this overview. The operator (I − PT )T (I − PΓ)T behaves as we need: it maps x to a
chain x′ with the same boundary component as x and a relatively bounded cocycle part. We
now describe PT and PΓ.

Let T be any spanning tree of the 1-skeleton of K. PT is the operator that maps any
1-chain to the unique 1-chain with the same boundary in T . In particular, for any 1-chain x,
(I − PT )x is a cycle.

Next, let Γ = {γ1, . . . , γβ} be a 1-homology basis in K. PΓ is the operator that maps
any 1-cycle to the unique linear combination of Γ that is in the same homology class. In
particular, for any 1-cycle x, (I − PΓ)x is a boundary.
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Now let F = (I − PT )T (I − PΓ)T , so F T = (I − PΓ)(I − PT ). Consider any vector
x = xbd + xcbd + xhr. We investigate what F does to each of the three constituents of x;
what can we say about Fxbd, Fxcbd and Fxhr? In what follows, we frequently use the fact
that for any linear map A, ker(A) and im(AT ) orthogonally decompose the domain of A.

(I − PT ) maps any 1-chain to a cycle and (I − PΓ) maps any cycle to a boundary cycle;
thus, im(F T ) is a subset of the boundary space. It follows that ker(F ) is a superset of the
orthogonal complement of the boundary space, which is the cocycle space. So, F maps any
cocycle to zero, in particular, Fxcbd = 0 and Fxhr = 0. It remains to investigate Fxbd.

PT maps any cycle to zero, so ker(PT ) includes the cycle space; hence, im(P T
T ) is a

subset of the orthogonal complement of the cycle space, which is the coboundary space. In
particular, im(P T

T ) is a subset of the cocycle space. In addition, PΓ maps all boundary cycles
to zero, so ker(PΓ) includes the boundary space; hence, im(P T

Γ ) is within the orthogonal
complement of the boundary space, which is the cocycle space. Now consider

Fxbd = (I − PT )T (I − PΓ)T xbd = Ixbd − P T
T (I − PΓ)T xbd − P T

Γ xbd = xbd + x′
cocyc,

and observe that x′
cocyc is indeed in the cocycle space as im(P T

T ) and im(P T
Γ ) are both within

this space.
Overall, Fxcbd = 0, Fxhr = 0 and Fxbd = xbd + x′

cocyc, so Fx has the same boundary
part as x. Moreover, the norm of the cocyclic part of Fx, ∥x′

cocyc∥, can now be bounded by
∥F∥·∥xbd∥, as it is produced by applying F to x. The proof of Lemma 3.2 in Cohen et al. and
Corollary 14 of this paper provide bounds on ∥I − PT ∥ and ∥I − PΓ∥ that are dependent on
the number of simplices of X, the smallest non-zero eigenvalue of the up-Laplacian of X,
and the first Betti number of K; these bounds in turn provide a bound on ∥F∥. (Note that
∥A∥ =

√
∥AAT ∥ for any linear operator A.)

▶ Lemma 13 (Cohen et al., Proof of Lemma 3.2 [10]). Let K be any simplicial complex, and
let T be a spanning tree of the 1-skeleton of K. Let PT be the operator that maps any 1-chain
x to the unique 1-chain on T with the same boundary, that is (i) PT · x ∈ C1(T ), and (ii)
∂1x = ∂1PT · x. We have (I − PT )(I − PT )T ⪯ n2

1I, where n1 is the number of edges of K.
Further, for any x, PT · x can be computed in O(n1) time.

▶ Corollary 14. Let X, K as defined. Let Γ = {γ1, . . . , γβ} be the homology basis of Lemma 9,
and let PΓ be the operator that for any cycle α returns the unique linear combination of the
cycles of Γ that is homologous to α. We have

(1 − PΓ)(1 − PΓ)T ⪯ ε · I,

for ε = (n1n2/λmin(X))c·β, where λmin(X) is the smallest non-zero eigenvalue of Lup
1 (X)

and c is a constant. Further, for any vector v, PΓ · v can be computed in O(β2n1 + βω) time.

The accuracy and time complexity of the approximate boundary solver Π̃bd are described
in Lemma 2 in the introduction.
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Abstract
We give the first reconstruction algorithm for decision trees: given queries to a function f that is
opt-close to a size-s decision tree, our algorithm provides query access to a decision tree T where:

T has size S := sO((log s)2/ε3);
dist(f, T ) ≤ O(opt) + ε;
Every query to T is answered with poly((log s)/ε)·log n queries to f and in poly((log s)/ε)·n log n

time.

This yields a tolerant tester that distinguishes functions that are close to size-s decision trees
from those that are far from size-S decision trees. The polylogarithmic dependence on s in the
efficiency of our tester is exponentially smaller than that of existing testers.

Since decision tree complexity is well known to be related to numerous other boolean function
properties, our results also provide a new algorithm for reconstructing and testing these properties.
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1 Introduction

We study the problem of reconstructing decision trees: given queries to a function f that is
close to a size-s decision tree, provide fast query access to a decision tree, ideally one of size
not much larger than s, that is close to f . This can be viewed as an “on the fly” variant
of the problem of properly and agnostically learning decision trees, where the goal there
is to output the entire decision tree hypothesis. More broadly, reconstruction algorithms,
introduced by Ailon, Chazelle, Comandur, and Liu [2], can be viewed as sublinear algorithms
that restore structure – in our case, that of a decision tree – in a function that has been lost
due to noise.

Decision trees have long been a popular and effective model in machine learning, and
relatedly, they are among the most intensively studied concept classes in learning theory.
The literature on learning decision trees is vast, spanning three decades and studying the
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problem in a variety of models and from a variety of perspectives [24, 41, 9, 26, 14, 8, 27, 36,
29, 39, 34, 31, 28, 22, 13, 7]. In contrast, the problem of reconstructing decision trees has
thus far been surprisingly understudied.

1.1 Our contributions
We give the first reconstruction algorithm for decision trees. Our algorithm achieves a
polylogarithmic dependence on s in its query and time complexities, exponentially smaller
than the information-theoretic minimum required to learn.

▶ Theorem 1 (Main result). There is a randomized algorithm which, given queries to
f : {±1}n → {±1} and parameters s ∈ N and ε ∈ (0, 1), provides query access to a fixed
decision tree T where

T has size sO((log s)2/ε3);
dist(T, f) ≤ O(opts) + ε w.h.p., where opts denotes the distance of f to the closest size-s
decision tree;
Every query to T is answered with poly((log s)/ε)·log n queries to f and in poly((log s)/ε)·
n log n time.

Notably, in the standard setting where s = poly(n), the query and time complexities of
our algorithm are polylog(n) and Õ(n) respectively. Previously, the only known approach
was to simply properly and agnostically learn f ; the current fastest such algorithm has query
and time complexities nO(log log n) [7].

Our reconstruction algorithm is furthermore local in the sense of Saks and Seshadhri [43],
allowing queries to be answered in parallel assuming a shared random string. In particular,
once f, s, ε and the random string are fixed, all queries are answered consistently with a
single decision tree.

1.1.1 Implications of Theorem 1 and further results
By a standard reduction, Theorem 1 gives a tolerant tester for decision trees:

▶ Corollary 2 (Tolerant testing of decision trees). There is a randomized algorithm which,
given queries to f : {±1}n → {±1} and parameters s ∈ N and ε ∈ (0, 1),

Makes poly((log s)/ε) · log n queries to f , runs in poly((log s)/ε) · n log n time, and
Accepts w.h.p. if f is ε-close to a size-s decision tree;
Rejects w.h.p. if f is Ω(ε)-far from size-sO((log s)2/ε3) decision trees.

This adds to a long line of work on testing decision trees [33, 23, 19, 5, 15]. We give an
overview of prior testers in Section 1.2, mentioning for now that they all have (at least) an
exponentially larger dependence on s in their query and time complexities.

1.1.1.1 A new connection between tolerant testing and learning

It would be preferable if our tester can be improved to reject all f ’s that are far from size-s
decision trees – or more strongly, if our reconstructor can be improved to provide query
access to a size-s decision tree.

We show that such a tester, even one that is considerably less efficient than ours, would
yield the first polynomial-time algorithm for properly learning decision trees:
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▶ Theorem 3 (Tolerant testing =⇒ Proper learning). Suppose there is an algorithm which,
given query access to f : {±1}n → {±1} and parameters s ∈ N and ε ∈ (0, 1),

Makes poly(s, n, 1/ε) queries to f , runs in poly(s, n, 1/ε) time, and
Accepts w.h.p. if f is ε-close to a size-s decision tree;
Rejects w.h.p. if f is Ω(ε)-far from size-s decision trees.

Then there is a poly(s, n, 1/ε)-time membership query algorithm for properly learning size-s
decision trees with respect to the uniform distribution.

This would represent a breakthrough on a central open problem in learning theory. Recent
work of Blanc, Lange, Qiao, and Tan [7] gives a poly(n) ·sO(log log s) time algorithm, improving
on the prior state of the art of nO(log s) [24]. Neither [24]’s nor [7]’s algorithm goes through
testing.

It is well known and easy to see that proper learning algorithms yield comparably efficient
testers [25]. Theorem 3 provides an example of a converse; we find the existence of such a
converse surprising, and are not aware of any previous examples.

1.1.1.2 Reconstructors and testers for other properties

Decision tree complexity is quantitatively related to numerous other complexity measures
of boolean functions: Fourier degree, approximate degree, randomized and quantum query
complexities, certificate complexity, block sensitivity, sensitivity, etc. Our results therefore
immediately yield new reconstructors and tolerant testers for these properties. For example,
we have the following:

▶ Corollary 4 (Reconstruction of low Fourier degree functions). There is a randomized algorithm
which, given queries to f : {±1}n → {±1} and parameters d ∈ N and ε ∈ (0, 1), provides
query access to a fixed function g : {±1}n → {±1} where

g has Fourier degree O(d7/ε2),
dist(f, g) ≤ O(optd) + ε w.h.p., where optd denotes the distance of f to closest h :
{±1}n → {±1} of Fourier degree d.
Every query to g is answered in poly(d, 1/ε) · n log n time and with poly(d, 1/ε) · log n

queries to f .

This in turn yields a tolerant tester for Fourier degree. As in the case for decision trees,
all prior testers for low Fourier degree [23, 19, 20, 5, 12, 15] have an exponential dependence
on d in their query and time complexities.

Table 1 lists examples of measures for which we obtain new reconstruction algorithms,
each of which in turn give new tolerant testers.

1.2 Background and comparison with prior work
As already mentioned, Theorem 1 gives the first reconstruction algorithm for decision trees.
The problem of testing decision trees, on the other hand, has been intensively studied.

Testing decision trees. Recent work of Bshouty [15] gives an algorithm, running in
poly(ss, 1/ε) · n time and using O((s log s)/ε) queries, that distinguishes between size-s de-
cision trees from functions that are ε-far from size-s decision trees. Prior to [15], Chakraborty,
García-Soriano, and Matsliah [19] gave an O((s log s)/ε2)-query algorithm, and before that
Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan [23] gave an Õ(s4/ε2)-query
algorithm. Like [15]’s algorithm, the algorithms of [19, 23] also run in poly(ss, 1/ε) · n time.1

1 All these testers enjoy a weak form of tolerance: they are in fact able to distinguish between functions
that are O(poly(ε/s))-close to size-s decision trees from those that are ε-far from size-s decision trees.
(Briefly, this is because their queries, while correlated, are each uniformly distributed.)
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Table 1 Performance guarantees of our reconstruction algorithms for various complexity measures.
In each row, optd denotes the distance from f to the closest function h such that the complexity
measure of that row for h is bounded by d. In all cases, every query to g is answered in poly(d, 1/ε) ·
n log n time with poly(d, 1/ε) · log n queries to f .

Complexity measure

Assumption Guarantee

Query access to f that is Query access to g that is
optd-close to h where: O(optd + ε)-close to f where:

Fourier degree deg(h) ≤ d deg(g) ≤ O(d7/ε2)

Approximate degree d̃eg(h) ≤ d d̃eg(g) ≤ O(d9/ε2)

Randomized query complexity R(h) ≤ d R(g) ≤ O(d7/ε2)

Quantum query complexity Q(h) ≤ d Q(g) ≤ O(d10/ε2)

Certificate complexity C(h) ≤ d C(g) ≤ O(d5/ε2)

Block sensitivity bs(h) ≤ d bs(g) ≤ O(d8/ε2)

Sensitivity s(h) ≤ d s(g) ≤ O(d13/ε2)

Compared to these algorithms, our algorithm in Corollary 2 solves an incomparable
problem with efficiency parameters that compare rather favorably with theirs. Notably, our
time and query complexities both depend polylogarithmically on s instead of exponentially
and super-linearly respectively.

Turning to the parameterized setting, Kearns and Ron [33] gave a tester with time and
query complexities poly(nn, (log s)n) that distinguishes size-s decision trees over [0, 1]n from
functions that are ( 1

2 − n−Θ(n))-far from size-poly(2n, s) decision trees. The parameters of
this result are such that one should think of the dimension “n” as being a constant rather
than an asymptotic parameter.

Property reconstruction

Property reconstruction was introduced by Ailon, Chazelle, Comandur, and Liu [2]. (See
also the work of Austin and Tao [3], who termed such algorithms “repair algorithms”.)
Reconstruction has since been studied for a number of properties, including monotone
functions [2, 43, 4], hypergraph properties [3], convexity [21], expanders [32], Lipschitz
functions [30], graph connectivity and diameter [17], and error correcting codes [18]. Property
reconstruction falls within the local computation algorithms framework of Rubinfeld, Tamir,
Vardi, and Xie [42].

The paper of Blanc, Gupta, Lange, and Tan [6] designs a decision tree learning algorithm
that is amenable to learnability estimation [35, 10]: given a training set S of unlabeled
examples, the performance of this algorithm A trained on S – that is, the generalization
error of the hypothesis that A would construct if we were to label all of S and train A on it –
can be accurately estimated by labeling only a small number of the examples in S. Their
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techniques can be used to derive a reconstruction algorithm that achieves guarantees similar
to those in Theorem 1, but only for monotone functions f . This limitation is inherent: as
noted in [6], their algorithm is fails for non-monotone functions.

1.2.1 The work of Bhsouty and Haddad-Zaknoon

Subsequent to the posting of our work to the ArXiv, Bshouty and Haddad-Zaknoon [16]
have given a tester that is closely related, but incomparable, to Corollary 2. Their tester:

Makes poly(s, 1/ε) queries to f , runs in poly(n, 1/ε) time, and
Accepts w.h.p. if f is exactly a size-s decision tree;
Rejects w.h.p. if f is ε-far from size-(s/ε)O(log(s/ε)) decision trees.

Comparing [16]’s tester to ours, their query complexity is independent of n (whereas
ours has a log n dependence), and the size of decision trees in their reject condition is only
(s/ε)O(log(s/ε)) (whereas we require sO((log s)2/ε3)).

On the other hand, our tester is tolerant and has query complexity that achieves a
polylogarithmic instead of polynomial dependence on s. Furthermore, [16] does not give a
reconstruction algorithm, while that is the main contribution of our work.

1.3 Future directions

We list a few concrete avenues for future work suggested by our results:
Tighter connections between testing and learning: Our tester rejects functions that are
Ω(ε)-far from quasipoly(s) decision trees, and Theorem 3 shows that a tester that rejects
functions that are Ω(ε)-far from size-s decision trees would yield a comparably efficient
algorithm for properly learning decision trees. A concrete avenue for future work is to
narrow this gap between quasipoly(s) and s, with the ultimate goal of getting them to
match.
There are also other ways in which Theorem 3 could be strengthened: Do non-tolerant
testers for decision trees yield proper learning algorithms? Do tolerant testers yield proper
learning algorithms with agnostic guarantees?
Improved reconstruction algorithms and testers for other properties: The reconstruction
algorithms that we obtain for the properties listed in Table 1 follow by combining The-
orem 1 with known relationships between these measures and decision tree complexity.
It would be interesting to obtain improved parameters by designing reconstruction al-
gorithms that are tailored to each of these properties, without going through decision
trees.
The same questions can be asked of property testers, and about properties that are
not known to be quantitatively related to decision tree size. Can we achieve similar
exponential improvements in the time and query complexities of non-parameterized testers
by relaxing to the parameterized setting? Theorem 3 could be viewed as suggesting that
for certain properties, efficient algorithms may only be possible in the parameterized
setting.

Finally, we mention that there remains a large gap in the known bounds on the query
complexity of non-tolerant testing of decision trees in the non-parameterized setting: the
current best upper bound is Õ(s) [15, 19] whereas the current best lower bound is Ω(log s) [23,
5]. It would be interesting to explore whether our techniques could be useful in closing this
exponential gap.
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Notation

All probabilities and expectations are with respect to the uniform distribution unless otherwise
stated; we use boldface (e.g. x) to denote random variables. For two functions f, g : {±1}n →
{±1}, we write dist(f, g) to denote the quantity Pr[f(x) ̸= g(x)]. We say that f and g are
ε-close if Pr[f(x) ̸= g(x)] ≤ ε, and ε-far otherwise.

For a function f : {±1}n → {±1}, a decision tree T over the same variables as f , and a
node v in T , we write fv to denote the subfunction of f obtained by restricting f according
to the root-to-v path in T . We write |v| to denote the depth of v within T , and so the
probability that a uniform random x ∼ {±1}n reaches v is 2−|v|.

2 Proofs of Theorem 1 and Theorem 2

Our proof of Theorem 1 has two main components:
A structural lemma about functions f that are opts-close to a size-s decision tree T ⋆.
While we have no information about the structure of this tree T ⋆ that f is opts-close
to, we will show that f is O(opts + ε)-close to a tree T ⋄ of size S = S(s, ε) with a very
specific structure.
An algorithmic component that leverages this specific structure of T ⋄ to show that for
any input x ∈ {±1}n, the value of T ⋄(x) can be computed with only log S · log n queries
to f .

Section 2.1 will be devoted to the structural lemma and Section 2.2 to the algorithmic
component. We prove Theorem 1 in Section 2.2.2, and we derive Corollary 2 as a simple
consequence of Theorem 1 in Section 2.3.

2.1 Structural component of Theorem 1

▶ Definition 5 (Noise sensitivity). The noise sensitivity of f : {±1}n → {±1} at noise rate p

is the quantity

NSp(f) := Pr[f(x) ̸= f(y)],

where x ∼ {±1}n is uniform random and y ∼p x is a p-noisy copy of x, obtained from x by
independently rerandomizing each coordinate with probability p.

We assign each coordinate i ∈ [n] of a function f a score, which measures the expected
decrease in the noise sensitivity of f if xi is queried:

▶ Definition 6 (Score of a variable). Given a function f : {±1}n → {±1}, noise rate p ∈ (0, 1),
and coordinate i ∈ [n], the score of xi is defined as

Scorei(f, p) = NSp(f)− E
b∈{±1}

[
NSp(fxi=b)

]
.

(Our notion of score is equivalent, up to scaling factors depending on p, to the notion of
“noisy influence” as in defined in O’Donnell’s monograph [38]. We use our definition of score
as it simplifies our presentation.) We are now ready to define the tree T ⋄ described at the
beginning of this section and state our structural lemma.
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▶ Definition 7. For a function f : {±1}n → {±1}, parameters d ∈ N and p ∈ (0, 1), we
write T d,p

f to denote the complete decision tree of depth d defined as follows:
At every internal node v, query xi where i ∈ [n] maximizes Scorei(fv, p).2
Label every leaf ℓ with sign(E[fℓ]).

▶ Lemma 8 (Structural lemma). Let f : {±1}n → {±1} be opts-close to a size-s decision
tree. Then for d = O((log s)3/ε3) and p = ε/(log s), we have dist(f, T d,p

f ) ≤ O(opts) + ε.

While Lemma 8 covers the main essence of our structural result, we’ll need a slightly
more robust version.

▶ Lemma 9 (Robust version of Lemma 8). Let f : {±1}n → {±1} be opts-close to a size-s
decision tree. For d = O((log s)3/ε3), p = ε/(log s), and τ = O(ε3/(log s)3), let T be any
complete decision tree of depth d satisfying:

At every internal node v, the variable xi that is queried at this node satisfies:

Scorei(fv, p) ≥ max
j∈[n]

{Scorej(fv, p)} − τ.

Every leaf ℓ such that |E[fℓ]| > ε is labeled sign(E[fℓ]).
Then dist(f, T ) ≤ O(opts + ε).

The proofs of Lemmas 8 and 9 are in the full version of this paper.

2.2 Algorithmic component of Theorem 1
2.2.1 Query-efficient simultaneous score estimation
We begin by designing a query-efficient subroutine that simultaneously estimates the scores
of all n variables of a function f . The fact that we are able to do so with O(log n) queries,
as opposed to Ω(n) as would be required by a naive approach, will be a key component in
the query efficiency of our reconstructor.

▶ Theorem 10 (Score estimator). There is an algorithm which, given query access to a
function f : {±1}n → {±1}, noise rate p ∈ (0, 1), accuracy parameter τ ∈ (0, 1), and
confidence parameter δ ∈ (0, 1), for

q = O

(
log n + log(1/δ)

τ2

)
makes O(q) queries, runs in O(qn) time, and returns estimates η1, . . . , ηn such that, with
probability at least 1− δ, satisfies∣∣ηi − Scorei(f, p)

∣∣ < τ for all i ∈ [n].

We prove Theorem 10 by first giving a 2-query algorithm, UnbiasedEstimator (Fig-
ure 1), that runs in O(n) time and outputs unbiased estimates of all n scores. The algorithm
of Theorem 10 takes the mean of multiple runs of that unbiased estimator, with its guarantees
following from a simple concentration bound.

▶ Lemma 11 (Analysis of UnbiasedEstimator). For any f : {±1}n → {±1} and p ∈ (0, 1),
let η1, . . . , ηn be the outputs of UnbiasedEstimator(f, p). Then

E
x,y

[ηi] = Scorei(f, p) for all i ∈ [n].

2 Ties are arbitrarily broken; our results hold regardless of how ties are broken.

ICALP 2022



24:8 Reconstructing Decision Trees

UnbiasedEstimator(f, p):

Input: Query access to a function f : {±1}n → {±1} and a noise rate p ∈ (0, 1).
Output: Unbiased estimates of Scorei(f, p) for all i ∈ [n].

1. Choose x ∈ {±1}n uniformly at random and generate a p-noisy copy y of x.
2. For each i ∈ [n], return the estimate

ηi = 1
[
f(x) ̸= f(y)

]
·
(

1− 1
1− p

2
· 1[xi = yi]

)
.

Figure 1 UnbiasedEstimator computes unbiased estimates of the scores of all variables of a
function f .

Proof. We first note that Pr[f(x) ̸= f(y)] is NSp(f) by definition. Therefore, it is enough
for us to prove that

E
b∈{±1}

[
NSp(fxi=b)

]
= 1

1− p
2
· Pr

x,y
[f(x) ̸= f(y) and xi = yi] . (1)

Given the above equation, the desired result holds by linearity of expectation and the
definition of score. Consider the distribution over (x, y) conditioned on the event that
b = xi = yi. That distribution is equivalent to if we picked x randomly from the domain of
fxi=b and selected y by rerandomizing each coordinate in that domain with probability p.
Therefore,

NSp(fxi=b) = Pr
x,y

[f(x) ̸= f(y) | b = xi = yi]

= 1
Prx,y[b = xi = yi]

] · Pr
x,y

[f(x) ̸= f(y) and b = xi = yi].

We now prove Equation (1):

E
b∈{±1}

[
NSp(fxi=b)

]
= E

b∈{±1}

 1
Pr
x,y

[b = xi = yi]
] · Pr

x,y
[f(x) ̸= f(y) and b = xi = yi]


= 1

1
2 · Pr

x,y
[xi = yi]

E
b∈{±1}

[
Pr
x,y

[f(x) ̸= f(y) and b = xi = yi]
]

= 1
1
2 · (1−

p
2 )
· 1

2 · Pr
x,y

[f(x) ̸= f(y) and xi = yi]

= 1
1− p

2
· Pr

x,y
[f(x) ̸= f(y) and xi = yi] .

Lemma 11 then holds by linearity of expectation. ◀

We now prove Theorem 10.

Proof of Theorem 10. The algorithm runs UnbiasedEstimator(f, p) q times and then
outputs the means of each returned estimates. Each estimate from UnbiasedEstimator is
bounded between −1 and 1. By Hoeffding’s inequality, for any i ∈ [n],

Pr
[∣∣ηi − Scorei(f, p)

∣∣ ≥ τ
]
≤ − expe

(
−q · τ2

2

)
.
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For q as in Theorem 10, the above probability is at most δ/n. By union bound, all estimates
are accurate within ±τ with probability at least 1− δ.

Finally, this algorithm uses only 2q = O(q) queries. Each run of UnbiasedEstimator
estimator takes O(n) time to construct the query and compute all the estimates, so the entire
algorithm takes O(qn) time. ◀

2.2.2 Proof of Theorem 1
We prove Theorem 1 by providing an algorithm, Reconstructor (Figure 2), which assumes
query access to a function f : {±1}n → {±1} and provides fast query access to a tree T

meeting the criteria of Theorem 1. We build off a simple observation that also underlies
[6]: to determine the output of a decision tree T on a particular input z, it suffices to build
the root-to-leaf path corresponding to z, which can be exponentially faster than building
the entire tree. Our algorithm is different from [6]’s; as mentioned in the introduction their
algorithm is tailored to monotone functions, and is known to fail for non-monotone ones. We
on the other hand leverage the specific structure of T established in Section 2.1 together
with the query-efficient score estimator from Section 2.2.1 in our design and analysis of
Reconstructor.

Reconstructor maintains a partial tree T ◦ containing all the root-to-leaf paths in T

corresponding to queries received so far. In the pseudocode for Reconstructor, we use the
notation T ◦

internal(α) ∈ [n] ∪ {∅} to indicate the variable queried in [n] at internal node α of
the partial tree T ◦, or ∅ if that node has not yet been built. Similarly, T ◦

leaf(α) ∈ {−1, 1,∅}
indicates the value at leaf α in T ◦, or ∅ if that value has not yet been decided.

Theorem 1 follows from the following two lemmas, showing the correctness and efficiency
of Reconstructor respectively.

▶ Lemma 12 (Correctness of Reconstructor). For any f : {±1}n → {±1}, s ∈ N,
ε ∈ (0, 1

2 ), δ ∈ (0, 1), and sequence of inputs z(1), . . . , z(m) ∈ {±1}n, the outputs of
Reconstructor are consistent with some decision tree T where

T has size sO((log s)2/ε3),
dist(T, f) ≤ O(opts) + ε with probability at least 1− δ.

Proof. The outputs of Reconstructor are always consistent with T ◦ and the depth of T ◦

is always capped at d. Let T be the tree that T ◦ would be if every x ∈ {±1}n were given
as an input to Reconstructor. Then, T has size at most 2d = sO((log s)2/ε3), and every
output is consistent with T .

If all score estimates in Step 3(b)i are accurate to ± τ
2 and expectation estimates is

Step 3c are accurate to ± ε
4 , then T meets the criteria of Lemma 9 and therefore dist(T, f) ≤

O(opts) + ε. The number of time scores are estimated in Step 3(b)i is at most the number
of internal nodes of T , which is 2d − 1. Similarly, the number of expectation estimates in
Step 3(b)i is at most the number of leaves of T , which is 2d. By union bound over the
possible failures, we see that the failure probability is at most δ. ◀

▶ Lemma 13 (Efficiency of Reconstructor). For any f : {±1}n → {±1}, s ∈ N, ε ∈ (0, 1
2 ),

δ ∈ (0, 1), particular input z ∈ {±1}n, and

q = O

(
(log s)9 · (log n) · log(1/δ)

ε9

)
,

upon receiving z as input, Reconstructor(f, s, ε, δ) uses O(q) queries and O(qn) time to
return an output.
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Reconstructor(f, s, ε, δ):

Input: Query access to a function f : {±1}n → {±1}, size parameter s, error para-
meter ε, and failure probability δ.

Output: Query access to a decision tree T that satisfies dist(f, T ) ≤ O(opts) + ε with
probability at least 1− δ.

1. Set parameters d, p, and τ as in Lemma 9.
2. Initialize T ◦ to be the empty partial tree.
3. Upon receiving an input z ∈ {±1}n:

a. Initialize α to be the root of T ◦.
b. Repeat d times.

i. If T ◦
internal(α) is ∅ use the estimator from Theorem 10 to compute estimates

of Scorei(fα, p) with additive accuracy ± τ
2 and failure probability O( δ

2d ) for
all i ∈ [n] and set T ◦

internal(α) to the variable with highest estimated score.
ii. For i = T ◦

internal(α), If zi is 1, set α to its right child. Otherwise, set α to its
left child.

c. If T ◦
leaf(α) is ∅, use random samples to estimate E[fℓ] to additive accuracy

± ε
4 with failure probability O( δ

2d ) and set T ◦
leaf(α) to whichever of {±1} that

estimate is closer to.

d. Output T ◦
leaf(α).

Figure 2 Reconstructor gives efficient query access to a decision tree is close to f with high
probability.

Proof. On each input, the estimator from Theorem 10 is used up to d times. Each uses

qinner := O

(
log n + log(2d/δ)

τ2

)
= O

(
log n + d + log(1/δ)

τ2

)
queries and O(qinnern) time. By Hoeffding’s inequality, it is sufficient to take

qleaf := O

(
log(2d/δ)

ε2

)
= O

(
d + log(1/δ)

ε2

)
random samples in Step 3c. Therefore, the total number of queries used is

q = qinner + qleaf

= O

(
log n + d + log(1/δ)

τ2

)
+ O

(
d + log(1/δ)

ε2

)
= O

(
log n + ((log s)3/ε3) + log(1/δ)

ε6/(log s)6 + ((log s)3/ε2) + log(1/δ)
ε2

)
= O

(
(log s)9 · (log n) · log(1/δ)

ε9

)
.

The time to prepare all queries is O(qn), and all other computation is asymptotically
faster. ◀
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▶ Remark 14 (Local reconstruction). We remark that our reconstruction algorithm can be
made local in the sense of [43]. They define a reconstruction algorithm, A, to be local, if the
output of A on some input z is a deterministic and easy to compute function of z and some
small random string ρ. This allows queries to the reconstructor to be answered in parallel,
as long as the random string ρ is shared. To make our reconstructor local, we note that the
only place randomness is used is in generating samples consistent with some restriction α.
We can set ρ to be n bits per sample the constructor might wish to generate. Since the total
number of samples the reconstructor needs per input is poly(log s, 1/ε, log(1/δ)) · log n, we
have

|ρ| = poly(log s, 1/ε, log(1/δ)) · n log n

On a particular input, the local reconstructor starts with T ◦ being the empty tree. Whenever
it wishes to produce a random sample consistent with α, it sets the x ∈ {±1}n to be next n

bits of ρ and then uses xα for the sample. It’s easy to see that this algorithm will keep T ◦

consistent between different runs because it will always compute the same variable as having
the highest score given some restriction. Furthermore, the analysis goes through without
issue. The only difference between this analysis and one where fresh random bits are used
to for each sample is that the queries of different paths may be correlated. In our proof of
Lemma 12, we use a union bound to ensure all estimates obtained through sampling are
accurate, and that union bound holds regardless of whether those estimates are independent.

2.3 Proof of Corollary 2

In this section we derive Corollary 2 as a simple consequence of Theorem 1. The connection
between reconstruction and tolerant testing has been noted in other works (see e.g. [17, 11]);
we provide a proof here for completeness.

▶ Theorem 15 (Corollary 2 restated). There is an algorithm which, given query access to
f : {±1}n → {±1} and parameters s ∈ N and ε, δ ∈ (0, 1), runs in poly(log s, 1/ε) · n log n ·
log(1/δ) time, makes poly(log s, 1/ε) · log n · log(1/δ) queries to f , and

Accepts w.p. at least 1− δ if f is ε-close to a size-s decision tree;
Rejects w.p. at least 1− δ if f is Ω(ε)-far from size-sO((log s)2/ε3) decision trees.

Proof. The algorithm chooses m uniform random inputs, x(1), . . . , x(m) ∼ {±1}n where
m = O(log(1/δ)/ε2). Let b(1), . . . , b(m) ∈ {±1} be the output of Reconstructor(f, s, ε, δ).
The tester rejects if Ei∈[m][f(x(i)) ̸= b(i)] > Ω(ε) and accepts otherwise.

First, we consider the case where f is ε-close to a size-s decision tree (i.e. opts ≤ ε). By
Lemma 12, with probability at least 1− δ the outputs of Reconstructor are consistent
with a tree, T , satisfying dist(T, f) ≤ O(ε). By Hoeffding’s inequality,

Pr
x(1),...,x(m)

[
E

i∈[m]

[
f(x(i)) ̸= b(i)] > Ω(ε)

]
≤ exp(−2mε2) ≤ δ.

By a union bound, the tester rejects with probability at most δ + δ = 2δ.
We next consider the case where f is Ω(ε)-far from size-sO((log s)2/ε3) decision trees. By

Lemma 12 it is guaranteed to be consistent. A similar argument to the first case shows that
the probability of acceptance is at most δ + exp(−2mε2) = 2δ. Finally, the efficiency of this
tester is a consequence of Lemma 13 and our choice of m = O(log(1/δ)/ε2). ◀
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3 Proof of Corollary 4

We first restate Theorem 1 with decision tree depth instead of size as the complexity measure:

▶ Theorem 16 (Theorem 1 in terms of decision tree depth). There is a randomized algorithm
which, given query access to f : {±1}n → {±1} and parameters d ∈ N and ε ∈ (0, 1), provides
query access to a fixed decision tree T where

T has depth O(d3/ε2),
dist(T, f) ≤ O(optd)+ε w.h.p., where optd denotes the distance of f to the closest depth-d
decision tree.

Every query to T is answered in poly(d, 1/ε) ·n log n time and with poly(d, 1/ε) · log n queries
to f .

To see that our proof of Theorem 1 also establishes Theorem 16, we use the fact that
every depth-d decision tree has size ≤ 2d, and recall that the tree T that the algorithm
of Theorem 1 provides query access to is a complete tree and hence has depth logarithmic in
its size.

Decision tree depth and Fourier degree of boolean functions are known to be polynomially
related:

▶ Fact 17 (Decision tree depth vs. Fourier degree [37, 44]). For g : {±1}n → {±1} let deg(g)
denote g’s Fourier degree and D(g) denote the depth of the shallowest decision tree that
computes g. Then deg(g) ≤ D(g) and D(g) ≤ deg(g)3.

We first observe Theorem 16 and Fact 17 already gives a quantitatively weaker version
of Corollary 4 where g has degree O(d 9/ε2). To see this f : {±1}n → {±1} be optd-close
to a degree-d function h : {±1}n → {±1}. By Fact 17, D(h) ≤ deg(h)3, and so the
algorithm of Theorem 16 provides query access to a decision tree T : {±1}n → {±1} that
is (O(optd) + ε)-close to f and where the depth of T is O(D(h)3/ε2) = O(deg(h)9/ε2).
Applying Fact 17 again, we conclude that deg(T ) ≤ D(T ) ≤ O(deg(h)9/ε2).

To obtain the sharper bound of O(deg(h)7/ε2), we observe that the proof of Lemma 8 in
fact bounds the depth of T by O(D(h)2 Inf(h)/ε2). Influence and degree of boolean functions
are related via the following basic fact (see e.g. [38, Theorem 37]):

▶ Fact 18. For all h : {±1}n → {±1}, we have Inf(h) ≤ deg(h).

Therefore, we can bound the degree of T by O(D(h)2 Inf(h)/ε2) ≤ O(deg(h)7/ε2).
Guarantees for the other measures listed in Table 1 follow from similar calculations and

known quantitative relationships between these measures and decision tree complexity; the
current best bounds are summarized in Table 1 of [1].

4 Proof of Theorem 3

In this section, we prove the following theorem:

▶ Theorem 19 (Tolerant testing of DTs ⇒ Proper learning of DTs). Let c > 0 be an absolute
constant and A be an algorithm with the following guarantee. Given query access to f :
{±1}n → {±1} and parameters s ∈ N and ε ∈ (0, 1), the algorithm A:

Accepts w.h.p. if f is ε-close to a size-s decision tree;
Rejects w.h.p. if f is (cε)-far from all size-s decision trees.
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Then there is an algorithm B with the following guarantee. Given parameters s′ ∈ N and
ε′ ∈ (0, 1), and query access to a function g : {±1}n → {±1} that is computed by a size-
s′ decision tree, B makes poly(s′, n, 1/ε′) calls to A, each with parameters s ≤ s′ and
ε ≥ poly(1/s′, ε′), and produces a decision tree which is ε′-close to g with high probability.
Furthermore, the auxiliary computation that g does takes time poly(n, s′, 1/ε′).

Theorem 3 follows as a special case of Theorem 19.
We prove Theorem 19 in two steps:

1. A tolerant tester implies an algorithm for estimating the distance of any function to the
class of size-s decision trees. This is well known [40] and applies to any function class,
not just decision trees.

2. An algorithm for estimating distance to decision trees implies a proper learner for decision
trees. Here, we take advantage of the structure of decision trees.

For a function g : {±1}n → {±1} and s ∈ N, we write opts(g) to denote the distance of
g to the closest size-s decision tree.

▶ Lemma 20 (Tolerant testing ⇒ distance estimation [40]). Let c and A be as in Theorem 19.
There exists an estimator E with the following guarantee. Given query access to g : {±1}n →
{±1} and parameters s′ ∈ N and γ ∈ (0, 1), the estimator E makes c/γ calls to A and returns
an η that with high probability satisfies

η ≤ opts(g) ≤ c · η + γ.

Furthermore, the auxiliary computation of g takes time O(c/γ).

Proof. The algorithm E runs A with ε = γ
c , 2γ

c , 3γ
c , . . . , 1, and sets η to be the largest ε for

which A(g, s, ε) rejects. Since A(g, s, η) rejected,

η < opts(g)

with high probability. Furthermore, since A(g, s, η + γ
c ) accepted,

opts(g) < c ·
(
η + γ

c

)
= c · η + γ

with high probability. Finally, we note that E indeed makes c/γ calls to A, and aside from
those calls, it only needs to make a single pass over the output of those calls and return the
largest ε that led to a rejection, which takes time O(c/γ). ◀

We are now ready to state our algorithm, BuildDT (Figure 3), for properly learning
size-s′ decision trees. BuildDT will additionally take in a depth parameter d that will
facilitate our analysis of it (looking ahead, d will be chosen to be O(log(s′/ε′)) in our proof
of Theorem 19).

▶ Lemma 21 (Error of BuildDT). For all functions f : {±1}n → {±1} and parameters
s, d ∈ N and γ ∈ (0, 1), the algorithm BuildDT(f, s, d, γ) outputs a decision tree T satisfying

dist(T, f) ≤ cd · opts(f) + γ · cd − 1
c− 1 + s

2d+2 . (2)
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BuildDT(f, s, d, γ):

Input: Query access to f : {±1}n → {±1}, parameters s, d ∈ N and γ ∈ (0, 1).
Output: A size-s depth-d decision tree T .

1. If s = 1 or d = 0, return sign(E[f ]).
2. For each i ∈ [n] and integers s0, s1 ≥ 1 satisfying s0 + s1 = s:

a. Use E from Lemma 20 to obtain estimates η(xi = 0, s0) and η(xi = 1, s1) that
satisfy:

η(xi = 0, s0) ≤ opts0(fxi=0) ≤ c · η(xi = 0, s0) + γ;
η(xi = 1, s1) ≤ opts1

(fxi=1) ≤ c · η(xi = 1, s1) + γ.

b. Store error(i, s1, s2)← 1
2
(
η(xi = 0, s0) + η(xi = 1, s1)

)
.

3. Let (i⋆, s⋆
0, s⋆

1) be the tuple that minimizes error(i, s0, s1). Output the tree
with xi⋆ as its root, BuildDT(fxi⋆ =0, s⋆

0, d − 1, γ) as its left subtree, and
BuildDT(fxi⋆ =1, s⋆

1, d− 1, γ) as its right subtree.

Figure 3 BuildDT computes a size-s depth-d decision tree that approximates a target function
f : {±1}n → {±1}.

Proof. We proceed by induction on s and d. If s = 1, then in Step 1, BuildDT outputs
the best decision tree of size 1. Therefore, dist(T, f) ≤ opts(f), satisfying Equation (2). If
d = 0 and s ≥ 2, then s

2d+2 ≥ 2
4 = 1

2 . Furthermore, in Step 1, BuildDT always outputs a
tree with error at most 1

2 . Therefore,

dist(T, f) ≤ s

2d+2 ≤ cd · opts(f) + γ · cd − 1
c− 1 + s

2d+2 .

Finally, we consider the case where d ≥ 1 and s ≥ 2. Let Topt be the size-s decision tree that
is opts(f) close to f . Let xiopt the root of Topt, and s0,opt, s1,opt the sizes of the left and right
subtrees of Topt respectively. Since the estimates computed in Step 2a are underestimates
of or equal to the true error (i.e. error(iopt, s0,opt, s1,opt) ≤ opts(f)), and since i⋆, s⋆

0, s⋆
1 are

chosen in Step 3 to minimize the estimated error, we have

error(i⋆, s⋆
0, s⋆

1) ≤ error(iopt, s0,opt, s1,opt) ≤ opts(f).

Finally, we bound dist(T, f). Let T0 and T1 be the left and right subtrees of T . Then,

dist(T, f) = 1
2

(
dist(T0, fxi⋆ =0) + dist(T1, fxi⋆ =1)

)
≤ 1

2

(
cd−1 · opts⋆

0
(fxi⋆ =0) + γ · cd−1 − 1

c − 1 + s⋆
0

2d+1

+ cd−1 · opts⋆
1
(fxi⋆ =1) + γ · cd−1 − 1

c − 1 + s⋆
1

2d+1

)
(Inductive hypothesis)

= cd−1 · 1
2

(
opts⋆

0
(fxi⋆ =0) + opts⋆

1
(fxi⋆ =1)

)
+ γ · cd−1 − 1

c − 1 + s⋆
0 + s⋆

1
2d+2

≤ cd−1 · 1
2

(
(c · η(xi⋆ = 0, s⋆

0) + γ) + (c · η(xi⋆ = 1, s⋆
1) + γ)

)
+ γ · cd−1 − 1

c − 1 + s

2d+2

= cd · 1
2

(
η(xi⋆ = 0, s⋆

0) + η(xi⋆ = 1, s⋆
1)
)

+ cd−1 · γ + γ · cd−1 − 1
c − 1 + s

2d+2
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= cd · error(i⋆, s⋆
0, s⋆

1) + γ · cd−1(c − 1) + cd−1 − 1
c − 1 + s

2d+2

≤ cd · opts(f) + γ ·
(

cd − 1
c − 1

)
+ s

2d+2 .

The desired result holds by induction. ◀

For readability, Lemma 21 assumes that BuildDT is able to compute round(E[f ]) in
Step 1. To make BuildDT efficient, we would only estimate E[f ] by querying f on uniform
random inputs x ∈ {±1}n. If those estimates are computed to accuracy ε′, then each leaf of
our tree can have up to ε′ additional error. This is not an issue since it increases the total
error of T , which is simply the average of the error at each leaf, by only ε′.

Finally, we prove Theorem 19:

Proof of Theorem 19. Our goal is to properly learn a size-s′ decision tree g : {±1}n → {±1}
to accuracy ε′. To do so, we run BuildDT(g, s′, d, γ), with d set to

d = log(s′/ε′)− 1,

and γ set to

γ = ε′

2 ·max(2, c)d
= ε′

2 · (2
−d)max(1,log c) = ε′

2 ·
(

ε′

s′

)max(1,log c)
.

By Lemma 21, for T the tree BuildDT outputs,

dist(T, g) ≤ cd · opts′(g) + γ · cd − 1
c− 1 + s′

2d+2

≤ 0 + ε′

2 ·max(2, c)d
·max(2, c)d + s′

2log(s′/ε′)+1

≤ ε′

2 + ε′

2 = ε′.

Hence, BuildDT produces the desired output. We next argue that it is efficient. During the
recursion, BuildDT is called at most s′ times in total. Each such call makes O(ns′) calls to
E . By Lemma 20, those calls to E each make c/ε calls to A. Hence, the total number of calls
to A is

O

(
n(s′)2

γ

)
= O

(
n(s′)2

ε′ ·
(

s′

ε′

)max(1,log c)
)

= poly(n, s′, 1/ε′).

The total auxiliary computation of BuildDT is bounded by the same quantity. Finally,
each call to A is made with parameters s and ε where s ≤ s′ and ε = ε′

2 ·
(

ε′

s′

)max(1,log c)
≥

poly(1/s′, ε′). ◀
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Abstract
Despite a lot of recent progress in obtaining faster sequential matroid intersection algorithms, the fast-
est parallel poly(n)-query algorithm was still the straightforward O(n)-round parallel implementation
of Edmonds’ augmenting paths algorithm from the 1960s.

Very recently, Chakrabarty-Chen-Khanna [FOCS’21] showed the lower bound that any, possibly
randomized, parallel matroid intersection algorithm making poly(n) rank-queries requires Ω̃(n1/3)
rounds of adaptivity. They ask, as an open question, if the lower bound can be improved to Ω̃(n),
or if there can be sublinear-round, poly(n)-query algorithms for matroid intersection.

We resolve this open problem by presenting the first sublinear-round parallel matroid intersection
algorithms. Perhaps surprisingly, we do not only break the Õ(n)-barrier in the rank-oracle model,
but also in the weaker independence-oracle model. Our rank-query algorithm guarantees O(n3/4)
rounds of adaptivity, while the independence-query algorithm uses O(n7/8) rounds of adaptivity,
both making a total of poly(n) queries.
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1 Introduction

Matroid intersection. Given two matroids1 M1 = (V, I1) and M2 = (V, I2) over the same
n-element ground set V (but with different notions of independence I1, I2), the matroid
intersection problem is to find the largest common independent set S∗ ⊆ I1 ∩ I2. This is
a fundamental discrete optimization problem that has been studied for over half a century.
Matroid intersection can be used to model many important combinatorial optimization
problems, such as bipartite matching, finding arborescences, spanning tree packing, etc. As
such, matroid intersection is a natural avenue to study all these problems simultaneously.

Oracle access. There are two standard ways to access the matroids – independence oracles
and rank oracles – and we study both in this work. In an independence-query we may ask if
S ⊆ V is independent in one of the matroids, i.e. a query of the form “Is S ∈ I1?” or “Is
S ∈ I2?” In a rank-query we instead ask for the rank of S ⊆ V in one of the matroids. The

1 Matroids are a well-studied combinatorial structure which can be though of as a generalization of the
notion of linear independence in vector spaces. For a formally definition, see Definition 4.
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25:2 Sublinear-Round Parallel Matroid Intersection

rank rk1(S) with respect to the matroid M1 (similarly rk2 for M2) is the size of the largest
(or, equivalently, any maximal) independent set, w.r.t. I1, contained in S. Note that the
rank oracle is strictly more powerful than the independence oracle, since S ∈ I1 if and only
if rk1(S) = |S|.

Parallel matroid intersection. A parallel matroid intersection algorithm accesses the oracle
in rounds. In each round, a number of queries – that may only depend on the answers to
queries made in previous rounds – can be issued in parallel. There is certainly a trade-off
between (1) adaptivity, usually measured by the number of rounds, and (2) the total number
of queries. When constructing parallel algorithms the goal is often to have as few rounds of
adaptivity as possible while making only polynomially many queries in total.

Previous work. Edmonds [10] showed the first polynomial algorithm for matroid intersection
in the 1960s, using O(n3) independence-queries, and there has been a long line of research
since then e.g. [1,2,3,5,6,8,9,10,18,19,21]. Many of these are based on Edmonds’ framework
of finding augmenting paths in the exchange graph. In the sequential setting, only recently
was the quadratic O(n2)-query-barrier broken, first for rank-queries by Chakrabarty-Lee-
Sidford-Singla-Wong in FOCS 2019 [5] and subsequently also for independence-queries by
Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai in STOC 2021 [3]. The current state-of-the-
art in the sequential setting are the2 Õ(n

√
n) rank-query algorithm by [5] and the Õ(n7/4)

independence-query algorithm by [2].
When it comes to the parallel setting, there is a straightforward O(n)-round, poly(n)

independence-query implementation of Edmonds’ algorithm: find the (up to O(n) many)
augmenting paths one-by-one. Each augmenting path can be found in a single round by
querying all the potential edges in the exchange graph. In some special cases of matroid
intersection we can do much better: a sequence of work has shown that both bipartite
matching [11,16,20] and subsequently linear matroid intersection [13,20] are in RNC3 and
quasi-NC.4

Another line of relevant work is showing that, in the parallel setting, the search-problem
(finding a largest common independent set S) and the decision-problem (just finding the size
of the answer) are “equivalent” (with only O(polylog(n)) overhead). This is not at all obvious
in the parallel setting, however, a recent work from SODA 2022 by Ghosh-Gurjar-Ray [12]
shows that this is indeed the case for weighted matroid intersection, with rank-oracle access.

In FOCS 1985, Karp-Upfal-Wigderson [15] showed that any independence-query algorithm,
possibly randomized, that finds a maximum independent set (basis) in a single matroid must
use Ω̃(n1/3) rounds of adaptivity if it makes poly(n) queries. They also show algorithms to
find a basis of a (single) matroid in O(

√
n) rounds of independence-queries or a single round

of the more powerful rank-queries. Arguably, this polynomial gap between the independence-
query (Ω̃(n1/3) rounds) and rank-query (O(1) rounds) for the seemingly easy problem to
find a basis of a matroid illustrates that the independence-query is much weaker than the
rank-query when used in parallel algorithms.

Nevertheless, a recent result from FOCS 2021 by Chakrabarty-Chen-Khanna [4] shows
that even rank-query algorithms require a polynomial number of rounds to solve matroid
intersection. In particular, they show a lower bound of Ω̃(n1/3) rounds of adaptivity for any,
possibly randomized, poly(n) rank-query matroid intersection algorithm.

2 We use the usual convention of hiding polylog(n)-factors with Õ and Ω̃ throughout the paper.
3 Randomized polylog(n) rounds of adaptivity with poly(n) total work.
4 Deterministic polylog(n) rounds of adaptivity with nO(log n) total work.
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Despite efficient algorithms for some special cases of matroid intersection, the trivial
O(n)-round algorithm has remained unbeaten in the general case. The major open question
(asked, for example, by [4]) is then whether it is possible to beat the O(n)-round barrier, or
if matroid intersection is inherently very sequential and requires Ω̃(n) rounds of adaptivity.

Our results. We answer the above question by showing the first sublinear-round parallel
matroid intersection algorithms, both in the rank-oracle and independence-oracle models. In
particular, we obtain the following theorem.

▶ Theorem 1 (Sublinear-round Matroid Intersection). There is a deterministic parallel al-
gorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V ,
finds a largest common independent set S ∈ I1 ∩ I2 using either

O(n3/4) rounds of polynomially many rank-queries, or
O(n7/8) rounds of polynomially many independence-queries.
Our results, together with the lower bounds of [4, 15], imply that the true adaptivity of

matroid intersection is somewhere between n1/3 and n3/4 (or n7/8 for independence queries).

▶ Remark 2. Although we focus on the query-complexity in this paper, we note that the
rounds and work in our algorithms are dominated, up to log-factors, by the oracle queries.

1.1 Technical Overview
The exchange graph and augmenting paths. Like many matroid intersection algorithms,
we work in Edmonds’ framework of finding augmenting paths in the exchange graph. The
exchange graph G(S) with respect to a common independent set S ∈ I1 ∩ I2 is a directed
bipartite graph, where finding a shortest (s, t)-path – called an augmenting path – means
that we can increase the size of S by one. In a single round of O(n2) independence (or rank)
queries, we can learn the entire exchange graph, and can thus find an augmenting path if
one exists. This immediately gives a straightforward O(n)-round algorithm: find the (up to
O(n) many) augmenting paths one-by-one.

The exchange graph depends on the current common independent set S, and changes
after each augmentation. In fact, if we have two disjoint augmenting paths p1 and p2 in G(S),
it is not necessarily the case that we can augment along both of these: augmenting along
p1 might destroy the path p2 even if they were disjoint.5 This forms the main difficulty in
trying to beat the O(n)-round barrier, and illustrates the need in finding several “compatible”
augmenting paths which can all be augmented along simultaneously.

Blocking flow. Cunningham [6] was the first to introduce blocking flow algorithms to
matroid intersection, similar to Hopcroft-Karp’s [14] bipartite matching or Dinitz’s [7] max-
flow algorithms. The idea is to run in phases, where after each phase the length of a shortest
augmenting path in the exchange graph has increased. This is done by finding a maximal
collection of compatible shortest augmenting paths. Both of the current state-of-the-art
sequential O(n

√
n)-rank-query [5] and O(n7/4)-independence-query [2] algorithms are based

on versions of these blocking flow ideas. The O(n
√

n)-rank-query algorithm still finds the
augmenting paths in a sequential way, so it does unfortunately not seem to parallelize well.

5 This is unlike the case of augmenting path algorithms for bipartite matching or maximum flow, where
one can indeed augment along disjoint paths simultaneously.
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The O(n7/4)-independence-query algorithm, on the other hand, is based on a recent notion
of augmenting sets introduced by Chakrabarty-Lee-Sidford-Singla-Wong [5]. This notion of
augmenting sets precisely captures what a collection of “compatible” shortest augmenting
paths looks like. The authors of [5] also present an algorithm to find such augmenting sets,
using independence-queries.

Our contribution is to show that a modified version of the augmenting sets algorithm
of [5, Section 6] (which was later improved by [2]) can be implemented in parallel when
combined with the parallel matroid-basis finding algorithms of Karp-Upfal-Wigderson [15].
Previous to this work, augmenting sets algorithms have before only been used in the sequential
setting, and only in the independence-oracle model. Nevertheless, augmenting sets are what
allows us to break the O(n)-round barrier also with rank-queries.

2 Preliminaries

We use the standard definitions of matroid M = (V, I); rank rk(X) for any X ⊆ V ; exchange
graph G(S) for a common independent set S ∈ I1 ∩ I2; and augmenting paths in G(S)
throughout this paper. For completeness, we define them below. We also need the notions of
augmenting sets introduced by [5], which we also define in later this section.

▶ Definition 3 (Set notation). We will use A + x and A− x to denote A ∪ {x} respectively
A \ {x}, as is usual in matroid intersection literature. We will also use A + B := A ∪B, and
A−B := A \B.

Matroids

▶ Definition 4 (Matroid). A matroid is a tuple M = (V, I) of a ground set V of n elements,
and non-empty family I ⊆ 2V of independent sets satisfying:
Downward closure: if S ∈ I, then S′ ∈ I for all S′ ⊆ S.
Exchange property: if S, S′ ∈ I, |S| > |S′|, then there exists x ∈ S \S′ such that S′ + x ∈ I.

▶ Definition 5 (Matroid rank). The rank of A ⊆ V , denoted by rk(A), is the size of the
largest (or, equivalently, any maximal) independent set contained in A. It is well-known
that the rank-function is submodular, i.e. rk(A + x)− rk(A) ≥ rk(B + x)− rk(B) whenever
A ⊆ B ⊆ V and x ∈ V \B. Note that rk(A) = |A| if and only if A ⊆ I.

▶ Definition 6 (Matroid Intersection). Given two matroids M1 = (V, I1) and M2 = (V, I2)
over the same ground set V , a common independent set S is a set in I1 ∩ I2. The matroid
intersection problem asks us to find the largest common independent set. We use rk1 and
rk2 to denote the rank functions of the corresponding matroids, and n = |V | to be the size
of the ground set.

The Exchange Graph

▶ Definition 7 (Exchange graph). Given two matroids M1 = (V, I1) and M2 = (V, I2) over
the same ground set, and a common independent set S ∈ I1 ∩I2, the exchange graph G(S) is
a directed bipartite graph on vertex set V ∪ {s, t} with the following arcs (or directed edges):
1. (s, b) for b ∈ V \ S when S + b ∈ I1.
2. (b, t) for b ∈ V \ S when S + b ∈ I2.
3. (a, b) for b ∈ V \ S, a ∈ S when S − a + b ∈ I1.
4. (b, a) for b ∈ V \ S, a ∈ S when S − a + b ∈ I2.
We will denote the set of elements at distance k from s by the distance-layer Dk. Note that
Dk ⊆ V \ S when k is odd and Dk ⊆ S when k is even.
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▶ Definition 8 (Shortest augmenting path). A shortest (s, t)-path p = (s, b1, a2, b3, a4, . . . ,

aℓ−1, bℓ, t) (with bi ∈ V \S and ai ∈ S) in G(S) is called a shortest augmenting path. We can
augment S along the path p to obtain S′ = S + b1− a2 + b3− a4 . . . + bℓ, which is well-known
to also be a common independent set (with |S′| = |S|+ 1). Conversely, there must exist a
shortest augmenting path whenever S is not a largest common independent set.

Augmenting Sets

Augmenting Sets is a notion capturing a “blocking flow” in the exchange graph, and was
introduced by [5], and also subsequently used in the algorithms of [2,3]. In order to efficiently
find “good” augmenting sets, the algorithm works with a relaxed form of them instead, called
partial augmenting sets. The following definitions and key properties of (partial) augmenting
sets are copied from [5] where one can find the corresponding proofs.

▶ Definition 9 (Augmenting Sets, from [5, Definition 24]). Let S ∈ I1 ∩ I2 and G(S) be
the corresponding exchange graph with shortest (s, t)-path of length ℓ + 1 (ℓ must be odd)
and distance layers D1, D2, . . . , Dℓ. A collection of sets Πℓ := (B1, A2, B3, A4, . . . , Aℓ−1, Bℓ)6

form an augmenting set in G(S) if the following conditions are satisfied:
(a) Ak ⊆ Dk for even k, and Bk ⊆ Dk for odd k.
(b) |B1| = |A2| = |B3| = · · · = |Bℓ|
(c) S + B1 ∈ I1
(d) S + Bℓ ∈ I2
(e) For all even 1 ≤ k ≤ ℓ, we have S −Ak + Bk+1 ∈ I1
(f) For all odd 1 ≤ k ≤ ℓ, we have S −Ak+1 + Bk ∈ I2

▶ Definition 10 (Partial Augmenting Sets, from [5, Definition 37]). We say that Φℓ :=
(B1, A2, B3, A4, . . . , Aℓ−1, Bℓ) forms a partial augmenting set if it satisfies the conditions (a),
(c),7 and (e) of an augmenting set, plus the following two relaxed conditions :
(b) |B1| ≥ |A2| ≥ |B3| ≥ · · · ≥ |Bℓ|.
(f) For all odd 1 ≤ k ≤ ℓ, we have rk2(S −Ak+1 + Bk) = rk2(S).

▶ Theorem 11 (from [5, Theorem 25]). Let Πℓ := (B1, A2, B3, A4, · · · , Aℓ−1, Bℓ) be the an
augmenting set in the exchange graph G(S). Then the set S′ := S ⊕ Πℓ := S + B1 − A2 +
B3 − · · · − Aℓ−1 + Bℓ is a common independent set.8

We also need the notion of maximal augmenting sets, which naturally correspond to a
maximal ordered collection of shortest augmenting paths, where, after augmentation, the
(s, t)-distance must have increased. Together with a lemma from [6] (Lemma 14), we can see,
on a high-level, how to obtain (1− ε)-approximation algorithms: find “blocking flows” (i.e.
maximal augmenting sets) until the (s, t)-distance is Ω(1/ε).

▶ Definition 12 (Maximal Augmenting Sets, from [5, Definition 35]). Let Πℓ = (B1, A2, B3, · · · ,

Aℓ−1, Bℓ) and Π̃ℓ = (B̃1, Ã2, B̃3, · · · , Ãℓ−1, B̃ℓ) be two augmenting sets in G(S). We say Π̃ℓ

contains Πℓ if Bk ⊆ B̃k and Ak ⊆ Ãk, for all k. An augmenting set Πℓ is called maximal if
there exists no other augmenting set Π̃ℓ containing Πℓ.

6 Our indexing of the sets differ a bit from [2,5].
7 Note that we intentionally skip item (d), unlike [5] which includes it in the definition, however they do

not always maintain this property in their algorithms.
8 Note that |S′| = |S| + |B1|. In particular, an augmenting set with |B1| = 1 is exactly an augmenting

path. [5] shows that augmenting sets correspond exactly to a sequence of consecutive shortest augmenting
paths.
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▶ Lemma 13 (from [5, Theorem 36]). An augmenting set Πℓ is maximal if and only if there
is no augmenting path of length at most ℓ + 1 in G(S ⊕Πℓ).

▶ Lemma 14 (Cunningham [6]). If the length of the shortest (s, t)-path in G(S) is at least
2ℓ + 1, then |S| ≥ (1−O(1/ℓ))r, where r is the size of the largest common independent set.

3 Warm-up: Finding a Maximal Common Independent Set

Consider first the easier problem of finding a maximal (instead of maximum) common
independent set: that is we want to find a set S ∈ I1 ∩ I2 such that there is no x ∈ V \ S

for which S + x ∈ I1 ∩ I2. It is well-known that a maximal common independent set is also
a 1

2 -approximation for the matroid intersection problem, and indeed our algorithm for a
general (1− ε)-approximation (Section 4) will use similar ideas as our algorithm to find a
maximal common independent set in this section.

In the sequential setting there is a very easy O(n)-query greedy algorithm: Start with
S = ∅ and go through all elements x ∈ V and add them to S if S + x is independent in both
matroids. However, this greedy algorithm is inherently very sequential and does not seem
to adapt well to the parallel setting. Instead, we must somehow try to find several xs “in
parallel” which we can all add to S simultaneously without breaking independence.

3.1 One Matroid

Let us start even simpler, and consider how to find a maximal independent set9 S in a single
matroid M = (V, I). It turns out that in our final matroid intersection algorithm we will
many times, as a subroutinue, need to do exactly this.

Karp-Upfal-Wigderson [15] provides some simple parallel algorithms (both for rank- and
independence-oracle access), whose results we present in Lemma 15. We briefly sketch their
algorithms below, more details and full proofs can be found in [15,17].

Rank Oracle. The rank-query algorithm only needs a single round. Let {v1, v2, . . . , vn} = V

be the elements of the ground set, and let Vi = {v1, v2, . . . , vi−1, vi} (so that V0 = ∅ and
Vn = V ). Now query rk(Vi) for all i, and return S = {vi : rk(Vi) > rk(Vi−1)}. Intuitively, we
can imagine that we go through all elements vi one-by-one and add them to S if and only if
the rank goes up.

Independence Oracle. The independence-query algorithm will need O(
√

n) rounds of O(n)
queries per round. Partition the elements of V into

√
n different groups of (almost) equal

size F1, F2, . . . F√
n. If any group is independent (say Fi), then we select it, and consider the

contracted matroid M/Fi. Note that this can only happen
√

n times. On the other hand, if
all Fi are dependent, then we will find one element per group (that is

√
n in total) which we

can safely discard: If {v1, v2, . . . , vk} = Fi are the elements of Fi, we query all prefixes, i.e.
“Is {v1, v2, . . . , vj} ∈ I?” for all j, and discard the first element vj for which the answer is
“No”.

9 Such a set S is usually called a basis of the matroid, and due to the exchange-property all the maximal
independent sets must have the same size.
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▶ Lemma 15 (Parallel basis algorithm, [15]). There is a deterministic parallel algorithm which
given a matroids M = (V, I) finds a maximal independent set S ∈ I using either

O(1) round of O(n) many rank-queries, or
O(
√

n) rounds of O(n) many independence-queries.10

▶ Remark 16. Note that if we have a set X ∈ I and Y ⊆ V \ X, we can with the same
algorithms as above find a maximal Y ′ ⊆ Y such that X + Y ′ ∈ I, even though the above
algorithms are only stated as if X = ∅ and Y = V . This is since we can consider the
contracted and restricted matroidM′ = (M / X) \ (V \Y ); and an independence/rank-query
on M′ can be simulated with the corresponding query on M.

3.2 Two Matroids
Now we return to our problem of finding a maximal common independent set S of two matroids
M1 = (V, I1) and M2 = (V, I2). Suppose we already have some common independent set
S ∈ I1 ∩ I2. We will try to add more elements to S until it becomes maximal.

Firstly, let us concentrate on the first matroid and pick a maximal set B ⊆ V such that
S + B ∈ I1 using Lemma 15. However, S + B is not necessarily independent in the second
matroid, so we would need to fix this: let B′ ⊆ B be a maximal subset such that S + B′ ∈ I2,
which we again can find using Lemma 15. Now we know S + B′ ∈ I1 ∩ I2 is a common
independent set, so we set S ← S + B′, and we have made some progress (unless B′ = ∅ of
course).

At this point we can make a crucial observation: we can safely discard the elements
x ∈ B \B′, since now S + x /∈ I2. Hence, for each element in B we have either (i) added it
to our common independent set or (ii) discarded it. As long as |B| is relatively large (say
≈
√

n), we have made significant progress.
On the other hand, if |B| is small, we may resort to a different strategy. By the exchange

property of matroids, we know that any A ⊆ V such that S + A ∈ I1 has size |A| ≤ |B|. So
we can add at most |B| more elements to our common independent set S before it becomes
maximal. We can thus simply find these remaining (up to |B| many) elements one-by-one,
using one round each.

We present this two-stage strategy below in Algorithm 1, which is parametrized by the
cut-off threshold p for when to consider |B| small. The optimal choice of p differs depending
on the oracle access (independence or rank) we have.

Adaptivity. The first stage of Algorithm 1 runs in O(n/p · Tbasis) rounds if Tbasis is the
number of rounds needed to find a maximal independent set for a single matroid (Lemma 15
gives T rank

basis = O(1) and T indep
basis = O(

√
n)). This is since the size of F will decrease by

|B| ≥ p each time the while-loop is run, which can happen at most n/p times. The second
stage of Algorithm 1 runs in O(p) rounds, both for independence and rank-oracle. Picking
p optimally gives: O(

√
n) rounds of rank-queries (with p =

√
n); or O(n3/4) rounds of

independence-queries (with p = n3/4). This proves Theorem 17, stated below.

▶ Theorem 17. There is a deterministic parallel algorithm which given two matroids
M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a maximal common
independent set S ∈ I1 ∩ I2 using either

O(
√

n) rounds of polynomially many rank-queries, or
O(n3/4) rounds of polynomially many independence-queries.

10 KUW [15] also provides a lower bound of Ω̃(n1/3) rounds for any independence-query algorithm which
uses only polynomial number of queries per round, even if randomization is allowed. It remains an open
problem to close this gap between Ω̃(n1/3) and O(

√
n).
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Algorithm 1 Maximal Common Independent Set.

1: Let S = ∅ and F = V .
2: while true do ▷ Stage 1
3: Find a maximal B ⊆ F such that S + B ∈ I1 (using Lemma 15).
4: if |B| ≤ p then break
5: Find a maximal B′ ⊆ B such that S + B′ ∈ I2 (using Lemma 15).
6: Update S ← S + B′ and F ← F −B.
7: while true do ▷ Stage 2
8: Query “Is S + x ∈ I1” and “Is S + x ∈ I2?” for all x ∈ F in parallel.
9: Pick an arbitrary x ∈ F such that S + x ∈ I1 and S + x ∈ I2.

10: if no such x exists then break
11: Update S ← S + x and F ← F − x.

4 Finding a Maximum Common Independent Set

In this section we present our sublinear-round matroid intersection algorithm.
The algorithm consists of two steps: first it finds an (1 − ε)-approximation, and then

it finds the remaining εn (which is sublinear if 1/ε is polynomially large in n) augmenting
paths one-by-one. Each such remaining augmenting path can be found in a single round
of n2 independence (or rank) queries: in parallel query each possible edge of the exchange
graph, and then see if there was an augmenting path. Indeed, when we know all the edges of
the exchange graph, we do not need any more (rounds of) queries to figure out if there was
an path.11 If we skipped the (1− ε)-approximation step and just found all the augmenting
paths one-by-one we obtain the straightforward O(n)-round algorithm.

The difficult part of the algorithm is how to find the (1− ε)-approximation in sublinear
number of rounds (even when 1/ε is polynomially large). To do this, we would need to find
many augmenting paths simultaneously, and indeed this is our strategy. Our main result of
this section is this approximation algorithm which we summarize in Theorem 18 below.

▶ Theorem 18 (Sublinear-round (1 − ε)-approximation). There is a deterministic parallel
algorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground
set V , finds a common independent set S ∈ I1 ∩ I2 of size |S| ≥ (1− ε)r, where r is the size
of the largest common independent set, using either

O(
√

n/ε) rounds of polynomially many rank-queries, or
O(n3/4/ε) rounds of polynomially many independence-queries.

Exact algorithm. By an appropriate choice of ε (ε = n−1/4 for rank-oracle and ε = n−1/8

for independence-oracle), together with our discussion above, the main result (Theorem 1,
restated below) of the paper – the sublinear-round exact algorithm – follows immediately
from Theorem 18. The remainder of this paper will go towards proving Theorem 18, i.e. the
(1− ε)-approximation algorithm.

▶ Theorem 1 (Sublinear-round Matroid Intersection). There is a deterministic parallel al-
gorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V ,
finds a largest common independent set S ∈ I1 ∩ I2 using either

O(n3/4) rounds of polynomially many rank-queries, or
O(n7/8) rounds of polynomially many independence-queries.

11 Note that if we also care about the number of rounds of work of the algorithm (and not just the
rounds of queries), we can find the augmenting path in the exchange graph in just poly(n) rounds, as
s, t-reachability is well-known to be in NC.
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4.1 Blocking Flow

The approximation algorithm maintains a common independent set S and runs in O(1/ε)
phases, where in the i’th phase it eliminates all augmenting paths of length 2i by finding a
blocking flow, similar to the Hopcroft-Karp’s [14] bipartite matching algorithm and Dinitz’s [7]
max-flow algorithm. By blocking flow we mean a set of compatible shortest augmenting paths
after which augmenting along them the (s, t)-distance in the exchange graph has increased.
At the end, by Lemma 14, we will have found a common independent set S which is a
(1− ε)-approximation, since the shortest augmenting path will have length O(1/ε).

This idea of applying blocking flow algorithms to matroid intersection originates from
the algorithm of Cunningham [6], but has since been improved by Chakrabarty-Lee-Sidford-
Singla-Wong [5] and subsequently Blikstad [2], and it is the framework of these two later
algorithms which we will follow.

▶ Remark 19. In the first phase we will eliminate all augmenting paths of length 2. This
corresponds exactly to finding a maximal common independent set, like we did in Section 3.
In general, we will show that we can implement any phase in the same round-complexity as
the first phase, using similar ideas.

Beginning of a phase. In each phase, we consider a layered graph, where we let the distance-
layer Di denotes all the elements of distance i from the source node s in the exchange graph
G(S). At the beginning of a phase, the algorithm will use a single round (of O(n2) queries)
to find these distance layers: simply query all potential edges of the exchange graph.

Unfortunately, knowing all the edges in the exchange graph is not sufficient to find
a blocking flow, since a set of disjoint augmenting paths might not be compatible with
each other. The exchange graph G(S) does not capture the full structure of the matroid
intersection problem, and this is where the difficulty in obtaining sublinear-round matroid
intersection algorithms comes from. There is a need to be able to find many compatible
augmenting paths “in parallel”.

Augmenting sets. The notion of a collection of compatible12 augmenting paths is captured
by augmenting sets, as defined in Definition 9. So our goal in a phase is to find a maximal
augmenting set (see Definition 12), which is what we formally mean by “blocking flow”. After
augmenting along a maximal augmenting set, Lemma 13 implies that the (s, t)-distance has
increased, and we can move on to the next phase.

Our algorithm will follow the framework of [5] and [2], which are the state-of-the-art
sequential independence-query approximation algorithms. The overall idea can be seen as a
generalization of the warm-up maximal common independent set algorithm from Section 3.
Instead of working with just a single distance layer in the exchange graph we now have up to
O(1/ε) many layers. Fortunately, layers far apart from each other can be handled relatively
well in parallel, and we will see that the final adaptivity of our algorithm to find a blocking
flow in a phase will not depend on the number of layers.

We start by, on a high level, summarizing how the algorithm of [2, 5] implements a phase
in two stages. Our main result is how we can implement this algorithm efficiently in a
parallel.

12 That is they can all be augmented along simultaneously without breaking independence in either
matroid.
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1. The first stage keeps track of a partial augmenting set (Definition 10) which it keeps
refining by a series of operations on adjacent distance layers in the exchange graph, to
make it closer to a maximal augmenting set.

2. When we are “close enough” to a maximal augmenting set, the progress we make in
the first stage slows down. Then we fall back to the second stage in which we find the
relatively few remaining augmenting paths individually one at a time.

4.2 First Stage: Refining
The basic refining ideas and procedures in this section are the same as in [2,5]; our contribution
is to show how they can be implemented in a parallel fashion.

Say we are in the phase where the (s, t)-distance is ℓ + 1, that is we have ℓ layers
in our exchange graph. The algorithm keeps track of a partial augmenting set Φℓ =
(B1, A2, B3, . . . , Aℓ−1, Bℓ) (see Definition 10), which it makes local improvements to, called
refining. Essentially Φℓ looks like a stair-case: Bk+1 is a set which can be “matched” to some
subset of the previous layer Ak; and similarly Ai+1 can be “matched” to a subset of Bi. As
long as Φℓ is “far” from being a maximal augmenting set, the refinement procedures make
significant progress. When Φℓ becomes “close” to being a maximal augmenting set we move
on to the second stage.

We maintain three types of elements in each layer Dk in the exchange graph.
Selected. Sets Ak and Bk form the partial augmenting set Φℓ.
Removed. Sets Rk contain the discarded elements which we have deemed useless.
Fresh. Sets Fk contain the elements which are neither selected nor removed.

All elements are initially fresh, and for convenience we also define “imaginary” empty
boundary layers D0 = Dℓ+1 = ∅, with corresponding sets A0, R0, F0, Aℓ+1, Rℓ+1, Fℓ+1. Note
that (Ak, Rk, Fk) forms a partition of Dk ⊆ S when k is even, and that (Bk, Rk, Fk) partitions
Dk ⊆ V \ S when k is odd.

The idea of the refinement procedures is to make some local improvements to adjacent
distance-layers. While doing this, we make sure that elements only change their types from
fresh → selected → removed, but never in the other direction. In order to formalize that the
removed elements are actually useless, we maintain the following phase invariants.

▶ Definition 20 (Phase Invariants, from [5, Section 6.3.2]). The phase invariants are:
(a-b) Φℓ = (B1, A2, B3, . . . , Aℓ−1, Bℓ) forms a partial augmenting set.13

(c) For all even k, rk1(W −Rk) = rk1(W )− |Rk| where W = S −Ak + (Dk+1 −Rk+1).14

(d) For all odd k, rk2(W + Rk) = rk2(W ) where W = S − (Dk+1 −Rk+1) + Bk.

▶ Remark 21. Invariant (c) and (d) essentially says that if Rk+1 is useless, then so is Rk, for
both even and odd layers, and thus, by induction, all removed elements are indeed useless.
For example, (d) says that any element x ∈ Rk does not increase the rank, even if we take
away all non-useless elements (Dk+1 −Rk+1) in the next layer. Hence such an x cannot be
“matched” to any non-useless element in the next layer, so it is safe to discard it, since we
will never be able to add it to Bk while maintaining that (. . . , Bk, Ak+1, . . .) form an partial
augmenting set.

13 The naming of this invariant as (a-b) is to be consistent with [5] where this condition is split up into
two separate items (a) and (b).

14 This invariant differs from [5], where it was written in the following equivalent form: For 1 ≤ k ≤ ℓ/2,
for any X ⊆ B2k+1 + F2k+1 = D2k+1 − R2k+1, if S − (A2k + R2k) + X ∈ I1 then S − A2k + X ∈ I1.
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4.2.1 Refining Locally
We now present the basic refinement procedures from [5], which are operations on two neigh-
boring layers. We note that [2] improves upon the algorithm of [5] (in the sequential setting)
by considering refinement operations on three consecutive layers instead. Unfortunately,
the three-layer refinement procedures of [2] does not seem to work efficiently in the parallel
setting.

Intuitively, for an even k, RefineAB(k) tries to extend Bk+1 as much as possible while it
still can be “matched” from Ak in the previous layer (i.e. while S −Ak + Bk+1 ∈ I1). After
this, if |Ak| > |Bk+1|, we can remove elements from Ak and argue that they are useless (if
they were useful, then it should have been possible to “match” them to something more in the
next layer, but this is not the case since Bk+1 could not be extended more). So RefineAB(k)
extends Bk+1 and shrinks Ak so that they are the same size. Doing so, |Aold

k | − |Bold
k+1|

elements have changed types, and this crucial observation is what allows us to measure
progress. For an odd k, RefineBA(k) works very similarly, but now between the consecutive
layers (Bk, Ak+1).

Algorithm 2 RefineAB(k) for even k. (called Refine1 in [5, Algorithm 9])

1: Find a maximal B ⊆ Fk+1 s.t. S −Ak + Bk+1 + B ∈ I1
2: Bk+1 ← Bk+1 + B, Fk+1 ← Fk+1 −B

3: Find a maximal A ⊆ Ak s.t. S −Ak + Bk+1 + A ∈ I1
4: Ak ← Ak −A, Rk ← Rk + A

Algorithm 3 RefineBA(k) for odd k. (called Refine2 in [5, Algorithm 10])

1: Find a maximal B ⊆ Bk s.t. S − (Dk+1 −Rk+1) + B ∈ I2
2: Rk ← Rk + Bk −B, Bk ← B

3: Find a maximal A ⊆ Fk+1 s.t. S − (Dk+1 −Rk+1) + Bk + A ∈ I2
4: Ak+1 ← Ak+1 + Fk −A, Fk ← A

▶ Remark 22. When we are in the first phase, that is when there is only a single layer
between s and t in the graph, running RefineAB(0) and RefineBA(1) corresponds to our
warm-up algorithm to find a maximal common independent set from Section 3. In particular
RefineAB(0) finds a maximal B1 such that S + B1 ∈ I1, and RefineAB(1) shrinks B1 such
that S + B1 ∈ I2 too.

▶ Lemma 23. RefineAB and RefineBA can each be implemented in either:
O(1) rounds of polynomially many rank-queries, or
O(
√

n) rounds of polynomially many independence-queries.

Proof. The refine procedures only need to find a maximal independent set (for a single
matroid) twice, so we can apply Lemma 15. ◀

The following properties are proven in [5].

▶ Lemma 24 (from [5, Lemmas 40-42]). Both RefineAB and RefineBA preserve the phase
invariants. Also: after RefineAB(k) is run, we have |Ak| = |Bk+1| (unless k = 0). After
RefineBA(k) is run, we have |Bk| = |Ak+1| (unless k = ℓ).
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▶ Observation 25. Lemma 24 can be used to messure progress. In particular, after running
RefineAB(k), |Ak| = |Bk+1|, so a total of |Aold

k | − |Bold
k+1| elements must have changed types

(x ∈ Aold
k might have been removed, while a x ∈ F old

k+1 might have been selected). Similarly
RefineBA(k) will change types of |Bold

k | − |Aold
k+1| elements. Note that each element can only

change type at most twice (from fresh to selected to removed), so this observation can be
used to measure progress.

4.2.2 Refining Globally
In the sequential algorithms of [2, 5], a refinement pass consists of running RefineAB(k) and
RefineAB(k) for all k in sequence. However, in the parallel setting we can do better. Since
RefineAB and RefineBA only change things locally in two adjacent layers, we observe that
we can perform several of these refinement operations in parallel.

Algorithm 4 Refine().

1: In parallel, run RefineAB(k) for all even 0 ≤ k ≤ ℓ.
2: In parallel, run RefineBA(k) for all odd 0 ≤ k ≤ ℓ.

▶ Lemma 26. Refine can be implemented in either:
O(1) rounds of polynomially many rank-queries, or
O(
√

n) rounds of polynomially many independence-queries.

The following Lemma 27 will be useful to bound the number of Refine calls needed in
our final algorithm, and is similar to [5, Corollary 43].

▶ Lemma 27. Suppose that |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1 and that S + Bℓ ∈ I2,
before Refine is run. After Refine is run we have:

(i) |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1, still.
(ii) S + Bℓ ∈ I2, still.
(iii) |B′

1| − |Bℓ| elements have changed their type, where B′
1 is any maximal subset of

(D1 −R1) such that S + B′
1 ∈ I1.

Proof. Property (i) is true, since it is true just after we run RefineBA(k), by Lemma 27,
and this is what is done in the last step of Refine. Similarly property (ii) is true, since
RefineBA(ℓ) ensures this when “shrinking” Bℓ (see how B is picked in Algorithm 3 line 1).

What remains is to prove property (iii). Let (Bold
1 , Aold

2 , . . .) be the sets before Refine
is run. In the first line of Algorithm 4, we run RefineAB(2), RefineAB(4), RefineAB(6), . . . ,
which according to Lemma 24 and Observation 25, has incurred a total of

∑
|Aold

k |−|Bold
k+1| =

|Bold
1 | − |Bold

ℓ | type-changes (the sum telescopes since we assume |Bold
k−1| = |Aold

k |).
Also note that we run RefineAB(0), which extends B1 until it is a maximal subset of

D1 \ R1 such that S + B1 ∈ I1 (line 1 of Algorithm 2). This means that an additional
|B′

1| − |Bold
1 | elements have changed their type – from fresh to selected – in the first layer,

where B′
1 is the value of B1 we get after running RefineAB(0). Note that this B′

1 is a maximal
subset of (D1 −R1) such that S + B′

1 ∈ I1 (see line 1 of Algorithm 2).
Hence, in the first line of Algorithm 4, |B′

1| − |Bℓ| types have changed. We might
additionally change types of more elements when running the second line of Algorithm 4. ◀

▶ Remark 28. We measure progress in terms of Lemma 27. Since each element can only change
types twice (from fresh 7→ selected 7→ removed), there will be in total O(n) type-changes.
If we just run Refine, we might need to do so O(n) times (in the case when |B′

1| − |Bℓ| is
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constant), so this is not good enough to obtain a sublinear round parallel algorithm. Like
we did in the easier case of maximal common independent set, we must swap to a different
strategy when the progress of refining stagnates, i.e. when |B′

1| − |Bℓ| is relatively small.

4.3 Second Stage: Finding the Remaining Augmenting Paths
When |B′

1| − |Bℓ+1| is relatively small, we fall back to finding a special kind of augmenting
paths one-by-one. We will show that we only need to find |B′

1| − |Bℓ+1| many such paths
before we get stuck and have found our maximal augmenting set (i.e. the desired blocking
flow). These special kind of augmenting paths we consider are essentially augmenting paths
in the exchange graph with respect to our partial augmenting set. They were first introduced
by [2], and are called valid paths.

▶ Definition 29 (Valid path, from [2, Definition 31]). (bi, ai+1, bi+2, . . . , aℓ−1, bℓ, t) is a valid
path (w.r.t. our partial augmenting set) starting at bi if for all k ≥ i:
(a) ak ∈ Fk for even k and bk ∈ Fk for odd k.
(b) S −Ai−1 + Bi + bi ∈ I1.
(c) S + Bℓ + bℓ ∈ I2.
(d) S −Ak+1 + Bk − ak+1 + bk ∈ I2 for odd k.
(e) S −Ak + Bk+1 − ak + bk+1 ∈ I1 for even k.

s

B1 A2

B3 A4

B5

t

b3 a4

b5

M1

M2 M2M1
M2M1

Figure 1 An example of a valid path (b3, a4, b5, t) starting at b3.

▶ Remark 30. Compare the definition of valid paths to the edges in the exchange graph
from Definition 7. Essentially, items (b-e) corresponds to edges of the exchange graph
G(S + B1 −A2 + B3 −A4 + · · ·+ Bℓ) of S after augmenting along our partial augmenting
set. Note also that item (b) can only hold when |Ai−1| > |Bi| (or, when i = 1 and A0 = ∅ is
an “imaginary” boundary set).

▶ Lemma 31 (Augmenting along a valid path [2, Lemma 33]). Suppose that |Bk| = |Ak+1|
for all odd 1 ≤ k ≤ ℓ− 1 and that S + Bℓ ∈ I2.15 If (bi, ai+1, bi+2, . . . , bℓ, t) is a valid path
starting at bi, then (B1, A2, . . . , Bi−2, Ai−1, Bi + bi, Ai+1 + ai+1, . . . , Bℓ + bℓ) is a partial
augmenting set satisfying the phase invariants and with S + Bℓ + bℓ ∈ I2.

Proof sketch. It is easy to verify that all the properties in the definition of a partial
augmenting set are still satisfied after the augmentation. Moreover, the phase invariants are
also true, since the sets Bk and Ak are only extended by the augmentation (so an element
deemed useless before remains useless). ◀

15 These conditions are actually redundant, since they are covered by items (d) and (c) in the definition of
the valid paths. However, they make the intuition slightly easier, and our algorithm maintains them.
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▶ Lemma 32. We can find a valid path, if one exists, in a single round of O(n2) queries.

Proof. Finding a valid path in a single round of queries is not very different from finding a
normal augmenting path. In a single round we query all potential “directed edges”, that is
all potential (ak, bk+1) or (bk, ak+1) pairs satisfying the items of Definition 29 (valid paths).
Then we can combine these edges to form a valid path, or else determine that no valid path
exist. ◀

▶ Remark 33. After augmenting along a valid path, |Bℓ| increases by one. Let B′
1 be any

any maximal subset of (D1 − R1) such that S + B′
1 ∈ I1. Note that we always know that

|B′
1| ≥ |B1| ≥ |Bℓ|. Hence, we need to only find at most |B′

1| − |Bℓ| many valid paths to
augment along after we finished the first stage.

We also need the following lemma saying that if, for an element x ∈ Fk, there is no
“partial” valid path (x, . . . , aℓ−1, bℓ, t) (satisfying all items of a valid path, except maybe item
(b) of Definition 29), then it is safe to delete x. We prove this by showing that if x has no
“out-edges” (of the form of items (c-e) in Definition 29), then it can be removed.

▶ Lemma 34. Suppose that |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1 and that S + Bℓ ∈ I2.
Then:

If bℓ ∈ Fk is such that S + Bℓ + bℓ ̸∈ I2, we can safely remove it.
For a given bk ∈ Fk, if there exist no ak+1 ∈ Fk+1 such that S−Ak+1+Bk−ak+1+bk ∈ I2,
then it is safe to remove bk.
For a given ak ∈ Fk, if there exist no bk+1 ∈ Fk+1 such that S−Ak+Bk+1−ak+bk+1 ∈ I1,
then it is safe to remove ak.

Proof sketch. We must argue that the phase invariants are preserved when the elements are
removed. It is straightforward to verify that phase invariants (c) and (d) hold in all these
three cases. As a black-box intuition, we can imagine temporarily selecting the element x we
want to remove, and then running either RefineAB or RefineBA and note that this procedure
can immediately remove x again (and the refine-procedures preserves the invariants). ◀

4.4 Combining the Stages
Now we present the full algorithm of a phase, whose goal is to find a maximal augmenting set,
that is a “blocking flow”. Pseudo-code can be found in Algorithm 5, which is parametrized
by a cut-off threshold p (which will be different for rank- and independence-query) for when
to move from the first to second stage.
▶ Remark 35. After the two stages, we will have some partial augmenting set (B1, A2, . . . , Bℓ)
such that there are no more valid paths. However, it is not yet an actual augmenting set,
for instance it can be the case that |Ak| > |Bk+1| for some k. Still, we can argue that
(B1, A2, . . . , Bℓ) contains some maximal augmenting set (B̃1, Ã2, . . . , B̃ℓ) with B̃ℓ = Bℓ. So
we will need a short extra clean-up step to reduce our partial augmenting set to such a
maximal augmenting set.

Note that it is possible to show that we actually can directly augment along our partial
augmenting set (B1, A2, . . . , Bℓ) which the algorithm finds (this relies on the extra properties
that |Bk| = |Ak+1| and S + Bℓ ∈ I2). That is S′ = S + B1−A2 + B2−· · ·+ Bℓ ∈ I1∩I2 is a
common independent set. Additionally |S′| = |S|+ |Bℓ|, so we have increased the size of S as
much as we would have if we found the the maximal augmenting set (B̃1, Ã2, . . . , B̃ℓ) instead.
However, there is a critical problem with this approach: there can be short augmenting paths
in G(S′). This means that such an approach will have failed to eliminate all (s, t)-paths of
length ≤ ℓ. Hence the clean-up step is actually necessary.
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Algorithm 5 Implementation of phase (ℓ + 1)/2.

1: In parallel query all potential edges of the exchange graph G(S) (see Definition 7).
2: Find the distance layers D1, D2, . . . Dℓ.
3: Initialize Bk = ∅, Ak = ∅, Rk = ∅ and Fk = Dk for all k.

4: while true do ▷ Stage 1
5: Find a maximal B′ ⊆ D1 −R1 such that S + B′ ∈ I1 (using Lemma 15).
6: if |B′| − |Bℓ| ≤ p then break
7: Call Refine() (Algorithm 4).

8: while true do ▷ Stage 2
9: In a single round, find a valid path if one exists (Lemma 32).

10: if no valid path exists then break
11: Augment the partial augmenting set along the found valid path (Lemma 31).

▷ Clean-up
12: Remove all elements which do not have any partial valid path from them (see Lemma 34).
13: Sequentially, call RefineBA(ℓ), RefineAB(ℓ− 1), RefineBA(ℓ− 2), . . . RefineAB(0)
14: Augment along the maximal augmenting set Φ = (B1, A2, . . . , Bℓ):
15: that is, update S ← S + B1 −A2 + B3 + · · ·+ Bℓ.

Correctness. In the beginning of Algorithm 5 the following hold: (i) the phase invariants
(Definition 20); (ii) |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1; and (iii) S + Bℓ ∈ I2.

In the first stage, whenever we call Refine, the above properties (i-iii) are all preserved
according to Lemma 27. Similarly, in the second stage, whenever we augment along a valid
path, the above properties (i-iii) are also preserved, by Lemma 31.

What remains to be shown is that after the clean-up phase, Φ = (B1, A2, . . . , Bℓ) is a
maximal augmenting set. We prove this by showing that these refine calls cannot select any
new elements, that is they do not add any elements to the sets Bk or Ak. If we show this,
then we know that |Bℓ| = |Aℓ−1| = . . . = |B1| after all these refine calls, as RefineAB(ℓ− 1)
reduced |Aℓ−1| to match |Bℓ|; RefineBA(ℓ− 2) reduces |Bℓ−2| to match |Aℓ−1|; etc.

To argue that RefineAB(k) does not select any new elements, we note that if it added bk

to Bk, it meant that S −Ak+1 + Bk + bk ∈ I1. However, since bk was not removed in line 12
of the algorithm, there must have been a valid path starting from bk, which is a contradiction.
The argument for RefineBA(k) is the same. Note that since we only remove elements, no
new valid paths can occur.

Now, after |B1| = |A2| = . . . = |Bℓ|, (B1, A2, . . . , Bℓ) forms a maximal augmenting set.
If it did not, there must have been some path (b1, a2, . . . , bℓ) which we can add to it, but
this is impossible, since this path would have been a valid path (starting at b1).

Rounds of adaptivity. The first stage of Algorithm 5 runs in O(n/p·TRefine) rounds if TRefine

is the number of rounds needed to run Refine() once (Lemma 26 gives T rank
Refine = O(1) and

T indep
Refine = O(

√
n)). This is since each time we run refine we will have at least p type-changes

(Lemma 27), and in total each of the n elements can change types at most twice.
The second stage of Algorithm 5 runs in O(p) rounds, both for independence and rank-

oracle, by Lemma 32. Picking p optimally gives: O(
√

n) rounds of rank-queries (with p =
√

n)
or O(n3/4) rounds of independence-queries (with p = n3/4) for the first and second stages
combined.
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Finally the clean-up stage runs, sequentially, with O(ℓ) refinement operations. This takes
O(ℓ) rounds of rank-queries or O(ℓ

√
n) rounds of independence queries, so this depends on

the number of layers. However, we argue that we can ignore this term for the interesting
range of ℓ. This is because when ℓ is too large (>

√
n for rank-queries and > n1/4 for

independence-queries), we know by Lemma 14 that there are only O(1/ℓ) many augmenting
paths left in total, and we can instead find them one-by-one in at most O(

√
n) rounds for

rank-queries or O(n3/4) rounds for independence queries.
Concluding, we have argued that we can implement a blocking-flow phase in O(

√
n)

rounds of rank-queries or O(n3/4) rounds of independence-queries.

Approximation algorithm. Running Algorithm 5 for O(1/ε) phases eliminates all paths
in the exchange graph of length O(1/ε) (Lemma 13), so by Lemma 14 we know that the
common independent set S we end up with is a (1− ε)-approximation. The adaptivity is
thus O(

√
n/ε) rounds of rank-queries or O(n3/4/ε) rounds of independence-queries. Hence

we have shown a (1− ε)-approximation algorithm using O(
√

n/ε) rounds of (polynomially
many) rank-queries or O(n3/4/ε) rounds of (polynomially many) independence-queries, which
proves Theorem 18.
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Abstract
We initiate a systematic study of algorithms that are both differentially-private and run in sublinear
time for several problems in which the goal is to estimate natural graph parameters. Our main
result is a differentially-private (1 + ρ)-approximation algorithm for the problem of computing the
average degree of a graph, for every ρ > 0. The running time of the algorithm is roughly the same
(for sparse graphs) as its non-private version proposed by Goldreich and Ron (Sublinear Algorithms,
2005). We also obtain the first differentially-private sublinear-time approximation algorithms for the
maximum matching size and the minimum vertex cover size of a graph.

An overarching technique we employ is the notion of coupled global sensitivity of randomized
algorithms. Related variants of this notion of sensitivity have been used in the literature in ad-hoc
ways. Here we formalize the notion and develop it as a unifying framework for privacy analysis of
randomized approximation algorithms.
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1 Introduction

Graphs are frequently used to model massive data sets (e.g., social networks) where the users
are the nodes, and their relationships are the edges of the graphs. These relationships often
consist of sensitive information, which drives the need for privacy in this setting.

Differential Privacy (DP) [12] has become the gold standard in privacy-preserving data
analysis due to its compelling privacy guarantees and mathematically rigorous definition.
Informally, a randomized function computed on a graph is differentially private if the
distribution of the function’s output does not change significantly with the presence or
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absence of an individual edge (or node). See [13] for a comprehensive tutorial on differential
privacy.

▶ Definition 1 (Differential-privacy). Let Gn denote the set of all n-node graphs. An algorithm
A is (ε, δ) node-DP (resp. edge-DP) if for every pair of node-neighboring (resp. edge-
neighboring)1 graphs G1,G2 ∈ Gn, and for all sets S of possible outputs, we have that
Pr[A(G1) ∈ S] ⩽ eε Pr[A(G2) ∈ S] + δ. When δ = 0 we simply say that the algorithm is
ε-DP.

Since the graphs appearing in modern applications are massive, it is also often desirable
to design sublinear-time algorithms that approximate natural combinatorial properties of
the graph, such as the average degree, the number of connected components, the cost of a
minimum spanning tree, the number of triangles, the size of a maximum matching, the size
of a minimum vertex cover, etc. For an excellent survey on sublinear-time algorithms for
approximating graph parameters, we refer the reader to [29].

There has been a lot of work in developing differentially-private algorithms for esti-
mating graph parameters in polynomial-time, with respect to edge differential privacy, i.e.,
neighboring graphs that differ by a single edge in Definition 1. Nissim, Raskhodnikova,
and Smith [25] demonstrated the first edge-differentially private graph algorithms. They
showed how to estimate the cost of a minimum spanning tree and the number of triangles
in a graph by calibrating noise to a local variant of sensitivity called smooth sensitivity.
Subsequent works in designing edge differentially-private algorithms for computing graph
statistics include [21, 19, 23, 36]. Gupta, Ligett, McSherry, Roth and Talwar [18] gave the
first edge differentially-private algorithms for classical graph optimization problems, such as
vertex cover, and minimum s-t cut, by making clever use of the exponential mechanism in
existing non-private algorithms that solve the same problem.

An even more desirable notion of privacy in graphs is the notion of node differential privacy
i.e., neighboring graphs that differ by a single node and edges incident to it in Definition 1.
The concept of node differentially-private algorithms for 1-dimensional functions (functions
that output a single real value) on graphs was first rigorously studied independently by
Kasiviswanathan, Nissim, Raskhodnikova and Smith [22], as well as, Blocki, Blum, Datta,
and Sheffet [4], and Chen and Zhou [9]. Their techniques were later extended to higher-
dimensional functions on graphs [28, 6]. Subsequent works have focused on developing node
differentially-private algorithms for a family of network models: stochastic block models
and graphons [7, 30]. A more recent line of work has focused on the continual release of
graph statistics such as degree-distributions and subgraph counts in an online setting [33, 15].
Gehrke, Lui, and Pass [16] introduce a more robust notion of differential privacy called Zero-
Knowledge Differential Privacy (ZKDP), which tackles the problem of auxiliary information
in social networks. This work uses existing results from sublinear-time algorithms as a
building block to achieve ZKDP for several graph problems. However, it is important to note
that the final ZKDP mechanisms are not computable in sublinear-time.

The literature on designing differentially-private algorithms for estimating graph param-
eters in sublinear time is far less developed. The only paper we are aware of is due to
Sivasubramaniam, Li and He [32], who give the first sublinear-time differentially-private
algorithm for approximating the average degree of a graph. Our work addresses this gap

1 Graphs G1 = (V ,E1), G2 = (V ,E2) are node-neighboring, denoted by G1 ∼v G2, if there exists a
vertex v ∈ V such that E1(V \ {v}) = E2(V \ {v}). Graphs G1 and G2 are edge-neighboring i.e.,
G1 ∼e G2 if there exists an edge e such that E1 \ {e} = E2 \ {e}.
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by initiating a systematic study of differentially-private sublinear-time algorithms for the
problems of estimating the following graph parameters: (1) the average-degree of a graph,
(2) the size of a maximum matching, and (3) the size of a minimum vertex cover. As an
overarching technique, we formally introduce the notion of Coupled Global Sensitivity and
use it to analyze the privacy of our randomized approximation algorithms.

1.1 Our Results

1.1.1 Privately Approximating the Average Degree
We obtain a differentially-private sublinear-time algorithm for estimating the average degree
d̄G =

∑
v∈V deg(v)

|V |
, of a graph G = (V,E), with respect to edge-differential privacy, which

achieves a multiplicative approximation of (1 + ρ), for any constant ρ > 0. Specifically, our
algorithm outputs a value d̃ such that w.h.p. we have (1− ρ)d̄G ⩽ d̃ ⩽ (1+ ρ)d̄G, for graphs
with d̄G = Ω(1). Throughout the paper we denote |V | = n.

We work in the neighbor-query model, in which we are given oracle access to a simple
graph G = (V,E), where the algorithm can obtain the identity of the i-th neighbor of a
vertex v ∈ V in constant time. If i > deg(v) for a particular vertex v, then ⊥ is returned.
The algorithm may also perform degree queries, namely for any v ∈ V it can obtain deg(v)
in constant time.

▶ Theorem 2. There is an ε-edge differentially-private (1 + ρ)-approximation algorithm
for estimating the average degree d̄G ⩾ 1 of a graph G on n vertices that runs in time2

O(
√
n · poly(log(n)/ρ) · poly(1/ε)) where ε−1 = o(log1/4(n)).

The problem of estimating the average degree of a graph was first studied by Feige [14],
who gave a sublinear time (2 + ρ)-approximation (multiplicative) for any constant ρ > 0,
making O(

√
n/d0) many degree queries, where d0 is a lower bound on the number of queries.

He also notes that Ω(
√
n/d0) queries are necessary for a 2 − o(1)-approximation, and hence,

for the interesting cases when we may assume d0 ⩾ 1, Ω(n) degree queries are necessary3.
Goldreich and Ron [17] subsequently gave a (1 + ρ)-approximation using both degree and
neighbor queries, running in time Õ((n/

√
m) · poly(1/ρ)). This bound is also tight, since

every constant-factor approximation algorithm must make Ω(n/
√
ρm) degree and neighbor

queries [17]. A simpler analysis achieving the same bounds was given by Seshadri [31].
Further, Dasgupta, Kumar and Sarlós [11] studied this problem in the model where access to
the graph is via samples, in the context of massive networks where the number of nodes may
not be known. They obtain a (1 + ρ)-approximation that uses roughly O(logdU · log log dU)

samples where dU is an upper bound on the maximum degree of the graph.
In recent work, Sivasubramaniam, Li and He [32] gave a sublinear-time differentially-

private algorithm for approximating the average degree of a graph using Feige’s [14] algorithm.
Their algorithm achieves a (2 + ρ + o(1))-approximation for every constant ρ > 0. They
achieve this by calculating a tight bound for the global sensitivity of the final estimate of
Feige’s algorithm and adding Laplace noise with respect to this quantity appropriately. By
contrast, we achieve a (1 + ρ)-approximation for any constant ρ > 0 – assuming that the
privacy parameter is ε−1 = o(log1/4 n).

2 from here on, we use running time and number of queries interchangeably.
3 Observe that for d̄G = o(1) a multiplicative approximation algorithm that can distinguish between

two graphs on n vertices, one with 0 edges, and another with, say 1 edge, must sample Ω(n) vertices,
and hence cannot be running in sublinear time.
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1.1.2 Privately Approximating the Size of a Maximum Matching and
Minimum Vertex Cover

Given an undirected graph, a set of vertex-disjoint edges is called a matching. A matching M

is maximal if M is not properly contained in another matching. A matching M is maximum
if for any other matching M ′, |M| ⩾ |M ′|. A vertex cover of a graph is a set of vertices that
includes at least one endpoint of every edge of the graph. A minimum vertex cover is a
vertex cover of the smallest possible size. For a minimization problem, we say that a value
ŷ is an (α,β)-approximation to y if y ⩽ ŷ ⩽ αy+ β. For a maximization problem, we say
that a value ŷ is an (α,β)-approximation to y if y

α
− β ⩽ ŷ ⩽ y. An algorithm A is an

(α,β)-approximation for a value V(x) if it computes an (α,β)-approximation to V(x) with
probability at least 2/3 for any proper input x.

For a graph G = (V,E), we work in the bounded degree model, where one can query an
i-th neighbor (i ∈ [d]) of a vertex in constant time; denote this query as Nbr(v, i). Here d is
the maximum degree of the graph. If i > deg(v) for a particular vertex v, then Nbr(v, i) =⊥.
We also assume query access to the degree of a vertex, i.e., one can query deg(v) for any
v ∈ V in constant time.

▶ Theorem 3. There is an ε-(node and edge) differentially-private algorithm for the maximum
matching problem that reports a (2, ρn)-approximation with probability 1−(2/n4+1/n192ε/ρ),
and runs in expected time Õ

(
(d̄+ 1)/ρ2), where d̄ is the average degree of the input graph.

▶ Theorem 4. There is an ε-(node and edge) differentially-private algorithm for the minimum
vertex cover problem that reports a (2, ρn)-approximation with probability 1−(2/n4+1/n96ε/ρ),
and runs in expected time Õ

(
(d̄+ 1)/ρ2), where d̄ is the average degree of the input graph.

Typically, the privacy parameter ε is a constant, and so is the approximation parameter
ρ, in which case the success probability in the theorems above is 1 − 1/(poly(n)).

The question of approximating the size of a vertex cover in sublinear-time was first posed
by Parnas and Ron [27], who obtained a (2, ρn)-approximation in time dO(logd/ρ3), where
d is the maximum degree of the graph. Nguyen and Onak [24] improved upon this result
by giving a (2, ρn)-approximation for the maximum matching problem, and consequently a
(2, ρn)-approximation for the vertex cover problem, in time O(2O(d)/ρ2

). The result of [24]
was later improved by Yoshida, Yamamoto and Ito [35], who gave an ingenious analysis
of the original algorithm to achieve a running time of O(d4/ρ2). Onak, Ron, Rosen and
Rubinfeld [26] proposed a near-optimal time complexity of Õ(d̄ · poly(1/ρ)), where d̄ is the
average degree of a graph, but Chen, Kannan, and Khanna [10] identified a subtlety in their
analysis, which proved to be crucial to their improved time complexity claim. Very recently,
building on ideas from the analysis of [35], Behnezhad [3] gave a new analysis for achieving a
(2, ρn)-approximation to the size of maximum matching and minimum vertex cover in time
Õ((d̄ + 1)/ρ2). Behnezhad’s result nearly matches the lower bound given by Parnas and
Ron [27], who showed that Ω(d̄+1) queries are necessary for obtaining a (O(1), ρn)-estimate
in the case of the maximum matching or minimum vertex cover problem.

Our final DP algorithm simply runs the non-private approximation algorithm [3] and
then adds Laplace noise proportional to the Coupled Global Sensitivity (of the non-private
algorithm). Thus, our time complexity is identical to the non-private approximation algorithm.
We show that the added Laplace noise is small enough that it preserves the approximation
guarantees of the non-private approximation algorithm.
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1.2 Organization
We define and motivate the notion of Coupled Global Sensitivity as a privacy tool in
Section 1.3. Then we give a high-level overview of the techniques used for our results in
Section 1.4. The formal privacy and accuracy analysis of Theorem 2 are in Sections 2 and 4.
The formal analysis for Theorems 3 and 4 are in the full version [5]. We conclude with some
open problems in Section 5.

1.3 Coupled Global Sensitivity as a Tool in Privacy analysis
Background and Motivation. Given a query f : D → Rd a general mechanism to answer
the query privately is to compute f(D) and then add noise. The global sensitivity of a
function was introduced in the celebrated paper by Dwork, McSherry, Nissim and Smith [12],
who showed that it suffices to perturb the output of the function with noise proportional to
the global sensitivity of the function in order to preserve differential privacy.

▶ Definition 5 (Global sensitivity). For a query f : D → Rd, the global sensitivity of f (wrt
the ℓ1-metric) is given by

GSf = max
A,B∈D:A∼B

∥f(A) − f(B)∥1 .

One can preserve differential privacy by computing f(D) and adding Laplacian noise4

scaled to the global sensitivity of f, where D is a database. However, in many contexts we
may not be able to compute the function f exactly. For example, if the dataset D is very
large and our algorithm needs to run in sublinear-time or if the function f is intractable
e.g., f(G) is the size of the minimum vertex cover. In cases where we cannot compute f

exactly, an attractive alternative is to use a randomized algorithm, say Af, to approximate
the value of f. Given an approximation algorithm Af it is natural to ask whether or not
we can add noise to Af(D) to obtain a differentially private approximation of f(D) and (if
possible) how to scale the noise. We first observe that computing Af(D) and adding noise
scaled to the global sensitivity of f does not necessarily work. Intuitively, this is because the
sensitivity of Af can be vastly different from that of f. For example, suppose that GSf = 1,
f(D) = n = f(D ′)+1 for neighboring datasets D ∼ D ′ and that our approximation algorithm
guarantees that 0.999 · f(D) ⩽ Af(D) ⩽ 1.001 · f(D). It is possible that Af(D) = 1.001n and
Af(D

′) = 0.999(n − 1) so that |Af(D) − Af(D
′)| ⩾ 0.002n which can be arbitrarily larger

than GSf as n increases.

Coupled Global Sensitivity. We propose the notion of coupled global sensitivity of ran-
domized algorithms as a framework for providing general-purpose privacy mechanisms for
approximation algorithms running on a database D. In this framework, our differentially-
private algorithms can follow a unified strategy, in which in the first step a non-private
randomized approximation algorithm Af(D) is run on the dataset, and privacy is obtained
by adding Laplace noise proportional with the coupled global sensitivity of Af

5. The concept
of coupled global sensitivity has been used implicitly in prior work on differential privacy
e.g., see [1, 8]. Our work formalizes this notion as a general tool that can be used to design
and analyze differentially private approximation algorithms.

4 Here, the probability density function of the Laplace distribution Lap(λ) is h(z) = 1
2λ exp

(
− |z|

λ

)
.

5 We note that this is the simplest application of CGS, and as we will see in the analysis of estimating
the average degree, we can use CGS to add noise to intermediate quantities used by the randomized
algorithm as well.
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Notation. When A is a randomized algorithm we use the notation x := A(D; r) to denote
the output when running A on input D with fixed random coins r. Similarly, A(D) can be
viewed as a random variable taken over the selection of the random coins r.

▶ Definition 6 (Coupling). Let Z and Z ′ be two random variables defined over the probability
spaces Z and Z ′, respectively. A coupling of Z and Z ′, is a joint variable (Zc,Z ′

c) taking
values in the product space (Z× Z ′) such that Zc has the same marginal distribution as Z

and Z ′
c has the same marginal distribution as Z ′. The set of all couplings is denoted by

Couple(Z,Z ′).

▶ Definition 7 (Coupled global sensitivity of a randomized algorithm). Let A : D×R → Rk be
a randomized algorithm that outputs a real-valued vector. Then the coupled global sensitivity
of A is defined as

CGSA := max
D1∼D2

min
C∈Couple(A(D1),A(D2))

max
(z,z′)∈C

∥z− z ′∥1

▶ Remark 8. We can try to relax the definition of Coupled Global Sensitivity as follows:
CGSA,δ is the minimum value, say x such that for all neighboring inputs D1 ∼ D2, there
exists a coupling C such that Pr(z,z′)∼C[|z − z ′| > x] ⩽ δ. We need to be careful here as
we need to ensure that the minimum value x is always well-defined. If we can ensure this,
then we can also show that adding noise proportional to CGSA,δ preserves (ε, δ)-differential
privacy.

▶ Fact 9. Let A : D× R → Rk be a randomized algorithm viewed as a function that takes
as input a dataset D and a random string in the finite set R, and outputs a real-valued
vector. For a finite set R, denote by Sym(R) the symmetric group of all permutations on the
elements in R. Then,

CGSA ⩽ max
D1∼D2

min
σ∈Sym(R)

max
R∈R

∥A(D1;R) −A(D2;σ(R))∥1

The following theorem formalizes the fact that adding noise proportional to the coupled
global sensitivity of a randomized algorithm preserves differential privacy (see full version [5]
for a formal proof).

▶ Theorem 10. Let A : D → Rk be a randomized algorithm and define the Laplace mechanism
ML(D) = A(D)+(Y1, . . . , Yk), where Yi are i.i.d. random variables drawn from Lap(CGSA/ε).
The mechanism ML preserves ε-differential privacy.

How we use Coupled Global Sensitivity. In our algorithm for estimating the average
degree we divide the algorithm into randomized sub-routines and show that the CGS of these
sub-routines is small, therefore enabling us to add Laplacian noise proportional to the CGS
and ensure the privacy of each sub-routine, and by composition, the privacy of the entire
algorithm (See Theorem 13). Similarly, we show that the existing non-private sublinear-time
algorithms for maximum matching and minimum vertex cover have small CGS, therefore
enabling us to add Laplace noise proportional to the CGS to their outputs thus making them
differentially-private (See full version [5]).

1.4 Technical Overview
1.4.1 Privately Estimating the Average Degree
At a high-level, our private algorithm for estimating the average degree follows the non-private
variant of Goldreich and Ron [17]. However, there are several challenges that prevent us
from simply being able to add Laplacian noise to the output. We overcome these challenges
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by first obtaining a new non-private algorithm with the same approximation ratio as that
of [17], and then further add appropriate amounts of noise in several steps of the algorithm to
obtain both privacy and accuracy guarantees. We begin by describing the algorithm of [17].

The Goldreich-Ron algorithm [17]. The strategy of the original non-private algorithm
in [17] is to sample a set S of vertices and partition them into buckets Si based on their
degrees. In particular, for each i we set Si = Bi ∩ S where the set Bi contains all vertices
of degrees ranging between ((1 + β)i−1, (1 + β)i], where β = ρ/c for some constant c > 1.
Intuitively, as long as |Si| is sufficiently large the quantity |Si|/|S| is a good approximation for
|Bi|/n with high probability. Let I denote the indices i for which |Si| is sufficiently large. We
can partition edges from the graph into three sets (1) edges with both endpoints in

⋃
i∈I Bi,

(2) edges with exactly one endpoint in
⋃

i∈I Bi, and (3) edges with no endpoints in
⋃

i∈I Bi.
When the threshold for “large buckets” is tuned appropriately one can show that (whp) type
3 edges can be ignored as there are at most o(n) such edges.

We could use (1/|S|)
∑

i∈I |Si|(1 + β)i−1 as an approximation for 1
n

∑
i∈I

∑
v∈Bi

deg(v).
The previous sum counts type (1) edges twice, type (2) edges once and type (3) edges zero
times. While it is okay to ignore type (3) edges there could be a lot of type (2) edges which are
under-counted. To correct for type (2) edges we can instead try to produce an approximation
for the sum 1

n

∑
i∈I

∑
v∈Bi

(1 + αv)deg(v) where αv denotes the fraction of type (2) edges
incident to v. Intuitively, αv is included to ensure that type (2) edges are also counted twice.
For each sampled node v ∈ Si we can pick a random neighbor r(v) of v and define X(v) = 1
if r(v) ̸∈

⋃
i∈I Bi; otherwise X(v) = 0. Observe that in the expected value of the random

variable is E[X(v)] = αv. Since |Si| is reasonably large for each i ∈ I and deg(u) ≈ deg(v)
for each pair u, v ∈ Si we can approximate the fraction of type (2) edges incident to Bi as
Wi/|Si| where Wi =

∑
v∈Si

X(v). Finally, we can use (1/|S|)
∑

i∈I |Si|(1+Wi/|Si|)(1+β)i−1

as our final approximation for the average degree.

Challenges to making the original algorithm private by adding noise naively. The first
naive attempt to transform the algorithm of [17] into a differentially private approximation
would be to add noise to the final output. However, the coupled global sensitivity of this
algorithm is large enough that the resulting algorithm is no longer a (1 + ρ)-approximation.

A second natural strategy to make the above algorithm differentially private is to add
Laplace noise to the degree of each vertex and partition vertices in S based on their noisy
degrees d̃(v) = deg(v)+Yv where Yv ∼ Lap(6/ε). (Note: To ensure that the algorithm still runs
in sublinear time we could utilize lazy sampling and only sample Yv ∼ Lap(6/ε) when needed).
In particular, we can let S̃i = S∩ B̃i where B̃i denotes the set of all nodes v with noisy degree
d̃(v) ranging between ((1+β)i−1, (1+β)i]. Now we can compute Wi = Zi+

∑
v∈S̃i

X(v) where
Zi ∼ Lap(6/ε) and return (1/|S|)

∑
i∈I |S̃i|(1 + Wi

|S̃i|
)(1 + β)i−1. While the above approach

would preserve differential privacy, the final output may not be accurate. The problem is
that the noise Yv may cause a node v to shift buckets. It is not a problem if v ∈ Bi shifts
to an adjacent bucket i.e., v ∈ B̃i−1 or v ∈ B̃i+1 since (1 − β)i−2 and (1 − β)i+1 are still
reasonable approximations for the original degree deg(v) ∈ ((1 + β)i−1, (1 + β)i]. Indeed,
when deg(v) is sufficiently large we can argue that (1 − β) deg(v) < d̃(v) < (1 + β) deg(v)
with high probability. However, this guarantee does not apply when deg(v) is small. In
this case the Laplace noise Yv might dominate deg(v) yielding an inaccurate approximation.
Sivasubramaniam et al. [32], made similar observations, and because of these technical
barriers, their paper analyzes the simpler strategy for estimating the average degree, which
yields a less accurate result. The crucial observation here is that we need to deal with vertices
having small degrees in our accuracy analysis separately.
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Modified non-DP algorithm achieving the same approximation ratio. To address the
challenges discussed above we first propose a modification to the strategy given by [17].
While the modified algorithm is still non-private it still achieves a (1 + ρ)-approximation for
any ρ > 0 and is amenable to differentially private adaptations. Our algorithm now samples
vertices S without replacement and puts them into buckets Si = Bi ∩ S according to their
degrees. The key modification is that we merge all of the buckets with smaller degrees i.e.,
i ⩽ K6 into one. We redefine B1 to denote this merged bucket and S1 = S ∩ B1 and we
redefine I to be the set of all indices i > K such that |Si| is sufficiently large. If B1 is not
too large then all of the edges incident to B1 can simply be ignored as the total number of
these edges will be small. Otherwise, we can account for edges that are incident to B1 by
adding 1

|S|

∑
v∈S1

(1 + X(v)) deg(v) to our final output. Since we merged all of the buckets
with smaller degrees we no longer have the guarantee that deg(u) ≈ deg(v) for all u, v ∈ S1.
However, since deg(v) is reasonably small for each v ∈ S1 the variance is still manageable.
Intuitively, the sum 1

|S|

∑
v∈S1

(1+X(v)) deg(v) approximates 1
n

∑
v∈B1

(1+αv) deg(v) where
αv now denotes the fraction of edges incident to v whose second endpoint lies outside the set
B1 ∪

⋃
i∈I Bi.

The differentially-private modified algorithm. We now introduce our sublinear-time
differentially-private algorithm to approximate the average degree in Algorithm 4. Al-
gorithm 4 relies on three subroutines given by Algorithms 1, 2, and 3. Splitting the algorithm
into separate modules simplifies the privacy analysis as we can show that each subroutine is
ε/3-differentially private – it follows that the entire algorithm is ε-differentially private. In
Algorithm 1 we add Laplace noise to the degrees of all vertices in the graph and then return
a sample of vertices, say S (sampled uniformly without replacement) along with their noisy
degrees. For simplicity we describe Algorithm 1 in a way that the running time is linear in
the size of the input. We do this to make our privacy analysis simpler. However, we can
implement Algorithm 1 with lazy sampling of Laplace noise Yu when required i.e., if node u

is in our sample S or if u = r(v) was the randomly selected neighbor of some node v ∈ S.

Algorithm 1 NoisyDegree.

NoisyDegree takes G as input and returns a set of sampled vertices along with the noisy
degrees of every vertex in G.
1. Uniformly and independently select Θ(

√
n · poly(log(n)/ρ) · poly(1/ε)) vertices (without

replacement) from V and let S denote the set of selected vertices.
2. For every v ∈ V(G),

d̃(v) = deg(v) + Yv ,

where Yv ∼ Lap(6/ε).
3. Return {d̃(v)}v∈V(G), S

Given the output of Algorithm 1 we can partition the sample S into buckets S̃i = S ∩ B̃i

using their noisy degree. Here, we define B̃i =
{
v : d̃(v) ∈

(
(1 + β)i−1, (1 + β)i

)}
and we

also define a merged bucket S1 = S ∩
{
v : d̃(v) ⩽ (1 + β)K−1} containing all sampled nodes

6 where we fix K :=

(
2 + log1+β

(
2|S|

√
ρ

β log1+β(n)
√

n
√

logn

))
in the sequel
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with noisy degree at most (1 + β)K−1. Here, K is a degree threshold parameter that we can
tune. Now given a size threshold parameter T we can define I =

{
i ⩾ K :

∣∣S̃i∣∣ ⩾ 1.2T · |S|
}

to be the set of big buckets. We remark that as a special case we define |S1| to be “small” if
|S1| < 1.2T ·

√
|S| · |S| instead of |S1| < 1.2T · |S|. As an intuitive justification we note that

(whp) for each node v with noisy degree d̃(v) ⩽ (1 + β)K−1 the actual degree deg(v) will
not be too much larger than (1 + β)K−1. In this case we have

∑
v:d̃(v)⩽(1+β)K−1 deg(v) ⩽

|S1|maxv:d̃(v)⩽(1+β)K−1 deg(v) = o(n) so that we can safely ignore the edges incident to S1.
Intuitively, for each large bucket i ∈ I, Algorithm 2 computes α̃i = Wi/|S̃i| our approxi-

mation of the fraction of type (2) edges incident to B̃i. If S1 is large then type (2) edges are
(re)defined to be the edges with exactly one endpoint in

{
v : d̃(v) ⩽ (1 + β)K−1} ∪

⋃
i∈I B̃i.

To preserve differential privacy we add laplace noise to Wi i.e., Wi = Zi +
∑

v∈S̃i
X(v) where

Zi ∼ Lap(6/ε). We remark that (whp) we will have Zi = o(|S̃i|) for each large bucket i ∈ I.
Thus, the addition of laplace noise will have a minimal impact on the accuracy of the final
result.

Algorithm 2 NoisyBigSmallEdgeCount. Here Mρ,n is a degree threshold parameter and T is
a size threshold parameter. Note that the relationship between the parameters K (used informally
as a degree threshold parameter in the overview) and Mρ,n is K = 2 + log(1+β)⌈6Mρ,n/β⌉.

NoisyBigSmallEdgeCount takes as input G, I, {S̃i}ti=1, S1, {d̃(v)}v∈V(G),Mρ,n, T and re-
turns an approximation of the fraction of edges that are between big buckets and small
buckets.
1. For every i ∈ I, ▷ count the edges between buckets in I and small buckets

a. For all v ∈ S̃i,
i. Pick a random neighbor of v, say r(v).
ii. If |S1| < 1.2T ·

√
|S| · |S|, i.e., if S1 is a small bucket. Then if d̃(r(v)) ∈ ((1+β)i−1, (1+

β)i] for some i ̸∈ I, then X(v) = 1, otherwise X(v) = 0.
iii. Otherwise, S1 is not small. Therefore, if d̃(r(v)) ∈ ((1 + β)i−1, (1 + β)i] for some

i ̸∈ I and i > log1+β⌈
(

6Mρ,n
β

)
⌉+ 2, then X(v) = 1, otherwise X(v) = 0.

b. Define Wi :=
∑

v∈S̃i
X(v) + Zi where Zi ∼ Lap(6/ε) and α̃i :=

Wi

|S̃i|
.

2. return {Wi}i∈I, {α̃i}i∈I

If the merged bucket S1 is small then we can ignore edges incident to S1 and Algorithm 3
will simply output 1

|S|

∑
i∈I |S̃i| · (1 + α̃i) · (1 + β)i. In this case the output can be computed

entirely from the differentially private outputs that have already been computed by Algorithms
1 and 2 without even looking at the graph G. Intuitively, for any large bucket i ∈ I

and v ∈ S̃i we expect that (whp) |Yv| = |d̃(v) − deg(v)| is small enough to ensure that
(1 + β)i−2 ⩽ deg(v) ⩽ (1 + β)i+1. Thus, (1 + β)i is still a reasonable approximation for
deg(v).

If the merged bucket S1 is sufficiently large, then we need to account for the edges within
S1 itself as well as the fraction of edges between S1 and small buckets. We introduce a
new estimator to approximate the fraction of edges between S1 and small buckets given
by Z +

∑
v∈S1

(1 + X(v)) · deg ′(v) where Z ∼ Lap
(

36Mρ,n

(
3 + β+ 1

β

))
and deg ′(v) =

min{deg(v), 6Mρ,n

(
3 + β+ 1

β

)
} (See Algorithm 3) – the relationship between the parameters

K and Mρ,n is K = 2 + log(1+β)⌈6Mρ,n/β⌉. The Laplace Noise term is added to preserve
differential privacy. We define the clamped degrees deg ′(v) to ensure that the coupled
global sensitivity of the randomized subroutine computing

∑
v∈S1

(1+X(v)) ·deg ′(v) is upper
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bounded by 12Mρ,n

(
3 + β+ 1

β

)
. This way we can control the laplace noise parameters to

ensure that Z = o(|S1|) with high probability so that the noise term Z does not adversely
impact accuracy. Intuitively, we expect that Yv ⩽ Mρ,n for all nodes v with high probability.
In this case for any node v ∈ S1 we will have deg ′(v) = deg(v) ⩽ 6Mρ,n

(
3 + β+ 1

β

)
.

Algorithm 3 NoisyAvgDegree.

NoisyAvgDegree takes {S̃i}
t
i=1, {d̃(v)}v∈V(G), {α̃i}i∈I, I,Mρ,n, T as input and returns the

noisy estimator for average degree of the graph.
1. If |S1| < 1.2T ·

√
|S| · |S| then output 1

|S|

∑
i∈I |S̃i| · (1 + α̃i) · (1 + β)i.

2. Else, for every v ∈ S1,
a. Pick a random neighbor of v, say r(v).
b. If d̃(r(v)) ∈ ((1 + β)i−1, (1 + β)i] for some i ̸∈ I and i > log1+β⌈

(
6Mρ,n

β

)
⌉ + 2, then

X(v) = 1, otherwise X(v) = 0.
c. Output

1
|S|

(∑
i∈I

|S̃i| · (1 + α̃i) · (1 + β)i + Z+
∑
v∈S1

(1 + X(v)) · deg ′(v)

)
,

where

Z ∼ Lap
(

36Mρ,n

(
3 + β+

1
β

))
and

deg ′(v) = min
{

deg(v), 6Mρ,n

(
3 + β+

1
β

)}

Algorithm 4 Main DP Algorithm.

Main DP Algorithm that takes graph G as input and outputs an approximation of its
average degree.
1. {d̃(v)}v∈V(G), S := NoisyDegree(G) ▷ see Algorithm 1
2. For i = 1, 2 . . . , t, let S̃i = {v ∈ S : d̃(v) ∈ ((1+β)i−1, (1+β)i]} where t := ⌈log(1+β)(n)⌉.
3. Define Mρ,n := 1

3 ·
√

ρ

n
√

log(n)
· |S|

t
, S1 := ∪

i⩽log1+β

(
6Mρ,n

β

)
+2S̃i, and, I = {i >

log1+β

(
6Mρ,n

β

)
+ 2 : |S̃i| ⩾ 1.2T · |S|} where T := 1

2

√
ρ
n
· ε
(1+ε) ·

1
t
.

4. {Wi}i∈I, {α̃i}i∈I := NoisyBigSmallEdgeCount(G, I, {S̃i}ti=1). ▷ see Algorithm 2
5. NoisyAvgDegree(G, S, {S̃i}ti=1, {α̃i}i∈I, I,Mρ,n, T). ▷ see Algorithm 3

The full analysis of Theorem 2 can be found in Sections 2 and 4.

▶ Remark 11. A simpler algorithm for estimating the average degree was given by Seshadri [31].
The main intuition behind this algorithm is that out of m edges of a graph, there are not
“too many” edges that contribute a high degree. Thus the algorithm samples vertices and
a random neighbor of each sampled vertex, but it only counts edges (scaled by a factor of
2 times the degree of the sampled vertex) for which the degree of the random neighbor is
higher than that of the degree of the sampled vertex.
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The Coupled Global Sensitivity of the final estimate returned by this algorithm is high
(proportional to the degree of the sampled vertex and its random neighbor); thus adding
Laplace noise directly to the estimate would result in a very inaccurate algorithm. It is
unclear how to mitigate this issue and make this algorithm differentially-private with a
reasonable accuracy guarantee.

1.4.2 Privately Estimating Maximum Matching and Vertex Cover Size
At a high-level our private algorithms for estimating the maximum matching and vertex
cover add laplace noise (to the outputs) proportional to the coupled global sensitivity of the
randomized non-private algorithms for the corresponding problems. The challenge lies in
proving the coupled global sensitivity of these non-private algorithms is small.

We first describe and analyze the coupled global sensitivity of the classical polynomial-time
greedy matching algorithm. This is helpful in our analysis of the non-private sublinear-time
algorithm for maximum matching in the sequel.

We then describe and give a proof sketch of the coupled global sensitivity of the non-
private sublinear-time matching algorithm [3]. The formal proofs for privately estimating
the maximum matching and minimum vertex cover size are in the full version [5]. Recall
that d is the maximum degree and d̄ is the average degree of the graph .

The Polynomial-time Greedy Matching Algorithm AMM. This algorithm takes as input
a graph G = (V,E) and a random permutation π on the set of pairs (x,y) ∈ V × V, with
x ̸= y, and processes each pair of vertices (x,y) in the increasing order of ranks given by
π, and greedily adds edges to a maximal matching whose size is finally output7. Since the
size of the maximal matching produced is known to be at least 1

2 of the size of a maximum
matching, this gives a non-private 2-approximation of the size of a maximum matching in G.

CGS of the Greedy Algorithm AMM. We show that the CGS of the greedy algorithm
(with respect to node-neighboring graphs) is at most 1. Note that once the ranking on the
edges is fixed the maximal matching obtained by AMM is also fixed. Let σI be the identity
permutation over the ranking of edges, i.e., we have σI(π) = π. We use Fact 9 to observe
that,

CGSAMM
⩽ max

G1∼G2
min
σ

max
π

|AMM(G1;π) −AMM(G2;σ(π))|

⩽ max
G1∼G2

π

|AMM(G1;π) −AMM(G2;σI(π))|

= max
G1∼G2

π

|AMM(G1;π) −AMM(G2;π).|

Therefore it is sufficient to analyze the relative size of the matching obtained on node-
neighboring graphs G1,G2 that are processed by the greedy algorithm in the order given by
the same π.

Let G1 ∼ G2 where v∗ is such that E(V1\{v
∗}) = E(V2\{v

∗}). Denote the greedy matchings
obtained from AMM(G1,π) as M1 and from AMM(G2,π) as M2. Suppose edge e∗ is incident
to v∗ such that e∗ ∈ E2, and e∗ ̸∈ E1. We will show that ||M1| − |M2|| ⩽ 1, which implies
that maxG1∼G2

π
|AMM(G1;π) −AMM(G2;π)| ⩽ 1, thus proving that CGSAMM

⩽ 1.

7 We note that the non-private algorithms [24, 35, 26] only consider the ranking π over m edges of the
graph, whereas we consider the ranking over all

(
n
2
)

pairs of vertices. This is because we want to define
a “global” ranking so that we can define the same ranking consistently over neighboring graphs that
may have different edges.
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We first claim that if e∗ ̸∈ M1 ∪ M2 then |M1| = |M2|. Since the greedy algorithm
considers edges in the same order, the exact same edges must have been placed in M1 as
in M2 before e∗ is processed. Since e∗ = (v∗,u) is not chosen in M2 it must have been the
case that by this time u was matched in M2, and thus the same matched edge must occur
in M1. From here on the algorithm again must make the same choices for the edges to be
placed in M1 and M2.

Next, we claim that if e∗ ∈ M1 ∪M2 then M := M1 ⊕M2
8 is one connected component

containing e∗. Consequently, ||M1|− |M2|| ⩽ 1. Since e∗ ∈ M2 and e∗ cannot be in M1, it
is clear that e∗ ∈ M. Suppose for the sake of contradiction, M consists of two connected
components C1,C2 and WLOG e∗ ∈ C1. Consider edges in C2. By Berge’s Lemma [34], C2
is either an alternating path or an alternating even cycle, with alternating edges from M1
and M2. Also, the edges in C2 exist in both G1 and G2 with the same ranking. Observe that
since C2 is separate from C1 containing e∗, if we replace edges in C2 belonging to M2 in the
original graph G2 by edges in C2 belonging to M1, this is still a valid maximal matching for
the graph G2. In fact, the greedy algorithm considers edges in C2 in the same order for both
graphs G1,G2, so the edges in M1 and M2 should be the same, in other words, C2 cannot
be a part of M = M1 ⊕M2, and hence M must have only one connected component, which
contains e∗. Now, since M is either an alternating path or even cycle, ||M1|− |M2|| ⩽ 1.

The Local Maximum Matching Algorithm Asub−MM. We describe the local algorithm
implemented by [3] in Algorithm 5. We modify the original algorithm to sample vertices
without replacement. The algorithm then calls the vertex cover oracle (denoted as Oπ

VC) on
each sampled vertex which subsequently calls the maximal matching oracle (denoted as Oπ

MO)
on the incident edges to determine whether the sampled vertex is in the matching fixed by
the ranking of edges π. Finally, the algorithm returns an estimate of the maximum matching
size based on the number of sampled vertices in the matching. We note that in [3] the same
sampling algorithm simultaneously outputs an approximation to maximum matching size
and minimum vertex cover size. We choose to write the sampling procedure for estimating
the maximum matching size and minimum vertex cover size separately so that it is easier to
understand the Coupled Global Sensitivity for outputting the two different estimators.

Algorithm 5 Local Maximum Matching algorithm Asub−MM using Oracle access.

Input. Input Graph G = (V,E).
1. Uniformly sample s = 16 · 24(lnn)/ρ2 vertices from V without replacement.
2. For i = 1 . . . s, if Oπ

VC(vi) = True then let Xi = 1, otherwise let Xi = 0.
3. return M̃ = n

2s (
∑

i∈[s] Xi) −
ρn
2 .

▶ Remark 12. [3] gives an efficient simulation of the matching and vertex cover oracles which
exposes edges incident to a vertex in batches only when they are needed. We assume the
efficient simulation of these oracles in our algorithms.

CGS of the Local Matching Algorithm Asub−MM. Our main techniques involve identify-
ing the sources of randomness in the local algorithm itself and then coupling the random
coins of the runs of the algorithm on neighboring graphs. We follow the local algorithm given
by [3] which samples vertices for both matching and vertex cover size estimation. We show
that the identity coupling is sufficient in this case.

8 M1 ⊕M2 is the symmetric difference of sets and this is defined as the set of edges in either M1 or
M2 but not in their intersection.
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In a previous version of our paper (before we were aware of the results of [3]), we analyzed
the Coupled Global Sensitivity of the local matching algorithm given by [24, 35] which
samples a set of edges uniformly at random, and calls a matching oracle on each sampled
edge. The matching oracle indicates whether the edge is in the greedy matching fixed by
the ranking π or not. Analyzing the Coupled Global Sensitivity of this algorithm is more
challenging, i.e., considering the identity permutation σI over the ranking of edges π and
sampled edges does not work. This is because for node-neighboring graphs G1,G2, it could
be the case that all the edges sampled from G1 belong to the matching M1 fixed by the
ranking π, but the same edges sampled from G2 may not be in the matching M2 fixed by
the ranking π. Thus, we need to carefully define a bijection that maps edges in the matching
M1 to edges in the matching M2.

2 Privacy Analysis of Theorem 2

▶ Theorem 13. The Algorithm 4 is ε-DP.

Proof. We will approach the privacy analysis in a modular fashion, i.e., we will analyze each
sub-routine separately and show that by composition, the entire algorithm is ε-differentially
private.

In the sequel, when analyzing the coupled global sensitivity of intermediate randomized
quantities, we use Fact 9.

▷ Claim 14. Algorithm NoisyDegree (see Algorithm 1) is ε/3-DP.

Proof. First, fix any sample S. Define the function fnoisy−deg := {d̃(v)}v∈V(G). Observe
that the degree of a node can change by at most 1 from adding or deleting an edge, and
therefore fnoisy−deg changes by at most 2 by adding or deleting an edge, in other words,
the GSfnoisy−deg

= 2 and we can add noise proportional to 2/ε. ◁

▷ Claim 15. Algorithm NoisyBigSmallEdgeCount (Algorithm 2) is ε/3-DP.

Proof. We fix noisy degrees {d̃(v)}v∈V(G), consequently fixing the buckets S̃1, . . . , S̃t and set
I. Define the function ft,d̃ := {fS̃i,d̃(G; r)}i∈I, and the function fS̃i,d̃(G; r) =

∑
v∈S̃i

H(r(v))

where H(w) = 1 if and only if we have d̃(w) ∈ ((1+β)i−1, (1+β)i] for some i ̸∈ I and |S1| <

1.2T ·
√

|S| · |S| or if d̃(w) ∈ ((1+β)i−1, (1+β)i] for some i ̸∈ I and i > log1+β⌈
(

6Mρ,n
β

)
⌉+2;

here r(·) defines the random coins used to sample a neighbor of v. We analyze CGSfS̃i,d̃
, and

argue that CGSft,d̃
⩽ CGSfS̃i,d̃

.
First, we show that for all fixed S, {d̃(v)}v∈S and i ∈ I, the CGSfSi,d̃

is at most 2. Consider
G and G ′ such that edge (u∗, v∗) ∈ G, but does not exist in G ′. Fix any coupling such that
r(w) = r ′(w) for all w ̸= u∗, v∗, where r, r ′ defines the random coins for sampling neighbors of
w in G and G ′ respectively. Now we have X(w) = H(r(w)) = H(r ′(w)) = X ′(w) for all w ̸=
u∗, v∗. Thus, CGSfS̃i,d̃

= |fS̃i,d̃(G; r) − fS̃i,d̃(G
′; r ′)| = |

∑
v∈S̃i

H(r(v)) −
∑

v∈S̃i
H(r ′(v))| =

|H(r(v∗)) +H(r(u∗)) −H(r ′(v∗)) −H(r ′(u∗))| ⩽ 2. Now, since the differing endpoints u∗, v∗
can only appear in at most one of the i-th iterations simultaneously, it is clear to see that
CGSft,d̃

is also at most 2. ◁

▷ Claim 16. Algorithm NoisyAvgDegree (Algorithm 3) is ε/3-DP.

Proof. We fix noisy degrees {d̃(v)}v∈V(G), and sample S consequently fixing the buckets
S̃1, . . . , S̃t and set I, and we fix {α̃i}

t
i=1. Note that the first output in Line 1 given by

1
|S|

∑
i∈I |S̃i| · (1+ α̃i) · (1+β)i is already private since the terms in the summation consist of
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parameters that are either noisy or public or both. We need to show that the second output in
Line 2c is private. In particular, define the function fS1,d̃(G; r) :=

∑
v∈S1

(1+H1(r(v)))·deg ′(v)

where deg ′(v) = min{deg(v), 6Mρ,n

(
3 + β+ 1

β

)
} and H1(w) = 1 if and only if d̃(w) ∈

((1+β)i−1, (1+β)i] for some i ̸∈ I and i > log1+β⌈
(

6Mρ,n
β

)
⌉+2. We claim that for all fixed

S and {d̃(v)}v∈S, the CGSfS1,d̃
is at most 12Mρ,n

(
3 + β+ 1

β

)
. Consider G and G ′ such

that edge (u∗, v∗) ∈ G, but does not exist in G ′. Fix any coupling such that r(w) = r ′(w)

for all w ̸= u∗, v∗, where r, r ′ defines the random coins for sampling neighbors of w in G and
G ′ respectively. Now we have X(w) = H1(r(w)) = H1(r

′(w)) = X ′(w) for all w ̸= u∗, v∗.
Thus, |fS1,d̃(G; r) − fS1,d̃(G

′; r ′)| = |
∑

v∈S̃1
(1 +H1(r(v))) · deg ′(v) −

∑
v∈S̃1

(1 +H1(r
′(v))) ·

deg ′(v)| = |(1+H(r(v∗))) · deg ′(v∗) + (1+H(r(u∗))) · deg ′(u∗) − (1+H(r ′(v∗))) · deg ′(v∗) −

(1 + H(r ′(u∗))) deg ′(u∗)| ⩽ 2 · 6Mρ,n

(
3 + β+ 1

β

)
= 12Mρ,n

(
3 + β+ 1

β

)
. Note that we

introduce deg ′(v), to ensure that the sensitivity of fS1,d̃ remains small. ◁

By composition, we have that the main algorithm is ε-DP. ◀

3 Preliminaries

We state the following tail bound for a random variable drawn from the Laplace Distribution.

▶ Fact 17. If Y ∼ Lap(b), then

Pr[|Y| ⩾ ℓ · b] = exp(−ℓ) .

Next, we state a well-known fact which implies that the concentration results for sampling
with replacement obtained using Chernoff bounds type methods (bounding moment generating
function + Markov inequality) can be transferred to the case of sampling without replacement.

▶ Fact 18 ([2, 20]). Let X = (x1, . . . , xN) be a finite population of N points and X1, . . . ,Xn

be a random sample drawn without replacement from X, and Y1, . . . , Yn be a random sample
drawn with replacement from X. If f : R → R is continuous and convex, then

E

[
f

(
n∑

i=1
Xi

)]
⩽ E

[
f

(
n∑

i=1
Yi

)]
.

4 Accuracy Analysis of Theorem 2

4.1 Proof Sketch of Theorem 2
In this section, we give a sketch of the accuracy analysis. The more formal proofs can be
found in the full version [5].

▶ Theorem 19. For every ρ < 1/4, β ⩽ ρ/8, and ε−1 = o(log1/4(n)), for sufficiently large
n, the main algorithm (see Algorithm 4) outputs a value d̃ such that with probability at least
1 − o(1), it holds that

(1 − ρ) · d̄ ⩽ d̃ ⩽ (1 + ρ) · d̄

Proof. The main proof strategy conditions on S1 being sufficiently large or not. First,
consider Case 1 when |S1| < 1.2T ·

√
|S| · |S| where T is a size threshold parameter. We first

show that for i ∈ I the noisy buckets |B̃i|/n are approximated well by |S̃i|/|S|. Next we show
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that the number of vertices in buckets that are significantly smaller than the size threshold
are of size O(

√
n) (for buckets U ′ := {v ∈ B̃i : (i ̸∈ I) ∧ (i > log1+β

(
6Mρ,n

β

)
+ 2)}, and

of size Õ(n3/4) (for bucket B1 := ∪
i<log1+β

(
6Mρ,n

β

)
+2B̃i. This leads to the corollary (see

full version [5] for the formal statement) which bounds the number of edges between small
buckets as roughly Õ(ρn+ n3/4).

One of our main contributions is showing that the actual fraction of edges between
sufficiently large buckets and small buckets, denoted by αi, is approximated well by our
noisy estimator α̃i.

▶ Corollary 20. Assuming that ε−1 = o(log1/4(n)), for every i ∈ I, for sufficiently large n,
we have that with probability at least 1 − o(1),
1. |α̃i − αi| ⩽

ρ
4αi if αi ⩾ ρ/8.

2. α̃i ⩽ ρ/4, if αi ⩽ ρ/8.

Finally, we need to show that for sufficiently large noisy buckets, the actual degrees of
the vertices (sans noise) only shifts to an adjacent noisy bucket. This helps us bound the
number of edges whose one endpoint resides in a sufficiently large noisy bucket. We have
shown that with high probability, all approximations of edges between the different types of
buckets is good, which leads to the main Lemma for Case 1.

Now consider Case 2 when |S1| > 1.2T ·
√

|S| · |S|. We show that the bucket |B1|/n

is now approximated well by |S1|/|S|. We introduce a different estimator for counting
edges between B1 and small buckets given by Z +

∑
v∈S1

(1 + X(v)) · deg ′(v), where Z ∼

Lap
(

36Mρ,n

(
3 + β+ 1

β

))
and deg ′(v) = min{deg(v), 6Mρ,n

(
3 + β+ 1

β

)
}. First, we show

that for every v ∈ S1, with high probability deg ′(v) = deg(v). Our main contribution in this
case is showing that our estimator (sans noise) approximates the fraction of the sum of the
edges between B1 and all vertices in the graph (denoted by E1), and the edges between B1
and vertices in small buckets in the graph (denoted by E ′

1) well (see lemma below).

▶ Lemma 21. Let d̄1 be the average degree of bucket B1. If |B1| > 1.5T ·
√
|S| · n,

1. If d̄1 ⩾ 1, then with probability at least 1 − o(1),(
1 −

ρ

4

)
· |E1|+ |E ′

1|

n
<

1
|S|

∑
v∈S1

(1 + X(v)) · deg(v) <
(

1 +
ρ

4

)
· |E1|+ |E ′

1|

n

2. If d̄1 < 1, and d̄ ⩾ 1, then with probability at least 1 − o(1),

|E1|+ |E ′
1|

n
− ρ/4 <

1
|S|

∑
v∈S1

(1 + X(v)) · deg(v) < |E1|+ |E ′
1|

n
+ ρ/4

To complete this part of the proof, we show that the noise added to the estimator (denoted by
Z) is small and therefore, the noisy estimator also approximates the quantity (|E1|+ |E ′

1|)/n

well.
The rest of the analysis is similar to Case 1 and we invoke the same lemmas to show that

with high probability, the approximations of edges between the rest of the sufficiently large
buckets, and between the small buckets, as well as between the sufficiently large buckets and
small buckets is good, thus giving us the main Lemma for Case 2.

Combining these two main lemmas proves our main theorem statement. ◀
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5 Conclusions and open questions

In this work we give a differentially-private sublinear-time (1 + ρ)-approximation algorithm
for estimating the average degree of the graph. We achieve a running time comparable to
its non-private counterpart, which is also tight in terms of its asymptotic behaviour with
respect to the number of vertices of the graph. We also give the first differentially-private
approximation algorithms for the problems of estimating maximum matching size and vertex
cover size of a graph.

To analyze the privacy of our algorithms, we proposed the notion of coupled global
sensitivity, as a generalization of global sensitivity, which is applicable to randomized
approximation algorithms. We show that coupled global sensitivity implies differential
privacy, and use it to show that previous non-private algorithms from the literature, or
variants, can be made private by finely tuning the amounts of noise added in various steps of
the algorithms.

We propose several directions of investigation for developing the notion of coupled
global sensivity further and open problems pertaining to differentially-private sublinear-time
algorithms for graphs.

Other applications and limitations of CGS. In particular, what are the limitations of the
CGS method? Can we characterize the set of algorithms with small CGS? Are there other
natural problems for which we already have algorithms with small CGS, and hence that are
easily amenable to privacy analogues? Are there algorithms for which we can prove large
lower bounds on the CGS and yet they provide differential privacy?

Better approximations for maximum matching problems. In [24, 35], the authors also
give a (1, ρn)-approximation of maximum matching size with a query complexity that is
exponential in d. Their analysis involves iterating over a sequence of oracles to augment
paths of small length, in increasing order of lengths. The matching oracle considered in
this work is used only in the first iteration. Analyzing the coupled global sensitivity of that
algorithm appears to be much more involved, and we leave it as an open problem.

Better time complexity guarantees for (2,ρn)-approximation matching and vertex cover
algorithms. Note that our results in Theorems 3 and 4 achieve an expected running time. In
contrast, the results in [3] achieve a high-probability bound on the time-complexity. This can
be done by running multiple instances of the resulting approximation algorithm for enough
time and returning the output of the instance that terminates first (the analysis involves a
simple application of Markov inequality). Achieving this step in a way that preserves privacy
would result in a degradation of the privacy parameter ε, due to composition. We leave it as
an open question to provide a tighter privacy vs time-complexity analysis.
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Abstract
We analyze the (parameterized) computational complexity of “fair” variants of bipartite many-to-one
matching, where each vertex from the “left” side is matched to exactly one vertex and each vertex
from the “right” side may be matched to multiple vertices. We want to find a “fair” matching, in
which each vertex from the right side is matched to a “fair” set of vertices. Assuming that each
vertex from the left side has one color modeling its attribute, we study two fairness criteria. In
one of them, we deem a vertex set fair if for any two colors, the difference between the numbers of
their occurrences does not exceed a given threshold. Fairness is relevant when finding many-to-one
matchings between students and colleges, voters and constituencies, and applicants and firms. Here
colors may model sociodemographic attributes, party memberships, and qualifications, respectively.

We show that finding a fair many-to-one matching is NP-hard even for three colors and maximum
degree five. Our main contribution is the design of fixed-parameter tractable algorithms with respect
to the number of vertices on the right side. Our algorithms make use of a variety of techniques
including color coding. At the core lie integer linear programs encoding Hall like conditions. To
establish the correctness of our integer programs, we prove a new separation result, inspired by
Frank’s separation theorem [Frank, Discrete Math. 1982], which may also be of independent interest.
We further obtain complete complexity dichotomies regarding the number of colors and the maximum
degree of each side.
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1 Introduction

A many-to-one matching in a bipartite graph G = (U ∪· V, E) is an edge subset M ⊆ E such
that each vertex in U is incident to at most one edge in M . We study the computational
complexity of finding a “fair” many-to-one matching and call this problem Fair Matching:
Given a bipartite graph G = (U ∪· V, E) in which every vertex in U is colored, it asks for
a many-to-one matching M such that for each v ∈ V the vertices matched to v meet a
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27:2 The Complexity of Finding Fair Many-To-One Matchings

fairness criterion. In this work, we require that M is “left-perfect”, i.e., every vertex in U is
incident to exactly one edge in M . Using a slightly different formulation, Stoica et al. [24]
recently studied this problem in terms of a fairness requirement derived from margin of
victory (MoV). Generally, the margin of victory of a multiset is defined as the number of
occurrences of the most frequent value minus the number of occurrences of the second most
frequent value. (Given a set of colored vertices, we obtain a multiset from the occurrences
of colors in it.) By requiring that the margin of victory of a set of colored vertices shall
not exceed a given threshold, we prevent one color from becoming a dominating majority
(see Stoica et al. [24] for a more extensive motivation of this concept). As an alternative
simple fairness measure, we consider Max-Min, which is defined as the difference between
the number of occurrences of the most frequent value and the number of occurrences of the
least frequent value in a multiset. In a set of colored vertices with a small value of Max-Min
all colors appear more or less equally often.

Which of MoV or Max-Min is more appropriate depends not only on the specific
application (as discussed in the next two paragraphs) but also on the underlying data.
Suppose that we have 2n red, 2n blue, and one green vertex. Then, it would be natural to
deem a subset consisting of n red, n blue, and one green vertex fair (as it is in some sense the
best we can hope for). Now, MoV seems to be a better fit because the MoV of the described
subset is zero whereas the Max-Min value is n − 1. In contrast, if there are 2n red, 2n blue,
and 2n green vertices, then the same subset with n red, n blue, and one green vertex should
be considered as unfair, rendering Max-Min more suitable for this color distribution than
MoV. In general, Max-Min seems to be a natural choice for homogeneous data. The first
example illustrates, however, that in some scenarios, MoV may serve as a viable relaxation
of Max-Min.1

A notable application of Fair Matching emerges in the context of district-based elections.
In such elections, voters (modeled by vertices in U) are divided into constituencies (modeled
by vertices in V ), and then each constituency elects its own representative. Here, colors can
represent various attributes. For instance, colors may represent political standings. A small
margin of victory is particularly desirable in this case because it will lead to close elections,
holding politicians accountable for their job. One could also strive for “fair” representation
of different ethnic groups or age groups by modeling ethnicity or age with colors. Other
applications include the assignment of school children to schools (where colors may model
sociodemographic attributes) or the assignment of reviewers to academic papers (where
colors may model the level of expertise or academic background of reviewers).

Similar fairness considerations also arise in modern online systems (see, e.g., [23] for
a survey). For instance, fairness is a pressing issue to counter targeted advertising or to
improve recommender systems. Here one task is to ensure that the content (each perhaps
represented by multiple vertices in U) falling into different categories (colors) is assigned
to users (vertices in V ) in a way that each user is presented with a “diverse” selection of
content. Lastly, we mention that (Max-Min) Fair Matching has also applications outside
of the “fairness” context: Imagine a centralized job market for companies (vertices in V ) and
applicants (vertices in U), each having a specific skillset (color). Firms may wish to balance
between applicants with different skillsets so that employees with various skillsets may be
placed into teams. For instance, it may be desirable for a software company to hire roughly
the same number of frontend and backend developers.

1 Note that the Max-Min value is at least the MoV value for any multiset.
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Figure 1 The complexity landscape of Max-Min Fair Matching (left) and MoV Fair Matching
(right) for the maximum degree ∆U (resp., ∆V ) in U (resp., V ). Green denotes polynomial-time
solvability and red denotes NP-hardness. All NP-hardness results hold for three colors.

Our Contributions. We perform a refined complexity analysis of the NP-hard Max-Min
Fair Matching and MoV Fair Matching problems in terms of the size k of V , the number
|C| of colors, and the maximum degree ∆U and ∆V among vertices in U and V , respectively.
Our main contribution are arguably involved FPT algorithms for the parameterization k

(Section 4). At the heart of the design of our algorithms lies an integer linear program (ILP)
of bounded dimension. We essentially determine whether Hall-like conditions that guarantee
the existence of a fair matching are fulfilled by formulating these in a system of linear
inequalities. In order to establish the correctness of our ILP formulations, we prove what
we call touching separation theorem, getting inspiration from Frank’s separation theorem on
submodular and supermodular functions [14]. For MoV Fair Matching, we apply our
approach in conjunction with the color coding technique [5]. To familiarize ourselves with
the ideas underlying our ILPs, in Section 3, we start with a warm-up where we present
ILP-based fixed-parameter tractable algorithms for the larger parameter k + |C|. To sum
up, as it is straightforward to see that Max-Min/Mov Fair Matching are FPT with
respect to the size n of U2, we establish the fixed-parameter tractability of both problems
for the two natural parameters n and k.3 We then in Section 5 study the computational
complexity of Max-Min/Mov Fair Matching with respect to ∆U , ∆V , and |C|. We show
that Max-Min/Mov Fair Matching is polynomial-time solvable for |C| = 2 and that it
becomes NP-hard for |C| ≥ 3. Moreover, we settle all questions concerning the problems’
classical complexity in terms of ∆U and ∆V , revealing a complete complexity landscape
in this regard (see Figure 1). Finally, in Section 6, we show that Max-Min/Mov Fair
Matching are linear-time solvable when every vertex in U can be matched to any vertex in
V . Notably, all our algorithmic results hold even if we require that each vertex from V is
matched to at least one vertex from U . This further constraint may appear when we need
to divide the vertices into exactly k non-empty fair subsets. Although this constraint is
seemingly simple, sometimes (e.g., in our FPT algorithm for Max-Min Fair Matching for
k) non-trivial adaptions are needed.

Related Work. Stoica et al. [24] introduced three problems where the task is to partition
a set of colored vertices into subsets with a small margin of victory satisfying some global
size constraints. Among these three, the most general is Fair Connected Regrouping,

2 We can enumerate all fair subsets of U in 2n ·(n+k)O(1) time. Then, Knapsack-like dynamic programming
solves Fair Matching in 3n · (n + k)O(1) time.

3 In most described applications k is typically quite small and much smaller than n. For instance, Stoica
et al. [24] performed some experiments for MoV Fair Matching to assign voters to districts with
n = 50, 000 and k = 10, and to assign students to schools with n = 41, 834 and k = 61.
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27:4 The Complexity of Finding Fair Many-To-One Matchings

where one is given a vertex-colored graph G, an integer k, and a function that determines
for each vertex which subsets it can be part of. The task is then to find a partitioning of G

into k fair districts (i.e., connected components). In a follow-up work, Boehmer et al. [9]
analyzed how the structure of G influences the (parameterized) computational complexity
of Fair Connected Regrouping. The other two problems Stoica et al. [24] considered
are special cases of Fair Connected Regrouping: One is Fair Regrouping where the
connectivity constraints are dropped (corresponding to MoV Fair Matching). The other
is Fair Regrouping_X, which is a special case of Fair Regrouping, where any vertex
can belong to any district (corresponding to MoV Fair Matching on complete bipartite
graphs; we study this special case in Section 6). They proved that Fair Regrouping is
NP-hard for three colors (without any constraints on the degree of the graph) and is XP with
respect to the number k of districts (i.e., polynomial-time solvable for constant k). They
also showed that Fair Regrouping_X is XP with respect to the number of colors.

Coming back to Fair Matching as a matching problem, Ahmed et al. [4] proposed a
global supermodular objective to model the fairness (which they call diversity) of a bipartite
weighted many-to-many matching and developed a polynomial-time greedy heuristic for it.
Ahmadi et al. [1] extended the work of Ahmed et al. [4] by generalizing the problem to the
case where vertices can have multiple different colors and presented a pseudo-polynomial-time
algorithm for it. Moreover, Dickerson et al. [13] applied this formulation of fairness to an
online setting where vertices from the left side arrive over time and Ahmed et al. [3] applied
it to the task of forming teams.

Fairness is also a popular topic when finding a stable many-to-one matching of vertices
that have preferences over each other. Here, fairness constraints are typically modeled by
imposing for each vertex from the right side certain lower and upper bounds on the number
of vertices of each color that can be matched to it [7, 8, 10, 16, 18].

More broadly speaking, fairness has recently also been frequently applied to a variety of
different problems from the area of combinatorial optimization. For instance, in the context
of the Knapsack [22] or Maximum Coverage [6] problem, fairness means that all types
are represented equally in the selected solution. For clustering, each cluster is considered fair
when each type accounts for a certain fraction of vertices in it [2, 15].

The proof (or their completion) of all results marked by (⋆) are omitted.

2 Preliminaries

For two integers i < j ∈ N, let [i, j] = {i, i + 1, . . . , j − 1, j} and let [i] = [1, i]. For a set S

and an element x ∈ S, we sometimes write S − x to denote S \ {x}.
Let G = (U ∪· V, E) be a bipartite graph, where U is the left side and V is the right side

of G. Let n := |U | and k := |V | be the number of vertices in the left side and right side,
respectively. For a vertex w ∈ U ∪· V and an edge set M ⊆ E, let M(w) be the set of vertices
matched to w in M , i.e., M(w) = {w′ ∈ U ∪· V | {w, w′} ∈ M}. We say that M ⊆ E is a
many-to-one matching in G if |M(u)| ≤ 1 for every u ∈ U . A many-to-one matching M is left-
perfect if |M(u)| = 1 for every u ∈ U . Note that we require M to be left-perfect as otherwise
an empty set would constitute a trivial solution for our problem. When clear from context,
we refer to a left-perfect many-to-one matching as a matching. For a vertex w ∈ U ∪· V ,
let NG(w) be the set of its neighbors in G, i.e., NG(w) = {w′ ∈ U ∪· V | {w, w′} ∈ E}. For
W ⊆ U ∪· V , let NG(W ) =

⋃
w∈W NG(w) be the joint neighborhood of vertices from W and

let νG(W ) = {w′ ∈ U ∪· V | NG(w′) ⊆ W} be the set of vertices which are only adjacent to
vertices in W . We drop the subscript ·G when it is clear from context.
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Let C be the set of colors and let col : U → C be a function that assigns a color to every
vertex of U . For U ′ ⊆ U , let U ′

c ⊆ U ′ be the set of vertices u ∈ U ′ of color c. For instance,
given a matching M and a vertex v ∈ V , M(v)c denotes the set of vertices matched to v in
M that have color c. We denote by Gc = G[Uc ∪ V ] the graph G restricted to vertices from
Uc ∪ V . We use the shorthand Nc(W ) (resp., νc(W )) for NGc

(W ) (resp., νGc
(W )).

Throughout the paper, we assume that the set C of colors is equipped with some linear
order ≤C , which serves as a tie breaker. So arg max over C is well-defined. We write max1

for max and max2 for the second largest element.
We now define our two fairness measures. For a subset of vertices U ′ ⊆ U , let MoV(U ′) :=

max1
c∈C |U ′

c| − max2
c∈C |U ′

c| be the difference between the number of occurrences of the
most and second most frequent color in U ′. Similarly, for a subset of vertices U ′ ⊆ U , let
MmM(U ′) := maxc∈C |U ′

c|−minc∈C |U ′
c| be the difference between the number of occurrences

of the most and least frequent color in U ′. A subset of vertices U ′ ⊆ U is ℓ-fair according to
MoV (resp., Max-Min) if MoV(U ′) ≤ ℓ (resp., MmM(U ′) ≤ ℓ).4 A many-to-one matching
M in G is ℓ-fair according to MoV (resp., Max-Min) if M(v) is ℓ-fair according to MoV
(resp., Max-Min) for all v ∈ V . The considered fairness notion will always be clear from
context. We now define our central problem Π Fair Matching for some fairness measure Π:

Π Fair Matching
Input: A bipartite graph G = (U ∪· V, E), a set C of colors, a function col : U → C,

and an integer ℓ ∈ N.
Question: Is there a left-perfect many-to-one matching M ⊆ E which is ℓ-fair according

to the fairness measure Π?

We also sometimes consider Π Fair Matching with size constraints where additionally given
two integers p and q, we require that the matching M to be found satisfies p ≤ |M(v)| ≤ q for
all v ∈ V . We refer to the case with p = 1 and q = n as the non-emptiness constraint. This
constraint is arguably crucial for some applications when we want to partition the vertices in
the left side into exactly k non-empty subsets.

Let I be an instance of some problem and let P(I) be an integer linear program (ILP)
constructed from I. We say that P is complete if P(I) is feasible whenever I is a yes-instance.
Conversely, we say that P is sound if I is a yes-instance whenever P(I) is feasible. In this
work, we will make use of Lenstra’s algorithm [19, 20] that decides whether an ILP of size L

with p variables is feasible using O(p2.5p+o(p) · |L|) arithmetic operations.
We assume that the reader is familiar with basic concepts in parameterized complexity

(see for instance [12]). As a reminder, an FPT algorithm for a parameter k is an algorithm
whose running time on input I is f(k) · |I|O(1) for some computable function f .

3 Warmup: FPT Algorithms for k + |C|

We prove that both Fair Matching problems are fixed-parameter tractable with respect to
k+ |C|: We present an integer linear programming (ILP) formulation of these problems whose
number of variables is bounded in a function of the parameter k+|C| and subsequently employ

4 Notably, the definition of margin of victory of Stoica et al. [24] differs slightly from ours in that in their
definition sets of vertices where the two most frequent colors have the same number of occurrences
have a margin of victory of one (and not of zero). We chose our definition in accordance with Boehmer
et al. [9] to be able to distinguish a tie between two colors from one color being one vertex ahead of
another.
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27:6 The Complexity of Finding Fair Many-To-One Matchings

Lenstra’s algorithm [19, 20]. Notably, one can upper-bound the number of “types” (according
to their neighborhoods and colors) of vertices in U by 2k · |C|. Using this observation, it
is straightforward to give an ILP formulation of Max-Min/MoV Fair Matching using
O(2k · |C|) variables. Instead, we follow a theoretically more involved but more efficient
approach. For this, we use a structural property of our problem related to Hall’s theorem,
which decreases the number of variables in our ILP to O(|C| · k). We reuse some of the
results from this section in Section 4, where we prove that Max-Min/MoV Fair Matching
are actually fixed-parameter tractable with respect to k.

To prove that the ILP we present in the following is complete, we use the following:

▶ Lemma 1 (⋆). Let G = (U ∪· V, E) be a bipartite graph and let M be a left-perfect
many-to-one matching. Then, |ν(W )| ≤

∑
v∈W |M(v)| ≤ |N(W )| for every W ⊆ V .

For proving that our ILP is sound, we use the following:

▶ Lemma 2. Let G = (U ∪· V, E) be a bipartite graph and let {zv ∈ N | v ∈ V } be a set
of integers. Suppose that

∑
v∈W zv ≥ |νG(W )| for every W ⊆ V and that

∑
v∈V zv = |U |.

Then, there is a left-perfect many-to-one matching M such that |M(v)| = zv for every v ∈ V .

Proof. Assume that the conditions stated in the lemma hold. We prove the existence of such
a matching M by making use of Hall’s theorem [17]. To do so, we introduce an auxiliary
bipartite graph G′ as follows: In G′, the vertices on one of the two sides are the vertices
from U . The vertices on the other side are V ′ :=

⋃
v∈V Zv, where Zv is a set of zv vertices.

There is an edge between u ∈ U and v′ ∈ Zv ⊆ V ′ if and only if {u, v} ∈ E. In order to
apply Hall’s theorem, we show that |U ′| ≤ |NG′(U ′)| for every U ′ ⊆ U .

Fix some U ′ ⊆ U and let W ′ = NG(U ′). The construction of G′ gives us |NG′(U ′)| =∑
v∈W ′ zv. By the assumption of the lemma, we have

∑
v∈W ′ zv ≥ |νG(W ′)|. Moreover,

we have νG(W ′) = νG(NG(U ′)) ⊇ U ′. Consequently, we obtain |NG′(U ′)| =
∑

v∈W ′ zv ≥
|νG(W ′)| ≥ |U ′|. Hall’s theorem then implies that G′ admits a one-to-one matching M ′ which
matches all vertices from U . In fact, M ′ is a perfect matching since |V ′| =

∑
v∈V zv = |U |

by our assumption. Now consider the matching M in G where a vertex u ∈ U is matched
to v ∈ V if u is matched to a vertex from Zv in M ′. Then, M is a left-perfect many-to-one
matching with |M(v)| = zv for every v ∈ V . ◀

Using Lemmas 1 and 2, we give an ILP formulation of Fair Matching with O(|C| ·
k) variables.

ILP formulation. Introduce a variable zc
v ∈ N for every v ∈ V and every c ∈ C. The

variable zc
v represents the number of vertices in U of color c that are matched to v. Suppose

that the given instance admits a left-perfect ℓ-fair many-to-one matching M respecting the
values of zc

v. Then, for each c ∈ C, there is a matching Mc in Gc with |Mc(v)| = zc
v for v ∈ V

and |Mc(u)| = 1 for u ∈ Uc. As shown in Lemma 1, from this one can conclude that the
following constraints must be fulfilled:

|νc(W )| ≤
∑
v∈W

zc
v ≤ |Nc(W )| for all W ⊆ V, c ∈ C.

Next, we encode the fairness requirement. For Max-Min, we need to have that for every
pair of colors the number of vertices of these two colors assigned to some vertex v ∈ V differ
by at most ℓ. Thus, we add the constraint

zc′

v − zc
v ≤ ℓ for all v ∈ V and c, c′ ∈ C.
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To model ℓ-fairness for MoV Fair Matching, we introduce two new binary variables
ac

v, bc
v ∈ {0, 1} for all v ∈ V and c ∈ C. Informally speaking, the intended meaning of these

variables is that ac
v = 1 (resp., bc

v = 1) when c is the most (resp., second most) frequent color
among vertices matched to v. We ensure that the values of these variables are set accordingly
as follows:

zc
v − zc′

v ≥ n(ac
v + bc′

v − 2), zc
v − zc′

v ≥ n(bc′
v − ac

v − 1), and ac
v + bc

v ≤ 1 ∀v ∈ V, c, c′ ∈ C;∑
c∈C

ac
v =

∑
c∈C

bc
v = 1 ∀v ∈ V.

For the first constraint, note that it becomes zc
v ≥ zc′

v if ac
v = bc′

v = 1 and that it is always
fulfilled otherwise. Similarly for the second constraint, observe that it becomes zc

v ≥ zc′

v if
ac′

v = 0 and bc
v = 1 and that it is always fulfilled otherwise.

Finally, using ac
v and bc

v (and their meaning as proven above), we add the following
constraint that encodes the ℓ-fairness in terms of margin of victory of M(v) for all v ∈ V :

zc
v − zc′

v − n(2 − ac
v − bc′

v ) ≤ ℓ ∀v ∈ V

Lastly, we can also add linear constraints ensuring that the number of vertices from U

matched to each vertex v ∈ V is between p and q: p ≤
∑

c∈C zc
v ≤ q for all v ∈ V.

▶ Theorem 3. Max-Min/MoV Fair Matching with arbitrary size constraints can be
solved in O⋆((|C| · k)O(|C|·k)) time.

Proof. We show that an instance (G = (U ∪· V, E), C, col, ℓ, p, q) of Max-Min/MoV Fair
Matching with size constraints admits an ℓ-fair left-perfect many-to-one matching if and
only if the constructed ILP constructed is feasible. As described above, if the given instance is
a yes-instance, there is an assignment to zc

v satisfying all the constraints. Conversely, suppose
that the ILP admits a solution {zc

v | v ∈ V, c ∈ C}. Then, from our first set of constraints,
we have for every c ∈ C that

∑
v∈W zc

v ≥ |νc(W )| for every W ⊆ V and
∑

v∈V zc
v = |Uc|

(the later part follows from our first set of constraints for W = V ). By Lemma 2, it follows
that Gc has a matching Mc in which every vertex in Uc is matched and the values of zc

v

for v ∈ V and c ∈ C are respected. Aggregating Mc for all colors c yields a left-perfect
ℓ-fair many-to-one matching for G respecting the given size constraints. Using Lenstra’s
algorithm [19, 20], the feasibility of the ILP can be determined in the claimed time. ◀

4 FPT Algorithms for k

In this section, we develop FPT algorithms for Max-Min/MoV Fair Matching for the
parameterization |V | = k. We start with a discussion of the challenges for our algorithms.
Afterwards, we obtain a new result on submodular and supermodular functions. Using this,
in Section 4.1 we present the algorithm for Max-Min Fair Matching, and in Section 4.2
the slightly more involved algorithm for MoV Fair Matching.

The crux of our algorithms is an ILP as in Section 3. However, since we look into the
parameterization without |C|, it would be too costly to introduce variables for each color.
To illustrate our idea to work around this issue, take Max-Min Fair Matching as an
example. One of the straightforward ideas how to formulate this problem as an ILP would
be to introduce two variables xv ≤ yv for every vertex v ∈ V , where xv (resp., yv) encodes
the minimum (resp., maximum) number of vertices of some color c ∈ C matched to v.
Informally speaking, to encode the ILP constraints from Section 3, we could now replace
every occurrence of zc

v with xv (resp., yv) if the constraint in which zc
v occurs imposes an

ICALP 2022
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upper (resp., lower) bound on zc
v: the first set of constraints added in Section 3 translates to∑

v∈W yv ≥ maxc∈C |νc(W )| and
∑

v∈W xv ≤ minc∈C |Nc(W )| for every W ⊆ V . Moreover,
we add the constraint yv −xv ≤ ℓ for all v ∈ V . Let P denote the ILP obtained this way. (See
Section 4.1 for the formal construction of P .) Although it is easy to see that P is complete,
it turns out to be nontrivial to prove its soundness. To highlight this challenge, suppose that
P is feasible for {xv, yv | v ∈ V }. To show that this implies that there is an ℓ-fair matching
M , we have to show that for every color c ∈ C, the graph Gc has a matching Mc such that
xv ≤ |Mc(v)| ≤ yv for all v ∈ V . Unfortunately, we cannot directly apply Lemma 2 (as we
were able to do in Section 3): To construct an ℓ-fair matching from {xv, yv | v ∈ V } using
Lemma 2, we have to show that for every color c ∈ C, there always exists a set of integers
{zc

v | v ∈ V } with the following properties:
(i)

∑
v∈W zc

v ≥ |νc(W )|, ∀W ⊆ V

(ii)
∑

v∈V zc
v = |Uc|

(iii) xv ≤ zc
v ≤ yv, ∀v ∈ V .

Finding an assignment of variables zc
v that fulfill (i) and (iii) is trivial; setting zc

v = yv suffices
because P dictates that

∑
v∈W yv ≥ maxc′∈C |νc′(W )| ≥ |νc(W )| for every W ⊆ V . However,

integers satisfying (i), (ii), and (iii) simultaneously are not trivially guaranteed to exist. To
nevertheless prove their existence, we prove what we call the touching separation theorem,
inspired by Frank’s separation theorem [14] on submodular and supermodular functions. Our
theorem implies that if there is a solution to P, then there is an assignment of variables zc

v

satisfying (i), (ii), and (iii). Submodular and supermodular functions are defined as follows:

▶ Definition 4. Let f : 2S → N be a set function over a set S. We say that f is submodular if
f(X)+f(Y ) ≥ f(X ∪Y )+f(X ∩Y ) for every X, Y ⊆ S and supermodular if f(X)+f(Y ) ≤
f(X ∪ Y ) + f(X ∩ Y ) for every X, Y ⊆ S. Moreover, f is modular if f is both submodular
and supermodular.

Modular functions admit a simpler characterization, which will be useful in several proofs:

▶ Lemma 5 (folklore, ⋆). Let f : 2S → N be a set function. Then, f is modular if and only
if f(X) = f(∅) +

∑
x∈X(f(x) − f(∅)) for every X ⊆ S.

Frank’s separation theorem [14] can be stated as follows: If f : 2S → N is submodular
and g : 2S → N is supermodular, and g(X) ≤ f(X) for every X ⊆ S, then there exists a
modular set function h : 2S → N such that g(X) ≤ h(X) ≤ f(X) for every X ⊆ S. We prove
an analogous separation theorem where the “lower-bound” function is the maximum of two
functions – one being modular and the other being supermodular – and the “upper-bound”
function is a modular function. (In general, the “lower-bound” function arising this way is
neither submodular nor supermodular.) We additionally require that the function separating
the two functions “touches” the lower-bound function. Our proof uses a rather involved
induction on the size of S.

▶ Theorem 6 (Touching separation theorem, ⋆). Let f, f ′ : 2S → N be two modular set
functions and let g : 2S → N be a supermodular set function. Suppose that f(∅) = f ′(∅) =
g(∅) = 0 and max(f(X), g(X)) ≤ f ′(X) for every X ⊆ S. Then, there is a modular set
function h : 2S → N such that max(f(X), g(X)) ≤ h(X) ≤ f ′(X) for every X ⊆ S and
h(S) = maxX⊆S f(X) + g(S \ X).

To apply Theorem 6, we use a supermodular function arising from a bipartite graph:

▶ Lemma 7 (⋆). Let G = (U ∪· V, E) be a bipartite graph and let g : 2V → N be a set function
such that g(W ) = |ν(W )| for each W ⊆ V . Then, g is supermodular.
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4.1 Max-Min Fair Matching
We now present an FPT algorithm for Max-Min Fair Matching. As mentioned, our
algorithm, which follows a similar approach as used in Section 3, builds an ILP. The difference
is that the ILP constructed here involves O(k) and not Θ(k · |C|) variables. We prove the
correctness of the ILP in Theorem 8, crucially relying on Theorem 6.

ILP formulation. We add two variables xv ≤ yv ∈ N for every v ∈ V . The intended meaning
for these variables is that for every color c ∈ C, the number of vertices from Uc matched to v

is between xv and yv. We obtain the following constraints from Lemma 1:∑
v∈W

yv ≥ max
c∈C

|νc(W )| and
∑
v∈W

xv ≤ min
c∈C

|Nc(W )| ∀ W ⊆ V. (1)

To encode ℓ-fairness, we add: yv − xv ≤ ℓ for all v ∈ V .

▶ Theorem 8. Max-Min Fair Matching can be solved in O⋆(kO(k)) time.

Proof. Our ILP uses O(k) variables and O(2k) constraints; the construction takes O⋆(2k)
time. Using Lenstra’s algorithm [19, 20], it is possible to check whether the constructed ILP
is feasible in O⋆(kO(k)) time. It remains to prove the correctness of our ILP.

The completeness of our ILP follows from Lemma 1. For the soundness, suppose that
{xv, yv | v ∈ V } is a feasible solution for the ILP. For every color c ∈ C, we show the following:
For the set Uc ⊆ U of vertices of color c, there is a matching Mc in the bipartite graph
Gc = G[Uc ∪V ] such that xv ≤ |Mc(v)| ≤ yv for each v ∈ V , from which the soundness of the
ILP directly follows. To show the existence of such a matching Mc, we will rely on Lemma 2.
Note, however, that Lemma 2 asks for integers {zv | v ∈ V } meeting certain constraints,
which we cannot choose arbitrarily as we have to respect the constraint xv ≤ zv ≤ yv for
every v ∈ V . Let us fix some color c ∈ C. We find integers {zv | v ∈ V } via Theorem 6:

Let f, f ′, g : 2V → N be set functions such that f(W ) =
∑

v∈W xv and f ′(W ) =
∑

v∈W yv,
and g(W ) = |νc(W )| for each W ⊆ V . Note that f and f ′ are modular by Lemma 5 and that
g is supermodular by Lemma 7. The constraints in the ILP ensure that max(f(W ), g(W )) ≤
f ′(W ) for every W ⊆ V . Consequently, Theorem 6 yields a set modular function h : 2V → N
such that max(f(W ), g(W )) ≤ h(W ) ≤ f ′(W ) for each W ⊆ V and h(V ) = maxW ⊆V f(W )+
g(V \W ). Let zv = h(v) for every v ∈ V . Note that as h is modular and fulfills the constraints
stated above,

∑
v∈W zv = h(W ) ≥ g(W ) = |νc(W )| for each W ⊆ V . Hence, in order to

apply Lemma 2 on the integers {zv | v ∈ V }, it remains to show that
∑

v∈V zv = h(V ) = |Uc|.
Since our ILP requires that f(W ) =

∑
v∈W xv ≤ |Nc(W )| for W ⊆ V , we have that

f(W ) + g(V \ W ) ≤ |Nc(W )| + |νc(V \ W )|
= |{u ∈ Uc | Nc(u) ∩ W ̸= ∅}| + |{u ∈ Uc | Nc(u) ⊆ V \ W}| = |Uc|.

Moreover, we have f(∅)+g(V ) = |Uc|, resulting in h(V ) = maxW ⊆V f(W )+g(V \W ) = |Uc|
by Theorem 6. Therefore, the graph Gc admits a matching Mc with xv ≤ |Mc(v)| ≤ yv for
each v ∈ V by Lemma 2. Combining these matchings yields an ℓ-fair matching in G. ◀

Non-emptiness constraint. For a matching M found by our algorithm, we may have
M(v) = ∅ for some v ∈ V . So the non-emptiness constraint may be violated. Unfortunately,
there is seemingly no simple linear constraint to ensure that M(v) ̸= ∅ for each v ∈ V .5

5 Adding xv > 0 ensures that there is at least one vertex of each color matched to v. Adding yv > 0 is
not enough, as the ILP only ensures that for each color at most yv vertices are matched to v.
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Overcoming this challenge, we now develop an FPT algorithm for Max-Min Fair Matching
with the non-emptiness constraint. We will build upon the ILP formulation for Theorem 8.
First, observe that for ℓ = 0, it suffices to add the constraint yv > 0 for all v ∈ V because
this ensures that every vertex v ∈ V is matched to at least xv = yv > 0 vertices of each color.

For ℓ > 0, we develop a more involved algorithm. We will only describe its main ideas
here. Suppose that there is an ℓ-fair many-to-one matching M such that M(v) ̸= ∅ for
each v ∈ V . By choosing an arbitrary element uv of M(v) for each v ∈ V , we obtain a
matching M⋆ := {{uv, v} | v ∈ V } ⊆ M with |M⋆(v)| = 1 for each v ∈ V . Since there are
possibly nΩ(k) choices for M⋆, we cannot assume that M⋆ is given. Instead, our algorithm
only “guesses” some structural properties of M⋆, which we will incorporate into the above
ILP for Max-Min Fair Matching by adding further constraints. (Our algorithm avoids
guessing objects marked with a star.)

For each v ∈ V , let χ(v) be the color of M⋆(v). By iterating over all possible partitions
V of V , we first guess a partition of V according to χ(v), i.e., two vertices v, v′ ∈ V belong
to the same subset of V if and only if χ(v) = χ(v′). For each S ∈ V , let χ(S) be the color of
χ(v) for an arbitrary vertex v ∈ S. Let us fix some S ∈ V. We will formulate constraints
that must be fulfilled when each vertex v in S is matched to M⋆(v) (which has color χ(S)).
For this, let U⋆

S ⊆ Uχ(S) be the set of vertices from U of color χ(S) incident to an edge in
M⋆ and let G⋆

S be the graph obtained from Gχ(S) by deleting all edges incident to U⋆
S and

then adding the edges of M⋆ whose endpoint on the left side has color χ(S). Since every
edge in M with an endpoint of color χ(S) is present in G⋆

S , these edges form a left-perfect
many-to-one matching in G⋆

S . Thus, by Lemma 1, we should have
∑

v∈W yv ≥ |νG⋆
S

(W )| and∑
v∈W xv ≤ |NG⋆

S
(W )| for each W ⊆ V if there is a left-perfect matching containing M⋆ in

G⋆
S . We need to evaluate |νG⋆

S
(W )| and |NG⋆

S
(W )| to include these constraints into our ILP.

Note, however, that we cannot compute these values without M⋆ given. In the following, we
explain how we can nevertheless incorporate these constraints by guessing further structural
aspects of M⋆.

First, we rewrite |νG⋆
S
(W )| and |NG⋆

S
(W )| as follows:

|νG⋆
S
(W )| = |νχ(S)(W )| + |{v ∈ S ∩ W | NGχ(S)(M

⋆(v)) ̸⊆ W}| and
|NG⋆

S
(W )| = |Nχ(S)(W )| − |{v ∈ S \ W | NGχ(S)(M

⋆(v)) ∩ W ̸= ∅}|.

To see why the first equation holds, observe that we have only deleted edges when constructing
G⋆

S from Gχ(S). Thus, we have νGχ(S)(W ) ⊆ νG⋆
S
(W ). Moreover, we have u ∈ νG⋆

S
(W ) \

νGχ(S)(W ) if and only if u = M⋆(v) for some v ∈ S ∩ W (which implies that u is only
adjacent to v in G⋆

S) and u has a neighbor outside of W in Gχ(S). The second equation
follows similarly: As we only deleted edges, we have NG⋆

S
(W ) ⊆ NGχ(S)(W ). We also

have u ∈ NGχ(S)(W ) \ NG⋆
S
(W ) if and only if u = M⋆(v) for some v ∈ S \ W and u

has a neighbor in W in Gχ(S). To evaluate the second term in each of these equations,
we guess a function µ : V → 2V such that µ(v) = NGχ(S)(M∗(v)) for each v ∈ V . For
α(S, W ) := |{v ∈ S ∩ W | µ(v) ̸⊆ W}| and β(S, W ) := |{v ∈ S \ W | µ(v) ∩ W ̸= ∅}|, we
then have:

|νG⋆
S
(W )| = |νχ(S)(W )| + α(S, W ) and |NG⋆

S
(W )| = |Nχ(S)(W )| − β(S, W ). (2)

To incorporate the constraints
∑

v∈W yv ≥ |νG⋆
S
(W )| and

∑
v∈W xv ≤ |NG⋆

S
(W )|, it

remains to deal with |νχ(S)(W )| and |Nχ(S)(W )|. Note that we cannot compute |νχ(S)(W )|
or |Nχ(S)(W )| without M⋆ given. Moreover, it would be costly to guess these values
(which can be Ω(n)) for every S ∈ V and W ⊆ V or the values of χ(S) (which can
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be Ω(|C|)) for every S ∈ V. Instead, we relate these two values to maxc∈C |νc(W )| and
minc∈C |Nc(W )| by guessing their respective differences. Although these differences may be
Ω(n), we discover that we can cap them at k: When they are larger, then the arising constraints
are already covered by Constraint (1) from the original ILP. Formally, we guess X(S, W ) =
min(|Nχ(S)(W )| − minc∈C |Nc(W )|, k) and Y (S, W ) = min(maxc∈C |νc(W )| − |νχ(S)(W )|, k)
for each S ∈ V and W ⊆ V by iterating over all possible X, Y : V × 2V → {0, . . . , k} (for
each of them we have at most (k + 1)k·2k ∈ O(22O(k)) choices).

To account for the constraints
∑

v∈W yv ≥ |νG⋆
S

(W )| and
∑

v∈W xv ≤ |NG⋆
S

(W )|, we now
add the following constraint to the ILP for each S ∈ V and W ⊆ V :∑

v∈W

yv ≥ max
c∈C

|νc(W )| − Y (S, W ) + α(S, W ) and∑
v∈W

xv ≤ min
c∈C

|Nc(W )| + X(S, W ) − β(S, W ).

To see why these constraints must be fulfilled, we consider two cases. If |Nχ(S)(W )| −
minc∈C |Nc(W )| ≤ k (resp., maxc∈C |νc(W )| − |νχ(S)(W )| ≤ k), then by the definition
of X(S, W ) (resp. Y (S, W )) and Equation (2), we have |NG⋆

S
(W )| = minc∈C |Nc(W )| +

X(S, W ) − β(S, W ) (resp., |νG⋆
S
(W )| = maxc∈C |νc(W )| − Y (S, W ) + α(S, W )). Otherwise,

we claim that the constraint
∑

v∈W xv ≤ |NG⋆
S

(W )| (resp.
∑

v∈W yv ≥ |νG⋆
S

(W )|) is already
captured by Constraint (1), since X(S, W ) = k ≥ β(S, W ) (resp., Y (S, W ) = k ≥ α(S, W )),
we have

∑
v∈W xv ≤ minc∈C |Nc(W )| ≤ minc∈C |Nc(W )| + X(S, W ) − β(S, W ) (resp.,∑

v∈W yv ≥ maxc∈C |νc(W )| ≥ maxc∈C |νc(W )| − Y (S, W ) + α(S, W )).
Iterating over all described guesses and for each solving the constructed ILP, we get:

▶ Theorem 9 (⋆). Max-Min Fair Matching with the non-emptiness constraint can be
solved in O∗(22O(k)) time.

4.2 MoV Fair Matching
We now develop an FPT algorithm for MoV Fair Matching for the parameter k, which also
works with the non-emptiness constraint. Our algorithm has two parts. In the first part, we
give an FPT algorithm (using an ILP) for an auxiliary problem called Targeted MoV Fair
Matching. This is a variant of MoV Fair Matching, where for each v ∈ V , the two most
frequent colors appearing in M(v) are given as part of the input. We establish the soundness
of the ILP for Targeted MoV Fair Matching using again Theorem 6 and Lemma 2.
In the second part, we present a (randomized) parameterized reduction from MoV Fair
Matching to Targeted Mov Fair Matching using the color coding technique [5]. To
apply this technique, we show that the colors that appear (second) most frequently in M(v)
for some v ∈ V “stand out” in a fair matching that fulfills certain conditions. Then, the
color coding technique essentially allows us to determine these colors.

Part I. First, we define an auxiliary problem, which we call Targeted MoV Fair
Matching. The input for MoV Fair Matching is also part of the input for Targeted
MoV Fair Matching. Moreover, Targeted MoV Fair Matching takes as input two
functions µ1, µ2 : V → C. In Targeted MoV Fair Matching, we ask for an ℓ-fair
matching M such that for every vertex v ∈ V , µ1(v) (resp., µ2(v)) is the most (resp., second
most) frequent color among the vertices M(v) matched to v in M .

We now develop an FPT algorithm for Targeted MoV Fair Matching by means of
an ILP. Let C1,2 = {µ1(v), µ2(v) | v ∈ V } be the set of colors that appear (second) most
frequent among the vertices matched to some vertex in V and let C ′ = C \ C1,2 be the set
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of other colors. Notably, the size of C1,2 is linearly bounded in our parameter k. For every
v ∈ V , we introduce a variable yv which represents the number of vertices of color µ2(v)
matched to v. The values of yv need to be chosen in a way such that, for every color c′ ∈ C ′,
there is a matching Mc′ in Gc′ such that |Mc′(v)| ≤ yv for all v ∈ V . By Lemma 1, we obtain
the following constraint which must be fulfilled and add it to the ILP:∑

v∈W

yv ≥ max
c′∈C′

|νc′(W )| ∀W ⊆ V.

For the vertices of colors in C1,2, we impose constraints in the same way as in Section 3. For
every c ∈ C1,2 and v ∈ V , we introduce a variable zc

v which represents the number of vertices
of color c matched to v. Then, we add the following constraints according to Lemma 1.

|νc(W )| ≤
∑
v∈W

zc
v ≤ |Nc(W )| ∀W ⊆ V, c ∈ C1,2.

In case we have a lower bound p = 1, we additionally require that z
µ1(v)
v ≥ 1 for all v ∈ V .

Finally, we encode the ℓ-fairness: yv = z
µ2(v)
v and z

µ2(v)
v ≤ z

µ1(v)
v ≤ z

µ2(v)
v + ℓ for all v ∈ V .

In order to show the correctness of the ILP, with the help of Theorem 6, we prove the
following adaptation of Lemma 2, in which we show that there exists a matching of the
vertices of colors from C ′ to vertices from V respecting yv for all v ∈ V .

▶ Lemma 10 (⋆). Let G = (U ∪· V, E) be a bipartite graph and let {zv ∈ N | v ∈ V } be a set
of integers. Suppose that

∑
v∈W zv ≥ |νG(W )| for every W ⊆ V . Then, there is a left-perfect

many-to-one matching M such that M(v) ≤ zv for every v ∈ V .

Using Lemmas 2 and 10, we can now show that the above constructed ILP is feasible if
and only if the given Targeted MoV Fair Matching is a yes-instance.

▶ Proposition 11 (⋆). Targeted MoV Fair Matching can be solved in O⋆(kO(k2)) time
even with the non-emptiness constraint.

Part II. We will employ the color coding technique to reduce MoV Fair Matching to
Targeted Mov Fair Matching. To do so, we introduce another auxiliary problem called
Q-MoV Fair Matching. To define the problem, we first introduce additional notation.
Suppose that M is a matching in the input graph G = (U ∪· V, E). Let µ1

M , µ2
M : V → C be

mappings such that for every vertex v ∈ V , µ1
M (v) (resp., µ2

M (v)) is the most (resp., second
most) frequent color among the vertices M(v) matched to v in M . When the maximum
or second maximum is achieved by more than one color, we break ties according to a fixed
linear order ≤C on C. Let V = {v1, v2 | v ∈ V } be a set containing 2|V | elements and let
P(M) be a partition of V into subsets S ⊆ V where for every S ∈ P(M), vi, v′j ∈ S if and
only if µi

M (v) = µj
M (v′) for v, v′ ∈ V and i, j ∈ [2].

Using this, we define Q-MoV Fair Matching. Here, Q is a partition of V and we assume
that Q is fixed. The input of Q-MoV Fair Matching is identical to the input of MoV
Fair Matching. The difference is that Q-MoV Fair Matching asks for a left-perfect
ℓ-fair many-to-one matching M in G consistent with Q, that is, P(M) = Q. Clearly, an
instance of MoV Fair Matching is a yes-instance if and only if there exists a partition Q
of V such that the corresponding Q-MoV Fair Matching instance is a yes-instance. Since
there are at most kO(k) ways to partition V (which is a set of 2k elements), we can afford to
“guess” Q in our FPT algorithm. We thus focus on solving Q-MoV Fair Matching. In
particular, we assume without loss of generality that Q is cardinality-wise maximum – the
input graph G has no ℓ-fair left-perfect many-to-one matching M such that |P(M)| > |Q|
(this assumption becomes essential in the proof of Lemma 12).
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We solve Q-MoV Fair Matching using color coding. We focus on ℓ > 0 and omit the
case ℓ = 0. To apply the color coding method, we show a rather technical lemma stating that
if a color c is among the two most frequent colors in M(v) for some v ∈ V in a certain fair
matching M , then c needs to “stand out” – the number of its occurrence in the neighborhood
of v in G is greater than for any other color c′, unless c′ also “stands out”.

▶ Lemma 12. Let I be a yes-instance of Q-MoV Fair Matching with ℓ > 0. Then, I
admits an ℓ-fair left-perfect many-to-one matching M such that, for every v ∈ V and i ∈ [2],
|Nµi

M
(v)(v)| ≥ |Nc′(v)| for every c′ ∈ {c ∈ C | ∀v ∈ V, i ∈ {1, 2} : c ̸= µi

M (v)}.

Proof. For a matching M , let σ(M) :=
∑

v∈V,i∈{1,2} |M(v)µi
M

(v)| be the total number of the
occurrences of the two most frequent colors in M(v) over all vertices v ∈ V . Consider an
ℓ-fair matching M that maximizes σ(M) among all ℓ-fair matchings consistent with Q. Let
CM := {µi

M (v) ∈ C | v ∈ V, i ∈ {1, 2}} be the set of colors which are one of the two most
frequent colors in M(v) for some v ∈ V and let C ′

M := C \ CM be the set of other colors.
Assume for the sake of contradiction that there there is some v ∈ V and i ∈ [2] with

µi
M (v) = c ∈ CM and color c′ ∈ C ′

M such that |Nc′(v)| > |Nc(v)|. Recall that by the
definition of C ′

M it holds that |M(v)c| ≥ |M(v)c′ |. Consider a left-perfect matching M ′

obtained from M as follows. Initially, let M ′ := M . We then repeat the following procedure
|M(v)c| − |M(v)c′ | + 1 times: We delete from M ′ an arbitrary edge {u, v′} ∈ M ′ such that
u ∈ N(v) ⊆ U is a vertex of color c′ and v′ is some vertex in V −v, and then add an edge {u, v}.
Note that this is always possible, as |M(v)c′ | ≤ |M(v)c| ≤ |Nc(v)| < |Nc′(v)|. We claim that
M ′ is a left-perfect ℓ-fair matching. It is easy to verify the left-perfectness of M ′. For the
ℓ-fairness, since c′ ∈ C ′

M , for every v′ ∈ V − v, the number of occurrences of the two most
frequent colors in M ′(v′) has not changed compared to M(v′), i.e., max1

c′′∈C |M ′(v′)c′′ | =
max1

c′′∈C |M(v′)c′′ | and max2
c′′∈C |M ′(v′)c′′ | = max2

c′′∈C |M(v′)c′′ |. Thus, M ′(v′) is ℓ-fair for
each v′ ∈ V − v. It thus remains to show that max1

c′′∈C |M ′(v)c′′ | − max2
c′′∈C |M ′(v)c′′ | ≤ ℓ.

We consider three cases:
If c = µ1

M (v), then as we added |M(v)c| − |M(v)c′ | + 1 vertices of color c′ to M(v), we
have max1

c′′∈C |M ′(v)c′′ | = |M ′(v)c′ | = |M(v)c| + 1 and max2
c′′∈C |M ′(v)c′′ | = |M(v)c|,

and thus max1
c′′∈C |M ′(v)c′′ | − max2

c′′∈C |M ′(v)c′′ | = 1 ≤ ℓ.
Suppose that c = µ2

M (v) and max1
c∈C |M(v)c| > max2

c∈C |M(v)c|. Then, we have
max1

c∈C |M ′(v)c| = max1
c∈C |M(v)c| and max2

c∈C |M(v)c| = max2
c∈C |M(v)c| + 1, and

thus max1
c′′∈C |M ′(v)c′′ | − max2

c′′∈C |M ′(v)c′′ | ≤ ℓ − 1 ≤ ℓ.
Suppose that c = µ2

M (v) and max1
c∈C |M(v)c| = max2

c∈C |M(v)c|. Then, we have
max1

c∈C |M ′(v)c| = max1
c∈C |M(v)c| + 1 and max2

c∈C |M(v)c| = max2
c∈C |M(v)c|, and

thus max1
c′′∈C |M ′(v)c′′ | − max2

c′′∈C |M ′(v)c′′ | ≤ 1 ≤ ℓ.
This proves the ℓ-fairness of M .

Recall that µi
M (v) = c. We now show that the existence of M ′ contradicts one of our

assumptions. To that end, we consider the following two cases:
Suppose that µj

M (v′) = c for some v′ ∈ V \ {v} and j ∈ [2]. This case contradicts
the fact that Q is cardinality-wise maximum: To see why, note that for the set S of
Q containing vi (which is of size at least two, since either v′1 or v′2 is in S), we have
P(M ′) = (P(M) \ {S}) ∪ {S − v, {v}}, implying that |P(M ′)| > |P(M)|.
Suppose that µj

M (v′) ̸= c for each v′ ∈ V \ {v} and j ∈ [2]. Observe that {vi} ∈ Q. The
matching M ′ is thus consistent with Q. Moreover, we have σ(M ′) > σ(M), which is a
contradiction. ◀

With Lemma 12 at hand, we are ready to give a randomized reduction from Q-MoV
Fair Matching to Targeted MoV Fair Matching.
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▶ Lemma 13 (⋆). Let I be an instance of Q-MoV Fair Matching. We can compute in
polynomial time an instance J of Targeted MoV Fair Matching such that (i) J is a
yes-instance with probability at least δ (where 1/δ ∈ kO(k)) if I is a yes-instance and (ii) J
is a no-instance if I is no-instance.

Proof for ℓ > 0. We describe a polynomial-time procedure to construct an instance J of
Targeted MoV Fair Matching from a given instance I = (G = (U ∪· V, E), C, col, ℓ) of
Q-MoV Fair Matching. We randomly assign each color c ∈ C to one of the subsets in
Q with the intended meaning that if we assign color c ∈ C to S ∈ Q, then in a matching
M in I one of the following holds: (i) for v1 ∈ S, c appears as the most frequent color in
M(v) and for v2 ∈ S, c appears as the second most frequent color in M(v) and c appears
nowhere else as the most or second most frequent color or (ii) c does not appear as the
most or second most frequent color in M(v) for any v ∈ V . Formally let λ : C → Q be a
function assigning each color to a subset in Q, where each assignment is chosen uniformly
and independently at random.6 For every v ∈ V and i ∈ [2] with vi ∈ S for some S ∈ Q, we
find ci

v = arg max |Nc(v)|, where arg max is taken over all colors c with λ(c) = S. Then, we
construct an instance J of Targeted MoV Fair Matching, where µi(v) = ci

v for every
vi ∈ V . If a hypothetical matching M such that µi

M (u) = µi(u) = ci
v for v ∈ V and i ∈ [2] is

not consistent with Q, we let J be a trivial no-instance. Clearly, the construction of J takes
polynomial time.

Suppose that I is a yes-instance. We show that in this case J is a yes-instance with
probability at least δ with δ−1 ∈ kO(k). Let M be an ℓ-fair matching for I that fulfills
the properties described in Lemma 12 (which by Lemma 12 always exists). Assume that
λ(µi

M (v)) = Si
v holds for every v ∈ V and i ∈ [2], where Si

v ∈ Q denotes the subset in Q to
which vi belongs. We claim that under this assumption on λ, the instance J constructed
by our procedure is a yes-instance. In fact, we show that M is a solution of J (which also
directly implies that there is a solution consistent with Q and thus that no trivial no-instance
is returned). Since M is an left-perfect ℓ-fair matching in G, we only have to show that
µi

M (v) = µi(v) = ci
v for every v ∈ V and i ∈ [2].

Let CM := {µi
M (v) ∈ C | v ∈ V, i ∈ [2]} be the set of colors which are among the two most

frequent colors in M(v) for some v ∈ V and let C ′
M := C \ CM be the set of other colors. By

Lemma 12, for every v ∈ V , c′ ∈ C ′
M , and i ∈ [2], we have |Nµi

M
(v)(v)| ≥ |Nc′(v)|. Since we

always break ties according to a fixed linear order (including when we find µi
M (v)), we have

µi
M (v) = arg maxc∈C′

M
∪{µi

M
(v)} |Nc(v)|. Recall that when constructing J we have defined

ci
v = arg max |Nc(v)|, where the maximum is taken over the set Ci

v := {c ∈ C | λ(c) = Si
v}.

By our assumption that λ(µi
M (v)) = Si

v for every v ∈ V and i ∈ [2], we have µi
M (v) ∈ Ci

v.
We also have c /∈ Ci

v for every c ∈ CM \ {µi
M (v)}, which implies that Ci

v ⊆ C ′
M ∪ {µi

M (v)}.
Consequently, we obtain ci

v = arg maxc∈Ci
v

|Nc(v)| = µi
M (v) for every v ∈ V and i ∈ [2]. It

follows that M is a solution of J .
Finally, observe that the probability that λ(µi

M (v)) = Si
v for every v ∈ V and i ∈ [2] is at

least |Q|−|Q| ≥ (2k)−2k, since λ is chosen uniformly and independently at random. Thus, if
I is a yes-instance, J is a yes-instance with probability at least (2k)−2k.

If J is a yes-instance, then I is also a yes-instance, as, by construction of J , a solution
M for J needs to satisfy P(M) = Q and is thus also a solution for I. ◀

6 In the language of color coding, the function λ is often described as assignments of “colors” (the “colors”
in color coding are different from the colors used here).
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We repeat the algorithm of Lemma 13 independently δ−1 ∈ kO(k) times on the given
instance I of Q-Fair Matching. If I is a yes-instance, then at least one instance of
Targeted Mov Fair Matching returned by the algorithm is a yes-instance with probability
at least 1 − (1 − δ)δ−1 ≥ 1 − 1/e. By Proposition 11, a yes-instance of Targeted Mov Fair
Matching can be recognized in O⋆(kO(k2)) time. We thus have a randomized algorithm
to solve Q-MoV Fair Matching in O⋆(kO(k2)) time. Recall that Q is a partition of a
2k-element set. So there are at most kO(k) choices for Q, which gives us the following theorem
(we remark that our algorithm can be derandomized using a standard method [12]):

▶ Theorem 14. There is a randomized O⋆(kO(k2))-time algorithm to solve MoV Fair
Matching even with the non-emptiness constraint.

5 Complexity Dichotomies with respect to |C| and Maximum Degree

In this section, we study the computational complexity of Max-Min/MoV Fair Matching
for fixed values of ∆U , ∆V , and |C|. Recall that ∆U (resp., ∆V ) is the maximum degree of
all vertices in U (resp., V ). We identify several computational dichotomies regarding these
parameters (see Figure 1). We first show a dichotomy on |C|. In particular, Max-Min/MoV
Fair Matching is polynomial-time solvable for |C| = 2 (even if there are arbitrary lower
size constraints), while it is NP-hard for |C| = 3.

▶ Theorem 15 (⋆). Max-Min/MoV Fair Matching is polynomial-time solvable for
|C| = 2 and NP-hard for |C| ≥ 3.

The next two theorems concern complexity dichotomies with respect to ∆U and ∆V . All
NP-hardness results here hold for three colors, while all polynomial-time results hold for an
arbitrary number of colors.

▶ Theorem 16 (⋆). MoV Fair Matching is polynomial-time solvable if ∆U ≤ 1 or ∆V ≤ 4
(even with the non-emptiness constraint) and NP-hard otherwise.

As part of the proof of Theorem 16, we give an algorithm that solves MoV in polynomial-
time for ∆V ≤ 4. Our algorithm is a polynomial-time reduction to a polynomial-time solvable
special case of General Factor, which we will define in the proof.

▶ Proposition 17 (⋆). MoV Fair Matching is polynomial-time solvable for ∆V ≤ 4.

Proof Sketch. We give a polynomial-time reduction to General Factor: In an instance
of General Factor the input is an undirected graph H = (W, F ) and a degree list
function L : W → 2N such that L(w) ⊆ {0, . . . , degG(w)} for every vertex w ∈ W . The
problem asks for a spanning subgraph H ′ = (W, F ′) for F ′ ⊆ F such that degH′(w) ∈
L(w) for every w ∈ W . By a result of Cornuéjols [11], General Factor is polynomial-
time solvable if for every w ∈ W , the degree list L(w) has gaps of size at most one, i.e.,
{min L(w), min L(w)+1 . . . , max L(w)}\L(w) does not contain any two consecutive integers.
Given an instance I = (G = (U ∪· V, E), C, col, ℓ) of MoV Fair Matching with ∆V ≤ 4, we
will construct an equivalent instance J = (H = (W, F ), L) of this polynomial-time solvable
special case of General Factor.

In the following, we give an overview of our construction. For every v ∈ V , we add
a subgraph Hv = (Wv, Fv) to H which contains all vertices from U adjacent to v in G

(NG(v) ⊆ Wv) but no other vertices from U . For the construction of Hv, we make extensive
case distinctions depending on NG(v) and ℓ. See Figure 2 for two examples. The construction
of Hv for all other cases are deferred to the appendix. The graph H is then the union of Hv
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u1

u2

u3

u4

v1 : {1}

v2 : {1}

v3 : {1}
v4 : {0, 1, 3}

(a) Hv for ℓ = 0 and N(v) has two vertices of color
α, one vertex of color β, and one vertex of color γ.

u1

u2

u3

u4

v1 : {1, 2}

v2 : {1, 2}

(b) Hv for ℓ = 1 and N(v) has two vertices of
color α and two vertices of color β.

Figure 2 Exemplary constructions of Hv.

for all v ∈ V ; notably, a vertex u from U may appear in multiple subgraphs Hv, in which
case we identify all occurrences of u and merge them into one vertex. Moreover, for each
u ∈ U , we set L(u) = {1}, which ensures that u is “matched” in every solution of J .

To show that I and J are equivalent, it suffices to show the following for every v ∈ V :

A vertex set S ⊆ NG(v) is ℓ-fair if and only if there is a spanning subgraph
H ′

v = (Wv, F ′
v) of Hv such that degH′

v
(u) = 1 for every u ∈ S, degH′

v
(u) = 0 for

every u ∈ N(v) \ S, and degH′
v
(v′) ∈ L(v′) for every v′ ∈ Wv \ U .

(⋆)

To see why (⋆) is sufficient, assume that (⋆) holds true. For the forward direction, suppose
that I is a yes-instance, i.e., there is a ℓ-fair left-perfect many-to-one matching M in G.
Then, M(v) ⊆ NG(v) is ℓ-fair for every v ∈ V . Hence, as we assume that (⋆) holds, we
have a subgraph H ′

v for every v ∈ V that satisfies the degree constraints of (⋆). Consider a
spanning subgraph H ′ whose edge set is the union of the edge set of H ′

v over all v. It is easy
to verify that H ′ constitutes a solution for J . For the converse direction, suppose that J
is a yes-instance, i.e., there is a spanning subgraph H ′ = (W, F ′) with deg(w) ∈ L(w) for
every w ∈ W . Then, the subgraph of H ′ induced by Wv satisfies all the degree constraints
of (⋆). For v ∈ V , let Sv ⊆ NG(v) be the set of vertices that have a neighbor in H ′[Wv]. By
(⋆), Sv is ℓ-fair. Moreover, since L(u) = {1} for every u ∈ U , every vertex appears in Sv for
exactly one vertex v ∈ V . It follows that a matching M with M(v) = Sv for every v ∈ V is
a ℓ-fair left-perfect many-to-one matching in I. We remark that we can adapt our algorithm
to handle the non-emptiness constraint. ◀

For Max-Min Fair Matching, we prove that fewer cases are polynomial-time solvable
than for MoV Fair Matching:

▶ Theorem 18 (⋆). Max-Min Fair Matching is polynomial-time solvable if ∆U ≤ 1, ∆V ≤
2, or (∆U , ∆V ) = (2, 3) (even with the non-emptiness constraint) and NP-hard otherwise.

6 Fair Matching on Complete Bipartite Graphs

A natural special case of Fair Matching is when the underlying graph is complete, i.e.,
each vertex in U can be assigned to any vertex in V . This special case is also among
the three problems introduced by Stoica et al. [24] (they called it Fair Regrouping_X).
Stoica et al. [24] presented a straightforward XP algorithm for MoV Fair Matching with
size constraints parameterized by |V | but left open the classical complexity. We partially
settle this open question by proving that MoV Fair Matching on complete bipartite
graphs is polynomial-time solvable even with the non-emptiness constraint. In fact, we find a
precise characterization of yes-instances, which turns out to be surprisingly simple. However,
it requires an intricate analysis to prove this, especially when the non-emptiness constraint
is present. To simplify notation, we assume that C = {c1, . . . , c|C|} and that |Uci

| ≥ |Uci+1 |
for each i ∈ [1, |C| − 1] and set |Uci | := 0 for i > |C|.



N. Boehmer and T. Koana 27:17

▶ Theorem 19 (⋆). A MoV Fair Matching instance I = (G = (U ∪· V, E), C, col, ℓ) with
G being a complete bipartite graph is a yes-instance if and only if |Uc1 | ≤ ℓk +

∑
i∈[k] |Uci+1 |.

With the non-emptiness constraint, I is a yes-instance if and only if it additionally satisfies:
ℓ > 0 and n ≥ k, or ℓ = 0 and n ≥ 2k.

▶ Theorem 20 (⋆). A Max-Min Fair Matching instance I = (G = (U ∪· V, E), C, col, ℓ)
with G being a complete bipartite graph is a yes-instance if and only if |Uc1 | ≤ ℓk + |Uc|C| |.
With the non-emptiness constraint, I is a yes-instance if and only if it additionally satisfies:
ℓ > 0 and n ≥ k, or ℓ = 0 and |Uc1 | ≥ k.

Theorems 19 and 20 imply that Max-Min/MoV Fair Matching on a complete bipartite
graph are solvable in linear time even with the non-emptiness constraint.

7 Conclusion

In this work, we have investigated the (parameterized) computational complexity of the Fair
Matching problem. Two concrete directions of open questions are:

We have provided algorithms that solve Fair Matching even if we require that every
vertex in the right side is matched to at least one vertex. Can we extend our algorithms
to handle arbitrary size constraints? In particular, does Fair Matching remain fixed-
parameter tractable with respect to k? We have shown in Section 3 that Fair Matching
is indeed FPT with respect to k + |C| even for arbitrary size constraints. However, it does
not seem straightforward to incorporate arbitrary size constraints in the ILPs given in
Section 4. The complexity of Fair Matching on complete bipartite graphs (Section 6)
is also open when arbitrary size constraints are present.
Is Fair Matching solvable in O⋆(2k) time? Note that the ILP presented in Section 4.1
(which solves Max-Min Fair Matching without the non-emptiness constraint) is an
ILP where the constraint matrix involves only zeros and ones when ℓ = 0. Can we exploit
such a structure in the constraint matrix to obtain a faster algorithm?

For future research, it would also be natural to study other variants of the Fair Matching
problem. For instance, we may relax the left-perfect constraint studied in this work and con-
sider a variant where the objective is to maximize the matching size under a fairness constraint.
One may also look into other fairness notions such as proportionality constraints [21].
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Abstract
We construct indistinguishability obfuscation (iO) solely under circular-security properties of encryp-
tion schemes based on the Learning with Errors (LWE) problem. Circular-security assumptions were
used before to construct (non-leveled) fully-homomorphic encryption (FHE), but our assumption
is stronger and requires circular randomness-leakage-resilience. In contrast with prior works, this
assumption can be conjectured to be post-quantum secure; yielding the first provably secure iO
construction that is (plausibly) post-quantum secure.

Our work follows the high-level outline of the recent work of Gay and Pass [STOC 2021], who
showed a way to remove the heuristic step from the homomorphic-encryption based iO approach of
Brakerski, Döttling, Garg, and Malavolta [EUROCRYPT 2020]. They thus obtain a construction
proved secure under circular security assumption of natural homomorphic encryption schemes –
specifically, they use homomorphic encryption schemes based on LWE and DCR, respectively. In this
work we show how to remove the DCR assumption and remain with a scheme based on the circular
security of LWE alone. Along the way we relax some of the requirements in the Gay-Pass blueprint
and thus obtain a scheme that is secure under a different assumption. Specifically, we do not require
security in the presence of a key-cycle, but rather only in the presence of a key-randomness cycle.

An additional contribution of our work is to point out a problem in one of the building blocks
used by many iO candidates, including all existing provable post-quantum candidates. Namely, in
the transformation from exponentially-efficient iO (XiO) from Lin, Pass, Seth and Telang [PKC 2016].
We show why their transformation inherently falls short of achieving the desired goal, and then
rectify this situation by showing that shallow XiO (i.e. one where the obfuscator is depth-bounded)
does translate to iO using LWE.
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1 Introduction

The goal of program obfuscation [4, 28] is to transform an arbitrary circuit Π into an
unintelligible but functionally equivalent circuit Π̃. The aforementioned works showed
that strong simulation-based notions of obfuscation were impossible for general purpose
functionalities. However, the seemingly weaker indistinguishability obfuscation (iO) was not
ruled out by prior work (and has in fact been shown to be the same as the best possible
notion of obfuscation [27]). In broad terms, iO requires that if two circuits Π0 and Π1
are two implementations of the same function, then their obfuscations are computationally
indistinguishable.

Garg et al. [19,21] presented the first candidate for general purpose iO, paving the way
for numerous other candidates based on a variety of mathematical structures. Although iO
appears to be a weak notion of security, it has been shown to be sufficient for numerous
cryptographic applications, including ones that were previously not known to exist under
other assumptions (see [6, 20,41] for examples). The first realizations of obfuscation relied
an a new algebraic object called multilinear maps [15,19,24], which had only recently been
constructed. Furthermore, the security of these objects relied on new (and poorly understood)
computational intractability assumptions, or more commonly on plain heuristics. In fact,
several attacks on multilinear map candidates [14,30] and on obfuscation constructions based
on multilinear maps [12, 39] were demonstrated. To defend against these attacks, several
safeguards have been (e.g., [5, 13, 17, 22, 38]) proposed. Even with these heuristic safeguards,
all but the schemes based on the Gentry et al. [24] multilinear maps are known to be broken
against quantum adversaries.

Towards the goal of avoiding heuristics and obtaining provably secure constructions,
substantial effort was made towards obtaining iO while minimizing (with the ultimate goal of
removing) the use of multilinear maps [3,33,34,36,37]. These efforts culminated in replacing
the use of multilinear maps with just bilinear maps [1, 2, 31], together with an additional
pseudorandom generators of constant locality over the integers with polynomial stretch. Very
recently this last limitation was removed by Jain, Lin and Sahai [32]. Specifically, they
obtained iO based on the combined (sub-exponential) hardness of the Learning with Errors
problem (LWE), a large-modulus variant of the Learning Parity with Noise problem (LPN),
the existence of a pseudorandom generator in NC0, and in addition the hardness of the
external Diffie-Hellman problem in bilinear groups (SXDH). We note that the use of the
pairings makes these construction insecure against quantum adversaries.

A different approach towards provably secure iO, which is more relevant to this work, was
presented by Brakerski et al. [9]. They showed an iO candidate that is based on combining
certain natural homomorphic encryption schemes. However, their construction was heuristic
in the sense that the security argument could only be presented in the random oracle model.
In a recent work, Gay and Pass [23] showed a way to remove the heuristic step and instead
rely on a concrete assumption. Their construction is proved secure under the circular security
of natural homomorphic encryption schemes – specifically, they use homomorphic encryption
schemes based on LWE and Decisional Composite Residuosity (DCR, also known as Paillier’s
assumption). In terms of assumptions, their construction assumes sub-exponential security
of (i) the Learning with Error (LWE) assumption, (ii) the Decisional Composite Residuosity
(DCR) assumption, and (iii) a new notion of security that they call “shielded randomness
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leakage” (SRL). The latter essentially requires that a fully homomorphic encryption scheme
(specifically the GSW encryption scheme [26]) remains secure even in the presence of a
key-cycle with the Damgård-Jurik encryption scheme [16]. Moreover, the notion of security
is not the standard semantic security, but rather a new notion of security with respect to
leakage of ciphertext randomness. We note that this construction is insecure against quantum
attackers because of the use of the Damgård-Jurik encryption scheme [16].1 In this work, we
ask:

Can we realize provably secure constructions of iO with (plausible) post-quantum
security?

1.1 Our results
We obtain a general purpose iO construction based solely on the circular security of LWE-based
encryption schemes. On a technical level, we achieve this by introducing a “packed” variant
of the dual-Regev LWE-based encryption scheme, and showing novel ways of manipulating
ciphertexts of this variant in conjunction with ciphertexts of an FHE scheme. This allows us
to remove the need for DCR-based encryption from the construction of [9, 23]. Furthermore,
our technique allows us to relax the SRL security property that is required, so that we no
longer need to require SRL security with respect to a key-cycle, but rather only with respect
to a key-randomness cycle. We put forth this potentially weaker assumption as an object for
further study.

More concretely, the circular security assumption made in [23], and thus also in this
work, is that a scheme (in particular a leveled FHE scheme) maintains this property even
in the presence of some leakage on the randomness of the ciphertext. In [23] it is shown
that standard GSW encryption [26] satisfies SRL security (under the LWE assumption),
and the additional assumption is therefore that SRL security is maintained in the presence
of a key-randomness cycle, connecting GSW to another encryption scheme. While this
assumption falls into the category of “circular security assumptions”, similarly to the ones
that underlie bootstrapping in FHE, the concrete assumption is quite different. While in
the FHE setting it was only assumed that (standard) CPA security is preserved given a key
cycle, here we assume that the stronger SRL property remains intact.

Let us now state our results somewhat more precisely.

▶ Theorem 1 (Informal). Assume the (sub-exponential) hardness of the LWE problem, and
the SRL security of GSW in the presence of a randomness-key cycle with a packed variant of
dual-Regev, then there exists indistinguishability obfuscation for all circuits.

We note that if we further assume that circular security also maintains post-quantum security,
then our assumption becomes post-quantum secure; yielding the first provably secure iO
construction that is post-quantum secure.

Shallow XiO. As an additional contribution, we identify a gap in the transformation of
“exponentially efficient iO” (XiO), a notion introduced by Lin, Pass, Seth and Telang [35]
that was used almost universally in prior work. We show that this transformation has an
inherent problem that does not allow to recover the result as stated. This gap affects most
known iO constructions and, in particular, all post-quantum provably secure candidates. We
rectify this situation by showing that a fairly simple technical modification (i.e. constraining

1 Concurrently, [23] updated their manuscript to also include a solution based on LWE. See Section 1.3
for additional discussion.
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the compiler to be shallow) allows us to recover the prior results. Along the way, we develop
a framework for analyzing composition of compressing encodings, which can be a useful
perspective for future research in this area.

1.2 Technical Overview
We now provide a technical outline of our construction and its properties.

Obfuscation via Homomorphic Encryption. The connection between (fully) homomorphic
encryption and obfuscation is fairly straightforward. Given a program Π to be obfuscated,
we can provide a ciphertext cΠ which encrypts Π under an FHE scheme. This will allow to
use homomorphism to derive cx = Enc(Π(x)) for all x. Now all that is needed is a way to
decrypt cx in a way that does not reveal any information on Π. Early works (e.g. [21] and
followups) attempted to use this approach and provide a “defective” version of the secret key
of the FHE scheme, but a different approach was suggested in [9].

Specifically, [9] considered a homomorphic evaluation that takes cΠ to cTT, an encryption
of the entire truth table of Π, i.e. to an encryption of a multi-bit value. By relying on
prior generic transformations [35], they showed that one can reduce the task of constructing
general-purpose obfuscation to the task of computing a “decryption” hint for cTT with the
following properties:

Succinctness: The size of the decryption hint must be sublinear in the size of the truth
table |TT|.
Simulatability: The decryption hint should not reveal any additional information besides
the truth table TT.

The reason why this is helpful is that some so-called “packed-encryption” schemes have the
property that a short ciphertext-dependent decryption hint suffices in order to decrypt the
ciphertext, in a way that does not seem to leak the secret key of the scheme itself. While
standard FHE schemes do not natively support packed encryption, it was shown in [8] that
it is possible to use the so-called key-switching technique to switch from an FHE scheme into
a packed-encryption scheme.

Alas, when instantiating the components of the [9] approach in its simplistic form
described above, the decryption hint leaks information that renders the scheme insecure. To
counter this issue, [9] proposed to inject another source of randomness: By adding freshly
sampled ciphertexts of the packed-encryption scheme (which in their case was instantiated
with the Damgård-Jurik scheme [16]) one can smudge the leakage of the decryption hint.
However the size of these fresh ciphertext would largely exceed the size of the truth table TT.
Therefore, [9] proposed to heuristically sample them from a random oracle, leveraging the
fact that the ciphertexts of [16] are dense, i.e. a uniformly sampled string lies in the support
of the encryption algorithm with all but negligible probability. This led to a candidate, but
without a proof of security.

A Provably Secure Scheme. In a recent work, Gay and Pass [23] observed that for the
purpose of constructing obfuscation, it suffices to consider schemes in the common random
string (CRS) model where, importantly, the size of the CRS can exceed the size of the truth
table. This allowed them to place the Damgård-Jurik ciphertexts in the CRS and therefore
avoid relying on random-oracle-like heuristics.

They propose a new method to prove the security of this approach: Leveraging the
structural property of the GSW scheme [26]. They showed that adding a GSW encryption
of 0 to the evaluated FHE ciphertext (before key-switching to Damgård-Jurik) allows one
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to program the FHE ciphertext in the security proof. To sample these GSW encryptions
of 0, they propose to draw the random coins r∗ again from the CRS and let the evaluator
recompute the correct ciphertext GSW.Enc(0; r∗).

Taken together, these new ideas allow them to prove their construction secure against the
shielded randomness leakage (SRL) security of the resulting FHE scheme. Loosely speaking,
SRL security requires that semantic security of an encryption scheme is retained in the
presence of an oracle that leaks the randomness rf of the homomorphic evaluation of the
function f over the challenge ciphertext. However the randomness rf is not revealed in plain
to the adversary, instead it is “shielded” by the random coins of a fresh GSW ciphertext
c = GSW.Enc(0; r∗). That is, the adversary is given (rf − r∗, c). In fact, the adversary can
obtain polynomially-many samples from this distribution, for any function f , conditioned on
the fact that the adversary knows the output of f(m∗), where m∗ is the hidden message.

To gain confidence in the veracity of the assumption, [23] show that the GSW encryption
scheme satisfies SRL security if the (plain) LWE assumption holds. However, their obfuscation
scheme requires one to publish a key cycle of GSW and Damgård-Jurik (i.e. an encryption of
the GSW secrey key under Damgård-Jurik and vice versa). Thus their final assumption is
that SRL security is retained in the presence of such a key cycle.

Obfuscation from Circular-Secure LWE. We wish to remove the need for the Damgård-
Jurik encryption scheme from the above construction paradigm. The major obstacle to
overcome consists in designing an LWE-based encryption scheme that simultaneously satisfies
three properties.

Linear Homomorphism: In order to key switch the GSW ciphertext into this form, the
scheme must satisfy some weak notion of homomorphism. Specifically, it must support
the homomorphic evaluation of linear functions.
Succinct Randomness: The scheme must allow us to encrypt a long message string with
a short randomness, that can then function as the decryption hint.
Dense Ciphertexts: A uniformly sampled string must lie in the support of the encryption
algorithm with all but negligible probability. This will allow us to parse the CRS as a
collection of ciphertexts.2

Unfortunately all natural lattice-based candidates seem to fail to satisfy all of these properties.
In particular, for all LWE-based schemes linear homomorphism seems to be at odds with dense
ciphertexts: To ensure that the noise accumulated during the homomorphic evaluation does
not impact the decryption correctness, one needs to ensure a gap between the noise bound and
the modulus. More concretely, ciphertext are typically of the form (a, a ·s+e+q/2·m) ∈ Zn+1

q

where e≪ q, which makes them inherently sparse.

Our Solution: A Packed Variant of Dual-Regev that is also Dense-Friendly. We show
that the above requirements can be relaxed. Our starting point is devising a “packed” version
of the dual-Regev encryption scheme [25]. This scheme will not have dense ciphertexts so
it does not fit the requirements from previous works. However, we will show how we can
define, for the same scheme, a family of ciphertexts which are both “almost dense” and can
inter-operate with the non-dense scheme, so as to allow to construct the obfuscator.

2 Note that for the purpose of constructing the obfuscator, one could make do with a common reference
string which can have an arbitrary distribution. However, the string needs to be parsed as a ciphertext
with respect to all public-keys. Requiring dense ciphertexts is a simple requirement that implies this
property.
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Let us start with our packed dual-Regev scheme. To pack a k-bit plaintext m ∈ {0, 1}k
in a dual-Regev ciphertext we construct the public key as a matrix A ∈ Zm×n

q , which is
statistically close to uniform but is sampled together with a trapdoor τ (whose role will
be explained below), and another uniformly sampled matrix B ∈ Zk×n

q . The encryption
algorithm computes a the ciphertext as

(A · r + e0,B · r + q/2 ·m + e)

where r←$ Znq is the encryption randomness and the vectors e0 and e are the encryption
noises, where the norm of both vectors is bounded by some B ≪ q. The property of the
trapdoor τ is that it allows to recover r from A · r + e0. The (semantic) security of the
scheme follows directly by definition of LWE. To decrypt, therefore, one can first use the
trapdoor τ to recover r from the first m elements of the ciphertext, and then recompute the
mask B · r and recover each individual bit by rounding to the closest multiple of q/2. Setting
the parameters appropriately, we can guarantee that the decryption is always successful. One
important property of this scheme is that the random coins r ∈ Znq are sufficient to recover
the entire message and furthermore the size of r is succinct (in particular independent of k).

In terms of homomorphism, the scheme is straightforwardly additively homomorphic.
Furthermore, it supports key switching from any scheme with almost-linear decryption as
per [8].3 In particular it is possible to take a (long) message encrypted under an FHE scheme
such as GSW and convert it to an encryption of the same message under packed dual-Regev,
using precomputed key-switching parameters.4

As explained above, this scheme does not have dense ciphertexts. At this point we make
two crucial observations that will allow us to bypass this hurdle.
(1) In order to construct the obfuscator using the [9] approach, dense ciphertexts only need

to enjoy a very limited form of homomorphism, they only need to support a single
addition with a non-dense ciphertext.

This is essentially because the obfuscator has the following outline. It starts by considering the
dense ciphertext from the CRS (or oracle in the case of the original [9]), and homomorphically
bootstraps it into a non-dense FHE ciphertext by evaluating the decryption circuit. Let
m be the (random) message that is induced by the process. Then, the FHE encryption of
m is processed in order to create a non-dense packed encryption of m ⊕ TT, where TT is
the truth table of the program to be obfuscated (or, more accurately, a chunk of this truth
table, partitioning into chunks is required in order to allow reusability of the keys). Then a
single homomorphic addition between the dense and non-dense ciphertext would imply a
packed encryption of the truth table. All of this can be performed by the evaluator of the
obfuscated program, so all that is needed is the decryption hint for this final ciphertext, that
would allow to recover TT.

We note importantly, that in prior approaches (including the [23] blueprint) the afore-
mentioned bootstrapping creates a key cycle, since a packed ciphertext is bootstrapped into
an FHE ciphertext, which is afterwards key-switched into a packed ciphertext. However, we
notice that it suffices to provide an encryption of the (succinct) randomness of the dense
ciphertext in order to apply bootstrapping, thus leading to a relaxed key-randomness circular
assumption. Interestingly, this observation is not very useful for actual dense ciphertexts
(since finding the randomness would require using the key), however, our relaxed notion of
density described below will allow to apply it and thus relax the circularity notion as well.

3 This is done using the by-now-standard technique of encrypting powers-of-two of the elements of the
secret key of the latter scheme, so that it is possible to evaluate any inner product homomorphically.

4 We note that the key switching parameters are quite long so it is required for our method that they are
reusable.
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(2) A notion of almost-everywhere density suffices. A ciphertext distribution is almost-
everywhere dense if it is dense except for a non-dense part whose length is independent
of k (the message length).

The reason that this is sufficient is that the non-dense part of the ciphertext, which we refer
to as the header, can be generated by the obfuscator and provided to the evaluator as a
part of the obfuscated program. Since the header is short, and in particular the message
length k can be selected to be much longer than the header, the effect on the length of the
obfuscated program will be minimal. As hinted above, since the obfuscator generates the
header, it in particular also samples the randomness for the final almost-everywhere dense
ciphertext. This means that the obfuscator can generate the bootstrapping parameters using
this randomness without requiring a key cycle.

Dense Encryption Mode. With these observations in mind we describe an alternative
encryption mode (DenseEnc) for the packed variant of dual-Regev where the bulk of the
ciphertext is dense. On input a message m ∈ {0, 1}k, the encryption algorithm in dense
mode computes the following ciphertext

(A · r + e0,B · r + q/2 ·m + u)

where r and e0 are sampled as before and u ←$ [−q/4,+q/4]k. For convenience, we are
going to split the ciphertexts into two blocks: The header h0 ∈ Zmq and the message carrier
(h1, . . . , hk) ∈ Zkq . Foremost, observe that the decryption algorithm as described before
still returns the correct message with probability 1, since it recovers the same r from h0.
Furthermore, note that (for a fixed header) all vectors (h1, . . . , hk) ∈ Zkq are in the support
of the encryption algorithm. Since k ≫ m, most of the elements of the ciphertext in the
alternative encryption mode are dense.

One can verify that the aforementioned limited form of homomorphism indeed holds,
namely that

dR.Enc(m) + dR.DenseEnc(m′) ∈ dR.DenseEnc(m⊕m′).

This is the case since

(A · r + e0,B · r + q/2 ·m + e) + (A · r′ + e′
0,B · r′ + q/2 ·m′ + u)

= (A · (r + r′) + e0 + e′
0,B · (r + r′) + q/2 · (m⊕m′) + e + u)

= (A · r̃ + ẽ0,B · r̃ + q/2 · (m⊕m′) + ũ)

where ũ = e + u ∈ [−q/4,+q/4]k with all but negligible probability over the random choice
of u, for an appropriate choice of the parameters.

Doing Away with the Header. We notice that given our two observations above, the
goal of the header in the obfuscation scheme is quite minimal. The header is not needed
for homomorphism, and is only needed for the purpose of extracting the randomness r at
decryption time. We then observe that decrypting packed ciphertext is done in two contexts
in the scheme. The first is when we bootstrap the almost-everywhere dense ciphertext into
an FHE ciphertext, and the other is when the evaluator of the obfuscated program recovers
TT from the final ciphertext. For the latter there is no need for a header since the decryption
hint, i.e. the respective r value, is provided within the obfuscated program. For the former
we do not need a header of a specific structure, but rather simply an encryption of r that
allows bootstrapping the almost-dense ciphertext. It therefore suffices to provide GSW.Enc(r)
directly, which makes the header completely redundant.
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On the Assumption. Equipped with the newly developed packed version of dual-Regev
we can follow the [9, 23] approach, with the aforementioned modifications, to construct the
obfuscator. The resulting construction can be shown secure against the assumption that the
SRL security of GSW is retained in the presence of a key cycle with the packed dual-Regev
encryption scheme as presented above.

We then observe that it suffices to assume SRL security with respect to key-randomness
cycles, rather than key cycles. We note that this assumption is no-stronger than key-cycle
SRL since given a key-cycle it is possible to homomorphically generate a key-randomness
cycle, but the converse is not known to be true.

Adding this to our observation about the redundancy of the header, the assumption we
require is that SRL security is retained in the presence of a key-randomness cycle between
GSW and packed dual-Regev, i.e.

(GSW.Enc(r), dR.Enc(skGSW; r)) .

Since dual-Regev is randomness recoverable, this assumption is syntactically weaker than
SRL security in the presence of a key-cycle: Given a GSW encryption of the dual-Regev
secret key, one can homomorphically compute the randomness recovery circuit to obtain a
GSW encryption of the randomness r.

1.3 Related and Follow-up Work
Subsequently to the posting of this manuscript online (but concurrently and independ-
ently) [23] updated their manuscript to include a solution based on LWE in the place of
DCR. They do not make the observations that a relaxed notion of density suffices (and is
preferable) and thus they explicitly construct an encryption scheme with dense ciphertexts
based on the (primal) Regev encryption scheme. The resulting scheme is more involved and
in particular requires the two-key circular SRL security of GSW and (primal) Regev rather
than the relaxed key-randomness circularity notion.

Wee and Wichs [42], again concurrently, presented another instantiation of the [9] approach
which is arguably post-quantum secure. They rely on an indistinguishability assumption
between two distributions and not directly on circular security. However, the underlying
machinery developed shares many similarities with our approach. Specifically, while we
essentially rely on randomness that is embedded in the CRS by interpreting it as an obliviously
sampled ciphertext (which thus corresponds to one encrypted with fresh randomness), their
approach is to use a pseudorandom function to transform the CRS into a randomizer for the
output hint.

A follow-up work by Hopkins, Jain, and Lin [29] shows counterexamples to SRL security
for general functions in the presence of a 2-key cycle, as stated in [23], and the conjecture
from [42]. We stress that their findings do not imply an attack against the corresponding
obfuscation scheme of [42] and [23] (as also pointed out by the authors in [29]). Rather, their
results show that the veracity of SRL security depends on the concrete circuit representation
of the functions under consideration. As a consequence of their findings, we updated the
statement of our assumption (and adapted the analysis of our scheme) with a refined version,
that further restricts the power of the adversary and more tightly characterize the security
of our construction. However, the iO construction is unchanged from previous versions of
this work.

A few remarks about the susceptibility of our scheme to the [29] attack are in order.
In short, the attack exploits the randomness homomorphism of GSW to compute a biased
leakage. The SRL function consists of a bootstrapping followed by a modular reduction
(modulo 2). On the other hand, our admissible class of leakage functions consists of linear
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functions (modulo q) followed by a rounding (i.e. outputting the most significant bit). We are
not aware of a method to establish the same correlations exploited by [29] without violating
the admissibility criteria for the leakage functions. Thus, we conjecture that SRL security
with respect to such leakage function holds for all natural FHE candidates (see Section 3.1
for further details).

2 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl is negligible if
it vanishes faster than any inverse polynomial. Given a set S, we denote by s ←$ S the
uniform sampling from S. We say that an algorithm is PPT if it can be implemented by a
probabilistic Turing machine M running in time poly(λ). The execution of a Turing machine
M on input x and with random coins fixed to r is denoted by M(x; r). We say that two
distributions (D0, D1) are computationally (statistically, resp.) indistinguishable if for all
PPT (unbounded, resp.) distinguishers, the probability to tell D0 an D1 apart is negligible.
Matrices are denoted by M and vectors are denoted by v. For convenience, we define Bit(·)
as the bit decomposition operation. We denote the infinity norm of a vector v by ∥v∥∞. We
recall the smudging lemma.

▶ Lemma 2 (Smudging). Let B1 = B1(λ) and B2 = B2(λ) be positive integers and let
e1 ∈ [−B1, B1] be a fixed integer. Let e2 ←$ [−B2, B2] chosen uniformly at random. Then the
distribution of e2 is statistically indistinguishable to that of e2+e1 as long as B1/B2 = negl(λ).

2.1 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO) from [4].

▶ Definition 3 (Indistinguishability Obfuscation). A PPT machine iO is an indistinguishability
obfuscator for a circuit class {Cλ}λ∈N if the following conditions are satisfied:
(Functionality) For all λ ∈ N, all circuit Π ∈ Cλ, all inputs x it holds that: Π̃(x) = Π(x),
where Π̃←$ iO(Π).
(Indistinguishability) For all λ ∈ N, all pairs of circuit (Π0,Π1) ∈ Cλ such that |Π0| = |Π1|
and Π0(x) = Π1(x) on all inputs x, it holds that the following distributions are computationally
indistinguishable: iO(Π0) ≈ iO(Π1).

Shallow XiO. In this work we construct a weaker version of iO called (shallow) XiO, which
however is sufficient (along with the LWE assumption) to construct fully-fledged iO. Loosely
speaking, a shallow XiO is a indistinguishability obfuscator (with pre-processing) for Plog/poly
with non-trivial efficiency. Here Plog/poly denotes the class of polynomial-size circuits with
inputs of length η = O(log(λ)) and by non-trivial efficiency we mean that the size of the
obfuscated circuit is bounded by poly(λ, |Π|) · 2η·(1−ε), for some constant ε > 0. The runtime
of the obfuscator can be any polynomial in λ, |Π|, and 2η, except that its depth should not
depend on 2η. Furthermore, we allow the obfuscator to access a large uniform random string
(the pre-processing) of size even larger than the truth table of the circuit. For a formal
statement, we refer the reader to the full version [10].
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2.2 The GSW Fully-Homomorphic Encryption
In the following we briefly recall the encryption scheme by Gentry, Sahai, and Waters [26]
(henceforth, GSW). We denote by n = n(λ) the lattice dimension and by q = q(λ) the
modulus (which we assume for simplicity to be even). Throughout the rest of this paper, we
set m = (n+ 1)(log(q) + 1) and d = d(λ) as a bound on the depth of the arithmetic circuit
to be evaluated.

KeyGen(1λ): Sample a uniform matrix A←$ Zn×m
q and a vector s←$ χn. Set the public

key to (A,b = sTA + eT ), where e←$ χm. The secret key is set to (−s, 1).
Enc(pk, m): On input a message m ∈ {0, 1}, sample a uniform R ←$ {0, 1}m×m and compute

C = (A,b) ·R + m ·G

where G = (1, 2, . . . , 2log(q)−1)T ⊗ I(n+1) and I(n+1) ∈ {0, 1}(n+1)×(n+1) denotes the
identity matrix.

Eval(pk, Π, (c1, . . . , cµ)): There exists a (deterministic) polynomial-time algorithm that
allows one to compute any d-bounded depth arithmetic circuit Π : {0, 1}n → {0, 1}
homomorphically over a vector of ciphertexts (c1, . . . , cµ). For details about this algorithm,
we refer the reader to [26]. For the purpose of this work, the only relevant information is
that the evaluated ciphertext cΠ ∈ Z(n+1)

q is an (n+ 1)-dimensional vector. For multiple
bits of output, the resulting ciphertext is defined to be the concatenation of the single-bit
ciphertexts.

Dec(sk, c): We assume without loss of generality that the input ciphertext c ∈ Z(n+1)
q is the

output of the evaluation algorithm. Such a ciphertext defines a linear function ℓc such
that

ℓc(sk) = q/2 ·m + e

where |e| ≤ B̂ = (m + 1)dmB. The message m is recovered by returning the most
significant bit of the output.

Note that the decryption routine of GSW consists of the application of a linear function,
followed by a rounding and we refer to this property as to almost-linear decryption. In a slight
abuse of notation, we sometimes write KeyGen(1λ; q) to denote the above key generation
algorithm with a fixed modulus q.

Alternate Encryption. For convenience we also define a modified encryption algorithm,
where the output ciphertexts consists of a single column vector. An additional difference is
that we sample the randomness with norm B̃ = 2λ · B̂.
ColEnc(pk, m): On input a message m, sample a uniform r←$ [−B̃,+B̃]m and compute

c = (A,b) · r + (0n, q/2) ·m.

This algorithm is going instrumental for our scheme, although ciphertexts in this form no
longer support the homomorphic evaluation of arbitrary circuits. The multi-bit version
of such an algorithm is defined accordingly to output the concatenation of independently
sampled ciphertexts. We now recall a useful Lemma from [23].
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▶ Lemma 4 (GSW Smudging). Let B̃ = 2λ · B̂. For all λ ∈ N, for all (sk, pk) in the support
of KeyGen(1λ), for all messages m = (m1, . . . ,mµ), for all depth-d circuit (Π1, . . . ,Πτ ), the
following distributions are statistically indistinguishable c1, . . . , cµ, r∗

1, . . . , r∗
τ ,

Eval(pk,Π1, (c1, . . . , cµ)) + ColEnc(pk, 0; r∗
1), . . . ,

Eval(pk,Πτ , (c1, . . . , cµ)) + ColEnc(pk, 0; r∗
τ )


≈

 c1, . . . , cµ, r∗
1 − RandEval(pk,Π1,m, (R1, . . . ,Rµ)), . . . ,

r∗
τ − RandEval(pk,Πτ ,m, (R1, . . . ,Rµ)),

ColEnc(pk,Π1(m1, . . . ,mµ); r∗
1), . . . ,ColEnc(pk,Πτ (m1, . . . ,mµ); r∗

τ )


where ci ←$ Enc(pk,mi; Ri), r∗

i ←$ [−B̃,+B̃]m, and Ri ←$ {0, 1}m×m.

Randomness Homomorphism. We recall a useful property of the GSW scheme, namely
that one can alternatively evaluate functions directly over the randomness of a ciphertext
to obtain the same result. More formally, we say that a homomorphic encryption scheme
(KeyGen,Enc,Eval,Dec) has randomness homomorphism for the circuit class {Cλ}λ∈N if there
exists an efficient algorithm RandEval such that for all Π ∈ Cλ, all (sk, pk) in the support of
KeyGen, all vectors of messages m = (m1, . . . ,mµ) and R = (R1, . . . ,Rµ), all ciphertexts
(c1, . . . , cµ) in the support of (Enc(pk,m1; R1), . . . ,Enc(pk,mµ; Rµ)) it holds that

Eval(pk,Π, (c1, . . . , cµ)) = ColEnc(pk,Π(m); RandEval(pk,Π,m,R)).

Circuit Privacy. It is well known that the GSW encryption scheme satisfies the following
notion of circuit privacy [7, 18,40] (with a randomized evaluation algorithm).

▶ Definition 5 (Circuit Privacy). For all λ ∈ N, all all Π ∈ Cλ, all (sk, pk) in the support
of KeyGen, and all messages m, it holds that the following distributions are statistically
indistinguishable

(pk,Enc(pk,Π(m))) ≈ (pk,Eval(pk,Π,Enc(pk,m); r)).

where r ←$ {0, 1}λ.

3 Packed Encryption from LWE

In the following we describe a packed version of the dual-Regev encryption scheme [25].
We denote by n = n(λ) the lattice dimension, by q = q(λ) the modulus (which we assume
for simplicity to be a power of 2), and by k = k(λ) the expansion factor. We require the
existence of a public-key encryption scheme (PKE.KeyGen,PKE.Enc,PKE.Dec).

KeyGen(1λ, 1k): Sample a uniform k × n matrix B ←$ Zk×n
q and a key pair of a public-

key encryption scheme (skPKE, pkPKE) ←$ PKE.KeyGen(1λ). The public key consists of
(B, pkPKE) and the secret key is set to skPKE.

Enc(pk, m): To encrypt a k-bit message m ∈ {0, 1}k, sample a uniform randomness vector
r←$ Znq a noise vector e←$ χk and return the ciphertext

c = (PKE.Enc(pkPKE, r),B · r + q/2 ·m + e) .

Dec(sk, c): Parse c as (cPKE, c1, . . . , ck) and recover the random coins by decrypting r =
PKE.Dec(skPKE, cPKE). Let bi be the i-th row of B. For i = 1 . . . k, compute mi =
Round(ci − bi · r), where Round rounds to the nearest multiple of q/2, i.e. it returns 1 if
the input is closer to q/2 and 0 otherwise. Output m = (m1, . . . ,mk).
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Clearly, the scheme is perfectly correct since

(Round(c1 − b1 · r), . . . ,Round(ck − bk · r))
= (Round(q/2 ·m1 + e1), . . . ,Round(q/2 ·mk + ek))
= (Round(q/2 ·m1), . . . ,Round(q/2 ·mk))
= (m1, . . . ,mk)
= m.

Extended Encryption. It is not hard to see that the scheme presented above is (bounded)
additively homomorphic over Zk2 . To lift the class of computable functions to all linear
functions over Zkq , we adopt the standard trick of encrypting the message multiplied by
all powers of two (1, 2, . . . , 2log(q)). For convenience, we define the following augmented
encryption algorithm.
ExtEnc(pk, m): On input an ℓ-dimensional message m ∈ Zℓq, let g = (1, 2, . . . , 2log(q)−1)T

and define

M =


m1 · g m2 · g . . . 0log(q)

0log(q) 0log(q) . . . 0log(q)

...
...

. . .
...

0log(q) 0log(q) . . . mℓ · g

 ∈ Zk×ℓ·k·log(q)
q .

Sample a uniform randomness matrix R ←$ Zn×ℓ·k·log(q)
q and a uniform noise matrix

E←$ χk×ℓ·k·log(q). Compute

C = B ·R + M + E

and return the ciphertext (PKE.Enc(pkPKE,R),C).
Decryption works, as before, by recovering R from the public-key encryption scheme and
then decrypting m component-wise.

Almost-Everywhere Dense Encryption. For convenience, we also define an alternative
encryption algorithm in the following. Note that the encryption algorithm does not take as
input any message, instead it encrypts a uniform k-bit binary vector. Syntactically, this is
the equivalent of a key-encapsulation mechanism.

DenseEnc(pk): Sample a uniform randomness vector r←$ Znq and return the ciphertext

c = (cPKE, c1, . . . , ck) = (PKE.Enc(pkPKE, r),B · r + u) .

where u←$ Zkq .
We highlight two facts about this algorithm that are going to be important for our later
construction: (i) The decryption algorithm works for both Enc and DenseEnc algorithms,
where the plaintext of DenseEnc corresponds to (Round(u1), . . . ,Round(uk)). In fact, the
scheme satisfies perfect correctness in both cases. (ii) The domain of the elements (c1, . . . , ck)
is dense, i.e. the support of the scheme spans the entire vector space Zkq . Since the element
cPKE is small (i.e. independent of k) for an appropriate choice of the public-key encryption
scheme, we refer to such a property as almost-everywhere density.
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Semantic Security. We argue that the scheme satisfies a strong form of semantic security,
i.e. the honestly computed ciphertexts are computationally indistinguishable from uniform
vectors in Zkq . Semantic security for the extended encryption ExtEnc and the dense encryption
DenseEnc follows along the same lines.

▶ Theorem 6 (Semantic Security). If (PKE.KeyGen,PKE.Enc,PKE.Dec) is semantically secure
and the LWE assumption holds, then for all λ ∈ N and all messages m it holds that the
following distributions are computationally indistinguishable

(pk,Enc(pk,m)) ≈ (pk,PKE.Enc(pkPKE, z),u).

where (sk, pk)←$ KeyGen(1λ, 1k), z←$ Znq , and u←$ Zkq .

Proof. The security of the scheme follows routinely by an invocation of semantic security of
the public-key encryption scheme and an invocation of the LWE assumption. ◀

3.1 Key-Randomness SRL Security
We state a version of SRL security [23] tailored for our specific instance and adapted to the
randomness-key circularity assumption (rather than the 2-key circularity, as stated in [23]).

▶ Definition 7 (Key-Randomness SRL Security). Let (GSW.KeyGen,GSW.Enc,GSW.Eval,
GSW.Dec) be the GSW encryption scheme and (dR.KeyGen, dR.Enc, dR.Eval, dR.Dec) be the
packed dual-Regev encryption scheme. Fix messages (m0,m1), polynomials τ = τ(λ) and
k = k(λ) and an adversary A = (A1,A2). Consider the following experiment.
Exp(b)

SRL(A):
Sample (s̄k, (p̄k,B))←$ dR.KeyGen(1λ, 1k) and (sk, pk)←$ GSW.KeyGen(1λ)
Compute c←$ GSW.Enc(pk,mb)
{Pi,pi}i=1...τ = A1(pk,B, c)
Compute

(
c̄sk, C̄sk

)
= dR.ExtEnc(p̄k, sk; S) and cS ←$ GSW.Enc(pk,S; RS)

For all i = 1 . . . τ :
Sample C∗

i = ColEnc(0; r∗
i ) where r∗

i ←$ [−B̃,+B̃]m·k

Sample ti ←$ Znq
Sample ci,r = GSW.Enc(pk,S · Bit(ℓi) + ti; Ri)←$ GSW.Eval(pk, ·Bit(ℓi) + ti, cS)

Output A2(C̄sk, {ci,r,C∗
i ,ui, ti, rψ,i − r∗

i }i=1...τ )
Here, letting ℓi be the linear function associated with C∗

i + Pi + q/2 · vi, we set

rψ,i = RandEval(pk, ψi,S · Bit(ℓi) + ti,Ri) and
ψi(Z) = Round

(
B · ti + q/2 · pi + wi − C̄sk · Bit(ℓi)−B · Z

)
where wi ←$ [−q/4, q/4]k, vi ←$ {0, 1}k, and ui = wi + q/2 · vi, for all i = 1 . . . τ . We say
that an adversary A is admissible if for all i = 1 . . . τ it holds that Pi ∈ GSW.Enc(pk,pi).
The KR-SRL assumption conjectures that it holds for all admissible PPT adversaries A, all
messages (m0,m1) and all polynomials τ = τ(λ) and k = k(λ) that

|Pr[Exp(1)
SRL(A) = 1]− Pr[Exp(0)

SRL(A) = 1]| ≤ negl(λ).

Since the SRL leakage depends on the specific circuit representation of the functions
(ψ1 . . . ψτ ), we propose a natural implementation for a class of functions that suffices to
capture all possible leakage functions. Specifically, observe that ψi consist of a linear function
(computed over Zq) followed by a rounding to the nearest multiple of q/2. Since all inputs are
bit-wise encrypted the computation of modular additions (and multiplication by constants)
is done via a canonical boolean circuit (see [11] for a concrete example) and the rounding is
obtained by simply returning the ciphertext containing the most significant bit of the output.
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4 Constructing (Shallow) XiO

In the following we present the construction of shallow XiO from the GSW scheme
(GSW.KeyGen,GSW.Enc,GSW.Eval,GSW.Dec) and the packed version of the dual-Regev
encryption (dR.KeyGen, dR.Enc, dR.Eval, dR.Dec) as described in Section 3.

4.1 Construction
The scheme assumes a long uniform string that is, for convenience, split in two chunks:

A sequence of randomization vectors (r∗
1, . . . , r∗

2η−log(k)) for the GSW scheme GSW.PubCoin,
where each r∗

i = (r∗
i,1, . . . , r∗

i,k) ∈ [−B̃,+B̃]m·k.
A sequence of dense ciphertexts (h1, . . . , h2η−log(k)) for packed dual-Regev scheme
dR.PubCoin, where each hi = (hi,1, . . . , hi,k) ∈ Zkq .

On input the security parameter 1λ and the circuit Π : {0, 1}η → {0, 1}, the obfuscator
proceeds as follows.
Setting the Public Keys: Sample a dual-Regev key pair (s̄k, p̄k)←$ dR.KeyGen(1λ, 1k) and

GSW key pair (sk, pk) ←$ GSW.KeyGen(1λ; q), where q is the modulus defined by the
dual-Regev scheme. Compute a bit-by-bit GSW encryption cΠ ←$ GSWEnc(pk,Π) of the
binary representation of the circuit Π.

Compute a Key Encryption: Compute a dual-Regev extended encryption of the GSW secret
key

(
c̄sk, C̄sk

)
= dR.ExtEnc(p̄k, sk; S). where sk ∈ Zn+1

q and S←$ Zn×log(q)·k·(n+1)
q .

Decryption Hints: For all indices i ∈ {0, 1}η−log(k), do the following.
Evaluate the Circuit: Let Φi,j : {0, 1}|Π| → {0, 1} be the universal circuit that, on input

a circuit description Π, returns the j-th bit of the i-th block (where each block consists
of k bits) of the corresponding truth table. Compute

Ci =

GSW.Eval(pk,Φi,1, cΠ)
. . .

GSW.Eval(pk,Φi,k, cΠ)

 ∈ Zk×(n+1)
q .

Compute the Low-Order Bits: Sample ri ←$ Znq and compute ci,r ←$ GSW.Enc(pk, ri).
Parse the i-th block of dR.PubCoin as

(hi,1, . . . , hi,k) = B · ri + (ui,1, . . . , ui,k) ∈ Zkq

for some (ui,1, . . . , ui,k) ∈ Zkq . Let Ψi,j : {0, 1}λ → {0, 1} be the circuit that, on
input ri, computes the decryption of the j-th bit encrypted in (hi,1, . . . , hi,k). I.e. it
computes Round((hi,1, . . . , hi,k) −B · ri). Compute homomorphically the matrix of
ciphertexts

Ci,Round =

GSW.Eval(pk,Ψi,1, ci,r)
. . .

GSW.Eval(pk,Ψi,k, ci,r)

 ∈ Zk×(n+1)
q .

Rerandomize the Ciphertext: Parse the i-th block of GSW.PubCoin as (r∗
i,1, . . . , r∗

i,k) ∈
[−B̃,+B̃]m·k and compute

C′
i,Round = Ci,Round +

GSW.ColEnc(pk, 0; r∗
i,1)

. . .

GSW.ColEnc(pk, 0; r∗
i,k)

 ∈ Zk×(n+1)
q .
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Proxy Re-Encrypt: Define Di as the vector of GSW ciphertexts resulting from the
homomorphic sum of C′

i,Round and Ci, i.e. Di = C′
i,Round + Ci. Observe that Di

consists of k GSW ciphertexts and let ℓi,j ∈ Z(n+1)
q be the linear function associated

with the decryption of the j-th ciphertext. Define ℓi = (ℓi,1, . . . , ℓi,k) and compute

c̄i = C̄sk · Bit(ℓi) + (hi,1, . . . , hi,k) ∈ Zkq

where the function Bit : Zk·(n+1)
q → {0, 1}log(q)·k·(n+1) is the bit decomposition operator.

Release Hint: Compute the i-th decryption hint as

ρi = S · Bit(ℓi) + ri ∈ Znq .

Output: The obfuscated circuit consists of the public keys (pk, p̄k), the matrix C̄sk, the
GSW encryption of the circuit cΠ, the encryption headers (c1,r, . . . , c2η−log(k),r), and the
decryption hints (ρ1, . . . ,ρ2η−log(k)).

To evaluate the obfuscated circuit on input x, let i be the index of the block of the truth
table of Π that contains Π(x). The evaluator computes c̄i as specified above (note that
all the operations are public, given the information included in the obfuscated circuit) and
recovers Π(i) (the i-th block of the truth table of Π) by computing

Π(i) = Round(c̄i −B · ρi)

where Round : Zkq → {0, 1}k rounds the input to the nearest multiple of q/2.

Correctness. To see why the evaluation algorithm is correct, recall that

c̄i = C̄sk · Bit(ℓi) + (hi,1, . . . , hi,k).

First observe that (ri, hi,1, . . . , hi,k) define a ciphertext in the support of the algorithm
dR.DenseEnc(p̄k), which we rewrite as

dR.DenseEnc(p̄k) = (PKE.Enc(pkPKE, ri),B · ri + (ui,1, . . . , ui,k))
= (PKE.Enc(pkPKE, ri),B · ri + ui) .

Thus C′
i,Round and Ci are in the support ofGSW.ColEnc(pk,Round(u1))

. . .

GSW.ColEnc(pk,Round(uk))

 and

GSW.ColEnc(pk,Π(i)
1 )

. . .

GSW.ColEnc(pk,Π(i)
k )


respectively, by the evaluation correctness of the GSW scheme and by Lemma 2. Furthermore,
recall that Di = C′

i,Round + Ci. By an invocation of Lemma 2, we have that Di is in the
support ofGSW.ColEnc(pk,Round(u1))

. . .

GSW.ColEnc(pk,Round(uk))

 +

GSW.ColEnc(pk,Π(i)
1 )

. . .

GSW.ColEnc(pk,Π(i)
k )


≈

GSW.ColEnc(pk,Round(u1)⊕Π(i)
1 )

. . .

GSW.ColEnc(pk,Round(uk)⊕Π(i)
k )
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with all but negligible probability. By the almost-linear decryption of GSW, it follows that

C̄sk · Bit(ℓi) = B · s̃i + ξi + ζi + q/2 ·
(

Round(u1)⊕Π(i)
1 , . . . ,Round(uk)⊕Π(i)

k

)
where ξi is the decryption noise of the packed dual-Regev scheme (i.e. the subset sum of
the noise terms of C̄sk) and ζi is the decryption noise of the GSW ciphertext. It follows
that ∥ξi∥∞ ≤ B · log(q) · k · (n + 1) and, by Lemma 2, ∥ζi∥∞ ≤ B̃ with all but negligible
probability. Note that, by linearity we have that s̃i = S · Bit(ℓi). Consequently, it holds that

c̄i = B · s̃i + ξi + ζi + q/2 ·
(

Round(u1)⊕Π(i)
1 , . . . ,Round(uk)⊕Π(i)

k

)
+ B · ri + ui

= B · (s̃i + ri) + ξi + ζi + q/2 ·
(

Round(u1)⊕Π(i)
1 , . . . ,Round(uk)⊕Π(i)

k

)
+ ui

= B · (s̃i + ri) + q/2 ·Π(i) + vi
= B · ρi + q/2 ·Π(i) + vi

where vi = ui + q/2 ·Round(ui) + ξi + ζi and ∥vi∥∞ < q/4 with all but negligible probability,
over the random choice of ui. This is because Di is statistically close to a fresh GSW
encryption of (Round(u1), . . . ,Round(uk))⊕Π(i), by Lemma 4. Therefore we have that

Round (ci −B · ρi) = Round
(

B · ρi + q/2 ·Π(i) + vi −B · ρi
)

= Round
(
q/2 ·Π(i) + vi

)
= Round

(
q/2 ·Π(i)

)
= Π(i)

with the same probability. Due to space constraints, we defer the analysis of our scheme to
the full version [10].
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1 Introduction

Integer programming is a problem of fundamental importance in combinatorial optimization
with many theoretical and practical applications. It is known to be computationally very
hard and is one of the 21 NP-complete problems in the original paper on NP-completeness by
Karp [34]; the problem is known to be NP-complete even when the entries of the constraint
matrix are zero and one only. On the positive side, Kannan and Lenstra [32,41] showed that
integer programming is polynomially solvable in fixed dimension, i.e., with a fixed number of
variables. Another prominent tractable case is when the constraint matrix is unimodular,
i.e., all determinants of its submatrices are equal to 0 or ±1, in which case all vertices of the
feasible region are integral and so linear programming algorithms can be applied.

Integer programming is known to be tractable for instances where the constraint matrix
of an input integer program (IP) enjoys a certain block structure. The two most important
cases are the cases of 2-stage IPs due to Hemmecke and Schultz [23], further investigated
in particular in [1, 12,27,36, 37,40], and n-fold IPs introduced by De Loera et al. [13] and
further investigated in particular in [10,11,16,22,31,40]. IPs of this kind appear in various
contexts, see e.g. [29,38,39,44]. These (theoretical) tractability results complement well a vast
number of empirical results demonstrating tractability of instances with a block structure,
e.g. [2–4,18,19,35,45–47].

A more general approach to tractability of IPs with sparse constraint matrices involves
depths/widths of graphs defined on columns or rows of the constraint matrices. Ganian and
Ordyniak [20] initiated this line of study by showing that IPs with bounded primal tree-depth
tdP (A) of a constraint matrix A and bounded coefficients and right hand sides ∥A, b∥∞ can
be solved efficiently. Levin, Onn and the second author [40] widely generalized this result by
showing that IPs with bounded coefficients ∥A∥∞ and bounded primal tree-depth tdP (A) or
dual tree-depth tdD(A) of the constraint matrix A can be solved efficiently; such IPs include
2-stage IPs, n-fold IPs, and their generalizations. The existence of efficient algorithms in the
case of constraint matrices A with bounded primal and dual tree-depth is closely linked to
bounds on the norm of elements of the Graver basis of A, which is formed by minimal integer
vectors of kerA in an orthant (see Section 2 for the rigorous definition). The maximum
ℓ1-norm and ℓ∞-norm of an element of the Graver basis of A is denoted by g1(A) and g∞(A),
respectively. In particular, the following holds [40], where ec(A) denotes the entry complexity
of a matrix A defined as the maximum number of bits needed to represent any of the entries
of A.

▶ Theorem 1. There exist functions fP , fD : N2 → N such that the following holds for every
matrix A: g∞(A) ≤ fP (tdP (A), ec(A)) and g1(A) ≤ fD(tdD(A), ec(A)).
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Most of the existing algorithms for IPs assume that the input matrix is already given in
its sparse form. This is a substantial drawback as existing algorithms cannot be applied to
instances that are not sparse but can be transformed to a sparse instance, for example, the
matrix in the left, whose dual tree-depth is 5, can be transformed by row operations to the
matrix with dual tree-depth 2 given in the right.

2 2 1 2 1 3 1
2 1 1 1 2 1 1
2 2 2 2 2 2 1
2 1 1 2 2 1 1
2 2 1 2 1 3 2

 →


2 1 0 1 1 2 1
0 1 1 0 0 1 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 0 1


Such a transformation of an input matrix is a preconditioner as it changes an input matrix
to an equivalent one that is computationally more tractable.

Preconditioning a matrix to make the problem computationally simpler, e.g., to make
the feasible region not too flat in any direction, is a ubiquitous preprocessing step in
mathematical programming solvers. In this paper, we are concerned with the existence and
efficient computability of preconditioners to sparsity of matrices. Chan and Cooper together
with the second, third and fourth authors [7,8] gave a structural characterization of matrices
that are equivalent, i.e., can be transformed by row operations, to a matrix with small dual
tree-depth, and used their structural results to design a fixed parameter algorithm to find
such a matrix if it exists; we denote the smallest dual tree-depth of a matrix equivalent to A
by td∗

D(A).

▶ Theorem 2. There exists an algorithm parameterized by d and e that for an input matrix
A with entry complexity e

either outputs that td∗
D(A) > d, or

outputs a matrix A′ equivalent to A such that the dual tree-depth of A′ is td∗
D(A) and its

entry complexity is O(d222de).

The structural characterization given in [7, 8] exhibits an interesting link to matroid
theory: an equivalent matrix with small dual tree-depth exists if and only if the column
matroid of the matrix, which is invariant under row operations, has small contraction∗-depth
(see Theorem 3 below). We remark that the term branch-depth was used in [7, 8] following
the terminology from [33] but as there is a competing notion of branch-depth [14], we decided
to use a different name for this notion throughout the paper to avoid confusion.

In this paper, we provide a structural characterization of matrices that are equivalent
to a matrix with small primal tree-depth or small incidence tree-depth (Theorems 4 and 5).
We also study corresponding preconditioners and design fixed parameter algorithms for
constructing an equivalent matrix with small primal tree-depth and small entry complexity
and for constructing an equivalent matrix with small dual tree-depth and small entry
complexity, if such a matrix exists (Theorems 7 and 8). Finally, we employ our structural
results to resolve an open problem whether integer programming is fixed-parameter tractable
parameterized by the largest ℓ1-norm of the Graver basis element of a matrix A. Additionally,
we show that the ℓ1-norm of each element of the Graver basis of a matrix A is bounded by a
function of the largest ℓ1-norm of a circuit of the matrix A (Theorem 6). All these results
are stated more precisely in Subsection 1.1.

The existence of appropriate preconditioners that we establish in this paper implies that
integer programming is fixed parameter tractable when parameterized by

g1(A), i.e., the ℓ1-norm of the Graver basis of the constraint matrix,
c1(A), i.e., the ℓ1-norm of the circuits of the constraint matrix,
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td∗
P (A) and ec(A), i.e., the smallest primal tree-depth and entry complexity of a matrix

equivalent to the constraint matrix, and
td∗

D(A) and ec(A), i.e., the smallest dual tree-depth and entry complexity of a matrix
equivalent to the constraint matrix.

We believe that our new tractability results significantly enhance the toolbox of tractable
IPs as the nature of our tractability conditions substantially differ from prevalent block-
structured sparsity-based tractability conditions. The importance of availability of various
forms of tractable IPs can be witnessed by n-fold IPs, which were shown fixed-parameter
tractable in [22], and, about a decade later, their applications has become ubiquitous, see
e.g. [5, 6, 9, 10,24,28,30,39].

1.1 Our contribution
We now describe the results presented in this paper in detail; we refer the reader for the
definitions of the notions not yet rigorously introduced to Section 2.

1.1.1 Characterization of depth parameters
The main structural result of [7,8] is the following structural characterization of the existence
of an equivalent matrix with small dual tree-depth in terms of the structural parameter of
the column matroid, which is invariant under row operations.

▶ Theorem 3. For every non-zero matrix A, it holds that the smallest dual tree-depth of a
matrix equivalent to A is equal to the contraction∗-depth of M(A), i.e., td∗

D(A) = c*d(A).

We discover structural characterizations of the existence of an equivalent matrix with
small primal tree-depth and the existence of an equivalent matrix with small incidence
tree-depth.

▶ Theorem 4. For every matrix A, it holds that the smallest primal tree-depth of a matrix
equivalent to A is equal to the deletion-depth of M(A), i.e., td∗

P (A) = dd(A).

▶ Theorem 5. For every matrix A, it holds that the smallest incidence tree-depth of a
matrix equivalent to A is equal to contraction∗-deletion-depth of M(A) increased by one, i.e.,
td∗

I(A) = c*dd(A) + 1.

1.1.2 Interplay of circuit and Graver basis complexity
As mentioned earlier, Graver bases play an essential role in designing efficient algorithms
for integer programming. A circuit of a matrix A is a support-wise minimal integral vector
contained in the kernel of A such that all its entries are coprime. Hence, every circuit of a
matrix A is an element of the Graver basis of A and so the maximum ℓ1-norm of an element
of the Graver basis, which is denoted by g1(A), is an upper bound on the maximum ℓ1-norm
of a circuit of A, which is denoted by c1(A).

One of the open problems in the area, e.g. discussed during the Dagstuhl workshop 19041
“New Horizons in Parameterized Complexity”, has been whether integer programming is
fixed parameter tractable when parameterized by g1(A), the ℓ1-norm of an element of the
Graver basis of the constraint matrix A. An affirmative answer to this question follows from
Theorems 6 and 8 below. We actually show that the maximum ℓ1-norm g1(A) of an element
of the Graver basis of a matrix A is small if and only if A is equivalent to a matrix with a
small dual tree-depth and small entry complexity; the implication from left to right is given



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:5

in Theorem 1 and the other implication in Theorem 12 (recall that c1(A) ≤ g1(A) for every
matrix). We summarize the relation between the the maximum ℓ1-norm of a circuit of a
matrix A, the maximum ℓ1-norm of an element of the Graver basis of A, and the existence
of an equivalent matrix with small dual tree-depth and small entry complexity in the next
theorem (the second part of the theorem is given in Corollary 13).

▶ Theorem 6. There exist a function f1 : N → N such that the following holds for every
matrix A with dim kerA > 0:

the matrix A is equivalent to a matrix A′ with tdD(A′) ≤ c1(A)2 and ec(A′) ≤ 2⌈c1(A)⌉,
and
c1(A) ≤ g1(A) ≤ f1(c1(A)).

Hence, informally speaking, the following statements are equivalent for every matrix A:
The matrix A is equivalent to a matrix with bounded dual tree-depth and bounded entry
complexity.
The contraction∗-depth of the matroid M(A) is bounded.
The ℓ1-norm of every circuit of A is bounded.
The ℓ1-norm of every element of the Graver basis of A is bounded.

1.1.3 Algorithms to compute matrices with small depth parameters
We design a parameterized algorithm for computing an equivalent matrix with small primal
tree-depth and small entry complexity if one exists.

▶ Theorem 7. There exists a function f : N2 → N and an FPT algorithm for the para-
meterization by d and e that, for a given rational matrix A with m rows and n columns,
m ≤ n:

either outputs that A is not equivalent to a matrix with primal tree-depth at most d and
entry complexity at most e, or
outputs a matrix A′ that is equivalent to A, its primal tree-depth is at most d and entry
complexity is at most f(d, e).

We also design a parameterized algorithm for computing an equivalent matrix with small
dual tree-depth and small entry complexity if one exists. Note that the algorithm described
in Theorem 2 for computing an equivalent matrix with small dual tree-depth is parameterized
by the dual tree-depth of the to be constructed matrix and the entry complexity of the input
matrix while the algorithm given below is parameterized by the entry complexity of the to
be constructed matrix and so the algorithm can be applied to a wider set of input matrices.

▶ Theorem 8. There exists a function f : N2 → N and an FPT algorithm for the parameter-
ization by d and e that, for a given rational matrix A:

either outputs that A is not equivalent to a matrix with dual tree-depth at most d and
entry complexity at most e, or
outputs a matrix A′ that is equivalent to A, its dual tree-depth is at most d and entry
complexity is at most f(d, e).

We remark that if a matrix A has entry complexity e and is equivalent to a matrix with
dual tree-depth d, then there exists an equivalent matrix with dual tree-depth d and entry
complexity bounded by a function of d and e (as implied by Theorem 2). However, the same
is not true in the case of primal tree-depth. The entry complexity of every matrix with
primal tree-depth equal to one that is equivalent to the following matrix A is linear in the
number of rows of A, quite in a contrast to the case of dual tree-depth.
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1 2 0 0 · · · 0 0 0 0
0 1 2 0 · · · 0 0 0 0
0 0 1 2 · · · 0 0 0 0
...

...
. . . . . .

...
...

...
...

. . . . . .
...

...
0 0 0 0 · · · 1 2 0 0
0 0 0 0 · · · 0 1 2 0
0 0 0 0 · · · 0 0 1 2


1.1.4 Hardness results
As our algorithmic results involve computing depth decompositions of matroids for various
depth parameters in a parameterized way, we establish the computational hardness of these
parameters in Theorem 18, primarily for the sake of completeness of our exposition. In
particular, computing the following matroid parameters is NP-complete:

deletion-depth,
contraction-depth,
contraction-deletion-depth,
contraction∗-depth, and
contraction∗-deletion-depth.

2 Preliminaries

In this section, we fix the notation used throughout the paper. We start with general notation
and we then fix the notation related to graphs, matrices and matroids.

The set of all positive integers is denoted by N and the set of the first k positive integers
by [k]. If A is a linear space, we write dimA for its dimension and if B is a set of vectors, we
write L (B) for the linear hull of the vectors contained in B. If A is a linear space and K is
a subspace of A, the quotient space A/K is the linear space of the dimension dimA− dimK

that consists of cosets of A given by K with the natural operations of addition and scalar
multiplication; see e.g. [21] for further details. The quotient space A/K can be associated
with a linear subspace of A of dimension dimA− dimK formed by exactly a single vector
from each coset of A given by K; we will often view the quotient space as such a subspace of
A and write w +K for the coset containing a vector w.

2.1 Graphs
All graphs considered in this paper are loopless simple graphs unless stated otherwise. If G is
a graph, then we write V (G) and E(G) for the vertex set and the edge set of G, respectively;
the number of vertices and edges of G is denoted by |G| and ∥G∥, respectively. If W is a
subset of vertices of a graph G, then G \W is the graph obtained by removing the vertices
of W (and all edges incident with them). If F is a subset of edges of a graph G, then G \ F
is the graph obtained by removing the edges contained in F and G/F is the graph obtained
by contracting all edges contained in F and removing resulting loops and parallel edges.

We next define the graph parameter tree-depth, which is the central graph parameter
in this paper. The height of a rooted tree is the maximum number of vertices on a path
from the root to a leaf, and the height of a rooted forest, i.e., a graph whose each component
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is a rooted tree, is the maximum height of its components. The depth of a rooted tree is
the maximum number of edges on a path from the root to a leaf, and the depth of a rooted
forest is the maximum depth of its components. The closure cl(F ) of a rooted forest F is
the graph obtained by adding edges from each vertex to all its descendants. Finally, the
tree-depth td(G) of a graph G is the minimum height of a rooted forest F such that the
closure cl(F ) of the rooted forest F contains G as a subgraph.

2.2 Matroids
We next review basic definitions from matroid theory; for detailed information, we refer to
the book of Oxley [42]. A matroid M is a pair (X, I), where I is a non-empty hereditary
collection of subsets of X that satisfies the augmentation axiom, i.e., if X ′ ∈ I, X ′′ ∈ I and
|X ′| < |X ′′|, then there exists an element x ∈ X ′′ \X ′ such that X ′ ∪ {x} ∈ I. The set X is
the ground set of M and the sets contained in I are referred to as independent. The rank
of a subset X ′ of the ground set X, which is denoted by rM (X ′) or simply by r(X ′) if M
is clear from the context, is the maximum size of an independent subset of X ′ (it can be
shown that all maximal independent subsets of X ′ have the same cardinality); the rank of
the matroid M , which is denoted by r(M), is the rank of its ground set. A basis of a matroid
M is a maximal independent subset of the ground set of M and a circuit is a minimal subset
of the ground set of M that is not independent. In particular, if X ′ is a circuit of M , then
r(X ′) = |X ′| − 1 and every proper subset of X ′ is independent. An element x of a matroid
M is a loop if r({x}) = 0, an element x is a bridge if it is contained in every basis of M , and
two elements x and x′ are parallel if r({x}) = r({x′}) = r({x, x′}) = 1. If M is a matroid
with ground set X, the dual matroid, which is denoted by M∗ is the matroid with the same
ground set X such that X ′ ⊆ X is independent in M∗ if and only if rM (X \X ′) = r(M); in
particular, rM∗(X ′) = rM (X \X ′) + |X ′| − r(M) for every X ′ ⊆ X.

For a field F, we say that a matroid M is F-representable if every element of M can
be assigned a vector from Fr(M) in such a way that a subset of the ground set of M is
independent if and only if the set of assigned vectors is linearly independent. In particular,
an element of M is a loop if and only if it is assigned the zero vector and two elements of M
are parallel if and only if they are assigned non-zero multiples of the same non-zero vector.
Such an assignment of vectors of Fr(M) to the elements of M is an F-representation of M .
Observe that the rank of a subset X ′ of the ground set is the dimension of the linear hull
of the vectors assigned to the elements of X ′. We say that a matroid M is F-represented
if the matroid M is given by its F-representation. If a particular field F is not relevant in
the context, we just say that a matroid M is represented to express that it is given by its
representation.

Let M be a matroid with a ground set X. The matroid kM for k ∈ N is the matroid
obtained from M by introducing k − 1 parallel elements to each non-loop element and
k − 1 additional loops for each loop; informally speaking, every element of M is “cloned”
to k copies. If X ′ ⊆ X, then the restriction of M to X ′, which is denoted by M [X ′], is
the matroid with the ground set X ′ such that a subset of X ′ is independent in M [X ′]
if and only if it is independent in M . In particular, the rank of M [X ′] is rM (X ′). The
matroid obtained from M by deleting X ′ is the restriction of M to X \X ′ and is denoted
by M \X ′. The contraction of M by X ′, which is denoted by M/X ′, is the matroid with
the ground set X \X ′ such that a subset X ′′ of X \X ′ is independent in M/X ′ if and only
if rM (X ′′ ∪X ′) = |X ′′| + rM (X ′). If X ′ is a single element set and e is its only element, we
write M \ e and M/e instead of M \ {e} and M/{e}, respectively. If an F-representation of
M is given and X ′ is a subset of the ground set of M , then an F-representation of M/X ′
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can be obtained from the F-representation of M by considering it in the quotient space by
the linear hull of the vectors representing the elements of X ′. This leads us to the following
definition: if M is an F-represented matroid and A is a linear subspace of Fr(M), then the
matroid M/A is the F-represented matroid with the representation of M in the quotient
space by A. Note that the ground sets of M and M/A are the same.

A matroid M is connected if every two distinct elements of M are contained in a common
circuit. If M is an F-represented matroid with at least two elements, then M is connected if
and only if M has no loops and there do not exist two non-trivial vector spaces A and B of
Fr(M) such that A ∩B contains the zero vector only and every element of M is contained in
A or B. A component of a matroid M is an inclusion-wise maximal connected restriction of
M ; a component is trivial if it consists of a single loop, and it is non-trivial otherwise. We
often identify components of a matroid M with their element sets. Using this identification,
it holds that a subset X ′ of a ground set of a matroid M is a component of M if and only if
X ′ is a component of M∗. We remark that (M∗)∗ = M for every matroid M , and if e is an
element of a matroid M , then (M/e)∗ = M∗ \ e and (M \ e)∗ = M∗/e.

2.3 Matrices
In this section, we define notation related to matrices. If F is a field, we write Fm×n for the
set of matrices with m rows and n columns over the field F. If A is a rational matrix, the
entry complexity ec(A) is the maximum length of a binary encoding of its entries, i.e., the
maximum of ⌈log2 (|p| + 1)⌉ + ⌈(log2 |q| + 1)⌉ taken over all entries p/q of A (where p and
q are always assumed to be coprime). A rational matrix A is z-integral for z ∈ Q if every
entry of A is an integral multiple of z. We say that two matrices A and A′ are equivalent if
one can be obtained from another by (equivalent) row operations, i.e., adding (a non-zero
multiple of) one row to another and multiplying a row by a non-zero element. Observe that
if A and A′ are equivalent matrices, then their kernels are the same. For a matrix A, we
define M(A) to be the represented matroid whose elements are the columns of A. Again, if
matrices A and A′ are equivalent, then the matroids M(A) and M(A′) are the same.

If A is a matrix, the primal graph of A is the graph whose vertices are columns of A and
two vertices are adjacent if there exists a row having non-zero elements in the two columns
associated with the vertices; the dual graph of A is the graph whose vertices are rows of A
and two vertices are adjacent if there exists a column having non-zero elements in the two
associated rows; the incidence graph of A is the bipartite graph with one part formed by
rows of A and the other part by columns of A and two vertices are adjacent if the entry
in the associated row and in the associated column is non-zero. The primal tree-depth of
A, denoted by tdP (A), is the tree-depth of the primal graph of A, the dual tree-depth of A,
denoted by tdD(A), is the tree-depth of the dual graph of A, and the incidence tree-depth
of A, denoted by tdI(A), is the tree-depth of the incidence graph of A. Finally, td∗

P (A)
is the smallest primal tree-depth of a matrix equivalent to A, td∗

D(A) is the smallest dual
tree-depth of a matrix equivalent to A, and td∗

I(A) is the smallest incidence tree-depth of a
matrix equivalent to A.

A circuit of a rational matrix A is a support-wise minimal integral vector contained in
the kernel of A such that all its entries are coprime; the set of circuits of A is denoted by
C(A). Note that a set X of columns is a circuit in the matroid M(A) if and only if C(A)
contains a vector with the support exactly equal to X. We write c1(A) for the maximum
ℓ1-norm of a circuit of A and c∞(A) for the maximum ℓ∞-norm of a circuit of A. Note if A
and A′ are equivalent rational matrices, then C(A) = C(A′) and so the parameters c1(·) and
c∞(·) are invariant under row operations. Following the notation from [17], we write κ̇A for
the least common multiple of the entries of the circuits of A. Observe that there exists a
function f : N → N such that κ̇A ≤ f(c∞(A)) for every matrix A.



M. Briański, M. Koutecký, D. Král’, K. Pekárková, and F. Schröder 29:9

If x and y are two d-dimensional vectors, we write x ⊑ y if |xi| ≤ |yi| for all i ∈ [d] and
x and y are in the same orthant, i.e., xi and yi have the same sign (or they both are zero)
for all i ∈ [d]. The Graver basis of a matrix A, denoted by G(A), is the set of the ⊑-minimal
non-zero elements of the integer kernel kerZ(A). We use g1(A) and g∞(A) for the Graver
basis of A analogously to the set of circuits, i.e., g1(A) is the maximum ℓ1-norm of a vector
in G(A) and g∞(A) is the maximum ℓ∞-norm of a vector in G(A). Again, the parameters
g1(·) and g∞(·) are invariant under row operations as the Graver bases of equivalent matrices
are the same. Note that every circuit of a matrix A belongs to the Graver basis of A, i.e.,
C(A) ⊆ G(A), and so it holds that c1(A) ≤ g1(A) and c∞(A) ≤ g∞(A) for every matrix A.

2.4 Matroid depth parameters
We now define matroid depth parameters that will be of importance further. We start with
the notion of deletion-depth and contraction-depth, which were introduced in [14].

The deletion-depth of a matroid M , denoted by dd(M), is defined recursively as follows.
If M has a single element, then dd(M) = 1. If M is not connected, then dd(M) is the
maximum deletion-depth of a component of M . Otherwise, dd(M) is 1 plus the minimum
deletion-depth of M \ e where the minimum is taken over all elements e of M .

The sequence of deletions of elements witnessing that the deletion-depth of a matroid M is
dd(M) can be visualized by a rooted tree, which we call a deletion-decomposition tree, defined
as follows. If M has a single element, then the deletion-decomposition tree of M consists of a
single vertex labeled with the single element of M . If M is not connected, then the deletion-
decomposition tree is obtained by identifying the roots of deletion-decomposition trees of the
components of M . Otherwise, there exists an element e such that dd(M) = dd(M \ e) + 1
and the deletion-decomposition tree of M is obtained from the deletion-decomposition tree
of M \ e by adding a new vertex adjacent to the root of the deletion-decomposition tree of
M \ e, changing the root of the tree to the newly added vertex and labeling the edge incident
with it with the element e. Observe that the height of the deletion-decomposition tree is
equal to the deletion-depth of M . In what follows, we consider deletion-decomposition trees
that need not to be of optimal height, i.e., its edges can be labeled by a sequence of elements
that decomposes a matroid M in a way described in the definition of the deletion-depth but
its height is larger than dd(M). In this more general setting, the deletion-depth of a matroid
M is the smallest height of a deletion-decomposition tree of M .

The contraction-depth of a matroid M , denoted by cd(M), is defined recursively as
follows. If M has a single element, then cd(M) = 1. If M is not connected, then cd(M)
is the maximum contraction-depth of a component of M . Otherwise, cd(M) is 1 plus the
minimum contraction-depth of M/e where the minimum is taken over all elements e of M .
It is not hard to show that dd(M) = cd(M∗) and cd(M) = dd(M∗) for every matroid M .
We define a contraction-decomposition tree analogously to a deletion-decomposition tree; the
contraction-depth of a matroid M is the smallest height of a contraction-decomposition tree
of M .

We next introduce the contraction-deletion-depth, which was studied under the name
of type in [15], but we decided to use the name from [14], which we find to describe the
parameter in the context considered here better. The contraction-deletion-depth of matroid
M , denoted by cdd(M), is defined recursively as follows. If M has a single element, then
cdd(M) = 1. If M is not connected, then cdd(M) is the maximum contraction-deletion-
depth of a component of M . Otherwise, cdd(M) is 1 plus the smaller among the minimum
contraction-deletion-depth of the matroid M \ e and the minimum contraction-deletion-depth
of the matroid M/e where both minima are taken over all elements e of M . Clearly, it holds
that cdd(M) = cdd(M∗), cdd(M) ≤ dd(M) and cdd(M) ≤ cd(M) for every matroid M .
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One of the key parameters in our setting is that of contraction∗-depth; this parameter was
introduced under the name branch-depth in [33] and further studied in [8] but we decided to
use a different name to avoid a possible confusion with the notion of branch-depth introduced
in [14]. A contraction∗-depth of a matroid M , denoted by c*d(M), is the smallest depth of a
rooted tree T with exactly r(M) edges with the following property: there exists a function
f from the ground set of M to the leaves of T such that for every subset X of the ground
set of M the total number of edges contained in paths from the root to vertices of X is at
least r(X). There is an alternative equivalent definition of the parameter for represented
matroids. The contraction∗-depth of a represented matroid M can be defined recursively
as follows. If M has rank zero, then c*d(M) = 0. If M is not connected, then c*d(M) is
the maximum contraction∗-depth of a component of M . Otherwise, c*d(M) is 1 plus the
minimum contraction∗-depth of a matroid obtained from the matroid M by factoring along
an arbitrary one-dimensional subspace. As the contraction in the definition is allowed to be
by an arbitrary one-dimensional subspace, not only by a subspace generated by an element
of M , it follows that c*d(M) ≤ cd(M).

Kardoš et al. [33] established the connection between the contraction∗-depth and the
existence of a long circuit, which is described in Theorem 9.

▶ Theorem 9. Let M be a matroid and k the size of its largest circuit. It holds that
log2 k ≤ c*d(M) ≤ k2. Moreover, there exists a polynomial-time algorithm that for an input
oracle-given matroid M outputs a contraction∗-decomposition tree of depth at most k2.

All contractions used in the proof of the inequality c*d(M) ≤ k2 are contractions of
elements of a matroid M , i.e., the one-dimensional subspaces as in the definition of the
contraction∗-depth are all generated by elements of M . We remark that this implies that
cd(M) ≤ k2 + 1. The sequence of such contractions can be visualized by a contraction∗-
decomposition tree that is defined in the same way as a contraction-decomposition tree
except that one-vertex trees are associated with matroids of rank zero (rather than matroids
consisting of a single element), however, the edges of the tree are still labeled by some of
the elements of M . Note that the minimum depth of a contraction∗-decomposition tree of a
matroid M is an upper bound on its contraction∗-depth, however, in general, the contraction∗-
depth of a matroid M can be smaller than the minimum depth of contraction∗-decomposition
tree of M as the definition of the contraction∗-depth in the case of represented matroids
permits contractions by arbitrary one-dimensional subspaces.

We next introduce the parameter of contraction∗-deletion-depth, which we believe to
have not been yet studied previously, but which is particularly relevant in our context. To
avoid unnecessary technical issues, we introduce the parameter for represented matroids
only. The contraction∗-deletion-depth of a represented matroid M , denoted by c*dd(M), is
defined recursively as follows. If M has rank zero, then c*dd(M) = 0; if M has a single
non-loop element, then c*dd(M) = 1. If M is not connected, then c*dd(M) is the maximum
contraction∗-deletion-depth of a component of M . Otherwise, c*dd(M) is 1 plus the smaller
among the minimum contraction∗-deletion-depth of the matroid M \ e, where the minimum
is taken over all elements of M , and the minimum contraction∗-deletion-depth of a matroid
obtained from M by factoring along an arbitrary one-dimensional subspace. Observe that
c*dd(M) ≤ cdd(M) and c*dd(M) ≤ c*d(M) for every matroid M .

Finally, if A is a matrix, the deletion-depth, contraction-depth, etc. of A is the correspond-
ing parameter of the vector matroid M(A) formed by the columns of A, and we write dd(A),
cd(A), etc. for the deletion-depth, contraction-depth, etc. of the matrix A. Observe that the
deletion-depth, contraction-depth etc. of a matrix A is invariant under row operations as
row operations preserve the matroid M(A).
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3 Structural results

In this section, we prove our structural results concerning optimal primal tree-depth and
optimal incidence tree-depth of a matrix. We start with presenting an algorithm, which uses
a deletion-decomposition tree of the matroid associated with a given matrix to construct a
matrix with small primal tree-depth that is equivalent to the given matrix.

▶ Lemma 10. There exists a polynomial-time algorithm that for an input matrix A and a
deletion-decomposition tree of M(A) with height d outputs a matrix A′ equivalent to A such
that tdP (A′) ≤ d.

Proof. We establish the existence of the algorithm by proving that tdP (A′) ≤ d in a
constructive (algorithmic) way. Due to space constraints, we omit some details in the
arguments that follow.

Fix a matrix A and a deletion-decomposition tree T of M(A) with height d. Let X be
the set of non-zero columns that are labels of the vertices of T . It can be shown that the
columns contained in X form a basis of the column space of the matrix A. In particular,
unless A is the zero matrix, the set X is non-empty. Let A′ be the matrix obtained from A

by row operations such that the submatrix of A′ induced by the columns of X is the unit
matrix with possibly some additional zero rows. We will prove by induction on the number
of columns of an input matrix A that the primal tree-depth of A′ is at most d.

The base of the induction is the case when A has a single column. In this case, the primal
tree-depth of A′ is one and the tree T is a single vertex labeled with the only column of A,
and so its height is one.

We next present the induction step. First observe that every label of a vertex of T is
either in X or a loop in M(A), and every label of an edge e is a linear combination of labels
of the vertices in the subtree delimited by e. It follows that if x is a label of the root of
T , then x is either a loop or a bridge in the matroid M(A). Let B be the matrix obtained
from A by deleting the column x, and let T ′ be the deletion-decomposition tree of M(B)
obtained from T by removing the label x from the root. Since the matrix B′ produced by
the algorithm described above for B and T ′ is the submatrix of A′ formed by the columns
different from x (possibly after permuting rows) and the vertex associated with the column
x is isolated in the primal graph of A′, it follows that tdP (A′) = tdP (B′) ≤ d (the inequality
holds by the induction hypothesis). Hence, we can assume that the root of T has no label.

We now analyze the case that the root of T has a single child and no label. Let x be the
label of the single edge incident with the root of T , and let B′ be the matrix obtained from
A′ by deleting the column x. By induction, the primal tree-depth of B′ is at most d − 1,
which implies that the primal tree-depth of A′ is at most tdP (B′) + 1 = d.

The final case to analyze is the case when the root of T has k ≥ 2 children (in addition to
having no label). Let Y1, . . . , Yk be the labels of the vertices and edges of the k subtrees of T
delimited by the k edges incident with the root of T , and let B1, . . . , Bk be the submatrices
of A formed by the columns contained in Y1, . . . , Yk. Since the support of the columns
contained in Yi contains only the unit entries of the columns of A′ contained in X ∩ Yi, the
primal graph of A′ contains no edge joining a column of Yi and a column of Yj for i ≠ j. It
follows that the primal tree-depth of A′ is at most the maximum primal tree-depth of Bi,
which is at most d by the induction hypothesis. It follows that tdP (A′) ≤ d as desired. ◀

We are now ready to establish the link between the optimal primal tree-depth of a matrix
and the deletion-depth of the matroid associated with the matrix. Due to space constraints,
the proof of Theorem 4 is sketched only.
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Sketch of the proof of Theorem 4. Fix a matrix A. By Lemma 10, it holds that td∗
P (A) ≤

dd(A). So, we focus on proving that dd(A) ≤ td∗
P (A). We will show that every matrix B

satisfies that dd(B) ≤ tdP (B), which implies that dd(A) ≤ td∗
P (A).

The proof that dd(B) ≤ tdP (B) proceeds by induction on the number of columns. If B
has a single column, then both dd(B) and tdP (B) are equal to one. We next present the
induction step. If the matroid M(B) is not connected, we apply induction to each of its
components and derive that each component of M(B) has deletion depth at most tdP (B).
This implies that dd(B) ≤ tdP (B).

We next assume that the matroid M(B) is connected. It can be shown that the primal
graph of B is also connected, which yields that there exists a column such that the matrix
B′ obtained by deleting this column satisfies that tdP (B′) = tdP (B) − 1. The induction
assumption yields that dd(B′) ≤ tdP (B) − 1 and the definition of the deletion-depth yields
that the deletion-depth of M(B) is at most the deletion-depth of M(B′) increased by one.
This implies that dd(B) = dd(M(B)) ≤ tdP (B) as desired. ◀

Before proceeding with our structural result concerning incidence tree-depth, we use the
structural results presented in Lemma 10 and Theorem 4 to get a parameterized algorithm
for computing an optimal primal tree-depth of a matrix over a finite field. Due to space
constraints, several steps of the proof of Corollary 11 are sketched only.

▶ Corollary 11. There exists an FPT algorithm for the parameterization by a finite field F
and an integer d that for an input matrix A over the field F,

either outputs that td∗
P (A) > d, or

computes a matrix A′ equivalent to A with tdP (A′) ≤ d and also outputs the associated
deletion-decomposition tree of M(A) with height tdP (A′).

Proof. The property that a matroid M has deletion depth at most d can be expressed in
monadic second order logic. Specifically, there exists a monadic second order formula ψd(X)
that describes whether the deletion-depth of a restriction of the matroid M to a subset X
of the elements of M is at most d. In the formula that we present, small letters are used
to denote elements of a matroid and capital letters subsets of the elements. Assuming that
ψc(x, y) is a monadic second order formula describing the existence of a circuit containing
two elements x and y and ψC(X) is a monadic second order formula describing whether a
subset X is a component of a matroid, The sought formula ψd(·) is defined inductively (note
that ψd(∅) is true for all d):

ψ1(X) ≡ ∀x, y ∈ X : x ̸= y ⇒ ¬ψc(x, y) and
ψd(X) ≡ ∀X ′ ⊆ X : ψC(X ′) ⇒ ∃x ∈ X ′ : ψd−1(X ′ \ {x}) for d ≥ 2.

Hliněný [25, 26] proved that all monadic second order logic properties can be tested in a
fixed parameter way for matroids represented over a finite field F with branch-width at
most d when parameterized by the property, the field F and the branch-width d. Since the
branch-width of a matroid M is at most its deletion-depth, this establishes the existence of a
fixed parameter algorithm deciding whether td∗

P (A) = dd(M(A)) ≤ d (the equality follows
from Theorem 4).

To obtain the algorithm claimed to exist in the statement of the corollary, we need
to extend the algorithm for testing whether the deletion-depth of an input matroid M

represented over F is at most d to an algorithm that also outputs a deletion-decomposition
tree of M with height at most d. The deletion-depth of an input matroid M is one if and
only if every element of M is a loop or a bridge. Hence, if the deletion-depth of M is d = 1,
then the deletion-depth decomposition tree of height one consists of a single vertex labeled
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with all elements of M . If the deletion-depth of M is at most d ≥ 2 and M is not connected,
we first identify its components, which can be done in polynomial time even in the oracle
model, then proceed recursively with each component of M and eventually merge the roots
of all deletion-depth decomposition trees obtained recursively. Finally, if the deletion-depth
of M is at most d ≥ 2 and M is connected, we loop over all elements e of M and test whether
dd(M \ e) ≤ d− 1. Such an element e must exist and when it is found, we recursively apply
the algorithm to M \ e to obtain a deletion-depth decomposition tree T of M \ e with height
d− 1, which is then extended to a deletion-depth decomposition tree of M of height d. ◀

We conclude this section by establishing a link between the optimal incidence tree-depth
and the contraction∗-deletion-depth of the matroid associated with the matrix. Due to space
constraints, the proof of Theorem 5 is sketched only.

Proof of Theorem 5. We prove the equality as two inequalities starting with the inequality
c*dd(A) ≤ td∗

I(A) − 1. To prove this inequality, we show that c*dd(A) ≤ tdI(A) − 1 holds for
every matrix A with m rows and n columns by induction on m+n. The base of the induction
is formed by the cases when all entries of A are zero, n = 1 or m = 1. We focus on describing
the induction step, which considers the case when A is non-zero, m ≥ 2 and n ≥ 2. First
suppose that the matroid M(A) is not connected. Let X1, . . . , Xk be the component of M(A)
and let A1, . . . , Ak be the submatrices of A formed by the columns X1, . . . , Xk, respectively.
The definition of the contraction∗-deletion-depth implies that c*dd(A) is the maximum of
c*dd(Ai). The induction hypothesis yields that c*dd(Ai) ≤ tdI(Ai) − 1. Since the incidence
graph of Ai is a subgraph of the incidence graph of A, it follows that tdI(Ai) ≤ tdI(A) and
so c*dd(Ai) ≤ tdI(A) − 1. We conclude that c*dd(A) ≤ tdI(A) − 1.

The core of the inductive argument showing that c*dd(A) ≤ tdI(A) − 1 is formed by the
case when the matroid M(A) is connected and the incidence graph of A is also connected.
The definition of the tree-depth implies that there exists a vertex w of the incidence graph
whose deletion decreases the tree-depth of the incidence graph by one. Let A′ be the matrix
obtained from A by deleting the row or the column associated with the vertex w and note
that tdI(A) = tdI(A′) + 1. If the vertex w is associated with a column x, the matroid M(A′)
is the matroid obtained from M(A) by deleting the element x. If the vertex w is associated
with a row x, the matroid M(A′) is the matroid obtained from M(A) by contracting by
the subspace generated by the unit vector with the entry in the row x. In either case,
the definition of the contraction∗-deletion-depth implies that c*dd(A) ≤ c*dd(A′) + 1. The
induction hypothesis applied to A′ yields that c*dd(A′) ≤ tdI(A′) − 1, which yields that
c*dd(A) ≤ tdI(A′) = tdI(A) − 1.

To complete the proof of the theorem, it remains to show that the inequality td∗
I(A) ≤

c*dd(A) + 1 holds for every matrix A. The proof proceeds by induction on the number n of
columns of A. The core of the argument is the inductive step when the matroid M(A) is
connected, which we present next. The definition of the contraction∗-deletion-depth implies
that there exists an element x of M(A) such that c*dd(M(A)\x) = c*dd(M(A))−1 = c*dd(A)−
1 or there exists a one-dimensional subspace such that the contraction by this subspace yields
a matroid M ′ such that c*dd(M ′) = c*dd(M(A)) − 1 = c*dd(A) − 1. In the former case, let
A′ be the matrix obtained from A by deleting the column x. By the induction hypothesis,
there exists a matrix A′′ equivalent to A′ such that tdI(A′′) ≤ c*dd(A′) + 1 = c*dd(A), and
let A′′′ be the matrix obtained from A by the same row operations using that A′′ is obtained
from A′. Observe that the incidence graph of A′′ can be obtained from the incidence graph
of A′′′ by deleting the vertex associated with the column x. Hence, tdI(A′′′) ≤ tdI(A′′) + 1.
Since A′′′ is equivalent to A, it follows that

td∗
I(A) ≤ tdI(A′′′) ≤ tdI(A′′) + 1 ≤ c*dd(A) + 1.
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We now analyze the latter case, i.e., the case that there exists a one-dimensional subspace
such that the contraction by this subspace yields a matroid M ′ such that c*dd(M ′) =
c*dd(A) − 1. Let A′ be the matrix obtained from A by row operations such that the
contracted subspace used to obtain M ′ is generated by the unit vector with the non-zero
entry being the first entry, and let B be the matrix obtained from A′ by deleting the first
row. By the induction hypothesis, there exists a matrix B′ equivalent to B such that
tdI(B′) ≤ c*dd(A′) + 1 = c*dd(A), and let A′′ be the matrix consisting of the first row of A
and the matrix B′. Observe that A′′ is equivalent to A. Since the incidence graph of B′ can
be obtained from the incidence graph of A′′ by deleting the vertex associated with the first
row, it holds that tdI(A′′) ≤ tdI(B′) + 1. Hence, it follows that

td∗
I(A) ≤ tdI(A′′) ≤ tdI(B′) + 1 ≤ c*dd(A) + 1.

The proof of the theorem is now completed. ◀

4 Primal tree-depth

In this section, we present a parameterized algorithm for computing an equivalent matrix
with small primal tree-depth and bounded entry complexity if such a matrix exists. Due to
space constraints, details of some of the arguments used in the proof are omitted.

Proof of Theorem 7. Let fP (·, ·) be the function from the statement of Theorem 1 and set
κ0 to be the least common multiple of the integers 1, . . . , fP (d, e). Observe that the entry of
every circuit of a matrix B with tdP (B) ≤ d and ec(B) ≤ e divides κ0 as c∞(B) ≤ fP (d, e).

We next describe the algorithm from the statement of the theorem. Without loss of
generality, we can assume that the rank of the input matrix A is equal to the number of its
rows, in particular, A is non-zero. The algorithm starts with diagonalizing the input matrix
A by selecting an arbitrary basis of the column space and performing row-operations that
the selected columns form the identity matrix. The resulting matrix is denoted by AI . If
the numerator or the denominator of any (non-zero) entry of AI does not divide κ0, the
algorithm arrives at the first conclusion of the theorem. The algorithm next multiplies each
row of AI by κ0, This yields an integral matrix A0 with entries between −κ2

0 and κ2
0.

Let MQ be the column matroid of A0 when viewed as a matrix over rationals and let Mp

be the column matroid of A0 when viewed as a matrix over a field Fp for a prime p > κ2
0;

note that such a prime p can be found algorithmically as the algorithm is parameterized by
d and e. The elements of both matroids MQ and Mp are the columns of the matrix A0, i.e.,
we can assume that their ground sets are the same.

We argue that if A is equivalent to a matrix with primal tree-depth at most d and entry
complexity at most e, then the matroids MQ and Mp are the same. As this is the key step in
the proof, we present it in full detail. If a set X of columns forms a circuit in MQ, then there
exists a linear combination of the columns of X that has all coefficients integral and coprime,
i.e., not all are divisible by p, and that is equal to the zero vector (in fact, there exist such
coefficients that they all divide κ0 by the definition of κ0); it follows that the set X is also
dependent in Mp. If a set X of columns is independent in MQ, let BI be a square submatrix
of AI formed by the columns X and some of the rows such that BI is non-singular, and let
B0 be the square submatrix of A0 formed by the same rows and columns. By [17, Lemma
3.3], the matrix B−1

I is 1/κ̇A-integral and the absolute values of its entries are between
1/c∞(A) and c∞(A). Note that both c∞(A) and κ̇A divide κ0 (here, we use the definition of
κ0 and the assumption that A is equivalent to a matrix with primal tree-depth at most d and
entry complexity at most e) and so this the matrix B−1

I is 1/κ0-integral and the absolute
values of its entries are between 1/κ0 and κ0. Let B′ be the matrix obtained from B−1

I by
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multiplying each entry by κ0; note that B′ is an integer matrix with entries between −κ2
0

and κ2
0. The definitions of the matrices BI , B0 and B′ yield that B′B0 is a diagonal matrix

with all diagonal entries equal to κ2
0. It follows that the columns X form a set independent

in Mp.
We now continue the description of the algorithm. As the next step, we apply the

algorithm from Corollary 11 to the matrix A0 viewed as over the field Fp. If the algorithm
determines that the deletion-depth of A0 is larger than d, we arrive at the first conclusion of
the theorem. If it determines that the deletion-depth of A0 is at most d, it also outputs a
deletion-decomposition tree of Mp with height at most d. If the output deletion-decomposition
tree is not valid for the matroid MQ, we again arrive at the first conclusion of the theorem.
If the output deletion-decomposition tree is also a deletion-decomposition tree of the matroid
MQ, we use the algorithm from Lemma 10 to obtain a matrix A′ equivalent to A such
that the primal tree-depth of A′ at most the height of the deletion-decomposition tree, i.e.,
tdP (A′) ≤ d. As the matrix A′ contains a unit submatrix formed by m rows and m columns,
each (non-zero) entry of A′ is a fraction that can obtained by dividing two entries of a circuit
of A. If the absolute value of the numerator or the denominator of any these fractions exceeds
κ0, we again arrive at the first conclusion of the theorem. Otherwise, we output the matrix
A′. Note that the primal tree-depth of A′ is at most d and its entry complexity is at most
2 ⌈log2 (κ0 + 1)⌉ and κ0 depends on d and e only. ◀

5 Dual tree-depth, circuit complexity and Graver basis

In this section, we link minimum dual tree-depth of a matrix to its circuit complexity. Due
to space constraints, details of some of the arguments used in the proof are omitted.

▶ Theorem 12. There exists a polynomial-time algorithm that for a given matrix A whose
rank is smaller than the number of its columns outputs an equivalent matrix A′ such that
tdD(A′) ≤ c1(A)2 and ec(A′) ≤ 2 ⌈log2 c1(A)⌉.

Proof. We start with the description of the algorithm from the statement of the theorem.
Let A be the input matrix. We apply the algorithm from Theorem 9 to the matroid M(A)
given by the columns of the matrix A. Let T be the contraction∗-decomposition tree output
by the algorithm, let d be its depth and let X be the set of columns of A that are the labels
of the edges of T , i.e., the elements of M(A) used in the contractions. Since the columns
contained in X form a base of the column space of A, we can perform row-operations on the
matrix A in a way that the submatrix formed by the columns of X is an identity matrix; let
A′ be the resulting matrix. The algorithm outputs the matrix A′.

We now analyze the matrix A′ that is output by the algorithm. Since the rank of A
is smaller than the number of its columns, the matrix A has at least one circuit and so
c1(A) ≥ 2. Observe that every circuit of M(A) contains at most c1(A) elements and so
it holds that d ≤ c1(A)2, i.e., the depth of T is at most c1(A)2. Let F be a rooted forest
obtained from T by removing the root and for each edge e, associating the vertex of e farther
from the root of T with the (unique) row of A′ that is non-zero in the column that is the
label of e. Hence, the vertex set of F is formed by the rows of A′. Since it can be shown
that the dual graph of A′ is a subgraph of cl(F ), it follows that that tdD(A′) ≤ c1(A)2 (note
that the height of F is at most c1(A)2).

It remains to analyze the entry complexity of A′. The entries of A′ in the columns of
X are zero or one. Every column z of A′ that is not contained in X forms a circuit with
some of the columns of X. The entries of A′ in the column z are equal to −cx/cz where cx,
x ∈ X, and cz are the corresponding integer entries of this circuit of A′ (and so of A). We
conclude that the entry complexity of A′ is at most 2 ⌈log2 c1(A)⌉. ◀
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Theorem 12 implies that g1(A) ≤ fD

(
c1(A)2, 2 ⌈log2 c1(A)⌉

)
for every matrix A with

C(A) ̸= ∅, where fD is the function from Theorem 1. Note that the condition C(A) ̸= ∅ is
necessary as otherwise A has no circuit and so c1(A) is not defined. We state this bound as
a corollary.

▶ Corollary 13. There exists a function f : N → N such that g1(A) ≤ f(c1(A)) for every
matrix A with C(A) ̸= ∅.

We next combine the algorithms from Theorems 2 and 12.

▶ Corollary 14. There exists a function f : N → N and an FPT algorithm for the paramet-
erization by k that for a given rational matrix A:

either outputs that c1(A) > k, or
outputs a matrix A′ that is equivalent to A, its dual tree-depth is td∗

D(A) and its entry
complexity is at most f(k).

Proof of Corollary14. For an input matrix A, we apply the algorithm from Theorem 12
to get a matrix A′ equivalent to A. If the dual tree-depth of A′ is larger than k2 or the
entry complexity of A′ is larger than 2⌈log2 k⌉, then c1(A) > k and we arrive at the first
conclusion. Otherwise, we apply the algorithm from Theorem 2 with parameters d = k2

and e = 2⌈log2 k⌉ to compute a matrix A′′ equivalent to A′ and so to A such that the dual
tree-depth of A′′ is td∗

D(A) and the entry complexity of A′′ is O(k422k2 log k). ◀

Finally, the previous corollary together with Theorem 1 yields the parameterized algorithm
for testing whether an input matrix is equivalent to a matrix with small dual tree-depth and
small entry complexity as given in Theorem 8.

Proof of Theorem 8. Let fD be the function from the statement of Theorem 1 and set
k = fD(d, e). Apply the algorithm from Corollary 14 with the parameter k to an input
matrix A. If the algorithm reports that c1(A) > k, then A is not equivalent to a matrix with
dual tree-depth at most d and entry complexity at most e. If the algorithm outputs a matrix
A′ and tdD(A′) > d, then td∗

D(A) > d and so the matrix A is not equivalent to a matrix
with dual tree-depth at most d. Otherwise, the dual tree-depth of A′ is at most d and its
entry complexity is 2O(k2) = 2O(fD(d,e)2), i.e., it is bounded by a function of d and e only as
required. ◀

6 Computational hardness of depth parameters

In this section, we complement our algorithmic results by establishing computational hardness
of matroid depth parameters that we discussed in this paper. The hardness results apply
even when the input matroid is given by its representation over a fixed (finite or infinite)
field.

We start with defining a matroid MF(G) derived from a graph G. Fix a field F. For a
graph G, we define an F-represented matroid MF(G) as follows. The matroid MF(G) contains
|G| + ∥G∥ elements, which correspond to the vertices and the edges of G. We next associate
each element of MF(G) with a vector of FV (G). An element of MF(G) corresponding to a
vertex w of G is represented by ew and an element of MF(G) corresponding to an edge ww′

of G is represented by ew − ew′ .
We next define a graph G/A for a graph G and a linear subspace A of FV (G). Let W be

the subset of vertices of V (G) such that ew ∈ A for w ∈ W , and let F be a maximal subset
of edges ww′ ∈ E(G) such that
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A contains a vector ew + αew′ for a non-zero element α ∈ F, and
the set containing all vectors ew, w ∈ W , and all vectors ew − ew′ , ww′ ∈ F , is linearly
independent.

The graph G/A is obtained by deleting all vertices of W and then contracting all edges
contained in F . The next lemma asserts that G/A is well-defined. We remark that the proof
of the next lemma as well as the proofs of Lemmas 16 and 17 are omitted due to space
constraints.

▶ Lemma 15. Let G be a graph, F a field and A a linear subspace of FV (G). The graph
G/A is well-defined, i.e., the graph G/A does not depend on the choice of the set F in its
definition.

The next lemma relates the number of components of the matroid MF(G)/A and the
number of components of the graph G/A for a graph G and a linear subspace A of FV (G).

▶ Lemma 16. Let G be a graph, F a field and A a linear subspace of FV (G). The number of
components of MF(G)/A is at most the number of components of the graph G/A.

We next link the existence of a balanced independent set in a bipartite graph to the
contraction∗-depth of a suitably defined matroid. We remark that the idea of using a bipartite
graph with cliques added between the vertices of its parts was used in [43] to establish that
computing tree-depth of a graph is NP-complete.

▶ Lemma 17. Let G be a bipartite graph with parts X and Y , let F be a field, and let k be
an integer. Let G′ be the graph obtained from G by adding all edges between the vertices of
X and between the vertices of Y . The following three statements are equivalent.

There exists an independent set containing k elements of X and k elements of Y .
The contraction∗-depth of MF(G′) is at most |X| + |Y | − k.
The contraction-depth of the matroid 2MF(G′) is at most |X| + |Y | − k + 1.

We are now ready to state and prove our hardness result.

▶ Theorem 18. For every field F, each of the following five decision problems, whose input
is an F-represented matroid M and an integer d, is NP-complete:

Is the contraction-depth of M at most d?
Is the contraction∗-depth of M at most d?
Is the contraction-deletion-depth of M at most d?
Is the contraction∗-deletion-depth of M at most d?
Is the deletion-depth of M at most d?

Proof. It is NP-complete to decide for a bipartite graph G with parts X and Y and an
integer k whether there exist k-element subsets X ′ ⊆ X and Y ′ ⊆ Y such that X ′ ∪ Y ′ is
independent [43]. For an input bipartite graph G, let G′ be the graph obtained from G by
adding all edges between the vertices of X and between the vertices of Y . We claim that the
existence of such subsets X ′ and Y ′ is equivalent to each of the following four statements:

The matroid 2MF(G′) has contraction-depth at most |X| + |Y | − k + 1.
The matroid MF(G′) has contraction∗-depth at most |X| + |Y | − k.
The matroid (|G′| + 1)MF(G′) has contraction-deletion-depth at most |X| + |Y | − k + 1.
The matroid (|G′| + 1)MF(G′) has contraction∗-deletion-depth at most |X| + |Y | − k.

ICALP 2022



29:18 Characterization of Matrices with Bounded Graver Bases and Depth Parameters

The equivalence of the first and second statements follow directly from Lemma 17. Since
the rank of the matroid (|G′| + 1)MF(G′) is |G′|, its contraction-deletion-depth is at most
|G′| + 1 and its contraction∗-deletion-depth is at most |G′|. As each element of the matroid
(|G′| + 1)MF(G′) is parallel to (at least) |G′| elements of the matroid, it follows that the
contraction-deletion-depth of MF(G′) is the same as its contraction-depth and its contraction∗-
deletion-depth is the same as its contraction∗-depth. Lemma 17 now implies the equivalence of
the third and fourth statements. As the matroids 2MF(G′), MF(G′) and (|G′|+1)MF(G′) can
be easily constructed from the input graph G in time polynomial in |G|, the NP-completeness
of the first four problems listed in the statement of the theorem follows.

For an F-represented matroid M , it is easy to construct an F-represented matroid M∗

that is dual to M in time polynomial in the number of the elements of M [42, Chapter 2].
Since the contraction-depth of M is equal to the deletion-depth of M∗, it follows that the
fifth problem listed in the statement of the theorem is also NP-complete. ◀
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Abstract
An extensive research effort targets optimal (in)approximability results for various NP-hard op-
timization problems. Notably, the works of (Creignou’95) as well as (Khanna, Sudan, Trevisan,
Williamson’00) establish a tight characterization of a large subclass of MaxSNP, namely Boolean
MaxCSPs and further variants, in terms of their polynomial-time approximability. Can we obtain
similarly encompassing characterizations for classes of polynomial-time optimization problems?

To this end, we initiate the systematic study of a recently introduced polynomial-time analogue
of MaxSNP, which includes a large number of well-studied problems (including Nearest and
Furthest Neighbor in the Hamming metric, Maximum Inner Product, optimization variants of
k-XOR and Maximum k-Cover). Specifically, for each k, MaxSPk denotes the class of O(mk)-time
problems of the form maxx1,...,xk #{y : ϕ(x1, . . . , xk, y)} where ϕ is a quantifier-free first-order
property and m denotes the size of the relational structure. Assuming central hypotheses about
clique detection in hypergraphs and exact Max-3-SAT, we show that for any MaxSPk problem
definable by a quantifier-free m-edge graph formula ϕ, the best possible approximation guarantee in
faster-than-exhaustive-search time O(mk−δ) falls into one of four categories:

optimizable to exactness in time O(mk−δ),
an (inefficient) approximation scheme, i.e., a (1 + ε)-approximation in time O(mk−f(ε)),
a (fixed) constant-factor approximation in time O(mk−δ), or
an mε-approximation in time O(mk−f(ε)).

We obtain an almost complete characterization of these regimes, for MaxSPk as well as for an
analogously defined minimization class MinSPk. As our main technical contribution, we show
how to rule out the existence of approximation schemes for a large class of problems admitting
constant-factor approximations, under a hypothesis for exact Sparse Max-3-SAT algorithms posed
by (Alman, Vassilevska Williams’20). As general trends for the problems we consider, we observe:
(1) Exact optimizability has a simple algebraic characterization, (2) only few maximization problems
do not admit a constant-factor approximation; these do not even have a subpolynomial-factor
approximation, and (3) constant-factor approximation of minimization problems is equivalent to
deciding whether the optimum is equal to 0.
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1 Introduction

For many optimization problems, the best known exact algorithms essentially explore the
complete search space, up to low-order improvements. While this holds true in particular for
NP-hard optimization problems such as maximum satisfiability, also common polynomial-time
optimization problems like Nearest Neighbor search are no exception. When facing such
a problem, the perhaps most common approach is to relax the optimization goal and ask
for approximations rather than optimal solutions. Can we obtain an approximate value
significantly faster than exhaustive search, and if so, what is the best approximation guarantee
we can achieve?

Even considering polynomial-time problems only, the study of such questions has led to
significant algorithmic breakthroughs, such as locality-sensitive hashing (LSH) [49, 41, 11],
subquadratic-time approximation algorithms for Edit Distance [56, 18, 17, 19, 14, 12, 26,
55, 21, 43, 13], scaling algorithms for graph problems [37, 70, 34], and fast approximation
algorithms via the polynomial method [5, 6] (which lead to the currently fastest known
exponential-time approximation schemes for MaxSAT).

These algorithmic breakthroughs have recently been complemented by exciting tools for
proving hardness of approximation in P: Most notably, the distributed PCP framework [4]
has lead to strong conditional lower bounds, including fundamental limits for Nearest
Neighbor search [62], as well as tight approximability results for the Maximum Inner Product
problem [28]. Other technical advances include evidence against deterministic approximation
schemes for Longest Common Subsequence [1, 3, 29], strong (at times even tight) problem-
specific hardness results such as [61, 22, 16, 25, 52], the first fine-grained equivalences of
approximation in P results [30, 29], and related works on parameterized inapproximability [27,
51, 59], see [36] for a survey.

These strong advances from both sides shift the algorithmic frontier and the frontier of
conditional hardness towards each other. Consequently, it becomes increasingly important
to generalize isolated results – both algorithms and reductions – towards making these
frontiers explicit: A more comprehensive description of current techniques might enable us
to understand general trends underlying these works and to highlight the most pressing
limitations of current methods. In fact, we view this as one of the fundamental tasks and
uses of fine-grained algorithm design & complexity.

Optimization Classes in P. To study (hardness of) approximation in P in a general way,
we study a class MaxSPk recently introduced in [23] (see the full version of this paper for a
comparison to the classic class MaxSNP, which motivated the definition of MaxSPk). This
class consists of polynomial-time optimization problems of the form:

max
x1,...,xk

#{y : ϕ(x1, . . . , xk, y)},

https://arxiv.org/abs/2204.11681
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where ϕ is a quantifier-free first-order property.1 One obtains an analogous minimization
class MinSPk by replacing maximization by minimization. A large number of natural and
well-studied problems can be expressed this way: In particular, we may think of each xi

ranging over a set Xi of n vectors in {0, 1}d, and the task is to maximize (or minimize) the
number of coordinates y satisfying an arbitrary Boolean function over the coordinate values
x1[y], . . . , xk[y] (here, ϕ is defined using a binary relation R ⊆ (X1 ∪ · · · ∪ Xk) × Y that
expresses whether the y-th coordinate of xi is 0 or 1; see Section 2 for details). In particular,
this class of problems includes:

(Offline) Furthest/Nearest Neighbor search in the Hamming metric
(maxx1,x2 /minx1,x2 dH(x1, x2)),
Maximum/Minimum Inner Product; the latter is the optimization formulation of the
Most-Orthogonal Vectors problem [2]
(maxx1,x2 /minx1,x2⟨x1, x2⟩),
A natural similarity search problem that we call Maximum k-Agreement
(maxx1,...,xk #{y : x1[y] = · · · = xk[y]}),
Maximum k-Cover [35, 31, 59] and its variation Maximum Exact-k-Cover [54]
(maxx1,...,xk #{y : xi[y] = 1 for some i}, maxx1,...,xk #{y : xi[y] = 1 for exactly one i})2,
The canonical optimization variants of the k-XOR problem [50, 33]
(maxx1,...,xk /minx1,...,xk #{y : x1[y] ⊕ · · · ⊕ xk[y] = 0}).

By the standard split-and-list technique [66], it is easy to see that any c-approximation for
Maximum k-XOR or Minimum k-XOR in time O(nk−δ poly(d)) gives a c-approximation
for Max-LIN (maximize the number of satisfied constraints of a linear system over F2,
see [45, 66, 6]) or the Minimum Distance Problem3 (finding the minimum weight of a
non-zero code word of a linear code over F2, see [63]), respectively, in time O(2n(1−δ′)).

By a simple baseline algorithm, all of these problems can be solved in time O(mk), where
m denotes the input size (for the above setting of k sets of n vectors in {0, 1}d we have
m = O(nd)). A large body of work addresses problems with k = 2, typically inventing or
adapting strong techniques to each specific problem as needed:

Abboud, Rubinstein, and Williams introduced the distributed PCP in P framework and
ruled out almost-polynomial approximations for the Maximum Inner Product problem
assuming the Strong Exponential Time Hypothesis (SETH). Subsequently, Chen [28]
strengthened the lower bound and gave an approximation algorithm resulting in tight
bounds on the approximability in strongly subquadratic time, assuming SETH. Corre-
sponding inapproximability results for its natural generalization to k-Maximum Inner
Product have been obtained in [51].
In contrast, strong approximation algorithms have a rich history for the Nearest Neigh-
bor search problem: Using LSH, we can obtain an (1 + ε)-approximation in time
O(n2−Θ(ε)) [44, 9, 10, 15]. Using further techniques, the dependence on ε has been
improved to O(n2−Ω(

√
ε)) [64] and O(n2−Ω̃( 3√ε)) [5, 6]. On the hardness side, Rubin-

stein [62] shows that the dependence on ε cannot be improved indefinitely, by proving
that for every δ, there exists an ε such that (1 + ε)-approximate Nearest Neighbor search
requires time Ω(n2−δ) assuming SETH. In particular, this rules out poly(1/ε)n2−δ-time
algorithms with δ > 0.

1 Note that [23] more generally defines classes MaxSPk,ℓ for ℓ ≥ 1. We focus on MaxSPk = MaxSPk,1,
as it was determined as computationally harder than MaxSPk,ℓ with ℓ ≥ 2, and contains many natural
problems (see below).

2 These problems are typically studied in the setting where k is part of the input, while we consider them
for a fixed constant k.

3 In fact, even for the Nearest Codeword Problem over F2.
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For the dual problem of Furthest Neighbor search (i.e., diameter in the Hamming metric),
[20] gives a O(n2−Θ(ε2))-time algorithm, which was improved to O(n2−Θ(ε)) via reduction
to Nearest Neighbor search in [47]. Following further improvements [42, 48], also here
[5, 6] give an O(n2−Ω̃( 3√ε))-time algorithm. Analogous inapproximability to Rubinstein’s
result are given in [30].
For Minimum Inner Product, the well-known Orthogonal Vectors hypothesis [65] (which
is implied by SETH [66]) is precisely the assumption that already distinguishing whether
the optimal value is 0 or at least 1 cannot be done in strongly subquadratic time.
Interestingly, Chen and Williams [30] show a converse: a refutation of the Orthogonal
Vectors hypothesis would give a subquadratic-time constant-factor approximation for
Minimum Inner Product.

In the above list, we focus on the difficult case of moderate dimension d = no(1) (when
measuring the time complexity with respect to the input size). Lower-dimensional settings
such as d = Θ(log n), d = Θ(log log n) or even lower are addressed in other works [69, 30].

While the above collection of results gives a detailed understanding of isolated problems,
we know little about general phenomena of (in)approximability in MaxSPk and MinSPk

using faster-than-exhaustive-search algorithms: Are there problems for which constant-factor
approximations are best possible? Is maximizing (or minimizing) Inner Product the only
problem without a constant-factor approximation? Which problems can we optimize exactly?

There are precursors to our work that show fine-grained equivalence classes of approxima-
tion problems in P [29, 30]. However, establishing membership of a problem in these classes
requires a problem-specific proof, while we are interested in syntactically defined classes,
where class membership can be immediately read off from the definition of a problem. Our
aim is to understand the approximability landscape of such classes fully. Finally, the previous
works either focus on lower-dimensional settings [30]4, or target more powerful problems
than we consider, such as Closest-LCS-Pair [29].

MaxSPk as Polynomial-Time Analogue of MaxSNP. Investigating NP-hard optimization
problems, Papadimitriou and Yannakakis [60] introduced the class MaxSNP, which motivates
the definition of MaxSPk as a natural polynomial-time analogue (see [23] and the full
version of this paper for details). As a general class containing prominent, constant-factor
approximable optimization problems, MaxSNP was introduced to give the first evidence
that Max-3-SAT does not admit a PTAS, by proving that Max-3-SAT belongs to the
hardest-to-approximate problems in MaxSNP.

Ideally, one would like to understand the approximability landscape in MaxSNP fully
and give tight approximability results for each such problem. Major advances towards this
goal have been achieved by Creignou [32] and Khanna, Sudan, Trevisan, and Williamson [53]
who gave a complete classification of a large subclass of MaxSNP, namely, maximum
Boolean Constraint Satisfaction Problems (MaxCSP): Each Boolean MaxCSP either is
polynomial-time optimizable or it does not admit a PTAS unless P = NP, rendering a
polynomial-time constant-factor approximation best possible. For minimization analogues,
including Boolean MinCSPs, the situation is more diverse with several equivalence classes
needed to describe the result [53].

We initiate the study of the same type of questions in the polynomial-time regime. Our
aim is to achieve a detailed understanding of MaxSPk and MinSPk akin to the classification
theorems achieved for MaxCSPs and MinCSPs [32, 53].

4 Chen and Williams also give some results for the moderate-dimensional case; we discuss these in
Section 3.
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1.1 Our Results
We approach the classification of MaxSPk and MinSPk by considering the simplest, yet
expressive case of a single, binary relation involved in the first-order formula; this route was
also taken in earlier classification work for first-order properties [24]. We may thus view the
relational structure as a graph, and call such a formula a graph formula. Note that despite its
naming, this includes problems not usually viewed as graph problems, such as all examples
given in the introduction, which are natural problems on sets of vectors in {0, 1}d.

We obtain a classification of each graph formula into one of four regimes, assuming central
fine-grained hardness hypotheses whose plausibility we detail in the full version of this paper.
All of our hardness results are implied by the Sparse Max-3-SAT hypothesis [7], which
states that for all δ > 0 there is some c > 0 such that Max-3-SAT on n variables and cn

clauses has no O(2n(1−δ))-time algorithm.5 (Actually, most of our hardness results already
follow from weaker assumptions.)

▶ Theorem 1. Let ψ be a MaxSPk or MinSPk graph formula. Assuming the Sparse
Max-3-SAT hypothesis, ψ belongs to precisely one of the following regimes:
R1 Efficiently optimizable:

There is some δ > 0 such that ψ can be solved exactly in time O(mk−δ).
R2 Admits an approximation scheme, but not an efficient one:

For all ε > 0, there is some δ > 0 such that ψ can be (1 + ε)-approximated in time
O(mk−δ). However, for all δ > 0, there is some ε > 0 such that ψ cannot be (1 + ε)-
approximated in time O(mk−δ).

R3 Admits a constant-factor approximation, but no approximation scheme:
There are ε, δ > 0 such that ψ can be (1 + ε)-approximated in time O(mk−δ). However,
there also exists an ε > 0 such that for all δ > 0, ψ cannot be (1 + ε)-approximated in
time O(mk−δ).

R4 Arbitrary polynomial-factor approximation is best possible (maximization):
For every ε > 0, there is some δ > 0 such that ψ can be O(mε)-approximated in time
O(mk−δ). However, for every δ > 0, there exists some ε > 0 such that ψ cannot be
O(mε)-approximated in time O(mk−δ).
No approximation at all (minimization):
For all δ > 0, we cannot decide whether the optimum value of ψ is 0 or at least 1 in time
O(mk−δ).

Note that the characteristics of the fourth (i.e., hardest) regime differ between the
maximization and the minimization case.

This theorem has immediate consequences for the approximability landscape in MaxSPk

and MinSPk, based on fine-grained assumptions: In particular, while any MaxSPk graph
formula can be approximated within a subpolynomial factor O(mε), we can rule out optimal
approximation ratios that grow with m but are strictly subpolynomial (i.e., there are no
graph formulas whose optimal approximability within O(mk−Ω(1)) time is Θ(log logm),
Θ(log2 m) or 2Θ(

√
log m)). Furthermore, there are no graph formulas with an f(1/ε)mk−Ω(1)

approximation scheme that cannot already be optimized to exactness in time mk−Ω(1).
In fact, beyond Theorem 1 we even give an almost complete characterization of each regime:

Specifically, we introduce integer-valued hardness parameters 0 ≤ Hand(ψ) ≤ Hdeg(ψ) ≤ k

(defined in Section 3). As illustrated in Figure 1, we show how to place any graph formula ψ

5 This hypothesis is a stronger version of the Max-3-SAT hypothesis [58].
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R1:
exact solvable

R2:
AS
no efficient AS

R2 or R3:
constant approx.
no efficient AS

R3:
constant approx.
no AS

R4:
poly. approx.
no subpoly. approx.

M
ax

(ψ
)

R1:
exact solvable

R2:
AS
no efficient AS

R2 or R3:
constant approx.
no efficient AS

R4:
no approximation

M
in

(ψ
)

Hdeg(ψ) ≤ 2
(Hdeg(ψ) ≤ 1)

3 ≤ Hdeg(ψ) ≤ k

(Hdeg(ψ) = 2)

Hand(ψ) ≤ 1
(Hand(ψ) ≤ 1)

Hand(ψ) = 2
(empty)

3 ≤ Hand(ψ) < k

(empty)

Hand(ψ) = k

(Hand(ψ) = 2)

Figure 1 Visualizes our classification of first-order optimization problems Max(ψ) and Min(ψ)
for all k ≥ 3, in terms of the hardness parameters Hand and Hdeg (as defined in Definitions 4 and 6).
See Definition 10 for the precise definition of an (efficient) approximation scheme (AS). The pale
labels indicate how to change the conditions to obtain the picture for k = 2.

Table 1 Some interesting examples classified according to Figure 1. For each problem ψ, an
instance consists of k sets of n vectors X1, . . . , Xk ⊆ {0, 1}d. We write ψ = maxx1,...,xk /minx1,...,xk ϕ

and only list the inner formulas ϕ in the table.

Problem ψ ϕ Hdeg(ψ) Hand(ψ) Hardness regime

Maximum/Minimum
2-Agreement #{y : x1[y] = x2[y]} 2 1 R2

Maximum/Minimum
3-Agreement #{y : x1[y] = x2[y] = x3[y]} 2 2 R1

Maximum
k-Agreement, k ≥ 4 #{y : x1[y] = · · · = xk[y]} 2⌊ k

2 ⌋ k − 1 R3

Minimum
k-Agreement, k ≥ 4 #{y : x1[y] = · · · = xk[y]} 2⌊ k

2 ⌋ k − 1 R4

Maximum/Minimum
k-XOR #{y : x1[y] ⊕ · · · ⊕ xk[y]} k 1 R2

Maximum
k-Inner Product #{y : x1[y] ∧ · · · ∧ xk[y]} k k R4

Minimum
k-Inner Product #{y : x1[y] ∧ · · · ∧ xk[y]} k k R4
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into its corresponding regime depending solely on Hand(ψ) and Hdeg(ψ) – with the single
exception of formulas ψ with Hand(ψ) = 2 and Hdeg(ψ) ≥ 3. For these formulas (e.g.,
Maximum Exact-3-Cover), it remains open whether they belong to Regime 2 or 3, i.e.,
whether or not they admit an approximation scheme (see Open Problem 1).

In the full version we give natural problems for each regime (showing in particular that
each regime is indeed non-empty). A particular highlight is that we can prove existence of
constant-factor approximable formulas that do not admit an approximation scheme, such as
Maximum-4-Agreement (see Section 3, Theorem 11 for a technical discussion of the lower
bound). In the full version of this paper, we give the details on how to calculate the hardness
parameters Hand(ψ) and Hdeg(ψ) for each example in Table 1.

While the approximability of problems in the third and fourth regime seem rather
unsatisfactory, we also consider the setting of additive approximation, and show that for
every MaxSPk and MinSPk graph formula, there is an additive approximation scheme;
however, assuming the Sparse MAX-3-SAT hypothesis it cannot be an efficient one unless we
can optimize the problem exactly.

▶ Theorem 2 (Additive Approximation). For every ψ, we give an additive approximation
scheme, i.e., for every ε > 0, there is a δ > 0 such that we compute the optimum value up to
an additive ε|Y | error in time O(mk−δ).

If ψ does not belong to Regime 1, we show that unless the Sparse Max-3-SAT hypothesis
fails, for every δ > 0, there is some ε > 0 such that we cannot compute the optimum value
up to an additive ε|Y | error in time O(mk−δ).

Finally, we remark that our classification identifies general trends in MaxSPk and
MinSPk, including that exact optimizability is described by a simple algebraic criterion,
and that constant-factor approximation for minimization problems is equivalent to testing
whether the optimum is 0. We address these trends in Section 3.

On Plausibility of the Hypotheses. As tight unconditional lower bounds for polynomial-
time problems are barely existent, we give conditional lower bounds, based on established
assumptions in fine-grained complexity theory, such as SETH (see [65] for an excellent
survey). The essentially only exception is the only recently introduced Sparse Max-3-SAT
hypothesis [7]; we use this hypothesis only for giving evidence against approximation schemes
and for ruling out certain additive approximation schemes. While it is possible that this
hypothesis could ultimately be refuted, our classification describes the frontier of the current
state of the art. At the very least, our conditional lower bound for approximation schemes
reveals a rather surprising connection: To obtain an approximation scheme for polynomial-time
problems such as Maximum 4-Agreement, we need to give an exponential-time improvement
for exact solutions for Sparse Max-3-SAT!

1.2 Further Related Work
Parameterized Inapproximability. The problem settings we consider are related to a recent
and strong line of research on parameterized inapproximability, including [27, 51, 31, 59, 57]
(see [36] for a recent survey). In these contexts, one seeks to determine optimal approximation
guarantees within some running time of the form f(k)ng(k) (such as FPT running time
f(k) poly(n) or running time no(k)) for some parameter k (such as the solution size). Unfor-
tunately, many of these results do not immediately establish hardness for specific values of k.
An important exception is work by Karthik, Laekhanukit, and Manurangsi [51], which among
other results establishes inapproximability of k-Dominating Set and the Maximum k-Inner
Product within running time O(nk−ε), assuming SETH. We give a detailed comparison of
our setting to notions used in Karthik et al.’s work in the full version of this work.
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Fine-Grained Complexity of First-Order Properties. Studying the fine-grained complexity
of polynomial-time problem classes defined by first-order properties has been initiated
in [68, 40], with different settings considered in [39, 38]. In particular, for model-checking
first-order properties, [40] provides a completeness result (a fine-grained analogue of the
Cook-Levin Theorem) and [24] provides a classification theorem (a fine-grained analogue of
Schaefer’s Theorem, see also Section 3.1).

For optimization in P, [23] provides completeness theorems for MaxSPk (a fine-grained
analogue of MaxSNP-completeness of Max-3-SAT [60]). In contrast, the present paper gives
a classification theorem (building a fine-grained analogue of the approximability classifications
of optimization variants of CSPs [32, 53]).

2 Preliminaries

For an integer k ≥ 0, we set [k] = {1, . . . , k}. For a set A and integer k ≥ 0 we denote by
(

A
k

)
the set of all size-k subsets of A. Let ϕ(z1, . . . , zk) a Boolean function, and let S ⊆ [k]. Any
function obtained by instantiating all variables zi (i ̸∈ S) in ϕ by constant values is called
an S-restriction of ϕ. Finally, we write Õ(·) to hide poly-logarithmic factors and denote by
ω < 2.373 the exponent of square matrix multiplication [8].

2.1 First-Order Model-Checking
A relational structure consists of n objects and relations R1, . . . , Rℓ (of arbitrary arities)
between these objects. A first-order formula is a quantified formula of the form

ψ = (Q1x1) . . . (Qk+1xk+1)ϕ(x1, . . . , xk+1),

where ϕ is a Boolean formula over the predicates R(xi1 , . . . , xiℓ) and each Qi is either a
universal or existential quantifier. Given a (k+1)-partite structure on objects X1 ∪· · ·∪Xk+1,
the model-checking problem (or query evaluation problem) is to check whether ψ holds on
the given structure, that is, for xi ranging over Xi and by instantiating the predicates
R(xi1 , . . . , xiℓ) in ϕ according to the structure, ψ is valid.

Following previous work in this line of research [40, 24], we usually assume that the input
is represented sparsely – that is, we assume that the relational structure is written down as
an exhaustive enumeration of all records in all relations; let m denote the total number of
such entries6. The convention is reasonable as this data format is common in the context of
database theory and also for the representation of graphs (where it is called the adjacency
list representation), see Section 4 for a further discussion.

A first-order formula ψ is called a graph formula if it is defined over a single binary
predicate E(xi, xj). Many natural problems fall into this category; see [24] for a detailed
discussion on the subject.

2.2 MaxSPk and MinSPk

In analogy to first-order properties with quantifier structure ∃k∀ (with maximization instead
of ∃ and counting instead of ∀) and following the definition in [23], we now introduce the
class of optimization problems. Let MaxSPk be the class containing all formulas of the form

6 By ignoring objects not occurring in any relation, we may always assume that n ≤ O(m).
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ψ = max
x1,...,xk

#
y
ϕ(x1, . . . , xk, y), (1)

where, as before, ϕ is a Boolean formula over some predicates R(xi1 , . . . , xiℓ). We similarly
define MinSPk with “min” in place of “max”. Occasionally, we write OptSPk to refer to
both of these classes simultaneously, and we write “opt” as a placeholder for either “max” or
“min”. In analogy to the model-checking problem for first-order properties, we associate to
each formula ψ ∈ OptSPk an algorithmic problem:

▶ Definition 3 (Max(ψ) and Min(ψ)). Let ψ ∈ MaxSPk be as in (1). Given a (k + 1)-
partite structure on objects X1 ∪ · · · ∪Xk ∪ Y , the Max(ψ) problem is to compute

OPT = max
x1∈X1,...,xk∈Xk

#
y∈Y

ϕ(x1, . . . , xk, y).

We similarly define Min(ψ) for ψ ∈ MinSPk. Occasionally, for ψ ∈ OptSPk, we write
Opt(ψ) to refer to both problems simultaneously.

For convenience, we introduce some further notation: For objects x1 ∈ X1, . . . , xk ∈ Xk,
we denote by Val(x1, . . . , xk) = #y∈Y ϕ(x1, . . . , xk, y) the value of (x1, . . . , xk).

The problem Opt(ψ) can be solved in time O(mk) for all OptSPk formulas ψ, by a
straightforward extension of the model-checking baseline algorithm; see [23] for details. As
this is clearly optimal for k = 1, we will often implicitly assume that k ≥ 2 in the following.

For a clean analogy between model-checking and the optimization classes MaxSPk and
MinSPk, we will from now view model-checking as “testing for zero”. More precisely, the
model-checking problem of ∃x1 . . . ∃xk ∀y ¬ϕ(x1, . . . , xk, y) is equivalent to testing whether
Min(ψ) has optimal solution OPT = 0, where ψ = minx1,...,xk #y ϕ(x1, . . . , xk, y). We refer
to the latter problem as Zero(ψ).

Definition 3 introduces Max(ψ) and Min(ψ) as exact optimization problems (i.e., OPT
is required to be computed exactly). We say that an algorithm computes a (multiplicative)
c-approximation for Max(ψ) if it computes any value in the interval [c−1 · OPT,OPT].
Similarly, a (multiplicative) c-approximation for Min(ψ) computes a value in [OPT, c ·OPT].

3 Technical Overview

This section serves the purpose of stating our results formally, to provide the main proof ideas
and techniques, and to convey some intuition whenever possible. Due to space constraints,
we omit precise definitions of the fine-grained hypotheses here and instead refer to the full
version of this paper.

We first introduce our hardness parameters: the and-hardness Hand(ψ) borrowed from
previous work [24] (reviewed below), as well as a novel algebraic parameter that we call
degree-hardness Hdeg(ψ). In the subsequent sections, we give an overview over our various
algorithmic and hardness results based on the values Hdeg(ψ), Hand(ψ) (see Figure 1), with
the formal proof of Theorem 1 given at the end of this section.

3.1 Bringmann et al.’s Model-Checking Dichotomy
Bringmann, Fischer and Künnemann [24] established a fine-grained classification of all ∃k∀-
quantified graph properties into computationally easy and hard model-checking problems.
As our work extends that classification (and also since our results are of a similar flavor), we
briefly summarize their results. The hardness parameter presented in Definition 4 forms the
basis for the dichotomy.
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Here, and for the remainder of this section, we write ψ0 to denote the Boolean func-
tion obtained from ψ in the following way: Let ψ = optx1,...,xk

#y ϕ(x1, . . . , xk, y) be any
graph formula, where ϕ is a propositional formula over the atoms E(xi, xj) (i, j ∈ [k])
and E(xi, y) (i ∈ [k]). Consider the Boolean function obtained from ϕ by replacing ev-
ery atom E(xi, xj) (i, j ∈ [k]) by false. What remains is a Boolean function over the
k atoms E(xi, y) (i ∈ [k]) and we denote this formula by ψ0. For example, if ψ =
maxx1,x2 #y(¬E(x1, x2) ∧ E(x1, y) ∧ E(x2, y)) then we define ψ0 : {0, 1}2 → {0, 1} by
ψ0(a1, a2) = a1 ∧ a2.

As apparent in Definition 4, the core difficulty of a formula ψ is captured by ψ0 and thus
not affected by the predicates E(xi, xj). In the full version we elaborate on this phenomenon.

▶ Definition 4 (And-Hardness). Let ϕ be a Boolean function on k inputs. The and-hardness
Hand(ϕ) of ϕ is the largest integer 0 ≤ h ≤ k such that, for any index set S ∈

([k]
h

)
, there

exists some S-restriction of ϕ with exactly one satisfying assignment. (Set Hand(ϕ) = 0 for
constant-valued ϕ.) For an OptSPk graph formula ψ, we define Hand(ψ) = Hand(ψ0).

This hardness parameter essentially specifies the computational hardness of the model-
checking problems Zero(ϕ); here, Hand(ψ) ≤ 2 is the critical threshold:

▶ Theorem 5 (Model-Checking, [24]). Let ψ be a MinSPk graph formula.
If Hand(ψ) ≤ 2 and Hand(ψ) < k, then Zero(ψ) can be solved in time O(mk−δ) for some
δ > 0.
If 3 ≤ Hand(ψ) or Hand(ψ) = k, then Zero(ψ) cannot be solved in time O(mk−δ) for
any δ > 0 unless the Max-3-SAT hypothesis fails.

3.2 Exact Optimization
We are now ready to detail our results. Our main contribution is a dichotomy for the exact
solvability and approximability of Max(ψ) and Min(ψ) for all MaxSPk and MinSPk graph
formulas ψ. For the exact case, the decisive criterion for the hardness of some formula ψ can
be read off the polynomial extension of the function ψ0. Specifically, for any Boolean function
ϕ there exists a (unique) multilinear polynomial with real coefficients that computes ϕ on
binary inputs. By abuse of notation, we refer to that polynomial by writing ϕ as well. The
degree deg(ϕ) of ϕ is the degree of its polynomial extension.

As an example, consider the Exact-3-Cover property: ϕ(z1, z2, z3) is true if and only
if exactly one of its inputs z1, z2 or z3 is true. Then its unique multilinear polynomial
extension is

ϕ(z1, z2, z3) = 3z1z2z3 − 2(z1z2 + z2z3 + z3z1) + (z1 + z2 + z3),

and therefore deg(ϕ) = 3.

▶ Definition 6 (Degree Hardness). Let ϕ be a Boolean function on k inputs. The degree
hardness Hdeg(ϕ) of ϕ is the largest integer 0 ≤ h ≤ k such that, for any index set S ∈

([k]
h

)
,

there exists some S-restriction of ϕ of degree h. For an OptSPk graph formula ψ, we define
Hdeg(ψ) = Hdeg(ψ0).

It always holds that Hand(ψ) ≤ Hdeg(ψ), but in general these parameters behave very
differently. With Hdeg in place of Hand, we are able to recover the same classification
as Theorem 5 for both exact maximization and minimization:
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▶ Theorem 7 (Exact Optimization). Let ψ be an OptSPk graph formula.
If Hdeg(ψ) ≤ 2 and Hdeg(ψ) < k, then Opt(ψ) can be solved in time O(mk−δ) for some
δ > 0.
If 3 ≤ Hdeg(ψ) or Hdeg(ψ) = k, then Opt(ψ) cannot be solved in time O(mk−δ) for any
δ > 0 unless the Max-3-SAT hypothesis fails.

The algorithmic part is proven along the same lines as [24]: We first brute-force over all
but k = 3 quantifiers, and solve the remaining problem by a reduction to maximum-weight
triangle detection with small edge weights. Intuitively, since the degree of the resulting
3-variable problem is at most 2, we can express the objective as a sum of three parts depending
on two variables each (this approach is also used in a similar context in [67, Chapter 6.5]).
This allows us to label the edges of a triangle instance with corresponding parts, which can
be shown to yield average edge weight O(1).

The conditional lower bound is more interesting. Our reduction is inspired by a standard
argument proving quadratic-time hardness of the Maximum Inner Product problem (MaxIP).
That lower bound is based on the OV hypothesis, so it consists of a reduction from an
OV instance X1, X2 ⊆ {0, 1}d to an instance of MaxIP. The idea is to use a gadget that
maps every entry in xi ∈ Xi to a constant number of new entries;7 let x′

i ∈ {0, 1}O(d)

denote the vector after applying the gadget coordinate-wise. The crucial property is that
⟨x′

1, x
′
2⟩ = d− ⟨x1, x2⟩, and thus a pair of orthogonal vectors x1, x2 corresponds to a pair of

vectors x′
1, x

′
2 of maximum inner product.

To mimic the reduction for all problems which are hard in the sense of Theorem 7, we
settle for the weaker but sufficient property that the value of (x′

1, x
′
2) equals β1d− β2⟨x1, x2⟩,

for some positive integers β1, β2. It follows from our algebraic characterization of hard
functions that a gadget with such guarantees always exists. Ultimately, our hardness proof
makes use of that gadget in a similar way as for MaxIP.

The hardness part of Theorem 7 can in fact be stated in a more fine-grained way: If
some problem Opt(ψ) has degree hardness h = Hdeg(ψ) ≥ 3, then the hardness proof can
be conditioned on the weaker h-Uniform HyperClique assumption. That connection can
be complemented by a partial converse, thus revealing a certain equivalence between exact
optimization and hyperclique detection. An analogous equivalence for model-checking graph
formulas could not be proved and was left as an open problem in [24].

▶ Theorem 8 (Equivalence of Opt(ψ) and HyperClique). Let ψ be an OptSPk graph
formula of degree hardness h = Hdeg(ψ) ≥ 2.

If Opt(ψ) can be solved in time O(mk−δ) for some δ > 0, then, for some (large)
k′ = k′(k, h, δ), h-Uniform k′-HyperClique can be solved in time O(nk′−δ′) for some
δ′ > 0.
If h-Uniform (h+ 1)-HyperClique can be solved in time O(nh+1−δ) for some δ > 0,
then Opt(ψ) can be solved in time O(mk−δ′) for some δ′ > 0.

3.3 Approximation
Since Theorem 7 gives a complete classification for the exact solvability of Opt(ψ), the next
natural question is to study the approximability of properties which are hard to compute
exactly. Unlike the exact case, we use different techniques and tools to give our classification
for maximization and minimization problems.

7 Every entry a in x1 is replaced by three new coordinates (a, 1 − a, 1 − a) and every entry b in x2 is
replaced by (1 − b, b, 1 − b). The contribution to the inner product of the new vectors is equal to
a(1 − b) + (1 − a)b+ (1 − a)(1 − b) = 1 − ab.
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3.3.1 Maximization
We obtain a simple classification of all constant-factor approximable maximization problems,
conditioned on the Strong Exponential Time Hypothesis (SETH).

▶ Theorem 9 (Constant Approximation – Maximization). Let ψ be a MaxSPk graph formula.
If Hand(ψ) < k (or equivalently, if ψ0 does not have exactly one satisfying assignment),
then there exists a constant-factor approximation for Max(ψ) in time O(mk−δ) for some
δ > 0.
Otherwise, if Hand(ψ) = k (or equivalently, ψ0 has exactly one satisfying assignment),
then there exists no constant-factor approximation for Max(ψ) in time O(mk−δ) for any
δ > 0, unless SETH fails.

We give a high-level explanation of our proof by focusing on two representative problems:
On the one hand, strong conditional hardness results have been shown for the MaxIP
problem [4, 28]. When ψ0 has a single satisfying assignment, Max(ψ) is equivalent (up to
complementation) to MaxIP, so we adapt the hardness results for our setting.

On the other hand, consider the Furthest Neighbor problem: Given two sets of
bit-vectors X1, X2 ⊆ {0, 1}d, compute the maximum Hamming distance between vectors
x1 ∈ X1 and x2 ∈ X2. There exists a simple linear-time 3-approximation for this problem:
Fix some x1 ∈ X1 and compute its furthest neighbor x2 ∈ X2. Then compute the furthest
neighbor x′

1 ∈ X1 of x2 and return the distance between x′
1 and x2 as the answer. By applying

the triangle inequality twice, it is easy to see that this indeed yields a 3-approximation.
That argument generalizes for approximating Max(ϕ) whenever ψ0 satisfies the following
property: If α is a satisfying assignment of ψ0, then the component-wise negation of α is
also satisfying. Finally, if ψ0 has at least two satisfying assignments, then Max(ψ) can be
reduced to this special case via a reduction which worsens the approximation ratio by at
most a constant factor. The essential insight for that last step is that we can always “cover”
all satisfying assignments by only two satisfying assignments, as there always exists one
satisfying assignment which contributes a constant fraction (depending on k) to the optimal
value.

We give a finer-grained view of the classification in Theorem 9 in two ways. First, we
want to isolate properties which admit arbitrarily good constant-factor approximations. We
make that notion precise in the following definition:

▶ Definition 10 (Approximation Scheme). Let ψ be an OptSPk formula. We say that Opt(ψ)
admits an approximation scheme if for any ε > 0 there exists some δ > 0 and an algorithm
computing a (1 + ε)-approximation of Opt(ψ) in time O(mk−δ).8

In the following theorem, we identify some formulas which admit such an approximation
scheme, and some formulas for which this is unlikely:

▶ Theorem 11 (Approximation Scheme – Maximization). Let ψ be a MaxSPk graph formula.
If Hand(ψ) ≤ 1, then there exists a randomized approximation scheme for Max(ψ).
If 3 ≤ Hand(ψ) or Hand(ψ) = k, then there exists no approximation scheme for Max(ψ)
unless the Sparse Max-3-SAT hypothesis fails.

Unfortunately, we were not able to close the gap in Theorem 11, and it remains open
whether problems with Hand(ϕ) = 2 admit approximation schemes. In Section 4, we give a
specific example falling into this category.

8 We stress that in our work, ε is always a constant and cannot depend on m.
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For the first item, we give approximation schemes for any Max(ψ) with Hand(ψ) = 1 via
a reduction to Furthest Neighbor, which, as mentioned in the introduction, admits an
approximation scheme.

The lower bound is more interesting: By Theorem 9 we know that if ψ has and-hardness
Hand(ψ) < k, then it admits a constant-factor approximation. Nevertheless, the lower
bound in Theorem 9 only addresses formulas of and-hardness Hand(ψ) = k. In particular,
Theorem 11 identifies a class of problems for which some (fixed) constant-factor approximation
is best-possible in terms of approximation.

At a technical level, we make use of interesting machinery to obtain the lower bound.
The starting point is the distributed PCP framework, which was introduced in [4] and further
strengthened in [62, 28] to give hardness of approximation for Maximum k-Inner Product
(k-MaxIP). In this case, we cannot use this tool directly, since it crucially relies on the fact
that the target problem Max(ψ) has full hardness Hand(ψ) = k.9 Instead, we first show
Max-3-SAT-hardness of the following intermediate problem:

▶ Problem 12 ((k, 3)-OV). Given sets of n vectors X1, . . . , Xk ⊆ {0, 1}d, where each
coordinate y ∈ [d] is associated to three active indices a, b, c ∈ [k], detect if there are vectors
x1 ∈ X1, . . . , xk ∈ Xk such that for all y ∈ [d], it holds that xa[y] · xb[y] · xc[y] = 0 where
a, b, c are the active indices at y.

We then provide a gap introducing reduction from (k, 3)-OV to Max(ψ), in the same
spirit as the PCP reduction gives such a reduction from k-OV to k-MaxIP. This involves
several technical steps as outlined in Figure 2. At a high level, we decompose a (k, 3)-OV
instance into a combination of multiple 3-OV instances and use the PCP reduction as a black
box on each of these. After combining the outputs of the reduction, we obtain instances
of Max(ψ) with the desired gap. The issue with this approach is that the PCP reduction
blows up the dimension of the input vectors exponentially,10 which makes the reduction
inapplicable to our case if we start from a moderate-dimensional (k, 3)-OV instance. To
show that (k, 3)-OV does not even have a O(mk−δ)-time algorithm when the dimension is
d = O(log n), we use the stronger Sparse Max-3-SAT hypothesis.11 See the full version of
this paper for further discussion of this hypothesis.

The second way in which we get a closer look at Theorem 9 is by inspecting the hardest
regime, i.e., when Hand(ψ) = k:

▶ Theorem 13 (Polynomial-Factor Approximation). Let ψ be a MaxSPk graph formula of
full and-hardness Hand(ψ) = k.

For every ε > 0, there exists some δ > 0 such that an mε-approximation for Max(ψ) can
be computed in time O(mk−δ).
For every δ > 0, there exists an ε > 0 such that there exists no mε-approximation for
Max(ψ) in time O(mk−δ) unless SETH fails.

The lower bound is obtained by applying the subsequent improvements on the distributed
PCP framework by [62, 28, 51], which improve the parameters of the reduction via algebraic
geometry codes and expander graphs. For the upper bound, we give a simple algorithm
which exploits the sparsity of the instances.

9 More precisely, the reduction exploits the fact that ψ0 has a unique satisfying assignment to encode the
communication protocol used in the reduction.

10 An instance of k-OV on dimension d = c log n is reduced to multiple instances of k-MaxIP on dimension
exp(c) log n.

11 Morally, just as SETH implies the hardness of low-dimensional OV, the Sparse Max-3-SAT Hypothesis
implies the hardness of low-dimensional (k, 3)-OV.
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Figure 2 The chain of reductions from Sparse Max-3-SAT to VMax(ψ) involving two main
steps. Both proofs involve several intermediate steps as illustrated in the gray parts.

3.3.2 Minimization
There is an easier criterion for the hardness of approximating minimization problems. Namely,
observe that giving a multiplicative approximation to a minimization problem Min(ψ) is at
least as hard as testing if the optimal value is zero (recall that we refer to this problem as
Zero(ψ)). More precisely, suppose that we are given an instance with OPT = 0. Then any
multiplicative approximation must return an optimal solution.

It turns out that this is the only source of hardness for Min(ψ) problems. We show a
fine-grained equivalence of deciding Zero(ψ) and approximating Min(ψ) within a constant
factor:

▶ Theorem 14 (Constant Approximation is Equivalent to Testing Zero). Let ψ be a MinSPk

graph formula. Via a randomized reduction, there exists a constant-factor approximation
algorithm for Min(ψ) in time O(mk−δ) for some δ > 0 if and only if Zero(ψ) can be solved
in time O(mk−δ′) for some δ′ > 0.

To reduce approximating Min(ψ) to Zero(ψ), we make use of locality-sensitive hashing
(LSH). This technique was for instance used to solve the Approximate Nearest Neighbors
problem in Hamming spaces [44], and was recently adapted by Chen and Williams to show
that Minimum Inner Product can be reduced to OV [30]. The latter result constitutes a
singular known case for the general trend in MinSPk revealed by Theorem 14. In comparison,
our reduction is simpler and more general, but gives weaker guarantees on the constant
factor.

We specifically use LSH for a reduction from approximating Min(ψ) to the intermediate
problem of listing solutions to Zero(ψ) – the better the listing algorithm performs, the
better the approximation guarantee. For instance, an algorithm listing L solutions in time
O(mk−δ · Lδ/k) for some δ > 0 results in a constant-factor approximation, while a listing
algorithm in time Õ(mk−δ + L) leads to an approximation scheme. To finish the proof
of Theorem 14, we show that any Zero(ψ) problem with an O(mk−δ)-time decider, for some
δ > 0, also admits a listing algorithm in time O(mk−δ · Lδ/k).

Since the hardness of Zero(ψ) is completely classified [24], we obtain the following
dichotomy as a consequence of Theorem 14:
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▶ Corollary 15 (Constant Approximation – Minimization). Let ψ be a MinSPk graph formula.
If Hand(ψ) ≤ 2 and Hand(ψ) < k, then there exists a randomized constant-factor approxi-
mation algorithm for Min(ψ) in time O(mk−δ) for some δ > 0.
If 3 ≤ Hand(ψ) or Hand(ψ) = k, then computing any approximation for Min(ψ) in time
O(mk−δ) for any δ > 0 is not possible unless the Max-3-SAT hypothesis fails.

Similar to the maximization case, let us next consider approximation schemes for mini-
mization problems. We can reuse the general framework outlined in the previous paragraphs
to obtain an approximation scheme by giving an output-linear listing algorithm in time
Õ(mk−δ + L), for all formulas with and-hardness at most Hand(ψ) ≤ 1.

▶ Theorem 16 (Approximation Scheme – Minimization). Let ψ be a MinSPk graph formula.
If Hand(ψ) ≤ 1, then there exists a randomized approximation scheme for Min(ψ).

3.4 Efficient (Multiplicative) Approximation Schemes

Theorems 11 and 16 show that if Hand(ψ) ≤ 1, then we can give approximation schemes
for Opt(ψ). In the full version, we complement this result by ruling out the existence of
efficient approximation schemes for most regimes. We say that Opt(ψ) admits an efficient
(multiplicative) approximation scheme if there is some fixed constant δ > 0 such that for any
ε > 0, a multiplicative (1 + ε)-approximation for Opt(ψ) can be computed in time O(mk−δ).

▶ Theorem 17. Let ψ be an OptSPk graph formula. If 3 ≤ Hdeg(ψ) or Hdeg(ψ) = k, then
there exists no efficient approximation scheme for Opt(ψ) assuming the Sparse Max-3-SAT
Hypothesis.

3.5 Proving the Main Theorem

We can now put things together to prove Theorem 1.

Proof of Theorem 1. We only sketch the proof for a maximization problem ψ with k ≥ 3;
the other cases are similar. We show how to classify ψ into one of the four stated regimes
with a case distinction based on the hardness parameters Hand(ψ) and Hdeg(ψ). This case
distinction can also be read off Figure 1.

If Hdeg(ψ) ≤ 2: By Theorem 7, ψ is efficiently optimizable, so it lies in R1.
Otherwise, it holds that 3 ≤ Hdeg(ψ) ≤ k. In this case, we make a further distinction:
Hand(ψ) ≤ 1: By Theorem 11, ψ admits an approximation scheme but by Theorem 17
not an efficient one, so it lies in R2.
Hand(ψ) = 2: By Theorem 9, ψ admits an efficient constant-factor approximation
but by Theorem 17, it does not admit an efficient approximation scheme. Thus,
depending on whether ψ admits an approximation scheme or not, it lies in R2 or R3.
(As mentioned below Theorem 1, this is the single case where we cannot place the
formula in its precise regime, see also Open Problem 1.)
3 ≤ Hand(ψ) < k: By Theorem 9, ψ admits an efficient constant factor approximation
but by Theorem 11 it has no approximation scheme, so it lies in R3.
Hand(ψ) = k: By Theorem 13, ψ admits an efficient polynomial-factor approximation,
and this is best possible, so it lies in R4. ◀
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4 Discussion and Open Problems

Our investigation reveals all possible approximability types (in better-than-exhaustive-search
time) for general classes of polynomial-time optimization problems, namely graph formulas in
MaxSPk and MinSPk. Our results, which give an almost complete characterization, open
up the following questions:

Can we extend our classification beyond graph formulas, i.e., when we allow more binary
relations, or even higher-arity relations? Such settings include, e.g., generalizations of
Max k-XOR from F2 to Fq, or variants of the densest subgraph problem on hypergraphs.
In our setting, each variable xi ranges over a separate set Xi, also known as a multichro-
matic setting. We leave it open to transfer our results to the monochromatic setting (see
e.g. [52]).
While we consider running times expressed in the input size (as usual in database contexts),
it would also be natural to consider parameterization in the number n of objects in the
relational structure, see [68].

Besides these extensions, we ask whether one can close the remaining gap in our classification:
Do formulas ψ with Hand(ψ) = 2 and Hdeg(ψ) ≥ 3 admit an approximation scheme? As a
specific challenge, we give the following open problem:

▶ Open Problem 1. Is there an approximation scheme for Maximum Exact-3-Cover (or its
minimization variant)? Specifically, can we prove or rule out that for every ε > 0, there is
some δ > 0 such that we can (1 + ε)-approximate Maximum Exact-3-Cover in time O(m3−δ)?

It appears likely that showing existence of an approximation scheme for Maximum
Exact-3-Cover would lead to a full characterization of MaxSPk.

Finally, while we focused on the qualitative question whether or not exhaustive search
can be beaten, a follow-up question is to determine precise approximability-time tradeoffs. In
this vein, consider the well-studied Maximum k-Cover problem: A simple linear-time greedy
approach is known to establish a (1 − 1/e)−1-approximation [46]. Subsequent lower bounds
show that this is conditionally best possible in polynomial-time [35] and even f(k)mo(k)-time
(under Gap-ETH) [31, 59]. On the other hand, for every fixed k, we show (1) existence of
an approximation scheme, but (2) rule out an efficient one assuming SETH, i.e., for every
δ > 0, there is some ε > 0 such that an (1 + ε)-approximation requires time Ω(mk−δ).

▶ Open Problem 2. Let k ≥ 2. Can we determine, for every 1 ≤ γ ≤ (1 − 1/e)−1, the
optimal exponent α of the fastest γ-approximation for Maximum k-Cover running in time
O(mα±o(1)), assuming plausible fine-grained hardness assumptions?

Note that the extreme cases for γ = 1 and γ = (1 − 1/e)−1 are already settled and that
[59] shows that for all immediate cases, α must have a linear dependence on k, assuming
Gap-ETH.
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Abstract
We present new exact and approximation algorithms for 0-1-Knapsack and Unbounded Knapsack:

Exact Algorithm for 0-1-Knapsack: 0-1-Knapsack has known algorithms running in time Õ(n +
min{n · OPT, n · W, OPT2, W 2}) [Bellman ’57], where n is the number of items, W is the
weight budget, and OPT is the optimal profit. We present an algorithm running in time
Õ(n + (W + OPT)1.5). This improves the running time in case n, W, OPT are roughly equal.
Exact Algorithm for Unbounded Knapsack: Unbounded Knapsack has known algorithms running
in time Õ(n + min{n · pmax, n · wmax, p2

max, w2
max}) [Axiotis, Tzamos ’19, Jansen, Rohwedder ’19,

Chan, He ’22], where n is the number of items, wmax is the largest weight of any item, and pmax is
the largest profit of any item. We present an algorithm running in time Õ(n + (pmax + wmax)1.5),
giving a similar improvement as for 0-1-Knapsack.
Approximating Unbounded Knapsack with Resource Augmentation: Unbounded Knapsack has a
known FPTAS with running time Õ(min{n/ε, n + 1/ε2}) [Jansen, Kraft ’18]. We study weak
approximation algorithms, which approximate the optimal profit but are allowed to overshoot
the weight constraint (i.e. resource augmentation). We present the first approximation scheme
for Unbounded Knapsack in this setting, achieving running time Õ(n + 1/ε1.5). Along the way,
we also give a simpler FPTAS with lower order improvement in the standard setting.

For all of these problem settings the previously known results had matching conditional lower
bounds. We avoid these lower bounds in the approximation setting by allowing resource augmentation,
and in the exact setting by analyzing the time complexity in terms of weight and profit parameters
(instead of only weight or only profit parameters).

Our algorithms can be seen as reductions to Min-Plus-Convolution on monotone sequences with
bounded entries. These structured instances of Min-Plus-Convolution can be solved in time Õ(n1.5)
[Chi, Duan, Xie, Zhang ’22] (in contrast to the conjectured n2−o(1) lower bound for the general
case). We complement our results by showing reductions in the opposite direction, that is, we show
that achieving our results with the constant 1.5 replaced by any constant < 2 implies subquadratic
algorithms for Min-Plus-Convolution on monotone sequences with bounded entries.
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1 Introduction

In this paper we present new exact and approximation algorithms for Knapsack problems.

Exact Pseudopolynomial Algorithms for Unbounded Knapsack. In the Unbounded
Knapsack problem we are given a set of n items, where each item has a weight wi and
a profit pi, along with a knapsack capacity W . The goal is to find a multiset of items
which maximizes the total profit and has total weight at most W . The textbook dynamic
programming algorithm for Unbounded Knapsack due to Bellman [6] runs in time O(nW )
or in time O(n · OPT), where OPT is the value of the optimal solution. Recent literature
on Unbounded Knapsack studies alternative parameters: Axiotis and Tzamos [3] and
Jansen and Rohwedder [25] independently presented algorithms running in time Õ(w2

max)
and Õ(p2

max),1 where wmax is the largest weight of any item and pmax the largest profit of
any item – in general wmax could be much smaller than W and pmax much smaller than
OPT, so these algorithms improve upon Bellman’s algorithm for some parameter settings.
Chan and He [15] presented further improvements2 achieving time Õ(n wmax) and Õ(n pmax)
Note that when wmax ≈ pmax ≈ n all mentioned algorithms require at least quadratic time
Ω(n2). Can we overcome this quadratic barrier? In this paper we answer this positively by
considering the combined parameter wmax + pmax.

▶ Theorem 1. Unbounded Knapsack can be solved in expected time Õ(n + (pmax +
wmax)1.5).

This result is particularly interesting in light of recent fine-grained lower bounds for
Unbounded Knapsack. Indeed, for each previous result that we have mentioned above, a
matching conditional lower bound is known [19, 28]. For example, Unbounded Knapsack
cannot be solved in time O((n + W )2−δ) for any constant δ > 0 under a plausible hypothesis.
Inspecting these conditional lower bounds, we observe that they construct hard instances
where only the profit parameters or only the weight parameters are under control; one of
the two must be very large to obtain a hardness reduction. We thus avoid these conditional
lower bounds by considering the combined profit and weight parameter wmax + pmax.

Exact Pseudopolynomial Algorithms for 0-1 Knapsack. The 0-1 Knapsack problem is
the variant of Unbounded Knapsack where every input item can appear at most once in
any solution. Bellman’s algorithm also solves 0-1 Knapsack in time O(nW ) or O(n · OPT).
However, the landscape is more diverse when considering other parameters. In particular,
it is open whether 0-1 Knapsack can be solved in time Õ(n + w2

max) or Õ(n + p2
max).3

Table 1 shows a non-exhaustive list of pseudopolynomial-time algorithms for 0-1 Knapsack
using different combinations of the parameters n, wmax, pmax, W, OPT. Note that when all

1 We use the notation Õ(T ) = ∪c>0O(T logc T ) to supress polylogarithmic factors
2 Note that we can assume that n ≤ wmax without loss of generality since if there are multiple items with

the same weight, we can keep only the one with the largest profit. Similarly, n ≤ pmax.
3 This gap is analogous to the case of Subset Sum where we are given a set of numbers X and a target

number t. For the unbounded case, where the goal is to find whether a multiset of items in X sums to
t, Jansen and Rohwedder [25] gave an algorithm in time Õ(n + u) where u is the largest number in
the input. For the more standard “0-1” case where we ask for a subset of X summing to t, the best
known running times are Õ(n + t) [8, 26], O(nu) [33], Õ(n + u2/n) by combining [21] and [8, 26], and
Õ(n + u3/2) by combining [21] and [8, 26] and [33]; see also [11, 34] for generalizations to X being a
multiset and related results.
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Table 1 Non-exhaustive list of pseudopolynomial-time algorithms for 0-1 Knapsack.

Running Time Reference

O(n · min{W, OPT}) [6]

O(n · pmax · wmax) [33]

Õ(n + wmax · W ) [27, 5, 3]

Õ(n + pmax · W ) [5]

Õ(n · min{w2
max, p2

max}) [3]

Õ((n + W ) · min{wmax, pmax}) [5]

O(n + min{w3
max, p3

max}) [34]

Õ(n + (W + OPT)1.5) Theorem 2

these parameters are bounded by O(n), all existing algorithms require at least quadratic
time Ω(n2). In this paper we show that by considering the combined weight and profit
parameter W + OPT we can overcome this quadratic barrier.

▶ Theorem 2. There is a randomized algorithm for 0-1 Knapsack that runs in time
Õ(n + (W + OPT)1.5) and succeeds with high probability.

Similar to the unbounded case, matching conditional lower bounds ruling out time
O((n + W )2−δ) and O((n + OPT)2−δ) for any δ > 0 are known [19, 28]. These lower bounds
construct hard instances where only one of W, OPT is under control, the other needs to be
very large. We thus avoid these lower bounds by considering the combined weight and profit
parameter W + OPT.

Approximation Schemes for Unbounded Knapsack. Since Unbounded Knapsack is
well known to be NP-hard, it is natural to study approximation algorithms. In particular, a
fully polynomial-time approximation scheme (FPTAS) given 0 < ε < 1 computes a solution
x with total weight w(x) ≤ W and total profit p(x) ≥ (1 − ε)OPT in time poly(n, 1/ε). The
first FPTAS for Unbounded Knapsack was designed by Ibarra and Kim in 1975 [23] and
runs in time Õ(n + (1/ε)4). In 1979 Lawler [30] improved the running time to Õ(n + (1/ε)3).
This was the best known until Jansen and Kraft in 2018 [24] presented an FPTAS running
in time Õ(n + (1/ε)2). This algorithm has a matching conditional lower ruling out time
O((n + 1/ε)2−δ) for any δ > 0 [19, 28, 32].

We present a new FPTAS for Unbounded Knapsack which is (as we believe) simpler
than Jansen and Kraft’s, and has a lower order improvement in the running time:

▶ Theorem 3. Unbounded Knapsack has an FPTAS with running time Õ

(
n+ (1/ε)2

2Ω(
√

log(1/ε))

)
.

Bringmann and Nakos [10] recently gave an FPTAS for the related Subset Sum problem
which achieves the same running time.

Weak Approximation for Unbounded Knapsack. Motivated by the matching upper and
conditional lower bounds for FPTASs for Unbounded Knapsack, we study the relaxed
notion of weak approximation as coined in [32]: we relax the weight constraint and seek a
solution x with total weight w(x) ≤ (1 + ε) · W and total profit p(x) ≥ (1 − ε)OPT. Note
that OPT is still the optimal value of any solution with weight at most W . This can be
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interpreted as bicriteria approximation (approximating both the weight and profit constraint)
or as resource augmentation (the optimal algorithm is allowed weight W while our algorithm
is allowed a slightly larger weight of (1 + ε) · W ). All of these are well-established relaxations
of the standard (=strong4) notion of approximation. Such weaker notions of approximation
are typically studied when a PTAS for the strong notion of approximation is not known.
More generally, studying these weaker notions is justified whenever there are certain limits for
strong approximations, to see whether these limits can be overcome by relaxing the notion of
approximation. In particular, we want to understand whether this relaxation can overcome
the conditional lower bound ruling out time O((n + 1/ε)2−δ). For the related Subset Sum
problem this question has been resolved positively: Bringmann and Nakos [10] conditionally
ruled out strong approximation algorithms in time O((n+1/ε)2−δ) for any δ > 0, but Mucha,
Węgrzycki and Włodarczyk [32] designed a weak FPTAS in time Õ(n + (1/ε)5/3).

In this paper, we give a positive answer for Unbounded Knapsack:

▶ Theorem 4. Unbounded Knapsack has a weak approximation scheme running in
expected time Õ(n + ( 1

ε )1.5).

Our theorem gives reason to believe that resource augmentation indeed makes the problem
easier. Specifically, obtaining a strong approximation scheme with the same running time as
our weak one would refute the existing conditional lower bound for strong approximation.

Min-Plus-Convolution. All conditional lower bounds mentioned above are based on a
hypothesis about the MinConv problem: Given sequences A, B ∈ Zn compute their (min, +)-
convolution, which is the sequence C ∈ Z2n with C[k] = mini+j=k A[i]+B[j].5 The MinConv
problem can be trivially solved in time O(n2). This can be improved to time n2/2Ω(

√
log n)

via a reduction to (min, +)-matrix product due to Bremner et al. [7], and using Williams’
algorithm for the latter [37] (which was derandomized later by Chan and Williams [17]).
The lack of truly subquadratic algorithms despite considerable effort has led researchers
to postulate the MinConv hypothesis, namely that MinConv cannot be solved in time
O(n2−δ) for any constant δ > 0 [19, 28]. Many problems are known to have conditional lower
bounds from the MinConv hypothesis, see, e.g., [4, 14, 19, 25, 28, 29].

Central to our work is a reduction from MinConv to Unbounded Knapsack shown
independently by Cygan et al. [19] and Künnemann et al. [28]. In particular, they showed
that if Unbounded Knapsack on n items and W = O(n) can be solved in subquadratic
time, then MinConv can be solved in subquadratic time. This reduction immediately implies
matching conditional lower bounds for the previously known exact algorithms with running
times O(n · W ), Õ(w2

max) and Õ(n · wmax), as mentioned earlier.
A small modification of this reduction extends to the dual case, i.e., an exact subquadratic-

time algorithm for Unbounded Knapsack with OPT = O(n) would result in a subquadratic-
time algorithm for MinConv. This establishes matching conditional lower bounds for the
algorithms in time O(n·OPT), Õ(p2

max) and Õ(n·pmax). Moreover, by setting ε = Θ(1/OPT),
an FPTAS for Unbounded Knapsack would yield an exact algorithm for MinConv,
establishing that the Õ(n+(1/ε)2)-time FPTAS is conditionally optimal. This last observation
was pointed out in [32].

4 From now on, by “strong” approximation we mean the standard (non-weak) notion of approximation.
5 If we replace the min by a max, we obtain the MaxConv problem, which is equivalent to MinConv

after negating the sequences. Therefore, we will sometimes use these two names interchangeably.
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In fact, the reduction due to Cygan et al. [19] is even an equivalence, showing that
Unbounded Knapsack is intimately connected to MinConv. The same reduction is also
known for 0-1 Knapsack [19, 28], so a similar discussion applies to 0-1 Knapsack.

Bounded Monotone Min-Plus-Convolution. Despite its postulated hardness, there are
restricted families of instances of MinConv for which subquadratic algorithms are known, see
e.g. [9, 12, 16, 18]. Central to this paper is the case when the input sequences A, B ∈ Zn are
monotone non-decreasing and have entries bounded by O(n); we call this task BMMinConv.

In a celebrated result, Chan and Lewenstein gave an algorithm for BMMinConv that
runs in expected time O(n1.859) [16]. As a big hammer, their algorithm uses the famous
Balog-Szemerédi-Gowers theorem from additive combinatorics. Very recently, Chi, Duan,
Xie and Zhang showed how to avoid this big hammer and improved the running time to
expected Õ(n1.5) [18].

All of our results mentioned so far use this BMMinConv algorithm as a subroutine.
That is, our algorithms are reductions from various Knapsack problems to BMMinConv.

Equivalence with Bounded Monotone Min-Plus-Convolution. We complement our results
by showing reductions in the opposite direction: Following the same chain of reductions
as in [19, 28] but starting from bounded monotone instances of (min, +)-convolution, we
reduce BMMinConv to O(n) instances of Unbounded Knapsack with O(

√
n) items each,

where it holds that wmax, pmax, W and OPT are all bounded by O(
√

n). Instantiating this
reduction for the exact and approximate setting, we show the following theorem.

▶ Theorem 5 (Equivalence). For any problems A and B from the following list, if A can be
solved in time Õ(n2−δ) for some δ > 0, then B can be solved in randomized time Õ(n2−δ/2):
1. BMMaxConv on sequences of length n

2. Unbounded Knapsack on n items and W, OPT = O(n)
3. 0-1 Knapsack on n items and W, OPT = O(n)
4. Weak (1 + ε)-approximation for Unbounded Knapsack on n items and ε = Θ(1/n)

On the one hand, Theorem 1 solves Unbounded Knapsack in time Õ(n + (pmax +
wmax)1.5) by using Chi, Duan, Xie and Zhang’s subquadratic BMMinConv algorithm [18].
On the other hand, Theorem 5 shows that any algorithm solving Unbounded Knapsack
in time Õ(n + (pmax + wmax)2−δ) can be transformed into a subquadratic BMMinConv
algorithm. This shows that both our exact and approximation algorithms take essentially the
only possible route to obtain subquadratic algorithms, by invoking a BMMinConv algorithm.

Is randomness necessary? The algorithms given by Theorems 1, 2 and 4 are all randomized.
If we insist on deterministic algorithms, we note that by applying Chan and Lewenstein’s
deterministic Õ(n1.864)-time algorithm for BMMaxConv [16], we can obtain deterministic
versions of Theorem 1 and Theorem 4 with exponent 1.864 instead of 1.5 (i.e. the only part
where we use randomness is in applying Chi, Duan, Xie and Zhang’s algorithm [18]). On the
other hand, we do not know6 how to derandomize Theorem 2.

6 Our algorithm closely follows Bringmann’s algorithm for Subset Sum [8] whose derandomization is an
open problem.
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Organization of the extended abstract. Due to space constraints, we only include the
details of our exact algorithm for Unbounded Knapsack and 0-1 Knapsack in the main
part of this manuscript. We defer our approximation schemes and the equivalence between
BMMinConv and knapsack problems to the full version.

1.1 Technical Overview

Exact algorithm for Unbounded Knapsack. In Section 3 we present our exact algorithm
for Unbounded Knapsack. Let (I, W ) be an instance of Unbounded Knapsack. We
denote by Pi[0, . . . , W ] the array where Pi[j] is the maximum profit of a solution of weight
at most j using at most 2i items. Since each item has weight at least 1, any feasible solution
consists of at most W items. Thus, our goal is to compute the value P⌈log W ⌉[W ] = OPT.

The natural approach is to use dynamic programming: since P0 consists of solution of at
most one item, it can be computed in time O(n). For i > 0 we can compute Pi[0, . . . , W ]
by taking the (max, +)-convolution of Pi−1[0, . . . , W ] with itself. This gives an algorithm in
time O(W 2 log W ).

Jansen and Rohwedder [25] and Axiotis and Tzamos [3] showed that instead of convolving
sequences of length W , it suffices to convolve only O(wmax) entries of Pi−1 in each iteration.
This improves the running time to O(w2

max log W ) by using the naive algorithm for (max, +)-
convolution. The approach of Jansen and Rohwedder [25] is as follows. Suppose x is the
optimal solution for a target value Pi[j]. They showed that x can be split into two solutions
x1, x2 such that (i) the number of items in each part is at most 2i−1 and (ii) the difference
between the weights of both parts is at most O(wmax). Thus, (i) guarantees that both
x1 and x2 are optimal solutions for two entries of Pi−1, and (ii) implies that these entries
lie in an interval in Pi−1 of length O(wmax). In this way, they can afford to perform the
(max, +)-convolution of only O(wmax) entries in Pi−1.

To show the existence of such a partitioning of x they make use of Steinitz’ Lemma [36],
which shows that any collection of m vectors in Rd with infinity norm at most 1, whose sum is
0, can be permuted such that every prefix sum has norm at most O(d) (see Lemma 11 for the
precise statement). The partitioning of x follows from Steinitz’ Lemma by taking the weights
of the items picked by x as 1-dimensional vectors. The usage of Steinitz’ Lemma to reduce
the number of states in dynamic programs was pioneered by Eisenbrand and Weismantel [20],
and further refined by Jansen and Rohwedder [25].

In our algorithm, we use Steinitz’ Lemma in a similar way to split the number of items
and the weight of x, but additionally we use it to ensure that the profits of the solutions x1, x2
differ by at most O(pmax) (see Lemma 12). In this way, by carefully handling the subproblems
Pi−1 we can enforce that the values of the O(wmax) entries that need to be convolved have
values in a range of size O(pmax). Since the arrays Pi are monotone non-decreasing, we
can then apply the algorithm for BMMaxConv, and thus handle each subproblem in time
Õ((pmax + wmax)1.5).

Exact algorithm for 0-1 Knapsack. Cygan et al. [19] showed that there is a reduction
from 0-1 Knapsack to MaxConv. More precisely, they showed that if MaxConv can
be solved in time T (n), then 0-1 Knapsack can be solved in randomized time Õ(T (W )).
Their reduction is a generalization of Bringmann’s Subset Sum algorithm [8], which can
be seen as a reduction from Subset Sum to Boolean convolution. Cygan et al. showed
that the reduction for 0-1 Knapsack can be obtained by essentially replacing the Boolean
convolutions by (max, +)-convolutions in Bringmann’s algorithm.
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In Section 4 we observe that this reduction produces instances of MaxConv which
are monotone non-decreasing and have entries bounded by OPT. That is, we obtain
BMMaxConv instances of size O(W + OPT), and following the analysis of [19] we obtain
an algorithm for 0-1 Knapsack in time Õ(n + (W + OPT)1.5), which yields Theorem 2.

Approximating Unbounded Knapsack. Let (I, W ) be an instance of Unbounded
Knapsack. Consider the array P[0, . . . , W ] where P[j] is the maximum profit of a so-
lution with weight at most j. In particular, P [W ] = OPT is the optimal value of the instance.
We will use that the sequence P[0, . . . , W ] is monotone.

We present the following simple algorithm to compute P [0, . . . , W ], which is based on an
algorithm for (unbounded) Subset Sum from Bringmann [8]. Fix an optimal solution x for
an entry P [j]. We can split x into three smaller solutions x1, x2, x3 such that the total weight
of both x1 and x2 is at most j/2, and x3 is consists of at most one item. It follows that if
we know P [0, . . . , j/2], then we can compute P [0, . . . , j] by taking the (max, +)-convolution
of P[0, . . . , j/2] with itself and possibly adding one extra item from I. In particular, if
we compute all entries P[0, . . . , W/n] as a base case using dynamic programming in time
O(W ), then we can compute the entire sequence P [0, . . . , W ] by applying O(log n) (max, +)-
convolutions on sequences of length at most W . The overall running time is O(W 2 log n).

Although this exact algorithm is not particularly exciting or new, it can be nicely extended
to the approximate setting. We show that by replacing the exact (max, +)-convolutions with
approximate ones, we obtain an FPTAS for Unbounded Knapsack in time Õ(n+1/ε2). To
this end, we preprocess the item set to get rid of light items with weight smaller than ε · W ,
and cheap items with profit smaller than ε · OPT, while decreasing the optimal value by only
O(ε · OPT). We now proceed as in the exact case, starting with the base case P [0, . . . , ε · W ],
which is all-zeroes since there are no more light items. Then we can build up P [0, . . . , 2jεW ]
for increasing values of j by performing approximate (max, +)-convolutions, until we have
computed P[0, . . . , W ]. For approximating (max, +)-convolutions we use an algorithm due
to Chan [13], which in our setting without cheap items runs in time Õ(1/ε2). Thus, after
applying the preprocessing in time O(n), we compute a (1 + ε)-approximation of P [0, . . . , W ]
by applying O(log 1/ε) approximate (max, +)-convolutions in overall time Õ(n + (1/ε)2).

Then, we treat the case of weak approximation. The main steps of the algorithm are
virtually the same as before. The crucial difference is that now we can afford to round
weights. In this way, we can adapt Chan’s algorithm and construct MaxConv instances
which are monotone non-decreasing and have bounded entries. This yields BMMaxConv
instances, and by using Chi, Duan, Xie and Zhang’s algorithm for this special case [18], we
can compute a weak approximation of (max, +)-convolution in time Õ((1/ε)1.5). By similar
arguments as for the strong approximation, this yields a weak approximation scheme running
in time Õ(n + (1/ε)1.5).

Equivalence between BMMinConv and Knapsack problems. As mentioned earlier in the
introduction, Cygan et al. [19] and Künnemann et al. [28] independently showed a reduction
from MinConv to Unbounded Knapsack. In the full version of the paper, we show that
following the same chain of reductions from MaxConv to Unbounded Knapsack but
instead starting from BMMaxConv, with minor adaptations we can produce instances
of Unbounded Knapsack with W, OPT = O(n). Together with our exact algorithm for
Unbounded Knapsack, which we can phrase as a reduction to BMMaxConv, we obtain
an equivalence of BMMaxConv and Unbounded Knapsack with W, OPT = O(n) – if
one of these problems can be solved in subquadratic time, then both can.
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Note that for Unbounded Knapsack with W, OPT = O(n) a weak (1+ε)-approximation
for ε = Θ(1/n) already computes an exact optimal solution. This yields the reduction from
BMMaxConv to the approximate version of Unbounded Knapsack. We similarly obtain
a reduction to 0-1 Knapsack with W, OPT = O(n). This yields our equivalences from
Theorem 5.

2 Preliminaries

We write N = {0, 1, 2, . . . }. For t ∈ N we let [t] = {0, 1, . . . , t}. For reals a ≤ b we write [a, b]
for the interval from a to b, and for reals a, b with b ≥ 0 we write [a ± b] for the interval
[a − b, a + b].

We formally define the Unbounded Knapsack problem. We are given a set of items
I = {(p1, w1), . . . , (pn, wn)}, where each item i has a profit pi ∈ N and a weight wi ∈ N, and
a knapsack capacity W ∈ N. The task is to maximize

∑n
i=1 pi · xi subject to the constraints∑n

i=1 wi · xi ≤ W and x ∈ Nn. The more standard 0-1 Knapsack problem is defined in the
same way, but the solution x is constrained to x ∈ {0, 1}n.

Given an instance (I, W ), we denote by x ∈ Nn a multiset of items, where xi is the
number of copies of the i-th item. We sometimes refer to x as a solution. We write pI(x)
for the total profit of x, i.e., pI(x) :=

∑
i xi · pi. Similarly, we write wI(x) :=

∑
i xi · wi

for the weight of x. When the item set I is clear from context, we drop the subscript and
simply write p(x) and w(x). We denote the number of items contained in a solution x by
∥x∥1 :=

∑
i xi. A solution x is feasible if it satisfies the constraint w(x) ≤ W . We denote by

OPT the maximum profit p(x) of any feasible solution x. We denote by pmax := max(p,w)∈I p

the maximum profit of any input item and by wmax := max(p,w)∈I w the maximum weight
of any input item.

Notions of Approximation. We say that an algorithm gives a strong (1 + ε)-approximation
for Unbounded Knapsack if it returns a solution x ∈ Nn with weight w(x) ≤ W and profit
p(x) ≥ (1 − ε) · OPT. We say that an algorithm gives a weak (1 + ε)-approximation for
Unbounded Knapsack if it returns a solution x ∈ Nn with profit p(x) ≥ (1 − ε) · OPT and
weight w(x) ≤ (1 + ε) · W . We stress that here OPT still denotes the optimum value with
weight at most W , i.e., OPT = max{p(x) | x ∈ Nn, w(x) ≤ W}.

Profit Sequences. Given an item set I and capacity W , we define the array PI [0, . . . , W ],
where PI [j] is the maximum profit achievable with capacity j, i.e.,

PI [j] := max{pI(x) : x ∈ Nn, wI(x) ≤ j}.

Note that PI [0] = 0. A textbook way to compute PI [0, . . . , W ] is by dynamic programming:

▶ Fact 6. PI [0, . . . , W ] can be computed using dynamic programming in time O(n · W ).

We will also consider the array PI,k[0, . . . , W ], where we restrict to solutions with at
most 2k items, for any non-negative integer k, i.e., for any j ∈ [W ] we set

PI,k[j] := max{pI(x) : x ∈ Nn, w(x) ≤ j, ∥x∥1 ≤ 2k}.

When I is clear from context, we will drop the subscript and write P[0, . . . , W ] and
Pk[0, . . . , W ]. When we work with 0-1 Knapsack instead of Unbounded Knapsack, we
will use the same notation PI and PI,k, where we restrict to x ∈ {0, 1}n instead of x ∈ Nn.
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MaxConv. The (max, +)-convolution A⊕B of two sequences A[0, . . . , n], B[0, . . . , n] ∈ Zn+1

is a sequence of length 2n + 1 where (A ⊕ B)[k] := maxi+j=k A[i] + B[j]. We call MaxConv
the task of computing the (max, +)-convolution of two given sequences.

We will use the following handy notation: Given sequences A[0, . . . , n], B[0, . . . , n] and
intervals I, J ⊆ [n] and K ⊆ [2n], we denote by C[K] := A[I] ⊕ B[J ] the computation of
C[k] := max{A[i] + B[j] : i ∈ I, j ∈ J, i + j = k} for each k ∈ K. The following proposition
shows that this can be computed efficiently. We defer the proof to Appendix A.

▶ Proposition 7. If MaxConv can be solved in time T (n), then C[K] = A[I] ⊕ B[J ] can be
computed in time O(T (|I| + |J |) + |K|).

Sometimes we will refer to the (min, +)-convolution, where we replace max by a min.
The two problems MinConv and MaxConv are equivalent after negating the sequences.

BMMaxConv. In the BMMaxConv problem, we compute the (max, +)-convolution of
sequences of length n which are monotone non-decreasing and have bounded values. For this
setting Chan and Lewenstein [16] gave the first subquadratic algorithm, and recently Chi,
Duan, Xie and Zhang gave the following remarkable result:

▶ Theorem 8 (BMMaxConv [18]). Given monotone non-decreasing sequences A[0, . . . , n]
and B[0, . . . , n] with entries A[i], B[i] ∈ [O(n)] ∪ {−∞} for all i ∈ [n], their (max, +)-
convolution A ⊕ B can be computed in expected time Õ(n1.5).

Note that Chi, Duan, Xie and Zhang phrase their result for (min, +)-convolution of
monotone increasing sequences with entries in [O(n)]. We prove in Appendix A that both
statements are equivalent, so their result also works for (max, +)-convolution with entries in
[O(n)] ∪ {−∞}.

Witnesses. Let A[0, . . . , n], B[0, . . . , n] be an instance of MaxConv. Let C := A ⊕ B.
Given k ∈ [2n], we say that i ∈ [n] is a witness for C[k] if C[k] = A[i] + B[k − i]. We say that
an array M [0. . . . , 2n] is a witness array, if each entry M [k] contains some witness for C[k].

For the general case of MaxConv it is well known (e.g. [35, 1]) that computing the witness
array has the same time complexity as (max, +)-convolution, up to a polylog(n) overhead.
This reduction does not immediately apply to BMMaxConv because the sequences might
not remain monotone. However, we make it work with some extra care, see Appendix B for
the proof.

▶ Lemma 9 (Witness Finding). If BMMaxConv can be computed in time T (n), then a
witness array M [0, . . . , 2n] can be computed in time Õ(T (n)).

Niceness asumptions on time bounds. For all time bounds T (n) in this paper, we make the
following niceness assumptions: (1) T (Õ(n)) ≤ Õ(T (n)), and (2) k ·T (n) ≤ O(T (kn)) for any
k, n ≥ 1. This is satisfied for all natural time bounds of polynomial-time or pseudopolynomial-
time algorithms, in particular it holds for all functions of the form T (n) = Θ(nα logβ n) for
any constants α ≥ 1, β ≥ 0.

ICALP 2022



31:10 Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution

3 Exact algorithm for Unbounded Knapsack

In this section we prove the following Theorem:

▶ Theorem 10. If BMMaxConv on length-n sequences can be solved in time T (n), then
Unbounded Knapsack can be solved in time Õ(n + T (pmax + wmax)), where pmax is the
largest profit of any item and wmax is the largest weight of any item.

Note that Theorem 1 follows as an immediate corollary of Theorem 10 by plugging in
Chi, Duan, Xie and Zhang’s algorithm (Theorem 8).

For the entire section, fix an instance (I, W ) of the Unbounded Knapsack problem.
Recall that Pi[0, . . . , W ] is defined as Pi[j] := max{p(x) : w(x) ≤ j, ∥x∥1 ≤ 2i}, and set
∆ := pmax + wmax. Suppose we know that the optimal solution consists of at most 2k items.
Then, our goal is to compute the value Pk[W ]. The natural approach is to use dynamic
programming: if we have computed Pi−1, then Pi = Pi−1 ⊕ Pi−1. To get our desired running
time, we will show that we only need to convolve O(∆) entries of Pi−1 and that we can
enforce that all of these fall in a range of O(∆) values. By monotonicity of Pi−1, we end up
with a BMMaxConv instance, which can be solved in time O(T (∆)). The resulting total
time to compute Pi[W ] is O(n + k · T (∆)). With additional preprocessing we ensure that
k = O(log ∆), turning the running time into Õ(n + T (∆)).

3.1 Preparations
We need to show that when computing the optimal answer for some entry Pi[j], we can split
it in such a way that both its total profit and its total weight are roughly halved. Our main
tool to show this is the Steinitz Lemma [22, 36]. A beautiful proof for it can be found in [31].

▶ Lemma 11 ([22, 36, Steinitz Lemma]). Let ∥.∥ be a norm in Rm and let M be an arbitrary
collection of t vectors in Rm such that ∥v∥ ≤ 1 for every v ∈ M and

∑
v∈M v = 0. Then, it is

possible to permute the vectors in M into a sequence (v1, . . . , vt) such that ∥v1 + · · ·+vk∥ ≤ m

holds for every k ∈ [t].

We use the Steinitz Lemma to argue that the items in a solution can be split in two parts
in such a way that both the total profit and the total weight are roughly halved:

▶ Lemma 12 (Splitting Lemma). Let i ≥ 1 and consider a solution x ∈ Nn with ∥x∥1 ≤ 2i.
Then there is a partition of x into two solutions x1, x2 ∈ Nn with the following properties:
1. (Splitting of Items) ∥x1∥1, ∥x2∥1 ≤ 2i−1 and x = x1 + x2,
2. (Approximate Splitting of Weight) |w(x1) − 1

2 w(x)| ≤ 2∆ and |w(x2) − 1
2 w(x)| ≤ 2∆,

3. (Approximate Splitting of Value) |p(x1) − 1
2 p(x)]| ≤ 2∆ and |p(x2) − 1

2 p(x)]| ≤ 2∆.

Proof. Let t := ∥x∥1 ≤ 2i. First assume that t is even; we will remove this assumption later.
Write x =

∑t
j=1 x(j) where each x(j) corresponds to one copy of some item, i.e. ∥x(j)∥1 = 1,

and set v(j) =
(

w(x(j))
p(x(j))

)
. Note that ∥v(j)∥∞ ≤ ∆. By applying the Steinitz Lemma on the

vectors v(j) − 1
t

(
w(x)
p(x)

)
(after normalizing by ∆), we can assume that the v(j)’s are ordered

such that∥∥∥∥ t/2∑
j=1

v(j) − 1
2

(
w(x)
p(x)

) ∥∥∥∥
∞

≤ 2∆. (1)
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Fix this ordering, and let x1 = x(1) + . . . + x(t/2), corresponding to v(1), . . . , v(t/2), and let
x2 = x(t/2+1) + . . . + x(t), corresponding to the remaining vectors v(t/2+1), . . . , v(t). We now
check that x1, x2 satisfy the properties of the lemma:

Property 1 is clearly satisfied by construction.
For property 2, note that (1) implies |w(x1) − 1

2 w(x)| ≤ 2∆. Since w(x2) = w(x) − w(x1),
we have that |w(x2) − 1

2 w(x)| = | 1
2 w(x) − w(x1)| ≤ 2∆.

Property 3 follows in the same way as property 2.
If t is odd, then t + 1 ≤ 2i, so we can add a dummy vector x(t+1) = 0 with corresponding
v(t+1) := ( 0

0 ) and repeat the same argument with t := t + 1. ◀

When we apply Lemma 12 to an optimal solution corresponding to an entry of the array
Pi, we obtain the following lemma.

▶ Lemma 13. Let β > 0. For any index j ∈ [β ± 8∆] ∩ [W ] there are indices j1, j2 ∈
[ β

2 ± 8∆] ∩ [W ] with the following properties:
(i) j1 + j2 = j,
(ii) Pi[j] = Pi−1[j1] + Pi−1[j2],
(iii) |Pi−1[j1] − 1

2 Pi[j]| ≤ 2∆ and |Pi−1[j2] − 1
2 Pi[j]| ≤ 2∆.

Proof. Let x ∈ Nn be an optimal solution for Pi[j], that is, we have p(x) = Pi[j], w(x) ≤ j,
and ∥x∥1 ≤ 2i. We apply Lemma 12 to x and obtain x1, x2 ∈ Nn such that x1 + x2 = x. We
do a case distinction based on w(x1), w(x2):

w(x1), w(x2) ∈ [ j
2 ± 4∆]: Let j1 := w(x1) and j2 := j − j1; note that j1, j2 ∈ [ j

2 ± 4∆] ⊆
[ β

2 ± 8∆]. We argue that p(x1) = Pi−1[j1] and p(x2) = Pi−1[j2]. Indeed, since w(x1) = j1
the solution x1 is feasible for weight j1, so p(x1) ≤ Pi−1[j1]. Similarly, since w(x2) =
w(x)−w(x1) ≤ j −w(x1) = j2 the solution x2 is feasible for weight j2, so p(x2) ≤ Pi−1[j2].
Moreover, by optimality of x we have p(x1) + p(x2) = p(x) = Pi[j] ≥ Pi−1[j1] + Pi−1[j2],
so we obtain p(x1) = Pi−1[j1] and p(x2) = Pi−1[j2]. Using these equations together with
p(x) = Pi[j], property (ii) follows from p(x) = p(x1) + p(x2), property (iii) follows from
Property 3 of Lemma 12, and property (i) holds by definition of j2.
w(x1) < j

2 − 4∆: Property 2 of Lemma 12 implies that |w(x1) − w(x2)| ≤ 4∆, and
thus w(x2) ≤ j

2 . Therefore, x1 and x2 are feasible for weights j1 := ⌊ j
2 ⌋ and j2 := ⌈ j

2 ⌉,
respectively. Note that j1, j2 ∈ [ β

2 ± (4∆ + 1)] ⊆ [ β
2 ± 8∆]. Property (i) is obvious, and

properties (ii) and (iii) now follow as in the first case.
w(x1) > j

2 + 4∆: Similarly as the previous case, property 2 of Lemma 12 implies that
w(x2) ≥ j

2 . Therefore, we have w(x) = w(x1) + w(x2) > j + 4∆, which contradicts the
assumption w(x) ≤ j.
w(x2) < j

2 − 4∆ or w(x2) > j
2 + 4∆: Symmetric to the previous two cases. ◀

3.2 The algorithm
We are now ready to present our algorithm. The idea is to use the Splitting Lemma 12 to
convolve smaller sequences which are bounded and monotone.

Let I = {(wi, pi)}n
i=1 with capacity constraint W be an instance of Unbounded Knap-

sack. Since any item has wi ≥ 1, we know that any solution x ∈ Nn consists of at most
W items. Thus, to compute the value of the optimal solution it suffices to compute Pk[W ]
where k := ⌈log W ⌉.

Our approach is as follows. We do binary search for OPT in the range [pmax ·W ]. Suppose
we have the current guess α. Instead of computing the arrays Pi, we compute clipped versions,
i.e., Ci which has the property that Ci[j] ≥ α if and only if Pi[j] ≥ α.
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We compute Ci as follows: At every step, we only compute the values for O(∆) weights
Ci[W · 2i−k ± 8∆]. For the base case i = 0, we simply set C0[0, . . . , 8∆] := P0[0, . . . , 8∆].
Note that this can be done in time O(n + ∆) by doing one pass over the item set, since
P0 only considers solutions with at most one item. Moreover, observe that C0[0, . . . , 8∆] is
monotone non-decreasing by definition of P0.

For the general case i > 0 we first compute an array Ai[W · 2i−k ± 8∆] by taking the
(max, +)-convolution of Ci−1[W · 2i−1−k ± 8∆] with itself. To obtain Ci[W · 2i−k ± 8∆],
we clip the values in Ai which are too large, and set to −∞ the values which are to small.
This ensures that all values in Ci lie within a range of O(∆), except for values that are −∞.
Algorithm 1 contains the pseudocode.

Algorithm 1 Given an instance (I, W ) of Unbounded Knapsack and a guess α ∈ [pmax · W ],
the algorithm computes a value Ck[W ] satisfying the guarantee in Lemma 15.

1: k := ⌈log W ⌉
2: Initialize C0[0, . . . , 8∆] := P0[0, . . . , 8∆] by iterating over the item set I once
3: for i = 1, . . . , k do
4: Ai[W · 2i−k ± 8∆] := Ci−1[W · 2i−1−k ± 8∆] ⊕ Ci−1[W · 2i−1−k ± 8∆]

5: Ci[j] :=


⌈α · 2i−k⌉ + 24∆ if Ai[j] > α · 2i−k + 24∆
−∞ if Ai[j] < α · 2i−k − 40∆
Ai[j] otherwise

return Ck[W ]

Due to the clipping, at every step we compute a (max, +)-convolution of sequences of
length O(∆) and values in [O(∆)]∪{−∞} (after shifting the indices and values appropriately).
Furthermore, note that all convolutions involve monotone non-decreasing sequences. Indeed,
as noted above the starting sequence C0 is monotone non-decreasing. Convolving it with itself
produces a monotone non-decreasing sequence again, and the clipping in line 5 of Algorithm 1
preserves monotonicity. The same argument applies for further iterations. Thus, the running
time of Algorithm 1 is O(n + T (∆) log W ), where T (∆) is the running time to compute
BMMaxConv on sequences of length ∆.

Regarding correctness, we claim the following:

▷ Claim 14. For every i ∈ [k] and every index j ∈ [W · 2i−k ± 8∆] ∩ [W ] the following holds:
If Pi[j] ∈ [α · 2i−k − 40∆, α · 2i−k + 24∆], then Ci[j] = Pi[j].
If Pi[j] > α · 2i−k + 24∆, then Ci[j] = ⌈α · 2i−k⌉ + 24∆.
If Pi[j] < α · 2i−k − 40∆, then Ci[j] = −∞.

Intuitively, the claim says that entries “close” to the (scaled) guess α · 2i−k get computed
exactly, while entries below and above get clipped appropriately.

Proof. We prove the claim by induction on i. In the base case i = 0, note that since
α ∈ [pmax·W ] and k = ⌈log W ⌉ we have α·2−k ≤ pmax ≤ ∆. Thus, [α·2−k−40∆, α·2−k+24∆]
contains the whole interval [0, ∆] of possible values of P0[j] = C0[j] (for any 0 ≤ j ≤ 8∆).

Now we show that the claim holds for any 1 ≤ i ≤ k assuming it holds for i − 1. Fix any
j ∈ [W · 2i−k ± 8∆]. Note that the thresholding in line 4 of Algorithm 1 does not increasy
any of the entries in Ai, so Ci[j] ≤ Ai[j]. Moreover, since inductively Ci−1[j′] ≤ Pi−1[j′]
for all j′, by definition of Ai we have Ai[j] ≤ Pi[j]. Hence, we obtain Ci[j] ≤ Pi[j]. We use
this observation to obtain the claim, by showing an appropriate lower bound for Ci[j] in the
following.
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Pick indices j1, j2 as guaranteed by Lemma 13. Property (i) of Lemma 13 guarantees
that the computation of Ai[j] in line 3 of Algorithm 1 looks at the entries j1, j2 in Ci−1.
Hence, Ai[j] ≥ Ci−1[j1] + Ci−1[j2].

We proceed by a case distinction on the values of the entries Pi−1[j1] and Pi−1[j2]:

Case 1: Pi−1[j1], Pi−1[j2] ∈ [α · 2i−1−k − 40∆, α · 2i−1−k + 24∆]. By the induction
hypothesis, both values are computed exactly, that is, Ci−1[j1] = Pi−1[j1] and Ci−1[j2] =
Pi−1[j2]. Thus, Ai[j] ≥ Ci−1[j1] + Ci−1[j2] = Pi−1[j1] + Pi−1[j2] = Pi[j], using property (ii)
of Lemma 13. Since we observed above that Ai[j] ≤ Pi[j], we obtain Ai[j] = Pi[j]. The
thresholding in line 4 of Algorithm 1 now yields the claim for this case.

Case 2: Pi−1[j1] > α ·2i−1−k +24∆. Property (iii) of Lemma 13 implies that |Pi−1[j1]−
Pi−1[j2]| ≤ 4∆, and hence Pi−1[j2] ≥ α · 2i−1−k + 20∆. Thus, property (ii) of Lemma 13
implies Pi[j] = Pi−1[j1] + Pi−1[j2] > α · 2i−k + 24∆. Therefore, we want to show that
Ci[j] = ⌈α · 2i−k⌉ + 24∆.

By the induction hypothesis, we have Ci−1[j1] = ⌈α · 2i−1−k⌉ + 24∆ and Ci−1[j2] ≥
α ·2i−1−k +20∆. Hence, Ai[j] ≥ Ci−1[j1]+Ci−1[j2] > α ·2i−k +40∆. Due to the thresholding,
we conclude that Ci[j] = ⌈α · 2i−k⌉ + 24∆, as desired.

Case 3: Pi−1[j1] < α · 2i−k − 40∆. Similarly as in case 2, property (iii) of Lemma 13
implies that Pi−1[j2] ≤ α · 2i−1−k − 36∆. Thus, Pi[j] = Pi−1[j1] + Pi−1[j2] < α · 2i−k − 76∆.
Since Ci[j] ≤ Pi[j], but Ci[j] takes values in {−∞} ∪ [α · 2i−k ± 40∆] it follows that
Ci[j] = −∞. ◁

Given the claim, it is easy to see that Ck[W ] ≥ α if and only if Pk[W ] ≥ α. Along with
the running time analysis argued earlier, we obtain the following lemma.

▶ Lemma 15. Algorithm 1 runs in time O(n + T (∆) log W ), where T (∆) is the time
complexity of BMMaxConv on sequences of length ∆, and computes a value Ck[W ] which
satisfies Ck[W ] ≥ α if and only if OPT = Pk[W ] ≥ α.

Given Lemma 15, we can do binary search to find the optimal value. This gives an
algorithm for Unbounded Knapsack in time O((n + T (∆)) log W log OPT). To shave the
polylog(W, OPT) factors and obtain the running time Õ(n + T (∆)) claimed in Theorem 10,
we make use of the following lemma. It allows us to reduce the capacity of the instance
by repeatedly adding copies of the item with maximum profit-to-weight ratio. Similar
results have been shown for general ILPs [20], for Unbounded Knapsack [5] and for the
Coin Change problem [15]. For completeness, we include the proof by Chan and He [15,
Lemma 4.1].7

▶ Lemma 16. Let (pi∗ , wi∗) := argmax(p,w)∈I
p
w . If W ≥ 2w3

max, then there exists an
optimal solution containing (pi∗ , wi∗).

Proof. Consider an optimal solution x that does not contain item (pi∗ , wi∗). If there is an
item (pj , wj) that appears at least wi∗ times in x, then we can replace wi∗ of the copies
of item (pj , wj) by wj copies of item (pi∗ , wi∗). By definition of (pi∗ , wi∗), this does not
decrease the total profit of the solution, so by optimality of x the new solution x′ is also
optimal. Therefore, some optimal solution contains (pi∗ , wi∗).

7 Both Chan and He [15] and Bateni et al. [5] show that the same conclusion of the lemma holds if
W > w2

i∗ , with a slightly more involved argument. For our purposes, this simple variant is enough.
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It remains to consider the case that x contains less than wi∗ copies of every item, so its
total weight is at most n · wi∗ · wmax. Note that n ≤ wmax, because without loss of generality
there is at most one item per distinct weight (otherwise we can keep only the item with the
largest profit for each weight). Thus, the total weight of x is at most w3

max. It follows that
W < w3

max + wi∗ ≤ 2w3
max, since otherwise we could add at least one copy of (pi∗ , wi∗) to x,

contradicting its optimality. ◀

We now put all pieces together: As a preprocessing step we repeatedly add the item
(pi∗ , wi∗) and decrease W by wi∗ , as long as W > 2w3

max. After this preprocessing, we have
W = O(w3

max) = O(∆3), and thus OPT ≤ W · pmax = O(∆4). The we do binary search for
OPT, using Algorithm 1 as a decision procedure. By Lemma 15, the overall running time is
O((n + T (∆)) log2 ∆) = Õ(n + T (∆)). This completes the proof of Theorem 10.

3.3 Solution Reconstruction

The algorithm we described gives us the value OPT of the optimal solution. In this section
we will describe how to use witness arrays (Lemma 9) to reconstruct a feasible solution
x ∈ Nn such that p(x) = OPT with only a polylogarithmic overhead in the overall running
time.

▶ Lemma 17. A optimal solution x can be reconstructed in time Õ(n + T (pmax + wmax)).

Proof Sketch. Let k = ⌈log W ⌉ be as in Algorithm 1. After determining the value of OPT,
run Algorithm 1 again with the guess α = OPT. For every BMMaxConv in line 4 compute
the witness array Mi corresponding to Ai via Lemma 9. This takes time Õ(n+T (pmax+wmax)).
Now, the idea is to start from Ck[W ] and traverse the computation tree of Algorithm 1
backwards. That is, we look at the pair of entries Ck−1[Mk[W ]], Ck−1[W − Mk[W ]] which
define the value of Ck[W ] and recursively obtain the pair of entries in Ck−2 determining
the value of Ck−1[Mk[W ]], etc. By proceeding in this way, we eventually hit the leaves, i.e.,
the entries of C0[0, . . . , 8∆] = P0[0, . . . , 8∆], which correspond to the items in an optimal
solution. A naive implementation of this idea takes time O(

∑
i≤k 2i) = O(2k) = O(W ),

which is too slow.
Now we describe an efficient implementation of the same idea. For each i ∈ [k] construct

an array Zi[W ·2i−k ±8∆] initialized to zeros. Set Zk[W ] := 1. We will maintain the invariant
that Zi[j] stores the number of times we arrive at Ci[j] by traversing the computation tree
starting at Ck[W ]. This clearly holds for Zk[W ] = 1 by definition. Now we describe how
to fill the entries for the levels below. Iterate over i = k, k − 1, . . . , 1. For each entry
j ∈ [W · 2i−k ± 8∆] ∩ [W ] add Zi[j] to its witness entries in the level below, i.e., increase
Zi−1[Mi[j]] by Zi[j] and Zi−1[j −Mi[j]] by Zi[j]. The invariant is maintained by definition of
the witnesses, and because Algorithm 1 guarantees that Mi[j], j−Mi[j] ∈ [2·2i−1−k±8∆]∩[W ].
Note that this procedure takes time O(k∆) = Õ(∆).

Finally, note that for the base case we have that each Z0[j] for j ∈ [8∆] counts the
number of times that we hit the entry C0[j] = P0[j] in the computation tree starting from
Ck[W ]. Recall that by definition, P0[j] is the maximum profit of an item in I with weight at
most j. Hence, every entry P0[j] corresponds to a unique item in I. Therefore, we can read
off from Z0[0, . . . , 8∆] the multiplicity of each item included in an optimal solution. The
overall time of the procedure is Õ(n + T (pmax + wmax)), as claimed. ◀
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4 Exact Algorithm for 0-1 Knapsack

Cygan et al. [19] showed the following reduction from 0-1 Knapsack to BMMaxConv:

▶ Theorem 18 ([19, Theorem 13]). If MaxConv on length-n sequences can be solved in
time T (n), then 0-1 Knapsack can be solved in time O(T (W log W ) log3(n/δ) log n) with
probability at least 1 − δ.

Their reduction is a generalization of Bringmann’s algorithm for Subset Sum [8], replacing
Boolean convolutions by (max, +)-convolutions. We observe that essentially the same
reduction yields sequences of length O(W ) which are monotone and have entries bounded by
OPT. In particular, these are BMMaxConv instances. This yields the following:

▶ Theorem 19 (0-1 Knapsack → BMMaxConv). If BMMaxConv on length-n sequences
can be solved in time T (n), then 0-1 Knapsack can be solved in time Õ(n + T (W + OPT))
with high probability.

Proof. The proof is virtually the same as [19, Theorem 13], so we omit some details. In
particular, we emphasize how the constructed instances can be seen to be monotone and
bounded, but we omit some details of the correctness argument. The idea of the algorithm is
the following: split the item set I into groups G(a,b) ⊆ I such that all items (p, w) ∈ I with
p ∈ [2a−1, 2a) and w ∈ [2b−1, 2b) are in group G(a,b). That is, all items within each group have
weights and profits within a factor of 2 of each other, and thus there are O(log W log OPT)
many groups. We will describe how to compute PG(a,b) [0, . . . , W ] for each G(a,b). Having
that, we simply combine all the profit arrays into PI [0, . . . , W ] using (max, +)-convolutions.
Since we have O(log W log OPT) groups, and each profit array is a monotone non-decreasing
sequence of length W with entries bounded by OPT, the combination step takes time
Õ(T (W + OPT)).

Fix some group G(a,b). Since every (p, w) ∈ G(a,b) has w ∈ [2a−1, 2a) and p ∈ [2b−1, 2b),
any feasible solution from G(a,b) consists of at most z := ⌈min{W/2a−1, OPT/2b−1}⌉ items.
Thus, by splitting the items in G(a,b) randomly into z subgroups G(a,b),1, . . . , G(a,b),z, any fixed
feasible solution has at most O(log z) items in each subgroup G(a,b),k with high probability.
To see this, fix a solution x and note that,

Pr[at least r items from x fall in G(a,b),k] ≤
(

z

r

) (
1
z

)r

≤
(e · z

r

)r
(

1
z

)r

=
(e

r

)r

,

where the first inequality follows due to a union bound over all subsets of items of size r. By
setting r = O(log z), we can bound this probability by z−c for any constant c. So by a union
bound, none of the z groups G(a,b),1, . . . , G(a,b),z has more than κ := O(log z) elements from
the fixed solution x with probability at least 1 − 1/ poly(z).

Therefore, to obtain the value of any fixed solution it suffices to compute the optimal
solution consisting of at most κ items from G(a,b),k for every target weight ≤ O(2aκ),
and then merge the results. More precisely, for every 1 ≤ i ≤ z we compute the array
PG(a,b),i,log(κ)[0, . . . , O(2aκ)]. Recall that this is defined as

PG(a,b),i,log(κ)[j] := max{p(x) : x is a solution from G(a,b),i with w(x) ≤ j, ∥x∥1 ≤ κ}

for each j ∈ [O(2aκ)]. For ease of notation, we denote the array by PGi,κ := PG(a,b),i,log κ.
Then, we merge the PGi,κ’s using (max, +)-convolutions. Now we describe these two

steps in more detail:
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Computing PGi,κ[0, . . . , O(2aκ)]. Since we only care about solutions with at most κ

items, we use randomization again8: split the items in G(a,b),i into κ2 buckets A1, . . . , Aκ2 . By
the birthday paradox, with constant probability it holds that any fixed solution is shattered
among the buckets, i.e., each bucket contains at most 1 item of the solution. Thus, for each
bucket Ak we construct the array PAk,0[0, . . . , 2a]. Recall that this is defined as

PAk,0[j] := max{p(x) : x is a solution from Ak with w(x) ≤ j, ∥x∥1 ≤ 1}

for each entry j ∈ [2a]. To combine the results, we compute PA1,0 ⊕ PA2,0 ⊕ · · · ⊕ PAκ2 ,0.
By definition, every PAi,0 is a monotone non-decreasing sequence of length 2a with entries
bounded by 2b. Thus, the merging step takes time O(T ((2a + 2b) · κ2) · κ2).

Each entry of the resulting array has the correct value Pi,κ[j] with constant probability,
since a corresponding optimal solution is shattered with constant probability. By repeating
this process O(log z) times and keeping the entrywise maximum among all repetitions, we
boost the success probability to 1 − 1/ poly(z). Thus, by a union bound over the z subgroups
G(a,b),1, . . . , G(a,b),z, we get that any z fixed entries PG1,κ[j1], . . . , PGz,κ[jz] corresponding
to a solution which is partitioned among the z subgroups get computed correctly with
probability at least 1 − 1/ poly(z). This adds an extra O(log z) = O(κ) factor to the running
time.

Merging PG1,κ ⊕ · · · ⊕ PGz,κ. This computation is done in a binary tree-like fashion.
That is, in the first level we compute (PG1,κ ⊕ PG2,κ), (PG3,κ ⊕ PG4,κ), . . . , (PGz−1,κ ⊕ PGz,κ).
In the second level we merge the results from the first level in a similar way. We proceed
in the same way with further levels. Since we merge z sequences, we have ⌈log z⌉ levels of
computation. In the j-th level, we compute the (max, +)-convolution of z/2j many monotone
non-decreasing sequences of length O(2j · 2a · κ) with entries bounded by O(2j · 2b · κ).
Therefore, overall the merging takes time

O

( ⌈log z⌉∑
j=1

z

2j
· T ((2a + 2b) · 2j · κ)

)
≤ Õ(T ((2a + 2b) · z)),

where we used both of our niceness assumptions k · T (n) ≤ O(T (k · n)) for any k > 1 and
T (Õ(n)) ≤ Õ(T (n)). Since z = ⌈min{W/2a−1, OPT/2b−1}⌉, we have Õ(T ((2a + 2b) · z) =
Õ(T (W + OPT)).

Wrapping up. To recap, the algorithm does the following steps:
1. Split the items into O(log W log OPT) groups G(a,b). This takes time O(n).
2. Randomly split each group G(a,b) into z := ⌈min{W/2a−1, OPT/2b−1}⌉ subgroups G(a,b),i

for i ∈ [z].
3. For each G(a,b),i compute the array PGi,κ[0, . . . , O(2aκ)] in time O(T ((2a + 2b)κ2) · κ3).

Since κ = O(log z), the total time over all i ∈ [z] is

O(z·T ((2a+2b)κ2)·κ3) ≤ O(T ((2a+2b)·z·κ2)κ3) ≤ Õ(T ((2a+2b)·z)) ≤ Õ(T (W +OPT)).

Note that here we use the niceness assumptions on T (n). In particular, first we used that
k · T (n) ≤ O(T (k · n)) for any k > 1, and then that T (Õ(n)) ≤ Õ(T (n)).

4. Merge the arrays PG1,κ ⊕· · ·⊕PGz,κ in time Õ(T (W +OPT)) to obtain PG(a,b) [0, . . . , W ].
5. Merge the arrays PG(a,b) using O(log W log OPT) convolutions in total time Õ(T (W +

OPT)).

8 This step is called “Color Coding” in [8, 19].
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Thus, the overall time of the algorithm is Õ(n+T (W +OPT)). Note that as mentioned earlier
in the proof, the algorithm succeeds in computing any fixed entry PI [j] with probability at
least 1 − 1/ poly(z). In particular, this is sufficient to compute the optimal solution PI [W ]
with good probability. As described, the algorithm only returns the value of the optimal
solution. In the full version of the paper, we show how to reconstruct an optimal solution. ◀

References
1 Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. Witnesses for Boolean matrix multipli-

cation and for shortest paths. In FOCS, pages 417–426. IEEE Computer Society, 1992.
2 Noga Alon and Moni Naor. Derandomization, witnesses for boolean matrix multiplication and

construction of perfect hash functions. Algorithmica, 16(4/5):434–449, 1996.
3 Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster Knapsack

and graph algorithms. In ICALP, volume 132 of LIPIcs, pages 19:1–19:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

4 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree sparsity in
nearly-linear time. In SODA, pages 2215–2229. SIAM, 2017.

5 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and Cliff Stein.
Fast algorithms for Knapsack via convolution and prediction. In STOC, pages 1269–1282.
ACM, 2018.

6 Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1957.

7 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014.

8 Karl Bringmann. A near-linear pseudopolynomial time algorithm for Subset Sum. In SODA,
pages 1073–1084. SIAM, 2017.

9 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly
subcubic algorithms for language edit distance and RNA folding via fast bounded-difference
min-plus product. SIAM J. Comput., 48(2):481–512, 2019.

10 Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating Subset
sum and Partition. In SODA, pages 1797–1815. SIAM, 2021.

11 Karl Bringmann and Philip Wellnitz. On near-linear-time algorithms for dense subset sum. In
SODA, pages 1777–1796. SIAM, 2021.

12 Michael R. Bussieck, Hannes Hassler, Gerhard J. Woeginger, and Uwe T. Zimmermann. Fast
algorithms for the maximum convolution problem. Oper. Res. Lett., 15(3):133–141, 1994.

13 Timothy M. Chan. Approximation schemes for 0-1 Knapsack. In SOSA, volume 61 of OASICS,
pages 5:1–5:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

14 Timothy M. Chan and Sariel Har-Peled. Smallest k-enclosing rectangle revisited. In SoCG,
volume 129 of LIPIcs, pages 23:1–23:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

15 Timothy M. Chan and Qizheng He. More on change-making and related problems. J. Comput.
Syst. Sci., 124:159–169, 2022.

16 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via Additive Combinatorics.
In STOC, pages 31–40. ACM, 2015.

17 Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.

18 Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for monotone
instances. In STOC. ACM, 2022.

19 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019.

ICALP 2022



31:18 Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution

20 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the Steinitz lemma. ACM Trans. Algorithms, 16(1):5:1–5:14, 2020.

21 Zvi Galil and Oded Margalit. An almost linear-time algorithm for the dense subset-sum
problem. SIAM J. Comput., 20(6):1157–1189, 1991.

22 V. S. Grinberg and S. V. Sevastyanov. Value of the Steinitz constant. Funktsional. Anal. i
Prilozhen., 14(2):56–57, 1980.

23 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the Knapsack and Sum
of Subset problems. J. ACM, 22(4):463–468, 1975.

24 Klaus Jansen and Stefan Erich Julius Kraft. A faster FPTAS for the Unbounded Knapsack
problem. Eur. J. Comb., 68:148–174, 2018.

25 Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In ITCS,
volume 124 of LIPIcs, pages 43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

26 Ce Jin and Hongxun Wu. A simple near-linear pseudopolynomial time randomized algorithm
for Subset Sum. In SOSA, volume 69 of OASICS, pages 17:1–17:6. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

27 Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with an
FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5–11, 2004.

28 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity
of one-dimensional dynamic programming. In ICALP, volume 80 of LIPIcs, pages 21:1–21:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

29 Eduardo Sany Laber, Wilfredo Bardales Roncalla, and Ferdinando Cicalese. On lower bounds
for the maximum consecutive subsums problem and the (min, +)-convolution. In ISIT, pages
1807–1811. IEEE, 2014.

30 Eugene L. Lawler. Fast approximation algorithms for Knapsack problems. Math. Oper. Res.,
4(4):339–356, 1979.

31 Jiří Matoušek. Thirty-three miniatures: Mathematical and Algorithmic applications of Linear
Algebra. American Mathematical Society Providence, RI, 2010.

32 Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. A subquadratic approximation
scheme for Partition. In SODA, pages 70–88. SIAM, 2019.

33 David Pisinger. Linear time algorithms for Knapsack problems with bounded weights. J.
Algorithms, 33(1):1–14, 1999.

34 Adam Polak, Lars Rohwedder, and Karol Wegrzycki. Knapsack and Subset Sum with small
items. In ICALP, volume 198 of LIPIcs, pages 106:1–106:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

35 Raimund Seidel. On the All-Pairs-Shortest-Path problem in unweighted undirected graphs. J.
Comput. Syst. Sci., 51(3):400–403, 1995.

36 Ernst Steinitz. Bedingt konvergente Reihen und konvexe Systeme. Journal für die reine und
angewandte Mathematik, 143:128–176, 1913. URL: http://eudml.org/doc/149403.

37 R. Ryan Williams. Faster All-Pairs Shortest Paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018.

A Missing Proofs from Section 2

Proof of Proposition 7. By shifting the indices, we can assume that A[I] and B[J ] are
sequences A′[0, . . . , |I|−1] and B′[0, . . . , |J |−1]. Compute C ′ := A′ ⊕B′ in time T (|A|+ |B|).
By shifting the indices back, we can infer the values of the entries C[I + J ] = A[I] ⊕ B[J ].
Thus, we can simply read off the entries in C[K] from the array C ′. ◀

http://eudml.org/doc/149403
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Equivalence between variants of BMMaxConv

As stated in Section 2, the algorithm of Chi, Duan, Xie and Zhang [18] computes the
(min, +)-convolution of sequences which are monotone increasing and have values in [O(n)].
The following proposition shows that this is equivalent to solving MaxConv on monotone
non-decreasing sequences with values in [O(n)] ∪ {−∞}, which justifies Theorem 8.

▶ Proposition 20. MaxConv on monotone non-decreasing sequences of length n and values
in [O(n)] ∪ {−∞} is equivalent to MinConv on monotone increasing sequences of length n

and values in [O(n)], in the sense that if one can be solved in time T (n) then the other can
be solved in time O(T (n)).

Proof. We first describe how to reduce MaxConv on monotone non-decreasing sequences
and values in [O(n)] ∪ {−∞} to MinConv on monotone increasing sequences and values in
[O(n)] via a simple chain of reductions:

Removing −∞: Let A[0, . . . , n], B[0, . . . , n] be an instance of MaxConv where A, B

are monotone non-decreasing and A[i], B[i] ∈ [O(n)] ∪ {−∞}. We start by reducing
it to an equivalent instance of MaxConv on monotone non-decreasing sequences and
values in [O(n)] (i.e. we remove the −∞ entries). Let ∆ be the maximum entry of
A and B. Construct a new sequence A′[0, . . . , n] where A′[i] := 0 if A[i] = −∞, and
A′[i] := A[i] + 2∆ otherwise. Construct B′[0, . . . , n] from B in the same way. Note that
A′ and B′ are monotone non-decreasing and have values in [O(n)]. Moreover, we can
infer the values of any entry (A ⊕ B)[k] from C ′: if C ′[k] ≤ 3∆ then (A ⊕ B)[k] = −∞
and otherwise (A ⊕ B)[k] = C ′[k] − 4∆.
Reducing to MaxConv on non-increasing sequences: Now we reduce an instance
A[0, . . . , n], B[0, . . . , n] of MaxConv on monotone non-decreasing sequences and values
in [O(n)] to an instance of MinConv on monotone non-increasing sequences and values
in [O(n)]. Let ∆ be the maximum entry of A and B. Construct two new sequences
A′ and B′ by setting A′[i] := ∆ − A[i] and B′[i] := ∆ − B[i]. Then A′ and B′ are
monotone non-increasing and given their (min, +)-convolution we can easily infer the
(max, +)-convolution of A and B.
Reducing to MinConv on increasing sequences: Next, we reduce an instance A[0, . . . , n],
B[0, . . . , n] of MinConv on monotone non-increasing sequences and values in [O(n)] to
an instance of MinConv on increasing sequences and values in [O(n)]. Construct two
new sequences A′ and B′ by reversing and adding a linear function to A and B, i.e., set
A′[i] := A[n − i] + i and B′[i] := B[n − i] + i for every i ∈ [n]. Note that A′ and B′ are
monotone increasing sequences, and given their (min, +)-convolution we can infer the
(min, +)-convolution of A and B.

Combining the reductions above, we conclude that MaxConv on monotone non-decreasing
sequences with values in [O(n)] ∪ {−∞} can be reduced in linear time to MinConv on
monotone increasing sequences with values in [O(n)]. To show the reduction in the other
direction, we can apply the same ideas: we first negate the entries and shift them to make
them non-negative, then reverse the resulting sequences. We omit the details. ◀

B Witnesses for BMMaxConv

In this section we give the proof of Lemma 9. For the remainder of this section, fix an
instance A[0, . . . , n], B[0, . . . , n] of BMMaxConv and let C := A ⊕ B. To compute the
witness array M [0, . . . , 2n], we first show that if an entry C[k] has a unique witness then
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we can easily find it. Then we reduce to the unique witness case with randomization. This
approach is well known [35, 1], but some extra care is needed to ensure that the instances
remain monotone and bounded. The standard derandomization for this approach [2] also
works in our setting.

▶ Lemma 21. If BMMaxConv on length-n sequences can be computed in time T (n), then
in time Õ(T (n)) we can compute an array U [0, . . . , 2n] such that for every k ∈ [2n] if C[k]
has a unique witness M [k] then U [k] = M [k]. The output U [k] is undefined otherwise.

Proof. We will describe how to compute the unique witnesses bit by bit. For each bit
position b ∈ [⌈log n⌉] let ib ∈ {0, 1} be the b-th bit of i. Construct sequences Ab, Bb defined
as Ab[i] := 2A[i] + i + ib and Bb[i] := 2B[i] + i for i ∈ [n]. Note that Ab, Bb are still monotone
non-decreasing and have entries bounded by O(n). Compute Cb := Ab ⊕ Bb. For each
k ∈ [2n], we set the b-th bit of U [k] to Cb[k] mod 2. It is not hard to see that for those
entries C[k] which have unique witnesses U [k], this procedure indeed gives the b-th bit of
U [k]. Indeed, note that because we double every entry in Ab, Bb and add a linear function,
adding ib does not change the maximizer. Therefore, if C[k] has a unique witness then C ′[k]
has a unique witness whose b-th bit can be read from the least significant bit of C ′[k]. Thus,
by repeating this over all bit positions b ∈ [⌈log n⌉], we compute the entire array of unique
witnesses U using O(log n) invocations to BMMaxConv, as desired. ◀

Proof of Lemma 9. Fix a set S ⊆ [n]. We say that an entry C[k] gets isolated by S if
the number of witnesses of C[k] in S is exactly one. We will now describe how to find
the witnesses of all entries isolated by S (the idea and argument is similar as in the proof
of Lemma 21). Construct sequences A′, B′ where for each i ∈ [n] we set

A′[i] :=
{

2A[i] + i + 1 if i ∈ S

2A[i] + i otherwise

and B′[i] := 2B[i] + i. Note that these sequences are monotone non-decreasing and have
entries bounded by O(n). Let C ′ := A′ ⊕ B′. We claim that if an entry C[k] is isolated
by S, then C ′[k] has a unique witness. To see this, note that if no witness of C[k] gets
included in S, then we have that C ′[k] = 2C[k] + k. If at least one witness gets included
in S, then C ′[k] = 2C[k] + k + 1. In particular, if a witness gets isolated then C ′[k] will
have a unique witness, as claimed. Thus, by Lemma 21 we can compute in time Õ(T (n)) an
array U [0, . . . , 2n] which contains the witnesses of all entries that are isolated by S. Note
that some entries of U might be undefined, but we can simply check in time O(n) which
entries of U are true witnesses, by iterating over k ∈ [2n] and checking whether the equality
C[k] = A[U [k]] + B[k − U [k]] holds.

Now we show how to select appropriate sets S. Fix an entry C[k] and denote by R ∈ [n]
its number of witnesses. We sample S ⊆ [n] by including each element i ∈ [n] independently
with probability p := 2−α where α ∈ N is chosen such that 2α−2 ≤ R ≤ 2α−1. Let X be the
random variable counting the number of witnesses of C[k] that get sampled in S. By keeping
the first two terms in the inclusion-exclusion formula we have that Pr[X ≥ 1] ≥ p ·R −

(
R
2
)
p2,

and by a union bound Pr[X ≥ 2] ≤
(

R
2
)
p2. Thus,

Pr[X = 1] = Pr[X ≥ 1] − Pr[X ≥ 2] ≥ p · R(1 − p · R) ≥ 1/8

where the last inequality holds because 1/8 ≤ p ·R ≤ 1/4 due to the choice of α. In particular,
S isolates C[k] with probability at least 1/8.
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We now put the pieces together. Iterate over the O(log n) possible values for α. Sample
a set S and find all witnesses of entries isolated by S as described earlier in time Õ(T (n)).
As we argued above, if C[k] has R witnesses and 2α−2 ≤ R ≤ 2α−1, then C[k] gets isolated
with constant probability. Thus, by repeating this step with the same α for O(log n) freshly
sampled sets S we find a witness for all such entries C[k] with probability at least 1−1/ poly(n).
Combining the results across iterations we obtain the array of witnesses M [0, . . . , 2n] in time
Õ(T (n)), as desired.

Finally, we note that this procedure can be derandomized with standard techniques [2]. ◀
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Abstract
We study the problem of approximating the edit distance of two strings in sublinear time, in
a setting where one or both string(s) are preprocessed, as initiated by Goldenberg, Rubinstein,
Saha (STOC ’20). Specifically, in the (k, K)-gap edit distance problem, the goal is to distinguish
whether the edit distance of two strings is at most k or at least K. We obtain the following results:

After preprocessing one string in time n1+o(1), we can solve (k, k · no(1))-gap edit distance in
time (n/k + k) · no(1).
After preprocessing both strings separately in time n1+o(1), we can solve (k, k · no(1))-gap edit
distance in time kno(1).

Both results improve upon some previously best known result, with respect to either the gap or the
query time or the preprocessing time.

Our algorithms build on the framework by Andoni, Krauthgamer and Onak (FOCS ’10) and
the recent sublinear-time algorithm by Bringmann, Cassis, Fischer and Nakos (STOC ’22). We
replace many complicated parts in their algorithm by faster and simpler solutions which exploit the
preprocessing.
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1 Introduction

The edit distance (also known as Levenshtein distance) is a fundamental measure of similarity
between strings. It has numerous applications in several fields such as information retrieval,
computational biology and text processing. Given strings X and Y , their edit distance
denoted by ED(X, Y ) is defined as the minimum number of character insertions, deletions
and substitutions needed to transform X into Y .
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Table 1 A comparison of sublinear-time algorithms for the (k, k · g)-gap edit distance problem
for different gap parameters g. All algorithms in this table are randomized and succeed with high
probability. Note that some of these results are subsumed by others.

Source Gap g Preprocessing time Query time

Goldenberg, Krauthgamer, Saha [20] O(k) no preprocessing Õ(n/k + k3)
Kociumaka, Saha [24] O(k) no preprocessing Õ(n/k + k2)
Brakensiek, Charikar, Rubinstein [13] O(k) no preprocessing Õ(n/

√
k)

Bringmann, Cassis, Fischer, Nakos [15] O(k) no preprocessing O∗(n/k2 +k8)
Goldenberg, Kociumaka, Krauthgamer,
Saha [19]

O(k) no preprocessing Õ(n/k3/2)

Bringmann, Cassis, Fischer, Nakos [15] O∗(1) no preprocessing O∗(n/k + k4)

Goldenberg, Rubinstein, Saha [21] O(k) one-sided, Õ(n) Õ(n/k + k2)
Brakensiek, Charikar, Rubinstein [13] g one-sided, Õ(nk/g) Õ(n/g+k2/g)
This work, Theorem 1 O∗(1) one-sided, O∗(n) O∗(n/k + k)

Chakraborty, Goldenberg, Koucký [18] O(k) two-sided, Õ(n) O(log n)
Brakensiek, Charikar, Rubinstein [13] g two-sided, Õ(nk/g) Õ(k2/g)
Ostrovsky, Rabani [26] O∗(1) two-sided, Õ(n2) O(log n)
This work, Theorem 2 O∗(1) two-sided, O∗(n) O∗(k)
Goldenberg, Rubinstein, Saha [21] O(1) two-sided, Õ(n2) O∗(n3/2)
Goldenberg, Rubinstein, Saha [21] 1 two-sided, Õ(n) Õ(k2)

A textbook dynamic programming algorithm computes the edit distance of two strings of
length n in time O(n2). Popular conjectures such as the Strong Exponential Time Hypothesis
imply that that this algorithm is essentially optimal, as there is no strongly subquadratic-time
algorithm [8, 1, 16, 2]. As for some applications involving enormous strings (such as DNA
sequences) quadratic-time algorithms are impractical, a long line of research developed
progressively better and faster approximation algorithms [9, 11, 26, 7, 4, 17, 25, 14]. The
current best approximation guarantee in near-linear time is an algorithm by Andoni and
Nosatzki [6] computing an f(1/ε)-approximation in time O(n1+ε).

Another more recent line of research studies edit distance in the sublinear-time setting.
Here the goal is to approximate the edit distance without reading the entire input strings.
More formally, in the (k, K)-gap edit distance problem the goal is to distinguish whether the
edit distance between X and Y is at most k or greater than K. The performance of gap
algorithms is typically measured in terms of the string length n and the gap parameters k

and K. This problem has been studied in several works [10, 7, 20, 13, 24] most of which
focus on the (k, k2)-gap problem. Currently, there are two incomparable best known results:
A recent result by Goldenberg, Kociumaka, Krauthgamer and Saha [19] established a
non-adaptive algorithm for the (k, k2)-gap problem in time Õ(n/k3/2).1 Another recent
result by Bringmann, Cassis, Fischer and Nakos [15] reduces the gap to O∗(1) and solves
the (k, O∗(k))-gap problem in time O∗(n/k+k4).2 See Table 1 for a more detailed comparison.

Our starting point is the work by Goldenberg, Rubinstein and Saha [21] which studies
sublinear algorithms for edit distance in the preprocessing model. Here, we are allowed to
preprocess one or both input strings X and Y separately, and then use the precomputed

1 We write Õ(·) to hide polylogarithmic factors (log n)O(1).
2 We write O∗(·) to hide subpolynomial factors no(1) in n.



K. Bringmann, A. Cassis, N. Fischer, and V. Nakos 32:3

information to solve the (k, K)-gap edit distance problem. This model is motivated by
applications where many long strings are compared against each other. For example, the
string similarity join problem is to find all pairs of strings in a database (containing e.g.
DNA sequences) which are close in edit distance; see [27] for a survey on practically relevant
algorithms. Note that in these applications, if we have an algorithm with almost-linear
preprocessing time (which is the case for all the algorithms we present in this paper), then
the overhead incurred by preprocessing is comparable to the time necessary to read and store
the strings in the first place. In [21], the authors pose and investigate the following open
question:

“What is the complexity of approximate edit distance
with preprocessing when k ≪ n?” [21]

This question has spawned significant interest in the community [18, 21, 13], and with
this paper we also make progress towards this question. We give an overview of results
in Table 1. Note that most results are hard to compare to each other (one-sided versus
two-sided preprocessing, exact versus O(1)-approximate versus O(k)-approximate).

In the two-sided model, all known algorithms (with almost-linear preprocessing time3

and, say, subpolynomial gap g = no(1)) share the common barrier that the query time
is Ω(k2). Due to this barrier, Goldenberg et al. [21] specifically ask whether there exists an
approximation algorithm with sub-k2 query time. One of our contributions is that we answer
this question in the affirmative.

Our Results. We develop sublinear-time algorithms for the (k, O∗(k))-gap edit distance
problem, in the one-sided and two-sided preprocessing model, respectively.

▶ Theorem 1 (One-Sided Preprocessing). Let X, Y be length-n strings. After preprocessing Y

in time O∗(n), we can solve the (k, k · no(1))-gap edit distance problem for X and Y in
time O∗(n/k + k) with high probability.

In comparison to the (k, k2)-gap algorithms from [21, 13] with best query time4 Õ(n/k+k),
we contribute the following improvement: Ignoring lower-order factors, we reduce the gap
from k to O∗(1) while achieving the same query time O∗(n/k +k) and the same preprocessing
time O∗(n). In comparison to the (k, O∗(k))-gap algorithm in time O∗(n/k + k4) from [15],
we achieve the same gap but an improved query time for large k, at the cost of preprocessing
one of the strings.

In the two-sided model, we obtain an analogous result, where the query time no longer
depends on n/k.

▶ Theorem 2 (Two-Sided Preprocessing). Let X, Y be length-n strings. After preprocessing
both X and Y (separately) in time O∗(n), we can solve the (k, k · no(1))-gap edit distance
problem for X and Y in time O∗(k) with high probability.

We remark that all hidden factors in both theorems are 2Õ(
√

log n). For a detailed
comparison of this algorithm to the previously known results, see Table 1. We point out
that Theorem 2 settles the open question from [21] whether there exists an edit distance
approximation algorithm with small gap and sub-k2 query time.

3 Here we insist on almost-linear preprocessing time since the celebrated embedding of edit distance into
the ℓ1-metric with distortion no(1) due to Ostrovsky and Rabani [26] achieves query time O(log n) but
requires preprocessing time Ω(n2).

4 For the (k, k2)-gap problem, the running time bounds Õ(n/k + k) and Õ(n/k) can be considered equal,
as for k ≥

√
n the algorithm may return a trivial answer.
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Our Techniques. To achieve our results we build on the recent sublinear-time algorithm
by Bringmann, Cassis, Fischer and Nakos [15], which itself builds on an almost-linear-time
algorithm by Andoni, Krauthgamer and Onak [4]. The basic idea of the original algorithm
is to split the strings into several smaller parts and recur on these parts with non-uniform
precisions. The idea of [15] is to prune branches in the recursion tree, by detecting and
analyzing periodic substructures. Towards that, they designed appropriate property testers
to efficiently detect these structures. In our setting, we observe that having preprocessed
the string(s), we can prune the computation tree much more easily. Thus, our algorithm
proceeds in the same recursive fashion as [15] and uses a similar set of techniques, but due
to the preprocessing it turns out to be simpler and faster.

Further Related Work. In the previous comparison about sublinear-time algorithms, we
left out streaming and sketching algorithms [12, 18, 9] and document exchange protocols [23,
12, 22].

Future Directions. There are several interesting directions for future work. We specifically
mention two open problems.
1. Constant gap? As Table 1 shows, so far no constant-gap sublinear-time algorithm is

known. Maybe the one-sided preprocessing setting is more approachable for this challenge.
We believe that our approach is hopeless to achieve a constant gap, since we borrow from
the recursive decomposition introduced in [4] which inherently incurs a polylogarithmic
overhead in the approximation factor.

2. Improving the query time? The well-known Ω(n/K) lower bound against the (k, K)-gap
Hamming distance problem (and therefore against edit distance) continues to hold in the
one-sided preprocessing setting. In particular, the most optimistic hope is an algorithm
with query time O∗(n/k) for the (k, O∗(k))-gap edit distance problem. Can this be
achieved or is the extra +k in the query time of Theorem 1 necessary? For two-sided
preprocessing, to the best of our knowledge no lower bound is known.

2 Preliminaries

We set [ i . . j ] = { i, i+1, . . . , j −1 } (in particular, [ i . . i ] = ∅) and [ j ] = [ 0 . . j ]. We say that
an event happens with high probability if it happens with probability at least 1 − 1/ poly(n),
where the degree of the polynomial can be an arbitrary constant. We write poly(n) = nO(1)

and Õ(n) = n(log n)O(1).
Let X, Y be strings over an alphabet Σ with polynomial size. We denote by |X|

the length of X. We denote by X ◦ Y the concatenation of X and Y . We denote
by X[ i ] the i-th character in X starting with index zero. We denote by X[ i . . j ] the
substring of X with indices in [ i . . j ], that is, including i and excluding j. For out-of-
bounds indices we set X[ i . . j ] = X[ max(i, 0) . . min(j, |X|) ]. If X and Y have the same
length, we define their Hamming distance HD(X, Y ) as the number of non-matching charac-
ters HD(X, Y ) = |{ i : X[ i ] ̸= Y [ i ] }|. For two strings X, Y with possibly different lengths,
we define their edit distance ED(X, Y ) as the smallest number of character insertions, dele-
tions and substitutions necessary to transform X into Y . An optimal alignment between X

and Y is a monotonically non-decreasing function A : { 0, . . . , |X| } → { 0, . . . , |Y | } such
that A(0) = 0, A(|X|) = |Y | and

ED(X, Y ) =
|X|−1∑

i=0
ED(X[ i ], Y [ A(i) . . A(i + 1) ]).
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It is easy to see that there is an optimal alignment between any two strings X, Y : Trace an
optimal path through the standard dynamic program for edit distance and assign A(i) to
the smallest j for which the path crosses (i, j).

Let T be a rooted tree, and let v be a node in T . We denote by root(T ) the root node
in T . We denote by parent(v) the parent node of v. We denote by depth(v) the length of the
root-to-v path, and by height(v) the length of the longest v-to-leaf path.

3 Overview

3.1 A Linear-Time Algorithm à la Andoni-Krauthgamer-Onak
We start to outline an almost-linear-time algorithm to approximate the edit distance of two
strings X, Y following the framework of the Andoni-Krauthgamer-Onak algorithm [4], with
some changes as in [15] and some additional modifications (see the novel trick outlined at
the end of this subsection).

First Ingredient: A Divide-and-Conquer Scheme. The basic idea of the algorithm is to
apply a divide-and-conquer scheme to reduce the approximation of the global edit distance
to approximating the edit distance of several smaller strings. The straightforward idea of
partitioning both strings X, Y into parts X1, . . . , Xm, Y1, . . . , Ym and computing the edit
distances ED(Xi, Yi) does not immediately work; instead we need to consider several shifts
of the string Yi. We remark that this concept of recurring on smaller strings for several
shifts is quite standard in previous work. The following lemma uses the same ideas as the
“E-distance” defined in [4]. We give a proof in Appendix A.

▶ Lemma 3 (Divide and Conquer). Let X, Y be length-n strings, and let 0 = j0 < · · · < jB = n.
We write Xi = X[ ji−1 . . ji ] and Yi,s = Y [ ji−1 + s . . ji + s ].

For all shifts s1, . . . , sB we have that ED(X, Y ) ≤
∑

i ED(Xi, Yi,si) + 2|si|.
There are shifts s1, . . . , sB with

∑
i ED(Xi, Yi,s) ≤ 2ED(X, Y ) and 2|si| ≤ ED(X, Y ) for

all i.

To explain how to apply Lemma 3, we first specify on which substrings our algorithm is
supposed to recur. To this end, let T be a balanced B-ary tree with n leaves. T will act as
the “recursion tree” of the algorithm. For a string X of length n, we define a substring Xv

for every node v in T as follows: If the subtree below Xv spans from the i-th to the j-th
leaf (ordered from left to right), then we set Xv = X[ i . . j + 1 ]. In particular, Xv is a single
character for each leaf v, and Xroot(T ) = X. We further define Xv,s = X[ i + s . . j + s + 1 ].
For concreteness, we set B = 2

√
log n log log n = no(1) throughout the paper.

A Simple Algorithm. Based on Lemma 3, we next present a simple (yet slow) algorithm.
Our goal is to compute, for each node v in the tree T , an approximation ẼD(Xv, Yv,s)
of ED(Xv, Yv,s) for all shifts s. The result at the root node is returned as the desired
approximation of ED(X, Y ). The algorithm works as follows: For each leaf we can cheaply
compute ED(Xv, Yv,s) exactly by comparing the single characters Xv and Yv,s. For each
internal node with children v1, . . . , vB we compute

ẼD(Xv, Yv,s) =
B∑

i=1
min
si∈Z

ẼD(Xvi , Yvi,si) + 2|s − si|. (1)
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A careful application of Lemma 3 shows that if the recursive approximations ED(Xvi , Yvi,si)
have multiplicative error at most α, then by approximating ED(Xv, Yv,s) as in (1) the
multiplicative error becomes 2α + B. Since we repeat this argument recursively up to depth
depth(T ) ≤ logB(n), the multiplicative error accumulates to B · exp(O(logB(n))) = no(1).

This simple algorithm achieves the desired approximation quality, however, it is not fast
enough: For every node v we have to compute ẼD(Xv, Yv,s) for too many shifts s (naively
speaking, for up to n shifts). As a first step towards dealing with this issue, we first show
that at every node v we can in fact tolerate a certain additive error (in addition to the
multiplicative error discussed before) using a technique called Precision Sampling. Then we
exploit the freedom of additive errors to run this algorithm for a restricted set of shifts s.

Second Ingredient: Precision Sampling. It ultimately suffices to compute an approximation
of ED(X, Y ) with additive error k in order to solve the constant-gap edit distance problem.
We leverage this freedom to also solve the recursive subproblems up to some additive error.
Specifically, we will work with the following data structure:

▶ Definition 4 (Precision Tree). Let T be a balanced B-ary tree with n leaves. For t ∈ N, we
randomly associate a tolerance tv to every node v in T as follows:

If v is the root, then set tv = t;
otherwise set tv = tparent(v) · uv/3, where we sample uv ∼ Exp(O(log n)) (the exponential
distribution with parameter O(log n)).

We refer to T as a precision tree with initial tolerance t.

The tolerance tv at a node v determines the additive error which we can tolerate at v.
That is, our goal is to approximate ED(Xv, Yv,s) with additive error tv (and the same
multiplicative error as before). The initial tolerance is set to t = k. The critical step is how
to combine the recursive approximations with additive error tv1 , . . . , tvB

to an approximation
with additive error tv. The naive solution would incur error

∑
i tvi ≫ tv. Instead, we employ

the Precision Sampling Lemma [4, 5, 3, 15] (see Lemma 15 in Section 4) to recombine the
recursive approximation and avoid this blow-up in the additive error.

An Improved Algorithm. We can now improve the simple algorithm to a near-linear-time
algorithm. In the original Andoni-Krauthgamer-Onak algorithm this was achieved by pruning
most recursive subproblems (depending on their tolerances tv). We will follow a different
avenue: Our algorithm recurs on every node in the precision tree, and we obtain a linear-time
algorithm by bounding the expected running time per node by no(1).

We achieve this by the following novel trick: We restrict the set of feasible shifts s at
each node v with respect to the tolerance tv. In fact, we require two constraints: First, we
restrict s to values smaller than ≈ k in absolute value. This first restriction is correct since
we only want to maintain edit distances bounded by k; this idea was also used in previous
works. Second, we restrict the feasible shifts s at any node v to multiples of ⌊tv/2⌋. Then,
in order to approximate ED(Xv, Yv,s) for any shift s we let s̃ denote the closest multiple
of ⌊tv/2⌋ to s, and approximate ED(Xv, Yv,s) by ED(Xv, Yv,s̃). Since |s − s̃| ≤ tv/2, both
edit distances differ by at most tv. Recall that we can tolerate this error using the Precision
Sampling technique. Let Sv = { −k · no(1), . . . , k · no(1) } ∩ ⌊tv/2⌋Z denote the set of shifts
respecting these restrictions (the precise lower-order term no(1) will be fixed later).

In terms of efficiency, we have improved as follows: At every node the running time is
essentially dominated by the number of feasible shifts s. Using our discretization trick, there
are only |Sv| = k · no(1)/tv such shifts. By the following Lemma 5, we can bound this number
in expectation by k · no(1)/troot(T ) = no(1).
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▶ Lemma 5 (Expected Precision). Let T be a B-ary precision tree with initial tolerance t

and B = exp(Θ̃(
√

log n)), and let v be a node in T . Then, conditioned on a high-probability
event E, it holds that

E
(

1
tv

∣∣∣∣ E

)
≤ (log n)O(depth(v))

t
≤ no(1)

t
.

We include a proof in Appendix A. For technical reasons, the lemma is only true
conditioned on some high-probability event E. For the remainder of this paper, we implicitly
condition on this event E.

3.2 How to Go Sublinear?

Following the idea of [15], our strategy is to turn this algorithm into a sublinear-time
algorithm by not exploring the whole precision tree recursively, and instead only exploring a
smaller fragment. To achieve this, the goal is to approximate ED(Xv, Yv,s) for many nodes v

directly, without the need to explore their children – we say that we prune v. The algorithm
by [15] uses several structural insights on periodic versus non-periodic strings to implement
pruning rules. We can avoid the complicated treatment and follow a much simpler avenue,
exploiting that we can preprocess the strings.

In the following, we will assume that we have access to an oracle answering the following
two queries. In the next section we will argue how to efficiently implement data structures
to answer these queries.

Matching(X, Y, v): Returns either Close(s∗) where s∗ satisfies |s∗| ≤ k · no(1) and
HD(Xv, Yv,s∗) ≤ tv/2, or Far in case that there is no shift s∗ with Xv = Yv,s∗ , see
Definition 8. (Note that if 1 ≤ mins∗ HD(Xv, Yv,s∗) ≤ tv/2, the query can return either
Close(s∗) or Far.)

ShiftedDistance(Y, v, s, s′): For shifts |s|, |s′| ≤ k · no(1), returns an approximation of
ED(Yv,s, Yv,s′) with additive error tv/2 (and no(1)-multiplicative error, see Definition 9).

Suppose for the moment that both queries can be answered in constant time. Then we
can reduce the running time of the previous linear-time algorithm to time k · no(1) as fol-
lows: We try to prune each node v by querying Matching(X, Y, v). If the Matching
query reports Far, we simply continue recursively as before (i.e., no pruning takes place).
However, if the matching query reports Close(s∗), then we can prune v as follows: Query
ShiftedDistance(Y, v, s∗, s) for all shifts s ∈ Sv and return the outcome as an approxima-
tion of ED(Xv, Yv,s) for all shifts s. For the correctness we apply the triangle inequality and
argue that the additive error is bounded by tv/2 + tv/2 = tv.

It remains to argue that the number of recursive computations is bounded by k · no(1).
The intuitive argument is as follows: Assume that ED(X, Y ) ≤ k (i.e., we are in the “close”
case) and consider an optimal alignment between X and Y , which contains at most k

mismatches. Recall that each level of the precision tree induces a partition of X into
consecutive substrings Xv. Thus, there are at most k substrings Xv which contain a
mismatch in the optimal alignment. For all other substrings, there are no mismatches and
hence Xv = Yv,s∗ for some shift s∗. It follows that on every level there are at most k nodes
for which the Matching test fails, and in total there are only k · height(T ) = O(k log n) such
nodes.
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3.3 How to Answer Matching and Shifted-Distance Queries?
It remains to find data structures which answer these queries efficiently. We assume that the
precision tree T has been generated in advance and is shared across all precomputations. In
particular, this requires “public randomness” for the otherwise independent precomputations.

Matching Queries. The idea is to precompute and store fingerprints (i.e. hashes) of the
substrings Yv,s for every node v in the partition tree and all shifts s ∈ { −k ·no(1), . . . , k ·no(1) }.
Then, to answer a query we simply compute the fingerprint of Xv and lookup whether it
equals one of the precomputed fingerprints. Alas, a naive implementation of this idea is too
slow since upon query we might need to read the whole string X. To obtain the desired
sublinear query time, we instead subsample the strings Xv and Yv,s with rate ≈ 1/tv. In
this way we incur additive Hamming error at most tv/2, as desired. Formally, we show the
following lemma in Section 4.1:

▶ Lemma 6 (Matching Queries). We can preprocess Y in expected time n1+o(1) to answer
Matching(X, Y, v) queries in time Õ(|Xv|/tv) with high probability. Moreover, we can
separately preprocess both X and Y in expected time n1+o(1) to answer Matching(X, Y, v)
queries in time O(1) with high probability.

The key difference between the one-sided and the two-sided preprocessing is that in the
former we need to compute the fingerprint for Xv, which takes time O(|Xv|/tv) (we shave
the factor tv due to the subsampling), while in the latter we can afford to precompute these
fingerprints and answer the queries faster.

Shifted-Distance Queries. We give two ways to answer ShiftedDistance queries. The
first one relies in a black-box manner on any almost-linear-time algorithm to compute an
edit distance approximation with multiplicative error no(1) [4, 7, 6]. Using the same trick
as before to restrict the set of feasible shifts, it suffices to approximate ED(Yv,s, Yv,s′) for
all shifts s ∈ Sv and s′ ∈ { −k · no(1), . . . , k · no(1) }. (We could also discretize the range
of s′, but this does not improve the performance here.) In this way, we incur an additive
error of at most O(tv). The computation per node v takes time |Yv| · k · k · no(1)/tv, which
becomes kn1+o(1) in expectation by Lemma 5 and by summing over all nodes v.

We then show that we can improve the preprocessing time to n1+o(1) by applying the
non-oblivious embedding of edit distance into ℓ1 by Andoni and Onak [7]. Formally we
obtain the following lemma, which we prove in Section 4.3.

▶ Lemma 7 (Shifted-Distance Queries). We can preprocess Y in time n1+o(1) to answer
ShiftedDistance(Y, v, s, s′) queries in time no(1) with high probability.

4 Our Algorithm in Detail

In this section we give a detailed proof of our main theorems by analyzing Algorithms 1
and 2 (see Sections 4.4 and 4.5). Algorithm 2 is the previously discussed reformulation of the
Andoni-Krauthgamer-Onak algorithm, with the improvement that the recursive computation
can be avoided whenever Algorithm 1 succeeds. Algorithm 1 implements the pruning rule
which, as we will argue, triggers often enough to improve the running time.

Throughout we fix the initial tolerance of the precision tree T to t = troot(T ) = k.
Moreover, we set S = { −k · 3logB(n), . . . , k · 3logB(n) } and Sv = S ∩ ⌊tv/2⌋Z. Observe
that |S| = k · 3logB(n) = k · no(1) for our choice of B = exp(Õ(

√
log n)).
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Outline. Compared to the technical overview, we present the details in the reverse order:
Starting with the implementation of the data structures for Matching and Shifted-
Distance queries (in Section 4.1), we first analyze Algorithm 1 (in Section 4.4). Then we
analyze Algorithm 2 (in Section 4.5) and put the pieces together for our main theorems (in
Section 4.6).

4.1 Matching Queries
In this section we show to implement data structures that answer Matching queries. We
start with a formal definition.

▶ Definition 8 (Matching Queries). Let X, Y be strings of length n, and let v be a node in
the precision tree. A Matching(X, Y, v) query is correctly answered by one of two outputs:

Close(s∗) for some shift s∗ ∈ S satisfying HD(Xv, Yv,s∗) ≤ tv/2, or
Far if there exists no shift s∗ ∈ S with Xv = Yv,s∗ .

▶ Lemma 6 (Matching Queries). We can preprocess Y in expected time n1+o(1) to answer
Matching(X, Y, v) queries in time Õ(|Xv|/tv) with high probability. Moreover, we can
separately preprocess both X and Y in expected time n1+o(1) to answer Matching(X, Y, v)
queries in time O(1) with high probability.

Proof. We first explain the general idea behind the data structure and then point out
the specifics for the one-sided and two-sided preprocessing. For each node v in the pre-
cision tree, we subsample a set Hv ⊆ [ |Yv| ] with rate Θ(log n/tv) and sample a hash
function h : Σ|Hv| → [ poly(n) ] from any universal family of hash functions. (Take for in-
stance the function h(σ1, . . . , σ|Hv|) =

∑
i aiσi mod p for some prime p = poly(n) and random

ai’s).
We associate to a string A ∈ Σ|Yv| the fingerprint h(A[ Hv ]), where we write A[ Hv ] for

the subsequence of A with indices in Hv. We claim that these fingerprints can distinguish
any two strings A, B with HD(A, B) > tv/2 with high probability. Indeed, the probability
that Hv contains an index i with A[ i ] ̸= B[ i ] is at least

1 −
(

1 − Ω(log n)
tv

)HD(A,B)
≥ 1 − exp(−Ω(log n)) = 1 − 1

poly(n) .

Hence, with high probability we have that A[ Hv ] ̸= B[ Hv ]. Moreover, since h is sampled
from a universal family of hash functions, we also have that h(A[ Hv ]) ̸= h(B[ Hv ]) with
high probability. On the other hand, if A = B then clearly h(A[ Hv ]) = h(B[ Hv ]). We now
turn to the implementation details for one-sided and two-sided preprocessing.

One-Sided Preprocessing. In the preprocessing phase, we prepare for every node v the
fingerprints of Yv,s for all shifts s ∈ S, and store these fingerprints in a lookup table. In the
query phase, given some string X we compute the fingerprint of Xv and check whether it
appears in the lookup table. If so, we return Close(s∗) for the shift s∗ corresponding to
the precomputed fingerprint. Otherwise, we return Far. The correctness follows from the
previous paragraph.

The expected running time of the preprocessing phase is bounded by
∑

v Õ(|Yv|/tv · |S|)
(for every node we have to prepare |S| fingerprints, each taking time Õ(|Yv|/tv)). This
becomes

∑
v O(|Yv| · no(1)/troot(T ) · k) =

∑
v O(|Yv| · no(1)) = n1+o(1) in expectation over the

tolerances tv; see Lemma 5. The query time is dominated by computing the fingerprint of Xv

which takes expected time Õ(|Xv|/tv) (even with high probability by an application of the
Chernoff bound).
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Two-Sided Preprocessing. For two-sided preprocessing, we can also prepare the fingerprints
of Xv for all nodes v in the preprocessing phase. The expected preprocessing time is
still n1+o(1), but for queries it only takes constant time to perform the lookup. ◀

4.2 Simple Shifted-Distance Queries
We next demonstrate how to deal with ShiftedDistance queries, formally defined as
follows:

▶ Definition 9 (Shifted-Distance Queries). Let Y be a string of length n, let v be a node in the
precision tree and let s, s′ ∈ S. A ShiftedDistance(Y, v, s, s′) query computes a number
satisfying:

ED(Yv,s, Yv,s′) − tv/2 ≤ ShiftedDistance(Y, v, s, s′) ≤ no(1) · (ED(Yv,s, Yv,s′) + tv/2).

We will first show how to implement a simpler version of Lemma 7 at the cost of worsening
the preprocessing time to kn1+o(1) instead of n1+o(1). The benefit of this weaker version is
that it is a black-box reduction to any almost-linear time no(1)-approximation algorithm for
edit distance, while the improved version crucially relies on the properties of the particular
algorithm by Andoni and Onak [7]. In the next section we show how to obtain the speed-up.

▶ Lemma 10 (Slower Shifted-Distance Queries). We can preprocess Y in time kn1+o(1) to
answer ShiftedDistance(Y, v, s, s′) queries in time no(1) with high probability.

Proof. We will use the result that an no(1)-approximation for the edit distance of two length-n
strings can be computed in time n1+o(1) [4, 7, 6]. In the preprocessing phase, we compute
no(1)-factor approximations ẼD(Yv,s̃, Yv,s′) for all nodes v, all s̃ ∈ Sv and all s′ ∈ S. Then,
to answer a query ShiftedDistance(Y, v, s, s′) we let

s̃ := argmin
s̃∈Sv

|s − s̃|

and output ẼD(Yv,s̃, Yv,s′).
First we argue that this gives a good approximation. Indeed, we have that |s − s̃| ≤ tv/4

by the definition of Sv. Therefore:

ẼD(Yv,s̃, Yv,s′) ≤ no(1) · ED(Yv,s̃, Yv,s′)

≤ no(1) · (ED(Yv,s, Yv,s′) + ED(Yv,s, Yv,s̃))

≤ no(1) · (ED(Yv,s, Yv,s′) + tv/2),

where second inequality is an application of the triangle inequality, and the last inequality
follows since we can transform Yv,s̃ into Yv,s by adding and removing tv/4 symbols. A
symmetric argument shows the claimed lower bound ẼD(Yv,s̃, Yv,s′) ≥ ED(Yv,s, Yv,s′) − tv/2.

Next we analyze the running time. For the preprocessing, we compute |Sv|·|S| = O∗(k2/tv)
many approximations for each node v, each in time |Yv|1+o(1). We can bound E(1/tv) =
no(1)/k by Lemma 5, so the expected total time is

∑
v |Yv|1+o(1)no(1)·k = kn1+o(1). Answering

a query takes constant time since we only need to compute s∗ as stated above and perform a
constant-time lookup. ◀

4.3 Faster Shifted-Distance Queries
In this section we show how to improve the preprocessing time for ShiftedDistance queries
to n1+o(1). We thank the anonymous reviewer who suggested this improvement. The key
technical tool to obtain this improvement is the following result by Andoni and Onak [7].
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Algorithm 1 Approximates the edit distance of preprocessed strings, or fails.

Input: Strings X (un- or preprocessed) and Y (preprocessed), a node v in the precision tree
Output: An approximation ẼD(Xv, Yv,s) of ED(Xv, Yv,s) for all s ∈ Sv, or Fail

1: if Matching(X, Y, v) = Close(s∗) then
2: return ẼD(Xv, Yv,s) = ShiftedDistance(Y, v, s∗, s) for all s ∈ Sv

3: else
4: return Fail

▶ Theorem 11 (Embedding Substrings into ℓ1 [7]). Let X be a string of length n. Then,
for each integer m of the form m = ⌊n/Bi⌋ for 0 ≤ i ≤ logB(n) and B = 2Θ(

√
log n log log n),

we can embed all length-m substrings X0, . . . , Xn−m of X into vectors vm
0 , . . . , vm

n−m of
dimension no(1) such that for every j, j′ ∈ [ n − m + 1 ], with high probability it holds that

ED(Xj , Xj′) ≤ ∥vm
j − vm

j′ ∥1 ≤ no(1) · ED(Xj , Xj′).

The time to compute all vectors is n1+o(1).

The main application of this embedding in [7] is an no(1)-approximation for the edit
distance of two length-n strings in time n1+o(1) (in [7], Theorem 11 is applied to the
concatenation of two strings to compute the ℓ1-distance between their corresponding vectors).
We remark that the guarantee of the embedding in Theorem 11 is non-oblivious, in the sense
that the algorithm needs to have access to all the substrings it is embedding. In particular,
this means that it cannot be directly applied in the two-sided preprocessing setting where we
would like to embed the strings separately.

▶ Lemma 7 (Shifted-Distance Queries). We can preprocess Y in time n1+o(1) to answer
ShiftedDistance(Y, v, s, s′) queries in time no(1) with high probability.

Proof. We assume without loss of generality that n = |Y | = |X| is a power of B (we can
pad both X and Y so that this holds, which has no impact on the running time or the
approximation guarantee of our algorithms). We apply Theorem 11 to the string Y and
store all the n1+o(1) embedded vectors. To answer a query ShiftedDistance(Y, v, s, s′),
note that Yv,s and Yv,s′ are substrings of Y of length m := n/Bdepth(v). Thus, the ℓ1 distance
between their corresponding vectors vm

j(v,s), vm
j(v,s′) given by Theorem 11 gives the desired

approximation (with no additive error). Since these vectors have dimension no(1), the time
to compute ∥vm

j(v,s) − vm
j(v,s′)∥1 and answer the query is no(1), as desired. ◀

4.4 Pruning Rule for Preprocessed Strings
In this section we analyze Algorithm 1. We always assume that either only Y or both X

and Y have been preprocessed by Lemmas 6 and 7 to efficiently answer Matching and
ShiftedDistance queries.

▶ Lemma 12 (Correctness of Algorithm 1). Whenever Algorithm 1 does not return Fail, it
returns approximations ẼD(Xv, Yv,s) satisfying with high probability

ED(Xv, Yv,s) − tv ≤ ẼD(Xv, Yv,s) ≤ no(1) · (ED(Xv, Yv,s) + tv).
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Proof. Algorithm 1 only succeeds if the Matching query in Algorithm 1 successfully
identified some shift s∗ with HD(Xv, Yv,s∗) ≤ tv/2 by Lemma 6. In this case, we report
ẼD(Xv, Yv,s) := ShiftedDistance(Y, v, s∗, s). By Lemma 7, this is an approximation of
ED(Yv,s∗ , Yv,s) with additive error tv/2 and multiplicative error no(1). Combining both facts,
and using the triangle inequality we obtain that

ẼD(Yv,s∗ , Yv,s) ≤ no(1) · (ED(Yv,s∗ , Yv,s) + tv/2)

≤ no(1) · (ED(Xv, Yv,s) + ED(Xv, Yv,s∗) + tv/2)

≤ no(1) · (ED(Xv, Yv,s) + tv),

and

ẼD(Yv,s∗ , Yv,s) ≥ ED(Yv,s∗ , Yv,s) − tv/2
≥ ED(Xv, Yv,s) − ED(Xv, Yv,s∗) − tv/2
≥ ED(Xv, Yv,s) − tv. ◀

▶ Lemma 13 (Running Time of Algorithm 1). If only the string Y is preprocessed, then
Algorithm 1 runs in expected time O∗(|Xv|/tv + k/tv). If both strings X, Y are preprocessed,
then Algorithm 1 runs in expected time O∗(k/tv).

Proof. The expected running time of the Matching query is bounded by Õ(|Xv|/tv)
(for one-sided preprocessing) or by O(1) (for two-sided preprocessing). The running time
of a single ShiftedDistance query is bounded by no(1), and we make |Sv| = Õ(k/tv)
ShiftedDistance queries. Hence, the total expected time is O∗(|Xv|/tv + k/tv) (for one-
sided preprocessing) or O∗(k/tv) (for two-sided preprocessing). ◀

▶ Lemma 14 (Efficiency of Algorithm 1). For any two strings X, Y , there are at most O(k log n)
many nodes v in the precision tree for which Algorithm 1 fails, assuming that ED(X, Y ) ≤ k.

Proof. It suffices to argue that there are at most O(ED(X, Y ) log n) nodes for which the
Matching query in Algorithm 1 fails. We start with a fixed level in the precision tree, and
enumerate all nodes on that level as v1, . . . , vm. By definition we have that X = ⃝m

i=1Xvi
,

hence there exist indices 0 = j0 < · · · < jm = n such that Xvi = X[ ji . . ji+1 ]. Now consider
an optimal alignment A : { 0, . . . , n } → { 0, . . . , n } between X and Y . In particular, A

satisfies

ED(X, Y ) =
m∑

i=1
ED(X[ ji . . ji+1 ], Y [ A(ji) . . A(ji+1) ]).

There can be at most ED(X, Y ) ≤ k many nonzero terms in the sum, and we claim that every
zero term corresponds to a node vi for which Algorithm 1 succeeds. Indeed, for any zero term
we have X[ ji . . ji+1 ] = Y [ A(ji) . . A(ji+1) ] and therefore Xvi

= Yvi,s∗ where s∗ = A(ji) − ji.
It remains to argue that |s∗| ≤ k (since otherwise the index s∗ would be out-of-bounds and
could not be detected by a Matching query). To see this, observe that

|s∗| ≤ ED(X[ j0 . . ji ], Y [ A(j0) . . A(ji) ]) ≤ ED(X, Y ) ≤ k,

exploiting again that A is an optimal alignment.
Finally, recall that there are only logB(n) ≤ log n levels in the precision tree, hence the

total number of nodes for which Algorithm 1 fails is bounded by O(k log n). ◀
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Algorithm 2 Approximates the edit distance of preprocessed strings.

Input: Strings X (un- or preprocessed), Y (preprocessed), a node v in the precision tree
Output: An approximation ẼD(Xv, Yv,s) of ED(Xv, Yv,s) for all s ∈ Sv

1: if Algorithm 1 succeeds and reports ẼD(Xv, Yv,s) for all s ∈ Sv then
2: return ẼD(Xv, Yv,s) for all s ∈ Sv

3: if v is a leaf then
4: return ED(Xv, Yv,s) for all s ∈ Sv

5: for all children vi of v do
6: Recursively compute ẼD(Xvi , Yvi,si) for all si ∈ Svi

7: Compute ãi,s = minsi∈Svi
ẼD(Xvi

, Yvi,si
) + 2 · |s − si| for all s ∈ Sv

8: return Recover(ã1,s, . . . , ãB,s, uv1 , . . . , uvB
) for all s ∈ Sv

4.5 The Complete Algorithm
Our complete Algorithm 2 is essentially what we described in Section 4.5 with the additional
pruning rule of applying Algorithm 1. We start with the correctness of Algorithm 2. We
need the following lemma, which has previously been referred to as a Precision Sampling
Lemma [4, 5, 3, 15]. The lemma was introduced by Andoni, Krauthgamer and Onak [4], and
was refined in [5, 3].

Intuitively, the lemma serves the following purpose: For fixed numbers a1, . . . , aB, say
that we have access to approximations ã1, . . . , ãB with multiplicative error α and additive
approximation error β. Then we can naively approximate

∑
i ai by

∑
i ãi with multiplicative

error α and additive error B · β. The Precision Sampling Lemma states that the blow-up in
the additive error can be avoided if the approximations ãi instead have additive error β · ui

for some non-uniformly sampled precisions ui.

▶ Lemma 15 (Precision Sampling Lemma [3]). Fix parameters δ > 0, α ≥ 1 and β ≥ 0.
Let a1, . . . , aB ≥ 0 be reals, and independently sample u1, . . . , uB ∼ Exp(O(log(δ−1))) (for
some sufficiently large hidden constant). There is an O(B log(δ−1))-time algorithm Recover
satisfying for all ã1, . . . , ãB, with success probability at least 1 − δ:

If ãi ≥ 1
α · ai − β · ui for all i, then Recover(ã1, . . . , ãB , u1, . . . , uB) ≥ 1

2α ·
∑

i ai − β.
If ãi ≤ α · ai + β · ui for all i, then Recover(ã1, . . . , ãB , u1, . . . , uB) ≤ 2α

∑
i ai + β.

▶ Lemma 16 (Correctness of Algorithm 2). Algorithm 2 computes values ẼD(Xv, Yv,s) (for
all s ∈ Sv) satisfying the following bounds with high probability:

ẼD(Xv, Yv,s) ≥ n−o(1) · ED(Xv, Yv,s) − tv, and
ẼD(Xv, Yv,s) ≤ no(1) · (ED(Xv, Yv,s) + tv) assuming that ED(Xv, Yv,s) ≤ k and 2|s| ≤ k.

Proof. The recursion of Algorithm 2 terminates in one of three cases: If v is a leaf, then the
output is exact and the claim is obvious. If v is directly solved by Algorithm 1, then by the
guarantee of Lemma 12 the claim is true. It remains to analyze the case when the algorithm
recurs, so assume that v is an internal node with children v1, . . . , vB. We prove the lower
and upper bounds separately.

Lower Bound. Fix some shift s ∈ Sv, and let s1, . . . , sB be the corresponding shifts selected
in Algorithm 2 of the algorithm. We prove that ẼD(Xv, Yv,s) ≥ ED(Xv, Yv,s)/α(height(v))−tv

by induction, where α(height(v)) = 2height(v). To this end, we apply the Precision Sampling
Lemma with ai = ED(Xvi

, Yvi,si
) + 2|s − si| and the following parameters:
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δ = 1/ poly(n),
α = α(height(v) − 1),
β = tv.

Recall that the algorithm computes ãi,s = ẼD(Xvi
, Yvi,si

)+2|s−si|, where the approximation
ẼD(Xvi

, Yvi,si
) is computed recursively. Hence, it satisfies ãi,s ≥ ai/α−β ·uvi

by the induction
hypothesis (recall that tvi

≤ tv · uvi
). Then Recover(ã1,s, . . . , ãB,s, uv1 , . . . , uvB

) computes,
with high probability, a number satisfying

Recover(·) ≥ 1
2α(height(v) − 1) ·

(
B∑

i=1
ai

)
− β

= 1
2α(height(v) − 1) ·

(
B∑

i=1
ED(Xvi , Yvi,si) + 2|s − si|

)
− tv

≥ 1
2α(height(v) − 1) · ED(Xv, Yv,s) − tv

≥ 1
α(height(v)) · ED(Xv, Yv,s) − tv,

where in the third step, we applied the lower bound from Lemma 3 and in the last step we
used the definition of α(·). Finally, recall that height(T ) ≤ logB(n) and B = exp(Θ̃(

√
log n)).

Hence the total multiplicative error is bounded by α(logB(n)) ≤ 2logB(n) = no(1).

Upper Bound. This proof is similar to the previous paragraph, but requires a more careful
application of Lemma 3. We prove by induction the algorithm computes an approximation
ẼD(Xv, Yv,s) ≤ α(height(v)) · (ED(Xv, Yv,s) + tv) where this time the multiplicative error is
bounded by α(height(v)) ≤ O(B) · 2O(height(v)), provided that ED(Xv, Yv,s) ≤ k · 3depth(v)

and 2|s| ≤ k · 3depth(v). Note that this implies the lemma statement.
Throughout, fix some shift s ∈ Sv. The idea is to first use Lemma 3 to find “optimal”

shifts s∗
1, . . . , s∗

B ∈ Z, which we use for the recursive computation. Unfortunately these
shifts s∗

i may not fall into the restricted set of feasible shifts Svi . We therefore argue that
picking shifts si ∈ Svi

closest possible to s∗
i is sufficient to obtain the claimed guarantee.

Formally, by Lemma 3 there exist shifts s∗
1, . . . , s∗

B satisfying the following two properties:

B∑
i=1

ED(Xvi
, Yvi,s∗

i
) ≤ 2ED(Xv, Yv,s), (2)

2|s − s∗
i | ≤ ED(Xv, Yv,s). (3)

We now pick s1 ∈ Sv1 , . . . , sB ∈ SvB
to be the closest values to the optimal shifts s∗

1, . . . , s∗
B .

As a first insight, observe that:

2|s∗
i | ≤ 2|s − s∗

i | + 2|s| ≤ ED(Xv, Yv,s) + 2|s| ≤ 2k · 3depth(v).

Recall that we set S = { −k · 3logB(n), . . . , k · 3logB(n) } and we therefore have s∗
i ∈ S. It

follows that |si − s∗
i | ≤ tvi

/2 and thus

2|si| ≤ 2|s∗
i | + tvi

≤ 2|s∗
i | + k ≤ 2k · 3depth(v) + k ≤ k · 3depth(vi).

Next, we claim that ED(Xvi , Yvi,si) ≤ k · 3depth(vi), which we will use to guarantee that the
recursive calls of the algorithm succeed. Indeed, we have that

ED(Xvi
, Yvi,si

) ≤ ED(Xvi
, Yvi,s∗

i
) + tvi

≤ 2 · ED(Xv, Yv,s) + k ≤ k · 3depth(vi).
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We claim that if the algorithm was to choose the shifts si specified in the previous
paragraph in Algorithm 2, then the output is bounded as claimed. (This is sufficient, since
Algorithm 2 in fact minimizes over all possible shifts si.) In this case, we inductively have
that

ãi,s ≤ ẼD(Xvi , Yvi,si) + 2|s − si|
≤ α(height(v) − 1) · (ED(Xvi , Yvi,si) + tvi) + 2|s − si|
≤ α(height(v) − 1) · (ED(Xvi

, Yvi,s∗
i
) + 3tvi

) + 2|s − s∗
i |.

In the last step we used that ED(Xvi , Yvi,s∗
i
) differs from ED(Xvi , Yvi,si) by an additive error

of tvi
, and the same is true for 2|s − s∗

i | and 2|s − si|. Next, we apply the Precision Sampling
Lemma with ai = ED(Xvi , Yvi,s∗

i
) + 2α−1|s − s∗

i | and parameters
δ = 1/ poly(n),
α = α(height(v) − 1),
β = αtv.

Recall that tvi
= tv · uvi

/3, thus by definition we have that ãi,s ≤ α · ai + β · uvi
. Therefore,

the Precision Sampling Lemma states that with high probability the recovery algorithm
returns

Recover(·) ≤ 2α ·

(
B∑

i=1
ai

)
+ β

≤ 2α

(
B∑

i=1
ED(Xvi

, Yvi,s∗
i
)
)

+ 2
(

B∑
i=1

2|s − s∗
i |

)
+ αtv

≤ 4α · ED(Xv, Yv,s) + 2B · ED(Xv, Yv,s) + αtv

≤ 4(α + B) · (ED(Xv, Yv,s) + tv)
≤ α(height(v)) · (ED(Xv, Yv,s) + tv),

where for the third inequality we applied the bounds in (2) and (3) and in the last step we used
the definition of α(height(v)) = O(B) · 2O(height(v)) (for sufficiently large hidden constants).
Since the tree has height logB(n) and B = exp(Θ̃(

√
log n)), the overall approximation factor

is bounded by α(logB(n)) = O(B) · 2O(logB(n)) = no(1), as claimed. ◀

Next, we analyze the running time of Algorithm 2. It turns out that the bottleneck is the
computation in Algorithm 2, and a naive implementation would be too slow for our purposes.
For that reason, we use the following lemma for an improved implementation of Algorithm 2.
The lemma is a generalization of [15, Lemma 10].

▶ Lemma 17 (Range Minimum Problem). Let T, T ′ be sets of integers (given in sorted order),
and let (bs′)s′∈T ′ be given. There is an O(|T | + |T ′|)-time algorithm to compute (as)s∈T

defined by

as = min
s′∈T ′

bs′ + 2 · |s − s′|.

Proof. The idea is to compute auxiliary values

a≤
s = min

s′∈T ′

s′≤s

bs′ + 2s − 2s′,

a≥
s = min

s′∈T ′

s′≥s

bs′ − 2s + 2s′,
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as then returning as = min(a≤
s , a≥

s ) is correct. We show how to compute a≤
s (for all s); the

values a≥
s are symmetric. Let T = { s1 < · · · < s|T | }. We evaluate the base case a≤

s1
naively.

We then compute a≤
si

for all i = 2, . . . , |T | as follows:

a≤
si

= min
{

a≤
si−1

+ 2si − 2si−1, min
si−1<s′≤si

bs′ + 2si − 2s′
}

.

For the correctness, we distinguish two cases. Let s′ ≤ si be the index which attains the
minimum in the definition of a≤

si
. On the one hand, if s′ ≤ si−1, then a≤

si
= a≤

si−1
+2si −2si−1

and thus the first term in the minimum is correct. On the other hand, if s′ > si−1, then the
second term in the minimum is correct by definition. In order to compute (a≤

s )s we sweep
from left to right over all values in T and T ′ exactly once, hence the running time can be
bounded by O(|T | + |T ′|). ◀

▶ Lemma 18 (Running Time of Algorithm 2). Assume that ED(X, Y ) ≤ k. If only the
string Y is preprocessed, then Algorithm 2 runs in expected time n1+o(1)/k + kno(1). If both
strings X, Y are preprocessed, then Algorithm 2 runs in expected time kno(1).

Proof. We first bound the running time of a single execution of Algorithm 2 (ignoring the
cost of recursive calls). The computation in Algorithm 2 merely compares single characters
and therefore takes time |Sv| = O∗(k/tv). By Lemma 13, the call to Algorithm 1 takes
expected time O∗(|Xv|/tv + k/tv) (for one-sided preprocessing) or O∗(k/tv) (for two-sided
preprocessing). Each iteration of the loop in Algorithms 2–2 is dominated by the com-
putation in Algorithm 2 (ignoring the recursive calls in Algorithm 2). Using Lemma 17
with T = Sv and T ′ = Svi

, this step takes time O(|Sv| + |Svi
|), and thus the loop runs in

time O(B · |Sv| +
∑

i |Svi |) = O∗(k/tv +
∑

i k/tvi). In all of these bounds we can bound 1/tv

by no(1)/k in expectation, according to Lemma 5, so the total expected time per node be-
comes no(1) · (|Xv|/k + 1) (for one-sided preprocessing) or no(1) (for two-sided preprocessing).

To account for the recursive calls, we first use Lemma 14 to bound the number of
recursive calls by O(k log n). Let v1, . . . , vm (with m = O(k log n)) denote all nodes for which
Algorithm 2 is recursively called. Then the expected running time for one-sided preprocessing
can be bounded by

no(1) ·
m∑

i=1

(
|Xvi

|
k

+ 1
)

≤ kno(1) + no(1) ·
logB(n)∑

d=1

m∑
i=1

depth(vi)=d

|Xvi
|

k

≤ kno(1) + no(1) ·
logB(n)∑

d=1

n

k

≤ kno(1) + n1+o(1)

k
.

Here we used that across any level in the precision tree, the strings Xv form a partition of X

into consecutive substrings. In the same way we can bound the running time for two-sided
preprocessing by kno(1). ◀

4.6 Proof of the Main Theorems
We are finally ready to prove our main theorems.

Proof of Theorems 1 and 2. We assume that either only Y (for Theorem 1) or both X

and Y (for Theorem 2) are preprocessed by Lemmas 6 and 7. We will solve the (k, K)-gap
edit distance problem, for some parameter K to be picked later, by running Algorithm 2
(with input v = root(T ) and s = 0, so in particular 2|s| ≤ k). For the correctness proof, we
apply Lemma 16 to the following two cases:
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If ED(X, Y ) ≤ k, then ẼD(X, Y ) ≤ no(1) · (ED(X, Y ) + t) ≤ no(1) · k.
If ED(X, Y ) ≥ K, then ẼD(X, Y ) ≥ n−o(1) · ED(X, Y ) − t ≥ n−o(1) · K.

By setting K = k · no(1) for a sufficiently large subpolynomial factor, we can distinguish the
two cases based on the outcome ẼD(X, Y ).

Next, we analyze the running time. If ED(X, Y ) ≤ k, then the algorithm runs in expected
time n1+o(1)/k + kno(1) or kno(1), respectively; see Lemma 18. By Markov’s inequality,
the algorithm respects these time bounds with constant probability. We may therefore
interrupt the algorithm after it exceeds its time budget and report “ED(X, Y ) ≥ K” in case
of an interruption. We can boost the success probability to 1 − 1/ poly(n) by running the
algorithm O(log n) times in parallel and reporting the majority answer. (This also means
that the preprocessing is repeated O(log n) times with independently sampled precision
trees.) ◀
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A Proofs of Lemmas 3 and 5

In this section we provide proofs of Lemmas 3 and 5.

▶ Lemma 3 (Divide and Conquer). Let X, Y be length-n strings, and let 0 = j0 < · · · < jB = n.
We write Xi = X[ ji−1 . . ji ] and Yi,s = Y [ ji−1 + s . . ji + s ].

For all shifts s1, . . . , sB we have that ED(X, Y ) ≤
∑

i ED(Xi, Yi,si
) + 2|si|.

There are shifts s1, . . . , sB with
∑

i ED(Xi, Yi,s) ≤ 2ED(X, Y ) and 2|si| ≤ ED(X, Y ) for
all i.

Proof. Lower Bound. Let us write Yi = Yi,0 = Y [ ji−1 . . ji ] (in analogy to the notation Xi).
It is clear that ED(Yi,si

, Yi) ≤ 2|si| by deleting and inserting at most |si| symbols. Therefore,
by several applications of the triangle inequality we have

B∑
i=1

ED(Xi, Yi,si) + 2|si| ≥
B∑

i=1
ED(Xi, Yi,si) + ED(Yi,si , Yi)

≥
B∑

i=1
ED(Xi, Yi)

≥ ED(X, Y ).

Upper Bound. For the upper bound, let A : { 0, . . . , n } → { 0, . . . , n } denote an optimal
alignment between X and Y (as defined in Section 2). Then

ED(X, Y ) =
B∑

i=1
ED(X[ ji−1 . . ji ], Y [ A(ji−1) . . A(ji) ]). (4)

We pick si = A(ji−1)−ji−1. The first step is to prove that 2|si| ≤ ED(X, Y ), thereby proving
the second item of the upper bound. To see this, we first express ED(X, Y ) as the sum of two
edit distances ED(X[ 0 . . ji−1 ], Y [ 0 . . A(ji−1) ]) and ED(X[ ji−1 . . n ], Y [ A(ji−1) . . n ]), using
that A is an optimal alignment. Now, since the edit distance of two strings A, B is always at
least | |A| − |B| |, we conclude that ED(X, Y ) ≥ 2|si|.

The next and final part is to prove that
∑

i ED(Xi, Yi,si) ≤ 2ED(X, Y ).

ED(Xi, Yi,si
) = ED(X[ ji−1 . . ji ], Y [ A(ji−1) . . A(ji−1) + ji − ji−1 ])

≤ ED(X[ ji−1 . . ji ], Y [ A(ji−1) . . A(ji) ]) + |(A(ji) − A(ji−1)) − (ji − ji−1)|
≤ 2 · ED(X[ ij−1 . . ij ], Y [ A(ji−1) . . A(ji) ]),

where in the last step we again used that the edit distance between two strings is at least
their length difference. It follows that

B∑
i=1

ED(Xi, Yi,si
) ≤ 2

B∑
i=1

ED(X[ ji−1 . . ji ], Y [ A(ji−1) . . A(ji) ]) ≤ 2ED(X, Y ). ◀

▶ Lemma 5 (Expected Precision). Let T be a B-ary precision tree with initial tolerance t

and B = exp(Θ̃(
√

log n)), and let v be a node in T . Then, conditioned on a high-probability
event E, it holds that

E
(

1
tv

∣∣∣∣ E

)
≤ (log n)O(depth(v))

t
≤ no(1)

t
.
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Proof. Recall that we assign tv = tparent(v) · uv/3 for all non-root nodes in the precision tree,
where the samples uv are independent of each other and sampled from Exp(λ), the exponential
distribution with parameter λ = O(log n). Recall that the exponential distribution has
probability density function f(x) = λe−λx, and thus

P
u∼Exp(λ)

(u ≤ x) =
∫ x

u=0
λe−λxdu = 1 − e−λx ≤ λx.

We let E denote the event that uv ≥ 1/ poly(n) for all nodes v. For any specific node v we
have uv ≥ 1/ poly(n) with high probability, and thus by a union bound E happens with high
probability as well.

Next, we prove that conditioned on E, the expectation of 1/u for u ∼ Exp(λ) is small:

E
u∼Exp(λ)

(1/u | E) ≤ 1
P(E) ·

∫ ∞

u=1/ poly(n)

1
u

· λe−λudu

≤ 1
P(E) ·

(∫ 1

u=1/ poly(n)

1
u

· λe−λudu +
∫ ∞

u=1

1
u

· λe−λudu

)

≤ 1
P(E) · O(λ log n + 1)

≤ O(log2 n).

We now prove the claimed bound. Fix some node v and let root(T ) = v1, . . . , vdepth(v) = v

denote the root-to-v path in the precision tree. Recall that tv = t · (uv1/3) · · · (uvdepth(v)/3).
We have

E
(

1
tv

∣∣∣∣ E

)
= 1

t
·
(

3 · E
u∼Exp(λ)

(
1
u

∣∣∣∣ E

))depth(v)

≤ (log n)O(depth(v))

t

≤ no(1)

t
.

For the last inequality, we used that depth(v) ≤ logB(n) = Õ(
√

log n), and therefore the
overhead becomes exp(Õ(

√
log n)) = no(1). ◀
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Abstract
Motivated by the problem of enumerating all tree decompositions of a graph, we consider in this article
the problem of listing all the minimal chordal completions of a graph. In [8] (Pods 2017) Carmeli
et al. proved that all minimal chordal completions or equivalently all proper tree decompositions of
a graph can be listed in incremental polynomial time using exponential space. The total running
time of their algorithm is quadratic in the number of solutions and the existence of an algorithm
whose complexity depends only linearly on the number of solutions remained open. We close this
question by providing a polynomial delay algorithm to solve this problem which, moreover, uses
polynomial space.

Our algorithm relies on Proximity Search, a framework recently introduced by Conte and Uno [12]
(Stoc 2019) which has been shown powerful to obtain polynomial delay algorithms, but generally
requires exponential space. In order to obtain a polynomial space algorithm for our problem, we
introduce a new general method called canonical path reconstruction to design polynomial delay and
polynomial space algorithms based on proximity search.
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1 Introduction

Since its introduction by Dirac [13], the class of chordal graphs received a lot of attention.
The many interesting properties of chordal graphs (e.g. a linear number of maximal cliques
and minimal separators, a useful intersection model, a specific elimination ordering to cite
a few) lead to the design of efficient algorithms for problems that are usually difficult on
general graphs. On top of that, chordal graphs are closely connected to an important graph
parameter called treewidth and its associated tree-decomposition introduced independently
by Halin [14] and Robertson and Seymour [22].
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Treewidth has played an important role in algorithmics for the last forty years, since its
introduction and popularization by Robertson and Seymour. This popularity is deserved:
given a tree decomposition of small width, many problems that are usually hard become
solvable in polynomial time.

From the structure of maximal cliques known for chordal graphs, it is well-known that
an optimal tree-decomposition can be computed in linear time on this class. For general
graphs, one way to define the treewidth is to find the smallest value k such that the graph is
a subgraph of a k-tree, that is to say, a subgraph of a chordal graph with maximum clique
size at most k + 1. Unfortunately, it was shown by Arnborg, Corneil & Proskurowski [1] that
determining whether a graph is a partial k-tree (i.e. a subgraph of a k-tree) is NP-complete.
In a different direction, the minimum fill-in problem asks to find the minimum number of
edges to add to the graph in order to turn it into a chordal graph. Yannakakis [27] proved
that the minimum fill-in problem is NP-hard.

Since the aforementioned problems are intractable, relaxations of these problems have
been considered. The problem of computing chordal completion that are inclusion-wise
minimal, has been intensively studied, either to find an optimal tree decomposition with an
exponential-time algorithm or to find one tree decomposition in polynomial-time. Over the
past decades, numerous polynomial algorithms have been provided to compute one minimal
chordal completion [3, 5, 24, 15, 19, 20, 23].

However, from an application point of view, computing only one tree decomposition might
not be satisfactory. For that reason, Carmeli et al. [7, 8] considered the problem of listing
all the minimal chordal completions of a graph, and hence obtaining all the minimal tree
decompositions of a graph. In the same line of research, Ravid et al. [21] considered the
same problem by adding a requirement on the order in which solutions are produced.

An enumeration algorithm lists every solution of a given problem exactly once. Since the
considered problem can have exponentially (in the input size) many solutions, the traditional
complexity measures are no longer relevant. Instead, the common approach called output
sensitive analysis is to bound the time complexity by a function of the input and the output
size. Johnson et al. adapted in [17] the notion of polynomial time algorithm for enumeration
algorithms. An algorithm is said to be output polynomial if its complexity can be bounded
by a polynomial function expressed in the size of both the input and the output. As the
number of solutions might be huge, this notion is not fine enough to capture the efficiency of
the algorithm. For that reason, Johnson et al. further refined this notion by introducing the
incremental polynomial time, meaning that the time used to produce a new solution of the
problem is bounded by a polynomial in the size of the input and the size of all the already
produced solutions. They strengthened the concept with the notion of polynomial delay: the
time between the generation of two consecutive solutions is bounded by a polynomial in
the size of the input only. The total running time of a polynomial delay algorithm depends
only linearly on the size of the output, and since all solutions have to be outputted, this
dependency is optimal.

For the enumeration of minimal triangulations of a graph, Carmeli et al. in [7, 8] presented
a highly non-trivial algorithm. Their algorithm runs in incremental polynomial time; its total
complexity is quadratic in the number of solutions, and to avoid duplication of solutions,
requires exponential space. The algorithm is based on a result by Parra & Scheffler [20],
according to which there is a bijection between the minimal triangulations of a graph and
the maximal independent sets of a special graph of minimal separators of the input graph. In
[8], they proved under Exponential Time Hypothesis that their approach cannot be improved
to achieve polynomial delay. This intractability result also holds for the exponential space.
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In [7, 8] and at a Dagstuhl seminar [4], it was left as an open problem whether a polynomial
delay and/or a polynomial space algorithm for this problem could be obtained. We answer
this question by the affirmative. Our main result is the following theorem.

▶ Theorem 1. The minimal chordal completions of a graph can be computed in polynomial
delay and polynomial space.

In addition, our algorithm is simple and can be easily implemented. Since it is a polynomial
delay algorithm, its total complexity is linear in the number of solutions. It contrasts with
the quadratic one of [7, 8].

The paper is organised as follows. In Section 2 we recall the results and techniques used in
algorithmic enumeration. In Section 3, we present the concepts that will be used for minimal
chordal completions, and we present a first polynomial delay and exponential space algorithm.
Then in Section 4 we present our main result, namely a polynomial delay and polynomial
space algorithm to list all the minimal chordal completions of a graph without duplication.
Finally, in Section 5 we formalize the framework used in Section 4 by introducing a new
general method called canonical path reconstruction to design polynomial space enumeration
algorithms.

2 Definitions and preliminary results

Throughout the article, standard graph theory notations will be used. A graph, always
assumed to be simple, finite and undirected, is denoted by G = (V, E) where V is the set
of vertices and E is the set of edges. When the context is ambiguous, notations V (G) and
E(G) can be used. For any k ≥ 3, Ck denotes a cycle of length k.

We denote by Ec the set of non-edges of G, that is, the complement of the set E in the
larger set of all two-element subsets of V . Then, for a subset F ⊂ Ec we denote by F̄ the set
Ec \ F .

A graph is chordal, or triangulated, if it does not contain any induced cycle of length 4 or
more. In other words, every cycle of length more than 3 of a chordal graph has at least one
chord (i.e. an edge that connects non-consecutive vertices of the cyle).

Given a graph G and a supergraph H of G on the same vertex set, H is called a
triangulation of G if H is chordal, and the edges of H which are not edges of G are called
fill edges. In the whole paper, triangulations, or chordal completions, will be identified with
the set of fill edges they induce. This is why for a graph G = (V, E), we call a set F ⊆ Ec a
chordal completion of G if the supergraph GF = (V, E ∪ F ) is chordal. Let us denote by F
the set of all chordal completions of G and by Fmin the set of minimal chordal completions
of G, with respect to inclusion. A characterisation of minimal chordal completions is given
in [23, Theorem 2]: a chordal completion F of a graph G is minimal if and only if for any
f ∈ F , the graph GF \ {f} has an induced C4.

From now on, G = (V, E) is considered to be an arbitrary input graph that has no
particular property and is therefore not assumed to be chordal. In the whole article, notation
n is used for the number of vertices of G, that is, n = |V |. Finally, as our goal is to enumerate
all minimal chordal completions of G, we may simply refer to them as “minimal completions”.

The enumeration of minimal chordal completion takes place in the more general task of
enumerating the minimal or the maximal subsets of a set system. A set system is a couple
(U , F) where U is called the ground set and F ⊆ 2U is a family of subsets of U . For a set
system (U , F) we denote by Fmin (resp. Fmax) the inclusion-wise minimal (resp. maximal)
sets in F . Many enumeration problems consist in enumerating the set Fmax or Fmin of a set
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system (U , F). Of course the set F is usually not part of the input and we simply assume
that a polynomially computable oracle membership is given, i.e. one can check whether a
subset F ⊆ U belongs to F in time polynomial in U .

In [12], the authors describe a method called Proximity Search (by canonical reconstruc-
tion) to design polynomial delay algorithms to enumerate Fmax of a set system (U , F). Given
a set family F on a ground set U , an ordering scheme π is a function which associates for
every F ∈ F a permutation π(F ) = f1, ..., f|F | of the elements of F such that for all i < |F |,
the ith prefix {f1, ..., fi} of π(F ) is in F . Notice that a set system (U , F) has an ordering
scheme if and only if for every F ∈ F , there exists f ∈ F such that F \ {f} ∈ F . Set systems
having this property are called accessible.

The method described in [12] is based on the proximity between 2 solutions. While this
notion has been defined in a very general context, most of its use cases are based on an
ordering scheme. Given an ordering scheme π, and given F1, F2 ∈ F with π(F2) = f1, ..., f|F2|,
the π-proximity between F1 and F2, denoted by F1∩̃F2, is the largest i ≤ |F2| such that
{f1, ..., fi} ⊆ F1. It is worth noticing that the proximity relation between two solutions is
not necessarily symmetric.

A polynomial-time computable function Neighbours : Fmax → 2Fmax is called π-
proximity searchable, if for every F1, F2 ∈ Fmax there exists F ′ ∈ Neighbours(F1) such that
F ′∩̃F2 > F1∩̃F2. Finally, we say by extension that an ordering scheme π of a set system
(U , F) is proximity searchable if there exists a π-proximity searchable function Neighbours.

One of the major results of [12] is the following theorem.

▶ Theorem 2 ([12]). Let (U , F) be a set system and assume that one can find in polynomial
time a maximal set F0 ∈ Fmax. If F has a proximity searchable ordering scheme, then Fmax
can be enumerated with polynomial delay.

The proof of this theorem is based on the analysis of the supergraph of solutions. The
supergraph of solutions is the directed graph having Fmax as vertex set and there is an arc
from F1 to F2 if F2 ∈ Neighbours(F1) (where Neighbours is the π-proximity searchable
function). The proximity searchability of the ordering scheme implies that this supergraph
of solutions is strongly connected. Then, the polynomial delay algorithm consists in starting
from an arbitrary solution F0 ∈ Fmax and performing a traversal of the supergraph of
solutions, following at each step the arcs computed on the fly by Function Neighbours. The
strong connectivity of the supergraph of solutions ensures that all solutions will be found.
However, with this method, one needs to store in memory the solutions already visited, which
in general results in the need of an exponential space.

One of the classical methods in enumeration to avoid the storage of the already out-
putted solutions is to define a parent-child relation over the set of solutions. It consists
in associating to each F ∈ Fmax \ F0 a parent solution Parent(F ) ∈ Fmax such that
F ∈ Neighbours(Parent(F )). Given the Parent function, one can finally define the
Children as Children(F ) := {F ′ ∈ Neighbours(F ) | Parent(F ′) = F}. The goal is to
define the function Parent in such a way that the arcs of the supergraph of solutions defined
by Function Children form a spanning arborescence of the supergraph of solutions, because
in such a situation, one does not need to store the already visited solutions in a traversal of
the supergraph of solutions. This method and the way to traverse the spanning arborescence
of the supergraph is called Reverse Search [2] and has been used in many contexts.

Most applications of Reverse Search use a classical parent-child relation originally intro-
duced in [25] for the enumeration of maximal independent sets of a graph. This specific
parent-child relation has been used in general enumeration frameworks to obtain polynomial
delay and polynomial space algorithms [18, 9]. Unfortunately, this method can only be used
for hereditary set systems and it is not compatible with Proximity Search in general.
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In [10] the authors show how to adapt this parent-child relation to commutable set
systems (a class that strictly contains hereditary set systems) and in [11], it has been shown
that the same method can be combined with Proximity Search to obtain polynomial delay
and polynomial space algorithms for commutable set systems.

A set system is commutable if for any X, Y ∈ F with X ⊆ Y , the following two conditions
hold:

Strong accessibility:
There exists f ∈ Y \ X such that X ∪ {f} ∈ F
Commutability:
For any a, b ∈ Y \ X, if X ∪ {a} ∈ F and X ∪ {b} ∈ F then X ∪ {a, b} ∈ F

More formally, the authors introduce the notion of prefix-closed ordering schemes (cf.
Section 5 for a definition) and they show the following theorem.

▶ Theorem 3 ([11]). Let (U , F) be a commutable set system and assume that one can find
in polynomial time a maximal set F0 ∈ Fmax. If F has a proximity searchable prefix-closed
ordering scheme, then Fmax can be enumerated with polynomial delay and polynomial space.

The polynomial space complexity comes from the definition of a parent-child relation that
strongly relies on the commutability property. In the current paper, we introduce a new way
of defining parent-child relations called canonical path reconstruction that does not require the
commutability property. Since the set of chordal completions is not a commutable set system,
this new method will be used in Section 4 to obtain a polynomial delay algorithm. Then, in
Section 5 we improve Theorem 3 by proving the following which applies to non-commutable
set systems.

▶ Theorem 4. Let (U , F) be a set system and assume that one can find in polynomial time
a maximal set F0 ∈ Fmax. If F has a proximity searchable prefix-closed ordering scheme,
then Fmax can be enumerated with polynomial delay and polynomial space.

3 Enumeration of minimal chordal completions: polynomial delay

In this section we present a polynomial delay and exponential space algorithm to list all
minimal chordal completions of a graph. In Section 3.1 we present all the concepts necessary
to define an ordering scheme that will suit to minimal chordal completions. Then in Section
3.2, we present the neighbouring function and prove that this function is proximity searchable.
As a consequence, together with Theorem 2, we obtain a polynomial delay algorithm.

3.1 Ordering scheme for chordal graphs
A class C of graphs is called sandwich-monotone [16] if for any two graphs H1 and H2 in
C such that E(H1) ⊊ E(H2), there exists an edge e ∈ E(H2) \ E(H1) such that H2 \ {e} is
also in C. This property is equivalent to being strongly accessible in terms of set systems (see
for example [10]).

In [23, Lemma 2], the authors proved that the class of chordal graphs is sandwich-
monotone. This immediately implies that if F1 ⊊ F2 are two chordal completions of any
graph, there exists e ∈ F2 \ F1 such that F2 \ {e} is a chordal completion, or equivalently
there exists e ∈ F2 \ F1 such that F1 ∪ {e} is a chordal completion. That rephrases as the
following lemma.

▶ Lemma 5. Chordal graphs are sandwich-monotone. In particular, chordal completions of
G are sandwich-monotone.
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The general idea is then to use the sandwich-monotonicity of chordal completions to
derive a suitable ordering scheme. The Proximity Search framework introduced in [10] has
been designed to enumerate inclusion-wise maximal subsets of a set system. However, the
same framework could be applied to the enumeration of inclusion-wise minimal subsets of a
set system, by considering the complements of the solutions. To this effect, we will not work
directly with the edge sets of the completions but rather with the sets of their non-edges.
That is to say, we will consider for any completion F its complement F̄ := Ec \ F . The goal
of this section is then to apply Proximity Search to the set F̄ := {F̄ | F ∈ F} in order to
enumerate the set F̄max := max(F̄) = {F̄ | F ∈ Fmin}.

From now on, the elements of Ec (that is to say, the non-edges of G) are assumed to be
arbitrarily ordered. The following definitions are similar to the ones given in [10] but are
defined on F instead of F̄ . Let F be a chordal completion of G and X be any subset of Ec.
Consider the set X as the set from which we are allowed to remove elements. We define:

Candidates(F, X) := {e ∈ X ∩ F : F \ {e} ∈ F}
Candidates(F ) := Candidates(F, F )
c(F, X) := min(Candidates(F, X))
c(F ) := min(Candidates(F ))

Now, given a chordal completion F and a set X ⊆ Ec, we denote by Del(F, X) the
chordal completion included in F by iteratively removing c(F, X) from F at each step.
Finally, we define Del(F ) := Del(F, F ). Note that, for any F , X, computing Del(F, X)
corresponds to the following procedure.

Function Del(F, X).

while Candidates(F, X) ̸= ∅ do
remove c(F, X) from F ;

return F

▶ Remark 6. By Lemma 5, if F ∈ F , then Del(F ) ∈ Fmin. That is to say, Del can be
used to turn a chordal completion into a minimal one in a canonical way.

Also, as Ec is a chordal completion (it corresponds to the clique completion) of G, the
next lemma holds.

▶ Lemma 7. If F is a minimal chordal completion of G, then Del(Ec, F̄ ) = F .

Proof. By Remark 6, it holds Del(Ec, F̄ ) ∈ Fmin, and F ⊂ Del(Ec, F̄ ). As a result, since
the only minimal solution containing F is F itself, then Del(Ec, F̄ ) = F . ◀

The procedure followed to compute Del(Ec, F̄ ) provides an ordering on the elements
of F̄ by considering the order in which the elements of F̄ are removed to obtain F . From
this ordering, we can define for any chordal completion F the canonical ordering Can(F̄ ) :=
s1, ..., s|F̄ | of F̄ as follows:

s1 := c(Ec, F̄ );
for all 1 ≤ i < |F̄ |, si+1 := c(Ec \ {s1, ..., si}, F̄ ).

For a set F̄ and its canonical ordering Can(F̄ ) := s1, ..., s|F̄ | we define F̄ i as the set of
elements {s1, ..., si} of F̄ and we define F i := Ec \ F̄ i. By definition of Candidates(Ec, F̄ ),
any prefix F̄ i of this ordering belongs to F̄ . In other words, F i denotes the chordal completion
of G, not necessarily minimal, obtained by removing the ith prefix of Can(F̄ ) from the clique
completion. Thus, the canonical ordering Can is an ordering scheme of F̄ .
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This ordering will be used to measure the proximity between two solutions in order to
call the Proximity Search algorithm for minimal chordal completions. Note that it can be
computed in polynomial time for any solution, the complexity being essentially this of calling
Function Del.

We now define the notion of proximity between two solutions that will be used in the
sequel. For F1 and F2 two minimal completions of G, let Can(F̄2) = f1, ..., fk be the
canonical ordering of F̄2. The proximity F̄1∩̃F̄2 between F̄1 and F̄2 is defined as the largest
i ≤ k such that {f1, ..., fi} ⊆ F̄1. It is worth noticing that the proximity relation between two
solutions is not necessarily symmetric. The notion defined here corresponds to the “standard”
proximity measure that is usually adopted when using the Proximity Search framework
[12, 10, 6]. Note that the proximity is defined here on the set of elements of Ec (that is to
say, non-edges of G) which do not belong to the chordal completion. Since we are working on
both the completions and their complement, by a slight abuse of language, when we speak
about the proximity between two minimal completions, we actually mean the proximity
between their complement sets.

3.2 Polynomial delay algorithm
We show in this section that the ordering scheme Can defined above is proximity searchable.
Since the idea is to consider the complement sets of minimal completions rather than the
completions themselves, we will seek to maximise the set of common non-edges between two
minimal completions in order to increase the proximity. So, we actually show that Can is a
proximity searchable ordering scheme of F̄ .

The first goal is to define a suitable neighbouring function on the class of chordal graphs.
Any solution must have a polynomial number of neighbours, each of them being computable
in polynomial time in order to guarantee the polynomial delay when applying Proximity
Search.

Given a chordal graph H and an edge e = {x, y} ∈ E(H), the flip operation Flip(H, e)
consists in removing e from H , and turning the common neighbourhood of x and y into a clique.
More formally, if H ′ = Flip(H, e), then V (H ′) = V (H) and E(H ′) := (E(H) \ {e}) ∪ {uv |
u, v ∈ NH(x) ∩ NH(y)}. The flip operation is illustrated in Figure 1.

x y x y

FLIP

Figure 1 The flip operation on e = {x, y}. The common neighbourhood of x and y is turned into
a clique.

Since H is chordal, the removal of e can create several chordless C4s of which e was the
only chord. We will see that completing the common neighbourhood of x and y into a clique
adds the missing chords to all these C4. In other words, the flip operation preserves the class
of chordal graphs, as stated next.

▶ Lemma 8. Let H be a chordal graph, and e = {x, y} be an edge of H. Then the graph
H ′ := Flip(H, e) is also chordal.
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Proof. Assume (for contradiction) that H ′ contains a chordless cycle C of length ℓ > 3.
Suppose C contains only edges of H. Since H is chordal, it does not contain long induced

cycles. Then necessarily C is a C4 of H of which e was the unique chord, otherwise there
would be an induced cycle of length at least 4 (either C or a cycle made from e and edges of
C) in the chordal graph H. By definition, the flip operation adds an edge between the other
two vertices of C, meaning that C has a chord in H ′. This cannot happen.

Therefore, C contains an edge e′ = {z, t} added by the flip operation (i.e. e′ is an edge
of H ′ but not of H). Since C contains the edge e′, it does not contain any other fill edge
added by the flip operation, otherwise a chord of C would also be added by the flip. Plus,
we assumed that e′ is added by the flip operation, so necessarily both z and t belong to
NH(x) ∩ NH(y). Therefore, P := C − {e′} is a z − t path of H ′, disjoint from x and y.
Remark that P is an induced path of H since it contains only edges of H, that is, z and t

are in the same connected component of H \ {x, y}.

▷ Claim 9. Every vertex of P is in NH(x) ∩ NH(y).

Proof. Suppose that there exists a vertex s of P which is not a neighbour of x. We will show
that there exists in H a chordless cycle containing s and x.

As s is not a neighbour of x, and z is by hypothesis, there exists q ∈ N(x) a vertex of P

that is between z and s, and closest to s on P . Similarly, let r ∈ N(x) be a vertex of P that
is between t and s, and closest to s.

The q − r subpath of P induced by all vertices between q and r is therefore a chordless
path of H of which all internal nodes are non-neighbours of x. It follows that adding x to
this q − r subpath creates a chordless cycle of length at least 4 in H . This is excluded, so all
vertices of P are neighbours of x in H.

By symmetry in x and y, we also deduce that all vertices of P are neighbours of y.
The claim is proved: every vertex of P is in NH(x) ∩ NH(y). ◁

By the previous Claim, the flip operation turns the cycle C into a clique. Hence C has
length 3, a contradiction. ◀

When dealing with chordal completions, the notation of the flip operation will be slightly
adapted: for F ∈ F , and e ∈ F (e is always chosen among the fill edges of the completion),
we write Flip(F, e) instead of Flip(GF , e).

From Lemma 8, we are then able to deduce the following.

▶ Lemma 10. Let F be a chordal completion of a graph G. If F ∈ Fmin, and e ∈ F , then
Flip(F, e) ∈ F .

Proof. The only edge that is in F but not in Flip(F, e) is e. Since e ∈ F , it implies that all
edges of G are still in Flip(F, e). As Flip(F, e) is chordal by Lemma 8. ◀

Observe that Flip(F, e) is a chordal completion of G that is not necessarily minimal.
We are now ready to explain the neighbouring function used to enumerate Fmin. Given

F ∈ Fmin and e ∈ F , we define the successor of F according to e as the minimal com-
pletion Succ(F, e) := Del(Flip(F, e)). We now define the neighbours of a solution F as
Neighbours(F ) := {Succ(F, f)|f ∈ F}. As a corollary of Remark 6 and Lemma 10, it is
true that Succ(F, e) ∈ Fmin. Observe also that each solution has a polynomial number of
neighbours since Neighbours(F ) ≤ |F | .
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Now the neighbouring function is properly defined, it is easy to notice that it can be
computed in polynomial time. It remains to prove that the function Neighbours is Can-
proximity searchable. This will allow us to use Proximity Search on the set of minimal
chordal completions of a graph G.

▶ Lemma 11. Let F1 and F2 be two minimal chordal completions of a graph G. Let
f1, . . . , fk = Can(F̄2) and let i := F̄1∩̃F̄2. Then the following statements hold:
1. fi+1 /∈ F̄1;
2. Succ(F1, fi+1)∩̃F̄2 > i.

Proof. 1. By definition of i as the length of the largest prefix of Can(F̄2) included in F̄1, it
holds fi+1 /∈ F̄1.

2. Let F ′ := Flip(F1, fi+1), we will show that {f1, ..., fi+1} ⊆ F̄ ′. Since Succ(F1, fi+1) ⊆
F ′, it will imply that {f1, ..., fi+1} ⊆ Succ(F1, fi+1), and finally Succ(F1, fi+1)∩̃F̄2 ≥ i + 1.

First, notice that by definition of Flip, fi+1 /∈ F ′. Let x and y be the two endpoints of fi+1.
Assume for contradiction that an edge fj , j ≤ i is added when completing NGF1

(x)∩NGF1
(y)

into a clique. As stated earlier, the notation F̄2
i+1 is used to denote the set {f1, ..., fi+1},

which is included in F̄2, and F i+1
2 represents the associated chordal completion.

Let u and v be the two endpoints of fj . Then x, u, y, v form a C4 of which fi+1 was the
unique chord in GF1 . By definition of Can(F̄2), F i+1

2 is a chordal completion of G, and since
neither the chords fj nor fi+1 belong to it, at least one of the edges xu, uy, yv or vx does
not belong to F i+1

2 since otherwise x, u, y, v would form a chordless C4 in F i+1
2 . Assume

without loss of generality that xu /∈ F i+1
2 . Since F̄2

i+1 = {f1, ..., fi+1}, there exists ℓ ≤ i

such that xu = fℓ. But then we have found an edge fℓ /∈ F̄1 with ℓ ≤ i, which contradicts
the assumption F̄1∩̃F̄2 = i.

Consequently, Succ(F1, fi+1)∩̃F̄2 > i. ◀

As a consequence, since the polynomial computable function Succ is able to increase the
proximity between 2 solutions, it proves that the ordering scheme defined by Can is proximity
searchable. More formally, the function Neighbours(F̄ ) := {X̄ | X ∈ Neighbours(F )}
is a Can-proximity searchable function and Can is then a proximity searchable ordering
scheme for F̄max.

Therefore, by Theorem 2, F̄max or equivalently Fmin can be enumerated with polynomial
delay. This is summarized in the following theorem.

▶ Theorem 12. There exists a polynomial delay algorithm for the enumeration of minimal
chordal completions of a graph.

To prove that Can is proximity searchable, we only used the fact that it is an ordering
scheme of F̄ . Thus any ordering scheme of F̄ is actually proximity searchable.

Yet, applying Proximity Search usually gives polynomial delay with exponential space: to
avoid duplication it is necessary to store all the generated solutions in a lookup table. Each
newly generated solution is then searched in the table in polynomial time.

4 Polynomial space

We would like to make the enumeration process work in polynomial space, since this could
lead to an algorithm that is more usable in practice. As stated in Theorem 3, it is proven
in [10] that if the ordering scheme is prefix-closed and F is a commutable set system, one
can design a polynomial delay and polynomial space algorithm for the enumeration of Fmax.
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An ordering scheme π over F is called prefix-closed, if for all F ∈ F , there exists an
ordering <F of the elements of Candidates(F ) such that π(F̄ ) = f1, ..., fℓ if and only if for
any i < ℓ, it holds fi+1 = min

<F i

(Candidates(F i) ∩ F̄ ). We know by definition of Can that

this ordering is prefix-closed (with the ordering of Ec). By Section 3, Can is also proximity
searchable. As stated earlier, chordal completions form a strongly accessible set system since
they are sandwich-monotone, and so are their complements. However, the set of chordal
completions is not a commutable set system, and neither is the set of their complements.

This section is devoted to the definition of a suitable parent-child relation over Fmin
which does not require the system to be commutable, in order to obtain a polynomial space
algorithm. In the supergraph of solutions, we identify a reference solution named F0 and we
manage to relate any other solution F to F0. To uniquely determine the parent of a solution,
we introduce a new concept called canonical path reconstruction. The idea is, for any solution
F distinct from F0, to identify a path in the supergraph of solutions from F0 to F in a unique
manner. Then the parent of solution F is defined as the immediate predecessor of F on this
path. In addition, we are able to compute this path in polynomial time for any solution.

To ensure that such a path can be uniquely determined and computed in polynomial
time we rely on the specific structure of chordal completions and more specifically on the fact
that the canonical ordering we defined on chordal completions is prefix-closed. To the best
of our knowledge, it is the first algorithm to define a parent-child relation in this manner.

The parent-child relation will define a spanning arborescence of the supergraph of solutions
rooted at F0. This way, the enumeration algorithm sums up in performing a traversal of the
tree in a depth-first manner.

It is somehow counter-intuitive to observe that the canonical path of a solution is not
necessarily part of the final arborescence rooted at F0. This canonical path is only computed
to find the last solution in the path before F to define it as the parent of F . We will prove
that while the so defined parent-child relation does not exactly follow the canonical paths, it
still forms a spanning arborescence of the solution set rooted at F0.

Let us consider the total ordering ≺ over F̄min defined as F̄1 ≺ F̄2 if Can(F̄1) is
lexicographically smaller than Can(F̄2).

▶ Lemma 13. Let F1, F2 ∈ Fmin with Can(F̄1) = f1, ..., fℓ and Can(F̄2) = t1, ..., tk.
Assume furthermore that there exists j ≤ ℓ such that {f1, ..., fj} ⊂ F̄2. Then one of the two
possibilities holds:
1. F̄2 ≺ F̄1;
2. fi = ti for all i ≤ j.

Proof. Let i∗ be the smallest index such that ti∗ ̸= fi∗ . If i∗ > j, then 2 holds. Else, i∗ ≤ j.
In this case, we deduce from the minimality of i∗ that

F̄1
i∗−1 = {f1, ..., fi∗−1} = {t1, ..., ti∗−1} = F̄2

i∗−1
.

Since fi∗ ∈ F̄2 and since fi∗ ∈ Candidates(F i∗−1
1 , F̄1) by definition of Can(F̄1), we deduce

fi∗ ∈ Candidates(F i∗−1
2 , F̄2). The canonical ordering Can is prefix-closed, therefore we

know that ti∗ = min(Candidates(F i∗−1
2 , F̄2)). We deduce from it that ti∗ ≤ fi∗ and since

ti∗ ̸= fi∗ , we have ti∗ < fi∗ which proves F̄2 ≺ F̄1. ◀

The algorithm starts by computing F0 := Del(Ec) in polynomial time. This solution
F0 will be used as the reference solution. Note that we could start from any solution and
the results would still be valid, but for simplicity we start from a solution that can easily be
identified.
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For a minimal chordal completion F with canonical ordering Can(F̄ ) := f1, ..., fℓ, we
define the canonical path of F as the sequence of minimal completions F0, ..., Fk = F

starting at F0 such that for all 1 ≤ i ≤ k, Fi = Succ(Fi−1, f(F̄i−1∩̃F̄ )+1). Remark that the
edge f(F̄i−1∩̃F̄ )+1 is part of Fi−1 and the call to Succ is correct. Let us also note that by
construction, the proximity strictly increases along the path. Then, Parent(F ) is defined
for any F ̸= F0 as the last minimal completion Fk−1 in the canonical path of F .

As remarked before, except Fk−1, the other ancestors of F may not be part of its canonical
path. For instance Fk−2 may not be the parent of Fk−1.

The detailled Parent function is presented 11.

Function Parent(F ).

Compute f1, . . . , fℓ := Can(F̄ ) ;
Compute Fcurrent := Del(Ec) ;
while Fcurrent ̸= F do

f := f(Fcurrent∩̃F̄ )+1;
Fprec := Fcurrent ;
Fcurrent := Succ(Fprec, f) ;

return Fprec

Then we define Children(F ) := {F ′ ∈ Neighbours(F ) | Parent(F ′) = F} =
{Succ(F, e) | e ∈ F, Parent(Succ(F, e)) = F}.

▶ Lemma 14. Let F be a minimal chordal completion of G, and let F0, . . . , Fk = F be the
canonical path of F . For all j ≤ k, F̄j∩̃F̄ ≥ j.

Proof. By construction of the canonical path of F , the proximity strictly increases at each
step by at least one. ◀

By Lemma 14 the length of the canonical path of F is smaller than |F̄ |. Since the
construction of the canonical path of F is done by applying at most |F̄ | times Function
Succ, Parent(F ) is computable in polynomial time for any F ∈ Fmin.

Now, since the computation of Children(F ) is done by applying Function Succ followed
by Function Parent at most |F | times, it is also computable in polynomial time.

Once the Children function is defined, one just has to apply the classical algorithm to
visit and output all solutions whose high-level description is presented in Algorithm 1. To
prove the correctness of the algorithm, we just have to prove that the function Children
defines a spanning arborescence on the set of solutions rooted at F0.

Observe that the naive implementation of Algorithm 1 may use exponential space, since
the height of the recursion tree might be exponential. Indeed the recursion tree corresponds
to the arborescence defined by the parent-child relation and we are not able to guarantee
that its height is polynomial. However, since the functions Parent and Children are
computable in polynomial time we don’t need to store the state of each recursion call. The
classical trick introduced in [25] and formalized in [2] as part of the Reverse Search algorithm
is to use Function Parent to perform the backtrack operation on the fly. Indeed this
function is able to navigate backward in the tree, removing the need of keeping in memory
all recursion calls. Thus, the algorithm only needs to keep in memory the current solution.

▶ Theorem 15. Algorithm 1 outputs all minimal chordal completions of the input graph
without duplication, with polynomial delay and using polynomial space.
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Algorithm 1 Efficient enumeration of minimal chordal completions.

input : A graph G = (V, E)
output : All minimal chordal completions of G

F0 := Del(Ec);
Call enum(F0);

Function enum (F ):
/* Output F if recursion depth is even */;
foreach F ′ ∈ Children(F ) do

enum(F ′);
/* Output F if recursion depth is odd */;

Proof. Assume that some solutions of Fmin are not outputted by the algorithm, and let
F be the smallest one with respect to ≺ with Can(F̄ ) := f1, ..., fℓ. Let F0, ..., Fk = F be
the canonical path of F . We prove that all Fi, i < k will be outputted by the algorithm.
This way, Children(Fk−1) will be produced, contradicting the fact that F has not been
outputted.

Let i be the smallest index such that Fi has not been processed by the algorithm. By
minimality of F̄ with respect to ≺, we know that F̄ ≺ F̄i. Hence by Lemmas 13 and
14, f1, ..., fi is a prefix of Can(F̄i). So the canonical path of Fi is precisely F1, ..., Fi and
Parent(Fi) = Fi−1. Now, by minimality of i, we know that Fi−1 has been outputted by
the algorithm, and Fi ∈ Children(Fi−1) will be outputted during the processing of Fi.

To obtain a polynomial delaya and polynomial space algorithm, we rely on the fact that
the Parent and Childrenfunctions admit a polynomial time complexity. Then with this
conditions fulfilled, it remains to show that Algorithm 1 can be implemented so that the
delay required to produce a new solution is polynomial in the size of the input and that the
memory space is polynomial. Algorithm 1 can be seen as a traversal of the tree of solutions
defined by the Parent-Child relation. The time a solution is produced will depend of the
height of the solution in the solution tree. It is either produced at the beginning of the call
or at the end wheter the height is odd or even. This classic technique in enumeration grant
the delay. For this same traversal of the solution tree, Uno [26] developped techniques, that
provided the Parent and Children functions admit a polynomial time complexity, will be
able to traverse the tree of solutions only using polynomial space. ◀

5 Canonical path reconstruction: a general approach

In fact, the result we proved for chordal completions is part of a more general framework. In
this section, we show how to extend the algorithm obtained for chordal graphs, in order to
apply it to other graph classes.

As stated in Theorem 3, the authors of [11] proved that if a proximity searchable ordering
scheme is prefix-closed, then one can design a polynomial delay and polynomial space
algorithm to enumerate Fmax whenever F is a commutable set system. We prove here that
the same remains true even if the system is not commutable. To prove that, we adapt the
concept of defined earlier canonical path reconstruction in a more general setting to define
parent-child relations over Fmax which does not require the commutability condition.

Given F ∈ F we denote by F + the set {x ∈ U : F ∪ {x} ∈ F} of candidates for F .
Assuming that an ordering scheme π is fixed, we denote by F i the ith prefix of F according
to π.
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The notion of prefix-closed ordering has been introduced in [10] and it appears to be a
key property to design parent-child relations. Intuitively assume that for each non maximal
element of F ∈ F we have a preference given by a total ordering <F over the potential
elements that can be added to F (i.e. a total ordering over F +). This preference depends on
the set F and the preference among two elements may vary from one F to another. Then an
ordering scheme π is said to be prefix-closed if for each prefix Fi of F the next element fi+1
corresponds to the most preferred element that remains in F according to the preference
relation <F i . More formally :

▶ Definition 16. An ordering scheme π is prefix-closed, if there exists an ordering <F of
the elements of F + for each F ∈ F that verify the following condition : For every F ∈ F ,
π(F ) = f1, ..., fℓ if and only if fi+1 = min

<F i

(F i+ ∩ F ) for any i < ℓ.

The goal of this section is to prove the following theorem.

▶ Theorem 17. If π is a polynomial time computable ordering scheme for F which is both
proximity searchable and prefix-closed, then Fmax can be enumerated with polynomial delay
and polynomial space.

Notice that any strongly accessible set system has a prefix-closed ordering scheme.
Similarly as the one shown for chordal completions one can choose an arbitrary ordering
on the elements of U and simply define π(F ) := f1, ..., fℓ with fi+1 := min(F i+ ∩ F ). The
strong accessibility ensures that this ordering is well defined.

To prove Theorem 17, we define the general parent-child relation over Fmax based on the
canonical path reconstruction method. Let then π be a prefix-closed, proximity searchable
ordering scheme on the set family F .

Whenever an ordering scheme π is proximity searchable, the supergraph of solutions
defined by the π-proximity searchable function Neighbours is strongly connected. The goal
will be to choose a reference solution F0 and to identify for each other solution F a canonical
path from F0 to F . The parent of F will be defined as the last solution of this path.

For a prefix-closed ordering scheme π, let us define a total ordering ≺π over Fmax. Let
F1, F2 ∈ Fmax, π(F1) = t1, ..., t|F1|, π(F2) = f1, ..., f|F2| and let j ≥ 0 be the largest index
such that F j

1 = F j
2 . Let us denote F := F j

1 = F j
2 . Then we have F1 ≺π F2 if tj+1 <F fj+1.

We can now define what will be the canonical path of a solution F ∈ Fmax. To this end,
we need to define a function Next : Fmax × Fmax → Fmax such that given F1, F2 ∈ Fmax
with F1∩̃F2 = i, Next(F1, F2) ∈ {F ∈ Neighbours(F1) : F ∩̃F2 > i}. Since we assumed
that π is proximity searchable, we know that the set {F ∈ Neighbours(F1) | F ∩̃F2 > i}
is not empty. Hence, to define Next(F1, F2), one just has to choose deterministically an
element of the set {F ∈ Neighbours(F1) : F ∩̃F2 > i}. If the function Neighbours
produces solutions in a deterministic order, then Next(F1, F2) can be chosen as the first
F ∈ Neighbours(F1) such that F ∩̃F2 > i. Otherwise and to be as general as possible, let
us define Next(F1, F2) := min

Lex
{F ∈ Neighbours(F1) : F ∩̃F2 > i} as the lexicographically

smallest set of {F ∈ Neighbours(F1) : F ∩̃F2 > i}.
Given a reference solution F0, the canonical path of F ∈ Fmax is then defined as the

sequence F0, ..., Fk of elements of F such that:
Fk = F

Fi+1 = Next(Fi, F ) for all i < k

Each F ∈ Fmax has a canonical path. Indeed, applying Function Next increases the
proximity with F , until F is eventually reached. We define the parent of a solution F of
canonical path F0, ..., Fk as Parent(F ) := Fk−1. The set of children of F is then defined as
Children(F ) := {F ′ ∈ Neighbours(F ) | Parent(F ′) = F}.
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▶ Lemma 18. Let F ∈ Fmax and let F0, ..., Fk be its canonical path. Then for all i < j ≤ k,
Fj∩̃F > Fi∩̃F .

Proof. By construction of the canonical path of F the proximity increases at each step by
at least 1. ◀

The immediate following Corollary ensures that canonical paths are of polynomial size.

▶ Corollary 19. If F ∈ Fmax, then its canonical path is of size at most |F | + 1.

▶ Proposition 20. The function Parent can be computed in time O(P + f2N ) where f is
a maximum size of a solution in Fmax, N is the complexity of function Neighbours and P
is the time needed to compute the function π.

Proof. To compute the Parent(F ) we first need to compute π(F ) and then to compute
the canonical path of F . By Corollary 19, the path is of length at most f , so we only need
to call f times the function Next. To compute Next(T, F ), we compute Neighbours(T )
and for each F ′ ∈ Neighbours(T ) we compute the proximity between F ′ and F and
check whether F ′ is lexicographically smaller than the current best candidate (notice that
we don’t need to compute π(F ′)). Since both operations can be done in O(f), and since
|Neighbours(T)| < N the function Next can be computed in time O(fN ). ◀

Since the computation of Children(F ) is done by computing first the set Neighbours(F )
and then filtering it according to the function Parent, we obtain the following complexity
for the function Children.

▶ Corollary 21. The function Children can be computed in time O(P + f2N 2) where f is
a maximum size of a solution in Fmax, N is the complexity of function Neighbours and P
is the time needed to compute the function π.

▶ Lemma 22. Let F ∈ Fmax with π(F ) = f1, ..., fℓ, let F0, ..., Fk be its canonical path and
let i ≤ k. If f1, ..., fFi∩̃F is a prefix of π(Fi), then the canonical path of Fi is F0, ..., Fi.

Proof. Let T0, ..., Th be the canonical path of Fi. By definition we have T0 = F0. Assume
that T0, ..., Tj = F0, ..., Fj for some j < i. By Lemma 18, we know Fj∩̃F < Fi∩̃F , so there
exists r < Fi∩̃F such that {f1, ..., fr} ⊆ Fj and fr+1 /∈ Fj .

Hence, since f1, ..., fr+1 is a prefix of π(Fi), we have r = Fj∩̃F = Fj∩̃Fi < Fi∩̃F . Thus

Fj+1 = Next(Fj , F ) = min
<Lex

{F ′ ∈ Neighbours(Fj) : {j1, ..., jr+1} ⊆ F ′}

= min
<Lex

{F ′ ∈ Neighbours(Tj) : {j1, ..., jr+1} ⊆ F ′} = Next(Tj , Fi) = Tj+1.

This concludes the proof. ◀

The following key lemma is the generalisation of Lemma 13 in the case of chordal
completions.

▶ Lemma 23. Let F1, F2 ∈ F with π(F1) = f1, ..., fℓ and π(F2) = t1, ..., tk. Assume
furthermore that there exists j ≤ ℓ such that {f1, ..., fj} ⊆ F2, then one of the two possibilities
holds:
1. F2 ≺π F1;
2. fi = ti for all i ≤ j.
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Proof. Let i be the smallest index such that ti ̸= fi. If i > j, then 2 holds and we are done.
Assume that i ≤ j. By minimality of i, we have F i−1

1 = F i−1
2 =: L. Since fi ∈ F2 and

since fi ∈ F i−1
1

+, we know that fi ∈ L+ ∩ F2. Therefore, as ti = min
<L

(L+ ∩ F2), it holds
ti ≤L fi, and since ti ̸= fi, we have ti <L fi. It proves F2 ≺π F1. ◀

The previous lemma is the one that makes the canonical path reconstruction method
possible. Independently of the prefix-closed property, if one can find a total ordering ≺ over
Fmax which satisfies Lemma 23, then the canonical path reconstruction method is applicable.

Finally, to prove Theorem 17, it remains to show that the polynomial time computable
function Children defines a spanning arborescence on Fmax. As already mentioned, the
application of the Reverse Search algorithm in [2] would output all solutions without repetition
with polynomial delay and polynomial space which will conclude the proof of Theorem 17.

▶ Theorem 24. Children defines a spanning arborescence on Fmax rooted at F0.

Proof. Recall that the supergraph of solution defined by Function Children is the directed
graph on Fmax with arcs set {(Fi, Fj) | Fj ∈ Children(Fi)}.

Since each F ∈ Fmax, F ̸= F0 has only one in-neighbour Parent(F ) it is sufficient to
show that for all F ∈ Fmax, there exists a path from F0 to F . Let’s denote by R(F0) ⊆ Fmax
the sets F ∈ Fmax for which there exists a path from F0 to F .

Assume for contradiction that R(F0) ̸= Fmax and let F := min
≺π

(Fmax \ R(F0)). Let
π(F ) = f1, ..., fℓ and let F0, ..., Fk be the canonical path of F . Now, consider the the
smallest index i∗ ≤ k such that Fi∗ /∈ R(F0). If i∗ = k then Fk−1 ∈ R(F0) and since
Fk−1 = Parent(F ), F would belong to Children(Fk−1) and then F would belong to
R(F0). So assume that i∗ < k.

Let j := Fi∗ ∩̃F . By minimality of F , we have F ≺π Fi∗ and since {f1, ..., fj} ⊆ Fi∗ , by
Lemma 23, the j(th) prefix of π(Fi∗) is f1, ..., fj . Now by Lemma 22 the canonical path of Fi∗

is F0, ..., Fi∗ , thus Fi∗ has Fi∗−1 as parent. By minimality of i∗, we know that Fi∗−1 ∈ R(F0)
and since Fi∗ ∈ Children(Fi∗−1), we deduce F ∗

i ∈ R(F0). ◀
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Abstract
One of the most fundamental and well-studied problems in tile self-assembly is the Unique Assembly
Verification (UAV) problem. This algorithmic problem asks whether a given tile system uniquely
assembles a specific assembly. The complexity of this problem in the 2-Handed Assembly Model
(2HAM) at a constant temperature is a long-standing open problem since the model was introduced.
Previously, only membership in the class coNP was known and that the problem is in P if the
temperature is one (τ = 1). The problem is known to be hard for many generalizations of the model,
such as allowing one step into the third dimension or allowing the temperature of the system to be a
variable, but the most fundamental version has remained open.

In this paper, we prove the UAV problem in the 2HAM is hard even with a small constant
temperature (τ = 2), and finally answer the complexity of this problem (open since 2013). Further,
this result proves that UAV in the staged self-assembly model is coNP-complete with a single bin and
stage (open since 2007), and that UAV in the q-tile model is also coNP-complete (open since 2004).
We reduce from Monotone Planar 3-SAT with Neighboring Variable Pairs, a special case of 3SAT
recently proven to be NP-hard. We accompany this reduction with a positive result showing that
UAV is solvable in polynomial time with the promise that the given target assembly will have
a tree-shaped bond graph, i.e., contains no cycles. We provide a O(n5) algorithm for UAV on
tree-bonded assemblies when the temperature is fixed to 2, and a O(n5 log τ) time algorithm when
the temperature is part of the input.
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1 Introduction

Since the inception of tile self-assembly [28], one of the most important algorithmic questions
has been determining if a given tile system uniquely self-assembles into a specific assembly
structure. This basic algorithmic question, termed the Unique Assembly Verification (UAV)
problem, is fundamental for efficiently checking if a designed tile system acts as intended,
and is tantamount to the design of an efficient simulator for a tile self-assembly model. Thus,
UAV has been a central question for every self-assembly model.
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34:2 Unique Assembly Verification in Two-Handed Self-Assembly

Although many different self-assembly models have been proposed in order to simulate
different laboratory or experimental setups, two premiere models have emerged as the primary
foci of study. First, is the seeded Abstract Tile Assembly Model (aTAM) [28], in which
singleton tiles attach one by one to a growing seed if sufficient bonding strength exists based
on glue types of attaching tiles. This model has had many foundational results in recent
years showing the limits related to intrinsic universality and program-size complexity [20,21].
The second model is the hierarchical Two-Handed Tile Assembly Model (2HAM) [9], where
any two producible assemblies may be combined (one in each of two hands) to create a new
producible assembly provided there is sufficient bonding strength between the two pieces.
Many foundational results that are known for the aTAM are still open for the 2HAM.

The 2HAM has been shown to be more powerful than the aTAM in its ability to build
infinite fractal patterns [11, 18], its program-size efficiency for finite shapes [8], and its
running-time efficiency for the self-assembly of finite shapes [12]. While the aTAM has a
polynomial time solution to the UAV problem [2], allowing for the production of efficient
simulators [17,22,29], the complexity of UAV in the 2HAM has remained a long-standing
open problem in the field. The 2HAM appeared formally in 2013 [9], but was essentially
defined in staged self-assembly [13] (2007), and a seeded version of the 2HAM appears as
the multiple tile model in [4] (2004). UAV has been open for all of these models, and our
coNP-complete result for UAV in the 2HAM proves that UAV with a single bin and single
stage in the staged model is coNP-complete, and that UAV in the multiple tile model is also
coNP-complete with polynomial-sized pieces, thus answering both of these long-standing
open questions. See [15,23,30,31] for surveys and applications of self-assembly theory.

Previous work on UAV. A number of results have pushed closer to resolving the complexity
of UAV in the 2HAM. One of the first results showed that the simpler problem of determining
if a given assembly was at least produced (i.e., built but possibly along with other different
assemblies) is polynomial time solvable [16], which serves as a key step in showing that
UAV resides within the class coNP. Another result augmented the basic 2HAM model to 3
dimensions and showed coNP-hardness for the 3D 2HAM [9]. A recent result focused on 2D,
but allowed the temperature threshold, a parameter that determines how much glue strength
is required for assemblies to stick together, to be a variable input to the UAV problem (as
opposed to a fixed constant value), and showed coNP-completeness in this scenario [26].

Other approaches considered the allowance of initial assemblies consisting of small prebuilt
assemblies, as opposed to only initial singleton tiles, and showed UAV becomes coNPNP-
complete with this extension [7]. Alternately, the inclusion of a negative force glue, even
without detachments, has also been shown to imply coNP-completeness in the aTAM [10].
Another generalization of the 2HAM allows for up to k hands to create new assemblies, instead
of just two, causing the problem to become either coNP-complete or PSPACE-complete,
depending on the encoding of the variable k [5]. An even more powerful generalization
of the 2HAM is the staged model [13], in which multiple distinct stages of self-assembly
are considered. Within the staged model, UAV becomes coNPNP-hard after 3 stages, and
PSPACE-complete in general [6,27]. Thus, for nearly every way in which the 2HAM has been
extended, a corresponding hardness reduction has been found. Yet, the original question of
UAV in the 2HAM has remained open.

Our Contributions. We show that UAV in the 2HAM is coNP-complete within the original
model (2-dimensional, constant bounded temperature parameter, singleton tile initial assem-
blies), thus resolving the long-standing open problem of UAV in the 2HAM. Further, this
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Table 1 Known Results for the Unique Assembly Verification Problem in the 2HAM and the
results presented in this paper. |A| is the size of the target assembly, τ is the temperature of the
system, and |T | is the number of tile types in the system. Under the Temperature column, τ

indicates that the temperature may be included as part of the input.

Shape Dimensions Temperature Complexity Reference
General 2 1 O(|A||T | log |T |) [16]
General 3 2 coNP-complete [9]
General 2 τ coNP-complete [26]

General 2 2 coNP-complete Thm. 7
Tree 2 τ O(|A|5 log τ) Thm. 12

proves that UAV in the staged model with a single bin and stage is coNP-complete, and
that UAV in the q-tile/multiple-tile model with polynomial-sized pieces is coNP-complete.
We augment this result with a positive result for the special case of tree-shaped assemblies,
providing a O(|A|5 log τ) time solution for UAV in this case (where |A| is the size of the
assembly) even if τ is included as part of the input.

Our results are highlighted in Table 1 along with other known results for UAV in the
2HAM. To show coNP-hardness for UAV we construct an explicit polynomial-time reduction
from Monotone Planar 3-SAT with Neighboring Variable Pairs (MP-3SAT-NVP). This
reduction takes inspiration from the recent break-through proof that MP-3SAT-NVP is
NP-hard and its use to prove that the connected-assembly-partitioning problem with unit
squares is NP-hard [3]. For our tree UAV algorithm, we utilize a cycle decomposition
approach over possible produced assemblies combined with dynamic programming.

Overview. The paper is structured as follows. Section 2 formally defines the model, the
UAV problem, important definitions, and some small examples. Section 3 has the reduction
proving UAV in the 2HAM is coNP-hard. Due to the numerous intricate details related to
the proof, the section is broken up into several subsections explaining different aspects of the
reduction. Section 4 then gives the algorithms for solving UAV for tree-bonded assemblies.
Section 5 then concludes the paper with a summary and future work.

2 Definitions

In this section we overview the basic definitions related to the two-handed self-assembly
model and the verification problems under consideration.

Tiles. A tile is a non-rotating unit square with each edge labeled with a glue from a set Σ.
Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength str(g1, g2).

Configurations. A configuration is a partial function Ã : Z2 → T for some set of tiles T , i.e.
an arrangement of tiles on a square grid. For a configuration Ã and vector u⃗ = ⟨ux, uy⟩ with
ux, uy ∈ Z2, Ã + u⃗ denotes the configuration Ã ◦ f , where f(x, y) = (x + ux, y + uy). For two
configurations Ã and B̃, B̃ is a translation of Ã, written B̃ ≃ Ã, provided that B̃ = Ã + u⃗

for some vector u⃗.

Bond graphs, and stability. For a given configuration Ã, define the bond graph GÃ to
be the weighted grid graph in which each element of dom(Ã) is a vertex, and the weight
of the edge between a pair of tiles is equal to the strength of the coincident glue pair. A
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34:4 Unique Assembly Verification in Two-Handed Self-Assembly

(a) Cooperative Binding. (b) Bond Graph. (c) Geometric Blocking.

Figure 1 (a) Example of an attachment that takes places using cooperative binding at τ = 2.
We denote a glue strength of 1 with a rectangle and a glue of strength 2 with a solid line through
the two tiles. Dotted lines between glues indicate that these tiles may attach to each other with the
respective strength. Assume assemblies shown are τ -stable unless stated otherwise. (b) The bond
graph of the assembly showing that it is τ -stable. (c) These two assemblies are not τ -combinable
since this would place two tiles at the same location. We say this is due to geometric blocking.

configuration is said to be τ -stable for a positive integer τ if GÃ is connected and if every
edge cut of GÃ has a weight of at least τ . This means that the sum of the glue strengths
along each cut is greater or equal to τ . A small example bond graph is shown in Figure 1b.

Assemblies. For a configuration Ã, the assembly of Ã is the set A = {B̃ : B̃ ≃ Ã}.
Informally an assembly A is a set containing all translations of a configuration Ã. An
assembly A is a subassembly of an assembly B, denoted A ⊑ B, provided that there exists
an Ã ∈ A and B̃ ∈ B such that Ã ⊆ B̃. We define |A| to be the number of tiles in a
configuration of A.

An assembly is τ -stable if the configurations it contains are τ -stable. Assemblies A and
B are τ -combinable into an assembly C if there exist Ã ∈ A, B̃ ∈ B, and C̃ ∈ C such that 1)
Ã∪B̃ = C̃, 2) Ã∩B̃ = ∅, and 3) C̃ is τ -stable. Informally, two assemblies are τ -combinable if
there exist two configurations of the assemblies that may be combined resulting in a τ -stable
assembly without placing two tiles in the same location.

Two assemblies combining or binding together is called an attachment. An attachment
takes place using cooperative binding if the two assemblies do not share a τ -strength glue
and instead use multiple weaker glues summing to τ . An example of an attachment that
takes place using cooperative binding can be seen in Figure 1a. If an attachment cannot take
place because the two tiles would be placed in the same position, it is geometrically blocked.
Two assemblies whose attachment is geometrically blocked is shown in Figure 1c.

Two-handed Assembly. A two-handed assembly system (2HAM) is an ordered tuple
Γ = (T, τ ) where T is a set of tiles and τ is a positive integer parameter called the temperature.
For a system Γ, the set of producible assemblies P ′

Γ is defined recursively as follows: 1) T ⊆ P ′
Γ,

and 2) If A, B ∈ P ′
Γ are τ -combinable into C, then C ∈ P ′

Γ. We are naturally extending the
concept of τ -combinable to single tiles by considering them assemblies of size 1.

A producible assembly is terminal provided it is not τ -combinable with any other
producible assembly. Denote the set of all terminal assemblies of a system Γ as PΓ. Intuitively,
P ′

Γ represents the set of all possible assemblies that can self-assemble from the initial set T ,
whereas PΓ represents only the set of assemblies that cannot grow any further. Figure 2
shows a small 2HAM example.

An Assembly Tree for a 2HAM system Γ = (T, τ) is any rooted binary tree whose nodes
are elements of P ′

Γ, the leaves are single tiles from the set T , and the two children of any
non-leaf node are τ -combinable into their parent. An assembly tree with root A is said to be
an assembly tree for assembly A. A small example is shown in Figure 2c.
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(a) UAV Instance. (b) Producible Assemblies. (c) Small Assembly Tree.

Figure 2 (a) An example instance of the Unique Assembly verification problem. The input is
the 2HAM system (tile set and temperature) and the target assembly. (b) The main producible
assemblies of the 2HAM system (for clarity, not all subassemblies are shown). The target assembly
is producible and terminal. However, there is also a produced assembly that is a rogue assembly
(highlighted) since it not a subassembly of our target and it is terminal. (c) A small example of an
assembly tree for one of the producibles.

Unique Assembly. Intuitively, the unique assembly of A means that any produced assembly
can continue to grow until it becomes A, thus making A the uniquely produced assembly if
the process is provided sufficient time to assemble. This means A is the unique terminal
assembly and all produced assemblies are subassemblies of A. Formally, we say a system Γ
uniquely produces an assembly A if: 1) PΓ = {A}, and 2) For all B ∈ P ′

Γ, |B| ≤ |A|.

▶ Problem 1 (Unique Assembly Verification). Input: A 2HAM system Γ, an assembly A.
Output: Does Γ uniquely produce the assembly A?

The Unique Assembly Verification problem (UAV) is the computational problem that
asks to verify if an assembly is uniquely produced. A key concept used throughout this paper
is a rogue assembly, which is any producible assembly that breaks one of the conditions of
unique assembly and serves as a proof that the instance of the UAV problem is false.

▶ Definition 2 (Rogue Assembly). Given an instance of UAV (Γ, A), an assembly R ⊑ P ′
Γ is

a rogue assembly if R ̸= A and R is not a subassembly of A.

We prove the following Lemma, which is used in the hardness reduction and the positive
result. This lemma states that if the instance of UAV is false and all the tiles in Γ are used
to build A, then any rogue assembly is made of combinable subassemblies of A.

▶ Lemma 3. For an instance of UAV (Γ, A) that is false the following statement must
be true: there exists two producible assemblies B, C such that B, C ⊑ A and B and C are
τ -combinable into a rogue assembly R, or there exists a rogue assembly R that is composed
of a single tile.

Proof. First, since the instance of UAV is false, there must exist some rogue assembly R. If
R is composed of a single tile, the Lemma is true. If R is not composed of a single tile, we
walk through its assembly tree to find the assemblies B and C that are both subassemblies
of our target A. Consider an assembly tree of R, ΥR. Start at the root- if its two children
are both subassemblies of A, then the rogue assembly R satisfies the Lemma. If either of the
children is also a rogue assembly (not a subassembly of the target), then follow that node
and do the same thing. If both are rogue assemblies, it does not matter which we follow.

Since this is an assembly tree all the leaves represent assemblies composed of one tile.
Since we know none of the leaf assemblies are rogue assemblies (if it was the lemma would
already be satisfied) we know at some point we must reach a node representing a rogue
assembly that can be built from two subassemblies of our target A. ◀
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3 Unique Assembly Verification Hardness

In this section, we show coNP-hardness of the Unique Assembly Verification problem in
the 2HAM with constant temperature by a reduction from Monotone Planar 3-SAT with
Neighboring Variable Pairs.

▶ Problem 4 (Monotone Planar 3-SAT with Neighboring Variable Pairs (MP-3SAT-NVP)).
Input: Boolean formula ϕ = C1 ∧ · · · ∧ Cm in 3-CNF form where each clause only contains
positive or negated literals from X = {x1, . . . , xn}. Further, any clause of ϕ with 3 variables is
of the form (xi, xi+1, xj) or (¬xi∨¬xi+1∨¬xj), i.e., at least two of the literals are neighbors.
Output: Does there exist a satisfying assignment to ϕ?

Monotone Planar 3-SAT with Neighboring Variable Pairs was recently shown to be
NP-hard in [3]. We assume the instance of the problem is a rectilinear planar embedding
where each variable is represented by a unit height rectangle arranged in the variable row.
Any planar 3SAT formula has a rectilinear encoding [19]. We also assume that every clause
is a unit-height rectangle with edges connecting the clauses and the contained variables. The
monotone property ensures that each clause contains either only positive or only negative
literals. Thus, the clauses may be separated with all positive clauses above the variable row,
and all the negative clauses below. The final restriction is neighboring variable pairs, which
states that for the three variables in each clause, at least two of the variables are neighbors
in the variable row. An example instance is shown in Figure 3a.

3.1 Overview
Given an instance of MP-3SAT-NVP ϕ, we build an assembly A and a 2HAM system Γ that
uniquely assembles A if and only if ϕ does not have a satisfying assignment. An example
instance is shown in Fig. 3a and 3c. Alternatively, Γ produces a rogue assembly if and only
if there exists a satisfying assignment to ϕ.

The ability to place all positive clauses above the variables and negative clauses below,
along with the neighboring variable pairs, allows the clauses to be built hierarchically from
the variables up. These properties allow us to require all nested clauses be evaluated and
built before the outer clause is built. Thus, we define parent and child clauses as well as root
clauses. In Figure 3a, dotted lines connect child clauses c1 and c2 with their parent c3. The
root clauses are c3 and c5.1

▶ Definition 5 (Parent/Child/Root Clause). Given a rectilinear encoding of Monotone Planer
3-SAT, a clause Cp is a parent clause of child clause Cc, if Cp fully encloses Cc, and any
other clause that encloses Cc also encloses Cp. A root clause is a clause without a parent.

Since ϕ is monotone, the positive and negative clauses may be separated across the
variable row. The assembly A is also separated by a horizontal bar that splits the assembly
in two. This bar partially extends downward to prevent this assembly from attaching to
itself. Above this bar is a subassembly that encodes the positive clauses and below the bar is
a subassembly that encodes the negative clauses, which we call the positive and negative
circuit, respectively.

1 While a formula may have multiple clauses without a parent, the authors of [3] show that by adding
additional variables, an instance may be constructed with only a single root clause. For MP-3SAT-NVP,
we need at least two root clauses (one for the positive and negative sides).
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(a) MP-3SAT-NVP Instance. (b) Target Assembly Circuit. (c) UAV Target Assembly.

Figure 3 (a) Example instance of Monotone Rectilinear 3SAT with Neighboring Variable Pairs.
Dotted lines are drawn between parent and child clauses. In this example c3 and c5 are the positive
and negative root clauses respectively. (b) A circuit view of our example instance with gates divided
into the clauses they compute. We add AND gates (shown in grey) between child clauses that have
the same variables. (c) Target assembly constructed from instance on left. Each tile in the assembly
is a unique tile type. Each glue is unique except for the strength 1 glues connecting the horizontal
bar and the arms of each circuit. The parts of the assembly that represent each clause are boxed in.

The target assembly is designed so that it must be built from the variables up to the
clauses. The clause gadgets can only be built if they are satisfied. Thus, parent clauses
require that their variables or child clauses be satisfied to build the gadget. We will ensure
this by using AND and OR gadgets between the variable and clause gadgets. We cover the
parts of the system and gadgets in the order they must assemble:

Section 3.2: variable gadgets
Section 3.3: OR gates and non-parent clause gadgets
Section 3.4: AND gates and parent clauses
Section 3.5: the root clauses and the horizontal bar
Section 3.6: how a rogue assembly may form if and only if ϕ is satisfiable

3.2 Variable Gadget
For each variable gadget we use (2 + 4d) subassemblies (Figure 4a) to build the variable
gadget where d is the number of times the variable is used or its outdegree. An example
is shown in Figure 4b where d = 1 and Figure 4c where d = 2. In the figures, the lines are
strength-2 glues, and the rectangle glues are all strength-1, thus requiring cooperative binding
for the subassemblies to attach in a specific build order. We draw our gadgets separated into
subassemblies but we construct our tile set using the single tiles which will self-assemble into
these subassemblies. Every variable gadget is built as follows.

The Bar Assembly acts as a backbone (or separator) for the completed circuit sub-
assemblies to connect to each other.
The Bump is the first assembly to attach to the Bar Assembly. The Bump is a height 2
rectangle with an extra domino below it that is used for geometric blocking and encoding
the assignment to that variable. The position of this domino is dependent on the position
of the variable gadget on the opposite (negative) side.
The Base Dominoes are used as part of the process of duplicating a variable path to
multiple clauses. For each clause a variable is in, we use four subassemblies to connect to
the next gadget. The first two gadgets are the Base dominoes. Once the Bump attaches
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34:8 Unique Assembly Verification in Two-Handed Self-Assembly

Wires

Base DominoesBump

Bar Assembly

(a) Subassemblies of a
variable gadget.

(b) A variable gadget
with outdegree 1.

(c) A variable gadget
with outdegree 2.

(d) Assignment to the ex-
ample MP-3SAT-NVP in-
stance.

Figure 4 (a) The smaller assemblies used for building a variable gadget. (b) A variable gadget for
a variable that is used in a single clause. (c) A variable gadget with outdegree 2. For each additional
output more base dominoes and wires are added. (d) A set of producible subassemblies representing
variables that satisfy the example instance. We will walk through how these assemblies grow into a
rogue assembly.

to the Bar Assembly, the Base Dominoes can attach cooperatively to both. Once the
first Base Domino attaches the next can attach using the glue from the previous domino
and the other from the Bump.2

The Wires attach the variable gadgets to the clauses, and are the final two subassemblies
for connecting to the next gadget. The first wire attaches cooperatively to the Bar
Assembly and subsequent ones attach to the previous wire. The wires in our system are
all built from two assemblies. When both halves of the wire are connected, the next
gadget may attach. We call this a completed wire.

Variable gadgets in the negative circuit are built symmetrically rotated 180 degrees. We
adjust the position of dominoes on the Bumps of the gadgets so that variable gadgets on
opposite circuits that represent the same variable have their domino in the same column. We
may generalize these gadgets to out degree d (the variable appears in d clauses) by increasing
the width of the bump, and adding additional dominoes and wires.

3.3 OR Gates and Clause Gadgets

In CNF form, every variable in a clause is separated by a logical OR, thus, as part of our
clause gadgets, we create OR gates to bring the variables together to ensure that the clause
only forms if there is at least one variable assignment that satisfies the clause.

OR Gates. An example of how the OR gate grows off of a variable gadget is shown in
Figure 5a. The OR gate consists of a single 2× 2 square with strength-1 glues on the west,
north, and east facing tile edges. The west and east glues each connect to the wires that
input to the gate. The north glues are used cooperatively with glues on the incoming wire
gadgets to attach another wire gadget going to the clause gadget. To complete the new wire
gadget it must also cooperatively use the other incoming wire. Note the wires from the other
input can backfill, but this does not cause an issue as the “backward” growth stops after
building the wire. Figure 5b shows an example with only one variable used in the OR gate.

2 Without these base dominoes, variable gadgets could build without the full Bump due to backfilling or
backwards growth. The dominoes ensure this can not happen.
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(a) Build OR gate. (b) Wire backing filling.

Figure 5 (a) The process of a variable gadget growing the OR gate used for clauses. Glues used
for attachment in the next step are denoted by arrows. If one of the variable gadgets is constructed
the 2 × 2 square assembly may attach. The output wires of the gate then attach cooperatively with
the wire from the variable assembly and the square. Note that only one of the variable assemblies
needs to be constructed for the OR gate to build its output wire. (b) Once the output wires of the
OR gate have attached the wire for the other variable may “Backfill” or grow backwards.

x1x2

x1 v x2  

x1 x2

(a) Clause Gadget.

x1

x1 v x4  

x4

Child Clause  

Child Clause  x4x1

Child Clause  

(b) Parent Clause gadget.

x4x1x2

x1 x2

x1 v x2 v x4  

x4

Child Clause  

Child Clause  

Child Clause  

(c) Parent clause gadget with 3
literals.

Figure 6 (a) A clause gadget with 2 neighboring variables. (b) A clause gadget with two variables
and a child clause. (c) When a parent clause has 3 literals we know two of them must be neighbors.
Using an additional OR gate we may use the same gadget as the clause with 2 literals.

Non-parent Clauses. We first cover clauses without children, or clauses at the bottom of
the circuit. The simplest type of this gadget are clauses with only 2 literals as in Figure 6a.
This gadget is fairly straightforward to implement as we only need to use a single OR gate.
An example of this type of clause is in Figure 7a, and its implementation is in Figure 7c.
Note that both variables appear in other clauses so those variable gadgets have additional
wires. For non-parent clauses with 3 literals (Figure 10a), we use 2 OR gates (Figure 8c).

3.4 AND Gates and Parent Clauses

Since every clause in CNF form is separated by a logical AND, we create AND gates that
compare clauses. Thus, we need to know which clauses are parent clauses since they have
child clauses underneath them with wires coming into the gates. We also build a FANOUT
gate for connecting clauses.

AND Gates. The AND gate uses 2 vertical dominoes that share a single strength-1 glue
between them. Figure 9a shows an example AND gate being constructed. Once a wire that
inputs to the gate is completed, one of the dominoes can cooperatively attach. The domino
has another strength-1 glue on its north side that allows a horizontal domino to cooperatively
attach using the glue exposed on the wire.

Using the glues from the newly attached dominoes, the two halves of the gate are able to
attach to each other. This allows for the two glues on the horizontal dominoes to be used
to cooperatively bind the white center domino. From here, the two halves of the wire that
outputs from the AND gate can attach.
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(a) Clause c1. (b) Circuit for c1. (c) Gadgets for c1.

Figure 7 (a) The clause c1 in Figure 3a is satisfied by x2 = 1. (b) The OR gate grows off of x2.
The other wires on the variable gadget are used to connect to other clause gadgets. (c) The gadget
constructed for the clause c1. Note the other wire from the OR gate has backfilled.

(a) Clause c2. (b) Circuit for c2. (c) Gadgets c3.

Figure 8 (a) c2 from our example. This clause has 3 variables and no children. (b) The clause is
computed using two OR gates. The gates are able to grow from x4. (c) x4 variable gadget allows for
the two OR gates to attach.

FANOUT Gates. In order to build the parent clause, we also need a way to “fan-out” and
copy the signal from an AND gate to two other gadgets. We do this by adding glues to the
north side of the center domino and having two wires grow off of the gadget. This process is
shown in Figure 9b.

Parent Clauses. Consider a parent clause Cp = (x1 ∨ x4). Let Cc be the child clause.
Since we want this gadget to build only if its own clause and its child are both satisfied, we
can view this statement as (x1 ∨ x4) ∧ Cc. However, we can modify the statement to be
(x1 ∧ Cc) ∨ (Cc ∧X4), which we can build since we have planar circuits. An example of the
circuit and gadgets are shown in Figure 6b.

By the neighboring variable pairs restriction, we know that any clause with three variables
has at least a pair of them being neighbors. This means that there cannot be any child
clauses beneath that neighboring pair, so we may use an OR gate between those two variables
and then build the rest of the gadget in the same way as the two literal version (Figure 6c).

In our example instance, the root clause of the positive circuit has two children. For these
cases we may use the AND gadget to verify that both child clauses have been satisfied before
allowing the parent clause to build. The root clause of the negative circuit in our example
instance (Figure 11a) has three literals. The constructed gadget can be seen in Figure 11a.

3.5 Root Clauses and Horizontal Bar
Root Clauses and Arms. The root clause is the outermost clause on either side of the
variables. Although it functions similar to the other clauses, instead of outputting a wire,
a horizontal 4 × 1 rectangle can attach after it finishes assembling. The arms may then
cooperatively bind to the rectangle and the wires of the root clause forming the top of the
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(a) Build AND gate.

(b) Build FANOUT. (c) Attachment of an AND gate.

Figure 9 (a) The process of an AND gadget assembling. The output wires can only grow from
the combined halves of the AND gate. (b) By modifying the center domino, two wires may be
output from a single AND gate, which works as a FANOUT. (c) The two clauses c1 and c2 both
have the same parent clause so they are joined by an AND gate. Once the dominoes attach to the
output wire of the clauses the two assemblies may attach to each other.

(a) Clause c3. (b) Circuit for c3. (c) Gadget for c3.

Figure 10 (a) The root clause of the example instance. This clause has two literals and two
children. (b) Since the AND gate has built and x4 satisfies c3 the clause may grow. (c) The two child
clause’s output are connected by an AND gate and then used as the middle input to the gadget.

circuit. The glues on the ends of these arms allow for the circuit to attach to the horizontal
bar. A high-level view of the root clauses and arms attached is shown in Figure 12a as well
as a detail of the assembly process of the root clause in Figure 12b.

Horizontal Bar. The horizontal bar (Figure 12a) is a width-1 assembly that extends the
width of both circuits with strength-1 glues on the north and south side of the outer tiles.
Since the arms must also be able to attach to each other to form a rogue assembly the glues
on the ends of the horizontal bar must be the same. In order to prevent the horizontal bar
from attaching to another instance of itself, we extend the bar partially downward so it will
geometrically block copies from attaching.

3.6 Rogue Assemblies
For the construction of the target assembly, each piece is built from the variables up to the
root clause. However, the nondeterministic build order means that not all parts of each
circuit need to be built in order for the root clause to be satisfied. For instance, if one of the
variables in a clause attaches, the OR gates will still allow the wires to attach. Thus, using a
variable constitutes setting it to true (and in the negative circuit using a variable is setting
the negation to true).

With root clauses satisfied and the arms attaching, a rogue assembly may occur as shown
in Figure 13c. The corresponding circuit is shown in Figure 13b. This can occur because the
arms can attach to each other without the horizontal bar. Normally, the variable gadgets
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(a) Clause c5. (b) Circuit for c5. (c) Gadget for c5.

Figure 11 (a) In the example instance the negative circuit has c5 which is a parent clause with 3
literals. (b) The negative circuit draw with gates. The variables x1 and x3 being false satisfies all
the clauses. (c) The variable assemblies we selected at the beginning also grow into a circuit with
the root clause built.

Horizontal Bar

Positive Circuit

Negative Circuit

Positive Arms

Negative Arms

Root Clause

Root Clause

(a) Horizontal Bar and Completed Circuits.

Child Clause  

(b) Glues on root clause and variable gadgets.

Figure 12 (a) The root clauses and arms joining the positive and negative assemblies with the
horizontal bar. The root clause allows a short wire to attach where the arms can then attach. Each
arm has a strength-1 glue at the end. The horizontal bar separates the positive circuit from the
negative circuit. The small bump is so the bar can not attach to other horizontal bars. (b) Each
subassembly of the root clause cannot attach to each other without being satisfied from the child
clauses since each subassembly only shares a strength-1 glue with adjacent assemblies.

would overlap and prevent this attachment if both the positive and the negative circuit used
the same variable (which is setting a variable to both true and false). Thus, the positive and
negative side each have their own set of variables that make all clauses on their respective
sides true. This rogue assembly can only happen if there is a subset for each side that allows
all clauses to be true, and thus satisfies the original MP-3SAT-NVP formula.

For an MP-3SAT-NVP instance ϕ and an assignment Xs to the variables in X, let Ap

and An be the positive and negative circuit assemblies, respectively, created from ϕ. We say
an assembly A′

p ⊑ Ap represents the assignment Xs if it has attached variable gadgets for
the variables in Xs that equal 1, and has built its root clause. For negated circuits, it must
have variable gadgets attached for variables set to 0 in Xs.

▶ Lemma 6. For a rectilinear encoding of Monotone Planar 3SAT ϕ with neighboring variable
pairs and 2HAM system Γϕ as described above, there exist two producible assemblies A′

p ⊑ Ap

and A′
n ⊑ An that both represent the same assignment Xs to the variables X, if and only if

Xs satisfies ϕ.
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Proof. If there exists a satisfying assignment Xs to X, we may build A′
p by taking the

variable gadgets for variables assigned to 1 and grow the circuit off of them. Since we know
all the clauses are satisfied, each clause gadget (including the root clause) may grow resulting
in an assembly A′

p that represents Xs. By the same argument we know A′
n is producible

since Xs satisfies ϕ, which includes the negated clauses.
We prove these assemblies are producible only if Xs satisfies ϕ via contradiction. Assume

Xs does not satisfy ϕ, but both assemblies A′
p and A′

n are producible. Since Xs does not
satisfy ϕ, there must exist at least one unsatisfied clause ci. W.L.O.G., assume ci is a positive
clause. We show the assembly A′

p cannot be produced.
If ci is the root clause, assume all of the children of ci are satisfied. The center input of

the clause is a producible subassembly of A′
p since variable gadgets are allowed that satisfy

the clauses below it. We can see in Figure 12b the other producible subassemblies of the
gadgets only have a strength-1 glue between them. This means none of the subassemblies
are able to attach to each other on their own. In order for the arms to attach to the output
wire of the root clause, at least one of the AND gates must be fully constructed. The AND
gate cannot assemble unless both halves of the gate have been constructed. The middle
input is built, but the other half of the AND gadget must grow off a completed wire from
the variable gadget. However, since ci is not satisfied the variables gadgets which satisfy the
formula have not attached so the assembly A′

p cannot build the clause gadget.
If ci is another parent clause that is not the root. Let the clause cj be the parent clause

of ci. If the clause gadget for ci is not constructed then the gadget for cj is not buildable.
Since the gadgets used are the same as the root clause, the output wires of the clause gadget
for ci cannot be built without a variable gadget which satisfies the formula. The middle
input of clause gadget representing cj will not be buildable since this would be the output
wire of ci. The middle input goes to two AND gates that cannot construct unless both wires
have been built. Thus, the output wire of cj cannot be built without its children clauses
satisfying it. In the case cj has multiple children, the output wires of all its children are
joined by AND gates that will not construct without both inputs.

Finally, consider the case where ci is a clause without children. In order for the clause’s
output wire to complete, it must be attached to an OR gadget and the outer wire of the
variable gadget. The OR gadget may only attach to a completed wire from a variable gadget
(or another OR). The variable gadget cannot be completed without placing the bump, so we
cannot have built the outwire of ci. By the same argument as the previous case, this clause
not being built results in its parent not being built. If ci is not satisfied, the clause gadget
for ci cannot be constructed, which means the assembly A′

p is not producible. ◀

▶ Theorem 7. The Unique Assembly Verification problem in the 2HAM is coNP-Complete
with τ = 2.

Proof. Given an instance of a rectilinear encoding of Monotone Planar 3SAT with neighboring
variable pairs ϕ, we provide an explicit polynomial time reduction by creating a 2HAM system
Γ = (T, 2) and an assembly A such that Γ uniquely produces A if and only if there does
not exist a satisfying assignment to ϕ. We create the assembly A by taking the rectilinear
encoding of ϕ, arranging the rectangles on a grid graph, and replacing the rectangles with
the given variable and clause gadgets. We also add the arms and horizontal bar.

Assume there exists a satisfying assignment Xs to the variables X, for ϕ. We know by
Lemma 6, there exist two producible assemblies A′

p and A′
n that both contain the arms and

have complementary bump positions3. These two assemblies can cooperatively bind to one
another using the two glues on their arms, and thus produce a rogue assembly as in Figure
13c. This means a satisfying assignment to ϕ implies Γ does not uniquely construct A.

3 Having complimentary bump positions is equivalent to both representing the same assignment.
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(a) Satisfying Assignment. (b) Rogue Assembly Circuit. (c) Rogue Assembly.

Figure 13 (a) There exists a satisfying assignment for the example instance with green blocks
representing variables which equal 1 and red blocks representing 0. (b) Rogue assembly drawn as a
circuit with selected variables. (c) The 2HAM system will produce a Rogue Assembly from the two
circuit assemblies which represent the satisfying assignment.

(a) Tree-bonded and Shaped. (b) Tree-bonded. (c) Not Tree-bonded.

Figure 14 (a) Both the shape and bond graph of this assembly are trees. (b) Even though the
shape of this assembly is a square, its bond graph is acyclic, and thus this assembly is tree-bonded.
(c) This assembly is not tree-bonded due to the cycle in its bond graph.

Now assume Γ does not uniquely produce A, so there exists some rogue assembly B.
The only repeated glues in the tile set of Γ are the exposed glues on the arms. Any rogue
assembly must use these two glues to assemble, and they must be assembled from two
subassemblies of the target by Lemma 3. Let B be producible by combining two assemblies
b and b′. Since both b and b′ are producible assemblies with both their arms, and they can
attach to each other, they are not geometrically blocked. This implies they must represent
the same assignment and by Lemma 6, this can only be true if the assignment satisfies ϕ.
By viewing which variable gadgets are included in the two assemblies, we can identify the
satisfying assignment to ϕ. Thus, Γ will uniquely produce A if and only if there does not
exist a satisfying assignment to ϕ. ◀

4 Verification of Tree-Bonded Assemblies

In this section, we investigate the problem of Unique Assembly Verification with the promise
that the target assembly A is tree-bonded, meaning the bond graph of the target assembly
forms a tree. Figures 14a and 14b show examples of tree-bonded assemblies. Figure 14c
shows an assembly whose bond graph contains a cycle and thus is not a tree-bonded assembly.
We first present a O(|A|5) algorithm for temperature 2 systems, and then extend this method
to provide a O(|A|5 log τ) time dynamic programming algorithm for the case where the
temperature τ of the system can be passed as a parameter. Before describing the algorithms,
we first introduce some required definitions and the problem formulations.

Tree-Bonded Assemblies. An assembly A is a tree-bonded assembly if and only if the
induced bond graph GA is acyclic.
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Binding Sites. For two configurations C1 and C2, we say a binding site B is a pair of points
(pa, pb), such that their distance is ||pa − pb||2 = 1, and the tiles C1(pa) and C2(pb) have
nonzero glue strength between each other. The set of binding sites for two configurations is
the set of pairs of points that meet this requirement. We also define an inner binding site.
For two configurations, C1 and C2, and a pair of binding sites a = (a1, a′

2), b = (b1, b′
2), let

I(a, b) be the set of binding sites that occur on the inside of the loop formed by a, b (inner
binding sites). An example of the area enclosed by a loop is seen in Figure 15c.

Simple Loops. For two configurations, C1 and C2, and a pair of binding sites a =
(a1, a′

2), b = (b1, b′
2), we say the loop formed by a, b is a simple loop if |I(a, b)| = 0.

Origin Configuration In discussing different configurations and assemblies, it is useful to
anchor a configuration to a fixed point. For an assembly A, the origin configuration A0 is
the translation of A′s configuration such that the bottom left vertex of the bounding box of
elements in dom(A0) is at the origin (0, 0).

▶ Problem 8 (Tree-UAV). Input: A 2HAM system Γ and a tree-bonded assembly A.
Output: Does Γ uniquely produce the assembly A?

4.1 High-level Overview

The high-level goal of this algorithm is to find a rogue assembly that acts as a witness that the
instance of UAV is false. We note that a given instance, P = (Γ, A), of Temp2-Tree-UAV,
where Γ = (T, 2), can be broken down into three possible cases. An example tree-bonded
assembly is shown in Figure 15a.

1. The instance P is false, and Γ produces a tree-bonded rogue assembly.
2. The instance P is false, and the only rogue assemblies producible in Γ are non tree-bonded.
3. The instance P is true.

At a high level, the algorithm checks if either Case 1 or Case 2 as true, and f so, the
algorithm rejects, otherwise it accepts. Case 1 can be checked efficiently by modifying Γ to
function as a noncooperative system Γ′ and utilizing the algorithm for temperature-1 UAV
provided in [16]. To check the second case, Lemma 3 states that if the instance is false, it
suffices to check pairs of subassemblies of the target assembly A in order to find a witness
rogue assembly. Thus, we take two copies of the target assembly and attempt to find possible
ways they may bond, even if the resulting assembly places two tiles at the same position. We
call the pairs of tiles that contribute glue strength binding sites Tiles that are in the same
position are called intersections. An example of both may be seen in Figure 15b.

We first analyze the case of temperature-2 systems where only two binding sites that do
not intersect are needed. We then generalize this algorithm by using dynamic programming
to find the set of binding sites to maximize the binding strength between the assemblies
without any intersections.

▶ Problem 9 (Temp2-Tree-UAV). Input: A τ = 2 2HAM system Γ and a tree-bonded
assembly A. Output: Does Γ unique produce the assembly A?
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(a) Tree-bonded Assembly.

Intersection

A

B

C

D

E

(b) Overlap Subassemblies.

A

E

B

(c) Outer Loop.

C

D

Intersection

(d) Intersection loop.

Figure 15 (a) An example tree-bonded target assembly. (b) One possible overlap configuration
formed by two subassemblies with 5 binding sites that are highlighted. (c) The loop formed by
binding sites A and E is outlined in green. Any binding site that occurs in the grey shaded area,
such as B, is in the set of inner binding sites for (A, E). (d) The loop formed using binding sites
(C, D) intersects itself and cannot be used.

Algorithm 1 NonCoop-UAV(Γ, A). The runtime of Temp1-UAV is O(|A||T | log |T |) [16].

Data: 2HAM System Γ = (T, τ), an assembly A

Result: Does Γ uniquely assembly A if it can only utilize strength ≥ τ glues?
Modify T to create T ′ by removing all glues of strength less than τ , and setting the
strength of all glues of strength ≥ τ to 1;

if Temp1-UAV(Γ′ = (T ′, τ = 1), A) then accept;
else reject;

4.2 Tree-Bonded Rogue Assemblies

The following algorithm checks if a system uniquely assembles a given shape provided the
system is restricted to behaving in a noncooperative manner. This means that two assemblies
can only attach if they share one or more strength-τ glues between them. This system
functions equivalently to a temperature-1 system where all glues less than strength-τ are
removed and all glues greater than strength-τ are set to strength-1. We modify the system
in this way and then use the known polynomial time algorithm for temperature-1 UAV [16].

▶ Lemma 10. For any 2HAM system Γ = (Σ, τ) and tree-bonded assembly A, if NonCoop-
UAV(Γ, A) (Algorithm 1) is true, and Γ does not uniquely assemble A, then there exists
assemblies B, B1, B2, s.t. B ̸⊑ A, B1, B2 ⊑ A, B1 and B2 combine to form B by utilizing
cooperative binding.

Proof. Since NonCoop-UAV(Γ, A) is true, but Γ does not uniquely assemble A, there must
exist a rogue assembly B′ ̸⊑ A since any subassembly of A would be tree-bonded. Consider
an assembly tree Υ′

B for B′. Since NonCoop-UAV(Γ, A) is true, the singleton tile leaves of
Υ′

B must be subassemblies of A. We will show there exists a node B ∈ Υ′
B , with children B1

and B2, respectively, such that B′ ̸⊑ A, and B1, B2 ⊑ A.
Let the root node of the tree ΥB be the candidate node B, and let assemblies B1 and B2

be the two children of B. If B1 and B2 are both subassemblies of A, then the conditions are
met. Otherwise, W.L.O.G. assume B1 ̸⊑ A. Now set the candidate node B to B1 and repeat.
Since all leaves of ΥB represent subassemblies of A, there must be a point in which the
candidate B node is some assembly B ̸⊑ A, and its children are assemblies B1, B2 ⊑ A. ◀
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Algorithm 2 Algorithm to solve Temp2-Tree-UAV in O(|A|5) time.

Data: 2HAM System Γ = (Σ, 2), Tree-Bonded Assembly A of height h and width w

Result: Does Γ uniquely produce A?
if NonCoop-UAV(Γ, A) rejects then reject;
Let A0 be the origin configuration of assembly A;
for i← −w to w do

for j ← −h to h do
A′ ← A0 + ⟨i, j⟩;
Let B be the set of binding sites between A0 and A′;
for each pair of binding sites a, b ∈ B do

if The loop formed using a, b does not intersect itself then reject;
accept;

4.3 Temperature-2
With respect to the given instance of Temp2-Tree-UAV P , if P is false, and the algorithm for
NonCoop-UAV(Γ, A) returns “accept”, then Lemma 10 implies there exist two subassemblies
of the target, B1 and B2, that attach to each other using cooperative binding.

To find these two subassemblies, we take two “copies” of the target assembly and find all
|A|2 possible ways to combine them- even if it results in intersections. If any combination
results in at least two binding sites, we attempt to find 2-combinable subassemblies. Since
these subassemblies are also tree-bonded, there only exists one path between each pair of
tiles- including the binding sites. So for each pair of binding sites, we take the loop formed
by the two binding sites and check if it intersects itself. An example of a loop that intersects
itself is shown in Figure 15d. If there ever exists a pair of binding sites whose paths do not
intersect, then those two subassemblies will form a rogue assembly and we reject.

▶ Theorem 11. There is a O(|A|5) time algorithm that decides Temp2-Tree-UAV.

Due to space constraints, the analysis of Alg. 2 and proof of Thm. 11 have been omitted.

4.4 Variable Temperature
We now present an algorithm for Tree-UAV as a generalization of the previous problem
where the temperature of the system τ is given as input. The algorithm is similar except it
does not suffice to only find a single loop since the temperature requirement attachment may
be greater than 2. We must find multiple loops between binding sites that do not intersect.
Once we find a way to combine the assemblies, we view binding sites and loops hierarchically
using inner binding sites. An example of an inner binding site is in Figure 15c. We recursively
calculate the max binding strength when taking each pair of binding sites as the outer loop.
After calling NonCoop-UAV(Γ, A), we check each possible way to attach A to itself. For
each of these ways, we build a b× b table where b is the total number of induced binding
sites. For each pair of binding sites, we calculate the maximum value recursively augmented
with the table. Thus, we only compute the maximum value once for each loop.

First, if the created loop intersects itself, we cannot use it, so the value is set to −1.
Next, we check if the binding sites form a simple loop with no inner binding sites. Here,
the max value is the sum of the glue strengths between the binding sites. For loops with
inner binding sites, we do a loop decomposition, which is the process of breaking a loop into
two smaller loops along one of the inner binding sites. An example is shown in Figure 16a.

ICALP 2022



34:18 Unique Assembly Verification in Two-Handed Self-Assembly
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(a) Loop Decomposition.
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(b) Invalid Loop Decomposition.

Figure 16 (a) One possible way to decompose loops into simple loops based on inner binding sites.
(b) Decomposing the loop (A, D) along binding site C results in the loop (C, D) which intersects
itself. This means we cannot decompose the loop (A, D) along C.

Algorithm 3 Algorithm to solve Tree-UAV in O(|A|5 log τ) time.

Data: 2HAM System Γ = (Σ, τ), Tree-Bonded Assembly A of height h and width w

Result: Does Γ uniquely produce A?
if NonCoop-UAV(Γ, A) rejects then reject;
Let A0 be the origin configuration of assembly A;
for x← −w to w do

for y ← −h to h do
A′ ← A0 + ⟨x, y⟩;
Let B be the set of binding sites between A0 and A′ and let b = |B|;
Create a b× b table TB indexed by the elements of B with all cells empty;
for each pair of binding sites b1, b2 ∈ B do

if maxStr(C = (A0
⋃

A′), TB, b1, b2) ≥ τ then reject;
accept;

To find the max binding strength of the outer loop, we break the loop up along each inner
binding site and recursively get the max strength of the two resulting loops (subtracted by
the glue strength of the inner binding site since it would be counted twice). If either of the
smaller loops intersects itself, it returns −1 and we know not to use that inner binding site.
The max binding strength of the outer loop is then the maximum of these computed values
over all choices of inner binding sites. The recursive checks are implemented with a dynamic
programming/memoization table to eliminate repeated recursive calls.

▶ Theorem 12. There is a O(|A|5 log τ) time algorithm that decides Tree-UAV.

Due to space constraints, the analysis of Alg. 3 and proof of Thm. 12 have been omitted.

5 Conclusion

In this paper, we have addressed the long-standing open problem of the complexity of
verifying unique assembly within the 2-handed tile self-assembly model and shown that
the problem is coNP-complete even at temperature τ = 2 and in two dimensions. These
are the smallest possible values for which this problem can be hard, as both temperature-1
self-assembly and 1-dimensional self-assembly have established polynomial time verification
solutions. Given this hardness, we explored a natural scenario where this problem might be
more tractable, and showed that restricting the input assemblies to tree-bonded assemblies
allows for an efficient O(|A|5 log τ)-time unique assembly verification algorithm.
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Algorithm 4 maxStr(C, TB, b1, b2). The subroutine that calculates the max strength
when using two binding sites as the outer loop. The method glueStr(b) takes in a binding
site and returns the strength of the glue connecting the two tiles.

Data: Union of two assemblies C, Table TB , and Binding sites b1, b2
Result: The maximum binding strength used to build a stable subassembly of C.
if TB(b1, b2) is empty then

if The loop formed by b1, b2 intersects itself then return −1;
if |I(b1, b2)| = 0 then return glueStr(b1) + glueStr(b2);
Let TB(b1, b2) = 0;
for bi ∈ I(b1, b2) do

if maxStr(b1, bi) ̸= −1 AND maxStr(bi, b2) ̸= −1) then
s← maxStr(b1, bi) + maxStr(bi, b2)− glueStr(bi);
if s > TB(b1, b2) then TB(b1, b2)← s;

return TB(b1, b2);

Future Work. While we have resolved the general question of unique assembly verification
in the 2HAM, as well as addressed a natural restricted case of tree-bonded assemblies, there
remain important directions for future research.

Our hardness reduction utilizes a tile set that is roughly the size of the input assembly.
All hardness results in the literature for the 2-handed self-assembly model have this
property. Yet, the computational power of self-assembly allows for the assembly of large
assemblies with small tile sets, as seen in the efficient self-assembly of squares [1, 24], or
the implementation of “Busy Beaver” Turing machines [24]. How hard is UAV for large
assemblies with substantially smaller tile sets. Does the hardness scale with assembly size
or tile set size? Is there some form of fixed-parameter tractability for the UAV problem?
We proved that UAV for the multiple tile (or q-tile) model is coNP-complete with
polynomial-sized assemblies attaching. Is UAV polynomial in the multiple tile model and
the 2HAM in the case where every producible assembly, except the one that grows into
the terminal assembly, is bounded by a constant?
A related question in the aTAM and the 2HAM is the number of two-handed operations
actually required to make the problem hard. If all subassemblies can only grow by single
tile attachments, how many two-handed operations to combine those subassemblies are
needed for UAV to remain hard? The ability to more efficiently construct shapes by
assembling parts separately has been studied in other models as well [25].
Another direction initiated by our efficient tree assembly algorithm is the consideration
of other natural restricted classes of the UAV problem. For example, how does UAV
scale with respect to the genus of an assembly’s connectivity graph? A related question
involves verification for fully connected assemblies, a previously-studied concept [14] in
which assemblies include positive bonds between all neighboring tiles.
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Abstract
In this paper, we consider reachability oracles and reachability preservers for directed graphs/networks
prone to edge/node failures. Let G = (V, E) be a directed graph on n-nodes, and P ⊆ V ×V be a set
of vertex pairs in G. We present the first non-trivial constructions of single and dual fault-tolerant
pairwise reachability oracle with constant query time. Furthermore, we provide extremal bounds for
sparse fault-tolerant reachability preservers, resilient to two or more failures. Prior to this work,
such oracles and reachability preservers were widely studied for the special scenario of single-source
and all-pairs settings. However, for the scenario of arbitrary pairs, no prior (non-trivial) results
were known for dual (or more) failures, except those implied from the single-source setting. One
of the main questions is whether it is possible to beat the O(n|P|) size bound (derived from the
single-source setting) for reachability oracle and preserver for dual failures (or O(2kn|P|) bound for
k failures). We answer this question affirmatively. Below we summarize our contributions.

For an n-vertex directed graph G = (V, E) and P ⊆ V × V , we present a construction of
O(n

√
|P|) sized dual fault-tolerant pairwise reachability oracle with constant query time. We

further provide a matching (up to the word size) lower bound of Ω(n
√

|P|) on the size (in bits)
of the oracle for the dual fault setting, thereby proving that our oracle is (near-)optimal.
Next, we provide a construction of O(n + min{|P|

√
n, n

√
|P|}) sized oracle with O(1) query

time, resilient to single node/edge failure. In particular, for |P| bounded by O(
√

n) this yields an
oracle of just O(n) size. We complement the upper bound with a lower bound of Ω(n2/3|P|1/2)
(in bits), refuting the possibility of a linear-sized oracle for P of size ω(n2/3).
We also present a construction of O(n4/3|P|1/3) sized pairwise reachability preservers resilient
to dual edge/vertex failures. Previously, such preservers were known to exist only under single
failure and had O(n + min{|P|

√
n, n

√
|P|}) size [Chakraborty and Choudhary, ICALP’20].

We also show a lower bound of Ω(n
√

|P|) edges on the size of dual fault-tolerant reachability
preservers, thereby providing a sharp gap between single and dual fault-tolerant reachability
preservers for |P| = o(n).
Finally, we provide a generic pairwise reachability preserver construction that provides a o(2kn|P|)
sized subgraph resilient to k failures, for any k ≥ 1. Before this work, we only knew of an
O(2kn|P|) bound implied from the single-source setting [Baswana, Choudhary, and Roditty,
STOC’16].
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1 Introduction

Networks in most real-life applications are prone to failures. These failures, though unpre-
dictable, are transient due to some simultaneous repair process that is undertaken in the
application. This motivates the research on designing fault-tolerant structures for various
graph problems. In the past few years, a lot of work has been done in designing fault-tolerant
structures for various graph problems like connectivity [34, 32, 4, 26, 11], finding shortest
paths [20], graph-structures preserving approximate distances [30, 19, 15, 22, 5, 6, 10, 3]
etc. Reachability is one of the fundamental graph properties which is as ubiquitous as
graphs themselves. In this paper, we study pairwise reachability structures under edge/node
failures. In particular, given any set P of node-pairs, we provide design of graph sparsification
structures, and sensitivity oracles for the reachability problem. We present our results in
terms of edge failures. However, all our upper bound results also hold for node failures.1

1.1 Sensitivity Oracle
In the Sensitivity oracle, the goal is to design a data structure for a network prone to
edge/vertex failures to efficiently answer queries pertaining to the graph structure (e.g.,
connectivity, reachability, distance, etc.). We first formally define the notion of Fault-Tolerant
Reachability Oracle (FTRO).

▶ Definition 1 (FTRO). Let P ∈ V × V be any set of pairs of vertices. For a graph G,
a data structure DS(G) is said to be a k-Fault-Tolerant Reachability Oracle of G for P,
denoted as k-FTRO(G, P), if given a query with any pair (s, t) ∈ P and any subset F ⊆ E

of at most k edges, DS(G) efficiently decides whether or not t is reachable from s in G \ F .

To date, no non-trivial bounds were known for FT-pairwise reachability oracle. The
only known results are for single-source setting (i.e., P = {s} × V ) and all-pairs setting
P = V × V .

For single-source setting, i.e., when P = {s}×V for some source vertex s ∈ V , under (single
and) dual failure, we have an O(n) size oracle with O(1) query time due to [29, 17]. As an
immediate corollary, for arbitrary P pairs, we get an O(n|P|)-sized single/dual failure pairwise
FTRO with constant query time. The bound is extremely bad for a large-sized set P. By
storing a subgraph that preserves pairwise reachability (to be discussed in detail in Section 1.2)
under single failure due to [11], we get an 1-FTRO of size O(n + min{

√
n|P|, n

√
|P|}) but

with O(n) query time. The O(n) query time is due to the fresh reachability computation over

1 In the input graph, each vertex v can be replaced by an edge (vin, vout), where all the incoming and
outgoing edges of v are directed into vin and directed out of vout respectively. Thus the failure of vertex
v is equivalent to failure of edge (vin, vout).
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the stored subgraph on each query, which is entirely undesirable in terms of the efficiency of a
data structure. For the special setting of all-pairs, i.e., P = V × V , Brand and Saranurak [37]
provided a O(n2) sized k-FTRO that has O(kω) query time, where ω is the constant of
matrix-multiplication.

One of the main questions is the following: Does there exist a pairwise reachability oracle
of size o(n|P|) and query time o(n) even for a single failure? In this paper, we answer this
question affirmatively. We provide an efficient construction of a O(n

√
|P|) sized FTRO with

constant query time that is resilient to dual failure (not just single failure).

▶ Theorem 2 (Upper Bound on 2-FTRO). A directed graph G = (V, E) with n vertices can
be processed in randomized polynomial time for a given set P ⊆ V × V of vertex-pairs, to
build a data structure of size O(n

√
|P|), such that for any pair (s, t) ∈ P and any set F of

(at most) two edge failure, it decides whether there is an s to t path in G \ F in time O(1).

We further show that the above size bound cannot be improved further by providing a
matching (up to the word size) lower bound for two failures. To date, no non-trivial (better
than linear) size lower bound is known for any pairwise FTRO.

▶ Theorem 3 (Lower Bound on 2-FTRO). For any positive integers n, r (r ≤ n2), there exists
an n-vertex directed graph with a vertex-pair set P of size r, such that any 2-FTRO(G, P)
must be of size Ω(n

√
|P|) (in bits).

In case of source-wise 2-FTRO for a source set S (i.e, when P = S × V ), our lower bound
construction provides a lower bound of Ω(n|S|) (in bits). It is again a matching (up to the
word size) lower bound because we know of an O(n|S|)-sized 2-FTRO for any source set S

due to [17]. It is also worth noting that our lower bound holds irrespective of the query time
and also for directed acyclic graphs.

The above lower bound does not hold for a single failure. So it is natural to ask whether
we can design a smaller data structure, more specifically, O(n)-sized oracle that is resilient
to a single failure. We provide a construction of O(n + min{|P|

√
n, n

√
|P|}) sized 1-FTRO

with constant O(1) query time. In particular, we show that as long as the number of pairs
is bounded by O(

√
n), we can achieve an oracle with O(n) size and O(1) query time. This

result provides us a sharp separation in optimum size of a FTRO between single and dual
failure. To the best of our knowledge, this is the first separation result between single and
dual failure reachability oracle.

▶ Theorem 4 (Upper Bound on 1-FTRO). A directed graph G = (V, E) with n vertices can
be processed in polynomial time for a given set P ⊆ V × V of vertex-pairs, to build a data
structure of size O(n + min{|P|

√
n, n

√
|P|}), such that for any pair (s, t) ∈ P and a failure

edge f , it decides whether there is an s to t path in G \ {f} in time O(1).

Note, the size bound of the above theorem matches the current best known bound for the
pairwise reachability preserving subgraph for single failure [11].

The above upper bound gives O(n) sized oracle only when the number of pairs is O(
√

n).
Is it always possible to get a linear-sized pairwise 1-FTRO? More specifically, does any n-
node graph G and a set P of node-pairs always possess a 1-FTRO(G, P) of size O(n + |P|)?2

In this paper, we refute this possibility by showing the following.

2 The presence of |P| term in the bound is justifiable by the fact that for non-failure case (i.e., the
standard static setting), we can get a trivial O(|P|) sized oracle.
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▶ Theorem 5 (Lower Bound on 1-FTRO). For any positive integers n, d ≥ 2, any p = p(n),
there exists an n-vertex directed graph and a node-pair set P of size p, such that any
1-FTRO(G, P) must be of size Ω

(
n2/(d+1)p(d−1)/d

)
(in bits).

By setting d = 2 in the above theorem, we get a lower bound of Ω(n2/3p1/2). This shows
us that for p = ω(n2/3), there is an n-node graph G and a pair set P of size p, for which
linear size 1-FTRO is not possible. Again, our lower bound holds irrespective of the query
time and also for DAGs. We show the lower bound by establishing a connection between the
optimal sized pairwise 1-FTRO and pairwise reachability preserving subgraph without any
failure. In general, we show that the optimal size of any pairwise k-FTRO must be at least
that of the reachability preserving subgraph with k − 1 failures. Instead of just deciding
the reachability between a pair of vertex, suppose the data structure is also asked to report
a path between them (if exists). Then by a standard information-theoretic argument, the
optimal size of any such data structure resilient to k failures must be of size at least that of
reachability preserving subgraph with k failures. Unfortunately, such a direct argument does
not work for a (Boolean) data structure that only decides the reachability. Ours is the first
such connection. Readers may note that there is a gap between our upper and lower bound
for pairwise 1-FTRO. We leave this as an interesting open question.

1.2 Reachability Preservers
In the context of graph sparsification, reachability preserver (or reachability subgraph) for a
directed graph G and a set P of vertex-pairs is a sparse subgraph H with as few edges as
possible so that for any pair (s, t) ∈ P there is a path from s to t in H if and only if there
is such a path in G. In the standard static setting (with no failure), this object has been
studied widely [18, 8, 1]. We study these objects in the presence of edge/node failures.

Let us formally define fault-tolerant reachability subgraph (FTRS) for a set of node-pairs.

▶ Definition 6 (FTRS). Let P ∈ V ×V be any set of pairs of vertices. A subgraph H of G is
said to be a k-Fault-Tolerant Reachability Subgraph of G for P, denoted as k-FTRS(G, P),
if for any pair (s, t) ∈ P and for any subset F ⊆ E of at most k edges, t is reachable from s

in G \ F if and only if t is reachable from s in H \ F .

For the particular case of single-source, i.e., P = {s} × V , Baswana, Choudhary, and
Roditty [4] provided a polynomial-time algorithm that, given any n-node directed graph,
constructs an O(2kn)-sized k-FTRS. As a corollary, to preserve reachability between
arbitrary P pairs, we get an O(2kn|P|)-sized k-fault-tolerant reachability preserver. For the
general setting of arbitrary pairs, the only previously known non-trivial result was for single
failure [11], wherein the authors gave an upper bound of O(n + min(|P|

√
n, n

√
|P|)) edges.

It was left open whether for dual or more failures whether keeping fewer than O(n|P|) edges
sufficient to preserve the pairwise reachability. In particular, does any n-node graph and a
set P of node-pairs always admit a k-FTRS of size o(2kn|P|)?

In this work, we answer the above question affirmatively. For dual failures, we provide an
upper bound of O(n4/3|P|1/3) edges on the structure of 2-FTRS(G, P).

▶ Theorem 7 (Upper Bound on 2-FTRS). For any directed graph G = (V, E) with n

vertices and a set P ⊆ V × V of vertex-pairs, there exists a 2-FTRS(G, P) having at most
O(n4/3|P|1/3) edges. Furthermore, we can find such a subgraph in polynomial time.

Clearly, for P of size ω(
√

n), the above result breaks below the O(n|P|) bound. We
complement our upper bound result the following lower bound.
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▶ Theorem 8 (Lower Bound on 2-FTRS). For every n, r (r ≤ n2), there exists an n-vertex
directed graph G and a vertex-pair set P of size r such that any 2-FTRS(G, P) requires
Ω(n

√
|P|) edges.

Again, we show a lower bound for source-wise 2-FTRS for a source set S (i.e, when P = S×V ),
of Ω(n|S|). This matches the O(n|S|) upper bound [4] of 2-FTRS for any source set S. So
for the source-wise preserver, we completely resolve the question regarding the size of an
optimal preserver resilient to two or more failures. For general k > 2 failures, we provide a
lower bound of Ω(2k/2n

√
|P|) on the size of pairwise k-FTRS.

Previously, seemingly a much weaker lower bound was known [11], where the authors
could only show a lower bound of Ω(n|P|1/8), for P of size nϵ with ϵ ≤ 2/3. Our result
provides a sharp separation between single and dual fault-tolerant reachability preservers for
any P satisfying ω(1) ≤ |P| ≤ o(n).

We also consider the question of beating O(2kn|P|) bound for general k-FTRS. We show
that for a certain regime of the size of P, it is indeed possible to attain o(2kn|P|) bound.

▶ Theorem 9 (Upper Bound on k-FTRS). For any k ≥ 1, a directed graph G = (V, E) with
n vertices and a set P ⊆ V × V of vertex-pairs satisfying |P| = ω(kn1− 1

k log n), there exists
a k-FTRS(G, P) having only o(2kn|P|) edges.

We summarize our results on single and dual failures in Table 1. Readers may note that
there is a gap between the size of 2-FTRO and 2-FTRS in our results. We pose closing this
embarrassing gap as an interesting open question.

Table 1 A comparison of size of FTRO and FTRS for single and dual failures.

Problem Single Failure Dual Failure

Reachability

Oracle

O(n + min(|P|
√

n, n
√

|P|))

Ω(n2/3|P|1/2) (in bits)

(New)

O(n
√

|P|)

Ω(n
√

|P|) (in bits)

(New)

Reachability

Preserver

O(n + min(|P|
√

n, n
√

|P|))

[11]

O(n4/3|P|1/3)

Ω(n
√

|P|)

(New)

1.3 Related Work
A simple version of reachability preserver is when there is a single source vertex s, and we
would like to preserve reachability from s to all other vertices. Baswana et al. [4] provided
an efficient construction of a k-fault-tolerant single-source reachability preserver of size
O(2kn). Further, they showed that this upper bound on the size of a preserver is tight up
to some constant factor. As an immediate corollary, we get a k-FTRS of size O(2kn|P|)
(by applying the algorithm of [4] to find subgraph for each source vertex in pairs of P and
then taking the union of all these subgraphs). We do not know whether this bound is
tight for general k. However, for the standard static setting (with no faulty edges) much
better bound is known. We know that even to preserve all the pairwise distances, not
just reachability, there is a subgraph of size O

(
n + min(n2/3|P|, n

√
|P|)

)
[18, 8]. Later

Abboud and Bodwin [1] showed that for any directed graph G = (V, E) given a set S of

ICALP 2022
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source vertices and a pair-set P ⊆ S × V we can construct a pairwise reachability preserver
of size O

(
n + min(

√
n|P||S|, (n|P|)2/3)

)
. It is further shown that for any integer d ≥ 2

there is an infinite family of n-node graphs and vertex-pair sets P for which any pairwise
reachability preserver must be of size Ω

(
n2/(d+1)|P|(d−1)/d

)
. Note, for undirected graphs,

storing spanning forests is sufficient to preserve pairwise reachability information, and thus
we can always get a linear size reachability preserver for undirected graphs. We would like to
emphasize that all our results in this paper hold for directed graphs.

By [4] we immediately get an oracle of size O(2kn) for k edge (or vertex) failures with
query time O(2kn). For just dual failures, we have an O(n) size oracle with O(1) query time
due to [17].

For undirected graphs, the optimal bound of O(kn) edges for k-fault-tolerant connectivity
preserver directly follows from k-edge (vertex) connectivity certificate constructions provided
by Nagamochi and Ibaraki [31]. For connectivity oracle, Pǎtraşcu and Thorup [35] presented
a data structure of O(m) size that can handle any k edge failures in O(k log2 n log log n)
time to subsequently answer connectivity queries between any two vertices in O(log log n)
time. For small values of k, Duan and Pettie [24] improved the update time of [35] to
O(k2 log log n) by presenting a data structure of Õ(m) size. For handling vertex failures,
Duan and Pettie [25] provided a data structure of O(mk log n) size with O(k3 log3 n) update
time and O(k) query time.

Other closely related problems that have been studied in the fault-tolerant model include
computing distance preservers [20, 33, 32, 12], depth-first-search tree [2], spanners [15, 22],
approximate distance preservers [5, 34, 7], approximate distance oracles [23, 16], compact
routing schemes [16, 14].

2 Preliminaries

For any integer n, we use [n] to denote the set {1, 2, · · · , n}. Given a directed graph
G = (V, E) on n = |V | vertices and m = |E| edges, the following notations will be used
throughout the paper.

V (H) : The set of vertices present in a graph H.
E(H) : The set of edges present in a graph H.
H \F : For a set of edges F , the graph obtained by deleting the edges in F from graph H .
s − t path : A directed path from a vertex s to another vertex t.
P ◦ Q : The concatenation of two paths P and Q, i.e., a path that first follows P and
then Q.
P [L] : The subpath of the path P containing the first L vertices of P .
P [−L] : The subpath of the path P containing the last L vertices of P .
P [u − v] : The u − v subpath of the path P .

Our algorithm for computing pairwise-reachability preservers (and oracles) in a fault
tolerant environment employs the concept of a single-source FTRS which is a sparse subgraph
that preserves reachability from a designated source vertex even after the failure of at most
k edges in G. Baswana et al. [4] provide a construction of sparse k-FTRS for any general
k ≥ 1 when there is a designated source vertex.

▶ Theorem 10 ([4]). For any directed graph G = (V, E), a designated source vertex s ∈ V ,
and an integer k ≥ 1, there exists a (sparse) subgraph H of G which is a k-FTRS(G, {s}×V )
and contains at most 2kn edges. Moreover, such a subgraph is computable in O(2kmn) time,
where n and m are respectively the number of vertices and edges in graph G.
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Note, in the FTRO definition we restrict ourselves to a data structure with constant
query time. (The term oracle came from its ability to answer a query in constant time.)
Unlike single-source k-FTRS, there is no non-trivial construction of single-source k-FTRO
for k ≥ 3. For k = 2, the following result by Choudhary [17] provides an O(n) size oracle.

▶ Theorem 11 ([17]). There is a polynomial time algorithm that given any directed graph
G = (V, E), a designated source vertex s ∈ V , constructs a 2-FTRO(G, {s} × V ) of size
O(n).

Our constructions will require the knowledge of the vertices reachable from a vertex s as
well as the vertices that can reach s. So we will use FTRS (and FTRO) defined with respect
to a source vertex ({s} × V case), as well as FTRS (and FTRO) defined with respect to a
destination vertex (V × {s} case).

In this paper, we consider fault-tolerant structures with respect to edge failures only.
Vertex failures can be handled by simply splitting a vertex v into an edge (vin, vout), where
the incoming and outgoing edges of v are respectively directed into vin and directed out
of vout.

3 Technical Overview

Construction of a 2-FTRS for a single pair

Our starting point is a simple construction of a linear (in the number of vertices) sized
2-FTRS for a single pair. Recall, we already know of such a subgraph by [4]. However,
this new alternate construction will shed more light on the specific structure of a 2-FTRS,
which will play a pivotal role in our constructions of pairwise 2-FTRS and 2-FTRO. Given
a directed graph G and a vertex-pair (s, t), we construct a subgraph H(s,t) as follows: First,
consider two “maximally disjoint” s−t paths P 1

(s,t) and P 2
(s,t) (that meet only at the cut-edges

and cut-vertices). We refer to these two paths as outer strands. Next, we add several coupling
paths between these two outer strands, which are edge-disjoint with the outer strands. For
each vertex v on the outer strands, we check for the “earliest” vertex on the strand P 1

(s,t)
(and P 2

(s,t)), from which there is a path Q1
(s,t),v (and Q2

(s,t),v) to v that is edge-disjoint with
both the outer strands. We refer to these path Qi

(s,t),v as coupling paths. Roughly speaking,
two outer strands together with the coupling paths constitute the subgraph H(s,t) (see
Figure 1). The actual construction is slightly different. Let us first briefly discuss why the
above subgraph is a 2-FTRS for the pair (s, t). Then we will comment on the issue with the
above simple construction and how we overcome that.

Consider any two failure edges f1, f2. W.l.o.g. assume, they do not form an s − t cut-set;
otherwise, after the failure there won’t be any s − t path. Thus if both f1, f2 lie on one
of the two outer strands (i.e., either on P 1

(s,t) or P 2
(s,t)), then since these two strands are

maximally disjoint, one of them will survive after the failures. So, let f1, f2 lie on the strand
P 1

(s,t), P 2
(s,t) respectively. Then consider the subpaths of P 1

(s,t), P 2
(s,t) above f1, f2, and the

subpaths of P 1
(s,t), P 2

(s,t) below f1, f2. Since by assumption f1, f2 does not form an s − t

cut-set, there must be a coupling path (edge-disjoint with P 1
(s,t), P 2

(s,t)) from one of the top
subpaths to one of the bottom subpaths in G. Since H(s,t) consists of all the coupling paths,
we get a surviving path in H(s,t) \ {f1, f2}. This shows that H(s,t) is a 2-FTRS(G, (s, t)).
Moreover, one may observe from the above argument that, after failure of any two edges,
one of the surviving paths in H(s,t) must be of the following form: It first follows one of the
outer strand from s to some vertex u, then takes a coupling path till some vertex v on one of
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Figure 1 H(s,t)=2-FTRS for a single pair (s, t). Two black paths are the outer strands and the
purple paths are the coupling paths between them.

the outer strands, and finally follows the corresponding outer strand from v to t. We refer to
such a path as nice path. The existence of such nice paths helps us in proving the correctness
of our pairwise 2-FTRO and 2-FTRS construction in the subsequent sections.

As we mentioned earlier, our actual construction is slightly different. The main issue with
the above simple construction is that the constituted subgraph could be of size ω(n) after
adding all the coupling paths. To mitigate this issue, instead of adding all the coupling paths,
we only add the “essential” coupling paths. (See the full version for the details.) It allows us
to achieve O(n) size bound without affecting the correctness of 2-FTRS. The guarantee of
the existence of nice paths also remains unaffected. Of course, the correctness argument will
become slightly more intricate.

Next, we use the above construction of a 2-FTRS of a single pair to study the pairwise
dual fault-tolerant graph structures (reachability oracle and preserver). Our input is a
directed graph G = (V, E) with n nodes, and a node-pair set P ⊆ V × V .

Pairwise 2-FTRO: Upper bound

One of the main contributions of this work is a construction of a dual fault-tolerant pairwise
reachability oracle (2-FTRO) of size O(n

√
|P|). For simplicity, below, we briefly describe a

construction that provides a slightly weaker bound, in particular, O(n
√

|P| log n). Later we
will comment on how to remove this extra log n factor.

We start with the 2-FTRS H(s,t), for each pair (s, t) ∈ P. First, for all (s, t) ∈ P, we
consider the top and bottom Θ(n/

√
|P|) portion of the outer strands (P 1

(s,t), P 2
(s,t)). We

find a subset of vertices that intersects all these subpaths, i.e., acts as a “hitting set”. Using
a standard greedy algorithm we get a hitting set of size O(

√
|P| log n). (Note, one may

alternatively use random sampling to achieve the same bound for the hitting set with high
probability.) Then we compute linear-sized single-source and single-destination 2-FTRO
having query time O(1), for each of the vertices in the hitting set using [17]. For each
(s, t) ∈ P , in a table T(s,t), we store one vertex from each of the top and bottom Θ(n/

√
|P|)

length subpaths of P 1
(s,t), P 2

(s,t), that is also included in the hitting set. That constitutes the
first part of our data structure.

Observe, for any two failure edges f1, f2 and a pair (s, t) ∈ P , we know that there must
be a surviving nice s − t path in H(s,t) \ {f1, f2} (unless f1, f2 form an s − t cut-set). Now,
if that surviving path follows the bottom (or top) Θ(n/

√
|P|) length subpath of P j

(s,t) (for
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some j ∈ {1, 2}), it must also pass through one of the stored vertices in T(s,t), say v (due to
the hitting set property). In this scenario, we can easily check for presence of an s − v and
v − t path after the failure of f1, f2 in G by trying with all the (at most four) stored vertices
in T(s,t). For that, we only need O(1) time during query.

Now, it only remains to consider the case when the surviving nice path in H(s,t) \ {f1, f2}
passes though a coupling path Qi

(s,t),v, for some vertex v lying on the bottom Θ(n/
√

|P|)
length subpath of a outer strand, that starts from some vertex u lying on the top Θ(n/

√
|P|)

length subpath of a outer strand. Informally, we only need to consider the scenario when
both the outer strands are of length O(n/

√
|P|). For simplicity, from now on we continue

the description with this assumption. Intuitively, this enables us to look into a smaller graph
(which need not be a subgraph of the original graph). We build an auxiliary graph A(s,t)
(see Figure 2) from H(s,t). We define the auxiliary graph entirely on the vertex set of the
outer strands (P 1

(s,t), P 2
(s,t)). First, we add both the outer strands (i.e. all their edges) to

the auxiliary graph. Next, we add auxiliary edges between the vertices if and only if there
is a path between them in H(s,t) that is edge-disjoint with the outer strands. Then, We
construct a 2-FTRO (having query time O(1)) for A(s,t) using [17]. We do this for all pair
(s, t) ∈ P . Since each auxiliary graph is defined over a set of O(n/

√
|P|) sized vertex set, we

need total O(n
√

|P|) space. This finishes the description of our data structure. So, the final
data structure consists of 2-FTROs of the vertices in the hitting set and 2-FTRO computed
over A(s,t)’s. Hence, the size of the whole data structure is O(n

√
|P | log n).

{

{

}

}

L

L

L

L

P1
s,t P2

(s,t)

u1(s,t),v u1(s,t),vu2(s,t),v u2(s,t),v

v v

Auxiliary Edge

Path Edge

s s

t t

H(s,t) A(s,t)

Figure 2 Auxiliary graph A(s,t) constructed from H(s,t).

It is not hard to see that any s − t path of H(s,t) also leads to a valid s − t path in A(s,t)
and vice versa. However, it is not immediate that it will be the case even after the failure of
f1, f2. The difficulty arises because many paths in H(s,t) now map to one path in A(s,t). We
show that it is indeed the case that there is an s − t path in H(s,t) \ {f1, f2} if and only if
there is an s − t path in the auxiliary graph A(s,t) \ {f1, f2} (given P 1

(s,t), P 2
(s,t) are of length

at most O(n/
√

P )). The actual description is slightly more involved because we cannot make
any assumption on the length of P 1

(s,t), P 2
(s,t). Essentially, we need only to consider the top

and bottom O(n
√

|P|) portion of the outer strands and define the auxiliary graph over them.
Then we prove the above claim without any assumption on the length of the outer strands.
The guarantee on the existence of a nice s − t path in H(s,t) after at most two failures comes
handy in this case. Recall, in a nice path, there is at most one coupling sub-path. If both
the endpoints of this coupling sub-path lie on the top and bottom O(n

√
|P|) portion of the
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outer strands, we get an auxiliary edge. As a result, we get an s − t path in the auxiliary
graph after the failures. We refer the readers to the full version for the details. Note, without
the guarantee of a nice path, there could be many coupling sub-paths in a surviving s − t

path after failures. As a result, we may not get an auxiliary edge in our auxiliary graph.
During the query for a pair (s, t) ∈ P, it suffices to either place O(1) many reachability

queries on the first part of our data structure or check the presence of an s − t path in the
auxiliary graph A(s,t). Hence, we get the overall query time to be only O(1).

To remove the O(log n) factor from the size bound, we use the concept of sparsifier with
slack [13, 27, 21, 9]. The extra O(log n) factor was coming due to the construction of the
greedy hitting set. We show that if we prematurely terminate the same greedy hitting set
algorithm, we get a fractional hitting set that hits a constant fraction of the input sets.
As a consequence, we get a pairwise 2-FTRO with slack of size O(n

√
|P|). Then we use

an argument similar to that in [9] to get the same size bound for the (standard) pairwise
2-FTRO.

Optimality of pairwise dual fault-tolerant oracle

In this paper, we show that for pairwise 2-FTRO, our O(n
√

|P|) bound is essentially tight
up to the word size (Theorem 3). Actually, we show that for any source-wise 2-FTRO for a
designated source set S, the trivial O(n|S|) upper bound followed from [17], is tight. To do
that, we first provide a Ω(n|S|) lower bound for source-wise 2-FTRS (leading to Theorem 8)
by constructing a hard instance. Then we extend that lower bound to source-wise 2-FTRO
using communication complexity.

We construct the hard instance for 2-FTRS as follows. Take any integer N, r. We
consider two r-sized sets of vertex-disjoint (directed) paths each of length N . Then include a
(directed) complete bipartite graph between the left set of r vertices and the right set of r

vertices, for each level k ∈ [N ] (See Figure 3). The set S contains the start vertices of the
paths in the left set and the terminal vertices of the paths in the right set. So, |S| = 2r. The
number of vertices and the edges in this graph are n = 2Nr and Θ(Nr2) respectively. It is not
difficult to observe that each edge in this graph must be present in any 2-FTRS for this graph
with the pair set P = S × S (See Figure 3). Consequently, we get a Ω(n|S|) = Ω(n

√
|P|)

lower bound.

P1 Pi Pr Q1 Qj Qr

a1 ai ara2

b1 bj brb2

Ak Bk
All pairs in 

 are 
present in 

edge-set of 

Ak × Bk

G

pk,i qk,j

Figure 3 Dual fault-tolerant reachability preserver.

We then extend the above construction to 2-FTRO. Note, FTRO is a Boolean data
structure that only decides reachability between a pair of vertices - does not report a path (if
exists). If the data structure also reports a path (if exists), then using a standard information-
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theoretic argument, it is possible to show that the data structure must be of a size equal to
that of a FTRS. Such an argument does not work in general for FTRO. This is a general
hurdle that we need to overcome to extend the lower of FTRS to FTRO. Fortunately, the
hard instance we constructed for FTRS allows us to provide a reduction from (a close variant
of) the Index problem. Then we use the randomized one-way communication complexity
lower bound for the Index problem [28] to get a lower bound of Ω(n|S|) on the size (in bits)
of any 2-FTRO. It is worth mentioning that our lower bound holds irrespective of the query
time of 2-FTRO.

Pairwise 1-FTRO: Upper and lower bound

The above lower bound only holds for dual failures. So it remains open whether for single
failure we can attain better than O(n

√
|P|) size bound with o(n) (ideally, constant) query

time. In this section, we provide a construction of 1-FTRO of size O(n + |P|
√

n) and
query time O(1). We show the construction by first designing a reachability oracle of size
O(n + |P|

√
n) resilient to single vertex failure. Then we extend that vertex fault-tolerant

data structure to an edge fault-tolerant data structure of the same size.
One of the key ingredients of our construction is a clever data structure that could answer

all-pairs reachability query under single vertex failure as long as all three vertices involved
in the query belong to a cut-set. Formally, for a pair (s, t), let C be any subset of s − t

cut-vertices in the graph G. We build an O(|C|) size data structure that, for any three
vertices x, y, z ∈ C, decides the reachability between y, z upon failure of vertex x, in constant
time. This data structure is inspired by the loop-nesting-forest [36]. We consider the ordering
σ among the cut-vertices in C. Next, we build a predecessor forest and a successor forest
with respect to this ordering σ. In the predecessor forest, the parent of any node w is
the immediate predecessor u such that u, w are strongly connected even after the removal
of all the predecessors of u from G. We symmetrically build the successor forest. Using
constantly many Lowest Common Ancestor (LCA) and Level Ancestor (LA) queries on these
forests, we can now decide the reachability between y, z upon failure of the vertex x (for
any x, y, z ∈ C). By deploying any standard linear space LCA/LA data structure, we attain
O(|C|) space-bound and O(1) query time. We refer the readers to the full version for the
details.

Next, we use the above data structure to construct a pairwise fault-tolerant reachability
oracle for single vertex failure. Observe, to decide the reachability between a pair upon
failure, we need to check whether the failure vertex is a cut-vertex for that pair or not. At the
high level, we need to keep the information about the cut-vertex-set for each pair. However,
we cannot store them explicitly using small space. We first consider the cut-vertex-set for
all the pairs in P. Then we identify a core pair-set as follows: Take any pair in P with at
least

√
n cut-vertices, and add it into the core pair-set. Then iteratively add pairs from P

with at least
√

n new/uncovered (not part of the cut-vertex-set of any previously added pair)
cut-vertices. For each pair added in the core pair-set, it owns the corresponding cut-vertices
that were uncovered till then. Once we get the core pair-set, we are left with pairs each
having at most

√
n uncovered cut-vertices. Further note, the size of the core pair-set is at

most O(
√

n). Consider the union of all the cut-vertices of the core pair-set, and build the
previously mentioned data structure on it. For the remaining pairs, we store the uncovered
cut-vertices associated with them using any static dictionary data structure. Note, each pair
might have cut-vertices that are owned by some core pair. To keep track of them, for each
pair and each core pair, we store the first and the last cut-vertex shared by them. These all
constitute the final data structure. It is not hard to see that the size is O(n + |P|

√
n). We
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show that it suffices to either perform a query on the previously mentioned data structure or
check whether the failure vertex is a cut-vertex in the dictionary structure during the query.
(See the full version.)

Now, we extend the vertex fault-tolerant oracle to edge fault-tolerant oracle. We consider
the set C of all the cut-edges for all the pairs in P. Then we find the subset C0 that only
contains the edges whose endpoints are strongly connected in G, but not after the failure of
that edge. Observe, all the edges in C must be part of any strong-connectivity certificate,
and all the edges in C0 must be part of any reachability preserver without any failure. Thus
|C| = O(n) and |C0| = O(n + min{|P|

√
n, (n|P|)2/3}) by [1]. Next, we construct a new graph

with n + |C0| vertices such that checking the reachability upon an edge failure in the original
graph reduces to checking the reachability (perhaps between a different pair) upon vertex
failure in the new graph. As a consequence, we get an O(n + |P|

√
n) sized 1-FTRO with

constant query time.
We complement our upper bound result with a lower bound of Ω(n2/d+1|P|(d−1)/d) size

(in bits) for any d ≥ 2. We prove our lower bound by establishing a connection between the
optimal size of a pairwise k-FTRO and that of a pairwise (k − 1)-FTRS. In particular, we
show that the optimal size of FTRO for any n-node graph and p-sized pair-set is at least that
of (k − 1)-FTRS for any n/2-node graph and p-sized pair-set. Such a connection between
FTRO and FTRS is entirely new. To prove this relation, we use information-theoretic
encoding-decoding argument. (See the full version.) Then the lower bound of 1-FTRO
follows from the lower bound of reachability preserver without any failure by [1].

Pairwise 2-FTRS: Upper bound

We have already shown a lower bound of Ω(n
√

|P|) on the size of a pairwise 2-FTRS.
However, so far we only known of O(n|P|) size 2-FTRS for any n-node graph G and pair
set P. In this work, we provide a deterministic polynomial time construction of a pairwise
2-FTRS of size O(n4/3|P|1/3). For simplicity, below, we briefly describe a construction that
provides a slightly weaker bound, in particular, O(n

√
|P| log n). In the actual construction,

we get rid of the log n factor by constructing a preserver with slack and then using the result
of [9] - an idea similar to that used in pairwise 2-FTRO described earlier. Before proceeding
further, let us emphasize that the main underlying idea behind our construction could be
generalized to k-FTRS, for any k ≥ 1, albeit with the help of randomization. We describe
that generic construction later.

To get a sparse 2-FTRS for a node-pair set P , we perform two-step sparsification. First,
we apply our alternate construction of 2-FTRS for each of the pairs of P . Then take a union
of all of these subgraphs to get a O(n|P|) size intermediate subgraph Hinter, which is clearly a
2-FTRS for P . Next, we further sparsify this intermediate subgraph. Similar to the technique
used in oracle construction, we consider the top and bottom Θ(n2/3|P |−1/3) portions of the
outer strands (P 1

(s,t), P 2
(s,t)) of Hs,t, for each (s, t) ∈ P . Next, we construct a greedy hitting

set containing O(n1/3|P|1/3 log n) vertices that intersects all these subpaths. We compute
linear-sized single-source and single-destination 2-FTRS for each of these vertices in the
hitting set using [4]. Let H1 be the union of all these single-source and single-destination
2-FTRS. So, H1 is of size O(n4/3|P|1/3 log n).

Consider any two failure edges f1, f2 and a pair (s, t) ∈ P. If there is a surviving
path in G \ {f1, f2}, we know that there is a nice s − t path in H(s,t) \ {f1, f2}. Using
an argument similar to that in the oracle construction, if that nice path follows the top
or bottom Θ(n2/3|P |−1/3) portion of a outer strand, then there is also an s − t path in
H1 \ {f1, f2}. So now on, it suffices to look into the case when the surviving nice path in
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H(s,t) \ {f1, f2} passes though a coupling path Qi
(s,t),v, for some vertex v lying on the bottom

Θ(n2/3|P |−1/3) length subpath of a outer strand, that starts from some vertex u lying on
the top Θ(n2/3|P |−1/3) length subpath of a outer strand.

If we could include the top and bottom Θ(n2/3|P |−1/3) portion of the outer strands,
and all the “essential” coupling path Qi

(s,t),v’s with endpoints lying on the top and bottom
Θ(n2/3|P |−1/3) portions of the outer strands, we will be done. We indeed consider a union
of the top and bottom Θ(n2/3|P |−1/3) portion of the outer strands (for all (s, t) ∈ P),
and let us denote that by H2. So, H2 is of size O(n2/3|P |2/3). Unfortunately, we do not
have a guarantee on the length of the coupling paths. Thus, if we include all the required
coupling paths, we cannot argue about the sparsity of the final subgraph. (This portion of
the construction differs significantly from that of our oracle construction.) We consider the
subgraph obtained by taking a union of all the “essential” coupling paths with endpoints
lying on the top and bottom Θ(n2/3|P |−1/3) portions of the outer strands. (Let us denote
this union by B.) Then we sparsify this subgraph further. For that purpose, we first isolate
all the “high frequency” vertices (iteratively) and remove all the coupling paths containing
them. Since total number of coupling paths in this subgraph is only Θ(n2/3|P |2/3), we end
up with “a few” (O(n1/3|P |1/3)) high frequency vertices. Now, observe, in the remaining
subgraph (denoted as H4), degree of each vertex is “small” (at most O(n1/3|P |1/3)). Next, for
each of the high-frequency vertices, compute linear-sized single-source and single-destination
2-FTRS, and take a union of them to form a subgraph H3. The union of H1, H2, H3 and
H4 constitute the final subgraph.

It is not difficult to see that a surviving nice s − t path in H(s,t) \ {f1, f2} either passes
through one of the high frequency vertices, in which case we get an s − t path in H3; or is
included in H2 ∪ H4. Thus So, the union of all H1, H2, H3 and H4 will be a 2-FTRS for P.
It is worth mentioning that the correctness proof works only because of a guarantee of the
existence of the nice path. Note, a nice path follows at most one coupling path as a subpath.
Thus either that nice path follows the top or bottom Θ(n2/3|P |−1/3) portion of the outer
strands, or the coupling sub-path is part of B, which we further sparsify to get H3 and H4.
Without the guarantee of a nice path, there could be many coupling sub-paths in a surviving
s − t path after failures. Endpoints of these coupling sub-paths may not lie on the top or
bottom Θ(n2/3|P |−1/3) portion of the outer strands. As a result, we miss them in B. As a
consequence, H3 ∪ H4 could not capture those coupling sub-paths.

Observe, each of the Hi’s is of size at most O(n4/3|P|1/3 log n) (the log n factor is only
there for H1). So the total size is also O(n4/3|P |1/3 log n).

Pairwise k-FTRS: Beating the O(2kn|P|) bound

Currently, for any k ≥ 1, we only know there always exists a pairwise k-FTRS of size
O(2kn|P|) for any pair set P [4]. Previously, we beat the above bound for k = 2. We cannot
directly extend that bound for k-FTRS. The main obstacle is that for pairwise 2-FTRS, we
have used a particular structure of a 2-FTRS for a single pair (i.e., the subgraph H(s,t)). It
is pretty difficult get such kind of structure for k-FTRS for any k > 2. However, the main
underlying idea behind our pairwise 2-FTRS construction is to handle the “long” and “short”
surviving paths separately. Informally, in the case of 2-FTRS, the hitting set helps us to look
into only the short paths in H(s,t). We do a similar thing for k-FTRS using randomization.

Take a parameter ℓ, whose value we will fix later. We sample a uniformly random subset
W of vertices of size Õ(kn/ℓ). Then we build a single-source and single-destination k-FTRS
from those vertices. Let us denote the union of all these k-FTRSs as H1. The size of H1 is
O(k2kn2/ℓ) by [4]. Suppose, for any failure edge-set F of size at most k, the length of any
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shortest s − t surviving path in G \ F is at least ℓ. Consider an (arbitrarily chosen) shortest
surviving s − t path in G \ F (which is of length at least ℓ). Then it is not hard to argue that
W intersects that path with high probability. Thus we get an s − t path in H1 \ F . This
part is similar to what we get in 2-FTRS using greedy hitting set.

So now on, we only need to handle the case when a shortest surviving path is of length
at least ℓ. To do this, roughly speaking, we enumerate over all possible failure-set of size at
most k and add a shortest surviving path in the subgraph. Trivially, we get a bound of only
O(nk) on the number of possible failure edge-sets of size at most k. However, observe, we
only need to handle the case when a surviving shortest path is of length at most ℓ. So before
the failure also the length of a shortest path was at most ℓ. The initial shortest path (before
any failure) will get destroyed only if one or more failure edges lie on that shortest path.
This observation reduces the number of possible failure-set to O(ℓk). So, for each pair, we
add O(ℓk) paths, each of length at most ℓ. For all the pairs, the total number of added edges
is at most O(ℓk+1|P|). We can further improve this bound to O(ℓk|P|) by enumerating the
failure-set of size up to k − 1 and then adding two maximally edge-disjoint shortest paths.
(See the full version for the details.) At the end, we get a subgraph of size O(k2kn2/ℓ+ℓk|P|).
By optimizing the parameter ℓ, we get a size bound of Õ(k 2k n

2k
k+1 |P|

1
k+1 ). Note, this size

bound beats the O(2kn|P|) bound whenever |P| = ω(kn
k−1

k log n).

4 Conclusion

In this paper, we study compact oracle and sparse preservers for the problem of pairwise
reachability under failures. For dual failures, we provide a construction of O(n

√
|P|) sized

reachability oracle that has constant query time, along with a matching (up to the word
size) lower bound. It (almost) settles down the question on the optimal sized dual fault-
tolerant pairwise reachability oracle. For single failure, we achieve a bound of O(n +
min{|P|

√
n, n

√
|P|}) on the size of oracle with constant query time. We complement our

upper bound with a Ω(n2/3|P|1/2) size (in bits) lower bound, refuting the possibility of
getting a linear-sized oracle for a single failure. We would like to pose the problem of closing
the current gap between the upper and lower bound for a single fault-tolerant oracle as an
open problem.

In the case of reachability preserver, we show an upper bound of O(n4/3|P|1/3) edges
for any n-node graph and a vertex-pair set P, for dual failures setting. This improves the
naive bound of O(n|P|) preserver (obtained from the result known for single-source setting).
In addition, we obtain a lower bound of Ω(n

√
|P|) on the size of our reachability preserver

under dual failures. Prior to our work it was known that for single failure, we can have
preserver with O(n + min{|P|

√
n, n

√
|P|}) edges. Thus our lower bound provides a striking

difference between the single and dual fault-tolerant setting as it gives a separation of n1/4

factor for |P| = Θ(
√

n). One immediate open question after our work is whether a sparser
pairwise reachability preserver exists for dual failures.

Next, we go beyond the dual failures and consider the question of getting sparse pairwise
reachability preserver resilient up to k failures for any k ≥ 1. Can there always exist a
pairwise preserver of size o(2kn|P|) for any k failures? We answer this question affirmatively
by providing a randomized polynomial-time construction of a o(2kn|P|) size preserver. We
leave the question of finding an optimal k fault-tolerant pairwise preserver as an important
open problem.
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Abstract
The role of symmetry in Boolean functions f : {0, 1}n → {0, 1} has been extensively studied in
complexity theory. For example, symmetric functions, that is, functions that are invariant under
the action of Sn, is an important class of functions in the study of Boolean functions. A function
f : {0, 1}n → {0, 1} is called transitive (or weakly-symmetric) if there exists a transitive group G of
Sn such that f is invariant under the action of G. In other words, the value of the function remains
unchanged even after the input bits of f are moved around according to some permutation σ ∈ G.
Understanding various complexity measures of transitive functions has been a rich area of research
for the past few decades.

This work studies transitive functions in light of several combinatorial measures. The question
that we try to address in this paper is what are the maximum separations between various pairs of
combinatorial measures for transitive functions. Such study for general Boolean functions has been
going on for many years. Aaronson et al. (STOC, 2021) have nicely compiled the current best-known
results for general Boolean functions. But before this paper, no such systematic study had been
done on the case of transitive functions.

Separations between a pair of combinatorial measures are shown by constructing interesting
functions that demonstrate the separation. Over the past three decades, various interesting classes
of functions have been designed for this purpose. In this context, one of the celebrated classes of
functions is the “pointer functions”. Ambainis et al. (JACM, 2017) constructed several functions,
which are modifications of the pointer function in Göös et al. (SICOMP, 2018 / FOCS, 2015), to
demonstrate the separation between various pairs of measures. In the last few years, pointer functions
have been used to show separation between various other pairs of measures (Eg: Mukhopadhyay
et al. (FSTTCS, 2015), Ben-David et al. (ITCS, 2017), Göös et al. (ToCT, 2018 / ICALP, 2017)).

However, the pointer functions themselves are not transitive. Based on the various kinds of
pointer functions, we construct new transitive functions, which we use to demonstrate similar
separations between various pairs of combinatorial measures as demonstrated by the original pointer
functions. Our construction of transitive functions depends crucially on the construction of particular
classes of transitive groups whose actions, though involved, help to preserve certain structural features
of the input strings. The transitive groups we construct may be of independent interest in other
areas of mathematics and theoretical computer science.

We summarize the current knowledge of relations between various combinatorial measures of
transitive functions in a table similar to the table compiled by Aaronson et al. (STOC, 2021) for
general functions.
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36:2 Separations Between Combinatorial Measures for Transitive Functions

1 Introduction

For a Boolean function f : {0, 1}n → {0, 1} what is the relationship between its various
combinatorial measures, like deterministic query complexity (D(f)), bounded-error ran-
domized and quantum query complexity (R(f) and Q(f) respectively), zero -randomized
query complexity (R0(f)), exact quantum query complexity (QE(f)), sensitivity (s(f)), block
sensitivity (bs(f)), certificate complexity (C(f)), randomized certificate complexity (RC(f)),
unambiguous certificate complexity (UC(f)), degree (deg(f)), approximate degree (d̃eg(f))
and spectral sensitivity (λ(f))1? For over three decades, understanding the relationships
between these measures has been an active area of research in computational complexity
theory. These combinatorial measures have applications in many other areas of theoretical
computer science, and thus the above question takes a central position.

In the last couple of years, some of the more celebrated conjectures have been answered -
like the quadratic relation between sensitivity and degree of Boolean functions [21]. We refer
the reader to the survey [12] for an introduction to this area.

Understanding the relationship between various combinatorial measures involves two
parts:

Relationships – proving that one measure is upper bounded by a function of another
measure. For example, for any Boolean function f , deg(f) ≤ s(f)2 and D(f) ≤ R(f)2.
Separations – constructing functions that demonstrates separation between two measures.
For example, there exists a Boolean function f with deg(f) ≥ s(f)2. Also there exists
another Boolean function g with D(g) ≥ R(g)2.

Obtaining tight bounds between pairs of combinatorial measures - that is, when the relation-
ship and the separation results match - is the holy grail of this area of research. The current
best-known results for different pairs of functions have been nicely compiled in [2].

For special classes of Boolean functions the relationships and the separations might be
different than that of general Boolean functions. For example, while it is known that there
exists f such that bs(f) = Θ(s(f)2) [26], for a symmetric function a more tighter result
is known, bs(f) = Θ(s(f)). The best-known relationship of bs(f) for a general Boolean
functions is s(f)4 [21]. How the various measures behave for different classes of functions has
been studied since the dawn of this area of research.

Transitive Functions. One of the most well-studied classes of Boolean functions is that of
the transitive functions. A function f : {0, 1}n → {0, 1} is transitive if there is a transitive
group G ≤ Sn such that the function value remains unchanged even after the indices of the
input is acted upon by a permutation from G. Note that, when G = Sn then the function is
symmetric. Transitive functions (also called “weakly symmetric” functions) has been studied
extensively in the context of various complexity measure. This is because symmetry is a
natural measure of the complexity of a Boolean function. It is expected that functions with
more symmetry must have less variation among the various combinatorial measures. A recent
work [7] has studied the functions under various types of symmetry in terms of quantum
speedup. So, studying functions in terms of symmetry is important in various aspects.

For example, for symmetric functions, where the transitive group is Sn, most of the
combinatorial measures become the same up to a constant 2. Another example of transitive
functions is the graph properties. The input is the adjacency matrix, and the transitive group

1 For formal definitions of the various measures used in this paper please refer to the full version of this
paper [15].

2 There are still open problems on the tightness of the constants.
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is the graph isomorphism group acting on the bits of the adjacency matrix. [31, 29, 23, 17]
tried to obtain tight bounds on the relationship between sensitivity and block sensitivity for
graph properties. They also tried to answer how low can sensitivity and block sensitivity go
for graph properties?

In papers like [30, 14, 28, 16] it has been studied how low can the combinatorial measures
go for transitive functions. The behavior of transitive functions can be very different from
general Boolean functions. For example, while it is known that there are Boolean functions
for which the sensitivity is as low as Θ(log n) where n is the number of effective variables3,
it is known (from [28] and [21]) that if f is a transitive function on n effective variables then
its sensitivity s(f) is at least Ω(n1/12)4. Similar behavior can be observed in other measures
too. For example, it is easy to see that for a transitive function, the certificate complexity
is Ω(

√
n), while the certificate complexity for a general Boolean function can be as low as

O(log n). Please see the full version of this paper [15] for a more detailed study.
A natural related question is:

What are tight relationships between various pairs of combinatorial measures
for transitive functions?

By definition, the known relationship results for general functions hold for transitive
functions. But tighter relationships may be obtained for transitive functions. On the other
hand, the existing separations don’t extend easily since the example used to demonstrate sep-
aration between certain pairs of measures may not be transitive. Some of the most celebrated
examples are not transitive. For example some of the celebrated function construction like
the pointer function in [4], used for demonstrating tight separations between various pairs
like D(f) and R0(f), are not transitive. Similarly, the functions constructed using the cheat
sheet techniques [1] used for separation between quantum query complexity and degree, or
approximate degree, are not transitive. Constructing transitive functions which demonstrate
tight separations between various pairs of combinatorial measures is very challenging.

Our Results. We try to answer the above question for various pairs of measures. More pre-
cisely, our main contribution is to construct transitive functions that have similar complexity
measures as the pointer functions. Hence for those pairs of measures where pointer functions
can demonstrate separation for general functions, we prove that transitive functions can also
demonstrate similar separation.

Our results and the current known relations between various pairs of complexity measures
of transitive functions are compiled in Table 1. This table is along the lines of the table in [2]
where the best-known relations between various complexity measures of general Boolean
functions were presented.

Deterministic query complexity and zero-error randomized query complexity are two of
the most basic measures and yet the tight relation between these measures was not known
until recently. In [27] they showed that for the “balanced NAND-tree” function, ∧̃-tree,
D(∧̃-tree) ≥ R0(∧̃-tree)1.33. Although the function ∧̃-tree is transitive, the best-known
relationship was quadratic, that is for all Boolean function f , D(f) = O(R0(f)2). In [4] a
new function, A1, was constructed for which deterministic query complexity and zero-error
randomized query complexity can have a quadratic separation between them, and this
matched the known relationship results. The function in [4] was a variant of the pointer

3 A variable is effective if the function is dependent on it.
4 It is conjectured that the sensitivity of a transitive function is Ω(n1/3).
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functions - a class of functions introduced by [20] that has found extensive usage in showing
separations between various complexity measures of Boolean functions. The function, A1,
also gave (the current best-known) separations between deterministic query complexity and
other measures like quantum query complexity and degree. But the function A1 is not
transitive. Using the A1 function we construct a transitive function that demonstrates
a similar gap between deterministic query complexity and zero-error randomized query
complexity, quantum query complexity, and degree.

▶ Theorem 1. There exists a transitive function F1 such that

D(F1) = Ω̃(Q(F1)4), D(F1) = Ω̃(R0(F1)2), D(F1) = Ω̃(deg(F1)2).

The proof of Theorem 1 is presented in Section 4. In [4, 9] various variants of the pointer
function have been used to show separation between other pairs of measures like R0 with
R, QE, deg, and Q, R with d̃eg, deg, QE and sensitivity. Inspired by these functions, we
construct transitive versions that demonstrate similar separation for transitive functions as
general functions.

▶ Theorem 2. There exists a transitive function F2 such that

R0(F2) = Ω̃(R(F2)2), R0(F2) = Ω̃(QE(F2)2), R0(F2) = Ω̃(deg(F2)2).

▶ Theorem 3. There exists a transitive function F3 such that

R(F3) = Ω̃(d̃eg(F3)4), R(F3) = Ω̃(deg(F3)2).

The construction of these functions, though more complicated and involved, are similar
in flavor to that of F1. Due to lack of space, we skip the proofs of Theorem 2 and 3 in
this conference version of this paper. The proofs are available in the full version of this
paper [15]. Using standard techniques, we can also obtain the following theorems as corollaries
to Theorem 3.

▶ Theorem 4. There exists a transitive function F4 such that R0(F4) = Ω̃(Q(F4)3).

▶ Theorem 5. There exists a transitive function F5 such that R(F5) = Ω̃(QE(F5)1.5).

▶ Theorem 6. There exists transitive functions F6 such that R(F6) = Ω̃(s(F6)3).

Our proof techniques also help us make transitive versions of other functions like that
used in[1] to demonstrate the gap between Q and certificate complexity.

▶ Theorem 7. There exists a transitive function F7 such that Q(F7) = Ω̃(C(F7)2).

All our results are compiled (and marked in green) in Table 1.
One would naturally ask what stops us from constructing transitive functions analogous

to the other functions, like cheat sheet-based functions. In fact, one could ask why to use
ad-hoc techniques to construct transitive functions (as we have done in most of our proofs)
and instead why not design a unifying technique for converting any function into a transitive
function that would display similar properties in terms of combinatorial measures 5. If one
could do so, all the separation results for general functions (in terms of separation between
pairs of measures) would translate to separation for transitive functions. In Section 5 we
have discussed why such a task is challenging. We argue the challenges of making transitive
versions of the cheat-sheet functions.

5 In [7] they have demonstrated a technique that can be used for constructing a transitive partial function
that demonstrates gaps (between certain combinatorial measures) similar to a given partial function
that need not be transitive. But their construction need not construct a total function even when the
given function is total.
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Table 1 best-known separations between combinatorial measures for transitive functions.

D R0 R C RC bs s λ QE deg Q d̃eg
D 2 ; 2 2 ; 3 2 ; 2 2 ; 3 2 ; 3 3 ; 6 4 ; 6 2 ; 3 2 ; 3 4 ; 4 4 ; 4

T:1 T:1 ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ T:6 T:3 T:2 T:1 T:1 T:3
R0 1,1 2 ; 2 2 ; 2 2 ; 3 2 ; 3 3 ; 6 4 ; 6 2 ; 3 2 ; 3 3 ; 4 4 ; 4

⊕ T:2 ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ T:6 T:3 T:2 T:2 T:4 T:3

R 1 ; 1 1 ; 1 2 ; 2 2 ; 3 2 ; 3 3 ; 6 4 ; 6 1.5 ; 3 2 ; 3 2 ; 4 4 ; 4
⊕ ⊕ ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ T:6 T:3 T:5 T:3 ∧ T:3

C 1 ; 1 1 ; 1 1 ; 2 2 ; 2 2 ; 2 2 ; 5 2 ; 6 1.15 ; 3 1.63 ; 3 2 ; 4 2 ; 4
⊕ ⊕ ⊕ [18] [18] [26] ∧ [3] [25] ∧ ∧

RC 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1.5 ; 2 2 ; 4 2 ; 4 1.15 ; 2 1.63 ; 2 2 ; 2 2 ; 2
⊕ ⊕ ⊕ ⊕ [18] [26] ∧ [3] [25] ∧ ∧

bs 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 2 ; 4 2 ; 4 1.15 ; 2 1.63 ; 2 2, 2 2 ; 2
⊕ ⊕ ⊕ ⊕ ⊕ [26] ∧ [3] [25] ∧ ∧

s 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 2 ; 2 1.15 ; 2 1.63 ; 2 2, 2 2 ; 2
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ∧ [3] [25] ∧ ∧

λ
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

QE
1 ; 1 1.33 ; 2 1.33 ; 3 2 ; 2 2 ; 3 2 ; 3 2 ; 6 2 ; 6 1 ; 3 2 ; 4 1 ; 4

⊕ ∧̃-tree ∧̃-tree ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ T:7 T:7 ⊕ ∧ ⊕

deg 1 ; 1 1.33 ; 2 1.33 ; 2 2 ; 2 2 ; 2 2 ; 2 2 ; 2 2 ; 2 1 ; 1 2 ; 2 2 ; 2
⊕ ∧̃-tree ∧̃-tree ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ ∧ ◦ ∨ ∧ ⊕ ∧ ∧

Q 1 ; 1 1 ; 1 1 ; 1 2 ; 2 2 ; 3 2 ; 3 2 ; 6 2 ; 6 1, 1 1 ; 3 1 ; 4
⊕ ⊕ ⊕ T:7 T:7 T:7 T:7 T:7 ⊕ ⊕ ⊕

d̃eg
1 ; 1 1 ; 1 1 ; 1 1 ; 2 1 ; 2 1 ; 2 1 ; 2 1 ; 2 1 ; 1 1 ; 1 1 ; 1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
(1) Entry a; b in row A and column B represents: for any transitive function f , A(f) = O(B(f))b+o(1), and there exists a transitive
function g such that A(g) = Ω(B(g))a.
(2) Cells with a green background are those for which we constructed new transitive functions to demonstrate separations that
match the best-known separations for general functions. The previously known functions that gave the strongest separations were
not transitive. The second row (in each cell) gives the reference to the Theorems where the separation result is proved. Although
for these green cells, the bounds match that of the general functions, for some cells (with a light green color), there is a gap
between the known relationships and best-known separations.
(3) In the cells with a white background, the best-known examples for the corresponding separation were already transitive
functions. For these cells, the second row either contains the function that demonstrates the separation or a reference to the
paper where the separation was proved. So for these cells, the separations for transitive functions matched the current best-known
separations for general functions. Note that for some of these cells, the bounds are not tight for general functions.
(4) Cells with a yellow background are those where the best-known separations for transitive functions do not match the best-known
separations for general functions.

2 Notations and Background

2.1 Notations and basic definitions
We use [n] to denote the set {1, . . . , n}. {0, 1}n denotes the set of all n-bit binary strings.
For any X ∈ {0, 1}n the Hamming Weight of X (denoted |X|) will refer to the number of 1
in X. 0n and 1n denotes all 0’s string of n-bit and all 1’s string of n-bit, respectively.

We denote by Sn the set of all permutations on [n]. Given an element σ ∈ Sn and a n-bit
string x1, . . . , xn ∈ {0, 1}n we denote by σ[x1, . . . , xn] the string obtained by permuting the
indices according to σ. That is σ[x1, . . . , xn] = xσ(1), . . . , xσ(n). This is also called the action
of σ on the x1, . . . , xn.

Following are a couple of interesting elements of Sn that will be used in this paper.

▶ Definition 8. For any n = 2k the flip swaps (2i − 1) and 2i for all 1 ≤ i ≤ k. The
permutation Swap 1

2
swaps i with (k + i), for all 1 ≤ i ≤ k. That is,

flip = (1, 2)(3, 4) . . . (n − 1, n) & Swap 1
2
[x1, . . . , x2k] = xk+1, . . . , x2k, x1 . . . , xk.
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Every integer ℓ ∈ [n] has the canonical log n bit string representation. However the
number of 1’s and 0’s in such a representation is not same for all ℓ ∈ [n]. The following
representation of ℓ ∈ [n] ensures that for all ℓ ∈ [n] the encoding has same Hamming weight.

▶ Definition 9 (Balanced binary representation). For any ℓ ∈ [n], let ℓ1, . . . , ℓlog n be the
binary representation of the number ℓ where ℓi ∈ {0, 1} for all i. Replacing 1 by 10 and 0 by
01 in the binary representation of ℓ, we get a 2 log n-bit unique representation, which we call
Balanced binary representation of ℓ and denote as bb(ℓ).

In this paper all the functions considered are of form F : {0, 1}n → {0, 1}k. By Boolean
functions we would mean a Boolean valued function that is of the form f : {0, 1}n → {0, 1}.

An input to a function F : {0, 1}n → {0, 1}k is a n-bit string but also the input can be
thought of as different objects. For example, if the n = NM then the input may be thought
of as a (N × M)-matrix with Boolean values. It may also be thought of as a (M × N)-matrix.

If Σ = {0, 1}k then Σ(n×m) denotes an (n × m)-matrix with an element of Σ (that is, a
k-bit string) stored in each cell of the matrix. Note that Σ(n×m) is actually {0, 1}mnk. Thus,
a function F : Σ(n×m) → {0, 1} is actually a Boolean function from a {0, 1}nmk to {0, 1},
where we think of the input as an (n × m)-matrix over the alphabet Σ.

One particular nomenclature that we use in this paper is that of 1-cell certificate.

▶ Definition 10 (1-cell certificate). Given a function f : Σ(n×m) → {0, 1} (where Σ = {0, 1}k)
the 1-cell certificate is a partial assignments to the cells which forces the value of the function
to 1. So a 1-cell certificate is of the form (Σ ∪ {∗})(n×m). Note the here we assume that the
contents in any cell is either empty or a proper element of Σ (and not a partial k-bit string).

Another notation that is often used is the following:

▶ Notation 11. If A ≤ Sn and B ≤ Sm are groups on [n] and [m] then the group A × B act
on the cells on the matrix. Thus for any (σ, σ′) ∈ A × B and a M ∈ Σ(n×m) by (σ, σ′)[M ]
we would mean the permutation on the cell of M according to (σ, σ′) and move the contains
in the cells accordingly. Note that the relative position of bits within the contents in each cell
is not touched.

Next, we define the composition of two Boolean functions.

▶ Definition 12 (Composition of functions). Let f : {0, 1}nk → {0, 1} and g : {0, 1}m →
{0, 1}k be two functions. The composition of f and g, denoted by f ◦ g : {0, 1}nm → {0, 1},
is defined to be a function on nm bits such that on input x = (x1, . . . , xn) ∈ {0, 1}nm, where
each xi ∈ {0, 1}m, f ◦ g(x1, . . . , xn) = f(g(x1), . . . , g(xn)). We will refer f as outer function
and g as inner function.

2.2 Transitive Groups and Transitive Functions
The central objects in this paper are transitive Boolean function. We first define transitive
groups.

▶ Definition 13. A group G ≤ Sn is transitive if for all i, j ∈ [n] there exists a σ ∈ G such
that σ(i) = j.

▶ Definition 14. For f : An → {0, 1} and G ≤ Sn we say f is invariant under the action of
G, if for all α1, . . . , αn ∈ A.

f(α1, . . . , αn) = f(ασ(1), . . . , ασ(n)).
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▶ Observation 15. If A ≤ Sn and B ≤ Sm are transitive groups groups on [n] and [m] then
the group A × B is a transitive group acting on the cells on the matrix.

There are many interesting transitive groups. The symmetric group is indeed transitive.
The graph isomorphism group (that acts on the adjacency matrix - minus the diagonal - of a
graph by changing the ordering on the vertices) is transitive. The cyclic permutation over
all the points in the set is a transitive group. The following is another non-trivial transitive
group on [k] that we will use extensively in this paper.

▶ Definition 16. For any k that is a power of 2, the Binary-tree-transitive group Btk is a
subgroup of Sk. To describe its generating set we think of group Btk acting on the elements
{1, . . . , k} and the elements are placed in the leaves of a balanced binary tree of depth log k -
one element in each leaf. Each internal node (including the root) corresponds to an element
in the generating set of Btk. The element corresponding to an internal node in the binary
tree swaps the left and right sub-tree of the node. The permutation element corresponding to
the root node is called the Root-swap as it swaps the left and right sub-tree to the root of the
binary tree.

We now state two claims whose proofs we skip in this version of the paper but are available
in the full version of the paper [15].

▷ Claim 17. The group Btk is a transitive group.

The following claim describes how the group Btk acts on various encoding of integers.
Recall the balance-binary representation (Definition 9).

▷ Claim 18. For all γ̂ ∈ Bt2 log n there is a γ ∈ Sn such that for all i, j ∈ [n], γ̂[bb(i)] = bb(j)
iff γ(i) = j.

Now let us consider another encoding that we will using for the set of rows and columns
of a matrix.

▶ Definition 19. Given a set R of n rows r1, . . . , rn and a set C of n columns c1, . . . , cn we
define the balanced-pointer-encoding function E : (R × {0}) ∪ ({0} × C) → {0, 1}4 log n, as
follows:

E(ri, 0) = bb(i) · 02 log n, and, E(0, cj) = 02 log n · bb(j).

The following is a claim that is easy to verify.

▷ Claim 20. Let R be a set of n rows r1, . . . , rn and C be a set of n columns c1, . . . , cn and
consider the balanced-pointer-encoding function E : (R × {0}) ∪ ({0} × C) → {0, 1}4 log n. For
any elementary permutation σ̂ in Bt4 log n (other than the Root-swap) there is a σ ∈ Sn such
that for any (ri, cj) ∈ (R × {0}) ∪ ({0} × C)

σ̂[E(ri, cj)] = E(rσ(i), cσ(j)),

where we assume r0 = c0 = 0 and any permutation of in Sn sends 0 to 0.
If σ̂ is the root-swap then for any (ri, cj) ∈ (R × {0}) ∪ ({0} × C)

σ̂[E(ri, cj)] = Swap 1
2
(E(ri, cj)) = E(cj , ri).
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2.3 Pointer function
For the sake of completeness first we will describe the “pointer function” introduced in [4] that
achieves separation between several complexity complexity measures like Deterministic query
complexity, Randomized query complexity, Quantum query complexity etc. This function was
originally motivated from a function in [20]. There are three three variants of the pointer
function that have some special kind of non-Boolean domain, which we call Pointer matrix.
Our function is a special “encoding” of that non-Boolean domain such that the resulting
function becomes transitive and achieves the separation between complexity measures that
matches the known separation between the general functions. Here we will define only the
first variant of the pointer function.

▶ Definition 21 (Pointer matrix over Σ). For m, n ∈ N, let M be a (m×n) matrix with m rows
and n columns. We refer to each of the m × n entries of M as cells. Each cell of the matrix
is from a alphabet set Σ where Σ = {0, 1} × P̃ × P̃ × P̃ and P̃ = {(i, j)|i ∈ [m], j ∈ [n]} ∪ {⊥}.
We call P̃ as set of pointers where, pointers of the form {(i, j)|i ∈ [m], j ∈ [n]} pointing
to the cell (i, j) and ⊥ is the null pointer. Hence,each entry x(i,j) of the matrix M is a
4-tuple from Σ. The elements of the 4-tuple we refer as value, left pointer, right pointer and
back pointer respectively and denote by Value(x(i,j)), LPointer(x(i,j)), RPointer(x(i,j)) and
BPointer(x(i,j)) respectively where Value ∈ {0, 1}, LPointer, RPointer, BPointer ∈ P̃ . We
call this type of matrix as pointer matrix and denote by Σn×n.

A special case of the pointer-matrix, which we call Type1 pointer matrix over Σ, is when
for each cell of M , BPointer ∈ {[n]∪ ⊥} that is backpointers are pointing to the columns of
the matrix.

Also, in general when, BPointer ∈ {(i, j)|i ∈ [m], j ∈ [n]} ∪ {⊥}, we call it a Type2
pointer matrix over Σ.

Now we will define some additional properties of the domain that we need to define the
pointer function.

▶ Definition 22 (Pointer matrix with marked column). Let M be an m × n pointer-matrix
over Σ. A column j ∈ [n] of M is defined to be a marked column if there exists exactly one
cell (i, j), i ∈ [m], in that column with entry x(i,j) such that x(i,j) ̸= (1, ⊥, ⊥, ⊥) and every
other cell in that column is of the form (1, ⊥, ⊥, ⊥). The cell (i, j) is defined to be the special
element of the marked column j.

Let n be a power of 2. Let T be a rooted, directed and balanced binary tree with n-leaves
and (n − 1) internal vertices. We will use the following notations that will be used in defining
some functions formally.

▶ Notation 23. Let n be a power of 2. Let T be a rooted, directed and balanced binary tree
with n-leaves and (n − 1) internal vertices. Labels the edges of T as follows: the outgoing
edges from each node are labeled by either left or right. The leaves of the tree are labeled by
the elements of [n] from left to right, with each label used exactly once. For each leaf j ∈ [n]
of the tree, the path from the root to the leaf j defines a sequence of left and right of length
O(log n), which we denote by T (j).

When n is not a power of 2, choose the largest k ∈ N such that 2k ≤ n, consider a
complete balanced tree with 2k leaves and add a pair of child node to to each n − 2k leaves
starting from left. Define T (j) as before.

Now we are ready to describe the Variant 1 of the pointer function.
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▶ Definition 24 (Variant 1 [4]). Let Σm×n be a Type1 pointer matrix where BPointer is a
pointer of the form {j|j ∈ [n]} that points to other column and LPointer, RPointer are as
usual points to other cell. Define A1(m,n) : Σm×n → {0, 1} on a Type1 pointer matrix such
that for all x = (xi,j) ∈ Σm×n, the function A1(m,n)(xi,j) evaluates to 1 if and only if it has
a 1- cell certificate of the following form:
1. there exists exactly one marked column j⋆ in M ,
2. There is a special cell, say (i⋆, j⋆) which we call the special element in the the marked

column j⋆ and there is a balanced binary tree T rooted at the special cell,
3. for each non-marked column j ∈ [n]\{j⋆} there exist a cell lj such that Value(lj) = 0 and

BPointer(lj) = j⋆ where lj is the end of the path that starts at the special element and
follows the pointers LPointer and RPointer as specified by the sequence T (j). lj exists
for all j ∈ [n] \ {j⋆} i.e. no pointer on the path is ⊥. We refer lj as the leaves of the tree.

The above function achieves the separation between D vs. R0 and D vs. Q for m = 2n.
Here we will restate some of the results from [4] which we will use to prove the results for
our function:

▶ Theorem 25 ([4]). The function A1(m.n) in Definition 24 satisfies

D = Ω(n2) for m = 2n where m, n ∈ N,

R0 = Õ(m + n) for any m, n ∈ N,

Q = Õ(
√

m +
√

n) for any m, n ∈ N.

Though [4] gives the deterministic lower bound for the function A1 precisely for 2m × m

matrices following the same line of argument it can be proved that D(Ω(n2)) holds for n × n

matrices also. For sake of completeness we give a proof for n × n matrices in the full version
of this paper [15].

▶ Theorem 26. D(A1(n,n)) = Ω(n2).

Also [20]’s function realises quadratic separation between D and deg and the proof goes
via UCmin upper bound. But A1(n,n) exhibits the same properties corresponding to UCmin.
So, from the following observation it follows that A1(n,n) also achieves quadratic separation
between D and deg.

▶ Observation 27. deg(A1(n,n)) = O(n) for any n ∈ N.

Another important observation that we need is the following:

▶ Observation 28 ([4]). For any input Σn×n to the function A1(n,n) (in Definition 24) if
we permute the rows of the matrix using a permutation σr and permute the columns of the
matrix using a permutation σc and we update the pointers in each of the cells of the matrix
accordingly then the function value does not change.

3 High level description of our techniques

Pointer functions are defined over a special domain called pointer matrix, which is a m × n

grid matrix. Each cell of the matrix contains some labels and some pointers that point either
to some other cell or to a row or column 6. As described in [20], the high level idea of pointer

6 We naturally think of a pointer pointing to a cell as two pointers - one pointing to the row and the
other to the column.
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functions is the usage of pointers to make certificates unambiguous without increasing the
input size significantly. This technique turns out to be very useful to give separations between
various complexity measures as we see in [24], [19] and [4].

Now we want to produce a new function that possesses all the properties of pointer
functions, along with the additional property of being transitive. To do so, first, we will
encode the labels so that we can permute the bits (by a suitable transitive group) while
keeping the structure of unambiguous certificates intact so that the function value remains
invariant. One such natural technique would be to encode the contents of each cell in such a
way that allows us to permute the bits of the contents of each cell using a transitive group
and permute the cells among each other using another transitive group, and doing all of
these while ensuring the unambiguous certificates remains intact 7. This approach has a
significant challenge: namely how to encode the pointers.

The information stored in each cell (other than the pointers) can be encoded using
fixed logarithmic length strings of different Hamming weights - so that even if the strings
are permuted and/or the bits in each string are permuted, the content can be “decoded”.
Unfortunately, this can only be done when the cell’s contents have a constant amount of
information - which is the case for pointer functions (except for the pointers). Since the
pointers in the cell are strings of size O(log n) (as they are pointers to other columns or
rows), if we want to use the similar Hamming weight trick, the size of the encoding string
would need to be polynomial in O(n). That would increase the size of the input compared
to the unambiguous certificate. This would not give us tight separation results.

Also, there are three more issues concerning the encodings of pointers:
As we permute the cells of the matrix according to some transitive group, the pointers
within each cell need to be appropriately changed. In other words, when we move some
cell’s content to some other cell, the pointers pointing to the previous cell should point to
the current cell now.
If a pointer is encoded using a certain t-bit string, different permutations of bits of the
encoded pointer can only generate a subset of all t-bit strings.
For example: if we encode a pointer using a string of Hamming weight 10 then however
we permute the bits of the string, the pointer can at most be modified to point to cells (or
rows or columns) the encoding of whose pointers also have Hamming weight 10. (The
issue is that permuting the bits of a string cannot change the Hamming weight of a string).
The encoding of all the pointers should have the same Hamming weight.
The encoding of the pointers has to be transitive. That is, we should be able to permute
the bits of the encodings of the pointer using a transitive group in such a way that either
the pointer value does not change or as soon as the pointer values changes, the cells gets
permuted accordingly - kind of like an “entanglement”.

The above three problems are somewhat connected. Our first innovative idea is to use
binary balance representation (Definition 9) to represent the pointers. This way, we take care
of the second issue. For the first and third issues, we define the transitive group – both the
group acting on the contents of the cells (and hence on the encoding of the pointers) and the
group acting on the cells itself – in a “entangled” manner. For this we induce a group action

7 Here, we use the word “encode” since we can view the function defined only over codewords, and when
the input is not a codeword, then it evaluates to 0. In our setting, since we are trying to preserve the
one-certificates, the codewords are those strings where the unambiguous certificate is encoded correctly.
At the same time, we must point out that the encoding of an unambiguous certificate is not necessarily
unique.
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acting on the nodes of a balanced binary tree and generate a transitive subgroup in Sn and
S2 log n with the same action which will serve our purpose (Definition 16, Claim 18). This
helps us to permute the rows (or columns) using a permutation while updating the encoding
of the pointers accordingly.

By Claim 18, for every allowed permutation σ acting on the rows (or columns), there
is a unique σ̂ acting on the encodings of the pointers in each of the cells such that the
pointers are updated according to σ. This still has a delicate problem. Namely, each pointer
is either pointing to a row or column. But the permutation σ̂ has no way to understand
whether the encoding on which it is being applied points to a row or column. To tackle this
problem, we think of the set of rows and columns as a single set. All of them are encoded by
a string of size (say) 2t, where for the rows, the second half of the encoding is all 0 while
the columns have the first t bits all 0. This is the encoding described in Definition 19 using
binary balanced representation. However, this adds another delicate issue about permuting
between the first t bits of the encoding and the second t bits.

To tackle this problem, we modify the original function appropriately. We define a slightly
modified version of existing pointer functions called ModA1. This finally helps us obtain our
“transitive pointer function,” which has almost the same complexities as the original pointer
function.

We have so far only described the high-level technique to make the 1st variation of pointer
functions (Definition 24) transitive where there is the same number of rows and columns.
The further variations need more delicate handling of the encoding and the transitive groups
- though the central idea is similar.

4 Proof of Theorem 1

4.1 Transitive Pointer Function F1 for Theorem 1

Our function F1 : Γn×n → {0, 1} is a composition of two functions - an outer function
ModA1(n,n) : Σ̄n×n → {0, 1} and an inner function Dec : Γ → Σ̄. We will set Γ to be
{0, 1}96 log n.

The outer function is a modified version of the A1(n,n) - pointer function described in [4]
(see Definition 24 for a description). The function A1(n,n) takes as input a (n × n)-matrix
whose entries are from a set Σ and the function evaluates to 1 if a certain kind of 1-cell-
certificate exists. Let us define a slightly modified function ModA1(n,n) : Σ̄n×n → {0, 1}
where Σ̄ = Σ × {⊢, ⊣}. We can think of an input A ∈ Σ̄n×n as a pair of matrices B ∈ Σn×n

and C ∈ {⊢, ⊣}n×n. The function ModA1(n,n) is defined as

ModA1(n,n)(A) = 1 iff


Either, (i) A1(n,n)(B) = 1, and, all the cells in the

1-cell-certificate have ⊢ in the corresponding cells in C

Or, (ii) A1(n,n)(BT ) = 1, and, all the cells in the
1-cell-certificate have ⊣ in the corresponding cells in CT

Note that both the two conditions (i) and (ii) cannot be satisfied simultaneously. From
this it is easy to verify that the function ModA1(n,n) has all the properties as A1(n,n) as
described in Theorem 25.

The inner function Dec (we call it a decoding function) is function from Γ to Σ̄, where
Γ = 96 log n. Thus our final function is

F1 :=
(
ModA1(n,n) ◦ Dec

)
: Γn×n → {0, 1}.
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4.1.1 Inner Function Dec
The input to A1(n,n) is a Type1 pointer matrix Σn×n. Each cell of a Type1 pointer matrix
contains a 4-tuple of the form (Value, LPointer, RPointer, BPointer) where Value is either 0 or
1 and LPointer, RPointer are pointers to the other cells of the matrix and BPointer is a pointer
to a column of the matrix (or can be a null pointer also). Hence, Σ = {0, 1} × [n]2 × [n]2 × [n].
For the function A1(n,n) it was assumed (in [4]) that the elements of Σ is encoded as a
k-length8 binary string in a canonical way.

The main insight for our function F1 :=
(
ModA1(n,n) ◦ Dec

)
is that we want to maintain

the basic structure of the function A1(n,n) (or rather of ModA1(n,n)) but at the same time
we want to encode the Σ̄ = Σ × {⊢, ⊣} in such a way that the resulting function becomes
transitive. To achieve this, instead of having a unique way of encoding an element in Σ̄ we
produce a number of possible encodings9 for any element in Σ̄. The inner function Dec is
therefore a decoding algorithm that given any proper encoding of an element in Σ̄ will be
able to decode it back.

For the ease of understanding we start by describing the possible “encodings” of Σ̄, that
is by describing the pre-images of any element of Σ̄ in the function Dec.

“Encodings” of the content of a cell in Σ̄n×n. We will encode any element of Σ̄ using a
string of size 96 log n bits. Recall that, an element in Σ̄ is of the form (V, (rL, cL), (rR, cR), (cB),
T ), where V is the Boolean value, (rL, cL), (rR, cR) and cB are the left pointer, right pointers
and bottom pointer respectively and T take the value ⊢ or ⊣. The overall summary of the
encoding is as follows:

Parts: We will think of the tuple as 7 objects, namely V , rL, cL, rR, cR, cB and T . We
will use 16 log n bits to encode each of the first 6 objects. The value of T will be encoded
in a clever way. So the encoding of any element of Σ̄ contains 6 parts - each a binary
string of length 16 log n.
Blocks: Each of 6 parts will be further broken into 4 blocks of equal length of 4 log n.
One of the blocks will be a special block called the “encoding block”.

Now we explain, for a tuple (V, (rL, cL), (rR, cR), (cB), T ) what is the 4 blocks in each part.
We will start by describing a “standard-form” encoding of a tuple (V, (rL, cL), (rR, cR), (cB), T )
when T =⊢. Then, we will extend it to describe the standard for encoding the tuple when
T =⊣. And finally we will explain all other valid encoding of the tuple by describing all the
allowed permutations on the bits of the encoding.

Standard-form encoding of (V, (rL, cL), (rR, cR), (cB), T ) where T =⊢. For the stand-
ard form of encoding we will assume that the information of V, rL, cL, rR, cR, cB are stored
in parts P 1, P 2, P 3, P 4, P 5 and P 6 respectively. For all i ∈ [6], the part Pi with have blocks
B1, B2, B3 and B4, of which the block B1 will be the encoding-block. The encoding will
ensure that every parts within a cell will have distinct Hamming weight. The description is
also compiled in the Table 2.

For part P 1 (that is the encoding of V ) the encoding block B1 will store ℓ1 ·ℓ2 where ℓ1 be
the 2 log n bit binary string with Hamming weight 2 log n and ℓ2 is any 2 log n bit binary
string with Hamming weight 2 log n−1−V . The blocks B2, B3 and B4 will store a 4 log n

bit string that has Hamming weight 4 log n, 2 log n + 1 and 2 log n + 2 respectively. Any

8 For the canonical encoding k = (1 + 5 log n) was sufficient
9 We use the term “encoding” a bit loosely in this context as technically an encoding means a unique

encoding. What we actually mean is the pre-images of the function Dec.
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Table 2 Standard form of encoding of element (V, (rL, cL), (rR, cR), cB , ⊢) by a 96 log n bit string
that is broken into 6 parts P1, . . . , P6 of equal size and each Part is further broken into 4 Blocks
B1, B2, B3 and B4. So all total there are 24 blocks each containing a 4 log n-bit string. For the stand-
ard form of encoding of element (V, (rL, cL), (rR, cR), cB , ⊣) we encode (V, (rL, cL), (rR, cR), cB , ⊢)
in the standard form as described in the table and then apply the Swap 1

2
on each block. The last

column of the table indicates the Hamming weight of each Part.

. . . B1 “encoding”-block B2 B3 B4 Hamming weight
P1 ℓ1ℓ2, where |ℓ1| = 2 log n, and 4 log n 2 log n + 1 2 log n + 2 12 log n + 2 − V

|ℓ2| = 2 log n − 1 − V

P2 E(rL, 0) 2 log n + 3 2 log n + 1 2 log n + 2 7 log n + 6
P3 E(0, cL) 2 log n + 4 2 log n + 1 2 log n + 2 7 log n + 7
P4 E(rR, 0) 2 log n + 5 2 log n + 1 2 log n + 2 7 log n + 8
P5 E(0, cR) 2 log n + 6 2 log n + 1 2 log n + 2 7 log n + 9
P6 E(0, cB) 2 log n + 7 2 log n + 1 2 log n + 2 7 log n + 10

fixed string with the correct Hamming weight will do. We are not fixing any particular
string for the blocks B2, B3 and B4 to emphasise the fact that we will be only interested
in the Hamming weights of these strings.
The encoding block B1 for parts P2, P3, P4, P5 and P6 will store the string E(rL, 0),
E(0, cL), E(rR, 0), E(0, cr) and E(0, CB) respectively, where E is the Balanced-pointer-
encoding function (Definition 19). For part Pi (with 2 ≤ i ≤ 6) block B2, B3 and B4 will
store any 4 log n bit string with Hamming weight 2 log n + 1 + i, 2 log n + 1 and 2 log n + 2
respectively.

Standard form encoding of (V, (rL, cL), (rR, cR), (cB), T ) where T =⊣. For obtain-
ing a standard-form encoding of (V, (rL, cL), (rR, cR), (cB), T ) where T =⊣, first we en-
code (V, (rL, cL), (rR, cR), (cB), T ) where T =⊢ using the standard-form encoding. Let
(P 1, P 2, . . . , P 6) be the standard-form encoding of (V, (rL, cL), (rR, cR), (cB), T ) where T =⊢.
Now for each of the block apply the Swap 1

2
operator.

Valid permutation of the standard form. Now we will give a set of valid permutations to
the bits of the encoding of any element of Σ̄. The set of valid permutations are classified
into into 3 categories:
1. Part-permutation: The 6 parts can be permuted using any permutation from S6

2. Block-permutation: In each of the part, the 4 blocks (say B1, B2, B3, B4) can be permuted
is two ways. (B1, B2, B3, B4) can be send to one of the following:

(a) Simple Block Swap: (B3, B4, B1, B2) (b) Block Flip: (B2, B1, flip(B3), flip(B4))

The “decoding” function Dec : {0, 1}96 log n → Σ̄.
Identify the parts containing the encoding of V , rL, cL, rR, cR and cB . This is possible
because every part has a unique Hamming weight.
For each part identify the blocks. This is also possible as in any part all the blocks have
distinct Hamming weight. Recall, the valid Block-permutations, namely Simple Block
Swap and Block Flip. By seeing the positions of the blocks one can understand if flip was
applied and to what and using that one can revert the blocks back to the standard-form
(recall Definition 9).
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In the part containing the encoding of V consider the encoding-block. If the block is of
the form {(ℓ1ℓ2) such that |ℓ1| = 2 log n, |ℓ2| ≤ 2 log n − 1} then T = {⊢}. If the block is
of the form {(ℓ2ℓ1) such that |ℓ1| = 2 log n, |ℓ2| ≤ 2 log n − 1} then T = {⊣}.
By seeing the encoding block we can decipher the original values and the pointers.
If the 96 log n bit string doesn’t have the form of a valid encoding, then decode it as
(0, ⊥, ⊥, ⊥).

4.2 Proof of Transitivity of the function
We start with describing the transitive group for which F1 is transitive.

The Transitive Group. We start with describing a transitive group T acting on the cells
of the matrix A. The matrix has rows r1, . . . , rn and columns c1, . . . , cn. And we use the
encoding function E to encode the rows and columns. So the index of the rows and columns
are encoded using a 4 log n bit string. A permutation from Bt4 log n (see Definition 16) on
the indices of a 4 log n bit string will therefore induce a permutation on the set of rows and
columns which will give us a permutation on the cells of the matrix. We will now describe
the group T acting on the cells of the matrix by describing the permutation group T̂ acting
on the indices of a 4 log n bit string. The group T̂ will be the group Bt4 log n acting on the set
[4 log n]. We will assume that log n is a power of 2. The group T with be the resulting group
of permutations on the cells of the matrix induced by the group T̂ acting on the indices on
the balanced-pointer-encoding. Note that T is acting on the domain of E and T̂ is acting on
the image of E . Also T̂ is a transitive subgroup of S4 log n from Claim 17.

▶ Observation 29. For any 1 ≤ i ≤ 2 log n consider the permutation “ith-bit-flip” in T̂ that
applies the transposition (2i − 1, 2i) to the indices of the balanced-pointer-encoding. Since the
E-encoding of the row (rk, 0) uses the balanced binary representation of k in the first half and
all zero sting in the second half, the jth bit in the binary representation of k is stored in the
2j − 1 and 2j-th bit in the E-encoding of ri. So the j-th-bit-flip acts on the sets of rows by
swapping all the rows with 1 in the j-th bit of their index with the corresponding rows with
0 in the j-th bit of their index. Also, if i > log n then there is no effect of the i-th-bit-flip
operation on the set of rows. Similarly for the columns.

Using Observation 29 we have the following claim.

▷ Claim 30. The group T acting on the cells of of the matrix is a transitive group. That is,
for all 1 ≤ i1, j1, i2, j2 ≤ n there is a permutation σ̂ ∈ T̂ such that σ̂[E(i1, 0)] = E(i2, 0) and
σ̂[E(0, j1)] = (0, j2). Or in other words, there is a σ ∈ T acting on the cell of the matrix that
would take the cell corresponding to row ri1 and column cj1 to the cell corresponding to row
ri2 and column cj2 .

From the Claim 30 we see the group T acting on the cells of of the matrix is a transitive.
But it does not touch the contents within the cells of the matrix. But the input to the
function F1 contains element of Γ = {0, 1}96 log n in each cell. So we now need to extend the
group T to a group G that acts on all the indices of the bits of the input to the function F1.

Recall that the input to the function F1 is a (n × n)-matrix with each cell of matrix
containing a binary string of length 96 log n which has 6 parts of size 16 log n each and each
part has 4 blocks of size 4 log n each. We classify the generating elements of the group G
into 4 categories:
1. Part-permutation: In each of the cells the 6 parts can be permuted using any permutation

from S6
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2. Block-permutation: In each of the Parts the 4 blocks can be permuted in the following
ways. (B1, B2, B3, B4) can be send to one of the following
a. Simple Block Swap: (B3, B4, B1, B2)
b. Block Flip (#1): (B2, B1, flip(B3), flip(B4))
c. Block Flip (#2)10: (flip(B1), flip(B2), B4, B3)

3. Cell-permutation: for any σ ∈ T the following two action has to be done simultaneously:
a. (Matrix-update) Permute the cells in the matrix according to the permutation σ. This

keeps the contents within each cells untouched - it just changes the location of the
cells.

b. (Pointer-update) For each of blocks in each of the parts in each of the cells permute
the indices of the 4 log n-bit strings according to σ, that is apply σ̂ ∈ T̂ corresponding
to σ.

We now have the following theorems that would prove that the function F1 is transitive.

▶ Theorem 31. G is a transitive group and the function F1 is invariant under the action of
the G.

Proof of Theorem 31. To prove that the group G is transitive we show that for any indices
p, q ∈ [96n2 log n] there is a permutation σ ∈ G that would take p to q. Recall that the string
{0, 1}96n2 log n is a matrix Γ(n×n) with Γ = {0, 1}96 log n and every element in Γ is broken
into 6 parts and each part being broken into 4 block of size 4 log n each. So we can think
of the index p as sitting in kpth position (1 ≤ kp ≤ 4 log n) in the block Bp of the part Pp

in the (rp, cp)-th cell of the matrix. Similarly, we can think of q as sitting in kqth position
(1 ≤ kq ≤ 4 log n) in the block Bq of the part Pq in the (rq, cq)-th cell of the matrix.

We will give a step by step technique in which permutations from G can be applied to
move p to q.

Step 1: Get the positions in the block correct: If kp ≠ kq then take a permutation
σ̂ from T̂ that takes kp to kq. Since T̂ is a transitive so such a permutation exists. Apply
the cell-permutation σ ∈ T corresponding to σ̂. As a result the index p can be moved to
a different cell in the matrix but, by the choice of σ̂ its position in the block in which it
is will be kq. Without loss of generality, we assume the the cell location does not change.
Step 2: Get the cell correct: Using a cell-permutation that corresponds to a series of
“bit-flip” operations change rp to rq and cp to cq. Since one bit-flip operations basically
changes one bit in the binary representation of the index of the row or column such a
series of operations can be made.
Since each bit-flip operation is executed by applying the bit-flips in each of the blocks so
this might have once again changed the position of the index p in the block. But, even
if the position in the block changes it must be a flip operation away. Or in other word,
since in the beginning of this step kp = kq, so if kq is even (or odd) then after the series
bit-flip operations the position of p in the block is either kq or (kq − 1) (or (kq + 1)).
Step 3: Align the Part: Apply a suitable permutation to ensure that the part Pp

moves to part Pq. Note this does not change the cell or the block within the part or the
position in the block.

10 Actually this Block flip can be generated by a combination of Simple Block Swap and Block Flip (#1)
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Step 4: Align the Block: Using a suitable combination of Simple Block Swap and
Block Flip ensures the Block number gets matched, that is Bp goes to Bq. In this case
the cell or the Part does not change. But depending on whether the Block Flip operation
is applied the position in the block can again change. But, the current position in the
block kp is at most one flip away from kq.
Step 5: Apply the final flip: It might so happen that already we a done after the last
step. If not we know that the current position in the block kp is at most one flip away
from kq. So we apply the suitable Block-flip operation. Thus will not change the cell
position, Part number, Block number and the position in the block will match.

Hence we have proved that the group G is transitive. Now we show that the the function F1
is invariant under the action of G, i.e., for any elementary operations π from the group G
and for any input Γ(n×n) the function value does not change even if after the input is acted
upon by the permutation π.
Case 1: π is a Part-permutation: It is easy to see that the decoding algorithm Dec is

invariant under Part-permutation. This was observed in description of the decoding
algorithm Dec in Section 4.1.1. So clearly that the function F1 is invariant under any
Part-permutation.

Case 2: π is a Block-permutation: Here also it is easy to see that the decoding algorithm
Dec is invariant under Block-permutation. This was observed in description of the decoding
algorithm Dec in Section 4.1.1. Thus F1 is also invariant under any Block-permutation.

Case 3: π is a Cell-permutation From Observation 28 it is enough to prove that when we
permute the cells of the matrix we update the points in the cells accordingly.

Let π ∈ T be a permutation that permutes only the rows of the matrix. By Claim 20, we
see that the contents of the cells will be updated accordingly. Similarly if π only permute
the columns of the matrix we will be fine.

Finally, if π swaps the row set and the column set (that is if π makes a transpose
of the matrix) then for all i row i is swapped with column i and it is easy to see that
π̂[E(i, 0)] = E(0, i). In that case the encoding block of the value part in a cell also gets
swapped. This will thus be encoding the T value as ⊣. And so the function value will not be
affected as the T =⊣ will ensure that one should apply the π that swaps the row set and the
column set to the input before evaluating the function. ◀

4.3 Properties of the Function
▷ Claim 32. Deterministic query complexity of F1 is Ω(n2).

Proof. The function ModA1(n,n) is a “harder” function than A1(n,n). So D(ModA1(n,n)) is at
least that of D(A1(n,n)). Now since, F1 is

(
ModA1(n,n) ◦ Dec

)
so clearly the D(F1) is at least

D(A1(n,n)). Theorem 26 proves that D(A1(n,n)) is Ω(n2). Hence D(F1) = Ω(n2). ◁

The following Claim 33 follows from the definition of the function ModA1(n,n).

▷ Claim 33. The following are some properties of the function ModA1(n,n)
1. R0(ModA1(n,n)) ≤ 2R0(A1(n,n)) + O(n log n)
2. Q(ModA1(n,n)) ≤ 2Q(A1(n,n)) + O(n log n)
3. deg(ModA1(n,n)) ≤ 2deg(A1(n,n)) + O(n log n)

Finally, from “composition theorem” (formal proof of which is presented in the full version
of the paper [15]) we see that the R0(F1), Q(F1) and deg(F1) are at most O(R0(ModA1(n,n) ·
log n), O(Q(ModA1(n,n) · log n) and O(deg(ModA1(n,n) · log n), respectively. So combining
this fact with Claim 32, Claim 33 and Theorem 25 (from [4]) we have Theorem 1.
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5 Challenges in transitive versions of “cheat sheet” based functions

In this section we show that it is not possible to give a quadratic separation between degree
and quantum query complexity for transitive functions by modifying the cheat sheet function
using the techniques in [1] which go via unambiguous certificate complexity.

Let us start by recalling the cheat sheet framework from [1]. Let f : {0, 1}n → {0, 1} be a
total Boolean function. Let C(f) be its certificate complexity and Q(f) be its bounded-error
quantum query complexity. We consider the following cheat sheet function, which we denote
by fCS,t : {0, 1}n×log t+t×log t×C(f)×log n → {0, 1}:

There are log t copies of f on disjoint sets on inputs denoted by f1, . . . , flog t.
There are t cheat sheets: each cheat sheet is a block of (log t × C(f) × log n) many bits
Let x1, . . . , xlog t ∈ {0, 1}n denote the input to the log t copies of f and let Y1, . . . , Yt

denote the t cheat sheets.
Let ℓ = (f(x1), . . . , f(xlog t)). fCS,t evaluates to 1 if and only if Yℓ is a valid cheat sheet.

Separations between various complexity measures was shown in [1] using the cheat sheet
framework. In [1], the separations that lower bound bounded-error quantum query complexity
in terms of other complexity measures, for example degree, are obtained as follows:
1. Start with a total function f : {0, 1}n → {0, 1} that has quadratic separation between

quantum query complexity and certificate complexity: Q(f) = Ω̃(n) and C(f) = Õ(
√

n).
Consider the cheat sheet version of this function fCS,t, with t = n10.

2. Lower bound Q(fCS,t), for t = n10, by Q(f). This uses the hybrid method ([10]) and
strong direct product theorem ([22]).

3. Upper bound degree of fCS,t by using the upper bound on the unambiguous certificate
complexity of fCS,t.

Instead of degree, one might use approximate degree in the third step above for a suitable
choice of f (see [1] for details).

A natural approach to obtain a transitive function with gap between a pair of complexity
measures is to modify the cheat sheet framework to make it transitive. One possible
modification is to allow a poly-logarithmic blowup in the input size of the resulting transitive
function while preserving complexity measures of the cheat sheet function that are of interest
(upto poly-logarithmic factors).

We show, however, that it is not possible to obtain a quadratic separation between degree
and quantum query complexity for transitive functions by modifying the cheat sheet function
using the techniques in [1] which go via unambiguous certificate complexity. The reason for
this is that the unambiguous certificate complexity of a transitive cheat sheet function on
N -bits is Ω(

√
N) (see Observation 34) whereas we show (see Lemma 35) that the quantum

query complexity of such a function is o(N).
Note that this does not mean that cheat sheet framework can not be made transitive

to show such a quadratic gap. If the cheat sheet version of a function that is being made
transitive has a better degree upper bound than that given by unambiguous certificate
complexity then a better gap might be possible.

To formalize the above discussion we first need the following observation that lower
bounds the certificate complexity of any transitive function.

▶ Observation 34 ([30]). Let f : {0, 1}N → {0, 1} be a transitive function, then C(f) ≥
√

N .

Next, we upper bound on quantum query complexity of cheat sheet function using
quantum amplitude amplification ([11]). The details of proof of the following lemma can be
found in the full version of this paper [15].
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▶ Lemma 35. The quantum query complexity of fCS,t is O(
√

t × log t ×
√

n × log n).

The cheat sheet version of f , fCS,t, is a function on Θ̃(n + C(f)t) many variables, where
t is polynomial in n. From the cheat sheet property the unambiguous certificate complexity
of fCS,t, denoted by UC(fCS,t), is Θ̃(C(f)).

Let f̃CS,t be a modified transitive version of fCS,t that preserves the quantum query
complexity and certificate complexity of fCS,t upto poly-logarithmic factors, respectively.
From Observation 34 it follows that UC(f̃CS,t) = Ω̃(

√
n + C(f)t). On the other hand, since

f̃CS,t preserves the certificate complexity upto poly-logarithmic factors, UC(f̃CS,t) = Õ(C(f)).
This implies that t = Õ(C(f)). Lemma 35 that Q(fCS,t) is at most Õ(C(f)

√
t). Thus in

order to achieve quadratic separation between UC and Q, t has to be Ω̃(C(f)2).
We end this section by giving a concrete approach towards showing separation between

degree and quantum query complexity for a transitive functions using the cheat sheet
method. We believe the it is possible to start with fCS,t, for transitive function f and
t =

√
n and convert it to a transitive function that preserves the unambiguous certificate

complexity and quantum query complexity upto poly-logarithmic factors, while incurring a
poly-logarithmic blowup in the input size. However, we do not know how to prove quantum
query complexity lower bound matching our upper bound from Lemma 35 for t =

√
n. We

make the following conjecture towards this end, which, if true, implies that for a transitive
function f , Q(f) = Ω̃(deg(f)4/3).

▶ Conjecture 36. There exists a transitive function f : {0, 1}n → {0, 1} with C(f) = Õ(
√

n)
and Q(f) = Ω̃(n). Let fCS,

√
n be the cheat sheet version of f with

√
n cheat sheets. Then

Q(fCS,
√

n) = Ω(n3/4).

It was showed in [1] that the quantum query complexity of the cheat function fCS,t, i.e.
Q(fCS,t), is lower bounded by Q(f), when t = n10. Their proof goes via he hybrid method
([10]) and strong direct product theorem ([22]). Is is interesting to find the the constant
smallest c such that Q(fCS,nc) = Ω(Q(f)). We know that such a c must be at least than 1
(from Lemma 35) and is at most 10 (from [1]). We state this formally below:

▶ Question 37. Let f : {0, 1}n → {0, 1} be a non-constant Boolean function and let fCS,nc

be its cheat sheet version with nc cheat sheets. What is the smallest c such that the following
is true Q(fCS,nc) = Ω(Q(f)).

6 Conclusion

As far as we know, this is the first paper that presents a thorough investigation on the
relationships between various pairs of complexity measures for transitive function.

The current best-known relationships and best-known separations between various pairs
of measures for transitive functions are summarized in the Table 1. Unfortunately, a number
of cells in the table are not tight. In this context, we would like to point out some important
directions:

For some of these cells, the separation results for transitive functions are weaker than
that of the general functions. A natural question is the following: why can’t we design
a transitive version of the general functions that achieve the same separation? For
some cases, like the cheat sheet-based functions, we discuss the difficulties and possible
directions in Section 5. Thus following is a natural question.
▶ Open Problem 38. For a pair of complexity measures for Boolean functions whose best-
known separations are achieved via cheat sheets, obtain similar separations for transitive
Boolean functions.
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A total function was constructed in [13] that demonstrates quadratic separations between
approximate degree with sensitivity and several other complexity measures. It is thus
natural to investigate the following open problem.
▶ Open Problem 39. Come up with transitive functions that achieve similar separations
for those pair of measures whose best-known separations are shown by [13].

Recently [8], [5] and [6] came up with new classes of Boolean functions, starting with the
HEX (see [8]) and EAH (see [6]) functions, that exhibit improved separations between
certificate complexity and other complexity measures using the.
In light of these recent developments is important to ask whether similar separations can
be shown for transitive functions. Following open problem is a natural starting point.
▶ Open Problem 40. Can the HEX and EAH functions be modified to a transitive
functions, while preserving its desired complexity measures upto poly-logarithmic factors?

While we have been concerned only with lower bounds in this paper, it is an exciting
research direction to bridge the gap between complexity measures of transitive Boolean
functions by providing improved upper bounds.
▶ Open Problem 41. Bridge the gaps in Table 1 by coming up with better upper bounds
on complexity measures for transitive functions.

In the full version of this paper, [15], we summarize the results on how low can individual
complexity measures go for transitive function. Even with the recent results of [21] and [2],
there are significant gaps between the best-known lower and upper bounds in this case which
gives another set of open problems to investigate in the study of combinatorial measures of
transitive Boolean functions.
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Abstract
In the k-edge-connected spanning subgraph (kECSS) problem, our goal is to compute a minimum-cost
sub-network that is resilient against up to k link failures: Given an n-node m-edge graph with a cost
function on the edges, our goal is to compute a minimum-cost k-edge-connected spanning subgraph.
This NP-hard problem generalizes the minimum spanning tree problem and is the “uniform case” of
a much broader class of survival network design problems (SNDP). A factor of two has remained
the best approximation ratio for polynomial-time algorithms for the whole class of SNDP, even
for a special case of 2ECSS. The fastest 2-approximation algorithm is however rather slow, taking
O(mnk) time [Khuller, Vishkin, STOC’92]. A faster time complexity of O(n2) can be obtained, but
with a higher approximation guarantee of (2k − 1) [Gabow, Goemans, Williamson, IPCO’93].

Our main contribution is an algorithm that (1 + ε)-approximates the optimal fractional solution
in Õ(m/ε2) time (independent of k), which can be turned into a (2 + ε) approximation algorithm
that runs in time Õ

(
m
ε2 + k2n1.5

ε2

)
for (integral) kECSS; this improves the running time of the

aforementioned results while keeping the approximation ratio arbitrarily close to a factor of two.
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37:2 Approximating k-ECSS via a Near-Linear Time LP Solver

1 Introduction

In the k-Edge-Connected Spanning Subgraph problem (kECSS), we are given an undirected
n-node m-edge graph G = (V, E) together with edge costs, and want to find a minimum-cost
k-edge connected spanning subgraph.1 For k = 1, this is simply the minimum spanning tree
problem, and thus can be solved in O(m) time [28]. For k ≥ 2, the problem is a classical
NP-hard problem whose first approximation algorithm was given almost four decades ago,
where Frederickson and Jaja [19] gave a 3-approximation algorithm that runs in O(n2) time
for the case of k = 2. The approximation ratio was later improved to 2 by an Õ(mnk)-time
algorithm of Khuller and Vishkin [32].2 This approximation factor of 2 has remained the
best for more than 30 years, even for a special case of 2ECSS called the weighted tree
augmentation problem. When the running time is of the main concern, the fastest known
algorithm takes O(n2) time at the cost of a significantly higher (2k − 1)-approximation
guarantee, due to Gabow, Goemans, and Williamson [22].

This above state-of-the-arts leave a big gap between algorithms achieving the best
approximation ratio and the best time complexity. This gap exists even for k = 2. In
this paper, we improve the running time of both aforementioned algorithms of [32, 22]
while keeping the approximation ratio arbitrarily close to two. Our main contribution is a
near-linear time algorithm that (1 + ε)-approximates the optimal fractional solution.

▶ Theorem 1. For any ε > 0, there is a randomized Õ(m/ε2)-time algorithm that outputs a
(1 + ε)-approximate fractional solution for kECSS.

Following, in the high-level, the arguments of Chekuri and Quanrud [7] (i.e. solving
the minimum-weight k disjoint arborescences in the style of [32] on the support of the
sparsified fractional solution), the above fractional solution can be turned into a fast (2 + ε)-
approximation algorithm for the integral version of kECSS.

▶ Corollary 2. For any ε > 0, there exist
a randomized Õ(m/ε2)-time algorithm that estimates the value of the optimal solution
for kECSS to within a factor (2 + ε), and
a randomized Õ

(
m
ε2 + k2n1.5

ε2

)
-time algorithm that produces a feasible kECSS solution of

cost at most (2 + ε) times the optimal value.

We remark that the term Õ(k2n1.5) is in fact “tight” up to the state-of-the-art algorithm
for finding minimum-weight k disjoint arborescences.3

Prior to our results, a sub-quadratic time algorithm was not known even for special cases
of kECSS, called k-Edge-Connected Augmentation (kECA). In this problem, we are given a
(k − 1)-edge-connected subgraph H of a graph G, and we want to minimize the total cost of
adding edges in G to H so that H becomes k-edge connected. It is not hard to see that if we
can α-approximates kECSS, then we can α-approximates kECA by assigning cost 0 to all

1 Note that this problem should not be confused with a variant that allows to pick the same edge multiple
time, which is sometimes also called kECSS (e.g., [6]). We follow the convention in [13] and call the
latter variant minimum-cost k-edge connected spanning sub-multigraph (kECSSM) problem. (See also
the work by Pritchard [39].)

2 Õ hides polylog(n) factor.
3 More formally, if a minimum-weight union of k edge-disjoint arborescences can be found in time

T (k, m, n), then our algorithm would run in time T (k, kn, n). The term O(k2n1.5) came from Gabow’s
algorithm [20] that runs in time O(km

√
n log(ncmax)).
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edges in H. This problem previously admits a O(kn2)-time 2-approximation algorithm for
any even integer k [31]4. The approximation ratio of 2 remains the best even for 2ECA. Our
result in Corollary 2 improves the previously best time complexity by a Θ̃(

√
n) factor.

Perspective. The gap between algorithms with best approximation ratio and best time
complexity in fact reflects a general lack of understanding on fast approximation algorithms.
While polynomial-time algorithms were perceived by many as efficient, it is not a reality in
the current era of large data, where it is nearly impossible to take O(n3) time to process
a graph with millions or billions of nodes. Research along this line includes algorithms
for sparsest cut [30, 29, 42, 35], multi-commodity flow [23, 17, 36], and travelling salesman
problem [6, 7]. Some of these algorithms have led to exciting applications such as fast
algorithms for max-flow [43], dynamic connectivity [38, 8, 40, 45, 37], vertex connectivity
[34] and maximum matching [44].

The kECSS problem belongs to the class of survivable network design problems (SNDPs),
where the goal is to find a subgraph ensuring that every pair of nodes (u, v) are κ(u, v)-edge-
connected for a given function κ. (kECSS is the uniform version of SNDP where κ(u, v) = k

for every pair (u, v).) These problems typically focus on building a network that is resilient
against device failures (e.g. links or nodes), and are arguably among the most fundamental
problems in combinatorial optimization. Research in this area has generated a large number
of beautiful algorithmic techniques during the 1990s, culminating in the result of Jain [26]
which gives a 2-approximation algorithm for the whole class of SNDPs. Thus, achieving a
fast 2-approximation algorithm for SNDPs is a very natural goal.

Towards this goal and towards developing fast approximation algorithms in general, there
are two common difficulties:

1. Many approximation algorithms inherently rely on solving a linear program (LP) to find
a fractional solution, before performing rounding steps. However, the state-of-the-art
general-purpose linear program solvers are still quite slow, especially for kECSS and
SNDP where the corresponding LPs are implicit.
In the context of SNDP, the state-of-the-art (approximate) LP solvers still require at
least quadratic time: Fleischer [18] designs an Õ(mnk) for solving kECSS LP, and
more generally for SNDP and its generalization [18, 14] with at least Θ(m min{n, kmax})
iterations of minimum cost flow’s computation are the best known running time where
kmax is the maximum connectivity requirements.

2. Most existing techniques that round fractional solutions to integral ones are not “friendly”
for the design of fast algorithms. For instance, Jain’s celebrated iterative rounding [26]
requires solving the LP Ω(m) times. Moreover, most LP-based network design algorithms
are fine-tuned to optimize approximation factors, while designing near-linear time LP
rounding algorithms requires limiting ourselves to a relatively small set of tools, about
which we currently have very limited understanding.

This paper completely resolves the first challenge for kECSS and manages to identify a
fundamental bottleneck of the second challenge.

4 In Khuller and Vishkin [31], the kECA problem aims at augmenting the connectivity from k to (k + 1)
(but for us it is from (k − 1) to k.)
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37:4 Approximating k-ECSS via a Near-Linear Time LP Solver

Challenges for LP Solvers. Our main challenge is handling the so-called box constraints in
the LPs. To be concrete, below is the LP relaxation of kECSS on graph G = (V, E).

min{
∑
e∈E

cexe :
∑

e∈δG(S)

xe ≥ k (∀S ⊆ V ), x ∈ [0, 1]E} (1)

where δG(S) is the set of edges between nodes in S and V \ S. The box constraints refer to
the constraints x ∈ [0, 1]E . Without these constraints, we can select the same edge multiple
times in the solution; this problem is called kECSSM in [13] (see Footnote 1). Removing
the box constraints often make the problem significantly easier. For example, the min-cost
st-flow problem without the box constraints become computing the shortest st-path, which
admits a much faster algorithm.

For kECSS, it can be shown that solving (1) without the box constraints can be reduced
to solving (1) with k = 1 and multiplying all xe with k. In other words, without the box
constraints, fractional kECSS is equivalent to fractional 1ECSS.This fractional 1ECSS can
be (1 + ε)-approximated in near-linear time by plugging in the dynamic minimum cut data
structure of Chekuri and Quanrud [6] to the multiplicative weight update framework (MWU).

However, with the presence of box constraints, to use the MWU framework we would
need a dynamic data structure for a much more complicated cut problem, that we call,
the minimum normalized free cut problem (roughly, this is a certain normalization of the
minimum cut problem where the costs of up to k heaviest edges in the cut are ignored.) For
our problem, the best algorithm in the static setting we are aware of (prior to this work) is to
use Zenklusen’s Õ(mn4)-time algorithm [47] for the connectivity interdiction problem.5 This
results in an Õ(kmn4)-time static algorithm. Speeding up and dynamizing this algorithm
seems very challenging. Our main technical contribution is an efficient dynamic data structure
(in the MWU framework) for the (1 + ε)-approximate minimum normalized free cut problem.
We explain the high-level overview of our techniques in Section 2.

Further Related Works. The kECSS and its special cases have been studied extensively.
For all k ≥ 2, the kECSS problem is known to be APX-hard [15] even on bounded-degree
graphs [9] and when the edge costs are 0 or 1 [39]. Although a factor 2 approximation for
kECSS has not been improved for almost 3 decades, various special cases of kECSS admit
better approximation ratios (see for instance [25, 16, 1]). For instance, the unit-cost kECSS
(ce = 1 for all e ∈ E) behaves very differently, admitting a (1 + O(1/k)) approximation
algorithm [21, 33]. For the 2ECA problem, one can get a better than 2 approximation when
the edge costs are bounded [1, 16]. Otherwise, for general edge costs, the factor of 2 has
remained the best known approximation ratio even for the 2ECA problem.

The kECSS problem in special graph classes have also received a lot of attention. In
Euclidean setting, a series of papers by Czumaj and Lingas led to a near-linear time
approximation schemes for constant k [12, 11]. The problem is solvable in near-linear time
when k and treewidth are constant [3, 5]. In planar graphs, 2ECSS, 2ECSSM and 3ECSSM
admit a PTAS [10, 4].

Organization. We provide a high-level overview of our proofs in Section 2. In Section 3, we
explain the background on Multiplicative Weight Updates (MWU) for completeness (although
this paper is written in a way that one can treat MWU as a black box). In Section 4, we

5 In the connectivity interdiction problem, we are given G = (V, E) and k ∈ N, our goal is to compute
F ⊆ E to delete from G in order to minimize the minimum cut in the resulting graph.
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prove our main technical component. In Section 5, we present our LP solver. In Section 6,
we show how to round the fractional solution obtained from the LP solver. Due to space
limitations, many proofs are deferred to Appendix.

2 Overview of Techniques

In this section, we give a high-level overview of our techniques in connection to the known
results. Our work follows the standard Multiplicative Weight Update (MWU) framework
together with the Knapsack Covering (KC) inequalities (see Section 3 for more background).
Roughly, in this framework, in order to obtain a near-linear time LP solver for kECSS, it
suffices to provide a fast dynamic algorithm for a certain optimization problem (often called
the oracle problem in the MWU literature):

▶ Definition 3 (Minimum Normalized Free Cuts). We are given a graph G = (V, E), weight
function w : E → R≥0, integer k, and our goal is to compute a cut S ⊆ V together with
edges F ⊆ δG(S) : |F | ≤ k − 1 that minimizes the following objective6:

min
S⊊V,F ⊆δG(S):|F |≤(k−1)

w(δG(S) \ F )
k − |F |

,

where δG(S) denotes the set of edges that has exactly one end point in S. We call the
minimizer (S, F ) the minimum normalized free cut.

This is similar to the minimum cut problem, except that we are allowed to “remove” up
to (k − 1) edges (called free edges) from each candidate cut S ⊆ V , and the cost would
be “normalized” by a factor of (k − |F |).7 Notice that there are (apparently) two sources
of complexity for this problem. First, we need to find the cut S and second, given S, to
compute the optimal set F ⊆ δG(S) of free edges. To our best knowledge, a previously fastest
algorithm for this problem takes Õ(mn4) time by reducing to the connectivity interdiction
problem [47], while we require near-linear time. This is our first technical challenge.

Our second challenge is as follows. To actually speed up the whole MWU framework, in
addition to solving the oracle problem statically efficiently, we further need to implement
a dynamic version of the oracle with polylog(n) update time. In our case, the goal is to
maintain a dynamic data structure on graph G = (V, E), weight function w, cost function c,
that supports the following operation:

▶ Definition 4. The PunishMin operation computes a (1 + O(ε))-approximate normalized
free cut and multiply the weight of each edge e ∈ δG(S) \ F by a factor of at most eε.8

We remark that invoking the PunishMin operation does not return the cut (S, F ), and
the only change is the weight function w being maintained by the data structure.

▶ Proposition 5 (Informal). Assume that we are given a dynamic algorithm that supports
PunishMin with amortized polylog(n) cost per operations, then the kECSS LP can be solved
in time Õ(m).

6 For any function f , for any subset S of its domain, we define f(S) =
∑

s∈S
f(s).

7 This is in fact a special case of a similar objective considered by Feldmann, Könemann, Pashkovich and
Sanità [14], who considered applying the MWU framework for the generalized SNDP

8 The actual weight w(e) is updated for all e ∈ δG(S) \ F : w(e) ← w(e) · exp( εcmin
ce

) where cmin is the
minimum edge capacity in δG(S) \ F .
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37:6 Approximating k-ECSS via a Near-Linear Time LP Solver

Let us call such a dynamic algorithm a fast dynamic punisher. The fact that a fast
dynamic punisher implies a fast LP solver is an almost direct consequence of MWU [23].

Therefore, we focus on designing a fast dynamic algorithm for solving (and punishing)
the minimum normalized free cut problem. Our key idea is an efficient and dynamic
implementation of the weight truncation idea.

Weight truncation: Let G = (V, E) and ρ ∈ R≥0 be a threshold. For any
weight function w of G, denote by wρ the truncated weight defined by wρ(e) =
min{w(e), ρ} for each e ∈ E. Call an edge e with w(e) ≥ ρ a ρ-heavy edge.

Our main contribution is to show that, when allowing (1 + ε)-approximation, we can
use the weight truncation to reduce the minimum normalized free cut to minimum cut
with O(polylog(n)) extra factors in the running time. Moreover, this reduction can be
implemented efficiently in the dynamic setting. We present the ideas in two steps, addressing
our two technical challenges mentioned above respectively. First, we show how to solve the
static version of minimum normalized free cut in near-linear time. Second, we sketch the key
ideas to implement them efficiently in the dynamic setting, which can be used in the MWU
framework.

We remark that weight truncation technique has been used in different context. For
instance, Zenklusen [47] used it for reducing the connectivity interdiction problem to O(|E|)
instances of the minimum budgeted cut problem.

2.1 Step 1: Static Algorithm
We show that the minimum normalized free cut problem can be solved efficiently in the
static setting. For convenience, we often use the term cut to refer to a set of edges instead of
a set of vertices.

Define the objective function of our problem as, for any cut C,

valw(C) = min
F ⊆C:|F |≤k−1

w(C \ F )
k − |F |

.

For any weight function w, denote by OPTw = minC valw(C). In this paper, the graph G is
always fixed, while w is updated dynamically by the algorithm (so we omit the dependence
on G from the notation val and OPT). When w is clear from context, we sometimes omit
the subscript w.

We show that the truncation technique can be used to establish a connection between
our problem and minimum cut.

▶ Lemma 6. We are given a graph G = (V, E), weight function w, integer k, and ε > 0.
For any threshold ρ ∈ (OPTw, (1 + ε)OPTw],

any optimal normalized free cut in (G, w) is a (1 + ε)-approximate minimum cut in
(G, wρ), and
any minimum cut C∗ in (G, wρ) is a (1 + ε)-approximation for the minimum normalized
free cut.

Proof. First, consider any cut C with val(C) = OPT. Let F ⊆ C be an optimal set of free
edges for C, so we have wρ(C \ F ) ≤ w(C \ F ) = (k − |F |)OPT. Moreover, wρ(F ) ≤ |F |ρ.
This implies that

wρ(C) = wρ(C \ F ) + wρ(F ) < kρ (2)
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Next, we prove that any cut in (G, wρ) is of value at least kOPT (so the cut C is a (1 + ε)
approximate minimum cut). Assume for contradiction that there is a cut C ′ such that
wρ(C ′) < kOPT. Let F ′ ⊆ C ′ be the set of ρ-heavy edges. Observe that |F ′| ≤ k − 1 since
otherwise the total weight wρ(C ′) would have already exceeded kOPT. This implies that
w(C ′ \ F ′) = wρ(C ′ \ F ′) < (k − |F ′|)OPT and that

val(C ′) ≤ w(C ′ \ F ′)
(k − |F ′|) < OPT

which is a contradiction. Altogether, we have proved the first part of the lemma.
To prove the second part of the lemma, consider a minimum cut C∗ in (G, wρ), we have

that wρ(C∗) < wρ(C) < kρ (from Equation (2)). Again, the set of heavy edges F ∗ ⊆ C∗ can
contain at most k−1 edges, so we must have w(C∗\F ∗) < (k−|F ∗|)ρ ≤ (k−|F ∗|)(1+ε)OPT,
implying that val(C∗) < (1 + ε)OPT. ◀

We remark that this reduction from the minimum normalized free cut problem to the
minimum cut problem does not give an exact correspondence, in the sense that a minimum
cut in (G, wρ) cannot be turned into a minimum normalized free cut in (G, w). In other
words, the approximation factor of (1 + ε) is unavoidable.

▶ Theorem 7. Given a graph G = (V, E) with weight function w and integer k, the minimum
normalized free cut problem can be (1 + ε) approximated by using O( 1

ε · log n) calls to the
exact minimum cut algorithm.

Proof. We assume that the minimum normalized free cut of G is upper bounded by some
value M which is polynomial in n = |V (G)| (we show how to remove this assumption in the
full version of the paper). For each i such that (1 + ε)i ≤M , we compute the minimum cut
Ci in (G, wρi

) where ρi = (1 + ε)i and return one with minimum value val(Ci). Notice that
there must be some i∗ such that ρi∗ ∈ (OPTw, (1 + ε)OPTw] and by the lemma, we must
have that Ci∗ is a (1 + ε)-approximate solution for the normalized free cut problem. ◀

By using any near-linear time minimum cut algorithm e.g., [27], the collorary follows.

▶ Corollary 8. There exists a (1 + ε) approximation algorithm for the minimum normalized
free cut problem that runs in time Õ(|E|/ε).

2.2 Step 2: Dynamic Algorithm
The next idea we use is from Chekuri and Quanrud [6]. One of the key concepts there is that
it is sufficient to solve a “range punishing” problem in near-linear time; for completeness we
prove this sufficiency in Appendix. In particular, the following proposition is a consequence
of their work:

▶ Definition 9. A range punisher9 is an algorithm that, on any input graph G, initial
weight function w = winit, real numbers ε, and λ ≤ OPTwinit , iteratively applies PunishMin
on (G, w) until the optimal becomes at least OPTw ≥ (1 + ε)λ.

The following proposition connects a fast range punisher to a fast LP solver.

9 Our range punisher corresponds to an algorithm of Chekuri and Quanrud [7] in one epoch.
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▶ Proposition 10. If there exists a range punisher running in time

Õ

(
|E|+ K +

∑
e∈E

log( w(e)
winit(e) )

)

where K is the number of cuts punished, then, there exists a fast dynamic punisher, and
consequently the kECSS LP can be solved in near-linear time.

This proposition applies generally in the MWU framework independent of problems. That
is, for our purpose of solving kECSS LP, we need a fast range punisher for the minimum
normalized free cut problem. For Chekuri and Quanrud [6], they need such algorithm for the
minimum cut problem (therefore a fast LP solver for the Held-Karp bound).

▶ Theorem 11 ([6], informal). There exists a fast range punisher for the minimum cut
problem.

Our key technical tool in this paper is a more robust reduction from the range punishing
of normalized free cuts to the one for minimum cuts. This reduction works for all edge
weights and is suitable for the dynamic setting. That is, it is a strengthened version of
Lemma 6 and is summarized below (see its proof in Section 4).

▶ Theorem 12 (Range Mapping Theorem). Let (G = (V, E), w) be a weighted graph. Let
λ > 0 and ρ = (1 + γ)λ.

1. If the value of optimal normalized free cut is in [λ, (1 + γ)λ), then the value of minimum
cut in (G, wρ) lies in [kρ/(1 + γ), kρ).

2. For any cut C where wρ(C) < kρ, then w(C\F )
k−|F | < (1 + γ)λ where F contains all ρ-heavy

edges in C. In particular, val(C) < (1 + γ)λ.

Given the above reduction, we can implement range punisher fast. We present its full
proof in Section 5 and sketch the argument below.

▶ Theorem 13. There exists a fast range punisher for the minimum normalized free cut
problem.

Proof (sketch). We are given λ and weighted graph (G, w) : w = winit such that OPTwinit ≥
λ. Our goal is to punish the normalized free cuts until the optimal value in (G, w) becomes at
least (1 + ε)λ. We first invoke Theorem 7 to get a (1 + ε)-approximate cut, and if the solution
is already greater than (1 + ε)2λ, we are immediately done (this means OPT > (1 + ε)λ).

Now, we know that OPT ≤ (1 + ε)2λ ≤ (1 + 3ε)λ. We invoke Lemma 12(1) with γ = 3ε.
The minimum cut in (G, wρ) has size in the range [kρ/(1 + 3ε), kρ). We invoke (one iteration
of) Theorem 11 with λ′ = kρ(1 + 3/ε) to obtain a cut C whose size is less than kρ and
therefore, by Lemma 12(1), val(C) < (1 + 3ε)λ. This is a cut that our algorithm can punish
(we ignore the detail of how we actually punish it – we would need to do that implicitly since
the cut itself may contain up to m edges). We repeat this process until all cuts whose values
are relevant have been punished, that is, we continue this process until the returned cut C

has size at least kρ.
The running time of this algorithm is

Õ

(
|E|+ K +

∑
e∈E

log( wρ(e)
winit

ρ (e) )
)
≤ Õ

(
|E|+ K +

∑
e∈E

log( w(e)
winit(e) )

)

Notice that we rely crucially on the property of our reduction using truncated weights. ◀
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We remark that in the actual proof of Theorem 13, there are quite a few technical
complications (e.g., how to find optimal free edges for a returned cut C?), and we cannot
invoke Theorem 11 in a blackbox manner. We refer to Section 5 for the details.

2.3 LP Rounding for kECSS
Most known techniques for kECSS (e.g. [22, 33]) rely on iterative LP rounding, which is com-
putationally expensive. We achieve fast running time by making use of the 2-approximation
algorithm of Khuller and Vishkin [31].

Roughly speaking, this algorithm creates a directed graph H from the original graph G

and then compute on H the minimum-weight k disjoint arboresences. The latter can be
found by Gabow’s algorithms, in either Õ(|E||V |k) or Õ(k|E|

√
|V | log cmax) time.

To use their algorithm, we will construct H based on the support of the fractional solution
x computed by the LP solver. By the integrality of the arborescence polytope [41], an integral
solution is as good as the fractional solution. However, the support of x can be potentially
large, which causes Gabow’s algorithm to take longer time. Here our idea is a sparsification
of the support, by extending the celebrated sparsification theorem of Benzcur and Karger [2]
to handle our problem, i.e., we prove the following (see Section 6 for the proofs):

▶ Theorem 14. Let G be a graph and cG its capacities. There exists a capacitated
graph (H, cH) on the same set of vertices that can be computed in Õ(m) such that (i)
|E(H)| = Õ(nk), and (ii) for every cut S and F ⊆ S : |F | ≤ (k − 1), we have
cG(S \ F ) = (1 ± ε) cH(S \ F ).

Benzcur and Karger’s theorem corresponds to this theorem when k = 1. We believe that
this theorem might have further applications, e.g., for providing a fast algorithm for the
connectivity interdiction problem. Our result implies the following (see Section 6 for the
proof):

▶ Theorem 15. Assume that there exists an algorithm that finds a minimum-weight k-
arborescences in an m-edge n-node graph in time Tk(m, n). Then there exists a (2 + ε)
approximation algorithm for kECSS running in time Õ(m/ε2 + Tk(kn/ε2, n))

Applying Theorem 15 with the Gabow’s algorithm (see Theorem 35 in Section 6), we
obtain Corollary 2.

3 Preliminaries

In this section, we review the multiplicative-weight update (MWU) framework for solving
a (covering) LP relaxation of the form min{c · x : Ax ≥ 1, x ≥ 0}, where A is an m-by-n
matrix with non-negative entries and c ∈ Rn

≥0. Our presentation abstracts away the detail of
MWU, so readers should feel free to skip this section.

Let A1, . . . , Am be the rows of matrix A. Here is a concrete example:
Held-Karp Bound: The Held-Karp bound on input (G, c) aims at solving the LP:10

min{
∑

e∈E(G)

cexe :
∑
e∈S

xe ≥ 2 for any cut S ⊆ E}

10 We refer the readers to [6] for more discussion about this LP and Held-Karp bound.
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Matrix A = AG is a cut-edge incidence matrix of graph G where each row Aj corresponds
to a cut Fj ⊆ E(G), so there are exponentially many rows. Each column corresponds to
an edge e ∈ E(G). There are exactly |E(G)| columns. The matrix is implicitly given as
an input graph G.

We explain the MWU framework in terms of matrices. Some readers may find it more
illustrative to work with concrete problems in mind.

MWU Framework for Covering LPs

In the MWU framework for solving covering linear programs, we are given as input an
m-by-n matrix A and cost vectors c associated with the columns.11 Let ε > 0 be a parameter;
that is, we aim at computing a solution x that is (1 + ε) approximation of the optimal LP
solution. Denote by MinRow(A, w) the value minj∈[m] Ajw. We start with an initial weight
vector w(0)

i = 1/ci for i ∈ [n]. On each day t = 1, . . . , T , we compute an approximately
“cheapest” row j∗ such that Aj∗w(t−1) ≤ (1 + ε)MinRow(A, w(t−1)), and update the weight
w(t)

i ← w(t−1)
i exp

(
εAj∗,icmin

ci

)
where cmin = mini∈[n]

ci

Aj∗,i
.12 After T = O(n log n/ε2) many

days, the solution can be found by taking the best scaled vectors; in particular, observe that,
for any day t, the scaled vector w̄(t) = w(t)/

(
minj∈[m] Ajw(t)) is always feasible for the LP.

The algorithm returns w̄(t) which has minimum cost. The following theorem shows that at
least one such solution is near-optimal.

▶ Theorem 16. For T = O( n log n
ε2 ), one of the solutions w̄(t) for t ∈ [T ] is a (1 + O(ε)) ap-

proximation of the optimal solution min{c · x : Ax ≥ 1, x ≥ 0}.

Since we use slightly different language than the existing proofs in the literature, we
provide a proof in the appendix.

KC Inequalities

Our LP is hard to work with mainly because of the mixed packing/covering constraints
x ∈ [0, 1]n. There is a relatively standard way to get rid of the mixed packing/covering
constraints by adding Knapsack covering (KC) inequalities into the LP. In particular, for
each row (or constraint) j ∈ [m], we introduce constraints:

(∀F ⊆ supp(Aj), |F | ≤ (k − 1)) :
∑

i∈[n]\F

Aj,ixi ≥ k − |F |, or
∑

i∈[n]\F

Aj,i

(k − |F |)xi ≥ 1

Let Akc be the new matrix after adding KC inequalities, that is, imagine the row indices
of Akc as (j, F ) where j ∈ [m] and F ⊆ supp(Aj); we define Akc

(j,F ),i = Aj,i/(k − |F |). The
actual number of rows in Akc can be as high as m · nO(k), but our algorithm will not be
working with this matrix explicitly.

The following lemma shows that we can now remove the packing constraints. We defer
the proof to Appendix.

▶ Lemma 17. Any solution to {x ∈ Rn : Akcx ≥ 1, x ≥ 0} is feasible for {x ∈ Rn : Ax ≥
k, x ∈ [0, 1]}. Conversely, for any point z in the latter polytope, there exists a point z′ in the
former such that z′ ≤ z.

11 There are several ways to explain such a framework. Chekuri and Quanrud [6] follow the continuous
setting of Young [46]. We instead follow the combinatorial interpretation of Garg and Könemann [23].

12 In the MWU literature, this is often referred to as an oracle problem.
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▶ Corollary 18. For any cost vector c ∈ Rn
≥0,

min{cT x : Akcx ≥ 1, x ≥ 0} = min{cT x : Ax ≥ k, x ∈ [0, 1]}

4 Range Mapping Theorem

The goal of this section is to prove Theorem 12, a cornerstone of this paper. We emphasize
that it works for any weight function w. First, we introduce more notations for convenience.
For any cut C ∈ C, and any subset of edges F ⊆ E, we define valw(C, F ) = w(C\F )

k−|F | if F ⊆ C

and |F | < k; otherwise, valw(C, F ) = ∞. Also, denote valw(C) = minF ⊆E valw(C, F ). By
definition, we have valw(C) = mini≤k−1 valw(C, Fi) where Fi is the set of heaviest i edges in
C with respect to weight function w. We let mincutwρ

be the value of a minimum cut with
respect with weight wρ. When it is clear from context, we sometimes omit the subscript w.
For any positive number ρ, let Hw,ρ = {e ∈ E : w(e) ≥ ρ} be the set of ρ-heavy edges.13

Define the weight truncation wρ(e) = min{w(e), ρ}.

▶ Theorem 19 (Restatement of Theorem 12). We are given a weighted graph (G, w), λ > 0
be a parameter and ρ = (1 + γ)λ. Then we have the following:
1. If OPTw ∈ [λ, (1 + γ)λ), then mincutwρ

∈ [kρ/(1 + γ), kρ), and
2. if a cut C satisfies wρ(C) < kρ, then valw(C, Hw,ρ ∩ C) < (1 + γ)λ.

Notice that the above theorem not only gives a mapping between solutions of the two
problems but also that the heavy edges can be used as a set of free edges. We say that a cut
C is interesting if it contains at most k − 1 heavy edges, i.e., |Hw,ρ ∩ C| < k.

▶ Proposition 20. If cut C ⊆ E is not interesting (i.e., |Hw,ρ ∩ C| ≥ k), then valw(C) ≥ ρ

and wρ(C) ≥ kρ.

Proof. The fact that wρ(C) ≥ kρ follows immediately from the definition of heavy edges.
Let Fi be the set heaviest i edges in C with respect to w. Since C contains at least k heavy
edges, we have that for all i < k, C \ Fi contains at least k − i heavy edges. Therefore, we
have valw(C) = mini≤k−1

w(C\Fi)
k−i ≥ mini≤k−1

(k−i)ρ
k−i = ρ. ◀

Proposition 20 says that if a cut is not interesting it must be expensive as a normalized free
cut (i.e., high valw(C)) and as a graph cut (i.e., high wρ(C)). We next give a characterization
that relates valw and the sizes of the cuts for interesting cuts.

▶ Lemma 21. Let C be an interesting cut. Then valw(C) ≤ valw(C, Hw,ρ ∩ C) < ρ if and
only if wρ(C) < kρ.

Proof. (→) By definition of wρ, we have

wρ(C) = w(C \ (Hw,ρ ∩ C)) + ρ|Hw,ρ ∩ C|. (3)

If valw(C, Hw,ρ ∩ C) < ρ, then w(C \Hw,ρ ∩ C) < ρ(k − |Hw,ρ ∩ C|). By Equation (3), we
have wρ(C) < kρ.

(←) Denote F = Hw,ρ ∩ C. By definition of val, we have

valw(C) ≤ valw(C, F ) = w(C \ F )
k − |F |

(3)= wρ(C)− ρ|F |
k − |F |

<
kρ− ρ|F |
k − |F |

= ρ. ◀

13When it is clear from the context, for brevity, we might say that e is a heavy edge instead of ρ-heavy
edge.
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Proof of Theorem 19. For the first part, we begin by proving that mincutwρ < kρ. Let C∗

be a cut such that valw(C∗) = OPTw. By Proposition 20, C∗ must be interesting. Since
valw(C∗) = OPTw < (1 + γ)λ = ρ, Lemma 21 implies that we have wρ(C∗) < kρ. Therefore,
mincutwρ < kρ.

Next, we prove that mincutwρ
≥ kρ/(1 + γ). Let C be a cut, and denote F = Hw,ρ ∩ C.

If C is not interesting, then Proposition 20 implies that wρ(C) ≥ kρ ≥ kρ/(1 + γ). If C is
interesting, by definition of wρ, we have

wρ(C) = w(C \ F ) + ρ|F | ≥ OPTw(k − |F |) + ρ

1 + γ
|F | ≥ ρk

1 + γ
.

The last inequality follows since by assumption OPTw ≥ ρ/(1 + γ).
For the second part of the theorem, as wρ(C) < kρ, Proposition 20 implies that C is

interesting. By Lemma 21, valw(C, Hw,ρ ∩ C) < ρ = (1 + γ)λ. ◀

5 Fast Approximate LP Solver

In this section, we construct the fast range punisher for the normalized free cut problem.
Our algorithm cannot afford to maintain the actual MWU weights, so it will instead keep
track of lazy weights. From now on, we will use wmwu to denote the actual MWU weights
and w the weights that our data structure maintains.

▶ Theorem 22 (Fast Range Punisher). Given graph G initial weight function winit and two
real values λ, ε > 0 such that λ ≤ OPTwinit , there is a randomized algorithm that iteratively
applies PunishMin until the optimal with respect to the final weight function wmwu becomes
at least OPTwmwu ≥ (1 + ε)λ, in time Õ(|E| + K + 1

ε

∑
e∈E log(·w

mwu(e)
winit(e) )), where K is the

number of cuts punished.

The following theorem is almost standard: the fast range punisher, together with a fast
algorithm for approximating OPTw for any weight w, implies a fast approximate LP solver
(e.g., see [6, 18]). For completeness, we provide the proof in the Appendix.

▶ Theorem 23 (Fast LP Solver). Given a fast range punisher as described in Theorem 22,
and a near-linear time algorithm for approximating OPTw for any weight function w, there
is an algorithm that output (1 + O(ε))-approximate solution to kECSS LP in Õ(m/ε2) time.

Notice that the above theorem implies our main result, Theorem 1. The rest of this
section is devoted to proving Theorem 22. Following the high-level idea of [6], our data
structure has two main components:

Range cut-listing data structure: This data structure maintains dynamic (truncated)
weighted graph (G, wρ) and is able to find a (short description of) (1+O(ε))-approximate
cut whenever one exists, that is, it returns a cut of size between λ and (1 + O(ε))λ for
some parameter λ. Since our weight function w changes over time, the data structure
also has an interface that allows such changes to be implemented. The data structure
can be taken and used directly in a blackbox manner, thanks to [6].
Lazy weight data structures: Notice that a fast range punisher can only afford the
running time of Õ

(∑
e log wmwu(e)

winit(e)

)
for updating weights, while in the MWU framework,

some edges would have to be updated much more often. We follow the idea of [6] to
maintain approximate (lazy) weights that do not get updated too often but are still
sufficiently close to the real weights. We remark that wmwu only depends on the sequence
of cuts, that PunishMin actually punishes. This lazy weight data structure is responsible
for maintaining w that satisfies the following invariant:
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▶ Invariant 24. We have (1− ε)wmwu ≤ w ≤ wmwu.
That is, we allow w to underestimate weights, but they cannot deviate more than by
a factor of (1 − ε). In this way, our data structure only needs to update the weight
implicitly and output necessary increments to the cut listing data structure whenever the
invariant is violated.

In sum, our range punisher data structures deal with three weight functions w (lazy
weights), wρ (truncated lazy weights, used by the range cut listing data structure) and wmwu

(actual MWU weights, maintained implicitly).
The rest of this section is organized as follows. In Section 5.1–Section 5.3, we explain the

components that will be used in our data structure, and in Section 5.4, we prove Theorem 22
using these components.

5.1 Compact representation of cuts
This part serves as a “communication language” for various components in our data structure.
Since a cut can have up to Ω(m) edges, the data structure cannot afford to describe it
explicitly. We will use a compact representation of cuts [6], which allows us to describe any
(1 + ε)-approximate solution in a given weighted graph using Õ(1) bits; notice that, in the
MWU framework, we only care about (punishing) near-optimal solutions, so it is sufficient
for us that we are able to concisely describe such cuts.

Formally, we say that a family F of subsets of edges is ε-canonical for (G, w) if (i)
|F| ≤ Õ(|E|), (ii) any (1 + ε)-approximate minimum cut of (G, w) is a disjoint union of at
most Õ(1) sets in F , (iii) any set S ∈ F can be described concisely by Õ(1) bits, and (iv)
every edge in the graph belongs to Õ(1) sets in F . It follows that any (1 + ε)-approximate
cut admits a short description. Denote by [[S]] a short description of cut S ∈ F , and for
each (1 + ε) approximate cut C, [[C]] a short description of C.

▶ Lemma 25 (implicit in [6]). There exists a randomized data structure that, on input (G, w),
can be initialized in near-linear time, (w.h.p) constructs an ε-canonical family F ⊆ 2E(G),
and handles the following queries:

Given a description [[C]] of a (1 + ε)-approximate cut, output a list of Õ(1) subsets in F
such that C is a disjoint union of those subsets in Õ(1) time.
Given a description of [[S]], S ∈ F , output a list of edges in S in Õ(|S|) time.

5.2 Range Cut-listing Data Structure
The cut listing data structure is encapsulated in the following theorem.

▶ Theorem 26 (Range Cut-listing Data Structure [6]). The cut-listing data structure, denoted
by D, maintains dynamically changing weighted graph (G, ŵ) and supports the following
operations.
D.Init(G, winit, λ, ε) where G is a graph, ŵ is an initial weight function, and mincutŵ ≥ λ:
initialize the data structure and the weight ŵ← winit in Õ(m) time.
D.FindCut() : output either a short description of a (1 + O(ε))-approximate mincut
[[C]] or ∅ (when mincutŵ > (1 + ε)λ). The operation takes amortized Õ(1) time.
D.Increment(∆) where ∆ = {(e, δe)} is the set of increments (defined by a pair of an
edge e ∈ E and a value δe ∈ R≥0): For each (e, δe) ∈ ∆, ŵ(e)← ŵ(e)+ δe. The operation
takes Õ(|∆|) time (note that |∆| corresponds to the number of increments).

As outlined earlier, the cut listing data structure will be invoked with ŵ = wρ.
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5.3 Truncated Lazy MWU Increment

The data structure is formally summarized by the definition below.

▶ Definition 27 (Truncated Lazy MWU Increment). A truncated lazy MWU increment denoted
by L maintains the approximate weight function w explicitly, and exact weight wmwu implicitly
and supports the following operations:14

L.Init(G, winit, ρ) where G is a graph, winit is the initial weight function, ρ ∈ R>0:
Intialize the data structure, and set w← winit.

L.Punish([[C]]) where C is a cut: Internally punish the free cut (C, F ) for some F (to
be made precise later) and output a list of increment ∆ = {(e, δe)} so that for each e ∈ E,
winit(e) plus the total increment over e is wρ(e).

L.Flush(): Return the exact weight wmwu.

Remark that the output list of increments returned by Punish is mainly for the purpose
of syncing with the cut listing data structure (so it aims at maintaining wρ instead of w).
Also, in the Punish operation, the data structure must compute the set F ⊆ C of free edges
efficiently (these are the edges whose weights would not be increased). This is one of the
reasons for which we cannot use the lazy update data structure in [6] as a blackbox.

▶ Theorem 28. There exists a lazy MWU increment with the following time complexity:
(i) init operation takes Õ(m) time, (ii) Punish takes Õ(K) + Õ

(∑
e log wmwu(e)

winit(e)

)
time in

total where K is the number of calls to Punish and outputs at most Õ
(∑

e log wmwu(e)
winit(e)

)
increments, and (iii) flush takes Õ(m) time. Moreover, the Invariant 24 is maintained
throughout the execution.

For space reason, we prove Theorem 28 in the full version of the paper.

5.4 A Fast Range Punisher for Normalized Free Cut Problem

Now we have all necessary ingredients to prove Theorem 22. The algorithm is very simple and
described in Algorithm 1. We initialize the cut-listing data structure D so that it maintains
the truncated weight wρ and the lazy weight data structure L. We iteratively use D to find
a cheap cut in (G, wρ) until no such cut exists. Due to our mapping theorem, such a cut
found can be used for our problem, and the data structure L is responsible for punishing the
weights (Line 8) and returns the list of edges to be updated (this is for the cut-listing D to
maintain its weight function wρ).

14 This is implicit in the sense that w is divided into parts and they are internally stored in different
memory segments. Whenever needed, the real weight can be constructed from the memory content in
near-linear time.
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Algorithm
Algorithm 1 FastRangePunisher(G, w, λ).

Input: G, winit, λ, ε such that OPTwinit ≥ λ.
Output: a correct weight function w = wmwu such that OPTw ≥ (1 + ε)λ.

1 w← winit and ρ← (1 + ε)λ
2 Let wρ be the truncated weight function of w.
3 if mincutwρ ≥ kρ then return w.
4 Let D and L be cut listing data structure, and truncated lazy MWU increment.
5 D.Init(G, wρ, kρ/(1 + ε), ε)
6 L.Init(G, w, ρ, ε)
7 while D.FindCut() returns [[C]] do
8 ∆← L.Punish([[C]])
9 D.Increment(∆)

10 w← L.Flush()
11 return w.

Analysis
By input assumption, we have OPTw ≥ λ. If w is returned at line 3, then mincutwρ ≥ kρ.
By Theorem 19(1), OPTwmwu ≥ OPTw ≥ ρ = (1 + ε)λ, and we are done (since minimum cut
can be computed in near-linear time). Now, we assume that w is returned at the last line.
The following three claims imply Theorem 22.

▷ Claim 29. For every cut [[C]] returned by the range cut listing data structure during
the execution of Algorithm 1, we have that (C, Hw,ρ ∩ C) is a (1 + O(ε))-approximation to
OPTwmwu at the time [[C]] is returned.

We remark that it is important that our cut punished must be approximately optimal
w.r.t. the actual MWU weight.

Proof. By definition of L.Flush() operation, we always have that the exact weight function
and approximate weight function are identical at the beginning of the loop. By definition of
L.Punish([[C]]), the total increment plus the initial weight at the beginning of the loop for
every edge e is wρ(e) and Invariant 24 holds. Therefore, by definition of D.Increment(∆),
the range cut-listing data structure maintains the weight function wρ internally. We now
bound the approximation of each cut [[C]] that D.FindCut() returned. Let F = Hw,ρ∩C. By
definition of FindCut(), we have that wρ(C) < kρ. By Theorem 19(2), valw(C, F ) < (1+ε)λ.
By Invariant 24, we have that valwmwu(C, F̃ ) < (1 + O(ε))λ. Since OPTwmwu ≥ OPTwinit ≥ λ,
we have (C, F ) is a (1 + O(ε))-approximation to OPTw. ◁

▷ Claim 30. At the end of Algorithm 1, we have OPTwmwu ≥ (1 + ε)λ.

Proof. Consider the time when D.FindCut() outputs ∅. The fact that this procedure
terminates means that mincutwρ ≥ kρ. Therefore, Theorem 19(1) implies that OPTw ≥
(1 + ε)λ. Let (C∗, F ∗) be an optimal normalized free cut with respect to wmwu. We have

OPTwmwu = valwmwu(C∗, F ∗)
≥ valw(C∗, F ∗)
≥ OPTw

≥ (1 + ε)λ

where the first inequality follows from Invariant 24. ◁
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▷ Claim 31. Algorithm 1 terminates in Õ(m + K + 1
ε ·
∑

e∈E log( w(e)
winit(e) )) time where K is

the number of Punish operations.

Proof. We first bound the running time due to truncated lazy MWU increment. By The-
orem 28, the total running time due to L (i.e., L.Init,L.Punish,L.Flush) is Õ(m + K +
1
ε ·
∑

e∈E log( w(e)
winit(e) )) time where K is the number of Punish operations. We bound the

running time due to cut-listing data structure. Observe that the number of cuts listed
equals the number of calls of Punish operations, and the total number of edge increments
in D is Õ

(
1
ε ·
∑

e∈E log( w(e)
winit(e) )

)
. By Theorem 26, the total running time due to D (i.e,

D.Init,D.FindCut(),D.Increment(∆)) is as desired. ◁

6 LP Rounding for kECSS (Proof of Theorem 15)

In this section, we show how to round the LP solution x found by invoking Theorem 1. The
main idea is use a sampling technique to sparsify the support of x. On the subgraph G′ ⊆ G

based on this sparsified support, we apply the 2-approximation algorithm of Khuller and
Vishkin [32] to obtain a (2 + ε)-approximation solution.

Let G be a graph with capacities c (we omit capacities whenever it is clear from the
context). Our algorithm performs the following steps.

Step 1: Sparsification

We will be dealing with the following LP relaxation for kECSS.

min{
∑

e∈E(G)

c(e)xe :
∑

e∈C\S

xe ≥ k− |S|, ∀C ∈ C ∀S ∈ {F : |F | ≤ k− 1∧F ⊆ C}, x ≥ 0}

Denote by LPkECSS(G) the optimal LP value on input G. We prove the following lemma in
the full version of the paper that will allow us to sparsify our graph without changing the
optimal fractional value by too much:

▶ Lemma 32. Given an instance (G, c), and in Õ(m/ε2) time, we can compute a subgraph
G′ having at most Õ(nk/ε2) edges such that LPkECSS(G′) = (1±O(ε))LPkECSS(G).

The first step is simply to apply this lemma to obtain G′ from G.

Step 2: Reduction to k-arborescences

Next, we reduce the kECSS problem to the minimum-cost k-arborescence problem which, on
capacitated directed graph (H, cH), can be described as the following IP:

min{
∑

e∈E(H)

cH(e)ze :
∑

e∈δ+(C)

ze ≥ k for C ∈ C; z ∈ {0, 1}E(H)}

where C is the set of all cuts C such that {r} ⊆ C ⊊ V (G). Denote by OPTar(H) and
LPar(H) the optimal integral and fractional values15 of the minimum-cost k-arborescence
problem respectively. We use the following integrality of its polytope:

▶ Theorem 33 ([41], Corollary 53.6a). The minimum-cost k-arborescence’s polytope is integral,
so we have that OPTar(H) = LPar(H) for every capacitated input graph H.

15 The relaxation is simply min{
∑

e∈E(H) cH(e)ze :
∑

e∈δ+(C) ze ≥ k for C ∈ C; z ∈ [0, 1]E(H)}.
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For any undirected graph G, denote by D[G] the directed graph obtained by creating, for
each (undirected) edge uv in G, two edges (u→ v) and (v → u) in D[G] whose capacities
are just c(uv). We will use the following theorem by Khuller and Vishkin (slightly modified)
that relates the optimal values of the two optimization problems.

▶ Theorem 34. For any graph (H, c), the following properties hold:
LPar(D[H]) ≤ 2LPkECSS(H), and
Any feasible solution for k-arborescences in D[H ] induces a feasible kECSS solution in H

of at most the same cost.

Note that Theorem 33 and the algorithm by Khuller and Vishkin imply that the integrality
gap of the kECSS LP is at most 2. While this result is immediate, it seems to be a folklore.
To the best of our knowledge, it was not explicitly stated anywhere in the literature. This
integrality gap allows us to obtain the first part of Corollary 2. We defer the proof of
Theorem 34 to the full version of the paper. Our final tool to obtain Theorem 15 (and the
second part of Corollary 2) is Gabow’s algorithm:

▶ Theorem 35 ([20]). Given a graph G = (V, E, c) with positive cost function c, a fixed
root r ∈ V , and let cmax be the maximum cost on edges, there exists an algorithm that in
Õ(km

√
n log(ncmax)) time outputs the integral minimum-cost k-arborescence.

Algorithm of Theorem 15

Now, using the graph G′ created in the first step, we create D[G′], and invoke Gabow’s
algorithm to compute an optimal k-arborescence in D[G′]. Let S ⊆ E(G) be the induced
kECSS solution.

The cost of S is at most:

OPTar(D[G′]) ≤ LPar(D[G′])
≤ 2LPkECSS(G′)
≤ 2(1 + O(ε))LPkECSS(G)
≤ 2(1 + O(ε))OPTkECSS(G)

The first inequality is due to Theorem 33. The second one is due to Theorem 34 (first bullet).
The third one is due to Lemma 32.

Analysis

Step 1 takes Õ(m/ε2) time, by Lemma 32. As the sparsified G′ has m′ = Õ( nk
ε2 ) edges,

for Step 2, by Theorem 35, we can compute the arborescence in O(km′√n log(ncmax)) =
Õ( k2n1.5

ε2 log cmax) time. We show in the full version how to remove the term log cmax in our
case. In summary, the total running time is Õ

(
m
ε2 + k2n1.5

ε2

)
. Notice that the running time

can be Õ( m
ε2 + Tk(kn/ε2, n)) if we let the running time of Theorem 35 be Tk(m, n), this

complete the proof for Theorem 15.
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Abstract
Given n points in ℓd

p, we consider the problem of partitioning points into k clusters with associated
centers. The cost of a clustering is the sum of pth powers of distances of points to their cluster
centers. For p ∈ [1, 2], we design sketches of size poly(log(nd), k, 1/ϵ) such that the cost of the
optimal clustering can be estimated to within factor 1 + ϵ, despite the fact that the compressed
representation does not contain enough information to recover the cluster centers or the partition
into clusters. This leads to a streaming algorithm for estimating the clustering cost with space
poly(log(nd), k, 1/ϵ). We also obtain a distributed memory algorithm, where the n points are
arbitrarily partitioned amongst m machines, each of which sends information to a central party who
then computes an approximation of the clustering cost. Prior to this work, no such streaming or
distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1, 2).
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1 Introduction

Given a large number of high-dimensional points, is it possible to compress the raw represent-
ation into a very compact sketch so that we can understand how clusterable the data is from
just this highly compressed representation? Given n points in d dimensions, we consider
the problem of approximating the cost of clustering them into k clusters from a compressed
representation whose size is polylogarithmic in both n and d.

For n, d ∈ N, let P = {x1, . . . , xn} ∈ Rd be any set of points with polynomially bounded
entries (i.e., all coordinates may be represented with O(log(nd)) bits). The (k, z)-clustering
problem in ℓd

p, asks to partition P into at most k clusters C1, . . . , Ck so as to minimize

k∑
ℓ=1

min
cℓ∈Rd

∑
x∈Cℓ

∥x − cℓ∥z
p. (1)

The problem is a generalization of the k-means and k-median problem; in particular, in
Euclidean space (p = 2), z = 2 corresponds to k-means, and z = 1 to k-median.

We note that the raw representation of the dataset uses O(nd log(nd)) bits, and that any
algorithm which outputs optimal cluster centers c1, . . . , ck ∈ Rd, or the optimal clustering
C1, . . . , Ck must utilize Ω(kd), or Ω(n log k) bits of space, respectively. Hence, such algorithms
cannot decrease the dependency on both n and d simultaneously. However, this does not rule
out an exponential compression, from O(nd log(nd)) bits to polylog(nd) bits (for constant
k and z), for algorithms which approximate the optimal clustering cost, which only needs
O(log(nd)) bits. In this work, we show that it is indeed possible to design sketches of size
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poly(log(nd), 1/ϵ) bits which ϵ-approximate the optimal clustering cost, despite the fact that
we do not have enough information to compute the clusters nor the cluster centers which
achieve such cost.

Our results fit into a line of prior work on approximating the cost of optimization problems
without necessarily computing an optimal solution. These have been investigated before
for various problems and in various contexts, including estimating minimum spanning tree
[40, 31, 33], minimum cost matchings and Earth Mover’s Distance [40, 5, 3, 13], minimum
vertex cover and maximum matching [59, 56, 62, 57, 26, 47, 15] and model-fit [49, 48, 17].
Specifically for clustering problems, the value of the clustering cost is an important statistic;
used, for example, in the “elbow method” for determining the number of clusters needed. We
will show these sketches may be efficiently maintained on a stream as well as for distributed-
memory models, implying polylog(nd)-bit algorithms for these models of computation.

We start by reviewing a set of techniques in the literature to either reduce the dependence
on the data set size or the dependence on the dimension.

Coresets

The coreset technique is a “dataset compression” mechanism, aiming to reduce the dependency
on n. From the n points P ⊂ Rd, an algorithm computes a much smaller (weighted) set
of points S ⊂ Rd, w : S → R≥0, such that the cost of clustering the weighted points S, w

approximates that of P . Following a long line of work [11, 36, 1, 24, 52, 34, 35, 20, 61, 39, 29],
the best coreset constructions for (k, z)-clustering in ℓp achieve sizes Õ(k/ϵ4) ·min{1/ϵz−2, k}
for a (1 ± ϵ)-approximation. The ensuing streaming and distributed-memory algorithms
maintain a coreset of the input; these algorithms find (approximately) optimal centers
c1, . . . , ck ∈ Rd and use space complexity d · Õ(k/ϵ4) · min{1/ϵz−2, k} · polylog(n).1

Dimension Reduction and Sketching

In addition to constructing coresets, an algorithm may seek to optimize the dependence
on d. There is a large body of work studying (oblivious) dimensionality reduction and
sketching, where strong compression results are known for computing distances [2, 51, 60,
12, 23, 30, 42, 41, 44, 46, 7, 8, 18]. For example, for p ∈ [1, 2] there exists a (randomized)
sketch sk : Rd → R

t with t much smaller than d such that, for any two vectors x, y ∈ Rd,
an algorithm can approximate ∥x − y∥p from sk(x) and sk(y) with high probability. While
these results are encouraging, leveraging such sketches for distance computation in order to
compress entire optimization problems like (1) is highly nontrivial. The challenge is that (1)
implicitly considers distances among infinitely many vectors, and we need to rule out the
possibility of spurious low cost solutions in the “sketched” space which do not have an analog
in the original space. In particular, prior to this work, no streaming or distributed-memory
algorithm was known which could reduce the dependence on d for p ∈ [1, 2).

There is one setting, of Euclidean space (p = 2), where one can sketch vectors while
preserving (1). A sequence of works [19, 27, 14, 55] show that applying a Johnson-
Lindenstrauss [45] map Π : Rd → R

t with t = O(z4 log(k/ϵ)/ϵ2), sketches Euclidean vectors
to O(t log(nd)) bits and preserves (1) up to 1±ϵ. We emphasize that Euclidean space p = 2 is
special in this regard, because the Johnson-Lindenstrauss map achieves dimension reduction,
a property known not to hold in ℓ1 [22, 54, 4]. In particular, d-dimensional vectors x ∈ Rd

in Euclidean space are sketched to vectors Π(x) ∈ Rt in Euclidean space, i.e., one estimates

1 The log n-factors arise from utilizing the “merge-and-reduce” framework for maintaining coresets on a
stream [16, 1], and the fact the coreset constructions are randomized.
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∥x−y∥2 by ∥Π(x) −Π(y)∥2. Thus the optimization problem (1) for d-dimensional Euclidean
space reduces to the same optimization problem for a much smaller dimensional Euclidean
space. This can therefore be composed with known coreset constructions. Importantly, the
“sketched” space inherits all geometric properties of Euclidean spaces, a key aspect of prior
works, and the reason they do not extend beyond Euclidean space. The technical challenge
in applying sketches for ℓp when p ̸= 2 is that the “sketched” space is non-geometric.2

1.1 Our results
We give a streaming and distributed-memory algorithm for (k, p)-clustering in ℓp with space
complexity poly(log(nd), k, 1/ϵ) bits.

▶ Theorem 1 (Streaming (k, p)-Clustering in ℓp). For p ∈ [1, 2], there exists an insertion-only
streaming algorithm which processes a set of n points x1, . . . , xn ∈ Rd utilizing
poly(log(nd), k, 1/ϵ) bits which outputs a parameter η ∈ R satisfying

(1 − ϵ) min
C1,...,Ck

partition [n]

k∑
ℓ=1

min
cℓ∈Rd

∑
i∈Cℓ

∥xi − cℓ∥p
p ≤ η ≤ (1 + ϵ) min

C1,...,Ck

partition [n]

k∑
ℓ=1

min
cℓ∈Rd

∑
i∈Cℓ

∥xi − cℓ∥p
p

with probability at least 0.9.

▶ Theorem 2 (Distributed-Memory (k, p)-Clustering in ℓp). For p ∈ [1, 2], there exists a public-
coin protocol where m machines receive an arbitrary partition of n points x1, . . . , xn ∈ Rd,
each communicates poly(log(md), k, 1/ϵ) bits to a central authority who outputs a parameter
η ∈ R satisfying

(1 − ϵ) min
C1,...,Ck

partition [n]

k∑
ℓ=1

min
cℓ∈Rd

∑
i∈Cℓ

∥xi − cℓ∥p
p ≤ η ≤ (1 + ϵ) min

C1,...,Ck

partition [n]

k∑
ℓ=1

min
cℓ∈Rd

∑
i∈Cℓ

∥xi − cℓ∥p
p

with probability at least 0.9.

Both algorithms will follow from applying a coreset and compressing the representation
of the coreset points into sketches to recover single-cluster cost. Specifically, the bottleneck
for our algorithm will be estimating the cost of (k, p)-clustering in ℓp for k = 1. We give
a linear sketch such that given a set of points x1, . . . , xn ∈ Rd, one may approximate the
ℓp

p-median cost:

min
y∈Rd

n∑
i=1

∥xi − y∥p
p.

Most of the technical work will be devoted to sketching this “ℓp
p-median cost” objective.

Then, the streaming and distributed-memory algorithm will evaluate the sum of ℓp
p-median

costs for all possible partitions of the coreset points into k parts. The following theorem
gives a linear sketch for approximating the ℓp

p-median cost.3

2 For example, the sketched space for ℓp with p ̸= 2 does not satisfy the triangle inequality: it is not
the case that for any x, y, z ∈ Rd, the estimate of (sk(x), sk(y)) plus the estimate of (sk(y), sk(z)) is
less than the estimate of (sk(x), sk(z)). On the other hand, for p = 2, the estimates of (sk(x), sk(y)),
(sk(y), sk(z)), and (sk(x), sk(z)) are ∥sk(x) − sk(y)∥2, ∥sk(y) − sk(z)∥2, and ∥sk(x) − sk(z)∥2, so the
triangle inequality does hold in the sketched space.

3 A related although different work is that of approximating the ℓp
p-median (for instance, see Appendix F

of [10]). An ℓp
p-median is a vector in Rd which means the sketch outputs d numbers; however, we will

sketch the ℓp
p-median cost, which is a real number. Hence, our sketch will use poly(log(nd), 1/ϵ) space,

as opposed to Ω(d) space needed to describe an ℓp
p-median.
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▶ Theorem 3 (ℓp
p-Median Sketch). For p ∈ [1, 2], there exists a linear sketch which processes

a set of n points x1, . . . , xn ∈ Rd into a vector Rt with t = poly(log(nd), 1/ϵ) and outputs a
parameter η ∈ R satsifying

(1 − ϵ) min
y∈Rd

n∑
i=1

∥xi − y∥p
p ≤ η ≤ (1 + ϵ) min

y∈Rd

n∑
i=1

∥xi − y∥p
p

with probability at least 0.9.

There are a few important remarks to make:
The requirement that p ≤ 2 is necessary for the exponential compression we desire. For
p > 2, there are strong lower bounds for sketching distances which show that such sketches
require Ω(d1−2/p) space [12]. For p < 1, we are not aware of small coresets.
The focus of this work is on optimizing the space complexity of the sketch, and while we do
not explicitly specify the running time of the sketching and streaming algorithms, a naive
implementation runs in time (k log(nd)/ϵ)(k log n/ϵ)O(1) . The exponential factor is due to
the fact that we evaluate the cost of all possible partitions of the (k log(n)/ϵ)O(1)-coreset
points into k clusters. One could alleviate the exponential dependence to (k/ϵ)O(1) (as
opposed to (k log n/ϵ)O(1)) by running more sophisticated approximation algorithms
[11, 50] on the sketched representation of the coreset.4 We note that a super-polynomial
dependence on k should is unavoidable, because (1±ϵ)-approximations for (k, z)-clustering
problems, for non-constant k, are NP-hard [9, 53, 28].
It would be interesting to generalize Theorem 1 to dynamic streams. The reason our
algorithm works in the insertion-only model is that we utilize the coreset of [39] with the
merge-and-reduce framework [16, 1] which do not support deletions. While there exist
dynamic coreset constructions for the streaming model [21, 38], our use of coresets is
not entirely black-box. Other dynamic coresets, like [37], focus on update time and do
not optimize the space complexity. We must ensure that the algorithm for constructing
the coreset does not utilize the d-dimensional representation of the dataset points. The
coreset construction of [39] only consider distances between the dataset points, so it
suffices for us to only maintain a sketch of the dataset points.
The fact that z = p in our theorems above is a consequence of our techniques. It is
unclear to us whether this assumption is necessary, although our approach hinges on the
fact ℓp

p is additive over the d coordinates. We leave this as a problem for future work.

A similar, yet importantly different notion of (k, z)-clustering considers medoid cost,
where the centers of the k clusters c1, . . . , ck are restricted to be dataset points. While
seemingly similar to the (k, z)-clustering objective where centers are unrestricted, these two
are qualitatively very different from a sketching perspective. In the full version, we show that
while a two-pass sketching algorithm may ϵ-approximate the medoid cost, ϵ-approximations
for one-pass sketching algorithm require polynomial space.

1.2 Technical Overview
We give an overview of Theorem 3. Once that is established, combining the ℓp

p-median sketch
with coresets, thereby establishing Theorems 1 and 2 is (relatively) straight-forward (for
more details, we refer the reader to the full version). Recall that for p ∈ [1, 2], we will process
n points x1, . . . , xn ∈ Rd, and aim to return an approximation to the ℓp

p-median cost:

4 The one subtlety is that the algorithm should be implemented without explicitly considering the
d-dimensional representation of the points. Instead, it should only use the sketches of Theorem 3.
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min
c∈Rd

n∑
i=1

∥xi − c∥p
p. (2)

It will be useful to assume that the points are centered, i.e.,
∑n

i=1 xi = 0 ∈ Rd (we can
enforce this because our sketches will be linear). The approach will come from the fact that
the above optimization problem decomposes into a sum of d independent optimizations, one
for each coordinate, and (2) seeks to evaluate the sum. Specifically, we may write

min
c∈Rd

n∑
i=1

∥xi − c∥p
p =

d∑
j=1

min
cj∈R

n∑
i=1

|xij − cj |p.

Furthermore, for any fixed j ∈ [d], estimating

min
cj∈R

n∑
i=1

|xij − cj |p (3)

is much more amenable to ℓp-sketching. Specifically, we let x·,j ∈ Rn be the vector containing
the j-th coordinates of all n points, and 1 ∈ Rn be the all-1’s vector. Then, the quantity∑n

i=1 |xij − cj |p = ∥x·,j − cj1∥p
p, and since the ℓp-sketches are linear, an algorithm may

maintain sk(x·,j) ∈ Rt (for t = poly(log(nd))) and after processing, could iterate through
various values of cj ∈ R to evaluate(

n∑
i=1

|xij − cj |p
)1/p

= ∥x·,j − cj1∥p ≈1±ϵ estimate of (sk(x·,j), sk(cj1)),

and output the smallest value of cj ∈ R found. In order to guarantee an (1±ϵ)-approximation
of (3), only poly(1/ϵ) values of cj need to be tried (since first evaluating cj = 0 will specify
the range where the optimal cj may lie). A simple union bound implies that for any fixed
j ∈ [d], we can prepare a small sketch sk(x·,j) from which we can approximate (3).

In summary, we want to estimate the sum of d minimization problems. Even though
each of the d problems could be solved independently with a linear sketch, we do not want
to process d linear sketches (as this increases space). In addition, we do not know which of
the d minimizations will significantly affect the sum; hence, if we only (uniformly) sampled
few j1, . . . , jt ∼ [d] and only processed t ≪ d sketches along the sampled dimensions, the
variance of the estimator may be too large, making it completely useless. The technique
we will use was recently developed in [25], building on [6, 43], under the name “ℓp-sampling
with meta-data.” In this paper, we further develop the ideas, and apply them to sketches for
clustering in a simple and modular way. We refer the reader to Remark 4 (following this
technical overview), where we expand on the comparison to [25].

The goal is to approximate the sum of the d minimization problems by importance
sampling (see Chapter 9 of [58]). While importance sampling is a well-known technique, it’s
use in (one-pass) linear sketching algorithms is counter-intuitive, and we are not aware of
any linear sketches which use importance sampling in the literature, expect for this and
the recent work of [25, 32]. Importance sampling will aim to estimate (2) by sampling with
respect to an alternate distribution D. In particular, (2) may be re-written as

d · E
j∼[d]

[
min
cj∈R

n∑
i=1

|xij − cj |p
]

= d E
j∼D

[Yj ] where

Yj
def= min

cj∈R

n∑
i=1

|xij − cj |p · 1
PrD[j] , (4)
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where D is a distribution chosen so the variance of the random variable Yj for j ∼ D is
bounded. Once the variance of the random variable is bounded, only a few samples are
needed to estimate its expectation in (4). In general, the alternate distribution D depends
on the data in order to decrease the variance; for instance, coordinates j ∈ [d] whose value of
(3) is higher should be sampled more often. Hence, importance sampling inherently interacts
with the data in a two-stage process: 1) first, it samples j ∼ D (where the distribution is
data-dependent), and 2) second, it evaluates Yj by using (3) and PrD[j] for the value j ∈ [d]
specified in the first step.

In a two-pass algorithm, the two steps may be implemented sequentially. A sampling
sketch, like that of [43], is used to sample j ∼ D in the first pass. In the second pass, the
algorithm knows the value of the sampled j, so it maintains a sketch sk(x·,j) of size t and a
sketch sk′(PrD[j]) of size t′ (to estimate PrD[j]) from which it can evaluate the random
variable Yj . The counter-intuitive aspect is that, in this case, we will perform both steps in
one-pass:

We will use an ℓp-sampling sketch of [43] to sample from an importance sampling
distribution D, and
Concurrently, we prepare 2d linear sketches: d sketches sk(x·,j) to evaluate (3), one for
each j ∈ [d], and d sketches sk′(PrD[j]) to evaluate PrD[j], one for each j ∈ [d]. The
non-trivial part is to sketch the sketches. by compressing the 2d linear sketches into a
O(polylog(nd))-bit Count-Min data structure [30].

The guarantee will be that the ℓp-sampling sketch of [43] generates a sample j ∼ D, and the
Count-Min data structure can recover an approximation

ŝk1 ≈ sk(x·,j) and ŝk2 ≈ sk′(PrD[j]).

Furthermore, the sketch evaluation algorithm, which executes on the approximation ŝk1 and
ŝk2, should be able to recover (1 ± ϵ)-approximations to (3) and PrD[j], so that the ratio of
the two is a (1 ± 2ϵ)-approximation to Yj .

While the above plan provides a general recipe for importance sampling, the idea of
“sketching the sketches” may not be applied in a black-box manner. First, the alternate
distribution D should admit a sampling sketch. Second, the sketch evaluation algorithm
for sk(x·,j) and sk′(PrD[j]) should be robust to the errors introduced by the Count-Min
compression. Bounding the errors introduced by the Count-Min data structure, and ensuring
that the approximate sketches ŝk1 and ŝk2 constitutes the bulk of the technical work.
Specifically for us, the plan is executed as follows: when

∑n
i=1 xi = 0 ∈ Rd, every j satisfies

(we refer the reader to the full version for a thorough justification)

mincj∈R
∑n

i=1 |xij − cj |p

∥x·,j∥p
p

∈ [2−p, 1]. (5)

Hence, we will let D be the distribution supported on [d] given by setting, for each j ∈ [d],

Pr
j∼D

[j = j] =
∥x·,j∥p

p

Z
where Z =

d∑
j=1

∥x·,j∥p
p =

n∑
i=1

d∑
j=1

|xij |p.

Note that (5) implies the variance of Yj for j ∼ D is appropriately bounded. Furthermore,
since D is an ℓp-sampling distribution, the ℓp-sampling sketches of [43] are useful for sampling
j ∼ D. Finally, the approach of [43] is particularly suited for bounding the errors incurred
by Count-Min on ŝk1 and ŝk2, which we overview below.
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At a high level, the ℓp-sampling sketch of [43] generates a sample j from [d] by identifying
a heavy hitter in a random scaling of the vector specifying the sampling probabilities. In
particular, the algorithm generates u1, . . . , ud ∼ Exp(1) and identifies an entry j ∈ [d] in
the vector(

∥x·,1∥p

u
1/p
1

,
∥x·,2∥p

u
1/p
2

, . . . ,
∥x·,d−1∥p

u
1/p
d−1

,
∥x·,d∥p

u
1/p
d

)
∈ Rd,

whose value satisfies

∥x·,j∥p

u
1/p
j

≳

 d∑
j′=1

∥x·,j′∥p
p

uj′

1/p

, (6)

and is the largest among those heavy hitters. For the coordinate j ∈ [d] recovered by the
ℓp-sampling sketch [43], the inequality (6) gives a lower bound on how large 1/u

1/p
j will be.

In particular, by applying the same transformation to the vector of sketches,(
sk(x·,1)

u
1/p
1

, . . . ,
sk(x·,d)

u
1/p
d

)
∈ (Rt)d and(

sk′(PrD[1])
u

1/p
1

, . . . ,
sk′(PrD[d])

u
1/p
d

)
∈ (Rt′

)d, (7)

the t and t′ coordinates corresponding to the sketches sk(x·,j) ∈ Rt and sk′(PrD[j]) ∈ Rt′

will be heavy hitters of those vectors as well. Namely, with only poly(log(nd), 1/ϵ)-bits, the
Count-Min data structure will recover the entries of sk(x·,j) and sk′(PrD[j]) up to a small
additive error, proportional to the ℓ1-norm of (7). We know the distribution of sketched
vectors (7) (since these are simply ℓp-sketches [41]), so we will be able to bound the additive
error and show that the sketch evaluation algorithms of ŝk1 and ŝk2 return the desired
(1 ± ϵ)-approximations.
▶ Remark 4 (Comparison to [25]). The technique, “ℓp-sampling with meta-data”, arises
in [25] in the following context. They seek a linear sketch sk : Rd → R

t which can process
a vector y ∈ Rd and evaluate a weighted ℓ1-norm,

∑d
i=1 wi(y) · |yi|, where the weights

w1(y), . . . , wd(y) ∈ R≥0 are themselves dependent on the vector y. This arises as an
algorithmic step in streaming algorithms for geometric minimum spanning tree and the
earth-mover’s distance. Mapping the above formulation to our setting, we want to evaluate
a weighted ℓ1-norm as well, where the i-th weight corresponds to Prj∼D[j = i], and the
i-th value seek to sum is Yi (as in (4)). The perspective of this technique as importance
sampling (as presented in this work) is new. Indeed, the appropriate setting of weights is
only apparent once one multiplies and divides the contribution of the j-th coordinate by
∥x·,j∥p

p to define D.

2 Sketching Median Costs

2.1 Statement of Main Lemma
▶ Theorem 5. Fix n, d ∈ N, as well as p ∈ [1, 2] and ϵ, δ ∈ (0, 1). There exists a linear
sketch using poly(log d, 1/ϵ, log(1/δ)) space which processes a set of n points x1, . . . , xn ∈ Rd,
and outputs a parameter η ∈ R which satisfies

min
y∈Rd

n∑
i=1

∥y − xi∥p
p ≤ η ≤ (1 + ϵ) min

y∈Rd

n∑
i=1

∥y − xi∥p
p

with probability at least 1 − δ.
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38:8 Polylogarithmic Sketches for Clustering

We work with the following representation of a linear sketch. The processed set of n points
in Rd are stacked to form a vector x ∈ Rnd. A linear sketch using space s is a distribution
M supported on s × (nd) matrices. The theorem states that for any fixed x1, . . . , xn ∈ Rd,
with probability 1 − δ over the draw of S ∼ M, an algorithm with access to the vector
Sx ∈ Rs and S can output η satisfying the above guarantees.

Linear sketches of the above form imply efficient streaming algorithms, albeit with some
subtleties. It is useful to first assume that the streaming algorithm can store its randomness
for free (we will address this in the full version) so that it knows the matrix S. In particular,
since S ∈ Rs×nd acts on the vector x ∈ Rnd which vertically stacks x1, . . . , xn ∈ Rd, the
columns of S may be broken up into n groups of size d, so

S =
[

S1 S2 . . . Sn

]
, and Sx =

n∑
i=1

Sixi.

In the insertion-only model, an algorithm would process the points one-at-a-time, and at
time-step j, maintain

∑j
i=1 Sixi ∈ Rs. In the turnstile model of streaming, there is a subtlety

in the implementation; namely, as the algorithm receives insertions and deletions of points
in Rd, it must know which index i ∈ [n] it is considering. The reason is that the algorithm
should know which of the sub-matrix Si to update the point with.

For our application of the ℓp
p-median sketch to (k, p)-clustering in ℓp, we consider a

weighted ℓp
p-median. Namely, for points x1, . . . , xn ∈ Rd and weights λ1, . . . , λn ∈ [0, 1] with∑n

i=1 λi = 1, the ℓp
p-median cost with respect to weights λ1, . . . , λn is

min
y∈Rd

n∑
i=1

λi∥y − xi∥p
p.

It is useful to first consider of λ1 = · · · = λn = 1/n. For general weights, the sketch will
receive as input S = [S1, . . . , Sn] ∈ Rs×(nd), the vector

∑n
i=1 λ

1/p
i Sixi ∈ Rs, and the weights

λ1, . . . , λn.

Centering Points

There is a straight-forward way to process the points so as to assume they are centered.
Specifically, the average point may be subtracted from every point by applying a linear map,
and since our sketch is linear, subtracting the average point may be incorporated into the
sketch. For weights λ1, . . . , λn ∈ [0, 1] satisfying

∑n
i=1 λi = 1, we consider the linear map

(x1, . . . , xn) 7→

(
x1 −

n∑
i=1

λixi, . . . , xn −
n∑

i=1
λixi

)
∈ Rnd.

Hence, we assume, without loss of generality, that the points x1, . . . , xn ∈ Rd satisfy
n∑

i=1
λixi = 0 ∈ Rd. (8)

The centering is useful for deriving the following set of inequalities, which will be useful
for our sketching procedures. Suppose we denote y ∈ Rd as the point which minimizes∑n

i=1 λi∥y − xi∥p
p. Then, for every j ∈ [d],

n∑
i=1

λi|yj − xij |p ≤
n∑

i=1
λi|xij |p ≤ 2p

n∑
i=1

λi|yj − xij |p.
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Importantly for us, every j ∈ [d] satisfies

2−p ≤
minyj∈R

∑n
i=1 λi|yj − xij |p∑n

i=1 λi|xij |p
≤ 1. (9)

We let D be the distribution supported on [d] given by setting, for each j ∈ [d],

Pr
j∼D

[j = j] = 1
Z

n∑
i=1

λi|xij |p where Z =
d∑

j′=1

n∑
i=1

λi|xij′ |p =
n∑

i=1
λi∥xi∥p

p.

Then, the quantity we want to estimate may be equivalently re-written as:

d∑
j=1

min
yj∈R

n∑
i=1

λi|yj − xij |p = Z · E
j∼D

[minyj∈R
∑n

i=1 λi|yj − xij |p∑n
i=1 λi|xij |p

]
, (10)

where the value within the expectation is bounded between 2−p and 1. Furthermore, the
quantity Z will be sketched with an ℓp-sketch, and a sample j ∼ D will be drawn with an
ℓp-sampling sketch. Hence, the plan is to produce t = O(1/ϵ2) samples of j1, . . . , jt ∼ D, and
produce a sketch to evaluate the numerator inside the expectation, and the denominator inside
the expectation. Taking an empirical average of the samples to estimate the expectation,
and multiplying it by the estimate of Z will give the desired estimator.

▶ Lemma 6 (Main Lemma). For any n, d ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1), let s =
poly(log d, 1/ϵ, 1/δ).5 There exists a distribution S over s × (nd) matrices, and an algorithm
such that for any n vectors x1, . . . , xn ∈ Rd and any λ1, . . . , λn ∈ [0, 1] with

∑n
i=1 λi = 1

and
∑n

i=1 λixi = 0, the following occurs:
We sample S = [S1, . . . , Sn] ∼ S, and we give the algorithm as input S,

∑n
i=1 Si(λ1/p

i xi),
and λ1, . . . , λn.
The algorithm outputs a tuple of three numbers (j, α, β) ∈ [d] × R≥0 × R≥0. With
probability at least 1 − δ over the draw of S ∼ S, we have the following two inequalities:

(1 − ϵ)
(

n∑
i=1

λi|xij |p
)1/p

≤ α ≤ (1 + ϵ)
(

n∑
i=1

λi|xij |p
)1/p

,

(1 − ϵ) min
z∈R

(
n∑

i=1
λi|xij − z|p

)1/p

≤ β ≤ (1 + ϵ) min
z∈R

(
n∑

i=1
λi|xij − z|p

)1/p

.

Furthermore, the distribution of the random variable j is ϵ2−p-close in total variation
distance to D.

Proof of Theorem 5 assuming Lemma 6. Given Lemma 6, the proof of Theorem 5 is
straight-forward. We fix λ1 = · · · = λn = 1/n, and we first handle the centering. We
will utilize Lemma 6 which requires vectors x1, . . . , xn to satisfy

∑n
i=1 λixi = 0; hence, we

sketch the vectors x′
1, . . . , x′

n given by x′
i = xi −

∑n
h=1 λhxh, which are now centered. By

linearity, this is equivalent to maintaining the vector

n∑
i=1

λ
1/p
i Si(xi −

n∑
h=1

λhxh) =
n∑

i=1

(
λ

1/p
i Si − λi

n∑
h=1

λ
1/p
h Sh

)
xi ∈ Rs.

5 See the full version for the specific polynomial bounds.
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We take t = ω(1/ϵ2) independent sketches from Lemma 6 with accuracy parameter ϵ/2 and
error probability δ = o(1/t). This, in turn, gives us t independent samples (j1, α1, β1),
. . . , (jt, α1, βt). By taking a union bound over the t executions of Lemma 6, with high
probability, every α1, . . . , αt and β1, . . . , βt satisfy

αp
ℓ ≈(1+ϵp/2)

n∑
i=1

λi|xik|p and βp
ℓ ≈(1+ϵp/2) min

z∈R

n∑
i=1

λi|xik − z|p,

and j1, . . . , jt are independent draws from a distribution D′ which is ϵ2−p-close to D. For
estimating Z, we use an ℓp-sketch to accuracy ϵ/2 and failure probability δ = o(1). For
example, the sketch for Z may proceed by applying an ℓp-sketch [41] to the stacked vector
x′ ∈ Rnd where

x′
ij = λ

1/p
i · xij ,

so that the ℓp norm of x′ is exactly Z1/p. Let Ẑ be the estimate for the Z. For our estimate
η that we will output, we set

η = Ẑ · 1
t

t∑
ℓ=1

minmax
{

2−p,

(
βℓ

αℓ

)p

, 1
}

,

where minmax(l, x, u) is l if x ≤ l, u if u ≥ x, and x otherwise. To see why our estimator
approximates (10), we have Ẑ is a (1 ± ϵ/2)-approximation of Z. The latter quantity is the
empirical average of t i.i.d random variables, each of which is bounded by 2−p and 1. In
particular, we have that with probability at least 1 − o(1), Chebyshev’s inequality, and the
conditions of βℓ and αℓ,

E
j∼D′

[
minz∈R

∑n
i=1 λi|xij − z|p∑n

i=1 λi|xij |p

]
≈(1+2ϵp)

1
t

t∑
ℓ=1

minmax
{

2−p,

(
βℓ

αℓ

)p

, 1
}

.

It remains to show that

E
j∼D′

[
minz∈R

∑n
i=1 λi|xij − z|p∑n

i=1 λi|xij |p

]
≈(1±ϵ) E

j∼D

[
minz∈R

∑n
i=1 λi|xij − z|p∑n

i=1 λi|xij |p

]
.

This follows from two facts: (1) D′ and D are ϵ2−p close, since the random variable is at
most 1, the expectations are off by at most an additive ϵ2−p-factor, and (2) both quantities
above are the average of random variables which are at least 2−p, so an additive ϵ2−p error
is less than a multiplicative (1 ± ϵ)-error.

The above gives an estimate which is a 1 ± ϵ-approximation with probability 1 − o(1), in
order to boost the probability of success to 1 − δ, we simply repeat O(log(1/δ)) times and
output the median estimate. ◀

The remainder of the section is organized as follows. We give in the (next) Subsection 2.2,
the necessary sketches for obtaining α and β for a fixed coordinate j. Then, in the following
Subsection 2.3, we show how we combine various sketches from Subsection 2.2 for different
j ∈ [d] to obtain α and β up to some additive error. Finally, the proof of Lemma 6 appears
in the full version, where we apply a randomized transformation to the input so that the
additive error from Subsection 2.3 is a multiplicative error for the specific sampled j.
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2.2 Sketch for Optimizing a Single Coordinate
In this subsection, we give linear sketches which are useful for optimizing over a single
coordinate. Specifically, given the n vectors x1, . . . , xn ∈ Rd and j ∈ [d], we consider the
k-th coordinate of the n vectors x1j , x2j , . . . , xnj ∈ R. Hence, the linear sketches in this
section will act on vectors in Rn, corresponding to the j-th coordinates of the points, and
will give approximations to

n∑
i=1

λj |xij |p (Corollary 8) and min
yj∈R

n∑
i=1

λj |yj − xij |p. (Lemma 9)

The lemma statements also consider an additive error term, err ∈ R≥0, which will be
necessary when combining these sketches in Subsection 2.3; however, it may be helpful to
consider err = 0 on first reading.

▶ Lemma 7. For any n ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1), let s = O(log(1/δ)/ϵ2). There
exists a distribution M over s × n matrices, and an algorithm such that for any x ∈ Rn,
λ1, . . . , λn ∈ [0, 1], and y ∈ R, the following occurs:

We sample S ∼ M as well as a random vector χ = (χ1, . . . , χs) ∈ Rs where each is an
i.i.d p-stable random variable. For any err ∈ R≥0, we give the algorithm as input S,
S(λ1/p ◦ x) + err · χ, the parameters λ1, . . . , λn, and y.6

The algorithm outputs a parameter η̂ ∈ R≥0, which depends on S, S(λ1/p ◦ x) + err · χ, the
parameters λ1, . . . , λn, and y which satisfies with probability at least 1 − δ over S and χ,

(1 − ϵ)
(

n∑
i=1

λi|xi − y|p + errp

)1/p

≤ η̂ ≤ (1 + ϵ)
(

n∑
i=1

λi|xi − y|p + errp

)1/p

. (11)

Furthermore, for every j ∈ [s], the random variables (S(λ1/p ◦ x))j ∈ R are distributed as
∥λ1/p ◦ x∥p · χj, where χj are independent, p-stable random variables.

Proof. We notice that this simply corresponds to an ℓp-sketch of the vector z ∈ Rn, which
is given by letting each zi = λ1/p ◦ (xi − y), so that the ℓp-sketch of [41] would accomplish
this task. Since the algorithm receives S, S(λ1/p ◦ x) + err · χ and y ∈ R, the algorithm may
compute S(λ1/p ◦ y · 1), where 1 ∈ Rn is an all-1’s vector, and evaluate the sketch

S(λ1/p ◦ x) + err · χ − S(λ1/p ◦ y · 1) = S(λ1/p ◦ (x − y · 1)) + err · χ

by linearity. Furthermore, note that the error simply corresponds to an ℓp-sketch of the
vector z′ ∈ Rn+1 which sets z′

i = zi for i ̸= n + 1 and z′
n+1 = err. ◀

▶ Corollary 8. For any n ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1), let s = O(log(1/δ)/ϵ2). There
exists a distribution M over s × n matrices, and an algorithm such that for any x ∈ Rn, and
any λ1, . . . , λn ∈ [0, 1], the following occurs:

We sample S ∼ M and a random vector χ = (χ1, . . . , χs) ∈ Rs of i.i.d p-stable random
variables. For any err ∈ R≥0. We give the algorithm as input S and S(λ1/p ◦ x) + err · χ.

6 The notation λ1/p ◦ x ∈ Rn denotes the Hadamard product, where (λ1/p ◦ x)i = λ
1/p
i · xi.
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With probability at least 1 − δ over S and χ, the algorithm outputs a parameter γ̂ ∈ R≥0,
which depends on S, and S(λ1/p ◦ x) which satisfies

(1 − ϵ)
(

n∑
i=1

λi|xi|p + errp

)1/p

≤ γ̂ ≤ (1 + ϵ)
(

n∑
i=1

λi|xi|p + errp

)1/p

.

Furthermore, for every j ∈ [s], the random variables (S(λ1/p ◦ x))j ∈ R are independent and
distributed as ∥λ1/p ◦ x∥p · χj, where χj are independent, p-stable random variables.

Proof. We apply Lemma 7 to the vector x ∈ Rn with y = 0. ◀

▶ Lemma 9. For any n ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1), let s = O(log(1/(ϵδ))/ϵ2). There
exists a distribution M over s × n matrices, and an algorithm such that for any x ∈ Rn and
any λ1, . . . , λn ∈ [0, 1] with

∑n
i=1 λi = 1, whenever

∑n
i=1 λixi = 0, the following occurs:

We sample S ∼ M and a random vector χ = (χ1, . . . , χs) of i.i.d p-stable random
variables. For any err ∈ R≥0. We give the algorithm as input S, S(λ1/p ◦ x) + err · χ, the
parameters λ1, . . . , λn, and a parameter γ ∈ R≥0 satisfying

(1 − ϵ)
(

n∑
i=1

λi|xi|p
)1/p

≤ γ ≤ (1 + ϵ)
(

n∑
i=1

λi|xi|p
)1/p

.

The algorithm outputs a parameter β̂ ∈ R≥0 which satisfies

(1 − ϵ) min
z∈R

(
n∑

i=1
λi|xi − z|p + errp

)1/p

≤ β̂

≤ (1 + ϵ) min
z∈R

(
n∑

i=1
λi|xi − z|p + errp

)1/p

.

(12)

Furthermore, for every j ∈ [s], the random variables (S(λ1/p ◦ x))j are independent and
distributed as ∥λ1/p ◦ x∥p · χj, where χj are independent, p-stable random variables.

Proof. We will utilize the sketch from Lemma 7, while varying the y’s to find the minimum.
Specifically, let t = 16 · 2p/ϵ, and let the distribution M be the same as that of Lemma 7
instantiated with error probability 1 − tδ and accuracy parameter ϵ/2. We discretize
the interval [−4γ, 4γ] into t, evenly-spaced out points y1, . . . , yt ⊂ [−4γ, 4γ] such that
yℓ+1 − yℓ = 8γ/t. We utilize the algorithm in Lemma 7 to obtain estimates η̂1, . . . , η̂t

satisfying (11) with y1, . . . , yt, respectively. Then, we output

β̂ = min
ℓ∈[t]

η̂ℓ.

Since we amplified the error probability to less than tδ, we may assume, by a union bound,
that all estimates {ηℓ}ℓ∈[t] satisfy (11) with yℓ with probability at least 1 − δ. First, for any
ℓ ∈ [t],

min
z∈R

(
n∑

i=1
λi|xi − z|p

)1/p

≤

(
n∑

i=1
λi|xi − yℓ|p

)1/p

,
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and therefore, the lower bound in (12) is implied by (11). To prove the upper bound in (12),
denote z ∈ R as the true minimizer of (

∑n
i=1 λi|xi − z|p)1/p. By the fact

∑n
i=1 λi = 1 and

the triangle inequality, we have

|z| =
(

n∑
i=1

λi|z|p
)1/p

≤

(
n∑

i=1
λi|xi − z|p

)1/p

+
(

n∑
i=1

λi|xi|p
)1/p

≤ 2
(

n∑
i=1

λi|xi|p
)1/p

,

so |z| ≤ 2(1 + ϵ)γ ≤ 4γ, and thus z ∈ [−4γ, 4γ]. Let ℓ ∈ [t] be such that |yt − z| ≤ 4γ/t.
Then, again by the triangle inequality and the fact

∑n
i=1 λixi = 0,

(
n∑

i=1
λi|xi − yt|p

)1/p

≤

(
n∑

i=1
λi|xi − z|p

)1/p

+ 4γ/t

≤ (1 + 4(1 + ϵ)2p/t)
(

n∑
i=1

λi|xi − z|p
)1/p

.

By the setting of t, (
∑n

i=1 λi|xi − yt|p)1/p ≤ (1 + ϵ/2)(
∑n

i=1 λi|xi − z|p)1/p, and by (11), we
obtain the desired upper bound. ◀

2.3 Grouping Single Coordinate Sketches

In this subsection, we show how to compress d linear sketches (one for each coordinate) from
Subsection 2.2. In the lemma that follows, the parameter m ∈ N should be considered the
sketch size of the sketches in Subsection 2.2, and the linear sketch will take the d sketches
from Subsection 2.2 (represented as a vector Rdm). Each of the d linear sketches have
each coordinate of Rm distributed as an i.i.d scaled p-stable random variable (specified
by the last sentence in Corollary 8 and Lemma 9). Thus, we write the d sketches as
Ψ1v1, . . . , Ψdvd ∈ Rm, where vj ∈ R is a scaling, and Ψ1, . . . , Ψd ∈ Rm×n are i.i.d p-stable
matrices.

▶ Lemma 10 (p-stable Sketch Compression via Count-Min). Let d, m ∈ N, ϵ, δ ∈ (0, 1), and
let t = O(log(d/δ)). There exists a distribution C over (10tm/ϵp) × (dm) matrices, and an
algorithm such that for any v ∈ Rd, the following occurs:

We sample C ∼ C and a (dm) × d matrix Ψ, where Ψ = diag(Ψ1, . . . , Ψd), and each
Ψj = (χj1, . . . , χjm) ∈ Rm are independent p-stable random vectors.7 The algorithm
receives as input C and CΨv.
The algorithm outputs, for each j ∈ [d], a sequence of t vectors ẑ

(1)
j , . . . , ẑ

(t)
j ∈ Rm which

satisfy, for each t′ ∈ [t],

ẑ
(t′)
j = vjΨj + err(t′)

j · χ
(t′)
j . (13)

where χ
(t′)
j ∈ Rm is a vector of independent p-stable random variables, and err(t′)

j ∈ R≥0
only depends on C. With probability at least 1 − δ over C, for every j ∈ [d]∣∣∣{t′ ∈ [t] : err(t′)

j ≤ ϵ∥v∥p

}∣∣∣ ≥ t/2. (14)

7 Hence, the vector Ψv ∈ Rdm is given by vertically stacking d vectors of the form vjΨj ∈ Rm.
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Proof. The matrix C is a Count-Min matrix which given a vector u ∈ Rdm given by vertically
stacking d vectors u1, . . . , ud ∈ Rm repeats the following process: for each t′ ∈ [t], we sample
a hash function ht′ : [d] → [10/ϵp], and for each ℓ ∈ [10/ϵp] store the vector

bt′,ℓ
def=
∑
j∈[d]

1{ht′(j) = ℓ} · uj ∈ Rm.

In particular, the output Cu consists of stacking t · 10/ϵp vectors (bt′,ℓ ∈ Rm : t′ ∈ [t], ℓ ∈
[10/ϵp]), which gives the desired bound of 10mt/ϵp on the output dimension of C. For each
j ∈ [d] and t′ ∈ [t], the algorithm lets ℓ = ht′(j) and sets

ẑ
(t′)
j = bt′,ℓ = vjΨj +

∑
j′∈[d]\{j}

1{ht′(j′) = ℓ} · vj′ · Ψj′ .

We now apply the p-stability property to the right-most summand, to notice that

err(t′)
j =

 ∑
j′∈[d]\{j}

1{ht′(j′) = ℓ} · vp
j′

1/p

,

which only depends on C. Furthermore, the inner most summand is at most
ϵp/10

∑
j′∈[d]\{j} vp

j′ in expectation. By Markov’s inequality, each err(t′)
j ≤ ϵ∥v∥p with

probability at least 9/10. Since t = O(log(d/δ)), the probability that (14) is not satisfied for
each j ∈ [d] is at most δ/d by a Chernoff bound, so that a union bound gives the desired
guarantees. ◀

The above lemma allows us to compress d many p-stable sketches into O(log(d/δ)/ϵp)
many p-stable sketches, albeit with some error. Since the p-stable sketches that we will use
(from Corollary 8 and Lemma 9) are exactly of the form Ψv for some vector v, Lemma 10
will allow us to compress them. Namely, we will consider d sketches from Corollary 8 and
Lemma 9 and utilize Lemma 10; for each j ∈ [d], we will be able to recover t noisy versions
of the sketch of Corollary 8 and Lemma 9 for coordinate j. Importantly, the noise is of
the form an error times a p-stable random variable, and these are the kinds of errors that
Corollary 8 and Lemma 9 can easily handle.

▶ Lemma 11 (p-stable Sketch Recovery for Sample). For n, d ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1),
let s = O(log2(d/δ)/ϵ2+p). There exists a distribution R over s × (nd) matrices, and an
algorithm such that for any vectors y1, . . . , yn ∈ Rd and weights λ1, . . . , λn ∈ [0, 1] with∑n

i=1 λi = 1, the following occurs with probability at least 1 − δ:
We sample S = [S1, . . . , Sn] ∼ R and we give the algorithm as input S, and the vector∑n

i=1 Si(λ1/p
i yi) ∈ Rs.

The algorithm outputs d numbers α1, . . . , αd ∈ R≥0 such that each j ∈ [d] satisfies

(1 − ϵ)
(

n∑
i=1

λi|yij |p
)1/p

− err ≤ αj ≤ (1 + ϵ)
(

n∑
i=1

λi|yij |p
)1/p

+ err,

where err ∈ R≥0 is an additive error satisfying

err ≤ ϵ

 d∑
j=1

n∑
i=1

λi|yij |p
1/p

.
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Proof. We combine Corollary 8 and Lemma 10. We describe the distribution R over s × (nd)
matrices by giving a procedure for sampling S ∼ R. S can be naturally expressed as a
concatenation of matrices S = [S1, . . . , Sn].

We let M be the distribution over s0 × n matrices of Corollary 8 with error probability
at most δ/(2dt) and accuracy ϵ (so that we may union bound over d sketches later) so
that s0 = O(log(dt/δ)/ϵ2). We take d independent samples S′

1, . . . , S′
d ∼ M.

For each j ∈ [d], we let Pj be the n × (nd) matrix where given the vector y′ ∈ Rnd

given by vertically stacking λ
1/p
1 y1, . . . , λ

1/p
n yn ∈ R

d, sets y′
·,j = Pkj′, where y′

·,j =
λ1/p ◦ (yi,j)i∈[n] ∈ Rn. Let P be the (nd) × (nd) matrix which stacks these matrices
vertically.
We sample C ∼ C as in Lemma 10 with m = s0, where we set the accuracy parameter
ϵ/2 and the failure probability δ/2. We let

S = C · diag(S′
1, . . . , S′

d) · P.

Intuitively, we will apply our sketch S on the vector the matrix S may be interpreted as first
applying d sketches of Corollary 8 to the vectors (λ1/p ◦ y·,1), . . . , (λ1/p ◦ y·,d) ∈ Rn, and then
applying C from Lemma 10. The algorithm for producing the estimates α1, . . . , αd proceeds
by applying the algorithm of Lemma 10 to obtain, for each j ∈ [d] a sequence of t vectors
ẑ

(1)
j , . . . , ẑ

(t)
j ∈ Rs0 . We apply the algorithm of Corollary 8 to each of the t vectors to obtain

estimates α
(1)
j , . . . , α

(t)
j ∈ R≥0, and we let αj = median{α

(t′)
j : t′ ∈ [t]}.

To see why this works, consider the collection of d vectors

zj = S′
j(λ1/p ◦ y·,j) ∈ Rs0 ,

and notice that by Corollary 8, every j ∈ [d] and ℓ ∈ [s], zj,ℓ ∼ (
∑n

i=1 λi|yi,j |p)1/p · χj,ℓ,
where χk,ℓ are independent, p-stable random variables. Indeed, if we write v ∈ Rd as the
vector which sets

vj =
(

n∑
i=1

λi|yi,j |p
)1/p

,

then vertically stacking the vectors z1, . . . , zd ∈ Rs0 gives a vector which is equivalently
distributed as Ψv, where Ψ is the matrix from Lemma 10. In particular, with probability at
least 1 − δ/2, the algorithm of Lemma 10 outputs dt vectors (ẑ(t′)

j : j ∈ [d], t′ ∈ [t]) which
satisfy

ẑ
(t′)
j = S′

k(λ1/p ◦ y·,j) + err(t′)
j · χj,t′ . (15)

Hence, with probability at least 1 − δ/(2dt), the algorithm of Corollary 8 applied to ẑ
(t′)
j

outputs an estimate α
(t′)
j satisfying (1 − ϵ)(vp

j + (err(t′)
j )p)1/p ≤ α

(t′)
j ≤ (1 + ϵ)(vp

j +
(err(t′)

j )p)1/p, and therefore, we have that each α
(t′)
j satisfies

(1 − ϵ)vj − err(t′)
j ≤ α

(t′)
j ≤ (1 + ϵ)vj + 2 · err(t′)

j .

Since at least t/2 of t′ ∈ [t] satisfies err(t′)
j ≤ ϵ/2 · ∥v∥p, the median α

(t′)
j satisfies the

desired error guarantee. Applying a union bound over all dt applications of Corollary 8 and
Lemma 10 gives the desired guarantees. ◀
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▶ Lemma 12 (p-stable Sketch Recovery for Optimizer). For n, d ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1),
let s = O(log(d/δ) · log(log d/(ϵδ))/ϵ2+p). There exists a distribution O over s × (nd)
matrices, and an algorithm such that for any vectors y1, . . . , yn ∈ Rd and any set of weights
λ1, . . . , λn ∈ [0, 1] where

∑n
i=1 λi = 0, whenever

∑n
i=1 λiyi = 0, the following occurs with

probability at least 1 − δ:
We sample S = [S1, . . . , Sn] ∼ O and we give the algorithm as input S,

∑n
i=1 Si(λ1/p

i yi),
the parameters λ1, . . . , λn, an index j0 ∈ [d], and a parameter γ ∈ R≥0 satisfying

(1 − ϵ)
(

n∑
i=1

λi|yij0 |p
)1/p

≤ γ ≤ (1 + ϵ)
(

n∑
i=1

λi|yij0 |p
)1/p

.

The algorithm outputs a parameter β̂ ∈ R≥0 which satisfies

(1 − ϵ) min
z∈R

(
n∑

i=1
λi|yij0 − z|p

)1/p

− err ≤ β̂ ≤ (1 + ϵ) min
z∈R

(
n∑

i=1
λi|yij0 − z|p

)1/p

+ err,

where err ∈ R≥0 is an additive error satisfying

err ≤ ϵ

 d∑
j=1

n∑
i=1

λi|yi,j |p
1/p

.

Proof. The proof follows similarly to that of Lemma 11; the only difference is that instead of
using the sketch of Corollary 8, we use the sketch of Lemma 9. For completeness, we describe
the distribution O over s × (nd) matrices by giving a procedure for sampling S ∼ O:

We let M be the distribution over s0 × n matrices from Lemma 9 with accuracy ϵ and
failure probability δ/(2t), where s0 = O(log(t/(ϵδ))/ϵ2). We take d independent samples
S′

1, . . . , S′
d ∼ M. Note that even though we take d independent samples, we will only

require that the sketch t evaluations of the Sj0 ∼ M succeed (hence, we amplify the error
probability to δ/(2t), as opposed to δ/(2td) as in Lemma 11).
We sample C ∼ C as in Lemma 10 with m = s0, where we set the accuracy parameter
ϵ/2 and failure probability δ/2. Recalling the definition of P (see Item 2 in the proof of
Lemma 11, we let

S = C · diag(S′
1, . . . , S′

d) · P.

Similarly to the proof of Lemma 11, S may be interpreted as applying the sketch of Lemma 10
to d vectors in Rs0 , each j ∈ [d] of which is an independent sketch S′

j(λ1/p ◦ y·j) ∈ Rs0 ,
where S′

j ∼ M is the sketch of Lemma 9. Again, we consider the collection of d vectors
zj = S′

j(λ1/p ◦ y·,j) ∈ R
s0 , for all j ∈ [d], and by Lemma 9, every j ∈ [d] has zj ∼

∥λ1/p ◦ y·,j∥p · Ψj ∈ Rs0 , where Ψj is an independent, p-stable random vector. Writing
v ∈ Rd by vj = ∥λ1/p ◦ y·,j∥p, and we apply the algorithm of Lemma 10 and focus on the t

vectors ẑ
(1)
j0

, . . . , ẑ
(t)
j0

∈ Rs0 which satisfy

ẑ
(t′)
j0

= S′
j0

(λ1/p ◦ y·,j0) + err(t′)
j0

· χj,t′ .

We apply the algorithm of Lemma 9 to each of the vectors ẑj0 ∈ Rs, while giving as input the
parameter γ to obtain the estimate β̂

(1)
, . . . , β̂

(t)
. Then, we set β̂ = median{β̂

(t′)
: t′ ∈ [t]}.

Similarly to the proof of Lemma 11, β̂ provides the desired approximation guarantees. ◀
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Abstract
We study a bilevel optimization problem which is a zero-sum Stackelberg game. In this problem,
there are two players, a leader and a follower, who pick items from a common set. Both the leader and
the follower have their own (multi-dimensional) budgets, respectively. Each item is associated with
a profit, which is the same to the leader and the follower, and will consume the leader’s (follower’s)
budget if it is selected by the leader (follower). The leader and the follower will select items in a
sequential way: First, the leader selects items within the leader’s budget. Then the follower selects
items from the remaining items within the follower’s budget. The goal of the leader is to minimize
the maximum profit that the follower can obtain. Let sA and sB be the dimension of the leader’s
and follower’s budget, respectively. A special case of our problem is the bilevel knapsack problem
studied by Caprara et al. [SIAM Journal on Optimization, 2014], where sA = sB = 1. We consider
the general problem and obtain an (sB + ϵ)-approximation algorithm when sA and sB are both
constant. In particular, if sB = 1, our algorithm implies a PTAS for the bilevel knapsack problem,
which is the first O(1)-approximation algorithm. We also complement our result by showing that
there does not exist any (4/3 − ϵ)-approximation algorithm even if sA = 1 and sB = 2. We also
consider a variant of our problem with resource augmentation when sA and sB are both part of the
input. We obtain an O(1)-approximation algorithm with O(1)-resource augmentation, that is, we
give an algorithm that returns a solution which exceeds the given leader’s budget by O(1) times, and
the objective value achieved by the solution is O(1) times the optimal objective value that respects
the leader’s budget.
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1 Introduction

In recent years, there is an increasing interest in adopting the Stackelberg competition
model [16] to address the critical security concern that arises in protecting our ports, airports,
transportation, and other critical national infrastructures (see, e.g., [1, 29, 33]). In these
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problems, the attacker’s target is to maximize the illicit gain, while the defender tries to
mitigate the attack by minimizing the attacker’s objective through deploying defending
resources.

In this paper, we consider an abstract model for general defending problems called
interdiction with packing constraints (IPC). In IPC, given are a set of items, together with a
leader and a follower. Both the leader and the follower have their own (multi-dimensional)
budgets, respectively. Each item is associated with a profit, which is the same to the leader
and the follower, and will consume the leader’s (follower’s) budget if it is selected by the
leader (follower). The leader and the follower will select items in a sequential way: First,
the leader selects items within the leader’s budget. Then the follower selects items from
the remaining items within the follower’s budget. The goal of the leader is to minimize the
maximum profit that the follower can obtain. IPC captures the general setting where the
follower is the attacker who gets profit by attacking items, and the leader is the defender
who tries to minimize the attacker’s gain by protecting a subset of items.

IPC can be formulated as a bilevel integer program (IP) as follows. Denote by I =
{1, 2, · · · , n} the set of items. Each item j ∈ I is associated with a profit pj ∈ Q>0, an
sA-dimensional cost vector Aj ∈ QsA

≥0 to the leader and an sB-dimensional weight vector
Bj ∈ QsB

≥0 to the follower. The leader and the follower have their own budget vectors, denoted
by a ∈ QsA

≥0 and b ∈ QsB

≥0, respectively. We introduce 0-1 variables xj and yj for each j ∈ I

as the decision variables for the leader and the follower. More precisely, if the leader chooses
item j, then xj = 1, otherwise xj = 0. Similarly, yj = 1 if the follower chooses item j and
yj = 0 otherwise. Denote by x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), p = (p1, p2, . . . , pn)
and 1 = (1, . . . , 1︸ ︷︷ ︸

n

). IPC can be formulated as a bilevel program IPC(I, a, b) as follows:

IPC(I, a, b) : min
x

py (1a)

s.t. Ax ≤ a (1b)
x ∈ {0, 1}n (1c)

where y solves the following:
max

y
py (1d)

s.t. By ≤ b (1e)
x + y ≤ 1 (1f)
y ∈ {0, 1}n (1g)

where A = (A1, · · · , An) and B = (B1, · · · , Bn) are sA ×n and sB ×n non-negative rational
matrices, respectively.

The most relevant prior work to our IPC model is the well-known knapsack interdiction
problem introduced by DeNegre [14], which is the special case of IPC where sA = 1 and
sB = 1. Very recently, Caprara et al. [4] proved that DeNegre’s knapsack interdiction
problem is

∑p
2-complete and strongly NP-hard, which also implies the

∑p
2-completeness

and strongly NP-hardness for IPC. Caprara et al. showed a polynomial time approximation
scheme (PTAS) for a special case of knapsack interdiction problem where the profit of an
item is equal to its weight to the follower.

Except for the knapsack interdiction problem, we are not aware of any approximation
algorithms for other special cases of IPC. However, if we relax the follower’s problem by
allowing y to take fractional value, then there are several research works in the literature.
The most relevant work is the packing interdiction problem studied by Dinitz and Gupta [15],
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where the follower’s problem is given by max{
∑

j pj(1 − xj)yj : By ≤ b, y ≥ 0}, while the
leader’s constraints are the same as Equation 1b and Equation 1c except that sA = 1. Dinitz
and Gupta provided an approximation algorithm whose ratio depends on the sparsity of the
matrix B. Their techniques crucially rely on the fact that y can take fractional value, and
therefore duality theory can be applied to the follower’s problem, allowing the bilevel problem
to be transformed to a single level problem. Besides the packing interdiction problem, quite
a few graph interdiction problems have been studied in the literature, where the follower’s
problem is a standard graph optimization problem, and the leader can remove edges or
vertices to minimize the follower’s optimal objective value on the graph after edge-removal
or vertex-removal. On planar graphs, polynomial time approximation schemes (PTASs) were
obtained for network flow interdiction [32, 37] and matching interdiction [28]. On general
graphs, approximation algorithms were also obtained for, e.g., connectivity interdiction [38],
minimum spanning tree interdiction [26, 39], matching interdiction [15, 36], network flow
interdiction [3,9,10], etc. All of these algorithms crucially rely on the follower’s specific graph
optimization problem and do not apply directly to IPC.

Our Contributions

The main contribution of this paper is an (sB + ϵ)-approximation polynomial time algorithm
for IPC when sA and sB are both constant. In particular, when sB = 1, our algorithm is a
PTAS. Since the knapsack interdiction problem is a special case of IPC when sA = sB = 1,
our result gives the first O(1)-approximation algorithm for this problem. To complement our
result, we also show that IPC does not admit any (4/3 − ϵ)-approximation algorithm even if
sB = 2 and sA = 1, assuming P ̸= NP . This implies that the PTAS for sB = 1 cannot be
further extended to the case of sB ≥ 2.

We also consider a natural variant of IPC where the leader’s budget can be violated.
For this variant we obtain a ( ρ

1−α , 1
α )-bicriteria approximation algorithm for any α ∈ (0, 1),

which runs in polynomial time when sA and sB are arbitrary (not necessarily polynomial in
the input size). More precisely, the algorithm takes as input two oracles, a ρ-approximation
algorithm to the follower’s optimization problem max{py : By ≤ b, y ∈ {0, 1}n}; and a
separation oracle for the leader’s problem that given any x = x0, it either asserts that
Ax0 ≤ a or returns a violating constraint. Then in polynomial oracle time the algorithm
returns a solution x∗ for the leader such that Ax∗ ≤ 1

α a, and the objective value is at most
ρT ∗

1−α , where T ∗ is the optimal objective value with the leader’s budget being a. When we
take, e.g., α = 1/2, we achieve an objective of 2ρT ∗ with the leader’s budget augmented
to 2a.

In terms of techniques, our main contribution is a general method for bilevel optimization
problems where the leader’s and follower’s decision variables are both integral. Most prior
works on bilevel optimization require follower’s decision variables to take fractional values,
which accommodates the application of LP duality to transform the bilevel optimization
problem to a standard (single level) optimization, and are thus inapplicable when the
follower’s decision variables become integral. A common technique used in many single level
optimization problems is to first classify items into large and small based on whether they
can make a significant contribution to the objective value, then guess out large items via
enumeration, and handle small items fractionally via LP (see, e.g., [5, 21, 22]. However, such
a technique encounters a fundamental challenge in IPC: we can guess out all large items
selected by the leader, however, the follower may still select arbitrarily from the remaining
large items. In other word, the follower’s choice on large items can never be guessed out,
and therefore we cannot apply duality to the follower’s problem. We overcome the challenge

ICALP 2022



39:4 Approximation Algorithms for Interdiction Problem with Packing Constraints

based on the following two ideas: First, we show that given leader’s choice on large items,
there is a fixed number of “dominant choices” such that the follower’s choice on remaining
large items always belong to the dominant choices. Second, we show that there exists a
subset of “critical items” such that the follower’s choice on small items can be characterized
through linear constraints given that these critical items are known. The two observations
allow us to transform the bilevel program for IPC to an LP without utilizing duality.

The characterization of dominant choices and critical items become sophisticated in the
general case when sB is an arbitrary constant, but is much simpler in the special case sB = 1.
Hence, for ease of presentation, in the main part we present our algorithm for the special
case to give an overview on the technical insights, and meanwhile provide a proof sketch
towards generalizing the algorithm for the general case. Our techniques may be of separate
interest to other bilevel optimization problems.

Related work

Our IPC problem lies generally in the area of bilevel optimization, which has received extensive
research in the literature. Jeroslow [23] showed that in general, bilevel optimization problems
are NP-hard even when the objectives and the constraints are linear. We refer readers
to Colson et al. [11] for a comprehensive survey on bilevel optimization.

Within the area of bilevel optimization, Mixed-Integer Bilevel Linear Problem (MIBLP)
is related to our IPC. MIBLP is a bilevel optimization problem where the objective functions
and the constraints for the leader and follower are both linear. MIBLP has been studied
extensively in the literature, see, e.g., [19,20,35]. We also refer the reader to [18,25] for an
overview on MIBLP solvers and related applications. Most of these algorithmic results are
for finding exact solutions through, e.g., branch and bound based approach. For DeNegre’s
knapsack interdiction problem, an improved exact algorithm was derived by Federico Della
Croce and Rosario Scatamacchia [12].

It is worth mentioning that besides DeNegre’s knapsack interdiction problem (i.e., sA =
sB = 1 in IPC), other variants of bilevel knapsack problems have also been studied in which
the leader interferes the follower’s program in a different way. One kind of bilevel knapsack
problem was introduced by Dempe and Richter [13] where two players hold one knapsack, the
leader determines the knapsack’s capacity while the follower picks items into the knapsack to
maximize his own total profit. The goal is to maximize the objective of the leader. Brotcorne
et al. [2] gave a dynamic programming algorithm for both cases of this model. Chen and
Zhang [8] proposed a bilevel knapsack variant where two players hold their own knapsacks
and the leader can only influence the profit of the items. The follower is interested in his own
revenue while the leader aims at maximizing the total profit of both players. The improved
approximation results for this problem were derived by Xian Qiu and Walter Kern [34].
Another bilevel knapsack variant occurred in the work of Pferschy et al. [30] where the leader
controls the weights of a subset of the follower’s items and the follower aims at maximizing
his own profit. The leader’s payoff is the total weight of the items he controls and selected by
the follower. Very recently, Pferschy et al. [31] tackled a “symmetrical” problem in which the
leader can control the profits instead of item weights. In addition to these works, a matrix
interdiction problem was studied by Kasiviswanathan and Pan [24].

It is also worth mentioning that the continuous version of DeNegre’s knapsack interdiction
problem, where the leader and the follower can both fractionally choose an item, has also
been studied in recent years. Carvalho et al. [6] gave the first polynomial time optimal
algorithm. Later on, a faster optimal algorithm was proposed by Woeginger and Fischer [17].
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Some notations. We write column vectors in boldface, e.g. x, y, and their entries in
normal font. For a vector x, we either denote its entries by x = (x1, x2, · · · , xn), or by
x = (x[1], x[2], · · · , x[n]). Given two vectors x and y with the same dimension, we use xy to
represent their dot product, i.e., xy =

∑
j xjyj .

2 Hardness results

▶ Theorem 1. Assuming P ̸= NP , for arbitrary small ϵ > 0, there does not exist a
(4/3 − ϵ)-approximation polynomial time algorithm for IPC when sA ≥ 1 and sB ≥ 2.

Towards the proof, we need the 3 hitting set (3HS) problem.
Problem: 3 Hitting Set
Instance: A ground set U = {u1, u2, · · · , un}; a collection C of m subsets S1, S2, · · · , Sm

whose union is U , where each subset Sh contains exactly 3 elements; a positive integer k.
Question: Is there a hitting subset S ⊆ U such that |S| ≤ k, and S contains at least one

element from each subset in C?

Proof. Recall that 3HS problem is a natural generalization of the well-known Vertex Cover
problem, and both are NP-complete [27]. Our reduction is from the 3HS problem. Given an
instance of the 3HS, we construct an instance of the IPC where sA = 1, sB = 2 as follows.
Let E = 10 ·

∑n
i=1 10i, and Q be any sufficiently large integer, say, Q = 10E. Let a = k and

b = (E, 4Q − E). The profit of every item constructed below is 1. For every element ui, we
construct an element-item (item i) whose interdiction cost is 1, and whose weight vector is
(10i, Q − 10i). For every subset Sh = {ui, uj , uk}, we construct a set-item (item n + h) whose
interdiction cost is k + 1 (that is, the leader cannot interdict a set-item), and whose weight
vector is (E − 10i − 10j − 10k, Q − E + 10i + 10j + 10k). In total we construct n + m items.

We first claim that the objective value of any feasible solution for the IPC instance is
at most 4. Suppose on the contrary the claim is false, then the follower is able to select
at least 5 items under the budget b = (E, 4Q − E). Notice that for any 1 ≤ i ≤ n,
Q − 10i > Q − E ≥ 0.9Q, and for any 1 ≤ i, j, k ≤ n we have Q − E + 10i + 10j + 10k > 0.9Q,
if we sum up the weight vectors of any 5 items, then the second coordinate is at least 4.5Q,
which exceeds the budget 4Q − E, hence the claim is true.

Suppose the 3HS instance admits hitting set S of size at most k, we show that the optimal
objective value of the IPC instance is at most 3. Let S = {uℓ1 , uℓ2 , · · · , uℓk

} (if S contains
less than k elements, we simply add arbitrary elements to make it contain exactly k items),
then we consider the solution x where xℓi = 1 for 1 ≤ i ≤ k, and xj = 0 otherwise. We claim
that for any y satisfying x + y ≤ 1, py =

∑
j yj ≤ 3. Suppose on the contrary that the claim

is false, then the follower can select at least 4, and hence exactly 4 items (given our claim in
the above paragraph that shows the objective value cannot exceed 4). Notice that for every
item, if we add the first and second coordinate of its weight vector, then the sum is exactly
Q. Hence, if we add up the weight vector of the 4 items, it must be (z, 4Q − z) for some z,
and meanwhile, we have (z, 4Q − z) ≤ (E, 4Q − E), that is z ≤ E and 4Q − z ≤ 4Q − E.
Hence, z = E, which means the sum of the first coordinate of the weight vectors of the 4
items is exactly E = 10

∑
i 10i. We first observe that it is impossible for the 4 items to be all

element-items, this is because the first coordinate of the weight vector for any element-item is
at most 10n < 0.1E. We then observe that there cannot be two set-items among the 4 items,
because the first coordinate of the weight vector for any set-item is at least E − 0.1E = 0.9E.
Hence, among the 4 items, there must be exactly 1 set-item and 3 element-items. Let the 3
element-items be those corresponding to ui, uj , uk and the set-item be the one corresponding
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to {ui′ , uj′ , uk′}, then it follows that 10i + 10j + 10k + E − 10i′ − 10j′ − 10k′ = E, implying
that {i, j, k} = {i′, j′, k′}. However, this is not possible because the hitting set S contains at
least one element from {ui′ , uj′ , uk′} = {ui, uj , uk}, which implies that xi + xj + xk ≥ 1, and
whereas yi, yj , yk cannot be 1 simultaneously. Thus, the optimal objective value of the IPC
instance is at most 3.

Suppose the optimal objective value of the IPC instance is at most 3, we show that the
3HS problem admits a hitting set of size at most k. Let x∗ be the optimal solution for IPC.
Consider the set S∗ = {ui : x∗

i = 1}. Given that
∑

i xi ≤ k, we know |S∗| ≤ k. We claim that
S∗ is a hitting set. Suppose on the contrary that the claim is false, then there exists some
subset {ui, uj , uk} such that S∗ ∩ {ui, uj , uk} = ∅. Then we consider the 3 element-items
whose weight vectors are (10i, Q− 10i), (10j , Q−10j), (10k, Q− 10k), and the set-item whose
weight vector is (E − 10i − 10j − 10k, Q − E + 10i + 10j + 10k). It is easy to see that the
follower can select all the 4 items, leading to an objective value of 4, contradicting the fact
that the optimal objective value is at most 3.

Now suppose there exists a (4/3 − ϵ)-approximation polynomial time algorithm for the
IPC. We apply the algorithm to the IPC instance constructed from the 3HS instance. If the
3HS instance admits a hitting set of size at most k, then the approximation algorithm returns
a solution with objective value at most 4 − ϵ < 4, which means it must return a solution
with objective value at most 3. If the 3HS instance does not admit a hitting set of size at
most k, then the approximation algorithm returns a solution with objective value at least 4.
Hence the polynomial time approximation algorithm can be used to determine whether 3HS
problem admits a feasible solution, contradicting the NP-hardness of 3HS problem. ◀

3 A PTAS for IPC where sB = 1 and sA is a fixed constant

The goal of this section is to prove the following Theorem 2. Theorem 2 is a special case of
our main result, however, its proof shares similar key ideas as the general case (where sA and
sB are arbitrary fixed constants). Therefore, we provide a full presentation to demonstrate
the technical insights, and in the next section we will show how to extend the techniques
when sB ≥ 2.

▶ Theorem 2. When sB = 1 and sA is an arbitrary fixed constant, there exists a polynomial
time approximation scheme for IPC.

The rest of this section is dedicated to proving the following Lemma 3, which implies
Theorem 2 directly by scaling item profits (here we write IPC(I, a, b) instead of IPC(I, a, b)
as b becomes 1-dimensional given that sB = 1).

▶ Lemma 3. Let OPT be the optimal objective value of IPC(I, a, b). If OPT ≤ 1, then for
an arbitrarily small number ϵ > 0, there exists a polynomial time algorithm that returns a
feasible solution to IPC(I, a, b) with an objective value of at most 1 + O(ϵ).

3.1 Preprocessing
From now on we assume OPT ≤ 1. Without loss of generality, we further assume that
maxj pj ≤ 1.

Scaling. We scale the matrix A and B such that a = 1 and b = 1. From now on we
denote this IPC instance as IPC(I, 1, 1). Without loss of generality, we further assume that
maxj Bj ≤ 1.



L. Chen, X. Wu, and G. Zhang 39:7

Rounding down the profits. We apply the standard geometric rounding. Let δ > 0 be
some small parameter to be fixed later (in particular, we can choose δ = ϵ2). Consider each
item profit pj . If pj ≤ δ2, we keep it as it is; otherwise pj > δ2, we round the profit down
to the largest value of the form δ2(1 + δ)h. For profits whose values are at least δ2, simple
calculation shows there are at most Õ(1/δ) distinct rounded profits. This rounding scheme
introduces an additive loss of at most O(δ) times the objective value. For simplicity, we still
denote the rounded profits by pj ’s.

Item classification. Recall that each item j is associated with a profit pj and a weight
vector Bj . Since sB = 1, we write Bj as its weight.

Classifying Weights: We say an item j has a large weight if Bj > δ; otherwise, it has a small
weight.

Classifying Profits: We say an item j has a large profit if pj > δ; a medium profit if
δ2 < pj ≤ δ; and a small profit if pj ≤ δ2.

We say an item is large if it has a large-profit, or a large-weight. Otherwise, the item is
small. Large items and small items will be handled separately.

Denote by S∗ the items selected by the leader in an optimal solution of IPC(I, 1, 1).

3.2 Handling Large Items

3.2.1 Determining the leader’s choice on large items
The goal of this subsection is to guess large items in S∗ in polynomial time.

Large-profit small-weight items. Notice that if there are at least 1/δ such items for the
follower to select, then selecting any 1/δ of them gives a solution with an objective value
strictly larger than 1, contradicting to the assumption that OPT ≤ 1. Thus S∗ must include
all except at most 1/δ − 1 such items, which can be guessed out via nO(1/δ) enumerations.
Hence, we have the following observation.

▶ Observation 4. With nO(1/δ) enumerations, we can guess out all large-profit small-weight
items in S∗.

Small-profit large-weight items. Notice that the follower can select at most 1/δ items from
this subgroup and their total profit is at most δ2 ∗ 1

δ = δ. Hence, even if the leader does
not select any such item, the objective value can increase by at most δ, which leads to the
following observation.

▶ Observation 5. With O(δ) additive error, we may assume that S∗ does not contain
small-profit large-weight items.

Large/medium-profit large-weight items. Notice that the follower can select at most 1/δ

items from this group. Since we are considering the case of sB = 1, if there are two items
that are not selected by the leader, and they have the same profit, then the follower always
prefers the one with a smaller weight. Hence, we have the following lemma.

▶ Lemma 6. With nÕ(1/δ2) enumerations, we can guess out all large/medium-profit large-
weight items in S∗.
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Proof. Recall that there are at most Õ(1/δ) distinct large/medium profits. Let Sh be the
set of large-weight items whose profits are all δ2(1 + δ)h. We observe two facts: (i). Among
items in Sh \ S∗, the follower always selects the ones with the smallest weights; (ii). The
follower can select at most 1/δ items from Sh \S∗. We claim that, S∗ ∩Sh can be determined
through guessing out the following 1/δ key items in Sh: among items in Sh \ S∗, which is
the item that has the k-th smallest weight for k = 1, 2, · · · , 1/δ?2 To see the claim, let wmax

h

be the weight of the item in Sh \ S∗ that has the 1/δ-th smallest weight. Consider any item
in Sh: if its weight is smaller than wmax

h , and is not one of the key items, then this item
must belong to S∗ (by the definition of key items); if its weight is larger than or equal to
wmax

h , and is not one of the key items, then it is not in S∗ (there is no need for the leader to
select such an item since the follower will never select this item even if it is available). Thus
via nO(1/δ) enumerations, we can guess out all large/medium-profit large-weight items in
S∗ ∩ Sh. Moreover, via total nÕ(1/δ2) enumerations, we can guess out all large/medium-profit
large-weight items in S∗. ◀

To summarize, our above analysis leads to the following lemma:

▶ Lemma 7. With O(δ) additive error, we can guess out all the large items in the optimal
solution S∗, i.e., all items that either have a large profit or a large weight, by nÕ( 1

δ2 )

enumerations.

Let Ī ⊆ I = {1, 2, · · · , n} be the set of small items, i.e., items of medium/small-profit
and small-weight. Then I \ Ī is the set of large items. Denote by x∗ the optimal solution to
IPC(I, 1, 1), which is corresponding to S∗. In the following we assume a correct guess on
large items. Hence, the values of {x∗

j : j ∈ I \ Ī} are known. We let a′ be the total cost of
these guessed-out large items.

3.2.2 Finding the follower’s dominant choices on large items
Consider all the large items. Even if the leader’s choice on large items is fixed, the follower
may still have exponentially many different choices on the remaining large items. The goal
of this subsection is to show that, among these choices of the follower, it suffices to restrict
our attention to a few “dominant” choices that always outperform other choices.

For simplicity, we re-index items such that Ī = {1, 2, · · · , n̄}, where n̄ ≤ n.
We further assume that items in Ī are sorted in decreasing order of the profit-weight

ratios pj/Bj . For any ā ≤ 1 and b̄ ≤ 1, denote by IPC(Ī , ā, b̄) the “residual instance” where
the item set is Ī, the budget vector of the leader is ā and the budget of the follower is b̄.

Denote by I ′ ⊆ I \ Ī the subset of large items which are not selected by the leader. Note
that due to the assumption OPT ≤ 1 and that we have guessed out correct large items
in S∗, the follower cannot select items from I ′ with total profit larger than 1. Hence, for
each integer k ∈ [1, 1 + 1/ϵ], we can define the following sub-problem: among items in I ′,
find out a subset of items with minimal total weight such that their total profit is within
[(k − 1)ϵ, kϵ). Denote by SP (k) this sub-problem and by KP (kϵ) its optimal solution, if it
exists. We claim that the follower can select at most O(1/δ) items from I ′, thus via nO(1/δ)

enumerations, we can return KP (kϵ) or assert there does not exist a feasible solution to
SP (k). The claim is guaranteed by the following two facts: (i). The total profit the follower
could obtain from I ′ is at most 1; (ii). Items in I ′ either have a large-profit, or a large-weight.

2 If there are less than 1/δ items in Sh, we can simply guess out all items in Sh\S∗ via nO( 1
δ

) enumerations.
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Let Θ = {KP (kϵ) : k ∈ {1, 2, · · · , 1 + 1
ϵ }}, which contains the follower’s O(1/ϵ) possible

choices on I ′. For ℓ ∈ {1, 2, · · · , 1 + 1
ϵ }, we let bℓ and Pℓ be the total weight and the total

profit of the items selected by the follower, respectively3. Then the follower has a residual
budget of 1 − bℓ for items in Ī. Recall that the leader has a residual budget vector of 1 − a′

for items in Ī.
Define y[Ī] = (y1, y2 · · · , yn̄). Recall that by guessing we already know the value of x∗

j

for j ∈ I \ Ī. Consider the following bilevel program:

Bi-IP(I, 1, 1) : min
x

Pℓ +
n̄∑

j=1
pjyj

s.t.
n̄∑

j=1
Ajxj ≤ 1 − a′ (2a)

xj = x∗
j , ∀j ∈ I \ Ī (2b)

xj ∈ {0, 1}, ∀j ∈ Ī (2c)
where integer ℓ, y[Ī] solves the following:

max
1≤ℓ≤1+ 1

ϵ

max
y[Ī]

Pℓ +
n̄∑

j=1
pjyj (2d)

s.t.
n̄∑

j=1
Bjyj ≤ 1 − bℓ (2e)

yj ≤ 1 − xj , ∀j ∈ Ī (2f)
yj ∈ {0, 1}, ∀j ∈ Ī (2g)

What is the difference between Bi-IP(I, 1, 1) and IPC(I, 1, 1), assuming the
correct guess of x∗

j for j ∈ I \ Ī? In Bi-IP(I, 1, 1), the follower’s choices on remaining
large items are restricted to the O(1/ϵ) choices in Θ, while in IPC(I, 1, 1), the follower can
choose any remaining large items. However, we observe that Θ contains all the follower’s
“dominant choices of remaining large items” in the sense that the follower uses the smallest
budget to achieve a profit within [(k − 1)ϵ, kϵ). Consequently, the objective value of Bi-
IP(I, 1, 1) differs by at most ϵ to that of IPC(I, 1, 1). A formal description is given below.

▶ Lemma 8. Let x̄ be any feasible solution to Bi-IP(I, 1, 1). Then x̄ is also feasible
to IPC(I, 1, 1). Let ObjBi(x̄) and Obj(x̄) be the objective values of Bi-IP(I, 1, 1) and
IPC(I, 1, 1) for x = x̄, respectively. We have

ObjBi(x̄) ≤ Obj(x̄) ≤ ObjBi(x̄) + ϵ.

Furthermore, let OPT Bi and OPT be the optimal objective values of Bi-IP(I, 1, 1) and
IPC(I, 1, 1), respectively, then we have

OPT Bi ≤ OPT ≤ OPT Bi + ϵ.

Proof. Compare the follower’s possible choices in Bi-IP(I, 1, 1) and IPC(I, 1, 1) when the
leader’s solution is fixed to x̄. It is easy to see that in IPC(I, 1, 1), the follower’s feasible
choices on the remaining large items contain Θ, it thus follows that ObjBi(x̄) ≤ Obj(x̄).
Particularly, since the optimal solution x∗ of IPC(I, 1, 1) is a feasible solution of Bi-IP(I, 1, 1)
and the optimal solution of Bi-IP(I, 1, 1) may achieve an even smaller value, it follows that
OPT Bi ≤ OPT . It remains to prove that Obj(x̄) ≤ ObjBi(x̄) + ϵ and OPT ≤ OPT Bi + ϵ.

3 If there is no feasible solution to SP (ℓ), we let bℓ = 1 and Pℓ = 0.
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Note that Obj(x̄) is exactly the optimal objective value of the following integer program:

IP(x̄) : max
y

py

s.t.
n∑

j=1
Bjyj ≤ 1

y ≤ 1 − x̄
y ∈ {0, 1}n

Let ȳ be an optimal solution of IP(x̄), then Obj(x̄) =
∑

j∈I\Ī pj ȳj +
∑

j∈Ī pj ȳj . Recall that
x∗ is an optimal solution of IPC(I, 1, 1), and x̄j = x∗

j for j ∈ I \ Ī by (2b). Consequently,
if we compare the follower in IPC(I, 1, 1) and the follower in Bi-IP(I, 1, 1), the subset of
items in I \ Ī available for the two followers to select is the same, and we let this subset be
R = {j : x∗

j = 0, j ∈ I \ Ī}. Given that we assume OPT ≤ 1, the maximal profit the follower
could obtain from R is at most 1, thus there exists some integer ℓ̄ ∈ [1, 1 + 1/ϵ] such that∑

j∈I\Ī pj ȳj ∈ [(ℓ̄ − 1)ϵ, ℓ̄ϵ). By the definitions of Pℓ̄ and bℓ̄, we have
∑

j∈I\Ī pj ȳj ≤ Pℓ̄ + ϵ

and bℓ̄ ≤
∑

j∈I\Ī Bj ȳj . Define y′ ∈ {0, 1}n such that the y′ is a combination of two partial
solutions: in I \ Ī, y′ is the same as KP (ℓ̄ϵ); and in Ī, y′ is the same as ȳ. Then y′ is a
feasible solution of the following program:

IP(x̄) : max
ℓ

max
y[Ī]

Pℓ +
n̄∑

j=1
pjyj

s.t.

n̄∑
j=1

Bjyj ≤ 1 − bℓ

yj ≤ 1 − x̄j , ∀j ∈ Ī

yj ∈ {0, 1}, ∀j ∈ Ī

Notice that the optimal objective value of IP(x̄) is ObjBi(x̄), thus py′ = Pℓ̄ +
∑n̄

j=1 pj ȳj ≤
ObjBi(x̄). To conclude, we have

Obj(x̄) =
∑

j∈I\Ī

pj ȳj +
n̄∑

j=1
pj ȳj ≤ Pℓ̄ + ϵ +

n̄∑
j=1

pj ȳj ≤ ObjBi(x̄) + ϵ

Particularly, given an optimal solution x̄∗ of Bi-IP(I, 1, 1), we have Obj(x̄∗) ≤ OPT Bi + ϵ.
Since the optimal solution of IPC(I, 1, 1) may achieve an even smaller objective value, it
follows that OPT ≤ OPT Bi + ϵ. Hence Lemma 8 is proved. ◀

3.3 Handling Small Items

According to Lemma 8, to solve IPC(I, 1, 1), it suffices to solve Bi-IP(I, 1, 1), which is the
goal of this subsection. Towards this, we first obtain a linear relaxation of Bi-IP(I, 1, 1)
where both the leader and the follower can select items fractionally. Then we reformulate this
bilevel linear relaxation as a single level linear program and find an extreme point optimal
fractional solution. Finally we round this fractional solution to obtain a feasible solution
to Bi-IP(I, 1, 1) with an objective value of at most 1 + O(ϵ), which is thus also a feasible
solution to IPC(I, 1, 1) with an objective value of at most 1 + O(ϵ).
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Replace (2c) and (2g) in Bi-IP(I, 1, 1) with xj ∈ [0, 1](∀j ∈ Ī) and yj ∈ [0, 1](∀j ∈ Ī),
respectively, we obtain a relaxation of Bi-IP(I, 1, 1) as follows.

Bi-IPr(I, 1, 1) : min
x

Pℓ +
n̄∑

j=1
pjyj

s.t.
n̄∑

j=1
Ajxj ≤ 1 − a′ (3a)

xj = x∗
j , ∀j ∈ I \ Ī (3b)

xj ∈ [0, 1], ∀j ∈ Ī (3c)
where integer ℓ, y[Ī] solves the following:

max
1≤ℓ≤1+ 1

ϵ

max
y[Ī]

Pℓ +
n̄∑

j=1
pjyj (3d)

s.t.
n̄∑

j=1
Bjyj ≤ 1 − bℓ (3e)

yj ≤ 1 − xj , ∀j ∈ Ī (3f)
yj ∈ [0, 1], ∀j ∈ Ī (3g)

Denote by OPT r
Bi the optimal objective value of Bi-IPr(I, 1, 1). Note that items in Ī are

sorted in decreasing order of the profit-weight ratios pj/Bj . Consider any fixed leader’s
solution x ∈ [0, 1]n and any fixed ℓ, the follower is solving a knapsack problem in the
remaining (fractional) items. The maximal objective value of the follower, given x ∈ [0, 1]n
and ℓ, is obtained by a simple greedy algorithm that selects remaining fractional items in Ī

in the natural order of indices (recall that items are re-indexed in non-increasing order of
ratios), until the budget 1 − bℓ is exhausted. Note that the greedy algorithm will stop at
some (fractional) item when the budget 1 − bℓ is exhausted4. We say this item is critical and
let its index be cℓ. Given any fixed x ∈ [0, 1]n and ℓ, the maximal objective value of program
(3d)-(3g) for x is

Pℓ +
cℓ−1∑
j=1

pj(1 − xj) + pcℓ

1 − bℓ −
∑cℓ−1

j=1 Bj(1 − xj)
Bcℓ

, (4a)

where cℓ is the critical item given x and ℓ. The following two formulas are directly given by
the definition of critical.

cℓ−1∑
j=1

Bj(1 − xj) ≤ 1 − bℓ (5a)

Bcℓ
+

cℓ−1∑
j=1

Bj(1 − xj) ≥ 1 − bℓ (5b)

We first show that the optimal objective value of the Bi-IPr(I, 1, 1) is at most OPT Bi +δ.

4 The greedy algorithm may pack all remaining (fractional) items without using up the budget 1 − bℓ. To
patch this case, we add a dummy item whose profit is 0, cost vector is 0 and weight is sufficiently large.
We assume the last item n̄ is the dummy item.
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▶ Lemma 9. Let OPT Bi and OPT r
Bi be the optimal objective values of Bi-IP(I, 1, 1) and

Bi-IPr(I, 1, 1), respectively, then OPT r
Bi ≤ OPT Bi + δ.

Proof. It is not straightforward if we compare Bi-IP(I, 1, 1) with Bi-IPr(I, 1, 1) directly,
as both the follower and the leader become stronger in the relaxation (in the sense they can
pack items fractionally). Towards this, we introduce an intermediate bilevel program Bi-
IPin(I, 1, 1), which is obtained by replacing (3c) in Bi-IPr(I, 1, 1) with xj ∈ {0, 1}(∀j ∈ Ī),
that is, we only allow the follower to select items fractionally but not the leader. Denote by
OPTin the optimal objective value of Bi-IPin(I, 1, 1).

First, we compare Bi-IPin(I, 1, 1) with Bi-IPr(I, 1, 1). We see that in Bi-IPr(I, 1, 1)
the follower is facing a stronger leader who is allowed to fractionally pack items, and it thus
follows that OPT r

Bi ≤ OPTin.

Next, we compare Bi-IPin(I, 1, 1) and Bi-IP(I, 1, 1). Note that the leader’s solution
must be integral in both programs. Any feasible solution of Bi-IPin(I, 1, 1) is a feasible
solution of Bi-IP(I, 1, 1), and vice versa. Let x̄∗ be an optimal solution of Bi-IP(I, 1, 1),
then x̄∗ is also a feasible solution of Bi-IPin(I, 1, 1). Once the leader fixes his solution as x̄∗

in Bi-IPin(I, 1, 1), there exist ℓ and cℓ ∈ Ī, such that the objective value of Bi-IPin(I, 1, 1) is

Objin = Pℓ +
cℓ−1∑
j=1

pj(1 − x̄∗
j ) + pcℓ

1 − bℓ −
∑cℓ−1

j=1 Bj(1 − x̄∗
j )

Bcℓ

,

where cℓ is the critical item corresponding to x̄∗ and ℓ. We have the following two observations:

OPT Bi ≥ Objin − pcℓ
≥ Objin − δ. This is because the follower in Bi-IP(I, 1, 1) can

guarantee an objective value of Pℓ +
∑cℓ−1

j=1 pj(1 − x̄∗
j ), and pj ≤ δ for j ∈ Ī;

OPTin ≤ Objin. This is because x̄∗ is just a feasible solution of Bi-IPin(I, 1, 1), while
the optimal solution of the leader may achieve an even smaller objective value.

To summarize, we know OPT r
Bi ≤ OPTin ≤ Objin ≤ OPT Bi + δ. Lemma 9 is proved. ◀

Given Lemma 9, we are still facing two questions: how can we solve Bi-IPr(I, 1, 1); and
even if we obtain a fractional solution to Bi-IPr(I, 1, 1), how can we transform it to an
integral solution without incurring a huge loss. Towards this, consider the optimal solution xr

to Bi-IPr(I, 1, 1). Note that leader’s choice on large items is guessed out in Bi-IPr(I, 1, 1).
Consider the scenario when the follower adopts the ℓ-th dominant choice on the remaining
large items, and recall the definition of critical items (see Equation 4a). Given solution xr,
for any ℓ ∈ {1, 2, · · · , 1 + 1

ϵ } there must exist a critical item. Therefore, there are 1 + 1
ϵ

critical items corresponding to xr. The crucial fact is that, while we cannot guess out xr

directly, we can guess out all the critical items corresponding to xr. More precisely, with
n̄O(1/ϵ) enumerations, we can guess out the critical item cr

ℓ for xr and each ℓ. Suppose we
have guessed out the correct cr

ℓ ’s corresponding to the optimal solution xr, we consider the
following LP:
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LPBi-IP : min
x,M

M

n̄∑
j=1

Ajxj ≤ 1 − a′

Pℓ +
cr

ℓ −1∑
j=1

pj(1 − xj) + pcr
ℓ

1 − bℓ −
∑cr

ℓ −1
j=1 Bj(1 − xj)
Bcr

ℓ

≤ M, ∀ ℓ ∈ {1, 2, · · · , 1 + 1
ϵ

}

cr
ℓ −1∑
j=1

Bj(1 − xj) ≤ 1 − bℓ, ∀ ℓ ∈ {1, 2, · · · , 1 + 1
ϵ

}

Bcr
ℓ

+
cr

ℓ −1∑
j=1

Bj(1 − xj) ≥ 1 − bℓ, ∀ ℓ ∈ {1, 2, · · · , 1 + 1
ϵ

}

xj = x∗
j , j ∈ I \ Ī

xj ∈ [0, 1], j ∈ Ī

We have the following simple observation.

▶ Observation 10. Let M∗ and OPT r
Bi be the optimal objective values of LPBi-IP and

Bi-IPr(I, 1, 1), respectively, then M∗ ≤ OPT r
Bi.

Let xr be an optimal solution to Bi-IPr(I, 1, 1). The observation follows directly as xr

together with OPT r
Bi form a feasible solution to LPBi-IP.

In the meantime, we also have the following observation.

▶ Observation 11. Let {xex, M∗} be an extreme point optimal solution to LPBi-IP, then
xex is also a feasible solution to Bi-IPr(I, 1, 1) whose objective value is at most M∗.

The observation follows since by the definition of critical, (4a) is the largest profit the follower
can achieve. Hence, when x = xex in Bi-IPr(I, 1, 1), the objective value is bounded by M∗.
Given the two observations above, we know xex is an optimal solution to Bi-IPr(I, 1, 1) and
we have M∗ = OPT r

Bi. Finally, a near-optimal solution to IPC(I, 1, 1) can be obtained
through the optimal solution to LPBi-IP, as implied by the following lemma.

▶ Lemma 12. Let {xex, M∗} be an extreme point optimal solution to LPBi-IP. Define x̃ such
that x̃j = 1 if xex

j = 1, and x̃j = 0 otherwise. Then x̃ is a feasible solution of IPC(I, 1, 1)
with an objective value of at most OPT + O(ϵ), where OPT is the optimal objective value of
IPC(I, 1, 1).

Proof. The feasibility of x̃ to IPC(I, 1, 1) is straightforward since
n∑

j=1
Aj x̃j =

∑
j∈I\Ī

Ajx∗
j +

∑
j∈Ī

Aj x̃j ≤ a′ +
∑
j∈Ī

Ajxex
j ≤ a′ + 1 − a′ ≤ 1.

Notice that x̃ is also feasible for Bi-IP(I, 1, 1) and Bi-IPr(I, 1, 1). Let Obj(x̃), ObjBi(x̃)
and Objr

Bi(x̃) be the objective values of IPC(I, 1, 1), Bi-IP(I, 1, 1) and Bi-IPr(I, 1, 1) by
taking x = x̃, respectively. Since in Bi-IPr(I, 1, 1), the leader is facing a stronger follower
who can select fractional items in Ī, it follows that ObjBi(x̃) ≤ Objr

Bi(x̃).
Now we compare the objective values of two solutions to Bi-IPr(I, 1, 1), xex and x̃. It is

easy to see that in xex, there are at most (sA + 3(1+ϵ)
ϵ ) variables taking fractional values,

and all these variables are in {xex
j : j ∈ Ī}. So the leader in xex selects at most (sA + 3(1+ϵ)

ϵ )
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more items in Ī, compared with the leader in x̃. Consequently, the follower in xex may
select at most (sA + 3(1+ϵ)

ϵ ) less items in Ī, compared with the follower in x̃. Given that the
objective value of xex is OPT r

Bi = M∗, we have that

Objr
Bi(x̃) ≤ OPT r

Bi + (sA + 3(1 + ϵ)
ϵ

)δ.

According to Lemma 8 and Lemma 9, we have Obj(x̃) ≤ ObjBi(x̃) + ϵ and OPT r
Bi ≤

OPT Bi + δ. In conclusion, we have

Obj(x̃) ≤ OPT Bi + (sA + 1 + 3(1 + ϵ)
ϵ

)δ + ϵ.

Furthermore, OPT Bi ≤ OPT by Lemma 8. By setting δ = ϵ2, Lemma 12 is proved. ◀

Hence, if OPT ≤ 1, then a feasible solution with objective value of at most OPT + O(ϵ) ≤
1 + O(ϵ) is found, thus Lemma 3 is proved, and Theorem 2 follows.

4 Approximation algorithm for IPC where sB and sA are constant

In this section, we prove our main result – Theorem 13.

▶ Theorem 13. When sB and sA are fixed constants, for an arbitrarily small number ϵ > 0,
there exists an (sB + O(ϵ))-approximation polynomial time algorithm for IPC.

Similar to the special case, by scaling item profits it suffices to show the following:

▶ Lemma 14. Let OPT be the optimal objective value of IPC(I, a, b). If OPT ≤ 1, then
for an arbitrarily small number ϵ > 0, there exists a polynomial time algorithm that returns
a feasible solution to IPC(I, a, b) with an objective value of at most sB + O(ϵ).

By further scaling the cost vectors and weight vectors, it suffices to find a near-optimal
solution for IPC(I, 1, 1).

Major technical challenge. Recall that the key to solving IPC for the special case of
sB = 1 is the establishment of Bi-IP(I, 1, 1), which is essentially equivalent to IPC(I, 1, 1).
Bi-IP(I, 1, 1) is built upon the observation that the follower admits only O( 1

ϵ ) dominant
choices on large items, where each dominant choice corresponds to the minimal budget
needed by the follower to ensure a profit of [(k − 1)ϵ, kϵ) where k ∈ {1, 2, · · · , 1 + 1

ϵ }. Because
the number of follower’s choices on large items is small, its relaxation Bi-IPr(I, 1, 1) has
a small number of constraints (see Equation 3e), and therefore we can further transform
Bi-IPr(I, 1, 1) to LPBi-IP with a small number of constraints whose extreme point solution
promises a good rounding. We aim to follow a similar method, however, when sB ≥ 2, we
can no longer bound the follower’s choices on large items. This is because to achieve a
profit of [(k − 1)ϵ, kϵ) where k ∈ {1, 2, · · · , 1 + 1

ϵ }, the follower may have a huge number of
different choices utilizing different budgets, where the budgets are now vectors instead of
numbers, and are thus incomparable. To handle the problem, we use the idea of rounding:
let b = (b[1], b[2], · · · , b[sB ]) and Bj = (Bj [1], B[2], · · · , B[sB ]). We call the first dimension
(b[1] and Bj [1]’s) the principal dimension. The principal dimension will be treated the same
as the special case and will not be rounded. The coordinates of other dimensions (b[h] and
Bj [h]’s for 2 ≤ h ≤ sB) will be rounded. Then, we will be able to compare follower’s different
choices on large items: if there are two choices both achieving profit within [(k − 1)ϵ, kϵ)
for the same k ∈ O( 1

ϵ ), and furthermore, the summation of their weight vectors share the
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same rounded value in each dimension h ∈ [2, sB ], then the choice with smaller value in the
principal dimension of the summed weight vectors dominates the other choice. By doing so,
our argument for the special case can be carried over to the principal dimension.

There is one problem with the idea of rounding above, that is, if we round up weight
vectors and meanwhile enlarge the follower’s budget vector in dimension h ∈ [2, sB] (to
accommodate the rounding up), the optimal objective value of IPC may increase. However,
we are able to show that the optimal objective value only increases by a factor of sB (see
Lemma 15). This explains our approximation ratio of sB + ϵ.

Below we give a very brief walk through and the reader is referred to the full version [7]
for details.

Step 1. We pick a small parameter δ as the rounding precision, keep the coordinates of
weight vectors on principal dimension intact, and round the coordinates on other dimensions.
We also round the profits. By doing so we obtain a rounded instance Ĩδ. Then we pick
another small parameter τ and enlarge the weight budget on dimension h ∈ [2, sB] by a
factor of 1 + τ . By doing so we obtain:

IPCτ (Ĩδ, 1, 1) : min
x

p̃y

s.t. Ax ≤ 1
x ∈ {0, 1}n

where y solves the following:
max

y
p̃y

s.t.
n∑

j=1
B̃j [1]yj ≤ 1

n∑
j=1

B̃j [i]yj ≤ 1 + τ, ∀2 ≤ i ≤ sB

x + y ≤ 1
y ∈ {0, 1}n

where B̃j [1] = Bj [1], B̃j [h], 2 ≤ h ≤ sB and p̃ are rounded weights and profits. We are
able to prove the following lemma which ensures that solving IPCτ (Ĩδ, 1, 1) gives a good
approximate solution to IPC(I, 1, 1):

▶ Lemma 15. Let 0 < τ ≤ 1/2. Let x̃ be any feasible solution to IPCτ (Ĩδ, 1, 1). Then
x̃ is a feasible solution to IPC(I, 1, 1). Let Õbjτ (x̃) and Obj(x̃) be the objective values of
IPCτ (Ĩδ, 1, 1) and IPC(I, 1, 1) for x = x̃, respectively. If 2δ ≤ τ ≤ 1/2, we have

Obj(x̃) ≤ (1 + δ)Õbjτ (x̃) ≤ sB(1 + δ)Obj(x̃).

Furthermore, let ÕPT τ and OPT be the optimal objective values of IPCτ (Ĩδ, 1, 1) and
IPC(I, 1, 1), respectively. We have

OPT ≤ (1 + δ)ÕPT τ ≤ sB(1 + δ)OPT.

Step 2. We handle large items. We first classify item profits into large, medium and small.
We then classify item weights into large and small based on the largest coordinate in the
weight vector, i.e., ∥Bj∥∞. We say an item is large if it has a large weight or a large profit,
and small otherwise. Let S∗ be the leader’s optimal solution in IPCτ (Ĩδ, 1, 1). Using a
similar argument as the special case, we can prove the following.
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▶ Lemma 16. With O(sBδ) additive error, we can guess out all items in S∗ that have a
large weight or a large profit by nÕ(sB/δsB +1) enumerations.

Utilizing the fact that coordinates in dimension h ∈ [2, sB] are all rounded, we can show
that the follower only has a small number (i.e. Õ(sB/ϵsB )) of dominant choices on large
items, denoted as Θ. By restricting the follower’s choices to Θ, we can obtain a new
bilevel integer programming MBi-IP(Ĩδ, 1, 1). Similar to Bi-IP(I, 1, 1) in the special case,
MBi-IP(Ĩδ, 1, 1) has a small number of constraints.

Step 3. We handle small items. Since MBi-IP(Ĩδ, 1, 1) has a small number of constraints,
we remove the integral constraint to obtain a relaxation MBi-IPr(Ĩδ, 1, 1). Next, we
transform this bilevel LP MBi-IPr(Ĩδ, 1, 1) to a standard (single level) LP, denoted as
cen-LPλ. Note that here the transformation is much more complicated than that in the
special case: in the special case we know that if the follower can choose items fractionally,
then its optimal fractional solution is always obtained greedily with respect to the ratio (i.e.,
profit to weight), whereas it suffices to guess one single critical item. In the general case,
if the follower can choose items fractionally, we can only guarantee that among all items
whose rounded weight vector are the same except for the principal dimension (i.e., Bj [h]’s
have the same rounded value for every 2 ≤ h ≤ sB), the follower selects items greedily with
respect to the principal ratio (i.e., profit to weight coordinate in the principal dimension).
Therefore, we need to guess a subset of critical items, and the subscript λ in cen-LPλ

corresponds to a set of parameters characterizing the subset of critical items. The most
technical part is to show that the optimal solution to cen-LPλ gives a good approximation to
MBi-IPr(Ĩδ, 1, 1) (see Lemma 31 in the full version [7]), where we need to create a sequence
of “intermediate” LPs. Finally, we obtain an extreme point solution to MBi-IPr(Ĩδ, 1, 1) by
solving cen-LPλ, and round it to an integral solution. The rounding error can be bounded
due to that MBi-IPr(Ĩδ, 1, 1) contains a small number of constraints.

5 Approximation algorithm for IPC where sB and sA are arbitrary

We consider the most general setting of IPC where sA and sB are arbitrary (not necessarily
polynomial in the input size).

We define max{py : By ≤ b, y ∈ {0, 1}n} as the follower’s problem. A separation oracle
for the leader’s problem is an oracle such that given any x = x0 ∈ [0, 1]n, it either asserts
that x0 ∈ {x : Ax ≤ a, x ∈ [0, 1]n}, or returns a violating constraint. The goal of this section
is to prove the following theorem.

▶ Theorem 17. Given a separation oracle OL for the leader’s problem, and an oracle OF

for the follower’s problem that returns a ρ-approximation solution, there exists a ( ρ
1−α , 1

α )-
bicriteria approximation algorithm for any α ∈ (0, 1) that returns a solution x∗ ∈ {0, 1}n

such that Ax∗ ≤ 1
α · a, and

max{py : By ≤ b, y ≤ 1 − x∗, y ∈ {0, 1}n} ≤ ρT ∗

1 − α
,

where T ∗ is the optimal objective value of IPC(I, a, b). Furthermore, the algorithm runs in
polynomial oracle time.

We omit the proof of Theorem 17 here, and refer the reader to the full version [7].
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6 Conclusions

In this paper, we consider a general two-player zero-sum Stackelberg game in which the
leader interdicts some items to minimize the total profit that the follower could obtain from
the remaining items. We obtain an (sB + ϵ)-approximation algorithm when sA and sB are
both constant, and show that there does not exist any (4/3 − ϵ)-approximation algorithm
when sB ≥ 2. Our algorithm is the best possible when sB = 1, however, it is not clear
whether it is the best possible when sB is larger than or equal to 2. In particular, it is not
clear whether an approximation algorithm with a ratio independent of sB can be obtained.
Furthermore, can we hope for a PTAS if sB ≥ 2 but the constraints of the leader or the
follower are not given by general inequalities but follow from common optimization problems?
For example, what if the follower’s optimization problem is a bin packing problem? It would
be interesting to investigate the bilevel generalization of well-known optimization problems,
e.g., scheduling and bin packing.
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Abstract
We study a generalization of the classic Online Joint Replenishment Problem (JRP) with Delays
that we call the Online Weighted Cardinality JRP with Delays. The JRP is an extensively studied
inventory management problem wherein requests for different item types arrive at various points
in time. A request is served by ordering its corresponding item type. The cost of serving a set of
requests depends on the item types ordered. Furthermore, each request incurs a delay penalty while
it is left unserved. The objective is to minimise the total service and delay costs. In the Weighted
Cardinality JRP, each item type has a positive weight and the cost of ordering is a non-decreasing,
concave function of the total weight of the item types ordered. This problem was first considered in
the offline setting by Cheung et al. (2015) but nothing is known in the online setting. Our main
result is a deterministic, constant competitive algorithm for this problem.
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1 Introduction

The Joint Replenishment Problem (JRP) is a class of optimisation problems that are
fundamental to inventory management theory. The problem involves a sequence of requests
on items that arrive at various times. Serving a set of requests incurs a cost that is determined
by a given cost function that depends on the set of items the requests are on. The goal of
the problem is to serve all requests whilst minimising the total cost incurred. There are two
variants under which this problem is often studied. In the deadline variant, each request has
an associated deadline that is must be served before whilst in the more general delay variant,
each request incurs a delay penalty which must be paid. The delay is a non-decreasing,
continuous function of the time the request was left unserved. Under the delay model, the
goal is to minimise the total service and delay costs. We will be considering the JRP under a
make-to-order mechanism [18], where items must be made to serve some request and cannot
be held in inventory. In this paper, we consider the online setting. Here, requests arrive over
time together with their deadline or delay functions and at any point in time, the algorithm
may choose to serve some set of requests.

In the Classic JRP, each item type i has a corresponding item ordering cost Ki and there
is a fixed joint ordering cost K0. Whenever a set of items is served, the cost incurred is K0
plus Ki for each item type i served. We note that regardless of the number of units of an
item type i that gets served, only a fixed Ki is paid. This problem captures the well-known
TCP Acknowledgement Problem. Buchbinder et al. [15] gave a 3-competitive algorithm for
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Online Classic JRP with Delays and a lower bound of 2.64. Then, Bienkowski et al. [10]
improved the lower bound to 2.754 and showed that the optimal competitive ratio for Online
Classic JRP with Deadlines is 2.

With the competitive ratio of Online Classic JRP with Delays mostly settled, there has
been a lot of interest in generalisations of the problem where different costs of serving requests
are considered. One of these generalizations is Multi-Level Aggregation [9, 14] where we
are given a rooted tree T with node costs and requests arrive at nodes of the tree. The
cost of serving a set of requests is the cost of the subtree of T induced by the root and the
nodes corresponding to the requests. Note that when T is depth 2, this captures JRP. The
current best upper bounds for this problem depends on either the depth of T [14, 7], or are
logarithmic in the number of vertices of T [8]. No super-constant lower bounds are known.

This problem was later generalized to Online Network Design with Delays [8] where we
are given a graph G with edge/node costs and receive connectivity requests over time. The
cost of serving a set of connectivity requests is the cost of the subgraph of G that satisfies
the requests. This captures a wide class of problems such as Multi-Level Aggregation and
Set Cover with Delay. Azar and Touitou [8] provided a framework to reduce a network
design problem with delay or deadline to the classic offline variant without delay or deadline
while incurring a logarithmic loss in the competitive ratio. Using this framework, they gave
polylogarithmic-competitive algorithms for many network design problems with delays or
deadlines. Recently, Touitou [30] recently showed that a sub-logarithmic competitive ratio is
not possible for Online Network Design with Delays in its full generality. Thus, as powerful
as this framework is, it cannot be used as is to improve the competitive ratios for problems
such as Multi-Level Aggregation. For these problems, we will need to take advantage of the
special structure of these problems to improve their competitive ratios.

In this paper, we introduce a natural generalisation of Online Classic JRP with Delays
called the Online Weighted Cardinality JRP with Delays and show that the Azar-Touitou
framework can be refined to give a constant competitive algorithm for the problem. In the
Online Weighted Cardinality JRP with Delays, each item type i has an associated weight
wi and we are also given a non-negative, non-decreasing concave function f . The cost of
serving a set of requests on a set λ of item types is f(

∑
i∈λ wi). The concave cost function

captures a natural type of economies-of-scale in the real-world production of goods. It has
also been considered in other optimization problems such as buy-at-bulk network design
(see Section 1.2 for details). The special case of unit weights (called Cardinality JRP) was
first studied by Cheung et al. [17] in the offline setting, and they gave a 5-approximation
algorithm. We remark that this problem captures the Classic JRP by setting f to be the
affine function f(x) = K0 + x and the weights wi = Ki.

The main technical result of this paper is a constant-competitive algorithm for the case
of unit weights.

▶ Theorem 1. There is an O(1)-competitive, deterministic polynomial time algorithm for
Online Cardinality JRP with Delay.

For the weighted variant, we design a pseudo-polynomial time reduction from Weighted
Cardinality JRP to Cardinality JRP to get the following result.

▶ Theorem 2. There exists an O(1)-competitive, deterministic algorithm for Online Weighted
Cardinality JRP with Delay.
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1.1 Our Techniques
We now outline the key ideas behind our algorithm for Online Cardinality JRP with Delay.
First, as is common when dealing with concave functions, we focus on the special case where
the function f(x) is the minimum of n affine functions gi(x) = σi + δix, and the σi’s are
geometrically increasing with i while the δi’s are geometrically decreasing with i. Moreover,
when we make a service, we specify which of these affine functions we use to pay for the
service. When we make a service λ using gi, we call it a level i service. The cost of the
service is gl(λ) = σi + δi|λ|; we call σi the shared cost of the service and δi its individual cost.
We call this the Piecewise Cardinality JRP. In the remainder of this section, we discuss our
approach for Piecewise Cardinality JRP.

In Classic JRP, the main challenge is to balance the competing demands of aggregating
requests into few orders to minimize the number of services and hence the total joint ordering
costs incurred, and of aggregating requests on the same item types to minimize the total item
ordering costs incurred. The additional challenge in Piecewise Cardinality JRP is deciding
which level each service serves at. Since 2σi ≤ σi+1 and δi ≥ 2δi+1 for all i ∈ [1, n), a lower
level service pays a lower shared cost but higher individual cost for each item type and is
hence preferred for services with fewer items. On the other hand, a higher level service must
pay a larger shared cost but can then serve items at a lower individual cost and should thus
be used when serving more item types.

Our algorithm is inspired by the Azar-Touitou framework [8] and augmented with ideas
from Gupta et al. [26] to decide which level we should make services at. In fact, we also show
that applying the Azar-Touitou framework directly leads to a logarithmic competitive ratio
at best (see full version). We first discuss how to handle the simpler deadline setting.

In the deadline setting, requests have levels which are initialised to 1 on arrival. When an
unserved request of level j reaches a deadline, it triggers a level j service. We then upgrade
its level to j + 1 if there are sufficient level j services made recently whose total individual
cost can pay for the shared cost of the upgraded services. This makes sense because if there
are too many level j services in a relatively small time period then the optimal solution could
have aggregated the requests served by these requests into fewer higher-level services and
incurred lower cost overall. While this seems to lead to a competitive ratio that depends
on the number of levels, by making a careful choice of which level j services to charge to,
we are able to achieve a constant competitive ratio. Once we have decided on the level of
the service, say at level j′, we set the budget of the service to its shared cost σj′ and serve
unserved requests of level at most j′ in ascending order of their deadline until the individual
cost of the service reaches or exceeds the budget.

To generalise the algorithm to the delay setting, we adapt and extend the idea of
investments used by [8]. Conceptually, instead of thinking of the delay penalty on requests
being paid off continuously as time progresses, online algorithms with delay normally pay off
the delay accumulated by requests when the request is served. However, with the notion of
investments, services will pay off the delay accumulated by all requests, regardless of whether
or not it serves it, and will also pay off and “invest” in the delay requests may accumulate in
the future. This can be thought of as services investing in the delay requests accumulate and
might accumulate in the future and incrementally paying it off as opposed to paying it all off
in one go at service time. Our key innovation to extend upon the idea of investments used
by [8] is to keep track of and utilise how much has been invested into each request. More
specifically, we will invest in requests and once a sufficient amount has been invested into a
set of requests of the same item type, we will serve the set of requests. To then generalise
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the level updating condition used in the deadline variant, our algorithm will explicitly bound
the amount invested in requests of a particular level by recent services and use this bound to
determine when we update levels.

Our analysis uses similar ideas to [8] by defining service pointers to define different types
of services and then breaking up our algorithm’s cost into the costs of different types of
services. Using our extended notion of investments, we introduce a novel charging argument.
Previous works on online JRP and related problems often charge their algorithm’s delay
costs to the costs of its services which are then charged to the optimal solution. Our analysis
differs by instead charging the algorithm’s service costs to the delay costs we have invested
in and then charging these costs to the optimal solution.

1.2 Related work

Multi-Level Aggregation was first studied by Bienkowski et al. [9] who gave an algorithm
whose competitive ratio is exponential in the depth D of the tree T . This was later improved
to O(D) for the deadline setting by Buchbinder et al. [14] and then to O(D2) for the general
delay model by Azar and Touitou [7]. The framework of Azar-Touitou [8] yields a competitive
ratio that is logarithmic in the number of vertices of T .

Online Network Design with Delays was first studied by Azar and Touitou [8]. They proved
polylogarithmic competitive ratios for many network design problems with delay and gave a
Ω(

√
log|V |) lower bound for the case of online node-weighted Steiner tree with delay and

online directed Steiner tree with delay. This was recently improved to Ω(log |V |/ log log |V |)
by Touitou [30].

A related problem is Set Cover with Delays where we are given a universe of elements
and a collection of sets with costs, requests arrive on elements. The cost of serving a set of
requests is the min-cost set cover for the corresponding set of elements. This problem was
first studied by Carrasco et al. [16]. They gave a O(log N)-competitive algorithm (where N

is the number of requests) and proved a matching lower bound. Later, Azar et al. [3] gave
an algorithm that is polylogarithmic in the number of sets and elements.

Two other online problems with delay that have received a lot of attention are matching [19,
1, 20, 12, 4, 13, 11, 6] and k-server [5, 13, 7, 24]. In Matching with Delays, requests arrive
on points of a metric space and accumulate delay until they are matched. The objective is to
minimize the length of the matching and the total delay cost. In the k-Server with Delays
problem, we have k servers in a metric space and requests arrive on points of the metric
space. A request is served by moving a server to its location. The goal is to minimize the
total distance traveled by the servers and the delay incurred by the requests.

Concave cost functions have been widely-studied in the network design literature, both
in the offline and online settings. The problem that is most closely relevant to our paper
is Offline Single-Sink Buy-at-Bulk Network Design. We are given an undirected graph
G = (V, E) with edge lengths de, a concave cost function f , a sink t and a set of sources
si. The cost of routing xe units of flow on edge e is f(xe) · de. The total cost is the sum
of the routing cost over all edges. The goal is to route one unit of flow between from each
source si to the sink t with minimum total cost. The problem is known to be NP-hard and
admits constant-factor approximation algorithms [28, 23, 21, 29, 25, 22, 27]. In the online
setting, the sources arrive one-by-one. For the online problem, there is a tight deterministic
O(log k)-competitive algorithm [2, 31, 26].



R. Chen, J. Khatkar, and S. W. Umboh 40:5

2 Preliminaries

As mentioned in the Introduction, we will be mainly dealing with Piecewise Cardinality JRP
with Delay. The Piecewise Cardinality JRP is a special case of Cardinality JRP where the cost
function is a concave, piecewise function defined by taking the minimum of n affine functions,
where n is arbitrary. More precisely, the cost of a service λ is g(λ) = mini{σi+δi|λ| : i ∈ [1, n]}
where the cardinality |λ| is the number of item types served in λ. The affine functions must
also satisfy 2σi ≤ σi+1 and δi ≥ 2δi+1 for all i ∈ [1, n). We will also require that σi ≥ δi for
all i. Requests will then arrive over time and upon arrival, they have an associated deadline
or delay function that is revealed.

When a service with cost σi + δi|λ| for some i is made, we will say that a level i service
has been made and call the σi paid the shared cost of the service and the δi|λ| cost paid
the individual cost of the service. Typically, a solution to Piecewise Cardinality JRP would
specify when services are made and what requests are served by these services. The cost
of this service would then be determined by taking the minimum of the piecewise affine
functions. Equivalently, we can also require the solution to specify for each service not only
the requests it serves but also the level it serves it in. This is a more useful formulation that
we will be using in the sequel.

For the delay variant, which is the variant under which we are studying this problem,
the delay penalty function dq(t) for a request q is a non-decreasing, continuous function of
the time the request has been left unserved. We will also assume that the delay penalty for
each request tends to infinity as the time tends to infinity which is a natural assumption also
made by [8] to ensure that all requests must eventually be served.

Using standard techniques for dealing with concave functions we can reduce Cardinality
JRP to Piecewise Cardinality JRP losing only a constant factor in the approximation ratio.
We defer the details to the full version.

3 Piecewise Cardinality JRP with Delay

We now prove the following theorem. Omitted proofs can be found in the full version.
▶ Theorem 3. There is a deterministic O(1)-competitive algorithm for Piecewise Cardinality
JRP with Delay.

3.1 Algorithm Intuition
We first introduce some terminology. We will say a request is active if it has arrived and is
unserved. We will also assign each request a request level which is initially set to 1 upon
arrival and is updated as the algorithm progresses. We say that an request is eligible for a
level l service at time t if it is active and has level at most l at time t. Our algorithm allows
services to incrementally pay off the delay that requests have accumulated in the past and
may accumulate in the future; we call the latter an investment cost. In particular, we say
that a service λ at time t invests an amount x into request q when λ pays off x amount of
the delay cost that may be incurred by q after t. The residual delay of a request q at time t

is defined as the amount of delay accumulated by the request up to time t that has not been
paid for by some service.

When do we make a service? A level l service λ is triggered when the set of requests E

eligible for a level l service accumulate a total residual delay of σl; we say that E are the
eligible requests of λ. The intuition here is that our algorithm will make level l services
whose total cost is O(1) · σl and hence waiting until σl unpaid delay accumulates means that
our delay cost will be comparable to the service cost.
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What level service should we make? When a level l service λ is triggered at time t, we
first check if we can upgrade it to l + 1. Roughly speaking, we upgrade to level l + 1 if the
amount invested by recent level l services so far is at least σl+1. This invariant allows us to
bound our investment costs. We then proceed to the next step of deciding which requests to
serve.

Which requests to serve? Next, the algorithm uses an investment process to decide which
requests to serve. For each item type we add to our service, we incur an additional cost of δl.
The investment process continually invests into the future delay of eligible requests. Once
the total investment into requests of an item type i, from this service as well as prior services,
reaches δl, we add i to the service, reset the counter to 0 and stop investing in requests of
type i. The entire investment process stops once the total amount invested by the service
reaches σl or the service contains the item types of all eligible requests, and we make the
service. Intuitively, this investment process allows us to serve requests by order of urgency.
Urgent requests can be interpreted as those that accumulate delay faster and hence will have
investment counters that reach the required service threshold faster.

3.2 Algorithm Description
We now formally describe the algorithm. Our algorithm maintains the following information.

Service and request pointers. Each request and service will be assigned a pointer that
points to some service. This will be specified in more detail later on. We classify services
into the following types.

▶ Definition 4 (Service types). A service λ is:
a primary service if it does not point to any service;
an upgrade service if it is triggered initially at level l and the algorithm decided to upgrade
it to level l + 1;
a tail service if it is neither a primary nor an upgrade service and no service points to λ;
a normal service if it is not one of the above types, i.e. it is not a primary nor an upgrade
service and there is a service pointing to it.

Note that a tail service can become a normal service later on.

Investment counters. The algorithm maintains an investment counter counter(l, i) for
level l and each item type i. This counter keeps track of the amount invested into requests
of type i since the last level l service containing type i or the beginning of time if there is no
such service.

Investment intervals. To decide whether to upgrade service, the algorithm needs to keep
track of the investments made by recent normal services. At the end of each service λ that is
neither primary nor upgrade, for each eligible request q, the algorithm creates a investment
interval [t, τ ] on q with cost equal to the amount that λ invested in q. Here, t is the service
time of λ. The interval also has a level, which is the level of the service. The details of the
investment process and the definition of τ will be specified later.

Our algorithm consists of the following components:

Initialisation. Before any requests arrive, the investment counters counter(l, i) are initialised
to 0. When a request q arrives, we set its level to 1, its pointer to NULL.
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Serving requests. A level l service λ is triggered when active requests of level at most l

accumulate a total of σl residual delay. The algorithm then proceeds through the following
four steps:

Step 1: Setting service pointer. The triggering requests for λ are the active level l requests
with positive residual delay. The service pointer of λ will be determined by looking at its
triggering requests. If all the triggering requests have a NULL pointer then the service
pointer will be NULL. Otherwise, the service pointer will be set to be any of the non-NULL
triggering request pointers. As will be shown later (Observation 8), all requests in the
triggering requests set with a non-NULL pointer must in fact point to the same service so it
does not matter which non-NULL triggering request pointer we choose.

Step 2: Determining the service level. When a level l service λ is triggered, if it is
non-primary and not of the highest level n already then it is eligible for a level upgrade. To
determine whether to upgrade the service, we use the following notion of witness sets.

▶ Definition 5 (Witness sets). Let λ be a level l service and aq be the earliest arrival time
among its eligible requests. The witness set of λ is the set Wλ of level l investment intervals
that begin after aq and were created by previous level l normal services. The cost of the
witness set Wλ is the total cost of the investment intervals in it and is denoted by c(Wλ).

If c(Wλ) ≥ σl+1, we upgrade λ’s level to l + 1; otherwise, it stays at level l. Note that
upgrading the level of a service will not change its triggering requests or pointer but after
upgrading, all requests of level l + 1 will now also be eligible for λ and hence λ’s set of eligible
requests Eλ may increase. Algorithm 1 gives the pseudocode for Steps 1 and 2.

Step 3: Making the service. Our level l service λ at time t first pays off the residual delay
that each eligible request q ∈ Eλ has accumulated up to the service time t. Let rq(t1, t2)
denote the residual delay accumulated by request q from times t1 to t2 then for each eligible
request q ∈ Eλ, we pay off all residual delay since their arrival time, that is, rq(aq, t).

Then the service begins the investment phase with an investment budget of σl where
it invests in the future residual delay that the eligible requests accumulate from t. This
begins with initializing the following variables: future time τ ← t, the previous time t′ ← t,
the set of served requests Qλ ← ∅ and the service investment counter to be 0. We then
continuously increase τ . Each time τ increases, the residual delay incurred from time t′ to
τ by each request q ∈ Eλ \Qλ is paid off and invested in. That is, we pay off rq(t′, τ) for
each q ∈ Eλ \Qλ. This residual delay rq(t′, τ) invested in is added to the level l investment
counter for q’s corresponding item type as well as the service investment counter. We also
add this amount to a variable Iq(λ) which keeps track of how much λ has invested in the
request q and will be used later to construct our investment intervals. If the investment
counter for an item type i reaches δl then all eligible requests of item type i are added to
the set Qλ to be served and we stop investing in these requests. Finally, we set t′ ← τ and
iteratively continue the process. This process terminates if all eligible requests have been
served and added to Qλ or if the service investment counter equals σl which signifies a total
of σl has been invested in future delay incurred by eligible requests. We note that at the end
of this process, all eligible requests will have their delay paid off until time τ and hence can
only accumulate residual delay beginning from time τ . To finish the service, we serve the
requests in Qλ, paying a fixed cost of σl as well as δl for each item type in Qλ. This process
is captured in Algorithm 2.
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Note that it is possible for Qλ to be empty.1 In this case, we say that λ is an empty
service. The delay costs paid off by the algorithm remains paid but it does not pay the
shared or individual cost.

Step 4: Updating request pointers, levels, investment counters and investment intervals.
At the end of the service, all eligible requests for λ left unserved have their pointers set to λ

and levels set to l. If λ serves item type i then the level l investment counter for item i is
reset to 0. If the service is not a primary or upgrade service then for each request that was
eligible for λ, we construct the level l investment interval [t, τ ] for this request with cost Iq(λ)
which is how much λ invested in the request. Note that all eligible requests for this service
will have the same investment interval start and end times but the cost of each interval may
differ. Pseudocode for these steps is given at the end of Algorithm 2.

Algorithm 1 Procedure to handle triggering and upgrading services.

Function OnTrigger(level l)
Start a new service λ at current time t;
/* determine service pointer using triggering requests */
Let Eλ be all eligible requests;
Let Qtrigger ⊆ Eλ be those with positive residual delay and level l;
pointer(λ)← pointer(q) for an arbitrary request q ∈ Qtrigger;
/* upgrade the service level if possible */
if pointer(λ) ̸= NULL and l ̸= n then

Let aq be the earliest arrival time among requests in Eλ;
Let Wλ be the set of investment intervals created by level l normal services
and begin after aq;

if
∑

c∈Wλ
cost(c) ≥ σl+1 then

l← l + 1;
Update Eλ to be the eligible requests for level l + 1;

level(λ)← l;
MakeService(λ, t);

3.3 Analysis
We will bound the costs of the different types of services individually: primary services,
normal services, upgrade services and tail services. By noting that every service must fall
under one of these categories, this will enable us to bound the total cost of our algorithm. In
the following, we abuse notation and use ALG to denote both the algorithm’s solution and
its cost, and OPT to denote both the optimal solution and its cost.

We first examine the structure and properties of our solution in Section 3.3.1. In particular,
we will argue that the directed graph induced by the services and service pointers consist of
node-disjoint directed paths and that all non-NULL pointers in a set of triggering requests
must be the same.

Next, we look at the structure of our costs in Section 3.3.2. Most importantly, we will
introduce the notion of charged costs which represent the costs of our services that need to
be charged to OPT and show that the charged cost of a level l service is at most 3σl.

1 This can happen, for instance, if there are many eligible requests on many different item types so the
service investment counter reaches σl before any of the counter(l, i) reaches δl.
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Algorithm 2 Procedure to handle serving requests and updating information post-service.

Function MakeService(service λ, service time t)
/* pay off all residual delay on eligible requests */
foreach q ∈ Eλ do

Pay off the residual delay rq(aq, t);
/* set up counter to track how much λ invests in each request */
Iq(λ)← 0;

/* Investment Phase */
l← level(λ); τ ← t; t′ ← t; Qλ ← ∅; invested← 0;
Let Eλ,i be the set of eligible requests of item type i;
while Qλ ̸= Eλ and invested < σl do

Continuously increment τ until either invested +
∑

q∈Eλ\Qλ
rq(t′, τ) = σl, or

for some type i not in Qλ, counter(l, i) +
∑

q∈Eλ,i\Qλ
rq(t′, τ) = δl;

/* Update investment counters and t′ */
invested← invested +

∑
q∈Eλ\Qλ

rq(t′, τ);
foreach item type i do

counter(l, i)← counter(l, i) +
∑

q∈Eλ,i\Qλ
rq(t′, τ);

foreach q ∈ Eλ \Qλ do
Iq(λ)← Iq(λ) + rq(t′, τ);
Pay off the residual delay rq(t′, τ);

t′ ← τ ;
if for some type i not in Qλ, counter(l, i) = δl then

Qλ ← Qλ ∪ Eλ,i;
counter(l, i)← 0;

Serve Qλ;
/* update pointers and levels of unserved eligible requests */
foreach q ∈ Eλ \Qλ do

level(q)← l and pointer(q)← λ;
/* construct investment intervals */
if λ is not a primary or upgrade service then

foreach q ∈ Eλ do
Construct a level l investment interval [t, τ ] on q with cost Iq(λ);

Section 3.3.3 will then begin our charging argument by showing that the charged cost of
all services can be bounded by the charged costs of the primary and normal services. This is
done by bounding the charged cost of the tail services by the charged cost of the primary and
upgrade services and then charging the charged cost of the upgrade services to the charged
cost of the normal services.

Finally, we finish our charging argument in Section 3.3.4 by charging the charged costs
of the primary and normal services to OPT. This is the crux of our analysis. The charged
cost of primary services is charged to OPT using a disjointness argument. The charged cost
of the normal services is charged to the cost of our investment intervals. These investment
intervals’ costs are then charged to OPT by showing that for any service λ∗ made by OPT
and any request q served in λ∗, the total cost of q’s investment intervals can be charged to
the costs of λ∗.

ICALP 2022



40:10 Online Weighted Cardinality Joint Replenishment Problem with Delay

To simplify our analysis, we assume that at most one service can be triggered at any
given time. This is without loss of generality since the delay functions can be perturbed by
an infinitesimal amount to ensure this holds.

3.3.1 Analysis: Solution Structure
We begin our analysis by proving properties of ALG’s solution structure.

▶ Observation 6. ALG serves all requests eventually. Moreover, when a request q is served
at time t, the algorithm would have paid off its delay up till at least time t by the end of the
service.

Proof. We first argue that ALG serves all requests. This is because the delay on each request
tends to infinity with time so each request will eventually accumulate enough delay to trigger
a service and then have enough invested to trigger the service of the requests. This is because
as the delay tends to infinity, ALG will never reach a scenario where it stops making services
or stops investing in requests. The second part of the observation follows from the fact it
was eligible for the service it was served in, and the service would have ensured that the
delay of q up till time t has been paid off entirely. ◀

The following lemma implies that service pointers belonging to services of the same level
are, in a sense, non-overlapping.

▶ Lemma 7. Suppose a service λ′ points to another service λ and their service times are
t′ > t, respectively. Let l be the level of λ. Then, there cannot be a service of level at least l

made between t and t′.

Proof. Suppose, towards a contradiction, that there is a level l service λ0 made between t

and t′. By definition of pointers, there exists a triggering request q for λ′ that pointed to λ

at the start of the service λ′; moreover, q is active and has level l between t and t′. Thus,
q is eligible for λ0. Since λ0 did not serve q, it must have overwritten q’s pointer and so q

would not have pointed to λ at the start of λ′, a contradiction. ◀

▶ Observation 8. A service’s set of triggering requests must be non-empty and all the
triggering requests with a non-NULL pointer must have the same pointer.

Proof. Consider any level l service λ. We first observe that the set of triggering requests
must be non-empty. If this was not the case, then by definition there is no level l eligible
request with positive residual delay when λ is triggered. Hence, all the requests whose
residual delay contributed to triggering λ would have a level less than l and since σl−1 < σl,
a lower level service should have been triggered instead. Therefore, λ should never have been
triggered in the first place.

Next we show that all triggering requests with a non-NULL pointer must point to the
same service. Let q1 be the triggering request whose pointer λ1 was used as the service
pointer for λ and let q2 be another triggering request with pointer λ2. Since q1 and q2 are
level l requests, they must point to level l services. Moreover, the pointer of q2 must have
been set after λ1 but before λ since otherwise it would have been eligible for λ1 and been
changed. Then, Lemma 7 implies that λ2 must in fact be λ1. ◀

From Observation 8, we know that a service pointer will always be uniquely defined and
not dependent on which triggering request was chosen to determine the pointer as alluded to
in the algorithm description. Next, we show that the directed graph induced by the services
and service pointers consist of node-disjoint directed paths, which we call service chains.
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▶ Lemma 9. Every service can only point to at most one other service and be pointed at by
at most one other service.

Proof. By construction, a service pointer can only be one other service and hence every
service can only point to at most one other service. Now we will argue that two services
cannot point to the same service λ′ of level l. Suppose there are two services λ1 and λ2 that
point at λ′. By construction of service pointers, λ1 and λ2 must have been level l when they
were triggered. By Lemma 7, we get that λ1 and λ2 must be the same service. Thus, each
service can be pointed to by at most one other service. ◀

The following lemma implies that at any time, only the last service of a level can become
normal in the future, all previous services of the level that are tail must remain tail. This
ensures that our witness sets will not exclude any investment intervals that belong to tail
services that later become normal services which is required later to prove Lemma 24.

▶ Lemma 10. Let λ1 and λ2 be two level l services with service times t1 < t2, respectively.
If λ1 is tail at time t2, then it will stay a tail service at all future times t > t2.

Proof. Suppose, towards a contradiction, that λ1 became normal later on. Then, at some
time t3 > t2, a level l service λ3 was triggered and λ3 pointed to λ1. However, this contradicts
Lemma 7 so λ1 must stay a tail. ◀

3.3.2 Analysis: Cost Structure
We now analyse the properties of different costs incurred by our algorithm.

▶ Definition 11 (Triggering, investment and charged costs). For each level l service λ, we
define the following three costs: (1) its triggering delay cost which is the residual delay on
all eligible requests that is paid off at the beginning of the service; (2) its investment cost
which are the delay costs invested in during the λ’s investment phase; (3) its charged cost
which is its shared cost plus its triggering delay cost plus its investment cost.

Note that the algorithm may make an “empty service” in which no requests are served, in
which case its charged cost is its triggering delay cost and its investment cost. We will first
show that in order to bound the cost of ALG, it suffices to look at the charged costs.

▶ Lemma 12. The total cost of ALG is at most twice the total charged cost of its services.

Proof. The total cost of ALG is the total shared cost of its services plus the total individual
cost of its services plus its delay cost. It suffices to bound the latter two costs in terms of
total investment and triggering delay costs. A level l service only serves an item type i when
the level l investment counter for i reaches δl and the counter is reset to 0 when it reaches δl.
So, the total individual cost is at most the total investment cost. Observation 6 implies that
the delay cost of ALG is at most the triggering delay cost plus investment cost. Putting the
above bounds together gives the lemma. ◀

Next, we will bound the charged cost of any service which will later allow us to charge
these costs to OPT.

▶ Observation 13. The triggering delay costs incurred by a level l service is at most σl.
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Proof. Let λ be a level l service made by ALG. If λ is not an upgrade service, then its
triggering delay cost is exactly σl, by construction. On the other hand, if λ is an upgrade
service, then it was triggered because the active requests of level at most l− 1 had a residual
delay of σl−1 but then its level was upgraded and its pool of eligible requests increased to
include the level l requests. However, the fact that a level l service was not triggered at this
time implies that the active requests of level at most l must have a residual delay less than
σl. Therefore, in either case, the triggering delay is at most σl as required. ◀

▶ Lemma 14. The charged cost of a level l service is at most 3σl.

Proof. The charged cost of a level l service as defined earlier is comprised of the triggering
delay cost, the shared cost and the investment cost. By Observation 13, the triggering delay
cost is at most σl. The shared cost is either σl or 0 in the case that no requests are served
and hence the shared cost does not need to be paid. Lastly, by construction of the algorithm,
the investment cost of the service is at most σl. Adding these three components up, the total
charged cost is at most 3σl as required. ◀

The following lemma bounds the investment cost of normal services which will be used
later to charge the costs of the normal services to OPT.

▶ Lemma 15. Every normal service of level l has investment cost σl.

Proof. The investment cost of a level l normal service λ is exactly σl. This is because by
construction, the investment cost of a level l service is at most σl and can only be less if λ

served all eligible requests. However, that would mean that λ is a tail service since there are
no unserved requests pointing to it. ◀

3.3.3 Analysis: Bounding charged costs
We now begin our charging argument by showing that the charged costs of ALG can be
bounded by the charged costs of the primary and normal services.

▶ Lemma 16. The total charged costs of the tail services are at most 3 times the total
charged costs of the primary and upgrade services.

Proof. Consider any tail service λ of level l. By definition, it ends a chain that has reached
level l and so the chain has an earlier service λ′ that is a level l upgrade service or a primary
service, in the case that l = 1. The service λ′ has an investment cost of exactly σl as otherwise
the service would have served all eligible requests and the chain would have ended already.
Therefore, λ′ has a charged cost of at least σl. By Lemma 14, λ’s charged cost is at most 3
times that of λ′. Lastly, Lemma 9 implies that each primary or upgrade service is charged
by at most one tail service. Summing up across all tail services, we get that their charged
costs are at most 3 times the charged costs of the primary and upgrade services. ◀

We now bound the charged cost of the upgrade services by the charged cost of the normal
services. In order to do so, we first show that the witness sets of our upgrade services must
be pairwise disjoint.

▶ Lemma 17. An investment interval cannot belong to the witness set of more than one
upgrade service.
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Proof. Suppose towards a contradiction that there is a request qc whose level l investment
interval [t, τ ] belongs to the witness sets of two upgrade services. Let the two level l + 1
upgrade services be λ1 and λ2 with service times t1 < t2.

By construction, the interval [t, τ ] was created by a service at time t. Since it belongs to
the witness set of λ1, it must have been created before t1, and thus, t < t1. Now consider
λ2. In order for [t, τ ] to belong to its witness set, λ2 must have an eligible request q2 that
arrived before t. The fact that q2 is eligible for λ2 at time t2 implies that it is at most level l

and active for all times prior to t2. Moreover, the fact that q2 arrives before t implies that it
also arrives before t1 > t. Therefore, at time t1, q2 has arrived, is active and of level at most
l which makes it eligible for λ1. After λ1, q2 would have its level set to l + 1 and hence it
would no longer be eligible for λ2 when λ2 is initially triggered (prior to upgrading). This
contradicts the fact that q2 is eligible for λ2. See Figure 1 for an illustration of this proof. ◀

qc

q2

t τ

level(q2) ≤ l

t1 t2

Figure 1 Illustration of the proof of Lemma 17.

▶ Lemma 18. The total charged costs of the upgrade services is at most 3 times the total
charged costs of the normal services.

Proof. Let λ be a level l upgrade service at time t. By construction, the cost of its witness
set Wλ is at least σl. By Lemma 14, λ has a charged cost of at most 3σl ≤ 3cost(Wλ). Using
Lemma 17, we get that the total charged costs of upgrade services is at most 3 times the
total investment costs made by normal services. Since the investment costs of the normal
services are at most the charged costs of the normal services, the lemma follows. ◀

3.3.4 Analysis: Charging to OPT
Having bounded the cost of ALG by the charged costs of the primary and normal services, it
remains to charge these costs to OPT.

▶ Lemma 19. The charged cost of the primary services is at most 3 OPT.

Proof. Let Λ1 be the set of primary services made by ALG. For each primary service λ ∈ Λ1,
let Iλ denote the interval [aλ, tλ] where aλ is the earliest arrival time among λ’s triggering
requests and tλ is the service time of λ. By definition of primary services, the set of intervals
I = {Iλ}λ∈Λ1 are pairwise disjoint.

Consider an interval Iλ ∈ I. If OPT made a service λ∗ during Iλ, the shared cost of λ∗ is
at least σ1. On the other hand, if OPT did not make a service during Iλ, then it must have
incurred a total delay of at least σ1 on the triggering requests of λ since they arrive no earlier
than the start of Iλ. In both cases, OPT pays a cost of at least σ1 during the interval Iλ.

Since the intervals I are disjoint, we have that OPT ≥ σ1|I|. Thus, by Lemma 14, the
charged cost of primary services is at most 3σ1|I| ≤ 3 OPT. ◀
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▶ Lemma 20. The charged cost of a normal service is at most 3 times its investment cost.

Proof. This follows from Lemmas 15 and 14. ◀

Using Lemma 20, the charged cost of any normal service is at most 3 times its investment
cost. Hence, to bound the charged costs of all normal services, it suffices to only look at the
investment costs incurred by the normal services which, by definition is equal to the cost of
the investment intervals made by normal services. Hence, we will show that the cost of every
investment interval made by a normal service can be charged to some distinct cost incurred
by OPT.

We will refer to investment intervals created by normal services as normal investment
intervals and will now analyse the properties of these intervals.

▶ Lemma 21. Let [t, τ ] be a level l normal investment interval created by the normal service
λ at time t. Then there cannot be a level l′ ≥ l service triggered between times t and τ

(inclusive) other than λ.

Proof. Since λ is a normal service, there exists a later service λs at time ts pointing to
λ. Thus, there is a request q that is eligible for λ but is left unserved and later became a
triggering request for λs. By definition of pointers and triggering requests, at time ts, q

points to λ and has positive residual delay. Since λ paid off the residual delay on eligible
requests (which includes triggering requests) until time τ , λs occurred at time ts > τ .

Now we show that after t and before ts, q is level l and there is no service for which q is
eligible. Since q points to λ at time ts, there cannot be a service between t (the service time
of λ) and ts for which q is eligible; otherwise, that service would have changed q’s pointer
and q would no longer be pointing to λ at time ts. Thus, the level of q between times t and
τ < ts is l, the level of λ, and so there is no service of level at least l between t and τ . ◀

▶ Lemma 22. For any request, its normal investment intervals are all disjoint.

Proof. Assume towards a contradiction there is a request q with two non-disjoint normal
investment intervals [t1, τ1] of level l1 and [t2, τ2] of level l2 where wlog t1 < t2 < τ1. We
first notice that l2 ≥ l1 since the level of a request can never decrease so after the service at
time t1, q is of level at least l1. By Lemma 21, there is no service of level at least l1 between
times t1 and τ1 which contradicts our assumption. ◀

▶ Lemma 23. Consider any two level l normal investment intervals that intersect. They
must be created by the same level l normal service.

Proof. Suppose this was not the case and that we have two intersecting level l investment
intervals [t1, τ1], [t2, τ2] created by distinct normal services where wlog t1 ≤ t2 ≤ τ1. This
would imply that we have a level l normal service at time t1 and another normal level l

service at time t2 ≥ t1. However, Lemma 21 implies that there cannot be another level l

service between times t1 and τ1 inclusive and hence the service at time t2 should not have
occurred, a contradiction. ◀

We now charge the cost of our normal investment intervals to OPT which will be the
crux of our analysis. For this lemma, we will refer to “normal investment intervals” simply as
“investment intervals” unless otherwise specified. The full proof of the lemma can be found
in the Appendix.

▶ Lemma 24. The total cost of normal investment intervals is at most 6 OPT.
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Proof sketch. Consider a service λ∗ made by OPT at level l∗ and time t∗ and let the set of
requests served by λ∗ be Qλ∗ .

For any request q ∈ Qλ∗ we will first consider its investment intervals ending before t∗.
These investment intervals ending before time t∗ correspond to delay costs incurred prior to
time t∗ that had been invested in by a normal service and is hence at most the total delay
accrued by the request up till time t∗. Since OPT pays the delay for the request q up till
time t∗, the cost of the investment intervals ending before time t∗ can be charged to the
delay costs paid by OPT.

Next we consider the investment intervals belonging to requests in Qλ∗ that contain
time t∗. There are two cases to consider: the intervals of level l < l∗ and the intervals of
level l ≥ l∗. For the intervals of a fixed level l < l∗ that intersect with time t∗ we know by
Lemma 23 that they must have all been created by the same normal service. Since a normal
service can only invest a maximum amount of σl, the total cost of these intervals of level l

must be at most σl. Summing up across all levels l < l∗ and noting that our σ values form a
geometric series, we conclude that the cost of all the intervals with level l < l∗ is at most σl∗

which is the shared cost that OPT must pay in serving λ∗. For the intervals of a fixed level
l ≥ l∗ we will consider a fixed item type i. Once again, by Lemma 23, these intervals must
have been created by the same normal service and since a normal service can only invest at
most δl in a particular item type before serving it, the total cost of the intervals at level l

and for item i requests is at most δl. Summing up across all levels l ≥ l∗ and noting that
our δ values form a geometric series, we conclude that the cost of all item i intervals of level
l ≥ l∗ is at most 2δ∗ which is 2 times the individual cost paid by λ∗ to serve the item type i.
This argument applies to all item types served by λ∗.

Lastly, we consider the investment intervals belonging to requests in Qλ∗ that begin after
time t∗. Once again we consider two cases: the intervals of level l < l∗ and the intervals of
level l ≥ l∗. For the intervals of level l < l∗, we consider a fixed level l and look at the latest
starting interval at time t. There must have been a normal service at time t that created
this interval and this implies that the witness set of this normal service cost less than σl+1
since it was a normal service as opposed to an upgrade service. Since all requests in Qλ∗

must arrive before t∗, the witness set of the service at time t is a superset of the intervals of
level l beginning after time t∗. Moreover, the intervals created by the service at time t must
cost at most σl since the service can only invest at most σl. Overall, the intervals of level l

that begin after time t∗ cost at most σl+1 + σl < 2σl+1. Summing up over all levels l < l∗

and using the geometric property of σ, we get a total investment interval cost of 4σ∗
l which

is 4 times the shared cost paid by λ∗. For the intervals of level l ≥ l∗ we once again fix a
level l ≥ l∗ and item type i. The cost of each of these item i, level l intervals must be added
to the same investment counter without the counter being reset to 0. This is because all
requests in Qλ∗ arrive before t∗, so if at any time after t∗, the level l investment counter for
item i is reset to 0, all requests on item i and of level at most l must have been served and
thus there is no way for a level l intervals to contribute to an investment counter after it has
been reset. Since the investment counter by design has a maximum value of δl, this implies
that the total cost of the level l, item i investment intervals is at most δl. Fixing the item i,
summing up across all levels l ≥ l∗ and utilising the geometric property of δ, we get that the
investment intervals of item i and of level l ≥ l∗ cost at most 2δl∗ which is 2 times what λ∗

pays for the item i. We can once again apply this argument for all item types i served by λ∗.
Hence, it follows that for any service λ∗, the cost of the investment intervals in Qλ∗ can

be charged to the cost of λ∗ and by applying this argument across all services made by OPT,
the lemma follows. ◀
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▶ Lemma 25. The charged cost of the normal services is at most 18 OPT.

Proof. This follows from Lemmas 20 and 24. ◀

We conclude by combining the above ingredients to show that the algorithm is constant-
competitive.Let P, U, T, N denote the charged service costs of primary services, upgrade
services, tail services and normal services, respectively. Using Lemma 12 and the fact that
the total charged service cost is P + U + T + N , we get

ALG ≤ 2(P + U + T + N)
≤ 2(4P + 4U + N) (Lemma 16)
≤ 2(4P + 13N) (Lemma 18)
≤ 24 OPT +26N (Lemma 19)
≤ 492 OPT (Lemma 25)

Hence, we get that ALG ≤ O(1)×OPT as desired.
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Abstract
We introduce a notion of generic local algorithm, which strictly generalizes existing frameworks of
local algorithms such as factors of i.i.d. by capturing local quantum algorithms such as the Quantum
Approximate Optimization Algorithm (QAOA).

Motivated by a question of Farhi et al. [arXiv:1910.08187, 2019], we then show limitations of
generic local algorithms including QAOA on random instances of constraint satisfaction problems
(CSPs). Specifically, we show that any generic local algorithm whose assignment to a vertex depends
only on a local neighborhood with o(n) other vertices (such as the QAOA at depth less than ε log(n))
cannot arbitrarily-well approximate boolean CSPs if the problem satisfies a geometric property from
statistical physics called the coupled overlap-gap property (OGP) [Chen et al., Annals of Probability,
47(3), 2019]. We show that the random MAX-k-XOR problem has this property when k ≥ 4 is even
by extending the corresponding result for diluted k-spin glasses.

Our concentration lemmas confirm a conjecture of Brandao et al. [arXiv:1812.04170, 2018]
asserting that the landscape independence of QAOA extends to logarithmic depth – in other words,
for every fixed choice of QAOA angle parameters, the algorithm at logarithmic depth performs
almost equally well on almost all instances. One of these lemmas is a strengthening of McDiarmid’s
inequality, applicable when the random variables have a highly biased distribution, and may be of
independent interest.
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1 Introduction

Recent developments [3, 26, 16] of noisy intermediate-scale quantum (NISQ) devices [40] have
brought us to the door of near-term quantum computation. As experimentalists can now
build programmable quantum simulators up to 256 qubits [16], this motivates an important
theoretical question: what computational advantage can such a NISQ device provide?

One of the constraints of NISQ devices is the inability to create high-fidelity global
entanglement. This motivates the study of the power of quantum algorithms that are local.
A leading candidate in this regime of quantum algorithms is the Quantum Approximate
Optimization Algorithm (QAOA) [19] at shallow depths. While there have been some recent
results [29, 5, 33] that formally examine the QAOA algorithm at depth p = 1 or 2, very few
results exist for super-constant depth QAOA [17, 18].

Given the imminent quest of demonstrating quantum computational advantage, it is
important to clarify for what optimization problems can near-term quantum algorithms (such
as local quantum algorithms) reliably be expected to demonstrate computational advantage.

We show that local quantum algorithms, a large natural class of NISQ algorithms, are
obstructed by a geometric property of the solution space known as the coupled Overlap-Gap
Property [10]. We conjecture that this property is satisfied by most CSPs (Conjecture 5.1).
Specific problems known to have this property include the diluted k-spin glass Hamiltonian
(equivalent to a max-cut problem on random k-hypergraphs) [10], independent set on random
graphs [17], planted clique [25], and many other problems that so far seem to elude efficient
algorithms and be algorithmically hard [22]. In this manuscript, we also demonstrate that
the random Max-k-XOR problem has this property (see subsection 2.4).

Our results lift the continuous coupled interpolation techniques of Chen et al. [10] to the
generic quantum-inclusive setting, with stronger and more general concentration of measure
statements about local quantum algorithms, extending the techniques of Farhi et al. [17].

Critical to our approach is a new definition of local algorithms we term generic local
algorithms (See subsection 2.1). Previous work relating statistical-physics-derived OGPs to
local algorithms leveraged the factors of i.i.d. framework for local algorithms, which fails to
contain local quantum algorithms, as we demonstrate in Proposition 2.3. Our definition of
generic local algorithms subsumes local quantum and classical algorithms (see Proposition 2.3
and Proposition 4.3) but still satisfies strong concentration properties (see Theorems 5.3
and 5.4 in the full version), allowing techniques for local classical algorithms [10] to apply to
the quantum case. Two of our core technical contributions involve showing that the random
MAX-k-XOR problem has a coupled Overlap Gap Property (see subsection 2.4) by extending
the techniques of Chen et al. [10] and deriving a strengthened version of McDiarmid’s
inequality for highly-biased random variables using a martingale argument (see Lemma 2.7).

The rest of the paper is organized as follows: In subsection 1.1 we introduce the relevant
spin glass literature, defining the notion of a diluted k-spin glass; in subsection 1.2 we
introduce the relevant prior work; in subsection 1.3 we state our main theorems (informally);
in subsection 1.4 we briefly explain the architecture of our proof and compare our techniques
with those of Chen et al. [10] and Farhi et al. [17]; in subsection 1.5 we introduce the necessary
mathematical preliminaries and notation, including the models of CSPs we work with and a
rigorous defintion of local classical algorithms; in section 2 we state our separation of different
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families of local algorithms and our main concentration lemmas; in section 5 we conclude
by summarizing our results and mentioning many natural open problems closely related to
and/or motivated by our work. Complete proofs and technical details are delegated to the
appendices.

1.1 Diluted k-spin glasses, maximum cuts of sparse hypergraphs, and
Max-k-XOR

Spin glass theory is a central theoretical framework in statistical physics. The Sherrington-
Kirkpatrick model (SK model) [43] is one of the most well studied mathematical models in the
theory and consists of two variables: spins {σi}i∈[n] and interactions {Ji,j}i,j∈[n]. A spin σi

takes values in {±1} and the interaction Ji,j between two spins σi, σj is a real-valued variable
that captures whether the physical system prefers the two spins to be the same (Ji,j > 0)
or different (Ji,j < 0). The goal is to understand what spin configurations σ ∈ {−1, 1}n

maximize the following quantity (a.k.a. Hamiltonian):

H(σ) =
∑
i,j

Ji,jσiσj .

The setting is easily generalized to higher order interactions, i.e., Ji1,...,ik
acting on k spins,

and this is known as the k-spin model. See [35] for a comprehensive survey.
There is a natural correspondence between spin glass theory and combinatorial

optimization problems. In a combinatorial optimization problem (e.g., MAX-CUT), a
variable corresponds to a spin and a constraint corresponds to an interaction. Through
this correspondence, the maximization of the above Hamiltonian H(σ) serves as a proxy for
maximizing the number of satisfied constraints in the combinatorial optimization problem.

A spin glass model additionally specifies a particular distribution on the interactions
{Ji,j} for all i, j ∈ [n]. The quantity of interest is the asymptotic maximum value

H∗ := lim
n→∞

1
n

max
σ

H(σ) ,

(a.k.a. the ground state energy density), as well as spin configurations σ with H(σ) ≈ H∗.
There are many well-studied spin glass models in physics and various mathematical insights
about these have been discovered over the years [12, 14, 42, 37]. For example, for the
SK model [43], Parisi [38] proposed the infamous Parisi Variational Principle to capture
the exact value of H∗. This was later rigorously proved by Talagrand [44] and again by
Panchenko [36] in greater generality. These successes give hope to design local algorithms
that simulate the physical system and output a final configuration as an approximation to
the corresponding combinatorial optimization problem.

While traditional spin glass models consider the underlying non-trivial interactions as
either lying on a certain physically-realistic graph (e.g., the non-zero Ji,j form a 2D-grid)
or being a mean field approximation (for example, where every Ji,j is non-trivial), the
applications in combinatorial optimization often require the underlying constraint graphs to
be sparse and arbitrary. We use two methods of bridging the gap between the two settings:

By studying the diluted k-spin glass model where one first samples a sparse hypergraph and
then assigns non-trivial interactions on top of its hyperedges. Intuitively, approximating
the H∗ of the diluted k-spin glass corresponds to approximating the maximum cut over
random sparse hypergraphs. This correspondence is made more precise in Definition 1.5.
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Using the techniques of Gaussian interpolation [27] and Poisson interpolation [21, 10]
from statistical physics to relate the behavior of random dense spin glass models to
random sparse CSPs. More specifically, we relate the random Max-k-XOR problem to
mean-field p-spin glasses (Section 8 in the full version) by modifying the Guerra-Tonnineli
interpolation used in Chen et al. [10].

Table 1 A dictionary between spin glass models and combinatorial optimization problems.

Spin glass models Combinatorial optimization problems
Spins σ ∈ {−1, 1}n An assignment to boolean variables

Interactions {Ji1,...,ik }i1,...,ik∈[n] Constraints (i.e., hyperedges)
Hamiltonian H(σ) Value of an assignment (i.e., valΨ(σ))

Ground state energy H∗ Optimal value (i.e., valΨ)
Mean field model (e.g., SK model) The underlying hypergraph not being a lattice

Diluted spin glass model The underlying hypergraph being sparse

1.2 Prior Work
1.2.1 Constraint-satisfaction problems & hardness for classical

algorithms
CSPs (described formally in Definition 1.4) are a natural class of combinatorial optimization
problems that have been studied extensively in theoretical computer science [7, 32]. Many
NP-Complete problems such as k-SAT, k-NAE-SAT, MAX-CUT and k-XOR, can be framed
as CSPs. Consequently, unless P = N P, finding optimal solutions to these problems is
infeasible. A natural question then is to understand how well can approximate answers to
instances of these problems be constructed by efficient algorithms. Under the now widely
believed Unique Games Conjecture [31], upper bounds on the approximability of CSPs are
known [30, 41]. These bounds, however, are only worst-case and do not necessarily explicitly
demonstrate a family of instances of a CSP that are hard to approximate. Additionally,
they remain conditional on a positive resolution to the Unique Games Conjecture, which is
still a difficult open problem in the field. In the average-case regime, the goal is to ask how
well a typical instance of a CSP can be approximated, where the instance is chosen from a
“natural” distribution over the set of instances. Perhaps surprisingly, great insight has been
drawn about the algorithmic hardness (or lack thereof) about random instances of many
CSPs based on work originating in the Statistical Physics community, particularly in Spin
Glass Theory [34, 21, 39]. This was so because the problem of finding spin configurations of
particles in many spin glass models that put a system in the ground state could naturally be
interpreted as a CSP. Various iterative algorithms were proposed to study the problem of
explicitly finding near-ground states of typical instances of various spin glass models [46, 9].
It was observed that these algorithms either consistently got better with the number of
iterations, or hit a threshold which they could not exceed. To understand this, the work
of Achlioptas et al. [1] studied the solution geometry of the k-SAT problem and found that
most good solutions were in well separated clusters. Additionally, most variables in a good
solution could only take a single value (i.e., they were “frozen”). This observation was
stated as an intuitive reason for the failure of local algorithms on random instances of k-SAT.
Gamarnik et al. [24] made this more formal and precise by showing that no classical local
algorithm (described formally as factors of i.i.d., see Definition 1.10) could approximate the
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MAX-IND-SET problem arbitrarily well on sparse random graphs. Critical to their argument
was the fact that all (not most) nearly-optimal solutions to the problem satisfied the Overlap
Gap Property - they were in well separated clusters. In various works that followed up,
many problems have been shown to have near-optimal solutions conform to this solution
geometry and algorithmic hardness for various families of classical algorithms has been
established [10, 23, 22].

1.2.2 The Overlap Gap Property & QAOA

A depth-p QAOA algorithm, abbreviated as QAOAp, applies a length-p sequence of unitaries
to each hyperedge and outputs the measurement result of the final state. The goal of
QAOA is to approximate the optimal solutions on average-case (i.e., random) instances. For
example, the work of Farhi et al. [19] showed that QAOA1 achieved 0.6924-approximation
for MAX-CUT on triangle-free 3-regular graphs while such an approximation ratio was not
then known to be achievable by local classical algorithms.

Shortly after QAOAp (defined formally in Definition 2.2) was proposed as a way to solve
hard optimization problems and possibly establish quantum computational advantage for
MAX-CUT on 3-regular graphs [19], a local classical algorithm was designed that would
outperform QAOAp on these graphs at depth 1 [29]. Consequently, because of a flurry of
follow up results, QAOA has been shown to be outmatched by local classical algorithms up
to depth 2 [33, 5] for the MAX-CUT problem on d-regular graphs with large girth. In fact,
under the widely-believed conjecture in the Spin-Glass Theory community that the SK model
does not satisfy the Overlap Gap Property [4], an AMP algorithm was recently proposed that
outputs arbitrarily good cuts for large (but constant) degree random regular graphs [2]. To
analyze the performance of QAOAp on a problem that possesses an OGP, Farhi et al. [17]
was established that QAOAp with depth p ≤ ε log(n) could not output independent sets of
size better than .854 times the optimal for sparse random graphs. This work suggested that
the OGP may broadly prove to be an obstacle for QAOAp while it is local as much as it
does for various classical algorithms. However, MAX-IND-SET is not a (maximum) CSP and,
additionally, the prior work [17] does not give an analysis that generalizes to CSPs. Our work
establishes this generalization (see Theorem 1.1) and also immediately positively resolves
the “landscape independence” conjecture of QAOAε log(n) (see Theorem 1.3) proposed by
Brandao et al. [8]. This immediately suggests that quantum advantage is unlikely to be
found up to this depth for CSPs with an OGP, and we conjecture that almost all CSPs will
have an OGP (see subsection 5.1).

1.3 Our results

Our main result establishes that any local quantum algorithm, including QAOAp with
p ≤ ε log(n), is obstructed from arbitrarily approximating any CSP that satisfies a “coupled”
Overlap Gap Property (described in subsubsection 1.5.3). The precise family of CSPs we
will work over will be notated as (k, d)-CSP(f), where k denotes the number of variables
in a single clause, d denotes the average number of clauses any variable appears in, and f

denotes the predicate applied to each clause. For a formal definition, refer to Definition 1.4.
We state the informal version of our results, the formal versions of which may be found in
Theorems 4.2 and 4.3 in the full version of this paper.
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▶ Theorem 1.1 (Obstruction to QAOAp given coupled OGP, informal). Given a uniformly
random instance Ψ of a (k, d)-CSP(f) that satisfies a coupled OGP, with high probability a
depth-p QAOAp circuit with

p ≤ log(n)
2 log(d(k − 1)/ ln(2)) − 1

cannot output a solution that is better than a (1 − ε0)-approximation for some ε0 > 0.

In particular, this immediately implies an obstruction for approximating maximum cuts
of random sparse hypergraphs, as a coupled OGP is known to exist for that problem [10].
Furthermore, though the obstruction in Theorem 1.1 is stated for QAOAp, it will apply to
any generic local algorithm, and will, therefore, also apply to any local quantum algorithm.
This is stated more precisely in Theorem 2.8.

▶ Theorem 1.2 (Obstruction to generic local algorithms on random Max-k-XOR, informal).
For every even k ≥ 4, there exists d0 ∈ N and the following holds. There exists ε0 > 0 such
that if QAOAp outputs a solution σ ∈ {−1, 1}n with H(σ) being (1 − ε0)-close to the H∗ of
a random Max-k-XOR instance of average degree d ≥ d0 with probability at least 0.99, then
p = Ω(log n).

This is stated formally in Corollary 4.4 in the full version, and answers a question of Farhi et
al. [20], where the authors ask if QAOAp would perform well on k-spin generalizations of the
SK model, citing Max-k-XOR in particular [10]. The above result is immediately implied by a
proof of a coupled Overlap-Gap Property for the Max-k-XOR problem, stated in Lemma 2.9
and proved in Section 8 in the full version.

To prove Theorem 1.1, two key lemmas about the concentration of output of local
quantum algorithms need to be proved (Theorems 5.3 and 5.4 in the full version). A corollary
to these two lemmas is that the quality of solution output by QAOAp (with p as stated
in Theorem 1.1) concentrates heavily around the expected value. More specifically, if we
let valΨ(σ) denote the number of clauses of Ψ satisfied by an assignment σ ∈ {±1}n to the
variables, then this value has small deviation on almost all instances.

▶ Theorem 1.3 (Landscape-independence of QAOAε log(n), informal). Given a random instance
Ψ of a (k, d)-CSP(f) and a QAOAp circuit with depth p as stated in Theorem 1.1, the solution
σ output by QAOAp with value valΨ(σ) concentrates as,

Pr
[∣∣valΨ(σ) − E[valΨ(σ)]

∣∣ ≥ δn
]

≤ eO(nγ ) ,

for every δ > 0 and some γ > 0, and the probability taken over both the input distribution
and internal randomness of the algorithm.

The theorem above immediately confirms a conjecture by Brandao et al. [8] about the
“landscape independence” of QAOAp upto depth ε log(n). The “landscape independence” of
QAOAp is a term which asserts that the algorithm performs almost equally well on almost
all instances.

1.4 Technical overview
1.4.1 Chen et al. [10] analysis
Chen et al. [10] establish a coupled overlap-gap property (OGP) for the maximum cut of
random hypergraphs. The property says that for two “coupled” random instances and any
nearly optimal solutions σ1, σ2 ∈ {−1, 1}n of these, the solutions either have large or small
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overlap on the assignment values to the variables, i.e., there exists an interval 0 < a < b < 1
such that ⟨σ1, σ2⟩/n /∈ [a, b]. The coupled OGP holds over an interpolation of a pair of
hypergraphs {(G1(t), G2(t))}t∈[0,1] with the following three properties: for every t ∈ [0, 1],
denote σ1(t) and σ2(t) as the outputs of a factors i.i.d. algorithm on inputs G1(t) and
G2(t) respectively. (i) when t = 0, (G1(0), G2(0)) are independent random hypergraphs and
⟨σ1(0), σ2(0)⟩/n < a with high probability; (ii) when t = 1, G1(1) = G2(1) are the same
random hypergraph and ⟨σ1(1), σ2(1)⟩/n = 1 with high probability; (iii) for each t ∈ [0, 1],
the correlation ⟨σ1(t), σ2(t)⟩/n between the two solutions is highly concentrated (with respect
to the randomness of G1(t), G2(t) and the algorithm) to a value R(t), and R(t) is a continuous
function of t. By the intermediate value theorem, this contradicts the OGP if the solutions
are nearly optimal and hence no such factors of i.i.d. algorithm can exist. Note that it is also
important to assert that the hamming weight and the objective function values output by
the algorithm also concentrate.

1.4.2 Our analysis

The key part of the proof in Chen et al. [10] that does not work for QAOAp is item (iii)
of step 2. Specifically, local quantum algorithms are not factors of i.i.d. algorithms and
hence their concentration analysis on the correlation between solutions to coupled instances
does not apply. Intuitively, this is because local quantum circuits can induce entanglement
between qubits in a local neighborhood which cannot be explained by a local hidden variable
theory [6]. We overcome this issue by first generalizing the notion of factors of i.i.d. algorithms
to what we call generic local algorithms (Definition 2.1).

To establish concentration of overlap for quantum local algorithms, the challenge lies
in how to capture the local correlations of G1(t) and G2(t). We achieve this by defining a
new notion of a random vector being locally independent (Definition 5.2 in the full version).
This structure enables us to show concentration on a fixed instance over multiple runs of
the generic local algorithm with respect to its internal randomness (Theorem 5.3 in the full
version). Finally, to establish concentration between a pair of correlated instances (G1(t) and
G2(t)), we strengthen McDiarmid’s inequality for biased distributions (Lemma 2.7) and this
allows the concentration analysis of the correlation function R(t) to pull through (Theorem
5.1 in the full version). We complete the analysis by showing that the hamming weight
and objective function values output by a generic p-local algorithm also concentrate on any
(k, d)-CSP(f), obtained as corollaries to the main concentration lemmas (Corollaries 5.10
and 5.13 in the full version).

1.4.3 Comparison with Chen et al. [10] and Farhi et al. [17]

We augment the techniques of Farhi et al. [17] to handle a coupled OGP over a continuous
interpolation, as opposed to the coupled OGP in Farhi et al. [17] which is over a fixed discrete
interpolation. The advantage of this is to enable the use of a broader family of coupled
OGPs provable using statistical mechanics methods, whereas the coupled OGP of Farhi et
al. [17] requires reasoning about explicit sequences of instances in a way that does not clearly
generalize from their independent set analysis to the setting of CSPs.

Our statements additionally show stronger concentration than those of Chen et al. [10]
which is necessary to demonstrate that polynomially many runs of the algorithm will (with
high probability) not succeed. Lastly, we extend the coupled OGP from the setting of diluted
k-spin glasses shown by Chen et al. [10] to the setting of random Max-k-XOR.
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1.5 Preliminaries & notation

1.5.1 Constraint-satisfaction problems & hypergraphs
Constraint satisfaction problems are a class of optimization problems where a set of constraints
on the underlying variables need to be satisfied in tandem. We restrict our attention to the
setting where the variables are boolean valued and the number of constraints are sparse.
Furthermore, every constraint involves k variables, where k is a constant independent of the
number of variables.

▶ Definition 1.4 (Random (k, d)-CSP(f)). A (signed) random (k, d)-CSP(f) instance with a
local constraint function f : {−1, 1}k → {0, 1} is constructed as follows:
1. Choose r ∼ Poisson(dn/k).
2. Sample r clauses of size k by choosing each clause Ci independently as a collection of k

variables uniformly at random from {x1, . . . , xn}k, and, in the case of a signed random
CSP, random signs si,1, . . . , si,k ∈ {±1}.

To each clause Ci there are k variables associated: {xi1 , . . . , xik
}. A clause is satisfied

if there is some assignment to every xij
∈ {−1, 1}, such that, f(xi1 , . . . , xxk

) = 1 (or
f(si,1xi1 , . . . , si,kxxk

) = 1 if signed). The value of an assignment σ ∈ {−1, 1}n is defined as
valΨ(σ) := #{Ci : f(σi1 , . . . , σik

) = 1} (or #{Ci : f(si,1σi1 , . . . , si,kσik
) = 1} if signed). The

optimal value of Ψ is defined as val(Ψ) := maxσ valΨ(σ).

When unspecified, we will be referring to unsigned CSPs. In a diluted k-spin glass, the
underyling particles can be thought of as vertices of a hypergraph with dn

k hyperedges. Each
hyperedge is a tuple of k-vertices, and any interaction Ji1,...,ik

over a tuple (i1, . . . , ik) is −1
if (i1, . . . , ik) is a hyperedge of G and 0 otherwise.

▶ Definition 1.5 (Random k-uniform hypergraph). A random k-uniform hypergraph consists
of choosing a number of edges |E| ∼ Poisson( dn

k ) and then choosing hyperedges e1, . . . , e|E|
independently and uniformly at random from the set {1, . . . , n}k of all vertex k-tuples.

The underlying hamiltonian of a diluted k-spin glass then is,

HG
n,k,d(σ) = −

∑
e∈E

σe1 . . . σek
, (1)

which on maximization corresponds to the MAX-CUT of a random k-uniform hypergraph.
Observe that a (k, d)-CSP(f) can be encoded as a diluted k-spin glass by choosing the
variables to be the set of vertices, the clauses to be the hyperedges, and the hamiltonian to
be the same as in Equation 1 with the additional requirement that f acts on the variables in
every hyperedge.

1.5.2 Vanishing Local Neighborhoods of Sparse Random Hypergraphs
We state a bound on sufficiently local neighborhoods of random sparse k-uniform hypergraphs.
This bound is used in the obstruction result to precisely quantify the size of the neighborhood
p(n) up to which a p(n)-generic local algorithm does not “see the whole hypergraph” around
any vertex.
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▶ Lemma 1.6 (Vanishing local neighborhoods of random sparse k-uniform hypergraphs). Let
k ≥ 2 and d ≥ 2 and τ ∈ (0, 1). Then there exists a > 0 and 0 < A < 1, such that, for n
large enough and p satisfying

2p+ 1 ≤ (1 − τ) log n
log
(

d(k−1)
ln 2

) ,
the following are true:

Pr
G∼Hn,d,k

[max
i
BG(vi, 2p) ≥ nA] ≤ e−na

, and Pr
G∼Hn,d,k

[max
i
BG(vi, p) ≥ n

A
2 ] ≤ e−n

a
2 .

Intuitively, the above lemma says that the local neighborhood of each vertex is vanishingly
small with high probability. To prove Lemma 1.6, we utilize a modified version of the
proof of Farhi et al. [17, Neighborhood Size Theorem] to handle the case of sparse random
hypergraphs and we defer the complete proof to Appendix B in the full version.

1.5.3 The Overlap Gap Property
We say that a (k, d)-CSP(f) (signed or unsigned) satisfies a coupled overlap-gap property
(OGP) if, given two instances Ψ,Ψ′ constructed so that they share a random t-fraction of
clauses with the remaining (1 − t)-fraction chosen independently, any two “good” solutions σ
of Ψ and σ′ of Ψ′ are either very similar of dissimilar.

▶ Definition 1.7 (Coupled OGP, informal). A signed or unsigned (k, d)-CSP(f) satisfies a
coupled OGP if there exists ε0 > 0 and 0 < a < b < 1 such that the following hold for
every t ∈ [0, 1]: Given two (k, d)-CSP(f) instances Ψ,Ψ′ constructed so that they share a
random t-fraction of their clauses and have the remaining (1 − t)-fraction of clauses chosen
independently and uniformly at random, then for every 0 < ε < ε0, the overlap between any
(1 − ε)-optimal solution σ of Ψ and σ′ of Ψ′ satisfies

1
n

⟨σ, σ′⟩ = 1
n

(
n∑

i=1
σiσ

′
i

)
/∈ [a, b]

with high probability.

A formal definition of the interpolation procedure described in Definition 1.7 and a
complete and formal statement of a coupled OGP are provided in section 3.

1.5.4 Local classical algorithms
A local classical algorithm takes as input a hypergraph G and a label set S, runs a stochastic
process {XG(t)}t that associates to each vertex v a label XG

v (t) ∈ S at time t, and outputs
an assignment σv to each vertex v according to its final label. While there is a huge design
space for local classical algorithms, a factors of i.i.d. algorithm of radius p has the following
restrictions:
1. The initial label for each vertex v is set to be one from an i.i.d. set of random variables

XG
v (0).

2. For each vertex v, the assignment σv is a random variable that only depends on the labels
from a p-neighborhood of v and is updated via a stochastic process.

3. The assignment function (also known as the factor) for each vertex is the same.
4. The label assignment of two vertices v, v′ in hypergraphs G and G′ are equivalent if the

two vertices have isomorphic p-neighborhoods.
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As we shall see, in subsection 2.1, we relax the first three conditions to include a larger class
of local algorithms, which subsume local quantum algorithms. We now state the definition
of the p-neighborhood of a vertex in a hypergraph, which generalizes the p-neighborhood
of a graph by considering two vertices v and w to be adjacent if they belong to the same
hyperedge e.

▶ Definition 1.8 (p-neighborhood and hypergraphs with radius p). Let G be a hypergraph,
v ∈ V (G), and p ∈ N. The p-neighborhood of v is defined as

BG(v, p) := {w ∈ V (G) |w can be reached in p steps from v} .

Let G be a hypergraph, v ∈ V (G), and p ∈ N. We say (G, v) has radius p if Bp(Gv) = V (G).
Further, let k ∈ N, we define

Gp := {(G, v) | (G, v) has radius p and G is connected, finite, and k-uniform}

be the collections of hypergraphs with radius at most p.

To capture the fact that classical local algorithms assign the value of a vertex v by only
looking at a stochastic process of the p-neighborhood, we define a factor f as a measurable
function which gives a label σv ∈ {±1} to every vertex v ∈ V (G). We restrict to the case
where the label set S = [0, 1].

▶ Definition 1.9 (Factor of radius p). Let p ∈ N. We define the collection of all [0, 1]-labelled
hypergraphs of radius at most p as

Λp :=
{

(G, v,X) | (G, v) ∈ Gp and X ∈ [0, 1]V (G)
}

We say (G1, v1, X1), (G2, v2, X2) ∈ Λr are isomorphic if there exists a hypergraph
isomorphism ϕ : V (G1) → V (G2) such that (i) ϕ(v1) = ϕ(v2) and (ii) X1 = X2 ◦ ϕ.

Finally, we say f : Λp → {−1, 1} is a factor of radius p function if
1. f is measurable.
2. f(G1, v1, X1) = f(G2, v2, X2) for every isomorphic (G1, v1, X1), (G2, v2, X2) ∈ Λr.

Intuitively, the output distribution of a factors of i.i.d. algorithm with radius p on a
vertex v is determined by the p-neighborhood of v.

▶ Definition 1.10 (Factors of i.i.d., [10, Section 2]). Let k, p ∈ N. A factors of i.i.d. algorithm
A with radius p is associated with a factor of radius p function f with the following property.
On input a k-uniform hyper graph G, the algorithm A samples a random labeling X =
{X(v)}v∈V (G) where X(v)’s are i.i.d. uniform random variables on [0, 1]. The output of A
is σ ∈ {−1, 1}V (G) where σv := f(Bp(G, v), v, {X(w)}|w∈Bp(G,v)) for each v ∈ V (G).

Common local algorithms such as Glauber dynamics and Belief Propagation are examples
of factors of i.i.d. algorithms.

2 Main Technical Theorems

The main results include showing that QAOAp is a generic p-local algorithm, a concept
which subsumes factors of i.i.d. local algorithms and local quantum algorithms, and then
establishing that this more general class of algorithms also have strong concentration
properties. The concentration allows the original interpolation argument of Chen et al. [10]
stated in subsubsection 1.4.1 to continue to pose an obstruction to generic p-local algorithms
from outputting arbitrarily good solutions on almost all instances of a (k, d)-CSP(f) that
has a coupled OGP.
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2.1 Generic local algorithms

Generic local algorithms, including local quantum algorithms, can be defined from an
information-based perspective. Specifically, given a parameter p that characterizes the
locality of the information an algorithm has about the input, we can assert that a generic
p-local algorithm makes independent decisions on appropriately far-away vertices and that
all decisions for a vertex are sufficiently local.

▶ Definition 2.1 (Generic local algorithms, informal). Let p ∈ N and let S be a finite label set.
We say an algorithm A (which takes a hypergraph G as an input) is generic p-local if the
following hold:

(Local distribution determination). For every set of vertices L ⊂ V , the joint marginal
distribution of the labels (A(G)v)v∈L depends only on the union of the p-neighborhoods of
v ∈ L in G.
(Local independence). A(G)v is statistically independent of the joint distribution of
{A(G)v′} for every v′ that is farther than a distance of 2p from v.

The definition makes no assumptions about how the randomness of the algorithm is
instantiated, what sort of function is used to decide the label locally, or whether it is the
same for every vertex. A formal defintion is provided in section 4, along with a procedure
to partially sample from the run of the algorithm on correlated instances. We now briefly
introduce the QAOAp circuit.

▶ Definition 2.2 (QAOAp algorithm, [19]). The QAOA circuit parametrized by angle vectors
γ̂ = (γ1, . . . , γp) and β̂ = (β1, . . . , βp) looks as follows,

Up(β̂, γ̂) =
p∏

j=1
e−iβj

∑n

k=1
Xke−iγjHc(G) .

In the circuit above, Xi is the Pauli-X matrix acting on the i-th qubit (with identity action
everywhere else) and HC(G) is the hamiltonian that encodes the problem instance. For
us, HC(G) = HG

n,k,d where every k-spin interaction is replaced by a Pauli-Z interaction
Ze1 ⊗ · · · ⊗ Zek

. Typically, the initial state on which the circuit is applied is a symmetric
product state, most notably |0⟩⊗n or |+⟩⊗n. The expected value that QAOA outputs after
applying the circuit on some initial state |ψ0⟩ is,

⟨ψ0|U†Hc(G)U |ψ0⟩ .

We will notate by QAOA(β̂, γ̂) a QAOA circuit of depth 2p with angle parameters β̂ and γ̂.
In our regime, we will work with any collection of fixed angles (β̂, γ̂).

As stated below, generic p-local algorithms strictly generalize the factors of i.i.d. framework
as well as QAOAp.

▶ Proposition 2.3 (Generic local strictly generalizes factors of i.i.d.). There exists a generic
p-local algorithm as defined in Definition 2.1 that is not a p-local factors of i.i.d. algorithm
as defined in Definition 1.10.

▶ Proposition 2.4 (QAOAp is generic p-local). For every p > 0 and fixed angle vectors β̂
and γ̂, QAOAp(β̂, γ̂) is generic p-local under Definition 2.1.

The proofs for the two propositions above are provided in section 4.
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2.2 Concentration of outputs of local quantum algorithms
Having shown that generic p-local algorithms capture classical & quantum local algorithms,
we now first show that the outputs of these algorithms concentrate even when run on multiple
fixed correlated instances. Additionally, the outputs concentrate over the input distribution
from which the instances are drawn. The proof for the lemmas in this subsection are delegated
to Section 5 in the full version.

2.2.1 Concentration over internal randomness of the algorithm
We first show that the output of generic p-local algorithms on sufficiently “local” functions
of the underlying spins concentrates heavily, even when run on multiple correlated instances.
We state an informal version of the lemma. For a formal and detailed version, please refer to
Theorem 5.3 in the full version. “Spins” here refer to the assignment of a variable.

▶ Lemma 2.5 (Concentration of local functions of spins, informal). Let z, m ∈ N and A < 1.
Let σ be the output of a generic p-local algorithm on a fixed hypergraph G. Let vj,i denote
the vertex corresponding to the i-th vertex (or variable) in the j-th hyperedge (or clause) with
j ∈ [m] and i ∈ [z]. Let r = (r1, . . . , rm) be a random vector of a correlated hypergraph G′

with a certain joint independence structure (Definition 5.2 in the full version). Now, consider
a sum X =

∑
j∈[m] h(σvj,1 , . . . , σvj,z

)rj, where |h| ≤ 1. Suppose that each vertex v occurs at
most C times among the different vj,i. Then, provided the p-neighborhood of every vertex in
G ∪G′ has at most nA vertices:

Pr
σ,r

[|X − E
σ,r

[X]| ≥ δn] ≤ e−Ω(δ2m/(CznA)) .

The lemma above states that even when choosing two correlated instances G and G′ that
share, say t-fraction of their clauses, provided every vertex sees not too many vertices in the
local neighborhood of the combined input G ∪G′, the value of sufficiently local functions h
acting on the output of the algorithm concentrate. To get concentration of overlap between
two solutions σ of G and σ′ of G′, we choose h(σvj,1 , . . . , σvj,z

) = σvj
, m = n and r = σ′. To

get concentration for valG(σ), we choose h = f for the underlying (k, d)-CSP(f) and m = dn
k .

When working to obtain concentration on a single instance, it suffices to set G′ = G and r to
be the all 1s vector.

2.2.2 Concentration over instances
The prior lemma merely asserts that the output is concentrated for fixed correlated instances.
However, this still doesn’t imply that the output will be concentrated across random input
instances. To do so, we need concentration over the distribution from which the inputs are
sampled. This is accomplished by Theorem 5.4 in the full version, an informal version of
which is stated below.

▶ Lemma 2.6 (Concentration of differences of coupled hypergraphs, informal). Let f be a
function of two hypergraphs over n vertices such that

|f(G1, G2) − f(G′
1, G

′
2)| ≤ r(n) ,

for some r whenever (G1, G2) differs from (G′
1, G

′
2) by the addition and/or removal of a

single hyperedge e ∈ [n]k from one or both hypergraphs. Furthermore, assume that the largest
p-nieghborhood of G1, G2, G

′
1, G

′
2 has no more than n

A
2 vertices for some A < 1. Then

∃ a ∈ (0, 1), such that

Pr
G1,G2∼
Hn,k,d,t

[∣∣∣∣f(G1, G2) − E
G1,G2

f(G1, G2)
∣∣∣∣ ≥ δn r(n)

]
≤ 2 exp

(
−3kδ2n

12(2−t)d+2kδ

)
+ 2 exp

(
−na/2

)
.
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The notation G1, G2 ∼ Hn,k,d,t indicates that G1 and G2 are t-correlated random hypergraphs.
This means that t-fraction of their hyperedges are chosen i.i.d. from [n]k and these are common.
The remaining (1 − t) fraction of edges are chosen independently for each. For a formal
definition of the coupled distribution, refer to Definition 3.3. The above lemma relies on two
critical facts:
1. For p ≤ ε log(n) (for an appropriately chosen ε), the p-neighborhood of a random k-

uniform hypergraph has no more than n
A
2 vertices (Lemma 1.6).

2. A strengthening of McDiarmid’s Inequality (Lemma 2.7) for biased distributions. This
strengthening is proved via a martinagle argument.

2.2.3 Strengthened McDiarmid’s Inequality
We end by stating the strengthened version of McDiarmid’s Inequality (Lemma 2.7) for
biased distributions, which is a generic concentration statement that may be of independent
interest. The inequality adds a Bernstein-like variance term to the tail-bound that controls
the likelihood of deviation, where the variance term depends on a precise quantification of
how unlikely certain very rare events are.

▶ Lemma 2.7 (McDiarmid’s inequality for biased distributions). Suppose that X1, . . . , Xn are
sampled i.i.d. from a distribution D over a finite set X , such that D assigns probability 1 − p

to a particular outcome χ0 ∈ X . Let f : X n → R satisfy a bounded-differences inequality, so
that

|f(x1, . . . , xi−1, xi, xi+1, . . . xn) − f(x1, . . . , xi−1, x
′
i, xi+1, . . . xn)| ≤ c

for all x1, . . . , xn, x
′
i ∈ X . Then

Pr
[
|f(X1, . . . , Xn) − E f(X1, . . . , Xn)| ≥ ε

]
≤ 2 exp

(
−ε2

2np(2 − p)c2 + 2cε/3

)
.

The above inequality is robust in that if there are highly unlikely or likely (think p = on(1))
events that cause large deviations, then these deviations can be absorbed into the Bernstein-
like variance term in the tail bound term. This means that one can get strong concentration
bounds even in the presence of a vanishingly small set of events that cause large deviations.
This property ends up being critical when showing concentration of outputs of generic local
algorithms over the input distribution.

2.3 Obstruction of generic local algorithms by the Overlap Gap Property
We state our main theorem (informally) that obstructs all generic p-local algorithms on
random instances Ψ of a (k, d)-CSP(f) that satisfies the coupled Overlap-Gap Property.

▶ Theorem 2.8 (Obstruction to Generic p-Local Algorithms given coupled OGP, informal). Let f
be a boolean predicate defined on k variables and p(n) be such that it satisfies the requirements
of Lemma 2.5 and Lemma 2.6. Furthermore, assume that (k, d)-CSP(f) satisfies the coupled
Overlap Gap Property. Then, given an instance Ψ ∼ (k, d)-CSP(f) and a generic p(n)-local
algorithm A that outputs a solution σ on input Ψ, with high probability, the solution will be
no more than (1 − ε0)-optimal for some ε0 > 0.

The theorem above is stated in full precision and formality in Theorem 4.3 in the
full version and proved formally in Section 6 of the full version. The theorem effectively
obstructs any algorithm that makes assignments for variables by looking at o(n) sized
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local neighborhoods irrespective of how these decisions are made and what concrete model
of randomness is used, provided the problem exhibits a coupled OGP. For instance, the
obstruction would hold even for quantum algorithms that assign labels based on the local
neighborhoods of qubits and start and end in a state that is moderately locally entangled
- By this, we mean a state that exhibits entanglement only between any qubit i and o(n)
qubits in its p(n)-sized local neighborhood.

2.4 Overlap Gap Property for MAX-k-XOR
In Section 8 in the full version, we establish that the random Max-k-XOR problem obeys a
coupled OGP, so that the obstruction implied by Theorem 2.8 holds for this problem.

▶ Lemma 2.9 (Coupled OGP for random Max-k-XOR). The random Max-k-XOR problem
satisfies Definition 1.7.

This is proven by means of a Guerra-Tonelli interpolation [28, 10], where a dense mean-field
k-spin glass model is continuously transformed to the random Max-k-XOR model. Treated
as a physical system, the thermodynamic equilibrium at each point in the interpolation is
calculated at a low enough temperature so that the equilibrium states are approximately
optimal. The change in equilibrium energy over the course of the interpolation is then shown
to be small.

A coupled OGP is shown in this way by interpolating a pair of systems constrained so
that the overlap between the two states of the systems is bounded.

3 Coupled Interpolation & Overlap-Gap Properties

We now state the OGP formally as it holds for the diluted k-spin glass model in both
uncoupled and coupled form. To do so, we begin by introducing the notion of an overlap
between two spin-configurations σ1 and σ2, which is equivalent to the number of spins that
are the same in both configurations subtracted by the number of different spins, normalized
by the number of particles in the system. Formally,

▶ Definition 3.1 (Overlap between spin configuration vectors). Given any two vectors σ1, σ2 ∈
{−1, 1}n, the overlap between them is defined as,

R(σ1, σ2) = 1
n

⟨σ1, σ2⟩ = 1
n

∑
i∈[n]

(σ1)i(σ2)i .

We first state the OGP for diluted k-spin glasses about the overlap gaps in a single instance.

▶ Theorem 3.2 (OGP for Diluted k-Spin Glasses, [10, Theorem 2]). For every even k ≥ 4,
there exists an interval 0 < a < b < 1 and parameters d0 > 0, 0 < η0 < P (k) and n0 > 1,
such that, for d ≥ d0, n ≥ n0 and L = L(η0, d), with probability at least 1 − Le−n/L over the
random hypergraph G ∼ Hn,d,k, whenever two spins σ1, σ2 satisfy

HG(σi)
n

≥ M(k, d)
(

1 − η0

P (k)

)
,

then also, |R(σ1, σ2)| /∈ (a, b).

A more general version of the OGP excludes, with high probability, a certain range of
overlaps between any two solutions of two different instances jointly drawn from a coupled
random process. We first introduce this process, and then state the coupled version of the
OGP as proven in Chen et al [10].
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▶ Definition 3.3 (Coupled Interpolation, [10, Section 3.2]). The coupled interpolation Hd,k,n,t

generates a coupled pair of hypergraphs (G1, G2) ∼ Hd,k,n,t as follows:
1. First, a random number is sampled from Poisson(tdn/k), and that number of random

k-hyperedges are uniformly drawn from the set [n]k and put into a set E.
2. Then, two more random numbers are independently sampled from Poisson((1 − t)dn/k),

and those numbers of random k-hyperedges are independently drawn from [n]k to form
the sets E1 and E2 respectively.

3. Lastly, the two hypergraphs are constructed as G1 = (V,E ∪ E1) and G2 = (V,E ∪ E2).

▶ Theorem 3.4 (OGP for Coupled Diluted k-Spin Glasses, [10, Theorem 5]). For every even
k ≥ 4, there exists an interval 0 < a < b < 1 and parameters d0 > 0, 0 < η0 < P (k)
and n0 > 1, such that, for any t ∈ [0, 1], d ≥ d0, n ≥ n0 and constant L = L(η0, d), with
probability at least 1 − Le−n/L over the hypergraph pair (G1, G2) ∼ Hn,d,k,t, whenever two
spins σ1, σ2 satisfy

HGi(σi)
n

≥ M(k, d)
(

1 − η0

P (k)

)
,

then their overlap satisfies |R(σ1, σ2)| /∈ [a, b].

We also provide a corresponding coupled OGP for random Max-k-XOR in Theorem 8.12
in the full version.

4 Locality and Shared Randomness

4.1 Generic p-local algorithms
We introduce a concept of “local random algorithm” which will allow for different runs of
the same local algorithm to “share their randomness”, even when run on mostly-different
instances. Later we will demonstrate that QAOA is a local algorithm under this definition.

▶ Definition 4.1 (Generic local algorithms). We consider randomized algorithms on hypergraphs
whose output A(G) ∈ SV assigns a label from some set S to each vertex in V . Such an
algorithm is generic p-local if the following hold.

(Local distribution determination). For every set of vertices L ⊂ V , the joint marginal
distribution of its labels (A(G)v)v∈L is identical to the joint marginal distribution of
(A(G′)v)v∈L whenever

⋃
v∈L BG(v, p) ∼=L

⋃
v∈L BG′(v, p), and,

(Local independence). A(G)v is statistically independent of the joint distribution of
A(G)v′ over all v′ ̸∈ BG(v, 2p).

Consequently, it will be possible to sample A(G)v without even knowing what the
hypergraph looks like beyond a distance of p away from v.

This definition is more general than the factors of i.i.d. concept used in probability theory
[24, 10]. Our definition, for instance, encompasses local quantum circuits whereas factors of
i.i.d. algorithms satisfy Bell’s inequalities and do not capture quantum mechanics.

▶ Proposition 4.2 (Generic local strictly generalizes factors of i.i.d. (Restatement of
Proposition 2.3)). There exists a generic 1-local algorithm as defined in section 4 that
is not a 1-local factors of i.i.d. algorithm as defined in Definition 1.10.

A proof of this proposition is provided in Appendix A in the full version, and consists of
setting up a Bell’s inequality experiment within the framework of a generic 1-local algorithm.
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4.2 Locality properties of QAOA for hypergraphs
We show that any QAOA circuit of depth p with some fixed angle parameters (β̂, γ̂) is a
p-local algorithm. This allows us to describe a process to sample outputs of this circuit when
it is run on two different input hypergraphs.

▶ Proposition 4.3. For every p > 0, angle vectors β̂ and γ̂, QAOAp(β̂, γ̂) is generic p-local
under Definition 4.1.

Proof. To see this, consider the structure of QAOA: we start with a product state |ψ0⟩ where
each qubit corresponds to a vertex in the hypergraph, apply the unitary transformation
U = Up(β̂, γ̂) to the state, and then measure each vertex v in the computational basis
with the Pauli-Z operator σz(v). Equally valid and equivalent is the Heisenberg picture
interpretation of this process, where we keep the product state |ψ0⟩ fixed but transform the
measurements according to the reversed unitary transformation U†, so that we end up taking
the measurements U†σz(v)U on the fixed initial state.

Because the σz(v) operators all commute with each other, their unitarily transformed
versions U†σz(v)U also mutually commute, and the measurements can be taken in any order
without any change in results. Let M(v) = U†σz(v)U and M(L) = {U†σz(u)U | u ∈ L}.

To show that QAOA satisfies the first property of generic p-local algorithms, we need to
show that the marginal distribution of its assignments to any set L′ ⊆ V of vertices depends
only on the union of the p-distance neighborhoods of L′. To show this, since we are allowed
to take the measurements in any order, take the measurements in M(L′) before any other
measurement. Then since the action of the unitary U = Up(β̂, γ̂) on qubits in L′ does not
depend on any feature of the hypergraph outside of a radius of p around L′, the operators
M(L′) are fully determined by the p-local neighborhoods of L′, and since we take them
before every other measurement, the qubits are simply in their initial states when we make
these measurements, thus the distribution of outputs is fully determined.

The same type of reasoning shows that the assignment to each v ∈ V is statistically
independent of the assignments to any set of vertices outside of a 2p-distance neighborhood
of v. Take L′′ ⊂ V \ B(v, 2p). Then M(v) acts on a radius-p ball around v, and each
measurement in M(L′′) acts on a radius-p ball around a vertex in L′′, and by taking
{M(v)} ∪M(L′′) before any of the measurements in M({B(v, 2p) \ {v}), we ensure that the
qubits being measured by M(v) are disjoint from and unentangled with those measured by
anything in M(L′′). Hence the measurement M(v) is independent of all measurements in
M(L′′). We conclude that QAOAp is a generic p-local algorithm. ◀

4.3 Shared randomness between runs of a generic local algorithm
We describe a process to sample the outputs of a generic local algorithm when run twice
on two different hypergraphs, so that the two runs of the algorithm can share randomness
when the hypergraphs have some hyperedges in common. This is not meant as a constructive
algorithm, but a statistical process with no guarantee of feasible implementation.

The idea is to start with two t-coupled hypergraphs, which for large enough n, are
likely to have some set of vertices L+ whose p-neighborhoods are identical between the two
hypergraphs. Since these vertices have identical p-neighborhoods, a generic p-local algorithm
behaves identically on the vertices in L+. We pick a random t+ fraction of the elements
of L+, and assign the same labels to those vertices in the two coupled instances. Then the
remaining labels on each hypergraph are assigned by generic p-local algorithms, conditioned
on the output being consistent with the already assigned labels.



C.-N. Chou, P. J. Love, J. S. Sandhu, and J. Shi 41:17

The formal definition may be found in the full version of this paper, where it is combined
with the coupled OGP to demonstrate a contradiction if a generic local algorithm achieves a
good approximation.

5 Conclusion & Future Work

The full version of this work conclusively establishes the coupled OGP as an obstruction
to all local quantum algorithms on any (k, d)-CSP(f). In doing this, the work hints at and
leaves open many interesting questions for future work in areas that are at the intersection
of Quantum inapproximability, Statistical Physics, Random Graph Theory, Combinatorial
Optimization and Average-Case Complexity.

5.1 Which CSPs have an OGP?

While various sparse CSPs such as k-SAT, unsigned max-k-XOR and k-NAE-SAT have been
shown to exhibit clustering in their solution spaces at different clause-to-variable ratios [1,
15, 10], it is not known whether this property is pervasive to most CSPs or something that
happens to a select few. Therefore, in order to understand the complexity landscape of CSPs
on typical instances better, the following open question is interesting to investigate:

▶ Conjecture 5.1 (Random Predicate CSPs and coupled OGP). Given a function f chosen
uniformly at random from the set of functions Bk = {g | g : {±1}k → {0, 1}}, (k, d)-CSP(f)
has a coupled-OGP for sufficiently large k and d with high probability (over the choice of f
and instance Ψ ∼ (k, d)-CSP(f)).

Notice that the conjecture above is specifically interested in the solution geometry of a
CSP in the unsatisfiable regime (large d). A positive resolution to the above conjecture will
make the obstructions stated in Theorem 2.8 hold for almost all CSPs.
Another question of interest is which properties about a predicate f can be identified which
would conclusively imply that a random instance Ψ of a (k, d)-CSP(f) will have an OGP.

▶ Problem 5.1 (Properties of coupled-OGP predicates). Can we enumerate a set of necessary
and sufficient conditions on f to be such that (k, d)-CSP(f) satisfies a coupled-OGP for
sufficiently large k and d?

5.2 Beyond log-depth obstructions for QAOAp?

Work on obstructing QAOAp using an OGP heavily relies on the locality of the algorithm
at shallow depths. It is interesting to investigate whether this obstruction can be extended
beyond the ε log(n)-depth regime to make this a non-local obstruction. Recent work [23, 45]
suggests that the OGP may actually result in stronger obstructions than just local ones, and
it would be interesting to see if these techniques can be generalized to the setting of QAOAp

to yield obstructions that are non-local.

▶ Problem 5.2 (Poylogarithmic obstructions to QAOAp in the OGP regime). Given a QAOAp

circuit with depth p ≤ ε (log(n))c for some c > 1, does there exist ε0 > 0, such that QAOAp

is obstructed on a (k, d)-CSP(f) with a coupled OGP from outputting solutions that are better
than (1 - ε0) approximations to the optimal?
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5.3 A Quantum OGP and lifting “classical” obstructions
The idea of the OGP obstructing families of algorithms that are stable under small
perturbations to the input [23] motivates the idea of a quantized version of the OGP,
to apply to quantum CSPs. To define such a property over quantum states, however, there
would need to be a metric that is very similar to the classical hamming distance over F2
and has the property that it is invariant over permutations of the canonical basis, while still
quantifying entanglement in a desired way. One such possible metric is a quantum version
of the Wasserstein distance of first order that was proposed by De-Palma et al. [13]. In
particular, given a natural generalization of Definition 1.7 to a quantized setting using a
quantum version of the Wasserstein distance of first order, it is interesting to investigate if
a larger family of quantum circuits up to some depth p(n) can be obstructed by a family
of d-local hamiltonians {Hn}n≥n0 that possess a qOGP (quantized Overlap-Gap Property).
A result of this type could imply a way to generically “lift” classical obstructions for stable
classical algorithms to a corresponding family of quantum algorithms.

5.4 Message-Passing algorithm for MAX-CUT of all d-regular graphs?
Finding an efficient classical algorithm that can output cuts that are arbitrary approximations
of the optimal ones for d-regular graphs is a long-standing open problem in Random Graph
Theory and Theoretical Computer Science. Recently, this problem was nearly completely
solved by Alaoui et al. [2] as they constructed a Message-Passing algorithm for random
regular graphs of very large degree under the widely believed no-OGP assumption about the
SK model. However, the problem does not provide a complete solution as it needs the degree
d to be larger than O( 1

ε ) in order to output a (1 − ε)-optimal cut. A natural question is
whether, under a no-OGP assumption, the result can be extended to output (1 − ε)-optimal
cuts for d-regular graphs for any d ≥ 3.

▶ Conjecture 5.2 (AMP algorithm for Random d-Regular Graphs). There exists a poly(n, 1
ε )

time algorithm A that outputs a (1 - ε)-approximate cut of a random d-regular graph G with
high probability under a “no-OGP” assumption for any d ≥ 3.

Note that the approach of Alaoui et al. [2] critically relies on the Guerra-Tonnineli
interpolation between the Gn,d model and the SK-model which will only work for d ≥ O

( 1
ε

)
.

Consequently, a solution that works for all d ≥ 3 will require a fundamentally different
approach. A natural question that is motivated by the above conjecture is to then investigate
if there is any range of degree for which the MAX-CUT problem over d-regular graphs
possesses an OGP. Given the belief that the SK model does not exhibit an OGP, this would
only be an interesting question in the relatively low-degree regime.

▶ Problem 5.3 (Random d-Regular Graphs don’t have an OGP). Does the MAX-CUT problem
on random d-regular graphs have an OGP for some d ≥ 3? If so, for what {d0, d1} ⊂ N does
the problem exhibit an OGP?

The study of QAOAp was initiated on MAX-CUT for d-regular graphs: positive answers
to the conjectures above would resolve the question of quantum advantage on the problem.
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Abstract
The arboricity α of a graph is the smallest number of forests necessary to cover its edges, and an
arboricity decomposition of a graph is a decomposition of its edges into forests. The best near-linear
time algorithm for arboricity decomposition guarantees at most α + 2 forests if the graph has
arboricity α (Blumenstock and Fischer [12]).

In this paper, we study arboricity decomposition for dynamic graphs, that is, graphs that are
subject to insertions and deletions of edges. We give an algorithm that, provided the arboricity of
the dynamic graph never exceeds α, maintains an α + 2 arboricity decomposition of the graph in
poly(log n, α) update time, thus matching the number of forests currently obtainable in near-linear
time for static (non-changing) graphs.

Our construction goes via dynamic bounded out-degree orientations, and we present a fully-
dynamic algorithm that explicitly orients the edges of the dynamic graph, such that no vertex has an
out-degree exceeding ⌊(1+ ε)α⌋+2. Our algorithm is deterministic and has a worst-case update time
of O(ε−6α2 log3 n). The state-of-the-art explicit, deterministic, worst-case algorithm for bounded
out-degree orientations maintains a β · α + logβ n out-orientation in O(β2α2 + βα logβ n) time [30].

As a consequence, we get an algorithm that maintains an implicit vertex colouring with 4 · 2α

colours, in amortised poly-log n update time, and with O(α log n) worst-case query time. Thus, at
the expense of log n-factors in the update time, we improve on the number of colours from 2O(α) to
O(2α) compared to the state-of-the-art for implicit dynamic colouring [27].
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1 Introduction

Graph colouring is a well-studied problem in computer science and discrete mathematics
and has many applications such as planar routing and network optimization [17]. A proper
colouring of a graph G = (V, E) on n vertices is an assignment of colours to each vertex in
V (G) such that no neighbours receive the same colour. We are interested in minimising the
number of colours used. The minimum number of colours that can be used to properly colour
G, is called the chromatic number of G. It is NP-hard to even approximate the chromatic
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number to within a factor of n1−ε for all ε > 0 [43, 29], but colourings with respect to certain
parameters can be efficiently computed. For instance, it is well known that if a graph is
uniformly sparse in the sense that we can decompose it into k forests, then we can efficiently
compute a colouring: the sparsity of the graph ensures that every subgraph has a vertex of
degree at most 2k − 1, allowing us to compute a 2k colouring of the graph in linear time by
colouring the vertices in a clever order. The minimum number of forests that the graph can
be decomposed into is called the arboricity of G. In the past decades, much work has gone
into the study of dynamic algorithms that are able to efficiently update a solution, as the
problem undergoes updates. A general question about dynamic problems is: which (near-)
linear-time solvable problems have polylogarithmic updatable solutions?

We study the problem of maintaining a proper colouring of a dynamic graph with bounded
arboricity. This class of graphs encompasses, for instance, dynamic planar graphs where
α ≤ 3. Here, the graph undergoes changes in the form of insertions and deletions of edges
and one needs to maintain a proper colouring of the vertices with fast update times. We
distinguish between two scenarios: one where, as is the case for dynamic planar graphs, we
have access to an upper bound on the arboricity αmax throughout all updates, and one where
we do not. Note that due to insights presented in [39], we can often turn an algorithm for
the first scenario into an algorithm for the second by scheduling updates to O(log n) (partial)
copies of the graph, thus incurring only an O(log n) overhead in the update time.

Barba et al. [6] showed that one cannot hope to maintain a proper, explicit vertex-colouring
of a dynamic forest with a constant number of colours in poly-logarithmic update time.
Consequently, we cannot maintain explicit colourings where the number of colours depend
entirely on α with poly-logarithmic update time - even if we know an upper bound on α.
This motivated Henzinger et al. [27] to initiate the study of implicit colourings. Here, instead
of storing the colours of vertices explicitly in memory, a queryable data structure is provided
which after some computations returns the colour of a vertex. If one queries the colours of
two neighbouring vertices between updates, the returned colours must differ. Now, we can
circumvent the lower bound by using known data structures for maintaining information
in dynamic forest to 2-colour dynamic forests in poly-logarithmic update time. Henzinger
et al. [27] use this to colour graphs via an arboricity decomposition i.e. a decomposition of
the graph into forests. They present a dynamic algorithm that maintains an implicit proper
2O(α)-colouring of a dynamic graph G with arboricity α. Their algorithm adapts to α, but
in return it hides a constant (around 40) in the asymptotic notation. Even if one has an
upper bound αmax on α, the currently best obtainable colouring uses 24(αmax+1) colours
by combining the arboricity decomposition algorithm from Henzinger et al. [27] with an
algorithm of Brodal & Fagerberg [13] that maintains a 2(αmax + 1) bounded out-degree
orientation. Both of these algorithms use a lot of colours. Even for planar graphs with
arboricity at most 3, 216 > 60.000 colours are used. This is quite far from 4 colours, which is
always sufficient [3, 38], or the 5 colouring that can be computed in linear time [35, 14, 20].

Dynamic arboricity decompositions. Both colouring algorithms go via dynamic α′-bounded
out-orientations. Here, the goal is to orient the edges of the graph while keeping out-degrees
low. These are then turned into dynamic 2α′-arboricity decompositions. By 2-colouring
each forest, such a decomposition yields a 22α′ colouring. Thus the lower α′ is, the fewer
colours we use. There has been a lot of work on maintaining dynamic low out-orientations
[13, 8, 30, 26, 41], and much of this work aim to improve update complexity by relaxing
the allowed out-degree. Motivated by implicit colourings, we provide a different trade-off,
providing a lower α′ value within polylog(n, α) update time. Specifically, a ⌊(1 + ε)α⌋+ 2
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dynamic out-orientation with O(log3(n)α2/ε6) update-time adaptive to α, and an α + 2
dynamic arboricity decomposition with O(poly(log n, αmax)) update time, when we have an
upper bound αmax on the arboricity. Our algorithm maintaining the arboricity decomposition
matches the number of forests obtained by the best static algorithm running in near-linear
time [12].

These algorithms may also be interesting as they go below the 2α barrier on out-edges and
forests respectively. In the static case there exist simple and elegant algorithms computing
2α − 1 out-orientations and arboricity decompositions in linear time [4, 19]. For exact
algorithms, the state-of-the-art algorithms spend time Õ(m10/7) [34] or Õ(m

√
n) [33] for the

out-orientation problem, and Õ(m3/2) for the arboricity decomposition problem [21, 22]. Even
statically computing an α + 1 out-orientation [31] resp. an α + 2 arboricity decomposition [12]
takes Õ(m) time. In the dynamic case, the out-orientation with the lowest bound on
the out-degree with O(poly(log n, α)) update time seem to be the algorithm of Brodal &
Fagerberg [13] that achieves 2(αmax + 1) out-degree. In [13] it is also noted that determining
exactly the complexity of maintaining a d out-orientation for d ∈ [α, 2α] is a ’theoretically
interesting direction for further research’. We make some progress in this direction by showing
how to maintain a ⌊(1 + ε)α⌋+ 2 out-orientation with poly(log n, α, ε−1) update time. Thus,
if α is a constant, we may carefully choose ε to obtain a polylogarithmic α+2 out-orientation.

1.1 Results
Let G be a dynamic graph with n vertices undergoing insertion and deletions of edges, and
let α be the current arboricity of the graph; that is α might change, when edges are inserted
and deleted. If we at all times have an upper bound αmax on α, we say that G is undergoing
an αmax preserving sequence of updates. We have the following:

▶ Theorem 1. For 1 > ε > 0, there exists a fully-dynamic algorithm maintaining an explicit
((1 + ε)α + 2)-bounded out-degree orientation with worst-case insertion time O(log3 n ·α2/ε6)
and worst-case deletion time O(log3 n · α/ε4)

Using pseudoforest decompositions, we obtain a fully dynamic, implicit colouring algorithm:

▶ Corollary 2. Given a dynamic graph with n vertices, there exists a fully dynamic algorithm
that maintains an implicit 2 · 3(1+ε)α colouring with an amortized update time of O(log4 n ·
α2/ε6) and a query time of O(α log n).

By moving edges between pseudoforests, we can turn the pseudoforest decomposition into a
forest decomposition. This also gives a colouring algorithm using fewer colours.

▶ Theorem 3. Given an initially empty and dynamic graph undergoing an arboricity αmax

preserving sequence of updates, there exists an algorithm maintaining a ⌊(1 + ε)α⌋ + 2
arboricity decomposition with amortized update time O(poly(log n, αmax, ε−1)). In particular,
setting ε < α−1

max yields α + 2 forests with an amortized update time of O(poly(log n, αmax)).

▶ Corollary 4. Given a dynamic graph with n vertices, there exists a fully dynamic algorithm
that maintains an implicit 4 · 2α colouring with an amortized update of O(polylog n) and a
query time of O(α log n).

Finally, we modify an algorithm of Brodal & Fagerberg [13] so that it maintains an acyclic
out-orientation.

▶ Theorem 5. Given an initially empty and dynamic graph G undergoing an arboricity
αmax preserving sequence of insertions and deletions, there exists an algorithm maintaining
an acyclic (2αmax + 1) out-degree orientation with an amortized insertion cost of O(α2

max),
and an amortized deletion cost of O(α2

max log n).
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Table 1 Different dynamic algorithms for maintaining out-orientations. We state the bounds in
terms of the arboricity α of the graphs, since many of the results referenced do the same.

Reference Out-degree Update time α

Brodal & Fagerberg [13] 2(α + 1) O(α + log n) am. fixed
Kopelowitz et al. [30] βα + logβ n O(β2α2 + βα log n) adaptive
He et al. [26] O(α

√
log n) O(

√
log n) am. fixed

Berglin & Brodal [8] O(α + log n) O(log n) adaptive
Henzinger et al. [27] 40α O(log2 n) am. adaptive
Kowalik [32] O(α log n) O(1) am. fixed
New (Thm. 1) (1 + ε)α + 2 O(log3 (n)α2/ε6)) adaptive

1.2 Related Work
Dynamic colouring. Barba et al. [6] give algorithms for the dynamic recolouring problem,
and show that c-colouring a dynamic forests incurs Ω(n

1
c(c−1) ) recolourings per update.

Solomon & Wein give improved trade-offs between update time and recolourings and give a
deterministic dynamic colouring algorithm parametrized by the arboricity α, using O(α2 log n)
colours with O(1) amortized update time [41]. Henzinger et al. [27] introduced the study of
implicit colouring of sparse graphs in order to circumvent the explicit lower bound of Barba
et al. [6]; they maintain an implicit colouring using 2O(α) colours, with O(log3 n) update
time and O(α log n) query-time. Recently, there has also been a lot of work on the dynamic
colouring problem parameterised by the maximum degree [9, 10, 28].

Bounded out-degree orientations. Much of the work with respect to bounded out-degree
orientations has gone into either 1) statically computing bounded out-degree orientations
with the minimum (or close to it) out-degree [21, 37, 11, 1], or 2) dynamically maintaining
bounded out-degree orientations with efficient updates [13, 30, 41, 32, 8], but allowing weaker
guarantees on the minimum out-degree (see Table 1). Note that the constant of 40 was
extracted from an equation in the proof of Lemma 18 (on page 15) in [27]. The current state-
of-the-art for exact, static algorithms have running time Õ(m10/7) [34] and Õ(m

√
n) [33].

Kowalik [31] also gave an algorithm computing a ⌈(1 + ε)α⌉ out-orientation in Õ(m · ε−1)
time.

Arboricity decompositions. A lot of work has been put into producing efficient static
algorithms for computing arboricity decompositions [21, 22, 18, 37] (see [12] for an overview).
The fastest static algorithm runs in Õ(m3/2) time [21, 22]. Also approximation algorithms
have been studied in the static case. There exists a linear-time 2-approximation algorithm
[4, 19]. Furthermore, Blumenstock & Fischer provide an algorithm computing a ⌈(1+ε)α⌉+1
arboricity decomposition in Õ(m · ε−1) time. Bannerjee et al. [5] provide an Õ(m) dynamic
algorithm maintaining the exact arboricity α of a dynamic graph, and show a lower bound
of Ω(log n) for dynamically maintaining arboricity. Henzinger et al. [27] provide a dynamic
algorithm for maintaining a 2α′ arboricity decomposition, given access to any black box
dynamic α′ out-degree orientation algorithm. (See Table 2.)

Other related work. Motivated by the problem of finding a densest subgraph, Sawlani &
Wang [39] gave an (implicit) dynamic approximation algorithm for maintaining a (1 + ε)ρ
fractional out-degree orientation, where ρ is the maximum subgraph density. In order to
tune the parameters in the algorithm, they use multiple (partial) copies of the same graph,
where each copy has a different estimate of the maximum density of the graph.
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Table 2 Overview of dynamic algorithms for maintaining arboricity decompositions. Note that
applying Lemma 27 to Theorem 5 gives an arboricity decomposition, since the orientation is acyclic.

Reference Forests Update time Uses Lemma from [27] α

Bannerjee et al. [5] α Õ(m) No adaptive
Brodal & Fagerberg [13] 4(α + 1) O(α + log n) am. Yes fixed
Henzinger et al. [27] 80α O(log2 n) am. Yes adaptive
New (Thm. 5) 2(α + 1) O(α2 log n) am. Uses Lemma 27 fixed
New (Thm. 3) α + 2 O(polylog n) am. No adaptive

Computing near optimal out-orientations and arboricity decompositions has also been
studied from a distributed point of view. Barenboim & Elkin gave a (2 + ε)-approximation
in [7]. This has since then been improved to (1 + ε)-approximations [24, 25, 42, 23].

1.3 Summary of techniques
It is quite simple to compute 2-approximations of arboricity decompositions and bounded
out-degree orientations in the static case: It follows from a Theorem of Nash-Williams [36]
that a graph with arboricity α is 2α− 1 degenerate i.e. every subgraph of the graph has a
vertex of degree at most 2α− 1. By continuously removing a vertex with minimum degree
and assigning all remaining edges incident to it as out-edges, one obtains an acyclic (2α− 1)
out-orientation. By partitioning the edges into 2α − 1 partitions s.t. no vertex has two
out-edges in the same partition, one obtains a (2α− 1)-arboricity decomposition.

However, in order to get static algorithms computing close to optimal out-orientations
and arboricity decompositions, one typically formulates the problems as combinatorial
optimization problems. These can be difficult to approximate – even in the static case, and
thus perhaps even more so dynamically. To achieve the low out-orientation algorithm, we
build upon a technique of Sawlani & Wang [39]: if one allows edges to be partially assigned
to both endpoints, one gets a relaxed version of the out-orientation problem which we will
refer to as the fractional out-orientation problem. Here edges are assigned partially to both
endpoints and one seeks to minimise the maximum load of a vertex, where a vertex’s load is
the sum of the loads contributed by each edge incident to the vertex.

A novelty in our approach lies in what we call refinements of fractional orientations: the
edges that assign a substantial load to both endpoints form a subgraph – a refinement – of
the original graph. We show how to remove cycles from the refinement without changing
the loads of any vertices by reassigning edges along cycles. When the refinement is acyclic,
the remaining edges have (almost) decided on which endpoint, they prefer. This ensures
that we can naively ’round’ all of the edges not in the refinement to become out-edges of the
vertices they assign the most load. By 2-orienting the refinement, we obtain an algorithm for
maintaining an out-orientation with close to the optimal number of out-edges.

Given an α′ out-orientation, it is straighforward to split it into α′ pseudoforests i.e. graphs
where each component has at most one cycle: partition the edges into α′ partitions such
that no vertex has out-degree more than one in each partition. Every pseudoforest can be
represented as a forest and a matching – simply put exactly one edge from each cycle into
the matching. Blumenstock & Fischer [12] show that if one chooses the pseudoforests and
the representation of the pseudoforsts in a clever way, then the union of all of the matchings
form a forest. Thus by combining these techniques one can go from an α′ orientation to an
α′ + 1 arboricity decomposition.

ICALP 2022
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It is the same idea that underlies our dynamic arboricity decomposition algorithm: we
maintain a refinement and a low out-orientation of the remaining edges as before. Then we
partition the oriented edges into pseudoforests and finally we alter these pseudoforests and
their representations to arrive at a low arboricity decomposition. The key challenge in making
this process dynamic is that the altered pseudoforests must be obtainable by partitioning
the current out-orientation; otherwise it is unclear how to maintain the pseudoforests as the
graph is updated. In order to achieve this, we modify the approach of Blumenstock & Fischer
such that the obtained pseudoforests stay faithful to the underlying orientation. However to
do so, we have to alter the underlying orientation to accommodate our choice of pseudoforests.
To be able to alter the orientation maintained by the out-orientation algorithm, we have to
be careful to keep auxiliary datastructures updated and ensure that certain invariants are
maintained. To achieve this, we show how to update the datastructures lazily, and we use a
potential based argument to show that we can afford to maintain the required invariants.

Paper Outline. In Section 2, we first show how to 2-orient forests and then we recall the
techniques of Sawlani & Wang [39] and Kopelowitz et al. [30]. In order to maintain the
refinement, we need to represent some parts of the fractional out-orientation implicitly, hence
in Section 2 we also make precise exactly how the fractional out-orientation can be accessed.
In Section 3 we introduce refinements and show how to maintain them dynamically thus
obtaining Theorem 1 and Corollary 2. In Section 4 we show Theorem 3 and Corollary 4. We
begin by briefly discussing our approach, before we in Section 4.1 recall the techniques of
Henzinger et al. [27] and Blumenstock & Fischer [12]. In Sections 4.2 to 4.7 we describe our
new dynamic algorithm for maintaining an arboricity decomposition with close to the optimal
number of forests. Finally, Section 5 is dedicated to Theorem 5. Due to space-constraints
some proofs are left out (they can be found in the full-version [16]).

2 Preliminaries & Warm-up

Nash-Williams [36] showed that the arboricity α of a graph G satisfies α = ⌈max
J⊂G

|E(J)|
|V (J)|−1⌉.

The pseudoarboricity αp is the minimum number of pseudoforests that the edges of G can be
partitioned into. The maximum (subgraph) density or the fractional pseudoarboricity ρ is
defined as ρ = max

J⊂G

|E(J)|
|V (J)| . We have αp = ⌈ρ⌉ [37]. Note that α and αp are numerically very

close, and that αp(G) is the lowest maximum out-degree achievable when orienting the edges
of an undirected graph G [31]. For an undirected graph G and a vertex v ∈ V (G), we let
d(v) be the degree of v and N(v) the neighbourhood of v. If G is directed, d+(v) denotes
the out-degree of v and N+(v) the out-neighbourhood of v.

Explicit 2-out orientation of dynamic forests. We begin by considering the simpler problem
of orienting the edges of dynamic forests so as to minimise the maximum out-degree of
vertices. If we want an implicit out-orientation of a dynamic forest H, we can root each
tree in H arbitrarily, and get an out-degree of 1 upon query-time using data structures
for maintaining information in a dynamic forest (see for example [2, 40]). However, if we
want the out-orientation to be explicit, there is a naive lower bound for maintaining a 1-out
orientation: Take a path of length n. Deleting the edge between vertex n/2 and n/2 + 1,
yields two sub-paths of length roughly n/2. No matter the 1-orientation of these paths, we
can reconnect them so as to necessitate Ω(n) reorientations to restore a 1-orientation. This
may be repeated to defy even the hope of an improved amortised analysis.
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On the contrary, to obtain a 2-orientation, one can use dynamic heavy path decompositions
to obtain an O(log(n)) update time algorithm via orienting light edges towards the root,
and heavy edges arbitrarily. For a rooted-tree T , we have the notion of parents and children
of the vertices. The parent of v is the first vertex from v on the v-to-root path in T . The
children of v are all neighbours of v that are not the parent of v. A heavy child w of v is
then a child of v such that the sub-tree of T rooted at w contains more than half of the
vertices of the sub-tree rooted at v. The heavy children in T induces heavy edges going from
a vertex to its heavy child, and light edges going from a vertex to its non-heavy children.
Every root-to-leaf path then contains at most O(log n) light edges. The heavy edges form the
desired paths, and the light edges can be assigned to the endpoint that is a child of the other
endpoint. Sleator and Tarjan [40] showed how to maintain such a heavy-light decomposition
in O(log n) worst case update time, and with O(1) overhead one can keep all light edges
oriented towards the root. As such, we have:

▶ Lemma 6. There exists a fully-dynamic algorithm maintaining an explicit 2-out orientation
of an n-vertex dynamic forest with O(log n) worst-case update time.

Fractional Out-degree Orientations. We will obtain a low-bounded out-degree orientation
by deterministically rounding a fractional out-degree orientation. Here, the orientation
problem is relaxed so that the edges are allowed to be assigned partially to each end-point,
and the goal is to compute an orientation such that the maximum total load assigned to a
vertex is minimized. A formal definition is as follows:

▶ Definition 7. A fractional α′-bounded out-degree orientation O of a graph G is a pair of
variables Xu

e ,Xv
e ∈ [0, 1] for each edge e = uv ∈ E(G) s.t. the following holds:

1. ∀e = uv ∈ E(G): Xu
e + Xv

e = 1
2. ∀v ∈ V (G): s(v) =

∑
e:v∈e

Xv
e ≤ α′

If furthermore Xu
e ,Xv

e ∈ γ−1 · Z for all e ∈ E(G), we say that O is a (γ, α′)-orientation.

In particular, an α′-bounded out-degree orientation is just a (1, α′)-orientation. We think
of s(v) as the load on vertex v, and α′ as an upper bound on the allowed vertex load. The
γ-parameter underlines the fact that we wish to discretise the fractional loads on edges
to rational loads. If one does so in a symmetric manner for each edge, one can view a
(γ, α′)-orientation of a graph G as a (1, γα′)-orientation of Gγ , where we define Gγ to be G,
where every edge is replaced by γ copies. For an edge e = uv ∈ E(G), we denote by Be the
bundle of γ edges representing e in Gγ . If Gγ is oriented, we denote by Bu

e the bundle of
edges oriented u→ v. Since the copies of e in Be are identical, we only care about the size
of Bu

e , and not which copies of e it contains. Hence:

▶ Observation 8. For a graph G, there is a natural bijection (up to symmetry) between
(1, γ · α′) orientations of Gγ and (γ, α′)-orientations of G.

In light of this observation, we shall use these two descriptions interchangeably, and in some
cases we shall refer to the same orientation as being both a (1, γα′)-orientation of Gγ and a
(γ, α′)-orientation of G. We follow the approaches of Sawlani & Wang [39] and Kopelowitz
et al. [30], so we repeat the following:

▶ Definition 9 ([39]). Given a (1, α′)-orientation of a graph Gγ, we say that an edge
u→ v ∈ E(G) is η-valid if s(u)− s(v) ≤ η and η-invalid otherwise. If also s(v)− s(u) ≤ η,
we say that e = uv ∈ G is doubly η-valid. Furthermore, if s(v)− s(u) ≤ −η/2 we say that e

is an η-tight out-edge of u and an η-tight in-edge of v.

ICALP 2022
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Note that if u→ v is η-invalid, then s(u)− s(v) > η and so −η > s(v)− s(u), so uv is η-tight.
Note that typically η = 1.

▶ Definition 10 ([39] Def. 3.5). A maximal η-tight chain from v is a path of η-tight edges
v0v1, . . . vk−1vk, such that v0 = v and vk has no η-tight out-edges.

A maximal η-tight chain to v is a path of η-tight edges v0v1, . . . vk−1vk, such that vk = v

and v0 has no η-tight in-edges.

▶ Lemma 11 (Implicit in [39]). Inserting an η-valid edge oriented u→ v and reorienting a
maximal η-tight chain from u will η-invalidate no η-valid edges.

Deleting an edge oriented u → v and reorienting a maximal η-tight chain to u will
η-invalidate no η-valid edges.

▶ Remark 12. Note that a maximal η-tight chain has length at most 2· maxv s(v)
η . Indeed,

each time we follow an η-tight out-edge the load on the vertex increases by at least η/2.
If every edge is η-valid, Sawlani & Wang say that the orientation is locally η-stable. Kopelowitz
et al. show the following guarantees for locally 1-stable orientations, where we, for ease of
notation, define ∆+ := (1 + ε)αγ + log(1+ε) (n):

▶ Lemma 13 (Implicit in [30]). If every edge in Gγ is 1-valid, then maxv s(v) ≤ ∆+.

Implicit orientations. We are interested in maintaining a fractional out-degree orientation
in which the fractional orientation of edges allow us to ’round’ the fractional orientation to a
low out-degree orientation. We are interested in two properties: first of all the maximum load
of a vertex should be low, and second of all many of the edges should have either Xu

e or Xv
e

close to 1, so that a naive rounding strategy does not increase the load of a vertex by much.
By Lemma 13, if we ensure that the orientation is locally 1-stable, then we get an upper
bound on the maximum vertex load. In order to ensure the second property, we redistribute
load along cycles without breaking local stability. Our algorithm has two phases. A phase
for inserting/deleting edges in a manner that η-invalidates no edges, thus ensuring the first
property, and a second phase for redistributing load along edges in order to ensure that the
orientation also has the second property. In order for these two phases to work (somewhat)
independently, we think of each phase as having implicit access to the orientation; that is the
insertion/deletion algorithm might have to pay a query cost in order to identify the precise
fractional load of an edge or neighbourhood of a vertex.

▶ Definition 14. An algorithm on an n vertex dynamic and oriented graph has implicit
(|L|, q(n)) access to an orientation, if it has access to:
1. Operations for querying and changing fractional loads of edges in O(log n) time.
2. A query that returns a list containing a superset of all neighbours of a vertex that have

changed status as in- or out-neighbour, since the last time the query was called on this
vertex. The list should have length ≤ |L| and the query should run in O(q(n)) time.

Implicitly Accessing Orientations. In this section, we outline how to modify the algorithm
of Kopelowitz et al. [30] to run on Gγ and to support implicit access to the orientation.
The ideas presented here are not new; they arise in [30] and [39], but we present them for
completeness.

We think of the algorithm as being run on Gγ for some γ to be specified later. We think
of each edge e ∈ G as γ copies in Gγ , but in practice we only store e along with counters
|Bu

e |, |Bv
e | denoting the number of copies oriented in each direction. Now, we wish to run the
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algorithm from [30] in order to insert/delete each copy of an edge one-by-one. This algorithm
inserts/deletes a copy of an edge in Gγ using Lemma 11 with η = 1. We identify a tight chain
from u by continuously looking at all out-neighbours and following tight out-edges, until the
chain becomes maximal. We use max-heaps, stored at each vertex, to identify maximally
tight chains to u. Since we only have implicit access to the orientation, we have to first
process the list of possible changes to in- and out-neighbours before trying to identify the
next tight edge. Furthermore, when we reorient said chains, we have to access the fractional
load of each edge on the chain, before changing it. Hence, we have:

▶ Theorem 15 (implicit in [30]). Given implicit (|L|, q(n)) access to an orientation with
maxv s(v) ≤ ∆+, there exists an algorithm that can insert and delete edges from the
orientation without creating any new 1-invalid edges. The algorithm has worst-case insertion
time of O(γ · ∆+(∆+ + log(n)(|L| + 1) + q(n)))) and a worst case deletion time of O(γ ·
∆+(log(n)(|L|+ 1) + q(n)))).

▶ Remark 16. Each insertion/deletion of a copy of an edge in Gγ with maxv s(v) ≤ ∆+

changes the load of at most O(∆+) edges. Indeed, we only change the load of edges on tight
chains (and potentially one new edge), so the statement follows from Remark 12.

Scheduling Updates. Some of the algorithms rely on upper bounds on the arboricity. This
is, however, not as limiting a factor as one might think, if we are willing to settle for implicit
algorithms. In this section we describe how to use the algorithm of Sawlani & Wang [39]
to schedule updates to O(log n) different copies of a graph such that each copy satisfies
different density constraints. Here, we describe the main ideas behind the algorithm, and in
the appendix of the full version [16], we paraphrase the ideas in more details.

Sawlani & Wang [39] maintain a fractional out-orientation of a graph G by using an
algorithm similar to Theorem 15 to insert and delete edges in Gγ . By allowing η to scale
with the maximum density ρ of G, they are able to make the update time independent of the
actual value of ρ, provided that they have accurate estimates of ρ. By using O(log n) copies
of G – each with different estimates ρest of ρ, they are able to at all times keep the copy
where ρest ≤ maxv s(v) < 2ρest fully updated. They call this copy the active copy. Similar
to Remark 12 they observe that one can safely insert an edge uv in a copy where at least one
of s(u) or s(v) is below 2ρest. If, however, this is not the case, one cannot afford to update
the copy. Sawlani & Wang resolve this issue by scheduling the updates so that they are only
performed, when we can afford to do them. We can use this algorithm as a scheduler for our
algorithms: We also run our algorithm on O(log n) copies of G. Whenever the algorithm
from Theorem 1.1 in [39] has fully inserted or deleted an edge in a copy, we insert or delete
the edge in our corresponding copy. Whenever our algorithm is queried, we then use the
structure from the currently active copy to answer the query. Hence, we have:

▶ Theorem 17 (Implicit in [39] as Theorem 1.1). There exists a fully dynamic algorithm for
scheduling updates that at all times maintains a pointer to a fully-updated copy with estimate
ρest where (1− ε)ρest/2 ≤ α(G) < 4ρest. Furthermore, the updates are scheduled such that a
copy G′ with estimate ρ′ satisfies α(G′) ≤ 4ρ′. The algorithm has amortised O(log4(n)/ε6)
update times.

3 Dynamic Low Out-Orientations

In this section, we work towards the second goal: an orientation where many edges assign
most of their load to one endpoint. To realise this, we introduce refinements of fractional
orientations and show how to dynamically maintain them. The basic idea is to maintain
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Figure 1 Inverting a cycle. We can reorient copies of edges forming a directed cycle without
changing the load of any vertex. By reorienting edges in the refinement, at least one edge on the
cycle becomes almost completely oriented towards one endpoint, and hence it can be expelled.

an orientation such that the fractional load of each vertex is small and such that the edges,
that distribute their loads somewhat equally between both endpoints, form a forest. This
property is nice, if we want to transform our orientation to a bounded out-degree orientation,
since all edges outside of the forest almost already have decided on an orientation, and we
can 2-orient trees using techniques from Section 2. Definition 18 formalises this idea:

▶ Definition 18. Let O be a (γ, α′)-orientation of a graph G. Then H is a (δ, µ)-refinement
of G wrt. O if:
1. V (H) = V (G)
2. For all e = uv ∈ E(G) : Xu

e , Xv
e ∈ (δ, 1− δ) implies that e ∈ H.

3. If e ∈ H, then Xu
e , Xv

e ∈ [δ − µ, 1− δ + µ]
The basic idea behind our algorithm is to maintain a refinement that is a forest. Whenever a
cycle C occurs in the refinement, we can redistribute the fractional loads along the cycle so
as to not change s(v) for any v ∈ C, but such that an edge of C does not satisfy condition 2.
in Definition 18 (see Figure 1). Thus we can remove this edge and again obtain an acyclic
refinement with respect to this new orientation. Hence, we have the following observation:

▶ Observation 19. Suppose 1 > δ > γ−1 + µ ≥ 2γ−1 > 0. Let H be (δ, µ)-refinement of a
graph G wrt. some (γ, α′)-orientation O of G. Then there exists a (δ, µ)-refinement of G,
say H ′, wrt. some (γ, α′)-orientation O′ of G, such that H ′ is a forest.

Note that if every edge of a graph G is η-valid, then an edge e = uv ∈ G can only distribute
its load somewhat evenly between u and v, if s(u) and s(v) are approximately the same.
This implies that e is actually doubly η-valid:

▶ Observation 20. If every edge in Gγ is η-valid, then every edge of a (δ, µ)-refinement H

of G with 1 > δ > γ−1 + µ ≥ 2γ−1 is doubly η-valid.

Since the redistribution of fractional load of edges along a cycle does not change the load s(v)
of any vertex v, performing the redistribution from Observation 19 η-invalidates no edges.

3.1 The algorithm
As outlined earlier, our algorithm has two phases. In the first phase, we will insert and delete
edges without η-invalidating any edges. We do this using the algorithm from Section 2. In
the second phase, we examine all of the edges, whose fractional load was altered in phase 1.
These edges might need to enter or exit H , depending on their new load. If such an insertion
in H creates a unique cycle, we remove it as described in Observation 19. More precisely,
the algorithm works as follows:
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1. Insert (delete) γ copies of e into Gγ one at a time using a phase I algorithm from Section 2.
Whenever a copy of an edge f ∈ E(G) is reoriented in phase I, we push f onto a stack Q.
If e is deleted in G, we also remove e from H.

2. When all γ copies of e are inserted, we set g = uv = pop(Q) and update H as follows
until Q is empty:

If g ∈ H and Xu
g ∈ (δ, 1− δ), we update the weight of g in H to match that of Gγ .

If g ∈ H and Xu
g /∈ (δ, 1− δ), we remove g from H.

If g /∈ H and Xu
g ∈ (δ, 1− δ), we push g onto a new stack S.

If g /∈ H and Xu
g /∈ (δ, 1− δ), we do nothing.

3. After processing all of Q, H together with the edges in S form a (δ, µ)-refinement of G.
We now process each edge h = uv ∈ S as follows:

If u, v are not in the same tree in H, we insert h into H.
Otherwise, u, v are in a unique cycle C in H. We update the weights along C, locate
an edge wz along C with Xw

wz, Xz
wz /∈ (δ, 1− δ) and remove it from H . If uv ≠ wz, we

insert uv into H.
Finally, we update Bw

wz, Bz
wz in G−H to match the weights wz had in H.

Since only edges from Q can enter S, we have the following Observation:

▶ Observation 21. Let Smax and Qmax denote the maximum size of the stacks above during
an insertion or a deletion. Then we have Smax ≤ Qmax ≤ T , where T is the total number of
edges whose fractional orientation are altered during an insertion or a deletion.

Furthermore, Observations 19 and 20 and Theorem 15 imply the invariants:

▶ Invariant 22. Under the orientation induced by H for edges in E(H) and by G−H for
edges in E(G−H), every edge in E(G) is η-valid.

▶ Invariant 23. H is both a (δ, µ)-refinement and a forest.

3.2 Implementing updates
Since we maintain the invariant that H is a forest, we can use data structures for maintaining
information in fully dynamic forests to store and update H:

▶ Lemma 24 (Implicit in [2]). Let F be a dynamic forest in which every edge e = wz is
assigned a pair of variables Xw

e , Xz
e ∈ [0, 1] s.t. Xw

e + Xz
e = 1. Then there exists a data

structure supporting the following operations, all in O(log |F |)-time:
link(u, v, Xu

uv, Xv
uv): Add the edge uv to F and set Xu

uv, Xv
uv = 1−Xu

uv as indicated.
cut(u, v): Remove the edge uv from F .
connected(u, v): Return true if u, v are in the same tree, and false otherwise.
add_weight(u, v, x): For all edges wz on the path u . . . wz . . . v between u and v in F ,
set Xw

wz = Xw
wz + x and Xz

wz = Xz
wz − x.

min_weight(u, v): Return the minimum Xw
wz s.t. wz is on the path u . . . wz . . . v in F .

max_weight(u, v)): Return the maximum Xw
wz s.t. wz is on the path u . . . wz . . . v in F .

Note that using non-local search as described in [2], one can also locate the edges of
minimum/maximum weight in O(log |F |)-time. The lemma also shows that we can process
an edge in Q in O(log n)-time.

▶ Observation 25. We can access and change the fractional load of e ∈ H in time O(log n).
We can do the same for e ∈ G−H in O(1) time, since these loads are not stored in top trees.
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To process an edge uv ∈ S creating a cycle C in the (δ, µ) refinement H, we do as follows.
Depending on the argument minimizing l(C) = µ + min{min_weight(u, v) − δ, 1 − δ −
max_weight(u, v), Xu

uv − δ, 1− δ −Xv
uv}, we either add or subtract l(C) to every edge in C.

We determine and remove the edge that minimized l(C) from H. Thus we can process an
edge in S in O(log n)-time. Finally, if µ > γ−1 then every edge in S ∪H has at least one
copy in Gγ pointing in each direction both before and after the inversion of a cycle. Hence,
no vertex receives any new in- nor out-neighbours. Since inverting a cycle does not change
the load of any vertex, we need not update any priority queues for the insertion/deletion
algorithm. Hence, we do not have to return any lists and so |L| = q(n) = 0.

3.3 Conclusions
▶ Theorem 26. Suppose 1 > δ > γ−1 + µ > 2γ−1 > 0, ε > 0. Then, there exists a dynamic
algorithm that maintains a (γ, (1 + ε)α + γ−1 log(1+ε) n)-orientation of a dynamic graph G

with arboricity α as well as a (δ, µ)-refinement H of G wrt. this orientation such that H is
a forest. The fractional orientation of an edge can be computed in time O(log n), insertion
takes worst-case O(γ · (∆+)2) time and deletion takes worst-case O(γ ·∆+ · log (n)) time.

Proof. Apply Theorem 15 for insertion/deletion. Note that |L| = 0 and q(n) = 0. The
time spent repairing H after each insertion/deletion is in O(γ∆+ log n) by Remark 16 and
Observations 21 and 25, since we can process an edge from both Q and S in O(log n) time.
Finally, Observation 20 and the Invariants 22 and 23 show correctness of the algorithm. ◀

Now tuning the parameters of Theorem 26, rounding edges in G − H and 2-orienting H

yields Theorem 1. By naively rounding G−H in Theorem 26 and splitting the orientation
using Lemma 27, we get an algorithm for dynamically maintaining a decomposition into
⌊(1 + ε)α′⌋ pseudoforests and a single forest. Applying the colouring techniques from the full
version yields Corollary 2.

4 Forests

We begin this section by outlining the main ideas for turning a dynamic low out-orientation
into a dynamic low arboricity decomposition. Given a dynamic α′-bounded out-degree
orientation, one can, with very little overhead, split it into α′ 1-bounded out-degree
orientations using a (slight modification) of an algorithm by Henzinger et al. [27]. Now,
given this dynamic pseudoforest partition, we wish to apply the ideas of Blumenstock &
Fischer [12] in order to turn the α′ pseudoforests into α′ + 1 forests. The main technical
challenge of making this process dynamic is the following: the algorithm from [27] relies
heavily on each vertex having out-degree no more than 1 in each pseudoforest. However, the
approach of Blumenstock & Fischer [12] is to move edges between pseudoforests, showing no
regards as to why an edge was placed in a pseudoforest to begin with. Hence, if one naively
applies this approach on top of the pseudoforest partition, one could potentially ruin the
invariant that every vertex has out-degree no more than 1 in each pseudoforest, causing the
algorithm of Henzinger et al. [27] to fail. We tackle this problem in steps. First, we show that
if we were somehow able to invert the orientations of cycles, then we can make the moves
of Blumenstock & Fischer’s approach faithful to the degree condition of the pseudoforest
algorithm of Henzinger et al. [27]. If we invert orientations along cycles in the pseudoforests,
the out-degree of no vertex in the pseudoforests is changed. However, if we wish to perform
these operations, we will have to do it in a manner that still allows us to maintain the
underlying α′-bounded out-degree orientation. If the cycles are doubly η-valid, we invert the
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cycles using Lemma 24. We do as in Section 3, but this time we add or subtract 1− δ along
the cycles. This ensures that every edge on the cycle now prefers the other endpoint, and so
is naively rounded to the opposite direction without ending in H. The problem is that we
have no guarantee that all edges are doubly η-valid. If an edge is only singly η-valid, then
redistributing the load along a cycle containing this edge causes the edge to become invalid.
However, by Lemma 11, we can delete such invalid edges and reinsert them again to restore
the invariant that all edges are η-valid. We use a potential based argument to show that we
can afford to perform these operations.

4.1 Ideas of Henzinger et al. and Blumenstock & Fischer
An α′-bounded out-degree orientation, can be split into α′ pseudoforests by partitioning
the edges such that each vertex has out-degree at most one in each partition. Then every
connected component PC in a partition is a pseudoforest. Indeed, |E(PC)| ≤ |PC | since every
vertex has out-degree at most one. Hence, there can be at most one cycle in PC . This idea
is implicit in [27] by Henzinger et al. Note that we can store each pseudotree as a top tree
with one extra edge with only O(log n) overhead per operation.

▶ Lemma 27 (Implicit in [27]). Given black box access to an algorithm maintaining an
α′-bounded out-degree with update time T (n), there exist an algorithm maintaining an α′

pseudoforest decomposition with update time O(T (n)).

Using the ideas of Blumenstock & Fischer [12], we can represent a pseudoforest P by a pair
(F, M) s.t. F is a forest and M is matching, by adding exactly one edge from each cycle in
P to M . Similarly, we can represent a partition of E(G) into pseudoforests (P1, . . . , Pk) by
a pair (F, M) s.t. F = ∪Fi and M = ∪Mi and (Fi, Mi) represents Pi for all i.

In order to ensure the guarantees of Lemma 27, we need to maintain the invariant that
every vertex has out-degree at most one in every pseudoforest. If this is the case, we say that
the partition is faithful to the underlying orientation. Blumenstock & Fischer [12] perform
operations on G[M ] in order to turn it into a forest. They call G[M ] the surplus graph. Some
of the operations they perform, are described in the following lemma:

▶ Lemma 28 (Implicit in [12]). Let (F, M) be a faithful representation of a pseudoforest
partition of a simple graph G equipped with an α′-bounded out-degree orientation. If uv ∈Mi

and vw ∈Mj with i ̸= j, then there exists an α′-bounded out-degree orientation with respect
to which the partition gained by swapping Pi ← Pi∪{vw}−{uv} and Pj ← Pj ∪{uv}−{vw}
yields a faithful partition, and uv ∈Mj resp. vw ∈Mi iff. uv resp. vw are on the uni-cycle
in their new pseudoforests.

Furthermore, if wx ∈Mi for some x, then vw is not on a uni-cycle in Pi.

Proof. See [12] Lemma 2. To modify the orientation to accommodate the swaps, note that
we can always reverse the direction of at most two cycles, without changing the out-degree
of any vertex, such that both of the edges swapped are out-edges of v. Now swapping the
two out-edges ensures that the partition stays faithful to the orientation (see Figure 2). ◀

Following Blumenstock & Fischer we note that if e1, . . . , ek is a path in a surplus graph
G[M ] such that e1 and ek belong to the same matching Mi, then we can use the moves from
Lemma 28 to restore colourfulness (see [12] Lemma 3). The key is that we can move the
other edge in Mi towards e1, and then after O(k) switches, we are sure to end up in the
furthermore part of Lemma 28. If a surplus graph contains no such paths, Blumenstock &
Fischer say it is a colourful surplus graph. They show the following Lemma:
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Figure 2 Moving edges between pseudoforests (represented by colour). Before performing the
swap, we reorient a cycle so that the swapped edges are out-edges of their common endpoint. This
ensures that every vertex has out-degree at most one in each pseudoforest.

▶ Lemma 29 ([12]). Suppose J is a colourful component of the surplus graph G[M ] of a
graph G. Then for all v ∈ J there exists an index i s.t. NFi

(v) ∩ J = ∅ and J ∩Mi ̸= ∅.

These Lemmas motivate the following approach: use Lemma 28 to ensure that the surplus
graph is always colourful. Next use Lemma 28 to remove any cycles from the surplus graph.

4.2 Our algorithm for maintaining dynamic arboricity decompositions
Assume that we have an upper bound αmax on the arboricity throughout the entire update
sequence. The algorithm works roughly as follows:
1. Run the algorithm from Theorem 26.
2. Naively round the orientation of each edge in G−H.
3. Split the rounded out-degree orientation on G−H into pseudoforests.
4. Whenever an edge enters or moves between pseudoforests, we push it to a queue R.
We process each edge in e ∈ R as follows: Put e into a pseudoforest. If e completes a cycle
in a pseudoforest add it to G[M ]. When e enters G[M ], we determine if it sits in a colourful
component. If it doesn’t, we apply Lemma 28 until all components in G[M ] are colourful. If a
non-doubly valid cycle is reoriented in this process, we remove the singly-valid edges from the
pseudoforests and add them to R. This ensures that the two edges from the same matching
that we were trying to separate into two different components, are indeed separated. We will
later bound the total number of edges pushed to R. If, on the other hand, the component is
colourful, e may sit in a cyclic component. Then we apply Lemma 29 to remove the unique
cycle. This may create a new non-colourful component, which we handle as before.

In the following, we describe the necessary data structures and sub-routines needed to
perform these operations.

4.3 Operations on the surplus graph
In this section, we assume all cycles are doubly η-valid. In Section 4.5, we handle cases where
this is not the case. Assuming that G[M ] is both colourful and acyclic, we can insert an
edge in G[M ] and restore these invariants by performing switches according to Lemmas 28
and 29. Indeed, after inserting an edge, we can run, for example, a DFS on the component
in G[M ] to determine if it is colourful. If it is not, we locate a path e1, . . . , ek such that
e1, ek ∈Mi. Then we apply Lemma 28 to ei−1 and ei beginning with i = k, until an edge
from Mi is removed from G[M ]. Note that this is certain to happen when e1 and e3 belong
to the same pseudoforest. We continue locating and handling paths until the component
becomes colourful. If the component is colourful, but not acyclic, we choose a vertex v on
the cycle and apply Lemma 29 to determine a pseudoforest represented in the component in
which v is connected to no other vertex in the cyclic component. Then we determine a path
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in the surplus graph between an edge in said pseudoforest and v. Now we move the edge in
this pseudoforest to v using Lemma 28. If the edge is removed from G[M ] or the path is
disconnected, we repeat the process. When such an edge is incident to v, we switch it with
an edge on the cycle. Finally, we replace it in M with the unique neighbouring edge that
is also incident to v in the cycle that put it in M . Now G[M ] is acyclic, but it may not be
colourful. If this it the case, we repeat the arguments above until it becomes colourful. Note
that these moves never create a cycle.

▶ Lemma 30. After inserting an edge into G[M ], we can restore acyclicity and colourfulness
in O(α3 log2(n)) time.

4.4 Recovering neighbours
For each vertex, we will lazily maintain which of its out-edges belong to which pseudoforest.
This costs only O(1) overhead, when actually moving said edges. However, whenever we
invert a cycle, these edges may change. Since the cycles can be long, we can only afford to
update this information lazily, whenever the insertion/deletion algorithm determines the new
out-neighbours of a vertex. When this happens, we say the vertex is accessed. Whenever an
edge has its fractional load changed via a cycle inversion, it is always changed by the same
amount. Hence, we make the following observation:

▶ Observation 31. Between two accesses of a vertex v, the only possible new in-neighbours are
the edges which were out-neighbours at the last access of v, and the only new out-neighbours
are the vertices that are out-neighbours at the current access of v.

Thus, we can recover exactly which incident edges might have changed in- and/or out-
neighbour status from v, since the last time v was accessed by the insertion/deletion
algorithm. To do so, we maintain that each top tree is rooted in the unique vertex, which
has out-degree 0, when the underlying orientation is restricted to the tree. This ensures that
we can recover v’s unique out-edge in a pseudoforest by finding the first edge on the unique
v-to-root path in the top tree. We maintain this information as follows:

When we link(u, v) with an edge oriented u→ v, we set the root of the new tree to be
that of the tree containing v.
When we cut(u, v) with an edge oriented u→ v, we set the root of the tree containing u

to be u and that containing v to be the same as the old tree.
When we invert the orientation along a cycle originally oriented u → v → · · · → u, we
change the root from v to u.
When we perform a Lemma 29 swap, we also update the root accordingly.

Note that each update is accompanied by an operation costing O(log n) time, so the overhead
for maintaining this information is only O(1). With this information, we can recover the old
out-neighbours as the stored out-neighbours, and the new out-neighbours by taking the first
edge on the path from v to the root. Hence, we have shown:

▶ Lemma 32. We can supply each vertex with a query returning a list L of neighbours which
might have their status changed in time O(α log n). Furthermore, |L| = O(α).

4.5 Non doubly η-valid cycles
If a cycle is not doubly η-invalid, we still switch the orientation as before, but now we have to
fix invalid edges. Assuming we know which edges have become η-invalidated, we fix them as
follows: For every invalid edge, we first remove the edge from the pseudoforest it resides in.
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This has two consequences. Firstly, the algorithm from Lemma 27 might move O(1) edges
between pseudoforests, and secondly, we also have to move an edge from the surplus graph
back down as a normal edge in the pseudoforest it comes from. All of the (re)moved edges
are pushed to the queue R. Then, we delete all invalid copies of edges in Gγ , and reinsert
them. Now, all edges are valid again, and so we continue processing edges in R as described
in Section 4.2. If an edge now belongs to H, we do not insert it into any pseudoforest.

It is important to note that the second consequence i.e. that we remove an edge from
G[M ], either makes a Lemma 28 switch successful by removing one of the edges from Mi, or
it removes an edge on one of the at most two paths between edges in Mi. In this case, we try
to locate a second path, and handle it as before. This happens at most once: the component
has at most one cycle, and hence at most two paths between two vertices. We ascribe the
cost of deleting and reinserting invalid edges to the potential in Lemma 33 that bounds the
total number of copies of edges that are inserted into Gγ . This cost is not ascribed to the
algorithm maintaining G[M ]. Set ∆+

max = (1 + ε)αmaxγ + log(1+ε) n, we have:

▶ Lemma 33. The total amount of insertions and deletions performed by the insertion /
deletion algorithm over the entire update sequence is in O( γ∆+

max

η (∆+
max · i + d))

Lemma 33 allows us to bound the total number of edges moved between pseudoforests:

▶ Lemma 34. We move at most O( γ(∆+
max)3

η (i + d)) edges between pseudoforests.

Note that this implies that the total no. of insertions into R is O( γ(∆+
max)3

η (i + d)).

4.6 Locating singly η-valid edges
When we are accessing an edge, we can check if it is doubly η-valid or not (this information
depends only on the load on the endpoints), and maintain this information in a dynamic
forest using just 1 bit of information per edge. This allows us to later locate these edges using
non-local searches in top trees. However, when edges go between being singly η-valid and
doubly η-valid through operations not accessing said edge, we are not able to maintain this
information. This can happen in two ways: either 1) a vertex has its load lowered causing an
in-going edge to now become doubly η-valid or an outgoing edge to become singly η-valid
or 2) a vertex has its load increased causing similar issues. We say an edge is clean if we
updated the validity bit of an edge, the last time the out-degree of an endpoint of the edge
was altered. Otherwise, we say it is dirty. Now if all edges on a cycle are clean, we can use
top trees to direct searches for the edges that become invalidated by inverting the cycle.

We maintain a heavy-light decomposition of every forest using dynamic st-trees [40]
to help us ensure that we can clean all edges in a cycle in time O(log2 n). The idea is to
maintain the invariant that all heavy edges are clean. Now we can clean a cycle by cleaning
the at most O(log n) light edges on said cycle. In order to realise this invariant, whenever
the degree of a vertex is changed, we need to update all of its incident heavy edges in all
of the heavy-light decompositions. Since a vertex is incident to at most two heavy edges in
each forest, we have to update O(α) heavy edges. The following holds:

▶ Observation 35. We can locate singly η-valid edges on a clean cycle in time O(log n) per
edge, if we spend O(log n) overhead updating the bit indicating double validity.

▶ Observation 36. We can insert and delete edges in the heavy-light decomposition in worst
case O(log2 n) time.

▶ Lemma 37. We can check if a cycle is doubly valid in time O(log2 n).
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4.7 Conclusion
Theorem 3 and Corollary 4 follow from Lemma 38 (see full version for details).

▶ Lemma 38. Consider a sequence of updates with i insertions and d deletions.
1. The insertion/deletion algorithm spends O(log6 (n) · α4

max · ε−12(i + d)) time to update
the fractional out-degree orientation and the refinement.

2. The algorithm maintaining the pseudoforests spends O(log6 (n) · α3
max · ε−8(i + d)) time.

3. The algorithm maintaining the surplus graph spends O(log6 (n) · α6
max · ε−8(i + d)) time.

We have shown how to maintain an α + 2 arboricity decomposition of a fully dynamic graph
as it undergoes an arboricity α preserving sequence of updates in poly(log n, α) time per
update. We have also shown how to maintain an ⌊(1 + ε)α⌋+ 2 out-orientation of a fully
dynamic graph in poly(log n, α) time per update. These algorithms are the first dynamic
algorithms to go below 2α forests and out-edges, respectively, and the number of forests
matches the best near-linear static algorithm by Blumenstock and Fischer [12]. We apply
these algorithms to get new trade-offs for implicit colouring algorithms for bounded arboricity
graphs. In particular, we maintain 4 · 2α and 2 · 3α implicit colourings in poly(log n, α)
time per update. This improves upon the 240α colours of the previous most colour-efficient
algorithm maintaining poly(log n, α) update time [27]. In particular, this reduces the number
of colours for planar graphs from 2120 to 32. An interesting direction for future work is
to see, if one can reduce the number of forests even further in the static case, while still
achieving near-linear running time. Also, even though our algorithms use few colours and
forests, the update times contain quite high polynomials in both log n and α. Is it possible
to get more efficient update times without using more forests? Finally, for constant α, we
get α + 2 out-edges. Brodal & Fagerberg [13] showed that one cannot get α out-edges with
faster than Ω(n) update time (even amortised). The question remains, can one get α + 1?

5 Acyclic Orientations and Arboricity Decompositions

In this section, we briefly sketch the algorithm in Theorem 5 (Note that this section is
partially based on the master’s thesis by Christiansen [15, Chapter 9], see the full version for
proofs). We modify an algorithm by Brodal & Fagerberg [13]. Specifically, we change how
an edge is inserted. The algorithm maintains a list of out-edges out(u) for each vertex u ∈ G.
An edge e is in out(u) if and only if e ∈ E(G) and e is oriented away from u. As a result
d+(u) = |out(u)|. All of these lists are initialized to be empty. The algorithm ensures that
the maximum out-degree of the vertices in G is d for some constant d > 2α to be specified
later. The algorithm handles deletions and insertions in the following way:

Deletion: If e incident to x, y is deleted, we search out(x) and out(y) for e, and delete it.
Insertion: When an edge e is inserted, an arbitrary endpoint u of e is chosen, and e is added

to out(u). Now every edge in out(u) is oriented in the other direction (also e) i.e. we
delete f = (u, v) from out(u) and add f to out(v) instead for all edges f ∈ out(u). Now
u has out-degree at most d, but the reorientations of an edge f = (u, v) might increase
|out(v)| above d. The algorithm then proceeds by reorienting all out-edges out of v. It
continues this process until all vertices have out-degree at most d.

Note that this process terminates: Since G has arboricity α, it has an orientation O such
that the maximum out-degree in G is α. Call an edge in E(G) good, if it is oriented the same
way by both the algorithm and O and bad if it isn’t. Now, inserting e could, in the worst
case, make the algorithm change the orientation of α good edges. However from here on,
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every vertex whose edges are reoriented will increase the total number of good edges by at
least d− 2α ≥ 1, so the process terminates. The algorithm differs from the one presented
in [13] in only one way. When an edge e = uv is inserted, we always turn u into a sink.
In [13], this only happens if u’s out-degree increases above d. This small modification ensures
no cycles are created: when an edge is inserted, one of its endpoints is turned into a sink,
and so this edge is in no cycle. Also, turning a vertex into a sink does not create any cycles.
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Abstract
Cohen, Peri and Ta-Shma [11] considered the following question: Assume the vertices of an expander
graph are labelled by ±1. What “test” functions f : {±1}t → {±1} can or cannot distinguish t

independent samples from those obtained by a random walk? [11] considered only balanced labellings,
and proved that for all symmetric functions the distinguishability goes down to zero with the spectral
gap λ of the expander G. In addition, [11] show that functions computable by AC0 circuits are
fooled by expanders with vanishing spectral expansion.

We continue the study of this question. We generalize the result to all labelling, not merely
balanced ones. We also improve the upper bound on the error of symmetric functions. More
importantly, we give a matching lower bound and show a symmetric function with distinguishability
going down to zero with λ but not with t. Moreover, we prove a lower bound on the error of functions
in AC0 in particular, we prove that a random walk on expanders with constant spectral gap does
not fool AC0.
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43:2 Expander Random Walks: The General Case and Limitations

1 Introduction

Expanders are sparse undirected graphs that have many desirable pseudorandom properties.
A formal definition can be given in several equivalent ways and here we consider the algebraic
definition where an undirected graph G = (V, E) is a λ-spectral expander if the second
largest eigenvalue of its normalized adjacency matrix M is bounded above by λ. For
simplicity, we only consider regular graphs, in which case M is also the random walk matrix
of G. Expander graphs are among the most useful combinatorial objects in theoretical
computer science, pivotal in derandomization [18, 29], complexity theory [37, 1, 12] and
coding theory [32, 22, 33, 13] to name a few. Many works in the literature have studied
explicit constructions of expander graphs (see, e.g., [24, 25, 7, 30, 6, 26]) and utilized their
pseudorandom properties. We refer the reader to the excellent expositions [17, 35] and to
Chapter 4 of [36].

Expanders can be thought of as spectral sparsifiers of the clique. Let J be the normalized
adjacency matrix of the n-vertex complete graph with self-loops, i.e., the n × n matrix
with all entries equal to 1

n . One can express the normalized adjacency matrix M of G as
M = (1 − λ)J + λE for some operator E with spectral norm bounded by 1. As such, one
can hope to substitute a sample of two independent vertices with the “cheaper” process
of sampling an edge from an expander and using its two (highly correlated) end-points.
This is captured, e.g., by the expander mixing lemma [2]. This idea also appears in many
derandomization results, [18, 3, 28, 29, 31, 9].

A useful generalization of the above is to consider not just an edge but rather a length
t − 1 random walk (where the length is measured in edges) on the expander as a replacement
to t independent samples of vertices. For concreteness, consider a labelling val : V → {±1}
of the vertices with mean µ = E [val(V )]. Quite a lot is known about random walks on
expanders. Next, we elaborate on the hitting property of expanders [1, 10, 19, 5] as well as
the expander Chernoff bound [1, 10, 19, 14, 16].

The hitting property states that for every set A ⊂ V , a length t − 1 random walk is
contained in A with probability at most (µ + λ)t. For λ ≪ µ, this bound is close to µt -
the probability of the event with respect to t independent samples. The expander hitting
property corresponds to a random walk “fooling” the AND function, that is, for every λ-
spectral expander and every labelling val as above, the AND function cannot distinguish
with good probability labels obtained by t independent samples from labels obtained by
taking a length t − 1 random walk. The fundamental expander Chernoff bound states that
the number of vertices in A visited by a random walk is highly concentrated around its
measure |A|/|V |. The expander Chernoff bound corresponds to fooling functions indicating
whether the normalized Hamming weight of the input is concentrated around some number
µ. Perhaps surprisingly, it was shown that even the highly sensitive PARITY function is
fooled by a random walk on expanders (this was noted independently by Alon in 1993 for
arbitrarily long walks, Wigderson and Rozenman in 2004 for length 1 walks, and [33] where
the result appears).

Sometimes a random walk is not a good replacement to independent samples. To see
this, suppose G is a λ-spectral expander for some constant λ, that has a cut A ⊂ V with
|A| = |V |

2 and |E(A, A)| ⩾ µ|A| for µ ⩾ 1
2 + Ω̃(λ). Such graphs exist (see [15, Section 7]). If

one samples t independent vertices (v1, . . . , vt) from the graph, we expect (vi, vi+1) to cross
the cut about half the time, and by the Chernoff bound the actual number of cut crossings
is highly concentrated around the mean. In contrast, when we take a random walk on the
graph we expect to cross the cut a µ-fraction of the time, and intuitively the number of cut
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crossings should be concentrated around µ.1 Thus, the simple test function that counts the
number of times we cross the cut and apply a threshold at 1

2 + τ for some τ = Θ̃(λ) should
distinguish with probability close to 1 between a random walk and independent samples.

This brings to the forefront a natural question that was recently raised by [11] (see also
the work of Guruswami and Kumar [15] who considered a related question).

What test functions does a random walk on an expander fool?

Formally, we compare two distributions on the set {±1}t. The first “ideal” distribution
is obtained by sampling independently and uniformly at random t vertices v1, . . . , vt and
returning (val(v1), . . . , val(vt)). If we let µ = E[val(V )], the latter induces the distribution Uµ

t

in which the t bits are independent and each has mean µ. The second distribution, denoted
by RWG,val, is obtained by taking a length t − 1 random walk on the graph, namely, sample
v1 uniformly at random from V , and then for i = 2, 3, . . . , t, sample vi uniformly at random
from the set of neighbors of vi−1, and return (val(v1), . . . , val(vt)). Denote

EG,val(f) = |E f(RWG,val) − E f(Uµ
t )| .

Informally, EG,val(f) measures the distinguishability between these two distributions as
observed by the test function f on the graph G with respect to the labelling val. We wish to
have a discussion that holds uniformly on all λ-spectral expanders (on any number of vertices)
and for every labelling. The bound, however, is expected to depend on the expectation µ of
the labelling. We denote by Eλ,µ(f) the supremum of EG,val(f) over all λ-spectral expanders
G, on any number of vertices, and all labelling functions val : V → {±1} with E[val(V )] = µ.

The work [11] focuses on the case µ = 0. One result shows that

Eλ,0(MAJ) ⩽ O

(
λ2
√

t

)
(1.1)

Their main result states that for each balanced labelling, for every symmetric function
f : {±1}t → {±1},

Eλ,0(f) = O(λ · log3/2(1/λ)). (1.2)

This readily implies, for the specific case of balanced labelling, a central limit theorem with
respect to the total variation distance, that vanishes as λ → 0, thus strengthens previous
results that considered the Kolmogorov distance [20, 23, 21] instead of the total variation
distance.

To summarize the state of knowledge so far:
Every symmetric function is fooled with error probability going down to zero with the
spectral gap λ (see Equation (1.2)), where µ = 0.
The MAJ function is fooled with error probability going down to zero with t even when λ

is fixed (see Equation (1.1)); and,
The PARITY, AND, OR functions are fooled with error probability going down to zero
exponentially fast with t even when λ is fixed.

Accordingly, let us say an error function vanishes with λ, if the error function is vanishing as
λ → 0. Similarly, we say an error function vanishes with t, if for some fixed λ ⩾ 0, it is going
down to zero together with t.

1 To show such a concentration one needs to invoke a Chernoff bound for a walk on the corresponding
directed line graph.
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[11] further considers non-symmetric functions. In particular, they analyze test functions
that are computable by AC0 circuits and prove that if f is computable by a size-s depth-d
circuit then

Eλ,0(f) = O(
√

λ · (log s)2(d−1)). (1.3)

Thus, for balanced labelling, every test function in AC0 cannot distinguish t independent
labels from those obtained by a random walk on a λ-spectral expander provided λ is taken
sufficiently small. This result can be thought of as an analog of Braverman’s celebrated
result [8] (see also [34]) that studies the pseudorandomness of k-wise independent distributions
with respect to AC0 test functions. However, for it to be meaningful, the spectral gap λ

should be small.

1.1 Our contribution
The work of [11] leaves several open problems. First, and foremost, while [11] show the error
function of any symmetric function vanishes with λ, it leaves open the possibility that a
better convegence exists and, perhaps, the error function of any symmetric function vanishes
with t, i.e., for some fixed λ, the error function goes down to zero together with the walk
length t. Indeed, this is the case with the AND, OR and PARITY functions, where the
error vanishes exponentially fast with t, and the MAJ function where the error goes down
polynomially in t (see Equation (1.1)). Similarly, one may ask whether the error of AC0

functions decays faster than Equation (1.3) and allows for larger spectral gaps λ then dictated
by the above bound.

Our first result is that there exists a symmetric function for which the error function does
not vanish with t:

▶ Theorem 1. There exists a family of symmetric functions (ft)t∈N where ft : {±1}t → {±1}
such that for every λ there is a λ-spectral expander G = (V, E), and a labelling val : V → {±1}
with E[val(V )] = 0, such that for all t, EG,val(ft) = Ω(λ).

To explain how we obtain such a lower bound on a function f , we first review how [11]
obtained their upper bound. The key idea in [11] is to expand the test function f under
consideration in the Fourier basis. The question of fooling general test functions then
reduces to the study of test functions that are Fourier characters. Now, let G denote the
adjacency matrix of the graph (i.e, M = 1

d G). Also, for a labelling ℓ : V → {±1} let
us denote by P the diagonal matrix with ℓ(i) in the i’th element on the diagonal. One
can check that for the parity function χ[t] : {±1}t → {±1}, χ[t](x) =

∏t
i=1 xi, we get

E[χ[t](RWG,val)] = 1T
(∏t

i=1 PG
)

1,, where 1 = ( 1√
n

, . . . , 1√
n

).
In general,

E[χS(RWG,val)] =1T

(
t∏

i=1
P δS(i)G

)
1, (1.4)

where δS(i) is 1 if i ∈ S an 0 otherwise. In [11] it is shown how to upper bound this expression
for any λ-expander G and µ-biased function val.

For the proof of Theorem 1 we choose a λ-expander G and a labelling function val such
that we can exactly express Equation (1.4) in terms of λ, S. To do so, we first choose G to
be a Cayley graph over an Abelian group, and we use the fact that the eigenvectors of such
a graph correspond to the characteristic functions of the underlying group, regardless of
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the set of generators used. One disadvantage in choosing a Cayley graph over an Abelian
group is that it cannot give constant degree exapnders, though this is not a concern to us
because with logarithmic degree we can have vanishing second eigenvalue. Next, we choose
the underlying group to be Zn

2 . This guarantees that the characteristic functions of Zn
2 , and

therefore also all the entries in all eigenvectors, are Boolean, i.e., either 1 or −1. Finally,
we choose the labelling function val to correspond to the entries of the eigenvalue with the
second largest eigenvalue.

The above choices guarantee that P1 = v2 and Pv2 = 1 (because P 2 = I). Also G1 = 1
and Gv2 = λv2. It follows that no matter what S is,

(∏t
i=1 P δS(i)G

)
1 belongs to the two

dimensional subspace Span (1, v2) and, furthermore, has a closed expression as a function of
t, λ and S.

We finally choose a function f for which we can estimate the expression we get. We
choose f to have high mass on its second Fourier level. It turns out that we can take f to be,
e.g., the threshold function that returns one if the number of ones exceeds the mean by one
standard deviation, and this function has error function that is of the order λ, and, therefore,
in particular, vanishes with λ but not with t. It is interesting to note that, in contrast, the
MAJ function, that has threshold at the mean, vanishes with t.

Next, using the same graph and labelling we also prove that constant spectral expansion
does not suffice to fool AC0 circuits. In fact, the bound obtained by [11] is tight up to a
polynomial. Let AC(d) denote the class of all languages with polynomial size boolean circuit
of depth at most d. Then:

▶ Theorem 2. There exists a constant ε > 0 such that the following holds. For every integer
d ⩾ 3 there exist td, cd ∈ N, and a family of functions (ht)td⩽t∈N ⊂ AC(d) such that the
following holds. For every λ ⩾ cd

logd−2 t
there is a λ-spectral expander G = (V, E) and a

labelling val : V → {±1} with E[val(V )] = 0 such that EG,val(ht) ⩾ ε.

The choice of function f here is more complicated. The key idea is that two adjacent
bits obtained by such a random walk are λ correlated. Thus, evaluating a function f on
the parity of consecutive bits obtained by a random walk is the same as applying the noise
operator Tλ(f) (see Claim 17 for an exact statement). Having this key fact, we construct
small depth functions that are highly sensitive to small noise. We first start with the Tribes
function composed with XOR on two adjacent bits. This gives a function in AC(3) with
large distinguishability. We then give a recursive construction of a family of functions
hd ∈ AC(d + 1) for every d, where in each step we increase the depth by one and the noise
sensitivity of hd by a logarithmic factor. This gives the desired dependence of EG,val(hd) on d.

Finally, we also tighten and simplify the upper bounds given in [11]. We prove:

▶ Theorem 3. For every symmetric function f : {±1}t → {±1}, all µ ∈ (−1, 1) and
0 < λ < 1−|µ|

128e it holds that

Eλ,µ(f) ⩽ 124√
1 − |µ|

· λ.

Theorem 3 improves upon the corresponding theorem in [11] in two ways:

1. First, the results in [11] are obtained only for balanced test functions f . In contrast,
Theorem 3 holds for every test function f with arbitrary bias µ.

2. Second, the bound stated in Theorem 3 improves upon the bound in Equation (1.2) by
removing the log3/2(1/λ) factor.
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The extension of the results of [11] to arbitrary bias µ is obtained by modifying the
Fourier basis we work with. For a given bias µ we choose a basis that consists of

∏
i∈S

xi−µ√
1−µ2

for all S ⊆ [t]. The improvement of the poly-logarithmic factor is achieved by using a more
direct Fourier analysis argument. The proof strategy of [11] is to bound the error of weight
indicator functions, and use it to handle weights around the mean. Then the argument
invokes the expander Chernoff bound for bounding the remaining weights. Our approach
does not go through analyzing weight indicator functions nor it uses the expander Chernoff
bound. Instead, we use a very simple bound on the Fourier mass of symmetric functions,
which gives a simpler and better analysis.

1.2 Open problems

We conclude the introduction with several open problems that follow from our work.

1. Can one combine the distribution obtained by a random walk on an expander with
another pseudorandom distribution to obtain stronger results for functions in AC0. For
example, does permuting the values of the random walk with a pairwise independent
permutation yields a distribution that better fools AC0?

2. As explained before, our lower bounds are obtained for a graph G that is a Cayley graph
over an Abelian group. It is well-known that such a Cayley graph with constant expansion
gap, has degree that depends on the number of vertices. Thus, a natural question is
whether we can give similar lower bounds for constant degree graphs.

3. Continuing this line of thought, it is still possible that there is a family of graphs that
fools all symmetric functions with error going down to zero with t. I.e., that while for
some graphs (like Cayley graphs over Zn

2 ) there are bad labelling functions, for some
other expander graphs, no such bad labellings exist. Similarly, it is possible that for some
specific expanders better bounds exist for test functions in AC0. Finding such graphs is
a compelling goal that might require studying additional properties of graphs beyond
expansion.

4. Finally, there is still a polynomial gap between the value of λ that fools functions in AC0

and the corresponding lower bound we obtain. Any progress towards closing this gap will
be interesting.

1.3 Paper organization

In Section 2 we give some background, mainly on Fourier Analysis. In Section 3 we recall
the basic framework of [11], except that we do it for arbitrary bias µ rather than just bias
µ = 0. In Section 4 we choose the graph and labelling function that we use for the lower
bounds, and for which we can compute exactly the error induced by characters. In Section 5
we prove Theorem 1 and show that threshold function at one standard deviation away from
the mean has error that goes down to zero with λ but not with t. In Section 6 we prove
a special case of Theorem 2 for the case of d = 3. The full proof of Theorem 2 appears
in the full version of the paper. Then we turn to give a better upper bound on the error
function and in show a better and tight upper bound with a simpler proof. Finally we show
the threshold function about the mean (if µ = 0 it is MAJ) and weight indicator functions
do vanish with t. The last two results appear in the full version of the paper.
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2 Preliminaries

We let [n] = {1, . . . , n}, 1 ∈ Rn denote the all 1s vector, i.e., 1 = (1, . . . , 1)T ∈ Rn. We
let 1 ∈ Rn denote the normalized vector of 1, i.e 1 = 1√

n
· 1, we also use J := 11T. When

we write ∥ · ∥ we always refer to the L2-norm. Unless stated otherwise, log x = log2 x.
Throughout the paper, we make use of the following well known inequalities about binomial
coefficients. Let a ⩾ b ⩾ 1 be integers. Then, ( a

b )b ⩽
(

a
b

)
⩽ ( ea

b )b.

2.1 Fourier analysis
Consider the space of functions f : {±1}t → R, along with the inner product

⟨f, g⟩ = 2−t
∑

x∈{±1}t

f(x)g(x).

It is a well-known fact that the set {χS(x) | S ⊆ [t]}, where χS(x) =
∏

i∈S

xi, forms an

orthonormal basis with respect to this inner product, which is called the Fourier basis. Thus
every function f : {±1}t → R can be uniquely represented as f(x) =

∑
S⊆[t]

f̂(S)χS(x), where

f̂(S) ∈ R.
In this work we consider other bases, with respect to a similar inner product. Let µ ∈

[−1, 1], and denote by Uµ
t the distribution over {±1}t where each bit is chosen independently

with expectation µ. Define ⟨f, g⟩µ = Ex∼Uµ
t

[f(x)g(x)]. Denote by σ =
√

1 − µ2, and let
χµ

S(x) =
∏

i∈S
xi−µ

σ . It is easy to see that the set {χµ
S(x) | S ⊆ [t]}, forms an orthonormal

basis with respect to this new inner product, which is called the µ-biased Fourier basis. To
see this, note that, by design, for S ̸= ∅, E[χµ

S ] = 0 and E[(χµ
S)2] = 1. Similarly to the

standard Fourier basis, every function f : {±1}t → R can be uniquely represented as

f(x) =
∑

S⊆[t]

f̂µ(S)χµ
S(x),

where f̂µ(S) ∈ R.
We say that a function f : {±1}t → R is symmetric if for every permutation σ ∈ St,

f(x1, . . . , xt) = f(xσ(1), . . . , xσ(t)). It is not hard to show that if f is symmetric, then for
every S1, S2 ⊆ [t], with |S1| = |S2|, f̂µ(S1) = f̂µ(S2). This allows us to use the following
definition for symmetric functions: f̂µ(k) =

∣∣∣f̂µ([k])
∣∣∣, which is the absolute value of the

Fourier coefficients of any weight k character. For more details on biased Fourier analysis see
Chapter 8 of [27].

3 The basic framework extended to arbitrary balanced tests

[11] reduced the analysis of the error function of a balanced test function f to the analysis of
the error function of characters. In this section we restate this framework, but do it in a
more general way that applies to any test function f , no matter how balanced it is.

Let G = (V, E) be a regular λ-spectral expander, and let val : V → {±1} be a labelling
of the vertices of G with E[val(V )] = µ. Let t ⩾ 1 be an integer. We want to compare two
distributions on {±1}t:

The distribution obtained by sampling t vertices v1, . . . , vt uniformly and independently at
random, and outputting the ordered tuple (val(v1), . . . , val(vt)). Note that this is the same
distribution as sampling a sequence of t elements in {±1} independently from a µ-biased
distribution, that is a distribution with expectation µ. We denote this distribution by Uµ

t .
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43:8 Expander Random Walks: The General Case and Limitations

RWG,val is the distribution obtained by sampling a random length t − 1 path v1, . . . , vt

in G and outputting the ordered tuple (val(v1), . . . , val(vt)). Equivalently, sample v1
uniformly at random from V . Then, for i = 2, 3, . . . , t, sample vi uniformly at random
from the neighbours of vi−1.

Let f : {±1}t → {±1} be a test function. Expand f in the µ-biased Fourier basis,

f(x) =
∑

S⊆[t]

f̂µ(S)χµ
S(x).

▶ Lemma 4. Let G = (V, E) be a regular λ-spectral expander, and let val : V → {±1} be a
labelling of the vertices of G with E[val(V )] = µ. Then, for every function f : {±1}t → R,

EG,val(f) ⩽
∑
S⊆T
S ̸=∅

|f̂µ(S)|EG,val(χµ
S).

Proof. Since E[val] = µ, for S ̸= ∅, E[χµ
S(Uµ

t )] = 0 and thus E[f(Uµ
t )] = f̂µ(∅). Hence,

EG,val(f) = |E f(RWG,val) − E f(Uµ
t )| =

∣∣∣ ∑
S⊆T
S ̸=∅

f̂µ(S) E[χµ
S(RWG,val)]

∣∣∣.
For S ̸= ∅, EG,val(χµ

S) = | E[χµ
S(RWG,val)]|. The proof follows by the triangle inequality. ◀

Lemma 4 motivates us to consider parity test functions which we do next. We start
by introducing some notation. For an integer k ⩾ 2, we define the family Fk of subsets of
[k − 1] that, informally, consists of all subsets for which at least one of every two consecutive
elements participate in the set. We also require the “end points” 1, k − 1 to participate in
the set. Formally, we define

Fk = {I ⊆ [k − 1] | {1, k − 1} ⊆ I and ∀j ∈ [k − 2] {j, j + 1} ∩ I ̸= ∅} . (3.1)

So, for example, F6 consists of the elements {1, 3, 5}, {1, 2, 4, 5} as well as of all subsets of
[5] that have as a subset any one of these two elements, namely, {1, 2, 3, 5}, {1, 3, 4, 5} and
{1, 2, 3, 4, 5}. We extend the definition in the natural way to k = 0, 1 by setting F0 = F1 = ∅.

▶ Definition 5. For integers t ⩾ 1, 2 ⩽ k ⩽ t and j ∈ [k − 2] define the map

∆j :
(

[t]
k

)
→ N

as follows. Let S ⊆ [t] of size k ⩾ 2 and denote S = {s1, . . . , sk} where s1 < · · · < sk. For
i ∈ [k − 1] write δi = si+1 − si. Define

∆j(S) =min(δj , δj+1).

▶ Definition 6. For an integer t ⩾ 1 define the map ∆ :
( [t]
⩾2
)

→ N as follows. Let S ⊆ [t] of
size k ⩾ 2. For k = 2 we define ∆(S) = ∆1(S), and for k ⩾ 3,

∆(S) =
k−2∑
i=1

∆i(S). (3.2)

We prove:
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▶ Proposition 7. Let G = (V, E) be a regular λ-spectral expander and val : V → {±1} a
labelling of the vertices of G with E[val(V )] = µ. Then, for every 1 ⩽ k ⩽ t and S ⊆ [t] of
size k,

EG,val(χµ
S) ⩽

(
1 + |µ|
1 − |µ|

) k−1
2

·
∑

I∈Fk

λ

∑
j∈I

∆j(S)
⩽

(
1 + |µ|
1 − |µ|

) k−1
2

2k · λ∆(S)/2.

We remark that for sets of size |S| = 1 the sum is taken over the empty index set F1 and so
equals 0. We also note that when |µ| = 1 the error is trivially zero, while our bound tends to
infinity.

Proof. Consider any non-empty subset S ⊆ [t] of size |S| = k. As E[χS(Uµ
t )] = 0 we have

that

EG,val(χµ
S) = |E[χµ

S(RWG,val)]| .

We wish to express the right hand side algebraically. Let n = |V | and identify V with [n] in
an arbitrary way. Let P be the n × n diagonal matrix with

Pv,v = val(v) − µ√
1 − µ2

for every v ∈ [n]. We slightly abuse notation and denote the random walk matrix (that is,
the normalized adjacency matrix) of G also by G. Define δS(i) = 1 if i ∈ S and δS(i) = 0
otherwise and observe that

E[χµ
S(RWG,val)] = 1T

(
t∏

i=1
P δS(i)G

)
1,

where, recall, 1 is the all one vector normalized by 1√
n

. Indeed, informally, at the i’th step
we take a random step using G and then, depending on i being an element of I or not, we
multiply by P or by I, respectively. Thus, we can write

E[χµ
S(RWG,val)] = 1T Gt−sk

(
k−1∏
i=1

PG∆i

)
PGs11 = 1T

(
k−1∏
i=1

PG∆i

)
P1, (3.3)

where we have used the regularity of G, namely, G1 = 1.
Next, we use the spectral decomposition of G. As G is a λ-spectral expander we know

that G = J + λE where ∥ E ∥ ⩽ 1. Similarly, As Gℓ is a λℓ-spectral expander we have that
Gℓ = J + λℓEℓ for some operator Eℓ with bounded norm ∥ Eℓ ∥ ⩽ 1. Thus,

k−1∏
i=1

PG∆i =
∑

I⊆[k−1]

k−1∏
i=1

PBi(I), (3.4)

where

Bi(I) =
{

λ∆iE∆i
i ∈ I;

J otherwise.

For I ⊆ [k − 1] let

eI = 1T

(
k−1∏
i=1

PBi(I)
)

P1.
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Equations (3.3) and (3.4) imply that

E[χS(RWG,val)] =
∑

I⊆[k−1]

eI . (3.5)

Not all subsets I ⊆ [k − 1] contribute non-zero values eI to the sum. Indeed, if k − 1 ̸∈ I

then Bk−1(I) = J and so

eI = 1T

(
k−2∏
i=1

PBi(I)
)

(PJ)P1 = 1T

(
k−2∏
i=1

PBi(I)
)

(P11T )P1

= 1T

(
k−2∏
i=1

PBi(I)
)

P1(1T P1) = 0,

because

1T P1 = 1√
1 − µ2

·
∑
i∈[n]

val(i) − µ

n
= E[val(V )] − µ√

1 − µ2
= 0.

Similarly eI = 0 for I not containing 1. Moreover, if j, j + 1 are both not contained in I for
some j ∈ [k − 2] then

eI = 1T

(
j−1∏
i=1

PBi(I)
)

(PBj(I))(PBj+1(I))

 k−2∏
i=j+2

PBi(I)

P1

= 1T

(
j−1∏
i=1

PBi(I)
)

(PJ)(PJ)

 k−2∏
i=j+2

PBi(I)

P1 = 0,

Because

(PJ)(PJ) = (P11T )(P11T ) = P1(1T P1)1T = 0.

Thus, any subset I ⊆ [k − 1] that may contribute to the sum in Equation (3.5) is contained
in Fk as defined in Equation (3.1).

Next, we look at I ∈ Fk. We have that

eI = 1T

(
k−1∏
i=1

PBi(I)
)

P1 ⩽
k−1∏
i=1

∥PBi(I)∥ ⩽ ∥P∥k−1
∏
i∈I

∥Bi(I)∥. (3.6)

Recall that for every i ∈ I, Bi(I) = λ∆iE∆i
and that ∥E∆i

∥ ⩽ 1. Thus,
∏

i∈I ∥Bi(I)∥ ⩽∏
i∈I λ∆i . Also, Let M be the n × n diagonal matrix defined by Mv,v = val(v) for all v ∈ [n].

Note that P = 1√
1−µ2

(M − µI). As ∥M∥ = 1, using the triangle inequality we get

∥P∥ ⩽
∥M∥ + ∥µI∥√

1 − µ2
⩽

1 + |µ|√
1 − µ2

=

√
1 + |µ|
1 − |µ|

. (3.7)

Equation (3.6) and Equation (3.7) together imply that eI ⩽
(

1+|µ|
1−|µ|

) k−1
2 ∏

i∈I λ∆i . This
proves the first inequality in the proposition.

To prove the second inequality consider I ∈ Fk, and notice that

2
∑
i∈I

∆i ⩾
k−2∑
i=1

δi∆i + δi+1∆i+1 ⩾
k−2∑
i=1

min(∆i, ∆i+1),

because for every i ∈ [k − 2], at least one of i, i + 1 is in I. To complete the proof of the
second inequality notice also that |Fk| ⩽ 2k−1. ◀
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4 Choosing the graph

In this section we choose an expander graph for which we obtain a precise analytic formula
for the expectation of characters under the input distribution given by the random walk.

▷ Claim 8. Let G = ([n], E) be a regular graph with second largest eigenvalue λ2 and
corresponding eigenvector v2. Further assume all coordinates in v2 have ±1 values. Define
val2 : [n] → {±1} by val2(i) = v2(i) . Let S ⊆ [n], |S| = k. Let P be the diagonal matrix
corresponding to val2, that is, Pi,i = val2(i) = v2(i). Then,(

k−1∏
i=1

PG∆i

)
P1 =

λ
∑(k−2)/2

i=1
∆2i+1

1 k ∈ Neven,

λ
∑(k−1)/2

i=1
∆2i+1v2 k ∈ Nodd.

Proof. We will prove the claim by induction. For the base case k = 1 it holds that∏k−1
i=1 PG∆i = I, and the statement follows as IP1 = v2 = λ0v2. For the induction

step, note that(
k∏

i=1
PG∆i

)
P1 = PG∆k

(
k−1∏
i=1

PG∆i

)
P1.

If k ∈ Neven than k − 1 ∈ Nodd and, using the induction hypothesis we get that

PG∆k

(
k−1∏
i=1

PG∆i

)
P1 = PG∆k λ

∑(k−2)/2
i=1

∆2i+1v2 = λ
∑k/2

i=1
∆2i+1

1,

which is what we wanted to prove. The proof in the case that k ∈ Nodd is similar. ◁

▶ Definition 9. For S ⊆ [t] denote ∆odd(S) =
∑⌊(|S|−1)/2⌋

i=1 ∆2i+1(S).

▶ Corollary 10. Let G = ([n], E) and val2 : [n] → {±1} be as above. Then,

E[χS(RWG,val2)] =
{

λ∆odd(S) |S| ∈ Neven,

0 |S| ∈ Nodd.

Proof. Note that Pv2 = 1 and P1 = v2. As before, it holds that

E[χS(RWG,val2)] = 1T

(
k−1∏
i=1

PG∆i

)
P1 = 1

n
1

T

(
k−1∏
i=1

PG∆i

)
P1.

Using Claim 8, we conclude that,

E[χS(RWG,val2)] =
{

λ∆odd(S) · 1
n1

T
1 k ∈ Neven,

λ
∑k−1/2

i=1
∆2i+1 · 1

n1
Tv2 k ∈ Nodd.

The fact that G is regular implies that 1Tv2 = 0, which finishes the case that k is odd; the
case that k is even is handled similarly by noting that 1T

1 = n. ◀

We now give an example to such a graph G. Cayley graphs over an Abelian group
commute and share an orthonormal basis of eigenvectors, which is known to be the set of all
characters of the group. If the group is Zn

2 , the eigenvectors have entries that are 2nd roots
of unity, i.e., have ±1 entries as desired. The eigenvalues have a direct correspondence to the
set of generators of the Cayley graph. Building on that, [4] proved that for every 0 < λ < 1
of the form 1

m for m ∈ N and m ⩽ n ∈ N, there is a Cayley graph on the n dimensional
boolean cube, with λ2 = λ. The degree of this graph depends both on n and λ.

From now on we let G be a regular expander with second largest eigenvalue λ and
corresponding eigenvector with ±1 entries, and we let val2 reflect that eigenvector.
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5 A lower bound for symmetric functions

In this section we prove the following theorem.

▶ Theorem 11. Let 0 < c0 ⩽ 1, and let G, val2 be as in the previous section, for 0 < λ <
c2

0
12800·e . Let f : {±1}t → {±1} be a symmetric function with

∣∣∣f̂(2)
∣∣∣ ⩾ c0√

(t
2)

. Then,

EG,val2(f) ⩾ 0.001c0λ.

The idea behind the proof is to show that when choosing G, val2 as in Section 4, the
upper bound given by [11] is tight (up to the redundant poly logarithmic factor). We will
use the following claim from [11].

▶ Lemma 12 ([11], Lemma 4.4). Denote

βk =
∑

S⊆[t]
|S|=k

E[χS(RWG,val)]. Then, βk ⩽ 2k

(
t − 1
⌊ k

2 ⌋

)(
λ

1 − λ

)⌈ k
2 ⌉

. (5.1)

Using these notations we are now ready to prove Theorem 11.

Proof of Theorem 11. Denote by B2 = {{i, i + 1} | i ∈ [t − 1]}, note that |B2| = t − 1 and
that for every S ∈ B2 it holds that ∆odd(S) = 1. Recall that EG,val2(χS) = 0 if |S| = 1,
therefore,

EG,val2(f) =

∣∣∣∣∣∣
∑

S⊆[t],|S|⩾2

f̂(|S|) E[χS(RWG,val)]

∣∣∣∣∣∣ (5.2)

⩾
∣∣∣f̂(2)

∣∣∣
∣∣∣∣∣∣

∑
S⊆[t],|S|=2

E[χS(RWG,val)]

∣∣∣∣∣∣−

∣∣∣∣∣∣
∑

S⊆[t],|S|>2

f̂(|S|)EG,val2(χS)

∣∣∣∣∣∣ . (5.3)

However, by Corollary 10,

∣∣∣f̂(2)
∣∣∣
∣∣∣∣∣∣

∑
S⊆[t],|S|=2

E[χS(RWG,val)]

∣∣∣∣∣∣ ⩾
∣∣∣f̂(2)

∣∣∣ ∑
S∈B2

λ ⩾ c0
√

2
√

t − 1
t

λ ⩾
c0√

2
λ.

Furthermore,∣∣∣∣∣∣
∑

S⊆[t],|S|>2

f̂(S)EG,val2(χS)

∣∣∣∣∣∣ ⩽
∑
k⩾3

∣∣∣f̂(k)
∣∣∣βk ⩽

∑
k⩾3

1√(
t
k

)2k

(
t − 1
⌊ k

2 ⌋

)(
λ

1 − λ

)⌈ k
2 ⌉

,

where in the last inequality we used Lemma 12. The right hand side of the above equation is
bounded above by∑

k⩾3
(16e)k/2λk/2 ⩽ 124λ1.5.

We omit the calculations. Assume that λ ⩽ c2
0

128e·100 . Then Equation (5.2) yields

EG,val2(f) ⩾ c0√
2

λ − 124λ1.5 ⩾ 0.04c0λ. ◀
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In order to prove Theorem 1, we are left with providing a function f that satisfies the
conditions of Theorem 11. Next, we show that the threshold function at one standard
deviation distance from the mean has non-vanishing error in t.

We use the following definitions and claim. For integers t and w ∈ {0, 1, . . . , t} let
1w : {±1}t → {0, 1} be the function indicating whether the weight of the input is w. That
is, 1w(x1, . . . , xt) = 1 if |{i ∈ [t] | xi = 1}| = w and 1w(x1, . . . , xt) = 0 otherwise. We also
define 1>w : {±1}t+1 → {0, 1} be the function indicating whether the weight of the input is
greater w. That is, 1w(x1, . . . , xt) = 1 if

∑
i xi > w and 1w(x1, . . . , xt) = 0 otherwise.

▷ Claim 13. For every S ⊆ [t], it holds that

(̂1w)µ(S) =
̂(1>w)µ(S ∪ {0})√

1 − µ2
.

Proof.

1w(x1, . . . , xt) = 1>w(1, x1, . . . , xt) − 1>w(0, x1, . . . , xt)

=
∑

S⊆{0,...,t}

̂(1>w)µ(S)χµ
S(1, x1, . . . , xt) −

∑
S⊆{0,...,t}

̂(1>w)µ(S)χµ
S(0, x1, . . . , xt)

=
∑

S⊆{0,...,t}

̂(1>w)µ(S)(χµ
S(1, x1, . . . , xt) − χµ

S(0, x1, . . . , xt))

∑
S⊆{0,...,t}

0∈S

̂(1>w)µ(S) 1√
1 − µ2

χµ
S\{0}(x1, . . . , xt),

and the claim follows. ◁

Proof of Theorem 1. Take f = 1>w for w = t−
√

t
2 . We claim that

∣∣∣f̂(2)
∣∣∣ > c0√

(t
2)

, for some

absolute constant c0 > 0 and therefore by Theorem 11, EG,val(ft) ⩾ c · λ for some constant c.
Indeed, by Claim 13 we have f̂(2) = 1̂w(1) for 1w : {±1}t−1 → {0, 1}. To compute 1̂w(1) we
apply [11, Claim 4.9] for w = t−

√
t

2 and get

∣∣∣1̂w(1)
∣∣∣ =

∣∣∣∣∣∣ 1
2t−1

(
t−1
w

)(
t−1

1
) ⌊ 1

2 ⌋∑
ℓ=0

(−1)1−ℓ

(
w

ℓ

)(
t − 2w − 1

1 − 2ℓ

)∣∣∣∣∣∣ = 1
2t−1

(
t−1
w

)
t − 1 (t − 1 − 2w).

Substituting w = t−
√

t
2 , together with the fact that

( t−1
t−

√
t

2

)
⩾ Ω

(
1√
t
2t
)

, concludes the
proof. ◀

6 A lower bound for AC0 tests

In this section we use the noise operator. The following definitions and claims appear in [27].

▶ Definition 14. Let ρ ∈ [−1, 1]. For a fixed x ∈ {±1}t we write y ∼ Nρ(x) to denote the
random string y that is drawn as follows: for each i ∈ [t] independently,

yi =
{

xi with probability 1+ρ
2 ,

−xi with probability 1−ρ
2 .
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▶ Definition 15. Let ρ ∈ [−1, 1]. The noise operator Tρ is the linear operator on functions
{±1}t → R defined by Tρf(x) = Ey∼Nρ(x) f(y). The fact that the operator is linear follows
directly from the linearity of the expectation.

Notice that T1(f) = f whereas T0(f) is the constant function T0(f) = E f . We make use
of the following lemma.

▶ Lemma 16. For every function f : {±1}t → R it holds that: T̂ρf(S) = f̂(S)ρ|S|.

The starting point of this section is to connect the expectation of f under a random walk
and the noise function Tλ(f), we prove this claim in the full version of the paper.

▷ Claim 17. For f : {±1}t → R define f̃ : {±1}2t → R by

f̃(x1, x2, . . . , x2t−1, x2t) = f(x1 · x2, . . . , x2t−1 · x2t).

Then, E[f̃(RWG,val2)] = (Tλf)(1).

Proof. For {s1, . . . , sk} = S ⊆ [t] denote 2S : = {2s1 − 1, 2s1, . . . , 2sk − 1, 2sk} ⊆ [2t]. Note
that ∆odd(2S) = |S|.

f̃(x1, x2, . . . , x2t−1, x2t) = f(x1 · x2, . . . , x2t−1 · x2t)

=
∑

S⊆[t]

f̂(S)χS(x1 · x2, . . . , x2t−1 · x2t)

=
∑

S⊆[t]

f̂(S)χ2S(x1, x2, . . . , x2t−1, x2t).

Therefore,

E[f̃(RWG,val2)] =
∑

S⊆[t]

f̂(S) E[χ2S(RWG,val2)]

=
∑

S⊆[t]

f̂(S)λ|S|

=
∑

S⊆[t]

f̂(S)λ|S|χS(1),

which is equal to Tλ(f)(1) by Lemma 16. For the second equality we used Corollary 10. ◁

6.1 A lower bound for the Tribes function composed with IP
We now construct a function in AC(3), that satisfies Theorem 2. Later on we extend
the construction inductively to obtain the general theorem. The idea behind the depth-3
construction is the following. We look for a function f = f(x1, . . . , xt) ∈ AC(2) such that

| E[f(Ut)] − Tλ(f)(1)| ⩾ λ · log t. (6.1)

We then look at f̃(y1, . . . , y2t) = f(y1 · y2, . . . , y2t−1 · y2t) ∈ AC(3) and note that:
E[f̃(Ut)] = E[f(Ut)] as the product of two uniform ±1 bits is uniform; However,
by Claim 17, E[f̃(RWG,val2)] = Tλ(f)(1).
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Together,

Eλ(f̃) ⩾ EG,val2(f̃) = | E[f̃(Ut)] − E[f̃(RWG,val2)]| = | E[f(Ut)] − Tλ(f)(1)] ⩾ λ · log t,

which in turns implies Theorem 2, for d = 3.
We take f to be the Tribes function. Fix t; we choose parameters r, h such that r ·h ⩽ t by

taking h = log(t) − log log(t)2 and r = ⌊ t
log t ln(2)⌋. Partition [t] into disjoint sets I1, . . . , Ir,

each of size h. We define f : {±1}t → {0, 1} to be the Tribes function on t bits and define g

to be the related function

f(z1, . . . , zt) =
∨

i∈[r]

∧
j∈Ii

zj , g(z1, . . . , zt) =
∧

i∈[r]

∨
j∈Ii

zj .

Here, −1 is interpreted as “true”, 1 is interpreted as “false”. Note that f, g ∈ AC(2).
As before, we choose G to be a Cayley graph on the boolean hypercube with λ2 = λ and

val = val2.

▷ Claim 18. The functions f and g are almost balanced with respect to the uniform
distribution. Quantitatively, E[f ], E[g] ∈

[
1
2 − O

(
log t

t

)
, 1

2 + O
(

log t
t

)]
.

Proof. From De Morgan’s identity we have g(x1, . . . , xt) = 1−f(x1, . . . , xt), so E[g] = 1−E[f ]
and so it is enough to prove the statement for f . To this end write

E[f ] = Pr[f = 1] = 1 −
r∏

i=1
Pr

∧
j∈Ii

zj = 0


= 1 −

r∏
i=1

1 − Pr

∧
j∈Ii

zj = 1

 = 1 −
(

1 − 1
2h

)r

.

Using the fact that 1 − ε = e−ε+O(ε2) we obtain that

1 −
(

1 − 1
2h

)r

= 1 − e−2−hr+O(2−2hr)

= 1 − e− ln 2+O( log t
t ) = 1

2 + Θ
(

log t

t

)
,

as desired. ◁

Denote by µp the product distribution over {±1}t, wherein for each i ∈ [t] we have that
Pr[zi = −1] = p. Abusing notation denote µp(f) = Ex∼µp

[f(x)].

▷ Claim 19. Let p = 1−ε
2 and assume ε ⩾ k

log(t) . Then,

µp(f), µp(g) ⩽ e−k/10.

Proof. First, we analyze µp(f). By definition it is equal to

Pr
µp

[f = 1] = 1 − (1 − ph)r = 1 − (1 − 2−h(1 − ε)h)r

= 1 −

(
1 − 2−h

(
1 − k

log t

)h
)r

⩽ 1 −
(
1 − 2−he−k

)r
.

2 Recall that log t = log2 t
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Using (1 − δ)r ⩾ 1 − rδ, we get that the above expression is bounded by r2−he−k ⩽ e−k.
Next, we upper bound µp(g). By definition, it is equal to

Pr
µp

[g = 1] ⩽ (1 − (1 − p)h)r = (1 − 2−h(1 + ε)h)r =
(

1 − 2−h

(
1 + k

log t

)h
)r

.

Using (1 + δ)r ⩾ δr for δ > 0, we get that this is at most

(1 − 2−hk)r ⩽ e−r2−hk ⩽ e−k/10. ◁

We now prove Theorem 2 for d = 3. We take h(x1, y1, . . . , xt, yt) = f(x1 · y1, . . . , xt · yt).
h ∈ AC(3) because f ∈ AC(2).

On the one hand, by Claim 17, E[h(RWG,val2)] = Tλ(f)(1) = µ 1−λ
2

(f). By Claim 19, and
using λ ⩾ k

log t , we get that E[h(RWG,val2)] < e−k/10.
On the other hand, By Claim 18, E[h] = E[f ] ⩾ 1

2 − O( log t
t ).

Together, h is as desired.
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Abstract
The Alon-Edmonds-Luby distance amplification procedure (FOCS 1995) is an algorithm that
transforms a code with vanishing distance to a code with constant distance. AEL was invoked by
Kopparty, Meir, Ron-Zewi, and Saraf (J. ACM 2017) for obtaining their state-of-the-art LDC, LCC
and LTC. Cohen and Yankovitz (CCC 2021) devised a procedure that can amplify inverse-polynomial
distances, exponentially extending the regime of distances that can be amplified by AEL. However,
the improved procedure only works for LDC and assuming rate 1 ´ 1

poly log n
.

In this work we devise a distance amplification procedure for LCC with inverse-polynomial
distances even for vanishing rate 1

poly log log n
. For LDC, we obtain a more modest improvement and

require rate 1 ´ 1
poly log log n

. Thus, the tables have turned and it is now LCC that can be better
amplified. Our key idea for accomplishing this, deviating from prior work, is to tailor the distance
amplification procedure to the code at hand.

Our second result concerns the relation between linear LDC and LCC. We prove the existence
of linear LDC that are not LCC, qualitatively extending a separation by Kaufman and Viderman
(RANDOM 2010).
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1 Introduction

1.1 Distance amplification
It is a recurrent theme in coding theory that the construction of a code is done in two steps.
In the first step, a code with weak parameters is constructed, and typically it is the distance
of the code that is unsatisfactory. In the second step, one transforms the code obtained in
the first step to a code with the desired parameters, where typically, in the process, the other
parameters deteriorate only slightly. When the distance is the unsatisfactory parameter, the
second step is referred to as a distance amplification step.

Examples that fall into this framework include the breakthrough constructions of near-
optimal small-bias sets by Ta-Shma [19], and the state-of-the-art construction of locally
decodable codes (LDC), locally correctable codes (LCC), and locally testable codes (LTC) by
Kopparty, Meir, Ron-Zewi, and Saraf [17]. A prominent example from the (adjacent) PCP
literature is Dinur’s celebrated proof of the PCP Theorem by gap amplification [8]. It is
interesting to note that in all the above cases the first step is done using algebraic machinery
whereas the second step is based on combinatorial arguments.
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1.2 LDC and LCC

Informally, a linear pq, δq locally decodable code (LDC) is a code, given by an F-linear encoding
function Enc : Fk Ñ Fn, where F is a finite field, that is also equipped with a “local decoder”.
The latter is a randomized algorithm, denoted by Dec, with the following guarantee. Given
an oracle access to z P Fn that is within relative Hamming distance δ from some codeword
Encpxq, and given i P rks, Decz

piq “ xi with high probability. Moreover, Dec makes at most
q queries to z. That is, every message symbol can be decoded, with high probability, by
querying only few symbols of a corrupted codeword. A pq, δq locally correctable code (LCC) is
the variant in which one wishes to decode (or, more precisely, correct) the codeword symbols
rather than the message symbols.

Locally decodable codes were defined by Katz and Trevisan [15] who proved that asymp-
totically good LDC require q “ Ωplog nq queries. Whether or not this bound is tight is a
major open problem. An intensive research effort is devoted to the study and construction
of LDC and LCC. Of particular interest is the study of asymptotically good LDC and
LCC [18, 13, 14, 17, 12, 7] where the goal is to minimize the query complexity.

In their seminal work, Kopparty, Meir, Ron-Zewi and Saraf [17] constructed LDC and
LCC with sub-polynomial query complexity. For the first step, a code with vanishing distance
δ “ 1

polyplog nq
was used [18], having the desired query complexity, namely, q “ 2 rOp

?
log nq.

Then, in the second step the authors invoked a distance amplification procedure due to Alon,
Edmonds and Luby [2, 1], which was originally introduced in the context of linear-time
erasure codes, and observed that it converts an LDC (resp. LCC) with distance δ and
query complexity q to an LDC (resp. LCC) with constant distance and query complexity
qnew “ q ¨ polyp 1

δ q.

1.3 Improved distance amplification for LDC

Motivated by the key role that the distance amplification procedure plays in [17], Cohen
and Yankovitz [7] asked whether much lower distances can be amplified. Indeed, AEL’s
procedure is mostly relevant in the regime δ “ 1

polyplog nq
. In [7], the authors devised an

improved procedure that can amplify distances as low as 1
nα for any constant α ă 1 with

a fairly low cost in query complexity, qnew “ qOplog log nq 1 (and even for α “ 1 ´ op1q at a
small additional cost in query complexity). However, their improved distance amplification
procedure has two drawbacks:
1. Unlike the AEL distance amplification procedure, the improved procedure was only shown

to work for LDC (and it may or may not work for LCC).
2. Second, to amplify the distance, the original LDC must have rate close to one, more

precisely, rate 1 ´ 1
polyplog nq

.

2 Our contribution

We turn to present the two results of this work.

1 polyplog log nq factors in the exponent of the query complexity can be safely ignored given that, at
present, the lowest known query complexity is 2 rΘp

?
log nq. Such an overlook will matter only when (and

if) the query complexity will go below quasi-poly-logarithmic.
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2.1 Tailor-made distance amplification procedure
Our first contribution is a distance amplification procedure for LCC that can amplify distances
as low as those handled by [7] (for LDC). Moreover, our procedure works even for vanishing
rate LCC.

▶ Theorem 1 (Distance amplification for LCC; informal). Let h ě 1 ě α ą 0 be any constants.
There exists a transformation that takes a q-query LCC with distance 1

nα and rate 1
plog log nqh

to an asymptotically good LCC with query complexity

qnew “ qOpplog log nq
2h`2

q.

We chose to state our result in a somewhat informal manner. For the formal statement,
see Corollary 37.

An example usage of Theorem 1 is given by the next corollary. The corollary shows the
implication of a case that an LCC with query complexity meeting the Katz-Trevisan bound
is shown to exist - only with a vanishing rate and distance.

▶ Corollary 2 (Informal). If there exists a q-query LCC for q “ log n, with distance 1?
n

and
rate 1

log log n , then there exists an asymptotically good LCC with query complexity

qnew “ plog nqOpplog log nq
4
q.

We now turn to give further details on the result.

Explicitness

In the statement of Theorem 1 we ignore the issue of explicitness. Indeed, understanding
LDC and LCC is already interesting in the information-theoretic level. Having said that, our
transformation is fairly explicit: It is a zero error randomized transformation that runs in
polynomial-time. More precisely, for every “failure” parameter ε ą 0, our transformation
runs in time polypnq ¨ log 1

ε and produces an LCC with probability at least 1´ ε; otherwise, it
declares failure. We find this aspect to be a minor issue as, recall, LCC are anyhow randomized
in nature. Nonetheless, it will be interesting to obtain a deterministic transformation with
matching parameters.

Codes vs. family of codes

A second issue that we chose to sweep under the rug in the statement of Theorem 1 is
that the transformation operates on the level of family of codes rather than on the level
of individual codes. That is, in order to produce an asymptotically good LCC of a given
block-length n, our transformation requires as input a sufficiently dense family of codes. By
that we mean that the consecutive block-lengths in the family are not too far apart. The
density of the resulted family of codes is the same as that of the original family.

Amplifying lower distances

Like [7], we can even amplify sub-polynomial distances, in particular, distances of the form
1{n1´1{gpnq for an increasing function g, and assuming a certain technical relation between g

and the rate. In particular, for every constant m ě 1 we can handle gpnq “ plog log nqm, and
end up with query complexity

qnew “ qOpplog log nq
2h`2m`2

q.

We note that constructing a code for gpnq “ log n is trivial.

ICALP 2022
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Amplifying the distance of LDC

We also obtain an improvement for LDC by devising a distance amplification procedure
that requires rate 1 ´ 1

polyplog log nq
, modestly improving upon the 1 ´ 1

polyplog nq
rate required

by [7]. The reason that we can do much better for LCC is due to the rate amplification
procedure of [7] that, informally, can amplify rate ρ LCC with q queries to constant rate
LCC with query complexity qnew “ qpolyp 1

ρ q. Such a transformation is not known for LDC.

2.1.1 Proof idea
In this section we give a short and informal account on our proof technique, and start by
contrasting our technique with prior work. Both the AEL distance amplification procedure,
as was used in [17], and the one given by [7] are based on samplers and further involve a
“small” code, that is, a code with logarithmic block-length. The latter improves upon the
former by using unbalanced samplers (rather than balanced ones, or expander graphs as was
used originally [1, 2]) and using a recursive construction. To obtain our result, we deviate
from prior work and tailor the distance amplification procedure to the LCC at hand. That
is, our procedure is “white box” - it produces a new code with improved distance by first
examining the structure of the given code. To tailor the procedure to the LCC at hand, we
do not work directly with the definition of LCC as it lacks sufficient structure to work with.
Instead, we work with a more combinatorial characterization of LCC as was used in [7]. We
turn to elaborate on this.

Let C Ď Fn be a linear pq, δq-LCC. One can prove the following structural result. With
every coordinate i P rns one can associate a set, called a query set, Ai “ tQi

1, . . . , Qi
mu of

m “ δn{q disjoint subsets of rns, each of size at most q, such that the following holds: For
every c P C and t P rms, ci can be deduced from cQi

t
. Assume from here on, for simplicity,

that δ “ 1{
?

n and so m “
?

n{q. Denote Āi “
Ťm

t“1 Qi
t and note that |Āi| ď

?
n.

For our distance amplification procedure, we make use of a special partition π of rns

into
?

n parts P1, . . . , P?
n, each of size

?
n. We say that such a partition is a d-splitter for

C (more precisely, a d-splitter for the query sets A1, . . . , An obtained from C) if for every
s P r

?
ns and i P rns, |Ps X Āi| ď d. We wish to minimize d and thus consider a max load

balls into bins like problem: For every i P rns we place a ball with color i at each of the
coordinates in Āi. Note that a coordinate j P rns may contain many balls of different colors.
Indeed, the average number of balls at coordinate j P rns is

?
n. Our goal is to choose the

partition π in such a way that every part Pt will contain at most d balls of the same color.
It is easy to show that a d-splitter for C exists with d “ Op

log n
log log n q.

We construct a new code C 1 Ď Fn as follows. We take C 1 to be the code C 1 Ď C with
the property that for every part Ps of π, when C 1 is projected to the coordinate set Ps, the
obtained vectors consist of codewords of a code C?

n having block length
?

n, which is a
q1-query LCC. That is to say, we require that for every c P C 1 and s P r

?
ns, cPs

P C?
n.

Observe that C 1 can be constructed by adjoining to the parity checks of C, the parity checks
of C?

n when restricted to each block in π.
We show that if C?

n is a smooth LCC, which means that it queries each coordinate with
roughly the same probability, then so is C 1. Moreover, C 1 has query complexity qq1. Thus,
C can be transformed into a smooth LCC of length n given that a smooth LCC of length
?

n is at hand. This calls for a recursive construction which results with a smooth LCC with
query complexity qOplog log nq. After obtaining a smooth code, the final step is to invoke the
AEL distance amplification to end up with a good LCC. This final step has a minor effect on
the query complexity.
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The above recursive construction must start with LCC of rate 1 ´ 1
polyplog log nq

. This is
due to the rate deterioration throughout the log log n recursive calls. For amplifying rate

1
polyplog log nq

LCC, as stated in Theorem 1, we invoke the rate amplification procedure of [7]
before running the recursive construction described above. This has some effect on the
density of the LCC family that the recursion has access to which requires some care.

2.2 Refined separation between LDC and LCC
Understanding the relation between LDC and LCC is fundamental. Currently the only
regime in which the state of affairs is better understood is the 2-query regime [3, 4, 5]. In the
constant-query regime for q ě 3, q-LDC with sub-exponential length are known [20, 11, 9]
whereas it is not known if this can be matched for q-LCC. Recall that in the constant-rate
regime, the state of the art result of [17] achieves sub-polynomial query complexity and holds
for LDC and LCC alike.

In the general case, clearly, a systematic LCC is an LDC. As every linear code can be
made systematic (by applying Gaussian elimination to its generating matrix), a linear LCC
induces a linear LDC with the same parameters. Thus, informally, LCC are stronger than
LDC, at least for linear codes.

Are LDC and LCC “equivalent”?

As for the converse, Kaufman and Viderman [16] observed that an LDC is not necessarily an
LCC. Their proof starts with an LDC. If it is not an LCC to begin with, we are done. If
it is an LCC, the proof goes on by transforming it to a new code by appending to it one
additional entry that does not involve low-weight constraints (namely, every vector in the
dual code that does not vanish on the new entry is of large weight). In this way, one obtains
an LDC with an entry that cannot be corrected with few queries. Such an entry can be
shown to exist by a counting argument. This argument can be extended to produce many
new bits that cannot be corrected.

While, formally, the argument above establishes the existence of LDC that are not LCC,
it has a drawback which makes it somewhat less appealing. In the resulted code, the adjoined
bits that cannot be corrected are not needed for decoding the original bits. This means that
if one is given a code that is not an LCC because of the above transformation, with the
task of taking such a code and “convert” it to an LCC, this could be done easily: simply
by removing these coordinates, and this clearly would not harm the code’s dimension. This
raises the question: Can any linear LDC be so “easily” converted to an LCC of similar
dimension and query complexity?

The thought that the answer to this question may turn out to be in the affirmative is not
far fetched in the case of linear codes. Indeed, we know that the locality features of linear
codes “come from” linear relations between different bits of the codeword and of the message.
For example, if a linear code Enc : Fk Ñ Fn is a q-query LDC, and in particular the i-th bit of
each message m can be deduced from a subset Q Ď rns that consists of at most q coordinates
of c “ Encpmq, then there exists a linear map fi,Q which satisfies mi “ fi,QpcQq for any m.
Likewise, if mi can as well be deduced from another subset Q1 Ď rns, |Q1| ď q (as is expected
due to the distance guarantee), then there is a linear map fi,Q1 satisfying mi “ fi,Q1pcQ1q for
every m. It follows that in such a case, for every codeword c, fi,QpcQq “ fi,Q1pcQ1q. Since
fi,Q and fi,Q1 are linear maps (that, we may assume, depend on all their parameters) this
means that for every j P Q△Q1, there exists a linear map gj satisfying cj “ gjpcQj q for every
codeword c, where Qj “ pQ Y Q1qztju.

ICALP 2022
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Therefore, by the mere fact that j P rns is sometimes used in the local decoding process
of i P rks, it is implied that it is possible to “correct” the j-th coordinate by reading only a
few locations of the codeword (at most 2q ´ 1). Thus, the question of whether local decoding
implies local correction is in place, in the case of linear codes, and especially so in the setting
where k is close to n.

In light of this, the fact that in the separating result of [16] between linear LDC and LCC,
the coordinates which are shown to be uncorrectable are not used by the local decoding
process, calls for the question of whether there exists a linear LDC with uncorrectable
coordinates that are crucial for the decoding process.

Our result

The second contribution of this work is a proof for the existence of an LDC that is not an
LCC in the following stronger sense: It contains entries that cannot be corrected which
are crucial for the local decoder. This raises the question of what we mean by coordinates
that are “crucial”. The mere fact that it is possible for a set of coordinates to be queried
by the local decoding process should not qualify them as such, as what allows for a code
to be locally decodable or locally correctable is that there are many options to decode or
correct each symbol. Thus, a more suitable interpretation for a “crucial” set of coordinates
J Ď rns is the following: If every coordinate j P J is “zeroed out” from the code (i.e., for
every codeword c we override cj with zero) then the transformed code is no longer locally
decodable. With this we are ready to present our separation.

▶ Theorem 3 (Separation of LDC and LCC; Informal). Let C : Fk Ñ Fn for |F| ą 2 and
k “ Θpnq be a linear q-query LDC. Then, there exists a linear q2-query LDC pC : Fk2

Ñ Fn2

with the following property. There exists a subset of coordinates J Ď rn2s in which every
coordinate cannot be locally corrected with query complexity

?
n and correction radius 1{

?
n.

Moreover, if every coordinate j P J is zeroed out from the code, then the relative distance of
the obtained code is rOp1{

?
nq (and so it is certainly not an LDC).

For the formal, more general, statement, see Theorem 46. Note that our result does not
cover the binary field and it is an interesting question whether it can be extended to include
that case.

Proof idea

The underlying idea of the proof of Theorem 3 is an operation on two codes to which we call
weighted tensoring. The weighted tensoring of codes is similar to the standard tensoring of
codes. In the case of standard tensoring, the encoding of the tensor of two codes is done by
taking a matrix as input and applying the first code to each column and then applying the
second code to each row in the resulted matrix. In the encoding of a weighted tesnor, before
the second step, each entry of the matrix is multiplied by a non-zero field element, or weight.

We consider the case of weighted tensoring which is done with random weights. We show
that while the code resulted from this is an LDC (assuming that the two input codes were so),
with high probability there is a set of coordinates in the code that cannot be locally corrected,
while being crucial for the decoding. The analysis showing that the set of coordinates cannot
be locally corrected is done by considering the affect of the weights on the dual code. A
probabilistic argument is then used to show that the argued codes exist.
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Discussion

We end this section with a short discussion to clarify a potentially confusing point. While
LCC are, in a sense, more powerful than LDC (indeed, our second contribution, Theorem 3,
attempts to formalize that better), our first result, given by Theorem 1, transforms a vanishing
rate LCC with polynomially-small distance to an asymptotically good LCC–a result that is
not known for LDC. So, how can it be that we can do this for LCC and not for the weaker
LDC?

Of course, this should cause no confusion as the latter is a transformation that works for
LCC and not LDC, not a construction nor it is even a proof of existence. Put differently,
although the transformation generates the stronger object, the transformation is also given
it as its input.

3 Preliminaries

3.1 Notations and conventions
Unless stated otherwise, all logarithms are taken to the base 2. For n P N, we use rns to
denote the set t1, . . . , nu. For ease of readability, we sometimes avoid the use of floor and
ceiling. This does not affect the stated results. We use F to denote a field, and any referenced
field is assumed to be finite and of a constant size. When n and F are clear from context, we
use ei P Fn to denote the i-th vector of the standard basis. For q P N, we use Hq to denote
the q-ary entropy function, and H to denote the binary entropy function. For a vector v P Fn,
we denote by |v| the hamming weight of v, which is the number of its non-zero coordinates
|v| “ |tj P rns | vj ‰ 0u|, and the support of v is supppvq “ tj P rns | vj ‰ 0u. For two vectors
u, v P Fn, we denote their (absolute) hamming distance by distpu, vq. For a linear subspace
L Ď Fn, we denote by Lďq the set of vectors of weight at most q. For two vector u, v P Fn, we
use xu, vy to denote the inner product of u and v,

řn
i“1 uivi P F. For a vector v P Fn and a

sequence I “ pi1, . . . , imq P rnsm, we denote by vI the vector pvi1 , . . . , vim
q P Fm. For a linear

subspace L Ď Fn and a sequence I “ pi1, . . . , imq P rnsm, we denote by LI the subspace
tvI | v P Lu. Note that LI is indeed a subspace as it is given by a suitable projection.

A partition π of size k of rns is a set tP1, . . . , Pku of disjoint subsets of rns, such that
P1 Y ¨ ¨ ¨ Y Pk “ rns. A partition tP1, . . . , Pku is ordered if each Pi is a sequence rather than
a set (and the sequences, when viewed as sets, satisfy the same requirements). Throughout
this paper, any partition of rns will be an ordered partition (though we may not state it
explicitly) with the sequences defined by the natural increasing order of N.

3.2 Error correcting codes
We start by recalling the definition of an error correcting code, and of a family of error
correcting codes. In this work we only consider linear codes.

▶ Definition 4. For n P N and F a field, a code of length n over F is a linear subspace
C Ď Fn.2 The dimension of the code, denoted by k, is the dimension of C over F, dimF C.
The (non-local) distance of the code, denoted by d, is mincPC,c‰0 |c|. The rate of the code,
denoted by ρ, is k{n. The (non-local) relative distance of the code, denoted by ∆, is d{n. The
elements of C are called codewords.

2 We may omit the phrase “over F” if the underlying field is clear from context.

ICALP 2022
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We will also need to consider encodings of codes.

▶ Definition 5. We call a function Enc : Fk Ñ Fn an encoding of a code C if it is an
injective linear map and C “ ImpEncq.

▶ Definition 6. For a field F, a code family over F is a set of codes C “ tCnu, which
contains at most one code Cn of length n over F, for every possible length n P N. For every
n P N, we denote by VnWC the minimal length of a code in the family C of length at least n,
and by TnUC the maximal length of a code in the family of length at most n. For constants
n0 P N, c ě 1 and d ď 1, we say that the family is pn0, c, dq-dense if for every n ě n0,
VnWC ď cn and TnUC ě dn.

▶ Definition 7. For a field F, a code-encoding family over F is a set of pairs of codes and
corresponding encodings C “ tpCk, Enck

qu, which contains at most one code Ck of dimension
k over F, for every possible dimension k P N. For every k P N, we denote by VkWC the
minimal dimension of a code in the family C of dimension at least k, and by TkUC the
maximal dimension of a code in the family of dimension at most k. For constants k0 P N,
c ě 1 and d ď 1, we say that the family is pk0, c, dq-dense if for every k ě k0, VkWC ď ck

and TkUC ě dk.

▶ Definition 8. Let C be a code of length n over F. The dual code of C is defined to be its
orthogonal subspace CK.

▶ Definition 9. Let C be a code of length n over F, let i P rns and B Ď rns. We say that B

determines i in C if there exists a function f : F|B| Ñ F such that for every c P C, ci “ fpcBq.

We also need the following property of linear codes.

▶ Fact 10. Let C be a code of length n over F. Further let i P rns, Q Ď rns and x P F|Q|.
Then, one of the following cases must hold.
1. There is at most one α P F for which there exists some c P C satisfying cQ “ x and

ci “ α.
2. For every α P F there is an equal number of c P C for which ci “ α.
In particular, either no function (even randomized) of cQ can predict ci with probability larger
than 1{|F|, when c P C is randomly chosen uniformly, or cQ determines ci for all c P C.

3.3 Locally decodable codes and locally correctable codes
▶ Definition 11. For C Ď Fn, we say that a procedure f : A Ñ B is with oracle access to
c P C if when f is run, it gets besides an input a P A, access to c P C: f can query ci for
indices i P rns. To describe a specific run of f with input a P A and oracle access to c P C,
we either say that fpaq is run with oracle access to c, or write f cpaq for short. We say that
f is non-adaptive if the queries it makes are independent of c P C.

▶ Definition 12. For a code C of length n and dimension k over F, and Enc and encoding
of it, pC, Encq is called a pq, δ, εq-LDC (locally decodable code, abbreviated) if there exists a
randomized procedure Dec : rks Ñ F that is given an oracle access to z P Fn, and has the
following guarantee. For every i P rks, x P Fk and z P Fn satisfying distpz, Encpxqq ď δn,
Decz

piq “ xi with probability at least 1 ´ ε. Furthermore, Decz
piq always makes at most q

queries to z. We further require that Dec is non-adaptive. We call Dec a local decoder (or
decoder) for pC, Encq, and the parameter q is called the query complexity of pC, Encq.
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▶ Definition 13. A code-encoding family C “ tpCk, Enck
qu of codes over F is called a family

of good qpkq-LDC, or a a family of good LDC with query complexity qpkq, if every code
Ck in the family is a code with rate at least ρpkq, which is a pqpkq, δpkq, εpkqq-LDC, for
ρpkq “ Ωp1q, δpkq “ Ωp1q, and εpkq ď 1{3.

We have the following easy fact.

▶ Fact 14. If C is a code of length n and dimension k ą 0 over F and Enc is an encoding of
it, and if pC, Encq is a pq, δ, εq-LDC, then, provided that ε ă 1´ 1{|F|, the (non-local) relative
distance of C, ∆, satisfies ∆ ą δ.3

▶ Definition 15. A code C of length n over F is called a pq, δ, εq-LCC (locally correctable
code, abbreviated) if there exists a randomized procedure Cor : rns Ñ F that is given an oracle
access to z P Fn, and has the following guarantee. For every i P rns, y P C and z P Fn

satisfying distpz, yq ď δn, Corz
piq “ yi with probability at least 1 ´ ε. Furthermore, Corz

piq

always makes at most q queries to z. We further require that Cor is non-adaptive and that
Corpiq never queries i4. We call Cor a local corrector (or corrector) for C, and the parameter
q is called the query complexity of C.

▶ Definition 16. For a code C of length n over F (not necessarily a pq, δ, εq-LCC), and
i P rns, we say that i is a pδ, q, εq-correctable coordinate in C if there exists a procedure
Cor : rns Ñ F such that Corpiq satisfies the requirements in Definition 15.

▶ Definition 17. A family C “ tCnu of codes over F is called a family of good qpnq-LCC,
or a a family of good LCC with query complexity qpnq, if every code Cn in the family is a
code with rate at least ρpnq, which is a pqpnq, δpnq, εpnqq-LCC, for ρpnq “ Ωp1q, δpnq “ Ωp1q,
and εpnq ď 1{3.

The following well-known fact is an implication of the fact that every linear code has a
systematic encoding5.

▶ Fact 18. If a code C is a pq, δ, εq-LCC, then there exists an encoding Enc such that pC, Encq
is a pq, δ, εq-LDC.

4 Tailor made distance amplification

4.1 Characterization of LCC
In this section, we will need to use two characterizations of LCC, as was given by Definition 15.
The first, given next in Definition 19, is of a pq, τq-LCC, and resembles the definition of
smooth codes given by [15] for LDC. A pq, τq-LCC differs from a pq, δ, εq-LCC in that its
local correction is only required to succeed if it is given a codeword of the code, rather than
a possible corrupted codeword. Accordingly, the correction of a pq, τq-LCC has no “distance”
guarantee, but instead it is required not to query any coordinate with too high probability,
i.e., probability larger than τ . When we will construct an LCC, it will be easier to first argue
that it is a pq, τq-LCC and use that to show it can be made into a pq, δ, εq-LCC for any ε

and δ “ ε{pτnq.

3 Note that in the case that ε ă 1{2 a stronger bound ∆ ą 2δ holds.
4 The assumption that Corpiq never queries i is only for simplicity. Any LCC which defies this assumption

can be easily converted to one which does not, with a negligible effect on δ.
5 An encoding Enc is a systematic encoding if for some f : rks Ñ rns, for all x P Fk and i P rks,

Encpxqfpiq “ xi.
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The second characterization, which will be given in Definition 23, is of what we call a
pq, τq-query-set LCC. Informally, a code is pq, τq-query-set LCC if for every coordinate we
have a large enough set of disjoint subsets of rns, from which it can be decoded. The distance
amplification procedure that we define utilizes these query sets and so the properties of the
input code that we will use are that of its characterization as a pq, τq-query-set LCC. This is,
in a sense, a more “combinatorial” characterization of LCC which can be more conveniently
used when a manipulation of these objects is needed.

The three characterizations of LCC all imply each other, but some of the transitions are at
some cost to the parameters. Indeed, Claim 20 will show that a pq, τq-LCC is a pq, δ, εq-LCC
for δ “ ε{pτnq, Claim 24 will show that a pq, τq-query-set is a pq, τq-LCC, and Claim 25 will
complete the cycle and show that a pq, δ, εq-LCC is a pq, τq-query-set LCC for τ “ q{pδnq.

▶ Definition 19. A code C of length n over F is called a pq, τq-LCC if there exists a
randomized procedure Cor : rns Ñ F that is given an oracle access to c P C, and has the
following guarantee. For every i P rns and c P C, Corc

piq “ ci, with probability 1. Furthermore,
Corc

piq always makes at most q queries to c, and for every j P rns, the probability that cj is
queried by Corc

piq is at most τ . We further require that Cor is non-adaptive and that Corpiq
never queries i. We call the parameter q the query complexity and the parameter τ the
smoothness of the LCC.

▷ Claim 20. Let C be a code of length n which is a pq, τq-LCC. Then, for any ε ą 0, C is a
pq, δ, εq-LCC with δ “ ε{pτnq.

Proof. Let ε ą 0 and let Cor be a corrector of C. Let c P C and z P Fn such that
distpc, zq ď δn “ ε{τ , and set B “ tj P rns | zj ‰ cju. Fix i P rns. By the union bound over
j P B, except with probability ε, when Corpiq is run with oracle access to c P C, it does not
make a query to an index in B. If this is the case, then if Cor was given access to z instead
of c, it would successfully output ci, as well. Thus, C is indeed a pq, δ, εq-LCC as the same
corrector Cor can be used with oracle access to strings z P Fn, and given that distpc, zq ď δn,
Corpiq is promised to output ci with probability at least 1 ´ ε. ◁

▶ Definition 21. A set A “ tA1, . . . , Anu is called an n-query-set if for every i P rns, Ai is
a set of disjoint subsets of rnsztiu. For every i P rns we define ĎAi “

Ť

BPAi
B.

▶ Definition 22. Let C be a code of length n and let A “ tA1, . . . , Anu be an n-query-set.
A is said to be a query-set for C if for every i P rns and B P Ai, B determines i in C (see
Definition 9).

▶ Definition 23. Let C be a code of length n. C is said to be a pq, τq-query-set-LCC if
there exists a set A “ tA1, . . . , Anu which is a query-set for C, such that for every i P rns,
|Ai| ě 1{τ and for every B P Ai, |B| ď q.

▷ Claim 24. Let C be a code of length n over F which is a pq, τq-query-set LCC. Then C is
a pq, τq-LCC.

Proof. Let A “ tA1, . . . , Anu be a query set that corresponds to C being a pq, τq-query-set
LCC. The following corrector Cor shows that C is a pq, τq-LCC. Given i P rns, and oracle
access to c P C, Corpiq samples uniformly at random some B P Ai and queries cB. As B

determines i in C, there exists a function f satisfying fpcBq “ ci for every c P C, and so
Corpiq uses such a function and outputs its result. Thus, for every c P C, the output of Corpiq
is always equal to ci, and note that as any sampled B P Ai satisfies |B| ď q, Corpiq always
makes at most q queries. Since Ai is of size at least 1{τ and is composed of disjoint subsets
of rnsztiu, any coordinate is queried by Corpiq with probability at most τ , and Corpiq never
queries i. Thus, C is a pq, τq-LCC. ◁
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▷ Claim 25. Let C be a code of length n over F which is a pq, δ, εq-LCC, for ε ă 1 ´ 1{|F|.
Then, C is a pq, τq-query-set-LCC for τ “ q{pδnq.

The proof for the claim is similar to the proof in [15] to their Theorem 1 and to the proof
in [10] for Theorem 1.1.

Proof for Claim 25. To prove the claim, we need to show that there exists a set A “

tA1, . . . , Anu which is a query-set for C, such that for every i P rns, |Ai| ě 1{τ “ δn{q

and for every B P Ai, |B| ď q. We construct A with the required properties by constructing
each of the subsets separately. Let Cor denote a corrector promised by the fact that C is
a pq, δ, εq-LCC, and let i P rns. To construct Ai, we construct a sequence of disjoint sets
Bi

1, . . . , Bi
mi

Ď rnsztiu, in an iterative manner. We will eventually set Ai “ tBi
1, . . . , Bi

mi
u.

It will hold that for every j, Bi
j determines i in C, while satisfying |Bi

j | ď q, and that
mi ě δn{q, which will conclude the proof.

The construction of Bi
1, . . . , Bi

mi
Ď rns is done by the following procedure. Start by

setting Bi
0 “ H. For j “ 1, 2, . . ., set Si

j “ Bi
0 Y ¨ ¨ ¨ Y Bi

j´1. If |Si
j | ą δn halt and set

mi “ j ´ 1 and Ai “ tBi
1, . . . , Bi

mi
u. Otherwise, it holds that for every c P C, for every

modification of the coordinates in Si
j to some erroneous values, Corpiq correctly outputs ci

with probability at least 1 ´ ε. An equivalent description of this case is the following: for
every c P C and z : Si

j Ñ F, define cz P Fn such that for every r R Si
j , cz

r “ cr and for r P Si
j ,

cz
r “ zprq. The corrector Cor chooses a set of queries Q Ď rnsztiu, |Q| ď q, according to some

distribution6 and applies some function fQ on cz
Q. We know that with probability at least

1 ´ ε, fQpcz
Qq “ ci. Since Q is sampled in a manner that is independent of c and z, by an

averaging argument, there exists some fixed Q for which when c P C and z : Si
j Ñ F are

chosen randomly in a uniform manner, with probablity at least 1 ´ ε (this time over the
choice of c and z), fQpcz

Qq “ ci. Therefore, we can define another function f 1
Q that only gets

cQzSi
j
, chooses z uniformly at random, and outputs fQpcz

Qq. If c P C is chosen uniformly at
random, f 1

QpcQzSi
j
q “ ci with probability at least 1 ´ ε ą 1{|F|. By Fact 10, this implies that

QzSi
j determines i in C. We therefore set Bi

j “ QzSi
j

7, and proceed to the next j.
As this process only halts when |Si

j | ą δn, and for every j, |Si
j | ď qpj ´ 1q, we have that

mi ě δn{q. Further note that by the choice of each Bi
j , the sets Bi

1, . . . , Bi
mi

are disjoint,
and of size at most q, as required. This thus shows how each Ai can be constructed, and the
claim follows. ◁

4.2 Splitters for query sets
Splitters for query sets, that are defined as follows, are key ingredients in our distance
amplification procedure. Informally, a c-splitter for a query set A “ tA1, . . . , Anu is partition
of rns which satisfies that for every i, the intersection between ĎAi, the union all the sets in
Ai that correspond to an index i, and each part of the partition, is not too large, i.e., of
size at most c. In the distance amplification procedure, we will describe a corrector which
samples a set B P Ai, in some query set A, and then makes queries according to which parts
of the c-splitter intersect with B. For the resulted queries to be smooth, we will need the
partition to “split” A1, . . . , An, meaning that no part of the partition is too common within
any certain Ai.

6 As the corrector in non-adaptive, Corpiq naturally induces a distribution on subsets of rns which
correspond to the possible query sets.

7 Note that i R Bi
j , as i R Q, since Corpiq by definition never queries i.
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▶ Definition 26. Let n P N, A an n-query-set and c P N. A partition π of rns is called a
c-splitter of A if for every i P rns and P P π, |P X ĎAi| ď c.

The next claim shows that if each Ai is of size at most k, then c-splitters with k parts
exist, for c, the bound on the maximal intersection, being equal to roughly the minimal
intersection that is possible, up to a constant factor.

▷ Claim 27. Let n, k, q P N such that k{n ď 1 and q ě log n. Further let A “ tA1, . . . , Anu

be an n-query-set such that for every i P rns, |Ai| ď k and for every B P Ai, |B| ď q. Then,
there exists a partition π of rns with k parts, each of size n{k, which is a c-splitter of A for
c “ 2eq.

Proof. The proof is by a probabilistic argument. We randomly choose a partition π with k

equally-sized parts in a uniform manner among all such partitions. We bound the probability
that π is not a c-splitter for A: this is the case if |ĎAi X P | ą c for some i P rns and P a part
of π. Towards this end, we first fix some i P rns and t P rks, and let Pt denote the t-th part
of π. We have that for every j P ĎAi the probability that j P Pt is 1{k, and for every fixed
subset of ĎAi of size c, the probability that it is contained in Pt is at most p1{kqc (since for
distinct j, j1 P ĎAi, the events that j P Pt and j1 P Pt are negatively correlated). By a union
bound over the possible subsets of size c, the probability that |ĎAi X Pt| ą c is at most

ˆ

|ĎAi|

c

˙

p1{kqc ď

ˆ

e|ĎAi|

ck

˙c

ď

´eq

c

¯c

“

ˆ

1
2

˙2eq

.

By taking a union bound over all possible i, t, the probability that there exist i P rns and
t P rks such that |ĎAi X Pt| ą c is at most nk

` 1
2
˘2eq

ď n2 ` 1
2
˘2eq, which is less than 1 a

q ě log n, and the claim follows. ◁

4.3 The distance amplification procedure
We now turn to define the basic operation behind our distance amplification procedure. This
operation “composes”8 two codes of different lengths, a big code and a small code, in a way
that is parameterized by some partition of rns. The result is a code of the same length as
the big code, with an improved smoothness (if the partition satisfies certain requirements),
as we will have in the claims that follow the definition. The distance amplification procedure
(or perhaps, more directly, the smoothness amplification procedure) will be an iterative
application of this composition.

▶ Definition 28. Let C1 be a code of length n1, C2 a code of length n2, π a partition of rn1s

into n1{n2 parts of size n2. We define the π-composition of C1 and C2, which we denote by
C1 dπ C2, to be the code tc P C1 | @P P π cP P C2u.

A bound on the rate of the composition of two codes is given in the following claim.

8 Note that the term “composition” here is used in a different sense than the usual composition of two
codes in coding theory, which is achieved from the composition of the encoding functions.
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▷ Claim 29. If C1, C2 are codes with of lengths n1, n2 and rates ρ1, ρ2 respectively, then
C “ C1 dπ C2 is a code of length n1 and rate at least ρ1 ` ρ2 ´ 1.

Proof. That the length of C is n1 follows from the definition. As for the rate, by inspecting
the code dual to C, it can be seen that the dimension of CK is at most

d “ p1 ´ ρ1qn1 `
n1

n2
p1 ´ ρ2qn2.

From that, the rate of C is at least 1 ´ d{n1 “ ρ1 ` ρ2 ´ 1. ◁

We now show that if the partition used in the composition is a c-splitter for a query set
of the big code, the resulted code has smoothness roughly equal to the product of the two
smoothnesses.

▷ Claim 30. Let C1 be a code of length n1 and C2 a code of length n2 which is a pq2, τ2q-LCC.
Let A “ tA1, . . . , An1u be a query-set for C1 such that for every i, |Ai| ě 1{τ1 and for every
B P Ai, |B| ď q1. If π is a c-splitter for A, then C “ C1 dπ C2 is a pq, τq-LCC for q “ q1q2
and τ “ cτ1τ2.

Proof. To show that C is a pq, τq-LCC we need to show a corrector Cor for it. We first set
up some notations. Let Cor2 be a corrector promised by the fact that C2 is a pq2, τ2q-LCC.
For every j P rns, let Pj denote the part of π that contains j, and let j̄ denote the index of j

in Pj with respect to the natural order. For i P rns, and B P Ai, let fi,B : F|B| Ñ F denote a
function satisfying fi,BpcBq “ ci for every c P C1. Such fi,B is guaranteed to exists as A is a
query-set for C1.

For i P rns, Corpiq with oracle access to c P C acts as follows: it first samples B P Ai

uniformally at random. Secondly, for every j P B, the procedure obtains cj by invoking
Cor2pj̄q with oracle access to cPj . After obtaining cj for every j P B, Corpiq outputs fi,BpcBq.

That Corpiq successfully outputs ci for every c P C is immediate, and follows from the
fact that for every j, cPj

is a codeword of C2 and so Cor2pj̄q with access to cPj
correctly

outputs cj , and from the fact c P C1 and so fi,BpcBq “ ci. Moreover, Corpiq makes at most
q1q2 queries to c, since |B| ď q1 by assumption, and Cor2 makes at most q2 queries.

It remains to bound the probability that a coordinate r P rns is queried by Corpiq for
i P rns. Let p be the probability that Corpiq queries r. Fix B P Ai. Conditioned on the event
that B was sampled by Corpiq in the first step, r is queried by Corpiq if one of the calls to
Cor2pj̄q, with oracle access to cPj

, queries cr for some j P B. That probability is at most
|B X Pr|τ2. Indeed, this follows by taking the union bound over the different j P B, noting
that if j R Pr, cr cannot be queried by Cor2pj̄q, and using that Cor2 queries any coordinate
with probability bounded above by τ2. Therefore,

p ď
ÿ

BPAi

PrrB is sampled by Corpiqs ¨ |B X Pr|τ2

“
ÿ

BPAi

1
|Ai|

¨ |B X Pr|τ2

ď
ÿ

BPAi

τ1 ¨ |B X Pr|τ2

“ τ1τ2|Pr X ĎAi|

ď cτ1τ2.

Note that we used the assumptions that |Ai| ě 1{τ1, and that π is a c-splitter for A. We
thus have that p ď cτ1τ2, which concludes the proof. ◁
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The following lemma concludes the properties of the code that is achieved by the
composition of two codes, when done with the c-splitter that is given by Claim 27.

▶ Lemma 31. Let n P N. Assume there exists a code C1 of length n over F, with rate ρ1,
which is a pq1, τ1q-query-set-LCC for q1 ě log n. Further assume that there exists a code C2
of length nτ1 over F, with rate ρ2, which is a pq2, τ2q-LCC. Then, there exists a code C of
length n, with rate ρ1 ` ρ2 ´ 1, which is a pq1q2, 2eq1τ1τ2q-LCC.

Proof. As C1 is a pq1, τ1q-query-set-LCC, there exists an n-query-set A “ tA1, . . . , Anu in
which for every i, |Ai| ě 1{τ1 and for every B P Ai, |B| ď q1. In particular, there exists
a query set A1 “ tA1

1, . . . , A1
nu in which every A1

i is of size exactly 1{τ1 (which is achieved
by, for each Ai, arbitrarily removing sets B P Ai until it is of size 1{τ1). By Claim 27
invoked with k “ 1{τ1, there exists a partition π of rns, in which every part is of size τ1n,
which is a c-splitter for A1, with c “ 2eq1. We take C “ C1 dπ C2 to be the code with the
claimed properties. Indeed, by Claim 29, C is of length n, and has rate at least ρ1 ` ρ2 ´ 1.
Furthermore, by applying Claim 30, and using that π is a c-splitter for A1, we get that C is
a pq, τq-LCC for q “ q1q2 and τ “ 2eq1τ1τ2, and the lemma follows. ◀

The following lemma, or more precisely, its proof, composes the distance amplification
procedure. It assumes a family of codes which are LCC, and describes the properties of the
code that is obtained by an iterative application of the composition, where at each iteration
a code of the family is composed with the “current” code.

▶ Lemma 32. Assume there exists a family of codes C “ tCnu over F, in which every code
Cn of length n in the family is a code of rate ρpnq “ 1 ´ rpnq, which is a pqpnq, τpnqq-query-
set-LCC for qpnq ě log n. Then, for every t P N, there exists a code family C 1 “ tpC 1qnu over
F which has a code pC 1qn of length n for every n which is a code length in C, and pC 1qn has the
following properties. Define n1 “ n and for i “ 2, . . . , t ` 1 let ni “ Vτpni´1qni´1WC . Then,
pC 1qn has rate ρ1pnq “ 1 ´

řt
i“1 rpniq, and is a pq1pnq, τ 1pnqq-LCC for q1pnq “

śt
i“1 qpniq

and

τ 1pnq “ p2eqt´1 nt`1

n

t´1
ź

i“1
qpniq.

Proof. To show the existence of a code family with the claimed properties, we describe how
for every n that is a length of a code in the family C, a code of the same length, of the
family C 1, can be constructed. Let Cn be a code of length n of the family C. Set n1 “ n

and for i “ 2, . . . , t ` 1, ni “ Vτpni´1qni´1WC , as defined in the claim. We construct a
sequence of codes C 1

1, . . . , C 1
t, where for each i P rts, C 1

i is a code of length ni and rate ρ1
i,

which is a pq1i, τ 1
iq-LCC. We start by setting C 1

t “ Cnt , and for i “ t ´ 1, . . . , 1, we take C 1
i

to be a code which is the result of applying Lemma 31 on Cni and C 1
i`1. Note that Cni

is a pqpniq, τpniqq-query-set-LCC and C 1
i`1 is a code of length ni`1 ě τpniqni, and so in

particular Cni is indeed of smoothness ni`1{ni, as required for the lemma to be applicable.
From Lemma 31 it follows that C 1

i is a code of rate

ρ1
i “ ρpniq ` ρ1

i`1 ´ 1 “ ρ1
i`1 ´ rpniq

which is a pq1i, τ 1
iq-LCC for

q1i “ qpniqq
1
i`1,

τ 1
i “ 2eqpniqτ

1
i`1

ni`1

ni
.
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Recall that C 1
t “ Cnt and so ρ1

t “ 1´ rpntq, q1t “ qpntq and τ 1
t “ τpntq. It follows inductively

that for every i P rts,

ρ1
i “ 1 ´

t
ÿ

j“i

rpnjq,

q1i “
t
ź

j“i

qpnjq,

and

τ 1
i “ p2eqt´i

˜

t
ź

j“i

nj`1

nj

¸˜

t´1
ź

j“i

qpnjq

¸

“ p2eqt´i nt`1

ni

˜

t´1
ź

j“i

qpnjq

¸

.

We set C 1
1, which is indeed a code of length n, to be the code pC 1qn of C 1, and from the

account given above it follows that its rate, query complexity and smoothness are as stated,
i.e., that q11 “ q1pnq, ρ1

1 “ ρ1pnq and τ 1
1 “ τ 1pnq. We thus have that C 1 is a family of codes

with rate at least ρpnq that are pqpnq, τpnqq-LCC, and the lemma follows. ◀

4.4 Corollaries
In this part we present two corollaries of our distance amplification procedure that is given
by Lemma 32. As a special case of the first corollary, Corollary 34, we will have that if one
has a sufficiently dense code family of pqpnq, δpnq, εpnqq-LCC which is of high rate, meaning
that each code has rate ρpnq that approaches 1 “fast enough”, but with δpnq that is only
polynomially small in n, δpnq “ 1{nα, for some constant α P p0, 1q, then there exists a
good family of LCC with query complexity qpnqOplog log nq. In the general case, a weaker
guarantee on δpnq can also be handled by Corollary 34, meaning that a sub-polynomial
δpnq can also be amplified. More precisely, Corollary 34 will state that if δpnq “ 1{n1´1{gpnq

for a (non-decreasing) function gpnq, then a family of good LCC can be constructed, with
query complexity qpnqOpgpnq log log nq. The requirement of the rate function ρpnq, which we
described as approaching 1 “fast enough”, in more detail comes down to the requirement
that ρpnq ě 1 ´ 1{pgpnqpln ln nq2q.

The second corollary, Corollary 37, addresses the case that the family of pqpnq, δpnq, εpnqq-
LCC one starts with is of a much smaller rate, either of a constant rate or of a vanishing rate
of p1{ ln ln nqh for some constant h. In the case that δpnq “ 1{nα for some constant α P p0, 1q
and ρpnq ě p1{ ln ln nqh, as a special case Corollary 37 we will have that there exists a family
of good LCC with query complexity qpnqpolyplog log nq. Here too, sub-polynomial δpnq can
also handled by the corollary, as in a more general case, it is shown by Corollary 37 that
if δpnq “ 1{n1´1{gpnq for a non-decreasing gpnq ď log n, and if ρpnq is at least p1{ ln ln nqh

for some constant h, then a family of good LCC can be constructed, with query complexity
qpnqgpnqpolyplog log nq. The precise statement Corollary 37 is more generally stated and handles
a few more cases that may be of interest.

We remark that while in any case that Corollary 34 can be applied so can Corollary 37 be
used, the reason that we state both corollaries is that if one starts with an LCC that satisfies
the requirement of Corollary 34 then using it, rather than using Corollary 37, would result
in a better bound on the resulted query complexity. We further remark that the proof for
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Corollary 37 builds on Corollary 34. Lastly, another reason that Corollary 34 is of interest is
that it has an analogous corollary in the case of LDC (see Corollary 35), unlike Corollary 37
(whose proof relies on properties specific to LCC).

The proofs for the corollaries can be found in the full version of the paper (see [6]).

4.4.1 From high rate and low distance LCC to good LCC

The proof for the first corollary relies on the following lemma which states that any family
of pq, τq-LCC with constant rate can be converted to a family of good LCC by paying a
multiplicative factor of polypτnq in query complexity. This lemma follows from the AEL
distance amplification procedure [2, 1] and from the adaptation of it by [17] for LDC and
LCC. To derive this lemma with certain parameters, some adaptations to these techniques
are needed, and so we provide a full proof for Lemma 33 in the appendix of the full version.

▶ Lemma 33. Let C “ tCnu be a code family over F in which every code Cn is a pqpnq, τpnqq-
LCC with rate ρpnq “ Ωp1q. Then, there exists a code family C 1 “ tpC 1qnu over F which has
a code pC 1qn of length n for every Cn in C, such that pC 1qn is a pq1pnq, δ1pnq, εq-LCC for
q1pnq “ Opqpnqpnτpnqq2q, δ1pnq “ Ωp1q and ε “ 1{3, with rate ρ1pnq “ Ωp1q.

We now state our first corollary.

▶ Corollary 34. Let qpnq ě log n9 and gpnq ą 1 be two non-decreasing functions. Assume
there exists a family of codes C “ tCnu over F that is pn0, c, dq-dense, in which every code
Cn of length n has rate

ρpnq ě 1 ´
1

gpnqpln ln nq2 ,

and either Cn is a pqpnq, δpnq, εpnqq-LCC, for εpnq ă 1 ´ 1{|F| and δpnq “ 1{n1´1{gpnq, or
it is a pqpnq, τpnqq-query-set-LCC, for τpnq “ qpnq{n1{gpnq. Then, there exists a family of
codes C 1 “ tpC 1qnu over F that is pn0, c, dq-dense, which is a family of good LCC with query
complexity qnewpnq “ qpnqOpgpnq ln ln nq.

Note that Corollary 34 allows for the code family C in the hypothesis to be one of two
types, either a family of pq, δ, εq-LCC or a family of pq, τq-query-set-LCC. For the proof, what
we actually need is that C is of the second type. However, if one starts with a family C which
is known to be of the first (more standard) type, with the specified δpnq, by Claim 25 it will
follow that C is a family of query-set-LCC with the same smoothness τpnq that is stated in
the corollary in the second case. The corollary explicitly allows both of the types because it
is also possible that the base code is already known to be a query-set-LCC, as would be the
case in the proof of Corollary 37, which uses Corollary 34. It is preferable to avoid going
back and forth between the types, as this has some cost in the resulted parameters.

We further state a corollary analogous to Corollary 34, that holds in the case of LDC.
The proof for this corollary is straightforward given the result regarding LCC, and follows
the same lines.

9 We remark that while we assume for simplicity that qpnq ě log n, by the Katz-Trevisan bound
(instantiated for the case of rate and distance as specified by the corollary), lifting this assumption
would not yield an improvement in the obtained query complexity in any case.
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▶ Corollary 35. Let npkq ą k, qpkq ě log npkq and gpkq ą 1 be non-decreasing functions.
Assume there exists a code-encoding family C “ tpCk, Enck

qu over F that is pk0, c, dq-dense,
in which every code Ck of dimension k has rate

ρpkq ě 1 ´
1

gpkqpln ln kq2 ą
1
2 ,

and either pCk, Enck
q is a pqpkq, δpkq, εpkqq-LDC, for εpkqă1´1{|F| and δpkq“1{npkq1´1{gpkq.

Then, there exists a code-encoding family C 1 “ tppC 1qk, pEnc1qkqu over F that is pk0, c, dq-dense,
which is a family of good LDC with query complexity qnewpkq “ qpkqOpgpkq ln ln kq.

4.4.2 From low rate and low distance LCC to good LCC

The proof for our second corollary uses the following proposition from [7]. This proposition
is basically Proposition 4.14 in [7] but for pq, τq-query-set-LCC rather than for a different
object10. That the proposition indeed applies to pq, τq-query-set-LCC is quite immediate
with the account given in [7].

▶ Proposition 36 (Implicit in [7]). Let C be a code of length n over F with rate ρ that is a
pq, τq-query-set-LCC. Then, for every ℓ P N, there exists a code C 1 of length n1 “ nℓ with
rate 1 ´ p1 ´ ρqℓ, which is a pq1, τq-query-set-LCC for q1 “ qℓ.

We now state our second corollary.

▶ Corollary 37. Let h ě 1 be an arbitrary constant, qpnq ě log n and gpnq P r1, log ns

non-decreasing functions, and ρpnq a non-increasing function, satisfying

1
pln ln nqh

ď ρpnq ď 1 ´
1

gpnqpln ln nq2

for every n. Assume further that

1
ρpn ` 1q pln gpn ` 1q ` ln ln lnpn ` 1qq ´ 1

ρpnq
pln gpnq ` ln ln ln nq “ O

ˆ

1
log n

˙

.

Assume there exists a family of codes C “ tCnu over F that is pn0, 1, 1q-dense11, in which
every code Cn of length n is a code of rate ρpnq, which is a pqpnq, δpnq, εpnqq-LCC, for
εpnq ă 1 ´ 1{|F| and

δpnq “
1

n1´1{gpnq
.

Then, there exists a family of codes C 1 “ tpC 1qnu over F, which is a family of good LCC with
query complexity qnewpnq “ qpnqepnq for

epnq “ O

ˆ

1
ρpnq2 pln gpnq ` ln ln ln nq2gpnq ln ln n

˙

.

10“dual SLR” in the terminology of [7].
11 Note that if one starts with a code family C that is pn0, c, dq for some constants c, d, then it can be

easily converted to a pn0, 1, 1q-dense family, with a constant multiplicative cost to the rate and with
little affect to the obtained parameters.
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5 LDC are not LCC via random weighted tensor codes

In this section we argue that there exist linear codes which are LDC but not LCC, in the
following strong sense. Not only are these codes LDC while not being LCC even for a weak
requirement of very high query complexity and very low correction radius, moreover, this
negative property that local correction with such parameters is impossible is maintained
in any puncturing of the code. We will be able to show this to be the case because in the
codes that we construct the uncorrectable coordinates are crucial for the distance of the code,
and in particular for the LDC feature of the code, thus any attempt to remove them while
keeping these properties, fails. In this section here we state the main claims required for
proving the result, the proofs for which can be found in the full version of the paper (see [6]).

We start with a few preliminaries for this section. In what follows we will sometimes need
to conveniently convert a pair of indices i1 P rm1s, i2 P rm2s to an index i P rm1m2s, and
so we set the following convention. Where m1, m2 P N are clear from context and i1 P rm1s,
i2 P rm2s, we denote by pi1; i2q the index pi2 ´ 1qm1 ` i1 P rm1m2s.

▶ Definition 38 (Trivial coordinates). For a code C of length n over F, we say that a coordinate
j P rns is trivial (in C) if for every c P C, cj “ 0.

▶ Definition 39 (Puncturing of codes). Let C be a code of length n and dimension k over
F and let J Ď rns. For every codeword c P C, we define the vector py1, . . . , ynq P Fn, where
yj “ cj if j R J and yj “ 0 otherwise, to be the J-puncturing of c, and we denote it by czJ .
We define tczJ | c P Cu to be the J-punctured code C, and denote it by CzJ . Note that CzJ

is indeed a code. Furthermore, given an encoding Enc of C, we define EnczJ : Fk Ñ Fn by
EnczJpxq “ EncpxqzJ for all x P Fk.

5.1 Weighted tensors
We turn to define an operation to which we call the weighted tensor of two codes and state
several of its properties. The codes of Theorem 3 will be constructed using a weighted tensor.
This operation gets two input codes (more precisely, two codes and respective encodings),
and a matrix of non-zero entries, and results in a new code. To define the result of the
operation, we will define a new encoding function which depends on the encodings of the two
input codes and on the weight matrix. We will then take the resulted code to be the image
of that encoding. We begin by describing the encoding function of the weighted tensor.

Let Enc1 : Fk1 Ñ Fn1 and Enc2 : Fk2 Ñ Fn2 be a linear maps, and let B P Fn1ˆk2 be a
matrix with non-zero entries. We define the following function Enc : Fk1k2 Ñ Fn1n2 that acts
as follows on input x P Fk1k2 .

Action of Enc on x

1. Identify x with a matrix X P Fk1ˆk2 where for i1 P rk1s, i2 P rk2s, Xi1,i2 “ xpi1;i2q.
2. Use Enc1 to encode each column of X and set X 1 to be the resulted matrix, X 1 P Fn1ˆk2 .
3. For each j1 P rn1s, i2 P rk2s multiply the element X 1

j1,i2
by Bj1,i2 and set X2 to be the

resulted matrix.
4. Use Enc2 to encode each row of X2 and set X3 to be the resulted matrix, X3 P Fn1ˆn2 .
5. Output x1 P Fn1n2 where for j1 P rn1s, j2 P rn2s, x1

pj1;j2q
“ X3

j1,j2
.

▷ Claim 40. If Enc1 and Enc2 are injective then so is Enc.
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▷ Claim 41. Let A1 P Fn1ˆk1 and A2 P Fn2ˆk2 be the generating matrices of Enc1 and Enc2,
respectively. Then, for every x P Fk1k2 , Encpxq “ Ax, where A P Fn1n2ˆk1k2 is the matrix
where for i1 P rk1s, i2 P rk2s, j1 P rn1s, j2 P rn2s we have that Apj1;j2q,pi1;i2q “ A1

j1,i1
A2

j2,i2
Bj1,i2 .

In particular, Enc is a linear map.

We can now define the weighted tensor operation.

▶ Definition 42. Let Enc1, Enc2, B and Enc be as above. Let C1 be a code of length n1 and
dimension k1 over F such that Enc1 is an encoding of it, and let C2 be a code of length n2
and dimension k2 over F such that Enc2 is an encoding of it. Let C be the image of Enc. We
define the B-weighted tensor of pC1, Enc1q and pC2, Enc2q to be the pair pC, Encq, and denote
pC, Encq “ pC1, Enc1q bB pC2, Enc2q.

▷ Claim 43. Let pC, Encq “ pC1, Enc1q bB pC2, Enc2q. Then C is a code of length n “ n1n2
and dimension k “ k1k2 over F, and Enc is an encoding of it.

5.2 Local decodability and correctablity of weighted tensors

The weighted tensor of two LDC is an LDC with comparable parameters, regardless of the
weight matrix, as we have in the following claim.

▷ Claim 44. Let pC1, Enc1q be a pq1, δ1, ε1q-LDC, where C1 is a code of length n1 and
dimension k1 over F. Let pC2, Enc2q be a pq2, δ2, ε2q-LDC, where C2 is a code of length
n2 and dimension k2 over F, and let B P Fn1ˆk2 be a matrix with no zero entries. Then,
pC, Encq “ pC1, Enc1q bB pC2, Enc2q is a pq1q2, δ1δ2, 1 ´ p1 ´ ε1qp1 ´ ε2q

q1q-LDC.

In the next claim we argue that the weighted tensor of two codes, when performed with a
randomly chosen weight matrix is, with high probability, not locally correctable. In particular,
there exists a subset of the coordinates which cannot be locally corrected even with a small
correction radius guarantee, and cannot be removed from the code either if its decodablity is
to be preserved.

▷ Claim 45. Let pC1, Enc1q be a pq1, δ1, ε1q-LDC of length n1 and dimension k1 over F, and
let pC2, Enc2q be a pq2, δ2, ε2q-LDC of length n2 and dimension k2 over F. Assume that C1
and C2 have no non-trivial coordinates. Let B P Fn1ˆk2 be a random matrix of non-zero
weights, chosen uniformly and independently, and let pC, Encq “ pC1, Enc1q bB pC2, Enc2q.

For every t ă k2 and q̃, ˜̃q P N, δ ě q̃{n1, δ1 ě t{k2 and ε ă 1´ 1{|F|, with probability at least
1 ´ n1n2

`

n1n2
q̃

˘

|F|q̃{p|F| ´ 1qt over the choice of B, C satisfies the following. There exists a
set J̄ Ď rns such that every j P J̄ is not pq̃, δ, εq-locally correctable in C. Further, the relative
(non-local) distance of CzJ̄ is less than t{k2.

The main theorem of this part is an immediate consequence of Claim 45.

▶ Theorem 46. Let pC0, Enc0q be a pq0, δ0, ε0q-LDC for a code C0 of dimension k0 and length
n0 over F for |F| ą 2, such that ε0 ă 1 ´ 1{|F|, k

1{2
0 ą 10 log n0, and assume that C0 has no

trivial coordinates. Then, there exists a pq2
0 , δ2

0 , 1´p1´ε0q
q0`1q-LDC pC, Encq for a code C of

dimension k “ k2
0 and length n “ n2

0 over F satisfying the following property. There exists a
set J Ď rns of coordinates such that every j P J , j is not pk1{4, k1{4{n1{2, εq-locally correctable
in C, for any ε ă 1 ´ 1{|F|. Moreover, the relative distance of CzJ is less than 5 logpnq{k1{4

(in particular for any ˜̃q P N and ε ă 1 ´ 1{|F|, CzJ is not a p ˜̃q, 5 logpnq{k1{4, εq-LDC).
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Abstract
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random
regular graphs. While the cases of the grid and the complete graph are by now well-understood,
the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the
properties of the Potts distribution has remained elusive. It is conjectured that the performance
of Markov chains is dictated by metastability phenomena, i.e., the presence of “phases” (clusters)
in the sample space where Markov chains with local update rules, such as the Glauber dynamics,
are bound to take exponential time to escape, and therefore cause slow mixing. The phases that
are believed to drive these metastability phenomena in the case of the Potts model emerge as local,
rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing
these phases based on optimisation arguments fall short of the task.

Our first contribution is to detail the emergence of the metastable phases for the q-state Potts
model on the d-regular random graph for all integers q, d ≥ 3, and establish that for an interval of
temperatures, delineated by the uniqueness and a broadcasting threshold on the d-regular tree, the
two phases coexist. The proofs are based on a conceptual connection between spatial properties
and the structure of the Potts distribution on the random regular graph, rather than complicated
moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins
who had established phase coexistence for a small interval around the so-called ordered-disordered
threshold (via different arguments) that applied for large q and d ≥ 5.

Based on our new structural understanding of the model, we obtain various algorithmic con-
sequences. We first complement recent fast mixing results for Glauber dynamics by Blanca and
Gheissari below the uniqueness threshold, showing an exponential lower bound on the mixing time
above the uniqueness threshold. Then, we obtain tight results even for the non-local and more
elaborate Swendsen-Wang chain, where we establish slow mixing/metastability for the whole interval
of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key
is to bound the conductance of the chains using a random graph “planting” argument combined
with delicate bounds on random-graph percolation.
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1 Introduction

1.1 Motivation
Spin systems on random graphs have turned out to be a source of extremely challenging
problems at the junction of mathematical physics and combinatorics [36, 37]. Beyond
the initial motivation of modelling disordered systems, applications have sprung up in
areas as diverse as computational complexity, coding theory, machine learning and even
screening for infectious diseases; e.g. [1, 14, 22, 34, 38, 40, 41]. Progress has been inspired
largely by techniques from statistical physics, which to a significant extent still await a
rigorous justification. The physicists’ sophisticated but largely heuristic tool is the Belief
Propagation message passing scheme in combination with a functional called the Bethe free
energy [35]. Roughly speaking, the fixed points of Belief Propagation are conjectured to
correspond to the “pure states” of the underlying distribution, with the Bethe functional
gauging the relative weight of the different pure states. Yet at closer inspection matters are
actually rather complicated. For instance, the system typically possesses spurious Belief
Propagation fixed points without any actual combinatorial meaning, while other fixed points
need not correspond to metastable states that attract dynamics such as the Glauber Markov
chain [11, 15]. Generally, the mathematical understanding of the connection between Belief
Propagation and dynamics leaves much to be desired.

In this paper we investigate the ferromagnetic Potts model on the random regular graph.
Recall, for an integer q ≥ 3 and real β > 0, the Potts model on a graph G = (V, E)
corresponds to a probability distribution µG,β over all possible configurations [q]V , commonly
referred to as the Boltzmann/Gibbs distribution; the weight of a configuration σ in the
distribution is defined as µG,β(σ) = eβHG(σ)/Zβ(G) where HG(σ) is the number of edges
that are monochromatic under σ, and Zβ(G) =

∑
τ∈[q]V eβHG(τ) is the normalising factor of

the distribution. In physics jargon, β corresponds to the so-called inverse-temperature of the
model, HG( · ) is known as the Hamiltonian, and Zβ( · ) is the partition function. Note, since
β > 0, the Boltzmann distribution assigns greater weight to configurations σ where many
edges join vertices of the same colour; thus, the pairwise interactions between vertices are
ferromagnetic.

The Potts model on the d-regular random graph has two distinctive features. First,
the local geometry of the random regular graph is essentially deterministic. For any fixed
radius ℓ, the depth-ℓ neighbourhood of all but a tiny number of vertices is just a d-regular
tree. Second, the ferromagnetic nature of the model precludes replica symmetry breaking,
a complex type of long-range correlations [35]. Given these, it is conjectured that the
model on the random regular graph has a similar behaviour to that on the clique (the
so-called mean field case), and there has already been some preliminary evidence of this
correspondence [4, 20, 19, 22, 29]. On the clique, the phase transitions are driven by a
battle between two subsets of configurations (phases): (i) the paramagnetic/disordered phase,
consisting of configurations where every colour appears roughly equal number of times, and
(ii) the ferromagnetic/ordered phase, where one of the colours appears more frequently than

https://arxiv.org/abs/2202.05777
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the others. It is widely believed that these two phases also mark (qualitatively) the same
type of phase transitions for the Potts model on the random regular graph, yet this has
remained largely elusive.

The main reason that this behaviour is harder to establish on the random regular graph
is that it has a non-trivial global geometry which makes both the analysis of the distribution
and Markov chains significantly more involved (to say the least). In particular, the emergence
of the metastable states in the distribution, which can be established by way of calculus in
the mean-field case, is out of reach with single-handed analytical approaches in the random
regular graph and it is therefore not surprising that it has resisted a detailed analysis so far.
Likewise, the analysis of Markov chains is a far more complicated task since their evolution
needs to be considered in terms of the graph geometry and therefore much harder to keep
track of.

Our main contribution is to detail the emergence of the metastable states, viewed as fixed
points of Belief Propagation on this model, and their connection with the dynamic evolution
of the two most popular Markov chains, the Glauber dynamics and the Swensen-Wang
chain. We prove that these natural fixed points, whose emergence is directly connected
with the phase transitions of the model, have the combinatorial meaning in terms of both
the pure state decomposition of the distribution and the Glauber dynamics that physics
intuition predicts they should. The proofs avoid the complicated moment calculations and
the associated complex optimistion arguments that have become a hallmark of the study of
spin systems on random graphs [2]. Instead, building upon and extending ideas from [3, 16],
we exploit a connection between spatial mixing properties on the d-regular tree and the
Boltzmann distribution. Our metastability results for the Potts model significantly refine
those appearing in the literature, especially those in [22, 29] which are more relevant to this
work, see Section 1.6 for a more detailed discussion.

We expect that this approach might carry over to other examples, particularly other
ferromagnetic models. Let us begin by recapitulating Belief Propagation.

1.2 Belief Propagation

Suppose that n, d ≥ 3 are integers such that dn is even and let G = G(n, d) be the random
d-regular graph on the vertex set [n] = {1, . . . , n}. For an inverse temperature parameter
β > 0 and an integer q ≥ 3 we set out to investigate the Boltzmann distribution µG,β ; let us
write σG,β for a configuration drawn from µG,β .

A vital step toward understanding the Boltzmann distribution is to get a good handle
on the partition function Zβ(G). Indeed, according to the physicsts’ cavity method, Belief
Propagation actually solves both problems in one fell swoop [35]. To elaborate, with each
edge e = uv of G, Belief Propagation associates two messages µG,β,u→v, µG,β,v→u, which are
probability distributions on the set [q] of colours. The message µG,β,u→v(c) is defined as the
marginal probability of v receiving colour c in a configuration drawn from the Potts model
on the graph G − u obtained by removing u. The semantics of µG,β,v→u is analogous.

Under the assumption that the colours of far apart vertices of G are asymptotically
independent, one can heuristically derive a set of equations that links the various messages
together. For a vertex v, let ∂v be the set of neighbours of v, and for an integer ℓ ≥ 1 let ∂ℓv

be the set of vertices at distance precisely ℓ from v. The Belief Propagation equations read

µG,β,v→u(c) =
∏

w∈∂v\{u} 1 + (eβ − 1)µG,β,w→v(c)∑
χ∈[q]

∏
w∈∂v\{u} 1 + (eβ − 1)µG,β,w→v(χ) (uv ∈ E(G), c ∈ [q]). (1)
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The insight behind (1) is that once we remove v from the graph, its neighbours w ̸= u

are typically far apart from one another because G contains only a negligible number of
short cycles. Hence, we expect that in G − v the spins assigned to w ∈ ∂v \ {u} are
asymptotically independent. From this assumption it is straightforward to derive the sum-
product-formula (1).

A few obvious issues spring to mind. First, for large β it is not actually true that far apart
vertices decorrelate. This is because at low temperature there occur q different ferromagnetic
pure states, one for each choice of the dominant colour. To break the symmetry between
them one could introduce a weak external field that slighly boosts a specific colour or, more
bluntly, confine oneself to a conditional distribution on subspace where a specific colour
dominates. In the definition of the messages and in (1) we should thus replace the Boltzmann
distribution by the conditional distribution µG,β( · | S) for a suitable S ⊆ [q]n. Second, even
for the conditional measure we do not actually expect (1) to hold precisely. This is because
for any finite n minute correlations between far apart vertices are bound to remain.

Nonetheless, precise solutions (µv→u)uv∈E(G) to (1) are still meaningful. They correspond
to stationary points of a functional called the Bethe free energy, which connects Belief
Propagation with the problem of approximating the partition function [44]. Given a collection
(µu→v)uv∈E(G) of probability distributions on [q], the Bethe functional reads

BG,β

(
(µu→v)uv∈E(G)

)
= 1

n

∑
v∈V (G)

log
[ ∑

c∈[q]

∏
w∈∂v

1 + (eβ − 1)µw→v(c)
]

− 1
n

∑
vw∈E(G)

log
[
1 + (eβ − 1)

∑
c∈[q]

µv→w(c)µw→v(c)
]
.

(2)

According to the cavity method the maximum of BG,β

(
(µu→v)uv∈E(G)

)
over all solutions

(µu→v)uv∈E(G) to (1) should be asymptotically equal to log Zβ(G) with high probability.

In summary, physics lore holds that the solutions (µu→v)uv∈E(G) to (1) are meaningful
because they correspond to a decomposition of the phase space [q]n into pieces where
long-range correlations are absent. Indeed, these “pure states” are expected to exhibit
metastability, i.e., they trap dynamics such as the Glauber Markov chain for an exponential
amount of time. Moreover, the relative probabilities of the pure states are expected to be
governed by their respective Bethe free energy. In the following we undertake to investigate
these claims rigorously.

Before proceeding, let us mention that ferromagnetic spin systems on random graphs
have been among the first models for which predictions based on the cavity method could be
verified rigorously. Following seminal work by Dembo and Montanari on the Ising model [18]
vindicating the “replica symmetric ansatz”, Dembo, Montanari and Sun [20] studied, among
other things, the Gibbs unique phase of the Potts ferromagnet on the random regular graph,
and Dembo, Montanari, Sly and Sun [20] established the free energy of the model for all β

(and d even). More generally, Ruozzi [39] pointed out how graph covers [43] can be used to
investigate the partition function of supermodular models, of which the Ising ferromagnet
is an example. In addition, Barbier, Chan and Macris [4] proved that ferromagnetic spin
systems on random graphs are generally replica symmetric in the sense that the multi-overlaps
of samples from the Boltzmann distribution concentrate on deterministic values.
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1.3 The ferromagnetic and the paramagnetic states

An obvious attempt at constructing solutions to the Belief Propagation equations is to choose
identical messages µu→v for all edges uv ∈ E(G). Clearly, any solution (µ(c))c∈[q] to the
system

µ(c) = (1 + (eβ − 1)µ(c))d−1∑
χ∈[q](1 + (eβ − 1)µ(χ))d−1 (c ∈ [q]) (3)

supplies such a “constant” solution to (1). Let Fd,β be the set of all solutions (µ(c))c∈[q] to
(3). The Bethe functional (2) then simplifies to

Bd,β

(
(µ(c))c∈[q]

)
= log

[ ∑
c∈[q]

(
1 + (eβ − 1)µ(c)

)d
]

− d

2 log
[
1 + (eβ − 1)

∑
c∈[q]

µ(c)2
]
. (4)

One obvious solution to (3) is the uniform distribution on [q]; we refer to that solution
as paramagnetic/disordered and denote it by µp. Apart from µp, other solutions to (3)
emerge as β increases for any d ≥ 3. Specifically, let βu > 0 be the supremum value of
β > 0 where µp is the unique solution to (3).1 Then, for β = βu, one more solution µf
emerges such that µf(1) > µf(i) = 1−µf(1)

q−1 for i = 2, . . . , q, portending the emergence of a
metastable state and, ultimately, a phase transition. In particular, for any β > βu, a bit of
calculus reveals there exist either one or two distinct solutions µ with µ(1) > µ(i) = 1−µ(1)

q−1
for i = 2, . . . , q; we denote by µf the solution of (3) which maximises the value µ(1) and refer
to it as ferromagnetic/ordered. The value βu is the so-called uniqueness threshold for the
Potts model on the d-regular tree, see, e.g., [22] for a more detailed discussion and related
pointers.

At the critical value

βp = max {β ≥ βu : Bd,β(µp) ≥ Bd,β(µf)} = log q − 2
(q − 1)1−2/d − 1

.

the ferromagnetic solution µf takes over from the paramagnetic solution µp as the global
maximiser of the Bethe functional. For that reason, the threshold βp is also known in the
literature as the ordered-disordered threshold. Yet, up to the threshold

βh = log(1 + q/(d − 2))

the paramagnetic solution remains a local maximiser of the Bethe free energy; later, in
Section 2.2 we will see that βh has a natural interpretation as a tree-broadcasting threshold
(and is also a conjectured threshold for uniqueness in the random-cluster representation for
the Potts model, see [28] for details).

The relevance of these critical values has been demonstrated in [22] (see also [19] for d

even, and [29] for q large), where it was shown that 1
n log Zβ(G) is asymptotically equal to

maxµ Bd,β(µ), the maximum ranging over µ satisfying (3). In particular, at the maximum it
holds that µ = µp when β < βp, µ = µf when β > βp and µ ∈ {µp, µf} when β = βp.

1 The value does not have a closed-form expression, but there is an equivalent formulation of it given by
the equality eβu = 1 + infy>1

(y−1)(yd−1+q−1)
yd−1−y

.
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1.4 Slow mixing and metastability
To investigate the two BP solutions further and obtain connections to the dynamical evolution
of the model, we need to look more closely how these two solutions µp, µf manifest themselves
in the random regular graph. To this end, we define for a given distribution µ on [q] another
distribution

νµ(c) = (1 + (eβ − 1)µ(c))d∑
χ∈[q](1 + (eβ − 1)µ(χ))d

(c ∈ [q]). (5)

Let νf = νµf and νp = νµp for brevity; of course νp = µp is just the uniform distribution.
The distributions νf and νp represent the expected Boltzmann marginals within the pure
states corresponding to µf and µp. Indeed, the r.h.s. of (5) resembles that of (3) except that
the exponents read d rather than d − 1. This means that we pass from messages, where
we omit one specific endpoint of an edge from the graph, to actual marginals, where all d

neighbours of a vertex are present. For small ε > 0, it will therefore be relevant to consider
the sets of configurations

Sf(ε) =
{

σ ∈ [q]n :
∑
c∈[q]

∣∣∣∣∣σ−1(c)
∣∣ − nνf(c)

∣∣∣ < εn

}
,

Sp(ε) =
{

σ ∈ [q]n :
∑
c∈[q]

∣∣∣∣∣σ−1(c)
∣∣ − nνp(c)

∣∣∣ < εn

}
,

whose colour statistics are about nνf and nνp, respectively; i.e., in Sp, all colours appear
with roughly equal frequency, whereas in Sf colour 1 is favoured over the other q − 1 colours
(which appear with roughly equal frequency).

We are now in position to state our main result for Glauber dynamics. Recall that, for a
graph G = (V, E), Glauber is initialised at a configuration σ0 ∈ [q]V ; at each time step t ≥ 1,
Glauber draws a vertex uniformly at random and obtains a new configuration σt by updating
the colour of the chosen vertex according to the conditional Boltzmann distribution given
the colours of its neighbours. It is a well-known fact that Glauber converges in distribution
to µG,β ; the mixing time of the chain is defined as the maximum number of steps t needed to
get within total variation distance ≤ 1/4 from µG,β , where the maximum is over the choice
of the initial configuration σ0, i.e., the quantity maxσ0 min{t : dTV(σt, µG,β) ≤ 1/4}.

For metastability, we will consider Glauber launched from a random configuration from a
subset S ⊆ [q]V of the state space. More precisely, let us denote by µG,β,S = µG,β(· | S) the
conditional Boltzmann distribution on S. We call S a metastable state for Glauber dynamics
on G if there exists δ > 0 such that

P
[
min{t : σt ̸∈ S} ≤ eδ|V | | σ0 ∼ µG,β,S

]
≤ e−δ|V |.

Hence, it will most likely take Glauber an exponential amount of time to escape from a
metastable state.

▶ Theorem 1.1. Let d, q ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
ε > 0, the following hold w.h.p. over the choice of G = G(n, d).

(i) If β < βh, then Sp(ε) is a metastable state for Glauber dynamics on G.
(ii) If β > βu, then Sf(ε) is a metastable state for Glauber dynamics on G.

Further, for β > βu, the mixing time of Glauber is eΩ(n).

Thus, we can summarise the evolution of the Potts model as follows. For β < βu there
is no ferromagnetic state. As β passes βu, the ferromagnetic state Sf emerges first as a
metastable state. Hence, if we launch Glauber from Sf , the dynamics will most likely remain



A. Coja-Oghlan et al. 45:7

trapped in the ferromagnetic state for an exponential amount of time, even though the
Boltzmann weight of the paramagnetic state is exponentially larger (as we shall see in the
next section). At the point βp the ferromagnetic state then takes over as the one dominating
the Boltzmann distribution, but the paramagnetic state remains as a metastable state up
to βh. Note in particular that the two states coexist as metastable states throughout the
interval (βu, βh).

The metastability for the Potts model manifests also in the evolution of the Swendsen-
Wang (SW) chain, which is another popular and substantially more elaborate chain that
makes non-local moves, based on the random-cluster representation of the model. For a
graph G = (V, E) and a configuration σ ∈ [q]V , a single iteration of SW starting from σ

consists of two steps.
Percolation step: Let M = M(σ) be the random edge-set obtained by adding (inde-
pentently) each monochromatic edge under σ with probability p = 1 − e−β .
Recolouring step: Obtain the new σ′ ∈ [q]V by assigning each component2 of the graph
(V, M) a uniformly random colour from [q]; for v ∈ V , we set σ′

v to be the colour assigned
to v’s component.

We define metastable states for SW dynamics analogously to above. The following theorem
establishes the analogue of Theorem 1.1 for the non-local SW dynamics. Note here that SW
might change the most-frequent colour due to recolouring step, so the metastability statement
for the ferromagnetic phase needs to consider the set Sf(ε) with its q − 1 permutations.

▶ Theorem 1.2. Let d, q ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
ε > 0, the following hold w.h.p. over the choice of G = G(n, d).

(i) If β < βh, then Sp(ε) is a metastable state for SW dynamics on G.
(ii) If β > βu, then Sf(ε) together with its q − 1 permutations is a metastable state for SW

dynamics on G.
Further, for β ∈ (βu, βh), the mixing time of SW is eΩ(n).

1.5 The relative weight of the metastable states

At the heart of obtaining the metastability results of the previous section is a refined
understanding of the relative weight of the ferromagnetic and paramagnetic states. The
following notion of non-reconstruction will be the key in our arguments; it captures the
absence of long-range correlations within a set S ⊆ [q]n, saying that, for any vertex v, a
typical boundary configuration on σ∂ℓv chosen according to the conditional distribution on
S does not impose a discernible bias on the colour of v (for large ℓ, n; recall, ∂ℓv is the set
of all vertices at distance precisely ℓ from v). More precisely, let µ = µG,β and σ ∼ µ; the
Boltzmann distribution exhibits non-reconstruction given a subset S ⊆ [q]n if for any vertex
v it holds that

lim
ℓ→∞

lim sup
n→∞

∑
c∈[q]

∑
τ∈S

E [µ(τ | S) × |µ(σv = c | σ∂ℓv = τ∂ℓv) − µ(σv = c | S)|] = 0,

where the expectation is over the choice of the graph G.

2 Note, isolated vertices count as connected components.
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▶ Theorem 1.3. Let d, q ≥ 3 be integers and β > 0 be real. The following hold for all
sufficiently small ε > 0 as n → ∞.

(i) For all β < βp, E [µG,β(Sp)] → 1 and, if β > βu, then E
[ 1

n log µG,β(Sf)
]

→ Bd,β(µf) −
Bd,β(µp).

(ii) For all β > βp, E [µG,β(Sf)] → 1/q and, if β < βh, then E
[ 1

n log µG,β(Sp)
]

→
Bd,β(µp) − Bd,β(µf).

Furthermore, the Boltzmann distribution given Sp exhibits non-reconstruction if β < βh and
the Boltzmann distribution given Sf exhibits non-reconstruction if β > βu.

Theorem 1.3 shows that for β < βp the Boltzmann distribution is dominated by the
paramagnetic state Sp for β < βp. Nonetheless, at βu the ferromagnetic state Sf and
its q − 1 mirror images start to emerge. Their probability mass is determined by the Bethe
free energy evaluated at µf . Further, as β passes βp the ferromagnetic state takes over as the
dominant state, with the paramagnetic state lingering on as a sub-dominant state up to βh.
Finally, both states Sp and Sf are free from long-range correlations both for the regime of β

where they dominate and for those β where they are sub-dominant.

1.6 Discussion
Our slow mixing result for Glauber dynamics when β > βu (Theorem 1.1) significantly
improves upon previous results of Bordewich, Greenhill and Patel [9] that applied to β >

βu +Θq(1). Similarly, our slow mixing result for Swendsen-Wang dynamics when β ∈ (βu, βh)
(Theorem 1.2) strengthens earlier results of Galanis, Štefankovič, Vigoda, Yang [22] which
applied to β = βp, and by Helmuth, Jenseen and Perkins [29] which applied for a small
interval around βp; both results applied only for q sufficiently large. To obtain our result for
all integers q, d ≥ 3, we need to carefully track how SW evolves on the random regular graph
for configurations starting from the ferromagnetic and paramagnetic phases, by accounting for
the percolation step via delicate arguments, whereas the approaches of [22, 29] side-stepped
this analysis by considering the change in the number of monochromatic edges instead.

Our slow mixing results complement the recent fast mixing result of Blanca and Gheissari
[6] for edge dynamics on the random d-regular graph that applies to all β < βu. Roughly,
edge dynamics is the analogue of Glauber dynamics for the random cluster representation of
the Potts model (the random-cluster representation has nicer monotonicity properties). The
result of [6] already implies a polynomial bound on the mixing time of SW when β < βu

(due to comparison results by Ullrich that apply to general graphs [42]), and conversely our
exponential lower bound on the mixing time of SW for β /∈ (βu, βh) implies an exponential
lower bound on the mixing time of edge dynamics for β /∈ (βu, βh). The main open questions
remaining are therefore showing whether Glauber dynamics for the Potts model mixes fast
when β ≤ βu and whether SW/edge-dynamics mixes fast when β > βh. Extrapolating
from the mean-field case (see discussion below), it is natural to conjecture that our slow
mixing results are best-possible, i.e., for β ≤ βu, Glauber mixes rapidly and similarly, for
β /∈ (βu, βh), SW mixes rapidly on the random regular graph.

Theorem 1.3, aside from being critical in establishing the aforementioned slow mixing
and metastability results, is the first to establish for all q, d ≥ 3 the coexistence of the
ferromagnetic and paramagnetic phases for all β in the interval (βu, βh) and detail the
logarithmic order of their relative weight in the same interval. Previous work in [22] showed
coexistence for β = βp (for all q, d ≥ 3) and [29] for β in a sub-interval of (βu, βh) around
βp (for large q and d ≥ 5), see also footnote 3. We remark here that the approaches in
[22, 29] establish more refined estimates on the deviations from the limiting value of the
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log-partition function of the phases (in the corresponding regimes they apply), with [29]
characterising in addition the limiting distribution using cluster-expansion methods. One
can obtain analogous distributional characterisations for all q, d ≥ 3 from our methods, once
combined with the small subgraph conditioning method of [22]. It should be noted though
the approach of [29] which goes through cluster expansion is more direct in that respect.
We don’t pursue such distributional results here since Theorem 1.3 is sufficient for our slow
mixing results.

Together with Theorems 1.1 and 1.2, Theorem 1.3 delineates more firmly3 the corres-
pondence with the (simpler) mean-field case, the Potts model on the clique. In the mean-field
case, there are qualitatively similar thresholds βu, βp, βh and the mixing time for Glauber and
SW have been detailed for all β, even at criticality, see [7, 8, 25, 23, 17, 27, 31]. As mentioned
earlier, the most tantalising question remaining open is to establish whether the fast mixing
of SW for β = βu and β ≥ βh in the mean-field case translates to the random regular graph
as well. Another interesting direction is to extend our arguments to the random-cluster
representation of the Potts model for all non-integer q ≥ 1; note that the arguments of [5]
and [29] do apply to non-integer q (q ≥ 1 and q large, respectively). The proof of Theorem 1.3
relies on a truncated second moment computation, an argument that was applied to different
models in [16, 13].

We further remark here that, from a worst-case perspective, it is known that sampling
from the Potts model on d-regular graphs is #BIS-hard for β > βp [22], and we conjecture
that the problem admits a poly-time approximation algorithm when β < βp. However, even
showing that Glauber mixes fast on any d-regular graph in the uniqueness regime β < βu

is a major open problem, and Theorems 1.1 and 1.2 further demonstrate that getting an
algorithm all the way to βp will require using different techniques. On that front, progress
has been made on the random regular graph: [29] obtained an algorithm for d ≥ 5 and q large
that applies to all β by sampling from each phase separately (using different tools), see also
[10]. Moreover, for β < βp, Efthymiou [21] gives an algorithm with weaker approximation
guarantees but which applies to all q, d ≥ 3 (see also [5]). In principle, and extrapolating
again from the mean-field case, one could use Glauber/SW to sample from each phase on
the random regular graph for all q, d ≥ 3 and all β. Analysing such chains appears to be
relatively far from the reach of current techniques even in the case of the random regular
graph, let alone worst-case graphs. In the case of the Ising model however, the case q = 2,
the analogue of this fast mixing question has recently been established for sufficiently large β

in [26] on the random regular graph and the grid, exploiting certain monotonicity properties.

Finally, let us note that the case of the grid has qualitatively different behaviour than
the mean-field and the random-regular case. There, the three critical points coincide and the
behaviour at criticality depends on the value of q; the mixing time of Glauber and SW has
largely been detailed, see [7, 33, 24].

3 Note that the interval-behaviour on the random regular graph (and hence the correspondence with
the mean-field case) is already implied to some extent by the interval-result of [29] (for q large and
d ≥ 5). Note however that the interval therein is contained strictly inside (βu, βh) and, in particular,
its endpoints do not have the probabilistic interpretation of βu, βh. Nevertheless, [29] obtains various
probabilistic properties of the metastable phases, including a stronger form of correlation decay than
that of reconstruction that we consider here.
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2 Overview

In this section we give an overview of the proofs of Theorems 1.1–1.3; for now, we will mostly
work towards the proof of Theorem 1.3 which gives the main insights/tools that are needed
to prove Theorems 1.1 and 1.2.

Fortunately, to prove Theorem 1.3, we do not need to start from first principles. Instead,
we build upon the formula for the partition function Zβ(G) and its proof via the second
moment method from [22]. Additionally, we are going to seize upon facts about the non-
reconstruction properties of the Potts model on the random d-regular tree, also from [22]. We
will combine these tools with an auxiliary random graph model known as the planted model,
which also plays a key role in the context of inference problems on random graphs [15].

Throughout most of the paper, instead of the simple random regular graph G, we will
work with the random d-regular multi-graph G = G(n, d) drawn from the pairing model.
Recall that G is obtained by creating d clones of each of the vertices from [n], choosing a
random perfect matching of the complete graph on [n] × [d] and subsequently contracting the
vertices {i} × [d] into a single vertex i, for all i ∈ [n]. It is well-known that G is contiguous
with respect to G [30], i.e., any property that holds w.h.p. for G also holds w.h.p. for G.

The following notation will be handy. For a graph G and a configuration σ ∈ [q]V (G),
define a probability distribution νσ on [q] by letting

νσ(s) = |σ−1(s)|/n (s ∈ [q]).

In words, νσ is the empirical distribution of the colours under σ. Similarly, let ρG,σ ∈
P([q] × [q]) be the edge statistics of a given graph/colouring pair, i.e.,

ρG,σ(s, t) = 1
2|E(G)|

∑
u,v∈V (G)

1{uv ∈ E(G), σu = s, σv = t}.

2.1 Moments and messages

The routine method for investigating the partition function and the Boltzmann distribution
of random graphs is the method of moments [2]. The basic strategy is to calculate, one way
or another, the first two moments E[Zβ(G)], E[Zβ(G)2] of the partition function. Then we
cross our fingers that the second moment is not much larger than the square of the first.
It sometimes works. But potential pitfalls include a pronounced tendency of running into
extremely challenging optimisation problems in the course of the second moment calculation
and, worse, lottery effects that may foil the strategy altogether. While regular graphs
in general and the Potts ferromagnet in particular are relatively tame specimens, these
difficulties actually do arise once we set out to investigate metastable states. Drawing
upon [3, 16] to sidestep these challenges, we develop a less computation-heavy proof strategy.

The starting point is the observation that the fixed points of (3) are intimately related
to the moment calculation. This will not come as a surprise to experts, and indeed it was
already noticed in [22]. To elaborate, let ν = (ν(σ))σ∈[q] be a probability distribution on
the q colours. Moreover, let R(ν) be the set of all symmetric matrices (ρ(σ, τ))σ,τ∈[q] with
non-negative entries such that∑

τ∈[q]

ρ(σ, τ) = ν(σ) for all σ ∈ [q]. (6)
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Relatively standard arguments (e.g., [12, Lemma 2.7]) show that the first moment satisfies

lim
n→∞

1
n

logE[Zβ(G)] = max
ν∈P([q]),ρ∈R(ν)

Fd,β(ν, ρ), where

Fd,β(ν, ρ) = (d − 1)
∑

σ∈[q]

ν(σ) log ν(σ) − d
∑

1≤σ≤τ≤q

ρ(σ, τ) log ρ(σ, τ) + dβ

2
∑

σ∈[q]

ρ(σ, σ).
(7)

Thus, the first moment is governed by the maximum or maxima, as the case may be, of
Fd,β . The function Fd,β accounts for the contribution to E[Zβ(G)] coming from the set
Q which consists of pairs (G, σ) with νσ = ν + o(1) and ρG,σ = ρ + o(1), i.e., the sum∑

(G,σ)∈Q P[G = G]eβHG(σ) equals enFd,β(ν,ρ)+o(n).
We need to know that the maxima of Fd,b are in one-to-one correspondence with the

stable fixed points of (3). To be precise, a fixed point µ of (3) is stable if the Jacobian of (3)
at µ has spectral radius strictly less than one. Let F+

d,β be the set of all stable fixed points
µ ∈ Fd,β . Moreover, let F1

d,β be the set of all µ ∈ F+
d,β such that µ(1) = maxσ∈[q] µ(σ). In

addition, let us call a local maximum (ν, ρ) of Fd,β stable if there exist δ, c > 0 such that

Fd,β(ν′, ρ′) ≤ Fd,β(ν, ρ) − c
(
∥ν − ν′∥2 + ∥ρ − ρ′∥2)

(8)

for all ν′ ∈ P([q]) and ρ′ ∈ R(ν′) such that ∥ν − ν′∥ + ∥ρ − ρ′∥ < δ. Roughly, (8) provides
that the Hessian of Fd,β is negative definite on the subspace of all possible ν, ρ.

▶ Lemma 2.2 ([22, Theorem 8]). Suppose that d, q ≥ 3 are integers and β > 0 is a real. The
map µ ∈ P([q]) 7→ (νµ, ρµ) defined by

νµ(σ) = (1 + (eβ − 1)µ(σ))d∑
τ∈[q](1 + (eβ − 1)µ(τ))d

, ρµ(σ, τ) = eβ1{σ=τ}µ(σ)µ(τ)
1 + (eβ − 1)

∑
s∈[q] µ(s)2 (9)

is a bijection from F+
d,β to the set of stable local maxima of Fd,β. Moreover, for any fixed

point µ we have Bd,β(µ) = Fd,β(νµ, ρµ).

For brevity, let (νp, ρp) = (νµp , ρµp) and (νf , ρf) = (νµf , ρµf ). The following result character-
ises the stable fixed points F1

d,β .

▶ Proposition 2.3 ([22, Theorem 4]). Suppose that d ≥ 3, β > 0.
(i) If β < βu, then (3) has a unique fixed point, namely the paramagnetic distribution νp

on [q]. This fixed point is stable and thus Fd,β attains its global maximum at (νp, ρp).
(ii) If βu < β < βh, then F1

d,β contains two elements, namely the paramagnetic distribution
νp and the ferromagnetic distribution νf ; (νp, ρp) is a global maximum of Fd,β iff β ≤ βp,
and (νf , ρf) iff β ≥ βp.

(iii) If β > βh, then F1
d,β contains precisely one element, namely the ferromagnetic distribu-

tion νf , and (νf , ρf) is a global maximum of Fd,β.

Like the first moment, the second moment boils down to an optimisation problem as well,
albeit one of much higher dimension (q2 − 1 rather than q − 1). Indeed, it is not difficult to
derive the following approximation (once again, e.g., via [12, Lemma 2.7]). For a probability
distribution ν ∈ P([q]) and a symmetric matrix ρ ∈ R(ν) let R⊗(ρ) be the set of all tensors
r = (r(σ, σ′, τ, τ ′))σ,σ′,τ,τ ′∈[q] such that r(σ, σ′, τ, τ ′) = r(τ, τ ′, σ, σ′) for τ, τ ′, σ, σ′ ∈ [q] and∑

σ′,τ ′

r(σ, σ′, τ, τ ′) =
∑
σ′,τ ′

r(σ′, σ, τ ′, τ) = ρ(σ, τ) for all σ, τ ∈ [q]. (10)

Then, with H(·) denoting the entropy function, we have
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lim
n→∞

1
n

logE[(Zβ(G))2] = max
ν,ρ∈R(ν),r∈R⊗(ρ)

F ⊗
d,β(ρ, r), where (11)

F ⊗
d,β(ρ, r) = (d − 1)H(ρ) + d

2 H(r) + dβ

2
∑

σ,σ′,τ,τ ′∈[q]

(
1{σ = τ} + 1{σ′ = τ ′}

)
r(σ, σ′, τ, τ ′).

A frontal assault on this optimisation problem is in general a daunting task due to the
doubly-stochastic constraints in (10), i.e., the constraint r ∈ R⊗(ρ). But rather fortunately,
to analyse the global maximum (over ν and ρ), these constraints can be relaxed, permitting
an elegant translation of the problem to operator theory. In effect, the second moment
computation can be reduced to a study of matrix norms. The result is summarised as follows.

▶ Proposition 2.4 ([22, Theorem 7]). For all d, q ≥ 3 and β > 0 we have

max
ν,ρ∈R(ν),r∈R⊗(ρ)

F ⊗
d,β(ρ, r) = 2 max

ν,ρ
Fd,β(ν, ρ)

and thus E[Zβ(G)2] = O(E[Zβ(G)]2).

Combining Lemma 2.2, Proposition 2.3 and Proposition 2.4, we obtain the following reformu-
lation of [22, Theorem 7], which verifies that we obtain good approximations to the partition
function by maximising the Bethe free energy on Fd,β .

▶ Theorem 2.5. For all integers d, q ≥ 3 and real β > 0, we have lim
n→∞

n−1 log Zβ(G) =
max

µ∈Fd,β

Bd,β(µ) in probability.

While the global maximisation of the function F ⊗
d,β and thus the proof of Theorem 2.5 boils

down to matrix norm analysis, in order to prove Theorems 1.3 and 1.1 via the method
of moments we would in addition need to get a good handle on all the local maxima.
Unfortunately, we do not see a way to reduce this more refined question to operator norms
(and it seems unlikely that one exists). Hence, it would seem that we should have to perform
a fine-grained analysis of F ⊗

d,β after all. But luckily another path is open to us. Instead of
proceeding analytically, we resort to probabilistic ideas. and we harness “quiet-planting”
arguments with the notion of non-reconstruction on the Potts model on the d-regular tree.
We review the latter in the next section.

2.2 Non-reconstruction on the regular tree
Let Td be the infinite d-regular tree with root o. For a probability distribution µ ∈ {µp, µf}
we define a broadcasting process σ = σd,β,µ on Td as follows. Initially we draw the color σo

of the root o from the distribution νµ. Subsequently, working our way down the levels of the
tree, the color of a vertex v whose parent u has been coloured already is drawn from the
distribution

P [σv = σ | σu] = µ(σ)eβ1{σ=σu}∑
τ∈[q] µ(τ)eβ1{τ=σu} .

Naturally, the colours of different vertices on the same level are pairwise independent, but
not jointly since there is potentially some correlation with the root. Let ∂ℓo be the set of all
vertices at distance precisely ℓ from o. We say that the broadcasting process has the strong
non-reconstruction property if

∑
τ∈[q] E

[∣∣P [σo = τ | σ∂ℓo] −P [σo = τ ]
∣∣] = e−Ω(ℓ), where the

expectation is over the random configuration σ∂ℓo (distributed according to the broadcasting
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process). In words, this says that the information about the spin of the root inferred from
the spins of vertices at depth ℓ decays in the broadcasting process; the term “strong” refers
that the decay is exponential with respect to the depth ℓ.

▶ Proposition 2.6 ([22, Theorem 50]). Let d, q ≥ 3 be integers and β > 0 be real.
(i) For β < βh, the broadcasting process σd,β,µp has the strong non-reconstruction property.
(ii) For β > βu, the broadcasting process σd,β,µf has the strong non-reconstruction property.

In order to prove Theorems 1.1–1.3 we will combine Proposition 2.6 with reweighted
random graph models known as planted models. To be precise, we will consider two versions
of planted models, a paramagnetic and a ferromagnetic one. Then we will deduce from
Proposition 2.6 that the Boltzmann distribution of these planted models has the non-
reconstruction property in a suitably defined sense. In combination with some general facts
about Boltzmann distributions this will enable us to prove Theorems 1.1–1.3 without the
need for complicated moment computations.

2.3 Second Moment via planting and non-reconstruction
We proceed to introduce the paramagnetic and the ferromagnetic version of the planted
model. Roughly speaking, these are weighted versions of the common random regular graph
G where the probability mass of a specific graph is proportional to the paramagnetic or
ferromagnetic bit of the partition function. To be precise, for ε > 0, recall the subsets
Sp = Sp(ε), Sf = Sf(ε) of the configuration space [q]n. Letting

Zf(G) =
∑
σ∈Sf

eβHG(σ) and Zp(G) =
∑

σ∈Sp

eβHG(σ), (12)

we define random graph models Ĝf , Ĝp by

P
[
Ĝf = G

]
= Zf(G)P [G = G]

E[Zf(G)] , P
[
Ĝp = G

]
= Zp(G)P [G = G]

E[Zp(G)] . (13)

Thus, Ĝf and Ĝp are d-regular random graphs on n vertices such that the probability that
a specific graph G comes up is proportional to Zf(G) and Zp(G), respectively. Note, the
expected value of Zf(G) and Zp(G) is captured by the function Fd,β , and we have (see
Lemmas 3.2 and 3.3 in the full version)

E[Zp(G)] = nO(1) exp(nFd,β(νp, ρp)) and E[Zf(G)] = nO(1) exp(nFd,β(νf , ρf)). (14)

The key ingredient to prove Theorem 1.3 is to quantify the overlap of two typical
configurations in the conditional Boltzmann distributions (under Sf and Sp). To be precise,
for a graph G = (V, E), the overlap of two configurations σ, σ′ ∈ [q]V is defined as the
probability distribution ν(σ, σ′) ∈ P([q]2) with

νc,c′(σ, σ′) = 1
n

∑
v∈V (G)

1 {σv = c, σ′
v = c′} (c, c′ ∈ [q]).

For a graph G let σG,f denote a sample from the conditional distribution µG,β( · | Sf). and
define σG,p similarly for Sp. The following lemma studies the overlap for two configurations
in the conditional distribution µĜp,β( · | Sp), a similar lemma applies to the ferromagnetic
phase Sf , see Lemma 3.9 in the full version.
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▶ Lemma 3.8. Let d, q ≥ 3 be integers and β < βh be real. Let σĜp,p, σ′
Ĝp,p be independent

samples from µĜp,β( · | Sp). Then E
[
dTV

(
ν(σĜp,p, σ′

Ĝp,p), νp ⊗ νp
)]

= o(1).

To utilise Lemmas 3.8 and 3.9, we proceed to apply the second moment method to truncated
versions of the paramagnetic and ferromagnetic partition functions Zp, Zf where we expressly
drop graphs that violate the overlap bounds from Lemmas 3.8. Thus, we introduce the
events Ep = {G : E

[
dTV(ν(σG,p, σ′

G,p), νp ⊗ νp)] = o(1)} and the analogous event Ef for the
ferromagnetic phase. Consider now the random variables

Yp(G) = Zp(G) · 1 {G ∈ Ep} and Yf(G) = Zf(G) · 1 {G ∈ Ef}

Combining Lemma 3.8 with the Nishimori identity (17), we obtain

E[Yp]
E[Zp] = P

[
Ĝp ∈ Ep

]
∼ 1 and E[Yf ]

E[Zf ]
= P

[
Ĝf ∈ Ef

]
∼ 1

and thus E[Yp] ∼ E[Zp] and E[Yf ] ∼ E[Zf ]. Crucially, estimating the second moments of these
two random variables is a cinch because by construction we can avoid an explicit optimisation
of the function F ⊗

d,β from (11). Indeed, because we drop graphs G whose overlaps stray far
from the product measures νp ⊗νp and νf ⊗νf , respectively, we basically just need to evaluate
the function F ⊗

d,β at νp ⊗ νp and νf ⊗ νf , which is a matter of relatively simple algebra (due
to convexity arguments). We thus obtain the following.

▶ Corollary 3.10. Let d, q ≥ 3 be integers and β > 0 be real.
(i) If β < βh, then E[Yp(G)] ∼ E[Zp(G)] and E[Yp(G)2] ≤ exp(o(n))E[Zp(G)]2.
(ii) If β > βu, then E[Yf(G)] ∼ E[Zf(G)] and E[Yf(G)2] ≤ exp(o(n))E[Zf(G)]2.

At this stage, one can combine Corollary 3.10 together with (14) to derive the first two parts
of Theorem 1.3 (using also the results from Section 2.1).

3 Quiet planting and non-reconstruction

In this section we give an outline of the proof of Lemma 3.8, which was the main ingredient
to carry out the second moment method of Section 2.3.

While the planted models defined in (13) are useful for the second-moment argument,
working with them directly is rather unwieldy. Fortunately, there is a relatively simple way
out using the so-called Nishimori identities; on the way, we will also introduce some of the
ingredients that are used for the metastability/slow-mixing results.

To elaborate, we complement the definition (13) of the planted random graphs Ĝf , Ĝp
by also introducing a reweighted distribution on graphs for a specific configuration σ ∈ [q]n.
Specifically, we define a random graph Ĝ(σ) by letting

P
[
Ĝ(σ) = G

]
= P [G = G] eβHG(σ)

E[eβHG(σ)]
. (15)

Furthermore, recalling the truncated partition functions Zf , Zp from (12), we introduce
reweighted random configurations σ̂f = σ̂f(ε) ∈ [q]n and σ̂p = σ̂p(ε) ∈ [q]n with distributions

P [σ̂f = σ] = 1 {σ ∈ Sf}E[eβHG(σ)]
E[Zf(G)] , P [σ̂p = σ] = 1 {σ ∈ Sp}E[eβHG(σ)]

E[Zp(G)] . (16)

We have the following paramagnetic and ferromagnetic Nishimori identities. Nishimori
identities were derived in [15] for a broad family of planted models which, however, does
not include the planted ferromagnetic models Ĝp, Ĝf . Nonetheless, the (simple) proof of
Proposition 3.1 is practically identical to that in [15] (and is given in the full version).
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▶ Proposition 3.1. We have the distributional equalities

(Ĝp, σĜp,p) d= (Ĝ(σ̂p), σ̂p), (Ĝf , σĜf ,f)
d= (Ĝ(σ̂f), σ̂f). (17)

Proposition 3.1 paves the way for a more hands-on description of the planted models
in (13). Indeed, the random graph models (Ĝ(σ̂p), σ̂p) and (Ĝ(σ̂f), σ̂f) are invariant under
permutations of the vertices, so σ̂p and σ̂f are uniformly random given their colour statistics,
and the random graphs Ĝ(σ̂p) and Ĝ(σ̂f) themselves are uniformly random and easy to
sample given the planted assignment σ̂p or σ̂f and given the edge statistics ρĜ(σ̂p),σ̂p and
ρĜ(σ̂f),σ̂f . Moreover, because (νp, ρp) and (νf , ρf) are local maxima of the first moment
function Fd,b(ν, ρ), a first moment argument based on (8) allows us to control the vertex-edge
colour statistics very accurately, i.e., there exist c, t0 > 0 such that for all t ∈ [0, t0]

P
[
dTV

(
νσ̂p , νp

)
+ dTV

(
ρĜ(σ̂p),σ̂p , ρp

)
> t

]
≤ nO(1)e−ct2n, (18)

and similarly for the deviations from (νf , ρf) in the ferromagnetic phase (see Lemmas 3.4 and
3.5 in the full version). At this point we have handy descriptions of the models (Ĝ(σ̂p), σ̂p)
and (Ĝ(σ̂f), σ̂f), and therefore, via Proposition 3.1, (Ĝp, σĜp,p) and (Ĝf , σĜf ,f).

We will next utilise the information on the distribution of σ̂p, ρĜ(σ̂p),σ̂p to couple the
distribution of the colouring produced by the tree broadcasting process and the colouring that
σ̂p induces on the neighbourhood of some particular vertex of Ĝ(σ̂p), say v. In particular,
for ℓ = ⌈log log n⌉, the ℓ-neighbourhood of v is going to be tree-like, so conditional on the
statistics νσ̂p , ρĜ(σ̂p),σ̂p , an inductive coupling (see Lemma 3.6) shows that

dTV(σ̂p,∂ℓv, τ∂ℓo) = dℓ
(

dTV(νσ̂p , νp) + dTV(ρĜ(σ̂p),σ̂p , ρp) + n−0.99
)

.

From (18), it then follows that the last quantity is o(n−1/5) with probability 1 − o(1/n).
Hence, the colourings σ̂p,∂ℓv and τ∂ℓo can be coupled such that both are identical with
probability 1 − o(n−1/5). Consequently, from the tree broadcasting results of Proposition 2.6,
we obtain that

∑
c∈[q] E

∣∣∣νp(c) − µĜ(σ̂p),β(σv = c | σ∂ℓv = σ̂p,∂ℓv)
∣∣∣ < ℓ−3 which translates

via the Nishimori identity into∑
c∈[q]

E
∣∣∣νp(c) − µĜp,β(σv = c | σ∂ℓv = σĜp,p,∂ℓv)

∣∣∣ < ℓ−3. (19)

Proof Sketch of Lemma 3.8. Due to the Nishimori identity (17), it suffices to prove that
for a sample σĜ(σ̂p),p from µĜ(σ̂p),β( · | Sp) that

dTV
(
ν(σ̂p, σĜ(σ̂p),p), νp ⊗ νp

)
= o(1). (20)

To see (20), for colors s, t ∈ [q], we consider the first and second moment of the number
of vertices u with σ̂p(u) = s and σĜ(σ̂p),p(u) = t. To facilitate the analysis of the second
moment, it will be convenient to consider the following configuration σ′

Ĝ(σ̂p),p. Let v, w be
two random vertices such that σ̂p(v) = σ̂p(w) = s. Also let ℓ = ℓ(n) = ⌈log log n⌉. Now,
draw σ′′

Ĝ(σ̂p),p from µĜ(σ̂p),β( · | Sp) and subsequently generate σ′
Ĝ(σ̂p),p by re-sampling the

colours of the vertices at distance less than ℓ from v, w given the colours of the vertices
at distance ℓ from v, w and the event Sp. Then σ′

Ĝ(σ̂p),p has distribution µĜ(σ̂p),β( · | Sp).
Moreover, since for two random vertices v, w their ℓ-neighbourhoods are going to be disjoint
w.h.p., the reconstruction property in (19) implies that w.h.p. for all χ, χ′ ∈ [q]

P
[
σ′

Ĝp,p(v) = χ, σ′
Ĝp,p(w) = χ′ | σ̂p, Ĝ(σ̂p), v, w

]
= νp(χ)νp(χ′) + o(1). (21)
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Hence, for a colour t ∈ [q] let X(s, t) be the number of vertices u with σ̂p(u) = s

and σ′
Ĝp,p(v) = t. Then (21) shows that w.h.p. E

[
X(s, t) | σ̂p, Ĝ(σ̂p)

]
∼ n

q2 and

E
[
X(s, t)2 | σ̂p, Ĝ(σ̂p)

]
∼ n2

q4 . Thus, (20) follows from Chebyshev’s inequality. ◀

4 Metastability and Slow mixing

In this section, we prove Theorems 1.1 and 1.2. Recall from Section 1.3 the paramagnetic and
ferromagnetic states Sp(ε) and Sf(ε) for ε > 0. For the purposes of this section we will need
to be more systematic of keeping track the dependence of these phases on ε. In particular,
we will use the more explicit notation Zε

p(G) and Zε
f (G) to denote the quantities Zp(G) and

Zf(G), respectively, from (12). The following lemma, based on Theorem 1.3, reflects the fact
that νp and νf are local maxima of the first-moment function Fd,β .

▶ Lemma 4.1. Let q, d ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
constants ε′ > ε > 0, there exists constant ζ > 0 such that w.h.p. over G ∼ G, it holds that
1. If β < βh, then Zε

p(G) ≥ e−n3/4E[Zε
p(G)] and Zε′

p (G) ≤ (1 + e−ζn)Zε
p(G).

2. If β > βu, then Zε
f (G) ≥ e−n3/4E[Zε

f (G)] and Zε′

f (G) ≤ (1 + e−ζn)Zε
f (G).

Theorem 1.1 will follow by way of a conductance argument. Let G = (V, E) be a graph,
and P be the transition matrix for the Glauber dynamics defined in Section 1.4. For a set

S ⊆ [q]V define the bottleneck ratio of S to be Φ (S) =
∑

σ∈S, τ ̸∈S
µG,β(σ)P (σ,τ)

µG,β(S) . The following
lemma provides a routine conductance bound (e.g., [32, Theorem 7.3]). For the sake of
completeness the proof is included in the full version.

▶ Lemma 4.2. Let G = (V, E) be a graph. For any S ⊆ [q]V such that µG(S) > 0 and any
integer t ≥ 0 we have ∥µG,SP t − µG,S∥T V ≤ tΦ(S).

Proof of Theorem 1.1. We prove the statement for the pairing model G, the result for G
follows immediately by contiguity. Let ε′ > ε > 0 and ζ > 0 be small constants such that
Lemma 4.1 applies, and let G ∼ G be a graph satisfying the lemma. Set for convenience
µ = µG,β ; we consider first the metastability of Sf(ε) for β > βu.

Since Glauber updates one vertex at a time it is impossible in one step to move from
σ ∈ Sf(ε) to τ ∈ [q]n\Sf(ε′), i.e., P (σ, τ) = 0, and therefore

Φ
(
Sf(ε)

)
=

∑
σ∈Sf(ε)

∑
τ /∈Sf(ε) µ(σ)P (σ, τ)

µ
(
Sf(ε)

) =
∑

σ∈Sf(ε)
∑

τ∈Sf(ε′)\Sf(ε′) µ(σ)P (σ, τ)
µ

(
Sf(ε)

)
By reversibility of Glauber, for any σ, τ ∈ [q]n we have µ(σ)P (σ, τ ) = µ(τ)P (τ, σ), and there-

fore the numerator is upper-bounded by µ
(
Sf(ε′)\Sf(ε)

)
. Hence, Φ

(
Sf(ε)

)
≤ µ

(
Sf(ε′)\Sf(ε)

)
µ
(

Sf(ε)
) =

Zε′
f (G)−Zε

f (G)
Zε

f (G) ≤ e−ζn, where the last inequality follows from the fact that G satisfies
Lemma 4.1. Lemma 4.2 now ensures that for all nonnegative integers T ≤ eζn/3∥∥µ

(
· | Sf(ε)

)
P T − µ

(
· | Sf(ε)

)∥∥
T V

≤ T · Φ(Sf) ≤ e−2ζn/3. (22)

Now, consider the Glauber dynamics (σt)t≥0 launched from σ0 drawn from µG,β,Sf(ε), and
denote by Tf = min {t > 0 : σt /∈ Sf(ε)} its escape time from Sf(ε). Observe that σt has the
same distribution as µ( · | Sf(ε))P t, so (22) implies that for all nonnegative integers T ≤ eζn/3

it holds that
∣∣P [σT ∈ Sf(ε)] − 1

∣∣ < e−2ζn/3, or equivalently P [σT /∈ Sf(ε)] ≤ e−2ζn/3. By a
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union bound over the values of T , we therefore obtain that P[Tf ≤ eζn/3] ≤ e−ζn/3, thus
proving that Sf(ε) is a metastable state for β > βu. Analogous arguments show that Sp(ε)
is a metastable state for β < βh.

The slow mixing of Glauber for β > βu follows from the metastability of Sf(ε). In
particular, from Theorem 1.3 we have that

∥∥µ
(

· | Sf(ε)
)

− µ
∥∥ ≥ 3/5 and therefore, from

(22),
∥∥µ

(
· | Sf(ε)

)
P T − µ

∥∥ ≥ 1/2, yielding that the mixing time is eΩ(n). ◀

The key and much more challenging ingredient to establish Theorem 1.2 is to bound the
probability that Swendsen-Wang escapes Sp(ε) and Sf(ε). More precisely, for a graph G, a
configuration σ ∈ [q]n, and S ⊆ [q]n, let P G

SW (σ → S) denote the probability that after one
step of SW on G starting from σ, we end up in a configuration in S.

The following proposition shows that for almost all pairs (G, σ) from the ferromagnetic
planted distribution

(
Ĝ

(
σ̂f(ε)

)
, σ̂f(ε)

)
, the probability that SW leads to a configuration in

the ferromagnetic phase, slightly enlarged, is 1−e−Ω(n). Note here that SW might change the
dominant colour due to recolouring step, so, for ε > 0, we consider the set of configurations
S̃f(ε) that consists of the ferromagnetic phase Sf(ε) together with its q − 1 permutations,
and the probability that SW escapes from it, starting from a ferromagnetic state.

▶ Proposition 4.4. Let q, d ≥ 3 be integers and β ∈ (βu, βh). Then, for all sufficiently small
constants ε′ > ε > 0, there exists constant η > 0 such that with probability 1 − e−ηn over the
planted distribution (G, σ) ∼

(
Ĝ

(
σ̂f(ε)

)
, σ̂f(ε)

)
, it holds that P G

SW

(
σ → S̃f(ε′)

)
≥ 1 − e−ηn.

An analogous Proposition 4.3 applies for the paramagnetic distribution
(
Ĝ

(
σ̂p(ε)

)
, σ̂p(ε)

)
.

The proof of these Propositions requires a delicate analysis of the percolation step in SW since
we need probability bounds that are exponentially close to 1. Especially for Proposition 4.4,
the presence of a giant component (corresponding to the dominant colour) complicates the
arguments significantly since we need to take into account the underlying vertex-edge colour
statistics of

(
Ĝ

(
σ̂f(ε)

)
, σ̂f(ε)

)
) studied in Section 3. Even with Propositions 4.3 and 4.4 at

hand, concluding Theorem 1.2 requires a bit of work based on the planting ideas.

Proof Sketch of Theorem 1.2. We consider first the metastability for the ferromagnetic
phase when β > βu. Let ε′ > ε > 0 and η, ζ > 0 be small constants such that Lemma 4.1
and Proposition 4.4 apply. Let θ = 1

10 min{η, ζ}.
Let Q be the set of d-regular (multi)graphs that satisfy both items in Lemma 4.1.

Moreover, let Q′ be the set of d-regular (multi)graphs G such that the set of configurations
where SW has conceivable probability of escaping S̃f(ε′) has small weight, i.e., the set

SBad(G) =
{

σ ∈ S̃f(ε)
∣∣ P G

SW

(
σ → S̃f(ε′)

)
< 1 − e−ηn

}
has aggregate weight ZBad(G) =

∑
σ∈SBad(G) eβH(G) less than e−θnZε

f (G). For a d-regular
graph G such that G ∈ Q ∩ Q′, using arguments analogous to those for Glauber, we have
that ΦSW

(
S̃f(ε)

)
≤ 10e−θn. By arguments analogous to those in the proof of Theorem 1.1,

we have that S̃f(ε) is a metastable state for graphs G ∈ Q ∩ Q′. Therefore, to finish the
metastability proof for the random graph, it suffices to show that P(G ∈ Q ∩ Q′) = 1 − o(1).

To do this, let G(n, d) be the set of all multigraphs that can be obtained in the pairing
model and Λd,β(n) =

{
(G, σ)

∣∣ G ∈ G(n, d), σ ∈ S̃f(ε)
}

. Let E be the pairs (G, σ) ∈ Λd,β(n)
where one step of SW starting from G, σ stays within S̃f(ε′) with probability 1 − e−Ω(n),
more precisely E =

{
(G, σ) ∈ Λd,β(n)

∣∣ P G
SW

(
σ → S̃f(ε′)

)
≥ 1 − e−ηn

}
. The aggregate weight

corresponding to pairs (G, σ) /∈ E can be lower-bounded by∑
(G,σ)∈Λd,β\E

eβHG(σ) ≥
∑

G∈Q\Q′

∑
σ∈ΣBad(G)

eβHG(σ) ≥ e−θn
∑

G∈Q\Q′

Zε
f (G).
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For graphs G ∈ Q we have Zε
f (G) ≥ e−n3/4E[Zε

f (G)], and therefore

∑
(G,σ)∈Λd,β\E

eβHG(σ) ≥ e−(θn+n3/4)∣∣Q\Q′∣∣ E[
Zε

f (G)
]

= e−(θn+n3/4)∣∣Q\Q′∣∣ ∑
(G,σ)∈Λd,β

eβHG(σ)∣∣G(n, d)
∣∣

From the definition of
(
Ĝ

(
σ̂f(ε)

)
, σ̂f(ε)

)
, cf. (15),(16), observe that∑

(G,σ)∈Λd,β\E eβHG(σ)∑
(G,σ)∈Λd,β

eβHG(σ) = P
[(

Ĝ(σ̂f(ε)), σ̂f(ε)
)

∈ Λd,β\E
]

≤ e−ηn ≤ e−10θn,

where the penultimate inequality follows from Proposition 4.4 and the last from the choice of θ.
Combining the last two inequalities, we obtain P[G ∈ Q\Q′] = o(1). Since P[G ∈ Q] = 1−o(1)
from Lemma 4.1, it follows that P[G ∈ Q ∩ Q′] ≥ P[G ∈ Q] − P[G ∈ Q\Q′] ≥ 1 − o(1). This
concludes the proof for the metastability of the ferromagnetic phase S̃f(ε) when β > βu.

A similar bottleneck-ratio argument shows that Sp(ε) is a metastable state for β < βh. The
slow mixing of SW for β ∈ (βu, βh) follows from the metastability of S̃f(ε) when β ∈ (βu, βp]
and the metastability of Sp(ε) when β ∈ [βp, βh). In particular, let S ∈ {S̃f(ε), Sp(ε)} be
such that

∥∥µ
(

· | S
)

− µ
∥∥ ≥ 1/2, then Lemma 4.2 gives that for T = eΩ(n), it holds that∥∥µ

(
· | S

)
P T

SW − µ
∥∥ ≥ 1/2 − 1/10, yielding that the mixing time is eΩ(n). ◀
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On Computing the k-Shortcut Fréchet Distance
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Abstract
The Fréchet distance is a popular measure of dissimilarity for polygonal curves. It is defined as
a min-max formulation that considers all direction-preserving continuous bijections of the two
curves. Because of its susceptibility to noise, Driemel and Har-Peled introduced the shortcut Fréchet
distance in 2012, where one is allowed to take shortcuts along one of the curves, similar to the edit
distance for sequences. We analyse the parameterized version of this problem, where the number
of shortcuts is bounded by a parameter k. The corresponding decision problem can be stated as
follows: Given two polygonal curves T and B of at most n vertices, a parameter k and a distance
threshold δ, is it possible to introduce k shortcuts along B such that the Fréchet distance of the
resulting curve and the curve T is at most δ? We study this problem for polygonal curves in the
plane. We provide a complexity analysis for this problem with the following results: (i) assuming the
exponential-time-hypothesis (ETH), there exists no algorithm with running time bounded by no(k);
(ii) there exists a decision algorithm with running time in O(kn2k+2 log n). In contrast, we also
show that efficient approximate decider algorithms are possible, even when k is large. We present a
(3 + ε)-approximate decider algorithm with running time in O(kn2 log2 n) for fixed ε. In addition,
we can show that, if k is a constant and the two curves are c-packed for some constant c, then the
approximate decider algorithm runs in near-linear time.
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1 Introduction

With the prevalence of geographical data collection and usage, the need to process and
compare polygonal curves stemming from this data arises. A popular versatile distance
measure for polygonal curves is the Fréchet distance [27]. The distance measure is very similar
to the well-known Hausdorff distance for geometric sets, except that it takes the ordering
of points along the curves into account by minimizing over all possible direction-preserving
continuous bijections between the two curves. Intuitively, the distance measure can be defined
as follows. Imagine two agents independently traversing the two curves with varying speeds.
Let δ be an upper bound on the (Euclidean) distance of the two agents that holds at any
point in time during the traversal. The Fréchet distance corresponds to the minimum value
of δ that can be attained over all possible traversals.

In practice, the distance measure may be distorted by outliers and measurement errors.
As a remedy, partial similarity and distance measures have been introduced which are
thought to be more robust. Buchin, Buchin and Wang define a partial Fréchet distance [14]
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which maximizes the portions of the two curves matched to one-another within some given
distance threshold. Driemel and Har-Peled suggested the shortcut Fréchet distance [21] in
the spirit of the well-known edit distance for strings: a set of non-overlapping subcurves can
be replaced by straight edges connecting the endpoints (so-called shortcuts) to minimize
the Fréchet distance of the resulting curves. Akitaya, Buchin, Ryvkin and Urhausen [3]
introduced a variant of the Fréchet distance, where a certain number of “jumps” (backwards
and forwards) are allowed during the traversal of the two curves. We note that it has been
acknowledged in the literature that partial dissimilarity measures generally do not satisfy
metric properties [12, 25, 28].

It is conceivable that computing a partial dissimilarity based on the Fréchet distance
should be more difficult than the standard Fréchet distance because of the structure of the
optimization problems involved. We briefly discuss what is known for these problems. The
continuous Fréchet distance can be computed in O(n2polylog(n)) time for two polygonal
curves of n vertices [5, 13]. For the discrete Fréchet distance, slightly subquadratic time is
possible, as it can be computed in O( n2loglog(n)

log(n) ) time [2]. However, assuming the Strong-
Exponential-Time-Hypothesis (SETH), there is no algorithm, in either the discrete or the
continuous setting, for any ε > 0, with running time in O(n2−ε) [9, 11, 15]. Following these
works, we know that the complexity of computing the standard Fréchet distance is roughly
quadratic in the size of the input, both in the discrete and continuous setting, and this holds
for any dimension d ≥ 1. Strongly subquadratic approximation algorithms are possible for
restricted classes of curves [6, 7, 10, 22] and for large approximation factors [17, 18].

Compared to the standard Fréchet distance, the overall picture of the computational
complexity of the partial variants is much more heterogeneous. De Carufel et al. [20] showed
that the problem of computing the partial Fréchet distance is not solvable by radicals over
Q and that the degree of the polynomial equations involved is unbounded in general. On
the other hand, some variants of the partial Fréchet distance can be computed exactly in
polynomial time [14]. Computing the shortcut Fréchet distance was shown to be NP-hard
[16] when shortcuts are allowed anywhere along the curve. On the other hand, the discrete
Fréchet distance with shortcuts was shown to be computable in strictly subquadratic time
by Avraham et al. [8], which is even faster than computing the standard variant without
shortcuts. The variant defined by Akitaya et al. [3] turns out to be NP-hard, but allows for
fixed-parameter tractable algorithms.

Our contribution. In this paper, we study the computational complexity of a parameterized
version of the shortcut Fréchet distance, where the maximum number of shortcuts that may
be introduced on the curve is restricted by a parameter k. We show that assuming the
Exponential-Time-Hypothesis (ETH), no fixed-parameter tractable running time is possible
with k being the parameter. For polygonal curves in the plane, we present an exponential-time
exact algorithm and we show that near-linear time approximation algorithms are possible
using certain realistic input assumptions on the two curves.

Previous work. Driemel and Har-Peled [21] introduced the shortcut Fréchet distance and
described a near-linear time (3 + ε)-approximation algorithm for the class of c-packed curves.
However, they only allowed shortcuts that start and end at vertices of the base curve.
Buchin, Driemel and Speckmann [16] showed that, if shortcuts are allowed anywhere along
the curve, then the problem of computing the shortcut Fréchet distance exactly is NP-hard
via reduction from SUBSET-SUM. They also describe a 3-approximation algorithm for the
decision problem with running time in O(n3 log n) for the case that shortcuts may start and
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end in the middle of edges. Prior to our work, there has been no study of exact algorithms
for the shortcut Fréchet distance, with non-restricted shortcuts. Our analysis of the exact
problem therefore closes an important gap in the literature. Obtaining the exact algorithm
was surprisingly simple, once the relevant techniques were combined in the right way.

1.1 Basic definitions
▶ Definition 1 (curve). A curve T is a continuous map from [0, 1] to Rd, where T (t) denotes
the point on the curve parameterized by t ∈ [0, 1]. For 0 ≤ s < t ≤ 1 we denote the subcurve
of T from T (s) to T (t) by T [s, t]. A polygonal curve of complexity n is given by a sequence
of n points in Rd. The curve is then defined as the piecewise linear interpolation between
consecutive points.

▶ Definition 2 (Fréchet distance). Given two curves T and B in Rd, their Fréchet distance
is defined as

dF (T, B) = inf
f,g:[0,1]→[0,1]

max
t∈[0,1]

∥T (f(t)) − B(g(t))∥,

where f and g are monotone, continuous, non-decreasing and surjective. We call a pair of such
functions (f, g) a traversal. Any such traversal has the cost maxα∈[0,1] ∥T (f(α)) − B(g(α))∥
associated to it.

In our definition of the Fréchet distance given above, we follow Alt and Godau [4]. Strictly
speaking, this definition does not use bijections as for the sake of convenience the strict
monotonicity of f and g is relaxed.

▶ Definition 3 (k-shortcut curve). We call a line segment between two arbitrary points B(s)
and B(t) of a curve B a shortcut on B, where s < t and denote it by B[s, t]. A k-shortcut
curve of B is the result of replacing k subcurves B[si, ti] of B for 1 ≤ i ≤ k by shortcuts
B[si, ti] connecting their start and endpoint, with ti ≤ si+1 for 1 ≤ i ≤ k − 1.

▶ Definition 4 (k-shortcut Fréchet Distance). Given two polygonal curves T and B, their
k-shortcut Fréchet distance dk

S(T, B) is defined as the minimum Fréchet distance between T

and any k′-shortcut curve of B for some 0 ≤ k′ ≤ k. In this context, we call B the base curve
(where we take shortcuts) and T the target curve (which we want to minimize the Fréchet
distance to).

1.2 Overview of this paper
In Section 3 we present an exact algorithm for deciding if the k-shortcut Fréchet distance is
smaller than a given threshold δ. The algorithm can also be used for the non-parameterized
variant by setting k = n. Our first main result is the following theorem.

▶ Theorem 5. Let T and B be two polygonal curves in the plane with overall complexity n,
together with a value δ > 0. There exists an algorithm with running time in O

(
kn2k+2 log n

)
and space in O

(
kn2k+2)

that decides whether dk
S(T, B) ≤ δ.

Our algorithm for Theorem 5 iterates over the free space diagram by Alt and Godau [5]
in k rounds. Within the free space diagram, a direction-preserving continuous bijection
between two curves corresponds to a monotone path starting at (0, 0) and ending at (1, 1).
In each round, we compute the set of points in the parametric space of the two curves that
are reachable by using one additional shortcut. For computing the set of eligible shortcuts

ICALP 2022
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spanning a fixed set of edges, we make use of the so-called line-stabbing wedge introduced by
Guibas et al. [23]. Line-stabbing wedges were also used in the approximation algorithm by
Buchin et al [16]. In our case, since we perform exact computations, the reachable space
may be fragmented into a number of components, and this number may grow exponentially
with the number of rounds.

In Section 5 we give some evidence that this high complexity due to fragmentation is
not an artifact of our algorithm, but may be inherent in the problem itself. For this, we
assume that the exponential time hypothesis (ETH) holds. The ETH states that 3-SAT
in n variables cannot be solved in 2o(n) time [24]. Our second main result is the following
conditional lower bound.

▶ Theorem 6. Unless ETH fails, there is no algorithm for the k-shortcut Fréchet distance
decision problem in Rd for d ≥ 2, with running time no(k).

Our conditional lower bound of Theorem 6 is obtained via reduction from a variant of the
k-SUM problem, which is called k-Table-SUM. In particular, we construct a (4k + 2)-shortcut
Fréchet distance decision instance for a given k-Table-SUM instance. Our construction
is based on the NP-hardness reduction by Buchin, Driemel and Speckmann [16]. Their
reduction was from SUBSET-SUM and could not be directly applied to obtain our result.
The construction implicitly encodes partial solutions for the SUBSET-SUM instance as
reachable intervals on the edges of one of the curves. In this way, each shortcut taken by the
optimal solution implements a choice for an element to be included in the sum. The previous
reduction implemented this in the form of a binary choice, thereby leading to a number of
shortcuts that is linear in n. In our case, the number of shortcuts taken should only depend
on k and not n. Therefore, we give a new construction for a choice gadget, that allows to
choose an element from a set to be included in a partial solution while using only a constant
number of shortcuts for this choice. We remark that a tighter bound can be obtained when
assuming the k-SUM hypothesis [1].

In light of the above results, it is interesting to consider approximation algorithms and
realistic input assumptions for this problem. In Section 4 we show that there is an efficient
approximation algorithm for this problem. If we can assume that the input curves are
well-behaved, we even obtain a near-linear time algorithm for constant k. To formalize this,
we consider the class of c-packed curves, see also [22].

▶ Definition 7 (c-packed curves). For c > 0, a curve X is called c-packed if the total length
of X inside any ball is bounded by c times the radius of the ball.

The following is our third main result. Since any polygonal curve of complexity n is
c-packed for some c ≤ 2n, the theorem also implies a running time of O

(
kn2ε−5(log2(

nε−1))
for polygonal curves in the plane – without any input assumptions.

▶ Theorem 8. Let T and B be two c-packed polygonal curves in the plane with overall
complexity n, together with values 0 < ε ≤ 1 and δ > 0. There exists an algorithm with
running time in O

(
kcnε−5 log2(

nε−1))
and space in O

(
kcnε−4 log2(

ε−1))
which outputs one

of the following: (i) dk
S(T, B) ≤ (3 + ε)δ or (ii) dk

S(T, B) > δ. In any case, the output is
correct.

The main ideas that go into the proof of Theorem 8 can be sketched as follows. The
first observation is that a highly fragmented reachable space that leads to the high running
time of the exact algorithm of Theorem 5 can be approximated by limiting the number of
shortcuts that the algorithm may take. To show that the algorithm still takes the right
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B

T

p

q

T (px)

B(py)

T (qx)

B(qy)

Figure 1 Free space diagram for a base curve B and a target curve T , with the δ-free space in
gray. Marked are some grid lines with their corresponding vertex on each curve. The figure also
shows a feasible proper tunnel τ(p, q). The shortcut B[py, qy] is shown in purple, and the subcurve
T [px, py] in green. The price of τ(p, q) is the Fréchet distance of the shortcut and the subcurve.

decisions (within the approximation bounds), we make use of a property of shortcut prices
that was first observed by Driemel and Har-Peled [21]. Namely, the price of a shortcut is
approximately monotone and it suffices in each round to take the ‘shortest‘ feasible shortcut
among all shortcuts that are available. Now, the main challenge as compared to the algorithm
in [21] is that this shortcut may still start in the middle of an edge. Thus, we would need to
invoke the line-stabbing wedges, but this would be too expensive. Instead, we use a data
structure by Driemel and Har-Peled [21] that allows to query the Fréchet distance of a line
segment to a subcurve. We combine this with a scheme to simulate an approximation of the
output of the line-stabbing wedge with queries to this data structure. In particular, we can
approximate the line-stabbing wedge with a convex hull of a set of grid points. However, this
is still not enough, as the free-space may have quadratic complexity. To obtain a near-linear
running time for small c, we make use of the property of c-packed curves as observed by
Driemel, Har-Peled and Wenk [22], that the complexity of the free space diagram of two
c-packed curves is only linear in c · n when the curves are appropriately simplified.

2 Preliminaries

Our algorithm uses the free space diagram which was introduced by Alt and Godau [5] for
computing the standard Fréchet distance.

▶ Definition 9 (Free space diagram). Let T and B be two polygonal curves in Rd. The free
space diagram of T and B is the joint parametric space [0, 1]2 together with a not necessarily
uniform grid, where each vertical line corresponds to a vertex of T and each horizontal line
to a vertex of B (refer to Figure 1). We call the cell of the parametric space corresponding to
the ith edge of the target curve and the jth edge of the base curve Ci,j . The δ-free space of T

and B is defined as

Dδ(T, B) =
{

(x, y) ∈ [0, 1]2 | ∥T (x) − B(y)∥ ≤ δ
}

This is the set of points in the parametric space whose corresponding points on B and T are
at a distance at most δ. Denote by D(i,j)

δ (T, B) = Dδ(T, B) ∩ Ci,j the δ-free space inside the
cell Ci,j.

In the following T and B will often be fixed, thus we will simply write Dδ. It is known
that D(i,j)

δ is convex and has constant complexity. More precisely, it is an ellipse intersected
with the cell Ci,j . Furthermore the Fréchet distance between two curves is less than or equal
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to δ if and only if there exists a monotone path (in x and y) in the free space that starts
in the lower left corner (0, 0) and ends in the upper right corner (1, 1) cf. [5]. In the case
of the k-shortcut Fréchet distance we need to also consider shortcuts when traversing the
parametric space. When considering any k-shortcut curve B′ of B and any traversal (f, g) of
B′ and T with associated cost δ, then (f, g) induces traversals (f ′, g′) with associated cost at
most δ on every shortcut B[s, t] and some corresponding subcurve T [u, v] of T . To capture
this, we use the notion of tunnels which was introduced in [21] and is defined as follows.

▶ Definition 10 (Tunnel). A tunnel τ(p, q) is a pair of points p = (xp, yp) and q = (xq, yq)
in the parametric space of B and T , with xp ≤ xq and yp ≤ yq. τ(p, q) is called feasible if p

and q are in Dδ. We say that a tunnel is proper, if the endpoints of the shortcut do not lie
on the same edge of B. We say a tunnel has a price prc(τ(p, q)) = dF (T [xp, xq], B[yp, yq]),
refer to Figure 1.

▶ Observation 11. Given line segments ab and cd in Rd, then for the Fréchet distance we
have dF (ab, cd) = max(||a − c||, ||b − d||).

▶ Definition 12 (Reachable space). We define the (δ, s)-reachable free space of T and B

Rδ,s(T, B) = {(xp, yp) ∈ [0, 1]2 | ds
S(T [0, xp], B[0, yp]) ≤ δ}

and again R(i,j)
δ,s (T, B) = Rδ,s(T, B) ∩ Ci,j. We call the intersection R(i,j)

δ,s (T, B) ∩ Ca,b for
any (a, b) ∈ {(i − 1, j), (i, j − 1), (i + 1, j), (i, j + 1)} a reachability interval of the cell Ci,j.
In particular for (a, b) ∈ {(i − 1, j), (i, j − 1)} we call them incoming reachability intervals
and for (a, b) ∈ {(i + 1, j), (i, j + 1)} we call them outgoing reachability intervals.

Note that the reachability intervals for every cell Ci,j and s are contained in ∂Ci,j , and
each reachability interval is described by a (possibly empty) single interval, since any two
points in the reachability interval can be connected via a monotone path that stays inside
the δ-free space. We will simply write Rδ,s and R(i,j)

δ,s whenever T and B are fixed. The
k-shortcut Fréchet distance of T and B is at most δ if and only if (1, 1) ∈ Rδ,k.

We want to reduce the problem of deciding the k-shortcut Fréchet distance to the problem
of deciding on the existence of a monotone path in the free space diagram with k tunnels
starting in (0, 0) and ending in (1, 1). Note that any tunnel τ(p, q) with p = (xp, yp) and
q = (xq, yq), that is not proper, induces a traversal of B[yp, yq] = B[yp, yq] and T [xp, xq].
Thus we can omit the tunnel and replace it with a monotone path from p to q in Dδ.
Therefore, in the following, we only consider monotone paths with proper tunnels.

▶ Definition 13 (Monotone path with tunnels). A monotone path with k proper tunnels in
the δ-free space of two curves consists of k + 1 monotone (in x and y) paths in the δ-free
space from si to ti for 1 ≤ i ≤ k + 1, with s1 = (0, 0), such that ti lies to the left and below
si+1, for 1 ≤ i ≤ k. The k proper tunnels have the form τ(ti, si+1) for 1 ≤ i ≤ k.

▶ Observation 14. Let T and B be two polygonal curves. The set Rδ,s(T, B) is exactly the
set of points p ∈ Dδ(T, B) such that there exists a monotone path ending in p with at most s

proper tunnels, each of price at most δ. (By definition, these paths have to start at (0, 0)).

To decide whether a cell is reachable by a tunnel, we need to check if there exists a
shortcut edge that stabs through an ordered set of disks centered at a subset of the vertices
of the other curve. To formalize this, we use the notion of ordered stabbers and line-stabbing
wedges as defined by Guibas et al. [23].
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O1

O2

O3

O4

O5

O6

Figure 2 Example for the line-stabbing wedge for a line segment O1 and disks O2, . . . , O6. The
line-stabbing wedge is shown in gray, with its boundary in blue.

▶ Definition 15 (Line-stabbing wedge). Given a sequence of n convex objects O1, . . . , On, an
ordered stabber of this sequence is a line segment l(x) = (1 − x)s + xt from s to t, such that
points 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1 exist with pi = l(xi) ∈ Oi. We call pi the realising points
of l. We say that l stabs through O1, . . . , On. We call the set of points t that are endpoints
of ordered stabbers of O1, . . . , On the line-stabbing wedge of this sequence.

In their paper, Guibas et al. give an algorithm to compute the line-stabbing wedge for
a sequence of n unit disks as well as convex polygons of constant size, with running time
O(n log n). This line-stabbing wedge is described by O(n) circular arcs, and two tangents
that go to infinity (see Figure 2). These instances can be scaled, such that we can use any
sequence of disks {bδ(p1), . . . , bδ(pn)}, where all disks have the same radius (bδ(p) denotes
the closed disk of radius δ centered around p).

▶ Observation 16. Let T, B and δ be given. Denote by vk the vertices of T . For any feasible
tunnel τ(p, q) with p = (xp, yp) ∈ Ca,b and q = (xq, yq) ∈ Ci,j, it holds that B[yp, yq] stabs
through the ordered set {bδ(va+1), . . . , bδ(vi)}, if and only if the price of τ(p, q) is at most δ.

3 Exact decider algorithm

In this section we describe an exact decider algorithm for the k-shortcut Fréchet distance for
two polygonal curves. The algorithm can also be used to solve the decision problem of the
(unparameterized) shortcut Fréchet distance by setting k = n. We first describe the algorithm
and then analyse its correctness and running time in Section 3.2. The full correctness proof
can be found in [19].

3.1 The Algorithm
We are given a parameter k, a value δ and the two polygonal curves T and B in the plane.
Our algorithm iterates over the δ-free space diagram of T and B in k rounds. In each round,
based on the computation of the previous round, we compute the set of points that are
reachable by using one additional shortcut. The goal is to compute the (δ, s)-reachable space
Rδ,s(T, B) in round s. In each round, we handle the cells of the free space diagram in a
row-by-row order, and within each row from left to right. For every cell Ci,j we consider
three possible ways that a monotone path with proper tunnels can enter.
1. The monotone path could enter the cell Ci,j from the neighboring cell Ci−1,j to the left

or from the neighboring cell Ci,j−1 below. This does not directly involve a tunnel.
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a) Ns
i,j b) V s

i,j c) Q(Ds
i,j) ∩ D(i,j)

δ d) Q(Ns
i,j ∪Ds

i,j ∪ V s
i,j) ∩ D(i,j)

δ

I

Figure 3 Example of the composition of the reachable space within a single free-space cell. The
lightblue sets in c) (resp. d)) contain all the points reachable via monotone paths inside the cell
reachable from Ds

i,j (resp. Ns
i,j ∪ Ds

i,j ∪ V s
i,j) computed via Q(·) ∩ D(i,j)

δ . The fragmentation of the
reachable space in this cell P s

i,j = Q(Ns
i,j ∪ Ds

i,j ∪ V s
i,j) ∩ D(i,j)

δ results in a large family of intervals I

on the edge of B.

2. The monotone path could reach Ci,j with a proper tunnel. We distinguish between
vertical and diagonal tunnels (compare [16, 21] for a similar distinction).

(i) The tunnel may start in any cell Ca,b with a < i and b < j. We call this a diagonal
tunnel.

(ii) The tunnel may start in any cell Ci,b for b < j. We call this a vertical tunnel.

Using this distinction, we will describe how to compute the set of points reachable by
a monotone path with s proper tunnels, for each cell of the diagram. We denote the set
computed by the algorithm for cell Ci,j in round s with P s

i,j . The (δ, s)-reachable space is
then obtained by taking the union of these sets over all rounds R(i,j)

δ,s =
⋃

0≤s′≤s P s′

i,j .
After k rounds, the algorithm tests whether the point (1, 1) is contained in our computed

set of reachable points. If this is the case, then the algorithm returns “dk
S(T, B) ≤ δ”,

otherwise the algorithm returns “dk
S(T, B) > δ”.

Propagating reachability within a cell. To simplify the description of the algorithm, we
use the following set function which receives a set P ⊆ Ci,j for some cell Ci,j and which
extends P to all points above and to the right of it.

Q(P ) = {(x, y) ∈ [0, 1]2 | ∃(a, b) ∈ P such that a ≤ x and b ≤ y}

We will usually intersect this set with D(i,j)
δ to obtain all points that are reachable from a

point of P by a monotone path that stays inside the δ-free space of this cell. Figure 3 c)
shows an example of the resulting set. Note that the boundary of the resulting set can be
described by pieces of the boundary of D(i,j)

δ , pieces of the boundary of P , and horizontal
and vertical line segments.

Step 1: Neighbouring cells. Since we traverse the cells of the diagram in a lexicographical
order, we have already computed the (possibly empty) sets P s

i−1,j and P s
i,j−1, by the time we

handle cell Ci,j in round s. Therefore, we can compute the incoming reachability intervals
by intersecting P s

i−1,j and P s
i,j−1 with Ci,j . Now we apply the function Q to these sets and

denote the result with Ns
i,j (refer to Figure 3 a):

Ns
i,j =

(
Q(P s

i−1,j ∩ Ci,j) ∪ Q(P s
i,j−1 ∩ Ci,j)

)
∩ D(i,j)

δ
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s t

J

W
T

B

δ

Figure 4 Example of the set J (in red) computed by the diagonalTunnel procedure.

Step 2 (i): Diagonal tunnels. We invoke the following procedure for every a < i and b < j

with P s−1
a,b . We denote the union of resulting sets of points in D(i,j)

δ computed in this step
with Ds

i,j .
The procedure is given a set of points P s−1

a,b in the δ-free space D(a,b)
δ and computes all

points in D(i,j)
δ that are endpoints of tunnels starting in P s−1

a,b with price at most δ. The
procedure first projects P s−1

a,b onto the edge eb of the base curve. The resulting set consists
of disjoint line segments I = {s1 t1, . . .} along eb (refer to Figure 3 d) ). The procedure then
computes the line-stabbing wedge W through s1 t1 and disks bδ(va+1), . . . , bδ(vi) centered at
vertices of T . W is then intersected with the edge ej , resulting in a set J on ej corresponding
to a horizontal slab in Ci,j (compare Figure 3 c) and Figure 4 ). This resulting set is then
intersected with D(i,j)

δ to obtain all endpoints of feasible shortcuts with price at most δ

starting in s1 t1. The procedure performs the above steps for every line segment s t ∈ I and
returns the union of these sets. The resulting set may look as illustrated in Figure 3 c).

Step 2 (ii): Vertical tunnels. Let p denote a point in
⋃

l≤j−1 P s−1
i,l with minimal x-

coordinate, i.e., a leftmost point in this set. A feasible vertical tunnel always has price at
most δ, as the Fréchet distance of two line segments is bounded by the maximal euclidean
distance of the start points or end points. Therefore, we simply take all points in the δ-free
space to the right of p in the cell Ci,j . To do this, we compute the intersection of a halfplane
that lies to the right of the vertical line at p with the δ-free space in Ci,j . We denote this set
with V s

i,j . Refer to Figure 3 b) for an example.

Putting things together. Finally, we compute the set P s
i,j by taking the union of the

computed sets and extending this set by using the function Q defined above:

P s
i,j = Q(Ns

i,j ∪ Ds
i,j ∪ V s

i,j) ∩ D(i,j)
δ

It remains to specify the initialization: We define P 0
1,0 = P 0

0,1 = {(0, 0)}, if (0, 0) ∈ Dδ, and
otherwise P 0

1,0 = P 0
0,1 = ∅. In addition we define P −1

i,j = ∅ for all i, j.

3.2 Analysis
We argue that the structure of P s

i,j as computed by the algorithm is indeed as claimed.
Namely for all i, j and s it holds that R(i,j)

δ,s =
⋃

0≤s′≤s P s′

i,j . The main argument of the
proof consists of considering any monotone path with s proper tunnels ending in some cell.
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Correctness then follows via induction over the lexicographical ordering of the cells in each
round, and by induction over all rounds. The full proof of correctness can be found in [19].
Here, we provide an analysis of the running time of the algorithm.

▶ Lemma 17. Let T and B be two polygonal curves in the plane with overall complexity n,
together with a distance threshold δ > 0. The algorithm described in Section 3.1 has running
time in O(kn2k+2 log n) and uses O(kn2k+2) space.

Proof. Note that the sets Ns
i,j , Ds

i,j and V s
i,j computed by the algorithm are described as

intersections of D(i,j)
δ with halfplanes and horizontal slabs, and unions of these. For a fixed

P s
i,j we define ni,j,s as the total number of such operations from which P s

i,j was obtained. As
such, O(ni,j,s) bounds the complexity of this set.

The complexity of Ns
i,j and V s

i,j is constant. The complexity of Ds
i,j is bounded by the

sum of the complexities of all cells to the lower left:

ni,j,s ∈ O

 ∑
0≤a<i

∑
0≤b<j

na,b,s−1

.

As i, j ≤ n, and s ≤ k, and na,b,0 ∈ O(1) for all a and b, it holds that ni,j,s ∈ O(n2k).
Computing Ds

i,j takes O(
∑

a<i

∑
b<j na,b,s−1 log n + n2 log n) = O(n2k log n) time. This

follows from the fact, that we compute O(n) line-stabbing wedges, and for every cell Ca,b

with a < i and b < j we handle na,b,s−1 line segments based on P s−1
a,b . Computing Ns

i,j takes
O(ni−1,j,s + ni,j−1,s) = O(n2k) time, as we need to compute the reachability intervals from
neighbouring cells. Computing V s

i,j takes O(
∑

b<j ni,b,s−1) = O(n2k−1) time, as we need to
compute the leftmost point ls−1

i,j−1. The space required to store P s
i,j as required by latter

iterations and cells is in O(n2k). Computing Q(Ns
i,j ∪ V s

i,j ∪ Ds
i,j) takes linear time in the

complexity of Ns
i,j ∪ V s

i,j ∪ Ds
i,j , i.e. O(n2k). As we do this for every cell in every round, the

running time overall is O(kn2k+2 log n), and the space is bounded by O(kn2k+2). ◀

Lemma 17 together with the claimed correctness then imply Theorem 5. The algorithm
can also be used for the (unparameterized) shortcut Fréchet distance by choosing k = n,
since there can be at most n proper tunnels. We obtain the following corollary.

▶ Corollary 18. Let T and B be polygonal curves in the plane with overall complexity n

and let δ > 0. There exists an algorithm with running time in O
(
n2n+3 log n

)
and space in

O
(
n2n+3)

that decides whether the shortcut Fréchet distance of T and B is at most δ.

4 Approximate decision algorithm

In this section we describe a (3 + ε)-approximation algorithm for the decision problem of
the k-shortcut Fréchet distance of two polygonal curves in the plane. The algorithm has
running time near-linear in n for c-packed curves. For general curves the running time is
still polynomial in n and linear in k.

4.1 The modified algorithm
We describe how to modify the algorithm of Section 3 to circumvent the exponential complexity
of the reachable space and obtain a polynomial-time approximation algorithm.

Let two polygonal curves T and B be given, together with a distance threshhold δ and
approximation parameter ε. As before, the algorithm iterates over the cells of the free-space
diagram and computes sets Ns

i,j , V s
i,j , and Ds

i,j for each cell Ci,j . The main difference is
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now that, instead of computing the exact set of points that can be reached by a diagonal
tunnel, we want to use an approximation for this set. For this, we define an approximate
diagonal tunnel procedure, see further below. This procedure is called with the rightmost
point rs−1

i−1,j−1 in
⋃

a<i;b<j P s−1
a,b , ε and δ′ = 3δ. Crucially, the set resulting from one call to

the procedure has constant complexity and is sufficient to approximate the set Ds
i,j . We then

compute P s
i,j = Q(Ns

i,j ∪ Ds
i,j ∪ V s

i,j) ∩ D(i,j)
δ , similarly to Section 3. From this we compute

(i) the leftmost point ls
i,j in

⋃
b≤j P s

i,b based on P s
i,j and ls

i,j−1, (ii) the rightmost point rs
i,j

in
⋃

a≤i;b≤j P s
a,b based on P s

i,j , rs
i−1,j and rs

i,j−1, and (iii) the outgoing reachability intervals
of P s

i,j . We store these variables to be used in the next round. Finally, after k rounds, we
check if (1, 1) is contained in the computed set of reachable points.

Our approximate diagonal tunnel procedure makes use of a data structure by Driemel
and Har-Peled, which is summarized in the following lemma. This data structure needs to
be built once on T in the beginning and is then available throughout the algorithm.

▶ Lemma 19 (distance oracle [21]). Given a polygonal curve Z with n vertices in Rd and
ε > 0, one can build a data structure Fε in O

(
χ2n log2 n

)
time, that uses O

(
nχ2)

space
such that given a query segment p q and any two points u and v on the curve, one can
(1 + ε)-approximate dF (p q, Z[u, v]) in O

(
ε−2 log n log log n

)
time, where χ = ε−d log

(
ε−1)

.

▶ Definition 20 (Grid). We define the scaled integer grid Gδ =
{

(δx, δy) | (x, y) ∈ Z2}
.

Approximate diagonal tunnel procedure. The procedure is described by Algorithm 1.
The procedure is provided with parameters ε, δ, some r′ = (rT , rB) in cell Ca,b and the
edge ej that is associated with a cell Ci,j . We want to compute a set of stabbers starting
at r = B(rB) that contains every stabber through the disks bδ(va+1), . . . , bδ(vi), and is
contained in the set of all stabbers through disks of radius (1 + ε)2δ centered at the same
vertices. We approximate this set of stabbers as follows.

We iterate over all grid points t of G δε√
2

inside the disk b(1+ε)δ(vi), and make queries to
Fε to determine if the Fréchet distance of the query segment r t to the subcurve of T from
T (rT ) to vi is sufficiently small. We mark t if the approximate distance returned by the data
structure is at most (1 + ε)2δ. We then compute the convex hull H of all marked grid points,
and the two tangents t1 and t2 of H through B(rB). The true set of endpoints of stabbers is
approximated by the set H ′ of points that lie inside and ’behind’ the convex hull H , from the
perspective of r. Figure 5 illustrates this. We then intersect H ′ with the edge ej resulting in
a single horizontal slab in Ci,j , which is then intersected with D(i,j)

δ and returned.

4.2 Correctness of the approximate diagonal tunnel procedure
We denote with {bδ(vi)}i a sequence of disks {bδ(v1), . . . , bδ(vm)} for some m.

▶ Lemma 21. Let a, b1, b2 ∈ Rd together with a sequence of vertices v1, . . . , vn be given. If
a b1 stabs through disks {bδ(vi)}i, and a b2 stabs through {bδ(vi)}i, then for any t ∈ [0, 1] the
line segment a b(t) stabs through {bδ(vi)}i, where b(t) = (1 − t)b1 + tb2.

Proof. Refer to Figure 6. We can interpret the setting as a triangle with sides (b1 − a),
(b2 − a), (b1 − b2), where the first two sides correspond to the original stabbers and the
last side to b(t). Note that any line segment a b(t) lies completely within this triangle with
(b1 − a) on the one and (b2 − a) on the other side. Hence, for every i and realising points
pi of a b1 and qi of a b2, pi lies on the one and qi on the other side of a b(t). Since bδ(vi) is
convex and pi and qi are inside this disk, the intersection of pi qi and a b(t) is inside the disk
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va+1

vi−1

vi

(1 + ε)δ

(1 +
ε)δ

δ

r

p2

p1

t1

t2

H ′

H

Figure 5 Illustration to the approximate diagonal tunnel procedure. The true line-stabbing
wedge for disks with radius δ is shown in blue. The convex hull of eligible grid points is shown in
red. The approximate line stabbing wedge is shown in green.

b1

b2

a

bδ(v1)

bδ(v2)
bδ(v3)

bδ(v4)

p1

q1

r1

p4

q4

r4

δ

v2v3

v1

v4
b(t)

Figure 6 Linear interpolation between two δ-stabbers starting in a. Illustrations to the proof of
Lemma 21. In blue a b(t), and in red pi qi is illustrated. Their intersections form the realising points
ri of a b(t).

as well. Call this intersection point ri. The set {ri}i are realising points for a b(t). This
follows directly from the fact that {pi}i and {qi}i are ordered along their respective line
segments, and thus pi qi never crosses another pj qj . Thus for i < j, ri appears before rj

along a b(t), implying the claim. ◀

▶ Lemma 22. Let a1, a2, b1, b2 ∈ R2 together with a sequence of vertices v1, . . . , vn be given.
If a1 b1 stabs through {bδ(vi)}i, and ∥a1 − b1∥ ≤ δ′ and ∥a2 − b2∥ ≤ δ′, then a1 b1 stabs
through {bδ+δ′(vi)}i.

Proof. By Observation 11, dF (a1 b1, a2 b2) ≤ δ′, via the reparametrizaion (f, g) with f(t) =
(1 − t)a1 + ta2 and similarly g(t) = (1 − t)b1 + tb2. As p = a1 b1 stabs through {bδ(vi)}i,
there exist realising points pi along p, with pi lying in the δ-disk centered at vi. Then

∥g(f−1(vi)) − vi∥ ≤ ∥g(f−1(vi)) − pi∥ + ∥pi − vi∥ ≤ δ′ + δ.

Additionally, qi = g(f−1(vi)) are ordered along q = a2 b2, proving the claim. ◀

▶ Lemma 23. Given r′ = (rT , rB) ∈ Ca,b, and edge e of B corresponding to the cell Ci,j, ε

and δ like in the approximate diagonal tunnel procedure. Denote by Sδ the set of endpoints
of all δ-stabbers (that is, stabbers through bδ(vm) for a + 1 ≤ m ≤ i) on the edge ej starting
at r = B(rB) and let C ′ be the point set computed by the algorithm. Then

Sδ ⊆ C ′ ⊆ S(1+ε)2δ.
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Algorithm 1 Approximate Diagonal Tunnel.

1: procedure apxDiagonalTunnel((rT , rB), (i, j), ε, δ)
2: Let r = B(rB)
3: //r is the starting point of the shortcut
4: for t ∈

(
G δε√

2
∩ b3(1+ε)δ(vi)

)
do

5: Query Fε for the distance dFε
(r t, T [rT , vi]) and store the answer in δ′

6: if δ′ ≤ (1 + ε)2δ then
7: Mark t as eligible
8: //t is an eligible endpoint of a shortcut
9: Compute the convex hull H of eligible points

10: if r ∈ H then
11: Return C = D(i,j)

δ

12: else
13: Let U be the cone with apex r formed by tangents t1 and t2 from r to H

14: Let pi ∈ H be a supporting point of the tangent ti for i ∈ {1, 2}
15: Let L be the subchain of ∂H with endpoints p1 and p2 which is facing r

16: Let H ′ ⊂ U be the set bounded by L and the rays supported by t1 and t2 facing
away from r

17: Let C ′ be the intersection of H ′ with ej

18: Return C = (ei × C ′) ∩ D(i,j)
δ

Proof. Let y ∈ C ′. Then q = B(y) ∈ H ′ where H ′ is set of points computed by the algorithm.
Denote the intersection of r q and the boundary of H ′ by h. h is then a linear combination
of at most two grid points whose stabbers from r have been marked as eligible i.e. who are
(1 + ε)2δ-stabber. Hence, Lemma 21 implies that r q is also a (1 + ε)2δ-stabber, implying
C ′ ⊆ S(1+ε)2δ. Now let q ∈ e be an arbitrary point such that r q is a δ-stabber. Let t be
the last realising point of r q. The line segment r t is a δ-stabber and t lies in bδ(vi). We
claim that t lies in H. Consider the set G = G δε√

2
∩ bεδ(t). By the scale of the grid, t lies

within the convex hull of G. Moreover G ⊂ b(1+ε)δ(vi). Lemma 22 implies that r t′ is a
((1 + ε)δ)-stabber for any t′ ∈ G. This in turn implies that for the first point s′ of r t′ inside
bδ(1+ε)(va), s′ t′ is a ((1 + ε)δ)-stabber, hence, t′ would have been marked as an eligible
endpoint of a ((1 + ε)2δ)-stabber. Since H is the convex hull of eligible points, it follows
that t ∈ conv(G) ⊂ H. Therefore q ∈ H ′ and thus q ∈ C ′. ◀

4.3 Result
We argue that the structure of P s

i,j as approximated by the algorithm is indeed as claimed.
Namely for all i, j and s it holds that R(i,j)

δ,s ⊂
⋃

0≤s′≤s P s′

i,j ⊂ R(i,j)
3(1+ε)2δ,s. The full proof can

be found in [19]. We again consider any monotone path with s proper tunnels ending in
some cell and show the set inclusion by induction. Indeed, it suffices to consider the tunnel
starting in the rightmost reachable point in the lower left quadrant of the cell, if we call the
approximate diagonal tunnel procedure with a distance threshold δ′ = 3δ. This is implied
by a lemma by Driemel and Har-Peled concerning the structure of prices of tunnels. The
lemma states that if a feasible tunnel τ(r, q) costs more than 3δ then any feasible tunnel
τ(p, q) with xp ≤ xr costs more than δ.
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▶ Lemma 24 (monotonicity of tunnels [21]). Given a value δ > 0 and two curves T1 and
T2 such that T2 is a subcurve of T1, and given two line segments B̄1 and B̄2 such that
dF (T1, B̄1) ≤ δ and the start (resp. end) point of T2 is within distance δ to the start (resp.
end) point of B̄2, then dF (T2, B̄2) ≤ 3δ.

The proof of the following theorem is very similar to the proof of Theorem 5. We invoke
the algorithm of Section 4.1 with approximation parameter ε′ = ε/9 and distance threshold δ,
as 3(1 + ε′)2 ≤ (3 + ε)δ. The main difference is the approximation of the set of points
reachable by a diagonal tunnel.

▶ Theorem 25. Let T and B be two polygonal curves in the plane with overall complexity n,
together with values 0 < ε ≤ 1 and δ > 0. There exists an algorithm with running time in
O

(
kn2ε−5 log2(

nε−1))
and space in O

(
kn2ε−4 log2(

ε−1))
which outputs one of the following:

(i) dk
S(T, B) ≤ (3 + ε)δ or (ii) dk

S(T, B) > δ. In any case, the output is correct.

The running time of this algorithm can be improved even more for the special class
of c-packed curves. For this, we use a known approximation scheme (see [22, 21, 7]) that
uses µ-simplifications, which are a kind of approximation of the input curves. Crucially,
the free-space diagram of two µ-simplifications of c-packed curves consists of only O(cnε−1)
many non-empty cells, if µ is chosen in the right way. These non-empty cells can be found
using standard techniques in an output-sensitive manner.

Concretely, our algorithm first computes µ-simplifications of T and B, with µ = ε′′δ′′

where ε′′ = ε/20 and δ′′ = (1 − 2ε′′), and then invokes the algorithm of Section 4.1 on the
simplifications with distance threshold δ′′ and approximation parameter ε′′. From this, we
obtain the following theorem. The detailed analysis can be found in [19].

▶ Theorem 8. Let T and B be two c-packed polygonal curves in the plane with overall
complexity n, together with values 0 < ε ≤ 1 and δ > 0. There exists an algorithm with
running time in O

(
kcnε−5 log2(

nε−1))
and space in O

(
kcnε−4 log2(

ε−1))
which outputs one

of the following: (i) dk
S(T, B) ≤ (3 + ε)δ or (ii) dk

S(T, B) > δ. In any case, the output is
correct.

5 Hardness

We prove that the decision problem cannot be solved in no(k) time, unless ETH fails. The
full description can be found in [19]. We describe how to modify the NP-hardness reduction
by Buchin, Driemel and Speckmann from [16] to suit our needs.

5.1 General idea
Our reduction from ETH works via the following intermediate problem. This link is facilitated
by Pătraşcu and Williams [26].

▶ Definition 26 (k-Table-SUM). We are given k lists S1, . . . , Sk of n non-negative integers
{si,1, . . . , si,n} and a non-negative integer σ. We want to decide whether there are indices
ι1, . . . , ιk such that

∑k
i=1 si,ιi

= σ. We call σj =
∑j

i=1 si,ιi
the jth partial sum.

Based on a k-Table-SUM instance we describe how to construct a (4k + 2)-shortcut
Fréchet distance instance consisting of the target curve T and the base curve B with the
property, that they have a distance of 1 if and only if the underlying instance has a solution.



J. Conradi and A. Driemel 46:15

bi−1∗ ai−1∗vi−1∗

pi1

dj

d1 c1

cj

vi1

pi2

d′1 c′1

c′j

d′j vi2

b
a = a1

aj

b1bj vi3

bi∗ ai∗xij vi∗

1

−1

αj

0

α′j

pi3 pi4

{γsi,j

Figure 7 Schematic view of the path of a shortcut curve (in blue) through the gadget gi in
the case, where si,j is selected from the ith list. Most top indices i are omitted. Furthermore, for
presentation the mirror edges have horizontal overlap, while in the construction they do not.

The target curve T will lie on a horizontal line mostly going to the right. The only
exceptions being so called twists. Twists force shortcuts traversing it to go through precisely
one point, called its focal point. These twists are constructed by going a distance of 2 to the
left, before continuing rightwards. Refer to Figure 8, points p1, · · · , p4 and Figure 7, points
pi

1, · · · , pi
4.

The set of points in R2 which have a distance of at most 1 to the target curve we will call
the hippodrome. The base curve will consist of several horizontal edges going to the left close
to the boundary of the hippodrome. All other edges of the base curve will (essentially) lie
outside the hippodrome. Exceptions have to be considered carefully. Any shortcut curve of
B that has Fréchet distance of at most 1 to T we will call feasible. It is easy to see that any
feasible shortcut curve must lie completely in the hippodrome. Since any edge of the base
curve inside the hippodrome lies close to the boundary of it and is oriented in the opposite
direction of the base curve, no feasible shortcut curve contains a large subcurve of the base
curve. We will not place any edges of the base curve too close to twists, so that a shortcut
must be taken to traverse these.

Intuitively we can think of the horizontal edges of the base curve as mirrors that disperse
incoming light in all directions and focal points as a wall with a hole, like in a pinhole camera.
A shortcut curve can be thought of as the path of a photon that tries to traverse this instance.
It bounces from mirror to mirror, always passing through a focal point. A feasible shortcut
curve exists if and only if it is possible to send a photon from the beginning of the base curve
to the very end.

The instance as a whole can be segmented into gadgets, with a special gadget at the start
and end, used to initialize and verify the solution (c.f. [16]). In between these, k gadgets will
be placed, encoding one of the lists each from the k-Table-SUM instance.

5.2 Construction of the gadgets
In this section, we describe three gadgets: the encoding gadget gi, the initialization gadget g0
and the terminal gadget gk+1. The base curve and the target curve pieces of these gadgets are
then connected in the order of i. The encoding gadget is the heart-piece of our construction
and constitutes the main difference to the NP-hardness reduction presented in [16].

Encoding gadget. The overall structure of a gadget gi for some 1 ≤ i ≤ k is depicted in
Figure 8. This gadget will encode the ith table Si = {si,1, . . . , si,n} of the k-Table-SUM
instance. As for the parameters, λi is the length of the entry edge, determined by the
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Figure 8 Detailed view of the construction of the encoding gadget. Mirror edges are red, connector
edges blue and the target curve is green. Projection cones are black.
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previous gadget gi−1, and β is a global spacing parameter. The parameters δi and δ′i are
auxiliary parameters, with δ′i = λi + ε and δi = max(2ε + 1, (n − 1)(λi + β) − δ′i) where ε

is a globally fixed spacing parameter for twists. Excluding the entry edge of the base curve,
B consists of 2n + 2 mirror edges and O(n) connector edges. For 1 ≤ j ≤ n the first n mirror
edges ei

j are defined by ci
j and di

j , and the second n mirror edges e′i
j are defined by c′i

j and
d′i

j . The last two mirror edges are defined by āi and b̄i, and ai
∗ and bi

∗. The target curve T

has four twists centred at pi
1, . . . , pi

4. Since the index i will not change other than for the
entry and exit edge, we will omit these indices in the construction of this gadget.

Intuition. The intuition behind the construction is as follows: We place the first projection
point p1 at a distance from the entry edge, such that n ’well-spaced’ scaled copies of the entry
edge fit ’behind’ the projection point. These edges offer the choice, each edge corresponding
to a single element in the table Si. After this choice has been presented, we place another
n copies of the entry edge behind the second projection point p2. The two sets of copies
correspond one-to-one, and any line starting at one copy going through p2 only ever hits
a single copy of the second set. The second set of copies is placed in such a way, such
that passing through the third projection point p3, any feasible shortcut curve receives an
additional offset of γsi,j on the edge e′ corresponding to the choice of edge ej . Lastly we
define the entry edge to the next gadget.

How a solution is encoded. A shortcut curve traversing this gadget will look as follows. A
shortcut curve reaches some point on the entry edge ei−1

∗ . From here it takes a shortcut to
some ei

j , where the number j corresponds to a choice of edge to end on. The next shortcuts
are forced to land on e′i

j , then e′i and finally ei
∗. The offset between the endpoint vi

∗ of the
last shortcut and bi

∗ will be precisely the offset between vi−1
∗ and bi

∗ plus γsi,j (refer to
Figure 7), thus the choice of which edge to land on encodes picking an item. After k choices
the offset will be approximately encoding the corresponding partial sum in the offset from bk

∗ .

Initialization gadget. For the construction refer to Figure 9. Both the target curve T and
the base curve B will start at x-coordinate 0 placing the start point for the base curve at
(0, 1), and the start point for the target curve at (0, 0). The target curve will go rightwards,
up to the first twist centred at (ε + γ, 0) and continue rightwards after that. The base curve
will immediately leave the hippodrome to the left and connect to the first mirror edge from
a0

∗ = (3γ + 2ε, −1) to b0
∗ = (γ + 2ε, −1).

Terminal gadget. The terminal gadget gk+1 is the dual to the initialization gadget (refer
to Figure 9). The entry edge from (bk

∗ + λk, −1) to (bk
∗, −1) is defined by the previous gadget.

The target curve T has a single twist at (bk
∗ + λ + ε, 0) and ends at (bk

∗ + 2λ + 2ε − γ(σ + 1), 0).
The base curve B connects the entry edge to (bk

∗ + 2λ + 2ε − γ(σ + 1), 1) from outside the
hippodrome. The final vertex B(1) of the base curve is placed such that a shortcut from the
entry edge ek

∗ has to start precisely at x-coordinate bk
∗ + γ(σ + 1) to hit the vertex.

5.3 Result
In the full version [19] of this paper we show that the curves can be constructed in O(kn)
time. Furthermore, if we choose ε = 5

2 , β = max(32 + 4λk, λk+1) + 1 and γ = 16k + 6,
then the maximum numerical value of the coordinates constructed is in O(k2n

∑k
i=0 max Si).

We then analyse the structure of a feasible solution under this choice of parameters and
show that it properly encodes the partial sums, such that we can retain the solution to the
k-Table-SUM instance. From this analysis, we obtain the following theorem.
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Figure 9 Construction of the Initialization and Terminal gadget. The first forced shortcut in
the Initialization gadget is drawn in black. Mirror edges are red, connector edges are blue, and the
target curve is green.

▶ Theorem 6. Unless ETH fails, there is no algorithm for the k-shortcut Fréchet distance
decision problem in Rd for d ≥ 2, with running time no(k).
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Abstract
We consider an important generalization of the Steiner tree problem, the Steiner forest problem, in the
Euclidean plane: the input is a multiset X ⊆ R2, partitioned into k color classes C1, C2, . . . , Ck ⊆ X.
The goal is to find a minimum-cost Euclidean graph G such that every color class Ci is connected
in G. We study this Steiner forest problem in the streaming setting, where the stream consists of
insertions and deletions of points to X. Each input point x ∈ X arrives with its color color(x) ∈ [k],
and as usual for dynamic geometric streams, the input is restricted to the discrete grid {0, . . . , ∆}2.

We design a single-pass streaming algorithm that uses poly(k · log ∆) space and time, and
estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous
Euclidean Steiner ratio α2 (currently 1.1547 ≤ α2 ≤ 1.214). This approximation guarantee matches
the state of the art bound for streaming Steiner tree, i.e., when k = 1. Our approach relies on a
novel combination of streaming techniques, like sampling and linear sketching, with the classical
Arora-style dynamic-programming framework for geometric optimization problems, which usually
requires large memory and has so far not been applied in the streaming setting.
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1 Introduction

We study combinatorial optimization problems in dynamic geometric streams, in the classical
framework introduced by Indyk [36]. In this setting, focusing on low dimension d = 2, the
input point set is presented as a stream of insertions and deletions of points restricted to the
discrete grid [∆]2 := {0, . . . , ∆}2. Geometric data is very common in applications and has
been a central object of algorithmic study, from different computational paradigms (like data
streams, property testing and distributed/parallel computing) to different application domains
(like sensor networks and scientific computing). Research on geometric streaming algorithms
has been very fruitful, and in particular, streaming algorithms achieving (1 + ε)-factor
estimation (i.e., approximation of the optimal value) have been obtained for fundamental
geometric problems, such as k-clustering [15, 28, 35], facility location [24, 43], and minimum
spanning tree (MST) [27].

Despite this significant progress, some similarly looking problems are still largely open.
Specifically, for the TSP and Steiner tree problems, which are the cornerstone of combinatorial
optimization, it is a major outstanding question (see, e.g., [50]) whether a streaming algorithm
can match the (1+ε)-approximation known for the offline setting [7, 46]. In fact, the currently
best streaming algorithms known for TSP and Steiner tree only achieve O(1)-approximation,
and follow by a trivial application of the MST streaming algorithm.

While MST is closely related to TSP and Steiner tree – their optimal values are within a
constant factor of each other – it seems unlikely that techniques built around MST could
achieve (1 + ε)-approximation for either problem. Indeed, even in the offline setting, the only
approach known to achieve (1 + ε)-approximation for TSP and/or Steiner tree relies on a
framework devised independently by Arora [7] and Mitchell [46], that combines geometric
decomposition (e.g., a randomly shifted quad-tree) and dynamic programming. These
two techniques have been used separately in the streaming setting in the past: quad-tree
decomposition in [3, 4, 20, 24, 27, 28, 37, 43] and dynamic programming, mainly for string
processing problems, in [13, 16, 22, 25, 31, 48, 51]. However, we are not aware of any successful
application of the Arora/Mitchell framework, which combines these two approaches, for any
geometric optimization problem whatsoever.

We make an important step towards better understanding of these challenges by developing
new techniques that successfully adapt the Arora/Mitchell framework to streaming. To this
end, we consider a generalization of Steiner tree, the classical Steiner Forest Problem
(SFP). In this problem (also called Generalized Steiner tree, see, e.g., [7]), the input is a
multiset of n terminal points X ⊆ [∆]2, partitioned into k color classes X = C1 ⊔ · · · ⊔ Ck,
presented as a dynamic stream. In addition, apart from the coordinates of the point x ∈ X,
its color color(x) ∈ [k] is also revealed upon its arrival in the stream1. The goal is to find a
minimum-cost Euclidean graph G such that every color class Ci is connected in G. Observe
that the Steiner tree problem is a special case of SFP in which all terminal points should
be connected (i.e., k = 1). Similar to the Steiner tree problem, a solution to SFP may use
points other than X; those points are called Steiner points.

▶ Remark. In the literature, the term SFP sometimes refers to the special case where each
color class contains only a pair of points, i.e., each Ci = {si, ti} [11, 12, 14, 17, 33]. It is
not difficult to see (see [49]) that one can reduce one problem into another in the standard
setting of offline algorithms. The special case of pairs is often simpler to present and does

1 The points are arriving and leaving in an arbitrary order; there is no requirement that each color arrives
in a batch, i.e., that its points are inserted/deleted consecutively in the stream.
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not restrict algorithmic generality for offline algorithms, even though the setting considered
here is more natural for applications (see [45]). Nevertheless, the definition used here allows
for better parameterization over the number of colors k.

Background. While one might hope for a streaming algorithm for SFP with o(k) space, we
observe that this task is impossible, even in the one-dimensional case. In Theorem 4.1, we
present a reduction that creates instances of SFP in R such that every streaming algorithm
achieving any finite approximation ratio for SFP must use Ω(k) bits of space. This holds
even for insertion-only algorithms, and even if all color classes are of size at most 2.

Even for k = 1, which is the famous Steiner tree problem, the only known streaming
algorithm is to estimate the cost of a minimum spanning tree (MST) and report it as an
estimate for SFP. It is useful to recall here the Steiner ratio αd, defined as the supremum
over all point sets X ⊆ Rd, of the ratio between the cost of an MST and that of an
optimal Steiner tree. The famous Steiner ratio Gilbert-Pollak Conjecture [29] speculates that
α2 = 2√

3 ≈ 1.1547, but the best upper bound to date is only that α2 ≤ 1.214 [23]. It follows
that employing the streaming algorithm of Frahling, Indyk, and Sohler [27], which (1 + ε)-
approximates the MST cost using space poly(ε−1 log ∆), immediately yields a streaming
algorithm that (α2 + ε)-approximates the Steiner tree cost, with the same space bound.

1.1 Our Contribution
Our main result is a space and time efficient, single-pass streaming algorithm that estimates
the optimal cost OPT for SFP within (α2 + ε) factor. Our space bound is nearly optimal in
terms of the dependence in k, since any finite approximation for SFP requires space Ω(k)
(Theorem 4.1), and our ratio matches the state of the art for Steiner tree (i.e., k = 1).

▶ Theorem 1.1 (Informal Version of Theorem 3.1). For any integers k, ∆ ≥ 1 and any
fixed ε > 0, one can with high probability (α2 + ε)-approximate the SFP cost of an input
X ⊆ [∆]2 presented as a dynamic stream, using space and query/update times bounded by
poly(k · log ∆).

We notice that while the algorithm in Theorem 1.1 returns only an approximate cost of
the optimal solution and it cannot return the entire approximate solution (since the output
is of size Ω(n)), an additional desirable feature of our algorithm in Theorem 1.1 is that it
can return information about the colors in the trees in an approximate solution. That is,
our algorithm can maintain a partition of the colors used in X into I1, . . . , Ir ⊆ {1, . . . , k},
so that the sum of the costs of the minimum-cost Steiner trees for sets

⋃
i∈Ij

Ci is an
(α2 + ε)-approximation of SFP. It is worth noting that in estimating the optimal cost, our
algorithm does use Steiner points. This means that the MST costs for sets

⋃
i∈Ij

Ci of the
aforementioned partition may be by an O(1) factor larger than the estimate of the algorithm.

Comparison to a Simple Exponential-time Approach. As we shall discuss in Section 1.2, a
simple brute force enumeration combined with linear sketching techniques yields a streaming
algorithm also with near-optimal space, but significantly worse running time that is expo-
nential in k. Technically, while this approach demonstrates the amazing power of linear
sketching, its core is exhaustive search rather than an algorithmic insight, and thus it is quite
limited, offering no path for improvements or extensions. Furthermore, the poly(k) running
time in Theorem 1.1 is exponentially better than the exhaustive search, which seems to be a
limit of what linear sketching could possibly achieve. Therefore even though the primary
focus of streaming algorithms is on their space complexity, the improvement of the running
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time is critical in terms of pursuing efficient algorithms and making our techniques broadly
applicable. Indeed, similar exponential improvements of running time have been of key
importance in the advances of various other fundamental streaming problems, for instance,
for moment estimation the query time was improved from poly(ε−1) to poly log(ε−1) [40],
and for heavy hitters from poly(n) to poly log(n) [44].

1.1.1 Technical Contribution: Adapting Arora’s Framework to Streaming
We introduce a method for efficient streaming implementation of an offline Arora-style [7]
dynamic-programming framework based on the quad-tree decomposition. This method, which
is probably the first of its kind for geometric streams, is our main technical contribution.

In the offline setting, Borradaile, Klein, and Mathieu [14] and then Bateni and Hajiaghayi
[11] extended the Arora’s approach to obtain a polynomial-time approximation scheme
(PTAS) for SFP. The key insight of these works is that one can tweak the optimal solution so
that its cost remains nearly optimal, but it satisfies certain structural properties that allow
for designing a suitable dynamic program. In Section 2, we review the structural theorem
and the dynamic-programming approach for SFP from [11, 14] in more detail.

The main difficulty of using the Arora-style approach in low-space streaming is that
in general, such approach requires access to all input points, that is, Ω(n) space to store
Ω(n) leaves at the bottom of the quad-tree input decomposition that have to be considered
as basic subproblems. In order to ensure a low-space implementation of the Arora-style
framework in the streaming setting, we will use only O(k log ∆) non-uniform leaf nodes of
the quad-tree, each corresponding to a square. The definition of these leaf nodes is one of
the novel ideas needed to make the dynamic-programming approach work in the streaming
setting. Moreover, since each internal node in the quad-tree has degree 4, the total number
of quad-tree squares to consider is thus O(k · log ∆).

The next challenge is that for the dynamic program to run, we need to find an (α2 + ε)-
approximate estimation for each new leaf and each dynamic-programming subproblem
associated with it. The definition of leaf squares will enable us to reduce it to estimating the
MST cost for a certain subset of points inside the square. It would then be natural to just
employ the MST sketch designed in [27] to estimate the MST cost, in a black box manner.
However, the leaf squares are not known in advance as we can only find them after processing
the stream and thus, it is impossible to build the MST sketch for each leaf square and each
subproblem associated with it. To overcome this, we observe that in essence, the MST sketch
consists of uniformly sampled points (with suitably rounded coordinates). We thus obtain
the MST sketch for each color separately and only use the sampled points that are relevant
for the subproblem to estimate the MST cost for the subproblem, in a way similar to [27].

However, due to restricting the attention to a single subproblem, the original analysis of
the MST sketch in [27] has to be modified to deal with additional technical challenges. For
instance, we may not sample any point relevant to a leaf square in case there are relatively
few points in it. We need to account for the error arising from this case in a global way, by
observing that then the MST cost inside the leaf square is a small fraction of the overall cost.

Further, to be able to accurately enumerate the subproblems for a leaf square, we need
to know the set of color classes that intersect every leaf square, but unfortunately doing
so exactly is impossible in the streaming setting. To this end, we employ a δ-net for a
small-enough δ, so that the intersection test can be approximately done by only looking at
the nearby net points. We show that this only introduces a small error for SFP, and that this
δ-net can be constructed in a dynamic stream, using space by only a factor of poly log(∆)
larger than the net. Finally, we apply the dynamic program using our leaf nodes as basic
subproblems to obtain the estimation.
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1.2 Could Other Approaches Work?
A Simple Exponential-time Streaming Algorithm Based on Linear Sketching. An obvious
challenge in solving SFP is to determine the connected components of an optimal (or
approximate) solution. Each color class must be connected, hence the crucial information
is which colors are connected together (even though they do not have to be). Suppose
momentarily that the algorithm receives an advice with this information, which can be
represented as a partition of the color set [k] = P1 ⊔ · · · ⊔ Pl. Then a straightforward
approach for SFP is to solve the Steiner tree problem separately on each part Pj (i.e., the
union of some color classes), and report their total cost. In our streaming model, we could
apply the aforementioned MST-based algorithm [27], using space poly(ε−1 log ∆), to achieve
(α2 + ε)-approximation, and we would need l ≤ k parallel executions of it (one for each Pj).
An algorithm can bypass having such an advice by enumeration, i.e., by trying in parallel
all the kk partitions of [k] and reporting the minimum of all their outcomes. This would
still achieve (α2 + ε)-approximation, because each possible partition gives rise to a feasible
SFP solution (in fact, this algorithm optimizes the sum-of-MST objective). However, this
naive enumeration increases the space and time complexities by a factor of O(kk). We can
drastically improve the space complexity by the powerful fact that the MST algorithm of [27]
is based on a linear sketch, i.e., its memory contents is obtained by applying a (randomized)
linear mapping to the input X. The huge advantage is that linear sketches of several point
sets are mergeable. In our context, one can compute a linear sketch for each color class Ci,
and then obtain a sketch for the union of some color classes, say some Pj , by simply adding
up their linear sketches. These sketches are randomized, and hence, one has to make sure
they use the same random coins (same linear mapping), and also to amplify the success
probability of the sketches so as to withstand a union bound over all 2k subsets Pj ⊆ [k]. This
technique improves the space complexity and update time to be basically poly(kε−1 log ∆),
however the query time is still exponential in k. We state this result as follows, and its formal
proof can be found in the full version.

▶ Theorem 1.2. For any integers k, ∆ ≥ 1 and any 0 < ε < 1/2, one can with high
probability (α2 + ε)-approximate SFP cost of an input X ⊆ [∆]2 presented as a dynamic
geometric stream, using space and update time of O(k2 · poly(ε−1 · log ∆)) and with query
time O(kk) · poly(ε−1 · log ∆).

Tree Embedding. Indyk [36] incorporated the low-distortion tree embedding approach of
Bartal [9] to obtain dynamic streaming algorithms with O(log ∆) ratio for several geometric
problems. This technique can be easily applied to SFP as well, but the approximation ratio
is O(log ∆) which is far from what we are aiming at.

Other O(1)-Approximate Offline Approaches. In the regime of O(1)-approximation, SFP
has been extensively studied using various other techniques, not only dynamic programming.
For example, in the offline setting there are several 2-approximation algorithms for SFP
using the primal-dual approach and linear programming relaxations [1, 30, 38], and there is
also a combinatorial (greedy-type) constant-factor algorithm called gluttonous [33]. Both of
these approaches work in the general metric setting. While there are no known methods to
turn the LP approach into low-space streaming algorithms, the gluttonous algorithm of [33]
might seem amenable to streaming. Indeed, it works similarly to Kruskal’s MST algorithm
as it also builds components by considering edges in the sorted order by length, and the
MST cost estimation in [27] is similar in flavor to Kruskal’s algorithm. However, a crucial
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difference is that the gluttonous algorithm stops growing a component once all terminals
inside the component are satisfied, i.e., for each color i, the component either contains all
points of Ci, or no point from Ci. This creates a difficulty that the algorithm must know
for each component whether or not it is “active” (i.e., not satisfied), and there are up to n

components, requiring overall Ω(n) bits of space. This information is crucial because “inactive”
components do not have to be connected to anything else, but they may help to connect
two still “active” components in a much cheaper way than by connecting them directly.
Furthermore, we have a simple one-dimensional example showing that the approximation
ratio of the gluttonous algorithm cannot be better than 2 (moreover, its approximation
guarantee in [33] is significantly larger than 2). In comparison, our dynamic-programming
approach gives a substantially better ratio of α2 + ε. Nevertheless, an interesting open
question is whether the gluttonous algorithm admits a low-space streaming implementation.

1.3 Related Work
SFP has been extensively studied in operations research and algorithmic communities for
several decades. This problem has been also frequently considered as a part of a more general
network design problem (see, e.g., [1, 30, 38, 45]), where one could require for some subsets
of vertices to maintain some higher inter-connectivity.

In the classical, offline setting, it is known that the Steiner tree problem is APX-hard in
general graphs and in high-dimensional Euclidean spaces, and the same thus holds for SFP as
it is more general. In general graphs, a 2-approximation algorithm is known due to Agrawal
et al. [1] (see also [30, 38]). These 2-approximation algorithms rely on linear-programming
relaxations, and the only two combinatorial constant-factor approximations for SFP were
recently devised by Gupta and Kumar [33] and by Groß et al. [32]. For low-dimensional
Euclidean space, which is the main focus of our paper, Borradaile et al. [14] and then Bateni
and Hajiaghayi [11] obtained a (1 + ε)-approximation by applying dynamic programming and
geometric space decomposition, significantly extending the approach of Arora [7]. Further
extensions of the dynamic-programming approach have led to a PTAS for metrics of bounded
doubling dimension [17], planar graphs, and graphs of bounded treewidth [12].

There has been also extensive work for geometric optimization problems in the dynamic
(turnstile) streaming setting, with low space. Indyk [36] designed O(log ∆)-approximate
algorithms for several basic problems, like MST and matching. Follow-up papers presented a
number of streaming algorithms achieving approximation ratio of 1 + ε or O(1) to the cost of
Euclidean MST [27], various clustering problems [28, 34], geometric facility location [24, 43],
earth-mover distance [3, 36], and various geometric primitives (see, e.g., [5, 18, 19, 26]). Some
papers have studied geometric problems with superlogarithmic but still sublinear space and
in the multipass setting (see, e.g., [6]). We are not aware of prior results for the (Euclidean)
Steiner tree problem nor SFP in the streaming context, although (1 + ε)-approximation of
the MST cost [27] immediately gives a (α2 + ε)-approximation of the Euclidean Steiner tree.

2 Preliminaries

For x, y ∈ R2, let dist(x, y) := ∥x−y∥2. For S, T ⊆ R2, let dist(S, T ) := minx∈S,y∈T dist(x, y).
For S ⊆ R2, let diam(S) := maxx,y∈S dist(x, y). A ρ-packing S ⊆ R2 is a point set such that
∀x, y ∈ S, dist(x, y) ≥ ρ. A ρ-covering of X is a subset S ⊆ R2 such that ∀x ∈ X, ∃y ∈ S,
dist(x, y) ≤ ρ. We call S ⊆ R2 a ρ-net for X if it is both a ρ-packing and a ρ-covering for X.



A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:7

▶ Fact 2.1 (Packing Property, cf. [47]). A ρ-packing S ⊆ Rd has size |S| ≤
(

3 diam(S)
ρ

)d

.

Metric Graphs. We call a weighted undirected graph G = (X, E, w) a metric graph if for
every edge {u, v} ∈ E, w(u, v) = dist(u, v), and we let w(G) to be the sum of the weights of
edges in G. A solution F of SFP may be interpreted as a metric graph. For a set of points S

(e.g., S can be a square), let F |S be the subgraph of F formed by edges whose both endpoints
belong to S. Note that we think of F as a continuous graph in which every point of an edge
is itself a vertex, so F |S may be interpreted as a geometric intersection of F and S.

Randomly-Shifted Quad-trees [7]. Without loss of generality, let ∆ be a power of 2, and
let L := 2∆. A quad-tree sub-division is constructed on [L]2. In the quad-tree, each node u

corresponds to a square Ru and if it’s not a leaf, it has four children, whose squares partition
Ru. The squares in the quad-tree are of side-lengths that are powers of 2, and we say a square
R is of level i if its side-length is 2i (this is also the level of its corresponding node in the
quad-tree, where leaves have level 0 and the root is at level log2 L). The whole quad-tree is
shifted by a random vector in [−∆, 0]2. Throughout, we assume a randomly-shifted quad-tree
has been sampled from the very beginning. When we talk about a quad-tree square R, we
interpret it as the point set that consists of both the boundary and the internal points. For
i = 0, . . . log2 L, let 2i-grid Gi ⊂ R2 be the set of centers of all level-i squares in the quad-tree.

2.1 Review of Dynamic Programming (DP) [11, 14]
The PTAS for geometric SFP in the offline setting [11, 14] is based on the quad-tree sub-
division framework of Arora [7], with modifications tailored to SFP. For each square R in
the (randomly-shifted) quad-tree,

O(ε−1 log L) equally-spaced points on the boundary edges are designated as portals; and
the γ ×γ sub-squares of R are designated as cells of R, denoted cell(R), where γ = Θ(ε−1)
is a power of 2.

For each square R in the quad-tree, let ∂R be the boundary of R (which consists of four
segments). The following is the main structural theorem from [11], and an illustration of it
can be found in Figure 1a.

▶ Theorem 2.2 ([11]). For an optimal solution F of SFP, there is a solution F ′ (defined
with respect to the randomly-shifted quad-tree), such that
1. w(F ′) ≤ (1+O(ε)) ·w(F ) with constant probability (over the randomness of the quad-tree);
2. For each quad-tree square R, F ′|∂R has at most O(ε−1) components, and each component

of F ′|∂R contains a portal of R;
3. For each quad-tree square R and each cell P of R, if two points x1, x2 ∈ X ∩ P are

connected to ∂R via F ′, then they are connected in F ′|R; this is called the cell property.
It suffices to find the optimal solution that satisfies the structure defined in Theorem 2.2.
This is implemented using dynamic programming (DP), where a subproblem of the DP is
identified as a tuple (R, A, f, Π), specified as follows:

R is a quad-tree square;
A is a set of O(ε−1) active portals through which the local solution enters/exits R;
f : cell(R) → 2A s.t. for S ∈ cell(R), f(S) represents the subset of A that S connects to;
Π is a partition of A, where active portals in each part of Π have to be connected outside
of R (in a larger subproblem).
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a1 a2

a3

b

(a) structural property. (b) simple squares. (c) compatibility checking.

Figure 1 Illustrations of the structural properties of Theorem 2.2 (Figure 1a), construction of
simple squares by Algorithm 1 (Figure 1b) and the approximate compatibility checking idea in
Section 3.2.2 (Figure 1c). Figure 1a shows a square R with portals (crosses) on ∂R, the 4 × 4 cells
of R, and the part of solution F ′|R, such that F ′|R passes ∂R through four portals a1, a2, a3, b on
the sides, and in each cell, points that are connected by F ′ to ∂R in the cell are connected in R.
Figure 1b demonstrates the 13 simple squares constructed by Algorithm 1 for the three colors (noting
that the 5 empty squares are also included as simple squares). In Figure 1c, red points are data
points, cross points are the net points constructed from the data, and the black hollowed points are
the added points for cells that are close-enough to a net point (for simplicity, not shown for cells
containing a data point).

The use of R and A is immediate, and f is used to capture the connectivity between cells
and portals (this suffices because we have the “cell property” in Theorem 2.2). Finally, Π is
used to ensure feasibility, since a global connected component may be broken into several
components in square R, and it is crucial to record whether or not these components still
need to be connected from outside of R. An optimal solution for subproblem (R, A, f, Π)
is defined as a minimum weight metric graph in R that satisfies the constraints A, f, Π.
Standard combinatorial bounds show that the number of subproblems associated with each
square is bounded by (ε−1 · log ∆)O(ε−2) (see [11]).
▶ Remark 2.3. Strictly speaking, we use a simplified definition of DP subproblems, compared
to [11]. Namely, one can additionally require that for any two cells S, S′ ∈ cell(R), either
f(S) = f(S′) or f(S) ∩ f(S′) = ∅ and that any active portal in A appears in f(S) for
some cell S. Then, f defines a partition of cell(R) and of A into local components inside R

(taking into account only components connected to ∂R), and Π should encode which local
components need be connected from the outside of R, implying that Π should be a partition
of local components (instead of A). Thus, Π can also be thought of as a partition of the
partition of A induced by f . We chose to give a more relaxed definition of DP subproblems
as it is sufficient for describing how to implement the DP approach in the streaming setting.

3 Streaming Dynamic Programming: k3-time-and-space Algorithm

In this section, we prove our main result, Theorem 1.1, restated with more precise bounds.
Formally, we call the time for processing inserting/deleting one point as update time, and for
reporting the estimate of OPT the query time.

▶ Theorem 3.1. For any integers k, ∆ ≥ 1 and any 0 < ε < 1/2, one can with high
probability (α2 + ε)-approximate the SFP cost of an input X ⊆ [∆]2 presented as a dynamic
geometric stream, using space and update time of k3 · poly(log k · ε−1 · log ∆) and with query
time bounded by k3 · poly(log k) · (ε−1 · log ∆)O(ε−2).
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Overview. Our approach for the streaming algorithm relies on a novel modification of the
known PTAS for SFP in the offline setting [11, 14], which is based on dynamic programming
(DP). One important reason why the DP requires Ω(n) space is that Ω(n) leaves in the
quad-tree have to be considered as basic subproblems which correspond to singletons. To
make the DP use only Õ(poly(k)) space, we will use only Õ(poly(k)) leaf nodes. Then, since
each internal node in the quad-tree has degree 4, the total number of squares to consider is
Õ(poly(k)). Furthermore, we design an algorithm that runs in time and space Õ(poly(k))
and finds an (α2 + ε)-approximate estimation for each new leaf and each DP subproblem
associated with it. Finally, we apply the DP using such leaves as basic subproblems to obtain
the estimation. We start in Section 3.1 with a description of this approach in the offline
setting, and we make it streaming in Section 3.2. The proof of Theorem 3.1 is in Section 3.3.

3.1 Offline Algorithm
New Definition of Basic Subproblems. Each of our new leaves in the DP will be a simple
square defined below. The idea behind the definition is also simple: If no color class is
contained in R, then all points inside R must be connected to ∂R, so we can make better
use of the cell property in Theorem 2.2.

▶ Definition 3.2 (Simple Squares). We call a square R simple if for every 1 ≤ i ≤ k,
Ci ∩ R ̸= Ci. In other words, there is no color class totally contained in R.

We note that the number of all possible simple squares can still be large (in particular,
any empty square is simple as well as any square containing a single point of color Ci with
|Ci| ≥ 2), and we use Lemma 3.3 below to show the existence of a small subset of simple
squares that covers the whole instance and can be found efficiently. Our new leaves are
naturally defined using such subset of squares.

▶ Lemma 3.3. There is a subset R of disjoint simple squares, such that the union of the
squares in R covers X, and |R| = O(k · log ∆).

Proof. Consider the recursive procedure specified in Algorithm 1 that takes as input a
square R and returns a set of disjoint simple squares R that covers R; see Figure 1b for an
illustration of the outcome of the procedure. For our proof, we apply the procedure with R

being the root square covering the whole instance. Suppose the procedure returns R.

Algorithm 1 Algorithm for finding simple squares.

1: procedure Simp-Square(R)
2: if R is simple then return {R}
3: else
4: let {Ri}i be the child squares of R in the quad-tree
5: return

⋃
i Simp-Square(Ri)

We call a square R intermediate square if it is a square visited in the execution of the
algorithm and it is not simple (i.e., R contains a color class). We observe that |R| is O(1)
times the number of intermediate squares. On the other hand, each color Ci can be totally
contained in at most O(log ∆) intermediate squares. Therefore, |R| = O(k · log ∆). ◀

Approximation Algorithm for Subproblems on Simple Squares. Fix some simple square
R. We now describe how each DP subproblem (R, A, f, Π) associated with R can be solved
directly using an α2-approximate algorithm that is amenable to the streaming setting.
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Since R is a simple square, every point in R has to be connected to the outside of R,
as otherwise the color connectivity constraint is violated. Hence, by the cell property of
Theorem 2.2, for every cell R′ ∈ cell(R), all points in R′ are connected in R. Therefore,
we enumerate all possible partitions of cell(R) that is consistent with the f constraint. For
each partition, we further check whether it satisfies the constraint defined by Π. To do so,
for each cell R′ ∈ cell(R), we scan through all colors, and record the set of colors CR′ ⊆ C
that intersects R′. The CR′ ’s combined with the f constraint as well as the enumerated
connectivity between cells suffice for checking the Π constraint.

Observe that every feasible solution of the subproblem corresponds to the above-mentioned
partition of cells. Therefore, to evaluate the cost of the subproblem, we evaluate the sum of the
MST costs of the parts in each partition and return the minimum one. The time complexity
for evaluating each subproblem is bounded since |A| = O(ε−1) and |cell(R)| = O(ε−2). The
approximation ratio is α2 because we use MST instead of Steiner tree for evaluating the cost.
Using MST will enable us to implement this algorithm in the streaming setting.

3.2 Building Blocks for Streaming Algorithm
3.2.1 Constructing Simple Squares in the Streaming Setting
The first step is to construct a set of simple squares, as in Lemma 3.3, and an offline
construction is outlined in Algorithm 1. For the streaming construction of simple squares,
we observe that the key component of Algorithm 1 is a subroutine that tests whether a
given square is simple or not. To implement the subroutine, we use a streaming algorithm to
compute the bounding square for each color, and we test whether a given square contains
any bounding square as a sub-square.

▶ Lemma 3.4. Algorithm 1 can be implemented in the streaming setting, using space
O(k poly log ∆) and in time O(k poly log ∆) per stream update, with success probability at
least 1 − poly(∆−1).

Proof. The proof is ommited due to the space limit and can be found in the full version. ◀

3.2.2 Approximate Compatibility Checking
Suppose we applied Lemma 3.4 to obtain a set of simple squares R. We proceed to evaluate
the cost of subproblems associated with each simple square. Fix a simple square R ∈ R. We
next describe how to evaluate the cost for every subproblem associated with R, in streaming.

Suppose we are to evaluate the cost of a subproblem (R, A, f, Π). Since R is known, we
have access to cell(R), and hence, we can enumerate the connectivity between the cells, which
is a partition of cell(R), on-the-fly without maintaining other information about the input.
Similarly, we can check the compatibility of the partition of cells with the f constraint, since
the constraint only concerns the information about A and the partition. Then, when we
check the compatibility of the partition of cells with Π, in the offline setting we need to
compute the set of colors CR′ ⊆ C that a cell R′ intersects.

However, computing this set CR′ is difficult in the streaming setting, even if there is
only one color C. Indeed, testing whether color C has an intersection with cell R′ can be
immediately reduced to the INDEX problem (see e.g. [42] for the definition), which implies
an Ω(n) space bound, where n is the number of points of color C. Therefore, we need to
modify the offline algorithm, and only test the intersection approximately.

To implement the approximate testing, for every color C ∈ C, we impose a δ ·diam(C)-net
NC for C (see Section 2), where δ := O

(
ε3(k log ∆)−1)

. A streaming algorithm in Lemma 3.5
is presented to compute this net. To be exact, the streaming algorithm in Lemma 3.5 returns
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a set of points NC such that for any point x ∈ NC at least one point in C is within distance
δ · diam(C) from x (so NC does not contain net points that are far away from C). Hence,
take DC := diam(NC), and we have DC ∈ (1 ± δ) · diam(C). Then, for each cell R′ ∈ cell(R)
of each simple square R, we examine each point in NC , and if dist(R′, NC) ≤ δ · DC , we
add a new point x ∈ R′ such that dist(x, NC) ≤ δ · DC to the stream, and assign it color C.
Furthermore, we declare C intersects R′. This idea is visually demonstrated in Figure 1c.

▶ Lemma 3.5. There is an algorithm that for every 0 < ρ ≤ 1 and every point set S ⊂ R2

provided as a dynamic geometric stream, computes a subset NS ⊂ R2 that is a ρ ·diam(S)-net
for S such that for every x ∈ NS there exists y ∈ S with dist(x, y) ≤ ρ · diam(S), with
probability at least 1 − poly(∆−1), using space O(ρ)−2 · poly log ∆, and running in time
O(ρ)−2 · poly log ∆ per stream update.

Proof. The proof is ommited due to the space limit and can be found in the full version. ◀

In fact, such procedure of adding points is oblivious to the subproblem, and should be
done only once as a pre-processing step before evaluating any subproblems. Therefore, the
subproblems are actually evaluated on a new instance (X ′, C′) after the pre-processing. Since
we apply Lemma 3.5 for every color i, and by the choice of δ, the space complexity for
the pre-processing step is O

(
k3 · poly(ε−1 log ∆)

)
, and the time complexity per update is

bounded by this quantity. Next, we upper bound the error introduced by the new instance.

▶ Lemma 3.6. Let OPT be the optimal SFP solution for the original instance (X, C), and
let OPT′ be that for (X ′, C′). Then w(OPT) ≤ w(OPT′) ≤ (1 + ε) · w(OPT).

Proof. Since OPT′ is a feasible solution for (X, C), we obtain w(OPT) ≤ w(OPT′) by the
optimality of OPT. It remains to prove the other side of the inequality.

Recall that for every color C, we use Lemma 3.5 to obtain a δ · diam(C)-net NC and
estimate diam(C) using DC := diam(NC). Now, for every cell R′ of every simple square, if
dist(R′, NC) ≤ δ · DC for some color C we add a point x to C satisfying d(x, NC) ≤ δ · DC ,
and for any other color C ′ ̸= C with dist(R′, NC′) ≤ δ · DC′ , we add the same point x to C ′.
Note that we add at most one distinct point for each cell. Let z ∈ NC satisfy d(x, z) ≤ δ ·DC ,
then adding x increases OPT by at most 2δ · DC ≤ 3δ · diam(C), since one can connect x to
y ∈ C such that dist(y, z) ≤ δ · diam(C) (such y must exist due to Lemma 3.5).

Since there are in total at most O(k log ∆ · ε−2) cells in all simple squares by
Lemma 3.3, the total increase of the cost is at most O(δ · k log ∆ · ε−2) · maxC∈C diam(C) ≤
ε maxC∈C diam(C) ≤ εw(OPT), using the definition of δ and w(OPT) ≥ maxC∈C(diam(C)).
We conclude that w(OPT′) ≤ (1 + ε) · w(OPT). ◀

3.2.3 Evaluating Basic Subproblems in the Streaming Setting
After we obtain the new instance (X ′, C′), we evaluate the cost for every subproblem
(R, A, f, Π). Because of the modification of the instance, we know for sure the subset of colors
CR′ for each cell R′. To evaluate the subproblem, recall that we start with enumerating a
partition of cell(R) that is compatible with the subproblem, which can be tested efficiently
using CR′ ’s. Suppose now {Pi := Ri ∪ Ai}t

i=1 is a partition of cell(R) ∪ A that we enumerated
(recalling that A is the set of active portals, which needs to be connected to cells in a way that
is compatible to the constraint f). Then, as in the offline algorithm, we evaluate MST(Pi) of
each part Pi, and compute the sum of them, i.e.

∑t
i=1 MST(Pi), however, we need to show

how to do this in the streaming setting.

ICALP 2022



47:12 Streaming Algorithms for Geometric Steiner Forest

Frahling et al. [27] designed an algorithm that reports a (1 + ε)-approximation for the
value of the MST of a point set presented in a dynamic stream, using space O(ε−1 log ∆)O(1).
Furthermore, as noted in Section 1, their algorithm maintains a linear sketch. Now, a
natural idea is to apply this MST sketch, that is, create an MST sketch for each color, which
only takes k · O(ε−1 log ∆)O(1) space. Then, for each Pi = Ri ∪ Ai, we compute the set of
intersecting colors, and we create a new MST sketch K by first adding up the MST sketches
of these colors (recalling that they are linear sketches), and then adding the active portals
connected to Pi to the sketch. We wish to query the sketch K for the cost of MST(Pi).

However, this idea cannot directly work, since the algorithm by [27] only gives the MST
value for all points represented by K, instead of the MST value for a subset Pi. Therefore,
we modify the MST sketch to answer the MST cost of a subset of points of interest.

Brief Review of the MST Sketch. We give a brief overview of the algorithm of [27] before
we explain how we modify it. The first observation (already from [21]) is that the MST
cost can be written as a weighted sum of the number of connected components in metric
threshold graphs, which are obtained from the complete metric graph of the point set by
removing edges of length larger than a threshold τ . Essentially, the idea is to count the
number of MST edges of length larger than τ .

To estimate the number of components in a threshold graph, we round the points to a
suitable grid and sample a small number of rounded points uniformly, using ℓ0-samplers.
An ℓ0-sampler is a data structure that processes a dynamic stream (possibly containing
duplicate items), succeeds with high probability, and conditioned on it succeeding, it returns
a random item from the stream such that any item in the stream is chosen with the same
probability 1/n, where n is the ℓ0 norm of the resulting frequency vector, i.e., the number
of distinct items in the stream (see Lemma 3.7 for a more precise statement). For each
sampled (rounded) point y, the algorithm in [27] runs a stochastic-stopping BFS from y and
in particular, it checks if it explores the whole component of y within a random number of
steps. We note that this requires an extended ℓ0-sampler that also returns the neighboring
points for each sampled point, as presented in [27] and stated in Lemma 3.7. The MST cost
is estimated by a weighted sum of the number of completed BFS’s, summed over all levels.

▶ Lemma 3.7 (ℓ0-Sampler with Neighborhood Information [27, Corollary 3]). There is an
algorithm that for δ > 0, integer ρ, ∆ ≥ 1, every set of points S ⊆ [∆]2 presented as a dynamic
geometric stream, succeeds with probability at least 1 − δ and, conditioned on it succeeding,
returns a point p ∈ S such that for every s ∈ S it holds that Pr[p = s] = 1/|S|. Moreover,
if the algorithm succeeds, it also returns all points from s ∈ S such that dist(p, s) ≤ ρ. The
algorithm has space and both update and query times bounded by poly(ρ · ε−1 · log ∆ · log δ−1),
and its memory contents is a linear sketch of S.

Generalizing the MST Algorithm to Handle Subset Queries. Fix some part Pi. Recall
that the Pi’s always consist of at most O(ε−2) cells (which are quad-tree squares), plus
O(ε−2) active portal points. Hence, a natural first attempt is to make the ℓ0-samplers to
sample only on these clipping squares defined by Pi. Unfortunately, this approach would not
work, since the squares are not known in advance and may be very small (i.e., degenerate to
a point), so sampling a point from them essentially solves the INDEX problem.

Therefore, to estimate MST(Pi), we still use the original ℓ0-samplers, and we employ a
careful sampling and estimation step. We sample from the whole point set maintained by the
sketch K but we only keep the sampled points contained in Pi. We execute the stochastic
BFS from these points that are kept, restricting the BFS to the points contained in Pi.
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One outstanding problem of this sampling method is that if the number of points in Pi,
or to be exact, the number of non-zero entries of level-i ℓ0-samplers, is only a tiny portion of
that of the full sketch, then with high probability, we do not sample any point from Pi at all.
Hence, in this case, no stochastic BFS can be performed, and we inevitably answer 0 for the
number of successful BFS’s. This eventually leads to an additive error. We summarize the
additive error and the whole idea of the above discussions in Lemma 3.8.

▶ Lemma 3.8. There is an algorithm that for every 0 < ε < 1, integer k, ∆ ≥ 1, and every
set of points S ⊆ [∆]2 presented as a dynamic geometric stream, maintains a linear sketch of
size k2 · poly(log k · ε−1 log ∆). For every query (R, {Rj}t

j=1, A) (provided after the stream
ends) satisfying
1. R is a simple square, A is a subset of portals of R, and
2. {Rj}t

j=1 ⊆ cell(R),
the algorithm computes from the linear sketch a real number E such that with probability at
least 1 − exp(− log k · poly(ε−1 log ∆)),

MST(P ) ≤ E ≤ (1 + ε) · MST(P ) + O

(
poly(ε)
k log ∆

)
· MST(S) ,

where P =
(⋃t

j=1 Rj

)
∪ A. The algorithm runs in time k2 · poly(log k · ε−1 log ∆) per update

and the query time is also k2 · poly(log k · ε−1 log ∆).

This lemma constitutes the main algorithm for the evaluation of the subproblem. Note
that we only need to prove it for one point set S, since the sketch is linear. Indeed, when
applying Lemma 3.8, we obtain the sketch for each color separately from the stream, and
for every query, we first merge the sketches of colors relevant to the query and add query
portals to the resulting sketch. By linearity, this is the same as if we obtain the sketch for
all these colors and portals at once. Due to the space limit, the proof of Lemma 3.8 can be
found in the full version.

3.3 Proof of Theorem 3.1
▶ Theorem 3.1. For any integers k, ∆ ≥ 1 and any 0 < ε < 1/2, one can with high
probability (α2 + ε)-approximate the SFP cost of an input X ⊆ [∆]2 presented as a dynamic
geometric stream, using space and update time of k3 · poly(log k · ε−1 · log ∆) and with query
time bounded by k3 · poly(log k) · (ε−1 · log ∆)O(ε−2).

We combine the above building blocks to prove Theorem 3.1. See Algorithm 2 for a
description of the complete algorithm. The space and update time follow immediately from
Algorithm 2, Theorem 2.2 and Lemmas 3.4, 3.5, and 3.8.

The query time is bounded by O(k · log ∆) · (ε−1 · log ∆)O(ε−2) · ε−O(ε−1) · k2 · poly(log k ·
ε−1 log ∆) ≤ k3 · poly(log k) · (ε−1 log ∆)O(ε−2), where O(k · log ∆) is the number of simple
squares (and thus, up to an O(1) factor, the number of quad-tree squares for which we
evaluate DP subproblems), (ε−1 · log ∆)O(ε−2) is the number of subproblems associated with
each square (see Section 2.1), ε−O(ε−1) is the number of MST queries evaluated for each
subproblem, and each MST query takes k2 · poly(log k · ε−1 log ∆) time by Lemma 3.8.

2 We need to use the same randomness for sketches {K(3)
C } among all colors C so that they can be

combined later.
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Algorithm 2 Main streaming algorithm.

1: procedure SFPinitialization(C) ▷ C is the set of colors
2: initialize a sketch K(1) of Lemma 3.4, a set of sketches of Lemma 3.5 {K(2)

C }C∈C for
every color C ∈ C with parameter δ := poly(ε)(k log ∆)−1, and a set of (linear) sketches2

of Lemma 3.8 {K(3)
C }C∈C for every color C ∈ C

3: procedure SFPupdate(x, C, insert/delete) ▷ insert/delete point x of color C

4: insert/delete point x in sketches K(1), K(2)
C , K(3)

C

5: procedure SFPquery ▷ the stream terminates
6: use sketch K(1) to compute a set of simple squares R ▷ see Section 3.2.1
7: for each color C ∈ C, use sketch K(2)

C to compute a set of net points NC , and let
DC := diam(NC) ▷ DC is a (1 ± ε)-approximation for diam(C)

8: initialize a Boolean list I records whether a cell of a simple square and a color
intersects ▷ This uses space at most O(k · log ∆ · poly(ε−1))

9: for every R ∈ R, R′ ∈ cell(R) do
10: if dist(NC , R′) ≤ ρ · DC for some color C then
11: let x ∈ R′ be a point such that dist(x, NC) ≤ ρ · DC

12: for every color C ′ with dist(NC′ , R′) ≤ ρ · DC′ do
13: add x to K(3)

C′ and record in I that R′ intersects color C ′ ▷ see Section 3.2.2
14: for each simple square R and an associated subproblem (R, A, f, Π) do
15: for each partition of cell(R) do
16: if the partition is compatible with the subproblem then ▷ see Section 3.2.2
17: for each part Rj in the partition do
18: let Aj ⊆ A be the set of active portals that Rj connects to
19: create linear sketch K′, by adding up K(3)

C for every C intersecting a
cell in Rj ▷ the intersection information is recorded in I

20: add points in Aj to sketch K′

21: query sketch K′ for the value of the MST of the part Rj and portals
Aj (as in Lemma 3.8) ▷ see Section 3.2.3

22: store the sum of the queried values of MST(Rj , Aj) as the estimated cost
for the subproblem

23: invoke the DP (as in [11]) using the values of basic subproblem estimated as above
24: return the DP value (for the root square with no active portals)

To bound the failure probability, we use a union bound over the failure probabilities
of all applications and queries of the streaming algorithms as well as the error bound in
Theorem 2.2. We observe that Theorem 2.2 incurs an O(1) failure probability, and every other
steps, except for the use of Lemma 3.8, have a failure probability of poly(∆−1). Since we
have k · (ε−1 · log ∆)O(ε−2) basic subproblems (see Section 2), and for each basic subproblem
we need to evaluate at most ε−O(ε−1) MST queries, the total failure probability of evaluating
the subproblems is at most

k · (ε−1 · log ∆)O(ε−2) · ε−O(ε−1) · exp(− log k · poly(ε−1 log ∆)) ≤ poly(∆−1) ,

by the guarantee of Lemma 3.8. Therefore, we conclude that the failure probability is then
at most 2

3 . It remains to analyze the error.
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Error Analysis. For the remaining part of the analysis, we condition on no failure of the
sketches used in Algorithm 2 and on that the error bound in Theorem 2.2 holds. By
Lemma 3.6, for the part of evaluating the basic subproblems (lines 14-22 of Algorithm 2),
the actual instance that the linear sketches work on is (1 + O(ε))-approximate. Hence, it
suffices to show the DP value is accurate to that instance.

Our estimation is never an underestimate, by Lemma 3.8 and since all partitions that we
enumerated are compatible with the subproblems; see Section 3.2.2. Hence, it remains to
upper bound the estimation. Consider an optimal DP solution F , which we interpret as a
metric graph (see Section 2). Then we create a new solution F ′ from F by modifying F using
the following procedure. For each simple square R, we consider F |R which is the portion of
F that is totally inside of R (see Section 2). For each component S ⊂ R in F |R, let S′ be
the point set formed by removing all Steiner points from S, except for portals of R (note
that we remove portals of subsquares of R if they appear in S). Then, for each component
S, we replace the subtree in F that spans S with the MST on S′. It is immediate that after
the replacement, the new solution has the same connectivity of portals and terminal points
as before. We define F ′ as the solution after doing this replacement for all simple squares.

F ′ is still a feasible solution. Furthermore, for every simple square R, if F is compatible
with a subproblem (R, A, f, Π), then so does F ′. By the construction of F ′, the definition of
Steiner ratio α2, and Theorem 2.2, we know that

w(F ′) ≤ α2 · w(F ) ≤ (1 + O(ε)) · α2 · OPT, (1)

where the last inequality holds as we condition on that the error bound in Theorem 2.2 holds.
Now we relate the algorithm’s cost to w(F ′). Fix a simple square R, and suppose

(R, A, f, Π) is the subproblem that is compatible with F ′|R. Then, the components in F ′|R
can be described by a partition of the cells plus their connectivity to active portals. Such a
subproblem, together with the partition, must be examined by Algorithm 2 (in lines 14-22),
and the MST value for each part is estimated in Algorithm 2. Since the algorithm runs a
DP using the estimated values, the final DP value is no worse than the DP value that is only
evaluated from the subproblems that are compatible to F ′. Recall that our estimation for
each subproblem not only has a multiplicative error of (1 + ε) but also an additive error by
Lemma 3.8. Therefore, by the fact that F ′ always uses MST to connect points in components
of basic subproblems, it suffices to bound the total additive error for the estimation of the
MST cost of the components of F ′.

Fix a connected (global) component Q of F ′, and let CQ ⊆ C be the subset of colors that
belongs to Q. By Lemma 3.8, for every basic subproblem (R, f, A, Π) that is compatible
with F ′, and every component P of Q|R, the additive error is at most O

(
poly(ε)
k log ∆

)
· MST(S),

where S is the union of color classes that intersect P plus the active portals A. Observe that
CS ⊆ CQ (where CS is the set of colors used in S), so S is a subset of the point set of Q (note
that Q contains all portals in A as F ′ is a portal-respecting solution and the subproblem is
compatible with F ′) and thus MST(S) ≤ MST(Q), which implies

O

(
poly(ε)
k log ∆

)
· MST(S) ≤ O

(
poly(ε)
k log ∆

)
· MST(Q) ≤ O

(
poly(ε)
k log ∆

)
· w(Q).

Observe that for each simple square R, Q|R has at most O(ε−2) local components, hence,
summing over all local components of Q|R and all simple squares R, the total additive error
is bounded by poly(ε−1) · O(k log ∆) · O (poly(ε)/(k log ∆)) · w(Q) ≤ ε · w(Q), where use
that there are at most O(k log ∆) simple squares by Lemma 3.3. Finally, summing over all
components Q of F ′, we conclude that the total additive error is ε · w(F ′). Combining with
Equation (1), we conclude the error guarantee. This finishes the proof of Theorem 3.1.
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4 Lower Bound: Ω(k) Bits are Necessary

In this section we demonstrate that any streaming algorithm for SFP achieving any finite
approximation ratio for SFP requires Ω(k) bits of space.

▶ Theorem 4.1. For every k > 0, every randomized streaming algorithm achieving a finite
approximation ratio for SFP with k color classes of size at most 2 must require Ω(k) bits
of space. This holds even for insertion-only algorithms and even when points are from the
one-dimensional line R.

Proof. The proof is a reduction from the INDEX problem on k bits, where Alice holds a
binary string x ∈ {0, 1}k, and Bob has an index i ∈ [k]. The goal of Bob is to compute the
bit xi in the one-way communication model, where only Alice can send a message to Bob
and not vice versa. It is well-known that Alice needs to send Ω(k) bits for Bob to succeed
with constant probability [41] (see also [42, 39]). Our reduction is from INDEX to SFP on
the (discretized) one-dimensional line [2k]. Consider a randomized streaming algorithm ALG
for SFP that approximates the optimal cost and in particular can distinguish whether the
optimal cost is 0 or 1 with constant probability. We show that it can be used to solve the
INDEX problem, implying that ALG needs to use Ω(k) bits of space.

Indeed, Alice applies ALG on the following stream: For each bit xj , she adds to the
stream a point of color j at location 2j + xj . So far OPT = 0. She now sends the internal
state of ALG to Bob. Then, Bob continues the execution of ALG (using the same random
coins) by adding one more point to the stream: Given his index i ∈ [k], he adds a point of
color i at location 2i. After that, OPT = 0 + xi, which is either 0 or 1. It follows that if
ALG achieves a finite approximation with constant probability, then Bob can discover xi

and solve INDEX. ◀

5 Conclusions and Future Directions

Our paper makes a progress in the understanding of geometric streaming algorithms and
of applicability of Arora’s framework for low-space streaming algorithms for geometric
optimization problems. Still, our work leaves a number of very interesting open problems.

Our approximation ratio α2 + ε matches the current approximation ratio for the Steiner
tree problem in geometric streams. Hence, any improvement to our approximation ratio
would require to first improve the approximation for Steiner tree, even in insertion-only
streams. This naturally leads to the main open problem of obtaining a (1 + ε)-approximation
for Steiner tree in geometric streams using only poly(ε−1 log ∆) space.

Our naïve algorithm for the Steiner forest problem given in Theorem 1.2 is also an
(α2 + ε)-approximation with poly(kε−1 log ∆) space, but its running time is exponential in k

because it queries an (approximate) MST-value oracle on all possible subsets of color classes
to find the minimum. We do not know if a smaller number of queries suffices here, but it is
known that in a similar setup for coverage problems any oracle-based O(1)-approximation
requires exponentially many queries to an approximate oracle [10]. Thus, it would not be
surprising if a similar lower bound holds for our problem.

Our Theorem 4.1 shows that for SFP with color classes of size at most 2 one cannot achieve
any bounded approximation ratio using space that is sublinear in n ≤ 2k. This strongly
suggests that SFP with pairs of terminals (i.e., Ci = {si, ti}) does not admit a constant-factor
approximation in the streaming setting, although our lower bound construction does not
extend to this case (as it requires having some size-1 color classes). We leave it as an open
problem whether a constant-factor approximation in sublinear (in n = 2k) space is possible
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for this version. We notice however that for the case where both points of each terminal
pair are inserted/deleted together, it is possible to get an O(log n)-approximation using the
metric embedding technique of Indyk [36].

The main focus of this paper is on the study of SFP for the Euclidean plane, but in
principle, our entire analysis can be extended to the Euclidean space Rd, for any fixed d ≥ 2.
However, this would require extending the arguments of [11, 14], namely, the structural result
restated in Theorem 2.2, and these details were not written explicitly in these papers.

The techniques developed in this paper seem to be general enough to be applicable to
other problems/objectives with connectivity constraints, where the connectivity is specified
by the colors and a solution is feasible if the points of the same color are connected. One
such closely related problem is the sum-of-MST objective, i.e., the problem of minimizing
the sum of the costs of trees such that points of the same color are in the same tree (see also
[2, 53] for related problems). We hope that the approach developed in our paper can lead
to a (1 + ε)-approximation of the geometric version of this problem, using poly(kε−1 log ∆)
space and time (for space only, one can use similar techniques as in Theorem 1.2). Moreover,
it may be possible to apply our approach to solve the connectivity-constrained variants of
other classical problems, especially those where dynamic programming has been employed
successfully, like r-MST and TSP [7]. For example, the TSP variant could be to find a
collection of cycles of minimum total length with points of the same color in the same cycle.

At a higher level, the connectivity constraints may be more generally interpreted as
grouping constraints. For instance, in the context of clustering, our color constraints may
be viewed as must-link constraints, where points of the same color have to be placed in the
same cluster. Such constrained clustering framework is of significant interest in data analysis
(see, e.g., [52]). Our framework, combined with coreset techniques [28] and Arora’s quad-tree
methods (see [8]), may be used to design streaming algorithms for such clustering problems.

Finally, we believe that the framework of optimization problems with connectivity and
grouping constraints is interesting on its own, going beyond the streaming setup. Such
problems may be studied also in the setting of standard (offline) algorithms, as well as of
online algorithms, approximation algorithms, fixed-parameter tractability, and heuristics.

References
1 Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation algorithm

for the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–456,
1995.

2 Mattias Andersson, Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan.
Balanced partition of minimum spanning trees. International Journal of Computational
Geometry and Applications, 13(4):303–316, 2003.

3 Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient sketches for
earth-mover distance, with applications. In Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 324–330, 2009.

4 Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-
dimensional spaces. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 343–352, 2008.

5 Alexandr Andoni and Huy L. Nguyen. Width of points in the streaming model. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 447–452,
2012.

6 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing (STOC), pages 574–583, 2014.

ICALP 2022



47:18 Streaming Algorithms for Geometric Steiner Forest

7 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

8 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean
k-medians and related problems. In Proceedings of the 13th Annual ACM Symposium on the
Theory of Computing (STOC), pages 106–113, 1998.

9 Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 184–193, 1996.

10 MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Almost optimal
streaming algorithms for coverage problems. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 13–23, 2017.

11 MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean prize-collecting
Steiner forest. Algorithmica, 62(3-4):906–929, 2012.

12 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx. Approximation
schemes for Steiner forest on planar graphs and graphs of bounded treewidth. Journal of the
ACM, 58(5):21:1–21:37, 2011.

13 Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 51–60, 2016.

14 Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-time approximation
scheme for Euclidean Steiner forest. ACM Transactions of Algorithms, 11(3):19:1–19:20, 2015.

15 Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F. Yang.
Clustering high dimensional dynamic data streams. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 576–585, 2017.

16 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing (STOC), pages 712–725, 2016.

17 T.-H. Hubert Chan, Shuguang Hu, and Shaofeng H.-C. Jiang. A PTAS for the Steiner forest
problem in doubling metrics. SIAM Journal on Computing, 47(4):1705–1734, 2018.

18 Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions.
Computation Geometry, 35(1-2):20–35, 2006.

19 Timothy M. Chan. Dynamic streaming algorithms for ε-kernels. In Proceedings of the 32nd
International Symposium on Computational Geometry (SoCG), pages 27:1–27:11, 2016.

20 Moses Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing (STOC), pages 380–388, 2002.

21 Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning
tree weight in sublinear time. SIAM Journal on Computing, 34(6):1370–1379, 2005.

22 Kuan Cheng, Alireza Farhadi, MohammadTaghi Hajiaghayi, Zhengzhong Jin, Xin Li, Aviad
Rubinstein, Saeed Seddighin, and Yu Zheng. Streaming and small space approximation
algorithms for edit distance and longest common subsequence. In Proceedings of the 48th
International Colloquium on Automata, Languages, and Programming (ICALP), pages 54:1–
54:20, 2021.

23 F. R. K. Chung and R. L. Graham. A new bound for Euclidean Steiner minimal trees. Annals
of the New York Academy of Sciences, 440(1):328–346, 1985.

24 Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian Sohler. (1 + ε)-
approximation for facility location in data streams. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1710–1728, 2013.

25 Funda Ergün and Hossein Jowhari. On the monotonicity of a data stream. Combinatorica,
35(6):641–653, 2015.

26 Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the streaming
and sliding-window models. Algorithmica, 41(1):25–41, 2005.



A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:19

27 Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams and
applications. International Journal of Computational Geometry and Applications, 18(1/2):3–28,
2008.

28 Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages
209–217, 2005.

29 Edgar N. Gilbert and Henry O. Pollak. Steiner minimal trees. SIAM Journal on Applied
Mathematics, 16(1):1–29, 1968.

30 Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

31 Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Estimating the
sortedness of a data stream. In Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 318–327, 2007.

32 Martin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie
Schmidt, and José Verschae. A local-search algorithm for Steiner forest. In Proceedings of the
9th Innovations in Theoretical Computer Science Conference (ITCS 2018), pages 31:1–31:17,
2018.

33 Anupam Gupta and Amit Kumar. Greedy algorithms for Steiner forest. In Proceedings of the
47th Annual ACM Symposium on Theory of Computing (STOC), pages 871–878, 2015.

34 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
291–300, 2004.

35 Wei Hu, Zhao Song, Lin F. Yang, and Peilin Zhong. Nearly optimal dynamic k-means clustering
for high-dimensional data, 2019. arXiv:1802.00459.

36 Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing (STOC), pages 373–380, 2004.

37 Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In Proceedings of the 3rd
International Workshop on Statistical and Computational Theories of Vision (SCTV), 2003.
URL: https://people.csail.mit.edu/indyk/emd.pdf.

38 Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001.

39 T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication complexity of
Hamming distance. Theory of Computing, 4(6):129–135, 2008.

40 Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation in
data streams in optimal space. In Proceedings of the 43rd Annual ACM Symposium on Theory
of Computing (STOC), pages 745–754, 2011.

41 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication com-
plexity. Computational Complexity, 8(1):21–49, 1999.

42 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

43 Christiane Lammersen and Christian Sohler. Facility location in dynamic geometric data
streams. In Proceedings of the 16th Annual European Symposium on Algorithms (ESA), pages
660–671, 2008.

44 Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hitters via
cluster-preserving clustering. Communications of the ACM, 62(8):95–100, 2019.

45 Thomas L. Magnanti and Laurence A. Wolsey. Chapter 9: Optimal trees. In Network Models,
volume 7 of Handbooks in Operations Research and Management Science, pages 503–615.
Elsevier, 1995.

46 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing, 28(4):1298–1309, 1999.

ICALP 2022

http://arxiv.org/abs/1802.00459
https://people.csail.mit.edu/indyk/emd.pdf


47:20 Streaming Algorithms for Geometric Steiner Forest

47 David Pollard. Empirical Processes: Theory and Applications, chapter 4: Packing and Covering
in Euclidean Spaces, pages 14–20. IMS, 1990.

48 Michael E. Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to
monotonicity and asymmetric edit distance. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1698–1709, 2013.

49 Guido Schäfer. Steiner Forest. In Ming-Yang Kao, editor, Encyclopedia of Algorithms, pages
2099–2102. Springer, New York, NY, 2016.

50 Christian Sohler. Problem 52: TSP in the streaming model. https://sublinear.info/52,
2012.

51 Xiaoming Sun and David P. Woodruff. The communication and streaming complexity of
computing the longest common and increasing subsequences. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 336–345, 2007.

52 Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means clustering
with background knowledge. In Proceedings of the 18th International Conference on Machine
Learning (ICML), pages 577–584, 2001.

53 Liang Zhao, Hiroshi Nagamochi, and Toshihide Ibaraki. Greedy splitting algorithms for
approximating multiway partition problems. Mathematical Programming, Series A, 102(1):167–
183, 2005.

https://sublinear.info/52


Improved Reconstruction of Random Geometric
Graphs
Varsha Dani #

Department of Computer Science, Rochester Institute of Technology, Rochester, NY, USA

Josep Díaz #

Department of Computer Science, Polytechnic University of Catalonia, Barcelona, Spain

Thomas P. Hayes #

Department of Computer Science, University of New Mexico, Albuquerque, NM, USA

Cristopher Moore #

Santa Fe Institute, NM, USA

Abstract
Embedding graphs in a geographical or latent space, i.e. inferring locations for vertices in Euclidean
space or on a smooth manifold or submanifold, is a common task in network analysis, statistical
inference, and graph visualization. We consider the classic model of random geometric graphs where
n points are scattered uniformly in a square of area n, and two points have an edge between them
if and only if their Euclidean distance is less than r. The reconstruction problem then consists of
inferring the vertex positions, up to the symmetries of the square, given only the adjacency matrix
of the resulting graph. We give an algorithm that, if r = nα for α > 0, with high probability
reconstructs the vertex positions with a maximum error of O(nβ) where β = 1/2 − (4/3)α, until
α ≥ 3/8 where β = 0 and the error becomes O(

√
log n). This improves over earlier results, which

were unable to reconstruct with error less than r. Our method estimates Euclidean distances using a
hybrid of graph distances and short-range estimates based on the number of common neighbors. We
extend our results to the surface of the sphere in R3 and to hypercubes in any constant dimension.
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1 Introduction

Graph embedding is the art of assigning a position in some smooth space to each vertex, so
that the graph’s structure corresponds in some way to the metric structure of that space.
If vertices with edges between them are geometrically close, this embedding can help us
predict new or unobserved links, devise efficient routing strategies, and cluster vertices by
similarity – not to mention (if the embedding is in two dimensions) give us a picture of
the graph that we can look at and perhaps interpret. In social networks, this space might
correspond literally to geography, or it might be a “latent space” whose coordinates measure
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48:2 Improved Reconstruction of Random Geometric Graphs

ideologies, affinities between individuals, or other continuous demographic variables (e.g. [15]).
In some applications the underlying space is known; in others we wish to infer it, including
the number of dimensions, whether it is flat or hyperbolic, and so on.

The literature on graph embedding is vast, and we apologize to the many authors who we
will fail to cite. However, despite the broad utility of graph embedding in practice (see [27]
for a recent experimental review) many popular heuristics lack rigorous guarantees. Here we
pursue algorithms that reconstruct the position of every vertex with high accuracy, up to a
symmetry of the underlying space.

Many versions of the reconstruction problem, including recognizing whether a graph has
a realization as a geometric graph, are NP-complete [5, 8, 9] in the worst case. Thus we
turn to distributions of random instances, and design algorithms that succeed with high
probability in the instance. For many inference problems, there is a natural generative model
where a ground truth structure is “planted,” and the instance is then chosen from a simple
distribution conditioned on its planted structure. For community detection a.k.a. the planted
partition problem, for instance, we can consider graphs produced by the stochastic block
model, a generative model where each vertex has a ground-truth label, and each edge (u, v)
exists with a probability that depends on the labels of u and v. Reconstructing these labels
from the adjacency matrix then becomes a well-defined problem in statistical inference, which
may or may not be solvable depending on the parameters of the model (e.g. [1,19,20]). In the
same spirit, a series of papers has asked to what extent we can reconstruct vertex positions
from the adjacency matrix in random geometric graphs, where vertex positions are chosen
independently from a simple distribution.

Random geometric graphs
Let n be an integer and let r > 0 be real. Let V = {vi}n

i=1 be a set of n points chosen
uniformly at random in the square [0,

√
n]2. The random geometric graph G ∈ G(n, r) has

vertex set V and edge set E = {(u, v) : ∥u − v∥ ≤ r} where ∥u − v∥ denotes the Euclidean
distance. (We will often abuse notation by identifying a vertex with its position.)

This is a rescaling of the unit disk model where r = 1. We follow previous authors in
varying the average degree of the graph by varying r rather than varying the density of
points in the plane. Since the square has area n, the density is always 1: that is, the expected
number of points in any measurable subset is equal to its area.

It is also natural to consider a Poisson model, where the points are generated by a
Poisson point process with intensity 1. In that case the number of vertices fluctuates but is
concentrated around n, and the local properties of the two models are asymptotically the
same. The number of points in a region of area A is binomially distributed in the uniform
model, and Poisson distributed with mean A in the Poisson model. In both cases, the
probability that such a region of area is empty is at most e−A; this is exact in the Poisson
model, and is an upper bound on the probability (1 − A/n)n in the uniform model.

Random geometric graphs (RGGs) were first introduced by Gilbert in the early 1960s
to model communications between radio stations [14]. Since then, RGGs have been widely
used as models for wireless communication, in particular for wireless sensor networks. RGGs
have also been extensively studied as mathematical objects, and much is known about their
asymptotic properties [23, 26]. One well-known result is that rc =

√
log n/π is a sharp

threshold for connectivity for G ∈ G(n, r) in the square in both the uniform and Poisson
models: that is, for any ε > 0, with high probability G is connected if r > (1 + ε)rc and
disconnected if r < (1 − ε)rc.
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More generally, we can define RGGs on any compact Riemannian submanifold, by
scattering n points uniformly according to the surface area or volume. We then define the
edges as E = {(u, v) : ∥u − v∥g ≤ r} where ∥ · ∥g is the geodesic distance, i.e. the arc length
of the shortest geodesic between u and v. On the sphere in particular this includes the cosine
distance, since ∥u − v∥g is a monotonic function of the angle between u and v.

The reconstruction problem
Given the adjacency matrix A of a random geometric graph defined on a smooth submanifold
M , we want to find an embedding ϕ : V → M which is as close as possible to the true positions
of the vertices. As a measure of accuracy, we focus on the max distance maxv ∥ϕ(v) − v∥
where we identify each vertex v with its true position.

However, if we are only given A, the most we can ask is for ϕ to be accurate up to
M ’s symmetries. In the square, for instance, applying a rotation or reflection to the true
positions results in exactly the same adjacency matrix. Thus we define the distortion d∗(ϕ)
as the minimum of the maximum error achieved by composing ϕ with some element of the
symmetry group Sym(M),

d∗(ϕ) = min
σ∈Sym(M)

max
v∈V

∥(σ ◦ ϕ)(v) − v∥ . (1)

We will sometimes refer to the distortion of a subset of the vertices or of a single vertex.
As in previous work, our strategy is to estimate the distances between pairs of vertices,

and then use geometry to find points with those pairwise distances. We focus on the case
where M = [0,

√
n]2 and ∥ · ∥ is the Euclidean distance. However, many of our results apply

more generally, both in higher dimensions and on curved manifolds.

Our contribution
An intuitive way to estimate the Euclidean distance ∥u − v∥ in a random geometric graph
is to relate it to the graph distance dG(u, v), i.e. the number of edges in a topologically
shortest path from u to v. The upper bound ∥u − v∥ ≤ rdG(u, v) is obvious. Moreover, if
the graph is dense enough, then shortest paths are fairly straight geometrically and most of
their edges have Euclidean length almost r, and this upper bound is not too far from the
truth [4, 7, 13,21].

As far as we know, the best upper and lower bounds relating Euclidean distances to
graph distances in RGGs are given in [12]. In [11] these bounds were used to reconstruct
with distortion (1 + o(1))r when r is sufficiently large, namely if r = nα for some α > 3/14.

However, since the graph distance dG is an integer, the bound ∥u − v∥ ≤ rdG(u, v) cannot
distinguish Euclidean distances that are between two multiples of r. Thus, as discussed
after the statement of Theorem 4 below, the methods of [11] cannot avoid a distortion that
grows as Ω(r). Intuitively, the opposite should hold: as r grows the graph gets denser,
neighborhoods get smoother, and more precise reconstructions should be possible.

We break this Ω(r) barrier by using a hybrid distance estimate. First we note that
rdG(u, v) is a rather good estimate of ∥u − v∥ if ∥u − v∥ is just below a multiple of r, and
we improve the bounds of [12] using a greedy routing analysis. We then combine rdG with a
more precise short-range estimate based on the number of neighbors that u and v have in
common. In essence, we use a quantitative version of the popular heuristic that two vertices
are close if they have a large Jaccard coefficient (see e.g. [24] for link prediction, and [2] for a
related approach to small-world graphs).
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Figure 1 Our results (solid) compared to those of [11] (dotted). If r = nα, our reconstruction
has distortion O(nβ) where β = 1/2 − (4/3)α, except for α > 3/8 where the distortion is O(

√
log n).

The algorithm of [11] applies when α > 3/14 and gives β = α, i.e. distortion Θ(r). Our results apply
for any constant 0 < α < 1/2 and give lower distortion than [11] when α > 3/14.

As a result, we obtain a distortion d∗ that decreases with r. Namely, if r = nα for α > 0,
then d∗ = O(nβ) where β = 1/2 − (4/3)α, until for α ≥ 3/8 where d∗ = O(

√
log n). (Note

that any α > 0 puts us well above the connectivity threshold.) Since it uses graph distances,
the running time of our algorithm is essentially the same as that of All-Pairs Shortest Paths.
To our knowledge, this is the smallest distortion achieved by any known polynomial-time
algorithm. We compare our results with those of [11] in Figure 1.

We show that our results extend to higher dimensions and to some curved manifolds as
well. With small modifications, our algorithm works in the m-dimensional hypercube for
any fixed m (the distortion depends on m, but the running time does not). We also sketch
a proof that it works on the surface of the sphere, using spherical rather than Euclidean
geometry, solving an open problem posed in [11]. Our techniques are designed to be easy
to apply on a variety of curved manifolds and submanifolds, although we leave the fullest
generalizations to future work.

We use N(u) = {w : (u, w) ∈ E} to denote the topological neighborhood of a vertex u,
and B(u, r) to denote the geometrical ball around it. Our results, as well as many of the
cited results, hold with high probability (w.h.p.) in the random instance G ∈ G(n, r), i.e.
with probability tending to 1 as n → ∞. When we consider randomized algorithms, the
probability is over both G(n, r) and the randomness of the algorithm.

Other related work

In the statistics community there are a number of consistency results for maximum-likelihood
methods (e.g. [25]) but it is not clear how the accuracy of these methods scales with the
size or density of the graph, or how to find the maximum-likelihood estimator efficiently.
There are also results on the convergence of spectral methods, using relationships between
the graph Laplacian and the Laplace-Beltrami operator on the underlying manifold (e.g. [3]).
This approach yields bounded distortion for random dot-product graphs in certain regimes.

We assume that parameters of the model are known, including the underlying space and
its metric structure (in particular, its curvature and the number of dimensions). Thus we
avoid questions of model selection or hypothesis testing, for which some lovely techniques
have been proposed (e.g. [10, 18,22]). We also assume that the parameter r is known, since
this is easy to estimate from the typical degree.
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Organization of the extended abstract
In Section 2 we define the concept of a deep vertex. Intuitively, a vertex is deep if it is more
than r from the boundary of the square, so that its ball of potential neighbors is entirely in
the interior. However, since we are only given the adjacency matrix, we base our definition on
the number of vertices two steps away from v in the graph, and show that these topological
and geometric properties are closely related.

Section 3 shows that we can closely approximate Euclidean distances ∥u − v∥ given the
adjacency matrix whenever v is deep. We do this in two steps: we give a precise short-range
estimate of ∥u − v∥ when dG(u, v) ≤ 2, and a long-range estimate that uses the existence of
a greedy path. By “hybridizing” these two distance estimates, switching from long to short
range at a carefully chosen intermediate point, we obtain a significantly better estimate of
∥u − v∥ than was given in [12]. We believe these distance estimation techniques may be of
interest in themselves.

In Section 4, we use this new estimate of Euclidean distant to reconstruct the vertex
positions up to a symmetry of the square, by starting with a few deep “landmarks” and then
triangulating to the other vertices. This gives smaller distortion than the algorithm in [11],
achieving the scaling shown in Figure 1.

Finally, in Section 5 we extend our method to random geometric graphs in the m-
dimensional hypercube and on the surface of the sphere.

Due to space limitation, in this extended abstract, we limit ourselves to sketching the
proofs and their main ideas, deferring the complete proofs to the full version of the paper,
available on ArXiv: https://arxiv.org/abs/2107.14323

2 Deep vertices

Let G be a random geometric graph defined in the two-dimensional square [0,
√

n]2. Because
some of our arguments will break down for vertices near the boundary and corners of [0,

√
n]2,

it will be useful to have an easy way to tell these vertices apart from the rest. To this end,
we introduce the notion of deep vertices.

▶ Definition 1. Let r be fixed. We say that a vertex v ∈ V is deep if at least 11r2 vertices
have graphical distance 2 or less from v.

Note that being deep is a topological property of the graph, rather than its embedding in
the plane. We need such a definition since our reconstruction algorithm is only given access
to the adjacency matrix. However, in the long version we show that with high probability
all vertices that are deep in this topological sense are at least r from the boundary of the
square. Moreover, with high probability there are many deep vertices.

3 Estimating Euclidean distances: Breaking the Ω(r) barrier

3.1 Estimating short-range distances
In this section we show how to estimate the Euclidean distance ∥u − v∥ between two vertices
that are topologically close, namely when dG(u, v) ≤ 2.

We first assume that dG(u, v) = 1, i.e., that ∥u − v∥ = x where 0 ≤ x ≤ r. Then
{N(v) \ N(u)} consists of the points in the lune L = B(v, r) \ B(u, r) shown in Figure 2. If
v is deep, then B(v, r) and therefore L lies in the interior of the square [0,

√
n]2. Thus in

expectation |{N(v) \ N(u)}| is the area of L, which we denote F (x). This suggests inverting
F , estimating x as
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Figure 2 We can estimate the Euclidean distance ∥u − v∥ = x of two vertices with dG(u, v) ≤ 2
using the area of the lune L = B(u, r) ∩ B(v, r) ̸= ∅. Denoting this area F (x), we can estimate x by
appling the inverse F −1 to the number of points in N(v) \ N(u).

d̃(u, v) = F −1 (|N(v) \ N(u)|) . (2)

Since F is monotonic and is given explicitly as F (x) = πr2 − 2r2 arccos x
2r + x

2
√

4r2 − x2, we
can compute this inverse using binary search.

This estimate is w.h.p. an accurate estimate of ∥u − v∥ for two reasons. First, |{N(v) \
N(u)}| is concentrated around its expectation F (x). In both the uniform and the Poisson
models, with high probability we have∣∣∣|{N(v) \ N(u)}| − F (x)

∣∣∣ ≤
√

F (x) log n .

Second, the derivative of F is large, so the derivative of F −1 is small. Specifically, since
F (x) satisfies the differential equation F ′(x) =

√
4r2 − x2, we have F ′(x) ≥ r

√
3 = Ω(r) for

0 < x < r. Noting also that F (x) = Θ(xr), we obtain

∣∣x − d̃(u, v)
∣∣ ≤

√
F (x) log n

F ′(x) = O

(√
x log n

r

)
. (3)

If dG(u, v) = 2 in which case r < x < 2r, we switch from the difference in the two
neighborhoods to their intersection N(u) ∩ N(v), namely the points in the lens-shaped region
B(u, r) ∩ B(v, r) in Figure 2 which has area πr2 − F (x). As x → 2r the area of this region
tends to zero, but so does F ′(x). Specifically, if x = 2r − ε then

πr2 − F (x) = Θ(r1/2ε3/2) and F ′(x) = Θ(r1/2ε1/2) ,

so (3) becomes

∣∣x − d̃(u, v)
∣∣ = O

(√
r1/2 ε3/2 log n

r1/2 ε1/2

)
= O

((ε

r

)1/4√
log n

)
. (4)

Putting this all together gives the main theorem of the section,

▶ Theorem 2. Given a G ∈ G(n, r), where r ≥ 100
√

log n. With probability at least 1 − 2/n2

we have, for all vertices v ̸= w such that dG(v, w) ≤ 2 and v is deep,∣∣∥v − w∥ − d̃(v, w)
∣∣ ≤ 100η(∥v − w∥)

√
log n , (5)
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where η : [0, 2r] → [0, 1] is defined by

η(x) =



√
log n

r for 0 ≤ x ≤ log n
r ,√

x
r for log n

r ≤ x ≤ r,( 2r−x
r

)1/4 for r ≤ x ≤ 2r − (log n)2/3

r1/3 ,
(log n)1/6

r1/3 for 2r − (log n)2/3

r1/3 ≤ x ≤ 2r.

3.2 Estimating long-range distances
Next we show a fairly tight relationship between geometric and topological distance for all
pairs of vertices, including distant ones. This is a slightly sharper version of [12, Thm 1.1].
The main difference is that, where before, a short path between two given vertices is found
by finding vertices close to a straight line between the endpoints, our proof instead analyses
a greedy algorithm generating a path that may deviate further from the straight line.

We start with the following geometrical lemma

▶ Lemma 3. Let B1(v, r1) and B1(u, r2) be overlapping balls in R2, and let d = ∥u − v∥.
Consider the lens L = B1 ∩ B2. Let δ denote the width of L, i.e., δ = r1 + r2 − d. Then the
area A of L satisfies

A = Θ
(

δ3/2 min{r1, r2}1/2
)

.

The main result of this section is the following theorem,

▶ Theorem 4. Let G ∈ G(n, r). There exist absolute constants C1, C2, C3 such that, for all
n ≥ 1 and all r ≥ C1

√
log n, with probability at least 1 − C2/n2, all pairs of vertices u, v

satisfy⌈
∥u − v∥

r

⌉
≤ dG(u, v) ≤

⌈
∥u − v∥ + κ

r

⌉
, (6)

where

κ = κ(∥u − v∥) = C3

(
∥u − v∥

r4/3 + log n

r1/3

)
. (7)

The lower bound of (6) is trivial. The gist of the upper bound is to show the existence
of a short path u ❀ v using a greedy routing algorithm that moves as close as possible, in
Euclidean distance, to v at each step. (Note that this is only for the purpose of analysis,
since our reconstruction algorithm is only given the adjacency matrix!) Start from x0 = u.
Then for each i ≥ 0, let xi+1 be the neighbor of xi that minimizes ∥xi − v∥ as shown in
Fig. 3 (note that xi+1 is unique with probability 1). The algorithm terminates if no neighbor
of xi is closer to v than xi is. If xi = v, we have found our path and the algorithm succeeds.
Otherwise, the algorithm has gotten stuck in a local minimum, and never reaches v.

Then in the full version we prove that the algorithm succeeds with probability 1−O(n−3).
Moreover, with the help of Lemma 3, we can show that each step gets about r − O(r−1/3)
closer to v. This yields the upper bound of (6), and taking a union bound over all pairs u, v

completes the proof. ⌟

Let us discuss how we will use Theorems 2 and 4 to break the Ω(r) barrier in distance
estimation, and thus in reconstruction. Suppose r = nα where 0 < α < 1/2 is a constant.
Then since ∥u − v∥ = O(n1/2), we have from (7)

κ = O
(

max
(

n
1
2 − 4

3 α, n− 1
3 α log n

))
, (8)

ICALP 2022
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u = x0 v

x1 x2
x3

dE(u, v)

Figure 3 The greedy routing analysis of Theorem 4. At each step we go from xi to the neighbor
xi+1 closest to v. In the analysis, we consider the intersections of xi’s neighborhood with balls
centered at v, with the radii of the latter chosen so that these intersections have area ln 2, 2 ln 2,
3 ln 2, and so on. Each of these intersections contains a point with constant probability, so that most
steps make significant progress towards v.

and since 1
2 − 4

3 α > − 1
3 α we have

κ = O(nβ) , where β = 1
2 − 4

3 α . (9)

If α > 3/14, then β < α and κ = o(r). In this case the upper and lower bounds on dG(u, v)
differ by at most 1, and moreover are equal for most pairs of vertices, making dG(u, v) a
nearly-deterministic function of ∥u − v∥. Using ⌈x⌉ ≤ x + 1 and multiplying through by r

gives the bounds

dG(u, v)r − (r + κ) ≤ ∥u − v∥ ≤ dG(u, v)r ,

so that dG(u, v)r is an estimate of ∥u−v∥ with error r+κ = (1+o(1))r. Previous work [11,12]
used essentially this bound to reconstruct the graph with a distortion of (1+ε)r for arbitrarily
small constant ε. This gives the performance shown by the dotted line in Figure 1.

But in fact dG(u, v)r is a much more accurate estimate of ∥u − v∥ for certain pairs of
vertices. If ∥u − v∥ is just below a multiple of r, then rounding up the left and right sides
of (6) doesn’t change either very much. We state this with in the following corollary,

▶ Corollary 5. With κ = κ(∥u − v∥) defined as in (7), suppose that for some 0 ≤ δ < r and
some integer t ≥ 0 we have tr − (κ + δ) < ∥u − v∥ < tr − κ. Then

dG(u, v)r − (κ + δ) ≤ ∥u − v∥ ≤ dG(u, v)r . (10)

Thus, if ∥u − v∥ is in one of these intervals, Theorem 4 lets us estimate ∥u − v∥ from the
adjacency matrix with error δ + κ instead of r + κ. Below we will combine this with the
more precise estimate of short-range distances from Theorem 2 to achieve this error for all
pairs u, v where v is deep, not just those for which ∥u − v∥ is almost a multiple of r.

As a result, the error in our distance estimates and the distortion of our reconstruction is
O(rβ) where β decreases from 1 to 0 as α increases as shown by the solid line in Figure 1.
Specifically, we obtain a nontrivial result for any α > 0 and a more accurate reconstruction
than in [11] in the range α > 3/14 where their theorem applies. At α = 3/8 where β = 0
another source of error takes over, leaving us with O(

√
log n) distortion.
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Figure 4 For any intermediate point w, the hybrid distance estimate d1(u, w) + d2(w, v) is an
upper bound on ||u − v|| with error bounded by Lemma 8.

3.3 Hybrid distance estimates
In this subsection we combine the long-range estimates of Theorem 4 with the short-range
estimates in Theorem 2, to estimate Euclidean distances with an error of o(n). We start
with the following definition:

▶ Definition 6. Let V ⊂ R2 and d : V 2 → [0, ∞) and ε : R → [0, ∞) be two functions
satisfying, for all u, v ∈ V , d(u, v) − ε(u, v) ≤ ∥u − v∥ ≤ d(u, v). Then we say d is an upper
bound on Euclidean distance with error function ε.

The basic tool for combining distance estimates is the following lemma.

▶ Lemma 7. If d1 and d2 are upper bounds on Euclidean distance with error functions ε1, ε2
respectively, then min{d1, d2} is an upper bound on Euclidean distance with error min{ε1, ε2}.

The next lemma shows another way to combine two upper bounds on ∥u − v∥. We choose
a vertex w between u and v and use the triangle inequality, using d1 to bound ∥u − w∥ and
d2 to bound ∥w − v∥. Finally, we minimize over all intermediate vertices w. This hybrid is
especially useful when, as with our long-range and short-range estimates, d1 and d2 have
different ranges of ∥u − v∥ in which they achieve small error.

▶ Lemma 8. Suppose d1 and d2 are upper bounds on Euclidean distance with error functions
ε1 and ε2 respectively. Define the hybrid distance estimate by

d̂(u, v) = min
w

(
d1(u, w) + d2(w, v)

)
. (11)

Then d̂ is an upper bound on Euclidean distance with error

ε̂(u, v) ≤ minw

[
ε1(u, w) + ε2(w, v) + ∥u − w∥ + ∥w − v∥ − ∥u − v∥

]
.

For an intuition of the proof, see Figure 4. ⌟
The next lemma uses the fact that if a lens is sufficiently large to contain at least one

point w with high probability, then this gives an upper bound on the minimum in Lemma 8.

▶ Lemma 9. Let G ∈ G(n, r) and suppose that with high probability d1 and d2 are upper
bounds on Euclidean distance with errors ε1(u, v) = ε1(∥u − v∥) and ε2(u, v) = ε2(∥u − v∥).
Define d̂ as in Lemma 8. Then there is a constant C such that, with high probability, d̂ is
also an upper bound on Euclidean distance, with error ε̂(u, v) = ε̂(∥u − v∥) where

ε̂(∥u − v∥) ≤ min
0<x<∥u−v∥

max
0≤δ1,δ2≤δ(x)

[
ε1(x + δ1) + ε2(∥u − v∥ − x − δ2) + δ(x)

]
, (12)

with δ(x) = C(log n)2/3 (min{x, ∥u − v∥ − x})−1/3.
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Figure 5 The lens L(x) of Lemma 9. If δ is large enough, this lens is nonempty with high
probability, in which case we can use any point w in it as an intermediate point for Lemma 8.

Proof sketch. Fix u, v and consider the lens L(x) = B(u, x + δ) ∩ B(u, x + ∥u − v∥ − x) of
width δ as shown in Fig. 5. By Lemma 3, the area of L(x) is proportional to C3/2 log n.
Since the probability a region of area A is empty is at most e−A, w.h.p. L(x) contains at
least one vertex w. For C sufficiently large, Lemma 8 then yields (12). ◀

Now we use the previous lemma to break the Ω(r) barrier for the error in estimating Euclidean
distances in G ∈ G(n, r).

Assume v is deep. First define d1 = rdG(u, v), i.e., the upper bound of Corollary 5. Now
define d2 using the precise short-range estimate d̃ from Theorem 2, with a small increment
to make it an upper bound on Euclidean distance with high probability. Specifically, for a
sufficiently large constant C2, let

d2(u, v) =
{

d̃(u, v) + C2
√

log n if dG(u, v) ≤ 2 ,

+∞ otherwise .
(13)

▶ Remark 10. Given this choice of d1 and d2, the hybrid estimate d̂(u, v) is the graph distance
from u to v in a weighted graph Gv where each edge (w, v) with dG(w, v) ≤ 2 has weight
d̃(w, v) + C2

√
log n and all other edges have weight r. Thus, for any fixed v, we can compute

d̂(u, v) for all u in with an application of Dijkstra’s algorithm.

Now let us bound the error functions ε1 and ε2 of d1 and d2. As discussed above, for
most values of ∥u − v∥ we have ε1(∥u − v∥) = Θ(r). However, we will choose the lens in
Lemma 9 so that ∥u − w∥ is almost a multiple of r, in which case Corollary 5 shows that
ε1(∥u − w∥) is much smaller.

To bound ε2, Theorem 2 implies that, for some absolute constant C4, w.h.p.

ε2(∥u − v∥) ≤

{
C4

√
log n if ∥u − v∥ ≤ 2r − C4r−1/3 log n,

+∞ otherwise.
(14)

Having gathered these facts, we will apply Lemma 9 to d1 and d2 with a judicious choice of
lens L(x). First note that, since d2(w, v) = +∞ if dG(w, v) > 2, we can write

d̂(u, v) = min
w:dG(w,v)≤2

{d1(u, w) + d2(w, v)}. (15)
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▶ Theorem 11. Let r = nα for a constant 0 < α < 1/2. For all pairs u, v where v is deep,
define d̂(u, v) as in eq. 15. Then w.h.p., d̂ is an upper bound on the Euclidean distance
∥u − v∥ with error

ε̂(u, v) ≤ C ′

{
n

1
2 − 4

3 α α < 3/8,
√

log n 3/8 ≤ α < 1/2,
(16)

for some absolute constant C ′. That is, d̂(u, v) − ε̂(u, v) ≤ ∥u − v∥ ≤ d̂(u, v).

Proof sketch. We choose x and the lens L(x) in Lemma 3 such that ∥u − w∥ is almost an
integer multiple of r. We use this choice of x to upper bound (12), bounding the two terms
inside the minimum separately. Using the definition of κ in Theorem 4, Corollary 5 tells us
that d1(u, w) has error at most ε1 ≤ κ + δ. This implies that for all 0 ≤ δ1 ≤ δ, the first
term of (12) is at most ε1(x + δ1) ≤ κ + δ.

To bound the second term of (12) we first prove that w.h.p. dG(w, v) ≤ 2. We then
use (14) to get ε2(w, v) ≤ C4

√
log n, which implies ε2(∥u − v∥ − x − δ2) ≤ C4

√
log n. ◀

4 The Reconstruction Algorithm

In this section we use our distance estimates to reconstruct the positions of the points up to
a symmetry of the square. Our global strategy is similar to [11]: we first fix a small number
of “landmark” vertices v whose positions can be estimated accurately up to a symmetry
of the plane. Then for each vertex u we use the estimated distances d̂(u, v) to reconstruct
u’s position by triangulation. In [11], the landmarks are vertices close to the corners of the
square. Here they will instead be a set of three deep vertices that are far from collinear,
forming a triangle which is acute and sufficiently large.

▶ Definition 12. We say a triple of deep vertices x, y, z is good if they form an acute triangle
with all three side lengths at least 0.1

√
n.

▶ Remark 13. The bounds of Theorem 4 imply that if x, y, z are deep and have pairwise
graph distances in the interval [0.1

√
n/r, 0.14

√
n/r], then they are a good triple; the triangle

is acute since 0.14 < 0.1
√

2.

Once we have found a good triple, we perform triangulation using the following lemma.

▶ Lemma 14. Let x, y, z, u be four points in the plane. Suppose x, y, z form an acute triangle
with minimum side length at least ℓ. Then, if we know the positions of x, y, z with error
at most η, and we have upper bounds d̂(u, v) on the Euclidean distances ∥u − v∥ for all
v ∈ {x, y, z} with error ε̂, and all of these distances are at most D, we can determine the
position of u relative to x, y, z with error at most

C5
D(ε̂ + η)

ℓ
, (17)

for an absolute constant C5.

▶ Remark 15. In our application, (x, y, z) is a good triple, so ℓ = Ω(
√

n). Since we also have
D ≤

√
2n and η = O(ε̂), we can reconstruct u’s position relative to x, y, z with error O(ε̂).
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Proof. First, let us assume fixed positions for x, y, z within η of their estimated positions
(which we can always do so that they form an acute triangle). By the triangle inequality, this
changes the distances ∥u − v∥ for v ∈ {x, y, z} by at most ±η. Thus u is in the intersection
U of three annuli,

U =
⋂

v∈{x,y,z}

B(v, d̂(u, v) + η) \ B(v, d̂(u, v) − η − ε̂) . (18)

Any point u′ in U gives an approximation of u’s position with error at most the Euclidean
diameter of U , namely maxu,u′∈U ∥u − u′∥. We will show this diameter is bounded by (17).

We use some basic vector algebra. Let ε′ = ε̂ + 2η ≤ 2(ε̂ + η). For any u, u′ ∈ U we have,
for all v ∈ {x, y, z},

−ε′ ≤ ∥u − v∥ − ∥u′ − v∥ ≤ ε′ .

Since the triangle x, y, z is acute, at least one of its sides makes an angle φ with the vector
u − u′ where 0 ≤ φ ≤ π/4. Taking this side to be (x, y) we have, without loss of generality,

(y − x) · (u − u′) = ∥y − x∥ ∥u − u′∥ cos φ ≥ ∥y − x∥ ∥u − u′∥
√

1
2 .

Next, we rewrite this dot product as follows,

2(y − x) · (u − u′) = ∥x − u∥2 − ∥x − u′∥2 − ∥y − u∥2 + ∥y − u′∥2

= (∥x − u∥ − ∥x − u′∥)(∥x − u∥ + ∥x − u′∥)
− (∥y − u∥ − ∥y − u′∥)(∥y − u∥ + ∥y − u′∥)

≤ ε′(∥x − u∥ + ∥x − u′∥ + ∥y − u∥ + ∥y − u′∥) ,

where the first line is a classical polarization identity. Putting these together, we have

∥u − u′∥ ≤
√

2
∥y − x∥

ε′(∥x − u∥ + ∥x − u′∥ + ∥y − u∥ + ∥y − u′∥
)

≤ 4
√

2Rε′

ℓ
,

completing the proof with C5 = 8
√

2. ◀

Finally we state our main theorem.

▶ Theorem 16. Let r = nα for a constant 0 < α < 1/2. There is an algorithm with
running time O(n2) that w.h.p. reconstructs the vertex positions of a random geometric graph
G ∈ G(n, r), modulo symmetries of the square, with distortion d∗ an absolute constant times
times ε̂ as defined in (16). That is, for some constant C ′′,

d∗ = C ′′

{
n

1
2 − 4

3 α if α < 3/8 ,
√

log n if 3/8 ≤ α < 1/2 .

Proof sketch. We use the fact, proved in [11], that w.h.p. the true positions of the lowest-
degree vertices are within

√
log n of the corners of the square. Call these vertices a, b, c, d.

1. Find a good triple x, y, z. One way to do this is to find a vertex x near the center of the
square, for instance one such that dG(x, t) ≥ 0.65

√
n/r for all t ∈ {a, b, c, d}. Then find a

y with dG(x, y) ∈ [0.1
√

n/r, 0.14
√

n/r], and then find a z such that dG(x, z), dG(y, z) ∈
[0.1

√
n/r, 0.14

√
n/r]. At each stage of this process, such a vertex exists with high

probability, and all three are deep.
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Figure 6 Our reconstruction is built around a triangle x, y, z of deep vertices. It may be translated,
rotated, or reflected in R2 by an isometry, but it can then be shifted to the square [0,

√
n]2. Then it

will be a good reconstruction up to a rotation or reflection of the square.

2. Construct a triangle x, y, z ∈ R2 which is congruent to the true positions of the vertices
x, y, z within error η = O(ε̂).

3. For each v ∈ {x, y, z}, compute the hybrid distance estimate d̂(u, v) for all u as follows.
First, for each w such that dG(w, v) ≤ 2, compute |N(w)∩N(v)| and thus the short-range
distance estimates d̃(w, v). Then compute d̂(u, v) for all u using Dijkstra’s algorithm on
the weighted graph Gv described in Remark 10.

4. Use Lemma 14 to reconstruct the position of each vertex u relative to triangle x, y, z with
error O(ε̂). This gives us a reconstruction up to an isometry of R2 as shown in Figure 6.

5. Finally, rotate and translate this reconstruction to the square [0,
√

n]2. We choose a
mapping of a, b, c, d to the corners of the square arbitrarily, using distance estimates to
deduce which pairs are diagonally opposite, and then translate and rotate them as close
as possible to {0,

√
n}2. Since our definition of distortion allows rotations and reflections

of the square, this gives a reconstruction with distortion d∗ = O(ε̂ +
√

log n) = O(ε̂).

Step 1 can be done by breadth-first search, first from a, b, c, d and then from x and y,
and thus takes O(n) time. Steps 2, 3, 4, and 5 require O(n) calculations of finite precision
using standard functions, for which O(log n) bits of accuracy suffices. Thus the running time
is dominated by the three uses of Dijkstra’s algorithm, one for each v ∈ {x, y, z}, giving a
running time of O(n2). ◀

▶ Remark 17. Since the typical degree in the graph is πr2 = O(n2α) where α < 1/2, and
since Dijkstra’s algorithm in a graph with n vertices and m edges runs in time O(m+n log n),
the running time is w.h.p. O(n2α + 1) = o(n2).

▶ Remark 18. Once we reconstruct the positions of all vertices, we can get a good estimate of
||u−v|| by direct computation from their approximate coordinates for all pairs u, v, including
those where neither u nor v is deep.

5 Extensions to Other Domains

Our results can be generalized from the square to a number of alternative domains for
random geometric graphs, including higher-dimensional Euclidean spaces and some curved
manifolds. Here we sketch extensions of our algorithm to the m-dimensional hypercube and
to the sphere, solving an open problem posed in [11].
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5.1 Reconstruction in higher-dimensional Euclidean space
The simplest generalization is where the underlying domain is [0, n1/m]m ⊂ Rm, i.e., an
m-dimensional hypercube with volume n. We assume that m is a constant that does not
vary with n. As before, n points are scattered uniformly in the hypercube, pairs u, v are
adjacent if they are within Euclidean distance r, and our goal is to reconstruct the points’
positions based on the adjacency matrix of the graph.

The following lemma generalizes Lemma 3 to Rm, giving the m-dimensional volume of a
lens-shaped intersection of two balls.

▶ Lemma 19. Let B1(x, r1) and B2(y, r2) be two overlapping balls in Rm with r1 ≤ r2.
Consider the lens L = B1 ∩ B2. Let δ be the width of L, i.e., δ = min{r1 + r2 − d, 2r1} where
d = ∥x − y∥. Then the volume V of L satisfies V = Θ

(
δ

m+1
2 r

m−1
2

1

)
, where the constant in

Θ depends only on m.

Given this relation between the width and volume of the lens, analogously to Section 3,
we can compute both short- and long-range estimates of the distance, and combine them
into a hybrid estimate. The error in the hybrid estimate is given by the following theorem.

▶ Theorem 20. Let r = nα for a constant 0 < α < 1/m. For all pairs u, v where v is deep,
define d̂(u, v) be the hybrid estimate of the distance. Then with high probability, d̂ is an upper
bound on the Euclidean distance ∥u − v∥ with error

ε̂(u, v) ≤ Cm

{
n

1
m − 2m

m+1 α α < m+1
2m2 ,

√
log n m+1

2m2 ≤ α < 1
m ,

(19)

for some dimension-dependent constant Cm.

We omit the details of the proof since it closely follows the steps in Section 3.
In order to use the hybrid estimates for reconstruction, we need to find an appropriate

number of deep landmarks. Using linear algebra, it suffices to have m + 1 landmarks that
form a non-degenerate simplex. As in Theorem 16, we find an approximately equilateral
m-simplex, namely a set of m + 1 points whose graph distances are all roughly the same
constant times the diameter n1/m/r. We again triangulate the positions of the other points
based on their distance estimates, giving a reconstruction up to an isometry of Rm. It is
then easy to compute an isometry that shifts the reconstructed hypercube to [0, n1/m]m by
identifying low-degree vertices with the 2m corners.

Putting this all together gives the following reconstruction theorem for random geometric
graphs in [0, n1/m]m. We omit further details of the proof.

▶ Theorem 21. Let r = nα for a constant 0 < α < 1/m. There is an algorithm with running
time O(n2) that w.h.p. reconstructs the vertex positions of a random geometric graph, modulo
symmetries of the hypercube, with distortion

d∗ ≤ Cm

{
n

1
m − 2m

m+1 α for α < m+1
2m2 ,

√
log n for m+1

2m2 ≤ α < 1
m ,

for some dimension-dependent constant Cm.
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Figure 7 Using three landmarks x, y, z on the sphere to triangulate to other points in Theorem 22.

5.2 Reconstruction on the sphere
Finally, we argue that our algorithm also works on some curved manifolds and submanifolds
where the geometric graph is defined in terms of geodesic distance. In particular we claim
this for the m-dimensional spherical (hyper)surface Sm of a ball in Rm+1. Here we sketch
the proof for the two-dimensional surface of a sphere in R3. Note that the distortion is now
defined by minimizing over the sphere’s continuous symmetry group, i.e., over all rotations
and reflections of the sphere.

In previous work, the authors of [10] gave a procedure to distinguish random geometric
graphs on Sm from Erdős-Rényi random graphs. In addition, [3] gave a spectral method
for reconstructing random graphs generated by a sparsified graphon model on the sphere,
but since this model connects distant pairs of vertices with nonzero probability, it does not
include the geodesic disk model we study here.

To define random geometric graphs on the sphere we scale the sphere so that its surface
area is n, setting its radius to R =

√
n/(4π). We scatter n points uniformly at random on it,

or generate them with a Poisson point process with intensity 1, so that the expected number
of points in a region is equal to its surface area. We define the graph as (u, v) ∈ E if and
only if ∥u − v∥g ≤ r where ∥u − v∥g is the geodesic distance, i.e., the length of the shorter
arc of a great circle that connects u and v. If we associate each point u with a unit vector
u⃗ ∈ R3 that points toward it from the center of the sphere, ∥u − v∥g is R times the angle
between u⃗ and v⃗.

▶ Theorem 22. Let r = nα for a constant 0 < α < 1/2. There is an algorithm with running
time O(n2) that with high probability reconstructs the vertex positions of a random geometric
graph, modulo a rotation or reflection of the sphere, with distortion an absolute constant
times n

1
2 − 4

3 α if α < 3/8 and
√

log n if α ≥ 3/8.

The algorithm is similar to that described in Theorem 16. The main difference is that our
initial landmarks consist of three points x, y, z which approximately form a right spherical
triangle, i.e., such that the vectors x⃗, y⃗, z⃗ have angles of about π/2 between them: see Fig 7.

6 Conclusion and Future Work

We have shown how a combination of geometric ideas can be used to reconstruct random
geometric graphs with lower distortion than in previous work [11], achieving a distortion of
o(r) whenever r = nα for α > 3/14. Here we pose several questions for further work.

ICALP 2022



48:16 Improved Reconstruction of Random Geometric Graphs

First, let us call a reconstruction ϕ consistent if its distances are consistent with the
graph: that is, if (u, v) ∈ E if and only if ∥ϕ(u) − ϕ(v)∥ ≤ r. Even if ϕ has small distortion
d∗, it might not be consistent: some edges (u, v) ∈ E might have ∥ϕ(u) − ϕ(v)∥ between r

and r + 2d∗, and similarly some non-neighboring pairs might have ∥ϕ(u) − ϕ(v)∥ between
r − 2d∗ and r. To the best of our knowledge, even finding a single consistent embedding for
random geometric graphs is an open question. It might be possible to refine our embedding
to make it consistent, by using “forces” to move neighbors slightly closer together, and push
non-neighbors farther away.

Second, a natural question is whether we can prove a significant lower bound on the
distortion. An information-theoretic approach to this question would be to show that even the
Bayesian algorithm, which chooses from the uniform measure on all consistent embeddings,
has a typical distortion. We have been unable to prove this. However, here we sketch
an argument that there exist consistent embeddings with a certain distortion by applying
a continuous function f to the square [0,

√
n]2 that “warps” the true embedding. If f ’s

derivatives are at most δ in absolute value, then for each v, points close to the edge of
v’s neighborhood may move O(δr) closer or farther away. However, a typical v has some
ε = O(1/r) for which there are no points whose distance is between r − ε and r + ε, since
the area of the corresponding annulus is O(1). This suggests that if δ = O(ε/r) = O(1/r2),
the warped embedding is still consistent (except for a few vertices where we need to be
more careful). On other other hand, even if f does not change the distance between nearby
vertices very much, it can still move some vertices δ

√
n from their true positions, giving a

distortion d∗ = Ω(
√

n/r2). If r = nα this gives Ω(n1/2−2α).
Even if this lower bound can be made rigorous, and even if it applies to typical consistent

embeddings rather than just a few, there is a large gap between it and our upper bounds.
Thus it is tempting to think that our algorithm can be improved, reducing the distortion
still further. One approach would be to try to extend the geometry of overlapping disks in
Theorem 2 to larger graph distances. Another would be to combine them with the spectral
ideas of e.g. [3].

Finally, we would like to see how far these techniques can be extended to curved manifolds
and submanifolds with boundary. In Theorem 22 we took advantage of the fact that the
2-sphere has a convenient embedding in R3. A more general approach, which we claim
applies to any compact Riemannian submanifold with bounded curvature, would be to work
entirely within the manifold itself, building a sufficiently dense mesh of landmarks and then
triangulating within mesh cells. In particular, in the popular model of hyperbolic embeddings
(e.g. [6, 16, 17]) where the submanifold is a ball of radius ℓ in a negatively curved space with
radius of curvature R, we believe similar algorithms will work as long as ℓ/R = O(1). We
leave this for future work.
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Abstract
The Dyck language, which consists of well-balanced sequences of parentheses, is one of the most
fundamental context-free languages. The Dyck edit distance quantifies the number of edits (character
insertions, deletions, and substitutions) required to make a given length-n parenthesis sequence
well-balanced. RNA Folding involves a similar problem, where a closing parenthesis can match an
opening parenthesis of the same type irrespective of their ordering. For example, in RNA Folding,
both () and )( are valid matches, whereas the Dyck language only allows () as a match. Both of
these problems have been studied extensively in the literature. Using fast matrix multiplication, it
is possible to compute their exact solutions in time O(n2.687) (Chi, Duan, Xie, Zhang, STOC’22),
and a (1 + ϵ)-multiplicative approximation is known with a running time of Ω(n2.372).

The impracticality of fast matrix multiplication often makes combinatorial algorithms much
more desirable. Unfortunately, it is known that the problems of (exactly) computing the Dyck edit
distance and the folding distance are at least as hard as Boolean matrix multiplication. Thereby, they
are unlikely to admit truly subcubic-time combinatorial algorithms. In terms of fast approximation
algorithms that are combinatorial in nature, the state of the art for Dyck edit distance is an
O(log n)-factor approximation algorithm that runs in near-linear time (Saha, FOCS’14), whereas for
RNA Folding only an ϵn-additive approximation in Õ( n2

ϵ
) time (Saha, FOCS’17) is known.

In this paper, we make substantial improvements to the state of the art for Dyck edit distance
(with any number of parenthesis types). We design a constant-factor approximation algorithm that
runs in Õ(n1.971) time (the first constant-factor approximation in subquadratic time). Moreover, we
develop a (1 + ϵ)-factor approximation algorithm running in Õ( n2

ϵ
) time, which improves upon the

earlier additive approximation. Finally, we design a (3 + ϵ)-approximation that takes Õ( nd
ϵ

) time,
where d ≥ 1 is an upper bound on the sought distance.

As for RNA folding, for any s ≥ 1, we design a factor-s approximation algorithm that runs in
O(n + ( n

s
)3) time. To the best of our knowledge, this is the first nontrivial approximation algorithm

for RNA Folding that can go below the n2 barrier. All our algorithms are combinatorial in nature.
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49:2 Improved Approximation Algorithms for Dyck Edit Distance and RNA Folding

1 Introduction

The Dyck language is a well-known context-free language consisting of well-balanced sequences
of parentheses. Ranging from programming syntaxes to arithmetic and algebraic expressions,
environments in LaTeX, and tags in HTML/XML documents – we observe instances of
the Dyck language everywhere. For a comprehensive discussion on the Dyck language and
context-free grammars; see [23, 26]. Given a sequence x of n parentheses (which may be
unbalanced), the Dyck edit distance problem asks for the minimum number of edits (character
insertions, deletions, and substitutions) needed to make x well-balanced. Interestingly, string
edit distance, which is one of the fundamental string similarity measures, can be interpreted
as a special case of Dyck edit distance.1

A simple dynamic programming computes Dyck edit distance in O(n3) time. In 2016,
after nearly four decades, Bringmann, Grandoni, Saha, and Vassilevska Williams [13] gave
the first truly subcubic-time exact algorithm for a more general problem of language edit
distance [2]. Very recently, Chi, Duan, Xie, and Zhang [17] provided a faster implementation
of the same algorithm. The algorithm uses not-so-practical fast Boolean matrix multiplication,
arguably so because computing Dyck edit distance is at least as hard as Boolean matrix
multiplication [1], and hence combinatorial truly subcubic-time algorithms are unlikely to
exist.

A problem closely related to Dyck edit distance is RNA Folding [31]. Both in RNA
Folding and Dyck edit distance, parentheses must match in an uncrossing way. However, in
an RNA folding instance, a closing parenthesis can match an opening parenthesis of the same
type irrespective of the order of their occurrences. For example, under the RNA Folding
distance, both () and )( are valid matches, whereas the Dyck language only allows () as a
match. In terms of exact computation, they exhibit the same time complexity [1, 13].2

( ( { ( ( ) } ( { } } { ( ( ) ) } ) ) { { ) ( } }
x dyck(x) = 4

delete substitute delete delete

( ( { ( ( ) } ( { } } { ( ( ) ) } ) ) { { ) ( } }
x fold(x) = 2

delete substitute

Figure 1 Example of Dyck and folding edit distance.

Can we design fast approximation algorithms for Dyck edit distance and RNA Folding?
The first progress on this question for Dyck edit distance was made by Saha [34], who
proposed a polylogarithmic-factor approximation algorithm that runs in near-linear time. It
is also possible to provide an ϵn-additive approximation for any ϵ > 0 in Õ( n2

ϵ ) time [36].
However, unless the distance is O(n) and we allow quadratic time, the above algorithm does
not provide a constant-factor approximation to Dyck edit distance. This latter result on
additive approximation applies to RNA Folding as well. Backurs and Onak [7] showed an
exact algorithm for Dyck edit distance that runs in O(n + d16) time, which was recently
improved by Fried, Golan, Kociumaka, Kopelowitz, Porat, and Starikovskaya [21] to run
in O(n + d5) time (and Õ(n + d4.783) using fast matrix multiplication). Therefore, prior

1 Given two strings s and t, form a sequence of parentheses by concatenating s, interpreted as a sequence
of opening parentheses, and the reverse complement of t, obtained by reversing t and replacing each
symbol with the corresponding closing parenthesis, not present in the original alphabet.

2 In these problems, we are aiming to minimize the number of non-matched parentheses as opposed to
maximizing the matched parentheses.
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to this work, (i) there was no nontrivial multiplicative approximation for RNA Folding in
subquadratic time, and (ii) there was no subquadratic-time constant-factor approximation
for Dyck edit distance that would work for the entire distance regime.

Let us contrast this state of affairs with the progress on string edit distance approximation.
As mentioned earlier, string edit distance is a special case of Dyck edit distance. Early
work [6, 8, 9, 28] on approximating string edit distance resulted in the first near-linear-time
polylogarithmic-factor approximation in 2010 by Andoni, Krauthgamer, and Onak [4]. It
took another eight years to obtain the first constant-factor approximation of edit distance
in subquadratic time [15] (see [11] for a quantum analog). Finally, Andoni and Nosatzki
improved the running time to near-linear while maintaining a constant approximation ratio [5].
Using the best result in string edit distance approximation [5], it is possible to improve the
approximation factor of [34] to O(log n). However, designing a constant-factor approximation
for Dyck edit distance in subquadratic time remains wide open. RNA Folding, even though
conceptually very similar to Dyck edit distance, is incompatible with the algorithm of [34].

Saha’s work on Dyck edit distance approximation [34] developed a random walk technique
which has later been used for edit distance embedding and document exchange [10, 16]. This
random walk allows decomposing a parenthesis sequence into many instances of string edit
distance problem. However, this decomposition loses a logarithmic factor in the approximation,
raising the question of whether there exists an efficiently computable decomposition with a
significantly smaller loss.

Contributions for Dyck Edit Distance.
Constant-factor approximation in subquadratic time. The main contribution
of this paper is the first constant-factor approximation algorithm for Dyck edit distance
that runs in truly subquadratic time, namely Õ(n1.971). (In the interest of simplicity,
we did not optimize the exponent in the running time.) We employ and significantly
extend the tools previously developed in connection with string edit distance, such
as the windowing strategy, window-to-window computation, sparse and dense window
decomposition, etc. [11, 15, 22]. These methods are tied to problems involving two or more
strings (unlike the Dyck edit distance, which is a single-sequence problem). Given the
universality of Dyck edit distance, the tools we developed may lead to further advancements
for more generic problems like the language edit distance problem, etc. [13, 35, 36].
Our main algorithm handles the cases of large and small Dyck edit distance separately.
Small Dyck edit distance. When the Dyck edit distance d is small, we give a (3 + ϵ)-
approximation algorithm that runs in Õ( nd

ϵ ) time. We can contrast this result with
the time complexity of computing the Dyck edit distance exactly, which is O(n + d5)
(combinatorially) and Õ(n + d4.783) (using fast matrix multiplication), obtained in [21].
Nevertheless, even in a hypothetical bast-case scenario that a combinatorial O(n+d3)-time
algorithm exists, an Õ(nd)-time algorithm is still faster for all d ≫

√
n.

Quadratic-time PTAS. We also give a (1 + ϵ)-approximation algorithm for Dyck edit
distance that runs in Õ( n2

ϵ ) time. This improves upon the previous result of [36] that
gets such a result only when d = Θ(n). The prior (1 + ϵ)-approximation algorithm uses
fast Boolean matrix multiplication and has super-quadratic running time [35].

Contribution for RNA Folding. For RNA Folding, we are aiming to minimize the number
of non-matched characters; we henceforth call this value the folding distance. For any s > 1,
we give a factor-s approximation of the folding distance in time O(n + ( n

s )3). This is the first
result to our knowledge that goes below the quadratic running time (for s = ω(n1/3)). We
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remark here that the triangle inequality we proved for Dyck distance (Lemma 2.3) as well as
the machinery developed in Section 5 apply to the RNA folding problem equally well. This
yields a constant-factor approximation for RNA folding in Õ(n1.971) time when the distance
is larger than n0.971.

Discussion and Open Problems. The resemblance between Dyck and string edit distance
has already been studied in the literature. As mentioned earlier, the decomposition obtained
by the random walk technique ensures only an O(log n) approximation [34]. In this work,
instead of reducing the Dyck edit distance to string edit distance, we try to find a direct
decomposition of the sequence x into different substrings, where for each substring there is a
peer such that they are matched by some optimal alignment (with some error leading to a
constant-factor approximation). However, unlike the string counterpart, Dyck edit distance
does not have the structural property that if an optimal alignment matches the characters
of a substring s1 with the characters of a substring s2, then the lengths of s1 and s2 are
roughly the same (see Figure 2). Thus, in our decomposition, the substrings can have varied
lengths. In fact, it turns out that if the Dyck edit distance is truly sublinear (i.e., n1−ϵ), then
we need to consider roughly nϵ different lengths to ensure a constant-factor approximation.
We remark that this is one of the barriers in further pushing down the running time from
subquadratic to O(n1.6+o(1)) (as in [22]) or near-linear. We also note that if an analog
of our Õ(nd)-time algorithm can be provided for RNA Folding, then we would also get a
constant-factor subquadratic algorithm for RNA folding for all distance regimes.

The Dyck recognition problem has been studied extensively in different models, including
the streaming [14, 27, 30] and property testing [3, 19, 32] frameworks. However, neither
Dyck edit distance nor RNA Folding admits sublinear-time approximation algorithms. Our
algorithm for RNA Folding (which also applies to Dyck edit distance after straightforward
adaptations) runs in O(n + ( n

s )3) time and requires a linear-time preprocessing step that
eliminates pairs of matching adjacent characters, which leaves strongly structured instances.
This preprocessing step is currently the main barrier to going in the sublinear-time setting.

1.1 Technical Overview
As input to the Dyck edit distance problem, we are given a string x of length n over an alphabet
Σ that consists of two disjoint sets T and T of opening and closing parentheses respectively.
The task is to compute the Dyck edit distance dyck(x), defined as the minimum number of
parentheses insertions, deletions, and substitutions required to make x well-parenthesized.

Quadratic-time PTAS. The standard O(n3)-time algorithm for Dyck edit distance is a
dynamic-programming procedure that computes the distance of each substring of the input
string. The bottleneck of this approach is that, to compute the distance of each substring
x(i . . j], starting at index i+1 and ending at index j, one needs to iterate over decompositions
of x(i . . j] into a prefix x(i . . k] and a suffix x(k . . j] for every possible intermediate index
k ∈ (i . . j) (this corresponds to the fact that the concatenation of two well-parenthesized
expression is a well-parenthesized expression).3 We call the index k a pivot corresponding
to a decomposition. The Õ( n2

ϵ )-time ϵn additive approximation of [36] reduces the number
of considered pivots to Õ( 1

ϵ ); thus, Õ( n
ϵd ) (where d = dyck(x)) different pivots would be

3 For i, j ∈ Z, we denote [i . . j] = {k ∈ Z : i ≤ k ≤ j}, [i . . j) = {k ∈ Z : i ≤ k < j}, (i . . j] = {k ∈ Z : i <
k ≤ j}, and (i . . j) = {k ∈ Z : i < k < j}.
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necessary for a (1 + ϵ)-factor approximation (which is same as an ϵd-additive approximation).
On the other hand, a simple O(n2d)-time algorithm recently developed in [21] is based on a
combinatorial observation that O(d) pivots are sufficient after the O(n)-time preprocessing
from [7, 34]. We start with a brief overview of this algorithm. For any index i ∈ [0 . . n], we
define the height of i to be h(i) = |{j ∈ [1 . . i] : x[j] ∈ T}| − |{j ∈ [1 . . i] : x[j] ∈ T}|, i.e., the
difference between the number of opening and closing parentheses in prefix x[1 . . i]. An index
v is called a valley if h(v − 1) > h(v) < h(v + 1), i.e., x[v] is a closing parenthesis whereas
x[v + 1] is an opening parenthesis. Backurs and Onak [7] showed a linear-time preprocessing
of x that generates another string x′ such that dyck(x) = dyck(x′) and x′ has at most 2d

valleys. Fried, Golan, Kociumaka, Kopelowitz, Porat, and Starikovskaya [21] proved that,
without loss of generality, it is enough to consider pivots that are at distance 0 or 1 from
a valley (we henceforth denote the set of such pivots by K) plus O(1) pivots next to the
boundary of the considered range (i . . j); this observation yields a O(n2d)-time algorithm.

In Section 3, we provide an algorithm that further restricts the set of pivots K consid-
ered for each range (i . . j) and provides a (1 + ϵ)-approximation of dyck(x) in Õ( n2

ϵ ) time
(Theorem 3.2). This is inspired by how Saha [36] considered only Õ( 1

ϵ ) pivots out of each
range (i . . j). The original argument relies on two observations: that using pivot k′ instead
of k incurs at most O(|k − k′|) extra edit operations, and that, for an ϵn-additive approxima-
tion, we can afford O( ϵ min(k−i, j−k)

log n ) extra operations when using pivot k ∈ (i . . j). In our
multiplicative approximation, we refine the second observation by replacing min(k − i, j − k)
with min(|K ∩ (i . . k)|, |K ∩ (k . . j)|). On the other hand, the first observation is not useful
because the set K ∩ (i . . j) is already relatively sparse. Thus, instead of restricting each range
(i . . j) to use few pivots k, we restrict each pivot k to be used within few ranges (i . . j). This
is feasible with respect to the approximation ratio because the costs for x(i . . j] and x(i′ . . j′]
may only differ by O(|i − i′| + |j − j′|), and because the O(n2d)-time algorithm still considers
each pivot k ∈ K for all ranges (i . . j) containing k (which leaves room for sparsification).

Constant-factor approximation in Õ(nd) time. Overcoming the O(n2) barrier with a
dynamic-programming approach poses significant challenges: there are Θ(n2) substrings to
consider and, for d ≥

√
n, this quantity does not decrease (in the worst case) even if we

run the preprocessing of [7, 34] and exclude substrings with costs exceeding d. Thus, we
artificially restrict the DP states to substrings whose all prefixes have at least as many opening
parentheses as closing ones and whose all suffixes have at least as many closing parentheses
as opening ones. Surprisingly, as shown in Section 4, this yields a 3-approximation of the
original cost. Furthermore, if we additionally require that the number of opening parentheses
and the number of closing parentheses across the entire substring are within 2d from each
other (otherwise, the Dyck edit distance trivially exceeds the threshold), we end up with
O(nd) substrings. Reusing the pivot sparsification of Section 3, one can process them in
Õ( nd

ϵ ) total time at the cost of increasing the approximation ratio from 3 to 3 + ϵ.

Constant-factor approximation in Õ(n1.971) time. In Section 5, we exhibit an Õ(n1.971)-
time algorithm that provides a constant-factor approximation of Dyck edit distance. At
a high level, the framework of our algorithm is similar to the three-step procedure of [15]
that provides a constant-factor approximation of string edit distance in subquadratic time.
Thus, we start with a brief recap of [15], pointing out the major bottlenecks for applying
this framework directly to our problem. Given two strings x, y of length n, the algorithm
of [15] starts by constructing a set of windows Wx for x and Wy for y, where each window is
a length-s subinterval of [1 . . n], representing a substring of x or y. The motivation behind
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49:6 Improved Approximation Algorithms for Dyck Edit Distance and RNA Folding

this construction is the following: given the edit distances between all pairs of windows from
Wx and Wy, one can compute a constant-factor approximation of the edit distance ED(x, y)
using an O( n2

s2 )-time dynamic-programming procedure. The challenge here is that if the
edit distances are computed using a trivial dynamic-programming algorithm for all pair of
windows from Wx and Wy, then the total running time becomes quadratic. The key insight
of [15] is that, in some favorable situation, one can use random sampling to select a subset of
window pairs from Wx × Wy such that evaluating the edit distances of the window pairs in
the subset is enough to construct a nearly-optimal alignment of x, y. On the other extreme,
instead of computing edit distance for each window pairs explicitly, one can use triangle
inequality to get constant-factor approximation of the optimal costs.4 Several other works
have subsequently used this framework to solve related problems [12, 22, 33, 37].

As discussed above, much of the previous work on Dyck edit distance relies on similarities
with edit distance, either via black-box reductions (such as the random walk of Saha [34]) or
by transferring techniques (e.g., [7, 21] build on top of the O(n + d2)-time algorithm [29] for
edit distance). Hence, we try to adapt the framework of [15] to the Dyck setting.

The first challenge is that the Dyck edit distance is defined for a single string, so it is
not immediately clear how to formulate the triangle inequality in this setting. However,
the embedding of string edit distance into the Dyck edit distance hints a candidate for a
metric: a function mapping strings x, y ∈ Σ∗ to dyck(xy), where y is the reverse complement
of y (obtained by reversing y and flipping the direction of each parenthesis). This choice
turns out to be a valid one: we show (in Lemma 2.3) that any three strings x, y, z satisfy
dyck(xz) ≤ dyck(xy) + dyck(yz), which we dub the triangle inequality for Dyck edit distance.
Our proof is based on a subtle inductive argument that reduces the general case to that of
|y| ≤ 1 and |xz| ≤ 2. This base case, in turn, requires some case analysis.

A more serious issue is that the very first step of the algorithms of [11, 15], window
decomposition, fails for our purposes, and, as discussed below, a workaround poses significant
difficulties. To conclude the high-level discussion, we list our two main technical contributions
leading to the subquadratic-time constant-factor approximation for Dyck edit distance:
1. We propose a new window decomposition strategy and show that any optimal alignment

of x can be approximated by matching the window pairs generated by our strategy.
2. We establish the triangle inequality for Dyck edit distance.

Next, we discuss the limitations of the windowing strategy of [15] and explain how
to overcome them. The algorithm of [15] partitions the input strings into fixed-length
(overlapping) substrings, estimates the distances between relevant pairs of substrings, and
then runs a dynamic-programming procedure to derive a global alignment. Regardless,
following the strategy of dimension reduction, one idea could be to partition the input
string x into windows w1, . . . , wℓ ⊆ [1 . . n] of length s (where s = nΘ(1)) with the hope,
that given the Dyck edit distances for all strings x[wi] ◦ x[wj ] (here, x[wi] represents the
substring of x restricted to the indices in wi and ◦ denotes concatenation), one can use the
cubic-time dynamic-programming algorithm to estimate dyck(x) in time Õ( n3

s3 ). However,
this straightforward decomposition fails for the following reasons:

In case of string edit distance, if an optimal alignment (with cost d) matches x[i] with
y[j], then x[i + 1] can be matched only with a character of y[j + 1 . . j + d + 1]. Thus,
if we consider a window w1 in x and a window w2 in y such that ED(x[w1], y[w2]) is

4 The use of triangle inequality was first proposed in [11], where Grover search was used instead of random
sampling, resulting in a quantum constant-factor approximation of edit distance in subquadratic time.
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Figure 2 An example showing two very different length substrings can be matched with cost 0.

small, then we can assume |w1| ≈ |w2|. This structural property completely breaks
down for Dyck edit distance. For example, the two windows w1, w2 in Figure 2 satisfy
dyck(x[w1] ◦ x[w2]) = 0 even though their lengths are very different. This indicates that
partitioning x into single-length windows does not suffice.
To overcome the aforementioned issue, let us assume that we allow variable-length windows.
Note that an optimal alignment may match a window w1 of length s with a window w2 of
length ≫ s (|w2| can be as large as Ω(n)). However, if we allow windows of lengths ≫ s,
then estimating the costs of such large window pairs may be inefficient. One way out could
be to subdivide both w1 and w2 into smaller windows w1

1, w2
1, . . . , wk

1 and w1
2, w2

2, . . . , wk
2 ,

respectively, and separately compute the cost of each substring x[wi
1] ◦ x[wj

2]. Here,
as |wi

1| and |wj
2| are not too large, any individual cost can be approximated efficiently.

However, since |wi
1| can be very small (as small as no(1)), the total number of subproblems

(window pairs whose cost we evaluate) can explode, and hence the dynamic-programming
procedure combining these subproblems may become inefficient.

Thus, for Dyck edit distance, the main challenge is to partition the input string x into
variable-length windows which are neither too short (this ensures that the total number of
subproblems, i.e., window pairs we evaluate, is not too large, and hence the DP combining
them is efficient) nor too long (so that computing the costs of window pairs is efficient as
well), and any optimal alignment of x can be approximated by matching these window pairs.
Formally, we need to construct a set of windows J , where each window has length at most s

(we set this s to be a polynomial in n), |J | ≈ n
s , and there exists a subset S ⊆ J × J such

that S is a consistent window decomposition of [1 . . n] (i.e., the windows involved in S form a
decomposition of [1 . . n] and the window pairs in S do not cross) and there is a nearly-optimal
alignment that aligns w with w′ for each (w, w′) ∈ S. The latter condition is formalized as
follows (the construction of J is parameterized by θ, chosen so that θn ≤ dyck(x)):

▶ Lemma 1.1. There exists a consistent window decomposition S ⊆ J × J of [1 . . n] such
that

∑
(w,w′)∈S dyck(x[w] ◦ x[w′]) ≤ dyck(x) + 8θn.

The construction of an appropriate family J and the proof of Lemma 1.1 are among the
novelties of our algorithm; this is where our approach significantly differs from [15].

Window Decomposition. Our proof of Lemma 1.1 (given in Section 5.1) follows a two-step
strategy. In the first step, independent of the choice of J , the decomposition S may contain
arbitrary window pairs (w, w′) with |w|, |w′| ≤ s, but we require

∑
(w,w′)∈S dyck(x[w] ◦

x[w′]) = dyck(x) (no approximation allowed) and |S| = O( n
s ). In the second step, we locally

perturb the endpoints of all windows in S so that the resulting windows belong to J ; this
incurs an additive overhead of O(θn) on the cost of the consistent window decomposition S.

Our proof for the first step inductively constructs a consistent window decomposition of
any window (i1 . . i2] ⊆ [1 . . n]. In the base case of |(i1 . . i2]| ≤ 2s, we build a single window
pair composed of the two halves of (i1 . . i2]. In the main case, we identify an outermost
window pair ((i1 . . j1], (j2 . . i2]), with j1 ∈ [i1 . . i1 + s] and j2 ∈ [i2 − s . . i2], and a pivot
p ∈ [i1 + s . . i2 − s] so that

dyck(x(i1 . . i2]) = dyck(x(j1 . . p]) + dyck(x(p . . j2]) + dyck(x(i1 . . j1] ◦ x(j2 . . i2]).
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The appropriate positions j1, j2, p can be derived from an optimal alignment of x(i1 . . i2]:
(i1 . . j1] can be defined as the shortest (possibly empty) prefix of (i1 . . i1 + s] containing
all positions in (i1 . . i1 + s] matched with (i2 − s . . i2];
(j2 . . i2] can be defined as the shortest (possibly empty) suffix of (i2 − s . . i2] containing
all positions in (i2 − s . . i2] matched with (i1 . . i1 + s];
(i1 + s . . p] can be defined as the shortest (possibly empty) prefix of (i1 + s . . i2 − s]
containing all positions in (i1 + s . . i2 − s] matched with (i1 . . i1 + s].

The sought decomposition of (i1 . . i2] is obtained by inserting ((i1 . . j1], (j2 . . i2]) to the union
of decompositions of (j1 . . p] and (p . . j2] (constructed recursively). It is not hard to prove that
this construction satisfies the claims made above. The most subtle argument involves the size
of the decomposition. This is because the bound |S| = O( n

s ) requires windows of average size
Θ(s), but (i1 . . j1] and (j2 . . i2] can be arbitrarily short (even empty). Even worse, (j1 . . p]
and (p . . j2] may also be arbitrarily short. However, we still have |(i1 . . p]|, |(p . . i2]| ≥ s, and
this suffices to inductively prove an upper bound of max(1, 2(i2−i1)

s − 1).
As for the second step of the proof of Lemma 1.1, we need to specify the choice of J ,

which is parameterized by θ and s. We simply include in J all windows w = (i1 . . i2] of
length at most s whose endpoints i1, i2 are both integer multiples of θs (in this overview,
we assume for simplicity that n

s , θs, and 1
θ are all integers). This way, |J | = O( n

θ2s ) (there
are O( n

θs ) choices for the starting position and O( s
θs ) choices for the length of a window in

J ). Moreover, each window of length at most s can be transformed to a window in J by
rounding both endpoints up to the nearest multiple of θs. When performed simultaneously
on all windows in S, this perturbation preserves the relative order of the windows, and thus
S remains a consistent window decomposition of [1 . . n]. Furthermore, for each window pair
(w, w′), the value dyck(x[w] ◦ x[w′]) changes by at most 4θs. Given that |S| ≤ 2n

s , the overall
additive overhead does not exceed 8θn.

Two-Level Window Decomposition. If we could estimate the cost of each window pair
in J × J , this would provide a cost estimation for all window pairs in the unknown set
S ⊆ J × J of Lemma 1.1. Thus, using a dynamic-programming procedure to optimize the
cost over consistent decompositions S̃ ⊆ J × J of [1 . . n], we could approximate dyck(x).

However, similarly to [15], in order to estimate the cost of each window pair in J × J ,
we further partition each large window into smaller windows and estimate the cost of
these smaller window pairs. Thus, given another (smaller) window size parameter, we
analogously construct a family K of variable-sized windows. Adapting the argument behind
Lemma 1.1, we can show that, for each window pair (w, w′) ∈ J × J , the set w ∪ w′ admits a
consistent window decomposition S(w,w′) ⊆ K×K such that

∑
(q,q′)∈S(w,w′)

dyck(x[q]◦x[q′]) ≤
dyck(x[w] ◦ x[w′]) + O(θs) (Lemma 5.6 is formulated analogously to Lemma 1.1).

Certifying Window Pairs. With the two-level window decomposition at hand, adapt-
ing the remaining two phases of [15] is relatively easy. For this, we design a procedure
CertifyWindowPairs that finds a cost estimation for selected window pairs in J × J and
K × K. The procedure shares a similar flavor with the Covering algorithm of [15] and relies
on the triangle inequality (Lemma 2.3) discussed above. Its implementation and analysis
is provided in the full version [18] only. The main guarantee of CertifyWindowPairs is
that (with high probability) some of the certified window pairs can be combined to form a
consistent window decomposition of [1 . . n] whose cost is O(dyck(x) + θn). Thus, a simple
dynamic-programming algorithm (also provided in the full version [18] only) can be used to
retrieve a constant-factor approximation of dyck(x) (recall that θn ≤ dyck(x)).
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Folding Distance. The key difference between the folding distance (originating from the
RNA folding problem) compared to the Dyck edit distance is that the alphabet is no longer
partitioned into the set T of opening parentheses and the set T of closing parentheses. In
other words, every character c can be matched with its complement c regardless of their
order in the text. In particular, this means that the notions of heights and valleys are
not meaningful anymore. Nevertheless, for any fixed alignment, one can distinguish the
unmatched, opening (matched with a character to the right), and closing (matched with
a character to the left) characters. Moreover, one can still greedily eliminate substrings of
the form cc (similarly to the preprocessing of [7]). In any optimal alignment of an instance
preprocessed this way, there must be an unmatched character between any two characters
matched with each other. Although this reduction does not seem helpful in sparsifying the
set of pivots to be considered, it does bring a strong structural property: there is a subset
[1 . . n] of size n − O(d) (containing all characters matched without edits) which admits a
consistent window decomposition into O(d) window pairs (w, w′) such that x[w′] = x[w]
(and thus fold(x[w] ◦ x[w′]) = 0). The strategy behind our O(s)-factor approximation is to
sacrifice O(s) boundary characters out of each window pair and, in exchange, make sure
that the “closing windows” w′ have both endpoints at positions divisible by s. We then use
Internal Pattern Matching [24, 25] to efficiently search for “opening windows” w that
could match our closing windows. Doing so, we cannot guarantee that the opening windows
have their endpoints divisible by s, but we can sparsify the set of candidates so that they
start at least s positions apart. This results in O(( n

s )3) window pairs to be considered and
leads to the overall running time of O(n + ( n

s )3). The details are given in the full version [18].

2 Preliminaries

The alphabet Σ consists of two disjoint sets T and T of opening and closing parentheses,
respectively, with a bijection · : T → T mapping each opening parenthesis to the corresponding
closing parenthesis. We extend this mapping to an involution · : T ∪ T → T ∪ T and then
to an involution · : Σ∗ → Σ∗ mapping each string x[1]x[2] · · · x[n] to its reverse complement
x[n] · · · x[2] x[1]. Given two strings x, y, we denote their concatenation by xy or x ◦ y.

The Dyck language Dyck(Σ) ⊆ Σ∗ consists of all well-parenthesized expression over Σ;
formally, it can be defined using a context-free grammar whose only non-terminal S admits
productions S → SS, S → ∅ (empty string), and S → aSa for all a ∈ T .

▶ Definition 2.1. The Dyck edit distance dyck(x) of a string x ∈ Σ∗ is the minimum number
of character insertions, deletions, and substitutions required to transform x to a string in
Dyck(Σ).

We say that M ⊆ {(i, j) ⊆ Z2 : i < j} is a non-crossing matching if any two distinct
pairs (i, j), (i′, j′) ∈ M satisfy i < j < i′ < j′ or i < i′ < j′ < j. Such a matching can also
be interpreted as a function M : Z → Z ∪ {⊥} with M(i) = j if (i, j) ∈ M or (j, i) ∈ M for
some j ∈ Z, and M(i) = ⊥ otherwise.

For a string x ∈ Σn, the cost of a non-crossing matching M ⊆ [n]2 on x (henceforth M is
called an alignment of x) is defined as costM (x) = n − 2|M | +

∑
(i,j)∈M dyck(x[i]x[j]).

The following folklore fact (proved for completeness in the full version [18]), relates the
Dyck edit distance with the optimum alignment cost.

▶ Fact 2.2. For every string x ∈ Σ∗, the Dyck edit distance dyck(x) is the minimum cost
costM (x) of an alignment M of x.
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Figure 3 A plot of the height function h for x = ([)[(]](])). The blue dotted lines represent
an alignment M = {(1, 11), (2, 9), (4, 7), (5, 6)} of cost 4. The valleys {3, 7} are marked as black
circles. The set K = {2, 3, 4, 6, 7, 8} of Fact 2.6 also includes points marked as white circles.

We show that a function mapping x, y ∈ Σ∗ to dyck(xy) satisfies the triangle inequality.

▶ Lemma 2.3. All strings x, y, z ∈ Σ∗ satisfy dyck(xz) ≤ dyck(xyyz) ≤ dyck(xy) + dyck(yz).

Proof. The second inequality follows from the fact that the Dyck language is closed under
concatenations. As for the first inequality, we observe that it suffices to consider |y| = 1:
the case of |y| = 0 is trivial, and the case of |y| > 1 can be derived from that of |y| = 1 by
processing y letter by letter. Now, we proceed by induction on 2dyck(xyyz) + |x| + |z|. If any
optimum alignment of xyyz modifies a character in x or z, we apply the inductive assumption
for an instance (x′, y, z′) obtained from this modification: dyck(xz) ≤ dyck(x′z′) + 1 ≤
dyck(x′yyz′) + 1 = dyck(xyyz). If any optimum alignment of xyyz matches any two adjacent
characters of x, any two adjacent characters of z, or the first character of x with the last
character of z, we apply the inductive assumption for an instance (x′, y, z′) obtained by
removing these two characters: dyck(xz) ≤ dyck(x′z′) ≤ dyck(x′yyz′) = dyck(xyyz). In
the remaining case, all characters of x and z must be matched to y or y, so |xz| ≤ 2.
If |xz| ≤ dyck(xyyz), then trivially dyck(xz) ≤ |xz| ≤ dyck(xyyz), so we may assume
dyck(xyyz) < |xz|. The case of dyck(xyyz) = 0 and |xz| = 1 is impossible because only
strings of even length belong to the Dyck language. Thus, we may assume that |xz| = 2 and
dyck(xyyz) ≤ 1. If |x| = 2, then the optimum matching of xyyz must be {(1, 4), (2, 3)}, and
the sequence transforming dyck(xyyz) to a word in Dyck(Σ) must include substituting y or y

(whichever is an opening parenthesis). In particular, x[1] must be an opening parenthesis, so
dyck(xz) = dyck(x) ≤ 1 = dyck(xyyz). If |z| = 2, then the optimum matching of xyyz must
be {(1, 4), (2, 3)}, and the sequence transforming dyck(xyyz) to a word in Dyck(Σ) must
include substituting y or y (whichever is a closing parenthesis). In particular, z[1] must be
an opening parenthesis, so dyck(xz) = dyck(z) ≤ 1 = dyck(xyyz). Finally, if |x| = |z| = 1,
then the optimum matching of xyyz must be {(1, 2), (3, 4)}. If dyck(xyyz) = 0, then we
must have x = y = z ∈ T , so dyck(xz) = 0 ≤ dyck(xyyz). Otherwise, x ∈ T or z ∈ T , so
dyck(xz) ≤ 1 = dyck(xyyz). ◀

In the remainder of this section, we recall several results from [7, 21] that we then use in
our Õϵ(n2)-time PTAS (Section 3) and Õϵ(nd)-time (3 + ϵ)-approximation (Section 4).

▶ Definition 2.4 (Heights). For a fixed string x ∈ Σn, the height function h : [0 . . n] →
[−n . . n] is defined so that h(i) = |{j ∈ [1 . . i] : x[j] ∈ T}| − |{j ∈ [1 . . i] : x[j] ∈ T}| for
i ∈ [0 . . n].

▶ Fact 2.5 ([7]). There is a linear-time algorithm that, given a string x ∈ Σn, produces
a string x′ ∈ Σ≤n such that dyck(x) = dyck(x′) and x′ has at most 2dyck(x) valleys, i.e.,
positions v ∈ [1 . . n) such that h(v − 1) > h(v) < h(v + 1).
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For a fixed string x ∈ Σn, let us define a function D such that D(i, j) = dyck(x(i . . j]) for
i, j ∈ [0 . . n] with i ≤ j. Note that D(i, i) = 0 for i ∈ [0 . . n], D(i, i + 1) = 1 for i ∈ [0 . . n),
and D(i, j) satisfies the following recursion for i, j ∈ [0 . . n] with j − i ≥ 2:

D(i, j) = min
{

D(i, k) + D(k, j) for k ∈ (i . . j),
D(i + 1, j − 1) + dyck(x[i + 1]x[j]).

(1)

This yields the classic O(n3)-time algorithm computing D(0, n) = dyck(x). The following
result, combined with Fact 2.5, improves this time complexity to O(n + n2dyck(x)).

▶ Fact 2.6 ([21, Lemma 2.1]). For a string x ∈ Σn, let K ⊆ [0 . . n] consist of all positions
at distance 0 or 1 from a valley. For all i, j ∈ [0 . . n] with j − i ≥ 2, we have

D(i, j) = min
{

D(i, k) + D(k, j) for k ∈ (i . . j) ∩ (K ∪ {i + 1, i + 2, j − 1, j − 2}),
D(i + 1, j − 1) + dyck(x[i + 1]x[j]).

(2)

▶ Observation 2.7 ([21, Fact 3.1]). For all strings x ∈ Σn and integers 0 ≤ i ≤ k ≤ j ≤ n,
we have h(k) ≥ max(h(i), h(j)) − 2D(i, j). In particular, |h(i) − h(j)| ≤ 2D(i, j).

3 Quadratic-Time PTAS

In this section, we develop an Õ(ϵ−1n2)-time algorithm that approximates dyck(x) within
a (1 + ϵ) factor. The starting point of our solution is the dynamic program derived from
Fact 2.6. Instead of computing the exact value D(i, j) = dyck(x(i . . j]), that depends on
D(i, k) + D(k, j) for all pivots k ∈ (i . . j) ∩ (K ∪ {i + 1, i + 2, j − 1, j − 2}), we compute an
approximation AD(i, j) ≈ dyck(x(i . . j]) in Algorithm 1 that depends only on D(i, k) + D(k, j)
for pivots k ∈ (i . . j) ∩ (Ki,j ∪ {i + 1, i + 2, j − 1, j − 2}), where Ki,j consists of τi,j leftmost
and rightmost elements of K ∩ (i . . j). Here, τi,j is proportional to the largest power of
two dividing both i and j. Formally, we set τi,j := τ · 2min(ν(i),ν(j)), where τ ≥ 2 is a
parameter to be set later and ν : Z → Z≥0 ∪ {∞} is a function that maps an integer r ∈ Z
to ν(r) := max{k ∈ Z : 2k divides r}, with the convention that ν(0) = ∞.

In the following lemma, we inductively bound the quality of AD(i, j) as an additive
approximation of D(i, j). In particular, we show that D(i, j) ≤ AD(i, j) ≤ D(i, j)+ 8

τ |K| log |K|.

▶ Lemma 3.1. If τ ≥ 2, then, for each i, j ∈ [0 . . n] with i ≤ j, we have D(i, j) ≤ AD(i, j) ≤
D(i, j) + 8

τ ci,j log ci,j, where ci,j := |K ∩ (i . . j)|, and we assume 0 log 0 = 0.

Algorithm 1 Recursive implementation of AD(i, j).

1 AD(i, j)
2 if j = i then return 0;
3 if j = i + 1 then return 1;
4 c := AD(i + 1, j − 1) + dyck(x[i + 1]x[j]);
5 τi,j := τ · 2min(ν(i),ν(j));
6 Ki,j := the set of τi,j smallest and τi,j largest elements of K ∩ (i . . j);
7 foreach k ∈ Ki,j ∪ ({i + 1, i + 2, j − 2, j − 1} \ {i, j}) do
8 c := min(c, AD(i, k) + AD(k, j));
9 return c;

ICALP 2022



49:12 Improved Approximation Algorithms for Dyck Edit Distance and RNA Folding

Proof. We proceed by induction on j − i. For j − i ≤ 1, we have AD(i, j) = D(i, j). For
j − i ≥ 2, the lower bound D(i, j) ≤ AD(i, j) follows directly from Fact 2.6. Unless D(i, j) =
D(i, k) + D(k, j) for some k ∈ (i . . j) ∩ K, the upper bound also follows from Fact 2.6 since
ci,j log ci,j ≥ max(ci+1,j−1 log ci+1,j−1, ci,k log ci,k + ck,j log ck,j). Let r = min(ci,k, ck,j) and
let i′, j′ be the smallest and the largest multiples of 2⌈log((r+1)/τ)⌉ within [i . . j].

Let us first prove that k ∈ Ki′,j′ . Note that τ(i′−i) < τ2⌈log((r+1)/τ)⌉ < τ ·2· r+1
τ = 2(r+1),

so τ(i′ − i) ≤ 2r (because both strict inequalities are between integers). A symmetric
argument yields τ(j − j′) ≤ 2r. Due to τ ≥ 2, we thus have i′ − i ≤ r ≤ ci,k < k − i and
j − j′ ≤ r ≤ cj,k < j − k, so k ∈ (i′ . . j′). Moreover, τi′,j′ ≥ τ · 2⌈log((r+1)/τ)⌉ ≥ r + 1 =
min(ci,k, ck,j) + 1 ≥ min(ci′,k, ck,j′) + 1, so k ∈ Ki′,j′ holds as claimed.

Thus, due to 2r = 2 min(ci,k, ck,j) ≤ ci,k + ck,j ≤ ci,j , we have

AD(i, j) ≤ (i′ − i) + AD(i′, j′) + (j − j′)
≤ 2r

τ + AD(i′, k) + AD(k, j′) + 2r
τ

≤ D(i′, k) + 8
τ ci′,k log ci′,k + D(k, j′) + 8

τ ck,j′ log ck,j′ + 4r
τ

≤ (i′ − i) + D(i, k) + 8
τ ci,k log ci,k + D(k, j) + (j − j′) + 8

τ ck,j log ck,j + 4r
τ

≤ D(i, j) + 8
τ (ci,k log ci,k + ck,j log ck,j + r)

= D(i, j) + 8
τ (max(ci,k, ck,j) log max(ci,k, ck,j) + r log(2r))

≤ D(i, j) + 8
τ (max(ci,k, ck,j) log ci,j + min(ci,k, ck,j) log ci,j)

≤ D(i, j) + 8
τ ci,j log ci,j . ◀

Our final solution simply uses Algorithm 1 with an appropriate choice of the parameter τ

and the input string preprocessed using Fact 2.5 so that |K| = O(dyck(x)).

▶ Theorem 3.2. There is an algorithm Dyck-Approx that, given a string x ∈ Σn and
a parameter ϵ ∈ (0, 1), in Õ(ϵ−1n2) time computes a value v such that dyck(x) ≤ v ≤
(1 + ϵ)dyck(x).

Proof. In the preprocessing, we use Fact 2.5 to guarantee that there are at most 2dyck(x)
valleys and thus |K| ≤ 6dyck(x). Next, we call AD(0, n) with τ = ⌈48ϵ−1 log |K|⌉ and an array
of size (n+1)× (n+1) memorizing the outputs of recursive calls. The resulting value satisfies
dyck(x) ≤ AD(0, n) ≤ dyck(x) + 8

τ |K| log |K| ≤ dyck(x) + 8
48ϵ−1 log |K| · 6dyck(x) · log |K| =

(1 + ϵ)dyck(x) by Lemma 3.1. The running time is proportional to

n2
n∑

i=0

n∑
j=i+2

τi,j ≤ n2 +
n∑

i=0

n∑
j=i+2

τ2ν(j) ≤ n2 + nτ
n∑

j=2
2ν(j) ≤ n2 + nτ

⌊log n⌋∑
ν=0

⌊ n

2ν

⌋
2ν

= O(n2τ log n) = O(ϵ−1n2 log2 n) = Õ(ϵ−1n2). ◀

4 Constant-Factor Approximation for Small Distances

In this section, we speed up the algorithm of Section 3 at the cost of increasing the ap-
proximation ratio from 1 + ϵ to 3 + ϵ. The key idea behind our solution is to re-use the
DP of Fact 2.6 and Algorithm 1 with an extra constraint that the transition from (i, j) to
(i+1, j −1) (which corresponds to adding (i+1, j) to the alignment M , i.e., matching x[i+1]
with x[j]) is forbidden if there is a deep valley within (i . . j). This condition is expressed in
terms of the following function:

▶ Definition 4.1. For a fixed string x ∈ Σn and i, j ∈ [0 . . n] with i ≤ j, let h(i, j) =
minj

k=i h(k).
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Namely, we require that h(i + 1, j − 1) > h(i, j) holds for all (i + 1, j) ∈ M . For example,
in the alignment M of Figure 3, (2, 9) ∈ M violates this condition due to h(1, 9) = 1 = h(2, 8),
whereas the remaining pairs satisfy this condition. Formally, we transform the recursion
of Fact 2.6 into the following one, specified through a function GD : [0 . . n]2 → [0 . . n] such
that GD(i, i) = 0 for i ∈ [0 . . n], GD(i, i + 1) = 1 for i ∈ [0 . . n), and, for all i, j ∈ [0 . . n] with
j − i ≥ 2:

GD(i, j) = min
{

GD(i, k) + GD(k, j) for k ∈ (i . . j) ∩ (K ∪ {i + 1, i + 2, j − 2, j − 1}),
GD(i + 1, j − 1) + dyck(x[i + 1]x[j]) if h(i + 1, j − 1) > h(i, j).

Somewhat surprisingly, this significant limitation on the allowed alignments M incurs no
more that a factor-3 loss in optimum alignment cost. Specifically, if we take an arbitrary
alignment M of x and remove all pairs (i + 1, j) with h(i + 1, j − 1) = h(i, j), the resulting
alignment M ′ satisfies costM ′(x) ≤ 3costM (x). This can be proved by induction on the
structure of M using a potential function h(i) + h(j) − 2h(i, j) as a “budget” for future
deletions of matched pairs. Nevertheless, the proof of the following lemma operates directly
on D and GD.

▶ Lemma 4.2. Let x ∈ Σn. For all i, j ∈ [0 . . n] with i ≤ j, we have D(i, j) ≤ GD(i, j) ≤
3D(i, j) − h(i) − h(j) + 2h(i, j).

Proof. We proceed by induction on j − i. The lower bound holds trivially. As for the upper
bound, we consider several cases:

j = i. In this case, GD(i, j) = 0 = 3 · 0 − h(i) − h(i) + 2h(i) = D(i, j) − h(i) − h(j) + 2h(i, j).
j = i + 1. In this case, GD(i, j) = 1 < 2 = 3 · 1 − h(i) − h(i + 1) + 2 min(h(i), h(i + 1)) =
D(i, j) − h(i) − h(j) + 2h(i, j).
D(i, j) = D(i, k) + D(k, j) for some k ∈ (i . . j) ∩ (K ∪ {i + 1, i + 2, j − 2, j − 1}). Then,

GD(i, j) ≤ GD(i, k) + GD(k, j)
≤ 3D(i, k) − h(i) − h(k) + 2h(i, k) + 3D(k, j) − h(k) − h(j) + 2h(k, j)
= 3D(i, j) − h(i) − h(j) − 2h(k) + 2 min(h(i, k), h(k, j)) + 2 max(h(i, k), h(k, j))
≤ 3D(i, j) − h(i) − h(j) − 2h(k) + 2h(i, j) + 2h(k)
= 3D(i, j) − h(i) − h(j) + 2h(i, j).

D(i, j) = D(i + 1, j − 1) + dyck(x[i + 1]x[j]) and h(i + 1, j − 1) = h(i, j) + 1. Then,

GD(i, j) ≤ GD(i + 1, j − 1) + dyck(x[i + 1]x[j])
≤ 3D(i + 1, j − 1) − h(i + 1) − h(j − 1) + 2h(i + 1, j − 1) + dyck(x[i + 1]x[j])
= 3D(i, j) − h(i + 1) − h(j − 1) + 2h(i, j) + 2 − 2dyck(x[i + 1]x[j])
≤ 3D(i, j) − h(i) − h(j) + 2h(i, j)

because 2dyck(x[i + 1]x[j]) ≥ 2 + h(i) − h(i + 1) + h(j) − h(j − 1).
D(i, j) = D(i + 1, j − 1) + dyck(x[i + 1]x[j]) and h(i + 1, j − 1) = h(i, j). Then,

GD(i, j) ≤ GD(i, i + 1) + GD(i + 1, j − 1) + GD(j − 1, j)
= GD(i + 1, j − 1) + 2
≤ 3D(i + 1, j − 1) − h(i + 1) − h(j − 1) + 2h(i + 1, j − 1) + 2
= 3D(i, j) − h(i + 1) − h(j + 1) + 2h(i, j) − 3dyck(x[i + 1]x[j]) + 2
≤ 3D(i, j) − h(i) − h(j) + 2h(i, j)

because 3dyck(x[i+1]x[j]) ≥ 2dyck(x[i+1]x[j]) ≥ 2+h(i)−h(i+1)+h(j)−h(j −1). ◀
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Next, we derive a property of GD that allows for a speedup compared to D. Recall that
GD forbids the transition from (i, j) to (i + 1, j − 1) if h(i + 1, j − 1) = h(i, j). We further
show that, in this case, it suffices to consider one specific pivot while computing GD(i, j)
(specifically, the pivot of minimum height, with ties resolved arbitrarily; see Fact 4.3). Later
on (in the proof of Theorem 4.6), we argue that, after the preprocessing of Fact 2.5, there
are only O(nd) pairs (i, j) for which h(i + 1, j − 1) > h(i, j) yet D(i, j) ≤ d.

▶ Fact 4.3. Let x ∈ Σn and let i, j ∈ [0 . . n] with j − i ≥ 2 and h(i + 1, j − 1) = h(i, j).
Then, every k∗ ∈ (i . . j) with h(k∗) = h(i, j) satisfies GD(i, j) = GD(i, k∗) + GD(k∗, j).

Proof. We proceed by induction on j − i. Fix k ∈ (i . . j)∩ (K ∪{i+1, i+2, j −2, j −1}) such
that GD(i, j) = GD(i, k) + GD(k, j). If k = k∗, then the claim is trivial. Thus, by symmetry,
we assume without loss of generality that k∗ ∈ (i . . k). In particular, this means that
k − i ≥ 2 and h(i + 1, k − 1) = h(k∗) = h(i, k), Consequently, by the inductive assumption,
GD(i, j) = GD(i, k)+GD(k, j) = GD(i, k∗)+GD(k∗, k)+GD(k, j) ≥ GD(i, k∗)+GD(k∗, j) ≥ GD(i, j),
i.e., GD(i, j) = GD(i, k∗) + GD(k∗, j) holds as claimed. Here, the first inequality holds because
k ∈ (k∗ . . j) ∩ (K ∪ {k∗ + 1, k∗ + 2, j − 2, j − 1}), whereas the second one is due to k∗ ∈ K

(because k∗ is a valley). ◀

Our approximation algorithm (implemented as Algorithm 2) computes AGD that approxi-
mates GD in the same way AD approximates D in Algorithm 1. The only difference is that we
use Observation 2.7 and Fact 4.3 (and the definition of GD) to prune some states and transi-
tions. For each of the remaining states, the algorithm computes a value AGD(i, j) ≈ GD(i, j).
If h(i, j) = h(i+1, j −1), then Algorithm 2 relies on Fact 4.3 and considers the smallest index
k ∈ (i . . j) with h(k) = h(i, j) as the sole potential pivot, i.e, it returns AGD(i, k) + AGD(k, j).
If h(i, j) < h(i + 1, j − 1), then Algorithm 2 mimics Algorithm 1.

The analysis of the approximation ratio of Algorithm 2 resembles that of Algorithm 1.

▶ Lemma 4.4. If τ ≥ 2, then, for each i, j ∈ [0 . . n] with i ≤ j, we have GD(i, j) ≤
AGD(i, j) and, if GD(i, j) ≤ d, we further have AGD(i, j) ≤ GD(i, j) + 8

τ ci,j log ci,j, where
ci,j := |K ∩ (i . . j)|, and we assume 0 log 0 = 0.

Proof. As for the upper bound, we proceed by induction on j − i. For j − i ≤ 1, we have
AGD(i, j) = GD(i, j). For j − i ≥ 2, the lower bound GD(i, j) ≤ AGD(i, j) follows directly form
the definitions of AGD and GD. If h(i, j) < max(h(i), h(j)) − 2d, then the upper bound follows

Algorithm 2 Recursive implementation of AGD(i, j).

1 AGD(i, j)
2 if j = i then return 0;
3 if j = i + 1 then return 1;
4 if h(i, j) < max(h(i), h(j)) − 2d then return ∞;
5 if h(i, j) = h(i + 1, j − 1) then
6 Select the smallest k ∈ (i . . j) such that h(k) = h(i, j);
7 return AGD(i, k) + AGD(k, j);
8 c := AGD(i + 1, j − 1) + dyck(x[i + 1]x[j]);
9 τi,j := τ · 2min(ν(i),ν(j));

10 Ki,j := the set of τi,j smallest and τi,j largest elements of K ∩ (i . . j);
11 foreach k ∈ Ki,j ∪ ({i + 1, i + 2, j − 2, j − 1} \ {i, j}) do
12 c := min(c, AGD(i, k) + AGD(k, j));
13 return c;
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from Observation 2.7 and Lemma 4.2. If h(i, j) = h(i + 1, j − 1), then the upper bound
follows form Fact 4.3 because ci,k log ci,k + ck,j log ck,j ≤ ci,j log ci,j . Otherwise, the upper
bound follows directly from the definitions of AGD and GD unless GD(i, j) = GD(i, k) + GD(k, j)
for some k ∈ (i . . j) ∩ K. Let r = min(ci,k, ck,j) and let i′, j′ be the smallest and the largest
multiple of 2⌈log((r+1)/τ)⌉ within [i . . j].

Let us next prove that k ∈ Ki′,j′ . Note that τ(i′−i) < τ2⌈log((r+1)/τ)⌉ < τ ·2· r+1
τ = 2(r+1),

so τ(i′ − i) ≤ 2r (because both strict inequalities are between integers). A symmetric
argument yields τ(j − j′) ≤ 2r. Due to τ ≥ 2, we thus have i′ − i ≤ r ≤ ci,k < k − i and
j − j′ ≤ r ≤ cj,k < j − k, so k ∈ (i′ . . j′). Moreover, τi′,j′ ≥ τ · 2⌈log((r+1)/τ)⌉ ≥ r + 1 =
min(ci,k, ck,j) + 1 ≥ min(ci′,k, ck,j′) + 1, so k ∈ Ki′,j′ holds as claimed.

Thus, due to 2r = 2 min(ci,k, ck,j) ≤ ci,k + ck,j ≤ ci,j , we have

AGD(i, j) ≤ (i′ − i) + AGD(i′, j′) + (j − j′)
≤ 2r

τ + AGD(i′, k) + AGD(k, j′) + 2r
τ

≤ GD(i′, k) + 8
τ ci′,k log ci′,k + GD(k, j′) + 8

τ ck,j′ log ck,j′ + 4r
τ

≤ (i′ − i) + GD(i, k) + 8
τ ci,k log ci,k + GD(k, j) + (j − j′) + 8

τ ck,j log ck,j + 4r
τ

≤ GD(i, j) + 8
τ (ci,k log ci,k + ck,j log ck,j + r)

= GD(i, j) + 8
τ (max(ci,k, ck,j) log max(ci,k, ck,j) + r log(2r))

≤ GD(i, j) + 8
τ (max(ci,k, ck,j) log ci,j + min(ci,k, ck,j) log ci,j)

≤ GD(i, j) + 8
τ ci,j log ci,j . ◀

On the other hand, the complexity analysis is not as simple as in Section 3: it involves a
charging argument bounding the number of states processed using the insight of Fact 4.3.

▶ Proposition 4.5. There is an algorithm that, given a string x ∈ Σn, a threshold d ∈ [1 . . n],
and a parameter ϵ ∈ (0, 1), in Õ(ϵ−1nd) time reports that GD(0, n) > d or outputs a value v

such that GD(0, n) ≤ v ≤ (1 + ϵ)GD(0, n).

Proof. In the preprocessing, we use Fact 2.5 to guarantee that there are at most 2dyck(x)
valleys and thus |K| ≤ 6dyck(x). Then, we construct a data structure that, given i, j ∈ [0 . . n],
reports the smallest k ∈ [i . . j] such that h(k) = h(i, j) [20]. Finally, we run AGD(0, n) with
τ = ⌈48ϵ−1 log |K|⌉ and memoization of the results of recursive calls. By Lemma 4.4, the
returned value satisfies GD(0, n) ≤ AGD(0, n) ≤ GD(0, n) + 8

τ |K| log |K| ≤ (1 + ϵ)GD(0, n).
The running time analysis is more complex than in the proof of Theorem 3.2. We say that

a call AGD(i, j) is hard if it reaches Line 8, easy if it terminates at Line 4 or Line 7, and trivial
otherwise. Observe that the total cost of trivial calls is Õ(n). Moreover, the cost of each easy
call is Õ(1) plus the cost of the two calls made in Line 7, but the call AGD(i, k) is never easy
(it can be hard or trivial). This is because the choice of k as the smallest index in (i . . j) with
h(k) = h(i, j) guarantees that either k = i + 1 or h(i + 1, k − 1) > h(k) = h(i, k) = h(i, j) ≥
max(h(i), h(j)) − 2d ≥ h(i) − 2d = max(h(i), h(k)) − 2d. Consequently, the cost of each easy
call can be charged to its parent or sibling (which is hard or trivial), and it suffices to bound
the total running time of hard calls. By symmetry, we only bound the cost of hard calls
AGD(i, j) with h(i) ≥ h(j). We then observe that if h(i) ≥ h(j) = h(j′) and i > j > j′, then
AGD(i, j′) is easy. Consequently, there are at most 4d + 1 hard calls per i. The cost of each
hard call AGD(i, j) is Õ(τi,j) = Õ(τ2ν(i)), for a total of Õ(dτ

∑n
i=0 2ν(i)) = Õ(ϵ−1nd). ◀

▶ Theorem 4.6. There is an algorithm that, given a string x ∈ Σn, a threshold d ∈ [1 . . n],
and a parameter ϵ ∈ (0, 1), in Õ(ϵ−1nd) time reports that dyck(x) > d or outputs a value v

such that dyck(x) ≤ v ≤ (3 + ϵ)dyck(x).

Proof. We apply Proposition 4.5 with adjusted d (three times larger) and ϵ (three times
smaller). The correctness follows from Lemma 4.2. ◀
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5 Constant-Factor Approximation in Subquadratic Time

In this section, we provide an algorithm that, given a string x ∈ Σ∗, computes constant-factor
approximation of dyck(x) in subquadratic time. Formally, we show the following:

▶ Theorem 5.1. There exist a randomized algorithm that, given a string x ∈ Σn, in
Õ(n67/34) = O(n1.971) time, outputs a value v such that dyck(x) ≤ v ≤ 41 · dyck(x) holds
with probability at least 1 − n−9.

Instead of directly proving the above theorem, we develop the following result:

▶ Theorem 5.2. There exist a constant C and a randomized algorithm that, given a string
x ∈ Σn, in time Õ(n67/34), outputs a value v such that dyck(x) ≤ v ≤ 40 · dyck(x) + Cn33/34

holds with probability at least 1 − n−9.

Proof of Theorem 5.1 from Theorem 5.2. First, run the algorithm of Theorem 4.6 with
ϵ = 1 and d = ⌈Cn33/34⌉, where C is the constant of Theorem 5.2, this procedure takes
Õ(n67/34) time and either outputs a 4-approximation of dyck(x) or reports that dyck(x) > d.
In the latter case, run the algorithm of Theorem 5.2 and return the resulting value v. Then,
dyck(x) ≤ v ≤ 40·dyck(x)+Cn33/34 ≤ 41·dyck(x) holds with probability at least 1−n−9. ◀

The rest of the section is devoted to prove Theorem 5.2.

5.1 Window Decomposition
Let us fix a string x ∈ Σn. For all integers 0 ≤ i1 ≤ i2 ≤ n, we define a window w := (i1 . . i2]
with endpoints b(w) := i1, e(w) := i2 and with length |w| := i2 − i1. We distinguish n + 1
distinct empty windows (i . . i] for i ∈ [0 . . n]. For w = (i1 . . i2], we denote x[w] := x(i1 . . i2].

A window pair is a pair of windows (w, w′), and a weighed window pair is a triple (w, w′, c)
such that (w, w′) is a window pair and c ∈ R≥0 is a weight. The cost of a window pair (w, w′)
is dyck(x[w]◦x[w′]), and a weighted window pair (w, w′, c) is certified if c ≥ dyck(x[w]◦x[w′]).

▶ Definition 5.3. A set {(w1, w′
1), . . . , (wℓ, w′

ℓ)} of window pairs is a consistent decomposition
of

⋃ℓ
i=1(wi ∪ w′

i) if the 2ℓ windows are disjoint and {(b(wi), b(w′
i)) : i ∈ [1 . . ℓ]} forms a

non-crossing matching. We also lift this definition to sets of weighted window pairs.

For a consistent decomposition S, we write dyck(S) :=
∑

(w,w′)∈S dyck(x[w]◦x[w′]) to denote
the total cost of windows pairs in S. Observe that if S is a consistent decomposition of
[1 . . n], then dyck(S) ≥ dyck(x).

Our first goal is to prove that, for every s ∈ [1 . . n], there exists a consistent decomposition
S of [1 . . n] such that dyck(S) = dyck(x), |S| = O( n

s ), and each window in S is of length at
most s. For this, we inductively construct a consistent window decomposition of an arbitrary
interval (i1 . . i2] ⊆ [1 . . n] specified as follows (recall that D(i1, i2) denotes dyck(x(i1 . . i2])):

▶ Lemma 5.4. Let x be a string of length n and let s ∈ [1 . . n]. For every interval
(i1 . . i2] ⊆ [1 . . n], there exists a consistent decomposition Dec(i1, i2) of (i1 . . i2] such that:
1. each window pair (w, w′) ∈ Dec(i1, i2) satisfies |w|, |w′| ≤ s,
2. dyck(Dec(i1, i2)) = D(i1, i2), and
3. |Dec(i1, i2)| ≤ max(1, 2(i2−i1)

s − 1).

Proof. If |(i1 . . i2]| ≤ 2s, we return Dec(i1, i2) := {((i1 . . ⌊ i1+i2
2 ⌋], (⌊ i1+i2

2 ⌋ . . i2])}. In this
simple base case, all the claims hold trivially.
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In the main case, we grow the outermost window pair ((i1 . . j1], (j2 . . i2]), starting with
empty windows and maintaining two invariants: |(i1 . . j1]|, |(j2 . . i2]| ≤ s and D(i1, i2) =
D(j1, j2) + dyck(x(i1 . . j1] ◦ x(j2 . . i2]). Once there exists p ∈ [i1 + s . . i2 − s] with D(j1, j2) =
D(j1, p)+D(p, j2) (in particular, this holds when |(i1 . . j1]| = s or |(j2 . . i2]| = s), we terminate
the process and return Dec(i1, i2) := {((i1 . . j1], (j2 . . i2])} ∪ Dec(j1, p) ∪ Dec(p, j2). By the
inductive hypothesis, Dec(j1, p), Dec(p, j2) satisfy all the claimed conditions. In particular,
they form consistent decompositions of (j1 . . p] and (p . . j2], respectively, and thus Dec(i1, i2)
forms a consistent decomposition of (i1 . . i2]. By the first invariant, each window in Dec(i1, i2)
is of length at most s. The second invariant and the definition of p yield

D(i1, i2) = D(j1, p) + D(p, j2) + dyck(x(i1 . . j1] ◦ x(j2 . . i2])
= dyck(Dec(j1, p)) + dyck(Dec(p, j2)) + dyck(x(i1 . . j1] ◦ x(j2 . . i2])
= dyck(Dec(i1, i2)).

The choice of p ∈ [i1 + s . . i2 − s] further gives

|Dec(i1, i2)| ≤ 1+ |Dec(j1, p)|+ |Dec(p, j2)| ≤ 1+max(1, 2(p−j1)
s −1)+max(1, 2(j2−p)

s −1)

≤ 1+max(1, 2(p−i1)
s −1)+max(1, 2(i2−p)

s −1) = 1+ 2(p−i1)
s −1+ 2(i2−p)

s −1 = 2(i2−i1)
s −1.

Otherwise, we grow the outermost window pair using one of the following three cases. If
there exists p ∈ (j1 . . i1 − s) such that D(j1, j2) = D(j1, p) + D(p, j2), we append (j1 . . p] to
the window (i1 . . j1]. Then, the choice of p guarantees the first invariant, whereas the second
invariant holds due to

D(i1, i2) = D(j1, p) + D(p, j2) + dyck(x(i1 . . j1] ◦ x(j2 . . i2])
≥ D(p, j2) + dyck(x(i1 . . p] ◦ x(j2 . . i2]) ≥ D(i1, i2).

Symmetrically, if there exists p ∈ (i2 − s . . i2) such that D(j1, j2) = D(j1, p) + D(p, j2), we
prepend (p . . j2] to the window (j2 . . i2]. By (1), the remaining case is when D(j1, j2) =
D(j1 + 1, j2 − 1) + dyck(x[j1 + 1]x[j2]), i.e., the optimum alignment matches x[j1 + 1] and
x[j2]. Then, we add both these characters to the outermost window pair. In this case, the
first invariant holds due to |(i1 . . j1]|, |(j2 . . i2]| < s. As for the second invariant, we have

D(i1, i2) = D(j1 + 1, j2 − 1) + dyck(x[j1 + 1]x[j2]) + dyck(x(i1 . . j1] ◦ x(j2 . . i2])
≥ D(j1 + 1, j2 − 1) + dyck(x(i1 . . j1 + 1] ◦ x(j2 − 1 . . i2]) ≥ D(i1, i2). ◀

Large and small windows. Let us fix an integer power of two θ ∈ [ 1
n , 1] (which will be

set to n−1/34 rounded down appropriately). For each power of two s ∈ [1 . . θ−1], define a
function ups that maps each i ∈ [0 . . n] to ups(i) := min(n, θs⌈ i

θs ⌉) and denote its image
with Ns. Note that Ns ⊆ [0 . . n] consists of n as well as all integer multiples of θs. Moreover,
for each i ∈ [0 . . n], the value ups(i) is the successor of i in Ns.

We introduce the following family of variable-size windows:

Is := {w ⊆ [1 . . n] : |w| ≤ s1 and b(w), e(w) ∈ Ns}.

The following claim is a direct consequence of the construction.

▷ Claim 5.5. |Is| = O( n
θ2s ).

We pick two scales s1 ≥ s2, denoting J := Is1 and K := Is2 . For larger windows, we
prove the following result:
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▶ Lemma 1.1. There exists a consistent window decomposition S ⊆ J × J of [1 . . n] such
that

∑
(w,w′)∈S dyck(x[w] ◦ x[w′]) ≤ dyck(x) + 8θn.

Proof. By Lemma 5.4 applied for s := s1, there exists a consistent decomposition Dec(0, n)
of [1 . . n] such that dyck(Dec(0, n)) = dyck(x), |Dec(0, n)| ≤ 2n

s1
, and each window in Dec(0, n)

is of length at most s1. In order to meet the condition S ⊆ J × J , we round the window
endpoints up using the ups1

function. Formally, for each window pair (w, w′) ∈ Dec(0, n),
we create one window pair (w̃, w̃′) ∈ S, where b(w̃) = ups1

(b(w)), e(w̃) = ups1
(e(w)),

b(w̃′) = ups1
(b(w′)), and e(w̃′) = ups1

(e(w′)). The resulting family S satisfies S ⊆ J × J
since |w|, |w′| ≤ s1 implies |w̃|, |w̃′| ≤ s1 (because s1 is an integer multiple of θs1). The
relative order of windows involved in S is the same as in Dec(0, n), and thus S remains
a consistent decomposition of (0 . . n] (this is also because ups1

(0) = 0 and ups1
(n) = n).

Moreover, a single edit may increase the Dyck edit distance by at most one, and thus

dyck(S) =
∑

(w̃,w̃′)∈S

dyck(x[w̃] ◦ x[w̃′]) ≤
∑

(w,w′)∈Dec(0,n)

(dyck(x[w] ◦ x[w′]) + 4θs1)

= dyck(Dec(0, n)) + 4θs1|Dec(0, n)| ≤ dyck(x) + 8θn. ◀

Our next objective is to estimate dyck(x[w] ◦ x[w′]) for each w, w′ ∈ J . For this, we
utilize the smaller windows via the following result. Its proof, similar to that of Lemma 1.1,
is left for the full version [18].

▶ Lemma 5.6. For every (w, w′) ∈ J ×J with e(w) ≤ b(w′), there exists a consistent window
decomposition S ⊆ K × K of w ∪ w′ such that dyck(S) ≤ dyck(x[w] ◦ x[w′]) + O(θ|w ∪ w′|).

5.2 Outline of the Proof of Theorem 5.2
We set θ, s1, s2 to be the largest integer powers of two satisfying s1 ≤ n21/34, s2 ≤ n13/34, and
θ ≤ n−1/34, respectively. We first construct the families J and K of large and small windows,
as defined in Section 5.1. Then, we run a procedure CertifyWindowPairs (described in
the full version [18]), which certifies window pairs in J × J and K × K; some pairs are
certified directly, using Theorem 3.2 with ϵ = 1 (which provides a 2-approximation), whereas
others indirectly, using the triangle inequality (Lemma 2.3). The resulting family W of
certified window pairs satisfies the following property with probability 1 − n−9: there exists
a consistent decomposition T ⊆ W of [1 . . n] such that

∑
(w,w′,c)∈T c ≤ 40 · dyck(x) + O(θn).

Next, we use a simple dynamic-programming procedure (described in the full version [18])
to minimize the total cost

∑
(w,w′,c)∈T̃ c among all consistent decompositions T̃ ⊆ W of

[1 . . n]. The resulting cost is at least dyck(x) because W contains certified window pairs only
(that is, c ≥ dyck(x[w] ◦ x[w′]) holds for each (w, w′, c) ∈ W). Moreover, the cost is at most
40 · dyck(x) + O(θn) ≤ 40 · dyck(x) + O(n33/34) by the existence of T . The running time of
the DP procedure is Õ(|Ns2 |3 + |W|), which is Õ(n67/34) by the choice of parameters. The
details of the running-time analysis are left for the full version [18].
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Abstract
This paper considers additive approximation algorithms for All-Pairs Shortest Paths (APSP) and
Shortest Cycle in undirected unweighted graphs. The results are as follows:

We obtain the first +2-approximation algorithm for APSP in n-vertex graphs that improves
upon Dor, Halperin and Zwick’s (SICOMP’00) Õ(n7/3) time algorithm. The new algorithm
runs in Õ(n2.29) time and is obtained via a reduction to Min-Plus product of bounded difference
matrices.
We obtain the first additive approximation scheme for Shortest Cycle, generalizing the approxim-
ation algorithms of Itai and Rodeh (SICOMP’78) and Roditty and Vassilevska W. (SODA’12).
For every integer r ≥ 0, we give an Õ(n + n2+r/mr) time algorithm that returns a +(2r + 1)-
approximate shortest cycle in any n-vertex, m-edge graph.
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1 Introduction

The all-pairs shortest paths problem (APSP) is among the most fundamental problems in
algorithms. The fastest algorithms for the problem in n vertex, m edge graphs with integer
edge weights and no negative cycles, run in n3/2Θ(

√
log n) time [22] and in O(mn+n2 log log n)

time [14]. These running times are believed to be optimal, up to no(1) factors (see [19, 12]).
APSP in unweighted graphs has long been known to admit faster algorithms. In undirected

graphs, Seidel [16] gave an Õ(nω) time algorithm, where ω < 2.373 [2] is the exponent of
square matrix multiplication. This running time is believed to be optimal, as APSP in
undirected unweighted graphs is at least as hard as Boolean Matrix Multiplication (BMM). 1

1 In fact, later algorithms by Shoshan and Zwick [17] imply that undirected unweighted APSP is equivalent
to BMM.
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50:2 New Additive Approximations for Shortest Paths and Cycles

Due to the impracticalities of fast matrix multiplication and since it is unavoidable for the
exact computation of APSP, it is natural to consider approximation algorithms, trying to get
running times as close to n2 as possible (n2 is the size of the output). There is significant work
on multiplicative approximations of APSP and distance oracles (e.g. [18, 6, 1]). However, for
unweighted undirected graphs, more desirable fast additive approximations are also possible.
In a +C-approximation to APSP, one returns estimates d′(u, v) for the distance d(u, v)
between any pair of vertices u, v, so that d(u, v) ≤ d′(u, v) ≤ d(u, v) + C. We let +C-APSP
denote the problem of computing a +C-approximation to APSP in an undirected unweighted
graph.

Following work of Aingworth et al. [1], so far the best approximation-running time
tradeoff for unweighted undirected APSP is achieved by Dor, Halperin and Zwick [7]: For
every even integer k ≥ 2, there is an Õ(n2+2/(3k−2)) time algorithm for +k-APSP. (For
sparser graphs, the improved running time Õ(n2−2/(k+2)m2/(k+2)) is also given.)

In particular, Dor, Halperin and Zwick provide a +2-approximation algorithm that runs
in Õ(n7/3) time. The algorithm is simple and “combinatorial”, and notably is faster than the
fastest exact algorithm for APSP by Seidel for the current bounds on ω. Aignworth et al. [1]
showed that +1-approximating APSP is at least as hard as BMM, and thus likely requires
nω−o(1) time, so beating nω is only possible if the additive approximation is at least 2.

There are no known conditional lower bounds for +2-approximations of APSP, and the
Dor, Halperin and Zwick running time has remained unchallenged for over three decades.

Is n7/3−o(1) time necessary for +2-APSP? Or, can one do better?

Our first result is the first improvement over the +2-approximation algorithm of [7].

▶ Theorem 1. There is an O(n2.2867) time algorithm that returns a +2-approximation to
APSP in undirected unweighted n vertex graphs.

We obtain the new tradeoff by reducing the +2-APSP problem to Min-Plus product
of (rectangular) Bounded Difference Matrices. While Min-Plus product for n× n matrices
is believed to require n3−o(1) time (see e.g. [19]), a string of recent papers has developed
faster and faster truly subcubic time algorithms for Min-Plus product for Bounded Difference
Matrices [4, 5, 8, 21]. Our reduction is completely black-box, so that if there is an improved
algorithm for the Min-Plus product of an integer matrix with a matrix with bounded
difference columns or rows, then this improvement would immediately translate into an
improved algorithm for +2-APSP.

Vassilevska W. and Williams [20] showed that APSP in weighted graphs is fine-grained
equivalent to the Girth problem, which asks to compute the length of the shortest cycle in a
given undirected graph. The same paper [20] shows that the Girth problem in undirected
unweighted graphs is at least as hard as triangle detection, and is known to be subcubically
equivalent to undirected unweighted APSP. As triangle detection in n vertex graphs is believed
to require nω−o(1) time (e.g. [19]), so is Girth, and thus faster approximation algorithms for
the Girth are also well-motivated and well-studied. Multiplicative approximation schemes are
well-understood (e.g. [10, 13, 15]). Meanwhile, unlike for APSP, there is no known tradeoff
of additive approximation algorithms for the girth of undirected unweighted graphs.

There are only two known additive approximation results for Girth in undirected un-
weighted graphs. First, Itai and Rodeh [9] showed that a +1-approximation to the girth
can be obtained in O(n2) time. Then, Roditty and Vassilevska W. [15] showed that a
+3-approximation to the girth in n vertex, m edge graphs, can be computed in Õ(n3/m)
time. Can one generalize these two algorithms to a scheme?

Our second result is to obtain the first additive approximation scheme for the girth.
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▶ Theorem 2. Let G = (V, E) be an unweighted, undirected graph with |V | = n, |E| = m.
Let r be an integer and denote the (unknown) girth of G by g. There is an Õ

(
n + n2+r

mr

)
time

algorithm that returns with high probability a cycle of length ĝ that satisfies g ≤ ĝ ≤ g+(2r+1).

Thus, for instance, there is an Õ(n + n4/m2) time +5-approximation algorithm. This
running time is always better than the previously known additive approximations as long as
m ≥ Ω(n1+ε) and m ≤ O(n1.5−ε) for some ε > 0. More generally, as r grows, each +(2r + 1)
approximation is always faster than the approximations for smaller r for the sparsity range
m ∈ [Ω(n1+ε), O(n1+1/r−ε)] for any arbitrarily small ε > 0.

2 Additive Approximation Algorithm for APSP

We first formally define +C-approximation of APSP and (min, +) matrix product.

▶ Definition 3 (APSP +C-approximation). For an undirected unweighted simple graph
G = (V, E), output d̂ : V × V → N such that d(u, v) ≤ d̂(u, v) ≤ d(u, v) + C, where d(u, v) is
the distance from u to v in graph G.

▶ Definition 4 ((min, +) matrix product). (min, +) matrix product between matrix A and B

is defined as C = A ⋆ B where C[i, j] = mink{A[i, k] + B[k, j]}.

While in general, no sub-cubic algorithm has been found for (min, +) matrix product,
many special cases have been addressed (e.g. [4] [21] [5]). Specifically, we consider the case
between column bounded-difference and row bounded-difference matrix.

▶ Definition 5 (Column bounded-difference, Row bounded-difference). A matrix A is column
bounded-difference if there exists some constant C so that |A[i, j] − A[i + 1, j]| ≤ C for
all valid (i, j)’s. Symmetrically, a matrix A is row bounded-difference if there exists some
constant C so that |A[i, j]−A[i, j + 1]| ≤ C for all valid (i, j)’s.

▶ Definition 6 ((min, +) matrix product between column bounded-difference matrix and row
bounded-difference matrix). Given column bounded-difference matrix A of size n×m and row
bounded-difference matrix B of size m × n, calculate their (min, +) matrix product A ⋆ B.
Call the time complexity for such a problem MPCRBD(n, m).

A similar case was previously addressed by Bringmann et al. [4] and an algorithm of
runtime O(n2.9217) is given (Theorem 1.3, [4]). By adapting the method of Chi, Duan and
Xie [5], we can get the following bound.

We want to point out that since our reduction is black-box, the use of the following
lemma is not necessary and applying the algorithm in Bringmann et al. [4] also gives a
O(n7/3−Ω(1)) algorithm. Therefore, we defer the proof of this lemma to Appendix A.

▶ Lemma 7 (Appendix A). Let M(n, u, n) be the time to multiply n×u and u×n matrices. For
parameters α, β, γ > 0, MPCRBD(n, m) = Õ(n2m/α2 + n2β + M(n, γ, n)αm/β + n2m2/γ).
Specifically, MPCRBD(n, n) = O(n2.811).

We start with Dor, Halperin and Zwick’s original algorithm, used as a black-box.

▶ Lemma 8 (Theorem 3.1, [7]). There is an algorithm for APSP +2-approximation that
runs in Õ(|V |3/2|E|1/2) time on input graph G = (V, E).

For a graph G = (V, E), define N(v) = {u | (u, v) ∈ E} as the set of adjacent vertices of
v for v ∈ V . We also use the following lemma.

ICALP 2022
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▶ Lemma 9 (e.g. Theorem 1, [1]). For a graph G = (V, E) and a parameter s, let Vs =
{v | v ∈ V, |N(v)| ≥ s}, we can deterministically compute a hitting set D ⊆ V where
|D| = O(|V | log |V |/s) and N(v) ∩D ̸= ∅ for all v ∈ Vs in O(|V |2) time.

Crucial to our algorithm is to consider an Euler tour of a spanning tree.

▶ Definition 10 (Euler Tour). For a spanning tree T ⊆ E of a connected graph G = (V, E), an
Euler tour of T is a sequence of vertices v1, v2, · · · , v2|V |−1, where each vertex of G appears
at least once and the edges (vi, vi+1) ∈ T for all 1 ≤ i ≤ 2|V | − 2.

Given a tree T , an Euler tour of T could be easily found by running depth-first search on
T in O(|T |) time.

We first give a high-level overview of our improvement. In Theorem 3.2, [7], a hitting
set D1 is computed to update the distance between all pairs of nodes (u, v) ∈ V 2. That
is, for all u, v ∈ V , we update d(u, v) with mint∈D1(d(u, t) + d(t, v)). Notice that if we
consider V, D1, V as three dimensions in a matrix multiplication, the updating process is
essentially a min-plus matrix product. Now if we arrange u, v in the order of an Euler tour,
the matrices would then be (row/column) bounded difference. Thus, we can gain a speedup
by aforementioned algorithms. To calculate distances between D1 and V efficiently, we
partition nodes in V by their degree.

For a graph G = (V, E), let n = |V |, m = |E|. We set a parameter l = O(log n) to be
determined, and define si = n/2i−1 for i ∈ [1, l]. Specifically, let s0 = n + 1.

By Lemma 9, we can find hitting sets Di of size Õ(n/si) for all vertices with degree ≥ si

in G in Õ(n2) time. Let fi(u) be any element in Di∩N(u) for deg u ≥ si, let Fi be the set of
edges (u, fi(u)) where deg u ≥ si (deg v stands for the degree of vertex v), and F = ∪l

i=0Fi.
Thus |Fi| = O(n), |F | = Õ(n).

We define a series of graphs G0, G1, G2, · · · , Gl. Define G0 = G, and Gi = (V, Ei) where
Ei = F ∪ {(u, v) ∈ E | deg u ≤ si or deg v ≤ si} for 1 ≤ i ≤ l. Let di(u, v) be the distance
from u to v on graph Gi.

We then run breadth-first search on graph Gi−1 from each vertex in set Di to obtain
the distances di−1(t, v) for all pairs (t, v) ∈ Di × V . Define wi(u, v) = mint∈Di

{di−1(t, u) +
di−1(t, v)} Let g(u, v) to be the output of algorithm in Lemma 8 on input Gl. Let h(u, v) =
min(minl

i=1{wi(u, v)}, g(u, v)).
We now argue that h is the desired approximation to distances, i.e. d(u, v) ≤ h(u, v) ≤

d(u, v) + 2 for all u, v ∈ V . Note that wi(u, v), g(u, v) ≥ d(u, v) since their values all arise
from valid paths, thus h(u, v) ≥ d(u, v).

Now we show that d(u, v)+2 ≥ h(u, v). Consider the shortest path p from u to v in graph
G. Let r be the node with maximum degree on p. If deg r ≥ sl, assume that sa ≤ deg r < sa−1
for some 1 ≤ a ≤ l. Since all nodes on p have degree < sa−1, d(u, v) = da−1(u, v). In Ga−1,
consider g = fa(r), we have h(u, v) ≤ wa(u, v) ≤ da−1(u, g) + da−1(g, v) ≤ da−1(u, r) + 1 +
da−1(r, v) + 1 = da−1(u, v) + 2 ≤ d(u, v) + 2. Otherwise (if deg r < sl), p is preserved in the
graph Gl and g(u, v) ≤ d(u, v) + 2 by Lemma 8. Therefore, h(u, v) ≤ d(u, v) + 2.

We now show how to compute wi for a given 1 ≤ i ≤ l. Without loss of generality, assume
Gi−1 is connected (otherwise we can treat each connected component separately), and let T

be any spanning tree of Gi−1. Let t1, t2, t3, · · · , t2n−1 be an arbitrary Euler tour of T and
suppose Di = {x1, x2, · · · , x|Di|}. Define A to be a matrix of size (2n − 1) × |Di|, where
A(i, j) = di−1(ti, xj). Let B = A ⋆ AT , then by definition, wi(u, v) = B[pos(u), pos(v)] where
tpos(a) = a (any suffice).

Note that |A[a, j]−A[a+1, j]| ≤ 1 since |di−1(ta, dj)−di−1(ta+1, dj)| ≤ di−1(ta, ta+1) = 1,
so A is column bounded-difference, AT is row bounded-difference. The time complexity to
compute f(u, v) for all u, v ∈ V is then O(n2 + MPCRBD(n, |Di|)).
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The total runtime of the above algorithm consists of three parts.
1. The computation of {Di}, {Gi}, {Fi} takes Õ(n2) time.
2. Compute wi for all 1 ≤ i ≤ l. Constructing the depth-first search tree and Euler tour

takes Õ(n2) time. Since |Ei| ≤ sin, the breadth-first search for each Di in Gi−1 takes
O(|Di|sin) = Õ(n2) time, so this part also takes Õ(n2) time. The (min, +) matrix
products takes time Õ(n2 + MPCRBD(n, |Dl|)) since |Dl| ≥ |Di| for any 1 ≤ i ≤ l.

3. The computation of g takes time N3/2|El|1/2 = Õ(n2s
1/2
l ).

Let sl be the power of 2 closest to t, we obtain the following result:

▶ Theorem 11. For a parameter t ≥ 1, there is an algorithm for APSP +2-approximation
on input graph G = (V, E) that runs in Õ(n2t1/2 + MPCRBD(n, n/t)) time, where n =
|V |, m = |E|.

By Lemma 7, we could obtain an upper bound for MPCRBD(n, m).

▶ Theorem 12. There is an algorithm for APSP +2-approximation on input graph G = (V, E)
that runs in O(n2.2867) time where n stands for |V |.

Proof. In Theorem 11, set t = n0.57339, and apply Lemma 7 with α = n0.07006, β =
n0.28662, γ = n0.56688. M(n, γ, n) = M(n, n0.56688, n) = O(n2.076433) by [11]. The claimed
bound then follows from a direct computation. ◀

We also provide the following simpler bound using square MPCRBD. Plugging in Theorem
1.3 in Bringmann et al. [4] gives an algorithm of O(n2.32416).

▶ Corollary 13. Suppose MPCRBD(n, n) = O(n2+α) for constant α, there is an algorithm
for APSP +2-approximation on input graph G = (V, E) that runs in Õ(|V |2+ α

1+2α ) time.

Proof. Let n = |V |. MPCRBD(n, n/t) = O(t2MPCRBD(n/t, n/t)) = O(n2+α/tα). Set
t = nα/(1/2+α), the total runtime would then be Õ(n2+ α

1+2α ). ◀

3 Additive Approximation Algorithm for Girth

The first additive approximation algorithm for the girth of a graph was presented by Itai
and Rodeh in 1978 [9]. In their paper they showed an O(n2) time algorithm that, given a
graph of girth g, returns a cycle of length at most g + 1.

The next improvement, an additive approximation algorithm running in subquadratic
time, was presented in 2012 by Roditty and Vassilevska W. [15]. Their algorithm provided a
+3 approximation of the girth in Õ(n3/m) time.

Both algorithms use a subroutine which we will call BFS-cycle. This subroutine runs BFS
from a given vertex s until it reaches some vertex v for a second time. When v is reached for
the second time, BFS-cycle returns the cycle enclosed by the two paths between s and v. We
will use the following result regarding this algorithm:

▶ Lemma 14 (e.g. [9, 13]). BFS-cycle(v) runs in O(n) time. If a vertex v is at distance ℓ

from a vertex on a simple cycle of length k, then BFS-cycle(v) reports a cycle of length at
most k + 2ℓ + 1. If k is even, BFS-cycle(v) reports a cycle of length at most k + 2ℓ.

Another tool used in Roditty and Vassilevska W.’s algorithm is a result in extremal graph
theory proved by Bondy and Simonovits [3], regarding even cycles in a graph:

▶ Theorem 15 ([3]). Let k ≥ 2 be an integer. If an n-node graph G has at least 100kn1+1/k

edges then G contains a 2k-cycle.

ICALP 2022



50:6 New Additive Approximations for Shortest Paths and Cycles

As a result of this theorem, for any graph with at least 200kn1+1/k edges, at least half of
the edges are part of some 2k-cycle. Therefore, if we uniformly sample an edge, it is part of
a 2k-cycle with probability ≥ 1

2 . By running BFS-cycle from each sampled edge and taking
the lowest result, we obtain a randomized algorithm with efficient runtime:

▶ Lemma 16 (e.g. [23]). If an n-node graph G has at least 200kn1+1/k edges, then there
exists an O(n log n) time algorithm that finds a cycle of length at most 2k with high probability.

Using these methods, we provide an algorithm for any odd additive approximation. In
the following theorem we generalize the algorithm of Roditty and Vassilevska W. [15] to
provide an additive +(2r + 1) approximation to the girth for any integer r.

▶ Theorem 17. Let G(V, E) be an unweighted, undirected graph with |V | = n, |E| = m. Let
r be an integer and denote the girth of G by g. There is an Õ

(
n + n2+r

mr

)
time algorithm

that returns with high probability a cycle of length ĝ that satisfies g ≤ ĝ ≤ g + 2r + 1.

Proof. First we consider the case where m < 200Ln1+1/L for L =
⌈

log n
log log n

⌉
. This implies

that m ≤ Õ(n). We can use the O(n2) time algorithm of Itai and Rodeh to obtain an
additive +1 approximation of the girth of G. Notably, in this case O(n2) ≤ Õ

(
n2+r

mr

)
.

Suppose now that m ≥ 200Ln1+1/L. Then there exists an integer k ≤ L such that

200(k + 1)n1+ 1
1+k < m ≤ 200kn1+ 1

k .

It follows from Lemma 16 that in O(n log n) time we can find a cycle of length at most 2k + 2
with high probability. If g > 2k − 2r, this cycle is an additive +(2r + 1) approximation of
the girth.

We are left to handle the case when g ≤ 2k − 2r. For any non-negative integer p, denote
by Tp(v) := {u ∈ V : d(u, v) ≤ p} the vertices in the graph of distance ≤ p from v. Let ∆ be
a degree parameter; we will refer to vertices with |Tr(v)| ≤ ∆ as low r-degree vertices and
vertices with |Tr(v)| > ∆ as high r-degree vertices.

We sample a set S of O
(

n
∆ log n

)
vertices uniformly at random. With high probability,

any high degree vertex v satisfies Tr(v) ∩ S ̸= ∅. We now run BFS-cycle from each vertex
of S. If the shortest cycle in the graph contains some node v such that Tr(v) intersects S,
Lemma 14 implies that the shortest cycle the algorithm finds is of length at most g + 2r + 1.
The running time of this is O

(
n2 log n

∆

)
.

Now we only need to handle the case where the shortest cycle contains only vertices v for
which Tr(v) ∩ S = ∅, or equivalently v /∈ Tr(s) ∀s ∈ S. To do so, we remove from the graph
all vertices in Tr(s) for any s ∈ S. With high probability the remaining vertices are all of
low r-degree.

For each remaining vertex v, consider performing BFS from v up to ℓ levels for some
k − r ≤ ℓ < k, while keeping track of the cumulative size of the layers. We break at the first
ℓ ≥ k − r for which |Tℓ(v)| ≤ ∆(k−r)/r|Tℓ−(k−r)(v)|. Since we are assuming g ≤ 2k − 2r, if
there is a vertex u ∈ Tℓ−(k−r)(v) which is part of the shortest cycle, then the BFS from v up
to ℓ levels must have found a +2(ℓ− (k − r)) + 1 approximation of this. In Lemma 18, we
justify why we break before ℓ = k. Then, we discard all vertices in Tℓ−(k−r)(v) from further
consideration. We do this for all v, and the total time complexity is O

(
n∆(k−r)/r

)
.

The proof that this algorithm is valid is deferred to Lemma 18. So if the shortest cycle in
G is comprised of only low r-degree vertices, we will have found a +2r + 1 approximation of
it. The full algorithm for this is described in Algorithm 1.
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Algorithm 1 All Low BFS-Cycle.

for s ∈ V do
L0 ← {s}
S0 ← 1
for 0 ≤ i < k do

for u ∈ Li do
for (u, v) ∈ E do

if dv ̸= 0 then
Cycle ← cycle formed by backtracking ancestors until LCA of u, v

return Cycle
end if
Li+1 ← Li+1 ∪ {v}

end for
end for
Si+1 ← Si + |Li+1|
if i ≥ k − r and Si ≤ ∆Si−k+r then

for 0 ≤ j ≤ i− k + r do
for u ∈ Lj do

for (u, v) ∈ E do
E ← E − {(u, v)}

end for
end for

end for
end if

end for
end for

To minimize the runtime, we set ∆ = nr/k and obtain a running time of Õ
(
n2−r/k

)
.

Since m = Θ
(
n1+1/k

)
,

Õ
(

n2−r/k
)

= Õ

(
n2+r

n(1+1/k)·r

)
= Õ

(
n2+r

mr

)
.

This gives us the desired runtime. ◀

▶ Lemma 18. The time complexity of Algorithm 1 is O
(
n∆(k−r)/r

)
and it is guaranteed to

return a cycle of length ≤ 2k if g ≤ 2k − 2r and if there is a shortest cycle where all vertices
have low r-degree.

Proof. Firstly, we show that for any low r-degree vertex v, we will find an ℓ ≥ k − r

such that |Tℓ(v)| ≤ ∆(k−r)/r|Tℓ−(k−r)| and ℓ < k. Assume the contrary, that |Tℓ(v)| >

∆(k−r)/r|Tℓ−(k−r)| for all k − r ≤ ℓ < k. Multiplying these inequalities for all ℓ in this range
gives

∆k−r
r−1∏
j=0
|Tj(v)| <

k−1∏
i=k−r

|Ti(v)|.

For any non-negative integer t, denote t to be the unique integer such that t ≡ t (mod r)
and 0 ≤ t < r. Since all vertices w in this subgraph have the property that |Tr(w)| ≤ ∆, for
any non-negative integer i and any vertex v we have

|Ti(v)|∆(i−i)/r ≥ |Ti(v)|.

ICALP 2022
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Now note that {k − r, k − r + 1, . . . , k − 1} is exactly {0, 1, 2, . . . , r − 1} as these are r

consecutive integers. Thus we can bound the right-hand side of the inequality like so:

∆k−r
r−1∏
j=0
|Tj(v)| <

k−1∏
i=k−r

|Ti(v)|

≤
k−1∏

i=k−r

∆(i−i)/r|Ti(v)|

≤ ∆

(∑k−1
i=k−r

i

)
−
(∑r−1

j=0
j

)
r

r−1∏
j=0
|Tj(v)|

≤ ∆

∑r−1
j=0

(k−r+j)−j

r

r−1∏
j=0
|Tj(v)|

= ∆k−r
r−1∏
j=0
|Tj(v)|.

So we reach a contradiction as desired and we conclude that there is some ℓ < k and so
ℓ − (k − r) < r. If Tℓ−(k−r)(v) contains a vertex in the shortest cycle, we indeed obtain a
+(2r − 1) approximation. Furthermore, we now no longer need to BFS from any vertex in
Tℓ−(k−r)(v) so we can discard all of these. So although we had to do O(|Tℓ(v)|) work for
BFSing from this v, we were able to discard |Tℓ−(k−r)(v)| vertices. Thus, the amortized time
complexity per vertex is O(∆(k−r)/r) and so the total time complexity is O(n∆(k−r)/r).

Note that we only guarantee returning a cycle of length ≤ 2k rather than of length
≤ g + 2r + 1 as it is possible we find a longer cycle first, in which case we must terminate
immediately to guarantee that the BFS-Cycle subroutine step is still linear only in terms of
the number of vertices and not edges. This is fine as we now have a shorter cycle and we can
repeat the algorithm with smaller k. To make this efficient, we can binary search, incurring
only an additional log k factor. ◀
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A Fast (min, +) Product between Column and Row
Bounded-Difference Matrices

In this section, we adapt the method of Chi, Duan and Xie [5] for bounded difference min-plus
matrix product for our case, thus proving Lemma 7. The main difference in our method is
that we can no longer divide matrices into square blocks since differences are only bounded
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in one direction. Instead, we divide them into rectangular blocks. Most terminologies and
analysis in their work can be adapted to our case, so we only sketch the needed modifications
here.

Suppose the matrices to multiply are A, B0 with size n×m and m×n. For simplicity, we
transpose B0 to be B = BT

0 . Our assumption is that for some constant ∆, |Ai,j −Ai+1,j | ≤
∆, |Bi,j −Bi+1,j | ≤ ∆ for valid indexes. We want to compute Ci,j = mink{Ai,k + Bj,k}.

We divide the rows of A and B into blocks of size α. The main difference from [5] is that
we can no longer divide columns into blocks. For each pair of blocks (one block of columns
in A and one block of columns in B), we pick any i and j from each block and compute Ci,j .
This step takes O(n2m/α2) time.

By locality, we know for any (i′, j′) in these two blocks, |Ci′,j′ −Ci,j | ≤ 2α∆ (Since Ci′,j′

equals to Ai′,k + Bj′,k for some k, and |Ai′,k + Bj′,k −Ai,k −Bj,k| ≤ 2α∆ for all k’s by the
property of bounded-difference within columns). We call k so that |Ai,k + Bj,k −Ci,j | ≤ 4α∆
candidates, and only these k’s could contribute to (i′, j′)’s in these two blocks.

For block pairs with no more than β candidates, we simply enumerate through these k’s
for every (i′, j′), taking O(n2β) time.

For block pairs with more than β candidates, we use the method in Section 2, [5]. Sample
a set of columns S with size Ω(m log n/β), then reduce via these columns, mapping resulting
segments to γ columns. Computing the bounded min-plus matrix product after mapping
would take time Õ(M(n, γ, n)αm/β) where M(n, γ, n) is the complexity of multiplying n× γ

and γ × n matrices. For each of the n2/α2 blocks in C, each of the m2 column pairs has
probability 1/γ to collide (mapped to the same column), and subtracting each collision takes
O(α2) time. Thus, subtracting the contribution of all collisions would take O(n2m2/γ) time.

The total time complexity is Õ(n2m/α2 + n2β + M(n, γ, n)αm/β + n2m2/γ).
Particularly when m = n, let α = n0.094513, β = n0.810974, γ = n1.189026, M(n, γ, n) =

O(n2.527435) [11], we can get the complexity of O(n2.811).



One-Pass Additive-Error Subset Selection for ℓp

Subspace Approximation
Amit Deshpande #

Microsoft Research, Bengaluru, India

Rameshwar Pratap #

Indian Institute of Technology, Mandi, H.P., India

Abstract
We consider the problem of subset selection for ℓp subspace approximation, that is, to efficiently find
a small subset of data points such that solving the problem optimally for this subset gives a good
approximation to solving the problem optimally for the original input. Previously known subset
selection algorithms based on volume sampling and adaptive sampling [16], for the general case of
p ∈ [1, ∞), require multiple passes over the data. In this paper, we give a one-pass subset selection
with an additive approximation guarantee for ℓp subspace approximation, for any p ∈ [1, ∞). Earlier
subset selection algorithms that give a one-pass multiplicative (1 + ϵ) approximation work under
the special cases. Cohen et al. [11] gives a one-pass subset section that offers multiplicative (1 + ϵ)
approximation guarantee for the special case of ℓ2 subspace approximation. Mahabadi et al. [31] gives
a one-pass noisy subset selection with (1+ ϵ) approximation guarantee for ℓp subspace approximation
when p ∈ {1, 2}. Our subset selection algorithm gives a weaker, additive approximation guarantee,
but it works for any p ∈ [1, ∞).
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1 Introduction

In subset selection problems, the objective is to pick a small subset of the given data such that
solving a problem optimally on this subset gives a good approximation to solving it optimally
on the entire data. Many coreset constructions in computational geometry and clustering [22],
sampling-based algorithms for large matrices [24], algorithms for submodular optimization
and active learning [37] essentially perform subset selection. The main advantage of subset
selection lies in its interpretability, for example, in gene expression analysis, we would like
to find a representative subset of genes from gene expression data rather than just fitting a
subspace to the data [20, 33, 36, 32, 29]. In several machine learning applications such as
document classification, face recognition etc., it is desirable to go beyond dimension reduction
alone, and pick a subset of representative items or features [28, 33]. Subset selection has been
well studied for many fundamental problems such as k-means clustering [2, 14], low-rank
approximation [24, 17, 15, 28] and regression [13], to name a few. In low-rank and subspace
approximation, the subset selection approach leads to more interpretable solutions than
using SVD or random projections-based results. Therefore, subset selection has been a
separate and well-studied problem even within the low-rank approximation and subspace
approximation literature [28, 12].
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In the following, we formally state the ℓp subspace approximation problem for p ∈ [1,∞).
ℓp subspace approximation: In this problem, given a dataset X = {x1, x2, . . . , xn} of n

points in Rd, a positive integer 1 ≤ k ≤ d and a real number p ∈ [1,∞), the objective is to
find a linear subspace V in Rd of dimension at most k that minimizes the sum of p-th powers
of the Euclidean distances of all the points to the subspace V , that is, to minimize

errp(X , V ) :=
n∑

i=1
d(xi, V )p. (1)

Throughout this paper, we use V ∗ to denote the optimal subspace for ℓp subspace
approximation. The optimal solutions are different for different values of p but we do not
include that in the notation to keep the presentation simple, as our results hold for any
p ∈ [1,∞).

Before stating our results, we first explain what a small subset and a good approximation
means in the context of subset selection for ℓp subspace approximation.

For ℓp subspace approximation, we consider n and d to be large, k ≪ n, d, and p

to be a small constant. Thus, a small subset of X desired in subset selection has size
independent of n and d, and is bounded by poly(k/ϵ), where ϵ is a parameter that controls
the approximation guarantee (as explained later). Note that the trivial solution V = 0 gives
errp(X , V ) =

∑n
i=1 ∥xi∥p. Using the standard terminology from previous work [24, 15, 16], an

additive approximation guarantee means outputting V such that errp(X , V ) ≤ errp(X , V ∗) +
ϵ
∑n

i=1 ∥xi∥p, whereas a multiplicative approximation guarantee means errp(X , V ) ≤ (1 +
ϵ) errp(X , V ∗). Most subset selection algorithms for ℓp subspace approximation select a
poly(k/ϵ)-sized subset of X such that its span contains a subspace V of dimension at most k

that is close enough to V ∗ to obtain the above approximation guarantees.
Our objective in this paper is to propose an efficient, one-pass sampling algorithm that

performs subset selection for ℓp subspace approximation for p ∈ [1,∞) defined as above. We
note that the problem of one-pass subset selection for ℓp subspace approximation has been
studied for special values of p, for example, Cohen et al. [11] gives one-pass subset selection
for p = 2, Mahabadi et al. [31] suggest one-pass noisy subset selection for p = {1, 2}. To the
best of our knowledge this problem has not been studied in generality for p ∈ [1,∞). In this
work, we consider studying this problem. We state our results as follows.

1.1 Our results
Our main technical contribution is a one-pass MCMC-based sampling algorithm that can
approximately simulate multiple rounds of adaptive sampling. As a direct application
of the above, we get the following results for the ℓp subspace approximation problem:
For p ∈ [1,∞), our algorithm makes only one pass over the given data and outputs a
subset of poly(k/ϵ)p points whose span contains a k dimensional subspace with an additive
approximation guarantee for ℓp subspace approximation. This generalizes the well-known
squared-length sampling algorithm of Frieze et al. [24] that gives additive approximation
guarantee for ℓ2 subspace approximation (or low-rank approximation under the Frobenium
norm). Even though stronger multiplicative (1 + ϵ) approximation algorithms for ℓp subspace
approximation are known in the previous work, either they cannot do subset selection, or
they are not one-pass, or they do not work for all p ∈ [1,∞).

Organization of the paper. In Section 2, we compare and contrast our result with the
state-of-the-art algorithms, and explain the key technical challenges, and workarounds. In
Section 3, we state our MCMC based subset selection algorithm for subset selection for ℓp
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subspace approximation. In Section 4, we give theoretical bounds on the sample size and
approximation guarantee. Finally, in Section 5, we conclude our discussion and state some
potential open questions of the paper.

2 Related work

In this section, we discuss related work on sampling and sketching algorithms for ℓp subspace
approximation, and do a thorough comparison of our results with the state of the art.

2.1 Sampling-based ℓp subspace approximation

Frieze et al. [24] show that selecting a subset of O(k/ϵ) data points as an i.i.d. sample
from x1, x2, . . . , xn picked by squared-length sampling, i.e., xi is picked with probability
proportional to ∥xi∥2

2, gives an additive approximation for ℓ2 subspace approximation (also
known as low-rank approximation under the Frobenius norm). Squared-length sampling
can be implemented in one pass over X using reservoir sampling [35, 21]. It is known
how to improve the additive approximation guarantee to a multiplicative approximation
by combining two generalizations of squared-length sampling, namely, adaptive sampling
and volume sampling [15, 16] but it requires O(k log k) passes over the data. In adaptive
sampling, we pick points with probability proportional to the distance from the span of
previously picked points, and in volume sampling, we pick a subset of points with probability
proportional to the squared volume of the parallelepiped formed by them. Volume sampling
a subset of size k can itself be simulated with an approximation factor k! in k rounds of
adaptive sampling [15]. For p = 2, it is also known that picking a subset of O(k/ϵ) points
by volume sampling gives a bi-criteria (1 + ϵ) approximation for ℓ2 subspace approximation
[28]. For general p ∈ [1,∞), it is known that subset selection based on adaptive sampling
and volume sampling can be generalized to get a (1 + ϵ) multiplicative approximation for ℓp

subspace approximation, for any p ∈ [1,∞), where the subset is of size O ((k/ϵ)p) and it is
picked in O(k log k) passes over the data [16]. The main bottleneck for implementing this in
one pass is the inability to simulate multiple rounds of adaptive sampling in a single pass.

The only known workarounds to get one-pass subset selection for ℓp subspace approxima-
tion are known for the special cases p = 1 and p = 2. Cohen et al. [11] give a one-pass subset
selection algorithm with a multiplicative (1 + ϵ) approximation guarantee for ℓ2 subspace ap-
proximation based on ridge leverage score sampling. Their one-pass implementation crucially
uses deterministic matrix sketching [25] to approximate the SVD and ridge leverage scores,
and works only for p = 2, to the best of our knowledge. Braverman et al. [6] give online
algorithms for ℓ2 subspace approximation (or low-rank approximation) via subset selection
but their subset size O( k

ϵ log n log κ) is not independent on n and depends logarithmically
on the number of points n and the condition number κ. Recent work by Mahabadi et al.
[31] gives a one-pass algorithm with a multiplicative (1 + ϵ) approximation guarantee for ℓp

subspace approximation. However, their algorithm works only in the special cases p ∈ {1, 2}
and it outputs a subset of noisy data points instead of the actual data points.

A different objective for ℓp subspace approximation has also been studied in literature
[5, 9], namely, minimizing the entry-wise ℓp-norm low-rank approximation error. To state it
formally, given an input matrix A ∈ Rn×d and a real number p ∈ [0,∞), their objective is to
find a matrix B of rank at most k that minimizes

∑
i,j |Ai,j −Bi,j |p.
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2.2 Sketching-based ℓp subspace approximation
Sketching-based algorithms compute a sketch of a given data in a single pass, using which
one can compute an approximately optimal solution to a given problem on the original
data. The problem of ℓp subspace approximation has been well-studied in previous work
on sketching algorithms. However, a limitation of these results is that they do not directly
perform subset selection. We mention a few notable results as follows: For p = 2, extending
deterministic matrix sketching of Liberty [30], Ghashami et al. [27, 26] give a deterministic
one-pass sketching algorithm that gives a multiplicative (1 + ϵ) approximation guarantee
for ℓ2 subspace approximation (or low-rank approximation under the Frobenius norm).
Cormode et al. [19] extend the above deterministic sketching idea to p ̸= 2 and give a poly(k)
approximation for entry-wise ℓ1-norm low-rank approximation and an additive ϵ ∥b∥∞
approximation for ℓ∞ regression. There is another line of work based on sketching algorithms
using random projection. Random projection gives a multiplicative (1 + ϵ) approximation for
ℓ2 subspace approximation in running time O(nnz(X) · poly(k/ϵ)), subsequently improved to
a running time of O(nnz(X) + (n + d) · poly(k/ϵ)) by Clarkson and Woodruff [10]. Feldman
et al. [23] also give a one-pass algorithm for multiplicative (1 + ϵ) approximation for ℓp

subspace approximation, for p ∈ [1, 2]. However, these results do not provide a one-pass
subset selection.

2.3 Comparison with other MCMC-based sampling results
Theorem 4 of Anari et al. [1] gives a MCMC based sampling algorithm to approximate
volume sampling distribution. However, their algorithm requires a greedy algorithm to pick
the initial subset that requires k passes over the input.

The MCMC sampling has also been explored in the context of k-means clustering. The
D2-sampling proposed by Arthur and Vassilvitskii [2] adaptively samples k points – one
point in each passes over the input, and the sampled points give O(log k) approximation to
the optimal clustering solution. The results due to [4, 3] suggest generating MCMC sampling
distribution by taking only one pass over the input that closely approximates the underlying
D2 sampling distribution, and offer close to the optimal clustering solution. Building on
these MCMC based sampling techniques, Pratap et al. [34] gives one pass subset section for
spherical k-means clustering [18].

3 MCMC sampling algorithm

In this section, we state our MCMC based sampling algorithm for subset selection for ℓp

subspace approximation. We first recall the adaptive sampling algorithm[15, 16] for ℓp

subspace approximation.
Adaptive sampling [15, 16] w.r.t. a subset S ⊆ X is defined as picking points from X

such that the probability of picking any point x ∈ X is proportional to d(x, span (S))p. We
denote this probability by

pS(x) = d(x, span (S))p

errp(X , S) , for x ∈ X . (2)

For any subset S whose errp(X , S) is not too small, we show that adaptive sampling w.r.t.
S can be approximately simulated by an MCMC sampling algorithm that only has access to
i.i.d. samples of points x ∈ X picked from the following easier distribution:

q(x) =
d(x, span

(
S̃
)
)p

2 errp(X , S̃)
+ 1

2 |X | , (3)
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for some initial subset S̃. We give the above definition of q(x) using an arbitrary initial
or pivot subset S̃ because it will be useful in our analysis of multiple rounds of adaptive
sampling. However, our final algorithm uses a fixed subset S̃ = ∅ such that

q(x) =
∥x∥p

2
2
∑

x∈X ∥x∥
p
2

+ 1
2 |X | . (4)

Note that sampling from this easier distribution, namely, picking x ∈ X with probability q(x)
(mentioned in Equation (4)), can be done in only one pass over X using weighted reservoir
sampling [8]. Weighted reservoir sampling keeps a reservoir of finite items, and for every new
item, calculates its relative weight to randomly decide if the item should be added to the
reservoir. If the new item is selected, then one of the existing items from the reservoir is
picked uniformly and replaced with the new item. Further, given any non-negative weights
wx, for each point x ∈ X , weighted reservoir sampling can pick an i.i.d. sample of points,
where x is picked with probability proportional to its weight wx. Note that this does not
require the knowledge of

∑
x∈X wx. Thus, we can run two reservoir sampling algorithms

in parallel to maintain two samples, one that picks points with probability proportional to
||x||p2, and another that picks points with uniform probability. Our actual sampling with
probability proportional q(x) = ∥x∥p

2
2
∑

x∈X
∥x∥p

2
+ 1

2|X | picks from one of the two reservoirs with

probability 1/2 each. Therefore, our MCMC algorithm uses a single pass of X to pick a
small sample of i.i.d. random points from the probability distribution q(·), in advance. Note
that q(·) is an easier and fixed distribution compared to pS(·). The latter one depends on S

and could change over multiple rounds of adaptive sampling.
Let x ∈ X be a random point sampled with probability q(x). Consider a random walk

whose single step is defined as follows: sample another point y ∈ X independently with
probability q(y) and sample a real number r u.a.r. from the interval (0, 1), and if

d(y, span (S))p q(x)
d(x, span (S))p q(y) = pS(y) q(x)

pS(x) q(y) > r,

then move from x to y, else, stay at x. Essentially, this does rejection sampling using a
simpler distribution q(·). Observe that the stationary distribution of the above random
walk is the adaptive sampling distribution pS(·). We use P̃

(1)
m (· | S) to denote the resulting

distribution on X after m steps of the above random walk. Note that m steps of the above
random walk can be simulated by sampling m i.i.d. points from the distribution q(·) in
advance, and representing them implicitly as m-dimensional points.

Lemma 1 below shows that for any subsets S̃ ⊆ S ⊆ X (where S̃ is the initial subset, and
S is the current subset), either errp(X , S) is small compared to errp(X , S̃), or our MCMC
sampling distribution closely approximates the adaptive sampling distribution pS(·) in total
variation distance. Proof of Lemma 1 relies on Corollary 1 of Cai [7] that gives an upper
bound on the TV distance between these two distributions in terms of: 1) length of the
Markov chain, and 2) upper bound on the ratio between these two distributions for any input
point.

▶ Lemma 1. Let ϵ1, ϵ2 ∈ (0, 1) and S̃ ⊆ S ⊆ X . Let P (1)(· | S) denote the distribution over
an i.i.d. sample of t points picked from adaptive sampling w.r.t. S, and let P̃

(1)
m (· | S̃) denote

the distribution over t points picked by t independent random walks of length m each in our
one-pass adaptive sampling algorithm; see step 3(a). Then for m ≥ 1 + 2

ϵ1
log 1

ϵ2
, either

errp(X , S) ≤ ϵ1 errp(X , S̃) or
∥∥∥P (1)(· | S)− P̃

(1)
m (· | S)

∥∥∥
T V
≤ ϵ2t.
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One-pass (approximate MCMC) adaptive sampling algorithm:
Input: a discrete subset X ⊆ Rd and integer parameters t, l, m ∈ Z≥0.
Ouput: a subset S ⊆ X .
1. Pick an i.i.d. sample Y of size |Y| = ltm from X , without replacement, where the

probability of picking x ∈ X is

q(x) =
d(x, span

(
S̃
)
)p

2 errp(X , S̃)
+ 1

2 |X | .

We use the pivot subset S̃ = ∅ so the corresponding distribution is

q(x) = 1
2

∥x∥p
2∑

x∈X ∥x∥
p
2

+ 1
2 |X | .

%% This can be implemented in one pass over X using weighted
reservoir sampling [8]. Weighted reservoir sampling is a weighted
version of the classical reservoir sampling where the probability
of inclusion of an item in the sample is proportional to the weight
associated with the item.

2. Initialize S ← ∅.
3. For i = 1, 2, . . . , l do:

a. Pick an i.i.d. sample Ai of size |Ai| = t from X as follows. Each point in Ai

is sampled by taking m steps of the following random walk starting from a
point x picked with probability q(x). In each step of the random walk, we
pick another point y from X with probability q(y) and pick a real number r

uniformly at random from the interval (0, 1). If d(y, span (S))p q(x)
d(x, span (S))p q(y) > r then

move to y, else, stay at the current point.
%% Note that we add only the final point obtained after the
m-step random walk in the subset S.
%% We note that the steps 1-3 of the algorithm can be simulated
by taking only one pass over the input as discussed below.
Suppose we have a single-pass Algorithm A for sampling from a
particular distribution, we can design another Algorithm B that
runs in parallel to Algorithm A and post-processes its sample.
In our setting, once we know how to get an i.i.d. sample of
points, where point x is picked with probability q(x), we can run
another parallel thread that simulates a random walk whose each
step requires a point picked with probability q(x) and performs
Step 3.

b. S ← S ∪Ai.

4. Output S.

Proof. First, consider the l = 1, t = 1 case of the one-pass adaptive sampling algorithm
described above. In this case, the procedure outputs only one element of X . This random
element is picked by m steps of the following random walk starting from an x picked with
probability q(x). In each step, we pick another point y with probability q(y) and sample a real
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One-pass MCMC ℓp subspace approximation algorithm:
Input: a discrete subset X ⊆ Rd, an integer parameter k ∈ Z≥0 and an error
parameter δ ∈ R≥0.
Output: a subset S ⊆ X of Õ

(
(k/ϵ)p+1) points.

1. Repeat the following O(k log 1
ϵ ) times in parallel and pick the best sample, S that

minimizes
∑

x∈X d(x, span (S))p.

a. Call One-pass (approximate MCMC) adaptive sampling algorithm
with t = Õ((k/ϵ)p+1), l = k and m = 1 + 2

ϵ1
log 1

ϵ2
.

2. Output S.

number r u.a.r. from the interval (0, 1), and if pS(y)q(x)/pS(x)q(y) > r, then we move from
x to y, else, we stay at x. Observe that the stationary distribution of the above random walk
is the adaptive sampling distribution w.r.t. S given by pS(x) = d(x, span (S))p/errp(X , S).
Using Corollary 1 of [7], the total variation distance after m steps of the random walk is
bounded by(

1− 1
γ

)m−1
≤ e−(m−1)/γ ≤ ϵ2, where γ = max

x∈X

pS(x)
q(x) .

The above bound is at most ϵ2 if we choose to run the random walk for m ≥ 1 + γ log 1
ϵ2

steps. Now suppose errp(X , S) > ϵ1 errp(X , S̃). Then, for any x ∈ X

pS(x)
q(x) =

d(x, span (S))p

errp(X , S)
1
2

d(x, span
(
S̃
)
)p

errp(X , S̃)
+ 1

2 |X |

≤ 2 d(x, span (S))p errp(X , S̃)
d(x, span

(
S̃
)
)p errp(X , S)

≤ 2
ϵ1

,

using d(x, span (S))p ≤ d(x, span
(
S̃
)
)p because S̃ ⊆ S, and the above assumption errp(X , S) >

ϵ1 errp(X , S̃). Therefore, m > 2
ϵ1

log 1
ϵ2

ensures that m steps of the random walk gives a
distribution within total variation distance ϵ2 from the adaptive sampling distribution for
picking a single point.

Note that for t > 1 both the adaptive sampling and the MCMC sampling procedure pick
an i.i.d. sample of t points, so the total variation distance is additive in t, which means∥∥∥P (1)(· | S)− P̃ (1)

m (· | S)
∥∥∥

T V
≤ ϵ2t,

assuming errp(X , S) > ϵ1 errp(X , S̃). This completes a proof of the lemma. ◀

4 ℓp subspace approximation

In this section, we give our result for one pass subset selection for ℓp subspace approximation.
We first show (in Lemma 2) that the true adaptive sampling can be well approximated
by one pass (approximate) MCMC based sampling algorithm. Building on this result, in
Proposition 3 and Theorem 4, we show bounds on the number of steps taken by the Markov
chain, and on the sample size that gives an additive approximation for the ℓp subspace
approximation. Our MCMC-based sampling ensures that our problem statement’s single-pass
subset selection criteria are satisfied.

ICALP 2022
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First, let’s set up the notation required to analyze the true adaptive sampling as well
as our one-pass (approximate MCMC) adaptive sampling algorithm. For any fixed subset
S ⊆ X , we define

errp(X , S) =
∑
x∈X

d(x, span (S))p, (5)

P (1)(T |S) =
∏
x∈T

d(x, span (S))p

errp(X , S) , (6)

for any subset T of size t,

E
T

[errp(X , S ∪ T )] =
∑

T : |T |=t

P (1)(T | S) errp(X , S ∪ T ). (7)

Given a subset S ⊆ X , P (1)(T | S) denotes the probability of picking a subset T ⊆ X of
i.i.d. t points by adaptive sampling w.r.t. S. We use P (l)(T1:l|S) to denote the probability of
picking a subset T1:l = B1 ∪B2 ∪ . . . ∪Bl ⊆ X of tl points by l iterative rounds of adaptive
sampling, where in the first round we sample a subset B1 consisting of i.i.d. t points w.r.t.
S, in the second round we sample a subset B2 consisting of i.i.d. t points w.r.t. S ∪B1, and
so on to pick T1:l = B1 ∪B2 ∪ . . . ∪Bl over l iterations. Similarly, in the context of adaptive
sampling, we use T2:l to denote B2 ∪ . . . ∪Bl. We abuse the notation E

T1:l | S
[·] to denote the

expectation over T1:l picked in l iterative rounds of adaptive sampling starting from S.
Given a pivot subset S̃ ⊆ X and another subset S ⊆ X such that S̃ ⊆ S, consider the

following MCMC sampling with parameters l, t, m that picks l subsets A1, A2, . . . , Al of t

points each, where m denotes the number of steps of a random walk used to pick these points.
This sampling can be implemented in a single pass over X , for any l, t, m, and any given
subsets S̃ ⊆ S. For T1:l = A1 ∪A2 ∪ . . . ∪Al. We use P̃

(l)
m (T1:l | S) to denote the probability

of picking T1:l as the output of the following MCMC sampling procedure. Similarly, in the
context of MCMC sampling, we use T2:l to denote A2 ∪ . . . ∪ Al. We abuse the notation

Ẽ
T1:l | S

[·] to denote the expectation over T1:l picked using the MCMC sampling procedure

starting from S with a pivot subset S̃ ⊆ S.
We require the following additional notation in our analysis of the above MCMC sampling.

We use P̃
(1)
m (T | S) to denote the resulting distribution over subsets T of size t, when we use

the above sampling procedure with l = 1. We define the following expressions:

indp(X , S) = 1
(
errp(X , S) ≤ ϵ1 errp(X , S̃)

)
, (8)

Ẽ
T

[errp(X , S ∪ T )] =
∑

T : |T |=t

P̃ (1)
m (T | S) errp(X , S ∪ T ), (9)

Ẽ
T

[indp(X , S ∪ T )] =
∑

T : |T |=t

P̃ (1)
m (T | S) indp(X , S ∪ T ). (10)

The expression indp(X , S) (in Equation (8)) denotes an indicator random variable that takes
value 1 if error w.r.t. subset S is smaller than ϵ1 times error w.r.t. subset S̃, and 0 otherwise.
The expression Ẽ

T
[errp(X , S ∪ T )] (in Equation (9)) denotes the expected error over the

subset T picked using the MCMC sampling procedure starting from the set S such that the
initial subset S̃ ⊆ S.

Now Lemma 2 analyzes the effect of starting with an initial subset S0 and using the same
S0 as a pivot subset for doing the MCMC sampling for l subsequent iterations of adaptive
sampling, where we pick t i.i.d. points in each iteration using t independent random walks
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of m steps. Lemma 2 shows that the expected error for subspace approximation after doing
the l iterations of adaptive sampling is not too far from the expected error for subspace
approximation after replacing the l iterations with MCMC sampling.

▶ Lemma 2. For any subset S0 ⊆ X , any ϵ1, ϵ2 ∈ (0, 1) and any positive integers t, l, m with
m ≥ 1 + 2

ϵ1
log 1

ϵ2
,

Ẽ
T1:l | S0

[errp(X , S0 ∪ T1:l)] ≤ E
T1:l | S0

[errp(X , S0 ∪ T1:l)] + (ϵ1 + ϵ2tl) errp(X , S0).

Proof. We show a slightly stronger inequality than the one given above, i.e., for any S0 such
that S̃ ⊆ S0,

Ẽ
T1:l | S0

[errp(X , S0 ∪ T1:l)] ≤ E
T1:l | S0

[errp(X , S0 ∪ T1:l)]

+
(

ϵ1 Ẽ
T1:l | S0

[indp(X , S0 ∪ T1:l)] + ϵ2tl

)
errp(X , S̃).

The special case S0 = S̃ gives the lemma. We prove the above-mentioned stronger statement
by induction on l. For l = 0, the above inequality holds trivially. Now assuming induction
hypothesis, the above holds true for l − 1 iterations (instead of l) starting with any subset
S1 = S0 ∪A ⊆ X because S̃ ⊆ S0 ⊆ S1.

Ẽ
T1:l | S0

[errp(X , S0 ∪ T1:l)]

= Ẽ
S1 | S0

[
Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)]

]
=

∑
S1 : indp(X ,S1)=1

P̃ (1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)]

+
∑

S1 : indp(X ,S1)=0

P̃ (1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)] . (11)

If indp(X , S1) = 1 then errp(X , S1 ∪ T2:l) ≤ errp(X , S1) ≤ ϵ1 errp(X , S0), so the first part of
the above sum can be bounded as follows.∑

S1 : indp(X ,S1)=1

P̃ (1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)]

≤ ϵ1 errp(X , S0) ·
∑

S1 : indp(X ,S1)=1

P̃ (1)
m (S1 | S0) Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)] . (12)

We give an upper bound on the second part as follows.∑
S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)]

=
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) Ẽ

T2:l | S1
[errp(X , S1 ∪ T2:l)] .

≤
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) ·

(
E

T2:l | S1
[errp(X , S1 ∪ T2:l)] + (ϵ1 Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)] + ϵ2t(l − 1)) errp(X , S̃)

)
. (13)

(by applying the induction hypothesis to (l − 1) iterations starting from S1.)

≤
∑

S1 : indp(X ,S1)=0

P (1)(S1 | S0) E
T2:l | S1

[errp(X , S1 ∪ T2:l)]

ICALP 2022
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+ ϵ1 errp(X , S̃) ·
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃)
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0)

+
∑

S1 : indp(X ,S1)=0

∣∣∣P̃ (1)
m (S1 | S0) − P (1)(S1 | S0)

∣∣∣ · E
T2:l | S1

[errp(X , S1 ∪ T2:l)] .

(
by adding and subtracting the term

∑
S1 : indp(X ,S1)=0

P (1)(S1 | S0) E
T2:l | S1

[errp(X , S1 ∪ T2:l)] in Eq. (13).
)

≤
∑
S1

P (1)(S1 | S0) E
T2:l | S1

[errp(X , S1 ∪ T2:l)]

+ ϵ1 errp(X , S̃)
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) · Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃) +
∑

S1 : indp(X ,S1)=0

∣∣∣P̃ (1)
m (S1 | S0) − P (1)(S1 | S0)

∣∣∣ · errp(X , S̃).

by upper bounding the probability expression
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) by 1.


≤ E

T1:l | S0
[errp(X , S0 ∪ T1:l)]

+ ϵ1 errp(X , S̃)
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) · Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃) +
∥∥P̃ (1)(· | S0) − P (1)(· | S0)

∥∥
T V

errp(X , S̃).(
as E

T1:l | S0
[errp(X , S0 ∪ T1:l)] =

∑
S1

P (1)(S1 | S0) E
T2:l | S1

[errp(X , S1 ∪ T2:l)] by Eq. (7).

)
≤ E

T1:l | S0
[errp(X , S0 ∪ T1:l)]

+ ϵ1 errp(X , S̃)
∑

S1 : indp(X ,S1)=0

P̃
(1)
m (S1 | S0) · Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃) + ϵ2t errp(X , S̃). (14)

Finally, Equation (14) holds using Lemma 1 about the total variation distance between P (1)

and P̃ (1) distributions. Plugging the bounds (12) and (14) into (11), we get

Ẽ
T1:l | S0

[errp(X , S0 ∪ T1:l)]

≤ E
T1:l | S0

[errp(X , S0 ∪ T1:l)] + ϵ1 errp(X , S̃)
∑
S1

P̃ (1)
m (S1 | S0) · Ẽ

T2:l | S1
[indp(X , S1 ∪ T2:l)]

+ ϵ2t(l − 1) errp(X , S̃) + ϵ2t errp(X , S̃).

= E
T1:l | S0

[errp(X , S0 ∪ T1:l)] +
(

ϵ1 Ẽ
T1:l | S0

[indp(X , S0 ∪ T1:l)] + ϵ2tl

)
errp(X , S̃).

≤ E
T1:l | S0

[errp(X , S0 ∪ T1:l)] + (ϵ1 + ϵ2tl) errp(X , S̃),

which completes the proof of Lemma 2. ◀
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Theorem 5 from [16] shows that in l = k rounds of adaptive sampling, where in each
round we pick t = Õ

(
(k/ϵ)p+1) points and take their union, gives an additive approximation

guarantee for ℓp subspace approximation with probability at least 1/2k. Repeating it multiple
times and taking the best can boost the probability further. We restate the main part of
this theorem below.

▶ Proposition 3 (Theorem 5, [16]). Let k be any positive integer, let ϵ ∈ (0, 1) and S0 = ∅.
Let l = k and t = Õ

(
(k/ϵ)p+1). If Sl = S0 ∪ T1:l is obtained by starting from S0 and

doing adaptive sampling according to the p-th power of distances in l iterations, and in each
iteration we add t points from X , then we have |Sl| = tl = Õ(k · (k/ϵ)p+1) such that

errp(X , S0 ∪ T1:l)1/p ≤ errp(X , V ∗)1/p + ϵ errp(X , ∅)1/p,

with probability at least 1/2k, and where V ∗ minimizes errp(X , V ) over all linear subspaces
V of dimension at most k. If we repeat this O(k log 1

ϵ ) times then the probability of success
can be boosted to 1− ϵ.

Combining Lemma 2 and Proposition 3 we get the following Theorem.

▶ Theorem 4. For any positive integer k, any p ∈ [1,∞), and any δ ∈ R≥0, starting from
S0 = ∅ and setting the following parameters in one-pass MCMC ℓp subspace approximation
algorithm (see Section 3)

ϵ = δ/4,

ϵ1 = δp/2p+1,

ϵ2 = δp/2p+1tl,

m = 1 + 2
δp

log k

δp
,

t = Õ((k/ϵ)p+1),
l = k,

we get a subset S of size Õ(k · (k/δ)p+1) with an additive approximation guarantee on its
expected error as errp(X , V ∗)1/p + δ errp(X , ∅)1/p. Further, the running time of the algorithm
is nd + k · Õ

((
k
δ

)p+1)
.

Proof. From Lemma 2 we know that

Ẽ
T1:l | ∅

[errp(X , T1:l)] ≤ E
T1:l | ∅

[errp(X , T1:l)] + (ϵ1 + ϵ2tl) errp(X , ∅).

Thus, for p ∈ [1,∞) we have

Ẽ
T1:l | ∅

[errp(X , T1:l)]1/p ≤ E
T1:l | ∅

[errp(X , T1:l)]1/p + (ϵ1 + ϵ2tl)1/p errp(X , ∅)1/p.

≤ (1− ϵ)
(

errp(X , V ∗)1/p + ϵ errp(X , ∅)1/p
)

+ ϵ errp(X , ∅)1/p

+ (ϵ1 + ϵ2tl)1/p errp(X , ∅)1/p.

(using Proposition 3.)

≤ errp(X , V ∗)1/p +
(

2ϵ + (ϵ1 + ϵ2tl)1/p
)

errp(X , ∅)1/p.

≤ errp(X , V ∗)1/p + δ errp(X , ∅)1/p,

using ϵ = δ/4, ϵ1 = δp/2p+1 and ϵ2 = δp/2p+1tl.
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We now give a bound on the running time of our algorithm. We require nd time to
generate the probability distribution q(x), for x ∈ X . Further, the running time of MCMC
sampling step is t · m · l = k · Õ

((
k
δ

)p+1). Therefore, the overall running time of the

algorithm is nd + k · Õ
((

k
δ

)p+1). ◀

5 Conclusion and open questions

In this work, we give an efficient one-pass MCMC algorithm that does subset selection
with additive approximation guarantee for ℓp subspace approximation, for any p ∈ [1,∞).
Previously this was only known for the special case of p = 2 [11]. For general case p ∈ [1,∞),
adaptive sampling algorithm due to [16] requires taking multiple passes over the input.
Coming up with a one-pass subset selection algorithm that offers stronger multiplicative
guarantees for p ∈ [1,∞) remains an interesting open problem.
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Abstract
We study the classical and quantum bit-probe versions of the static set membership problem : Given
a subset, S (|S| ≤ n) of a universe, U (|U| = m ≫ n), represent it as a binary string in memory so
that the query “Is x in S?” (x ∈ U) can be answered by making at most t probes into the string. Let
sA(m, n, t) denote the minimum length of the bit string in any scheme that solves this static set
membership problem. We show that for n ≥ 4

sA(m, n, t = 2) =


O(m1−1/(n−1)) if n = 0 (mod 3);
O(m1−1/n) if n = 1, 2 (mod 3);
O(m6/7) if n = 8, 9.

These bounds are shown using a common scheme that is based on a graph-theoretic observation on
orienting the edges of a graph of high girth. For all n ≥ 4, these bounds substantially improve on
the previous best bounds known for this problem, some of which required elaborate constructions [4].
Our schemes are explicit. A lower bound of the form sA(m, n, 2) = Ω(m1− 1

⌊n/4⌋ ) was known for
this problem. We show an improved lower bound of sA(m, n, 2) = Ω(m1− 2

n+3 ); this bound was
previously known only for n = 3, 5 [5, 6, 2, 7, 4].

We consider the quantum version of the problem, where access to the bit-string b ∈ {0, 1}s is
provided in the form of a quantum oracle that performs the transformation Ob : |i⟩ 7→ (−1)bi |i⟩.
Let sQ(m, n, 2) denote the minimum length of the bit string that solves the above set membership
problem in the quantum model (with adaptive queries but no error). We show that for all n ≤ m1/8,
we have sQA(m, n, 2) = O(m7/8). This upper bound makes crucial use of Nash-William’s theorem [10]
for decomposing a graph into forests. This result is significant because, prior to this work, it was not
known if quantum schemes yield any advantage over classical schemes. We also consider schemes
that make a small number of quantum non-adaptive probes. In particular, we show that the space
required in this case, sQN (m, n = 2, t = 2) = O(

√
m) and sQN (m, n = 2, t = 3) = O(m1/3); in

contrast, it is known that two non-adaptive classical probes yield no savings. Our quantum schemes
are simple and use only the fact that the XOR of two bits of memory can be computed using just
one quantum query to the oracle.
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52:2 Set Membership with Two Probes

1 Introduction

We consider the problem of representing small subsets S of a universe [m] = {1, 2, . . . , m} in
memory as a bit string so that membership queries of the form “Is x ∈ S?” can be answered
with a small number of bit probes to the memory [9]. This is a fundamental question that
asks how much a very sparse string can be compressed if we want to extract the bits of the
original string efficiently from its compressed version. One natural way of representing sets in
memory is the characteristic vector, which uses m bits of memory and answers membership
queries using a single bit probe. Since there are only O(

(
m
n

)
) sets of size at most n (assume

n ≪ m) one might hope to represent them using O(log2
(

m
n

)
) ≈ O(n log m) bits of memory.

However, compression to near the information-theoretic limits comes with a cost: membership
can no longer be determined by reading just a small number of bits. To describe the trade-offs
between efficiency of compression and the effort for extraction (measured as the number of
bit probes), we will use the following notation [11]. Let sN (m, n, t) denote the minimum
number of bits in a scheme that can represent sets of size at most n and answer membership
queries by probing at most t bits of the memory non-adaptively (that is, the probes are made
in parallel). We write sA(m, n, t) if the scheme is adaptive; we use the subscript Q if the
scheme makes quantum queries (zero-error), which can be adaptive or non-adaptive [18], and
write sQA(m, n, t) and sQN (m, n, t). Clearly,

sN (m, n, t) ≥
{

sA(m, n, t)
sQN (m, n, t)

}
≥ sQA(m, n, t)

Radhakrishnan, Sen and Venkatesh [18] obtained lower bounds, which for the range of
parameters of interest to us (n ≤

√
m, t constant) implies the following.

sQA(m, n, t) = Ω(m1/tn1−1/t).

(A similar lower bound in the classical setting was shown by Buhrman et al. [9].) Note that this
bound shows that if the space is compressed to O(n log m), then t = Ω(log m). Furthermore,
if t = 1 no compression is possible even for n = 1; it also shows that sQ(m, 1, 2) = Ω(

√
m), for

which there is a matching upper bound sN (m, n = 1, 2) = O(
√

m). The first, non-trivial case is
n = 2 and t = 2, where the above bound implies that sQA(m, 2, 2) = Ω(

√
m). It is known that

this bound is not tight for classical schemes; better lower bound are known: sN (m, 2, 2) = m

and sA(m, 2, 2) = Ω(m4/7) [9, 19]. Remarkably, it is known that sA(m, 3, 2) = Θ(m2/3) [13, 5].
Two-probe classical schemes have been constructed for representing small sets in several
works starting with Alon and Feige [1] (see, e.g., [4, 2, 7, 12, 13, 15, 17], where sets of specific
sizes are considered); the following upper and lower bounds was obtained by Garg and
Radhakrishnan [12].

Ω(m1− 1
⌊n/4⌋ ) ≤ sA(m, n, t = 2) ≤ O(m1− 1

4n+1 ). (1)

which roughly characterizes the space requirement for the problem, and, in particular,
establishes that no savings over the standard characteristic vector representation can be
expected if n ≥ log m. We show the following.

▶ Theorem 1 (Result 1). For n ≥ 4,

sA(m, n, t = 2) =


O(m1−1/(n−1)) if n = 0 (mod 3);
O(m1−1/n) if n = 1, 2 (mod 3);
O(m6/7) if n = 8, 9.
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The above bounds improve the bounds for all other values of n (see Figure 1) for a
comparison. Unlike the previous works, where different constructions (some of which quite
intricate) were invented for different set sizes, our result is obtained using a unified approach
based on graphs of high girth. (For n = 2, 3, the construction matches the currently best
bounds.) To obtain a scheme for a set of a given size, one just plugs in the best available
result for high-girth graph and obtains the bound claimed above. More importantly for us,
the method used here inspires a quantum scheme that yields Result 3 below. We also obtain
improved lower bounds.

▶ Theorem 2 (Result 2). For all odd n (3 ≤ n ≤ log m), sA(m, n, t = 2) = Ω(m1−2/(n+3)).

This bound matches the best bound known earlier for n = 3 (see [13]) and n = 5 (see [3]),
and improves the current best lower bound (see Equation (1) above) for all larger values of n.
We follow the approach of [12], who consider the graph underlying a two-probe scheme, and
show that if it is dense then it must contain a forbidden configuration. We make better use
of the structure of the underlying graph to force the existence of forbidden configurations.

We now describe our results in the quantum model. As stated above, our classical
approach helps develop a new quantum schemes.

▶ Theorem 3 (Result 3). sQA(m, n = m1/8, t = 2) = O(m7/8).

This result is especially significant because it shows that, unlike in the classical case, two probes
give substantial savings over the characteristic vector representation for sets substantially
larger than log m (see the remark above following Equation (1)). Before this work, quantum
schemes were not known to provide significant savings over classical schemes. Our quantum
scheme is also based on dense graphs that are locally sparse, this time we do not make use
of high girth. Instead, we invoke a result of Nash-Williams [10] on covering the edges of a
graph with two forests. After this, our construction uses only the following basic fact from
quantum computation (Deutsch’s algorithm [16]): the parity of two bits of memory can be
computed using just one quantum probe. In fact, only the second probe in our scheme is
truly quantum. This result opens the possibility that the lower bounds of

√
mn cited above

is perhaps achievable for quantum schemes. We show in fact that for n = 2, the lower bound
can be matched using non-adaptive constructions.

▶ Theorem 4 (Result4).

sQN (m, n = 2, t = 2) = O(
√

m);

sQN (m, n = 2, t = 3) = O(m1/3).

The query scheme is simple. The query scheme for (n = 2, t = 2) on input x computes for
locations ℓ1(x), ℓ2(x), ℓ3(x), ℓ4(x), and returns “Yes” iff the bits at the first two locations are
different and the bits at the last two locations are different, that is, we use an AND of two
inequality computations, each of which requires just one quantum probe. A similar query
scheme that uses an AND of three inequality computations gives the three-probe non-adaptive
quantum scheme. We also obtain non-adaptive two-probe schemes with sublinear space for
storing sets with more elements (see Appendix D). These bounds are interesting because no
non-adaptive two-probe classical scheme exists with sublinear space [9].

2 Classical two-probe adaptive schemes

In this section we establish Theorem 1. Our two-probe adaptive schemes are based on dense
graphs of high girth. We first specify the storage scheme and the query schemes based on
an underlying graph. Then, to complete the proof, we will show the following: (i) if the
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underlying graph has high girth, then there is an assignment of values to the memory such
that all queries are answered correctly; (ii) the available explicit constructions of dense graphs
of high girth in the literature yield the claimed bounds.

▶ Definition 5 (Classical (G, K)-scheme). Let G be a directed graph with N vertices and M

edges; let K be a positive integer. We refer to the following as a (G, K)-scheme. The storage
consists of two bit arrays, A and B. To answer a membership query the decision tree will
make the first probe to array A and the second probe to array B.
Edge array: An array A : E(G) → {0, 1}, indexed by edges of G.
Vertex array: A two dimensional array B : V × [K] → {0, 1}.
Elements: We identify our universe of elements [m] with a subset of E(G) × [K] (so we must

ensure that the graph has at least m/K edges); thus, each element x ∈ [m] will be referred
to as (e, i).

Query: We represent an edge of G as an ordered pair of the form e = (v0, v1) with the
convention that v0 < v1. To process the query for the element x = (e, i), we read A[e]
(first probe); then we return the value B[vA[e], i] (by making the second probe into B).
In other words, we may think of A[e] as a bit that orients the edge e towards either its
smaller vertex or the larger vertex; depending on this bit, the second probe is made into
the array B corresponding to the vertex towards which the edge points. Note that this
scheme is adaptive: the second probe depends on the first.

Space: We will ensure that MK ≥ m. The space used by this scheme is then NK + M bits
(NK for the N vertex array and K for the edge array). By choosing the graph G and the
parameter K appropriately we will show that our schemes use small space.

The following lemma provides the connection between dense graphs of high girth and
efficient two-probe adaptive schemes.

▶ Lemma 6. Let G be a graph with N vertices M edges and girth g such that n ≤ ⌊ 3g
4 ⌋ and

M ≤ m. Then, sA(m, n, 2) ≤ M + N⌈m/M⌉.

Before we present the proof of this lemma formally, let us derive from it the bounds claimed
in Theorem 1. Since every graph has a bipartite subgraph that includes at least half the
edges, it is sufficient to restrict attention to bipartite graphs, and hence to graphs whose
girth is even. The smallest even number g such that n ≤ ⌊ 3g

4 ⌋ is given by

g(n) =
{

4⌈n/3⌉ n = −1, 0 (mod 3);
4⌈n/3⌉ − 2 n = 1 (mod 3).

(2)

Now, suppose that for a girth g, there are constant c(g) d(g) and τ(g), such that for all large
L, there is a graph with at most c(g)L vertices, girth g and d(g)L1+τ(g) edges. Then, taking
a graph with N = Θ(m1/(1+2τ(g(n)))) vertices and M = Θ(m(1+τ)/(1+2τ)) edges in Lemma 6,
we obtain the following.

▶ Corollary 7. sA(m, n, 2) = O(m(1+τ(g(n)))/(1+2τ(g(n)))).

In particular, by using the current best constructions of dense graphs with large girth we
obtain the following bounds for sA(m, n, 2). For example, we may take τ(6) = 1/2, τ(8) = 1/3
and τ(12) = 1/5 based on graphs described Wenger [20]. (In Appendix A, we explain in
what sense these constructions, and hence the resulting schemes, are explicit.)

Proof of Lemma 6. Fix a graph G with N vertices and M edges as in the statement of the
theorem. Consider the (G, K)-scheme with K = ⌈m/M⌉. Clearly the space used by the
scheme is N + KM = N + M⌈m/M⌉. It remains to show that there is an assignment to the
edge and vertex arrays of this scheme so that every query is answered correctly. Fix a set S
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n girth g(n) τ(g(n)) Our bound (m(1+τ)/(1+2τ)) Previous best bound
2,3 4 1 O(m2/3) O(m2/3) [13]
4 6 1/2 O(m3/4) (using [20]) O(m5/6) [6, 4]

5,6 8 1/3 O(m4/5) (using [20]) O(m5/6) (for n = 5 [4])
7 10 1/5 O(m6/7) (using [8]) ↓

8,9 12 1/5 O(m6/7) (using [8]) ↓
n = 3r − 2 4r − 2 1/(3r − 4) O(m1− 1

n ) (using [14]) O(m1−1/(4n+1) [12]
n = 3r − 1, 3r 4r 1/(3r − 3) O(m1− 1

n ), O(m1− 1
n−1 ) (using [14]) O(m1−1/(4n+1) [12]

Figure 1 Our upper bounds use explicit constructions of graphs of large girth available in the
literature (see Appendix A).

of at most n elements; recall that the elements of the universe have the form (e, i), where e

is an edge of the graph and i ∈ [K]. We will assign values to the two arrays in two steps.
First the edge array A will be assigned values. Recall that this assignment corresponds to
assigning directions to the edges. We will show below how this is to be done. Assuming this
we show how the array B is initialized. To start with, we initialize array B with zeros. Now
for each element (e, i) ∈ S (say e = (v0, v1) where v0 < v1), if A[e] = 0 we set B[v0, i] = 1,
otherwise we set B[v1, i] = 1. This assignment ensures that the query scheme described
above will answer correctly for each element in S, so there are no false negatives, no matter
what initial orientation of the edges is chosen. The key idea is to choose an orientation that
avoids false positives; we must ensure that the value in the array A are set in such a way that
an element not in S and an element in S do not make second probes to the same location in
array B. Definition 8 below formally describes such a safe orientation. Here edges e such
that (e, i) ∈ S for some i are colored GREEN and the other edges are colored RED. Thus,
there are at most n GREEN edges. Our choice of colors RED and GREEN are based on the
following consideration. Some edges support elements in the set, some others do not support
any such element. We chose to regard edges with elements in the set as GREEN, because
the eventual answer to the query in that case is ’Yes’. In our definition of safe orientation,
RED edges and GREEN edges are not allowed to point to a common vertex. Two GREEN
edges are not allowed to point to the same vertex either but two RED edges are allowed to.
We warn the reader that our choice of colors might be confusing, because GREEN edges are
more restrictive/dangerous than RED edges! Then, Lemma 9 below shows that the graph
G above has a safe orientation. It follows that our query scheme answers all the queries
correctly. ◀

▶ Definition 8 (Safe orientation). Suppose H is a graph whose edges are colored RED
and GREEN. We say that an orientation of edges is safe if every vertex with an incoming
GREEN edge has only one edge coming into it.

▶ Lemma 9. Suppose H is a graph with even girth g ≥ 4 and n ≤ ⌊3g/4⌋ GREEN edges.
Then, G has a safe orientation. (This claim should have a simple proof, but we have not been
able to find one that covers all cases succinctly.)

Preliminaries: In the following, suppose H is a graph with even girth g and n ≤ ⌊3g/4⌋
GREEN edges. To find the necessary orientation, we will proceed by induction on the size of
H (its total number of edges plus vertices). For the base case, note that a graph with no
edges clearly has a safe orientation. For the induction step, we will identify an initial set of
vertices V ′ such that all edges that have at least one end point in V ′ can be safely oriented
towards a vertex in V ′. We then delete V ′ and the edges incident on it, and use induction to
extend this orientation to the rest of H. To identify the set V ′, we will use a breadth first
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search procedure formally described below. This procedure produces a breadth first search
tree or a breadth first search forest as usual, but we need to impose the following condition
on it.

If a vertex w in the tree is connected to its parent by a RED edge, then all of w’s
children are connected to w using GREEN edges; thus, in any root to leaf path in the
tree, RED edges do not appear consecutively.

To enforce this, when a RED edge is added to the tree, we will mark the vertex it leads to
RED; then when we visit this vertex, we only explore vertices connected to it by GREEN
edges. If a GREEN edge is added to the tree, we mark the new vertex GREEN; then when
we visit this vertex, we explore all its edges, whether GREEN or RED. The formal code is
presented in Algorithm 1. (This is reminiscent of the breadth first search procedure employed
by certain matching algorithms to discover augmenting paths; there one alternately explores
either only the matched edge or all edges). As a first attempt we might want to orient the

Algorithm 1 Breadth-First Search (BFS).

Input : A non-empty subset Z ⊆ V (H)
Output : A BFS forest rooted at the vertices in Z

1 Q = empty queue ;
2 push all elements of Z into Q and mark them GREEN;
3 while Q is non-empty do
4 v = pop(Q);
5 if v is marked GREEN then
6 push all unmarked neighbors w of v into Q;

// now assign them colors as follows
7 if {v, w} is GREEN then
8 add {v, w} to the forest, and mark w GREEN
9 end

10 else
11 mark w RED
12 end
13 end
14 if v is marked RED then
15 push all unmarked neighbors w of v with {v, w} GREEN into Q;
16 add {v, w} to the forest and mark w GREEN;
17 end
18 end

edges of the forest away from the roots and hope to extend this orientation to the other
edges that have at least one end point in the forest. If this gives a valid orientation for these
edges, we let V ′ be the vertex set of the forest, and proceed as above. Unfortunately, this
straightforward method may run into problems; this motivates the following definition.

▶ Definition 10 (Blocking edge, see Figure 2). In the forest constructed by BFS, we say
that a non-tree edge is a blocking edge if (i) it is a non-tree GREEN edge both of whose end
points are visited during BFS, or (ii) it is a non-tree RED edge with both end points marked
GREEN.
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v0

v1 v2

v3 v4 v5 v6 v7

v8 v9

G R

R R
G

R G

R R R

R

G

Figure 2 The BFS tree: (v1, v2) is not a blocking edge, (v2, v4) and (v5, v7) are blocking edges.

We will see that if there are no blocking edges, then the above strategy will work; otherwise,
H has a cycle with many GREEN edges, and we will be able to exploit that.

▶ Definition 11 (GREEN-dominated cycle, see Figure 3). We say that a cycle in H is
GREEN-dominated if all but (perhaps) one of its RED edges are followed by a GREEN edge.

We will establish the following two lemmas below.

▶ Lemma 12. Suppose H has no GREEN-dominated cycle. Suppose V ′ is the set of vertices
of H visited by BFS starting at a vertex v0. Then there is a safe orientation of edges of H

incident on V ′.

▶ Lemma 13. Suppose H has a GREEN-dominated cycle C. Let H ′ be the graph obtained
by deleting from H all edges of C. Let V ′ be the vertices visited by BFS in H ′ starting with
the vetex set V (C) of the cycle C. Then, there is a safe orientation of edges of H incident
on V ′.

Let us use these lemmas to complete the proof of Lemma 9.

Proof of the Lemma 9. If H has no GREEN-dominated cycle, then by Lemma 12, we
obtain an initial set of vertices V ′ and an orientation of all edges incident on it. If H has a
GREEN-dominated cycle, then by Lemma 13 we obtain an initial set of vertices V ′ and an
orientation of all edges incident on it. We extend this orientation to the remaining edges of
the graph by deleting V ′ and all edges incident on it, and applying induction to the resulting
subgraph induced by the vertex set V \ V ′. ◀

We now return to the unproved lemmas.

Proof of Lemma 12. Let v0 be an arbitrary vertex. Consider the tree produced by BFS
starting with Z = {v0}. We claim that there is no blocking edge for the resulting tree.
For suppose e = {a, b} is a blocking edge. Let v be the least common ancestor of a and
b, and recall that in the paths that connect v to a and v to b, no RED edge is followed
by a RED edge. Let C be the cycle formed by taking the path from v to a followed by e

and then the path from b back to v. If e is GREEN, then this cycle is GREEN-dominated,
contradicting our assumption. If e is RED, then by the definition of blocking edge, both
a and b are marked GREEN, that is, the tree edges connecting them to their parents are
GREEN (note that e is not a back edge because both its vertices are GREEN). Again the
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v0

v1 v2

v3 v4 v5 v6 v7

v8 v9

R R

G
R

G
G R

R R R

Figure 3 The edge is (v5, v6) is a blocking edge and (v0, v1, v5, v6, v2, v0) is the resulting GREEN-
dominated cycle, even though it has more RED edges than GREEN edges.

cycle C is GREEN-dominated, contradicting our assumption. Thus, the tree has no blocking
edges. Let V ′ be the vertices visited by BFS. Orient all tree edges away from the root v0.
The remaining edges incident on V ′ (which cannot be GREEN) have at least one vertex
marked RED, because they are not blocking. Orient them towards that RED vertex. It
can be verified that the GREEN edges that received an orientation are all tree edges, and
are oriented towards distinct GREEN vertices. The RED edges are oriented towards RED
vertices. So all edges incident on V ′ can be oriented safely. ◀

Proof of Lemma 13. Fix a GREEN-dominated cycle C in H. Suppose it has ℓ1 edges (for
some ℓ1 ≥ g) of which say n1 are GREEN. Then,

n1 ≥ ⌈(ℓ1 − 1)/2⌉ ≥ g/2, (3)

because g is even. First, suppose the resulting BFS forest has no blocking edges, then let V ′

be the vertices of this BFS forest. We orient the edges in C so that it becomes a directed
cycle (we may choose either of the two ways to do this). Then, we orient all tree edges away
from the roots in the BFS forest. Note that all other edges incident on V ′ must necessarily be
RED; each such edge has at least one RED vertex in V ′. We orient each such edge towards
a RED vertex, and obtain the desired safe orientation.

Next, suppose there is a blocking edge e = {a, b}. If a and b belong to the same tree
of the forest, then e and the paths from a and b to their least common ancestor form a
GREEN-dominated cycle, consisting of say ℓ2 ≥ g edges of which n2 are GREEN. Then,

n2 ≥ ⌈(ℓ2 − 1)/2⌉ ≥ g/2. (4)

From Equation (3) and Equation (4), we obtain, n ≥ n1 + n2 ≥ g, contradicting our
assumption that n ≤ 3g/4. So, we may assume that a and b belong to different trees of the
forest. Then, travelling from the root r1 of a’s tree to a, crossing over along e to b, and
then travelling to the root r2 of the tree of b, we obtain a path P ∗, where no RED edge is
followed by a RED edge; in particular, every RED edge except perhaps the last, is followed
by a GREEN edge. Suppose this path has ℓ3 edges of which n3 are GREEN. We have the
following.

ℓ3 ≥ g − ⌊ℓ1/2⌋; (G has girth g) (5)
2n3 ≥ ℓ3 − 1. (6)
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From Equation (3), Equation (5) and Equation (6), we obtain

2(n1 + n3) ≥ g + 2⌈(ℓ1 − 1)/2⌉ − ⌊ℓ1/2⌋ − 1 (7)
= g + ⌈(ℓ1 − 1)/2⌉ − 1 (8)
≥ 3g/2 − 1. (9)

If n > n1 + n3 (that is, there is some GREEN edge outside C ∪ P ∗), then we obtain
n ≥ n1 + n3 + 1 ≥ 3g/4 + 1/2, contradicting our assumption n ≤ 3g/4. So, we may assume
that all GREEN edges in the graph are contained in C ∪ P ∗. We think of C ∪ P ∗ as a set
of three edge disjoint paths, P1, P2 and P3, connecting r1 to r2, where P1 ∪ P2 = C and
P3 = P ∗. Let V ∗ be the set of vertices in P1 ∪ P2 ∪ P ∗. We will show that the graph induced
by V ∗ can be safely oriented. Then, we will orient all other (necessarily RED) edges of G

towards a vertex not in V ∗ to obtain a safe orientation of the entire graph H, and conclude
that the lemma holds with V ′ = V (H).

First, we show that we may assume that each of the three cycles C = P1 ∪ P2, P1 ∪ P3
and P2 ∪ P3 is chordless. Since C is GREEN-dominated, it has at most 2n + 1 edges. If it
had a chord, we would get a cycle with at most n ≤ 3g/4 < g edges, a contradiction. Thus,
the cycle C = P1 ∪ P2 has no chord. Next, using a similar argument we show that the other
two cycles are chordless. We first observe that both P1 and P2 have GREEN edges. If P1
has no GREEN edges, then it can have at most two edges, and the at least g/2 GREEN
edges of C all lie in P2. Also, P3 has at least g − 2 edges. Then, the number of GREEN
edges in P2 is at least max{|P2|, g}/2 (because C is GREEN-dominated), and similarly the
number of GREEN edges in P3 is at least ⌈(|P3| − 1)/2⌉ ≥ g/2 − 1. Thus,

3/4g ≥ n ≥ max{|P2|, g}/2 + ⌈(|P3| − 1)/2⌉ ≥ g − 1; (10)

that is, g = 4, |P2| ≤ 4 and |P3| ≤ 3. Thus, P2 ∪ P3 is a cycle with at most 7 vertices and it
cannot have a chord because g = 4. Thus, we may assume that P1 has at least one GREEN
edge, that is, P2 ∪ P3 has at most n − 1 GREEN edges. Let k2 be the number of GREEN
edges in P2 and k3 the number of GREEN edges in P3. Since every RED edge in P3, except
perhaps one is followed by a GREEN edges, the number of edges in P3 is at most 2k2 + 2.
Then, the total number of edges in P2 ∪ P3 ≤ (2k2 + 2) + (2k3 + 1) (the second term comes
from Equation (6)), that is, at most 2n + 1 edges in all. If P2 ∪ P3 has a chord, then we have
a cycle of length at most n, which, as we saw earlier, is not possible. Similarly, P2 ∪ P3 has
not chord.

So the graph induced by V ∗ consists of three disjoint paths, with no chords across them.
If any path has two consecutive RED edges, then we may orient them towards each other
and be left with a graph consisting of a cycle with two dangling paths, which can be oriented
safely. Similarly, if some two paths start with RED edges or end with RED edges, then
these edges can be oriented towards each other, and the remaining edges (which form a
tree) can be oriented safely. We are left with the case where on all paths a RED edge is
followed by a GREEN edge, and at both ends (r1 and r2), two of the paths start with
GREEN edges. We will show that this is impossible. For otherwise, there is path (say, P3),
which has GREEN edges at both ends, so |P3| has at least (|P3| + 1)/2 GREEN edges. For
the remaining paths, either some path has both ends GREEN, or both paths have one end
GREEN. In either case, they together have at least (|P1| + |P2|)/2 GREEN edges. Note that
2(|P1| + |P2| + |P3|) ≥ 3g, because H has girth at least g. Thus, the total number of GREEN
edges is n ≥ (|P1| + |P2| + |P3| + 1)/2 ≥ (3g/2 + 1)/2 > 3g/4, contradicting our assumption
that n ≤ 3g/4. ◀
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3 Quantum adaptive schemes

In this section, we establish Theorem 3. Our quantum scheme is based on a graph and is
similar in some respects to the classical scheme described above. The main difference is in
the second probe, which now computes the XOR of two bits of memory.

▶ Definition 14 (Quantum (G, K)-scheme). Let G be a directed graph with N vertices and
M edges; let K be a positive integer. We refer to the following as a quantum (G, K)-scheme.
The storage consists of three bit arrays, A, B0 and B1. To answer a membership query, the
quantum decision tree first probes array A (this probe is classical) and then computes the
XOR of two bits in either B0 or B1, using just one quantum probe.
Edge array: An array A : E(G) → {0, 1}, indexed by edges of G.
Vertex arrays: Two two-dimensional arrays B0, B1 : V × [K] → {0, 1}, indexed by elements

of the form (v, i).
Elements: As before, we identify our universe of elements [m] with a subset of E(G) × [K];

thus, each element x ∈ [m] will be referred to as (e, i).
Query: Let the query be “Is x in S?”, where x = (e, i); suppose e = {x0, x1}. To process

this query for we read A[e] (first probe); then, based on the value of A[e], we return either
B0[(v0, i)] + B0[(v1, i)] (mod 2) or B1[(v0, i)] + B1[(v1, i)] (mod 2). In other words, the
first probe directs us to either array B0 or B1; we then return the XOR of the bits in the
i-th location in the rows corresponding to the two vertices of e.

Space: We will ensure that MK ≥ m, to accommodate all elements of the universe. The
space used by this scheme is then 2NK + M bits. By choosing the graph G and the
parameter K appropriately we will show that our schemes uses small space.

The main idea is the following. To store the set S in the data structure, we partition the
edges of G using the 0-1 assignment to the array A. Let G0 be the graph induced by the
edges that are assigned 0 in A, and let G1 be the graph induced by the edges assigned 1.
Now, the bits of the arrays B0 and B1 must be assigned in such a way that certain XORs of
two bits evaluate to 1 and others evaluate to 0. This leads to a system of linear equations
in the bits of the arrays B0 and B1. To ensure that this system has a solution, we ensure
that if A[e] = 0, then e is not in any cycle in G0, and similarly, if A[e] = 1, then e is not in
any cycle in G1. It is then easy to see that the required assignment to the arrays B0 and
B1 exists. To ensure that the edges of G can be partitioned in G0 and G1 to satisfy the
requirements imposed by the set S, we will start with the graph G that is dense but locally
sparse in the following sense, and use a theorem of Nash-Williams.

▶ Definition 15 (Locally sparse graph). A graph G is (k, α)-locally sparse if for every subsets
V ′ ⊆ V with 4 ≤ |V ′| ≤ k vertices, the induced subgraph on V ′ has at most α|V ′| edges.

▶ Lemma 16. If G has N vertices, M edges and is (4n, 5/4)-locally sparse, then

sQA(m, n, t = 2) ≤ M + 2N⌈ m

M
⌉.

Before we present the proof of this lemma, let us see how this leads to Theorem 3. We will
need a family of dense locally sparse graphs, whose existence we establish in Appendix C
using a routine probabilistic argument.

▶ Lemma 17. For all large N there is a (4N1/6, 5/4)-locally sparse graph with N vertices
and Ω(N7/6) edges.

We set N = m3/4, and plugging in the graph promised by Lemma 17 in Lemma 16, obtain
sQA(m, m1/8, 2) = O(m7/8), as claimed in Theorem 3. It remains to establish Lemma 16.
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Proof of Lemma 16. Fix G with the given parameters. We now describe how the three
arrays in our quantum scheme are assigned values. Recall that we view elements of [m] as
pairs (e, i). Edges of G for which there is an element of the form (e, i) ∈ S will be called
GREEN; the other edges of G will be called RED. Say, there are ℓ ≤ n GREEN edges.
We will construct a sets of vertices D0, D1, D2, . . . by adding one vertex at a time. Let
D0 ⊆ V (G) be the union of the GREEN edges; thus D0 has at most 2ℓ vertices. To obtain
Di+1 from Di, add to Di a new vertex that has at least two edges leading into Di; if no
such vertex exists, stop. We claim that this process stops before 2n vertices are added, for
otherwise, the graph induced by D2n, a set of size at most 2n + 2ℓ ≤ 4n vertices, has at least
4n + ℓ edges. Since G is (4n, 5/4)-locally sparse, we have (5/4)(2n + 2ℓ) > 4n + ℓ, implying
ℓ > n, a contradiction. Let D be the set of vertices when the above process stops.

▷ Claim 18. The subgraph induced by D can be split into two disjoint forests.

We will justify this claim below (using Nash-Williams theorem). Let us assume it and
complete the proof. Let the two forests guaranteed by this claim be F1 and F2. We set
A[e] = 0 for all edges e ∈ F1 and all edges that connect D to V \ D. Let G0 be the subgraph
of G with vertex set V (G) that consist of edges e such that A[e] = 0. Let G1 be the subgraph
with vertex set V (G) and all edges not included in G0. Note that the connected components
of G1 are either in the forest F2 or consist of RED edges with both end points in V \ D.
Now, we are ready to describe the assignment to arrays B0 and B1. As stated above the
constraints imposed by the GREEN and RED edges give a system of equational constraints;
since G0 has no cycle, it is easy to see that these constraints can all be satisfied by assigning
B0 appropriately. In G1 again, the edges corresponding to F2 do not induce a cycle, so the
constraints imposed by them can be satisfied by assigning appropriate values to the rows of
B2 corresponding to vertices in D. The remaining edges share no vertex with the edges of
F2, and consist only of RED edges. So we assign zeroes to all rows of B2 corresponding to
vertices in V (G) \ D.

It remains to verify Claim 18. Since |D| ≤ 4n, every subset D′ of D (with |D′| ≥ 4)
induces at most (5/4)|D′| edges; since |D| ≥ 4, we have (5/4)|D′| ≤ 2(|D′| − 1). Note that
the number of edges in any graph with at most 1 ≤ ℓ ≤ 4 vertices is at most 2ℓ − 2. So we
may invoke Theorem 19 below and justify the claim. ◀

▶ Theorem 19 (Nash-Williams (see Theorem 3.5.4 in [10]).). Let H = (V, E) be an undirected
graph such that for each non-empty subset X ⊆ V , the number of edges with both end points
in X is at most 2(|X| − 1). Then E can be partitioned as E = E1 ∪ E2 such that (V, E1) and
(V, E2) are both forests.

4 Lower bounds for classical schemes

In this section, we present our justification for Theorem 2.

Canonical query schemes. Consider an (m, n, s, t)-scheme. Let us use M to denote the
array of s-bits into which probes are made. With each element x ∈ [m] of the universe such
a scheme associates three addresses (a(x), b(x), c(x)) ∈ [s]3, where the first probe is made to
location a(x); if the bit there is 0, then the second probe is made to b(x), otherwise the probe
is made to c(x). We will assume that that the query scheme has the following canonical form.
On query “Is x in S?”, the answer is determined as follows: if M [a(x)] = 1, then return
M [b(x)], else return M [(c(x)], where 0 is treated as false/no and 1 as true/yes. We refer to
such schemes as canonical schemes. It is easy to see that by at most doubling the memory a
scheme can be made canonical.
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▶ Proposition 20. If there is an (m, n, s, t = 2)-scheme, then there is an (m, n, 2s, t = 2)-
canonical scheme.

From now on we will assume that the scheme is canonical.

▶ Definition 21 (The bipartite graph associated with a scheme). With the scheme σ, we
associate a directed bipartite graph Gσ with vertex sets B and C, whose elements we refer
to using [s]. For each x ∈ [m] we add an edge e(x) = (b(x), c(x)) in Gσ with label (x, a(x)).
The value a(x) will be called the color of the edge; so e(x) and e(y) have the same color if
and only if the first probes for the two queries “Is x in S?” and “Is y in S?” are made to
the same location, namely a(x) = a(y). We will use e⃗ to refer the oriented version of the
edges of Gσ. We say that two distinct oriented edges, e⃗1 and e⃗2 are parallel if (i) e⃗1 and e⃗2
have the same color, and (ii) they are both oriented in the same direction (both from B to C

or C to B).

To store a set S, one must find an assignment to the locations where the first probes are
made. This amounts to choosing an orientation for each color, and orienting the edges either
from B to C or from C to B; the values in the array is then essentially forced because the
protocol is assumed to be canonical. For this assignment to be valid, in the resulting directed
graph, we must have the property that if x ∈ S and y ̸∈ S, then head(e⃗(x)) ̸= head(e⃗(y)).
We refer to such an orientation as a safe orientation for S.

We obtain our lower bound by establishing that if the data structure uses very small
space, then there is a set S of size at most n edges, whose edges cannot be oriented safely.

✓ ✓

✓

✓ ✓

✓

✓

(a) A forbidden configuration. (b) The problem case.

Figure 4 n = 7.

Forbidden configuration. Fix n of the form 2ℓ − 1. Please refer to Figure 4a. Most edges
in the figure come in pairs of solid and dotted edges, which are placed parallel to each other.
For each edge, one vertex is a circle and the other is a square, to indicate that one of them
comes from B and the other from C (we do not specify which is which). The elements
labelling the edges are all distinct; however, we allow the edges to have the same color even
if they are not explicitly depicted as being parallel. We say that such graph F is forbidden
configuration of order n, if there is a subset S ⊆ [m] (|S| ≤ n) of elements appearing in the
labels on the edges of F such that F is not safe for S. For example, Figure 4a is a forbidden
configuration of order n = 7, where the set S is indicated by ✓. Our lower bound result
Theorem 2 follows immediately from the following lemma.

▶ Lemma 22. Fix an odd n (3 ≤ n ≤ log m) and an (m, n, s, t = 2)-scheme σ. If Gσ does
not contain any forbidden configuration of order n, then s ≥ cm1−2/(n+3), for a constant
c > 0 independent of n.
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✓

✓

✓
✓

✓

✓

✓

Figure 5 The second forbidden configuration (n = 7).

Proof Sketch. Consider (m, n, s, t = 2)-scheme σ. In Gσ we have m edges. Then, (on
average) a vertex has degree about m/s and each colour has m/s edges. We start from an
edge e = (v, w), and from each of v and w, we build a tree as follows. Let us start with
v0 = v. We have m/s choices for an edge; for each choice of edge e of the form (v0, v1), we
jump to an edge of the same colour (parallel to the first one), that takes us from a vertex v′

1
to a vertex v2. We continue this process, alternately expanding to a neighbor or jumping
to a parallel edge for k steps in all. If we set k such that (m/s)k > s, we obtain a “cycle”.
(Note that this is not a cycle in the usual graph-theoretic sense, because we jump from an
edge to a parallel edges in alternate steps.) We delete these edges from the graph, and
repeat this for the other vertex w of the starting edge e. Let us illustrate this for n = 7.
Suppose s ≪ m1−2/(n+3) = m4/5, that is, (m/s) ≫ m1/5. In particular, with k = 4, we have
(m/s)k ≫ m4/5 ≫ s, and at some point a vertex must repeat (we have only 2s vertices). A
situation in such a case, with two cycles hanging off an edge corresponds to Figure 4a. We
allow the two cycles to share vertices, but the edges involved must be distinct. Now, to see
that this configuration has no safe orientation, first choose either orientation for the top edge
e, say towards left. Then, the directions of all edges are forced in that cycle and we soon
find edges corresponding to an element in the set and another corresponding to an element
not in the set that point to the same vertex.

Unfortunately, there are other cases to consider, besides the ideal case of two cycles
attached to an edge as in Figure 4a: (i) the cycles may not form right at the top, instead we
might have to allow an initial path leading to the cycle; (ii) the cycle may not end with two
tree edges pointing into it. Instead, it might be formed when two paths of a tree jump on to
the same parallel edge. The first case presents no real difficulties; in fact, in this case the
resulting configuration is not safe for even smaller sets. The second case presents genuine
difficulties. For example, we might encounter a situation depicted in Figure 4b, where the
three edges at the bottom are parallel. Note that all tree edges in this case can be forced
away from their roots to obtain a safe orientation. The idea now is the following. If we
encounter such a cycle, we put it aside and mark the middle vertex at the bottom as its
terminal vertex. We have removed only a minuscule number of edges from the graph, so we
can continue the exploration for a forbidden structure in the remaining graph. If we ever
find a configuration corresponding to Figure 4a, we are done. Otherwise, we accumulate
many edge disjoint bad cycles. Soon enough (by the time s + 1 bad cycles are encountered),
two of them must have the same terminal vertex. We put these bad cycles together (as
illustrated in Figure 5) and again obtain a forbidden configuration. The discussion above uses
k = 4 and n = 7 for illustration, but the same argument applies for other k, and, in general,
yields a configuration without any safe orientation for a set of size n = 2k − 1, whenever,
s ≪ m1−1/(k+1) = m1−2/(n+3). The detailed argument will appear in the full version of the
paper. ◀
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5 Quantum non-adaptive schemes for n = 2 and t = 2, 3

In this section, we show that the lower bound in 1 is tight for two cases: sQN (m, n = 2, t =
2) = O(

√
m) and sQN (m, n = 2, t = 3) = O(m1/3); the schemes we give are non-adaptive

and only use the fact that the XOR of two bits can be computed using one quantum query.
The proofs are algebraic.

5.1 Case t = 2
We identify [m] with A × B, where each of the sets has about

√
m elements; A and B are

disjoint. We will have two array indexed by A (we call them X1 and X2) and two arrays
indexed by B (we call them Y1 and Y2).
Query: On receiving the element x = (x1, x2) ∈ A × B, the algorithm returns

(X1[x1] + Y1[x2])(X2[x1] + Y2[x2]) (mod 2),

which is a polynomial of degree two. Note that both X1[a] + Y1[b] and X2[a] + Y2[b] can
be computed in parallel with one quantum query each. Thus, the scheme requires only
two non-adaptive queries.

Storage: Given a pair of elements {α1, α2} ⊆ [m], we need to show how values will be
assigned to the four arrays: X1, X2, Y1, Y2. It will be easier to describe and analyse
our storage algebraically. We view X1, X2 as functions from A to {0, 1} and Y1, Y2 as
functions from B to {0, 1}. For a ∈ A, let δa : A → {0, 1} be defined by δa(z) = 1 iff
z = a; similarly for b ∈ B, let δb : B → {0, 1} be defined by δb(z) = 1 iff z = b. We have
three cases based on the number of components ℓ ∈ {0, 1, 2} where α1 and α2 agree.

ℓ = 2: We have only one element (a, b). We set X1 ≡ δa, Y1 = 0, X2 ≡ 0 and Y2 ≡ δb. The
query polynomial reduces to the monomial δa(x1)δb(x2), which is what we want.

ℓ = 1: Say the set is {(a, b), (a′, b)}. We set X1 ≡ δa + δa′ , Y1 ≡ 0, X2 ≡ 0 and Y2 ≡ δb.
The query polynomial reduces to (δa(x1) + δa′(x2))δb(z2) = δa(z1)δb(z2) + δa′(z1)δb(z2),
which is what we want.

ℓ = 0: Say the set is {(a, b), (a′, b′)}. We set X1 ≡ δa, Y1 ≡ δb′ , X2 ≡ δa′ and Y2 ≡ δb. The
query polynomial evaluates (δa(z1)+δb′(z2))(δa′(z1)+δb(z2)) = δa(z1)δb(z2)+δa′(z1)δb′(z2)
(mod 2), which is what we want.

5.2 Case t = 3
Let us identify [m] with A × B × C, where each of the sets has roughly m1/3 elements; we
will assume that A, B and C are disjoint. We have six arrays, two indexed by A (we call
them X1 and X2), two indexed by B (we call them Y1 and Y3) and two indexed by C (we
call them Z2 and Z3); the subscripts indicate which query probes the corresponding array.
Query: On receiving the element e = (x, y, z), the algorithm returns

(X1[x] + Y1[y])(X2[x] + Z2[z])(Y3[y] + Z3[z]) (mod 2),

which is a polynomial of degree 3.
Storage: Given a pair of elements {α1, α2}, we need to show how values will be assigned

to the six arrays. Let α = (a, b, c) and β = (a′, b′, c′). We define functions of the form
δa : A → {0, 1}, δb : B → {0, 1} and δc : C → {0, 1} as before. Also 0 and 1 when
denoting functions correspond to the all 0’s and the all 1’s functions. We have four cases,
depending on the number of places ℓ ∈ {0, 1, 2, 3} where α1 and α2 agree.
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ℓ = 3: The set has only one element (a, b, c), say. The arrays are as follows. X1 ≡ δa;
Z2 ≡ δc; Y3 ≡ δb, the other three arrays are 0. So, the query function becomes
(δa(x) + 0)(δc(z) + 0)(δb(y) + 0) = δa(x)δb(y)δc(z), which yields 1 iff (x, y, z) = (a, b, c).

ℓ = 2: Say α1 = (a, b, c) and α2 = (a, b, c′). We set X1 ≡ δa, Y1 ≡ 0, X2 ≡ 0, Z2 ≡ δc + δc′ ,
Y3 ≡ δb and Z3 ≡ 0. Then, the query function becomes (δa(x)+0)(δc(z)+δc′(z))(δb(y)+0),
which reduces to δa(x)δb(y)δc(z) + δa(x)δb(y)δc′(z), that is, the function that evaluates
to 1 precisely when the input is (a, b, c) or (a, b, c′). The other cases are symmetric.

ℓ = 1: Say α1 = (a, b, c) and α2 = (a, b′, c′). We set X1 ≡ 1 + δa, Y1 ≡ δb + δb′ , X2 ≡ 1 + δa,
Z2 = δc + δc′ , Y3 = δb Z3 = δc′ . Our query polynomial then evaluates to

(1 + δa + δb + δb′)(1 + δa + δc + δc′)(δb + δc′), (11)

where, to simplify notation, we just write δa instead of δa(x), etc. Applying the rule
gh = (g + h + 1)h twice, we obtain (δc + δb′)(1 + δa + δc + δc′)(δb + δc′). Then, combining
the first and last factors, we obtain, (δbδc + δb′δc′)(1 + δa + δc + δc′). Expanding this mod
2, we obtain (δbδc + δb′δc′)δa, which yields 1 iff x ∈ {(a, b, c), (a, b′, c′)}, as required.

ℓ = 0 (the two elements differ on all coordinates): We set X1 ≡ δa, X2 ≡ δa′ , Y1 ≡ δb′ ,
Y2 ≡ δb, Z1 ≡ δc′ , Z2 ≡ δc. The query expression evaluates to

(δa + δb′)(δa′ + δc)(δb + δc′).

Focus on the middle factor. If we pick δa′ from that factor, then we are forced to pick δb′

from the previous, which forces us to pick δc′ from the last (to avoid getting 0); if we pick
δc from the middle factor, then we are forced to pick δb from the last and then δa from
the first. All other terms are 0. The final expression with two terms is δaδbδc + δa′δb′δc′ ,
as required.
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A Explicit construction of graphs

We say that a graph on L vertices is explicitly, if the adjacency matrix of L can be constructed
in polynomial time in L.

We will use the construction due to Wenger [20] to exhibit explicit graphs with girths
8. Wenger constructs a graph Hk(p) with 2pk vertices and 2pk+1 edges, and shows that
if p is prime, then H3(p) has girth at least 8. In the bipartite graph Hk(p) the vertices
are represented as k-tuples of numbers {0, . . . , p} and two vertices are connected based
on a simple arithmetic check involving addition and multiplication modulo p. In our
application, given a number L, we set p to be the smallest prime that is at least L1/(k+1).
Then, Hk(p) has at most 2k+2L vertices and at least 2L1+1/k edges. Thus, we obtain
graphs with the following parameters: g = 8, c(g = 8) = 25, τ(g = 8) = 1/3. Our
application for g = 8 (see Figure 1) uses these parameters.
For girth 12, we use a construction due to Benson [8]. Theorem 2 of the paper presents
an algebraic construction where the graph is obtained by considering point-line incidences
for points and lines of a quardic surface in the projective 6-space P (6, q). The degree of
each vertex of this graph is q + 1. On page 1093, the number of vertices in this graph is
computed to be (q + 1)(1 + q2 + q4). So, to get the graph suitable for our applications,
we take q to be the smallest prime such that (q + 1)(1 + q2 + q4) ≥ L and use this
construction. Then, it is easy to see that the number of vertices in this graph is O(L)
and the number of edges is at least L1+1/5.
Lazebnik, Ustimenko and Woldar [14] exhibit dense graphs for various values of girth.
Their Corollary 3.3 shows graphs with girth at least 2s + 2, with v ≤ 2q(3s−3)/2 vertices
if s is odd and at most 2q(3s−2)/2 vertices if s is even. The graph has 1

2 vq edges. To
construct the graphs for our application, fix L and let q be the smallest prime larger than
L2/(3s−3) or L2/(3s−2) (depending on whether s is odd or even) and consider the graph
obtained from the above construction. If the graph has fewer than L vertices, then we put
together disjoint copies of it, to obtain one with number of vertices between L and 2L. It
can be verified that this graph has O(L) vertices and Ω(L1+2/(3s−3)) or Ω(L1+2/(3s−2))
edges (depending on whether s is odd or even). In our application (see Figure 1), we use
graphs with girth 4r and 4r − 2. Setting 2s + 2 = 4r, i.e., s = 2r − 1 (an odd number),
we obtain a graph with Ω(L1+1/(3r−3))) edges; similarly setting 2s + 2 = 4r − 2, i.e.,
s = 2r − 2 (an even number), we obtain a graph with Ω(L1+1/(3r−4)) edges.

B Examples that show Lemma 9 is tight

The bound shown Lemma 9 is tight in the following sense: for each positive even integer
g, there exists a bipartite graph with girth g and ⌊4g/3⌋ + 1 GREEN edges that cannot be
safely oriented. For example, the graph consisting of three edge-disjoint s-t paths, each of
length 2k, has girth g = 4k; but we can designate a set of n = 3k + 1 edges GREEN for
which the graph has no safe orientation. For this graph n = 3k + 1 and ⌊3g/4⌋ = 3k. A
similar example, with three edge-disjoint paths of length 2k + 1, shows that the above lemma
is tight for g = 4k + 2. Figure 6 shows these examples for k = 2.

C Proof of Lemma 17

Consider the random graph on N vertices where each edge is picked independently with
probability p = (1/50)N−5/6. The probability that G is not (4N1/6, 5/4)-locally sparse is at
most (we use the union bound over the choice of subsets of size ℓ ≤ 4N1/6, and for each set
over all choice of 1.24ℓ edges for simplicity we ignore floors and ceilings):
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Figure 6 Examples of graphs with girth g = 10 and g = 8 that cannot be safely oriented.
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By considering terms corresponding to (say) ℓ < N1/12 and ℓ ≥ N1/12 separately, we see
that the last sum is o(1). Thus, with high probability there is no set of size up to 4N1/6

that violates the local sparsity condition. Furthermore, with high probability the number of
edges in the graph is at least pN2/2 = Ω(N7/6). Thus, there exists an (4N1/6, 5/4)-sparse
graph with Ω(N7/6) edges.

D Non-adaptive quantum bounds

We give an upper bound on sQ(m, n = 2k + 1, t = 2) for the non-adaptive classical scheme,
where k ∈ N. The arrangement of the element and bits is similar to the classical adaptive
scheme we described in Section 2. The first probe is on the corresponding edge array and
the second is an equality probe on the rows corresponding to the vertices of the edge. We
AND the two probes to answer membership queries. We obtain

sQ(m, n = 2k + 1, t = 2) =
{

O(v1+ 4
3n−9 ) if 4|(n + 1);

O(v1+ 4
3n−7 ) if 4 ∤ (n + 1).

(12)

▶ Definition 23 (Non-adaptive Quantum (G, K)-scheme). Let G be an un-directed graph with
N vertices and M edges; let K be a positive integer. We refer to the following as a (non
adaptive) quantum (G, K)-scheme. The storage consists of two bit arrays, A and B. To
answer a membership query the decision tree will make the first probe to array A and the
second probe to array B.
Edge array: An array A : E(G) → {0, 1}, indexed by edges of G.
Vertex array: A two dimensional array B : V × [K] → {0, 1}.
Elements: We identify our universe of elements [m] with a subset of E(G) × [K] (so we must

ensure that the graph has at least m/K edges); thus, each element x ∈ [m] will be referred
to as (e, i).
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Query: We represent an edge of G as an ordered pair of the form e = (v0, v1). To process
the query for the element x = (e, i), we return the value A[e] · (B[v0, i] ⊕ B[v1, i]).

Space: We will ensure that MK ≥ m. The space used by this scheme is then NK + M bits
(NK for the N vertex array and K for the edge array). By choosing the graph G and the
parameter K appropriately we will show that our schemes use small space.

As in the classical adaptive setting, an edges e is coloured GREEN if (e, i) ∈ S for some i.
Values can be assigned consistently to the arrays if there is no cycle in the graph consisting
entirely of GREEN edges. This idea is formalized in the lemma below.

▶ Lemma 24. Let G be a graph with N vertices M edges and girth g such that n < g. Then,
sA(m, n, 2) ≤ M + N⌈m/M⌉.

ICALP 2022





Hardness Results for Laplacians of Simplicial
Complexes via Sparse-Linear Equation Complete
Gadgets
Ming Ding !

ETH Zürich, Switzerland

Rasmus Kyng !

ETH Zürich, Switzerland

Maximilian Probst Gutenberg !

ETH Zürich, Switzerland

Peng Zhang ! Ï

Rutgers University, Piscataway, NJ, USA

Abstract

We study linear equations in combinatorial Laplacians of k-dimensional simplicial complexes (k-
complexes), a natural generalization of graph Laplacians. Combinatorial Laplacians play a crucial
role in homology and are a central tool in topology. Beyond this, they have various applications in
data analysis and physical modeling problems. It is known that nearly-linear time solvers exist for
graph Laplacians. However, nearly-linear time solvers for combinatorial Laplacians are only known
for restricted classes of complexes.

This paper shows that linear equations in combinatorial Laplacians of 2-complexes are
as hard to solve as general linear equations. More precisely, for any constant c ≥ 1, if
we can solve linear equations in combinatorial Laplacians of 2-complexes up to high accur-
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53:2 Hardness Results for Laplacians of Simplicial Complexes

1 Introduction

1.1 Simplicial Complexes, Homology, and Combinatorial Laplacians
We study linear equations whose coefficient matrices are combinatorial Laplacians of k-
dimensional abstract simplicial complexes (k-complexes), which generalize the well-studied
graph Laplacians. An abstract simplicial complex K is a family of sets, known as simplices,
closed under taking subsets, i.e., every subset of a set in K is also in K. The dimension
of K is the maximum dimension among all simplices in K. A geometric notion of abstract
simplicial complexes is simplicial complexes, under which a k-simplex is the convex hull of
k + 1 vertices (for example, 0,1,2-simplices are vertices, edges, and triangles, respectively).
In particular, complexes in 1 dimension are graphs; combinatorial Laplacians in 1-complexes
are graph Laplacians.

Nearly-linear time solvers exist for linear equations in graph Laplacians [42, 26, 27, 39,
11, 31, 24], and some natural generalizations such as connection Laplacians [29] and directed
Laplacians [10, 9]. However, nearly-linear time solvers for linear equations in combinatorial
Laplacians are only known for very restricted classes of 2-complexes [8, 3]. We ask whether
one can extend these nearly-linear solvers to general combinatorial Laplacians.

Combinatorial Laplacians are defined via boundary operators of the chain spaces of an
oriented complex. Given an oriented simplicial complex K, a k-chain is a (signed) weighted
sum of the k-simplices in K. The boundary operator ∂k is a linear map from the k-chain
space to the (k − 1)-chain space; in particular, it maps a k-simplex to a signed sum of
its boundary (k − 1)-simplices, where the signs are determined by the orientations of the
k-simplex and its boundary (k − 1)-simplices. For example, ∂1 is the oriented vertex-edge
incidence matrix. The combinatorial Laplacian Lk is defined to be ∂k+1∂⊤

k+1 + ∂⊤
k ∂k. In

particular, L0 = ∂1∂⊤
1 is the graph Laplacian.

Combinatorial Laplacians play an important role in both pure mathematics and applied
areas. These matrices originate in the study of discrete Hodge decomposition [18]: The
kernel of Lk is isomorphic to the kth homology space of K. The properties of combinatorial
Laplacians have been studied in many works [20, 15, 16, 17, 36]. A central problem in
homology theory is evaluating the Betti number of the kth homology space, which equals the
rank of Lk. In the case of homology over the reals, computing the rank of Lk can be reduced
to solving a poly-logarithmic number of linear equations in Lk [2]. Computation of Betti
numbers over the reals is a key step in numerous problems in applied topology, computational
topology, and topological data analysis [47, 21, 5, 19, 6]. In addition, combinatorial Laplacians
have applications in statistical ranking [25, 45], graphics and image processing [35, 44],
electromagnetism and fluid mechanics [13], data representations [7], cryo-electron microscopy
[46], biology [41]. We refer to the reader to [34] for an accessible survey.

The reader may be puzzled that despite a vast literature on combinatorial Laplacians and
their central role in topology, little is known about solving linear equations in these matrices
except in very restricted cases [8, 3]. In this paper, we show that approximately solving linear
equations in general combinatorial Laplacians is as hard as approximately solving general lin-
ear equations over the reals, which explains the lack of special-purpose solvers for this class of
equations. More precisely, if one can solve linear equations in combinatorial Laplacians of gen-
eral 2-complexes to high accuracy in time Õ((# of nonzero coefficients)c)1 for some constant

1 Õ hides poly-logarithmic factors in following parameters of the input: ratio of maximum and minimum
non-zero singular values, the maximum ratio of non-zero entries (in absolute value), and the inverse of
the accuracy parameter.



M. Ding, R. Kyng, M. P. Gutenberg, and P. Zhang 53:3

c ≥ 1, then one can solve general linear equations with polynomially bounded integer coeffi-
cients and condition numbers up to high accuracy in time Õ((# of nonzero coefficients)c).
A recent breakthrough shows that general linear equations can be solved up to high accuracy
in time Õ((# of nonzero coefficients)2.27159) [40, 38], which for sparse linear equations is
asymptotically faster than the long-standing runtime barrier of fast matrix multiplication
[43], which currently achieves a running time of Õ(n2.3728596) [1]. Understanding the optimal
value of c is a major open problem in numerical linear algebra. Our result, viewed positively,
shows that one can reduce the problem of designing fast solvers for general linear equations
to that for combinatorial Laplacians.

1.2 Hardness Results Based on Linear Equations
Kyng and Zhang [33] initiated the study of hardness results for solving structured linear
equations. They showed that solving linear equations in a slight generalization of graph
Laplacians such as 2-commodity Laplacians, 2-dimensional truss stiffness matrices, and
2-total-variation matrices is as hard as solving general linear equations.

Suppose given an invertible matrix A and a vector b over the reals, we want to approx-
imately solve Ax = b, i.e., find x̃ such that ∥Ax̃ − b∥2 ≤ ϵ ∥b∥2 for some ϵ.

▶ Definition ((Informal) Sparse-linear-equation completeness of matrix family B). Consider
a family of matrices B, and suppose that for any instance (A, b, ϵ) we can produce matrix
B ∈ B, vector c, and accuracy parameter δ, such that if we can solve By = c up to error δ,
then we can produce x̃ that solves Ax = b to the desired accuracy.

If, given (A, b, ϵ), we can compute (B, c, δ) in Õ(nnz(A)) time with nnz(B) = Õ(nnz(A))
then we say that the class B is sparse-linear-equation complete.

In our preliminaries in Section 2, we state a formal definition of sparse-linear equation
completeness that also extends to non-invertible matrices.

The reason of using the term “completeness” is that if a solver with runtime
Õ((# of nonzero coefficients)c) is known for the class B, then a solver with runtime
Õ((# of nonzero coefficients)c) exists for general matrices. Such solvers are known for the
classes of Laplacian Matrices, Directed Laplacian Matrices, Connection Laplacian Matrices,
etc., all with c = 1. Thus, if any of these classes were sparse-linear-equation complete, we
would immediately get nearly-linear time solvers for general linear equations.

In this language, Kyng and Zhang [33] showed that 2-commodity Laplacians, 2-dimensional
truss stiffness matrices, and 2-total-variation matrices are all sparse-linear-equation complete.
We note that [32] considered a larger family of hardness assumptions based on linear
equations, which, among other things, can express weaker hardness statements based on
weaker reductions.

1.3 Our Contributions
In the terminology established above, our main result can be stated very succinctly:

▶ Theorem 1.1 (Informal First Main Theorem). Linear equations in combinatorial Laplacians
of 2-complexes are sparse-linear-equation complete.

In fact, we show this by showing an even simpler problem is sparse-linear-equation complete,
namely linear equations in the boundary operator of a 2-complex.

▶ Theorem 1.2 (Informal Second Main Theorem). Linear equations in the boundary operators
∂2 of 2-complexes are sparse-linear-equation complete.

ICALP 2022
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This result is formally stated in Theorem 3.1. Below, in Section 1.3.1, we sketch how our
first main theorem above follows from our second main theorem. We give a formal proof of
this in the full version [14].

Our proof establishes the sparse-linear-equation completeness of boundary operators of a 2-
complex via a two-step reduction. In our first reduction step, we show sparse-linear-equation
completeness of a very simple class of linear equations which we call difference-average
equations: these are equations where every row either restricts the difference of two variables:
x(i) − x(j) = b, or it sets one variable to be the average of two others: x(i) + x(j) = 2x(k).
This reduction was implicitly proved in [33] as an intermediate step. In this paper, we
make the reduction explicit, which may be of independent interest, as this reduction class
is likely to be a good starting point for many other hardness reductions. One can think of
this step as analogous to showing that 3-SAT is NP-complete: It gives us a simple starting
point for proving the hardness of other problems. The formal theorem statement appears in
Theorem 2.9. In our second reduction step, we reduce a given difference-average equation
problem to a linear equation in the boundary operator of a 2-complex.

Both the two steps preserve the number of nonzero coefficients in the linear equations up
to a logarithmic factor, and only blow up the coefficients and condition numbers polynomially.
The reductions are also robust to error in the sense that to solve the original problem to
high accuracy, it suffices to solve the reduced problem to accuracy at most polynomially
higher. Finally, we can compose the two reductions to show that solving linear equations in
2-complex boundary operators to high accuracy is as hard as solving general linear equations
with polynomially bounded integer coefficients and condition numbers to high accuracy.

We give more details on both reductions below, but first we describe why solving linear
equations in combinatorial Laplacians L1 is also sparse-linear-equation complete.

1.3.1 Hardness for Combinatorial Laplacians From Hardness for
Boundary Operators

Our main technical result, Theorem 3.1, shows that the class of linear equations in the
boundary operators of 2-complexes is sparse-linear-equation complete. But, as the following
simple lemma shows, we can reduce the problem of solving in a boundary operator ∂2 to
solving in the corresponding combinatorial Laplacian L1, and hence the latter problem must
be at least as hard. This then immediately implies our first main result, Theorem 1.1. The
reduction is captured in the following lemma.

▶ Lemma 1.3 (Informal reduction from boundary operators to combinatorial Laplacians in 2-com-
plexes). Suppose we can solve linear equations in combinatorial Laplacians of 2-complexes
to high accuracy in nearly-linear time. Then, we can solve linear equations in boundary
operators ∂2 of 2-complexes to high accuracy in nearly-linear time.

The proof is by standard arguments which we sketch below. In the full version of the paper
[14], we will formally state the theorem and provide a rigorous proof. Suppose we have a
high-accuracy solver for combinatorial Laplacians of 2-complexes. Using this, we want to
obtain a solver for linear equations in the boundary operator ∂2. Note that when the equation
∂2f = d is infeasible, we measure the solution quality by ∥∂2f − Π∂2d∥2 where Π∂2 denotes
the orthogonal projection onto the image im(∂2). The minimum over f of the quantity
∥∂2f − Π∂2d∥2 is zero, which is obtained by setting f = ∂†

2d (where ∂†
2 is the Moore-Penrose

pseudo-inverse of ∂2). The equation ∂2f = d is feasible exactly when Π∂2d = d.
A central and basic fact in the study of simplicial homology is that im(∂⊤

1 )∩ im(∂2) = {0}.
This follows from ∂1∂2 = 0 (the boundary of a boundary is zero, which gives im(∂2) ⊆ ker(∂1))
and the general fact in linear algebra that ker(A) is the orthogonal complement of im(A⊤) so
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that ker(∂1) is orthogonal to im(∂⊤
1 ). Intuitively, the fact that the boundary of a boundary

is zero generalizes that the boundary of a disc is a circular path, and such a path has
no endpoints. This implies that Π∂2∂⊤

1 = 0. Now, suppose that x̃ approximately solves
L1x = d, i.e. L1x̃ ≈ d. We can rewrite this as ∂⊤

1 ∂1x̃ + ∂2∂⊤
2 x̃ ≈ d. Now, if we apply

Π∂2 on both sides, Π∂2d ≈ Π∂2∂2∂⊤
2 x̃ = ∂2∂⊤

2 x̃. Thus if we set f̃ = ∂⊤
2 x̃, then we have

Π∂2d ≈ ∂2f̃ , which matches our notion of f̃ approximately solving the (possibly infeasible)
linear equation ∂2f = d. This means that if we can approximately solve linear equations
in L1, we can solve linear equations in ∂2. This way we can also argue that if we can solve
linear equations in ∂2∂⊤

2 , then we can solve linear equations in ∂2. Finally, one should note
that nnz(L1) = O(nnz(∂2)) and that using our definition of condition number (see Section 2),
both have polynomially related condition number2. This also means a high accuracy solve in
one can be converted to a high accuracy solve in the other.

1.3.2 Linear Equations in ∂2∂⊤
2

In addition to the many applications discussed in Section 1.1, the problem of solving linear
equations in ∂2∂⊤

2 also arises when using Interior Point Methods to solve a generalized
max-flow problem in higher-dimensional simplicial complexes as defined in [36]. We sketch
how this inverse problem arises when using an Interior Point Method in the full version of
the paper [14]. By a similar argument as Lemma 1.3, we can show that if we can solve linear
equations in ∂2∂⊤

2 to high accuracy in nearly-linear time, then we can solve linear equations
in ∂2 to high accuracy in nearly-linear time.

1.3.3 Sparse-Linear-Equation Completeness of Difference-Average
Equations

Our first reduction transforms general linear equations with polynomially bounded integer
entries and condition numbers into difference-average equations. We first transform a general
linear equation instance to a linear equation instance such that the coefficient matrix has
row sum zero and the sum of positive coefficients in each row is a power of 2, by introducing
a constant number of more variables and equations. Then, we transform each single equation
to a set of difference-average equations by bit-wise pairing and replacing each pair of variables
with a new variable via an average equation.

1.3.4 Sparse-Linear-Equation Completeness of Boundary Operators of
Simplicial Complexes

Our second reduction transforms difference-average linear equations into linear equations in
the boundary operators of 2-complexes. Solving ∂2f = d can be interpreted as computing a
flow f in the triangle space of a 2-complex subject to pre-specified edge demands f .

Our reduction is inspired by a reduction in [36] that proves NP-hardness of computing
maximum integral flows in 2-complexes via a reduction from 3-coloring problems in graphs.
However, the correctness of their reduction heavily relies on that the flow values in the
2-complex are 0-1 integers, which does not apply in our setting. In addition, it is unclear how
to encode linear equations as a graph coloring problem even if fractional colors are allowed.

We employ some basic building blocks used in [36] including punctured spheres and tubes.
However, we need to carefully arrange and orient the triangles in the 2-complex to encode
both the positive and negative coefficients in difference-average equations, and we need to
express the averaging relations not covered by the previous work.

2 This is because ∂1 has polynomially bounded singular values.
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An important aspect of our contribution is that we carefully control the number of non-
zeros of the boundary operator matrix that we construct, and we bound the condition number
of this matrix and how error propagates from an approximate solution to the boundary
operator problem back to the original difference-average equations. In order to do so, we
develop explicit triangulation algorithms that specify the precise number of triangles needed
to triangulate each building block and allow a detailed error and condition number analysis.

We remark that our constructed 2-complex does not admit an embedding into a sphere in
3 dimensions. Recent work [3] has shown that simplicial complexes with a known embedding
into R3 have non-trivial linear equation solvers, but the full extent to which embeddability
can lead to better solvers remains an open question.

We analyze our construction in the Real RAM model. However, it can be transferred to
the fixed point arithmetic model with (log N)O(1) bits per number, where N is the size of
the problem instance.

1.4 Related Works
Generalized Flows. One can generalize the notions of flows, demands vectors, circulations,
and cuts to higher-dimensional simplicial complexes [17, 36]. Recall that in a graph, flows
and circulations are defined on a vector space over edges, while demands and cuts are defined
on a vector space over vertices. On a connected graph, a demand vector is a vector orthogonal
to the all-ones vector, i.e. in the kernel of the boundary operator ∂0. A flow that routes
demand d, is a vector f such that ∂1f = d.

More generally, on a k-complex, we say a demand vector is a vector d on (k − 1)-simplices
with d ∈ ker(∂k−1). We say a flow is a vector f on k-simplices, and that the flows f routes
demand d if ∂kf = d. Given a demand vector d ∈ ker(∂k−1) and a capacity vector c for
the k-simplices, a reasonable generalization of the max-flow problem to k-complexes is to
compute a flow f satisfying ∂kf = αd and 0 ≤ f ≤ c to maximize the flow value α.

Solving Linear Equations. Linear equations are ubiquitous in computational mathematics,
computer science, engineering, physics, biology, and economics. Currently, the best known
algorithm for solving general dense linear equations in dimensions n × n runs in time Õ(nω),
where ω < 2.3728596 is the matrix multiplication constant [1]. For sparse linear equations
with N nonzero coefficients and condition number κ, the best known approximate algorithms
run in time Õ(min{N2.27159, Nκ}), where the first runtime is from [40, 38] and the second is
by the conjugate gradient3 [23].

In contrast to general linear equations, linear equations in graph Laplacians and its
generalizations can be solved asymptotically faster, as mentioned earlier. In addition, faster
solvers are also known for restricted classes of total-variation matrices [28], stiffness matrices
from elliptic finite element systems [4], and 2 and 3-dimensional truss stiffness matrices [12, 30].
An interesting open question is to what extent one can generalize these faster solvers to more
classes of matrices.

Reduction From Sparse Linear Equations. [32] defines a parameterized family of hypotheses
for runtime of solving sparse linear equations. Under these hypotheses, they prove hardness of
approximately solving packing and covering linear programs. For example, if one can solve a
packing linear program up to ϵ accuracy in time Õ(# of nonzero coefficients × ϵ−0.165), then
one can solve linear equations in time asymptotically faster than Õ(# of nonzero coefficients×
condition number of matrix), which is the runtime of conjugate gradient.

3 If the coefficient matrix is symmetric positive semidefinite, the runtime is Õ(N
√

κ).
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2 Preliminaries

2.1 Simplicial Homology
We define the basic concepts of simplicial homology. We recommend the reader the books [37]
and [22] for a more complete treatment.

Simplicial Complexes. A k-dimensional simplex (or k-simplex) σ = conv{v0, . . . , vk} is the
convex hull of k + 1 affinely independent points v0, . . . , vk. For example, 0,1,2-simplices are
vertices, edges, and triangles, respectively. A face of σ is the convex hull of a non-empty
subset of {v0, v1, . . . , vk}. An orientation of σ is given by an ordering Π of its vertices,
written as σ = [vΠ(0), . . . , vΠ(k)], such that two orderings define the same orientation if and
only if they differ by an even permutation. If Π is even, then [vΠ(0), . . . , vΠ(k)] = [v0, . . . , vk];
if Π is odd, then [vΠ(0), . . . , vΠ(k)] = −[v0, . . . , vk].

A simplicial complex K is a finite collection of simplices such that (1) for every σ ∈ K
if τ ⊂ σ then τ ∈ K and (2) for every σ1, σ2 ∈ K, σ1 ∩ σ2 is either empty or a face of both
σ1, σ2. The dimensions of K is the maximum dimension of any simplex in K. We refer to a
simplicial complex in k dimensions as a k-complex.

Boundary Operators. A k-chain is a formal sum of the oriented k-simplices in K with the
coefficients over R. Let Ck(K) denote the kth chain space. The boundary operator is a linear
map ∂k : Ck(K) → Ck−1(K) such that for an oriented k-simplex σ = [v0, v1, . . . , vk],

∂k(σ) =
k∑

i=0
(−1)i[v0, . . . , v̂i, . . . , vk],

where [v0, . . . , v̂i, . . . , vk] is the oriented (k − 1)-simplex obtained by removing vi from σ, and
(−1)i is its induced orientation. The operator ∂k can be written as a matrix in nk−1 × nk

dimensions, where nd is the number of d-simplices in K. The (i, j)th entry of ∂k is ±1 if
the ith (k − 1)-simplex is a face of the jth k-simplex where the sign is determined by the
orientations, and 0 otherwise. See Figure 1 and Eq. (1) for an example.

v1 v2

v3

v4

Figure 1 An example of boundary operator and oriented triangulation. We orient 2-simplices
clockwise, and orient 1-simplices by the increasing order of vertex indices.

∂2 =



[v1, v4, v2] [v2, v4, v3] [v1, v3, v4]
[v1, v2] −1 0 0
[v2, v3] 0 −1 0
[v1, v3] 0 0 1
[v1, v4] 1 0 −1
[v2, v4] −1 1 0
[v3, v4] 0 −1 1

. (1)
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An important property of the boundary operator is that applying the boundary operator
twice results in the zero operator, i.e.,

∂k−1∂k = 0. (2)

This implies im(∂k) ⊆ ker(∂k−1). Thus, we can define the quotient space Hk = ker(∂k) \
im(∂k+1), referred to as the kth homology space of K. The dimension of Hk is the kth Betti
number of K, which plays an important role in understanding the homology spaces.

Hodge Theory and Combinatorial Laplacians. Combinatorial Laplacians arise from the
discrete Hodge decomposition.

▶ Theorem 2.1 (Hodge decomposition [34]). Let A ∈ Rm×n and B ∈ Rn×p be matrices
satisfying AB = 0. Then, there is an orthogonal direct sum decomposition

Rn = im(A⊤) ⊕ ker(A⊤A + BB⊤) ⊕ im(B).

By Eq. (2), it is valid to set A = ∂k and B = ∂k+1. The matrix we get in the middle term
is the combinatorial Laplacian: Lk

def= ∂⊤
k ∂k + ∂k+1∂⊤

k+1. In particular, L0 = ∂1∂⊤
1 is the

graph Laplacian. The kth homology space Hk(K) is isomorphic to ker(Lk), and thus the kth
Betti number of K equals the dimension of ker(Lk).

Triangulation. A triangulation of a topological space X is a simplicial complex K together
with a homeomorphism between X and K. In this paper, the only topological spaces that
we compute triangulations of are 2-dimensional manifolds. A 2-dimensional manifold can
be triangulated by a 2-complex, where every edge in the 2-complex is contained in exactly
one triangle (boundary edge) or two triangles (interior edge). An oriented triangulation of a
2-dimensional manifold is a triangulation together with an orientation for each triangle such
that any two neighboring triangles induce opposite signs on their shared interior edge.

Figure 1 is an example of (oriented) triangulation: the topological space is a disk; boundary
edges are [v1, v2], [v2, v3], [v1, v3]; interior edges are [v1, v4], [v2, v4], [v3, v4]; the orientation of
each triangle is clockwise.

2.2 Notation for Matrices and Vectors
We use parentheses to denote entries of a matrix or a vector: Let A(i, j) bet the (i, j)th
entry of a matrix A, and let x(i) bet the ith entry of a vector x. We use 1n, 0n to
denote n-dimensional all-one vector and all-zero vector, respectively. We define ∥x∥max =
maxi∈[n] |x(i)|, ∥x∥1 =

∑
i∈[n] |x(i)|. Given a matrix A ∈ Rd×n, we use A(i) to denote the

ith row of A and nnz(A) the number of nonzero entries of A. Without loss of generality,
we assume that nnz(A) ≥ max{d, n}. We let ∥A∥max = maxi,j |A(i, j)|. We use im(A) to
denote the image (i.e., the column space) of A and null(A) the null space of A. We let
ΠA = A(AA⊤)†A⊤ be the orthogonal projection onto im(A), where M † is the pseudo-
inverse of M . Let λmax(A) be the maximum eigenvalue of A and λmin(A) the minimum
nonzero eigenvalue of A. Similarly, let σmax(A) be the maximum eigenvalue of A and
σmin(A) the minimum nonzero singular value of A. The condition number of A, denoted by
κ(A), is the ratio of the maximum to the minimum nonzero singular value of A.

We define a function U that takes a matrix A and a vector b as arguments and returns
the maximum of ∥·∥max of all the arguments, that is, U(A, b) = max{∥A∥max , ∥b∥max}.
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2.3 Systems of Linear Equations
We define approximately solving linear equations in a general form, following [33]. For more
details, we refer the readers to Section 2.1 of [33].
▶ Definition 2.2 (Linear Equation Problem (le)). Given a matrix A ∈ Rd×n, a vector b ∈ Rd,
we refer to the linear equation problem for the tuple (A, b), denoted by le (A, b), as the
problem of finding an x ∈ Rn such that x ∈ arg minx∈Rn ∥Ax − b∥2.
▶ Fact 2.3. Let x∗ ∈ arg minx∈Rn ∥Ax − b∥2. Then,

Ax∗ = A(A⊤A)†A⊤b = ΠAb and ∥Ax∗ − b∥2
2 = ∥(I − ΠA)b∥2

2 .

By the above fact, solving le (A, b) is equivalent to finding an x such that Ax = ΠAb.
This equation is known as the normal equation, and it is always feasible. If b ∈ im(A), then
ΠAb = b.

In practice, we are more interested in approximately solving linear equations, since
numerical errors are unavoidably in data collection and computation and approximate solvers
may run faster.
▶ Definition 2.4 (Linear Equation Approximation Problem (lea)). Given a matrix A ∈ Rd×n,
vectors b ∈ Rd, and an error parameter ϵ ∈ (0, 1], we refer to linear equation approximate
problem for the tuple (A, b, ϵ), denoted by lea (A, b, ϵ), as the problem of finding an x ∈ Rn

such that ∥Ax − ΠAb∥2 ≤ ϵ ∥ΠAb∥2.
▶ Fact 2.5. Let x be a solution to lea (A, b, ϵ). Then,

∥Ax − b∥2
2 ≤ ∥Ax∗ − b∥2

2 + ϵ2 ∥ΠAb∥2
2 .

The definition of the approximate error in Definition 2.4 is equivalent to several error
notions that are commonly used in solving linear equations. In particular,

∥Ax − ΠAb∥2 =
∥∥∥A⊤Ax − A⊤b

∥∥∥
(A⊤A)†

= ∥x − x∗∥A⊤A .

2.3.1 Matrix Classes
We are interested in linear equations whose coefficient matrices belonging to the following
matrix classes.
1. G refers to the class of General Matrices that have integer entries and do not have all-0

rows and all-0 columns. We refer to linear equations whose coefficient matrix is in G as
general linear equations.

2. DA refers to the class of Difference-Average Matrices whose rows fall into two categories:
a. A difference row which has exactly two nonzero entries 1 and −1;
b. An average row which has exactly three nonzero entries 1, 1, and −2.
Multiplying a difference row vector to a column vector x gives x(i) − x(j); multiplying
an average row vector to x gives x(i) + x(j) − 2x(k). We refer to linear equations whose
coefficient matrix is in DA as difference-average linear equations.

3. B2 refers to the class of Boundary Operator Matrices ∂2 in 2-complexes. We refer to
linear equations whose coefficient matrix is in B2 as 2-complex boundary linear equations.

Our definition of “general matrices” specifies the matrix must have integer entries. However,
when the input matrix is invertible, using a simple rounding argument, we can convert any
linear equation into an linear equation with integer entries Õ(1) bits per entry. We caution
the reader this relies on our definition of Õ(·) as hiding polylogarithmic factors in the input
condition number. In general, the condition number can be exponentially large – however,
our results are mainly of interest when the condition number is quasipolynomially bounded.
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2.3.2 Reduction Between Linear Equations
We will again follow the definition of efficient reductions in [33]. We say lea over matrix class
M1 is nearly-linear time reducible to lea over matrix class M2, denoted by M1 ≤nlt M2, if
the following holds:
1. There is an algorithm that maps an arbitrary instance lea (M 1, c1, ϵ1) where M 1 ∈ M1

to an instance lea (M 2, c2, ϵ2) where M 2 ∈ M2 such that there is another algorithm
that can map a solution to lea (M 2, c2, ϵ2) to a solution to lea (M 1, c1, ϵ1).

2. Both the two algorithms run in time Õ(nnz(M 1)).
3. In addition, we can guarantee nnz(M 2) = Õ(nnz(M 1)), and ϵ−1

2 , κ(M 2), U(M 2, b2) =
poly(nnz(M 1), ϵ−1

1 , κ(M 1), U(M 1, b1)).
We do not require a nearly-linear time reduction to preserve the number of variables or
constraints (dimensions) of linear equations. The dimensions of the new linear equation
instance that we construct can be much larger than that of the original instance. On the
other hand, a reduction that only preserves dimensions may construct a dense linear equation
instance even if the original instance is sparse. A nearly-linear time reduction that preserves
both the number of nonzeros and dimensions would be stronger than what we achieve.

▶ Fact 2.6. If M1 ≤nlt M2 and M2 ≤nlt M3, then M1 ≤nlt M3.

▶ Definition 2.7 (Sparse linear equation complete (sle-complete)). We say lea over a matrix
class M is sparse-linear-equation-complete if G ≤nlt M.

▶ Fact 2.8. Suppose lea over M is sle-complete. If one can solve all instances lea (A, b, ϵ)
with A ∈ M in time Õ(nnz(A)c) where c ≥ 1, then one can solve all instances lea (A′, b′, ϵ′)
with A′ ∈ G in time Õ(nnz(A′)c).

Under the above definitions, [33] implicitly shows the following results. We provide an
explicit and simplified proof in the full version of the paper [14].

▶ Theorem 2.9 (Implicitly stated in [33]). lea over DA is sle-complete.

3 Main Results

Our main result is stated in the following theorem.

▶ Theorem 3.1. lea over B2 is sle-complete.

Theorem 3.1 states that a linear equation approximation problem over a boundary
operator of a 2-complex is sparse linear equation complete. See Section 2 for detailed
definitions.

Although our main theorem focuses on linear equation approximate problems, we construct
nearly-linear time reductions for both linear equation problem le and its approximate
counterpart lea. We first reduce le instances (A, b) (and lea instances (A, b, ϵ)) over
difference-average matrices to those over 2-complex boundary operator matrices, under
the assumption b ∈ im(A) (stated in Theorem 3.2 and 3.3). In this case, the constructed
2-complexes have unit edge weights. We then provide a slightly modified nearly-linear time
reduction for lea (A, b, ϵ) over difference-average matrices to lea over 2-complex boundary
operator matrices without assuming b ∈ im(A) (stated in Theorem 3.4). In this case, we
introduce polynomially bounded edge weights for the constructed 2-complexes.

▶ Theorem 3.2. Given a linear equation instance le (A, b) where A ∈ DA and b ∈ im(A),
we can reduce it to an instance le (∂2, γ) where ∂2 ∈ B2, in time O(nnz(A)), such that a
solution to le (∂2, γ) can be mapped to a solution to le (A, b) in time O(nnz(A)).
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▶ Theorem 3.3. Given a linear equation instance lea (A, b, ϵDA) where A ∈ DA and
b ∈ im(A), we can reduce it to an instance lea (∂2, γ, ϵB2) where ∂2 ∈ B2 and ϵB2 ≤ ϵDA

42 nnz(A) ,
in time O(nnz(A)), such that a solution to lea (∂2, γ, ϵB2) can be mapped to a solution to
lea (A, b, ϵDA) in time O(nnz(A)).

▶ Theorem 3.4. Given an instance lea (A, b, ϵDA) where A ∈ DA, we can reduce it to
an instance lea (W 1/2∂2, W 1/2γ, ϵB2) where ∂2 ∈ B2 and W is a diagonal matrix with
nonnegative diagonals, in time O(nnz(A)). Let s, ϵ, K, U denote nnz(A), ϵDA, κ(A), U(A, b),
respectively. Then, we can guarantee that

nnz(∂2) = O(s), U(W 1/2∂2, W 1/2γ) = O
(
sUϵ−1)

,

ϵB2 = Ω(ϵU−1s−1), κ(W 1/2∂2) = O
(

s15/2K2ϵ−2
)

and a solution to lea (W 1/2∂2, W 1/2γ, ϵB2) can be mapped to a solution to lea (A, b, ϵDA)
in time O(nnz(A)).

We refer the reader to the full version of the paper [14] for a formal proof of Theorem
3.2, 3.3, and 3.4.

3.1 Overview of Our Proof
Multiplying a 2-complex boundary operator ∂2 ∈ Rm×t to a vector f ∈ Rt can be interpreted
as transforming flows in the triangle space to demands in the edge space. Given γ ∈ Rm,
solving le (∂2, γ) can be interpreted as finding flows f in the triangle space subject to edge
demands γ. We will encode difference-average linear equations as a 2-complex flow network.

Encoding Linear Operations. In difference-average linear equations, linear operations
include subtraction, addition, and multiplication. We observe a simple fact: If we glue two
triangles ∆1, ∆2 with the same orientation, then the net flow ∂2f on the shared edge is
f (∆1) − f (∆2) (see Figure 2 (a)); if we glue two triangles ∆1, ∆2 with opposite orientations,
then the net flow ∂2f on the shared edge is f (∆1) + f (∆2) (see Figure 2 (b)). Given
an equation aaa⊤x = b with the nonzero coefficients being ±1, we can encode it by gluing
more triangles as above and setting the demand of the shared edge to be b. To handle the
coefficient −2 in an average equation, say x(i) + x(j) − 2x(k), we implicitly interpret it as
x(i) + x(j) − x(k1) − x(k2) together with an additional difference equation x(k1) = x(k2)
(see Figure 2 (c)).

Encoding a Variable. We use a sphere to encode a variable involved in many equations.
We can obtain an oriented triangulation of the sphere and set all the edge demand to be 0 so
that all the triangles on the sphere must have an equal flow value (see Figure 2 (d)).

Putting It All Together. We represent each variable using a triangulated sphere. To add a
constraint between variables, in each corresponding sphere we add a “hole” if the variable
coefficient is ±1 and add two “holes” if the coefficient is 2. Then we attach a “tube” to each
of these holes. Similarly, we can obtain an oriented triangulation of each tube and set the
edge demand properly so that all the triangles on the tube must have the same flow value
to the triangles on the sphere that the tube is attached to. We then connect these tubes
corresponding to different variables so that they share common edges. Depending on how the
tubes connect and on the net flow demand on the shared edges, we can represent different
linear constraints on the variables.
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(a) (b) (d)(c)

Figure 2 An illustration for encoding linear operations and variables: (a) encodes the “subtraction”
with two identically oriented triangles. (b) encodes the “addition” with two oppositely oriented
triangles. (c) encodes the “multiplication” by a coefficient 2 in an average equation. (d) encodes a
variable with an identically oriented triangulated sphere, and this will later allow us to use several
“copies” of this variable, by making holes in this sphere and attaching a tube to each such hole.

Discussion.

1. Why encode difference/average equations rather than directly encoding general equations
with integer coefficients?
We can generalize the above encoding method to encode a general equation g⊤y = c with
arbitrary integer coefficients into a 2-complex with roughly ∥g∥1 tubes. However, the
encoding size required to express a general system of linear equations Gy = c this way
can be as large as Ω(nnz(G) ∥G∥max). This dependence on ∥G∥max is prohibitive, and
makes for a fairly weak result.
On the other hand, we can first reduce the general linear equations Gy = c into
difference-average linear equations Ax = b, where ∥A∥max = 2 and nnz(A) =
O (nnz(G) log ∥G∥max) (by Lemma A.1 in [14]). Then we can encode Ax = b into
a 2-complex. The encoding size required to express the the difference-average linear equa-
tions as a 2-complex is thus O(nnz(A)) (by Lemma 4.2). Thus, the overall encoding size
required to express the original linear equation Gy = c is now Õ (nnz(G)), exponentially
improving the dependence on ∥G∥max.
Therefore, the two-step reduction is a nearly-linear time reduction while the one-step
reduction is not.

2. Why encode into a 2-complex rather than a 1-complex?
We do not expect that general linear equations with integer coefficients can be efficiently
encoded using a 1-complex. This would immediately imply a nearly-linear time solver for
general linear equations, as fast solvers for 1-complex operators exist (using Laplacian
linear equation solvers).

4 Reducing Exact Solvers for DA to B2 Assuming the Right-Hand
Side Vector in the Image of the Coefficient Matrix

In this section, we describe a nearly-linear time reduction from instances le (A, b) over DA
to instances le over B2, under the assumption that b ∈ im(A), and analyze its runtime
and the size of the reduced problem. In the full version of the paper [14], we show that the
same reduction with a carefully chosen error parameter reduces linear equation approximate
problem lea over DA to lea over B2, assuming b ∈ im(A). In addition, we slightly modify
the reduction algorithm to drop the assumption b ∈ im(A) for lea.
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4.1 Reduction Algorithm
Recall that an instance le (A, b) over DA only consists of two types of linear equations:
(1) Difference equation: x(i) − x(j) = b(q); (2) Average equation: x(i) + x(j) − 2x(k) = 0.
Suppose le (A, b) has d1 difference equations and d2 average equations. Without loss of
generality, we reorder all the equations so that the first d1 equations are difference equations
and the rest are average equations. The following algorithm ReduceDAToB2 constructs a
2-complex and a system of linear equations in its boundary operator.

Algorithm ReduceDAToB2.
Input: an instance le (A, b) where A ∈ DA is a d × n matrix and b ∈ Rd.
Output: (∂2, γ, ∆c) where ∂2 ∈ B2 is an m × t matrix, γ ∈ Rm, and ∆c is a set of n

triangles.
1. For each i ∈ [n] and variable x(i) in le (A, b), we construct a sphere Si.
2. For each q ∈ [d1], which corresponds to a difference equation x(i) − x(j) = b(q), we add

a loop4 αq with a net flow demand b(q). Then,
a. we add a boundary component5 βq,i on Si, and a boundary component βq,j on Sj ;
b. we construct a tube Tq,i with boundary components {−βq,i, αq}, and a tube Tq,j with

boundary components {−βq,j , −αq}.
See Figure 3 for an illustration6.

βq,i βq,j

αq

∂Tq,i = −βq,i + αq ∂Tq,j = −βq,j − αq

∂Si 3 βq,i ∂Sj 3 βq,j

Figure 3 The construction for a difference equation x(i) − x(j) = b(q). For a topological space
X, we use ∂X to denote its boundary.

3. For each q ∈ {d1+1, . . . , d}, which corresponds to an average equation x(i)+x(j)−2x(k) =
b(q) = 0, we add a loop αq with zero net flow demand. Then,
a. we add a boundary component βq,i on Si, a boundary component βq,j on Sj , and two

boundary components βq,k,1, βq,k,2 on Sk;
b. we construct a tube Tq,i with boundary components {−βq,i, αq}, a tube Tq,j with bound-

ary components {−βq,j , αq}, and two tubes Tq,k,1, Tq,k,2 with boundary components
{−βq,k,1, −αq} and {−βq,k,2, −αq}, respectively.

See Figure 4 for an illustration7.

4 In topology, a loop in a topological space X is a path whose initial point is equal to its terminal point.
5 In topology, a boundary of a topological space X is a set of points that can be approached from both X

and the outside of X. A boundary component is a connected component of the boundary. Here, sphere
Si does not have a boundary, but we can hollow a “hole” by adding a boundary component.

6 Note that since the loop αq has demand b(q), our construction is different from identifying the boundary
component αq of Tq,i and the boundary component −αq of Tq,j .

7 As four tubes are connected to a single loop, to avoid the intersection of tubes before attaching the
loop, a higher-dimensional space is required.
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βq,i βq,j

βq,k,1 βq,k,2

αq

∂Tq,i = −βq,i + αq ∂Tq,j = −βq,j + αq

∂Si 3 βq,i ∂Sj 3 βq,j

∂Tq,k,1 = −βq,k,1 − αq ∂Tq,k,2 = −βq,k,2 − αq

∂Sk 3 {βq,k,1, βq,k,2}

Figure 4 The construction for an average equation x(i) + x(j) − 2x(k) = 0.

4. For each i ∈ [n], the punctured sphere Si and the tubes connected to Si form a continuous
topological space. We construct an oriented triangulation for this space such that the
induced orientation of each edge on a loop αq is consistent with the orientation of αq.
We will describe this oriented triangulation subroutine in Section 4.1.1. Let K be the
oriented 2-complex. Let ∂2 be the boundary operator of K.

5. Each edge on a loop αq has net demand b(q); each other edge has net demand 0. Let γ

be the vector of the net flow demands.
6. On each triangulated sphere Si, we choose an arbitrary triangle ∆i ∈ Si as the central

triangle. Let ∆c be the set of all the central triangles.
7. We return (∂2, γ, ∆c).

The following algorithm MapSolnB2toDA maps a solution f to le (∂2, γ) to a solution
x to le (A, b).

Algorithm MapSolnB2toDA .
Input: a tuple (A, b, f , ∆c), where A ∈ DA is a d × n matrix, b ∈ Rd, f ∈ Rt, and ∆c is
the set of n central triangles.
Output: a vector x ∈ Rn.
1. If A⊤b = 0, we return x = 0.
2. Otherwise, we set x(i) = f (∆i), where ∆i ∈ ∆c is the central triangle on sphere Si.

4.1.1 Oriented Triangulation for Punctured Spheres and Tubes
We provide a concrete triangulation subroutine for the benefit of algorithm analysis.

Oriented Triangulation for Punctured Spheres

By our construction, each sphere Si has bi =
∑d

q=1 |A(q, i)| boundary components. We will
create t̃i triangles and m̃i edges on Si, based on bi.
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1. If bi = 1 (see Figure 5 (a)), the punctured sphere is topologically equivalent to a disk. In
this case, Si can be triangulated using a single triangle [v1

(1), v2
(1), v3

(1)], thus t̃i = 1, m̃i = 3.
2. If bi = 2 (see Figure 5 (b)), the punctured sphere is topologically equivalent to

an annulus. We subdivide the triangle [v1
(1), v2

(1), v3
(1)] obtained in the previous case

by adding 6 interior edges between vertices of the inner and the outer boundaries:
[v1

(1), v1
(2)], [v1

(1), v2
(2)], [v2

(1), v1
(2)], [v2

(1), v3
(2)], [v3

(1), v2
(2)], [v3

(1), v3
(2)], thus t̃i = 6, m̃i = 12.

3. Generally, if bi = k (see Figure 5 (c)), we subdivide the rightmost triangle [v1
(1), v2

(1), v1
(k−1)]

obtained in the case of bi = k − 1 with the same method. By induction, we have

t̃i = 5bi − 4, m̃i = 9bi − 6, for bi ≥ 1. (3)

bi = 1

v1(1)

v3(1) v2(1)

v1
(k)

v2
(k) v3

(k)

v1(2)

v2(2) v3(2)

v1(1)

v3(1) v2(1)

v1(1)

v1(k−1)

v2(1)

(a) bi = 2(b) bi = k(c)

Figure 5 Oriented triangulation of punctured spheres. The light area represents the “holes”
defined by boundary components.

The orientation for triangles on the same sphere should be identical. Without loss of
generality, we orient all triangles clockwise. Note that with this triangulation method, all
boundary components are composed of 3 edges.

Oriented Triangulation for Tubes

A tube is defined by two boundary components. By our construction, for every tube connected
to Si, one of the two boundary components is always −βq,i,∗

8, and the other one is ±αq,
whose orientation depends on the sign of the entry A(q, i). Without loss of generality,
we orient anti-clockwise for all αq, thus clockwise for all −αq. Therefore, there are two
possibilities of boundary component combinations.
1. If A(q, i) > 0 (see Figure 6 (a)), then the two boundary components have opposite

orientations: −βq,i,∗ = [v1
q,i,∗, v3

q,i,∗, v2
q,i,∗] and αq = [v1

q , v2
q , v3

q ]. We triangulate by
matching v1

q,i,∗ to v1
q , v2

q,i,∗ to v2
q , and v3

q,i,∗ to v3
q .

2. If A(q, i) < 0 (see Figure 6 (b)), then the two boundary components have identical
orientations: −βq,i,∗ = [v1

q,i,∗, v3
q,i,∗, v2

q,i,∗] and −αq = [v1
q , v3

q , v2
q ]. We triangulate by

matching v1
q,i,∗ to v1

q , v3
q,i,∗ to v2

q , and v2
q,i,∗ to v3

q .

In either case, only 6 triangles and 12 edges are required for an oriented triangulation of
any tube Tq,i,∗. Again, we orient all triangles clockwise.

8 We introduce a third element ∗ ∈ {1, 2} in the subscript of βq,k,∗, which is activated only when
A(q, k) = −2.
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v1q

v2q v3q

v1q,i,∗

v2q,i,∗ v3q,i,∗

−βq,i

αq

v1q,i,∗ v3q,i,∗ v2q,i,∗ v1q,i,∗

v1qv1q v2qv3q

v1q,i,∗

v2q,i,∗ v3q,i,∗

−βq,i

v1q

v2q v3q

−αq

v1q,i,∗ v3q,i,∗ v2q,i,∗ v1q,i,∗

v1qv1q v3qv2q

A(q, i) > 0 A(q, i) < 0(a) (b)

Figure 6 Oriented triangulation of tubes with opposite or identical boundary orientations.

4.2 Algorithm Runtime and Problem Size
In this section, we show that the reduction algorithm ReduceDAToB2 and the solution
mapping algorithm MapSolnB2toDA both run in linear time, and ReduceDAToB2
constructs a 2-complex whose size is linear in the number of nonzeros in the input linear
equations.

▶ Lemma 4.1 (Runtime). Given a difference-average instance le (A, b) where A ∈ Rd×n,
Algorithm ReduceDAToB2(A, b) returns (∂2, γ, ∆c) in time O(nnz(A)). Given a solution
f to le (∂2, γ), Algorithm MapSolnB2toDA(A, b, f , ∆c) returns x in time O(n).

Proof. For reduction, ReduceDAToB2(A, b) calls the tube triangulation subroutine for
∥A∥1 times, and the punctured sphere triangulation subroutine for n times. The tube
triangulation subroutine runs in time O(1) since the there are a constant number of triangles
in a tube; and the punctured sphere triangulation subroutine runs in time O(∥A(:, j)∥1) for
the jth call, j ∈ [n]. Putting all together, the total runtime of ReduceDAToB2(A, b) is
O

(
∥A∥1 +

∑
j∈[n] ∥A(:, j)∥1

)
≤ O(nnz(A)), where we use the fact ∥A∥max = 2.

For solution mapping, the runtime of the algorithm MapSolnB2toDA is obvious. ◀

▶ Lemma 4.2 (Size of ∂2). Given a difference-average instance le (A, b), let (∂2, γ, ∆c) be
returned by ReduceDAToB2(A, b). Suppose ∂2 ∈ Rm×t. Then,
1. t ≤ 22 nnz(A);
2. m ≤ 33 nnz(A);
3. nnz(∂2) ≤ 66 nnz(A).

Proof. We first compute the total number of triangles in the constructed 2-complex K. For
sphere Sj , we have t̃j = 5bj − 4 triangles by (3), where bj =

∑
i∈[d] |A(i, j)|. Therefore, the

number of triangles of all spheres is
n∑

j=1
t̃j =

n∑
j=1

(5
∑
i∈[d]

|A(i, j)| − 4) = 5 ∥A∥1 − 4n.

Moreover, each boundary component on spheres corresponds to a tube, and each tube has 6
triangles. Hence, the number of triangles of all tubes is 6 ∥A∥1. Putting spheres and tubes
together, we get

t = 11 ∥A∥1 − 4n ≤ 22 nnz(A),

where the last inequality is because entries of A are bounded by 2.
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Next, we compute the total number of edges in K. By construction, each triangle has
3 incident edges and each edge is shared by a constant number of triangles (2 for interior
edges, and 4 for boundary edges). Thus, we have

m ≤ 1.5t ≤ 33 nnz(A).

Since each column of ∂2 has exactly 3 nonzero entries, we have

nnz(∂2) = 3t ≤ 66 nnz(A). ◀
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54:2 Two-Commodity Flow Is Equivalent to Linear Programming

1 Introduction

Multi-commodity maximum flow is a very well-studied problem, which can be formulated as
a linear program. In this paper, we show that general linear programs can be very efficiently
encoded as a multi-commodity maximum flow programs. Many variants of multi-commodity
flow problems exist. We consider one of the simplest directed variants, 2-commodity maximum
through-put flow. Given a directed graph with edge capacities and two source-sink pairs, this
problem requires us to maximize the sum of the flows routed between the two source-sink
pairs, while satisfying capacity constraints and flow conservation at the remaining nodes.
In the rest of the paper, we will simply refer to this as the 2-commodity flow problem. We
abbreviate this problem as 2CF. Our goal is to relate the hardness of solving 2CF to that of
solving linear programs (LPs). 2-commodity flow is easily expressed as a linear program,
so it is clearly no harder than solving LPs. We show that the 2-commodity flow problem
can encode a linear program with only a polylogarithmic blow-up in size, when the program
has polynomially bounded integer entries and polynomially bounded solution norm. Our
reduction runs in nearly-linear time. Given an approximate solution to the 2-commodity
flow problem, we can recover, in linear time, an approximate solution to the linear program
with only a polynomial factor increase in the error. Our reduction also shows that an exact
solution to the flow problem yields an exact solution to the linear program.

Multi-commodity flow problems are extremely well-studied and have been the subject
of numerous surveys [23, 38, 40, 1, 50], in part because a large number of problems can be
expressed as variants of multi-commodity flow. Our result shows a very strong form of this
observation: In fact, general linear programs can be expressed as 2-commodity flow problems
with essentially the same size. Early in the study of these problems, before a polynomial-time
algorithm for linear programming was known, it was shown that the undirected 2-commodity
flow problem can be solved in polynomial time [16]. In fact, it can be reduced to two
undirected single commodity maximum flow problems. In contrast, directed 2-commodity
flow problems were seemingly harder, despite the discovery of non-trivial algorithms for some
special cases [8, 9].

Searching for Multi-Commodity Flow Solvers. Alon Itai [17] proved a polynomial-time
reduction from linear programming to 2-commodity flow, before a polynomial-time algorithm
for linear programming was known. For decades, the only major progress on solving multi-
commodity flow came from improvements to general linear program solvers [24, 19, 43, 48].
Leighton et al. [33] showed that undirected capacitated k-commodity flow in a graph with
m edges and n vertices can be approximately solved in Õ(kmn) time, completely routing all
demands with 1 + ϵ times the optimal congestion, albeit with a poor dependence on the error
parameter ϵ. This beats solve-times for linear programming in sparse graphs for small k, even
with today’s LP solvers that run in current matrix multiplication time, albeit with much worse
error. This result spurred a number of follow-up works with improvements for low-accuracy
algorithms [14, 11, 35]. Later, breakthroughs in achieving almost- and nearly-linear time
algorithms for undirected single-commodity maximum flow also lead to faster algorithms
for undirected k-commodity flow [21, 45, 41], culminating in Sherman’s introduction of
area-convexity to build a Õ(mkϵ−1) time algorithm for approximate undirected k-commodity
flow [46].

Solving Single-Commodity Flow Problems. Single commodity flow problems have been an
area of tremendous success for the development of graph algorithms, starting with an era of
algorithms influenced by early results on maximum flow and minimum cut [12] and later
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the development of powerful combinatorial algorithms for maximum flow with polynomially
bounded edge capacities [7, 10, 15]. Later, a breakthrough nearly-linear time algorithm for
electrical flows by Spielman and Teng [47] lead to the Laplacian paradigm. A long line of
work explored direct improvements and simplifications of this result [25, 26, 22, 42, 28, 18].
This also motivated a new line of research on undirected maximum flow [3, 31, 21, 45],
which in turn lead to faster algorithms for directed maximum flow and minimum cost
flow [36, 37, 34, 20, 49, 13] building on powerful tools using mixed-ℓ2, ℓp-norm minimizing
flows [27] and inverse-maintenance ideas [2]. Certain developments are particularly relevant
to our result: For a graph G = (V, E) these works established high-accuracy algorithms with
Õ(|E|) running time for computing electrical flow [47] and O(|E|4/3) running time for unit
capacity directed maximum flow [36, 20], and Õ(min(|E|1.497, |E| + |V |1.5)) running time for
directed maximum flow with general capacities [13, 49].

Solving General Linear Programs. As described in the previous paragraphs, there has been
tremendous success in developing fast algorithms for single-commodity flow problems and
undirected multi-commodity flow problems, albeit in the latter case only in the low-accuracy
regime (as the algorithm running times depend polynomially on the error parameter). In
contrast, the best known algorithms for directed multi-commodity flow simply treat the
problem as a general linear program, and use a solver for general linear programs.

The fastest known solvers for general linear programs are based on interior point meth-
ods [19], and in particular central path methods [43]. Recently, there has been significant
progress on solvers for general linear programs, but the running time required to solve a linear
program with roughly n variables and Õ(n) constraints (assuming polynomially bounded
entries and polytope radius) is stuck at the Õ(n2.372...), the running time provided by LP
solvers that run in current matrix multiplication time [4]. Note that this running time is in
the RealRAM model, and this algorithm cannot be translated to fixed point arithmetic with
polylogarithmic bit complexity per number without additional assumptions on the input, as
we describe the paragraphs on numerical stability below. To compare these running times
with those for single-commodity maximum flow algorithms on a graph with |V | vertices and
|E| edges, observe that in a sparse graph with |E| = Õ(|V |), by writing the maximum flow
problem as a linear program, we can solve it using general linear program solvers and obtain
a running time of Õ(|V |2.372...), while the state-of-the art maximum flow solver obtains a
running time of Õ(|V |1.497) on such a sparse graph. On dense graphs with |E| = Θ(|V |2),
the gap is smaller but still substantial: The running time is Õ(|V |2) using maximum flow
algorithms vs. Õ(|V |2.372...) using general LP algorithms.

How Hard Is It to Solve Multi-Commodity Flow? The many successes in developing
high-accuracy algorithms for single-commodity flow problems highlight an important open
question: Can multi-commodity flow be solved to high accuracy faster than general linear
programs? We rule out this possibility, by proving that any linear program (assuming it
is polynomially bounded and has integer entries) can be encoded as a multi-commodity
flow problem in nearly-linear time. This implies that any improvement in the running time
of (high-accuracy) algorithms for sparse multi-commodity flow problems would directly
translate to a faster algorithm for solving sparse linear programs to high accuracy, with only
a polylogarithmic increase in running time.

Previous work by Kyng and Zhang [30] had shown that fast algorithms for multi-
commodity flow were unlikely to arise from combining interior point methods with special-
purpose linear equation solvers. Concretely, they showed that the linear equations that arise
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in interior point methods for multi-commodity flow are as hard to solve as arbitrary linear
equations. This ruled out algorithms following the pattern of the known fast algorithms for
high-accuracy single-commodity flow problems. However, it left open the broader question if
some other family of algorithms could succeed. We now show that, in general, a separation
between multi-commodity flow and linear programming is not possible.

1.1 Background: Numerical Stability of Linear Program Solvers and
Reductions

Current research on fast algorithms for solving linear programs generally relies on assuming
bounds on (1) the size of the program entries and (2) the norm of all feasible solutions.
Generally, algorithm running time depends logarithmically on these quantities, and hence
to make these factors negligible, entry size and feasible solution norms are assumed to be
polynomially bounded, for example in [4]. We will refer to a linear program satisfying these
assumptions as polynomially bounded. More precisely, we say a linear program with N

non-zero coefficients is polynomially bounded if it has coefficients in the range [−X, X] and
∥x∥1 ≤ R for all feasible x (i.e. the polytope of feasible solutions has radius of R in ℓ1 norm),
and X, R ≤ O(N c) for some constant c. In fact, if there exists a feasible solution x satisfying
∥x∥1 ≤ R, then we can add a constraint ∥x∥1 ≤ R to the LP (which can be rewritten as
linear inequality constraints) so that in the new LP, all feasible solutions have ℓ1 norm at
most R. This only increases the number of nonzeros in the LP by at most a constant factor.

Interior Point Methods and Reductions With Fixed Point Arithmetic. Modern fast interior
point methods for linear programming, such as [4], are analyzed in the RealRAM model.
In order to implement these algorithms using fixed point arithmetic with polylogarithmic
bit complexity per number, instead of RealRAM, additional assumptions are required. For
example, this class of algorithms relies on computing matrix inverses, and these must
be approximately representable using polylogarithmic bit complexity per entry. This is
not possible, if the inverses have exponentially large entries, which may occur even in
polynomially bounded linear programs. For example, consider a linear program feasibility
problem Ax ≤ b, x ≥ 0, with constraint matrix A ∈ R2n×2n given by

A(i, j) =



1 if i < n and i = j

−2 if i < n and i + 1 = j

2 if i ≥ n and i = j

−1 if i ≥ n and i + 1 = j

0 o.w.

Such a linear program is polynomially bounded for many choices of b, e.g. b = e2n.
Unfortunately, for the vector x ∈ R2n given by

x(i) =
{

2−i−1 if i ≤ n

0 o.w.

we have Ax = 2−nen, and from this one can see that A−1 must have entries of size at least
Ω(2n/n). This will cause algorithms such as [4] to perform intermediate calculations with n

bits per number, increasing the running time by a factor roughly n.
Modern interior point methods can be translated to fixed precision arithmetic with various

different assumptions leading to different per entry bit complexity (see [4] for a discussion of
one standard sufficient condition). Furthermore, if the problem has polynomially bounded
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condition number (when appropriately defined), then we expect that polylogarithmic bit
complexity per entry should suffice, at least for highly accurate approximate solutions, by
relying on fast stable numerical linear algebra [5], although we are not aware of a complete
analysis of this translation.

If a linear program with integer entries is solved to sufficiently small additive error,
the approximate solution can be converted into an exact solution, e.g. see [43, 32, 4] for
a discussion of the necessary precision and for a further discussion of numerical stability
properties of interior point methods. Polynomially bounded linear programs with integer
coefficients may still require exponentially small additive error for this rounding to succeed.

We give a reduction from general linear programming to 2-commodity flow, and like [4],
we assume the program is polynomially bounded to carry out the reduction. We also use
an additional assumption, namely that the linear program is written using integral entries1.
We do not make additional assumptions about polynomially bounded condition number
of problem. This means we can apply our reduction to programs such as the one above,
despite [4] not obtaining a reasonable running time on such programs using fixed point
arithmetic.

Our analysis of our reduction uses the RealRAM model like [4] and other modern interior
point method analysis, however, it should be straightforward to translate our reduction and
error analysis to fixed point arithmetic with polylogarithmically many bits, because all our
mappings are simple linear transformations, and we never need to compute or apply a matrix
inverse.

Rounding Linear Programs to Have Integer Entries. It is possible to give some fairly
general and natural sufficient conditions for when a polynomially bounded linear program can
be rounded to have integral entries, one example of this is having a polynomially bounded
Renegar’s condition number. Renegar introduced this condition number for linear programs
in [44]. For a given linear program, suppose that perturbing the entries of the program by
at most δ each does not change the feasibility of the the linear program, and let δ∗ be the
largest such δ. Let U denote the maximum absolute value of entries in the linear program.
Then κ = U/δ∗ is Renegar’s condition number for the linear program.

Suppose we are given a polynomially bounded linear program max{c⊤x : Ax ≤ b, x ≥ 0}
(also referred to as (A, b, c)), with polytope radius at most R, and Renegar’s condition
number κ also bounded by a polynomial. We wish to compute a vector x ≥ 0 with an ϵ

additive error on each constraint and in the optimal value. We can reduce this problem for
instance (A, b, c) to a polynomially bounded linear program instance with integral input
numbers. Specifically, we round the entries of A down to Ã and those of b, c up to b̃, c̃ all
by at most min{ ϵ

3R , U
κR } such that each entry of Ã, b̃, c̃ only needs a logarithmic number of

bits. Suppose x̃ is a solution to (Ã, b̃, c̃) with ϵ
3 additive error on each constraint and in the

optimal value. Then,

Ax̃ = Ãx̃ + (A − Ã)x̃ ≤ b + ϵ1, c⊤x̃ ≥ c̃⊤x̃∗ − 2
3ϵ

where 1 is the all-one vector, x̃∗ is an optimal solution to (Ã, b̃, c̃). In addition, the optimal
value of (Ã, b̃, c̃) is greater than or equal to that of (A, b, c). So, x̃ is a solution to (A, b, c)
with ϵ additive error as desired. Since each entry of Ã, b̃, c̃ has a logarithmic number of bits,

1 W.l.o.g., by scaling, this is the same as assuming the program is written with polynomially bounded
fixed precision numbers of the form k/D where k is an integer, and D is an integral denominator shared
across all entries, and both k and D are polynomially bounded.
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we can scale all of them to polynomially bounded integers without changing the feasible set
and the optimal solutions. Thus we see that if we restrict ourselves to polynomially linear
programs with polynomially bounded Renegar’s condition number, and we wish to solve
the program with small additive error, we can assume without loss of generality that the
program has integer coefficients.

1.2 Previous Work
Our paper follows the proof by Itai [17] that linear programming is polynomial-time reducible
to 2-commodity flow. However, it is also inspired by recent works on hardness for structured
linear equations [30] and packing/covering LPs [29], which focused on obtaining nearly-linear
time reductions in somewhat related settings. These works in turn were motivated by the
last decade’s substantial progress on fine-grained complexity for a range of polynomial time
solvable problems, e.g. see [51]. Also notable is the result by Musco et al. [39] on hardness
for matrix spectrum approximation.

1.3 Our Contributions
In this paper, we explore the hardness of 2-commodity maximum throughput flow, which for
brevity we refer to as the 2-commodity flow problem or 2CF. We relate the difficulty of 2CF
to that of linear programming (LP) by developing an extremely efficient reduction from the
former to the latter. The main properties of our reduction are described by the informal
theorem statement below. We give a formal statement of Theorem 1.1 as Theorem 3.1 in
Section 3.

▶ Theorem 1.1 (Main Theorem (Informal)). Consider any polynomially bounded linear
program max{c⊤x : Ax ≤ b, x ≥ 0} with integer coefficients and N non-zero entries. In
nearly-linear time, we can convert this linear program to a 2-commodity flow problem which
is feasible if and only if the original program is. The 2-commodity flow problem has Õ(N)
edges and has polynomially bounded integral edge capacities. Furthermore, any solution to
the 2-commodity flow instance with at most ϵ additive error on each constraint and value at
most ϵ from the optimum can be converted to a solution to the original linear program with
additive error Õ(poly(N)ϵ) on each constraint and similarly value within Õ(poly(N)ϵ) of the
optimum.

This implies that, for any constant a > 1, if any 2-commodity flow instance with
polynomially bounded integer capacities can be solved with ϵ additive error in time
Õ (|E|a · poly log(1/ϵ)), then any polynomially bounded linear program can be solved to ϵ

additive error in time Õ (Na · poly log(1/ϵ)).

Note that in our definition any 2CF problem is already an LP, and so no reduction in the
other direction is necessary. Our notion of approximate solutions to LPs and 2CF problems
is also such that treating a 2CF problem as an LP and solving it approximately ensures that
the 2CF is approximately solved w.r.t. to the our approximate solution definition for 2CF.

We obtain Theorem 1.1, our main result, by making several improvements to Itai’s
reduction from LP to 2CF. Recall that a linear program with N non-zero coefficients is
polynomially bounded if it has coefficients in the range [−X, X] and ∥x∥1 ≤ R for all feasible
x, where X, R ≤ O(N c) for some constant c. Firstly, while Itai produced a 2CF with the
number of edges on the order of Θ

(
N2 log2 X

)
, we show that an improved gadget can reduce

this to O (N log X). Thus, in the case of polynomially bounded linear programs, where
log X = O(log N), we get an only polylogarithmic multiplicative increase in the number of
non-zero entries from N to Õ(N), whereas Itai had an increase in the number of nonzeros by
a factor Õ(N), from N to Õ(N2).
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Secondly, Itai used very large graph edge capacities that require O
(

(N log X)1.01
)

many
bits per edge, letting the capacities grow exponentially given an LP with polynomially
bounded entries. We show that when the feasible polytope radius R is bounded, we can
ensure capacities remain a polynomial function of the initial parameters N, R, and X. In
the important case of polynomially bounded linear programs, this means the capacities stay
polynomially bounded.

Thirdly, while Itai only analyzed the chain of reductions under the case with exact
solutions, we generalize the analysis to the case with approximate solutions by establishing an
error analysis along the chain of reductions. We show that the error only grows polynomially
during the reduction. Moreover, to simplify our error analysis, we observe that additional
structures can be established in many of Itai’s reductions. For instance, we propose the
notion of a fixed flow network, which consists of a subset of edges with equal lower and upper
bound of capacity. It is a simplification of Itai’s (l, u) network with general capacity (both
lower and upper bounds on the amount of flow).

Open Problems. Our reductions do not suffice to prove that a strongly polynomial time
algorithm for 2-commodity flow would imply a strongly polynomial time algorithm for linear
programming. In a similar vein, it is unclear if a more efficient reduction could exist for
the case of linear programs that are not polynomially bounded. We leave these as very
interesting open problems.

Finally, our reductions do not preserve the “shape” of the linear program, in particular, a
dense linear program may be reduced to a sparse 2-commodity flow problem with a similar
number of edges as there are non-zero entries in the original program. It would be interesting
to convert a dense linear program into a dense 2-commodity flow problem, e.g. to convert a
linear program with m constraints and n variables (say, m ≤ n) into a 2-commodity flow
problem with Õ(n) edges and Õ(m) vertices.

2 Preliminaries

2.1 Notation
Matrices and Vectors. We use parentheses to denote entries of a matrix or a vector:
Let A(i, j) denote the (i, j)th entry of a matrix A, and let x(i) denote the ith entry of a
vector x. Given a matrix A ∈ Rm×n, we use aaa⊤

i to denote the ith row of a matrix A and
nnz(A) to denote the number of nonzero entries of A. Without loss of generality, we assume
that nnz(A) ≥ max{m, n}. For any vector x ∈ Rn, we define ∥x∥max = maxi∈[n] |x(i)|,
∥x∥1 =

∑
i∈[n] |x(i)|. For any matrix A ∈ Rm×n, we define ∥A∥max = maxi,j |A(i, j)|.

We define a function X that takes an arbitrary number of matrices A1, . . . , Ak1 , vectors
b1, . . . , bk2 , and scalars K1, . . . , Kk3 as arguments, and returns the maximum of ∥·∥max of
all the arguments, i.e.,

X(A1, . . . , Ak1 , b1, . . . , bk2 , K1, . . . , Kk3)
= max {∥A1∥max , . . . , ∥Ak1∥max , ∥b1∥max , . . . , ∥bk2∥max , |K1| , . . . , |Kk3 |} .

2.2 Problem Definitions
In this section, we formally define the problems that we use in the reduction. These problems
fall into two categories: one is related to linear programming and linear equations, and the
other is related to flow problems in graphs. In addition, we define the errors for approximately
solving these problems.
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2.2.1 Linear Programming and Linear Equations With Positive Variables
For the convenience of our reduction, we define linear programming as a “decision” problem.
We can solve the optimization problem max{c⊤x : Ax ≤ b, x ≥ 0} by binary searching its
optimal value via the decision problem.

▶ Definition 2.1 (Linear Programming (lp)). Given a matrix A ∈ Zm×n, vectors b ∈ Zm

and c ∈ Zn, an integer K, and R ≥ max{1, max{∥x∥1 : Ax ≤ b, x ≥ 0}}, we refer to the
lp problem for (A, b, c, K, R) as the problem of finding a vector x ∈ Rn

≥0 satisfying

Ax ≤ b and c⊤x ≥ K

if such an x exists and returning “infeasible” otherwise.

We will reduce linear programming to linear equations with nonnegative variables (LEN),
and then to linear equations with nonnegative variables and small integer coefficients (k-LEN).

▶ Definition 2.2 (Linear Equations with Nonnegative Variables (len)). Given A ∈ Zm×n, b ∈
Zm, and R ≥ max{1, max{∥x∥1 : Ax = b, x ≥ 0}}, we refer to the len problem for (A, b, R)
as the problem of finding a vector x ∈ Rn

≥0 satisfying Ax = b if such an x exists and
returning “infeasible” otherwise.

▶ Definition 2.3 (k-LEN (k-len)). The k-len problem is an len problem (A, b, R) where
the entries of A are integers in [−k, k] for some given k ∈ Z+.

We employ the following additive error notion. We append a letter “A” to each problem
name to denote its approximation version, e.g., LP Approximate Problem is abbreviated to
LPA.

▶ Definition 2.4 (Approximation Errors). We always require x ≥ 0. In addition,
1. Error in objective: c⊤x ≥ K is relaxed to c⊤x ≥ K − ϵ;
2. Error in constraint:

a. The inequality constraint Ax ≤ b is relaxed to Ax −b ≤ ϵ1, where 1 is the all-1 vector;
b. The equality constraint Ax = b is relaxed to ∥Ax − b∥∞ ≤ ϵ.

Based on Definition 2.4, we can define the approximate version of lp. The approximate
version of len and k-len can be found in the full version of the paper [6].

▶ Definition 2.5 (LP Approximate Problem (lpa)). An lpa instance is given by an lp instance
(A, b, c, K, R) and an error parameter ϵ ∈ [0, 1], which we collect in a tuple (A, b, c, K, R, ϵ).
We say an algorithm solves the lpa problem, if, given any lpa instance, it returns a vector
x ≥ 0 such that

c⊤x ≥ K − ϵ

Ax ≤ b + ϵ1

where 1 is the all-1 vector, or it correctly declares that the associated lp instance is infeasible.

2.2.2 Flow Problems
A flow network is a directed graph G = (V, E), where V is the set of vertices and E ⊂ V × V

is the set of edges, together with a vector of edge capacities u ∈ Z|E|
>0 that upper bound the

amount of flow passing each edge. A 2-commodity flow network is a flow network together
with two source-sink pairs si, ti ∈ V for each commodity i ∈ {1, 2}.

Given a 2-commodity flow network (G = (V, E), u, s1, t1, s2, t2), a feasible 2-commodity
flow is a pair of flows f 1, f 2 ∈ R|E|

≥0 that satisfies
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1. capacity constraint: f 1(e) + f 2(e) ≤ u(e), ∀e ∈ E, and
2. conservation of flows:

∑
u:(u,v)∈E f i(u, v) =

∑
w:(v,w)∈E f i(v, w), ∀i ∈ {1, 2}, v ∈ V \

{si, ti}2.

Similar to the definition of LP, we define 2-commodity flow problem as a decision problem.
We can solve a decision problem by solving the corresponding optimization problem.

▶ Definition 2.6 (2-Commodity Flow Problem (2cf)). Given a 2-commodity flow network
(G, u, s1, t1, s2, t2) together with R ≥ 0, we refer to the 2cf problem for (G, u, s1, t1, s2, t2, R)
as the problem of finding a feasible 2-commodity flow f 1, f 2 ≥ 0 satisfying

F1 + F2 ≥ R

if such flows exist and returning “infeasible” otherwise.

To reduce lp to 2cf, we need a sequence of variants of flow problems.

▶ Definition 2.7 (2-Commodity Flow with Required Flow Amount (2cfr)). Given a 2-
commodity flow network (G, u, s1, t1, s2, t2) together with R1, R2 ≥ 0, we refer to the 2cfr
for (G, u, s1, t1, s2, t2, R1, R2) as the problem of finding a feasible 2-commodity flow f 1, f 2 ≥ 0
satisfying

F1 ≥ R1, F2 ≥ R2

if such flows exist and returning “infeasible” otherwise.

▶ Definition 2.8 (Fixed Flow Constraints). Given a set F ⊆ E in a 2-commodity flow network,
we say the flows f 1, f 2 ≥ 0 satisfy fixed flow constraints on F if

f 1(e) + f 2(e) = u(e), ∀e ∈ F.

Similarly, given a set F ⊆ E in a 1-commodity flow network, we say the flow f ≥ 0 satisfies
fixed flow constraints on F if

f (e) = u(e), ∀e ∈ F.

▶ Definition 2.9 (2-Commodity Fixed Flow Problem (2cff)). Given a 2-commodity flow
network (G, u, s1, t1, s2, t2) together with a subset of edges F ⊆ E, we refer to the 2cff
problem for the tuple (G, F, u, s1, t1, s2, t2) as the problem of finding a feasible 2-commodity
flow f 1, f 2 ≥ 0 which also satisfies the fixed flow constraints on F if such flows exist and
returning “infeasible” otherwise.

▶ Definition 2.10 (Selective Fixed Flow Problem (sff)). Given a 2-commodity network
(G, u, s1, t1, s2, t2) together with three edge sets F, S1, S2 ⊆ E, we refer to the sff problem for
(G, F, S1, S2, u, s1, t1, s2, t2) as the problem of finding a feasible 2-commodity flow f 1, f 2 ≥ 0
such that for each i ∈ {1, 2}, flow f i(e) > 0 only if e ∈ Si, and f 1, f 2 satisfy the fixed flow
constraints on F , if such flows exist, and returning “infeasible” otherwise.

▶ Definition 2.11 (Fixed Homologous Flow Problem (fhf)). Given a flow network with
a single source-sink pair (G, u, s, t) together with a collection of disjoint subsets of edges
H = {H1, . . . , Hh} and a subset of edges F ⊆ E such that F is disjoint from all the sets in
H, we refer to the fhf problem for (G, F, H, u, s, t) as the problem of finding a feasible flow
f ≥ 0 such that

2 Note that for commodity i, this constraint includes the case of v ∈ {sī, t̄i}, ī = {1, 2}\i.
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f (e1) = f (e2), ∀e1, e2 ∈ Hk, 1 ≤ k ≤ h,

and f satisfies the fixed flow constraints on F , if such flows exist, and returning “infeasible”
otherwise.

▶ Definition 2.12 (Fixed Pair Homologous Flow Problem (fphf)). An fphf is an fhf problem
(G, F, H, u, s, t) where every set in H has size 2.

Now, we define errors for the above flow problems.

▶ Definition 2.13 (Approximation Errors). We always require flows f ≥ 0 and f 1, f 2 ≥ 0. In
addition,
1. Error in congestion: the capacity constraints are relaxed to:

f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E.

There are several variants corresponding to different flow problems.
a. If e ∈ F is a fixed-flow edge, the fixed-flow constraints are relaxed to

u(e) − ϵ ≤ f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ F

b. If G is a 1-commodity flow network, we replace f 1(e) + f 2(e) by f (e).
2. Error in demand: the conservation of flows is relaxed to∣∣∣∣∣∣

∑
u:(u,v)∈E

f i(u, v) −
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2} (1)

There are several variants of this constraint corresponding to different flow problems.
a. If the problem is with flow requirement Fi, then besides Eq. (1), we add demand

constraints for si and ti with respect to commodity i:∣∣∣∣∣∣
∑

w:(si,w)∈E

f i(si, w) − Fi

∣∣∣∣∣∣ ≤ ϵ,

∣∣∣∣∣∣
∑

u:(u,ti)∈E

f i(u, ti) − Fi

∣∣∣∣∣∣ ≤ ϵ, i ∈ {1, 2} (2)

b. If G is a 1-commodity flow network, Eq. (1) can be simplified as∣∣∣∣∣∣
∑

u:(u,v)∈E

f (u, v) −
∑

w:(v,w)∈E

f (v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{s, t}

3. Error in type: the selective constraints are relaxed to

f ī(e) ≤ ϵ, ∀e ∈ Si, ī = {1, 2}\i.

4. Error in (pair) homology: the (pair) homologous constraints are relaxed to

|f (e1) − f (e2)| ≤ ϵ, ∀e1, e2 ∈ Hk, Hk ∈ H.

Based on Definition 2.13, we define the approximate version of 2cf. Again, the approx-
imate version of the rest flow problems can be found in the full version of the paper [6].
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▶ Definition 2.14 (2CF Approximate Problem (2cfa)). A 2cfa instance is given by a 2cf
instance (G, u, s1, t1, s2, t2, R) and an error parameter ϵ ∈ [0, 1], which we collect in a tuple
(G, u, s1, t1, s2, t2, R, ϵ). We say an algorithm solves the 2cfa problem, if, given any 2cfa
instance, it returns a pair of flows f 1, f 2 ≥ 0 that satisfies

f 1(e) + f 2(e) ≤ u(e) + ϵ, ∀e ∈ E (3)∣∣∣∣∣∣
∑

u:(u,v)∈E

f i(u, v) −
∑

w:(v,w)∈E

f i(v, w)

∣∣∣∣∣∣ ≤ ϵ, ∀v ∈ V \{si, ti}, i ∈ {1, 2} (4)

∣∣∣∣∣∣
∑

w:(si,w)∈E

f i(si, w) − Fi

∣∣∣∣∣∣ ≤ ϵ,

∣∣∣∣∣∣
∑

u:(u,ti)∈E

f i(u, ti) − Fi

∣∣∣∣∣∣ ≤ ϵ, i ∈ {1, 2} (5)

where F1 + F2 = R 3; or it correctly declares that the associated 2cf instance is infeasible.
We refer to the error in (3) as error in congestion, error in (4) and (5) as error in demand.

3 Main Results

▶ Theorem 3.1. Given an lpa instance (A, b, c, K, R, ϵlp) where A ∈ Zm×n, b ∈ Zm, c ∈
Zn, K ∈ Z, ϵlp ≥ 0 and A has nnz (A) nonzero entries, we can reduce it to a 2cfa instance
(G = (V, E), u, s1, t1, s2, t2, R2cf , ϵ2cf ) in time O(nnz(A) log X) where X = X(A, b, c, K),
such that

|V |, |E| = O(nnz(A) log X),
∥u∥max , R2cf = O(nnz3(A)RX2 log2 X),

ϵ2cf = Ω
(

1
nnz7(A)RX3 log6 X

)
ϵlp.

If the lp instance (A, b, c, K, R) has a solution, then the 2cf instance
(G2cf , u2cf , s1, t1, s2, t2, R2cf ) has a solution. Furthermore, if f 2cf is a solution to
the 2cfa (2cf) instance, then in time O(nnz(A) log X), we can compute a solution x to the
lpa (lp, respectively) instance, where the exact case holds when ϵ2cf = ϵlp = 0.

Our main theorem immediately implies the following corollary.

▶ Corollary 3.2. If we can solve any 2cfa instance (G = (V, E), u, s1, t1, s2, t2, R2cf , ϵ) in
time O

(
|E|c poly log

(
∥u∥1

ϵ

))
for some small constant c ≥ 1, then we can solve any lpa

instance (A, b, c, K, R, ϵ) in time O
(

nnzc(A) poly log
(

nnz(A)RX(A,b,c,K)
ϵ

))
.

3.1 Overview of Our Proof
In this section, we will explain how to reduce an LP instance to a 2-commodity flow (2cf)
instance by a chain of efficient reductions. In each step, we reduce a decision problem P to a
decision problem Q. We guarantee that (1) the reduction runs in nearly-linear time4, (2) the

3 If we encode 2cf as an lp instance, and approximately solve the lp with at most ϵ additive error. Then,
the approximate solution also agrees with the error notions of 2cf, except that we get F1 + F2 ≥ R − ϵ
instead of F1 + F2 ≥ R. This inconsistency can be eliminated by setting ϵ′ = 2ϵ, and slightly adjusting
F1, F2 to F ′

1, F ′
2 such that F ′

1 + F ′
2 ≥ R. This way, we obtain an approximate solution to 2cf with at

most ϵ′ additive error.
4 Linear in the size of problem P, poly-logarithmic in the maximum magnitude of all the numbers that

describe P, the feasible set radius, and the inverse of the error parameter if an approximate solution is
allowed.
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Table 1 A summary of notation used in the reduction from lp to 2cf.

Exact problems Input Output
lp (Def. 2.1) A, b, c, K, R x

len (Def. 2.2) Ã, b̃, R̃ x̃
2-len (Def. 2.3) Ā, b̄, R̄ x̄
1-len (Def. 2.3) Â, b̂, R̂ x̂
fhf (Def. 2.11) Gh, F h, Hh = {H1, · · · , Hh}, uh, s, t f h

fphf (Def. 2.12) Gp, F p, Hp = {H1, · · · , Hp}, up, s, t f p

sff (Def. 2.10) Gs, F s, S1, S2, us, s1, t1, s2, t2 f s

2cff (Def. 2.9) Gf , F f , uf , s1, t1, s2, t2 f f

2cfr (Def. 2.7) Gr, ur, s̄1, t̄1, s̄2, t̄2, R1, R2 f r

2cf (Def. 2.6) G2cf , u2cf , ¯̄s1, t̄1, ¯̄s2, t̄2, R2cf f 2cf

size of Q is nearly-linear in the size of P, and (3) that P is feasible implies that Q is feasible,
and an approximate solution to Q can be turned to an approximate solution to P with only
a polynomial blow-up in error parameters, in linear time.

We follow the outline of Itai’s reduction [17]. A summary of the problem notation used in
the reduction from lp to 2cf is given in Table 1. Itai first reduced an lp instance to a 1-len
instance (linear equations with nonnegative variables and ±1 coefficients). A 1-len instance
can be cast as a single-commodity flow problem subject to additional homologous constraints
and fixed flow constraints (i.e., fhf). Then, Itai dropped these additional constraints step
by step, via introducing a second commodity of flow and imposing lower bound requirements
on the total amount of flows routed between the source-sink pairs. However, in the worst
case, Itai’s reduction from 1-len to fhf enlarges the problem size quadratically and is
thus inefficient. One of our main contributions is to improve this step so that the problem
representation size is preserved along the reduction chain.

Our second main contribution is an upper bound on the errors accumulated during the
process of mapping an approximate solution to the 2cf instance to an approximate solution
to the lp instance. We show that the error only grows by polynomial factors. Itai only
considered exact solutions between these two instances.

We will explain the reductions based on the exact versions of the problems. At the end
of this section, we will discuss some intuitions of our error analysis.

3.1.1 Reducing Linear Programming to Linear Equations With
Nonnegative Variables and ±1 Coefficients

Given an lp instance (A, b, c, K, R) where R ≥ max{1, max{∥x∥1 : Ax ≤ b, x ≥ 0}}, we
want to compute a vector x ≥ 0 satisfying

Ax ≤ b, c⊤x ≥ K

or to correctly declare infeasible. We introduce slack variables s, α ≥ 0 and turn the above
inequalities to equalities:

Ax + s = b, c⊤x − α = K

which is an len instance (Ã, b̃, R̃). Comparing to Itai’s proof, we need to track two additional
parameters: the polytope radius R and the maximum magnitude of the input entries X.
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We then reduce the len instance to linear equations with ±2 coefficients (2-len) by
bitwise decomposition. For each bit, we introduce a carry term. Different from Itai’s
reduction, we impose an upper bound for each carry variable. We show that this upper
bound does not change problem feasibility and it guarantees that the polytope radius only
increases polynomially. The following example demonstrates this process.

5x1 + 3x2 − 7x3 = −1 ⇒ (x1 + x2 − x3)20 + (x2 − x3)21 + (x1 − x3)22 = −1 · 20

It can be decomposed to 3 linear equations, together with carry terms (ci − di), where
ci, di ≥ 0:

x1 + x2 − x3 − 2(c0 − d0) = −1
x2 − x3 + (c0 − d0) − 2(c1 − d1) = 0

x1 − x3 + (c1 − d1) = 0

Next, we reduce the 2-len instance (Ā, b̄, R̄) to a 1-len instance (Â, b̂, R̂) by replacing
each ±2 coefficient variable with two new equal-valued variables.

All the above three reduction steps run in nearly-linear time, and the problem sizes
increase nearly-linearly.

3.1.2 Reducing Linear Equations With Nonnegative Variables and ±1
Coefficients to Fixed Homologous Flow Problem

One of our main contributions is a linear-time reduction from 1-len to fhf (single-commodity
fixed homologous flow problem). Our reduction is similar to Itai’s reduction, but more efficient.

Itai observed that a single linear equation âaa⊤x̂ = b̂ with ±1 coefficients can be represented
as a fixed homologous flow network. We improve his construction by creating a sparser flow
network in which the number of edges is proportional to the number of nonzero coefficients
in the linear equations. Figure 1 depicts our gadget. Our gadget has a source vertex s, a sink
vertex t, and two additional vertices J+ and J−. Each variable x̂(i) with coefficient âaa(i) ̸= 0
corresponds to an edge: There is an edge from s to J+ if âaa(i) = 1, and there is an edge from
s to J− if âaa(i) = −1. The amount of flow passing this edge encodes the value of x̂(i). Thus,
the difference between the total amount of flow entering J+ and that entering J− equals to
âaa⊤x̂. To force âaa⊤x̂ = b̂, we add two edges e1, e2 from J+ to t and one edge e3 from J− to t;
we require e1 and e3 to be homologous and require e2 to be a fixed flow with value b̂.

s

J+

J−

t

e1

x̂(1)

x̂(n)

...

e2

e3

Figure 1 The gadget of reducing a single linear equation âaa⊤x̂ = b̂ with ±1 coefficients to a fixed
homologous flow network (fhf).

We can generalize this construction to encode a system of linear equations Âx̂ = b̂, where
Â ∈ Zm̂×n̂, b̂ ∈ Zm̂. Specifically, we create a gadget as above for each individual equation,
and then glue all the source (sink) vertices for all the equations together as the source (sink,
respectively) of the graph (see Figure 2). In addition to requiring e+

i , e−
i to be homologous

for each single linear equation, to guarantee the variable values to be consistent in these
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s

J+
1

J−
1

J+
m̂

J−
m̂

t

b̂(1)

b̂(m̂)

...

1st equation

m̂ th equation

x̂1(1)

x̂1(n̂)

· · ·

x̂m̂(n̂)

x̂m̂(1)

...

· · ·

e+1

e−1

e+
m̂

e−
m̂

Figure 2 The reduction from 1-len to fhf.

equations, we also require the edges corresponding to the same variable x̂(i) in different
equations to be homologous, i.e., {x̂1(i), . . . , x̂m̂(i)}. We can check that the number of the
vertices is linear in the number of equations; the number of the edges and the total size of the
homologous sets are both linear in the number of nonzero coefficients of the linear equation
system.

3.1.3 Dropping the Homologous and Fixed Flow Constraints
To reduce fhf to 2cf (2-commodity flow problem), we need to drop the homologous and
fixed flow constraints. The reduction has three main steps.

Reducing FHF to SFF. Given an fhf instance, we can reduce it to a fixed homologous
flow instance in which each homologous edge set has size 2 (fphf). To drop the homologous
requirement in fphf, we introduce a second commodity of flow with source-sink pair (s2, t2),
and for each edge, we carefully select the type(s) of flow that can pass through this edge.
Specifically, given two homologous edges (v, w) and (y, z), we construct a constant-sized
gadget (see Figure 3): We introduce new vertices vw, vw′, yz, yz′, construct a directed path

v w y z

s2 vw′vw yz′yz t2
evw eyz

Figure 3 The gadget of reducing a pair of homologous edges (v, w), (y, z) to a selective fixed flow
network (sff).

P : s2 → vw → vw′ → yz → yz′ → t2, and add edges (v, vw), (vw′, w) and (y, yz), (yz′, z).
Now, there is a directed path Pvw : v → vw → vw′ → w and a directed path Pyz : y →
yz → yz′ → z. Paths P and Pvw (Pyz) share an edge evw = (vw, vw′) (eyz = (yz, yz′),
respectively). We select evw and eyz for both flow f s

1 and f s
2, select the rest of the edges

along P for only f s
2, and select the rest of the edges along Pvw, Pyz for only f s

1. By this
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construction, in this gadget, we have f s
2(evw) = f s

2(eyz) being the amount of flow routed in
P , f s

1(evw) and f s
1(eyz) being the amount of flow routed in Pvw and Pyz, respectively. Next,

we choose evw and eyz to be fixed flow edges with equal capacity; this guarantees the same
amount of f s

1 is routed through Pvw and Pyz. The new graph is an sff instance.

Reducing SFF to 2CFF. Next, we will drop the selective requirement of the sff instance.
For each edge (x, y) selected for flow i, we construct a constant-sized gadget (see Figure 4):
We introduce two vertices xy, xy′, construct a direct path si → xy′ → xy → ti, and add

x xy xy′ y

ti si

Figure 4 The gadget of reducing a selective edge (x, y) for commodity i to a 2-commodity fixed
flow network (2cff).

edge (x, xy) and (xy′, y). This gadget simulates a directed path from x to y for flow f f
i , and

guarantees no directed path from x to y for flow f f

ī
so that f f

ī
cannot be routed from x to y.

We get a 2cff instance.

Reducing 2CFF to 2CF. It remains to drop the fixed flow constraints. The gadget we will
use is similar to that used in the last step. We first introduce new sources s̄1, s̄2 and sinks
t̄1, t̄2. Then, for each edge (x, y) with capacity u, we construct a constant-sized gadget (see
Figure 5).

x xy xy′ y

t̄1 t̄2 s̄1 s̄2

(0, u)
ti zi z′i si

t̄i s̄i

(0,M)(0, 2u− l) (0, u)

(0, u) (0, u) (0, u) (0, u)

(0,M) (0,M)

(0,M) (0,M)

Figure 5 The gadget of reducing 2cff to a 2-commodity flow with required flow amount (2cfr).
l, u are lower and upper edge capacity of (x, y), respectively: l = u if (x, y) is a fixed flow edge; l = 0
if (x, y) is a non-fixed flow edge.

We introduce two vertices xy, xy′, add edges (s̄1, xy′), (s̄2, xy′), (xy, t̄1), (xy, t̄2), (xy′, xy),
and (x, xy), (xy′, y). This simulates a directed path from x to y that both flow f r

1 and f r
2

can pass through. We let (xy′, xy) have capacity u if (x, y) is a fixed flow edge and 2u

otherwise; we let all the other edges have capacity u. Assume all the edges incident to the
sources and the sinks are saturated, then the total amount of flows routed from x to y in
this gadget must be u if (x, y) is a fixed flow edge and no larger than u otherwise. Moreover,
since the original sources and sinks are no longer sources and sinks now, we have to satisfy
the conservation of flows at these vertices. For each i ∈ {1, 2}, we create a similar gadget
involving s̄i, t̄i to simulate a directed path from ti to si (the original sink and source), and
let the edges incident to s̄i, t̄i have capacity M , the sum of all the edge capacities in the
2cff instance. This gadget guarantees that assuming the edges incident to s̄i and t̄i are
saturated, the amount of flow routed from ti to si through this gadget can be any number at
most M . To force the above edge-saturation assumptions to hold, we require the amount of
flow f r

i routed from s̄i to t̄i to be no less than 2M for each i ∈ {1, 2}.
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Now, this instance is close to a 2cf instance except that we require a lower bound for
each flow value instead of a lower bound for the sum of two flow values. To handle this, we
introduce new sources ¯̄s1, ¯̄s2 and for each i ∈ {1, 2}, we add an edge (¯̄si, s̄i) with capacity
2M , the lower bound required for the value of f r

i .
One can check that in each reduction step, the reduction time is nearly linear and the

problem size increases nearly linearly. In addition, given a solution to the 2cf instance, one
can construct a solution to the lp instance in nearly linear time.

3.1.4 Computing an Approximate Linear Program Solution From an
Approximate 2-Commodity Flow Solution

We establish an error bound for mapping an approximate solution to 2cfa to an approximate
solution to lpa. Below we outline the intuition behind our error analysis for flow problems.
We will keep track of multiple types of error (e.g., error in congestion, demand, selective
types, and homology depending on the problem settings). Now suppose we reduce problem
P to problem Q using a certain gadget, and then we map a solution to Q back to a solution
to P. We observe that each error notion of P is an additive accumulation of the multiple
error notions of Q. This is because we have to map the flows of Q passing through a gadget
including multiple edges back to a flow of P passing through a single edge. Each time we
remove an edge, various errors related to this edge and incident vertices get transferred to its
neighbors. Thus, the total error accumulation by the solution mapping can be polynomially
bounded by the number of edges. So, the final error only increases polynomially.
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Abstract
An error correcting code C : Σk → Σn is efficiently list-recoverable from input list size ℓ if for any sets
L1, . . . , Ln ⊆ Σ of size at most ℓ, one can efficiently recover the list L = {x ∈ Σk : ∀j ∈ [n], C(x)j ∈
Lj}. While list-recovery has been well-studied in error correcting codes, all known constructions with
“efficient” algorithms are not efficient in the parameter ℓ. In this work, motivated by applications in
algorithm design and pseudorandomness, we study list-recovery with the goal of obtaining a good
dependence on ℓ. We make a step towards this goal by obtaining it in the weaker case where we
allow a randomized encoding map and a small failure probability, and where the input lists are
derived from unions of codewords. As an application of our construction, we give a data structure
for the heavy hitters problem in the strict turnstile model that, for some parameter regimes, obtains
stronger guarantees than known constructions.
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1 Introduction

Let C : Σk → Σn be an error correcting code. We say that C is (efficiently) list-recoverable1

from list-size ℓ with output list-size L if, for any lists L1, . . . , Ln ⊆ Σ with |Li| ≤ ℓ for all i,
there is an (efficient) algorithm to recover the list

L = {x ∈ Σk : ∀i ∈ [n], C(x)i ∈ Li},

and |L| ≤ L. List recovery has historically been studied in the context of list-decodable
codes, where it has been used as a tool to obtain efficient list-decoding algorithms (see,
e.g., [17, 16, 19, 27, 22]). However, even though efficient list-recovery algorithms have been

1 In this paper we focus on zero-error list-recovery, which is the definition given here. Other works focus
on the more general problem of list-recovery from errors, in which C(x)i needs to be in Li only for some
fraction of the i-s.
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Editors: Miko laj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 55; pp. 55:1–55:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deand@bgu.ac.il
https://www.cs.bgu.ac.il/~deand
https://orcid.org/0000-0003-1862-8341
mailto:marykw@stanford.edu
https://sites.google.com/site/marywootters/
https://doi.org/10.4230/LIPIcs.ICALP.2022.55
https://eccc.weizmann.ac.il/report/2020/162/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


55:2 High-Probability List-Recovery, and Applications to Heavy Hitters

developed, all of them have a poor dependence on the parameter ℓ. For example, Hemenway,
Ron-Zewi, and Wootters [22] presents near-linear-time (in n) list-recovery algorithms, but
the output list L has size doubly-exponential in ℓ.

In this work, we are motivated by the following goal (which we do not fully achieve):

▶ Goal 1. For ℓ ≥ 2, design a family of codes C : Σk → Σn so that:
1. C can be encoded in time O(n);
2. The rate k/n of the code is a constant (independent of n and ℓ);
3. The alphabet size |Σ| is polynomial in ℓ (and independent of n);
4. The code C can be list-recovered in time O(n · ℓ) (linear in both n and ℓ), with output list

size |L| = O(ℓ).
To the best of our knowledge, this goal is open even if we allow the output list size |L| and
the running time to depend polynomially on ℓ, rather than linearly.

Goal 1 is desirable for several reasons. First, it represents a bottleneck in our understanding
of algorithmic coding theory, and it seems likely that achieving it would involve developing new
techniques that would be useful elsewhere. Second, list-recovery with reasonable dependence
on ℓ is related to questions in pseudorandomness, where the the parameter ℓ is often very
large (see our discussion in Section 1.2). Third, as we explore in this paper, obtaining Goal 1
has applications in algorithm design, in particular to algorithms for heavy hitters.

Probabilistic list-recovery with good dependence on ℓ

In this work, we make progress on Goal 1 by achieving a relaxed version where the encoding
map C : Σk → Σn is allowed to be randomized, and where the input lists are generated from
unions of codewords; we must succeed with high probability over the randomness in C. In
particular, our main result implies the following theorem.

▶ Theorem 2 (informal; weaker than main result). For all ℓ > 0, there is a randomized
encoding map C : Σk → Σn so that
1. C can be encoded in time O(n);
2. The rate of C, k/n, is a constant independent of ℓ and n;
3. The alphabet size |Σ| is polynomial in ℓ (and independent of n);
4. For any list x(1), x(2), . . . , x(ℓ) ∈ Σk, there is an algorithm that runs in time O(nℓ polylog ℓ)

that has the following guarantee. With probability at least 1 − o(1) over the randomness of
C, given the lists Li = {C(x(j))i : j ∈ [ℓ]}, the algorithm returns a list L so that x(i) ∈ L
for all i, and so that |L| = O(ℓ).

This statement is weaker than our main result because in fact our result still holds even if a
random subset of the lists Li in Item 4 are erased, and moreover the result still holds when
some of the lists Li in Item 4 contain some extra “distractor” symbols that occur according
to any sufficiently “nice” distribution. We defer the formal statement of our list-recovery
guarantee to Section 2.

Our code is essentially an expander code with aggregated symbols. That is, we begin
with an expander code C0 : Σk

0 → Σn
0 , as in [39], and we aggregate together the symbols as

in [1]. (We discuss this construction in more detail below.) Our recovery algorithm uses ideas
from previous algorithms, propagating information around the underlying expander graph
given some advice. What makes our work different are the facts that (a) we leverage the
randomness of C and a small failure probability, and (b) our underlying expander graph comes
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from a high-dimensional expander.2 In particular, using the randomness in C we are able
to obtain an algorithm with running time nearly-linear in ℓ, and using a high-dimensional
expander we are able to boost our success probability to a level appropriate for an application
to heavy hitters, which we discuss next.

Motivation from Heavy Hitters

One of the reasons we are interested in Goal 1 is because of the potential algorithmic
applications of such a code. To illustrate this potential, we work out an application of our
construction to the heavy hitters problem. We emphasize that our focus is on the
parameter regime where N is very large, specifically log N ≫ poly(1/ε). In
particular, we are interested in optimizing the dependence on N , rather than on ε.

The set-up is as follows. We are given a stream of updates (x(i), ∆(i)), for x(i) in some
universe U of size N , and ∆(i) ∈ R. For all m, x, we assume that f(x) ≜

∑
j∈[m] ∆(j) ·

1x(j)=x > 0. we think of f(x) as the “frequency” of item x. The ∆-s are updates: we may
add or remove some quantity of each item x, provided that f(x) never becomes negative.
This is called the strict turnstile model. The goal is to maintain a small data structure (a
“sketch”) so that, after m (efficient) updates (x(i), ∆(i)), we can (efficiently) query the data
structure to return a list of ε-heavy hitters. That is, we would like to recover a list L of size
at most O(1/ε) that contains all x ∈ U so that f(x) ≥ ε · ∥f∥1 ≜

∑
x∈U f(x).

The beautiful Count-Min Sketch (CMS) data structure of Cormode and Muthukrishnan [7]
gives a solution to this problem. It uses optimal space O(ε−1 log N) and has update time
O(log N). However, the query time to return all O(1/ε) heavy hitters is large, O(N log N)
(essentially, one performs a point query for each x ∈ U to see if it is a heavy hitter). The
work [7] showed how to alleviate this with a so-called “dyadic trick,” bringing the query time
to O(log2 N) at the cost of an extra log N factor in both the space and update time.3 (See
Table 1 for a summary of the parameters in these and other works).

The starting point for our work is the work of Larsen, Nelson, Nguyễn and Thorup [29].
That work studied a much more general problem – heavy hitters for all ℓp norms in the
general turnstile model – but for the special case of the ℓ1 norm and the strict turnstile
model, they were able to get a nearly optimal algorithm, with the same space and update
time complexity as the original CMS, but with query time O(ε−1 log1+γ N) for any constant
γ > 0. That work highlighted a connection to list-recovery (see [29, Section C]; a similar
connection is also present in earlier works on group testing and compressed sensing, for
example [24, 35, 36, 13, 12]), which is one of our motivations to study Goal 1.

The approach of [29] was the following (we have modified the description to be more
explicitly coding-theoretic). To perform an update on an item x ∈ U , encode it as C(x) ∈ Σn

with our (randomized) encoding function. Then insert each symbol C(x)j into n different
ε-heavy hitters data structures that work on universe Σ (this could be a small CMS sketch, or
something else). To query all of the heavy hitters, we first query each smaller data structure
to find a list Lj . Notice that since |Σ| ≪ |U|, it does not matter that the query algorithm
for the small data structures is slow. Now, we do list-recovery on the lists Lj to recover a
list L that contains all of the heavy hitters.4

2 We note that the construction of Dinur et al. [9] is similar to ours, also using an ABNNR-style [1] symbol
aggregation with a high-dimensional expander. However, in that work they have a more ambitious goal
– list-decoding with no randomness in the encoder – but in return the parameters are not close to those
in Goal 1.

3 See also the work by Cormode and Hadjieleftheriou [6] who consider a generalization of the dyadic trick
that trades off between the query time and the overhead in update time and space.

4 Provided that the output L of the list-recovery algorithm is not too large, we can use an additional
large CMS data structure to efficiently do point queries on each item x ∈ L, pruning it down to O(1/ε).
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Table 1 Some relevant results on ε-heavy hitters in the strict turnstile model where the universe
has size N , for log N ≫ poly(1/ε). We consider schemes with failure probability δ ≥ 1/ poly(N);
see the discussion in Section 1.3 for smaller failure probability where the works marked with ⋆ shine.
The Õ notation hides log log(N) factors and log(1/ε) factors. Above, c is a constant independent of
N and ε, and γ is any constant larger than 0. Unfortunately, the failure probability for our algorithm
is only N− poly(ε), rather that N−c for some constant c. By repeating our algorithm poly(1/ε) times
we can boost the success probability to N−c. We note that each of Space, Update, Query time
for [7] (with the dyadic trick) and [31] can be multiplied by εc if one replaces the failure probability
with N−εc

and the results from [29, Theorem 9] remain the same for that larger failure probability.

Reference Space Update Query Failure probability

[7] O
( log N

ε

)
O(log N) O(N log N) N−c

[7] (“dyadic trick”) O
(

log2 N
ε

)
O(log2 N) O

(
log2 N

ε

)
N−c

[29] O
( log N

ε

)
O(log N) O

(
log1+γ N

ε

)
N−c

[31]⋆ Õ
(
log2 N

)
Õ

(
ε log2 N

) 1
ε

poly(log N) N−c

[5]⋆ O
( log N

ε

)
Õ(log N) 1

ε
poly(log N) 0

This work O
( log N

ε

)
O(log N) O

( log N
ε

)
N− poly(ε)

This work O
( log N

εc

)
O

( log N
εc

)
O

( log N
εc

)
N−c

However, as Goal 1 remains open, [29] did not use a list-recoverable code to obtain their
results. Instead, they (like us) took advantage of the fact that the lists Lj can be viewed as
random variables over the randomness in the encoding map C, and then use a construction
based on “cluster-preserving clustering” to solve the problem. While in some sense this
construction must be a list-recoverable code for randomized input lists, it is not clear (to
us) how to extract a natural code out of it: the work [29] took the perspective of graph
clustering, rather than coding theory. In contrast, our code is very natural in the context
of coding theory, as it is simply an expander code with aggregated symbols (albeit using a
high-dimensional expander for the underlying graph).

As an example of the utility of our construction, we plug our randomized list-recoverable
code (as in Theorem 2) into the framework of [29]. This gives us an algorithm for heavy
hitters that, in some parameter regimes, even slightly outperforms that of [29]. When ε

is constant and N is growing, we are able to improve the query time from O(log1+γ N) to
O(log N). In particular, we prove the following theorem. (See Table 1 for a comparison to
other work when log N ≫ poly(1/ε)).

▶ Theorem 3 (informal; see Theorem 5.11 in the full version). There is a data structure that
solves the heavy hitters problem in the strict turnstile model, that uses space O(ε−1 log N),
update time O(log N), and query time O(ε−1 log N polylog(1/ε)), with failure probability
δ = N−Θ(ε3), as long as ε ≥ (log N)−Ω(1).

By repeating this data structure O(ε−3) times, we obtain a data structure that takes
space O(ε−4 log N), update time O(ε−3 log N) and query time O(ε−4 log N polylog(1/ε)),
with failure probability δ = N−c.

Our algorithm has the added property that a successful L of size O(1/ε) not only contains
all the true heavy hitters, but also does not contain “false-positives”, in the sense that each
x ∈ L satisfies, say, f(x) ≥ ε

4∥f∥1. This property also applies to most previous heavy hitters
algorithms.
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Contributions

To summarize, our main contributions are the following.
1. A code with probabilistic list-recovery. We give a natural code construction that

achieves a probabilistic version of Goal 1, as per Theorem 2. Our code construction
leverages recent progress in high-dimensional expanders in order to succeed with high
probability. We hope that our construction and techniques may be used in the the future
to make further progress on Goal 1.

2. Proof of concept: application to heavy hitters. As an illustration of the utility
of our construction – and as an proof-of-concept meant to encourage study of Goal 1 –
we obtain a new data structure for ε-heavy hitters in the strict turnstile model. Our
data structure has slightly stronger guarantees than existing constructions for failure
probability 1/ poly(N) when ε is constant and the universe size N is growing (although
it is outperformed by previous work when ε is small compared to 1/ log(N)).

1.1 Construction Overview
In this section, we give a brief overview of our probabilistically list-recoverable code. We
use this code to solve the ε-heavy-hitters problem following the paradigm described above,
by using small heavy-hitters sketches for each symbol of the (randomized) encoding C(x) of
x ∈ U .

At a high level, we construct our code C : Σk
0 → Σn′ as follows. We start with some base

code C0 : Σk
0 → Σn

0 , as well as a bipartite expander graph G = (R, L, E), where L = [n] and
R = [n′], for some n′ = O(n).5 We will need C0 and G to have specific properties, which we
will come to below. For x ∈ Σk

0 , we generate the encoding C(x) as follows. For j ∈ [n′], the
encoded symbol C(x)j will be gotten as the concatenation of the symbols C0(x)i for i ∈ ΓG(j),
where ΓG(j) denotes the neighbors of j in the graph G. This sort of “aggregation along
an expander” technique, introduced in [1], has become a standard distance amplification
technique in error correcting codes. Because of the concatenation, our final alphabet Σ will
be Σ = Σm2

0 .
To perform list recovery, we will start with a small piece of “advice,” and then recover

the (hopefully unique) message x consistent with that advice. We will generate our final list
L by iterating over all possible values of the advice. Towards this end, we will choose some
coordinate j ∈ [n′] for which Lj is not erased, and some σ⋆ ∈ Lj as our guess for C0(x)|ΓG(j)
to act as our advice. Given this advice σ⋆, we wish to keep propagating information until we
obtain enough coordinates of C0 that would allow us to uniquely determine x; this amounts
to decoding the code C0 from erasures.

In the exposition below, we start with a naive attempt to do this propagation, and build
up the properties that we will need C0 and G to satisfy as we refine it. Our construction is
depicted in Figure 1.

A naive attempt

Our first attempt (which will not work) is the following. Let j ∈ [n′] be as above, so we
assume that we are given as advice the m2 symbols C0(x)|ΓG(j); our goal is to recover (a
hopefully unique) x given this advice and given the input lists Lj′ for j′ ∈ [n′]. Choose some
coordinate j′ ∈ [n′] such that ΓG(j) ∩ ΓG(j′) ̸= ∅. As we already know the symbols in the

5 Using the notation of the full version, Σ0 = Fq, Σ = Fm2
q for some constant m2, and n′ = |V2| = O(n).
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x̃ = π1(x) ∈ Σk
0

C0(x̃) ∈ Σn
0 L = [n]

M

C0

π2

R = [n′] for n′ = O(n)

C0(x̃)im2

C0(x̃)i2

C0(x̃)i1

C(x)j = (C0(x̃)i1 , . . . C0(x̃)im2
)...

T

Figure 1 Illustration of our construction. The coordinates of the inner code C0 live on the
vertices of L. The final code C consists of symbols aggregated by vertices in R. The randomness in
the encoding comes from the permuations π1 and π2, which scramble the messages in Σk and the
coordinates in [n], respectively. We use the vertices in T ⊆ R to define parity checks that partially
define the code C0. The “middle layer” M is not used in the definition of the code, but is a necessary
auxiliary structure for our recovery algorithm.

coordinates indexed by ΓG(j), this gives us partial information about C(x)j′ in the form of
|ΓG(j) ∩ ΓG(j′)| elements of Σ0 in known locations. One can hope that this information
would be enough to pinpoint a specific entry in the list Lj′ , allowing us to recover all symbols
of C0(x) in the coordinates indexed by ΓG(j′), and keep going in the same manner until
enough information is propagated.

Clearly, when we have no guarantee on the input lists Li, this approach fails miserably,
as it may be the case that Lj′ contains numerous elements in Σm2

0 that agree in some of
the m2 locations, and the information coming from our advice for j will not uniquely pin
down an element of Lj′ . However, note that for a completely random input list Lj′ , such an
attempt would be successful with probability at least 1 − |Lj′ | / |Σ0|, and we could set the
parameters in such a way that |Lj′ | ≪ |Σ0|. That is, in this case it would become reasonably
likely that the choice of σ⋆ ∈ Lj would uniquely pin down an element σ ∈ Lj′ , allowing us to
propagate information to another vertex in the graph. The hope is that we could propagate
this information throughout the graph, using the fact that G is an expander to guarantee
that most vertices will be determined. Of course, the problem with this is that we do not
want to assume that the input lists are completely random, but this leads us to our next
attempt, where we inject randomness into the encoding procedure.

Injecting randomness

While we won’t get completely random lists Lj as we might have wanted for the naive attempt,
we can make the input lists randomized via a randomized encoding. More specifically, our
base code C0 will be deterministic, and to apply C we will make use of two permutations: a
permutation π1 acting on the universe U and a permutation π2 acting on [n]. More formally,
given x ∈ Σk

0 , we first apply π1(x) and apply the encoding C0 to π1(x). Next, we permute
the coordinates of the outcome according to π2. Finally, we aggregate symbols according to
G, yielding C(x) ∈ Σn′ . Roughly speaking, the first permutation – which will be pairwise
independent – will make C0(x) uniformly distributed over the code’s image, even conditioned
the value of C0(x′) for some x′ ̸= x. The second permutation will make sure that querying
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any particular symbol C0(x)j symbol will behave like sampling a uniformly random symbol
in C0(x), and even more strongly, combined with π1 it will behave like a random sampling
from a nearly uniform distribution over Σ0.

Analyzing the permutation-aided construction carefully, we are able to show that indeed,
with probability roughly 1 − η for η ≈ |Lj′ | /

√
|Σ0|, we can pinpoint a single list element

of Lj′ . One conceptual observation that will help us establish that result is the fact that
the distribution of symbols in most codewords of a high-rate code is close to uniform, and
indeed we will need the rate of C0 to be very high (see Section 3.3 of the full version). We
leave the more technical details to Section 5 of the full version.

Although promising, this approach is still problematic. We start with m2 = O(1) symbols
that we know, and at each iteration the set of revealed coordinates grows by a small constant
factor, using the expansion properties of G. As initially our sets are of constant size, we
cannot hope for success probability much greater than 1 − η for the initial propagation steps.
A failure probability of η, even if we disregard the need for a problematic union bound over
all propagation steps, is far too large for us, and in particular for our application to heavy
hitters. The problem described here is common to various expander-based techniques, and
in this work we resolve it by choosing G to be a special expander graph that comes from a
high-dimensional expander, and by choosing C0 to be a suitable Tanner code. We discuss
these modifications next.

Using high-dimensional expanders to get a good head start

We resolve the issue described above – that we cannot possibly get a good failure probability
if we start with only a few known symbols – by using techniques from high-dimensional
expanders. Suppose that, starting with only the advice σ⋆ for m2 symbols of C0(x), we
could deterministically identify a large subset T ⊆ [n′] for which we know all symbols of
C0(x) indexed by ΓG(T ). This way, concentration bounds can kick in, and hopefully each
propagation step would be successful with probability roughly η|T |, provided we can get a
enough independence between query attempts at the same propagation step. We defer the
independence issue to the full version (this ends up following from the amount of independence
we have in our permutations π1 and π2), and concentrate on obtaining such a T .

Recall that we work over the bipartite expander graph G = (R = [n′], L = [n], E). We
will construct G′, a tripartite extension of G, with an added middle layer M , |M | = O(n),
having the following property. Identify each vertex j of R with a subset ΓG(j) ⊂ [n] of
cardinally m2 in the natural way. Each vertex in M is identified with a subset S ⊂ [n] of
cardinality m1, for 1 < m1 < m2, such that S is connected to all its m1 elements on the left,
and to all its supersets on the right. More specifically, each vertex j in R will be connected
to all

(
m2
m1

)
subsets of ΓG(j) in M . (See Figure 1 for an illustration.)

We will choose the code C0 to be a Tanner code with respect to the structure of the
graph G. That is, as before, we associate the n symbols of a codeword C0(x) with the left
hand vertices L of G, and we define C0 so that a codeword C0(x) is a labeling of L so that
to following property holds: For every j in an appropriate subset T ⊂ R, the labels on the
vertices of ΓG(j) form a codeword in some error correcting code C00 of length m2 with good
distance; in particular, given any m1 symbols of C00(x′) for some x′, we can recover all of
C00(x′).

The reason to choose C0 like this is the following. Say we know that j and j′ are in the set
T , and that they have a common neighbor in M . This implies that |ΓG(j) ∩ ΓG(j′)| ≥ m1,
since there is some set of size m1 that both of those sets contain. In particular, by our choice
of C00, once we know the symbols of ΓG(j), we can deterministically reveal all symbols of
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ΓG(j′) by decoding C00. Then we can continue this process until we recover the symbols in
ΓG(j) for all j ∈ T . By counting constraints, it turns out that we can choose T to be large
and still have a high-rate code C0. This gives us our set T so that we can deterministically
fill in the symbols of ΓG(T ) to use as a head start and increase our success probability.

How do we construct such a tripartite graph, that on the one hand has not too many
vertices in R and M (i.e., R = O(n) and M = O(n)), but on the other hand has favorable
intersection and expansion properties? This is where high-dimensional expanders enter the
picture, and indeed the tripartite graph comes from an (m2 − 1)-dimensional simplicial
complex (see the full version for the formal definitions). A similar object was used by
Dinur et al. [9] as a double sampler, and in Dikstein et al. [8] as a multilayer agreement
sampler. We note that the construction of [9] is quite similar to ours, as they also use the
symbol-aggregation technique of Alon et al. [1]; the main difference in the construction is
that we use a very specific inner code C0 that uses the structure of G as part of its parity
checks, while the work of [9] chooses C0 to be an arbitrary code with good distance.

In our actual construction, the code C0 is a bit more involved, and its constraints arise
both from the special subset T of R and from an additional bipartite expander. Each of the
two types of constraints is helpful for a different aspect of our algorithm. Roughly speaking,
the constraints that come from T ⊆ R help us as described above (filling in the set ΓG(T ) to
get a head start). The other constraints are there to ensure that the final code C0 has good
enough distance to allow for the final unique decoding. All in all, we are able to achieve a
set T that has size about |T | ≈ poly(ε) · n. We remark that this is the point where we don’t
quite get the failure probability that we want, resulting in a sub-optimal dependence on ε

for our application to heavy hitters: we want failure probability exp(−n) (we will choose
n logarithmic in N , so this would be poly(1/N)), and we end up with failure probability
exp(−|T |) = exp(− poly(ε)n).

There are plenty of details that are swept under the rug in the description above,
including implementation details needed to keep the recovery algorithm linear-time. We give
the recovery algorithm in detail in the full version of the paper. We present our list-recovery
algorithm in the context of a query algorithm for heavy hitters, since for our analysis we
want to focus on the distribution of input lists that arises from the heavy hitters example,
and it is easiest to present everything together. In particular, the input lists do not arise
simply from the union of ℓ codewords C(x), but (a) may be erased if the corresponding small
data structure failed, and (b) may contain extraneous symbols that arise from items x(i)

that appear in the stream that are not heavy hitters.

1.2 Motivating Goal 1 from Pseudorandomness

In this section, we briefly explain why Goal 1 – and in particular, getting a good dependence
on the parameter ℓ – is of interest in pseudorandomness. There is a tight connection between
error correcting codes and fundamental constructions in pseudorandomness, notably the
equivalence between (strong) seeded extractors and list-decodable codes [41, 40]. It turns out
that list recovery can also play a prominent role in the study of related objects from extractor
theory. In seeded condensers, first studied in [38], the goal is to “improve” the quality of a
random source X using few additional random bits. A bit more formally, given a random
variable X ∼ {0, 1}n with min-entropy k, a condenser Cond : {0, 1}n × {0, 1}d → {0, 1}m

is such that Cond(X, Ud) has min-entropy k′, where we want the entropy rate to improve,
namely, k′

m ≫ k
n , and to maintain a small entropy gap m − k′. (For the formal definition,
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see, e.g., [18].) List recoverable codes in the errors model6 give seeded condensers, and
vice versa. More specifically, the input and output entropies k and k′ are almost in one-
to-one correspondence with the (logarithm of the) output and input list sizes, log |L| and
log ℓ (for the precise statement, see [10]). Thus, to get meaningful condensers from list-
recoverable codes, the dependence between L and ℓ needs to be good, in all regime of
parameters, and in particular handle ℓ that grows arbitrarily with the message length. In
fact, the best list-recoverable code in this regime is the (folded) Parvaresh-Vardy code [18],
giving |L| ≈ ℓ.7 The connection between condensers and list-recoverable codes was recently
utilized in the computational setting to construct nearly-optimal pseudorandom generators
for polynomial-sized circuits [10].

The model of zero-error list recovery, described in Goal 1 (when |L| depends nicely on ℓ

and ℓ can be arbitrary), has applications to pseudorandomness too. A (strong) disperser is a
function Disp : {0, 1}n × {0, 1}d → {0, 1}m such that for any random variable X ∼ {0, 1}n

with sufficient min-entropy, the support of Disp(X, Ud) is large. Such dispersers have found
several applications, and are tightly connected to open problems in expander graphs. It is
not hard to show, and we do so in Appendix B of the full version, that dispersers, in some
parameter regime, are equivalent to zero-error list-recoverable codes. We are not aware of
this equivalence being stated elsewhere. For completeness, we note that dispersers in another
parameter regime give rise to erasure list-decodable codes [3].

Finally, observe that in order to get good pseudorandomness primitives from list-
recoverable codes, efficient recovery is not an issue, and all that is needed is an efficient
encoding.

Even though a probabilistic guarantee as in Theorem 2 does not immediately yield
improved pseudorandom objects, it is our hope that our progress on Goal 1 is a first step
towards achieving that goal, which would imply improved dispersers.

1.3 Related Work
Algorithmic List-Recovery

List-recovery was originally introduced as an avenue towards list-decoding, where the goal is,
given a vector z ∈ Σn, to recover the list L of all messages x ∈ Σk so that C(x) is sufficiently
close to z in Hamming distance. For example, the celebrated list-decoding algorithm of
Guruswami and Sudan for Reed-Solomon codes [17] is in fact a list-recovery algorithm.
However, the Guruswami-Sudan algorithm stops working at the so-called Johnson bound,
which in the context of list-recovery means that the rate k/n of the code can be at most 1/ℓ.
Since the Guruswami-Sudan algorithm, there has been a great deal of work, mostly based
on algebraic constructions, aimed at surpassing the Johnson bound for list-decoding and
list-recovery. In particular, the works [16, 19, 27, 28] show variations of Reed-Solomon codes,
like folded RS codes and multiplicity codes, can be efficiently list-decoded and list-recovered
beyond the Johnson bound. For list-recovery, these constructions are able to obtain rate
k/n = Ω(1), but unfortunately the size of the lists L returned (and in particular the running
time of the algorithm that returns that list) is at least quasipolynomial in ℓ [16, 28], and
sometimes exponential in ℓ. Moreover, those constructions naturally have large alphabet
sizes, polynomial in n. In order to reduce the alphabet size, constructions using algebraic

6 In the errors model, we are given L1, . . . , Ln ⊆ Σ with |Li| ≤ ℓ for all i, and we require the list
L =

{
x ∈ Σk : Pri∈[n][Ci(x) ∈ Li] ≥ 1 − γ

}
to be small, for some error parameter γ.

7 Note, however, that the rate of the code in [18] is only k−Ω(1) for k being the message length.
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geometry codes have been used (e.g. [20, 21, 15]), although these works still have parameters
with an exponential dependence on ℓ. Moreover, all of the works mentioned above have
polynomial – and not linear – time recovery algorithms. Using expander-based techniques
(e.g. that of Alon et al. [2]), these algorithms can be improved to near-linear time in n (e.g.,
as in [22]), but at the cost of increasing the dependence on ℓ to doubly-exponential.

In addition to algebraic constructions, there have also been a few constructions of purely
graph-based codes, which are more similar to our constructions. The work of Guruswami
and Indyk [14] gives a linear-time algorithm for list-recovery of graph-based codes, which
does even better in the setting of mixture-recovery (similar to the setting that we study here)
where the input lists are generated from unions of codewords. That work achieves output
list size |L| exactly equal to ℓ, but has rate O(1/ℓ) and the alphabet size is exponential in ℓ.
The work of Hemenway and Wootters [23] gives an O(n)-time algorithm for list-recovering
graph-based codes (the expander codes of [39, 42], with an appropriate inner code); these
can have high rate (close to 1), but unfortunately the dependence on ℓ in other parameters
is quadruply-exponential.

The work of Dinur, Harsha, Kaufman, Livni-Navon and Ta-Shma [9], which directly
inspired our work, used double-samplers derived from high-dimensional expanders, combined
with an expander-based symbol aggregation technique of ABNNR that we also use [1]. The
goal of that work was to give an efficient list-decoding algorithm for any code that follows
the ABNNR construction. This is much more general that what we are aiming to do (since
we get to carefully design our code before applying the ABNNR construction), and also the
goal is different (list-decoding in the worst case, rather than randomized list-recovery). That
work is able to get efficient (polynomial-time) algorithms, but when one tries to turn their
algorithm into a list-recovery algorithm in the most direct way, the parameters are not close
to those in Goal 1; in particular, the algorithm is only poly(n)-time, and the dependence on
ℓ is again exponential. It is not clear (to us) how to use the approach of [9] to achieve Goal 1.

We also mention a recent work of Dikstein, Dinur, and Harsha [8] that suggests an
approach for constructing locally testable codes. In particular, as in our construction they
also use the underlying graph (an agreement expander coming from a high-dimensional
expander) both for symbol manipulation and for defining the parity checks. However, their
goal is quite different than ours: they obtain locally testable codes via lifting a set of “smaller”
locally testable codes, extending the natural Tanner tests.

Heavy Hitters

The first work with provable guarantees for the heavy hitters problem was by Misra and
Gries [32], which applied to the cash register model where each of the updates ∆(i) are equal
to 1. We work in the more general strict turnstile model described above. For the strict
turnstile model, the Count-Min Sketch data structure of [7] above already gets good results,
and the best current results for the parameter regime we are motivated by (in particular,
with failure probability 1/ poly(N), and where log N ≫ poly(1/ε)) are those of [29] described
above. It is known [25] that Ω(ε−1 log N) words of memory are required for this setting, and
thus the space used by these works are optimal.

We next mention three works that study heavy hitters when the failure probability is
extremely small (or zero) [31, 5, 33]. Relative to our work, these works achieve – as with
[29] – a better dependence on ε but worse dependence on N ; however, these works can
additionally get away with extremely small or even zero failure probability. In [31], Li et al.
modify the Count-Min Sketch by looking at different hash functions, and they present a data
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structure with failure probability δ with space Õ
(
log(εN)

(
ε−1 + log(1/δ)

))
, update time

Õ(log2(1/ε) log(εN) (1 + ε log(1/δ)), and query time Õ(ε−1 log2(1/ε) log(εN) log(1/δ)). For
δ = N−c and log N ≫ poly(1/ε), this gives the parameters stated in Table 1. However, when
δ is much smaller – for example, δ = N−Ω(1/ε) – this gives better results than the works
previously discussed, and in particular implies a result that is uniform over all sets of heavy
hitters by union bounding over the NO(1/ε) choices for such sets. In [5], Cheraghchi and
Nakos give a randomized construction of a data structure that also solves the heavy hitters
problem uniformly over all streams x(1), x(2), . . . (that is, with error probability zero assuming
that the data structure was constructed correctly). This scheme uses space O(ε−1 log(Nε)),
has update time Õ(log2(1/ε) log(εN)), and query time ε−1 polylog(N).8 That work actually
provides solutions to several problems, not just heavy hitters, via a construction of list-
disjunct matrices. Finally, we mention the work of Nelson et al. [33], which gives a fully
deterministic construction of a data structure for heavy hitters (and more generally for ℓ∞/ℓ1
sparse recovery) with zero error probability; the space and query time is O(ε−2 poly log(N)),
and the update time is O(ε−1 poly log(n)).9

We note that there are algorithms that achieve O(log N) update and query time for
constant ε, but with only a constant failure probability. For example, such an algorithm is
given in the full version of [29] (see [30, Theorem 10]).

One can generalize to the general turnstile model, where there is no guarantee that f(x)
is positive at each point in the stream, and one can generalize to ℓp-heavy hitters, where
the goal is to return all x so that |f(x)| ≥ ε∥f∥p. There has been a great deal of work along
both of these lines; see [29] and the references therein. In particular, for ℓp heavy hitters in
the general turnstile model, the work [29] gives a data structure with space O(ε−p log N),
update time O(log N), and query complexity ε−p polylog(n).

We briefly discuss the approach of [29], in order to illustrate the differences between their
approach and ours. While that work inspired the list-recovery approach we take, and they
also use error correcting codes and expander graphs, the construction itself is quite different.
That work takes the perspective of graph clustering. In more detail, their sketch can output
a graph in which each heavy hitter is represented by a well-connected cluster in the graph.
They then develop a clustering algorithm that can recover the clusters, and hence the heavy
hitters. In order to make the connection to graph clustering, they first encode x with an
error correcting code C0 as we do; but they only need this code to have good distance, as they
do not go down the list-recovery route. Then they break C0(x) up into n′ chunks. Before
putting the j-th of these chunks into the j-th smaller data structure, they append it with
tags hj(x) and {hΓ(j)i

(x)}, where the hj are hash functions and Γ is the adjacency function
for an expander graph G. Thus, the j-th chunk of C0(x) is essentially connected by edges in
G to the other chunks of C0(x), and in particular the chunks of C0(x) form a cluster that can
be recovered by a clustering algorithm.

We note that [4] was also inspired by [29], and builds on their approach to develop
differentially private heavy-hitters algorithms. In fact, that work even casts the scheme
of [29] as a list-recovery scheme, in a relaxed definition of list-recovery that is different

8 We note that here the guarantee is to return a list L of size O(1/ε) containing all the true heavy hitters,
although in both [31] and [5], the list is allowed to contain elements with frequencies f(x) ≪ ε∥f∥1,
while most of the heavy-hitters work surveyed above, including ours, does not have such false positives.

9 We note that in [33], the query time to recover the list of the heavy hitters is Ω(N) and the space
involves a single factor of log(N), but the “dyadic trick” can be used to obtain the bounds mentioned
above.
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from our relaxed version in Theorem 2. In particular, their notion of list-recovery will not
handle input lists L1, . . . , Ln that are generated by any ℓ distinct messages, as we handle in
Theorem 2.10

Algorithmic applications of list-recovery

Our work is inspired by the use of list-recovery in [29], but there is a rich history of using
list-recoverable codes in similar algorithmic applications. One example is group testing, where
the goal is to identify d “positive” items out of a universe of size N , given tests of the form∨

i∈I 1[i is positive] for subsets I ⊂ [N ]. A classic construction of Kautz and Singleton [26]
reduces this question to the question of list-recovery. This connection, and elaborations on
it, has been exploited in several works, which aim to both minimize the number of tests and
to develop sublinear-time algorithms to recover the set of positive items [24, 35].

A second example, even closer to our work, is in compressed sensing. In compressed
sensing, the goal is to approximately recover an approximately sparse vector v ∈ RN given
linear measurements Av for some A ∈ Rt×N . The heavy-hitters problem is closely related,
as a (linear) solution to the heavy hitters problem can approximately recover the support of
v. List-recoverable codes have been used in the context of compressed sensing in a similar
way as it was used in [29]: associate each i ∈ [N ] with a message, and encode it with a
list-recoverable code to get a codeword C(i) = (c1, . . . , cn) ∈ Σn. Then reduce the compressed
sensing problem to n smaller instances of the same problem for vectors of length |Σ|: for each
j ∈ [n], we have a vector w(j) indexed by Σ so that the entry w

(j)
σ is obtained by aggregating

all of the coordinates vi of v so that C(i)j = σ. Now we can either recurse or solve these
smaller problems in another way. Previous works [36, 13, 12] have observed that a good
list-recoverable code (e.g., satisfying Goal 1) would solve this problem. However, they ran
into the same issue that we did, namely that we do not know of any such codes. Instead,
they either used sub-optimal codes or developed work-arounds, as we describe below.

The work of Ngo et al. [36] was, to the best of our knowledge, the first to apply list-recovery
in compressed sensing. We mention two results in that work that use a framework quite
similar to that of [29] (and thus to ours), making explicit use of (sub-optimal) list-recoverable
codes. The first result is based on the list-recoverability of Reed-Solomon codes. As RS
codes do not achieve Goal 1, this results in a sub-optimal number of measurements, but is
nice and simple. The second is based on Parvaresh-Vardy (PV) codes. PV codes have good
rate and output list-size, but unfortunately the alphabet size is very large. To get around
this, [36] (inspired by the work [35] on group testing mentioned above) considered a code
constructed by repeatedly concatenating PV codes with themselves. This does not lead to a
code that achieves Goal 1 – the rate depends on ℓ, and either the alphabet size or the rate
must depend on n – but they are able to make these dependencies not too bad. This leads
to schemes with near-optimal number of measurements t, although the schemes only work
for non-negative signals. Further, since PV codes do not have near-linear-time algorithms,
the recovery algorithm runs in time poly(t) rather than near-linear in t.

10 In a bit more detail, the notion of list-recovery in [4] allows for L1, . . . , Ln to be generated by ℓ messages
x(1), . . . , x(ℓ), provided that the messages lie in distinct “buckets,” according to any fixed bucketing of
the message space. The choice of the code may depend on the bucketing. In this language, the result
of [29] (see [4, Theorem 3.6]) says that it is possible to obtain a code with constant rate, output list
size L = O(ℓ), and alphabet size that is polynomial in the number of buckets, and a polynomial-time
decoding algorithm. If the number of buckets is poly(ℓ), the alphabet size is also poly(ℓ), as we would
hope, but as the number of buckets grows (to approach the general case with |Σ|k buckets of size one,
where there is no “bucketing” restriction) the alphabet size grows accordingly.
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The work of Gilbert et al. [13] follows a similar outline, using the Loomis-Whitney-based
codes of [34]. For d > 0 some integer parameter, these are codes C : [N ] → [N1/d]d−1 are
(ℓ, ℓd/(d−1))-list-recoverable in time O(ℓd/(d−1) log N). In terms of the desiderata of Goal 1,
this does give near-linear-time recovery with good dependence on ℓ; however the alphabet size
is huge, growing exponentially in the message length. In [13], they deal with this by applying
the scheme mentioned above recursively until the alphabet size becomes manageable. As a
result, they are able to get a nearly optimal number of measurements, with a recovery time
that depends polynomially (but not linearly) on log N , and with an extremely small error
probability, smaller than 1/ poly(N).

We also mention [12], which uses list-recoverable codes (PV codes) in a more complicated
way to achieve a near-optimal compressed sensing algorithm in the uniform (“forall”) model.
They also treat the indices i as messages and encode them with a list-recoverable code, but
they develop more machinery – using an expander to add linking information between the
symbols for example – in order to reduce to the list-recovery problem.

1.4 Open Questions and Future Work
In this work we have made progress towards Goal 1 by constructing a randomized code that
supports, with high probability, linear-time list-recovery from certain lists. This was enough
for our application to heavy hitters, but many open questions still remain.

1. The most obvious open question is to fully attain Goal 1. In addition to furthering our
knowledge in algorithmic coding theory, it seems likely that attaining Goal 1 (or the
techniques used to do it), would have other applications in algorithm design, as well as in
pseudorandomness (as per Section 1.2).

2. While we are able to use techniques from high-dimensional expansion to obtain a failure
probability of N−Ω(ε3) (in the setting of ε-heavy hitters), we would like a failure probability
of N−Ω(1).

3. In this paper we studied only zero-error list-recovery (or, more accurately, list-recovery
from a small fraction of erasures). While this question is interesting and challenging on its
own, one can ask about extending our results to list-recovery from errors. In particular,
this might lead to improved heavy-hitters schemes in the general turnstile model.

4. We motivated our “probabilistic list-recovery” model by an application to heavy hitters.
However, we hope that there are many other algorithmic applications for such a model
and for our construction. Indeed, there are several algorithmic applications of list-recovery
mentioned in Section 1.3 (e.g., [24, 35, 36, 13]) that explicitly use list-recoverable codes
and would be improved by codes that achieve Goal 1. It is our hope that some of
these applications could also be improved by better constructions of the probabilistically
list-recoverable codes that we study here. As one example, if one could obtain Theorem 2
with |Σ| = Õ(ℓ) (rather than polynomial in ℓ), then by the construction of Kautz and
Singleton mentioned above [26] this would yield optimal constructions of probabilistic
group testing matrices with sublinear-time decoding, matching a recent result of [37] in a
black-box way.

2 Randomized List Recovery

Inspecting our main theorem’s proof (in particular, Section 5 in the full version), we can
extract a list recovery result for our (randomized) code C that tolerates a small fraction
of erasures. Our randomized encoding can handle input lists that come from a union of
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codewords {C(x) : x ∈ L0} for some L0 ⊆ Fk
q ; this is what we stated in Theorem 2. Moreover,

our algorithm can also handle some extra “distractor symbols,” provided that those symbols
are randomized and unlikely to collide with the symbols that come from L0. In order to
state this formally, we first give a definition that captures the sort of input lists that our
algorithm can handle.

▶ Definition 4. Let C : Fk
q → Σn′ be a randomized encoding, for Σ = Fb

q. Consider a
randomized function of C ∼ C and a set of messages L0 ⊆ Fk

q , that outputs lists L1, . . . , Ln′ ⊆
Σ. We say that such a function is (t, η)-nice w.r.t. C if the following holds for all L0 ⊆ Fk

q

(note that the lists Li can depend on L0):
1. For any i ∈ [n′],

with probability at least 1 − η, |Li| = O(|L0|), and,
with probability 1, C(x)i ∈ Li for all x ∈ L0.

2. For any x ∈ L0 and i ∈ [n′], with probability at least 1 − η it holds that (C(x)i)j ̸= σj for
every j ∈ [b] and σ ∈ Li \ {C(y)i : y ∈ L0}.

Furthermore, we require that the above properties should hold t-wise independently across the
lists. Namely, for any x ∈ L0, whether (1) and (2) hold for some i ∈ [n′] is independent of
whether it holds for any t − 1 other values of i′ ∈ [n′].

To illustrate this definition, we give a few examples.

▶ Example 5 (lists from a union of codewords). The simplest example of a nice distribution
is the function that gives

Li = {C(x)i : x ∈ L0} .

That is, the lists Li are just given by the union of the codewords in L0. To see that this is
(η = 0, t = n′)-nice, observe that both (1) and (2) hold deterministically, with probability 1.
Indeed, (1) holds by construction, and (2) holds because there are no σ ∈ Li\{C(y)i : y ∈ L0},
so the condition is trivial.

▶ Example 6 (lists with random distractor symbols). Another natural example of a nice
distribution is the example above, with some uniformly random extra “distractor” symbols.
That is,

Li = {C(x)i : x ∈ L0} ∪ {σi,h : h ∈ [r]}

where r > 0 is some parameter and where σi,h are i.i.d. and uniform in Σ. Again, this
satisfies item (1) deterministically, provided that r = O(|L0|). For (2), we can compute the
probability of a collision between the distractor symbols {σi,j : j ∈ [r]} and a given codeword
C(x) for x ∈ L0:

Pr
[
(C(x)i)j ̸= σj ∀j ∈ [b], σ ∈ {σi,h : h ∈ [r]}

]
=

(
1 − 1

q

)br

≤ exp(−br/q).

In particular, when q ≫ br, this is 1 − O
(

br
q

)
. Thus, this distribution is (η, t)-nice where

η = O(br/q) and t = n.
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Finally, we note that the distribution of distractor symbols that arises in our heavy hitters
application is also nice for the code C that we use. The first point of Item (1) holds because
the lists Li can only become too large if the inner InnerHH fails and includes items that
are not ε/4-heavy hitters. The second point of Item (1) holds because our instantiation of
InnerHH has only one-sided error. Item (2) holds even for any σ ∈ Li \ {C(x)i}, which follows
from Lemma 5.4 in the full version.

With this definition in place, we can now state our main theorem for list-recovery.
Theorem 7 generalizes Theorem 2, because it allows for input lists with some extra “distractor”
symbols, as per Definition 4.

▶ Theorem 7. There exist constants c > 1 and γ ∈ (0, 1) such that the following holds for
any positive integers k and ℓ ≤ kγ. There exists a randomized encoding C : Fk

q → Σn′ , for
q = poly(ℓ), Σ = FO(1)

q and n′ = Θ(k), and a randomized list recovery algorithm A running
in time ℓc · k, with the following guarantee.

For some constant η < 1, and an integer t = k
poly(ℓ) , for any list of messages L0 ⊆ Fk

q of
size ℓ, and any distribution over input lists L1, . . . , Ln′ to A which are randomized functions
of C and L0 and are (t, η)-nice w.r.t. C, the list recovery algorithm A, with probability
1 − ℓ−Ω(k) (over the randomness of the encoding and the lists), outputs L ⊆ Fk

q of size O(ℓ)
such that L0 ⊆ L. Furthermore, the encoding time of C is O(k log ℓ), with a preprocessing
step which takes poly(k) time.

We stress that unlike in standard state-of-the-art efficient list recovery algorithms, here we
have a good dependence on ℓ, namely q = poly(ℓ) and |L| = O(ℓ).

We hope that Theorem 7 will find more applications. As discussed in Section 1.3, there are
many algorithmic applications of list-recovery in the literature, and several previous applica-
tions of list-recovery have ended up with sub-optimal parameters due to the unavailability of
codes that achieve Goal 1. It seems possible that Theorem 7 (or a further improvement on
our techniques) could lead to improved results in (non-uniform or “for-each”) group testing
or compressed sensing.
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Abstract
Counting and sampling small subgraphs are fundamental algorithmic tasks. Motivated by the need
to handle massive datasets efficiently, recent theoretical work has examined the problems in the
sublinear time regime. In this work, we consider the problem of sampling a k-clique in a graph
from an almost uniform distribution. Specifically the algorithm should output each k-clique with
probability (1 ± ϵ)/nk, where nk denotes the number of k-cliques in the graph and ϵ is a given
approximation parameter. To this end, the algorithm may perform degree, neighbor, and pair queries.
We focus on the class of graphs with arboricity at most α, and prove that the query complexity of
the problem is

Θ∗

(
min

{
nα,max

{(
(nα)k/2

nk

) 1
k−1

,
nαk−1

nk

}})
,

where n is the number of vertices in the graph, and Θ∗(·) suppresses dependencies on (log n/ϵ)O(k).
Our upper bound is based on defining a special auxiliary graph Hk, such that sampling edges

almost uniformly in Hk translates to sampling k-cliques almost uniformly in the original graph G.
We then build on a known edge-sampling algorithm (Eden, Ron and Rosenbaum, ICALP19) to
sample edges in Hk. The challenge is simulating queries to Hk while being given query access only
to G. Our lower bound follows from a construction of a family of graphs with arboricity α such
that in each graph there are nk k-cliques, where one of these cliques is “hidden” and hence hard to
sample.
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56:2 Sublinear-Time Sampling of k-Cliques in Bounded Arboricity Graphs

1 Introduction

We consider the problem of sampling k-cliques in sublinear-time. Sampling subgraphs is a
fundamental computational task in randomized algorithms, statistics, data science, and many
other disciplines. Sampling k-cliques, and triangles in particular, has numerous applications
across various fields, see, e.g. [38, 7, 19, 47, 16] and references therein. The best exact
combinatorial algorithm for this task is an O((n/ log n)k)-time algorithm by Vassilevska [46],
and Chen et al. [14] proved that, under the exponential time hypothesis, there is no no(k)-time
algorithm.

Motivated by the need to handle massive datasets efficiently, we consider algorithms that
are given query access to the graph, in the form of degree, neighbor and pair queries.1 We
refer to this model as the general query model. Our goal is to design an algorithm that
samples k-cliques while performing as few queries as possible.

Fichtenberger, Gao, and Peng [32] recently studied the problem of sampling arbitrary
subgraphs. They assumed access to the above queries, as well as access to uniform edge
samples. Thus, they considered a strictly stronger model. Specifically, for sampling k-cliques
uniformly at random, their algorithm has expected complexity2 Õ(mk/2/nk), where m and
nk denote the number of edges and k-cliques in the graph, respectively. Their result is known
to be essentially tight, due to a lower bound by Eden and Rosenbaum [28].

However, the lower bound of [28] only holds when considering the worst-case over all
possible inputs. In this work we ask whether the lower bound can be circumvented when
considering graphs with bounded arboricity. The arboricity of a graph G, denoted α(G),
is the minimal number of forests required to cover its edge set. Up to a factor of 2, it
is equivalent to the average degree of the densest subgraph in G. Hence, arboricity is
a natural and useful measure of density “everywhere”. Graphs with bounded arboricity
constitute an important and rich family of graphs, including planar graphs, minor-closed
graphs, graphs with bounded treewidth, and preferential attachment graphs. On the applied
side, in most real-world graphs the arboricity is at most an order of magnitude larger
than the average degree, while the maximum degree could be up to three or four orders of
magnitude larger [34, 30, 43]. Many applied algorithms exploit the property of bounded
arboricity in order to design faster algorithms for clique and dense subgraph counting and
listing [30, 33, 41, 37, 17, 9]. Furthermore, in a recent work, Eden, Mossel and Ron presented
an algorithm for approximating the arboricity in sublinear time [21], whose output can be
used as input to our algorithm (as an upper bound on the arboricity of the graph).

We seek algorithms that, given a parameter α and query access to a graph whose arboricity
is upper bounded by α, “beat” the aforementioned lower bound when α is sufficiently bounded
away from

√
m (recall that the arboricity of a graph is always at most

√
m).

Such an algorithm was recently designed for the special case of sampling edges (2-cliques)
almost uniformly. Here and elsewhere, when we say “almost uniformly” we mean in the strong
sense of pointwise-close to uniform. Namely, where each element is returned with almost
equal probability. We further discuss the benefits of this notion as compared to the strictly
weaker notion of proximity with respect to the total variation distance in Section 1.1.2.

1 Degree queries return the degree, d(v), of a given vertex v; neighbor queries return the ith neighbor of v
for any given vertex v and 1 ≤ i ≤ d(v); and pair queries return whether there is an edge between a
given pair of vertices.

2 Throughout the introduction, when we discuss the “complexity” of previous results, we mean the running
time of the algorithm. The query complexity is always bounded by the minimum between the running
time and n+m ≤ nα.
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Specifically, it is shown in [23] that the complexity of the almost-uniform edge sampling
problem is Θ∗(nα/m).3 Comparing this to the Θ∗(n/

√
m) complexity of the problem in

general graphs [29, 45], exhibits an improvement by (roughly) a factor of
√

m/α. In particular,
for graphs with constant arboricity, this implies an exponential improvement, from O∗(

√
n) to

O∗(1). Similar improvements were obtained for the related question of approximately counting
the number of k-cliques in the graph, where Eden, Ron and Seshadhri [26] obtained significant
improvements for the class of bounded arboricity graphs, compared to the (essentially optimal)
result for the general case [27].

In this work we show that, indeed, the complexity of the task of sampling k-cliques for
any constant k ≥ 3, is significantly better for the class of graphs of bounded arboricity, as
compared to general graphs.

▶ Theorem 1.1. Let ε ∈ (0, 1) be a constant. There exists an almost uniform sampling
algorithm for k-cliques in graphs with arboricity at most α, that returns each k-clique in the
graph with probability (1±ε)

nk
. Given a constant factor estimate of nk,4 the query complexity

of the algorithm is

O∗

(
min

{
nα, max

{(
(nα)k/2

nk

) 1
k−1

,
nαk−1

nk

}})
.

The running time is the same as the second term of the minimum.

While our upper bound on the complexity might seem unnatural at first glance, we also
prove an almost-matching lower bound, thus resolving the complexity of the problem up to
(log n/ε)O(k) factors.

▶ Theorem 1.2. Let A be an algorithm that given query access to a graph with arboricity at
most α, returns each k-clique with probability Θ

(
1

nk

)
. Then the query complexity of A is

Ω∗

(
min

{
nα, max

{(
(nα)k/2

nk

) 1
k−1

,
nαk−1

nk

}})
.

We note that we chose not to parameterize our bounds in terms of m, but rather, only in
terms of n, α, k and nk. Hence, both the upper bound and the lower bound are stated for
worst case m, which is nα. We note that it is possible to obtain a finer expression that does
depend on m for both bounds. However, for the sake of exposition, we chose not to include
an additional parameter.

1.1 Discussion of the results
1.1.1 Comparison to previous results
For simplicity, assume that ε and k are constants, and ignore lower order terms. To compare
the complexity of our algorithm to the upper bound of [32], consider, for example, the family
of graphs G with n vertices, m = n3/2 edges and arboricity α = n1/2, and assume that

3 We use O∗, Ω∗ and Θ∗ to suppress a dependence on functions g(log n, k, 1/ε), which are at most
(log n/ε)O(k), where ε is the given approximation parameter.

4 If the algorithm is not provided with an estimate of nk, then an estimate of nk can be obtained
by applying the algorithm of [26] whose expected query complexity is dominated by the runtime of
Theorem 1.1.
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k = 3 and n3 = n2. Then the complexity of the problem in the general case grows like5

Θ̃(m3/2/n3) = Θ̃(n1/4), while we get Θ∗(n1/8). That is, we obtain a quadratic improvement,
despite the fact that we work in a strictly weaker query model.

If we also allow access to uniform edge queries, then our algorithm can be adapted to

run in time O∗
(

max
{(

mk/2

nk

) 1
k−1

, mαk−2

nk

})
. To compare this to the O(mk/2/nk) upper

bound of [32] (for k-cliques), observe that if the first term in our bound is the dominant one,
then we get the bound of [32] taken to the power of 1/(k − 1). If the second term is the
dominant one, then we improve on the bound of [32] by a factor of (

√
m/α)k−2 (recall that

for every graph, α ≤
√

m).

1.1.2 The importance of point-wise uniform sampling
In our results we measure “almost uniformity” with respect to pointwise distance between
distributions. This notion of approximately uniform is a very strong one, as it requires every
element to be returned with almost equal probability. In contrast, one could also consider
the strictly weaker requirement that the distribution is close to uniform with respect to
total variation distance (TVD). Here, it might be the case that the distributions assigns zero
probability to an ε-fraction of the domain elements.

Sampling almost uniformly with respect to TVD may be sufficient in some contexts.
However, there are scenarios in which the stronger notion of pointwise almost uniform
sampling is crucial. Consider a domain in which each element has some significance score
attributed to it, and assume that a small fraction of the domain elements have non-zero
score and the others have score zero. If we have access to a distribution whose TVD distance
to uniform is larger than the fraction of elements with positive score, then it is useless if
we want to get any information regarding the (non-zero) significance scores of the elements.
This is in contrast to having access to a distribution that is point-wise close to uniform, even
for constant point-wise distance, where each element is returned with probability Θ(1/N),
where N is the size of the domain. In the latter case, the probability of hitting non-zero
score elements is slightly reduced as compared to uniform sampling, but does not fall to zero
as in the former case.

For a more concrete example, consider protein networks, where cliques correspond to
folding sites [18, 13, 1]. One can use point-wise sampling in order to get access to the
folding sites of the protein at question, and then continue to further study their surrounding
neighborhood. In TVD sampling however, it might be the case that exactly the folding sites
of interest are the ones “missed” by the TVD sampler. Furthermore, as biological networks
tend to huge and sparse [3, 39], allowing for improved results in bounded arboricity graphs
is of major interest.

1.1.3 Approximate counting vs. point-wise sampling
We first observe that the complexities of approximately counting edges and point-wise almost
uniformly sampling edges (in both bounded arboricity and general graphs) are of the same
order. In contrast, for k ≥ 3, the two complexities might differ significantly in bounded
arboricity graphs. For example, consider the case of triangles (k = 3), α = O(1), and

5 We note that the Ω(mk/2/nk) lower bound of [28] also holds for the task of sampling k-cliques almost
uniformly.
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n3 = Θ(n). The complexity of sampling triangles almost uniformly is Θ∗(n1/4), while the
complexity of approximately counting problem, is O∗(1). This implies an exponential gap
between the complexities of counting and sampling for certain ranges of parameters.6 7

1.2 The high level ideas behind the clique-sampling algorithm
We start by briefly describing the ideas behind the algorithm of [23] for sampling edges
almost uniformly, which we employ both as a subroutine and as a starting point of our
algorithm for sampling k-cliques. We then turn to describe our algorithm. Throughout, we
assume that an upper bound α on the arboricity of the input graph is known.

1.2.1 The edge sampling algorithm
Let L0 be the set of all vertices in the graph with degree at most (roughly) α (so that almost
all the vertices in the graph belong to L0). The edge sampling algorithm samples a vertex v0
uniformly at random, and if v0 is in L0, it performs a short random walk v0, v1, . . . , vj of
length j, for an index j chosen uniformly in [log n]. If at any point the walk returns to L0,
then the algorithm aborts, and otherwise, it returns the last edge traversed.

The analysis of the algorithm relies on a layered decomposition of the graph vertices. The
vertices in L0 comprise the first layer. Subsequent layers are defined inductively: a vertex v

is in Lj if (1) it is not in any of the layers Li for i < j, and (2) most of its neighbors are
in layers L0, L2, . . . , Lj−1. While the algorithm is completely oblivious to the levels of the
encountered vertices vi for i > 0, using the aforementioned layering, it can be shown that
each edge is sampled with almost equal probability ≈ 1

nα .

1.2.2 The auxiliary graph Hk and the clique-sampling algorithm
In order to sample k-cliques in G, we first define an auxiliary graph Hk, whose edges
correspond to k-cliques of G. Specifically, for each (k − 1)-clique Q in G, there is a node vQ

in Hk, and for each k-clique C in G, there is a single edge in Hk between a pair of nodes
vQ, vQ′ corresponding to two of its (k − 1)-cliques, Q and Q′. Specifically, the first two
(k − 1)-cliques according to an ordering on all (k − 1)-cliques, which will be defined later on.
We say that C is assigned to Q and Q′. When k = 2, this assignment is uniquely determined
(since every 2-clique (edge) contains exactly two 1-cliques (vertices)), and we have H2 = G.
For larger values of k, the assignment rule is such that Q and Q′ both contain the vertex
in C that has minimum degree in G. In general, since there is a one-to-one correspondence
between the edges in Hk and the k-cliques of G, sampling an almost uniform edge in Hk is
equivalent to sampling an almost uniform k-clique in G. An important observation is that if
G has arboricity at most α, then so does Hk.

Given the aforementioned relation between k-cliques in G and edges in Hk, the basic
underlying idea of our algorithm is emulating the edge sampling algorithm of [23] on the
graph Hk, while only having query access to the graph G. Indeed this approach is natural
(having defined Hk). However, emulating the edge sampling algorithm by performing random
walks on Hk requires us to overcome several challenges:

6 We note that the separation between approximately counting triangles and sampling triangles almost
uniformly was already mentioned in [23] in passing as a preliminary result. However, [23] did not include
any proof details nor a full characterization of the complexity of the sampling problem (for any k ≥ 3).

7 We believe that the algorithm of [26] can be adapted to sample a k-clique almost uniformly with respect
to TVD with essentially the same complexity. However, this is not immediate.
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1. We do not have query access to uniformly random nodes of Hk;
2. Determining whether a node in Hk is in layer L0 cannot be performed by a single degree

query (as was the case in [23]);
3. In order to sample a random neighbor of a node vQ in Hk, we must sample a k-clique

in G that is assigned to Q. (In [23] this could be implemented by a single neighbor
query.) The emulation is “noisy” in the sense that it obtains only approximate answers
to queries on Hk. In particular, it only estimates the degrees of nodes in Hk and selects
nodes according to a distribution that is close to uniform. This is in contrast to the [23]
algorithm, which gets precise answers to its queries. Hence, we must prove that the new
algorithm still returns an edge (in Hk) that is close to uniform.

4. Emulating each query on Hk is implemented by performing multiple queries on G. Hence,
one of the main challenges of this work is in bounding the query complexity of the
clique-sampling algorithm.

We now outline how we address these challenges.

Addressing the challenges

Challenge 1: Emulating uniform node queries. The algorithm of [23] starts by sampling
vertices uniformly at random in G. As stated previously, we do not have direct access
to uniform node samples in Hk. Instead, in order to sample nodes in Hk, we recursively
invoke our algorithm for sampling (k − 1)-cliques in G almost uniformly. This results in a
distribution that is only close to uniform, but we prove that this is sufficient for our needs.

Challenge 2: Determining whether a node belongs to L0(Hk). Recall that in the edge
sampling algorithm of [23], L0 is the set of all vertices with degree roughly α. Therefore,
in that algorithm, checking if a vertex belongs to L0 requires a single degree query. In our
setting, the degree of a node VQ in Hk is equivalent to the number of k-cliques that are
assigned to Q in G. Hence,

given a sampled node vQ in Hk, we implement a procedure to check whether vQ ∈ L0 =
L0(Hk), by trying to approximate the number of k-cliques that are assigned to Q in G. To
do so efficiently, we replace the threshold α used to define L0 in [23], by a value τ ≥ α, where
we will explain how τ is chosen later in the presentation.

Challenge 3: Emulating a random neighbor query. We next explain how we emulate a
random neighbor query for a node vQ in Hk (so as to emulate a random walk on Hk). Let
A(Q) denote the set of k-cliques assigned to Q. By the definition of Hk, sampling an edge
incident to vQ translates to sampling a k-clique C in A(Q). Let u be the minimum degree
vertex in Q, and define d(Q) = d(u), where d(u) is u’s degree (in G). As explained above,
for k > 2, the assignment rule is such that if a k-clique C is assigned to Q, then u is also
the minimum degree vertex in C. Hence, in order to select a random neighbor of vQ in
Hk, we need only consider k-cliques C obtained from Q by adding a vertex with degree at
least d(u) = d(Q) (that neighbors all vertices in Q). By dealing separately with the case
that d(Q) ≤

√
nα and the case that d(Q) >

√
nα, we can design a procedure that for every

(k − 1)-clique Q samples each k-clique in A(Q) with probability (roughly) 1
min{d(Q),

√
nα} (and

may fail to output any k-clique).
Given the above, to emulate a random neighbor query from a node vQ in Hk such that

vQ /∈ L0 (so that |A(Q)| ≥ τ), we repeat the above sampling attempts O∗
(⌈

min{d(Q),
√

nα}
τ

⌉)
times. This process succeeds in obtaining a uniformly distributed k-clique in A(Q) with high
probability. For a node vQ in L0 (where we don’t have a lower bound on |A(Q)|), performing
this number of attempts implies that each k-clique in A(Q) is obtained with probability 1/τ .



T. Eden, D. Ron, and W. Rosenbaum 56:7

An inductive analysis shows that a single invocation of the above emulation of the random
walk on Hk returns each k-clique in G with probability roughly 1

nα·τk−2 . The (nα) term
in the denominator comes from the base of the induction, i.e., sampling a uniform 2-clique
(edge) in G, and the term τk−2 stems from the k − 2 recursive calls, where in each level of
recursion, we “lose” a factor of 1/τ . Therefore, the overall success probability of a single
attempt to sample an edge in Hk is roughly nk

nα·τk−2 . Hence, O∗( nα·τk−2

nk
) repetitions are

sufficient so that, with high probability, an almost uniformly distributed k-clique in G is
returned.

Challenge 4: Proving correctness. Given the above approach, we are able to emulate the
basic algorithm of [23] on the auxiliary graph Hk. Hence, to prove correctness we follow the
ideas of [23]. However, since the emulation on Hk results in “noisy” answers to node, degree
and neighbor queries, so that we cannot immediately rely on the correctness of the algorithm
of [23]. Hence, we must (re-)prove that the emulation algorithm induces a distribution on
the edges (of Hk) that is close to uniform. This is done by carefully keeping track of the
divergence from uniformity that is caused due to the noisy answers to queries throughout
the execution of the algorithm. We note that the main challenge lies not in the proof of
correctness, but rather in bounding the complexity of the clique-sampling algorithm, as
discussed next.

Challenge 5: Bounding the query complexity. As discussed above, to sample a k-clique
in G with high probability, we perform t = O∗

(
nα·τk−2

nk

)
repetitions of the random walk

emulation on Hk. In each such emulation, there is a sequence of k − 1 recursive calls to
sample i-cliques for i ∈ [2, . . . , k] by performing a random walk on the graph Hi. Whenever
a random neighbor query is emulated on a node in Hi for i > 2, r = O∗

(
min{d(T ),

√
nα}

τ

)
queries are performed in G. Conditioned on τ being sufficiently larger than α, we get that
the expected number of queries in each such emulation is just O∗(1) (while the maximum is
O∗
(√

nα
τ

)
). This implies that the expected total query complexity is O∗

(
nα·τk−2

nk

)
. As for

the maximum running time, we can get an upper bound of O∗
(

nα·τk−2

nk
+

√
nα
τ

)
by aborting

the algorithm if it performs a larger number of queries, while still obtaining an output
distribution as desired.

Hence, we get a certain tradeoff between the expected query complexity and the maximum
one (for “hard to sample” cliques). In particular, if we set τ = Θ∗(α), we get that the
expected query complexity is O∗

(
nαk−1

nk

)
, as in the case of counting, while the maximum

query complexity is O∗
(

nαk−1

nk
+
√

n/α
)

. The upper bound in Theorem 1.1 is derived by

setting τ so that the two summands in the expression O∗
(

nα·τk−2

nk
+

√
nα
τ

)
are equal.

1.3 A discussion of related random-walk based sampling algorithms
The idea of sampling k-subgraphs (i.e., subgraphs of size k) from a graph G using random
walks on an auxiliary graph (in which nodes and edges correspond to subgraphs), is not new,
see, e.g., [7, 47, 42, 12, 11]. However, our approach, and in particular our definition of the
auxiliary graph Hk, differs from previous ones in several ways, which are crucial for sampling
k-cliques according to a distribution that is ε-pointwise close to uniform, with sublinear
query complexity. Below we discuss the main aspects of difference between our approach
and the aforementioned previous works.
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1. The task. We start by noting that in the aforementioned random-walk based works, the
focus was on sampling from a distribution whose support is all connected k-subgraphs,
while we focus on sampling from a distribution whose support is the set of k-cliques. An
algorithm for sampling k-subgraphs can be directly adapted to output only k-cliques
using rejection sampling, however this could significantly increase the complexity.

2. The distance measure. In most previous works, the considered distance measure is the
total variation distance, while our result considers the strictly stronger pointwise distance
measure.8

3. The definition of the auxiliary graph. The auxiliary graph considered in the aforementioned
works, which we denote here by H ′

k, is defined as follows. There is a node in H ′
k for

each subgraph of size k − 1 in G, and there is an edge between two nodes in H ′
k if the

two corresponding (k − 1)-subgraphs differ by a single vertex. Hence, similarly to our
auxiliary graph, Hk, edges in the auxiliary graph correspond to the objects that we would
like to sample (k-subgraphs in previous works, and k-cliques in ours). However, the way
we define the edge-set of Hk is pivotal to the analysis of our algorithm. In particular, we
put an edge between two nodes in Hk not only if the union between the corresponding
(k − 1) cliques is a k-clique, but also if this k-clique is assigned to the two (k − 1)-cliques.
Our assignment rule is tailored to bound the query complexity of the algorithm (based on
the degrees of vertices in the cliques). Also note that if the original graph G is connected,
then so is H ′

k, while Hk is typically not connected.
4. Performing random walks on the auxiliary graph. Recall that in our context, where we

are given only query access to G and would like to minimize the number of queries, we
have to overcome several challenges in the emulation of random walks on Hk. These do
not arise in previous works: The random walk starts from an arbitrary node in H ′

k (an
arbitrary (k − 1)-subgraph), and each step in the walk is simply implemented by selecting
a random neighbor of one of the vertices in the current (k − 1)-subgraph.

5. The complexity of the sampling algorithm. As noted above, our focus is on bounding the
query complexity of the algorithm, and indeed we get an almost tight bound based on
our definition of Hk and the details of the emulation of random walks on Hk given query
access to G. In the aforementioned works, the complexity of the algorithms was shown to
depend on the mixing time of H ′

k, and one of the main challenges of these works is in
analyzing it. Indeed, in [11] it is proved that even if the mixing time of G is relatively
small, the mixing time of H ′

k may be a factor of ρ(G)k−2 larger, where ρ(G) is the ratio
between the maximum and minimum degree in G (and hence may be large (e.g., Ω(n))
even in bounded-arboricity graphs).

1.4 Overview of the lower bound
The first and last terms in the lower bound of Theorem 1.2 follow directly from a lower
bound of Ω∗

(
min

{
nα, nαk−1

nk

})
by [26] for the task of approximately counting the number

of k-cliques. They prove that any algorithm that performs fewer queries than the above
expression cannot distinguish with high probability between two families of graphs, one with
nk k-cliques, and one with no k-cliques. It follows that any uniform sampling algorithm cannot

perform fewer queries. Therefore, our main focus is on proving the term Ω∗
((

(nα)k/2

nk

) 1
k−1
)

(which, as noted previously, may be much larger than the Ω∗
(

nαk−1

nk

)
term).

8 In [11], Bressan combined a random-walk based approach with a (linear in m) preprocessing of the
graph, in order to obtain an exact uniform sampler.
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To this end, we construct a family of graphs (with arboricity at most α), such that
in each graph, among the nk k-cliques that it contains, there is one “hidden” k-clique.
This clique is hidden in the sense that any algorithm that (always) performs less than(

(nα)k/2

nk

) 1
k−1

/c queries (for a sufficiently large constant c) cannot sample this clique with
probability Ω(1/nk).9

The above idea is formalized by defining a process that answers the queries of a sampling
algorithm “on the fly” while constructing a random graph in the family. All graphs in the
family have the same underlying structure, and they differ in the choice of clique vertices
and in the labeling of (part of) the edges. Here we give the high-level idea of the underlying
structure, and the intuition for the lower-bound expression.

In each graph in the family, the hidden clique is over a subset S of k vertices that all
have (high) degree Θ(ℓ) where ℓ =

√
nα. The total number of high-degree vertices is Θ(ℓ) as

well (so that all graphs graphs in the family have Θ(ℓ2) = Θ(nα) edges10). Other than the
clique edges, there are no other edges between the high-degree vertices. See Figure 1 for an
illustration. Intuitively, in order to reveal the hidden clique, the algorithm must first reveal
one edge (u, u′) in the clique and then reveal k − 2 additional edges between u and the other
edges in the clique.11 We prove that in each query, the probability of revealing the first edge
of the clique is O(k2/ℓ2), and the probability of revealing any consecutive edge is O(k/ℓ).12

n′ vertices,
Θ(n3) cliques,
arboricity≤ α

a1

S

ℓ

ℓ

aℓ−k

ℓ

Figure 1 The underlying structure of the graphs in the lower bound construction for k = 4. For
a more detailed description and figure, see the full version of this paper [24].

The intuition for the upper bound O(k2/ℓ2) on the probability of revealing the first edge
is that the number of clique edges is

(
k
2
)
, while the total number of edges is Θ(ℓ2). Similarly,

the rough intuition for the upper bound of O(k/ℓ) on revealing each additional edge in
the clique is that each clique vertex has k − 1 neighbors in the clique and a total of Θ(ℓ)
neighbors. In order to provide a formal argument, we define an auxiliary bipartite graph

9 We note that this does not preclude the possibility that the expected complexity of the algorithm is
smaller (as discusses in Subsection 1.2.2).

10 As stated in the introduction, we note that since all of the graphs have nα edges, our lower bound does
not exclude the possibility of a refined upper bound that also depends on the number of edges m. (And
indeed, it is possible to replace some of the nα terms in the upper bound with m terms. However, we
chose not to further complicate the exposition of the algorithm and therefore we also present the lower
bound in terms of worst-case m.)

11 The algorithm may alternatively try to reveal k/2 edges in the clique that do not have common endpoints
(or some other combination of edges that together reveals all clique vertices), but this is not advantageous
for the algorithm.

12 We note that whenever the term (nα)k/(2(k−1))

kn
1/(k−1)
k

dominates the last term in the lower bound of Theorem 1.2,

it is smaller than
√
n/α.
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whose nodes correspond to graphs that are consistent with all previous queries (and answers)
and either contain a “witness” clique edge that corresponds to the query of the algorithm
(one side of the graph), or do not (the other side). The edges of the bipartite graph are
defined by certain transformations from witness graphs to non-witness graphs. By analyzing
the degrees of nodes on both sides of this auxiliary graph, we obtain the aforementioned
bounds on the probability of revealing edges in the hidden clique.

Given these probability upper bounds, if an algorithm performs T queries, then the
probability that it reveals the hidden clique is upper bounded by T · k2

ℓ2 ·
(
T · k

ℓ

)k−2. If we

want this expression to be Ω(1/nk), the number of queries T must be Ω∗
((

(nα)k/2

nk

)1/(k−1)
)

.

1.5 Related Work
The works most related to ours were mentioned in earlier subsections of the introduction.
In Appendix A, we give a broader view of recent advances on sublinear-time approximate
counting and uniform sampling algorithms.

1.6 Organization
We start with some preliminaries in Section 2. Due to the page limitation, in this extended
abstract we only describe the algorithm and a sketch of the analysis for the case of k = 3
(triangles) – see Section 3.

The full algorithm and analysis for the general case, as well as the lower bound, can be
found in the full version of this paper [24].

2 Preliminaries

Let G = (V, E) be a graph over n vertices and arboricity at most α. Each vertex v ∈ V has
a unique id in [n], denoted id(v). Let Ck denote the set of k-cliques of G, and let nk = |Ck|.
For a vertex v, let Γ(v) = ΓG(v) denote its set of neighbors and let d(v) = dG(v) = |Γ(v)|.
We sometimes refer to edges as oriented, meaning that we consider each edge from both its
endpoints.

Access to G is given via the following types of queries: (1) A degree query, deg(v), returns
the degree d(v) of the vertex v; (2) A neighbor query, nbr(v, i) for i ∈ [d(v)], returns the ith

neighbor of v; (3) A pair query, pair(v, v′), returns whether (v, v′) ∈ E.

▶ Definition 2.1 (Ordering of the vertices.). We define an ordering on the graph’s vertices,
where u ≺ v if d(u) < d(v) or if d(u) = d(v) and id(u) < id(v).

▶ Definition 2.2 (Cliques’ degree and neighbors). For a k-clique C, let v be the minimal
vertex in vC according to ≺. We define the degree of C in G to be d(C) = d(v). We define
the neighbor-set of C, denoted Γ(C) = Γ(v), to be the set of v’s neighbors in G.

▶ Definition 2.3 (Cliques id and an ordering of cliques). For a k-clique C, let its id, id(C) be
a concatenation of its vertices ordered by ≺. We extend the order ≺ to cliques, so that for
two k cliques C, C ′, C ≺ C ′ if d(C) < d(C ′) or if d(C) = d(C ′) and id(C) < id(C ′).

▶ Definition 2.4 (Assignment of k-cliques to (k − 1)-cliques). We assign each k-clique C to
its two first (k − 1)-cliques according to ≺. For every (k − 1) clique Q, we denote its set of
assigned k-cliques by A(Q), and let a(Q) = |A(Q)|. We refer to a(Q) as the assigned cliques
degree of Q.

Note that for every k ≥ 3, a(Q) ≤ d(Q).
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▶ Observation 2.5. By Definition 2.4, for k ≥ 3, if Q and Q′ are assigned a k-clique C,
then d(Q) = d(Q′) = d(C). Hence, if a k-clique C is assigned to a (k − 1)-cliques Q such
that C = Q ∪ {w}, then d(Q) = d(C) ≤ d(w).

We shall sometimes abuse notation and let {Q, u} denote Q ∪ {w}.
We are now ready to define the auxiliary graph Hk, which is central to our algorithm.

▶ Definition 2.6 (The graph Hk). Given a graph G, we define the graph Hk(G) = Hk =
(VHk

, EHk
) as follows. For every (k − 1)-clique Q in G there is a node vQ in VHk

. For every
k-clique C in G, there is an edge in Hk between the two (k − 1)-cliques that C is assigned to,
as defined in Definition 2.4.

For the sake of clarity, throughout the paper, we refer to the vertices of Hk as nodes. Note
that for the special case of k = 2, we have that H2(G) = G, and each edge (2-clique) in
G, is assigned to both its endpoints. More generally, Definition 2.6 implies a one-to-one
correspondence between the set of edges incident to a node vQ in Hk(G) and the set A(Q)
of k-cliques assigned to Q in G. This in turn implies that the degree of a node vQ in Hk(G)
equals the assigned cliques degree of Q, a(Q). By the comment following Definition 2.4, the
degree of vQ in Hk(G) is upper bounded by the degree of Q in G.

The last claim in this section concerns the arboricity of Hk(G).

▷ Claim 2.7. Let G be a graph of arboricity at most α. Then Hk(G) has arboricity at
most α.

3 The case of k = 3: sampling triangles

As a warmup, in this section we describe our algorithm for the case of sampling triangles and
provide the structure of its analysis. To ease readability, some of the claims we present are
loosely stated (the precise and general claims appear (and are proved) in the next section).
Since the graph G is fixed throughout the presentation, we use the shorthand H3 for H3(G).

In addition to receiving as input n, α, and ϵ, as well as being given query access to G,
the sampling algorithm, Sample-Triangle, receives the parameter n3, which is assumed to be
a constant factor estimate of the number of triangles, n3. Such an estimate can be obtained
by running the algorithm of [26], without asymptotically increasing the expected complexity
of our algorithm.

To sample a triangle in G, the algorithm Sample-Triangle repeatedly invokes the procedure
Sample-Edge-Auxiliary-Tri on the graph H3, while ensuring that the number of queries does
not exceed a certain threshold. For the sake of conciseness, from this point on we view the
parameters that Sample-Triangle receives, as global variables for all other procedures.

Sample-Triangle(n, α, ε, n3)

1. Set τ = max
{ √

n3
(nα)1/4 , α

}
.

2. While the number of queries does not exceed r = c · min
{

nα, max
{√

nα
τ , nατ

n3

}}
for

a sufficiently large constant c:
a. Invoke Sample-Edge-Auxiliary-Tri(τ), and if an edge in H3 is returned, then return

the corresponding 3-clique (triangle) in G.

▶ Theorem 3.1 (loosely stated). The algorithm Sample-Triangle is a pointwise ε-close to
uniform sampling algorithm for triangles (3-cliques) in graphs with arboricity at most α. The
query complexity of the algorithm is O∗

(
min

{
nα, max

{(
(nα)3/4

√
n3

)
, nα2

n3

}})
.
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We defer the proof of the theorem to the end of this section, and continue to describe the
procedure Sample-Edge-Auxiliary-Tri. This procedures (tries to) return an (almost) uniformly
distributed edge in the auxiliary graph H3 (corresponding to a triangle in G), so that each
edge is returned with probability (roughly) 1±Θ(ε)

nατ , and it is the main procedure used in
order to prove Theorem 3.1.

As will be explained in more detail momentarily, the setting of τ in Sample-Triangle
(together with the random coins of the algorithm) determines a set L0(H3) of nodes in H3.
Recall that the degree of a node vQ in H3 (where Q is a 2-clique, i.e., an edge in G) is the
number of triangles (3-cliques) that are assigned to Q according to the assignment rule of
Definition 2.4 (denoted a(Q)). With high probability over the randomness of the algorithm,
all nodes vQ ∈ H3 whose degree (in H3) at most τ belong to L0(H3), and all nodes vQ ∈ H3
with degree greater than 2τ do not belong to L0(H3) (the rest of the nodes can belong
to either set). We use E(L0(H3)) to denote the edges in H3 that are incident to nodes in
L0(H3).

Sample-Edge-Auxiliary-Tri first invokes the subroutine Sample-Edge-L0-Auxiliary-Tri that
either returns a (close to) uniform edge (v0, v1) among the edges of E(L0(H3)) or returns
FAIL. The procedure then chooses an index j in [0, . . . , log(nα)] uniformly at random, and
performs a random walk of length j on H3, by traversing at each step to a uniformly selected
neighbor of the last visited node. This is done by invoking the procedure Sample-Neighbor-
Auxiliary-Tri. If at any point the last visited node belongs to L0(H3) (which is verified by the
procedure Define-L0-Auxiliary-Tri), then the procedure fails. Otherwise, the last traversed
edge in the walk is returned.

Sample-Edge-Auxiliary-Tri(τ).
1. Set s = log(nα) and set β = ε/(2s + 2).
2. Invoke Sample-Edge-L0-Auxiliary-Tri(β, τ), and let e0 = (vQ0 , vQ1) be the returned

edge if one was returned. Otherwise, return FAIL.
3. Choose j ∈ [0, . . . , s] uniformly at random.
4. For i = 1 to j do:

a. If Define-L0-Auxiliary-Tri(vQi
, δ = β/n3, β, τ)=YES, then return FAIL.

b. Invoke Sample-Neighbor-Auxiliary-Tri(vQi
, β, τ ) to sample an edge (vQi

, vQi+1) in
H3.

5. Return (vQj
, vQj+1).

▶ Lemma 3.2 (loosely stated). The procedure Sample-Edge-Auxiliary-Tri returns an edge in
H3 so that each edge is returned with probability (roughly) (1±ε)

nατ . Furthermore, the expected
running time of a single invocation of the procedure is O∗(1), and the maximum running
time is O∗(

√
nα/τ).

Before presenting the subroutines Sample-Edge-L0-Auxiliary-Tri, Sample-Neighbor-Auxiliary-
Tri and Define-L0-Auxiliary-Tri invoked in Sample-Edge-Auxiliary-Tri, we describe a simple
procedure, Samp-High-Deg-Nbr, used by these subroutines. The procedure gets a 2-clique
(edge) Q as input, and tries to sample a higher degree neighbor of Q in G, so that each such
neighbor is returned with probability 1/ min{d(Q),

√
nα}. As mentioned in the introduction,

we shall make use of the procedure Sample-Basic-Edge by [29], that returns every edge in G

with probability (roughly) (1 ± β)/(nα), given an approximation parameter β.
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Samp-High-Deg-Nbr(Q, β).
1. Let u be the min degree vertex of Q, and query d(u)(= d(Q)).
2. If d(Q) ≤

√
nα, then query the ith neighbor of u in G, for a uniformly selected index

i ∈ d(u). If d(w) ≥ d(Q), then return w.
3. If d(Q) >

√
na, then:

a. Invoke Sample-Basic-Edge(β) and if an edge is returned then denote it (w, x).
Otherwise, return FAIL.

b. Query d(w) and if d(w) > d(Q), then return the endpoint w with probability
d(w)/

√
nα. Otherwise, return FAIL.

▷ Claim 3.3 (loosely stated). Let Q be a 2-clique (edge) in G. The procedure Samp-High-
Deg-Nbr either returns a neighbor of Q in G (that is, a neighbor in G of the min-degree
vertex of Q), or fails. Each w ∈ Γ(Q) such that d(w) ≥ d(Q) is returned with (roughly) equal
probability (1 ± β)/ min{d(Q),

√
nα}. The query and time complexity of the procedure are

O∗(log n).

We turn to present the subroutines used by Sample-Edge-Auxiliary-Tri, starting with the
subroutine Define-L0-Auxiliary-Tri, that defines the aforementioned set L0(H3) ⊆ V (H3).
Namely, L0(H3) is determined according to the output of the subroutine, so that

L0(H3) = {vQ ∈ VH3 : Define-L0-Auxiliary-Tri(vQ, δ, β, τ ) = YES }

(where we assume that the randomness of the subroutine is uniquely determined for each
vQ). Hence Define-L0-Auxiliary-Tri can be thought of as an oracle that returns whether a
given vQ belongs to L0(H3) or not.

Define-L0-Auxiliary-Tri(vQ, δ, β, τ ).
1. Let Q be the 2-clique (edge) in G corresponding to vQ.
2. For i = 1 to r = min{d(Q,

√
nα}

τ · ln(1/δ) do:
a. Invoke Samp-High-Deg-Nbr(Q, β/10) to (try and) sample a neighbor wi of Q.
b. If Q and wi form a triangle C, and C is assigned to Q, then let χwi = 1.

3. Let ã = 1
r

∑r
i=1 χwi

.
4. If ã < 1.5τ/d(Q) then return YES. Otherwise, return NO.

Recall that A(Q) is the set of cliques assigned to Q, and a(Q) = |A(Q)|.

▷ Claim 3.4 (loosely stated). With high probability Define-L0-Auxiliary-Tri determines a set
L0(H3) so that the following holds for every vQ ∈ H3.

If a(Q) ≤ τ , then vQ ∈ L0(H3) and the subroutine returns YES.
If a(Q) > 2τ , then vQ /∈ L0(H3) and the subroutine returns NO.

Furthermore, the query and time complexities of the subroutine are O∗
(

min{d(Q),
√

nα}
τ

)
.

Given Claim 3.4, from here on we assume that for every Q ∈ L0(H3), dt(Q) ≤ 2τ , and
for every Q /∈ L0(H3), a(Q) > τ .

We now present the subroutine Sample-Edge-L0-Auxiliary-Tri that is used for sampling
edges in H3 that are incident to nodes in L0(H3). In order to sample a uniform edge
in E(L0(H3)), we first need to sample a node in L0(H3). Recall that the nodes of H3
correspond to edges in G. Hence, to sample a node in L0(H3), the procedure first invokes
Sample-Basic-Edge to sample an edge in G (almost) uniformly at random, and then checks if
the corresponding node is in L0(H3) (by invoking Define-L0-Auxiliary-Tri).
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Sample-Edge-L0-Auxiliary-Tri(β, τ).
1. Invoke Sample-Basic-Edge(β/4). Let Q be the returned 2-clique if one was returned.

Otherwise FAIL.
2. If Define-L0-Auxiliary-Tri(vQ, δ, β/4, τ)=NO then FAIL.
3. Repeat at most r = O∗

(
min{d(Q),

√
nα}

2τ

)
times or until a neighbor is sampled:

a. Invoke Samp-High-Deg-Nbr(Q, β/10) to (try and) sample a neighbor w of Q.
4. If no neighbor is sampled, then return FAIL.
5. Check if {Q, w} is a triangle assigned to Q. If so, return C = {Q, w}.

▷ Claim 3.5. Consider an invocation of Sample-Edge-L0-Auxiliary-Tri with parameters β

and τ . The subroutine Sample-Edge-L0-Auxiliary-Tri returns every edge in E(L0(H3)) with
probability (roughly) (1 ± β)/(2nατ). The expected query and time complexity of the
subroutine are O∗(1) and the maximum query and time complexity are O∗

(√
nα
τ

)
.

Finally, the subroutine Sample-Neighbor-Auxiliary-Tri (tries to) sample a neighbor of a
node vQ in the auxiliary graph H3. That is, it tries to sample a triangle C ∈ A(Q).

Sample-Neighbor-Auxiliary-Tri(vQ, β).
1. Let Q be the 2-clique (edge) in G corresponding to vQ.
2. Repeat at most r = min{d(Q),

√
nα}

τ · ln(1/β) times:
a. Invoke Samp-High-Deg-Nbr(Q, β/10) to (try and) sample a neighbor w of Q.
b. If Q and w form a triangle C, and C is assigned to Q, then return the edge

(vQ, vQ′) in H3 that corresponds to C.

▷ Claim 3.6 (loosely stated). For a given node vQ ∈ V (H3) such that Q /∈ L0(H3), with
probability at least 1 − β, the subroutine Sample-Neighbor-Auxiliary-Tri returns a neighbor of
vQ in H3, so that each neighbor of vQ is returned with probability (roughly) (1 ± β)/a(Q).
The query and time complexity of the subroutine are O∗

(
min{d(Q),

√
nα}

τ

)
.

Finally, we sketch the proof of (the loosely stated) Theorem 3.1.

Proof sketch of Theorem 3.1. By Lemma 3.2, Sample-Edge-Auxiliary-Tri returns every spe-
cific edge in H3 with probability (roughly) (1 ± ε)/(nατ). Since there is a one-to-one
correspondence between edges in H3 to triangles in G, this implies that each triangle is
returned with probability (roughly) (1 ± ε)/(nατ), and that with probability (roughly)
n3/(nατ), some triangle is returned. Hence, the expected number of invocations of the loop
is O(nατ/n3). Furthermore, by Claim 3.2, the expected complexity of each invocation is
O∗(1). It can be proven using standard concentration bounds, that with high probability, a
triangle will be returned before the number of allowed queries r is exceeded. Therefore, with
high probability, a triangle is returned, and since all triangle are almost equally likely to be
the returned one, it holds that each triangle is returned with probability (roughly) 1/n3.

Furthermore, since the expected complexity of each invocation of Sample-Edge-Auxiliary
is O∗(1) and the maximum is O∗(

√
nα/τ), it follows that the query and time complexity

of Sample-Triangle is O∗(r +
√

nα/τ) = O∗
(

min
{

nα, max
{√

nα
τ , nατ

n3

}})
. Plugging τ =

max
{ √

n3
(nα)1/4 , α

}
, we get that the query complexity of Sample-Triangle is bounded by

O∗
(

min
{

nα, max
{

(nα)3/4
√

n3
,

nα2

n3

}})
,

as claimed. ◀
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A Related Work

We note that some of the works were mentioned before, but we repeat them here for the
sake of completeness. In recent years, there has been an increasing interest in the questions
of subgraph approximate counting and uniform sampling in sublinear-time. These works
differ by the query model, graph class of G and the subgraph H at question.

The general graph query model. The first works on estimating the number of subgraph
counts were by Feige [31] and Goldreich and Ron [35], who presented algorithms for approx-
imately counting the number of k-cliques in a graph for k = 2 (edges).13 Later, Gonen, Ron
and Shavitt [36] gave essentially optimal bounds for the problem of approximately counting
the number of stars in a graph. In [20, 27], Eden, Levi, Ron and Seshadhri and Eden, Ron
and Seshadhri presented essentially optimal query complexity bounds for the problems of
approximately counting triangles and k-cliques. In [44], Tětek gave improved running time
bounds for the regime where the query complexity is linear in previous works.

In [28], Eden and Rosenbaum presented a framework for proving subgraph counting lower
bounds using reduction from communication complexity, which allowed them to reprove the
lower bounds for all of the variants listed above.

Augmented model. In [2], Aliakbarpour, Biswas, Gouleakis, Peebles, and Rubinfeld and
Yodpinyanee suggested a model that also allows for uniform edge samples. In that model
they presented improved bounds for the approximate star counting problem. In that model,
Assadi, Kapralov and Khanna [4] considered the problem of approximate counting of arbitrary
subgraphs H. The expected query complexity of their algorithm is Õ

(
min

{
m, mρ(H)

nH

})
,

where ρ(H) is the fractional edge cover of H,14 and nH is the number of copies of H

in G. In particular, for the case of k-clique (and odd-cycle counting) the complexity of
their algorithm is O(mk/2), and this is optimal. In [10], Biswas, Eden and Rubinfeld
have refined the complexity of approximating and uniformly sampling arbitrary motifs to
O∗ (min {m, decomp-cost(G, H, D∗(H))}), where D∗(H) is an optimal decomposition of H,
and decomp-cost is the decomposition cost of H in G.

Set query model. In [5], Beame, Har-Peled, Ramamoorthy and Sinha suggested two new
models that allow what they refer to as independent set (IS) and bipartite independent
set (BIS) queries. They considered the problem of estimating the number of edges and
gave O∗(n2/3) and O∗(1) algorithms for this problem using IS and BIS queries, respectively.
The first result was later improved by Chen, Levi and Waingarten [15] who settled the
complexity of the problem to Θ∗(n/

√
m). In [6], Bhattacharya, Bishnu, Ghosh, and Mishra

later have generalized the BIS model to tripartite set queries, where they considered the
problem of triangle counting, and in [8], Bishnu, Ghosh, and Mishra settled the complexity
of approximately counting triangles using BIS queries to Θ∗

(
min

{
m√

T
, m3/2

T

})
, where T

denotes the number of triangles.

13 Feige considered a model that only allows for degree queries, and presented a factor 2 approximation
algorithm, and also proved that with no additional queries this approximation factor cannot be improved
in sublinear time. Goldreich and Ron then considered this question allowing also for neighbor queries.
In this model the proved an (1 ± ε)-factor approximation algorithm with the same complexity as the
previous one (as well as a matching lower bound).

14 The fractional edge cover of a graph H = (VH , EH) is a mapping ψ : EH → [0, 1] such that for each
vertex a ∈ VH ,

∑
e∈EH ,a∈e

ψ(e) ≥ 1. The fractional edge-cover number ρ(H) of H is the minimum
value of

∑
e∈EH

ψ(e) among all fractional edge covers ψ.



T. Eden, D. Ron, and W. Rosenbaum 56:19

Uniform sampling. In [29], Eden and Rosenbaum initiated the study of sampling subgraphs
(almost) uniformly at random. They considered the general graph query model, and presented
upper and matching lower bounds for the problem of sampling edges almost uniformly. Their
algorithm matches the complexity of the counting variant of the problem. Their algorithm’s
dependency on ε was later improved by Tětek and Thorup [45] to log(1/ε), so that for
all practical purposes the new algorithm allows to sample from essentially the uniform
distribution. They also present an algorithm that works in a stronger model that allows for
hash-based neighbor queries, and outputs an edge from exactly the uniform distribution.

In [32], Fichtenberger, Gao and Peng proved that in the augmented edge model, exact
uniform sampling of arbitrary subgraphs can be performed in O

(
mρ(H)

nH

)
time. This matches

the upper bound of [4] for the counting variant. The aforementioned bound of [10], also
holds for this setting, refining over the complexity of [32].

In [22], Eden, Mossel and Rubinfeld presented an algorithm for sampling multiple edges
efficiently. Their algorithm was later shown to be optimal by Tětek and Thorup [45].

Graphs G with bounded arboricity. In [25, 26], Eden, Ron and Seshadhri first studied the
problem of sublinear approximate counting in bounded arboricity graphs. They presented
improved algorithm for edges, star and k-clique counting in the general graph model,
parameterized by the arboricity. In [23], Eden Ron and Rosenbaum presented an improved
algorithm for almost uniform sampling of edges in bounded arboricity graphs, in the general
graph query model.

Approximating the arboricity in sublinear time. In [21], Eden, Mossel and Ron presented
an algorithm for approximating the arboricity in Õ(n/α) time. Their algorithm returns a
value α̂ such that, with high probability, α̂ ∈ [α, α · c log2 n], for some constant c. It can also
be shown that the algorithm of McGregor, Tench, Vorotnikova and Vu [40] can be adapted
to the adjacency list query model,15 resulting in a (1 ± ε)-multiplicative approximation in
Õ(m/α) complexity. The output of these algorithms can be used as input to our algorithm
(as well as all aforementioned sublinear-time algorithms that rely on getting an upper bound
on the arboricity as input).

15 This requires some care, as their algorithm relies on sampling edges uniformly at random, which is not
immediately implementable in the adjacency list model. However, it can be shown that only edges with
high degree endpoints (roughly ones with degree above α) are of interest, and these can be sampled
uniformly with an additive overhead of Õ(m/α).
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1 Introduction

Random constraint satisfaction problems (r-CSPs) have been the subject of intense study in
combinatorics, computer science and statistical physics. In computer science the study of
random CSPs is motivated by a wealth of applications, e.g., they are used as algorithmic
benchmarks for hard problems such as the graph colouring, or the k-SAT, they are studied as
models for statistical inference, they are also used as gadgets for cryptographic constructions,
or reductions in complexity theory [23, 20, 19, 26].

Physicists, independently, have been studying random CSPs as models of disordered
systems using the so-called Cavity Method (e.g. see [32, 29]). The Cavity method originates
from the groundbreaking ideas in physics which got Giorgio Parisi the 2021 Nobel Prize in
Physics. With its very impressive predictions and its deep intuition, the Cavity Method
attracted the interest of both computer scientists and mathematicians, despite its lack of
mathematical rigour. In the last two-decades, or so, ideas from the Cavity method have
blended the study of random CSPs in computer science and have yield some beautiful results
and breakthroughs in the area e.g., [11, 1, 34, 12, 24].

A fundamental notion in physicists’ predictions is that of the Gibbs distribution. Using the
Cavity method, physicists make predictions relating phase-transitions of Gibbs distributions
with the efficiency of the sampling algorithms. Establishing rigorously these connections
is a very challenging task and, despite any recent advances, most of the central questions
still remain open. In this work, we introduce a novel approach to the sampling problem
that exploits intuition from the Cavity method, as well as mathematical tools and ideas that
were developed for the study of random CSPs in conjunction with the Cavity method. Our
approach yields efficient algorithms with notable performance with respect to the allowed
region of the parameters of the problem.

We remark that this is not the first attempt to employ ideas from the Cavity method for
algorithmic design. The celebrated heuristics Belief Propagation and Survey Propagation
[5, 33] are prominent examples of physicists’ attempt to turn the Cavity method into an
algorithm. Despite their impressive empirical performance, we lack a rigorous mathematical
analysis for these heuristics with respect to generating samples from Gibbs distributions.

Our algorithm here is for sampling from what we call symmetric Gibbs distributions. This
includes important examples such as the (hyper)graph q-colourings and its generalisation
the q-state Potts model for q ≥ 2, the symmetric variants of k-SAT such as the not-all-equal
k-SAT (k-NAE-SAT). A notable case is the spin-glass k-spin model, i.e., the same spin-glasses
that Parisi studied in the 80’s. Spin-glasses give rise to very intricate distributions which
are also studied in mathematics, in neural computation, computational biology and many
other areas [37]. For us, the underlying geometry is an instance of the random graph, or
hypergraph of constant expected degree d > 0.

For most of the above distributions it is extremely challenging to sample from. This is not
only because the underlying geometry is random. Each of the aforementioned distributions
exhibits special features that make the analysis of known sampling techniques intractable.
E.g., in the interesting region of parameters for k-NAE SAT, or hypergraph colourings, we
have untypical configurations with non-local freezing of the variables, the spin-glasses exhibit
local, randomly induced, frustration phenomena, etc.

An additional motivation for this work comes from our desire to investigate the power
and the limits of the (well-known) sampling method that is introduced in [15]. The method
in [15], (or any of its subsequent works) does not exploit the Cavity method. On a high level,
the approach summarises as follows: having the graph G at the input, the algorithm initially
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removes all the edges and generates a configuration for the empty graph. Then, iteratively,
the algorithm puts the edges back one by one. If Gi is the subgraph we have at iteration
i, our objective is to have a configuration σi which is distributed very close to the Gibbs
distribution on Gi. The idea is to generate σi by updating appropriately the configuration
of Gi−1, i.e., update σi−1 to generate efficiently σi. Once all the edges are put back, the
algorithm outputs the configuration of G.

The algorithm in [15], relies heavily on properties that are special to graph colourings, for
this reason it is restricted to this distribution. The same holds for similar approaches in the
area, i.e., the algorithm is specific to the distribution it is sampling from. This is a drawback
because every time we consider a new distribution we have to design a new algorithm from
scratch. With our approach here, we avoid this. We introduce a sampling algorithm that the
Gibbs distribution we are sampling from is a parameter, e.g., similarly to Glauber dynamics.

Previous approaches in the area rely on the correlation decay condition called tree-uniquess
to establish the accuracy of the algorithm. For our purposes, requiring such a condition can
be too restrictive. On one hand, for many of the distributions we consider here, we are far
from establishing their tree uniqueness region. Actually, for many of them it is notoriously
difficult to establish it even for a very limited rage of their parameters. On the other hand, it
seems that Gibbs uniqueness is too restrictive a condition for distributions on the hypergraph.
With our approach here we give a new insight to the problem by showing that we can exploit
notions about the Gibbs distributions that we typically encounter in the study of the Cavity
method and random CSPs. For example, we use notions like the broadcasting probabilities
encountered in the study of the extremality of Gibbs distributions for random CSPs [7, 29, 16],
or the contiguity between the Gibbs distribution and its corresponding teacher-student model
for the study of the so-called free energy and its fluctuations [1, 11, 30, 8].

To appreciate our results, we remark that for most of the distributions we consider here,
in order to prove that, e.g., the MCMC sampler works anywhere near the region of the
parameters that our algorithm allows, would require major breakthroughs in the area of
Markov chains, with repercussions that go beyond the problems we consider in this work.

The reader should not confuse the bounds we get here with those for “worst-case” instances.
For worst case instances, usually, the parametrisation is w.r.t. the maximum degree of the
underlying (hyper)graph, whereas for the random (hyper)graph, the natural parametrisation
is w.r.t. the expected degree. Typically for the random (hyper)graphs here the maximum
degree is unbounded, i.e., Θ(log n/ log log n), while the expected degree d is a fixed number.

It is important to mention that having an algorithm which allows a lot of freedom for
the parameters comes at a certain cost. The approximation guarantees of our algorithm
are not equally strong to, e,g., those of the MCMC approach. That is, even though the
state of the art of MCMC can be far more restrictive in the parameters it allows, it provides
stronger approximation guarantees. Roughly speaking, our results is summarised as follows:
for a symmetric Gibbs distribution µ on the random (hyper)graph which satisfies our set of
conditions, we have an approximation sampling algorithm such that with probability 1 − o(1)
over the instances of the input (hyper)graph, it generates a configuration which is distributed
within total variation distance n−Ω(1) from µ. The time complexity is O((n log n)2).

Concluding, the idea of “iteratively adding edges and updating” turns out to be quite
powerful, particularly when we combine it with notions and ideas from the Cavity method.
It allows us to sample from distributions that, prior to this work, was impossible to sample.
Our approach leads to, what we believe to be, an elegant sampling algorithm which deviates
from [15] and follow up approaches not only on the phenomena of the Gibbs distributions
that it utilises, but also on its basic description. Our work shows how powerful the notions
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from the Cavity method can be, i.e., even in the context of sampling algorithms. We believe
that there is a lot of potential towards the direction of using ideas from the Cavity method
for the sampling problem in order to get even stronger algorithms.

Results for specific distributions appear in Section 1.2. Particularly, we show results for
the anti-ferro q-state Potts model on graphs and hypergraphs, for any q ≥ 2. This includes the
“zero-temperature” case (hyper)graph colourings, as well as the anti-ferro Ising model. Also,
we show results for the k-NAE-SAT, for k ≥ 2, and the spin-glass called the k-spin model.
This is the diluted version of the celebrated and extensively studied Sherrington-Kirkpatrick
mean field model [31, 38]. Spin-glasses are studied in mathematics, in neural computation,
computational biology and many other areas [37]. To our knowledge, this is the first rigorous
analysis of efficient algorithm for spin-glasses. Our algorithm is by no means restricted to
the cases presented here, i.e., it applies to any symmetric Gibbs distribution. We choose to
present the specific ones because there is a common analysis framework that we can use.

1.1 General Overview
Let the fixed k-uniform hypergraph Hk = (V,E). Clearly, the graph case corresponds to
having k = 2. A Gibbs distribution on Hk is specified by the set of spins A and the weight
functions (ψe)e∈E such that ψe : Ak → R≥0. The Gibbs distribution µ = µH is on the set
of configurations AV , i.e., the assignments of spins to the vertices of Hk, such that each
σ ∈ AV gets probability measure

µ(σ) ∝
∏
e∈E

ψe(σ(xe,1), σ(xe,2), . . . , σ(xe,k)),

where xe,i is the i-th vertex in the hyperedge e. We assume a predefined order for the vertices
in each hyperedge. The symbol ∝ stands for “proportional to”.

In many situations, we allow ψe to vary with e. For example, in k-NAE-SAT, or the
k-spin model each ψe is chosen independently, according to a predefined distribution. For
this early exposition of the results the reader may very well assume that all ψe’s are the
same and fixed.

Roughly speaking, µ is symmetric, if for any σ, τ ∈ AV such that σ can be obtained from
τ by repermuting the spin classes, we have that µ(σ) = µ(τ). For example, suppose that
A = {±1}. If µ is symmetric, then we have µ(σ) = µ(τ) for any two σ, τ ∈ AV , such that
σ(x) = −τ(x) for all x ∈ V .

The underlying (hyper)graph structure is random. We let H = H(n,m, k) be the random
k-uniform hypergraph on n vertices and m hyperedges. For the graph case, i.e., k = 2,
we write G(n,m). The expected degree is denoted by d. We take d to be a constant, i.e.,
m = Θ(n). Our results hold for any d > 0, i.e., we do not require that “d is sufficiently large”.

Consider a typical instance of H, of expected degree d, and µ = µH a symmetric Gibbs
distribution on H. Suppose that we want to sample from µ. In what follows, we describe
the key features of the algorithm we propose for sampling from µ.

The main problem we need to deal with is the update-rule, i.e., how to design a method
that gives us the configuration σi from σi−1, while, at the same time, it is generic enough
to apply to all symmetric Gibbs distributions. We introduce an approach that relies on an
abstract process that is called broadcasting. This is a natural process, that can be used to
generate samples of symmetric Gibbs distributions on trees. The update starts by changing
the configuration of the vertices that are disconnected and become connected when we add
the (hyper) edge in the iteration i. W.l.o.g. assume that we change the assignment of just
one of these vertices. Starting from this disagreeing vertex, we employ a process that is a
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reminiscent of a coupling between two broadcasting processes. It is possible that in this
process the initial disagreements propagates to some of its neighbours and, in turn, the
disagreement of the neighbours propagates to neighbours further away and so on. The update
stops when no more disagreements are generated.

It is crucial for the accuracy of the algorithm that the disagreements do not propagate
too much further from the initial one. We can bound the rate that the disagreements
spread during the update in terms of certain quantities related to the Gibbs distribution
called broadcasting probabilities. Particularly, we have two desiderata: (a) the broadcasting
probabilities are sufficiently close with each other (b) we need to show that the configuration of
the vertices that the update rule encounters, somehow, looks like the result of a broadcasting
process.

For the first desideratum we just need to tune appropriately the parameters of the Gibbs
distribution. As far as the second one is concerned, even though we expect it to be true in
our setting, it is very difficult to establish it rigorously. To this end, we employ the so-called
planting-trick. This is a technique that allows us to circumvent the problem of accessing
properties of the Gibbs distribution by using a very accurate approximation of it, which is
called the Teacher-Student model. Working with the later distribution is technically much
easier and it allows to get our second desideratum.

Let us be more specific. In order to have an accurate algorithm we introduce a set of
technical conditions for the Gibbs distribution µ which we call SET. For describing SET, we
need to visit few basic concepts.

Using the weight functions (ψe)e∈E we considered before, we introduce the following
distributions: for each e ∈ E, let me be the distribution on Ae, i.e., configurations on the
vertices in e, such that

me(σ) ∝ ψe(σ(xe,1), σ(xe,2), . . . , σ(xe,k)) ∀σ ∈ Ae. (1)

From Cavity’s perspective, the distributions {me}e∈E can be viewed as fixed-points of the
so-called BP equations. The distributions me are natural objects in our setting. Particularly
we focus on the so-called broadcasting probability mi

e, which is the distribution me conditional
on the configuration at xe,1 being i ∈ A.

Furthermore, we need to introduce the notion of total variation distance between
distributions. Particularly, for any two distributions ν̂ and ν on AV we let

||ν̂ − ν||tv = (1/2)
∑

σ∈AV |ν̂(σ) − ν(σ)|.

Also, we let ||ν̂ − ν||Λ be the total variation distance of the marginals of ν̂ and ν on the
vertex set Λ ⊆ V .

SET consists of two conditions which we call B.1 and B.2. The condition B.1 requires
that for any two mi

e, mj
e, i.e, any two broadcasting probabilities of µ, their total variation

distance is not too large. We say that B.1 is satisfied with slack δ > 0 if we have that

max
i,j∈A

||mi
e − mj

e||Λ ≤ 1 − δ

d(k − 1) , where Λ = {xe,2, xe,3, . . . , xe,k}.

Recall that k is the size of the hyper-edge in H, while d is the expected degree. The above
implies that for any two broadcasting, their total variation distance should be smaller than
(1 − δ) over the expected number of neighbours of a vertex in H.

The condition B.2 requires mutual contiguity between the Gibbs distribution µ and the
so-called teacher-student model. We generate the pair (H∗,σ∗) according to the teacher-
student model by working as follows: choose σ∗ randomly from AV . Given σ∗, generate the
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weighted random hypergraph H∗ on n vertices and m edges, where the weight depends on
σ∗ and µ. Contiguity implies that the typical properties of the pair (H∗,σ∗) are the same as
those of the pair (H,σ), where H = H(n,m, k) and σ is distributed as in µ. More formally,
contiguity implies that for any sequence of events (Sn)n we have that

Pr[(H,σ) ∈ Sn] = o(1) iff Pr[(H∗,σ∗) ∈ Sn] = o(1).

For the planting-trick we combine B.1 with B.2. Roughly speaking, we use B.1 to
prove that the update rule is local when it is applied to a configuration that is from the
teacher-student model. Then, B.2, i.e., contiguity, implies that the same is true for our
original configuration σi−1. The reader can find further details and discussions about this in
Section 2.

The region of the parameters that our algorithm is accurate are specified by SET.
Employing technical arguments from [11, 8, 10], we show that, for symmetric distributions,
the condition B.1 is stronger than B.2. In that respect, the specifications of SET reflect
exactly the restrictions that B.1 imposes to the Gibbs distribution.

The general result we prove in this work is stated in the following two theorems. Also,
see Section 1.2 for applications of these theorems on specific distributions.

▶ Theorem 1. For δ ∈ (0, 1], for integer k ≥ 2, for any d ≥ 1/(k − 1) and integer
m = dn/k the following is true for our algorithm: Consider the random k-uniform hypergraph
H = H(n,m, k). Let µ = µH be a symmetric Gibbs distribution on H which satisfies SET
with slack δ.

With probability 1 − o(1), over the input instances H and weight functions on the edges
of H, our algorithm generates a configuration whose distribution µ̄ is such that

||µ̄− µ||tv ≤ n− δ
55 log(dk) .

As mentioned above, the theorem does not require d to be a “sufficiently large constant”.
We chose d ≥ 1/(k− 1), because otherwise the underlying graph structure is very simple and
the problem is trivial.

Let us remark that, even though the output error for the algorithm is polynomial small,
we didn’t optimise the constants at the exponent of the polynomial.

▶ Theorem 2. For k ≥ 2 and d ≥ 1/(k − 1) and integer m = dn/k, consider the random
k-uniform hypergraph H = H(n,m, k). The time complexity of our algorithm on input H is
O((n log n)2).

SET Versus Gibbs Uniqueness

As noted earlier, for almost all the cases of distributions we consider here, our algorithm
outperforms by far the corresponding MCMC. However, it is natural to further characterise
the region of parameters that our algorithm allows, not in terms of the performance of other
algorithms, but in terms of spatial mixing conditions on the the k-uniform random hyper-tree
where each non-leaf vertex has (k − 1) × Poisson(d) children and k ≥ 2. If not anything else,
this could give further insight on the approach.

Establishing the so-called tree-uniqueness for many of the Gibbs distributions here turns
out to be a notoriously difficult problem even for the regular tree, not to mention the random
tree, or the random hyper-tree. Deriving such results is of independent interest and goes far
beyond the scope of this work. The lack of rigorous result for uniqueness allows only for a
discussion on the basis of conjectures coming (mainly) from physics.
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For the graph case, it is natural to compare SET with the Gibbs tree-uniqueness condition
on the Galton-Watson tree with offspring distribution the Poisson(d). At least for the
antiferromagnetic Ising and Potts model and the 2-NAE-SAT model, the requirement of our
algorithm coincides with the conjectured tree uniqueness region of the the random tree. We
are not aware of any conjectures about the tree uniqueness of the spin-glass 2-spin model.

For the hyper-graph case, things seem to be more interesting. The author of this work is
not aware of any physics’ conjectures about the Gibbs uniqueness on the random hyper-tree.
However, we believe that is interesting to include in our discussion the following (somehow
easy to make) observation: For the sake of our discussion, rather than random hyper-tree
consider a regular one, e.g. consider k-uniform hyper-tree where each non-leaf vertex has
∆(k − 1) children, for integers ∆, k > 0. Consider also a symmetric Gibbs distribution with
hard constraints on this hyper-tree, e.g. the q-colouring model. Provided that ∆, k are
relatively large, say ∆, k ≥ 15, the condition SET does not preclude configurations at the
vertices at level ℓ of the tree that specify uniquely the colouring at the root, for howsoever
large ℓ > 0 we choose 1. Of course, such colourings are extremely untypical with respect to
the Gibbs distribution on the hyper-tree. A very similar phenomenon can be observed at
the random hyper-tree, too. This aforementioned phenomenon leads us to conjecture for the
hypergraph cases, that our algorithm allows to sample beyond the corresponding hyper-tree
uniqueness region for all the Gibbs distributions we consider here.

The above should not be a surprise to the reader. It is well-known that for hard-constraint
distributions on the hyper-graph (not necessarily random), the worst case configurations can
be very problematic for the analysis of MCMC sampler, i.e., even under very mild conditions,
e.g. see [22]. Our algorithm does not suffer from such problems, because it deals with typical
configurations which are much nicer.

Related work

The idea of “iteratively adding edges and updating” for sampling was first introduced in [15]
for sampling colourings of random graphs. The techniques and tools we introduce here for
the sampling problem, rely on results developed in the study Cavity method and random
CSP, e.g. see [1, 8, 10, 11].

There are two other works which follow the approach of “adding edges and updating”
and use the same correlation decay approach to [15]. One is [17], an improvement of [15],
which is about colourings of the random graph of sufficiently large expected degree d. The
other one is [4] for the Potts model on the related random ∆-regular graph, for large ∆.
From the second paper, it is conceivable that we can get an efficient algorithm only for the
ferromagnetic Potts model on the random graph, provided that the expected degree d is large.
Apart from colourings and ferro-Potts on the graph, we cannot rely on any of these two
approaches for our endeavours. Both of them rely on the special properties of the distribution
they are sampling from, thus they don’t allow for other distributions. Furthermore, their
tree-uniqueness requirement essentially restrict their use to considering only graphs, rather
than hypergraphs. Our work here improves on both results in [17, 4] as it allows for any
expected degree d > 0, i.e., rather than sufficiently large d.

1 E.g., in this setting SET allows q ≈ ((k − 1)∆)1/(k−1), while the number of children of a non-leaf vertex
is (k − 1)∆ ≫ q.
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There are other approaches to sampling from Gibbs distributions (not-necessarily on
random graphs), which is different than the one we consider here. Notably, the most popular
ones rely on the Markov Chain Monte Carlo Method (MCMC) [28, 21]. The literature
of MCMC algorithms is vast and includes some beautiful results, just to mention a few
[3, 39, 27, 25, 35, 14, 18, 6, 13].

Our results about the colourings are related to the work in [18] for MCMC sampling.
Some result from [18] can be extended naturally to the Potts model, too. In that respect
our approach outperforms, by far, [18] it terms of the range of the allowed parameters
of the Gibbs distributions. However, we note that the MCMC algorithm achieves better
approximation guarantees in the (more restricted) regions it operates.

1.2 Applications
1.2.1 The antiferromagnetic Ising Model
The Ising model on the k-uniform hypergraph Hk = (V,E) is a distribution on the set of
configurations {±1}V such that each σ ∈ {±1}V is assigned probability measure

µ(σ) ∝ exp
(
β ·

∑
e∈E

∏
x,y∈e1{σ(x) = σ(y)} + h ·

∑
x∈V σ(x)

)
,

where β ∈ R is the inverse temperature and h is the external field. It is straightforward that
the Ising model is symmetric only when h = 0. We assume β < 0, which corresponds to the
antiferromagnetic Ising model.

For ∆, k > 0 such that ∆ > 2k−1−1
k−1 we let the function

βIsing(∆, k) = log
(

∆(k−1)+1−2k−1

∆(k−1)+1

)
.

The uniqueness region of the antiferromagnetic Ising model on the ∆-ary tree, for ∆ ≥ 1,
is well-known. Particularly, it corresponds to temperatures β such that either ∆ > 2 and
βIsing(∆, 2) < β < 0, or ∆ = 1 and finite β < 0, i.e., β ̸= −∞.

▶ Theorem 3. For integer k ≥ 2 fr any d ≥ 1/(k − 1) such that either
1. d > (2k−1 − 1)/(k − 1) and βIsing (d, k) < β < 0, or
2. d ≤ (2k−1 − 1)/(k − 1) and finite β < 0,
the following is true: For the random k-uniform hypergraph H = H(n,m, k), where m =
dn/k, let µ = µH be the antiferromagnetic Ising model on H, with inverse temperature β
and external field h = 0.

There exists c0 > 0 which depends only on the choice of k, d, β, such that with probability
1 − o(1) over the input instances H, our algorithm generates a configuration with distribution
µ̄ such that

||µ̄− µ||tv ≤ n− c0
55 log(dk) .

The time complexity of the algorithm is O((n log n)2) with probability 1.

▶ Remark 4. For the graph cases, i.e., k = 2, physics’ conjecture is that we get the Gibbs
uniqueness region for the random trees with expected offspring d, by somehow “pretending”
that we are dealing with a d-ary tree (regardless of d being an integer, or not). From the
above theorem, it is evident that the region that our algorithm operates, corresponds exactly
to the region that is implied by the physics’ non rigorous consideration. Someone could
observe the same for the related Potts model in the following section.
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1.2.2 The antiferromagnetic Potts Model and the Colouring Model
The Potts model on the k uniform hypergraph Hk = (V,E) is a generalisation of the Ising
model in the sense that it allows for q spins where q ≥ 2. Particularly, each σ ∈ [q]V , where
[q] = {1, 2, . . . , q}, is assigned probability measure

µ(σ) ∝ exp
(
β ·

∑
e∈E

∏
x,y∈e1{σ(x) = σ(y)}

)
.

where β ∈ R is the inverse temperature. The graph case, i.e., k = 2, follows immediately
from the above.

There is a version of the Potts model with external field, similarly to the Ising model.
We do not consider the case with field because it gives rise to a non symmetric distribution.
The antiferromagnetic Potts model we focus here corresponds to having β < 0.

A very interesting case of the Potts model is the colouring model. This is the uniform
distribution over the proper q-colourings of the underlying (hyper)graph Hk, i.e., we do not
allow configurations with monochromatic edges. The colouring model corresponds to the
Potts model with β = −∞.

For ∆, k > 0 such that ∆ > qk−1−1
k−1 , we let the function

βPotts(∆, q, k) = log
(

∆(k−1)+1−qk−1

∆(k−1)+1

)
.

▶ Theorem 5. For integer k ≥ 2, for any d ≥ 1/(k − 1), integers q > 2 and m = dn/k the
following is true: Assume that β, q satisfy one of the following cases:
1. (qk−1 − 1)/(k − 1) < d and βPotts(d, q, k) < β < 0,
2. (qk−1 − 1)/(k − 1) > d and β < 0, including β = −∞.
Consider the random k-uniform hypergraph H = H(n,m, k). Let µ = µG be the q-state
antiferromagnetic Potts model on H with inverse temperature β. There exists c0 > 0, which
depends only on our choices of k, d, β such that with probability 1 − o(1) over the input
instances H, our algorithm generates a configuration whose distribution µ̄ is such that

||µ̄− µ||tv ≤ n− c0
55 log(dk) .

The time complexity of the algorithm is O((n log n)2) with probability 1.

Physics’ (folklore) conjecture for the uniqueness of antiferromagnetic Potts model on the
Galton Watson tree with offspring distribution Poisson(d) coincides with the region specified
in the theorem above, for k = 2.

1.2.3 The k-NAE-SAT Model
For integer k ≥ 2, let Fk(n,m) be a random propositional formula over the Boolean variables
x1, . . . , xn. Particularly, Fk(n,m) is obtained by inserting m independent random clauses of
length k such that no variable appears twice in the same clause. Here, we consider formulas
with m = dn/k clauses for a fixed number d, i.e., on average every variable occurs in d

clauses.
We focus on the “Not-All-Equal” satisfying assignments of Fk(n,m). A Boolean

assignment σ of x1, . . . , xn is NAE-satisfying for Fk(n,m) if under both σ and its binary
inverse σ̄ all m clauses evaluate to “true”. The random k-NAE-SAT problem is one of the
standard examples of random CSPs and has received a great deal of attention. In particular,
in an influential paper Achlioptas and Moore [2] pioneered the use of the second moment
method for estimating the partition functions of random CSPs with the example of random
k-NAE-SAT. Our focus is on sampling from the uniform distribution over the NAE satisyfing
assignments of Fk(n,m). We have the following result.
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▶ Theorem 6. For δ ∈ (0, 1], for k ≥ 2, for any 1/(k − 1) ≤ d < (1 − δ) 2k−1−1
k−1 and for

integer m = dn/k, the following is true for our algorithm: Consider Fk(n,m) and let µ be
the uniform distribution over the NAE satisfying assignments of Fk(n,m). With probability
1 − o(1) over the input instances Fk(n,m), our algorithm generates a configuration whose
distribution µ̄ is such that

||µ̄− µ||tv ≤ n− δ
55 log(dk) .

The time complexity of the algorithm is O((n log n)2) with probability 1.

As a point of reference for the performance of our sampling algorithm, note that it works
in a region of parameters which is very close to those of search algorithms for the problem,
e.g. see the analysis for the renown walk-sat algorithm in [9].

1.2.4 The k-spin model
For integer k ≥ 2, consider the k-uniform hypergraph Hk = (V,E). Additionally, let
J = (Je)e∈E be a family of independent, standard Gaussians (expectation zero and variance
one). The k-spin model on Hk at inverse temperature β > 0 is the distribution that assigns
each configuration σ ∈ {±1}V the probability measure

µ(σ) ∝
∏

α∈E exp
(
βJe

∏
y∈ασ(y)

)
. (2)

It is elementary to verify that the k-spin model is symmetric when k ≥ 2 is an even integer.
Here we consider the above distribution when the underlying (hyper)graph is an instance of
H = H(n,m, k) of expected degree d, i.e., m = dn/k.

The k-spin model is the diluted version of the well-known Sherrington-Kirkpatrick model
which has been subject of intense study both in mathematics and physics [38, 31]. Generally,
spin-glasses give rise to very intricate distributions and they are also studied in neural
networks, computational biology and other areas of computer science [37]. As mentioned
before, this is the first efficient algorithm for sampling from spin-glasses in a non-trivial
region of their parameters. For what follows we consider the function

Fk(x) = |ex − e−x|
(2k−1 − 1)e−x + ex

. (3)

▶ Theorem 7. For δ ∈ (0, 1], for even integer k ≥ 2, for any d ≥ 1/(k − 1) and for any
β ≥ 0 such that

E[Fk(βJ0)] ≤ 1−δ
d(k−1) ,

where the expectation is w.r.t. the standard Gaussian random variable J0, the following is
true for our algorithm: Consider H = H(n,m, k), where m = dn/k, and let µ be the k-spin
model on H at inverse temperature β. With probability 1 − o(1) over the input instances H

and the weight functions on the edges of H, our algorithm generates a configuration whose
distribution µ̄ is such that

||µ̄− µ||tv ≤ n− δ
55 log(dk) .

The time complexity of the algorithm is O((n log n)2) with probability 1.
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Notation

Let the hypegraph Hk = (V,E) and the Gibbs distribution µ on the set of configurations
AV . For a configuration σ, we let σ(Λ) denote the configuration that σ specifies on the set
of vertices Λ. We let µΛ denote the marginal of µ at the set Λ. For a configuration σ ∈ AV

we let µ(· | Λ, σ), denote the distribution µ conditional on the configuration at Λ being σ(Λ).
Also, we interpret the conditional marginal µΛ(· | Λ′, σ), for Λ′ ⊆ V , in the natural way.

2 Algorithmic Approach – High Level Description

To facilitate the exposition of the algorithm assume in this section that we are dealing with
a graph, rather than hypergraph, while we assume that this graph is fixed.

First, we recall the algorithm: on input G, the algorithm initially removes all the edges
and generates a configuration for the empty graph. Then, iteratively, we put the edges back
one by one. If Gi is the subgraph we have at iteration i, our aim is to have a configuration
σi which is distributed very close to the Gibbs distribution on Gi, for every i. We generate
σi by updating appropriately σi−1, the configuration of Gi−1. Once all edges are put back,
the algorithm outputs the configuration of G. One of the main challenge is to specify the
update rule, i.e., how to generate σi from σi−1.

We describe the proposed rule by considering the following, simpler, problem. Consider
two high-girth, fixed, graphs G = (V,E) and G′ = (V,E′). Assume that G and G′ differ on
a single edge, i.e. compared to G, the graph G′ has the extra edge e = {u,w}. Let µ and
µ′ be the Gibbs distributions of G and G′, respectively. We want to use the update rule to
generate efficiently τ a sample from µ′, while we are given σ, a sample from µ.

To facilitate our exposition, assume that we already know τ (u) and τ (w), and they are
such that τ (u) = σ(u) and τ (w) ̸= σ(w). In what follows, we focus on specifying τ for the
rest of the vertices in V .

The plan is to visit each vertex z iteratively and specify τ (z). At each iteration t, we only
know the configuration of τ for the vertices in the set of vertices we have already visited, we
call it Nt. Initially we have that N0 = {w, u}. Also, let D = {τ (w),σ(w)}, i.e., D is the set
of the spins of the initial disagreement. At iteration t we pick a vertex z which is outside Nt

but has a neighbour x ∈ Nt which is disagreeing, i.e., τ (x) ̸= σ(x). For the moment, assume
that such vertex exists.

If σ(z) /∈ D, then we just set τ (z) = σ(z). On the other hand, if σ(z) ∈ D, then we work
as follows: there is a probability pz, that depends on the configuration of σ and τ at Nt,
and we set

τ (z) =
{

D \ {σ(z)} with prob. pz

σ(z) with prob. 1 − pz.

The first line implies that τ (z) gets the opposite spin of σ(z). E.g., if D = {red, blue} and
σ(z) = red, then τ (z) = blue. Once τ (z) is decided, set Nt+1 = Nt ∪ {z} and continue
with the next iteration.

It could be that in iteration t, there is no vertex z outside Nt which has a disagreeing
neighbour inside Nt. If this is the case, then for every z for which we have not specified τ (z),
we set τ (z) = σ(z). Once we have specified the assignment τ for every vertex z in the graph,
the update rule terminates.
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The probability pz is determined in terms of a maximal coupling between the marginals of
µ′ and µ at z, conditional on τ (Nt) and σ(Nt). We denote these marginals as µ′

z(· | Nt, τ )
and µz(· | Nt,σ), respectively. We have

pz = max
{

0, 1 − µ′
z(σ(z) | Nt, τ )
µz(σ(z) | Nt,σ)

}
.

One can show that the above generates a perfect sample from the distribution µ′. There is
an issue with this approach, though. It is not clear how we can compute the probabilities pz,
efficiently. Computing pz relies on estimating conditional marginals of Gibbs distributions.
In our setting, we don’t known how to estimate these marginals efficiently. To this end, we
use different probabilities. That is, we follow the previous steps and when at the iteration t

we examine a vertex z for which σ(z) ∈ D, we set τ (z) such that

τ (z) =
{

D \ {σ(z)} with prob. qz

σ(z) with prob. 1 − qz,
(4)

i.e., instead of pz we use qz. Recall that we choose z because it has a disagreeing neighbour
x ∈ Nt. Each qz can be expressed in terms of the simpler distribution mα, where α is the
edge between z and x. We have

qz = max
{

0, 1 − mα,z(σ(z) | x, τ )
mα,z(σ(z) | x,σ)

}
. (5)

Recall from our notation that mα,z(· | x, τ ) is the marginal of mα on z, conditional on x

being set τ (x). Also, note from (1) that the distribution mα is very simple and can be
computed very fast.

A natural question at this point is what motivates the use qz in the place of pz. We
observe that if our graphs G and G′ were trees, then we would have that qz = pz. That is,
for trees our update rule generates perfect samples from µ′. In some sense, our approach
amounts to approximating the probabilities pz, which are difficult to compute, with those of
the tree, which we can compute very fast. In light of our assumption that our graphs G and
G′ are of high-girth, i.e., locally tree-like, this approximation seems quite natural.

Under certain conditions, our approach yields very good approximations of µ′. The
update rule is accurate in settings where, typically, the set of vertices that change assignment
does not grow “too large”. To be more specific, let Q be the set of vertices that change
configuration during the update, i.e., their configuration under τ is different than that under
σ. Somehow, our update rule runs into trouble when Q induces a subgraph which contains
one of the long cycles of G, or Q reaches u. In this case we consider that the algorithm fails.
That is, our update rule outputs either a configuration τ ∈ AV , or a fail status. We establish
a connection between the accuracy of the update and its failure probability, particularly we
show that the smaller the failure probability the more accurate the algorithm is.

2.1 Accuracy and failure probabilities
We relate the approximation error of the update rule with failure probabilities by exploiting
an interesting property of the update rule which is a reminiscent of the detailed balance
equation from the theory of reversible Markov chains [36]. In what follows, first we describe
the “detailed balance property” of the update and then we show how we use it to study the
accuracy.

In the same setting as before, assume that σ({u,w}) = σ and τ ({u,w}) = τ , for
fixed σ, τ ∈ A{u,w}. The update rule can be viewed as a stochastic process that takes a
configuration that agrees with σ at {u,w} and generates either a new configuration which
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agrees with τ at {u,w}, or fails. There is a natural way of defining the reverse update which
works towards the opposite direction, i.e., takes a configuration which agrees with τ and
either generates a configuration that agrees with σ at {u,w}, or fails.

For any two configuration κ, η ∈ AV , we let Pσ,τ (κ, η) be the probability that on input
κ the update generates η. Similarly we can define Pτ,σ(η, κ) for the reverse update. The
detailed balance equation relates these two probabilities, i.e., it specifies that

µ(κ)Pσ,τ (κ, η) = µ(η)Pτ,σ(η, κ).

Note that, in the equation above, the Gibbs distributions µ are unconditional.
We proceed by demonstrating how we use the detailed balance to get the update error.

Consider the same setting as in the previous paragraphs. Let µ̄ be the distribution of the
output of the update when the input is distributed as in µ(· | {u,w}, σ).

We need to focus on the failure probability of both the update and the reverse update.
Let F(κ) be the failure probability of the update rule on input (fixed) κ. In that respect,
the failure probability is equal to E[F(κ)], where the expectation is w.r.t. to κ which is
distributed as in µ(· | {w, u}, σ). Similarly, let R(η) be the failure probability for the reverse
update on input (fixed) η. The failure probability of the reverse update is E[R(η)], where η

is distributed as in µ(· | {w, u}, τ).
Using the detail balance and an asymptotic independence result between the configuration

of w and u under µ, we get the following: For any η ∈ AV we have that

µ̄(η) =
∑

κ∈AV

µ(κ | {w, v}, σ)Pσ,τ (κ, η) ≈
∑

κ∈AV

µ(η | {w, v}, τ)Pτ,σ(η, κ)

= µ(η | {w, v}, τ)(1 − R(η)). (6)

The first equation is just the definition of µ̄(η). The detailed balance with the asymptotic
independence are used for the derivation with “≈”. The last equation follows from the
observation that summing Pτ,σ(η, κ) over κ ∈ AV is equal to the probability that the reverse
update does not fail, when the input is η.

Another observation that we use is the following one: if the update has a positive failure
probability, then

∑
η µ̄(η) < 1. This holds because µ̄ gives positive measure to the failure

status of the update. That is, we have that E[F(κ)] +
∑

η µ̄(η) = 1. Combining this equality
and (6), standard derivations imply

||µ̄− µ(· | {w, u}, τ)||tv ≈ (1/2)(E[R(η)] + E[F(κ)]).

Essentially the update error is equal to the average of the failure probabilities of the update
and its reverse.

2.2 The failure probability on the random graph
Here we highlight the intuition behind our claim that if SET holds, then the failure probability
is very small.

Consider a setting which is a bit simpler than that we had before. Let µ be a symmetric
Gibbs distribution on G = G(n,m). Consider the spins c, c′ ∈ A such that c ̸= c′. Let σ be
distributed as in µ conditional on σ(u) = c′, for some u ∈ V . We use the update process to
generate a configuration τ which is (approximately) distributed as in µ conditional on that
τ (u) = c. Our focus is on the probability of failure for the update. Particularly, we argue
that if SET holds, then the size of the set of disagreeing vertices in the update process, i.e,
the vertices v such that σ(v) ̸= τ (v), grows subcritically at each iteration.
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Recall that, in the update, the disagreements start from vertex u and iteratively propagate
over the graph. Assume that not too many vertices have been visited in the process. In
iteration t, the process chooses the vertex z which is adjacent to the disagreeing vertex x,
i.e., we already know that τ (x) ̸= σ(x). The probability of disagreement propagating to
z can be estimated by just using (4) and (5). The idea is to combine (4) and (5) with the
randomness of σ and show that the probability of disagreement at z is < 1/d, which would
imply the subcriticality for the update process.

Exploiting the randomness of σ means that at iteration t of the process we only have
exposed the configuration of σ for the vertices which the process has already visited. If the
process hasn’t revealed the configuration of σ for too many vertices, then the marginal of
the configuration at z should be close to me(· | x,σ), where e = {x, z}. This would imply
that the disagreement probability at z is at most

max
c,c′∈A

||me(· | x, c) − me(· | x, c′)||z.

The above observation is quite interesting because the quantity above, i.e., disagreement
probability, is upper bounded by using B.1 in SET. Particularly, B.1 implies that the above
total variation distance is ≤ (1 − δ)/d. Thus, if the above intuition is correct, then we can get
the subcritical growth by exploiting the condition B.1. Unfortunately, with our assumptions
about µ, it too difficult to argue that the marginal probability at z is very close to me(· | x,σ)
in our process.

To this end, we employ the teacher-student model. We consider the pair (G∗,σ∗) from
the teacher-student model. We study the propagation of disagreements for the update
process on the pair (G∗,σ∗). There, it is simpler to argue that the distribution of z is very
close to me(· | x,σ). The condition B.1 still applies here and it implies that the growth of
disagreements in G∗ is subcritical. In turn, this implies that the failure probability for the
specific update is very small. Subsequently, we employ contiguity, i.e., B.2, to argue that if
the probability of failure for the case of (G∗,σ∗) is very small, then the probability of failure
for (G,σ) cannot be much larger.
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Abstract
The main problem in the area of graph property testing is to understand which graph properties
are testable, which means that with constantly many queries to any input graph G, a tester can
decide with good probability whether G satisfies the property, or is far from satisfying the property.
Testable properties are well understood in the dense model and in the bounded degree model, but
little is known in sparse graph classes when graphs are allowed to have unbounded degree. This is
the setting of the sparse model.

We prove that for any proper minor-closed class G, any monotone property (i.e., any property
that is closed under taking subgraphs) is testable for graphs from G in the sparse model. This
extends a result of Czumaj and Sohler (FOCS’19), who proved it for monotone properties with
finitely many forbidden subgraphs. Our result implies for instance that for any integers k and t,
k-colorability of Kt-minor free graphs is testable in the sparse model.

Elek recently proved that monotone properties of bounded degree graphs from minor-closed
classes that are closed under disjoint union can be verified by an approximate proof labeling scheme
in constant time. We show again that the assumption of bounded degree can be omitted in his
result.
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1 Introduction

1.1 Property testing
We say that a graph G is ε-far from some property P if one needs to modify at least ε|E(G)|
of its adjacencies (replacing edges by non-edges and vice-versa) in order to obtain a graph
satisfying P. A property is testable if for any graph G, a tester can decide with good
probability whether G satisfies P or is ε-far from P, by only making a constant number of
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queries to a given representation of G (i.e., the number of queries depends only on ε and P ,
but is independent of the input graph G). The tester has one-sided error if it always gives
the correct answer when G ∈ P, and two-sided error otherwise.

In the dense graph model [28], there is a good understanding of which properties are
testable with two-sided error [3] and one-sided error [5, 4]. In the bounded degree model [29],
a sequence of papers [8, 15, 32] culminated in a proof that every property is testable with
two-sided error within any hyperfinite graph family (this includes for instance any proper
minor-closed class) [37]. The bounded degree assumption is crucial for obtaining this result
and it has since then been an important open problem to obtain testability results in the
weaker sparse model, which does not assume that the maximum degree is bounded [14, 16].
In this more general model there are two types of queries: given a vertex v, we can query
the degree d(v) of v in G; we can also query the i-th neighbor of v, for 1 ≤ i ≤ d(v) (all
these queries are assumed to take constant time). In this model, much less is known: it was
proved that bipartiteness is testable within any minor-closed class in [14], while already in the
bounded degree model many simple properties are not testable in general graph classes [29],
so the restriction to a sparse structured class such as a proper minor-closed class is very
natural in this context. The interested reader is referred to the book of Goldreich [27] for
more results and references on property testing, and especially Chapter 10 in the book, which
focuses on the general graph model.

Instead of working in the sparse model as defined above, it will be enough to restrict
ourselves to a single type of query: given a vertex v, we query a random neighbor of v,
uniformly among the neighbors of v. Following [16], we say we make queries to the random
neighbor oracle. Note that this type of queries can clearly be implemented is the sparse
model, so this is a restriction of the model (see [16] for a comparison between these two
models, and a third one were we are allowed to query a constant number of distinct random
neighbors of a given vertex). The following was recently proved by Czumaj and Sohler [16].

▶ Theorem 1 ([16]). For every proper minor-closed class G, and any finite family H, the
property of being H-free for graphs from G is testable with one-sided error in the sparse model,
where only queries to the random neighbor oracle are allowed.

Here we say that a graph is H-free if it does not contain H as a subgraph, and H-free if
it is H-free for every H ∈ H. Our main result is an extension of Theorem 1 to any monotone
property, that is any property closed under taking subgraphs.

▶ Theorem 2. For every proper minor-closed class G, and any monotone property P, the
property of satisfying P for graphs from G is testable with one-sided error in the sparse model,
where only queries to the random neighbor oracle are allowed.

Note that for any monotone property P there is a (possibly infinite) family of graphs H
such that P is precisely the property of being H-free. This family H can be simply defined
as the class of all the graphs that do not satisfy P, or as the class of all the graphs that do
not satisfy P and are minimal with this property (with respect to the subgraph relation). It
follows that Theorem 2 is the natural generalization of Theorem 1, where we remove the
assumption that H is finite. This can be seen as an analogue of the situation in the dense
graph model: it was first proved that the property of being H-free (or H-free for finite H)
was testable in this model [2], and then only much later was this extended to all monotone
classes by Alon and Shapira [5]. Note that many natural monotone properties, such as being
planar or k-colorable for some k ≥ 2, do not have a finite set of minimal forbidden subgraphs.
So there is a fundamental gap between being H-free and being H-free for infinite H.
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1.2 Local certification
We now describe our second main result, which is obtained by extending the methods used
in the proof of Theorem 2. We start by introducing the setting of this result: The problem
of local certification.

In this part, all graphs are assumed to be connected. The vertices of any n-vertex graph
G are assumed to be assigned distinct (but otherwise arbitrary) identifiers (id(v))v∈V (G)
from {1, . . . , poly(n)}. In the remainder of this section, all graphs are implicitly labelled by
these distinct identifiers (for instance, whenever we talk about a subgraph H of a graph G,
we implicitly refer to the corresponding labelled subgraph of G). We follow the terminology
introduced by Göös and Suomela [30].

Proofs
A proof for a graph G is a function P : V (G) → {0, 1}∗ (G is considered as a labelled graph,
so the proof P is allowed to depend on the identifiers of the vertices of G). The binary words
P (v) are called certificates. The size of P is the maximum size of a certificate P (v), for
v ∈ V (G).

Local verifiers
A verifier A is a function that takes a graph G, a proof P for G, and a vertex v ∈ V (G) in
input, and outputs an element of {0, 1}. We say that v accepts the instance if A(G, P, v) = 1
and that v rejects the instance if A(G, P, v) = 0.

Consider an integer r ≥ 0, a graph G, a proof P for G, and a vertex v ∈ V (G). Let
Br(v) denote the set of vertices at distance at most r from v in G. We denote by G[v, r] the
subgraph of G induced by Br(v), and similarly we denote by P [v, r] the restriction of P to
Br(v).

A verifier A is local if there is a constant r ≥ 0, such that for any v ∈ G, A(G, P, v) =
A(G[v, r], P [v, r], v). In other words, the output of v only depends on the ball of radius r

centered in v, for any vertex v of G. The constant r is called the local horizon of the verifier.

Proof labelling schemes
For an integer r ≥ 0, an r-round proof labelling scheme for a graph class G is a prover-verifier
pair (P, A), with the following properties.
r-round: A is a local verifier with local horizon at most r.
Completeness: If G ∈ G, then P = P(G) is a proof for G such that for any vertex v ∈ V (G),

A(G, P, v) = 1.
Soundness: If G ̸∈ G, then for every proof P ′ for G, there exists a vertex v ∈ V (G) such

that A(G, P ′, v) = 0.

In other words, upon looking at its ball of radius r (labelled by the identifiers and
certificates), the local verifier of each vertex of a graph G ∈ G accepts the instance, while if
G ̸∈ G, for every possible choice of certificates, the local verifier of at least one vertex rejects
the instance.

The complexity of the labelling scheme is the maximum size of a proof P = P(G) for an
n-vertex graph G ∈ F . If we say that the complexity is O(f(n)), for some function f , the
O(·) notation refers to n → ∞. See [23, 30] for more details on proof labelling schemes and
local certification in general.
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It was proved in [25] that planar graphs have a 1-round proof labelling scheme of
complexity O(log n), and that this complexity is optimal. The authors of [25] asked whether
this can be extended to any proper minor-closed class. This was indeed extended in [24] to
graphs embeddable in a fixed surface (see also [22] for a short proof), to graphs avoiding some
small minors in [10], and more generally to any minor-closed class of bounded tree-width
in [26] (in the last result, the complexity is O(log2 n) instead of O(log n) in the other results
mentioned here).

For ε > 0, define an r-round ε-approximate proof labelling scheme for some class G exactly
as in the definition of r-round proof labelling scheme above, except that in the soundness
part, the condition “If G ̸∈ G” is replaced by “If G is ε-far from G” [13]. A graph class G is
summable if for any G1, G2 ∈ G, the disjoint union of G1 and G2 is also in G. Elek recently
proved the following result [21].

▶ Theorem 3 ([21]). For any ε > 0 and integer D ≥ 0, and any monotone summable
property P of a proper minor-closed class G, there are constants r ≥ 0 and K ≥ 0 such that
the class of graphs from P with maximum degree at most D has an r-round ε-approximate
proof labelling scheme of complexity at most K.

A natural problem is whether the bounded degree assumption in Elek’s result can be
omitted (Elek’s proof crucially relies on this assumption). We prove that the bounded degree
assumption can indeed be omitted.

▶ Theorem 4. For any ε > 0 and any monotone summable property P of a proper minor-
closed class G, there are constants r ≥ 0 and K ≥ 0 such that P has an r-round ε-approximate
proof labelling scheme of complexity at most K.

We indeed prove a far-reaching generalization of this result (whose statement was suggested
by Elek to the authors), concerning graph classes with bounded asymptotic dimension.

Asymptotic dimension
Given a graph G and an integer r ≥ 1, we denote by Gr the graph obtained from G by
adding edges between any pair of vertices at distance at most r in G. The weak diameter of
a set S of vertices of G is the maximum distance in G between two vertices of S.

For an integer d ≥ 0, a class of graphs G has asymptotic dimension at most d if there is a
function D : N → N such that for any integer r ≥ 1, any graph G ∈ G has a (d + 1)-coloring
of its vertex set such that any monochromatic1 component of Gr has weak diameter at most
D(r) in G.

This notion was introduced by Gromov [31] in the more general context of metric spaces.
In the specific case of graphs, it was proved that classes of bounded tree-width have asymptotic
dimension at most 1, and proper minor-closed classes have asymptotic dimension at most
2 [9]. It was also proved that d-dimensional grids and families of graphs defined by the
intersection of certain objects (such as unit balls) in Rd have asymptotic dimension d [9].
On the other hand, it is known that any class of bounded degree expanders has infinite
asymptotic dimension (see [33]).

We will prove the following generalization of Theorem 4.

1 A monochromatic component in a colored graph G is a connected component of a subgraph of G induced
by one of the color classes.
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▶ Theorem 5. For any ε > 0 and any monotone summable property P of a class G of
bounded asymptotic dimension, there are constants r ≥ 0 and K ≥ 0 such that P has an
r-round ε-approximate proof labelling scheme of complexity at most K.

Note that a monotone property P is summable if and only if all minimal forbidden
subgraphs for P are connected. This includes for instance minor-closed classes whose minimal
forbidden minors are connected, such as planar graphs, Kt-minor free graphs for any t ≥ 2,
graphs of bounded tree-width, graphs of bounded tree-depth, and graphs of bounded Colin
de Verdière parameter.

Natural examples of non summable properties include toroidal graphs (or more generally
graphs embeddable on any fixed surface other than the sphere). For monotone properties
that are not necessarily summable, we prove the following.

▶ Theorem 6. For any ε > 0 and any monotone property P of a proper minor-closed class
G, P has a 1-round ε-approximate proof labelling scheme of complexity O(log n).

While the complexity of the scheme guaranteed by Theorem 6 is not constant as in
Elek’s result [21] and Theorem 4, we do not require any bounded degree assumption (as in
Theorem 4), and a local horizon of 1 is sufficient. More importantly, the fact that P is not
necessarily summable requires a completely different set of techniques, much closer from the
tools used to prove Theorem 2. Theorem 6 can be thought of as an approximate answer to
the question of [25] on the local certification of minor-closed classes.

Organization of the paper
We start with some preliminary results in Section 2. In Section 3, we prove the main technical
contribution of this paper, a result showing that if a graph from some minor-closed class
is far from a monotone property P, then it contains linearly many edge-disjoint subgraphs
of bounded size that are not in P. In Section 4 we deduce Theorem 2 from this result and
Theorem 1. Theorems 4 and 6 are proved in Section 5. We conclude in Section 6 with some
remarks.

2 Preliminaries

Minor-closed classes
We denote the number of vertices of a graph G by v(G), and its number of edges by e(G).
A class of graphs G is minor-closed if any minor of a graph from G is also in G. A class is
proper if it does not contain all graphs. The following was proved by Mader [35].

▶ Theorem 7 ([35]). For any proper minor-closed class G, there is a constant C such that
for any graph G ∈ G, e(G) ≤ C v(G).

Tree-depth
Given a rooted tree T , the closure of T is the graph obtained from T by adding edges between
each vertex and its ancestors in the tree. The height of a rooted tree is the maximum number
of vertices on a root-to-leaf path in the tree. The tree-depth of a connected graph G is the
maximum height of a rooted tree T such that G is a subgraph of the closure of T , and the
tree-depth of a graph G, denoted by td(G), is the maximum tree-depth of its connected
components (equivalently, it is equal to the maximum height of a rooted forest F such that
G is a subgraph of the closure of F ).
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The following was implicitly proved by Dvořák and Sereni [20] (in the proof below the
actual definition of tree-width is not needed, so we omit it).

▶ Theorem 8 ([20]). For every proper minor-closed class G and every δ > 0 there exists
d = d8(G, δ) ∈ N and s = s8(G, δ) ∈ N satisfying the following. For every G ∈ G there exist
X1, X2, . . . , Xs ⊆ V (G) such that

for any 1 ≤ i ≤ s, td(G[Xi]) ≤ d, and
every v ∈ V (G) belongs to at least (1 − δ)s of the sets Xi.

Proof. Let t = ⌈ 2
δ ⌉. It was proved in [17] that there is a constant k = k(t, G) such that any

graph G ∈ G has a partition of its vertex set into t classes Y1, . . . , Yt, such that the union
of any t − 1 classes Yi induces a graph of tree-width at most k. In particular, if we define
Zi := V (G) \ Yi for any 1 ≤ i ≤ t, then each graph G[Zi] has tree-width at most k and each
vertex v lies in t − 1 = (1 − 1

t )t sets Zi. Dvořák and Sereni [20, Theorem 31] proved2 that
for every integer k and real δ > 0, there are integers r = r(k, δ) and d = d(k, δ) such that for
any graph H of tree-width at most k, H has a cover of its vertex set by r sets X1, . . . , Xr,
such that each H[Xi] has tree-depth at most d and each vertex lies in at least (1 − δ

2 )r sets
Xi. Applying this result to H = G[Zi] for any 1 ≤ i ≤ t, we obtain rt sets X ′

1, . . . , X ′
rt of

vertices of G, such that the subgraph G[X ′
i] induced by each of them has tree-depth at most

d and each vertex of G lies in at least (1 − δ
2 )r · (1 − 1

t )t ≥ (1 − δ)rt sets X ′
i. Thus d and

s = rt satisfy the conditions of the theorem. ◀

We deduce the following useful result.

▶ Corollary 9. For every proper minor-closed class G and every ε > 0 there exists d =
d9(G, ε) ∈ N satisfying the following. For every G ∈ G there exist F ⊆ E(G) such that
|F | ≤ ε e(G) and td(G \ F ) ≤ d.

Proof. Let δ = ε
2 . We show that d = d8(G, δ) satisfies the corollary. Indeed, for G ∈ G let

X1, X2, . . . , Xs ⊆ V (G) be as in Theorem 8. Let Fi = E(G) \ E(G[Xi]) for i ∈ [s], then
td(G \ Fi) ≤ d. Moreover, every edge belongs to at most 2δs sets Fi, so

1
s

s∑
i=1

|Fi| ≤ 1
s

· 2δs · e(G) = ε e(G).

Thus, by averaging, |Fi| ≤ ε e(G) for some i, and F = Fi satisfies the corollary. ◀

Note that the conclusion of Corollary 9 can be shown to hold in greater generality than in
the context of minor-closed classes. For instance, any class in which all graphs can be made of
bounded tree-width by removing an arbitrarily small fraction of edges also have this property
(see [20]). This includes all graphs of bounded layered tree-width (see [18, 39]). Typical non
minor-closed examples of such classes are families of graphs that can be embedded on a
fixed surface, with a bounded number of crossings per edge [19]. However, since the proof of
Theorem 1 itself strongly relies on edge-contractions (and thus on the graph class G being
minor-closed), Theorem 2 does not seem to be easily extendable beyond minor-closed classes.

2 The property that s is bounded independently of G does not appear explicitly in the statement of their
theorem, but readily follows from their proof. This will only be needed in Section 5.
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3 Bounded size obstructions

3.1 General properties
A graph property P is a graph class that is closed under isomorphism. It will be convenient
to write that G ∈ P instead of “G satisfies P” in the remainder of the paper. A graph H is
minimally not in P if H ̸∈ P and any proper subgraph of H is in P.

We will use the following result of Nešetřil and Ossona de Mendez (Lemma 6.13 in [36]) 3.

▶ Lemma 10 ([36]). For every integer d ≥ 1 and every property P, there exists N = N10(d, P)
such that if H is minimally not in P and td(H) ≤ d then v(H) ≤ N .

3.2 Colorability
The conclusion of Lemma 10 is quite strong but it does not give explicit bounds on N10(d, P).
For completeness, we give such an explicit bound when P is the property of being k-colorable.
The specific question of whether 3-colorability of planar graphs was testable in the sparse
model was raised by Christian Sohler at the Workshop on Local Algorithms (WOLA) in
2021. A positive answer to this question directly follows from Theorem 2, but the lemma
below allows us to give an explicit bound on the query complexity of testing k-colorability in
minor-closed classes (see Section 6).

Given a graph H and two vertex subsets A, B ⊆ V (H), we say that (A, B) is a proper
separation of H if A ∪ B = V (H), A \ B and B \ A are both non-empty, and there are no
edges between A \ B and B \ A in H . We say that a graph H is split if there exists a proper
separation (A, B) of H and an isomorphism ϕ : A → B between H[A] and H[B] such that
ϕ(v) = v for every v ∈ A ∩ B (see Figure 1 for an example). Equivalently, a split graph can
be obtained by taking two copies of some smaller graph and, for a proper subset of vertices,
identifying the two copies of the vertex subset with each other.

A connected graph H is unsplit if it is not split. Note that minimally non-k-colorable
graphs are unsplit.

A B

Figure 1 A split graph H and the corresponding proper separation (A, B) of H. The isomorphism
ϕ : A → B is the reflection symmetry with respect to the vertical axis.

The tower function is defined as twr(0) = 0 and twr(i + 1) = 2twr(i) for any integer i ≥ 0.

▶ Lemma 11. For every integer d ≥ 1, there exists N = N11(d) = twr(O(d)) such that if H

is an unsplit graph with td(H) ≤ d then v(H) ≤ N .

3 The version we use here only needs Q to be a singleton in the statement of Lemma 6.13 in [36].
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Proof. Define kd := 1 and for any 0 ≤ i ≤ d − 1, let ki := (2(ki+1
2 )+d·ki+1)ki+1 + 1.

Choose a rooted tree T of height at most d + 1 rooted at some vertex r, such that H is
a subgraph of the closure of T . For each v ∈ V (H), let Tv be the subtree of T rooted at v

(consisting of v and all its descendants), and let Hv be the subgraph of H induced by V (Tv).
Define the level ℓ(v) := distT (r, v) ∈ [0, d].

We prove by induction on d − i that v(Hv) ≤ ki for every v with ℓ(v) = i. The base case
i = d trivially holds, as kd = 1.

For the induction step, let u1, . . . , um be all the children of a vertex v with ℓ(v) = i, and
let Av be the set consisting of v and its ancestors. Then |Av| = i + 1. For each j ∈ [m], let
H+

j = H [Av ∪ V (Huj )]. Note that there are at most 2(ki+1
2 )+d·ki+1 distinct (labelled) graphs

G on at most |Av| + ki+1 ≤ d + ki+1 vertices such that the subgraph of G induced by the
first |Av| vertices is isomorphic to H [Av]. As v(Huj

) ≤ ki+1, if m > 2(ki+1
2 )+d·ki+1 there exist

j ≠ j′ and an isomorphism ϕ : V (H+
j ) → V (H+

j′ ) such that ϕ(w) = w for every w ∈ Av.
Such an isomorphism would imply that H is split, and so m ≤ 2(ki+1

2 )+d·ki+1 . It follows that
v(Hv) ≤ mki+1 + 1 ≤ (2(ki+1

2 )+d·ki+1)ki+1 + 1 = ki, as desired.
By taking N := k0 we obtain that v(H) ≤ N . It can be checked from the definition of

(ki)0≤i≤d that N = k0 is at most a tower function of O(d). ◀

3.3 A linear Erdős-Posá property

We use Corollary 9 and Lemma 10 to deduce the following result, which is the main technical
contribution of this paper.

▶ Theorem 12. For every proper minor-closed class G, every ε > 0, and every property P,
there exists δ > 0 and an integer N such that for every G ∈ G either

there exists F ⊆ E(G) with |F | ≤ ε e(G) such that G \ F is in P, or
there exist edge-disjoint subgraphs G1, . . . , Gm of G that are not in P, such that m ≥ δ e(G)
and for every 1 ≤ i ≤ m, v(Gi) ≤ N .

Proof. By Theorem 7, there exists C such that e(G) ≤ Cv(G) for every G ∈ G. Let
d := d9(G, ε/2) and let N := N10(d, P). We show that δ := ε

2NC satisfies the theorem.
Let G1, . . . , Gm be a maximal collection of edge-disjoint subgraphs of G that are not in P ,

and such that v(Gi) ≤ N . If m ≥ δe(G) the theorem holds, so we assume that m < δe(G).
Let F ′ =

⋃m
i=1 E(Gi). Then

|F ′| ≤ C
m∑

i=1
v(Gi) ≤ CmN < cNδe(G) ≤ ε

2 e(G).

Let G′ = G \ F ′. By the choice of d, it follows from Corollary 9 that there exists F ′′ ⊆ E(G′)
such that |F ′′| ≤ ε

2 e(G) and td(G′ \ F ′′) ≤ d.
Let G′′ = G′ \ F ′′. Suppose first that G′′ is not in P , and let H be a minimal subgraph of

G′′ that is not in P . As H is minimally not in P , it follows from Lemma 10 that v(H) ≤ N .
Thus adding H to the collection G1, . . . , Gm contradicts its maximality.

It follows that G′′ is in P , but G′′ = G \ F , where F = F ′ ∪ F ′′ and |F | ≤ ε e(G), and so
the theorem holds. ◀



L. Esperet and S. Norin 58:9

4 Property testing in the sparse model

The model
As alluded to in the introduction, we work in the sparse model, only using queries to the
random neighbor oracle. That is, given an input graph G, the tester only does a constant
number of queries to the input, all of the following type: given a vertex v, return a random
neighbor of v (uniformly at random among all the neighbors of v in G). The vertex v itself
can be taken to be a random vertex of G, but does not need to. The computation of a
random vertex of G and a random neighbor of a given vertex of G are assumed to take
constant time in this model.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let G be a proper-minor class and P be a monotone property. Let ε

be given. Let δ > 0 and N be obtained by applying Theorem 12 to G, P and ε, and let H be
the (finite) set of all graphs of at most N vertices that are not in P . We now run the tester
of Theorem 1 for testing whether a graph G ∈ G is H-free or δ-far from being H-free.

Assume first that G ∈ P. If G contains a graph H ∈ H as a subgraph, then since P is
monotone, we have H ∈ P , which is a contradiction. Hence, G is H-free, and it follows that
the one-sided tester of Theorem 1 accepts G with probability 1. Assume now that G is ε-far
from P . By Theorem 12, there exist at least δe(G) edge-disjoint subgraphs of G that are all
in H, and thus one needs to remove at least one edge in each of these δe(G) edge-disjoint
subgraphs to obtain an H-free graph. As P is monotone, G is δ-far from being H-free, and
it follows that the tester of Theorem 1 rejects G with probability at least 2

3 , as desired. This
concludes the proof of Theorem 2. ◀

5 Local Certification

We recall that in this part, all graphs are assumed to be connected.

5.1 Summable properties
Before we prove Theorem 5, we will need the following consequence of a result of Brodskiy,
Dydak, Levin and Mitra [12] (obtained by taking r = 2 in Theorem 2.4 in their paper). This
can be seen as an analogue of Theorem 8 where tree-depth is replaced by the weaker notion
of weak diameter, while proper minor-closed classes are replaced by the more general classes
of bounded asymptotic dimension.

▶ Theorem 13 ([12]). Let G be a class of graphs of bounded asymptotic dimension and let δ > 0
be a real number. Then there exist two constants D = D13(G, δ) ∈ N and s = s13(G, δ) ∈ N
satisfying the following. For every G ∈ G there exist X1, X2, . . . , Xs ⊆ V (G) such that

for any 1 ≤ i ≤ s, each connected component of G[Xi] has weak diameter at most D in
G, and
every v ∈ V (G) belongs to at least (1 − δ)s of the sets Xi.

It can be noted that if a subset S of vertices of a graph G is such that G[S] has bounded
tree-depth, then G[S] has bounded diameter [36], and thus S has bounded weak diameter
in G. It follows that in the special case of proper minor-closed classes, Theorem 8 implies
Theorem 13 in a strong form.
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Proof of Theorem 5. Fix any real number ε > 0 and an integer d ≥ 0. Let G be a class
of bounded asymptotic dimension, and let P be a monotone summable property of G. Let
δ = ε

2 . By Theorem 13, there exist two constants D = D13(G, δ) ∈ N and s = s13(G, δ) ∈ N
satisfying the following. For every G ∈ G there exist X1, X2, . . . , Xs ⊆ V (G) such that

for any 1 ≤ i ≤ s, each component of G[Xi] has weak diameter at most D in G, and
every v ∈ V (G) belongs to at least (1 − δ)s of the sets Xi.

For any v ∈ V (G), we define the proof P (v) as (a binary representation of) the set of
indices I(v) ⊆ {1, 2, . . . , s} such that v ∈ Xi. This proof has constant size (depending only
of P and ε).

For every vertex v, the local verifier A(G, P, v) first checks that I(v) contains at least
(1 − δ)s integers from {1, 2, . . . , s}. If this is not the case, then v rejects the instance. In
the remainder, we call a monochromatic component of color i a maximal connected subset
of vertices v of G such that i ∈ I(v). We omit the color if it is irrelevant in the discussion.
Note that each vertex v belongs to |I(v)| monochromatic components. For each vertex v,
A(G, P, v) checks that the subgraph of G induced by the vertices u ∈ Br(v) is in P, for
r = 2D + 1, and that all monochromatic components of G containing v have weak diameter
at most D (this can be clearly done as v has access to the subgraph of G induced by its ball
of radius r = 2D + 1). If this is the case, then v accepts the instance, and otherwise v rejects
the instance.

It follows from the definition of our scheme and the monotonicity of P that for any
G ∈ P, the local verifier A(G, P, v) of each vertex v of G accepts the instance. Consider
now a graph G and a proof P ′ such that for each vertex v, A(G, P ′, v) = 1. The proof P ′

assigns a subset I(v) of indices of {1, . . . , s} to each vertex v of G, such that |I(v)| ≥ (1 − δ)s.
For each 1 ≤ i ≤ s, let Xi be the subset of vertices v of G such that i ∈ I(v). Let C be a
connected component of some G[Xi] (that is, C is a monochromatic component of color i),
for some 1 ≤ i ≤ s. Since all vertices of C accept the instance, C has weak diameter at most
D in G. It follows that C is contained in some ball of radius D in G, and thus (since P is
monotone, and each ball of radius r = 2D + 1 ≥ D induces a graph of P), C lies in P . As P
is summable, G[Xi] also lies in P.

It follows from the proof of Corollary 9, that if we set Fi = E(G) \ E(G[Xi]) for any
1 ≤ i ≤ s, then the property that every vertex v ∈ V (G) belongs to at least (1 − δ)s of sets
Xi implies that there is an index 1 ≤ i ≤ s such that |Fi| ≤ ε e(G). By the paragraph above
G \ Fi satisfies P, and thus G is ε-close from P (we say that a graph is ε-close from P if it
is not ε-far from P). In the contrapositive, we have proved that if G is ε-far from P, then
there is at least one vertex v such that A(G, P ′, v) = 0, as desired. ◀

Using the fact that proper minor-closed classes have asymptotic dimension at most 2 [9],
we immediately obtain Theorem 4 as a corollary. Note that for the same purpose we could
also use an earlier (and simpler) result of Ostrovskii and Rosenthal [38], who proved that
for every integer t, the class of Kt-minor free graphs has asymptotic dimension at most 4t.
We could also use Theorem 8 without any reference to asymptotic dimension, as Theorem 8
implies Theorem 13 for proper minor-closed classes (see the discussion before the proof of
Theorem 5).

5.2 Non necessarily summable properties
We now consider proof labelling schemes of complexity O(log n), rather than O(1). To prove
Theorem 6, we will need the following recent result of Bousquet, Feuilloley and Pierron [11].
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▶ Theorem 14 ([11]). For every integer d ≥ 1 and every first-order sentence φ, the class of
graphs of tree-depth at most d satisfying φ has a 1-round proof labelling scheme of complexity
O(log n).

Although we will not need it, it is worth noting that the complexity in their result is of
order O(d log n + f(d, φ)). Observe also that checking whether a graph is H-free for some
fixed finite family H can be expressed by a first-order formula. In particular, it follows
directly from Lemma 10 that checking whether td(G) ≤ d can be expressed by a first-order
formula (and thus certified with local horizon 1 with labels of size O(log n) per vertex).

The final ingredient that we will need is the ability to certify a rooted spanning tree,
together with the children/parent relationship in this tree, with certificates of O(log n) bits
per vertex (see [1, 6, 34] for the origins of this classical scheme). The prover gives the
identifier id(r) of the root r of T to each vertex v of G, as well as dT (v, r), its distance to r

in T , and each vertex v distinct from the root is also given the identifier of its parent p(v) in
T . The local verifier at v starts by checking that v agrees with all its neighbors in G on the
identity of the root r of T . If so, if v ≠ r, v checks that dT (v, r) = dT (p(v), r) + 1. It can be
checked that all vertices accept the instance if and only T is a rooted spanning tree of G.
Moreover, once the rooted spanning tree T has been certified, each vertex of G knows its
parent and children (if any) in T .

We are now ready to prove Theorem 6.

Proof of Theorem 6. The beginning of the proof proceeds exactly as in the proof of The-
orem 4. Fix any real number ε > 0. Let G be a proper minor-closed class, and let P be a
monotone (not necessarily summable) property of G. Let δ = ε

2 . By Theorem 8, there exist
d = d8(G, δ) ∈ N and s = s8(G, δ) ∈ N satisfying the following. For every G ∈ G there exist
X1, X2, . . . , Xs ⊆ V (G) such that

for any 1 ≤ i ≤ s, td(G[Xi]) ≤ d, and
every v ∈ V (G) belongs to at least (1 − δ)s of the sets Xi.

By Lemma 10, there exists a constant N = N10(d, P) such that if H is minimally not in P
and td(H) ≤ d then v(H) ≤ N . Let H be the (finite) set of all graphs of at most N vertices
that are not in P.

For any v ∈ V (G), the proof P (v) contains (a binary representation of) the set of indices
I(v) ⊆ {1, . . . , s} such that v ∈ Xi. This part of the proof has constant size (depending only
of P and ε). As in the proof of Theorem 4, the local verifier at each vertex v checks that
|I(v)| ≥ (1 − δ)s, and rejects the instance if this does not hold.

For each 1 ≤ i ≤ s, we do the following. In each connected component C of G[Xi], we
consider a rooted spanning tree TC of C, with root rC , and certify it using certificates of
O(log n) bits per vertex. It follows from Theorem 14 that any first-order property of G[C]
can be certified with certificates of size O(log n) bits per vertex (as all the components C are
vertex-disjoint, combining all these certificates and schemes still results in a scheme with
labels of O(log n) bits per vertex). In particular we can certify that td(G[C]) ≤ d (this is a
first-order property). Let H′ be the class of all (non-empty) graphs obtained from a graph
H ∈ H by deleting an arbitrary subset of connected components of H (note that if all the
graphs of H are connected, H = H′). Observe that all the graphs of H′ have size at most N

(which is a constant independent of the size of G). Then, for any H ′ ∈ H′, we certify that
G[C] is H ′-free or contains a copy of H ′ using Theorem 14, and store this information at the
vertex rC in a constant-size binary array b(rC), whose entries are indexed by all the graphs
of H′ (where the entry of b(rC) corresponding to some H ′ ∈ H′ is equal to 1 if and only if C

contains a copy of H ′ as a subgraph).
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It remains to aggregate this information along some rooted spanning tree T of G (which
can itself be certified with certificates of O(log n) bits per vertex). We do this as follows, for
every 1 ≤ i ≤ s. For a vertex v of the rooted tree T , the subtree of T rooted in v is denoted
by Tv. For each vertex v of G, let Cv be the set of components C of G[Xi] such that rC lies
in Tv. Then the proof P (v) contains a binary array c(v), whose entries are indexed by the
graphs H ′ of H′. The array c(v) is defined as follows: for any H ′ ∈ H′, the entry of c(v)
corresponding to H ′ is equal to 1 if and only if H ′ is a disjoint union of (non necessarily
connected) graphs H ′

1, H ′
2, . . . , H ′

k ∈ H′ such that each H ′
i appears in a different component

of Cv. The consistency of the binary arrays c(v) is verified locally as follows. For each vertex
v of G, the local verifier at v considers the binary arrays c(u), for all children u of v (and
the binary array b(v), if v is equal to some root rC). For any H ′ ∈ H′, the local verifier
at v checks whether H ′ can be written as a disjoint union of graphs H ′

1, H ′
2, . . . , H ′

k ∈ H′

such that each H ′
i appears in a different array among the children of v (plus in b(v), if v is a

root of some component C). The local verifier at v then checks whether this is consistent
with the entry corresponding to H ′ in c(v). Clearly, all the vertices accept if and only if the
information is consistent along the spanning tree, and it follows that the local verifier at
the root r can check for each H ∈ H ⊆ H′, whether the entry of c(r) corresponding to H is
equal to 0 or 1. It follows that the local verifier at r can check whether G[Xi] is H-free (and
accept the instance if and only if this is the case).

It follows from the definition of our scheme that for any G ∈ P , the local verifier of each
vertex of G accepts the instance.

Consider now some graph G together with some proof P ′ such that the local verifier
A(G, P ′, v) at each vertex v of G accepts the instance. For any 1 ≤ i ≤ s, let Xi be
the set of vertices v such that i ∈ I(v) (where I(v) is given by the proof P ′(v)), and let
Fi = E(G)\E(G[Xi]). As in the proof of Theorem 4, the property that every vertex v ∈ V (G)
belongs to at least (1 − δ)s of sets Xi implies that there is an index 1 ≤ i ≤ s such that
|Fi| ≤ εe(G).

By the properties of the local certificates, each component of G\Fi = G[Xi] has tree-depth
at most d, and thus G \ Fi has tree-depth at most d. Moreover, our local certificates imply
that G \ Fi is H-free. Since P is monotone, G \ Fi is in P . It follows that G is ε-close from
P. Taking the contrapositive, this shows that if a graph is ε-far from P, then at least one
local verifier will reject the instance. This concludes the proof of Theorem 6. ◀

6 Conclusion

In this paper we proved that for any proper minor-closed class G, using constantly many
queries to the random neighbor oracle, a tester can decide with good probability whether
an input graph G ∈ G satisfies some fixed monotone property P, or is ε-far from P. Given
the level of generality of the result it is to be expected that no explicit bounds on the query
complexity are given. However, we can give explicit estimates on the query complexity for
specific properties. For instance, it follows from the bounds of [20, Corollary 35], combined
with Lemma 11 and our proof of Theorem 2, that 3-colorability can be tested in planar
graphs with twr(poly(1/ε)) queries to the random neighbor oracle. This can be extended to
testing k-colorability in Kt-minor free graphs, for any k and t, at the expense of a significant
increase in the height of the tower function, by combining the results of [20] with the main
result of [17] (the bounds there are not explicit as a function of t, but can be made explicit
using results from the Graph Minor series). This is to be compared with the main result
of [14], that 2-colorability can be tested with 22poly(1/ε) queries in planar graphs. It is a
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natural problem to understand whether these properties can be tested with poly(1/ε) queries
to the random neighbor oracle, and more generally to develop techniques for proving finer
lower bounds on the query complexity of monotone properties in this model (see [7] for recent
results in this direction in the bounded degree model).
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Abstract
Recent progress in (semi-)streaming algorithms for monotone submodular function maximization
has led to tight results for a simple cardinality constraint. However, current techniques fail to give a
similar understanding for natural generalizations, including matroid constraints. This paper aims at
closing this gap. For a single matroid of rank k (i.e., any solution has cardinality at most k), our
main results are:

A single-pass streaming algorithm that uses Õ(k) memory and achieves an approximation
guarantee of 0.3178.
A multi-pass streaming algorithm that uses Õ(k) memory and achieves an approximation
guarantee of (1 − 1/e − ε) by taking a constant (depending on ε) number of passes over the
stream.

This improves on the previously best approximation guarantees of 1/4 and 1/2 for single-pass and
multi-pass streaming algorithms, respectively. In fact, our multi-pass streaming algorithm is tight in
that any algorithm with a better guarantee than 1/2 must make several passes through the stream
and any algorithm that beats our guarantee of 1 − 1/e must make linearly many passes (as well as
an exponential number of value oracle queries).

Moreover, we show how the approach we use for multi-pass streaming can be further strengthened
if the elements of the stream arrive in uniformly random order, implying an improved result for
p-matchoid constraints.
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1 Introduction

Submodular function optimization is a classic topic in combinatorial optimization (see, e.g.,
the book [28]). Already in 1978, Nemhauser, Wolsey, and Fisher [26] analyzed a simple greedy
algorithm for selecting the most valuable set S ⊆ V of cardinality at most k. This algorithm
starts with the empty set S, and then, for k steps, adds to S the element u with the largest
marginal value. Assuming the submodular objective function f is also non-negative and
monotone, they showed that the greedy algorithm returns a (1− 1/e)-approximate solution.
Moreover, the approximation guarantee of 1− 1/e is known to be tight [10, 25].

A natural generalization of a cardinality constraint is that of a matroid constraint. While
a matroid constraint is much more expressive than a cardinality constraint, it has often been
the case that further algorithmic developments have led to the same or similar guarantees for
both types of constraints. Indeed, for the problem of maximizing a monotone submodular
function subject to a matroid constraint, Călinescu, Chekuri, Pál, and Vondrák [5] developed
the more advanced continuous greedy method, and showed that it recovers the guarantee
1 − 1/e in this more general setting. Since then, other methods, such as local search [14],
have been developed to recover the same optimal approximation guarantee.

More recently, applications in data science and machine learning [19], with huge problem
instances, have motivated the need for space-efficient algorithms, i.e., (semi-)streaming
algorithms for (monotone) submodular function maximization. This is now a very active
research area, and recent progress has resulted in a tight understanding of streaming al-
gorithms for maximizing monotone submodular functions with a single cardinality constraint:
the optimal approximation guarantee is 1/2 for single-pass streaming algorithms, and it
is possible to recover the guarantee 1 − 1/e − ε in Oε(1) passes. That it is impossible to
improve upon 1/2 in a single pass is due to [11], and the first single-pass streaming algorithm
to achieve this guarantee is a simple “threshold” based algorithm [2] that, intuitively, selects
elements with marginal value at least OPT/(2k). The (1−1/e− ε) guarantee in Oε(1) passes
can be obtained using smart implementations of the greedy approach [3, 17, 22, 23, 27].

It is interesting to note that simple greedy and threshold-based algorithms have led to tight
results for maximizing a monotone submodular function subject to a cardinality constraint
in both the “offline” RAM and data stream models. However, in contrast to the RAM model,
where more advanced algorithmic techniques have generalized these guarantees to much more
general constraint families, current techniques fail to give a similar understanding in the data
stream model, both for single-pass and multi-pass streaming algorithms. Closing this gap is
the motivation for our work. In particular, current results leave open the intriguing possibility
to obtain the same guarantees for a matroid constraint as for a cardinality constraint. Our
results make significant progress on this question for single-pass streaming algorithms and
completely close the gap for multi-pass streaming algorithms.

▶ Theorem 1. There is a single-pass semi-streaming algorithm for maximizing a non-negative
monotone submodular function subject to a matroid constraint of rank k (any solution has
cardinality at most k) that stores O(k) elements, requires Õ(k) additional memory, and
achieves an approximation guarantee of 0.3178.

The last theorem improves upon the previous best approximation guarantee of 1/4 =
0.25 [6]. Moreover, the techniques are versatile and also yield a single-pass streaming
algorithm with an improved approximation guarantee for non-monotone functions (improving
from 0.1715 [12] to 0.1921).

Our next result is a tight multi-pass guarantee of 1 − 1/e − ε, improving upon the
previously best guarantee of 1/2− ε [18].
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▶ Theorem 2. For every constant ε > 0, there is a multi-pass semi-streaming algorithm for
maximizing a non-negative monotone submodular function subject to a matroid constraint of
rank k (any solution has cardinality at most k) that stores O(k/ε) elements, makes O(1/ε3)
many passes, and achieves an approximation guarantee of 1− 1/e− ε.

The result is tight (up to the exact dependency on ε) in the following strong sense: any
streaming algorithm with a better approximation guarantee than 1/2 must make more than
one pass [11], and any algorithm with a better guarantee than 1− 1/e must make linearly
(in the length of the stream) many passes [22] (see Section 6 for more detail).

The way we obtain Theorem 2 is through a rather general and versatile framework based
on the “Accelerated Continuous Greedy” algorithm of [3], which was designed for the classic
(non-streaming) setting. This allows us to obtain results with an improved number of passes
or more general constraints in specific settings. First, if the elements of the stream arrive in
uniformly random order, then we can improve the number of passes as stated below.

▶ Theorem 3. If the elements arrive in an independently random order in each pass, then
for every constant ε > 0, there is a multi-pass semi-streaming algorithm for maximizing a
non-negative monotone submodular function subject to a matroid constraint of rank k (any
solution has cardinality at most k) that stores O(k/ε) elements, makes O(ε−2 log ε−1) many
passes, and achieves an approximation guarantee of 1− 1/e− ε.

Second, also in the uniformly random order model, we can obtain results with even
fewer passes, and that also extend to p-matchoid constraints, but at the cost of weaker
approximation guarantees.

▶ Theorem 4. If the elements arrive in an independently random order in each pass, then
for every constant ε > 0, there is a multi-pass semi-streaming algorithm for maximizing a
non-negative monotone submodular function subject to a matroid constraint of rank k (any
solution has cardinality at most k) that stores O(k) elements, makes O(log ε−1) many passes,
and achieves an approximation guarantee of 1/2− ε.

Moreover, if the matroid constraint is replaced with a more general p-matchoid constraint,
the above still holds except that now the approximation guarantee is 1/(p + 1)− ε and the
number of passes is O(p−1 log ε−1).

The p-matchoid result of Theorem 4 improves, in the random order model, over an
algorithm of [18] that achieves the same approximation factor, but needs O(p/ε) passes,
whereas our algorithm requires a number of passes that only logarithmically depends on ε−1

and decreases (rather than increases) with p. (However, the procedure in [18] does not require
random arrival order, and obtains its guarantees even in the adversarial arrival model.)

1.1 Our Technique
Before getting into the technical details of our approaches, we provide an overview of the
main ingredients behind the techniques we employ.

Single pass algorithms

The 4-approximation single pass algorithm due to Chakrabarti and Kale [6] (and later
algorithms based on it such as [8, 12]) maintains an integral solution in the following way.
Whenever a new element u arrives, the algorithm considers inserting u into the solution
at the expense of some element u′ that gets removed from the solution; and this swap is
performed if it is beneficial enough. Naturally, the decision to make the swap is a binary
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decision: we either make the swap or we do not do that. The central new idea in our improved
single pass algorithms (Theorem 1) is that we make the swap fractional. In other words,
we start inserting fractions of u at the expense of fractions of u′ (the identity of u′ might
be different for different fractions of u), and we continue to do that as long as the swap is
beneficial enough. Since “beneficial enough” depends on properties of the current solution,
the swapping might stop being beneficial enough before all of u is inserted into the solution,
which explains why our fractional swapping does not behave like the integral swapping used
by previous algorithms.

While our single pass algorithms are based on the above idea, they are presented in
a slightly different way for simplicity of the presentation and analysis. In a nutshell, the
differences can be summarized by the following two points.

Instead of maintaining a fractional solution, we maintain multiple sets Ai (for i ∈ Z).
Membership of an element u in each of these sets corresponds to having a fraction of 1/m

(for a parameter m of the algorithm) of u in the fractional solution.
We do not remove elements from our fractional solution. Instead, we add new elements
to sets Ai with larger and larger i indexes with the implicit view that only fractions
corresponding to sets Ai with relatively large indices are considered part of the fractional
solution.

To make the above points more concrete, we note that the fractional solution is reconstructed
from the sets Ai according to the above principles at the very end of the execution of our
algorithms. The reconstructed fractional solution is denoted by s in these algorithms.

Multi-pass algorithms

Badanidiyuru and Vondrák [3] described an algorithm called “Accelerated Continuous Greedy”
that obtains 1− 1/e−O(ε) approximation (for every ε ∈ (0, 1)) for maximizing a monotone
submodular function subject to a matroid constraint. Even though their algorithm is not a
data stream algorithm, it accesses the input only in a well-defined restricted way, namely
though a procedure called “Decreasing-Threshold Procedure”. Originally, this procedure
was implemented using a greedy algorithm on an altered objective function. However, we
observe that the algorithm of [3] can work even if Decreasing-Threshold Procedure is modified
to return any local maximum of the same altered objective function. Therefore, to get a
multiple pass data stream algorithm, it suffices to design such an algorithm that produces an
(approximate) local maximum (or a solution that is as good as such a local maximum); this
algorithm can then be used as the implementation of Decreasing-Threshold Procedure. This
is the framework we use to get our (1− 1/e− ε)-approximation algorithms.

To prove Theorem 2 using the above framework, we show that a known algorithm (a
variant of the algorithm of Chakrabarti and Kale [6] due to Huang, Thiery, and Ward [18])
can be repurposed to produce an approximate local maximum using O(ε−2) passes, which,
when used in Accelerated Continuous Greedy, leads to the claimed O(ε−3) many passes.
Similarly, by adapting an algorithm of Shadravan [29] working in the random order model,
and extending it to multiple passes, we are able to get a solution that is as good as an
approximate local maximum in only O(ε−1 log ε−1) random-order passes, which leads to
Theorem 3 when combined with the above framework.

Interestingly, any (approximate) local maximum also has an approximation guarantee of
its own (without employing the above framework). This means that the above procedures
for producing approximate local maxima can also be viewed as approximation algorithms
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in their own right, which leads to Theorem 4.1 It is important to note that Theorem 4
uses fewer passes than what is used in the proof of Theorem 3 to get a solution which is
at least as good as an approximate local maximum. This discrepancy happens because
in Theorem 4 we only aim for a solution with some approximation ratio r, where r is an
approximation ratio guaranteed by any approximate local maximum in any instance. In
contrast, Theorem 3 needs a solution that is as good as some approximate local maximum of
the particular instance considered.

1.2 Additional Related Work

As mentioned above, Călinescu et al. [5] proposed a (1 − 1/e)-approximation algorithm
for maximizing a monotone submodular function subject to a matroid constraint in the
offline (RAM) setting, which is known to be tight [10, 25]. The corresponding problem
with a non-monotone objective is not as well understood. A long line of work [9, 13, 20]
on this problem culminated in a 0.385-approximation due to Buchbinder and Feldman [4]
and an upper bound by Oveis Gharan and Vondrák [15] of 0.478 on the best obtainable
approximation ratio.

The first semi-streaming algorithm for maximizing a monotone submodular function
subject to a matroid constraint was described by Chakrabarti and Kale [6], who obtained
an approximation ratio of 1/4 for the problem. This remained state-of-the-art prior to this
work. However, Chan, Huang, Jiang, Kang, and Tang [7] managed to get an improved
approximation ratio of 0.3178 for the special case of a partition matroid in the related
preemptive online model. We note that the last approximation ratio is identical to the
approximation ratio stated in Theorem 1, which points to some similarity that exists between
the algorithms (in particular, both use fractional swaps). However, the algorithm of [7] is
not a semi-streaming algorithm (and moreover, it is tailored to partition matroids). The first
semi-streaming algorithm for the non-monotone version of the above problem was obtained
by Chekuri, Gupta, and Quanrud [8], and achieved a (1/(4 + e)− ε) ≈ 0.1488-approximation.
This was later improved to 0.1715-approximation by Feldman, Karbasi, and Kazemi [12].2

Outline of the paper

In Section 2, we introduce notations and definitions used throughout this paper. Afterwords,
in Section 3, we present and analyze our single-pass algorithms. The framework used to
prove Theorems 2 and 3 is presented in detail in Section 4, and in the two sections after it we
describe the algorithms for obtaining approximate local maxima (or equally good solutions)
necessary for using this framework. Specifically, in Section 5 we show how to get such an
algorithm for adversarial order streams (leading to Theorem 2), and in Section 7 we show
how to get such an algorithm for random order streams (leading to Theorems 3 and 4). It is
worth noting that Section 3 is independent of all the other sections, and therefore, can be
skipped by a reader interested in the other parts of this paper.

1 Technically, we can also get a result for adversarial order streams in this way, but we omit this result
since it is weaker than a known result of [18].

2 Mirzasoleiman et al. [24] claimed another approximation ratio for the problem (weaker than the one
given later by [12]), but some problems were found in their analysis (see [16] for details).
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2 Preliminaries

Recall that we are interested in the problem of maximizing a submodular function subject to
a matroid constraint. In Section 2.1 we give the definitions necessary for formally stating this
problem. Then, Section 2.2 defines the data stream model in which we study the problem.
Finally, in Section 2.3 we present some additional notation and definitions that we use.

2.1 Problem Statement

Submodular Functions

Given a ground set N , a set function f : 2N → R is a function that assigns a numerical value to
every subset of N . Given a set S ⊆ N and an element u ∈ N , it is useful to denote by f(u | S)
the marginal contribution of u to S with respect to f , i.e., f(u | S) := f(S ∪ {u}) − f(S).
Similarly, we denote the marginal contribution of a set T ⊆ N to S with respect to f by
f(T | S) := f(S ∪ T )− f(S).

A set function f : 2N → R is called submodular if for any two sets S and T such that
S ⊆ T ⊆ N and any element u ∈ N \ T we have f(u | S) ≥ f(u | T ). Moreover, we say that
f is monotone if f(S1) ≤ f(S2) for any sets S1 ⊆ S2 ⊆ N , and f is non-negative if f(S) ≥ 0
for every S ⊆ N .

Matroids

A set system is a pair M = (N , I), where N is a finite set called the ground set, and I ⊆ 2N

is a collection of subsets of the ground set. We say that a set S ⊆ N is independent in M if
it belongs to I (otherwise, we say that it is a dependent set); and the rank of the set system
M is defined as the maximum size of an independent set in it. A set system is a matroid if it
has three properties: i) The empty set is independent, i.e., ∅ ∈ I. ii) Every subset of an
independent set is independent, i.e., for any S ⊆ T ⊆ N , if T ∈ I then S ∈ I. iii) If S ∈ I,
T ∈ I and |S| < |T |, then there exists an element u ∈ T \ S such that S ∪ {u} ∈ I.3

A matroid constraint is simply a constraint that allows only sets that are independent in
a given matroid. Matroid constraints are of interest because they have a rich combinatorial
structure and yet are able to capture many constraints of interest such as cardinality,
independence of vectors in a vector space, and being a non-cyclic sub-graph.

Matchoids and p-matchoids

The matchoid notion (for the case of p = 2) was proposed by Jack Edmonds as a common gener-
alization of matching and matroid intersection. Let M1 = (N1, I1), M2 = (N2, I2), . . . , Mq =
(Nq, Iq) be q matroids, and let N = N1∪· · ·∪Nq and I = {S ⊆ N | S∩Nℓ ∈ Iℓ for every 1 ≤
ℓ ≤ q}. The set system M = (N , I) is a p-matchoid if each element u ∈ N is a member of
Nℓ for at most p indices ℓ ∈ [q]. Informally, a p-matchoid is an intersection of matroids in
which every particular element u ∈ N is affected by at most p matroids. It is easy to see
that a 1-matchoid is just a matroid, and vice versa. 2-matchoids are often referred to simply
as matchoids (without a parameter p).

3 The last property is often referred to as the exchange axiom of matroids.
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Problem

In the Submodular Maximization subject to a Matroid Constraint problem
(SMMatroid), we are given a non-negative4 submodular function f : 2N → R≥0 and
a matroid M = (N , I) over the same ground set. The objective is to find an independent
set S ∈ I that maximizes f . An important special case of SMMatroid is the Monotone
Submodular Maximization subject to a Matroid Constraint problem (MSMMatroid)
in which we are guaranteed that the objective function f is monotone (in addition to being
non-negative and submodular).

2.2 Data Stream Model
In the data stream model, the input appears in a sequential form known as the input stream,
and the algorithm is allowed to read it only sequentially. In the context of our problem,
the input stream consists of the elements of the ground set sorted in either an adversarially
chosen order or a uniformly random order, and the algorithm is allowed to read the elements
from the stream only in this order. Often the algorithm is allowed to read the input stream
only once (such algorithms are called single-pass algorithms), but in other cases it makes
sense to allow the algorithm to read the input stream multiple times – each such reading is
called a pass. The order of the elements in each pass might be different; in particular, when
the order is random, we assume that it is chosen independently for each pass.

A trivial way to deal with the restrictions of the data stream model is to store the entire
input stream in the memory of the algorithm. However, we are often interested in a stream
carrying too much data for this to be possible. Thus, the goal in this model is to find
a high quality solution while using significantly less memory than what is necessary for
storing the input stream. The gold standard are algorithms that use memory of size nearly
linear in the maximum possible size of an output; such algorithms are called semi-streaming
algorithms.5 For SMMatroid and MSMMatroid, this implies that a semi-streaming algorithm is
a data stream algorithm that uses O(k logO(1) |N |) space, where k is the rank of the matroid
constraint.

The description of submodular functions and matroids can be exponential in the size of
their ground sets, and therefore, it is important to define the way in which an algorithm may
access them. We make the standard assumption that the algorithm has two oracles: a value
oracle and an independence oracle which, given a set S ⊆ N of elements that are explicitly
stored in the memory of the algorithm, returns the value of f(S) and an indicator whether
S ∈ I, respectively.

2.3 Additional Notation and Definitions
Multilinear Extension

A set function f : 2N → R assigns values only to subsets of N . If we think of a set S

as equivalent to its characteristic vector 1S (a vector in {0, 1}N that has a value of 1 in
every coordinate u ∈ S and a value of 0 in the other coordinates), then we can view f

as a function over the integral vectors in [0, 1]N . It is often useful to extend f to general

4 The assumption of non-negativity is necessary to allow multiplicative approximation guarantees.
5 The similar term streaming algorithms often refers to algorithms whose space complexity is poly-

logarithmic in the parameters of their input. Such algorithms are irrelevant for the problem we consider
because they do not have enough space even for storing the output of the algorithm.
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vectors in [0, 1]N . There are multiple natural ways to do that. However, in this paper,
we only need the multilinear extension F . Given a vector x ∈ [0, 1]N , let R(x) denote a
random subset of N including each element u ∈ N with probability xu, independently. Then,
F (x) = E[f(R(x))] =

∑
S⊆N [f(S) ·

∏
u∈S xu ·

∏
u̸∈S(1 − xu)]. One can observe that, as is

implied by its name, the multilinear extension is a multilinear function. Thus, for every
vector x ∈ [0, 1]N , the partial derivative ∂F

∂xu
(x) is equal to F (x+(1−xu) ·1u)−F (x−xu ·1u).

Note that in the last expression we have used 1u as a shorthand for 1{u}. We often also use
∂uF (x) as a shorthand for ∂F

∂xu
(x). When f is submodular, its multilinear extension F is

known to be concave along non-negative directions [5].

General Notation

Given a set S ⊆ N and an element u ∈ N , we denote by S + u and S − u the expressions
S ∪ {u} and S \ {u}, respectively. Additionally, given two vectors x, y ∈ [0, 1]N , we denote
by x ∨ y and x ∧ y the coordinate-wise maximum and minimum operations, respectively.

Additional Definitions from Matroid Theory

Matroid theory is extensive, and we refer the reader to [28] for a more complete coverage of
it. Here, we give only a few basic definitions from this theory that we employ below. Given
a matroid M = (N , I), a set S ⊆ N is called base if it is an independent set that is maximal
with respect to inclusion (i.e., every super-set of S is dependent), and it is called cycle if
it is a dependent set that is minimal with respect to inclusion (i.e., every subset of S is
independent). An element u ∈ N is called a loop if {u} is a cycle. Notice that such elements
cannot appear in any feasible solution for either SMMatroid or MSMMatroid, and therefore,
one can assume without loss of generality that there are no loops in the ground set.

The rank of a set S ⊆ N , denoted by rankM (S), is the maximum size of an independent
set T ∈ I which is a subset of S. The subscript M is omitted when it is clear from
the context. We also note that rankM (N ) is exactly the rank of the matroid M (i.e.,
the maximum size of an independent set in M), and therefore, it is customary to define
rank(M) = rankM (N ). We say that a set S ⊆ N spans an element u ∈ N if adding u to S

does not increase the rank of the set S, i.e., rank(S) = rank(S + u) – observe the analogy
between this definition and being spanned in a vector space. Furthermore, we denote by
spanM (S) := {u ∈ N | rank(S) = rank(S + u)} the set of elements that are spanned by S.
Again, the subscript M is dropped when it is clear from the context.

3 Single-Pass Algorithm

In this section, we present our single-pass algorithm for the Monotone Submodular Maximi-
zation subject to a Matroid Constraint problem (MSMMatroid). The properties of the
algorithm we present are given by the following theorem.

▶ Theorem 1. There is a single-pass semi-streaming algorithm for maximizing a non-negative
monotone submodular function subject to a matroid constraint of rank k that stores O(k)
elements, requires Õ(k) additional memory, and achieves an approximation guarantee of
0.3178.

Our algorithm can be extended to the case in which the objective function is non-monotone
(i.e., the SMMatroid problem) at the cost of obtaining a lower approximation factor, yielding
the following theorem. However, for the sake of concentrating on our main new ideas, we
devote this section to the algorithm of Theorem 1 and defer the proof of Theorem 5 to the
full version.

https://arxiv.org/abs/2107.07183v2
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▶ Theorem 5. There is a single-pass semi-streaming algorithm for maximizing a non-negative
(not necessarily monotone) submodular function subject to a matroid constraint of rank k

that stores O(k) elements, requires Õ(k) additional memory, and achieves an approximation
guarantee of 0.1921.

Throughout this section, we denote by PM := {x ∈ RN
≥0 : x(S) ≤ rank(S) ∀S ⊆ N}

the matroid polytope of M . The algorithm we use to prove Theorem 1 appears as Al-
gorithm 1. This algorithm gets a parameter ε > 0 and starts by initializing a constant α

to be approximately the single positive value obeying α + 2 = eα. We later prove that the
approximation ratio guaranteed by the algorithm is at least 1

α+2 − ε, which is better than
the approximation ratio stated in Theorem 1 for a small enough ε. After setting the value
of α, Algorithm 1 defines some additional constants m, c, and L using ε and α. We leave
these variables representing different constants as such in the procedure and analysis, which
allows for obtaining a better understanding later on of why these values are optimal for our
analysis. We also note that, as stated, Algorithm 1 is efficient (i.e., runs in polynomial time)
only if the multilinear extension and its partial derivatives can be efficiently evaluated. If
that cannot be done, then one has to approximate F and its derivatives using Monte-Carlo
simulation, which is standard practice (see, for example, [5]). We omit the details to keep
the presentation simple, but we note that, as in other applications of this standard technique,
the incurred error can easily be kept negligible, and therefore, does not affect the guarantee
stated in Theorem 1.

Algorithm 1 uses sets Ai and vectors ai ∈ [0, 1]N for certain indices i ∈ Z. Throughout
the algorithm, we only consider finitely many indices i ∈ Z. However, we do not know
upfront which indices within Z we will use. To simplify the presentation, we therefore use
the convention that whenever the algorithm uses for the first time a set Ai or vector ai, then
Ai is initialized to be ∅ and ai is initialized to be the zero vector. The largest index ever
used in the algorithm is q, which is computed toward the end of the algorithm at Line 13.

For each i ∈ Z, the set Ai is an independent set consisting of elements u that already
arrived and for which the marginal increase with respect to a reference vector a (at the
moment when u arrives) is at least ci. More precisely, whenever a new element u ∈ N arrives
and its marginal return ∂uF (a) exceeds ci for an index i ∈ Z in a relevant range, then we
add u to Ai if Ai + u remains independent. When adding u to Ai, we also increase the
u-entry of the vector ai by ci

m·∂uF (a) . The vector a built up during the algorithm has two
key properties. First, its multilinear value approximates f(OPT) up to a constant factor.
Second, one can derive from the sets Ai a vector s (see Algorithm 1) such that F (s) is close
to F (a) and s is contained in the matroid polytope PM.

Whenever an element u ∈ N arrives, the algorithm first computes the largest index
i(u) ∈ Z fulfilling ci(u) ≤ ∂uF (a). It then updates sets Ai and vectors ai for indices i ≤ i(u).
Purely conceptually, the output of the algorithm would have the desired guarantees even
if all infinitely many indices below i(u) where updated. However, to obtain an algorithm
running in finite (even polynomial) time and linear memory, we do not consider indices below
max{b, i(u)− rank(M)−L} in the update step. Capping the considered indices like this has
only a minor impact in the analysis since the contribution of the vectors ai to the multilinear
extension value of the vector a is geometrically decreasing with decreasing index i.

In the algorithm, and also in its analysis, we sometimes use sums over indices that go up
to ∞. However, whenever this happens, beyond some finite index, all terms are zero. Hence,
such sums are well defined.

Finally, we provide details on the return statement in Line 17 of the algorithm. This
statement is based on a fact stated in [5], namely that a point in the matroid polytope can
be rounded losslessly to an independent set. More formally, given any point y ∈ PM in the
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Algorithm 1 Single-Pass Semi-Streaming Algorithm for MSMMatroid.

1: Set α = 1.1462, m =
⌈ 3α

ε

⌉
, c = m

m−α , and L =
⌈
logc( 2c

ε(c−1) )
⌉
.

2: Set a = 0 ∈ [0, 1]N to be the zero vector, and let b = −∞.
3: for every element arriving u ∈ N , if ∂uF (a) > 0 do
4: Let i(u) = ⌊logc(∂uF (a))⌋. ▷ Thus, i(u) is largest index i ∈ Z with ci ≤ ∂uF (a).
5: for i = max{b, i(u)− rank(M)− L} to i(u) do
6: if Ai + u ∈ I then
7: Ai ← Ai + u.
8: ai ← ai + ci

m·∂uF (a) 1u.

9: Set b← h− L, where h is largest index i ∈ Z satisfying
∑∞

j=i |Aj | ≥ rank(M).
10: a←

∑∞
i=b ai.

11: Delete from memory all sets Ai and vectors ai with i ∈ Z<b.
12: Set Sk ← ∅ for k ∈ {0, . . . , m− 1}.
13: Let q be largest index i ∈ Z with Ai ̸= ∅.
14: for i = q to b (stepping down by 1 at each iteration) do
15: while ∃u ∈ Ai \ S(i mod m) with S(i mod m) + u ∈ I do
16: S(i mod m) ← S(i mod m) + u.
17: return a rounding R ∈ I of the fractional solution s := 1

m

∑m−1
k=0 1Sk

with f(R) ≥ F (s).

matroid polytope, there is an independent set I ∈ I with f(I) ≥ F (y). Moreover, assuming
that the multilinear extension F can be evaluated efficiently, such an independent set I can
be computed efficiently. As before, if one is only given a value oracle for f , then the exact
evaluation of F can be replaced by a strong estimate obtained through Monte-Carlo sampling,
leading to a randomized algorithm to round y to an independent set I with f(I) ≥ (1−δ)F (y)
for an arbitrarily small constant δ > 0.

Due to space constraints, the analysis of Algorithm 1 is deferred to the full version.

4 Framework for Multi-pass Algorithms

In this section we present the details of the framework used to prove our (1 − 1/e)-
approximation results (Theorems 2 and 3). We remind the reader that the proofs of these
theorems (using the framework) can be found in Sections 5 and 7, respectively. Badanidiyuru
and Vondrák [3] described an algorithm called “Accelerated Continuous Greedy” that obtains
an approximation guarantee of 1 − 1/e − O(ε) for MSMMatroid for every ε ∈ (0, 1). Their
algorithm is not a data stream algorithm, but it enjoys the following nice properties.

The algorithm includes a procedure called “Decreasing-Threshold Procedure”. This
procedure is the only part of the algorithm that directly accesses the input.
The Decreasing-Threshold Procedure is called O(ε−1) times during the execution of the
algorithm.
In addition to the space used by this procedure, Accelerated Continuous Greedy uses only
space that is linear in the space necessary to store the outputs of the various executions
of the Decreasing-Threshold Procedure.
The Decreasing-Threshold Procedure returns a base D of M after every execution, and this
base is guaranteed to obey Equation (1) stated below. The analysis of the approximation
ratio of Accelerated Continuous Greedy treats Decreasing-Threshold Procedure as a
black box except for the fact that its output is a base D of M obeying Equation (1),

https://arxiv.org/abs/2107.07183v2
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and therefore, this analysis will remain valid even if Decreasing-Threshold Procedure is
replaced by any other algorithm with the same guarantee. Furthermore, one can verify
that the analysis continues to work (with only minor technical changes) even if the output
D of the replacing algorithm obeys Equation (1) only in expectation.

Let us now formally state the property that the output base of Decreasing-Threshold
Procedure obeys. Let PM be the matroid polytope of M , and let F be the multilinear
extension of f . Decreasing-Threshold Procedure gets as input a point x ∈ (1− ε) · PM , and
its output base D is guaranteed to obey

F (x′)− F (x) ≥ ε[(1− 3ε) · f(OPT)− F (x′)] , (1)

where x′ = x + ε · 1D and OPT denotes an optimal solution.
Our objective in Sections 5 and 7 is to describe semi-streaming algorithms that can

function as replacements for the offline procedure Decreasing-Threshold Procedure. The next
proposition states that plugging such a replacement into Accelerated Continuous Greedy
yields a roughly (1− 1/e)-approximation semi-streaming algorithm.

▶ Proposition 6. Assume there exists a semi-streaming algorithm that given a point x ∈
(1− ε) ·PM makes p passes over the input stream, stores O(k/ε) elements, and outputs a base
D obeying Equation (1) in expectation. Then, there exists a semi-streaming algorithm for
maximizing a non-negative monotone submodular function subject to a matroid constraint of
rank k that stores O(k/ε) elements, makes O(p/ε) many passes and achieves an approximation
guarantee of 1− 1/e− ε.

Proof. Observe that the proposition is trivial when ε ≥ 1− 1/e, and therefore, we assume
below that ε < 1 − 1/e. Furthermore, for simplicity, we describe an algorithm with an
approximation ratio of 1− 1/e−O(ε) rather than a clean ratio of 1− 1/e− ε. However, one
can switch between the two ratios by scaling ε by an appropriate constant.

Let us denote by ALG the algorithm whose existence is promised by the statement of
the proposition, and consider an algorithm called Data Stream Continuous Greedy (DSCG)
obtained from the Accelerated Continuous Greedy algorithm of [3] when every execution
of the Decreasing-Threshold Procedure by the last algorithm is replaced with an execution
of ALG. We explain below why DSCG has all the properties guaranteed by the proposition.
We begin by recalling that since the approximation ratio analysis of Accelerated Continuous
Greedy in [3] treats the Decreasing-Threshold Procedure as a black box that in expectation
has the guarantee stated in Equation (1), and ALG also has this guarantee, this analysis
can be applied as is also to DSCG, and therefore, DSCG is a (1− 1/e−O(ε))-approximation
algorithm.

Recall now that Accelerated Continuous Greedy accesses its input only through the
Decreasing-Threshold Procedure, which implies that DSCG is a data stream algorithm just like
ALG. Furthermore, since Accelerated Continuous Greedy accesses the Decreasing-Threshold
Procedure O(ε−1) times, the number of passes used by DSCG is larger by a factor of O(ε−1)
compared to the number of passes used by ALG (which is denoted by p). Hence, DSCG uses
O(p/ε) passes.

It remains to analyze the space complexity of DSCG. Since Accelerated Continuous Greedy
uses space of size linear in the space necessary to keep the O(ε−1) bases that it receives from
the Decreasing-Threshold Procedure, the space complexity of DSCG is larger than the space
complexity of the semi-streaming algorithm ALG only by an additive term of Õ(k/ε). As
this term is nearly linear in k for any constant ε, we get that DSCG has a low enough space
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complexity to be a semi-streaming algorithm. Furthermore, since the O(ε−1) bases that DSCG
gets from ALG can include only O(k/ε) elements, this expression upper bounds the number
of elements stored by DSCG in addition to the O(k/ε) elements stored by ALG itself. ◀

It turns out that one natural way to get a base D obeying Equation (1) is to output a
local maximum with respect to the objective function g(S) = F (x + ε · 1S) (i.e., a base D

whose value with respect to this objective cannot be improved by replacing an element of D

with an element of N \D). Getting such a maximum using a semi-streaming algorithm with
a reasonable number of passes is challenging; however, one can define weaker properties that
still allow us to get Equation (1). Specifically, for any ε ∈ (0, 1), we say that a set D is an
ε-approximate local maximum with respect to g if

g(D | ∅) ≥ g(B | D) +
∑

u∈B∩D

g(u | D − u)− ε · g(OPTg | ∅)

for every base B of M , where OPTg is a base maximizing g. (Intuitively, one should think
of B as being the optimal solution with respect to f .)

One property of an approximate local maximum is that its value (with respect to g) is an
approximation to g(OPTg).

▶ Observation 7. For every ε ∈ (0, 1), if D is an ε-approximate local maximum with respect
to g, then g(D) ≥ 1−ε

2 · g(OPTg).

Proof. One can verify that the non-negativeity, monotonicity and submodularity of f implies
that g also has these properties. Therefore,

g(D) ≥ g(D | ∅) ≥ g(OPTg | D) +
∑

u∈OPTg∩D

g(u | D − u)− ε · g(OPTg | ∅)

≥ g(OPTg | D)− ε · g(OPTg | ∅) ≥ (1− ε) · g(OPTg)− g(D) ,

where the first inequality holds by the non-negativity of g, the second inequality follows from
the fact that D is an ε-approximate local maximum (for B = OPTg), the third inequalities
follow from the monotonicity of g, and the last inequality hold by g’s non-negativity and
monotonicity. Rearranging the above inequality now yields the observation. ◀

Using the last observation we can prove that any approximate local maximum with respect
to g obeys Equation (1), and the same holds also for any solution that is almost as good as
some approximate local maximum.

▶ Lemma 8. For every ε ∈ (0, 1), if D′ is an ε-approximate local maximum with respect to
g, then any (possibly randomized) set D such that E[g(D | ∅)] ≥ (1 − ε) · g(D′ | ∅) obeys
Equation (1) in expectation. In particular, this is the case for D = D′ since the monotonicity
of f implies that g is non-negative.

Proof. We need to consider two cases. The simpler case is when g(OPTg | ∅) ≥ 2ε · f(OPT),
where we recall that OPT is an optimal base with respect to f . Since x′ = x + ε · 1D by
definition, we get in this case

E[F (x′)]− F (x) = E[F (x + ε · 1D)]− F (x) = E[g(D | ∅)] ≥ (1− ε) · g(D′ | ∅)

≥ (1−ε)2

2 g(OPTg | ∅) ≥ ε(1− 2ε) · f(OPT) ≥ ε((1− 3ε) · f(OPT)− E[F (x′)]) ,

where the second inequality holds by Observation 7.
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In the rest of the proof we consider the case of g(OPTg | ∅) ≤ 2ε · f(OPT). We note
that, in this case,

E[F (x′)]− F (x)
1− ε

= E[F (x + ε · 1D)]− F (x)
1− ε

= E[g(D | ∅)]
1− ε

≥ g(D′ | ∅)

≥ g(OPT | D′) +
∑

u∈OPT∩D′

g(u | D′ − u)− ε · g(OPTg | ∅)

≥ g(OPT | D′) +
∑

u∈OPT∩D′

g(u | D′ − u)− 2ε2 · f(OPT) ,

where the second inequality holds since D′ is an ε-approximate local maximum (by plugging
B = OPT into the definition of such maxima). Let us now further develop the first two
terms on the rightmost side of the last inequality. By the submodularity and monotonicity
of f , if we denote y = x + ε · 1D′ , then

g(OPT | D′) +
∑

u∈OPT∩D′

g(u | D′ − u)

= F (x + ε · 1OPT∪D′)− F (x + ε · 1D′) +
∑

u∈OPT∩D′

[F (x + ε · 1D′)− F (x + ε · 1D′−u)]

≥ F (y + ε · 1OPT\D′)− F (y) +
∑

u∈OPT∩D′

[F ((y + ε · 1{u}) ∧ 1N )− F (y)]

≥ F ((y + ε · 1OPT) ∧ 1N )− F (y) .

Combining the last two inequalities yields

E[F (x′)]− F (x) ≥ (1− ε)[F ((y + ε · 1OPT) ∧ 1N )− F (y)]− 2ε2 · f(OPT)
≥ (1− ε)[F (y + ε((1N − y) ∧ 1OPT))− F (y)]− 2ε2 · f(OPT)
≥ ε(1− ε)[F (y ∨ 1OPT)− F (y)]− 2ε2 · f(OPT)
≥ ε((1− ε)f(OPT)− E[F (x′)])− 2ε2 · f(OPT)
= ε · ((1− 3ε)f(OPT)− E[F (x′)]) ,

where the second inequality holds by the monotonicity of f , the third inequality holds because
the submodularity of f guarantees that F is concave along non-negative directions (such as
(1N − y) ∧ 1OPT) and the last inequality holds by the motonicity of f and the observation
that

F (y) = g(D′) = g(∅) + g(D′ | ∅) ≤ g(∅) + E[g(D | ∅)]
1− ε

≤ E[g(D)]
1− ε

= E[F (x′)]
1− ε

. ◀

In Section 5 we describe a semi-streaming algorithm that can be used to find an ε-
approximate local maximum of a non-negative monotone submodular function. By applying
this algorithms to g, we get (via Lemma 8) an algorithm having all the properties assumed by
Proposition 6; which proves Theorem 2. In Section 7 we attempt to use the same approach to
get a result for random order streams. However, in this setting we are not able to guarantee
an ε-approximate local maximum. Instead, we design an algorithm whose output has in
expectation a value that is almost as good as the value of the worst approximate local
maximum. This leads to a proof of Theorem 3.

5 Approximate Local Maximum for Adversarial Streams

In this section we prove following proposition, which guarantees the existence of a semi-
streaming multi-pass algorithm for finding an ε-approximate local maximum in adversarial
streams, i.e., when the order of the elements in the input stream is arbitrary. We note that
this section highly depends on Section 4, and should not be read before that section.
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▶ Proposition 9. For every constant ε > 0, there is a multi-pass semi-streaming algorithm
that given an instance of MSMMatroid with a matroid of rank k stores O(k) elements, makes
O(ε−2) many passes, and outputs an ε-approximate local maximum.

By Lemma 8 and Proposition 6, the last proposition implies Theorem 2. Therefore, we
concentrate in this section on proving Proposition 9. The first data stream algorithm for
MSMMatroid was described by Chakrabarti and Kale [6]. The first step towards proving
Proposition 9 is a re-analysis of a variant of this algorithm that was described by Huang,
Thiery and Ward [18] (based on ideas of Chekuri et al. [8]). The following proposition
summarizes the properties of this variant that we prove in this re-analysis. Due to space
constraints, the proof of this proposition is deferred to the full version.

▶ Proposition 10. There exists a single-pass semi-streaming algorithm that given a base S0
of M and value c > 1 outputs a base Sn that obeys (c−1) ·f(Sn | ∅) + 3c−2

c−1 [f(Sn)−f(S0)] ≥
f(B | S0 \ B)− f(S0 | ∅) ≥ f(B | S0) +

∑
u∈B∩S0

f(u | S0 − u)− f(S0 | ∅) for every base
B of M . Furthermore, this algorithm stores O(k) elements at any point during its execution.

Below we refer to the algorithm whose existence is guaranteed by Proposition 10 as
SinglePass. Next, we would like to show that SinglePass can be used to get an ε-
approximate local maximum. The algorithm we use to do that is given as Algorithm 2, and
it gets ε ∈ (0, 1) as a parameter.

Algorithm 2 Multiple Local Search Passes (ε).

1: Find a base T0 of M using a single pass (by simply initializing T0 to be the empty set,
and then adding to it any elements that arrives and can be added to T0 without violating
independence in M).

2: Let T1 be the output of SinglePass when given S0 = T0 and c = 2.
3: for i = 2 to 2 + ⌈40ε−2⌉ do
4: Let Ti be the output of SinglePass when given S0 = Ti−1 and c = 1 + ε/2.
5: if f(Ti)− f(Ti−1) ≤ ε2/10 · f(T1 | ∅) then
6: return Ti−1.
7: Indicate failure if the execution of the algorithm has arrived to this point.

Intuitively, Algorithm 2 works by employing the fact that every execution of SinglePass
increases the value of its input base Ti−1 significantly, unless this input base is close to being
a local maximum, and therefore, if the execution produces a base Ti which is not much
better than Ti−1, then we know that Ti−1 is an ε-approximate local maximum. The following
lemma proves this formally.

▶ Lemma 11. If Algorithm 2 does not indicate a failure, then its output set T obeys
f(B | T ) +

∑
u∈B∩T f(u | T − u)− f(T | ∅) < ε · f(OPT | ∅) for every base B of M. Note

that the last inequality implies that T is an ε-approximate local maximum with result to f .

Proof. Since T1 is a base of M , f(T1 | ∅) = f(T1)− f(∅) ≤ f(OPT)− f(∅) = f(OPT | ∅).
This implies that when Algorithm 2 returns a set Ti−1, then

f(Ti)− f(Ti−1) ≤ (ε2/10) · f(OPT | ∅) .

Plugging this inequality and the fact that f(Ti | ∅) ≤ f(OPT | ∅) (because Ti is a base of
M) into the guarantee of Proposition 10 for the execution of SinglePass that has created
Ti yields

https://arxiv.org/abs/2107.07183v2


M. Feldman, P. Liu, A. Norouzi-Fard, O. Svensson, and R. Zenklusen 59:15

ε · f(OPT | ∅) ≥ (ε/2) · f(OPT | ∅) + ε(3ε/2 + 1)/5 · f(OPT | ∅)

≥ (ε/2) · f(Ti | ∅) + 3ε/2+1
ε/2 · [f(Ti)− f(Ti−1)]

≥ f(B | Ti−1) +
∑

u∈B∩Ti−1

f(u | Ti−1 − u)− f(Ti−1 | ∅) . ◀

One could imagine that it is possible for the value of the solution maintained by Algorithm 2
to increase significantly following every iteration of the loop starting on Line 3, which will
result in the algorithm indicating failure rather than ever returning a solution. However, it
turns out that this cannot happen because the value of the solution of Algorithm 2 cannot
exceed f(OPT), which implies a bound on the number of times this value can be increased
significantly. This idea is formalized by the next two claims.

▶ Observation 12. f(T1 | ∅) ≥ 1
5 f(OPT | ∅).

Proof. If we set B = OPT, then by applying Proposition 10 to the execution of SinglePass
on Line 2 of Algorithm 2, we get

f(T1 | ∅) + 4[f(T1)− f(T0)] ≥ f(OPT | T0) +
∑

u∈OPT∩T0

f(u | T0 − u)− f(T0 | ∅)

≥ f(OPT | T0)− f(T0 | ∅) ,

where the second inequality follows from the monotonicity of f . Since the leftmost side the
last inequality is equal to 5f(T1 | ∅)− 4f(T0 | ∅), this inequality implies

5f(T1 | ∅) ≥ f(OPT | T0) + 3f(T0 | ∅) = f(OPT ∪ T0) + 2f(T0)− 3f(∅)
≥ f(OPT)− f(∅) = f(OPT | ∅) ,

where the second inequality follows again from the monotonicity of f . The observation now
follows by dividing the last inequality by 5. ◀

▶ Lemma 13. Algorithm 2 never indicates failure.

Proof. If f(OPT | ∅) = 0, then the value of every base of M according to f is f(∅),
which guarantees that Algorithm 2 returns T1 during the first iteration of the loop starting
on its Algorithm 2. Therefore, we assume below that f(OPT | ∅) > 0. Furthermore,
assume towards a contradiction that Algorithm 2 indicates failure. By Observation 12, this
assumption implies that the value of the solution maintained by Algorithm 2 increases by
at least (ε2/10) · f(T1 | ∅) ≥ ε2

50 f(OPT | ∅) after every iteration of the loop starting on
Line 3. Therefore, after all the 1 + ⌈40ε−2⌉ iterations of this loop, the value of the solution
of Algorithm 2 is at least

f(T1) + (1 + ⌈40ε−2⌉) · ε2

50 f(OPT | ∅) > f(∅) + 1
5 f(OPT | ∅) + 4

5 f(OPT | ∅) = f(OPT) ,

which is a contradiction since the solution of Algorithm 2 is always kept as a base of M . ◀

We now observe that Algorithm 2 has all the properties guaranteed by Proposition 9. In
particular, we note that Algorithm 2 can be implemented as a semi-streaming algorithm
storing O(k) elements because it needs to store at most two solutions at any given time in
addition to the elements and space required by SinglePass.
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6 Discussion of a Lower Bound by McGregor and Vu [22]

McGregor and Vu [22] showed that any data stream algorithm for the Maximum k-Coverage
Problem (which is a special case of MSMMatroid in which f is a coverage function and M is
a uniform matroid of rank k) that makes a constant number of passes must use Ω(m/k2)
memory to achieve (1 + ε) · (1− (1− 1/k)k)-approximation with probability at least 0.99,
where m is the number of sets in the input, and it is assumed that these sets are defined
over a ground set of size n = Ω(ε−2k log m). Understanding the implications of this lower
bound for MSMMatroid requires us to handle two questions.

The first question is how the lower bound changes as a function of the number of passes. It
turns out that when the number of passes is not dropped from the asymptotic expressions
because it is considered to be a constant, the lower bound of McGregor and Vu [22] on
the space complexity becomes Ω(m/(pk2)), where p is the number of passes done by the
algorithm.
The second question is about the modifications that have to be done to the lower bound
when it is transferred from the Maximum k-Coverage Problem to MSMMatroid. Such
modifications might be necessary because of input representation issues. However, as
it turns out, the proof of the lower bound given by [22] can be applied to MSMMatroid
directly, yielding the same lower bound (except for the need to replace m with the
corresponding value in MSMMatroid, namely, |N |). Furthermore, McGregor and Vu [22]
had to use a very large ground set so that random sets will behave as one expects with
high probability. When the objective function is a general submodular function, rather
than a coverage function, it can be chosen to display the above-mentioned behavior of
random sets, and therefore, ε can be set to 0.

We summarize the above discussion in the following corollary.

▶ Corollary 14 (Corollary of McGregor and Vu [22]). For any k ≥ 1, any p-pass data stream
algorithm for MSMMatroid that achieves an approximation guarantee of 1 − (1 − 1/k)k ≤
1− 1/e + 1/k with probability at least 0.99 must use Ω(|N |/(pk2)) memory, and this is the
case even when the matroid M is restricted to be a uniform matroid of rank k.

7 Approximate Local Maximum for Random Streams

In this section we study MSMMatroid in random order streams by building on ideas from the
analysis of Liu et al. [21] for optimizing f under a cardinality constraint. We begin with
simplifying and reanalyzing the single-pass local search algorithm of Shadravan [29]. By
applying this algorithm multiple times (in multiple passes), we are able to prove the following
proposition. Proposition 15 implies Theorem 3 by Lemma 8 and Proposition 6.

▶ Proposition 15. For every constant ε > 0, there is a multi-pass semi-streaming algorithm
that given an instance of MSMMatroid with a matroid of rank k stores O(k/ε) elements and
makes O(ε−1 log ε−1) many passes. Assuming the order of the elements in the input stream
is chosen uniformly at random in each pass, this algorithm outputs a solution D such that
E[f(D | ∅)] ≥ (1− ε) · f(D′ | ∅), where D′ is the ε-approximate local maximum whose value
with respect to f is the smallest.

In the full versionwe show that our single-pass algorithm can naturally be extented to
p-matchoids. Then, we create a multi-pass algorithm based on this extended single-pass
algorithm, which proves Theorem 4.

https://arxiv.org/abs/2107.07183v2


M. Feldman, P. Liu, A. Norouzi-Fard, O. Svensson, and R. Zenklusen 59:17

Intuitively, a local search algorithm should make a swap in its solution whenever this
is beneficial. In the adversarial setting, one has to make a swap only when it is beneficial
enough to avoid making too many negligible swaps. However, in the random order setting
there is a better solution for this problem. Specifically, we (randomly) partition the input
stream into windows (αk contiguous chunks of the stream with expected size n/(αk) each
for some parameter α > 1), and then make the best swap within each window. Formally, our
random partition is generated according to Algorithm 3.

Algorithm 3 Partitioning of the input stream (α).

1: Draw |N | integers uniformly and independently from 1, 2, . . . , αk.
2: for i = 1 to αk do
3: Let ni ← # of integers equal to i.
4: Let ti ←

∑i−1
j=1 ni.

5: Let wi ← elements ti + 1 to ti + ni in N .
6: return {w1, w2, . . . , wαk}.

Our full single pass algorithm, which uses the partition defined by Algorithm 3, is given
as Algorithm 4. The input for the algorithm includes the parameter α and some base L0 of
the matroid M. Additionally, during the execution of the algorithm, the set Li represents
the current solution, and H is the set of all elements that were added to this solution at some
point. When processing window wi, Algorithm 4 constructs a set Ci of elements that can
potentially be swapped into the solution. This set contains all the elements of the window
plus some historical elements (the set Ri). The idea of using a set H to store previously
valuable elements is inspired from [1, 21]. Reintroducing previously seen elements allows us
to give any element not in the solution a chance of being introduced into the solution in the
future, which helps us avoid issues that result from the dependence that exists between the
current solution and the set of elements in the current window.

Algorithm 4 MatroidStream(α, L0).

1: Partition N into windows w1, w2, . . . , wαk.
2: Let H ← ∅.
3: for i = 1 to αk do
4: Let Ri be a random subset of H including every u ∈ H with probability 1

αk , inde-
pendently.

5: Let Ci ← wi ∪Ri

6: Let u⋆ and u⋆
r be elements maximizing f(Li − u⋆

r + u⋆) subject to the constraints:
u⋆ ∈ Ci, u⋆

r ∈ Li and Li − u⋆
r + u⋆ ∈ I .

7: if f(Li) < f(Li − u⋆
r + u⋆) then

8: Update H ← H + u⋆.
9: Let Li+1 ← Li − u⋆

r + u⋆.
10: return Lαk.

Note that the number of elements stored by Algorithm 4 is O(αk), as this number is
dominated by the size of the set H. For the same reason Algorithm 4 is a semi-streaming
algorithm whenever α is constant.

▶ Definition 16. Let Hi denote the state of the set H maintained by Algorithm 4 immediately
after processing window i. We define Hi to be the set of all pairs (u, j) such that element
u ∈ Hi was added to the solution while window j was processed (i.e., u ∈ Hi ∩ wj). For
convenience, sometimes we treat Hi as a set of elements, and say that u ∈ Hi if u ∈ Hi.
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One can observe that Hi encodes all the changes that the algorithm made to its state while
processing the first i windows because the element removed from the solution when u is
added is deterministic. Additionally, we note that different random permutations of the
input and random coins in Line 4 of Algorithm 4 may produce the same history, and we
average over all of them in the analysis.

The next lemma is from [21]. It captures the intuition that any element not selected
by the algorithm still appears uniformly distributed in future windows, and bounds the
probability with which this happens. The proof of this lemma can be found in the full version.

▶ Lemma 17. Fix a history Hi−1 for some i ∈ [αk]. For any element u ∈ N \ Hi−1, and
any i ≤ j ≤ αk, we have Pr[u ∈ wj | Hi−1] ≥ 1/(αk).

Let B an arbitrary base of M (one can think of B as an optimal solution because the
monotonicity of f guarantees that some optimal solution is a base, but we sometimes need
to consider other bases as B). We now define “active” windows, which are windows for
which we can show a definite gain in our solution. Specifically, we show below that in any
active window the value of the current solution L increases roughly by 1

k (f(B)− 2f(L)) in
expectation, which yields an approximation ratio of 1

2 (1− 1/e2) after αk windows have been
processed in one pass because we expect roughly one in every α windows to be active.

▶ Definition 18. For window wi, let pi
u be the probability that u ∈ wi conditioned Hi−1.

Define the active set Ai of wi to be the union of Ri and a set obtained by sampling each
element u ∈ wi with probability 1/(αkpi

u). We call wi an active window if |B ∩Ai| ≥ 1.

Note that the construction of active sets in Definition 18 is valid as Lemma 17 guarantees
that 1/(αkpi

e) is a valid probability (i.e., it is not more than 1). More importantly, the active
set Ai includes every element of N with probability exactly 1/(αk), even conditioned on the
history Hi−1; which implies that, since each element appears in Ai independently, a window
is active with probability (1− 1/(αk))k ≥ 1− e−1/α ≈ 1/α conditioned on any such history.
Let Ai denote the event that window i is active. The following lemma lower bounds the
increase in the value of the solution of Algorithm 4 in an active window.

▶ Lemma 19. For every integer 0 ≤ i < αk,

E[f(Li+1)− f(Li) | Hi,Ai+1]≥ 1
kE

[
f(B | Li) +

∑
u∈B∩Li

f(u | Li−u)− f(Li | ∅)
∣∣∣ Hi

]
≥ 1

kE[f(B)− 2f(Li) | Hi] .

Moreover, the above inequality holds even when B is a random base as long as it is determin-
istic when conditioned on any given Hi.

Lemma 19 completes the statement of the properties of Algorithm 4 that we need to
prove our results. Specifically, the first inequality of the lemma is used to prove that multiple
“concatenated” executions of Algorithm 4 output, in expectation, a solution which is almost as
good as some ε-approximation local maximum (i.e., Proposition 15), and the rightmost side
of the lemma is used to prove Theorem 4. Due to space constraints, the proof of Lemma 19,
and the use of this lemma to prove Proposition 15 are deferred to the full version.
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Abstract
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric
problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.)
We consider the following algorithmic generalization of the equal disk packing problem. In this
problem, for a given packing of equal disks into a rectangle, the question is whether by changing
positions of a small number of disks, we can allocate space for packing more disks. More formally,
in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and
h, we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus
the problem of packing equal disks is the special case of our problem with n = h = 0.

While the computational complexity of packing equal disks into a rectangle remains open, we
prove that the repacking problem is NP-hard already for h = 0. Our main algorithmic contribution
is an algorithm that solves the repacking problem in time (h + k)O(h+k) · |I|O(1), where |I| is the
input size. That is, the problem is fixed-parameter tractable parameterized by k and h.
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1 Introduction

Packing of equal circles inside a rectangle or a square is one of the oldest packing problems.
In addition to many common-life applications, like packing bottles or cans in a box [16],
packings of circles have a variety of industrial applications, including circular cutting problems,
communication networks, facility location, and dashboard layout. We refer to the survey
of Castillo, Kampas, and Pintér [6] for an interesting overview of industrial applications of
circle packings.
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Figure 1 For a packing P of disks A–F , integers h = 2, and k = 2, the repacking P∗ of P is
obtained by relocating disks C and F , and by adding disks G and H.

The mathematical study of packing equal circles can be traced to Kepler [20]. Packing
of circles also poses exciting mathematical and algorithmic challenges. After the significant
efforts spent on packing for several decades [26, 29, 22, 24, 21, 28, 25, 12], optimal packings
of equal circles inside a square are known only for instances of up to tens of circles [9, 27].
The computational complexity of packing of equal circles (NP-hardness or membership in
NP) remains elusive. For packing circles with different radii, Demaine, Fekete, and Lang
claimed NP-hardness [11]. See also the work of Abrahamsen, Miltzow, and Seiferth [1] for a
generic framework for establishing ∃R-completeness for packing problems.

Our paper establishes several results on computational and parameterized complexity of a
natural generalization of packing equal circles inside a rectangle. A remark in the terminology
is in order. In the literature on packing, both terms, circles and disks, could be found. While
the term circle is much more popular than disk, we decided to use disks for the following
reason: In our hardness proof, it is more convenient to operate with open disks. Thus all
disks we consider are open and unit (that is of radius one). Let us remind, that a family
of disks forms a packing if they are pairwise nonintersecting.1 In our problem, we have a
packing of disks in a rectangle, and the question is whether we can allocate some space for
more disks by relocating a small amount of disks. More precisely, we consider the following
problem. See Figure 1 for an example.

Input: A packing P of n unit disks inside a rectangle R and two integers h, k ≥ 0.
Task: Decide whether there is a packing P∗ of n + k unit disks inside R obtained

from P by adding k new disks and relocating at most h disks of P to new
positions.

Disk Repacking

Thus when n = 0, that is, initially there are no disks inside the rectangle, this is the
classical problem of packing equal circles inside a rectangle.

Related Work on Geometric Packing. Packing problems have received significant attention
from the viewpoint of approximation algorithms. For the sake of illustration, let us mention
a few examples. In 2D Geometric Bin Packing, which is a variant of classical Bin Packing,
the goal is to pack a given collection of rectangles into the minimum number of unit square
bins. Typically, it is required that the rectangles be packed in an axis-parallel manner.
There has been a long series of results on this problem, culminating in the currently known
best approximation given by Bansal and Khan [4]. A related problem is that of 2D Strip

1 In the literature, it is often required for geometric packings that a packing should be maximal. In
particular, for disk packing, every disk should touch either the bounding rectangle or another disk.
However, in our problem, the task is to add a specified number of new disks to a given family and this
makes the maximality condition in our case very artificial.
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Packing problem, where the task is to pack a given set of rectangles into an infinite strip of
the given width, so as to minimize the height of packing. This problem has been studied
from the context of approximation [17, 19] as well as parameterized [2] algorithms. Finally,
we mention the Geometric Knapsack problem, which is also closely related to Geometric
Bin Packing. In Geometric Knapsack, we are given a collection of rectangles, where each
rectangle has an associated profit. The goal is to pack a subset of the given rectangles
(without rotation) in an axis-aligned square knapsack, so as to maximize the total profit of
the packed rectangles. Currently, the best approximation is given by Galvez et al. [14]. A
detailed survey of the literature on the results of these problems is beyond the scope of this
work – we direct an interested reader to the cited works and references therein and the survey
paper of Christensen et al. [7]. However, we would like to highlight an important difficulty
in Disk Repacking– which is the focus of this work – as compared to the aforementioned
geometric packing problems, namely, that packing disks in a rectangle requires the use of
intricate geometric arguments as compared to packing rectilinear objects (such as rectangles)
in a rectilinear container (such as a unit square, or an infinite strip).

Our Results. We show that Disk Repacking is NP-hard even if the parameter h = 0 – we
call this special case of problem Disk Appending.

▶ Theorem 1. Disk Appending is NP-hard when constrained to the instances (R, P, k)
where R = [0, a] × [0, b] for positive integers a and b and the centers of all disks in P have
rational coordinates. Furthermore, the problem remains NP-hard when it is only allowed to
add new disks to P with rational coordinates of their centers.

From the positive side, we show that Disk Repacking is FPT when parameterized by k

and h. As it is common in Computational Geometry, we assume the real RAM computational
model, that is, we are working with real numbers and assume that basic operations can be
executed in unit time. We use |I| to denote the input size.

▶ Theorem 2. The Disk Repacking problem is FPT when parameterized by k + h. Specifi-
cally, it is solvable in time (h + k)O(h+k) · |I|O(1).

Theorem 2 also appears to be handy for approximating the maximum number of disks
that can be added to a packing. In the optimization variant of Disk Repacking, called
Max Disk Repacking, we are given a packing P of n disks in a rectangle R and an integer
h, and the task is to maximize the number of new disks that can be added to the packing if
we are allowed to relocate at most h disks of P . By combining Theorem 2 with the approach
of Hochbaum and Maass [18], we prove that the optimization variant of Disk Repacking
admits the parameterized analog of EPTAS for the parameterization by h. More precisely,
we prove the following theorem.

▶ Theorem 3. For any 0 < ε < 1, there exists an algorithm that, given an instance (P, R, h)
of Max Disk Repacking, returns a packing P∗ into R with at least n + (1 − ε) · OPTh disks
in time

(
h+1

ε

)O(h/ε+1/ε2) · |I|O(1), where OPTh is the maximum number of disks that can be
added to the input packing if we can relocate at most h disks.

2 Preliminaries

Disks and rectangles. For two points A and B on the plane, we use AB to denote the line
segment with endpoints in A and B. The distance between A = (x1, y1) and B = (x2, y2)
or the length of AB, is |AB| = ∥A − B∥2 =

√
(x1 − x2)2 + (y1 − y2)2. The (open unit) disk

ICALP 2022



60:4 (Re)packing Equal Disks into Rectangle

with a center C = (c1, c2) on the plane is the set of points (x, y) satisfying the inequality
(x − c1)2 + (y − c2)2 < 1. Whenever we write “disk” we mean an open unit disk. Throughout
the paper, we assume that considered input rectangles R = [0, a] × [0, b] for some a, b > 0.

Parameterized Complexity. We refer to the book of Cygan et al. [10] for introduction to
the area and undefined notions. A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ∗ is a set of strings over a finite alphabet Σ. An input of a parameterized problem is a pair
(x, k), where x ∈ Σ∗ and k ∈ N is a parameter. A parameterized problem is fixed-parameter
tractable (or FPT) if it can be solved in time f(k) · |x|O(1) for some computable function f .

Systems of Polynomial Inequalities. In our algorithms, we will need to find suitable
locations for new disks that need to be added such that the locations are compatible with
an existing packing. We will achieve this by solving systems of polynomial inequalities. We
refer to the book of Basu, Pollack, and Roy [5] for basic tools. We use the following result.

▶ Proposition 4 (Theorem 13.13 in [5]). Let R be a real closed field, and let P ⊆ R[X1, . . . , Xℓ]
be a finite set of s polynomials, each of degree at most d, and let

(∃X1)(∃X2) . . . (∃Xℓ)F (X1, X2, . . . , Xℓ)

be a sentence, where F (X1, . . . , Xℓ) be a quantifier-free boolean formula involving P-atoms
of type P ⊙ 0, where ⊙ ∈ {=, ̸=, >, <}, and P is a polynomial in P. Then, there exists an
algorithm to decide the truth of the sentence with complexity sℓ+1dO(ℓ) in D, where D is the
ring generated by the coefficients of the polynomials in P.

Furthermore, a point (X∗
1 , . . . , X∗

ℓ ) satisfying F (X1, . . . , Xℓ) can be computed in the
same time by Algorithm 13.2 (sampling algorithm) of [5] (see Theorem 13.11 of [5]). Note
that because we are using the real RAM model in our algorithms, the complexity is stated
with respect to the natural parameters.

3 Hardness of Disk Appending

In this section, we prove that Disk Appending is NP-hard. Due to space constraints, we
only sketch the proof.

▶ Theorem 1. Disk Appending is NP-hard when constrained to the instances (R, P, k)
where R = [0, a] × [0, b] for positive integers a and b and the centers of all disks in P have
rational coordinates. Furthermore, the problem remains NP-hard when it is only allowed to
add new disks to P with rational coordinates of their centers.

Sketch of proof. We reduce from the Independent Set problem. In this problem, for
a given graph G and a positive integer k, the task is to decide whether G contains an
independent set, that is a set of pairwise nonadjacent vertices, of size at least k. It is
well-known that Independent Set is NP-complete on cubic planar graphs [15].

We only outline the main ideas of the reduction. Let G be a graph and assume that ℓe are
positive integers given for all e ∈ E(G). Suppose that G′ is obtained from G by subdividing
each edge e by 2ℓe times. Then it can be shown that G has an independent set of size k if
and only if G′ has an independent set of size k +

∑
e∈E(G) ℓe. We exploit this observation.

Given a rectilinear embedding of a cubic planar graph G, for each vertex of G, we create
a node area formed by surrounding disks. We can place an additional disk in such an area
and this encodes the inclusion of the corresponding vertex to an independent set. Then we
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join the areas created for vertices by channels corresponding to subdivided edges. Similarly
to node areas, channels are formed by surrounding disks. Each channel contains an even
number of positions where new disks can be placed, and these positions are divided into “odd”
and “even” in such a way that we can put disks in either all odd or all even positions but no
disks could be placed in adjacent even and odd positions. Thus node areas and channels are
used to encode a graph, and then we fill the space around them by filler disks that prevent
placing any new disk outside node areas and channels. Then placing new disks corresponds
to the choice of an independent set in a subdivided graph.

To construct channels, consider four touching disks with centers A, B, C, and D shown in
Figure 2 (a). Note that h = 2 +

√
3, ℓ = |AC| = |BC| = 2

√
2 +

√
3, and the angle α = π/12.

Given disks with centers in A, B and C, every disk with its center in the triangle ABC has
its center in D. Extending this, we make the following observation about the configuration
of disks shown in Figure 2 (b). We call such a configuration of disks a basic channel.

Xr−1

α
h

ℓ

A B

C

D 2

2

A1 Ar

B1

Yr

Br

a) b)

X1

Y2

Figure 2 The basic channel; the disks shown in red and blue are not parts of the channel – they
show places where new disks can be inserted.

▶ Observation 5. Given disks with centers in A1, . . . , Ar and B1, . . . , Br as it is shown in
Figure 2 (b), any additional disk with its center properly inside the quadrilateral A1B1BrAr

has its center in one of the points X1, . . . , Xr−1 or Y2, . . . , Yr. Furthermore, if a disk with
its center in Xi (Yi, respectively) is placed in the quadrilateral, then no other disk can have
its center in Yi or Yi+1 (Xi−1 or Xi, respectively).

It can be noted that the construction of basic channels is sufficiently robust to allow us
to insert gaps between disks to adjust distances and parities. Furthermore, we can “bend”
basic channels.

F

B

X Y

ZA C

h′

O

YX

ZA C

B D

E

αγ
U W

h

a) b)

Figure 3 Node area.

For construction of node areas, consider an equilateral triangle ABC with sides of length
two as shown in Figure 3 (a), h′ = 2

√
3. Suppose that there are disks with centers in A, B

and C. Then it is possible to place at most three disks with centers in the triangle ABC,
and if exactly three disks are placed, then they have their centers in X, Y and Z and touch
each other. Furthermore, if a disk having its center properly inside ABC is placed, then no
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other disk with its center inside the triangle can be added. We exploit this property and add
a basic channel as it is shown in Figure 3 (b). The point O is the center of ABC, that is,
|OA| = |OB| = |OC|. Recall that h = 2 +

√
3 and α = π/12. We set γ = π/3 − π/12 = π/4.

This gives us the configuration of disks with the following properties summarized in the next
observation.

▶ Observation 6. Given disks with centers in A, B, C, D, E and F as it is shown in
Figure 3 (b), the following is fulfilled:

(i) at most one disk with its center in BCD can be added,
(ii) if there is a disk with its center either in Y or U , then no other disk can have its center

properly in BCD,
(iii) if there are disks with their centers in O and W , then a disk with its center in BCD

can be added,
(iv) if there is a disk having its center properly inside ABC, then no other disk with its

center inside ABC can be added.

The node areas are connected by channels attached as it is shown in Figure 3 (b).

Note that in the described reduction, we used disks with algebraic coordinates of their
centers. In particular, the crucial parameters h = 2 +

√
3 and h′ = 3

√
3 are algebraic.

However, we can observe that our construction is robust to allow rounding of coordinates.
More precisely, we can choose a sufficiently small fixed constant δ > 0 and use rational
parameters ĥ and ĥ′ such that 2 +

√
3 = h < ĥ ≤ h + δ and 2

√
3 = h′ < ĥ′ ≤ h′ + δ in the

construction of the channels (see Figure 2) and the node areas (see Figure 3) instead of h

and h′, respectively. ◀

4 An FPT algorithm for Disk Repacking

In this section, we prove that Disk Repacking is FPT when parameterized by k + h.

▶ Theorem 2. The Disk Repacking problem is FPT when parameterized by k + h. Specifi-
cally, it is solvable in time (h + k)O(h+k) · |I|O(1).

Proof of Theorem 2: Overview. On a high-level, the idea behind the algorithm is as
follows. We first perform a greedy procedure to ensure that all “free” areas to place disks
can be intersected by a set H of at most k disks. Afterwards, we make use of a coloring
function of P with the objective to color all disks in P that are repacked by a solution (if one
exists) blue, and all disks in P that “closely surround” them by red. We need to ensure that,
while relying on the initial greedy procedure, it would suffice to correctly color only O(h + k)
disks. Indeed, this gives rise to the usage of a universal set, which is a “small” family of
coloring functions ensured to contain, if there exists a solution, at least one coloring function
that correctly colors all O(h + k) disks we care about.

Considering some coloring function (which expected to be “compatible” with some
solution), we identify “slots” and, more generally, “containers” in its coloring pattern. In
simple words, a slot is just a disk in R that does not intersect any red disk (from P), and a
container is a maximally connected region consisting of slots. We are able to prove that, if
the coloring is compatible with some solution, then, for any container, either all or none of
the disks in P that are contained in the container are repacked. This gives rise to a reduction
from the problem of finding a solution compatible with a given coloring to the Knapsack
problem (more precisely, an extended version of it), where each container corresponds to
an item whose weight is the number of disks in P that it contains, and whose value is the
number of disks that can be packed within it.
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Figure 4 An instance (P, R, h = 2, k =
7) of Disk Repacking. The disks in P are
colored black. The disks in some hole cover H
are colored green (using dashed lines).

Figure 5 A solution P∗ for the instance
on the left. The disks in P∗ \ P are drawn in
purple (using dashed lines).The set of (H, P∗)-
critical disks is the set of green disks from the
figure on the left and the purple disks from
the figure on the right.

To execute the reduction described above, we need to be able to compute the value of
each container. For this purpose, we first prove that a container can be “described” by only
O(h + k) many disks from P ∪ H; more precisely, we show that each container is the union
of disks contained in R that intersect at least one out of O(h + k) disks in P ∪ H, from
which we subtract the union of some other O(h + k) disks from P. Having this at hand, to
compute the value of a container, we first “guess”, for each disk packed by a (hypothetical)
optimal packing of disks in the container, a disk from P ∪ H contained in the container
(making use of its description) with whom it intersects. After that, we seek the corresponding
optimal packing by making use of a system of polynomial equations (inequalities) of degree
2, O(h + k) variables, and O((h + k)2) equations.

Proof of Theorem 2: Free areas. To execute the plan above, we start with the task
of handling the “free” areas. For this, we have the following definition and immediate
observation.

▶ Definition 7 (Holes and Hole Cover). Let (P, R, h, k) be an instance of Disk Repacking.
The set of holes, denoted by Holes, is the set of all disks contained in R that are disjoint from
all disks in P. A set H of disks contained in R such that the set of holes of (P ∪ H, R, h, k)
is empty is called a hole cover.

▶ Observation 8. Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole cover.
Then, every disk contained in R intersects at least one disk in P ∪ H.

Next, we present a definition and a lemma that will allow us to assume that we have a
hole cover of small size at hand.

▶ Definition 9 (Dense instance). Let (P, R, h, k) be an instance of Disk Repacking. We
say that the instance is dense if it has a hole cover of size smaller than k.

▶ Lemma 10. There exists a polynomial-time algorithm that, given an instance (P, R, h, k)
of Disk Repacking, either correctly determines that (P, R, h, k) is a yes-instance or correctly
determines that (P, R, h, k) is dense and returns a hole cover of size smaller than k.
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Figure 6 With respect to the instance and
solution described in Figures 4 and 5, the disks
(H, P∗)-forced to be blue are colored blue, and
the disks (H, P∗)-forced to be red are colored
red. Note that each of the disks colored black
can be colored either blue or red by an (H, P∗)-
compatible coloring.

Figure 7 Consider an (H, P∗)-compatible
coloring that colors blue all of the disks col-
ored black in Figure 6. Then, we have four
c-Containers, which roughly correspond to the
areas colored by grey.

Proof. We perform a simple greedy procedure. Initially, H = ∅. Then, as long as there exists
a disk D contained in R that is disjoint from all disks in P ∪ H, we add such a disk D to H.
The test for the existence of such a D can be performed by using a system of polynomial
equations of degree 2 with two variables denoting the x- and y-coordinates of the center
of D. For each disk in P ∪ H, we have an equation enforcing that the distance between
its center and the center of D is at least 2, and additionally we have two linear equations
to enforce that D is contained in R. By Proposition 4, testing whether this system has a
solution (which corresponds to the sought disk D) can be done is polynomial time.2 Once
the process terminates, the algorithm checks whether |H| ≥ k. If the answer is positive,
then adding H (or, more precisely, any subset of size k of it) to P is a solution, and so the
algorithm answers yes, and otherwise the instance is dense and the algorithm returns H
(which witnesses that). ◀

In the two following definitions, we identify the coloring functions that will be useful.

▶ Definition 11 ((H, P∗)-Critical Disks). Let (P, R, h, k) be a yes-instance of Disk Repack-
ing. Let H be a hole cover. Let P∗ be a solution to (P, R, h, k). The set of (H, P∗)-critical
disks, denoted by CritH,P∗ , is (P∗ \ P) ∪ H.

▶ Definition 12 ((H, P∗)-Compatible Colorings). Let (P, R, h, k) be a yes-instance of Disk
Repacking. Let H be a hole cover. Let P∗ be a solution to (P, R, h, k). Let c : P →
{blue, red}. We say that c is (H, P∗)-compatible if:
1. For every D ∈ P \ P∗, we have that c(D) = blue. We say that the disks in P \ P∗ are

(H, P∗)-forced to be blue.
2. For every D ∈ P ∩ P∗ whose center is at distance at most 4 from the center of some disk

in CritH,P∗ , we have that c(D) = red. We say that the disks in P ∩ P∗ whose center is at
distance at most 4 from the center of some disk in CritH,P∗ are (H, P∗)-forced to be red.

We proceed to show that the number of disks in P that should be colored “correctly” is
only O(h + k). This is done using the following easy observation, in the following lemma.

2 Additional details on the precise set of equations mentioned here and in other locations in this section
are omitted from this extended abstract due to space constraints.
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▶ Observation 13. The number of pairwise disjoint disks inside a circle of radius r is
at most πr2.

▶ Lemma 14. Let (P, R, h, k) be a dense yes-instance of Disk Repacking. Let H be a hole
cover of size smaller than k. Let P∗ be a solution to (P, R, h, k). Then, the number of disks
(H, P∗)-forced to be either blue or red is altogether bounded by O(h + k).

Proof. Because P∗ is a solution and |H| < k, we have that |P \ P∗| ≤ h. So, at most h disks
are (H, P∗)-forced to be blue. Further, |CritH,P∗ | = |(P∗ \ P) ∪ H| < h + 2k. Observe that
every disk in P ∩ P∗ whose center is at distance at most 4 from the center of some disk in
CritH,P∗ is contained inside a circle of radius 5 whose center is the center of some disk in
CritH,P∗ . So, due to Observation 13 and since the disks in P ∩ P∗ are pairwise disjoint, there
exist at most π · 52 · (h + 2k) = O(h + k) disks in P ∩ P∗ whose center is at distance at most
4 from the center of some disk in CritH,P∗ . In particular, this means that at most O(h + k)
disks are (H, P∗)-forced to be red. This completes the proof. ◀

Proof of Theorem 2: Values of containers. Next, we present the definition of slots and
containers, in which we will aim to (re)pack disks. The definition is followed by an observation
and a lemma, which, in particular, state that if we try to repack at least one disk in a
container, we can just repack all disks in that container.

▶ Definition 15 (c-Slots and c-Containers). Let (P, R, h, k) be an instance of Disk Repacking.
Let c : P → {blue, red}. The set of c-slots, denoted by Slotsc, is the set of disks contained
in R that are disjoint from all disks in P that are colored red by c. The set of c-containers,
denoted by Containersc, is the set of maximally connected regions in the union of all disks in
Slotsc.

▶ Observation 16. Let (P, R, h, k) be an instance of Disk Repacking. Let c : P →
{blue, red}. Then, the regions in Containersc are pairwise disjoint.

▶ Lemma 17. Let (P, R, h, k) be a yes-instance of Disk Repacking. Let H be a hole cover.
Let P∗ be a solution to (P, R, h, k). Let c : P → {blue, red} be (H, P∗)-compatible. Then, for
every region X ∈ Containersc, either all disks in P contained in X belong to P \ P∗ or none
of the disks in P ∪ P∗ contained in X belongs to (P \ P∗) ∪ (P∗ \ P).

Proof. Targeting a contradiction, suppose that there exists a disk D contained in X that
belongs to (P \ P∗) ∪ (P∗ \ P) and a disk D′ contained in X that belongs to P ∩ P∗. Let γ

be a curve connecting the centers of these disks that lies entirely inside X. By the definition
of a c-container and due to Observation 8, every point of this curve contained in a disk that
belongs to X and intersects a disk in P colored blue by c or a disk in H. So, there must
exist a point on γ that is the center of a disk D∗ that intersects both a disk A contained in
X that belongs to (P \ P∗) ∪ H and a disk A′ contained in X that belongs to P ∩ P∗. From
the definition of a c-container, A′ is colored blue by c. Moreover, note that the center of
A′ is at distance at most 4 from the center of A, since each of the centers of A and A′ is
at distance at most 2 from the center of D∗. However, since c is (H, P∗)-compatible, A′ is
(H, P∗)-forced to be red and hence it is colored red by c. Since c cannot color a disk both
blue and red, we have reached a contradiction. This completes the proof. ◀

We proceed to define the weight and value of a c-container, which will be required for the
reduction of our problem to Knapsack.
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▶ Definition 18 (Weight, Validity and Value of Containers). Let (P, R, h, k) be an instance
of Disk Repacking. Let c : P → {blue, red}. Let X ∈ Containersc. The weight of X is the
number of disks in P that it contains. We say that X is valid if its weight is at most h. The
value of X is the maximum number of disks that can be packed inside X.

The following is a corollary of Lemma 17.

▶ Corollary 19. Let (P, R, h, k) be a yes-instance of Disk Repacking. Let P∗ be a solution
to (P, R, h, k). Let c : P → {blue, red} be (H, P∗)-compatible. Then, every disk in (P \ P∗) ∪
(P∗ \ P) is a c-slot, and it is contained in a valid c-container.

Now, we define a way in which we can “easily” describe a container, and then prove that
this way can be encoded compactly.

▶ Definition 20 (Descriptions of Containers). Let (P, R, h, k) be an instance of Disk Repack-
ing. Let H be a hole cover. Let c : P → {blue, red}. An H-description (or, for short,
description) of a region X ∈ Containersc is a pair (D1, D2) of a subset D1 ⊆ P ∪ H and a
minimal subset D2 ⊆ P such that X equals the set of all points in R at distance less than 2
from at least one disk in D1 and at least 2 from all disks in D2.

▶ Lemma 21. Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole cover.
Let c : P → {blue, red}. Let X ∈ Containersc. Then, X has at least one description (D1, D2).
Moreover, every description (D1, D2) of X satisfies |D1| + |D2| = O(h′ + k′) where h′ is the
weight of X, and k′ is the number of disks in H contained in X.

Proof. By Observation 8, every c-slot intersects at least one disk in {D ∈ P : c(D) = blue}∪H
and is disjoint from all disks in {D ∈ P : c(D) = red}. Further, every point in every disk
in {D ∈ P : c(D) = blue} ∪ H is contained in a c-slot. So, it is immediate that X has a
description (D1, D2), and that |D1| = O(h′ + k′). Due to Observation 13 and since the disks
in P ∪ H are pairwise disjoint, any circle of radius 5 whose center is a center of some disk in
{D ∈ P : c(D) = blue} ∪H can contain inside at most π · 52 disks from {D ∈ P : c(D) = red}.
Due to the minimality of D2 (which is a subset of {D ∈ P : c(D) = red}), every disk in
it must be contained inside a circle of radius 5 whose center is a center of some disk in
{D ∈ P : c(D) = blue} ∪ H. Hence, |D2| ≤ |D1| · π · 52 = O(h′ + k′). ◀

Next, we use a description in order to efficiently compute the value of a c-container.

▶ Lemma 22. There is an (h + k)O(h+k) · |I|O(1)-time algorithm that, given a dense instance
I = (P, R, h, k) of Disk Repacking, a hole cover H of size smaller than k, c : P →
{blue, red} and a valid region X with a description (D1, D2), computes the value of X.

Proof. Given I = (P, R, h, k), H, c, X and (D1, D2), the algorithm works as follows. For
ℓ = h+k, h+k −1, . . . , 1, and for every vector (D1, D2, . . . , Dℓ) ∈ D1 ×D1 ×· · ·×D1, it tests
whether there exist ℓ disks S1, S2, . . . , Sℓ such that, for every i ∈ {1, 2, . . . , ℓ}, Si intersects
Di, is contained in R and is disjoint from all disks in D2. The test is done by constructing a
system of polynomial equations of degree 2 with 2ℓ variables and ℓ · (|D2| + 2) equations as
follows. For every i ∈ {1, 2, . . . , ℓ}, we have two variables, denoting the x- and y-coordinates
of the center of Si, one equation enforcing that the distance between the center of Si and
the center of Di is smaller than 2, |D2| equations enforcing that the distance between the
center of Si and the center of each of the disks in D2 is at least 2, and two linear equations
enforcing that Si is contained inside R. If the answer is positive, then the algorithm returns
that the value of X is ℓ and terminates; else, it proceeds to the next iteration. Observe that,
when ℓ = 1, the algorithm necessarily terminates (since X contains at least one c-slot).
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The correctness of the algorithm is immediate from the definition of a description and the
exhaustive search that it performs. As for the running time, first observe that, by Lemma 21
and since X is valid and |H| < k, |D1| + |D2| ≤ O(h + k). So, for a given ℓ, we have
|D1|O(ℓ) = (h + k)O(h+k) choices of vectors. Now, consider the iteration corresponding to
some ℓ and some vector. Then, we solve a system of polynomial equations of degree 2 with
O(h + k) variables and O((h + k)2) equations. By Proposition 4, this can be done in time
(h + k)O(h+k) · |I|O(1). Thus, the algorithm indeed runs in time (h + k)O(h+k) · |I|O(1). ◀

The following definition captures the set of all descriptions.

▶ Definition 23 (Blueprint). Let (P, R, h, k) be an instance of Disk Repacking. Let H
be a hole cover. Let c : P → {blue, red}. An (H, c)-blueprint is a collection of pairs of sets
Blueprint ⊆ 2P∪H × 2P , where the first elements of the pair are pairwise-disjoint subsets of
P ∪ H, such that each region in Containersc has exactly one description in Blueprint, and
every pair in Blueprint is a description of a region in Containersc.

Next, we show how to compute blueprints.

▶ Lemma 24. There exists a polynomial-time algorithm that, given an instance (P, R, h, k)
of Disk Repacking, a hole cover H, and c : P → {blue, red}, outputs an (H, c)-blueprint.

Proof. We will perform a simple greedy procedure to identify, for each disk in {D ∈ P :
c(D) = blue} ∪ H, the description of the region that contains it. Observe that every c-
container contains at least one disk in {D ∈ P : c(D) = blue} ∪ H (due to Observation 8 and
the definition of a c-container). So, if for every disk D ∈ {D ∈ P : c(D) = blue} ∪ H we will
take exactly one description (D1, D2) among the descriptions we identified such that D is
contained in D1, we will obtain an (H, c)-blueprint.

To describe the greedy procedure, consider some D ∈ {D ∈ P : c(D) = blue} ∪ H. Let us
first show how to attain D1. For this purpose, we initialize D1 = {D}. Then, for every pair
of disks A ∈ D1 and B ∈ ({D ∈ P : c(D) = blue} ∪ H) \ D1, we test whether there exists a
pair of disks C and C ′ that are contained in R, intersect each other, are disjoint from all
disks in {D ∈ P : c(D) = red}, and such that C intersects A and C ′ intersects B. The test
for the existence of such a C is performed by using a system of polynomial equations of
degree 2 with four variables denoting the x- and y-coordinates of the centers of C and C ′.
For each disk in {D ∈ P : c(D) = red}, we have two equations enforcing that the distances
between its center and the centers of C and C ′ are each at least 2. Additionally, we have
three equations to enforce that the distance between the centers of C and C ′ is smaller than
2, the distance between the centers of C and A is smaller than 2, and the distance between
the centers of C ′ and B is smaller than 2, as well as four linear equations to enforce that C

and C ′ are contained in R. By Proposition 4, testing whether this system has a solution
(which corresponds to the sought disks C and C ′) can be done is polynomial time. If the
answer is positive, then we add B to D1. In case at least one pair (A, B) resulted in the
addition of B to D1, then we repeat the entire loop, iterating again over all pairs (A, B)
(where the domain from which they are taken is updated as a new disk was added to D1).
Notice that we can perform at most |P| repetitions, and that each repetition results in at
most |P ∪ H|2 many iterations, each taking polynomial time. Hence, the procedure, so far,
runs in polynomial time.

Now, let us show how to attain D2. For this purpose, we initialize D2 = {D ∈ P : c(D) =
red}. Now, for every A ∈ {D ∈ P : c(D) = red}, we test whether there exists a disk C that
is contained in R and intersects both A and at least one disk in D1, and is disjoint from
all disks in D2 \ {A}. The test can be performed by iterating over every disk B ∈ D1, and
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using a system of polynomial equations of degree 2 with two variables denoting the x- and
y-coordinates of the center of C. For each disk in D2 \ {A}, we have an equation enforcing
that the distance between its center and the center of C is at least 2, and additionally we have
two equations to enforce that the distance between the center of C and each of the centers of
A and B is smaller than 2, as well as two linear equations to enforce that C is contained in
R. By Proposition 4, testing whether this system has a solution (which corresponds to the
sought disk C) can be done is polynomial time. If the answer is positive, then we remove A

from D2. Notice that this phase of the procedure also runs in polynomial time. Moreover,
the correctness of the entire procedure directly follows from the definitions of a c-container
and a description. ◀

We proceed to define the (extended version of the) Knapsack problem and the instances
of this problem that our reduction produces.

▶ Definition 25 ((Extended) Knapsack). In the (Extended) Knapsack problem, we are
given a collection of n items U , where each item u ∈ U has a weight w(u) ∈ N0 and a value
v(u) ∈ N0, and an integer W ∈ N0. The objective is to find, for every W ′ ∈ {0, 1, . . . , W },
the maximum VW ′ ∈ N0 for which there exists a subset of items S ⊆ {1, 2, . . . , n} such that∑

i∈S w(u) ≤ W ′ and
∑

i∈S v(u) ≥ VW ′ .

▶ Definition 26 ((H, c)-Knapsack instance). Let (P, R, h, k) be an instance of Disk Repack-
ing. Let H be a hole cover. Let c : P → {blue, red}. The (H, c)-Knapsack instance is
the instance (U, w, v, W, V ) of Knapsack defined as follows: U is the set of all valid re-
gions in Containersc; for each X ∈ U , w(X) and v(X) are the weight and value of X (see
Definition 18); W = h; V = h + k.

▶ Proposition 27 ([8]). The (Extended) Knapsack problem is solvable in time O(|U | ·W ).

We now to prove the correspondence between our problem when we restrict the solution
set to solutions compatible with a given coloring and the Knapsack problem.

▶ Lemma 28. Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole cover.
Let c : P → {blue, red}. Then, there exists a solution P∗ to (P, R, h, k) such that c is
compatible with P∗ if and only if for the (H, c)-Knapsack instance (U, w, v, W, V ), there
exists W ′ ∈ {0, 1, . . . , W } such that VW ′ ≥ W ′ + k.

Proof. In one direction, suppose that there exists a solution P∗ to (P, R, h, k) such that c is
compatible with P∗. Let X1, X2, . . . , Xℓ be the c-containers that contain at least one disk
from (P \ P∗) ∪ (P∗ \ P). By Observation 16, these c-containers are pairwise disjoint, by
Lemma 17 and since c is compatible with P∗, all disks in P contained in X1 ∪ X2 ∪ · · · ∪ Xℓ

belong to P \ P∗, and by Corollary 19 and since c is compatible with P∗, all disks in
(P \ P∗) ∪ (P∗ \ P) are contained in X1 ∪ X2 ∪ · · · ∪ Xℓ and all of these c-containers are
valid. So, because P∗ can repack h disks from P , the total weight of these c-containers must
be some W ′ ∈ {0, 1, . . . , h} = {0, 1, . . . , W }, and since P∗ also packs k additional disks, the
total value of these c-containers must be at least W ′ + k (to accommodate all of the repacked
and k newly packed disks). Thus, VW ′ ≥ W ′ + k.

In the other direction, suppose that there exists W ′ ∈ {0, 1, . . . , W } such that VW ′ ≥
W ′ + k. This means that there exist c-containers X1, X2, . . . , Xℓ whose total weight is
W ′ ∈ {0, 1, . . . , h} and whose total value is at least W ′ + k. However, because these c-
containers are pairwise disjoint (by Observation 16), this means that we can construct a
solution P∗ such that c is compatible with P∗ by repacking all the disks in P that are
contained in X1, X2, . . . , Xℓ (there are at most h such disks) and, additionally, inserting k

new disks, within X1, X2, . . . , Xℓ. This completes the proof. ◀
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The following is a corollary of Lemmas 22 and 24.

▶ Corollary 29. There exists an (h + k)O(h+k) · |I|O(1)-time algorithm that, given a dense
instance I = (P, R, h, k) of Disk Repacking, a hole cover H of size smaller than k and
c : P → {blue, red}, computes the (H, c)-Knapsack instance.

To compute coloring functions, we will use the following definition and proposition.

▶ Definition 30 ((U, k)-Universal Set). For a universe U and k ∈ N, a (U, k)-universal set
is a collection C of functions f : U → {blue, red} such that for every pair of disjoint sets
B, R ⊆ U whose union has size at most k, there exists c ∈ C that colors all integers in B

blue and all integers in R red.

▶ Proposition 31 ([23]). There exists an algorithm that, given a universe U of size n and
k ∈ N, constructs a (U, k)-universal set of size 2k+O(log2 k) log n in time 2k+O(log2 k)n log n.

Based on the definition of a universal set, we define the collection of Knapsack instances
relevant to our reduction.

▶ Definition 32 ((H, C)-Knapsack Collection). Let (P, R, h, k) be an instance of Disk
Repacking. Let H be a hole cover. Let C be a (P, q(h + k))-universal set, where q is the
constant hidden in the O-notation in Lemma 14. Then, the (H, C)-Knapsack collection is
the collection of Knapsack instances that includes, for every c ∈ C, the (H, c)-Knapsack
instance.

The following is a corollary of Corollary 29.

▶ Corollary 33. There exists an (h + k)O(h+k) · |I|O(1)-time algorithm that, given a dense
instance I = (P, R, h, k) of Disk Repacking, a hole cover H of size smaller than k and a
(P, q(h + k))-universal set C, computes the (H, C)-Knapsack collection.

Next, we prove the correspondence between our problem and the collection of Knapsack
instances we have just defined.

▶ Lemma 34. Let (P, R, h, k) be an instance of Disk Repacking. Let H be a hole cover. Let
C be a (P, q(h + k))-universal set. Then, (P, R, h, k) is a yes-instance of Disk Repacking
if and only if the (H, C)-Knapsack collection contains an instance (U, w, v, W, V ) for which
there exists W ′ ∈ {0, 1, . . . , W } such that VW ′ ≥ W ′ + k.

Proof. In one direction, suppose that (P, R, h, k) is a yes-instance. By the definition of
a (P, q(h + k))-universal set and due to Lemma 14, there exists c ∈ C that is compatible
with P∗. So, the (H, c)-Knapsack instance is contained in the (H, C)-Knapsack collection
(U, w, v, W, V ), and by Lemma 28, for this instance there exists W ′ ∈ {0, 1, . . . , W } such that
VW ′ ≥ W ′ + k.

In the other direction, suppose that the (H, C)-Knapsack collection contains an instance
(U, w, v, W, V ) for which there exists W ′ ∈ {0, 1, . . . , W } such that VW ′ ≥ W ′ + k. This
instance is a (H, c)-Knapsack instance for some c ∈ C. So, by Lemma 28, (P, R, h, k) is, in
particular, a yes-instance of Disk Repacking. ◀

Proof of Theorem 2: Putting it all together. We are now ready to make the final step of
the proof of Theorem 2.

The algorithm works as follows. Given an instance (P, R, h, k) of Disk Repacking,
it calls the algorithm in Lemma 10 to either correctly determine that (P, R, h, k) is a
yes-instance or correctly determine that (P, R, h, k) is dense and obtain a hole cover H
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of size smaller than k. In the first case, the algorithm is done. In the second case, the
algorithm proceeds as follows. First, it calls the algorithm in Proposition 31 to obtain a
(P, q(h + k))-universal set C. Then, it calls the algorithm in Corollary 33 to obtain the
(H, C)-Knapsack collection. Afterwards, it uses the algorithm of Proposition 27 to determine
whether the (H, C)-Knapsack collection contains an instance (U, w, v, W, V ) for which there
exists W ′ ∈ {0, 1, . . . , W } such that VW ′ ≥ W ′ + k.

The correctness of the algorithm follows from Lemma 34. The runtime bound of (h +
k)O(h+k) · |I|O(1) follows from the runtimes bounds of the algorithms that the algorithm calls,
stated in Lemma 10, Proposition 31, Corollary 33, and Proposition 27.

This concludes the proof of Theorem 2.

5 An FPT approximation for Maximum Disk Repacking

In this section, we use Theorem 2 to show that the optimization variant of Disk Repacking,
where we maximize the number of added disks, admits an FPT-AS (i.e., Fixed Parameter
Tractable Approximation Scheme, a parameterized analog of EPTAS) when parameterized by
h. Let us remind that in the optimization problem, called Max Disk Repacking, we are
given a packing P of n disks in a rectangle R and an integer h, and the task is to maximize
the number of new disks that can be added to the packing if we are allowed to relocate at
most h disks of P.

We need an algorithm for the special case h = 0, that is, for the optimization version of
Disk Appending. The algorithm is based on the shifting technique, originally introduced
by Hochbaum and Maass [18] (also related to Baker’s technique [3]). We use OPT for the
maximum number of disks that can be added in a rectangle to complement a given packing P .

▶ Lemma 35. For any 0 < ε < 1, there exists an algorithm that for a packing of n disks in a
rectangle, returns a packing with at least n + (1 − ε) · OPT disks in time

( 1
ε

)O(1/ε2) · |I|O(1),
where |I| is the input size.

Proof. Let S∗, |S∗| = OPT, be the set of newly added disks in an optimal solution. Let
ℓ ≥ 1 be a fixed positive integer. Recall that the instance is contained inside a bounding
rectangle R. Let us assume that the bottom-left corner of R has Cartesian coordinates (0, 0).
For every 1 ≤ i, j ≤ 2ℓ, let Gi,j be a grid of side-length ℓ × ℓ, with origin at (−i, −j). Note
that there exists a pair (i, j) such that the number of disks of S∗ that do not intersect with
the boundary of the grid cells in Gi,j is at least (1 − 1

ℓ )2 · OPT.
For any 1 ≤ i, j ≤ n, and a grid cell C in Gi,j , let Π(C) be the following subproblem. Let

P(C) ⊆ P denote the packing of the original disks that are completely contained in C, or
partially intersect with C. The goal is to add the maximum number of new disks to obtain a
packing P∗(C). Note that the number of original disks in P, as well as the new disks that
can be added inside C, is upper bounded by ℓ2, which is a constant. Therefore, an optimal
solution to Π(C) can be found by solving a system of polynomial equations. Let OPTi,j

denote the sum of the optimal values for the subproblems Π(C), over all grid cells C in Gi,j .
Let P(C) denote the packing of the original disks that are completely contained in the

cell C, or partially intersect with C. Recall that C is a square of size ℓ × ℓ, and since P(C)
is a packing, |P(C)| = O(ℓ2). Furthermore, the number of new disks that can be added to C

to obtain a new packing is also upper bounded by p = O(ℓ2). We first “guess” the number
of new disks, by trying all possible values q between 1 and p = O(ℓ2). Now, we construct
a system of polynomial equations with 2q variables and q(|P| + 4) equations, as follows.
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For every new disk Di for 1 ≤ i ≤ q, we have two variables corresponding to the x and y

coordinates of its center in the new packing. For every new disk Di, we also add 4 linear
equations that restrict the center to lie at a horizontal/vertical distance of at least 1 from
the perimeter of the cell, so that the disk Di lies completely within the cell C. Finally, for
every disk D′

j in the original packing P , we have an equation that enforces that the distance
between the center of Di and that of D′

j must be at least 2. Now, we solve this system of
O(ℓ2) variables and O(ℓ4) equations in time O(ℓ)O(ℓ2) time, using Proposition 4.

Note that since the diameter of a unit disk is 2, by an averaging argument, there exists
an index 1 ≤ i ≤ ℓ, such that OPTi,j ≥

(
1 − 1

ℓ

)2 · OPT. This is because, there exists an
index i such that at most 1

ℓ disks from S∗ intersect the vertical lines x = aℓ + i for integers
a. Then, for this value of i, there exists an index j, such that at most 1

ℓ fraction of the disks
that are completely contained within the lines x = aℓ + i intersect horizontal lines bℓ + j for
integers b. We direct the reader to [18] for a formal argument of this type.

Therefore, for every 1 ≤ i, j ≤ 2ℓ, and for every grid cell C in Gi,j , we solve the subproblem
Π(C), and return the best solution. Note that if we are looking for an (1 − ε)-approximation
to the number of newly added disks, then (1 − ε) ≤

(
1 − 1

ℓ

)2 ≤ 1 − 1
ℓ That is, ℓ = 1/ε. Thus,

the running time of this algorithm is
( 1

ε

)O(1/ε2) · |I|O(1). ◀

Now we construct an algorithm for Max Disk Repacking in Theorem 3.

▶ Theorem 3. For any 0 < ε < 1, there exists an algorithm that, given an instance (P, R, h)
of Max Disk Repacking, returns a packing P∗ into R with at least n + (1 − ε) · OPTh disks
in time

(
h+1

ε

)O(h/ε+1/ε2) · |I|O(1), where OPTh is the maximum number of disks that can be
added to the input packing if we can relocate at most h disks.

Proof. Let 0 < ε < 1. Consider an instance (P, R, h) of Max Disk Repacking. We find
the maximum nonnegative integer k ≤ 10h/ε such that (P, R, h, k) is a yes-instance of Disk
Repacking using the algorithm from Theorem 2. This can be done in

(
h+1

ε

)O(h/ε) · |I|O(1)

time. Next, we run the algorithm from Lemma 35 for (G, R) for ε′ = 1
2 ε, i.e., assuming that

relocations of disks are not allowed. The algorithm runs in
( 1

ε

)O(1/ε2) ·|I|O(1) time and returns
a solution of size k′. We set k∗ = max{k, k′}. We claim that (1 − ε)OPTh ≤ k∗ ≤ OPTh.
The second inequality is trivial. To show that (1 − ε)OPTh ≤ k∗, we consider two cases.

Suppose that OPTh ≤ 10h/ε. Then OPTh = k as the algorithm from Theorem 2 is exact
and (1 − ε)OPTh ≤ OPTh = k ≤ k∗.

Assume that OPTh > 10h/ε. Let S be the set of added disks in an optimum solution
for (P, R, h) and let L ⊆ P be the set of relocated disks. Denote by OPT′ the maximum
number of disks that can be added to P without relocations. Observe that every disk in L
intersects at most 5 disks of S. Therefore, OPT′ ≥ |S| − 5|L| ≥ OPTh − 5h. By Lemma 35,
(1−ε/2)OPT′ ≤ k′. We obtain that (1−ε/2)(OPTh −5h) ≤ k′ ≤ k∗. Because OPTh > 10h/ε,
k∗ ≥ (1 − ε/2)(OPTh − εOPTh/2) = (1 − ε/2)2OPTh ≥ (1 − ε)OPTh. This proves the claim.

We conclude that k∗ is the required approximation of OPTh. To conclude the proof, note
that the algorithms from Theorem 2 and Lemma 35 can be adapted to return solutions, that
is, the sets of added and relocated disks. ◀

6 Conclusion and open questions

We have shown in Theorem 1 that Disk Repacking problem is NP-hard even if h = 0. On
the other hand, by Theorem 2, Disk Repacking is FPT when parameterized by k and
h. Both theorems naturally lead to the question about parameterization by k only. The
difficulty here is that even for adding one disk, one has to relocate many disks. Already for
k = 1, we do not know, whether the problem is in P or is NP-hard.
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Another natural question stemming from Theorem 2 is about kernelization of Disk
Repacking. Does Disk Repacking admit a polynomial kernel with parameters k and h?
(We refer to books [10, 13] for an introduction to kernelization).

Finally, approximation of Disk Repacking is an interesting research direction. In
Theorem 3 we demonstrated that our FPT algorithm can be used to construct an FPT-AS
with respect to h for Max Disk Repacking. We leave open the question about polynomial
approximation. Another open question concerns the approximability of the minimum number
of relocations h for a given k. Already for k = 1 finding a good approximation of h is a
challenging problem.
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Abstract
A cut sparsifier is a reweighted subgraph that maintains the weights of the cuts of the original
graph up to a multiplicative factor of (1 ± ϵ). This paper considers computing cut sparsifiers
of weighted graphs of size O(n log(n)/ϵ2). Our algorithm computes such a sparsifier in time
O(m · min(α(n) log(m/n), log(n))), both for graphs with polynomially bounded and unbounded
integer weights, where α(·) is the functional inverse of Ackermann’s function. This improves upon
the state of the art by Benczúr and Karger (SICOMP 2015), which takes O(m log2(n)) time. For
unbounded weights, this directly gives the best known result for cut sparsification. Together with
preprocessing by an algorithm of Fung et al. (SICOMP 2019), this also gives the best known result for
polynomially-weighted graphs. Consequently, this implies the fastest approximate min-cut algorithm,
both for graphs with polynomial and unbounded weights. In particular, we show that it is possible
to adapt the state of the art algorithm of Fung et al. for unweighted graphs to weighted graphs,
by letting the partial maximum spanning forest (MSF) packing take the place of the Nagamochi-
Ibaraki (NI) forest packing. MSF packings have previously been used by Abraham at al. (FOCS
2016) in the dynamic setting, and are defined as follows: an M -partial MSF packing of G is a
set F = {F1, . . . , FM }, where Fi is a maximum spanning forest in G \

⋃i−1
j=1 Fj . Our method for

computing (a sufficient estimation of) the MSF packing is the bottleneck in the running time of our
sparsification algorithm.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Cut Sparsification, Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.61

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2112.03120

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 947702)
and is supported by the Austrian Science Fund (FWF): P 32863-N.

1 Introduction

In many applications, graphs become increasingly large, hence storing and working with
such graphs becomes a challenging problem. One strategy to deal with this issue is graph
sparsification, where we model the graph by a sparse set of (reweighted) edges that preserve
certain properties. Especially because the aim is to work with large input graphs, this
process should be efficient with respect to the graph size. Among the different types of
graph sparsifiers, there are spanners (preserving distances, see e.g. [26, 2, 4, 11]), resistance
sparsifiers (preserving effective resistances, see e.g. [10]), cut sparsifiers (preserving cuts,
see e.g. [6, 7, 13]), and spectral sparsifiers (preserving Laplacian quadratic forms, see
e.g. [28, 27, 21, 23]). This paper focuses on cut sparsifiers, as first introduced by Benczúr
and Karger in [6]. We say that a (reweighted) subgraph H ⊆ G is a (1± ϵ)-cut sparsifier for
a weighted graph G if for every cut C, the total weight wH(C) of the edges of the cut in H is
within a multiplicative factor of 1± ϵ of the total weight wG(C) of the edges of the cut in G.
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61:2 Faster Cut Sparsification of Weighted Graphs

The main approach to compute cut sparsifiers uses the process of edge compression:
each edge e ∈ E is part of the sparsifier with some probability pe, and if selected obtains
weight w(e)/p(e). It is immediate that such a scheme gives a sparsifier in expectation, but it
has to be shown that the result is also a sparsifier with high probability. The main line of
research has been to select good connectivity estimators λe for each edge such that sampling
with pe ∼ 1/λe yields a good sparsifier. The simplest such result is by Karger [18], where
we sample uniformly with each λe equal to the weight of the min cut. Continuing along
these lines are parameters as: edge connectivity [13], strong connectivity [6, 7], electrical
conductance [27], and Nagamochi-Ibaraki (NI) indices [24, 25, 13]. The challenge within the
approach of edge compression is to find a connectivity estimator that results in a sparse
graph, but can be computed fast.

For weighted graphs, there are roughly three regimes for sparsification. The first re-
gime consists of cut sparsifiers of size O(n log2(n)/ϵ2). Fung, Hariharan, Harvey, and
Panigrahi [12, 13] show that sparsifiers of this asymptotic size can be computed in linear
time for polynomially-weighted graphs. For this they introduce a general framework of
cut sparsification with a connectivity estimator, see Section 2.1. For unbounded weights,
Hariharan and Panigrahi [16] give an algorithm to compute a sparsifier of size O(n log2(n)/ϵ2)
in time O(m log2(n)/ϵ2).

The second regime consists of cut sparsifiers of size O(n log(n)/ϵ2). Benczúr and Karger
[6, 7] show that these can be computed in time O(m log2(n)) for polynomially-weighted
graphs, and in time O(m log3(n)) for graphs with unbounded weights. Note that these results
can be optimized by preprocessing with the algorithms for the first regime.

A third regime, consists of sparsifiers of size O(n/ϵ2). The known constructions in
this regime yield spectral sparsifiers, which are more general than cut sparsifiers. Spectral
sparsification was first introduced by Spielman and Teng in [28]. It considers subgraphs
that preserve Laplacian quadratic forms. Lee and Sun [23] give an algorithm for finding
(1± ϵ)-spectral sparsifiers of size O(n/ϵ2) in time O(m · poly(log(n), 1/ϵ)). Analyzing their
results, we believe that the poly-logarithmic factor contributes at least a factor of log10(n).
While this is optimal in size, both for spectral sparsifiers [5] and cut sparsifiers [3], it is not
in time.

In this paper, we improve on the results in the second regime, both for graphs with
polynomially bounded and unbounded weights1. For an overview of the previous best running
times and our results, see Figure 1. We present our sparsification algorithm in Section 4, for
the special treatment of unbounded weights we refer to the full version of the paper. Our
algorithm improves on the algorithm of Benczúr and Karger [6, 7] for bounded weights, which
has been unchallenged for the last 25 years. It also improves on the algorithm of Hariharan
and Panigrahi [16] for unbounded weights, which has been unchallenged for the last 10 years.
We obtain the following theorem, where α(·) refers to the functional inverse of Ackermann’s
function, for a definition see e.g. [29]. For any realistic value x, we have α(x) ≤ 4.

▶ Theorem 1. There exists an algorithm that, given a weighted graph G and a freely chosen
parameter ϵ ∈ (0, 1), computes a graph Gϵ, which is a (1± ϵ)-cut sparsifier for G with high
probability. The running time of the algorithm is O(m ·min(α(n) log(m/n), log(n))) and the
number of edges of Gϵ is O

(
n log(n)/ϵ2).

Using preprocessing with a result from Fung et al. [13] (see Theorem 23), we obtain the
following corollary for polynomially-weighted graphs.

1 See Section 2.2 for our assumptions on the computational model in case of unbounded weights.
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Algorithm Size Running time
Unweighted
Fung et al. [13] O

(
n log(n)/ϵ2) O (m)

Polynomial weights
Benczúr and Karger [7] O

(
n log(n)/ϵ2) O

(
m log2(n)

)
Fung et al. [13] O

(
n log2(n)/ϵ2) O (m)

[13] + [7] O
(
n log(n)/ϵ2) O

(
m + n log4(n)/ϵ2)

This paper O
(
n log(n)/ϵ2) O(m log(n))

This paper O
(
n log(n)/ϵ2) O(mα(n) log(m/n))

[13] + this paper O
(
n log(n)/ϵ2) O

(
m + n

(
log2(n)/ϵ2)α(n) log(log(n)/ϵ)

)
Unbounded weights
Hariharan and Panigrahi [16] O

(
n log2(n)/ϵ2) O

(
m log2(n)/ϵ2)

Benczúr and Karger [7] O
(
n log(n)/ϵ2) O

(
m log3(n)

)
[16] + [7] O

(
n log(n)/ϵ2) O

(
m log2(n)/ϵ2 + n log5(n)/ϵ2)

Lee and Sun [23] O
(
n/ϵ2) O (m · poly(log(n), 1/ϵ))

This paper O
(
n log(n)/ϵ2) O(m log(n))

This paper O
(
n log(n)/ϵ2) O(mα(n) log(m/n))

Figure 1 An overview of the state of the art algorithms for computing cut sparsifiers for undirected
graphs with integer weights. Algorithm A + B indicates that algorithm B is preprocessed with
algorithm A.

▶ Corollary 2. There exists an algorithm that, given a polynomially-weighted graph G

and a freely chosen parameter ϵ ∈ (0, 1), computes a graph Gϵ, which is a (1 ± ϵ)-
cut sparsifier for G with high probability. The running time of the algorithm is O(m +
n
(
log2(n)/ϵ2)α(n) log(log(n)/ϵ)) and the number of edges of Gϵ is O(n log(n)/ϵ2).

Following Benczúr and Karger [7], the computation of cut sparsifiers of graphs with
fractional or even real weights can be reduced to integer weights. For the reduction see
Appendix C. Thus our algorithm also gives a speedup for such graphs. Since the integer case
is the essential one, we follow prior works and only formulate our results for this particular
case.

As a direct application of the cut sparsifier, we can use Theorem 1 and Corollary 2 to
replace m by n log(n)/ϵ2 in the time complexity of algorithms solving cut problems, at the
cost of a (1± ϵ)-approximation. We detail the effects for the minimum cut problem. Recently,
Gawrychowski, Mozes, and Weiman [14] showed that one can compute the minimum cut of a
weighted graph in O(m log2(n)) time. Using the existing sparsification techniques [7, 13] for
preprocessing, the state of the art for (1 + ϵ)-approximate min-cut is O(m + n log4(n)/ϵ2).
When we use our new sparsification results, we obtain faster (1 + ϵ)-approximate min-cut
algorithms when m = Ω(n log(n)/ϵ2).

▶ Corollary 3. There exists an algorithm that, given a polynomially-weighted graph G and a
freely chosen parameter ϵ ∈ (0, 1), with high probability computes an (1 + ϵ)-approximation
of the minimum cut in time O(m + n log3(n)/ϵ2).

There exists an algorithm that, given a weighted graph G and a freely chosen parameter
ϵ ∈ (0, 1), with high probability computes an (1 + ϵ)-approximation of the minimum cut in
time O(m ·min(α(n) log(m/n), log(n)) + n log3(n)/ϵ2).
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For unweighted graphs, even faster minimum cut algorithms exist: Ghaffari, Nowicki, and
Thorup [15] show that we can find the minimum cut in O(min{m+n log3(n), m log(n)}) time.
Combining this with the linear time cut sparsifier of Fung et al. [13], we get (1+ϵ)-approximate
minimum cut in unweighted graphs in O(m + n log(n) min{1/ϵ + log2(n), log(n)/ϵ}) time.

The remainder of this article is organized as follows. The rest of the introduction
consists of a technical overview of our algorithms. Section 2 contains a review of the general
sparsification framework from Fung et al. [13] tailored to our needs, and can be skipped by
readers that are already familiar with this work. We present our algorithm to compute the
MSF indices in Section 3. This is used as a black box in our algorithm, which is presented
and analyzed in Section 4.

Technical Overview
The high-level set-up of our sparsification algorithm is similar to the algorithm for unweighted
graphs of Fung et al. [13]. Our main contribution consists of showing how to generalize this
technique to weighted graphs, by using maximum spanning forest (MSF) indices instead of
Nagamochi-Ibaraki (NI) indices. On a less significant note, we prove that by a tightening of
the analysis one can show that the size and time bounds hold with high probability, and not
only in expectation.

NI indices are defined by means of an NI forest packing: view graphs with integer weights
as unweighted multigraphs, and repeatedly compute a spanning forest. The NI index is the
(last) forest in which an edge appears (for details see Definition 22). The MSF index is also
defined by a forest packing, but in this case the MSF packing: we say F = {F1, . . . , FM} is
an M -partial maximum spanning forest packing of G if for all i = 1, . . . , M , Fi is a maximum
spanning forest in G \

⋃i−1
j=1 Fj . Now, we say that an edge e has MSF index i (w.r.t. to some

(partial) MSF packing F) if e appears in the i-th forest Fi of the (partial) MSF packing F .
The MSF index has been used previously in the context of dynamic graph sparsifiers (see
Abraham et al. [1]). However, there it was only used because it rendered a faster running
time, but using NI indices in the corresponding static construction would have been possible
as well. In this paper, we use distinctive properties of the MSF index, and the NI index would
not suffice. We show that using the MSF index, we can generalize the sparsification algorithm
for unweighted graphs to an algorithm for weighted graphs, thereby demonstrating that the
MSF index is a natural analogue for the NI index in the weighted setting. We provide an
algorithm to compute an M -partial MSF packing in time O(m ·min(α(n) log(M), log(n)))
for polynomially-weighted graphs. We show that for unbounded weights we can compute a
sufficient estimation, also in time O(m ·min(α(n) log(M), log(n))).

An important distinction between the unweighted algorithm of Fung et al. and our
weighted algorithm, is that the use of contractions to keep running times low throughout
the algorithm is no longer possible: edges of different weights have to be treated differently,
hence cannot be contracted. By using multiple iterations with an exponentially decreasing
precision parameter we can overcome this problem.

In the case of a polynomially-weighted input graph, the algorithm consists of two main
phases. In the first phase, we compute sets F0, F1, . . . , FΓ ⊆ E, where edges satisfy some
lower bound on the weight of any cut separating their endpoints. In the second phase, we
sample edges from each set Fi with a corresponding probability.

We set a parameter ρ = Θ
(

ln(n)
ϵ2

)
and start by computing a 2ρ-partial maximum spanning

forest packing for G. We define F0 to be the union of these 2ρ forests. We add the edges of
F0 to Gϵ, which will become our sparsifier. We sample each of the remaining edges E \ F0
with probability 1/2 to construct X1. To counterbalance for the sampling, we will boost
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the weight of each sampled edge with a factor 2. Now we continue along these lines, but
in each iteration we let Fi consist of an exponentially growing number of spanning forests:
Fi is defined as the union of the forests in a (2i+1 · ρ)-partial MSF packing packing of Xi.
Then, Xi+1 is sampled from the remaining edges Xi \ Fi, where again each edge is included
with probability 1/2. We continue this process until there are sufficiently few edges left in
Xi+1. We add these remaining edges to Gϵ.

The second phase of the algorithm is to sample edges from the sets Fi and add these
sampled edges to Gϵ. Hereto, note that an edge e of Fi (for i ≥ 1) was not part of Fi−1,
meaning it was not part of any spanning forest in a (2i · ρ)-partial MSF packing of Xi−1.
This implies that for an edge e ∈ Fi the weight of any cut C in Xi−1 containing e is at least
2i ·ρ ·w(e). Now we use the general framework for cut sparsification of Fung et al. [13], which
boils down to the fact that this guarantee on the weights of cuts implies that we can sample
edges from Fi with probability proportional to 1/(2iw(e)). We show that this results in a
sufficiently sparse graph.

Intuitively, it might seem redundant to sample edges from Xi \ Fi to form Xi+1. This is
indeed not necessary to guarantee that the resulting graph is a sparsifier. However, it ensures
that the number of iterations is limited, which leads to better bounds on the size of the
sparsifier and the running time. Since we sample edges with probability 1/2 in each phase,
we need to repeat the sampling O(log(m/(m0)) times to get the size of Xi down to O(m0).
As this number of steps depends on the initial number of edges m, we get better bounds for
size and running time if m is already small. We will exploit this by preprocessing the graph
with an algorithm from Fung et al. [13] that gives a cut sparsifier of size O(n log2(n)/ϵ2)
in linear time. Moreover, we can show that repeatedly calling our algorithm has no worse
asymptotic time bound than calling it once, since the input graph becomes sparser very
quickly. By doing so, we obtain a sparsifier of size O(n log(n)/ϵ2).

Since we only use that the MSF index gives a guaranteed lower bound on the connectivity
of an edge, one might wonder why the NI index does not work here. After all, the NI indices
of a graph can be computed in linear time, which would result in a significant speed-up.
However, when computing the NI index, the weight of an edge influences the number of
forests necessary, while computing the MSF index only requires the comparison of weights.
Moreover, the number of trees in a MSF packing is always bounded by n. We can use this to
bound the number of edges in the created sparsifier. The same technique with NI indices
would make the size of the sparsifier depend on the maximum weight in the original graph.

To show that the algorithm outputs a cut sparsifier, it needs to be proven that both the
sampling in the first and the second phase preserve cuts. We follow the lines of the analysis
of Fung et al. [13], which makes use of cut projections and Chernoff bounds. We show that by
partitioning the edge sets according to their weight this method extends to weighted graphs.

One part of the algorithm has remained unaddressed: the computation of the maximum
spanning forests. The approach we use here is related to Kruskal’s algorithm for computing
minimum spanning trees [22]. We start by sketching the M -partial MSF packing algorithm
for polynomial weights. We sort the edges according to their weights using radix sort in
O(m) time. We create M empty forests on n vertices. Starting with the heaviest edge, we
add each edge e to the first forest in which it does not create a cycle. We can find this
forest using a binary search in log(M) steps. By using a disjoint-forest representation for
the union-find data structure necessary to carry out these steps, we achieve a total time of
O(mα(n) log(M)).

When working with unbounded weights, the bottleneck is the initial sorting of the edges.
Radix sort does not guarantee to be efficient for unbounded weights. Instead we could use a
comparison-based algorithm, such as merge sort, which takes time O(m log(n)). By employing
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61:6 Faster Cut Sparsification of Weighted Graphs

a different data structure than before, we can guarantee total running time O(m log(n)).
However, we do not need the exact MSF indices for our sampling procedure, an estimate
suffices. We can adapt a “windowing” technique from Benczúr and Karger [7] to split the
graph into subgraphs, where we can rescale the weights to polynomial weights and apply our
previously mentioned algorithm. We then achieve a total running time of O(mα(n) log(M)),
as before. For more details on this, we refer to the full version. So in total we have running
time O(m ·min(α(n) log(m/n), log(n))).

2 Notation and Review

Throughout this paper, we consider G = (V, E) to be an undirected, integer weighted graph
on |V | = n vertices with |E| = m edges. We define a set of edges C ⊆ E to be a cut if there
exists a partition of the vertices V in two non-empty subsets A and B, such that C consists
of all edges with one endpoint in A and the other endpoint in B. The weight of the cut is
the sum of the weights of the edges of the cut: wG(C) =

∑
e∈C wG(e). The minimum cut is

defined as the cut with minimum weight. We say that a (reweighted) subgraph H ⊆ G is a
(1 ± ϵ)-cut sparsifier for a weighted graph G if for every cut C in H, its weight wH(C) is
within a multiplicative factor of 1± ϵ of its weight wG(C) in G. A key concept in the realm
of cut sparsification is the connectivity of an edge.

▶ Definition 4. Let G = (V, E) be a graph, possibly weighted. We define the connectivity of
an edge e = (u, v) ∈ E to be the minimal weight of any cut separating u and v. We say that
e is k-heavy if it has connectivity at least k. For a cut C, we define the k-projection of C to
be the k-heavy edges of the cut C.

The following theorem from Fung et al. [13] bounds the number of distinct k-projections
of a graph, it is a generalization of a preceding theorem by Karger, see [17, 20]. This result
can be useful when showing that cuts are preserved by a sampling scheme. This is due to
the fact that while there may be exponentially many different cuts, this theorem shows that
there are only polynomially many cut projections. Hence if one can reduce a claim for cuts
to their k-projections, a high probability bound can be obtained through the application of a
Chernoff bound.

▶ Theorem 5. For any k ≥ λ and any η ≥ 1, the number of distinct k-projections in cuts of
weight at most ηk in a graph G is at most n2η, where λ is the weight of a minimum cut in G.

Throughout this paper, we say a statement holds with high probability (w.h.p.) if it holds
with probability at least 1 − nc, for some constant c. This constant can be modified by
adjusting the constants hidden in asymptotic notation.

2.1 A General Framework for Cut Sparsification
We review the general framework for cut sparsification as presented in [13]. This section
does not contain new results, and can be skipped by readers that are only interested in our
contribution.

The framework shows that edges can be sampled using different notions of connectivity
estimators. Although this scheme provides one proof for the validity of multiple parameters,
it might be worth noting that an analysis tailored to the used connectivity estimator might
provide a better result. For example, when the framework is applied with “edge strengths”,
it produces a sparsifier of size O(n log2(n)/ϵ2), a log(n) factor denser than the edge strength-
based sparsifier of Benczúr and Karger [7].
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Let G = (V, E) be a graph with integer weights, and let ϵ ∈ (0, 1), c ≥ 1 be parameters.
Given a parameter γ (possibly depending on n) and an integer-valued parameter λe for each
e ∈ E. We obtain Gϵ from G by independently compressing each edge e with parameter

pe = min
(

1,
16(c + 7)γ ln(n)

0.38λeϵ2

)
.

Compressing an edge e with weight w(e) consists of sampling re from a binomial distribution
with parameters w(e) and pe. If re > 0, we include the edge in Gϵ with weight re/pe.

In the following we describe a sufficient condition on the parameters γ and λe such that
Gϵ is a (1± ϵ)-cut sparsifier for G with probability at least 1− 4/nc. Hereto we partition
the edges according to their value λe:

Λ :=
⌊

log
(

max
e∈E
{λe}

)⌋
;

Ri := {e ∈ E : 2i ≤ λe ≤ 2i+1 − 1}.

Let G = {Gi = (V, Ei) : 1 ≤ i ≤ Λ} be a set of integer-weighted subgraphs such that Ri ⊆ Gi.
Moreover suppose that wGi

(e) ≥ wG(e) for each e ∈ Ri. For a given set of parameters
Π = {π1, . . . , πΛ} ⊆ RΛ, we define

Π-connectivity: each edge e ∈ Ri is πi-heavy in Gi;
γ-overlap: for any cut C,

Λ∑
i=0

e
(C)
i 2i−1

πi
≤ γ · e(C),

where e(C) =
∑

e∈C wG(e) and e
(C)
i =

∑
e∈C∩Ei

wGi(e).

The following theorem shows that compressing with parameters adhering to these condi-
tions gives a cut sparsifier with high probability.

▶ Theorem 6 (See [13, Theorem 1.14]). Fix the parameters γ and λe for each edge e. If
there exists G satisfying Π-connectivity and γ-overlap for some Π, then Gϵ is a (1± ϵ)-cut
sparsifier for G, with probability at least 1− 4/nc, where Gϵ is obtained by edge compression
using parameters γ and λe’s.

2.2 The Computational Model
If we have an input graph G = (V, E) with weights w : E → {1, . . . , W}, we assume our
computational model has word size Θ(log(W ) + log(n)). Note that for polynomial weights,
this comes down to a word size of Θ(log(n)). Moreover, we assume that basic operations on
such words have uniform cost, i.e., they can be performed in constant time. In particular,
these basic operations are addition, multiplication, inversion, logarithm, and sampling a
random bit string of word size precision. Such assumptions are in line with previous work
[7, 13], where they are made implicitly.

3 A Maximum Spanning Forest Packing

An important primitive in our algorithm is the use of the maximum spanning forest (MSF)
index. The concept is similar to the Nagamochi-Ibaraki index, the important difference is
that an edge e with weight w(e) appears in w(e) different NI forests. This means that the
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number of NI forests depends on the numerical values of the edge weights, and thus can
grow far beyond O(n). On the other hand, the number of maximum spanning forests in
a MSF packing is bounded by the maximum degree in the graph, hence also by n. While
this already has noteworthy implications for polynomially-weighted graphs, it is even more
significant for superpolynomially-weighted graphs. We believe that this property might make
them suitable for applications other than presented here.

▶ Definition 7. Let G = (V, E) be a weighted graph. We say F = {F1, . . . , FM} is an
M -partial maximum spanning forest packing of G if for all i = 1, . . . , M , Fi is a maximum
spanning forest in G \

⋃i−1
j=1 Fj. If we have that

⋃M
i=1 Fi = G, then we call F a (complete)

maximum spanning forest packing of G. Moreover, for e ∈ E we denote the MSF index of e

(w.r.t. F) by fe, i.e., fe is the unique index such that e ∈ Ffe
.

Note that we do not demand the Fi ∈ F to be non-empty, as this suits notation bests in
our applications. Also note that a (partial) MSF packing is fully determined by the MSF
indices.

The following theorem states that computing the MSF indices up to M takes
O(mα(n) log(M)) time for polynomially-weighted graphs.

▶ Theorem 8. Let G = (V, E) be a polynomially weighted graph, where we allow parallel
edges but no self-loops, and we suppose m ≤ n2. Then, for any M > 0, there exists an
algorithm that computes an M -partial MSF packing in O(m ·min(α(n) log(M), log(n))) time.

The outline of the algorithm is as follows, for a complete proof see the full version.
1. Sort the edges by weight in descending order using radix sort in base n.2
2. Create empty forests F1, . . . , FM .
3. Iterate over the edges in descending order and for each edge e = (u, v) do the following:

a. Find the smallest index i such that u and v are not connected in Fi.
b. Store i as the MSF index fe of e. If u and v are connected in every Fi, store fe > M .
c. Add e to Fi.

We need at most M trees, since we only compute an M -partial MSF packing. By using
radix sort, the initial sorting takes time O(m) time (for a time bound of radix sort, see
e.g. [9]). In the full version, we show that the remainder of the algorithm can be executed
in O(mα(n) log(M)) time or O(m log(n)), depending on the data-structure used. There we
also consider an algorithm for sparse graphs with unbounded weights.

4 Cut Sparsification for Weighted Graphs

In this section, we present our algorithm for computing a (1 ± ϵ)-cut sparsifier Gϵ for a
weighted graph G. This makes use of the framework as presented in Section 2.1 and the
maximum spanning forest packing as treated in Section 3. This section works towards proving
the following theorem for polynomially-weighted graphs. In the full version, we generalize
the techniques of this section to graphs with unbounded weights.

▶ Theorem 9. There exists an algorithm that, given a weighted graph G = (V, E), and freely
chosen parameter ϵ > 0, computes a graph Gϵ, which is a (1± ϵ)-cut sparsifier for G with high
probability. The algorithm runs in time O(m ·min(α(n) log(m/n), log(n))) and the number
of edges of Gϵ is O

(
n
(
log(n)/ϵ2) log

(
m/(n log(n)/ϵ2)

))
.

2 Note that conversion to base n takes time O(logn(w(e))) ≤ O(logn(nc)) = O(c) for each edge if the
weights are bounded by nc, so total time O(mc).
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To be precise, we give an algorithm where the given bounds on both running time and size of
the sparsifier hold with high probability. By simply halting when the running time exceeds
the bound, and outputting an empty graph if we exceed the size bound, this gives the result
above.

To achieve a better bound on the size of the sparsifier, we repeatedly apply this theorem
to the input graph, with an exponentially decreasing precision parameter. The proof of this
can be found in the full version.

▶ Theorem 1 (Restated). There exists an algorithm that, given a weighted graph G = (V, E),
and freely chosen parameter ϵ ∈ (0, 1), computes a graph Gϵ, which is a (1± ϵ)-cut sparsifier
for G with high probability. The algorithm runs in time O(m ·min(α(n) log(m/n), log(n)))
and the number of edges of Gϵ is O

(
n log(n)/ϵ2).

4.1 The Algorithm

To sparsify the graph, two methods of sampling are used. One of which is the framework
presented in Section 2.1. However, instead of applying the framework to the graph directly,
there is another sampling process that precedes it.

To simplify equations, let us set ρ := (7+c)1352 ln(n)
0.38ϵ2 . If |E| ≤ 4ρn log

(
m/(n log(n)/ϵ2)

)
,

we do nothing. That is, we return Gϵ = G. If not, we start by an initialization step and
continue with an iterative process, which ends when the remaining graph becomes sufficiently
small.

In the initialization step, we define X0 := E. We compute an ⌊2ρ⌋-partial maximum
spanning forest packing T1, . . . , T⌊2ρ⌋ and we define F0 :=

⋃⌊2ρ⌋
j=1 Tj . The remaining edges

Y0 := X0 \ F0 move on to the next phase.
In iteration i, we create Xi+1 from Yi by sampling each edge with probability 1/2. Next,

we compute ki := ρ · 2i+1 maximum spanning forests T1, . . . , Tki . We define Fi :=
⋃ki

j=1 Tj ,
and Yi := Xi \ Fi.

We continue until Yi has at most 2ρn edges, and set Γ to be the number of iterations.
We retain all edges in F0. In other words: add each edge e ∈ F0 to Gϵ with weight w(e).
The edges of YΓ are also retained, but they need to be scaled to counterbalance the Γ− 1
sampling steps: add each edge e ∈ YΓ to Gϵ with weight 2Γ−1w(e).

Any other edge e ∈ Fi is at least kiw(e)-heavy in Xi−1, as e /∈ Fi−1. We exploit this
heavyness to sample from these edges using the framework. For each e ∈ Fi we:

Define ne := 2iw(e) and pe := min
(

1, 384
169

1
4iw(e)

)
;

Generate re from the binomial distribution with parameters ne and pe;

If re is positive, add e to Gϵ with weight re/pe.
The factor 2i in calling upon the binomial distribution can be seen as boosting the weight of
the edge by a factor 2i, which is needed to counterbalance the i sampling steps in creating
Fi.

Pseudocode of this algorithm can be found in Algorithm 1. Up to the computation
method of the MSF packing, the presented algorithm is the same for polynomially and
superpolynomially-weighted graphs. For the unbounded case, we use the MSF index estimator
as presented in the full version. There we also detail how this influences the correctness of
the algorithm, and the bounds on size and running time.
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Algorithm 1 Sparsify(V, E, w, ϵ, c).

Input: An undirected graph G = (V, E), with integer weights w : E → N+, and
parameters ϵ ∈ (0, 1), c ≥ 1.

Output: An undirected weighted graph Gϵ = (V, Eϵ).
1 Set ρ← (7+c)1352 ln(n)

0.38ϵ2 .
2 if |E| ≤ 4ρn log

(
m/(n log(n)/ϵ2)

)
then

3 return Gϵ = G.
4 end
5 Compute an ⌊2ρ⌋-partial maximum spanning forest packing T1, T2, . . . , T⌊2ρ⌋ for G.
6 Set i← 0.
7 Set X0 ← E.
8 Set F0 ←

⋃⌊2ρ⌋
j=1 Tj .

9 Set Y0 ← X0 \ F0.
10 while |Yi| > 2ρn do
11 Sample each edge in Yi with probability 1/2 to construct Xi+1.
12 i← i + 1.
13 Set ki ← ρ · 2i+1.
14 Compute an ki-partial maximum spanning forest packing T1, T2, . . . , Tki

for the
graph Gi := (V, Xi).

15 Set Fi ←
⋃ki

j=1 Tj

16 Set Yi ← Xi \ Fi.
17 end
18 Set Γ← i. // Γ is the number of elapsed iteration in the previous while-loop.
19 Add each edge e ∈ YΓ to Gϵ with weight 2Γ−1w(e).
20 Add each edge e ∈ F0 to Gϵ with weight w(e).
21 for j = 1, . . . , Γ do
22 foreach e ∈ Fj do
23 Set pe ← min

(
1, 384

169
1

4jw(e)

)
.

24 Generate re from Binom(2jw(e), pe).
25 if re > 0 then
26 Add e to Gϵ with weight re/pe.
27 end
28 end
29 end
30 return Gϵ = (V, Eϵ).

4.2 Correctness
We will prove that Gϵ constructed in Sparsify(V, E, w, ϵ,c) is a (1± ϵ)-cut sparsifier for G

with probability at least 1− 8/nc. Following the proof structure of [13], we first define

S :=
( Γ⋃

i=0
2iFi

)
∪ 2ΓYΓ,

where Γ is the maximum number such that Fi ̸= ∅. We define GS := (V, S). And we prove
the following two lemmas, that together yield the desired result.

▶ Lemma 10. GS is a (1± ϵ/3)-cut sparsifier for G with probability at least 1− 4/nc.
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▶ Lemma 11. Gϵ is a (1± ϵ/3)-cut sparsifier for GS with probability at least 1− 4/nc.

Let us start by proving Lemma 10. The omitted proofs of the lemmas and corollaries
used can all be found in the full version. In creating the sets Fi, we repeatedly makes use of
the MSF indices. The MSF index of an edge immediately ensures a certain connectivity of
that edge. The following lemma makes this precise.

▶ Lemma 12. Let i ≥ 0 and e ∈ Yi be an edge, and set ki := ρ · 2i+1. Then e is w(e)ki-
heavy in G′

i,e = (V, X ′
i,e), where X ′

i,e := {e′ ∈ Xi : w(e′) ≥ w(e)}. Consequently, e is also
w(e)ki-heavy in Gi = (V, Xi).

Next, we show in a general setting that certain ways of sampling preserve cuts. The
following lemma is a generalization of Lemma 5.5 in [13].

▶ Lemma 13. Let R ⊆ Q be subsets of weighted edges on some set of vertices V , satisfying
0 < w(e) ≤ 1 for all e ∈ Q. Moreover, assume that each edge in R is π-heavy in (V, Q).
Suppose that each edge e ∈ R is sampled with probability p ∈ (0, 1], and if selected, given a
weight of w(e)/p to form a set of edges R̂. We denote, for every cut C:

r(C) :=
∑

e∈R∩C

w(e), q(C) :=
∑

e∈Q∩C

w(e), r̂(C) :=
∑

e∈=R̂∩C

w(e)/p.

Let ζ ∈ N≥5, and δ ∈ (0, 1] such that δ2pπ ≥ ζ ln(n)
0.38 , then∣∣∣r(C) − r̂(C)

∣∣∣ ≤ δq(C)

for all cuts C, with probability at least 1− 4/nζ−4.

We want to apply this lemma to our sampling procedure. We do this by considering
different weight classes separately. We define Xi,k := {e ∈ Xi : 2k ≤ w(e) ≤ 2k+1 − 1}, and
x

(C)
i,k =

∑
e∈Xi,k∩C w(e). We define Yi,k and y

(C)
i,k analogously. Some rescaling is necessary to

ensure that all weights lie in (0, 1], as Lemma 13 requires. For A ⊆ E and β > 0, we write
βA to indicate we multiply the weight of the edges by a factor of β.

▶ Lemma 14. With probability at least 1− 4/n4+c, for every cut C in Gi,∣∣∣2−kx
(C)
i+1,k − 2−k−1y

(C)
i,k

∣∣∣ ≤ ϵ/13
2i/2+1

∞∑
k′=k

2−k′−1x
(C)
i,k′ .

Now we look at the general case, for which we sum all weight classes. Hereto, we define
x

(C)
i =

∑
e∈Xi∩C w(e), x

(C)
i+1 =

∑
e∈Xi+1∩C w(e), and y

(C)
i =

∑
e∈Yi∩C w(e).

▶ Corollary 15. With probability at least 1− 4/n1+c, for every cut C in Gi,∣∣∣2x
(C)
i+1 − y

(C)
i

∣∣∣ ≤ ϵ/13
2i/2 · x

(C)
i .

We will repeatedly apply this lemma. To show that the accumulated error does not grow
beyond ϵ/3, we use the following fact. For a proof we refer to [13].

▶ Lemma 16. Let x ∈ (0, 1] be a parameter. Then for any k ≥ 0,
k∏

i=0

(
1 + x/13

2i/2

)
≤ 1 + x/3,

k∏
i=0

(
1− x/13

2i/2

)
≥ 1− x/3.
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As a final step towards proving Lemma 10, we prove a lemma that focusses on the
sparsification occurring in the last Γ− j + 1 iterative steps of our algorithm.

▶ Lemma 17. Let

Sj =

 Γ⋃
i=j

2i−jFi

 ∪ 2Γ−jYΓ

for any j ≥ 0. Then, Sj is a
(
1± (ϵ/3)2−j/2)-cut sparsifier for Gj = (V, Xj), with probability

at least 1− 4/nc.

Note that setting j = 0 gives us Lemma 10.
To prove Lemma 11, we will invoke the framework from [13], as given in Section 2.1.

More specifically, we will apply Theorem 6. We set the parameter γ := 64/3, and for each
e ∈ Fi we set λe := ρ · 4iw(e). This is in line with our choice for pe:

min
(

1,
16(c + 7)γ ln(n)

0.38λeϵ2

)
= min

(
1,

16(c + 7)γ ln(n)
0.38ρ · 4iw(e)eϵ2

)
= min

(
1,

384
169

1
4iw(e)

)
= pe.

We have to provide a set of subgraphs G and a set of parameters Π such that Π-connectivity
and γ-overlap are satisfied.

To explore the connectivity of edges in Ri := {e ∈ E : 2i ≤ λe ≤ 2i+1 − 1} we partition
these sets as follows:

Rj,k := {e ∈ Fj : 2k ≤ ρw(e) ≤ 2k+1 − 1}.

We will view these edges in the subgraph:

Ej,k :=
Γ⋃

j′=j−1

∞⋃
k′=k

ρ · 4Γ−j′+12Λ−k′+j′
Rj′,k′ .

▶ Lemma 18. Each edge e ∈ Rj,k is π := ρ · 4Γ2Λ-heavy in (V, Ej,k).

Now we take all weight classes together to find the set of subgraphs G for which Π-
connectivity is satisfied.

▶ Corollary 19. Each edge in e ∈ Ri is ρ · 4Γ2Λ-heavy in Gi = (V, Ei), with Ei :=⋃min(⌊i/2⌋,Γ)
j=1 Ej,i−2j.

It remains to show that γ-overlap is satisfied.

▶ Lemma 20. For any cut C,

Λ∑
i=0

e
(C)
i 2i−1

ρ · 4Γ2λ
≤ 64/3 · e(C),

where e(C) =
∑

e∈C wGS
(e) and e

(C)
i =

∑
e∈C∩Ei

wGi(e).

Together Corollary 19 and Lemma 20 show that the conditions of Theorem 6 are met
with the given parameters. This proves Lemma 11, and then Theorem 9 follows.
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4.3 Size of the Sparsifier
The sparsifier Gϵ consists of F0, YΓ, and F ′, where F ′ = ∪Γ

i=1F ′
i , with F ′

i the sampled edges
of Fi. First of all, note that |F0| = O(cn ln(n)/ϵ2) and |YΓ| = O(cn ln(n)/ϵ2). Now take
e ∈ Fi. This edge results to an edge in Gϵ if the sample from the binomial distribution with
parameters ne = 2iw(e) and pe = min

(
1, 384

169
1

4iw(e)

)
is positive. The probability that this

happens is

P[Binom(ne, pe) > 0] =
ne∑

k=1
P[Binom(ne, pe) = k] ≤

ne∑
k=1

k P[Binom(ne, pe) = k]

=
ne∑

k=0
k P[Binom(ne, pe) = k] = E[Binom(ne, pe)]

= nepe ≤ 384
1692−i.

Note that this probability is equal for all e ∈ Fi. Since Fi is the union of ki = ρ · 2i+1

spanning forests, we know that |Fi| ≤ ρ2i+1n. Hence the expected size of F ′
i , the sampled

edges in Fi, equals

E[|F ′
i |] =

∑
e∈Fi

P[Binom(ne, pe) > 0] ≤
∑
e∈Fi

384
1692−i = |Fi|

384
1692−i ≤ ρ2i+1n

384
1692−i

= ρ
768
169n.

We have that the total number of sampled edges equals

E[|F ′|] =
Γ∑

i=1
E[|F ′

i |] ≤ Γρ
768
169n,

so it remains to bound Γ, i.e., the number of Fi’s. Hereto, note that the while loop of lines
10–17 ends if |Yi| ≤ 2ρn. We bound the number of edges in Yi by bounding the number of
edges of Xi, of which Yi is a subset. Each edge in Yi−1 ⊆ Xi−1 is sampled with probability
1/2 to form Xi. So E[|Xi|] ≤ |Xi−1|/2. Now by a Chernoff bound (see Theorem 26) we
obtain:

P
[
|Xi| >

2
3 |Xi−1|

]
≤ exp

(
−0.38

36 |Xi−1|
)

> exp
(
−cn ln(n)

36

)
= n−cn/36,

since |Xi−1| ≥ |Yi−1| ≥ 2ρn = 2 · (7+c)1352 ln(n)
0.38ϵ2 n ≥ cn ln(n)

0.38 . We have at most n2 sets Xi, so
we can conclude that with high probability |Xi| ≤ 2

3 |Xi−1| in each step, and by induction
|Yi| < |Xi| ≤

( 2
3
)i

m. We see that

m

(
2
3

)Γ
≤ 2ρn = 21632

0.38ϵ2 cn ln(n),

which is equivalent to

Γ ≥ log
(

m
21632
0.38ϵ2 cn ln(n)

)
/ log(3/2).

So, we can conclude Γ = O
(

log
(

m
cn log(n)/ϵ2

))
. This gives that the total number of sampled

edges is, in expectation,

E[|F ′|] ≤ Γρ
768
169n = O(cn log(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2).
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This compression process can also be seen as the sum of m independent random variables
that take values in {1, 0}.3 We have just calculated that the expected value µ is at most
Bcn ln(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2, for some B > 0. Using this, we apply a Chernoff bound

(Theorem 26) to get an upper limit for the number of sampled edges:

P
[
|F ′| > 2Bcn ln n log

(
m/(cn log(n)/ϵ2)

)
/ϵ2]

≤ exp
(
−0.38Bcn ln(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2)

= n−0.38cnB log(m/(cn log(n)/ϵ2))/ϵ2
.

We conclude that, with high probability, the number of sampled edges is

O(2Bcn ln(n) log
(
m/(cn log(n)/ϵ2)

)
/ϵ2) = O(cn log(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2).

And finally, we conclude that with high probability the number of edges of Gϵ is bounded by
|E(Gϵ)| = |F0|+ |YΓ|+ |F ′| = O(cn log(n) log

(
m/(cn log(n)/ϵ2)

)
/ϵ2).

4.4 Time Complexity
First off, if m ≤ 4ρn log

(
m/(n log(n)/ϵ2)

)
= O(cn log(n)/ϵ2 log

(
m/(n log(n)/ϵ2)

)
), the

algorithm does nothing and returns the original graph. So for this analysis we can assume
m > 4ρn log

(
m/(n log(n)/ϵ2)

)
. We analyze the time complexity of the algorithm in two

phases. The first phase consists of computing the probabilities pe for all e ∈ E. The second
one is compressing edges, given these probabilities.

The first phase contains i iterations of the while loop (lines 10–17). In each iteration we
sample edges from Yi ⊆ Xi with probability 1/2 to form Xi+1. This takes time at most O(|Xi|).
Next, we compute a maximum spanning forest packing of the graph Gi+1 = (V, Xi+1). We
know that we can compute a M -partial maximum spanning forest packing of a polynomially-
weighted graph with n vertices and m0 edges in O(m0 ·min(α(n) log(M), log(n))) time (see
Theorem 8). So this iteration takes at most O(|Xi+1| · (min(α(n) log(ki+1), log(n)))) time.
As noted earlier, we have with high probability that |Xi| ≤

( 2
3
)i

m. If mα(n) log(m/n) ≤
m log(n), we conclude w.h.p. that the first phase takes total time at most

Γ∑
i=0

O(|Xi|) + O(|Xi+1|α(n) log(ki+1)) =
Γ∑

i=0

(2
3

)i

O(m) +
(2

3

)i+1
O(mα(n) log(ρ2i+2))

≤ 3O(m) + 3O(mα(n) log(ρ2Γ))
= O(mα(n) log(m/n)).

And if m log(n) < mα(n) log(m/n), we have that w.h.p. the first phase takes total time at
most

Γ∑
i=0

O(|Xi|) + O(|Xi+1| log(n)) =
Γ∑

i=0

(
2
3

)i

O(m) +
(

2
3

)i+1
O(m log(n))

≤ 3O(m) + 3O(m log(n))
= O(m log n).

In the second phase, we sample each edge e from the binomial distribution with parameters
ne and pe. We will show this can be done with a process that takes T = O(m) time with
high probability.

3 To be precise, we set the probability of an edge e /∈
⋃

i
Fi to exist to 0.
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▶ Lemma 21. With high probability, the sampling phase of Algorithm 1 takes O(m) time.

For the proof, see the full version. Concluding, the algorithm takes

O(m ·min(α(n) log(m/n), log(n)) + O(m) = O(m ·min(α(n) log(m/n), log(n))

time in total for polynomially-weighted graphs.

5 Conclusion

In this paper, we presented a faster (1 ± ϵ)-cut sparsification algorithm for weighted
graphs. We have shown how to compute sparsifiers of size O(n log(n)/ϵ2) in O(m ·
min(α(n) log(m/n), log(n))) time, for integer weighted graphs. Both algorithms apply a
sampling technique where the MSF index is used as a connectivity estimator.

We have shown that we can compute an M -partial MSF packing in O(mα(m) log(M))
time for polynomially-weighted graphs. For graphs with unbounded integer weights, we have
shown that we can compute a complete MSF packing in O(m log(n)) time, and a sufficient
estimation of an M -partial MSF packing can be computed in time O(mα(m) log(M)). An
open question is whether a more efficient computation is possible. This would improve on
our sparsification algorithm, but might also be advantageous in other applications. The NI
index has shown to be useful in various applications. We believe to have shown that the
MSF index is a natural analogue.

To develop an algorithm to compute an MSF packing, one might be inclined to build
upon one of the algorithms that compute a minimum spanning tree faster than Kruskal’s
algorithm, such as the celebrated linear-time algorithm of Karger, Klein, and Tarjan [19].
However, this algorithm and many other fast minimum spanning tree algorithms make use of
edge contractions. It is far from obvious how to generalize this to a packing: in that case, we
need to work simultaneously on multiple trees, hence we cannot simply contract the input
graph in favor of any single one. To make this work, a more meticulous use of data structures
seems necessary.

Computation of the MSF indices in linear time would be an ultimate goal. However,
for our application a slightly looser bound suffices. If we can reduce the running time to
compute the MSF indices to O(m + n log(n)), then we obtain a time bound of O(m) for cut
sparsification. Moreover, we do not need the exact MSF index, an estimate suffices. This can
either be a constant-factor approximation of the MSF index for each edge, or an estimate
in the weights used in the forests, as done for graphs with unbounded weights in the full
version.
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A Review: A First Application of the Sparsification Framework

In this section, we review the application of the framework of Section 2.1 with Nagamochi-
Ibaraki (NI) indices as parameters, as presented by Fung et al. [13]. As the name suggests,
NI indices were first introduced by Nagamochi and Ibaraki [24, 25]. The algorithm they
provide gives a graph partitioning into forests, and subsequently a corresponding index for
each edge, called the NI index.

▶ Definition 22. Let G = (V, E) be a graph, possibly weighted. We say an edge-disjoint
sequence F1, F2, . . . of forests is a Nagamochi-Ibaraki forest packing for G if Fi is a spanning
forest for G \

⋃i−1
j=1 Fi, where the weights of

⋃i−1
j=1 Fi are subtracted of G. If G is a weighted

graph, each edge e must be contained in w(e) contiguous forests. We define the NI index,
denoted by le, to be the index of the (last if weighted) forest in which e appears.

Nagamochi and Ibaraki show that the NI indices can be computed in linear time for
unweighted graphs and in O(m+n log(n)) time for weighted graphs, see [25, 24]. As is shown
in [13], we can use the NI index as the connectivity estimator in the sparsification framework
to obtain the following result.

▶ Theorem 23. Let G = (V, E) be a weighted graph, and let ϵ > 0 be a constant. Let Gϵ be
obtained by independently compressing each edge with parameter pe = min(1, ρ/le), where
ρ = 224

0.38 ln(n)/ϵ2. Then Gϵ is a (1± ϵ)-cut sparsifier for G with high probability.

The sampling itself takes at most O(m) time, as explained in Lemma 21. As the NI
indices can be computed in O(m + n log(n)) time, this implies that the total running time is
O(m+n log(n)). As a graph with m ≤ n log(n) is already sparse, we can assume m > n log(n).
Thus, for our purposes, the total running time is simply O(m).

Next we provide a bound for the number of edges in the sparsifier Gϵ. Fung et al. [13] prove
this same bound in expectation, we provide a proof for this bound “with high probability”.

▶ Lemma 24. With high probability, the size of the graph Gϵ in Theorem 23 is
O(n log2(n)/ϵ2).

Proof. Let v ∈ V be a vertex with degree dv ≥ O(log2(n)/ϵ2) in G. We denote the degree
of v in Gϵ by d′

v and we write d′ := maxv∈V d′
v. For each neighbor u of v in G, we compress

the edge e = (u, v) with parameter pe = min
(

1, 224 ln(n)
0.38ϵ2le

)
, where le is the NI index of e.

For each edge, the probability that it remains after compression is 1 − (1 − pe)we . From
Bernoulli’s inequality we see 1− (1− pe)we ≤ wepe. Let Ye be the random variable that is
1 if e remains, and 0 else. We note that E

[∑
e:v∈e Ye

]
≤ 224

0.38 ln2(n)/ϵ2. Now we apply a
Chernoff bound (Theorem 26) to obtain

P
[
d′

v ≥ δ
224
0.38 ln2(n)/ϵ2

]
≤ exp

(
−0.38δ

224
0.38 ln2(n)/ϵ2

)
= n−224δ ln(n)/ϵ2

.
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Using a union bound we get the desired result

P
[
d′ ≤ δ

224
0.38 ln2(n)/ϵ2

]
≥ 1− n1−224δ ln(n)/ϵ2

.

Consequently, we obtain that with high probability the number of edges of the sparsifier is
at most O(n log2(n)/ϵ2). ◀

The state of the art for polynomially-weighted graphs is achieved by postprocessing this
result with the algorithm by Benczúr and Karger [7]. Thus our improvement on Benczúr
and Karger leads to an overall improved result.

B Tail bounds

To analyze the sampling methods used in Section 4, we make use of the well-known Chernoff
bound to get a grasp on the tail of various distributions [8].

▶ Theorem 25. Let Y1, . . . , Yn be n independent random variables such that each Yi takes
values in [0, 1]. Let µ =

∑n
i=1 E[Yi] and ξ = 2 ln(2) > 0.38. Then for all ϵ > 0

P

[∣∣∣∣∣
n∑

i=1
Yi − µ

∣∣∣∣∣ > ϵµ

]
≤ 2 exp

(
−ξ min(ϵ, ϵ2)µ

)
.

At times, the expected value µ itself is not known. Fortunately an upper bound on the
expected value also suffices.

▶ Theorem 26. Let Y1, . . . , Yn be n independent random variables such that Yi takes values
in [0, 1]. Let µ =

∑n
i=1 E[Yi] and ξ = 2 ln(2) > 0.38. Suppose µ′ ≥ µ. Then for all δ ≥ 2

P

[
n∑

i=1
Yi > δµ′

]
≤ 2 exp (−ξ(δ − 1)µ′) .

Proof. Let ϵ := (δ − 1) µ′

µ . We have ϵ ≥ 1, so min(ϵ, ϵ2) = ϵ. The statement now follows
directly from Theorem 25. ◀

C Reduction from Real to Integer Weights

In this section, we show how to reduce the computation of a cut sparsifier of a graph
with non-negative real weights to integer weights, formalizing the procedure sketched by
Benczúr and Karger [7]. Let G = (V, E, w) be a weighted graph, where w : E → R. Denote

Wmax := max
e∈E

w(e) and Wmin := min
{

1, min
e∈E

w(e)
}

. Then the reduction consists of the

following steps:
1. Compute Wmin and r := −⌊log( ϵ

2 Wmin)⌋.
2. Create w′ : E → R by rounding the weights w(e) to the closest multiple of 2−r, and define

G′ := (V, E, w′).
3. Create ŵ : E → R by ŵ(e) := 2rw′(e).
4. Compute a (1± ϵ/3)-cut sparsifier Ĥ = (V, EH , ŵH) of Ĝ = (V, E, ŵ).
5. Output H = (V, EH , wH) where wH(e) := 2−rŵH(e).
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First, we show that the graph H is indeed a (1 + ϵ)-cut sparsifier of G. Hereto, we note
that for any cut C we have

wH(C) = 2−rwĤ(C) ≤ 2−r(1 + ϵ/3)wĜ(C) = (1 + ϵ/3)wG′(C) ≤ (1 + ϵ)wG(C),

where the last inequality holds as each weight w′(e) has at most an additive error of 2−r ≤
ϵ
2 Wmin ≤ ϵ

2 with respect to w(e), hence at most an multiplicative error of ϵ
2 . Analogously

we obtain wH(C) ≥ (1− ϵ)wG(C).
By construction, Ĝ has integer weights, which are bounded by O( Wmax

ϵWmin
). Steps 1, 2, 3,

and 5 can be implemented in O(m) time. So indeed we have reduced the problem to finding
a cut sparsifier of a graph with integer weights. Moreover, note that if G has polynomially
bounded real weights, in the sense that Wmax = O(poly(n)) and Wmin = Ω(1/ poly(n)), then
the graph Ĝ has polynomially bounded integer weights. We can state this independent of ϵ,
since for ϵ ≤ 1/m we can always output the entire input graph as a cut sparsifier of optimal
size O(n/ϵ2) [3].
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Abstract
During a pandemic people have to find a trade-off between meeting others and staying safely at home.
While meeting others is pleasant, it also increases the risk of infection. We consider this dilemma
by introducing a game-theoretic network creation model in which selfish agents can form bilateral
connections. They benefit from network neighbors, but at the same time, they want to maximize
their distance to all other agents. This models the inherent conflict that social distancing rules
impose on the behavior of selfish agents in a social network. Besides addressing this familiar issue,
our model can be seen as the inverse to the well-studied Network Creation Game by Fabrikant et
al. [PODC 2003] where agents aim at being as central as possible in the created network. Thus, our
work is in-line with studies that compare minimization problems with their maximization versions.

We look at two variants of network creation governed by social distancing. In the first variant,
there are no restrictions on the connections being formed. We characterize optimal and equilibrium
networks, and we derive asymptotically tight bounds on the Price of Anarchy and Price of Stability.
The second variant is the model’s generalization that allows restrictions on the connections that
can be formed. As our main result, we prove that Swap-Maximal Routing-Cost Spanning Trees, an
efficiently computable weaker variant of Maximum Routing-Cost Spanning Trees, actually resemble
equilibria for a significant range of the parameter space. Moreover, we give almost tight bounds on
the Price of Anarchy and Price of Stability. These results imply that, compared the well-studied
inverse models, under social distancing the agents’ selfish behavior has a significantly stronger impact
on the quality of the equilibria, i.e., allowing socially much worse stable states.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Mathematics
of computing → Graph algorithms

Keywords and phrases Algorithmic Game Theory, Equilibrium Existence, Price of Anarchy, Network
Creation Game, Social Distancing, Maximization vs. Minimization Problems

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.62

Category Track A: Algorithms, Complexity and Games

Related Version All omitted details of this paper can be found in the full version.
Full Version: https://arxiv.org/abs/2204.10423 [25]

Funding This work was supported by the DFG project GEONET under grant DFG 442003138.

1 Introduction

Network Design is a core topic in Theoretical Computer Science and Operations Research.
Many classical combinatorial optimization problems, inspired by real world applications,
have been formulated and analyzed, such as the Minimum Spanning Tree problem [29],
the Network Design problem [35, 41] and finding geometric spanners [14, 46]. Typically,
a network having certain properties must be found by a centralized algorithm. However, in

EA
T

C
S

© Tobias Friedrich, Hans Gawendowicz, Pascal Lenzner, and Anna Melnichenko;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 62; pp. 62:1–62:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:friedrich@hpi.de
mailto:hans.gawendowicz@hpi.de
mailto:pascal.lenzner@hpi.de
mailto:anna.melnichenko@hpi.de
https://doi.org/10.4230/LIPIcs.ICALP.2022.62
https://arxiv.org/abs/2204.10423
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


62:2 Social Distancing Network Creation

many settings, the desired network is not created by a central authority but by individually
acting agents, e.g., people or institutions, controlling a local part of the network. Prominent
examples are the Internet, road networks, and, most relevant for our work, social networks.

Especially in settings with little coordination, these individual agents tend to selfishly
optimize their own utility without taking the impact of their actions on the efficiency of the
whole network into account. To better understand the dynamics arising in these decentralized
settings and the network structures resulting from them, many influential game-theoretic
network formation models have been introduced in the last decades [33, 9, 23, 7, 8]. The
main research questions are: Do equilibrium networks, i.e., stable networks where no agent
can improve by performing a local change, exist? What properties do these networks have?
And how efficient are they compared to centrally computed optimal solutions?

All of the above mentioned influential game-theoretic network formation models assume
that the creation of an edge is costly but the agents benefit from having small distances to
other agents in the network. However, departing from this standard assumption in the field,
there are real-world settings that should better be modeled via an inverted utility function:
neighbors yield benefit but being close to many agents is costly as it yields an increased risk.
One example for this choice are financial networks. There, financial institutions benefit from
working together but suffer from risks arising from one of them failing1. Another example,
that is the main motivation of our work, came up with the current COVID-19 pandemic and
is described by the now commonly used term social distancing. It refers to reducing social
contacts in order to contain the spread of a contagious virus in the population. While often
mandated by the government, social distancing was performed by many people voluntarily.
One of the main reasons is quite simple: While reducing social contacts is a restriction of
the quality of life, it also reduces the probability of getting infected. Hence, the network of
social interactions between people was sparsified by individual strategic decisions.

In this work we introduce a novel game-theoretic network formation model in which
selfish agents strategically form a social network under the influence of social distancing.
Agents benefit from direct connections to other agents, modeling the positive effects of social
contacts on their social life. However, at the same time they want to maximize their distances
to all other agents in the network in order to reduce their risk of getting infected via an
increased reaction time in case a contagious disease starts spreading in the network. Here we
assume that a random network node becomes infected and that it is beneficial to be far away
from the source of infection in order to gain valuable time for setting up counter-measures.

The agents in our model act according to an inverted utility function, compared to
the famous models by Jackson and Wolinsky [33] and Fabrikant et al. [23]. Thus, to the
best of our knowledge, this is one of the rare cases of a game-theoretic model where both
minimizing and maximizing the utility function has a natural interpretation. Another similar
well-known example is the contrast between the Network Design Game with fair cost sharing
by Anshelevich et al. [7] and the Selfish Routing model by Roughgarden and Tardos [47].
In both models the agents select paths in a given network but in the former sharing an
edge is beneficial for the involved agents whereas in the latter edge sharing is detrimental.
This difference yields vastly different behavior in terms of the quality of the equilibria.
However, this is not obvious, as can also be seen by comparing classical minimization and
maximization variants of optimization problems, e.g., Minimum Spanning Tree versus
Maximum Spanning Tree or Shortest Path versus Longest Path. Sometimes, as with
spanning trees, the inverse problems are almost identical, whereas sometimes, as with the

1 The financial crisis in the late 2000s was mainly driven by contagious network effects of failing banks.
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path problems, the inverse problems may have completely opposite behavior. We set out
to explore this comparison for the natural inverse counter-part to the well-known Network
Creation Game by Fabrikant et al. [23]. Along the way, we will uncover a connection to
the Maximum Routing-Cost Spanning Tree problem that is inverse to the well-studied
Minimum Routing-Cost Spanning Tree problem [31]2.

1.1 Model and Notation
Before we start with the model definition, we introduce some notation regarding networks.
A network is a tuple G := (V, E) where V is the set of nodes and E is the set of edges. An
edge is represented by a set containing both incident nodes. If we do not give the tuple
defining G explicitly, we denote the set of nodes of G as VG and the set edges of G as EG.
We only consider unweighted undirected networks. For addition and removal of a single edge
e, we write G + e := (V, E ∪ {e}) and G − e := (V, E \ {e}). A network G′ with VG′ ⊆ V

and EG′ ⊆ E is called a subnetwork of G and denoted as G′ ≤ G. If G′ is connected and
VG′ = V , G′ is a spanning subnetwork of G. Let n ∈ N denote the number of nodes. The set
of all connected networks containing exactly n nodes will be referred to as Gn.

For two nodes v, x ∈ V , we define dG(v, x) as the distance between v and x in network G,
that is, the number of edges on a shortest path from v to x in G. For convenience, we extend
the definition of dG to sets of nodes: Let v ∈ V be a node and M, N ⊆ V be sets of nodes.
Then dG(v, M) :=

∑
x∈M dG(v, x) and dG(M, N) :=

∑
x∈M,y∈N dG(x, y). We call the special

case dG(v, V ) the distances from/for v and dG(V, V ) the total/summed distances or routing
costs of G. The degree of v in the network G is the number of edges that are incident to v

and is denoted as degG(v). We call a tree which is a spanning subnetwork of G a spanning
tree of G. A spanning tree of G with routing costs at least as high as the routing costs of any
other spanning tree of G will be called a Maximum Routing-Cost Spanning Tree (MRCST).
A spanning tree of G with routing costs that cannot be increased by swapping one edge is a
Swap-Maximal Routing-Cost Spanning Tree (SMRCST).

Now, we can define the game-theoretic model. Let H = (V, E) be a connected network.
We call H the host network and its nodes agents. A state of the game G ≤ H is a spanning
subnetwork of H. We only consider connected networks as host networks and states.

Each agent v ∈ V selfishly tries to maximize its utility in state G given by

uv(G) := α degG(v) + dG(v, V )

where α ∈ R>0 is a global parameter. We will call α degG(v) the edge utility and dG(v, V )
the distance utility of v. Note that α is a parameter of the game, i.e., equal for all agents,
that allows to adjust the agents’ trade-offs between edge utility and distance utility. Here α

is the benefit of a single edge, i.e., the benefit for each direct neighbor in the network.
For measuring the efficiency of the network G, we use the social welfare defined as

SW(G) :=
∑

v∈VG
uv(G) = 2α|EG|+ dG(V, V ). This quantifies the well-being of the society

of all agents. We call a network maximizing the social welfare for the host network H a
social optimum and denote it as OPTH .

Agents are allowed to form connections bilaterally. More specifically, each agent can
unilaterally remove any incident edge if it does not disconnect the network, and two agents
together can form an edge between them if it is contained in the host network. If removing
an edge strictly increases the utility of one of its incident nodes or adding an edge strictly

2 This problem is also known as the Optimum Communication Spanning Tree problem.
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increases the utility of both incident nodes, we call this an improving move. A network
without improving moves is referred to as pairwise stable [33] or stable for short3. If there
are no improving edge additions or removals we call the network stable against edge addition
and stable against edge removal, respectively.

For a host network H, we define S(H) as the set of all pairwise stable states. For
measuring the efficiency lost by letting agents form the network selfishly, we use the Price of
Anarchy (PoA) [38] and Price of Stability (PoS) [7] defined as

PoAn := max
H∈Gn

max
G∈S(H)

SW(OPTH)
SW(G) and PoSn := max

H∈Gn

min
G∈S(H)

SW(OPTH)
SW(G) .

We will call this model Social Distancing Network Creation Game (SDNCG). In Section 2
we will restrict the host networks to complete networks Kn. We will call this restricted
variant complete Social Distancing Network Creation Game (K-SDNCG).

1.2 Related Work
Variants of game-theoretic network formation models have been studied extensively for
decades and we refer to Jackson [32] for an overview.

Closest to our work is the literature on the Network Creation Game (NCG) by Fabrikant
et al. [23]. This influential model can be seen as the unilateral inverted variant of the
K-SDNCG. There, an agent can buy any incident edge without the consent of the other
endpoint for the price of α > 0. Each agent aims at minimizing its cost, which is defined as
the sum of α times the number of bought edges and the sum of hop-distances to all agents.
The authors of [23] show that Nash equilibria always exist, i.e., complete networks are stable
for α ≤ 2 and stars are stable for α ≥ 2. However, besides these generic examples finding
Nash equilibria is challenging since the NCG and many of its variants do not belong to the
class of potential games [39, 37]. Besides finding equilibria, also computing a best possible
strategy is challenging, since this problem was shown to be NP-hard in [23]. However, such
strategies can be efficiently approximated with greedy strategy changes [40]. Regarding the
quality of equilibrium states the authors of [23] show that the PoA is in O(

√
α), that the

PoA for tree Nash equilibria is constant, and that the PoS is at most 4
3 . Later, a series

of papers [2, 20, 43, 42, 4, 12, 5] improved the PoA bounds, with the best general upper
bound of 2O

√
log n by Demaine et al. [20]. The latter also proved that the PoA is constant

for α ∈ O(n1−ε) for any fixed ε > 1
log n . For large α, it was shown by Bilò and Lenzner [12]

that for α > 4n− 13 all Nash equilibria must be trees and this bound was recently improved
by Dippel and Vetta [21] to α > 3n− 3. This implies a constant PoA for α > 3n− 3. Finally,
Álvarez and Messegué [5] established a constant PoA for α > n(1 + ε), for any ε > 0.

The NCG was generalized by Demaine et al. [19] by introducing a host network that
specifies which edges can be bought. They show that the PoA deteriorates by providing
a lower bound of Ω(min{α/n, n2/α}) and an upper bound of O(

√
α), for α < n, and

O( min{
√

n, n2/α}), for α ≥ n. Interestingly, no results on the existence of equilibria are
known. Recently, a further generalization that allows weighted host networks was proposed
by Bilò et al. [11]. This variant has a tight PoA of (α + 2)/2 for metric weights. Later a

3 As shown by Corbo and Parkes [18] for bilateral Network Creation Games, pairwise stability is equivalent
to pairwise Nash stability, which is a refinement of the Nash equilibrium: it must be stable against
unilateral deviations and it must be stable against joint strategy changes by coalitions of agents of size
two. The strategy space of any agent i ∈ V is the power set of V \ i. An edge {u, v} is formed if and
only if v is in agent u’s strategy and u is in agent v’s strategy.
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tight bound of Θ(α) was shown for arbitrary weights [24]. Also a bilateral variant of the
NCG was studied by Corbo and Parkes [18]. There, similar to our model, edges can only be
established by bilateral consent of the involved nodes and both nodes have to pay α. The
authors of [18] prove existence of pairwise stable networks, i.e., complete networks are stable
for α ≤ 1 and stars are stable for α ≥ 1, they give a tight PoA bound of Θ(min{

√
α, n/

√
α}),

and they show that the PoS is 1. To the best of our knowledge, the bilateral variant with a
given host network has not yet been studied. Recently, also a bilateral variant modeling the
formation of social networks was introduced [10].

The idea of a game-theoretic model of network formation in a context of spreading risk is
not new. Goyal et al. [28] study a setting where a node is attacked and this attack spreads
to all vulnerable neighbors. Agents strategically create edges and immunize themselves
to maximize their connected component post attack. For this model, also the efficient
computation of best strategies [26] and a variant with probabilistic spread [17] was studied.
Moreover, there has been much research in the context of financial contagion, where agents
benefit from collaborating, but also suffer from the risk of cascading failure arising with
the collaboration [3, 30, 15, 1]. In particular, Blume et al. [13] developed an elegant model
where nodes form a network and then some randomly chosen nodes fail and this failure then
spreads with some probability via the edges. The utility is a linear combination of the node
degree and the risk of failing in the second phase. The virtue of this model is that utilities
are based on a random process that realistically models the spread of a contagious infection.
However, the major downside of this model is that the computation of the random process is
#P-complete. Thus, this model does not yield a realistic prediction of real-world behavior.

While analyzing our model for general host networks, we consider Maximum Routing-Cost
Spanning Trees. Routing costs have been studied much in mathematics, mostly under the
name of the Wiener index [48]. Trees were of special interest and there has been much
research on the Wiener index of trees with different properties. But although spanning
trees minimizing the Wiener index were studied extensively, the concept of spanning trees
maximizing the Wiener index received little attention [22, 49]. However, it was shown that
finding or even approximating a tree maximizing the Wiener index is NP-hard [16, 27].

1.3 Our Contribution
We introduce the Social Distancing Network Creation Game (SDNCG), a game-theoretic
model in which selfish agents try to maximize their utility by strategically connecting to other
agents and thereby creating a network. Each agent values direct connections to other agents
but at the same time wants to maximize the distances to all other agents in order to lower
their exposure and increase their reaction time to risks appearing in the network. In contrast
to the similar model by Blume et al. [13], our model, while not modeling a perfectly realistic
spread of the infection, has the advantage of an efficiently computable utility function. By
using the distance to the other agents as part of the utility, it also accounts for reaction time:
If an infection breaks out far away, an agent has more time to prepare or react to it. Another
virtue of our model is that it is the inverse to the well-known Network Creation Game [23]
and its bilateral variant [18]. Hence, we can study and compare the game-theoretic properties
of the inverted models. To the best of our knowledge, this is one of the rare cases where both
the minimization and the maximization of a utility function have a natural interpretation.

Our results and the comparison with the inverted models are summarized in Table 1.
We analyze two variants of the SDNCG. For the K-SDNCG, where we assume a complete
host network, we characterize optimal and several stable networks and show that the PoS
is 1. We provide an improving response cycle, which implies that equilibrium existence
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Table 1 An overview of our results (yellow) and a comparison with the results for the inverted
models (white). BNCG abbreviates the bilateral NCG by Corbo and Parkes [18] whereas H-NCG
denotes the NCG on a host network by Demaine et al. [19]. N2 := (n−1)2

4 , N3 := (n−2)n(n+2)
24 , H

denotes the host network, Pn, Kn, Sn are the path, clique, and star networks on n nodes, respectively.

Optimum Equilibria PoA PoS

NCG [23]
α ≤ 2: Kn [23]
α ≥ 2: Sn [23]

α ≤ 1: Kn [23]
α ≥ 1: Sn [23]

2O
(√

log n
)

[20]
α ∈ O

(
n1−ε

)
: Θ(1) [20]

α > n(1 + ε) : Θ(1) [5]

α ≤ 1: 1 [23]
1<α<2: ≤ 4

3 [23]
α ≥ 2: 1 [23]

BNCG [18]
α < 1: Kn [18]
α > 1: Sn [18]

α < 1: Kn [18]
α > 1: Sn, . . . [18]

Θ
(

min
{√

α, n√
α

})
[18]

α < 1: 1 [18]
1 [18]

K-SDNCG
α < n

3 : Pn [T. 1]
α > n

3 : Kn [T. 1]

α ≤ 1: trees [T. 2]
1 ≤ α ≤ n

2 :
Pn, Kn, . . . [T. 2]

α ≥ n
2 : Kn [T. 2]

O(n) [T. 5]
α ≤
√

n : Θ(n) [T. 5]
α≤n

6− 3: Ω
(

n
log n

)
[T. 5]

α≤
⌊

n
2

⌋
− 2: Ω (

√
n) [T. 5]

α ≥ n
2 : 1 [T. 5]

1 [T. 6]

H-NCG [19] open open

α < n : O (
√

α) [19]
α≥n : min

{
O

(√
n, n2

α

)}
[19]

Ω
(

min
{

α
n , n2

α

})
[19]

open

SDNCG
α ≤ 1: MRCST [T. 7]
α > N3 : H [T. 7]

α ≤ 1: trees [T. 9]
1 ≤ α ≤ n

3 :
SMRCST [T. 10]

α ≥ N2 : H [T. 9]

O(n) [C. 14]
α≤n : Θ(n) [T.14]
α ≤ N2 : Ω

(
n2

α

)
[T. 14]

N2<α≤N3 : Θ(1) [T. 14]
α ≥ N3 : 1 [T. 14]

α ≤ 1: 1 [T. 15]
α < n

3 : O (
√

n) [T. 15]
N2<α≤N3 : Θ(1) [T. 15]
α ≥ N3 : 1 [T. 15]

for the (K-)SDNCG cannot be derived from potential function arguments. Finally, derive
several bounds for the PoA which are tight for α ≥ n

2 , asymptotically tight for α ≤
√

n, and
asymptotically tight up to a log-factor for α ≤ n

6 − 3.

For the SDNCG on arbitrary host networks we utilize Maximum Routing-Cost Spanning
Trees for characterizing optimal networks for α ≤ 1. As our main result, we show that their
locally optimal variant, the Swap-Maximal Routing-Cost Spanning Trees, and hence also
Maximum Routing-Cost Spanning Trees, are pairwise stable for α ≤ n

3 . We prove that
computing the MRCST is NP-hard, while the SMRCST can be constructed efficiently. Thus,
for the significant range of 1 ≤ α ≤ n

3 , we not only have guaranteed equilibrium existence
on any host graph, but we can compute stable states efficiently. This is in stark contrast
to what is known for the inverse model studied by Demaine et al. [19]. Additionally, we
approximate optimal networks and we derive several (tight) bounds on the PoA and the PoS.

Compared with the NCG [23] and the bilateral NCG [18], we find that the results for
the K-SDNCG regarding optimal and stable networks are analogous but reversed, with the
spanning path taking over the role of the spanning star. Moreover, our PoA results for both
the K-SDNCG and the SDNCG show that our maximization variant has a significantly
worse PoA that is linear or almost linear in n, compared to the PoA upper bounds of o(nε)
and O(

√
α, n/

√
α) for the NCG and the bilateral NCG, respectively. As main take away

from our paper, this implies that under social distancing the agents’ selfish behavior has
significantly more impact on the quality of the equilibria. This calls for strong coordination
mechanisms governing the network formation to avoid detrimental stable states.
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2 Complete Host Networks

We analyze the properties of the K-SDNCG, i.e., the SDNCG on complete host networks.
First, we characterize optimal networks and give some examples for stable networks, dependent
on the relation between n and α. After that, we show several bounds on the PoA and PoS.

2.1 Stable and Optimal Networks
Intuitively, for small α the distance utility dominates the social welfare. Hence, the path
should be the optimum since it maximizes the total distances. For large α, the edge utility
dominates, which leads to the clique being optimal since it maximizes the number of edges.
Now we show that this intuition is indeed true. Moreover, the optimal construction is unique.

▶ Theorem 1. For α < n
3 , the unique social optimum is the path. For α > n

3 , the unique
optimum is the clique. For α = n

3 , the clique and the path are the only social optima.

Proof Sketch. [See [25] for the full proof.] Šoltés and Ľubomír [50] showed that for a fixed
number of nodes and edges, the network maximizing the summed distances is unique and
contains a clique and a path with at least two edges between one endpoint of the path and
the clique. We call this a PathClique. (Note that the clique can be empty, resulting in just a
path) For a visualization, we refer to Figure 1. Note, that the social optimum has to be such

Figure 1 This figure shows a PathClique. It consists of a path (left) and a clique (right), which
are connected by at least two edges between one endpoint of the path and some nodes of the clique.

a network, since for every other network, there is a PathClique with the same number of
edges but larger summed distances and therefore a larger social welfare.

Let G be a PathClique but neither a clique nor a path and let v be the endpoint of the
path that is connected to the clique. Observe that removing an edge between v and the
clique results in a PathClique. (This is still true if there are only two edges connecting v to
the clique: Removing one of these edges makes the remaining neighbor of v in the clique
the new endpoint of the path and reduces the size of the clique by 1.) Similarly, adding an
edge between v and the clique (or between the neighbor of v on the path and the clique if v

is fully connected to the clique) yields a PathClique, too. Now, it is easy to calculate that
either adding or removing edges improves the social welfare.

Thus, only the path and the clique are possibly optimal. ◀

Next, we have a look at the existence of pairwise stable networks. Similar to the social
optimum, for small α, agents prefer large distances over many incident edges and therefore
should remove as many edges as possible, leading to only trees being stable. Interestingly,
the restrictions of pairwise stability lead to all trees being stable for small α, even if the
distances are very small (like in a star). This is shown by the next theorem.

▶ Theorem 2 (Stable Networks).
(1) For α ≤ 1, every tree is pairwise stable. For α < 1, any pairwise stable network is a tree.
(2) For α ≥ 1, the clique is pairwise stable.
(3) For α ≤ n−1

2 , the path is pairwise stable.
(4) For α > n

2 , the clique is the only pairwise stable network.
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Proof of (4). Let V be a set of n agents and G = (V, E) be a stable network. Let v ∈ V be
a node having minimum total distances, i.e., for all v′ ∈ V , we have dG(v, V ) ≤ dG(v′, V ).
Let NG[v] denote the closed neighborhood of v.

Now suppose, the network induced by NG[v] is not a clique. Then there are two neighbors
x, y of v with {x, y} /∈ E. We observe that for each node z ∈ V , the distances dG(v, z) and
dG(x, z) can only differ by 1, since v and x are neighbors. By choice of v, there are at least
as many nodes that are closer to v than nodes that are closer to x. Therefore, there are at
most n

2 many nodes that are closer to x. Adding an edge between x and y can, for node y,
only shorten distances to nodes which are closer to x than to v. Thus, this edge shortens
the distances from y by at most n

2 . The same holds for node x. Therefore, for α > n
2 , this

edge would improve the utility of agents x and y and, thus, G would not be stable. This
contradicts our assumption. Thus, NG[v] must induce a clique.

Now let x be a neighbor of v. Since x is connected to all neighbors of v, we have
dG(x, V ) ≤ dG(v, V ), i.e., also x minimizes pairwise distances. Hence, NG[x] also induces a
clique, leading to NG[v] = NG[x]. By induction, since G is connected, it must be a clique. ◀

Theorem 2 implies that socially optimal networks are also stable. In fact, they are stable for
a wide range of α-values. The clique is stable for α ≥ 1, meeting the bound below which only
trees are stable. Similarly, the path is stable for α ≤ n−1

2 , almost meeting the lower bound
for only the clique being stable. Additionally, we observe that we only need two networks
(path and clique) to provide pairwise stable networks for all possible values of α.

For further constructions, we need the following definition. Let G be a network. We call
G′ a clique network of G, if it can be obtained by replacing each node of G by a clique of
size at least 2 and for each edge of G connect the two corresponding cliques fully bipartite.
By using only constant-size cliques, some properties of G (density, length of shortest paths)
are preserved while the network is more stable against edge removal.

▶ Theorem 3. Let G be a clique network. For α ≥ 1, G is stable against edge removal.

Finally, we show that stable states may not be found by simply letting agents iteratively
play improving moves, i.e., via a sequential process of improving strategy changes. Figure 2
provides an example of a cyclic sequence of improving moves. This also implies that both
the K-SDNCG and the SDNCG do not belong to the class of potential games [45], i.e., the
existence of equilibria cannot be proven via potential function arguments.

▶ Theorem 4. The Social Distancing Network Creation Game is not a potential game.

Proof. This is shown by the existence of improving cycles. See Figure 2 for an example. ◀

Figure 2 This figure shows a cyclic sequence of improving moves performed by n = 5 agents for
α = 2.5. In each step, the nodes responsible for the next change are highlighted in orange. Note
that the last step is isomorphic to the first step.
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2.2 Price of Anarchy and Price of Stability

In this section, we give a series of bounds for the Price of Anarchy and the Price of Stability.

▶ Theorem 5 (Price of Anarchy).

(1) The Price of Anarchy is in O(n).

(2) For α ≤ 1, the Price of Anarchy is in Θ(n).

(3) For 1 < α ≤
√

n, the Price of Anarchy is in Θ(n).

(4) For
√

n ≤ α ≤ n
6 − 3, the Price of Anarchy is in Ω

(
n

log n

)
.

(5) For n
6 − 3 < α ≤

⌊
n
2

⌋
− 2, the Price of Anarchy is in Ω (

√
n).

(6) For α ≥ n
2 , the Price of Anarchy is 1.

Proof of (3). We construct a star-like network with cliques as leaves in the following way.
Let c := ⌈α⌉+ 2. Additionally, let K1, . . . , Kd be d :=

⌊
n−2

c

⌋
cliques containing c− 2 nodes

and v1, v′
1, v2, v′

2, . . . , vd, v′
d be 2d nodes. Let furthermore M be a clique of size n− cd. We

now define our network G as

VG :=
d⋃

i=1
VKi ∪

d⋃
i=1
{vi, v′

i} ∪ VM

EG :=
d⋃

i=1
EKi
∪ EM ∪

d⋃
i=1
{{vi, v′

i}}

∪
d⋃

i=1

⋃
v∈Ki

{{v, vi}, {v, v′
i}} ∪

d⋃
i=1

⋃
v∈M

{{v, vi}, {v, v′
i}}.

We essentially connect the outer cliques K1, . . . , Kd to the center clique M via d 2-cliques
and each connection is fully bipartite (see Figure 3). Since n = |VG|, G is a network of the
desired size.

K1

K2

K3

M

v1

v′1

v′2
v2

v3

v′3

Figure 3 The figure shows a star-like clique network, where the center is formed by a clique M

and each ray consists of two nodes vi, v′
i and a clique Ki.

We now show that G is pairwise stable. We see that G is a clique network. Because of
Theorem 3 and α > 1, G is stable against edge removal. On the other hand, adding an edge
shortens distances to at least |Ki| = c− 2 ≥ α nodes which means a distance decrease of at
least α for the two incident nodes. This also does not increase their utility. Therefore, G is
pairwise stable.
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For the center clique M , we see that |VM | = n − cd = n − c
⌊

n−2
c

⌋
and therefore

2 ≤ |VM | < n− (n− 2− c) = c + 2. With this and 1 < α ≤
√

n, we obtain

|EG| = d

(
c− 2

2

)
+

(
|VM |

2

)
+ 2d + d(c− 2)2 + d|VM |2

=
⌊

n− 2
⌈α⌉+ 2

⌋ (
⌈α⌉(⌈α⌉ − 1)

2 + 2 + 2⌈α⌉+ 2|VM |
)

+ |VM |(|VM | − 1)
2

∈ Θ(αn)

and dG(VG, VG) ∈ Θ(n2).
For α <

√
n, the socially optimal network is the path. With the previous calculations, we

can now bound the Price of Anarchy as

PoA ≥ 2α(n− 1) + Θ(n3)
2αΘ(αn) + Θ(n2) = Θ(n3)

Θ(n2) ∈ Ω(n).

From (1), we have PoA ∈ O(n) and therefore PoA ∈ Θ(n). ◀

Proof of (4). Let d = ⌊log n⌋ − 1. Then, the d-dimensional hypercube is represented by GH

with VGH
= {0, 1}d and EGH

= {{v, x} | v, x ∈ V ∧ dH(v, x) = 1} where dH(v, x) denotes
the Hamming Distance between v and x. Let G be a clique network for GH with |VG| = n

such that the sizes of the cliques replacing the nodes of GH differ by at most 1. Observe,
that each clique is of size 2 or 3 if 2 · 2d ≤ n < 3 · 2d and of size 3 or 4 if 3 · 2d ≤ n < 4 · 2d. By
Theorem 3 and since α ≥ 1, we know that G is stable against edge removal. We now show
that adding an edge shortens the total distances for the incident nodes by at least n

6 − 3.
Let v, x ∈ VG such that e := {v, x} /∈ EG and let v′, x′ ∈ VGH

be the nodes corresponding
to the cliques that contain v and x, respectively. Therefore, e′ := {v′, x′} /∈ EGH

, which
implies dH(v′, x′) ≥ 2. By symmetry of the hypercube, we can assume w.l.o.g. that

v′ = 00 . . . 0︸ ︷︷ ︸
dH (v,x)

0 . . . 00︸ ︷︷ ︸
d−dH (v,x)

and x′ = 11 . . . 1︸ ︷︷ ︸
dH (v,x)

0 . . . 00︸ ︷︷ ︸
d−dH (v,x)

.

Adding e′ to GH decreases the distances from v′ to another node y′ ∈ VGH
if and only if

dH(v′, y′) ≥ dH(x, y) + 2. The difference in distance can only come from the first dH(v′, x′)
bits of the label since the remaining bits are equal for v′ and x′. Let ℓ be the number of the
first dH(v′, x′) bits of y′ equal to 1. Then, dH(v′, x′)− ℓ is the number of the first dH(v′, x′)
bits of y′ equal to 0. We obtain dH(v′, y′)− dH(x′, y′) = ℓ− (dH(v′, x′)− ℓ) = 2ℓ− dH(v′, x′).
Thus, adding e′ to GH shortens the distance from v′ to y′ by 2ℓ− dH(v′, x′)− 1.

The number of nodes where exactly ℓ of the first dH(v′, x′) bits are equal to 1 is
(

dH (v′,x′)
ℓ

)
·

2d−dH (v′,x′). Therefore, we get a distance decrease for v′ of

dGH
(v′, VGH

)− dGH +e′(v′, VGH
)

=
dH (v′,x′)∑

ℓ=
⌈

dH (v′,x′)
2

⌉
+1

(
dH(v′, x′)

ℓ

)
· 2d−dH (v′,x′) · (2ℓ− dH(v′, x′)− 1)

steps omitted
≥ 2d

4 .

Observe that the distances from v to all nodes in other cliques in G are exactly the same
as the distances from v′ to all other nodes in GH . The same holds for G + e and GH + e′,
with the exception of the distances from v to the (at most 3) nodes in the same clique as x.
We distinguish two cases:
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If 2 · 2d ≤ n < 3 · 2d, each clique consists of 2 or 3 nodes. Therefore, we have a distance
decrease of at least

dG(v, VG)− dG+e(v, VG) ≥ 2(dGH
(v′, VGH

)− dGH +e′(v′, VGH
))− 3 ≥ 2d

2 − 3 ≥ n

6 − 3.

If 3 · 2d ≤ n < 4 · 2d, each clique consists of 3 or 4 nodes. This means, we have a distance
decrease of at least

dG(v, VG)− dG+e(v, VG) ≥ 3(dGH
(v′, VGH

)− dGH +e′(v′, VGH
))− 3 ≥ 32d

4 − 3 ≥ n

6 − 3.

Thus, edge additions are not beneficial for the incident agents if α ≤ n
6 − 3 and we conclude

that the constructed network is stable for 1 ≤ α ≤ n
6 − 3. We also see that the number

of edges m is in Θ(n log n) and the distance d(VG, VG) is in Θ(n2 log n). Since the social
optimum for 1 ≤ α ≤ n

6 − 3 is the path Pn, we get for the Price of Anarchy:

PoAn ≥
SW (Pn)
SW (G) = α(n− 1) + Θ(n3)

αΘ(n log n) + Θ(n2 log n) ∈ Ω
(

n

log n

)
. ◀

Proof of (5). We construct a path of cliques in the following way. Let 2 ≤ d ≤ n−6
2 be some

even number and c =
⌊

n−6
d

⌋
. Furthermore, let K1, . . . , Kd be d cliques consisting of c or c + 1

nodes, such that
∑d

i=1 |VKi
| = n− 6 and

∑ d
2
i=1 |VKi

| =
⌈

n−6
2

⌉
and

∑d
i= d

2 +1 |VKi
| =

⌊
n−6

2
⌋
,

and v1, v′
1, v2, v′

2, v3, v′
3 be 6 more nodes. We now define the network G as

VG :=
d⋃

i=1

VKi ∪ {v1, v′
1, v2, v′

2, v3, v′
3},

EG :=
d⋃

i=1

EKi ∪ {{v1, v′
1}, {v2, v′

2}, {v3, v′
3}} ∪ {{v, x} | v ∈ {v2, v′

2} ∧ x ∈ {v1, v′
1, v3, v′

3}}

∪

d
2 −1⋃
i=1

{{v, x} | v ∈ Ki ∧ x ∈ Ki+1} ∪
⋃

v∈K d
2

{{v, v1}, {v, v′
1}}

∪
d−1⋃

i= d
2 +1

{{v, x} | v ∈ Ki ∧ x ∈ Ki+1} ∪
⋃

v∈K d
2 +1

{{v, v3}, {v, v′
3}}.

Figure 4 shows a sketch of G.

K1 K2 Kd
2

Kd
2+1 Kd−1 Kd

v1 v2 v3

v′1 v′2 v′3

Figure 4 The figure shows clique network for a path consisting of d cliques K1, . . . , Kd highlighted
in yellow with 6 additional nodes in the middle. Note, that edges inside the cliques are not shown in
this figure.

We observe that G is stable against edge removal because of Theorem 3, since α > n
6−3 ≥ 1

and G being a clique network for the path. We now show that adding an edge is also not an
improving move.
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We quickly see that, for a node v, adding an edge into the 2-neighborhood always shortens
distances the least. We therefore only have to consider these edges. We observe that adding
an edge between v1 and v3 (or because of symmetry, v′

1 or v′
3) decreases distances from v1

to v3 and all nodes in K d
2 +1, . . . , Kd and decreases distances from v3 to v1 and all nodes in

K1, . . . , K d
2

by exactly 1. This means, we get

dG(v1, V )− dG+{v1,v3}(v1, V ) = 1 +
d∑

i= d
2 +1

|VKi
| =

⌊n

2

⌋
− 2 and

dG(v3, V )− dG+{v1,v3}(v3, V ) = 1 +
d
2∑

i=1
|VKi
| =

⌈n

2

⌉
− 2.

Every other edge we could add decreases distances to all the cliques of one side of the path,
resulting in larger distance decreases. This means that adding an edge is not an improving
move for α ≤

⌊
n
2

⌋
− 2. Therefore, G is pairwise stable for the desired values of α.

We now evaluate the number of edges. We have |EKi | ∈ Θ(c2). The number of edges
between two neighboring cliques is also in Θ(c2). This means that the total number of edges
is |EG| ∈ Θ(dc2). We also see that the diameter of G is d and therefore dG(V, V ) ∈ O(dn2).
If we choose d = 2

⌊ √
n

2

⌋
, we have d ∈ Θ(

√
n) and c ∈ Θ(

√
n). Since α ∈ Θ(n), we get for

the Price of Anarchy

PoAn ≥
α(n− 1) + Θ(n3)
αΘ(dc2) +O(dn2) ∈ Ω

(
n3

n
5
2 + n

5
2

)
= Ω

(√
n

)
. ◀

We have established that the Price of Anarchy is relatively high for α ≤ n
2 . It even meets

the trivial upper bound of O(n) for a large range of α. In contrast to the high PoA values,
we observe that the Price of Stability is independent of α and best possible.

▶ Theorem 6. The Price of Stability is 1.

From an efficiency point-of-view, the huge gap between the PoA and the PoS suggests that
having an outside force assigning an initial strategy to all players is beneficial. That way,
stability and optimal social welfare can be guaranteed. Without such coordination, the
players could end up in socially bad equilibria or in a cyclic sequence of improving moves.

3 General Host Networks

We now analyze the SDNCG on arbitrary connected but not necessarily complete host
networks. First, we analyze socially optimal networks and then we investigate the existence
of pairwise stable networks. We prove our main result that establishes equilibrium existence
on any connected host network for a wide parameter range of α. Finally, we derive bounds
on the Price of Anarchy and the Price of Stability. Additionally, we show that computing the
social optimum and the Maximum Routing-Cost Spanning Tree is NP-hard while computing
a Swap-Maximal Routing-Cost Spanning Tree can be done in polynomial time.

3.1 Stable and Optimal Networks
While for the K-SDNCG, we only have two possible social optima (dependent on α), this
gets more complicated for general host networks. Of course, if they exist on general host
networks, then the optima for the K-SDNCG are still the most efficient networks. Intuitively,
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if the host network does not contain a Hamilton path, then the social optimum should be a
tree if α is small enough. Since all trees have the same number of edges, the social welfare of
a tree is only influenced by the total distances. Remember that the spanning tree maximizing
the total distances is by definition the Maximum Routing-Cost Spanning Tree (MRCST).
We now show, that this intuition is indeed correct.

▶ Theorem 7 (Social Optimum). Let H be a connected host network containing n nodes.
(1) If H contains a Hamilton path, then this path is the social optimum for α ≤ n

3 . The
Hamilton path is the unique social optimum if α < n

3 .
(2) For α ≤ 1, the MRCST of H is socially optimal.
(3) For α > 1

24 (n− 2)n(n + 2), H itself is the unique social optimum.
Contrasting statement (3) from Theorem 7, we observe that for α < 1

24 (n− 2)n(n + 2), the
host network is not necessarily the social optimum. Consider the host network H := Cn for
even n, i.e., an even cycle with n nodes. In the proof of (3), we see that SW(Pn) > SW(Cn),
implying that Cn cannot be the social optimum. In fact, in this example, Pn is the optimum
since there are only two possible states (up to isomorphism): Pn and Cn itself. This is in
stark contrast to the K-SDNCG, where the host network is optimal for α ≥ n

3 .
Since finding a MRCST is NP-hard [16], finding the social optimum for a given host

network must also be NP-hard.

▶ Theorem 8 (Computational Hardness). Computing the social optimum for a connected host
network H is NP-hard.

Next, we discuss stable networks. In contrast to the K-SDCNG, it is not obvious that
pairwise stable networks are guaranteed to exist for any connected host network. However,
we can directly transfer the result that spanning trees are stable for small α. For large α,
similar to the clique being the unique stable network for α > n

2 for complete host networks,
as shown in Theorem 2, we show that the whole host network is pairwise stable. However, in
contrast to the K-SDNCG, this is true only for much larger values of α.

▶ Theorem 9 (Stable Networks). Let H be a connected host network containing n nodes.
(1) For α ≤ 1, every spanning tree of H is pairwise stable. For α < 1, spanning trees are

the only pairwise stable networks.
(2) For α > 1

4 (n− 1)2, H is the only pairwise stable network.
Contrasting statement (2) of Theorem 9, using H := Cn for odd n and α < 1

4 (n− 1)2 shows
that the host network is not necessarily pairwise stable. This example also shows that the
optimum is not necessarily stable: For α ≥ 1

4 (n− 1)2 and H := Cn as the host network, Cn

is the only pairwise stable network but it is not the optimum for α < 1
24 (n − 2)n(n + 2).

This is another significant difference to the K-SDNCG.
Now that we characterized stable networks for extreme α-values, the question remains

whether stable states also exist for in-between values. For the K-SDNCG, the path is stable
up to α < n−1

2 . This is, of course, still true for non-complete host networks if they contain a
Hamilton path. Since a Hamilton path (if it exists) is the MRCST, it is natural to suspect
that the MRCST properties at least partially ensure stability for some α ≥ 1. However, even
if true, the MRCST is still NP-hard to compute. Hence, in quest of an efficiently computable
stable network, we introduce a less strict variant of MRCSTs which is only locally optimal:
Swap-Maximal Routing-Cost Spanning Trees. Remember, a SMRCST is a spanning tree
whose summed distances cannot be increased by removing one edge and adding another edge.

As our main result, we now show that SMRCSTs (and therefore MRCSTs, too) are indeed
stable beyond α ≤ 1. Note, that for the inverse model of the NCG on an arbitrary host
network [19], so far no equilibrium existence statement is known.
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▶ Theorem 10. Let H be a connected host network containing n nodes. Then for α ≤ n
3 ,

any Swap-Maximal Routing-Cost Spanning Tree is pairwise stable.

Proof Sketch. [See [25] for the full proof.]
Let G with VG = VH and EG ⊆ EH be a SMRCST. Since G is a tree, we only have to
consider edge additions. We show that adding any edge decreases the summed distances for
at least one of the endpoints of the edge by at least n

3 . This is sufficient to show the claim.
Let e1 ∈ EH \ EG be an edge not contained in the SMRCST. Adding e1 would form a

cycle of length d ∈ N consisting of nodes v1, . . . , vd ∈ V , with v1 and vd being the nodes
incident to e1. Let EC be the set of all edges on this cycle. Removing all edges in EC from
G would create d trees rooted in v1, . . . , vd, respectively. Furthermore, let x1, . . . , xd be the
number of nodes in each of the d trees. See Figure 5 for an illustration.

v1 vd

v2

v3 vd−2

vd−1

x3

x2

x1 xd

xd−1

xd−2

e1
v1 vd

x1
e1 xd

xm−1

xm
xm+1e2 e3

vm−1

vm
vm+1

v1 vd

vm−1 vm+2

xm−1

x1 xd

xm+2

e1

xm+1xm

e2 e3vm vm+1

Figure 5 This figure shows the cycle formed by adding e1 to the SMRCST. The cycle is of length
d and contains the nodes v1, . . . , vd. Every other node is contained in one of the subtrees rooted
in one of the nodes on the cycle. These subtrees are represented in yellow. The number of nodes
contained in the subtree rooted in vi is xi. Middle and right: the cycle for d being odd or even,
respectively, and the two special edges e2 and e3.

Since G is a tree, there is exactly one path between each pair of nodes (which is also the
shortest). For each edge e ∈ EG, we define dG(e) as the number of paths between two nodes
in G which include e. We then can express the total distances as

dG(V, V ) = 2
∑

e∈EG

dG(e).

Note, that each path between two nodes contributes twice to the total distances (one for
each node), which leads to the factor of 2.

Let x := (x1, . . . , xd). We now define for each edge e ∈ EC on the cycle

ce(x) :=
∑

e′∈EC

dG+e1−e(e′) =
d−1∑
i=1

d∑
j=i+1

xixjdG+e1−e(vi, vj).

This is the contribution of all the edges on the cycle to the total distances, if we add e1 to
it and instead remove e from it. Note, that ce1 is the value for the original network since
G + e1 − e1 = G. We see that ce does not depend on the structure of the subtrees rooted in
the vi but only on the number of nodes in each subtree. Since the number of paths going
over an edge that is not on the cycle does not change when we add e1 and remove e, we have
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dG(V, V )− dG+e−e1(V, V ) = 2
∑
e′∈E

(dG(e′)− dG+e−e1(e′))

= 2
∑

e′∈EC

(dG(e′)− dG+e−e1(e′)) + 2
∑

e′∈EG\EC

(dG(e′)− dG+e−e1(e′))

= 2ce1(x)− 2ce(x).

We know that G is a SMRCST of H. This implies dG(V, V ) ≥ dG′(V, V ) for any other
spanning tree G′ that can be obtained from G by an edge swap. We therefore also have

∀e ∈ EC : ce1(x) ≥ ce(x). (1)

Now, we use the previous observations to formulate and solve a minimization problem
that yields the desired bound. We start with some definitions.

We call x = (x1, . . . , xd) ∈ Nd, with xi ≥ 1 and
∑d

i=1 xi = n, a node distribution. For
each edge e ∈ EC , we call ce(x) (defined above) the cost of e. And lastly, we define the
distance decrease ∆d as

∆d(x) := max


⌊ d−1

2 ⌋∑
i=1

(d− 2i)xi,

⌊ d−1
2 ⌋∑

i=1
(d− 2i)xd−i+1

 . (2)

The goal then is: Find a node distribution x that fulfills (1) and minimizes ∆d(x). Observe
that this indeed yields a lower bound for the distance decrease when adding e to G. If we
show that this is at least n

3 , we have proved the statement.
Let x = (x1, . . . , xd) ∈ Nd be a node distribution minimizing ∆d(x). For d ≤ 4, it is easy

to show that ∆d(x) ≥ n
3 . For further steps, we allow x ∈ Rd

≥1. Note, that this only allows
for smaller minima and therefore still yields a lower bound for the original problem.

The high level idea of the following steps is that we can redistribute weights of the node
distribution x without changing ∆(x) or violating 1 and thereby reducing the number of
variables contained in x by setting most xi to 1. We now make a case distinction.

Case d odd: Let m = d+1
2 and e2 := {vm−1, vm} and e3 := {vm, vm+1}. Thus, vm is the

node equidistant from v1 and vd in C and e2 and e3 are the edges on C incident to vm. (see
Figure 5 (middle)) We will only consider the two constraints

ce1(x) ≥ ce2(x) and ce1(x) ≥ ce3(x). (3)

Again, this still yields a lower bound for the original problem.
We define the node distributions x(1), x(2), x(3) such that for all 1 ≤ i ≤ d

x
(1)
i :=



x1 +
∑m−2

p=2
m−1−p

m−2 (xp − 1) if i = 1,

xm−1 +
∑m−2

p=2
p−1
m−2 (xp − 1) if i = m− 1,

xm if i = m,

xm+1 +
∑d−1

p=m+2
d−p
m−2 (xp − 1) if i = m + 1,

xd +
∑d−1

p=m+2
p−m−1

m−2 (xp − 1) if i = d,

1 else,

(w.l.o.g. we assume x
(1)
1 ≥ x

(1)
d and (2m− 3)x(1)

1 + x
(1)
m−1 = (2m− 3)x(1)

d + x
(1)
m+1)
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x
(2)
i :=


x

(1)
1 if i = 1 or i = d,

x
(1)
m−1 if i = m− 1 or i = m + 1,

x
(1)
m + (2m− 4)

(
x

(1)
1 − x

(1)
d

)
if i = m,

1 else,

x
(3)
i :=


x

(2)
m + 2 2m−4

2m−3

(
x

(2)
m−1 − 1

)
if i = m,

x
(2)
1 + 1

2m−3

(
x

(2)
m−1 − 1

)
if i = 1 or i = d,

1 else.

.

It can be shown iteratively that ∆d(x) = ∆d
(
x(1)) = ∆d

(
x(2)) = ∆d

(
x(3)) and that

ce1

(
x(i)) ≥ ce2

(
x(i)) and ce1

(
x(i)) ≥ ce3

(
x(i)) for 1 ≤ i ≤ 3. This means, x(3) is also

a solution of the minimization problem. Because of x(3) only having 2 variables left(
x

(3)
1 = x

(3)
d and x

(3)
m

)
, it is easy to show ∆d

(
x(3)) ≥ n

3 .

Case d even: Let m = d
2 and e2 := {vm−1, vm} and e3 := {vm+1, vm+2}. (see Fig-

ure 5 (right)) Again, we will only consider the two constraints

ce1(x) ≥ ce2(x) and ce1(x) ≥ ce3(x). (4)

The rest of the reasoning is analogous to the odd case. ◀

Next, we show that we can find a SMRCST in polynomial time via Algorithm 1 and even
guarantee some bounds on the social welfare of the resulting network. Our algorithm employs

Algorithm 1 Computes a SMRCST for a given connected host network.

Input: connected host network H
Output: SMRCST T

1 P ← greedyLongPath (H);
2 T ← extend P to form a spanning tree of H;
3 while ∃e ∈ ET, e′ ∈ EH \ ET : dT−e+e′(VH, VH) > dT(VH, VH) do
4 T ← T− e + e′

5 end

a greedy algorithm developed by Karger et al. [36] which can find a path of length at least
|EH |
|VH | in O(|EH |) as a subroutine for initialization. We call this subroutine greedyLongPath.
This will help us to derive bounds on the total distances of the computed SMRCST later.
For extending the path to a spanning tree in line 2 of Algorithm 1, we can simply iterate
over all edges and add them to the network if they do not close a cycle.

▶ Theorem 11. Let H be a connected network containing n nodes and m edges. Then
Algorithm 1 finds a Swap-Maximal Routing-Cost Spanning Tree of H in runtime O(n5m).

Proof. It is easy to see that, by construction, T is always a spanning tree of H . The condition
in the while-loop ensures that all possible swaps are tried. This means that the while-loop
ends if and only if T is a SMRCST. Therefore if the while-loop stops, the result is correct.

In every iteration in which the while-loop does not stop, the total distances of T increase
by at least 1. Since the tree maximizing the total distances is the path, we get its total
distances 1

3 (n− 1)n(n + 1) ∈ O(n3) as an upper bound for the number of iterations.
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Figure 6 This figure shows a clique network (black) for a wheel network (yellow).

The runtime of Algorithm 1 is clearly dominated by the while-loop. Since T has n− 1
edges which can be removed and EH \ ET has O(m) possible edges to add, the number of
possible swaps is in O(nm). For each swap, the total distances can be computed in O(n) [44].
Therefore computing the condition can be done in O(n2m). Altering the current solution in
the body of the while-loop only takes O(n) when using adjacency lists. Since there are at
most O(n3) iterations of the while-loop, the overall runtime is in O(n5m). ◀

For the K-SDNCG, the social optima were also stable. For general host networks, this is
not necessarily the case. However, we can show that for α ≤ n

3 there are stable states which
approximate the social welfare better than with the trivial factor of O(n).

▶ Theorem 12 (OPT-Approximation via the MRCST). Let H be a connected host network
containing n nodes and m edges and T be the MRCST of H.
(1) We have SW(OPTH )

SW(T ) ∈ O
(

m
n

)
.

(2) For α ∈ O
(

n2

m

)
, we have SW(OPTH )

SW(T ) ∈ O(1).

(3) For α ∈ ω
(

n2

m

)
, we have SW(OPTH )

SW(T ) ∈ O
(

min
{

m
n , α n

m

}
+ 1

)
.

Since finding the MRCST is NP-hard [16], these are only existence results. However, the next
theorem yields a bound for dense networks and the computed SMRCST from Algorithm 1.

▶ Theorem 13. Let H be a connected host network containing n nodes and m edges and T

be the SMRCST obtained by Algorithm 1. Then for α ∈ O(n), we have SW(OPTH )
SW(T ) ∈ O

(
n4

m2

)
.

This means, for α ≤ n
3 and a dense host network, we can compute a state which is pairwise

stable and also has a favorable social welfare.

3.2 Price of Anarchy and Price of Stability
We derive several bounds on the PoA and the PoS for the SDNCG. For the K-SDNCG, the
PoA is already quite high for small α. The next Theorem shows that this gets even worse for
general host networks since the PoA is linear up to α ≤ n and super-constant for α ∈ o(n2).

▶ Theorem 14 (Price of Anarchy).
(1) The Price of Anarchy is in O(n).
(2) For α < 1, the Price of Anarchy is in Θ(n).
(3) For 1 ≤ α ≤ n, the Price of Anarchy is in Θ(n).
(4) For n < α ≤ n2, the Price of Anarchy is in Ω

(
n2

α

)
.

(5) For 1
4 (n− 1)2 < α ≤ 1

24 (n− 2)n(n + 2), the Price of Anarchy is in Θ(1).
(6) For α > 1

24 (n− 2)n(n + 2), the Price of Anarchy is 1.
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Proof of (3) and (4). Let W = (VW , EW ) be a wheel network on n′ :=
⌊

n
2

⌋
nodes, i.e.,

VW := {v1, . . . , vn′} and
EW := {{v1, vi} | 2 ≤ i ≤ n′} ∪ {{vi, vi+1} | 2 ≤ i ≤ n′} ∪ {{v2, vn′}}.

We then define the host network H as the clique network obtained by replacing every node
of W by a clique of size 2. (See Figure 6 for an illustration.) For odd n, we instead replace
the central node by a clique of size 3. We see that H contains n nodes, Θ(n) edges, and most
importantly a Hamilton path. We also know that H is stable because of Theorem 3 and
since no edge can be added. This yields the following lower bound for the Price of Anarchy

PoA ≥ SW (P )
SW (H) = α(n− 1) + Θ(n3)

αΘ(n) + Θ(n2) ∈ Ω
(

min
{

n,
n2

α

})
,

which proves the claim. ◀

▶ Theorem 15 (Price of Stability).
(1) The Price of Stability is in O(n).
(2) For α ≤ 1, the Price of Stability is 1.
(3) For 1 < α ≤ n

3 , the Price of Stability is in O(
√

n).
(4) For 1

4 (n− 1)2 < α ≤ 1
24 (n− 2)n(n + 2), the Price of Stability is in Θ(1).

(5) For α > 1
24 (n− 2)n(n + 2), the Price of Stability is 1.

4 Conclusion

We introduced and analyzed a natural game-theoretic model for network formation governed
by social distancing. Besides modeling this timely issue, our model resembles the inverse
compared to the well-known (bilateral) Network Creation Game [23, 18]. Thus, via our
analysis we could explore the impact of inverting the utility function in a non-trivial strategic
game. We find that this inverts some of the properties, like the rough structure of optimum
states, while it also yields non-obvious insights. First of all, for the variant with non-complete
host networks we could show a strong equilibrium existence result, whereas no such result is
known for the inverse model. Moreover, we established that the PoA is significantly higher
in the (K-)SDCNG compared to the (bilateral) NCG. This demonstrates that the impact of
the agents’ selfishness is higher under social distancing, which calls for external coordination.

The most obvious open question for future work is to settle the equilibrium existence.
Do pairwise stable states exist for all connected host networks H and α? Another research
direction would be to consider the unilateral variant of the SDNCG. While this no longer
realistically models the formation of social networks, it might still yield interesting insights
and it allows for studying stronger solution concepts like the Nash equilibrium or strong Nash
equilibria, similar to [34, 6]. Also, altering the utility function, e.g., to using the maximum
distance instead of the summed distances, or the probability of infection, similar to [13],
seems promising. Finally, also considering weighted host networks, as in [11], where the edge
weight models the benefit of the social interaction, would be an interesting generalization.
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Abstract
We study the computational complexity of estimating local observables for Gibbs distributions. A
simple combinatorial example is the average size of an independent set in a graph. A recent work of
Galanis et al (2021) established NP-hardness of approximating the average size of an independent
set utilizing hardness of the corresponding optimization problem and the related phase transition
behavior. We instead consider settings where the underlying optimization problem is easily solvable.
Our main contribution is to classify the complexity of approximating a wide class of observables via
a generic reduction from approximate counting to the problem of estimating local observables. The
key idea is to use the observables to interpolate the counting problem.

Using this new approach, we are able to study observables on bipartite graphs where the
underlying optimization problem is easy but the counting problem is believed to be hard. The
most-well studied class of graphs that was excluded from previous hardness results were bipartite
graphs. We establish hardness for estimating the average size of the independent set in bipartite
graphs of maximum degree 6; more generally, we show tight hardness results for general vertex-edge
observables for antiferromagnetic 2-spin systems on bipartite graphs. Our techniques go beyond
2-spin systems, and for the ferromagnetic Potts model we establish hardness of approximating the
number of monochromatic edges in the same region as known hardness of approximate counting
results.
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1 Introduction

Can we efficiently estimate the average size of an independent set in an input graph G =
(V, E)? Moreover, can we do so without utilizing a sampling algorithm for generating a
random independent set?

In this paper, for a broad class of problems captured by Gibbs distributions, we address
the relationship between the computational complexity of approximating local observables
(such as estimating the average size of an independent set) and the computational complexity
of approximating the partition function (such as estimating the total number of independent
sets). It is a standard technique in the area to reduce estimating observables to approximate
counting, by first implementing an approximate sampler and then using an unbiased estimator
of the desired observable. The focus of this paper is the converse, where there is no previously

EA
T

C
S

© Andreas Galanis, Daniel Štefankovič, and Eric Vigoda;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 63; pp. 63:1–63:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andreas.galanis@cs.ox.ac.uk
mailto:stefanko@cs.rochester.edu
mailto:vigoda@ucsb.edu
https://doi.org/10.4230/LIPIcs.ICALP.2022.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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known technique to answer the following question: does an algorithm for local observables
yield an algorithm for the partition function? We prove, in a broad setting, that these two
genres of problems are computationally equivalent.

Previous work of [9] only achieved this indirectly; they showed hardness of approximating
local observables (in fact, only for a certain observable, called magnetization, see below
for definitions) utilizing the hardness of MaxCut. Here, we show a direct reduction from
the observable problem to the partition-function problem, relating therefore more crisply
the two problems. This allows us to obtain hardness results in several new regimes (in
particular,not covered by [9]) where the counting problem is hard but there is no underlying
hard optimization problem.

An interesting setting to highlight the usefulness of our reduction is bipartite independent
sets. In this example there is no corresponding hard optimization problem (as the maximum
independent set problem is poly-time solvable in bipartite graphs), and hence to prove
hardness we need to utilize hardness of approximate counting results. Another pertinent
example for our results are attractive graphical models, these are equivalent to ferromagnetic
spin systems in statistical physics. The simplest case is the ferromagnetic Ising model and
its generalization known as the Potts model. In the Ising/Potts model on a graph (see
Section 1.1 for more precise definitions), the configurations of the model are the collection of
labellings σ of the vertices with q spins (colours), each weighted as βm(σ) where m(σ) is the
number of monochromatic edges and β is a parameter > 1 (so that labellings with many
monochromatic edges are favored). Because of the attractiveness assumption that β > 1,
once again, there is no corresponding hard optimization problem for this problem (contrast
this with the case β < 1 where the largest weight labellings have the smallest number of
monochromatic edges). Nevertheless, using our new reduction, we show that hardness of
the associated approximate counting problem implies hardness of estimating the (weighted)
average of the monochromatic edges in the Potts model.

Our two illustrative examples, the average size of an independent set and the number of
monochromatic edges in the Ising/Potts model, are instances of a local observable in statistical
physics; specifically they correspond to the magnetization and susceptibility, respectively.
The behavior of observables is fundamental to the study of phase transitions, e.g., see [1, 4].

We begin giving more precise definitions for our initial example of bipartite independent
sets, before considering the ferromagnetic Potts model, and finally generalizing to arbitrary
local observables in general 2-spin systems. For a graph G = (V, E) let IG denote the set of
independent sets (of all sizes) of G, and let µ := µG denote the uniform distribution over
IG. Denote the average independent set size by M(G) = Eσ∼µ

[
|σ|

]
; this corresponds to the

magnetization in statistical physics (and hence the choice of notation M). We say that an
algorithm is an FPRAS for the average independent set size if given a graph G = (V, E) and
parameters ϵ, δ > 0, the algorithm outputs an estimate EST which is within a multiplicative
factor (1 ± ϵ) of the desired quantity M(G), with probability ≥ 1 − δ, and runs in time
poly(|V |, 1/ϵ, log(1/δ)). One can also consider an FPRAS for estimating |Ω|, the number of
independent sets of the input graph G; we refer to this as an efficient approximate counting
algorithm.

It is a classical result [14] that an efficient approximate counting algorithm is polynomial-
time interreducible with an efficient algorithm for approximate sampling from µ. In turn,
efficiently estimating the average independent set size of a graph G is easily reduced to
approximate sampling from the uniform distribution µG. The challenging aspect, and the
focus of this paper, is the reverse implication. Can we estimate the typical size of an
independent set without utilizing an approximate sampling algorithm? We will show it is not
possible, i.e., hardness of approximate counting (and hence approximate sampling) implies
hardness of estimating the average independent set size.
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For graphs of maximum degree 5, Weitz [20] presented an FPTAS for approximating the
number of independent sets, which yields an efficient approximate sampling scheme; note an
FPTAS is the deterministic analog of an FPRAS, i.e., it achieves δ = 0. Very recently, Chen
et al. [5] proved that the simple MCMC algorithm known as the Gibbs sampler (or Glauber
dynamics) has O(n log n) mixing time for this same class of graphs of maximum degree 5.
Hence, one immediately obtains an FPRAS for the average independent set size M(G).

On the other side, for graphs of maximum degree 6, Sly [18] proved that approximating
the number of independent sets is NP-hard, by a reduction from max-cut. Schulman et al. [16]
showed #P-hardness for exact computation of the average independent set size. Moreover,
recent work of Galanis et al. [9] shows that approximating the average independent-set size
is also NP-hard for graphs of maximum degree 6. The proof of [9] does not directly relate
approximate counting and estimating the average independent set size; instead [9] also shows
a (more sophisticated) reduction from max-cut and utilizes the associated gadgets used in
Sly’s inapproximability result [18].

This begets the question: are these problems still intractable when restricted to bipartite
graphs? For bipartite graphs there is no longer a hard optimization problem, such as max-cut,
that one can utilize as a starting point for a hardness reduction. However, approximately
counting independent sets is considered to be intractable on bipartite graphs of maximum
degree 6; in particular, it is is #BIS-hard [3] where #BIS refers to the problem of approxim-
ately counting independent sets on general bipartite graphs (with potentially unbounded
degree). There are now a multitude of approximate counting problems which share the same
#BIS-hardness status or are even #BIS-equivalent, e.g., see [6, 3, 11, 7].

We present a general approach for reducing approximate counting to approximating
averages. This yields hardness for approximating the average independent-set size in bipartite
graphs of maximum degree 6.

▶ Theorem 1. Let ∆ ≥ 6 be an integer. There is no FPRAS for the average independent-set
size on bipartite graphs of maximum degree ∆ unless #BIS admits an FPRAS.

Note that the #BIS-hardness result of Theorem 1 gives a weaker guarantee than those
shown in [9] where they obtain in some cases constant-factor inapproximability results (using
the constant-factor NP-hardness of the optimization problem). This difference is inherent
with the #BIS-hardness assumption, i.e., that there is no FPRAS for #BIS. Moreover,
an algorithm which approximates #BIS within any poly(n)-factor implies an FPRAS, and
obtaining constant-factor inapproximability results for magnetization on bipartite graphs
would require (among other things) hardness of #BIS within an exponential-factor.

Our results extend to the hard-core model on weighted independent sets, and to general
2-spin antiferromagnetic models. These more general results are detailed in Section 1.2.

1.1 Ferromagnetic Potts Model
Ferromagnetic spin systems, which are equivalent to attractive undirected graphical models,
are an interesting class of models to illustrate our new proof technique on. In ferromagnetic
models there is no hard optimization problem as the maximum likelihood configurations are
trivial assignments (setting all vertices to the same spin/label). Consequently, to obtain
hardness results for computing averages in ferromagnetic models we need to work directly
from hardness of approximate counting results, which we can do using our new approach.

The most well-studied examples of ferromagnetic models are the Ising and Potts models.
Given a graph G and an integer q ≥ 2, configurations of the Ising/Potts model are the
collection Ω of assignments σ : V (G) → [q] where [q] = {1, . . . , q} are the labels of the q

spins. The case q = 2 corresponds to the Ising model and the case q ≥ 3 is the Potts model.
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The models are parameterised by an edge activity1 β > 0. The weight of an assignment
σ is defined as wG;q,β(σ) = βmG(σ) where mG(σ) = |{(u, v) ∈ E : σ(u) = σ(v)}| is the
number of edges which are monochromatic in σ. Finally, the Gibbs distribution is defined
as µG;q,β(σ) = wG;q,β(σ)/ZG;q,β where the normalising factor ZG;q,β :=

∑
τ :V (G)→[q] w(τ)

is the partition function. In this paper, we restrict attention to the case β > 1 which
is the ferromagnetic (attractive) case, and hence the most likely configurations are the q

monochromatic configurations (all vertices are assigned the same spin).
For the Ising and Potts models, the analog of the average independent set size is the average

number of vertices assigned spin 1. This quantity Mq,β(G), known as the magnetization, is
trivial in these cases since, due to the Ising/Potts models symmetry among spins, it holds
that Mq,β(G) = n/q. The simplest and most natural observable to consider is the average
number of monochromatic edges under the Potts distribution, i.e., the quantity

Sq,β(G) := Eσ∼µG;q,β
[mG(σ)]

which is known as the susceptibility. Sinclair and Srivastava [17] showed that exact computa-
tion of the susceptibility in the ferromagnetic Ising model is #P-hard.

For the Ising model a classical result of Jerrum and Sinclair [13] presents an efficient
sampling scheme for all G, all β. This yields an efficient algorithm for approximating averages
in the Ising model (this holds for any local observables as defined subsequently in Section 1.2).
In contrast for the Potts model (for any q ≥ 3) approximating the partition function becomes
computationally intractable for large β as we detail below.

The Potts model with q ≥ 3 spins undergoes a computational phase transition on bipartite
graphs of maximum degree ∆ at the following critical point βc(q, ∆) = q−2

(q−1)1−2/∆−1 . In [10]
it was established that for all q, ∆ ≥ 3 and β > βc(q, ∆) approximating the partition function
of the ferromagnetic Potts model is #BIS-hard on bipartite graphs of maximum degree ∆.
Using our general counting-to-observables reduction we show that approximating the average
number of monochromatic edges under the Potts distribution is as hard as approximating
the partition function for the ferromagnetic Potts model.

▶ Theorem 2. Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). There is no FPRAS for the
susceptibility in the q-state Potts model on bipartite graphs of maximum degree ∆, unless
#BIS admits an FPRAS.

1.2 General 2-spin systems
Theorem 1 for independent sets is a special case of a general result for arbitrary 2-spin
antiferromagnetic systems. Such spin systems are parameterized by three parameters, β, γ

and λ; the first two are edge activities and control the strength of the spin interactions
between neighboring vertices, and the third is a vertex activity (a.k.a. external field) that
favors one spin over the other.

More precisely, for a graph G = (V, E), β, γ ≥ 0 which are not both equal to zero and
λ > 0, let µG;β,γ,λ denote the Gibbs distribution on G with edge activities β, γ and external
field λ, i.e., for σ : V → {0, 1} we have

µG;β,γ,λ(σ) = λ|σ|βm0(σ)γm1(σ)

ZG;β,γ,λ
,

1 We remark that β is usually used to denote the so-called inverse temperature of the Potts model; here
to have consistent notation with general 2-spin systems presented in Section 1.2 we take β to be the
exponent of the inverse temperature.
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where |σ| is the number of vertices with spin 1, and m0(σ), m1(σ) denote the number of edges
in G whose endpoints are assigned under σ the pair of spins (0, 0) and (1, 1), respectively.

The parameter pair (β, γ) is called antiferromagnetic if βγ ∈ [0, 1) and at least one of
β, γ is non-zero, and it is called ferromagnetic, otherwise. Note that the hard-core model
on independent sets weighted by λ > 0 is the case β = 1, γ = 0 (under the convention that
00 ≡ 1). Our earlier example of unweighted independent sets corresponds to the hard-core
model with λ = 1. The antiferromagnetic Ising model is the special case 0 < β = γ < 1.

Our results apply to general “vertex-edge observables” defined as follows.

▶ Definition 3. Let (β, γ) be antiferromagnetic and λ > 0. For real numbers a, b, c, the
(a, b, c) vertex-edge observable of a graph G in the 2-spin system corresponding to (β, γ, λ) is
given by

Oβ,γ,λ(G) = Eσ∼µG;β,γ,λ

[
oG(σ)

]
, where oG(σ) = a|σ| + bm0(σ) + cm1(σ).

The observable is trivial on general graphs if any of the following hold: (i) a = b = c = 0,
(ii) β = 0 and a = c = 0, (iii) γ = 0 and a = b = 0, (iv) β = γ, λ = 1 and b + c = 0. We say
that the observable is trivial on bipartite graphs if either any of the above hold, or β = γ and
λ = 1. Otherwise, we say that the observable is non-trivial.

Notice that by setting (a, b, c) = (1, 0, 0) we obtain the magnetization Mβ,γ,λ(G), which
in the special case of the hard-core model with λ = 1 is the average size of an independent set.
Furthermore, by setting (a, b, c) = (0, 1, 1) we obtain the susceptibility, denoted by Sβ,γ,λ(G),
which is the average number of monochromatic edges.

The terminology “trivial” is applied liberally here and meant to convey that there is an efficient
algorithm for the relevant parameters. In particular, while cases (i)-(iii) are degenerate,
case (iv) corresponds to the Ising model without an external field. A classical (and highly
non-trivial) result of Jerrum and Sinclair [13] presented an FPRAS for the ferromagnetic
Ising model on any graph, any β > 1. Moreover, for bipartite graphs, the subcase β < 1
(antiferromagnetic) can be reduced to an equivalent β > 1 (ferromagnetic) system.

We next define the range of parameters (β, γ, λ) where our inapproximability results
for vertex-edge observables apply; these are precisely the parameters where the hard-core
and the antiferromagnetic Ising models exhibit non-uniqueness on the infinite ∆-regular
tree (for general 2-spin systems this threshold corresponds to what is known as up-to-∆
non-uniqueness, which captures the computational phase transition).

▶ Definition 4. Let ∆ ≥ 3 be an integer. We let N∆ be the set of (β, γ, λ) such that (β, γ)
is antiferromagnetic, and the (unique) fixpoint x∗ > 0 of the function f(x) = 1

λ

(
βx+1
x+γ

)∆−1

satisfies |f ′(x∗)| > 1. The region N∆ is known as the non-uniqueness region.

Note there is an efficient sampling/counting algorithm for graphs of maximum degree ∆,
roughly2, for (β, γ, λ) outside the parameter region N∆ [15, 5]. Inside N∆, it is NP-hard to
approximate the partition function on graphs of maximum degree ∆ [19] and it is #BIS-hard
to approximate the partition function on bipartite graphs of maximum degree ∆ [3]. We
prove that it is also hard to compute any non-trivial vertex-edge observable in exactly this
same region where the corresponding counting problem is hard.

2 More precisely, the (strict) uniqueness region is defined as those β, γ, λ) where the fixpoint x∗ in
Definition 4 satisfies the (strict) inequality |f ′(x∗)| < 1. For certain monotonicity reasons, the algorithm
for max-degree ∆ graphs demands that (β, γ, λ) lie in the intersection of these uniqueness regions for
all degrees d ≤ ∆, see [15] for details.
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▶ Theorem 5. Let ∆ ≥ 3 be an integer and (β, γ, λ) ∈ N∆. Then, for any vertex-edge
observable that is non-trivial on bipartite graphs, there is no FPRAS on bipartite graphs of
maximum degree ∆ unless #BIS admits an FPRAS.

We stress that the above result holds for bipartite graphs. The previous work of Galanis
et al. [9] showed hardness for general antiferromagnetic 2-spin systems in the same non-
uniqueness region but on general graphs, only for the magnetization, and only achieved the
stronger constant-factor hardness for a dense set of λ.

We begin by establishing Theorem 2 for hardness of approximating the susceptibility for
the ferromagnetic Potts model, see Section 2. We then present the refinements to establish
Theorems 5 for general 2-spin antiferromagnetic systems in Section 3; Theorem 1 follows as
a corollary of Theorem 5.

2 Hardness of Susceptibility for the Ferromagnetic Potts model

Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). To prove Theorem 5, we will assume the existence
of an FPRAS for the susceptibility of Potts with parameters q, β on maximum degree ∆
graphs and show how to obtain an FPRAS for the partition function of the Potts model with
parameters q, β∗ on bipartite graphs of maximum degree 3 for some β∗ > βc(q, 3); the latter
problem is #BIS-hard by [10].

To aid the presentation, it will be convenient to consider the following computational
problems and use the notion of AP-reduction between counting problems [6]; roughly, for
two problems A, B, the notation A ≤AP B means that the existence of an FPRAS for B

implies the existence of an FPRAS for A. In the first computational problem that will be
relevant, the parameters are q, β, ∆ as detailed below.

Name #Susc(q, β, ∆).
Instance A bipartite graph G with max degree ∆.
Output The susceptibility on G with parameters q, β, i.e., the value Sq,β(G).

In the second, the parameter is going to be just q; note that the problem allows the edge
activity to be part of the input.

Name #SuscCubic(q).
Instance A cubic bipartite graph H, and a rational edge activity β̂ ≥ 1.
Output The susceptibility on H with parameters q, β̂, i.e., the value Sq,β̂(H).

The key ingredient underpinning our proof approach is captured by the following lemma,
whose proof is given in Section 2.3. Roughly, the lemma asserts that, despite the fact that the
parameter β is fixed, with appropriate gadget constructions we can “shift” it in a fine-tuned
way to any desired β̂. In turn, this allows us to do an appropriate integration of the observable
(viewed as a function of the parameter β̂) to recover the partition function of a #BIS-hard
problem; we will refer loosely to this integration technique as interpolation.

▶ Lemma 6. Let q, ∆ ≥ 3 be integers and β > βc(q, ∆) be an arbitrary real. Then,

#SuscCubic(q) ≤AP #Susc(q, β, ∆).

Before proceeding with outlining the proof of the key Lemma 6, we first present the
interpolation-scheme idea that allows us to conclude Theorem 2 from Lemma 6.
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Proof of Theorem 2 (assuming Lemma 6). Let β∗ > βc(q, 3) be an arbitrary rational num-
ber and consider the problem #PottsCubic(q, β∗), i.e., the problem of approximating the
partition function ZG;q,β∗ on cubic bipartite graphs G. From [10, Theorem 3], we have that
#PottsCubic(q, β∗) is #BIS-hard. From Lemma 6, we have that for β > βp(q, ∆) it holds
that #SuscCubic(q) ≤AP #Susc(q, β, ∆), so to prove the theorem it suffices to show that
#PottsCubic(q, β∗) ≤AP #SuscCubic(q).

Let G be an instance of #PottsCubic(q, β∗) with n vertices and m edges, and ϵ > 0 be
the desired relative error that we want to approximate ZG;q,β∗ . Since ∂ log ZG;q,β̂

∂β̂
= 1

β̂
Sq,β̂(G),

we have

log ZG;q,β∗ =
∫ β∗

1

1
β̂

Sq,β̂(G)dβ̂. (1)

Let M = ⌈(10qβ̂m/ϵ)4⌉ and for i = 0, 1, . . . , M , consider the sequence of edge parameters
β̂i = 1 + i β∗−1

M . It is a standard fact that the function log ZG;β̂ is convex with respect to β̂

(the second derivative is equal to the variance of the number of monochromatic edges) and
therefore the function 1

β̂
Sq,β̂(G) is increasing. Therefore, from the standard technique of

approximating integrals with rectangles, we obtain from (1) that

1
M

M−1∑
i=0

SG;q,β̂i

β̂i
≤ log ZG;β∗ ≤ 1

M

M∑
i=1

Sq,β̂i
(G)

β̂i
.

Using the bound m/q ≤ Sq,β̂(G) ≤ m that holds for all β̂ ≥ 1, we obtain that

log ZG;q,β∗ =
(
1 ± ϵ

10
) M∑

i=1

Sq,β̂i
(G)

β̂i
.

Using the presumed oracle for #SuscCubic(q) we can compute Ŝi such that Ŝi = (1 ±
ϵ

10Mm )Sq,β̂i
(G) for i ∈ [M ], and therefore the quantity Ẑ = exp

( ∑
i∈[M ]

Sq,β̂i
(G)

β̂i

)
is a

(1 ± ϵ)-factor approximation to ZG;q,β∗ . This completes the AP-reduction, and therefore the
proof as well. ◀

In the rest of Section 2, we focus on proving Lemma 6.

2.1 Proof overview of Lemma 6
In this section, we give the proof overview of Lemma 6 which as we saw in the previous
section is the key ingredient to carry out the interpolation-scheme idea. We highlight here
some of the key ideas (with a non-technical overview), which are also used to prove the
analogous Lemma for obtaining our inapproximability results for 2-spin systems.

To prove Lemma 6, we will use three different types of gadgets.
The first type of gadgets, that have also been used in previous inapproximability results,

are the so-called “phase gadgets”, which are almost ∆-regular bipartite graphs with a
relatively small number of degree ∆ − 1 vertices (the so-called “ports”). This type of gadget
exploits the phase transitions of the model and has q-ary behaviour, in the sense that a
typical sample from their Gibbs distribution is in one of the q ordered phases, favoring one
spin over the others. Aside from this q-ary behaviour, another feature of these gadgets is
that they are convenient to maintain the degree of the vertices in our constructions small,
using the ports to make connections between gadgets.
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The second type of gadgets are paths; these allow us to interpolate the edge activity
β. The key point is that long paths induce some small edge-interaction β between their
endpoints (bigger than but close to 1) and by using a big number of them (in parallel-style
connections) we can achieve a target edge activity β̂ with arbitrary good precision; here, the
ports of the phase gadgets allow us to do these parallel connections without exceeding the
degree bound ∆. This is a crucial ingredient in implementing the new reduction idea.

The final type of gadgets consists of the so-called edge-interaction gadgets. Each such
gadget has two vertices, say ρ, ρ′, which we also refer to as ports. We are interested in two
quantities of these gadgets (cf. Definition 9):

the effective edge activity, i.e., the relative ratio of the aggregate weight of configurations
where σ(u) = σ(v) versus σ(u) ̸= σ(v). Note that this ratio is always bigger than 1, due
to the ferromagnetic interaction.
the susceptibility gap, i.e., the difference between the expected susceptibility conditioned
on σ(u) = σ(v) and the susceptibility conditioned on σ(u) ̸= σ(v).

We prove the existence of pairs of susceptibility gadgets which have roughly equal induced
edge parameters but different susceptibility gaps. The equality between the induced edge
parameters allows us to use them as probes (without changing the underlying distribution)
for “susceptibility” between two vertices s, t, i.e., the probability that s, t have the same
colour, in a graph G. That is, we can invoke a presumed oracle for susceptibility when we use
the first gadget (by identifying s, t with the terminals) and get a “reading” for susceptibility,
and do the same for the second and get a second “reading”; the difference between the two
readings gives us information about the probability that s, t have the same colour in the
original graph G.

The reason that these susceptibility gadgets are useful is that analysing the susceptibility
of the other two types of gadgets is deeply unpleasant and, in fact, it is not even known
how to obtain susceptibility estimates for the phase gadgets (since their analysis in earlier
works builds upon second moment methods that give rather crude bounds in our setting).
Hence, by the subtraction trick above, we have the required modularity to avoid such refined
considerations.

That said, establishing the existence of pairs of susceptibility gadgets with the required
properties has various challenges and the proof is based on an elaborate construction which
finishes by a contradiction argument via Cauchy’s functional equation. Fortunately, this
ground work has been largely done in [9], though in our setting we need to consider edge
gadgets instead of vertex gadgets, which complicates the underlying functions involved in the
proofs. We believe that these constructions can be used to strengthen the results of [9] and
obtain inapproximability for multi-spin systems such as colourings or the antiferromagnetic
Potts model.

These ideas suitably adapted apply to obtain our inapproximability results for antifer-
romagnetic 2-spin systems. The difference for 2-spin systems is that the interpolation is
quite trickier, since in the setting there it is harder to make vertex or edge activities that are
close to 1 and do the interpolation (in contrast to the paths used above which is the fairly
natural choice). Instead, to do the interpolation, we use a pair of trees whose induced vertex
activities (at the root) are sufficiently close and which are attached (in appropriate numbers)
to the ports of the phase gadgets to imitate the effect of an external field close to 1. We are
then able to interpolate in terms of λ by a suitable implementation of the subtraction trick
idea; we again need to depart from [9] (where 2-spin models were also considered) since the
construction there does not yield a suitable interpolation parameter. The final new ingredient
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is to account for the general vertex-edge observables, since a key fact used in [9] is that the
magnetization is an appropriate derivative of the log-partition function, which is no longer
the case for general vertex-edge observables.

We now state more formally the above ingredients and show how to combine these and
conclude the proof of Lemma 6.

2.2 The gadgets
2.2.1 Bipartite phase gadgets for the Potts model
For integers t, n, ∆, we let Gt

n,∆ be the distribution on bipartite graphs where there are n

vertices with degree ∆ on each side, and t vertices of degree ∆ − 1 on each side. For a
graph G ∈ Gt

n,∆, we denote the set of vertices with degree ∆ by U and by W those with
degree ∆ − 1, so that |U | = 2n and |W | = 2t. We will refer to set W as the ports of G.
For σ : U → [q], we define the phase Y(σ) of the configuration σ as the most frequent color
(breaking ties arbitrarily), i.e., which has the most occupied vertices under σ, i.e.,

Y(σ) = arg max
i∈[q]

|σ−1(i)|.

Let p > 1/q be given from p = x
x+q−1 where x > 1 is the largest solution of x =

(
βx+q−1

x+β+q−2
)∆−1,

cf. [10, Footnote 5]. For a colour i ∈ [q], we define the product measure Qi
W (·) on

configurations τ : W → [q], given by

Qi
W (τ) = p|τ−1(i)|( 1−p

q−1
)|W |−|τ−1(i)|

.

We will need the following two properties from the phase gadget G for some sufficiently small
ϵ > 0. Let µ := µG;q,β .
1. The q phases appear with roughly equal probability, i.e., |µ(Y(σ) = i) − 1

q

∣∣ ≤ ϵ for i ∈ [q].

2. For i ∈ [q] and any τ : W → [q],
∣∣ µ

(
σW =τ | Y(σ)=i

)
Qi

W
(τ) − 1

∣∣ ≤ ϵ.
Let Gt,ϵ

n,∆ denote the set of graphs G ∈ Gt
n,∆ satisfying Items 1 and 2. The following lemma

is shown in [10].

▶ Lemma 7 ([10, Lemma 28]). Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). Then, there is a
randomized algorithm that, on input integer t ≥ 1 and ϵ > 0, outputs in time poly(t, 1

ϵ ) an
integer n and a graph G that belongs to Gt,ϵ

n,∆, with probability ≥ 3/4.

2.2.2 Edge-interaction/susceptibility gadgets
▶ Definition 8. An edge-interaction gadget is a connected series-parallel graph E with two
distinct vertices ρ, ρ′ that have degree one. We will refer to ρ, ρ′ as the ports of E.

▶ Definition 9. Let E be an edge-interaction gadget with ports ρ, ρ′, and µ = µE;β. We
denote by BE = BE(β) the effective interaction of the gadget, i.e., BE = µ(σρ=σρ′ =1)

µ(σρ=1,σρ′ =2)
and by SE = SE(β) the susceptibility gap of the gadget, i.e., SE = Eσ∼µ[ mE(σ) | σρ =
σρ′ ] − Eσ∼µ[ mE(σ) | σρ ̸= σρ′ ].

The following “interaction” gadget will allow us to change the edge interaction parameter
to any desired value.

▶ Lemma 10. Let q ≥ 2 be an integer and β > 1 be a real. There is an algorithm, which,
on input a rational r ∈ (0, 1/2), outputs in time poly(bits(r)) a path P of length O(| log r|),
such that 0 < BP − 1 < r.
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The proof of Lemma 10 is given in Section C.1.2 of the full version. The following lemma
gives pairs of edge-interaction gadgets which have almost the same edge interaction but
different susceptibility gaps; this difference in the susceptibility gaps while maintaining the
edge interaction will be the key to read off the susceptibility by subtraction.

▶ Lemma 11. Let q ≥ 3 be an integer and β > 1 be a real. For any arbitrarily small constant
δ > 0, there exist constants S, Ξ > 0 and B ∈ (1, 1 + δ) such that the following holds. There
is an algorithm, which, on input a rational r ∈ (0, 1/2), outputs in time poly(bits(r)) a pair
of edge-interaction gadgets E1, E2, each of maximum degree 3 and size O(| log r|), such that

|BE1 − B|, |BE2 − B| ≤ r, but |SE1 − SE2 | ≥ S.

Moreover, the susceptibility gaps |SE1 |, |SE2 | are upper-bounded in absolute value by the
constant Ξ, i.e., |SE1 |, |SE2 | ≤ Ξ.

The proof of Lemma 11 generalises the techniques from [9], and is given in Section C.3 of
the full version.

2.3 The reduction – proof of Lemma 6
Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). Let H be a cubic bipartite graph which is input to
the problem #Susc(q) of Section 2. For integers n, t ≥ 1 and rational ϵ > 0, let G ∈ Gt,ϵ

n,∆ be a
bipartite phase gadget satisfying Items 1 and 2 of Section 2.2.1. Let E be an edge-interaction
gadget with effective interaction BE and susceptibility gap S = SE . Let P be a path with
effective edge interaction BP .

For an integer ℓ satisfying ℓ < t/3, we define the graph Hℓ
G,E,P as follows. For each vertex

v of H replace it with a distinct copy of G, denoted by Gv; we also use Uv, Wv to denote
the sets corresponding to U, W in Gv. Moreover for each {u, v} of H, add a matching of
size ℓ + 1 between Wu and Wv, and replace ℓ edges of the matching by (distinct) copies of
the path P and the last edge of the matching by the gadget E . Since H is bipartite, this
constuction can clearly be done so that the final graph Hℓ

G,E,P obtained this way is bipartite.
Let Hℓ

G,P be the graph with the copies of the susceptibility gadget removed.
The lemma below relates the susceptibility Sq,β(Hℓ

G,E,P) with the susceptibility of Sq,β̂(H),
for some appropriate β̂ that is a function of the parameters q, ∆, β and ℓ, BE , BP ; we expain
how the lemma corresponds to the overview of Section 2.1 right after its statement. The follow-
ing piece of notation will be useful: for a graph J and a subgraph J ′ of J , given a configuration
σ : V (J) → [q], it will be convenient to denote by mJ′(σ) =

∑
e={u,v}∈E(J′) 1{σ(u) = σ(v)}

the number of monochromatic edges of J ′ under σ.

▶ Lemma 12. Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). There are constants 1 > R0 > R1 >

0 so that the following holds for any path P with edge interaction BP , any edge-interaction
gadget E with effective interaction BE and susceptibility gap SE , and any integers ℓ, t with
t ≥ 3(ℓ + 1).

For a cubic bipartite graph H, for any ϵ ≤ 1
(5q|V (H)|)2 , any integer n and phase gadget

G ∈ Gt,ϵ
n,∆, for µ := µHℓ

G,E,P
and ϵ′ = 10q|V (H)|ϵ, it holds that

Sq,β(Hℓ
G,E,P) = AE |E(H)|+Eσ∼µ[mHℓ

G,P
(σ)]+(1± ϵ′)SE

[
(A0 −A1)Sq,β̂(H)+A1|E(H)|

]
,

where AE = Eσ∼µE [mE(σ) | σρ = σρ′ ] and

β̂ :=
( 1+(BP −1)R0

1+(BP −1)R1

)ℓ( 1+(BE −1)R0
1+(BE −1)R1

)
, Aj := BE

BE +
1−Rj

Rj

for j ∈ {0, 1}.
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To give a bit of intuition behind the expression of Sq,β(Hℓ
G,E,P), recall that the vertices of H

are replaced with copies of the bipartite phase gadgets G and that for each pair of neighboring
vertices in H we connect the corresponding copies of G using the appropriate number of
the gadgets E , P. The point here is that the bipartite gadgets are so large that each one
of them is with very high probability in one of the q phases (cf. Item 1 in Section 2.2.1)
and therefore in the Gibbs distribution of Hℓ

G,E,P (with parameters q, β) they behave like
meta-vertices which are in one of q states, analogously to a Potts model on H with q spins
and a new edge activity β̂, which is ultimately determined by the E , P-connections and the
(induced) probability distributions on the ports of the bipartite phase gadgets (conditioned
on the phase, cf. Item 2 in Section 2.2.1). This explains (at an intuitive level) the presence
of the quantity Sq,β̂(H); the remaining terms are offsets to account for the addition of the
various gadgets. Of those, the most complicated is the term Eσ∼µ[mHℓ

G,P
(σ)] which involves

the contribution to the susceptibility from edges in the graph Eσ∼µ[mHℓ
G,P

(σ)] which is hard
to get a neat expression since the average is taken over the complicated distribution µ. This
is where the idea of having a pair of susceptibility gadgets (E1, E2) with the same effective
interaction but different susceptibility gaps will come into play (in the proof of Lemma 6
below): by subtracting the susceptibilities for the graphs Hℓ

G,E1,P and Hℓ
G,E2,P between

these, the terms corresponding to Eσ∼µ[mHℓ
G,P

(σ)] will cancel (since E1, E2 have roughly the
same effective interaction BE1 , BE2) allowing us to approximate the target quantity Sq,β̂(H)
(since E1, E2 have substantially different susceptibility gaps SE1 , SE2). That said, the proof of
Lemma 12 is on the technical side and is deferred to Section B of the full version.

To finish the proof of Lemma 6, we need the following crude bound on the change of
susceptibility when we slightly change the values of the edge activities on a subset of the
edges. To state the lemma, for a graph G with edge-activity vector β = {βe}e∈E(H), define
the weight of an assignment σ : V (G) → [q] as w(σ) =

∏
e={u,v}∈E(G)(βe)1{σ(u)=σ(v)}, and

let µG;q,β(σ) = w(σ)/ZG;q,β denote the corresponding Gibbs distribution, where ZG;q,β is
the normalizing constant.

▶ Lemma 13. Let H be a graph and F be a subgraph of H on the same set of vertices. Suppose
that β = {βe}e∈E(H), β′ = {β′

e}e∈E(H) are edge activity vectors such that βe = β′
e = β for

e ∈ E(F ), and βe = β0, β′
e = β1 for e /∈ E(F ). Then, for µ := µH;q,β and µ′ := µ′

H;q,β, it
holds that∣∣∣Eσ∼µ[mF (σ)] − Eσ∼µ′ [mF (σ)]

∣∣∣ ≤ |E(H)|2|β0 − β1|.

Proof. Suppose without loss of generality that β0 ≥ β1; by the monotonicity of the ferro-
magnetic Potts model we have that Eσ∼µ[mF (σ)] ≥ Eσ∼µ′ [mF (σ)] (see, e.g., [12, Theorems
1.16 & 3.21]). For a configuration σ : V (H) → [q], let w(σ), w′(σ) denote its weight under
the edge activity vectors β and β′, respectively. Consider an edge e ∈ E(F ). Then, using
that for reals a > b > 0 it holds that |ak − bk| ≤ k|a − b|ak, we obtain that for every σ it
holds that

0 < w(σ) − w′(σ) = βmF (σ)(β
|E(H)|−mF (σ)
0 − (β1)|E(H)|−mF (σ)) ≤ |E(H)|(β0 − β1)w(σ)

By summing over σ, it follows also that ZG;q,β′ ≤ ZG;q,β, and combining these we obtain
that

Eσ∼µ[mF (σ)] − Eσ∼µ′ [mF (σ)] ≤
∑

σ mF (σ)
(
w(σ) − w′(σ)

)
ZG;q,β

≤ |E(H)|2(β0 − β1). ◀

We now give the proof of Lemma 6 which we restate here.
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▶ Lemma 6. Let q, ∆ ≥ 3 be integers and β > βc(q, ∆) be an arbitrary real. Then,

#SuscCubic(q) ≤AP #Susc(q, β, ∆).

Proof. Let H be a cubic bipartite graph and β̂ > 1 be the inputs to #SuscCubic(q), and let
η ∈ (0, 1) be the desired relative error that we want to approximate Sq,β̂(H). We may assume
that β̂ ≥ β0 =

(
q−1

3
)1/∆; for β̂ < β0, a fairly standard coupling argument shows that Glauber

dynamics converges rapidly to the Gibbs distribution µH;q,β̂ , see for example [2, Theorem 1.1],
and therefore it can be used to approximate Sq,β̂(H) in time poly

(
V (H), 1

η , bits(β̂)
)

using
rejection sampling. For some of the bounds below, it will also be convenient to assume
that |V (H)|, |E(H)| are bigger than a sufficiently large constant (otherwise, we can just
brute-force).

Let 1 > R0 > R1 > 0 be the constants in Lemma 12, and let δ ∈ (0, 1) be a rational
constant such that for all B ∈ (1, 1 + δ), it holds that 1+(B−1)R0

1+(B−1)R1
≤ β0 < β̂. Note that the

choice of δ is a constant depending on q, ∆ but independent of H and β̂. By Lemma 11, there
are constants B ∈ (1, 1 + δ), S > 0 and an algorithm, which, on input a rational r ∈ (0, 1/2),
outputs in time poly(bits(r)) a pair of susceptibility gadgets E1, E2, each of maximum degree
3 and size O(| log r|), such that

|BE1 − B|, |BE2 − B| ≤ r, but |SE1 − SE2 | ≥ S. (2)

Let ϵ = η
|E(H)|5 and t =

⌈( |E(H)| log β̂
ϵδ(B−1)

)4⌉
. By Lemma 7, there is an algorithm that

outputs in time poly(t, 1
ϵ ) an integer n and a graph G ∈ Gt,ϵ

n,∆ (satisfying Items 1 and 2).
Use the algorithm of Lemma 11 to obtain gadgets E1, E2 satisfying (2) for r = ϵ4

10δ(R0−R1)β0
.

Moreover, use Lemma 10, to obtain in time poly(bits(r)) an edge interaction gadget with
1 < BP < 1 + ϵ. Let ℓ be the smallest positive integer such that( 1+(BP −1)R0

1+(BP −1)R1

)ℓ( 1+(B−1)R0
1+(B−1)R1

)
> β̂

and note that such an integer exists by the choice of δ since the l.h.s. for ℓ = 0 is smaller
than β̂, and each of the fractions is bigger than 1 from R0 > R1 and B > 1. In fact, we
have that ℓ = O( 1

ϵ log β̂), where the implicit constants depend only on q, ∆. It follows in
particular that ℓ < t/3.

For i ∈ {1, 2}, consider now the graphs Ĥi = Hℓ
G,P,Ei

and let µi = µ
Ĥi;q,β

. From
Lemma 12, we have that

Sq,β(Ĥi) = AEi |E(H)|+Eσ∼µi [mHℓ
G,P

(σ)]+(1±η2)SEi

[(
A

(i)
0 −A

(i)
1

)
Sq,β̂i

(H)+A
(i)
1 |E(H)|

]
,

where AEi = Eσ∼µEi
[mEi(σ) | σρ = σρ′ ] and

β̂i :=
( 1+(BP −1)R0

1+(BP −1)R1

)ℓ( 1+(BEi
−1)R0

1+(BEi
−1)R1

)
, A

(i)
j := BEi

BEi
+

1−Rj

Rj

for j ∈ {0, 1}.

From (2), we have that β̂i = (1 ± ϵ3)β̂, and therefore from Lemma 13, we have that∣∣Eσ∼µ1 [mHℓ
G,P

(σ)] − Eσ∼µ2 [mHℓ
G,P

(σ)]
∣∣ ≤ |E(Hℓ

G,E,P)|ϵ3 ≤ ϵ2,

|Sq,β̂i
(H) − Sq,β̂(H)| ≤ |E(H)|2ϵ3 ≤ ϵ2

Using (2), we also have that

A
(i)
0 = (1 ± ϵ)A0, A

(i)
1 = (1 ± ϵ2)Ai, where Aj := B

B+
1−Rj

Rj

for j ∈ {0, 1}.
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We can invoke the oracle for Sq,β(Ĥi) to compute Ŝi such that Ŝi = (1 ± ϵ2)Sq,β(Ĥi). Note
also that Ei has size poly(bits(r)) and therefore we can invoke the oracle for #Susc(q, ∆, β)
to compute ÂEi

, ŜE1 such that ÂEi
= (1 ± ϵ2)AEi

and ŜEi
= (1 ± ϵ2)SEi

.3 It follows that

Ŝ = 1
A0 − A1

( (Ŝ1 − Ŝ2) − |E(H)|(ÂE1 − ÂE2)
ŜE1 − ŜE2

− A1|E(H)|
)

is within a factor of (1 ± η) of the susceptibility Sq,β̂(H), as needed. This finishes the
reduction and therefore the proof of Lemma 6. ◀

3 Hardness of vertex-edge observables for 2-spin systems

Throughout this section, we will fix integer ∆ ≥ 3, and antiferromagnetic (β, γ, λ) ∈ N∆
in the non-uniqueness region. We will also fix an (a, b, c) vertex-edge observable that is
non-trivial on bipartite graphs.

3.1 The interpolation scheme
Analogously to Section 2, it will be convenient to consider the following computational
problems.

Name #Observable2Spin(β, γ, λ, a, b, c).
Instance A bipartite graph G with max degree ∆.
Output The (a, b, c) vertex-edge observable on G with parameters β,γ,λ, i.e., the value

Oβ,γ,λ(G).

In the second, the parameter is going to be the edge activity α < 1 of an antiferromagnetic
Ising model; note that the problem allows the vertex activity to be part of the input.

Name #MagnetIsingCubic(α).
Instance A cubic bipartite graph H, and a rational vertex activity λ̂ > 0.
Output The magnetization on H for the Ising model with parameters α, λ̂, i.e., the value

Mα,α,λ̂(H).

We now show the following analogue of the interpolation scheme in Lemma 6.

▶ Lemma 14. Let ∆ ≥ 3 be an integer and (β, γ, λ) ∈ N∆. Then, there is α ∈ (0, 1) such
that for any (a, b, c) vertex-edge observable that is not trivial on bipartite graphs,

#MagnetIsingCubic(α) ≤AP #Observable2Spin(β, γ, λ, a, b, c).

Assuming the key Lemma 14, the proof of Theorem 5 can be done analogously to Theorem 2,
interpolating now in terms of the vertex activity λ̂. We defer the proof to Section A of the
full version.

3 For ÂEi
, just invoke the oracle on the graph obtained from Ei by identifying ρi and ρ′

i; this graph has
maximum degree at most 3 since ρi, ρ′

i both have degree 1. Observe that SEi
= 2AEi

− Sq,β(Ei) and
therefore we can obtain the desired ŜEi

by using a further oracle call on Ei to approximate Sq,β(Ei).
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3.2 The gadgets
In this section, we outline the gadgets that will be used to prove Lemma 14. These are
analogous to those presented in the case of the Potts model, especially the phase gadgets.
To account for general vertex-edge observables, we refine appropriately the field-gadget idea
of [9], by now paying attention to the so-called observable gap (cf. Definition 17).

3.2.1 Bipartite phase gadgets for antiferromagnetic 2-spin systems
We follow the same notation as in Section 2.2.1 to denote for integers t, n, ∆ the class Gt

n,∆
of bipartite graphs where there are n vertices with degree ∆ on each side, and t vertices
of degree ∆ − 1 on each side. For a graph G ∈ Gt

n,∆, we denote its bipartition by (U+, U-)
where U+, U- are vertex sets with |U+| = |U-| = n, and we denote by W +, W - the sets of
vertices with degree ∆ − 1 on each side of the bipartition, so that |W +| = |W -| = t. We will
refer to set W = W + ∪ W − as the ports of G. For σ : U → {0, 1}, we define the phase Y(σ)
of the configuration σ as the side of the bipartite graph which has the most occupied vertices
under σ, i.e.,

Y(σ) = arg max
i∈{+,-}

|σ−1(1) ∩ U i|.

It is known that for (β, γ, λ) ∈ N∆ the system of equations x = 1
λ

(
βy+1
y+γ

)∆−1
, y =

1
λ

(
βx+1
x+γ

)∆−1
has a unique solution with y > x > 0, see, e.g., [8, Lemma 7]. Let q+ = 1

1+x ,
q- = 1

1+y and note that q+, q- are distinct numbers in the interval (0, 1). Define the product
distributions Q+

W (·), Q-
W (·) by

Q±
W (τ) = (q±)|τ−1(1)∩W +|(1 − q±)|τ−1(0)∩W +|(q±)|τ−1(1)∩W -|(1 − q±)|τ−1(0)∩W -|. (3)

We will need the following two properties from the phase gadget G for some sufficiently
small ϵ > 0. Let µ := µG;β,γ,λ.
1. The phases appear with roughly equal probability, i.e., |µ(Y(σ) = ±) − 1

2
∣∣ ≤ ϵ.

2. For any τ : W → {0, 1},
∣∣∣µ

(
σW = τ | Y(σ) = ±

)
Q±

W (τ) − 1
∣∣∣ ≤ ϵ.

Let Gt,ϵ
n,∆ denote the set of graphs G ∈ Gt

n,∆ satisfying Items 1 and 2. The following lemma
is is shown in [3].

▶ Lemma 15 ([3, Lemma 9]). Let ∆ ≥ 3 and (β, γ, λ) ∈ N∆. Then, there is a randomized
algorithm that, on input integer t ≥ 1 and ϵ > 0, outputs in time poly(t, 1

ϵ ) an integer n and
a graph G that belongs to Gt,ϵ

n,∆, with probability ≥ 3/4.

3.2.2 Field gadgets with observable gaps
We adopt the following definition of “field” gadgets from [9].

▶ Definition 16. For λ ̸= 1−β
1−γ , a field gadget is a rooted tree T whose root ρ has degree one.

When λ = 1−β
1−γ , a field gadget consists of a rooted bipartite graph obtained from a rooted tree

where some of the leaves have been replaced by a distinct cycle of length four (by identifying
the leaf with a vertex of the cycle).

▶ Definition 17. Let T be a field gadget rooted at ρ, and µ = µT ;β,γ,λ. We denote by RT =
RT (β, γ, λ) the effective field of the gadget, i.e., RT = 1

λ
µ(σρ=1)
µ(σρ=0) and by OT = OT (β, γ, λ) the

observable gap of the gadget, i.e., OT = Eσ∼µ[ oT (σ) | σρ = 1] − a − Eσ∼µ[ oT (σ) | σρ = 0].
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The division by λ in the definition of the effective field of a gadget is to avoid double-counting
the contribution of the root later on.

▶ Lemma 18. Let (β, γ, λ) be antiferromagnetic such that at least one of β ̸= γ or λ ̸= 1
holds. There are constants C, R̃ > 0 with R̃ ̸= 1 and an algorithm which, on input a rational
r ∈ (0, 1/2), outputs in time poly(bits(r)) field gadgets T+, T-, each of maximum degree 3 and
size O(| log r|), such that

RT+ > RT- + r/2 and |RT+ − R̃|, |RT- − R̃| ≤ r.

▶ Theorem 19. Let (β, γ, λ) be antiferromagnetic, and consider any non-trivial vertex-edge
observable on general graphs. There exist constants R̂, Ô, Ξ > 0 and an algorithm, which, on
input a rational r ∈ (0, 1/2), outputs in time poly(bits(r)) a pair of field gadgets T1, T2, each
of maximum degree 3 and size O(| log r|), such that

|RT1 − R̂|, |RT2 − R̂| ≤ r, but |OT1 − OT2 | ≥ Ô.

Moreover, the observable gaps OT1 , OT2 are upper-bounded in absolute value by the constant Ξ.

The proofs of Lemma 18 and Theorem 19 follow closely the approach in [9], and are therefore
deferred to Section C.3 of the full version.

3.3 The reduction

Let H be a cubic bipartite graph which is input to the problem #MagnetIsingCubic(α) of
Section 3.1, for some constant α ∈ (0, 1) to be specified. For integers n, t ≥ 1 and rational
ϵ > 0, let G ∈ Gt,ϵ

n,∆ be a bipartite phase gadget satisfying Items 1 and 2 of Section 3.2.1. Let
T+, T-, T be field gadgets. Note that the gadgets T+, T- serve a different role to that of T ,
and in particular they will be used to interpolate over the vertex activity λ̂.

To achieve this, for integers ℓ+, ℓ- satisfying t ≥ 5 + max{ℓ+, ℓ-}, we define the graph
Hℓ+,ℓ-

G,T+,T-,T as follows. For each vertex v of H replace it with a distinct copy of G, denoted
by Gv; we denote by U±

v , W ±
v the sets corresponding to U±, W ± in Gv. Moreover, for each

v ∈ V (H), attach one copy of the gadget T and ℓ+ copies of the gadget T+ on mutually
distinct vertices of W + by identifying them with the corresponding roots. Similarly, attach
ℓ- copies of the gadget T- on mutually distinct vertices of W -. Let Tv be the copy of Tv

corresponding to v, and wv be its root. Let WT = {wv | v ∈ V (H)} be the set of all these
roots. Further, for each edge {u, v} of H, add an edge between W +

u and W +
v , and an edge

between W -
u and W -

v .
Let Hℓ+,ℓ-

G,T+,T-
be the graph without the internal vertices and edges of the copies of gadget

T , i.e., we keep only the roots WT of the gadgets in Hℓ+,ℓ-
G,T+,T-

. The following piece of notation
will be useful: for a graph J and a subgraph J ′ of J , given a configuration σ : V (J) → [q],
it will be convenient to denote by mJ′(σ) =

∑
e={u,v}∈E(J ′) 1{σ(u) = σ(v)} the number of

monochromatic edges of J ′ under σ.
The following lemma relates the value of the observable Oβ,γ,λ(Hℓ+,ℓ-

G,T+,T-,T ) with the
magnetization Sα,λ̂(H), for some appropriate λ̂ that is a function of the parameters β, γ, λ

and ℓ+, ℓ-, RT+ , RT+ , RT . Analogously to Section 2.3, for a graph J and a subgraph J ′ of
J , given a configuration σ : V (J) → [q], it will be convenient to denote by oJ′(σ) =
a|σV (J′)| + bm0(σV (J ′)) + cm1(σV (J ′)) the contribution of J ′ to the value of the observable
on J .

ICALP 2022
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▶ Lemma 20. Let ∆ ≥ 3 be an integer, (β, γ, λ) ∈ N∆, and (a, b, c) be a vertex-edge
observable. Then, there are constants q+, q- ∈ (0, 1) with q+ > q- and α ∈ (0, 1) so that the
following holds for any field gadgets T+, T-, T with effective fields R+, R-, R and observable
gaps O1, O2, O, and any positive integers ℓ+, ℓ-, t with t ≥ 5 + max{ℓ+, ℓ-}.

For a cubic bipartite graph H, for any ϵ ≤ 1
(5|V (H)|)2 , any integer n and phase gadget

G ∈ Gt,ϵ
n,∆, for µ := µHℓ+,ℓ-

G,T+,T-,T
and ϵ′ = 10|V (H)|ϵ, it holds that

Oβ,γ,λ(Hℓ+,ℓ-
G,T+,T-,T ) = A|V (H)| + Eσ∼µ

[
oHℓ+,ℓ-

G,T+,T-
(σ)

]
+ (1 ± ϵ′)O

[
(q+ − q-)Mα,λ̂(H) + q-|V (H)|

]
,

where A = Eσ∼µT [oT (σ) | σρ = 0] and λ̂ :=
(

q+R+1−q+
q-R+1−q-

)(
q+R++1−q+
q-R++1−q-

)ℓ+
/
(

q+R-+1−q+
q-R-+1−q-

)ℓ- .

The proof of Lemma 20 builds upon similar ideas to that of Lemma 12 (see in particular the
discussion around there for how this blends with the overview of Section 2.1) and is deferred
to Section B of the full version.

We will need the following bound on the change of the observable value when we change
the vertex activities of a subset of the vertices. Namely, let G = (V, E) be a graph and
(β, γ) be antiferromagnetic. For a vertex-activity vector λ = {λv}v∈V , define the Gibbs
distribution µG;β,γ,λ(σ) ∝ βm0(σ)γm1(σ) ∏

v∈V ; σ(v)=1 λv for σ : V → {0, 1}.

▶ Lemma 21 (Minor adaptation of [9, Lemma 35]). Let (β, γ) be antiferromagnetic, λ, λ1, λ2 >

0, and (a, b, c) be a vertex-edge observable. Let G = (V, E) be a graph and S ⊆ V . For
i ∈ {1, 2}, let λi be the field vector on V , where every v ∈ S has activity λi, whereas every
v ∈ V \S has activity λ. Let µi be the Gibbs distribution on G with parameters β, γ, λi. Then,
for every subgraph F of G, it holds that∣∣Eσ∼µ2 [oF (σ)] − Eσ∼µ1 [oF (σ)]

∣∣ ≤ 2
(
|a| + |b| + |c|

)(
|V (G)|2 + |E(G)|2

) ∣∣∣λ2

λ1
− 1

∣∣∣.
We now have all the ingredients to prove Lemma 14.

▶ Lemma 14. Let ∆ ≥ 3 be an integer and (β, γ, λ) ∈ N∆. Then, there is α ∈ (0, 1) such
that for any (a, b, c) vertex-edge observable that is not trivial on bipartite graphs,

#MagnetIsingCubic(α) ≤AP #Observable2Spin(β, γ, λ, a, b, c).

Proof. Let K = |a| + |b| + |c| and q+, q-, α be the constants from Lemma 20; recall that
α ∈ (0, 1) and 1 > q+ > q- > 0. Let H be a cubic bipartite graph and λ̂ > 1 be the inputs
to #MagnetIsingCubic(α), and let η ∈ (0, 1) be the desired relative error that we want to
approximate Mα,λ̂(H).

By Lemma 18 and Theorem 19, there exist constants R̃, R̂, Ô, C > 0 with R̃ ̸= 1
and polynomial time algorithms, which on input rationals r, r′ ∈ (0, 1/2), output in time
poly(bits(r), bits(r′)) pairs of field gadgets (T+, T-) and (T1, T2) satisfying

R+ > R- + Cr and |R+ − R̃|, |R- − R̃| ≤ r,

|R1 − R̂|, |R2 − R̂| ≤ r, but |O1 − O2| ≥ Ô,
(4)

where R+, R-, R1, R2 are the effective fields of T+, T-, T1, T2 and O1, O2 are the observable
gaps of T1, T2, respectively.

Let ϵ = η
|V (H)|8 and t =

⌈( 1
ϵ |V (H)|2 log λ̂

)6⌉
. By Lemma 7, there is an algorithm that

outputs in time poly(t, 1
ϵ ) an integer n and a graph G ∈ Gt,ϵ

n,∆ (satisfying Items 1 and 2). Let
also T+, T- be field gadgets satisfying (4) for r = |R̃−1|

10 ϵ4. Consider also the integers ℓ+, ℓ- = ℓ,
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where ℓ is an integer specified according to whether Λ̂ = λ̂/
(

q+R̂+1−q+
q-R̂+1−q-

)
is bigger than 1.

Suppose first that Λ̂ ≥ 1. Since R+ > R- and q+ > q-, we have that q+R++1−q+
q-R++1−q-

> q+R-+1−q+
q-R-+1−q-

,
and we pick ℓ to be the smallest positive integer such that(

q+R+1−q+
q-R+1−q-

)(
q+R++1−q+
q-R++1−q-

)ℓ
/
(

q+R-+1−q+
q-R-+1−q-

)ℓ ≥ λ̂. (5)

If Λ̂ < 1, then we pick ℓ to be the small positive integer so that(
q+R+1−q+
q-R+1−q-

)(
q+R-+1−q+
q-R-+1−q-

)ℓ
/
(

q+R++1−q+
q-R++1−q-

)ℓ ≤ λ̂,

In either case, using the lower bound R+ − R- > Cr from (4), we have that ℓ = O( 1
r log λ̂)

where the implicit constant depends only on β, γ, λ, ∆. In particular, we have that t ≥
5 + max{ℓ+, ℓ-}. In the argument below, we assume w.l.o.g. that Λ̂ ≥ 1; otherwise, just apply
the same argument by swapping the roles of the gadgets T+, T- in the construction below.

For i ∈ {1, 2}, consider now the graphs Ĥi = Hℓ+,ℓ-
G,T+,T-,Ti

and let µi = µ
Ĥi;β,γ,λ

. For
convenience, let also F denote the graph Hℓ+,ℓ-

G,T+,T-
, and note that F is a subgraph of both

Ĥ1, Ĥ2. From Lemma 20, we have that for i ∈ {1, 2}, for ϵ′ = 10|V (H)|ϵ, it holds that

Oβ,γ,λ(Ĥi) = Ai|V (H)| + Eσ∼µi

[
oF (σ)

]
+ (1 ± ϵ′)Oi

[
(q+ − q-)Mα,λ̂i

(H) + q-|V (H)|
]
, (6)

where Ai = Eσ∼µTi
[oTi

(σ) | σρi
= 0] and λ̂i :=

(
q+Ri+1−q+
q-Ri+1−q-

)(
q+R++1−q+
q-R++1−q-

)ℓ+
/
(

q+R-+1−q+
q-R-+1−q-

)ℓ- .
From (2), we have that λ̂i = (1 ± ϵ3)λ̂, and therefore from Lemma 21, we have that∣∣Eσ∼µ1 [oF (σ)] − Eσ∼µ2 [oF (σ)]

∣∣ ≤ |E(Hℓ
G,E,P)|ϵ3 ≤ ϵ2,

|Mα,λ̂1
(H) − Mα,λ̂2

(H)| ≤ 2K
(
|V (H)|2 + |E(H)|2

)
ϵ3 ≤ ϵ2.

We now invoke the oracle for Mβ,γ,λ(Ĥi) to compute M̂i such that M̂i = (1±ϵ2)Mβ,γ,λ(Ĥi).
By exploiting the tree structure of the field gadgets T1, T2 (cf. Definition 16), and since they
both have size poly(bits(r)), we can compute the values A1, A2 exactly in time poly(|V (H)|, 1

η )
by fairly routine dynamic programming techniques. Combining these with (6), it follows that

M̂ = 1
q+ − q-

( (M̂1 − M̂2) − |V (H)|(A1 − A2)
O1 − O2

− q-|E(H)|
)

is within a factor of (1 ± η) of the susceptibility Mα,λ̂(H), as needed. This finishes the
reduction and therefore the proof of Lemma 6. ◀

References
1 R. J. Baxter. Onsager and Kaufman’s calculation of the spontaneous magnetization of the

Ising model. Journal of Statistical Physics, 145(3):518–548, 2011.
2 M. Bordewich, C. Greenhill, and V. Patel. Mixing of the Glauber dynamics for the ferromagnetic

Potts model. Random Structures & Algorithms, 48(1):21–52, 2016.
3 J.-Y. Cai, A. Galanis, L. A. Goldberg, H. Guo, M. Jerrum, D. Štefankovič, and E. Vigoda. #BIS-

hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness
region. Journal of Computer and System Sciences, 82(5):690–711, 2016.

4 D. Chelkak and S. Smirnov. Universality in the 2D Ising model and conformal invariance of
fermionic observables. Inventiones mathematicae, 189(3):515–580, 2012.

5 Z. Chen, K. Liu, and E. Vigoda. Optimal mixing of Glauber dynamics: Entropy factorization
via high-dimensional expansion. In Proceedings of the 53rd Annual ACM Symposium on Theory
of Computing (STOC), pages 1537–1550, 2021.

ICALP 2022



63:18 Approximating Observables Is as Hard as Counting

6 M. E. Dyer, L. A. Goldberg, C. S. Greenhill, and M. Jerrum. The relative complexity of
approximate counting problems. Algorithmica, 38(3):471–500, 2004.

7 A. Galanis, L. A. Goldberg, and M. Jerrum. Approximately counting H-colorings is #BIS-hard.
SIAM Journal on Computing, 45(3):680–711, 2016.

8 A. Galanis, D. Štefankovič, and E. Vigoda. Inapproximability of the partition function for
the antiferromagnetic Ising and hard-core models. Combinatorics, Probability and Computing,
25(4):500–559, 2016.

9 A. Galanis, D. Štefankovič, and E. Vigoda. The complexity of approximating averages on
bounded-degree graphs. In Proceedings of the 61st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 1345–1355, 2020.

10 A. Galanis, D. Štefankovič, E. Vigoda, and L. Yang. Ferromagnetic Potts model: refined
#BIS-hardness and related results. SIAM Journal on Computing, 45(6):2004–2065, 2016.

11 L. A. Goldberg and M. Jerrum. Approximating the partition function of the ferromagnetic
Potts model. Journal of the ACM, 59(5), 2012.

12 G. Grimmett. The Random-Cluster Model. In Probability on Discrete Structures, pages 73–123.
Springer, 2004.

13 M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the Ising model.
SIAM Journal on Computing, 22(5):1087–1116, 1993.

14 M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

15 L. Li, P. Lu, and Y. Yin. Correlation decay up to uniqueness in spin systems. In Proceedings
of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 67–84,
2013.

16 L. J. Schulman, A. Sinclair, and P. Srivastava. Symbolic integration and the complexity of
computing averages. In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 1231–1245, 2015.

17 A. Sinclair and P. Srivastava. Lee-Yang theorems and the complexity of computing averages.
Communications in Mathematical Physics, 329(3):827–858, 2014.

18 A. Sly. Computational transition at the uniqueness threshold. In Proceedings of the 51st
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 287–296, 2010.

19 A. Sly and N. Sun. Counting in two-spin models on d-regular graphs. Ann. Probab., 42(6):2383–
2416, 2014.

20 D. Weitz. Counting independent sets up to the tree threshold. In Proceedings of the 38th
Annual ACM Symposium on Theory of Computing (STOC), pages 140–149, 2006.



The Decision Problem for Perfect Matchings in
Dense Hypergraphs
Luyining Gan #

Department of Mathematics and Statistics, University of Nevada, Reno, NV, USA

Jie Han1 #

School of Mathematics and Statistics and Center for Applied Math,
Beijing Institute of Technology, China

Abstract
Given 1 ≤ ℓ < k and δ ≥ 0, let PM(k, ℓ, δ) be the decision problem for the existence of perfect
matchings in n-vertex k-uniform hypergraphs with minimum ℓ-degree at least δ

(
n−ℓ
k−ℓ

)
. For k ≥ 3,

the decision problem in general k-uniform hypergraphs, equivalently PM(k, ℓ, 0), is one of Karp’s 21
NP-complete problems. Moreover, for k ≥ 3, a reduction of Szymańska showed that PM(k, ℓ, δ) is
NP-complete for δ < 1 − (1 − 1/k)k−ℓ. A breakthrough by Keevash, Knox and Mycroft [STOC ’13]
resolved this problem for ℓ = k − 1 by showing that PM(k, k − 1, δ) is in P for δ > 1/k. Based on
their result for ℓ = k − 1, Keevash, Knox and Mycroft conjectured that PM(k, ℓ, δ) is in P for every
δ > 1 − (1 − 1/k)k−ℓ.

In this paper it is shown that this decision problem for perfect matchings can be reduced to the
study of the minimum ℓ-degree condition forcing the existence of fractional perfect matchings. That
is, we hopefully solve the “computational complexity” aspect of the problem by reducing it to a
well-known extremal problem in hypergraph theory. In particular, together with existing results on
fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for ℓ ≥ 0.4k.
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1 Introduction

As arguably the most natural extension of graph objects to hypergraphs, matchings have
attracted a great deal of attention from both mathematicians and theoretical computer
scientists. However, the study of hypergraph matching problems is still a challenging task.
One particular reason for this is that finding the maximal matchings in k-uniform hypergraphs
for k ≥ 3 (e.g. 3-partite 3-uniform hypergraphs) is famously NP-complete [14], in contrast to
the tractability in the graph case (Edmonds’ blossom algorithm [5]).

Hypergraph matchings also find exciting applications in other fields, e.g. the Existence
Conjecture of Block Designs [16, 8], Ryser’s Conjecture on Latin Squares and Samuels’
Conjecture in Probability Theory. For applications on practical problems, one prime example
is that Asadpour, Feige and Saberi [2] used hypergraph perfect matchings to study the Santa
Claus problem.

In this paper we continue the study of the decision problem of perfect matchings in dense
hypergraphs, initiated by Karpiński, Ruciński and Szymańska [15]. Given k ≥ 2, a k-uniform
hypergraph (or k-graph) H consists of a vertex set V (H) and an edge set E(H), where each
edge in E(H) is a set of k vertices of H. A subset M ⊆ E(H) is a matching if every two
edges from M are vertex-disjoint. A matching in H is called perfect if it covers all vertices
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of H. Given a k-graph H with an ℓ-element vertex set S (where 0 ≤ ℓ ≤ k − 1) we define
degH(S) to be the number of edges containing S. The minimum ℓ-degree δℓ(H) of H is the
minimum of degH(S) over all ℓ-element sets of vertices in H.

The following decision problem was raised by Keevash, Knox and Mycroft [18], generalizing
a problem of Karpiński, Ruciński and Szymańska [15] for the case ℓ = k − 1.

▶ Problem 1. Given integers ℓ < k and δ ∈ [0, 1], denote by PM(k, ℓ, δ) the problem of
deciding whether there is a perfect matching in a given k-graph H on n ∈ kN vertices with
δℓ(H) ≥ δ

(
n−ℓ
k−ℓ

)
.

The motivating fact is that for k ≥ 3, PM(k, ℓ, 0) is equivalent to the problem for general
k-graphs, so is NP-complete; on the other hand PM(k, ℓ, δ) is trivially in P when δ is large
(e.g., when δ > 1−1/k by the result of [9]) because all such k-graphs contain perfect matchings.
Therefore, it is natural to ask for the point where the behavior changes. A reduction of
Szymańska [22] showed that PM(k, ℓ, δ) is NP-complete for k ≥ 3 and δ < 1 − (1 − 1/k)k−ℓ.
In a breakthrough paper, Keevash, Knox and Mycroft [18] conjectured that 1 − (1 − 1/k)k−ℓ

is the turning point and verified the case ℓ = k − 1.

▶ Conjecture 2 (Keevash, Knox and Mycroft [18]). For 1 ≤ ℓ < k, PM(k, ℓ, δ) is in P for
every δ > 1 − (1 − 1/k)k−ℓ.

Recently, Han and Treglown [13] showed that the conjecture holds for 0.5k ≤ ℓ ≤
(1 + ln(2/3))k ≈ 0.59k. In this paper we verify Conjecture 2 for all ℓ ≥ 0.4k. In fact, our
main result reduces the conjecture to the study of the minimum-degree-type threshold for
the existence of a perfect fractional matching in k-graphs. To illustrate this, we introduce
the following definitions.

Given a k-graph H = (V, E), a fractional matching in H is a function ω : E → [0, 1] such
that for each v ∈ V (H) we have that

∑
e∋v w(e) ≤ 1. Then

∑
e∈E(H) w(e) is the size of w. If

the size of w in H is n/k then we say that w is a perfect fractional matching. Given k, ℓ ∈ N
such that ℓ ≤ k − 1, define c∗

k,ℓ to be the smallest number c such that every k-graph H on n

vertices with δℓ(H) ≥ (c + o(1))
(

n−ℓ
k−ℓ

)
contains a perfect fractional matching. The following

is our main result.

▶ Theorem 3. Suppose k, ℓ ∈ N such that 1 ≤ ℓ ≤ k − 1. Then for any δ ∈ (c∗
k,ℓ, 1],

PM(k, ℓ, δ) is in P . That is, for any δ ∈ (c∗
k,ℓ, 1], there exists a constant c = c(k) such that

there is an algorithm with running time O(nc) which given any n-vertex k-graph H with
δℓ(H) ≥ δ

(
n−ℓ
k−ℓ

)
, determines whether H contains a perfect matching.

In fact, in [13] a similar result was proved for δ ∈ (δ∗, 1] where δ∗ = max{c∗
k,ℓ, 1/3}.

Comparing with their result, Theorem 3 drops the extra 1/3 and thus extends the result to
large values of ℓ, e.g., for ℓ > (1 + ln(2/3))k.

For the parameter c∗
k,ℓ, Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [1] in 2012

made the following conjecture.

▶ Conjecture 4 ([1]). For all ℓ, k ∈ N, c∗
k,ℓ = 1 − (1 − 1/k)k−ℓ.

They [1] verified the case k − ℓ ≤ 4. The conjecture was further validated by Kühn, Osthus
and Townsend [19, Theorem 1.7] for ℓ ≥ k/2 and by Han [10, Theorem 1.5] for ℓ = (k − 1)/2.
In a recent work, Frankl and Kupavskii [6] verified this conjecture for ℓ ≥ 0.4k. Unfortunately,
despite the efforts from experts in the field, Conjecture 4 is still open and appears to be
very challenging for small values of ℓ. In fact, Conjecture 4 is also closely related to an old
conjecture of Erdős on the size of the largest matching in hypergraphs (in particular, results
of [6, 10] are corollaries of the corresponding progresses on the conjecture of Erdős).

Combining Theorem 3 with the current status on c∗
k,ℓ we get the following corollary.
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▶ Corollary 5. Conjecture 2 holds for ℓ ≥ 0.4k and for k − ℓ ≤ 4.

Thus, by Theorem 3, Conjecture 2 holds for all cases when c∗
k,ℓ = 1 − (1 − 1/k)k−ℓ, that is,

whenever Conjecture 4 holds. Indeed, it is not hard to show that if δ > c∗
k,ℓ, then the k-graph

contains a matching that covers all but exactly k vertices (see Theorem 11). Given this, our
result can be viewed as the efficient detection of a certain class of divisibility constructions
that prevents the existence of perfect matchings. As a consequence, we reduce the decision
problem to an extremal problem on the existential problem of a perfect fractional matching,
which can be recognized as a resolution on the “computational complexity” aspect of this
problem.

We now give an overview of the minimum-degree-type conditions as well as the divisibility
constructions.

1.1 Minimum degree conditions and divisibility barriers

The minimum degree conditions forcing a perfect matching have been studied extensively
over the last two decades. Focusing on the asymptotical thresholds, all known results support
the following conjecture raised by Hàn, Person and Schacht [9]. Note that this corresponds to
the case when the decision problem is trivially in P (a trivial algorithm that always outputs
yes).

▶ Conjecture 6 (Hàn–Person–Schacht, [9]). Given 1 ≤ ℓ < k, if a k-graph H on n vertices
satisfies δℓ(H) ≥ (max{1/2, c∗

k,ℓ} + o(1))
(

n−ℓ
k−ℓ

)
, then H contains a perfect matching.

The conjecture has attracted a great deal of attention and so far has been verified for
ℓ ≥ 3k/8 by Frankl and Kupavskii [6] and a handful of pairs (k, ℓ). Note that this conjecture
is slightly weaker than our problem, as e.g. for certain values of ℓ, it suffices to show that
c∗

k,ℓ ≤ 1/2, rather than determining the precise value of c∗
k,ℓ (and this is the reason that the

known record on Conjecture 6 by [6] is slightly wider than that for the conjecture on c∗
k,ℓ).

In fact under the assumption δℓ(H) ≥ (c∗
k,ℓ + o(1))

(
n−ℓ
k−ℓ

)
, Chang, Ge, Han and Wang [3]

recently proved that one can find a matching in H of size n/k −1 (see Theorem 11). However,
such H may or may not have a perfect matching, and, prior to this work, it is not clear how
to characterize these two types of k-graphs. To understand this, what is interesting to our
problem is the divisibility constructions that achieve the bound 1/2 in the above conjecture.
Consider an n-vertex set V with a bipartition X∪̇Y , where X and Y have almost equal
size subject to that |Y | is odd. Now define a k-graph H0 on V with the edge set consisting
of all k-tuples that contain an even number of vertices in Y . It is not hard to see that
δℓ(H) ≈ 1

2
(

n−ℓ
k−ℓ

)
and H0 has no perfect matching. To see this, note that any matching in H0

covers an even number of vertices in Y , so not the entire Y .
One can actually construct such partitions for an arbitrary number of parts. For certain

sizes of parts, divisibility conditions similar to the parity issue in the above example prevent
the existence of perfect matchings. Thus, our result and algorithm can be viewed as efficient
detection of such constructions. Indeed, in the Keevash–Knox–Mycroft proof of Conjecture 2
for ℓ = k − 1, they designed efficient algorithms to exhibit a number of (O(nk+1)) such
partitions and tested the divisibility (solubility) for each of them. In contrast, we show that
one can focus on one partition and prove a sufficient and necessary condition for the existence
of a perfect matching solely on that partition. This will be made clear in Section 2.
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1.2 Related work
The decision problem for perfect matchings in dense hypergraphs was first raised by Karpiński,
Ruciński and Szymańska [15] for the case ℓ = k − 1, where they formulated the problem
as PM(k, δ) which is equivalent to PM(k, k − 1, δ) in this paper. They showed that
PM(k, 1/2 − ε) is in P for some absolute ε > 0, thus showing that 1/2 is not the turning
point for the change of behavior, while Szymańska’s [22] reduction showed that PM(k, δ)
is NP-complete when δ < 1/k. This leaves a hardness gap for δ ∈ [1/k, 1/2). Significant
progress was made by Keevash–Knox–Mycroft [17, 18] who showed that PM(k, δ) is in P for
δ > 1/k. This hardness problem was fully settled by Han [11] who proved that PM(k, 1/k)
is in P. Very recently, this result was strengthened by Han and Keevash [12], who showed
that the minimum (k − 1)-degree condition can be weakened to n/k − c for any constant
c > 0 and their algorithm can actually output the perfect matching provided that one exists.

The similar decision problem for Hamilton cycles (spanning cycles) has also been studied.
First, it is well-known that it is NP-complete to determine if a (2-)graph has a Hamilton cycle.
A k-graph C is called a tight cycle if its vertices can be listed in a cyclic order so that the
edges are all consecutive k-tuples. For tight Hamilton cycles in dense k-graphs, it is shown
that there is no such hardness gap as for perfect matchings. That is, it is showed that by
Rödl, Ruciński and Szemerédi [21] for n-vertex k-graph H , if δk−1(H) ≥ (1/2+o(1))n then H

contains a tight Hamilton cycle, i.e., the decision problem is trivially in P; on the other hand,
Garbe and Mycroft [7] showed that there exists a constant C such that if δk−1(H) ≥ n/2−C,
then the decision problem of tight Hamilton cycles is NP-complete. However, such hardness
gap is shown to exist for looser cycles [7].

Han and Treglown [13] considered the similar decision problem for F -factors2 in graphs
and k-graphs. In particular, they determined the turning point for the F -factor problem for
graphs and thus disproved a conjecture of Yuster [23].

2 A partition lemma and a structural theorem

To prove Theorem 3, we shall establish a structural theorem (Theorem 9) for perfect matchings,
namely, we exhibit a sufficient and necessary condition for the existence of perfect matchings,
which, in addition, can be checked in polynomial time. In turn, the heart of the proof of
the structural theorem is the lattice-based absorption method developed by Han [11], which
features a vertex partition of the given k-graph (Lemma 8).

The first key definition is the reachability introduced by Lo and Markström [20] for the
absorption property we need for building the perfect matching.

2.1 Reachability
Let H be an n-vertex k-graph. For i ∈ N and β ∈ (0, 1), we say that two vertices u and v in
V (H) are (β, i)-reachable in H if there are at least βnik−1 (ik − 1)-sets S such that both
H[S ∪ {u}] and H[S ∪ {v}] have perfect matchings. We refer to such a set S as a reachable
(ik − 1)-set for u and v. We say a vertex set U ⊆ V (H) is (β, i)-closed in H if any two
vertices u, v ∈ U are (β, i)-reachable in H. Given any v ∈ V (H), define Ñβ,i(v, H) to be the
set of vertices in V (H) that are (β, i)-reachable to v in H.

2 Given k-graphs F and H, an F -factor in H is a set of vertex-disjoint copies of F whose union covers
V (H).
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2.2 Index vector and robust vector

Given an n-vertex k-graph H and integer r ≥ 0, let P = {V0, V1, . . . , Vr} be a partition of
V (H) into disjoint vertex sets, namely,

⋃̇
0≤i≤rVi = V (H). In this paper, every partition has

an implicit ordering of its parts.
Next we introduce the index vectors and edge-lattices. Given a k-graph H and a partition

P = {V0, V1, . . . , Vs, Vs+1, . . . , Vr} of V (H), the index vector iP(e) ∈ Zr of an edge e ∈ E(H)
with respect to P is the vector whose coordinates are the sizes of the intersections of e with
each part of P except V0, namely, iP(e)|i = |e ∩ Vi| for i ∈ [r], where v|i is defined as the ith
digit of v. For any v = {v1, . . . , vr} ∈ Zr, let |v| :=

∑r
i=1 vi. Here we say that v ∈ Zr is a

k-vector if it has non-negative coordinates and |v| = k. In previous works, for µ > 0, the set
of µ-robust vectors (denoted by Iµ

P(H)) is defined as the vectors i ∈ Zr such that H contains
at least µnk edges whose index vectors are equal to i. In this paper we need a more detailed
description of robust vectors – where we need to distinguish the roles of two different groups
of Vi.

▶ Definition 7 (µ-robust vectors). Let P = {V0, V1, . . . , Vs, Vs+1, . . . , Vr} be a partition of
V (H). Given µ > 0, define Iµ

P(H) := Iµ
P,1(H) ∪ Iµ

P,2(H) as the union of the following two
sets:
1. the set Iµ

P,1(H) consists of all k-vectors i ∈ Zr such that i|i = 0 for i ∈ {0, 1, . . . , s} and
H contains at least µnk edges e with iP(e) = i;

2. the set Iµ
P,2(H) consists of all k-vectors i ∈ Zr such that i|i = 1 for some i ∈ [s], i|j = 0

for j ∈ {0, 1, . . . , s} \ {i} and every vertex v ∈ Vi is in at least µnk−1 edges e with
iP(e) = i.

The new ingredient of this definition is the assumption (2), which helps us to classify the
vertices which do not enjoy the reachability information.

Now we are ready to state our partition lemma, which outputs a refined partition compared
to the partition lemmas in [11, 13]. Throughout the paper, we write α ≪ β ≪ γ to mean
that it is possible to choose the positive constants α, β, γ from right to left. More precisely,
there are increasing functions f and g such that, given γ, whenever we choose some β ≤ f(γ)
and α ≤ g(β), the subsequent statement holds. Hierarchies of other lengths are defined
analogously.

▶ Lemma 8. Given integers k ≥ 3, C > 0 and real δ > 0, suppose we have 1/n0 ≪ µ ≪
β ≪ δ′ ≪ δ, 1/k, 1/C. Given an n-vertex k-graph H with n ≥ n0 and δℓ(H) ≥ δ

(
n−ℓ
k−ℓ

)
, there

is a partition P of V (H) as

P = {V0, V1, . . . , Vs, Vs+1, . . . , Vr}

such that with c := ⌊1/δ⌋
1. s ≤ 2(c+k−2

k−1 ) and r − s ≤ c,

2. |V0| ≤ k2(
c+k−2

k−1 )
(

k
(

k+2(
c+k−2

k−1 )+c−1
k

)
+
(

c+k−2
k−1

)
C

)
and |

⋃
0≤i≤s Vi| ≤ cδ′n,

3. for 1 ≤ i ≤ s, |Vi| ≥ (k − 1)|V0| + k
(

k+2(
c+k−2

k−1 )+c−1
k

)
+
(

c+k−2
k−1

)
C,

4. for 1 ≤ i ≤ s, there exists i ∈ Iµ
P,2(H) such that i|i = 1,

5. for s + 1 ≤ i ≤ r, |Vi| ≥ δ′n/2 and Vi is (β, 2c)-closed in H[
⋃

s+1≤i≤r Vi].
In particular, such a partition P of H can be found in time O(n2c−1k+1).
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2.3 Lattices, solubility and the structural theorem
Keevash, Knox and Mycroft [18] introduced the following notions, which help us to transfer
the divisibility problem to an algebraic setting as follows.

Given a partition P of m parts, denote by Lµ
P(H) the lattice (additive subgroup) in

Zm generated by Iµ
P(H). We write Lm

max for the lattice generated by all k-vectors, that is,
Lm

max := {v ∈ Zm : k divides |v|}.
Suppose L ⊂ L

|P|
max is a lattice in Z|P|, where P is a partition of a set V . The coset group

of (P, L) is Q = Q(P, L) := L
|P|
max/L. For any i ∈ L

|P|
max, the residue of i in Q is RQ(i) := i+L.

For any A ⊆ V of size divisible by k, the residue of A in Q is RQ(A) := RQ(iP(A)).
Let q ∈ N. A (possibly empty) matching M in H of size at most q is a q-solution for

(P, Lµ
P(H)) (in H) if iP(V (H) \ V (M)) ∈ Lµ

P(H); we say that (P, Lµ
P(H)) is q-soluble if it

has a q-solution. We also need a strengthening of this definition as follows. Given a set
U ⊂ V (H), we define that (P, Lµ

P(H)) is (U, q)-soluble if there is a matching M in H such
that M covers U and M is a (|U | + q)-solution.

In our proof, we shall pick a suitable µ > 0 and let q be an upper bound of the order of
the coset group Q = L

|P|
max/Lµ

P(H) (then a trivial bound is q =
(

r+k−1
k

)
, the number of ee)

and U be the part V0. Then we show that H has a perfect matching if and only if (P, Lµ
P(H))

is (V0, q)-soluble.

▶ Theorem 9 (Structural Theorem). Let k, ℓ, q ∈ N where ℓ ≤ k − 1 and let γ > 0 be given.
There exist n0, C := C(k, q) ∈ N and β, µ > 0 such that

1/n0 ≪ β, µ ≪ δ′ ≪ γ, c∗
k,ℓ, 1/q, 1/C, 1/k. (1)

Let H be an n-vertex k-graph with δℓ(H) ≥ (c∗
k,ℓ + γ)

(
n−ℓ
k−ℓ

)
, where n ≥ n0 and k divides

n. Suppose P is a partition of V (H) satisfying Lemma 8 (1)-(5) with δ = c∗
k,ℓ. Moreover,

suppose |Q(P, Lµ
P(H))| ≤ q. Then H contains a perfect matching if and only if (P, Lµ

P(H))
is (V0, q)-soluble.

3 Highlights of the proof: a comparison with the Han–Treglown proof

The basic idea for establishing the structural theorem is to distinguish the roles of robust
and non-robust edges: to avoid the divisibility barriers, we may have to use edges with
certain (combination of) index vectors. For some index vectors v there are many edges e

with iP(e) = v, namely, there are many “replacements” even when we are forbidden from
using, say, a small number of such edges. For other index vectors v there are few edges e

with iP(e) = v, so we have to be careful when using such edges. In fact, the algebraic setting
allows us to show that one can restrict the attention to only a constant number of such
non-robust edges (using the lattice and coset group arguments), and thus this can be tested
by brute force. Then the rest of the proof follows from the lattice-based absorption argument.
Roughly speaking, it reserves a small matching which can be used to turn an almost perfect
matching to a perfect matching given certain divisibility condition on the leftover vertices.

In [13] Han and Treglown proved our Theorem 3 under the additional assumption that
δ > 1/3, which gives a resolution of Conjecture 2 for 0.5k ≤ ℓ ≤ 0.59k. Embarrassingly, this
does not solve the conjecture for ℓ = k − 2, which might be considered as the easiest case
after the resolution of the case ℓ = k − 1. Below we shall first outline the proof in [13], and
then explain our innovation compared with their approach and how such an improvement is
achieved.
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The partition lemma used in [13] is Lemma 12 in this paper (which we use as a building
block to establish our partition). The key problem is that when ℓ < k − 1, one can not apply
Lemma 12 directly to the k-graph H , as in H there might be a set W of vertices v which are
not reachable to many vertices, namely, |Ñβ,i(v, H)| is small for any proper choice of β > 0
and i ∈ N. However, it is straightforward to show that |W | is small, and (after some work)
we can apply Lemma 12 with S = V (H) \ W and get a partition of V (H) \ W . Now we face
the following challenge.

▶ Problem. Suppose |W | = Ω(n). How do we find a matching M covering W so that
H − V (M) has a perfect matching (or conclude that none exists)?

The problem is trivial if |W | is a constant, for which we can do brute force search for a
matching M of constant size, which involves O(n|W |) possibilities; otherwise it is hopeless
without further assumptions.

Furthermore, it was not clear how to deal with the vertices of W by absorption, as
|W | might be smaller than the threshold for µ-robustness but still a small linear size, i.e.,
εn ≤ |W | < µn, so that every vector touching W will not be recorded as a µ-robust vector.
The proof in [13] avoided the “decision” part of the problem by assuming δ > 1/3, so that
when W is non-empty V (H)\W is closed, in which case H always contains a perfect matching
(so any matching M covering W will work). Therefore, the problem is left open for δ < 1/3
(i.e., for ℓ > (1 + ln(2/3))k ≈ 0.595k).

We also note that the existence of W is not a problem in the existential results in the
literature. For previous works on sufficient (minimum-degree-type) conditions for perfect
matchings, those vertices can be put into a small matching of small linear size, whose removal
does not affect much the minimum-degree conditions, guaranteeing that the absorption can
proceed after the removal of this small matching.

Our new proof can be seen as a considerable refinement to the previous approach, where
we strengthen our control on both the partition and the µ-robust vectors. As mentioned
earlier, our new proof features a finer partition lemma (Lemma 8) than previous ones, where
we classify vertices in W as well. More precisely, we first partition S := V (H) \ W , the
set of vertices which are 1-reachable to Ω(n) other vertices, by Lemma 12 and denote the
partition by P1 = {W1, . . . , Wd}. Then we classify vertices of W according to their edge
distributions in P1, that is, we obtain a partition of W by collecting vertices with common
robust edge vectors together, so that the partition satisfies Definition 7 (2). Next we put the
clusters that are too small (smaller than a certain constant) to a trash set V0 in a recursive
manner. This results a trash set V0 of constant order, and because we have no control on V0
at all, we will check how to match V0 by brute force in time O(n|V0|). Now the good point is
that all clusters survived from this greedy process have a good (though still constant) size
(Lemma 8 (3)), which is enough (and crucial) for a (refined) absorption argument to work
in later proofs. Since all the above procedures can be done in polynomial time, we get the
desired polynomial-time algorithm for the decision problem PM(k, ℓ, δ).

4 Proof of Theorem 3

Now we prove Theorem 3. Recall that c∗
k,ℓ ≥ c∗

k,k−1 = 1/k. Then ⌊1/c∗
k,ℓ⌋ ≤ k. Let

C := C(k, q) be given by Theorem 9 and let

q :=
(

k + 2(2k−2
k−1 ) + k − 1

k

)
.

Suppose we have constants satisfying the hierarchy (1).

ICALP 2022



64:8 The Decision Problem for Perfect Matchings in Dense Hypergraphs

Both Lemma 8 and Theorem 9 require that n is larger than a constant n0, and by custom
k-graphs with less than n0 vertices can be tested by brute force. By Lemma 8, in time
O(n2k−1k+1) we can find a partition P satisfying Lemma 8 (1)-(5). Because of Lemma 8
(1), we know r ≤ k + 2(2k−2

k−1 ) and obtain that |Q(P, Lµ
P(H))| ≤

(
r+k−1

k

)
≤ q (no matter what

Lµ
P(H) actually is). Then by Theorem 9, to determine if H contains a perfect matching

it suffices to test if (P, Lµ
P(H)) is (V0, q)-soluble. This can be done by testing whether

any matching M of size at most |V0| + q covering V0 is a solution of (P, Lµ
P(H)), in time

O(n|V0|+q). The overall time is polynomial in n because

q =
(

k + 2(2k−2
k−1 ) + k − 1

k

)
and

|V0| ≤ k2(
2k−2
k−1 )

(
k

(
2(2k−2

k−1 ) + 2k − 1
k

)
+
(

2k − 2
k − 1

)
C

)
,

where we recall that C := C(k, q) only depends on k.

Organization. The rest of this paper is organized as follows. Note that it remains to prove
Lemma 8 and Theorem 9. We collect and prove a number of auxiliary results in Section 5,
and give a proof of Lemma 8 in Section 6. In Section 7, we prove an absorbing lemma, which
is an important component of the proof of Theorem 9. The proof of Theorem 9 is presented
in Section 8.

5 Useful tools

In this section we collect together some results that will be used in our proof of Theorem 9.
When considering ℓ-degree together with ℓ′-degree for some ℓ′ ̸= ℓ, the following proposition
is very useful.

▶ Proposition 10. Let 0 ≤ ℓ ≤ ℓ′ < k and H be a k-graph. If δℓ′(H) ≥ x
(

n−ℓ′

k−ℓ′

)
for some

0 ≤ x ≤ 1, then δℓ(H) ≥ x
(

n−ℓ
k−ℓ

)
.

Proof. Since ℓ ≤ ℓ′, we count δℓ(H) by

δℓ(H) ≥ δℓ′(H)
(

n − ℓ

ℓ′ − ℓ

)
1(

k−ℓ
ℓ′−ℓ

)
≥ x

(
n − ℓ′

k − ℓ′

)(
n − ℓ

ℓ′ − ℓ

)
1(

k−ℓ
ℓ′−ℓ

)
≥ x

(
n − ℓ

k − ℓ

)(
k − ℓ

ℓ′ − ℓ

)
1(

k−ℓ
ℓ′−ℓ

) = x

(
n − ℓ

k − ℓ

)
where the last inequality is from

(
a
b

)(
b
c

)
=
(

a
c

)(
a−c
b−c

)
. ◀

5.1 Almost perfect matchings
Let k, ℓ ∈ N where ℓ ≤ k − 1. Given D ∈ N, define δ(k, ℓ, D) as the smallest number δ such
that every k-graph H on n ∈ kN vertices with δℓ(H) ≥ (δ + o(1))

(
n−ℓ
k−ℓ

)
contains a matching

covering all but at most D vertices. It is proved in [13] that δ(k, ℓ, k) ≤ max{1/3, c∗
k,ℓ}. We

need the extra term 1/3 removed, which was very recently proved by Chang, Ge, Han and
Wang [3].
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▶ Theorem 11 ([3]). Let k, ℓ be integers such that 1 ≤ ℓ ≤ k − 1 and γ > 0, then there
exists n0 ∈ N such that the following holds for n ≥ n0. Suppose H is an n-vertex k-graph
with δℓ(H) ≥ (c∗

k,ℓ + γ)
(

n−ℓ
k−ℓ

)
, then H contains a matching M that covers all but at most

2k − ℓ − 1 vertices. In particular, when n ∈ kN, M is a perfect matching or covers all but
exactly k vertices, namely, δ(k, ℓ, k) ≤ c∗

k,ℓ.

To build the partition, we need the following partition lemma from [13].

▶ Lemma 12 ([13, Lemma 6.3]). Given δ′ > 0, integers c, k ≥ 2 and 0 < α ≪ 1/c, δ′, there
exists a constant β > 0 such that the following holds for all sufficiently large n. Assume H is
an n-vertex k-graph and S ⊆ V (H) is such that |Ñα,1(v, H)∩S| ≥ δ′n for any v ∈ S. Further,
suppose every set of c + 1 vertices in S contains two vertices that are (α, 1)-reachable in H.
Then in time O(n2c−1k+1) we can find a partition P of S into V1, . . . , Vr with r ≤ min{c, 1/δ′}
such that for any i ∈ [r], |Vi| ≥ (δ′ − α)n and Vi is (β, 2c−1)-closed in H.

To deal with the vertices that are reachable to few other vertices, we collect them by the
following greedy process. Note that a similar lemma was used in [4].

▶ Lemma 13. Let integers c, k ≥ 2 be given and suppose 1/n ≪ δ′ ≪ α, 1/k, 1/c. Assume
that H is a k-graph on n vertices satisfying that every set of c + 1 vertices contains two
vertices that are (2α, 1)-reachable in H. Then in time O(cnk+1) we can find a set of vertices
S ⊆ V (H) with |S| ≥ (1 − cδ′)n such that |Ñα,1(v, H[S])| ≥ δ′n for any v ∈ S.

We remark that in the above lemma it is important to obtain the conclusion on
Ñα,1(v, H[S]) rather than Ñα,1(v) ∩ S. Indeed, in the latter one the reachable sets are
still defined in H, so may contain vertices in V (H) \ S. This is not strong enough in our
later proof (see Lemma 14 and its proof).

Proof. Let H be a k-graph on n vertices satisfying the condition of Lemma 13. We greedily
identify vertices with few “reachable neighbors” and remove the vertex together with the
vertices reachable to it from H. Set V0 := V (H). First, for every two vertices u, v ∈ V (H),
we determine if they are (α, 1)-reachable in H , which can be done by testing if any (k − 1)-set
is a reachable set in time O(nk−1). Summing over all pairs of vertices, this step can be done
in time O(nk+1). Then we check if there is a vertex v0 ∈ V0 such that |Ñα,1(v0, H)| < δ′n

in time O(n2). If there exists such a vertex v0, then let A0 := {v0} ∪ Ñα,1(v0, H) and
let V1 := V0 \ A0. Next, we check V1, that is, if there exists a vertex v1 ∈ V1 such that
|Ñα,1(v1, H[V1])| < δ′n, then let A1 := {v1} ∪ Ñα,1(v1, H[V1]) and let V2 := V1 \ A1 and
repeat the procedure until no such vj exists.

Suppose we stop and obtain a set of vertices v0, . . . , vs. We claim that s < c and thus
|
⋃

0≤i≤s Ai| ≤ cδ′n. Indeed, otherwise consider v0, . . . , vc, the first c+ 1 of them and we shall
show that every pair of them is not (2α, 1)-reachable in H, contradicting our assumption.
Given 0 ≤ i < j ≤ c, as vj /∈ Ñα,1(vi, H [Vi]), vi and vj have less than αnk−1 1-reachable sets
in H[Vi]. Also, because δ′ ≪ α, 1/c, there are at most cδ′n · nk−2 ≤ αnk−1 1-reachable sets
in H \ H[Vi]. These two together yield that vi and vj are not (2α, 1)-reachable in H.

This greedy procedure needs to recompute Ñα,1(v, H[Vi]) at each time and can be
done in time O(cnk+1). Set S := V (H) \ (

⋃
0≤i≤s Ai). We have |S| ≥ (1 − cδ′)n and

|Ñα,1(v, H[S])| ≥ δ′n for every v ∈ S. ◀

6 Proof of Lemma 8

Let H be an n-vertex k-graph and define

1/n0 ≪ µ ≪ β ≪ α ≪ γ, δ′ ≪ δ, 1/k, 1/C.
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Assume n ≥ n0 and k divides n. Write c := ⌊1/δ⌋, then by Proposition 10 we have

(c + 1)δ1(H) > (c + 1)δ
(

n − 1
k − 1

)
> (1 + γ)

(
n − 1
k − 1

)
.

Thus every set of c + 1 vertices of V (H) contains two vertices that are (2α, 1)-reachable, as
otherwise, by the inclusion-exclusion principle and α ≪ γ, δ

n ≥ (c + 1)δ1(H) −
(

c + 1
2

)
· 2αnk−1 ≥ (1 + γ)

(
n − 1
k − 1

)
− (c + 1)2αnk−1 > n

a contradiction.
By Lemma 13, we find S ⊆ V (H) with |S| ≥ (1 − cδ′)n such that |Ñα,1(v, H[S])| ≥ δ′n

for any v ∈ S, in time O(nk+1). Let V ′ := V (H) \ S and thus |V ′| ≤ cδ′n. Apply Lemma 12
to H[S], and in time O(n2c−1k+1) we find a partition P1 of S into W1, . . . , Wd with d ≤ c

such that for i ∈ [d], |Wi| ≥ (δ′ − α)n and Wi is (β, 2c−1)-closed in H[S].
Let Ik−1

d be the set of all (k − 1)-vectors on P1 and note that |Ik−1
d | =

(
d+k−2

d−1
)
. Let I

be the collection of all subsets of Ik−1
d and clearly |I| = 2|Ik−1

d
| = 2(d+k−2

d−1 ). We classify the
vertices in V ′ by the types of the edges in which they are contained. Indeed, for I ∈ I, let
VI be the collection of vertices v ∈ V ′ such that the following two properties hold:

for every i ∈ I, there are at least µnk−1 edges e of H such that v ∈ e and iP1(e \ {v}) = i;
for every i /∈ I, there are fewer than µnk−1 edges e of H such that v ∈ e and iP1(e\{v}) = i.

Clearly this defines a partition of V ′. Moreover, note that V∅ = ∅ – this is because any vertex
in V∅ has vertex degree at most 2

(
d+k−2

d−1
)
µnk−1 < δ1(H), violating the minimum degree

assumption. In particular, this implies 4. Note that this partition can be built by reading
the edges for each v ∈ V ′, so in time O(nk). Next we collect the parts that are too small
and put them into a trash set V0 in a recursive manner.

We first sort VI , I ∈ I such that |VI | is increasing. Next, starting from V0 = ∅, we
recursively check in time O(|I|n) if next VI , I ∈ I in the sequence satisfies that

|VI | < (k − 1)|V0| + b, where b := k

(
k + 2(c+k−2

c−1 ) + c − 1
k

)
+
(

c + k − 2
c − 1

)
C

and if yes, put all vertices of VI to V0 (note here that V0 is dynamic). Because |I| = 2(d+k−2
d−1 ),

straightforward computation shows that after the process we have

|V0| ≤ k|I| − 1
k − 1 b ≤ k2(

c+k−2
c−1 )

(
k

(
k + 2(c+k−2

c−1 ) + c − 1
k

)
+
(

c + k − 2
c − 1

)
C

)
.

At last, in constant time we remove the empty clusters and relabel the parts VI ’s to
V1, . . . , Vs, and relabel the parts of P1 as Vs+1, . . . , Vr. The resulting partition satisfies all
desired properties in the lemma and the overall running time is O(n2c−1k+1).

7 An absorption lemma

The following result guarantees our collection Eabs of absorbing sets in the proof of Theorem 9.
The absorption method is by now a standard way to turn an almost spanning structure to a
spanning one. Here we use a variant called lattice-based absorption method, developed by
Han [11]. We remark that the following lemma is very similar to that [11, Lemma 3.4], and
the only difference is because of our refined definition of robust vectors Iµ

P(H).



L. Gan and J. Han 64:11

▶ Lemma 14 (Absorption Lemma). Suppose k ≥ 3, δ > 0 and let t := 2⌊1/δ⌋. Suppose that

1/n ≪ 1/c′ ≪ β, µ ≪ 1/t, 1/k.

Let H be an n-vertex k-graph with a partition P of V (H) satisfying Lemma 8 (1)-(5), where
n ≥ n0 and k divides n. Let n1 := |

⋃
s+1≤i≤r Vi| (where r, s are from the statement of

Lemma 8). Then there is a family Eabs consisting of at most c′ log n1 disjoint tk2-sets such
that for each A ∈ Eabs, H[A] contains a perfect matching and every k-set S ⊆ V (H) with
iP(S) ∈ Iµ

P(H) has at least
√

log n1 absorbing tk2-sets in Eabs.

Proof. Roughly speaking, in the proof we first exhibit a large number of absorbing sets
for each k-set S with iP(S) ∈ Iµ

P(H), and then show that the desired family Eabs can be
obtained by standard probabilistic arguments. Our first task is to prove the following claim.

▷ Claim 15. Any k-set S with iP(S) ∈ Iµ
P(H) has at least µt+1βk+1ntk2

1 absorbing tk2-sets
which consist of vertices in

⋃
s+1≤i≤r Vi only.

Proof. We split the proof into two cases regarding to Iµ
P,1(H) and Iµ

P,2(H). Note that all
reachable sets will be constructed with vertices in

⋃
s+1≤i≤r Vi only.

▶ Case 1. Suppose i ∈ Iµ
P,1(H).

For a k-set S = {y1, . . . , yk} with iP(S) = i, we construct absorbing tk2-sets for S as follows.
We first fix an edge W = {x1, . . . , xk} in H such that iP(W ) = i and W ∩ S = ∅. Note that
we have at least µnk − knk−1

1 > µ
2 nk choices for such an edge. Without loss of generality, we

may assume that for all i ∈ [k], xi, yi are in the same part Vj of P for j > s. Recall that by
Lemma 8 (5) Vj is (β, t)-closed in H[

⋃
s+1≤i≤r Vi]. Since xi is (β, t)-reachable to yi, there

are at least βntk−1
1 (tk − 1)-sets Ti such that both H [Ti ∪ {xi}] and H [Ti ∪ {yi}] have perfect

matchings. We pick disjoint reachable (tk − 1)-sets for each xi, yi, i ∈ [k] greedily, while
avoiding the existing vertices. Since the number of existing vertices is at most tk2 + k, we
have at least β

2 ntk−1
1 choices for such (tk − 1)-sets in each step. Note that W ∪ T1 ∪ · · · ∪ Tk

is an absorbing set for S. First, it contains a perfect matching because each Ti ∪ {xi} for
i ∈ [k] spans t vertex-disjoint edges. Second, H [W ∪ T1 ∪ · · · ∪ Tk ∪ S] also contains a perfect
matching and each Ti ∪ {yi} for i ∈ [k] spans t vertex-disjoint edges. There were at least
µ
2 nk

1 choices for W and at least β
2 ntk−1

1 choices for each Ti. Thus we find at least

µ

2 nk × βk

2k
ntk2−k

1 × 1
(tk2)! ≥ µβk+1ntk2

1

absorbing tk2-sets for S.

▶ Case 2. Suppose i ∈ Iµ
P,2(H).

Suppose S = {v1, y2, . . . , yk} with iP(S) = i and v1 ∈ Vi for some i ∈ [s]. We construct
absorbing tk2-sets for S as follows. We fix an edge with vertex set W = {v1, x2, . . . , xk} for
x2, . . . , xk ∈

⋃
s+1≤j≤r Vj \ {y2, . . . , yk} such that iP(W ) = iP(S) = i and W ∩ S = {v1}.

Note that by Lemma 8 (4) we have at least µnk−1 − (k − 1)nk−2
1 > µ

2 nk−1 choices for W

(and x2, . . . , xk are in
⋃

s+1≤i≤r Vi, by the definition of Iµ
P,2(H)). Without loss of generality,

we may assume that for all i ∈ {2, . . . , k}, xi, yi are in the same part Vj of P, j > s. Since
xi is (β, t)-reachable to yi, there are at least βntk−1

1 (tk − 1)-sets Ti in V (H) \ V0 such
that both H[Ti ∪ {xi}] and H[Ti ∪ {yi}] have perfect matchings. We pick disjoint reachable
(tk − 1)-sets in V (H) \ V0 for each xi, yi, i ∈ {2, . . . , k} greedily, while avoiding the existing
vertices. Since the number of existing vertices is at most tk(k − 1) + (k − 1), we have at least
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β
2 ntk−1

1 choices for such (tk − 1)-sets in each step. At last, let us pick a matching M of size t

in H that is vertex disjoint from the existing vertices (the purpose is to let the absorbing
set contain exactly tk2 vertices). For the number of choices for V (M), we can sequentially
choose disjoint edges satisfying any µ-robust edge vector i ∈ Iµ

P,1(H) and infer that there are
at least 1

2 µtntk choices.
Note that each choice of (W \{v1}) ∪T2 ∪· · ·∪ Tk ∪V (M) is an absorbing set for S. First,

it contains a perfect matching because each Ti ∪ {xi} for i ∈ {2, . . . , k} spans t vertex-disjoint
edges and M is a matching. Second, H[W ∪T1 ∪· · ·∪Tk ∪S] also contains a perfect matching
as each Ti ∪ {yi} for i ∈ {2, . . . , k} spans t vertex-disjoint edges, W is an edge and M is a
matching. There were at least µ

2 nk−1
1 choices for W and at least β

2 ntk−1
1 choices for each Ti

and 1
2 µtntk choices for V (M). Thus we find at least

µ

2 nk ×
(

β

2 ntk−1
1

)k−1
× 1

2µtntk × 1
(tk2)! ≥ µt+1βkntk2

1

absorbing tk2-sets for S, with vertices from
⋃

s+1≤i≤r Vi only. ◁

Continuing the proof of Lemma 14, we pick a family E of tk2-sets by including every
tk2-subset of

⋃
s+1≤i≤r Vi with probability p = c′n−tk2

1 log n1 independently, uniformly at
random. Then the expected number of elements in E is p

(
n1
tk2

)
≤ c′

tk2 log n1 and the expected
number of intersecting pairs of tk2-sets is at most

p2
(

n1

tk2

)
× tk2 ×

(
n1

tk2 − 1

)
≤ c′2(log n1)2

n1
= o(1).

Then by Markov’s inequality, with probability at least 1 − 1/(tk2) − o(1), E contains at most
c′ log n1 sets and they are pairwise vertex disjoint.

For every k-set S with iP(S) ∈ Iµ
P(H), let XS be the number of absorbing sets for S in

E . Then by Claim 15,

E(XS) ≥ pµt+1βk+1ntk2

1 = µt+1βk+1c′ log n1.

By Chernoff’s bound,

P
(

XS ≤ 1
2E(XS)

)
≤ exp

{
−1

8E(XS)
}

≤ exp
{

−µt+1βk+1c′ log n1

8

}
= o(n−k),

since 1/c′ ≪ β, µ ≪ 1/m. Thus, with probability 1 − o(1), for each k-set S with iP(S) ∈
Iµ

P(H), there are at least

1
2E(XS) ≥ µt+1βk+1c′ log n1

2 >
√

log n1

absorbing sets for S in E . We obtain Eabs by deleting the elements of E that are not absorbing
sets for any k-set S and thus |Eabs| ≤ |E| ≤ c′ log n1. ◀

8 Proof of Theorem 9

Now we are ready to prove Theorem 9. Let H be an n-vertex k-graph, and let P be a
partition given by Lemma 8 satisfying (1)-(5). We first prove the forward implication.
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8.1 Proof of the forward implication of Theorem 9
If H contains a perfect matching M , then iP(V (H) \ V (M)) = 0 ∈ Lµ

P(H). Let M ′ be the
smallest submatching of M that covers V0, so |M ′| ≤ |V0|. We shall show that there exists
a matching M ′′ ⊂ (M \ M ′) such that |M ′′| ≤ q and iP(V (H) \ V (M ′ ∪ M ′′)) ∈ Lµ

P(H),
implying that (P, Lµ

P(H)) is (V0, q)-soluble.
Indeed, suppose that M ′′ ⊂ (M \ M ′) is a smallest matching such that iP(V (H) \ V (M ′ ∪

M ′′)) ∈ Lµ
P(H) and |M ′′| = m ≥ q. Let M ′′ = {e1, . . . , em} and consider the m + 1 partial

sums

j∑
i=1

iP(ei) + Lµ
P(H),

for j = 0, 1, . . . , m. Since |Q(P, Lµ
P(H))| ≤ q ≤ m, two of the sums must be in the same

coset. That is, there exist 0 ≤ j1 < j2 ≤ m such that

j2∑
i=j1+1

iP(ei) ∈ Lµ
P(H).

So the matching M∗ := M ′ \ {ej1+1, . . . , ej2} satisfies that iP(V (H) \ V (M∗ ∪ M ′)) ∈ Lµ
P(H)

and |M∗| < |M ′′|, a contradiction.

8.2 Proof of the backward implication of Theorem 9
We first introduce the following useful constant. Given a set I of k-vectors in Zr, and
m ∈ N, consider the set J of all m′-vectors that are in the lattice in Zr generated by I with
0 ≤ m′ ≤ m. That is, for any v ∈ J , there exist ai ∈ Z, i ∈ I such that

v =
∑
i∈I

aii

Then let C∗ := C∗(r, k, I, m) be the maximum of |ai| over all such v. Furthermore, let
Cmax := Cmax(k, m) be the maximum of C∗ = C∗(r, k, I, m) over all r ≤ r0(k) := 2(2k−1

k−1 ) + k

and all families of k-vectors I ⊆ Zr.
Now we start the proof. Recall that c∗

k,ℓ ≥ c∗
k,k−1 = 1/k. Then ⌊1/c∗

k,ℓ⌋ ≤ k. Define
constants

t := 2k and C := Cmax(k, kq + k).

Define an additional constant c′ > 0 so that

1/n0 ≪ 1/c′ ≪ β, µ ≪ δ′ ≪ 1/k, 1/q, 1/C, 1/t.

Let n ≥ n0 be a multiple of k. Let H be as in the statement of the theorem and P be a
partition of V (H) satisfying Lemma 8 (1)-(5), where the C therein is as defined above. In
particular, Property (5) and the choice of t imply that for s + 1 ≤ i ≤ r, |Vi| ≥ δ′n/2 and Vi

is (β, t)-closed in H[
⋃

s+1≤i≤r Vi]. Furthermore, assume that (P, Lµ
P(H)) is (V0, q)-soluble,

that is, there is a matching M1 of size at most |V0| + q such that M1 covers V0 and it is a
(|V0| + q)-solution, that is,

iP(V (H) \ V (M1)) ∈ Lµ
P(H).
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Let n1 := |
⋃

s+1≤i≤r Vi|. We first apply Lemma 14 to H and get a family Eabs consisting of
at most c′ log n1 disjoint tk2-sets such that every k-set S of vertices with iP(S) ∈ Iµ

P(H) has
at least

√
log n1 absorbing tk2-sets in Eabs.

Note that V (M1) may intersect V (Eabs) in at most (|V0| + q)k absorbing sets of Eabs. Let
E0 be the subfamily of Eabs obtained from removing the tk2-sets that intersect V (M1). Let
M0 be the perfect matching on V (E0) that is the union of the perfect matchings on each
member of E0. Note that every k-set S with iP(S) ∈ Iµ

P(H) has at least
√

log n1 − (|V0| + q)k
absorbing sets in E0.

Next we want to “store” some disjoint edges for each k-vector in Iµ
P(H) for later steps,

and at the same time we also cover the rest vertices of
⋃

1≤i≤s Vi (recall that V0 is covered
by M1). More precisely, set C ′ := C∗(r, k, Iµ

P(H), kq + k) ≤ C. Note that Lemma 8 (3)
guarantees that for each i ∈ [s], Vi has at least

(2k−2
k−1

)
C uncovered vertices. We construct

a matching M2 in H \ V (M0 ∪ M1) which consists of C ′ disjoint edges e with iP(e) = i for
every i ∈ Iµ

P(H) and also cover the rest vertices of
⋃

1≤i≤s Vi by µ-robust edges. So

|M2| ≤
(

k + r − 1
k

)
C ′ +

∣∣∣∣∣∣
⋃

1≤i≤s

Vi

∣∣∣∣∣∣ .
Note that the process is possible because H contains at least µnk edges for each i ∈ Iµ

P,1(H)
and every vertex in

⋃
1≤i≤s Vi is in at least µnk−1 edges for i ∈ Iµ

P,2(H) and

|V (M0∪M1∪M2)| ≤ tk2c′ log n1+(|V0|+q)k+

(k + r − 1
k

)
C ′ +

∣∣∣∣∣∣
⋃

1≤i≤s

Vi

∣∣∣∣∣∣
 k < µn1 < µn,

(2)

which allow us to choose desired edges in a greedy manner. Moreover, for every i ∈ [s], the
number of µ-robust index vectors i such that i|i = 1 is at most

(2k−2
k−1

)
, and thus the process

above needs at most
(2k−2

k−1
)
C uncovered vertices from Vi, which is okay by our construction3.

Let H ′ := H \ V (M0 ∪ M1 ∪ M2) and n′ := |H ′|. So n′ ≥ n − µn and by δ(k, ℓ, k) ≤ c∗
k,ℓ

due to Theorem 11,

δℓ(H ′) ≥ δℓ(H) − µnk−ℓ ≥ (δ(k, ℓ, k) + γ/2)
(

n′ − ℓ

k − ℓ

)
.

By the definition of δ(k, ℓ, k), we have a matching M3 in H covering all but at most k vertices.
Let U be the set of vertices in H ′ uncovered by M3. We are done if U = ∅. Otherwise
because k divides n we have |U | = k.

We write Q := Q(P, Lµ
P(H)) for brevity. Recall that iP(V (H) \ V (M1)) ∈ Lµ

P(H).
Note that by definition, the index vectors of all edges in M2 are in Iµ

P(H). So we have
iP(V (H) \ V (M1 ∪ M2)) ∈ Lµ

P(H), namely, RQ(V (H) \ V (M1 ∪ M2)) = 0 + Lµ
P(H). Thus,∑

e∈M0∪M3

RQ(e) + RQ(U) = 0 + Lµ
P(H).

Suppose RQ(U) = v0 + Lµ
P(H) for some v0 ∈ Ld

max; so∑
e∈M0∪M3

RQ(e) = −v0 + Lµ
P(H).

3 Remark. This is where we need Lemma 8 (3), the lower bound of |Vi|, i ∈ [s].
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We use the following claim proved in [13] (earlier versions appeared in [11, 18]). Its proof
is via the coset arguments and is very similar to the one used in the proof of the forward
implication.

▷ Claim 16 ([13, Claim 5.1]). There exist e1, . . . , ep ∈ M0 ∪ M3 for some p ≤ q − 1 such that∑
i∈[p]

RQ(ei) = −v0 + Lµ
P(H). (3)

That is, we have
∑

i∈[p] iP(ei) + iP(U) ∈ Lµ
P(H). Let Y :=

⋃
i∈[p] ei ∪ U and thus

|Y | = pk + k ≤ qk + k. We now complete the perfect matching by absorption. Since
iP(Y ) ∈ Lµ

P(H), we have the following equation

iP(Y ) =
∑

v∈Iµ
P (H)

avv,

where av ∈ Z for all v ∈ Iµ
P(H). Since |Y | ≤ qk+k, by the definition of C ′, we have |av| ≤ C ′

for all v ∈ Iµ
P(H). Noticing that av may be negative, we can assume av = bv − cv such that

one of bv, cv is |av| and the other is zero for all v ∈ Iµ
P(H). So we have∑

v∈Iµ
P (H)

cvv + iP(Y ) =
∑

v∈Iµ
P (H)

bvv.

This equation means that given a family E = {W v
1 , . . . , W v

cv
: v ∈ Iµ

P(H)} of disjoint k-subsets
of V (H) \ Y such that iP(W v

i ) = v for all i ∈ [cv], we can regard V (E) ∪ Y as the union of
disjoint k-sets {Sv

1 , . . . , Sv
bv

: v ∈ Iµ
P(H)} such that iP(Sv

j ) = v, j ∈ [bv] for all v ∈ Iµ
P(H).

Since cv ≤ C ′ for all v and V (M2) ∩ Y = ∅, we can choose the family E as a subset of M2.
In summary, starting with the matching M0 ∪ M1 ∪ M2 ∪ M3 leaving U uncovered, we delete
the edges e1, . . . , ep from M0 ∪ M3 given by Claim 16 and then leave Y =

⋃
i∈[p] V (ei) ∪ U

uncovered. Next we delete the family E of edges from M2 and leave V (E) ∪ Y uncovered.
Finally, we regard V (E) ∪ Y as the union of at most

|M2| + qk + k ≤
√

log n1/2

k-sets S each with iP(S) ∈ Iµ
P(H).

Note that by definition, Y may intersect at most qk + k absorbing sets in E0, which
cannot be used to absorb those sets we obtained above. Since each k-set S has at least√

log n1 − (|V0| + q)k >
√

log n1/2 + qk + k absorbing tk2-sets in E0, we can greedily match
each S with a distinct absorbing tk2-set ES ∈ E0 for S. Replacing the matching on V (ES)
in M0 by the perfect matching on H[ES ∪ S] for each S gives a perfect matching in H.
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Abstract
Two equal length strings are a parameterized match (p-match) iff there exists a one-to-one function
that renames the symbols in one string to those in the other. The Parameterized Suffix Tree (PST)
[Baker, STOC’ 93] is a fundamental data structure that handles various string matching problems
under this setting. The PST of a text T [1, n] over an alphabet Σ of size σ takes O(n log n) bits of
space. It can report any entry in (parameterized) (i) suffix array, (ii) inverse suffix array, and (iii)
longest common prefix (LCP) array in O(1) time. Given any pattern P as a query, a position i in
T is an occurrence iff T [i, i + |P | − 1] and P are a p-match. The PST can count the number of
occurrences of P in T in time O(|P | log σ) and then report each occurrence in time proportional
to that of accessing a suffix array entry. An important question is, can we obtain a compressed
version of PST that takes space close to the text’s size of n log σ bits and still support all three
functionalities mentioned earlier? In SODA’ 17, Ganguly et al. answered this question partially by
presenting an O(n log σ) bit index that can support (parameterized) suffix array and inverse suffix
array operations in O(log n) time. However, the compression of the (parameterized) LCP array
and the possibility of faster suffix array and inverse suffix array queries in compact space were left
open. In this work, we obtain a compact representation of the (parameterized) LCP array. With
this result, in conjunction with three new (parameterized) suffix array representations, we obtain
the first set of PST representations in o(n log n) bits (when log σ = o(log n)) as follows. Here ε > 0
is an arbitrarily small constant.

Space O(n log σ) bits and query time O(logε
σ n);

Space O(n log σ log logσ n) bits and query time O(log logσ n); and
Space O(n log σ logε

σ n) bits and query time O(1).
The first trade-off is an improvement over Ganguly et al.’s result, whereas our third trade-off matches
the optimal time performance of Baker’s PST while squeezing the space by a factor roughly logσ n.
We highlight that our trade-offs match the space-and-time bounds of the best-known compressed
text indexes for exact pattern matching and further improvement is highly unlikely.
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1 Introduction

Text Indexing is a classical problem in Computer Science with numerous applications. The
objective is to pre-process a text T [1, n] over an alphabet Σ of size σ to create a data structure,
such that for any pattern P given as a query, we can count/report all the positions in T where
P appear as a substring. The suffix trees and suffix arrays (along with Longest Common
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Prefix array, LCP array in short) are the most widely-known text indexes [21, 37, 28]. They
occupy Θ(n) words of space (equivalently, Θ(n log n) bits) and can count the number of
occurrences in time Õ(|P |). The time for per occurrence reporting is a constant for both
structures. Although the space is linear in the number of words, there is an O(logσ n) factor
blowup when we consider the actual text size, which is n⌈log σ⌉ bits. This factor is not
negligible when σ ≪ n. For example, the space occupied by the suffix tree of the human
genome, even with very efficient implementation, such as in [27], requires about 40 GB of
space, whereas the genome occupies less than 1GB.

To address the above issue, Grossi and Vitter [20] and Ferragina and Manzini [7] introduced
succinct/compressed space alternatives, respectively known as Compressed Suffix Array (CSA)
and FM Index. They can answer counting queries in Õ(|P |) time and reporting in Õ(1) time
per occurrence. In some sense, both structures exploit the so-called rank-preserving property
of suffixes/leaves. Specifically, consider two leaves/suffixes in the sub-tree of a non-root
node in the classical suffix tree. If one were to chop off the first character of the suffixes
corresponding to these leaves, thus leading to two different suffixes, the relative ordering of
the first two suffixes within the suffix tree would be the same as their chopped counterparts.
This crucial property leads to an efficient implementation of Last-to-Front (LF) mapping,
which is defined as follows: given the leaf i corresponding to a suffix starting at position t

in the text, LF(i) is the leaf corresponding to the suffix starting at position (t− 1). The LF
mapping (or its inverse Ψ function) plays a pivotal role in the working of FM-Index and CSA
and their subsequent improvements. Later, Sadakane [35] showed that by storing O(n) extra
bits, we could also compute the LCP of any two suffixes in Õ(1) time, leading to the first
fully functional suffix tree representation in O(n log σ) bits – i.e., it can report suffix array,
inverse suffix array and LCP values. See [30] for further reading.

For numerous variants of the text indexing problem [1, 3, 18, 23, 32, 36] (such as
parameterized matching, order-preserving matching, two-dimensional matching, cartesian
tree matching, etc.), although linear space indexes are known, designing succinct/compressed
indexes has been challenging [4, 5, 10, 13, 15, 11, 17, 12, 14, 25, 26, 24, 33]. We focus on
the parameterized matching problem [1] defined as follows: two equal-length strings X and
Y are a parameterized match (p-match) if and only if there exists a one-to-one function
f : Σ→ Σ such that Y [i] = f(X[i]) for every i ∈ [1, |Y |]. For example, xyxz and yzyx are
p-match, but xyxz and xywz are not p-match. The indexing version is to count/report all
substrings of T [1, n] that p-match with a query pattern P . An index of size Θ(n log n) bits,
namely parameterized suffix tree (PST), has been known due to Baker [1]. However, the
problem of designing a space-efficient avatar of PST turns out to be challenging because the
above described rank-preserving property is no longer valid here. To that end, Ganguly et
al. [16] proposed the Parameterized Burrows-Wheeler Transform (pBWT) that can support
(parameterized) LF mapping in O(log σ) time using space close to n log σ bits. This led to
the first sub-linear space index

(
when log σ = o(log n)

)
that can support (parameterized)

suffix array and inverse suffix array operations in Õ(1) time. Although this index is a
significant achievement, it does not support LCP queries. In this paper, we augment this
missing functionality, leading to the first fully functional PST representation in compact
space. Besides this, we present three new space-time trade-offs (for suffix array access and
its inverse operation) that are clear improvements over the previous results.

1.1 Baker’s Parameterized Suffix Tree
We will use the following terminologies: for a string S, |S| is its length, S[i], 1 ≤ i ≤ |S|, is
its ith character and S[i, j] = S[i] ◦ S[i + 1] ◦ · · · ◦ S[j], where ◦ denotes concatenation. If
i > j, S[i, j] denotes an empty string. Also, Si denotes the circular suffix starting at position
i. Specifically, Si is S if i = 1 and is S[i, |S|] ◦ S[1, i− 1] otherwise.
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Baker [1] introduced the following encoding scheme for matching strings over Σ. Let $
be a special character in Σ. A string S is encoded into a string prev(S) of length |S| by
replacing the first occurrence of every character (other than $) in S by 0 and any other
occurrence by the difference in text position from its previous occurrence. Specifically, for
any i ∈ [1, |S|], prev(S)[i] = S[i] if S[i] = $; otherwise, prev(S)[i] = (i − j), where j < i is
the last occurrence of S[i] before i. If j does not exist, then prev(S)[i] = 0. For example,
prev(xy$x) = 00$3. Note that prev(S) is a string over Σ′ = {$, 0, 1, . . . , |S| − 1}, and can be
computed in time O(|S| log σ).

▶ Convention 1. In Σ′, the integer characters are lexicographically smaller than $. An
integer character i comes before another integer character j iff i < j.

▶ Fact 2 ([1]). Two (equal length) strings S and S′ are a p-match iff prev(S) = prev(S′).
Also a string P and a prefix of S are a p-match iff prev(P ) is a prefix of prev(S).

The parameterized Suffix Tree (PST) of T [1, n] is a compacted trie of all strings in
P = {prev(T [k, n]) | 1 ≤ k ≤ n}. For convenience, we assume that T [n] = $ and T [i] ̸= $ for
all i ̸= n. Each edge is labeled with a string over Σ′. We use str(u) to denote the concatenation
of edge labels on the path from the root to node u and strLen(u) = |str(u)|. Clearly, PST
consists of n leaves (one per each encoded suffix) and at most n − 1 internal nodes. We
use ℓi to denote the ith leftmost leaf and str(ℓi) to denote the ith lexicographically smallest
string in P. Also, PSA[1, n] is an associated array called the parameterized suffix array,
where PSA[i] = j and PSA−1[j] = i iff prev(T [j, n]) = str(ℓi). Let plcp(i, j) be strLen(u),
where u is the lowest common ancestor (LCA) of ℓi and ℓj ; equivalently the length of the
LCP of prev(TPSA[i]) and prev(TPSA[j]). The parameterized LCP array PLCP[1, n) is defined
as follows: PLCP[i] = plcp(i, i + 1). See Figure 1 for an illustration. Since plcp(i, j) is the
smallest element in PLCP[i, j − 1], by maintaining an O(n)-bit range minimum query data
structure [8] over PLCP, we can compute plcp(i, j) for any i, j in O(1) time.

To answer a pattern matching query P (which is a string over Σ − {$}), traverse the
PST from the root and find the highest node uP (if it exists) such that str(uP ) is prefixed
by prev(P ). This step takes O(|P | log σ) time. Then, find the range [sp, ep] of leaves (called
the suffix range of P ) under uP (this can be found in constant time by pre-processing the
tree). Output ep− sp + 1 as the answer to counting and output {PSA[i] | sp ≤ i ≤ ep} as the
answer to reporting. If uP does not exist, we conclude that P does not have any p-match
within T .

We refer to [6, 9, 29] for several other (linear space) data structures for parameterized
pattern matching.

1.2 Compact Encoding of Parameterized Suffix Array
The parameterized LF mapping is defined as PLF(i) = PSA−1[PSA[i]−1]. In [16], Ganguly et
al. showed that one can implement PLF in O(log σ) time using an n log σ + o(n log σ) + O(n)
bit index. Their index constitutes the parameterized Burrows-Wheeler Transform (PWBT),
which is an array of length n, such that PBWT[i] stores the number of distinct characters in
(the prefix of) TPSA[i] until the first occurrence T [PSA[i]− 1]. See Figure 1 for an illustration.

By maintaining a Wavelet Tree [19] over PBWT, coupled with a succinct encoding [31]
of the structure of the PST, they showed that PSA can be represented in n log σ + O

(
n +

(n/∆) log n
)

bits to support PSA[·]/PSA−1[·] queries in tPSA = O(∆ · log σ) time for any
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8

i Ti prev(Ti) prev(TPSA[i]) TPSA[i] PSA[i] fi PBWT[i] W[i] PLF(i) Ψ(i)
1 xyzxzwz$ 0003202$ 000202$5 yzxzwz$x 2 8 3 4 3 4
2 yzxzwz$x 000202$5 0002$504 xzwz$xyz 4 5 2 3 4 5
3 zxzwz$xy 00202$50 0003202$ xyzxzwz$ 1 3 $ 3 8 1
4 xzwz$xyz 0002$504 00202$50 zxzwz$xy 3 2 4 2 1 2
5 zwz$xyzx 002$0043 002$0043 zwz$xyzx 5 2 3 2 2 6
6 wz$xyzxz 00$00432 00$00432 wz$xyzxz 6 8 2 4 5 7
7 z$xyzxzw 0$004320 0$004320 z$xyzxzw 7 4 4 3 6 8
8 $xyzxzwz $0003202 $0003202 $xyzxzwz 8 ∅ 3 $ 7 3

Figure 1 The text is T [1, 8] = xyzxzwz$, where Σ = {w, x, y, z, $}.

∆ = O(logσ n) fixed in advance. For example, O(n log σ) bits of space and O(log n) query
time by fixing ∆ = logσ n. This is the first succinct/compact space representation of PSA.1
However, it does not support plcp(·, ·) queries.

1.2.1 Challenges in Making PLF Computation Faster
Note that the product of space (in bits) and query time of Ganguly et al.’s PSA is always
Θ(n log n log σ). A natural question is: can we obtain better trade-offs?

The current index is limited primarily because its main component for com-
puting parameterized LF mapping needs to support queries of the following type:
RangeCountPBWT(i, j, x, y) = |{k | k ∈ [i, j], PBWT[k] ∈ [x, y]}|. From the 4-sided range
counting lower bound [34], any O(n logO(1) σ)-bit data structure needs Ω(1 + log σ/ log log n)
time. This time becomes a bottleneck when it comes to some of the advanced suffix sampling
techniques that are used for speeding up (classical) suffix array queries using additional
space (as listed in Theorem 3); in fact, to adapt these techniques, LF mapping needs to be
implemented in O(1) time. Therefore, to prove Theorem 3, we need a new set of techniques.

1.2.2 Challenges in Compressing Parameterized LCP Array
Sadakane’s LCP compression framework [35] for traditional text indexing relies on the
following: if two suffixes begin with the same character, their LCP after chopping the
first character will be one less than their original LCP, and these two suffixes will retain

1 A succinct index for a data of size Z bits is a data structure having Z + o(z) bits. On the other hand, a
compact index needs O(Z) bits.
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their relative lexicographic rank after chopping. This allows one to compactly encode the
LCP information. Unfortunately, this is not true for parameterized strings. For e.g., let
X = wxywabcdwx$ and Y = abcdwx$ be two suffixes of T , then their respective prev
encodings are prev(X) = 0003000058$ and prev(Y ) = 000000$; hence, their p-LCP is 3. After
chopping the first characters, the respective prev encodings are 000000058$ and 00000$,
resulting in a p-LCP value of 5. Thus, chopping the first character can increase LCP; in fact,
it can also decrease or even remain the same! Moreover, the order of the suffix may switch
(as seen in this example), which adds to the difficulty. In short, the previous techniques are
not adequate for compressing parameterized LCP array.

1.3 Our Results: Fully Functional PST in Compact Space
The suffix range [sp, ep] of a pattern P can be computed in O(|P | log σ) time using Ganguly
et al.’s index [16]; so we focus on speeding up suffix array queries and reporting LCP. We
overcome the O(log σ) bottleneck of parameterized LF mapping by using its inverse, the
Ψ-function, defined as Ψ(i) = j iff PLF(j) = i. This allows us to remove the dependence on
4-sided range-queries, instead of using simpler partialRank and select queries, which can be
supported in O(1) time using succinct space. With this, we implement Ψ-function in O(1)
time and thereby obtain three trade-offs, with space-time product near n log σ. For our LCP
framework, we essentially reduce a parameterized LCP query to a traditional LCP query;
this allows us to leverage Sadakane’s framework [35].

In summary, we have the following theorem.

▶ Theorem 3. For the parameterized suffix tree of a text T [1, n] over an alphabet of size σ,
the following space-time trade-offs are possible in the word RAM model of computation with
word-size Ω(log n), where ε > 0 is an arbitrarily small constant.

Index Size (in bits) Query Time (tPSA)
O(n log σ) O(logε

σ n)
O(n log σ log logσ n) O(log logσ n)
O(n log σ logε

σ n) O(1)

All three basic queries (i.e., PSA[·], PSA−1[·] and plcp(·, ·)) are supported in O(tPSA) time.

Note that Baker’s original definition also includes “static characters” for which the match
has to be done in the traditional way. For the simplicity of exposition, we assume that all
characters in Σ, except $ are parameterized characters. We remark that our index can be
extended to incorporate static characters without any sacrifice in time or space.

Outline. We start in Section 2 with a weaker version of Theorem 3 without the LCP claims.
Specifically, we show that using an O(n log σ) bit index, we can support PSA and PSA−1

queries in O(logσ n) time. Note that this is already a factor (log σ) faster than what is
achievable using Ganguly et al.’s index [16]. Using more intricate techniques, we obtain the
PSA[·]/PSA−1[·] trade-offs in Sections 3 and 4. Finally, the technique for encoding the LCP
array is in Section 5.

2 Our Framework: A Compact Space Index

Let’s start with a few definitions that we are going to use throughout this paper.

ICALP 2022
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▶ Definition 4. Define the following (see Figure 1 for an illustration):

Notation Definition
Ψ(i) PSA−1[1] if PSA[i] = n, else PSA−1[PSA[i] + 1]
PLF(i) PSA−1[n] if PSA[i] = 1, else PSA−1[PSA[i] − 1]
fi ∅ if i = n, else the first occurrence of T [PSA[i]] in T1+PSA[i]

W[i] $ if i = n, else number of zeroes in prev(T1+PSA[i])[1, fi]
PBWT[i] W[PLF(i)]

Our goal is to prove the following theorem in this section.

▶ Theorem 5. By using an O(n log σ)-bit index, we can compute Ψ(i) in O(1) time.

Before we prove this, we will see how we can use it to achieve an O(n log σ)-bit index that
supports PSA and PSA−1 queries in O(logσ n) time. We explicitly store PSA[i] iff it equals
n or is a multiple of ∆ = ⌈logσ n⌉. Additionally, we store a bit-vector B[1, n] as follows: set
B[i] = 1 iff PSA[i] has been explicitly stored. For reporting, a PSA[j] can be retrieved in
O(1) time if B[j] = 1. Otherwise, we repeatedly apply Ψ starting from j until we reach an
index j′ = Ψ

(
. . . Ψ

(
Ψ

(
j
))

. . .
)

such that B[j′] = 1 (i.e., PSA[j′] is explicitly stored). If the
Ψ operation was applied k times, we get PSA[j] = PSA[j′]− k. The time complexity is O(k).
For PSA−1 queries, we store PSA−1[i] if i equals n or if i is a multiple of ∆. To compute
PSA−1[j], we first find the largest number j′ ≤ j, such that j′ is a multiple of ∆. Compute
j′′ = PSA−1[j′] from the sampled-PSA−1 in O(1) time. Let k = j − j′ < ∆. Starting from
j′′ carry out k successive Ψ operations and report the final index as PSA−1[j] in O(k) time.
Finally, k < ∆ = ⌈logσ n⌉. The (extra) space needed is (n/∆) log n = O(n log σ) bits. Other
trade-offs may be obtained by tuning ∆, which is what we will do using a more sophisticated
sampling technique along with a modified version of Theorem 5; details are in Section 4.

2.1 Succinct Data-Structure Toolkit
▶ Fact 6 ([31]). A tree having m nodes can be stored in 2m + o(m) bits, such that if each
node is labeled by its pre-order rank, the following operations can be supported in O(1) time:

pre-order(u)/post-order(u) = pre-order/post-order rank of node u.
parent(u) = parent of node u.
nodeDepth(u) = number of edges on the path from the root to u.
lca(u, v) = lowest common ancestor (LCA) of two nodes u and v.
lmostLeaf(u)/rmostLeaf(u) = leftmost/rightmost leaf in the subtree rooted at u.
levelAncestor(u, D) = ancestor of u such that nodeDepth(u) = D.

Also, we can find the pre-order rank of the ith leftmost leaf in O(1) time.

▶ Fact 7 ([2]). Given an array A[1, t] over Σ = {1, 2, . . . , σ}, by storing an O(t log σ)-bit
structure, we can support the following operation in O(1 + log log σ

log t ) time:

rankA(i, c) = number of occurrences of c in A[1, i]

Additionally, the following operations can be supported in O(1) time:

access A[i]
partialRankA(i) = rank(i, A[i]), i.e., the number of occurrences of A[i] is the range [1, i]
selectA(i, c) = the ith occurrence of c in A
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2.2 Proof of Theorem 5
From their definitions, we observe: Ψ(i) = j ⇐⇒ PLF(j) = i, and W[i] = PBWT[Ψ(i)].
Additionally, we use χ(i) to denote the number of suffixes k such that Ψ(k) ≤ Ψ(i) and W[k] =
W[i]. Based on these, it is easy to see that if j = Ψ(i), then j is the χ(i)th occurrence of
W[i] in PBWT. Given χ(i), we can compute Ψ(i) as:

Ψ(i) = selectPBWT

(
χ(i), W[i]

)
Note that arrays PBWT[1, n] and W[1, n] take O(log σ) bits per entry. Therefore, we

preprocess them into compact data structures that support access/select queries in O(1)
time (see Fact 7). Therefore, given χ(i), we can compute Ψ(i) in constant time. To this end,
we present the following lemma, which completes the proof of Theorem 5.

▶ Lemma 8. By using an O(n log σ)-bit data structure, we can compute χ(i) in O(1) time.

The rest of the section is dedicated to proving Lemma 8. For brevity, throughout we use
“suffix i” to denote the suffix corresponding to leaf ℓi in the PST.

▶ Lemma 9. Let i < n. Suppose u is the highest node on the path from the root to ℓi such
that fi ≤ strLen(u)− 1. Then, for any leaf ℓj in the subtree of u, we have fj = fi

Proof. Let d = plcp(i, j). Since d ≥ strLen(u) ≥ fi + 1, we have prev
(
TPSA[i][1, d]

)
=

prev
(
TPSA[j][1, d]

)
, i.e., the suffixes starting at PSA[i] and PSA[j] p-match until their first d

characters. Clearly, the first occurrence of T [PSA[i]] in T1+PSA[i] must be the same as the
first occurrence of T [PSA[j]] in T1+PSA[j], i.e., fi = fj . ◀

▶ Lemma 10. If W[i] = W[j], then Ψ(j) < Ψ(i) iff
Case A: either fj = plcp(i, j)
Case B: or, fj ̸= plcp(i, j), j < i, and fi ̸= plcp(i, j)

Proof. Recall Convention 1. Let d = plcp(i, j). If fi = ∅ or fj = ∅, then W[i] ̸= W[j]. So,
fi, fj < n. Also, prev(TPSA[i])[d + 1] ̸= prev(TPSA[j])[d + 1], by the definition of LCP. We now
prove both cases (see Figure 2 for an illustration).

i

fi

Case B Case B Case A

fj

Blue suffixes are those suffixes j such that Ψ(j) < Ψ(i)

u

We assume strLen(u) ≥ 1 + fi and fi >

strLen(parent(u)). The case when fi = strLen(w)
for another node w can be analyzed similarly.

Case A: fj = plcp(i, j)
Case B: j < i and fi 6= plcp(i, j)

Any suffix j from this region
that belongs in Case A will
also satisfy Ψ(j) < Ψ(i)

Figure 2 Illustration of Lemma 10.
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If fj = d, then prev(TPSA[j])[d + 1] = d and prev(TPSA[Ψ(j)])[d] = 0. From Lemma 9, we
conclude fi ≥ d. Moreover, fi ̸= d because prev(TPSA[i])[d + 1] ̸= d (by the definition of
LCP). Therefore, fi > d. This implies prev(TPSA[i])[d + 1] ̸= 0; otherwise, W[i] ̸= W[j],
a contradiction. Consequently, either prev(TPSA[Ψ(i)])[d] > 0 or prev(TPSA[Ψ(i)])[d] = $.
Finally, note that plcp

(
Ψ(i), Ψ(j)

)
≥ d − 1. So after removing the first character of

the two suffixes, their first (d − 1) characters will p-match. Hence, Ψ(j) < Ψ(i) when
fj = plcp(i, j).
Now, assume fj ̸= d. If fj < d, then fi = fj (from Lemma 9) and plcp

(
Ψ(i), Ψ(j)

)
=

d − 1. Then, Ψ(j) < Ψ(i) iff j < i because prev(TPSA[Ψ(i)])[d] = prev(TPSA[i])[d + 1]
and prev(TPSA[Ψ(j)])[d] = prev(TPSA[j])[d + 1]. If fj > d, then prev(TPSA[j])[d + 1] =
prev(TPSA[Ψ(j)])[d]. Also, fi ≥ d (from Lemma 9), implying either prev(TPSA[Ψ(i)])[d] =
prev(TPSA[i])[d + 1] or prev(TPSA[Ψ(i)])[d] = 0. The latter happens only when fi = plcp(i, j).
Hence, we have Ψ(j) < Ψ(i) when j < i and fi ̸= plcp(i, j).

This concludes the proof. ◀

To compute χ(i), we count the number nA and nB of Case A and B suffixes respectively;
note that the cases are disjoint. Then, χ(i) = 1 + nA + nB . We provide an overview first.

First, we locate the edge on which fi lies, i.e., locate the edge (parent(u), u), such that
strLen(parent(u)) < 1 + fi ≤ strLen(u). This is facilitated by associating a bit with each
node and set it to 1 iff strLen(parent(·)) < 1 + fj ≤ strLen(·) for some suffix j in its sub-tree.
Therefore, u is the lowest ancestor of ℓi that is associated with 1. By maintaining an O(n)
bit structure, we can answer this query in O(1) time (see Lemma 11).

For counting nA, we walk the path from root to parent(u), and for each node x on this
path find out the number of suffixes j satisfying Case A: fj = strLen(x). Note that we afford
to store fj explicitly, instead store if fj lies on an edge from node x to its child node y. Luckily,
that’s enough for us – for any suffix j, if fj = strLen(x) lies on the edge (x, y), then for all
suffixes j′ in the subtree of y, we have fj′ = strLen(x) (by Lemma 9). So, the count can be
obtained via a simple unary encoding of suffixes of this kind. For counting Case B: j < i and
fi ̸= plcp(i, j), walk from root to a node v; here, v = u if fi > strLen(u), and v = parent(u) if
fi = strLen(u). Initialize nB to the number of leaves that lie to the left of this path. Then,
add the number of leaves lying to the left of ℓi within the sub-tree of v to nB . Note that for
Cases A and B, we must consider only the suffixes j satisfying W[j] = W[i]; this is achieved
by collecting suffixes based on their W[·] values into different trees. Finally, we cannot afford
to walk the path; therefore, we rely on the result in Lemma 12.

▶ Lemma 11. Consider a compacted tree τ having L leaves, where each node is associated
with a 0 or 1. By using an O(L)-bit data structure, given a query leaf ℓ, we can find the
lowest ancestor v (if it exists) of ℓ associated with a 1 in O(1) time.

▶ Lemma 12. Consider a compacted tree τ having L leaves, where each node w is associated
with an integer g(w) ≥ 0. For any node v, we have

∑
u∈Sv

g(u) ≤ Lv, where Sv is the set of
nodes in the subtree of v and Lv is the number of leaves in the subtree of v. By using an
O(L)-bit data structure, given a query leaf ℓ, we can compute G(ℓ) =

∑
v g(v) in O(1) time,

where v is an ancestor of ℓ.

The proofs of Lemmas 11 and 12 (deferred to Section 2.3) relies on mostly standard
techniques from succinct data structures. Next we present the implementation details of χ(i)
computation.
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The Data Structure. To compute χ(i), we only need to consider those suffixes k, such
that W[k] = W[i]. To this end, we create (at most) σ compacted tries PST1, PST2, . . . , PSTσ,
where PSTα is the compacted trie of the strings in {prev(T [PSA[k], n]) |W[k] = α}. We do
not store these trees explicitly; rather, we store their topology with succinct functionalities
using Fact 6.

We pre-process each PSTα using Lemma 11 as follows: associate each node w in PSTα

with 1 if strLen(parent(w)) ≤ fi < strLen(w) for some leaf ℓi under w with W[i] = α. We
also pre-process PSTα using Lemma 12 as follows: associate a node w with the number βw,
where βw is the number of suffixes i in the subtree of w in PSTα such that fi = strLen(w).
Note that

∑
w βw over all nodes w in all the trees is O(nα), where nα is the number of leaves

in PSTα. The space needed for all such PSTα trees combined is O(n) bits. Finally, we store
a partial-rank data structure (Fact 7) on W. The total space needed is O(n log σ) bits.

Query Processing. Given i, in O(1) time, we first jump to the corresponding leaf ℓi′ in
PSTW[i] by using the partialRankW(i) query. Now locate the highest node u in PSTW[i] such
that 1+ fi ≤ strLen(u) in O(1) time using Lemma 11. We consider the following two scenarios
separately. To determine which case a suffix falls in, we store a bit-vector F [1, n], such that
F [i] = 1 iff the suffix i belongs to the first case. In each of the following cases, we can
compute χ(i) in O(1) time, which completes the proof of Lemma 8.

Case 1: strLen(parent(u)) < fi < strLen(u) for an ancestor node u of ℓi.
Let j be such that W[j] = W[i]. Applying Lemma 10, Ψ(j) < Ψ(i) if either j < i or
fj = plcp(i, j). Thus, χ(i) = i′ +

∑
v βv, where v is an ancestor of ℓi′ . The last term can

be computed in O(1) time using Lemma 12.

Case 2: fi = strLen(u) for an ancestor node u of ℓi.
Let j be such that W[j] = W[i]. Applying Lemma 10, Ψ(j) < Ψ(i) if either (1) j < i and
plcp(i, j) ̸= fi, or (2) fj = plcp(i, j). Let w be the child of u on the path to ℓi′ . Using
Fact 6, in O(1) time, we compute lmostLeaf(u) and lmostLeaf(w), which are respectively
the leftmost leaf in the subtree of u and the subtree of w. Thus,

χ(i) = i′ − (lmostLeaf(w)− lmostLeaf(u)) +
∑

v

βv

where v is an ancestor of ℓi′ . The last term can be computed in O(1) time using Lemma 12.
This completes the proof of Lemma 8.

2.3 Proofs of Lemma 11 and Lemma 12
We rely on standard techniques from succinct data structures. For both lemmas, we employ
the following marking scheme. Starting from the leftmost leaf, every C = c⌈log L⌉ leaves
form a group, where c is a constant to be decided later. (The last group may have fewer than
C leaves.) Mark the LCA of the first and last leaf of each group. The number of marked
nodes is O(L/C) [22].

We prove Lemma 11 first. At each marked node, we store the depth of its nearest ancestor
(including itself) which is associated with a 1. Traverse the subtree τu∗ of a marked node
u∗ in pre-order, and create a bit-string Bu∗ as follows: when entering the subtree of a node
w, append 1 if w is associated with a 1, followed by a 0 to Bu∗ . Additionally, for every
i ∈ [1, Lu∗ ], store Au∗ [i] = node depth of the nearest ancestor of ℓu∗,i associated with a 1 if
the ancestor is in τu∗ , else Au∗ [i] = −1. For each marked node u∗, maintain a pointer to
the corresponding Au∗ and Bu∗ pair. Pre-process τu∗ with Fact 6. Lastly, we maintain a
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bit-vector to detect in O(1) time whether a leaf has an ancestor associated with 1, or not.
The total space as before can be bounded by O(L) bits. Given a query leaf ℓk, we check
whether ℓk has an ancestor associated with 1 or not. Assume that it does. Then, we first
locate the lowest marked node v∗ as described earlier. Let d∗ be the node depth stored at v∗.
Let k′ = k − C⌊k/C⌋. Check the k′th entry of the satellite array of v∗, and let it be d′. If
d′ >= 0, then the desired node is given by levelAncestor(ℓ, d′), else the desired node is given
by levelAncestor(ℓ, d∗).

Now, we prove Lemma 12. At each marked node u∗, store G(u∗). Since the number of
marked nodes is at most ⌈L/C⌉, the space needed is O( L

C log L) = O(L) bits. Let τu∗ be the
subtree rooted at a marked node u∗. Note that τu∗ has at most 2C nodes. Traverse tree
τu∗ in pre-order, and create a bit-string Bu∗ as follows: when entering the subtree of a node
w, append g(w) in unaryto Bu∗ . Additionally, for every i ∈ [1, Lu∗ ], store Au∗ [i] = G(ℓu∗,i),
where Lu∗ is the number of leaves in the subtree of u∗, and ℓu∗,i is the ith-leftmost leaf in τu∗ .
The space needed to store the array Au∗ is O(C log C) bits. Note that |Bu∗ | ≤ 2C; hence,
the number of possible such bit-strings is at most 22C . We store all possible combinations of
Au∗ and Bu∗ , which requires O(22CC log C) bits, which is o(L) bits for c = 1/4. For each
marked node u∗, maintain a pointer to the corresponding Au∗ and Bu∗ pair, which requires
L
C log(22C) = O(L) bits. Finally, pre-process τu∗ with Fact 6. The total space needed is O(L)
bits. Given a query leaf ℓk, we first locate the lowest marked node v∗ = lca(ℓx, ℓy) of ℓk,
where x = 1 + C⌊k/C⌋, y = min{L, C(1 + ⌊k/C⌋)}. Let d∗ be the value stored at v∗. Let
k′ = k − C⌊k/C⌋. Check the k′th entry of the satellite array of v∗, and let it be d′. Then,
G(ℓk) = d∗ + d′ is computed in O(1) time.

3 Generalized Ψ Function

We start with a definition that we are going to use throughout this section, as well as a
couple of lemmas that will form the backbone of the indexes to achieve the three trade-offs.

▶ Definition 13. Define Ψk(i) = PSA−1[PSA[i] + k].

Our main arsenal to obtain the three trade-offs is the following version of Theorem 5,
which enables the computation of “some” Ψk(·) in time faster than O(k).

▶ Lemma 14. For any predefined integer ∆, we can construct an O(n log σ)-bit structure
DS(∆) that computes Ψ∆(i) for any i with PSA[i] being a multiple of ∆ in O(1) time.

We prove this lemma in this section. Let’s start with the intuition. Note that in Lemma 14,
if one is willing to relax the time to O(∆), we can simply apply Theorem 5 ∆ times. Here,
we will chop off the first ∆ characters of a suffix, where the characters are from Σ. To
reduce the time to O(1), the main idea is to consider a character from the alphabet Σ∆;
clearly, chopping off one character from Σ∆ is equivalent to chopping off ∆ characters from
Σ. Note that each character from Σ∆ requires ∆ log σ bits for representation; however, since
we sample ≈ n/∆ suffixes, the total space will still be O((n/∆) ·∆ log σ) = O(n log σ) bits.
The proof techniques are similar to that of Theorem 5.

▶ Definition 15. A suffix is ∆-sampled if its starting position is a multiple of ∆. Let S∆
be the collection of all ∆-sampled suffixes of T , i.e., S∆ = {T∆, T2∆, . . . }. Let n∆ = |S∆|
be the number of ∆-sampled suffixes. A ∆-sampled parameterized suffix array, denoted
as PSA∆[1, n∆], stores the starting position of the suffixes in lexicographic order of their
prev-encoding.
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▶ Definition 16. Let B∆[1, n] be a bitmap, such that B∆[i] = 1 iff PSA[i] is a multiple of ∆.

▶ Lemma 17. Given i ∈ [1, n∆], we can find a j ∈ [1, n], such that PSA[j] = PSA∆[i] in
O(1) time by maintaining an O(n)-bit space structure.

Proof. We maintain a bit-vector B∆[1, n] using Fact 7, where B∆[i] = 1 iff TPSA[i] is ∆-
sampled. The total space needed is O(n) bits. Observe that TPSA∆[i] is exactly the ith

∆-sampled suffix in lexicographic order; thus, j = selectB∆(i, 1). ◀

▶ Definition 18. Let TPSA[i] be a ∆-sampled suffix. Define the following:

Notation Definition (◦ denotes concatenation)
Ψ∆(i) PSA−1[PSA[i] + ∆]
PLF∆(i) PSA−1[PSA[i] − ∆]
W∆[i] W[i] ◦ W[Ψ(i)] ◦ · · · ◦ W[Ψ∆−1(i)]
PBWT∆[i] PBWT[PLF∆−1(i)] ◦ PBWT[PLF∆−2(i)] ◦ · · · ◦ PBWT[i]

▶ Observation 19. Let TPSA[i] be a ∆-sampled suffix. The following observations can be
deduced from the above definitions:

Ψ∆(i) = j iff PLF∆(j) = i

If Ψ∆(i) = j, then PBWT∆[i] = W∆[j]

▶ Definition 20. Let TPSA[i] be a ∆-sampled suffix. Define

χ∆(i) = |{k, where TPSA[k] is ∆−sampled, Ψ∆(k) ≤ Ψ∆(i) and W∆[k] = W∆[i]}|

Reduction from function Ψ∆ to χ∆. Using Observation 19, it is easy to see that if
j = Ψ∆(i), then j is the χ∆(i)th occurrence of W∆[i] in PBWT∆. Given χ∆(i), we can
compute Ψ∆(i) as: Ψ∆(i) = selectB∆

(
selectPBWT∆

(
χ∆(i), W∆[i]

)
, 1

)
Note that the arrays PBWT∆[1, n∆] and W∆[1, n∆] take O(∆ log σ) bit per entry. We

preprocess them into compact data structures that support access/select queries in O(1)
time (see Fact 7). The space needed is O(n∆ ·∆ log σ) = O(n log σ) bits. Thus, given χ∆(i),
we can compute Ψ∆(i) in constant time. To this end, we present the following lemma,which
completes the proof of Lemma 14.

▶ Lemma 21. Let TPSA[i] be a ∆-sampled suffix. By using an O(n log σ)-bit data structure,
we can compute χ∆(i) in O(1) time.

3.1 Proof of Lemma 21
For the ease of notation, let id = Ψd(i), jd = Ψd(j), and Ld = plcp(id, jd), where d ∈ [1, ∆].
Let i0 = i, j0 = j, and L0 = plcp(i, j). Our proof hinges on Lemma 22, which says, for
any two suffixes TPSA[i] and TPSA[j] such that i < j and W∆[i] = W∆[j], the relative order
between i and j can change at most once while applying the Ψ-operation ∆ number of times.

▶ Lemma 22. Consider two ∆-sampled suffixes TPSA[i] and TPSA[j] such that i < j, and
W∆[i] = W∆[j].

If there exists a γ ∈ [1, ∆− 1] such that iγ > jγ , then ∀γ′ ∈ [γ + 1, ∆], iγ′ > jγ′ .
Consider the minimum γ ∈ [1, ∆] such that iγ > jγ , then fjγ−1 = Lγ−1.
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Proof. We prove the first part of the lemma; the second part follows directly. Consider
the smallest γ ∈ [1, ∆ − 1] such that Ψγ(i) > Ψγ(j). Since Ψγ−1(i) < Ψγ−1(j), we have
str(ℓjγ−1)[1 + Lγ−1] > str(ℓiγ−1)[1 + Lγ−1]. Then, str(ℓjγ

)[1 + Lγ ] = 0 < str(ℓiγ
)[1 + Lγ ];

otherwise, applying Lemma 9, it is easy to show that W∆[i] ̸= W∆[j]. For the purpose
of contradiction, consider the smallest γ′ > γ such that Ψγ′(i) < Ψγ′(j). Note that
Lγ′−1 = Lγ − (γ′ − γ − 1). Hence, str(ℓjγ′−1)[1 + Lγ′−1] = 0 < str(ℓiγ′−1)[1 + Lγ′−1]. Since
Ψγ′(i) < Ψγ′(j), applying Lemma 9, str(ℓiγ′ )[1 + Lγ′ ] = 0 and fiγ′ = Lγ′ , which contradicts
W∆[i] = W∆[j]. This completes the proof. ◀

Using Lemmas 9, 10, and 22, we get the following.

▶ Lemma 23. Consider two ∆-sampled suffixes TPSA[i] and TPSA[j] such that i < j, and
W∆[i] = W∆[j]. If there exists a γ ∈ [1, ∆] such that iγ > jγ , then

i∆ > j∆, and
for any k such that TPSA[k] is ∆-sampled, W∆[i] = W∆[k], and plcp(k, j) > plcp(i, j), we
have i∆ > k∆ .

To compute χ∆(i), note that we only need to consider those suffixes k, such that
W∆[k] = W∆[i]. To this end, we create (at most) σ∆ compact tries PST∆

1 , PST∆
2 , . . . , PST∆

σ∆ ,
where PSTα is the compacted trie of the strings in

{prev(T [PSA[k], n]) |W∆[k] = α and TPSA[k] is ∆ sampled}

We do not store these trees explicitly; rather, we maintain the data-structure of Fact 6 for
each tree topology. Note that given a leaf k in PST, where TPSA[k] is ∆ sampled, we can
jump to its corresponding leaf k′ in PSTW∆ in O(1) time using an O(n log σ) structure (the
bit-array B∆, and Fact 7 over W∆).

Consider a tree PST∆
x . Let the number of suffixes lying in this tree be mx. For any leaf

j′ in PST∆
x , let map(j′) be the equivalent leaf in PST. Consider a node u in PST∆

x . For each
γ ∈ [1, ∆] we write two numbers Gγ(u) and Hγ(u) defined as:

Gγ(u) = the number of leaves j′ in the subtree of u such that fjγ
= strLen(u), where

j = map(j′)
If fjγ

̸= strLen(parent(u)), where j′ is a leaf in the subtree of u and j = map(j′), then
Hγ(u) = 0. Else, Hγ(u) = the number of leaves k′ in the subtree of parent(u) such that
fkγ
̸= strLen(parent(u)) and pre-order(ℓk′) < pre-order(u), where k = map(k′)

Note that
∑

u Gγ(u) ≤ mx and
∑

u Hγ(u) ≤ mx (using Lemmas 22 and 23). Hence,∑
u Gγ(u) and

∑
u Hγ(u) over γ ∈ [1, ∆] can be stored in O(mx∆) bits using unary encoding.

To compute χ∆(i), we first jump to the corresponding leaf i′ in PST∆
W∆[i] in O(1) time. Let

U be the set of ancestors of ℓi′ Now, χ(i) = i′ +
∑∆

γ=1
∑

u∈U Gu(ℓi′)−
∑∆

γ=1
∑

u∈U Hu(ℓi′),
which can be computed in O(1) time using (slightly adapted versions of) Lemmas 11 and 12.
Since

∑σ∆

x=1 mx = n∆, the total space is O(n log σ) bits; recall that mx is the number of
suffixes in PST∆

x . This concludes the proof.

4 Achieving the Three Trade-offs of PSA

We prove the trade-offs using the result in Lemma 14 as a black box. Additionally, we
will use the sampled PSA and sampled PSA−1 in Lemma 24 for all the three cases. Let
λ = 2⌈log logσ n⌉, the next highest power of 2 greater than or equal to logσ n. The strategy
for computing PSA[i] is the same as before (refer to Section 2), i.e., find the smallest k < λ,
such that PSA[i] = PSA[j]− k, where j = Ψk(i) and Bλ[j] = 1, but in fewer number of steps.
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▶ Lemma 24 (Sampled PSA and PSA−1). A sampled-PSA is a structure that supports the
following query: for any i, it reports PSA[i] if PSA[i] is a multiple of λ, and ∞ otherwise.
Similarly, a sampled-PSA−1 is a structure that computes PSA−1[i] for any i which is a
multiple of λ. We can maintain them in O(n log σ) bits and answer queries in O(1) time.

Proof. Note that the sampled-PSA−1 is an array of size O(n/λ) in which each entry can be
recorded using ⌈log n⌉ bits and accessed in O(1) time. For the sampled-PSA, we maintain
the bitmap Bλ[1, n] in Definition 16 by choosing ∆ = λ. Additionally, we associate PSA[i]
with those i’s where Bλ[i] = 1. The space required is (n + (n/λ) log n) = O(n log σ) bits, and
the query can be easily handled in O(1) time. ◀

4.1 Achieving tPSA = O(logε
σ n) using O(n log σ) bits

Let ∆t be (logε
σ n)t rounded to the next highest power of 2. We maintain DS(∆t) and

B∆t
[1, n] for t = 0, 1, 2, 3, . . . , 1/ε. (Recall Lemma 14 and Definition 16 for definitions of this

data structures.) The space is 1/ε×O(n log σ) bits, as desired.
To compute PSA[i], we initialize k = 0, j = i, t = 0 and follow the steps below.

1. If Bλ[j] = 1, access PSA[j] in O(1) time from the sampled-PSA and report PSA[j]− k.
2. Else if B∆t+1 [j] = 1, update t← t + 1 and go to Step 1.
3. Else we compute j′ = Ψ∆t(j) using DS(∆t) in O(1) time, update j ← j′, k ← k + ∆t,

and then we repeat from Step 2.

Then, the number of times we perform (constant time) Ψ∆t(·) operations on DS(∆t) is at
most ∆t+1/∆t = logε

σ n. Therefore, the overall time complexity is O( 1
ε logε

σ n).
Note that the algorithm for PSA[i] computes several j’s, starting with j = i, such that

the j computed after tth “step 1” guarantees that PSA[j] ≥ PSA[i] is the smallest number
divisible by ∆t. Therefore, the correctness follows from that fact that PSA[i] is PSA[j]− k.

The computation of PSA−1[·] is analogous, but in the reverse order, as desired. Specifically,
we perform queries on DS(∆t)’s, in descending order of t.

4.2 Achieving tPSA = O(log logσ n) using O(n log σ log logσ n) bits
We maintain DS(∆t) structure of Lemma 14 and B∆t

[1, n], where ∆t = 2t, for
t = 0, 1, 2, 3, . . . , log λ, where λ = 2⌈log logσ n⌉ as defined in Lemma 24. The space is
O(n log σ)× log λ bits, as desired.
To compute PSA[i], we initialize k = 0, j = i, t = 0 and follow the steps below.

1. If Bλ[j] = 1, access PSA[j] in O(1) time from the sampled-PSA and report PSA[j]− k.
2. Else if B∆t+1 [j] = 1, update t← t + 1 and go to Step 1.
3. Else compute j′ = Ψ∆t(j) using DS(∆t) in O(1) time, update j ← j′ and k ← k + ∆t.

Then update t← t + 1 and go to Step 1.

We perform at most log λ constant-time operations on DS(·), hence tPSA = O(log logσ n).
The computation of PSA−1[·] (and correctness proof) is analogous as in the previous section.

4.3 Achieving tPSA = O(1) using O(n log σ logε
σ n) bits

Here we use Lemma 25, which is a slight modification of Lemma 14. We remark that the
proof is rather straightforward given the proof of Lemma 14; so, we omit it.
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▶ Lemma 25. For any predefined integers ∆ and δ < ∆ (both are powers of 2), we can
construct an O(n log σ)-bit structure that computes Ψδ(i) for any i with (PSA[i] + δ) being a
multiple of δ in O(1) time. We call this data structure DS(∆, δ).

We define an array Eδ
∆[1, n] such that Eδ

∆[i] is
−∞ if PSA[i] is not a multiple of ∆
an integer f ∈ [0, ∆/δ), such that (PSA[i] + f · δ) is a multiple of ∆.

Let ∆t be (logε
σ n)t rounded to the next highest power of 2. We store DS(∆t+1, f ·∆t) for

all t ∈ [0, 1/ε] and f ∈ [0, ∆t+1/∆t). Additionally, we store E∆t

∆t+1
[1, n] for all t ∈ [0, 1/ε].

Therefore, the total space is n/ε×O
(

log σ logε
σ n + log(logε

σ n)
)

bits.
To compute PSA[i], we initialize k = 0, j = i, t = 0 and follow the steps below.

1. If Bλ[j] = 1, access PSA[j] in O(1) time from the sampled-PSA and report PSA[j]− k.
2. Else if B∆t+1 [j] = 1, update t← t + 1 and go to Step 1.
3. Else find f from E∆t

∆t+1
[1, n], such that (PSA[i] + f ·∆t) is a multiple of ∆t+1. Compute

j′ = Ψf ·∆t(j) using DS(∆t+1, f ·∆t) in O(1) time, update j ← j′ and k ← k + f ·∆t.
Then go to Step 2.

We issue at most one (constant time) query on DS(∆t, ·) per t. Therefore, tPSA = O(1/ε).
The computation of PSA−1[·] (and correctness proof) is analogous to the discussion in the
previous two sections.

5 Encoding Parameterized Longest Common Prefix (pLCP) Array

Recall that PLCP[i] = plcp(i, i + 1) for 1 ≤ i < n. We introduce a new encoding scheme,
which converts a string S to a string encode(S) over an alphabet Σ′′ = {0, 1, . . . , σ} as
follows. We replace each character S[i] with 0 if i is the first occurrence of S[i], else
replace it with the number of distinct characters in S[j, i], where j < i is the rightmost
occurrence of S[i] before i. For example, encode(xyxxzyx) = 0021033. For any two strings
S and S′, encode(S) = encode(S′) iff prev(S) = prev(S′); the proof is straightforward using
mathematical induction.

Let T ′ = encode(T ). Let SAT ′ [1, n] be the suffix array of T ′, i.e., SAT ′ [i] = j and
SA−1

T ′ [j] = i iff the ith lexicographically smallest suffix of T ′ starts at position j. Also, let
lcpT ′(i, j) be the length of the longest common prefix of the suffixes of T ′ starting at SAT ′ [i]
and SAT ′ [j]. The following is immediate from known results on encoding suffix trees.

▶ Fact 26 ([20, 35]). We can answer SAT ′ [·] and SA−1
T ′ [·] queries as follows:

in tSA = O(logε
σ n) time using an O(n log σ)-bit index

in tSA = O(log logσ n) time using an O(n log σ log logσ n)-bit index
in tSA = O(1) time using an O(n log σ logε

σ n)-bit index
Moreover, we can answer lcpT ′(·, ·) queries in O(ttSA) time using O(n) extra bits.

We have the following crucial lemma.

▶ Lemma 27. Let xi be the smallest number such that the number of distinct characters in
TPSA[i][1, PLCP[i]] and TPSA[i][1, xi] are the same. Then,

PLCP[i] = xi + lcpT ′

(
SA−1

T ′

[
PSA[i] + xi

]
, SA−1

T ′

[
PSA[i + 1] + xi

])
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Proof. Since PLCP[i] ≥ xi, yi = PLCP[i]− xi is the length of the longest common prefix of
the strings obtained by deleting the first xi characters of prev(TPSA[i]) and prev(TPSA[i+1])
respectively. Equivalently, yi is the longest common prefix of the suffixes of encode(T )
starting at positions PSA[i] + xi and PSA[i + 1] + xi respectively. The proof follows from the
definition of xi. ◀

▶ Theorem 28. Suppose PSA[·] and SA−1
T ′ [·] values are accessible in times tPSA and tSA

respectively, we can compute PLCP[i] = xi + yi for any i in time O(tSA + tPSA) using an
O(n log σ)-bit structure. We can also support plcp(·, ·) queries in the same time.

Proof. We first describe the structure for computing xi. If σ > log n, we store xi explicitly
in log n bits if xi > σ log n and in O(log(σ log n)) bits otherwise. All xi’s that are larger
than σ log n can be stored in O(n) bits as they are no more than n/ log n. The space needed
for the rest is n log(σ log n) = O(n log σ) bits. If σ ≤ log n, maintain an array C, where
C[i] = TPSA[i][xi] and a rank-select data structure (Fact 7) over T . The space is O(n log σ) bits.
Since xi is the first occurrence of C[i] in T [PSA[i], n], we compute xi = selectT

(
rankT

(
PSA[i]−

1, C[i]
)

+ 1, C[i]
)
− PSA[i] + 1 in time tPSA + O(log(log σ/ log log n)) = O(tPSA).

We now focus on computing yi. Find j = SA−1
T ′ [PSA[i]+xi] and k = SA−1

T ′ [PSA[i+1]+xi]
in time O(tSA + tPSA). From Lemma 27, we have yi = lcpT ′(j, k). We handle lcpT ′(·, ·) queries
in time O(tSA) using O(n) extra bits [35].

Finally, to answer plcp(·, ·) queries, we maintain a Range Minimum Query (RMQ)
structure [8] of size 2n + o(n) over the PLCP array with O(1) query time. Then, given any i

and j > i, compute k = arg min{PLCP[k] | k ∈ [i, j)} and report plcp(i, j) = PLCP[k]. ◀

Theorem 3 follows from Theorem 28, Fact 26, and the trade-offs in Section 4.
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1 Introduction

A homomorphism from a graph G to a graph H is an edge-preserving mapping from the
vertices of G to the vertices of H. Homomorphisms are fundamental constructs which have
been studied from a wide variety of perspectives [2, 3, 13]. Our focus here will be on the
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class of problems which ask whether an input n-vertex graph G admits a homomorphism to
a fixed target graph H. This “meta-problem” – which we simply call Hom(H) – captures,
among others, the classical c-Coloring problems when H is set to the complete graph on c

vertices. Famously, Hell and Nešetřil [15] proved that Hom(H) is polynomial-time solvable if
H is bipartite or has a loop, and NP-complete otherwise.

While the aforementioned result provides a basic classification of the complexity of
Hom(H), it does not say much in terms of how quickly one can actually solve these problems.
Indeed, the usual assumption that P ̸= NP is not sufficient to obtain tight bounds for
the running times of algorithms. While upper bounds can be straightforwardly obtained
by designing a suitable algorithm, the corresponding lower bounds usually rely on the
Exponential Time Hypothesis (ETH) or the Strong Exponential Time Hypothesis (SETH),
which allows for even tighter bounds [18, 19, 23]. It is not difficult to design a brute-force
algorithm for the homomorphism problem that runs in time O∗(|V (H)|n) for every choice of
H, and thanks to the breakthrough result of Cygan et al. we now know that this running
time is essentially tight under the Exponential Time Hypothesis (ETH) [6] as long as one
considers only the dependency on n and |V (H)|.

Still, it is often possible to circumvent this lower bound and obtain significantly better
runtime guarantees. One approach to do so is to consider restrictions on the class of targets:
if H is a complete graph then Hom(H) can be solved in time O∗(2n), and there are also
several algorithms that achieve running times of the form O∗(α(H)n) where α(H) is some
structural parameter of H [12, 29, 30]. The other is to exploit the properties of the input
graph G, which are commonly captured by a suitably defined structural parameter. The
most commonly used graph parameter in this respect is treewidth [28], which informally
measures how “tree-like” a graph is.

When considering treewidth, it is once again not difficult to obtain an algorithm that
runs in time O∗(|V (H)|tw), where tw is the treewidth of G; as before, it was much more
difficult to show that this is essentially optimal. The first SETH-based tight lower bound in
this setting was actually shown for special cases of the related problem of LHom(H), where
each vertex in the graph G comes with a list of admissible targets for the homomorphism [9];
this was later lifted to a full classification [24]. A nearly-complete SETH-based lower bound
result for Hom(H) itself was only obtained recently by Okrasa and Paweł Rzążewski [25]; in
particular, the result covers all targets which are so-called projective cores. It is known that
almost all graphs are projective cores [16, 25, 31], and it is worth noting that the authors
showed that their result can be lifted to all targets under long-standing conjectures on the
properties of projective cores [21,22].

While treewidth is the most prominent structural graph parameter, it is not the most
general1 one that can be used to efficiently solve Hom(H). Indeed, standard dynamic
programming techniques can be used to obtain a O∗((2|V (H)|)cw) time algorithm for the
problem, where cw stands for clique-width [4]: a well-studied graph parameter that is bounded
not only on all graph classes of bounded treewidth, but also on well-structured dense classes
such as complete graphs. But is this basic algorithm generally optimal (mirroring the
situation for treewidth [25]), or can one obtain better runtime dependencies on clique-width?

Contribution. Our aim is to obtain a detailed understanding of the fine-grained complexity
of Hom(H) in terms of the clique-width of G and the fixed target H . As a starting point for
our investigation, we note that Lampis used the SETH to obtain tight bounds for c-Coloring

1 There is a hierarchy of graph parameters (see, e.g., [1, Figure 1]), where parameter A is more general
than parameter B if there are graph classes of bounded A and unbounded B but the opposite is not true.
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with respect to clique-width [20]. Interestingly, already for this special case, the upper and
lower bounds differ from those of the aforementioned simple dynamic programming algorithm:
if H is a complete graph, then Hom(H) can be solved in time O∗((2|V (H)| − 2)cw) [20] and
this is tight under the SETH. However, as noted by Piecyk and Rzążewski [27], it was not at
all obvious how these bounds can be lifted to general choices of H.

In order to achieve our goals we need to improve upon the basic dynamic programming
idea to identify a “hopefully correct” base of the exponent for every choice of H . Towards our
first result, we identify a structural property of H called the signature number (denoted s(H))
which, intuitively, captures the number of non-trivial neighborhood classes of vertex subsets
in H (the signature set). We then obtain a non-trivial dynamic programming algorithm that
solves Hom(H) in time where the base of the exponent is precisely the signature number.
We note that s(H) is 2|V (H)| − 2 for complete graphs H, and so this result also provides a
succinct and broader explanation for the running time of Lampis’ algorithm [20].

▶ Theorem 1. Let H be a fixed graph. Hom(H) can be solved in time O∗(s(H)cw(G)) for
each input graph G, assuming an optimal clique-width expression of G is provided as part of
the input.

With this upper bound, we proceed to the main technical contribution of this paper:
establishing a corresponding lower bound under the SETH. The main difficulty here is that we
need a reduction that is delicate on one hand, since it needs to preserve the clique-width, but
is on the other hand also flexible enough to work for many different choices of H; moreover,
the reduction has to rely on the signature numbers of these graphs in some way.

To provide an intuitive description of the reduction, let us focus for now on the case
where H is a projective core. On a high level, the main building block is an S-gadget which,
given an arbitrary set S of pairs of vertices in H and two vertices p and q of the input
graph G, ensures that every homomorphism f satisfies (f(p), f(q)) ∈ S. After providing
a generic construction for such S-gadgets which is clique-width preserving and works for
every valid choice of H, we use these to obtain implication gadgets and or gadgets which
restrict how a solution homomorphism can behave on a selected set of vertices in G. The
formalization of these gadgets is the main technical hurdle towards the desired result; once
that is done, we can lift the idea used in the earlier reduction of Lampis [20] that established
clique-width lower bounds for c-Coloring by reducing from Constraint Satisfaction
(CSP) to Hom(H). One crucial distinction in our reduction is that we use elements of the
signature set (as opposed to color sets) to represent domain values in the CSP instance.

To lift these considerations to cases where H is not a projective core, we unfortunately
need to add an extra layer of complexity. Similarly as in the previous treewidth-based lower
bound for Hom(H) [25], one can base this step on conjectures of Larose and Tardif [21, 22]
that classify all remaining targets as certain graph products with special properties (notably,
all of the factors must be “truly projective”). The approach used for treewidth [25] was then
to essentially repeat all steps of the proof for projective cores, with the added difficulty that
one uses the properties of products instead of dealing directly with projective cores.

While this approach could be used here as well, instead we unify the two cases (H being
a projective core, and H being a product) by defining the notion of W -projectivity for some
factor W of H. In particular, if H is a projective core then it itself is H-projective, while if
H is a product with truly projective factor Hi then it is Hi-projective. As our main result,
we obtain an SETH-based lower bound which essentially shows that for each W -projective
graph H, s(W ) is the optimal base of the clique-width exponent for solving Hom(H):
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▶ Theorem 2. Let H be a fixed non-trivial core with prime factorization H1 × . . . × Hm.
Assume that H is Hi-projective for some i ∈ [m]. Then there is no algorithm solving Hom(H)
in time O∗((s(Hi) − ε)cw(G)) for any ε > 0, unless the SETH fails.

By also deliberately considering prime factorizations in the algorithm which we provide
for Theorem 1, we can obtain an upper bound on the complexity of Hom(H) that matches
the lower bound from Theorem 2. For a discussion explicitly relating these complexity bounds
in the context of the aforementioned conjectures of Larose and Tardif, we refer to Section 6.

2 Preliminaries

We use standard terminology for graph theory [7]. Let [i] denote the set {1, . . . , i}. For a
mapping f : A → B and A′ ⊆ A, let f |A′ denote the restriction of f to A′. We will use the
O∗(·) notation to suppress factors polynomial in the input size.

Homomorphisms and Cores
For two graphs G and H, a homomorphism from G to H is a mapping h : V (G) → V (H),
such that for every uv ∈ E(G) we have h(u)h(v) ∈ E(H). If there exists a homomorphism
from G to H, we denote this fact by G → H, and if h is a homomorphism from G to
H, we denote that by h : G → H. If there is no homomorphism from G to H, we write
G ̸→ H. If G → H and H → G, we say that G and H are homomorphically equivalent.
In particular, since the composition of homomorphisms is a homomorphism, if G and H

are homomorphically equivalent, then for every graph F we have that F → G if and only
if F → H. It is straightforward to verify that homomorphic equivalence is an equivalence
relation on the class of all graphs. On the other hand, if G ̸→ H and H ̸→ G for some graphs
G, H, we say that G and H are incomparable.

We say that a graph H is a core if every homomorphism h : H → H is an automorphism.
Equivalently, H is a core if for every proper induced subgraph H ′ of H it holds that H ̸→ H ′.
We say that a core H ′ is a core of H if H ′ is an induced subgraph of H and H → H ′. Clearly,
each core graph is a core of itself. Each graph has a unique (up to isomorphism) core, and
the core of H can be equivalently defined as the smallest (with respect to the number of
vertices) graph that is homomorphically equivalent with H [16].

A graph H is ramified if N(u) ̸⊆ N(v) for every two distinct vertices u, v of H. Observe
that each core is ramified; otherwise one could define f : H → H that is an identity on all
vertices of H but u and set f(u) = v. This would be a homomorphism to a proper subgraph
of H, contradicting the fact that H is a core.

We say that a graph H is trivial if its core has at most two vertices.

▶ Observation 3 ([15]). A graph H is trivial if and only if it is either bipartite or contains a
vertex with a loop.

Proof. It is straightforward to observe that there exist three trivial cores: K1, K2, and K∗
1 ,

where by K∗
1 we denote the graph that consists of one vertex with a loop.

If H contains a vertex with a loop, then K∗
1 is the core of H. If H is bipartite, then the

core of H is either K1 (if H has no edges) or K2 (since mapping the vertices of one bipartition
class to one vertex of K2, and another bipartition graph to the other, is a homomorphism).

For the other direction, assume that H is a non-bipartite loopless graph. Since it is
loopless, K∗

1 cannot be its core. Clearly, H has at least one edge, and therefore H ̸→ K2
Moreover, H contains an odd cycle C2k+1 as a subgraph, hence, C2k+1 → H . If now H → K2,
composition of these homomorphism gives that C2k+1 → K2, which is equivalent to stating
that C2k+1 is 2-colorable, a contradiction. ◀
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Observe that trivial cores H correspond precisely to the polynomial cases of the Hom(H)
problem. Since our aim is to focus on the NP-hard cases of the problem, from here onward
we will assume that the target graph is non-trivial.

Signature Sets
For a vertex v of a graph H , let NH(v) denote the set of neighbors of v in H . If the graph is
clear from the context, we will omit the subscript H and write N(v).

For a non-empty set T ⊆ V (H) we say that S(T ) is the signature set of T if S(T ) =⋂
t∈T N(t). We say that a non-empty set S ⊆ V (H) is a signature set, if there exists T such

that S = S(T ). We denote by S(H) the set of all signature sets of H, and we note that
{V (H), ∅} ∩ S(H) = ∅.

▶ Observation 4. If T is a proper non-empty subset of V (H), and a ∈ T , b ∈ S(T ), then
ab ∈ E(H). Moreover, for non-empty subsets A, B ⊆ V (H), S(A ∪ B) = S(A) ∩ S(B).

We note that the operation of taking a signature set is reversible on S(H):

▶ Observation 5. For every A ∈ S(H), S(S(A)) = A.

Proof. By the definition of signature set, A × S(A) ⊆ E(H), so A ⊆ S(S(A)). For the
converse direction observe that as A ∈ S(H), there exists a non-empty subset T of V (H) such
that A = S(T ). Pick any x ∈ S(S(A)), then E(H) ⊇ {x}×S(A) = {x}×S(S(T )) ⊇ {x}×T .
Hence by definition x ∈ S(T ) = A. ◀

Let the signature number of H , denoted s(H), be defined as |S(H)|. As mentioned in the
introduction, the signature number will play a crucial role in our upper and lower bounds.

Observe that, if H is a target and hence non-trivial, for every nonempty T ⊆ V (H) we
have that S(T ) ∩ T = ∅. From that it is easy to see that V (H) never belongs to S(H). Since,
by definition, ∅ /∈ S(H), we get the following bounds for s(H).

▶ Observation 6. Let H be a graph with no loops. Then s(H) ⩽ 2|V (H)| − 2.

Notice that since 2|V (H)| − 2 is the number of all proper non-empty subsets of V (H), the
equality in Observation 6 holds if and only if H is a clique.

If S ∈ S(H), we call T such that S(T ) = S a witness of S. Clearly, we can have distinct
T1, T2 such that S(T1) = S(T2), however, notice that in such a case there exists T = T1 ∪ T2
such that S(T ) = S(T1) = S(T2). Hence, there exists a unique maximal (with respect to
inclusion) witness of S, and we denote it by M(S). In fact, it is not difficult to see that
M(S) = {v ∈ V (H) | S ⊆ NH(v)}; for S(M(S)) = S to hold, it is clearly necessary that
S ⊆ NH(v) for all v ∈ M(S). On the other hand, as M(S) is maximal all v for which this is
true are contained in M(S).

In this way signature sets and their witnesses are in one-to-one correspondence. While
not necessary to obtain our algorithmic and lower bounds for Hom(H) parameterized by
clique-width, this offers an alternative perspective on the role of signatures in our results.

In fact, the signature number could equivalently be defined as the “maximal witness
number” and signature sets could be replaced by maximal witnesses in all our proofs: Let
M(H) = {M(S) : S ∈ S(H)}.

▶ Observation 7. S(H) = M(H).
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Proof. Let T be a fixed non-empty subset of V (H) such that S(T ) ̸= ∅. Observe that the
definition and the maximality of M(S(T )) implies that S(S(T )) =

⋂
t∈S(T ) N(t) = M(S(T ))

Since T and S(T ) are non-empty, we get that S(H) ⊃ M(H). For the other direction
observe that M(M(S(T ))) = S(T ). Assume the contrary, then there exists a vertex v /∈ S(T )
such that N(v) ⊃ M(S(T )). However, T ⊂ M(S(T )) ⊂ N(v) meaning that v ∈ S(T ), a
contradiction. Thus, S(H) = M(H). ◀

We note that if H is a core graph, we can also bound the minimum cardinality of S(H).

▶ Observation 8. Let H be a core graph, H ̸= K1. Then s(H) ⩾ |V (H)|.

Proof. Observe that if H is a core distinct from K1, then it does not contain isolated vertices.
Therefore, for each v ∈ V (H) we have N(v) ∈ S(H). On the other hand, since H is a core,
it is ramified. In particular, for every distinct v, w ∈ V (H) we have N(v) ̸= N(w). Hence
different vertices give rise to different signature sets. ◀

Clique-Width and Clique-Width Expressions
For a positive integer k, we let a k-graph be a graph whose vertices are labeled by [k]. For
convenience, we consider a graph to be a k-graph with all vertices labeled by 1. We call the
k-graph consisting of exactly one vertex v (say, labeled by i) an initial k-graph and denote it
by i(v).

The clique-width of a graph G is the smallest integer k such that G can be constructed
from initial k-graphs by means of iterative application of the following three operations:
1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by ρi→j);
3. Edge insertion: adding an edge from each vertex labeled by i to each vertex labeled by j

(i ̸= j; denoted by ηi,j).
A construction of a k-graph G using the above operations can be represented by an algebraic
term composed of ⊕, pi→j and ηi,j (where i ≠ j and i, j ∈ [k]). Such a term is called a
k-expression defining G, and we often view it as a tree with each node labeled with the
appropriate operation. Conversely, we call the k-graph that arises from a k-expression its
evaluation. The clique-width of G is the smallest integer k such that G can be defined by a
k-expression which we then also call a clique-width expression of G.

Many graph classes are known to have constant clique-width; examples include all graph
classes of constant treewidth and co-graphs [5]. Moreover a fixed-parameter algorithm is
known to compute a k-expression of the input where k is bounded in f(cw) [26].

3 Algorithm

As our first contribution, we obtain an algorithm that will play a crucial role for upper-
bounding the fine-grained complexity of Hom(H).

▶ Theorem 1. Let H be a fixed graph. Hom(H) can be solved in time O∗(s(H)cw(G)) for
each input graph G, assuming an optimal clique-width expression of G is provided as part of
the input.

Proof. Assume, w.l.o.g., that G is connected and |V (G)| > 1. We will describe a dynamic
program that proceeds in a leaf-to-root fashion along the provided k-expression σ of G. For
a subexpression τ ⊆ σ, we denote the evaluation of τ by Gτ , and by V i

τ ⊆ V (Gτ ) the vertex
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set that has label i in Gτ . We say that i is a live label in τ if there is an edge of G which is
incident to V i

τ and does not appear in Gτ . Denote the set of live labels in τ by Lτ . Since G

is connected, Lτ ̸= ∅ for any proper subexpression τ of σ.
For each subexpression τ of σ, we will compute a set Pτ consisting of functions p : Lτ →

S(H) where p ∈ Pτ if and only if there exists a homomorphism hp from Gτ to H such that
p(i) ⊆ S(hp(V i

τ )), i ∈ Lτ . We will say that p ∈ Pτ describes the homomorphism hp in τ or,
equivalently, that hp witnesses p in τ . Intuitively, we will use p(i) to preemptively store the
images of the neighbors of V i

τ in the final graph G – that is why we store not only the exact
signature, but all signatures that occur as subsets. We remark that storing the “current”
images of the neighbors of V i

τ in Gτ would be sufficient to obtain a conceptually simpler
fixed-parameter algorithm parameterized by clique-width, but in that case it is not obvious
how one can avoid a quadratic dependency on clique-width in the exponent.

Observe that for any homomorhism h : Gτ → H, images of vertices with live labels should
be connected in H with images of their future neighbors. In particular, for any i ∈ Lτ ,
S(h(V i

τ )) ̸= ∅ and hence S(h(V i
τ )) ∈ S(H). Therefore h is described in τ by some p ∈ Pτ . By

definition, Lσ = ∅ and hence G is homomorphic to H if and only if Pσ contains the empty
mapping, i.e., if Pσ = {∅} (as opposed to Pσ = ∅). It remains to show how to correctly
compute each Pτ . To do so, we distinguish based on the outermost operation of τ :

(a) τ = i(v) for some i ∈ [cw(G)]. In this case Lτ = {i}, and Pτ contains all functions
p : {i} 7→ S(H) such that p(i) ⊆ NH(u) for some u ∈ V (H).

(b) τ = ρi→j(τ ′) and Pτ ′ has already been computed. If i ̸∈ Lτ ′ , we can correctly set
Lτ = Lτ ′ and Pτ = Pτ ′ . If i ∈ Lτ ′ and j ̸∈ Lτ ′ , then Lτ = (Lτ ′ \ {i}) ∪ {j} and

Pτ =
{

p : Lτ → S(H) | ∃p′ ∈ Pτ ′ : p(ℓ) =
{

p′(ℓ) if ℓ ̸= j

p′(i) if ℓ = j

}
.

Finally, if {i, j} ⊆ Lτ ′ , then Lτ = Lτ ′ \ {i} and Pτ = {p′|Lτ
| p′ ∈ Pτ ′ ∧ p′(i) = p′(j)}.

For correctness in the last case, let h be a homomorphism from Gτ to H and Sℓ ∈ S(H) be
such that Sℓ ⊆ S(h(V ℓ

τ )), ℓ ∈ Lτ . Observe that V ℓ
τ = V ℓ

τ ′ for ℓ ∈ Lτ \ {j} and V j
τ = V j

τ ′ ∪ V i
τ ′ .

In particular, Sj ⊆ S(h(V i
τ ′)) and Sj ⊆ S(h(V j

τ ′)). By definition of Pτ ′ , there exists p′ ∈ Pτ ′

such that p′(ℓ) = Sℓ for ℓ ∈ Lτ \ {j} and p′(i) = p′(j) = Sj . The function p ∈ Pτ , defined by
p = p′|Lτ

, satisfies p′(ℓ) = Sℓ, ℓ ∈ Lτ .
On the other hand, fix some p ∈ Pτ . Let p′ ∈ Pτ ′ be a function such that p arises

from p′ in the construction of Pτ . Consider a witness h of p′ in τ ′. For every ℓ ∈ Lτ \ {j}
we have V ℓ

τ = V ℓ
τ ′ and so p(ℓ) = p′(ℓ) ⊆ S(h(V ℓ

τ )). Moreover, p(j) = p′(j) ⊆ S(h(V j
τ ′))

and p(j) = p′(i) ⊆ S(h(V i
τ ′)). By Observation 4, we have p(j) ⊆ S(h(V i

τ ′)) ∩ S(h(V j
τ ′)) =

S(h(V i
τ ′ ∪ V j

τ ′)) = S(h(V j
τ )). Hence p witnesses h in τ .

(c) τ = τ (1) ⊕ τ (2) where Pτ (1) and Pτ (2) have already been computed. In this case
Lτ = Lτ (1) ∪ Lτ (2) . We define

Pτ = {p = p1 ∪ p2 | p1 ∈ Pτ (1) ∧ p2 ∈ Pτ (2) ∧ (∀ℓ ∈ Lτ (1) ∩ Lτ (2) : p1(ℓ) = p2(ℓ))}

Intuitively, we construct a homomorphism on the disjoint union of two subgraphs by
“gluing together” the homomorphisms on the subgraphs. If the subgraphs share any live
labels, after this step they will all be treated equally. For this reason we require the images
of the neighbors of such labels to be the same in both subgraphs.
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For correctness, let h be a homomorphism from Gτ to H and Sℓ ∈ S(H) be such
that Sℓ ⊆ S(h(V ℓ

τ )), ℓ ∈ Lτ . Observe that for every ℓ ∈ Lτ (1) ∩ Lτ (2) , V ℓ
τ ⊇ V ℓ

τ (i) , so
Sℓ ⊆ S(h(V ℓ

τ (i))), i = 1, 2. By definition, there exists pi ∈ Pτ (i) such that pi(ℓ) = Sℓ for
ℓ ∈ Lτ (i) , i = 1, 2. For p = p1 ∪ p2 we have p(ℓ) = Sℓ, ℓ ∈ Lτ .

For the converse, fix some p ∈ Pτ . Let p1 ∈ Pτ (1) , p2 ∈ Pτ (2) be functions such that
p = p1 ∪ p2. Let hi be a witness of pi in τ (i), i = 1, 2. We define h = h1 ∪ h2. Since Gτ

doesn’t contain edges between V (Gτ (1)) and V (Gτ (2)), h is a homomorphism from Gτ to
H. For all ℓ ∈ Lτ (1) \ Lτ (2) , we have p(ℓ) = p1(ℓ) ⊆ S(h1(V ℓ

τ )) = S(h(V ℓ
τ )), similarly for

ℓ ∈ Lτ (1) \ Lτ (2) . For ℓ ∈ Lτ (1) ∩ Lτ (2) , we have p(ℓ) = pi(ℓ) ⊆ S(hi(V ℓ
τ (i))), i = 1, 2, so

p(ℓ) ⊆ S(h1(V ℓ
τ (1))) ∩ S(h2(V ℓ

τ (2))) = S(h(V ℓ
τ )). Hence h is a witness of p in τ .

(d) τ = ηi,j(τ ′) and Pτ ′ has already been computed. In this case Lτ = Lτ ′ \ I where
I ⊆ {i, j} is the set of live labels in τ ′ that are no longer live labels in τ . We set Pτ = {p : Lτ →
S(H) | ∃p′ ∈ Pτ ′ :

(
p′(i) ⊇ S(p′(j)) ∧ p|Lτ \{i,j} = p′|Lτ \{i,j} ∧ p(i) ⊆ p′(i) ∧ p(j) ⊆ p′(j)

)
}.

Intuitively, we can add the edges between two live labels if and only if there are edges
between their images in H . Our restriction on p′ is an expression of this condition in terms of
images of neighbors and their signatures. Indeed, for correctness, let h be a homomorphism
from Gτ to H and Sℓ ∈ S(H) be such that Sℓ ⊆ S(h(V ℓ

τ )), ℓ ∈ Lτ . There exists p′ ∈ Pτ ′

such that p′(ℓ) = Sℓ for all ℓ ∈ Lτ \ {i, j}, p′(i) = S(h(V i
τ )) and p′(j) = S(h(V j

τ )). As h is
a homomorphism, we have h(V i

τ ′) × h(V j
τ ′) ⊆ E(H), which means that S(h(V j

τ ′)) ⊇ h(V i
τ ′),

i.e. p′(j) ⊇ h(V i
τ ′). Then S(p′(j)) ⊆ S(h(V i

τ ′)) = p′(i) and hence p′ gives rise to p ∈ Pτ such
that p(ℓ) = Sℓ, ℓ ∈ Lτ .

On the other hand, let p ∈ Pτ arise from p′ ∈ Pτ ′ . Consider a witness h : Gτ ′ → H of
p′ in τ ′. To see that h preserves edges between V i

τ ′ and V j
τ ′ , recall that p′(i) ⊇ S(p′(j)),

so S(h(V i
τ ′)) ⊇ p′(i) ⊇ S(p′(j)) ⊇ S(S(h(V j

τ ′))) ⊇ h(V j
τ ′). Hence h(V i

τ ′) × h(V j
τ ′) ⊆ E(H)

and h is a homomorphism from Gτ to H. By construction, for every ℓ ∈ Lτ it holds that
p(ℓ) ⊆ p′(ℓ) ⊆ S(h(V ℓ

τ )), so h witnesses p in τ .
It is easy to verify that |Pτ | ⩽ s(H)cw(G) for each subexpression τ of σ. This means that

in each step, the computation requires time O(cw(G)s(H)2s(H)cw((G))). Overall this yields
a complexity of O(|V (G)|cw(G)s(H)2s(H)cw((G))) ⊆ O∗(s(H)cw(G)). ◀

4 On Products and Projectivity

While Theorem 1 will serve as the upper bound that will match our target SETH-based
lower bounds for Hom(H) for the “most difficult” choices of H, in many cases one can in
fact supersede the algorithm’s runtime by exploiting well-known properties of target graphs.

As a simple example showcasing this, consider the wheel graph W6 (see Figure 1). Since
W6 is 3-colorable, it holds that W6 → K3, and since K3 is a core and an induced subgraph
of W6, it is the core of W6. We recall that if H is a core of H ′, then for every graph G it
holds that G → H if and only if G → H ′. Hence, having an instance G of Hom(W6), we can
compute a core of W6 (since we assume that the target graph is fixed, this can be done in
constant time), and use Theorem 1 for H = K3 to decide whether G → W6 in total running
time O∗(s(K3)cw(G)). As s(K3) < s(W6) (as showcased in Figure 1), this yields a better
running time bound than the direct use of Theorem 1. While this example shows that the
signature number can decrease by taking an induced subgraph, we remark that it can never
increase.

▶ Observation 9. Let H and H ′ be graphs such that H is an induced subgraph of H ′. Then
s(H) ⩽ s(H ′).
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Figure 1 The graphs W6 (left) and K3 (right). Colors on the vertices of W6 indicate the
homomorphism h : W6 → K3. We note that {{0}} ∪ {{0, i} | i ∈ [6]} ⊆ S(W6). Since K3 is a clique,
we have s(K3) = 6 < 7 ⩽ s(W6).

Proof. Given a connected graph Q without loops, one may consider an equivalence relation
∼Q on the set of proper nonempty subsets of V (Q) defined as follows: V1 ∼Q V2 if and
only if V1 and V2 have the same signature sets in Q. Observe that s(Q) is equal to the
number of equivalence classes of ∼Q. Hence to prove the claim, it suffices to show that
whenever two sets belong to different equivalence classes of ∼H , they also belong to different
equivalence classes of ∼H′ . For this, consider any two proper non-empty subsets V1 and
V2 of V (H) such that V1 ≁H V2. Without loss of generality, we assume that there exists
v ∈ (

⋂
t∈V1

NH(t)) \ (
⋂

t∈V2
NH(t)). Then vt ∈ E(H) ⊆ E(H ′) for every t ∈ V1, i.e., v

belongs to the signature set of V1 in H ′. On the other hand, vt0 /∈ E(H) for some t0 ∈ V2.
As H is induced subgraph of H ′, it means that vt0 /∈ E(H ′), so v doesn’t belong to the
signature set of V2 in H ′ and hence V1 ≁H′ V2. ◀

At this point, we may ask whether the procedure of simply computing the unique core H

of the fixed target H ′ and then applying Theorem 1 for H could yield a tight upper bound
for Hom(H ′). Unfortunately, the situation is more complicated than that, and we need to
introduce a few important notions in order to capture the problem’s fine-grained complexity.

Let the direct product H1 × H2 of graphs H1, H2 be the graph defined as follows:

V (H1 × H2) = V (H1) × V (H2),
E(H1 × H2) = {(x1, x2)(y1, y2) : xiyi ∈ E(Hi) for every i ∈ {1, 2}}.

We call H1 and H2 the factors of H1 × H2. Clearly, the operation × is commutative, and
since it is also associative, we can naturally extend the definition of direct product to more
than two factors, i.e., H1 × H2 × . . . × Hm = H1 × (H2 × . . . × Hm). Note that for every
graph H that contains at least one edge, it holds that H × K∗

1 = H.
In the remaining part of the paper we will often consider vertices that are tuples. If such

a vertex is an argument of some function and in cases where this does not lead to confusion,
we omit one pair of brackets; similarly, we omit internal brackets in nested tuples where this
does not lead to confusion. Moreover, for any graph H and for an integer ℓ, we denote by Hℓ

the graph
ℓ︷ ︸︸ ︷

H × . . . × H . As an example, instead of writing ((x1, x2), y1) ∈ ((H1 × H1) × H2),
we write (x1, x2, y1) ∈ (H2

1 × H2).
If H = H1 × . . . × Hm for some graphs H1, . . . , Hm, we say that H1 × . . . × Hm is a

factorization of H . A graph H on at least two vertices is prime if the fact that H = H1 × H2
for some graphs H1, H2 implies that H1 = K∗

1 or H2 = K∗
1 . If H has a factorization

H1 × . . . × Hm such that for every i ∈ [m] the graph Hi is prime, we call H1 × . . . × Hm a
prime factorization of H.

▶ Theorem 10 ([8, 14]). Any connected non-bipartite graph with more than one vertex has a
unique prime factorization (into factors with possible loops).
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Consider a graph H1×. . .×Hm, and let i ∈ [m]. A mapping πi : V (H1×. . .×Hm) → V (Hi)
such that πi(x1, . . . , xℓ) = xi is called the (i-th) projection of H1 × . . . × Hm. Clearly, such a
mapping is always a homomorphism.

▶ Observation 11. Let G, H1, . . . , Hm be graphs. Then G → H1 × . . . × Hm if and only if
for every i ∈ [m] we have G → Hi.

Proof. Let f : G → H1×. . .×Hm. Then for every i ∈ [m] (by [m] we denote the set of integers
{1, . . . , m}) we have a homomorphism fi : G → Hi. Conversely, if for every i ∈ [m] we have
gi : G → Hi, then we can define g : G → H1 × . . . × Hm as g(x) = (g1(x), . . . , gm(x)). ◀

Crucially, in some cases Observation 11 allows us to improve the bounds given by
Theorem 1 even if H is a core, simply by considering all possible factorizations of H.

▶ Corollary 12. Let H be a graph with factorization H1 × . . . × Hm, and let G be an instance
graph of Hom(H). Assuming that the clique-width expression σ of G of width cw(G) is given,
the Hom(H) problem can be solved in time maxi∈[m] O∗(

s(Hi)cw(G)).

Proof. Observe that if G is an instance of Hom(H), by Theorem 1 for every i ∈ [m] we can
decide whether G → Hi in time O∗(

s(Hi)cw(G)). Then, if G is a yes-instance of Hom(Hi) for
every i ∈ [m], we return that G is a yes-instance of Hom(H). Otherwise, we return that G is
a no-instance of Hom(H). The correctness of this procedure follows from Observation 11. ◀

On the other hand, the notion of signature sets we introduced in the previous section
behaves multiplicatively with respect to taking direct product of graphs.

▶ Observation 13. Let H = H1 × H2. Then S(H) = S(H1) × S(H2).

Proof. We prove that S(H) is of form {S(T1) × S(T2) : Ti ⊆ V (Hi), S(Ti) ̸= ∅ for i = 1, 2}.
Let T1 and T2 be some subsets of, respectively, V (H1) and V (H2). Clearly,

S(T1) × S(T2) = [
⋂

t∈T1

N(t)] × [
⋂

t′∈T2

N(t′)] =
⋂

(t,t′)∈T1×T2

N(t, t′) = S(T1 × T2). (1)

Therefore, if S(T1) and S(T2) are non-empty, we get that S(T1) × S(T2) ∈ S(H).
To see that S(H) ⊆ S(H1) × S(H2), we show that for every T ⊆ V (H) set S(T ) is of

the form S(T1) × S(T2) for some T1, T2. Define T1 and T2 to be minimal sets such that
T ⊆ T1 ×T2. Hence, by (1), S(T1)×S(T2) = S(T1 ×T2) ⊆ S(T ). On the other hand, for every
(s, s′) ∈ S(T ) we have s ∈

⋂
t∈T1

N(t) and s′ ∈
⋂

t′∈T2
N(t′), so the equality follows. ◀

It follows from Observation 13 that if H is a graph with factorization H1 × . . . × Hm,
then s(H) = s(H1) · . . . · s(Hm). Therefore if there exist at least two factors Hi, Hj such that
s(Hi), s(Hj) > 1, Corollary 12 yields a better running time than Theorem 1.

In order to analyze the possible matching lower bounds for our algorithms, in the remaining
part of the section, we focus only on connected non-trivial cores H that are provided with
their unique prime factorization H1 × . . . × Hm; if H is prime, we technically consider this
factorization to be H × K∗

1 (noting that this is not a prime factorization, and that K∗
1 is the

only non-simple graph in this article). We note that the factors of a core must satisfy some
necessary conditions.

▶ Observation 14 ([25]). Let H be a connected, non-trivial core with factorization H =
H1 × . . . × Hm such that Hi ̸= K∗

1 for all i ∈ [m]. Then for every i ∈ [m] the graph Hi is a
connected non-trivial core, incomparable with Hj for j ∈ [m] − {i}.
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Observation 14 in particular implies that if H is a connected non-trivial graph with
factorization H1 × . . . × Hm, then at least one of the factors Hi must be non-trivial, and
that K1 and K2 never appear as factors of a connected non-trivial graph.

In the remaining part of this section we introduce a few more important definitions, in
particular, the well-established notion of projectivity for non-trivial graphs H.

We say that a homomorphism f : Hℓ → H, for some ℓ ⩾ 2, is idempotent if for each
x ∈ V (H) it holds that f(x, . . . , x) = x. Graph H is projective if for every ℓ ⩾ 2, every
idempotent homomorphism f : Hℓ → H is a projection. We note that every projective graph
on at least three vertices must be connected, ramified, non-bipartite and prime [22].

Here, we introduce a generalization of the projectivity property for non-trivial cores,
which turns out to be the central component required to establish the lower bound for our
problem. As a first step towards this, we lift the notion of idempotency as follows. Let H be
a connected, non-trivial prime core, and let W be either a connected core on at least three
vertices incomparable with H, or the graph K∗

1 . Let f : A → H be a homomorphism where
A = Hℓ ×W ; observe that ℓ is uniquely determined by either W being incomparable with the
prime core H, or W being K∗

1 . We say that f is H-idempotent if for each x ∈ V (H), y ∈ V (W )
it holds that f(x, . . . , x, y) = x.

Now, let us consider a non-trivial core H which admits a prime factorization H1 ×. . .×Hm

and let i ∈ [m]. We say that H is Hi-projective if Hi is non-trivial and every Hi-idempotent
homomorphism f : H1×. . .×Hi−1×Hℓ

i ×Hi+1×. . .×Hm → Hi is a projection. In other words,
for every homomorphism f : H1 × . . . Hi−1 × Hℓ

i × Hi+1 × . . . × Hm → Hi such that for every
x ∈ V (Hi), yj ∈ V (Hj) for j ∈ [m]−{i} it holds that f(y1, . . . , yi−1, x, . . . , x, yi+1, . . . , ym) =
x, we must have that there exists q ∈ {i, . . . , i + ℓ − 1} such that f ≡ πq. Recall that if
H is a non-trivial projective core, then it must be prime, so H × K∗

1 is its only possible
factorization. It is straightforward to verify that in a such case H is H-projective.

Since the direct product of graphs is commutative, if H = H1 × . . . × Hm is Hi-projective
for some i ∈ [m], to simplify the notation we will often assume w.l.o.g. that i = 1.

5 Hardness

In this section, we focus on establishing the desired lower bounds, stated below.

▶ Theorem 2. Let H be a fixed non-trivial core with prime factorization H1 × . . . × Hm.
Assume that H is Hi-projective for some i ∈ [m]. Then there is no algorithm solving Hom(H)
in time O∗((s(Hi) − ε)cw(G)) for any ε > 0, unless the SETH fails.

We divide our proof into two main steps. First, we show that in our setting, instead
of considering the Hom(H) problem, we may focus on the Homomorphism Extension
problem, denoted HomExt(H). For a fixed H, HomExt(H) takes as an instance a pair
(G′, h′), where h′ : V ′ → V (H) is a mapping from some V ′ ⊆ V (G′). We ask whether there
exists an extension of h′ to G′, i.e., a homomorphism h : G′ → H such that h|V ′ ≡ h′.

The HomExt(H) is clearly a generalization of the Hom(H) problem. However, as the
first step of our proof, we show that if H is a fixed non-trivial core, each instance (G′, h′) of
HomExt(H) can be transformed in polynomial time into an instance G of Hom(H), such
that cw(G′) and cw(G) differ only by a constant.

▶ Theorem 15. Let H be a fixed non-trivial core. Given an instance (G′, h′) of HomExt(H),
we can construct an equivalent instance G of Hom(H) such that cw(G) ⩽ cw(G′) + |V (H)|.
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Proof. Let V ′ ⊆ V (G′) be the domain of h′. We construct G by taking a copy Ĝ′ of G′ and
a copy Ĥ of H. Then, for every v ∈ V ′ we add all the edges with one endpoint in v and
another one in NĤ(h′(v)).

Observe that if there exists an extension h : G′ → H of h′, then h can be also extended
to G, by setting h(v) = v for every v ∈ V (Ĥ). Indeed, let uv ∈ E(G). If u, v ∈ V (Ĝ′), then
h(u)h(v) ∈ E(H), by definition of the extension of h′ to G′. If u, v ∈ V (Ĥ), then h(u)h(v) =
uv ∈ E(H). Finally, assume that u ∈ V (Ĝ′), v ∈ V (Ĥ). Note that, by definition of G, this
can happen only if u ∈ V ′ and v is adjacent to h′(u). Hence, h(u)h(v) = h′(u)v ∈ E(H).

For the reverse direction, assume that there exists a homomorphism f : G → H. We
show that there exists an extension h : G′ → H of h′. Let σ : H → H be a restriction of f

to H. Since H is a core, σ is an automorphism of H. We claim that g = σ−1 ◦ f : G → H,
restricted to G′, is an extension of h′. Clearly, g is a composition of homomorphisms, so also
a homomorphism. Therefore, it remains to show that for every v ∈ V ′ we have h′(v) = g(v).
Since H is a core, and NH(h′(v)) ⊆ NG(v), we have that f(v) = f(h′(v)). It follows that
g(v) = σ−1 ◦ f(v) = σ−1 ◦ f(h′(v)) = g(h′(v)). However, recall that for every u ∈ V (H) we
have that g(u) = u, so in particular, g(h′(v)) = h′(v).

To see that cw(G) ⩽ cw(G′) + |V (H)|, observe that we added exactly |V (H)| vertices to
G′. This means we can modify a clique-width expression σ for G′ to obtain a clique-width
expression of G as follows. Each added vertex is introduced with a designated label that is
distinct from all labels used in σ. Then each subexpression of σ that introduces a vertex of
G′ can be replaced by an expression that introduces the vertex and inserts all required edges
to the added vertices. Finally, one can insert the missing edges between added vertices. ◀

As the second step, we prove the following theorem.

▶ Theorem 16. Let H be a fixed non-trivial core with prime factorization H1 × . . . × Hm.
Assume that H is Hi-projective for some i ∈ [m]. Then there is no algorithm solving
HomExt(H) in time O∗((s(Hi) − ε)cw(G′)) for any ε > 0, unless the SETH fails.

Before we proceed to the proof of Theorem 16, we show that it implies Theorem 2.
Theorem 16 → Theorem 2: Let H be a non-trivial core with a prime factorization
H1 × . . . × Hm. W.l.o.g. assume that H is H1-projective. Suppose that Theorem 2 does
not hold, i.e., there exists an algorithm A that solves every instance G of Hom(H) in time
O∗((s(H1) − ε)cw(G)).

Let (G′, h′) be an instance of HomExt(H). We use Theorem 15 to transform (G′, h′)
into an equivalent instance G of Hom(H), such that cw(G) ⩽ cw(G′) + |V (H)|. Then, we
use A to decide whether G → H in time

O∗ ((s(H1) − ε)cw(G) = O∗
(

(s(H1) − ε)cw(G′) · (s(H1) − ε)|V (H)|
)

.

Since H is a fixed graph, (s(H1)−ε)|V (H)| is a constant, and therefore O∗ (
(s(H1) − ε)cw(G)) =

O∗
(

(s(H1) − ε)cw(G′)
)

. Since G → H if and only if (G′, h′) is a yes-instance of HomExt(H),
we get a contradiction with Theorem 16.

We will prove Theorem 16 for i = 1, which covers other cases by commutativity of direct
products. We begin by constructing certain gadgets that will be used later. Let H be a fixed
core with factorization H1 × . . . × Hm. We define W = H2 × . . . × Hm if m ⩾ 2, and W = K∗

1
otherwise. Clearly, H1 × W is a (not necessarily prime) factorization of H. Moreover, if for
some graph G we have a homomorphism f : G → H1 × . . . , ×Hm, for i ∈ [m] we denote by
fi the homomorphism πi ◦ f : G → Hi.
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Let S be a set of pairs of vertices of H1, and let w, w′ ∈ V (W ). We say that a tuple
(F, h′, p, q), such that F is a graph, h′ : V ′ → H is a mapping with domain V ′ ⊆ V (F ), and
p, q ∈ V (F ), is an (S, w, w′)-gadget if
(S1) for every extension h : F → H of h′, it holds that (h1(p), h1(q)) ∈ S,
(S2) for every pair (s1, s2) ∈ S there exists an extension h : F → H of h′ such that

h(p) = (s1, w) and h(q) = (s2, w′).

▶ Lemma 17. Let H be a non-trivial connected core with factorization H1 × W , let S ⊆
V (H1)2, and let w, w′ ∈ V (W ). Assume that H is H1-projective. Then there exists an
(S, w, w′)-gadget.

Proof. Let S = {(s1
1, s1

2), . . . , (sℓ
1, sℓ

2)}. Define

F = Hℓ
1 × W, and p = (s1

1, . . . , sℓ
1, w), and q = (s1

2, . . . , sℓ
2, w′).

Let V ′ = {(x, x, . . . , x, y) | x ∈ V (H1), y ∈ V (W )}, and let h′(x, . . . , x, y) = (x, y). We claim
that (F, h′, p, q) is an (S, w, w′)-gadget.

The condition 1 follows from the fact that H is H1-projective. Indeed, observe that
if h : F → H1 × W is an extension of h′, then h1 must be H1-idempotent, and hence a
projection on one of the ℓ first coordinates. Therefore, we must have (h1(p), h1(q)) ∈ S.

For (S2), take any (si
1, si

2) ∈ S and let h : F → H1 × W , h(x) = (πi(x), πℓ+1(x)). Clearly,
h is an extension of h′, and it is easy to verify that h(p) = (si

1, w) and h(q) = (si
2, w′). ◀

We say that S ⊆ V (H1)2 is proper, if for every coordinate there exist two elements is S that
differ on that coordinate, i.e., S is not of the form {s} × U nor U × {s} for some s ∈ V (H1)
and U ⊆ V (H1). Note that if S is proper and (F, h′, p, q) is an (S, w, w′)-gadget, then neither
p nor q belong to the domain of h′.

For fixed vertices a, b ∈ V (H1), let Sa,b = {(a′, b′) : a′ ̸= a, b′ ∈ V (H1)} ∪ {(a, b)}. We
call the (Sa,b, w, w′)-gadget (F, h′, p, q) an ((a, b), w, w′)-implication-gadget. Intuitively, an
((a, b), w, w′)-implication-gadget works as the implication a ⇒ b, since in every homomorphism
h : F → H that extends h′, if h1(p) = a, then h1(q) = b.

Let a, b, c ∈ V (H1), w ∈ V (W ), and let t be an integer. A triple (F, h′, R) such that F is
a graph, h′ : V ′ → H1 × W is a partial mapping from some V ′ ⊆ V (F ), and R is a subset of
V (F ) of cardinality t is an t-or-gadget with domain ((a, b, c), w) if
(O1) for every homomorphism h : F → H that is an extension of h′, and for every u ∈ R we

have that h1(u) ∈ {a, b, c} and there exists v ∈ R such that h1(v) = a,
(O2) for every v ∈ R there exists a homomorphism h : F → H that is an extension of h′,

such that h(v) = (a, w) and for every u ∈ R − {v} it holds that h(u) ∈ {(b, w), (c, w)}.

▶ Lemma 18. Let H be a non-trivial core with factorization H1 × W . Assume that H is
H1-projective. Then for every distinct a, b, c ∈ V (H1), every w ∈ V (W ) and every t, there
exists a t-or-gadget (F, h′, R) with domain ((a, b, c), w).

Proof. We consider separately the cases t = 1 and t = 2. Observe that in case t = 1 our
gadget needs to be a graph that has a vertex r ∈ R that is always mapped to (a, w). Hence,
we set F = K1, R = V (F ), and h′(v) = (a, w) for v ∈ V (F ).

If t = 2, let S = {(a, b), (b, a), (a, a)}, we introduce an independent set R = {r1, r2} and
(S, w, w)-gadget (F, h′, r1, r2). To see that (F, h′, R) satisfies 1, consider any extension f : F →
H of h′. As (F, h′, r1, r2) is (S, w, w)-gadget, we have (f1(r1), f1(r2)) ∈ {(a, b), (a, a), (b, a)}.
For 2, recall that by the property 2 of S-gadget there exist extensions f (1) and f (2) of h′

such that (f (1)
1 (r1), f

(1)
1 (r2)) = (a, b) and (f (2)

1 (r1), f
(2)
1 (r2)) = (b, a).
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Assume then that t ⩾ 2, and let

S = {a, b, c}2 − {(b, c), (c, b)},

Sleft = {(a, a), (a, b), (a, c), (c, a), (c, c)},

Sright = {(a, a), (a, b), (b, a), (b, b), (c, a)}

be subsets of V (H1)2. We introduce an independent set R = {r1, . . . , rt} of t vertices and
one copy of (Sleft, w, w)-gadget (F1, h′

1, p1, q1) from r1 to r2. Then, for j ∈ {2, . . . , t − 2}, we
introduce an (S, w, w)-gadget (Fj , h′

j , pj , qj) from rj to rj+1 (we note that if t ⩽ 3, we do not
introduce these). Last, we introduce one copy of (Sright, w, w)-gadget (Ft−1, h′

t−1, pt−1, qt−1)
from rt−1 to rt. We note that sets S, Sleft, and Sright are proper, so the domains of the partial
mappings h′

j , j ∈ {1, . . . , t − 1}, are pairwise disjoint. In particular, the union h′ =
⋃t

j=1 h′
j

is a well-defined mapping. We define F to be the union of all the graphs from the introduced
gadgets and claim that (F, h′, R) is a t-or-gadget. We first show that 1 holds. Assume
that there exists an extension f : F → H of h′, and j′ ∈ [t] such that f1(rj′) /∈ {a, b, c}.
This implies that there exists j ∈ {j′ − 1, j′} such that (f1(rj), f1(rj+1)) /∈ S′ for any
S′ ∈ {Sleft, S, Sright}. This is a contradiction with (F,h

′
j , pj , qj) being an (S′, w, w)-gadget,

as it violates 1.
Now assume that there exists an extension f : F → H of h′ such that for every j ∈ [t]

we have that f1(rj) ∈ {b, c}. The definition of Sleft and Sright, respectively, implies that
f1(r1) = c and f1(rt) = b. Hence, there exists j ∈ [t−1] such that f1(rj) = c and f1(rj+1) = b.
However, observe that the pair (c, b) does not belong to set S′, for S′ ∈ {Sleft, S, Sright}, and
since we introduced an S′-gadget from rj to rj+1, this leads to a contradiction.

To see that 2 holds as well, fix some rj ∈ R and define

f ′(rℓ) =


(a, w), if ℓ = j,

(c, w), if ℓ < j,

(b, w), if ℓ > j,

If j = 1, then since (a, b) ∈ Sleft, (b, b) ∈ S and (b, b) ∈ Sright, the property 2 asserts that we
can construct a homomorphism f : F → H that extends h′ and f ′. The same holds also if
j = t, (since (c, c) ∈ Sleft, (c, c) ∈ S and (c, a) ∈ Sright), and if 1 < j < t (since (c, c) ∈ Sleft,
(c, c), (c, a), (a, b), (b, b) ∈ S and (b, b) ∈ Sright). ◀

Finally, all that remains is to prove Theorem 16. Our reduction generalizes the construction
used by Lampis [20] to reduce an SETH lower-bounded constraint satisfaction problem to
k-Coloring. Intuitively speaking, in that construction possible variable assignments are
encoded by mapping specified vertices to arbitrary non-trivial subsets of the colors. The
straightforward generalization of this approach to our setting would be to map to non-trivial
subsets of V (H). However, the structure of H allows only certain configurations of subsets
as images for the specified vertices in a solution for Hom(H) – which is precisely where the
signature sets come into play.

Let q, B ⩾ 2 be integers. We will reduce from the q-CSP-B problem that is defined as
follows. An instance of q-CSP-B consists of a set X of variables and a set C of q-constraints.
A q-constraint c ∈ C is a q-tuple of elements from X and a set P (c) of q-tuples of elements
from [B] (i.e., P (c) ⊆ [B]q). The q-CSP-B problem asks whether there exists an assignment
γ : X → [B], such that each constraint is satisfied, i.e., if c = ((x1, . . . , xq), P (c)) ∈ C, then
(γ(x1), . . . , γ(xq)) ∈ P (c). Note that we can assume that q-constraints in our q-CSP-B
instance may have less than q vertices, as it is always possible to add at most q − 1 dummy
variables to X and add them to constraints that are of smaller size.
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We will use the following theorem.

▶ Theorem 19 ([20]). For any B ⩾ 2, ε > 0 we have the following: assuming the SETH,
there exists q such that n-variable q-CSP-B cannot be solved in time O∗((B − ε)n).

We have all the tools to perform the final reduction.

Proof of Theorem 16. Recall that it is sufficient to prove the theorem when H = H1 × W

is non-trivial H1-projective core (W = K∗
1 if H = H1). Fix ε > 0 and set B = s(H1). As H

is H1-projective, H1 is non-trivial and hence contains at least three distinct vertices a, b and
c. In particular, B ⩾ 3 by Observation 8. Since H = H1 × W is a non-trivial core, W must
have at least one edge ww′ (it may happen that w = w′). From now on a, b, c, w and w′ are
fixed. Let q be the smallest number such that q-CSP-B on n variables cannot be solved in
time O∗((B − ε)n) assuming the SETH, given by Theorem 19.

Let φ be an instance of q-CSP-B, where X = {x1, . . . , xn} is the set of variables and
C = {c0, . . . , cm−1} is the set of constraints. For every j ∈ {0, . . . , m − 1} denote by Xj the
set of variables that appear in the constraint cj . Let P (cj) = {f j

1 , . . . , f j
pj

} be the set of
assignments from Xj to [B] that satisfy the constraint cj . Let L = m(n|H1| + 1), and let
λ : [B] → S(H1) be some fixed bijection.

We construct the instance Gφ of HomExt(H). For each j ∈ {0, . . . L − 1}, let j′ = j

mod m. Let Rj = {rj
1, . . . , rj

pj′ }, where each vertex rj
k corresponds to the assignment f j′

k .
We introduce the pj′ -or-gadget (Fj , h′

j , Rj) with domain ((a, b, c), w).
For each xi ∈ Xj′ , and for each f j′

k ∈ P (cj′) we do the following:
1. Let y = f j′

k (xi) ∈ [B]. Construct an independent set V j,k
i of |λ(y)| vertices and an

independent set U j,k
i of |S(λ(y))| vertices.

2. For each d ∈ λ(y) select a distinct vertex z ∈ V j,k
i and add an ((a, d), w, w′)-implication-

gadget from rj
k to z. For each d ∈ S(λ(y)) select a distinct vertex z ∈ U j,k

i and add an
((a, d), w, w′)-implication-gadget from rj

k to z.
3. Connect all vertices of U j,k

i with all vertices of previously constructed sets V ℓ,k′

i for ℓ < j

and k′ ∈ [pℓ].

The partial mapping h′ is the union of all the partial mappings that are introduced by
all the gadgets. This finishes the construction of the instance (Gφ, h′) of HomExt(H).

▷ Claim 20. If φ is a yes-instance of q-CSP-B, then there exists a homomorphism h : Gφ → H

that extends h′.

Proof of Claim. If φ is a yes-instance of q-CSP-B, then there exists an assignment γ : X → [B]
satisfying each constraint. We define h : Gφ → H as follows.

Fix j ∈ {0, . . . , L − 1}, and consider the or-gadget (Fj , h′
j , Rj). Recall that the set P (cj′)

consists of all assignments of variables in Xj′ that satisfy the constraint cj′ . Therefore,
there exists an assignment f j′

k ∈ P (cj′) such that γ|Xj′ ≡ f j′

k . Consider the vertex rj
k that

corresponds to that assignment. By the property 2 of the or-gadget, we know that there exists
a H-coloring of Fj that extends h′, such that (i) h1(rj

k) = a and (ii) for every rj
k′ ∈ Rj , k′ ̸= k

we have that h1(rj
k′) ∈ {b, c}.

Let xi ∈ Xj′ and let y = f j′

k (xi) ∈ [B]. Since for each d ∈ λ(y) there exists a vertex
z ∈ V j,k

i such that there is an ((a, d), w, w′)-implication-gadget from rj
k to z, the condition (i)

implies that h1(V j,k
i ) = λ(y). We color the vertices of V j,k

i in a way that h(V j,k
i ) = λ(y)×{w}.

Also, since for each d ∈ S(λ(y)) there exists a vertex z ∈ U j,k
i such that there is an

(a, d)-implication-gadget from rj
k to z, the condition (i) implies that h1(U j,k

i ) = S(λ(y)). We
color the vertices of U j,k

i in a way that h(U j,k
i ) = S(λ(y)) × {w′}.
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Because of (ii), the implication gadgets from rk′ to the vertices of V j,k′

i ∪ U j,k′

i do not
put any constraints on the coloring of the sets V j,k′

i and U j,k′

i . Therefore, for each v ∈ V j,k′

i

we set h(v) to be any vertex from λ(y). Similarly, for each u ∈ U j,k′

i we set h(u) to be any
vertex from S(λ(y)). Since (b, x), (c, x) ∈ Sa,b for any x ∈ V (H1), property 2 applied to the
implication gadgets asserts that since h(rk′) ∈ {b, c}, we can always extend this mapping to
a homomorphism of the whole gadget to H.

It remains to argue that the edges between the sets V j1,k1
i and U j2,k2

i are mapped to
edges of H, for any j1 < j2 and k1, k2. However, observe that since γ is an extension of some
f

j′
1

k1
∈ Sj′

1
and f

j′
2

k2
∈ Sj′

2
, we must have f

j′
1

k1
(xi) = f

j′
2

k2
(xi) = y. Hence, h maps every v ∈ V j1,k1

i

to some element of λ(y) × {w}, and every u ∈ U j2,k2
i to some element of S(λ(y)) × {w′}. By

Observation 4, and since ww′ ∈ E(W ), we get that h(v)h(u) ∈ E(H). That concludes the
proof of the claim. ◁

▷ Claim 21. If there exists a homomorphism h : Gφ → H that extends h′, then φ is a
yes-instance of q-CSP-B.

Proof of Claim. We will define the assignment γ : X → [B] that makes every constraint from
C satisfied.

Fix j ∈ {0, . . . , L − 1}, and consider the pj′-or-gadget (Fj , h′
j , Rj). By the property 1

of the or-gadget, there exists kj ∈ [pj′ ] such that h1(rj
kj

) = a. Implication gadgets whose
p-vertices were identified with rj

kj
assert that h1(V j,kj

i ) ∈ S(H) and h1(U j,kj

i ) is the signature
of h1(V j,kj

i ). Then, by Observation 5, h1(V j,kj

i ) is a signature of h1(U j,kj

i ). Denote h1(U j,kj

i )
by T j

i , then h1(V j,kj

i ) = S(T j
i ) and S(S(T j

i )) = T j
i Let yj

i = f j′

kj
(xi) be the candidate

assignment for xi ∈ Xj′ at index j, recall that yj
i = λ−1(S(T j

i )).
Let i ∈ [n] be fixed and let j1, j2 ∈ [L], j1 < j2 be such that xi ∈ Xj′

1
∩ Xj′

2
. Observe that

in such case T j1
i ⊇ T j2

i . Indeed, denote k1 = kj1 , k2 = kj2 , then we have (1) h1(V j1,k1
i ) =

S(T j1
i ) and h1(U j1,k1

i ) = T j1
i , and (2) h1(V j2,k2

i ) = S(T j2
i ) and h1(U j2,k2

i ) = T j2
i . Recall

that each vertex from U j2,k2
i is adjacent to each vertex from V j1,k1

i . Since h1 is a homomor-
phism, the same holds for their images: each vertex from T j2

i is adjacent to each vertex from
S(T j1

i ). Then S(T j2
i ) ⊇ S(T j1

i ), so T j1
i = S(S(T j1

i )) ⊇ S(S(T j2
i )) ⊇ T j2

i .
We say that the index j1 ∈ {0, . . . , L − 1} is problematic for i if there is j2 > j1 such that

xi ∈ Xj′
1

∩ Xj′
2

and T j1
i ̸= T j2

i . Since for each variable we have at most |Hi| problematic
indices, there are at most |Hi|·n problematic indices for all variables. Since L = m(|Hi|·n+1),
by pigeonhole principle we get that there exists a set J ⊆ {0, . . . , L − 1} of m consecutive
indices such that none of them is problematic for any i. For every i ∈ [n], we fix some j ∈ J

such that xi ∈ Xj′ and set γ(xi) = yj
i (observe that the choice of j does not matter).

We claim that γ is an assignment that satisfies every constraint from φ. Indeed, for
any j′ ∈ [m] there exists j ∈ J such that j′ = j mod m. For every i ∈ Xj′ , we have
γ(xi) = yj

i = f j′

kj
(xi), so γ satisfies the constraint cj′ . ◁

Finally, it remains to adapt the arguments of Lampis [20] to establish the desired linear
clique-width bound.

▷ Claim 22. Gφ can be constructed in time polynomial in |φ|, and we have cw(Gφ) ⩽
n + f(ε, ν) for some function f , where ν = |V (H)|.

Proof of Claim. Observe that any (S, w, w′)-gadget constructed as in Lemma 17 for i = 1
has at most |V (Hi)||S|−1 · |V (H)| ⩽ ν|S| vertices. In particular, we can ensure that every
implication gadget in Gφ has at most νO(ν2) vertices. Moreover, we will assume that all the
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or-gadgets of Gφ are constructed as in Lemma 18 and the subgadgets for S, Sleft and Sright
contain at most ν7 vertices. Then for every j ∈ {0, . . . , L − 1}, pj′ -or-gadget (Fj , h′

j , Rj) has
at most (pj′ − 1) · ν7 vertices.

For fixed H and ε > 0 we have that B = s(Hi) ⩽ 2|V (Hi)| − 2 and q is a constant that
only depends on B, ε (that is, on |V (Hi)|, ε). Each constraint of the q − CSP − B instance
has at most Bq satisfying assignments. In particular, the number of vertices in each or-gadget
is upper-bounded by Bq · ν7. Therefore, it is not hard to see that the whole construction can
be performed in polynomial time, if H is fixed and ε is a constant. For clique-width we use
the following labels:
1. n main labels, representing the variables of φ.
2. A single done label. Its informal meaning is that a vertex that receives this label will not

be connected to anything else not yet introduced in the graph.
3. Bq · ν7 constraint work labels.
4. qBq · νO(ν2) variable-constraint incidence work labels.
To give a clique-width expression we will describe how to build the graph, following essentially
the steps given in the description of the construction by maintaining the following invariant:
before starting iteration j, all vertices of the set W j

i =
⋃

j′<j

⋃
k∈[pj′ ] V j′,k

i have label i, and
all other vertices have the done label. This invariant is vacuously satisfied before the first
iteration, since the graph is empty. Suppose that for some j ∈ {0, . . . , L − 1} the invariant is
true. We use the Bq · ν7 constraint work labels to introduce the vertices of the pj′ -or-gadget
(Fj , h′

j , Rj), giving each vertex a distinct label. We use join operations to construct the
internal edges of the or-gadget. Then, for each variable xi that appears in the current
constraint we do the following: we use Bq · νO(ν2) of the variable-constraint incidence work
labels to introduce for all k ∈ [pj′ ] the vertices of V j,k

i and U j,k
i as well as the implication

gadgets connecting these to rj
k . Again we use a distinct label for each vertex, but the number

of vertices (including internal vertices of the implication gadgets) is Bq · νO(ν2), so we have
sufficiently many labels to use distinct labels for each of the q variables of the constraint.
We use join operations to add the edges inside all implication gadgets. Then we use join
operations to connect U j,k

i to all vertices W j
i . This is possible, since the invariant states that

all the vertices of W j
i have the same label i. We then rename all the vertices of U j,k

i for all k

to the done label, and do the same also for internal vertices of all implication gadgets. We
proceed to the next variable of the same constraint and handle it using its own Bq · νO(ν2)

labels. Once we have handled all variables of the current constraint, we rename all vertices
of each V j,k

i to label i for all k. We then rename all vertices of the pj′ -or-gadget (Fj , h′
j , Rj)

gadget to the done label and increase j by 1. It is not hard to see that we have maintained
the invariant and constructed all edges induced by the vertices introduced in steps up to j,
so repeating this process constructs the graph. ◁

Together the claims imply Theorem 16 in the following way: For an arbitrary instance of
q-CSP-B, our construction produces an instance of HomExt(H), and the instances are
equivalent by Claim 20 and Claim 21. If one could solve HomExt(H) in O∗((s(Hi)−ε)cw(G))
for some ε > 0, one could use our construction to solve q-CSP-B, and by our choice of B

and Claim 22 this procedure would have complexity O∗((B − ε)n+c) for some constant c. By
our choice of q according to Theorem 19, this contradicts the SETH. ◀

6 Summary and Concluding Remarks

Extensions and Corollaries. We observe that Corollary 12 can be combined with Theorem 2
to obtain the following statement, which summarizes our results.
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▶ Theorem 23. Let H ′ be a fixed graph with the non-trivial connected core H. Let H1 ×
. . . × Hm be the prime factorization of H. Let i ∈ [m] be such that s(Hi) = maxj∈[m] s(Hj).
Let G be an instance of Hom(H ′).
1. Assuming a clique-width expression σ of G of width cw(G) is given, the Hom(H ′) problem

can be solved in time maxi∈[m] O∗(s(Hi)cw(G)).
2. Assuming that H is Hi-projective, there is no algorithm to solve Hom(H ′) in time

maxi∈[m] O∗((s(Hi) − ε)cw(G)) for any ε > 0, unless the SETH fails.

We note that the restriction to connected targets can be avoided by known properties of
homomorphisms to disconnected graphs [25]; on the algorithmic side, one branches over all
connected components of H, while for the lower bound one considers the component with
maximum signature number.

It is clear that obtaining a full complexity classification with respect to clique-width may
require weakening the assumption in the second statement of Theorem 23. We recall that
an analogous situation occurs in the work of Okrasa and Rzążewski [25]; as mentioned in
the introduction, the authors obtain the SETH-conditioned tight complexity bound for the
Hom(H) problem parameterized by treewidth for all targets H , assuming two conjectures of
Larose and Tardif [21,22]. The notion of Hi-projectivity allows us to restate these conjectures
as one, which is not only sufficient in our setting but is also weaker in the sense of it being
implied by the former two conjectures, but not necessarily equivalent to them.

▶ Conjecture 1. Let H be a non-trivial core with prime factorization H1 × . . . × Hm and let
i ∈ [m]. Then H is Hi-projective.

Using Conjecture 1, we can restate our main result as follows.

▶ Theorem 24. Let H ′ be a fixed graph with the non-trivial connected core H. Let H1 ×
. . . × Hm be the prime factorization of H. Let G be an instance of Hom(H ′).
1. Assuming the clique-width expression σ of G of width cw(G) is given, the Hom(H ′)

problem can be solved in time maxi∈[m] O∗(s(Hi)cw(G)).
2. Assuming that Conjecture 1 holds, there is no algorithm to solve Hom(H ′) in time

maxi∈[m] O∗((s(Hi) − ε)cw(G)) for any ε > 0, unless the SETH fails.

We also observe that since each non-trivial projective core H is H-projective, in this case
we already obtain a tight complexity bound.

▶ Corollary 25. Let H ′ be a fixed graph with the non-trivial connected projective core H. Let
G be an instance of Hom(H ′).
1. Assuming the clique-width expression σ of G of width cw(G) is given, the Hom(H ′)

problem can be solved in time O∗(s(H)cw(G)).
2. There is no algorithm to solve Hom(H ′) in time O∗((s(H) − ε)cw(G)) for any ε > 0,

unless the SETH fails.

Generalizations and Other Research Directions. We remark that our hardness reduction
is via HomExt(H), and in fact our algorithm can also easily be adapted to this setting
(by removing all records that do not adhere to the partial mapping from the input graph
to H) without an increase in complexity. However, since the dichotomy between P and
NP-complete cases of HomExt(H) is more complicated (see [11], studied as the graph-retract
problem) there exist target graphs H that are not covered by Theorem 24. On a similar
note, let us also point out that setting up the SETH-conditioned tight complexity bounds
for clique-width for a more general list problem LHom(H) [10,27] is widely open.
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Another direction that is very closely related to our results is to determine similarly
tight complexity bounds for the rank-width (rw) of the input graph: rank-width [17, 26] is a
graph parameter that is known to be asymptotically equivalent to clique-width and is in fact
used as an approximation of clique-width that can be computed in fixed-parameter tractable
time. Our results together with the known relationship between clique-width and rank-width
imply an upper bound of O∗(s(H)2rw +1) and a SETH lower bound of (s(H) − ε)rw on the
complexity of Hom(H) for projective H parameterized by the rank-width of the input.
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Abstract
We revisit the complexity of the classical Interval Scheduling in the dynamic setting. In this problem,
the goal is to maintain a set of intervals under insertions and deletions and report the size of the
maximum size subset of pairwise disjoint intervals after each update. Nontrivial approximation
algorithms are known for this problem, for both the unweighted and weighted versions [Henzinger,
Neumann, Wiese, SoCG 2020]. Surprisingly, it was not known if the general exact version admits an
exact solution working in sublinear time, that is, without recomputing the answer after each update.

Our first contribution is a structure for Dynamic Interval Scheduling with amortized Õ(n1/3)
update time. Then, building on the ideas used for the case of one machine, we design a sublinear
solution for any constant number of machines: we describe a structure for Dynamic Interval
Scheduling on m ≥ 2 machines with amortized Õ(n1−1/m) update time.

We complement the above results by considering Dynamic Weighted Interval Scheduling on
one machine, that is maintaining (the weight of) the maximum weight subset of pairwise disjoint
intervals. We show an almost linear lower bound (conditioned on the hardness of Minimum Weight
k-Clique) for the update/query time of any structure for this problem. Hence, in the weighted case
one should indeed seek approximate solutions.
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1 Introduction

The Interval Scheduling (IS) problem is often used as one of the very first examples
of problems that can be solved with a greedy approach. In this problem, we have a set of
jobs, the i-th job represented by an interval (si, fi). Given n such intervals, we want to find
a maximum size subset of pairwise disjoint intervals. In this context, disjoint intervals are
usually called compatible. This admits a natural interpretation as a scheduling problem,
where each request corresponds to a job that cannot be interrupted and requires exclusive
access to a machine. Then, the goal is to schedule as many jobs as possible using a single
machine. The folklore greedy algorithm solves this problem in O(n) time, assuming that
the intervals are sorted by the values of fi [19]. While it may appear to be just a puzzle,
interval scheduling admits multiple applications in areas such as logistics, telecommunication,
manufacturing, or personnel scheduling. For more applications and a detailed summary of
different variants of interval scheduling, we refer to [21].

In many real-world applications, there is a need for maintaining the input under certain
updates (for example, insertions and deletions of items), so that we can report the optimal
solution (or its cost) after each operation. The goal is to avoid the possibly very expensive
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recalculation of the answer (which surely takes at least linear time in the size of the input)
by maintaining some kind of additional structure. The first step in this line of research is to
design a structure with sublinear update/query time. Then, the next goal is to bring down
the time complexities to polylogarithmic (in the size of the input). Examples of problems in
which this has been successfully accomplished include dynamic graph connectivity [16,17,23],
dynamic longest increasing subsequence [13,20], dynamic suffix array [2, 18], dynamic graph
clustering [10], and many others. For some dynamic problems no such solutions are known,
and we have tools for proving (conditional) polynomial hardness for dynamic algorithms [14].

This suggests the following Dynamic Interval Scheduling (DIS) problem, in which
we want to maintain a set S of intervals subject to insert and delete operations. After
each update, we should report the size of the maximum size subset of pairwise compatible
intervals. Note that reporting the subset itself might be not feasible, as it might contain
Ω(n) intervals. Similarly, neither is explicitly maintaining this subset, as an update might
trigger even Ω(n) changes in the unique optimal subset. Thus, the challenge is to maintain an
implicit representation of the current solution that avoids recomputing the answer after each
update, that is, supports each update in sublinear time. Besides being a natural extension of
a very classical problem, we see this question as possibly relevant in practical application in
which we need to cope with a dynamically changing set of jobs.

1.1 Previous work
Surprisingly, to the best of our knowledge, the complexity of general exact DIS was not
considered in the literature. However, Gavruskin et al. [12] considered its restricted version,
in which there is an extra constraint on the set S. Namely, it should be monotonic at all
times: for any two intervals (si, fi), (sj , fj) ∈ S we should have si < sj and fi < fj or vice
versa. Under such assumption, there is a structure with O(log2 n) amortized time per update
and O(log n) amortized time per query. Alternatively, the update time can be decreased to
O(log n) if the query only returns if a given interval belongs to the optimal solution.

For the general version of DIS, Henzinger, Neumann and Wiese [15] designed an efficient
approximation algorithm that maintains an (1 + ϵ)-approximate solution in polylogarithmic
time. The dependency on ϵ has been very recently improved from exponential to polynomial
by Compton, Mitrović and Rubinfeld [7]. In fact, both solutions work for the weighted
version of the problem, called Dynamic Weighted Interval Scheduling (DWIS). In
this problem, each interval has its associated weight, and the goal is to maintain a subset
of pairwise compatible intervals with the largest total weight. Note that the static version
of this problem, called Weighted Interval Scheduling (WIS), can be solved by a
straightforward dynamic programming algorithm [19] (but the greedy strategy no longer
works now that we have weights). This brings the challenge of determining if the unweighted
(and weighted) version of the problem admits an efficient exact solution.

A natural generalization of interval scheduling is to consider multiple machines. In such a
problem, there is a shared set of jobs to process, each job can be either discarded or scheduled
on one of the available m machines. Jobs scheduled on each machine must be pairwise
compatible. The goal is to maximize the number (or the total weight) of scheduled intervals.
IS on multiple machines (IS+) can be solved by extending the greedy algorithm considering
intervals by the earliest end time. For each considered interval, if no machine is free at the
respective time, the interval is discarded. If there are some free machines, the interval is
assigned to the available machine that was busy at the latest. A direct implementation of
this approach incurs a factor of m in the running time, but this can be avoided [6, 11]. The
weighted version of the problem (WIS+) can be formulated and solved as a min-cost flow
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problem [3,5]. For the dynamic version, Compton, Mitrović and Rubinfeld [7] extend their
methods for maintaining an approximate answer to multiple machines, however, their bounds
are mostly relevant for the unweighted case. A related (but not directly connected) question
is to maintain the smallest number of machines necessary to schedule all jobs in the current
set [12].

1.2 Our contribution
In this paper, we consider dynamic interval scheduling on one and multiple machines. We
show that the unweighted version of the problem admits a sublinear dynamic solution, and
furthermore, we make non-trivial progress on decreasing the exponent in the time complexity
of the solution.

The starting point is a simple structure for the general DIS problem with O(
√

n log n)
amortized update/query time. This is then improved to Õ(n1/3) amortized update/query
time. For multiple machines, we begin with m = 2, and show how to solve the corresponding
problem, denoted DIS2, in Õ(

√
n) amortized time per update. Next, we use this solution to

solve the general DIS+ problem in Õ(n1−1/m) amortized time per update. While designing
a solution working in Õ(n1−1/(m+1)) time is not very difficult, our improved time bounds
require some structural insight that might be of independent interest.

▶ Theorem 1. There is a date structure for Dynamic Interval Scheduling on m ≥ 1 machines
that supports any update in Õ(max(n1/3, n1−1/m)) amortized time.

We complement the above result by a (conditional) lower bound for the weighted version
of the problem, even with m = 1. We show that, for every ϵ > 0, under the Minimum Weight
(2ℓ + 1)-Clique Hypothesis, it is not possible to maintain a structure that solves DWIS in
O(n1−ϵ) time per operation. This shows an interesting difference between the static and
dynamic complexities of the unweighted and weighted versions: despite both IS and WIS
admitting simple efficient algorithms, DIS admits a sublinear solution while DWIS (probably)
does not.

1.3 Techniques and ideas
A natural approach to DIS is to efficiently simulate the execution of the greedy algorithm.

▶ Definition 2. For an interval Ii = (si, fi), the leftmost compatible interval LC(Ii) is the
interval (si′ , fi′) ∈ S with the smallest fi′ such that si′ ≥ fi or ⊥ if there is no such interval.

Note that if the greedy algorithm includes Ii in the solution then it also includes LC(Ii).
Thus, it is easy to prove that if Ii is the interval with the smallest fi in S, then the (optimal)
solution generated by the greedy algorithm is {Ii, LC(Ii), LC2(Ii), . . . }.

One can consider a forest in which each interval is represented as a node and an interval
Ii has parent LC(Ii). By creating an artificial root and connecting all forest roots’ to it, we
make this representation a tree. We call it the greedy tree (of S). The answer to the DIS
query is the length of the longest path from any node to the root in the tree. We know this
is actually the path from the earliest ending interval thanks to the greedy algorithm.

A standard approach used in dynamic problems is splitting the current input into several
smaller parts and recomputing some information only in the part containing the updated
item. Then, the answer is obtained by using the information precomputed for every part. An
attempt to use such an approach for DIS could be as follows. We partition S into parts, either
by the start or the end times, and in every part we precompute the result of running the
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Figure 1 An input instance for DIS with the optimal solution generated by the greedy algorithm
marked using bold lines and the corresponding greedy tree.

greedy algorithm from every possible state. The goal is to accelerate running the algorithm
by being able to jump over the parts. For m = 1, we can simply maintain the greedy tree,
as it allows us to simulate running the greedy algorithm not only from the interval with
the smallest end time but in fact from an arbitrary interval Ii. We call this resuming the
greedy algorithm from Ii. This allows us to jump over the whole part efficiently, and by
appropriately balancing the size of each part we obtain a data structure with Õ(n1/2) time
per update. This is described in detail in Appendix A. A similar approach works for m > 1,
except that instead of the greedy tree we need to preprocess the answer for every m-tuple of
intervals, resulting in Õ(n1−1/(m+1)) time per update.

We improve on this basic idea for both m = 1 and m > 1. For m = 1, we design a
way to solve the decremental variant of DIS in only (amortized) polylogarithmic time per
update, and couple this with maintaining a buffer of the most recent insertions. For m = 2,
the greedy tree is no longer sufficient to capture all possible states of the greedy algorithm.
However, by a careful inspection, we prove that for a part consisting of n intervals, instead
of precomputing the answers for all Θ(n2) possible states, it is enough to consider only
O(n) carefully selected states. For m > 2, we further extend this insight by identifying only
O(n1−1/m) states, called compressible. Interestingly, using these states to simulate the greedy
algorithm starting from an arbitrary state requires a separate O(n2) precomputation, hence
we need to consider the case m = 2 separately.

2 Interval scheduling on one machine

For our structures, it is sufficient that si and fi characterizing intervals are pairwise com-
parable but to simplify the presentation, we assume that si, fi ∈ R+. One can also use an
order maintenance structure [4, 9] to achieve worst-case constant time comparisons between
endpoints even if we only assume that when inserting an interval (si, fi) we know just the
endpoints of existing intervals in S that are the nearest predecessors of si and fi. We make
endpoints of all intervals pairwise distinct with the standard perturbation. We assume that
each insert operation returns a handle to the interval which can later be used to delete.

Our structures work in epochs. At the beginning of each epoch, we set N to be the
number of intervals in S. When the number of intervals is outside range [ N

2 , 2N ], the new
epoch begins. At the beginning of an epoch, we construct an additional data structure D
of all intervals in S by a sequence of inserts in any order. These reconstructions have no
impact on the amortized update time complexity as n actual operations are turned into O(n)
insertions and deletions. We maintain D during the epoch.

We maintain a global successor structure storing all intervals sorted by their end time
that enables efficient computation of LC(·). There are k separators that split the universe of
coordinates into parts of similar size. Intervals are assigned into parts P0, P1, . . . , Pk by their
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start time. Some intervals are internal (if they fully fit in the part) and other are external
(otherwise). Both Õ(n1/2) and Õ(n1/3) structures are able to efficiently find the internal
result for an interval Ii in a part, that is how many intervals the greedy algorithm can choose
from Ii until reaching the exit (the last selected) interval of the part, so DIS query is solved
by iterating over these parts and applying the exit of one part as an input to the next one.

We recommend reading Appendix A, where we introduce the above idea by showing a
simpler but slower algorithm. Here we extend this approach and present a data structure
showing the following.

▶ Theorem 3. There is a data structure for DIS that supports any sequence of n insert/de-
lete/query on intervals in Õ(n1/3) amortized time per each operation.

The separators are chosen such that each part has size at most 2N2/3 and for any two
consecutive parts Pj and Pj+1 at least one has size at least 1

2 N2/3. Thus, there are always
O(n1/3) parts. More details on how to maintain this partition are provided in Appendix A.

Since our goal is to achieve Õ(n1/3) update time and parts are larger, we cannot afford
to recompute the whole part from scratch for every update in it (as we did in Appendix A).
Instead, we keep internal intervals of a part in two structures: a decremental structure and a
buffer. External intervals are only kept in the global balanced binary search tree containing
all the intervals. We first sketch the idea and describe the details in the following subsections.

The decremental structure of each part contains O(n2/3) intervals, has no information
about buffer intervals, can be built in Õ(n2/3) time and allows deletions in O(polylog n) time.
The buffer Bj ⊆ Pj contains only at most N1/3 last inserted internal intervals in Pj . Each
operation in a part leads to the recomputation of information associated with the buffer in
Õ(n1/3) time. When Bj overflows, we rebuild the decremental structure from scratch using
all internal intervals from the part and clear the buffer. Such recomputation happens every
Ω(n1/3) updates inside a part. This way the update time of our solution can still be within
the claimed bound.

As the optimal solution may use intervals both from the decremental collection and the
buffer interchangeably, we need to combine information stored for these sets. For buffer
intervals, we can afford to precompute the whole internal result and the exit of the part
being fully aware of the content of the decremental collection. However, we also need to
“notify” intervals of the decremental collection about potential better solutions that can be
obtained by switching to buffer intervals. For this we store an additional structure of total
size of Õ(n1/3), recomputed every update in a part, specifying for which intervals of the
decremental collection there exists an “interesting” buffer interval.

2.1 Active and inactive intervals
▶ Definition 4. An interval Ii = (si, fi) in a collection C of intervals is active if there is no
other (si′ , fi′) ∈ C such that si ≤ si′ ≤ fi′ ≤ fi. Otherwise Ii is inactive.

▶ Lemma 5. For any set S of intervals and an interval Ii ∈ S, the greedy algorithm for IS
resumed from Ii chooses (after Ii) only active intervals from S.

Proof. Assume there are two intervals I1 = (s1, f1) and I2 = (s2, f2) such that s2 < s1 <

f1 < f2. I1 is considered earlier by the greedy algorithm. If it is scheduled, I2 can no longer
be scheduled as I1 and I2 are overlapping. If it is not, I2 also can not be scheduled as the
set of compatible intervals with I2 is the subset of the compatible intervals with I1. ◀
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A collection of only active intervals is monotonic by definition. This provides a natural
linear order on the active intervals in the collection: (si, fi) ≺ (si′ , fi′) ⇔ si < si′ ⇔ fi < fi′ .
This allows us to focus on describing how to maintain the subset of active intervals inside a
collection and only look for the solution of (D)IS in this subset.

The decremental structure Dj in each part only allows rebuilding and deletions. We
maintain set of active intervals Aj ⊆ Dj in the decremental collection. When an interval
from Aj is deleted, the set should report new active intervals. We stress that the decremental
structure is not aware of any buffer intervals of Pj and in order to determine if a particular
interval is active in the decremental collection we do not take into account any buffer intervals.

▶ Lemma 6. There is a structure that allows maintaining the subset of active intervals in a
delete-only or insert-only collection of size n in O(log n) amortized time per insertion/deletion
and can be built in O(n log n) time.

Proof. Each interval (si, fi) is translated into a point (si, −fi) in a plane. We say that point
(x, y) dominates point (x′, y′) if x > x′ ∧y > y′. Point (x′, y′) is then dominated by (x, y). We
say that a point is dominated if there is a point that dominates it. The interval is active in the
collection if and only if the point representing it is not dominated. The set of non-dominated
points forms a linear order: the larger x-coordinate implies the smaller y-coordinate. We
store the front of non-dominated points in a predecessor/successor structure. Additionally, we
maintain a range search tree indexed by x storing in each node the points of the appropriate
range of x-coordinates and what is the point with the maximum y among them.

We start by describing the insert-only structure. When a point (x, y) is inserted, we
search for its predecessor (xℓ, yℓ) and its successor (xr, yr) in the front of non-dominated
points. This way we can either find if (x, y) is dominated by (xr, yr) or if it dominates
(xℓ, yℓ). We then update the front and the range search tree appropriately.

To build the delete-only structure, we insert points one by one in any order as described
above. When a point (x, y) is deleted, we search for its predecessor (xℓ, yℓ) and its successor
(xr, yr) in the front and find what are the points in the range (xℓ, xr) that become non-
dominated, that is what are new maximums of nodes in the range search tree after removal
of (x, y) from appropriate nodes. These new non-dominated points are added to the front
and each interval from the decremental structure is activated only at most once. Thus, the
time charged to each interval in the collection is bounded by O(log n). ◀

2.2 Decremental structure
For Ii ∈ Pj , we define LC-decr(Ii) to be the next greedy choice in Aj after Ii.

▶ Proposition 7. The set of greedy predecessors of Ii ({Ii′ : LC-decr(Ii′) = Ii}) forms a
continuous range of active intervals in Aj.

Proof. For any active intervals I1, I2, we have I1 ≺ I2 ⇒ LC-decr(I1) ⪯ LC-decr(I2), so
if there are three active intervals I1 ≺ I3 ≺ I2 such that LC-decr(I1) = LC-decr(I2) then
also LC-decr(I3) = LC-decr(I1). ◀

Intervals of Aj form a forest where a node representing an interval Ii is the parent of
Ii′ ’s node when LC-decr(Ii′) = Ii. As in the previous section, we add an auxiliary interval
to make this representation a tree, we denote it Tj and call it a greedy tree of the part Pj .
Greedy predecessors of Ii are the children of node Ii in the greedy tree. We stress that the
greedy tree is built only for the intervals of the decremental collection.
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We internally represent the greedy tree as an augmented top tree Tj [1]. This allows
maintaining underlying fully dynamic forest (updates are insertions/deletions of edges
and changes to node/edge weights). Because deletions and activations of intervals in the
decremental structure may change values of LC-decr(·) for many nodes, we slightly alter
the structure as described in Section 2.3. This is also one of the reasons why one cannot
apply techniques described in [12] to solve even the decremental variant of DIS despite being
able to efficiently maintain the (monotonic) set of active intervals.

When Ii ∈ Aj is to be deleted, its children C = c1 ≺ c2 ≺ · · · ≺ cℓ have to connect to other
nodes of the greedy tree. Let Ik+1 = LC-decr(Ii) before deletion and I1 ≺ I2 ≺ · · · ≺ Ik

are the intervals activated after removing Ii. Note that Ik ≺ Ik+1. Nodes other than the
elements of C do not change their parents.

We first observe that I1, I2, . . . , Ik+1 are the only possible parents for nodes in C, remind
the fact that Ii′ ≺ Ii′′ ⇒ LC(Ii′) ⪯ LC(Ii′′) and use Proposition 7 to see that some (possibly
empty) prefix of children sequence (c1, c2, . . . , cr1) has to be connected to I1, then the next
range (cr1+1, cr1+2, . . . , cr2) has to be connected to I2 and so on until finally some suffix of
children sequence (crk+1, crk+2, . . . , cℓ) has to be connected to Ik+1. We use binary search
on the children sequence to find indices r1, r2, . . . , rk in this order. We update the parents
of the nodes in the found ranges in the greedy tree as described in Section 2.3 and it takes
O(polylog n) per each activated interval.

Using the appropriate query to the top tree, we can resume the execution of the greedy
algorithm restricted to Aj from any Ii ∈ Aj in O(polylog n) time.

2.3 Top tree
The underlying information maintained in Tj is chosen to compute the following:

weighted level ancestors,
nearest marked ancestors,
the total path weight from a node to the root (the sum of weights).

The discussion on how to maintain information that allows efficient computation of the above
in Tj can be found in [1].

Tj represents an underlying modified greedy tree T j , namely, we binarize the tree by
reorganizing the children of each non-leaf node and adding auxiliary nodes as presented in
Figure 2. A node in such a modified greedy tree that represents an actual interval has a
weight 1, all other auxiliary nodes have a weight 0. The weight of the path between nodes is
the sum of the weights of the nodes on the path (including the endpoints). This way, the
weight of a path from a node representing an interval Ii to the root of the modified greedy
tree represents the number of intervals chosen by the greedy algorithm from Ii.

Aj is always monotonic so we use ≺ order on children. This way, we can update values of
LC-decr(·) for a range of children of a node in O(polylog n) time by the appropriate splits
and joins in Tj . Apart from auxiliary nodes, pre-order traversals of Tj and T j are equal.

T j and Tj are only internal representations of Tj that enable efficient implementation of
the necessary operations. Any updates of Tj are naturally translated into updates of T j and
Tj or were described above. We proceed with describing the further details on Tj .

▶ Definition 8. For an interval Ii ∈ Aj, we define its depth as the depth in Tj. The set of
intervals of the same depth d is called a layer d in Tj (or Pj).

Note that if we traverse the greedy tree in BFS order (visiting children left-to-right) we
obtain exactly ≺ order. Thus, when comparing two intervals on the same layer we can just
see which one is earlier in the pre-order traversal of Tj . This way we can treat layers as
sorted collections of intervals (actually, subranges of ≺).
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p

c1 c2 c3 . . . ck

p

ck

ck−1

ck−2

. . .

c1q

Figure 2 A part of a greedy tree is shown on the left and the modified greedy tree represented
by Tj is shown on the right. We assume c1 ≺ c2 ≺ c3 ≺ . . . ≺ ck. One can retrieve i-th child of a
node by querying for the level ancestor from node q (ignoring the weights of nodes).

▶ Remark 9. We already have all the ingredients for the algorithm to solve the delete-only
DIS variant in O(polylog n) time. In this case, we do not partition intervals nor use a buffer.
Instead, we only use the top tree representing the greedy tree of all the active intervals in
the whole decremental collection of intervals.

Similarly, we remind that the structure for maintaining the subset of active intervals can
be also maintained for the insert-only variant of DIS (Lemma 6). Now we also observe that
we can maintain the greedy tree when the intervals are only inserted. A new interval Ii may
only improve LC(·) for some continuous range of intervals and we can binary search the
endpoints of this range. To account for the cost of reconnecting these nodes, which may
have many different parents, we observe that for any insertion, there is only at most one
interval that loses a child in the greedy tree and is not deactivated. We charge the time of
reconnection of the range of its children to the insertion of Ii. We charge the time needed to
reconnect other nodes to the insertion of their (deactivated, thus actually deleted) parent.
This establishes the time complexity of the insert-only variant of DIS to be O(polylog n).

2.4 Buffer
▶ Definition 10. For intervals I1 ∈ Aj and I2 ∈ Bj , we say that I1 directly wants to switch
to I2 if and only if all the following conditions hold:

I1 ends earlier than I2,
I1 and I2 are compatible,
I2 ≺ LC-decr(I1).

The aim of the above definition is to capture that sometimes the value of LC(·) may
be different from LC-decr(·). Note that if I1 directly wants to switch to I2 it does not
necessarily imply that LC(I1) = I2. It just means that I2 is (in sense of ≺) a better next
greedy choice for I1 than it appears from the computation in the decremental collection.
Note that it also means that the greedy algorithm resumed from any node in the subtree of
I1 in the greedy tree will not choose LC-decr(I1). Thus we define the following.

▶ Definition 11. For intervals I1 ∈ Aj , I2 ∈ Bj we say that I1 wants to switch to I2 if and
only if there exists an integer k ≥ 0 such that LC-decrk(I1) directly wants to switch to I2.

▶ Proposition 12. For an interval Ii ∈ Bj, there exist an integer d such that the set of
intervals in Aj that directly want to switch to Ii is either:

a continuous range of a layer d,
a suffix of layer d and a prefix of layer d + 1.
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Figure 3 Part of an instance of DIS. Intervals in the decremental collection are shown above the
dotted line and buffer intervals are below. Dashed arrows connect intervals with their respective
LC-decr(·). Here intervals 1, 2, 3 and 4 want to switch to B1 (3 and 4 directly) and interval 3
wants to (directly) switch to B2.

LCk(I3)

I1 I2
d

I3
d+ k

LC(I3)

LC2(I3)

Ii

Figure 4 Indirect possibility of switching to Ii ∈ Bj for I3 ∈ Aj . Nodes of d-th layer in range
from I1 to I2 directly want to switch to Ii. In the gray area are the nodes that want to switch to Ii.

Proof. Let I1 ≺ I3 ≺ I2 and assume that I1 and I2 want to switch to Ii. Then, also I3 wants
to switch to Ii: Ii ends earlier than LC-decr(I3) because I1 wants to switch and I3 can
switch to Ii because I2 can. This shows that the nodes that want to switch to Ii form a
continuous range in ≺. Active intervals that directly want to switch to any particular Ii are
pairwise overlapping. Indeed, consider two such intervals I1 ≺ I2. If they are compatible
then LC(I1) ⪯ I2, so LC(I1) ends earlier than any buffer interval compatible with I2 to
the right of I2, a contradiction. This also proves that a node and its parent in the greedy
tree cannot both directly want to switch to the same buffer interval thus completing the
proof. ◀

Proposition 12 shows that the actual size of the information needed to notify the intervals
from Aj that want to directly switch to a particular buffer interval is short. For each buffer
interval, it is enough to remember endpoints of at most two ranges.

We also want to efficiently maintain information also indirect switching. Intervals that
want to switch to Ii are the nodes in subtree of any node in ranges from Proposition 12.
For range from I1 to I2 on layer d that wants to directly switch to Ii, any node I3 on layer
d′ = d + k ≥ d satisfying I1 ⪯ LC-decrk(I3) ⪯ I2 wants to switch to Ii, see Figure 4. We
use a 2D range search tree indexed by depth and intervals of Aj in ≺ order. The structure
allows us to store a collection of three-sided rectangles, so that given query point we can
check if it is contained in at least one of the rectangles. To mark nodes as in Figure 4 we
add [d, +∞) × [I1, I2] to the tree.

An interval may want to switch to multiple intervals but the actual switching point for
any Ii ∈ Aj is the earliest in ≺ (the deepest in Tj) interval that wants to directly switch to
a buffer interval on the path from Ii to the root in Tj . We can deduce the actual earliest
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switching to buffer interval from any Ii ∈ Aj on layer d in O(polylog n) time by using a
binary search on depth d′ ≤ d, each time querying the 2D range search tree if a point (d′, Ii)
is covered by at least one rectangle. The result for the prefix of the path until reaching the
buffer can be obtained from the top tree Tj . We recreate the whole range search tree after
an update in the part.

For any Ii ∈ Bj we store the total length of the path to the root of Tj (this is the internal
result for Ii in Pj) and the latest actual interval of Pj just before reaching the root (this
is the exit for Ii in Pj). This information is recomputed for all buffer intervals in Pj using
dynamic programming by iterating the buffer intervals by decreasing end times as follows.
For Ii ∈ Bj , we compute LC(Ii) and if it is a buffer interval, we use its exit result and its
internal result plus 1 as the information for Ii (and, by the order of the computation, we
already know these). If LC(Ii) ∈ Aj , we query the decremental collection for the next buffer
interval after Ii selected by the greedy algorithm as described above and combine its result
with the prefix of the traversed path from LC(Ii) in the decremental collection. This is
computed in Õ(n1/3) time.

3 Interval scheduling on multiple machines

We stress that we assume that there are constant number of machines thus we are going to
ignore O(poly m) factors in time complexities. The difference between naive application of
standard techniques and our algorithms is negligible when m is large.

As the main idea of our algorithm is to efficiently simulate the folklore greedy algorithm
for IS+ (described in [6,11]), we now remind it. The intervals are considered separately by
the earliest end time. For each considered interval, if there is no available machine at the
time, the job is rejected. Otherwise, it is accepted and assigned the available machine that
was busy at the latest time. The proof of correctness is a standard exchange argument.

The state of a partial execution (up to some time t) of the greedy algorithm can be fully
described by the sequence of length m, where i-th entry describes which interval was last
scheduled on i-th machine before or at time t. Some of the entry intervals to Pj may not
belong to Pj−1 if some machine had not accepted any intervals in Pj−1. At the same time,
we want to preprocess information only for tuples of intervals from Pj , thus we need the
following additional notation.

▶ Definition 13. The greedy state Gt (at time t) is the (multi)set of m input intervals.
Each element Ii = (si, fi) ∈ Gt means that at time t there is a machine that was busy up to
time fi. We use elements Ii to indicate that there is a machine which was busy up to time si.

· indicates that the particular machine is blocked for all intervals that start too early. Thus,
despite each interval can only be selected once, we may want to mark that some machines
are busy up to the same time. For this reason, we decided to use multisets for greedy states.
(si, fi) can be simulated by an artificial interval (−∞, si).

The greedy algorithm only considers values of t that are end times of intervals Ii = (si, fi)
in the input. We slightly abuse the notation and use Gk to denote the greedy state at time
fk and assume the intervals are ordered according to the order of the IS+ algorithm i.e.
f1 < f2 < . . . < fn. To not consider cases with |Gk| < m we add m pairwise overlapping
intervals all ending earlier than the beginning of any actual input interval.

If Gk−1 ≠ Gk, exactly one element of Gk−1 needs to be updated to obtain Gk. It is the
one that is ending the latest among the elements of Gk−1 compatible with Ik. One can see
the same from a slightly different perspective. Let us assume that i is the index for which
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Figure 5 Translation of an exit greedy state G = {1, 2, 3, 4} from part Pj−1. Each interval of G

is rounded to the earliest starting interval in Pj that is later than the end of the interval (denoted
by dashed directed edge). Thus, we can assume that the entry greedy state in Pj is {5, 6, 7, 7}.

LC(Ii) is the earliest ending interval among Gk. Then Gk = Gk+1 = . . . = Gk′−1 ̸= Gk′

and Gk′ = Gk \ {Ii} ∪ {LC(Ii)}. We call Gk′ the next greedy state after Gk and denote
it Next(Gk). Because LC(·) can be computed in O(polylog n) time using the appropriate
structure as described in Appendix A, we iterate through all candidates for Ii in the greedy
state and thus have the following.

▶ Corollary 14. Next(Gk) can be computed in Õ(m) time for any Gk.

We use insights from Section 2 and Appendix A and split the intervals into O(n1−1/m)
parts of size at most O(n1/m). We restrict LC(·) to only consider intervals in the same part
as the argument of the operation (it can return ⊥). We build an additional structure for
internal intervals in each part and rebuild it every update in the part. As in the case of
interval scheduling on one machine, our goal is to be able to efficiently handle (in O(polylog n)
time) a query for the internal result (the number of accepted intervals) and the exit greedy
state from the part for a given entry greedy state Gk in the part – we call this the part query
from the greedy state Gk.

Notice that during the execution of the greedy algorithm up to Pj−1, it may happen that
some machine will not accept any new interval in Pj−1, so the exit greedy state coming from
Pj−1 may contain intervals also from earlier parts. Let us now describe how to translate such
an exit greedy state coming from Pj−1 into an entry greedy state of Pj , so we can later only
consider the content of one part. We observe that the decisions of the greedy algorithm only
depend on the relative order of endpoints of the considered intervals. If a machine was busy
up to time t and there are no intervals starting before time t′ > t, we can safely assume that
the machine is busy up to time t′ without changing the execution of the greedy algorithm.
Thus, we round up the end of each interval in the greedy state to the earliest start of some
interval in Pj . See Figure 5. We stress that the result of rounding is not necessarily part of
the solution generated by our algorithm. It just indicates times up to which the machines
are busy. After computing the exit greedy state for Pj , we inspect if there are machines that
have not accepted any intervals from Pj and revert the rounding for these.

We stick to Definition 4, but we cannot make direct use of Lemma 5 because in the case
of multiple machines it may happen that inactive intervals are part of the optimal solution.
As these intervals may not form a monotonic collection, we redefine ≺ order as follows:
(s1, f1) ≺ (s2, f2) ⇔ f1 < f2. We still maintain the greedy tree Tj and the top tree Tj

1 as
described for one machine. We identify intervals with the nodes representing them in Tj .

1 We could also use simpler structures as we only need a subset of operations provided by the top tree
and we can afford to rebuild the structure from scratch every update.
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I1 I4

I2 I5

I3 I6 I7

I∗

Figure 6 Lemma 16 for G = {I1, I2, I3}. Here we assume I6 ≺ I∗ ≺ I7. Elements of N(·, I*) are
filled dots. We have Next9(G) = {I4, I5, I6} and I∗ ∈ Next10(G).

▶ Lemma 15. Let Ii = (si, fi) be an inactive interval and let Ii′ = (si′ , fi′) be the latest (in
≺) interval contained inside Ii. If Ii ∈ Gi then also Ii′ ∈ Gi.

Proof. Any interval compatible with Ii is also compatible with Ii′ and Ii′ ends earlier than
Ii. This means that if Ii is accepted then also Ii′ is (at time fi′). From time fi′ up to time
fi the machine that accepted Ii′ cannot accept other interval: it would have to start after
fi′ and end before fi thus violating our assumption that Ii′ is the latest interval contained
inside Ii. This implies that Ii′ ∈ Gi. ◀

▶ Lemma 16. Let G = {I1, I2, . . . , Im} be a greedy state for which all elements are active
intervals. Let I∗ = (s∗, f∗) be the earliest (in ≺) interval being a common ancestor of any
pair of elements of G. Let N(Ii, I∗) be a prefix of {Ii, LC(Ii), LC2(Ii), . . .} intervals preceding
I∗ and let S(Ii, I∗) be the latest of N(Ii, I∗).

Then N(I1, I∗) ∪ N(I2, I∗) ∪ . . . ∪ N(Im, I∗) are the only elements scheduled by the greedy
algorithm for IS+ resumed from G before reaching time f∗. Additionally, just before time f∗
the greedy state of the algorithm is {S(Ii, I∗) : i ∈ {1, 2, . . . , m}}.

Proof. First, we make a technical note that thanks to the artificial root added to form the
greedy tree, the interval I∗ always exists.

The candidates for values of Next(Gt) are Gts with exactly one of the intervals replaced
by its LC(·) assigned to the same machine. Thus, by using this reasoning inductively for
Nextk(G) for increasing k, we observe that when moving forward along the path from any
Ii ∈ G to the root in the greedy tree, at least until reaching some interval ⪰ I∗, all the
traversed intervals will be scheduled on the same machine as Ii. Additionally, for different
Ii′ , Ii′′ ∈ G, the paths from Ii′ and Ii′′ in the greedy tree do not share any nodes that are ≺ I∗
(by definition). This way, all and the only elements that are included in some greedy state
after G before considering I∗ are the elements of N(Ii, I∗) and also just before considering I∗
all the latest elements of N(·, I∗) are in the greedy state. See Figure 6. ◀

If the elements of greedy state G are all active, we can naively compute I∗ as in Lemma 16
by checking LCAs of all pairs of intervals in G in the greedy tree and then proceeding to the
last interval before I∗ independently from each node to obtain the last greedy state before
reaching I∗ as in Figure 6. Thus we have the following.

▶ Corollary 17. Let G = {I1, I2, . . . , Im} be a greedy state with only active intervals and
let I∗ be defined as in Lemma 16. It is possible to compute both the smallest k for which
I∗ ∈ Nextk(G) and the value of Nextk(G) itself in Õ(m2) time.

3.1 An Õ(n1/2)-time algorithm for two machines
In this section, we focus on describing an efficient algorithm for dynamic interval scheduling
on two machines and prove the following.
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(a)
I1 I2

I3

I3
I3

(aa)

(ab)
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(b) I1

I2
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(ba)

(bb)

(c) I1

I2

I3

I3

(ca)

(cb)

Figure 7 Three possible forms of a greedy state and cases as in Lemma 19. Active intervals are
marked with bold lines and potential cases for I3 are marked with dotted lines. Note that I1 in
forms (a) and (b) may be either active or inactive.

▶ Theorem 18. There is a data structure for DIS2 that supports any sequence of n inser-
t/delete/query on intervals in Õ(n1/2) amortized time per each operation.

▶ Lemma 19. There are only three possible forms of a greedy state for two machines.
(a) {I1, I2} where I1 ≺ I2, I1 and I2 are compatible and I2 is active,
(b) {I1, I2} where I1 ends earlier than I2, I1 and I2 are overlapping and I2 is active,
(c) {I1, I2} where an active interval I1 is fully contained inside (an inactive) I2.

Proof. First we assume, without losing generality, that the greedy algorithm considered
at least two intervals and resumes from the greedy state G2 that is of the form (a) and
I1 = (s1, f1), I2 = (s2, f2). One can easily prepend any instance of DIS+ with few intervals
to achieve this.

Let assume that the next accepted interval by the greedy algorithm is I3 = (s3, f3) and
the next greedy state after G2 is G3. There are three cases (see Figure 7):
(aa) f2 < s3 – then I3 is an active interval and G3 = {I1, I3} is of the form (a),
(ab) s2 < s3 < f2 – then I3 is an active interval and G3 = {I2, I3} is of the form (b),
(ac) s3 < s2 – then I3 is an inactive interval and G3 = {I2, I3} is of the form (c).
We now proceed to similar analysis of what are the forms of next greedy states that can be
reached from states of the form (b) and (c).

If G2 is of the form (b) then I3 is either compatible with I2 (case (ba)) and G3 is of the
form (a), or it overlaps with I2 (case (bb)) and G3 is of the form (b). Note that I3 can not
overlap with I1 as then I3 would be rejected.

Similarly, if G2 is of the form (c) then I3 is either compatible with I2 (case (ca)) and G3
is of the form (a), or it overlaps with I2 (case (cb)) and G3 is of the form (b).

No other forms than (a), (b) or (c) are reachable from (a) and this concludes the proof. ◀

We now describe our algorithm for DIS2. For each part it maintains the following:
B[Ii] for all active intervals Ii – the result of part query from the greedy state {Ii, Ii′} of
the form (b) where Ii′ is direct successor (in ≺ order),
C[Ii] for all inactive intervals Ii – the result of part query from the greedy state {Ii, Ii′}
of the form (c) where Ii′ is the latest (in ≺ order) active interval fully inside Ii.

When a part is updated, B[·] and C[·] structures are rebuilt from scratch. Computation of
B[Ii] or C[Ii] is nothing else than answering a part query for the appropriate greedy state.
We ask these queries in decreasing order of the sum of indices (in ≺ order) of the two intervals
of the greedy state. This way, during the recomputation of B[·] and C[·] structures, whenever
the algorithm is going to use some other result of B[·] or C[·] it is already computed as the
queried sum of indices will be larger.

Additionally, for each active interval Ii we precompute the earliest (in ≺) interval Ii′ not
on the path from Ii to the root of Tj . We do this using dynamic programming, inspecting all
the intervals in decreasing order of ≺ and it takes Õ(n1/2) time. Similarly, we precompute
the number of intervals on the path from Ii to the latest interval ending earlier than Ii′ .
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I1

I2

FMR(I1, I2)

Figure 8 Both dotted intervals are accepted by the machine that accepted I2 and the dashed
interval overlaps with I1 so is rejected. The left dotted interval in the example is Ii′′′ , the solution
of the subproblem from the computation of FMR(I1, I2).

We now describe how to answer the part query from a greedy state Gi following the proof
of Lemma 19 and considering all forms of Gi.

If Gi is of the form (a) we focus on finding the greedy state Gi′ = Nextk(Gi) for which
k is the smallest such that I1 ̸∈ Nextk(Gi). If I1 is replaced in Gi′ by an active interval Ii′ ,
it has to be the earliest (in ≺) interval overlapping with an interval Ii′′ on the path from I2
to the root in Tj (it can also be I2 itself). We know which one and what is the contribution
to the internal result as we precomputed it. Moreover, we observe that Gi′ = {Ii′ , Ii′′} and
its part result is stored in B[Ii′′ ] so we just read the result from there. If I1 is replaced in Gi′

by an inactive interval Ii′ it has to be the earliest (in ≺) interval compatible with I1. Then
Gi′ = {Ii′ , Ii′′} where Ii′′ is the latest (in ≺ order) active interval fully inside Ii′ . Thus, we
read the part result for Gi′ from C[Ii′ ].

If Gi is of the form (b), then Next(Gi) is either of the form (a) for which we proceed as
described above or of the form (b) but with both greedy state intervals active (case (bb) of
the proof of Lemma 19), for which we use Corollary 17 to reach the greedy state of the form
(a) and later proceed as described above.

If Gi is of the form (c), then Next(Gi) is either of the form (a) or (b) and we proceed as
described above.

3.2 An Õ(n1−1/m)-time algorithm for m ≥ 3 machines
Surprisingly, before we start describing the final algorithm for m ≥ 3 machines, we need an
additional building block for the two machine case.

▶ Definition 20. For a collection of intervals S, for I1 ≺ I2 from S, we define the first
machine replacement FMR(I1, I2) to be the interval in S which replaces I1 in the greedy state
when resuming the greedy execution from the greedy state {I1, I2} on two machines. In other
words, FMR(I1, I2) is the earliest ending accepted interval after I2 that will be scheduled on
the same machine as I1 by the greedy algorithm for IS+.

Within the desired time bounds, for m ≥ 3, we can afford recomputing FMR(·, ·) in parts
from scratch for every pair of intervals in the updated part, as long as this recomputation
takes Õ(|Pj |2) time. We could not do the same for m = 2.

▶ Lemma 21. The values of FMR(·, ·) for all pairs of intervals in a collection of n intervals,
can be computed in Õ(n2) time.

Proof. Assuming that intervals in part are ordered by ≺ and given names I1, I2, . . . in line
with this order, we compute FMR(Ii′ , Ii′′) in decreasing order of the sum of i′ +i′′ indices. To
compute FMR(Ii′ , Ii′′), for Ii′ = (si′ , fi′) and Ii′′ = (si′′ , fi′′) we first find the earliest ending
interval Ii′′′ that ends later than Ii′′ and is compatible with Ii′ . To solve this subproblem we
take a geometric view: each interval (si, fi) is converted into a point (si, fi) in 2D plane, the
goal is to find the point with smallest y-coordinate above and to the right of (si′ , fi′′). This
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is solved by a 2D range search tree indexed by (x, y)-coordinates storing the appropriate
result. Thus, the subproblem is solved. We proceed with the computation of FMR(Ii′ , Ii′′).
We have two cases: either Ii′′′ is overlapping with Ii′′ and then FMR(Ii′ , Ii′′) = Ii′′′ or Ii′′′

is compatible with Ii′′ and then FMR(Ii′ , Ii′′) = FMR(Ii′ , Ii′′′) which is already known by
the order of the computation. We can also compute the number of intervals chosen by the
greedy algorithm when resumed from state {Ii′ , Ii′′} until reaching FMR(Ii′ , Ii′′) (just 1 or
the number chosen from Ii′ , Ii′′′ plus 1 depending on the above cases). ◀

As it turns out, the values of FMR(·, ·) play important role in the algorithm for m ≥ 3.
We want to preprocess tuples of possible entry greedy states for a part to be able to efficiently
answer part queries. The problem is that we have O(n1/m) intervals in each part, but we
aim at Õ(n1−1/m) time complexity. Thus, we cannot precompute part queries for all possible
greedy states. Instead, we carefully select specific compressible greedy states for which part
query results are actually stored and design an algorithm that can push the simulation
forward to the next compressible state or the exit state from the part.

▶ Definition 22. Let Gt = {I1, I2, . . . , Im} be a greedy state. We assume I1 ⪯ I2 ⪯ . . . ⪯ Im.
We say that Gt is compressible if at least one of the following conditions hold:
(a) Im is inactive,
(b) Im is active and exists active interval Ip such that LC(Ip) = Im,
(c) Im = FMR(I1, Im−1).

▶ Lemma 23. In a part of n intervals for DIS+ on m machines, there are only O(nm−1)
compressible greedy states.

Proof. We consider all the forms of the compressible greedy state as in Definition 22.
(a) from Lemma 15 we know that the greedy state also contains the latest interval fully

inside Im and thus we can forget this interval, so there are O(nm−1) such states,
(b) there is an edge (Ip, Im) in the greedy tree of Pj , we can store (m − 2)-tuple of other

intervals and the identifier of the appropriate edge, so there are O(nm−1) such states,
(c) we forget Im as it is equal to FMR(I1, Im−1), so there are O(nm−1) such states. ◀

Note that we can decompress the representations from Lemma 23 in O(m) time to obtain
a full greedy state of size m. Also, by taking into account the sizes of the parts, we obtain
that there are only O(n1−1/m) compressible greedy states for n intervals in S.

For an update in Pj , we recompute part query results for all compressible greedy states
in Pj . As in Section 3.1, we do this using dynamic programming, in decreasing order of the
sum of indices of the uncompressed state. The problem of computing the results for the
states stored in the dynamic programming table is once again translated into the general
query that has m-tuple as an input and has to push the simulation forward either to the next
part or at least to a compressible greedy state from which we read the already preprocessed
result and combine it with the traversed prefix of the path. We proceed with describing how
to solve this general query.

We distinguish three forms of the greedy state G = {I1, I2, . . . , Im} for I1 ⪯ I2 ⪯ . . . ⪯ Im:
(*) Im is inactive,
(**) there is 1 < p ≤ m such that all intervals Ip, Ip+1, . . . , Im are active,
(***) all I1, I2, . . . , Im are active.

For case (*), we compute G′ = Next(G). Either the latest accepted interval in G′ is
inactive and then G′ is compressible of type (a) or it is active, thus G′ is of the form (**) or
(***) and we proceed with it as described below.
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For case (***), we use Corollary 17 to find the earliest greedy state G′ = Nextk(G) for
which I∗ ∈ G′. We observe that such G′ is compressible of type (b), as both I∗ and at least
one of its children are elements of G′.

We now consider case (**). We compute G′ = Next(G) and consider the following
subcases depending on the latest accepted interval I+ in G′:
(1) I+ is inactive,
(2) I+ is active, overlapping with Im and I1 ∈ G′,
(3) I+ is active, overlapping with Im and I1 ̸∈ G′,
(4) I+ is active and not overlapping with Im.

In case (1), we see that G′ is compressible of type (a). In case (2), we observe that
I+ = FMR(I1, Im), so G′ is compressible of type (c). In case (3), we observe that G′ remains
of type (**), but with smaller p. We proceed with computing Next(G′) until we reach
any other case, which happens after at most O(m) iterations. In case (4), we observe that
G′ = G \ {Im} ∪ {I+} and I+ is compatible with every other interval from G′. We read
FMR(I1, I+) and push the simulation forward until reaching the first greedy state G′′ with
accepted interval I++ that will be scheduled on a different machine than Im. Notice that
if I++ is active then it is compatible with I1 so I++ = FMR(I1, Im). As m ≥ 3, I++ will
replace Im−1 ̸= I1 in the greedy state thus G′′ is compressible of type (c) and if I++ is
inactive then G′′ is compressible of type (a).

4 Lower bound for Dynamic Weighted Interval Scheduling

The Minimum Weight k-Clique problem is to find, in an edge-weighted graph, a clique of
exactly k nodes having the minimum total weight of edges.

The following hypothesis about Minimum Weight k-Clique problem was formulated.

▶ Conjecture 24 (Min Weight (2ℓ + 1)-Clique Hypothesis [22]). There is a constant c > 1
such that, on a Word-RAM with O(log n)-bit words, finding a k-Clique of minimum total
edge weight in an n-node graph with non-negative integer edge weights in [1, nck] requires
nk−o(1) time.

The Minimum Weight (2ℓ + 1)-Cycle problem is to find, in an edge-weighted graph, a
cycle consisting exactly 2ℓ + 1 edges having the minimum total weight.

▶ Theorem 25 ([22]). If there is an integer ℓ ≥ 1 and a constant ϵ > 0 such that Minimum
Weight (2ℓ + 1)-Cycle in a directed weighted n-node m = Θ(n1+1/ℓ)-edge graph can be
solved in O(mn1−ϵ + n2) time, then the Min Weight (2ℓ + 1)-Clique Hypothesis is false.

Based on the above, we formulate the following.

▶ Theorem 26. Unless the Min Weight (2ℓ + 1)-Clique Hypothesis is false, for all ϵ > 0
there is no algorithm for DWIS problem with O(n1−ϵ) update and query time.

Proof. As in [22], we use the fact that Minimum Weight (2ℓ + 1)-Cycle is still hard if
restricted only to k-circle layered graphs, that is k-partite graphs in which, for each i ∈ [k],
all edges from nodes in i-th part end in (i mod k + 1)-th part.

We reduce Minimum Weight (2ℓ + 1)-Cycle in a weighted (2ℓ + 1)-circle layered graph
to DWIS. The input instance has n nodes and m = Θ(n1+1/ℓ) edges of integer weights in
range [ncℓ = W ] for large enough c. We enumerate parts from 1 to 2ℓ + 1 and we enumerate
nodes independently in each parts starting from 0. For all p ∈ [2ℓ], for all edges from u-th
node in p-th part to v-th node in (p + 1)-th part, we insert an interval [(p − 1)n + u, pn + v)
of weight (fi − si)(2ℓ + 1)(W + 1) + (W − w) where w is the edge weight.
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The optimal cycle has to go through some node s in the first part. We guess this node by
inserting an interval [−1, s) of weight (fi − si)(2ℓ + 1)(W + 1) and, for all edges from u-th
node in (2ℓ + 1)-th part to s of weight w, we insert an interval [2ℓ · n + u, (2ℓ + 1) · n) of
weight (fi − si)(2ℓ + 1)(W + 1) + (W − w). To start with another choice of s, we delete the
corresponding intervals before inserting the new ones.

The selection of edge weights in our instance guarantees that the optimal solution
maximizes the total length of chosen intervals and then minimizes the weight resulting from
weights of edges in the graph, as each unit of length increases the value of the solution by
(2ℓ + 1)(W + 1) while the additional gain from edge weights is, in total, at most (2ℓ + 1)W .

The only possibility to obtain the value of at least (2ℓ + 1)(W + 1)n is to choose the
intervals spanning the whole interval [−1, (2ℓ + 1)n) in the created instance. Such selection
ensures that an interval representing node s in the first part is selected, as well as all intervals
representing the edges on the cycle, including the last edge going to the first part represented
by the interval with fi = (2ℓ+1)(W +1). Because in this scenario there is no gap nor overlap
in coordinates of the selected intervals, any two consecutive edges share a common node, so
they form a (2ℓ + 1)-cycle. Thus, there is 1-1 correspondence between (2ℓ + 1)-cycles going
through node s in the first part and solutions of weight at least (2ℓ + 1)(W + 1)n. Nodes of
the optimal (2ℓ + 1)-cycle can be deduced by inspecting endpoints of the selected intervals.

To solve Minimum Weight (2ℓ + 1)-Cycle by the above reduction we invoked O(m)
insertions and deletions to DWIS structure. By choosing the input instance to have ℓ = 1

ϵ

and n = cℓ for large enough c, and assuming (ad absurdum) that these O(m) = O(n1+ϵ)
operations took O(m · m1−ϵ) time, we obtained O(n2+ϵ−ϵ2)-time algorithm for the Minimum
Weight (2ℓ + 1)-Cycle problem, thus violating Theorem 25. ◀
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Separators (and pointers to the appropriate parts) are stored in a predecessor/successor
data structure (we use balanced binary search trees [8] 2) and are chosen to satisfy the
following invariant: each part has size at most 2

√
N and for every two consecutive parts

Pj and Pj+1 at least one has size at least 1
2
√

N . Thus, there are O(
√

n) parts at any time
and local rebuild of parts of size O(

√
n) happens after Ω(

√
n) operations affecting the part.

As these rebuilds are simply appropriate separate insertions, the amortized update time
complexity does not change.

Intervals in part Pj satisfying fi < xj+1 are called internal and all the others are called
external. Internal intervals are stored in predecessor/successor data structures: sorted by si

and, separately, sorted by fi. Additionally, we have the same structures defined globally, for
all the intervals in S. This allows to compute LC(Ii) in O(log n) time.

For each internal interval Ii in part Pj we store its leftmost compatible internal interval
in the same part, denoted by LC-int(Ii) (either LC(Ii) or ⊥ in case LC(Ii) ̸∈ Pj or is
external). Additionally, we store the information to resume the greedy execution from an
internal interval Ii to the latest interval in the same part. This includes: Res-int(Ii) – the
largest r ≥ 0 such that LC-intr(Ii) ̸=⊥ and Exit-int(Ii) = LCRes-int(Ii)−1(Ii).

When the content of Pj is updated, all the above values for intervals of Pj are recomputed
naively from scratch: we start with computing LC-int(·) in decreasing order of fi. We set
LC-int((si, fi)) to be the interval I ′ with the smallest fi′ among intervals with si′ ≥ fi or
⊥ if there is no such interval. We update which interval is I ′ whenever the computation
of LC-int(·) proceeds to smaller values of fi by querying the appropriate part structure
(containing only internal intervals) sorted by si. Overall, this naive recomputation of all
information for all internal intervals in the part takes O(

√
n log n) time.

With the above, we can resume the greedy algorithm from any Ii in any Pj until reaching
the earliest interval in the solution outside Pj in O(log n) time. For an external interval Ii

it is enough to proceed to LC(Ii) to exit Pj . If Ii is internal, we increase the total result
by the number of selected intervals in the part (the internal result for Ii) and proceed to
Ii′ = LC(Exit-int(Ii)). Ii′ may already be in some further part or it may be an external
interval in Pj and then we proceed to LC(Ii′) ̸∈ Pj .

To answer a DIS query, we simulate the execution of the greedy algorithm starting
from the earliest ending interval and traversing the parts as described above. The query as
described takes O(

√
n log n) time.

To insert an interval (si, fi) to S, we first locate the appropriate part Pj in the separators
structure, insert the interval into Pj , recompute the additional information associated with
Pj and update the global structures. All these takes O(

√
n log n) time. During insertion, it

may happen that Pj becomes too large. In this case, if the size reached s, we naively find
(using an appropriate predecessor/successor structure) ⌈ s

2 ⌉-th value x in the set of sis of all
intervals in Pj and add x as the new separator. This splits Pj into two new parts, which we
recompute from scratch. This, again, works in O(

√
n log n) time.

Deletion of an interval of Pj is similar and in the case of underflow of pair Pj and Pj+1
or Pj−1 and Pj , we merge the parts by removing the separator between them and recompute
the new part.

2 If for all intervals si, fi are small integers bounded by U , we could use y-fast tries [24]. This way we
could achieve O(

√
n log log U) amortized time per operation.
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Abstract
We study the impact of sub-array merging routines on merge-based sorting algorithms. More precisely,
we focus on the galloping sub-routine that TimSort uses to merge monotonic (non-decreasing) sub-
arrays, hereafter called runs, and on the impact on the number of element comparisons performed if
one uses this sub-routine instead of a naive merging routine.

The efficiency of TimSort and of similar sorting algorithms has often been explained by using the
notion of runs and the associated run-length entropy. Here, we focus on the related notion of dual
runs, which was introduced in the 1990s, and the associated dual run-length entropy. We prove, for
this complexity measure, results that are similar to those already known when considering standard
run-induced measures: in particular, TimSort requires only O(n + n log(σ)) element comparisons to
sort arrays of length n with σ distinct values.

In order to do so, we introduce new notions of fast- and middle-growth for natural merge sorts
(i.e., algorithms based on merging runs). By using these notions, we prove that several merge sorting
algorithms, provided that they use TimSort’s galloping sub-routine for merging runs, are as efficient
as TimSort at sorting arrays with low run-induced or dual-run-induced complexities.
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1 Introduction

In 2002, Tim Peters, a software engineer, created a new sorting algorithm, which was
called TimSort [20] and was built on ideas from McIlroy [17]. This algorithm immediately
demonstrated its efficiency for sorting actual data, and was adopted as the standard sorting
algorithm in core libraries of widespread programming languages such as Python and Java.
Hence, the prominence of such a custom-made algorithm over previously preferred optimal
algorithms contributed to the regain of interest in the study of sorting algorithms.

S = ( 12, 7, 6, 5︸ ︷︷ ︸
first run

, 5, 7, 14, 36︸ ︷︷ ︸
second run

, 3, 3, 5, 21, 21︸ ︷︷ ︸
third run

, 20, 8, 5, 1︸ ︷︷ ︸
fourth run

)

Figure 1 A sequence and its run decomposition computed by a greedy algorithm: for each run,
the first two elements determine if the run is non-decreasing or decreasing, then the run continues
with the maximum number of consecutive elements that preserve its monotonicity.
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Among the best-identified reasons behind the success of TimSort are the fact that this
algorithm is well adapted to the architecture of computers (e.g., for dealing with cache issues)
and to realistic distributions of data. In particular, the very conception of TimSort makes it
particularly well-suited to sorting data whose run decompositions [3, 9] (see Figure 1) are
simple. Such decompositions were already used in 1973 by Knuth’s NaturalMergeSort [14,
Section 5.2.4], which adapted the traditional MergeSort algorithm as follows: NaturalMergeSort
is based on splitting arrays into monotonic subsequences, also called runs, and on merging
these runs together. Thus, all algorithms sharing this feature of NaturalMergeSort are also
called natural merge sorts.

In addition to being a natural merge sort, TimSort includes many optimisations, which
were carefully engineered, through extensive testing, to offer the best complexity performances.
As a result, the general structure of TimSort can be split into three main components: (i) a
variant of an insertion sort, which is used to deal with small runs, e.g., runs of length less
than 32, (ii) a simple policy for choosing which large runs to merge, (iii) a sub-routine for
merging these runs, based on a so-called galloping strategy. The second component has been
subject to an intense scrutiny these last few years, thereby giving birth to a great variety
of TimSort-like algorithms, such as α-StackSort [2], α-MergeSort [7], ShiversSort [22] (which
predated TimSort), adaptive ShiversSort [13], PeekSort and PowerSort [19]. On the contrary,
the first and third components, which seem more complicated and whose effect might be
harder to quantify, have often been used as black boxes when studying TimSort or designing
variants thereof.

In what follows, we focus on the third component and prove that it is very efficient:
whereas TimSort requires O(n + n log(ρ)) comparisons to sort arrays of length n that can be
decomposed as a concatenation of ρ non-decreasing arrays, this component makes TimSort
require only O(n + n log(σ)) comparisons to sort arrays of length n with σ distinct values.

Context and related work

The success of TimSort has nurtured the interest in the quest for sorting algorithms that
would be both excellent all-around and adapted to arrays with few runs. However, its ad hoc
conception made its complexity analysis harder than what one might have hoped, and it is
only in 2015, a decade after TimSort had been largely deployed, that Auger et al. [2] proved
that TimSort required O(n log(n)) comparisons for sorting arrays of length n.

This is optimal in the model of sorting by comparisons, if the input array can be an
arbitrary array of length n. However, taking into account the run decompositions of the
input array allows using finer-grained complexity classes, as follows. First, one may consider
only arrays whose run decomposition consists of ρ monotonic runs. On such arrays, the
best worst-case time complexity one may hope for is O(n + n log(ρ)) [16]. Second, we
may consider even more restricted classes of input arrays, and focus only on those arrays
that consist of ρ runs of lengths r1, . . . , rρ. In that case, every comparison-based sorting
algorithm requires at least nH + O(n) element comparisons on average, where H is defined
as H = H(r1/n, . . . , rρ/n) and H(x1, . . . , xρ) = −

∑ρ
i=1 xi log2(xi) is the general entropy

function [3, 13, 17]. The number H is called the run-length entropy of the array.
Since the early 2000s, several natural merge sorts were proposed, all of which were meant

to offer easy-to-prove complexity guarantees: ShiversSort, which runs in time O(n log(n));
α-StackSort, which, like NaturalMergeSort, runs in time O(n + n log(ρ)); α-MergeSort, which,
like TimSort, runs in time O(n + nH); adaptive ShiversSort, PeekSort and PowerSort, which
run in time nH + O(n).
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Except TimSort, these algorithms are, in fact, described only as policies for deciding which
runs to merge, the actual sub-routine used for merging runs being left implicit: since choosing
a naive merging sub-routine does not harm the worst-case time complexities considered above,
all authors identified the cost of merging two runs of lengths m and n with the sum m + n,
and the complexity of the algorithm with the sum of the costs of the merges performed.

One notable exception is that of Munro and Wild [19]. They compared the running times
of TimSort and of TimSort’s variant obtained by using a naive merging routine instead of
TimSort’s galloping sub-routine. However, and although they mentioned the challenge of
finding distributions on arrays that might benefit from galloping, they did not address this
challenge, and focused only on arrays with a low entropy H. As a result, they unsurprisingly
observed that the galloping sub-routine looked slower than the naive one.

Galloping turns out to be very efficient when sorting arrays with few distinct values, a
class of arrays that had also been intensively studied. As soon as 1976, Munro and Spira [18]
proposed a complexity measure H∗ related to the run-length entropy, with the property that
H∗ ⩽ log2(σ) for arrays with σ values. They also proposed an algorithm for sorting arrays
of length n with σ values by using O(n + nH∗) comparisons. McIlroy [17] then extended
their work to arrays representing a permutation π, identifying H∗ with the run-length
entropy of π−1 and proposing a variant of Munro and Spira’s algorithm that would use
O(n + nH∗) comparisons in this generalised setting. Similarly, Barbay et al. [4] invented
the algorithm QuickSynergySort, which aimed at minimising the number of comparisons,
achieving a O(n + nH∗) upper bound and further refining the parameters it used, by taking
into account the interleaving between runs and dual runs. Yet, all of these algorithms require
ω(n + nH) element moves in the worst case.

Furthermore, as a side effect of being rather complicated and lacking a proper analysis,
except that of [19] that hinted at its inefficiency, the galloping sub-routine has been omitted
in various mainstream implementations of natural merge sorts, in which it was replaced by
its naive variant. This is the case, for instance, in library TimSort implementations of the
programming languages Swift [8] and Rust [21]. On the contrary, TimSort’s implementation
in other languages, such as Java [6], Octave [24] or the V8 JavaScript engine [25], and
PowerSort’s implementation in Python [23] include the galloping sub-routine.

Contributions

We study the time complexity of various natural merge sort algorithms in a context where
arrays are not just parametrised by their lengths. More precisely, we focus on a decomposition
of input arrays that is dual to the decomposition of arrays into monotonic runs, and that
was proposed by McIlroy [17].

Consider an array A that we want to sort in a stable manner, i.e., in which two elements
can always considered to be distinct, if only because their positions in A are distinct. Without
loss of generality, we identify the values A[1], A[2], . . . , A[n] with the integers from 1 to n,
thereby making A a permutation of the set {1, 2, . . . , n}. A common measure of presortedness
consists in subdividing A into distinct monotonic runs, i.e., partitioning the set {1, 2, . . . , n}
into intervals R1, R2, . . . , Rρ on which the function x 7→ A[x] is monotonic.

Here, we adopt a dual approach, which consists in partitioning the set {1, 2, . . . , n} into
the increasing runs S1, S2, . . . , Sσ of the inverse permutation A−1. These intervals Si are
already known under the name of shuffled up-sequences [3, 15] or riffle shuffles [17]. In order
to underline their connection with runs, we say that these intervals are the dual runs of A,
and we denote their lengths by si. The process of transforming an array into a permutation
and then extracting its dual runs is illustrated in Figure 2.

ICALP 2022



68:4 Galloping in Fast-Growth Natural Merge Sorts

0
1
2
3
4
5

lex

1
2
3

1 2 3 4 5 6 7 8 9 10

lex

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

inv

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

A = (0, 2, 3, 0, 3, 1, 2, 1, 5, 2) τ = (1, 5, 8, 2, 9, 3, 6, 4, 10, 7) τ−1 = (1, 4, 6, 8, 2, 7, 10, 3, 5, 9)

B = (1, 2, 3, 1, 3, 1, 2, 1, 3, 2)

Figure 2 The arrays A and B are lexicographically equivalent to the permutation τ . Their
dual runs, represented with gray and white horizontal stripes, have respective lengths 4, 3 and 3.
The mappings A 7→ τ and B 7→ τ identify them with the dual runs of τ , i.e., with the runs of the
permutation τ−1. Note that A has only 3 dual runs, although it takes 5 distinct values.

When A is not a permutation of {1, 2, . . . , n}, the dual runs of A are simply the maximal
intervals Si such that A is non-decreasing on the set of positions {j : A[j] ∈ Si} ⊆ {1, 2, . . . , n}.
The length of a dual run is then defined as the cardinality of that set of positions. Thus, two
lexicographically equivalent arrays have dual runs of the same lengths: this is the case, for
instance, of the arrays A, B and τ in Figure 2.

In particular, we may see τ and B as canonical representatives of the array A: these are
the unique permutation of {1, 2, . . . , n} and the unique array with values in {1, 2, . . . , σ} that
are lexicographically equivalent with A. More generally, an array that contains σ distinct
values cannot have more than σ dual runs.

Note that, in general, there is no non-trivial connection between the runs of a permutation
and its dual runs. For instance, a permutation with a given number of runs may have
arbitrarily many (or few) dual runs, and conversely.

In this article, we prove that, by using TimSort’s galloping sub-routine, several natural
merge sorts require O(n + nH∗) comparisons, or even nH∗ + O(n) comparisons, where
H∗ = H(s1/n, . . . , sσ/n) ⩽ log2(σ) is called the dual run-length entropy of the array, si is the
length of the dual run Si, and H is the general entropy function already mentioned above.

This legitimates using TimSort’s arguably complicated galloping sub-routine rather than
its naive alternative, in particular when sorting arrays that are constrained to have relatively
few distinct values.

This also subsumes results that have been known since the 1970s. For instance, adapting
the optimal constructions for alphabetic Huffman codes by Hu and Tucker [12] or Garsia
and Wachs [10] to merge trees (described in Section 3) already provided sorting algorithms
working in time nH + O(n).

Our new results rely on notions that we call fast- and middle-growth properties, and
which are found in natural merge sorts like α-MergeSort, α-StackSort, adaptive ShiversSort,
ShiversSort, PeekSort, PowerSort or TimSort. More precisely, we prove that merge sorts
require O(n + nH) comparisons and element moves when they possess the fast-growth
property, thereby encompassing complexity results that were proved separately for each of
these algorithms [1, 7, 13, 19], and O(n + nH∗) comparisons when they possess the fast- or
middle-growth property, which is a completely new result.
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Finally, we prove finer complexity bounds on the number of comparisons used by adaptive
ShiversSort, ShiversSort, NaturalMergeSort, PeekSort and PowerSort, which require only
nH∗ + O(n + n log(H∗ + 1)) comparisons, nearly matching the nH+O(n) (or n log2(n)+O(n)
and n log2(ρ) + O(n), in the cases of ShiversSort and NaturalMergeSort) complexity upper
bound they already enjoy in terms of comparisons and element moves. These results are
summarised in Table 1.

Table 1 Element moves and comparisons needed by various algorithms using appropriate galloping
sub-routines to sort arrays of length n with ρ runs, run-length entropy H and dual run-length
entropy H∗.

Algorithm Element moves Element comparisons
ShiversSort n log2(n) + O(n) nH∗ + O(n + n log(H∗ + 1))
α-StackSort O(n + n log2(ρ)) O(n + n min{log2(ρ), H∗})

NaturalMergeSort n log2(ρ) + O(n) n min{log2(ρ), H∗} + O(n + n log(H∗ + 1))
α-MergeSort O(n + nH) O(n + n min{H, H∗})

TimSort 3nH/2 + O(n) O(n + n min{H, H∗})
adaptive ShiversSort nH + O(n) n min{H, H∗} + O(n + n log(H∗ + 1))

PeekSort nH + O(n) n min{H, H∗} + O(n + n log(H∗ + 1))
PowerSort nH + O(n) n min{H, H∗} + O(n + n log(H∗ + 1))

2 The galloping sub-routine for merging runs

Here, we describe the galloping sub-routine that the algorithm TimSort uses to merge adjacent
non-decreasing runs. This sub-routine is a blend between a naive merging algorithm, which
requires a + b − 1 comparisons to merge runs A and B of lengths a and b, and a dichotomy-
based algorithm, which requires O(log(a + b)) comparisons in the best case, and O(a + b)
comparisons in the worst case. It depends on a parameter t, and works as follows.

When merging runs A and B into one large run C, we first need to find the least integers k

and ℓ such that B[0] < A[k] ⩽ B[ℓ]: the k + ℓ first elements of C are A[0], A[1], . . ., A[k − 1],
B[0], B[1], . . ., B[ℓ − 1], and the remaining elements of C are obtained by merging the sub-
array of A that spans positions k to a and the sub-array of B that spans positions ℓ to b.
Computing k and ℓ efficiently is therefore a crucial step towards reducing the number of
comparisons required by the merging sub-routine (and, thus, by the sorting algorithm).

This computation is a special case of the following problem: if one wishes to find a secret
integer m ⩾ 1 by choosing integers x ⩾ 1 and testing whether x ⩾ m, what is, as a function
of m, the least number of tests that one must perform? Bentley and Yao [5] answer this
question by providing simple strategies, which they number B0, B1, . . .:
B0: choose x = 1, then x = 2, and so on, until one chooses x = m, thereby finding m in m

queries;
B1: first use B0 to find ⌈log2(m)⌉ + 1 in ⌈log2(m)⌉ + 1 queries, i.e., choose x = 2k until

x ⩾ m, then compute the bits of m (from the most significant bit of m to the least
significant one) in ⌈log2(m)⌉ − 1 additional queries; Bentley and Yao call this strategy a
galloping (or exponential search) technique;

Bk+1: like B1, except that one finds ⌈log2(m)⌉ + 1 by using Bk instead of B0.

Strategy B0 uses m queries, B1 uses 2⌈log2(m)⌉ queries (except for m = 1, where it uses
one query), and each strategy Bk with k ⩾ 2 uses log2(m) + o(log(m)) queries. Thus, if m

is known to be arbitrarily large, one should favour some strategy Bk (with k ⩾ 1) over the
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naive strategy B0. However, when merging runs taken from a permutation chosen uniformly
at random over the n! permutations of {1, 2, . . . , n}, the integer m is frequently small, which
makes B0 suddenly more attractive. In particular, the overhead of using B1 instead of B0 is a
prohibitive +20% or +33% when m = 5 or m = 3, as illustrated in the black cells of Table 2.

Table 2 Comparison requests needed by strategies B0 and B1 to find a secret integer m ⩾ 1.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
B0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
B1 1 2 4 4 6 6 6 6 8 8 8 8 8 8 8 8 10

McIlroy [17] addresses this issue by choosing a parameter t and using a blend between
the strategies B0 and B1, which consists in two successive steps C1 and C2:
C1: one first follows B0 for up to t steps, thereby choosing x = 1, x = 2, . . . , x = t (if

m ⩽ t − 1, one stops after choosing x = m);
C2: if m ⩾ t + 1, one switches to B1 (or, more precisely, to a version of B1 translated by t,

since the precondition m ⩾ 1 is now m ⩾ t + 1).

Once such a parameter t is fixed, McIlroy’s mixed strategy allows retrieving m in costt(m)
queries, where costt(m) = m if m ⩽ t + 2, and costt(m) = t + 2⌈log2(m − t)⌉ if m ⩾ t + 3.
In practice, however, we will replace this cost function by the following simpler upper bound.

▶ Lemma 1. For all t ⩾ 0 and m ⩾ 1, we have costt(m) ⩽ cost∗
t(m), where

cost∗
t(m) = min{(1 + 1/(t + 3))m, t + 2 + 2 log2(m + 1)}.

Proof. Since the desired inequality is immediate when m ⩽ t + 2, we assume that m ⩾ t + 3.
In that case, we already have costt(m) ⩽ t+2(log2(m−t)+1) ⩽ t+2+2 log2(m+1), and we
prove now that costt(m) ⩽ m+1. Indeed, let u = m−t and let f : x 7→ x−1−2 log2(x). The
function f is positive and increasing on the interval [7, +∞). Thus, it suffices to check by hand
that (m+1)−costt(m) = 0, 1, 0, 1 when u = 3, 4, 5, 6, and that (m+1)−costt(m) ⩾ f(u) > 0
when u ⩾ 7. It follows, as expected, that costt(m) ⩽ m + 1 ⩽ (1 + 1/(t + 3))m. ◀

The above discussion immediately provides us with a cost model for the number of
comparisons performed when merging two runs.

▶ Proposition 2. Let A and B be two non-decreasing runs of lengths a and b, with values
in {1, 2, . . . , σ}. For each integer i ⩽ σ, let a→i (respectively, b→i) be the number of elements
in A (respectively, in B) with value i. Using a merging sub-routine based on McIlroy’s mixed
strategy for a fixed parameter t, we need at most

1 +
σ∑

i=1
cost∗

t(a→i) + cost∗
t(b→i)

element comparisons to merge the runs A and B.

Proof. First, assume that a→i = 0 for some i ⩾ 2. Replacing every value j ⩾ i + 1 with
the value j − 1 in both arrays A and B does not change the behaviour of the sub-routine
and decreases the value of σ. Moreover, the function cost∗

t is sub-additive, i.e., we have
cost∗

t(m) + cost∗
t(m′) ⩾ cost∗

t(m + m′) for all m ⩾ 0 and m′ ⩾ 0. Hence, without loss of
generality, we assume that a→i ⩾ 1 for all i ⩾ 2. Similarly, we assume without loss of
generality that b→i ⩾ 1 for all i ⩽ σ − 1.
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Under these assumptions, the array C that results from merging A and B consists of a→1
elements from A, then b→1 elements from B, a→2 elements from A, b→2 elements from B, . . . ,
a→σ elements from A and b→σ elements from B. Thus, the galloping sub-routine consists in
discovering successively the integers a→1, b→1, a→2, b→2, . . . , a→σ, each time using McIlroy’s
strategy based on the two steps C1 and C2; checking whether a→1 = 0 requires one more
comparison than prescribed by McIlroy’s strategy, and the integer b→σ does not need to be
discovered once the entire run A has been scanned be the merging sub-routine. ◀

We simply call t-galloping sub-routine the merging sub-routine based on McIlroy’s mixed
strategy for a fixed parameter t; when the value of t is irrelevant, we simply omit mentioning it.
Then, the quantity

1 +
σ∑

i=1
cost∗

t(ai) + cost∗
t(bi)

is called the (t-)galloping cost of merging A and B. By construction, this cost never exceeds
1 + 1/(t + 3) times the naive cost of merging A and B, which is simply defined as a + b.
Below, we study the impact of using the galloping sub-routine instead of the naive one, which
amounts to replacing naive merge costs by their galloping variants.

Note that using this new galloping cost measure is relevant only if the cost of element
comparisons is significantly larger than the cost of element (or pointer) moves. For example,
even if we were lucky enough to observe that each element in B is smaller than each element
in A, we would perform only O(log(a + b)) element comparisons, but as many as Θ(a + b)
element moves.

Updating the parameter t

We assumed above that the parameter t did not vary while the runs A and B were being
merged with each other. This is not how t behaves in TimSort’s implementation of the
galloping sub-routine. Instead, the parameter t is initially set to a constant (t = 7 in Java),
and may change during the algorithm as follows. In step C2, after using the strategy B1, and
depending on the value of m that we found, one may realise that using B0 might have been
less expensive than using B1. In that case, the value of t increases by 1, and otherwise (i.e.,
if using B1 was indeed a smart move), it decreases by 1 (with a minimum of 0).

When sorting a random permutation, changing the value of t in that way decreases the
average overhead of sometimes using B1 instead of B0 to a constant. More generally, even in
the worst case, this overhead is linear in n.

▶ Proposition 3. Let A be a stable natural merge sort algorithm, and let A be an array of
length n. Let c1 be the number of comparisons that A requires to sort A when it uses the
naive sub-routine, and let c2 be the number of comparisons that A requires to sort A when it
uses the galloping sub-routine with TimSort’s update policy for the parameter t. We have
c2 ⩽ c1 + O(n).

Proof. Below, we group the comparisons that A performs while sorting A into steps, which
we will consider as individual units. Steps are formed as follows. Let R and R′ be consecutive
runs that A is about to merge, and let us subdivide their concatenation R · R′ into σ dual
runs S1, S2, . . . , Sσ (note that these are the dual runs of R · R′ and not the dual runs of A,
i.e., some elements of R may belong to a given dual run Si of R · R′ while belonging to
distinct dual runs or A).
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Each step consists of those comparisons used to discover the elements of R (resp., R′)
that belong to a given dual run Si. Thus, the comparisons used to merge R and R′ are
partitioned into 2σ − 1 steps: in the first step, we discover those elements of R that belong
to S1; in the second step, those elements of R′ that belong to S1; then, those elements of R

that belong to S2 ; . . . ; and, finally, those elements of R that belong to Sσ.
Let s1, s2, . . . , sℓ be the steps into which the comparisons performed by A are grouped.

By construction, each step si consists in finding an integer mi ⩾ 1 (or, possibly, mi = 0 if si

is the first step of a merge between two consecutive runs). If A uses TimSort’s update policy,
the step si consists in using McIlroy’s strategy for a given parameter t(si) that depends
on si. We also denote by t(sℓ+1) the parameter value obtained after A has finished sorting
the array A.

Strategy B0 requires mi comparisons to find that integer mi, and McIlroy’s strategy
requires mi comparisons if mi ⩽ t(si), up to mi + 1 comparisons if t(si) + 1 ⩽ mi ⩽ t(si) + 6,
and up to mi − 1 comparisons if mi ⩾ t(si) + 7. Since t(si+1) = t(si) in the first case,
t(si+1) = t(si) + 1 in the second case and t(si+1) = max{0, t(si) − 1} in the third case,
McIlroy’s strategy never uses more than mi + t(si+1) − t(si) comparisons. Consequently,
the overhead of using TimSort’s update policy instead of a naive merging sub-routine is at
most t(sℓ+1) − t(s1).

Moreover, let µi = m1 + m2 + . . . + mi for all i ⩽ ℓ. We show by induction on τ that,
whenever t(si) = t(s1) + τ , we have 2µi ⩾ τ2. Indeed, if τ ⩾ 1 and if si is the first step for
which t(si) = t(s1) + τ , we have t(si−1) = t(s1) + τ − 1. It follows that 2µi−1 ⩾ (τ − 1)2

and mi ⩾ t(s1) + τ ⩾ τ , which proves that 2µi ⩾ (τ − 1)2 + 2τ = τ2 + 1. Thus, we conclude
that t(sℓ + 1) − t(s1) ⩽

√
2µℓ.

Finally, µℓ is equal to the number of element comparisons that A would perform if it
used the naive merging strategy, i.e., µℓ = c1. No merge sort requires more than O(n2)
comparisons, and therefore µℓ = O(n2), which is why the overhead of using TimSort’s update
policy is at most t(sℓ+1) − t(s1) ⩽

√
2µℓ = O(n). ◀

Deciding whether our results remain valid when t is updated like in TimSort remains
an open question. However, in Section 5.3, we propose and study the following alternative
update policy: when merging runs of lengths a and b, we set t = ⌈log2(a + b)⌉.

3 A fast-growth property and its consequences

In this section, we focus on two novel properties of stable natural merge sorts, which we call
fast-growth and middle-growth. These properties capture all TimSort-like natural merge sorts
invented in the last decade, and explain why these sorting algorithms require only O(n + nH)
element moves and O(n + n min{H, H∗}) element comparisons. We will prove in subsequent
sections that many algorithms have these properties.

When applying a stable natural merge sort on an array A, the elements of A are clustered
into monotonic sub-arrays called runs, and the algorithm consists in repeatedly merging
consecutive runs into one larger run until the array itself contains only one run. Consequently,
each element may undergo several successive merge operations. Merge trees [3, 13, 19] are a
convenient way to represent the succession of runs that ever occur while A is being sorted.

▶ Definition 4. The merge tree induced by a stable natural merge sort algorithm on an
array A is the binary rooted tree T defined as follows. The nodes of T are all the runs that
were present in the initial array A or that resulted from merging two runs. The runs of the
initial array are the leaves of T , and when two consecutive runs R1 and R2 are merged with
each other into a new run R, the run R1 spanning positions immediately to the left of those
of R2, they form the left and the right children of the node R, respectively.
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Such trees ease the task of referring to several runs that might not have occurred
simultaneously. In particular, we will often refer to the ith ancestor or a run R, which is
just R itself if i = 0, or the parent, in the tree T , of the (i − 1)th ancestor of R if i ⩾ 1. That
ancestor will be denoted by R(i).

Before further manipulating these runs, let us first present some notation about runs
and their lengths, which we will frequently use. We will commonly denote runs with capital
letters, possibly with some index or adornment, and we will then denote the length of such a
run with the same small-case letter and the same index or adornment. For instance, runs
named R, Ri, Q′ and S will have respective lengths r, ri, q′ and s.

▶ Definition 5. We say that a stable natural merge sort algorithm A has the fast-growth
property if it satisfies the following statement:

There exist an integer ℓ ⩾ 1 and a real number θ > 1 such that, for every merge tree T
induced by A and every run at depth ℓ or more in T , we have r(ℓ) ⩾ θr.

We also say that A has the middle-growth property if it satisfies the following statement:

There exists a real number κ > 1 such that, for every merge tree T induced by A,
every integer h ⩾ 0 and every run R of height h in T , we have r ⩾ κh.

Since every node of height h ⩾ 1 in a merge tree is a run of length at least 2, each
algorithm with the fast-growth property also has the middle-growth property: indeed, it
suffices to choose κ = min{2, θ}1/ℓ. As a result, the former property is stronger than the
latter one, and indeed it has stronger consequences.

▶ Theorem 6. Let A be a stable natural merge sort algorithm with the fast-growth property.
If A uses either the galloping or the naive sub-routine for merging runs, it requires O(n+nH)
element comparisons and moves to sort arrays of length n and run-length entropy H.

Proof. Let ℓ ⩾ 1 and θ > 1 be the integer and the real number mentioned in the definition
of the statement “A has the fast-growth property”. Let A be an array of length n with ρ

runs of lengths r1, r2, . . . , rρ, let T be the merge tree induced by A on A, and let di be the
depth of the run Ri in the tree T .

The algorithm A uses O(n) element comparisons and element moves to delimit the runs
it will then merge and to make them non-decreasing. Then, both the galloping and the naive
merging sub-routine require O(a + b) element comparisons and moves to merge two runs A

and B of lengths a and b. Therefore, it suffices to prove that
∑

R∈T r = O(n + nH).
Consider some leaf Ri of the tree T , and let k = ⌊di/ℓ⌋. The (kℓ)th ancestor of Ri is a

node R of size r ⩾ θkri, and thus n ⩾ r ⩾ θkri. Hence, di + 1 ⩽ ℓ(k + 1) ⩽ ℓ (logθ(n/ri) + 1),
and we conclude that∑

R∈T
r =

ρ∑
i=1

(di + 1)ri ⩽ ℓ

ρ∑
i=1

(ri logθ(n/ri) + ri) = ℓ(nH/ log2(θ) + n) = O(n + nH). ◀

A similar, weaker result also holds for algorithms with the middle-growth property.

▶ Theorem 7. Let A be a stable natural merge sort algorithm with the middle-growth property.
If A uses either the galloping or the naive sub-routine for merging runs, it requires O(n log(n))
element comparisons and moves to sort arrays of length n.

Proof. Let us borrow the notations used when proving Theorem 6, and let κ > 1 be the real
number mentioned in the definition of the statement “A has the middle-growth property”.
Like in the proof of Theorem 6, it suffices to show that

∑
R∈T r = O(n log(n)).
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The di
th ancestor of a run Ri is the root of T , and thus n ⩾ κdi . Hence, di ⩽ logκ(n),

and we conclude that

∑
R∈T

r =
ρ∑

i=1
(di + 1)ri ⩽

ρ∑
i=1

(logκ(n) + 1)ri = (logκ(n) + 1)n = O(n log(n)). ◀

Theorems 6 and 7 provide us with a simple framework for recovering well-known results
on the complexity of many algorithms. By contrast, Theorem 8 consists in new complexity
guarantees on the number of element comparisons performed by algorithms with the middle-
growth property, provided that they use the galloping sub-routine.

▶ Theorem 8. Let A be a stable natural merge sort algorithm with the middle-growth property.
If A uses the galloping sub-routine for merging runs, it requires O(n + nH∗) element
comparisons to sort arrays of length n and dual run-length entropy H∗.

Proof. All comparisons performed by the galloping sub-routine are of the form A[i] ⩽? A[j],
where i and j are positions such that i < j. Thus, the behaviour of A, i.e., the element
comparisons and element moves it performs, is invariant under lexicographic equivalence, as
illustrated in Figure 2. Consequently, starting from an array A of length n with σ dual runs
S1, S2, . . . , Sσ, we create a new array B of length n with σ distinct values, setting B[j] def== i

whenever A[j] belongs to the dual run Si, and we may now assume that A coincides with B.
This assumption allows us to directly use Proposition 2, whose presentation would have been
more complicated if we had referred to dual runs of an underlying array instead of referring
directly to distinct values.

Now, let κ > 1 be the real number mentioned in the definition of the statement “A has
the middle-growth property”. Let A be an array of length n and whose values are integers
from 1 to σ, let s1, s2, . . . , sσ be the lengths of its dual runs, and let T be the merge tree
induced by A on A.

The algorithm A uses O(n) element comparisons to delimit the runs it will then
merge and to make them non-decreasing. We prove now that merging these runs requires
only O(n + nH∗) comparisons. For every run R in T and every integer i ⩽ σ, let r→i be
the number of elements of R with value i. In the galloping cost model, merging two runs R

and R′ requires at most

1 +
σ∑

i=1
cost∗

t(r→i) + cost∗
t(r′

→i)

element comparisons. Since less than n such merge operations are performed, and since
n =

∑σ
i=1 si and nH∗ =

∑σ
i=1 si log(n/si), it remains to show that∑

R∈T
cost∗

t(r→i) = O(si + si log(n/si))

for all i ⩽ σ. Then, since cost∗
t(m) ⩽ (t + 1)cost∗

0(m) for all parameter values t ⩾ 0 and
all m ⩾ 0, we assume without loss of generality that t = 0.

Now, consider some integer h ⩾ 0, let Rh be the set of runs at height h in T , and let
C0(h) =

∑
R∈Rh

cost∗
0(r→i). Since no run in Rh descends from another one, we already have

C0(h) ⩽ 2
∑

R∈Rh

r→i ⩽ 2si and
∑

R∈Rh

r ⩽ n.

Moreover, by definition of κ, each run R ∈ Rh is of length r ⩾ κh, and thus |Rh| ⩽ n/κh.
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Then, consider the constant λ = ⌈logκ(n/si)⌉ and the functions f : x 7→ t+2+2 log2(x+1)
and g : x 7→ x f(si/x). Both f and g are positive and concave on the interval (0, +∞), thereby
also being increasing. It follows that, for all h ⩾ 0,

C0(λ + h) ⩽
∑

R∈Rλ+h

f(r→i) ⩽ |Rλ+h| f
(∑

R∈Rλ+h
r→i/|Rλ+h|

)
⩽ g

(
|Rλ+h|

)
⩽ g

(
n/κλ+h

)
⩽ g

(
siκ

−h
)

=
(
2 + 2 log2(κh + 1)

)
siκ

−h

⩽
(
2 + 2 log2(2κh)

)
siκ

−h =
(
4 + 2h log2(κ)

)
siκ

−h.

The inequalities on the first line respectively hold by definition of cost∗
1, because f is

concave, and because f is increasing and
∑

R∈Rh
r→i

⩽ si; the inequalities on the second
line hold because g is increasing and |Rh| ⩽ n/κh.

We conclude that∑
R∈T

cost∗
0(r→i) =

∑
h⩾0

C0(h) =
λ−1∑
h=0

C0(h) +
∑
h⩾0

C0(λ + h)

⩽ 2λsi + 4si

∑
h⩾0

κ−h + 2 log2(κ)si

∑
h⩾0

hκ−h

⩽ O
(
si(1 + log(n/si)

)
+ O

(
si

)
+ O

(
si

)
= O

(
si + si log(n/si)

)
. ◀

4 PowerSort has the fast-growth property

In this section, we prove that PowerSort and many TimSort-like algorithms enjoy the fast- or
middle-growth properties. To that aim, we first define the run merge policy of PowerSort, by
introducing the notion of power of a run endpoint or of a run, and then characterising the
merge trees that PowerSort induces.

▶ Definition 9. Let A be an array of length n, whose run decomposition consists of runs
R1, R2, . . . , Rρ, ordered from left to right. For all integers i ⩽ ρ, let ei = r1 + . . . + ri. We
also abusively set e−1 = −∞ and eρ+1 = n.

When 0 ⩽ i ⩽ ρ, we denote by I(i) the half-open interval (ei−1 + ei, ei + ei+1]. The power
of ei, which we denote by pi, is then defined as the least integer p such that I(i) contains an
element of the set {kn/2p−1 : k ∈ Z}. Thus, we (abusively) have p0 = −∞ and pρ = 0.

Finally, let Ri...j be a run obtained by merging consecutive runs Ri, Ri+1, . . . , Rj. The
power of the run R is defined as max{pi−1, pj}.

The notion of power quickly comes with nice properties, two of which we mention now.

▶ Lemma 10. For each non-empty sub-interval I of the set {0, . . . , ρ}, there exists a unique
integer i ∈ I such that pi ⩽ pj for all j ∈ I.

Proof. Assume that the integer i is not unique. Since e0 is the only endpoint with power −∞,
we know that 0 /∈ I. Then, let a and b be elements of I such that a < b and pa = pb ⩽ pj for
all j ∈ I, and let p = pa = pb. By definition of pa and pb, there exist odd integers k and ℓ such
that kn/2p−1 ∈ I(a) and ℓn/2p−1 ∈ I(b). Since ℓ ⩾ k + 1, the fraction (k + 1)n/2p−1 belongs
to some interval I(j) such that a ⩽ j ⩽ b. But since k + 1 is even, we know that pj < p,
which is absurd. Thus, our initial assumption is invalid, which completes the proof. ◀

▶ Lemma 11. Let R1, . . . , Rρ be the run decomposition of an array A. There is exactly one
tree T that is induced on A and in which every inner node has a smaller power than its children.
Furthermore, for every run Ri...j in T , we have max{pi−1, pj} < min{pi, pi+1, . . . , pj−1}.
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Proof. Given a merge tree T , let us prove that the following statements are equivalent:
S1: each inner node of T has a smaller power than its children;
S2: each run Ri...j that belongs to T has a power that is smaller than all of pi, . . . , pj−1;
S3: if a run Ri...j is an inner node of T , its children are the two runs Ri...k and Rk+1...j such

that pk = min{pi, . . . , pj−1}.

First, if S1 holds, we prove S3 by induction on the height h of the run Ri...j . Indeed, if the
restriction of S3 to runs of height less than h holds, let Ri...k and Rk+1...j be the children of
a run Ri...j of height h. If i < k, the run Ri...k has two children Ri...ℓ and Rℓ+1...k such that
pℓ = min{pi, . . . , pk−1}, and the powers of these runs, i.e., max{pi−1, pℓ} and max{pℓ, pk},
are greater than the power of Ri...k, i.e., max{pi−1, pk}, which proves that pℓ > pk. It follows
that pk = min{pi, . . . , pk}, and one proves similarly that pk = min{pk, . . . , pj−1}, thereby
showing that S3 also holds for runs of height h.

Then, if S3 holds, we prove S2 by induction on the depth d of the run Ri...j . Indeed,
if the restriction of S2 to runs of depth less than d holds, let Ri...k and Rk+1...j be the
children of a run Ri...j of depth d. Lemma 10 and S3 prove that pk is the unique smallest
element of {pi, . . . , pj−1}, and the induction hypothesis proves that max{pi−1, pj} < pk.
It follows that both powers max{pi−1, pk} and max{pk, pj} are smaller than all of
pi, . . . , pk−1, pk+1, . . . , pj−1, thereby showing that S2 also holds for runs of depth d.

Finally, if S2 holds, let Ri...j be an inner node of T , with children Ri...k and Rk+1...j .
Property S2 ensures that max{pi−1, pj} < pk, and thus that max{pi−1, pj} is smaller than
both max{pi−1, pk} and max{pk, pj}, i.e., that Ri...j has a smaller power that its children,
thereby proving S1.

In particular, once the array A and its run decomposition R1, . . . , Rρ are fixed, S3 provides
us with a deterministic top-down construction of the unique merge tree T induced on A and
that satisfies S1: the root of T must be the run R1...ρ and, provided that some run Ri...j

belongs to T , where i < j, Lemma 10 proves that the integer k mentioned in S3 is unique,
which means that S3 unambiguously describes the children of Ri...j in the tree T .

This proves the first claim of Lemma 11, and the second claim of Lemma 11 follows from
the equivalence between the statements S1 and S2. ◀

This leads to the following characterisation of the algorithm PowerSort, which is proved
in [19, Lemma 4] and which we consider as an alternative definition of PowerSort.

▶ Definition 12. In every merge tree that PowerSort induces, inner nodes have a smaller
power than their children.

▶ Lemma 13. Let T be a merge tree induced by PowerSort, let R be a run of T with power p,
and let R(2) be its grandparent. We have 2p−2r < n < 2pr(2).

Proof. Let Ri...j be the run R. Without loss of generality, we assume that p = pj , the case
p = pi−1 being entirely symmetric. Lemma 11 states that all of pi, . . . , pj−1 are larger than p.
Thus, the union of intervals I(i) ∪ . . . ∪ I(j) = (ei−1 + ei, ej + ej+1] does not contain any
element of the set S = {kn/2p−2 : k ∈ Z}. The bounds ei−1 + ei and ej + ej+1 are therefore
contained between two consecutive elements of S, i.e., there exists an integer ℓ such that

ℓn/2p−2 ⩽ ei−1 + ei ⩽ ej + ej+1 < (ℓ + 1)n/2p−2,

and we conclude that

r = ej − ei−1 ⩽ (ej + ej+1) − (ei−1 + ei) < n/2p−2.
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We prove now that n ⩽ 2pr(2). To that end, we assume that both R and its parent are left
children, the other possible cases being symmetric. There exist integers u and v such that the
parent of R is Ri...u, and its grandparent is Ri...v. Hence, max{pi−1, pu} < max{pi−1, pj} = p,
which shows that pu < pj = p. Thus, both intervals I(j) and I(u), which are subintervals
of (2ei−1, 2ev], contain elements of the set S ′ = {kn/2p−1 : k ∈ Z}. This means that there
exist two integers k and ℓ such that 2ei−1 < kn/2p−1 < ℓn/2p−1 ⩽ 2ev, from which we
conclude that

r(2) = ev − ei−1 > (ℓ − k)n/2p ⩾ n/2p. ◀

▶ Theorem 14. The algorithm PowerSort has the fast-growth property.

Proof. Let T be a merge tree induced by PowerSort. Then, let R be a run in T , and let p and
p(3) be the respective powers of the runs R and R(3). Definition 12 ensures that p ⩾ p(3) + 3,
and therefore Lemma 13 proves that

2p(3)+1r ⩽ 2p−2r < n < 2p(3)
r(5).

This means that r(5) ⩾ 2r, and therefore that PowerSort has the fast-growth property. ◀

For the sake of conciseness, we only list which algorithms were found to have the fast- or
middle-growth property. Proofs that they do can be found in the complete version of this
article [11].

▶ Theorem 15. The algorithms TimSort, α-MergeSort, PeekSort and adaptive ShiversSort
have the fast-growth property.

An immediate consequence of Theorems 6 and 8 is that these algorithms sort arrays of
length n and run-length entropy H in time O(n + nH) – which was already well-known – and
that, if used with the galloping merging sub-routine, they only need O(n + nH∗) comparisons
to sort arrays of length n and dual run-length entropy H∗ – which is a new result.

▶ Theorem 16. The algorithms NaturalMergeSort, ShiversSort and α-StackSort have the
middle-growth property.

Theorem 8 proves that, if these three algorithms are used with the galloping merging
sub-routine, they only need O(n + nH∗) comparisons to sort arrays of length n and dual
run-length entropy H∗. By contrast, observe that they can be implemented by using a stack,
following TimSort’s own implementation, but where only the two top runs of the stack could
be merged. It is proved in [13] that such algorithms may require ω(n + nH) comparisons to
sort arrays of length n and run-length entropy H. Hence, Theorem 6 shows that these three
algorithms do not have the fast-growth property.

5 Refined complexity bounds for PowerSort

One weakness of Theorem 8 is that it cannot help us to distinguish the complexity upper
bounds of those algorithms that have the middle-growth property, although the constants
hidden in the O symbol could be dramatically different. In this section, we study these
constants, thereby focusing on upper bounds of the type cnH∗+O(n) or cn(1+o(1))H∗+O(n).

Since sorting arrays of length n, in general, requires at least log2(n!) = n log2(n) + O(n)
comparisons, and since H∗ ⩽ log2(n) for all arrays, we already know that c ⩾ 1 for any such
constant c. Below, we focus on finding matching upper bounds in two regimes: first using
a fixed parameter t, thereby obtaining a constant c > 1, and then letting t depend on the
lengths of those runs that are being merged, in which case we reach the constant c = 1.
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5.1 A tight middle-growth property
Below, we aim at computing the least constant that might lie hidden in the O(n + nH∗)
upper bound of Theorem 8. If we were to simply extract that constant from the proof we
gave, this constant would depend directly on the real number κ mentioned in the definition
of the statement “A has the middle-growth property”. To that aim, we make that statement
more precise.

▶ Definition 17. We say that a stable natural merge sort algorithm A has the tight middle-
growth property if it satisfies the following statement:

There exists an integer θ ⩾ 0 such that, for every merge tree T induced by A, every
integer h ⩾ 0 and every run R of height h in T , we have r ⩾ 2h−θ.

Since every node of height h ⩾ 1 in a merge tree is a run of length at least 2, each
algorithm with the tight middle-growth property also has the middle-growth property: indeed,
it suffices to choose κ = 21/(θ+1). The tight middle-growth property is incomparable with
the fast-growth property since, for instance, adaptive ShiversSort and PeekSort fail to have
the tight middle-growth property. In practice, we might also introduce a related notion of
tight fast-growth property, which would be useful when evaluating the constant hidden in
the O(n + nH) upper bound on the complexity of sorting algorithms.

▶ Theorem 18. The algorithm PowerSort has the tight middle-growth property.

Proof. Let T be a merge tree induced by PowerSort and let R be a run in T at depth at
least h. We will prove that r(h) ⩾ 2h−4.

If h ⩽ 4, the desired inequality is immediate. Then, if h ⩾ 5, let n be the length of the array
on which T is induced. Let also p and p(h−2) be the respective powers of the runs R and R(h−2).
Definition 12 and Lemma 13 prove that 2p(h−2)+h−4 ⩽ 2p−2 ⩽ 2p−2r < n < 2p(h−2)

r(h). ◀

5.2 Using a fixed parameter t
Following the structure of Section 3, we prove now that each algorithm with the tight
middle-growth property, such as PowerSort, enjoys excellent upper bounds on the number of
element comparisons it requires.

▶ Theorem 19. Let A be a stable natural merge sort algorithm with the tight middle-growth
property. For each parameter t ⩾ 0, if A uses the t-galloping sub-routine for merging runs,
it requires at most (1 + 1/(t + 3))nH∗ + log2(t + 1)n + O(n) element comparisons to sort
arrays of length n and dual run-length entropy H∗.

Proof. Let us follow a variant of the proof of Theorem 8. Let θ be the integer mentioned
in the definition of the statement “A has the tight middle-growth property”, let T be the
merge tree induced by A on an array A of length n, and let s1, s2, . . . , sσ be the lengths of
the dual runs of A. Like in the proof of Theorem 8, we just need to prove that∑

R∈T
cost∗

t(r→i) ⩽ (1 + 1/(t + 3))si log2(n/si) + si log2(t + 1) + O(si)

for all i ⩽ σ.
Then, let Rh be the set of runs at height h in T . By construction, no run in Rh descends

from another one, which proves that∑
R∈Rh

r→i ⩽ si and that
∑

R∈Rh

r ⩽ n.
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Since each run R ∈ Rh is of length r ⩾ 2h−θ, it follows that |Rh| ⩽ n/2h−θ.
Then, consider the function

Ct(h) =
∑

R∈Rh

cost∗
t(r→i).

We noted above that

Ct(h) ⩽ (1 + 1/(t + 3))
∑

R∈Rh

r→i ⩽ (1 + 1/(t + 3))si

for all h ⩾ 0.
Let also f : x 7→ t + 2 + 2 log2(x + 1), g : x 7→ x f(si/x) and µ = ⌈log2((t + 1)n/si)⌉. Both

functions f and g are positive, concave and increasing on (0, +∞), which shows that

Ct(µ + θ + h) ⩽
∑

R∈Rµ+θ+h

f(r→i) ⩽ |Rµ+θ+h| f
(∑

R∈Rµ+θ+h
r→i /|Rµ+θ+h|

)
⩽ g

(
|Rµ+θ+h|

)
⩽ g

(
n/2µ+h

)
⩽ g

(
2−hsi/(t + 1)

)
⩽

(
t + 2 + 2 log2

(
2h(t + 1) + 1

))
2−hsi/(t + 1)

⩽
(
t + 2 + 2(h(t + 1) + 1)

)
2−hsi/(t + 1) ⩽ (4 + 2h)2−hsi.

We conclude that

∑
R∈T

cost∗
t(r→i) =

∑
h⩾0

Ct(h) =
µ+θ−1∑

h=0
Ct(h) +

∑
h⩾0

Ct(µ + θ + h)

⩽ (1 + 1/(t + 3))(µ + θ)si + 4si

∑
h⩾0

2−h + 2si

∑
h⩾0

h2−h

⩽ (1 + 1/(t + 3))(log2(n/si) + log2(t + 1))si + O(si)
⩽ (1 + 1/(t + 3)) log2(n/si)si + log2(t + 1)si + O(si). ◀

5.3 Using a parameter t with logarithmic growth
The upper bound provided by Theorem 19 is minimal when t = Θ(H∗), in which case it
simply becomes nH∗ + log2(H∗ + 1)n + O(n). However, computing H∗ before starting the
actual sorting process is not reasonable. Instead, we update the parameter t as follows,
which will provide us with a slightly larger upper bound.

▶ Definition 20. We call logarithmic galloping sub-routine the merging sub-routine that,
when merging adjacent runs of lengths a and b, performs the same comparisons and element
moves as the t-galloping sub-routine for t = ⌈log2(a + b)⌉.

▶ Theorem 21. Let A be a stable natural merge sort algorithm with the tight middle-growth
property. If A uses the logarithmic galloping sub-routine for merging runs, it requires at
most nH∗ + 2 log2(H∗ + 1)n + O(n) element comparisons to sort arrays of length n and dual
run-length entropy H∗.

Proof. Let us refine and adapt the proofs of Theorems 8 and 19. Let θ be the integer
mentioned in the definition of the statement “A has the tight middle-growth property”, let T
be the merge tree induced by A on an array A of length n, and let s1, s2, . . . , sσ be the
lengths of the dual runs of A.
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Using a parameter t = ⌈log2(r)⌉ to merge runs R′ and R′′ into one run R requires at most

1 +
σ∑

i=1
cost∗

⌈log2(r)⌉(r′
→i) + cost∗

⌈log2(r)⌉(r′′
→i)

element comparisons. Given that

cost∗
⌈log2(r)⌉(r′

→i) ⩽ min{(1 + 1/ log2(r))r′
→i, log2(r) + 3 + 2 log2(r′

→i + 1)}

⩽ min{(1 + 1/ log2(r))r′
→i, 3 log2(r + 1) + 3},

and that r′
→i + r′′

→i = r→i, this makes a total of at most

1 +
σ∑

i=1
cost∗

log(r, r→i)

element comparisons, where cost∗
log(r, m) = min{(1 + 1/ log2(r))m, 6 log2(r + 1) + 6}.

Then, let T ∗ denote the tree obtained after removing the leaves of T . We focus on proving
that∑

R∈T ∗

cost∗
log(r, r→i) ⩽ si log2(n/si) + 2si log2(log2(2n/si)) + O(si)

for all i ⩽ σ. Indeed, finding the run decomposition R1, R2, . . . , Rρ of A requires n − 1
comparisons, and ρ − 1 ⩽ n − 1 merges are then performed, which will make a total of up to

2n +
∑

R∈T ∗

σ∑
i=1

cost∗
log(r, r→i) ⩽ 2n +

σ∑
i=1

si log2(n/si) + 2si log2(log2(n/si) + 1) + O(si)

⩽ nH∗ + 2 log2(H∗ + 1)n + O(n)

comparisons, the latter inequality being due to the concavity of the function x 7→ log2(x + 1).
Then, let Rh be the set of runs at height h in T , and let

Clog(h) =
∑

R∈Rh

cost∗
log(r, r→i).

No run in Rh descends from another one, and each run R ∈ Rh has length r ⩾ 2max{1,h−θ},
which proves that |Rh| ⩽ n/2h−θ and that

Clog(h) ⩽
∑

R∈Rh

(1+1/ log2(r))r→i ⩽
∑

R∈Rh

(1+1/max{1, h−θ})r→i ⩽ (1+1/max{1, h−θ})si.

Finally, let z = n/si ⩾ 1, and consider the constant ν = ⌈log2(z log2(2z))⌉ + θ and the
functions f : x 7→ 1 + log2(x + 1) and g : x 7→ x f(n/x). Both functions f and g are concave,
positive and increasing on (0, +∞), which proves that

Clog(ν + h)/6 ⩽
∑

R∈Rν+h

f(r) ⩽ |Rν+h| f
(∑

R∈Rν+h
r/|Rν+h|

)
⩽ g(|Rν+h|) ⩽ g(n/2ν−θ+h)

⩽ g
(
2−hsi/ log2(2z)

)
= 2−hsif(2hz log2(2z))/ log2(2z)

⩽ 2−hsi

(
1 + log2(2h(2z)2)

)
/ log2(2z) = 2−h(h + 1)si/ log2(2z) + 21−hsi

⩽ (h + 3)2−hsi,
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where the inequality between the second and third line simply comes from the fact that

1 + 2hz log2(2z) ⩽ 1 + 2h+1z2 ⩽ 2h(1 + 2z2) ⩽ 2h × (2z)2

whenever h ⩾ 0 and z ⩾ 1.
It follows that

θ∑
h=1

Clog(h) +
∑
h⩾0

Clog(ν + h) ⩽ 2θsi + 6
∑
h⩾0

(h + 3)2−hsi = O(si),

whereas
ν−θ−1∑

h=1
Clog(θ + h) ⩽

ν−1∑
h=1

(1 + 1/h)si ⩽ ((ν − 1) + 1 + ln(ν − 1))si = (ν + ln(ν))si.

Thus, we conclude that∑
R∈T ∗

cost∗
log(r, r→i) =

∑
h⩾1

Clog(h) ⩽ si(ν + ln(ν)) + O(si)

⩽ si log2(z) + si log2(log2(2z)) + si log2(log2(2z2)) + O(si)
⩽ si log2(z) + 2si log2(log2(2z)) + O(si). ◀

It is of course possible to marginally improve our update policy in order to approach the
nH∗ + log2(H∗ + 1)n + O(n) upper bound. For instance, choosing t = τ⌈log2(a + b)⌉ for a
given constant τ ⩾ 1 provides us with an nH∗ + (1 + 1/τ) log2(H∗ + 1)n + log2(τ) + O(n)
upper bound, and choosing t = ⌈log2(a + b)⌉ × ⌈log2(log2(a + b))⌉ further improves that
upper bound. However, such improvements soon become negligible in comparison with the
overhead of having to compute the value of t.

Finally, and like in Section 4, we list a few algorithms that enjoy similar complexity upper
bounds. Proofs that they do can be found in the complete version of this article [11].

▶ Theorem 22. The algorithms NaturalMergeSort and ShiversSort have the tight middle-growth
property.

▶ Theorem 23. Theorems 19 and 21 remain valid if we consider the algorithms PeekSort
and adaptive ShiversSort instead of an algorithm with the tight middle-growth property.

By contrast, we conjecture that no choice policy for the parameters t would provide us
with (1 + o(1))nH∗ + O(n) upper bounds on the number of element comparisons performed
by TimSort, α-StackSort or α-MergeSort. However, finding precise characterisations of the
best constants c that could be achieved for these algorithms is a wide open question.

6 Conclusion: An idealistic galloping cost model

In the above sections, we observed the impact of using a galloping sub-routine for a fixed or
a variable parameter t. Although choosing a constant value of t (e.g., t = 7, as advocated
in [17]) already leads to very good results, letting t vary, for instance by using the logarithmic
variant of the sub-routine, provides us with even better complexity guarantees, with an
often negligible overhead of O(n log(H∗ + 1) + n) element comparisons: up to a small error,
this provides us with the following idealistic cost model for run merges, allowing us to
simultaneously identify the parameter t with +∞ and with a constant.
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▶ Definition 24. Let A and B be two non-decreasing runs with a→i (respectively, b→i)
elements of value i for all i ∈ {1, 2, . . . , σ}. The idealistic galloping cost of merging A and B

is defined as the quantity
σ∑

i=1
cost∗

ideal(a→i) + cost∗
ideal(b→i),

where cost∗
ideal(m) = min{m, log2(m + 1) + O(1)}.

Indeed, abusively identifying the real number of element comparisons performed while
runs A and B with this idealistic galloping cost, we may prove that every stable natural merge
sort with the tight middle-growth property (but also related algorithms such as PeekSort
and adaptive ShiversSort) requires at most nH∗ + O(n) element comparisons to sort arrays of
length n and dual run-length entropy H∗.

We think that this idealistic cost model is both simple and precise enough to allow
studying the complexity of natural merge sorts in general, provided that they use the
galloping sub-routine. Thus, it would be interesting to use that cost model in order to study,
for instance, the least constant c for which various algorithms such as TimSort or α-MergeSort
require up to cn(1 + o(1))H∗ + O(n) element comparisons.

We also hope that this simpler framework will foster the interest for the galloping merging
sub-routine of TimSort, and possibly lead to amending Swift and Rust implementations of
TimSort to include that sub-routine, which we believe is too efficient in relevant cases to be
omitted.
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Fernandez de la Vega, Kannan and Karpinski, where Õ(·) hides a factor polynomial in log (1/ε).
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1 Introduction

The field of property testing refers to the model where the main goal is to design efficient
algorithms that reads only “small” part of the input. Over the past few years, the field has
had very rapid growth, and several interesting techniques and results have emerged. See, for
example, the new property testing book by Goldreich [11] for an introduction to property
testing.

The field of graph property testing was first introduced in the seminal work of Goldreich,
Goldwasser, and Ron [12]. In that work, the authors studied various interesting and important
problems in dense graphs and testing bipartiteness was one of them. In non-tolerant variant
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69:2 Tolerant Bipartite Testing

of bipartiteness testing, we are given a dense graph G and a proximity parameter ε ∈ (0, 1)
as the input, and the goal is to decide if G is bipartite, or do we need to modify at least εn2

many entries of the adjacency matrix of G to make it bipartite, using as few queries to the
adjacency matrix of G as possible.

Due to the fundamental nature of the problem, bipartite testing has been extensively
studied over the past two decades [12]. Though there are several works on non-tolerant
testing of various graph properties across all models in graph property testing [12, 13, 7],
there are very few works related to their tolerant counterparts (See, for example, the property
testing book by Goldreich [11] for an extensive list of various results). To the best of our
knowledge, this is the first time tolerant bipartite testing has been explicitly studied in the
literature.

Now we formally define the notion of bipartite distance and state our main result. Then
we discuss our result vis-a-vis the related works.

▶ Definition 1.1 (Bipartite distance). A bipartition of a graph G is a function f : V (G) →
{L, R}, where V (G) denotes the vertex set of G 1. The bipartite distance of G with respect
to the bipartition f is denoted and defined as

dbip(G, f) :=

 ∑
v∈V :f(v)=L

|N(v) ∩ f−1(L)| +
∑

v∈V :f(v)=R

|N(v) ∩ f−1(R)|

 .

Here N(v) denotes the neighborhood of v in G. Informally, dbip(G, f) measures the
distance of the graph G from being bipartite, with respect to the bipartition f . The bipartite
distance of G is defined as the minimum bipartite distance of G over all possible bipartitions
f of G, that is,

dbip(G) := min
f

dbip(G, f).

Now we are ready to formally state our result.

▶ Theorem 1.2 (Main result). Given query access to the adjacency matrix of a dense graph
G with n vertices and a proximity parameter ε ∈ (0, 1), there exists an algorithm that, with
probability at least 9

10 , decides whether dbip(G) ≤ εn2 or dbip(G) ≥ (2+Ω(1))εn2, by sampling
O
( 1

ε3 log 1
ε

)
many vertices in 2O( 1

ε log 1
ε ) time, and performs O

( 1
ε3 log2 1

ε

)
many queries.

1.1 Our result in the context of literature
Recall that non-tolerant bipartite testing refers to the problem where we are given query
access to the adjacency matrix of an unknown graph G and a proximity parameter ε ∈ (0, 1),
and the objective is to decide whether dbip(G) = 0 or dbip(G) ≥ εn2. The problem of
non-tolerant bipartite testing in the dense graph model was first studied in the seminal work
of Goldreich, Goldwasser, and Ron [12], and they showed that it admits an algorithm with
query complexity Õ

(
1/ε3). Later, Alon and Krivelevich [4] improved the query complexity

of the problem to Õ
(
1/ε2). They further studied the problem of testing c-colorability of

dense graph. Note that bipartite testing is a special case of testing c-colorability, when c = 2.
They proved that c-colorability can be tested by performing Õ

(
1/ε4) many queries, for

c ≥ 3. This bound was later improved to Õ
(
1/ε2) by Sohler [18]. On the other hand, for

1 L and R denote left and right respectively.
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non-tolerant bipartite testing, Bogdanov and Trevisan [6] proved that Ω(1/ε2) and Ω(1/ε3/2)
many adjacency queries are required by any non-adaptive and adaptive testers, respectively.
Later, Gonen and Ron [14] further explored the power of adaptive queries for bipartiteness
testing. Bogdanov and Li [5] showed that bipartiteness can be tested with one-sided error in
O(1/εc) queries, for some constant c < 2, assuming a conjecture 2.

Though the non-tolerant variant of bipartite testing is well understood, the query com-
plexity of the tolerant version (even for restricted cases like we consider in Theorem 1.2)
has not yet been addressed in the literature. From the result of Alon, Vega, Kannan and
Karpinski [1],for estimating MaxCut 3 for any given ε (0 < ε < 1), it implies that that
the bipartite distance of a (dense) graph G can be estimated up to an additive error of
εn2, by performing Õ

(
1/ε6) many queries (see Appendix A for details, and in particular,

see Corollary A.2). Even for the tolerant version that we consider in Theorem 1.2, their
algorithm does not give any bound better than Õ

(
1/ε6). Note that Alon, Vega, Kannan

and Karpinski [1] improved the result of Goldreich, Goldwasser, and Ron [12], who were the
first to prove that MaxCut can be estimated with an additive error of εn2 by performing
Õ(1/ε7) many adjacency queries and with time complexity 2Õ(1/ε3). Though we improve
the bound for tolerant bipartite testing (for the restricted case as stated in Theorem 1.2)
substantially from the work of Alon et al. [1], we would like to note that this is the first work
that studies tolerant bipartite testing explicitly.

1.2 Other related works
Apart from the dense graph model, this problem has also been studied in other models of
property testing. Goldreich and Ron [13] studied the problem of bipartiteness testing for
bounded degree graphs, where they gave an algorithm of Õ(

√
n) queries, where n denotes

the number of vertices of the graph. Later, Kaufman, Krivelevich and Ron [15] studied
the problem in the general graph model and gave an algorithm with query complexity
Õ
(
min

{√
n, n2/m

})
, where m denotes the number of edges of the graph. Few years back,

Czumaj, Monemizadeh, Onak, and Sohler [7] studied the problem for planar graphs (more
generally, for any minor-free graphs), where they employed a random walk based technique,
and proved that constant number of queries are enough for bipartiteness testing. Apart from
bipartite testing, there have been extensive works related to property testing in the dense
graph model and its connection to the regularity lemma [3, 2, 9].

1.3 Organization
In Section 2, we present an overview of our algorithm along with a brief description of its
analysis. In Section 3, we formally describe our algorithm, followed by its correctness analysis
in Section 4. Finally, we conclude in Section 5. The proofs that are omitted in the main text
are either presented in the appendix or in the full version of the paper [10].

1.4 Notations
All graphs considered here are undirected, unweighted, and have no self-loops or parallel
edges. For a graph G = (V (G), E(G)), V (G) and E(G) denote the vertex and edge sets of
G respectively. For a vertex v ∈ V (G), NG(v) denotes the neighborhood of a vertex v in

2 The conjecture is that if the graph G is ε-far from bipartite, then an induced subgraph on Õ(1/ε) many
random vertices would be Ω̃(ε)-far from being bipartite with probability at least 1/2.

3 MaxCut of a graph G denotes the size of the largest cut in G.
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69:4 Tolerant Bipartite Testing

G, and we will write it as N(v) when the graph G is clear from the context. Since we are
only considering undirected graphs, we write an edge as {u, v} ∈ E(G). For a set of pairs
of vertices Z, we will denote the set of vertices present in at least one pair in Z by V (Z).
For a function f : V (G) → {L, R}, f−1(L) and f−1(R) represent the set of vertices that are
mapped to L and R by f respectively. We denote by

(
V (G)

2
)

the set of unordered pairs of
the vertices of G. Finally, a = (1 ± ε)b represents (1 − ε)b ≤ a ≤ (1 + ε)b.

2 Overview of the proof of Theorem 1.2

In this section, we give an overview of our algorithm. The detailed description of the
algorithm is presented in Section 3, while its analysis is presented in Section 4. We will prove
the following theorem, which is our main technical result.

▶ Theorem 2.1. There exists an algorithm Tol-Bip-Dist(G, ε) that given adjacency query
access to a dense graph G with n vertices and a parameter ε ∈ (0, 1), decides with probability
at least 9/10, whether dbip(G) ≤ εn2 or dbip(G) ≥ (2 + k)εn2, by sampling O( 1

k5ε2 log 1
kε )

many vertices in 2O( 1
k3ε

log 1
kε ) time, using O( 1

k8ε3 log2 1
kε ) many queries to the adjacency

matrix of G.

Note that Theorem 2.1 implies Theorem 1.2, by taking k = Ω(1).

2.1 Brief description of the algorithm
Assume C1, C2, C3 are three suitably chosen large absolute constants. At the beginning of
our algorithm, we generate t many subsets of vertices X1, . . . , Xt, each with

⌈
C2
k3ε log 1

kε

⌉
many vertices chosen randomly, where t =

⌈
log C1

kε

⌉
. Let C = X1 ∪ . . . ∪ Xt. Apart from the

Xi’s, we also randomly select a set of pairs of vertices Z, with |Z| =
⌈

C3
k5ε2 log 1

kε

⌉
. We find

the neighbors of each vertex of Z in C. Then for each vertex pair in Z, we check whether it
is an edge in the graph or not. Loosely speaking, the set of edges between C and V (Z) 4

will help us generate partial bipartitions, restricted to Xi ∪ V (Z)’s, for each i ∈ [t], and the
edges among the pairs of vertices of Z will help us in estimating the bipartite distance of
some specific kind of bipartitions of G. Here we would like to note that no further query will
be performed by the algorithm. The set of edges with one vertex in C and the other in V (Z),
and the set of edges among the vertex pairs in Z, when treated in a specific manner, will
give us the desired result. Observe that the number of adjacency queries performed by our
algorithm is O( 1

k8ε3 log2 1
kε ).

For each i ∈ [t], we do the following. We consider all possible bipartitions Fi of Xi. For
each bipartition fij (of Xi) in Fi, we extend fij to a bipartition of Xi ∪ V (Z), say f ′

ij , such
that both fij and f ′

ij are identical with respect to Xi. Moreover, we assign f ′
ij(z) (to either

L or R), for each z ∈ V (Z) \ Xi, based on the neighbors of z in Xi. To design a rule of
assigning f ′

ij(z), for each z ∈ V (Z) \ Xi for our purpose, we define the notions of heavy and
balanced vertices, with respect to a bipartition (see Definitions 4.1 and 4.2). Heavy and
balanced vertices are defined in such a manner that when the bipartite distance of G is at
most εn2 (that is, G is ε-close), we can infer the following interesting connections. Let f be
a bipartition of V (G) such that dbip(G, f) ≤ εn2. We will prove that the total number of
edges, with no endpoints in Xi and whose at least one endpoint is a balanced vertex with
respect to f , is bounded (see Claim 4.12). Moreover, if we generate a bipartition f ′ such that

4 Recall that V (Z) denotes the set of vertices present in at least one pair in Z.
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f and f ′ differ for large number of heavy vertices, then the bipartite distance with respect to
f ′ cannot be small. To guarantee the correctness of our algorithm, we will prove that a heavy
vertex v with respect to f , can be detected and f(v) can be determined, with probability at
least 1 − o(kε). Note that the testing of being a heavy vertex will be performed only for the
vertices in V (Z). We will see shortly how this will help us to guarantee the completeness of
our algorithm.

Finally, our algorithm computes ζij , that is, the fraction of vertex pairs in Z that are
monochromatic 5 edges with respect to f ′

ij . If we find at least one i and j such that
ζij ≤

(
2 + k

20
)

ε, the algorithm decides that dbip(G) ≤ εn2. Otherwise, it will report that
dbip(G) ≥ (2 + k)εn2.

2.2 Completeness
Let us assume that the bipartite distance of G is at most εn2, and let f be a bipartition of
V (G) that is optimal. Let us now focus on a particular i ∈ [t], that is, an Xi. Since we are
considering all possible bipartitions Fi of Xi, there exists a fij ∈ Fi, such that fij and f are
identical with respect to Xi. To complete our argument, we introduce (in Definition 4.3) the
notion of special bipartition Splf

i : V (G) → {L, R}, with respect to f by fij such that f(v),
fij(v) and Splf

i (v) are identical for each v ∈ Xi, and at least 1 − o(kε) fraction of heavy
vertices, with respect to f , are mapped identically both by f and Splf

i . We shall prove that
the bipartite distance of G with respect to Splf

i is at most
(
2 + k

50
)

εn2 (see Lemma 4.6).
Now let us think of generating a bipartition f

′′

ij of V (G) such that, for each v ∈ V (G) \ Xi,
if we determine f

′′

ij(v) by the same rule used by our algorithm to determine fij(z), for each
z ∈ V (Z) \ Xi. Note that our algorithm does not find f

′′

ij explicitly, it is used only for the
analysis purpose. The number of heavy vertices, with respect to the bipartition f , that have
different mappings by f and f ′′

ij , is at most o(kεn) with constant probability. So, with a
constant probability, f

′′

ij is a special bipartition with respect to f by fij . Note that, if we
take |Z| = O( 1

k5ε2 log 1
kε ) many random vertex pairs and determine the fraction χf

ij of pairs
that form monochromatic edges with respect to the special bipartition f

′′

ij , we can show
that χf

ij ≤ (2 + k
20 )ε, with probability at least 1 − 2−Ω( 1

k3ε
log 1

kε ) ≥ 9
10 . However, we are not

finding either f
′′

ij or χf
ij explicitly. We just find ζij , that is, the fraction of vertex pairs in Z

that are monochromatic edges with respect to f ′
ij . But the above argument still holds, since

Z is chosen randomly and there exists a f
′′

ij , such that f
′′

ij(z) = f ′
ij(z), for each z ∈ V (Z),

and the probability distribution of ζij is identical to that of χf
ij .

2.3 Soundness
Let us now consider the case when the bipartite distance of G is at least (2 + k)εn2, and f be
any bipartition of V (G). To prove the soundness of our algorithm, we introduce the notion
of derived bipartition Derf

i : V (G) → {L, R} with respect to f by fij (see Definition 4.4),
such that f(v), fij(v) and Derf

i (v) are identical for each v ∈ Xi. Observe that the bipartite
distance of G with respect to any derived bipartition is at least (2 + k)εn2 as well. Similar
to the discussion of the completeness, if we generate a bipartition f

′′

ij of V (G), f
′′

ij will be a
derived bipartition, with respect to f by fij . If we take |Z| = O( 1

k5ε2 log 1
kε ) many random

pairs of vertices and determine the fraction χf
ij of pairs that form monochromatic edges

with respect to the derived bipartition f
′′

ij , we can prove that χf
ij ≤

(
2 + k

20
)

ε holds, with

5 An edge is said to be monochromatic with respect to f ′
ij if both its endpoints have the same f ′

ij values.
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69:6 Tolerant Bipartite Testing

probability at most 2−Ω( 1
k3ε

log 1
kε ). We want to re-emphasize that we are not determining f

′′

ij ,
as well as χf

ij explicitly. The argument follows due to the facts that Z is chosen randomly
and there exists an f

′′

ij such that f ′
ij(z) = f

′′

ij(z), for each z ∈ V (Z), and the probability
distribution of ζij is identical to that of χf

ij . Using the union bound, we can say that the
algorithm rejects with probability at least 9

10 .

3 Algorithm for Tolerant Bipartite Testing (Proof of Theorem 2.1)

In this section, we formalize the ideas discussed in Section 2, and prove Theorem 2.1.

Formal description of algorithm Tol-Bip-Dist(G, ε)
Step-1 Let C1, C2, C3 be three suitably chosen large constants and t := ⌈log C1

kε ⌉.
(i) We start by generating t many subset of vertices X1, . . . , Xt ⊂ V (G), each with

⌈ C2
k3ε log 1

kε ⌉ many vertices, sampled randomly without replacement 6.
(ii) We sample ⌈ C3

k5ε2 log 1
kε ⌉ many random pairs of vertices, with replacement, and denote

those sampled pairs of vertices as Z. Note that X1, . . . , Xt, Z are generated independent
of each other.

(iii) We find all the edges with one endpoint in C = X1 ∪X2 ∪ . . . Xt and the other endpoint
in one of the vertices of V (Z) 7, by performing O

( 1
k8ε3 log2 1

kε

)
many adjacency queries.

Step-2(i) Let {a1, b1}, . . . {aλ, bλ} be the pairs of vertices of Z, where λ = ⌈ C3
k5ε2 log 1

kε ⌉.
Now we find the pairs of Z that are edges in G, by performing adjacency queries to
all the pairs of vertices of Z (after this step, the algorithm does not make any query
further).

(ii) For each i ∈ [t], we do the following:
(a) Let Fi denote the set of all possible bipartitions of Xi, that is,

Fi =
{

fij : Xi → {L, R} : j ∈
[
2|Xi|−2

]}
.

(b) For each bipartition fij (of Xi) in Fi, we extend fij to f ′
ij : Xi ∪ Z → {L, R} to be

a bipartition of Xi ∪ Z, such that the mapping of each vertex of Xi are identical in
fij and f ′

ij , and is defined as follows:

f ′
ij(z) =


fij(z), z ∈ Xi

L, z /∈ Xi and
∣∣N(z) ∩ f−1

ij (R)
∣∣ >
∣∣N(z) ∩ f−1

ij (L)
∣∣+ kε|Xi|

225000

R, z /∈ Xi and
∣∣N(z) ∩ f−1

ij (L)
∣∣ >
∣∣N(z) ∩ f−1

ij (R)
∣∣+ kε|Xi|

225000

L or R arbitrarily, otherwise

Note that this step can be performed from the adjacency information between the
vertices of C and Z, which have already been computed before.

(c) We now find the fraction of the vertex pairs of Z that are edges and have the same
label with respect to f ′

ij , that is,

ζij = 2 ·
∣∣{{aℓ, bℓ} : ℓ ∈ [λ], {aℓ, bℓ} ∈ E(G) and f ′

ij(aℓ) = f ′
ij(bℓ)

}∣∣
λ

8.

(d) If ζij ≤
(
2 + k

20
)

ε, we Accept G as ε-close to being bipartite, and Quit the
algorithm.

6 Since we are assuming n is sufficiently large with respect to 1
ε , sampling with and without replacement

are the same.
7 Recall that V (Z) denotes the set of vertices present in at least one pair in Z.
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(iii) If we arrive at this step, then ζij >
(
2 + k

20
)

ε, for each i ∈ [t] and fij ∈ Fi in Step-
(ii). We Reject and declare that G is (2 + k)ε-far from being bipartite.

We split the analysis of algorithm Tol-Bip-Dist(G, ε) into five parts:
Completeness: If G is ε-close to being bipartite, then Tol-Bip-Dist(G, ε) reports the same,

with probability at least 9
10 .

Soundness: If G is (2 + k)ε-far from being bipartite, then Tol-Bip-Dist(G, ε) reports the
same, with probability at least 9

10 .
Sample Complexity: The sample complexity of Tol-Bip-Dist(G, ε) is O( 1

k5ε2 log 1
kε ).

Query Complexity: The query complexity of Tol-Bip-Dist(G, ε) is O( 1
k8ε3 log2 1

kε ).
Time Complexity: The time complexity of Tol-Bip-Dist(G, ε) is 2O( 1

k3ε
log 1

kε ).

The last three quantities can be computed from the description of Tol-Bip-Dist(G, ε).
In Step-1(i), we sample vertices of G to generate t = ⌈log C1

kε ⌉ subsets, each with ⌈ C2
k3ε log 1

kε ⌉
many vertices. Thereafter in Step-1(ii) and Step-1(iii), we randomly choose ⌈ C3

k5ε2 log 1
kε ⌉

many pairs of vertices and perform adjacency queries for each vertex in any pair of Z to
every Xi. Thus the sample complexity of Tol-Bip-Dist(G, ε) is O( 1

k5ε2 log 1
kε ) and query

complexity is O( 1
k8ε3 log2 1

kε ). The time complexity of the algorithm is 2O( 1
k3ε

log 1
kε ), which

follows from Step-2(ii), that dominates the running time.

4 Proof of Correctness of Tol-Bip-Dist(G, ε)

Before proceeding to the proof, we introduce some definitions for classifying the vertices of
the graph, with respect to any particular bipartition, into two categories:

(i) heavy vertex, and
(ii) balanced vertex.

These definitions will be mostly used in the proof of completeness. Informally speaking, a
vertex v is said to be heavy with respect to a bipartition f , if it has substantially large
number of neighbors in one side of the bipartition (either L or R), as compared to the other
side.

▶ Definition 4.1 (Heavy vertex). A vertex v ∈ V is said to be L-heavy with respect to a
bipartition f , if it satisfies two conditions:

(i)
∣∣N(v) ∩ f−1(L)

∣∣ ≥
∣∣N(v) ∩ f−1(R)

∣∣+ kεn
150 ;

(ii) If
∣∣N(v) ∩ f−1(R)

∣∣ ≥ 1
(1+ k

200 )
kεn
150 , then

∣∣N(v) ∩ f−1(L)
∣∣ ≥ (1 + k

200 )
∣∣N(v) ∩ f−1(R)

∣∣;
We define R-heavy vertices analogously. The union of the set of L-heavy and R-heavy

vertices, with respect to a bipartition f , is defined to be the set of heavy vertices (with respect
to f), and is denoted by Hf .

Similarly, a vertex v is said to be balanced if the number of neighbors of v are similar in
both L and R, with respect to a bipartition f . We define it formally as follows:

▶ Definition 4.2 (Balanced vertex). A vertex v ∈ V is said to be balanced with respect to a
bipartition f , if v /∈ Hf , that is, it satisfies at least one of the following conditions:
(i) Type 1:

∣∣∣∣N(v) ∩ f−1(R)
∣∣−
∣∣N(v) ∩ f−1(L)

∣∣∣∣ < kεn
150 ;
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(ii) Type 2: Either

∣∣N(v) ∩ f−1(L)
∣∣ ≤

∣∣N(v) ∩ f−1(R)
∣∣ < (1 + k

200)
∣∣N(v) ∩ f−1(L)

∣∣ ,
or, ∣∣N(v) ∩ f−1(R)

∣∣ ≤
∣∣N(v) ∩ f−1(L)

∣∣ < (1 + k

200)
∣∣N(v) ∩ f−1(R)

∣∣ .
The set of balanced vertices of type 1 with respect to f is denoted as B1

f , and the set of
balanced vertices of type 2 with respect to f is denoted as B2

f . The union of B1
f and B2

f is
denoted by Bf . Note that B1

f and B2
f may not be disjoint.

In order to prove the completeness (in Section 4.1), we also use a notion of special
bipartition to be defined below. The definition of special bipartition is based on an optimal
bipartition f of V (G), and notions of heavy and balanced vertices. We would also like to
note that, later in Lemma 4.6, we show that when dbip(G) ≤ εn2, the bipartite distance of G

with respect to any special bipartition is bounded by (2 + k
50 )εn2.

▶ Definition 4.3 (special bipartition). Let dbip(G) ≤ εn2, and f : V (G) → {L, R} be an
optimal bipartition of V (G), that is, dbip(G, f) ≤ εn2, and there does not exist any bipartition
g such that dbip(G, g) < dbip(G, f). For an Xi selected in Step-1(i) of the algorithm, let
fij ∈ Fi be the bipartition of Xi such that f |Xi

= fij . Then bipartition Splf
i : V (G) → {L, R}

is said to be a special bipartition with respect to f by fij such that
Splf

i |Xi= f |Xi= fij;
There exists a subset H′

f ⊂ Hf such that
∣∣∣H′

f

∣∣∣ ≥ (1 − o(kε)) |Hf |, and for each v ∈ H′
f ,

Splf
i (v) is defined as follows:

Splf
i (v) =

{
R, v /∈ Xi and v is L − heavy
L, v /∈ Xi and v is R − heavy

For each v /∈ (H′
f ∪ Xi), Splf

i (v) is set to L or R arbitrarily.

In our proof of the soundness theorem (in Section 4.2), we need the notion of derived
bipartition. Unlike the definition of special bipartition, the definition of derived bipartition
is more general, in the sense that it is not defined based on either any optimal bipartition, or
on heavy or balanced vertices.

▶ Definition 4.4 (derived bipartition). Let f : V (G) → {L, R} be a bipartition of V (G).
For an Xi selected in Step-1(i) of the algorithm, let fij ∈ Fi be the bipartition of Xi such
that f |Xi

= fij . A bipartition Derf
i : V (G) → {L, R} is said to be derived bipartition with

respect to f by fij, if Derf
i |Xi= f |Xi= fij.

4.1 Proof of Completeness
In this section, we prove the following theorem:

▶ Theorem 4.5. Let us assume G is ε-close to being bipartite. Then Tol-Bip-Dist(G, ε)
reports the same, with probability at least 9/10.

The proof of Theorem 4.5 will cricially use the following lemma, which says that the bipartite
distance of G with respect to any special bipartition is bounded by a

(
2 + k

50
)

εn2.
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▶ Lemma 4.6 (special bipartition lemma). Let f be a bipartition such that dbip(G, f) ≤ εn2

and there does not exist any bipartition g such that dbip(G, g) < dbip(G, f). For any special
bipartition Splf

i with respect to f , we have

dbip(G, Splf
i ) ≤

(
2 + k

50

)
εn2.

We will prove the above lemma later. For now, we want to establish (in Lemma 4.8) that
there exists an i ∈ [t] and afij ∈ Fi which can be thought of as a random restriction of some
special bipartition with respect to f by fij . In other words, Lemma 4.8 basically states that
if G is ϵ-close to being bipartite, then the extension according to the rule in Step-2(ii)(b)
of the mapping obtained by restricting an optimal bipartition to a random Xi is likely to
correspond to a special bipartition, and therefore, the number of monochromatic edges
(with respect to a special bipartition) in the randomly picked Z is likely to be low with
respect to that bipartition. Thus, ζij must be low for some i, j with high probability.

To prove Lemma 4.8, we need the following lemma (Lemma 4.7) about heavy vertices. In
Lemma 4.7, we basically prove that a heavy vertex with respect to a bipartition f will have
significantly more neighbors in the part of Xi, that corresponds to the heavy side of that
vertex (with respect to f). Basically, if a vertex v is L-heavy with respect to f , it has more
neighbors in the subset of Xi on the L-side as compared to the subset of Xi on the R-side
of f .

▶ Lemma 4.7 (Heavy vertex lemma). Let f be a bipartition of G. Consider a vertex v ∈ V .
(i) For every L-heavy vertex v,

∣∣N(v) ∩ f−1(L) ∩ Xi

∣∣ −
∣∣N(v) ∩ f−1(R) ∩ Xi

∣∣ ≥ k2ε|Xi|
225000

with probability at least 1 − o(kε).
(ii) For every R-heavy vertex v,

∣∣N(v) ∩ f−1(L) ∩ Xi

∣∣ −
∣∣N(v) ∩ f−1(R) ∩ Xi

∣∣ ≥ k2ε|Xi|
225000

with probability at least 1 − o(kε).

We would like to note that Lemma 4.7 holds for any bipartition. However, we will use it
only for completeness with resepct to an optimal bipartition f .

▶ Lemma 4.8. If dbip(G) ≤ εn2, then there exists an i ∈ [t] and fij ∈ Fi such that
ζij ≤

(
2 + k

20
)

ε holds, with probability at least 1 − o(kε).

Proof. Let f be an optimal bipartition such that dbip(G, f) ≤ εn2. First, consider a special
bipartition Splf

i , and consider a set of random vertex pairs Y such that |Y | = |Z|. Now
consider the fraction of monochromatic edges of Y , with respect to the bipartition Splf

i ,
that is,

χf
ij = 2 ·

∣∣∣{{a, b} ∈ Y : {a, b} ∈ E(G) and Splf
i (a) = Splf

i (b)
}∣∣∣

|Y |
.

▶ Observation 4.9. χf
ij ≤

(
2 + k

20
)

ε holds, with probability at least 9/10.

Proof. By Lemma 4.6, we know that when dbip(G) ≤ εn2, dbip(G, Splf
i ) ≤

(
2 + k

50
)

εn2. So,
E[χf

ij ] ≤
(
2 + k

50
)

ε. Using Chernoff bound (see Lemma B.1), we can say that

P(χf
ij ≥

(
2 + k

20
)

ε) ≤ 1
2Ω( 1

k3ε
log 1

kε
) ≤ 1

10 . ◀

Now, we claim that bounding χf
ij is equivalent to bounding ζij .

ICALP 2022
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▷ Claim 4.10. For any i ∈ [t], there exists a bipartition fij ∈ Fi such that the probability
distribution of ζij is identical to that of χf

ij , for some special bipartition f with respect to
fij , with probability at least 1/2.

As t = O(log 1
kε ), the above claim implies that there exists an i ∈ [t] and fij ∈ Fi such

that the probability distribution of ζij is identical to that of χf
ij , with probability at least

1 − o(kε).
Now we prove Claim 4.10. Recall the procedure of determining ζij as described in Step 2

of algorithm Tol-Bip-Dist(G, ε) presented in Section 3.
Fact 1: For any vertex v ∈ Hf ∩ Z, Splf

i (v) = f ′
ij(v), with probability at least 1 − o(kε),

where Hf denotes the set of heavy vertices of Xi with respect to the bipartition f . This
follows according to Claim 4.7, along with the definition of f ′

ij(z).
Fact 2: Consider a bipartition fij ∈ Fi of Xi, and its extension f

′

ij to Xi ∪Z, as considered in
the algorithm. Assume a bipartition f

′′

ij of V (G), constructed by extending f ′
ij according

to the rule of Step-2(ii)(b) of the algorithm. From Heavy vertex lemma (Lemma 4.7),
we know that the expected number of vertices in Hf such that f

′′

ij(v) ̸= f(v), is at most
o(kε) |Hf |. Using Markov inequality, we can say that, with probability at least 1

2 , the
number of vertices in Hf such that f

′′

ij(v) ̸= f(v), is at most o(kε) |Hf |. Thus, with
probability at least 1

2 , there exists a set of vertices H′
f such that f

′′

ij(v) = f(v) holds for
at least (1 − o (kε))

∣∣∣H′
f

∣∣∣ vertices. Note that the bipartition f
′′

ij is a special bipartition
f with respect to fij .

From Fact 1 and Fact 2, we can deduce that, there exists a special bipartition Splf
i

such that Splf
i (v) = f ′

ij(v) for each z ∈ Z.
Since we choose Z uniformly at random, Lemma 4.8 follows. ◀

According to the description of algorithm Tol-Bip-Dist(G, ε), the algorithm reports
that dbip(G) ≤ εn2, if there exists a ζij such that ζij ≤

(
2 + k

20
)

ε, for some i ∈ [t] and
j ∈ [2|Xi|−2]. Hence, by Lemma 4.8, we are done with the proof of the completeness theorem
(Theorem 4.5).

Now we focus on proving special bipartition lemma (Lemma 4.6) and Heavy vertex
lemma (Lemma 4.7), starting with the proof of special bipartition lemma.

Proof of special bipartition lemma (Lemma 4.6)
The idea of the proof relies on decomposing the bipartite distance with respect to a special
bipartition into a sum of three terms and then carefully bounding the cost of each of those
parts individually.

Let us first recall the definition of bipartite distance of G with respect to a special
bipartition Splf

i .

dbip(G, Splf
i ) =

∣∣∣{(u, v) ∈ E(G) : Splf
i (u) = Splf

i (v)
}∣∣∣ . (1)

By abuse of notation, here we are denoting E(G) as the set of ordered edges.
We will upper bound dbip(G, Splf

i ) as the sum of three terms defined below. Here Hf

and Bf denote the set of heavy vertices and balanced vertices (with respect to f), as defined
in Definition 4.1 and Definition 4.2, respectively. Also, H′

f ⊆ Hf denotes the set of vertices
of Hf that are mapped according to f , as defined in the definition of special bipartition in
Definition 4.3. The three terms that are used to upper bound dbip(G, Splf

i ) are as follows:
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(a) DH′
f

∪Xi,H′
f

∪Xi
=
∣∣∣{(u, v) ∈ E(G) : u ∈ H′

f ∪ Xi & v ∈ H′
f ∪ Xi, Splf

i (u) = Splf
i (v)

}∣∣∣;
(b) DHf \(H′

f
∪Xi),V (G) =∣∣∣{(u, v) ∈ E(G) : u ∈ Hf \ (H′

f ∪ Xi), & v ∈ V (G), Splf
i (u) = Splf

i (v)
}∣∣∣;

(c) DBf \Xi,V (G) =
∣∣∣{(u, v) ∈ E(G) : u ∈ Bf \ Xi and v ∈ V (G), Splf

i (u) = Splf
i (v)

}∣∣∣.
Now from Equation 1 along with the above definitions, we can upper bound dbip(G, Splf

i )
as follows:

dbip(G, Splf
i ) ≤ DH′

f
∪Xi,H′

f
∪Xi

+ DHf \(H′
f

∪Xi),V (G) + DBf \Xi,V (G). (2)

We now upper bound dbip(G, Splf
i ) by bounding each term on the right hand side of the

above expression separately, via the two following claims which we will prove later.

▷ Claim 4.11.
(i) DH′

f
∪Xi,H′

f
∪Xi

≤ dbip(G, f) − Π, where

Π :=

 ∑
v∈Bf \Xi:f(v)=L

|N(v) ∩ f−1(L)| +
∑

v∈Bf \Xi:f(v)=R

|N(v) ∩ f−1(R)|

 ;

(ii) DHf \(H′
f

∪Xi),V (G) ≤ o(kε)n2;

▷ Claim 4.12. DBf \Xi,V (G) ≤ 2
(
1 + k

400
)

Π + kεn2

150 .

Assuming Claim 4.11 and Claim 4.12 hold, along with Equation 2, dbip(G, Splf
i ) can be

upper bounded as follows:

dbip(G, Splf
i ) ≤ dbip(G, f) − Π + o(kε)n2 + 2

(
1 + k

400

)
Π + kεn2

150

≤ dbip(G, f) + Π + k

200Π + kεn2

100 .

Note that Π ≤ dbip(G, f) and dbip(G, f) ≤ εn2. Hence, we can say the following:

dbip(G, Splf
i ) ≤

(
2 + k

50

)
εn2.

So, we are done with the proof of the special bipartition lemma. We are left with the
proofs of Claim 4.11 and Claim 4.12.

Proof of Claim 4.11. (i) We use the following observation in our proof. The observation
follows due to the fact that the bipartition f considered is an optimal bipartition.

▶ Observation 4.13. Let v be a L-heavy vertex v with respect to f . Then f(v) = R. Similarly,
for every R-heavy vertex v with respect to f , f(v) = L.

Following the definition of special bipartition, we know that there exists a set of vertices
H′

f ⊂ Hf such that
∣∣∣H′

f

∣∣∣ ≥ (1 − o(kε)) |Hf |, and for each v ∈ H′
f , the following holds:

Splf
i (v) =

{
R, v /∈ Xi and v is L − heavy
L, v /∈ Xi and v is R − heavy
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By Observation 4.13, we know that for every v ∈ H′
f , Splf

i (v) = f(v). Moreover, for
each v ∈ Xi, Splf

i (v) = f(v), following the definition of special bipartition Splf
i . Thus, for

every v ∈ H′
f ∪ Xi, we have Splf

i (v) = f(v). Hence,

DH′
f

∪Xi,H′
f

∪Xi

=
∣∣∣{(u, v) ∈ E(G) : u ∈ H′

f ∪ Xi and v ∈ H′
f ∪ Xi, Splf

i (u) = Splf
i (v)

}∣∣∣
=
∣∣{(u, v) ∈ E(G) : u ∈ H′

f ∪ Xi, and v ∈ H′
f ∪ Xi, f(u) = f(v)

}∣∣(
∵ for every v ∈ H′

f ∪ Xi, Splf
i (v) = f(v)

)
= dbip(G, f) − ∑

v∈V \(H′
f

∪Xi):f(v)=L

|N(v) ∩ f−1(L)| +
∑

v∈V \(H′
f

∪Xi):f(v)=R

|N(v) ∩ f−1(R)|


≤ dbip(G, f) −

 ∑
v∈Bf \Xi:f(v)=L

|N(v) ∩ f−1(L)| +
∑

v∈Bf \Xi:f(v)=R

|N(v) ∩ f−1(R)|


= dbip(G, f) − Π.

(ii) By the definition of H′
f , we know that

∣∣∣Hf \ (H′
f ∪ Xi)

∣∣∣ is upper bounded by o(kε) |Hf |.
Following the definition of DHf \(H′

f
∪Xi),V (G), we can say the following:

DHf \(H′
f

∪Xi),V (G)

=
∣∣∣{(u, v) ∈ E(G) : u ∈ Hf \ (H′

f ∪ Xi) and v ∈ V (G), Splf
i (u) = Splf

i (v)
}∣∣∣

≤
∣∣Hf \ (H′

f ∪ Xi)
∣∣× |V (G)| = o(kε) |Hf | × n ≤ o(kε)n2.

The last inequality follows as |Hf | is at most n. ◁

Proof of Claim 4.12. Observe that

DBf \Xi,V (G)

=
∣∣∣{(u, v) ∈ E(G) : u ∈ Bf \ Xi and v ∈ V (G), Splf

i (u) = Splf
i (v)

}∣∣∣
≤ |{(u, v) ∈ E(G) : u ∈ Bf \ Xi and v ∈ V (G)}| =

∑
v∈Bf \Xi

|N(v)|

As Bf = B1
f ∪ B2

f , we have

DBf \Xi,V (G) ≤
∑

v∈B1
f

\Xi

|N(v)| +
∑

v∈B2
f

\Xi

|N(v)| . (3)

We will bound DBf \Xi,V (G) by bounding
∑

v∈B1
f

\Xi

|N(v)| and
∑

v∈B2
f

\Xi

|N(v)| separately,

which we prove in the following claim:

▷ Claim 4.14. Consider T1 and T2 defined as follows:

T1 = 2

 ∑
v∈f−1(L)∩(B1

f
\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+

∑
v∈f−1(R)∩(B1

f
\Xi)

∣∣N(v) ∩ f−1(R)
∣∣+ kεn2

150 ,
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T2 =
(

2 + k

200

) ∑
v∈f−1(L)∩(B2

f
\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+

∑
v∈f−1(R)∩(B2

f
\Xi)

∣∣N(v) ∩ f−1(R)
∣∣ .

Then
(i) For balanced vertices of Type 1, we have∑

v∈B1
f

\Xi

|N(v)| ≤ T1

(ii) For balanced vertices of Type 2, we have∑
v∈B2

f
\Xi

|N(v)| ≤ T2

See the full version of the paper [10] for the proof of the above claim. Using Claim 4.14
and Equation (3), we get

DBf \Xi,V (G)

=
∑

v∈B1
f

\Xi

|N(v)| +
∑

v∈B2
f

\Xi

|N(v)|

≤ T1 + T2

≤ 2
(

1 + k

400

)
Π + kεn2

150

The last inequality follows from the definitions of T1, T2 and Π. ◁

Proof of Heavy vertex lemma (Lemma 4.7)
Before proceeding to prove the Heavy vertex lemma, we will first prove two intermediate
claims that will be crucially used in the proof of the lemma. The first claim states that when
we consider a bipartition f of G, if a vertex v ∈ G has a large number of neighbors on one
side of the partition defined by f , the proportion of its neighbors in Xi on the same side of f

will be approximately preserved, where Xi is a set of vertices picked at random in Step-1(i)
of the algorithm Tol-Bip-Dist(G, ε). The result is formally stated as follows:

▷ Claim 4.15. Let f be a bipartition of G. Consider a vertex v ∈ V .
(i) Suppose

∣∣N(v) ∩ f−1(L)
∣∣ ≥ kεn

150 . Then, with probability at least 1 − o(kε), we have∣∣N(v) ∩ f−1(L) ∩ Xi

∣∣ =
(
1 ± k

500
) ∣∣N(v) ∩ f−1(L)

∣∣ |Xi|
n .

(ii) Suppose
∣∣N(v) ∩ f−1(R)

∣∣ ≥ kεn
150 . Then, with probability at least 1 − o(kε), we have∣∣N(v) ∩ f−1(R) ∩ Xi

∣∣ =
(
1 ± k

500
) ∣∣N(v) ∩ f−1(R)

∣∣ |Xi|
n .

The next claim is in similar spirit as that of Claim 4.15. Instead of considering vertices
with large number of neighbors, it considers the case when a vertex has small number of
neighbors on one side of a bipartition f .

▷ Claim 4.16. Let f be a bipartition of G. Consider a vertex v ∈ V .
(i) Suppose

∣∣N(v) ∩ f−1(L)
∣∣ ≤ 1

1+ k
200

kεn
150 . Then, with probability at least 1 − o(kε), we

have∣∣N(v) ∩ f−1(L) ∩ Xi

∣∣ ≤ 1
1+ k

300

kε|Xi|
150 .

ICALP 2022



69:14 Tolerant Bipartite Testing

(ii) Suppose
∣∣N(v) ∩ f−1(R)

∣∣ ≤ 1
1+ k

200

kεn
150 . Then, with probability at least 1 − o(kε), we

have∣∣N(v) ∩ f−1(R) ∩ Xi

∣∣ ≤ 1
1+ k

300

kε|Xi|
150 .

Claim 4.15 and Claim 4.16 can be proved by using large deviation inequalities (stated in
Appendix B), and the proofs can be found in the full version of the paper [10].

Assuming Claim 4.15 and Claim 4.16 hold, we now prove the Heavy vertex lemma
(Lemma 4.7).

Proof of Lemma 4.7. We will only prove (i) here, which concerns the L-heavy vertices. (ii)
can be proved in similar fashion.

We first characterize L-heavy vertices into two categories:
(a) Both

∣∣N(v) ∩ f−1(L)
∣∣ and

∣∣N(v) ∩ f−1(R)
∣∣ are large, that is,

∣∣N(v) ∩ f−1(L)
∣∣ ≥ kεn

150
and

∣∣N(v) ∩ f−1(R)
∣∣ ≥ 1

1+ k
200

kεn
150 . Also,

∣∣N(v) ∩ f−1(L)
∣∣ ≥

(
1 + k

200
) ∣∣N(v) ∩ f−1(R)

∣∣.
(b)

∣∣N(v) ∩ f−1(L)
∣∣ is large and

∣∣N(v) ∩ f−1(R)
∣∣ is small, that is,

∣∣N(v) ∩ f−1(L)
∣∣ ≥ kεn

150
and

∣∣N(v) ∩ f−1(R)
∣∣≤ 1

1+ k
200

kεn
150 .

Case (a): Here
∣∣N(v) ∩ f−1(L)

∣∣ ≥
(
1 + k

200
)

kεn
150 , and

∣∣N(v) ∩ f−1(R)
∣∣ ≥ kεn

150 . From
Claim 4.15, the following hold, with probability at least 1 − o(kε):

∣∣N(v) ∩ f−1(L) ∩ Xi

∣∣ =
(

1 ± k

500

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|

n

and∣∣N(v) ∩ f−1(R) ∩ Xi

∣∣ =
(

1 ± k

500

) ∣∣N(v) ∩ f−1(R)
∣∣ |Xi|

n
.

So, with probability at least 1 − o(kε), we have the following∣∣N(v) ∩ f−1(L) ∩ Xi

∣∣−
∣∣N(v) ∩ f−1(R) ∩ Xi

∣∣
≥
(

1 − k

500

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|

n
−
(

1 + k

500

) ∣∣N(v) ∩ f−1(R)
∣∣ |Xi|

n

≥

(
1 − k

500 −
1 + k

500
1 + k

200

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|

n(
∵
∣∣N(v) ∩ f−1(L)

∣∣ ≥ (1 + k

200)
∣∣N(v) ∩ f−1(R)

∣∣)
≥ k

1500 × kε |Xi|
150

≥ k2ε |Xi|
225000 (∵ k ≤ 100)

Case (b): Here
∣∣N(v) ∩ f−1(L)

∣∣ ≥ kεn
150 and

∣∣N(v) ∩ f−1(R)
∣∣≤( 1

1+ k
200

)
kεn
150 . So, from

Claim 4.15 and Claim 4.16, the following hold, with probability at least 1 − o(kε):

∣∣N(v) ∩ f−1(L) ∩ Xi

∣∣ =
(

1 ± k

500

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|

n

and∣∣N(v) ∩ f−1(R) ∩ Xi

∣∣ ≤ 1
1 + k

300

kε |Xi|
150 .
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Thus, with probability at least 1 − o(kε), we have the following:∣∣N(v) ∩ f−1(L) ∩ Xi

∣∣−
∣∣N(v) ∩ f−1(R) ∩ Xi

∣∣
≥ (1 − k

500)
∣∣N(v) ∩ f−1(L)

∣∣ |Xi|
n

− 1
1 + k

300

kε |Xi|
150

= (1 − k

500)kε |Xi|
150 − 1

1 + k
300

kε |Xi|
150

≥ 1
1500

(
2k − k2

100

)
kε |Xi|

150

≥ k2ε |Xi|
225000 (∵ k ≤ 100)

This completes the proof of part (i) of Lemma 4.7. ◀

4.2 Proof of Soundness
In this section, we prove the following theorem:

▶ Theorem 4.17. Let us assume that G is (2 + k)ε-far from being bipartite. Then
Tol-Bip-Dist(G, ε) reports the same, with probability at least 9/10.

Assume f be a bipartition of V (G). Now let us consider a derived bipartition Derf
i

with respect to f by fij , and choose a set of random vertex pairs Y such that |Y | = |Z|.
Let χf

ij denote the fraction of vertex pairs of Y that are monochromatic with respect to the
bipartition Derf

i , that is,

χf
ij = 2 ·

∣∣∣{{a, b} ∈ Y : {a, b} ∈ E(G) and Derf
i (a) = Derf

i (b)
}∣∣∣

|Y |
.

▶ Observation 4.18. χf
ij ≤

(
2 + k

20
)

ε holds with probability at most 1
10N , where N =

2O( 1
k3ε

log 1
kε ).

Proof. Since G is (2 + k)ε-far from being bipartite, the same holds for the bipartition Derf
i

as well, that is, dbip(G, Derf
i ) ≥ (2 + k)εn2. So, E[χf

ij ] ≥ (2 + k) ε. Using Chernoff bound
(see Lemma B.1), we can say that, P

(
χf

ij ≤
(
2 + k

20
)

ε
)

≤ 1
10N . Since |Z| = O

( 1
k5ε2 log 1

kε

)
,

the result follows. ◀

We will be done with the proof by proving the following claim, that says that bounding
χf

ij is equivalent to bounding ζij .

▷ Claim 4.19. For any i ∈ [t], and any fij ∈ Fi, the probability distribution of ζij is identical
to that of χf

ij for some derived bipartition with respect to f by fij .

Proof. Consider a bipartition fij ∈ Fi of Xi, and the bipartition f
′

ij of Xi ∪Z, constructed by
extending fij , as described in the algorithm. For the sake of the argument, let us construct
a new bipartition f

′′

ij of V (G) by extending the bipartition f ′
ij , following the same rule of

Step-2 (ii) (b) of the algorithm. Observe that f
′′

ij(v) = fij(v), for each v ∈ Xi. Thus f
′′

ij is
a derived bipartition with respect to some f by fij . Hence, the claim follows according to
the way we generate ζij , along with the fact that Z is chosen uniformly at random by the
algorithm in Step-1 (ii). ◁
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Let us now define a pair (Xi, fij), with i ∈ [t] and fij ∈ Fi as a configuration. Now we
make the following observation which follows directly from the description of the algorithm.

▶ Observation 4.20. Total number of possible configurations is N = 2O( 1
k3ε

log 1
kε ).

Note that Claim 4.19 holds for a particular fij ∈ Fi. Recall that in Step-2(iii), our
algorithm Tol-Bip-Dist(G, ε) reports that G is (2 + k)ε-far if ζij >

(
2 + k

20
)

ε, for all i ∈ [t]
and fij ∈ Fi. So, using the union bound, along with Observation 4.18, Claim 4.19 and
Observation 4.20, we are done with the proof of Theorem 4.17.

5 Conclusion

We believe that our result will certainly improve the current understanding of (tolerant)
bipartite testing in the dense graph model. However, one may wonder whether the analysis
can be improved to show that the algorithm (presented in Section 3) can decide whether
dbip(G) ≤ εn2 or dbip(G) ≥ cεn2 for any c > 1. There is a bottleneck in our technique as
we are bounding error due to the balanced vertices by the sum of degrees of the balanced
vertices (as done in Claim 4.12). Because of this reason, it is not obvious if our algorithm
(and its analysis) can be used to get a result, like Theorem 2.1, for all c > 1 with the same
query complexity.

On a different note, we can decide dbip(G) ≤ εn2 or dbip(G) ≥ (1 + k)εn2 by using
Õ
(
(1/kε)6) queries, which can be derived from the work of Alon, Vega, Kannan and

Karpinski [1] (see Corollary A.3 in Appendix A). Hence, any algorithm that solves the general
bipartite distance problem with query complexity o

(
(1/kε)6), will be of huge interest.
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A Bipartite distance estimation with query complexity Õ (1/ε6)

Formally, we state the following theorem.

▶ Theorem A.1. Given an unknown graph G on n vertices and any approximation parameter
ε ∈ (0, 1), there is an algorithm that performs Õ(1/ε6) adjacency queries, and outputs a
number d̂bip(G) such that, with probability at least 9/10, the following holds:

dbip(G) − εn2 ≤ d̂bip(G) ≤ dbip(G) + εn2,

where dbip(G) denotes the bipartite distance of G.

We have the following two corollaries of the above theorem.

▶ Corollary A.2. There exists an algorithm that given adjacency query access to a graph G

with n vertices and a parameter ε ∈ (0, 1) such that, with probability at least 9/10, decides
whether dbip(G) ≤ εn2 or dbip(G) ≥ (2 + Ω(1))εn2 using Õ

(
1/ε6) many queries to the

adjacency matrix of G.

▶ Corollary A.3. There exists an algorithm that given adjacency query access to a graph G

with n vertices and a parameter ε ∈ (0, 1) such that, with probability at least 9/10, decides
whether dbip(G) ≤ εn2 or dbip(G) ≥ (1 + k)εn2 using Õ

(
(1/kε)6

)
many queries to the

adjacency matrix of G.

To prove Theorem A.1, we first discuss the connection between MaxCut and bipartite
distance of a graph G. Then we use the result for MaxCut estimation by Alon, Vega,
Kannan and Karpinski [1].

Connection between MaxCut and dbip(G)

For a graph G = (V, E) on the vertex set V and edge set E, let S be a subset of V . We define

Cut(S) := | {{u, v} ∈ E | |{u, v} ∩ S| = 1} |
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Maximum Cut (henceforth termed as MaxCut), denoted by M(G), is a partition of the
vertex set V of G into two parts such that the number of edges crossing the partition is
maximized, that is,

M(G) := max
S⊆V

Cut(S).

The following equation connects MaxCut and the bipartite distance of a graph G:

dbip(G) = |E(G)| − M(G). (4)

So, dbip(G) can be estimated by estimating |E(G)| and M(G).

Result on edge estimation

Observe that estimating |E(G)| with εn2 additive error is equivalent to parameter estimation
problem in probability theory, see Mitzenmacher and Upfal [17, Section 4.2.3].

▶ Proposition A.4 (Folklore). Given any graph G on n vertices and an input parameter
ε ∈ (0, 1), the size of the edge set E(G) can be estimated within an additive εn2 error, with
probability at least 9/10, using O(1/ε2) many adjacency queries to G.

MaxCut estimation by using Õ (1/ε6) queries
Let G = (V, E) be an n vertex graph. Both Alon, Vega, Kannan and Karpinski [1] and Mathieu
and Schudy [16] showed that if S is a t-sized random subset of V , where t = O

( 1
ε4 log 1

ε

)
,

then, with probability at least 9
10 , we have the following:∣∣∣∣M(G |S)

t2 − M(G)
n2

∣∣∣∣ ≤ ε

2

where G |S denotes the induced graph of G on the vertex set S. So, the above inequality
tells us that if we can get an εt2/2 additive error to M(G |S), then we can get an εn2

additive estimate for M(G). Observation A.5 implies that using O
(
t/ε2) = O

( 1
ε6 log 1

ε

)
many adjacency queries to G |S , we can get an εt2/2 additive estimate to M(G |S). Therefore,
the query complexity of MaxCut algorithms of Alon, Vega, Kannan and Karpinski [1] and
Mathieu and Schudy [16] is at most O

( 1
ε6 log 1

ε

)
.

Now we state and prove the following observation.

▶ Observation A.5 (Folklore). For a graph G with n vertices and an approximation parameter
ε ∈ (0, 1), Θ

(
n/ε2) many adjacency queries to G are sufficient to get an εn2 additive

approximation to MaxCut M(G), with probability at least 9/10.

Proof. We sample t many pairs of vertices {a1, b1}, . . . , {at, bt} uniformly at random and
independent of each other, where t = Θ(n/ε2). Thereafter, we perform t many adjacency
queries to those sampled pairs of vertices. Now fix a subset S ⊂ V (G) and let us denote
(S, S) to be the set of edges between S and S.

Let us now define a set of random variables, one for each sampled pair of vertices as
follows:

Xi =
{

1, if {ai, bi} ∈ (S, S)
0, Otherwise

We will output max
S⊂V (G)

M̂S as our estimate of M(G), where M̂S = (n
2)
t

t∑
i=1

Xi.
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Let us denote X =
t∑

i=1
Xi. Note that

E [Xi] = P (Xi = 1) =
∣∣(S, S)

∣∣(
n
2
) ,

and hence

E
[
M̂S

]
=
(

n
2
)

t
E

[
t∑

i=1
Xi

]
=
∣∣(S, S)

∣∣ .
Using Hoeffding’s Inequality (see Lemma B.2), we can say that

P
(∣∣∣∣∣(S, S)

∣∣− M̂S

∣∣∣ ≥ εn2

10

)
≤ P

(
|X − E[X]| ≥ εt

10

)
≤ 2e−Θ(ε2t2/t) ≤ 2e−Θ(n).

Using union bound over all S ⊂ V (G), we can show that with probability at least 3/4,
for each S ⊂ V (G), M̂S approximates

∣∣(S, S)
∣∣ with εn2 additive error. Therefore max

S⊂V (G)
M̂S

estimates M(G) with additive error εn2, with probability at least 3/4. ◀

B Large Deviation Inequalities

▶ Lemma B.1 (Chernoff-Hoeffding bound, see [8]). Let X1, . . . , Xn be independent random
variables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the followings hold for
any 0 < ε < 1:

(i) P (X ≥ (1 + ε)µh) ≤ exp
(

−ε2µh

3

)
.

(ii) P (X ≤ (1 − ε)µl) ≤ exp
(

−ε2µl

3

)
.

▶ Lemma B.2 (Hoeffding’s Inequality, see [8]). Let X1, . . . , Xn be independent random
variables such that ai ≤ Xi ≤ bi and X =

n∑
i=1

Xi. Then, for all δ > 0,

P (|X − E[X]| ≥ δ) ≤ 2 exp

 −2δ2

n∑
i=1

(bi − ai)2

 .
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1 Introduction

Representations in terms of homomorphism counts provide a surprisingly rich view on
graphs and their properties. Homomorphism counts have direct connections to logic [14,
17, 27], category theory [12, 34], the graph isomorphism problem [13, 14, 27], algebraic
characterisations of graphs [13], and quantum groups [32]. Counting subgraph patterns
in graphs has a wide range of applications, for example in graph kernels (see [24]) and
motif counting (see [1, 33]). Homomorphism counts can be used as a flexible basis for
counting all kinds of substructures [11], and their complexity has been studied in great detail
(e.g. [8, 9, 11, 39]). It has been argued in [18] that homomorphism counts are well-suited as
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a theoretical foundation for analysing graph embeddings and machine learning techniques
on graphs, both indirectly through their connection with graph neural networks via the
Weisfeiler–Leman algorithm [14, 35, 46] and directly as features for machine learning on
graphs. The latter has also been confirmed experimentally [4, 25, 37].

The starting point of the theory is an old result due to Lovász [27]: two graphs G, H
are isomorphic if and only if for every graph F , the number hom(F,G) of homomorphisms
from F to G equals hom(F,H). For a class F of graphs, we say that G and H are
homomorphism indistinguishable over F if and only if hom(F,G) = hom(F,H) for all
F ∈ F . A beautiful picture that has only emerged in the last few years shows that
homomorphism indistinguishability over natural graph classes, such as paths, trees, or planar
graphs, characterises a variety of natural equivalence relations on graphs.

Broadly speaking, there are two types of such results, the first relating homomorphism
indistinguishability to logical equivalence, and the second giving algebraic characterisations
of homomorphism equivalence derived from systems of linear (in)equalities for graph iso-
morphism. Examples of logical characterisations of homomorphism equivalence are the
characterisation of homomorphism indistinguishability over graphs of treewidth at most k
in terms of the (k + 1)-variable fragment of first-order logic with counting [14] and the
characterisation of homomorphism indistinguishability over graphs of treedepth at most k in
terms of the quantifier-rank-k fragment of first-order logic with counting [17]. Results of this
type have also been described in a general category theoretic framework [12, 34]. Examples
of equational characterisations are the characterisation of homomorphism indistinguishability
over trees in terms of fractional isomorphism [13, 14, 44], which may be viewed as the LP
relaxation of a natural ILP for graph isomorphism, and a generalisation to homomorphism
indistinguishability over graph of bounded treewidth in terms of the Sherali–Adams hierarchy
over that ILP [3, 13, 21, 14, 31]. Further examples include a characterisation of homomorph-
ism indistinguishability over paths in terms of the same system of equalities by dropping
the non-negativity constraints of fractional isomorphism [13], and a characterisation of
homomorphism indistinguishability over planar graphs in terms of quantum isomorphism [32].
Remarkably, quantum isomorphism is derived from interpreting the same system of linear
equations over C*-algebras [2].

1.1 Results
Two questions that remained open in [13] are (1) whether the equational characterisation
of homomorphism indistinguishability over paths can be generalised to graphs of bounded
pathwidth in a similar way as the characterisation of homomorphism indistinguishability over
trees can be generalised to graphs of bounded treewidth, and (2) whether homomorphism
indistinguishability over graphs of bounded degree suffices to characterise graphs up to
isomorphism. In this paper, we answer the first question affirmatively.

▶ Theorem 1. For every k ≥ 1, the following are equivalent for two graphs G and H:
1. G and H are homomorphism indistinguishable over graphs of pathwidth at most k.
2. The (k+ 1)-st level relaxation Lk+1

iso (G,H) of the standard ILP for graph isomorphism has
a rational solution.

The detailed description of the system Lk+1
iso (G,H) is provided in Section 5. In fact, we also

devise an alternative system of linear equations PWk+1(G,H) characterising homomorphism
indistinguishability over graphs of pathwidth at most k. The definition of this system turns
out to be very natural from the perspective of homomorphism counting, and as we explain
later, it forms a fruitful instantiation of a more general representation-theoretic framework
for homomorphism indistinguishability.
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Moreover, we obtain an equational characterisation of homomorphism indistinguishability
over graphs of bounded treedepth. The resulting system TDk(G,H) is very similar to
Lkiso(G,H) and PWk(G,H), except that variables are indexed by (ordered) k-tuples of
variables rather than sets of at most k variables, which reflects the order induced by the
recursive definition of treedepth.

▶ Theorem 2. For every k ≥ 1, the following are equivalent for two graphs G and H:
1. G and H are homomorphism indistinguishable over graphs of treedepth at most k,
2. The linear systems of equations TDk(G,H) has a non-negative rational solution,
3. The linear systems of equations TDk(G,H) has a rational solution.

Along with [17], the above theorem implies that the logical equivalence of two graphs
G and H over the quantifier-rank-k fragment of first-order logic with counting can be
characterised by the feasibility of the system TDk(G,H) of linear equations.

We cannot answer the second open question from [13], but we prove a partial negative
result: homomorphism indistinguishability over trees of bounded degree is strictly weaker
than homomorphism indistinguishability over all trees.

▶ Theorem 3. For every integer d ≥ 1, there exist graphs G and H such that G and H

are homomorphism indistinguishable over trees of degree at most d, but G and H are not
homomorphism indistinguishable over the class of all trees.

In conjunction with [13], the above theorem yields the following corollary: counting
homomorphisms from trees of bounded degree is strictly less powerful than the classical
Colour Refinement algorithm [20], in terms of their ability to distinguish non-isomorphic
graphs.

To prove these results, we develop a general theory that enables us to derive some of
the existing results as well as the new results in a unified algebraic framework exploiting a
duality between algebraic varieties of “tensor maps” derived from homomorphism counts
over families of rooted graphs and equationally defined equivalence relations, which are based
on transformations of graphs in terms of unitary or, more often, pseudo-stochastic or doubly-
stochastic matrices. (We call a matrix over the complex numbers pseudo-stochastic if its row
and column sums are all 1, and we call it doubly-stochastic if it is pseudo-stochastic and all
its entries are non-negative reals.) The foundations of this theory have been laid in [13] and,
mainly, [32]. Some ideas can also be traced back to the work on homomorphism functions
and connection matrices [15, 28, 29, 40], and a similar duality, called Galois connection there,
that is underlying the algebraic theory of constraint satisfaction problems [6, 7, 42, 47].

1.2 Techniques
To explain our core new ideas, let us start from a simple and well-known result: two symmetric
real matrices A, B are co-spectral if and only if for every k ≥ 1 the matrices Ak and Bk

have the same trace. If A, B are the adjacency matrices of two graph G, H, the latter can
be phrased graph theoretically as: for every k, G and H have the same number of closed
walks of length k, or equivalently, the numbers of homomorphisms from a cycle Ck of length
k to G and to H are the same. Thus, G and H are homomorphism indistinguishable over
the class of all cycles if and only if they are co-spectral. Note next that the graphs, or
their adjacency matrices A, B, are co-spectral if and only if there is a unitary matrix U (or
orthogonal matrix, but we need to work over the complex numbers) such that UA = BU .
Now, in [14, 13] it was proved that G, H are homomorphism indistinguishable over the class
of all paths if and only if there is a pseudo-stochastic matrix X such that XA = BX, and
they are homomorphism indistinguishable over the class of all trees if and only if there is
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a doubly-stochastic matrix X such that XA = BX. From an algebraic perspective, the
transition from a unitary matrix in the cycle result to a pseudo-stochastic in the path result
is puzzling: where unitary matrices are very natural, pseudo-stochastic matrices are much
less so from an algebraic point of view. Moving on to the tree result, we suddenly add
non-negativity constraints – where do they come from? Our theory presented in Section 3
provides a uniform and very transparent explanation for the three results. It also allows us
to analyse homomorphism indistinguishability over d-ary trees, for every d ≥ 1, and to prove
that it yields a strict hierarchy of increasingly finer equivalence relations.

Now suppose we want to extend these results to edge coloured graphs. Each edge-coloured
graph corresponds to a family of matrices, one for each colour. Theorems due to Specht [41]
and Wiegmann [45] characterise families of matrices that are simultaneously equivalent
with respect to a unitary transformation. Interpreted over coloured graphs, the criterion
provided by these theorems can be interpreted as homomorphism indistinguishability over
coloured cycles. One of our main technical contributions is a variant of these theorems
that establishes a correspondence between simultaneous equivalence with respect to pseudo-
stochastic transformations and homomorphism indistinguishability over coloured paths. The
proof is based on basic representation theory, in particular the character theory of semisimple
algebras.

Interpreting graphs of bounded pathwidth in a “graph-grammar style” over coloured
paths using graphs of bounded size as building blocks, we give an equational characterisation
of homomorphism indistinguishability over graphs of pathwidth at most k. After further
manipulations, we even obtain a characterisation in terms of a system of equations that are
derived by lifting the basic equations for paths in a Sherali–Adams style. (The basic idea of
these lifted equations goes back to [3].) This answers the open question from [13] stated above.
In the same way, we can lift the characterisations of homomorphism indistinguishability over
trees to graphs of treewidth k, and we can also establish a characterisation of homomorphism
indistinguishability over graphs of “cyclewidth” k, providing a uniform explanation for all these
results. Finally, we combine these techniques to prove a characterisation of homomorphism
indistinguishability over graphs of treedepth k in terms of a novel system of linear equations.

2 Preliminaries

We briefly state the necessary definitions and, along the way, introduce our notation. We
assume familiarity with elementary definitions from graph theory and linear algebra. As
usual, let N = {1, 2, 3, . . . }, [n] = {1, . . . , n}, and (n) = (1, . . . , n). All mentioned graphs are
simple, loopless, and undirected.

2.1 Labelled Graphs and Tensor Maps
Labelled and Bilabelled Graphs. For ℓ ∈ N, an ℓ-labelled graph F is a tuple F = (F,v)
where F is a graph and v ∈ V (F )ℓ. The vertices in v are not necessarily distinct, i.e. vertices
may have several labels.

The operation of gluing two ℓ-labelled graphs F = (F,u) and F ′ = (F ′,u′) yields the
ℓ-labelled graph F ⊙ F ′ obtained by taking the disjoint union of F and F ′ and pairwise
identifying the vertices ui and vi to become the i-th labelled vertex, for i ∈ [ℓ], and removing
any multiedges in the process. In fact, since we consider homomorphisms into simple graphs,
multiedges can always be omitted. Likewise, self-loops can also be disregarded since the
number of homomorphisms F → G where F has a self-loop and G does not is always zero.
We henceforth tacitly assume that all graphs are simple.
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For ℓ1, ℓ2 ∈ N, an (ℓ1, ℓ2)-bilabelled graph F is a tuple (F,u,v) for u ∈ V (F )ℓ1 , v ∈
V (F )ℓ2 . If u = (u1, . . . , uℓ1) and v = (v1, . . . , vℓ2), it is usual to say that the vertex ui, resp.
vi, is labelled with the i-th in-label, resp. out-label.

The reverse of an (ℓ1, ℓ2)-bilabelled graph F = (F,u,v) is defined to be the (ℓ2, ℓ1)-
bilabelled graph F ∗ = (F,v,u) with roles of in- and out-labels interchanged. The concat-
enation or series composition of an (ℓ1, ℓ2)-bilabelled graph F = (F,u,v) and an (ℓ2, ℓ3)-
bilabelled graph F ′ = (F ′,u′,v′), ℓ3 ∈ N, denoted by F · F ′ is the (ℓ1, ℓ3)-bilabelled graph
obtained by taking the disjoint union of F and F ′ and identifying for all i ∈ [ℓ2] the vertices
vi and u′

i. The in-labels of F · F ′ lie on u while its out-labels are positioned on v′. The
parallel composition of (ℓ1, ℓ2)-bilabelled graphs F = (F,u,v) and F ′ = (F ′,u′,v′) denoted
by F ⊙ F ′ is obtained by taking the disjoint union of F and F ′ and identifying ui with u′

i,
and vj with with v′

j for i ∈ [ℓ1] and j ∈ [ℓ2].

Tensors and Tensor Maps. For a set V and k ∈ N, the set of all functions X : V k → C
forms a complex vector space denoted by CV k . We call the elements of CV k the k-dimensional
tensors over V . We identify 0-dimensional tensors with scalars, i.e. CV 0 = C. Furthermore,
1-dimensional tensors are vectors in CV , 2-dimensional tensors are matrices in CV×V , et
cetera.

A k-dimensional tensor map on graphs is a function φ that maps graphs G to k-dimensional
tensors φG ∈ CV (G)k . A k-dimensional tensor map φ is equivariant if for all isomorphic
graphs G and H, all isomorphisms f from G to H, and all v ∈ V (G)k it holds that
φG(v) = φH(f(v)).

Homomorphism Tensors and Homomorphism Tensor Maps. For graphs F and G, let
hom(F,G) denote the number of homomorphisms from F to G, i.e. the number of mappings
h : V (F ) → V (G) such that v1v2 ∈ E(F ) implies h(v1)h(v2) ∈ E(G). For an ℓ-labelled graph
F = (F,v) and w ∈ V (G)ℓ, let hom(F , G,w) denote the number of homomorphisms h from
F to G such that h(vi) = wi for all i ∈ [ℓ]. Analogously, for an (ℓ1, ℓ2)-bilabelled graph
F ′ = (F ′,u,v) and x ∈ V (G)ℓ1 , y ∈ V (G)ℓ2 , let hom(F ′, G,x,y) denote the number of
homomorphisms h : F ′ → G such that h(ui) = xi and h(vj) = yj for all i ∈ [ℓ1], j ∈ [ℓ2].
More succinctly, we write FG ∈ CV (G)ℓ for the homomorphism tensor defined by letting
FG(w) := hom(F , G,w) for all w ∈ V (G)ℓ. Similarly, for a bilabelled graph F ′, F ′

G ∈
CV (G)ℓ1 ×V (G)ℓ2 is the matrix defined as F ′

G(x,y) := hom(F , G,x,y) for all x ∈ V (G)ℓ1 ,
y ∈ V (G)ℓ2 .

Letting this construction range over all right-hand side graphs G, the map G 7→ FG

becomes a tensor map, the homomorphism tensor map induced by F . It is easy to see that
homomorphism tensor maps are equivariant.

Homomorphism tensors give rise to the complex vector spaces of our main interest
and their endomorphisms. For a set R of ℓ-labelled graphs, the tensors RG for R ∈ R
span a subspace of CV (G)ℓ , which is denoted by CRG. Moreover, the tensors SG for an
(ℓ, ℓ)-bilabelled graph S induces an endomorphisms of CV (G)ℓ .

▶ Example 4. For k ≥ 1, let 1k denote the labelled graph consisting of k isolated vertices
with distinct labels (1, . . . , k). Then, 1kG is the uniform tensor in CV (G)k with every entry
equal to 1. Let A denote the (1, 1)-bilabelled graph

(
1 2 , (1), (2)

)
. For every graph G, the

matrix AG is the adjacency matrix of G.
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Algebraic and Combinatorial Operations on Homomorphism Tensor Maps. Tensor maps
naturally admit a variety of algebraic operations. These include linear combination, complex
conjugation, and permutation of coordinates, which are readily defined. Crucially, many oper-
ations when applied to homomorphism tensor maps correspond to operations on (bi)labelled
graphs. This observation due to [30, 32] is illustrated by the following examples.

Sum of Entries = Dropping Labels. Given a k-labelled graph F = (F,u), let soe(F )
denote the 0-labelled graph (F, ()). Then, for every graph G, soe(F )G = hom(F,G) =∑

v∈V (G)k FG(v) =: soe(FG).
Matrix Product = Series Composition. Let an (ℓ1, ℓ2)-bilabelled graph F = (F,u,v) and
an (ℓ2, ℓ3)-bilabelled graph F ′ = (F ′,u′,v′) be given. Then for every graph G, vertices
x ∈ V (G)ℓ1 , and y ∈ V (G)ℓ2 , (F · F ′)G(x,y) =

∑
w∈V (G)ℓ2 FG(x,w)F ′

G(w,y) =:
(FG · F ′

G)(x,y). A similar operation corresponds to the matrix-vector product, where
F ′ is assumed to be ℓ2-labelled.
Schur Product = Parallel Composition. The parallel composition F ⊙ F ′ of two k-
labelled graphs F = (F,u) and F ′ = (F ′,u′) corresponds to the Schur product of the
homomorphism tensors. That is, for every graph G and v ∈ V (G)k, (F ⊙ F )G(v) =
FG(v)F ′

G(v) =: (FG ⊙ F ′
G)(v). Moreover, the inner-product of ℓ-labelled graphs F , F ′

can be defined by
〈
F ,F ′〉 := soe(F ⊙ F ′). It corresponds to the standard inner-product

on the tensor space.

2.2 Representation Theory of Involution Monoids
We recall standard notions from representation theory, cf. [26]. A monoid Γ is a possibly
infinite set equipped with an associative binary operation and an identity element denoted
by 1Γ. An example for a monoid is the endomorphism monoid EndV for a vector space V
over C with composition as binary operation and idV as identity element. A monoid
representation of Γ is a map φ : Γ → EndV such that φ(1Γ) = idV and φ(gh) = φ(g)φ(h)
for all g, h ∈ Γ. The representation is finite-dimensional if V is finite-dimensional. For every
monoid Γ, there exists a representation, for example the trivial representation Γ → End{0}
given by g 7→ id{0}.

Let φ : Γ → End(V ) and ψ : Γ → End(W ) be two representations. Then φ and ψ are
equivalent if there exists a vector space isomorphism X : V → W such that Xφ(g) = ψ(g)X
for all g ∈ Γ. Moreover, φ is a subrepresentation of ψ if V ≤ W and ψ(g) restricted to V equals
φ(g) for all g ∈ Γ. A representation φ is simple if its only subrepresentations are the trivial
representation and φ itself. The direct sum of φ and ψ denoted by φ⊕ ψ : Γ → End(V ⊕W )
is the representation that maps g ∈ Γ to φ(g) ⊕ ψ(g) ∈ End(V ) ⊕ End(W ) ≤ End(V ⊕W ).
A representation φ is semisimple if it is the direct sum of simple representations.

Let φ : Γ → EndV be a representation with subrepresentations ψ′ : Γ → EndV ′ and
ψ′′ : Γ → EndV ′′. Then the restriction of φ to V ′ ∩ V ′′ is a representation as well, called the
intersection of ψ′ and ψ′′. For a set S ⊆ V , define the subrepresentation of φ generated by S
as the intersection of all subrepresentations ψ′ : Γ → EndV ′ of φ such that S ⊆ V ′.

The character of a representation φ is the map χφ : Γ → C defined as g 7→ tr(φ(g)). Its
significance stems from the following theorem, which can be traced back to Frobenius and
Schur [16]. For a contemporary proof, consult [26] from whose Theorem 7.19 the statement
follows.

▶ Theorem 5 (Frobenius–Schur [16]). Let Γ be a monoid. Let φ : Γ → End(V ) and ψ : Γ →
End(W ) be finite-dimensional semisimple representations. Then φ and ψ are equivalent if
and only if χφ = χψ.
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The monoids studied in this work are equipped with an additional structure which ensures
that their finite-dimensional representations are always semisimple: An involution monoid
is a monoid Γ with a unary operation ∗ : Γ → Γ such that (gh)∗ = h∗g∗ and (g∗)∗ = g for
all g, h ∈ Γ. Note that EndV is an involution monoid with the adjoint operation X 7→ X∗.
Representations of involution monoids must preserve the involution operations. Thereby,
they correspond to representations of ∗-algebras.

▶ Lemma 6. Let Γ be an involution monoid. Every finite-dimensional representation of Γ is
semisimple.

Proof. Let φ : Γ → EndV be a finite-dimensional representation of Γ. It suffices to show
that for every subrepresentation ψ : Γ → EndW of φ there exists a subrepresentation
ψ′ : Γ → EndW ′ of φ such that φ = ψ ⊕ ψ′, i.e. φ acts as ψ on W and as ψ′ on W ′. Set
W ′ to be the orthogonal complement of W in V . It has to be shown that φ(g) ∈ EndV
for every g ∈ Γ can be restricted to an endomorphism of W ′. Let w ∈ W and w′ ∈ W ′ be
arbitrary. Then ⟨φ(g)w′, w⟩ = ⟨w′, φ(g)∗w⟩ = ⟨w′, φ(g∗)w⟩ = 0 since φ(g∗) maps W → W

and W ⊥ W ′. Hence, the imφ(g) is contained in the orthogonal complement of W , which
equals W ′. Clearly, φ = ψ ⊕ ψ′. ◀

2.3 Path and Cycle Decompositions of Bilabelled Graphs
We recall the well-studied notions of path and tree decompositions. For illustrating subsequent
arguments, we introduce cycle decompositions.

▶ Definition 7. A decomposition of a graph G is a pair (F, β) where F is a graph and β is
map V (F ) → 2V (G) such that
1. the union of the β(v) for v ∈ V (F ) is equal to V (G),
2. for every edge e ∈ E(G) there exists v ∈ V (F ) such that e ⊆ β(v),
3. for every vertex u ∈ V (G) the set of vertices v ∈ V (F ) such that u ∈ β(v) is connected

in F .
The sets β(v) for v ∈ V (F ) are called the bags of (F, β). The width of (F, β) is the maximum
over all |β(v)| + 1 for v ∈ V (F ). A decomposition (F, β) is called a tree decomposition if F is
a tree, a path decomposition if F is a path, and a cycle decomposition if F is a cycle. The tree-
/ path- / cyclewidth of a graph G is the minimum width of a tree/path/cycle decomposition
of G.

Let k ∈ N. A leaf bag of a path decomposition (P, β) is a bag β(v) such that v ∈ V (P )
has degree 1. A path decomposition of a (k + 1, k + 1)-bilabelled graph F = (F,u,v) is a
path decomposition (P, β) of the underlying graph F such that the leaf bags consist precisely
of the vertices occurring (possibly repeatedly) in u and in v, respectively. A (k + 1, k + 1)-
bilabelled graph F is said to be of pathwidth at most k if its underlying graph admits a path
decomposition of width at most k with this property.

Let PWk denote the set of all (k + 1, k + 1)-bilabelled graphs of pathwidth at most k.
Every unlabelled graph F of pathwidth at most k can be turned into a (k+1, k+1)-bilabelled
graph F = (F,u,v) of pathwidth at most k by assigning labels to the vertices u,v ∈ V (F )k+1

in the leaf bags. The set PWk is closed under concatenation and taking reverses. The
identity graph I = (I, (1, . . . , k + 1), (1, . . . , k + 1)) with V (I) = [k + 1], E(I) = ∅ is the
multiplicative identity under concatenation. Hence, PWk forms an involution monoid. A
generating set for PWk under these operations is called a k-basal set:
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...

1 1

2 2

k k

k + 1 k + 1

(a) Identity graph I.

...

...

1 1

i i

j j

k + 1 k + 1

(b) Adjacency graph Aij .

...

...

...

1 1

i i

j − 1 j − 1

j j

j + 1 j + 1

k + 1 k + 1

(c) Identification graph Iij .

...

...

1 1

i− 1 i− 1

i i

i+ 1 i+ 1

k + 1 k + 1

(d) Forgetting graph F i.

Figure 1 Basal graphs from Lemma 9 in wire notation of [32]: A vertex carries in-label (out-label)
i if it is connected to the number i on the left (right) by a wire. Actual edges and vertices of the
graph are depicted in black.

▶ Definition 8. A finite set Bk of (k + 1, k + 1)-bilabelled graphs is called a k-basal set if it
satisfies the following properties:
1. Bk ⊆ PWk,
2. the identity graph I is contained in Bk,
3. for every B ∈ B, the reverse graph B∗ also belongs to B, and,
4. every P ∈ PWk can be obtained by concatenating a sequence of elements from B.

Concrete examples of k-basal sets can be constructed for every k as described in Lemma 9
and Figure 1. In fact, in all what follows, every k-basal set can be assumed to be this
particular k-basal set.

▶ Lemma 9. The set Bk consisting of the following (k+ 1, k+ 1)-bilabelled graphs is k-basal.
For 1 ≤ i ̸= j ≤ k + 1,

the identity graph I = (I, (1, . . . , k + 1), (1, . . . , k + 1)) with V (I) = [k + 1], E(I) = ∅,
the adjacency graphs Aij = (Aij , (k+ 1), (k+ 1)) with V (Aij) = [k+ 1] and E(A) = {ij},
the identification graphs Iij = (Iij , (1, . . . , i, i+1, . . . , j−1, i, j+1, . . . , k+1), (1, . . . , i, i+
1, . . . , j − 1, i, j + 1, . . . , k + 1)) with V (Iij) = [k + 1] \ {j} and E(Iij) = ∅, and
the forgetting graphs F i = (F i, (1, . . . , k + 1), (1, . . . , i − 1, i′, i + 1, . . . , k + 1)) with
V (F i) = [k + 1] ∪ {i′} and E(F i) = ∅.

Proof. Items 1 and 3 of Definition 8 are clear. For Item 4, observe that every P = (P,v,v) ∈
PWk such that all vertices of P are labelled with corresponding in- and out-labels coinciding
can be written as the concatenation of

∏
ij∈I Aij for I = E(P ) with the Iij for all i ̸= j

such that vi = vj . Arbitrary Q ∈ PWk can then be obtained as the concatenation of such
P interleaved with F i for certain i. This corresponds to linking adjacent bags of the path
decomposition together. ◀

Crucial is the following proposition which is immediate from the above observations:

▶ Proposition 10. Let Bk denote a k-basal set. If F is a graph of pathwidth at most k then
there exist B1, . . . ,Br ∈ Bk such that hom(F,G) = soe(B1

G · · · Br
G) for all graphs G.

The constructions for graphs of bounded pathwidth carry over to graphs of bounded
cyclewidth (Definition 7). Let F = (F,u,v) be a (k+ 1, k+ 1)-bilabelled graph of pathwidth
at most k. Let F id denote the (k + 1)-labelled graph obtained by identifying the elements



M. Grohe, G. Rattan, and T. Seppelt 70:9

of u and v element-wise. Every unlabelled graph C of cyclewidth k can be associated with
a (k + 1, k + 1)-bilabelled graph C of pathwidth k such that C is the unlabelled graph
underlying C id. Observe that soe(F id) = tr(F ).

▶ Proposition 11. Let Bk denote a k-basal set. If F is a graph of cyclewidth at most k then
there exist B1, . . . ,Br ∈ Bk such that hom(F,G) = tr(B1

G · · · Br
G) for all graphs G.

3 Homomorphisms from Trees, Paths, and Trees of Bounded Degree

Two graphs G, H with adjacency matrices AG, AH are isomorphic if and only if there is
a matrix X over the non-negative integers such that XAG = AHX and X1 = XT1 = 1,
where 1 is the all-ones vector. Writing the constraints as linear equations whose variables are
the entries of X, we obtain a system Fiso(G,H) that has a non-negative integer solution if
and only if G and H are isomorphic. A combination of results from [44] and [14] shows that
Fiso(G,H) has a non-negative rational solution if and only if G and H are homomorphism
indistinguishable over the class of trees, and by [13], Fiso(G,H) has an arbitrary rational
solution if and only if G and H are homomorphism indistinguishable over the class of
paths. We devise a more general framework connecting homomorphism indistinguishability
and Fiso(G,H)-style equations, with paths and trees as two special cases. On the way, we
characterise homomorphism indistinguishability over trees of bounded degree.

The prime objects of our study are sets R of 1-labelled graphs. For a fixed target
graph G, the corresponding homomorphism tensors yield a subspace CRG ≤ CV (G). Since
algebraic operations on 1-dimensional tensors (i.e. vectors) and combinatorial operations on
1-labelled graphs correspond to each other, cf. Section 2.1, the existence of linear transform-
ations X : CRG → CRH respecting these algebraic operations is central to conceptualising
homomorphism indistinguishability of G and H as solvability of linear equations.

▶ Definition 12. Recall the definition of A from Example 4. Let R denote a set of 1-labelled
graphs containing the one-vertex graph.
1. The set R is A-invariant if for all R ∈ R also A · R ∈ R. Combinatorially, A-invariance

means that for every labelled graph R = (R, u) ∈ R, the labelled graph A · R obtained by
adding a fresh vertex u′ to R, adding the edge uu′, and placing the label on u′, is also
in R.

2. The set R is inner-product compatible if for all R,S ∈ R there exists T ∈ R such that
⟨R,S⟩ = soe(T ). Combinatorially, the homomorphism counts from the graph obtained by
gluing R and S and forgetting labels, are equal to the homomorphism counts from another
graph in R.

Examples of sets satisfying the above two properties include the set P of 1-labelled paths
where the label is placed on a vertex of degree at most 1, the set T of 1-labelled trees where
the label is placed on an arbitrary vertex, and the set T d of 1-labelled d-ary trees with label
on a vertex of degree at most 1, where a tree is d-ary if its vertices have degree at most d+ 1.

▶ Theorem 13. Let R be an inner-product compatible set of 1-labelled graphs containing the
one-vertex graph. Let G and H be two graphs. Then the following are equivalent:
1. G and H are homomorphism indistinguishable over R, that is, for all R = (R, u) ∈ R,

hom(R,G) = hom(R,H).
2. There exists a unitary1 map U : CRG → CRH such that URG = RH for all R ∈ R.

1 A map U : V → W is unitary if U∗U = idV and UU∗ = idW for U∗ : W → V the adjoint of U .
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3. There exists a pseudo-stochastic2 map X : CRG → CRH such that XRG = RH for all
R ∈ R.

If furthermore R is A-invariant then the conditions above are equivalent to the following:
4. There exists a pseudo-stochastic matrix X ∈ QV (H)×V (G) such that XAG = AHX and

XRG = RH for all R ∈ R.

Proof. Suppose that Item 1 holds. Since R is inner-product compatible, for all R,S ∈ R
there exists T = (T, v) ∈ R such that

⟨RG,SG⟩ = ⟨R,S⟩G = (soe T )G = hom(T,G) = hom(T,H) = ⟨RH ,SH⟩ .

Thus, by a Gram–Schmidt argument, there exists U with the properties in Item 2. Conversely,
supposing that Item 2 holds, let R = (R, u) ∈ R. It holds that U1G = 1H , because R
contains the one-vertex graph 1. Since U is unitary, 1G = U∗1H . Hence,

hom(R,G) = ⟨1G,RG⟩ = ⟨1H , URG⟩ = ⟨1H ,RH⟩ = hom(R,H).

This shows that Items 1 and 2 are equivalent. Inspecting the above arguments more closely
shows that Item 3 is also equivalent with these.

Now suppose additionally that R is A-invariant. It remains to show that in this case
Item 4 is equivalent with the first three assertions. For all graphs G, CRG is an AG-invariant
subspace of CV (G). Since AG is symmetrical, it preserves the direct sum decomposition
CV (G) = CRG ⊕ (CRG)⊥. Given U as in Item 2, define X as the map acting like U on CRG

and annihilating (CRG)⊥. Let R ∈ R be arbitrary. Then A · R ∈ R and hence,

XAGRG = UAGRG = AHRH = AHURG = AHXRG.

For v ∈ (CRG)⊥, XAGv = 0 = AHXv. Thus, XAG = AHX.
Finally, X1G = U1G = 1H since R contains the one-vertex graph, and XT1H = U∗1H =

1G = 1G, so X is pseudo-stochastic. The just constructed matrix X may a priori have
non-rational entries. However, since Item 4 is essentially a linear system of equations with
rational coefficients, it holds that whenever it has a complex solution, it also has a solution
over the rationals. This is a consequence of Cramer’s rule. The converse, i.e. that Item 4
implies Item 1, follows analogously to the implication from Item 2 to Item 1. ◀

As an easy application of Theorem 13, we recover the characterisation of indistinguishab-
ility with respect to path homomorphisms [13].

▶ Corollary 14. Two graphs G and H are homomorphism indistinguishable over the class of
paths if and only if there exists a pseudo-stochastic X ∈ QV (H)×V (G) such that XAG = AHX.

The classical characterisation [43] of homomorphism indistinguishability over trees involves
a non-negativity condition on the matrix X. While such an assumption appears natural
from the viewpoint of solving the system of equations for fractional isomorphism, it lacks
an algebraic or combinatorial interpretation. Using Theorem 13, we reprove this known
characterisation and give an alternative description that emphasises its graph theoretic origin.

2 Let I and J be finite sets. Fix vector spaces V ≤ CI and W ≤ CJ such that the all-ones vectors 1I ∈ V
and 1J ∈ W . Then a map X : V → W is pseudo-stochastic if X1I = 1J and X∗1J = 1I for X∗ the
adjoint of X.



M. Grohe, G. Rattan, and T. Seppelt 70:11

▶ Corollary 15. Let G and H be two graphs. G and H are homomorphism indistinguishable
over the class of trees if and only if there exists a pseudo-stochastic matrix X ∈ QV (H)×V (G)

such that XAG = AHX and one of the following equivalent conditions holds:
1. X ≥ 0 entry-wise,
2. XTG = TH for all 1-labelled trees T ∈ T ,
3. X preserves the Schur product on CTG, i.e. X(u⊙ v) = (Xu) ⊙ (Xv) for all u, v ∈ CTG.

The key graph-theoretic observation is the following: Every labelled tree can be obtained
from the one-vertex graph 1 by adding edges and identifying trees at their labels. Put
algebraically, the set T of 1-labelled trees is the closure of {1} under Schur products and
multiplication with A. Hence, Items 2 and 3 are equivalent. Moreover, Theorem 13 implies
the equivalence between Item 2 and homomorphism indistinguishability over the class of
trees. The missing equivalence between Items 1 and 2 is deferred to the full version.

Finally, Theorem 13 also gives a characterisation of homomorphism indistinguishability
over the class of bounded degree trees. Let d ≥ 1. The set T d of d-ary trees with label on a
vertex of degree one or zero is closed under guarded Schur products, i.e. the d-ary operation ⊛d

defined as ⊛d(R1, . . . ,Rd) := A · (R1 ⊙ · · · ⊙ Rd) for R1, . . . ,Rd ∈ T d. This operation
induces a d-ary operation on CT d

G for every graph G, i.e. ⊛dG(u1, . . . , ud) := AG(u1 ⊙· · ·⊙ud)
for u1, . . . , ud ∈ CT d

G .

▶ Corollary 16. Let d ≥ 1. Let G and H be graphs. Then the following are equivalent:
1. G and H are homomorphism indistinguishable over the class of d-ary trees.
2. There exists a pseudo-stochastic matrix X ∈ QV (H)×V (G) such that XAG = AHX and

XTG = TH for all T ∈ T d.
3. There exists a pseudo-stochastic matrix X ∈ QV (H)×V (G) such that X preserves ⊛d

on CT d
G , i.e. X(⊛dG(u1, . . . , ud)) = ⊛dH(Xu1, . . . , Xud) for all u1, . . . , ud ∈ CT d

G .

The systems of equations in Corollary 16 are parametrised by the nested subspaces CT d
G

for d ≥ 1. The following theorem asserts that there exist graphs G for which the inclusions
in the chain

CPG = CT 1
G ⊆ CT 2

G ⊆ · · · ⊆ CT d
G ⊆ CT d+1

G ⊆ · · · ⊆ CTG ⊆ CV (G)

are strict. Conceptually, this is due to the fact that T d is only closed under the guarded
Schur product ⊛d while T is closed under arbitrary Schur products.

▶ Theorem 17. For every integer d ≥ 1, there exists a graph H such that CT d
H ̸= CT d+1

H .

The proof of the above theorem can be modified to show that homomorphism indistin-
guishability over trees of bounded degree is a strictly weaker notion than homomorphism
indistinguishability over trees. As a consequence, it is not possible to simulate the 1-
dimensional Weisfeiler–Leman algorithm (also known as Colour Refinement, [19]) by counting
homomorphisms from trees of any fixed bounded degree.

▶ Theorem 3. For every integer d ≥ 1, there exist graphs G and H such that G and H

are homomorphism indistinguishable over trees of degree at most d, but G and H are not
homomorphism indistinguishable over the class of all trees.

The key step underlying the proofs of Theorems 3 and 17 is the construction of graphs
whose (adjacency matrix) eigenspaces behave nicely with respect to the Schur product. Both
proofs are deferred to the full version.
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4 Representations of Involution Monoids and Homomorphism
Indistinguishability

Let F 1, . . . ,Fm be (ℓ, ℓ)-bilabelled graphs for some ℓ ∈ N. The closure of {F 1, . . . ,Fm} under
concatenation and taking reverses gives rise to an involution monoid F . If a target graph G

is fixed, every bilabelled graph F ∈ F yields a homomorphism tensor FG. The association
F 7→ FG is thus a representation3 of the involution monoid F . This representation-theoretic
viewpoint constitutes a compelling framework for analysing homomorphism tensors.

Recall from Section 2.3 that for an (ℓ, ℓ)-bilabelled graph F , the ℓ-labelled graph obtained
from F by identifying the in- and out-labels pairwise is denoted by F id. Let F id denote the set
of all unlabelled graphs underlying graphs of the form F id, F ∈ F . Then, the character χG
of the representation of F induced by G tabulates all homomorphism numbers of the form
hom(F,G) for F ∈ F id. Given two target graphs G and H, the equality of characters χG
and χH coincides thus with homomorphism indistinguishability over the class F id.

On the other hand, equality of characters is, under mild representation-theoretic assump-
tions, a necessary and sufficient condition for two representations to be equivalent. The
equivalence of the representation induced by G and H, when explicitly stated, yields a system
of linear equations XFG = FHX with F ∈ {F 1, . . . ,Fm} where the desired solution X is
a unitary matrix. This interpretation forms a useful template for homomorphism indistin-
guishability results: homomorphism indistinguishability over the class F id is equivalent to
the existence of a unitary matrix satisfying a suitably defined system of linear equations.
Indeed, this template yields Theorem 19 below, a characterisation of homomorphism indis-
tinguishability over graphs of bounded cyclewidth, by setting the generators F 1, . . . ,Fm to
form a k-basal set.

The following theorem about involution monoid representations due to Specht [41], in
particular its generalisation due to Wiegmann [45], forms the main tool for obtaining the
results of this section. Let A = (A1, . . . , Am) be a sequence of matrices in CI×I for some
finite index set I. Let Σ2m denote the finite alphabet {xi, yi | i ∈ [m]}. Let Γ2mdenote the
infinite set of all words over Σ2m. Equipped with the extension to Γ2m of the map swapping
xi and yi for all i ∈ [m], Γ2m can be thought of as a free involution monoid. For a word
w ∈ Γ2m, let wA denote the matrix obtained by substituting xi 7→ Ai and yi 7→ A∗

i for all
i ∈ [m] and evaluating the matrix product. The substitution w 7→ wA is a representation
of Γ2m.

▶ Theorem 18 (Specht [41], Wiegmann [45]). Let I and J be finite index sets. Let A =
(A1, . . . , Am) and B = (B1, . . . , Bm) be two sequences of matrices such that Ai ∈ CI×I and
Bi ∈ CJ×J for i ∈ [m]. Then the following are equivalent:
1. There exists a unitary U ∈ CJ×I such that UAi = BiU and UA∗

i = B∗
i U for every

i ∈ [m].
2. For every word w ∈ Γ2m, tr(wA) = tr(wB).

Note that the given matrices need not be symmetric. Moreover, it is easy to see that
trace equality for words of length at most O(n2) suffice to imply trace equality for all words
in Γ2m. See [38] for a tighter bound. Finally note that although Theorem 18 is stated as a
result involving matrices, the underlying bases are in fact irrelevant.

3 Phrased in the language of [28], this representation of an involution monoid is a representation of the
concatenation algebra F .
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Our first result follows by applying Wiegmann’s theorem to the (k + 1, k + 1)-bilabelled
graphs of a k-basal set (Definition 8). This yields an equational characterisation of homo-
morphism indistinguishability over the class of graphs of cyclewidth at most k.

▶ Theorem 19. Let k ≥ 1. Let Bk denote a k-basal set. Let G and H be a graphs. Then the
following are equivalent:
1. G and H are homomorphism indistinguishable over the class of cyclewidth at most k.
2. There exists a unitary matrix U ∈ CV (H)k+1×V (G)k+1 such that UBG = BHU for all

B ∈ Bk.

Proof. Let B1, . . . ,Bm be an enumeration of the finite set Bk. Define A and B by setting
Ai := Bi

G and Bi := Bi
H for i ∈ [m]. Recall that the k-basal set Bk is closed under taking

reverses. The theorem immediately follows by an application of Theorem 18 on the matrix
sequences A and B, along with Proposition 11. ◀

In contrast to F id, let Fun denote the set of all unlabelled graphs underlying graphs F ∈ F .
Although the class Fun is combinatorially more natural than F id, it invokes the operator soe
on the representations instead of the tr operator, which is algebraically better understood.
This technical difficulty is overcome by considering, instead of the original involution monoid
representation, its subrepresentation generated by the all-ones vector. In this manner, the
useful spectrum used in [13] to characterise homomorphism indistinguishability over paths
receives an algebraic interpretation. The equivalence of these subrepresentations amounts to
the desired solutions being pseudo-stochastic matrices instead of unitary matrices. Formally,
we prove the following sum-of-entries analogue of Theorem 18.

▶ Theorem 20. Let I and J be finite index sets. Let A = (A1, . . . , Am) and B = (B1, . . . , Bm)
be two sequences of matrices such that Ai ∈ CI×I and Bi ∈ CJ×J for i ∈ [m]. Then the
following are equivalent:
1. There exists a pseudo-stochastic matrix X ∈ CJ×I such that XAi = BiX and XA∗

i = B∗
iX

for all i ∈ [m].
2. For every word w ∈ Γ2m, soe(wA) = soe(wB).

Theorem 20 is implied by Lemma 21, which provides a sum-of-entries analogue of
Theorem 5. As it establishes a character-theoretic interpretation of the function soe, it may
be of independent interest.

▶ Lemma 21. Let Γ be an involution monoid. Let I and J be finite index sets. Let
φ : Γ → CI×I and φ : Γ → CJ×J be representations of Γ. Let φ′ : Γ → V and ψ′ : Γ → W

denote the subrepresentations of φ and of ψ generated by 1I and 1J , respectively. Then the
following are equivalent:
1. For all g ∈ Γ, soeφ(g) = soeψ(g).
2. There exists a unitary pseudo-stochastic U : V → W such that Uφ′(g) = ψ′(g)U for all

g ∈ Γ.
3. There exists a pseudo-stochastic X ∈ CJ×I such that Xφ(g) = ψ(g)X for all g ∈ Γ.

Proof. Suppose that Item 1 holds. The space V is spanned by the vectors φ(g)1I for g ∈ Γ
while W is spanned by ψ(g)1J for g ∈ Γ. For g, h ∈ Γ it holds that

⟨φ(g)1I , φ(h)1I⟩ = ⟨1I , φ(g∗h)1I⟩ = soeφ(g∗h) = soeψ(g∗h) = ⟨ψ(g)1J , ψ(h)1J⟩ .
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Hence, V and W are spanned by vectors whose pairwise inner-products are respectively the
same. Thus, by a Gram–Schmidt argument, there exists a unitary U : V → W such that
Uφ(g)1I = ψ(g)1J for all g ∈ Γ. This immediately implies that Uφ′(g) = ψ′(g)U for g ∈ Γ.
Furthermore, U1I = Uφ(1Γ)1I = ψ(1Γ)1J = 1J and U∗1J = 1I since U is unitary. Thus,
Item 2 holds.

Suppose now that Item 2 holds. By Lemma 6, write φ = φ′ ⊕ φ′′ and ψ = ψ′ ⊕ ψ′′. By
assumption, there exists a unitary U : V → W such that Uφ′(g) = ψ′(g)U for all g ∈ Γ.
Extend U to X by letting it annihilate V ⊥. Then Xφ(g) = (U⊕0)(φ′⊕φ′′)(g) = Uφ′(g)⊕0 =
ψ′(g)U⊕0 = ψ(g)X for all g ∈ Γ. Since U is pseudo-stochastic and 1I ∈ V and 1J ∈ W , X is
pseudo-stochastic as well. Hence, Item 3 holds. That Item 3 implies Item 1 is immediate. ◀

Paralleling Theorem 19, we now apply the sum-of-entries version of Specht’s theorem
to characterise homomorphism indistinguishability over the class of graphs of bounded
pathwidth.

▶ Theorem 22. Let k ≥ 1. Let Bk denote a k-basal set. Let G and H be a graphs. Then the
following are equivalent:
1. G and H are homomorphism indistinguishable over the class graphs of pathwidth at

most k,
2. There exists a pseudo-stochastic matrix X ∈ QV (H)k+1×V (G)k+1 such that XBG = BHX

for all B ∈ Bk.

Let PWk+1(G,H) denote the system of linear equations in Item 2 above with the basal
set from Lemma 9. It comprises nO(k2) variables and

∣∣Bk∣∣ ·nO(k2) = O(k2 ·nO(k2)) equations.

5 Comparison with Known Systems of Linear Equations

Towards understanding the power and limitations of convex optimisation approaches to the
graph isomorphism problem, the level-k Sherali–Adams relaxation of Fiso(G,H), denoted
by Fkiso(G,H), was studied in [3]. The system Lk+1

iso (G,H) is another closely related system
of interest [21]. Every solution for Fk+1

iso (G,H) yields a solution to Lk+1
iso (G,H), and every

solution to Lk+1
iso (G,H) yields a solution to Fkiso(G,H) [21]. In [3, 21], it was shown that the

system Lk+1
iso (G,H) has a non-negative solution if and only if G and H are indistinguishable

by the k-dimensional Weisfeiler–Leman algorithm. Following the results of [14, 13], the
feasibility of Lk+1

iso (G,H) is thus equivalent to homomorphism indistinguishability over graphs
of treewidth at most k.

Dropping non-negativity constraints in Fiso(G,H) yields a system of linear equations
whose feasibility characterises homomorphism indistinguishability over the class of paths [13].
It was conjectured ibidem that dropping non-negativity constraints in Lk+1

iso (G,H) analogously
characterises homomorphism indistinguishability over graphs of pathwidth at most k. One
direction of this conjecture was shown in [13]: the existence of a rational solution to Lk+1

iso (G,H)
implies homomorphism indistinguishability over graphs of pathwidth at most k.

We resolve the aforementioned conjecture by showing that the system of equations
Lk+1

iso (G,H) is feasible if and only if the system of equations PWk+1(G,H) stated in The-
orem 22 is feasible. The proof repeatedly makes use of the observation that the equations
in Lk+1

iso (G,H) can be viewed as equations in PWk+1(G,H) where specific k-basal graphs
model the continuity and compatibility equations of Lk+1

iso (G,H). Building on Theorem 22,
we obtain the following theorem implying Theorem 1.
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▶ Theorem 23. For k ≥ 1 and graphs G and H, the following are equivalent:
1. G and H are homomorphism indistinguishable over the class of graphs of pathwidth at

most k.
2. The system of equations PWk+1(G,H) has a rational solution.
3. The system of equations Lk+1

iso (G,H) has a rational solution.

Moreover, we show that PWk+1(G,H) has a non-negative rational solution if and only
if Lk+1

iso (G,H) has a non-negative rational solution. Consequently, the system of linear
equations PWk+1(G,H) has a non-negative rational solution if and only if G and H are
homomorphism indistinguishable over graphs of treewidth at most k. Hence, the systems of
equations PWk+1(G,H), for k ∈ N, form an alternative well-motivated hierarchy of linear
programming relaxations of the graph isomorphism problem. The details are deferred to the
full version.

6 Multi-Labelled Graphs and Homomorphisms from Graphs of
Bounded Treewidth and -depth

By considering k-labelled graphs, we complete the picture emerging in Sections 3 and 4, where
respectively 1-labelled and (k, k)-bilabelled graphs were considered. In virtue of a generalisa-
tion of Theorem 13, a representation-theoretic characterisation of indistinguishability with
respect to the k-dimensional Weisfeiler–Leman algorithm (k-WL, see [19] for its definition)
is obtained. Amounting [14] to a characterisation of homomorphism indistinguishability
over the class of graphs of treewidth at most k, this goal is achieved by constructing, given
a k-WL colouring, a representation-theoretic object, the colouring algebra, such that two
graphs are not distinguished by k-WL if and only if the associated colouring algebras are
isomorphic. It turns out that the well-known algebraic characterisation of 2-WL indistin-
guishability formulated in the language of coherent algebras [10] is a special case of this
correspondence. Finally, a combination of the techniques developed in this article yields an
equational characterisation of homomorphism indistinguishability over graphs of bounded
treedepth. We set off by generalising Definition 12:

▶ Definition 24. A set of k-labelled graphs R is inner-product compatible if 1k ∈ R and for
all R,S ∈ R there exists T ∈ R such that ⟨R,S⟩ = soe T .

For example, the class T Wk of k-labelled graphs of treewidth k with all labels in a single
bag is inner-product compatible. Another example is the class of 2-labelled planar graphs
with labels placed on neighbouring vertices of the boundary of a single face. The following
main theorem for k-labelled graphs can be derived analogously to Theorem 13.

▶ Theorem 25. Let k ≥ 1. Let R be an inner-product compatible set of k-labelled graphs.
Let G and H be two graphs. Then the following are equivalent:
1. G and H are homomorphism indistinguishable over R, that is for all R = (R,v) ∈ R,

hom(R,G) = hom(R,H).
2. There exists a unitary U : CRG → CRH such that URG = RH for all R ∈ R.
3. There exists a pseudo-stochastic X ∈ QV (H)k×V (G)k such that XRG = RH for all R ∈ R.

It turns out that Theorem 25 yields a characterisation of 2-WL indistinguishability in
terms of coherent algebras (see [10, 23]): Given a graph G, let X = (V (G);R1, . . . , Rs)
denote the binary relational structure encoding the 2-WL colouring of G. More precisely, each
relation Ri ⊆ V (G)×V (G) corresponds to one of the 2-WL colour classes of G. The adjacency
algebra CAG of G is the C-span of the matrices Ai with Ai(u, v) = 1 iff (u, v) ∈ Ri and zero
otherwise. It follows from the properties of 2-WL [10, Theorem 2.3.6] that CAG is closed
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under matrix products, Schur products, and Hermitian conjugations. In other words, it forms
a coherent algebra. This construction yields the following algebraic characterisation of 2-WL
indistinguishability [10, Proposition 2.3.17]: Two graphs G and H are 2-WL indistinguishable
if and only if CAG and CAH are isomorphic as coherent algebras, i.e. there exists a vector
space isomorphism X : CAG → CAH such that X respects the matrix and the Schur product.
That is, for all A,B ∈ CAG, X(A ·B) = X(A) ·X(B) and X(A⊙B) = X(A) ⊙X(B).

Along these lines, it may be argued that adjacency algebras as coherent algebras are
the adequate algebraic objects to capture 2-WL indistinguishability. For higher-dimensional
WL we propose a similar construction: Informally, G and H are k-WL indistinguishable
if and only if certain involution monoid representations closed under Schur products are
isomorphic. The aforementioned characterisation of 2-WL will be recovered as a special case
in Corollary 28.

More precisely, given a graph G with k-ary relational structure X = (V (G);R1, . . . , Rs)
corresponding to its k-WL colouring, define its k-WL colouring algebra CAk

G as the C-span
of the tensors Ai ∈ CV (G)k with Ai(u) = 1 iff u ∈ Ri and zero otherwise. The colouring
algebra has a rich algebraic structure and is closed under various operations. In particular,
it has an interpretation in terms of homomorphism tensors: Let T Wk denote the set of all
k-labelled graphs of treewidth at most k where the labelled vertices all lie in the same bag.
Furthermore, let PWSk denote the set of (k, k)-bilabelled graphs F = (F,u,v) such that
F has a path decomposition of width at most k with u and v representing respectively the
vertices in the leaf bags.4 As before, PWSk forms an involution monoid under concatenation
and taking reverses. These observations are summarised in the following Theorem 26.

▶ Theorem 26. Let G be a graph and let k ≥ 1. Then
1. CT Wk

G = CAk
G,

2. CT Wk
G is closed under Schur products,

3. The map PWSk → End(CAk
G) is a subrepresentation of the involution monoid represent-

ation PWSk → CV (G)k×V (G)k defined as P 7→ PG.

The involved proof of Theorem 26 is deferred to the full version. Finally, a representation-
theoretic characterisation of k-WL indistinguishability extending [14] can be obtained.

▶ Theorem 27. Let k ≥ 1. Let G and H be two graphs. Then the following are equivalent:
1. G and H are k-WL indistinguishable.
2. G and H are homomorphism indistinguishable over the class of graphs of treewidth at

most k.
3. There exists an isomorphism of PWSk-representations X : CAk

G → CAk
H respecting the

Schur product. That is, for all A,B ∈ CAk
G and P ∈ PWSk, X(A⊙B) = X(A) ⊙X(B)

and X(PGA) = PHX(A).

To illustrate that the colouring algebra for 2-WL coincides with the coherent algebra, we
conclude with inferring Corollary 28 from Theorem 27.

▶ Corollary 28 (e.g. [10, Proposition 2.3.17]). Let G and H be graphs. Then G and H are 2-
WL indistinguishable if and only if there exists a vector space isomorphism X : CAG → CAH

such that X respects the matrix and the Schur product. That is, for all A,B ∈ CAG,
X(A ·B) = X(A) ·X(B) and X(A⊙B) = X(A) ⊙X(B).

4 Observe that this is in contrast to Section 2.3, where the set PWk of (k + 1, k + 1)-bilabelled graphs
with underlying graphs of pathwidth at most k was considered. There, the labels are carried by vertices
in the intersection of two adjacent bags, while here the labelled vertices must only lie in the same bag.
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As a final application of our theory, we infer an equational characterisation of homomorph-
ism indistinguishability over graphs of bounded treedepth. The treedepth [36] of a graph F

is defined as the minimum height of an elimination forest of F , i.e. of a rooted forest T with
V (T ) = V (F ) such that every edge in F connects vertices that are in an ancestor-descendent
relationship in T . In [17], it was shown that homomorphism indistinguishable over graphs of
treedepth at most k corresponds to equivalence over the quantifier-rank-k fragment of first
order logic with counting quantifiers. We extend this characterisation by proposing a linear
system of equations very similar to the one for bounded pathwidth.

Let k ≥ 1. For graphs G and H, consider the following system of equations TDk(G,H)
with variables X(w,v) for every pair of tuples w ∈ V (H)ℓ and v ∈ V (G)ℓ for 0 ≤ ℓ ≤ k. A
length-ℓ pair (w,v) is said to be a partial pseudo-isomorphism if vi = vi+1 ⇐⇒ wi = wi+1
for all i ∈ [ℓ − 1] and {vi,vj} ∈ E(G) ⇐⇒ {wi,wj} ∈ E(H) for all i, j ∈ [ℓ]. Note that
in contrary to the partial isomorphisms appearing in [13], partial pseudo-isomorphism only
need to preserve the equality of consecutive vertices in the domain tuple.

TDk(G,H)∑
v′∈V (G)

X(ww,vv′) = X(w,v) for all w ∈ V (H) and v ∈ V (G)ℓ, w ∈
V (H)ℓ where 0 ≤ ℓ < k.

(TD1)

∑
w′∈V (H)

X(ww′,vv) = X(w,v) for all v ∈ V (G) and v ∈ V (G)ℓ, w ∈
V (H)ℓ where 0 ≤ ℓ < k.

(TD2)

X((), ()) = 1 (TD3)
X(w,v) = 0 whenever (w,v) is not a partial pseudo-

isomorphism
(TD4)

The proof of the following theorem is deferred to the full version.

▶ Theorem 2. For every k ≥ 1, the following are equivalent for two graphs G and H:
1. G and H are homomorphism indistinguishable over graphs of treedepth at most k,
2. The linear systems of equations TDk(G,H) has a non-negative rational solution,
3. The linear systems of equations TDk(G,H) has a rational solution.

7 Concluding Remarks

We have developed an algebraic theory of homomorphism indistinguishability that allows us
to reprove known results in a unified way and derive new characterisations of homomorphism
indistinguishability over bounded degree trees, graphs of bounded treedepth, graphs of
bounded cyclewidth, and graphs of bounded pathwidth. The latter answers an open question
from [13].

Homomorphism indistinguishabilities over various graph classes can be viewed as similarity
measures for graphs, and our new results as well as many previous results show that these are
natural and robust. Yet homomorphism indistinguishability only yields equivalence relations,
or families of equivalence relations, and not a “quantitative” distance measure. For many
applications of graph similarity, such quantitative measures are needed. Interestingly, we
can derive distance measure both from homomorphism indistinguishability and from the
equational characterisations we study here. For a class F of graphs, we can consider the
homomorphism embedding that maps graphs G to the vector in RF whose entries are the
numbers hom(F,G) for graphs F ∈ F . Then a norm on the space RF induces a graph
(pseudo)metric. Such metrics give a generic family of graph kernels (see [18]). On the
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equational side, a notion like fractional isomorphism induces a (pseudo)metric on graphs
where the distance between graphs G and H is minX ∥XAG − AHX∥, where X ranges over
all doubly-stochastic matrices. It is a very interesting question whether the correspondence
between the equivalence relations for homomorphism indistinguishability and feasibility of
the systems of equations can be extended to the associated metrics. In the special case of
isomorphism and homomorphism indistinguishability over all graphs, the theory of graph
limits provides some answers [28]. This has recently been extended to fractional isomorphism
and homomorphism indistinguishability over trees [5].
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Abstract
We study distribution-free property testing and learning problems where the unknown probability
distribution is a product distribution over Rd. For many important classes of functions, such as
intersections of halfspaces, polynomial threshold functions, convex sets, and k-alternating functions,
the known algorithms either have complexity that depends on the support size of the distribution,
or are proven to work only for specific examples of product distributions. We introduce a general
method, which we call downsampling, that resolves these issues. Downsampling uses a notion of
“rectilinear isoperimetry” for product distributions, which further strengthens the connection between
isoperimetry, testing and learning. Using this technique, we attain new efficient distribution-free
algorithms under product distributions on Rd:
1. A simpler proof for non-adaptive, one-sided monotonicity testing of functions [n]d → {0, 1}, and

improved sample complexity for testing monotonicity over unknown product distributions, from
O(d7) [Black, Chakrabarty, & Seshadhri, SODA 2020] to Õ(d3).

2. Polynomial-time agnostic learning algorithms for functions of a constant number of halfspaces,
and constant-degree polynomial threshold functions;

3. An exp (O(d log(dk)))-time agnostic learning algorithm, and an exp (O(d log(dk)))-sample toler-
ant tester, for functions of k convex sets; and a 2Õ(d) sample-based one-sided tester for convex
sets;

4. An exp
(
Õ(k

√
d)
)

-time agnostic learning algorithm for k-alternating functions, and a sample-
based tolerant tester with the same complexity.
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1 Introduction

In property testing and learning, the goal is to design algorithms that use as little information
as possible about the input while still being correct (with high probability). This includes
using as little information as possible about the probability distribution against which
correctness is measured. Information about the probability distribution could be in the form
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of guarantees on this distribution (e.g. it is guaranteed to be uniform, or Gaussian), or in
the form of samples from the distribution. So we want to minimize the requirements on this
distribution, as well as the number of samples used by the algorithm.

Progress on high-dimensional property testing and learning problems is usually made by
studying algorithms for the uniform distribution over the hypercube {±1}d, or the standard
Gaussian distribution over Rd, as the simplest case. For example, efficiently learning
intersections of halfspaces is a major open problem in learning theory [23, 33], and progress
on this problem has been made by studying the uniform distribution over the hypercube
{±1}d and the Gaussian as special cases [30, 34, 38]. Another important example is the class
of degree-k polynomial threshold functions (PTFs). Unlike intersections of halfspaces, these
can be efficiently learned in the PAC model [33], but agnostic learning is more challenging.
Again, progress has been made by studying the hypercube [22]. An even more extreme
example is the class of convex sets, which are not learnable in the distribution-free PAC
model, because they have infinite VC dimension, but which become learnable under the
Gaussian [34]. The uniform distribution over the hypercube and the Gaussian are both
examples of product distributions, so the next natural question to ask is, can these results
be generalized to any unknown product distribution? A partial answer was given by Blais,
O’Donnell, & Wimmer [10] for some of these classes; in this paper we resolve this question.

Similar examples appear in the property testing literature. Distribution-free property
testing and testing functions with domain Rd are emerging trends in the field (e.g. [2, 21, 29,
19, 26, 9]). Testing monotonicity is one of the most well-studied problems in property testing,
and recent work [6] has extended this study to product distributions over domain Rd. Work
of Chakrabarty & Seshadhri [17], Khot, Minzer, & Safra [32], and Black, Chakrabarty, &
Seshadhri [5, 6] has resulted in efficient o(d)-query algorithms for the hypercube {±1}d [32]
and the hypergrid [n]d. Black, Chakrabarty, & Seshadhri [6] showed that testing monotonicity
over unknown product distributions on Rd could be done with Õ(d5/6) queries and O(d7)
samples. Their “domain reduction” method is intricate and specialized for the problem of
testing monotonicity. We improve1 the sample complexity to Õ(d3) using a much simpler
proof. We also generalize the testers of [18, 15] for convex sets and k-alternating functions,
respectively, and provide new testers for arbitrary functions of convex sets.

This paper provides a general framework for designing distribution-free testing and
learning algorithms under product distributions on Rd, which may be finite or continuous.
An algorithm is distribution-free under product distributions if it does not require any
prior knowledge of the probability distribution, except the guarantee that it is a product
distribution. The technique in this paper, which we call downsampling, improves upon
previous methods (in particular, [6, 10]), in a few ways. It is more general and does not apply
only to a specific type of algorithm [10] or a specific problem [6], and we use it to obtain
many other results. It is conceptually simpler. And it allows quantitative improvements over
both [10] and [6].

Organization

This paper is presented as an extended abstract, with the results, techniques, and definitions
described in the main text, and most of the proofs given in the full version of the paper.
We present our result for testing monotonicity in this extended abstract, as an example
application of our techniques. In Section 1.1, we describe the main results of this paper in

1 An early version of this paper proved a weaker result, with two-sided error and worse sample complexity.
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context of the related work. In Section 1.2, we briefly describe the main techniques in the
paper. Section 2 presents the definitions and lemmas required by the main results. Section 3
gives the proofs for our results on testing monotonicity. The remaining proofs are in the full
version. For simplicity, continuous distributions are treated in the main text and the method
for extending the results to finite distributions are handled separately.

1.1 Results
See Table 1 for a summary of our results on property testing, and Table 2 for a summary of
our results on learning. Some standard definitions are as follows.

For a set P of distributions over X and a set H of functions X → {±1}, a distribution-free
property testing algorithm for H under P is a randomized algorithm that is given a parameter
ϵ > 0. It has access to the input probability distribution D ∈ P via a sample oracle, which
returns an independent sample from D. It has access to the input function f : X → {±1} via
a query oracle, which given query x ∈ X returns the value f(x). A two-sided distribution-free
testing algorithm must satisfy:
1. If f ∈ H then the algorithm accepts with probability at least 2/3;
2. If f is ϵ-far from H with respect to µ then the algorithm rejects with probability at least

2/3.
A one-sided algorithm must accept with probability 1 when f ∈ H. An (ϵ1, ϵ2)-tolerant tester
must accept with probability at least 2/3 when ∃h ∈ H such that P

x∼µ
[f(x) ̸= h(x)] ≤ ϵ1 and

reject when f is ϵ2-far from H with respect to µ.
In the query model, the queries to the query oracle can be arbitrary. In the sample model,

the tester queries a point x ∈ X if and only if x was obtained from the sample oracle. A
tester in the query model is adaptive if it makes its choice of query based on the answers
to previous queries. It is non-adaptive if it chooses its full set of queries in advance, before
obtaining any of the answers. The sample complexity of an algorithm is the number of
samples requested from the sample oracle. The query complexity of an algorithm is the
number of queries made to the query oracle.

Let H be a set of functions X → {±1} and let P be a set of probability distributions
over X. A learning algorithm for H under P (in the non-agnostic or realizable) model is a
randomized algorithm that receives a parameter ϵ > 0 and has sample access to an input
function f ∈ H. Sample access means that the algorithm may request an independent
random example (x, f(x)) where x is sampled from some input distribution D ∈ P. The
algorithm is required to output a function g : X → {±1} that, with probability 2/3, satisfies
the condition P

x∼D
[f(x) ̸= g(x)] ≤ ϵ.

In the agnostic setting, the algorithm instead has sample access to an input distribution
D over X × {0, 1} whose marginal over X is in P (i.e. it receives samples of the form
(x, b) ∈ X × {0, 1}). The algorithm is required to output a function g : X → {±1} that, with
probability 2/3, satisfies the following condition: ∀h ∈ H,

P
(x,b)∼D

[g(x) ̸= b] ≤ P
(x,b)∼D

[h(x) ̸= b] + ϵ .

A proper learning algorithm is one whose output must also satisfy g ∈ H; otherwise it is
improper.

1.1.1 Testing Monotonicity
Testing monotonicity is the problem of testing whether an unknown function f : X → {0, 1}
is monotone, where X is a partial order. It is one of the most commonly studied problems in
the field of property testing. Previous work on this problem has mostly focused on uniform
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probability distributions (exceptions include [1, 28, 16, 9]) and finite domains. However,
there is growing interest in property testing for functions on domain Rd ([2, 21, 29, 19, 26, 9])
and [6] generalized the problem to this domain.

Testing monotonicity under product distributions has been studied a few times. Ailon
& Chazelle [1] gave a distribution-free monotonicity tester for real-valued functions under
product distributions on [n]d, with query complexity O( 1

ϵd2d log n). Chakrabarty et al. [16]
improved this to O( 1

ϵd log n) and gave a matching lower bound. This lower bound applies to
the real-valued case. For the boolean-valued case, monotonicity testers under the uniform
distribution on {±1}d [17, 32] and [n]d [5, 6] are known with query complexity o(d). In [6],
an o(d)-query tester was given for domain Rd. That paper showed that there is a one-sided,
non-adaptive, distribution-free monotonicity tester under product distributions on Rd, with
query complexity O

(
d5/6

ϵ4/3 poly log(d/ϵ)
)

and sample complexity O((d/ϵ)7). In this paper we

improve the sample complexity to Õ((d/ϵ)3), while greatly simplifying the proof.

▶ Theorem 1.1. There is a one-sided, non-adaptive ϵ-tester for monotonicity of functions
Rd → {0, 1} that is distribution-free under (finite or continuous) product distributions, using

O

(
d5/6

ϵ4/3 poly log(d/ϵ)
)

queries and O(d
3

ϵ3 log(d/ϵ)) samples.

The main result of [6] is a “domain reduction” lemma, which shows that for any function
f : [n]d → {0, 1}, the distance to monotonicity (under the uniform distribution) is not
significantly reduced by sampling a random subgrid S of [n]d with sides of length k = O(d7)
and restricting f to the domain S. To prove this lemma, [6] develops specialized structural
tools for analyzing the “violation graph” of f . The violation graph is a standard object in
the study of testing monotonicity. Its vertices are points in the domain, and its edges are
“violations of monotonicity”: pairs of points x ≺ y in the partial order where f(x) > f(y).
The distance of f to monotonicity is related to the size of the maximum matching in this
graph (due to a result of [25]). The main technical challenge of [6] is to show how to find large
matchings in the violation graph under the random restriction to a subgrid, for which they
do a “line-by-line analysis” to show how to preserve many of the matched endpoints on each
line in the grid. Compared to the technique in our paper, their proof is highly specialized to
testing monotone functions, and requires a much more technical analysis. Our result replaces
this domain reduction method with a simpler and more general 2-page argument, and gives
a different generalization to the distribution-free case. See Section 3 for the proofs.

1.1.2 Learning Functions of Halfspaces
Intersections of k halfspaces have VC dimension Θ(dk log k) [14, 20], so the sample complexity
of learning is known, but it is not possible to efficiently find k halfspaces whose intersection
is correct on the sample, unless P = NP [13]. Therefore the goal is to find efficient “improper”
algorithms that output a function other than an intersection of k halfspaces. Several learning
algorithms for intersections of k halfspaces actually work for arbitrary functions of k halfspaces.
We will write Bk for the set of all functions {0, 1}k → {0, 1}, and for any class F of functions
we will write Bk ◦ F as the set of all functions x 7→ g(f1(x), . . . , fk(x)) where g ∈ Bk and
each fi ∈ F . Then for H the class of halfspaces, Klivans, O’Donnell, & Servedio [33] gave
a (non-agnostic) learning algorithm for Bk ◦ H over the uniform distribution on {±1}d
with complexity dO(k2/ϵ2), Kalai, Klivans, Mansour, & Servedio [30] presented an agnostic
algorithm with complexity dO(k2/ϵ4) in the same setting using “polynomial regression”.
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Table 1 Testing results.

unif({±1}d) unif([n]d) Gaussian ∀ Products

1-Sided Testing Mono-
tonicity
(Query model)

Õ
(√

d
ϵ2

)
[32]

Õ
(
d5/6

ϵ4/3

)
[6]

Õ
(
d5/6

ϵ4/3

)
[6]

Õ
(
d5/6

ϵ4/3

)
queries,

Õ
((

d
ϵ

)3
)

samples
(Thm. 1.1)

1-Sided Testing Con-
vex Sets
(Sample model)

– –
(
d
ϵ

)(1+o(1))d

2Ω(d)

[18]

(
d
ϵ

)(1+o(1))d

(Thm. 1.4)

Tolerant Testing
Functions of k Con-
vex Sets
(Sample model)

– – –
(
dk
ϵ

)O(d) (Thm. 1.5)

Tolerant Testing k-
Alternating Functions
(Sample model)

–
(
dk
τ

)O( k
√

d
τ2

)
τ = ϵ2 − 3ϵ1

[15]

–
(
dk
τ

)O( k
√

d
τ2

)
τ = ϵ2 − ϵ1

(Thm. 1.8)

Polynomial regression is a powerful technique, so it is important to understand when it
can be applied. Blais, O’Donnell, & Wimmer [10] studied how to generalize it to arbitrary
product distributions. With their method, they obtained an agnostic learning algorithm
for Bk ◦ H with complexity (dn)O(k2/ϵ4) for product distributions X1 × · · · ×Xd where each
|Xi| = n, and complexity dO(k2/ϵ4) for the “polynomially bounded” continuous distributions.
This is not a complete generalization, because, for example, on the grid [n]d its complexity
depends on n. This prevents a full generalization to the domain Rd. Their algorithm also
requires some prior knowledge of the support or support size. We use a different technique
and fully generalize the polynomial regression algorithm to arbitrary product distributions.
See the full version for the proof.

▶ Theorem 1.2. There is an improper agnostic learning algorithm for Bk ◦ H, which
is distribution-free under (continuous or finite) product distributions over Rd, with time
complexity

min


(
dk

ϵ

)O( k2
ϵ4

)
, O

(
1
ϵ2

(
3dk
ϵ

)d) .

1.1.3 Learning Polynomial Threshold Functions
Degree-k PTFs are another generalization of halfspaces. A function f : Rd → {±1} is a
degree-k PTF if there is a degree-k polynomial p : Rd → R such that f(x) = sign(p(x)).
Degree-k PTFs can be PAC learned in time dO(k) using linear programming [33], but agnostic
learning is more challenging. Diakonikolas et al. [22] previously gave an agnostic learning
algorithm for degree-k PTFs in the uniform distribution over {±1}d with time complexity
dψ(k,ϵ), where

ψ(k, ϵ) := min
{
O(ϵ−2k+1

), 2O(k2) (log(1/ϵ)/ϵ2
)4k+2

}
.

The main result of that paper is an upper bound on the noise sensitivity of PTFs. Combined
with the reduction of [10], this implies an algorithm for the uniform distribution over [n]d
with complexity (dn)ψ(k,ϵ) and for the Gaussian distribution with complexity dψ(k,ϵ).
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Table 2 Learning results. All learning algorithms are agnostic except that of [38]. The
PTF result for the Gaussian follows from the two cited works but is not stated in either. All
statements are informal, see references for restrictions and qualifications. For PTFs, ψ(k, ϵ) :=
min

{
O(ϵ−2k+1

), 2O(k2) (log(1/ϵ)/ϵ2)4k+2
}

.

unif({±1}d) unif([n]d) Gaussian ∀ Products

Functions of k
Convex Sets

Ω(2d) – d
O
(√

d
ϵ4

)
, 2Ω(

√
d)

[34]
O
(

1
ϵ2

(
6dk
ϵ

)d)
(Thm. 1.6)

Functions of k
Halfspaces

d
O
(

k2
ϵ4

)
[30]

(dn)O
(

k2
ϵ4

)
[10]

d
O
(

log k

ϵ4

)
,

poly
(
d,
(
k
ϵ

)k)
[34, 38] (Intersections
only)

(
dk
ϵ

)O( k2
ϵ4

)
(Thm. 1.2)

Degree-k PTFs dψ(k,ϵ)

[22]
(dn)ψ(k,ϵ)

[22, 10]
dψ(k,ϵ)

[22, 10]

(
dk
ϵ

)ψ(k,ϵ)

(Thm. 1.3)

k-Alternating
Functions

2Θ
(

k
√

d
ϵ

)
[8]

(
dk
τ

)O( k
√

d
τ2

)
(Testing)
[15]

–
(
dk
ϵ

)O( k
√

d
ϵ2

)
(Thm. 1.7)

Our agnostic learning algorithm for degree-k PTFs eliminates the dependence on n and
works for any unknown product distribution over Rn, while matching the complexity of [22]
for the uniform distribution over the hypercube. See the full version for the proof.

▶ Theorem 1.3. There is an improper agnostic learning algorithm for degree-k PTFs, which
is distribution-free under (finite or continuous) product distributions over Rd, with time
complexity

min
{(

kd

ϵ

)ψ(k,ϵ)
, O

(
1
ϵ2

(
9dk
ϵ

)d)}
.

1.1.4 Testing & Learning Convex Sets
One of the first properties (sets) of functions Rd → {0, 1} to be studied in the property testing
literature is the set of indicator functions of convex sets, i.e. functions f : Rd → {0, 1} where
f−1(1) is convex. Write C for this class of functions. This problem has been studied in various
models of testing [36, 35, 18, 4, 7]. In this paper we consider the sample-based model of testing,
where the tester receives only random examples of the function and cannot make queries.
This model of testing has received a lot of recent attention (e.g. [2, 4, 12, 18, 27, 29, 37, 9]),
partly because it matches the standard sample-based model for learning algorithms.

Chen et al. [18] gave a sample-based tester for C under the Gaussian distribution on
Rd with one-sided error and sample complexity (d/ϵ)O(d), along with a lower bound (for
one-sided testers) of 2Ω(d). We match their upper bound while generalizing the tester to be
distribution-free under product distributions. See the full version for proofs.

▶ Theorem 1.4. There is a sample-based one-sided ϵ-tester for C which is distribution-free
under (finite or continuous) product distributions that uses at most O

(( 6d
ϵ

)d) samples.

A more powerful kind of tester is an (ϵ1, ϵ2)-tolerant tester, which must accept (with high
probability) any function that is ϵ1-close to the property, while rejecting functions that are
ϵ2-far. Tolerantly testing convex sets has been studied by [3] for the uniform distribution
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over the 2-dimensional grid, but not (to the best of our knowledge) in higher dimensions. We
obtain a sample-based tolerant tester (and distance) approximator for convex sets in high
dimension. In fact, recall that Bk is the set of all functions {0, 1}k → {0, 1} and B′ ⊂ Bk
any subset, so B′ ◦ C is any property of functions of convex sets. We obtain a distance
approximator for any such property:

▶ Theorem 1.5. Let B′ ⊂ Bk. There is a sample-based algorithm, which is distribution-
free under (finite or continuous) product distributions, that approximates distance to B′ ◦ C
up to additive error ϵ using O

(
1
ϵ2

( 3dk
ϵ

)d) samples. Setting ϵ = (ϵ2 − ϵ1)/2 we obtain an

(ϵ1, ϵ2)-tolerant tester with sample complexity O
(

1
(ϵ2−ϵ1)2

(
6dk
ϵ2−ϵ1

)d)
.

General distribution-free learning of convex sets is not possible, since this class has infinite
VC dimension. However, they can be learned under the Gaussian distribution. Non-agnostic
learning under the Gaussian was studied by Vempala [38, 39]. Agnostic learning under
the Gaussian was studied by Klivans, O’Donnell, & Servedio [34] who presented a learning
algorithm with complexity dO(

√
d/ϵ4), and a lower bound of 2Ω(

√
d).

Unlike the Gaussian, there is a trivial lower bound of Ω(2d) in arbitrary product distribu-
tions, because any function f : {±1}d → {0, 1} belongs to this class. However, unlike the
general distribution-free case, we show that convex sets (or any functions of convex sets) can
be learned under unknown product distributions.

▶ Theorem 1.6. There is an agnostic learning algorithm for Bk ◦ C, which is distribution-
free under (finite or continuous) product distributions over Rd, with time complexity
O
(

1
ϵ2 ·
( 6dk
ϵ

)d).

1.1.5 Testing & Learning k-Alternating Functions
A k-alternating function f : X → {±1} on a partial order X is one where for any chain
x1 < · · · < xm in X, f changes value at most k times. Learning k-alternating functions on
domain {±1}d was studied by Blais et al. [8], motivated by the fact that these functions
are computed by circuits with few negation gates. They show that 2Θ(k

√
d/ϵ) samples are

necessary and sufficient in this setting. Canonne et al. [15] later obtained an algorithm for
(ϵ1, ϵ2)-tolerant testing k-alternating functions, when ϵ2 > 3ϵ1, in the uniform distribution
over [n]d, with query complexity (kd/τ)O(k

√
d/τ2), where τ = ϵ2 − 3ϵ1.

We obtain an agnostic learning algorithm for k-alternating functions that matches the
query complexity of the tester in [15], and nearly matches the complexity of the (non-agnostic)
learning algorithm of [8] for the uniform distribution over the hypercube. See the full version
for proofs.

▶ Theorem 1.7. There is an agnostic learning algorithm for k-alternating functions, which
is distribution-free under (finite or continuous) product distributions over Rd, that runs in
time at most

min


(
dk

ϵ

)O( k
√

d
ϵ2

)
, O

(
1
ϵ2

(
3kd
ϵ

)d) .

We also generalize the tolerant tester of [15] to be distribution-free under product
distributions, and eliminate the condition ϵ2 > 3ϵ1.
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▶ Theorem 1.8. For any ϵ2 > ϵ1 > 0, let τ = (ϵ2 − ϵ1)/2, there is a sample-based (ϵ1, ϵ2)-

tolerant tester for k-alternating functions using
(
dk
τ

)O( k
√

d
τ2

)
samples, which is distribution-free

under (finite or continuous) product distributions over Rd.

1.2 Techniques
What connects these diverse problems is a notion of rectilinear surface area or isoperimetry
that we call “block boundary size”. There is a close connection between learning & testing
and various notions of isoperimetry or surface area (e.g. [17, 33, 34, 32]). We show that
testing or learning a class H on product distributions over Rd can be reduced to testing and
learning on the uniform distribution over [r]d, where r is determined by the block boundary
size, and we call this reduction “downsampling”. The name downsampling is used in image
and signal processing for the process of reducing the resolution of an image or reducing the
number of discrete samples used to represent an analog signal. We adopt the name because
our method can be described by analogy to image or signal processing as the following 2-step
process:
1. Construct a “digitized” or “pixellated” image of the function f : Rd → {±1} by sampling

from the distribution and constructing a grid in which each cell has roughly equal
probability mass; and

2. Learn or test the “low-resolution” pixellated function.
As long as the function f takes a constant value in the vast majority of “pixels”, the low
resolution version seen by the algorithm is a good enough approximation for testing or
learning. The block boundary size is, informally, the number of pixels on which f is not
constant.

This technique reduces distribution-free testing and learning problems to the uniform
distribution in a way that is conceptually simpler than in the prior work [10, 6]. However,
some technical challenges remain. The first is that it is not always easy to bound the number
of “pixels” on which a function f is not constant – for example, for PTFs. Second, unlike in
the uniform distribution, the resulting downsampled function class on [r]d is not necessarily
“the same” as the original class – for example, halfspaces on Rd are not downsampled to
halfspaces on [r]d, since the “pixels” are not of equal size. Thus, geometric arguments may
not work, unlike the case for actual images.

A similar technique of constructing “low-resolution” representations of the input has been
used and rediscovered ad-hoc a few times in the property testing literature, but only for the
uniform distribution over [n]d [31, 36, 24, 12, 15], or the Gaussian in [18]. With this paper,
we aim to provide a unified and generalized study of this simple and powerful technique.

1.3 Block Boundary Size
Informally, we define the r-block boundary size bbs(H, r) of a class H of functions Rd → {0, 1}
as the maximum number of grid cells on which a function f ∈ H is non-constant, over all
possible r × · · · × r grid partitions of Rd (which are not necessarily evenly spaced) – see
Section 2 for formal definitions. Whether downsampling can be applied to H depends on
whether

lim
r→∞

bbs(H, r)
rd

→ 0 ,

and the complexity of the algorithms depends on how large r must be for the non-constant
blocks to vanish relative to the whole rd grid. A general observation is that any function class
H where downsampling can be applied can be learned under unknown product distributions
with a finite number of samples; for example, this holds for convex sets even though the VC
dimension is infinite.
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▶ Proposition 1.9. Let H be any set of functions Rd → {0, 1} (measurable with respect to
continuous product distributions) such that

lim
r→∞

bbs(H, r)
rd

= 0 .

Then there is some function σ(d, ϵ) such that H is distribution-free learnable under product
distributions, up to error ϵ, with σ(d, ϵ) samples.

For convex sets, monotone functions, k-alternating functions, and halfspaces, bbs(H, r) is
easy to calculate. For degree-k PTFs, it is more challenging – it requires proving a bound on
the number of unevenly-spaced grid cells in Rd in which a degree-k multivariate polynomial
might take the value 0; this result may be of independent interest.

We obtain this result by proving a more general lemma. We say that a function f : Rd →
{0, 1} induces a connected component S if for every x, y ∈ S there is a continuous curve in
Rd from x to y such that f(z) = f(x) = f(y) for all z on the curve, and S is a maximal such
set. Then we prove a general lemma that bounds the block boundary size by the number of
connected components induced by functions f ∈ H.

▶ Lemma 1.10 (Informal, see full version). Suppose that for any axis-aligned affine subspace
A of affine dimension n ≤ d, and any function f ∈ H, f induces at most kn connected
components in A. Then for r = Ω(dk/ϵ), bbs(H, r) ≤ ϵ · rd.

This lemma in fact generalizes all computations of block boundary size in this paper (up
to constant factors in r). Using a theorem of Warren [40], we get the following corollary:

▶ Corollary 1.11 (Informal, see full version). Let p : Rd → R be a degree-k polynomial, and
let ϵ > 0. For r ≥ 3

√
24dk/ϵ and any r × · · · × r grid partition of Rd, p takes value 0 in at

most ϵrd grid cells.

1.4 Polynomial Regression
The second step of downsampling is to find a testing or learning algorithm that works for
the uniform distribution over the (not necessarily evenly-spaced) hypergrid. Most of our
learning results use polynomial regression. This is a powerful technique introduced in [30]
that performs linear regression over a vector space of functions that approximately spans the
hypothesis class. This method is usually applied by using Fourier analysis to construct such
an approximate basis for the hypothesis class [10, 22, 15]. This was the method used, for
example, by Blais, O’Donnell, & Wimmer [10] to achieve the poly(dn)-time algorithms for
intersections of halfspaces.

We take the same approach but we use the Walsh basis for functions on domain [n]d (see
e.g. [11]) instead of the bases used in the prior works. We show that if one can establish
bounds on the noise sensitivity in the Fourier basis for the hypothesis class restricted to the
uniform distribution over {±1}d, then one gets a bound on the number of Walsh functions
required to approximately span the “downsampled” hypothesis class. In this way, we establish
that if one can apply standard Fourier-analytic techniques to the hypothesis class over the
uniform distribution on {±1}d and calculate the block boundary size, then the results for
the hypercube essentially carry over to product distributions on Rd.

An advantage of this technique is that both noise sensitivity and block boundary size
grow at most linearly during function composition: for functions f(x) = g(h1(x), . . . , hk(x))
where each hi belongs to the class H, the noise sensitivity and block boundary size grow at
most linearly in k. Therefore learning results for H obtained in this way are easy to extend
to arbitrary compositions of H, which is how we get our result for intersections of halfspaces.

ICALP 2022
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Figure 1 Left: Random grid X (pale lines) with induced block partition (thick lines) and
blockpoint values (dots), superimposed on f−1(1) (gray polygon). Right: f coarse (grey) compared to
f (polygon outline).

2 Downsampling

We will now introduce the main definitions, notation, and lemmas required by our main
results. The purpose of this section is to establish the main conceptual component of the
downsampling technique: that functions with small enough block boundary size can be
efficiently well-approximated by a “coarsened” version of the function that is obtained by
random sampling. See Figure 1 for an illustration of the following definitions.

▶ Definition 2.1 (Block Partitions). An r-block partition of Rd is a pair of functions
block : Rd → [r]d and blockpoint : [r]d → Rd obtained as follows. For each i ∈ [d], j ∈ [r − 1]
let ai,j ∈ R such that ai,j < ai,j+1 and define ai,0 = −∞, ai,r = ∞ for each i. For
each i ∈ [d], j ∈ [r] define the interval Bi,j = (ai,j−1, ai,j ] and a point bi,j ∈ Bi,j. The
function block : Rd → [r]d is defined by setting block(x) to be the unique vector v ∈ [r]d
such that xi ∈ Bi,vi

for each i ∈ [d]. The function blockpoint : [r]d → Rd is defined
by setting blockpoint(v) = (b1,v1 , . . . , bd,vd

); note that blockpoint(v) ∈ block−1(v) where
block−1(v) = {x ∈ Rd : block(x) = v}.

▶ Definition 2.2 (Block Functions and Coarse Functions). For a function f : Rd → {±1},
we define fblock : [r]d → {±1} as fblock := f ◦ blockpoint and f coarse : Rd → R as f coarse :=
fblock ◦ block = f ◦ blockpoint ◦ block. For any set H of functions Rd → {±1}, we define
Hblock := {fblock | f ∈ H}. For a distribution µ over Rd and an r-block partition block :
Rd → [r]d we define the distribution block(µ) over [r]d as the distribution of block(x) for
x ∼ µ.

▶ Definition 2.3 (Induced Block Partitions). When µ is a product distribution over Rd, a
random grid X of length m is the grid obtained by sampling m points x1, . . . , xm ∈ Rd
independently from µ and for each i ∈ [d], j ∈ [m] defining Xi,j to be the jth-smallest
coordinate in dimension i among all sampled points. For any r that divides m we define
an r-block partition depending on X by defining for each i ∈ [d], j ∈ [r − 1] the point
ai,j = Xi,mj/r so that the intervals are Bi,j := (Xi,m(j−1)/r, Xi,mj/r] when j ∈ {2, . . . , r− 1}
and Bi,1 = (−∞, Xi,m/r], Bi,r = (Xi,m(r−1)/r,∞); we let the points bi,j defining blockpoint
be arbitrary. This is the r-block partition induced by X.
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▶ Definition 2.4 (Block Boundary Size). For a block partition block : Rd → [r]d, a distribution
µ over Rd, and a function f : Rd → {±1}, we say f is non-constant on a block v ∈ [r]d if
there are sets S, T ⊂ block−1(v) such that ∀s ∈ S, t ∈ T : f(s) = 1, f(t) = −1; and S, T have
positive measure (in the product of Lebesgue measures). For a function f : Rd → {±1} and a
number r, we define the r-block boundary size bbs(f, r) as the maximum number of blocks on
which f is non-constant, where the maximum is taken over all r-block partitions block : Rd →
[r]d. For a set H of functions Rd → {±1}, we define bbs(H, r) := max{bbs(f, r) | f ∈ H}.

The total variation distance between two distributions µ, ν over a finite domain X is
defined as

∥µ− ν∥TV := 1
2
∑
x∈X

|µ(x) − ν(x)| = max
S⊆X

|µ(S) − ν(S)| .

The essence of downsampling is apparent in the next proposition. It shows that the distance
of f to its coarsened version f coarse is bounded by two quantities: the fraction of blocks in the
r-block partition on which f is not constant, and the distance of the distribution block(µ) to
uniform. When both quantities are small, testing or learning f can be done by testing or
learning f coarse instead. The uniform distribution over a set S is denoted unif(S):

▶ Proposition 2.5. Let µ be a continuous product distribution over Rd, let X be a random
grid, and let block : Rd → [r]d be the induced r-block partition. Then, for any measurable
f : Rd → {±1}, the following holds with probability 1 over the choice of X:

P
x∼µ

[f(x) ̸= f coarse(x)] ≤ r−d · bbs(f, r) + ∥block(µ) − unif([r]d)∥TV .

Proof. We first establish that, with probability 1 over X and x ∼ µ, if f(x) ̸= f coarse(x) then
f is non-constant on block(x). Fix X and suppose there exists a set Z of positive measure
such that for each x ∈ Z, f(x) ̸= f coarse(x) but f is not non-constant on block(x), i.e. for
V = block−1(block(x)), either µ(V ∩ f−1(1)) = µ(V ) or µ(V ∩ f−1(−1)) = µ(V ). Then
there is v ∈ [r]d such that for V = block−1(v), µ(Z ∩ V ) > 0. Let y = blockpoint(v). If
µ(V ∩ f−1(f(y)) = µ(V ) then µ(Z ∩ V ) = 0, so µ(V ∩ f−1(f(y)) = 0. But for random X,
the probability that there exists v ∈ [r]d such that µ(V ∩ f−1(blockpoint(v))) = 0 is 0, since
blockpoint(v) is random within V .

Assuming that the above event occurs,

P
x∼µ

[f(x) ̸= f coarse(x)] ≤ P
x∼µ

[f is non-constant on block(x)]

≤ P
v∼[r]d

[f is non-constant on v] + ∥block(µ) − unif([r]d)∥TV .

Since v ∼ [r]d is uniform, the probability of hitting a non-constant block is at most r−d ·
bbs(f, r). ◀

Next we give a bound on the number of samples required to ensure that block(µ) is close
to uniform. We need the following lemma.

▶ Lemma 2.6. Let µ be continuous probability distribution over R, m, r ∈ N such that r
divides m, and δ ∈ (0, 1/2). Let X be a set of m points sampled independently from µ. Write
X = {x1, . . . , xm} labeled such that x1 < · · · < xm (and write x0 = −∞). Then for any
i ∈ [r],

P
[
µ
(
x(i−1)(m/r), xi(m/r)

]
<

1 − δ

r

]
≤ 4 · e− δ2m

32r .
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Proof. We assume that i− 1 ≤ r/2. If i− 1 > r/2 then we can repeat the following analysis
with the opposite ordering on the points in X. Write x∗ = x(i−1)mr

and β = µ(−∞, x∗]. First
suppose that (1 − δ/2) i−1

r < β < (1 + δ/2) i−1
r ≤ (1 + δ/2)/2; we will bound the probability

of this event later.
Let t ∈ R be the point such that µ(x∗, t] = (1 − δ)/r (which must exist since µ is

continuous). Let η = δ
1−δ ≥ δ. Write X∗ = {x ∈ X : x > x∗}. The expected value of

|X∗ ∩ (x∗, t]| is |X∗| 1−δ
r(1−β) =

(
1 − i−1

r

) 1−δ
r(1−β) , where the factor 1 − β in the denominator is

due to the fact that each element of X∗ is sampled from µ conditional on being larger than
x∗. The event µ(x∗, xi(m/r)] < (1 − δ)/r occurs if and only if |X∗ ∩ (x∗, t]| > m/r, which
occurs with probability

P
[
|X∗ ∩ (x∗, t]| > m

r

]
= P

[
|X∗ ∩ (x∗, t]| > m

(
1 − (i− 1)

r

)
1 − δ

r(1 − β) (1 + η)
]

where

1 + η = (1 − β)
(1 − δ)

(
1 − i−1

r

) ≥
(
1 − (1 + δ/2) i−1

r

)
(1 − δ)

(
1 − i−1

r

) = 1
1 − δ

(
1 − (δ/2)(i− 1)

r − (i− 1)

)
≥ 1 − δ/2

1 − δ
= 1 + δ

2(1 − δ) ≥ 1 + δ/2 .

Since the expected value satisfies

|X∗| 1 − δ

r(1 − β) ≥ m

r
(1 − i− 1

r
)2(1 − δ)

1 − δ/2 ≥ m

r
(1 − δ/2) ≥ m

2r ,

the Chernoff bound gives

P
[
|X∗ ∩ (x∗, t]| > m

r

]
≤ exp

(
− δ2|X∗|(1 − δ)

3 · 4 · r(1 − β)

)
≤ e− δ2m

3·4·2r .

Now let t ∈ R be the point such that µ(x∗, t] = (1+δ)/r. The expected value of |X∗∩(x∗, t]| is
now |X∗| 1+δ

r(1−β) . The event µ(x∗, xi(m/r)] > (1+δ)/r occurs if and only if |X∗∩(x∗, t]| < m/r,
which occurs with probability

P
[
|X∗ ∩ (x∗, t]| < m

r

]
= P

[
|X∗ ∩ (x∗, t]| < m

(
1 − i− 1

r

)
1 + δ

r(1 − β) (1 − η)
]

where

1 − η = 1 − β

(1 + δ)(1 − i−1
r )

≤
1 − (1 + δ/2) i−1

r

(1 + δ)
(
1 − i−1

r

) = 1
1 + δ

(
1 + (δ/2)(i− 1)

r − (i− 1)

)
≤ 1 + δ/2

1 + δ
= 1 − δ/2

1 + δ
≤ 1 − δ

4 .

The expected value satisfies |X∗| 1+δ
r(1−β) > m/r, so the Chernoff bound gives

P
[
|X∗ ∩ (x∗, t]| < m

r

]
≤ exp

(
− δ2|X∗|(1 + δ)

2 · 42 · r(1 − β)

)
≤ e− δ2m

2·42 .

It remains to bound the probability that (1 − δ/2) i−1
r < β < (1 + δ/2) i−1

r . Define t ∈ R
such that µ(−∞, t] = (1 + δ/2) i−1

r . β = µ(−∞, x∗] ≥ (1 + δ/2) i−1
r if and only if x∗ > t,

i.e. |X ∩ (−∞, t]| < i−1
r . The expected value of |X ∩ (−∞, t]| is m (1+δ/2)(i−1)

r , so for
η = δ/2

1+δ/2 ≥ δ/3, the Chernoff bound implies

P
[
|X ∩ (−∞, t]| < m

i− 1
r

]
= P

[
|X ∩ (−∞, t]| < m

(1 + δ/2)(i− 1)
r

(1 − η)
]

≤ e− δ2m(1+δ/2)(i−1)
18r ≤ e− δ2m

18r .
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Now define t ∈ R such that µ(−∞, t] = (1 − δ/2) i−1
r . β = µ(−∞, x∗] ≤ (1 − δ/2) i−1

r if and
only if x∗ < t, i.e. |X ∩ (−∞, t]| > i−1

r . The expected value of |X ∩ (−∞, t]| is m (1−δ/2)(i−1)
r ,

so for η = δ
2−δ ≥ δ/2,

P
[
|X ∩ (−∞, t]| > m

i− 1
r

]
= P

[
|X ∩ (−∞, t]| > m

(1 − δ/2)(i− 1)
r

(1 + η)
]

≤ e− δ2m(1−δ/2)(i−1)
2·4r ≤ e− δ2m

42r .

The conclusion then follows from the union bound over these four events. ◀

▶ Lemma 2.7. Let µ = µ1 × · · · × µd be a product distribution over Rd where each µi is
continuous. Let X be a random grid with length m sampled from µ, and let block : Rd → [r]d
be the r-block partition induced by X. Then

P
X

[
∥block(µ) − unif([r]d)∥TV > ϵ

]
≤ 4rd · e− ϵ2m

18rd2

Proof. For a fixed grid X and each i ∈ [d], write pi : [r] → [0, 1] be the probability distribution
on [r] with pi(z) = µi(Bi,z). Then block(µ) = p1 × · · · × pd.

Let δ = 4ϵ
3d . Suppose that for every i, j ∈ [d] × [r] it holds that 1+δ

r ≤ pi(j) ≥ 1−δ
r . Note

that dδ = 4ϵ
3 ≤ ln(1 + 2ϵ) ≤ 2ϵ. Then for every v ∈ [r]d,

P
u∼µ

[block(u) = v] =
d∏
i=1

pi(vi)
{

≤ (1 + δ)dr−d ≤ edδr−d ≤ (1 + 2ϵ)r−d

≥ (1 − δ)dr−d ≥ (1 − dδ)r−d ≥ (1 − 2ϵ)r−d .

So

∥block(µ) − unif([r]d)∥TV = 1
2
∑
v∈[r]d

| P
u∼µ

[block(u) = v] − r−d| ≤ 1
2
∑
v∈[r]d

2ϵr−d = ϵ .

By Lemma 2.6 and the union bound, the probability that there is some i ∈ [d], j ∈ [r] that
satisfies pi(j) < (1 − δ)/r is at most 4rd · e− ϵ2m

18rd2 . ◀

3 Testing Monotonicity

3.1 Testing Monotonicity on the Hypergrid
A good introduction to downsampling is the following short proof of the main result of Black,
Chakrabarty, & Seshadhri [6]. In an earlier work, [5], they gave an O((d5/6/ϵ4/3) poly log(dn))
tester for the domain [n]d, and in the later work they showed how to reduce the domain [n]d
to [r]d for r = poly(d/ϵ).

Our monotonicity tester will use as a subroutine the following tester for diagonal functions.
For a hypergrid [n]d, a diagonal is a subset of points {x ∈ [n]d : x = v + λ1⃗, λ ∈ Z} defined
by some v ∈ [n]d. A function f : [n]d → {0, 1} is a diagonal function if it has at most one
1-valued point in each diagonal.

▶ Lemma 3.1. There is an ϵ-tester with one-sided error and query complexity O
( 1
ϵ log2(1/ϵ)

)
for diagonal functions on [n]d.
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Proof. For each t ∈ [n] let Dt be the set of diagonals with length t. For any x ∈ [n]d let
diag(x) be the unique diagonal that contains x. For input f : [n]d → {0, 1} and any x ∈ [n]d,
let R(x) = |{y∈diag(x):f(y)=1}|

|diag(x)| .
Suppose that f is ϵ-far from diagonal. Then f must have at least ϵnd 1-valued points;

otherwise we could set each 1-valued point to 0 to obtain the constant 0 function. Now
observe

E
x∼[n]d

[R(x)] = E
x∼[n]d

[
n∑
t=1

∑
L∈Dt

1 [diag(x) = L] |{y ∈ L : f(y) = 1}|
t

]

=
n∑
t=1

∑
L∈Dt

P
x∼[n]d

[x ∈ L] |{y ∈ L : f(y) = 1}|
t

=
n∑
t=1

∑
L∈Dt

t

nd
|{y ∈ L : f(y) = 1}|

t

= 1
nd

|{y ∈ [n]d : f(y) = 1}| ≥ ϵ .

For each i, define Ai =
{
x ∈ [n]d : 1

2i < R(x) ≤ 1
2i−1

}
. Let k = log(4/ϵ). Then

ϵ ≤ E [R(x)] ≤
∞∑
i=1

|Ai|
nd

max
x∈Ai

R(x) ≤
∞∑
i=1

|Ai|
nd2i−1 ≤

k∑
i=1

|Ai|
nd2i−1 +

∞∑
i=k+1

1
2i−1

≤
k∑
i=1

|Ai|
nd2i−1 + 1

2k−1 ≤
k∑
i=1

|Ai|
nd2i−1 + ϵ

2

=⇒ ϵ

2 ≤
k∑
i=1

|Ai|
nd2i−1 .

Therefore there is some ℓ ∈ [k] such that |Aℓ| ≥ ϵnd2ℓ−1

2k .
The tester is as follows. For each i ∈ [k]:

1. Sample p = k
ϵ2i−2 ln(6) points x1, . . . , xp ∼ [n]d.

2. For each j ∈ [p], sample q = 2i+2 ln(12) points y1, . . . , yq from diag(xi) and reject if there
are two distinct 1-valued points in the sample.

The query complexity of the tester is
∑k
i=1 42 ln(6) ln(12) k

ϵ2i 2i = O
( 1
ϵ log2(1/ϵ)

)
.

The tester will clearly accept any diagonal function. Now suppose that f is ϵ-far from
having this property, and let ℓ ∈ [k] be such that |Aℓ| ≥ ϵnd2ℓ−2

k . On iteration i = ℓ, the
algorithm samples p = k

ϵ2ℓ−2 ln(6) points x1, . . . , xp. The probability that ∀j ∈ [p], xj /∈ Aℓ is
at most(

1 − |Aℓ|
nd

)p
≤
(

1 − ϵ2ℓ−2

k

)p
≤ exp

(
−ϵp2ℓ−2

k

)
≤ 1/6 .

Now assume that there is some xj ∈ Aℓ, so that R(xj) > 2−ℓ. Let A,B ⊂ diag(xj) be disjoint
subsets that partition the 1-valued points in diag(xi) into equally-sized parts. Then for y
sampled uniformly at random from diag(xj), P [y ∈ A] ,P [y ∈ B] ≥ 2−(ℓ+1). The probability
that there are at least 2 distinct 1-valued points in y1, . . . , yq sampled by the algorithm is at
least the probability that one of the first q/2 samples is in A and one of the last q/2 samples
is in B. This fails to occur with probability at most 2(1 − 2−(ℓ+1))q/2 ≤ 2e−q2−(ℓ+2) ≤ 1/6.
So the total probability of failure is at most 2/6 = 1/3. ◀

▶ Theorem 3.2. There is a non-adaptive monotonicity tester on domain [n]d with one-sided
error and query complexity Õ

(
d5/6

ϵ4/3

)
.
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Proof. Set r = ⌈4d/ϵ⌉, and assume without loss of generality that r divides n. Partition
[n] into r intervals Bi = {(i − 1)(n/r) + 1, . . . , i(n/r)}. For each v ∈ [r]d write Bv =
Bv1 × · · · × Bvd

. Define block : [n]d → [r]d where block(x) is the unique vector v ∈ [r]d
such that x ∈ Bv. Define block−↓(v) = min{x ∈ Bv} and block−↑(v) = max{x ∈ Bv},
where the minimum and maximum are with respect to the natural ordering on [n]d. For
f : [n]d → {0, 1}, write fblock : [r]d → {0, 1}, fblock(v) = f(block−↓(v)). We may simulate
queries v to fblock by returning f(block−↓(v)). We will call v ∈ [r]d a boundary block if
f(block−↓(v)) ̸= f(block−↑(v)).

The test proceeds as follows: On input f : [n]d → {0, 1} and a block v ∈ [r]d, define the
following functions:

g : [n]d → {0, 1}, g(x) =
{
fblock(block(x)) if block(x) is not a boundary block
f(x) if block(x) is a boundary block.

b : [r]d → {0, 1}, b(v) =
{

0 if v is not a boundary block
1 if v is a boundary block.

h : [r]d → {0, 1}, h(v) =
{
fblock(v) if v is not a boundary block
0 if v is a boundary block.

Queries to each of these functions can be simulated by 2 or 3 queries to f . The tester
performs:
1. Test whether g = f , or whether dist(f, g) > ϵ/4, using O(1/ϵ) queries.
2. Test whether b is diagonal, or is ϵ/4-far from diagonal, using Lemma 3.1, with

O
( 1
ϵ log2(1/ϵ)

)
queries.

3. Test whether h is monotone or ϵ/4-far from monotone, using the tester of Black, Chakra-
barty, & Seshadhri with Õ

(
d5/6

ϵ4/3

)
queries.

▷ Claim 3.3. If f is monotone, the tester passes all 3 tests with probability 1.

Proof of claim. To see that g = f , observe that if v = block(x) is not a boundary block
then f(block−↓(v)) = f(block−↑(v)). If f(x) ̸= fblock(block(x)) then f(x) ̸= f(block−↓(v))
and f(x) ̸= f(block−↑(v)) while block−↓(v) ⪯ x ⪯ block−↑(v), and this is a violation of the
monotonicity of f . Therefore f will pass the first test with probability 1.

To see that f passes the second test with probability 1, observe that if f had 2 boundary
blocks in some diagonal, then there are boundary blocks u, v ∈ [r]d such that block−↑(u) ≺
block−↓(v). But then there is x, y ∈ [n]d such that block(x) = u, block(y) = v and f(x) =
1, f(y) = 0; since x ⪯ block−↑(u) ≺ block−↓(v) ⪯ y, this contradicts the monotonicity of f .
So f has at most 1 boundary block in each diagonal.

To see that h is monotone, it is sufficient to consider the boundary blocks, since all other
values are the same as fblock. Let v ∈ [r]d be a boundary block, so there exist x, y ∈ [n]d such
that block(x) = block(y) and f(x) = 1, f(y) = 0. Suppose u ≺ v is not a boundary block
(if it is a boundary block then h(u) = h(v) = 0). If h(u) = 1 then f(block−↓(u)) = 1, but
block−↓(u) ≺ block−↓(v) ⪯ y while f(block−↓(u)) > f(y), a contradiction. So it must be that
h(u) = 0 whenever u ≺ v. For any block u ∈ [r]d such that v ≺ u, we have 0 = h(v) ≤ h(u),
so monotonicity holds. Since the tester of Black, Chakrabarty, & Seshadhri has one-sided
error, the test passes with probability 1. ◁

▷ Claim 3.4. If g is ϵ/4-close to f , b is ϵ/4-close to diagonal, and h is ϵ/4-close to monotone,
then f is ϵ-close to monotone.
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Proof of claim. Let hcoarse : [n]d → {0, 1} be the function hcoarse(x) = h(block(x)). Suppose
that f(x) ̸= hcoarse(x). If v = block(x) is not a boundary block of f then hcoarse(x) = h(v) =
fblock(v) = g(x), so f(x) ̸= g(x). If v is a boundary block then hcoarse(x) = h(v) = 0 so
f(x) = 1, and b(v) = 1.

Suppose for contradiction that there are more than ϵ
2r
d boundary blocks v ∈ [r]d, so there

are more than ϵ
2r
d 1-valued points of b. Any diagonal function has at most drd−1 1-valued

points. Therefore the distance of b to diagonal is at least

r−d
( ϵ

2r
d − drd−1

)
= ϵ

2 − d

r
= ϵ

2 − ϵ

4 = ϵ

4 ,

a contradiction. So f has at most ϵ
2r
d boundary blocks. Now

dist(f, hcoarse)=dist(f, g)+ P
x∼[n]d

[f(x) = 1, block(x) is a boundary block] ≤ ϵ

4 + r−d · ϵr
d

2 = 3
4 ϵ .

Let p : [r]d → {0, 1} be a monotone function minimizing the distance to h, and let pcoarse :
[n]d → {0, 1} be the function pcoarse(x) = p(block(x)). Then

dist(hcoarse, pcoarse) = P
x∼[n]d

[h(block(x)) ̸= p(block(x))] = P
v∼[r]d

[h(v) ̸= p(v)] ≤ ϵ/4 .

Finally, the distance of f to the nearest monotone function is at most

dist(f, pcoarse) ≤ dist(f, hcoarse) + dist(hcoarse, pcoarse) ≤ 3
4ϵ+ 1

4ϵ = ϵ . ◁

These two claims suffice to establish the theorem. ◀

3.2 Monotonicity Testing for Product Distributions
The previous section used a special case of downsampling, tailored for the uniform distribution
over [n]d. We will call a product distribution µ = µ1 × · · · × µd over Rd continuous if each
of its factors µi are continuous (i.e. absolutely continuous with respect to the Lebesgue
measure). The proof for discrete distributions is in the full version.

▶ Theorem 1.1. There is a one-sided, non-adaptive ϵ-tester for monotonicity of functions
Rd → {0, 1} that is distribution-free under (finite or continuous) product distributions, using

O

(
d5/6

ϵ4/3 poly log(d/ϵ)
)

queries and O(d
3

ϵ3 log(d/ϵ)) samples.

Proof. We follow the proof of Theorem 3.2, with some small changes. Let r = ⌈16d/ϵ⌉. The
tester first samples a grid X with length m = O

(
rd2

ϵ2 log(rd)
)

and constructs the induced
(r + 2)-block partition, with cells labeled {0, . . . , r + 1}d. We call a block v ∈ {0, . . . , r + 1}d
upper extreme if there is some i ∈ [d] such that vi = r + 1, and we call it lower extreme if
there is some i ∈ [d] such that vi = 0 but v is not upper extreme. Call the upper extreme
blocks U and the lower extreme blocks L. Note that [r]d = {0, . . . , r + 1}d \ (U ∪ L).

For each v ∈ [r]d, we again define block−↑(v), block−↓(v) as, respectively, the supremal
and infimal point x ∈ Rd such that block(x) = v. The algorithm will ignore the extreme
blocks U ∪ L, which do not have a supremal or an infimal point. Therefore it is not defined
whether these blocks are boundary blocks.
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By Lemma 2.7, with probability at least 5/6, we will have ∥block(µ) − unif({0, . . . , r +
1})∥TV ≤ ϵ/8. We define b, h as before, with domain [r]d. Define g similarly but with domain
Rd and values

g(x) =


1 if block(x) ∈ U

0 if block(x) ∈ L

f(x) if block(x) ∈ [n]d is a boundary block
fblock(block(x)) otherwise.

If f is monotone, it may now be the case f ̸= g, but we will have f(x) = g(x) for all x with
block(x) ∈ [r]d, where the algorithm will make its queries. The algorithm will test whether
f(x) = g(x) on all x with block(x) ∈ [r]d, or ϵ/8-far from this property, which can be again
done with O(1/ϵ) samples. Note that if f is ϵ/8-close to having this property, then

distµ(f, g) ≤ P
x∼µ

[
block(x) /∈ [n]d

]
+ ϵ/8

≤ d(r + 2)d−1

(r + 2)d + ϵ/8 + ∥block(µ) − unif([r]d ∪ U ∪ L)∥TV

≤ ϵ

16 + ϵ

8 + ϵ

4 ≤ ϵ

2 .

The algorithm then procedes as before, with error parameter ϵ/2. To test whether g = f ,
the algorithm samples from µ and throws away any sample x ∈ Rd with block(x) /∈ [r]d. It
then tests b and h using the uniform distribution on [r]d. It suffices to prove the following
claim, which replaces Claim 3.4.

▷ Claim 3.5. If g is ϵ/2-close to f , b is ϵ/16-close to diagonal, and h is ϵ/8-close to monotone,
then f is ϵ-close to monotone.

Proof of claim. Let p : [r]d → {0, 1} be a monotone function minimizing the distance to
h. Then p(v) ̸= h(v) on at most ϵrd

8 blocks v ∈ [r]d. Define pcoarse : Rd → {0, 1} as
pcoarse(x) = p(block(x)) when block(x) ∈ [r]d, and pcoarse(x) = g(x) when block(x) ∈ U ∪ L.
Note that pcoarse is monotone.

By the triangle inequality,

distµ(f, pcoarse) ≤ distµ(f, g) + distµ(g, pcoarse) .

From above, we know distµ(f, g) ≤ ϵ/2. To bound the second term, observe that since b is
ϵ/16-close to diagonal, there are at most

ϵ

16r
d + drd−1 ≤ ϵ

16r
d + d

r
rd ≤ ϵ

16r
d + ϵ

16r
d = ϵ

8r
d

boundary blocks. Then observe that if g(x) ̸= pcoarse(x) then block(x) ∈ [r]d and either
block(x) is a boundary block, or g(x) = fblock(block(x)) = h(block(x)) and h(block(x)) ̸=
p(block(x)). Then

distµ(g, pcoarse) ≤

 1
(r + 2)d

∑
v∈[r]d

1 [v is a boundary block, or h(v) ̸= p(v)]


+ ∥block(µ) − unif({0, . . . , r + 1}d)∥TV

≤ ϵrd

8rd + ϵrd

8rd + ϵ

4 ≤ ϵ

2 . ◁

◀
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A Fixed-Parameter Algorithm for the Kneser
Problem
Ishay Haviv
School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel

Abstract
The Kneser graph K(n, k) is defined for integers n and k with n ≥ 2k as the graph whose vertices
are all the k-subsets of {1, 2, . . . , n} where two such sets are adjacent if they are disjoint. A classical
result of Lovász asserts that the chromatic number of K(n, k) is n − 2k + 2. In the computational
Kneser problem, we are given an oracle access to a coloring of the vertices of K(n, k) with n−2k +1
colors, and the goal is to find a monochromatic edge. We present a randomized algorithm for the
Kneser problem with running time nO(1) · kO(k). This shows that the problem is fixed-parameter
tractable with respect to the parameter k. The analysis involves structural results on intersecting
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). We

further show that the Agreeable-Set problem is at least as hard as a variant of the Kneser
problem with an extended access to the input coloring.
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1 Introduction

The Kneser graph K(n, k) is defined for integers n and k with n ≥ 2k as the graph whose
vertices are all the k-subsets of [n] = {1, 2, . . . , n} where two such sets are adjacent if they
are disjoint. In 1955, Kneser [17] observed that there exists a proper coloring of the vertices
of K(n, k) with n−2k +2 colors and conjectured that fewer colors do not suffice, that is, that
its chromatic number satisfies χ(K(n, k)) = n−2k +2. The conjecture was proved more than
two decades later by Lovász [19] as a surprising application of the Borsuk-Ulam theorem from
algebraic topology [2]. Following this result, topological methods have become a common
and powerful tool in combinatorics, discrete geometry, and theoretical computer science (see,
e.g., [22]). Several alternative proofs of Kneser’s conjecture were provided in the literature
over the years (see, e.g., [23]), and despite the combinatorial nature of the conjecture, all of
them essentially rely on the topological Borsuk-Ulam theorem. One exception is a proof by
Matoušek [21], which is presented in a combinatorial form, but is yet inspired by a discrete
variant of the Borsuk-Ulam theorem known as Tucker’s lemma.
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72:2 A Fixed-Parameter Algorithm for the Kneser Problem

In the computational Kneser problem, we are given an access to a coloring of the vertices
of K(n, k) with n− 2k + 1 colors, and the goal is to find a monochromatic edge, i.e., two
vertices with the same color that correspond to disjoint sets. Since the number of colors
used by the input coloring is strictly smaller than the chromatic number of K(n, k) [19], it
follows that every instance of the problem has a solution. However, the topological proofs
of the lower bound on the chromatic number of K(n, k) are not constructive, in the sense
that they do not supply an efficient algorithm for finding a monochromatic edge. By an
efficient algorithm we mean that its running time is polynomial in n, whereas the number
of vertices

(
n
k

)
might be exponentially larger. Hence, it is natural to assume that the input

coloring is given as an access to an oracle that given a vertex of K(n, k) returns its color.
Alternatively, the coloring can be given by some succinct representation, e.g., a Boolean
circuit that computes the color of any given vertex.

The question of determining the complexity of the Kneser problem was proposed by
Deng, Feng, and Kulkarni [6], who asked whether it is complete in the complexity class PPA.
This complexity class belongs to a family of classes that were introduced by Papadimitriou [26]
in the attempt to characterize the mathematical arguments that lie behind the existence of
solutions to search problems of TFNP. The complexity class TFNP, introduced in [25], is
the class of all total search problems in NP, namely, the search problems in which a solution
is guaranteed to exist and can be verified in polynomial running time. Papadimitriou has
introduced in [26] several subclasses of TFNP, each of which consists of the total search
problems that can be reduced to a problem that represents some mathematical argument. In
particular, the class PPA (Polynomial Parity Argument) corresponds to the simple fact that
every (undirected) graph with maximum degree 2 that has a vertex of degree 1 must have
another degree 1 vertex. Hence, PPA is defined as the class of all problems in TFNP that
can be efficiently reduced to the Leaf problem, in which given a succinct representation of a
graph with maximum degree 2 and given a vertex of degree 1 in the graph, the goal is to
find another such vertex.

In recent years, it has been shown that the complexity class PPA perfectly captures the
complexity of several total search problems for which the existence of the solution relies
on the Borsuk-Ulam theorem. Indeed, Filos-Ratsikas and Goldberg [9, 10] proved that the
Consensus Halving problem with inverse-polynomial precision parameter is PPA-complete
and derived the PPA-completeness of some classical problems, such as the Splitting Necklace
problem with two thieves and the Discrete Sandwich problem. The PPA-hardness of the
Consensus Halving problem was further extended to a constant precision parameter in a recent
work of Deligkas, Fearnley, Hollender, and Melissourgos [4]. Another PPA-complete problem,
studied in [15] and closely related to the Kneser problem, is the Schrijver problem which
given a coloring of the Schrijver graph S(n, k) with fewer colors than its chromatic number
asks to find a monochromatic edge. Note that S(n, k) is the induced subgraph of K(n, k) on
the collection of all k-subsets of [n] with no two consecutive elements modulo n, and that its
chromatic number is equal to that of K(n, k) [27]. Despite the progress in understanding
the complexity of total search problems related to the Borsuk-Ulam theorem, the question
of [6] on the complexity of the Kneser problem is still open. The question of determining
the complexity of its extension to Kneser hypergraphs was recently raised by Filos-Ratsikas,
Hollender, Sotiraki, and Zampetakis [11].

The study of the Kneser problem has been recently motivated by its connection to a
problem called Agreeable-Set that was introduced by Manurangsi and Suksompong [20]
and further studied by Goldberg, Hollender, Igarashi, Manurangsi, and Suksompong [14].
This problem falls into the category of resource allocation problems, where one assigns items
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from a given collection [m] to ℓ agents that have different preferences. The preferences are
given by monotone utility functions that associate a non-negative value to each subset of [m].
In the Agreeable-Set setting, the agents act as a group, and the goal is to collectively
allocate a subset of items that is agreeable to all of them, in the sense that every agent likes
it at least as much as it likes the complement set. The authors of [20] proved that for every
ℓ agents with monotone utility functions defined on the subsets of [m], there exists a subset
S ⊆ [m] of size

|S| ≤ min
(⌊m + ℓ

2

⌋
, m
)

(1)

that is agreeable to all agents, and that this bound is tight in the worst case. They initiated
the study of the Agreeable-Set problem that given an oracle access to the utility functions
of the ℓ agents, asks to find a subset S ⊆ [m] that satisfies the worst-case bound given in (1)
and that is agreeable to all agents. Note that for instances with ℓ ≥ m, the collection [m]
forms a proper solution.

Interestingly, the proof of [20] for the existence of a solution to the Agreeable-Set
problem relies on the chromatic number of Kneser graphs. In fact, the proof implicitly shows
that the Agreeable-Set problem is efficiently reducible to the Kneser problem, hence
the Kneser problem is at least as hard as the Agreeable-Set problem. An alternative
existence proof, based on the Consensus Halving theorem [28], was given by the authors
of [14]. Their approach was applied there to show that the Agreeable-Set problem can
be solved in polynomial time when the utility functions of the agents are additive and when
the number ℓ of agents is a fixed constant. The complexity of the problem in the general
case is still open.

1.1 Our Contribution
Our main result concerns the parameterized complexity of the Kneser problem. We prove
that the problem is fixed-parameter tractable with respect to the parameter k, namely, it
can be solved on an input coloring of a Kneser graph K(n, k) in running time nO(1) · f(k)
for some function f .

▶ Theorem 1. There exists a randomized algorithm that given integers n and k with n ≥ 2k

and an oracle access to a coloring c :
([n]

k

)
→ [n − 2k + 1] of the vertices of the Kneser

graph K(n, k), runs in time nO(1) · kO(k) and returns a monochromatic edge with probability
1− 2−Ω(n).

It should be mentioned that the notion of fixed-parameter tractability is used here in a
slightly different manner than in the parameterized complexity literature (see, e.g., [3]). This
is because Theorem 1 deals with the parameterized complexity of a total search problem,
rather than a decision problem, and because its input is given as an oracle access. In fact,
borrowing the terminology of this area, our algorithm for the Kneser problem can be viewed
as a randomized polynomial Turing kernelization algorithm for the problem (see, e.g., [12,
Chapter 22]). Namely, we show that the problem of finding a monochromatic edge in a
Kneser graph K(n, k) can essentially be reduced by a randomized efficient algorithm to
finding a monochromatic edge in a Kneser graph K(n′, k) for n′ = O(k4) (see Section 3.4 for
the precise details).

The analysis of the algorithm given in Theorem 1 relies on properties of induced subgraphs
of Kneser graphs (see Section 3.1). The proofs involve a stability result due to Hilton and
Milner [16] of the celebrated Erdös-Ko-Rado theorem [8] (see Theorem 9) and an idea recently
applied by Frankl and Kupavskii [13] in the study of maximal degrees in induced subgraphs
of Kneser graphs. An overview of the proof of Theorem 1 is given in Section 1.2.
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Our next result provides a simple deterministic algorithm for the Kneser problem that
is particularly useful for Kneser graphs K(n, k) with k close to n/2. Its analysis is based on
the chromatic number of Schrijver graphs [27].

▶ Theorem 2. There exists an algorithm that given integers n and k with n ≥ 2k and an
oracle access to a coloring c :

([n]
k

)
→ [n− 2k + 1] of the vertices of the Kneser graph K(n, k),

returns a monochromatic edge in running time polynomial in
(

n−k+1
k

)
≤ nmin(k,n−2k+1).

We proceed by presenting our results on the Agreeable-Set problem. First, as applica-
tions of Theorems 1 and 2, using the relation from [20] between the Agreeable-Set and
Kneser problems, we obtain the following algorithmic results.

▶ Theorem 3. There exists a randomized algorithm for the Agreeable-Set problem that
given an oracle access to an instance with m items and ℓ agents (ℓ < m), runs in time
mO(1) · kO(k) for k = ⌈m−ℓ

2 ⌉ and returns a proper solution with probability 1− 2−Ω(m).

▶ Theorem 4. There exists an algorithm for the Agreeable-Set problem that given an
oracle access to an instance with m items and ℓ agents (ℓ < m), returns a proper solution in
running time polynomial in

(
m−k+1

k

)
≤ mmin(k,m−2k+1) for k = ⌈m−ℓ

2 ⌉.

We apply Theorems 3 and 4 to show that the Agreeable-Set problem can be solved in
polynomial time for certain families of instances. By Theorem 3, we obtain a randomized
efficient algorithm for instances in which the number of agents ℓ is not much smaller than the
number of items m, namely, for ℓ ≥ m−O( log m

log log m ). By Theorem 4, we obtain an efficient
algorithm for instances with a constant number of agents, providing an alternative proof for
a result of [14].

We finally explore the relations between the Agreeable-Set and Kneser problems. As
already mentioned, there exists an efficient reduction from the Agreeable-Set problem to
the Kneser problem [20]. Here we provide a reduction in the opposite direction. However,
for the reduction to be efficient we reduce from a variant of the Kneser problem with an
extended type of queries, which we call subset queries and define as follows. For an input
coloring c :

([n]
k

)
→ [n− 2k + 1] of a Kneser graph K(n, k), a subset query is a pair (i, B) of

a color i ∈ [n − 2k + 1] and a set B ⊆ [n], and the answer on the query (i, B) determines
whether B contains a vertex colored i, that is, whether there exists a k-subset A ⊆ B

satisfying c(A) = i. We prove the following result (see Section 2.1 for the computational
input model of the problems).

▶ Theorem 5. There exists a polynomial-time reduction from the Kneser problem with
subset queries to the Agreeable-Set problem.

1.2 Proof Overview of Theorem 1
We present here the main ideas of our fixed-parameter algorithm for the Kneser problem.
Suppose that we are given, for n ≥ 2k, an oracle access to a coloring c :

([n]
k

)
→ [n− 2k + 1]

of the vertices of the Kneser graph K(n, k) with n−2k + 1 colors. As mentioned before, since
the chromatic number of K(n, k) is n−2k +2 [19], the coloring c must have a monochromatic
edge. Such an edge can clearly be found by an algorithm that queries the oracle for the
colors of all the vertices. However, the running time of such an algorithm is polynomial in(

n
k

)
, so it is not fixed-parameter with respect to the parameter k.
A natural attempt to improve on this running time is to consider a randomized algorithm

that picks uniformly and independently at random polynomially many vertices of K(n, k) and
checks if any two of them form a monochromatic edge. However, it is not difficult to see that
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there exist colorings of K(n, k) with n−2k +1 colors for which a small fraction of the vertices
are involved in all the monochromatic edges, implying that the success probability of this
randomized algorithm is negligible on them. To see this, consider the canonical coloring of
K(n, k), in which for every i ∈ [n− 2k + 1] the vertices A ∈

([n]
k

)
with min(A) = i are colored

i, and the remaining vertices, those contained in [n] \ [n− 2k + 1], are colored n− 2k + 2.
By recoloring the vertices of the last color class with arbitrary colors from [n− 2k + 1], we
get a coloring of K(n, k) with n − 2k + 1 colors such that every monochromatic edge has
an endpoint in a collection of

(2k−1
k

)
vertices. This implies that the probability that two

random vertices chosen uniformly and independently from
([n]

k

)
form a monochromatic edge

may go to zero faster than any inverse polynomial in n.
While the above coloring shows that all the monochromatic edges can involve vertices

from a small set, one may notice that this coloring is very well structured, in the sense
that each color class is quite close to a trivial intersecting family, i.e., an intersecting family
all of whose members share a common element. This is definitely not a coincidence. It is
known that large intersecting families of k-subsets of [n] are “essentially” contained in trivial
intersecting families. Indeed, the classical Erdös-Ko-Rado theorem [8] asserts that the largest
size of an intersecting family of k-subsets of [n] is

(
n−1
k−1
)
, attained by, and only by, the n

largest trivial families (for n > 2k). Moreover, Hilton and Milner [16] proved a stability
result for the Erdös-Ko-Rado theorem, saying that if an intersecting family of sets from([n]

k

)
is not trivial then its size cannot exceed

(
n−1
k−1
)
−
(

n−k−1
k−1

)
+ 1, which is much smaller

than the largest possible size of an intersecting family when n is sufficiently larger than k

(see Theorem 9 and Remark 10). More recently, it was shown by Dinur and Friedgut [7]
that every intersecting family can be made trivial by removing not more than c̃ ·

(
n−2
k−2
)

of
its members for a constant c̃ (see [18] for an exact

(
n−3
k−2
)

bound on the number of sets that
should be removed, provided that n ≥ c̃ · k for a constant c̃). Hence, our strategy for finding
a monochromatic edge in K(n, k) is to learn the structure of the large color classes which
are close to being intersecting. We use random samples from the vertex set of the graph in
order to identify the common elements of the trivial families that “essentially” contain these
color classes. Roughly speaking, this allows us to repeatedly reduce the size of the ground
set [n] of the given Kneser graph and to obtain a small subgraph, whose size depends only
on k, that is expected to contain a monochromatic edge. Then, such an edge can simply be
found by querying the oracle for the colors of all the vertices of this subgraph.

With the above idea in mind, let us consider an algorithm that starts by selecting
uniformly and independently at random polynomially many vertices of K(n, k) and queries
the oracle for their colors. Among the n− 2k + 1 color classes, there must be a non-negligible
one that includes at least 1

n−2k+1 ≥
1
n fraction of the vertices. It can be shown, using the

Chernoff-Hoeffding bound, that the samples of the algorithm can be used to learn a color
i ∈ [n− 2k + 1] of a quite large color class. Moreover, the samples can be used to identify
an element j ∈ [n] that is particularly popular on the vertices colored i (say, that belongs
to a constant fraction of them) in case that such an element exists. Now, if the coloring
satisfies that (a) there exists an element j that is popular on the vertices colored i and,
moreover, (b) this element j belongs to all the vertices that are colored i, then it suffices
to focus on the subgraph of K(n, k) induced by the vertices of

([n]\{j}
k

)
. Indeed, condition

(b) implies that the restriction of the given coloring to this subgraph uses at most n− 2k

colors. Since this subgraph is isomorphic to K(n− 1, k), its chromatic number is n− 2k + 1,
hence it has a monochromatic edge. By repeatedly applying this procedure, assuming that
the conditions (a) and (b) hold in all iterations, we can eliminate elements from the ground
set [n] and obtain smaller and smaller Kneser graphs that still have a monochromatic edge.

ICALP 2022
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When the ground set becomes sufficiently small, one can go over all the remaining vertices
and efficiently find the required edge. We now turn to address the case where at least one of
the conditions (a) and (b) does not hold.

For condition (a), suppose that in some iteration the algorithm identifies a color i that
appears on a significant fraction of vertices, but no element of [n] is popular on these vertices.
In this case, one might expect the color class of i to be so far from being intersecting, so
that the polynomially many samples would include with high probability a monochromatic
edge of vertices colored i. It can be observed that the aforementioned stability results of the
Erdös-Ko-Rado theorem yield that a non-negligible fraction of the vertices of a large color
class with no popular element lie on monochromatic edges. However, in order to catch a
monochromatic edge with high probability we need here the stronger requirement, saying
that a non-negligible fraction of the pairs of vertices from this color class form monochromatic
edges. We prove that this indeed holds for color classes of K(n, k) that include at least, say,
1
n fraction of the vertices, provided that n ≥ c̃ · k4 for some constant c̃. The proof uses the
Hilton-Milner theorem and borrows an idea of [13] (see Lemma 12 and Corollary 13).

For condition (b), suppose that in some iteration the algorithm identifies a color i of
a large color class and an element j that is popular in its sets but does not belong to all
of them. In this case, we can no longer ensure that the final Kneser graph obtained after
all iterations has a monochromatic edge, as some of its vertices might be colored i. To
handle this situation, we show that every vertex A ∈

([n]
k

)
with j /∈ A has a lot of neighbors

colored i. Hence, if the algorithm finds at its final step, or even earlier, a vertex A colored
i satisfying j /∈ A, where i and j are the color and element chosen by the algorithm in
a previous iteration, then it goes back to the ground set of this iteration and finds using
additional polynomially many random vertices from it a neighbor of A colored i, and thus a
monochromatic edge (see Lemma 14 and Corollary 15).

To summarize, our algorithm for the Kneser problem repeatedly calls an algorithm,
which we refer to as the “element elimination” algorithm, that uses polynomially many
random vertices to identify a color i of a large color class. If no element of [n] is popular on
this color class then the random samples provide a monochromatic edge with high probability
and we are done. Otherwise, the algorithm finds such a popular j ∈ [n] and focuses on the
subgraph obtained by eliminating j from the ground set. This is done as long as the size of
the ground set is larger than c̃ ·k4 for a constant c̃. After all iterations, the remaining vertices
induce a Kneser graph K(n′, k) for n′ ≤ c̃ · k4, and the algorithm queries for the colors of all
of its vertices in time polynomial in

(
n′

k

)
≤ kO(k). If the colors that were chosen through the

iterations of the “element elimination” algorithm do not appear in this subgraph, then it
must contain a monochromatic edge which can be found by an exhaustive search. Otherwise,
this search gives us a vertex A satisfying c(A) = i and j /∈ A for a color i associated with an
element j by one of the calls to the “element elimination” algorithm. As explained above,
given such an A it is possible to efficiently find with high probability a vertex that forms
with A a monochromatic edge. This gives us a randomized algorithm with running time
nO(1) · kO(k) that finds a monochromatic edge with high probability. The full description of
the algorithm and its analysis are presented in Section 3.

1.3 Outline
The rest of the paper is organized as follows. In Section 2, we gather several definitions and
results that will be used throughout the paper. In Section 3, we present and analyze our
randomized fixed-parameter algorithm for the Kneser problem and prove Theorem 1. In
Section 4, we present a simple deterministic algorithm for the Kneser problem and prove
Theorem 2. Due to space limitation, we omit the proofs of our results on the Agreeable-Set
problem, which can be found in the full version of the paper.



I. Haviv 72:7

2 Preliminaries

2.1 Computational Models
In this work we consider total search problems whose inputs involve functions that are defined
on domains of size exponential in the parameters of the problems. For example, the input
of the Kneser problem is a coloring c :

([n]
k

)
→ [n − 2k + 1] of the vertices of the Kneser

graph K(n, k) for n ≥ 2k. For such problems, one has to specify how the input is given. We
consider the following two input models.

In the black-box input model, an input function is given as an oracle access, so that an
algorithm can query the oracle for the value of the function on any element of its domain.
This input model is used in the current work to present our algorithmic results, reflecting
the fact that the algorithms do not rely on the representation of the input functions.
In the white-box input model, an input function is given by a succinct representation that
can be used to efficiently determine the values of the function, e.g., a Boolean circuit or
an efficient Turing machine. This input model is appropriate to study the computational
complexity of problems, and in particular, to show membership and hardness results with
respect to the complexity class PPA.

Reductions form a useful tool to show relations between problems. Let P1 and P2 be
total search problems. We say that P1 is (polynomial-time) reducible to P2 if there exist
(polynomial-time) computable functions f, g such that f maps any input x of P1 to an input
f(x) of P2, and g maps any pair (x, y) of an input x of P1 and a solution y of f(x) with
respect to P2 to a solution of x with respect to P1. For problems P1 and P2 in the black-box
input model, one has to use the notion of black-box reductions. A (polynomial-time) black-box
reduction satisfies that the oracle access needed for the input f(x) of P2 can be simulated
by a (polynomial-time) procedure that has an oracle access to the input x. In addition, the
solution g(x, y) of x in P1 can be computed (in polynomial time) given the solution y of f(x)
and the oracle access to the input x. In the current work we will use black-box reductions
to obtain algorithmic results for problems in the black-box input model. For more details
on these concepts, we refer the reader to [1, Section 2.2] (see also [5, Sections 2 and 4] for
related discussions).

2.2 Kneser and Schrijver Graphs
Consider the following definition.

▶ Definition 6. For a family F of non-empty sets, let K(F) denote the graph on the vertex
set F in which two vertices are adjacent if they represent disjoint sets.

For a set X and an integer k, let
(

X
k

)
denote the family of all k-subsets of X. Equipped with

Definition 6, the Kneser graph K(n, k) can be defined for integers n and k with n ≥ 2k as the
graph K(

([n]
k

)
). A set A ⊆ [n] is said to be stable if it includes no two consecutive elements

modulo n, that is, it forms an independent set in the cycle Cn with the numbering from 1
to n along the cycle. For integers n and k with n ≥ 2k, let

([n]
k

)
stab denote the collection of

all stable k-subsets of [n]. The Schrijver graph S(n, k) is defined as the graph K(
([n]

k

)
stab).

Equivalently, it is the induced subgraph of K(n, k) on the vertex set
([n]

k

)
stab.

The chromatic numbers of the graphs K(n, k) and S(n, k) were determined, respectively,
by Lovász [19] and by Schrijver [27] as follows.

▶ Theorem 7 ([19, 27]). For all integers n ≥ 2k, χ(K(n, k)) = χ(S(n, k)) = n− 2k + 2.

The computational search problem associated with the Kneser graph is defined as follows.

ICALP 2022
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▶ Definition 8. In the computational Kneser problem, the input is a coloring c :
([n]

k

)
→

[n− 2k + 1] of the vertices of the Kneser graph K(n, k) with n− 2k + 1 colors for integers n

and k with n ≥ 2k, and the goal is to find a monochromatic edge, i.e., A, B ∈
([n]

k

)
satisfying

A ∩B = ∅ and c(A) = c(B). In the black-box input model, the input coloring is given as an
oracle access that for a vertex A returns its color c(A). In the white-box input model, the
input coloring is given by a Boolean circuit that for a vertex A computes its color c(A).

The existence of a solution to every instance of the Kneser problem follows from Theorem 7.

2.3 Intersecting Families
For integers n and k with n ≥ 2k, let F ⊆

([n]
k

)
be a family of k-subsets of [n]. We call F

intersecting if for every two sets F1, F2 ∈ F it holds that F1 ∩ F2 ̸= ∅. The Erdös-Ko-Rado
theorem [8] asserts that every intersecting family F ⊆

([n]
k

)
satisfies |F| ≤

(
n−1
k−1
)
. This bound

is tight and is attained, for each i ∈ [n], by the family {A ∈
([n]

k

)
| i ∈ A}. An intersecting

family of sets is said to be trivial if its members share a common element. Hilton and
Milner [16] proved the following stability result for the Erdös-Ko-Rado theorem, providing
an upper bound on the size of any non-trivial intersecting family.

▶ Theorem 9 (Hilton-Milner Theorem [16]). For all integers k ≥ 2 and n ≥ 2k, every
non-trivial intersecting family of k-subsets of [n] has size at most

(
n−1
k−1
)
−
(

n−k−1
k−1

)
+ 1.

▶ Remark 10. The bound given in Theorem 9 is tight. To see this, for an arbitrary k-subset
F of [n] and for an arbitrary element i /∈ F , consider the family F = {A ∈

([n]
k

)
| A ∩ F ̸=

∅, i ∈ A} ∪ {F}. The family F is intersecting and non-trivial, and its size coincides with the
bound given in Theorem 9. Note that |F| ≤ k ·

(
n−2
k−2
)
, provided that k ≥ 3.

2.4 Chernoff-Hoeffding Bound
We need the following concentration result (see, e.g., [24, Theorem 2.1]).

▶ Theorem 11 (Chernoff-Hoeffding Bound). Let 0 < p < 1, let X1, . . . , Xm be m independent
binary random variables satisfying Pr [Xi = 1] = p and Pr [Xi = 0] = 1− p for all i, and put
X = 1

m ·
∑m

i=1 Xi. Then, for any µ ≥ 0,

Pr
[
|X − p| ≥ µ

]
≤ 2 · e−2mµ2

.

3 A Fixed-Parameter Algorithm for the Kneser Problem

In this section we present and analyze our randomized fixed-parameter algorithm for the
Kneser problem. We start with a couple of lemmas on induced subgraphs of Kneser graphs
that will play a central role in the analysis of the algorithm. We then describe an algorithm,
called “element elimination”, which forms a main ingredient in our algorithm for the Kneser
problem, and then use it to present the final algorithm and to prove Theorem 1.

3.1 Induced Subgraphs of Kneser Graphs
The following lemma shows that in a large induced subgraph of K(n, k) whose vertices do
not have a popular element, a random pair of vertices forms an edge with a non-negligible
probability. Its proof uses the Hilton-Milner theorem (Theorem 9) and can be found in the
full version of the paper. Recall that for a family F ⊆

([n]
k

)
, we let K(F) stand for the

subgraph of K(n, k) induced by F (see Definition 6).
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▶ Lemma 12. For integers k ≥ 3 and n ≥ 2k, let F be a family of k-subsets of [n] of size
|F| ≥ k2 ·

(
n−2
k−2
)

and let γ ∈ (0, 1]. Suppose that every element of [n] belongs to at most γ

fraction of the sets of F . Then, the probability that two random sets chosen uniformly and
independently from F are adjacent in K(F) is at least

1
2 ·
(

1− γ − k

|F|
·
(

n− 2
k − 2

))
·

(
1− k2

|F|
·
(

n− 2
k − 2

))
.

As a corollary of Lemma 12, we obtain the following.

▶ Corollary 13. For integers k ≥ 3 and n ≥ 8k4, let F be a family of k-subsets of [n] of
size |F| ≥ 1

2n ·
(

n
k

)
and let γ ∈ (0, 1]. Suppose that every element of [n] belongs to at most γ

fraction of the sets of F . Then, the probability that two random sets chosen uniformly and
independently from F are adjacent in K(F) is at least 3

8 · (
3
4 − γ).

Proof. Observe that the assumptions |F| ≥ 1
2n ·

(
n
k

)
and n ≥ 8k4 imply that

k2

|F|
·
(

n− 2
k − 2

)
≤ 2nk2(

n
k

) · (n− 2
k − 2

)
= 2k3(k − 1)

n− 1 ≤ 1
4 .

Applying Lemma 12, we obtain that the probability that two random sets chosen uniformly
and independently from F are adjacent in K(F) is at least 1

2 ·(1−γ− 1
4 )·(1− 1

4 ) = 3
8 ·(

3
4−γ). ◀

The following lemma shows that if a large collection of vertices of K(n, k) has a quite
popular element, then every vertex that does not include this element is adjacent to many of
the vertices in the collection.

▶ Lemma 14. For integers k ≥ 2 and n ≥ 2k, let X ⊆ [n] be a set, let F be a family of
k-subsets of X, and let γ ∈ (0, 1]. Let j ∈ X be an element that belongs to at least γ fraction
of the sets of F , and suppose that A ∈

([n]
k

)
is a set satisfying j /∈ A. Then, the probability

that a random set chosen uniformly from F is disjoint from A is at least

γ − k

|F|
·
(
|X| − 2
k − 2

)
.

Proof. Let F ⊆
(

X
k

)
be a family as in the lemma, and put F ′ = {F ∈ F | j ∈ F}. By

assumption, it holds that |F ′| ≥ γ · |F|. Suppose that A ∈
([n]

k

)
is a set satisfying j /∈ A.

Observe that the number of sets B ∈
(

X
k

)
with j ∈ B that intersect A does not exceed

|A ∩X| ·
(|X|−2

k−2
)
≤ k ·

(|X|−2
k−2

)
. It thus follows that the number of sets of F that are disjoint

from A is at least

|F ′| − k ·
(
|X| − 2
k − 2

)
≥ γ · |F| − k ·

(
|X| − 2
k − 2

)
.

Hence, a random set chosen uniformly from F is disjoint from A with the desired probability.
◀

As a corollary of Lemma 14, we obtain the following.

▶ Corollary 15. For integers k ≥ 2 and n, let X ⊆ [n] be a set of size |X| ≥ 8k3, let F
be a family of k-subsets of X of size |F| ≥ 1

2|X| ·
(|X|

k

)
, and let γ ∈ (0, 1]. Let j ∈ X be an

element that belongs to at least γ fraction of the sets of F , and suppose that A ∈
([n]

k

)
is a

set satisfying j /∈ A. Then, the probability that a random set chosen uniformly from F is
disjoint from A is at least γ − 1

4 .

ICALP 2022
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Proof. Observe that the assumptions |F| ≥ 1
2|X| ·

(|X|
k

)
and |X| ≥ 8k3 imply that

k

|F|
·
(
|X| − 2
k − 2

)
≤ 2|X|k(|X|

k

) · (|X| − 2
k − 2

)
= 2k2(k − 1)
|X| − 1 ≤ 1

4 .

Applying Lemma 14, we obtain that the probability that a random set chosen uniformly
from F is disjoint from A is at least γ − 1

4 . ◀

3.2 The Element Elimination Algorithm
A main ingredient in our fixed-parameter algorithm for the Kneser problem is the “element
elimination” algorithm given by the following theorem. It will be used to repeatedly reduce
the size of the ground set of a Kneser graph while looking for a monochromatic edge.

▶ Theorem 16. There exists a randomized algorithm that given integers n and k, a set
X ⊆ [n] of size |X| ≥ 8k4, a set of colors C ⊆ [n− 2k + 1] of size |C| = |X| − 2k + 1, and
an oracle access to a coloring c :

(
X
k

)
→ [n− 2k + 1] of the vertices of K(

(
X
k

)
), runs in time

polynomial in n and returns, with probability 1− 2−Ω(n),
(a) a monochromatic edge of K(

(
X
k

)
), or

(b) a vertex A ∈
(

X
k

)
satisfying c(A) /∈ C, or

(c) a color i ∈ C and an element j ∈ X such that for every A ∈
([n]

k

)
with j /∈ A, a random

vertex B chosen uniformly from
(

X
k

)
satisfies c(B) = i and A ∩B = ∅ with probability at

least 1
16n .

Proof. For integers n and k, let X ⊆ [n], C ⊆ [n− 2k + 1], and c :
(

X
k

)
→ [n− 2k + 1] be

an input satisfying |X| ≥ 8k4 and |C| = |X| − 2k + 1 as in the statement of the theorem.
It can be assumed that k ≥ 3. Indeed, Theorem 7 guarantees that K(

(
X
k

)
) has either a

monochromatic edge or a vertex whose color does not belong to C, hence for k ≤ 2, an
output of type (a) or (b) can be found by querying the oracle for the colors of all the vertices
in time polynomial in n. For k ≥ 3, consider the algorithm that given an input as above acts
as follows (see Algorithm 1).

The algorithm first selects uniformly and independently m random sets A1, . . . , Am ∈
(

X
k

)
for m = n3 (see lines 1–2) and queries the oracle for their colors. If the sampled sets include
two vertices that form a monochromatic edge, then the algorithm returns such an edge
(output of type (a); see line 5). If they include a vertex whose color does not belong to C,
then the algorithm returns it (output of type (b); see line 10). Otherwise, the algorithm
defines i∗ ∈ C as a color that appears on a largest number of sampled sets At (see lines 13–16).
It further defines j∗ ∈ X as an element that belongs to a largest number of sampled sets At

with c(At) = i∗ (see lines 17–20). Then, the algorithm returns the pair (i∗, j∗) (output of
type (c); see line 21).

It is clear that the algorithm runs in time polynomial in n. We turn to prove that for
every input, the algorithm returns a valid output, of type (a), (b), or (c), with probability
1− 2−Ω(n). We start with the following lemma that shows that if the input coloring has a
large color class with no popular element, then with high probability the algorithm returns a
valid output of type (a).

▶ Lemma 17. Suppose that the input coloring c has a color class F ⊆
(

X
k

)
of size |F| ≥

1
2|X| ·

(|X|
k

)
such that every element of X belongs to at most half of the sets of F . Then,

Algorithm 1 returns a monochromatic edge with probability 1− 2−Ω(n).



I. Haviv 72:11

Algorithm 1 Element Elimination Algorithm (Theorem 16).

Input: Integers n and k ≥ 3, a set X ⊆ [n] of size |X| ≥ 8k4, a set of colors C ⊆ [n− 2k + 1]
of size |C| = |X|−2k +1, and an oracle access to a coloring c :

(
X
k

)
→ [n−2k +1] of K(

(
X
k

)
).

Output: (a) A monochromatic edge of K(
(

X
k

)
), or (b) a vertex A ∈

(
X
k

)
satisfying c(A) /∈ C,

or (c) a color i ∈ C and an element j ∈ X such that for every A ∈
([n]

k

)
with j /∈ A, a random

vertex B chosen uniformly from
(

X
k

)
satisfies c(B) = i and A ∩ B = ∅ with probability at

least 1
16n .

1: m← n3

2: pick uniformly and independently at random sets A1, . . . , Am ∈
(

X
k

)
3: for all t, t′ ∈ [m] do
4: if c(At) = c(At′) and At ∩At′ = ∅ then
5: return {At, At′} ▷ output of type (a)
6: end if
7: end for
8: for all t ∈ [m] do
9: if c(At) /∈ C then

10: return At ▷ output of type (b)
11: end if
12: end for
13: for all i ∈ C do
14: α̃i ← 1

m · |{t ∈ [m] | c(At) = i}|
15: end for
16: i∗ ← an i ∈ C with largest value of α̃i

17: for all j ∈ X do
18: γ̃i∗,j ← 1

m · |{t ∈ [m] | c(At) = i∗ and j ∈ At}|
19: end for
20: j∗ ← a j ∈ X with largest value of γ̃i∗,j

21: return (i∗, j∗) ▷ output of type (c)

Proof. Let F be as in the lemma. Applying Corollary 13 with γ = 1
2 , using the assumptions

k ≥ 3 and |X| ≥ 8k4, we obtain that two random sets chosen uniformly and independently
from F are adjacent in K(F) with probability at least 3

8 · (
3
4 − γ) = 3

32 . Further, the fact
that |F| ≥ 1

2|X| ·
(|X|

k

)
implies that a random vertex chosen uniformly from

(
X
k

)
belongs

to F with probability at least 1
2|X| . Hence, for two random vertices chosen uniformly and

independently from
(

X
k

)
, the probability that they both belong to F is at least ( 1

2|X| )
2, and

conditioned on this event, their probability to form an edge in K(F) is at least 3
32 . This

implies that the probability that two random vertices chosen uniformly and independently
from

(
X
k

)
form a monochromatic edge in K(

(
X
k

)
) is at least ( 1

2|X| )
2 · 3

32 = 3
128|X|2 .

Now, by considering ⌊m/2⌋ pairs of the random sets chosen by Algorithm 1 (line 2), it
follows that the probability that no pair forms a monochromatic edge does not exceed(

1− 3
128|X|2

)⌊m/2⌋
≤ e−3·⌊m/2⌋/(128|X|2) ≤ 2−Ω(n),

where the last inequality follows by |X| ≤ n and m = n3. It thus follows that with probability
1− 2−Ω(n), the algorithm returns a monochromatic edge, as required. ◀

ICALP 2022



72:12 A Fixed-Parameter Algorithm for the Kneser Problem

We next handle the case in which every large color class of the input coloring has a
popular element. To do so, we first show that the samples of the algorithm provide a good
estimation for the fraction of vertices in each color class as well as for the fraction of vertices
that share any given element in each color class. For every color i ∈ C, let αi denote the
fraction of vertices of K(

(
X
k

)
) colored i, that is,

αi =
|{A ∈

(
X
k

)
| c(A) = i}|(|X|
k

) ,

and let α̃i denote the fraction of the vertices sampled by the algorithm that are colored i

(see line 14). Similarly, for every i ∈ C and j ∈ X, let γi,j denote the fraction of vertices of
K(
(

X
k

)
) colored i that include j, that is,

γi,j =
|{A ∈

(
X
k

)
| c(A) = i and j ∈ A}|(|X|

k

) ,

and let γ̃i,j denote the fraction of the vertices sampled by the algorithm that are colored i

and include j. Let E denote the event that

|αi − α̃i| ≤
1

2|X| and |γi,j − γ̃i,j | ≤
1

2|X| for all i ∈ C, j ∈ X. (2)

By a standard concentration argument, we obtain the following lemma.

▶ Lemma 18. The probability of the event E is 1− 2−Ω(n).

Proof. By the Chernoff-Hoeffding bound (Theorem 11) applied with µ = 1
2|X| , the probability

that an inequality from (2) does not hold is at most

2 · e−2m/(4|X|2) ≤ 2 · e−n/2,

where the inequality follows by |X| ≤ n and m = n3. By the union bound over all the colors
i ∈ C and all the pairs (i, j) ∈ C ×X, that is, over |C| · (1 + |X|) ≤ n2 events, we get that
all the inequalities in (2) hold with probability at least 1 − 2n2 · e−n/2 = 1 − 2−Ω(n), as
required. ◀

We now show that if every large color class of the input coloring has a popular element
and the event E occurs, then the algorithm returns a valid output.

▶ Lemma 19. Suppose that the coloring c satisfies that for every color class F ⊆
(

X
k

)
of size

|F| ≥ 1
2|X| ·

(|X|
k

)
there exists an element of X that belongs to more than half of the sets of

F . Then, if the event E occurs, Algorithm 1 returns a valid output.

Proof. Assume that the event E occurs. If Algorithm 1 returns an output of type (a) or (b),
i.e., a monochromatic edge or a vertex whose color does not belong to C, then the output is
verified before it is returned and is thus valid. So suppose that the algorithm returns a pair
(i∗, j∗) ∈ C ×X. Recall that the color i∗ is defined by Algorithm 1 as an i ∈ C with largest
value of α̃i (see line 16). Since the colors of all the sampled sets belong to C, it follows that∑

i∈C α̃i = 1, and thus

α̃i∗ ≥ 1
|C|
≥ 1
|X|

, (3)

where the last inequality follows by |C| = |X| − 2k + 1 ≤ |X|.
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Let F be the family of vertices of K(
(

X
k

)
) colored i∗, i.e., F = {A ∈

(
X
k

)
| c(A) = i∗}.

Since the event E occurs (see (2)), it follows from (3) that

|F| = αi∗ ·
(
|X|
k

)
≥
(

α̃i∗ − 1
2|X|

)
·
(
|X|
k

)
≥ 1

2|X| ·
(
|X|
k

)
.

Hence, by the assumption of the lemma, there exists an element j ∈ X that belongs to more
than half of the sets of F , that is, γi∗,j > 1

2 . Since the event E occurs, it follows that this j

satisfies γ̃i∗,j > 1
2 −

1
2|X| . Recalling that the element j∗ is defined by Algorithm 1 as a j ∈ X

with largest value of γ̃i∗,j (see line 20), it must satisfy γ̃i∗,j∗ > 1
2 −

1
2|X| , and using again

the fact that the event E occurs, we derive that γi∗,j∗ ≥ γ̃i∗,j∗ − 1
2|X| > 1

2 −
1

|X| ≥
3
8 (using

|X| ≥ 8).
By k ≥ 3 and |X| ≥ 8k4, we can apply Corollary 15 with F , j∗, and γ = 3

8 to obtain
that for every set A ∈

([n]
k

)
with j∗ /∈ A, the probability that a random set chosen uniformly

from F is disjoint from A is at least γ − 1
4 = 1

8 . Since the probability that a random set
chosen uniformly from

(
X
k

)
belongs to F is at least 1

2|X| , it follows that the probability that
a random set B chosen uniformly from

(
X
k

)
satisfies c(B) = i∗ and A ∩ B = ∅ is at least

1
2|X| ·

1
8 = 1

16|X| ≥
1

16n . This implies that (i∗, j∗) is a valid output of type (c), as required. ◀

Equipped with Lemmas 17, 18, and 19, we are ready to derive the correctness of Al-
gorithm 1 and to complete the proof of Theorem 16. If the input coloring c has a color
class F ⊆

(
X
k

)
of size |F| ≥ 1

2|X| ·
(|X|

k

)
such that every element of X belongs to at most half

of the sets of F , then, by Lemma 17, the algorithm returns with probability 1− 2−Ω(n) a
monochromatic edge, i.e., a valid output of type (a). Otherwise, the input coloring c satisfies
that for every color class F ⊆

(
X
k

)
of size |F| ≥ 1

2|X| ·
(|X|

k

)
there exists an element of X

that belongs to more than half of the sets of F . By Lemma 18, the event E occurs with
probability 1 − 2−Ω(n), implying by Lemma 19 that with such probability, the algorithm
returns a valid output. It thus follows that for every input coloring the algorithm returns a
valid output with probability 1− 2−Ω(n), and we are done. ◀

3.3 The Fixed-Parameter Algorithm for the Kneser Problem
We turn to present our fixed-parameter algorithm for the Kneser problem and to complete
the proof of Theorem 1.

Proof of Theorem 1. Suppose that we are given, for integers n ≥ 2k, an oracle access to a
coloring c :

([n]
k

)
→ [n− 2k + 1] of the vertices of the Kneser graph K(n, k). Our algorithm

has two phases, as described below (see Algorithm 2).
In the first phase, the algorithm repeatedly applies the “element elimination” algorithm

given in Theorem 16 (Algorithm 1). Initially, we define

s = max(n− 8k4, 0), X0 = [n], and C0 = [n− 2k + 1].

In the lth iteration, 0 ≤ l < s, we call Algorithm 1 with n, k, Xl, Cl, and with the restriction
of the given coloring c to the vertices of

(
Xl

k

)
to obtain with probability 1− 2−Ω(n),

(a) a monochromatic edge {A, B} of K(
(

Xl

k

)
), or

(b) a vertex A ∈
(

Xl

k

)
satisfying c(A) /∈ Cl, or

(c) a color il ∈ Cl and an element jl ∈ Xl such that for every A ∈
([n]

k

)
with jl /∈ A, a

random vertex B chosen uniformly from
(

Xl

k

)
satisfies c(B) = il and A ∩ B = ∅ with

probability at least 1
16n .
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Algorithm 2 The Algorithm for the Kneser Problem (Theorem 1).

Input: Integers n, k with n ≥ 2k and an oracle access to a coloring c :
([n]

k

)
→ [n− 2k + 1]

of K(n, k).
Output: A monochromatic edge of K(n, k).

1: s← max(n− 8k4, 0), X0 ← [n], C0 ← [n− 2k + 1] ▷ |C0| = |X0| − 2k + 1
2: for all l = 0, 1, . . . , s− 1 do ▷ first phase
3: call Algorithm 1 with n, k, Xl, Cl, and with the restriction of c to

(
Xl

k

)
4: if Algorithm 1 returns an edge {A, B} with c(A) = c(B) then ▷ output of type (a)
5: return {A, B}
6: end if
7: if Algorithm 1 returns a vertex A ∈

(
Xl

k

)
with c(A) = ir /∈ Cl then ▷ output of

type (b)
8: for all t ∈ [n2] do
9: pick uniformly at random a set Bt ∈

(
Xr

k

)
10: if c(Bt) = ir and A ∩Bt = ∅ then
11: return {A, Bt}
12: end if
13: end for
14: return “failure”
15: end if
16: if Algorithm 1 returns a pair (il, jl) ∈ Cl ×Xl then ▷ output of type (c)
17: Xl+1 ← Xl \ {jl}, Cl+1 ← Cl \ {il} ▷ |Cl+1| = |Xl+1| − 2k + 1
18: end if
19: end for
20: query the oracle for the colors of all the vertices of K(

(
Xs

k

)
) ▷ second phase

21: if there exists a vertex A ∈
(

Xs

k

)
of color c(A) = ir /∈ Cs then

22: for all t ∈ [n2] do
23: pick uniformly at random a set Bt ∈

(
Xr

k

)
24: if c(Bt) = ir and A ∩Bt = ∅ then
25: return {A, Bt}
26: end if
27: end for
28: return “failure”
29: else
30: find A, B ∈

(
Xs

k

)
satisfying c(A) = c(B) and A ∩B = ∅ ▷ exist by Theorem 7 [19]

31: return {A, B}
32: end if

As will be explained shortly, if the output of Algorithm 1 is of type (a) or (b) then we either
return a monochromatic edge or declare “failure”, and if the output is a pair (il, jl) of type (c)
then we define Xl+1 = Xl \ {jl} and Cl+1 = Cl \ {il} and, as long as l < s, proceed to the
next call of Algorithm 1. Note that the sizes of the sets Xl and Cl are reduced by 1 in every
iteration, hence we maintain the equality |Cl| = |Xl| − 2k + 1 for all l. We now describe how
the algorithm acts in the lth iteration for each type of output returned by Algorithm 1.

If the output is of type (a), then the returned monochromatic edge of K(
(

Xl

k

)
) is also a

monochromatic edge of K(n, k), so we return it (see lines 4–6).
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If the output is of type (b), then we are given a vertex A ∈
(

Xl

k

)
satisfying c(A) = ir /∈ Cl

for some r < l. Since ir /∈ Cl, it follows that jr /∈ Xl, and thus jr /∈ A. In this case, we pick
uniformly and independently n2 random sets from

(
Xr

k

)
and query the oracle for their colors.

If we find a vertex B that forms together with A a monochromatic edge in K(n, k), we return
the monochromatic edge {A, B}, and otherwise we declare “failure” (see lines 7–15).

If the output of Algorithm 1 is a pair (il, jl) of type (c), then we define, as mentioned
above, the sets Xl+1 = Xl \ {jl} and Cl+1 = Cl \ {il} (see lines 16–18). Observe that for
0 ≤ l < s, it holds that |Xl| = n − l > n − s = 8k4, allowing us, by Theorem 16, to call
Algorithm 1 in the lth iteration.

In case that all the s calls to Algorithm 1 return an output of type (c), we arrive to
the second phase of the algorithm. Here, we are given the sets Xs and Cs that satisfy
|Xs| = n− s ≤ 8k4 and |Cs| = |Xs| − 2k + 1, and we query the oracle for the colors of each
and every vertex of the graph K(

(
Xs

k

)
). If we find a vertex A ∈

(
Xs

k

)
satisfying c(A) = ir /∈ Cs

for some r < s, then, as before, we pick uniformly and independently n2 random sets from(
Xr

k

)
and query the oracle for their colors. If we find a vertex B that forms together with A

a monochromatic edge in K(n, k), we return the monochromatic edge {A, B}, and otherwise
we declare “failure” (see lines 21–28). Otherwise, all the vertices of K(

(
Xs

k

)
) are colored by

colors from Cs. By Theorem 7, the chromatic number of K(
(

Xs

k

)
) is |Xs| − 2k + 2 > |Cs|.

Hence, there must exist a monochromatic edge in K(
(

Xs

k

)
), and by checking all the pairs of

its vertices we find such an edge and return it (see lines 30–31).
We turn to analyze the probability that Algorithm 2 returns a monochromatic edge. Note

that whenever the algorithm returns an edge, it checks that it is monochromatic and thus
ensures that it forms a valid solution. Hence, it suffices to show that the algorithm declares
“failure” with probability 2−Ω(n). To see this, recall that the algorithm calls Algorithm 1 at
most s < n times, and that by Theorem 16 the probability that its output is not valid is
2−Ω(n). By the union bound, the probability that any of the calls to Algorithm 1 returns an
invalid output is 2−Ω(n) too. The only situation in which Algorithm 2 declares “failure” is
when it finds, for some r < s, a vertex A ∈

([n]
k

)
with c(A) = ir and jr /∈ A, and none of the

n2 sampled sets B ∈
(

Xr

k

)
satisfies c(B) = ir and A∩B = ∅ (see lines 7–15, 21–28). However,

assuming that all the calls to Algorithm 1 return valid outputs, the rth run guarantees, by
Theorem 16, that a random vertex B uniformly chosen from

(
Xr

k

)
satisfies c(B) = ir and

A ∩ B = ∅ for the given A with probability at least 1
16n . Hence, the probability that the

algorithm declares “failure” does not exceed (1 − 1
16n )n2 ≤ e−n/16 = 2−Ω(n). Using again

the union bound, it follows that the probability that Algorithm 2 either gets an invalid
output from Algorithm 1 or fails to find a vertex that forms a monochromatic edge with a
set A as above is 2−Ω(n). Therefore, the probability that Algorithm 2 successfully finds a
monochromatic edge is 1− 2−Ω(n), as desired.

We finally analyze the running time of Algorithm 2. In its first phase, the algorithm
calls Algorithm 1 at most s < n times, where the running time needed for each call is,
by Theorem 16, polynomial in n. It is clear that the other operations made throughout
this phase can also be implemented in time polynomial in n. In its second phase, the
algorithm enumerates all the vertices of K(

(
Xs

k

)
). This phase can be implemented in

running time polynomial in n and in the number of vertices of this graph. The latter is(|Xs|
k

)
≤ |Xs|k ≤ (8k4)k = kO(k). It thus follows that the total running time of Algorithm 2

is nO(1) · kO(k), completing the proof. ◀

3.4 Turing Kernelization for the Kneser Problem
As mentioned in the introduction, our algorithm for the Kneser problem can be viewed as
a randomized polynomial Turing kernelization algorithm for the problem. In what follows
we extend on this aspect of the algorithm.
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We start with the definition of a Turing kernelization algorithm as it is used in the
standard context of parameterized complexity (see, e.g., [12, Chapter 22]). A decision
parameterized problem P is a language of pairs (x, k) where k is an integer referred to as the
parameter of P . For a decision parameterized problem P and a computable function f , a
Turing kernelization algorithm of size f for P is an algorithm that decides whether an input
(x, k) belongs to P in polynomial time given an oracle access that decides membership in P

for instances (x′, k′) with |x′| ≤ f(k) and k′ ≤ f(k). The kernelization algorithm is said to
be polynomial if f is a polynomial function.

The Kneser problem, however, is a total search problem whose input is given as an
oracle access. Hence, for an instance of the Kneser problem associated with integers n and
k, we require a Turing kernelization algorithm to find a solution using an oracle that finds
solutions for instances associated with integers n′ and k′ that are bounded by a function
of k. We further require the algorithm to be able to simulate the queries of the produced
instances using queries to the oracle associated with the original input. Note that we have
here two different types of oracles: the oracle that solves the Kneser problem on graphs
K(n′, k′) with bounded n′, k′ and the oracle that supplies an access to the instance of the
Kneser problem.

We claim that the proof of Theorem 1 shows that the Kneser problem admits a
randomized polynomial Turing kernelization algorithm in the following manner. Given an
instance of the Kneser problem, a coloring c :

([n]
k

)
→ [n− 2k + 1] of the vertices of a Kneser

graph K(n, k) for integers n and k with n ≥ 2k, the first phase of Algorithm 2 runs in time
polynomial in n and either finds a monochromatic edge or produces a ground set Xs ⊆ [n]
and a set of colors Cs ⊆ [n− 2k + 1] satisfying |Cs| = |Xs| − 2k + 1 and |Xs| = O(k4) (see
lines 2–19). In the latter case, the restriction of the input coloring c to the vertices of the
graph K(

(
Xs

k

)
) is not guaranteed to use only colors from Cs, as required by the definition

of the Kneser problem. Yet, by applying the oracle to this restriction of c, simulating its
queries using the access to the coloring c of K(n, k), we either get a monochromatic edge in
K(
(

Xs

k

)
) or find a vertex whose color does not belong to Cs. In both cases, a solution to the

original instance can be efficiently found with high probability. Indeed, if a monochromatic
edge is returned then it forms a monochromatic edge of K(n, k) as well. Otherwise, as shown
in the analysis of Algorithm 2, a vertex A ∈

(
Xs

k

)
whose color does not belong to Cs can

be used to efficiently find with high probability a vertex B ∈
([n]

k

)
such that {A, B} is a

monochromatic edge (see lines 21–28).

4 An Algorithm for the Kneser Problem Based on Schrijver Graphs

In this section we present the simple deterministic algorithm for the Kneser problem given
in Theorem 2. Let us first state a simple fact on the number of vertices in Schrijver graphs
(see Section 2.2). We include a quick proof for completeness.

▶ Fact 20. For integers k ≥ 2 and n ≥ 2k, the number of vertices in S(n, k) is(
n− k + 1

k

)
−
(

n− k − 1
k − 2

)
.

Proof. Recall that the vertex set
([n]

k

)
stab of S(n, k) is the collection of all k-subsets of [n]

with no two consecutive elements modulo n. We first observe that the number of k-subsets of
[n] with no two consecutive elements, allowing both 1 and n to be in the subsets, is

(
n−k+1

k

)
.

To see this, identify the subsets of [n] with their characteristic vectors in {0, 1}n, and in
every such vector, interpret the zeros as balls and the ones as separations between bins. It



I. Haviv 72:17

follows that every such set corresponds to a partition of n− k identical balls into k + 1 bins,
where no bin but the first and last is empty. The number of those partitions is equal to the
number of partitions of n− 2k + 1 identical balls into k + 1 bins, which is

(
n−k+1

k

)
. Finally,

to obtain the number of vertices of S(n, k), one has to subtract the number of k-subsets of
[n] with no two consecutive elements that include both 1 and n. The latter is equal to the
number of (k − 2)-subsets of [n− 4] with no two consecutive elements, which by the above
argument equals

(
n−k−1

k−2
)
, so we are done. ◀

Equipped with Fact 20, we are ready to prove Theorem 2.

Proof of Theorem 2. Consider the algorithm that given integers n and k with n ≥ 2k and
an oracle access to a coloring c :

([n]
k

)
→ [n − 2k + 1] of the vertices of the Kneser graph

K(n, k), enumerates all vertices of the Schrijver graph S(n, k), i.e., the sets of
([n]

k

)
stab, and

queries the oracle for their colors. Then, the algorithm goes over all pairs of those vertices
and returns a pair that forms a monochromatic edge. The existence of such an edge follows
from Theorem 7, which asserts that χ(S(n, k)) = n − 2k + 2. The running time of the
algorithm is polynomial in the number of vertices of S(n, k), which by Fact 20 does not
exceed

(
n−k+1

k

)
=
(

n−k+1
n−2k+1

)
≤ nmin(k,n−2k+1). ◀
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Abstract
The theory of proof systems in general, and interactive proofs in particular, has been immensely
influential. Such proof systems allow a prover to convince a verifier whether a given statement is
true or not – namely to solve a decision problem. In this work we initiate a study of interactive
proofs for search problems.

More precisely, we consider a setting in which a client C, given an input x, would like to
find a solution y satisfying (x, y) ∈ R, for a given relation R. The client wishes to delegate this
work to an (untrusted) advisor A, who has more resources than C. We seek solutions in which
the communication from A is short, and, in particular, shorter than the length of the output y.
(In particular, this precludes the trivial solution of the advisor sending y and then proving that
(x, y) ∈ R using a standard interactive proof.)

We show that such search delegation schemes exist for several problems of interest including
(1) longest common subsequence (LCS) and edit distance, (2) parsing context-free grammars and (3)
k-SAT.
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1 Introduction

Interactive proofs, conceived by Goldwasser, Micali and Rackoff [13], allow a prover to
convince a verifier that a given computational statement of the form x ∈ L is true, where L

is a language. They require that if the statement is true, then there is a strategy that will
convince the verifier to accept with high probability; whereas if the statement is false, then
the verifier should reject with high probability no matter what the prover does. Interactive
proofs have had an incredible and enduring impact on complexity theory, cryptography, and
beyond.

While interactive proofs help the verifier to determine whether a given statement is true
or not, often we are interested in actually finding a solution: fixing some relation R of interest,
we would like given an input x to find a solution y ∈ R(x), where R(x) := {y : (x, y) ∈ R}.
In other words, we are interested in solving search problems.
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In this work, we consider a setting in which a computationally bounded client C is given
an input x and would like to find some y ∈ R(x) with help from a powerful advisor A.1 We
refer to a protocol for this setting as a “search delegation scheme” and note that the notion
has immediate connections to cloud computing. Continuing the parallel to interactive proofs,
our main focus is on protocols in which the advisor is viewed as untrusted. However, as
discussed below, protocols that assume a trusted advisor are also non-trivial, and arguably
even more natural.

One trivial approach to designing search delegation schemes is for the advisor to simply
compute some y ∈ R(x), send y to the client, and then prove that indeed y ∈ R(x). The
downside of this solution is that y may be so long that just sending y may already be
extremely costly. Thus, in this work we are interested in search delegation schemes with
laconic advisors, i.e. advisors that are restricted to sending a short (h-bit) hint, where
h≪ |y| is a parameter. Note that an h-bit hint can at most increase the probability with
which the client successfully computes some y ∈ R(x) by a multiplicative factor of 2h. We
seek to understand how much of this increase is actually realizable, and for which values of h.

The restriction that the advisor can only send a short hint makes the construction of
search delegation schemes, even with a trusted advisor, algorithmically non-trivial. Moreover,
given a search delegation scheme with a trusted advisor, we can in many cases upgrade the
scheme (using interactive proofs or arguments generically and in a black-box way) to provide
correctness guarantees to the client even when interacting with an untrusted advisor. In fact
protocols for trusted advisors comprise the technical heart of our constructions, even those
for untrusted advisors.

Before proceeding, we mention several prior works that can be cast as studying proof-
systems for search problems, but with communication that is as long as the solution. First,
the search version of NP (e.g., finding a satisfying solution to a formula, or a 3-coloring of
a graph), often referred to as FNP or PC [11], consists of search problems whose solutions
are efficiently verifiable. However, no distinction is made between the hint length vs. the
length of the solution. There are also several works in cryptographic contexts that consider
using interaction for solving search problems (e.g., [10, 8, 4]). Additionally, there has been a
study of fine-grained complexity and approximation that connects the fine-grained hardness
of approximation to interactive proof systems for space-bounded computation [7]. However,
in these works the communication is as large as the output y (similarly to the canonical
solution in which the result is sent by the advisor and then verified).

1.1 Search Delegation
We define a search delegation scheme as follows:
▶ Definition 1. A search delegation scheme for a relation R ⊆ {0, 1}∗ × {0, 1}∗ consists of a
client C and an advisor A. The two parties interact (possibly using randomness) on common
input x and at the end of the interaction the client outputs a string denoted by (C, A)(x).
The delegation scheme has completeness error c = c(|x|) and soundness error s = s(|x|) if:

(Completeness:) For every input x such that R(x) ̸= ∅, it holds that (C, A)(x) ∈ R(x)
with probability at least 1− c(|x|).
(Soundness:) For every input x and every (potentially malicious) advisor A∗, it holds
that (C, A∗)(x) ∈ R(x) ∪ {⊥} with probability at least 1− s(|x|).

1 We use the nomenclature of client/advisor rather than verifier/prover since the goal of the interaction is
not to prove correctness but rather to find a solution. Nevertheless, we emphasize that the role of the
client (resp., advisor) is analogous to that of the verifier (resp., prover).
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Here and throughout this work the ⊥ symbol represents a “reject” by the client. In case
the errors are not specified explicitly we default to perfect completeness (i.e., c ≡ 0) and
negligible soundness error (i.e. s(n) = n−ω(1)).

The main resources that we focus on are the running time of the client, and the amount
of communication between the parties (a secondary goal is bounding the running time of the
(honest) advisor).

1.1.1 Variant Definitions
As discussed above, we will mainly be interested in search delegation schemes in which
the communication complexity is less than the output length of the relation. Given this,
Definition 1 is interesting even if we only require completeness to hold (without any guarantees
against cheating advisors). We refer to schemes satisfying this weaker definition as honest-
advisor search delegation schemes.

Actually, it will be convenient to present many of the protocols in this work as such
honest-advisor search delegation schemes. Note that in case the relevant relation R has an
efficient interactive proof for proving that (x, y) ∈ R (with communication ≪ |y|), then we
can easily “bootstrap” an honest-advisor scheme into a full-fledged one. See Section 5 for
details.

We will also sometimes consider a relaxation of the soundness condition of Definition 1
in which soundness is only required to hold only against malicious advisors A∗ that are
polynomially bounded. This is similar to the notion of computationally sound proofs, aka
arguments, from the literature. We refer to protocols satisfying this weaker notion as
computational search delegation schemes.

Lastly we remark that in contrast to standard interactive proofs, it is not clear how to
reduce the completeness and soundness errors in search delegation schemes. The problem is
that if the basic protocol is repeated, each invocation may yield a different candidate solution.
While in general we do not know how to check which (if any) of the solutions is valid, in cases
for which there is an (efficient) method of doing so, we can reduce the errors by repetition.

1.2 Our Results
We construct search delegation schemes for a number of problems of interest from the
literature. In all of our schemes the client is given a hint whose length is sub-linear in
the output length of the problem, and runs in significantly less time than the best known
algorithms for the problem.

1.2.1 Longest Common Subsequence and Edit Distance
A common subsequence between strings x ∈ Σn and y ∈ Σm, over an alphabet Σ, is a string z

that appears in both x and y as a (possibly non-contiguous) sub-string. The longest common
subsequence (LCS) problem asks, given x and y, to find a common subsequence of maximal
length. When n = m, it is known that LCS requires n2−o(1) time if the strong exponential
time hypothesis (SETH) holds [1].

The edit distance (Edit) problem is a related and central problem with important applica-
tions to computational biology. We consider a search version of the problem in which the goal
is, given strings x and y, to find a minimal sequence of operations for transforming x into
y, where the allowed operations are single-character insertions, deletions, and substitutions.
Similar to LCS, there is a known running time lower bound for Edit of n2−o(1) based on
SETH [5].
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Our first result is an honest-advisor search delegation schemes for solving both LCS and
Edit. We show how to solve both problems given a sub-linear hint string and so that the client
runs in o(n ·m) time. More generally, for every parameter a, we construct a protocol with an
a-bit hint and running time O

(
n + m + a + n·m

a · log(n ·m)
)
. For example, specializing to the

case that n = m and taking a = n/polylog(n) we get sub-linear communication n/polylog(n)
with quasi-linear client running time.

Furthermore, using cryptographic techniques we can bootstrap the protocols to hold
against computationally bounded cheating advisors, with essentially the same parameters
(assuming the existence of collision-resistant hash functions and using additional rounds of
interaction).

1.2.2 Parsing Context-Free Grammars

Context-free grammars are a computational model which is particular well suited for describing
programming language structure. A context-free grammar is composed of production rules
of the form A → α, where A is a variable and α is a string composed of variables and
“terminals” (aka alphabet symbols). A word is derived by a grammar by applying production
rules starting with some initial variable by replacing each occurrence of a variable using a
corresponding production rule for that variable. The final word, composed only of terminals
(i.e., after all variables have been replaced), is said to be derived by the grammar. We follow
the convention that variables are described in upper case and terminals in lowercase.

A derivation tree (aka parse tree) is a tree describing the derivation of the word - namely,
the root of the tree is labeled by the initial variable and the children of each vertex are
labeled based on a production rule applied to the label of the parent. Thus, the leaves of the
tree are labeled by the terminals of the derived word. The important computational task
of parsing is, given a description of a grammar and a word w, to output a derivation tree
describing the derivation of w using the grammar (or to output ⊥ if the word cannot be
derived by the grammar).

The best known algorithm for parsing context-free grammars (in Chomsky2 normal
form), due to Valiant [20], takes time O(nωb), where ωb ≥ 2 is the exponent for Boolean
matrix multiplication3. There is also evidence that a substantially faster algorithm does not
exist [17, 2].

As our second main result, we construct a search delegation scheme for context-free
parsing (of Chomsky normal form grammars) with sub-linear communication and quasi-linear
work for the client. In more detail, for every parameter a, we construct a full-fledged search
delegation scheme (even against computationally unbounded cheating advisors) in which
the advisor sends a bits and the clients running time is Õ(a + nωb/aωb−1). For example
with a = n/polylog(n) we get quasi-linear client time, and for a = n

ωb−2
ωb−1 <

√
n we obtain a

quadratic-time client with Õ(
√

n) communication.

2 A grammar is in Chomsky normal form if the production rules only have one of the following three
forms: A → BC, A → a, or A → ε, where ε denotes the empty string. Recall that any grammar can be
readily modified to be in Chomsky normal form.

3 Boolean matrix multiplication is defined similarly to standard matrix multiplication except that the
inner product operation is replaced by an OR of ANDs. The boolean matrix multiplication exponent
is defined as the minimum number, ωb, such that a nωb+o(1) algorithm exists. The best known upper
bound on ωb is roughly 2.37286 [3].
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1.2.3 k-SAT
The search version of the k-SAT problem is to find a satisfying assignment for a given k-CNF
formula (i.e., a CNF boolean formula whose clauses contain at most k literals). The problem
is well-known to be NP complete when k ≥ 3. Moreover if SETH holds, then for all ϵ > 0
there exists k such that k-SAT cannot be solved in time O(2(1−ϵ)n).

Nevertheless, there has been a fascinating line of work studying non-trivial algorithms for
k-SAT for fixed constant k. The current fastest algorithm for k-SAT builds on PPSZ [14].
The PPSZ algorithm [19] is another classical, albeit slightly slower, algorithm whose running
time is ≈ 2ck·n, where ck tends to 1−Θ(1/k).

A naive approach for a search delegation scheme for k-SAT would be for the advisor to
simply specify the value of a of the variables and then having the client solve the residual
formula using a generic k-SAT algorithm. For example, using PPSZ we would obtain a client
run-time of ≈ 2ck·(n−a).

We give a non-trivial improvement on this scheme, in which given an a-bit hint, the client
runs in time 2ck·n−a+o(n). Denoting the run-time of the best known algorithm for k-SAT
by 2c′

k·n+o(n), we get that the client beats the performance of the naive solution whenever
a >

ck−c′
k

1−c′
k
· n. We remark that for this result we assume the server and client have access to

shared randomness of length Ω(n).

1.2.4 Separations
In addition to these positive results, we also give negative results indicating that solving a
search problem (finding y ∈ R(x)) with a short hint can be much harder than solving the
corresponding decision problem (i.e. checking whether a given y satisfies y ∈ R(x)). Our
separation results all depend on cryptographic assumptions and are based on the elementary
fact that an a-bit hint can boost an algorithm’s success probability by at most a multiplicative
factor of 2a.

1.3 Organization
In Section 2 we describe our delegation protocols for LCS and Edit. We continue in Section 3
to describe our protocol for parsing context-free grammars, and in Section 4 we describe our
protocol for k-SAT.

2 LCS and Edit Distance

The Longest Common Subsequence (LCS) problem asks, given strings x ∈ Σn and y ∈ Σm

(over a common alphabet Σ), to find increasing sequences i1, . . . , iℓ ∈ [n] and j1, . . . , jℓ ∈ [m],
for ℓ as big as possible, such that xik

= yjk
for all k ∈ [ℓ]. The best known algorithms for

LCS run in worst-case O(n ·m) time, and when m = n this is nearly optimal – LCS requires
n2−o(1) time if the strong exponential time hypothesis (SETH) holds [1].

The search version of the Edit Distance problem, which we denote by Edit, asks, given
strings x ∈ Σn and y ∈ Σm, to find a minimum length sequence of operations that transforms
x into y, where allowed operations are single character insertions, deletions, and substitutions.
Edit is also known to be solvable in O(n ·m) time, and to require at least n2−o(1) time if
SETH holds [5].

In this section we construction search delegation protocols for both LCS and Edit.
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▶ Theorem 2. For every a = a(n, m), there is an honest-advisor search delegation scheme
for LCS and for Edit in which the advisor sends an a-bit hint, and the client runs in time
O

(
n + m + a + nm log(nm)

a

)
.

Furthermore assuming collision-resistant hash functions, the protocols can be improved to
an untrusted-advisor search delegation scheme with computational soundness.

We start in Section 2.1 with an overview for the protocol for LCS. The remaining sections
are devoted to the formal proof of Theorem 2. Since the protocols for LCS and Edit are
similar, we present a common framework that captures both problems and is described in
Section 2.2.

2.1 Protocol Overview
The idea underlying both protocols is to use trusted advice to facilitate a “divide-and-conquer”
approach. This yields an honest advisor delegation protocol which in turn can be transformed,
via Corollary 16, to a full-fledged protocol with computational soundness (assuming the
existence of collision resistant hash functions).

For sake of this overview, we restrict our attention to LCS and describe a simple protocol
with short advice (O(log(n) + log(m)) bits) that reduces the client’s work by a factor of 2.
The protocol for Edit is very similar and for both protocols the client’s work can be further
reduced by recursion, see the subsequent subsections for details.

Given input (x, y) ∈ {0, 1}n × {0, 1}m, the trusted advisor first computes a longest
common subsequence z. Fix a partial mapping µ : [n]→ [m] from the coordinates of x to
those of y that correspond to the subsequence z (i.e., xi = yµ(i), for every i for which µ(i) is
defined).

The advisor finds and sends indices i⋆ ∈ [n] and j⋆ ∈ [m] such that no index i < i⋆ of x
is mapped to an index j > j⋆ of y. One option is that this is due to the fact that µ(i⋆) = j⋆,
but this does not have to be the case (e.g., if i∗ is not mapped at all).4 The specific choice of
i⋆ and j⋆ will be crucial for bounding the client’s runtime, but we defer the discussion of
how they are chosen for the moment.

The indices i⋆ and j⋆ now define two LCS instances that the client solves directly (i.e.,
using the standard dynamic programming based algorithm for LCS): the first is x[1, i⋆ − 1]
vs. y[1, j⋆ − 1] and the second is x[i⋆ + 1, n] vs. y[j⋆ + 1, n]. Denote the solution found for
the former by zL and for the latter by zR.

Assuming that i⋆ was not mapped to j⋆, the client simply outputs zL ◦ zR and in case
i⋆ was mapped to j⋆ it outputs zL ◦ x[i⋆] ◦ zR. (Since we assume the advisor is trusted, it
can simply specify whether or not i⋆ is mapped to j⋆.) It is straightforward to see that the
output of the client is a valid solution – namely, a longest common subsequence for x and y.
The more important challenge is analyzing the efficiency of the protocol.

First note that if we use a time c ·n ·m algorithm for LCS, for some constant c, we obtain
a client that runs in time roughly: c · i⋆ · j⋆ + c · (n− i⋆) · (m− j⋆). Note that for some values
of i⋆ and j⋆ (e.g., i⋆ = j⋆ = 0) this gives no saving! Fortunately, we are able to show that
there always exist i⋆ and j⋆ such that:

i⋆ · j⋆ + (n− i⋆) · (m− j⋆) ≤ nm

2 , (1)

which in turn implies a factor 2 saving for the client.

To see that Equation (1) holds we consider two cases:

4 Actually, it will be convenient to allow i⋆ and j⋆ to be real numbers rather than integers, but the reader
can ignore this subtlety for the overview.
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Case 1

There is an index i < n/2 that is mapped, via µ, to an index j > n/2. We fix i⋆ and j⋆ to be
such indices. Note that since i⋆ is mapped to j⋆ they satisfy that i < i⋆ cannot be mapped
to j > j⋆. Moreover:

i⋆ · j⋆ + (n− i⋆) · (m− j⋆) = 1
2

(
n ·m + (n− 2i⋆) · (m− 2j⋆)

)
≤ nm

2 ,

where the equality can be verified by elementary arithmetic manipulations and the inequality
follows from the fact that n− 2i⋆ < 0 and m− 2j⋆ > 0.

Case 2

There is no index i < n/2 that is mapped to j⋆ > m/2. In such case, we define i⋆ = n/2
and j = n/2. Note that by definition, there is no i < i⋆ that is mapped to j > j⋆. It is now
straightforward that:

i⋆ · j⋆ + (n− i⋆) · (m− j⋆) = nm

2 .

Thus, in both cases we obtain a factor 2 savings in the client’s runtime as desired. In the
full protocol, described below, we obtain a further savings by essentially recursing on both
LCS instances rather than solving them directly.

2.2 The Minimum Cost String Alignment Problem

A cost function is a function c : Z × Z → R. The two cost functions that we focus on are
cLCS(a, b) def= a + b and cEdit(a, b) def= max(a, b).

▶ Definition 3. The Minimum Cost String Alignment problem with respect to a cost function
c, denoted MCSA[c], is a relation consisting of all pairs

(
(x, y), (i, j)

)
for which, if x ∈ Σn

and y ∈ Σm,
i ⊆ [n]ℓ, j ⊆ [m]ℓ for some ℓ ∈ Z+;
i1 < · · · < iℓ and j1 < · · · < jℓ;
xik

= yjk
for all k ∈ [ℓ]; and

i and j minimize
∑ℓ+1

k=1 c(ik− ik−1−1, jk− jk−1−1) subject to the prior three constraints,
where we define i0 = j0 = 0, iℓ+1 = n + 1, and jℓ+1 = m + 1.

▶ Remark 4. To facilitate recursion, we will often consider MCSA instances where the strings
x and y are most naturally viewed as substrings of larger strings, i.e. x = XI and y = YJ .
In these cases, we will view the symbols of x and y as indexed not by some [n] and [m],
but by I and J respectively. The definition naturally extends to this setting, and we will
frequently use this generalization.

The following two propositions show that LCS and Edit are special cases of MCSA with
respect to different cost functions.

▶ Proposition 5. LCS is the same as MCSA[cLCS].

Proof. For any common subsequence xi1 = yj1 , . . . , xiℓ
= yjℓ

of x ∈ Σn and y ∈ Σm, define
i0 = j0 = 0, iℓ+1 = n + 1, and jℓ+1 = m + 1 as in Definition 3
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We have

ℓ+1∑
k=1

cLCS(ik − ik−1 − 1, jk − jk−1 − 1)

=
ℓ+1∑
k=1

ik − ik−1 + jk − jk−1 − 2

=iℓ+1 − i0 + jℓ+1 − j0 − 2ℓ− 2
=n + m− 2ℓ,

which is minimized when ℓ is maximized. ◀

▶ Proposition 6. Edit is the same as MCSA[cEdit].

Proof. Suppose xi1 = yj1 , . . . , xiℓ
= yjℓ

is a common subsequence of x, y. Define i0 = j0 = 0,
iℓ+1 = n+1, and jℓ+1 = m+1 as in Definition 3. Then one way of editing x into y is by editing
x(ik−1,ik) into y(jk−1,jk) for each k ∈ [ℓ+1], which takes at most max(ik−ik−1−1, jk−jk−1−1)
operations.

On the other hand, suppose we are given a minimal sequence of operations O =
(op1, . . . , opd) that edits x into y. This leads to a categorization of the symbols of x as un-
changed, modified, or deleted; and a similar categorization of the symbols of y as unchanged
from x, modified from x, or inserted. The unchanged symbols of x and of y form a common
subsequence xi1 = yj1 , . . . , xiℓ

= yjℓ
and partition the original operation sequence into ℓ + 1

subsequences O1, . . . ,Oℓ+1 such that for each k ∈ [ℓ + 1], Ok edits x(ik−1,ik) into y(jk−1,jk).
By the minimality of O, each Ok must contain either only insertions and modifications or
only deletions and modifications. Thus we have

∣∣Ok

∣∣ = max
(
ik− ik−1−1, jk− jk−1−1

)
. ◀

The following proposition is a standard exercise in dynamic programming, whose proof
we omit (see, e.g., [9]).

▶ Proposition 7. LCS and Edit can be solved on input x, y ∈ Σn × Σm in O(n ·m) time.

The main technical lemma of Section 2 is a search delegation scheme for MCSA[c]. running
time.

▶ Lemma 8. For every cost function c such that MCSA[c] is solvable in O(n ·m) time and
for every a = a(n, m), there is an honest-advisor search delegation scheme for MCSA[c] that
uses a bits of advice, and runs in time O

(
n + m + a + nm log(nm)

a

)
.

Furthermore assuming collision-resistant hash functions, this can be improved to an
untrusted-advisor search delegation scheme with computational soundness.

2.3 Solution-Dependent Optimal Substructure
From this point on, we fix some cost function c such that MCSA[c] is solvable in O(n ·m)
time, and simply write MCSA in place of MCSA[c]. We fix a specific c here because not all
functions c necessarily have a O(n ·m) time algorithm, however, both LCS and Edit do (see
Proposition 7).

The main lemma in this section is that if some optimal alignment of x to y matches xi

with yj , then any alignment of x to y that matches xi with yj is optimal if and only if it
optimally aligns x<i to y<j and x>i to y>j .
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▶ Proposition 9. Let
(
(x, y), (i, j)

)
∈ MCSA with i = (i1, . . . , iℓ) and j = (j1, . . . , jℓ).

For any k ∈ [ℓ], any ℓL, ℓR ∈ Z+, any (i′
L, j′

L) ∈ [ik − 1]ℓL × [jk − 1]ℓL , and any
(i′

R, j′
R) ∈ [ik + 1, n]ℓR × [jk + 1, m]ℓR , we have(
i′
L ◦ ik ◦ i′

R, j′
L ◦ jk ◦ j′

R

)
∈ MCSA

(
x, y

)
if and only if (i′

L, j′
L) ∈ MCSA(x<ik

, y<jk
) and (i′

R, j′
R) ∈ MCSA(x>ik

, y>jk
).

Proof. By definition, the “total cost” of
(
i′
L ◦ ik ◦ i′

R, j′
L ◦ jk ◦ j′

R

)
with respect to (x, y)

is the sum of the cost of (i′
L, j′

L) with respect to (x<ik
, y<jk

) and the cost of (i′
R, j′

R) with
respect to (x>ik

, y>jk
). ◀

2.4 Our Protocol
Following the discussion in the introduction, we assume first that the advisor is honest.
Suppose we are given an input (x, y) ∈ Σn×Σm and have an advice budget of a = a′ ·log(nm).

The advice in our protocol consists of an ordered rooted binary tree T with O(a) vertices,
such that:

Every vertex v of T is labeled with a pair of intervals (v.I, v.J) with v.I ⊆ [n] and
v.J ⊆ [m]. The root v0 has v0.I = [n] and v0.J = [m].
Every internal vertex v of T is additionally labeled with either:

(Case 1) (v.i, v.j) ∈ v.I × v.J ; or
(Case 2) (v.i1, v.i2, v.j1, v.j2) ∈ v.I2 × v.J2.

such that if v.L and v.R denote the left and right children of v, and if (iL, jL) and (iR, jR)
are arbitrary elements of MCSA(xv.L.I , yv.L.J) and MCSA(xv.R.I , yv.R.J) respectively,
then either:

(Case 1) (iL ◦ v.i ◦ iR, jL ◦ v.j ◦ jR) ∈ MCSA(xv.I , yv.J ); or
(Case 2) (iL ◦ v.i1 ◦ v.i2 ◦ iR, jL ◦ v.j1 ◦ v.j2 ◦ jR) ∈ MCSA(xv.I , yv.J ).

This property gives a means to compute a solution to MCSA(xv.I , yv.J) in O(1) time
given any solutions to MCSA(xv.L.I , yv.L.J) and MCSA(xv.R.I , yv.R.J). Thus if we have
solutions to MCSA(xℓ.I , yℓ.J ) for all leaf nodes ℓ ∈ T , then we can compute a solution to
MCSA(x, y) in time O(|T |).
For every internal vertex v of T , v.L.I and v.R.I are disjoint subsets of v.I. Similarly
v.L.J and v.R.J are disjoint subsets of v.J , such that

∣∣v.L.I
∣∣ · ∣∣v.L.J

∣∣ +
∣∣v.R.I

∣∣ · ∣∣v.R.J
∣∣ ≤ ∣∣v.I

∣∣ · ∣∣v.J
∣∣

2 . (2)

Every vertex v of T with depth less than ⌊log a′⌋ satisfies min
(
|v.I|, |v.J |

)
= O(1).

2.4.1 Solving MCSA(x, y) given T
As alluded to in the second property of T , the client directly solves MCSA

(
xℓ.I , yℓ.J

)
for

every leaf node ℓ in T . This takes time

O
( ∑

ℓ

|ℓ.I| · |ℓ.J |
)

.

We split this sum into two sums: one over leaves of depth less than ⌊log a′⌋ and the other
over leaves of depth at least ⌊log a′⌋.
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(Low-Depth Leaves) For low depth leaves ℓ, we bound |ℓ.I| · |ℓ.J | by O(|ℓ.I|+ |ℓ.J |). This
is justified by the last property of T , which asserts that either |ℓ.I| or |ℓ.J | is a constant.
Now, we bound∑

low-depth ℓ

|ℓ.I|+ |ℓ.J | ≤ n + m,

using the fact that v.L.I and v.R.I (respectively v.L.J and v.R.J) are disjoint subsets of
v.I (respectively v.J).
(High-Depth Leaves) By Equation (2), we know that∑

depth-d leaves ℓ

|ℓ.I| · |ℓ.J | ≤ n ·m · 2−d,

and thus∑
d≥⌊log a⌋

∑
depth-d leaves ℓ

|ℓ.I| · |ℓ.J | ≤ 2nm

a′ .

Finally, using the second property of T , the client processes its leaf solutions into a
solution to MCSA(x, y). This takes time O(|T |) = O(a).

In total, the client’s runtime is

O

(
n + m + a + nm

a log(nm)

)
.

2.4.2 Constructing T
We construct T iteratively. On input x ∈ Σn, y ∈ Σm, start with a tree that consists only of
a root vertex labeled with I = [n] and J = [m].

We say that a leaf vertex ℓ is expandable if either min(|ℓ.I|, |ℓ.J |) ≥ 2. For any interval
[a, b] ⊆ Z, let middle(I) denote (a + b)/2.

While there is an expandable leaf of T :
1. Pick an expandable leaf of minimum-depth, and call it ℓ.
2. Compute (i, j) ∈ MCSA(xℓ.I , yℓ.J).
3. Do either of the following (at least one will be applicable), defining i0 and j0 as min(I)−1

and min(J)− 1 respectively, and defining i|i|+1 and j|i|+1 as max(I) + 1 and max(J) + 1
respectively:

Case 1: For some k, (ik, jk) “crosses” (middle(ℓ.I), middle(ℓ.J)). That is, either
ik ≤ middle(ℓ.I) and jk ≥ middle(ℓ.J), or ik ≥ middle(ℓ.I) and jk ≤ middle(ℓ.J).
In this case, add child nodes v.L and v.R to v, with v.L.I = v.I ∩ (−∞, ik), v.L.J =
v.J ∩ (−∞, jk), v.R.I = v.I ∩ (ik,∞), and v.R.J = v.J ∩ (jk,∞). Set v.i = ik and
v.j = jk.
Case 2: For some k, ik ≤ middle(v.I) < ik+1 and jk ≤ middle(v.J) < jk+1.
In this case, add child nodes v.L and v.R to v, with v.L.I = v.I ∩ (−∞, ik), v.L.J =
v.J ∩ (−∞, jk), v.R.I = v.I ∩ (ik+1,∞), and v.R.J = v.J ∩ (jk+1,∞). Set v.i1 = ik,
v.i2 = ik+1, v.j1 = jk, and v.j2 = jk+1.

To see that one of the above cases will always be possible, let k∗ and k̂ be such that
ik∗ ≤ middle(I) < ik∗+1 and jk̂ ≤ middle(J) < jk̂+1. If k∗ = k̂ then we are in case 2.
Otherwise we are in case 1.
The labelings of the children of v ensure the second property of T by Proposition 9.
The last property of T is guaranteed by the fact that we always expand a lowest-depth
expandable leaf.
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We now turn to the third property of T , i.e. establishing that Equation (2) holds. This is
easy to see in Case 2. In Case 1, observe that either |v.L.I| ≤ |v.I|/2 and |v.L.J | ≥ |v.J |/2
or |v.L.I| ≥ |v.I|/2 and |v.L.J | ≥ |v.J |/2. We then have

|v.L.I| · |v.L.J | + |v.R.I| · |v.R.J | ≤ |v.L.I| · |v.L.J | +
(
|v.I| − |v.L.I|

)
·
(
|v.J | − |v.L.J |

)
= |v.I| · |v.J |

2 + 1
2 ·

(
|v.I| − 2|v.L.I|

)
·
(
|v.J | − 2|v.L.J |

)
≤ |v.I| · |v.J |

2 ,

as desired.

2.4.3 Advisor Efficiency
We note that the advisor’s messages can be computed in linear time given any (i, j) ∈
MCSA(x, y). Thus the advisor’s running time is dominated by the cost of finding such a
(i, j), which by Proposition 7 takes time O(n ·m).

3 Parsing Context-Free Grammars

We start with background on context-free grammars in Section 3.1. Then, in Section 3.2 we
state our main result and prove it in Section 3.3.

3.1 Context-Free Grammars
We first define context-free grammars. Parts of the following overview are directly based
on [12]. See the standard textbook [15] for more detailed background.

▶ Definition 10 (Context-free grammar). A context-free grammar is a tuple G = (V, Σ, R, Astart)
such that V is a (finite) set of symbols, referred to as variables; Σ is a (finite) set of symbols,
referred to as terminals; R ⊆ V × (V ∪ Σ)∗ is a (finite) relation, where each (A, α) ∈ R is
referred to as a production rule and is denoted by A → α; Astart ∈ V is a variable that is
referred to as the start variable.

Let G = (V, Σ, R, Astart) be a context-free grammar, and let α, β ∈ (V ∪ Σ)∗ be strings
of terminals and variables. We say that α directly yields β, denoted by α ⇒ β, if there
exists a production rule A → γ in R such that β is obtained from α by replacing exactly
one occurrence of the variable A in α with the string γ ∈ (V ∪ Σ)∗. We say that α yields β,
denoted α

∗⇒ β if there exists a finite sequence of strings α0, . . . , αk ∈ (V ∪ Σ)∗ such that
α0 = α, αk = β, and α0 ⇒ . . .⇒ αk.

A grammar is said to be in Chomsky normal form if all of the production rules are of the
form: (1) A→ B ◦C, where A, B and C are variables, (2) A→ a, where A is a variable and
a is a terminal, or (3) A→ ε, where A is a variable and ε denotes the empty string. We note
that every context-free grammar can be transformed into Chomsky normal form (with at
most a quadratic blowup in the size of the grammar).

3.1.1 Derivation Tree
Let G = (V, Σ, R, Astart) be a context-free grammar. For A ∈ V and α ∈ (V ∪Σ)∗, a derivation
tree, corresponding to the derivation5 A

∗⇒ α, is a rooted, directed, ordered, and labeled tree
T (with edges oriented away from the root) that satisfies the following properties:

5 The literature usually focuses on derivations trees for words composed of terminals only whereas we
allow for a mix of variables and terminals.
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Each internal vertex is labeled by some variable, and the root is labeled by the variable
A.
Each leaf is labeled by a terminal or variable, where the ith leaf is labeled by the ith

symbol of α.
For every internal vertex v, if v is labeled by A′ and its children are labeled by α1, . . . , αd ∈
(V ∪ Σ) (where d denotes the number of children of v), then the production rule A′ →
α1 ◦ · · · ◦ αk must belong to R, where ◦ denotes concatenation.

Note that for every derivation A
∗⇒ α there exists (at least one) corresponding derivation

tree.

3.1.2 Parsing
The parsing problem is, given a grammar G and a word w ∈ Σn, to find a derivation tree
corresponding to the fact that G derives w, or output ⊥ if no such tree exists. A more
general problem also considered in the literature is outputting all of the derivation trees
corresponding to w but we focus here on the simpler task of finding some derivation tree.
Thus, a parser for a grammar G is an algorithm that given as input a word w outputs
a corresponding derivation tree, or ⊥ if no such tree exists. As customary, we view the
grammar as constant size and measure the complexity as a function of the input length.

We rely on the following result due to Valiant [20]:

▶ Theorem 11 ([20]). Every context-free grammar in Chomsky normal form has a time
O(nωb) parser.

Here and throughout, ωb is the exponent for Boolean matrix multiplication (i.e., matrix
multiplication in which the inner product operations is replaced with an OR of ANDs). The
current known upper bound on ωb is equal to the best known bound on ω [3] , the standard
exponent for matrix multiplication.

Trees and the Lewis-Stearns-Hartmanis Lemma

In this section we only consider trees that are rooted, directed, and ordered (such as derivation
trees defined above). Thus, throughout this section, whenever we say tree, we mean a rooted,
directed, and ordered tree (with edges oriented away from the root). Note that the fact that
the tree is ordered induces an ordering of its leaves. We define the arity of a tree to be the
maximal number of children of any vertex in the tree. We follow the data-structure literature
and define a subtree of a tree T as a tree consisting of a node in T and all of its descendants
in T .6 We use L(T ) to denote the number of leaves in the tree T .

The classic Lewis-Stearns-Hartmanis Lemma [18] shows that every binary tree on n leaves
has a subtree with between n/3 and 2n/3 leaves. We use here a more general form of this
lemma, given by Goldreich et al. [12] who show that for every desired parameter t, any binary
tree has a subtree with approximately t leaves (actually [12] further generalize to trees of
different constant arity):

▶ Lemma 12 ([12, Lemma 2.5]). Let T be a binary tree and let t ∈ [L(T )]. Then, there exists
a subtree T ′ of T with L(T ′) ∈ [t/2, t] leaves.

(The Lewis-Stearns-Hartmanis lemma corresponds to the special case when t = 2n/3.)

6 This definition differs from the graph-theoretic definition that defines a subtree as any connected
subgraph of a tree. For example, the root of a tree is a subtree in the graph theoretic sense but not
according to our definition (unless the tree has exactly one vertex).
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3.2 Delegating Context-Free Parsing
▶ Theorem 13. Let G be a context-free grammar in Chomsky normal form. Then, for every
parameter a = a(n), there exists a search delegation scheme for the parsing problem for G,
where the client runs in time O(nωb/aωb−1 + a · log n) and the communication complexity is
O(a · log n).

For example, taking a = n/polylog(n), we obtain a quasi-linear time client with sub-linear
communication. Alternatively, taking a = n

ωb−2
ωb−1 <

√
n we obtain a quadratic-time client

with Õ(
√

n) communication.

3.3 Proof of Theorem 13
Let G = (V, Σ, R, Astart) be a context-free grammar in Chomsky normal form. Recall that
our task is to construct a delegation scheme for finding a derivation tree for a given word w

derived by G. However, to facilitate recursion, we will actually solve a more general problem
where the word w ∈ (Σ ∪ V )∗ can be a mix of terminals and variables.

Consider a derivation tree T for w ∈ (Σ ∪ V )∗. Since the grammar is in Chomsky normal
form, the tree is binary and so for a given parameter t, Lemma 12 guarantees that T has a
subtree T ′ of size roughly t. More precisely, a subtree T ′ with between t/2 and t leaves. Let
x′ be the substring of x corresponding to the tree T ′.

We first construct an honest-advisor delegation scheme and then show how to deal with
an untrusted advisor. In the scheme, the advisor first finds x′ within x – that is, indices i

and j such that x′ = x[i + 1, . . . , j]). The advisor also finds the variable A associated with
the root of T ′ in the derivation tree T . The advisor sends (i, j, A) to the client. The client is
now left with two tasks:

Find the derivation tree T ′ corresponding to A
∗⇒ x′.

Find a derivation tree T ′′ corresponding to Astart
∗⇒ x[1, . . . , i− 1] ◦ S ◦ x[j + 1, . . . , n].

We solve the first of these directly, that is, by invoking a context-free parser (as in
Theorem 11). The second problem is solved recursively. Note that two resulting derivation
trees T ′ and T ′′ can be easily grafted together to construct a derivation tree corresponding
to Astart

∗⇒ x. However, some care needs to be given also for this task, since we do not
want to process the entire tree T ′ again just for grafting. Rather, we ensure that the tree is
represented using a data structure so that the grafting takes O(1) time (e.g., using pointers).
We also note that the base case of the recursion is solved by directly invoking a context-free
parser.

Denote by W (n, a) the running time of the client if we allow a recursive calls (and note
that the corresponding communication complexity is O(a · log n). Given the time c · nωb

context-free parser of Theorem 11, where c is some constant, we have:

W (n, a) ≤ c · tωb + W (n− t/2, a− 1) + O(log n). (3)

Expanding, we see that any solution to Equation (3) must satisfy

W (n, a) ≤ c · a · tωb + c · (n− a · t/2)ωb + O(a · log n).

Setting the parameter t = 2n/a, we obtain:

W (n, a) ≤ c · a · (2n/a)ωb + O(a · log n) = O(nωb/aωb−1 + a · log n).
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3.3.1 Coping with cheating advisors
In order to deal with a dishonest advisor, we note that given a candidate derivation tree,
there is a linear (in the size of the tree) time algorithm that checks that its validity (by simply
checking that each vertex is consistent with the grammar). Thus, we can easily transform our
protocol to handle dishonest advisors by having the client check its answer and outputting ⊥
in case the generated tree is invalid.

4 k-SAT

In this section, we construct a search delegation scheme for k-SAT, where k is some constant.
Recall that an instance of k-SAT is a CNF formula on n variables (x1, . . . , xn) with m clauses,
each of which is a disjunction of at most k literals (variables or their negations).

A trivial delegation scheme for k-SAT on a given formula φ : {0, 1}n → {0, 1} is to simply
send the first a bits of a satisfying assignment for φ. This reduces the number of variables to
n− a, so if Tk(n) denotes the time to solve an n-variable k-SAT instance, this hint reduces
the client’s running time to Tk(n− a). In particular, if Tk(n) = 2ck·n for some ck < 1, then
a bits of hint yield a factor 2ck·a speedup.

We achieve an improved factor 2a speedup for a specific k-SAT algorithm due to [19],
which we henceforth refer to as PPSZ. PPSZ is relatively simple, and has a running time
that is close to the state of the art algorithm due to Hansen et al. [14].

▶ Theorem 14. Let (ck)k∈Z+ be constants such that the analyzed running time of the PPSZ
algorithm for k-SAT, with success probability7 1

2 , is 2ckn+o(n). Then, for every a = a(n) and
κ = κ(n) ≤ nO(1), there exists a search delegation scheme in which the advisor sends a bits
and the client’s run-time is 2ck·n−a+o(n), assuming the advisor and client have access to a
shared poly(n)-length random string. The completeness error is 2−κ and the soundness error
is 0.

To prove Theorem 14, roughly speaking, we observe that PPSZ can be viewed as a
nondeterministic polynomial-time algorithm that uses ckn bits of nondeterminism - in other
words, an exhaustive search for a ckn-bit string. Such an emulation clearly takes Õ(2ckn)
time. The hint in our protocol then consists of the first a bits of this nondeterminism rather
than the first a bits of a satisfying assignment for φ.

This description is not completely accurate – PPSZ is actually a randomized algorithm.
Each choice of randomness defines an exhaustive search problem such such that the exhaustive
search has noticeable probability of yielding a satisfying assignment for φ. We describe PPSZ
in a way that elucidates this structure in Appendix A.

Finally, we can deal with an untrusted advisor by simply verifying that at the end we
have actually found a satisfying assignment to φ.

5 From Honest Advisor to Dishonest Advisor

In this section we describe a simple transformation from an honest-advisor search delegation
to a full-fledged one (i.e., secure against an untrusted advisor).

7 Since we can amplify success probability by repetition, ck would be the same if we we required success
probability as small as 1/poly(n) or as large as 1 − 2−poly(n).
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▶ Lemma 15. Suppose that the relation R ⊆ {0, 1}n × {0, 1}m has an honest-advisor search
delegation scheme with communication csrch = csrch(n, m) and client running time tsrch =
tsrch(n, m). Suppose also that membership in the relation R can be verified by an interactive
proof with communication cprf = cprf(n, m) and verifier running time tprf = tprf(n, m). Then,
R has a full-fledged search delegation scheme with csrch + cprf communication and tsrch + tprf
client run-time.

In case the interactive proof for R is only computationally sound, then the resulting
delegation scheme is also only computationally sound.

Proof. Follows immediately by first running the honest-advisor protocol and then checking
the solution using the interactive proof. ◀

For example, using Kilian’s [16] celebrated argument-system we obtain the following
corollary:

▶ Corollary 16. Suppose that the relation R ⊆ {0, 1}n×{0, 1}m is decidable in polynomial-time
and has an honest-advisor search delegation scheme with communication csrch = csrch(n, m)
and client running time tsrch = tsrch(n, m). Then, assuming that there exist collision-resistant
hash functions, the relation R has a computationally sound delegation scheme with communi-
cation csrch + poly(κ, log(n + m)) and verifier runtime Õ(n + m) + poly(κ, log(n + m)), where
κ denotes a cryptographic security parameter.
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permutations over [n]). Each pair is fed into the algorithm Modify (see Algorithm 2) until
Modify produces a satisfying assignment to φs (and hence to φ). At a high level, Modify
goes through the variables of φs one by one (in an order specified by π), and iteratively
simplifies φs by setting the ith variable to yi. If at any stage there is a “unital” clause (a
clause with exactly one variable x), then x is set to 1 if the clause is (x) and to 0 if the clause
is (¬x). When this happens, we say that x is forced.

PPSZ Analysis

Let z denote the unique satisfying assignment to φ, and let Forced(φ, π, y) denote the set of
forced variables when running Modify(φ, π, y).

PPSZ prove that for π ← Sn, we have

Eπ

[∣∣Forced(φs, π, z)
∣∣] ≥ (1− ck)n,

where ck is some constant.
Call π ∈ Sn good if

∣∣Forced(φs, π, z)
∣∣ ≥ (1− ck)n− 1. If Search happens to sample a

good π, then there is a ≈ 2−ckn probability that y will be sampled to agree with z outside of
Forced(φs, π, z), which causes Modify to terminate with a satisfying assignment for φ.

Finally, a random π is good with probability at least 1/n. To see this, let F denote∣∣Forced(φs, π, z)
∣∣. Markov’s inequality then implies (because F is [0, n]-valued) that Pr

[
F ≥

E[F ]− 1
]
≥ 1/n.

Thus after I = 2ckn · poly(n) trials, Modify will with overwhelming probability output a
satisfying assignment for φ.

Algorithm 1 The Search Algorithm from [19].

Search(formula φ, integer I):
for i ∈ [1, I] do

pick y uniformly at random {0, 1}n

pick π uniformly at random
z=Modify(φ, π, y)
if z satisfies φ then

return z

end if
end for
return Unsatisfied

▶ Lemma 17. Let ck denoting the constant in the exponent of the running time of the PPSZ
algorithm for k-SAT. Let κ = κ(n) ≤ nO(1) denote a statistical security parameter.

There for any a = a(n), there is an honest-advisor search delegation scheme for k-SAT
with:

completeness error 2−κ;
a bits of communication;
poly(n) bits of shared randomness; and
client running time of 2ckn−a · poly(n).

Proof Sketch. In our protocol, we assume that the advisor and client have access to shared
randomness, which determines a sequence of permutations π1, π2, . . . ∈ Sn. The advisor first
sends the client an i such that πi is good. With all but 2−κ probability, i is O(κ log n), so
this constitutes just log κ + log log n + O(1) bits of communication.
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Algorithm 2 The Modify algorithm from [19].

Modify(formula φ, permutation π, assignment y):
φ0 = φ

for i ∈ [1, n] do
if φi−1 contains the unit clause (xπ[i]) then

zπ[i] = 1
else if φi−1 contains the unit clause (x̄π[i]) then

zπ[i] = 0
else

xi = yi

end if
φi = φi−1 with xπi

= zπi

end for
return z

Algorithm 3 The Modify’ algorithm.

Modify’(formula φ, permutation π, settings y):
φ0 = φ

j = 0
for i ∈ [1, n] do

if φi−1 contains the unit clause (xπ[i]) then
zπ[i] = 1

else if φi−1 contains the unit clause (x̄π[i]) then
zπ[i] = 0

else
xi = yj

j = j + 1
end if
φi = φi−1 with xπi

= zπi

end for
return z

Next, let j1, . . . , jn′ ∈ [n] denote indices such that on input (φs, πi, z), Modify assigns
unforced values to xj1 , . . . , xjn′ (in that order). Because πi is good, we have n′ ≤ ckn + 1. If
the total remaining advice budget is a, then the advisor sends zj1 , . . . , zja

and n′.
Upon receiving

(
(y1, . . . , ya), n′), the client then repeatedly samples ya+1, . . . , yn′ , com-

putes z := Modify′(φs, πi, (y1, . . . , yn′)
)

and hopes for a successful trial, i.e. one in which
z is a satisfying assignment for φ (this happens with probability at least 2−ckn−1 over the
choice of ya+1, . . . , yn′). After ≈ κ · 2ckn trials, the client will have at least one successful
trial with all but 2−κ probability. ◀
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Abstract
Simple tabulation hashing dates back to Zobrist in 1970 and is defined as follows: Each key is viewed
as c characters from some alphabet Σ, we have c fully random hash functions h0, . . . , hc−1 : Σ →{

0, . . . , 2l − 1
}

, and a key x = (x0, . . . , xc−1) is hashed to h(x) = h0(x0) ⊕ . . . ⊕ hc−1(xc−1) where
⊕ is the bitwise XOR operation. The previous results on tabulation hashing by Pǎtraşcu and
Thorup [J.ACM’11] and by Aamand et al. [STOC’20] focused on proving Chernoff-style tail bounds
on hash-based sums, e.g., the number keys hashing to a given value, for simple tabulation hashing,
but their bounds do not cover the entire tail. Thus their results cannot bound moments. The paper
Dahlgaard et al. [FOCS’15] provides a bound on the moments of certain hash-based sums, but their
bound only holds for constant moments, and we need logarithmic moments.

Chaoses are random variables of the form
∑

ai0,...,ic−1 Xi0 · . . . · Xic−1 where Xi are independent
random variables. Chaoses are a well-studied concept from probability theory, and tight analysis
has been proven in several instances, e.g., when the independent random variables are standard
Gaussian variables and when the independent random variables have logarithmically convex tails.
We notice that hash-based sums of simple tabulation hashing can be seen as a sum of chaoses that
are not independent. This motivates us to use techniques from the theory of chaoses to analyze
hash-based sums of simple tabulation hashing.

In this paper, we obtain bounds for all the moments of hash-based sums for simple tabulation
hashing which are tight up to constants depending only on c. In contrast with the previous attempts,
our approach will mostly be analytical and does not employ intricate combinatorial arguments.
The improved analysis of simple tabulation hashing allows us to obtain bounds for the moments of
hash-based sums for the mixed tabulation hashing introduced by Dahlgaard et al. [FOCS’15]. With
simple tabulation hashing, there are certain inputs for which the concentration is much worse than
with fully random hashing. However, with mixed tabulation, we get logarithmic moment bounds
that are only a constant factor worse than those with fully random hashing for any possible input.
This is a strong addition to other powerful probabilistic properties of mixed tabulation hashing
proved by Dahlgaard et al.
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1 Introduction

Hashing is a ubiquitous tool of randomized algorithms which dates all the way back to
the 1950s [12]. A hash function is a random function, h : U → R, that assigns a random
hash value, h(x) ∈ R, to every key, x ∈ U . When designing algorithms and data structures,
it is often assumed that one has access to a uniformly random hash function that can be
evaluated in constant time. Even though this assumption is very useful and convenient,
it is unfortunately also unrealistic. It is thus a natural goal to find practical and efficient
constructions of hash functions that provably have guarantees akin to those of uniformly
random hashing.

If we want implementable algorithms with provable performance similar to that proven
assuming uniformly random hashing, then we have to find practical and efficient constructions
of hash functions with guarantees akin to those of uniformly random hashing. An example of
this is simple tabulation hashing introduced by Zobrist in 1970 [27]. The scheme is efficient
and easy to implement, and Pǎtraşcu and Thorup [22] proved that it could replace uniformly
random hashing in many algorithmic contexts. The versatility of simple tabulation does
not stem from a single probabilistic power like k-independence (it is only 3-independent),
but from an array of powers that have different usages in different applications. Having
one hash function with multiple powers has many advantages. One is that we can use the
same hash function implementation for many purposes. Another is that hash functions are
often an inner-loop bottleneck, and then it is an advantage if the same hash value can be
used for multiple purposes. Also, if we have proved that a simple hash function has some
very different probabilistic properties, then, morally, we would expect it to possess many
other properties to be uncovered as it has happened over the years for simple tabulation (see,
e.g., [3, 4]). Finally, when we hash a key, we may not even know what property is needed,
e.g., with weighted keys, we may need one property to deal with a few heavy keys, and
another property to deal with the many light keys, but when we hash the key, we may not
know if it is heavy or light.

One of the central powers proved for simple tabulation in [22] is that it has strong
concentration bounds for hash-based sums (will be defined shortly in Section 1.1). The
concentration holds only for quite limited expected values, yet this suffices for important
applications in classic hash tables. Recently, Aamand et al. [2] introduced tabulation-
permutation, which is only about twice as slow as simple tabulation, and which offers general
concentration bounds that hold for all hash-based sums regardless of the expected size. An
issue with tabulation-permutation is that it is not clear if it possesses the other strong powers
of simple tabulation.

A different way to go is to construct increasingly strong schemes, each inheriting all
the nice properties of its predecessors. In this direction, [21] introduced twisted tabulation
strengtening simple tabulation, and [9] introduced mixed tabulation strengthening twisted
tabulation. Each new scheme was introduced to get some powers not available with the
predecessor. In particular, mixed tabulation has some selective full-randomness that is
needed for aggregating statistics over hash-based k-partitions. These applications also needed
concentration bounds for hash-based sums, but [9] only provided some specialized suboptimal
concentration bounds.

In this paper, we do provide strong concentration bounds for mixed tabulation hashing
which can then be used in tandem with all the other strong properties of simple, twisted, and
mixed tabulation. In fact our bounds are more general than the strong concentration bounds
proved in [2] for tabulation-permutation. More precisely, the concentration bounds in [2]
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are Chernoff-style tail bounds that hold with high probability, while what we do is to show
moment bounds that imply such tail bounds as special cases. Indeed the key to our results
for mixed tabulation is a much stronger understanding of the moments of simple tabulation.

Below we proceed to describe our new mathematical understanding, including the relevance
of chaoses. We will contextualize this with other work later in Section 1.6.

1.1 Moment bounds for hash-based sums
In this paper, we will focus on analyzing hash-based sums. More precisely, we consider a
fixed value function, v : U × R → R, and define the random variable Xx = v(x, h(x)) for
every key x ∈ U . We are then interested in proving concentration bounds for the sum
X =

∑
x∈U Xx =

∑
x∈U v(x, h(x)). It should be noted that the randomness of X derives

from the hash function h, thus the results will depend on the strength of h.
This is quite a general problem, and at first glance, it might not be obvious why this is a

natural construction to consider, but it does generalize a variety of well-studied constructions:
1. Let S ⊆ U be a set of balls and assign a weight, wx ∈ R, for every ball, x ∈ S. The

goal is to distribute the balls, S, into a set of bins R = [m].1 For a bin, y ∈ [m],
we define the value function vy : U × [m] → R by vy(x, j) = wx [j = y] [x ∈ S], then
X =

∑
x∈U vy(x, h(x)) =

∑
x∈S wx [h(x) = y] will be the weight of the balls hashing to

bin y.2

2. Instead of concentrating on a single bin, we might be interested in the total weight of the
balls hashing below some threshold l. This is useful for sampling, for if h(x) is uniform
in [m], then Pr[h(x) < l] = l/m. We then define the value function v : U × [m] → R
by v(x, j) = wx [j < l] [x ∈ S], then X =

∑
x∈U v(x, h(x)) =

∑
x∈S wx [h(x) < l] will be

precisely the total weight of the balls hashing below l.
The first case appears when one tries to allocate resources, and the second case arises in
streaming algorithms, see, e.g., [1]. In any case, X ought to be concentrated around the
mean µ = E[X]. If h is a uniformly random hash function then this will be the case under
mild assumptions about v but it cannot otherwise be assumed a priori to be the case.

There are two natural ways to quantify the concentration of X, either we bound the
tail of X, i.e., we bound Pr[|X − µ| ≥ t] for all t ≥ 0, or we bound the central moments
of X, i.e., we bound the p-th moment E[|X − µ|p] for all p ≥ 2. If we have a bound on
the tail that is exponentially decreasing, we can bound the central moments of X for all
p ≥ 2. Unfortunately, some of the prior works [2, 11, 25] prove bounds on the tail that are
exponentially decreasing but also has an additive term of the form n−γ where γ = O(1). It
will then only be possible to give strong bounds for the central moments of X for p = O(1).
This is not necessarily a fault of the hash function but a defect of the analysis. In contrast,
if we prove strong bounds for the central moments of X for p = O(log n) then we can use
Markov’s inequality to prove a bound the tail that is exponentially decreasing but with an
additive term of the form n−γ where γ = O(1). Thus in some sense, it is more robust to
bound the moments compared to bounding the tail.

We can use the classic k-independent hashing framework of Wegman and Carter [26]
as an easy way to obtain a hash function that has bounds on the central moments as a
uniformly random hash function. A random hash function, h : U → R, is k-independent if
(h(x0), . . . , h(xk−1)) is uniformly distributed in Rk for any k distinct keys x0, . . . , xk−1 ∈ U .

1 For a positive integer m ∈ N we define [m] = {0, . . . , m − 1}.
2 For a statement P we let [P ] be 1 if P is true and 0 otherwise.

ICALP 2022



74:4 Understanding the Moments of Tabulation Hashing via Chaoses

The p-th central moment E[(X − µ)p] of X for a k-independent hash function h is the same
as the p-th central moment of X for a fully random hash function when p is an even integer
less than k. We shall, however, focus on simple and fast hashing schemes that are not even
4-independent, and yet we will show strong moment bounds.

1.2 Tabulation Hashing
Simple tabulation hashing dates back to 1970 and was first introduced by Zobrist for
optimizing chess computers [27]. In simple tabulation hashing, we view the universe, U , to be
of the form U = Σc for some alphabet, Σ, and a positive integer c. Let T : {0, . . . , c − 1}×Σ →
[2l] be a uniformly random table, i.e., each value is chosen independently and uniformly at
random from the set [2l]. A simple tabulation hash function, h : Σc → [2l], is then defined by

h(α0, . . . , αc−1) =
c−1⊕
i=0

T (i, αi) ,

where ⊕ is the bitwise XOR-operation, i.e., addition when [2l] is identified with the Abelian
group (Z/2Z)l. We say that h is a simple tabulation hash function with c characters. With
8- or 16-bit characters, the random table T fits in cache, and then simple tabulation is very
fast, e.g., in experiments, [22] found it to be as fast as two to three multiplications.

The moments of simple tabulation hashing have been studied in multiple papers. Braver-
man et al. [7] showed that for a fixed bin the 4th central moment is close to that achieved
by truly random hashing. Dahlgaard et al. [10] generalized this to any constant moment p.
Their proof works for any p but with a doubly exponential dependence on p, so their bound is
only useful for p = O(1). In this paper, we obtain bounds for all the moments of hash-based
sums for simple tabulation hashing which are tight up to constants depending only on c.

Previous work has just treated c as a constant, hidden in O-notation. However, c does
provide a fundamental trade-off between evaluation time with c lookups and the space cU1/c.
We therefore find it relevant to elucidate how our moment bounds depend on c even though
we typically choose c = 4.

Mixed tabulation hashing was introduced by Dahlgaard et al. [9]. As in simple tabulation
hashing, we view the universe, U , to be of the form U = Σc for some alphabet, Σ, and a
positive integer c. We further assume that the alphabet, Σ, has the form Σ = [2k]. Let
h1 : Σc → [2l], h2 : Σc → Σd, and h3 : Σd → [2l] be independent simple tabulation hash
functions. A mixed tabulation hash function, h : Σc → [2l], is then defined by

h(x) = h1(x) ⊕ h3(h2(x)) .

As in simple tabulation hashing, ⊕ is the bitwise XOR-operation. We call h a mixed
tabulation hash function with c characters and d derived characters. We note that h1 and
h2 can be combined in a single simple tabulation hash function Σc → [2l] × Σd, and then h

is implemented with only c + d lookups.
With simple tabulation hashing, there are certain inputs for which the concentration is

much worse than with fully random hashing. However, with mixed tabulation, even if we
have just d = 1 derived character, we get logarithmic moment bounds that, for c = O(1), are
only a constant factor worse than those with fully-random hashing for any input assuming
that hash range at most polynomial in the key universe.

Getting within a constant factor is very convenient within algorithm analysis, where we
typically only aim for O-bounds that are tight within a constant factor.
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1.3 Relation between Simple Tabulation and Chaoses
A chaos of order c is a random variable of the form∑

0≤i0<...<ic−1<n

ai0,...,ic−1

∏
j∈[c]

Xij
,

where (Xi)i∈[n] are independent random variables and (ai0,...,ic−1)0≤i0<...<ic−1<n is a multi-
indexed array of real numbers. And a decoupled chaos of order c is a random variable of the
form ∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

X
(j)
ij

,

where (X(j)
i )i∈[n],j∈[c] are independent random variables and (ai0,...,ic−1)i0,...,ic−1∈[n] is a

multiindexed array of real numbers. Chaoses have been studied in different settings, e.g., when
the variables are standard Gaussian variables [17, 18], when the variables have logarithmically
concave tails [5], and when the variables have logarithmically convex tails [16].

From the definition of a chaos and simple tabulation hashing it might not be immediately
clear that there is connection between the two. But we can rewrite the expression for
hash-based sums of simple tabulation hashing as follows∑

x∈Σc

v(x, h(x)) =
∑

α0,...,αc−1∈Σ
v((α0, . . . , αc−1), h(α0, . . . , αc−1))

=
∑

j0,...,jc−1∈[m]

∑
α0,...,αc−1∈Σ

v

(α0, . . . , αc−1),
⊕
i∈[c]

ji

 ∏
i∈[c]

[T (i, αi) = ji] .

We then notice that
∑

α0,...,αc−1∈Σ v
(

(α0, . . . , αc−1),
⊕

i∈[c] ji

)∏
i∈[c] [T (i, αi) = ji] is a de-

coupled chaos of order c for any (ji)i∈[c], thus hash-based sums of simple tabulation hashing
can be seen as a sum of chaoses. Now since the random variables, ([T (i, αi) = j])j∈[m], are
not independent then the chaoses are not independent either which complicates the analysis.
Nonetheless, this realization inspires us to use techniques from the study of chaoses to analyze
the moments of tabulation hashing, in particular, our approach will be analytical in contrast
with the combinatorial approach of the previous papers. We will expand further on the
techniques in Section 1.5.

1.4 Our Results
When proving and stating bounds for the p-th moment of a random variable it is often more
convenient and more instructive to do it in terms of the p-norm of the random variable. The
p-norm of a random variable is the p-th root of the p-th moment of the random variable and
is formally defined as follows:

▶ Definition 1 (p-norm). Let p ≥ 1 and X be a random variable with E[|X|p] < ∞. We then
define the p-norm of X by ∥X∥p = E[|X|p]1/p.

Our main contributions of this paper are analyses of the moments of hash-based sums of
simple tabulation hashing and mixed tabulation hashing. To do this we first had to analyze
the moments of hash-based sums of fully random hashing which as far as we are aware have
not been analyzed tightly before.

ICALP 2022



74:6 Understanding the Moments of Tabulation Hashing via Chaoses

1.4.1 The Moments of Fully Random Hashing
Previously, the focus has been on proving Chernoff-like bounds by using the moment
generating function but a natural, different approach would be to use moments instead. Both
the Chernoff bounds [8] and the more general Bennett’s inequality [6] bound the tail using
the Poisson distribution. More precisely, let v : U × [m] → R be a value function that satisfies
that

∑
j∈[m] v(x, j) = 0 and define the following two parameters Mv and σ2

v which will be
important throughout the paper as follows:

Mv = max
x∈U,j∈[m]

|v(x, j)| , (1)

σ2
v =

∑
x∈U,j∈[m] v(x, j)2

m
. (2)

Bennett’s inequality specialized to our setting then says that for a fully random hash
function h

Pr
[∣∣∣∣∣∑

x∈U

v(x, h(x))

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− σ2

v

M2
v

C
(

tMv

σ2
v

))

≤

2 exp
(

− t2

3σ2
v

)
if t ≤ σ2

v

Mv

2 exp
(

− t
2Mv

log
(

1 + tMv

σ2
v

))
if t >

σ2
v

Mv

, (3)

where C(x) = (x + 1) log(x + 1) − x.3
This inspires us to try to bound the p-norms of Xv with the p-norms of the Poisson

distribution. To do this we will introduce the function Ψp(M, σ2) which is quite technical
but we will prove that Ψp(1, λ) is equal up to a constant factor to the central p-norm of
a Poisson distributed variable with mean λ. One should think of Ψp(M, σ2) as a p-norm
version of σ2

v

M2
v

C
(

tMv

σ2
v

)
which appears in Bennett’s inequality.

▶ Definition 2. For p ≥ 2 we define the function Ψp : R+ × R+ → R+ as follows

Ψp(M, σ2) =


(

σ2

pM2

)1/p

M if p < log pM2

σ2

1
2
√

pσ if p < e2 σ2

M2

p

e log pM2
σ2

M if max
{

log pM2

σ2 , e2 σ2

M2

}
≤ p

.

▶ Remark 3. When p is small then case 1 and 2 apply while for large p case 3 applies. If
2 < e2 σ2

M2 then we always have that p > log pM2

σ2 for 2 ≤ p, hence only case 2 and 3 apply.
Similarly, if e2 σ2

M2 ≤ 2 then p ≥ e2 σ2

M2 for all 2 ≤ p, hence only case 1 and 3 apply. This
shows that the cases disjoint and cover all parameter configurations.

The definition Ψp(M, σ2) might appear strange but it does in fact capture the central
p-norms of Poisson distributed random variables. This is stated more formally in the following
lemma.

▶ Lemma 4. There exist universal constants K1 and K2 satisfying that for a Poisson
distributed random variable, X, with λ = E[X]

K2Ψp(1, λ) ≤ ∥X − λ∥p ≤ K1Ψp(1, λ) ,

for all p ≥ 2.

3 Here and throughout the paper log(x) will refer to the natural logarithm.
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Bennett’s inequality shows that we can bound the tail of
∑

x∈U v(x, h(x)) and Lemma 4
shows that Ψp(M, σ2) captures the central p-norms of the Poisson distribution. It is therefore
not so surprising that we are to bound the p-norms of

∑
x∈U v(x, h(x)) using Ψp(M, σ2).

▶ Theorem 5. Let h : U → [m] be a uniformly random function, let v : U × [m] → R be
a fixed value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U . Define the

random variable Xv =
∑

x∈U v(x, h(x)). Then for all p ≥ 2

∥Xv∥p ≤ LΨp

(
Mv, σ2

v

)
,

where L ≤ 16e is a universal constant.

To get a further intuition for Ψp(M, σ2) is is instructive to apply Markov’s inequality and
compare the tail bound to Bennett’s inequality. More precisely, assume that ∥Y − E[Y ]∥p ≤
LΨp(M, σ2) for a constant L and for all p ≥ 2. Then we can use Markov’s inequality to get
the following tail bound for all t > 0

Pr
[∣∣∣Y − E[Y ]

∣∣∣ ≥ t
]

≤
(∥Y − E[Y ]∥p

t

)p

≤


L2σ2

2t2 if t ≤ L max
{

M, eσ√
2

}
exp
(

− 4t2

e2L2σ2

)
if L eσ√

2 ≤ t ≤ L e2σ2

2M

exp
(
− t

LM log
( 2tM

Lσ2

))
if L max

{
e2σ2

2M , M
}

≤ t

. (4)

In order to obtain these bounds p is chosen as follows: If t ≤ max
{

M, eσ√
2

}
then p = 2 and

otherwise p is chosen such that ∥Y − E[Y ]∥p ≤ e−1t. More precisely, we have that

p =


2 if t ≤ L max

{
M, eσ√

2

}
4t2

e2L2σ2 if L eσ√
2 ≤ t ≤ L e2σ2

2M

t
LM log

( 2tM
Lσ2

)
if L max

{
e2σ2

2M , M
}

≤ t

.

We see that Equation (4) gives the same tail bound as Bennett’s inequality, Equation (3), up
to a constant in the exponent.

We also prove a matching lower bound to Theorem 5 which shows that Ψp(M, σ2) is the
correct function to consider.

▶ Theorem 6. Let h : U → [m] be a uniformly random function, then there exists a value
function, v : U × [m] → R, where

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U , such that the random

variable Xv =
∑

x∈U v(x, h(x)) satisfies that for all p ≤ L1 |U | log(m)∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≥ L2Ψp

(
Mv, σ2

v

)
,

where L1 and L2 are a universal constant.

1.4.2 The Moments of Tabulation Hashing
We analyze the p-norms of hash-based sums for simple tabulation hashing, and our analysis
is the first that provides useful bounds for non-constant moments. Furthermore, it is also
the first analysis of simple tabulation hashing that does not assume that c is constant. We
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obtain an essentially tight understanding of this problem and show that simple tabulation
hashing only works well when the range is large. This was also noted by Aamand et al. [2]
and they solve this deficiency of simple tabulation hashing by introducing a new hashing
scheme, tabulation-permutation hashing. We show that it is also possible to break the bad
instances of simple tabulation hashing by using mixed tabulation hashing.

We introduce a bit of notation to make the theorems cleaner. We will view a value
function v : Σc × [m] → R as a vector, more precisely, we let

∥v∥q =

∑
x∈Σc

∑
j∈[m]

|v(x, j)|q
1/q

for all q ∈ [1, ∞]. For every key x ∈ Σc we define v[x] to be the sub-vector v restricted to x,
more precisely, we let

∥v[x]∥q =

∑
j∈[m]

|v(x, j)|q
1/q

for all q ∈ [1, ∞].

1.4.2.1 Simple Tabulation Hashing

Our main result for simple tabulation hashing is a version of Theorem 5.

▶ Theorem 7. Let h : Σc → [m] be a simple tabulation hash function, v : Σc × [m] → R a
value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc. Define the random

variable V simple
v =

∑
x∈Σc v(x, h(x)). Then for all p ≥ 2∥∥V simple

v

∥∥
p

≤ L1Ψp

(
Kcγc−1

p Mv, Kcγc−1
p σ2

v

)
,

where Kc = (L2c)c−1, L1 and L2 are universal constants, and

γp =
max

{
log(m) + log

( ∑
x∈Σc ∥v[x]∥2

2

maxx∈Σc ∥v[x]∥2
2

)
/c, p

}
log
(

e2m
(

maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2

)−1
)

It is instructive to compare this result to Theorem 5 for fully random hashing. Ignoring
the constant Kc, the result for simple tabulation hashing corresponds to the result for fully
random hashing if we group keys into groups of size γc−1

p .
The definition of γp is somewhat complicated because of the generality of the theorem,

but we will try to explain the intuition behind it. The expression maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2
measures

how spread out the mass of the value function is. It was also noted in the previous analysis
by Aamand et al. [2] that this measure is naturally occurring. In fact, their result needs that
maxx∈Σc

∥v[x]∥2
1

∥v[x]∥2
2

≤ m1/4. If we consider the example from the introduction of hashing below
a threshold l ≤ m where each key, x ∈ Σc, has weight wx, then the value function, v, will be
v(x, j) = wx

(
[j < l] − l

m

)
for x ∈ Σc, j ∈ [m], and we then get that

max
x∈Σc

∥v[x]∥2
1

∥v[x]∥2
2

= 4l

(
1 − l

m

)
≤ 4l .

This correctly measures that the mass of the value function is mostly concentrated to the l

positions of [m].
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The expression
∑

x∈Σc ∥v[x]∥2
2

maxx∈Σc ∥v[x]∥2
2

is a measure for how many keys that have significant weight.
This also showed up in the previous analyses of simple tabulation hashing [2, 22]. If we again
consider the example from before, we get that∑

x∈Σc ∥v[x]∥2
2

maxx∈Σc ∥v[x]∥2
2

=
∑

x∈Σc w2
x

maxx∈Σc w2
x

.

We can summarize the example in the following corollary.

▶ Corollary 8. Let h : Σc → [m] be a simple tabulation hash function, assign a weight,
wx ∈ R, to every key, x ∈ Σc, and consider a threshold l ≤ m. Define the random variable
V simple

v =
∑

x∈Σc wx

(
[h(x) < l] − l

m

)
. Then for all p ≥ 2

∥∥V simple
v

∥∥
p

≤ Ψp

(
Kcγc−1

p max
x∈Σc

|wx| , Kcγc−1
p

(∑
x∈Σc

w2
x

)
l

m

(
1 − l

m

))
,

where Kc = L1 (L2c)c−1, L1 and L2 are universal constants, and

γp =
max

{
log(m) + log

( ∑
x∈Σc w2

x

maxx∈Σc w2
x

)
/c, p

}
log
(

e2m
4l

)
A natural question is how close Theorem 7 is to being tight. We show that if log(m) +

log
( ∑

x∈Σc ∥v[x]∥2
2

maxx∈Σc ∥v[x]∥2
2

)
/c = O

(
log
(

1 + m
(

maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2

)−1
))

then the result is tight up

to a universal constant depending only c. Formally, we prove the following lemma.

▶ Theorem 9. Let h : Σc → [m] be a simple tabulation hash function, and 2 ≤ p ≤
L1 |Σ| log(m), then there exists a value function, v : U × [m] → R, where

∑
j∈[m] v(x, j) = 0

for all keys x ∈ Σc, and for which∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≥ K ′
cΨp

(
γc−1

p Mv, γc−1
p σ2

v

)
,

where K ′
c = Lc

1 and L1 is a universal constant, and

γp = max

1,
p

log
(

e2m
(

maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2

)−1
)


1.4.2.2 Mixed Tabulation Hashing

The results of simple tabulation hashing work well when the range is large and when the
mass of the value function is on few coordinates. We show that mixed tabulation hashing
works well even if the range is small.

▶ Theorem 10. Let h : Σc → [m] be a mixed tabulation function with d ≥ 1 derived characters,
v : Σc × [m] → R a value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc.

Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). For all p ≥ 2 then∥∥V mixed

v

∥∥
p

≤ Ψp

(
Kcγc

pMv, Kcγc
pσ2

v

)
(5)

where Kc = L1 (L2c)c, L1 and L2 are universal constants, and

γp = max
{

1,
log(m)
log(|Σ|) ,

p

log(|Σ|)

}
.
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Usually, in hashing contexts, we do not map to a much larger domain, i.e., we will usually
have that m ≤ |U |γ for some constant γ ≥ 1. If this is the case then we can obtain the
following nice tail bound for mixed tabulation hashing by using Markov’s inequality.

▶ Corollary 11. Let h : Σc → [m] be a mixed tabulation function with d ≥ 1 derived characters,
v : Σc × [m] → R a value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc.

Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). If m ≤ |U |γ for a value γ ≥ 1 then

for all t ≥ 0

Pr
[∣∣V mixed

v

∣∣ ≥ t
]

≤ exp
(

− σ2
v

M2
v

C
(

tMv

σ2
v

)
/Kc,γ

)
+ |U |−γ

,

where C(x) = (x + 1) log(x + 1) − x, Kc,γ = L1
(
L2c2γ

)c, and L1 and L2 are universal
constants.

Proof. The idea is to combine Theorem 10 and Markov’s inequality. We use Theorem 10 for
2 ≤ p ≤ γ log |U | to get that∥∥V mixed

v

∥∥
p

≤ Ψp

(
Kcγc

pMv, Kcγc
pσ2

v

)
,

where we can bound γp by

γp = max
{

1,
log(m)
log(|Σ|) ,

p

log(|Σ|)

}
≤ cγ .

So we have that∥∥V mixed
v

∥∥
p

≤ Ψp

((
L2c2γ

)c
Mv,

(
L2c2γ

)c
σ2

v

)
.

Now by the same method as in Equation (4), we get the result. ◀

1.4.2.3 Adding a query element

In many cases, we would like to prove that these properties continue to hold even when
conditioning on a query element. An example would be the case where we are interested in
the weight of the elements in the bin for which the query element, q, hashes to, i.e., we would
like that

∑
x∈S wx [h(x) = h(q)] is concentrated when conditioning on q. Formally, this corres-

ponds to having the value function v : Σc × [m]× [m] defined by v(x, j, k) = wx [x ∈ S] [j = k]
and then proving concentration on

∑
x∈Σc\{q} v(x, h(x), h(q)) when conditioning on q. We

show that this holds both for simple tabulation and mixed tabulation.

▶ Theorem 12. Let h : Σc → [m] be a simple tabulation hash function and let q ∈ Σc

be a designated query element. Let v : Σc × [m] × [m] → R a value function, and assume
that

∑
j∈[m] v(x, j, k) = 0 for all keys x ∈ U and all k ∈ [m]. Define the random variable

V simple
v,q =

∑
x∈Σc\{q} v(x, h(x), h(q)) and the random variables

Mv,q = max
x∈Σc\{q},j∈[m]

|v(x, j, h(q))| ,

σ2
v,q = 1

m

∑
x∈Σc\{q}

∑
j∈[m]

v(x, j, h(q))2 ,

which only depend on the randomness of h(q). Then for all p ≥ 2

E
[(

V simple
v,q

)p
∣∣∣h(q)

]1/p

≤ Ψp

(
Kcγc−1

p Mv,q, Kcγc−1
p σ2

v,q

)
,
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where Kc = L1 (L2c)c−1, L1 and L2 are universal constants, and

γp =
max

{
log(m) + log

( ∑
x∈Σc ∥v[x]∥2

2

maxx∈Σc ∥v[x]∥2
2

)
/c, p

}
log
(

e2m
(

maxx∈Σc
∥v[x]∥2

1
∥v[x]∥2

2

)−1
) .

▶ Theorem 13. Let h : Σc → [m] be a mixed tabulation hash function and let q ∈ Σc be
a designated query element. Let v : Σc × [m] × [m] → R a value function, and assume
that

∑
j∈[m] v(x, j, k) = 0 for all keys x ∈ U and all k ∈ [m]. Define the random variable

V simple
v,q =

∑
x∈Σc\{q} v(x, h(x), h(q)) and the random variables

Mv,q = max
x∈Σc\{q},j∈[m]

|v(x, j, h(q))| ,

σ2
v,q = 1

m

∑
x∈Σc\{q}

∑
j∈[m]

v(x, j, h(q))2 ,

which only depend on the randomness of h(q). For all p ≥ 2 then

E
[(

V simple
v,q

)p
∣∣∣h(q)

]1/p

≤ Ψp

(
Kcγc

pMv,q, Kcγc
pσ2

v,q

)
(6)

where Kc = L1 (L2c)c, L1 and L2 are universal constants, and

γp = max
{

1,
log(m)
log(|Σ|) ,

p

log(|Σ|)

}
.

1.5 Technical Overview
1.5.1 Fully Random Hashing
1.5.1.1 Sub-Gaussian bounds

A random variable X is said to be sub-Gaussian with parameter σ if ∥X∥p ≤ √
pσ for all

p ≥ 2. It is a well-known fact that the sum of independent bounded random variables are
sub-Gaussian. In the context of fully random hashing, we have that∥∥∥∥∥∑

x∈U

v(x, h(x))

∥∥∥∥∥
p

≤
√

4p

√∑
x∈U

∥v[x]∥2
∞ . (7)

A natural question is whether this is the best sub-Gaussian bound we can get. If we are just
interested in the contribution to a single bin, i.e., v(x, j) = wx([j = 0] − 1

m ), then we can
obtain a better sub-Gaussian bound. By using the result of Oleszkiewicz [20], we get that∥∥∥∥∥∑

x∈U

v(x, h(x))

∥∥∥∥∥
p

≤ L

√
p

log m

√∑
x∈U

w2
x , (8)

where L is a universal constant. This shows that Equation (7) can be improved in certain
situations. We improve on this by proving a generalization of Equation (8). We show that∥∥∥∥∥∑

x∈U

v(x, h(x))

∥∥∥∥∥
p

≤ L

√√√√ p

log
(

e2m
∑

x∈U
∥v[x]∥2

∞∑
x∈U

∥v[x]∥2
2

)√∑
x∈U

∥v[x]∥2
∞ , (9)

where L is a universal constant. It is easy to check that if v(x, j) = wx([j = 0] − 1
m ) then it

reduces to Equation (8) and that it is stronger than Equation (7).
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1.5.1.2 Moments for general random variables

As part of our analysis we develop a couple of lemmas for general random variables which
might be of independent interest. We prove a lemma that provides a simple bound for
weighted sums of independent and identically distributed random variables.

▶ Lemma 14. Let (Xi)i∈[n] and X be independent and identically distributed symmetric
random variables, and let (ai)i∈[n] be a sequence of reals.4 If p ≥ 2 is an even integer then∥∥∥∥∥∥

∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ K sup

p

s

(∑
i∈[n] as

i

p

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p

 ,

where K ≤ 4e is a universal constant.

If we consider Laplace distributed random variables then it is possible to show that
Lemma 14 is tight up to a universal constant. Thus a natural question to ask is whether
Lemma 14 is tight, i.e., can we prove a matching lower bound. But unfortunately, if you
consider Gaussian distributed variables then we see that Lemma 14 is not tight. It would be
nice if there existed a simple modification of Lemma 14 which had a matching lower bound.

1.5.1.3 Moments of functions of random variables

As part of the analysis of tabulation hashing, we will need to analyze random variables of
the form Ψp(X, Y ) where X and Y are random variables. More precisely, we have to bound
∥Ψp(X, Y )∥p. It is not immediately clear how one would do this but we prove a general
lemma that helps us in this regard.

▶ Lemma 15. Let f : Rn
≥0 → R≥0 be a non-negative function which is monotonically

increasing in every argument, and assume that there exist positive reals (αi)i∈[n] and (ti)i∈[n]
such that for all λ ≥ 0

f(λα0t0, . . . , λαn−1tn−1) ≤ λf(t0, . . . , tn−1) .

Let (Xi)i∈[n] be non-negative random variables. Then for all p ≥ 1 we have that

∥f(X0, . . . , Xn−1)∥p ≤ n1/p max
i∈[n]

(
∥Xi∥p/αi

ti

)1/αi

f(t0, . . . , tn−1) .

If we can choose ti = ∥Xi∥p/αi
for all i ∈ [n], then we get the nice expression

∥f(X0, . . . , Xn−1)∥p ≤ n1/pf(∥X0∥p/α0
, . . . , ∥Xn−1∥p/αn−1

) .

Now the result is natural to compare to the triangle inequality that says that ∥X + Y ∥p ≤
∥X∥p + ∥Y ∥p, which corresponds to considering f(x, y) = x + y, and to Cauchy-Schwartz
that says that ∥XY ∥p ≤ ∥X∥2p ∥Y ∥2p, which corresponds to f(x, y) = xy. These two
examples might point to that the n1/p is superfluous, but by considering f(x0, . . . , xn−1) =
max{x0, . . . , xn−1} and Gaussian distributed variables, it can be shown that Lemma 15 is
tight up to a constant factor.

4 A symmetric random variable, X, is a random variable that is symmetric around zero, i.e., Pr[X ≥ t] =
Pr[−X ≥ t] for all t ≥ 0.
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1.5.2 Tabulation Hashing

1.5.2.1 Symmetrization

The analyses of chaoses have mainly focused on two types of chaoses: Chaoses generated by
non-negative random variables and chaoses generated by symmetric random variables. It
might appear strange that focus has not been on chaoses generated by mean zero random
variables. The reason is that a symmetrization argument reduces the analysis of chaoses
generated by mean zero random variables to the analysis of chaoses generated by symmetric
random variables. More precisely, a standard symmetrization shows that

2−c

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

ε
(j)
ij

X
(j)
ij

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

X
(j)
ij

∥∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

ε
(j)
ij

X
(j)
ij

∥∥∥∥∥∥
p

,

where (ε(j)
i )i∈[n],j∈[n] are independent Rademacher variables.5

In our case, we can assume that v(x, h(x)) is a mean zero random variable but is not
necessarily symmetric. We can remedy this by using the same idea of symmetrization. We
define ε : Σc → {−1, 1} to be a simple tabulation sign function, more precisely, we have a fully
random table, Tε : [c]×Σ → {−1, 1}, and ε is then defined by ε(α0, . . . , αc−1) =

∏
i∈[c] T (i, αi).

We then prove that for all p ≥ 2

2−c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

. (10)

The power of symmetrization lies in the fact that we get to assume that v is symmetric in
the analysis without actually changing the value functions.

Somewhat surprisingly, we are able to improve the moment bound of Dahlgaard et al. [9]
just by using symmetrization. Their result has a doubly exponential dependence on the size
of the moment, p, which stems from a technical counting argument where they bound the
number of terms which does not have an independent factor when expanding the expression(∑

x∈Σc v(x, h(x))
)p. It appears difficult to directly improve their counting argument but by

using Equation (10) we are able to circumvent this. Thus, just by using symmetrization and
the insights of Dahlgaard et al. [9] we obtain the following result.

▶ Lemma 16. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a simple
tabulation sign function, and v : Σc × [m] → R be a value function. Then for every real
number p ≥ 2

∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤
√

4p
c
√∑

x∈Σc

∥v[x]∥2
∞ .

5 A Rademacher variable, ε, is a random variable chosen uniformly from the set {−1, 1}, i.e., Pr[ε = −1] =
Pr[ε = 1] = 1

2 .
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1.5.2.2 General value functions

For most applications of hashing, we are either interested in the number of balls landing
in a bin or in the number of elements hashing below a threshold. But we are studying the
more general setting where we have a value function. A natural question is whether it is
possible to obtain a simpler proof for the simpler settings. We do not believe this to be
the case since the general setting of value functions will naturally show up when proving
results by induction on c. More precisely, let us consider the case where we are interested
in the number of elements from a set, S ⊆ Σc, that hash to 0. We then want to bound∑

x∈S

(
[h(x) = 0] − 1

m

)
=
∑

x∈Σc [x ∈ S]
(
[h(x) = 0] − 1

m

)
. This can be rewritten as6∑

x∈Σc

[x ∈ S]
(
[h(x) = 0] − 1

m

)
=
∑
α∈Σ

∑
y∈Σc−1

[(y, α) ∈ S]
(
[h(y) ⊕ T (c − 1, α) = 0] − 1

m

)
.

So if we define the value function v′ : Σ × [m] → R by

v′(α, j) =
∑

y∈Σc−1

[(y, α) ∈ S]
(
[h ⊕ j = 0] − 1

m

)
,

then we get that
∑

x∈S

(
[h(x) = 0] − 1

m

)
=
∑

α∈Σ v′(α, T (c − 1, α)). Thus, we see that
general value functions are natural to consider in the context of tabulation hashing.

Instead of shying away from general value functions, we embrace them. This force us look
at the problem differently and guides us in the correct direction. Using this insight naturally
leads us to use Equation (9) and we prove the following moment bound, which is strictly
stronger than Lemma 16.

▶ Lemma 17. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a simple
tabulation sign function, and v : Σc × [m] → R be value function. Then for every real number
p ≥ 2∥∥∥∥∥∑

x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

√√√√√Kc
p (max{p, log(m)})c−1

log
(

1 +
m
∑

x∈Σc ∥v[x]∥2
∞∑

x∈Σc ∥v[x]∥2
2

)c

√∑
x∈Σc

∥v[x]∥2
∞ ,

where Kc = (Lc)c for a universal constant L.

This statement is often weaker than Theorem 7 but perhaps a bit surprisingly, we will
use Lemma 17 as an important step in the proof of Theorem 7.

1.5.2.3 Sum of squares of simple tabulation hashing

A key element when proving Theorem 7 is bounding the sums of squares

∑
j∈[m]

(∑
x∈Σc

v(x, h(x) ⊕ j)
)2

. (11)

This was also one of the main technical challenges for the analysis of Aamand et al. [2]. Instead
of analyzing Equation (11), we will analyze a more general problem: Let vi : Σc × [m] → R
be a value function i ∈ [k], we then want to understand the random variable.∑

j0,...,jk−1∈[m]⊕
i∈[k]

ji=0

∑
x0,...,xk−1∈Σc

∏
i∈[k]

vi(xi, ji ⊕ h(xi)) (12)

6 For a partial key y = (β0, . . . , βc−2) ∈ Σc−1, we let h(y) =
⊕

i∈[c−1] T (i, βi).
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If we have k = 2 and v0 = v1 then this corresponds to Equation (11). By using a decoupling
argument, it is possible to reduce the analysis of Equation (12) to the analysis of hash-based
sums for simple tabulation hashing. We can then use Lemma 17 to obtain the following
lemma.

▶ Lemma 18. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a simple
tabulation sign function, and vi : Σc × [m] → R be a value function for i ∈ [k]. For every real
number p ≥ 2

∥∥∥∥∥∥
∑

j∈[m]

(∑
x∈Σc

ε(x)v(x, h(x))
)2
∥∥∥∥∥∥

p

≤

 Lc max{p, log(m)}

log
(

e2m
∑

x∈Σc ∥v[x]∥2
2∑

x∈Σc ∥v[x]∥2
1

)


c ∑
x∈Σc

∥v[x]∥2
2 ,

where L is a universal constant.

1.5.2.4 Proving the main result

The proof of Theorem 7 is by induction on c. We will use Theorem 5 on one of the characters
while fixing the other characters. This will give us an expression of the form∥∥∥∥∥∥∥∥∥∥∥∥∥

Ψp


max

α∈Σ,j∈[m]

∣∣∣∣∣∣
∑

y∈Σc−1

v((y, α), h(y) ⊕ j)

∣∣∣∣∣∣ ,
∑

α∈Σ,j∈[m]

 ∑
y∈Σc−1

v((y, α), h(y) ⊕ j)

2

m



∥∥∥∥∥∥∥∥∥∥∥∥∥
p

.

By applying Lemma 15, we bound this by

Ψp


∥∥∥∥∥∥ max

α∈Σ,j∈[m]

∣∣∣∣∣∣
∑

y∈Σc−1

v((y, α), h(y) ⊕ j)

∣∣∣∣∣∣
∥∥∥∥∥∥

p

,

∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
α∈Σ,j∈[m]

 ∑
y∈Σc−1

v((y, α), h(y) ⊕ j)

2

m

∥∥∥∥∥∥∥∥∥∥∥∥∥
p


.

We will bound
∥∥∥maxα∈Σ,j∈[m]

∣∣∣∑y∈Σc−1 v((y, α), h(y) ⊕ j)
∣∣∣∥∥∥

p
by using the induction hypo-

thesis, and we bound

∥∥∥∥∥
∑

α∈Σ,j∈[m]

(∑
y∈Σc−1 v((y,α),h(y)⊕j)

)2

m

∥∥∥∥∥
p

by using Lemma 18. While

this sketch is simple, the actual proof is quite involved and technical since one has to be very
careful with the estimates.

1.6 Mixed Tabulation Hashing in Context
Our concentration bounds for mixed tabulation hashing are similar to those Aamand et
al. [2] for their tabulation-permutation hashing scheme and the schemes also have very
similar efficiency, roughly a factor 2 slower than simple tabulation and orders of magnitude
faster than any alternative with similar known concentration bounds. We shall make a more
detailed comparison with tabulation-permutation in Section 1.6.1.
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As mentioned in the beginning of the introduction, the big advantage of proving con-
centration bounds for mixed tabulation hashing rather than for tabulation-permutation
is that mixed tabulation hashing has many other strong probabilistic properties that can
now be used in tandem with strong concentration. This makes mixed tabulation an even
stronger candidate to replace abstract uniform hashing in real implementations of algorithms
preserving many of the asymptotic performance guarantees.

Mixed tabulation inherits all the nice probabilistic properties known for simple and
twisted tabulation7. Dahlgaard et al. [9] introduced mixed tabulation hashing to further
get good statistics over k-partitions as used in classic streaming algorithms for counting
of distinct elements by Flajolet et al. [13, 14, 15], and for fast set similarity in large-scale
machine learning by Li et al. [19, 23, 24].

Selective full randomness with mixed tabulation

The main result of Dahlgaard et al. [9] for mixed tabulation is that it has a certain kind of
selective full randomness (they did not have a word for it). An ℓ-bit mask M with don’t
cares is of the form {0, 1, ?}ℓ. An ℓ-bit string B ∈ {0, 1}ℓ matches M if it is obtained from
M by replacing each ? with a 0 or a 1. Given a hash function returning ℓ-bit hash values,
we can use M to select the set Y of keys that match M . Consider a mixed tabulation hash
function h : Σc → {0, 1}ℓ using d derived characters. The main result of Dahlgaard et al. [9,
Theorem 4] is that if the expected number of selected keys is less than |Σ|/2, then, w.h.p.,
the free (don’t care) bits of the hash values of Y are fully random and independent. More
formally,
▶ Theorem 19 (Dahlgaard et al. [9, Theorem 4]). Let h : Σc → {0, 1}ℓ be a mixed tabulation
hash function using d derived characters. Let M be an ℓ-bit mask with don’t cares. For a
given key set X ⊆ Σc, let Y be the set of keys from X with hash values matching M . If
E[|Y |] ≤ |Σ|/(1 + Ω(1)), then the free bits of the hash values in Y are fully random with
probability 1 − O(|Σ|1−⌊d/2⌋).
The above result is best possible in that since we only have O(|Σ|) randomness in the tables,
we cannot hope for full randomness of an asymptotically larger set Y .

In the applications from [9], we also want the size of the set Y to be concentrated around
its mean and by Corollary 11, the concentration is essentially as strong as with fully random
hashing and it holds for any d ≥ 1.

In [9] they only proved weaker concentration bounds for the set Y selected in Theorem 19.
Based on the concentration bounds for simple tabulation by Pǎtraşcu and Thorup [22], they
proved that if the set Y from 19 had E[Y ] ∈ [|Σ|/8, 3|Σ|/4], then within the same probability
of 1 − O(|Σ|1−⌊d/2⌋), it has

|Y | = E[Y ]
(

1 ± O

(√
log |Σ|(log log |Σ|)2

|Σ|

))
. (13)

With Corollary 11, for E[Y ] = Θ(|Σ|), we immediately tighten (13) to the cleaner

|Y | = E[Y ]
(

1 ± O

(√
log |Σ|

|Σ|

))
. (14)

7 This is not a black box reduction, but both twisted and mixed tabulation hashing applies simple
tabulation to a some changed keys, so any statement holding for arbitrary sets of input keys is still
valid. Moreover, mixed tabulation with one derived character corresponds to mixed tabulation applied
to keys with an added 0-character head, and having more derived characters does not give worse results.
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While the improvement is “only” a factor (log log |Σ|)2, the important point here is that (14)
is the asymptotic bound we would get with fully-random hashing. Also, while Dahlgaard et
al. only proved (13) for the special case of E[Y ] ∈ [|Σ|/8, 3|Σ|/4], our (14) is just a special
case of Corollary 11 which holds for arbitrary values of E[Y ] and arbitrary value functions.

Dahlgaard et al. presented some very nice applications of mixed tabulation to problems
in counting and machine learning and machine learning. The way they use Theorem 19 is
rather subtle.

1.6.1 Mixed Tabulation Hashing Versus Tabulation-Permutation
Hashing

As mentioned earlier, our new concentration bounds are similar to those proved by Aamand
et al. [2] for their tabulation-permutation hashing scheme. However, now we also have
moment bounds covering the tail, and we have the first understanding of what happens when
c is not constant. It is not clear if this new understanding applies to tabulation-permutation.
As discussed above, the advantage of having the concentration bounds for mixed tabulation
hashing is that we can use them in tandem with the independence result from Theorem 19,
which does not hold for tabulation-permutation.

Tabulation-permutation is similar to mixed tabulation hashing in its resource consumption.
Consider the mapping Σc → Σc. Tabulation-permutation first uses simple tabulation
h : Σc → Σc. Next it applies a random permutation πi : Σ 1−1→ Σ to each output character
h(x)i, that is, x 7→ (π1(h(x)1), . . . , πc(h(x)c). Aamand et al. [2] also suggest tabulation-
1permutation hashing, which only permutes the most significant character. This scheme does
not provide concentration for all value functions, but it does work if we select keys from
intervals.

Aamand et al. [2] already made a thorough experimental and theoretical comparison
between tabulation-permutation, mixed tabulation, and many other schemes. In this com-
parison, mixed tabulation played the role of a similar scheme with not as strong known
concentration bounds. In the experiments, mixed tabulation hashing with c derived characters
performed similar to tabulation-permutation in speed. Here we proved stronger concentration
bounds for mixed tabulation even with a single character, where it should perform similar
to tabulation-1permutation (both use c + 1 lookups). Both mixed tabulation hashing and
tabulation-permutation hashing were orders of magnitude faster than any alternative with
similar known concentration bounds. We refer to [2, 10] for more details. In particular, [10]
compares mixed tabulation with popular cryptographic hash functions that are both slower
and have no guarantees in these algorithmic contexts.

One interesting advantage of mixed tabulation hashing over tabulation-permutation
hashing is that mixed tabulation hashing, like simple tabulation hashing, only needs randomly
filled character tables. In contrast, tabulation-permutation needs tables that represent
permutations. Thus, all we need to run mixed tabulation hashing is a pointer to some
random bits. These could be in read-only memory shared across different applications.
Read-only memory is much less demanding than standard memory since there can be no
write-conflicts, so we could imagine some special large, fast, and cheap read-only memory,
pre-filled with random bits, e.g., generated by a quantum-device. This would open up for
larger characters, e.g., 16- or 32-bit characters, and it would free up the cache for other
applications.
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Abstract
Range-aggregate query is an important type of queries with numerous applications. It aims to obtain
some structural information (defined by an aggregate function F (·)) of the points (from a point set
P ) inside a given query range B. In this paper, we study the range-aggregate query problem in high
dimensional space for two aggregate functions: (1) F (P ∩ B) is the farthest point in P ∩ B to a
query point q in Rd and (2) F (P ∩ B) is the minimum enclosing ball (MEB) of P ∩ B. For problem
(1), called In-Range Farthest Point (IFP) Query, we develop a bi-criteria approximation scheme: For
any ϵ > 0 that specifies the approximation ratio of the farthest distance and any γ > 0 that measures
the “fuzziness” of the query range, we show that it is possible to pre-process P into a data structure
of size Õϵ,γ(dn1+ρ) in Õϵ,γ(dn1+ρ) time such that given any Rd query ball B and query point q, it
outputs in Õϵ,γ(dnρ) time a point p that is a (1 − ϵ)-approximation of the farthest point to q among
all points lying in a (1 + γ)-expansion B(1 + γ) of B, where 0 < ρ < 1 is a constant depending
on ϵ and γ and the hidden constants in big-O notations depend only on ϵ, γ and Polylog(nd). For
problem (2), we show that the IFP result can be applied to develop query scheme with similar time
and space complexities to achieve a (1 + ϵ)-approximation for MEB. To the best of our knowledge,
these are the first theoretical results on such high dimensional range-aggregate query problems. Our
results are based on several new techniques, such as multi-scale construction and ball difference
range query, which are interesting in their own rights and could be potentially used to solve other
range-aggregate problems in high dimensional space.
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1 Introduction

Range search is a fundamental problem in computational geometry and finds applications in
many fields like database systems and data mining [4, 27]. It has the following basic form:
Given a set of n points P in Rd, pre-process P into a data structure so that for any query
range B from a certain range family (e.g., spheres, rectangles, and halfspaces), it reports or
counts the number of the points in P ∩B efficiently. Range search allows us to obtain some
basic information of the points that lie in a specific local region of the space.

In many applications, it is often expected to know more information than simply the
number of points in the range. This leads to the study of range-aggregate query [2, 3, 6,
10, 13, 20, 21, 23, 25, 26, 32], which is a relatively new type of range search. The goal of
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range-aggregate query is to obtain more complicated structural information (such as the
diameter, the minimum enclosing ball, and the minimum spanning tree) of the points in
the query range. Range-aggregate query can be generally defined as follows: Given a point
set P , pre-process P into a data structure such that for any range B in a specific family, it
outputs F (P ∩B), where F (·) is a given aggregate function that computes a certain type of
information or structure of P ∩B like “diameter”,“minimum enclosing ball”, and “minimum
spanning tree”. Range-aggregate queries have some interesting applications in data analytics
and big data [16, 28, 29, 32], where it is often required to retrieve aggregate information of
the records in a dataset with keys that lie in any given (possibly high dimensional) range.

In this paper, we study the range-aggregate query problem in high dimensions for
spherical ranges. Particularly, we consider two aggregate functions for any Rd query ball B:
(1) F (P ∩B) is the farthest point in P ∩B to a query point q in Rd and (2) F (P ∩B) is the
minimum enclosing ball (MEB) of P ∩B. We will focus in this paper on problem (1), called
the In-Range Farthest Point (IFP) Query, and show that an efficient solution to IFP query
also yields efficient solutions to the MEB problems. We start with some definitions.

▶ Definition 1 (Approximate IFP (AIFP)). Let P be a set of n points in Rd, q be a point and
B be a d-dimensional (closed) ball. A point p ∈ P is a bi-criteria (ϵ, γ)-approximate in-range
farthest point (or AIFP) of q ∈ P in B, if there exists a point set P ′ such that the following
holds, where ϵ and γ are small positive constants, and B(1 + γ) is the ball concentric with
B and with radius (1 + γ)r: (1) P ∩ B ⊆ P ′ ⊆ P ∩ B(1 + γ); (2) p ∈ P ′; and (3) for any
p′ ∈ P ′, (1− ϵ)∥p′ − q∥ ≤ ∥p− q∥.

Defining AIFP in this way enables us to consider all points in B and exclude all points
outside of B(1 + γ). Points in the fuzzy region B(1 + γ) \B may or may not be included in
the farthest point query. Note that allowing fuzzy region is a commonly used strategy to deal
with the challenges in many high dimensional similarity search and range query problems. For
example, consider the classic near neighbor search problem, which is equivalent to spherical
emptiness range search: Given a query sphere B in Rd, report a data point p that lies in B

if such a data point exists. In high dimensional space, obtaining an exact solution to such a
query is very difficult. A commonly used technique for this problem is the Locality Sensitive
Hashing (LSH) scheme [12]. Given a query ball B, LSH could report a data point in B(1 + ϵ)
for some given factor ϵ > 0. In other words, a fuzzy region B(1 + ϵ) \B is allowed. Similarly,
we can define approximate MEB for points in a given range with a fuzzy region.

▶ Definition 2 (Minimum Enclosing Ball (MEB)). Let P be a set of n points in Rd. A
d-dimensional (closed) ball B is an enclosing ball of P if P ⊂ B and B is the minimum
enclosing ball (MEB) of P if its radius r is the smallest among all enclosing balls. A ball B′

is a (1 + ϵ)-approximate MEB of P for some constant ϵ > 0 if it is an enclosing ball of P

and its radius is no larger than (1 + ϵ)Rad(P ), where Rad(P ) is the radius of the MEB of P .

▶ Definition 3 (Approximate MEB (AMEB)). Let P be a set of n points and B be any ball
with radius r in Rd. A ball B′ with radius r′ is a bi-criteria (ϵ, γ)-approximate MEB (or
AMEB) of P in range B, if there exists a point set P ′ such that the following holds, where
γ and ϵ are small positive constants: (1) P ∩ B ⊆ P ′ ⊆ P ∩ B(1 + γ); and (2) B′ is a
(1 + ϵ)-approximate MEB of P ′.

In this paper, we will focus on building a data structure for P so that given any query
ball B and a point q ∈ Rd, an AIFP of q in P ∩ B can be computed efficiently (i.e., in
sub-linear time in terms of n). Below are the main theorems of this paper. Let ϵ > 0, γ > 0,
0 < δ < 1 be any real numbers.
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▶ Theorem 4. For any set P of n points in Rd, it is possible to build a data structure
of size Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) in Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) pre-processing time,
where 0 < ρ < 1 is a small constant depending on ϵ and γ. With this data structure,
it is then possible to find a (ϵ, γ)-AIFP of any given query point q and query ball B in
Oϵ,γ(dnρ log δ−1Polylog(nd)) time with probability at least 1− δ.

Note: In the above result, the relationship between ρ and ϵ, γ has a rather complicated
dependence on several constants of p-stable distribution, which is inherited from the underlying
technique of Locality Sensitive Hashing (LSH) scheme [12]. This indicates that for any ϵ, γ,
we have 0 < ρ < 1 and ρ approaches 1 as ϵ, γ approach 0.

We will also show how to use the AIFP data structure to answer MEB queries efficiently.

▶ Theorem 5. For any set P of n points in Rd, it is possible to build a data structure of size
Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) in Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) pre-processing time, where
0 < ρ < 1 is a small constant depending on ϵ and γ. With this data structure, it is then
possible to find a (ϵ, γ)-AMEB for any query ball B in Oϵ,γ(dnρ log δ−1Polylog(nd)) time
with probability at least 1− δ.

To our best knowledge, these are the first results on such range-aggregate problems in
high dimensions. Each data structure has only a near linear dependence on d, a sub-quadratic
dependence on n in space complexity, and a sub-linear dependence on n in query time.

Our Method. The main result on AIFP is based on several novel techniques, such as multi-
scale construction and ball difference range query. Briefly speaking, multi-scale construction is
a general technique that allow us to break the task of building an AIFP query data structure
into a number of “constrained” data structures. Each such data structure is capable of
correctly answering an AIFP query given that some assumption about the query holds (for
example, the distance from q to its IFP is within a certain range). Multi-scale construction
uses a number of “constrained” data structures of small size to cover all possible cases of a
query, which leads to a data structure that can handle any arbitrary queries. Multi-scale
construction is independent of the aggregate function, and thus has the potential be used
as a general method for other types of range-aggregate query problems in high dimensional
space. Another important technique is a data structure for the ball difference range query
problem, which returns a point, if there is one, in the difference of two given query balls. The
ball difference data structure is the building block for the constrained AIFP data structures,
and is interesting in its own right as a new high dimensional range search problem.

Related Work. There are many results for the ordinary farthest point query problem in
high dimensional space [11, 17, 19, 24]. However, to the best of our knowledge, none of them
is sufficient to solve the IFP problem, and our result is the first one to consider the farthest
point problem under the query setting. Our technique for the IFP problem also yields
solutions to other range-aggregate queries problems, including the MEB query problem.

A number of results exist for various types of the range-aggregate query problem in fixed
dimensional space. In [6], Arya, Mount, and Park proposed an elegant scheme for querying
minimum spanning tree inside a query range. They showed that there exists a bi-criteria
(ϵq, ϵw)-approximation with a query time of O(log n + (1/ϵqϵw)d). In [23], Nekrich and Smid
introduced a data structure to compute an ϵ-coreset for the case of orthogonal query ranges
and aggregate functions satisfying some special properties. Xue [30] considered the colored
closest-pair problem in a (rectangular) range and obtained a couple of data structures with
near linear size and polylogarithmic query time. Recently, Xue et. al. [31] further studied
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more general versions of the closest-pair problem and achieved similar results. For the MEB
problem under the range-aggregate settings, Brass et al. are the first to investigate the
problem in 2D space, along with other types of aggregate functions (like width and the
size of convex hull) [10]. They showed that it is possible to build a data structure with
O(n · polylog(n)) pre-processing space/time and O(polylog(n)) query time.

All the aforementioned methods were designed for fixed dimensional space, and thus are
not applicable to high dimensions. Actually, range aggregation has rarely been considered
in high dimensions, except for a few results that may be viewed as loosely relevant. For
example, Abbar et al. [1] studied the problem of finding the maximum diverse set for points
inside a ball with fixed radius around a query point. Their ideas are seemingly useful to our
problem. However, since their ball always has the same fixed radius, their techniques are not
directly applicable. In fact, a main technical challenge of our problem is how to deal with
the arbitrary radius and location of the query range, which is overcome by our multi-scale
construction framework. Another related work by Aumüller et. al. [8] has focused on random
sampling in a given range. The technique is also not directly applicable to IFP.

1.1 Overviews of the Main Ideas

Below we describe the main ideas of our approaches. For simplicity, in the following we ignore
the fuzziness of the query range. We approach the AIFP query problem by first looking at
an easier version: given ball B and point q, find an approximate farthest point in P ∩ B

to q, with the (strong) assumption that the radius of B is a fixed constant rB > 0, and
that the distance between q and its IFP in P ∩B is within a range of (dmin, dmax], where
dmax > dmin > 0 are fixed constants. We call such a problem a constrained AIFP problem.
We use a tuple (rB , dmin, dmax) to denote such a constraint.

To solve the constrained AIFP problem, we develop a data structure for the ball difference
(BD) range query problem, which is defined as follows: given two balls Bin and Bout, find
a point that lies in P ∩Bin \Bout. With such a data structure, it is possible to reduce an
AIFP query with constraint (rB , dmin, dmax) to a series of BD queries. Below we briefly
describe the idea. Let r0 = dmin, and for i = 1, 2, 3 . . ., let ri = (1 + ϵ)ri−1, where ϵ > 0 is
an approximation factor. For i = 0, 1, . . ., we try to determine whether there is a point in
P ∩B whose distance to q is larger than ri. Note that this can be achieved by a BD query
with Bin := B and Bout being the ball centered at q and with radius ri. By iteratively doing
this, eventually we will reach an index j such that it is possible to find a point p ∈ B ∩ P

that satisfies the condition of ∥p− q∥ > rj , but no point lies in P ∩B whose distance to q

is larger than rj+1 = (1 + ϵ)rj . Thus, p is a (1−O(ϵ))-approximate farthest point to q in
P ∩B. From the definition of constrained AIFP query, it is not hard to see that this process
finds the AIFP after at most O(log1+ϵ

dmax

dmin
) iterations. Every BD data structure supports

only Bin and Bout with fixed radii. This means that we need to build O(log1+ϵ
dmax

dmin
) BD

data structures for answering any AIFP query with constraint (rB , dmin, dmax).
With the constrained AIFP data structure, we then extend it to a data structure for

answering general AIFP queries. Our main idea is to use the aforementioned multi-scale
construction technique to build a collection of constrained data structures, which can
effectively cover (almost) all possible cases of the radius of B and the farthest distance from
q to any point in B ∩P . More specifically, for any AIFP query, it is always possible to either
answer the query easily without using any constrained data structures, or find a constrained
data structure such that the AIFP query satisfies the constraint (rB , dmin, dmax), and thus
can be used to answer the AIFP query.
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For AMEB query, we follow the main idea of Badoiu and Clarkson [9], and show that an
AMEB query is reducible to a series of AIFP queries. More discussions are left to Section 5.

2 Constrained AIFP Query

In this section, we discuss how to construct a data structure to answer constrained AIFP
queries. Particularly, given any ball B and point q satisfying the constraint (rB , dmin, dmax),

the radius of B is rB ,
the distance from q to its farthest point to P ∩B is within the range of (dmin, dmax],

the data structure can find the AIFP to q in P ∩B in sub-linear time (with high probability).
In the following, we let ϵ > 0 be an approximation factor, γ > 0 be a factor that controls

the region fuzziness and 0 < δ < 1 be a factor controlling the query success probability. The
main result of this section is summarized as the following lemma.

▶ Lemma 6. Let P be a set of n points in Rd. It is possible to build a data structure for
P with size Oϵ,γ(dn1+ρ log δ−1 log(dmax/dmin)) in Oϵ,γ(dn1+ρ log δ−1 log(dmax/dmin)) time,
where 0 < ρ < 1 is a real number depending on ϵ and γ, and the constants hidden in the
big-O notation depend only on ϵ, γ. Given any query (B, q) that satisfies the constraint of
(rB , dmin, dmax), with probability at least 1− δ, the data structure finds an (ϵ, γ)-AIFP for q

in P ∩B within time Oϵ,γ(dnρ log δ−1 log(dmax/dmin)).

In the following, we consider an AIFP query that satisfies constraint (rB , dmin, dmax).
As mentioned in last section, it is possible to reduce a constrained AIFP query to a series
of ball difference(BD) range queries, which report a point in P that lies (approximately)
in Bin \Bout for a given pair of Rd balls (Bin and Bout), or return NULL if no such point
exists. Below, we describe the reduction using a ball-peeling strategy. We consider a series
of balls B0, B1, B2, . . . concentric at q with an exponentially increasing radius. Let ξ > 0 be
a to-be-determined approximation factor, and B0 := B(q, dmin) which is the ball centered at
q with radius dmin. For integer i > 0, let Bi+1 = Bi(1 + ξ) which is the ball obtained by
enlarging the radius of Bi by a factor of (1 + ξ). 1 For i = 0, 1, 2, . . ., repeatedly perform
a BD query with Bin := B and Bout := Bi, until an index j is encountered such that the
BD query reports a point pj that lies in P ∩B \Bj , but returns NULL when trying to find
a point in P ∩ B \ Bj+1. If ξ is a small enough constant, it is not hard to see that pj is
a good approximation of the IFP to q in P ∩ B. Note that in this process, no more than
log1+ξ(dmax/dmin) BD queries are required. This is because the distance between q and any
point in B is at most dmax. Thus, it is not necessary to increase the radius of Bout to be
more than dmax in the BD range query. The bound on the number of BD range queries
then follows from the facts that the series of BD range queries starts with a Bout ball of
radius dmin and each time the radius of Bout is increased by a factor of 1 + ξ. This process is
similar to peel a constant portion of Bin each time by Bout. See Figure 1 for an illustration.

The above discussion suggests that a constrained AIFP data structure can be built
through (approximate) BD query data structures, which have the following definition. Let
ξ > 0 be an approximation factor. A data structure is called ξ-error BD for a point set P , if
given any balls Bin and Bout, it answers the following query (with high success probability):

1 Throughout this paper we use similar notations. Let q be any point and x > 0 be real number. Then,
B(q, x) denotes the ball centered at q and with radius x. Let B be any ball. For real number y > 0, we
let B(y) denote the ball obtained by enlarging (or shrinking if y < 1) the radius of B by a factor of y.
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Figure 1 An illustration of answering a constrained AIFP query using BD queries.

1. If there exists a point in P ∩ (Bin \ Bout), the data structure returns a point in P ∩
(Bin(1 + ξ) \Bout((1 + ξ)−1)).

2. Otherwise, it returns a point in P ∩ (Bin(1 + ξ) \Bout((1 + ξ)−1)) or NULL.

The details of how to construct a ξ-error BD data structure is left to the next subsection.
Below is the main result of the BD query data structure for ξ > 0, fixed constant rin >

0, rout > 0 and success probability controlling factor 0 < δ < 1.

▶ Lemma 7. It is possible to build a ξ-error BD query data structure of size Oξ(dn1+ρ log δ−1)
in Oξ(dn1+ρ log δ−1) time, where 0 < ρ < 1 depends only on ξ. The query time of this data
structure is Oξ(dnρ log δ−1). For any pair of query balls Bin and Bout with radius rin and
rout, respectively, the data structure answers the query with success probability at least 1− δ.

Note that each BD query data structure works only for query balls Bin and Bout with
fixed radii rin and rout, respectively. This means that the constrained AIFP data structure
should consist of multiple BD data structures with different values of rin and rout.

From the above discussion, we know that a constrained AIFP data structure can be
built by constructing a sequence of log(dmax/dmin) BD data sturctures with rin := rB and
rout being dmin, (1 + ξ)dmin, (1 + ξ)2dmin, . . .. Such a data structure will allow us to answer
constrained AIFP queries using the ball peeling strategy.

Given any constants ϵ > 0, γ > 0, 0 < δ < 1, and constraint (rB , dmin, dmax), the
following Algorithm 1 builds a constrained AIFP data structure for a given point set P . The
data structure is simply a collection of BD query data structures.

With such a collection of BD query data structures, we can answer any constrained AIFP
query satisfying (rB , dmin, dmax) by applying the ball peeling strategy mentioned before.
The algorithm is formally described as the Algorithm 2 below.
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Algorithm 1 Build-CAIFP(P ; ϵ, γ, δ; rB , dmin, dmax).

Input: A Rd point set P with cardinality n. Constants ϵ > 0, γ > 0, 0 < δ < 1. Constraint
tuple (rB , dmin, dmax).
Output: A number of BD-Query data structures built with different parameters.

1: Let ξ = min{(1−ϵ)−1/2−1, γ}. Construct a sequence of real numbers r0, r1, r2, . . . , rm, by
letting r0 = dmin, m be the integer such that r0(1+ξ)m−1 < dmax and r0(1+ξ)m ≥ dmax,
ri = (1 + ξ)ri−1 for i = 1, 2, . . . , m, and δ′ = δ/m.

2: FOR i = 0, 1, 2, . . . , m, build a ξ-error BD query data structure for query balls with
radii rin = rB and rout = ri, with query success probability at least 1− δ′.

Algorithm 2 Query-CAIFP(B, q).
Input: A constrained AIFP query (B, q) with constraint (rB , dmin, dmax).
Output: A point pans that is an approximate farthest point in B ∩Q to p, or NULL if no
such point exists.

1: Initialize variable pans ← NULL.
Note: In the following, we use m and ri for i = 0, 1, . . . , m as in Algorithm 1.

2: For i from 0 to m: Make a query (B, Bout,i) to the BD-Query data structure BDi, by
letting Bout,i := B(q, ri). If the query answer is NULL, Return pans. Otherwise update
pans to be the query answer.

3: Return pans.

By some simple calculation, we know that the probability that all the BD queries in
Algorithm 2 are successful is at least 1− δ, and when this happens, the output point pans is
an (ϵ, γ)-AIFP of q in B ∩ P . This is summarized as the following lemma.

▶ Lemma 8. With probability at least 1− δ, Algorithm 2 outputs a point pans ∈ B(1 + γ)
such that for any q ∈ B ∩ P , ∥pans − p∥ ≥ (1− ϵ)∥q − p∥.

Next we analyze the space/time complexity of the AIFP scheme. The query data structure
is a combination of m = Oϵ,γ(log(dmax/dmin)) BD data structures. From the discussion of
BD data structures (see Lemma 7), every BD query data structure we build has space/time
complexity Oϵ,γ(dn1+ρ log δ−1) where 0 < ρ < 1 depends only on ϵ, γ. Each BD query takes
Oϵ,γ(dnρ log δ−1) time. Lemma 6 then follows.

2.1 The BD Query Scheme
In this subsection we present the BD query scheme. To our best knowledge, this is the first
theoretical result to consider the BD range search problem. A very special case of BD query
called the “annulus queries” where the two balls are co-centered is studied in [7]. Nonetheless,
the technique is not directly applicable to general BD queries. Our BD range query scheme
is based on the classic Locality Sensitive Hashing (LSH) technique [15, 5, 12] which has been
a somewhat standard technique for solving the proximity problems in high dimensional space.
The main idea of LSH is to utilize a family of hash functions (called an LSH family) that
have some interesting properties. Given two points p and q in Rd, if we randomly pick a
function h from the LSH family, the probability that the event of h(p) = h(q) happens will
be high if ∥p− q∥ is smaller than a threshold value, and the probability for the same event
will be lower if ∥p − q∥ is larger. Such a property of the LSH family allows us to develop
hashing and bucketing based schemes to solve similarity search problems in high dimensional
space. Below is the definition of an LSH family.
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▶ Definition 9. Let 0 < r1 < r2 and 1 > P1 > P2 > 0 be any real numbers. A family
H = {h : Rd → U}, where U can be any set of objects, is called (r1, r2, P1, P2)-sensitive, if
for any p, q ∈ Rd.
1. if ∥p− q∥ ≤ r1, then PrH[h(p) = h(q)] ≥ P1,
2. if ∥p− q∥ > r2, then PrH[h(p) = h(q)] ≤ P2.

It was shown in [12] that for any dimension d and any r > 0, c > 1, an (r, cr, P1, P2)-
sensitive family H exists, where 1 > P1 > P2 > 0 depends only on c. Every hash function
h(p) : Rd → Z maps a point p in Rd to an integer, and h(p) has the form h(p) = ⌊a·p+b

r ⌋ for
some Rd vector a and integers b, r. It takes O(d) time to sample a hash function h from
such a family and compute h(p). Our data structure will make use of two such families.
Let Hin be an (rin, (1 + ξ)rin, P1, P2)-sensitive family, and Hout be a ((1 + ξ)−1rout, rout, P1,
P2)-sensitive family, where 0 < P1, P2 < 1 are constants depending only on ξ, as
described in [12]. Given any BD-query (Bin, Bout) with the centers of the balls being oin, oout

respectively, the family Hin helps us to identify points that are close enough to oin (and
therefore lie in Bin), and Hout helps us to identify points that are far away enough from oout

(and therefore lie outside of Bout).

High level idea. Our approach is based on a novel bucketing and query scheme that utilizes
the properties of the LSH family. Before presenting the technical details, We first illustrate
the high level idea. For convenience, we assume for now that the functions in Hin and Hout

have range {0, 1} (this is achievable by some simple modification to these hash function
families). We use a randomized process to create a hybrid random hash function S(·) that
maps any point in Rd to a bit string. Such a function S(·) is a concatenation of a number of
hash functions drawn from Hin and Hout. Given p ∈ Rd, S(·) applies the aforementioned
hash functions (drawn from Hin and Hout) on p to obtain a bit-string. With such a function
S(·), consider comparing the bit-strings of S(p), S(q) for points p, q ∈ R. Intuitively, based on
the properties of Hin and Hout, we know that if p, q are close enough, S(p) and S(q) should
have many common bits in positions that are determined by functions from Hin. Contrarily,
if p, q are far away, S(p) and S(q) should have only a few common bits in positions that are
determined by functions from Hout.

For every point p ∈ P , we use S(p) to compute a bit-string label for p, and put p into
the corresponding buckets (i.e., labeled with the same bit-strings). To answer a given BD
query Bin, Bout with centers of the balls being oin, oout, respectively, we compute S(oin) and
S(oout). Note that, based on the above discussion, we know that if a point p satisfies the
condition of p ∈ Bin \ Bout, then S(p) and S(oin) should have many common bits in the
positions determined by Hin, and S(p) and S(oout) should have few common bits in the
positions determined by Hout. Thus, by counting the number of common bits in the labels,
we can then locate buckets that are likely to contain points close to oin and far away from
oout, i.e., points are likely to be in Bin \Bout. To achieve the desired outcome, we will create
multiple set of buckets using multiple random functions S(p).

Details of the Algorithms. After understanding the above general idea, we now present the
data structure and the query algorithm along with the analysis. Let P′

1 = (1 + P1)/2, P′
2 =

(1+P2)/2, η = (P′
1−P′

2)/3, a = ⌈(2P′
1 ln 3)/η2⌉. P′′

1 = 2−2a ·4/9, P′′
2 = 2−2a/3, b = ⌈log1/P′′

2
n⌉,

ρ = ln 1/P′′
1

ln 1/P′′
2

, and c = ⌈nρ/P′′
1⌉. Let FZ be a function that maps every element in Z randomly

to 0 or 1, each with probability 1/2. The following Algorithm 3 shows how to construct a
ξ-error BD range query data structure for any point set P and radii rin and rout. The data
structure consists of c groups of buckets, each created using a random function S(p) that
maps a point to a bit-string of total length 2ab.
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Algorithm 3 CreateBuckets(P, ξ, rin, rout).
Input: A point set P . Parameters ξ > 0, , rin > 0, rout > 0.
Output: G1,G2, . . .Gc. Each Gi is a collection of buckets (i.e., sets of points of P ). Each
bucket G ∈ Gi is labeled with a bit-string, which is a concatenation of sub-bit-strings
labin(G, 1), labout(G, 1), labin(G, 2), labout(G, 2), . . ., labin(G, b), labout(G, b). For
every p ∈ P and i = 1, 2, . . . , c, p appears in one of the buckets in Gi.

1: Initialize Gi, i = 1, 2, . . . , c, as empty sets. Each Gi will be used as a container for
buckets.

2: Randomly sample abc functions from family Hin, and also abc functions from family
Hout. Denote these functions as hin,i,j,k and hout,i,j,k, for integers 1 ≤ i ≤ a, 1 ≤ j ≤
b, 1 ≤ k ≤ c. For every hin,i,j,k, hout,i,j,k and every p ∈ Q, compute FZ(hin,i,j,k(p)) and
FZ(hout,i,j,k(p)).

3: FOR k from 1 to c:
For every point p ∈ P , we create a bit-string S(p) that concatenates
labin(p, 1), labout(p, 1), labin(p, 2), labout(p, 2), . . . , labin(p, b), labout(p, b): For j

from 1 to b, let labin(p, j), labout(p, j) be a pair of bit-strings of length a, each with
the i-th bit being FZ(hin,i,j,k(p)), FZ(hout,i,j,k(p)), respectively, for i = 1, 2, . . . a.
IF there is already a bucket G in Gk with label S(G) = S(p), DO: Put p into G.
ELSE, DO: Create a new bucket G and put G into Gk, set the label of G as
S(G) = S(p). Put p into G.

With the BD range query data structure created by the Algorithm 3, we can use the
Algorithm 4 below to answer a BD range query for any given pair of balls (Bin and Bout).
The main idea of the algorithm compute a bit-string label S for the query, then examine
points in buckets with labels that satisfy certain properties (e.g. should have enough common
bits with S). Due to the fact that we label these buckets using functions from two LSH
families, it can be shown that the chance for us to find a point in Bin(1 + ξ) \Bout((1 + ξ)−1)
from one of the examined buckets will be high if there exists a point in Bin \Bout.

In the following we show the correctness of Algorithm 4. Consider the for loop in Step 1
of Algorithm 4 when answering a query (Bin, Bout). Using the notations from Algorithm 4,
for any k from 1 to c in Step 1, we have the following lemma, which shows that if a point
in P lies in (or outside of) the query range, the number of common bits between its bucket
label and the label computed from the query would likely (or unlikely) be high, respectively.

▶ Lemma 10. Let p ∈ P be a point that lies in Bin \ Bout, and q ∈ P

be a point that does NOT lie in Bin(1 + ξ) \ Bout((1 + ξ)−1). Let S(p) =
labin(p, 1), labout(p, 1), labin(p, 2), labout(p, 2), . . . , labin(p, b), labout(p, b) and S(q) =
labin(q, 1), labout(q, 1), labin(q, 2), labout(q, 2), . . ., labin(q, b), labout(q, b) be the labels of
the bucket in Gk that contains p and q, respectively. For any j = 1, 2, . . . , b, the following
holds.

Pr[COM(labin(p, j), labin(oin, j)) ≥ t1 ∧ COM(labout(p, j), labout(oout, j)) ≥ t2] ≥
4/9.
Pr[COM(labin(q, j), labin(oin, j)) ≥ t1 ∧ COM(labout(q, j), labout(oout, j)) ≥ t2] ≤
1/3.

Proof. Since p ∈ Bin \ Bout, we have ∥p− oin∥ ≤ rin and ∥p− oout∥ ≥ rout. For any hash
function h1 ∈ Hin and h2 ∈ Hout, Pr[h1(p) = h1(oin)] ≥ P1 and Pr[h2(p) = h2(oout)] ≤
P2. Thus, we have Pr[FZ(h1(p)) = FZ(h1(oin))] ≥ (P1 + 1)/2 and Pr[FZ(h2(p)) = 1 −
FZ(h2(oout))] ≤ (1− P2)/2. This means that for any i = 1, 2 . . . , a, the probability that the
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Algorithm 4 BD-Query(Bin, Bout).

Input: Two Rd balls: Bin with center oin and radius rin, and Bout with center oout and
radius rout. Assume that collections G1,G2, . . .Gc have already been generated by algorithm
CreateBucket.
Output: A point p ∈ Q, or NULL.
Note: The algorithm probes a number of points in the buckets of G1,G2, . . .Gc until a suitable
point is found as the output, or terminates and returns NULL when no such point can be
found or the number of probes exceeds a certain limit.

1: Do the following, but terminate and return NULL when 3c points are examined: FOR
k from 1 to c:

Create a bit string S that concatenates labin(oin, 1), labout(oout, 1), labin(oin, 2),
labout(oout, 2), . . ., labin(oin, b), labout(oout, b): For j from 1 to b, let labin(oin, j),
labout(oout, j) be a pair of bit strings of length a, with the i-th bit of each string
being FZ(hin,i,j,k(oin)), 1− FZ(hout,i,j,k(oout)), respectively, for i = 1, 2, . . . a.
Create a bit string S′ that concatenates lab′

in(1), lab′
out(1), lab′

in(2), lab′
out(2), . . . ,

lab′
in(b), lab′

out(b): Each of these sub bit strings is a random bit string of length a,
drawn uniformly randomly from {0, 1}a.
If there exists some integer j such that COM(labin(oin, j), lab′

in(j)) < t1 or
COM(labout(oout, j), lab′

out(j)) < t2, where COM(x, y) counts the number of com-
mon digits of 2 bit strings x, y, t1 = P′

1a− ηa, t2 = (1− P2)a/2− ηa CONTINUE.
If there is no bucket in Gk that is labeled with S′, CONTINUE.
Examine all the points in the bucket G in Gk that is labeled with S′. Stop when there
a point p ∈ G such that p ∈ Bin(1 + ξ) \Bout((1 + ξ)−1). Return p.

2: Return NULL if no point is returned in the above process.

i-th bit of labin(p, j) is the same as that of labin(oin, j) is at least P′
1 = (P1 + 1)/2. Since

the hash functions to determine each of the bits are drawn independently, an estimation
of X = COM(labin(p, j), labin(oin, j)) can be obtained by Pr[FZ(h1(p)) = FZ(h1(oin))] ≥
(P1 + 1)/2 using the concentration inequalities for binomial distributions. Using a variant of
the Chernoff inequalities from [22], we have

Pr[X ≤ P′
1a− ηa] ≤ e−(ηa)2/(2P′

1a).

From the definition of the parameters, we know that Pr[X ≤ P′
1a − ηa] ≤ 1/3 (by simple

calculation). Thus, we have Pr[X ≥ t1] ≥ 2/3.
Let Y = COM(labout(p, j), labout(oout, j)). From Pr[FZ(h2(p)) = 1− FZ(h2(oout))] ≤

(1 − P2)/2 and using a similar argument as above, we can also obtain Pr[Y ≥ t2] ≥ 2/3
(the details are omitted). Since the hash functions are drawn independently, we have
Pr[X ≥ t1 ∧ Y ≥ t2] ≥ 4/9.

In the following we discuss the case that q ̸∈ Bin(1 + ξ) \Bout((1 + ξ)−1). This means
either ∥q − oin∥ ≥ (1 + ξ)rin or ∥q − oout∥ ≤ (1 + ξ)−1rout. We first consider the case
∥q − oin∥ ≥ (1 + ξ)rin. For any hash function h1 ∈ Hin, Pr[h1(q) = h1(oin)] ≤ P2. Thus,
we have Pr[FZ(h1(q)) = FZ(h1(oin))] ≤ (P2 + 1)/2. This means that for any i = 1, 2 . . . , a,
the probability that the i-th bit of labin(q, j) is the same as that of labin(oin, j) is at
most P′

2 = (P2 + 1)/2. Again, we use a concentration inequality to obtain an estimation of
X = COM(labin(q, j), labin(oin, j)). Using a variant of the Chernoff inequalities from [22],
we have

Pr[X ≥ P′
2a + ηa] ≤ e−(ηa)2/(2P′

2a+ηa/3).
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Note that a = (2P′
1 ln 3)/η2 ≥ ((2P′

2 + η/3) ln 3)/η2, which implies that e−(ηa)2/(2P′
2a+ηa/3) ≤

1/3 (by simple calculation). Thus, we have Pr[X ≥ P′
2a + ηa] ≤ 1/3. Also, since

P′
2a + ηa < P′

1a − ηa = t1, we get Pr[X ≥ t1] ≤ 1/3. This immediately implies that
Pr[COM(labin(q, j), labin(oin, j)) ≥ t1 ∧ COM(labout(q, j), labout(oout, j)) ≥ t2] ≤ 1/3.

The argument for the case ∥q − oout∥ ≤ (1 + ξ)−1rout is similar. Thus, we omit it here.
This completes the proof. ◀

From the above lemma, we can conclude the following by basic calculation. For any k

from 1 to c in Step 1 of Algorithm 4 (if the loop is actually executed), let p ∈ P be a point
that lies in Bin \Bout, and q ∈ P be a point that does NOT lie in Bin(1+ξ)\Bout((1+ξ)−1),
we have the following.

▶ Lemma 11. Let Gp and Gq be the buckets in Gk that contain p and q, respectively. The
probability for Gp to be examined is no smaller than 2−2ab(4/9)b = (P′′

1)b, and the probability
for the event “ALL such Gp for k from 1 to c are NOT examined” is at most (1−(P′′

1)b)c ≤ 1/e.
The probability for Gq to be examined is no larger than 2−2ab(1/3)b = (P′′

2)b ≤ 1/n.

With the above lemma, we can obtain the following lemma using an argument similar
to [15] for near neighbor search with LSH. This proves the correctness of the query scheme.

▶ Lemma 12. If there exists a point in P that lies in Bin \ Bout, with probability at least
1/4, Algorithm 4 reports a point in P that lies in Bin(1 + ξ) \Bout((1 + ξ)−1).

The complexity of the data structure is O(dabcn), which is Oξ(dn1+ρ log n) from a =
Oξ(1), b = Oξ(log n) and c = Oξ(nρ), and ρ and the constant hidden in the big-O notation
depends only on ξ. The query time is O(abcd), which is Oξ(dnρ log n). To achieve 1 − δ

success probability, it suffices to concatenate O(log δ) such data structures together.
Due to space limit. we leave the proof of the above 2 lemmas and the full proof of

Lemma 7 to the full version of the paper.

3 Multi-scale Construction

In this section, we present the multi-scale construction method, which is a standalone technique
with potential to be used to other high dimensional range-aggregate query problems.

The multi-scale construction method is motivated by several high dimensional geometric
query problems that share the following common feature: they are challenging in the general
settings, but become more approachable if some key parameters are known in advance. The
AIFP query problem discussed in this paper is such an example. In the previous section, we
have shown how to construct an AIFP data structure if we fix the size of the query ball and
know that the farthest distance lies in a given range.

The basic ideas behind multi-scale construction are the follows. Firstly, we know that if
a problem is solvable when one or more key parameters are fixed, a feasible way to solve the
general case of the problem is to first enumerate all possible cases of the problem defined by
(the combinations of) the values of the parameters. Then, solve each case of the problem,
and finally obtain the solution from that of all the enumerated cases. The multi-scale
construction method follows a similar idea. More specifically, to obtain a general AIFP query
data structure, the multi-scale construction method builds a set of constrained AIFP query
data structures that cover all possible radii of B and farthest distance value. Secondly, since
it is impossible to enumerate the infinite number of all possible values for these parameters,
our idea is to sample a small set of fixed radii (based on the distribution of the points in P )
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and build constrained AIFP data structures only for the set of sampled values. This will
certainly introduce errors. However, good approximations are achievable by using a range
cover technique.

Below we first briefly introduce two key ingredients of our method, Aggregation Tree and
Range Cover, and then show how they can be used to form a multi-scale construction.

3.1 Aggregation Tree and Range Cover
In this subsection, we briefly introduce the two components of the multi-scale construction
scheme: the aggregation tree and the range cover data structure. We first introduce aggreg-
ation tree, which is used in [18] as an ingredient of the range cover data structure. It is
essentially a slight modification of the Hierarchical Well-Separated Tree (HST) introduced
in [14]. Below is the definition of an aggregation tree: (1) Every node v (called aggregation
node) represents a subset P (v) of P , and the root represents P ; (2)Every aggregation node v

is associated with a representative point re(v) ∈ P (v) and a size s(v). Let Dia(P (v)) denotes
the diameter of P (v), s(v) is a polynomial approximation of Dia(P (v)): Dia(P (v)) ≤ s(v),
and s(v)

Dia(P ) is upper-bounded by a polynomial function PHST (n, d) ≥ 1 (called distortion
polynomial); (3) Every leaf node corresponds to one point in P with size s(v) = 0, and each
point appears in exactly one leaf node; (4) The two children v1 and v2 of any internal node v

form a partition of v with max{s(v1), s(v2)} < s(v); and (5) For every aggregation node v

with parent vp, s(vp)
rout

is bounded by the distortion polynomial PHST (n, d) ≥ 1, where rout is
the minimum distance between points in P (v) and points in P \ P (v).

The above definition is equivalent to the properties of HST in [14], except that we have
an additional distortion requirement (Item 5). See Figure 2 for example of an aggregate tree.

Figure 2 An illustration of an aggregation tree built for 6 points.

An aggregation tree can be constructed in O(dn log2 n) time using the method in [14]. It
is proved in [14] that the distortion polynomial is PHST (n, d) = dn. In the rest of the paper,
we always assume that the distortion of an aggregation tree is PHST (n, d) = dn.

In the following, we briefly introduce range cover. Range cover is a technique proposed
in [18] for solving the truth discovery problem in high dimensions. We utilize it in a completely
different way to form a multi-scale construction for the AIFP query problem. Below is the
algorithm (Algorithm 5). Given an aggregation tree Tp and real number parameters ∆ ≥ 8n

and 0 < λ < 1 (whose values will be determined later), the range cover algorithm creates a
number of buckets for the nodes of TP . Each bucket Bt is associated with an interval of real
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Algorithm 5 RangeCover(TP ; λ, ∆).

Input: An aggregation tree TP built over a set P of n points in Rd; controlling factors
0 < λ < 1 and an integer ∆ ≥ 4PHST (n, d).
Output: A number of buckets, where each bucket stores a number of tree nodes. Each
bucket Bt is indexed by an integer t and associated with an interval ((1 + λ)t, (1 + λ)t+1].

1: For every integer t create an empty bucket Bt associated with interval ((1+λ)t, (1+λ)t+1].
(Note that Bt will not be actually created until some tree node v is inserted into it.)

2: For every non-root node v of TP , let vp be its parent in TP , rH be s(vp)/λ, and rL be
max{s(v)/λ, s(vp)/∆}. Do

For every integer t satisfying inequality rL ≤ (1 + λ)t < rH , insert v into bucket Bt.

number ((1 + λ)t, (1 + λ)t+1]. If a value r lies in the interval of a bucket Bt, it can be shown
that the diameter of every aggregation node v is small compared to r, and thus all points
in P (v) can be approximately viewed as one “heavy” point located at the representative
point re(v). Intuitively, every bucket from the range cover algorithm provides a view of P

when observed from a distance r in the range of the bucket, where each node in the bucket
represents a “heavy” point that is formed by the aggregation of a set of close (compared to
the observing distance) clusters of points in P . Thus, the buckets of the range cover provides
views of the input point set at different scales of observing distances (see Figure 3 for an
illustration). The size of the output data structure is only O(n log n∆), as shown in [18].

Figure 3 An illustration of range cover. The nodes in every bucket can be viewed as “heavy”
points yielded by the aggregation of a set of close points. Every bucket provides a view of the input
point set when observed from a certain distance. All the buckets jointly form a complete set of
views of the input points at all possible scales.

Note that for many problems, fixing some key parameters also means fixing the “observing
distance” of P from the perspective of solving the problem. This allows us to solve the
problem based on the view of P provided by the bucket associated with the corresponding
observation distance. We will show that this idea also applies to the AIFP problem.

3.2 Multi-scale Construction for AIFP
In this subsection, we use AIFP problem as an example to show how to implement multi-scale
construction using the range cover data structure.

We first observe that every bucket of the range cover can be used to solve a constrained
AIFP problem (with the proof given later). Given an AIFP query (B, q), if the (approximate)
distance from q to a point in P ∩B is known and falls in the interval of ((1 + λ)t, (1 + λ)t+1],
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then the (approximate) distance from q to a point of Bt ∩B (where every node v in Bt is
viewed as a “heavy” point located at re(v)) is an AIFP of q in P ∩B. This means that Bt

provides a good “sketch” of P that allows more efficient computation of the AIFP of q in
P ∩B. This observation leads to the main idea of the multi-scale construction method. To
obtain a general AIFP query data structure, for every bucket Bt, we construct a constrained
AIFP data structure for Bt (viewed as a set of “heavy” points), exploiting the assumption
that the farthest distance is in the interval of ((1 + λ)t, (1 + λ)t+1]. To answer a general
AIFP query, we can find the AIFP for every bucket by querying the constrained AIFP data
structures associated with the bucket. In this way, we can compute AIFPs for all possible
radii. When answering a general AIFP query, we first determine an approximate farthest
distance of q to P ∩B, and then query the appropriate constrained AIFP data structures.
Despite the necessity of building multiple constrained data structures, the complexity of the
multi-scale construction is not high, as the total number of nodes in all buckets is only Õ(n).

However, the above idea is hard to implement, because each bucket Bt is only responsible
for a small range ((1 + λ)t, (1 + λ)t+1] of the possible farthest distance from q to P ∩P . This
means that we need an accurate estimation of this distance when answering the query, which
is almost as hard as the query itself. We resolve this issue by merging multiple consecutive
buckets into a larger one. The resulting bucket can account for a larger range of the possible
farthest distances. We then build a constrained data structure for each bucket.

This leads to the following Multi-Scale algorithm. Let Γ ≥ 1 be an integer constant to be
determined, andA be an algorithm for building a constrained data structure. In this algorithm,
for each integer t, we try to merge the aggregation nodes in buckets Bt, Bt+1, . . . , Bt+Γ from
the range cover (recall that these buckets are associated with farthest distance ranges
((1 + λ)t, (1 + λ)t+1], ((1 + λ)t+1, (1 + λ)t+2] . . . , ((1 + λ)t+Γ, (1 + λ)t+Γ+1], respectively) into
one bucket B+

t that could account for a larger range ((1 + λ)t, (1 + λ)t+Γ+1]. We then use A
to build a data structure St for every bucket B+

t (by viewing every node in B+
t as a point).

Algorithm 6 Multi-Scale(TP ; λ, ∆, Γ; A).

Input: An aggregation tree TP built over a set P of n points in Rd; controlling factors
0 < λ < 1, integer ∆ ≥ 4PHST (n, d) = 4dn, and integer Γ ≥ 1. A routine A which builds a
constrained data structure for any given bucket Bt and point set re(B+

t ) := {re(v) | v ∈ B+
t }.

Output: A number of buckets, with each storing a number of tree nodes. Each bucket B+
t is

indexed by an integer t and associated with an interval ((1 + λ)t, (1 + λ)t+Γ+1]. Each bucket
B+

t is associated with data structure St built by A.
1: Create a collection of buckets {Bt} by calling RangeCover(TP ; λ, ∆(1 + λ)Γ).
2: For each integer t create an empty bucket B+

t associated with ((1 + λ)t, (1 + λ)t+Γ+1].
3: For every non-root node v of TP , enumerated in a bottom-up manner in TP so that the

children of a node is always visited earlier than the parent node, put v into B+
t for every

t such that the following is satisfied:
s(v) ≤ λ(1 + λ)t, v appears in Bt′ ∈ {Bt} for some t ≤ t′ ≤ t + Γ, and none of v’s
descendants are put in B+

t previously.
4: For every non-empty bucket B+

t , create a data structure St using A for the point set
re(B+

t ) := {re(v) | v ∈ B+
t }.

For better understanding of this scheme, we first briefly discuss the geometric properties
of the buckets created by Algorithm 6. Intuitively speaking, the aggregation nodes of every
bucket provide a sketch of almost the whole input point set P , with the exception being
points that satisfying some special isolation property. This can be briefly described as follows:
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(1) The diameter of each the aggregation node (viewed as a point set) should be small to the
observation distances; (2) The aggregation nodes are mutually disjoint; and (3) Every point
p ∈ P is either in one of the nodes in the bucket, or it is in an aggregation node (not in the
bucket) whose distance to other nodes is large. These properties are formalized as follows.
(We leave the proofs of all the following claims and lemma to the full version of the paper.)

▷ Claim 13. Let v be any aggregation node v in a created bucket B+
t . Then, s(v) ≤ λ(1+λ)t.

▶ Lemma 14. For any p ∈ P and and bucket B+
t created by Algorithm 6, one of the following

holds:
1. There exists exactly one aggregation node v ∈ B+

t such that p ∈ P (v).
2. Either B+

t is empty or there exists no aggregation node v ∈ B+
t such that p ∈ P (v). There

exists an aggregation node v′ in TP such that s(v′)/λ ≤ (1 + λ)t. Furthermore, let q be
any point in P \ P (v′), then ∥p− q∥ > (∆/dn)(1 + λ)t+Γ.

Although the sketch does not fully cover P , in many problems (including AIFP) these
points are either negligible or easy to handle by other means due to their special properties.

From [18], we know that the running time of Algorithm 5 and the space complexity of
the output data structure is Oλ(n log n∆) (where the hidden constant in the big-O notation
depends only on λ). Algorithm 6 essentially merges Γ + 1 consecutive buckets Bt, Bt+1, . . .,
Bt+Γ created by Algorithm 5 into one bucket B+

t . Thus, we have the following lemma.

▶ Lemma 15. Excluding the time it takes for A to process each B+
t in Step 4, the running

time of Algorithm 6 and the total number of nodes in all buckets is Oλ(Γ2n log n∆), where
the hidden constant in big-O notation depends only on λ.

We conclude this subsection by providing a key lemma showing that, given a constrained
AIPF query (B, q) satisfying constraint (rB , dmin, dmax) with dmin ≤ rB ≤ dmax, if there
is a bucket B+

t such that (1 + λ)t+1/(1 − λ) < dmin < dmax ≤ (1 + λ)t+Γ − (2 + 2/λ)rB

(i.e. the range [dmin, dmax] falls in interval ((1 + λ)t, (1 + λ)t+Γ+1] with some gap), then,
with an easy-to-handle exception, an AIFP to q in B+

t (by viewing every node of B+
t as

one point) in (slightly enlarged) range B is also an AIFP of q to P ∩ B. Formally, let
re(B+

t ) := {re(v) | v ∈ B+
t }. Let pt be the farthest point to q in re(B+

t ) ∩ B(1 + λ) if
re(B+

t ) ∩B(1 + λ) ̸= ∅, and p be a (λ/6, λ/6)-AIFP of q in re(B+
t ) ∩B(1 + λ) 2. Let pN be

a (1 + λ)-approximate nearest neighbor of q in P .

▶ Lemma 16. One of the following holds: (1) pN is a (2λ, 2λ)-AIFP of q in P ∩B, or (2)
pt exists and (1 + λ)t ≤ ∥q − pt∥ ≤ (1 + λ)t+Γ+1, and p is a (2λ, 2λ)-AIFP of q in P ∩B.

The above lemma implies that, in Algorithm 6, if routine A builds a constrained AIFP
data structure for farthest distance lies in interval [(1 + λ)t, (1 + λ)t+Γ+1], then either this
data structure can be used to answer any query with constraint (rB , dmin, dmax) (with other
parameters, like rB and the approximate factors for constrained AIFP, set properly), or the
AIFP query can be solved easily using a nearest neighbor search. In the following section, we
will show how to build a general AIFP query data structure through multi-scale construction
by selecting appropriate parameters. With the multi-scale data structure (together with some
auxiliary data structures), we can answer an AIFP query by (1) obtaining a rough estimation
of the farthest distance, and (2) querying the bucket corresponding to the estimated range.

2 Note p could be NULL here. This could happen when bucket B+
t is empty or re(B+

t ) ∩ B(1 + λ) = ∅.
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4 General AIFP Query

In this section, we present a general (ϵ, γ)-AIFP query scheme. In the following, let B be a
closed ball with radius rB > 0 and q be an arbitrary point. Let 0 < ϵ < 1 and 0 < γ < 1
be any pair of constants and λ := min(ϵ, γ)/512. We assume that rB is λ-aligned, which
means that rB = (1 + λ)t for some integer t. The alignment assumption makes it easier
to implement the multi-scale construction. Note that if rB is not λ-aligned, we can always
enlarge B a little to make rB λ-aligned and still obtain a good approximation with carefully
chosen parameters.

Our main idea is to convert each query (B, q) into one or more AIFP queries (B′, q) such
that it is possible to find a lower bound dmin and an upper bound dmax on the farthest
distance between q and a point in B′∩P . With such bounds, the AIFP can then be found by
querying a pre-built constrained AIFP data structure. To ensure efficiency, the gap between
dmin and dmax cannot be too large, i.e., dmax/dmin should be bounded by a polynomial of n

and d. Since the complexity of a constrained data structure depends on dmax/dmin, a small
gap will also enable us to control the size of the data structure. We start with a simple claim.

▷ Claim 17. If the distance between q and the center oB of B is very large compared to rB ,
i.e. ∥q − oB∥ ≥ (3 + γ)ϵ−1rB , then any point in B(1 + γ/2) is an (ϵ, γ)-AIFP of q in P ∩B.

This claim suggests that we can safely assume that the farthest distance between q and
P ∩B is not too large (compared to rB), as otherwise the AIFP can be easily found with
a nearest neighbor query. This helps us establish an upper bound on the farthest distance.
In the following, we let dmax := (4 + 2γ)ϵ−1rB, and assume that ∥q − oB∥ ≤ (3 + γ)ϵ−1rB.
From simple calculation, this implies that for any p ∈ P ∩B(1 + γ), we have ∥p− q∥ ≤ dmax.

Next, we try to find a lower bound for the farthest distance. Since the full argument will
be rather complicated, we will thus describe only the general idea here, and leave the details
to the full version of the paper. We start with a simple case.

Case 1: ∥q − oB∥ ≥ (1 + γ/64)rB, i.e. q does not lie in B and is not very close to the
boundary of B. Then, clearly the farthest distance from q to any point in P ∩B is at least
(γ/64)rB . Recall that we have obtained an upper bound dmax := (4 + 2γ)ϵ−1rB . The ratio
dmax/(γrB/64) is clearly bounded by a polynomial of n, d.

In the following, we assume that ∥q − oB∥ ≤ (1 + γ/64)rB , which means that q lies in B

or is very close to the boundary of B. Let pN ∈ P be a 2-nearest neighbor of q in P (i.e. for
any p′ ∈ P , ∥pN − q∥ ≤ 2∥p′ − q∥) , and denote rN := ∥pN − q∥. We discuss another simple
case.

Case 2: rN > γrB/64. Since pN is a 2-approximate nearest neighbor, we conclude that the
distance from q to any point in P ∩B is at least γrB/128. Again, the ratio dmax/(γrB/128)
is well bounded.

In the following, we assume that rN ≤ γrB/64. In order to find a good lower bound on
the farthest distance, our general strategy is to examine points around pN and see whether
there exists a point p′ whose distance to q is sufficiently large, but still upper bounded by
(γ/64)rB . The upper bound (γ/64)rB ensures that p′ ∈ B(1 + γ/16), i.e. p′ “approximately”
lies in B, and because of the fuzziness of the region, ∥p′ − p∥ can be used as a lower bound
on the farthest distance. To efficiently implement this idea, we make use of an aggregation
tree TP with distortion polynomial PHST (n, d) = nd. Later, we will use this TP to construct
the query data structure. Let vN denote the leaf node of TP that correspond to singleton
set {pN}. We walk along the tree path from vN to the root of TP , and examine the nodes
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(and their associated point sets) on this path. Denote by v the highest (closest to the root)
node of TP such that pN ∈ P (v) and s(v) + rN ≤ γrB/64. Note that since rN ≤ γrB/64 and
s(vN ) = 0, such a node v must exist. Since s(v) is an upper bound on the diameter of P (v),
every point p′ ∈ P (v) satisfies inequality ∥p′ − q∥ ≤ γrB/64, and thus p′ ∈ B(1 + γ/16). See
Figure 4 for a illustrations of the relations between q and points in P (v). We consider two
more cases, depending on the value of s(v) + rN .

Figure 4 An illustration of points in P (v), P \ P (v) and q.

Case 3: s(v) + rN > γrB/512n2d2. This means that s(v) + rN is at least rB divided by a
polynomial of n, d. Note that from the low distortion property of TP , s(v) is a polynomial
approximation of the diameter of P (v). It is possible to show by standard inequality
arguments that, s(v) + rN is a polynomial approximation of q’s farthest distance to any point
in P (v). Since P (v) ⊂ B(1 + γ/16), we conclude that the farthest distance from q to any
point in B(1 + γ/16) ∩ P is lower bounded by rB divided by a polynomial of n, d. A careful
calculation gives us an estimated lower bound rB/2048n3d3. Since an upper bound for the
farthest distance is dmax = (4 + 2γ)ϵ−1rB, the quality of this lower bound is satisfactory
because the gap between it and dmax is a polynomial of n, d.

Case 4: s(v) + rN ≤ γrB/512n2d2. We show that in this case, either there is a lower bound
on the farthest distance, or the query can be reduced to another AIFP query where the
range of farthest distances can be bounded. Let vp be the parent of v (if v is the root of
TP , the following result still holds), then s(vp) + rN ≥ γrB/64. This means that s(vp) is
much larger than s(v). From the property of TP , we know that for any pout ∈ P \ P (v), the
ratio s(vp)/∥pout − pN∥ is upper bounded by the distortion polynomial PHST (n, d) = nd.
In the current case, s(vp)/s(v) is indeed much larger than nd. Thus ∥pout − pN∥ is very
large compared to s(v), which gives us a lower bound on ∥pout − q∥. In fact, by a careful
calculation, it is possible to show that ∥q − pout∥ ≥ γrB/256nd for any pout ∈ P \ P (v).
Furthermore, since the distance between q and any point in P (v) is at most γrB/512n2d2,
which is much smaller than γrB/256nd. This implies that it is possible to use a ball centered
at q to separate P (v) and P \ P (v). In fact, if let rsep := [s(v) + rN ]λ, where [x]λ denote the
smallest real number that can be written as (1 + λ)t for some integer t such that (1 + λ)t ≥ x,
then it can be shown that for every p ∈ P (v), p ∈ B(q, rsep) and for every p ∈ P \ P (v),
p ̸∈ B(q, (1 + γ)rsep).

With the above argument, we divide Case 4 into 2 sub-cases. Let pF be the actual
farthest point to q in P ∩ B. We first discuss Case 4a, where pF ∈ P \ P (v). From the
above discussion, we have ∥q − pF ∥ ≥ γrB/256nd, which gives a good lower bound on the
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farthest distance. For Case 4b where pF ∈ P (v), we know that the query reduces to a
problem of finding the farthest point in p ∩ B(q, rsep). For this problem, it is possible to
prove a rsep/8nd lower bound and rsep upper bound on the farthest distance. The ratio of
the two bounds is satisfactory.

To summarize, for Case 1,2 and 4a, let d
(1)
max := (4 + 2γ)ϵ−1rB, d

(1)
min := γrB/256nd

and r
(1)
B := rB , the AIFP query satisfies constraint (r(1)

B , d
(1)
min, d

(1)
max); for Case 3, the AIFP

query can be answered from constraint query (B(oB , [(1 + γ/16)rB]λ), q), which satisfies
constraint (r(2)

B , d
(2)
min, d

(2)
max), where d

(2)
min := γrB/2048n3d3, d

(2)
max := (4 + 2γ)ϵ−1rB and

r
(2)
B := [(1 + γ/16)rB]λ; for Case 4a, the AIFP query reduces to query (B(q, rsep), q), with

constraint (r(3)
B , d

(3)
min, d

(3)
max) where d

(3)
max := r

(2)
B := rsep, d

(3)
min := d

(3)
max/8nd. Any AIFP

query can be answered from one of the three constraint queries, and we have d
(i)
max/d

(i)
min no

larger than 2048(4 + 2γ)n3d3/ϵ for any i = 1, 2, 3.

4.1 Multi-scale Construction for General AIFP Query
In this subsection, we show how to build a Multi-Scale data structure to answer general AIFP
queries. Our goal is to choose the appropriate parameters Γ ≥ 1, 0 < λ < 1 and ∆ ≥ 4nd

for Algorithm 6 so that for every AIFP query with constraint (r(i)
B , d

(i)
min, d

(i)
max), there exists

a bucket B+
t whose range ((1 + λ)t, (1 + λ)t+Γ+1] wholly covers the interval [d(i)

min, d
(i)
max],

and the constrained AIFP data structure built for the bucket with dmin := (1 + λ)t and
dmax := (1 + λ)t+Γ+1 can be used to answer the query. Note that we have already defined
λ := min(ϵ, γ)/512 and ∆ := 4nd. The remaining task is to determine the value of Γ.

Observe that d
(i)
max/d

(i)
min is bounded by a polynomial Pgap(n, d) := 2048(4 + 2γ)n3d3/ϵ.

Let Γ′ := ⌈log1+λ Pgap(n, d)⌉, and ΓL ≥ Γ′ and ΓR ≥ Γ′ be integer parameters to be
determined later. Denote by Γ the sum of ΓL and ΓR, i.e., Γ := ΓL + ΓR. For every integer t,
define rmid(t) := (1 + λ)t+ΓL . Therefore, we have rmid(t)/(1 + λ)t ≥ (1 + λ)ΓL ≥ Pgap(n, d)
and (1+λ)t+Γ+1/rmid(t) ≥ (1+λ)ΓR ≥ Pgap(n, d). For any AIFP query (B, q) with constraint
(r(i)

B , d
(i)
min, d

(i)
max), it is always possible to find a bucket B+

t such that r
(i)
B = rmid(t). Clearly,

interval ((1 + λ)t, (1 +λ)t+Γ+1] wholly covers the interval [d(i)
min, d

(i)
max]. If a constrained AIFP

data structure is constructed for B+
t with constraint ((1 + λ)rmid(t), (1 + λ)t, (1 + λ)t+Γ+1),

it can be used to answer the AIFP query (B, q). (See Lemma 16.)
To summarize the above discussions, we set the parameters of Algorithm 6 as the following.

The algorithm then produces the data structure for (ϵ, γ)-AIFP query. Assume that a real
number 0 < δ < 1 is given and we would like to achieve 1− δ query success probability.

λ := min(ϵ, γ)/512, ΓL := Γ′ + ⌈log1+λ 8⌉, ΓR := Γ′ + ⌈log1+λ 8⌉, Γ := ΓL + ΓR, ∆ := 4nd.
Routine A: Given a non-empty bucket B+

t , A, it uses Algorithm 1 to creates a constrained
(λ/6, λ/6)-AIFP data structure for point set re(B+

t ) for constraint ((1 + λ)rmid(t), (1 +
λ)t, (1 + λ)t+Γ+1), with success probability at least 1− δ/4.

Note that we let ΓL := ΓR := Γ′ + ⌈log1+λ 8⌉. This allows more gap when fitting the
interval [d(i)

min, d
(i)
max] in ((1 + λ)t, (1 + λ)t+Γ+1], which is required by Lemma 16.

With the multi-scale data structure constructed by Algorithm 6 using the above
parameters, we are able to answer any general AIFP query by reducing it to at most
three constrained (λ/6, λ/6)-AIFP queries (where λ = min(ϵ, γ)/512) with constraints
(r(i)

B , d
(i)
min, d

(i)
max), i = 1, 2, 3. From Lemma 6 and the fact that the ratio dmax/dmin satisfies

dmax/dmin = (1+λ)t+Γ+1/(1+λ)t = (1+λ)Γ+1, which is bounded by a polynomial of n, d, we
know that log dmax/dmin is Oϵ,γ(log nd) and the query time is Oϵ,γ(dnρ log δ−1Polylog(nd))
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for some ρ < 1 depending on ϵ, γ. The multi-scale data structure consists of mul-
tiple AIFP structures built on buckets of points with total size Oλ(Γ2n log(n∆)) (from
Lemma 15). From Lemma 6, we know that the complexity of the data structure is
Oϵ,γ(dn1+ρ log δ−1Polylog(nd)). We leave the detailed analysis to the full version of the
paper.

5 MEB Range Aggregate Query

Given any query ball B, we find the AMEB of P ∩B using an iterative algorithm by Badoiu
and Clarkson [9]. Their algorithm was originally designed for finding an approximate MEB
for a fixed point set P . With careful analysis we show that their approach, after some
modifications, can still be used to find AMEB in any given range B. Briefly speaking,
our idea is to construct a small-size coreset of P ∩ B. The MEB of the coreset is then a
(ϵ, γ)-approximate MEB of P ∩B. The algorithm selects the coreset in an iterative fashion.
It starts with an arbitrary point p from P ∩B. At each iteration, it performs the following
operation to add a point to the coreset: (1) Compute an (approximate) MEB of the current
coreset (directly using the algorithm in [9]); (2) Identify the AIFP in P ∩B to the center of
the current MEB, and add it to the coreset. We can show that after Oϵ,γ(log n) iterations,
the MEB of the coreset is then a (ϵ, γ)-AMEB of P ∩B.

To answer an (ϵ, γ)-AMEB query with success probability at least 1 − δ, we will need
only one (ϵ′, γ′)-AIFP data structure with success probability 1− δ/Oϵ′(log n) (where ϵ′, γ′

depends on ϵ, γ polynomially), whose size is Oϵ,γ(dn1+ρ log δ−1Polylog(nd)) for some ρ < 1
depending on ϵ, γ. Every AMEB query is reduced to Oϵ′(log n) AIFP queries (the time for
computing the MEB every iteration is negligible compared to AIFP queries). Thus, the
query time is Oϵ,γ(dnρ log δ−1Polylog(nd)). The detailed analysis is left to the full version of
the paper.
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Abstract
Financial networks model a set of financial institutions (firms) interconnected by obligations. Recent
work has introduced to this model a class of obligations called credit default swaps, a certain kind of
financial derivatives. The main computational challenge for such systems is known as the clearing
problem, which is to determine which firms are in default and to compute their exposure to systemic
risk, technically known as their recovery rates. It is known that the recovery rates form the set
of fixed points of a simple function, and that these fixed points can be irrational. Furthermore,
Schuldenzucker et al. (2016) have shown that finding a weakly (or “almost") approximate (rational)
fixed point is PPAD-complete.

We further study the clearing problem from the point of view of irrationality and approximation
strength. Firstly, we observe that weakly approximate solutions may misrepresent the actual financial
state of an institution. On this basis, we study the complexity of finding a strongly (or “near")
approximate solution, and show FIXP-completeness. We then study the structural properties required
for irrationality, and we give necessary conditions for irrational solutions to emerge: The presence of
certain types of cycles in a financial network forces the recovery rates to take the form of roots of
non-linear polynomials. In the absence of a large subclass of such cycles, we study the complexity of
finding an exact fixed point, which we show to be a problem close to, albeit outside of, PPAD.
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1 Introduction

The International Monetary Fund says that the global financial crisis (GFC) of 2007 has
had long lasting consequences, including loss of growth, large public debt and even a decline
of fertility rates, see [2]. Consequently, the need to assess the systemic risk of the financial
network cannot be overstated. For example, if banks at risk of defaults could be easily
identified in the complex network of financial obligations, then spread could be preemptively
avoided with appropriate countermeasures such as bailouts from central banks or regulators.

In this context, the clearing problem introduced in [7] plays a central role. We are given
a so-called financial network, that is, a graph where vertices are banks (or, more generally,
financial institutions) and weighted arcs (u, v) model direct liabilities from bank u to bank v.
Each bank has also some assets external to the network, that can be used to pay its liabilities.
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The question is to compute a clearing recovery rate vector, that is, the ratio between money
available (coming from assets and payments from others) over liabilities for each bank. If this
ratio is bigger than 1 for a bank, then it will be able pay its dues – in this case, we simply set
its rate to 1. The banks that are in default have recovery rates smaller than 1. The problem
of computing clearing recovery rates (which we will also refer to as the clearing problem)
is well understood when there are only simple debt contracts in the network, then clearing
recovery rate vectors always exist, are unique, and can be computed in polynomial time [7].

However, Eisenberg and Noe’s model in [7] ignores the issue of financial derivatives that
may be present in the system. The deregulation allowing banks to invest in these products
is considered by many as one of the triggers of the GFC. The introduction of financial
derivatives to financial networks is due to [22], where the focus is on a simple and yet widely
used class of conditional obligations known as Credit Default Swaps (CDSes), the idea being
to “swap” or offset a bank’s credit risk with that of another institution. More specifically, a
CDS has three entities: a creditor v, a debtor u and a reference bank z – u agrees to pay
v a certain amount whenever z defaults. Whilst CDSes were conceived in the early 1990s
as a way to protect v from the insolvency of z for direct liabilities (i.e., a (v, z)-arc in the
network), they quickly became a speculative tool to bet against the creditworthiness of the
reference entity and have in fact been widely used both as a hedging strategy against the
infamous collateralised debt obligations, whose collapse contributed to the GFC, and pure
speculation during the subsequent eurozone crisis. The clearing problem in the presence of
these financial derivatives is somewhat less well-characterised: it is known that the clearing
recovery rate vectors can be expressed as the fixed points of a certain function, and existence
of solutions is then guaranteed via a fixed-point argument [22]. On the other hand, these
fixed points can be irrational, and the computational problem is PPAD-complete [23] as long
as one is interested in only a weak approximation of a recovery rate vector.

1.1 Our Contributions
In this paper we deepen the study of the clearing problem for financial networks with CDSes
from two complementary viewpoints. Firstly, we argue that weak approximations can be
misleading in this domain, as the objective under the weak approximation criterion is to find
an “almost” fixed point (i.e., a point which is not too far removed from its image under the
function). The risk estimate provided by this concept might be very far off the actual rate,
thus changing the amount of bailout needed or even whether a bank needs rescue in the first
place (see, e.g., our example in Figure 1b below). A more useful (but more difficult) objective
is to obtain a strong approximation, that is, a point that is geometrically close to an actual
fixed point of the function. Such a risk estimate would be actionable for a regulator, as
the error could be measured in terms of irrelevant decimal places. Furthermore, the banks
themselves would accept the rate when the strong approximation guarantee is negligible,
whereas a weak approximation could significantly misrepresent their income and are subject
to be challenged, legally or otherwise.

As our first contribution, we settle the computational complexity of computing strong
approximations to the clearing problem in terms of FIXP [9], by showing that the clearing
problem is complete for this class. In our reduction, we provide a series of financial network
gadgets that are able to compute opportune arithmetic operations over recovery rates.
Interestingly, not that many FIXP-complete problems are known, although there are a few
important natural such problems (three-or-more-player Nash equilibria being a notable
example). Hardness reductions for this class tend to be rather technically involved. The
hardness reduction that we provide here indeed has some technical obstacles as well, although
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our reduction is quite natural at a high level, and could inspire further developments in
the area. Our result complements the current state of the art and completes the picture
about the computational complexity of the clearing problem with financial derivatives. It
shows that computing strongly approximate fixed points is harder than computing weakly
approximate fixed points, which holds due to PPAD being equal to the class Linear-FIXP,
which is a restriction of FIXP, and this makes PPAD (indirectly) a subclass of FIXP.

▶ Main Theorem 1 (Informal). Computing a strong approximation to the clearing recovery
rates in a financial network with CDSes is FIXP-complete.

The FIXP-hardness of the strong approximation problem indicates that there is an additional
numerical aspect contributing to the hardness of the problem, which is not present in the
weak approximation problem (where the hardness is of a combinatorial nature, due to the
reducibility to the end-of-the-line problem which is canonical to PPAD). For the strong
approximation problem, the nature of the underlying function for which we want to find the
fixed points requires, in particular, the multiplication operation, which ultimately accounts
for irrationality and super-polynomial numerical precision being necessary in order to derive
whether a given point is a strong approximation to a clearing vector.

We then turn our attention towards irrational solutions with the goal to determine the
source of irrationality and understand when it is possible to compute the clearing recovery
rate vector exactly in the form of rational numbers. We identify a structural property of
cycles in an opportunely enriched network that leads to unique irrational solutions. This
property exactly differentiates the CDSes that produce and propagate irrationality of the
recovery rates, that we call “switched on”, from those that do not, termed “switched off”.
We prove the following close-to-tight characterisation of irrationality:

▶ Main Theorem 2 (Informal). If the financial network has only “switched on” CDSes in
a cycle and the cycle cannot be shortcut with paths of length at most three then there exist
rational values for debt and asset values for which the recovery rate vector is unique and
irrational. Conversely, if every cycle of the financial network does not have any “switched on”
CDSes then we can compute rational recovery rates in a polynomial number of operations,
provided that we have oracle access to PPAD.

Our proof of irrationality uses a graph “algebra” (i.e., a set of network fragments and an
operation on them) that is able to generate all the possible cycle structures with the property
above, which uncovers a connection between the network structure of the clearing problem
and the roots of non-linear equations. For the opposite direction, we provide an algorithm
that exploits the acyclic structure of financial networks with solely “switched off” CDSes.
This algorithm iteratively computes the recovery rates of each strongly connected component
of the network. We show that even for the simpler topologies of the financial system under
consideration, the problem remains PPAD-hard, hence the need for the oracle access to PPAD.

Significance of Our Results. We see our results as important analytical tools that legislators
can use to regulate financial derivatives. For example, our results contribute to the ongoing
debate in the US and Europe about banning speculative uses of CDSes. In particular, they
support, from a computational point of view, the call to ban so-called “naked” CDSes (as
already done by the EU for sovereign debt in the wake of the Eurozone crisis, see [1]). A
naked CDS is purely speculative since its creditor and debtor have no direct liabilities with
the reference entity. It turns out that these CDSes add arcs between potentially unconnected
nodes, thus possibly adding more of the cycles that lead to irrationality and, given that strong
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approximations are out of scope due to our FIXP-hardness, it is not only combinatorially but
also numerically intractable to gain insight in the systemic risk of such financial networks.
A mechanism to monitor the topology of a financial network might be useful to avoid the
construction of cyclical structures that include CDSes.

Both of our main results introduce significant novel technical and conceptual innovations
to the field. As mentioned above, our reduction for the FIXP-hardness is somewhat more
direct than in previous work we are aware of. Our reduction is direct, in the sense that it
starts from the algebraic circuit defined by an arbitrary problem in FIXP. The reduction
employs two main steps: We firstly force the outputs of all gates in the circuit to be in the
unit cube, by essentially borrowing arguments from [9], after which we produce a series of
network gadgets that preserve gate-wise the computations of said circuit; this makes the
reduction conceptually straightforward in its setup.

It is worth highlighting a specific technical challenge that we overcome in our proof,
as we think it sheds further light on FIXP, and in particular, on the operator basis of the
algebraic circuits that are used to define the class. It is known that the circuit of problems
in FIXP can be restricted without loss of generality on the arithmetic basis {max, +, ∗}
[9], whereas restricting the internal signals of the circuit to the unit cube (with the toolkit
developed in [9]) needs some further operators, including /. For our optimisation problem
to be in FIXP, we need the rather mild and realistic assumption that our instances are
non-degenerate as defined in [23]. The function of which the fixed points define the recovery
rates of non-degenerate instances is well defined, where the non-degeneracy is needed to avoid
a division by 0. It turns out that non-degeneracy is incompatible with division being part of
the FIXP operator basis, i.e., it seems difficult to build such a financial network that in any
sense simulates a division of two signals in an algebraic circuit. To bypass this problem, our
proof shows that it is possible to substitute / in the basis with the square root operator,

√
·,

whilst keeping the function well defined. This substitution can be used to simulate division
with constant large powers of 2, and this turns out to be sufficient to omit the /-operator
(i.e., arbitrary division). This novel observation might be useful for other problems where
division is problematic to either define the fixed point function, or the reduction.

Our second result indirectly aims at characterising the “rational fragment” of FIXP: To
the best of our knowledge this is the first study in this direction. A couple of observations
can be drawn from our attempt. Firstly, our sufficiency conditions for irrationality suggest
that any such characterisation needs to fully capture the connection between the fixed point
condition and the rational root theorem; our proof currently exploits the cyclical structure
of networks with “switched on” CDSes to define one particular quadratic equation with
irrational roots. Whilst this captures a large class of instances, more work is needed to
give a complete characterisation (see Section 6 for a discussion). Secondly, our sufficiency
conditions for rational solutions highlight a potential issue with their representation. Due
to the operations in the arithmetic basis, most notably multiplication, these solutions can
grow exponentially large (even though each call to the PPAD oracle returns solutions of size
polynomial in their input). This observation establishes a novel connection between the
Blum-Shub-Smale computational model [5] (wherein the size to store any real number is
assumed to be unitary and standard arithmetic operations are executed in one time unit), the
rational part of FIXP, and PPAD. Our result paves way to further research on the subject.

Further Related Work. Systemic risk in financial networks has been studied extensively
in the literature [3, 8, 13, 15, 16, 17, 6, 21, 19]. Game-theoretic perspectives of financial
networks are studied in [4, 20]. Fixed point computations of total search problems, are
studied in [9]. FIXP-complete problems are presented in [14, 10, 12, 11].
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2 Model and Preliminaries

2.1 Financial Systems
Let N = {1, . . . , n} be a set of n banks. Each bank i ∈ N has external assets, denoted
by ei ∈ Q≥0 and e = (e1, . . . , en) is the external assets vector. We consider two types of
liabilities among banks: debt contracts and credit default swaps (CDSes). A debt contract
requires one bank i (debtor) to pay another bank j (creditor) a certain amount ci,j ∈ Q≥0.
We denote by DC the set of all pairs of banks participating in a debt contract. A CDS
requires a debtor i to pay a creditor j on condition that a third bank called the reference
bank R is in default, meaning that R cannot fully pay its liabilities. Formally, we associate
each bank i a variable ri ∈ [0, 1], called the recovery rate, that indicates the proportion of
liabilities it can pay. Having ri = 1, means bank i can fully pay its liabilities, while ri < 1
indicates that i is in default. In case a reference bank R of a CDS is in default, the debtor i

of that CDS pays the creditor j an amount of (1 − rR)cR
i,j , where cR

i,j ∈ Q≥0 is the face value
of the CDS. We denote by CDS the set of all triplets participating in a credit default swap.
The value ci,j (cR

i,j , resp.) of a debt contract (CDS, resp.) is referred to as the notional of the
contract. Finally we let c be a three-dimensional (n × n × n) matrix containing all contract
notionals; we do not allow any bank to have a debt contract with itself, and assume that all
three banks in any CDS are distinct.

▶ Definition 1. A financial system is a triplet (N, e, c), where N = {1, .., n} is a set of banks,
e = (e1, .., en) ∈ Qn

≥0 is the vector of external assets, and c ∈ Qn×n×n
≥0 is the three-dimensional

matrix of all contract notionals.

The contract graph of I = (N, e, c) is defined as a directed multigraph GI = (V, A), where
V = N and A = (∪k∈N Ak) ∪ A0 where A0 = {(i, j) | ci,j ̸= 0} and Ak = {(i, j) | ck

i,j ̸= 0}.
Each arc (i, j) ∈ A0 is coloured blue and each (i, j) ∈ Ak orange. For all (i, j, R) ∈ CDS we
draw a dotted orange line from node R to arc (i, j) ∈ AR, denoting that R is the reference
bank of the CDS between i and j. Finally, we label each arc with the notional of the
corresponding contract, and each node with the external assets of the corresponding bank.

Given a recovery rate vector r ∈ [0, 1]n, we define the liabilities, payments, and assets
in a financial system as follows. The liability of a bank i ∈ N to a bank j ∈ N under r

is denoted by li,j(r) = ci,j +
∑

k∈N (1 − rk)ck
i,j . That is, we sum up the liabilities from the

debt contract and all CDS contracts between i and j. We denote by li(r) the total liabilities
of i: li(r) =

∑
j∈N li,j(r). The payment bank i makes to bank j under r is denoted by

pi,j(r), where pi,j(r) = ri · li,j(r). The assets of a bank i under r are the total amount it
possesses through its external assets and incoming payments made all by other banks, i.e.,
ai(r) = ei +

∑
j∈N pj,i(r). Our research focuses on clearing recovery rate vectors (CRRVs).

▶ Definition 2. Given a financial system (N, e, c), a recovery rate vector r is called clearing if
and only if for all banks i ∈ N , ri = min {1, ai(r)/li(r)}, if li(r) > 0, and ri = 1 if li(r) = 0.

We set to 1 the recovery rate of nodes without liabilities, whereas [22] leaves these uncon-
strained. This is in line with the interpretation that these banks are not in default and only
a cosmetic difference, as discussed in the full version of the paper [18].

We call cds-clearing the problem of computing a CRRV in a given financial system with
debt contracts and credit default swaps. For an instance I ∈ cds-clearing any clearing vec-
tor is a solution and the solution set is denoted by Sol(I). Let I ∈ cds-clearing and consider
fI : [0, 1]n 7→ [0, 1]n defined at each coordinate i ∈ [n] by fI(r)i = ai(r)/(max{li(r), ai(r)}).
It is easy to see that Sol(I) actually consists of the fixed point of function fI . The existence of
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at least one fixed point of fI for every I ∈ cds-clearing was proved in [22]. Unfortunately,
there exist instances of cds-clearing in which all clearing vectors have irrational values,
one example given in [23]. We present another example, to also illustrate our contract graphs.

▶ Example. Figure 1a consists of eight banks, N = {1, . . . , 8}. They all have external assets
0 except for banks 2 and 7 (ej = 0 for j ̸= 2, 7, e2 = e7 = 1/2). The set of debt contracts
is DC = {(2, 3), (3, 4), (6, 5), (7, 6)} and the set of CDSes is CDS = {(2, 1, 6), (7, 8, 3)}. All
contract notionals are set to 1. For a recovery rate vector r, node 2’s liability is l2(r) =

1 2 3 4
1 1 1

5 6 7 8
1 1 1

1/2

1/2

(a) CRRVs can be irrational.

11 2 3
1 1/21/2

41 5 6
4ϵ1

(b) Approximations of CRRVs.

Figure 1 On the left a financial system (a) with irrational solutions. On the right a financial
system (b) where the weak approximate fixed point is far from the actual fixed point.

l2,3(r) + l2,1(r) = c2,3 + (1 − r6)c6
2,1 = 2 − r6. For node 3, it holds l3(r) = l3,4(r) = c3,4 = 1.

The assets of node 2 are a2(r) = e2 = 1/2 whereas a3(r) = e3 + p2,3(r) = r2c2,3 = r2.
Symmetrically, l7(r) = 2 − r3, a7(r) = 1/2 and l6(r) = 1, a6(r) = r7. For node 1 it holds that
a1(r) = e1 + p2,1(r) = r2(1 − r6)c6

2,1 and for node 8 a8(r) = r7(1 − r3)c3
7,8. From the above

computations and by applying the CRRV condition we get that any solution must satisfy:
r2 = min {1, 1/(2(2 − r6))}, r6 = r7, r7 = min {1, 1/(2(2 − r3))}, and r3 = r2, implying that
2r2

2 − 4r2 + 1 = 0 and then r2 = r3 = r6 = r7 = 1 −
√

2/2 and r1 = r5 = r4 = r8 = 1.

2.2 Approximation and Complexity
Let F be a continuous function that maps a compact convex set to itself and let ϵ > 0 be a
small constant. A weak ϵ-approximate fixed point of F is a point x such that ∥x−F (x)∥∞ < ϵ.
A strong ϵ-approximate fixed point of F is a point x s.t ∃x′ : F (x′) = x′ ∧ ∥x′ − x∥∞ < ϵ.
Moreover, under a mild condition on the fixed point problem under consideration, known
as polynomial continuity, a strong approximation is also a weak approximation [9], which
explains the use of the terms “strong” and “weak”.

Formally a fixed point problem Π is defined as a search problem such that for every
instance I ∈ Π there is an associated continuous function FI : DI → DI where DI ⊆ Rn (for
some n ∈ N) is compact and convex, such that the solutions of I are the fixed points of FI .
The problem Π is said to be polynomially computable if there is a polynomial q such that (i.)
DI is a convex polytope described by a set of at most q(|I|) linear inequalities, each with
coefficients of a size at most q(|I|), and (ii.) For each x in DI ∩ Qn, the value FI(x) can be
computed in time q(|I| + size(x)). Here, the “size” of a rational number means the number
of bits needed to represent the numerator and the denominator in binary. Furthermore Π
is said to be polynomially continuous if there is a polynomial q such that for each I ∈ Π,
and rational ϵ > 0, there is a rational δ of size q(|I| + size(ϵ)) satisfying the following: for all
x, y ∈ DI with ∥x − y∥∞ < δ it holds that ∥FI(x) − FI(y)∥∞ < ϵ.

With regard to cds-clearing, it is straightforward to verify that cds-clearing is
polynomially computable. Furthermore, [23] establishes implicitly that cds-clearing is
polynomially continuous under a (very) mild assumption that the authors call non-degeneracy.
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▶ Definition 3. A financial system is non-degenerate if and only if the following two
conditions hold. Every debtor in a CDS either has positive external assets or is the debtor in
at least one debt contract with a positive notional. Every bank that acts as a reference bank
in some CDS is the debtor of at least one debt contract with a positive notional.

We define cds-clearing to contain only non-degenerate financial networks, both for the sake
of compatibility with [23] and for the analytical convenience that non-degeneracy provides
us (note that a division by 0 never occurs in fI(r)i for these instances). In [23], it is also
shown that the weak approximation version of cds-clearing is PPAD-hard. The polynomial
continuity of cds-clearing shows that the strong approximation version of cds-clearing
is at least as hard as its weak approximation version. As noted above, weakly approximate
fixed points may contain misleading information about whether a bank is in default or not,
as shown in the next example. This motivates the study of strong approximations.

▶ Example. Consider the instance in Figure 1b. It is not hard to see that r = (1, 1, 1, 1, 0, 1)
is an exact fixed point; r′ = (1, 1 − 2ϵ, 1, 1, 1/2 + ϵ, 1) is instead a weakly ϵ-approximate fixed
point since f2(r′) = 1 − 2ϵ and f5(r′) = 1/2 implying that ∥r′ − f(r′)∥∞ ≤ ϵ. We observe
that r is very far from r′ and, in particular, as r′

2 = 1 − 2ϵ < 1, we would conclude that 2 is
in default whereas 2 can actually fully pay its liabilities since r2 = 1.

FIXP is the complexity class introduced to study the strong approximation and exact
versions of fixed point problems [9].

▶ Definition 4. The class FIXP consists of all fixed point problems Π that are polynomially
computable, and for which for all I ∈ Π the function FI : DI → DI can be represented by an
algebraic circuit CI over the basis {+, −, ∗, max, min}, using rational constants, such that
CI computes FI , and CI can be constructed from I in time polynomial in |I|.

The class FIXPa is defined as the class of search problems that are the strong approximation
version of some fixed point problem that belongs to FIXP.

The class Linear-FIXP is defined analogously to FIXP, but under the smaller arithmetic
basis where only the gates {+, − max, min} and multiplication by rational constants are used.

The classes FIXP, Linear-FIXP, and FIXPa admit complete problems. Hardness of a search
problem Π for FIXP (resp. Linear-FIXP and FIXPa) is defined through the existence of a
polynomial time computable function ρ : Π′ → Π, for all Π ∈ FIXP (resp. FIXPa), such that
the solutions of I can be obtained from the solutions of ρ(I) by applying a (polynomial-time
computable) linear transformation on a subset of ρ(I)’s coordinates. This type of reduction
is known as a polynomial time SL-reduction.

It is known that FIXPa ⊆ PSPACE and Linear-FIXP = PPAD [9]. Consequently, the
solutions of instances in Linear-FIXP are always rationals of polynomial size. An informal
understanding of how the hardness of FIXP compares to PPAD (or Linear-FIXP) is as follows.
PPAD captures a type of computational hardness stemming from an essentially combinatorial
source. The class FIXP introduces on top of that a type of numerical hardness that emerges
from the introduction of multiplication and division operations: These operations give rise
to irrationality in the exact solutions to these problems, and may independently also require
the computation of rational numbers of very high precision or very high magnitude.

3 FIXP-Completeness of CDS-Clearing

Our first main result shows that cds-clearing and its strong approximation variant are
FIXP(a) complete. We show that we can take an arbitrary algebraic circuit and encode it
in a direct way in the form of a financial system. Hence, our polynomial time hardness
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reduction is implicitly defined to work from to any arbitrary fixed point problem in FIXP.
The reduction is constructed by devising various financial network gadgets which enforce
that certain banks in the system have recovery rates that are the result of applying one of the
operators in FIXP’s arithmetic base to the recovery rates of two other banks in the system:
In other words, we can design our financial systems such that the interrelation between the
recovery rates mimics a computation through an arbitrary algebraic circuit.

▶ Theorem 5. cds-clearing is FIXP-complete, and its strong approximation version is
FIXPa-complete.

Proof Sketch. The clearing vectors for an instance I ∈ cds-clearing are the fixed points
of the function fI defined above, which can be computed using a polynomial size algebraic
circuit with only {max, +, ∗}, and rational constants. Note that non-degeneracy of I prevents
division by 0, so that the output of the circuit is well-defined for every x ∈ [0, 1]n. This
shows that cds-clearing is in FIXP and that its strong approximation version is in FIXPa.

For the FIXP-hardness of the problem, let Π be an arbitrary problem in FIXP. We
describe a polynomial-time reduction from Π to cds-clearing. Let I ∈ Π be an instance, let
FI : [0, 1]n → [0, 1]n be I’s associated fixed point function, and let CI be the algebraic circuit
corresponding to FI . As a pre-processing step, we convert CI to an equivalent alternative
circuit C ′

I that satisfies that all the signals propagated by all gates in C ′
I and all the used

rational constants in C ′
I are contained in the interval [0, 1]. The transformed circuit C ′

I may
contain two additional type of gates: Division gates and gates that computes the absolute
value of the difference of two operands. We will refer to the latter type of gate as an absolute
difference gate. The circuit C ′

I will not contain any subtraction gates, and will not contain
max and min gates either. The transformation procedure for CI follows the same approach of
the transformation given in Theorem 4.3 of [9] where the 3-Player Nash equilibrium problem
is proved FIXP-complete, and borrows some important ideas from there. Nonetheless, there
are important differences in our transformation, starting with the fact that we use a different
set of types of gates in our circuit. (Details can be found in the full proof in [18].)

For notational convenience, in the remainder of the proof we may treat C ′
I as the function

FI , hence we may write C ′
I(x) = y to denote FI(x) = y. Let ρ denote the reduction to cds-

clearing: We construct our instance ρ(I) of cds-clearing (i.e., a non-degenerate financial
network) from the circuit C ′

I . The instance ρ(I) will have the property that its clearing
vectors are in one-to-one correspondence with the fixed points of C ′

I , and that banks 1, . . . , n

in our construction correspond to the input gates of C ′
I . More precisely, our construction

is such that for each fixed point x of C ′
I , in the corresponding clearing vector r for ρ(I) it

holds that (r1, . . . , rn) = x. Our reduction works through a set of financial system gadgets,
of which we prove that their recovery rates (under the clearing condition) must replicate
the behaviour of each type of arithmetic operation that can occur in the circuit C ′

I . Each
of our gadgets is non-degenerate, has one or two input banks that correspond to the input
signals of one of the types of arithmetic gate, and there is an output bank that corresponds
to the output signal of the gate. For each of the gadgets, it holds that the output bank must
have a recovery rate that equals the result of applying the respective arithmetic operation on
the recovery rates of the input banks, see examples in Figure ?? (gpos− is a building block
for the absolute difference gadget). Besides gadgets for the necessary arithmetic operations,
our reduction employs an additional duplication gadget gdup that can be used to connect the
output of a particular gadget to the input of more than one subsequent gadget. A technically
involved step is needed for the division gates; we replace some of the divisions in the circuit
C ′

I by taking successive square-roots followed by successive squaring operations, where proper
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care has to be taken to ensure that the results of all these operations stay within the interval
[0, 1]. Full definitions of our gadgets (including gadgets for squares and square roots) can be
found in [18].

r1

r2

r1 + r2

1

1

(a) Addition gadget g+.

r1 1 21 1

3 51
1

r2 7 811

1

9 max{0, r1 − r2}
1

1

(b) Positive subtraction gadget gpos− computes max{0, r1 −r2}.

Figure 2 Exemplar gadgets from our reduction ρ.

In our financial system, these gadgets are then connected together according to the
structure of the circuit C ′

I : Output banks of (copies of) gadgets are connected to input banks
of other gadgets through a single unit-cost debt contract, which mimics the propagation of a
signal between two gates of the arithmetic circuit. This results in a financial system whose
behaviour replicates the behaviour of the arithmetic circuit. The first layer of the financial
system consists of n banks representing the n input nodes of the circuit, and the last layer
of the financial system has n banks corresponding to the n output nodes of the circuit. As
a final step in our reduction, the n output banks in the last layer are connected through
a single unit-cost debt contract to the n input banks. This last step enforces the recovery
rates of the input banks (i.e., banks 1, . . . , n) are equal to the recovery rates of the last layer,
under the clearing requirement. Consequently, any vector of clearing recovery rates for ρ(I)
must then correspond to a fixed point of C ′

I , where the recovery rates of the first n banks
in the system equal those of the final n banks, so that C ′

I(r1, . . . , rn) = (r1, . . . , rn), i.e.,
(r1, . . . , rn) is a fixed point of C ′

I . It is clear that ρ(I) can be constructed in polynomial time
from C ′

I , and since C ′
I can be constructed in polynomial time from I, the financial system

ρ(I) takes polynomial time to compute.
FIXPa-completeness of strong approximations holds since any strong ϵ-approximation of

the CRRV of ρ(I) corresponds to a strong ϵ-approximate fixed point of C ′
I . ◀

4 A Sufficient Structural Condition for Irrational Solutions

In this section we investigate the existence of irrational solutions in financial systems in
more depth. Our starting point is the observation that irrational clearing recovery rates can
only arise under certain structural conditions on the financial system (e.g., a system with
no CDSes has a rational CRRV [7]). Which structural conditions must exactly hold in a
financial system for irrational clearing vectors to potentially exist? In this section, we present
a set of sufficient structural conditions that provides a partial answer to this question.

4.1 Switched Cycles
We define the auxiliary graph GI,aux of I = (N, e, c) to be a tricoloured directed graph
obtained from GI by adding a red-coloured arc (R, i) for every (i, j, R) ∈ CDS. The auxiliary
graph corresponding to the instance in Figure 1b is given in Figure 3. We say that an
instance I is acyclic if and only if its GI,aux contains no directed cycle. It is not hard to see
that every acyclic financial system has only rational solutions. (We defer the proof to the
full version [18].)
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11 2 3
1 1/21/2

41 5 6
4ϵ1

Figure 3 The auxiliary graph for the instance in Figure 1b.

We say that a node i ∈ N is switched off iff it has only one incoming red arc and no
outgoing blue arcs. A node i ∈ N is switched on iff its incoming red arcs exceeds 1 or its
incoming red arcs equals 1 and there is at least one outgoing blue arc. Note that switched
on and switched off nodes are not complements of each other. A node that is not a debtor in
any CDS is neither switched on nor switched off. These notions are illustrated in Figure 4.

▶ Definition 6 (Switched Cycles). A cycle is red iff it has at least one red arc. A cycle is
weakly switched iff it is red, and for at least one red arc (u, v) in C, v is switched on. A
cycle is strongly switched iff it is red, and for each red arc (u, v) in C, v is switched on.

We will prove that when a non-degenerate financial system I has a strongly switched cycle
(and a certain additional technical condition holds), there exist coefficients for the financial
system under which all CRRVs of I are irrational. Our proof introduces a framework for
formulating strongly switched cycles and consists of three main steps. Firstly, we define a set
of primitive financial systems without notionals and external assets, called fragments. Each
of these fragments has a designated start and end node. A binary concatenation operation is
also introduced so to obtain financial systems that are obtainable by “stringing” together
fragments. We refer to graphs obtainable through this operation as fragment strings or cycles
(when the end node is linked back to the initial start node). Secondly, we equip each fragment
with particular choices of rational coefficients to define arithmetic fragments; these allow to
conveniently rewrite fragment strings, given that the objective is to preserve recovery rates at
the end nodes. We prove that each of the resulting arithmetic fragment cycles has irrational
CRRVs. Finally, we show that a particular class of strongly switched cycles are constructible
from these fragments and for each instance I with these cycles there exist rational coefficients
also for nodes and arcs not in the cycle such that all the CRRVs of I are irrational.

4.2 Fragments
We denote by G the set of all fragments that we will use. Few representatives of G are defined
in Figure 5 (left), presented in our tricoloured graphical notation. Start and end nodes are
indicated by short incoming and outgoing black arrows, respectively. The full description of

off on
on

Figure 4 One switched off and two switched on nodes.
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Figure 5 Some fragments in G (left) with their arithmetic version (right). Each fragment is
labeled with its name.

G can be found in the full paper [18]; the additional fragments are either variants of those
shown here (substituting direct liabilities with CDSes as in gb

1 vis-a-vis ga
1 ) – called gj

i , with
j ∈ {a, b, c, d} when i ∈ [2] and j ∈ {a, b} for i = 3 – or simpler configurations that just copy
the recovery rate from start to end node, called d1 and d2.

We define a binary merging operation on ordered pairs of fragments (a, b), where every
pair (a, b) is mapped to a graph obtained by taking disjoint copies of a and b, and connecting
the two copies together by identifying the end node of a with the start node of b. The new
start node and end node of the resulting system is the start node of the copy of a and the end
node of the copy of b, respectively. We denote the result of the merge operation on fragments
a and b symbolically by the notation ab. A fragment string is a fragment obtainable from
fragments in G using any number of sequential applications of the merge operation. We let
GS be the set of fragment strings (i.e., the closure of G under the merge operation). By
identifying the start node with the end node of a fragment string we obtain a fragment cycle.
The induced fragment cycle is denoted ẋgsẋ, where x ∈ G and gs ∈ GS. Let GC to be the set
of fragment cycles.

A fragment with fixed coefficients is called an arithmetic fragment, see Figure 5 (right)
where we omit to show 0 external assets for some nodes. We denote by x′ or x′′ the arithmetic
version of x ∈ G. The difference between x′ and x′′ are minimal; for the fragments in Figure
5, the only difference between x′ and x′′ is that the notional for the bottom right liability
(e.g., arc from node 1 to node 4 in ga

1 ) is valued 2 rather than 1. The red labels at the end of
an arithmetic fragment indicate the assets of the end node under any clearing vector as a
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function of the recovery rate r of the start node. Importantly, both x′ and x′′ have the same
recovery rate at the end node. The merge operation and notation used for fragments apply
to arithmetic fragments as well. The following observation can be derived by inspection.

▶ Observation 7. Let x′
1 and x′

2 be any two consecutive arithmetic fragments in a string or
cycle C of arithmetic fragments. Let r be the recovery rate of the start node of x′

1 under a
clearing vector of C. It holds that:

If x′
1 ∈ {gj′

i , gj′′

i : i ∈ [2], j ∈ {a, b, c, d}} and x′
2 ∈ {gj′

i : i ∈ [2], j ∈ {a, b, c, d}} ∪ {d′
1, d′

2},
then the recovery rate of the end node of x′

1, is (1 − r)/(2 − r) or 1/(3 − r).
If x′

1 ∈ {gj′

3 , gj′′

3 : j ∈ {a, b}} and x′
2 ∈ {gj′′

i : i ∈ [3], j ∈ {a, b, c, d}}, then the recovery
rate of the end node of x′

1 is 1/(3 − r).

We now give a notion of equivalence between arithmetic fragment strings.

▶ Definition 8. Let x1
s, x2

s be two arithmetic fragment strings. We say that x1
s and x2

s are
equivalent iff the recovery rate of the end node of x1

s equals the recovery rate of the end node
of x2

s for all possible choices r ∈ [0, 1] of the recovery rate of the input nodes of xs
1 and xs

2.

Equivalence enables us to simplify big fragment string and cycles to simpler ones while
preserving the recovery rate of the end node. This is achieved by a set of rewriting rules.
Rule 0: Replace an occurrence of a fragment gj′

i (gj′′

i , respectively), where i ∈ [3] and
j ∈ {a, b, c, d}, with the fragment ga′

i (ga′′

i , respectively).
Rule 1: Replace an occurrence of a fragment ga′

2 (respectively ga′′

2 ) by ga′

1 ga′

1 respectively
ga′′

1 ga′

1 if the fragment ga′

2 (or respectively ga′′

2 ) is followed by one of the fragments in
{ga′

1 , ga′

2 , ga′

3 , d′
1, d′

2}.
Rule 2: Replace an occurrence of a consecutive pair of fragments g′

3ga′′

i , where g′
3 ∈ {ga′

3 , ga′′

3 },
and i ∈ [3], by the fragments ga′

2 ga′

i . By Observation 7, the recovery rates of the end
nodes of g′

3 and ga′

2 are identical under this substitution, under any clearing vector, so
that the two fragment strings are equivalent.

Rule 3: Remove an occurrence of d′
1 or d′

2. This substitution is straightforward from the
fact that both d′

1 and d′
2 just transfer the recovery rate from the start to the end node.

4.3 Irrationality of Strongly Switched Cycles
Consider any instance I = (N, e, c) with auxiliary graph GI,aux. If I has a strongly switched
cycle, then this cycle is composed entirely of the fragments in G. This is formalised as follows.

▶ Definition 9. Let G′ be a fragment cycle, and let C ′ be the unique directed cycle in
G′. The fragment cycle G′ is said to agree with a cycle C of GI,aux iff there is a mapping
ξ : V (G′) → V (GI,aux) with the following properties:

For all (v, w) ∈ E(G′), (ξ(v), ξ(w)) is in E(GI,aux) and has the same color as (v, w).
ξ restricted to the domain V (C ′) defines a bijection between V (C ′) and V (C).
For each CDS (i, j, R) in G′, (ξ(i), ξ(j), ξ(R)) is a CDS of G.

Note that the above points imply that ξ restricted to V (C ′) defines an arc-color-preserving
isomorphism between C ′ and C. However, this isomorphism does not necessarily extend to
node sets larger than C ′: nodes in V (G′) \ V (C ′) may be mapped by ξ to the same vertex of
GI,aux. We then define the fragment cycle G′ = G′

n ∪ G′
l to simply agree with a cycle C of

GI,aux, if G′ agrees with C of GI,aux through a mapping ξ for which it additionally holds that
all nodes outside C ′ are mapped to vertices outside C,
For every pair of nodes {u, v} ⊆ V (G′), where v ∈ G′

n and u ∈ G′
l, ξ(u) ̸= ξ(v), and

for every node u ∈ G′
l , ξ(u) has an outgoing arc pointing towards a node not in C ′,

where G′
n is the set of nodes in the fragment cycle G′ labelled with a number (as 1, . . . , 5 in

Figure 5) and G′
l is the set of fragment nodes labelled with a letter (as c in Figure 5).
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The notion of simple agreement informally requires that the neighbouring nodes of C ′

are sufficiently “independent” from each other and from the cycle C, under the mapping ξ.
This brings us to the definition of a simple strongly switched cycle (which makes precise our
condition on off-cycle paths between the nodes in the cycles in the informal statement of our
second main theorem in the introduction).

▶ Definition 10. A cycle C of GI,aux is a simple strongly switched cycle iff C is strongly
switched, and for each red arc (u, v) of C there are non-red arcs (u, u′) and (v, v′) such
that u′, v′ ̸∈ C. Furthermore, if (u, u′) or (v, v′) is orange, then the reference bank R of the
corresponding CDS is not in C and R has an outgoing non-red arc pointing to a node not
in C.

The fragments in G, can represent any strongly switched cycle: If GI,aux has a strongly
switched cycle C, then there is a fragment cycle G′ consisting of fragments in G s.t G′ agrees
with C of GI,aux. Similarly, if GI,aux has a simple strongly switched cycle C, then there
is a fragment cycle G′ consisting of fragments in G s.t G′ simply agrees with C of GI,aux.
All switched on nodes of C correspond to the 2-labeled nodes of a gj

2 or gj
1 fragment, for

some j ∈ {a, b, c, d}. The next lemmas show that we can set the coefficients in any strongly
switched fragment cycle s.t the fragment cycle admits only irrational clearing recovery rates.

▶ Lemma 11. For all fragment cycles C ∈ GC consisting of only fragments in {gj
1 : j ∈

{a, b, c, d}}, there exist coefficients s.t. the clearing recovery rate vector of C is irrational.

Proof Sketch. Consider a fragment cycle consisting exclusively of only fragments in {gj
1 :

j ∈ {a, b, c, d}}. For all j ∈ {a, b, c, d}, fix the coefficients of all gj
1 fragments in the cycle to

obtain the arithmetic version gj′

1 . Use rewriting Rule 0 to replace all gj′

1 occurrences by ga′

1 .
The resulting arithmetic fragment cycle consists of a number of consecutive copies of ga′

1 ,
say k of them. Consider now any clearing vector r for the fragment cycle. We can prove by
induction (details in the full paper [18]) that the end node of the ith fragment has recovery
rate equal to (fi − rfi−2)/(fi+2 − rfi), where fi is the ith Fibonacci number, with f0 = 0.

We know that the end node of the last fragment in the fragment cycle has a recovery
rate that coincides with the recovery rate r of the start node of the first fragment. Therefore,
in a clearing vector of recovery rates, it holds that r = (fn − rfk−2)/(fk+2 − rfk) which is
equivalent to solving the equation r2fk − (fk+2 + fk−2)r + fk = 0. Since fk+2 + fk−2 =
fk+1 + fk + fk−2 = 2fk + fk−1 + fk−2 = 3fk, computing the recovery rate of the initial node
1 comes down to solving the quadratic equation r2 − 3r + 1 = 0. Solving this equation we
obtain that the only solution in [0, 1] is r = (3 −

√
5)/2 which is irrational, thus the CRRV

of the strongly switched arithmetic fragment cycle is irrational and is unique. ◀

The next lemma (proof omitted) extends the above to a larger class of arithmetic
fragments.

▶ Lemma 12. For all fragment cycles composed of fragments G in which every occurrence
of a fragment in {gj

3 : j ∈ {a, b}} is followed by a fragment in {gj
i : i ∈ [2], j ∈ {a, b, c, d}},

there exist coefficients s.t the clearing recovery rate vector of C is irrational.

▶ Theorem 13. Let I be a non-degenerate financial system such that GI,aux has a simple
strongly switched cycle. Then there exist rational coefficients for I such that all clearing
vectors of I are irrational.

Proof Sketch. Let C be a strongly switched cycle of GI,aux and let G′ be a fragment cycle
that simply agrees with C through a mapping ξ satisfying the conditions stated in Definition 9.
By Lemma 12, there are coefficients for G′ such that all clearing vectors of G′ are irrational.
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In GI,aux, we can now set the notionals and external assets on the vertices and arcs through
the mapping ξ. This assignment of coefficients is well-defined by the properties of ξ stated
in Definition 9 (i.e., there are no two arcs or vertices that get assigned multiple conflicting
coefficients this way). We set the remaining coefficients of GI,aux (i.e., the coefficients on the
arcs and vertices outside the image of ξ) as follows: external assets to 0; notionals of (v, w)
to 1, if ξ−1(v) is a node labeled with a letter, and w is not in the image of ξ, or 0 viceversa.

Let G′′ denote the subgraph of G formed by the image of ξ. Note that no payments flow
from G′′ to any node outside G′′ under any clearing vector. It then follows by Lemma 12 and
the simple agreement properties, that under this setting of the coefficient of GI,aux, every
clearing vector is irrational (and in particular these irrational recovery rates emerge in the
nodes of G′′). This establishes our claim. ◀

5 Financial Systems with Guaranteed Rational Solutions

In the previous section, we identified a sufficient structural condition for the ability of a
financial system to have irrational clearing vectors. In this section we investigate how close
these conditions are to a characterisation, by attempting to answer the opposite question:
Under which structural conditions are rational clearing vectors guaranteed to exist in a
financial system? The answer to this relates again to the notion of switched cycles: We will
show that if a given non-degenerate financial system does not possess any weakly switched
cycle, then there must exist clearing vectors of the system that are rational. We investigate
furthermore the computational complexity of finding a clearing vector in this case: Solutions
can, informally stated, be computed by solving a linear number of PPAD-complete problems.
This latter result is achieved through identifying a natural class of financial systems for which
the problem of computing an exact fixed point is PPAD-complete.

The results in this section indicate that the structural conditions for irrationality formu-
lated in the previous section do close in on a characterisation, although there is still a “gray
area” left: For those instances of financial systems that do have weakly switched cycles, but
do not have any simple strongly switched cycles, we are not yet able to determine by the
structural interrelationships of the financial contracts whether these systems are likely to
possess rational or irrational solutions. This forms an interesting remaining problem that we
leave open. The main result we will prove in this section is thus the following.

▶ Theorem 14. Let I be a non-degenerate financial system. If GI,aux does not have any
weakly switched cycles, then all clearing vectors of I are rational.

We start by showing that for a particular subclass of financial systems without weakly
switched cycles, the clearing vector computation problem lies in Linear-FIXP, which is equal
to PPAD, and thus the clearing vectors of such financial system must have polynomial size
rational coefficients.

▶ Definition 15. An instance I = (N, e, c) of a financial system is said to have the dedicated
CDS debtor property iff for every node i ∈ N that is a debtor of at least one CDS of I, the
following holds: There are no debt contracts (with a non-zero notional) in which i is the
debtor, and all CDSes (with a non-zero notional) for which i is the debtor share the same
reference bank.

▶ Lemma 16. (The exact computation version of) cds-clearing restricted to non-degenerate
financial systems with the dedicated CDS debtor property is PPAD-complete.
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The proof, which is omitted, works by showing that for this special case of the problem,
one can rewrite function f into a function f ′ where multiplication is omitted. This is done
by disregarding the recovery rates of those nodes that are debtors of CDSes and instead
expressing their individual CDS payments in a way that does not require multiplication.
Furthermore, the remaining nodes do not need multiplication under our original formulation
of f . Secondly, PPAD-hardness is established from minor modifications of the proof of the
main theorem in [23].

The above PPAD-completeness result (and more precisely the PPAD-membership part of
the result), shows that non-degenerate instances with the dedicated CDS debtor property
must have polynomial size rational solutions. We use this fact to prove Theorem 14.

Proof sketch of Theorem 14. Consider the graph D that has as its nodes the strongly
connected components (SCCs) of GI,aux, and has an arc from a node S to a node T if and
only if there exists an arc in GI,aux that runs from a node in S to a node in T . It is clear
that D is a directed acyclic graph.

We may show that we can find a rational clearing vector for GI,aux by finding rational
clearing vectors of the separate SCCs of the system. However, both the assets and the
liabilities of the nodes in a given SCC might depend on the contracts from outside the SCC
that point into the SCC. Similarly, the liabilities of the nodes in the SCC might depend on
arcs pointing from the SCC to external nodes. We may overcome this problem by including
the outward-pointing arcs of an SCC into the subinstances that we aim to solve for, and
by iterating over the SCCs according to the topological order of D: That is, we first find
clearing vectors to the set S1 of SCCs that have no incoming arc in D. For such SCCs,
the assets and liabilities of the nodes are not influenced by external arcs pointing into the
SCC. We subsequently find clearing rates for the set of SCCs S2 that succeed S1 in the
topological order defined by D. In general, we define Sj inductively as the set of SCCs that
directly succeed Sj−1 in the topological order defined by D, and we iteratively find clearing
rates to the set of SCCs Sj , given the clearing rates computed for S1, . . . , Sj−1, until we
have obtained a clearing vector covering all nodes in the system. A crucial observation that
motivates this approach is that the absence of any weakly switched cycle of GI,aux causes all
SCCs to satisfy the dedicated CDS debtor property, and that therefore the clearing vector
computation problem considered in each iteration lies in PPAD. At each iteration, we are
thus guaranteed that there are rational recovery rates, and finding them requires solving a
PPAD-complete problem. However, there are quite a few details required to turn the above
ideas into a rigorous proof, and we defer these to the full version of this paper [18]. ◀

The procedure outlined in the proof of Theorem 14 requires solving a PPAD-complete
problem in each iteration, and the number of such iterations is at most linear in the instance
size. Since solving each of these problems in PPAD yields a rational solution of size polynomial
in the input, one might be tempted to think that the procedure in its entirety is capable
of finding a polynomial size rational solution for any financial system that has no weakly
switched cycles. Unfortunately, the latter is not true: Observe that in each iteration of
the procedure, the PPAD-complete problem instance that is solved, is actually constructed
using the rational recovery rate vectors that are computed in the preceding iterations. The
coefficients in the PPAD-complete problem instance that is to be solved in any given iteration,
are thus polynomially sized in the output recovery rates of the previous iteration. Altogether,
this means that the coefficient sizes potentially grow by a polynomial factor in each iteration,
and that the final recovery rates output by the procedure are potentially of exponential size.
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Indeed, there are examples of financial systems without weakly switched cycles for which
the rational clearing vector has recovery rates that require an exponential number of bits to
write down. A simple example is obtained by taking some of the gadgets in the reduction
used in our FIXP-completeness result (Theorem 5). By taking a duplication gadget followed
by a multiplication gadget that is connected to the two output nodes of the duplication
gadget. We may then take multiple copies of these, and chain them together to form an
acyclic financial system. If we now give the first node in the chain (i.e., the input node of
the first duplication gadget) some small amount of positive external assets c < 1, this acyclic
financial system essentially performs a sequence of successive squaring operations on the
number c, under the unique clearing vector. The resulting recovery rates on the output nodes
of the multiplication gadgets are then doubly exponentially small in magnitude, with respect
to the number of squaring repetitions. Thus, the resulting clearing recovery rates require a
number of bits that is exponential in the size of the financial system.

If one is willing to discard the complexity issues that arise from working with large-
size rational numbers, it is possible to study the procedure in the proof of Theorem 14 in
the Blum-Shub-Smale model of computation. Under this computational model, any real
number takes one unit of space to store, regardless of its size. Moreover, standard arithmetic
operations are assumed to take unit time.1 The proof of Theorem 14 then implies that when
one has oracle access to PPAD, it is possible to find rational clearing vectors in polynomial
time under this model of computation. The class of problems polynomial time solvable under
the Blum-Shub-Smale model is commonly denoted by PR. Hence, we obtain the following
corollary.

▶ Corollary 17. The exact computation version of cds-clearing, restricted to instances
without weakly switched cycles, is in the complexity class PPPAD

R .

6 Conclusions

In this paper we study two questions of significance related to the systemic risk in financial
networks with CDSes, a widely used and potentially disruptive class of financial derivatives.
Firstly, we settle the computational complexity of computing strong approximations of each
bank’s exposure to systemic risk, arguably the right notion of approximation of interest to
industry – a conceptual point so far overlooked in the literature. We show that this problem is
FIXP-complete. Secondly, we initiate the study of the rational fragment of FIXP by studying
the conditions under which rational solutions for cds-clearing exist. Our results here are
not conclusive in that there is a gap between our necessary and sufficient conditions, the
cycles which involve both switched on and switched off nodes being not fully understood. 2

We conjecture that for any network with a weakly switched cycle there exist rational values
for assets and liabilities that lead to irrational solutions; however, our arguments and scheme
cannot be easily generalised to those instances. We leave providing a full characterisation as
an open problem.

Further research directions are suggested by our work. It would be interesting to study
whether Corollary 17’s connection between cds-clearing, PPAD, and PR (i.e. polynomial
time under the Blum-Shub-Smale model of computation [5]) holds more generally for the
entire rational subset of problems in FIXP. Furthermore, it is interesting to pursue finding

1 For a formal and more accurate definition of the Blum-Shub-Smale model, see the book [5].
2 We regard the simplicity condition we made (i.e., about off-cycle paths between cycle nodes) as a

technicality, which is less interesting and likely somewhat easier to deal with.
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polynomial-time constant approximation algorithms of clearing recovery rate vectors: Also
from an applied point of view, achieving a good approximation factor here (say with an
additive approximation term of 1/100) might yield solutions that are useful in most practical
circumstances and could be considered acceptable by financial institutions. We note here
that a 1/2-strong approximation is easy to compute (a recovery rate vector of only 1/2s
would indeed suffice).

References
1 Euro-parliament bans “naked” credit default swaps. EUBusiness. https://www.eubusiness.

com/news-eu/finance-economy-cds.dij.
2 Lasting effects: The global economic recovery 10 years after the crisis. IMFBlogs. URL:

https://blogs.imf.org/2018/10/03/lasting-effects-the-global-economic-recovery-
10-years-after-the-crisis/.

3 Daron Acemoglu, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. Systemic risk and stability in
financial networks. American Economic Review, 105(2):564–608, 2015.

4 Nils Bertschinger, Martin Hoefer, and Daniel Schmand. Strategic payments in financial
networks. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of
LIPIcs, pages 46:1–46:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ITCS.2020.46.

5 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real computation.
Springer Science & Business Media, 1998.

6 Rodrigo Cifuentes, Gianluigi Ferrucci, and Hyun Song Shin. Liquidity risk and contagion.
Journal of the European Economic association, 3(2-3):556–566, 2005.

7 Larry Eisenberg and Thomas H Noe. Systemic risk in financial systems. Management Science,
47(2):236–249, 2001.

8 Matthew Elliott, Benjamin Golub, and Matthew O Jackson. Financial networks and contagion.
American Economic Review, 104(10):3115–53, 2014.

9 Kousha Etessami and Mihalis Yannakakis. On the complexity of nash equilibria and other
fixed points. SIAM Journal on Computing, 39(6):2531–2597, 2010.

10 Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Philip Lazos, and Diogo
Poças. On the complexity of equilibrium computation in first-price auctions. arXiv preprint
arXiv:2103.03238, 2021.

11 Aris Filos-Ratsikas, Kristoffer Arnsfelt Hansen, Kasper Høgh, and Alexandros Hollender.
Fixp-membership via convex optimization: Games, cakes, and markets. arXiv preprint, 2021.
arXiv:2111.06878.

12 Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. Settling the complexity
of leontief and PLC exchange markets under exact and approximate equilibria. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 890–901. ACM, 2017. doi:10.1145/3055399.3055474.

13 Paul Glasserman and H Peyton Young. How likely is contagion in financial networks? Journal
of Banking & Finance, 50:383–399, 2015.

14 Paul W Goldberg and Alexandros Hollender. The hairy ball problem is ppad-complete. Journal
of Computer and System Sciences, 2021.

15 Sebastian Heise and Reimer Kühn. Derivatives and credit contagion in interconnected networks.
The European Physical Journal B, 85(4):1–19, 2012.

16 Brett Hemenway and Sanjeev Khanna. Sensitivity and computational complexity in financial
networks. Algorithmic Finance, 5(3-4):95–110, 2016.

17 Daning Hu, J Leon Zhao, Zhimin Hua, and Michael CS Wong. Network-based modeling and
analysis of systemic risk in banking systems. MIS quarterly, pages 1269–1291, 2012.

ICALP 2022

https://www.eubusiness.com/news-eu/finance-economy-cds.dij
https://www.eubusiness.com/news-eu/finance-economy-cds.dij
https://blogs.imf.org/2018/10/03/lasting-effects-the-global-economic-recovery-10-years-after-the-crisis/
https://blogs.imf.org/2018/10/03/lasting-effects-the-global-economic-recovery-10-years-after-the-crisis/
https://doi.org/10.4230/LIPIcs.ITCS.2020.46
https://doi.org/10.4230/LIPIcs.ITCS.2020.46
http://arxiv.org/abs/2111.06878
https://doi.org/10.1145/3055399.3055474


76:18 Strong Approximations and Irrationality in Financial Networks with Derivatives

18 Stavros D. Ioannidis, Bart de Keijzer, and Carmine Ventre. Strong approximations and
irrationality in financial networks with financial derivatives. CoRR, abs/2109.06608, 2021.
arXiv:2109.06608.

19 Pál András Papp and Roger Wattenhofer. Default ambiguity: finding the best solution to the
clearing problem. arXiv preprint, 2020. arXiv:2002.07741.

20 Pál András Papp and Roger Wattenhofer. Network-aware strategies in financial systems. In
Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference), volume 168 of LIPIcs, pages 91:1–91:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.91.

21 Leonard CG Rogers and Luitgard AM Veraart. Failure and rescue in an interbank network.
Management Science, 59(4):882–898, 2013.

22 Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. Clearing payments in financial
networks with credit default swaps. In Proceedings of the 2016 ACM Conference on Economics
and Computation, pages 759–759, 2016.

23 Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. Finding clearing payments in
financial networks with credit default swaps is PPAD-complete. LIPIcs: Leibniz International
Proceedings in Informatics, 67, 2017.

http://arxiv.org/abs/2109.06608
http://arxiv.org/abs/2002.07741
https://doi.org/10.4230/LIPIcs.ICALP.2020.91


Regularized Box-Simplex Games and Dynamic
Decremental Bipartite Matching
Arun Jambulapati !

Stanford University, CA, USA

Yujia Jin ! Ï

Stanford University, CA, USA

Aaron Sidford ! Ï

Stanford University, CA, USA

Kevin Tian ! Ï

Stanford University, CA, USA

Abstract
Box-simplex games are a family of bilinear minimax objectives which encapsulate graph-structured
problems such as maximum flow [41], optimal transport [29], and bipartite matching [5]. We develop
efficient near-linear time, high-accuracy solvers for regularized variants of these games. Beyond
the immediate applications of such solvers for computing Sinkhorn distances, a prominent tool in
machine learning, we show that these solvers can be used to obtain improved running times for
maintaining a (fractional) ϵ-approximate maximum matching in a dynamic decremental bipartite
graph against an adaptive adversary. We give a generic framework which reduces this dynamic
matching problem to solving regularized graph-structured optimization problems to high accuracy.
Through our reduction framework, our regularized box-simplex game solver implies a new algorithm
for dynamic decremental bipartite matching in total time Õ(m · ϵ−3), from an initial graph with m
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1 Introduction

Efficient approximate solvers for graph-structured convex programming problems have led to
a variety of recent advances in combinatorial optimization. Motivated by problems related
to maximum flow and optimal transportation, a recent line of work [40, 30, 41, 42, 29, 13]
developed near-linear time, accelerated solvers for a particular family of convex programming
objectives we refer to in this paper as box-simplex games:

min
x∈∆m

max
y∈[−1,1]n

y⊤Ax + c⊤x− b⊤y where ∆m := {x ∈ Rm
≥0| ∥x∥1 = 1} . (1)

Box-simplex games, (1), are bilinear problems where a maximization player is constrained to
the box (the ℓ∞ ball) and a minimization player is constrained to the simplex (the nonnegative
ℓ1 shell). The problem provides a convenient encapsulation of linear programming problems
with ℓ1 or ℓ∞ structure; (1) can be used to solve box-constrained ℓ∞ regression problems
[41, 42] and maximizing over the box player yields the following ℓ1 regression problem

min
x∈∆m

c⊤x + ∥Ax− b∥1 . (2)

Furthermore, solvers for (1) and (2) are used in state-of-the-art algorithms for approxim-
ate maximum flow [41], optimal transport (OT) [29], (width-dependent) positive linear
programming [7], and semi-streaming bipartite matching [5].

One of the main goals of our work is to develop efficient algorithms for solving regularized
variants of the problems (1) and (2). An example of particular interest is the following

min
x∈∆m|B⊤x=d

c⊤x + µH(x), where µ ≥ 0 and H(x) :=
∑

i∈[m]

xi log xi. (3)

The case of (3) when B ∈ Rm×n is the (unsigned) edge-vertex incidence matrix of a complete
bipartite graph, and d is a pair of discrete distributions supported on the sides of the
bipartition, is known as the Sinkhorn distance objective. This is used in machine learning
[14] as an efficiently-computable approximation to optimal transport distances: c corresponds
to movement costs, and d encodes the prescribed marginals. This objective has favorable
properties, e.g. differentiability [44], and there has been extensive work by both theorists and
practitioners to solve (3) and analyze its properties (see e.g. [14, 4] and references therein).
Choosing A and b to be sufficiently large multiples of B⊤ and d, it can be shown that
solutions to the following regularized variant of (2) yield approximate solutions to (3),

min
x∈∆m

c⊤x + ∥Ax− b∥1 + µH(x) . (4)

Beyond connections to Sinkhorn distances, there are additional reasons why it may be
desirable to solve regularized box-simplex games. For example, regularization could speed
up algorithms and allow high-precision solutions to be computed more efficiently. Further,
obtaining a high-precision solution to a regularized version of the problem yields a more
canonical and predictable approximate solution than an arbitrary low-precision approximation
to the unregularized problem. Moreover, regularization potentially makes optimal solutions
more stable to input changes. For box-simplex games stemming from bipartite matching
we quantify this stability and show all of these properties allow regularized solvers to yield
faster algorithms for a particular dynamic matching problem.

Altogether, the main contributions of this paper are the following.
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1. We give improved running times for the problem of dynamic decremental bipartite matching
(DDBM) with an adaptive adversary, a fundamental problem in dynamic graph algorithms.
Our algorithm follows from a general black-box reduction we develop from DDBM to
solving (variants of) regularized box-simplex games to high precision.

2. We give efficient solvers for (variants of) the regularized box-simplex problems (3), (4).
3. As a byproduct, we also show how to apply our new solvers (and additional tools from

the literature) to obtain state-of-the-art methods for computing Sinkhorn distances.

Formally, the DDBM problem we consider is the following: given a bipartite graph
undergoing edge deletions, maintain an ϵ-approximate (maximum) matching,1 that is a
matching which has size at least a (1 − ϵ)-fraction of the maximum (for a pre-specified)
value of ϵ. Unless specified otherwise, we consider the adaptive adversary model where
edge deletions can be specified adaptively to the matching returned. Further, we allow the
matching output by the algorithm to be fractional, rather than integral.

We show how to reduce solving the DDBM problem to solving a sequence of regularized
box-simplex games. This reduction yields a new approach to dynamic matching; this approach
is inspired by prior work, e.g. [6], but conceptually distinct in that it decouples the solving
of optimization subproblems from characterizing their solutions. For our specific DDBM
problem, the only prior algorithm achieving an amortized polylogarithmic update time (for
constant ϵ) is in the recent work of [6], which derives their dynamic algorithm as an application
of the congestion balancing technique. Our reduction eschews this combinatorial tool and
directly argues, via techniques from convex analysis, that solutions to appropriate regularized
matching problems can be used dynamically as approximate matchings while requiring
few recomputations. We emphasize our use of fast high-accuracy solvers2 in the context
of our reduction to obtain our improved runtimes, as our approach leverages structural
characteristics of the exact solutions which we only show are inherited by approximate
solutions when solved to sufficient accuracy.

Our work both serves as a proof-of-concept of the utility of regularized linear programming
solvers as a subroutine in dynamic graph algorithms, and provides the tools necessary to
solve said problems in various structured cases. This approach to dynamic algorithm design
effectively separates a “stability analysis” of the solution to a suitable optimization problem
from the computational burden of solving that problem to high accuracy: any improved solver
would then have implications for faster dynamic algorithms as well. As a demonstration of
this flexibility, we give three uses of our reduction framework (which proceed via different
solvers) in obtaining our improved DDBM update time. We hope our work opens the door
to exploring the use of the powerful continuous optimization toolkit, especially techniques
originally designed for non-dynamic problems, for their dynamic counterparts.

Paper organization. We overview our contributions in Section 1.1, and related prior
work in Section 1.2. We state preliminaries in Section 2. In Section 3.1, we describe our
framework for reducing DDBM to a sequence of regularized optimization problems satisfying
certain properties, and in Section 3.2 we give three different instantiations of the framework,
obtaining a variety of DDBM solvers. Finally in Section 4 we provide our main algorithm
for regularized box-simplex games. In the full version we provide additional discussions on
a recent advancement for faster DDBM solvers, proofs for Section 3 and Section 4, and
additional results for approximating Sinkhorn distances efficiently.

1 This is sometimes also referred to as a (1 + ϵ)-multiplicatively approximate matching in the literature.
2 Throughout, we typically use the term “high-accuracy” to refer to an algorithm whose runtime scales

polylogarithmically in the inverse accuracy (as opposed to e.g. polynomially).
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1.1 Our results
A framework for faster DDBM. We develop a new framework for solving the DDBM
problem of computing an ϵ-approximate maximum matching in a dynamic graph undergoing
edge deletions from an adaptive adversary. Our framework provides a reduction from this
DDBM problem to solving various regularized formulations of box-simplex games.

To illustrate the reduction, suppose we have bipartite G = (V, E) and, for simplicity,
that we know M∗, the size of the (maximum cardinality) matching. As demonstrated in [5],
solving the ℓ1 regression problem minx∈M∗∆m −c⊤x + ∥Ax− b∥1, to ϵM∗ additive accuracy
for appropriate choices of A, b, and c yields an ϵ-approximate maximum cardinality matching.
Intuitively, A and b penalize violations of the matching constraints, and c is a multiple of
the all-ones vector capturing the objective of maximizing the matching size. However, ℓ1
regression objectives do not necessarily have unique minimizers: as such the output of directly
minimizing these objectives is difficult to characterize beyond (approximate) optimality. This
induces difficulty in using solutions to such problems directly in dynamic graph algorithms.

Our first key observation (building upon intuition from congestion balancing [6]) is that,
beyond enabling faster runtime guarantees, regularization provides more robust solutions
which are resilient to edge deletions in dynamic applications. We show that if

x∗
ϵ := min

x∈M∗·∆m
−c⊤x + ∥Ax− b∥1 + ϵH(x) (5)

is the solution to the regularized box-simplex formulation of bipartite matching, then x∗
ϵ

enjoys favorable stability properties allowing us to argue about its size under deletions.
The stability of solutions to (5) is fairly intuitive: the entropy regularizer encourages the

objective to spread the matching uniformly, when all else is held equal. For example, when
G is a complete bipartite graph on 2n vertices, standard linear programming relaxations of
matching do not favor either of (i) an integral perfect matching, and (ii) a fractional matching
spreading mass evenly across many edges, over the other. However, using (i) as our approx-
imate matching on a graph undergoing deletions is substantially more unstable; an adaptive
adversary can remove edges corresponding to our matching, forcing Ω(n) recomputations. On
the other hand, no deletions can cause this type of instability for strategy (ii): as each edge
receives weight 1

n in the fractional matching, the only way to reduce the fractional matching
size by ϵn is to remove O(ϵn2) edges: thus O(ϵ−1) recomputations intuitively suffice for
maintaining an ϵ-approximate matching. This distinction underlies the use of high-accuracy
solvers in our reduction; indeed, while they obtain large matching values in an original graph,
approximate solutions may not carry the same types of dynamic matching value stability.
We note similar intuition motivated the approach in [6].

To make this argument more rigorous, consider using x∗
ϵ as our approximate matching

for a number of iterations corresponding to edge deletions, until its size restricted to the
smaller graph has decreased by a factor of 1 − O(ϵ). By using strong convexity of (5) in
the ℓ1 norm, we argue that whenever the objective value of x∗

ϵ has worsened, the maximum
matching size itself must have gone down by a (potentially much smaller) amount. A tighter
characterization of this strong convexity argument shows that we only need to recompute a
solution to slight variants of (5) roughly Õ(ϵ−2) times throughout the life of the algorithm.
Combined with accelerated Õ( m

ϵ )-time solvers for regularized box-simplex games (which are
slight modifications of (5)), this strategy yields an overall runtime of Õ( m

ϵ3 ), improving upon
the recent state-of-the-art decremental result of [6].

We formalize these ideas in Section 3, where we demonstrate that a range of regularization
strategies (see Definition 5) such as (5) are amenable to this reduction. Roughly, as long
as our regularized objective is “at least as strongly convex” as the entropic regularizer, and
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closely approximates the matching value in the static setting, then it can be used in our
DDBM algorithm. Combining this framework with solvers for regularized matching problems,
we give three different results. The first two obtain amortized update times of roughly Õ(ϵ−3),
in Theorems 9 and 10 via box-simplex games and matrix scaling, respectively (though the
latter holds only for dense graphs). We give an informal statement of the former here.

▶ Theorem 1 (informal, see Theorem 9). Let G = (V, E) be bipartite, |V | = n, |E| = m, and
ϵ ≥ poly(m−1). There is a deterministic algorithm maintaining an ϵ-approximate matching
in a dynamic bipartite graph with adversarial edge deletions running in time O(m log5 m ·ϵ−3).

Notably, our algorithm (deterministically) returns a fractional matching. There is a
black-box reduction from dynamic integral matching maintenance to dynamic fractional
matching maintenance contained in [45], but this reduction is bottlenecked at an amortized
Õ(ϵ−4) runtime (see e.g. Appendix A.2, [6]). Improving this reduction is a key open problem.

High-accuracy solvers for regularized box-simplex games. To use our DDBM framework,
we give a new algorithm for solving regularized box-simplex games of the form:

min
x∈∆m

max
y∈[0,1]n

fµ,ϵ(x, y) := y⊤A⊤x + c⊤x− b⊤y + µH(x)− ϵ

2
(
y2)⊤ |A|⊤x, (6)

where ϵ and µ = Ω(ϵ) are regularization parameters and y2, |A| are entrywise. The terms
H(x) and (y2)⊤|A|⊤x in (6) are parts of a primal-dual regularizer proposed in [29] (and a
variation of a similar regularizer of [41]) used in state-of-the-art algorithms for approximately
solving (unregularized) box-simplex games. This choice of regularization enjoys favorable
properties over the joint box-simplex domain, and sidesteps the infamous ℓ∞-strong convexity
barrier that has limited previous attempts at acceleration for this problem. Under relatively
mild restrictions on problem parameters (see discussion at the start of Section 4), we develop
a high accuracy solver for (6), stated informally here.

▶ Theorem 2 (informal, see Theorem 25). Given an instance of (6), with µ = Ω(ϵ), ∥A∥∞ ≤ 1,
and σ ≥ poly(m−1) Algorithm 4 returns x with maxy∈[0,1]n fµ,ϵ(x, y) − fµ,ϵ(x⋆, y⋆) ≤ σ in
time Õ(nnz(A) · 1√

µϵ ) where (x⋆, y⋆) is the optimizer of (6).

Our solver follows recent developments in solving unregularized box-simplex games. We
analyze an approximate extragradient algorithm based on the mirror prox method of [37],
and prove that iterates of the regularized problem (6) enjoy multiplicative stability properties
previously shown for the iterates of mirror prox on the unregularized problem [13]. Leveraging
these tools, we also show the regularizer-operator pair satisfies technical conditions known as
relative Lipschitzness and strong monotonicity, thus enabling a similar convergence analysis
as in [13]. This yields an efficient algorithm for solving (6).

Roughly, when the scale of the problem (defined in terms of the matrix operator norm
∥A∥∞ and appropriate norms of b and c) is bounded,3 our algorithm for computing a
high-precision optimizer to (6) runs in Õ( 1√

µϵ ) iterations, each bottlenecked by a matrix-
vector product through A. When µ ≈ ϵ, the optimizer of the regularized variant is an
O(ϵ)-approximate solution to the unregularized problem (1), and hence Theorem 25 recovers
state-of-the-art runtimes (scaling as Õ(ϵ−1)) for box-simplex games up to logarithmic factors.
We achieve our improved dependence on µ in Theorem 25 by trading off the scales of the

3 Our runtimes straightforwardly extend to depend appropriately on these norms in a scale-invariant way.
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primal and dual domains. This type of argument is well-known for separable regularizers [9],
but a key technical novelty of our paper is demonstrating a similar analysis holds for non-
separable regularizers compatible with box-simplex games e.g. the one from [29], which has
not previously been done. To our knowledge, Theorem 25 is the first result for solving
general regularized box-simplex games to high accuracy in nearly-linear time. We develop
our box-simplex algorithm and prove Theorem 25 in Section 4.

Improved rates for the Sinkhorn distance objective. We apply our accelerated solver
for (6) in computing approximations to the Sinkhorn distance objective (3), a fundamental
algorithmic problem in the practice of machine learning, at a faster rate. It is well-known
that solving the regularized Sinkhorn problem (3) with µ scaling much larger than the
target accuracy ϵ enjoys favorable properties in practice [14] (compared to its unregularized
counterpart, the standard OT distance). In [3], the authors show that Sinkhorn iteration
studied in prior work solves (3) to additive accuracy ϵ at an unaccelerated rate of Õ( 1

µϵ ). For
completeness we provide a proof of this result (up to logarithmic factors) in Appendix C.3 in
the full version of this paper.

As a straightforward application of the solver we develop for (6), we demonstrate that we
can attain an accelerated rate of Õ( 1√

µϵ ) for approximating (3) to additive accuracy ϵ via a
first-order method. More specifically, the following result is based on reducing the “explicitly
constrained” Sinkhorn objective (3) to a “soft constrained” regression variant of the form (4),
where our box-simplex game solver is applicable. We now state our first result on improved
rates for approximating Sinkhorn distance objectives.

▶ Theorem 3 (informal, see Theorem 11 in full version). Let µ ∈ [Ω(ϵ), O( ∥c∥∞
log m )] in (3)

corresponding to a complete bipartite graph with m edges. There is an algorithm based on the
regularized box-simplex game solver of Theorem 25 which obtains an ϵ-approximate minimizer
to (3) in time Õ(m · ∥c∥∞√

µϵ ).

By leveraging the particular structure of the Sinkhorn distance and its connection to a
primitive in scientific computing and theoretical computer science known as matrix scaling
[35, 12, 2], we give a further-improved solver for (3) in Theorem 4. This solver has a nearly-
linear runtime scaling as Õ( 1

µ ), which is a high-precision solver for the original Sinkhorn
objective. Our high-precision Sinkhorn solver applies powerful second-order optimization
tools from [12] based on the box-constrained Newton’s method for matrix scaling, yielding
our second result on improved Sinkhorn distance approximation rates.

▶ Theorem 4 (informal, see Theorem 12 in full version). Let µ, ϵ = O(∥c∥∞) in (3) correspond-
ing to a complete bipartite graph with m edges. There is an algorithm based on the matrix
scaling solver of [12] which obtains an ϵ-approximate minimizer to (3) in time Õ(m · ∥c∥∞

µ ).

We present both Theorems 3 and 4 because they follow from somewhat incomparable
solver frameworks. While the runtime of Theorem 3 is dominated by that of Theorem 4, it is
a direct application of a more general solver (Theorem 25), which also applies to regularized
regression or box-simplex objectives where the optimum does not have a characterization as
a matrix scaling. Moreover, the algorithm of Theorem 4 is a second-order method which
leverages recent advances in solving Laplacian systems, and hence may be less practical than
its counterpart in Theorem 3. Finally, we note that due to subtle parameterization differences
for our DDBM applications, the DDBM runtime attained by using our box-simplex solver
within our reduction framework is more favorable on sparse graphs (m≪ n2), compared to
that obtained by the matrix scaling solver.
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1.2 Prior work
Dynamic matching. Dynamic graph algorithms are an active area of research in the
theoretical computer science, see e.g. [27, 15, 6, 31, 17, 21, 1, 26, 19, 22, 36, 20] and references
therein. These algorithms have been developed under various dynamic graph models,
including the additions and deletions on vertices or edges, and oblivious adversary model
where the updates to the graph are fixed in advance (i.e. do not depend on randomness used
by the algorithm), and the adaptive adversary model in which updates are allowed to respond
to the algorithm, potentially adversarially. We focus on surveying deterministic dynamic
matching algorithms with edge streams, which perform equally well under oblivious and
adaptive updates; we remark the dynamic matching algorithms have also been studied under
vertex addition and deletion model in [8]. For a more in-depth discussion and corresponding
developments in other settings, see [45].

Many variants of the particular dynamic problem of maintaining matchings in bipartite
graphs have been studied, such as the fully dynamic [25], incremental [24, 23], and decremental
[6] cases. However, known conditional hardness results [28, 32] suggest that attaining a
polylogarithmic update time for maintaining an exact fully dynamic matching may be
unattainable, prompting the study of restricted variants which require maintaining an
approximate matching. The works most relevant to our paper are those of [24], which provides
a Õ(ϵ−4) amortized update time algorithm for computing an ϵ-approximate matching for
incremental bipartite matching, and [6], which achieves a similar Õ(ϵ−4) update time for
decremental bipartite matching. Our main DDBM results, stated in Theorems 9 and 10,
improve upon [6] by roughly a factor of ϵ−1 in the decremental setting.

Box-simplex games. Box-simplex games, as well as ℓ1 and ℓ∞ regression, are equivalent to
linear programs in full generality [33], have widespread utility, and hence have been studied
extensively by the continuous optimization community. Here we focus on discussing near-
linear time approximation algorithms, i.e. algorithms which run in time near-linear in the
sparsity of the constraint matrix, potentially depending inverse polynomially on the desired
accuracy. Interior point methods solve these problems with polylogarithmic dependence
on accuracy, but are second-order and often encounter polynomial runtime overhead in the
dimension (though there are exceptions, e.g. [43] and references therein).

A sequence of early works e.g. [37, 38, 39] on primal-dual optimization developed first-
order methods for solving games of the form (1). These works either directly operated
on the objective (1) as a minimax problem, or optimized a smooth approximation to the
objective recast as a convex optimization problem. While these techniques obtained iteration
complexities near-linear in the sparsity of the constraint matrix A, they either incurred an
(unaccelerated) ϵ−2 dependence on the accuracy ϵ, or achieved an ϵ−1 rate of convergence at
the cost of additional dimension-dependent factors. This was due to the notorious “ℓ∞ strong
convexity barrier” (see Appendix A, [42]), which bottlenecked classical acceleration analyses
over an ℓ∞-constrained domain. [41] overcame this barrier by utilizing the primal-dual
structure of (1) through a technique called “area convexity”, obtaining a Õ(ϵ−1)-iteration
algorithm. Since then, [13] demonstrated that fine-grained analyses of the classical algorithms
of [37, 39] also obtain comparable rates for solving (1). Finally, we mention that area convexity
has found applications in optimal transport and positive linear programming [29, 7].

Sinkhorn distances. Since [14] proposed Sinkhorn distances for machine learning applica-
tions, a flurry of work has aimed at developing algorithms with faster runtimes for (3). A
line of work by [4, 16, 34] has analyzed the theoretical guarantees of the classical Sinkhorn
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matrix scaling algorithm for this problem, due to the characterization of its solution as
a diagonal rescaling of a fixed matrix. These algorithms obtain rates scaling roughly as
Õ(∥c∥2

∞ ϵ−2) for solving (3) to additive accuracy ϵ. Perhaps surprisingly, to our knowledge
no guarantees for solving (3) which improve as the regularization parameter µ grows are
currently stated in the literature, a shortcoming addressed by this work. Finally, we remark
that Sinkhorn iteration has also received extensive treatment from the theoretical computer
science community, e.g. [35], due to connections with algebraic complexity; see [18] for a
recent overview of these connections.

2 Preliminaries

General notation. We denote [n] := {1, 2, . . . , n} and let 0 and 1 denote the all-0 and all-1
vectors. Given v ∈ Rd, vi or [v]i denotes the ith entry of v, and for any subset E ⊆ [d] we
use vE or [v]E to denote the vector in Rd zeroing out v on entries outside of E. We use
([v]i)+ = max([v]i, 0) to denote the operation truncating negative entries. We use v ◦ w to
denote elementwise multiplication between any v, w ∈ Rd. Given matrix A ∈ Rm×n, we
use Aij to denote its (i, j)th entry, and denote its ith row and jth column by Ai: and A:j
respectively; its nonzero entry count is nnz(A). We use diag (v) to denote the diagonal
matrix where [diag (v)]ii = vi, for each i. Given two quantities M and M ′, for any c > 1 we
say M is a c-approximation to M ′ if it satisfies 1

c M ′ ≤M ≤ cM ′. For ϵ≪ 1, we say M is
an ϵ(-multiplicative)-approximation of M ′ if (1− ϵ)M ′ ≤M ≤ (1 + ϵ)M ′. Throughout the
paper, we use |A| to denote taking the elementwise absolute value of a matrix A, and v2 to
denote the elementwise squaring of a vector v when clear from context.

Norms. ∥·∥p denotes the ℓp norm of a vector or corresponding operator norm of a matrix.
In particular, ∥A∥∞ = maxi ∥Ai:∥1. We use ∥·∥ interchangeably with ∥·∥2. We use ∆m to
denote an m-dimensional simplex, i.e. x ∈ ∆m ⇐⇒ x ∈ Rd

≥0, ∥x∥1 = 1.

Graphs. A graph G = (V, E) has vertices V and edges E; we abbreviate n := |V | and
m := |E| whenever the graph is clear from context. For bipartite graphs, V = L ∪R denotes
the bipartition. We let B ∈ {0, 1}E×V be the (unsigned edge-vertex) incidence matrix with
Bev = 1 if v is an endpoint of e and Bev = 0 otherwise.

Bregman divergence. Given any convex distance generating function (DGF) q(x), we use
V q

x′(x) = q(x)− q(x′)− ⟨∇q(x′), x− x′⟩ ≥ 0 as its induced Bregman divergence. When the
DGF is clear from context, we abbreviate V := V q. By definition, V satisfies

⟨−∇Vx′(x), x− u⟩ = Vx′(u)− Vx(u)− Vx′(x) for any x, x′, u. (7)

Computational model. We use the standard word RAM model, where one can perform
each basic arithmetic operations on O(log n)-bit words in constant time.

3 Dynamic decremental bipartite matching

Here we provide a reduction from maintaining an approximately maximum matching in a
decremental bipartite graph to solving regularized matching problems to sufficiently high
precision. In Section 3.1 we give this framework and then, in Section 3.2, we provide various
instantiations of our framework based on different solvers, to demonstrate its versatility.
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3.1 DDBM framework
Here we provide our general framework for solving DDBM, which assumes that for bipartite
G = (V, E) and approximate matching value M there is a canonical regularized matching
problem with properties given in Definition 5; we later provide multiple such examples.
Throughout this section, MCM(E) denotes the size of the maximum cardinality matching
on edge set E; the vertex set V is fixed throughout, so we omit it in definitions.

▶ Definition 5 (Canonical regularized objective). Let G = (V, E0) be a bipartite graph and
M ≥ 0 be an 8-approximation of MCM(E0). For all E ⊆ E0 with MCM(E) ≥ M

8 , let
fM,E : RE

≥0 → R,

νE := min
x∈RE

≥0

fM,E(x) , and xE := argminx∈RE
≥0

fM,E(x). (8)

We call the set of {fM,E}MCM(E)≥ M
8

a family of (ϵ, β)-canonical regularized objectives (CROs)
for G(E0) and M if the following four properties hold.

1. For all E ⊆ E0 with MCM(E) ≥ M
8 , −νE is an ϵ

8 -approximation of MCM(E).
2. For all E ⊆ E0 with MCM(E) ≥ M

8 , fM,E is equivalent to fM,E0 with the extra constraint
that xE0\E is fixed to 0 entrywise.

3. For any E′ ⊆ E ⊆ E0 with MCM(E) ≥ M
8 and MCM(E′) ≥ M

8 ,

fM,E′(xE′
)− fM,E(xE) ≥ βV H

xE (xE′
) where H(x) :=

∑
e

xe log xe (9)

4. For any x ∈ RE
≥0 such that 8Mx is a feasible matching on (V, E),

8M ∥xE∥1 −
ϵ

128M ≤ −fM,E(x) ≤ 8M ∥xE∥1 + ϵ

128M. (10)

We further define the following notion of a canonical solver for a given CRO, which solves
the CRO to sufficiently high accuracy, and rounds the approximate solution to feasibility.

▶ Definition 6 (Canonical solver). For (ϵ, β)-CROs {fM,E}MCM(E)≥ M
8

, we call A an (ϵ, T )-
canonical solver if it has subroutines Solve and Round running in O(T ) time, satisfying:
1. Solve finds an approximate solution x̂E of fM,E satisfying(

1 + ϵ

8

)
νE ≤ fM,E(x̂E) ≤

(
1− ϵ

8

)
νE . (11a)∥∥x̂E − xE

∥∥
1 ≤

ϵ

1100 . (11b)

2. Round takes x̂E and returns x̃E where 8Mx̃E is a feasible matching for G(E), and:(
1 + ϵ

8

)
νE ≤ fM,E(x̃E) ≤

(
1− ϵ

8

)
νE . (12a)

x̃E ≤ x̂E monotonically. (12b)

Our DDBM framework, Algorithm 1, uses CRO solvers satisfying the approximation
guarantees of Definition 6 to dynamically maintain an approximately maximum matching.
We state its correctness and runtime in Proposition 7, and defer a proof to Appendix A.1 in
the full version.

In the following, we let E0 be the original graph’s edge set, and E1, E2, . . . , EK be the
sequence of edge sets recomputed in Line 8, before termination for EK+1 on Line 4.
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Algorithm 1 DecMatching(ϵ, G = (V, E)).

Input: ϵ ∈ (0, 1
8 ), graph G = (V, E)

Parameters : Family of CROs {fM,E}E is MP, (ϵ, T )-canonical solver (Solve, Round)
1 Compute M with 1

2 MCM(E) ≤M ≤ MCM(E), via the greedy algorithm
2 x̂E ← Solve(fM,E)
3 x̃E ← Round(x̂E), Mest ←M

4 while Mest > 1
4 M do

5 Edel ← ∅
6 while edge e is deleted and ∥x̃E

Edel
∥1 ≤ ϵ

8
∥∥x̃E

∥∥
1 do

▷ recompute whenever the deleted approximate matching size reaches a factor Θ(ϵ)
7 Edel ← Edel ∪ {e}
8 E ← E \ Edel, Edel ← ∅
9 x̂E ← Solve(fM,E) ▷ find high-accuracy minimizer of FM,E satisfying (11a) and (11b)

10 x̃E ← Round(x̂E) ▷ round to feasible matching satisfying (12a) and (12b)
11 Compute Mest with 1

2 MCM(E) ≤Mest ≤ MCM(E), via the greedy algorithm

▶ Proposition 7. Let ϵ ∈ (0, 1) and M ≥ 0. Given a family of (ϵ, β)-CROs {fM,E} for
G = (V, E0), and an (ϵ, T )-canonical solver for the family, Algorithm 1 satisfies the following.
1. When Mest > 1

4 M on Line 4, where Mest estimates MCM(Ek): at any point in the loop
of Lines 6 to 7, 8Mx̃Ek

Ek\Edel
is an ϵ-approximate matching of G(V, Ek \ Edel).

2. When Mest ≤ 1
4 M on Line 4, where Mest estimates MCM(E): MCM(E) ≤ 1

2 MCM(E0).
The runtime of the algorithm is O(m + (T + m) · M

βϵ ).

Proof sketch. We summarize proofs of the two properties, and our overall runtime bound.

Matching approximation properties. By the greedy matching guarantee in Line 4, it holds
that for any Ek (the edge set recomputed in the kth iteration of Line 8 before termination),
its true matching size MCM(Ek) must be no smaller than M

4 . Consequently, we can use the
CRO family to approximate the true matching size up to O(ϵ) multiplicative factors, and by
the guarantee (12a), this implies 8Mx̃Ek

Ek\Edel
is an O(ϵ) approximation of the true matching

size. Also, our algorithm’s termination condition and the guarantee on Mest immediately
imply MCM(EK+1) ≤ 1

2 MCM(E0).

Iteration bound. We use a potential argument. Given Ek+1 ⊂ Ek, corresponding to
consecutive edge sets requiring recomputation, we use the following inequalities:

fM,Ek+1

(
xEk+1

)
− fM,Ek

(
xEk
) (i)

≥ βV H
xEk

(
xEk+1

)
(13)

(ii)
≥ β

∑
i∈Edel

(
[xEk+1 ]i log[xEk+1 ]i − [xEk ]i log[xEk ]i −

(
1 + log[xEk ]i

)
·
(
[xEk+1 ]i − [xEk ]i

))
(iii)= β

∑
i∈Edel

[xEk ]i
(iv)
≥ β

(∥∥x̂
Ek
Edel

∥∥
1

−
∥∥x̂Ek − xEk

∥∥
1

) (v)
≥ β

(∥∥x̃
Ek
Edel

∥∥
1

−
∥∥x̂Ek − xEk

∥∥
1

)
,

where (i) uses the third property in (9), (ii) uses convexity of the scalar function c log c, (iii)
uses that x

Ek+1
Edel

is 0 entrywise, (iv) uses the triangle inequality, and (v) uses the monotonicity
property (12b). Moreover, between recomputations we have that the ℓ1-norm of deleted
edges satisfies

∥∥∥x̃Ek

Edel

∥∥∥
1

= Ω(ϵ), and our solver guarantees
∥∥x̂Ek − xEk

∥∥
1 = O(ϵ). Since the

overall function decrease before termination is O(M) given the stopping criterion in Line 4,
the algorithm terminates after O( M

βϵ ) recomputations. ◀
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Using this generic DDBM framework, we obtain improved decremental matching al-
gorithms by defining families of CROs fM,E(G) with associated (ϵ, T )-canonical solvers
satisfying Definition 6. In Appendix A.2, we give a regularized primal-dual construction
of fM,E , and adapt the solver of Section 4 to develop a canonical solver for the family
(specifically, as the subroutine Solve). Similarly, in Appendix A.3, we show how to construct
an appropriate family of fM,E using Sinkhorn distances, and apply the matrix scaling method
presented in Appendix C.2 (based on work of [12]) to appropriately instantiate Solve.

While both algorithms, as stated, only maintain an approximate fractional matchings, this
fractional matching can be rounded at any point to an explicit integral matching via e.g. the
cycle-canceling procedure of Proposition 3 in [5] in time O(m log m), or dynamically (albeit
at amoritized cost Õ(ϵ−4) using [45]). Moreover, our algorithm based on the regularized
box-simplex solver (Theorem 9) is deterministic, and both work against an adaptive adversary.
Repeatedly applying Proposition 7, we obtain the following overall claim.

▶ Corollary 8. Let G = (V, E(G)) be bipartite, and suppose for any subgraph (V, E0 ⊆ E(G)),
we are given a family of (ϵ, β)-CROs and an (ϵ, T )-canonical solver for the family. There is a
deterministic algorithm maintaining a fractional ϵ-approximate matching in a dynamic bipart-
ite graph with adversarial edge deletions, running in time O

(
m log3 n + (T + m) · M

βϵ · log n
)

.

Proof. It suffices to repeatedly apply Proposition 7 until we can safely conclude MCM(E) = 0,
which by the second property can only happen O(log n) times. ◀

3.2 DDBM solvers
In this section, we demonstrate the versatility of the DDBM framework in Section 3.1 by
instantiating it with different classes of CRO families, and applying different canonical solvers
on these families. By using regularized box-simplex game solvers developed in this paper
(see Section 4), we give an Õ(mϵ−3) time algorithm for maintaining a ϵ-multiplicatively
approximate fractional maximum matching in a m-edge bipartite graph undergoing a sequence
of edge deletions, improving upon the previous best running time of Õ(mϵ−4) [6]. We also use
our framework to obtain different decremental matching algorithms with runtime Õ(n2ϵ−3)
and O(m1+o(1)ϵ−2), building on recent algorithmic developments in the literature on matrix
scaling. The former method uses box-constrained Newton’s method solvers for matrix scaling
problems in [12] (these ideas are also used in Appendix C.2), and the latter uses a recent
almost-linear time high-accuracy Sinkhorn-objective solver in [11], a byproduct of their
breakthrough maximum flow solver. We defer readers to corresponding sections in Appendix
A for omitted proofs.

Given a bipartite graph initialized at G = (V, E0) with unsigned incidence matrix
B ∈ {0, 1}E×V ; we denote n := |V | and m := |E0|. The first family of CROs one can consider
is the regularized box-simplex game objective in form:

min
(x,ξ)∈∆E+1

max
y∈[0,1]V

fM,E(x, ξ, y) :=−1⊤
E(8Mx) − y⊤ (8MB⊤x − 1

)
+ γxH(x, ξ) + γy (y2)⊤ B⊤x,

where γx = Θ̃ (ϵM) , γy = Θ (ϵM) , and
fM,E(x) := min

ξ|(x,ξ)∈∆E+1
max

y∈[0,1]V
fM,E(x, ξ, y). (14)

We prove this is a family of (ϵ, γx)-CROs (see Lemma 8 in full version). The canonical
solver for this family uses RemoveOverflow (Algorithm 4, [5]) as Round and uses the regularized
box-simplex games developed later in this paper (see Section 4) as Solve, which finds an
ϵ-approximate solution of (14) in time Õ( m

ϵ ). Combining all these components with the
DDBM framework in Corollary 8 leads to the following DDBM solver based on regularized
box-simplex games.
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▶ Theorem 9. Let G = (V, E) be bipartite and let ϵ ∈ [Ω(m−3), 1). There is a deterministic
algorithm for the DDBM problem which maintains an ϵ-approximate matching, based on
solving regularized box-simplex games, running in time O

(
mϵ−3 log5 n

)
.

Our second CRO family is the following regularized Sinkhorn distance objective:

min
( x

xdum )∈RẼ
≥0 | 2|R|B̃⊤( x

xdum )=d

f sink
M,E(xtot) := 2|R|1⊤

Ex + γH
(
x, xdum) where γ = Θ̃ (ϵM) ,

f sink
M,E(x) := min

xdum∈RE\E0
≥0

f sink
M,E(x, xdum),

(15)

where we extend graph G = (V, E) to a balanced bipartite graph G̃ = (Ṽ , Ẽ) by introducing
dummy vertices and edges. The extended graph allows us to write the inequality constraint
B⊤x = 1V equivalently as the linear constraint 2|R|B̃⊤ ( x

xdum ) = d for some defined d ∈ RṼ

as some properly-extended vector of 1V . This allows us to apply known matrix scaling solver
to such approximating Sinkhorn distance objective in literature.

We prove this is a family of (ϵ, γ)-CROs (see Lemma 10 in full version). The canonical
solver for this family uses truncation to E as Round and uses the matrix scaling solver
from [12] based on box-constrained Newton’s method as Solve, which finds an ϵ-approximate
solution of (15) in time Õ(n2/ϵ). Combining all these components with the DDBM framework
in Corollary 8 leads to the following DDBM solver based on approximating Sinkhorn distances.

▶ Theorem 10. Let G = (V, E) be bipartite and ϵ ∈ [Ω(m−3), 1). There is a randomized
algorithm for the DDBM problem which maintains an ϵ-approximate matching with probability
1− n−Ω(1), based on matrix scaling solver of [12], running in time Õ

(
n2ϵ−3).

Alternatively, for the same (ϵ, γ)-CRO family as in (15), one can use the same Round
procedure and the recent high-accuracy almost-linear time graph flow problems solver of [11]
for Solve as a canonical solver. Since this new solver can find high-accuracy solutions of
entropic-regularized problems of the form (15) within a runtime of (|E0|+ O(|V |))1+o(1) =
m1+o(1), this gives a third DDBM solver, which yields and improved an dependence on ϵ−1.

▶ Theorem 11. Let G = (V, E) be bipartite and ϵ ∈ [Ω(m−3), 1). There is a randomized
algorithm for the DDBM problem which maintains an ϵ-approximate matching with probability
1− n−Ω(1), based on the Sinkhorn objective solver of [11], running in time m1+o(1)ϵ−2.

4 Regularized box-simplex games

In this section, we develop a high-accuracy solver for regularized box-simplex games:

min
x∈∆m

max
y∈[0,1]n

fµ,ϵ(x, y) := y⊤A⊤x + c⊤x− b⊤y + µH(x)− ϵ

2
(
y2)⊤ |A|⊤x,

where H(x) :=
∑

i∈[m]

xi log xi is the standard entropic regularizer,
(16)

where we recall absolute values and squaring act entrywise.
For ease of presentation, we make the following assumptions for some δ > 0.

1. Upper bounds on entries: ∥A∥∞ ≤ 1, ∥b∥∞ ≤ Bmax, ∥c∥∞ ≤ Cmax. For simplicity, we
assume Bmax ≥ Cmax ≥ 1; else, Cmax ← max(1, Cmax) and Bmax ← max(Cmax, Bmax).

2. Lower bounds on matrix column entries: maxi |Aij | ≥ δ for every j ∈ [n].
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We defer the detailed arguments of why these assumptions are without loss of generality
to Appendix B in the full version. Our algorithm acts on the induced (monotone) gradient
operator of the regularized box-simplex objective (16), namely (∇xfµ,ϵ(x, y),−∇yfµ,ϵ(x, y)),
defined as

gµ,ϵ(x, y) :=
(

Ay + c + µ(1 + log(x))− ϵ

2 |A| (y
2),−A⊤x + b + ϵ · diag (y) |A|⊤ x

)
. (17)

Further, it uses the following joint (non-separable) regularizer of

rµ,ϵ(x, y) := ρ
∑

i∈[m]

xi log xi + 1
ρ

x⊤ |A|
(
y2) where ρ =

√
2µ

ϵ
, (18)

variants of which have been used in [41, 29, 5, 13]. When clear from context, we drop
subscripts and refer to these as operator g and regularizer r. Our method is the first
high-accuracy near-linear time solver for the regularized problem (16), yielding an O(σ)-
approximate solution with a runtime scaling polylogarithmically in problem parameters and
σ. We utilize a variant of the mirror prox [37] method for strongly monotone objectives,
which appeared in [9, 13] for regularized saddle point problems with separable regularizers.

In Section 4.1, we present high-level ideas of our algorithm, which uses a mirror prox outer
loop (Algorithm 2) and an alternating minimization inner loop (Algorithm 3) to implement
outer loop steps; we also provide convergence guarantees. In Section 4.2, we state useful
properties of the regularizer (18), and discuss a technical detail ensuring iterate stability
in our method. In Section 4.3, we provide our full algorithm for regularized box-simplex
games, Algorithm 4 and give guarantees in Theorem 25. Omitted proofs are in Appendix B.

4.1 Algorithmic framework
In this section, we give the algorithmic framework we use to develop our high-precision solver,
which combines an outer loop inspired by mirror prox [37] with a custom inner loop for
implementing each iteration. We first define an approximate solution for a proximal oracle.

▶ Definition 12 (Approximate proximal oracle solution). Given a convex function f over
domain Z and σ ≥ 0, we say z′ ∈ Z is a σ-approximate solution for a proximal oracle if z′

satisfies ⟨∇f(z′), z′ − z⟩ ≤ σ. We denote this approximation property by z′ ←σ argminz∈Zf .

We employ such approximate solutions as the proximal oracle within our “outer loop“
method. Our outer loop is a variant of mirror prox (Algorithm 2) which builds upon both
the mirror prox type method in [41] for solving unregularized box-simplex games and the
high-accuracy mirror prox solver developed in [9, 13] for bilinear saddle-point problems
on geometries admitting separable regularizers. We first give a high-level overview of the
analysis, which requires bounds on two properties. First, suppose g is ν-strongly monotone
with respect to regularizer r, i.e.

for any w, z ∈ Z, ⟨g(w)− g(z), w − z⟩ ≥ ν ⟨∇r(w)−∇r(z), w − z⟩ . (19)

Further, suppose it is α-relatively Lipschitz with respect to r and Algorithm 4 (see Definition
1 of [13]), i.e. for any consecutive iterates zk−1, zk−1/2, zk of our algorithm,4〈

g(zk−1/2)− g(zk−1)), zk−1/2 − zk

〉
≤ α

(
Vzk−1/2(zk) + Vzk−1(zk−1/2)

)
. (20)

4 This property (i.e. relative Lipschitzness restricted to iterates of the algorithm) was referred to as “local
relative Lipschitzness” in [13], but we drop the term “local” for simplicity.
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With these assumptions, we show that the strongly monotone mirror prox step makes
progress by decreasing the divergence to optimal solution Vzk

(z⋆) by a factor of α
α+ν : this

implies Õ( α
ν ) iterations suffice for finding a high-accuracy solution. We provide the formal

convergence guarantee of MirrorProx in Proposition 13, which also accommodates the error
of each approximate proximal step used in the algorithm. This convergence guarantee is
generic and does not rely on the concrete structure of g, r in our box-simplex problem.

Algorithm 2 MirrorProx().

Input: σ
2 -approximate proximal oracle, operator and regularizer pair (g, r) such that
g is ν-strongly monotone and α-relatively Lipschitz with respect to r

Parameters : Number of iterations K

1 z0 ← argminz∈Zr(z)
2 for k = 1, . . . , K do
3 zk−1/2 ←σ/2 argminz∈Z

{
⟨g (zk−1) , z⟩+ αVzk−1(z)

}
4 zk ←σ/2 argminz∈Z

{〈
g
(
zk−1/2

)
, z
〉

+ αVzk−1(z) + νVzk−1/2(z)
}

5 return zK

▶ Proposition 13 (Convergence of Algorithm 2). Given regularizer r with range at most Θ,
suppose g is ν-strongly-monotone with respect to r (see (19)), and is α-relatively-Lipschitz with

respect to r (see (20)). Let zK be the output of Algorithm 2. Then, V r
zK

(z⋆) ≤
(

α
ν+α

)K

Θ+ σ
ν .

Given the somewhat complicated nature of our joint regularizer, we cannot solve the
proximal problems required by Algorithm 2 in closed form. Instead, we implement each
proximal step to the desired accuracy by using an alternating minimization scheme, similarly
to the implementation of approximate proximal steps in [41, 29].

To analyze our algorithm, we use a generic progress guarantee for alternating minimization
from [29] to solve each subproblem, stated below.

Algorithm 3 AltMin(γx, γy, A, θ, T, xinit, yinit).

Input: A ∈ Rm×n
≥0 , γx ∈ Rm, γy ∈ Rn, T ∈ N, θ > 0, xinit ∈ ∆m, yinit ∈ [0, 1]n

Output: Approximate minimizer to ⟨(γx, γy), z⟩+ θr(z) for r(z) in (18)
1 x(0) ← xinit, y(0) ← yinit;
2 for 0 ≤ t ≤ T do
3 x(t+1) ← argminx∈∆m

{
⟨γx, x⟩+ θr(x, y(t))

}
;

4 y(t+1) ← argminy∈[0,1]n

{
⟨γy, y⟩+ θr(x(t+1), y)

}
;

5 return (x(T +1), y(T ))

▶ Lemma 14 (Alternating minimization progress, Lemma 5 and Lemma 7, [29]). Let r : X×Y →
R be jointly convex, θ > 0, and γx and γy be linear operators on X ,Y. Define

xOPT, yOPT = argminx∈X argminy∈Yf(x, y) := ⟨γx, x⟩+ ⟨γy, y⟩+ θr(x, y). (21)

Suppose f(x, y) is twice-differentiable and satisfies: for all x′ ≥ 1
2 x entrywise, x′, x ∈ X and

y′, y ∈ Y, ∇2f(x′, y′) ⪰ 1
κ f(x, y). Then the iterates of Algorithm 3 satisfy

f(x(t+2), y(t+1))− f(xOPT, yOPT) ≤
(

1− 1
2κ

)(
f(x(t+1), y(t))− f(xOPT, yOPT)

)
.
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Combining this lemma with the structure of our regularizer (18), we obtain the following
guarantees, showing Algorithm 3 finds a σ

2 -approximate solution to the proximal oracle.

▶ Corollary 15 (Convergence of Algorithm 3). Let δ, σ ∈ (0, 1), ρ ≥ 1. Suppose we are given
γ ∈ Z∗ = X∗×Y∗ with max(∥γx∥∞ , ∥γy∥1) ≤ B, and define the proximal subproblem solution

xOPT, yOPT = argminx∈∆margminy∈[0,1]nf(x, y) := ⟨γx, x⟩+⟨γy, y⟩+θr(x, y) for some θ > 0.

If the Hessian condition in Lemma 14 holds with a constant κ > 0, and all simplex iterates x

of Algorithm 3 satisfy x ≥ δ elementwise, then the algorithm finds a σ
2 -approximate solution

to the proximal oracle within T = O
(

log
(

ρ(B+mnθ)2

δσθ

))
iterations.

4.2 Helper lemmas
Before providing our full method and analysis, here we list a few helper lemmas, which we rely
on heavily in our later development. The first characterizes a useful property of rµ,ϵ, showing
that its Hessian is locally well-approximated by a diagonal matrix, which induces appropriate
local norms for the blocks x ∈ X , y ∈ Y. We use this to prove the “strong monotonicity”
(Lemma 20) and “relative Lipschitzness” (Lemma 22) bounds required in Section 4.3.

▶ Lemma 16 (Bounds on regularizer). Suppose A ∈ Rm×n has ∥A∥∞ ≤ 1. For any
z = (x, y) ∈ ∆m × [0, 1]n, r = rµ,ϵ defined as in (18), and x̄ ∈ Rm

>0, ⟨x, Ay⟩ ≤
∥x∥diag( 1

x̄ ) ∥y∥diag(|A|⊤x̄) . Further, if ρ ≥ 3, the matrix

D(x) :=
(

ρ
2 diag

( 1
x

)
0

0 1
ρ diag

(
|A|⊤ x

)) (22)

satisfies the following relationship with the Hessian matrix of r(z):

D(x) ⪯ ∇2r(z) =
(

ρ · diag
( 1

x

) 2
ρ Adiag (y)

2
ρ diag (y) A⊤ 2

ρ diag
(
|A|⊤ x

)) ⪯ 4D(x). (23)

We also introduce the following notion of a padding oracle (cf. Definition 2 of [10]), which
helps us control the multiplicative stability of iterates when running our algorithm.

▶ Definition 17. Given δ > 0, and any z̄ = (x̄, y) ∈ ∆m × [0, 1]n, a padding oracle Oδ

returns z = (x, y) by setting x̂i = max(x̄i, δ) coordinate-wise and letting x = x̂
∥x̂∥1

.

This padding oracle has two merits which we exploit. First, the error incurred due
to padding is small proportional to the padding size δ, which finds usage in proving the
correctness of our main algorithm, Algorithm 4 (see Proposition 24).

▶ Lemma 18 (Error of padding, cf. Lemma 6, [10]). For δ > 0 and z̄ = (x̄, y) ∈ ∆m × [0, 1]n
let z = (x, y) ∈ ∆m × [0, 1]n where x = Oδ(x̄) (Definition 17), then for r in (18), and any
w ∈ Z = ∆m × [0, 1]n, V r

z (w)− V r
z̄ (w) ≤

(
ρ + 8

ρ

)
mδ.

Second, padding ensures that the iterates of our algorithm satisfy x = Ω(δ) entrywise, i.e.
no entries of our simplex iterates x are too small. This helps ensure the stability of iterates
throughout one call of Algorithm 3, formally through the next lemma.

▶ Lemma 19 (Iterate stability in Algorithm 3). Suppose ϵ ≤ 1, ρ ≥ 6, and α ≥ 36
ρ (µ log 4

δ +
3Cmax). Let (xk, yk) denote blocks of zk, the kth iterate of Algorithm 2. In any iteration k

of Algorithm 2, calling Algorithm 3 to implement Line 3, if xk−1 ≥ δ
2 entrywise, x(t+1) ∈

xk−1 ·
[
exp

(
− 1

9
)

, exp
( 1

9
)]

, for all t ∈ [T ]. Calling Algorithm 3 to implement Line 4, if
xk−1/2 ≥ δ

4 entrywise, x(t+1) ∈ x
α

α+ν

k−1 ◦ x
ν

α+ν

k−1/2 ·
[
exp

(
− 1

9
)

, exp
( 1

9
)]

for all t ∈ [T ].
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4.3 Regularized box-simplex solver and its guarantees

We give our full high-accuracy regularized box-simplex game solver as Algorithm 4, which
combines Algorithm 2, Algorithm 3, and a padding step to ensure stability. For space
considerations, we defer the complete statement of algorithm to the full version of the paper.

Algorithm 4 RegularizedBS(A, b, c, ϵ, µ, σ).

Input: A ∈ Rm×n, c ∈ Rm, b ∈ Rn, accuracy σ ∈ (m−10, 1), 72ϵ ≤ µ ≤ 1
Output: Approximate solution pair (x, y) to (16)

1 Global: δ ← ϵσ2

m2 , ρ←
√

2µ
ϵ , ν ← 1

2
√

µϵ
2 , α← 18Cmax + 32

√
µϵ
2 log 4

δ

2 Global: T ← O
(

log mnBmaxαρ
δσ

)
, K ← O

(
α
ν log

(
ν log m

σ

))
for appropriate constants

3 (x0, y0)← ( 1
m · 1m, 0n)

4 for k = 1 to K do
5 (γx, γy)← GradBS(xk−1, yk−1, xk−1, yk−1, 0)
6 (xk− 1

2
, yk− 1

2
)← AltminBS(γx, γy, α, xk−1, yk−1)

7 (γx, γy)← GradBS(xk− 1
2
, yk− 1

2
, xk−1, yk−1, ν)

8 (x(T +1), y(T ))← AltminBS(γx, γy, α + ν, xk− 1
2
, yk− 1

2
)

9 xk ← 1
∥max(x(T +1),δ)∥1

·max
(
x(T +1), δ

)
, yk ← y(T ) ▷ Implement padding Oδ(x(T +1))

10 function GradBS(x, y, x0, y0, Θ)
11 gx ← Ay + c + µ(1 + log(x))− ϵ

2 |A| (y
2), gy ← −A⊤x + b + ϵdiag (y) |A|⊤x

12 gx
r ← −αρ(1 + log x0)− α

ρ |A|y
2
0 −Θρ(1 + log x)− Θ

ρ |A|y
2

13 gy
r ← − 2α

ρ diag (y0) |A|⊤x0 − 2Θ
ρ diag (y) |A|⊤x)

14 return (gx + gx
r, gy + gy

r)
15 function AltminBS(γx, γy, θ, x(0), y(0)) ▷ Implement approximate proximal oracle via AltMin
16 for 0 ≤ t ≤ T do
17 x(t+1) ← 1∥∥exp

(
− 1

θρ γx− 1
ρ2 |A|(y(t))2)∥∥

1

· exp
(
− 1

θρ γx − 1
ρ2 |A|

(
y(t))2)

18 y(t+1) ← med
(

0, 1,− ρ
2θ ·

γy

|A|⊤x(t+1)

)
19 return (x(T +1), y(T ))

In order to analyze the convergence of Algorithm 4, we begin by observing that the
operator in (17) satisfies strong monotonicity with respect to our regularizer (18).

▶ Lemma 20 (Strong monotonicity). Let µ ≥ ϵ
2 and ρ :=

√
2µ
ϵ . The gradient operator

gµ,ϵ (17) is ν := 1
2
√

µϵ
2 -strongly monotone (see (19)) with respect to rµ,ϵ defined in (18).

Next, we show iterate stability through each loop of alternating minimization (i.e.
from Line 5 to Line 6, and Line 7 to Line 8 respectively), via Lemma 19.

▶ Corollary 21 (Iterate stability in Algorithm 4). Assume the same parameter bounds as
Lemma 19, and that δ ∈ (0, m−1). In the kth outer loop of Algorithm 4, xk−1 ≥ δ

2 entrywise.
Further, for all iterates x(t+1) computed in Line 5 to Line 6 and xOPT as defined in (21)
with θ = α, 1

2 xk−1 ≤ x(t+1), xOPT ≤ 2xk−1, and x(t+1), xOPT ≥ δ
4 , entrywise. Similarly, for

all iterates x(t+1) computed in Line 7 to Line 8 and xOPT as defined in (21) with θ = α + ν,
1
2 xk−1/2 ≤ x(t+1), xOPT ≤ 2xk−1/2 and x(t+1), xOPT ≥ δ

4 , entrywise.
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Under iterate stability, our next step is to prove that our operator gµ,ϵ is relatively
Lipschitz with respect to our regularizer rµ,ϵ (as defined in (20)).

▶ Lemma 22 (Relative Lipschitzness). Assume the same parameter bounds as in Lemma 19.
In the kth outer loop of Algorithm 4, let z̄k ← (x(T +1), y(T )) from Line 8 be zk before the
padding operation. Then, xk−1/2, x̄k ∈ [ 1

2 xk−1, 2xk−1] elementwise and

〈
g(zk−1/2)− g(zk−1), zk−1/2 − z̄k

〉
≤ α

(
Vzk−1(zk−1/2) + Vzk−1/2(z̄k)

)
for α = 4+32

√
µϵ

2 .

Next, we give a convergence guarantee on the inner loops (from Line 5 to Line 6, and Line 7
to Line 8) in Algorithm 4, as an immediate consequence of Corollary 15.

▶ Corollary 23 (Inner loop convergence in Algorithm 4). Assume the same parameter bounds
as in Lemma 19. For γ defined in Line 5, suppose for an appropriate constant T =
Ω
(

log mnBmaxαρ
δσ

)
. Then, for all k iterate zk−1/2 = (xk−1/2, yk−1/2) of Line 6 satisfies

〈
∇g(zk−1) + α∇Vzk−1(zk−1/2), zk−1/2 − w

〉
≤ νσ

4 , for all w ∈ Z.

Similarly, for γ defined in Line 7, iterate z̄k = (x(T +1), y(T )) of Line 8 satisfies

〈
∇g(zk−1) + α∇Vzk−1(z̄k) + ν∇Vzk−1/2(z̄k), z̄k − w

〉
≤ νσ

4 , for all w ∈ Z.

We now analyze the progress made by each outer loop of Algorithm 4. The proof is very
similar to that of Proposition 13; the only difference is controlling the extra error incurred in
the padding step of Line 9, which we bound via Lemma 18.

▶ Proposition 24 (Convergence of Algorithm 4). Assume the same parameter bounds as in
Lemma 19, and that δ ≤ σ

4ραm . Algorithm 4 returns zK satisfying V r
zK

(z⋆) ≤ 3σ
ν , letting (for

an appropriate constant) K = Ω( α
ν log( ν log m

σ )).

We are now ready to prove the main theorem of this section, which gives a complete
convergence guarantee of Algorithm 4 by combining our previous claims.

▶ Theorem 25 (Regularized box-simplex solver). Given regularized box-simplex game (16) with
72ϵ ≤ µ ≤ 1 and optimizer (x⋆, y⋆), and letting σ ∈ (m−10, 1), RegularizedBS (Algorithm 4)
returns xK satisfying

∥∥xK − x⋆
∥∥

1 ≤
σ

Cmax log2 m
and maxy∈[0,1]n fµ,ϵ(xK , y)−fµ,ϵ(x⋆, y⋆) ≤ σ.

The total runtime of the algorithm is O(nnz(A)·( Cmax√
µϵ +log( m

σϵ ))·log( Cmax log m
σ ) log( mnBmax

σ )).

As a corollary, we obtain an approximate solver for regularized box-simplex games in the
following form (which in particular does not include a quadratic regularizer):

min
x∈∆m

max
y∈[0,1]n

fµ(x, y) = y⊤A⊤x + c⊤x− b⊤y + µH(x), where H(x) :=
∑

i∈[m]

xi log xi. (24)

▶ Corollary 26 (Half-regularized approximate solver). Given regularized box-simplex game (24)
with regularization parameters 72ϵ ≤ µ ≤ 1 and optimizer (x⋆, y⋆), and letting ϵ ∈ (m−10, 1),
Algorithm 4 with σ ← ϵ

2 returns xK satisfying maxy∈[0,1]n fµ(xK , y)−fµ(x⋆, y⋆) ≤ ϵ. The total
runtime of the algorithm is O

(
nnz(A) · ( Cmax√

µϵ + log
(

m
ϵ

)
) · log

(
Cmax log m

ϵ

)
log
(

mnBmax
ϵ

))
.
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Abstract
We study the d-dimensional hypercube knapsack problem (d-D Hc-Knapsack) where we are
given a set of d-dimensional hypercubes with associated profits, and a knapsack which is a unit
d-dimensional hypercube. The goal is to find an axis-aligned non-overlapping packing of a subset of
hypercubes such that the profit of the packed hypercubes is maximized. For this problem, Harren
(ICALP’06) gave an algorithm with an approximation ratio of (1 + 1/2d + ε). For d = 2, Jansen
and Solis-Oba (IPCO’08) showed that the problem admits a polynomial-time approximation scheme
(PTAS); Heydrich and Wiese (SODA’17) further improved the running time and gave an efficient
polynomial-time approximation scheme (EPTAS). Both the results use structural properties of 2-D
packing, which do not generalize to higher dimensions. For d > 2, it remains open to obtain a PTAS,
and in fact, there has been no improvement since Harren’s result.

We settle the problem by providing a PTAS. Our main technical contribution is a structural
lemma which shows that any packing of hypercubes can be converted into another structured
packing such that a high profitable subset of hypercubes is packed into a constant number of special
hypercuboids, called V-Boxes and N -Boxes. As a side result, we give an almost optimal algorithm
for a variant of the strip packing problem in higher dimensions. This might have applications for
other multidimensional geometric packing problems.
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1 Introduction

Multidimensional geometric packing problems are well-studied natural generalizations of
the classical knapsack and bin packing problems. In the d-dimensional geometric knapsack
problem (d-D Gen-Knapsack), where d is a fixed constant parameter, we are given a set
of n items I := {1, 2, . . . , n}. Each item i ∈ [n] is a d-dimensional (d-D) hypercuboid with
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78:2 A PTAS for Packing Hypercubes into a Knapsack

side length sk(i) ∈ (0, 1] along the kth dimension and profit p(i) ∈ Q>0. The goal is to
pack a subset of hypercuboids into a d-D unit knapsack (i.e., [0, 1]d) such that the profit is
maximized. We need the packing of the hypercuboids to be axis-aligned and non-overlapping.
In this paper, we study d-dimensional hypercube knapsack (d-D Hc-Knapsack), a special
case of d-D Gen-Knapsack, where all the items are hypercubes, i.e., for all i ∈ [n], the ith

hypercuboid is a hypercube of side length s(i).
d-D Gen-Knapsack generalizes the classical (1-D) knapsack problem [35] and thus is

NP-hard. It finds numerous applications in scheduling, ad placement, and cutting stock [18].
For 2-D Gen-Knapsack, Jansen and Zhang [27] gave a (2 + ε)-approximation algorithm.
Gálvez et al. [18] gave a 1.89-approximation and (3/2 + ε)-approximation for the cardinality
version (i.e., all items have the same profit). Adamaszek and Wiese [3] gave a QPTAS
when the input size is quasi-polynomially bounded. Gálvez et al. [19] later gave a pseudo-
polynomial time (4/3 + ε)-approximation. For 3-D Gen-Knapsack, the present best
approximation ratio is 7 + ε [14]. For d ≥ 4, Sharma [41] has given a (1 + ε)3d-approximation
algorithm. Interestingly for d ≥ 2, unlike d-D Gen-Knapsack, d-D Hc-Knapsack is not a
generalization of 1-D knapsack. Leung et al. [36] showed 2-D Hc-Knapsack is strongly
NP-hard, using a reduction from the 3-partition problem. The NP-hardness status of d-D
Hc-Knapsack for d > 2, was open for a long time. Recently, Lu et al. [37, 38] settled the
status by showing that d-D Hc-Knapsack is also NP-hard for d > 2.

A related problem is d-D Hc-Binpacking where we are given d-D hypercubes and the
goal is to pack them into the minimum number of unit hypercubes. Back in 2006, Bansal
et al. [5] gave an APTAS for this problem. Their algorithm starts by classifying the input
set into small, medium, and large items. They first pack the large items (O(1) in number)
near-optimally by brute force and then pack the small items using Next Fit Decreasing Height
(NFDH) [11] in the gaps left in between the large items. The remaining unpacked (small
and medium) items are packed into additional bins using NFDH. However, this constructive
approach can not be used to devise a PTAS for d-D Hc-Knapsack. Specifically, after
packing the large items, the total space left to pack the small items can be very small and
this space can be fragmented among several voids in between the large items. This renders
packing the small items difficult, especially if the small items occupy a small volume in the
optimal solution and carry a lot of profit. This turns out to be a bottleneck case. Otherwise,
if the volume of small items in an optimal solution is significant, or if their profit is not
significant, or if the empty space in the optimal solution is significant, we can easily devise a
PTAS. In fact, the algorithm in [5] can be adapted to devise PTASes for the special cases of
d-D Hc-Knapsack: (i) cardinality case, and (ii) when each item has the profit:volume ratio
in the range [1, r] for a fixed constant r. However, the case of arbitrary profits remains very
difficult to handle.

For d-D Hc-Knapsack, Harren [21] gave a (1 + 1/2d + ε)-approximation algorithm,
by removing a least profitable large item and using the empty space to pack the small
items. Interestingly, the approximation ratio gets smaller as d grows. He also studied d-D
Hc-StripPacking, where, given a set of hypercubes and a strip with a (d − 1)-dimensional
base and unbounded height, the goal is to pack all the hypercubes while minimizing the
height. He gave an APTAS for the special case of d-D Hc-StripPacking when the ratio
between the shortest and longest sides of the base is bounded by a constant.

Jansen and Solis-Oba [26] gave a PTAS for 2-D Hc-Knapsack, by overcoming the
above-mentioned bottleneck. They consider an optimal packing and categorize the packed
items into small, medium, and large items. Then, by extending the edges of the large items,
the remaining space is divided into O(1) number of rectilinear regions, where each region
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is classified as either large or elongated or small, based on the largest item intersecting
or completely contained in it. Then, to make sure that a region has no items partially
intersecting it, they repack all the items as follows. The large region is rectangular and
its dimensions are much larger compared to the largest item intersecting it. Here NFDH
can repack a high profitable subset of the items. An elongated region is again rectangular
and it has one dimension much longer than the other. Here an algorithm for strip packing
[28] is used to repack the items. Finally, the small regions are handled by applying the
above transformations recursively as they can have complicated shapes (they may not be
rectangular). Recently, Heydrich and Wiese [23] gave an EPTAS, effectively achieving the
best-possible approximation. However, a PTAS for d-D Hc-Knapsack for d > 2 remains
elusive as it is difficult to find such transformations for higher dimensions. Even for 3-D,
the best-known approximation ratio remains 9/8 [21]. In 2-D, many structural theorems
[4, 18] show that a near-optimal solution exists where all items are packed into O(1)-number
of rectangular regions where items are either packed as a stack or packed using NFDH. But
these results do not generalize to higher dimensions. E.g., while extending the approach of
large and elongated blocks of [26] to d > 2, we may not obtain a near-optimal structure packed
in d-D hypercuboids; rather, we might obtain complicated rectilinear regions. However, prior
to our work, there exist no algorithms which considered packing in such rectilinear regions.

1.1 Our Contributions
For the d-D Hc-Knapsack problem, we design a PTAS, thus settling the problem. Our
main structural result intuitively says that any packing, by incurring a loss of only ε-fraction
of the profit, can be transformed into O(1) number of special hypercuboidal regions such
that each region either contains a single large item, or contains items very small compared
to its dimensions (V-Box, see Figure 1a), or contains items placed along a multidimensional
grid (N -Box, see Figure 1b). We then provide an algorithm that guesses the arrangement of
these hypercuboids and uses results of [26, 35] to find a near-optimal packing of items in
these special boxes.

(a) An V-Box is just a huge cuboid when com-
pared to its size parameter ŝ. Each item has side
length at most ŝ and the item set assigned to it
can be packed by NFDH.

(b) An N -Box is a multidimensional grid. An item
set assigned to an N -Box can be packed by placing
each item in a cell.

Figure 1 V-Box and N -Box.

For our structural theorem, we start with an optimal solution. First, we divide the items
in the optimal packing into large, medium, and small items such that the medium items
have a tiny profit and can be discarded. Then, by extending the facets of the large items, we
create a non-uniform grid with O(1) hypercuboidal cells. However, some items may intersect
the facets of these cells. We consider the facets of all the cells and identify (based on the
intersecting items) each of the facets as either good or bad. Intuitively, if we only have good
facets then we can repack items so that no items intersect the facets. To get rid of the bad
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facets, we merge some cells so that they form composite cells, which we call collections (See
Figure 2). Now we need to repack the items in the collections which may have complex
rectilinear shapes. If the collection has k ∈ {0, 1, . . . , d} long dimensions then we call it a
k-elongated collection. Note that we can have d + 1 types of collections.

Our structural theorem can be viewed as a generalization of [26, 21]; however, due to
the complicated shape of collections, we had to overcome several technical obstacles in the
process. For simplicity, we explain the intuition for d = 3, where we obtain a packing of
items into four types of rectilinear regions (collections) as in Figure 2.

Figure 2 Repacking items inside the left-most collection is easy (using NFDH). The right-most
collections are handled recursively. However, repacking the items in the other two collections is
challenging (we needed a novel strip packing algorithm).

The first collection (3-elongated) is a V-Box, i.e., all its three dimensions are long compared
to the largest item packed in it. The simple NFDH algorithm suffices to repack the items
inside it while losing only a few items with a small profit. Although repacking in large
collections can be easily handled by NFDH, there exist no previous algorithms to repack items
in the remaining types of collections. Now for k ∈ [d − 1], collections are long in at least one
dimension and thus can be viewed as a type of strip (though the base may not be rectangular).
Harren [21] showed how to repack items almost optimally in a d-dimensional strip with a
rectangular base with a bounded aspect ratio. However, their approach doesn’t trivially
extend to the 1- and 2-elongated collections in Figure 2, as the base can be non-rectangular or
it may not satisfy the property of bounded aspect ratio even though it is rectangular. In this
paper, we circumvent this bottleneck by designing a PTAS (under resource augmentation)
for d-dimensional strip packing to pack items on such complicated bases. Now we explain
how we use the strip packing algorithm to pack these collections.

In the second collection (2-elongated), one dimension (marked in red) is reasonably short
compared to the largest item intersecting it and the other dimensions (in green) are long.
We first divide the items in the collection into large, medium, and small items and ensure
that the total volume of medium items is marginal. We then consider the large items and
round their sizes to up to O(1) types using linear grouping [28]. The number of (rounded)
large items that can fit on along the short dimension is O(1). So, similar to [28], we solve an
LP that represents the fractional strip packing with (rounded) large items where the items
are allowed to be sliced along the long dimensions. We then convert this into an integral
packing of large items using resource augmentation along the long dimensions. Then we pack
as many small items as possible in the gaps left. The rest of the small items, together with
the medium items, are packed on the top.

The third collection (1-elongated), though complicated, is ensured (by our construction)
to have a base with a bounded aspect ratio1. Moreover, it can be viewed as a union of O(1)
number of smaller disjoint rectangles (which we call base cells). We again classify each item

1 More accurately, the minimal cuboid, which completely contains the base, has bounded-aspect ratio.
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in this collection as large, medium, or small. As above, we round the large items to O(1)
types. Note that the number of large items that can fit on the base of the strip is only a
constant (due to the bounded aspect ratio ). We pack them integrally by first solving the
fractional LP where items are allowed to be sliced along the long dimension. Our main
novelty, in this case, is the way in which we pack the small items on the top of the strip.
Unlike [21], we can’t use NFDH directly to pack the small items as the base isn’t rectangular.
Instead, we first merge a few base cells to form a larger base cell which is rectangular (we
show that this is indeed possible) and is large enough to accommodate the largest item (and
thus any item). Now, having at least one large base cell, we distribute the small and medium
items among all the base cells so that when they are packed using NFDH in strips on these
base cells, the maximum height is minimized. Observe that if we pack the items on a single
base cell, we may not efficiently use the entire area of the base and this can lead to a very
tall strip. Thus this process of distributing the items among all the base cells is important.

We use our near-optimal strip packing algorithm on these 1- or 2-elongated collections to
repack the items while losing only a small profit. Interestingly, the strip packing algorithm
for both kinds of bases (in general, for any k-elongated collection where k ∈ [d − 1]) is the
same; the only change is the number of short dimensions of the base that is given as a
parameter to the algorithm. We provide the algorithm for d-dimensional strip packing in the
full version [24].

Finally, for 0-elongated collections, we apply the above process recursively. Using a
shifting argumentation, we show that Oε(1) steps of recursion is sufficient. We also show
that the resulting packing is a packing into O(1) number of V-Boxes and N -Boxes. With
more technical ingenuity, these ideas can be extended to the case of d > 3.

We believe that our techniques will be helpful for other multidimensional geometric
packing problems involving rectilinear regions that are not hypercuboids.

1.2 Related Work
For geometric bin packing, Caprara gave a 1.691d−1 asymptotic approximation [9]. For d = 2,
it admits no APTAS [5] and there is a 1.406-approximation algorithm [7]. There are several
other variants of bin packing such as vector packing [6, 40], strip packing [22, 16, 25], sliced
packing [13, 17], mixed packing [34], etc. The knapsack problem is also studied under several
generalizations such as vector knapsack [15], fair knapsack [39], and mixed knapsack [33].
Packing problems are also well-studied under guillotine cut constraints [8, 30, 31, 1, 32].
Guillotine cut also has interesting connections with the maximum independent set of rectangles
problem [2, 20]. We refer the readers to [10, 29] for a survey on multidimensional packing.

1.3 Overview of the Paper
In Section 2, we present some preliminaries. Section 3 contains the result for d-D Hc-
Knapsack. The result for strip packing, which will be used as a subroutine to obtain our
main structural result is given in Section 3.1.2. Due to space limitations, many proofs had to
be moved to the full version [24].

2 Notations and Preliminaries

Let [n] := { 1, 2, . . . , n }. For any set of items I, we define ŝ(I) := maxi∈I s(i). For any
k-dimensional region R, we denote its volume by VOLk (R). We extend this notation to an
item i or a set of items I, i.e., VOLd (i) = (s(i))d, and VOLd (I) =

∑
i∈I VOLd (i). Also,

the profit of a packing is the sum of the profits of the packed items Q: p (Q) :=
∑

i∈Q p (i).

ICALP 2022
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Consider a set of points X in [0, 1]d where each point x ∈ X can be represented as
(x1, x2, . . . , xd). For any set of dimensions D ⊆ [d], we define the projection of X onto D as
the set

{ (
xd1 , . . . , xd|D|

) ∣∣ (x1, . . . , xk) ∈ X
}

, where
{

d1, . . . , d|D|
}

= D and di < di+1 for
all i ∈ [|D| − 1].

We only consider axis-aligned packing of hypercuboids and hypercubes. Thus, a d-
D hypercuboid C is given by the position of its lower corner (x1, . . . , xd) ∈ Rd and side
lengths ℓ1, . . . , ℓd ∈ R+. Then, C is the cartesian product of the intervals

∏d
i=1 [xi, xi + ℓi],

and VOLd (C) :=
∏d

i=1 ℓi and its surface area is defined as the sum of the volumes of its
(d − 1)-dimensional facets, i.e., SURFd (C) := 2

∑d
i=1

∏d
j=1,j ̸=i ℓj = 2

∑d
i=1 VOLd (C) /ℓi. A

packing is a subset Q ⊆ I of items with positions pos : Q −→ [0, 1]d. It is valid, if each
item i ∈ Q with the lower corner positioned at pos (i) is completely included in the unit
hypercube [0, 1]d and each pair of items i, j ∈ Q is positioned non-overlapping.

Consider a set of items lying in d dimensional space. For any region in the d dimensional
space, we define the profit of that region as the profit of the set of items completely contained
in that region.

We will use the higher dimensional variant of the well-known Next Fit Decreasing
Height (NFDH) algorithm extensively. For the sake of completeness, we will provide a brief
description of the algorithm here.

NFDH is a two dimensional packing algorithm introduced in [11] for packing a given set
of rectangles in a bigger rectangular region R. Informally, it works as follows. First, it sorts
the given set of rectangles in decreasing order of heights (the vertical dimension). Then, it
starts off by packing the rectangles on the base of R side-by-side as much as possible. Then,
this level is closed, i.e., the base of R is shifted vertically to the top of the first rectangle
packed. In the next step, the remaining rectangles are packed on the new base to whatever
extent is possible. This process continues.

One can easily extend the NFDH algorithm to pack hypercuboids into a bigger hyper-
cuboidal region. Let k ∈ N≥2. For any k-dimensional hypercuboid x, let x(i) denote the
i-dimensional hypercuboid obtained by considering only the first i dimensions of x. We
can extend this notation to sets: Let J be a set of k-dimensional hypercuboids. Then
J (i) = {x(i)|x ∈ J}.

We define the NFDH algorithm in k dimensions (k-NFDH) recursively as follows. If
k = 2, then the algorithm is simply NFDH as described above. Suppose k > 2. Let S be a
set of k-dimensional hypercuboids to be packed into a k-dimensional hypercuboidal region R.
We first sort the rectangles in decreasing order of their lengths in the kth dimension. Then
we pick the largest possible prefix P of S such that P (k−1) can be completely packed on the
base of R using (k − 1)-NFDH. We pack P on the base of R, and shift the base to the top
of the tallest (longest in the kth dimension) item in P . We repeat this process with S\P .

The pseudocode of k-NFDH and some illustrations have been provided in the full version
[24]. We will abbreviate k-NFDH by just NFDH. The value of k will be clear from the
context. Harren [21] gave a surface area based efficiency guarantee of NFDH algorithm for
hypercubes.

▶ Lemma 1 ([21]). Consider a set S of hypercubes with side lengths at most δ and a
hypercuboid C. The NFDH algorithm either packs all items from S into C or the total volume
left free inside of C is at most δ SURFd (C) /2.

Now we define V-Box and N -Box.

▶ Definition 2 (V-Box and N -Box). Let B be a d-dimensional hypercuboid, Q be a set of items
packed in it, and let ŝ be an upper bound on the side lengths of the items in Q. We say that
B is a V-Box if its side lengths can be written as n1ŝ, n2ŝ, . . . , ndŝ where n1, n2, . . . , nd ∈ N+
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and the volume of the packed items is at most VOLd (B) − ŝ SURFd(B)
2 . We say that B is an

N -Box if its side lengths can be written as n1ŝ, n2ŝ, . . . , ndŝ where n1, n2, . . . , nd ∈ N+ and
the number of packed items is at most

∏d
i=1 ni.

As the side lengths are integral multiples of ŝ, the number of distinct V-Boxes and N -Boxes
in the near-optimal structure will be polynomially bounded. The following corollary follows
from Lemma 1.

▶ Corollary 3. Let B be a V-Box with the item set Q packed in it. Then these items can be
repacked into B using NFDH.

Proof. We can either pack all the items in I into B using NFDH, or, by Lemma 1, the free
volume inside of B is at most ŝ SURFd (B) /2. The latter possibility however implies that
we packed items with a volume of at least VOLd (B) − ŝ SURFd (B) /2, which is an upper
bound on VOLd (I) by the definition of a V-Box. ◀

▶ Observation 4. Let B be an N -Box with the item set Q packed in it. As |Q| ≤
∏d

i=1 ni, we
can divide B into

∏d
i=1 ni cells such that each cell has length ŝ in each of the d dimensions

and we can place each item in Q in one cell.

In this paper, we will often require that a set of hypercuboidal regions forms a grid.

▶ Definition 5. A d-dimensional grid (see Figure 3(a)) C is a subset of the set of hypercuboids{ ∏d
i=1 [gi,ji−1 , gi,ji

]
∣∣∣ 1 ≤ ji ≤ ni for all i ∈ [d]

}
, where each ni ∈ N+ denotes the number

of grid layers in the ith dimension, and gi,0 < · · · < gi,ni for all i ∈ [d] are the grid boundaries.
Each hypercuboid in C is called a cell.

Each grid C has |C| ≤
∏d

i=1 ni cells. A grid C can also be refined by splitting some cells.

▶ Lemma 6. Let C be a d-D grid with n1, . . . , nd ∈ N+ layers and boundaries gi,j ∈ R for
i ∈ [d] and j ∈ [ni]. Let R be a set of d-D hypercuboids. Then the region of the grid which is
not intersected by R is a new grid with n′

i ≤ ni + 2 |R| layers in each dimension i ∈ [d].

Proof. Each hypercuboid in R is the cartesian product of d intervals
∏d

i=1 [ai, bi]. The grid
C can now be refined by adding the boundaries ai and bi in each dimension i. This increases
the number of layers in each dimension by at most 2 |R|. After this refinement, each cell is
either completely contained in a hypercuboid in R, and hence discarded from C, or does not
intersect R. This can be seen in Figure 3(b). ◀

3 Knapsack

In this section, we will devise a PTAS for the d-D Hc-Knapsack problem.

3.1 Structure of a Nearly Optimal Solution
First, we prove that given an optimal packing OPTknapsack (I) of the input set I, there exists
another packing containing a subset of the items packed in a simple structure which can
be searched for, in polynomial time. For this, we modify the optimal packing to obtain a
near-optimal packing in which all the items are packed into either V-Boxes and N -Boxes
except for a constant number of large items. The total number of these boxes is O(1) and
their sizes come from a set whose cardinality is polynomial in |I|. Hence, this near-optimal
packing can be searched for, in polynomial time.

ICALP 2022
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g2,4
g2,3

g2,2

g2,1

g2,0
g1,0 g1,1 g1,2 g1,3 g1,4

(a) 3 orange rectangles partially covering a grid
with 4 layers in each dimension.The dotted lines
indicate the grid boundaries and the grid cells
are indicated by the green rectangles.

(b) Refined grid with ≤ 10 layers in each dimen-
sion. The new grid cells are indicated in green.
The shaded cells are those discarded from the
refined grid as they overlap with the items.

Figure 3 Splitting the empty space inside of a grid.

▶ Theorem 7. For each 0 < ε < 1/2d+2, there is a packing with the following properties:
(i) It consists of N -Boxes and V-Boxes whose total number is bounded by a constant

Cboxes (d, ε), which depends only on ε and d.
(ii) The number of items in the packing that are not packed in these boxes is bounded by a

constant Clarge (d, ε), which depends only on ε and d.
(iii) The profit of the packing is at least

(
1 − 2d+2ε

)
OPTknapsack (I).

To prove the theorem, first, in Section 3.1.1, we consider a packing in an arbitrary grid (note
that the knapsack can be viewed as a grid containing a single cell) and merge some of its cells
into collections based on the packing of the items into the grid. The reason for choosing
an arbitrary grid is that, as we will see, we recursively divide the knapsack into grids (which
can have arbitrary shapes) and consider each of them separately. Then in Section 3.1.3, we
show how to repack the items in a collection using NFDH or by a strip packing algorithm
described in Section 3.1.2.

3.1.1 Partitioning a Grid into Collections
Consider a grid and a set of items J packed into it. Assume that the grid has at most Nlayer
layers in each dimension. Thus, it consists of at most N := Nd

layer cells. Our goal is to repack
(a subset of ) J to obtain a simpler structure, by losing only a small profit. The overall grid
can have a complex structure, so we consider each cell (a hypercuboid) and repack the items
in the cell. However, it might be problematic to repack the items that intersect a cell only
partially. Consider one such item and one of the cells it intersects. There must be a facet of
this cell that cuts into this item. If this facet is orthogonal to a long dimension of the cell,
then we can remove a strip of small profit and pack these intersecting items in that strip.
However, an issue arises when this facet is orthogonal to a short dimension. Therefore, we
merge the two cells that share this facet. Doing this iteratively, we merge some cells into a
collection of cells or simply collection. See left of Figure 4.

For a cell a, we will denote the side length of the largest item of J partially or fully
packed in it by ŝ (a) and we denote the side lengths of the cell by a1, . . . , ad. Furthermore,
we sort the dimensions using a stable sorting algorithm 2, such that the side lengths of a

2 A stable sorting makes the order unambiguous. This simplifies some proofs that compare the orders for
different collections.
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Figure 4 (i) The left figure shows five cells of a grid in the two-dimensional case. The orange items
are small compared to the height of one of the cells (shaded with dots) they intersect. So, we transfer
them to the interior of that cell by removing a least profitable strip (shaded in stripes). However,
the blue item cannot fit in any of the cells it intersects, so we merge both these cells. (ii) The right
figure demonstrates merging. An item (blue) intersects a bad facet between a 2-elongated collection
(red) and a 1-elongated collection (green). After merging, we obtain a single 1-elongated collection.

in those dimensions are in non-increasing order. We will refer to that order as σa and thus,
aσa(i) is the ith largest side length of a. We start by defining the values which we will use
to distinguish between long and short sides of a cell as

αd := 2d

ε
, and αk := 2

ε
(Cconfigs (d, k, αk+1, N, ε) + 3) for all k ∈ [d − 1] (1)

The parameter Cconfigs (d, k, αk+1, N, ε) is a constant depending on d, k, αk+1, N, ε. Its exact
value is derived in the full version [24], but for our purposes, it suffices to note that for all
k ∈ [d − 1], Cconfigs (d, k, αk+1, N, ε) ≥ 1 and its value gets larger when k gets smaller. Hence,
1 < 2d/ε = αd < . . . < α1.

Now we can define a cell a to be k-elongated for 0 ≤ k ≤ d iff k of its side lengths are
long compared to some size parameter s.

▶ Definition 8. A cell a is k-elongated for k ∈ [0, d] and size parameter s > 0 iff
(i) aσa(i) > αks for all 1 ≤ i ≤ k and
(ii) aσa(i) ≤ αis for all k < i ≤ d.

If a is a k-elongated cell, then for any i ∈ [k] we call σa (i) to be a long dimension of a and
the other dimensions to be short. Note that for each size parameter, each cell is k-elongated
for exactly one value of k. A facet of a k-elongated cell is called good if it is orthogonal to a
long dimension and bad otherwise. We will see that the items that intersect only the good
facets of a cell don’t cause much of an issue; the complicated machinery that we devise is to
deal with the items intersecting the bad facets.

For a group of cells to be merged into a collection, they should satisfy some additional
properties. We define a k-elongated collection C as a set of cells that are k-elongated using
the size of the largest item completely or partially packed in that collection as a common
size parameter and are aligned in their long dimensions. More formally,

▶ Definition 9. A set of cells C is a k-elongated collection if
(i) each cell a ∈ C is k-elongated for the size parameter ŝ (C) := maxc∈C (ŝ (c)),
(ii) σa (i) = σb (i) for all 1 ≤ i ≤ k and all a, b ∈ C and
(iii) the projection of a and b onto the dimension σa (i) is the same for all 1 ≤ i ≤ k and

all a, b ∈ C.
(iv) The set of cells form a path-connected region.

By properties (i) and (ii) of a k-elongated collection, we can define the k dimensions that are
long for any cell of the collection to be the long dimensions of the collection itself. Property
(iii) strictly limits the arrangement of the cells in long dimensions. Thus, a larger k makes
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Figure 5 Different collections in 3-D with some items intersecting good facets. The arrow marks
indicate the long dimensions. From left to right: 0-, 1-, 2-elongated collections, and a non-example
of a collection (violates property (iii).)

the shape of the whole collection less complex (See Figure 5). A common facet between two
cells a ∈ C and b ∈ D of two different collections C and D is called an outer facet for each
of those collections. For each dimension, each cell has two facets that are orthogonal to this
dimension. The facet with the lower coordinate in this dimension is called the bottom facet
and the other one is called the top facet. For each long dimension of a collection the bottom
facet of the collection is formed by the union of the bottom facets of its cells; the top facet of
the collection is formed by the top facets of its cells.

Initially, we consider each cell of our grid as a collection containing only itself. Whenever
there is an item intersecting an outer facet between two collections C and D, we will merge
those collections if that facet is bad (i.e. orthogonal to a short dimension) for both of them.
Such a case is visualized on the right of Figure 4. The next lemma proves that merging
collections in this case will create a new collection.

▶ Lemma 10. Let C be a kC-elongated collection and let D be a kD-elongated collection.
Let a ∈ C and b ∈ D be two cells that have a common facet which is bad for both of them.
Then C ∪ D is a min (kC , kD)-elongated collection.

Proof. Note that both kC , kD are strictly less than d since a, b share a common facet f

which is bad for both. W.l.o.g., we will assume that ŝ (C) ≥ ŝ (D). Let f has side lengths
f1, . . . , fd where fi denotes the length in the ith dimension (for simplicity, we assume f is a
d-dimensional hypercuboid with a side of zero length). Note that the facet f has the same
side lengths as a and b in any dimension except the dimension in which it has zero length.
This implies that a and b are of almost the same shape. In the dimension orthogonal to f ,
both a and b have a rather short length, as f is a bad facet for both collections. Using these
arguments, we can derive the following properties:

(i) aσf (i) = fσf (i) = bσf (i) for all 1 ≤ i ≤ d − 1 (Since f is common to both a, b)
(ii) σf (i) = σa (i) for all 1 ≤ i ≤ kC (Since f is bad for a which is a kC-elongated cell)
(iii) σf (i) ∈ { σa (i) , σa (i + 1) } for all kC < i < d (explained below)
(iv) σf (i) = σb (i) for all 1 ≤ i ≤ kD

(v) σf (i) ∈ { σb (i) , σb (i + 1) } for all kD < i < d

The property (iii) above is due to the fact that a and f have the same lengths in all dimensions
except one, say d⊥. So, the order of dimensions σa (1) , σa (2) , . . . , σa (d) can be obtained by
inserting d⊥ in the list σf (1) , σf (2) , . . . , σf (d − 1) at the appropriate index but we know
that this index lies after kC since d⊥ is short for a.

If we assume kC > kD, we obtain the inequality fσf (kC ) = aσa(kC ) > αkC
ŝ (C) by (i),

(ii) and Definition 8 of the kC-elongated cell a. We also obtain the contradictory inequality
fσf (kC ) = bσf (kC ) ≤ bσb(kC ) ≤ αkC

ŝ (D) ≤ αkC
ŝ (C) by (i), (iv) and (v) and Definition 8 of

the kD-elongated cell b. Thus, our choice ŝ (C) ≥ ŝ (D) determines that kC ≤ kD.
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As ŝ (C ∪ D) = ŝ (C) and C is a kC-elongated collection, we know that C ∪ D fulfills
property (i) of Definition 9 for a kC-elongated collection for every a′ ∈ C. Let b′ ∈ D.
We have to show that b′ is a kC-elongated cell using the size parameter ŝ (C) as well. For
every 1 ≤ i ≤ kC we can use Definition 9 of the kD-elongated collection D and (i), (iv)
and (ii) to prove b′

σb′ (i) = bσb(i) = fσf (i) = aσa(i) > αkC
ŝ (C). For every kC < i ≤ kD we

can again use Definition 9 of the collection D and properties (i), (iv) and (iii) to prove
b′

σb′ (i) = bσb(i) = fσf (i) ≤ aσa(i) ≤ αiŝ (C). For every kD < i ≤ d we already know that
b′

σb′ (i) ≤ αiŝ (D) ≤ αiŝ (C) because of Definition 8 for the kD-elongated cell b′. Thus, b′ is a
kC-elongated cell using the size parameter ŝ (C).

Now we only need to prove properties (ii) and (iii) of Definition 9 for every pair of cells
in C ∪ D to show that it is a collection. For a pair a′, a′′ ∈ C or b′, b′′ ∈ D this is trivial,
because C and D are kC- or kD-elongated collections and kC ≤ kD. For the pair a and b,
those properties are again trivial, because both have all their long sides on the common facet
f . For any a′ ∈ C and b′ ∈ D the properties follow as the pairs a′ and a, a and b, b and b′

satisfy these properties. ◀

After this merging procedure, we will assign each item x ∈ J to a collection C as follows:
If x is completely packed in a collection, then we assign it to that collection itself. If it is
partially contained, then we assign it to one of the collections (breaking ties arbitrarily)
with which it intersects only via the good outer facets. The next lemma shows that this
assignment is indeed possible.

▶ Lemma 11. Let G be the set of all collections that were derived after the merging procedure.
Let x ∈ J be an item that is packed in the grid but isn’t completely packed in any collection
in G. Then there exists a collection C ∈ G in which x is partially packed but x does not
intersect any of its bad outer facets.

Proof. First, we define an order on the set of the collections G. We associate each kC-
elongated collection C ∈ G with the tuple of the long sides

(
aσa(1), . . . , aσa(kC )

)
for some cell

a ∈ C in a descending order. By property (iii) in the definition of a kC -elongated collection,
the tuple is independent of the choice of the cell. We now define the strict lexicographic
order ≺ on these tuples. In other words, for a kC-elongated collection C, a kD-elongated
collection D and cells a ∈ C and b ∈ D, we have C ≺ D iff

(i) kC < kD and aσa(i) = bσb(i) for all 1 ≤ i ≤ kC , or
(ii) there is some 1 ≤ k ≤ min (kC , kD) such that aσa(i) = bσb(i) for all i ∈ [k − 1] and

aσa(k) < bσb(k).
Let H ⊆ G be the set of collections where x is partially contained in. Let C ∈ H be a
maximal collection in H according to ≺ and let it be kC-elongated. Now we want to prove
that x does not intersect any bad outer facet of C. Assume there is a bad outer facet f of C

which is intersected by x. This facet f belongs to some cells a ∈ C and b ∈ D where D is a
different collection than C. The facet f has to be a good facet of D, because it is bad for C

and the collections C and D were not merged. Let d⊥ be the dimension which is orthogonal
to f . Like in the proof of Lemma 10, we know that ai = bi for all i ∈ { 1, . . . , d } \ { d⊥ }
because of their common facet f . As f is bad for C this contains all the sides of a that are
long using the size parameter ŝ (C). If a side of a is long using the size parameter ŝ (C) and
larger than bd⊥ , then this side is also long using the size parameter ŝ (D), because bd⊥ is
already considered as long using this size parameter. Thus, we have two cases: In the first
case, each side of a which is long using the size parameter ŝ (C) is larger than bd⊥ . Then
each long side of a is also a long side of b while b has at least one additional long side bd⊥ .
Thus, we have C ≺ D by (i). In the second case there are only k < kC sides of a long using
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the size parameter ŝ (C) and larger than bd⊥ . Then the k longest sides of a and b have the
same size and for the (k + 1)th longest sides we have aσa(k+1) < bd⊥ = bσb(k+1). Thus, we
have C ≺ D by (ii). In both cases, the maximality of C is violated, and therefore no bad
outer facet of C can be intersected by x. ◀

3.1.2 Strip Packing with Resource Augmentation
Before we proceed to repack the items inside of those collections, we will have a closer look
at an arbitrary k-elongated collection for some k ∈ [d − 1]. This constraint on k ensures that
the collection is large in at least one dimension and short in at least one dimension. Thus
our collection is some kind of a strip (may not be hypercuboidal). Previously, we reordered
the dimensions for a collection to have the k long dimensions first; however, for the strip
packing problem we assume the opposite, i.e., we suppose that the collection is short in
the first (d − k) dimensions and long in the last k dimensions. Each cell of this collection
is the cartesian product of some intervals and property (iii) of Definition 9 ensures that
the last k intervals are the same for any cell in this collection. By splitting the cartesian
product for a cell after the first (d − k) (short) intervals and before the last interval, we
can represent the cell as a × B × [h1, h2] where a is a (d − k)-dimensional hypercuboid that
depends on the selected cell and both the (k − 1)-dimensional hypercuboid B and the values
h1 and h2 are common to all cells of the collection. This set of hypercuboids {a} forms
a (d − k)-dimensional grid A that is the projection of our collection onto the first (d − k)
dimensions. With these definitions, our collection can be viewed as a d-dimensional strip
with base (∪a∈Aa) × B and height (h2 − h1). We would like to repack this collection using
a strip packing algorithm. For this purpose, we devise an algorithm to pack hypercubes on a
base (which can be extended by a slight amount in the long dimensions) with the properties
described above. With this motivation, we formally define the strip packing problem and
state the main result in the next few paragraphs.

Let k ∈ [d − 1]. Let ε > 0 be some accuracy parameter and N ∈ N+, α ≥ 1 be some
constants depending on d, ε. The input consists of a set of items I. In the entire subsection,
we abbreviate ŝ(I) by ŝ.

The (d − 1)-dimensional base on which we need to pack the input set I is the cartesian
product A × B where A is some (d − k) dimensional grid of at most N cells and B is some
(k − 1) dimensional hypercuboid. The side length of B in the ith dimension (i ∈ [k − 1]) is
denoted by bi. Each side length of each cell in A has to be at most αŝ and each bi has to
be at least Nαd−kŝ. As it can be seen, compared to ŝ, all the edge lengths in A are short
and all the edge lengths in B are long. Hence, we refer to the dimensions of the coordinate
system parallel to the edges of A as short dimensions and to the dimensions parallel to the
edges of B as long dimensions. In the 3-dimensional setting, we have two possible values for
k. If k = 1, then B vanishes and our base is just a grid of rectangles A. Such a base can
be seen in Figure 6a. If k = 2, then B is an interval and A is just a set of non-overlapping
intervals because it is 1-dimensional. In this case, the base can be visualized like in Figure 6b
as a set of flat but wide rectangles, that are positioned on top of each other. So for the
3-dimensional case, we either have a complex structure through A or long sides through B

but never both. In higher dimensions however, we can have both. An example for this is
the base of a 4-dimensional strip in Figure 6c. By scaling every dimension equally, it is
assumed that the volume of the grid A is normalized: VOLd−k (A) :=

∑
a∈A VOLd−k (a) = 1.

We also assume that any item in I can be packed on the base A × B. The goal is to find
a non-overlapping packing of the items in I into the region given by the set product of
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A, B and h, that is CONT (A, B, h) := (
⋃

a∈A a) × B × [0, h] where h is called the height
of the packing. The optimal (i.e. minimal) height h for which it is possible to pack I in
CONT (A, B, h) is denoted by OPTstrip (I, A, B).

(a) d = 3, k = 1. (b) d = 3, k = 2. (c) d = 4, k = 2.

Figure 6 The first two figures show two possible bases for a 3-dimensional strip. In the first figure,
A is shown in green and we have no B. In the second figure, the grid A (in green) is 1-dimensional
and thus simple, and B is shown in red (the long side). The last figure shows a possible 3-dimensional
base with k = 2 of a 4-dimensional strip with A shown in green (the short sides) and B shown in
red (the long side).

We only consider instances where a solution exists. Since we assume that VOLd−k (A) = 1,
we have that ŝ ≤ 1 as a larger item would not fit into the strip. Note that for each i ∈ [k − 1],
bi ≥ Nαd−kŝ ≥ N(αŝ)d−k ≥

∑
a∈A VOLd−k (a) = VOLd−k (A) = 1. In this section, we

describe an algorithm based on Harren’s [21] multidimensional generalization of the algorithm
by Kenyon and Rémila [28] for 2-dimensional strip packing.

The differences between our algorithm and Harren’s algorithm[21] can be summed up
as follows: Due to the complex nature of A, we have multiple hypercuboids, each having a
bounded aspect ratio. This changes the analysis of the algorithm. It also changes the details
like packing the medium and small items on the top, because we have to split one strip into
multiple smaller strips (having hypercuboidal bases) and distribute the items among them.
The addition of very long sides in form of B, like in Figure 6b, breaks the bounded aspect
ratio property in a more crucial way. Harren’s algorithm first packs the large items on the
base and then extends this packing along the height of the strip. This relies on the fact that,
due to bounded aspect ratio, not many large items can be packed on the base, and thus we
have to consider only a constant number of so-called configurations. If we have additional
long sides in the base in form of B, we don’t have such a bound on the number of large items
that can fit in the base. For example, in Figure 6b, an item can be large with respect to
A (shown in green), but the number of such items that can fit on the base A × B can’t be
bounded by a constant since the side shown in red can be arbitrarily long.

We work around this problem as follows: First, we consider (d − k) dimensional packings,
i.e., configurations of the items, on A. Then we not only extend these configurations along
the height of the strip but also along each of the (k − 1) dimensions of B. For example,
in Figure 6b, we first create one-dimensional packings on A and then extend each of these
packings both in the rightward direction and along the height of the strip.

▶ Theorem 12. Let I, A and B be the input for the d-dimensional strip packing problem
defined above and let ε > 0 be some additional accuracy parameter. Then there is an algorithm
which packs all items of I into the region CONT (A, B + ŝ, h) where B + ŝ is the hypercuboid
B after increasing each side length by ŝ and the height h is given by

h ≤ (1 + O (ε)) OPTstrip (I, A, B) + O (ŝ)

The constant omitted in the expression O(ε) is a function of k. The constant omitted in the
expression O(ŝ) is a function of d, k, α, N, ε.
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Due to space limitations, the detailed proof of Theorem 12 is given in the full version [24].
Our algorithm first classifies the input items into large, medium, and small items. The side
lengths of large items are rounded using linear grouping [12] such that there is only a constant
number of different sizes. When we try to pack a subset of large items by arranging them in
the first (d − k) dimensions while giving them the same position in the last k dimensions, we
only have to consider a constant number of those subsets. This is because the volume of the
strip in the first (d − k) dimensions is small and thus only a small subset of large items is
packable this way and items of the same size can be considered to be identical. For each
configuration, we take a packing that only uses the first (d − k) dimensions, and extend it to
use also the last k dimensions by placing multiple items of the same size next to each other
in those long dimensions. This creates an N -Box from each item in each configuration. An
LP is used to determine how large a configuration is extended in those k dimensions. The
packings for the different configurations are treated as layers stacked on top of each other.

After the large items are packed, we use the gaps between the large items to create
V-Boxes to hold some of the small items. The remaining small items and medium items are
placed in additional V-Boxes on top of this packing. Again this needed several technical
adaptations, as unlike [21], we have multiple different bases and we need to distribute the
remaining items in a balanced way such that the total height is minimized. See the full
version [24] for the details.

As we mentioned earlier, we use this theorem to repack a k-elongated collection Q

(k ∈ [d − 1]). So, we use αk+1 as α since we know that for every cell in Q, the first k

dimensions have length at least αkŝ(Q) ≥ Nαd−k
k+1 ŝ(Q) (see Remark 15 and definition of αk)

and each of the last (d − k) dimensions have length at most αk+1ŝ(Q). Now let us note a
few useful remarks about the above theorem applied to our collection Q. The proofs of these
remarks follow from a few lemmas in the full version [24].
▶ Remark 13. A more exact bound for the height of the packing obtained in Theorem 12 is(

1 +
(
2 + max

(
3, 2k−1))

ε
)

OPTstrip (Q, A, B) + 2 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝ (Q)

Here Cconfigs is only dependent on its parameters.
▶ Remark 14. The algorithm of Theorem 12 packs all items in N -Boxes and V-Boxes. The
number of N -Boxes is bounded by Cconfigs (d, k, αk+1, N, ε) /Cρ (d, k, αk+1, N, ε)d−k and the
number of V-Boxes by Cconfigs (d, k, αk+1, N, ε) N2d−k/Cρ (d, k, αk+1, N, ε)(d−k)2

+ N . Here
Cconfigs and Cρ are only dependent on their parameters.
▶ Remark 15. The value Cconfigs (d, k, αk+1, N, ε) from Remarks 13 and 14 has a lower bound
of Cconfigs (d, k, αk+1, N, ε) > Nαd−k

k+1 ≥ αk+1.

3.1.3 Repacking a Collection
Depending on the type of the collection, we can simplify the packing of the items assigned to
each collection. Let C be a k-elongated collection and let Q be the set of items assigned to C.
Let ŝ := ŝ (Q). We consider the cases k = d, 1 ≤ k < d, and k = 0 separately.

First of all, if C is a d-elongated collection, then it consists of only a single cell as it has
no bad facets and hence can not be merged with any other cell. Thus we can repack (after
removing only a small profit subset) it efficiently using NFDH because it is a hypercuboidal
region that is large in all dimensions. The following lemma states this. The proof can be
found in the full version [24].

▶ Lemma 16. If C is a d-elongated collection, then it can be transformed into a single V-Box
with a loss of profit at most 6dεp (Q).
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For a k-elongated collection with 1 ≤ k < d, we can apply the strip packing algorithm of
Theorem 12 as shown in the next lemma.

▶ Lemma 17. A k-elongated collection with 1 ≤ k < d can be transformed into a constant
number of V-Boxes and N -Boxes by losing profit at most

(
k + 7 + max

(
6, 2k

))
εp (Q) where

Q is the set of items assigned to it.

Proof. We begin by shrinking the collection to compensate for the enlargement that the
strip packing algorithm will cause. Define one of the long dimensions of the collection to be
its height and let h be the length in this dimension. Let c := 4 + max

(
3, 2k−1)

. We assumed
ε < 1/2(d+2) < 1/(2c). Divide the strip into ⌊1/ (cε)⌋ slices along the height. After that each
slice has a height of at least

cεh =
(
4 + max

(
3, 2k−1))

εh

≥
(
2 + max

(
3, 2k−1))

εh + 2εαkŝ (since h ≥ αkŝ)
=

(
2 + max

(
3, 2k−1))

εh + 4 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝ (by definition of αk)
≥

(
2 + max

(
3, 2k−1))

εh + 2 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝ + 6ŝ.

By clearing the slice with the lowest profit of items completely contained in it, we leave a gap
with a height of

(
2 + max

(
3, 2k−1))

εh + 2 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝ + 4ŝ. This causes
a loss of profit at most 1

⌊1/(cε)⌋ p (Q) ≤ 1
1/(cε)−1 p (Q) ≤ 1

1/(cε)−1/(2cε) p (Q) = 2cεp (Q) . The
items intersecting the bottom or top facet of the collection fit in a gap of height 2ŝ. We
reduce the height of the collection to

h′ := h −
(
2 + max

(
3, 2k−1))

εh − 2 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝ

by shifting the items intersecting the (removed) region at the top into a gap of height(
2 + max

(
3, 2k−1))

εh + 2 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝ + ŝ.
For each other large dimension we create ⌈1/ε⌉ slices and clear the slice with the lowest

profit, losing at most εp (Q) and create a gap of width at least 1
⌈1/ε⌉ αkŝ−2ŝ ≥ 1

1/ε+1 αkŝ−2ŝ ≥
ε
2 αkŝ − 2ŝ ≥ 4ŝ. Now we can shift the items intersecting the orthogonal facets into that gap
and reduce the length of the collection in this direction by ŝ. After this shifting process, we
will be left with a subset of items Q′ ⊆ Q.

To be able to use the strip packing algorithm from Theorem 12, the base of our strip
has to be in a special representation. For this, we create a (d − k)-dimensional grid A by
projecting the cells of our collection to their (d − k) short dimensions. We define B as a tuple
holding the lengths in the (k − 1) long dimensions of the collection that are not the height.
Now our base can be represented as the cartesian product A × B. As a last preparation
step, we scale the whole collection and the items in it by f := 1/ VOLd−k (A)1/(d−k) in each
dimension to normalize the volume of A to 1. Note that each value in the tuple B is at least
αkŝf ≥ Nαd−k

k+1 ŝf by the definition of αk and Remark 15. Thus, we can use the strip packing
algorithm Theorem 12 using the bound on the height by Remark 13 to compute a packing of
height at most(

1 +
(
2 + max

(
3, 2k−1))

ε
)

OPTstrip (Q′, A, B) + 2 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝf

≤
(
1 +

(
2 + max

(
3, 2k−1))

ε
)

h′f + 2 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝf

≤ h′f +
(
2 + max

(
3, 2k−1))

εhf + 2 (Cconfigs (d, k, αk+1, N, ε) + 3) ŝf

= hf.

After scaling back, the packing fits into our collection. ◀
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Repacking 0-elongated Collections. For a 0-elongated collection, we first distinguish the
items into large, medium, and small items such that the profit of medium items is very small
so that they can be discarded. We then further distinguish between the cases when (i) there
is a large item of very small profit or (ii) every large item has a significant profit. In the
first case, we remove the large item to make enough space to repack the small items. In
the second case, we use the fact that the number of large items can only be O(1). So, we
partition the grid into smaller grids and solve these recursively. We finally prove that we
only require O(1) number of recursive steps that we require are only a constant in number.

From now on, lets assume that C is a 0-elongated collection. To partition Q into large,

medium, and small items, we define the following values. ρ′
0 := 1, ρ′

i+1 :=
(

(ρ′
i)d

4dNαd
1

)d+1
and

ρi := ρ′
iŝ for all i ≥ 0. Let η ∈ N+ be minimal such that p ({ x ∈ Q | ρη < s (x) < ρη−1 }) ≤

εp (Q). Note that η ≤ 1/ε. We now partition Q into sets S := { x ∈ Q | s (x) ≤ ρη },
M := { x ∈ Q | ρη < s (x) < ρη−1 } and L := { x ∈ Q | ρη−1 ≤ s (x) }. We call S (resp.
M, L) to be the set of small (resp. medium, large) items. Note that since η ≥ 1 and ρ0 = ŝ,
the set of large items can’t be empty. This simple observation will be useful later.

If there is a large item with a small profit, then after discarding that large item, the
entire empty space can be divided into a constant number of V-Boxes. It can then be shown
that these V-Boxes have enough volume to pack all the small items. This is formalized in
the following lemma. The proof can be found in the full version [24].

▶ Lemma 18. Suppose C is a 0-elongated collection. If an item in L has profit at most
εp (Q), then the collection C can be transformed into a packing of profit at least (1 − 2ε) p (Q)
containing a constant number of large items and a constant number of V-Boxes.

If all the large items have a good profit (i.e., a profit of more than εp (Q)), we cannot
discard any of them to create space. Therefore, it is hard to repack the items directly so
instead we will take a recursive approach using a shifting argumentation.

▶ Lemma 19. Suppose C is a 0-elongated collection. If every item in L has a profit of at
least εp (Q), then C can be transformed into a constant number of large items, N -Boxes and
V-Boxes while losing profit at most max

(
6d + 1, d + 13, d + 7 + 2d−1)

εp (Q).

Proof. In this case, we have at most 1/ε large items. We can split the area of the collection,
which is not covered by the large items into a grid of at most 2/ε additional layers in each
dimension and recursively start from Section 3.1.1 with the classification of cells and merging
into collections. Each of these collections is a k-elongated collection (k > 0) or a 0-elongated
collection. The former collections can be repacked using Lemma 16 or Lemma 17. Let’s
look at the 0-elongated collections. Note that the total profit of these collections is at most
(1 − ε)p (Q) since we recurse only if there is a large item in Q of profit at least εp (Q). For
a 0-elongated collection in this recursive step, we either use Lemma 18 if there exists a
large item of small profit or, we continue the recursion. Note, that if we reach a depth
of

⌈
log1−ε (ε)

⌉
in this recursion, then we can just discard the remaining items and stop.

The reason for this is that we packed in each recursive step at least one large item with a
non-negligible profit, so at this maximal recursion depth, all the items over all collections
have a profit at most (1 − ε)⌈log1−ε(ε)⌉ p (Q) ≤ εp (Q).

During this process, the initial region was split into different collections, where each of
those was assigned a partition of the items Q′ ⊆ Q. At this point, no profit was lost except
for the items that are lost at the maximal recursion depth with profit at most εp (Q). When
repacking each collection by transforming them into large items, N -Boxes and V-Boxes, we
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lose again some profit, which depends on the method we used for repacking. We lose at most
6dεp (Q′) through Lemma 16, at most

(
d + 6 + max

(
6, 2d−1))

εp (Q′) through Lemma 17,
at most 2εp (Q′) through Lemma 18. As those subsets for the collections are distinct the loss
in this repacking step is bounded by max

(
6d, d + 12, d + 6 + 2d−1, 2

)
εp (Q). Noting that

2 < max
(
6d, d + 12, d + 6 + 2d−1)

and adding the factor of εp (Q) that we may lose during
the recursion proves the claim. ◀

The last thing to do is to prove, that the number of N -Boxes and V-Boxes that are
created is constant. As those boxes are created out of the cells of the grid in Section 3.1.1, we
start by bounding the size of this grid during the recursive algorithm. The following lemma
follows from the fact that in each of the recursive step (having depth at most ⌈log1−ε ε⌉) the
number of layers increases by at most 2/ε in each of the dimensions. The proof can be found
in the full version [24].

▶ Lemma 20. Consider any grid G obtained during the recursive algorithm starting from
the knapsack with an optimal packing as a grid with a single cell. Then the number of layers
in each dimension in G is upper bounded by Clayer (ε) := 2

⌈
log1−ε (ε)

⌉
/ε+1.

▶ Remark 21. Due to the above lemma, the bound on the number of layers also gives an
upper bound CN (d, ε) := (Clayer (ε))d on the number of cells in any grid that we consider in
Section 3.1.1.
Using these results, we obtain the following lemma which bounds the number of N -Boxes
and V-Boxes. The proof can be found in the full version [24].

▶ Lemma 22. The numbers of large items, and the total number of N -Boxes and V-Boxes
generated by the transformation of an optimal packing can be bounded by Clarge and Cboxes,
respectively. Clarge and Cboxes are constants that depend only on d, ε.

Now we can prove Theorem 7.

Proof of Theorem 7. Consider an optimal packing and interpret the initial knapsack as a
cell of a grid with one layer in each dimension. Then we start with the procedure explained
in Section 3.1.1 to classify the unit hypercube either as d-elongated or 0-elongated. By
Lemmas 16, 18, and 19, we can simplify the structure of the packing and lose a profit of at
most max(6d + 1, d + 13, d + 8 + 2d−1)εp (I) ≤ 2d+2εp (I) as we have d ≥ 2. Lemma 22
bounds the number of V-Boxes and N -Boxes and the large items packed outside them. ◀

3.2 Algorithm
Using the results of Section 3.1, we can construct a PTAS for d-D Hc-Knapsack.

▶ Theorem 23. Let d ≥ 2 and ε > 0. There is an algorithm which returns for each instance
of the d-dimensional hypercube knapsack packing problem given by a set of items a packing
with profit at least (1 − ε) OPTknapsack (I) with a running time which is polynomial in |I|.

Proof. Using Theorem 7 with an accuracy of 2−d−3ε we know that there is a packing with a
simple structure and profit at least (1 − ε/2) OPTknapsack (I). Let B be the set of N -Boxes
and V-Boxes in this structure, L ⊆ I the set of items packed outside of those boxes and
S ⊆ I\L the set of items packed inside of them.

As the number of items in L is constant, there are at most |I|Clarge(d,ε) choices for this
subset L ⊆ I. There are at most Cboxes (d, ε) + 1 choices for the number of boxes in B and
for each box there are at most:
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2 choices whether it is a V-Box or an N -Box,
|I| choices for the size parameter ŝ of the box,
|I|d choices for the side lengths of the box.

All of these choices are polynomial in the number of items |I|. Thus, by iterating over all
possible choices, we can assume at this point that we know the set of items L and the set B
of V-Boxes and N -Boxes of that nearly optimal solution. As both |L| and |B| are bounded by
a constant, we can find a packing of those items and boxes in the unit hypercube in constant
time. The last step left to do is to pack items from I\L in the boxes with a nearly optimal
profit. We can do this by solving a special variant of the Generalized Assignment Problem
(GAP) [42]. In GAP, we are given a set of one-dimensional knapsacks with a capacity each and
a set of items that may have a possibly different size and profit for each knapsack. The goal
in this problem is to find a feasible packing with maximal profit. We will consider our O(1)
number of V-Boxes and N -Boxes to be knapsacks. Consider a V-Box BV with size parameter
ŝ. We set its capacity to be VOLd (B) − ŝ (SURFd (B) /2). For any item i, we set its size
with respect to BV as VOLd (i) if s(i) ≤ ŝ and ∞ otherwise. On the other hand, consider an
N -Box BN with size parameter ŝ and {ni}i∈d denoting the number of cells in each dimension.
We set its capacity to be n1n2 . . . nd. For any item i, we set its size with respect to BN as 1
if s(i) ≤ ŝ and ∞ otherwise. The profit of any item i with respect to any box is just set as
p (i). This boils down to a variant of GAP with O(1) number of knapsacks, which admits
a PTAS [18]. Thus by solving this instance, we get a subset S ′ ⊆ I\L with profit at least
p (S ′) ≥ (1 − ε/2) p (S). Using Observation 4 and Corollary 3 we can ensure to pack those
items inside the boxes. The total profit packed is p (S ′) + p (L) ≥

(
1 − ε

2
)

p (S) + p (L) >(
1 − ε

2
)

(p (S) + p (L)) ≥
(
1 − ε

2
)2 OPTknapsack (I) ≥ (1 − ε) OPTknapsack (I). ◀

4 Conclusion

We have designed a PTAS for a variant of the knapsack problem (d-D Hc-Knapsack),
where the items are d-dimensional hypercubes with arbitrary profits. En route, we have also
developed a near-optimal algorithm for a variant of the d-dimensional hypercube strip packing
problem, where the base need not be hypercuboidal, but we are allowed to extend some of
the sides of the base (the long dimensions) by a small amount. Extending the techniques of
[23], we believe that it might be possible to design an EPTAS for d-D Hc-Knapsack.

The knapsack problem for squares, cubes, and hypercubes is thus almost settled. Whether
there exists a PTAS for the knapsack variant where items are rectangles is still open. It is
also interesting to improve the current best approximation ratios ((5 + ε) with rotations
and (7 + ε) without rotations [14]) for the knapsack problem where items are cuboids (3D)
because of its practical relevance. Another interesting task of theoretical importance would
be to improve the current best approximation ratio (which is (3d + ε) due to [41]) for the
knapsack problem where items are d-dimensional hypercuboids.
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Abstract
We present a faster interior-point method for optimizing sum-of-squares (SOS) polynomials, which
are a central tool in polynomial optimization and capture convex programming in the Lasserre
hierarchy. Let p =

∑
i
q2

i be an n-variate SOS polynomial of degree 2d. Denoting by L :=
(

n+d
d

)
and U :=

(
n+2d

2d

)
the dimensions of the vector spaces in which qi’s and p live respectively, our

algorithm runs in time Õ(LU1.87). This is polynomially faster than state-of-art SOS and semidefinite
programming solvers [16, 15, 27], which achieve runtime Õ(L0.5 min{U2.37, L4.24}).

The centerpiece of our algorithm is a dynamic data structure for maintaining the inverse of the
Hessian of the SOS barrier function under the polynomial interpolant basis [27], which efficiently
extends to multivariate SOS optimization, and requires maintaining spectral approximations to low-
rank perturbations of elementwise (Hadamard) products. This is the main challenge and departure
from recent IPM breakthroughs using inverse-maintenance, where low-rank updates to the slack
matrix readily imply the same for the Hessian matrix.
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1 Introduction

Polynomial optimization is a fundamental problem in many areas of applied mathematics,
operations research, and theoretical computer science, including combinatorial optimization
[5, 36, 4], statistical estimation [13, 14], experimental design [26], control theory [12], signal
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processing [31], power systems engineering [11], discrete geometry [2, 3] and computational
algebraic geometry [20]. In the most basic formulation, we are given a collection of k real
n-variate polynomials f1, · · · , fk and an objective function f : Rn → R, and the goal is to
minimize f over the set S := {t ∈ Rn | ∀i ∈ {1, · · · , k} : fi(t) ≥ 0}, that is, to find

inf
t∈Rn
{f(t) | t ∈ S}, (1)

which is equivalent to checking polynomial nonnegativity supc∈R{c | f(t)− c ≥ 0, ∀t ∈ S}.
This is then equivalent to computing supc∈R{c | f − c ∈ K(S)}, where K(S) denotes the
convex cone of all polynomials of degree at most deg(f) that are non-negative on the set S.
This is an instance of the more general conic programming:

min
x∈RN

c⊤x s.t. Ax = b, x ∈ K, (2)

where K ⊂ RN is some convex cone1. The conic optimization problem over the cone K(S) is
intractable in general because there is no simple characterization of K(S). Nevertheless, there
always exists an increasing family of convex cones of weighted sum-of-squares polynomials
that converges to any such cone K(S).

We first introduce the notion of sum-of-squares (SOS) polynomials: Denoting by Vn,d the
vector space of all n-variate polynomials of (total) degree at most d, a polynomial p ∈ Vn,2d

is said to be sum-of-squares (SOS) if it can be written as a finite sum of square polynomials,
i.e., there exist q1, · · · , qℓ such that p =

∑ℓ
i=1 q2

i . The set Σn,2d of SOS polynomials of degree
at most 2d is a (proper) cone contained in Vn,2d, of dimension U := dim(Vn,2d) =

(
n+2d

2d

)
,

as the vector space Vn,2d is isomorphic to RU . If p can be written as p =
∑k

i=1 fisi for
s1 ∈ Σn,2d1 , · · · , Σn,2dk

and k nonzero polynomials f := (f1, · · · , fk), then it is said to be
weighted sum-of-squares (WSOS).

Putinar’s Positivstellensatz [29] states that under mild conditions, any polynomial p

that is non-negative on S can be written as a WSOS polynomial
∑k

i=1 fisi, albeit with
(potentially) unbounded degree si’s. In WSOS optimization we consider sum-of-squares
polynomials si with bounded degree, so the hierarchy of WSOS optimization with increasing
degree (known as the Lasserre hierarchy) can be viewed as a tool for approximating general
polynomial optimization. For more details of this approximation scheme for polynomial
optimization, we refer the readers to the textbooks [19, 7].

This paper concerns algorithms for (W)SOS optimization, which is the conic optimization
program (2) where the underlying cone K is the (W)SOS cone:

min
x∈RU

c⊤x s.t. Ax = b, x ∈ Σn,2d, (3)

where x ∈ Vn,2d is the vector of coefficients which encodes the polynomial. Henceforth, we
focus on the case where K = Σn,2d is the SOS cone. See our full version for how to extend
our algorithm for SOS optimization to WSOS.

The computational complexity of solving Problem 3 naturally depends on the dimensions

L := dim(Vn,d) =
(

n + d

d

)
, U := dim(Vn,2d) =

(
n + 2d

2d

)
(4)

of the underlying vector spaces (Note that L ≤ U ≤ L2). We now turn to explain the
previous approaches for SOS optimization solvers.

1 A subset K ⊂ RN is a convex cone if ∀ x, y ∈ K and α, β ∈ R+, αx + βy ∈ K.
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SOS Optimization as SDPs

A fundamental fact is that the dual SOS cone is a slice of the SDP cone [24]. More formally,
for any fixed bases p = (p1, p2, · · · , pL) and q = (q1, q2, · · · , qU ) to Vn,d and Vn,2d respectively,
there exists a unique linear mapping Λ : RU → RL×L satisfying

Λ(q(t)) = p(t)p(t)⊤, ∀t ∈ Rn. (5)

Here we define p(t) = (p1(t), p2(t), · · · , pL(t))⊤ and q(t) = (q1(t), q2(t), · · · , qU (t))⊤. An
equivalent way to view the definition of Λ in (5) is as follows: For polynomials pi, pj ∈ p there
are unique coefficients λiju such that pipj =

∑
u∈U λijuqu. These λiju define the mapping Λ

unambiguously.
This in turn implies that a polynomial s ∈ Vn,2d (we view s as a vector in RU that

corresponds to its coefficients over the basis q) is in the dual SOS cone Σ∗
n,2d if and only if

Λ(s) is a positive semidefinite (PSD) matrix (proved by [24], see Theorem 10 for details).
As [27] recently observed, the choice of the bases p, q crucially affects the complexity of the
optimization problem, more on this below.

Equation (5) implies the well-known fact that optimization over SOS polynomials (3) can
be reduced to semidefinite programming

min
X⪰0
{⟨C, X⟩ | tr(AiX) = bi, ∀i ∈ [m]}, (SDP)

and can thus be solved using off-the-shelf SDP solvers. However, despite recent breakthroughs
on the runtime of general SDP solvers via interior-point methods (IPMs) [16, 15], this SDP
reformulation of (3) does not scale well for moderately large degrees, i.e., whenever U ≪ L2

in (4). This is because the SDP reformulation always incurs a factor of at least L2, even
when U ≪ L2, as this is the SDP variable size (the PSD matrix X has size L× L). Indeed,
for the current fast-matrix-multiplication (FMM) exponent ω ≈ 2.37 [21, 1], the running
time of state-of-the-art SDP solvers [16, 15] for SOS optimization (Problem 3) is2

Õ
(
L0.5 ·min{UL2 + U2.37, L4.24}

)
. (6)

An alternative approach is to solve Problem 3 directly by designing an ad-hoc IPM
for the dual SOS cone, avoiding the blowup in the SDP reformulation. This was exactly
the motivation of [27]. Like all aformentioned SDP solvers, [27]’s SOS solver is based on
IPMs [25], which iteratively minimize the original objective function plus a barrier function
via Newton steps. When applied to the SOS Problem (3), the choice of the specific bases
p, q crucially affects the structure of the (Hessian of the) barrier function F (s) = F (Λ(s)),
and hence the cost-per-iteration of the IPM. As such, choosing a “good” and efficient basis
is key to a fast algorithm for (3). One of the main contribution of [27] is an efficient basis
for the SOS cone, which efficiently scales to multivariate SOS, yielding an IPM whose total
runtime is

Õ
(
L0.5Uω

)
≈ Õ

(
L0.5U2.37)

. (7)

Our main result is a polynomially faster IPM for Problem 3:

▶ Theorem 1 (Main Result, Informal version of Theorem 16). With current FMM exponent,
there is an algorithm for solving Problem (3), whose total running time is Õ

(
LU1.87)

.

Indeed, this runtime is polynomially faster than (7) and (6), as shown in Figure 1. We
now turn to elaborate on the technical approach for proving Theorem 1.

2 We use Õ(·) to hide Uo(1) and log(1/δ) factors.
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Figure 1 Overview of current running times of recent solvers for SOS. The lower bound bound
stems from solving a linear system in U variables, i.e., T = Ω(Uω) where ω ≈ 2.37.

Faster IPMs via Inverse-Maintenance

Interior-Point Methods (IPMs [18, 30]) are a powerful class of second-order optimization
algorithms for convex optimization, which essentially reduce a conic optimization problem
(2) to solving a sequence of slowly-changing linear systems (via Newton steps). Since their
discovery in the mid 80’s, IPMs have emerged as the “gold-standard” of convex optimization,
as they are known to converge fast in both theory and practice [35]. The main computational
cost of IPMs is computing, in each iteration, the inverse of the Hessian of the underlying
barrier function F (s) = F (Λ(s)), which naively costs at least Uω time per iteration for the
SOS optimization problem [27]. A recent influential line of work [9, 16], inspired by [37]’s
seminal work, has demonstrated that dynamically maintaining the inverse of the Hessian
matrix under low-rank updates using clever data structures, can lead to much cheaper cost-
per-iteration. All of these results rely on a careful combination of dynamic data structures
with the geometry (e.g., spectral approximation) of the underlying optimization method and
barrier function. Similar techniques have been extended to other optimization problems as
well [23, 38, 17, 33, 34]. This paper extends this line of work to SOS optimization.

Our Techniques

Following the framework of [27], we also choose the polynomial interpolant basis representation,
which corresponds to a linear operator Λ : RU → RL×L is Λ(s) = P ⊤ diag(s)P , where
P ∈ RU×L is the matrix whose entries are the evaluation of the Lagrange interpolation
polynomials, through some unisolvent3 set of points in Vn,d (see Section 3 for a formal
definition). This basis induces the aforementioned convenient form of Λ, and generalizes to
the multivariate case. The Hessian of the barrier function F (s) = − log det(Λ(s)) is given by

H(s) =
(
P (P ⊤ diag(s)P )−1P ⊤)◦2 ∈ RU×U ,

3 Any set of points in Rn for which the evaluation of a polynomial in Vn,d on these points uniquely defines
the polynomial.
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where A ◦ B denotes the element-wise (Hadamard) product of two matrices. The main
bottleneck of each iteration of IPMs is to compute the Hessian inverse H(x)−1 of the Newton
step, which naïvely takes O(Uω) time.

In IPM theory, it has long been known that it suffices to compute a spectral approximation
of the Hessian. We follow the “lazy update” framework in recent developments of LP and
SDP solvers [9, 16], which batches together low-rank updates to M := P (P ⊤ diag(s)P )−1P ⊤,
where rk(M) = L. In each iteration, we can compute a spectral approximation Mnew =
M + UV ⊤, where U, V are low rank matrices with size U × r where r ≪ U is chosen to
optimize the runtime. Since M̃ ≈ M implies that M̃◦2 ≈ M◦2, this also gives a spectral
approximation of the Hessian.

The main challenge here, compared to previous LP and SDP solvers [37, 22, 9, 16, 15], is
that low-rank updates to M do not readily translate to a low-rank update to (M◦2)−1, since
Hadamard-products can increase the rank rk(A ◦B) ≤ rk(A) · rk(B), in contrast to standard
matrix multiplication which does not increase the rank rk(AB) ≤ max{rk(A), rk(B)}. This
means that we cannot directly apply Woodbury’s identity to efficiently update the inverse of
the Hessian, which is the common approach in all aforementioned works. Instead, we employ
the following property which relates rank-one Hadamard-product perturbations to standard
matrix products

M ◦ (u · v⊤) = diag(u) ·M · diag(v),

which means that we can translate the rank-r update of M into a rank-Lr update of M◦2

for r ≤ L. With some further calculations, applying Woodbury’s identity on the resulting
matrix, implies that we can compute ((Mnew)◦2)−1 in time

O
(
Tmat(U, U, Lr)

)
,

which is never worse than Tmat(U, U, U) = Uω as long as r ≤ U/L. Modifying the amortization
tools of [16] and [15], combined with basic spectral theory for Hadamard products, we show
that our amortized cost per iteration is bounded by

O
(
U2 + Uω−1/2 · L1/2)

,

which becomes O
(
U2 + U1.87L0.5)

if we plug in the current matrix multiplication exponent.

2 Preliminaries

In this section we provide the definitions and the tools that we will use. For any integer
n > 0, we define [n] = {1, 2, · · · , n}. We use R+ and R≥0 to denote the set of positive and
non-negative real numbers respectively. We use 0n, 1n ∈ Rn to denote the all-zero and all-one
vectors of size n.

Given a vector v ∈ Rn, for any m ≤ n, we use v[:m] ∈ Rm to denote the first m entries of
v. For a vector v ∈ Rn, we use diag(v) ∈ Rn×n to denote the diagonal matrix whose diagonal
entries are v. For a square matrix A ∈ Rn×n, we use diag(A) ∈ Rn to denote the vector of
the diagonal entries of A. We use rk(A) to denote the rank of a matrix A. We use ker(A)
and Im(A) to denote the kernel space and the column space of A.

We say a matrix A ∈ Rn×n is PSD (denoted as A ⪰ 0) if A is symmetric and x⊤Ax ≥ 0
for all x ∈ Rn. We use Sn×n to denote the set of PSD matrices of size n× n. The spectral
norm of a matrix A ∈ Rn×d is defined as ∥A∥2 = maxx∈Rd,∥x∥2=1 ∥Ax∥2. The Frobenius
norm of A is defined as ∥A∥F =

√∑
i∈[n]

∑
j∈[d] A2

i,j . For any PSD matrix M ∈ Sn×n, we

define the M -norm as ∥x∥M =
√

x⊤Mx, ∀x ∈ Rn.
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We use Tmat(a, b, c) to denote the time to multiply two matrices of sizes a× b and b× c.
A basic fact of fast matrix multiplication is that Tmat(a, b, c) = Tmat(b, c, a) = Tmat(c, a, b)
(see e.g. [6]), and we will use these three terms interchangeably.

▶ Fact 2 (Woodbury identity). Let A ∈ Rn×n, C ∈ Rk×k, U ∈ Rn×k, V ∈ Rk×n where A and
C are invertible, then

(A + UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

▶ Definition 3 (Hadamard product). For any two matrices A, B ∈ Rm×n, the Hadamard
product A ◦B is defined as

(A ◦B)i,j = Ai,j ·Bi,j , ∀i ∈ [m], j ∈ [n].

We also use A◦2 to denote A ◦A.

The Hadamard product has the following properties (the proofs are straightforward).

▶ Fact 4 (Properties of Hadamard product). For matrices A, B ∈ Rm×n, and vectors x ∈ Rm,
y ∈ Rn, we have the following properties.
1. x⊤(A ◦B)y = tr[diag(x)A diag(y)B⊤],
2. A ◦ (x · y⊤) = diag(x) ·A · diag(y).

▶ Definition 5 (Spectral approximation). For any two symmetric matrices A, Ã ∈ Rn×n, any
parameter ϵ ∈ (0, 1), we say Ã and A are ϵ-spectral approximation of each other, denoted as
Ã ≈ϵ A, if we have

e−ϵ · x⊤Ax ≤ x⊤Ãx ≤ eϵ · x⊤Ax, ∀x ∈ Rn.

Spectral approximation has the following properties.

▶ Fact 6 (Properties of spectral approximation). For any two PSD matrices A, Ã ∈ Rn×n,
any parameter ϵ ∈ (0, 1), if Ã ≈ϵ A, then we have
1. B⊤AB ≈ϵ B⊤ÃB, for any matrix B ∈ Rn×n.
2. If both A and Ã are invertible, then A−1 ≈ϵ Ã−1.
3. e−ϵ tr[A] ≤ tr[Ã] ≤ eϵ tr[A].
4. Ã◦2 ≈2ϵ A◦2.

Proof. The proofs of the first three claims are straightforward. We only prove the last claim.
For any vector x ∈ Rn, we have

x⊤A◦2x = tr[diag(x)A diag(x)A]

= tr[A1/2 diag(x)A diag(x)A1/2]

≤ eϵ · tr[A1/2 diag(x)Ã diag(x)A1/2]

= eϵ · tr[Ã1/2 diag(x)A diag(x)Ã1/2]

≤ e2ϵ · tr[Ã1/2 diag(x)Ã diag(x)Ã1/2] = e2ϵ · x⊤Ã◦2x

where the first step follows from Fact 4, the second and the fourth steps follow from the
trace invariance under cyclic permutations and the fact that A1/2 exists when A is PSD, the
third and the fifth steps follow from Part 3 of this fact.

Similarly we can prove x⊤A◦2x ≥ e−2ϵ · x⊤Ã◦2x. Thus we have A◦2 ≈2ϵ Ã◦2. ◀
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3 Background of sum-of-squares optimization

In this section we provide the background of sum-of-squares optimization. We refer the
readers to [28, 27] for more details.

▶ Definition 7 (Polynomial space). We use Vn,d to denote the set of n-variate polynomials
over the reals of degree at most d, where the degree means the total degree, i.e., the degree of
xd1

1 · · ·xdn
n is

∑n
i=1 di.

▶ Definition 8 (Degree of polynomial space). We define L := dim(Vn,d) =
(

n+d
n

)
and

U := dim(Vn,2d) =
(

n+2d
n

)
.

After fixing a basis (p1, p2, · · · , pL) of Vn,d, there exists a one-to-one correspondence
between any polynomial p =

∑L
i=1 xi · pi ∈ Vn,d and the vector [x1, x2, · · · , xL] ∈ RL. From

now on when the basis is clear from context, we will use Vn,d and RL interchangeably, and
similarly Vn,2d and RU interchangeably.

▶ Definition 9 (SOS polynomials). A polynomial p ∈ Vn,2d is said to be a sum-of-squares
(SOS) polynomial if p can be written as a sum of squares of polynomials, i.e. p =

∑M
i=1 q2

i

for some M ∈ N and polynomials q1, q2, · · · , qM ∈ Vn,d.
We use Σn,2d to denote the set of n-variate SOS polynomials of degree at most 2d.

The set Σn,2d is a closed convex and pointed cone in Vn,2d with non-empty interior (Theorem
17.1 of [24]). The SOS optimization problem requires the variable x ∈ RU to be in the SOS
cone, and it is a special case of conic programming. Given a constraint matrix A ∈ Rm×U

where m ≤ U , and b ∈ Rm and c ∈ RU , the SOS optimization can be written in the following
primal-dual formulation:

Primal: min ⟨c, x⟩
s.t. Ax = b

x ∈ Σn,2d ,

Dual: max ⟨y, b⟩
s.t. A⊤y + s = c

s ∈ Σ∗
n,2d .

(SOS)

Here Σ∗
n,2d := {s ∈ RU | s⊤x ≥ 0, ∀x ∈ Σn,2d} denotes the dual cone of Σn,2d.

Nesterov in [24] noted that the dual SOS cone allows the following characterization.

▶ Theorem 10 (Dual cone characterization, Theorem 17.1 of [24]). For any ordered bases
p = (p1, . . . , pL) and q = (q1, . . . , qU ) of Vn,d and Vn,2d, let Λ : RU → RL×L be the unique
linear mapping satisfying Λ(q) = pp⊤.4 Then the dual cone Σ∗

n,2d admits the characterization
under the bases p and q:

Σ∗
n,2d =

{
s ∈ RU | Λ(s) ⪰ 0

}
. (8)

As barrier functions for the cone of positive semidefinite matrices are well-known, this
also gives rise to a barrier function for the dual SOS cone. With the standard log-det barrier
for the semidefinite cone, the following function F : Σ∗

n,2d → R is a barrier function for Σ∗
n,2d:

F (s) = − log det(Λ(s)).

Furthermore, the barrier parameter νF of F (s) is bounded by the barrier parameter L of the
original log-det barrier function ([24]).

4 This equation means ∀t ∈ Rn, Λ([q1(t), · · · , qU (t)]⊤) = [p1(t), · · · , pL(t)]⊤ · [p1(t), · · · , pL(t)].
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Interpolant basis

The barrier function depends on the choice of the basis for both Vn,d and Vn,2d, as the
linear map Λ depends on these two bases. We follow the approach of [27] and focus on
the so-called interpolant bases, which generalises well to multivariate polynomials and is
numerically stable.

For the vector space Vn,2d, consider a set of unisolvent points T = {t1, t2, · · · , tU} ⊆ Rn,
which is a set points such that every polynomial in Vn,2d is uniquely determined by its values
on the points in T . For univariate polynomials any set of U points suffices, but this does
not hold anymore for the multivariate case. To also ensure numerical stability, the so called
(approximate) Fekete points can be used as unisolvent points [32, 8].

The interpolant basis is defined as follows. Let us fix a set of unisolvent points T =
{t1, t2, · · · , tU} ⊆ Rn. Now every tu ∈ T implies a Lagrange polynomial qu which is the
unique polynomial that satisfies qu(tu) = 1 and qu(tv) = 0 for all tv ̸= tu ∈ T . The Lagrange
polynomials form a basis q = (q1, · · · , qU ) of Vn,2d. Choose any basis p = (p1, . . . , pL) of
Vn,d. Define the matrix P ∈ RU×L as

Pu,ℓ = pℓ(tu), ∀u ∈ [U ], ℓ ∈ [L].

By the definition of the Lagrange polynomials, pipj =
∑U

u=1 pi(tu)pj(tu)qu, so we have
pp⊤ = P ⊤ diag(q)P . Thus under the bases p and q, the linear map Λ : RU → RL×L takes
on the following convenient form:

Λ(s) = P ⊤ diag(s)P. (9)

For more details on how to pick the unisolvent points and how to construct P , we refer
the readers to [27] and the references therein.

4 Algorithm

Since in this paper we focus on the theoretical running time of the algorithm, for simplicity we
use the barrier method (see e.g. [30, Chapter 2]) instead of the more sophisticated Skajaa–Ye
Algorithm used by [27].

The dual formulation of (SOS) is equivalent to the following optimization problem

min−b⊤y s.t. y ∈ DF ,

where with an abuse of the notation we define F : Rm → R+ to be the barrier function

F (y) = − log det(Λ(c−A⊤y)) (10)

for c ∈ RU , and A ∈ Rm×U , and Λ(s) = P ⊤ diag(s)P is the linear operator defined in Eq (9).
DF ⊆ Rm is the domain of F , and DF is the closure of DF .

The barrier parameter of the barrier function F is νF = L. The gradient and the Hessian
of the barrier function F are (define s := c−A⊤y):

g(y) = A · diag
(

P
(
P ⊤ diag(s)P

)−1
P ⊤

)
,

H(y) = A ·
(

P
(
P ⊤ diag(s)P

)−1
P ⊤

)◦2
·A⊤.

For any η > 0, define a function Fη : Rm → R:

Fη(y) = −η · b⊤y + F (y).



S. Jiang, B. Natura, and O. Weinstein 79:9

The gradient and the Hessian of Fη(y) are:

gη(y) = − η · b + A · diag
(

P
(
P ⊤ diag(s)P

)−1
P ⊤

)
,

Hη(y) = A ·
(

P
(
P ⊤ diag(s)P

)−1
P ⊤

)◦2
·A⊤.

Note that Hη(y) = H(y) for any η.
In each iteration the barrier method increases η by a factor of 1 + Θ( 1√

L
), and it performs

a Newton step

y ← y −Hη(y)−1 · gη(y).

By standard IPM theory it suffices to use a spectral approximation of the Hessian matrix in
the Newton step. For more details see e.g. [30].

The main technical part of our algorithm is to efficiently maintain a matrix N that is
the spectral approximation of the inverse of the Hessian matrix. To do this, we maintain
another matrix S̃ that is a spectral approximation of S := P ⊤ diag(s)P , and we use the
subroutine LowRankUpdate(Algorithm 3, Lemma 14) to update S̃. After S̃ is updated,
we use another subroutine UpdateHessianInv (Algorithm 2, Lemma 11) to update N . A
complete description of our algorithm can be found in Algorithm 1.

5 Updating Hessian inverse efficiently

In this section we prove how to update the Hessian inverse efficiently. We present the
algorithm UpdateHessianInv in Algorithm 2.

▶ Lemma 11 (Hessian inverse update). In the algorithm UpdateHessianInv (Algorithm 2),
the inputs are the maintained matrices T, N and the updates V1, V2 ∈ RL×r where r satisfies
Lr ≤ U . The inputs satisfy that for some S̃ ∈ SL×L,

T = S̃−1 ∈ RL×L,

N =
(
A · (PS̃−1P ⊤)◦2 ·A⊤)−1 ∈ Rm×m,

Let S̃new = S̃ + V1V ⊤
2 . The algorithm outputs two matrices T new, Nnew such that

T new = (S̃new)−1 ∈ RL×L,

Nnew =
(
A · (P (S̃new)−1P ⊤)◦2 ·A⊤)−1 ∈ Rm×m.

Furthermore, the algorithm takes O(Tmat(U, U, Lr)) time.

Proof. We first prove the correctness by analyzing each step of the algorithm.

Step 1. Compute V1, V2 ∈ RL×r and T new ∈ RL×L.

T new = T + V1 · V2
⊤

= T − TV1 · (I + V ⊤
2 TV1)−1 · V ⊤

2 T ⊤

= (S̃ + V1V ⊤
2 )−1 = (S̃new)−1,

where the first two steps follow from algorithm description, the third step follows from the
Woodbury identity (Fact 2) and T = S̃−1.

Thus T new satisfies the requirement of the output.
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Algorithm 1 Main SOS algorithm.

Parameters : δ ∈ (0, 1), ϵN ∈ (0, 0.05), α = ϵN

20
√

L
, t = 40ϵ−1

N

√
L log(L/δ).

Input : A ∈ Rm×U , b ∈ Rm, c ∈ RU

Output : A near feasible and optimal solution.
1 Construct P ∈ RU×L of the interpolant basis. Convert A, b, c to the interpolant basis.
2 Use Lemma 22 to obtain a modified dual SOS optimization problem which has an

initial solution (y, s) ∈ Rm × RU that is optimal for Fη, where η = 1.
3 S̃ ← S ← P ⊤ diag(s)P ; // S̃, S ∈ RL×L

4 T ← S−1 ; // T ∈ RL×L

5 N ←
(
A(PTP ⊤)◦2A⊤)−1 ; // N ∈ Rm×m

6 g ← −η · b + A · diag
(
P (P ⊤ diag(s)P )−1P ⊤)

; // g ∈ Rm

7 for i = 1, 2, · · · , t do
8 δy ← −N · g ; // δy ∈ Rm

9 ynew ← y + δy ; // ynew ∈ Rm

10 snew ← c−A⊤ynew ; // snew ∈ RU

11 ηnew ← η · (1 + α);
12 Snew ← P ⊤ diag(snew)P ; // Snew ∈ RL×L

13 S̃new, V1, V2 ← LowRankUpdate(Snew, S̃);
14 // Lemma 14, S̃new ∈ RL×L, V1, V2 ∈ RL×ri or V1 = V2 = null
15 if V1 = V2 = null then
16 T new ← (S̃new)−1 ; // T new ∈ RL×L

17 Nnew ←
(
A · (PT newP ⊤)◦2 ·A⊤)−1 ; // Nnew ∈ Rm×m

18 else
19 T new, Nnew ← UpdateHessianInv(T, N, V1, V2);
20 // Lemma 11, T new ∈ RL×L, Nnew ∈ Rm×m

21 gnew ← −ηnew · b + A · diag
(

P
(
P ⊤ diag(snew)P

)−1
P ⊤

)
; // gnew ∈ Rm

22 (η, y, s, S̃, T, N, g)← (ηnew, ynew, snew, S̃new, T new, Nnew, gnew);
23 return (y, s)

Step 2. Compute Y ′, Z′ ∈ RU×(L+r) and Y, Z ∈ RU×(L+r)r. We prove that Y and
Z satisfy (PTP ⊤)◦2 + Y · Z⊤ = (PT newP ⊤)◦2:

(PTP ⊤)◦2 + Y · Z⊤ = (PTP ⊤)◦2 +
r∑

i=1
diag(ui) ·

(
Y ′ · (Z ′)⊤)

· diag(vi)

= (PTP ⊤)◦2 +
(
Y ′ · (Z ′)⊤)

◦
( r∑

i=1
ui · v⊤

i

)
= (PTP ⊤)◦2 +

(
2PTP ⊤ + (PV1) · (PV2)⊤)

◦
(
(PV1) · (PV2)⊤)

=
(
PTP ⊤ + (PV1) · (PV2)⊤)◦2

= (PT newP ⊤)◦2,

where the first step follows from the algorithm description of Y and Z, the second step
follows from Part 2 of Fact 4 that diag(x) ·A · diag(y) = A ◦ (x · y⊤), the third step follows
from Y ′ · (Z ′)⊤ = 2PTP ⊤ + (PV1) · (PV2) and (PV1) · (PV2) =

∑r
i=1 ui · v⊤

i (see algorithm
description of Y ′ and Z ′), the last step follows from T new = T + V1 · V2

⊤.
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Algorithm 2 UpdateHessianInv.

Input : T ∈ RL×L, N ∈ Rm×m, V1, V2 ∈ RL×r

Output : T new ∈ RL×L, Nnew ∈ Rm×m

1 // Step 1
2 V1 ← −TV1 · (I + V ⊤

2 TV1)−1 ; // V1 ∈ RL×r

3 V2 ← TV2 ; // V2 ∈ RL×r

4 T new ← T + V1 · V2
⊤ ; // T new ∈ RL×L

5 // Step 2
6 Y ′ ← [2PT, PV1] ; // Y ′ ∈ RU×(L+r)

7 Z ′ ← [P, P V2] ; // Z ′ ∈ RU×(L+r)

8 Y ← [diag(u1)Y ′, · · · , diag(ur)Y ′], ui is the i-th column of PV1 ; // Y ∈ RU×(L+r)r

9 Z ← [diag(v1)Z ′, · · · , diag(vr)Z ′], vi is the i-th column of PV2 ; // Z ∈ RU×(L+r)r

10 // Step 3

11 Nnew ← N −N · (AY ) ·
(
I + (AZ)⊤N(AY )

)−1 · (AZ)⊤ ·N ; // Nnew ∈ Rm×m

12 return T new, Nnew

Step 3. Compute Nnew ∈ Rm×m.

Nnew = N −N · (AY ) ·
(
I + (AZ)⊤N(AY )

)−1 · (AZ)⊤ ·N

=
(
A · (PTP ⊤)◦2 ·A⊤ + (AY ) · (AZ)⊤)−1

=
(
A · (PT newP ⊤)◦2 ·A⊤)−1

,

where the first step follows from the algorithm description of Nnew, the second step follows
from N =

(
A · (PTP ⊤)◦2 · A⊤)−1 and the Woodbury identity (Fact 2), and the last step

follows from (PT newP ⊤)◦2 = (PTP ⊤)◦2 + Y · Z⊤.
Thus Nnew satisfies the requirement of the output.

Time complexity. It is easy to see that the most time-consuming step is to compute Nnew

on Line 11, and in total this step takes O(Tmat(m, U, Lr) + Tmat(m, m, Lr) + (Lr)ω) time.
Since Lr ≤ U and m ≤ U , overall this algorithm takes at most O(Tmat(U, U, Lr)) time. ◀

6 Correctness

6.1 Standard results from IPM theory
We use the following two results of the barrier method that hold for any cone with a barrier
function. The proofs are standard, (see e.g., [30, Section 2.4]). For completeness we include
a proof in the full version.

▶ Lemma 12 (Invariance of Newton step, [30]). Consider the following optimization problem:
min−b⊤y s.t. y ∈ DF , where F : Rm → R+ is a barrier function with barrier parameter
νF , DF ⊆ Rm is the domain of F , and DF is the closure of DF . For any η ≥ 1, define
Fη(y) = −ηb⊤y + F (y). Let gη(y) ∈ Rm and H(y) ∈ Rm×m denote the gradient and the
Hessian of Fη at y.

Let 0 < ϵN ≤ 0.05 be a parameter. If a feasible solution y ∈ DF , a parameter η > 0, and
a positive definite matrix H̃ ∈ Sn×n satisfy the following:

∥gη(y)∥H(y)−1 ≤ ϵN , H̃ ≈0.02 H(y).

Then ηnew = η · (1 + ϵN

20√
νF

), ynew = y + δy where δy = −H̃−1gηnew(y) satisfy ynew ∈ DF and

∥δy∥H(y) ≤ 2ϵN , ∥gηnew(ynew)∥H(ynew)−1 ≤ ϵN .
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▶ Lemma 13 (Approximate optimality, [30]). Consider the following optimization problem:
min−b⊤y s.t. y ∈ DF , where F : Rm → R+ is a barrier function with barrier parameter
νF , DF ⊆ Rm is the domain of F , and DF is the closure of DF . Let OPT be the optimal
objective value of this optimization problem. For any η ≥ 1, define Fη(y) = −ηb⊤y + F (y).
Let gη(y) ∈ Rm and H(y) ∈ Rm×m denote the gradient and the Hessian of Fη at y.

Let 0 < ϵN ≤ 0.05. If a feasible solution y ∈ DF satisfies ∥gη(y)∥H(y)−1 ≤ ϵN , then we
have −b⊤y ≤ OPT + νF

η · (1 + 2ϵN ).

6.2 Low rank update
We use the following low rank update procedure of [16] and [15], which we modify by using a
cutoff when r ≥ U/L. The proof of the following lemma can be found in [15, Theorem 10.8].

Algorithm 3 LowRankUpdate of [16].

Parameters : A real number ϵS < 0.01.
Input : New exact matrix Snew ∈ RL×L, old approximate matrix S̃ ∈ RL×L,
Output : New approximate matrix S̃new ∈ RL×L, update matrices

V1, V2 ∈ RL×r.
1 Zmid ← (Snew)−1/2S̃(Snew)−1/2 − I

2 Compute spectral decomposition Zmid = X diag(λ)X⊤

3 Let π : [L]→ [L] be a sorting permutation such that |λπ(i)| ≥ |λπ(i+1)|.
4 if |λπ(1)| ≤ ϵS then
5 S̃new ← S̃;
6 return (S̃new, 0, 0)
7 else
8 r ← 1;
9 while 2r ≤ U/L and (|λπ(2r)| > ϵS or |λπ(2r)| > (1− 1/ log L)|λπ(r)|) do

10 r ← r + 1;
11 r ← 2r;
12 if r ≥ U/L then
13 S̃new ← Snew ; // Here we deviate from [16]
14 return (S̃new, null, null)
15 else

16 λnew
π(i) ←

{
0 if i = 1, 2, . . . , r

λπ(i) else
17 Ω← supp(λnew − λ) ; // |Ω| = r

18 V1 ← ((Snew)1/2 ·X · diag(λnew − λ)):,Ω ; // V1 ∈ RL×r

19 V2 ← ((Snew)1/2 ·X):,Ω ; // V2 ∈ RL×r

20 S̃new ← S̃ + (Snew)1/2X diag(λnew − λ)X⊤(Snew)1/2 ;
// S̃new = S̃ + V1V ⊤

2 ∈ RL×L

21 return (S̃new, V1, V2);

▶ Lemma 14 (Low rank update). The algorithm LowRankUpdate (Algorithm 3) has the
following properties:

(i) The output matrix S̃new = S̃ + V1V ⊤
2 is a spectral approximation of the input matrix:

S̃new ≈ϵS
Snew.
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(ii) Consider a total of t iterations of LowRankUpdate. Initially S̃(0) = S(0), and we
use (S(i), S̃(i−1)) and (S̃(i), V

(i)
1 , V

(i)
2 ) to denote the input and the output of the i-th

iteration. We define the rank ri to be the rank of V
(i)

1 if V
(i)

1 ̸= null, and otherwise we
define ri = U/L.
If the input exact matrices S(0), S(1), · · · , S(t) ∈ RL×L satisfy

∥(S(i−1))−1/2S(i)(S(i−1))−1/2 − I∥F ≤ 0.02, ∀i ∈ [t]. (11)

Then for any non-increasing sequence g ∈ RL
+, the ranks ri satisfy

t∑
i=1

ri · gri
≤ O(t · ∥g∥2 · log L).

Furthermore, the algorithm LowRankUpdate takes O(Lω) time.

6.3 Slowly moving guarantee
In SOS optimization, the matrix S = P ⊤ diag(s)P corresponds to the slack matrix of the
SDP. The following lemma proves similar to SDP, in SOS the matrix S is changing slowly.
Using this lemma we will prove that the requirement Eq. (11) of Lemma 14 is satisfied, which
means we can approximate the change to the slack by a low-rank matrix.
▶ Lemma 15 (Slowly moving guarantee). Let c ∈ RU and A ∈ Rm×U be the input to the
optimization problem. Let P ∈ RU×L be the matrix of the interpolant basis.

For any y ∈ Rm and ynew = y + δy ∈ Rm, let s = c−A⊤y ∈ RU and S = P ⊤ diag(s)P ∈
RL×L. Similarly define snew and Snew from ynew. Let H(y) = A ·

(
P

(
P ⊤ diag(s)P

)−1
P ⊤)◦2 ·

A⊤ ∈ Rm×m. If s, snew ∈ Σ∗
n,2d, then S and Snew are both PSD, and we have

∥S−1/2SnewS−1/2 − I∥F = ∥δy∥H(y).

Proof. Note that if s, snew ∈ Σ∗
n,2d, then by the dual cone characterization (Theorem 10) S

and Snew are both PSD.
For convenience we define M = PS−1P ⊤ ∈ RU×U . Note that H(y) = A ·M◦2 ·A⊤. We

also define δs = snew − s = −A⊤δy. ∀u ∈ [U ], we use pu ∈ RL to denote the u-th row of P .

∥S−1/2SnewS−1/2 − I∥2
F = ∥S−1/2(

Snew − S
)
S−1/2∥2

F

= ∥S−1/2(
P diag(δs)P ⊤)

S−1/2∥2
F

= tr
(
S−1(P ⊤ diag(δs)P )S−1(P ⊤ diag(δs)P )

)
= tr

(
S−1(

∑
u∈U

(δs)u · pup⊤
u )S−1(

∑
v∈U

(δs)v · pvp⊤
v )

)
=

∑
u,v∈U

(δs)u(δs)v · tr
(
S−1pup⊤

u S−1pvp⊤
v

)
=

∑
u,v∈U

(δs)u(δs)v · (p⊤
v S−1pu)2

=
∑

u,v∈U

(δs)u(δs)v ·M2
uv = ∥δs∥2

M◦2 ,

(12)

where the third step follows from ∥A∥2
F = tr(A⊤A) and the cyclic property of trace, and the

sixth step again follows from the cyclic property of trace.
Since δs = −A⊤δy, we have

∥δs∥2
M◦2 = δ⊤

s M◦2δs = δ⊤
y AM◦2A⊤δy = δ⊤

y H(y)δy = ∥δy∥2
H(y). (13)

Combining Eq. (12) and (13) we get the bound in the lemma statement. ◀
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6.4 Proof of correctness
Finally we are ready to prove the correctness of Algorithm 1.

▶ Theorem 16 (Correctness of Algorithm 1). Consider the following optimization problem
with A ∈ Rm×U , b ∈ Rm, and c ∈ RU :

Primal: min ⟨c, x⟩
s.t. Ax = b

x ∈ Σn,2d ,

Dual: max ⟨y, b⟩
s.t. A⊤y + s = c

s ∈ Σ∗
n,2d .

Let OPT denote the optimal objective value of this optimization problem. Assume Slater’s
condition and that any primal feasible x ∈ Σn,2d satisfies ∥x∥1 ≤ R.

Then for any error parameters δ ∈ (0, 1), ϵS ≤ 0.01, and ϵN ≤ 0.05, Algorithm 1 outputs
x ∈ Σn,2d that satisfies

⟨c, x⟩ ≤ OPT + δ ·R∥c∥∞ and ∥Ax− b∥1 ≤ 8δL · (LR∥A∥∞ + ∥b∥1).

Proof. We consider the optimization problem min−b⊤y s.t. y ∈ DF , where F : Rm → R+
is the barrier function defined in Eq. (10), and DF is the closure of the domain of F . The
barrier parameter of F is νF = L. This optimization problem is equivalent to the dual
formulation and its optimal value is −OPT. For any η, let Fη(y) = −ηb⊤y + F (y).

In the beginning Algorithm 1 first uses Lemma 22 to convert the optimization problem
to another form which has an initial feasible solution y that is close to the optimal solution
of Fη with η = 1. The initial y satisfies ∥gη(y)∥H(y)−1 ≤ ϵN by Lemma 22. Initially we also
have S̃ = S = P ⊤ diag(s)P (Line 3 in Algorithm 1).

Next we prove the correctness of Algorithm 1 inductively. At each iteration, we assume
the following induction hypothesis is satisfied: (1) ∥gη(y)∥H(y)−1 ≤ ϵN , (2) S̃ ≈ϵS

S. We aim
to prove that the updated ynew, ηnew, Snew, and S̃new still satisfy these two conditions.

In Lemma 11 we have proved that in Algorithm 1 we always maintain N =
(
A ·

(PS̃−1P ⊤)◦2 ·A⊤)−1. Let H̃ = N−1, we have

H̃ = A ·
(
PS̃−1P ⊤)◦2 ·A⊤ ≈2ϵS

A ·
(
PS−1P ⊤)◦2 ·A⊤ = H(y),

where in the second step we use the induction hypothesis that S̃ ≈ϵS
S, and by Fact 6

we have S̃−1 ≈ϵS
S−1, and hence PS̃−1P ⊤ ≈ϵS

PS−1P ⊤, and hence (PS̃−1P ⊤)◦2 ≈2ϵS

(PS−1P ⊤)◦2.
The new vector ynew is computed as ynew = y + δy where δy = −H̃−1gη(y) (Line 8 and 9

of Algorithm 1). And η is updated to ηnew = η · (1 + ϵN

20
√

L
) (Line 11 of Algorithm 1). Since

∥gη(y)∥H(y)−1 ≤ ϵN , and H̃ ≈2ϵS
H(y) where 2ϵS ≤ 0.02 by its definition in Algorithm 3,

the requirements of Lemma 12 are satisfied, so we have

∥gηnew(ynew)∥H(ynew)−1 ≤ ϵN , and ∥δy∥H(y) ≤ 2ϵN .

This proves the first induction hypothesis.
Then using Lemma 15 and since ϵN ≤ 0.01 by its definition in Algorithm 1, we have

∥S−1/2(Snew)S−1/2 − I∥F ≤ ∥δy∥H(y) ≤ 2ϵN ≤ 0.02.

Thus the input matrix Snew to LowRankUpdate satisfies the requirement of Eq. (11) of
Lemma 14, and we have that S̃new ≈ϵS

Snew. This proves the second induction hypothesis.
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Finally, we know that after t = 40ϵ−1
N

√
L log(L/δ) iterations, η becomes (1 + ϵN

20
√

L
)t ≥

2L/δ2, so using Lemma 13, we have

b⊤y ≥ OPT− νF

η
· (1 + 2ϵN ) ≥ OPT− δ2.

Thus the initialization lemma (Lemma 22) ensures that we have a solution x ∈ Σn,2d to the
original primal optimization problem which satisfies

⟨c, x⟩ ≤ OPT + δ ·R∥c∥∞, ∥Ax− b∥1 ≤ 8δL · (LR∥A∥∞ + ∥b∥1). ◀

7 Time complexity

7.1 Worst case time
We first bound the worst case running time of Algorithm 1. The running time of the i-th
iteration depends on the updated rank ri of LowRankUpdate, which is defined to be the
size of V

(i)
1 if V

(i)
1 ̸= null, and U/L otherwise (see Lemma 14).

▶ Lemma 17 (Worst case time of Algorithm 1). In Algorithm 1, the initialization time is
O(Uω), and the running time in the i-th iteration is O(Tmat(U, U, min{Lri, U})).

Proof.

Initialization time. The most time-consuming step of initialization is Line 5, where comput-
ing N =

(
A(PTP ⊤)◦2A⊤)−1 takes O(Tmat(U, U, L) + Tmat(U, U, m)) time. This is bounded

by O(Uω) since L, m ≤ U .

Time per iteration. In each iteration the most time-consuming steps are (1) computing
Snew and calling LowRankUpdate on Line 12-14, (2) executing the if-clause on Line 15-20,
and (3) computing gnew on Line 21.

1. Computing Snew on Line 12 takes Tmat(U, L, L) time. Calling LowRankUpdate on
Line 14 takes O(Lω) time by Lemma 14.

2. In the if-clause on Line 15-20, if V1 = V2 = null, then Lri ≥ U , and we compute
Nnew =

(
A · (PT newP ⊤)◦2 · A⊤)−1, which takes O(Tmat(U, U, U)) time. Otherwise we

call UpdateHessianInv on Line 19, which takes O(Tmat(U, U, Lri)) time by Lemma 11.
In total the if-clause has running time O(Tmat(U, U, min{Lri, U})).

3. Computing the gradient g = −ηnew · b + A · diag
(

P
(
P ⊤ diag(snew)P

)−1
P ⊤

)
on Line 21

takes O(Tmat(U, U, L)) time since m ≤ U .

Thus the total time per iteration is O(Tmat(U, U, min{Lri, U})). ◀

7.2 Amortized time
In this section we bound the amortized running time of Algorithm 1.

Let ω be the matrix multiplication exponent, let α be the dual matrix multiplication
exponent. The current best values are ω ≈ 2.373 and α ≈ 0.314 [21, 10, 1]. Note that the
current best values of ω and α satisfies that α ≥ 5 − 2ω. We use the following modified
lemma from [15]:
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▶ Lemma 18 (Helpful lemma for amortization, modified version of Lemma 10.13 of [15]). Let t

denote the total number of iterations. Let ri ∈ [L] be the rank for the i-th iteration for i ∈ [t].
Assume ri satisfies the following condition: for any vector g ∈ RL

+ which is non-increasing,
we have

∑t
i=1 ri · gri ≤ O(t · ∥g∥2).

If the cost in the i-th iteration is O(Tmat(U, U, min{Lri, U})), when α ≥ 5 − 2ω, the
amortized cost per iteration is U2+o(1) + Uω−1/2+o(1) · L1/2.

We include the proof of Lemma 18 for completeness. The main difference between this
proof and that of [15] is that we cut off at U/L instead of L. Our proof makes use of the
following two facts about ω and α (Lemma A.4 and Lemma A.5 of [9]).

▶ Fact 19 (Relation of ω and α). ω ≤ 3− α.

▶ Fact 20 (Upper bound of Tmat(n, n, r)). For any r ≤ n, we have that Tmat(n, n, r) ≤
n2+o(1) + r

ω−2
1−α · n2− α(ω−2)

(1−α) +o(1).

Proof of Lemma 18. For ri that satisfies ri ≤ U/L, we have

Tmat(U, U, Lri) ≤ U2+o(1) + (Lri)
ω−2
1−α · U2− α(ω−2)

1−α +o(1)

= U2+o(1) + U2− α(ω−2)
1−α +o(1) · L

ω−2
1−α · r

ω−2
1−α

i ,
(14)

where the first step follows from Fact 20.
Define a sequence g ∈ RL

+ such that for r ∈ [L],

gr =
{

r
ω−2
1−α −1 if r ≤ U/L,

(U/L)
ω−2
1−α · r−1 if r > U/L.

Note that g is non-increasing because ω−2
1−α ≤ 1 (Fact 19). Then using the condition in the

lemma statement, we have

t∑
i=1

min{r
ω−2
1−α

i , (U/L)
ω−2
1−α } =

t∑
i=1

ri · gri

≤ t · ∥g∥2

≤ t ·
( ∫ U/L

x=1
x

2(ω−2)
1−α −2dx + (U/L)

2(ω−2)
1−α ·

∫ L

x=U/L

x−2dx
)1/2

≤ t ·
(

c · (U/L)
2(ω−2)

1−α −1 + (U/L)2( ω−2
1−α ) · (U/L)−1

)1/2

= t ·O((U/L)
(ω−2)
1−α −1/2),

(15)

where the first step follows from the definition of g ∈ RL, the second step follows from the
assumption

∑t
t=1 ri · gri ≤ t · ∥g∥2 in the lemma statement, the third step follows from

upper bounding the ℓ2 norm ∥g∥2
2 =

∑L
r=1 g2

r , and the fourth step follows 2(ω−2)
1−α ≥ 1 when

α ≥ 5− 2ω, so the integral
∫ U/L

x=1 x
2(ω−2)

1−α −2dx = c · x
2(ω−2)

1−α −1∣∣U/L

1 = O
(
(U/L)

2(ω−2)
1−α −1)

where
c := 1/( 2(ω−2)

1−α − 1).
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Thus we have
t∑

t=1
Tmat(U, U, min{Lri, U})

≤
t∑

t=1

(
U2+o(1) + U2− α(ω−2)

1−α +o(1) · L
ω−2
1−α ·min{r

ω−2
1−α

i , (U/L)
ω−2
1−α }

)
= t · U2+o(1) + U2− α(ω−2)

1−α +o(1) · L
ω−2
1−α ·

t∑
t=1

min{r
ω−2
1−α

i , (U/L)
ω−2
1−α }

≤ t · U2+o(1) + U2− α(ω−2)
1−α +o(1) · L

ω−2
1−α · t · (U/L)

(ω−2)
1−α −1/2

= t · (U2+o(1) + Uω−1/2+o(1) · L1/2),

where the first step follows from Eq. (14) and Tmat(U, U, U) = Uω = U2− α(ω−2)
1−α · L

ω−2
1−α ·

(U/L)
ω−2
1−α , the second step follows from moving summation inside, the third step follows

from Eq. (15), and the last step follows from adding the terms together. ◀

Now we are ready to prove our main theorem for the amortized time of Algorithm 1.
▶ Theorem 21 (Time of Algorithm 1). When α ≥ 5− 2ω, the running time of Algorithm 1 is

(U2 · L1/2 + Uω−1/2 · L) · (log(1/δ) + Uo(1)).

Proof. Using Lemma 17 the initialization time is O(Uω) ≤ O(Uω−1/2 · L) since U ≤ L2.
Using Lemma 14 we know that the ranks ri indeed satisfy the requirement of Lemma 18,

and since the worst case time per iteration is O(Tmat(U, U, min{Lri, U})) (Lemma 17), using
Lemma 18 the time per iteration is U2+o(1) + Uω−1/2+o(1) · L1/2. Since there are in total
t = 40ϵ−1

N

√
L log(L/δ) iterations, we get the total running time as claimed. ◀

7.3 Comparison with previous results
In this section we compare the running time of [27], [16, 15], and our result. We assume that
m = Θ(U) when making the comparisons.

Ignoring log(1/δ) and Uo(1) factors, and since L ≤ U ≤ L2, the running times are

[27] (SOS) : L0.5 · Uω,

[16, 15] (SDP)5 : L0.5 ·min{UL2 + Uω, L4 + L2ω−0.5},
Ours (SOS) : L0.5 · (U2 + Uω−0.5 · L0.5).

Current ω and α

Plugging in the current best values ω ≈ 2.373 and α ≈ 0.314, we have
[27] (SOS) : L0.5 · U2.373,

[16, 15] (SDP) : L0.5 ·min{UL2 + U2.373, L4.246}

= L0.5 ·


UL2 when U ∈ (L, L1.457],
U2.373 when U ∈ (L1.457, L1.789],
L4.246 when U ∈ (L1.789, L2),

Ours (SOS) : L0.5 · (U2 + U1.873L0.5).

5 When solving SOS, [16] has running time O(L0.5 · (UL2 + Uω + Lω)) ≤ O(L0.5 · (UL2 + Uω)), and [15]
has running time O(L0.5 · (U2 + L4) + Uω + L2ω) ≤ O(L4.5 + L2ω) since L ≤ U ≤ L2.
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Note that our running time is always better than the previous results, and for several values
of L and U we improve by a polynomial factor. See Figure 1 for an illustration.

8 Initialization

There exist standard techniques to transform a convex program to a form that has an
easily obtainable strictly feasible point, see e.g. [39]. We follow the initialization procedure
presented by [9] and [16] and adapt to SOS optimization. Similar initialization lemma exists
for WSOS optimization. The proof of this lemma can be found in our full version.

Let the matrix P ∈ RU×L and the operator Λ : RU → RL×L that Λ(s) = P ⊤ diag(s)P
be defined as in the interpolant basis paragraph of Section 3.

▶ Lemma 22 (Initialization). Given an instance of (SOS) that fulfills Slater’s condition, and
let R be an upper bound on the ℓ1-norm of the primal feasible solutions, i.e. all primal feasible
x of (SOS) fulfill ∥x∥1 ≤ R, and let δ ∈ (0, 1). We define A ∈ R(m+1)×(U+2), b ∈ Rm+1,
and c ∈ RU+2 as

A =
[

A 0 1
R b−Ag0

1⊤
U 1 0

]
, b =

[ 1
R b

1 + ⟨1U , g0⟩

]
, c =

 δ
∥c∥∞

c

0
1

 ,

and let

x0 =

g0

1
1

 ∈ RU+2, y0 =
[
0m

−1

]
∈ Rm+1, and s0 =

1U + δ
∥c∥∞

c

1
1

 ∈ RU+2,

where g0 = gΣ∗(s0
[:U ]) ∈ RU for the gradient function gΣ∗(s) := diag(P (P ⊤ diag(s)P )−1P ⊤)

that maps from RU to RU . This defines the auxiliary primal-dual system

min ⟨c, x⟩
Ax = b

x ∈ Σn,2d × R2
≥0 ,

max ⟨y, b⟩

A
⊤

y + s = c

s ∈ Σ∗
n,2d × R2

≥0 .

(Aux-SOS)

Then (x0, y0, s0) are feasible to the auxiliary system (Aux-SOS).
Further, under the canonical barrier (we use ai to denote the i-th column of A):

F η(y) = −η⟨y, b⟩−log det
(

Λ
(
(c−A

⊤
y)[:U ]

))
−log(cU+1−⟨aU+1, y⟩)−log(cU+2−⟨aU+2, y⟩),

we have that ∥gη0(y0)∥H(y0)−1 = 0 for η0 = 1.
Further, for any solution (x, y, s) to (Aux-SOS) with duality gap ≤ δ2, its restriction

x̂ := x[:U ] fulfills

⟨c, x̂⟩ ≤ min
Ax=b,x∈Σn,2d

⟨c, x⟩+ δ ·R∥c∥∞,

∥Ax̂− b∥1 ≤ 8δL · (LR∥A∥∞ + ∥b∥1),
x̂ ∈ Σn,2d.
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Abstract
In the Strip Packing problem (SP), we are given a vertical half-strip [0, W ] × [0, ∞) and a set
of n axis-aligned rectangles of width at most W . The goal is to find a non-overlapping packing of
all rectangles into the strip such that the height of the packing is minimized. A well-studied and
frequently used practical constraint is to allow only those packings that are guillotine separable, i.e.,
every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge
axis-parallel cuts (guillotine cuts) that do not intersect any item of the solution. In this paper, we
study approximation algorithms for the Guillotine Strip Packing problem (GSP), i.e., the Strip
Packing problem where we require additionally that the packing needs to be guillotine separable.
This problem generalizes the classical Bin Packing problem and also makespan minimization on
identical machines, and thus it is already strongly NP-hard. Moreover, due to a reduction from the
Partition problem, it is NP-hard to obtain a polynomial-time (3/2 − ε)-approximation algorithm
for GSP for any ε > 0 (exactly as Strip Packing). We provide a matching polynomial time
(3/2 + ε)-approximation algorithm for GSP. Furthermore, we present a pseudo-polynomial time
(1 + ε)-approximation algorithm for GSP. This is surprising as it is NP-hard to obtain a (5/4 − ε)-
approximation algorithm for (general) Strip Packing in pseudo-polynomial time. Thus, our results
essentially settle the approximability of GSP for both the polynomial and the pseudo-polynomial
settings.
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80:2 Guillotine Strip Packing

1 Introduction

Two-dimensional packing problems form a fundamental research area in combinatorial
optimization, computational geometry, and approximation algorithms. They find numerous
practical applications in logistics [9], cutting stock [23], VLSI design [26], smart-grids [20],
etc. The Strip Packing problem (SP), a generalization of the classical Bin Packing
problem and also the makespan minimization problem on identical machines, is one of the
central problems in this area. We are given an axis-aligned vertical half-strip [0, W ] × [0, ∞)
and a set of n axis-aligned rectangles (also called items) I := {1, 2, . . . , n}, where for each
rectangle i we are given an integral width wi ≤ W , and an integral height hi; we assume
the rectangles to be open sets. The goal is to pack all items such that the maximum height
of the top edge of a packed item is minimized. The packing needs to be non-overlapping,
i.e., such a packing into a strip of height H maps each rectangle i ∈ I to a new translated
open rectangle R(i) := (left(i), right(i)) × (bottom(i), top(i)) where right(i) = left(i) + wi,
top(i) = bottom(i) + hi, left(i) ≥ 0, bottom(i) ≥ 0, right(i) ≤ W , top(i) ≤ H and for any
i, j ∈ I, we must have R(i) ∩ R(j) = ∅. We assume that items are not allowed to be rotated.

The best known polynomial time approximation algorithm for SP has an approximation
ratio of (5/3+ε) for any constant ε > 0 [24] and a straight-forward reduction from Partition
shows that it is NP-hard to approximate the problem with a ratio of (3/2 − ε) for any ε > 0.
Maybe surprisingly, one can approximate SP better in pseudo-polynomial time: there is a
pseudo-polynomial time (5/4 + ε)-approximation algorithm [27] and it is NP-hard to obtain
a (5/4 − ε)-approximation algorithm with this running time [25]. Hence, it remains open to
close the gap between (5/3 + ε) and (3/2 − ε) for polynomial time algorithms, and even in
pseudo-polynomial time, there can be no (1+ε)-approximation for the problem for arbitrarily
small ε > 0.

SP is particularly motivated from applications in which we want to cut out rectangular
pieces of a sheet or stock unit of raw material, i.e., metal, glass, wood, or, cloth, and we want to
minimize the amount of wasted material. For cutting out these pieces in practice, axis-parallel
end-to-end cuts, called guillotine cuts, are popular due to their simplicity of operation [46]. In
this context, we look for solutions to cut out the individual objects by a recursive application of
guillotine cuts that do not intersect any item of the solution. Applications of guillotine cutting
are found in crepe-rubber mills [42], glass industry [40], paper cutting [35], etc. In particular,
this motivates studying geometric packing problems with the additional constraint that the
placed objects need to be separable by a sequence of guillotine cuts (see Figure 1). Starting
from the classical work by Christofides et al. [10] in 1970s, settings with such guillotine cuts
are widely studied in the literature [16, 47, 6, 34, 15, 11, 17, 12]. In fact, many heuristics for
guillotine packing have been developed to efficiently solve benchmark instances, based on
tree-search, branch-and-bound, dynamic optimization, tabu search, genetic algorithms, etc.
Khan et al. [32] mentions “a staggering number of recent experimental papers” on guillotine
packing and lists several such recent experimental papers.

A related notion is k-stage packing, originally introduced by Gilmore and Gomory [23].
Here, each stage consists of either vertical or horizontal guillotine cuts (but not both). In
each stage, each of the pieces obtained in the previous stage is considered separately and
can be cut again by using either horizontal or vertical guillotine cuts. In k-stage packing,
the number of cuts to obtain each rectangle from the initial packing is at most k, plus an
additional cut to trim (i.e., separate the rectangles itself from a waste area). Intuitively, this
means that in the cutting process we change the orientation of the cuts k − 1 times.
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(a) (b) (c)

Figure 1 Packing (a) is a 5-stage guillotine separable packing, packing (b) is a (n − 1)-stage
guillotine separable packing, packing (c) is not guillotine separable as any end-to-end cut in the
strip intersects a rectangle.

Therefore, in this paper, we study the Guillotine Strip Packing problem (GSP). The
input is the same as for SP, but we require additionally that the items in the solution can be
separated by a sequence of guillotine cuts, and we say then that they are guillotine separable.
Like general SP without requiring the items to be guillotine separable, GSP generalizes Bin
Packing (when all items have the same height) and makespan minimization on identical
machines (when all items have the same width). Thus, it is strongly NP-hard, and the same
reduction from Partition mentioned above yields a lower bound of (3/2 − ε) for polynomial
time algorithms (see the full version [31] for more details). For asymptotic approximation,
GSP is well understood. Kenyon and Rémila [29] gave an asymptotic polynomial time
approximation scheme (APTAS) for (general) SP. Their algorithm produces a 5-stage packing
(hence, guillotine separable), and thus yields an APTAS for GSP as well. Later, Seiden et
al. [43] settled the asymptotic approximation status of GSP under k-stage packing. They gave
an APTAS for GSP using 4-stage guillotine cuts, and showed k = 2 stages cannot guarantee
any bounded asymptotic performance ratio, and k = 3 stages lead to asymptotic performance
ratios close to 1.691. However, in the non-asymptotic setting, approximation ratio of GSP is
not yet settled. Steinberg’s algorithm [45] yields a 2-approximation algorithm for GSP and
this is the best known polynomial time approximation algorithm for the problem.

In this paper we present approximation algorithms for GSP which have strictly better
approximation ratios than the best known algorithms for SP, and in the setting of pseudo-
polynomial time algorithms we even beat the lower bound that holds for SP. Moreover, we
show that all our approximation ratios are essentially the best possible.

1.1 Our Contribution
We present a polynomial time (3/2 + ε)-approximation algorithm for GSP. Due to the
mentioned lower bound of (3/2 − ε), our approximation ratio is essentially tight. Also, we
present a pseudo-polynomial time (1 + ε)-approximation algorithm, which is also essentially
tight since GSP is strongly NP-hard.

For the pseudo-polynomial time (1 + ε)-approximation, we first prove that there exists a
structured solution with height at most (1 + ε)OPT (OPT denotes the height of the optimal
solution) in which the strip is divided into O(1) rectangular boxes inside which the items
are nicely packed, e.g., horizontal items are stacked on top of each other, vertical items
are placed side by side, and small items are packed greedily with the Next-Fit-Decreasing-
Height algorithm [13] (see Figure 2(a) and also Figure 4. Also, refer to Section 2 for item
classification). This result starkly contrasts SP (i.e., where we do not require the items to be
guillotine separable): for that problem, it is already unlikely that we can prove that there
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(1 + ε)OPT
S

(a)

1
2OPT

OPT
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2 + ε)OPT

1
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Figure 2 (a) A guillotine separable structured packing (for the pseudo-polynomial time approx-
imation scheme) where all the items are packed nicely in containers. The tall items (dark-gray)
are stacked next to each other just like the vertical items (orange); the horizontal items (blue) are
stacked on top of each other, the small items (pink) are packed according to NFDH, and the large
containers contain single large items (brown). (b) A guillotine separable structured packing for the
polynomial time (3/2 + ε)-approximation, where the packing from (a) is rearranged such that the
tall items are bottom-left-flushed and there is an extra empty box B∗ to accommodate some of the
vertical items which we are unable to pack in polynomial time in the rest of the guessed boxes. This
arises from the NP-hardness of the Partition problem. The yellow rectangular strip S on top of
both the packings is used for packing the medium and leftover horizontal and small items.

always exists such a packing with a height of less than 5/4 · OPT. If we could prove this,
we could approximate the problem in pseudo-polynomial time with a better ratio than 5/4,
which is NP-hard [25].

To construct our structured packing, we start with an optimal packing and use the
techniques in [32] to obtain a packing in which each item is nicely packed in one of a constant
number of boxes and L-shaped compartments. We increase the height of our packing by
εOPT in order to round the heights of the packed items and get some leeway within the
packing. Then, we rearrange the items placed inside the L-shaped compartments. Here, we
crucially exploit that the items in the initial packing are guillotine separable. In particular,
this property allows us to identify certain sets of items that we can swap, e.g., items on
the left and the right of a vertical guillotine cut to simplify the packing, and reduce the
number of boxes to O(1). Then, using standard techniques, we compute a solution with this
structure in pseudo-polynomial time and hence with a packing height of at most (1 + ε)OPT
(see Figure 2 (a)).

Note that we do not obtain a (1 + ε)-approximation algorithm in polynomial time in this
way. The reason is that when we pack the items into the rectangular boxes, we need to solve
a generalization of partition: there can be several boxes in which vertical items are placed
side by side, and we need that the widths of the items in each box sum up to at most the
width of the box. If there is only a single item that we cannot place, then we would need to
place it on top of the packing, which can increase our packing height by up to OPT.

For our polynomial time (3/2 + ε)-approximation algorithm, we, therefore, need to be
particularly careful with the items whose height is larger than OPT/2, which we call the
tall items. We prove a different structural result which is the main technical contribution of
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this paper: we show that there is always a (3/2 + ε)-approximate packing in which the tall
items are packed together in a bottom-left-flushed way, i.e., they are ordered non-increasingly
by height and stacked next to each other with their bottom edges touching the base of the
strip. All remaining items are nicely packed into Oε(1) boxes, and there is also an empty
strip of height OPT/2 and width Ωε(W ), see Figure 2 (b). Thus, it is very easy to pack the
tall items correctly according to this packing. We pack the remaining items with standard
techniques into the boxes. In particular, the mentioned empty strip allows us to make slight
mistakes while we pack the vertical items that are not tall; without this, we would still need
to solve a generalization of partition.

In order to obtain our structural packing for our polynomial time (3/2 + ε)-approximation
algorithm, we build on the idea of the packing for the pseudo-polynomial time (1 + ε)-
approximation. Using that it is guillotine separable, we rearrange its items further. First, we
move the items such that all tall items are at the bottom. To achieve this, we again argue
that we can swap certain sets of items, guided by the guillotine cuts. Then, we shift certain
items up by OPT/2, which leaves empty space between the shifted and the not-shifted items,
see Figure 2 (b). Inside this empty space, we place the empty box of height OPT/2. Also,
we use this empty space in order to be able to reorder the tall items on the bottom by their
respective heights. During these changes, we ensure carefully that the resulting packing stays
guillotine separable.

It is possible that also for (general) SP there always exists a structured packing of height at
most (3/2 + ε)OPT, similar to our packing. This would yield an essentially tight polynomial
time (3/2 + ε)-approximation for SP and thus solve the long-standing open problem to find
the best possible polynomial time approximation ratio for SP. We leave this as an open
question.

1.2 Other related work
In the 1980s, Baker et al. [2] initiated the study of approximation algorithms for strip packing,
by giving a 3-approximation algorithm. After a sequence of improved approximations [13, 44],
Steinberg [45] and Schiermeyer [41] independently gave 2-approximation algorithms. For
asymptotic approximation, Kenyon and Rémila [29] settled SP by providing an APTAS.

SP has rich connections with important geometric packing problems [9, 30] such as 2D bin
packing (2BP) [4, 33], 2D geometric knapsack (2GK) [19, 28], dynamic storage allocation [7],
maximum independent set of rectangles (MISR) [22, 1], sliced packing [14, 18], etc.

In 2BP, we are given a set of rectangles and square bins, and the goal is to find an
axis-aligned non-overlapping packing of all items into a minimum number of bins. The
problem admits no APTAS [3], and the present best approximation ratio is 1.406 [4]. In 2GK,
we are given a set of rectangular items and a square knapsack. Each item has an associated
profit, and the goal is to pack a subset of items in the knapsack such that the profit is
maximized. The present best polynomial time approximation ratio is 1.89 [19]. There is a
pseudo-polynomial time (4/3 + ε)-approximation [21] for 2GK. In MISR, we are given a set of
(possibly overlapping) rectangles we need to find the maximum cardinality non-overlapping
set of rectangles. Recently, Mitchell [36] gave the first constant approximation algorithm for
the problem. Then Gálvez et al. [22] obtained a (2 + ε)-approximation algorithm for MISR.
Their algorithms are based on a recursive geometric decomposition of the plane, which can
be viewed as a generalization of guillotine cuts, more precisely, to cuts with O(1) bends.
Pach and Tardos [38] even conjectured that for any set of n non-overlapping axis-parallel
rectangles, there is a guillotine cutting sequence separating Ω(n) of them.

ICALP 2022



80:6 Guillotine Strip Packing

2BP and 2GK are also well-studied in the guillotine setting [39]. Caprara et al. [8] gave an
APTAS for 2-stage SP and 2-stage BP. Later, Bansal et al. [5] showed an APTAS for guillotine
2BP. Bansal et al. [4] conjectured that the worst-case ratio between the best guillotine 2BP
and the best general 2BP is 4/3. If true, this would imply a ( 4

3 + ε)-approximation algorithm
for 2BP. For guillotine 2GK, Khan et al. [32] recently gave a pseudo-polynomial time
approximation scheme.

2 Pseudo-polynomial time approximation scheme

In this section, we present our pseudo-polynomial time approximation scheme (PPTAS)
for GSP.

Let ε > 0 and assume w.l.o.g. that 1/ε ∈ N. We denote by OPT the height of the optimal
solution. We classify the input items into a few groups according to their heights and widths
similar to the classification in [32]. For two constants 1 ≥ δ > µ > 0 to be defined later, we
classify each item i ∈ I as:

tall if hi > OPT/2;
large if wi > δW and OPT/2 ≥ hi > δOPT;
horizontal if wi > δW and hi ≤ µOPT;
vertical wi ≤ δW and OPT/2 ≥ hi > δOPT;
medium if

either δOPT ≥ hi > µOPT;
or δW ≥ wi > µW and hi ≤ µOPT;

small if wi ≤ µW and hi ≤ µOPT;

Large

Small

V ertical

Horizontal

Medium

Tall

µOPT

δOPT

1
2OPT

µW δW W

OPT

Figure 3 Item Classification: x-axis represents width and y-axis represents height.

See Figure 3 for a picture of item classification. Let Itall, Ilarge, Ihor, Iver,

Imedium, Ismall be the set of tall, large, horizontal, medium, and small rectangles in I,
respectively.

Using the following lemma, one can appropriately choose µ, δ such that the medium items
occupy a marginal area. This effectively allows us to ignore them in our main argumentation.

▶ Lemma 2.1 ([37]). Let ε > 0 and f(.) be any positive increasing function such that f(x) < x

for all x ∈ (0, 1]. Then we can efficiently find δ, µ ∈ Ωε(1), with ε ≥ f(ε) ≥ δ ≥ f(δ) ≥ µ so
that the total area of medium rectangles is at most ε(OPT · W ).

We will specify how we choose the function f(x) later. In our PPTAS, we will use a packing,
which is defined solely via boxes.
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▶ Definition 2.2. A box B is an axis-aligned open rectangle that satisfies B ⊆ [0, W ]× [0, ∞).
We denote by h(B) and w(B) the height and the width of B, respectively.

Inside each box B, we will place the items nicely, meaning that they are either stacked
horizontally or vertically, or B contains a single large item, or only small items, or only
medium items. This is useful since in the first two cases, it is trivial to place a given set
of items into B, and in the last two cases, it will turn out that it suffices to pack the
items greedily using the Next Fit Decreasing Height (NFDH) algorithm [13] and Steinberg’s
algorithm [45], respectively. There will be one box with height at most 2εOPT that contains
all medium items.

▶ Definition 2.3 (Nice packing). Let B be a box and let IB ⊆ I be a set of items that are
placed non-overlappingly inside B. We say that the packing of IB in B is nice if the items in
IB are guillotine separable and additionally

IB contains only one item, or
IB ⊆ Ihor and the items in IB are stacked on top of each other inside B, or
IB ⊆ Itall ∪ Iver and the items in IB are placed side by side inside B, or
IB ⊆ Imedium, or
IB ⊆ Ismall and for each item i ∈ IB it holds that wi ≤ ε · w(B) and hi ≤ ε · h(B).

We will use the term container to refer to a box B that contains a nice packing of some set
of items IB . See Figure 4 for nice packings in different types of containers. We say that a set
of boxes B is guillotine separable if there exists a sequence of guillotine cuts that separates
them and that does not intersect any box in B.

We now state the structural lemma for the PPTAS. Intuitively, it states that there exists
a (1 + ε)-approximate solution in which the input items are placed into Oε(1) boxes such that
within each box the packing is nice. We remark that we will crucially use that in the optimal
packing the items in I are guillotine separable. In fact, if one could prove that there exists such
a packing with Oε(1) boxes and a height of αOPT for some α < 5

4 also in the non-guillotine
case (where neither the optimal solution nor the computed solution needs to be guillotine
separable), then one would obtain a pseudo–polynomial time (α+ε)-approximation algorithm
also in this case, by using straightforward adaptations of the algorithms in, e.g., [37, 20, 27]
or our algorithm in section 2.2. However, this is not possible for α < 5

4 , unless P = NP [25].

▶ Lemma 2.4 (Structural lemma 1). Assume that µ is sufficiently small compared to δ. Then
there exists a set B of Oε(1) pairwise non-overlapping and guillotine separable boxes all placed
inside [0, W ] × [0, (1 + 16ε)OPT) and a partition I =

⋃
B∈B IB such that for each B ∈ B the

items in IB can be placed nicely into B.

We choose our function f due to Lemma 2.1 such that µ is sufficiently small compared to δ, as
required by Lemma 2.4. We will prove Lemma 2.4 in the next subsection. In its packing, let
Bhor, Bver, Btall, Blarge, Bsmall and Bmed denote the set of boxes for the horizontal, vertical,
tall, large, small and medium items, respectively. Let Btall+ver := Btall ∪ Bver.

2.1 Proof of Structural Lemma 1
In this section we prove Lemma 2.4. We have omitted a few proofs which can be found in the
full version [31]. Our strategy is to start with a structural lemma from [32] that guarantees
the existence of a structured packing of all items in Ihard := Itall ∪ Ilarge ∪ Ihor ∪ Iver. This
packing uses boxes and L-compartments. Note that, for now we ignore the items Ismall. We
will show how to pack them later.
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(a) (b) (c) (d)

Figure 4 Nice packing of vertical, horizontal, large and small items in their respective containers.

▶ Definition 2.5 (L-compartment). An L-compartment L is an open sub-region of [0, W ] ×
[0, ∞) bounded by a simple rectilinear polygon with six edges e0, e1, . . . , e5 such that for each
pair of horizontal (resp. vertical) edges ei, e6−i with i ∈ {1, 2} there exists a vertical (resp.
horizontal) line segment ℓi of length less than δ OPT

2 (resp. δ W
2 ) such that both ei and e6−i

intersect ℓi but no other edges intersect ℓi.

Note that for an L-compartment, no item i ∈ Ihor can be packed in its vertical arm and
similarly, no item i ∈ Iver ∪ Itall can be packed in its horizontal arm.

The next lemma follows immediately from a structural insight in [32] for the guillotine
two-dimensional knapsack problem. It partitions the region [0, W ] × [0, OPT] into non-
overlapping boxes and L-compartments that admit a pseudo-guillotine cutting sequence. This
is a sequence of cuts in which each cut is either a (normal) guillotine cut, or a special cut that
cuts out an L-compartment L from the current rectangular piece R in the cutting sequence,
such that R \ L is a rectangle, see Figure 6. So intuitively L lies at the boundary of R.

εOPTεOPTεOPTεOPT

(a) (b)

V1
V2

V3
V4

V5

H1

H2

H3

H4

H5

(c)

Figure 5 Using an extra εOPT height, we convert a packing of items I in an L-compartment
into another packing such that the items in I are packed in boxes C′ = V ∪ H, which are guillotine
separable and |C′| = Oε(1), where V = ∪i=5

i=1Vi and H = ∪i=5
i=1Hi.

▶ Lemma 2.6 ([32]). There exists a partition of [0, W ] × [0, OPT] into a set B1 of Oε(1)
boxes and a set L of Oε(1) L-compartments such that

the boxes and L-compartments in B1 ∪ L are pairwise non-overlapping,
B1 ∪ L admits a pseudo-guillotine cutting sequence,
the items in Ihard can be packed into B1 ∪ L such that for each B ∈ B1 it either contains
only items i ∈ Itall ∪ Ilarge ∪ Iver or it contains only items i ∈ Ihor.

Our strategy is to take the packing due to Lemma 2.6 and transform it step by step until we
obtain a packing that corresponds to Lemma 2.4. First, we round the heights of the tall,
large, and vertical items such that they are integral multiples of δ2OPT. Formally, for each
item i ∈ Itall ∪ Ilarge ∪ Iver we round its height to h′

i :=
⌈

hi

δ2OPT
⌉

δ2OPT. Let Ihard denote
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the resulting set of items. By a shifting argument, we will show that we can still pack Ihard

into Oε(1) guillotine separable boxes and L-compartments if we can increase the height of
the packing by a factor 1 + ε which also does not violate guillotine separability. Then, we
increase the height of the packing by another factor 1 + ε. Using this additional space, we
shift the items inside each L-compartment L such that we can separate the vertical items
from the horizontal items (see Figure 5). Due to this separation, we can partition L into
Oε(1) boxes such that each box contains only horizontal or only vertical and tall items. Note
however, that they might not be packed nicely inside these boxes.

▶ Lemma 2.7. There exists a partition of [0, W ] × [0, (1 + 2ε)OPT] into a set B2 of Oε(1)
boxes such that

the boxes in B2 are pairwise non-overlapping and admit a guillotine cutting sequence,
the items in Ihard can be packed into B2 such that they are guillotine separable and each
box B ∈ B2 either contains only items from Itall ∪ Ilarge ∪ Iver, or contains only items
from Ihor.
Any item i ∈ Itall ∪ Ilarge ∪ Iver has height h′

i = kiδ
2OPT for integer ki, ki ≤ 1/δ2 + 1.

Let B2 be the set of boxes due to Lemma 2.7. Consider a box B ∈ B2 and let Ihard(B)
denote the items from Ihard that are placed inside B in the packing due to Lemma 2.7. Our
goal is to partition B into Oε(1) smaller containers, i.e., the items in Ihard(B) are packed
nicely into these smaller boxes. If B contains horizontal items, then this can be done using
standard techniques, e.g., by 1D resource augmentation (only in height) in [32]. This resource
augmentation procedure maintains guillotine separability.

▶ Lemma 2.8 ([32]). Given a box B ∈ B2 such that B contains a set of items Ihard(B) ⊆ Ihor.
There exists a partition of B into Oε′(1) containers B′ and one additional box B′ of height
at most ε′h(B) and width w(B) such that the containers B′ are guillotine separable and the
containers B′ ∪ {B′} contain Ihard(B).

We apply Lemma 2.8 to each box B ∈ B2 that contains a horizontal item. Consider the
items which are contained in their respective boxes B′. In order to avoid any confusions
between constants of our algorithm and resource augmentation, we denote the constant used
for resource augmentation as ε′. We choose ε′ = ε and then their total area is at most
εOPT · W and therefore, all such items can be packed in a box of height at most 2εOPT
and width W using Steinberg’s algorithm [45]. But since this will possibly not result in a
nice packing we apply resource augmentation (only along height) again to ensure that we get
a nice packing of such horizontal items in Oε(1) containers which can all be packed in a box
of height at most 3εOPT and width W .

Consider now a box B ∈ B2 that contains at least one item from Itall ∪ Ilarge ∪ Iver. Let
Ihard(B) ⊆ Itall ∪ Ilarge ∪ Iver denote the items packed inside B. We argue that we can
rearrange the items in Ihard(B) such that they are nicely placed inside Oε(1) containers. In
this step we crucially use that the items in Ihard(B) are guillotine separable.

Consider the guillotine cutting sequence for Ihard(B). It is useful to think of these cuts
as being organized in stages: in the first stage we do vertical cuts (possibly zero cuts). In
the following stage, we take each resulting piece and apply horizontal cuts. In the next stage,
we again take each resulting piece and apply vertical cuts, and so on. Since the heights of
the items in Ihard(B) are rounded to multiples of δ2OPT we can assume w.l.o.g. that the
y-coordinates of the horizontal cuts are all integral multiples of δ2OPT (possibly moving
the items a little bit). Assume here for the sake of simplicity that t = 1/δ2 is an integer.
Because of the rounding of heights of the items in I ′

hard(B), there are at most (1/δ2 − 1)
y-coordinates for making a horizontal cut. For a horizontal stage of cuts, for a rectangular
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ℓ1

ℓ6

ℓ7

ℓ2

ℓ3

ℓ4

(a)

ℓ1

ℓ6
ℓ2

ℓ7

ℓ3

ℓ4

(b)

Figure 6 (a) A pseudo-guillotine cutting sequence. The first cut is l1, and then the resulting left
piece is further subdivided by ℓ2, ℓ3 and ℓ4. Similarly, ℓ6, ℓ7 subdivide the right piece. Note that ℓ3

and ℓ7 are not guillotine cuts, but they cut out the corresponding L-compartments. (b) Step by step
pseudo-guillotine cutting sequence corresponding to Figure (a). Dashed line at each level indicates a
partition of a rectangle into two regions (two boxes, or one box and one L).

piece we define a configuration vector (x1, ..., xt−1): For each i ∈ [t−1] if there is a horizontal
cut in the piece at y = t · i, then xi = 1, otherwise xi = 0. Consider y = 0 to be the bottom
of the rectangular piece. Therefore, in each horizontal stage, for each piece there are at most
K := (2(1/δ2)) possible configurations. Consider the first stage (which has vertical cuts). If
there are more than K vertical cuts then in two of the resulting pieces, in the second stage
the same configuration of horizontal cuts is applied (see Figure 7).

We reorder the resulting pieces and their items such that pieces with the same configuration
of horizontal cuts are placed consecutively. Therefore, in the first stage we need only K

vertical cuts and we can have at most ( 1
δ 2(1/δ2)) resulting pieces. We apply the same

transformation to each stage with vertical cuts. Now observe that there can be at most
O(1/δ) stages since there are at most 1/δ possible tall, vertical or large items stacked on
top of the other and thus at most 1/δ stages with horizontal cuts. Therefore, after our
transformations, we apply only ( 1

δ 2(1/δ2)) 1
δ cuts in total, in all stages in all resulting pieces.

Thus, we obtain Oε(1) boxes at the end, in which the items are nicely packed. This leads to
the following lemma.

▶ Lemma 2.9. Given a box B ∈ B2 such that B contains a set of items Ihard(B) ⊆
Itall ∪ Ilarge ∪ Iver. There exists a partition of B into Oε(1) containers B′ such that the
containers B′ are guillotine separable and contain the items Ihard(B).

We apply Lemma 2.9 to each box B ∈ B2 that contains an item from Itall ∪ Ilarge ∪ Iver.
Thus, we obtain a packing of Ihard into a set of Oε(1) guillotine separable containers in which
these items are nicely placed; we denote these containers by Bhard. This yields directly a
packing for the (original) items Ihard (without rounding). Finally, we partition the empty
space of the resulting packing into more boxes, and one additional box that we place on top
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(a) (b)

Figure 7 (a) 2 stages of guillotine cuts for a box containing vertical rectangles. (b) Since rounded
heights of vertical rectangles are integral multiples of δ2, merge configurations with same set of
horizontal cuts to get Oδ(1) configurations.

of the current packing. We pack the items in Ismall inside all these boxes. We might not
be able to use some parts of the empty space, e.g., if two boxes are closer than µW to each
other horizontally; however, if µ is sufficiently small compared to the number of boxes, this
space is small and compensated by the additional box.

▶ Lemma 2.10. Assume that µ is sufficiently small compared to δ. There exists a set of Oε(1)
boxes Bsmall, all contained in [0, W ]× [0, (1+14ε)OPT], such that the boxes in Bhard ∪Bsmall

are non-overlapping and guillotine separable and the items in Ismall can be placed nicely into
the boxes Bsmall.

Finally, we show the following lemma by using the fact that the medium items have area
at most ε(OPT · W ) and by applying Steinberg’s algorithm [45]. This completes the proof of
Lemma 2.4.

▶ Lemma 2.11. In time nO(1) we can find a nice placement of all items in Imedium inside
one container Bmed of height 2εOPT and width W .

2.2 Algorithm
We describe now our algorithm that computes a packing of height at most (1 + O(ε))OPT.
First, we guess OPT and observe that there are at most n · hmax possibilities, where
hmax := maxi∈I hi. Then, we guess the set of containers B due to Lemma 2.4 and their
placement inside [0, W ] × [0, (1 + O(ε))OPT). For each container B ∈ B we guess which
case of Definition 2.3 applies to B, i.e., whether IB contains only one item, IB ⊆ Ihor,
IB ⊆ Itall ∪ Iver, IB ⊆ Imedium, or IB ⊆ Ismall. For each box B ∈ B for which IB contains
only one item i ∈ I, we guess i. Observe that for the remaining containers this yields
independent subproblems for the sets Ihor, Itall ∪ Iver, Imedium, and Ismall. We solve these
subproblems via similar routines as in [37, 20, 27].

We pack all medium items in Imedium into one single container Bmed of height 2εOPT
by Lemma 2.11. Then, for the sets Ihor and Itall ∪ Iver we pack their respective items into
their containers using a standard pseudo-polynomial time dynamic program; we denote these
containers by Bhor and Btall+ver, respectively. We crucially use that |Bhor| ≤ Oε(1) and
|Btall+ver| ≤ Oε(1). See the full version [31] for the details of packing of items in Ihor and
Itall ∪ Iver.

Finally, we pack the small items. From the proof of Lemma 2.10, apart from some items
I ′

small ⊂ Ismall which have area at most εOPT · W , the other items can be packed nicely
in the containers in Bsmall \ Bsmall, where Bsmall has height 9εOPT and width W . Thus,
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we use NFDH for packing the remaining small items. It can be shown that the small items
which remain unpacked can be packed nicely in Bsmall, which is placed on the top of our
packing.

▶ Theorem 2.12. There is a (1 + ε)-approximation algorithm for the guillotine strip packing
problem with a running time of (nW )Oε(1).

3 Polynomial time (3
2 + ε)-approximation

In this section, we first present the structural lemma for our polynomial time (3/2 + ε)-
approximation algorithm for guillotine strip packing. Then we describe our algorithm. We
have omitted a few proofs which can be found in the full version [31].

To derive our structural lemma, we start with the packing due to Lemma 2.4. The
problem is that with a polynomial time algorithm (rather than a pseudo-polynomial time
algorithm) we might not be able to pack all tall items in their respective boxes. If there
is even one single tall item i that we cannot pack, then we need to place i on top of our
packing, which can increase the height of the packing by up to OPT.

RA

RB

(a)

RA

RB

(b)

RA

RB

(c)

RA

RB

(d)

Figure 8 RA and RB are tall containers and by swapping the respective boxes (forming as a
results of guillotine cuts) that contain them, they can be packed such that the bottoms of both
containers intersect the bottom of the strip.

Therefore, we make our packing more robust to small errors when we pack the items into
their boxes. In our changed packing, the tall items are bottom-left-flushed (see Figure 9(f)), the
remaining items are packed into Oε(1) boxes, and there is one extra box B∗ of height OPT/2
and width Ωε(W ) which is empty. We will use the extra box B∗ in order to compensate
small errors when we pack the vertical items.

Formally, we say that in a packing, a set of items I ′ is bottom-left-flushed if they are
ordered non-increasingly by height and stacked next to each other in this order within the
strip [0, W ] × [0, ∞) starting at the left edge of the strip, such that the bottom edge of each
item i ∈ I ′ touches the line segment [0, W ] × {0}. We now state the modified structural
lemma for our polynomial time (3/2 + ε)-approximation algorithm formally.

▶ Lemma 3.1 (Structural lemma 2). There exists a packing of the items I within [0, W ] ×
[0, (3/2 + O(ε))OPT) such that

The items Itall are bottom-left-flushed,
There is a set B of Oε(1) containers that are pairwise non-overlapping and do not intersect
the items in Itall,
There is a partition of I \ Itall =

⋃
B∈B IB such that for each B ∈ B the items in IB can

be placed nicely into B,
There is a container B∗ ∈ B of height OPT/2 and width ε1W such that IB∗ = ∅,
The items Itall and the containers B together are guillotine separable.

We now prove Lemma 3.1 in the following subsection.
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3.1 Proof of Structural Lemma 2
We start with the packing due to Lemma 2.4 and transform it step by step. To obtain our
packing, we first argue that we can ensure that all tall items are placed on the bottom of
the strip, i.e., their bottom edges touch the bottom edge of the strip. Here we use that the
initial packing is guillotine separable. Then we place the box B∗ as follows. Suppose that
there are initially C containers that cross the horizontal line with y = OPT/2. Note that
C = Oε(1) and C ≥ 1 since at least one container is required to pack given non-zero number
of items. Then, by an averaging argument we can show that there is a line segment l∗ of
length at least Ω( W

C ) which is the top edge of one of the containers B in the packing at some
height h∗ ≥ OPT/2. We push all the containers which completely lie above the line y = h∗

vertically upward by OPT/2 and this creates enough space to pack B∗ on top of B. After
that, we take advantage of the gained extra space in order to ensure that the tall items are
bottom-left-flushed.

Now we describe the proof formally. First, we define some constants. Let g(δ, ε) = Oε(1)
denote an upper bound on the number of containers in the packing obtained using Lemma 2.4,
depending on ε and δ. Let ε1 = 1

3g(δ,ε) , ε2 = ε
4|Bhor| , ε3 = ε1

4|Bver| , ε4 = µ, ε5 = ε1δ
6 , ε6 = εδ

6 .
Our first goal is to make sure that the tall items are all placed on the bottom of the strip

[0, W ] × [0, ∞). For this, we observe the following: suppose that in the guillotine cutting
sequence a horizontal cut is placed. This cut separates the current rectangular piece R into
two smaller pieces R1 and R2. Suppose that R1 lies on top of R2. Then only one of the two
pieces R1, R2 can contain a tall item. Also, we obtain an alternative guillotine separable
packing if we swap R1 and R2 – together with the items contained in them – within R. We
perform this swap if R1 contains a tall item. We apply this operation to each horizontal cut
in the guillotine cutting sequence. As a result, we obtain a new packing in which all tall
items are placed on the bottom of the strip (but possibly not yet bottom-left-flushed) as
shown in Fig 8.

▶ Lemma 3.2. There exists a set B of Oε(1) pairwise non-overlapping and guillotine separable
boxes that are all placed inside [0, W ] × [0, (1 + 16ε)OPT) and a partition I =

⋃
B∈B IB such

that for each B ∈ B the items in IB can be placed nicely into B. Also, for each box B ∈ B
with IB ∩ Itall ̸= ∅ we have that the bottom edge of B intersects the line segment [0, W ] × {0}.

Let B be the set of containers due to Lemma 3.2. We want to move some of them up in
order to make space for the additional box B∗. To this end, we identify a horizontal line
segment ℓ∗ in the following lemma.

▶ Lemma 3.3. There is a horizontal line segment ℓ∗ of width at least ε1W that does not
intersect any container in B, and such that the y-coordinate of ℓ∗ is at least OPT/2.

Proof. Consider the containers in B that intersect with the horizontal line segment ℓ :=
[0, W ] × {OPT/2} and let p1, ...pk be the maximally long line segments on ℓ that do not
intersect any container. Since the line segments {p1, ...pk} are between containers in B, we
have that k ≤ |B| + 1. Therefore by an averaging argument we can find a horizontal line
segment ℓ∗ of width at least W

2(g(δ,ε))+1 ≥ W
3g(δ,ε) ≥ ε1W that either contains the top edge of

one of these containers such that ℓ∗ does not intersect any other container in B or ℓ∗ is one of
the line segments in the set {p1, ..., pk}. Hence, the y-coordinate of ℓ∗ is at least OPT/2. ◀

Let h∗ be the y-coordinate of ℓ∗. We take all containers in B that lie “above h∗”, i.e., that lie
inside [0, W ] × [h∗, ∞). We translate them up by OPT/2. We define a container B∗ which
has height OPT/2 and width ε1W to be packed such that ℓ∗ is the bottom edge of B∗ (see
Figure 9(b)). We then make the following claim about the resulting packing of B ∪ {B∗} (we
call this packing P1).
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Figure 9 (a) A guillotine separable packing with items nicely packed in containers. The gray
colored rectangles are the tall items and the light-gray rectangles are containers with items nicely
packed inside. The blue line segment indicates l∗ at height h⋆. (b) Items completely packed in
[h∗, OPT] are shifted by 1

2 OPT vertically upward. The thick red line indicates y = h∗ + 1
2 OPT

which separates the items shifted up from the items below. The dashed red line indicates the height
h∗ and B∗ is packed in the strip of sufficient width and lowest height h∗. (c) The containers of type
1 (colored blue) are moved accordingly so they do not intersect y = h⋆. (d) The containers of type 2
(colored yellow) are moved accordingly so they do not intersect y = h⋆. (e) The containers in Btall

are bottom-left-flushed while other non-tall containers are moved accordingly to the right. The blue
vertical dashed line x = x0 separates containers in B+

tall to its left hand side from other containers to
the right. (f) Final packing where tall items are bottom-left-flushed and the blue vertical dashed line
x = x1 separates items i ∈ Itall with hi > h∗ to the left from other items and containers to the right.

▶ Lemma 3.4. The packing P1 is feasible, guillotine separable and has height (3/2 +
O(ε))OPT.

Proof. Since h∗ > OPT/2, observe that no containers are intersecting the line [0, W ] × {h∗ +
OPT/2}. This is because any containers which were lying above the line [0, W ] × {h∗} before
were pushed up by OPT/2 and the height of such containers is at most OPT/2. Thus, the
first guillotine cut is applied at y = h∗ + OPT/2 so that we get two pieces R and Rtop. For
the guillotine separability of the top piece Rtop, we use the fact that the packing to begin
with was guillotine separable and we have moved a subset of the items in the initial packing
vertically upwards by the same height. For the bottom piece R, which has a subset of the
initial packing, we have packed B∗ on the top edge (which is part of the line [0, W ] × {h∗}) of
another container (say B) whose width is more than the width of B∗. In the guillotine cutting
sequence of this piece without the addition of B∗, consider the horizontal cuts at height at
least h∗. Note that there is no container lying completely above the line [0, W ] × {h∗} in R.
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Hence, we can remove such horizontal cuts and extend the vertical cuts that were intercepted
by these horizontal cuts until they hit the topmost horizontal edge of R. Now, if we follow
this new guillotine cutting sequence, we would finally have a rectangular region with only the
container B. As there is no container in the region [left(B), right(B)] × [h∗, h∗ + OPT/2],
we can pack B∗ in this region without violating the guillotine separability condition. Now,
observe that the height of the piece Rtop is (1 + O(ε))OPT − h∗ and height of the piece R is
h∗ + OPT/2. Hence the height of the packing P1 is (3/2 + O(ε))OPT. ◀

Our next goal is to rearrange the tall items and their containers such that the tall items
are bottom-left flushed. Let Btall ⊆ B denote the containers in B that contain at least one tall
item. Consider the line segment ℓ := [0, W ] × {h∗} and observe that it might be intersected
by containers in Btall. Let ℓ1, ℓ2, ..., ℓt be the connected components of ℓ \

⋃
B∈Btall

B. For
each j ∈ {1, ..., t} we do the following. Consider the containers in B \ Btall whose bottoms
are contained in ℓj × [OPT/2, h∗] (we call them type 1 containers). We move them up
by h∗ − OPT/2 units. There is enough space for them since the top edge of any of these
containers lies below the line segment [0, W ] × {h∗ + OPT/2} after shifting.

Then we take all containers in B \ Btall that intersect ℓj and also the line segment
[0, W ] × {OPT/2} (type 2 containers). We move them up such that their respective bottom
edges are contained in ℓj . Again there is enough space for this since the containers have height
at most OPT/2 and hence, their top edges cannot cross the line segment [0, W ]×{h∗+OPT/2}.
Note that in this step we do not necessarily move the affected containers uniformly. See
Figure 9(c) and Figure 9(d) for a sketch. Note that due to the way ℓ∗ is defined, no type 1
or type 2 container after being shifted overlaps with the region occupied by B∗.

One can show that the resulting packing is still guillotine separable. In particular, there
is such a sequence that starts as follows: the first cut of this sequence is a horizontal cut
with y-coordinate h∗ + OPT/2. For the resulting bottom piece R, there are vertical cuts
that cut through the vertical edges of the containers in Btall whose height is strictly greater
than h∗, denote these containers by B+

tall. Let R1, ..., Rt′ denote the resulting partition of
R. We can rearrange our packing by reordering the pieces R1, ..., Rt′ . We reorder them
such that on the left we place the pieces containing one container from B+

tall each, sorted
non-increasingly by their heights. Then we place the remaining pieces from {R1, ..., Rt′}
(which hence, do not contain any containers in B+

tall), denote their union by R′. Let the left
end of R′ be x = x0. We can assume that the guillotine cutting sequence places a vertical
cut that separates R′ from the other pieces in {R1, ..., Rt′} at x = x0. From Lemma 3.3,
we know that there is a container B (or possibly the case when h∗ = OPT/2 and we have
a line segment ℓ′ of width at least ε1W on top of which we can pack B∗) whose top is at
height h∗, has width at least ℓ∗ which now lies to the right of x0 in R′. Thus, the region
[left(B), left(B) + ε1W ] × [h∗, h∗ + OPT/2] is empty and can be used to place B∗.

We change now the placement of the containers within R′. Due to our rearrangements,
no container inside R′ intersects the line segment [0, W ] × {h∗}, so we can assume that R′

is cut by the horizontal cut [0, W ] × {h∗}, let R′′ be the resulting bottom piece and R′′′ be
the piece above. We first show why R′′′ is guillotine separable. First, we separate B∗ using
vertical guillotine cuts at its left and right edges. Then we prove that the shifting operation
for type 2 and type 1 containers does not violate guillotine separability of the packing for
any region defined by some horizontal segment lj for j ∈ [t]. Consider any type 2 container
B′. Its top edge was initially lying above y = h∗ and its bottom below OPT/2. Hence,
before shifting this container no item could have been packed such that it was in the region
[0, W ] × [h∗, h∗ + OPT/2] and was intersecting the vertically extended line segments from the
left and right edges of B′ because any item packed in [0, W ] × [h∗, ∞) initially was shifted

ICALP 2022



80:16 Guillotine Strip Packing

upward by OPT/2. Hence, after shifting B′ such that its bottom touches y = h∗, after
considering the cut y = h∗ in lj , extend its left and right edges vertically upward to separate
B′ using guillotine cuts. For the type 1 containers, after the aforementioned cuts observe that
all such containers have been shifted by an equal amount vertically upward and using the
fact that they were guillotine separable initially, we claim that they are guillotine separable
afterward. This is proved by considering the initial guillotine cuts that were separating such
items and shifting the horizontal cuts upward by h∗ − OPT/2 (equal to the distance the
type 1 containers were shifted upward by).

To show that R′′ is guillotine separable, observe that due to our rearrangements there
are no containers that are completely contained in R′′ ∩ ([0, W ] × [OPT/2, h∗]). Therefore,
we can assume that the next cuts for R′′ are vertical cuts that contain all vertical edges of
the boxes in Btall that are contained in R′′. Let R′′

1 , ..., R′′
t′′ denote the resulting pieces. Like

above, we change our packing such that we reorder the pieces in R′′
1 , ..., R′′

t′′ non-increasingly
by the height of the respective box in Btall contained in them, and at the very right we place
the pieces from R′′

1 , ..., R′′
t′′ that do not contain any container from Btall (see Figure 9(e))

Finally, we sort the tall items inside the area
⋃

B∈Btall
B non-increasingly by height so

that they are bottom-left-flushed, and we remove the containers Btall from B (see Figure 9(f)).
We now prove that the tall items can be sorted inside the area

⋃
B∈Btall

B non-increasingly by
height without violating guillotine separability and feasibility. Note that the area

⋃
B∈Btall

B

can possibly contain some vertical items. Now, we reorder the tall items within R′ such
that they are sorted in non-increasing order of their heights. We do the same for all the
tall items on the left of R′. There may be tall items (or vertical items) on the left hand
side of R′ such that for any such item, its height is less than the the tallest tall item in R′.
Note that such tall items have to have a height of at most h∗. Such items can be repeatedly
swapped with their neighboring tall item till they are in the correct position according to
the bottom-left-flushed packing of the tall items, while maintaining guillotine separability.
Such a swap operation between consecutive tall items ensures that all of the tall items and
possibly some vertical items which were initially packed in tall containers remain inside
the area

⋃
B∈Btall

B. We ensure that the vertical items which were packed to the left of R′

get swapped so that they are packed on the right of all the tall items in a container. Now,
to prove that guillotine separability of the packing is maintained after all such swapping
operations, that is, after all tall items are sorted according to their heights in a non-increasing
order consider the x-coordinate (say x1) of the right edge of the shortest tall item which has
height strictly greater than h∗. Observe that there were no tall containers of height strictly
greater than h∗ beyond x = x0, which implies x1 ≤ x0 and hence, now, for the guillotine
cutting sequence, we can have a vertical guillotine cut at x = x1 instead of at x = x0, the
rest being the same as mentioned before. This yields the packing claimed by Lemma 3.1.

3.2 Algorithm for polynomial time (3
2 + ε)-approximation

First we guess a value OPT′ such that OPT ≤ OPT′ ≤ (1 + ε)OPT in nOε(1) time (see the
full version [31] for the details). In order to keep the notation light we denote OPT′ by OPT.
We want to compute a packing of height at most ( 3

2 + O(ε))OPT using Lemma 3.1.
Intuitively, we first place the tall items in a bottom-left-flushed way. Then we guess

approximately the sizes of the boxes, place them in the free area, and place the items inside
them via guessing the relatively large items, solving an instance of the generalized assignment
problem (GAP), using NFDH for the small items, and invoking again Lemma 2.11 for the
medium items. This is similar as in, e.g., [19, 28].
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Formally, first we place all items in Itall inside [0, W ] × [0, (3/2 + ε)OPT) such that they
are bottom-left-flushed. Then, we guess approximately the sizes of the containers in B. Note
that in polynomial time we cannot guess the sizes of the containers exactly. Let B ∈ B.
Depending on the items packed inside B, we guess different quantities for B.

If there is only one single large item i ∈ I packed inside B then we guess i.
If B contains only items from Ihor then we guess the widest item packed inside B.
This defines our guessed width of B. Also, we guess all items packed inside B whose
height is at least ε2OPT (at most O(1/ε2) many), denote them by I ′

B. We guess the
total height of the remaining items IB \ I ′

B approximately by guessing the quantity
ĥ(B) :=

⌊
h(IB\I′

B)
ε2OPT

⌋
ε2OPT. Our guessed height for B is then

∑
i∈I′

B
h(i) + ĥ(B).

Similarly, if B contains only items from Iver then we guess the highest item packed inside
B, which defines our guessed height of B. Also, we guess all items packed inside B

whose width is at least ε3W (at most O(1/ε3) many), denote them by I ′
B. We guess

the total width of the remaining items IB \ I ′
B approximately by guessing the quantity

ŵ(B) :=
⌊

w(IB\I′
B)

ε3OPT

⌋
ε3OPT and our guessed width of B is then

∑
i∈I′

B
w(i) + ŵ(B).

If B contains only small items, then our guessed heights and widths of B are⌊
h(B)

ε4OPT

⌋
ε4OPT and

⌊
w(B)
ε4W

⌋
ε4W , respectively.

Note that here ε2 = ε
4|Bhor| , ε3 = ε1

4|Bver| and ε4 = µ are chosen so that the unpacked
horizontal items, unpacked vertical items and unpacked small items due to container rounding
can be packed in containers Bhor (defined below), B∗ and Bsmall, respectively.

We have at most Oε(1) containers and for each container B ∈ B we guess the type of
container B and its respective width and height (depending on the type) in nOε(1) time.

Additionally, we guess three containers Bmed of height 2εOPT, Bhor of height εOPT,
and Bsmall of height 27εOPT and width W each that we will use to place all medium items,
and to compensate errors due to inaccuracies of our guesses for the sizes of the containers
for horizontal and small items, respectively. Let B′ denote the guessed containers (including
Bmed, Bhor, and Bsmall). Since |B′| = Oε(1) and the containers in B′ are not larger than
the containers in B, we can guess a placement for the containers B′ such that together with
Itall they are guillotine separable. We place the containers Bmed, Bhor, and Bsmall on top of
the packing of rest of the containers in B′, and Itall.

▶ Lemma 3.5. In time nOε(1) we can compute a placement for the containers in B′ such
that together with the items Itall, they are guillotine separable.

Next, we place the vertical items. Recall that for each container B ∈ B containing items
from Iver we guessed the items packed inside B whose width is at least ε3W . For each such
container B we pack these items into the container B′ ∈ B′ that corresponds to B. With a
similar technique as used for the generalized assignment problem (GAP) [19], we place all but
items with width at most ε3W for each container in Iver. Further using the PTAS for this
variant of GAP, we can ensure that items of total area at most 3ε5 · OPT · W are not packed.
Hence, items of total width at most (3ε5/δ)W remain unpacked as each such item has height
at least δOPT. We pack these remaining items into B∗, using that each of them has a height of
at most OPT/2 and that their total width is at most |B′| ·2ε3W +(3ε5/δ)W ≤ ε1W = w(B∗).
In other words, we fail to pack some of the vertical items since we guessed the widths of the
containers only approximately and since our polynomial time approximation algorithm for
GAP might not find the optimal packing. We use a similar procedure for the items in Ihor

where instead of B∗ we use Bhor in order to place the unassigned items.
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▶ Lemma 3.6. In time nOε(1) we can compute a placement for all items in Iver ∪ Ihor in
B∗, Bhor, and their corresponding boxes in B′.

For the medium items we invoke again Lemma 2.11 and we place Bmed on top of the
containers in B which increases the height of the packing only by 2εOPT.

Finally, we use NFDH again to pack the small items into their corresponding containers
in B′, which we denote by B′

small, and Bsmall. We need Bsmall due to inaccuracies of NFDH
and of our guesses of the container sizes.

▶ Lemma 3.7. In time nO(1) we can compute a placement for all items in Ismall in B′
small

and Bsmall.

▶ Theorem 3.8. There is a (3/2+ε)-approximation algorithm for the guillotine strip packing
problem with a running time of nOε(1).

4 Conclusion and Open problems

We were able to show essentially tight approximation algorithms for GSP in both the
polynomial and the pseudo-polynomial settings. This was possible due to the structure of
the respective optimal packings since they are guillotine separable. However, it is unclear
how to obtain such a structured packing in the general case of SP, and the question remains
to close the gap between the best approximation guarantee of (5/3 + ε) and the lower bound
of 3/2. Another interesting open problem related to guillotine cuts is to find out whether
there exists a PTAS for the 2D guillotine geometric knapsack (2GGK) problem.
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Abstract
The Weisfeiler–Leman (WL) algorithm is a combinatorial procedure that computes colorings on
graphs, which can often be used to detect their (non-)isomorphism. Particularly the 1- and 2-
dimensional versions 1-WL and 2-WL have received much attentionattention, due to their numerous
links to other areas of computer science.

Knowing the expressive power of a certain dimension of the algorithm usually amounts to
understanding the computed colorings. An increase in the dimension leads to finer computed
colorings and, thus, more graphs can be distinguished. For example, on the class of planar graphs,
3-WL solves the isomorphism problem. However, the expressive power of 2-WL on the class is poorly
understood (and, in particular, it may even well be that it decides isomorphism).

In this paper, we investigate the colorings computed by 2-WL on planar graphs. Towards this
end, we analyze the graphs induced by edge color classes in the graph. Based on the obtained
classification, we show that for every 3-connected planar graph, it holds that: a) after coloring all
pairs with their 2-WL color, the graph has fixing number 1 with respect to 1-WL, or b) there is a
2-WL-definable matching that can be used to transform the graph into a smaller one, or c) 2-WL
detects a connected subgraph that is essentially the graph of a Platonic or Archimedean solid, a
prism, a cycle, or a bipartite graph K2,ℓ. In particular, the graphs from case (a) are identified by
2-WL.
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1 Introduction

The Weisfeiler–Leman (WL) algorithm [41] is a combinatorial procedure that given a graph G,
computes a coloring on G which respects (and sometimes also detects) the symmetries in the
graph. Its most prominent application is in theoretical [6, 8, 31] and practical approaches
[2, 10, 30, 35, 36] to the graph isomorphism problem. The original algorithm by Weisfeiler
and Leman is the 2-dimensional version and it colors pairs of vertices. Its generalization
yields for every natural number k the k-dimensional WL algorithm k-WL, which iteratively
refines a coloring of vertex k-tuples by aggregating local structural information encoded
in the colors. Its final output is a coloring that is stable with respect to the criterion for
partitioning the color classes, and graphs with different final colorings are never isomorphic.

Over the decades, fascination for the algorithm has persisted. This is to a large extent
due to the discovery of numerous connections to other areas in computer science that are
still being explored. For example, the algorithm has close links to linear and semidefinite
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programming [4, 5, 25], homomorphism counting [11, 12], and machine learning [1, 21, 37,
39, 43]. Its expressive power can be characterized via winning strategies for the players
in a particular type of Ehrenfeucht-Fraïssé game [8, 27]. Moreover, it is known that two
graphs receive different final colorings with respect to k-WL if and only if the graphs can be
distinguished via a formula in the counting-logic fragment Ck+1 [8, 29].

In this work, we focus on the original version 2-WL, as introduced by Weisfeiler and
Leman [41]. Besides the connections outlined for k-WL above, 2-WL has a precise corre-
spondence to coherent configurations (see, e.g., [9]). Despite the simple and very natural
concept behind the algorithm, its behavior is not well-understood and there is an extensive
line of study to capture its expressive power. For example, one branch of research aims at
understanding which graph properties can be detected by 2-WL. In this direction, Fürer
[16] as well as Arvind et al. and Fuhlbrück et al. [3, 15] obtained insights concerning the
ability of 2-WL to detect and count small subgraphs. Furthermore, the algorithm is able to
detect 2-separators in graphs and implicitly computes the decomposition of a graph into its
3-connected components [32].

A related line of research analyzes which graphs are identified by 2-WL, i.e., on which
graphs 2-WL serves as a complete isomorphism test. Positive examples include interval
graphs [13] and distance-hereditary graphs [17] as well as almost all regular graphs [7]. In
the light of the upper bound of 3 on the dimension of the algorithm needed to identify all
planar graphs [34], there is hope that the class of planar graphs can eventually be added to
the list. Towards a complete characterization of the expressive power of 2-WL, Fuhlbrück,
Köbler, and Verbitsky [14] developed an algorithmic characterization of the graphs of color
class size at most 4 that are identified by 2-WL.

Our Contribution. In this work, we investigate 2-WL on planar graphs. We are interested
in analyzing the stable output coloring computed by 2-WL and deducing symmetries and
other properties of the input graph from properties of the coloring.

As a starting point, we precisely characterize the planar graphs in which all edges receive
the same color with respect to 2-WL. Since the coloring that 2-WL computes is preserved
by automorphisms, edge-transitive planar graphs clearly fall into this category. As our first
main result, we prove the converse of this statement: every planar graph in which all edges
receive the same color with respect to 2-WL is edge-transitive. To show the implication, we
reprove the classification of edge-transitive planar graphs (see, e.g., [26]) building solely on
the 2-WL coloring.

Using the classification, we continue to analyze the WL coloring on general planar graphs.
Since, by [32], the algorithm 2-WL implicitly computes the graph decomposition into 3-
connected components, understanding 2-WL on planar graphs essentially amounts to a study
of 3-connected planar graphs. Here, we can exploit a theorem due to Whitney [42], which
says that all embeddings of a 3-connected planar graph are combinatorially equivalent.

Our focus lies on the following three tasks: (i) classify the subgraphs induced by edges of
the same 2-WL color that can occur, (ii) analyze how these subgraphs interleave, and (iii)
establish connections to properties of the entire graph G.

Let G be a 3-connected planar graph and let CE(G) denote the set of 2-WL colors that
correspond to edges of G. For every c ∈ CE(G), denote by G[c] the subgraph induced by all
edges of 2-WL color c. To describe our results, it turns out to be useful to partition edge
colors into three types depending on the number of faces per connected component of G[c].
We say that c has Type I if every connected component of G[c] has one face, Type II if every
connected component of G[c] has two faces, and Type III if every connected component of
G[c] has at least three faces. (By the properties of 2-WL, these types indeed cover all cases
that can occur.)
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First, we analyze the graphs induced by edge colors c of Type III. It is not hard to see
that every edge in such a graph G[c] receives the same 2-WL color (when applying 2-WL
to G[c]), and thus, by our classification, G[c] is edge-transitive. However, it turns out that
much stronger statements are possible, since, in the end, many edge-transitive planar graphs
cannot appear as a graph G[c]. For example, we show that G[c] is always connected. As
our central result for colors of Type III, we obtain a precise classification of the possible
graphs G[c]. An interesting consequence of this classification is that the automorphism group
Aut(G) of G is always isomorphic to a subgroup of Aut(G[c]). More precisely, we show that
fixing the images of all vertices of G[c] uniquely determines the image of every vertex of G

under any automorphism of G. Hence, by only looking at the subgraph induced by a single
edge color of Type III, we obtain strong insights about the symmetries of the entire graph.

On the other side of the spectrum, we prove that if all edge colors are of Type I, then G

has fixing number at most 1, where the fixing number is the minimum number of vertices
that need to be fixed pointwise so that the identity mapping is the only automorphism of G.
It is known that 3-connected planar graphs have fixing number at most 3, and there is a
complete characterization of those graphs of fixing number exactly 3 [34]. In our analysis
of 3-connected planar graphs G in which all edge colors are of Type I, we only use 1-WL
to prove that G has no non-trivial automorphisms after fixing a certain single vertex. This
implies that 2-WL identifies all such graphs.

If neither of the above cases applies, then there is an edge color of Type II. Let us first
remark that the graphs of many Archimedean solids fall into this category (while the edge
colors in the graph of all Platonic solids are of Type III). In such a situation, the graph of the
Archimedean solid is defined by edge colors c, d where one of the two colors has Type II. With
this in mind, towards solving task (ii), we analyze how edge colors of Type II interleave with
other edge colors. More precisely, similarly as for Type III, we aim at identifying a connected
subgraph defined by two colors c, d ∈ CE(G), where c has Type II, that corresponds to one of
the Archimedean solids, or stems from a small number of infinite graph families. We remark
that, similar to the case of edge colors of Type III, if we have such a subgraph G[c, d], then
Aut(G) is isomorphic to a subgroup of Aut(G[c, d]).

We show that either this goal can be achieved, or G has fixing number 1 or there is a
WL-definable matching. Such a matching is given by an edge color c such that G[c] is a
matching graph (i.e., every vertex has degree 1) and the endpoints of every edge receive
different colors. Such matchings also play a crucial role in the analysis of 2-WL on graphs of
color class size 4 [14], and contracting all matching edges preserves many crucial properties
related to WL such as the stable coloring, identifiability by WL, as well as the automorphism
group of G. As a result, finding a WL-definable matching is beneficial since we can proceed
to a smaller graph without affecting the problem at hand.

Towards the WL Dimension of Planar Graphs. The WL dimension of a graph class C is
the minimal k such that k-WL identifies every graph from C, i.e., k-WL serves as a complete
isomorphism test for the class C. Many classes of graphs are known to have a finite WL
dimension, for example, interval graphs [13], graphs of bounded rank-width [24] as well as
graphs of bounded genus [22] and, more generally, all graph classes that exclude a fixed
graph as a minor [19, 20].

For planar graphs, the quest for bounds on their WL dimension was initiated by Immerman
already over three decades ago [28]. In a first step, Grohe [18] proved that the dimension
is finite. Analyzing Grohe’s proof in detail, Redies [38] showed an upper bound of 14 on
the WL dimension of planar graphs. This was further improved in [34], where it is shown
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C4

C1C2

C3

Figure 1 The visualization shows a 3-connected planar graph G and an edge color c ∈ CE(G)
(shown in black) such that G[c] is isomorphic to K4. Also, C1, C2, C3, C4 are the vertex sets of the
connected components of G − V (G[c]). Using regularity constraints specific to the case G[c] ∼= K4,
one can show that the graphs induced by the Ci are all indistinguishable by 2-WL. More strongly,
it actually holds for all i, j ∈ [4], v ∈ N(Ci) and w ∈ N(Cj) that {{χ(v, v′) | v′ ∈ N(v) ∩ Ci}} =
{{χG(w, w′) | w′ ∈ N(w) ∩ Cj}}, where χ denotes the 2-WL coloring. (In the picture, this multiset
contains one green edge, i.e., every v ∈ V (G[c]) has exactly one neighbor via a green edge in each
adjacent Ci.)

that already 3-WL identifies all planar graphs, thus narrowing down the WL dimension of
planar graphs to 2 or 3. Moreover, it was recently shown that a constant dimension of the
WL algorithm suffices to identify all planar graphs in a logarithmic number of refinement
rounds [23], extending previous results for 3-connected planar graphs [40]. Still, the task to
determine the precise WL-dimension of the class of planar graphs remains open. A central
motivation for our work is to find out whether 2-WL identifies every planar graph.

Our results suggest an inductive approach to this question. Indeed, building on the
fact that 2-WL is able to detect the decomposition into 3-connected components [32], we
can restrict our attention to 3-connected graphs. Given a 3-connected planar graph G, by
combining the results described above, we always obtain that G has one of the following:
(A) fixing number 1 under 1-WL, i.e., individualizing a single vertex and performing 1-WL

(after coloring all pairs with their 2-WL color) results in a discrete coloring,
(B) a WL-definable matching, or
(C) a connected subgraph induced by at most two edge colors that corresponds to a Platonic

or Archimedean solid or stems from a small number of infinite graph families.
In Case A, the graph G is identified by 2-WL. In Case B, we can follow the strategy outlined
in [14] and move to a smaller graph by contracting the definable matching. Therefore,
determining the WL dimension of the class of planar graphs boils down to defeating Case C.
In this case, we obtain a connected subgraph H that is defined by at most two edge colors
c and d and which we can classify precisely. Let C1, . . . , Cs denote the vertex sets of the
connected components of G − V (H), the graph G with the vertices in H removed (see also
Figure 1). Also, let G′ be a second graph that cannot be distinguished from G by 2-WL. Let
H ′ denote the subgraph of G′ induced by c and d and let C ′

1, . . . , C ′
s denote the vertex sets

of the connected components of G′ − V (H ′). Presupposing by induction that the statement
holds for smaller graphs, we may assume that 2-WL identifies the subgraphs induced by
C1, . . . , Cs. This implies that G[Ci] is isomorphic to G′[C ′

i] for all i ∈ [s] (possibly after
reordering the sets C ′

1, . . . , C ′
s). It is not hard to see that 2-WL identifies H and, thus, H is

isomorphic to H ′. Now, ideally, we want to glue all these partial isomorphisms together to
obtain a global isomorphism from G to G′. Towards this end, it is our intuition that the
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options for the interplay between H and the sets Ci are extremely limited due to G being
planar and H being defined by few edge colors, which enforces strong regularity conditions
on the interaction between H and the surrounding graph. A formalization of such a strategy
for all subcases that can appear in Case C should yield that 2-WL identifies every planar
graph.

2 Preliminaries

Graphs. An (undirected) graph is a pair G = (V (G), E(G)) of a finite vertex set V (G) and
an edge set E(G) ⊆

{
{u, v}

∣∣ u ̸= v ∈ V (G)
}

. Unless stated explicitly otherwise, graphs are
undirected. For a directed graph G′, we write undir(G′) to denote its undirected version.
For v, w ∈ V (G), we also write vw as a shorthand for {v, w}. The neighborhood of v in
G is denoted by NG(v) and the degree of v in G is degG(v) := |NG(v)|. If the graph G is
clear from the context, we usually omit the index and simply write N(v) and deg(v). For
W ⊆ V (G), we also define N(W ) :=

(⋃
v∈W N(v)

)
\ W . We denote by G[W ] the induced

subgraph of G on the vertex set W , and define G − W := G[V (G) \ W ]. A set S ⊆ V (G) is a
separator of G if G − S has more connected components than G. A k-separator of G is a
separator of G of size k. The graph G is k-connected if it is connected and has no separator
of size at most k − 1.

In our definitions of vertex sets of graphs, we use the notation ⊎ to denote a formal
disjoint union. More precisely, for sets V and W , the set V ⊎ W contains |V | + |W | vertices,
one distinct copy of each vertex in V and one distinct copy of each vertex in W . (For ease of
notation, we refer to the vertices by their original names in V and W instead of renaming
them first.)

A vertex-colored graph is a tuple (G, λ) where G is a graph and λ : V (G) → C is a vertex
coloring, a mapping from V (G) into some set C of colors. We define the set of arcs of a
graph G as A(G) := {(v, v) | v ∈ V (G)} ∪ {(v, w) | {v, w} ∈ E(G)}. Observe that for each
vw ∈ E(G), there are the two arcs (v, w), (w, v). An arc-colored graph is a tuple (G, λ),
where G is a graph and λ : A(G) → C is a mapping from A(G) into some set C of colors.
Similarly, a pair-colored graph is a tuple (G, λ), where G is a graph and λ : (V (G))2 → C is
a mapping into some set of colors C.

Typically, the set C is chosen to be an initial segment [n] of the natural numbers. We
say a coloring λ is discrete if it is injective, i.e., all color classes have size 1. Finally, for a
coloring λ and distinct vertices v1, . . . , vℓ, we denote by (G, λ, v1, . . . , vℓ) the colored graph
where each vi for i ∈ [ℓ] is individualized. To be more precise, if λ is a vertex coloring, then
(G, λ, v1, . . . , vℓ) := (G, λ̃) where λ̃(vi) = (1, i) for all i ∈ [ℓ], and λ̃(v) = (0, λ(v)) for all
v ∈ V (G)\{v1, . . . , vℓ}. The definitions for arc and pair colorings are analogous. We generally
assume that all graphs are arc-colored even if not explicitly stated. Every (uncolored) graph
can be interpreted as an arc-colored graph by assigning to every diagonal arc (v, v) the color
1 and assigning to every non-diagonal arc the color 2.

A graph is called planar if it can be embedded into the plane R2. A plane graph is a
graph embedded into the plane. As the following statement shows, all plane realizations of a
planar graph have the same number of faces, i.e., regions bounded by edges.

▶ Theorem 1 (Euler’s formula). Let G be a connected plane graph with n vertices, m edges,
and f faces. Then n − m + f = 2.

We will also fall back on the following famous theorem due to Whitney.
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▶ Theorem 2 (Whitney’s theorem [42]). Up to homeomorphism, a 3-connected planar graph
has a unique embedding into the plane.

The theorem allows us to speak about faces of 3-connected planar graphs as abstract
objects, since it implies that in a 3-connected planar graphs, the set of faces does not depend
on a specific embedding and thus, the faces can be viewed as combinatorial objects associated
with G and are uniquely defined by their sets of vertices V (F ) and the edges E(F ) bounding
F . We will therefore not draw a clear distinction between this combinatorial view and the
topological view of F as a region and just use whichever is most suitable for our purpose.

The Weisfeiler–Leman Algorithm. Let χ1, χ2 : (V (G))k → C be colorings of the k-tuples
of vertices of a graph G. We say χ1 refines χ2, denoted χ1 ⪯ χ2, if χ1(v̄) = χ1(w̄) implies
χ2(v̄) = χ2(w̄) for all v̄, w̄ ∈ (V (G))k. The colorings χ1 and χ2 are equivalent, denoted
χ1 ≡ χ2, if χ1 ⪯ χ2 and χ2 ⪯ χ1.

Given a graph G, the algorithm 1-WL iteratively computes an isomorphism-invariant
coloring of the vertices of G. In this work, we actually require an extension of 1-WL, which
also takes arc colors into account. For an arc-colored graph (G, λ), we define the initial
coloring computed by the algorithm via χ1

0[G](v) := λ(v, v) for all v ∈ V (G). This coloring is
refined via χ1

i+1[G](v) := (χ1
i[G](v), Mi(v)), where Mi(v) is a multiset defined as

Mi(v) :=
{{(

χ1
i[G](w), λ(v, w), λ(w, v)

) ∣∣∣ w ∈ NG(v)
}}

.

By definition, χ1
i+1[G] ⪯ χ1

i[G] holds for all i ≥ 0. Hence, there is a minimal value i∞ such
that χ1

i∞
[G] ≡ χ1

i∞+1[G]. We call χ1
i∞

[G] the stable coloring of G and denote it by χ1
WL[G].

The algorithm 1-WL takes an arc-colored graph (G, λ) as input and returns χ1
WL[G].

We can also apply 1-WL to a pair-colored graph (G, λ). This can be done by defining
λ̃(v1, v2) := (1, λ(v1, v2)) for all v1, v2 ∈ V (G) with v1v2 ∈ E(G), and λ̃(v1, v2) := (0, λ(v1, v2))
for all v1, v2 ∈ V (G) with v1v2 /∈ E(G). Then we define χ1

WL[G, λ] := χ1
WL[H, λ̃] where H is a

complete graph on vertex set V (G).
Next, we describe the k-dimensional Weisfeiler–Leman algorithm (k-WL) for k ≥ 2. For

an input graph G, let χk
0[G] : (V (G))k → C be the coloring where each tuple is colored

with the isomorphism type of its underlying ordered subgraph. vi = vj ⇔ v′
i = v′

j and
vivj ∈ E(G) ⇔ v′

iv
′
j ∈ E(G). If the graph comes equipped with a coloring, the initial coloring

χk
0[G] also takes the input coloring into account. More formally, for an arc coloring λ, for

χk
0[G](v1, . . . , vk) = χk

0[G](v′
1, . . . , v′

k) to hold, we have the additional conditions λ(vi, vj) =
λ(v′

i, v′
j) for all i, j ∈ [k] with (vi, vj) ∈ A(G). For a pair coloring λ, we have the additional

conditions λ(vi, vj) = λ(v′
i, v′

j) for all i, j ∈ [k].
We then recursively define the coloring χk

i[G] obtained after i rounds of the algorithm.
For v̄ = (v1, . . . , vk) ∈ (V (G))k, let χk

i+1[G](v̄) :=
(
χk

i[G](v̄), Mi(v̄)
)
, where

Mi(v̄) :=
{{(

χk
i[G](v̄[w/1]), . . . , χk

i[G](v̄[w/k])
) ∣∣∣ w ∈ V (G)

}}
and v̄[w/i] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from substituting the i-th
entry of v̄ with w. Again, there is a minimal i∞ such that χk

i∞
[G] ≡ χk

i∞+1[G], and we set
χk

WL[G] := χk
i∞

[G].
The algorithm k-WL takes a (pair- or arc-)colored graph G as input and returns χk

WL[G].
Given graphs G and H , the algorithm distinguishes G and H if {{χk

WL[G](v̄) | v̄ ∈ (V (G))k}} ̸=
{{χk

WL[H](w̄) | w̄ ∈ (V (H))k}}. Also, k-WL identifies G if it distinguishes G from every other
non-isomorphic graph.
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▶ Definition 3. Let G be a graph and let k ≥ 2. Then k-WL determines arc orbits on
G if for every (v1, v2) ∈ A(G), every graph H, and every (w1, w2) ∈ A(H) such that
χk

WL[G](v1, v2, . . . , v2) = χk
WL[H](w1, w2, . . . , w2), there is an isomorphism φ : G ∼= H such

that φ(vi) = wi holds for both i ∈ {1, 2}.
Moreover, k-WL determines pair orbits of G if for all v1, v2 ∈ V (G), every graph H,

and all w1, w2 ∈ V (H) such that χk
WL[G](v1, v2, . . . , v2) = χk

WL[H ](w1, w2, . . . , w2), there is an
isomorphism φ : G ∼= H such that φ(vi) = wi holds for both i ∈ {1, 2}.

Observe that if k-WL determines arc or pair orbits of G, then it identifies G. Indeed, if
for a second graph H, there is no isomorphism from G to H, the multisets of χk

WL-colors in
the two graphs must be disjoint by Definition 3.

3 Edge-Transitive Planar Graphs

In this section, we classify planar graphs where all edges receive the same color with respect
to 2-WL. We call an undirected graph G edge-transitive if for all uv, u′v′ ∈ E(G), there is
an automorphism φ : V (G) → V (G) with φ(u) = u′ and φ(v) = v′. It is well-known that
there are only nine edge-transitive connected planar graphs of minimum degree 3 [26]. Based
on this result, one can easily classify all edge-transitive planar graphs. Clearly, all of these
graphs have the property that all edges receive the same color with respect to 2-WL. In this
section, we show the converse of this statement, i.e., every planar graph in which all edges
receive the same color with respect to 2-WL is edge-transitive. Towards this goal, we reprove
the classification from [26] relying only on 2-WL colors. More precisely, the main result in
this section is the following theorem (see also Figure 2). Since 2-WL colors directed pairs and
it may happen that a pair (u, v) receives a different color than (v, u), it is more convenient to
consider directed graphs and demand that all directed edges receive the same color (rather
than saying the pair of colors for both orientations is the same for all undirected edges).

▶ Theorem 4. Let G be a connected planar (directed or undirected) graph of minimum degree
at least 3 such that χ2

WL[G](v1, w1) = χ2
WL[G](v2, w2) for all (v1, w1), (v2, w2) ∈ E(G). Then

one of the following holds:
(A) G is isomorphic to a tetrahedron (Figure 2a), a cube (Figure 2b), a dodecahedron (Figure

2d), or an icosahedron (Figure 2e),
(B) the undirected version undir(G) is isomorphic to an octahedron (Figure 2c), a cubocta-

hedron (Figure 2f), or an icosidodecahedron (Figure 2g), or
(C) the undirected version undir(G) is isomorphic to a cube (Figure 2h), a rhombic dodeca-

hedron (Figure 2i), or a rhombic triacontahedron (Figure 2j).

Note that the classification includes the graphs of all Platonic solids. To prove the
theorem, we distinguish two cases. Let χ := χ2

WL[G] and let CV (G, χ) := {χ(v, v) | v ∈ V (G)}
denote the set of vertex colors. Since χ(u, u) = χ(u′, u′) and χ(v, v) = χ(v′, v′) whenever
χ(u, v) = χ(u′, v′), we conclude that 1 ≤ |CV (G, χ)| ≤ 2. First suppose |CV (G, χ)| = 1.
Then undir(G) is d-regular for some d ≥ 3. Since G is planar, d ≤ 5 and thus, d ∈ {3, 4, 5}.
A deep analysis of these three cases leads to the graphs listed in Parts A and B. Let us
remark at this point that obtaining such a classification is much more challenging than for
edge-transitive graphs. Indeed, the proofs for edge-transitive graphs highly exploit that
the multiset of sizes of faces incident to an edge (and a vertex, respectively) is always the
same. However, we cannot immediately deduce information about the size of faces from
considering WL-colors and hence, we cannot directly rely on this type of argument. Instead,
our arguments exploit the fact that 2-WL can detect 2-separators [32] as well as the existence
of certain short cycles [15].
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(a) Tetrahedron. (b) Cube. (c) Octahedron. (d) Dodecahedron.

(e) Icosahedron. (f) Cuboctahedron. (g) Icosidodecahedron.

(h) Bicolored cube. (i) Rhombic dodecahedron. (j) Rhombic triacontahedron.

Figure 2 All edge-transitive connected planar graphs of minimum degree 3.

Also, note that the graphs listed in Part A are always undirected since d is odd. On the
other hand, every graph listed in Part B also has at least one directed version that is also
edge-transitive (we refer the reader to the full version [33] for details).

Finally, for the case |CV (G, χ)| = 2, it is possible to perform a reduction to the first case
by defining an auxiliary graph on one of the two vertex-color classes. This results in the
graphs listed in Part C. Here, it is notable that the cube appears for a second time because
it is bipartite and directing all edges from one bipartition class to the other one also leads to
an edge-transitive graph.

In Theorem 4, we restrict ourselves to graphs that are connected and have minimum
degree at least 3. Both of these restrictions can easily be lifted as follows. Let us first
consider the restriction on the degree and let G be a connected planar graph such that
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χ2
WL[G](v1, w1) = χ2

WL[G](v2, w2) holds for all (v1, w1), (v2, w2) ∈ E(G). If G has maximum
degree 2 or contains a vertex of degree at most 1, then it is easy to see that G is either a
cycle or isomorphic to a star K1,h for some h ≥ 0 (h = 0 covers the special case that G

consists of a single vertex).

▶ Definition 5. Let H be a graph and s ≥ 1. The s-subdivision of H is the graph H(s)

obtained from H by replacing each edge with s parallel paths of length 2. Formally, H(s) is
the graph with vertex set V (H(s)) := V (H) ⊎ (E(H) × [s]) and edge set

E(H(s)) :=
{

v(e, i)
∣∣∣ e ∈ E(H), v ∈ e, i ∈ [s]

}
.

In the remaining case, G has maximum degree at least 3 and minimum degree 2. Then it
is easy to see that G is one of the graphs from Theorem 4, or an s-subdivision of one of the
graphs from Parts A and B for some s ≥ 1, a cycle Cℓ for some ℓ ≥ 3, or the complete graph
on two vertices K2.

Finally, if G is not connected, then it is isomorphic to the disjoint union of ℓ copies of
one of its connected components for some ℓ ≥ 2, because all graphs listed above can be
distinguished from each other by 2-WL. Actually, it can be checked that all of the graphs
are even identified by 2-WL. Overall, this gives the following corollary.

▶ Corollary 6. Let G be a directed planar graph such that {{χ2
WL[G](v, w), χ2

WL[G](w, v)}} =
{{χ2

WL[G](v′, w′), χ2
WL[G](w′, v′)}} holds for all (v, w), (v′, w′) ∈ E(G). Then 2-WL determines

arc orbits on G. In particular, G is edge-transitive.

4 Graphs Induced by a Single Edge Color

After considering planar graphs with a single edge color with respect to 2-WL, we now
wish to analyze the 2-WL coloring of arbitrary planar graphs. Since, by [32], the algorithm
2-WL implicitly computes the decomposition of a graph into 3-connected components1,
understanding 2-WL on planar graphs essentially amounts to a study of 3-connected planar
graphs. Hence, we restrict our attention to those.

4.1 Edge Types
Let G be a 3-connected planar graph and set χ := χ2

WL[G]. To analyze the coloring χ, we
focus on subgraphs induced by a single edge color. Towards this end, let CV := CV (G, χ) =
{χ(v, v) | v ∈ V (G)} denote the set of vertex colors. Similarly, let CE := CE(G, χ) =
{χ(v, w) | vw ∈ E(G)} be the set of edge colors. For C ⊆ CE , we define the graph G[C] with

V (G[C]) := {v1, v2 | χ(v1, v2) ∈ C} and E(G[C]) := {v1v2 | χ(v1, v2) ∈ C}.

In case C = {c1, . . . , cℓ}, we also write G[c1, . . . , cℓ] instead of G[{c1, . . . , cℓ}]. Observe that
G[C] is defined as an undirected graph. However, it may be that χ(v1, v2) ̸= χ(v2, v1) holds
for some v1v2 ∈ E(G). Since this information turns out to be relevant in some cases, we
always assume that G[C] is equipped with an arc coloring where colors are inherited from χ.

As indicated, we are particularly interested in the case C = {c} for a single color c.
Observe that the ends of c-colored edges have the same vertex color, i.e., if χ(v1, w1) =
χ(v2, w2) = c, then χ(v1, v1) = χ(v2, v2) and χ(w1, w1) = χ(w2, w2). This implies that
1 ≤ |CV (G[c], χ)| ≤ 2. We say that G[c] is unicolored if |CV (G[c], χ)| = 1. Otherwise, we say
that G[c] is bicolored.

1 For the formal and quite technical definition of this notion, we refer to [32].
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To analyze 2-WL on 3-connected planar graphs, we consider the graphs G[c] for suitable
edge colors c ∈ CE . Towards this end, it turns out to be useful to group the graphs G[c]
according to the number of faces of each connected component of G[c]. Note that 2-WL
detects connected components of graphs. More precisely, it holds that

all connected components in G[c] have the same size because 2-WL detects, for every
w ∈ V (G[c]), the set of vertices reachable in the arc-colored graph (G, χ) from w via
edges uv of color c (i.e., χ(u, v) = c or χ(v, u) = c), and
all connected components in G[c] have the same multiset of vertex degrees in G[c] since
otherwise the vertex colors and, thus, also the arc colors would be different.

In combination, all connected components of G[c] have the same number of vertices and
edges and hence, by Euler’s formula, they also have the same number of faces. We distinguish
between three types in CE .

Type I. For the first category, we consider those graphs G[c] that have only one face. To
be more precise, we say that c ∈ CE has Type I if (G[c])[A] has a single face for every vertex
set A of a connected component of G[c]. It is not difficult to see that G[c] is isomorphic to a
disjoint union of stars K1,h for h ∈ [n].

Type II. For the second category, we consider those graphs G[c] where every connected
component has exactly two faces. Formally, we say that c ∈ CE has Type II if (G[c])[A] has
exactly two faces for every vertex set A of a connected component of G[c]. In this case, G[c]
is a disjoint union of cycles of the same length. Also, it is not difficult to see that every
connected component of G[c] is either a directed cycle (i.e., χ(v1, v2) ̸= χ(v2, v1) holds for
every edge v1v2 ∈ E(G[c])), or an undirected cycle in which all vertices have the same color
with respect to 2-WL, or an undirected cycle with two vertex colors that alternate along the
cycle.

Type III. Finally, for the last category, we consider those graphs G[c] where each connected
component has at least three faces. Again, to be precise, we say that c ∈ CE has Type III if
(G[c])[A] has at least three faces for every vertex set A of a connected component of G[c].

Also, we define the type of an edge v1v2 ∈ E(G) as the type of its color χ(v1, v2) (note
that the type of χ(v1, v2) is equal to the type of χ(v2, v1)).

In the following, we derive several properties of the graphs G[c] depending on the type
of c, as well as properties of G depending on which types of edge colors occur. Towards this
end, we also define the type of G as the maximal type of any edge color c ∈ CE . So we say
that G has Type III if there is some c ∈ CE of Type III. The graph G has Type II if there is
some c ∈ CE of Type II, but there is no c′ ∈ CE of Type III. Lastly, G has Type I if every
c ∈ CE has Type I. Two example graphs are displayed in Figure 3.

4.2 Graphs of Fixing Number One
We start by investigating 3-connected planar graphs of Type I (see Figure 3a for an example).
It turns out that such graphs have fixing number 1 with respect to 1-WL (after coloring all
edges with their 2-WL colors), which in particular implies that 2-WL identifies all graphs of
Type I. The proof is based on the following result.

▶ Theorem 7 ([34, Lemma 23]). Let G be a 3-connected planar graph and suppose v1, v2, v3 ∈
V (G) are pairwise distinct vertices lying on a common face of G. Then χ1

WL[G, v1, v2, v3] is
discrete.
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(a) A graph G of Type I. Each edge color c ∈ CE

defines a graph G[c] that is isomorphic to a disjoint
union of stars. Individualizing an arbitrary blue
vertex and performing 1-WL results in a discrete
coloring. Hence, the graph is identified by 2-WL.

(b) A graph G of Type III. The edge colors black
and green have Type III, yellow has Type II, and
pink has Type I. Note that G[c] is connected for
every edge color c of Type III whereas the other
edge colors induce non-connected subgraphs.

Figure 3 Two 3-connected planar graphs where all vertices and edges are colored by their 2-WL
color. For visualization purposes, we only color edges and do not distinguish between potentially
different colors of two arcs (v, w) and (w, v).

Here, χ1
WL[G, v1, v2, v3] denotes the coloring computed by 1-WL after individualizing v1, v2,

and v3. For a vertex coloring λ : V → C and v ∈ V , we define [v]λ := {w ∈ V | λ(v) = λ(w)}
as the color class of v and Singles(λ) := {v ∈ V | |[v]λ| = 1}. For a graph G and vertices
v1, . . . , vℓ ∈ V (G), we define

SinglesG(v1, . . . , vℓ) := Singles(χ1
WL[G, χ2

WL[G], v1, . . . , vℓ]).

In other words, SinglesG(v1, . . . , vℓ) is the set of all vertices appearing in a singleton color
class after performing 1-WL on G where every pair is colored with its 2-WL-color, and where
v1, . . . , vℓ are individualized.

▶ Lemma 8. Let G be a graph and let v1, . . . , vℓ ∈ V (G) such that SinglesG(v1, . . . , vℓ) =
V (G). Also define k := max{2, ℓ + 1}. Then k-WL determines pair orbits in G.

The following lemma provides a sufficient condition for a 3-connected planar graph to
have fixing number 1.

▶ Lemma 9. Let G be a 3-connected planar graph and suppose there is a face F such that every
edge e ∈ E(F ) has Type I. Then there is a vertex v ∈ V (G) such that SinglesG(v) = V (G).

Proof. Let H be a directed graph with vertex set V (H) := V (G) and edge set

E(H) := {(v, w) | vw ∈ E(G) ∧ degG[χ2
WL[G](v,w)](v) = 1}.

Intuitively speaking, we add a directed edge (v, w) to the graph H if w is the only neighbor
of v reachable via an edge of color χ2

WL[G](v, w). In particular, if v is individualized, then w

is also fixed after performing 1-WL.
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For every edge vw ∈ E(G) of Type I, it holds that (v, w) ∈ E(H) or (w, v) ∈ E(H). Hence,
there are three vertices v1, v2, v3 ∈ V (G) lying on the face F of G such that (v1, v2), (v2, v3) ∈
E(H) or (v1, v2), (v1, v3) ∈ E(H).

Now consider the coloring λ := χ1
WL[G, χ2

WL[G], v1]. Let c := χ2
WL[G](v1, v2). By definition

of the edge set of H , it holds that v2 is the only neighbor of v1 which is adjacent via an edge
of color c. Hence, |[v2]λ| = 1. By the same argument, |[v3]λ| = 1. Since v1, v2, v3 all lie on the
face F , it follows from Theorem 7 that λ is discrete. In other words, SinglesG(v1) = V (G). ◀

▶ Corollary 10. Let G be a 3-connected planar graph of Type I. Then there is a vertex
v ∈ V (G) such that SinglesG(v) = V (G). In particular, 2-WL determines pair orbits of G.

We also record the following useful lemma, which is another consequence of Theorem 7.

▶ Lemma 11. Let G be a 3-connected planar graph. Suppose v1, . . . , vℓ ∈ V (G) form a cycle
in G, i.e., v1vℓ ∈ E(G) and vivi+1 ∈ E(G) holds for all i ∈ [ℓ−1]. Let w ∈ V (G)\{v1, . . . , vℓ}.
Then SinglesG(v1, . . . , vℓ, w) = V (G).

The lemma says that in a 3-connected planar graph G, it suffices to fix a cycle and one
additional vertex in order to fix the entire graph. For example, this allows us to extract from
the presence of certain 2-WL-detectable subgraphs bounds on the fixing number of the entire
3-connected planar graph G. Note that in the case that the fixing number in the subgraph is
1, Lemma 8 yields that 2-WL determines pair orbits in G.

4.3 Three Faces
We now turn to edge colors of Types II and III. For both types, it is not difficult to see that
it is impossible to bound the fixing number by 1 in general. Instead, our focus here lies on
investigating how edge colors of the corresponding type can appear within a 3-connected
planar graph.

We first focus on edge colors of Type III (see Figure 3b for an example). Let G be
a 3-connected planar graph and let c ∈ CE(G, χ) be an edge color of Type III, where
χ := χ2

WL[G]. By Corollary 6, the graph G[c] is edge-transitive, which already puts severe
restrictions on G[c]. However, as it turns out, due to the planarity and 3-connectedness of G,
many edge-transitive graphs can in fact not appear as subgraphs G[c]. In the following, we
classify the graphs G[c] induced by an edge color c of Type III. The following lemma is a
useful tool for the proof of our classification in Theorem 13, but also an interesting insight
by itself, since it also yields restrictions on how different colors c, c′ of Type III can appear
together in one graph G.

▶ Lemma 12. Let G be a 3-connected planar graph and let c ∈ CE(G, χ2
WL[G]) be an edge

color of Type III. Then G[c] is connected. Moreover, for every edge color c′ ∈ CE(G, χ2
WL[G])

of Type III, it holds that V (G[c]) ∩ V (G[c′]) ̸= ∅.

Proof Idea. We focus on the first part of the lemma. The second part can be proved using
similar arguments. Let c ∈ CE(G, χ2

WL[G]) be an edge color of Type III and suppose for
simplicity that G[c] is unicolored. Also let A1, . . . , Aℓ denote the vertex sets of the connected
components of G[c] and suppose towards a contradiction that ℓ ≥ 2. Consider the auxiliary
graph H with vertex set V (H) := {A1, . . . , Aℓ} and edges AiAj whenever there is a path
from a vertex vi ∈ Ai to a vertex vj ∈ Aj that is internally disjoint from A1 ∪ · · · ∪ Aℓ. Note
that H is connected because G is connected. Also, we have χ2

WL[H ](Ai, Ai) = χ2
WL[H ](Aj , Aj)

for all i, j ∈ [ℓ], by exploiting known properties of 2-WL (see, e.g., [9, Theorem 3.1.11]). So
H is 2-connected with [32, Theorem 3.15].
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Now, consider the graph G−A1. Since H is 2-connected, all sets A2, . . . , Aℓ are contained
in the same connected component of G − A1. Let X denote the vertex set of this component.
We claim that NG(X) = A1. Note that NG(X) ̸= ∅ since G is connected. Let v ∈ NG(X)
and let w ∈ A1. Since G[c] is unicolored, we conclude that χ2

WL[G](v, v) = χ2
WL[G](w, w). Also,

since v ∈ NG(X), there is a path from v to another vertex v′ ∈ A2 ∪ · · ·∪ Aℓ that is internally
disjoint from A1 ∪ · · · ∪ Aℓ. Since this property can be detected by 2-WL, such a path also
exists starting in w. But this is only possible if w ∈ NG(X). So overall, NG(X) = A1.

By contracting the set X to a single vertex, we obtain that adding a universal vertex to
(G[c])[A1] still results in a planar graph. However, by Theorem 4, we have that (G[c])[A1] is
isomorphic to one of the graphs from Figure 2a – 2g. But this gives a contradiction since it
is not possible to add a universal vertex to any of those graphs while preserving planarity.
So ℓ = 1, which means that G[c] is connected. ◀

▶ Theorem 13. Let G be a 3-connected planar graph and let c ∈ CE(G, χ2
WL[G]) be of Type

III. Then one of the following holds.
1. G[c] is bicolored and isomorphic to K2,ℓ for some ℓ ≥ 3,
2. G[c] is bicolored and isomorphic to a 2-subdivision of a cycle Cℓ for some ℓ ≥ 3,
3. G[c] is bicolored and isomorphic to a graph from Fig. 2h – 2j,
4. G[c] is unicolored and isomorphic to a graph from Fig. 2a – 2g,
5. G[c] is bicolored and isomorphic to a 1-subdivision of a graph from Fig. 2a – 2g, or
6. G[c] is bicolored and isomorphic to a 2-subdivision of a graph from Fig. 2a – 2e.

Observe that this classification is optimal in the sense that every graph listed in the
theorem can actually appear as a graph G[c] for some edge color c within a 3-connected
planar graph. An easy way to see this is to take one of the graphs listed in the theorem,
embed this graph H in the plane, place a fresh vertex vF into every face F and connect it to
all vertices lying on F . The resulting graph G is 3-connected and planar, and H = G[c] for
some edge color c ∈ CE(G, χ2

WL[G]).
Also note that for a 3-connected planar graph G and an edge color c ∈ CE(G, χ2

WL[G])
of Type III, the automorphism group Aut(G) is isomorphic to a subgroup of Aut(G[c]).
Indeed, every automorphism γ ∈ Aut(G) naturally restricts to an automorphism γ|V (G[c]) of
G[c] since the coloring computed by 2-WL is invariant. This gives rise to a homomorphism
φ : Aut(G) → Aut(G[c]) : γ 7→ γ|V (G[c]). By Theorem 13 and Lemma 11, we obtain that
SinglesG(w1, . . . , wℓ) = V (G) where {w1, . . . , wℓ} = V (G[c]). This implies that the kernel of
φ is trivial, which implies that Aut(G) is isomorphic to a subgroup of Aut(G[c]).

5 Disjoint Unions of Cycles

In this section, we consider 3-connected planar graphs of Type II. Let G be a 3-connected
planar graph and let χ := χ2

WL[G] be the coloring computed by 2-WL. Suppose that G has
Type II, i.e., there is an edge color c ∈ CE(G, χ) of Type II, but there is no edge color of
Type III. As before, we wish to understand in which ways edge colors of Type II can occur
in G. More precisely, similarly to the case where G has Type III, our goal is to identify and
classify connected subgraphs defined by few edge colors. Towards this end, we define three
subcategories of edge colors of Type II. Let c ∈ CE(G, χ) be of Type II. If G[c] is unicolored
and {(v, w) | χ(v, w) = c} ≠ {(v, w) | χ(w, v) = c} (i.e., G[c] is a disjoint union of directed
cycles), then we say that c has Type IIc. If c does not have Type IIc, but G[c] is connected,
then we say that c has Type IIb. If c does not have Type IIc, and G[c] is not connected,
then we say that c has Type IIa.
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(a) A graph G of Type IIa where each edge color
has Type IIa. The black and green edges induce a
connected subgraph that is isomorphic to a parallel
subdivision of a truncated tetrahedron.

(b) A graph G of Type IIb. The color black has
Type IIb, yellow, violet and pink have Type IIa, and
green has Type I. Note that Aut(G) is isomorphic to
(Aut(G[black])) × Z2 because, after individualizing
all red vertices, we can only swap the “interior” and
the “exterior” region of the black cycle.

Figure 4 Two 3-connected planar graphs of Type II. All vertices and edges are colored by
their 2-WL color. For visualization purposes, we only color edges and do not distinguish between
potentially different colors of two arcs (v, w) and (w, v).

Let us remark that the main point of the subtypes is to distinguish between edge colors c

of Type II that induce non-connected subgraphs (Type IIa) and those that induce connected
subgraphs (Type IIb). The reason why we additionally single out the directed cycles (Type
IIc) is that the existence of an edge color of Type IIc almost always (i.e., with the exception
of one graph family) implies that the graph has fixing number 1, because individualizing a
single vertex in a directed cycle fixes all other vertices on the cycle as well. In particular, we
can show that every graph that contains an edge color of Type IIc is identified by 2-WL.

We also point out that the existence of an edge color of Type IIb immediately puts severe
restrictions on the structure of G. For example, if c ∈ CE(G, χ) is an edge of Type IIb, it
can be shown that Aut(G) is isomorphic to a subgroup of (Aut(G[c])) × Z2 because, after
individualizing all vertices of G[c], an automorphism of G can only swap the “interior” and
the “exterior” region of the cycle (see also Figure 4b).

Recall that the type of G is defined as the maximal type of any of its edge colors. We
extend this definition to subtypes in the natural way. For example, G has Type IIb if there
is an edge color c ∈ CE(G, χ) of Type IIb, but no edge color of Type III or IIc. Two example
graphs of Type II are given in Figure 4.

5.1 Directed Cycles
We start by analyzing graphs that contain an edge color c of Type IIc. As indicated above,
this is a particularly well-behaved case because we can precisely classify those graphs that do
not have fixing number 1. The bipyramid (of order m ≥ 3) is the graph P ∗

m with vertex set
V (P ∗

m) := {u1, u2} ∪ {vi | i ∈ [m]} and edge set E(P ∗
m) = {uivj | i ∈ [2], j ∈ [m]} ∪ {vivi+1 |

i ∈ [ℓ − 1]} ∪ {v1vℓ}.

▶ Lemma 14. Let G be a 3-connected planar graph. Also let c ∈ CE(G, χ2
WL[G]) be an edge

color of Type IIc. Then there is a vertex v ∈ V (G) such that SinglesG(v) = V (G), or G is
isomorphic to a bipyramid.
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(a) Bicolored cube. (b) Chamfered tetrahedron.

Figure 5 A chamfered tetrahedron is obtained from a bicolored cube by truncating all red vertices.

▶ Corollary 15. Let G be a 3-connected planar graph and suppose G contains an edge color
of Type IIc. Then 2-WL determines pair orbits in G.

Proof. If there is a vertex v ∈ V (G) such that SinglesG(v) = V (G), then 2-WL determines
pair orbits in G by Lemma 8. Otherwise, G is a bipyramid and it is easy to check that 2-WL
determines pair orbits in G. ◀

5.2 Connected Substructures
In the remainder of this section, we analyze graphs of Type IIa and, similarly as before, aim
at finding highly regular connected substructures. (Observe that if G has Type IIb, then a
witnessing edge color already provides such an object). Unfortunately, we need to allow for
two further possible outcomes. First, we are again satisfied with finding a vertex v ∈ V (G)
such that SinglesG(v) = V (G), which in particular implies that 2-WL determines pair orbits
on G (see Lemma 8). As the other potential outcome, we consider definable matchings.

▶ Definition 16. Let G be a graph and let χ := χ2
WL[G]. A color c ∈ CE(G, χ) defines a

matching if for every (v, w) ∈ χ−1(c), it holds that χ(v, v) ̸= χ(w, w), {v′ ∈ V (G) | χ(v′, w) =
c} = {v}, and {w′ ∈ V (G) | χ(v, w′) = c} = {w}.

Suppose there is some c ∈ CE(G, χ) that defines a matching. Such a situation is generally
beneficial since we can simply contract all edges of color c and move to a smaller graph. This
operation neither changes the 2-WL coloring (see, e.g., [9, Theorem 3.1.11]) nor identification
of the graph by 2-WL, as shown in the next lemma (see also [14]).

Let c ∈ CE(G, χ) and let A1, . . . , Aℓ be the vertex sets of the connected components of
G[c]. We define G/c as the graph obtained from contracting every set Ai to a single vertex.
Formally, V (G/c) := {{v} | v ∈ V (G) \ V (G[c])} ∪ {A1, . . . , Aℓ} and E(G/c) := {X1X2 |
X1, X2 ∈ V (G/c), ∃v1 ∈ X1, v2 ∈ X2 : v1v2 ∈ E(G)}. We also define the pair coloring χ/c

by setting (χ/c)(X1, X2) := {{χ(v1, v2) | v1 ∈ X1, v2 ∈ X2}} for all X1, X2 ∈ V (G/c).

▶ Lemma 17. Let G be a graph and let χ := χ2
WL[G]. Also, let c ∈ CE(G, χ) be an edge

color that defines a matching. Suppose that 2-WL determines arc orbits (resp. pair orbits) on
the arc-colored graph (G/c, λ), where λ(X1, X2) := (χ/c)(X1, X2) for all (X1, X2) ∈ A(G/c).
Then 2-WL determines arc orbits (resp. pair orbits) on G.

We now provide the main classification result of this section. We start by defining the
graphs that appear in it. Let G be a 3-connected planar graph and let W ⊆ V (G) be a set
of vertices. We define H to be the graph obtained from G as follows. Let w be a vertex in
W . First, subdivide each edge incident to w once. This gives ℓ := degG(w) new vertices,
which we call w1, . . . , wℓ according to the unique cyclic order in any embedding of G. We
then remove all edges wwi and insert edges wiw(i+1) mod ℓ for i ∈ [ℓ], turning w1, . . . , wℓ into
a cycle. Each wi inherits the color of w. We call these steps the truncation of w. One by
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one, we then truncate each vertex in W . (Note that their order does not matter for the
final result.) The obtained graph is H; see Figure 5 for an example. Now, we can define the
following graphs.

For every 3-connected planar graph G, the truncated G is obtained from G by truncating
all vertices.
A chamfered tetrahedron (Figure 5b) is obtained from a bicolored cube (Figure 5a) by
truncating all red vertices2.
A chamfered cube is obtained from a rhombic dodecahedron (Figure 2i) by truncating all
blue vertices.
A chamfered octahedron is obtained from a rhombic dodecahedron (Figure 2i) by truncating
all red vertices.
A chamfered dodecahedron is obtained from a rhombic triacontahedron (Figure 2j) by
truncating all blue vertices.
A chamfered icosahedron is obtained from a rhombic triacontahedron (Figure 2j) by
truncating all red vertices.

Next, let G be a planar graph. We define the C4-subdivision of G to be the graph obtained
from G by replacing each edge vw ∈ E(G) with four vertices (vw, 1), (vw, 2), (vw, 3), (vw, 4)
and edges (vw, 1)(vw, 2), (vw, 2)(vw, 3), (vw, 3)(vw, 4), (vw, 4)(vw, 1) and v(vw, 1), w(vw, 3).

Also, for m ≥ 2, we define the graph C∗
m with vertex set V (C∗

m) := [m] × [4] and edge set

E(C∗
m) := {(i, 1)(i, 2), (i, 2)(i, 3), (i, 3)(i, 4), (i, 4)(i, 1) | i ∈ [m]}

∪ {(i, 3)(i + 1, 1) | i ∈ [m − 1]} ∪ {(m, 3)(1, 1)}.

Finally, for h ≥ 3, we define K∗
2,h to be the graph with vertex set V (K∗

2,h) := {u1, u2} ⊎
([h] × [4]) and edge set

E(K∗
2,h) := {(i, 1)(i, 2), (i, 2)(i, 3), (i, 3)(i, 4), (i, 4)(i, 1) | i ∈ [h]}

∪ {u1(i, 1) | i ∈ [h]} ∪ {u2(i, 3) | i ∈ [h]}.

Examples for the last three constructions can be found in Figure 6.
Let H be a graph and f : E(H) → N be a function. The f-subdivision of H is the

graph H(f) obtained from H by replacing each edge e with f(e) parallel paths of length
2 (if f(e) = 0, the edge e remains unaltered). Formally, H(f) is the graph with vertex set
V (H(f)) := V (H) ⊎ {(e, i) | e ∈ E(H), i ∈ [f(e)]} and edge set E(H(s)) := {e ∈ E(H) |
f(e) = 0} ∪ {v(e, i) | e ∈ E(H), v ∈ e, i ∈ [f(e)]}. A graph G is a parallel subdivision of H if
there is a function f : E(H) → N such that G is isomorphic to H(f).

▶ Theorem 18. Let G be a 3-connected planar graph of Type IIa and let χ := χ2
WL[G] be the

coloring computed by 2-WL. Then one of the following options holds.
(A) There is a vertex v ∈ V (G) such that SinglesG(v) = V (G),
(B) there is an edge color c ∈ CE(G, χ) that defines a matching, or
(C) there are colors c, d ∈ CE(G, χ) such that G[c, d] is isomorphic to a parallel subdivision

of one of the following graphs:
1. a truncated tetrahedron, a truncated cube, a truncated octahedron, a truncated dodec-

ahedron, a truncated icosahedron,
2. an m-side prism for m ≥ 3,

2 The name chamfered tetrahedron comes from an alternative construction that obtains a chamfered
tetrahedron by truncation of all edges of a tetrahedron.
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(a) C4-subdivision of a cube. (b) C∗
4 . (c) K∗

2,3.

(d) Rhombicuboctahedron. (e) Rhombicosidodecahedron.

Figure 6 Examples for the constructions from the classification for graphs of Type IIa.

3. a cuboctahedron (with two edge colors), a rhombicuboctahedron, a rhombicosidodeca-
hedron,

4. a C4-subdivision of one of the graphs from Figure 2a – 2e,
5. a C∗

m for m ≥ 2,
6. a K∗

2,h for h ≥ 3,
7. a chamfered tetrahedron, a chamfered cube, a chamfered octahedron, a chamfered

dodecahedron, or a chamfered icosahedron.

▶ Remark 19. There are four Archimedean solids that are explicitly listed neither in Theorem
13 nor in Theorem 18. These are the truncated cuboctahedron, the truncated icosidodec-
ahedron, the snub cube, and the snub dodecahedron. The graphs corresponding to these
solids have fixing number 1 under 1-WL and hence, they implicitly appear in Theorem 18,
Option A.

Note that for Option C from Theorem 18, using the same arguments as for edge colors of
Type III, we obtain that Aut(G) is isomorphic to a subgroup of Aut(G[c, d]).

Overall, by combining Lemmas 9 and 14 and Theorems 13 and 18, we obtain that every
3-connected planar graph G satisfies one of the following options.
(A) There is some v ∈ V (G) such that SinglesG(v) = V (G), which implies that 2-WL

determines pair orbits of G by Lemma 8,
(B) there is an edge color c ∈ CE(G, χ2

WL[G]) that defines a matching, or
(C) there is a set C ⊆ CE(G, χ2

WL[G]) such that |C| ≤ 2 and G[C] is essentially a Platonic
or Archimedean solid, or stems from a small number of infinite families of connected
graphs.

Option C contains the graphs listed in Theorems 13 and 18, as well as the class of bipyramids
from Lemma 14 and the class of cycles to cover graphs of Type IIb.
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It remains an important open question whether 2-WL identifies every planar graph. With
the structural insights from this paper, it now suffices to focus on Case C and, as explained
above, the classification of the subgraphs G[C] appearing in this case should be a crucial
step to determining the WL dimension of planar graphs.
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Abstract
For an n-vertex digraph G = (V, E) and integer parameter D, a D-shortcut is a small set H of
directed edges taken from the transitive closure of G, satisfying that the diameter of G ∪ H is
at most D. A recent work [Kogan and Parter, SODA 2022] presented shortcutting algorithms
with improved diameter vs. size tradeoffs. Most notably, obtaining linear size D-shortcuts for
D = Õ(n1/3), breaking the

√
n-diameter barrier. These algorithms run in O(nω) time, as they are

based on the computation of the transitive closure of the graph.
We present a new algorithmic approach for D-shortcuts, that matches the bounds of [Kogan and

Parter, SODA 2022], while running in o(nω) time for every D ≥ n1/3. Our approach is based on a
reduction to the min-cost max-flow problem, which can be solved in Õ(m + n3/2) time due to the
recent breakthrough result of [Brand et al., STOC 2021].

We also demonstrate the applicability of our techniques to computing the minimal chain covers
and dipath decompositions for directed acyclic graphs. For an n-vertex m-edge digraph G = (V, E),
our key results are:

An Õ(n1/3 · m + n3/2)-time algorithm for computing D-shortcuts of linear size for D = Õ(n1/3),
and an Õ(n1/4 · m + n7/4)-time algorithm for computing D-shortcuts of Õ(n3/4) edges for
D = Õ(n1/2).
For a DAG G, we provide Õ(m + n3/2)-time algorithms for computing its minimum chain covers,
maximum antichain, and decomposition into dipaths and independent sets. This improves
considerably over the state-of-the-art bounds by [Caceres et al., SODA 2022] and [Grandoni et
al., SODA 2021].

Our results also provide a new connection between shortcutting sets and the seemingly less related
problems of minimum chain covers and the maximum antichains in DAGs.
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1 Introduction
This paper is concerned with time-efficient algorithms for computing directed shortcut
sets. For a given n-vertex digraph G = (V, E) and an integer parameter D, a D-shortcut
set H is a subset of edges from the transitive closure of G, denoted as TC(G), satisfying
that the diameter of G ∪ H is at most D. The diameter of the digraph is length of the
longest u-v shortest path in G over any pair (u, v) ∈ TC(G). The key objective in this
setting is to optimize the diameter vs. size tradeoff. Since their introduction by Ullman and
Yannakakis [27] and Thorup [26], shortcutting sets have been studied extensively due to

EA
T

C
S

© Shimon Kogan and Merav Parter;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 82; pp. 82:1–82:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shimon.kogan@weizmann.ac.il
mailto:merav.parter@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2022.82
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


82:2 Beating Matrix Multiplication for Directed Shortcuts

their wide-range of applications for parallel, distributed, dynamic and streaming algorithms
[18, 14, 11, 22, 10, 13, 4]. Their applicability is also demonstrated by the recent breakthrough
results, e.g., [22, 10, 13] that use shortcuts as their core component.

Diameter vs. Size Tradeoffs of Shortcuts. Thorup conjectured [26] that any n-vertex
digraph with m edges, has an D-shortcut of size Õ(m) for1 D = Õ(1). This has been shown
to hold for a restricted class of graphs, such as planar [26]. Hesse [15] refuted this conjecture
for general graphs by presenting a construction of an n-vertex digraph with m = Θ(n19/17)
edges that requires Ω(mn1/17) shortcut edges to reduce its diameter to below n1/17. Up to
very recently, the only known size vs. diameter tradeoff was given by a folklore randomized
algorithm, attributed to Ullman and Yannakakis [27], that for every integer D ≥ 1, provides a
D-shortcut of size O((n/D)2 log2 n). Berman et al. [3] improved the size bound to O((n/D)2).
Setting D = O(

√
n) provides D-shortcuts of linear size in the number of vertices of the

graph. This should be compared with the lower bound result by Huang and Pettie [16] that
admits an n-vertex graph for which any linear shortcut (in the number of vertices of the
graph) provides a diameter of Ω(n1/6). Lu, Vassilevska-Williams, Wein and Xu have recently
improved the lower bound for D-shortcuts with O(m) edges to D = Ω(n1/8).

Very recently, the authors [19] presented an improved tradeoff, breaking the
√

n diameter
barrier for linear-size shortcuts. For any D ≤ n1/3, they provide D-shortcuts of Õ(n2/D3)
edges. For any D > n1/3, they provide D-shortcuts with Õ((n/D)3/2) edges, hence of
sublinear size. The algorithms of [19] are critically based on the precomputation the
transitive closure of the graph, whose O(nω)-time computation dominates the runtime of
their shortcut constructions.

Time-Efficient Shortcut Computation. Due to the algorithmic importance of shortcuts,
e.g., for reachability computation, much focus has been devoted to their time-efficient
computation, in almost any classical computational setting, e.g., sequential, parallel and
distributed, etc. In this algorithmic context, the primary objective is to compute shortcuts
faster than computing the transitive closure itself. The reason is that shortcuts are usually
used to provide faster algorithms for reachability related problems. The latter can be trivially
solved by computing the transitive closure. Hence, for shortcuts to become algorithmically
applicable, say in the sequential setting, their construction should run in o(nω) time. In a
sequence of breakthrough results, Liu, Jambulapati and Sidford [22] extended the framework
of Fineman [10] to compute, in nearly linear time, a shortcut set of Õ(n) edges that reduces
the diameter of the graph to D = O(n1/2+o(1)) (i.e., almost as obtained by the folklore
algorithm). They also provide a parallel implementation of their algorithm leading to the
first parallel reachability algorithm with near linear work and n1/2+o(1) depth.

The algorithms of [19] are based on computing the transitive closure of the graph. Towards
making these structures applicable in the algorithmic context, e.g., for reachability, we ask:

▶ Question 1.1. Is it possible to break the
√

n diameter barrier of shortcuts in o(nω) time?

We answer this question in the affirmative by providing a new algorithmic approach for
shortcuts, that is based on a reduction to the minimum-cost maximum-flow problem. Luckily,
the time complexity of the latter problem has only recently improved from Õ(

√
nm) (by Lee

and Sidford [21]) to Õ(m + n3/2) by Brand et al. [29]. We observe that the key algorithmic
challenge is in computing a collection of ℓ vertex-disjoint dipaths P (possibly in TC(G))

1 The Õ(.) notation hides poly-log n factors.
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satisfying that the length of the longest path contained in the transitive closure induced
on the set of uncovered vertices, namely, U = V \

⋃
P ∈P V (P ), is bounded by Θ(n/ℓ). Our

min-cost max-flow based approach for computing these dipaths finds broader applications
for the seemingly less related problems of minimum chain covers and maximum antichains
in directed acyclic graphs. Finally, we note our time complexity of shortcuts cannot be
expressed only as a function of the time complexity of the min-cost max-flow problem, due
to other computational steps that require Õ(m + n3/2) time.

Chains and Antichains: Covers and Decompositions. A chain is a dipath in the transitive
closure TC(G), and an antichain is subset of vertices I ⊆ V that form an independent set in
TC(G). The closely related notions of chains and antichains give rise to four classical graph
theoretical problems that have been studied thoroughly in the literature:

Minimum Chain Covers (MCC): A minimum set of chains covering all vertices in G.
Maximum Antichain (MA): An antichain of maximum size2.
Minimum Antichain Covers (MAC): A minimum set of antichains covering all
vertices in G.
Longest Chain (LC): A dipath of largest length in TC(G).

The cardinality of the MCC is also known as the width of the graph, denoted by ω(G).
Dilworth [9] showed that the size of the MA is the same as the size of the MCC, namely,
ω(G). In a somewhat dual manner, Mirsky [24] showed that the length of the LC equals to
the size of the MAC. Interestingly, while there are linear time algorithms for computing the
MAC and LC (e.g., by dynamic programming, [24]), no such algorithms are known for the
MCC and MA problems, at least for graphs with non-constant width. To date, the time
complexity of the existing algorithms has an inherent dependency in ω(G). For example,
for the MCC problem, the classical approach computes the chains one-by-one by solving
ω(G) max-flow instances. Recent work by Cáceres et al. [5, 6] has studied MCC algorithms
whose complexity is parametrized on ω(G). The state-of-the-art is due to [6] that runs in
Õ(ω(G)2n + m) time (for solving both MCC and MA). In light of the current gap in time
complexity gap for solving MAC and LC on the one hand, and for MCC and MA, on the
other hand, we ask:

▶ Question 1.2. Is it possible to also compute MCC and MA in (near) linear time?

We answer this question, at least partially, in the affirmative by presenting linear time MCC
and MA algorithms for moderately dense graphs. It is also known that MCC and MA
are at least as hard as computing maximum matching in bipartite graphs. Interestingly,
our algorithms use the shortcut algorithms in a black-box manner! That is, an interesting
take-home message is that the MCC and MA computations can be made faster by reducing
first the the diameter of the digraph.

1.1 Our Results
We provide new algorithms for diameter shortcutting that break the

√
n barrier without

using any matrix multiplication, running in o(nω) time3. For example, for sparse graphs,
our algorithms run in o(n2) for any diameter D = Ω̃(1). Our first result, which in fact also
serves as a building block later on, computes

√
n-shortcuts in near linear time:

2 I.e., maximum independent set in T C(G).
3 The state-of-the-art value for the matrix multiplication constant is ω = 2.372 due to Alman and

Vassilevska Williams [1]
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Table 1 Prior work on MCC. (∗) indicates that the MCC result is implicit.

Computation time Citation
O(n3) [17]
O(n2 + ω(G)3/2n) [7]
O(max(m

√
n, ω(G)3/2n)) [8]

O(ω(G)m log n) [23](*)
O(ω(G)2n log n + m) [6](*)
Õ(m + n3/2) (this paper)

▶ Theorem 1.3 (Θ(
√

n)-Shortcuts of Linear Size). There exists a randomized algorithm that
for every n-vertex digraph G with m edges computes, w.h.p., in time Õ(m + n3/2) a shortcut
set H ⊆ TC(G) satisfying that |E(H)| = Õ(n) and Diam(G ∪H) = O(

√
n).

For dense graphs, with Ω(n3/2) edges, this improves the diameter bound of Liu, Jambulapati
and Sidford [22] that yields D-shortcuts for diameter D = n1/2+o(1). We next use this
improved algorithm for computing D-shortcuts for any D = O(

√
n), to provide the following:

▶ Theorem 1.4 (o(
√

n)-Shortcuts). There exists a randomized algorithm that for every
n-vertex m-edge digraph G and D = O(

√
n), computes, w.h.p., in time Õ(m · n/D2 + n3/2)

a D-shortcut set H ⊆ TC(G) with |E(H)| = Õ(n2/D3 + n) edges.

For example, for D = n1/3, we get D-shortcuts of near-linear size in Õ(m · n1/3 + n3/2) time,
improving on the time complexity of O(nω) by [19].

We also consider faster algorithms for computing shortcuts with sublinear number of
edges. This turns out to be quite technically involved, as many of the tools used in Theorem
1.4 are based on adding a linear number of edges, which we cannot afford in the sublinear
regime. We show:

▶ Theorem 1.5 (ω(n1/3)-Shortcuts of Sublinear Size). There exists a randomized algorithm
that for every n-vertex m-edge digraph G and D = ω(n1/3), computes, w.h.p., in time
Õ((m + n3/2)

√
n/D) a D-shortcut set H ⊆ TC(G) with |E(H)| = Õ((n/D)3/2) edges.

For example, for D = n1/2, this provides D-shortcuts with Õ(n3/4) edges in Õ(m ·n1/4 +n7/4)
time, improving on the time complexity of O(nω) by [19].

Application to Decompositions and Covers of Chains and Antichains. Recall that a chain
(resp., antichain) is a dipath (resp., independent set) in TC(G). A minimum chain cover
(MCC) for a DAG G = (V, E) is a collection of vertex-disjoint chains that cover V (G). The
maximum antichain is the maximum independent set in TC(G). We provide the first nearly
linear algorithms for moderately dense graphs, that in contrast to prior algorithms, do not
depend on the width of the graph.

▶ Theorem 1.6. For every n-vertex m-edge DAG G = (V, E), one can compute the minimum
chain cover, as well as, the maximum antichain in time Õ(m + n3/2), w.h.p.

This improves over that very recent state-of-the-art running time of O((ω(G))2n log n + m)
by [6] for graphs of large width ω(G) = Ω̃(n1/4). More conceptually this provides a near
linear-time algorithm for dense graphs, narrowing the gap to the related problems of MAC
and ML for which linear time algorithms are folklore. Finally, we consider the decomposition
of G into a collection of vertex-disjoint dipaths P and vertex-disjoint independent sets4.

4 Grandoni et al. [12] called this chain and antichain decomposition. Since this decomposition is in G and
the notions of chain and antichains are usually defined in T C(G), we use the terminology of dipaths
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▶ Definition 1.7 (Slight restatement of Def. 3.1 of [12]). An (a, b)-decomposition of a directed
acyclic graph (DAG) G consists of a collection P = {P1, . . . , Pa} of a vertex-disjoint directed
paths in G, and a collection Q = {Q1, . . . , Qb} of b vertex-disjoint independent sets of G

such that
⋃a

i=1 V (Pi) ∪
⋃b

j=1 Qj = V (G).

Grandoni et al. [12] presented an O(n2)-time algorithm for computing an (ℓ, 2n/ℓ) decom-
position in G. In fact, the algorithm of [19] employed this decomposition on the transitive
closure of G. We observe that by reducing to the min-cost max-flow problem, one can break
the O(n2)-time complexity. We show:5

▶ Theorem 1.8. Let G = (V, E) be an n-vertex DAG. For every ℓ ∈ [1, n], there is an
Õ(|E|+ n3/2)-time randomized algorithm for computing an (ℓ, 2 · n/ℓ)-decomposition of G.

1.2 Technical Overview

1.2.1 A New Algorithmic Approach for Shortcuts
For the sake of presentation, we focus on the computation of a D = O(n1/3)-shortcut H of
near-linear size. We start by providing a succinct description of the Kogan-Parter algorithm
in [19]. Throughout, we assume, w.l.o.g., that the input graph G is a DAG, and denote its
transitive closure by TC(G). We note that in context of computing shortcuts of sublinear
size, we provide an alternative reduction to DAG6. For a dipath P , let H(P ) be a 2-shortcut
set for P satisfying that Diam(P ∪ H(P )) ≤ 2. It is well-known that one can compute
H(P ) in nearly-linear time and that |H(P )| = O(|P | log |P |). For a path collection P, let
V (P) =

⋃
P ∈P V (P ). Finally, for a set of elements X and probability p ∈ [0, 1], let X[p] be

the subset obtained by sampling each element of X into X[p] independently w.p. p.

A Quick Recap of the O(nω)-Time Algorithm by [19]. The algorithm starts by computing
TC(G) in O(nω)-time. It then applies the decomposition algorithm Grandoni et al. [12] to
partition V (TC(G)) into n2/3 vertex-disjoint dipaths P (denoted as chains), and 2 · n1/3

vertex-disjoint antichains Q = {Q1, . . . , Qk}. I.e., V = V (P) ∪ V (Q). Letting U = V (Q),
the key property that we use in the diameter argument is that the length of a longest path of
the graph7 TC(G)[U ] is bounded by k = n1/3, which indeed follows by the definition of Q.

For a vertex v and a dipath P , let e(v, P ) be the edge connecting v to the first vertex in
V (P ) that is reachable from v (if such exists). Let P ′ = P[p] and V ′ = V [p] for p = n−1/3

(i.e., subsamples of dipaths and vertices). Then the output shortcut set is H = H1 ∪H2,
where H1 =

⋃
P ∈P P ∪H(P ) and H2 = {e(v, P ) | v ∈ V ′, P ∈ P ′}. Summarizing, the key

algorithmic steps can be summarized by:
Step 1. Computing a collection P of (at most) n2/3 vertex-disjoint dipaths such that
the length of the longest dipath of TC(G)[U ] is of length O(n1/3), where U = V \ V (P).
Step 2. Computing the edges e(v, P ) for every v, P ∈ P ′ × V ′.

The implementation of [19] for both steps uses TC(G) in a strong manner. Before explaining
our approach, we sketch the size and diameter bounds of the above construction.

and independent sets.
5 We provide this as an independent observation. As this decomposition is w.r.t G (rather than T C(G)),

it is not useful for our shortcut algorithms.
6 An alternative reduction is needed since the folklore approach of contracting each strongly connected

component in G introduces linear number of edges to the shortcut.
7 I.e., the transitive closure T C(G) induced on the uncovered vertices U , namely, vertices that do not

appear on P.
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Size and Diameter Bound. The size bound is immediate: the P are vertex-disjoint, thus
|H1| = Õ(n). W.h.p., |V ′| = Õ(n2/3) and |P ′| = Õ(n1/3), therefore, |H2| = Õ(n), as well.

Consider a u-v shortest path P in G∪H1 and denote its 7n1/3-length prefix (resp., suffix)
by P ′, P ′′, respectively. By Chernoff, w.h.p., there exists some sampled vertex u∗ ∈ V (P ′)∩V ′.
The challenge is in showing that P ′′ intersects with Ω(n1/3) distinct paths in P, and thus,
w.h.p., intersects with at least one sampled path in P ′. This is shown by observing that (i)
P ′′ contains at most 3 vertices from each dipath Q ∈ P (due to the addition of the shortcut
H(Q)), and that (ii) P ′′ contains at most n1/3 vertices in U . Altogether, we have some
Q∗ ∈ P ′ satisfying that V (Q∗) ∩ V (P ′′) ̸= ∅. The edge e(u∗, Q∗) ∈ H2 then provides us an
O(n1/3)-hop length dipath from u∗ to w ∈ V (Q∗) ∩ V (P ′′).

New Approach: Shortcuts via Min-Cost Max-Flows. We focus on Step (1), as Step (2)
can be implemented in O(m · n1/3) time using e.g., dynamic programming. Our goal is to
show that Step (1) can be implemented in Õ(m + n3/2) time, which establishes Theorem 1.4
for D = n1/3. The challenge boils down into computing a nice collection of dipaths which
also has further independent applications, as illustrated in this paper. Denote by LP(G) to
be the length of a longest simple dipath in G.

Key Task: Compute in o(nω)-time a collection of (at most) n2/3 vertex-disjoint dipaths
P in TC(G), such that LP(G′) = O(n1/3) where G′ = TC(G)[U ] and U = V \ V (P).

Note that the above requires to bound the length of the longest path in the graph8

TC(G)[U ]. This task can also be viewed as a relaxed chain and antichain decomposition (see
Def. 1.7) for ℓ = n2/3, where it is required to output only chain part, while guaranteeing
the remaining uncovered vertices, U , can be decomposed into n1/3 anti-chains9. Clearly the
challenge is that it is required to compute such (partial) decomposition in TC(G) without ever
computing it explicitly! While our goal is to solve it in Õ(m + n3/2) time, the decomposition
algorithm of [12] runs in O(n2) even when given TC(G). Our challenge is therefore two-folds.

We introduce ℓ-covers which for a given input parameter ℓ ∈ [1, n] provide a multiset
P = {P1, . . . , Pℓ} of ℓ dipaths in G. Letting, TotLen(P) =

∑
Pi∈P |Pi| and U = V \ V (P)

(i.e., the total dipath lengths), then the ℓ-cover satisfies:
1. TotLen(P) ≤ min{ℓ, Diam(G)} · n,
2. LP(G′) ≤ 2n/ℓ where G′ = TC(G)[U ] .
Note that an ℓ-cover for ℓ = n2/3, almost fits the key task, up to one major caveat: the total
path length, TotLen(P), might be super-linear, hence leading to shortcuts of super-linear
size10. We put this technicality aside for a moment, explain first how to compute ℓ-covers
without computing TC(G), and then show how to use them to solve the key task.

Computing ℓ-Covers in Time Õ(m+n3/2+min{ℓ, Diam(G)}·n). The algorithm is based
on a reduction to the min-cost max-flow problem. We define a flow-instance G̃ = (Ṽ , Ẽ, u, c)
corresponding to G, where |Ṽ | = O(n), |Ẽ| = O(m), u ∈ ZẼ

≥0 and c ∈ ZẼ are the capacity
and cost functions, respectively. We then apply the recent algorithm of van den Brand
et al. [29] to compute the min-cost max-flow s-t flow in G̃ for a given pair s, t ∈ Ṽ . In
their breakthrough result, [29] provided an Õ(m + n3/2)-time randomized algorithm for this
problem, provided that the edge capacities and costs are integral.

8 The transitive closure of G induced on the vertices of U .
9 By [24], a bounded longest path of T C(G)[U ] indeed guarantees the antichain decomposition of U .
10 As we include in the output shortcut, the union of path shortcuts H(P ) for every P ∈ P.
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The desired ℓ-cover collection is then obtained by computing the flow-decomposition of
the output integral flow. Since G is a DAG, this decomposition can be done in linear time in
the total length of the output path collection. Finally, we translate the collection of dipaths
in G̃ into a collection of dipaths in G, which provides the desired ℓ-cover P. Importantly,
our flow-instance deviates from the classical flow-reductions11 by incorporating a special
gadget per vertex vi ∈ V . We carefully set the capacity and the cost values in a way that
on the one hand, allows a given vertex to participate in multiple paths, while at the same
time bounding the total length of P , and most importantly bounds the longest path length
of the transitive closure induced on the uncovered vertices U , TC(G)[U ]. Altogether, the
computation of the ℓ-cover P takes Õ(m + n3/2 + TotLen(P)) time which by Property (1) is
bounded by Õ(m + n3/2 + n min{ℓ, Diam(G)}).

ℓ-Covers in Õ(m + n3/2) Time. To beat this dependency in TotLen(P), we take the
following strategy. First, we reduce the diameter of G to d = O(

√
n) by computing a

d-shortcut set H0 of linear size. We show that this can be done using ℓ-covers for ℓ =
√

n,
hence taking O(m + n3/2) time. We then apply the ℓ-cover algorithm on the graph G ∪H0.
Since the diameter of G ∪H is O(

√
n), we have that TotLen(P) = O(n3/2), and the entire

computation takes Õ(m + n3/2) time.

Implementing Step (1) in Õ(m + n3/2) Time. So-far, we have computed a collection of
O(n2/3) dipaths P (in G∪H0) of total length O(n3/2), and such that the uncovered diameter
is at most O(n1/3). It remains to turn P into vertex-disjoint dipaths in TC(G). This can
be easily done by iterating over the dipaths of P , one by one, shortcutting the given dipath
by cutting out the vertices that appear in the currently collection of vertex-disjoint dipaths.
This works in O(TotLen(P)) = O(n3/2) time.

Shortcuts of Sublinear-Size. In [19], it was shown that for any D = ω(n1/3), one can
compute D-shortcuts of size Õ((n/D)3/2). It will be instructive to consider the case where
D = O(

√
n) for which the construction provides shortcuts with Õ(n3/4) edges. The algorithm

of [19] for this setting is based on sampling a collection of landmarks V ′ = V [p] for p = n1/4.
It then defines the graph G′ = (V ′, E′) where E′ = {(u, v) | distG(u, v) ≤ n1/4}, and applies
the above mentioned algorithm for computing D′ = |V ′|1/3-shortcut H of size O(|V ′|). Since
|V ′| = O(n3/4), w.h.p., this provides a shortcut of O(n3/4) edges.

In our context, computing the graph G′ takes O(|V ′|m) time which is too costly for
our purposes. Another challenge in provide a sublinear reduction into DAGs. So-far, we
assumed w.l.o.g. that G is a DAG, by using the following folklore reduction: shortcut each
strongly connected component C to diameter 2, by connecting the all vertices of C to center
vertex v ∈ C. This allows one to restrict attention to the DAG obtained by contracting each
component. This reduction, however, adds Θ(n) shortcut edges, which is above our budget.
Our algorithm provides an alternative reduction. Given G, we compute a DAG G′ of similar
size and show that any D-shortcut set H ′ for G′ can be translated into a D-shortcut set H

for G, where |H| = O(|H ′)). This allows us to restrict attention to DAGs. We believe this
alternative reduction should be of general interest.

Our shortcut algorithm calls for a collection of additional refined tools. We introduce
partial ℓ-covers that provide the desired properties (1,2), up to some slack, with respect to
a given subset of vertices. The shortcut algorithm is then based on iteratively computing
collections of partial ℓ-covers, to mimic, in some way, the effect of the single application of a
shortcut computing on the virtual graph G′.

11 E.g, where each vertex vi ∈ V has two copies vin
i and vout

i connected by a directed edge of capacity 1.

ICALP 2022



82:8 Beating Matrix Multiplication for Directed Shortcuts

1.2.2 Minimum Chain Covers, Maximum Antichain, and More
Recall that a chain is a dipath in TC(G) and an antichain is an independent set in TC(G).
The cardinality of the minimum chain cover (MCC) of a DAG G is denoted as the width of G,
ω(G). An minimum path cover (MPC) is a minimum set of dipaths (not necessarily disjoint)
in G that cover V . Prior algorithms for computing the MCC are based on iteratively solving
a maximum s-t flow instance in the residual graph, each iteration provides one additional
dipath to the output collection. This dipath-by-dipath approach requires solving ω(G) flow
computations. Note that computation of the value of the width, ω(G), can be easily done
using only O(log n) max-flow computations (by binary search). Hence, the main challenge is
in the computation of chain cover itself.

Our approach is based on having a single application of the min-cost max-flow algorithm.
The starting observation is that thanks to our shortcut algorithms, we can assume, w.l.o.g.,
that the diameter of G is O(

√
n). This is because we can apply the MCC algorithm on the

graph G ∪H0 where H0 is the O(
√

n)-shortcut set for G, obtained by Thm. 1.3. Since we
aimed at computing chains, rather than dipaths in G, we can safely work on G ∪H0.

Using our flow reduction, we are able to compute a collection P of ω(G) dipaths (these
are dipaths in G ∪H0), in time Õ(m + n3/2 + TotLen(P)). By the way that we set the cost
of the edges in our instance, P covers all vertices in G. I.e., it is an MPC in G∪H0. This by
itself is not enough as the dipaths of P are might not be vertex-disjoint, possibly with large
total length, TotLen(P).

To overcome this, we first provide an algorithm for computing a dipath cover of minimum
total length. We introduce the notion of minimum-length cover (MLC): a collection of ω(G)
dipaths, that covers all vertices while minimizing the total length of the dipaths.

Then, we provide a combinatorial argument that shows that any n-vertex DAG admits an
MPC P of length TotLen(P) ≤ n · Diam(G). Since Diam(G ∪H0) = O(

√
n), we end up with

having a collection of dipaths of total length O(n3/2). These dipaths can be transformed in
vertex-disjoint chains in time O(n3/2), in a brute-force manner (Lemma 1.15). This completes
the high-level approach.

1.3 Preliminaries
Graph Notations. For an n-vertex digraph G, let TC(G) denote its transitive closure. We
also denote TC(G). For a vertex pair u, v ∈ V (G) where (u, v) ∈ TC(G), let distG(u, v)
be the length (measured by the number of edges) of the shortest dipath from u to v. For
(u, v) /∈ TC(G), distG(u, v) = ∞. For a subset V ′ ⊆ V , let G[V ′] be the induced graph
on V ′. The graph diameter is denoted by Diam(G) = max(u,v)∈T C(G) distG(u, v). We say
that u⇝G v if there is a directed path from u to v in G, i.e., (u, v) ∈ TC(G). A shortcut
edge is an edge in TC(G). For a vertex v ∈ G, let Nin(v, H) = {u | (u, v) ∈ G} denote
the incoming neighbors of v in G. The set of outgoing neighbors Nout(v, G) is defined
in an analogous manner. For a collection of paths P, the vertices of P is denoted by
V (P) =

⋃
P ∈P V (P ). For a dipath P = [u0, . . . , uk] ⊆ G, for j ≤ q, let P [uj , uq] denote the

path segment P [uj , uj+1, . . . , uq]. In the case where uj = u0 (resp., uq = uk), we simply
write P [·, uq] (reps., P [uj , ·]). For an a-b dipath P and an b-c dipath P ′ the concatenation of
the paths is denoted by P ◦ P ′. Let |P | denote the number of edges on P (unless mentioned
otherwise). For a set of elements X and p ∈ [0, 1], let X[p] be the set obtained by taking
each element of X into X[p] independently with probability p.

▶ Definition 1.9. For a digraph G, H ⊆ TC(G) is D-shortcut if Diam(G ∪H) ≤ D.

The following lemma computes linear 2-shortcuts for directed paths:
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▶ Lemma 1.10 (Lemma 1.1, [25]). Given a directed path P , one can compute in O(|P | log |P |)
time, a 2-shortcut H(P ) for P where |H| = O(|P | log |P |) edges.

Given a digraph G, by G+ we denote the result of contracting all strong components in G.
Note that G+ is acyclic directed graph (DAG) and can be computed in linear time.

▶ Proposition 1.11 (Lemma 3.2, [25]). Let H+ be a shortcut set for G+. One can compute in
O(|E(G)|+|H|)-time, a shortcut set H for G such that |H| = O(|H+|+n) and Diam(G∪H) =
O(Diam(G+ ∪H+)).

Algorithmic Tools for Flow Computation. In the minimum-cost maximum-flow problem,
given is a connected directed graph G = (V, E, u, c) with edges capacities u ∈ RE

≥0 and
costs c ∈ RE (which can be negative). The vector x ∈ RE is an s-t flow for s, t ∈ V if
x(e) ∈ [0, u(e)] for all e in E, and for each vertex v ̸∈ {s, t} the amount of flow entering v

equals the amount of flow leaving v, i.e.,
∑

e=(a,v) x(e) =
∑

e=(v,b) x(e). The cost of a flow
x is defined by c(x) =

∑
e c(e)x(e). The value of an s-t flow is the amount of flow leaving

s, i.e., val(x) =
∑

e=(s,v) xe (or equivalently, entering t, i.e.,
∑

e=(v,t) xe). The objective is
to compute a maximum s-t flow of minimum cost denoted by

∑
e∈E cexe. The following

theorem was proven in [29].

▶ Theorem 1.12 (Theorem 1.4 of [29]). There is an algorithm MinCostFlow(G, s, t) that,
given a n-vertex m-edge digraph G = (V, E, u, c), integral edge capacities u ∈ ZE

≥0 and costs
c ∈ ZE, w.h.p., computes an integral minimum cost maximum flow in time

Õ
(

m log(||u||∞||c||∞) + n3/2 log2(||u||∞||c||∞)
)

.

We observe that even more recently, there have been additional breakthrough results [2, 28]
that provide improved running time for sparse graphs, this however, does not effect our final
time complexity.

▶ Definition 1.13. For a digraph G = (V, E) and a given valid s-t flow vector x ∈ NE
≥0, a

flow decomposition is a multiset of s-t dipaths in G given by Q = {P1, . . . , Pk}, such that
for every e ∈ E, it holds that x(e) = |{Pi ∈ Q | e ∈ Pi}|. I.e., x(e) equals the number of
paths in the multiset containing e.

▶ Lemma 1.14. Let G = (V, E) be an n-vertex m-edge DAG and let x ∈ NE
≥0 be an integral

s-t flow of value k for s, t ∈ V , then one can compute a flow decomposition of x, denoted by
Q in O(m + n +

∑
e∈E x(e)) time.

Dipaths to Chains. Throughout, we make use of the following procedure to translate a
collection of dipaths in G into a collection of vertex-disjoint chains. The proof of the next
lemma is in the full version.

▶ Lemma 1.15. Let P be a collection of dipaths in G, there is an algorithm DisjointChains
that in time O(

∑
P ∈P |P |) computes a collection of vertex-disjoint chains C satisfying that:

(i) |C| ≤ |P|, (ii) V (C) = V (P) and (iii) every C ∈ C is a dipath in TC(G).

Roadmap. In Sec. 2, we introduce ℓ-covers, that serve the key algorithmic part for
computing our shortcuts. In Sec. 3.1, we compute

√
n-shortcuts of linear size (proof of Thm.

1.3). In Sec. 3.2, we provide an algorithm that computes n1/3-shortcut of linear size in
Õ(mn1/3 + n3/2) time, and more generally prove Thm. 1.4. Then Sec. 3.3 considers the
constructions of shortcuts with sublinear number of edges establishing Thm. 1.5.
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2 New Notions of Dipath Decompositions

2.1 ℓ-Covers
We introduce a new notion of dipath decomposition which we denote by ℓ-covers. For a given
parameter ℓ, the ℓ-cover is given by a multiset of ℓ dipaths in G, P = {P1, . . . , Pℓ}, whose
vertices V (P) dominate long dipaths in G, in a way that becomes formal in Def. 2.1. As we
will see, this notion is strong enough to substitute the path collection obtained by computing
the chain-antichain decomposition in TC(G). Missing proofs of this section are deferred to
the full version. Recall that for a multiset of dipaths P, TotLen(P) =

∑
Pi∈P |Pi|.

▶ Definition 2.1 (ℓ-Covers). For a given n-vertex digraph G = (V, E) and an integer
parameter ℓ ∈ [1, n], an ℓ-cover for G is a multiset of ℓ paths P = {P1, . . . , Pℓ} (possibly
consisting of single vertices or empty), satisfying the following:
1. TotLen(P) ≤ min(ℓ · n, Diam(G) · n),
2. For any dipath P ⊆ G, it holds that |V (P ) ∩ (V \ V (P))| ≤ 2n/ℓ .
Property (2) implies that LP(TC(G)[U ]) ≤ 2n/ℓ, that is the following holds:

▶ Corollary 2.2. Each path in TC(G)[V \ V (P] contains at most 2n/ℓ vertices.

▶ Theorem 2.3. Let G be an n-vertex DAG with m edges, then for every ℓ ≥ 1, there is
a randomized algorithm for computing an ℓ-cover of G, w.h.p, in time Õ(m + n3/2 + n ·
min{Diam(G), ℓ}).

For our purposes of computing shortcuts, we employ the algorithm of Thm. 2.3 only in
settings where min{Diam(G), ℓ} = O(

√
n), therefore spending only Õ(m + n3/2) time.

Path Decomposition via Min-Cost Max-Flow. The decomposition algorithm is based on a
reduction to the minimum cost maximum flow problem (see Sec. 1.3). For the given DAG G,
the algorithm computes a corresponding min-cost flow instance G̃ = (Ṽ , Ẽ, u, c). At the high
level, for each vi ∈ V (G), the graph G̃ contains three inter-connected copies vin

i , vout
i , v′

i. The
out-copy of the incoming G-neighbors of vi are connected to the in-copy of vi. In addition,
Ṽ includes also three additional vertices, s, s′ and t, where s and t are the source and target
vertices given to the min-cost flow algorithms. The precise definition of G̃ are specified in
the pseudocode below, see also Fig. 1.

Let x ∈ N|Ẽ|
≥0 be the output flow solution for the instance G̃ obtained by applying Alg.

MinCostFlow from Theorem 1.12. The algorithm then decomposes the flow x into a multiset
of s-t paths P̃ = {P ′

1, . . . , P ′
ℓ}. Since without loss of generality the flow values are integrals

and since G̃ is a DAG, the flow decomposition of x can be computed efficiently by applying
Lemma 1.14.

Finally, the output ℓ-cover P is obtained by mapping each G̃-dipath P ′
j ∈ P̃ into a

corresponding G-dipath Pj . This mapping is done by applying Procedure Translate on every
P ′

j ∈ P̃. The output G-path Pj = Translate(P ′
j) is defined as follows. The vertices s, s′

and t are omitted, and each appearance of a vertex uj ∈ vin
i , vout

i , v′
i is replaced by its

G-vertex vi, we omit multiple successive occurrences of a vertex in this translation. For
example, for P ′ = [s, s′, vin

i , vout
i , vin

j , t], Translate(P ′) = [vi, vj ]. For a path P ′′ = [s, s′, t],
Translate(P ′′) = ∅.

The ℓ-cover is then given by the multiset P = {Translate(P ′
j) | j ∈ {1, . . . , ℓ}}. We

need the following definition. For Pj ∈ P , denote Translate−1(Pj) = P ′
j where P ′

j ∈ P̃ . Note
that while each path P ′

j ∈ P̃ is mapped to a unique G-path (given by Translate(P ′
j)), it
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might be the case that two distinct paths P ′
i , P ′

j ∈ P̃ map to the same G-path. For example,
P ′

i = [s, s′, vin
i , v′

i, vout
i , t] and P ′

j = [s, s′, vin
i , vout

i , t] both translate to the single vertex {vi}.
Therefore, we consider the Translate function as a bijection from the multiset P̃ to the
multiset P . I.e., each path Pi ∈ P is uniquely mapped to a path P ′

i = Translate−1(Pi) in the
flow decomposition P̃ and vice-versa.

Algorithm PathCover:

Input: An n-vertex DAG G and a parameter ℓ ∈ N≥1.
Output: An ℓ-cover P of G.

1. Transformation to Min-Cost Max-Flow Instance. The instance G̃ =
(Ṽ , Ẽ, u, c) with the designated source s and target t vertices are defined as fol-
lows.

For each vertex vi ∈ V (G), include three copies vin
i , vout

i , v′
i in Ṽ . These copies

are connected by the edges E0,i = {(vin
i , vout

i ), (vin
i , v′

i), (v′
i, vout

i )}.
In addition, add three designated vertices s, s′ and t. So overall,

Ṽ = {vin
i , vout

i , v′
i | vi ∈ V (G)} ∪ {s, s′, t} .

Connect the out-copy vout
j of every incoming neighbor vj ∈ Nin(vi, G) to vin

i .
In the same manner, connect the in-copy vin

k of every vk ∈ Nout(vi, G) to vout
i .

Formally,

E1 = {(vout
j , vin

i ) | vj ∈ Nin(vi, G)} and E2 = {(vin
j , vout

i ) | vj ∈ Nout(vi, G)} .

Let E3 = {(s′, vin
i ) | vi ∈ V (G)} ∪ {(vout

i , t) | vi ∈ V (G)} ∪ {(s, s′), (s′, t)}.
Then

Ẽ =
⋃

i

E0,i ∪ E1 ∪ E2 ∪ E3.

The edge capacities u ∈ ZẼ
≥0 and costs c ∈ ZẼ are defined by:

a. u((s, s′)) = ℓ and u(vin
i , vout

i ) = 1 for every vi ∈ V . All remaining edges e in Ẽ

have capacity of u(e) = ℓ.
b. c(vin

i , vout
i ) = −n3 and c(vin

i , v′
i) = 1 for every vi ∈ V . All remaining edges e

in Ẽ have cost of c(e) = 0.

2. Apply Algorithm MinCostFlow(G̃, s, t) (Theorem 1.12), and let x ∈ R|Ẽ| be the
output flow.

3. Flow Decomposition. Decompose x ∈ R|Ẽ| into s-t paths P̃ in G̃ by Lem. 1.14.
4. The ℓ-cover is given by the multiset P = {Translate(P ′) | P ′ ∈ P̃} (where |P| = ℓ

as each path corresponds to one unit flow in G̃).

Analysis. For a path P ′ ⊆ G̃, denote the cost of P ′ by c(P ′) =
∑

e∈P ′ c(e). We start
with observing that any path P ′ in the flow decomposition P̃ must have a non-positive
cost. Intuitively, this holds as one can replace P ′, with the zero-cost path [s, s′, t] that has a
sufficiently large capacity. Hence we have the following observation.

▶ Observation 2.4. Every path P ′ ∈ P̃ has a non-positive cost, c(P ′) ≤ 0.
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𝑣𝑖
𝑖𝑛

𝑣𝑖
𝑜𝑢𝑡
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𝑢: ℓ, 𝑐: 1

Figure 1 An illustration for the min-cost max-flow reduction. The default values for the edge
capacities and costs are ℓ and 0, respectively.

Recall that P = {P1, . . . , Pℓ} where Pi might be equal to Pj . A vertex vi in a path Pj ∈ P
is denoted as a principal vertex of Pj if its corresponding flow path Translate−1(Pj) ∈ P̃ (i.e.,
the jth path in P̃) contains the edge (vin

i , vout
i ). We denote the number of principal vertices

in Pj ∈ P by n(Pj). Formally,

n(Pj) = |{vi ∈ V | (vin
i , vout

i ) ∈ Translate−1(Pj)} . (1)

Since in our flow instance G̃, the capacity of any edge e = (vin
i , vout

i ) is 1, i.e., u(e) = 1, we
have that a vertex vi ∈ V can be a principal vertex of at most one path in P, hence:

▶ Observation 2.5.
∑

Pj∈P n(Pj) ≤ n.

▶ Lemma 2.6. |P| = ℓ and TotLen(P) ≤ min(ℓ · n, Diam(G) · n).

Proof. The bound of the number of paths simply follows by the fact that x is an integral
flow of value ℓ, and by the definition of flow decomposition (Def. 1.13). Furthermore as G is
a DAG every path of G is of length at most n− 1. Thus TotLen(P) ≤ ℓ · n. To show that
TotLen(P) ≤ Diam(G) · n we make the following observation. Consider any Pj ∈ P and let
u and v be two consecutive principal vertices on Pj , in the sense that the only principal
vertices on the segment Pj [u, v] are u and v. We then claim that |Pj [u, v]| ≤ Diam(G).

Assume for the sake of contradiction that |Pj [u, v]| > Diam(G), we will show that in this
case, we can replace the path Q = Translate−1(Pj) with an alternative path Q∗ ⊆ G̃, that
provides a strictly lower cost and the same value of flow, hence leading to a contradiction.
That is, in the alternative flow solution x′ we will add one unit flow over Q∗ and omit one
unit flow from Q. Letting R = [u0 = u, . . . , uk = v] be the u-v shortest path in G, then the
alternative path Q∗ is defined as follows:

Q∗ = Q[., uout]◦(uout, uin
1 )◦T1◦(uout

1 , uin
2 )◦T2◦(uout

2 , uin
3 )◦. . .◦Tk−1◦(uout

k−1, uinn
k )◦Q[vin, .] ,

where Tj = (uin
j , u′

j) ◦ (u′
j , uout

j ) for every j ∈ {1, . . . , k − 1}. Consider the flow solution x′

defined by:
x′(e) = x(e)− 1, for every e ∈ Q,

x′(e) = x(e) + 1, for every e ∈ Q∗,

x′(e) = x(e), otherwise .
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We first show that x′ is a legal flow, and with the same value as x. This holds as all edges
on the paths of Tj for j ∈ {1, . . . , k − 1}, have a sufficiently large capacity. Next, we show
that

∑
e c(e)x′(e) <

∑
e c(e)x(e), which will be in contradiction to the optimality of x.

By the definition of u and v, c(Q[uout, vin]) = |Pj [u, v]| − 1. In the same manner,
c(Q∗[uout, vin]) = |R| − 1. Since |R| < |Pj [u, v]|, we conclude that c(Q) > c(Q∗), and
consequently that

∑
e c(e)x′(e) <

∑
e c(e)x(e) as desired. We therefore have that |Pj [u, v]| ≤

Diam(G), and |Pj | ≤ Diam(G) · n(P ). Combining with Obs. 2.5, we have
∑ℓ

i=1 |Pi| ≤
Diam(G) ·

∑ℓ
i=1 n(Pi) ≤ Diam(G) · n. ◀

We next show that each long dipath in G is dominated by the vertices of V (P) (i.e., contains
a bounded number of uncovered vertices).

▶ Lemma 2.7. Any dipath in G contains at most 2n/ℓ vertices of V \ V (P).

Proof. Assume by contradiction that there exists a dipath Q ⊆ G that contains at least 2n/ℓ

vertices of U = V \ V (P). Observe that as |P| = ℓ, by Obs. 2.5, there exists a path P ∗ ∈ P
with n(P ∗) ≤ n/ℓ principal vertices. Therefore c(Translate−1(P ∗)) ≥ −n3 · n/ℓ (recall that
c((vin

i , vout
i )) = −n3 for any i ∈ {1, . . . , n}).

We next show that the path Q implies the existence of an s-t path Q′ in G̃ that has a
lower cost than that of Translate−1(P ∗). The path Q′ is defined based on Q = [v1, v2, . . . , vq],
as follows:

Q′ = (s, s′) ◦ (s′, vin
1 ) ◦ T1 ◦ (vout

1 , vin
2 ) ◦ T2 ◦ (vout

2 , vin
3 ) ◦ . . . (vout

q−1, vin
q ) ◦ Tq ◦ (vout

q , t) ,

where Tj = (vin
j , v′

j) ◦ (v′
j , vout

j ) for every vj ∈ V (Q) \ U , and Tj = (vin
j , vout

j )) for every
vj ∈ V (Q) ∩ U . By the definition of U , x((vin

i , vout
i )) = 0 for every vi ∈ U . In addition,

c(Q′) ≤ −n3 · 2n/ℓ + n ≤ −n3 · n/ℓ− n3 + n < c(Translate−1(P ∗)) .

Consider an alternative flow solution x′ obtained by replacing the path P ∗ with the path Q′

in the flow decomposition. That is, let x′(e) = x(e)− 1 for every e ∈ Translate−1(P ∗), and
x′(e) = x(e) + 1 for every e ∈ Q′. Note that since x((vin

i , v′
i, vout

i )) = 0 for every vi ∈ U , we
have that x′ is a legal flow of the same value as that of x, but of a strictly lower cost, as
c(Translate−1(P ∗)) > c(Q′). Ending with a contradiction to the optimality of x. ◀

2.2 Partial ℓ-Covers
The construction of shortcut sets of sublinear size of Theorem 1.5 calls for a variant of the
ℓ-covers that we call partial ℓ-covers. These covers are defined w.r.t. a given subset V ′ of
vertices that we wish to cover, in the following sense:

▶ Definition 2.8 (Partial ℓ-Covers). Given an n-vertex digraph G = (V, E), a subset V ′ ⊆ V ,
and a parameter ℓ, a partial ℓ-cover for G w.r.t. V ′ is a multiset of ℓ paths P = {P1, . . . , Pℓ}
(possibly, singletons or empty), satisfying the following:
1. TotLen(P) ≤ 8|V (P) ∩ V ′|,
2. For any long dipath P ⊆ G, i.e., such that |P | ≥ 8|V ′ ∩ V (P)|/ℓ, it holds that

|V (P ) ∩ (V ′ \ V (P))| ≤ |V (P )|/4 .

▶ Theorem 2.9. For any given n-vertex m-edge DAG G = (V, E), ℓ ∈ [1, n] and V ′ ⊆ V ,
there is a randomized algorithm PartialPathCover(G, V ′, ℓ) for computing an ℓ-partial cover
of G w.r.t. V ′, w.h.p, in time Õ(m + n3/2).
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Algorithm PartialPathCover. The algorithm is almost equivalent to Algorithm PathCover,
up to small adaptations of the min-cost max flow instance. Specifically, we define G̃ =
(Ṽ , Ẽ, u′, c′), with the same edge and vertex set as in Algorithm PathCover. Letting, u, c

be the capacity (resp., cost) functions of Alg. PathCover, then in our reduction, we define:
c′((vin

i , vout
i )) = −7 for every vi ∈ V , and c′(e) = c(e) for every other edge in G̃. In addition,

u′((vin
i , vout

i )) = 0 for every vi ∈ V \ V ′, and u′(e) = u(e) for every other edge in G̃.
The remaining algorithm is identical as Algorithm PathCover. It applies Algorithm

MinCostFlow(G̃, s, t) using Theorem 1.12. The output flow solution is given by x. Then, it
computes the flow-decomposition P̃ by applying Lemma 1.14 on x. Finally, the paths P̃ are
translated into a multiset of G-paths P , which provides the output partial ℓ-cover w.r.t. V ′.
The function Translate provides the bijection from the multiset P̃ to the multiset P.

3 Shortcut Algorithms via Path Covers

3.1 Shortcutting to Diameter D = O(n1/2)

We start by proving Theorem 1.3, by presenting an algorithm for computing linear-size
D-shortcuts for D = O(

√
n). This algorithm will be used later on in order to provide

improved diameter bounds. By Proposition 1.11, it is sufficient to prove Theorem 1.4 for
DAGs. Before presenting the improved shortcut algorithm FasterShortcutSqrtN, we also need
the following definition. For a given directed path P = [u1, . . . , uk] and a vertex v, let ui be
the first vertex on P satisfying that (v, ui) ∈ TC(G). The edge (v, ui) is denoted as the first
incoming edge from v to P , represented by e(v, P ) = (v, ui). Note that the augmented path
P ∪{e(v, P )} provides a directed path from v to every vertex u ∈ P such that (v, u) ∈ TC(G).
The following result provided in [20].

▶ Lemma 3.1 (Restatement of Lemma 2 in [20]). Let Q be a collection of directed paths in a
DAG. Then, one can compute the edge set {e(v, Q) | v ∈ V, Q ∈ Q} within O(|Q| ·m) time.

Algorithm FasterShortcutSqrtN:

Input: An n-vertex DAG G,
Output: A shortcut set H ⊆ TC(G) such that |E(H)| = Õ(n) and
Diam(G ∪H) = O(

√
n).

1. Compute ℓ-cover P = PathCover(G, ℓ), for ℓ = Θ(
√

n) (using Theorem 2.3).
2. Let C = DisjointChains(P) (using Lemma 1.15).
3. For every Ci ∈ C, let Hi = H(Ci) be a shortcut set for reducing the diameter of Ci

to 2 as obtained by Lemma 1.10.
4. Output H =

⋃
Ci∈C Ci ∪Hi.

▶ Lemma 3.2 (Runtime and Size). Algorithm FasterShortcutSqrtN can be implemented in
time Õ(m + n3/2). In addition, E(H) = Õ(n), w.h.p.

Finally, we complete the diameter argument and establish Theorem 1.3.

▶ Lemma 3.3. The diameter of G ∪H is at most O(
√

n), w.h.p.
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3.2 Shortcutting to Diameter D = o(n1/2)
In this subsection, we extend the algorithm of Sec. 3.1 to provide D-shortcuts for D = o(n1/2).
Obtaining a smaller diameter bound will entitle a cost both in terms of the running time
and in the size of the shortcut set. Again, we assume that G is a DAG.

Algorithm FasterShortcutSmallDiam:

Input: An n-vertex DAG G and a diameter bound D = o(n1/2).
Output: A shortcut set H ⊆ TC(G) satisfying that Diam(G ∪H) ≤ D.

1. Let H0 ← FasterShortcutSqrtN(G), (using Theorem 1.3).
2. Compute ℓ-cover P = PathCover(G ∪H0, ℓ) for ℓ = 16n/D, (using Theorem 2.3).
3. Let C = DisjointChains(P) (using Lemma 1.15).
4. For every Ci ∈ C, let H(Ci) be a 2-shortcut set for Ci obtained by Lemma 1.10.
5. Let V ′ = V [p] and C′ = C[p] where p = Θ(log n/D).
6. Applying Lemma 3.1 to compute Ĥ = {e(v, Ci) | v ∈ V ′, Ci ∈ C′}.
7. Output H = H0 ∪

⋃
Ci∈C(Ci ∪H(Ci)) ∪ Ĥ.

▶ Lemma 3.4 (Runtime and Size). Algorithm FasterShortcutSmallDiam can be implemented
in time Õ(m · n/D2 + n3/2). In addition, E(H) = Õ(n2/D3), w.h.p.

▶ Lemma 3.5 (Diameter Bound). Diam(G ∪H) ≤ D, w.h.p.

Consider a u-v shortest path P in G′ = G ∪ H0 ∪
⋃

(Ci ∪ H(Ci)). Let P ′, P ′′ be the
(D/4)-length prefix (resp., suffix) of P .

▶ Lemma 3.6. P ′′ contains at most D/8 vertices from V \ V (C).

By the exact same argument as in the proof of Lemma 3.3, we also have:

▶ Observation 3.7. |V (P ′′) ∩ V (Ci)| ≤ 3 for every Ci ∈ C.

Therefore by Lemma 3.6, P ′′ contains representatives vertices from Ω(D) distinct paths in C.
That is, |{Ci ∈ C | V (Ci) ∩ V (P ′′) ̸= ∅}| = Ω(D). As each chain in C is sampled into C′

independently with probability p, by the Chernoff bound, we have that w.h.p., P ′′ contains
at least one vertex y ∈ Ci for some sampled chain Ci = [a1, . . . , ak] ∈ C′. In addition, w.h.p.,
the prefix P ′ contains at least one sampled vertex x ∈ V ′. We then have that the edge
e(x, Ci) is in Ĥ ⊆ H. Let e(x, Ci) = (x, z) for z ∈ Ci[a1, y]. Therefore the augmented graph
G ∪H contains a u-v path Q = P [u, x] ◦ (x, z) ◦ Ci[z, y] ◦ P [y, v] where

distG∪H(u, v) ≤ |Q| = |P [u, x]|+ 1 + |Ci[z, y]|+ |P [y, v]|
≤ |P ′|+ 1 + distCi∪H(Ci)(z, y) + |P ′′|
≤ D/4 + 1 + 2 + D/4 ≤ D/4 + D/4 + 3 ≤ D .

This concludes the proof of Theorem 1.4.

3.3 Shortcut Algorithms for Diameter D = Ω(n1/3)
In this section, we provide a proof for Theorem 1.5 and compute D-shortcuts of sublinear
size for any input D = ω(n1/3). We start by showing that in this case, as well, one can
assume that the input graph G in Theorem 1.5 is a DAG. The standard reduction to a
DAG is based on adding Θ(n) shortcut edges, thus too costly for our setting. Then, we
present an algorithm that given a collection of dipaths P computes a D′-shortcut for each
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path such that the total size of the union of shortcuts in sublinear. Again, as we aimed at
obtaining sublinear shortcuts we cannot simply use Lemma 1.10 as is. Finally, we present
Alg. FasterShortcutLargeD that computes the shortcuts given these tools.

Tool 1: Reduction to DAGs with Sublinear Size. In the full version, we show:

▶ Theorem 3.8. Given a digraph G = (V, E), one can compute in time O(|V | + |E|) a
DAG G′ = (V ′, E′) such that |V ′| = O(|V |) and |E′| = O(|E|), and in addition the following
holds: Given any D-shortcut set H ′ ⊆ TC(G′) for G′, one can compute in time O(|H ′|) a
D-shortcut set H ⊆ TC(G) for G such that |H| ≤ |H ′|.

Tool 2: Shortcutting Dipaths with Sublinear Number of Edges. A crucial tool in our
prior constructions is based on computing 2-shortcuts of nearly linear size for dipaths. For
our purposes, we next provide an alternative scheme that provides shortcuts of sublinear size
at the cost of increasing the diameter.

▶ Lemma 3.9 (Shortcuts of Dipaths with Sublinear Size). There exists an algorithm
PathShortcut that given a DAG G, dipath collection P and integer parameter d, outputs
H ⊆ TC(G) satisfying that for all 1 ≤ i ≤ t, we have Diam(Pi ∪ H[V (Pi)]) = O(d) and
|H| = Õ(

∑t
j=1 |Pi|/d). The running time is Õ(

∑
P ∈P |V (P |).

The Shortcut Algorithm. We are now ready to present Algorithm FasterShortcutLargeD.
The algorithm is given as input a DAG G and diameter bound D = ω(n1/3). Define:

tD =
√

n/D and sD = D3/2/
√

n . (2)

The algorithm consist of i∗ ≤ tD iterations (as will be shown in the analysis), where in
each iteration i, the algorithm computes a partial tD-cover Pi with respect to the set
Vi = V \

⋃i−1
j=0 Pi, namely, the set of vertices that are not yet covered by the current collection

of paths
⋃i−1

j=0 Pi. It then computes an sD-shortcut H(P ) for each P ∈ Pi by applying
Algorithm PathShortcut of Lemma 3.9, and adds

⋃
P ∈Pi

H(P ) to the output shortcut H.
At the end of these iterations, we obtain i∗ ≤ tD path collections P0, . . . ,Pi∗−1, where

|Pj−1| ≤ tD for every j ∈ {1, . . . , i∗}. The algorithm then defines a collection of Θ(tD log n)
paths R as follows. The dipaths of the last path collection, namely, Pi∗−1 is taken entirely
into R. In addition, each other dipath in

⋃i∗−2
j=1 Pj is sampled into R independently with

probability p = Θ(log n/tD). By the Chernoff bound we get that, w.h.p., |R| = Θ(tD log n)
as desired. The algorithm then adds to H, the collection of e(v, P ) edges for every v, P ∈
V [p′]×R where p′ = Θ(log n/D). This completes the description of the algorithm.

Algorithm FasterShortcutLargeD:

Input: An n-vertex DAG G = (V, E) and a diameter bound D = ω(n1/3).
Output: A shortcut set H ⊆ TC(G) satisfying that Diam(G ∪H) = O(D) and
|H| = Õ((n/D)3/2).

1. Set V0 = V , U0 = V , i = 0, p′ = 10 log n ·D−1 and p = 10 log n · t−1
D .

2. While |Ui| ≥ n
tD

do the following:
a. Set Pi = PartialPathCover(G, Vi, tD).
b. Set Hi = PathShortcut(Pi, sD).
c. Ui+1 ← V (Pi) ∩ Vi, Vi+1 ← Vi \ V (Pi), and i← i + 1.
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3. Set R =
⋃i−2

j=0 Pj , R′ = R[p] ∪ Pi−1 and V ′ = V [p′].
4. Ĥ = {e(v, Pi) | v ∈ V ′, Pi ∈ R′} (using Lemma 3.1).
5. Output H =

⋃i−1
j=0 Hi

⋃
Ĥ.

Analysis. Recall that the index i∗ indicates the largest index of the application, where
|Ui∗ | < n/tD leading to the termination of the algorithm.

▶ Observation 3.10. V =
⋃i∗−1

j=0 V (Pj) ∪ Vi∗ .

▶ Observation 3.11. For every Q ∈
⋃i∗−1

j=0 Pj , for every u-v shortest path P ⊆ G∪
⋃i∗−1

j=0 Hj

it holds that |V (Q) ∩ V (P )| = O(sD).

▶ Lemma 3.12 (Runtime and Size). Algorithm FasterShortcutLargeD can be implemented in
time Õ((m + n3/2) · tD). In addition, |E(H)| = Õ((n/D)3/2), w.h.p.

Proof. We first claim that the While loop is applied at most tD times. By definition,
Uj ∩ Vj = ∅ and Uj ∪ Vj = Vj−1. In addition, since Uj ⊆ Vj−1, it holds that U1, U2, . . . , Ui

are vertex-disjoint. Since the While loop continues only provided that |Ui| ≥ n/tD, there
can be at most tD applications of this loop. We will need the following observation.

▶ Observation 3.13. TotLen(R∪ Pi∗−1) = O(n).

Runtime. We focus on a single application of the While loop and show that it can be
implemented in Õ(m + n3/2) time, since there are at most tD applications, the final runtime
is bounded by Õ((m + n3/2)tD). Step (a) is implemented in Õ(m + n3/2) time by Theorem
2.9. Step (b) runs in Õ(TotLen(R ∪ Pi−1)) = Õ(n), by Lemma 3.9 and Observation 3.13
(we note that in fact this is the total running time of Step (b) over all the iterations of the
While loop). Step (c) runs in O(n) time. The runtime bound of the tD applications of the
While loop follows. We next analyze the remaining steps of the algorithm. By Observation
3.13, Step 3 is implemented in O(n) time. Since |R′| = |R[p]|+ |Pi−1|, w.h.p., we have that
|R′| = Õ(tD) as |R[p]| = Õ(tD) (this follows from the fact that |R| ≤ t2

D as there are at
most tD iterations of line 2(a) and at each iterations at most tD paths are created) and
|Pi−1| ≤ tD. Using Lemma 3.1, Step 4 is implemented in Õ(m · tD).

Size. By the Chernoff bound, w.h.p., it holds that|Ĥ| = |V ′|·|R′| = |V ′|·(|R[p]|+|Pi∗−1|) =
Õ

(
n
D · (tD + tD)

)
= Õ((n/D)3/2). Furthermore, we also have

∑i∗−1
j=0 |Hj | = O((n/D)3/2).

This follows from the fact proven in Observation 3.13 that
∑

P ∈R∪Pi∗−1
|V (P )| = O(n).

Hence, by Lemma 3.9 and Step 2(b) of the algorithm, w.h.p., we have that

i∗−1∑
j=0
|Hj | = Õ

s−1
D ·

∑
P ∈R∪Pi−1

|V (P )|

 = Õ(s−1
D · n) = Õ((n/D)3/2).

We conclude that |H| = |
⋃i∗−1

j=0 Hj

⋃
Ĥ| = Õ((n/D)3/2), w.h.p. ◀

▶ Lemma 3.14 (Diameter Bound). Diam(G ∪H) = O(D), w.h.p.

Proof. Consider a u-v shortest dipath P in the graph G′ =
⋃i∗−1

j=0 Hj ∪ G. Let P ′, P ′′ be
the 8D-length prefix and suffix of P , respectively. By the Chernoff bound, it holds that
V (P ′) ∩ V ′ ̸= ∅, and let u∗ be some arbitrary vertex in V (P ′) ∩ V ′. Recall that Pi∗−1 is the
last path collection obtained by applying Alg. PartialPathCover We next consider two cases.
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Case 1: V (P ′′) ∩ V (Pi∗−1) ̸= ∅. Let v∗ be some vertex in V (P ′′) ∩ V (Pi∗−1) and let
Q ∈ Pi∗−1 be some path satisfying that v∗ ∈ V (Q). Since Q ∈ R′, the edge e(u∗, Q) is in Ĥ ,
and thus also in the output shortcut H. Let e(u∗, Q) = (u∗, z) where z is the first vertex on
Q such that there is a dipath from u∗ to z in G. We therefore have that:

distG∪H(u, v) ≤ distG′(u, u∗) + dist
G′∪Ĥ

(u∗, z) + distG∪Hi∗−1(z, v∗) + distG′(v∗, v)(3)
≤ |P ′|+ 1 + O(sD) + |P ′′| = O(D) . (4)

This holds as distG∪Hi−1(z, v∗) = O(sD) by Lemma 3.9 and sD = D ·
√

D/n ≤ D.

Case 2: V (P ′′) ∩ V (Pi∗−1) = ∅. We will need the following observations.
Observation 1: V (P ′′) ⊆

⋃i∗−2
j=0 Pj ∪ Vi∗ . This observation follows from Obs. 3.10, as

V (P ′′) ∩ V (Pi∗−1) = ∅.
Observation 2: 8|Ui∗ |/tD ≤ 8D. This observation follows from the fact that |Ui∗ | ≤ n/tD.

Hence by property (2) of Definition 2.8 of the partial ℓ-cover Pi∗−1 w.r.t. Vi∗−1 (with ℓ = tD),
we have that:

|V (P ′′) ∩ Vi∗−1| = |V (P ′′) ∩ Vi∗ | By Observation 1.
≤ |V (P ′′)|/4 By property (2) of Definition 2.8 and Observation 2.

By Obs. 3.11, it holds that |V (Q) ∩ V (P ′′)| = O(sD) for every Q ∈
⋃i∗−2

j=0 Pj . Therefore,
P ′′ must contain vertices from at least Ω(D/sD) = Ω(tD) distinct paths in P ′ =

⋃i∗−2
j=0 Pj .

Formally, let X = {Q ∈ P ′ | V (Q) ∩ V (P ′′) ̸= ∅}, then |X | = Ω(tD).
Since each path in X is sampled intoR′ independently with probability of p = Θ(log n·t−1

D ),
by the Chernoff bound, w.h.p., |X ∩ R′| ̸= ∅. Letting Q∗ ∈ X ∩ R′, we have that there is
a vertex y ∈ V (Q∗) ∩ V (P ′′) and in addition, the edge e(u∗, Q∗) = (u∗, z) is in H, where z

is the first vertex on Q∗ from which there is an incoming path from u∗. Altogether by the
same argument as in Case 1, we have that distG∪H(u, v) = O(D). ◀

Due to lack of space, the applications of our ℓ-covers and shortcut constructions (Theorems
1.6, 1.8) appear in the full version.
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Abstract
We study homomorphism polynomials, which are polynomials that enumerate all homomorphisms
from a pattern graph H to n-vertex graphs. These polynomials have received a lot of attention
recently for their crucial role in several new algorithms for counting and detecting graph patterns,
and also for obtaining natural polynomial families which are complete for algebraic complexity
classes VBP, VP, and VNP. We discover that, in the monotone setting, the formula complexity, the
ABP complexity, and the circuit complexity of such polynomial families are exactly characterized by
the treedepth, the pathwidth, and the treewidth of the pattern graph respectively.

Furthermore, we establish a single, unified framework, using our characterization, to collect
several known results that were obtained independently via different methods. For instance, we attain
superpolynomial separations between circuits, ABPs, and formulas in the monotone setting, where
the polynomial families separating the classes all correspond to well-studied combinatorial problems.
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1 Introduction

This work is a culmination of exploration of four themes in combinatorics, algorithm design,
and algebraic complexity – graph algorithms, homomorphism polynomials, graph parameters,
and monotone computations. While each of these themes are of independent interest, a
strong interplay among them has become quite apparent in recent years, and has lead to
several new advancements in algorithms and complexity.
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The first theme is graph algorithms, where the algorithms that are relevant to this
work are those corresponding to pattern detection and counting. Loosely speaking, in such
problems, we look for the “presence” of a graph H, called the pattern graph in another
graph G, called the host graph1. The notions of presence of one graph in another graph
that have been the most prevalent are subgraph isomorphism, induced subraph isomorphism,
and homomorphism. In detection and counting algorithms for subgraph isomorphism (resp.
induced subgraph isomorphism), we want to detect and count subgraphs (resp. induced
subraphs) of an n-vertex host graph which is isomorphic to the pattern graph. Whereas,
while looking for the occurrence of the pattern graph in the host graph, if we relax the
mapping to allow multiple vertices in the pattern graph to be mapped to a single vertex in
the host graph, while preserving the edge relations, we get a homomorphism of the pattern
graph in the host graph. When the notion is homomorphism, we are interested in detecting
and counting homomorphisms from the pattern graph to the host graph.

All the above mentioned problems have found many applications, both in theory and
practice. For instance, detecting and counting (induced) subgraph isomorphisms are used in
extremal graph theory in the study of dense graphs and quasirandom graphs [10, 29, 30], and
in many applications which boil down to analyzing real-world graphs. This includes finding
protein interactions in biomolecular networks [1, 34], finding active chemicals of interest in the
research for drug synthesis [4], advertisement targeting by finding and counting certain social
structure patterns in the analysis of social networks [24, 46], and also finding user patterns
for recommender services on platforms like Amazon and Yelp [47]. The homomorphism
counting problem appears for instance, in statistical physics via partition functions, in graph
property testing, and extremal graph theory (see [5] for a survey). When both the host
graph and the pattern graph are parts of the input, then it can be shown that all these
pattern detection problems are NP-complete, since they generalize the CLIQUE problem,
whereas the corresponding counting problems are all known to be #P-complete. On the
other hand, in almost all the real-world applications pointed out above, we have a fixed
pattern graph which we are trying to detect or count in a given host graph. Thus, in this
work, we focus on the setting when the pattern graph is a fixed graph, and the host graph
is a part of the input. Here, in the word-RAM model with O(log(n))-bit words, since the
pattern graph is of a fixed size, say its number of vertices is k, all the above problems can
be solved using a trivial algorithm, based on exhaustive search, that runs in time O(nk)
and space O(1) where n is the number of vertices in the host graph. However, in almost
all the real-world applications pointed out above, the host graph is massive. Hence, one
desires faster algorithms, preferably linear or even sub-linear algorithms. Hence, there is
a lot of interest and advances in improving upon this trivial algorithm using ideas from
combinatorics, algebraic circuits, and machine learning (see [33] for a survey, also see [3, 28]
and references therein). These problems are also very interesting from the perspective
of complexity theory. For instance, in the Fixed Parameter Tractability community, it is
conjectured that the best known algorithms for variants of these pattern detection and
counting problems cannot be further improved. If true, this would imply P ̸= NP in a rather
strong way (see [27, 32, 38, 26]). Recently, it was discovered by Curticapean, Dell and Marx
[11] (also see [13]) that counting subgraph isomorphisms corresponds to counting linear
combinations of homomorphisms, and hence establishing that it is sufficient to just consider
the homomorphism counting problem. Several advances have been attained by considering
homomorphism problems [3, 23, 25, 17, 44].

1 In this paper, the pattern graph and the host graph are always simple, undirected graphs.
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Our second theme – homomorphism polynomials, corresponds to one of the most successful
ways by which progress has been made towards homomorphism problems, and hence towards
(induced) subgraph isomorphism problems too. For a pattern graph H and a host graph G, the
homomorphism polynomial is the polynomial whose monomials enumerate homomorphisms
from H to G. For using homomorphism polynomials to obtain new algorithms for the
above graph problems for a pattern graph H, it suffices to consider the homomorphism
polynomial from H to Kn, the clique on n vertices. Thus, we call the homomorphism
polynomial from H to Kn as the homomorphism polynomial of H (see Definition 10). It
turns out that efficient arithmetic circuit (see Section 2 for the definition) constructions of
homomorphism polynomials can be used to obtain almost all known best algorithms for
detecting induced subgraph isomorphisms as well (See [3], also [23, 25, 17, 44]). Therefore,
the study of homomorphism polynomials is a crucial area of study within graph pattern
detection and counting. Homomorphism polynomials also turned out to be extremely useful
in algebraic complexity theory in the quest for finding natural complete polynomial families
for the complexity class VP (the algebraic complexity analog of P. See [39]). Homomorphism
polynomials yield polynomial families that are complete for important algebraic complexity
classes such as VBP, VP, and VNP through a single framework, simply by considering
different pattern graphs [15, 31, 9], making it important not only from the perspective of
algorithm design, but also from the perspective of complexity theory (also see [16], where
homomorphism polynomials yield several dichotomy theorems in algebraic complexity theory).
Homomorphism polynomials are thus the central focus of this work too.

In our third theme, that is of graph parameters, the parameters relevant to this work are
treewidth, pathwidth, and treedepth of graphs. Treewidth, loosely speaking, is a measure
of how far a graph is from being a tree; similarly the pathwidth measures how far a graph
is from being a path; and treedepth measures how far a graph is from being a star (see
Section 2 for definitions). The connection between the parameters treewidth and pathwidth
and counting homomorphisms was first explored in [13] (also see [3, 31]), where it is shown
that when H has bounded treewidth, then there are small-sized arithmetic circuits for
homomorphism polynomials, whereas when H has small pathwidth, then the corresponding
homomorphism polynomials have small-sized algebraic branching programs (ABPs, defined in
Section 2). These improved constructions for circuits and ABPs are one of the main source
of advancement in finding improved algorithms for these pattern detection and counting
problems [3, 23, 25, 17, 44]. The connection between the subgraph isomorphism problem
and treedepth has also been explored in the context of Boolean computational models in [27]
and [26], where they discuss treewidth and treedepth based upper bounds and lower bounds
for counting subgraph isomorphisms for Boolean circuits and formulas. In the context
of parameterized counting complexity of these problems, a stronger connection between
treewidth and the complexity of counting homomorphisms was established by Dalmau and
Jonsson [12] who showed a dichotomy theorem stating that when the pattern graph has
bounded treewidth, then we can count homomorphisms in polynomial time. Otherwise, we
can show #W[1]-hardness. Now we turn our attention to the other major application of
homomorphism polynomials. It turns out that the parameters treewidth and pathwidth
played a crucial role in the construction of natural complete polynomials for VP,VBP, and
VNP too. More specifically, the complete polynomials for VP and VBP were homomorphism
polynomials corresponding to specific pattern graphs of bounded treewidth and bounded
pathwidth respectively. Thus, one sees that in the context of these pattern detection and
counting problems, and in the homomorphism polynomials of interest, these graph parameters
of the pattern graph ubiquitously pop up over and over again as the crucial complexity
parameters. This made us wonder, to what extent do these parameters dictate the complexity
of these problems and, in particular, the homomorphism polynomials.
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Towards this, the starting point of our work is the observation that all the improved
arithmetic circuit constructions of homomorphism polynomials based on treewidth and
pathwidth, do not use any negative constants in the circuit. This brings us to our final
theme, that is, of monotone computation.

In the Boolean setting, monotone computations refer to computations that do not
involve the negation operation, the NOT gate. Similarly, in the algebraic setting for
computing polynomials, monotone arithmetic circuits correspond to circuits that do not
use negative constants or subtraction gates, that is, there is no cancellation involved in the
circuit. Monotone computations are interesting for three main reasons. First reason is that
monotone operations have favorable stability properties with respect to rounding errors [40].
Secondly, an improved monotone circuit requires combinatorial insights since it does not
use any cancellations and algebraic identities. Such constructions often reveal interesting
combinatorial structure about the problem at hand and lead to new combinatorial algorithms.
for the problem at hand. For instance, Grenet’s monotone algebraic branching program
construction of the permanent polynomial [19]. Finally, the weakness of monotone models
resulting from the lack of cancellations, makes them significantly easier to understand. Their
computations are much better understood, both in the Boolean and the algebraic setting, and
hence have been used as a starting point towards understanding the general model. Indeed,
we know exponential lower bounds as well as separations between important complexity
classes when we restrict ourselves to the monotone setting, in contrast to the embarrassingly
poor understanding that we have in the general setting. In particular, Schnorr [40] showed
an exponential lower bound for the clique polynomial, which happens to be a special case
of homomorphism polynomial, where the pattern graph is a clique. Moreover, we know
superpolynomial separations between complexity classes2 mVF and mVBP [41], mVBP and
mVP [20], and finally, very recently, between mVP and mVNP [45]. None of these separations
are settled in the non-monotone setting. Moreover, the best known circuit lower bound in the
non-monotone setting is just Ω(n log n) [2]. Thus, it makes sense to study monotone models,
both from the perspective of upper bounds – due to special interests in algorithms based
on improved monotone circuits – as well as lower bounds – as a first step towards getting
lower bounds for the general model. Many times, the best upper bounds come first in the
monotone setting. For instance, the best known upper bound for the permanent polynomial
for ABPs is a monotone construction [19]. We note that for computing homomorphism
polynomials, Curticapean, Dell, and Marx gave an O(nω) upper bound for all pattern graphs
with treewidth = 2 [11], and an O(nkω/3) upper bound is known for all k-vertex graphs [35],
where ω is the exponent of matrix multiplication. However, for sufficiently large pattern
graphs with treewidth > 2, which is almost all pattern graphs, the monotone constructions
are the best known.

This motivated us to pursue the concrete question of whether these treewidth and
pathwidth based improved monotone arithmetic circuits for homomorphisms polynomials
can further be improved, and to what extent would these graph parameters dictate it. The
answer that we discovered turns out to be conceptually quite satisfying, and settles the
problem completely.

2 mVF, mVBP and mVP refer to the class of polynomial families computable by poly-sized monotone arith-
metic formulas, monotone algebraic branching programs, and monotone arithmetic circuits, respectively.
mVNP refers to the monotone analog of the complexity class VNP.
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1.1 Our contributions
In this work, we fully solve the question of monotone complexity of homomorphism poly-
nomials by showing that they are completely determined by the aforementioned graph
parameters.

For arithmetic circuits, we discover that the treewidth of the pattern graph exactly
determines the monotone complexity of its homomorphism polynomial, by establishing that
the treewidth based upper bound in [13, 31, 3] is also a lower bound.

In what follows, the monotone arithmetic circuit (resp. ABP or formula) complexity
of a polynomial refers to the size of the smallest monotone arithmetic circuit (resp. ABP
or formula) computing the polynomial. Here size of an arithmetic circuit (resp. ABP or
formula) is the number of edges in the circuit (resp. ABP or formula). See Section 2 for
detailed definitions. The underlying field is Q.

▶ Theorem 1. The monotone arithmetic circuit complexity of the homomorphism polynomial
for a pattern graph H is Θ(ntw(H)+1), where tw(H) is the treewidth of H.

In the case of algebraic branching programs, we find that the pathwidth of the pattern
graph is the parameter controlling the monotone complexity of its homomorphism polynomial,
again, by proving a lower bound that exactly matches the pathwidth based upper bound in
[13, 31, 3].

▶ Theorem 2. The monotone ABP complexity of the homomorphism polynomial for a pattern
graph H is Θ(npw(H)+1), where pw(H) is the pathwidth of H.

Finally, for monotone formulas, it is the treedepth of the pattern graph which governs
the complexity of its homomorphism polynomial.

▶ Theorem 3. The monotone formula complexity of the homomorphism polynomial for a
pattern graph H is Θ(ntd(H)), where td(H) is the treedepth of H.

Hence, we resolve the question of monotone complexity of homomorphism polynomials
completely by showing that treewidth, pathwidth and treedepth exactly characterize the
complexity of homomorphism polynomials for arithmetic circuits, ABPs, and arithmetic
formulas respectively. This also answers the conceptual question raised earlier asking to
what extent do these graph parameters dictate the complexity of these homomorphism
polynomials.

The characterization, in addition to giving several new lower bounds, in particular, also
allows us to collect, through a unified framework, several classical and recent results for
the monotone complexity of polynomials, obtained independently using different methods,
over several decades. This is simply because the above theorems imply that for every
family of pattern graph with high treewidth, pathwidth, or treedepth, the corresponding
homomorphism polynomial family will have high circuit complexity, ABP complexity, or
formula complexity, respectively.

As a first example, applying the observations made in the proofs of Theorem 1 and Theorem
2 to polynomial families that count colored isomorphisms from pattern families (as opposed
to fixed size pattern graphs), we obtain an alternative proof for the superpolynomial
separation between monotone arithmetic circuits and monotone algebraic branching
programs, first discovered by Hrubes and Yehudayoff [20]. We believe that our proofs are
conceptually much simpler.
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In the same spirit, we also manage to reattain the superpolynomial separation between
algebraic branching programs and arithmetic formulas in the monotone setting, using
simple applications of Theorem 2 and Theorem 3. This was previously known as a
consequence of a result by Snir [41].
Our characterization, in particular, also rediscovers the fine-grained separations between
all these models for constant-degree polynomials. That is, for every constant d, we get a
polynomial family such that it is computable by linear-sized monotone arithmetic circuits,
but any monotone ABP computing it must be of size at least nd. Analogously, for every
constant d, we get a polynomial family computable by linear-sized monotone ABP but
any monotone arithmetic formula computing it must be of size at least nd. Earlier,
such fine-grained separations could be obtained by applying the results of [41] and [20]
together.
Another simple application of Theorem 1 yields an exponential lower bound against
monotone arithmetic circuits for the clique polynomial CL2n,n, which enumerates all
cliques of size n in a 2n-vertex clique, first proved by Schnorr [40, Theorem 4.4].

▶ Remark 4. Note that, Theorems 1, 2, and 3 have pattern graph H fixed and hence of
constant size. Thus, the theorems pertain to constant degree polynomials and they do not
yield superpolynomial lower bounds on homomorphism polynomials. Unlike the works that
show exponential lower bounds on monotone polynomials, for instance [6, 7, 8, 42], our main
goal is to obtain tight lower bounds on homomorphism polynomials for fixed size pattern
graphs. Our proofs, however, go via the colored subgraph isomorphism polynomials for which
we also get superpolynomial lower bounds by considering pattern graphs of non-constant
size, see Definition 19, Theorem 20, and Theorem 21.

1.2 Limitations of known techniques
It is worth noting that in the Boolean setting, while there are known upper bounds and lower
bounds based on these graph parameters for circuits and formulas for (colored) subgraph
isomorphism problem, there is still an asymptotic gap between the upper bound and the
corresponding lower bounds in these Boolean models (see [27, 26]). Thus, we cannot hope
to translate the lower bounds in Boolean setting to the algebraic setting to get the lower
bounds exactly matching the upper bounds.

An overwhelming majority of monotone arithmetic lower bounds exploit the so-called
decomposition theorem (also refered to as normal form or representation theorem; see for e.g.
[39, Lemma 8.7]) including the exponential monotone lower bounds for permanent [21, 37],
separation between monotone VP and monotone VNP [45], as well as the superpolynomial
separation between monotone arithmetic circuits and monotone ABPs [20]. However, a
direct application of such a decomposition theorem fails to yield the exact characterization
that the above theorems manage to achieve. We argue in Section 3 why these methods give
asymptotically weaker lower bounds than what we desire to obtain.

For ABPs, Fournier, Malod, Szusterman, and Tavenas [18] recently gave a rank-based
lower bound method for the monotone setting, inspired by [36] given in the non-commutative
setting. However, in their models, the edge labels are homogeneous linear forms, which
makes their method unsuitable for the tight lower bounds that we were looking for.

Finally, an approach that seems different from all these aforementioned approaches,
including ours, is the one based on the concept of separating sets introduced by Schnorr
[40], which also gave an exponential lower bound on the clique polynomial CL2n,n, which
enumerates all cliques of size n in a 2n-vertex clique [40, Theorem 4.4]. When the pattern is
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a clique, his technique gives the optimal lower bound. However, it can be shown that, for
other pattern graphs H , his proof technique, too, falls short in proving the lower bound that
matches the upper bound (see full version for details). In fact, unlike Schnorr’s lower bound
techniques, our proofs, at a very high level, follow an abstract argument that can be shown
to always give the optimal lower bound on the number of addition gates (see full version for
details).

1.3 Proof ideas
At a high level, proofs to all our main theorems follow the same strategy. We discuss the
case of circuits, since it already illuminates the overall idea.

The starting point towards the discovery of our proof is the fact that the upper bounds
for homomorphism polynomials are all monotone and they use an optimal tree decomposition
(see Definition 13) of the pattern graph to build the circuit. Our initial observation, which is
a simple consequence of the above fact, is that every parse tree of such a circuit reflects a tree
decomposition used to build the circuit. Moreover, since in these upper bound constructions
(see [3, 13]), the whole circuit construction stems from a single tree-decomposition, all the
parse trees correspond to the same tree decomposition of the pattern graph.

The above observation led us to the key question that sets the path towards our proofs:

▶ Problem 1. Does an arbitrary parse tree of an arbitrary monotone circuit computing the
homomorphism polynomial for an arbitrary pattern H allows us to recover a tree-decomposition
of H?

It turns out that answering the above question for homomorphism polynomials in the
affirmative is difficult and most likely false. This is due of presence of non-multilinear
monomials in homomorphism polynomials which correspond to those homomorphic images
of the pattern graphs which are simpler than the pattern graph itself (see Definition 10).
These monomials may loose the information about the pattern graph altogether, since such
monomials may also result from homomorphism polynomials of other patterns. Thus, in order
to be able to recover the tree decomposition, it seems imperative to work with the subgraph
isomorphism polynomial instead. At a very high-level, our proof successfully answers the
question – in how many monomial computations can a single gate participate? To give a
precise bound on this, we need an even more structured polynomial – the colored subgraph
isomorphism polynomial, where a monomial apart from encoding the pattern graph we begin
with, also encodes the precise mapping from the pattern graph to the host graph that gives
rise to the monomial (see Definition 11).

Before going further into the proof, one might wonder whether by going from homo-
morphism polynomial to the colored subgraph isomorphism polynomial, we have made the
polynomial too structured as compared to the homomorphism polynomial. That is, whether
the subgraph isomorphism polynomial is much harder than the homomorphism polynomial
and a lower bound against the former would not yield a desired lower bound for the latter.
Our first technical contribution is establishing that this is not so. We show that, as long as
the the pattern graph is of constant size, the colored3 homomorphism polynomial and colored
subgraph isomorphism polynomial have the same monotone circuit complexity, monotone
ABP complexity and monotone formula complexity (Lemma 15). For this, we first note

3 It can be easily shown that the homomorphism polynomial and its colored counterpart have the same
complexity.
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that going from colored subgraph isomorphism polynomial to homomorphism polynomial is
straight-forward. For the other direction, we note that the colored homomorphism polynomial
contains a superset of the set of monomials of the colored subgraph isomorphism polynomial.
To remove the other monomials present, we carefully introduce weights corresponding to
edge variables and then use partial derivatives w.r.t those weight variables. We finally show
that such partial derivatives can indeed be done efficiently in the the monotone circuits,
monotone ABPs, as well as monotone formulas; the case of formulas require the most care.

Having established that we can indeed work with the colored subgraph isomorphism
polynomial, we move on to answer Problem 1 for the colored subraph isomorphism polynomial
in affirmative. Our main technical contribution is to show that, given an arbitrary parse tree
of an arbitrary circuit computing the colored subgraph isomorphism polynomial for a pattern
graph, there exists simple algorithm to recover its tree decomposition. The algorithm works
in a bottom up fashion starting with the leaves of the parse tree and moves towards the
root using a precise way to combine the bags of the gates it encounters along the way (see
Theorem 16).

Once we have the tree decomposition, we use this tree decomposition to show that if
the number of vertices in H is k, and its treewidth is tw(H), a gate can participate in
the computation of at most nk−tw(H)−1 monomials. We show this by using a weakness of
monotone computation that, due to the absence of cancellations, any circuit computing a
polynomial cannot compute an invalid submonomial4 at any intermediate gate along the way.
This weakness is exploited in almost all known monotone lower bounds, and dates back to
Jerrum and Snir [21].

For proving the lower bounds in Theorem 2 and 3 for formulas and ABPs, we are able
to use the same framework as above. Instead of constructing a tree decomposition using
the parse trees, we construct a path decomposition (Definition 13) in case of ABPs, and an
elimination tree (Definition 14) in case of formulas. If we start with an ABP instead, it is
easy to see that the same algorithm for tree decomposition yields a path instead, and, hence,
we get a path decomposition (see Theorem 17). For formulas, we give a different simple
algorithm to show that an elimination forest of H can be constructed using the parse tree
(see Theorem 18). Using the same weakness of monotone computation, we conclude that
the number of monomials whose computation a gate can participate in is upper bounded by
nk−pw(H)−1 in case of ABPs, and by nk−td(H) in case of formulas, where pw(H) and td(H)
denote the pathwidth and the treedepth of H respectively.

To obtain the upper bounds claimed in Theorem 1, 2 and 3, we note that the upper
bounds for circuits and ABPs that were already known are both monotone constructions,
which go via the tree decomposition and the path decomposition of the pattern graph in case
of circuits and ABPs respectively [13, 3, 31]. We give the formula upper bound using the
elimination tree of the pattern graph. A treedepth based monotone formula upper bound is
folklore in the Boolean setting.

To prove the separation between monotone complexity classes, we first note that the lower
bounds on colored subgraph isomorphism polynomials also hold for pattern grpahs H of
non-constant size. Consequently, pattern graphs with high pathwidth but low treewidth yield
superpolynomial separation between circuits and ABPs (discussed in Theorem 20), whereas
pattern graphs with high treedepth but low pathwidth give superpolynomial separation
between ABPs and formulas (described in Theorem 21). For the first separation, we use a

4 An invalid submonomial is a monomial m which does not divide any of the monomial of the target
polynomial.
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tree as the pattern graph, whereas for the second separation, we use path as the pattern
graph. For an exponential lower bound on the clique polynomial, we simply apply Theorem
1 in combination with the fact that the treewidth of a clique on n vertices is n− 1.

To simplify the presentation, we assume that the pattern graph is connected. The
complexity for a disconnected pattern is the maximum of the complexity of its connected
components.

2 Preliminaries

For basic notions in graph theory, we refer the readers to [43, 14]. We first give some
definitions that set up our objects of computation and the models of computation.

▶ Definition 5. A polynomial over Q is called monotone if all its coefficients are non-negative.

Compact representations of polynomials such as the following are usually used by al-
gorithms.

▶ Definition 6. An arithmetic circuit over the variables x1, . . . , xn is a rooted DAG where
each source node (also called an input gate) is labeled by one of the variables xi or a constant
a ∈ Q. All other nodes (called gates) are labeled with either + (addition) or × (multiplication).
The circuit computes a polynomial over Q[x1, . . . , xn] in the usual fashion. The circuit is
called monotone if all constants are non-negative. The circuit is a skew circuit if for all ×
gates, at least one of the inputs is a variable or a constant. The circuit is a formula if all
gates have out-degree at most one. The size of a circuit or skew circuit or formula is the
number of edges in the circuit. The depth of a circuit is the number of edges in the longest
path from the root to an input gate.

Instead of skew circuits, a model that is equivalent in terms of power is usually studied
in algebraic complexity.

▶ Definition 7. An Algebraic Branching Program (ABP) is a DAG with a unique source
node s and a unique sink node t. Each edge is labeled with a variable from x1, . . . , xn or
a constant a ∈ Q. Each path in the DAG from s to t corresponds to a term obtained by
multiplying all the edge labels on that path. The polynomial computed by the ABP is the sum
of all terms over all paths from s to t. The ABP is called monotone if all constants are
non-negative. The size of the ABP is the number of edges.

It is well-known that for any (monotone) polynomial, the size of the smallest (monotone)
ABP and the size of the smallest (monotone) skew circuit are within constant factors of each
other. In this paper, we will use the skew circuit definition in our proofs.

In this paper, we look at families of polynomials (pn)n≥0 and the optimal size and depth
of the models computing them. In this case, the size and depth are functions of n and we
are only interested in the asymptotic growth rate of these functions.

For simplicity, when proving lower bounds, we assume that all non-input gates have
exactly two incoming edges (both may be from the same gate). This assumption increases
the size by at most a constant factor and may increase the depth by at most a logarithmic
factor.

The families of polynomials that we look at in this paper enumerate graph homomorphisms
or colored isomorphisms. We first define these notions.

▶ Definition 8. For graphs H and G, a homomorphism from H to G is a function ϕ :
V (H) 7→ V (G) such that {i, j} ∈ E(H) implies {ϕ(i), ϕ(j)} ∈ E(G). For an edge e = {i, j}
in H, we use ϕ(e) to denote {ϕ(i), ϕ(j)}.
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▶ Definition 9. Let H be a k-vertex graph where its vertices are labeled by [k] and let G be
a graph where each vertex has a color in [k]. Then, a colored isomorphism of H in G is a
subgraph of G isomorphic to H such that all vertices in the subgraph have different colors and
for each edge {i, j} in H, there is an edge in the subgraph between vertices colored i and j.

Now, we are ready to define our main object of computation, the homomorphism polyno-
mial.

▶ Definition 10. For a pattern graph H on k vertices, the n-th homomorphism polynomial
for H is a polynomial on

(
n
2
)

variables xe where e = {u, v} for u, v ∈ [n].

HomH,n =
∑
ϕ

∏
e∈E(H)

xϕ(e)

where ϕ ranges over all homomorphisms from H to Kn.

Next, we define the colored isomorphism polynomial which will be crucial in our proofs.
This polynomial enumerates all colored isomorphisms from a pattern to a host graph where
there are n vertices of each color. This polynomial can be used to count colored isomorphisms
in n-vertex host graphs by setting the variables corresponding to edges not in the host graph
to 0.

▶ Definition 11. For a pattern graph H on k vertices, the n-th colored isomorphism
polynomial for H is a polynomial on |E(H)|n2 variables xe where e = {(i, u), (j, v)} for
u, v ∈ [n] and {i, j} ∈ E(H).

ColIsoH,n =
∑

u1,...,uk∈[n]

∏
{i,j}∈E(H)

x{(i,ui),(j,uj)}

We notice that the labeling of H does not affect the complexity of ColIsoH . Given
the polynomial ColIsoH for some labeling of H and if ψ is a relabeling of H, then the
polynomial ColIsoH for the new labeling can be obtained by the substitution x{(i,u),(j,v)} 7→
x{(ψ(i),u),(ψ(j),v)}.

For our main proofs, we need a way to analyze how a monomial is being computed in a
circuit, an ABP, or a formula. For this, we use the notion of parse trees.

▶ Definition 12. Let g be a gate in a circuit C. A parse tree rooted at g is any rooted tree
which can be obtained by the following procedure, duplicating gates in C as necessary to
preserve the tree structure.

1. The gate g is the root of the tree.
2. If there is a multiplication gate g in the tree, include all its children in the circuit as its

children in the tree.
3. If there is an addition gate g in the tree, pick an arbitrary child of g in the circuit and

include it in the tree.

If the root gate of a parse tree is not mentioned, then it is assumed to be the output gate
of the circuit. A parse tree witnesses the computation of some term. We note that if C is a
formula, then any gate can occur at most once in any parse tree in C.

Given a parse tree T that contains a gate g, we use Tg to denote the subtree of T rooted
at g. The tree obtained by removing Tg from T is called the tree outside Tg in T . Note
that we can replace Tg in T with any parse tree rooted at g to obtain another parse tree.
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Similarly, if we have two parse trees T and T ′ that both contain the same multiplication gate
g from the circuit, then we can replace the left or right subtree of Tg with the left or right
subtree of T ′

g to obtain another parse tree. This is because both the left and right child of g
in both parse trees are the same and therefore we can apply the aforementioned replacement.

Now, we define the graph parameters most crucial to our work. They are the parameters
that turn out to exactly characterize the complexity of the above polynomial families in the
models of computations defined above.

▶ Definition 13. A tree decomposition of H is a tree where each vertex (called a bag) in
the tree is a subset of vertices of H. This tree must satisfy two properties.

1. For every edge {i, j} in H, there must be at least one bag in the tree that contains both i
and j.

2. For any vertex i in H, the subgraph of the tree decomposition induced by all bags containing
i must be a subtree. This subtree is called the subtree induced by i.

The size of a tree decomposition is the size of the largest bag minus one. The treewidth
of H is the size of a smallest tree decomposition of H.

A tree decomposition is called a path decomposition if it is a path. The pathwidth of H
is the size of a smallest path decomposition.

▶ Definition 14. For a connected graph H, an elimination tree of H is a rooted, directed
tree that can be constructed by arbitrarily picking a vertex u in H and adding edges from the
roots of elimination trees of connected components of H − u to the root vertex labeled u. In
particular, if H is a single vertex, then the elimination tree of H is the same single vertex
graph.

The depth of an elimination tree is the number of vertices in the longest path from a leaf
to the root. The treedepth of H is the depth of the smallest depth elimination tree of H.

We note that for any graph H, its elimination tree contains exactly |V (H)| vertices. All
edges in the tree are directed towards the root and the vertices of the tree are uniquely
labeled with the vertices of H. If T is an elimination tree for the connected graph H, then
all edges in H are between vertices that are in an ancestor-descendant relationship in T .

We now state some basic facts about treewidth, pathwidth, and treedepth. We combine
these facts with the lower bounds in Section 3 to obtain, for any constant k, constant-degree
polynomial families having linear size circuits (ABPs resp.) but requiring Ω(nk) size ABPs
(formulas resp.), thus giving us a fine-grained separation between these models. Note that, for
constant-degree polynomials, such polynomial factor separations are the best one could ask for
between formulas, ABPs, and circuits, since all constant-degree polynomials are computable
by polynomial-sized formulas. Moreover, we use these facts to obtain superpolynomial
separations between these models for high degree polynomials.

▶ Fact 1. For all graphs H, we have tw(H) ≤ pw(H) ≤ td(H) − 1.

▶ Fact 2. For any number p ≥ 1, there is a tree Xk on k = 1
6 (5 · 3p − 3) vertices that have

pathwidth p.

Proof. The tree X2 is simply an edge. The tree Xk for p ≥ 2 is obtained by connecting three
copies of the constructed trees with pathwidth p− 1 to a new root vertex. ◀

▶ Fact 3. All paths have pathwidth 1 and the k-vertex path has treedepth ⌈log2(k + 1)⌉.
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3 Algebraic complexity of homomorphism polynomials

In this section, we prove Theorems 1, 2 and 3. thus achieving our main result, that is, the
exact characterization for the monotone complexity of homomorphism polynomials.

▶ Lemma 15. For any fixed pattern H, both the homomorphism polynomial for H and the
colored isomorphism polynomial for H have the same (asymptotically) monotone arithmetic
circuit complexity, monotone ABP complexity, and monotone formula complexity.

Proof. First, we show how to obtain a circuit that computes ColIsoH from one that computes
HomH . We introduce new variables we for each e ∈ E(H). Let C be a circuit that computes
HomH over the vertex set [k] × [n]. We substitute x{(i,u),(j,v)} with x{(i,u),(j,v)}w{i,j} for all
i, j, u, v if {i, j} ∈ E(H). Otherwise, we set the variable to 0. Let C ′ be the resulting circuit.
We then compute ∂|E(H)|

∂we1 ...∂we|E(H)|
C ′ using the sum and product rule for partial derivatives.

Then, we set we = 0 for all e. The partial differentiation ensures that all monomials must
have at least one edge of each color. Setting we = 0 ensures that all monomials can only
have at most one edge of each color. Therefore, the remaining monomials contain each edge
in H exactly once. These are exactly those homomorphisms that correspond to colored
isomorphisms. For each colored isomorphism, there are |aut(H)| ways to relabel the vertices
of H to obtain the same edge set. So we divide by |aut(H)| to obtain HomH exactly. Each
partial differentiation increases the size of the circuit at most by a factor of 3. Therefore, if
C has size s, the final circuit has size at most c3|E(H)|s for some constant c.

For the other direction, given a circuit that computes ColIsoH , we can replace each
x{(i,u),(j,v)} with x{u,v} if u ̸= v and 0 otherwise. The circuit now computes HomH because
the monomial corresponding to the homomorphism ϕ is generated by the corresponding
colored isomorphism i 7→ (i, ϕ(i)). Also, every colored isomorphism on vertices (i, ui) for
1 ≤ i ≤ k corresponds to a homomorphism to Kn as long as ui ̸= uj for {i, j} ∈ E(H).

Notice that both constructions preserve monotonicity and yield a monotone ABP when
the original circuit is a monotone ABP.

A straightforward application of the sum and product rule to compute the partial
derivative does not necessarily yield a formula from a formula. While computing the partial
derivative, we have to compute both f and ∂f/∂x for every sub-formula f . If f = g + h

for some formulas g and h, then we can simply compute ∂f/∂x = ∂g/∂x+ ∂h/∂x without
using any sub-formula more than once. When the formula f = gh for some formulas g
and h, we have to compute ∂f/∂x = g∂h/∂x + h∂g/∂x. Therefore, we are using g and h

twice, once for computing f and once for computing ∂f/∂x. We can convert the resulting
circuit into a formula by duplicating the sub-formulas g and h. For general formulas, this
leads to a quadratic blowup in size. But, for monotone formulas computing constant-degree
polynomials, we show that the size increases only by a constant factor when duplicating
sub-formulas in this fashion.

First, we eliminate all gates in the formula that computes 0 and replace all gates that
compute a constant by an input gate labeled with that constant. We call a multiplication
gate f trivial if f = ag for some constant a and sub-formula g. In this case, we have
∂f/∂x = a∂g/∂x. Therefore, we do not have to make a copy of the non-constant sub-formula
g. We make a copy of the input gate a here. But, we do not have to make additional copies
of this input gate a later for any trivial gate encountered on the path from f to root. This
is because f is not a constant and therefore it must be the other input to the trivial gate
that is constant. We claim that if the monotone formula computes a polynomial of degree
at most d, for any gate g, there are at most d non-trivial multiplication gates on the path
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from g to the root gate. This is because each non-trivial gate increases the degree by at least
one and no cancellations can occur in a monotone formula. Therefore, we can compute the
partial derivative using at most d+ 2 copies of each gate in the original formula. Since the
degree of the polynomials we are differentiating is at most 2|E(H)| and we perform |E(H)|
differentiations, the final formula has size O

(
(2|E(H)| + 2)|E(H)|

s
)

if the original formula
has size s. ◀

From now on, we can use either ColIsoH or HomH to prove our results. For a pattern
graph H, we say that an edge {i, j} or a vertex i in H is present in a monomial over the
variables of the colored isomorphism polynomial if there is a variable x{(i,u),(j,v)} for some
u and v in that monomial. We also say that the edge {(i, u), (j, v)} or the vertex (i, u) is
present in that monomial in that case.

In our proofs, we restrict our attention to the multiplication gates and the input gates in
parse trees. This is because our proofs consider the computation of individual monomials
separately and in this case, the addition gates play no role in the computation as all of them
have exactly one child in the parse tree. While proving lower bounds, we also assume that all
addition and multiplication gates have exactly two incoming edges. Since we define the size
of a circuit as the number of edges, this transformation changes the size only by a constant
factor. In addition, with this restriction, the number of gates and the number of edges are
related by constant factors. Therefore, we may lower bound either to lower bound the size of
the circuit.

▶ Theorem 16 (Theorem 1 restated). The monotone arithmetic circuit complexity of HomH

is Θ
(
ntw(H)+1)

.

Proof. The upper bound is already known (See [13], [3]).
Let H be of treewidth t. For proving the lower bound, we consider the n-th colored

isomorphism polynomial for H, ColIsoH,n =
∑
u1,...,uk

∏
i,j x{(i,ui),(j,uj)}, where u1, . . . , uk ∈

[n] and {i, j} ∈ E(H) (see Definition 11). Consider any monomial m on the vertices (i, ui)
for 1 ≤ i ≤ k and its associated parse tree. We assume without loss of generality that both
sides of any multiplication gate computes a non-constant term (If they compute a constant, it
has to be 1 and we can simply ignore this subtree). We build a tree decomposition of H from
this parse tree in a bottom-up fashion. In this tree decomposition, each gate is associated
with one or two bags in the decomposition. Exactly one of these bags is designated as the
root bag of that gate. An example of this construction is shown in Figure 1 where the 4-vertex
cycle is the pattern.

1. For an input gate x{(i,u),(j,v)}. Add the bag {i, j} as a leaf of the tree decomposition. For
example, in Figure 1, the input gate labeled x{(1,u),(2,v)} is associated with the bag {1, 2}.

2. For a multiplication gate g. Let A and B be the contents of the root bags of its left and
right subtrees. Add a bag containing A ∪B as the parent of those roots. For example, in
Figure 1, the gate g is first associated with a bag containing {1, 2, 3} = {1, 2} ∪ {2, 3}.

3. If at any gate, there are vertices (i, u) such that the monomial computed at that gate
includes all edges incident on (i, u). Then add a new bag that excludes exactly all such
vertices i from the current root bag and add it as a parent of the current root bag. This
new bag is now considered the root bag associated with the gate g. For example, in
Figure 1, we observe that at gate g, all edges incident on the vertex (2, v) are included
and therefore we add a new bag that removes 2 and make it the root bag associated
with g.
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×

f

×

g

x1u,2v x2v,3w

×
h

x3w,4x x4x,1u

Φ

{1, 3}

{1, 3}

{1, 2, 3}

{1, 2} {2, 3}

{1, 3}

{1, 3, 4}

{3, 4} {1, 4}

Figure 1 A tree decomposition of C4 from a parse tree. u, v, w, x ∈ [n].

The result is a tree decomposition of H. All edges of H are covered because all edges of
H must be present in the monomial. Since a vertex is forgotten only after all edges incident
on it have been multiplied, the subgraph of the tree decomposition induced by any vertex in
H is a subtree.

Since H has treewidth t, the tree decomposition that we constructed must have a bag
with at least t+ 1 vertices. We consider some gate g in the parse tree that is associated with
a bag that contains at least t+ 1 vertices. In the following proof, we only consider the case
where the bag contains exactly t + 1 vertices. If there are more than t + 1 vertices, then
we get a better lower bound. We assume without loss of generality that these vertices are
1, . . . , t+ 1. We now claim that the gate g can only be present in parse trees of monomials
m′ such that m′ contains vertices (i, ui) for 1 ≤ i ≤ t+ 1. Suppose for contradiction there is
a monomial m′ with a parse tree T ′ that contains g and has vertex (i, vi) where vi ̸= ui for
some such i. Let T be the parse tree for m. There are two cases:
1. The vertex i is forgotten at a bag associated with g: This means that both left and right

subtrees of Tg compute monomials that contain (i, ui). Now if T ′ contains (i, vi) on the
left subtree of T ′

g, then replace right subtree of T ′
g with right subtree of Tg. Else, the tree

T ′ contains (i, vi) on the right subtree of T ′
g or outside T ′

g. In both cases we replace the
left subtree of T ′

g with the left subtree of Tg.
2. Vertex i is not forgotten at a bag associated with g: This means that (i, ui) appears in at

least one of the subtrees of Tg and outside Tg in T . In T ′, if (i, vi) appears in T ′
g, then

replace the tree Tg with T ′
g in T . Otherwise, the vertex (i, vi) must appear outside T ′

g in
T ′. In this case, replace T ′

g with Tg in T ′.

All these new parse trees yield monomials that contain both (i, ui) and (i, vi). A
contradiction. Notice that we can obtain exactly nk−t−1 colored isomorphisms that fix t+ 1
vertices. Therefore, at most nk−t−1 monomials of the polynomial can contain g in its parse
tree. Since there are nk monomials, this gives the required lower bound. ◀
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▶ Theorem 17 (Theorem 2 restated). The monotone algebraic branching program complexity
of HomH is Θ

(
npw(H)+1)

.

Proof. The upper bound is already known (See [13], [3]). For the lower bound, we modify the
proof of Theorem 16 to obtain a path decomposition instead. Recall that for any (monotone)
polynomial, the size of the smallest (monotone) ABP and the size of the smallest (monotone)
skew circuit are within constant factors of each other. We consider the parse tree for a
monomial m in a skew circuit computing HomH and start building the path decomposition
from a deepest input gate.

We give a detailed proof in the full version. ◀

▶ Theorem 18 (Theorem 3 restated). The monotone formula complexity of HomH is
Θ

(
ntd(H)).

Proof. We first prove the upper bound5. Let T be an elimination tree of depth d for H . We
show how to construct a formula of size nd for ColIsoH′ in a bottom-up fashion where H ′ is
the graph obtained from T by adding all possible edges {i, j} where i is an ancestor of j in
T . Note that H ′ and H has the same treedepth by construction. The polynomial ColIsoH
can be obtained by setting extra variables in this polynomial to 1.

Let i be the label of a node in T such that the path from root to i is labeled i1, . . . , ip
and the children of i are labeled ℓ1, . . . , ℓs. We use the notation (ij , uj)j where j ∈ [p] to
denote the p pairs (i1, u1), . . . , (ip, up). We construct the formula:

f
{(ij ,uj)j}
i =

∑
u

((∏
j

x{(ij ,uj),(i,u)}
) ∏

t

f
{(i,u),(ij ,uj)j}
ℓt

)
where j ∈ [p] and t ∈ [s].

We use induction on the height c of the node i in the elimination tree to prove the
size upper bound. We claim that the formula that corresponds to such a node has size
O(nc) (constants hidden by the O notation depend only on H). For the base case, if i is
a leaf node, this formula has size O(n). If i has depth c in T , then this formula has size
O(n) ×O(nc−1) = O(nc) by the induction hypothesis.

If {i, j} is not an edge in H , then we set all x{(i,u),(j,v)} to 1 in the formula. The formula
corresponding to the root node in T is the required polynomial. To prove this, consider the
colored subgraph isomorphism containing the vertices (i, ui) for 1 ≤ i ≤ k. This monomial
has the parse tree obtained by setting the variable u in the outermost summation for each
f∗
i to ui. For the other direction, the parse tree obtained by setting u to ui in the outermost

summation of each f∗
i generates the monomial that corresponds to the colored subgraph

isomorphism on vertices (i, ui).
We now prove the lower bound. Let d be the treedepth of H. We consider a parse tree

for a monomial m in a formula computing ColIsoH and build an elimination tree for H from
it. An example of this construction is shown in Figure 2 where the 4-vertex path is the
pattern. We associate a set of rooted trees with each gate g as follows: If the gate g is the
lowest gate in the parse tree such that all edges incident on vertices i1, . . . , ir are present in
the monomial computed at g, then make i1 the parent of all roots of trees from the children
of g. Now, make ij+1 the parent of ij for 1 ≤ j ≤ r − 1. We call the vertices i1, . . . , ir to
be associated with g. If there are no such vertices for a gate g, then the forest associated

5 We believe this construction is already known as folklore. But we present it here for the sake of
completion since we couldn’t find a reference for the construction.
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with g is simply the union of the forests of its children. We start with empty forests initially.
For any edge {i, j} ∈ E(H), the gates that corresponds to i and j in this tree must belong
to the path from the input gate for this edge to the root. This shows that this tree is an
elimination tree for H.

In Figure 2, the input gate labeled z is such that the only edge incident on (1, u) is
already multiplied in at z. Therefore, we associate the vertex 1 with z and the set of trees
associated with z is just the one-vertex tree 1. Also, at gate f , we have multiplied in all
edges incident on (3, w) and therefore, we associate 3 with f . Also, note that this vertex 3 is
the parent of the roots of elimination trees from g and h.

For proving the lower bound, we consider some gate g in the parse tree of m such that g
is associated with a leaf at a depth of at least d in the elimination tree. We can assume that
the depth is exactly d. If it is more, then we obtain a better lower bound. Let this vertex be
d. Assume without loss of generality that 1, . . . , d are the vertices on the path from the root
to d in the elimination tree. Let (1, u1), . . . , (d, ud) be the corresponding vertices in m. We
claim that any monomial m′ for which g appears in its parse tree must also have vertices uj
of color j for 1 ≤ j ≤ d.

Suppose for contradiction that there is a monomial m′ with g in its parse tree and m′

has vertex (i, vi) where ui ̸= vi for some 1 ≤ i ≤ d. Let g′ be the gate in T such that i is
associated with g′. Now, recall that if T is an elimination tree for the connected graph H,
then all edges in H are between vertices that are in an ancestor-descendant relationship in T .
Thus, g′ must be an ancestor of g (g′ could be the same as g). Let T ′ be the parse tree for
m′. Then, the tree T ′ must contain g′ as well because it contains g and in a formula there is
a unique path from any gate to the root. There are two cases:
1. The gate g′ is an input gate: In this case, ui = vi because a monomial cannot have two

different vertices of the same color and (i, ui) is present in g′.
2. The gate g′ is a multiplication gate: In this case, the vertex (i, ui) must appear in both

subtrees of Tg′ . If the vertex (i, vi) appears in the right (left) subtree of T ′
g′ , then we

replace the left (right) subtree of T ′
g′ with the left (right) subtree of Tg′ . Otherwise, the

vertex (i, vi) appears outside T ′
g′ in T ′. In this case, we replace the subtree T ′

g′ with the
subtree Tg′ .

In all cases, we obtain a monomial that contains both vertices (i, ui) and (i, vi). A
contradiction. Therefore, at most nk−d monomials of the polynomial can contain the gate g
in their parse tree. Since there are a total of nk monomials, the lower bound follows.

In Figure 2, we can infer using the above argument that the input gate z can be a part
of parse trees of at most n different monomials. ◀

We show how to use our characterizations to prove superpolynomial separations between
various monotone models. The polynomials are not based on fixed pattern graphs but a
natural extension of our polynomials to patterns that grow in size with the host graph.

▶ Definition 19. Let H = (Hn) be a family of pattern graphs where Hn is some graph on n

vertices. Then, we define the n-th polynomial in the family ColIsoH as:

ColIsoHn,n =
∑

u1,...,un

∏
{i,j}

x{(i,ui),(j,uj)}

where u1, . . . , un ∈ [n] and {i, j} ∈ E(Hn).

It is easy to see that our lower bounds for monotone circuits, monotone ABPs, and
monotone formulas hold for ColIsoH for any family of pattern graphs H, where the lower
bound for the n-th polynomial is given by the treewidth, pathwidth, and treedepth of Hn
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Figure 2 An elimination tree for P4 from a parse tree. u, v, w, x ∈ [n].

respectively. The lower bounds for HomH , however, does not hold because Lemma 15 causes a
size blow-up that is exponential in the size of the pattern graph while constructing ColIsoHn,n

from HomHn,n.
We now show that there are pattern families that prove a super-polynomial separation

between the size complexity of monotone circuits and monotone ABPs.

▶ Theorem 20 (Compare [20, Theorem 1, Proposition 13]). For any p ≥ 1 and n = 1
6 (5·3p−3),

there is a polynomial family of degree n − 1 on n3 − n variables such that the family has
linear size monotone circuits but require nlog2(n+1) size monotone ABPs.

For the separation, the n-th polynomial in the family is simply ColIsoXn , where Xn are
the trees whose existence is guaranteed from Fact 2. See full version for a detailed proof.

We now show that there are pattern families that prove a super-polynomial separation
between the size complexity of monotone circuits and monotone ABPs.

▶ Theorem 21 (See [41, Theorem 3.2]). For n ≥ 2, there is a polynomial family of degree
n− 1 on n3 − n variables such that the family has linear size monotone ABPs but require
n⌈log2(n+1)⌉ size monotone formulas.

The n-th polynomial in the family is simply ColIsoPn , the path on n vertices. See full
version for a detailed proof.

4 Discussion

We note that our lower bounds for colored isomorphism polynomials also hold for counting
circuits studied by Jukna [22]. Such circuits produce the same evaluation as arithmetic circuits
when variables are substituted from {0, 1}. Informally, a counting circuit is an arithmetic
circuit that computes a polynomial modulo the axiom x2 = x. Note that this is sufficient
for counting homomorphisms or colored isomorphisms. However, the counting circuit lower
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bounds do not extend to the homomorphism polynomials since the reduction between the
colored isomorphism polynomial and the homomorphism polynomial in Lemma 15 use partial
derivatives.
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Abstract
The problem of finding the largest induced balanced bipartite subgraph in a given graph is NP-hard.
This problem is closely related to the problem of finding the smallest Odd Cycle Transversal.

In this work, we consider the following model of instances: starting with a set of vertices V , a set
S ⊆ V of k vertices is chosen and an arbitrary d-regular bipartite graph is added on it; edges between
pairs of vertices in S × (V \ S) and (V \ S) × (V \ S) are added with probability p. Since for d = 0,
the problem reduces to recovering a planted independent set, we don’t expect efficient algorithms for
k = o

(√
n
)
. This problem is a generalization of the planted balanced biclique problem where the

bipartite graph induced on S is a complete bipartite graph; [46] gave an algorithm for recovering S

in this problem when k = Ω
(√

n
)
.

Our main result is an efficient algorithm that recovers (w.h.p.) the planted bipartite graph when
k = Ωp

(√
n log n

)
for a large range of parameters. Our results also hold for a natural semi-random

model of instances, which involve the presence of a monotone adversary. Our proof shows that a
natural SDP relaxation for the problem is integral by constructing an appropriate solution to it’s
dual formulation. Our main technical contribution is a new approach for construction the dual
solution where we calibrate the eigenvectors of the adjacency matrix to be the eigenvectors of the
dual matrix. We believe that this approach may have applications to other recovery problems in
semi-random models as well.

When k = Ω
(√

n
)
, we give an algorithm for recovering S whose running time is exponential

in the number of small eigenvalues in graph induced on S; this algorithm is based on subspace
enumeration techniques due to the works of [42, 8, 41].
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84:2 Exact Recovery Algorithm for Planted Bipartite Graph in Semi-Random Graphs

that of finding the largest induced balanced complete bipartite subgraph. This problem has
a lot of practical application in computational biology [19], bioinformatics [65] and VLSI
design [7].

For the worst-case instance of the problem, the work [3] gives an algorithm that computes
a set with at least

(
1 − O

(
ε
√

log n
))

fraction of vertices which induces a bipartite graph,
when it is promised that the graph contains an induced bipartite graph having (1 − ε) n

fraction of the vertices. The work [32] gives an efficient randomized algorithm that computes
an induced bipartite subgraph having

(
1 − O

(√
ε log d

))
fraction of the vertices where d is

the bound on the maximum degree of the graph. They also give a matching (up to constant
factors) Unique Games hardness for certain regimes of parameters. We refer to Section 1.2
for more details about these related problems.

In an effort to better understand the complexity of various computationally intractable
problems, a lot of work has been focused on the special cases of the problem, and towards
studying the problem in various random and semi-random models. Here, one starts with
solving the problem for random instances (for graph problems this is often Gn,p Erdős-
Rényi graphs1). The analysis in random instances is often much simpler, and one can give
algorithms with “good” approximation guarantees. The next goal in this direction is to
plant a solution that is “clearly optimal” in an ambient random graph and then attempt
to recover this planted solution. We, therefore, build towards the worst-case instances of
the problem by progressively weakening our assumptions. We refer to the book [59] for a
more detailed discussion of these models in the context of other problems like planted clique,
planted bisection, k-coloring, Stochastic Block Models, and Matrix completion problems.

We start our discussion with the problem of computing a maximum clique/independent set,
since it has been extensively studied in such planted models. In the planted clique/independent
set problem we plant a clique/independent set of size k in an otherwise random Gn,p graph.
The work [6] presents an algorithm, which, given a graph G ∼ G(n, 1/2) with a planted
clique/independent set of size k, recovers the planted clique when k > c1

√
n (where c1 is a

constant). We will refer to the planted independent set/clique problem at various points
throughout the introduction

Such random planted models have been studied in context of other problems as well
such as the planted 3-coloring problem [14, 5], planted dense subgraph problem [34, 35, 36],
planted bisection and planted Stochastic Block models [16, 22, 37, 17, 21, 2], to state a few.
We define a similar random planted model to study our problem, as stated below.

▶ Definition 1 (Random planted model). Given n, k, d, p, our planted bipartite graph is
constructed as follows,
1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V such that |S| = k.
2. Add edges arbitrarily inside S such that the resulting graph is a connected d-regular

bipartite graph. Let S1, S2 denote the bipartite components.
3. For each pair of vertices in S × (V \ S), add an edge independently with probability p.
4. For each pair of vertices in (V \ S)×(V \ S), add an edge independently with probability p.

For planted cliques, a lot of work has been done in the special case of p = 1/2. However,
people have studied other problems such as the planted bisection problems [24], and exact
recovery problems in Stochastic Block Models [2] in the harder p = o(1) regimes. Therefore,
we also aim to solve our problem in p = o(1) regimes.

1 For each pair of vertices, an edge is added independently with probability p.
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We note that this problem is a generalization of the planted independent set and the
planted balanced biclique problem. For d = 0, it reduces to recovering a planted independent
set and hence we do not expect efficient algorithms for k = o (

√
n) [28, 11]. For k = Ω (

√
n),

both these special cases i.e the planted independent set problem [6, 26], and the planted
balanced biclique problem [46] admit a polynomial-time recovery algorithm. So it is natural
to consider k = Ω (

√
n) as a benchmark for recovery and look for algorithms in this regime.

The other consideration for interesting regimes to study the problem comes by viewing this
problem as a special case of the densest k-subgraph (DkS) problem. When d ≫ pk, the
problem can be viewed as the densest k-subgraph (DkS) and for d ≪ pk, the problem can be
viewed as sparsest k-subgraph problem (studying the complement of this graph would be an
instance of DkS problem). However, this general DkS problem is information-theoretically
unsolvable for d = pk [18]. Formally, this follows from Theorem 2.1 in the work [18], by
setting d = qk = pk and setting r = 1 where q is the edge probability within the vertices
of planted subgraph and a p is the edge probability when at least one of the vertex does
not belong to the planted subgraph and r is the number of clusters. Therefore we focus our
attention to the case when d ≈ pk (also including d = pk). In our problem, we can hope to
use the specifics of the bipartite structure in hand and recover the planted set exactly.

1.1 Our models and results

Figure 1 Random Planted model Definition 1 (left) and semi-random model Definition 2 (right).

We start by introducing our semi-random model which attempts to robustify the random
planted model from Definition 1.

▶ Definition 2 (Semi-random model). Fix n, k, d, p, we now describe how a graph G from
our semi-random model is generated,
1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V such that |S| = k.
2. Add edges arbitrarily inside S such that the resulting graph is a connected d-regular

bipartite graph. Let S1, S2 denote the bipartite components.
3. For each pair of vertices in S × (V \ S), add an edge independently with probability p.
4. Arbitrarily add edges in (V \ S) × (V \ S) such that smallest eigenvalue of the matrix(

A(V \S)×(V \S) − p1V \S1
T
V \S

)
is greater than − ((1/2 − α)/(1/2 + α)) d where α is a

small2 positive constant (throughout this paper we assume α ≤ 1/6).
5. Allow a monotone adversary to add edges in (V \ S) × (V \ S) arbitrarily.

2 Note that the smaller the value of α, the weaker is this assumption.
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▶ Observation 3. Definition 2 also captures Definition 1; since in the case when V \S is
chosen to be a G(n−k),p random graph,

(
A(V \S)×(V ×S) − p1V \S1

T
V \S

)
= A(V \S)×(V \S) −

E
[
A(V \S)×(V \S)

]
, and therefore the smallest eigenvalue of

(
A(V \S)×(V ×S) − p1V \S1

T
V \S

)
is

greater than −2
√

n (as follows from the work [63]).

Models stronger than random planted models have also been considered in the literature
for planted problems. The work [26] studies the planted clique problem in what they call
the “sandwich model”. The model is constructed as per the random planted model in
Definition 1, but an adversary is allowed to act on the top of that in a fashion similar to
step 5 of Definition 2.

The work [24] introduced a strong adversarial semi-random model (referred to as the
Fiege and Kilian model). They gave recovery algorithms for the planted clique (k = Ω(n)
regimes) and for the planted bisection and planted k-coloring in this model. The work [54]
further shows that one can recover the planted clique for k = Ωp

(
n2/3) 3 in [24] model.

In the Feige-Kilian model, step 4 allows for any arbitrary graph in (V \ S) × (V \ S).
However, with no further assumptions on graph induced on V \ S, even for the special case
of planted independent set problem (d = 0), the best known algorithm [54] works only for
k = Ωp

(
n2/3)

. However, since our benchmark is k = Ω (
√

n), we look at a model with
stronger assumptions than the Feige-Kilian model. In order to uniquely identify the planted
graph, we need to assume that V \ S is far from having any induced bipartite subgraphs of
degree at least d. Our condition in step 4 implies that this indeed holds. This is because if
the smallest eigenvalue is greater than −d/2 + 2

√
n, the graph is indeed far from having an

induced bipartite subgraph of smallest degree d. Since otherwise, a vector having entries 1
for one side of the bipartition and −1 on the other side and 0 elsewhere achieves a Rayleigh
Quotient of value −d (and hence the smallest eigenvalue is at most −d).

We now present our main result which holds for both the random planted model (Defini-
tion 1) and semi-random model (Definition 2).

▶ Theorem 4. For n, k, d, p satisfying k = Ωp

(√
n log n

)
and p = Ω (log k/k)1/6 and d ≥

2pk/3, there exists a deterministic algorithm that takes as input an instance generated by
Definition 2, and recovers the arbitrary planted set S exactly, in polynomial time and with
high probability (over the randomness of the input).

Achieving exact recovery for k = Ωp (
√

n) is still an open problem. To the best of our
knowledge, nothing is known about this problem in full generality. For the planted clique
problem, recovery for k = Ω

(√
n log n

)
is trivial [43]. However, such techniques don’t work

for our problem when d = pk. We prove Theorem 4 by showing that an SDP relaxation for
the problem is integral, by constructing an optimal dual solution. We give an outline of the
proof in Section 1.4. We leave the proof of a formal version of this theorem to the full version
of the paper.

Our proofs use the spectral properties of bipartite graphs and random graphs to show
the existence of an optimal dual solution having large rank. Our main technical contribution
is a new approach for constructing a dual solution where we calibrate the eigenvectors of the
adjacency matrix to be the eigenvectors of the dual matrix. We believe that this approach
may have applications to other recovery problems in semi-random models as well.

3 Ωp hides poly (1/p) factors.
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▶ Theorem 5. For n, k, d, p, satisfying k = Ωp (
√

n), there exists a deterministic algorithm
that takes as input an instance generated as per Definition 1, and recovers the arbitrary
planted set S exactly with high probability (over the randomness of the input) in time
exponential in the number of small eigenvalues of the adjacency matrix (eigenvalues smaller
than −d/2 + 2

√
n) of the graph induced on S.

We leave the proof of a formal version of this theorem to the full version of the paper.

▶ Observation 6. For and many special classes of instances such as, (i) when the probability
p = Ω (1), (ii) when the planted graph is a complete bipartite graph like in the balanced
biclique problem (iii) when the planted bipartite graph is a d-regular random graph or (iv)
more generally when the planted graph is a d-regular expander graph; the number of these
small eigenvalues is a constant in the regimes of d = Ω(pk) and Theorem 5 allows efficient
recovery (running time of the algorithm is polynomial in n).

1.2 Related Work
Odd Cycle Transversal problem

The odd cycle transversal problem asks to find the smallest set of vertices in the graph
such that the set has an intersection with every odd cycle of the graph. Removing these
vertices will result in a bipartite graph, and hence this problem is equivalent to finding
the largest induced bipartite graph. Owing to the hereditary nature of the bipartiteness
property, the problem is NP-hard, as follows from the work of Yannakakis [64]. The work
[64] shows that for a broad class of problems that have a structure that is hereditary on
induced subgraphs, finding such a structure is NP-Complete. The optimal long code test by
Khot and Bansal [10] rules out any constant factor approximation for this problem. On the
algorithmic front, casting the problem as a 2-CNF deletion problem, [4] gives a reduction to
the min-multicut problem. This reduction gives us an O (log n) approximation due to the
work [30], which was further improved to O

(√
log n

)
in the work [3]. The work [32] gives an

efficient randomized algorithm that removes only O
(
n

√
OPT log d

)
vertices where d is the

bound on the maximum degree of the graph and OPT denotes the fraction of vertices in the
optimal set. They also give a matching (up to constant factors) Unique Games hardness for
certain regimes of parameters.

The problem is equivalent to finding the largest 2-colorable subgraph of a given graph and
is known as the partial 2-coloring problem. The work [33] studies the problem in the Feige-
Kilian semi-random model [24], where a 2-colorable graph of size (1 − ε) n is planted. They
give an algorithm that outputs a set S ′ such that |S ′| ≥

(
1 − εc/p2)

n for p = Ω
(√

log n/n
)

and ε ≤ p2 where c is a positive constant. Their algorithm is a partial recovery algorithm
and works for the regimes when ε is small. Our results in Theorem 4 hold when 1 − ε is small
and give complete recovery for a large range of p. However, since our model in Definition 2
makes stronger assumptions than the [24] model, we don’t make any comparisons.

Balanced Biclique problem

In the balanced complete bipartite subgraph problem (also called the balanced biclique
problem), we are given a graph on n vertices and a parameter k, and the problem then
asks whether there is a complete bipartite subgraph that is balanced with k vertices in
each of the bipartite components. The problem was studied when the underlying graph is a
bipartite graph, and shown to be NP-complete by a reduction from the CLIQUE problem in

ICALP 2022
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the works [29, 38]. They additionally note that the balanced constraint is what makes the
problem hard. If we remove the balanced constraint, the problem can be reduced to finding a
maximum independent set in a bipartite graph. The latter problem admits a polynomial-time
solution using the matching algorithm. The work [25] shows that this problem of finding a
maximum balanced biclique is hard to approximate within a factor of 2(log n)δ for some δ > 0,
under the assumption that 3SAT /∈ DTIME

(
2n3/4+ε

)
for some ε > 0. Recently, the work

[53] showed that one cannot find a better approximation than n1−ε, assuming the Small Set
Expansion Hypothesis and that NP ⊈ BPP for every constant ε > 0.

A related problem is the maximum edge biclique problem, where we are asked to find
whether G contains a biclique with at least k edges. This problem was also shown to be
NP-hard in the work [58].

Given these intractability results for general graphs, there has been some success in
special classes of graphs. In graphs with constant arboricity, the work [23] gives a linear
time algorithm that lists all maximal complete bipartite subgraphs. In a degree bounded
graph, the work [60] gives a combinatorial algorithm for the balanced biclique problem that
runs in time O

(
n2d

)
. Another systematic approach, however, is to consider planted and

semi-random models for the problem. In the work [46], they study the planted version of the
problem, which, they call “hidden biclique problem”. Their model is similar to our model
in Definition 1; however, we consider an arbitrary d-regular bipartite graph instead of a
complete bipartite graph. They give a linear-time combinatorial algorithm that finds the
planted hidden biclique with high probability (over the randomness of the input instance) for
k = Ω (

√
n). Their algorithm builds on the “Low Degree Removal” algorithm, due to Feige

and Ron [27] which finds a planted clique in linear time.

Graph problems in Semi-random and Pseudorandom models

A wide variety of random graph models and their relaxations have been a rich source of
algorithmic problems on graphs. Alon and Kahale [5] sharpened the results of Blum and
Spencer [14] and gave algorithms that recover a planted 3-coloring in a natural family of
random 3-colorable instances. [44] extended this result and showed how to recover a 3-coloring
when the input graph is pseudorandom (has some mild expansion properties) and is known
to admit a random like 3-coloring. A unified spectral approach by McSherry [55] gives a
single shot recovery algorithm for many problems in these random planted models. One can
use the [55] framework to recover a planted random bipartite graph; however, it is not known
if it will work if S is an arbitrary bipartite graph.

On the other side, we have semi-random models. Notably, the Feige-Kilian model [24]
is one of the strongest semi-random models. In [24], they also give recovery algorithms for
planted clique, planted k-colorable, and planted bisection problem in this model. In [54], they
give a recovery algorithm for the independent set problem for large regimes of parameters.
The work [40] generalizes these results to r-uniform hypergraphs in this model. There are
other works [51, 52, 49, 50] that study graph partitioning in semi-random models.

A host of work has been done in various random and semi-random models for the more
general densest k-subgraph problem. The works by Hajek, Wu, and Xu [34, 35, 36] study the
problem when the planted dense subgraph is random and gives algorithms for exact recovery
using SDP relaxations for some range of parameters. They complement these results by
providing information-theoretic limits for regimes where recovery is impossible. The work by
[13] studies this problem when the planted graph is arbitrary. They analyze an SDP-based
method to distinguish the dense graphs from the family of Gn,p graphs when k ≥

√
n. The

work [39] studies the problem of densest k-subgraph in some semi-random model and gives a
partial recovery algorithm for some regimes of d, k, n, p.
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SDP has been the tool of choice for exact recovery in semi-random models. Starting from
the fundamental works of exact recovery for the planted clique problem [26], for the planted
bisection problem [24], for Stochastic Block Models [2] etc., (and many other works as have
been mentioned above), are based on SDP relaxations. A natural way to analyze these SDP
relaxations is by constructing an optimal dual solution to prove integrality of the primal
relaxation. This idea has been explored in the works of [24, 20, 13, 1, 2, 49], to state a few.
We note that the task of constructing an optimal dual solution is problem-specific, and there
is no generic way of doing this.

1.3 Preliminaries

We start with some essential notation to understand the proof overview and review some
well-known facts about random perturbation matrices. Then, we write our SDP relaxation
to the problem and the accompanying dual SDP. We follow this up with a discussion on
some well known tools from spectral graph theory such as the threshold rank and spectral
embedding. We will build on these ideas in our Proof Overview Section 1.4 to show that the
primal SDP is an optimal one and the primal matrix is a rank-one matrix.

1.3.1 Notation

We let [M ]n×n denote a matrix M of size n × n. For some set of indices R1, R2 ⊆ [n],
MR1×R2 denotes a matrix of size n × n constructed out of matrix M of size n × n by copying
the entries for (i, j) ∈ R1 × R2 and setting rest of the entries to be 0. We let M |R1×R2

denote the matrix of size |R1| × |R2| constructed from a matrix M of size n × n by taking
rows corresponding to R1 and columns corresponding to R2. The eigenvalues of a matrix M

are sorted as λ1(M) ≤ λ2(M) ≤ . . . ≤ λn(M). We will drop the matrix M wherever it is
clear from the context. The eigenvectors are also sorted by their corresponding eigenvalues.

1.3.2 Spectral bounds on Perturbation matrices

We let A denote the adjacency matrix of the graph obtained using Definition 1. We can
express the matrix A as sum of “simpler” matrices,

A = AS×S + AV \S×V \S + p
(
11T − 1S1

T
S − 1V \S1

T
V \S

)
+ R

(
Rij

def= Aij − E[Aij ]
)
(1)

where AS×S represents the matrix corresponding to the planted bipartite graph, the term
p

(
11T − 1S1

T
S − 1V \S1

T
V \S

)
is the expected adjacency matrix for the random graph and R

as defined above is the perturbation matrix corresponding to the random part of the graph.

▶ Proposition 7. For the perturbation matrix R as defined in equation (1) we have that
∥R∥ ≤ 2

√
n almost surely.

Proof. R is a symmetric random matrix and the entries Rij can be treated as random
variables, bounded between −1 and 1, with expectation 0 and variance p (1 − p) ≤ 1/4.
Also the entries Rij are independent and hence, by Theorem 1.1 in the work [63], we have
∥R∥ ≤ 2

√
n almost surely. ◀
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1.3.3 SDP Relaxation
Our main results are based on analyzing the following SDP relaxation SDP 8. We construct
its dual SDP 9.

▶ SDP 8 (Primal).

min
∑

{i,j}∈E

2 ⟨xi, xj⟩

subject to∑
i∈V

∥xi∥2 = 1 (2)

∥xi∥2 ≤ 1/k ∀i ∈ V (3)
⟨xi, xj⟩ ≤ 0 ∀ {i, j} ∈ E . (4)

▶ SDP 9 (Dual).

max β −
∑
i∈V

γi

subject to

Y = A − βI + k
∑
i∈V

γiDi

+
∑

{i,j}∈E

Bij (1ij + 1ji) (5)

Bij ≥ 0, ∀ {i, j} ∈ E (6)
Y ⪰ 0 . (7)

In SDP 9, the Lagrange multipliers βi’s,γi’s and Bij ’s are our dual variables and Y is
the dual SDP matrix. By 1ij we mean an indicator matrix which is one for (i, j) entry and
zero elsewhere. Similarly, Di is an indicator matrix which is one for (i, i) entry and zero
elsewhere. For clarity, we will denote

∑
{i,j}∈E Bij (1ij + 1ji) by a matrix B.

Intended solution

We denote the primal SDP matrix by X and let xi denote the vector corresponding to vertex
i such that Xij = ⟨xi, xj⟩.

Our intended integral solution to the SDP is X = ggT , where g ∈ Rn s.t gi = 1/
√

k for
i ∈ S1, gi = −1/

√
k for i ∈ S2 and 0 otherwise. This solution is obtained by setting,

x∗
i =


ê/

√
k if i ∈ S1

−ê/
√

k if i ∈ S2

0 otherwise,

(8)

where ê is some unit vector.

Weak Duality for fixing dual variables

Let SDPOPT (G) denote the optimal value of the primal SDP; then from the proposed
integral solution we have that,

SDPOPT (G) ≤ −2
∑

{i,j}∈E

〈
x∗

i , x∗
j

〉
=

〈
A, ggT

〉
= gT Ag = −d .

For any feasible solution to the dual SDP 9, by weak duality, we know that

β −
∑
i∈V

γi ≤ SDPOPT (G) ≤ −d .

We note that the upper bound is achievable by setting β = −d and γi = 0, ∀i ∈ V .
We will show later that the remaining dual variables Bij ’s can be chosen in a way that

the choice of β = −d and γi = 0, ∀i ∈ V yields a feasible dual solution.
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▶ Fact 10 (Folklore, also see Lemma 2.3 in [49]). The primal solution X = ggT is the unique
solution to SDP 8 if there exists a dual matrix Y such that it satisfies constraints in SDP 9,
with β = −d and γi = 0, ∀i ∈ V and having rank(Y ) = n − 1 (i.e. λ2 (Y ) > 0).

1.3.4 Threshold rank eigenvectors

▶ Definition 11 (Threshold rank of a graph). For τ ∈ [0, d], we define threshold rank of a
graph with adjacency matrix G (denoted by rank≤−τ (G)) as,

rank≤−τ (G) = |{i : λi(G) ≤ −τ}| .

We let P−τ =
{

v(1), v(2), . . . , v(L−τ )} (the bottom L−τ vectors) denote the set of or-
thonormal eigenvectors of A|S×S with eigenvalues smaller than the threshold −τ , breaking
ties arbitrarily where L−τ = rank≤−τ

(
A|S×S

)
. We call these vectors as τ -threshold rank

eigenvectors of A|S×S . Next, we recall a well known fact about the threshold rank of a graph.

▶ Fact 12 (Folklore). rank≤−τ

(
A|S×S

)
≤ kd

2τ2 .

Proof. Since, A|S×S is the adjacency matrix of a bipartite graph, it’s eigenvalue spectrum is
symmetric around 0. Therefore the number of eigenvalues with absolute value greater then
or equal to τ is given by 2 rank≤−τ

(
A|S×S

)
and are bounded as,

2τ2rank≤−τ (A|S×S) ≤
∑

i

λ2
i (A|S×S) ≤

∥∥A|S×S

∥∥2
F

= kd. ◀

We note that a similar notion of threshold rank has appeared in other works [8, 9, 12, 31] etc.

1.3.5 Spectral embedding vectors

▶ Definition 13 (Spectral embedding vectors). Given the planted bipartite graph S and the
matrix of bottom L−τ orthonormal eigenvectors W T

−τ =
[
v(1) v(2) . . . v(L−τ )], we define

the spectral embedding of a vertex i ∈ S as the L−τ -dimensional vector given by w(i) = W−τ ei

where ei is a vector with one in the ith coordinate and zero elsewhere.

Informally, these are the vectors obtained by looking at the subspace of the columns of W T
−τ

where the vertex i is mapped to the ith column of W T
−τ . These spectral embedding vectors have

been explored in various works on graph partitioning as [57, 45, 48] etc. It is known that these
spectral embedding vectors are “well spread”, formally referred to as being in an isotropic4

position. We define these set of vectors to be in an isotropic position if
∑

i∈S w(i) = 0 and∑
i∈S w(i)w(i)T = I where I is an L−τ × L−τ sized identity matrix. The condition that∑
i∈S w(i)w(i)T = I can equivalently be written as

∑
i∈S

〈
y, w(i)〉2 = 1, ∀y with ∥y∥2 = 1.

▶ Lemma 14 (Folklore). The spectral embedding vectors are in an isotropic position.

For a proof, we refer the reader to the work [47].

4 Typically, isotropicity is a property of distribution. We say a distribution is isotropic if the mean of a
random variable sampled from the distribution is zero and it’s covariance matrix is an identity matrix.
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1.4 Proof Overview
For the sake of simplicity, we will assume that the graph is sampled as per the random
planted model (Definition 1). We will also allow an action of a monotone adversary (as in
step 5) on this model; but we analyze its action separately (in Section 1.4.6). The main ideas
for the semi-random model (Definition 2) are essentially the same, and the additional steps
to handle them is just a technical adjustment.

In this section we give an overview of how Theorem 4 and Theorem 5 are proven. Because
of page limits, the detailed proofs are deferred to the full version of the paper. In what
follows, we present the main ideas which go inside these proofs.

1.4.1 Spectral Approaches
We start with some natural spectral approaches for recovering the planted set. These
approaches have found some success, e.g. in recovering planted cliques/independent sets,
planted bisection, planted k-colorable graphs (refer work [55] for details). We recall from our
earlier discussion, that the interesting regimes for this problem are k = Ω (

√
n) and d ≈ pk.

Detecting planted bipartitions and why it is easy

We note that the detection problem i.e. detecting the presence of bipartite graph as constructed
in the random planted model (Definition 1) against the null hypothesis of Erdős-Rényi graph
Gn,p, is easy when k = Ω (

√
n). Formally one notes that given two distributions

H0 : G ∼ G (n, p) against H1 : G ∼ G (n, k, d, p) as per Definition 1,

the spectral test, which outputs H1 when λ1 (G) ≤ −d and H0 otherwise, is correct almost
surely for d ≈ pk and k ≥ c

√
n/p where c > 0 is a large enough constant. This is because for

a Gn,p graph, the smallest eigenvalue is greater than −2
√

n almost surely (Claim 7), while
for a graph with planted bipartite subgraph, the smallest eigenvalue is smaller than −d since
the vector 1S1 − 1S2 already achieves Rayleigh Quotient of value −d.

The challenges in exact recovery

However, as expected, the exact recovery problem is more challenging. There are some works
that look at these planted problems on an individual basis ([15],[6]). They typically rely on
the spectral bounds of perturbation matrices and the framework of Davis-Kahan theorem
(refer [61]) to identify eigenvector(s) indicating the planted set. However, we need a sufficient
eigengap5 to apply these results from perturbation theory. Since our planted graph S in the
random planted model is an arbitrary bipartite graph, it can have any number of eigenvalues
close to the smallest eigenvalue −d and hence we may not have such an eigengap.

A unified spectral framework for random planted models was given by McSherry [55]
(further refined in the work [62]). Here, one can check that we cannot satisfy the conditions
in Observation 11 of this work [55] if the planted set has size o(n). Again, the reason is
because the planted bipartite graph is arbitrary. Since the planted bipartite graph can have
arbitrary rank we cannot get the constants γ1 in [55] to be small enough to recover in o(n)
regimes. It is also easy to verify that this framework works if the planted bipartite graph is
also a random graph, for regimes of k = Ω (

√
n) and d ≈ pk (say by choosing edge probability

for the random planted bipartite graph as p′ = 2p).

5 Typically around the bottom eigenvector(s) or the top eigenvector(s).
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A subspace enumeration style approach

Another spectral approach, inspired from the works of [42, 8, 41, 44] is to apply the subspace
enumeration technique to recover a large fraction of planted set S. Here we first identify that
the vector u = 1S1 − 1S2 has a large projection on the space spanned by τ ′-threshold rank
eigenvectors of A (for choice of τ ′ = d/2). Note that this vector u identifies the planted set
(as well as the planted bipartition), and therefore we call it the signed indicator vector. We
then do a standard ε-net construction to find a vector y close to u and use y to recover a
large fraction of planted set S. We can recover the remaining set of vertices by an argument
due to the work [33], where they distinguish vertices by the size of matching in induced
neighborhoods. Putting all this together, we can prove Theorem 5.

The running time of the procedure described above is exponential in L−τ where L−τ =
O (1/p) for τ = Ω (d) (follows from Fact 12). Therefore, for many special classes of instances
such as, (i) when the probability p = Ω(1) and d = Ω(pk), (ii) when the planted graph is a
complete bipartite graph (this is the balanced biclique problem) and d = Ω(pk), (iii) when
the planted bipartite graph is d-regular random graph for d = Ω(pk) or (iv) more generally
when the planted graph is a d-regular expander graph for d = Ω(pk) we have L−τ = O (1)
and this already gives us a polynomial-time algorithm.

However, as stated earlier, we want to solve the problem in p = o(1) regimes. To
accomplish this, we shift our focus to the SDP formulation we mentioned in SDP 8. Also,
for other problems in this literature (planted clique, planted bisection, planted k-colorable,
Stochastic Block models etc), only SDP’s have provable guarantees of working in the presence
of such monotone adversaries (refer Chapter 10 in [59] for more intuition on this).

1.4.2 Traditional SDP Analysis
Now we overview our SDP-based approach to solving the problem. We will see that the
difficulties in the spectral approach will translate to showing the feasibility of the dual SDP
solution. However, we have more freedom here since we have the dual variables to work with
and we can use them and try to enforce the optimality of the dual solution.

Characterizing dual variables through optimality conditions

A standard technique for analyzing SDP relaxations (like our SDP 8) is to show optimality by
constructing a dual solution that matches the SDPOPT (G) value of the primal in a manner
that the dual matrix Y is positive semi-definite and has rank n − 1, (see Fact 10).

These impose a “wish list” of desired conditions, which can be used to characterize our
dual variables
1. β = −d (Optimal objective)
2.

〈
ggT , Y

〉
= 0 (Complementary slackness)

3. Y ⪰ 0 (Dual feasibility)
4. λ2 (Y ) > 0 (Strong duality).

Using weak duality we set β = −d and γi = 0, ∀i ∈ V to match the optimal primal
objective value of SDPOPT = −d. We expand upon the complementary slackness condition as,〈

ggT , Y
〉

= gT Y g = gT (A + dI) g + gT Bg = 0 + gT Bg = gT Bg .

Therefore the complementary slackness condition gives us that,∑
i∈S

∑
j∈S

{i,j}∈E

Bij = 0 (9)
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and since the SDP dual requires that Bij ≥ 0, it implies that Bij = 0 for all (i, j) ∈ E(S1, S2).
Now using the characterization of dual variables from conditions (1) and (2), one tries
to show the feasibility of the dual and the strong duality rank condition. Typically, this
characterization turns out to be rather weak. So, we refer to the dual variables set so far
(ensuring condition (1) and (2) are satisfied) as weakly characterized.

Showing optimality of dual solution through weakly characterized dual variables

For certain problems in semi-random models, such as the planted clique problem [26],
community detection in SBM [2], the weak characterization above suffices. We are able to
show that the weakly characterized dual solution satisfies conditions (3) and (4). This is
typically done by invoking some standard results for random matrix bounds and concentration
inequalities. In our setup, satisfying condition (3) requires that

λmin (Y ) ≥ 0 which is implied if λmin (A) + d + λmin (B) = λmin(A) + d ≥ 0 . (10)

However, in our random planted model, the smallest eigenvalue of A can be smaller than
−d − 2√

pn and condition (3) may not hold (as per choice of Bij ’s dictated from equation
(9)). Thus we need a stronger characterization of dual variables to satisfy the conditions (3)
and (4). In our problem, we need to make use of the large number of unused dual variables
B′

ijs for {i, j} ∈ E ∩ {(V × V ) \ (S × S)}

Guessing/Constructing the dual certificate

Now we discuss an approach of making the dual matrix satisfy conditions (3) and (4) by
guessing the dual variables thus giving an explicit setting of dual variables. This is typically
done by assigning some sort of meaning to dual variables and guessing their values based on
the input instance. This approach has found reasonable success in other recovery problems
like the planted bisection problem [24], coloring semi-random graphs [20], decoding binary
node labels from censored edge measurements [1], and planted sparse vertex cuts [49].

Therefore, we may expect to guess a nice setting of dual variables that satisfy equation
(10). However, if one takes a deeper look at this approach, the task again reduces to applying
results from perturbation theory. Again, such an approach would work if the planted
bipartite graph were also a random graph or an expander, since there would only be a single
eigenvector whose corresponding eigenvalue disobeys equation (10), and one could choose
the dual variables constructively to handle it and make it satisfy condition (3).

However, for an arbitrary planted bipartite graph, we can have a lot of eigenvalues in
the interval [−d, −d − 2

√
n] (and hence the entire graph A can have a lot of eigenvalues in

the interval [−d − 2
√

n, −d]). Therefore, we need a more principled approach to deal with
the corresponding eigenvectors of the planted graph having eigenvalue close to −d (as we
pointed out earlier, there can be O (1/p) such eigenvectors).

1.4.3 Calibrating the eigenvectors

Now we present our approach towards satisfying conditions (3) and (4), which is to calibrate
the eigenvectors. We will see that, this calibration will further complicate our requirements
on the dual variables, however we will argue in Section 1.4.4 on how we manage that.
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Obtaining optimality of Primal SDP by assuming existence of a certifying B

It is now clear that our Achilles’ heel are the eigenvalues (and corresponding threshold rank
eigenvectors6) of the planted graph in the interval [−d, −d − 2

√
n]. If we were allowed to

ignore these vectors it’s easy to see that equation (10) and hence condition (3) holds.
Our core idea is to extend (by padding with 0’s so that they are the right length) the

threshold rank eigenvectors of A|S×S to be the eigenvectors of the dual matrix Y . Recall,
the eigenvalues of A|S×S lie in the interval [−d, d]. Now take a threshold rank eigenvector
of A|S×S (say with eigenvalue λl). We wish to calibrate such a threshold rank eigenvector
to be an eigenvector of Y with eigenvalue d + λl. If we are able to achieve this calibration,
we need not bother about the 2

√
n term since now these eigenvectors have a non-negative

quadratic form7.
The only thing at our disposal for this calibration are the unused (so far) dual variables

Bij ’s. Denote this set of threshold rank eigenvectors of A|S×S as P−τ . Given this set P−τ ,
achieving this calibration can be expressed as satisfying the system of equations,∑

i∈S

v(l)
i (Aij + Bij) = 0, ∀j ∈ V \ S, ∀ v(l) ∈ P−τ . (11)

L different system of equations El, one for each v(l).
Each system El involves |S| × |V \ S| variables Bij where i ∈ S and j ∈ V \ S.

Now, all we need is a setting of Bij ’s such that the system of equations is satisfied. However,
this will still not be enough. We note that if this system of equations were to have a solution,
we would have set some of these Bij variables to non-zero values. Therefore our equation
(10) would now need to be modified to showing that λmin (A) + d + λmin (B) ≥ 0.

The way we deal with this is by noting that we can tune τ > 0 apriori to be sufficiently
large for this calibration such that λmin(A) + d ≥ η where η > 0; and now impose an
additional constraint on the matrix of dual variables that ∥B∥ ≤ η. At this point, it seems
highly suspicious as whether such Bij ’s exist. However, if we table these considerations
aside and for choice of τ = 2d/3 and η = Õ (pk) we can indeed show that condition (3) and
condition (4) of our “wish list” are met and we get the desired integral primal solution.

1.4.4 Setting of dual variables

In this section we show that there exists a matrix of non-negative dual variables Bij ’s that
satisfies the system of equations (11) and ∥B∥2 = Õ (pk).

An LP formulation and Farkas Lemma based approach

We start by observing that the condition ∥B∥2 = Õ (pk) is implied by a condition that
Bij ≤ t = Op

(√
log k/k

)
, ∀(i, j) ∈ (S × (V \ S)) ∪ ((V \ S) × S). Also, since these sys-

tem of equations (11) only concerns the non-negative dual variables Bij ’s with {i, j} ∈
(S × (V \ S)) ∪ ((V \ S) × S), we set the rest of them to 0.

6 For an appropriate choice of τ , which we decide later, these will be the threshold rank eigenvectors.
7 The quadratic form of vector x with a matrix Y is a number given by xT Y x
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We now reorganize our collection of linear systems in (11) as follows.
For j ∈ V \ S, define a system of equations Fj .
In all, this gives a collection of systems {Fj}j∈V \S . Each system contains L−τ × |S|
variables. In particular, the system Fj is expressed in the standard form W−τ x = b,
where W−τ ∈ RL−τ ×k is a matrix formed by stacking the vectors v(l) ∈ P−τ as rows.
Fix j ∈ V \ S and consider the system Fj . The vector b in this system is a row vector of

size L−τ × 1 and has entries given by bl = −
∑

i∈S Aijv
(l)
i , ∀l ∈ [L−τ ] and x here is a row

vector of size k × 1 where the entry xi = Bij (recall that we have fixed a j ∈ V \ S). However
since Bij ’s are not arbitrary variables but dual variables of SDP 9, these are required to be
non-negative and should only be defined for i ∈ N(j). Since the graph on S × (V \ S) is
random, the choice of random edges while choosing N(j) (in model construction) corresponds
to setting those Bij = 0 whenever the edge is not chosen. Let W̃−τ denote the submatrix
after removing the columns corresponding to i /∈ N(j) and recall t is our upper bound on
the entries of B matrix as mentioned above. We then consider the following feasibility LP
formulation for this problem of finding appropriate Bij ’s.

▶ LP 15.

W̃−τ x = b (12)
0 ≤ x ≤ t1 . (13)

For simplicity, consider the case p = 1, i.e. when Aij = 1 for all i ∈ S, j ̸∈ S. Then we
have that for any vector y ∈ RL−τ ,

bT y =
∑

r∈[L−τ ]

bryr = −
∑

r∈[L−τ ]

∑
i∈S

v
(r)
i yr = −

∑
i∈S

∑
r∈[L−τ ]

v
(r)
i yr (14)

= −
∑
i∈S

∑
r∈[L−τ ]

w(i)
r yr = −

∑
i∈S

〈
w(i), y

〉
= −

〈∑
i∈S

w(i), y
〉

= 0 . (15)

Using the standard variant of Farkas’ Lemma, this immediately implies the existence of a
solution to equation (11). However, in general, for p < 1, we need to do more work here.

We apply a more general version of Farkas’ Lemma, and we have that satisfying this LP
in the general case corresponds to showing that for some t > 0, the following holds.

∀ y ∈ RL−τ , ∀ z ≥ 0, W̃ T
−τ y + z ≥ 0 =⇒ bT y + t ⟨z,1⟩ ≥ 0 . (16)

The first term in the expression, bT y, can be expanded as in equation (14) to obtain

bT y = −
∑

i∈N(j)

〈
w(i), y

〉
and using

(
W̃ T

−τ y
)

i
=

〈
w(i), y

〉
we have zi ≥ −

〈
w(i), y

〉
.

We can give a proof by contradiction for equation (16). By contradiction there exists a y
and a z such that bT y + t ⟨z,1⟩ < 0. We choose z′ ≤ z by setting z′

i = max
{

0, −
〈
w(i)〉 , y

}
and argue that it is enough to show contradiction for t, y and z′. Using the expressions for
bT y as above, this translates to showing that∑

i∈N(j)

〈
w(i), y

〉
+ t

∑
i∈N(j)

min
{

0,
〈

w(i), y
〉}

> 0, (17)

has no solution. We show that equation (17) does not hold for our desired choice of
t = Op

(√
log k/k

)
.

We note that the second term in equation (17) is ≥ 0, and we wish the inequality to not
hold for as small a value of t as possible; therefore, we seek an upper bound on both terms.



A. Kumar, A. Louis, and R. Paul 84:15

Structure of threshold rank/spectral embedding vectors

To upper bound the first term, it might be helpful to understand the structure of the
spectral embedding vectors w(i). Since these are intimately connected to the threshold rank
eigenvectors v(l), we use these eigenvectors to characterize them. For convenience we let
v(l) ∈ P−τ have unit norm, then we show that

∥∥v(l)
∥∥

∞ =
∥∥w(i)

∥∥
∞ ≤ 2/

√
d. Since i ∈ N(j)

are sampled randomly, we can use the Hoeffding bounds to upper bound the l∞ norm for∑
i∈N(j) w(i) and hence upper bound our first term by Op

(√
log k

)
with high probability. We

choose our parameters such that the vectors in P−τ are orthogonal to 1S . For the embedding
vectors, this translates to saying that

∑
i∈S w(i) = 0.

Towards bounding the second term, we use these spectral embedding vectors. The spectral
embedding vectors are isotropic for p = 1 (already where we can easily show that equation
(17) does not hold and we are done). However, for p < 1, we have i ∈ N(j) (and corresponding
embedding vectors) being sampled randomly as per Gn,p distribution. Here, we show that
by using Matrix Bernstein concentration we can get close to isotropic vectors,∑

i∈N(j)

〈
y, w(i)

〉2
≥ p/2 (This shows that embedding vectors are p/2-isotropic .) (18)

Showing existence of a solution to LP 15

Now, we look at two cases; the first case where the negative terms dominate the summand
in equation (17), then we use the eigenvector structure that

∥∥w(i)
∥∥ ≤ 2/

√
d and we are

done; for the other case where the positive terms dominate, we relate the positive terms
to the negative terms again using the bound we obtained from the eigenvector structure∥∥∥∑

i∈N(j) w(i)
∥∥∥ = Op

(√
log k

)
.

Therefore, we argue that we can upper bound the second term by −Ωp

(√
k
)

. Therefore

for a choice of t as we obtained above of t = Op

(√
log k/k

)
, equation (17) does not hold.

As discussed earlier this implies that the there exists a dual such that conditions (1)-(4),
equation (11) and ∥B∥2 = Õ (pk) holds which further implies that the primal SDP is feasible.
Further, if the graph is connected; the signed indicator vector would be the only eigenvector
with eigenvalue −d (after padding to make these the eigenvectors of Y ), this would be the
only eigenvector of Y with eigenvalue 0. Using Fact 10, this implies that the proposed integral
solution in equation (8) is the only integral solution and hence Cholesky Decomposition of
our SDP matrix returns the signed indicator vector and thus our planted set.

1.4.5 Low degree regimes

The discussion above about SDP holds only where d = γpk where γ ≥ 2/3. Note that this
covers our interesting regimes when d ≈ pk where the problem is non-trivial. The other
case where d ≤ 2pk/3, can actually be trivially solved for k = Ωp

(√
n log n

)
using a degree

counting argument along the lines of [43] as we discuss below.
Now we consider the regimes when d = γpk with γ ≤ 2/3. We show that a simple

algorithm that collects the bottom k degrees of the graph will work in these regimes since
the vertices in S will have smaller degrees compared to vertices in V \ S.

▶ Lemma 16. For k ≥ 6
√

6n log n/p, Algorithm 1 returns the planted set S with high
probability (over the randomness of the input).
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Algorithm 1 Kucera’s algorithm for recovery in low degree regimes.

Input: G = (V, E), sampled as per Definition 1 with adversary as per step 5.
Output: The set of vertices in planted bipartite graph (with high probability) S.

1: Sort the degrees of the vertices in G.
2: Return S be the set of bottom k degrees after sorting..

Proof. For a vertex v ∈ S the expected degree is d + p(n − k). We note that this is smaller
than pn since d ≤ 2pk/3. We can upper bound the degree of v (denoted d(v)), with high
probability (over the randomness of the input) using Chernoff bounds (Lemma 4.5, [56]) as,

P
[
d(v) ≥ d + p(n − k) +

√
6pn log n

]
≤ exp

(
−pn(

√
6 log n/

√
pn)2

3

)
= 1

n2 .

Using a union bound over all v ∈ S, we have that for an any v ∈ S,

P
[
d(v) ≥ d + p(n − k) +

√
6pn log n

]
≤ 1

n
.

Therefore we have with high probability (over the randomness of the input) that d(v) ≤
d + p(n − k) +

√
6pn log n. Similarly for a vertex v′ /∈ S the degree can be lower bounded

with high probability (over the randomness of the input) using Chernoff bounds (Lemma 4.4,
[56]) as,

P
[
d(v′) ≤ pn −

√
6pn log n

]
≤ exp

(
−pn(

√
6 log n/

√
pn)2

2

)
= exp (−3 log n) = 1

n3 .

Now using a union bound over all v′ /∈ S, we have with high probability (over the randomness
of the input) that d(v′) ≥ pn −

√
6pn log n. Therefore, with high probability (over the

randomness of the input), the degrees differ by,

d(v′) − d(v) ≥ pk − d − 2
√

6pn log n ≥ pk

3 − 2
√

6n log n . (19)

where we have used d ≤ 2pk/3. It is also evident from equation (19) that for k ≥ 6
√

6n log n/p,
with high probability (over the randomness of the input), the degree for a vertex v ∈ S is
smaller than degree of any vertex v′ /∈ S. ◀

1.4.6 Action of Adversary
Finally, we discuss the action of adversary (allowed to add edges in (V \ S) × (V \ S) for
d ≥ 2pk/3). We show that the inductive argument given by [24] also works for our case. This
argument also extends to the semi-random model in Definition 11. We leave these details to
the full version of the paper.

For d ≤ 2pk/3 regimes, Algorithm 1 continues to return the planted set, since the action
of adversary only amplifies the difference of degree for a vertex v ∈ S and vertices v′ /∈ S.
This argument does not extend to the semi-random model in Definition 11.
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Abstract
The p-processor cup game is a classic and widely studied scheduling problem that captures the
setting in which a p-processor machine must assign tasks to processors over time in order to ensure
that no individual task ever falls too far behind. The problem is formalized as a multi-round game
in which two players, a filler (who assigns work to tasks) and an emptier (who schedules tasks)
compete. The emptier’s goal is to minimize backlog, which is the maximum amount of outstanding
work for any task.

Recently, Kuszmaul and Westover (ITCS, 2021) proposed the variable-processor cup game, which
considers the same problem, except that the amount of resources available to the players (i.e., the
number p of processors) fluctuates between rounds of the game. They showed that this seemingly
small modification fundamentally changes the dynamics of the game: whereas the optimal backlog in
the fixed p-processor game is Θ(log n), independent of p, the optimal backlog in the variable-processor
game is Θ(n). The latter result was only known to apply to games with exponentially many rounds,
however, and it has remained an open question what the optimal tradeoff between time and backlog
is for shorter games.

This paper establishes a tight trade-off curve between time and backlog in the variable-processor
cup game. We show that, for a game consisting of t rounds, the optimal backlog is Θ(b(t)) where
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(
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)

if log n < t ≤ n3

n if n3 < t.

An important consequence is that the optimal backlog is Θ(n) if and only if t ≥ Ω(n3). Our techniques
also allow for us to resolve several other open questions concerning how the variable-processor cup
game behaves in beyond-worst-case-analysis settings.
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1 Introduction

The classical p-processor cup game. The p processor cup game captures the general
problem in which there are some number n of tasks competing for a smaller number p of
processors [7, 21, 8, 33, 31, 37, 6, 24, 34, 35, 17, 10, 27, 1, 16, 32, 25]. A scheduler must
assign tasks to processors over time in order to ensure that no individual task ever falls too
far behind.

Formally, this is captured as a game with n cups, each capable of holding an arbitrarily
large amount of water, and two competing players, a filler and an emptier. In each round of
the game, the filler distributes p new units of water into the cups, placing at most 1 unit
of water into any particular cup. The emptier then selects p distinct cups and removes up
to 1 unit of water from each of them. Note that, whereas the filler may place their p units
of water in fractional amounts across arbitrarily many cups, the emptier can only choose p

cups per step to empty from. The emptier’s goal is to minimize the backlog of the system,
which is the amount of water in the fullest cup.

If one views the cup game as a scheduling problem, then the cups represent tasks, the
water represents work, the filler represents an adversary that determines when work arrives,
and the emptier represents a scheduler that can select p tasks to run on a given time step
(we will use the terms “round” and “time step” interchangeably). Although we will primarily
be interested in the cup game as a scheduling problem [7, 21, 8, 33, 31, 37, 6, 24, 34, 35, 1,
32, 17], it has also found applications to many other problems (e.g. deamortization of data
structures [2, 17, 16, 3, 38, 23, 18, 26, 9], network-switch buffer management [22, 4, 39, 20],
quality-of-service guarantees [7, 1, 32], etc.).

Beginning in the late 1960s, much of the early work on the p-processor cup game focused
on the fixed-rate version of the game, in which the filler’s behavior is the same at every
round [7, 21, 8, 33, 31, 37, 6, 24, 34, 35]. In this version of the game, it is possible for the
emptier to achieve a backlog of O(1), both in the single-processor cup game (i.e., p = 1)
[34, 35] and in the multi-processor cup game (i.e., p > 1) [7]. In recent decades, much of the
research has shifted to focus on the non-fixed-rate version of the game, in which the filler is an
adaptive adversary that can change their behavior from step to step [1, 16, 27, 32, 5, 19, 15].
In this setting, it is possible for the emptier to achieve backlog O(log n) [1, 16, 27], and
this is known to be asymptotically optimal for all p ≤ n −

√
n [27]. There is also a

long history of researchers applying techniques from beyond-worst-case analysis to cup
games, e.g., resource augmentation [10, 27, 32, 17], smoothed analysis [27, 10], adversary
restrictions [10, 27, 14, 28, 17], semi-clairvoyance [32], etc.

A repeating theme in these directions of work has been the relative difficulty of analyzing
the multi-processor case in comparison to the single-processor case. As Liu discussed in his
seminal 1969 paper [34], and as many later authors have subsequently reiterated [32, 7, 24,
10, 27], the difficulty of the multi-processor case stems from the fact that the emptier must
remove water from p distinct cups, even if the vast majority of the water is in a smaller
number of cups. For both the fixed-rate and the non-fixed-rate games, the optimal backlog
in the multi-processor version of the game [7, 27] was proven decades after the corresponding
result for the single-processor game was first shown [34, 16].
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The variable-processor cup game. Recent work by Kuszmaul and Westover [29] has
considered the question of what happens if the parameter p is permitted to change over
time, with the filler adaptively determining both what value of p will be used at each round
and where the p new units of water are placed. The resulting game, which is known as the
variable-processor cup game, captures settings in which the amounts of resources available to
the players fluctuate over time.1

The problem of what to do when computing resources fluctuate has received increasing
attention in recent years due to the proliferation of shared-computing systems in which
multiple users and virtual operating systems simultaneously run on a single physical multi-
core machine; the fact that the machine is shared means that the amount of resources
(eg., cache, processors, memory bandwidth, etc.) available to each user is constantly
changing, depending on the current demands of other users. This phenomenon has led
researchers to revisit problems in which computing resources have traditionally been viewed
as static [36, 11, 12, 13, 30, 29].

Intuitively, the variable-processor cup game would seem to be relatively similar to its
classical p-processor counterpart. Indeed, the backlog in the p-processor cup game is O(log n)
regardless of the value of the parameter p, suggesting that the same should be true if p is
permitted to vary. The central result of [29] is that this intuition turns out to be completely
wrong: given sufficiently many time steps, the filler can actually force a backlog of Ω(n) in
the variable-processor cup game, and this backlog is asymptotically optimal.

In order to achieve the backlog of Ω(n), the authors [29] construct a strategy for the filler
in which the number of processors p follows a recursive “fractal-like” pattern. The recursive
structure requires a relatively large number of time steps to complete – to achieve the full
backlog of Ω(n), the construction requires exponentially many time steps.

The unexpectedly large backlog prompts several questions. The main open question is
the problem of determining the optimal trade-off between backlog and time in the variable-
processor cup game, and, in particular, what the optimal backlog is in games of polynomial
lengths. In this setting, it is not even known whether the filler can achieve polynomial backlog
– the best known filler strategy in this case [29] achieves backlog 2O(

√
log n). Understanding

the optimal trade-off between time and backlog in polynomial-length games is especially
important since, for instance, one may have a bound on the number of rounds in a given
scheduling application, which may allow for a much better guarantee on the backlog.

The authors of [29] also raise the question of whether smaller bounds on backlog can be
achieved via beyond-worst-case analysis. Based on their results, they propose two directions,
in particular, that seem promising. One is to place an additional restriction on the filler that
p can only change at a certain rate; this would thwart the recursive structure of their lower
bound construction which changes p dramatically between levels of recursion. The other is
to consider the use of resource augmentation, meaning that the emptier is allowed to remove
slightly more water in each time step than the filler is permitted to place into the cups. This
direction seems promising due to the large amount of time required by the filling strategy
of [29], since over such a large amount of time, the resource augmentation would potentially
offer a large advantage to the emptier.

1 As discussed in [29], there is no fundamental reason why the amount p of resources should fluctuate in
the same way for the filler as it does for the emptier over time. However, by assuming that p is always
the same for both players, one ensures that there is a fair playing field: neither player has an advantage
over the other in terms of their resources.
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Our results. The main result of this paper is a tight trade-off curve between time and
backlog in the variable-processor cup game. We show that, for a game consisting of t rounds,
the optimal backlog is Θ(b(t)) where

b(t) =


t if t ≤ log n

t1/3 log2/3
(

n3

t + 1
)

if log n < t ≤ n3

n if n3 < t.

(1)

By optimal, we mean that there exists an emptying strategy such that no filler can achieve
backlog greater than Ω(b(t)) after t rounds, and there exists a filling strategy such that no
emptier can achieve backlog less than O(b(t)) after t rounds. In the case of the emptying
strategy, we show that this tradeoff curve is achieved by the greedy emptying algorithm (i.e.,
always empty from the fullest cups).

Equation (1) comes with several interesting takeaways. The first is that in short games,
of length o(n3), the emptier can achieve sub-linear backlog – prior to this result, it remained
open whether the emptier could even ensure o(n) backlog for only n rounds. The second is
that in games of size Ω(n3), the optimal backlog is Θ(n) – this resolves the open question
of [29] as to whether linear backlog can be achieved in polynomial time. The third is that
the optimal tradeoff between backlog and time has a somewhat unexpected polylogarithmic
low-order term, which disappears only when t grows to be Ω(n3).

By examining the inverse of the function b(t), another way to think about (1) is that, for
any quantity b ≤ n, the amount of time t(b) needed for an optimal filler to force a backlog of
Ω(b) against an optimal emptier is

t(b) = Θ
(

b + b3

log2 n
b

)
, (2)

and that backlogs b = ω(n) are not achievable by the filler (the latter fact, of course, is
already known due to [29]).

The second contribution of this paper is to analyze the variable-processor cup game under
two forms of beyond-worst-case analysis, each of which resolves an open question posed
by [29]. We begin by considering the setting in which the rate at which the filler can change
p is severely limited: p is permitted to change by most ±1 per time step, and the filler
can only change p every poly(n) time steps. Remarkably, this has no effect on the optimal
backlog, and the filler can still force a backlog of n/2 in polynomial time. Next, we consider
the setting in which the emptier has ε > 0 resource augmentation, meaning that, in each
time step, the emptier is permitted to remove up to 1 + ε (rather than 1) units of water from
each of p cups. This has a dramatic effect on the optimal backlog, reducing it to O( 1

ε log n),
which asymptotically matches the optimal backlog of the standard p-processor cup game
when ε = Ω(1).

Techniques and paper outline. We formally describe the necessary preliminaries in Section
2, and provide a detailed overview of the technical ideas in the paper in Section 3.

In Section 4, we prove a result that ends up being useful in many of the later sections,
namely that the greedy emptying algorithm is actually the exact optimal online algorithm,
and that this holds no matter what the starting state of the cups is. Interestingly, our proof
of greedy emptying being the optimal emptying strategy also applies to the fixed p-processor
cup game, for which the result was also not previously known: in this setting, the greedy
emptying algorithm was previously only known to be asymptotically optimal [27], and this
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was only known for the starting state with all empty fills. We remark that, although the fact
that greedy emptying is optimal is certainly intuitive, it actually isn’t true for every variant
of the cup game; notably, the greedy emptying algorithm isn’t even asymptotically optimal
for the fixed-rate version of the game [1].

In Section 5, we construct an asymptotically optimal strategy for the filler. The strategy
achieves the bound in (1) no matter what strategy the emptier follows, and the strategy
also easily generalizes the case where the filler is restricted to change p at a slow rate. This
implies that the optimal backlog b(t) is at least that in (1). While the filling algorithm works
against any emptier, we focus on the filler working against the greedy emptier, which we
know is optimal. We start with a warm-up (subsection 5.1) proving that one can establish
Ω(n) backlog in O(n3) time, and we then generalize our techniques to apply to games of
arbitrary lengths.

The remainder of the paper has been deferred to the extended version of this paper2. In
Section 6 in the extended version, we turn our attention to proving a tight upper bound for
the maximum backlog against a greedy emptier, that is, we show that b(t) is at most that
in (1). We begin by creating a variation of the variable-processor cup game, which we call
the stone game, in which the filler’s behavior is limited in a certain combinatorially natural
way. We analyze the maximum backlog of any filling strategy for the stone game by devising
two potential functions and comparing their growth rates; this allows us to establish that
Ω(n3) time steps are needed to achieve backlog Ω(n) in the stone game. We then tighten the
bound on backlog when there are fewer time steps by partitioning the cups into levels and
arguing that a constant fraction of the levels interact especially nicely with the potential
functions; this yields (1) for the stone game. Finally, we show that, if the emptier behaves
greedily, then this stone game encapsulates the main problem, that is, is always advantageous
to the filler in the variable-processor cup game to act as though they are in the stone game.
Thus we can transfer out bounds on the stone game into bounds on the variable-processor
cup game.

Section 6 is, in our opinion, the most technically involved section in our work. Perhaps
the most interesting mathematical contribution in this section is to analyze the furthest
backlog in the stone game by constructing two different potential functions and comparing
their relative growth rates. While individual potential functions have been used to analyze
cup games [10], this is the first time that comparing two potential functions has been applied
to cup games.

Finally, in Section 7 in the extended version, we give a very simple analysis of the
variable-processor cup game in the presence of resource augmentation. Our argument is
non-constructive, employing the probabilistic method in order to show that there exists an
emptying algorithm that achieves backlog O( 1

ε log n) (interestingly, the same argument also
gives a nontrivial bound of O(

√
t log n) in the resource-augmentation-free setting). Since the

greedy emptying algorithm is optimal, it must also achieve the same bound. To the best of
our knowledge, this is the first example of the probabilistic method being used to analyze
cup games.

2 Preliminaries

We first formally define the variable-processor cup game. In this game, there are n

cups of real-valued fills x1, . . . , xn, all starting at 0, and two adaptive players, a filler and
an emptier. At each round, the filler chooses an integer 1 ≤ p ≤ n, chooses real numbers

2 Available at https://arxiv.org/abs/2205.01722
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a1, . . . , an such that 0 ≤ ai ≤ 1 for all i and
∑n

i=1 ai = p, and replaces xi with x′
i = xi + ai

for all 1 ≤ i ≤ n. The emptier then chooses a set S ⊂ [n] of size p, and for each i ∈ S,
replaces x′

i with max(0, x′
i − 1) but does not change x′

i for i ̸∈ S. A single round (which
we also call time step) consists of both the filler’s and emptier’s moves. We define the
state of the cups at a fixed round to be the current sequence {x1, x2, . . . , xn} of the values
of cups. Since the filler and emptier are adaptive, we note that two states are equivalent if
the sequences are equal up to permutation. We will also say that the fills are x1, x2, . . . , xn

(we think of xi as the fill of the ith cup). Finally, for any state X = {x1, . . . , xn}, we define
the backlog of X as the maximum fill, or max1≤i≤n xi. The goal of the filler is to maximize
the backlog after t rounds for some fixed t, whereas the goal of the emptier is to minimize it.
We also define the variable-processor cup game with ε resource augmentation as the
same as the variable-processor cup game, except that the emptier, for each i ∈ S, replaces x′

i

with max(0, x′
i − (1 + ε)).

Next, we define the negative-fill variable-processor cup game as the same as the
variable-processor cup game, except that the emptier, for each i ∈ S, replaces x′

i with x′
i − 1.

This may mean that some of the fills in a state become negative, which is allowed. We
analogously define round, state, fills, and backlog (note that the backlog is max1≤i≤n xi, not
max1≤i≤n |xi|).

Unless explicitly stated otherwise, the standard game refers to the variable-processor
cup game, and the negative-fill game refers to the negative-fill variable-processor cup game.
We will explicitly state whenever we talk about the fixed p-processor cup game (where
p =

∑n
i=1 ai is fixed for every round), or the variable-processor cup game with ε > 0 resource

augmentation.
We conclude this section by briefly commenting on the relationship between the standard

game and the negative-fill game. It is easy to see that the optimal backlog in the standard
game is at least as large as the optimal backlog in the negative-fill game. What is less obvious,
but worth noting, is that the optimal backlogs in the two games are actually asymptotically
equal. We provide a proof of this in Appendix A in the extended version. Thus, in general,
either version of the game is equally valid (although the only place where we will take
advantage of this in any nontrivial way will be Section 6 in the extended version).

3 Technical Overview

In this section, we provide a technical overview for both the lower and upper bound for the
variable-processor cup game, as well as the upper bound for the variable-processor cup game
with resource augmentation.

3.1 Overview of the Lower Bound on Backlog
In Section 5, we provide a lower bound on the backlog that the filler can achieve over t rounds.
For now, let us assume that we are playing the negative-fill game and that the emptier is
greedy, i.e., at each time step, if the filler fills p units of water, then the emptier empties 1
unit from the p fullest cups. We shall remove these assumptions at the end of the subsection.

Achieving backlog Ω(n) in n3 steps. Why is this type of move good for the filler? Consider
the potential function measuring the sum of squares of the fills, i.e., Φ(x1, . . . , xn) :=

∑n
i=1 x2

i .
If we let q = j−i+1

2 , so that q of the fills go up by 1/2 and q of the fills go down by 1/2, then
it is not hard to show that Φ increases by q

2 ≥ 1
2 . If the filler can force this to happen for n3

consecutive time steps, then Φ will increase to Ω(n3), which means that at least one of the
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|xi|’s must be Ω(n). If the filler is careful, then it turns out they can further ensure that the
cups are symmetric (i.e., for every cup with fill s there is another cup with fill −s). Thus if
|xi| ≥ Ω(n) for some n, then a backlog of Ω(n) has been achieved.

The only way that the filler might be prevented from performing this type of move for
n3 consecutive time steps is if, at some time step, no two cups have the same fills as each
other. Note, however, that the filler always adds half-integer values to cups and the emptier
always subtracts integer values, which means that x1, . . . , xn are always half-integers. So,
if the xi’s are all distinct, then max1≤i≤n |xi| ≥ n−1

4 = Ω(n). Recalling that the filler can
ensure symmetry of the cups, it follows that in this case the filler has also achieved an Ω(n)
backlog in only n3 time steps.

Considering smaller backlogs. What if we only want to reach some backlog o(n)? We will
now describe how the filler can achieve backlog Ω(t log(n/t)) in O(t3 log(n/t)) time steps.
Combining this with some edge cases (which we defer to Section 5) results an optimal filling
strategy for any backlog.

First, we claim that within t3 steps, the filler can cause Θ(n) cups to have fills Ω(t). To
see this, note that if at least half of the cups have fills less than t, then by the pigeonhole
principle, there must exist some half-integer s with |s| ≤ t and Ω(n/t) cups of fill exactly
s. If the filler causes half of these cups to go up in fill by 1/2 and half of them to go down
in fill by 1/2, then the net effect on Φ will be that it increases by Ω(n/t). The filler can
repeatedly force Φ to increase by Ω(n/t), while keeping the maximum backlog at t, until
either t3 steps have passed and Φ = Ω(n · t2) or until at least half of the cups have reached
backlog ±t. Either way, at least Θ(n) of the cups must have fills more than Ω(t) or less than
−Ω(t), and recalling again that the filler can also ensure a symmetry of the cups, it follows
that a constant fraction of the cups have fills Ω(t).

Once we have cn cups of fill Ω(t), for some constant c > 0, the filler can focus on these
cups, and force c2n of these cups to fill 2 · Ω(t), then c3 · n to fill 3 · Ω(t), and so on for a
logarithmic number of phases. Overall, one can achieve backlog Ω(t log(n/t)) in O(t3 log(n/t))
time steps.3

The final piece: establishing that greedy emptying is optimal. To conclude our overview
of the lowerbound, let us revisit the assumptions that (a) we are playing the negative-fill
game, and (b) the emptier is playing greedily. The first assumption is trivial to remove, since
the filler in the standard game is strictly better off than the filler in the negative-fill game.
The second assumption, that the emptier is playing greedily, requires us to prove that the
greedy emptying algorithm is always optimal (this ends up being useful to have for later
results as well).

To prove the greedy emptying is optimal, in Section 4, we construct a specially designed
poset on the possible states X of the system. Say that a state X = {x1, . . . , xn} weakly
monopolizes a state Y = {y1, . . . , yn} if it is possible to order the cups such that either:

xi ≥ yi for all i;
or we have (a) that xi = yi for all i > 2, that (b) x1 > y2, and that (b) we can get from X

to Y by removing exactly 1 unit of water from cup 1 and placing some quantity 0 ≤ c ≤ 1
of water into cup 2.

3 Note that one can only do log(n/t) phases, rather than the more intuitive log n phases, since we need
at least t cups to reach fill a · t in order for anything to reach fill (a + 1) · t.
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The transitive closure of weak monopolization induces a partial ordering on the set of all
possible system states, where A ≥ B if there is a sequence A = A1, A2, . . . , Aj = B such that
each Ai weakly monopolizes each Ai+1.

We prove that, given the choice between two states A, B with A ≥ B, the emptier should
always prefer state B. Furthermore, starting from any state X, greedy emptying always
results in a state B that satisfies B ≤ A for every other state A that the emptier could have
reached from X. Thus the greedy emptying algorithm is optimal.

3.2 Overview of the Upper Bound on Backlog
In Section 6 in the extended version, we show that the greedy emptying algorithm achieves
an upper bound on backlog matching the lower bound of Section 5. We first consider a filler
that is restricted to only making moves of the form described in Subsection 3.1, that is,
so that the net effect of each round is that some number 2q of cups at some height k are
replaced with q cups at height k + 1/2 and q cups at height k − 1/2. We will later show
that these types of moves are (essentially) always optimal for the filler, which means this
restriction is actually without loss of generality. Considering this restricted filler along with a
greedy emptier leads to the following simple combinatorial problem, which we call the stone
game (we call it the stone-variant cup game in Section 6):

Suppose you have n stones on a number line, all starting at 0. At each time step t,
you may pick any point k on the number line with 2 or more stones, choose any integer
q ≥ 1 such that there are at least 2 · q stones at k, and move q of the stones at position
k to position k − 1 and q of the stones at position k to position k + 1. If you repeat
this for T time steps, what is the furthest that any of the n stones may be from the
origin?

Analyzing the time to get a stone to position Ω(n). To analyze the stone game, we start
by considering how long it takes for some stone to reach b := n/10 in absolute value. Our
goal is to show that one needs at least T = Ω(n3) time steps. To highlight the relationship
between the cup game and the stone game, we shall sometimes refer to the distance of the
furthest stone from the origin simply as the backlog.

Let the positions of the stones be x1, . . . , xn. We start by recalling the potential function
Φ =

∑n
i=1 x2

i . One would naturally hope that Φ could help us establish a bound of T = Ω(n3)
(just as it helped us with the T = O(n3) bound in Subsection 3.1). For example, one way to
prove the Ω(n3) time bound would be to show that Φ increases by at most O(1) in each step,
and that Φ takes a value of at least Ω(n3) after the final step (i.e., when backlog b = n/10
is achieved). Unfortunately, we run into two problems. The first problem is that even if
max |xi| = b = n/10, we may still have that

∑n
i=1 x2

i is just O(n2) after the final step (as
opposed to the desired Ω(n3)). The second, more difficult problem is that the number of
stones we move in each direction could be large at each time step. If we move q stones right
and q stones left, Φ increases by 2q (rather than the desired O(1)), which could be as large
as n. Together, these two problems mean that, a priori, we can only get a trivial T = Ω(n)
bound, since the change in the potential function Φ is up to n at each time step and the
final potential may be as small as Θ(n2).

The first problem can be resolved with a more careful analysis: in particular, one can
show that a backlog of Ω(n) actually does imply Φ = Ω(n3). The key is to prove that there
can never be large gaps between consecutive stones. Namely, one can show that if there
exists a stone at some position k > 0, there must be at least one stone at position k − 1
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or k − 2, and likewise, if there exists a stone at k < 0, there must be at least one stone at
position k + 1 or k + 2. As a result, if there is a stone at b = n/10, there must be a stone
at position either b − 1 or b − 2, at either b − 3 or b − 4, and so on, so one can show that
there are Ω(b) stones at positions b/2 or greater. Thus, if there is a stone at position b, then
Φ ≥ Ω(b) · (b/2)2 ≥ Ω(n3), as desired.

The more difficult piece of the analysis is to show that, even though Φ can grow significantly
in a single step, Φ only increases on average by O(1) per step. An important insight here
is to create a second potential function, Ψ, and compare the growth rates of Ψ and Φ. We
define this new potential function Ψ :=

∑
i<j |xi − xj |, where x1, . . . , xn are the locations

of the n stones. In a given step of the stone game, if we move q stones up from k to k + 1
and q stones down from k to k − 1, the first potential function Φ increases by 2q. However,
one can show that Ψ must increase by at least 2q2 – the core reason for this is that the q

stones that moved up now each have distance 2 from the q stones that moved down, whereas
before they had distance 0. Now suppose for contradiction that Φ grows on average by some
amount q = ω(1) per step. This would mean that the average growth of Ψ per step is at
least Ω(q2), so the final values of Ψ and Φ must satisfy Ψ = ω(Φ). However, we know that
Φ = Ω(n3) at the end of the game, and it is not hard to see that Ψ must be O(n3), since all
of the xi’s are bounded in the range [−O(n), O(n)]. Thus we have a contradiction, and the
average growth of Φ per step is actually O(1). The fact that Φ is Ω(n3) at the end of the
game and grows by O(1) on average per step is sufficient to show that the time T needed to
achieve backlog b = n/10 in the stone game is at least Ω(n3) time steps.

Considering smaller backlogs in the stone game. But what happens if we wish to analyze
the time needed to achieve backlog k in the stone game, for k ≪ n? If, at the end of the
game, we knew that at least a constant fraction of the stones were in positions Ω(k), then we
could use the same argument as the one above to show that the average growth rate of Φ is
O(1). Unfortunately, the number of stones at positions Ω(k) might be as small as O(k). In
this case, Φ could be as small as O(k3), whereas Ψ must be at least Ω(k2n). If the average
growth of Φ were Θ(n/k) and the average growth of Ψ were Θ((n/k)2), these values of Φ
and Ψ could be obtained in O(k4/n) rounds, which is much smaller than our desired bound
of Ω(k3/ log2(n/k)).

To obtain the optimal bound of Ω(k3/ log2(n/k)), we introduce another variant of the
stone game that has what we call checkpoints: namely, we choose an integer ℓ and play the
same game but now, once a stone has reached a position a · ℓ for any a ≥ 0, it can never
go below it. In other words, if we move q stones from a · ℓ to a · ℓ + 1, rather than moving
q stones from a · ℓ down to a · ℓ − 1, we keep them as is. A key insight is that, if a player
wishes to get a stone to position 10 log n · ℓ, the player must have the property that, for the
majority of the checkpoints, the player gets at least half of the stones that reach checkpoint
a · ℓ all the way up to checkpoint (a + 1) · ℓ.

We can think of the steps of the stone game (with checkpoints) as being split into
subgames, where each subgame takes place between two checkpoints a · ℓ and (a + 1) · ℓ. We
analyze each subgame individually by creating potential functions Φa, Ψa between each pair
of checkpoints at a · ℓ and (a + 1) · ℓ. At least half of the subgames have the property that
at least half of their stones make it to the next checkpoint, and this property makes each
such subgame amenable to being analyzed using Φa and Ψa. By analyzing the subgames
individually, we can show that the total length of the full stone game (which is the sum of
the lengths of the subgames) is at least Ω(k3/ log2(n/k)).
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Finally, one can show that adding the checkpoints to the original stone game only makes
it easier for the player to achieve a large backlog. This involves proving that if states X and
Y have xi ≥ yi for all i, then given any stone-game operation on Y to obtain a state Y ′, we
can generate a corresponding (but perhaps different) stone-game operation on X to obtain
X ′, and preserve the ordering x′

i ≥ y′
i for all i. Thus, the T = Ω(k3/ log2(n/k)) bound also

applies to the original stone game.

Transferring bounds from the stone game to the cup game. Overall, the potential-
function arguments above get optimal bounds for the stone game but they do not directly
give bounds for the more general variable-processor cup game. The main issue is that in
certain time steps in the cup game, it might be possible for the filler to make “backward”
moves where both Φ and Ψ decrease considerably: in the worst case, Ψ can even decrease by
up to n2. Our analysis of the stone game relied heavily on the fact that the change in Ψ
was comparable to the square of the change in Φ (in a given step), but if Ψ can decrease
significantly in a single step, then our comparison of growth rates no longer works. Our fix
for this is not to modify the potential functions, but rather to show that these backward
moves, or any other “non-stone game” moves, are never advantageous to the filler, even in
the long run.

To show that non-stone-game moves are never advantageous for the filler, we analyze
the relationship between the stone game and the variable-processor cup game. Say that a
sequence X = {x1, . . . , xn} of real numbers majorizes another sequence Y = {y1, . . . , yn}
(where x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn) if x1 + · · · + xi ≥ y1 + · · · + yi for all 1 ≤ i ≤ n,
and if

∑
i xi =

∑
i yi. We prove that, for any sequence of cup game rounds, one can create

a corresponding sequence of stone game rounds such that after every round, the sequence
of stone positions majorizes the sequence of cup fills. Since X majorizing Y implies that
x1 ≥ y1, we get that the maximum backlog after T steps of the cup game is at most the
maximum backlog after T steps of the stone game. Therefore, even if we cannot utilize the
potential functions on the general cup game, it suffices to look at the stone game as it will
have a greater maximum backlog.

The main technical claim needed to show this majorization result is to show that if a
sequence X majorizes a sequence Y , and if Y can be converted to a sequence Y ′ in one
round of filling/greedy-emptying in the variable-processor cup game, then it is possible to
convert X into some X ′ (also with a single round of filling/greedy emptying) such that X ′

majorizes Y ′. This claim is quite casework-heavy and crucially uses the fact that we are
in the variable-processor cup game. Indeed, the choice of p may have to differ between the
round performed on X and the round performed on Y , and perhaps surprisingly, the claim
is actually false in the fixed p-processor cup game.

3.3 Overview of Resource-Augmentation Analysis
In Section 7 in the extended version, we analyze the variable-processor cup game with ε

resource augmentation (and non-negative fills), meaning that in each time step, the emptier
is permitted to remove up to 1 + ε units of water from each of p cups (rather than just 1
unit of water).

We prove that even a very small amount of resource augmentation significantly decreases
backlog of the game: the greedy emptying algorithm achieves backlog O(ε−1 log n).

The proof uses the probabilistic method. Rather than analyzing the greedy emptying
algorithm directly, we instead construct a randomized emptying algorithm that, at any
given moment, achieves backlog O(ε−1 log n) with non-zero probability. (Importantly, the
randomized algorithm is against an adaptive filler, not an oblivious one.) The existence
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of such a randomized algorithm non-constructively implies the existence of a deterministic
emptying algorithm with the same guarantee. But we already know that the best deterministic
emptying algorithm is the greedy one. Thus greedy emptying achieves backlog O(ε−1 log n)
(deterministically).

To simplify our discussion here, let us consider only games of polynomial length (in
Section 7 in the extended version we will consider arbitrary game lengths). In this case, our
randomized emptying algorithm can simply take an approach that we call proportional
emptying: in each time step of the game, if the filler places some amount qj of water into
cup j, then the emptier empties from cup j with probability exactly qj .

To analyze proportional emptying, we show that, at any given moment, each cup has fill
O(ε−1 log n). Roughly speaking, the amount of water in each cup can then be modeled as
a biased random walk: in each time step, the expected amount of water that the emptier
removes is a factor of 1 + ε larger than the amount of water that the filler inserts. The
bias in the random walk prevents it from ever reaching a large fill. The result is that a
simple Chernoff-style analysis (modified using a variation on Azuma’s martingale inequality
to handle the fact that the filler is an adaptive adversary) can be used to bound the fill in
each cup by O(ε−1 log n) (with high probability).

Interestingly, the above argument also immediately yields a nontrivial bound in the
resource-augmentation-free setting. Now the amount of water in each cup follows an unbiased
random walk. At any given time step t, one can bound the height of such random walk by
O(

√
t log n) with high probability. Using the fact that greedy emptying is as good as any

randomized emptying strategy, it follows that greedy emptying achieves backlog O(
√

t log n)
in a t time step game.

4 The Greedy Emptier is Always Optimal

Intuitively, the greedy emptying algorithm (i.e., always empty from the fullest cups) should
be the optimal deterministic emptying algorithm (for both the p-processor cup game and the
variable-processor cup game). This intuition is known to be true for the single-processor cup
game starting in a state with all empty cups (in particular, the lower and upper bounds on
backlog match in this case [1]), but whether or not the intuition is correct in general has
remained an open question. (We remark that there are variants of the game, for example the
fixed-rate cup game, where greedy emptying is not optimal, even asymptotically [1].) In this
section, we prove that greedy emptying is, in fact, optimal for both of the p-processor cup
game and the variable-processor cup game.. That is, for any starting state of the cups, and
for any game length, greedy emptying is the best possible algorithm for minimizing backlog
against an adaptive filler.

For any state S and any length t, define OPT(S, t) to be the supremum backlog that
a filler can achieve at the end of a t-step game starting at state S assuming the emptier
plays optimally. That is, OPT(S, 0) is just the amount of water in the fullest cup of S, and
OPT(S, t) for t > 0 is defined by induction as

sup
S′ reachable from S by filler

min
S′′ reachable from S′ by emptier

OPT(S′′, t − 1).

Note that this also allows for us to talk about the optimal emptier , which is the emptier
that achieves backlog at most OPT(S, t) in any t-step game starting at any state S.
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Define GREEDY(S, t) to be the supremum backlog that a filler can achieve at the end of
a t-step game starting at state S, assuming the emptier plays greedily. We wish to prove
that OPT(S, t) = GREEDY(S, t) for all S, t. Throughout the section we shall prove all of
our results for both the versions of the games with non-negative fills and the versions of the
games with negative fills.

We say that a state A monopolizes a state B if it is possible to assign labels 1, 2, . . . , n

to the cups in A and B such that:
cups 3, 4, . . . , n contain the same amounts of water in both states;
cup 1 in A contains more water than cup 2 in B;
cup 1 in A contains one more unit of water than cup 1 in B;
cup 2 in B contains c more units of water than cup 2 in A for some 0 ≤ c ≤ 1.

In other words, you can get from A to B by removing 1 unit of water from cup 1 and and
placing c ≤ 1 units into cup 2, and cup 1 in A contains more water than cup 2 in B.

We say that A dominates B if it is possible to label the cups such that each cup i in A

contains at least as much water as cup i in B. Finally, we say that A weakly monopolizes
B if either A monopolizes B, or A dominates B.

We now prove several properties of weak monopolization in the p-processor cup game
(for any p). Our first lemma says that, if A weakly monopolizes B, then for any filler move
on B, there is some filler move on A that preserves the weak monopolization of A over B.

▶ Lemma 1. Suppose A weakly monopolizes B. Suppose that there is a p-processor filler
move that transforms B into some B′. Then there exists a p-processor filler move that
transforms A into some A′ such that A′ weakly monopolizes B′.

Proof. If A dominates B, then the lemma is trivial. Thus we can assume that A monopolizes
B. Let q be the amount by which cup 1 in A contains more water than cup 2 in B.

Define X to be a state that we reach from A if we perform the same filler move that
transforms B into B′. If cup 1 in X contains more water than cup 2 in B′ then we can set
A′ = X and be done.

Suppose cup 1 in X does not contain more water than cup 2 in B′. Then, in the
transformation from B to B′, the filler must have placed at least q more water into cup
2 than into cup 1. Let r be the amount of water that the filler placed into cup 1, and let
r + q + s (for some s ≥ 0) the amount of water that the filler placed into cup 2.

Now define A′ to be the state that one would reach from A by performing the following
p-processor filler move: place r + s units of water into cup 1 and q + r units of water into
cup 2 (and then place water into cups 3, 4, . . . , n in the same way as to transform B to B′).
Cup 1 in A′ contains the same amount of water as cup 2 in B′, and cup 2 and A′ contains
the same amount of water as cup 1 in B′. Thus A′ and B′ are equivalent states, meaning
that A′ weakly monopolizes B′. ◀

Our next lemma says that, if A weakly monopolizes B, and if A is then greedily emptied
from, then it is possible to empty from B in such a way that the monopolization relationship
is preserved.

▶ Lemma 2. Suppose A weakly monopolizes B. Let A′ be the state reached if a p-processor
emptier greedily empties from A. Then there exists a valid p-processor emptier move on B

that achieves some state B′ such that A′ weakly monopolizes B′.

Proof. If A dominates B, then the lemma is trivial. Thus we can assume that A monopol-
izes B.
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Let a1, a2 denote the fills of cups 1 and 2 in A, and let b1, b2 denote the fills of cups 1
and 2 in B. So a1 = b1 + 1, b2 = a2 + c for some 0 ≤ c ≤ 1, and a1 > b2. Furthermore, let
a′

1, a′
2 the fills of cups 1 and 2 in A′, and let b′

1, b′
2 denote the fills of cups 1 and 2 in B′ (once

we’ve defined it).
If the greedy emptier on A empties from neither cup 1 nor cup 2, then the same set of

empties on B results in a B′ that is weakly monopolized by A′.
Next consider the case where the greedy emptier on A empties from both cups 1 and 2.

Then we empty from the same set of cups in B to arrive at a state B′. In the negative-fill
game, is immediate to see that A′ monopolizes B′. In the standard game, we must be careful
about the fact that one of b1 or a2 might be less than 1. If b1 < 1, then b′

1 = 0 ≤ a′
2, and

since a1 > b2, we also have a′
1 ≥ b′

2; thus A′ dominates B′ in this case. If a2 < 1 but b1 ≥ 1,
then we have a′

1 = b′
1 + 1 and b′

2 = a′
2 + c′ for some 0 ≤ c ≤ 1; we also have a′

1 ≥ b′
2 (since

a1 ≥ b2), so A′ monopolizes B′ in this case.
Finally, consider the case where the greedy emptier on A empties from only one of the

cups 1 or 2. Since a1 > b2 ≥ a2, the emptier must empty from cup 1. Suppose we construct
B′ by performing the same set of empties on B as were performed on A, but we remove
water from cup 2 instead of cup 1. Then a′

1 = b′
1 and a′

2 ≥ b′
2, so A′ dominates B′. This

completes the proof. ◀

By combining the previous two lemmas, we can arrive at the following.

▶ Lemma 3. Consider either the p-processor cup game, for some p, or the variable processor
cup game (and consider either the negative-fill case or the non-negative-fill case). Suppose A

weakly monopolizes B. Then for any t,

GREEDY(A, t) ≥ OPT(B, t).

Proof. We prove the lemma by induction on t. In the base case of t = 0, the lemma reduces
to showing that A has backlog at least as large as B; this follows from the fact that A weakly
monopolizes B.

Now consider some t > 0, and suppose the result holds for t − 1. For each state B′ that
the filler can reach from B, Lemma 1 tells us that there must exist a state A′ that the filler
can reach from A in such that A′ weakly monopolizes B′. Moreover, Lemma 2 tells us that,
if greedy emptying from A′ results in some state A′′, then there must be an emptying move
on B′ that results in a state B′′ such that A′′ weakly monopolizes B′′.

Note that, in the previous paragraph, the filler’s move from B to B′ (i.e., the choice
of B′) fully determines A′ (by the construction in Lemma 1), A′′ (by greedy emptying on
A′), and B′′ (by the construction in Lemma 2). Thus, we will think of A′, A′′, B′′ as being
functions of B′.

Expanding out GREEDY(A, t), we have

GREEDY(A, t) ≥ sup
B′

GREEDY(A′′, t − 1).

By the inductive hypothesis, since each A′′ weakly monopolizes B′′, we have GREEDY(A′′, t−
1) ≥ OPT(B′′, t − 1). Thus

GREEDY(A, t) ≥ sup
B′

OPT(B′′, t − 1).

Since supB′ OPT(B′′, t − 1) ≥ OPT(B, t), the lemma follows. ◀
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Recall that our goal is to upperbound GREEDY(A, t) by OPT(A, t) for all A, t. Thus
Lemma 3 may at first seem to be backward progress, since the lemma establishes a lower
bound on GREEDY(A, t). The trick to using Lemma 3 is that we will only ever apply
the lemma to states A and game lengths t for which we have already proven by induction
that OPT(A, t) = GREEDY(A, t); in this setting, the lemma establishes that OPT(A, t) ≥
OPT(B, t) which, as we shall see, ends up being critical to the proof.

▶ Theorem 4. Consider either the p-processor cup game, for some p, or the variable-processor
cup game (and consider either the negative-fill case or the non-negative-fill case). For all
states A and game lengths t,

GREEDY(A, t) = OPT(A, t).

Proof. We prove the theorem by induction on t with a trivial base case of t = 0. Consider
t > 0, and suppose the theorem holds for t − 1.

Consider any state A′ that the filler can reach from A. Let A′′ be the state reached from
A′ if the emptier empties greedily, and let B be the state reached from A′ if the emptier
empties according to OPT. Since the transformation from A′ to A′′ empties from cups with
at least as much water as the transformation from A′ to B, there must be a sequence of
states X0, X1, . . . , Xk, with X0 = B and Xk = A′′, such that each Xi weakly monopolizes
Xi−1. In particular, one can define the Xi’s such the only difference between each Xi and
Xi+1 is that, to get from A′ to Xi+1 instead of from A′ to Xi, the emptier removes water
from a cup j instead of a cup k, where cup j contains less water than cup k in state A′. It is
straightforward to verify that this results in each Xi+1 weakly monopolizing each Xi: if cup
k (in state A′) has fill at least 1, then Xi+1 monopolizes Xi; and otherwise, both cups k and
j (in state A′) have fills less than 1, and thus Xi+1 dominates Xi.

By the inductive hypothesis, we know that OPT(Xi, t−1) = GREEDY(Xi, t−1) for each
Xi. Thus Lemma 3 tells us that OPT(Xi, t−1) ≥ OPT(Xi−1, t−1). By transitivity, it follows
that OPT(Xk, t − 1) ≥ OPT(X0, t − 1), and thus OPT(B, t − 1) ≥ OPT(A′′, t − 1). Again
applying the inductive hypothesis to deduce that OPT(A′′, t − 1) = GREEDY(A′′, t − 1), we
have that

OPT(B, t − 1) ≥ GREEDY(A′′, t − 1).

Thus

GREEDY(A, t) = sup
A′′

GREEDY(A′′, t − 1) ≤ sup
B

OPT(B, t − 1) = OPT(A, t).

Finally, as GREEDY(A, t) ≥ OPT(A, t) trivially, we have GREEDY(A, t) = OPT(A, t). ◀

▶ Corollary 5. Theorem 4 continues to hold for the game with non-negative fills even if the
emptier is given 1 + ε resource augmentation.

Proof. The proof of Theorem 4 continues to hold without modification. The only difference
is that, now, we say that a state A monopolizes a state B if there is a ordering of the cups
for which two properties hold: (1) we can take 1 + ε unit of water from some cup 1 in A,
place some amount 0 ≤ c ≤ 1 + ε of water into some other cup 2 in A, and in doing so arrive
at B; and (2) cup 1 in A contains more water than cup 2 in B. ◀
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5 Lower Bounding Backlog

In this section, we prove the optimal lower bound on the backlog. In other words, we show
that for any integer t ≥ 1, there exists a filling strategy that can guarantee a backlog of
Ω(b(t)) against any emptying strategy, after t rounds of the variable-processor cup game,
where b(t) is defined as in Equation (1) in the introduction (Section 1). This result can be
captured compactly in the following theorem:

▶ Theorem 6. For some absolute constant c > 0 and any k ≤ c · n, the filler in the variable-
processor cup game can force a maximum backlog of Ω(k) using only O

(
k + k3

log2(n/k)

)
time

steps.

We remark that due to the optimality of greedy emptying, which we proved in the previous
section, we focus in this section on designing filling strategies that are effective against the
greedy emptier.

In Subsection 5.1, we give a simple proof for obtaining Ω(n) backlog in O(n3) rounds. In
Subsection 5.2, we generalize Subsection 5.1 and develop the full proof of Theorem 6.

5.1 Warmup: Achieving a Θ(n) Backlog Quickly Against a Greedy
Emptier

In this subsection, we show that in only n3 rounds, a filler can achieve a backlog of n−1
2

against a greedy emptier. While the following argument is simpler than the more refined lower
bound in Subsection 5.2, it conveys much of the intuition behind the general lower bound.
Here, we only consider the standard variable-processor cup game, though in subsection 5.2
we will consider both the standard and negative-fill games.

▶ Theorem 7. Against a greedy emptier in the standard variable-processor cup game, the
filler can achieve a backlog of n−1

2 in only n3 rounds.

Proof. The filler follows the following simple strategy, which will guarantee that the fills at
the end of each round are half integers (i.e., integer multiples of 1

2 ). Suppose the cups after
some round, in sorted order, are x1 ≥ x2 ≥ · · · ≥ xn, which are all half-integers.

If xi > xi+1 for all 1 ≤ i ≤ n − 1, then we must have that xi ≥ xi+1 + 1
2 for all i ≤ n − 1,

so x1 ≥ n−1
2 . In this case, we have already achieved a backlog of n−1

2 .

Otherwise, we consider the potential function Φ =
∑n

i=1 x2
i , i.e., the sum of the squares of

the backlogs. Consider the smallest p such that xp = xp+1. We set the number of processors
for the round to be p, we place 1 unit of water into each of cups x1, . . . , xp−1 and we place
1/2 unit of water into each of cups xp, xp+1. Then, the greedy emptier will empty 1 unit
from each of the first p − 1 cups and will choose to empty 1 unit from either the pth cup
or the (p + 1)th cup (WLOG, they choose the (p + 1)-th cup). This means that, over the
course of the entire round, the first p − 1 cups are unchanged, the pth cup goes up by 1

2 , and
(p + 1)th cup goes down by 1

2 . The only exception is if xp = xp+1 = 0 at the beginning, in
which case one of these two cups will go up to 1/2 and the other remains at 0. Clearly, all of
the fills remain half-integers at the end of each round. If we replace xp and xp+1 = xp with
xp + 1

2 and xp − 1
2 , then the sum of the squares of the backlogs increases by 1/2. Otherwise,

if we replace xp = xp+1 = 0 with 0 and 1/2 in some order, then the sum of the squares of
the backlogs increases by 1/4. Thus, at the end of each round, unless one of the backlogs
was already n−1

2 or greater, Φ increases by at least 1
4 .

Therefore, after n3 rounds, either at some point we will have achieved x1 > x2 > · · · > xn

and thus a backlog of n−1
2 , or we have that

∑n
i=1 x2

i ≥ n3

4 , which would mean that max xi ≥ n
2 ,

since all of the xi’s are nonnegative. As a result, there exists a filling strategy that can
guarantee a n−1

2 backlog against a greedy emptier in at most n3 rounds. ◀
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5.2 The General Lower Bound
In this subsection, we prove the lower bound on the backlog for the variable-processor cup
game after t rounds, showing that the optimal backlog is Ω(b(t)) for b(t) defined as in
Equation (1). Equivalently, we show that for any integer k ≤ n, a filler can achieve backlog
Ω(k) in O

(
k + k3

log2(n/k)

)
rounds against any emptying strategy. We remark that if we are

playing t rounds of the game and the filler has achieved backlog b by round t′ < t, the filler
can ensure the backlog stays at b by setting p = n and filling every cup for steps t′ + 1, . . . , t.

Thus, we just need to show the filler can obtain this backlog within this many rounds.
Throughout this subsection, we assume that we are playing the negative-fill game, and

that the emptier is always greedy. We remove both of these assumptions at the end in
Theorem 6.

▶ Lemma 8. Assume that the emptier is always greedy, and that at the beginning of some
round, the fills are all (possibly negative) half-integers. For some integer k ∈ Z and positive
integer q ∈ N, suppose there are at least 2q cups having fill exactly k/2. Then, the filler can
ensure that at the end of the round (i.e., after both the filler and emptier move), exactly q of
the cups of fill exactly k/2 have increased to (k + 1)/2, exactly q of the cups of fill exactly
k/2 have decreased to (k − 1)/2, and all remaining cups are unchanged.

Proof. Suppose the cups are sorted in order x1 ≥ x2 ≥ · · · ≥ xn, such that xi = xi+1 =
· · · = xi+2q−1 = k/2. Also, suppose i is the smallest integer such that xi = k/2, so either
xi−1 > k/2 or i = 1. Then, the filler will set p = i − 1 + q and fill the first i − 1 cups with 1
unit of water and the cups xi, . . . , xi+2q−1 each with 1/2 unit of water. Then, if i > 1, the
emptier is forced to empty 1 unit of water from each of the first i − 1 cups. In addition, we
have that the cups i, i + 1, . . . , i + 2q − 1 all have fills (k + 1)/2, which is at least 1/2 unit of
water more than all later cups, which means that the emptier will remove 1 unit of water
from exactly q of the cups i, i+1, . . . , i+2q −1. Therefore, all cups 1, . . . , i−1 are unchanged
(since 1 unit of water is added and then removed) and all cups i + 2q, . . . , n are unchanged
(since water is never added nor removed). Finally, among the cups i, i + 1, . . . , i + 2q − 1,
exactly q of them will end up at (k − 1)/2 and exactly q of them will end up at (k + 1)/2. ◀

▶ Lemma 9. Suppose that k, m are positive integers such that 4k|m, and suppose there are
at least m cups that currently have fill 0 (where n ≥ m is the total number of cups). Then,
against a greedy emptier, the filler can ensure that at least m/4 cups will have fill exactly
k/2 after O(k3) rounds.

Proof. WLOG assume that the first m cups have fills x1, x2, . . . , xm, and at the start,
x1 = x2 = · · · = xm = 0. (We do not assume the cups are sorted in order of fill.) We only
ever modify the first m cups, and after each step, we will maintain the following invariants:
1. All of the fills are half-integers.
2. For each integer j, the number of cups of fill j/2 equals the number of cups of fill −j/2.
3. For each integer j, the number of cups of fill j/2 is always a multiple of m

4k .
4. No cup has fill greater than k/2 or less than −k/2.

Trivially, all 4 of these invariants are true at the beginning, since all the fills are 0 and
m
4k |m. Our procedure is the following. Suppose that there exists some integer j such that
−k < j < k and the number of cups of fill j/2 is at least m

2k . Then, we use Lemma 8 to move
m
4k of these cups to fill (j + 1)/2 and move m

4k of these cups to fill (j − 1)/2. In addition, if
j ̸= 0, then we know the number of cups of fill −j/2 is at least m

2k . So, in the next step,
we move m

4k of these cups to fill (−j + 1)/2 and move m
4k of these cups to fill (−j − 1)/2.
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When j ̸= 0, we perform these two steps consecutively as a pair. We keep repeating these
types of steps (and pairs of steps) until we can no longer do so. It is clear that the first three
invariants are preserved, and the last is preserved since we only modify cups that have fill
between −(k − 1)/2 and (k − 1)/2, and we change their fills by at most 1/2 per round.

Now, we note that at each step, the potential function Φ =
∑m

i=1 x2
i increases by m

8k , since

m

4k
·
(

j + 1
2

)2
+ m

4k
·
(

j − 1
2

)2
− m

2k
·
(

j

2

)2
= m

8k
.

This also means that if we do a pair of steps (i.e., modifying cups of fill j/2 and −j/2), the
potential function Φ increases by m

4k .

Now, after 4k3 steps (and pairs of steps), Φ is at least 4k3 · m
8k = 1

2 · mk2. But this
is impossible, since all of the fills of cups 1 through m are between k/2 and −k/2, so the
maximum possible value of Φ is 1

4 ·mk2. This means that before reaching 4k3 of steps or pairs
of steps, we must not be able to do any more steps. That is, for all j such that −k < j < k,

there are less than m
2k cups of fill exactly j/2, and because of our third invariant, this means

there are at most m
4k cups of fill exactly j/2. Therefore, the number of cups of fill between

−k + 1 and k − 1 is at most (2k − 1) · m
4k ≤ m

2 . So, at least m
2 cups must have fill ± k

2 , and
by the second invariant, this means at least m

4 cups must have fill k
2 . Reaching this stage

required at most 4k3 steps and pairs of steps, which means the filler can succeed in at most
8k3 steps. ◀

▶ Corollary 10. Suppose k, m are positive integers such that 4k|m, and suppose there are
at least m cups that currently have fill exactly t for some real number t. Then, after O(k3)
time steps, the filler can force at least m/4 of these cups to have fill exactly t + k

2 , against a
greedy emptier.

Proof. We can apply same argument as in Lemma 9, where all of the fills are shifted up by
the same number t. So, after at most 8k3 time steps, at least m/4 of the cups will have fill
exactly t + k

2 . ◀

From here, we are able to conclude with our main result of this section.

▶ Theorem 6. For some absolute constant c > 0 and any k ≤ c · n, the filler in the variable-
processor cup game can force a maximum backlog of Ω(k) using only O

(
k + k3

log2(n/k)

)
time

steps.

Proof. For now we will assume that the emptier is greedy, and that we are playing the
negative-fill cup game. We will remove both assumptions at the end of the proof.

First, suppose k ≥ c log n. In this case, let k′ :=
⌈

k
c log(n/k)

⌉
≥ 2. Also, let n′ be such

that n ≥ n′ > n
4 and n′ = k′ · 4r for some integer r ≥ 1.

Since there are at least n′ = k′ ·4r cups of fill 0 at the beginning of the game, we can apply
Corollary 10 with t = 0 and m = n′ to make sure there are at least k′ · 4r−1 cups of fill k′

after O(k′3) time steps, since 4k′|n′. Then, we can again apply Corollary 10 with t = k′ and
m = n′/4 to make sure there are at least k′ · 4r−2 cups of fill 2k′ after an additional O(k′3)
time steps. We can repeat this r times until we have at least k′ cups of fill r · k′ after a total
of O(r · k′3) time steps. But since r = log4(n′/k′) = Θ(log(n/k · log(n/k))) = Θ(log(n/k)),
this means that the filler can achieve a maximum backlog of r · k′ = Θ(k) using only
O(r · k′3) = O(k3/ log2(n/k)) time steps.

Next, suppose k < c log n. In this case, set n′ = 2k: if c < 1 then n′ < n. By Lemma 8,
we can send 2k−1 cups to fill 1 during the first round, then 2k−2 of those cups to fill 2 during
the second round, and so on until we have 1 cup at fill k after k rounds.
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Up until now we have assumed that the filler was operating against a greedy emptying
algorithm in the negative-fill cup game. However, by Theorem 4, if the emptier uses a
different emptying algorithm, the filler could always modify their strategy to get equal or
greater backlog in the same amount of time. So, regardless of the emptying strategy, the
filler can force a maximum backlog of Θ(k) using O

(
k + k3

log2(n/k)

)
time steps, assuming we

are playing the negative-fill cup game. Finally, recall that the maximum backlog that the
filler can ensure in the negative-fill game is at most the maximum backlog that the filler can
ensure in the standard game for any fixed number of time steps. Thus, if the filler can force a
maximum backlog of Θ(k) using O

(
k + k3

log2(n/k)

)
time steps in the negative-fill game, then

the filler can force the same backlog using the same number of time steps in the standard
game, which completes the theorem. ◀

Finally, to conclude the section, we use the optimality of greedy emptying to resolve an
open question of [29] concerning whether a filler who is limited in the speed at which they
can change p can still force a large backlog.

▶ Proposition 11. Consider the variable-processor cup game, starting with all empty cups
(and with negative fills either allowed for disallowed). Suppose the filler is restricted to only
change p once every nc steps, for some constant c ≥ 0, and to only change p by ±1 at a time.
Then the filler can still force a backlog of Ω(n) in polynomial time.

Proof. Call this version of the game the change-limited variable-processor cup game. Notice
that the proof of optimality for greedy emptying never changes the value of p used in any
given step. Thus the same proof implies that greedy emptying is optimal in the change-limited
variable-processor cup game. Henceforth we will assume that the emptier is greedy.

Next, observe that, no matter the value of p, the filler can always “skip” a step in the
following way: the filler simply places 1 unit of water into each of the p fullest cups, forcing
the greedy emptier to remove water from those cups, so that the step has no net effect.

We have already proven that, in the standard variable-processor cup game, the filler can
cause backlog Ω(n) in polynomial time. The filler can use the same strategy here, but with
the following modification: between any two consecutive steps that use p and q processors,
respectively, the filler spends |p − q|nc steps changing the number of processors from p to q.
That is, for each i ∈ [p, q], the filler spends nc steps with i processors, and renders each of
those steps to have no net effect. The result is that, in polynomial time, the filler can force
backlog Ω(n), as desired. ◀
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Abstract
Given a weighted undirected graph G = (V, E, w), a hopset H of hopbound β and stretch (1 + ϵ)
is a set of edges such that for any pair of nodes u, v ∈ V , there is a path in G ∪ H of at most β

hops, whose length is within a (1 + ϵ) factor from the distance between u and v in G. We show the
first efficient decremental algorithm for maintaining hopsets with a polylogarithmic hopbound. The
update time of our algorithm matches the best known static algorithm up to polylogarithmic factors.
All the previous decremental hopset constructions had a superpolylogarithmic (but subpolynomial)
hopbound of 2logΩ(1) n [Bernstein, FOCS’09; HKN, FOCS’14; Chechik, FOCS’18].

By applying our decremental hopset construction, we get improved or near optimal bounds for
several distance problems. Most importantly, we show how to decrementally maintain (2k − 1)(1 + ϵ)-
approximate all-pairs shortest paths (for any constant k ≥ 2), in Õ(n1/k) amortized update time1

and O(k) query time. This improves (by a polynomial factor) over the update-time of the best
previously known decremental algorithm in the constant query time regime. Moreover, it improves
over the result of [Chechik, FOCS’18] that has a query time of O(log log(nW )), where W is the aspect
ratio, and the amortized update time is n1/k · ( 1

ϵ
)Õ(

√
log n)). For sparse graphs our construction

nearly matches the best known static running time / query time tradeoff.
We also obtain near-optimal bounds for maintaining approximate multi-source shortest paths

and distance sketches, and get improved bounds for approximate single-source shortest paths. Our
algorithms are randomized and our bounds hold with high probability against an oblivious adversary.
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1 Introduction

Given a weighted undirected graph G = (V, E, w), a hopset H of hopbound β and stretch
(1 + ϵ) (or, a (β, 1 + ϵ)-hopset) is a set of edges such that for any pair of nodes u, v ∈ V ,
there is a path in G ∪ H of at most β hops, whose length is within a (1 + ϵ) factor from the
distance between u and v in G (see Definition 5 for a formal statement).

1 Throughout this paper we use the notation Õ(f(n)) to hide factors of O(polylog (f(n))).
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Hopsets, originally defined by [13], are widely used in distance related problems in various
settings, such as parallel shortest path computation [13, 15, 18, 28], distributed shortest path
computation [10,17,29], routing tables [16], and distance sketches [14,16]. In addition to their
direct applications, hopsets have recently gained more attention as a fundamental object
(e.g. [1, 4, 17,23]), and are known to be closely related to several other fundamental objects
such as additive (or near-additive) spanners and emulators [19].

A key parameter of a hopset is its hopbound. In many settings, after constructing a
hopset, we can approximate distances in a time that is proportional to the hopbound. For
instance, in parallel or distributed settings a hopset with a hopbound of β allows us to
compute approximate single-source shortest path in β parallel rounds (e.g. by using Bellman-
Ford). For many applications, such as approximate APSP (all-pairs shortest paths), MSSP
(multi-source shortest paths), computing distance sketches, and diameter approximation,
where we require computing distances from many sources, we are interested in the regime
where the hopbound is polylogairthmic. Indeed, we obtain improved (and in some cases
near-optimal) bounds for several of these problems in decremental settings.

In this paper, we study the maintenance of hopsets in a dynamic setting. Namely, we
give an algorithm that given a weighted undirected graph G maintains a hopset of G under
edge deletions. Our algorithm covers a wide range of hopbound/update time/hopset size
tradeoffs. Importantly, we get the first efficient algorithm for decrementally maintaining a
hopset with a polylogarithmic hopbound. In this case, assuming G initially has m edges and
n vertices, our algorithm takes O(mnρ) time, given any constant ρ > 0, and maintains a
hopset of polylogarithmic hopbound and 1 + ϵ stretch. This matches (up to polylogarithmic
factors) the running time of the best known static algorithm [17,18] for computing a hopset
with polylogarithimic hopbound and (1 + ϵ) stretch.

▶ Theorem 1. Given an undirected graph G = (V, E) with polynomial weights2, subject
to edge deletions, we can maintain a (β, 1 + ϵ)-hopset of size Õ(n1+ 1

2k−1 ) in total expected
update time Õ( β

ϵ · (m + n
1+ 1

2k−1 )nρ), where β = (O( log n
ϵ · (k + 1/ρ)))k+1/ρ+1, k ≥ 1 is an

integer, 0 < ϵ < 1 and 2
2k−1 < ρ < 1.

In the decremental setting, to the best of our knowledge, the previous state-of-the art
hopset constructions have a hopbound of 2Õ(log3/4 n) [21], or (1/ϵ)Õ(

√
log n) [5, 12]. As a

special case, by setting ρ = (2k − 1)−1 = log log n√
log n

, we can maintain a hopset with hopbound

2Õ(
√

log n) in 2Õ(
√

log n) amortized time. More importantly, by setting ρ and k to a constant,
we can maintain a hopset of polylogarithmic hopbound.

While hopsets are extensively studied in other models of computation (e.g. distributed
and parallel settings), their applicability in dynamic settings is less understood. Examples of
results utilizing hopsets include the state-of-the art decremental SSSP algorithm for undirected
graphs by Henzinger, Krinninger and Nanongkai [21], and implicit hopsets considered in [5,12].
As stated, these decremental hopset algorithms as stated only provide a superpolylogarithmic
hopbound. It may be possible (while not discussed) to use the hop-reduction techniques
of [21] (inspired by a similar technique in [5]) to obtain a wider-range of tradeoffs, however
to the best of our knowledge these techniques do not lead to near-optimal size/hopbound
tradeoffs3. Hence our result constitutes the first near-optimal decremental algorithm for
maintaining hopsets with in a wide-range of settings including polylogarithmic hopbound.

2 If weights are not polynomial the log n factor will be replaced with log W in the hopbound, and a factor
of log2 W will be added to the update time, where W is the aspect ratio.

3 In particular, in all regimes the algorithm of [21] gives a hopset with size that is super-linear in number
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Discussion on hopset limitations and alternative techniques. In [1] it was shown that for a
(β, 1 + ϵ)-hopset with size n

1+ 1
2k−1

−δ for any fixed k, ϵ and δ > 0 we must have4 β = Ωk( 1
ϵ )k.

Their lower bound suggests that we cannot construct a (β, 1 + ϵ)-hopset of size Õ(n) with
β = poly log(n) hopbound, implying that hopsets cannot be used for obtaining optimal time
(i.e. polylog amortized time) for sparse graphs and very small ϵ. However when the graph is
slightly denser (|E| = n1+Ω(1)), the approximation factor is slightly larger (see e.g. [4,15]), or
we aim to compute distances from many sources (in APSP or MSSP), using hopsets may still
lead to optimal algorithms. Indeed, we show that our decremental hopsets allow us to obtain
a running time matching the best static algorithm (up to polylogarithmic factors) both in
(2k − 1)-APSP and (1 + ϵ)-MSSP. We leave it as an open problem if hopsets can be used to
obtain linear time algorithms for SSSP with larger approximation factors (e.g. ϵ ≥ 1), since
as stated, the lower bound of [1] does not apply in this case.

It is worth noting that in Theorem 12 we first give a decremental algorithm that maintains
static hopsets of [18] that matches the size/hopbound tradeoff in the lower bound of [1].
However, as we will see, this algorithm has a large update time, and thus we propose a
new hopset with slightly worse size/hopbound tradeoff that can be maintained much more
efficiently. This efficient variant has additional polylogarithmic (in aspect ratio) factors in
the hopbound relative to the existentially optimal construction.

Finally, for single source shortest path computation in other models recently algorithms
based on continuous optimization techniques are proposed (e.g. [2, 3,25]) that outperform
algorithms based only on combinatorial objects such as hopsets/emulators. These optimization
techniques lead to much better dependence on ϵ, but are less suitable when there are many
sources, as the running time scales with the number of sources. Interestingly, the authors
of [2] use low-hop combinatorial structures with larger (polylogrithmic) stretch as a subroutine
in their continuous optimization framework. Hence understanding both combinatorial and
optimization directions seems crucial for distance computation in general.

1.1 Applications of Our Decremental Hopsets
To illustrate applicability of our decremental hopset algorithm, we show how it yields improved
algorithms for decremetanlly maintaining shortest paths from a fixed set S of sources. We
consider different variants of the problem which differ in the size of S: the single-source
shortest paths (SSSP) problem (|S| = 1), all-pairs shortest paths (APSP) problem (S = n,
where n is the number of vertices of the input graph), as well as the multi-source shortest
paths (MSSP) problem (S is of arbitrary size), which is a generalization of the previous two.

Near-Optimal approximate APSP. We give a new decremental algorithm for maintaining
approximate all-pairs shortest paths (APSP) with constant query time.

▶ Theorem 2 (Approximate APSP). For any constant integer5 k ≥ 2, there is a data
structure that can answer (2k − 1)(1 + ϵ)-approximate distance queries in a given a weighted
undirected graph G = (V, E, w) subject to edge deletions. The total expected update time

of edges m (e.g. m1+p for a parameter p), while our hopset size is O(n1+p) for some (other but similar)
parameter p, which is a constant when the hopbound is polylogarithmic. Moreover, our techniques
lead to near-optimal approximate APSP, whereas it is unclear how to get comparable bounds using
techniques in [21], as they do not maintain Thorup Zwick-based clusters.

4 Ωk hides exponential a factor of roughly 1/(k2k). As written in [1] they assume k is constant (and
hence the sparse hopset regime is not covered), but they also indicate that a tighter analysis could
change the exact relationship between k and ϵ and hence allow a better k dependence and covering the
sparse case (see Theorem 4.6 and Remark 4.7 in [1]).

5 The k here should not be confused with the parameter k in the hopset size.
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over any sequence of edge deletions is Õ(mn1/k) and the expected size of the data structure
is Õ(m + n1+1/k). Each query for the distance between two vertices is answered in O(k)
worst-case time.

Our result improves upon a decremental APSP algorithm by Chechik [12] in a twofold
way. First, for constant k, our update time bound is better by a (1/ϵ)O(

√
log n) factor. Second,

we bring down the query time from O(log log(nW )) to constant. We note that in the area of
distance oracles a major goal is to preprocess a data structure that can return a distance
estimate in constant time [11,27,30,36]6.

Our results match the best known static algorithm with the same tradeoff (up to (1 + ϵ)
in the stretch and polylog in time) by Thorup-Zwick [34] for sparse graphs. For dense graphs
there have been improvements by [36] in static settings.

Prior to [12], Roditty and Zwick [31] gave an algorithm for maintaining Thorup-Zwick
distance oracles in total time Õ(mn), stretch (2k − 1)(1 + ϵ) and O(k) query time for
unweighted graphs. Later on, Bernstein and Roditty [9] gave a decremental algorithm for
maintaining Thorup-Zwick distance oracles in O(n2+1/k+o(1)) time using emulators also only
for unweighted graphs.

Distance Sketches. Another application of our hopsets with polylogarithmic hopbound is a
near-optimal decremental algorithm for maintaining distance sketches (or distance labeling);
an important tool in the context of distance computation. The goal is to store a small amount
of information, a sketch, for each node, such that the distance between any pair of nodes
can be approximated only using their sketches (without accessing the rest of the graph).
Distance sketches are particularly important in networks, and distributed systems [16,32],
and large-scale graph processing [14]. Their significance is that at query time we only need to
access/communicate the small sketches rather than having to access the whole graph. This is
specially useful for processing large data when queries happen more frequently than updates.

The Thorup-Zwick [34] algorithm can be used to obtain distance sketches of expected size
O(kn1/k) (for each node) that supports (2k − 1)-approximate queries in O(k) time (in static
settings), and this is known to be tight assuming a well-known girth conjecture. Our approx-
imate APSP data structure has the additional property that the information stored for each
node is a distance sketch of expected size O(kn1/k) that supports (2k − 1)(1 + ϵ)-approximate
queries. Hence we can maintain distance sketches that almost match the guarantees of the
best static algorithm. More specifically, for a fixed size our algorithm matches the best
known static construction up to a (1 + ϵ)-factor in the stretch and polyloagrithmic factors
in the update time. In decremental settings, distance oracles of [34], and hence distance
sketches with the guarantees described are studied by [9,31], but our total update time of
Õ(mn1/k) (for constant k ≥ 2) significantly improves over these results. In particular [31]
maintains these distance sketches in a total update time of Ω(mn), and [9] requires total
update time of O(n2+1/k+o(1)).

Near-Optimal (1 + ϵ)-MSSP. Our next result is a near-optimal algorithm for multi-source
shortest paths.

6 We need to store the original graph in addition to the distance oracle in order to update the distances
and maintain correctness, however we do not need the whole graph for querying distances as we will
also point out in describing the applications in maintaining distance sketches.
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▶ Theorem 3 (MSSP). There is a data structure which given a weighted undirected graph
G = (V, E) explicitly maintains (1 + ϵ)-approximate distances from a set of s sources in
G under edge deletions, where 0 < ϵ < 1

2 is a constant. Assuming that |E| = n1+Ω(1) and
s = nΩ(1), the total expected update time is Õ(sm). The data structure is randomized and
works against an oblivious adversary.

We note that total update time matches (up to polylogarithmic factors) the running
time of the best known static algorithm for computing (1 + ϵ)-approximate distances from s

sources for a wide range of graph densities. While for very dense graphs, using algorithms
based on fast matrix multiplication is faster, the running time of our decremental algorithm
matches the best known results in the static settings (up to polylogarithmic factors) whenever
ms = nδ, for a constant δ ∈ (1, 2.37).

In the dynamic setting, our algorithm improves upon algorithms obtained by using hopsets
of Henzinger, Krinninger and Nanongkai [21], or emulators of Chechik [12], both of which
give a total update time of O(sm · 2Õ(logγ n)), 0 < γ < 1 (for a constant γ). In particular,
by maintaining a hopset with polylogarithmic hopbound in Õ(sm) time, we can maintain
approximate SSSP from each source in Õ(m) time. In contrast, in [12, 21] with hopset of
hopbound 2Õ(logγ n) is maintained, which if one simply applies existing techniques, results
in a total update time of m2Õ(logγ n). In the general case, i.e., for very sparse graphs, the
update bound of our algorithm is sm2Õ(

√
log n), which is similar but slightly better than the

bound obtained by [21], and slightly improves over dependence on ϵ over [12].

Improved bounds for (1 + ϵ)-SSSP. Finally, in order to better demonstrate how our
techniques compare to previous work, we show that we can obtain a slightly improved bound
for decremental single-source shortest paths.

▶ Theorem 4. Given an undirected and weighted graph G = (V, E), there is data structure
for maintaining (1 + ϵ)-approximate distances from a source s0 ∈ V under edge deletions,
where 0 < ϵ < 1 is a constant and |E| = n · 2Ω̃(

√
log n). The total expected update time of the

data structure is m · 2Õ(
√

log n). There is an additional factor of O( 1
ϵ )

√
log n

log log n in the running
time for non-constant ϵ.

The amortized update time of our algorithm over all m deletions is 2Õ(
√

log n). This
improves upon the state-of-the art algorithm of [21], whose amortized update time is
2Õ(log3/4 n). We note that the techniques of [12] can also be used to obtain (1 + ϵ)-SSSP in
amortized update time Õ(1/ϵ)

√
log n. This is close to our update time, but we get a better

bound with respect to the dependence on ϵ.

Recent developments on decremental shortest paths. Recently and after a preprint of
this paper was published, a decremental deterministic (1 + ϵ)-SSSP also with amortized
update time of no(1) was proposed by [8]. Several other recent results have also focused
on deterministic dynamic shortest path algorithms or algorithms that work against an
adaptive adversary (e.g. [6–8, 20]) most of which also use hopsets or related objects such
as emulators. Our work leaves an open problem on whether hopsets with small hopbound
can also be maintained and utilized deterministically7. This could have applications in

7 One possible direction is considering derandomization of Throup-Zwick based clustering in static
settings [34] combined with our techniques.
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deterministic approximate all-pairs shortest paths, which could in turn have implications in
using decremental shortest path algorithms for obtaining faster algorithms in classic/static
settings (e.g. see [26]).

Hopsets vs. emulators. A majority of the previous work on dynamic distance computation
are based on sparse emulators (e.g. [5, 9, 12]). For a graph G = (V, E), an emulator
H ′ = (V, E′) is a graph such that for any pair of nodes x, y ∈ V , there is a path in H ′ that
approximates the distance between x and y on G (possibly with both multiplicative and
additive factors). While there are some similarities in algorithms for constructing these
objects, their analysis is different. More importantly, their maintenance and utilization for
dynamic shortest paths have significant differences. An emulator approximates distances
without using the original graph edges and hence we can restrict the computation to a sparser
graph, whereas for using hopsets we also need the edges in the original graph. On the other
hand, hopsets allow one to only consider paths with few hops.

1.2 Preliminaries and Notation
Given a weighted undirected graph G = (V, E, w), and a pair u, v ∈ V we denote the
(weighted) shortest path distance by dG(u, v). We denote by d

(h)
G (u, v) the length of the

shortest path between u and v among the paths that use at most h-hops, and call this the
h-hop limited distance between u and v.

In this paper, we are interested in designing decremental algorithms for distance problems
in weighted graphs. In the decremental setting, the updates are only edge deletions or weight
increases. This is as opposed to an incremental setting in which edges can be inserted, or a fully
dynamic setting, in which we have both insertions and deletions. Specifically, given a weighted
graph G = (V, E, w), we want to support the following operations: Delete((u, v)), where
(u, v) ∈ E, which removes the edge (u, v), Distance(s, u), which returns an (approximate)
distance between a source s and any u ∈ V , and Increase((u, v), δ), which increases the
weight of the edge (u, v) by δ > 0. While our results also allow handling weight increases, in
stating our theorems for simplicity we use the term total update time to refer to a sequence
of up to m deletions.

▶ Definition 5. Let G = (V, E, w) be a weighted undirected graph. Fix d, ϵ > 0 and an integer
β ≥ 1. A (d, β, 1 + ϵ)-hopset is a graph H = (V, E(H), wH) such that for each u, v ∈ V ,
where dG(u, v) ≤ d, we have dG(u, v) ≤ d

(β)
G∪H(u, v) ≤ (1 + ϵ)dG(u, v). We say that β is the

hopbound of the hopset and 1 + ϵ is the stretch of the hopset. We also use (β, 1 + ϵ)-hopset
to denote a (∞, β, 1 + ϵ)-hopset.

We sometimes call a (d, β, 1 + ϵ)-hopset a d-restricted hopset, when the other parameters
are clear. We also sometimes consider hopset edges added for a specific distance range
(2j , 2j+1], which we call a hopset for a single distance scale.

In analyzing dynamic algorithms we sometimes also use a time subscript t to denote a
distance (or a weight) after the first t updates. In particular we use dt,G(u, v) to denote
the distance between u and v after t updates, and similarly use d

(h)
t,G(u, v) to denote h-hop

limited distance between u and v at time t.

2 Overview of Our Algorithms

The starting point of our algorithm is a known static hopset construction [18, 23]. We
first review this construction. As we shall see, maintaining this data structure dynamically
directly would require update time of up to O(mn). Our first technical contribution is another
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hopset construction that captures some of the properties of the hopsets of [18,23], but can
be maintained efficiently in a decremental setting. We then explain how by hierarchically
maintaining a sequence of data structures we can obtain a near-optimal time and stretch
tradeoff.

2.1 Static Hopset of [16]
In this section we outline the (static) hopset construction of Elkin and Neiman [18]8 (which
is similar to [23]). We will later give a new (static) hopset algorithm that utilizes some of the
properties of this construction but with modifications that allows us to maintain a similar
hopset dynamically.

▶ Definition 6 (Bunches and clusters). Let G = (V, E, w) be a weighted, n-vertex graph, k

be an integer such that 1 ≤ k ≤ log log n and ρ > 0. We define sets V = A0 ⊇ A1 ⊇ ... ⊇
Ak+1/ρ+1 = ∅. Let ν = 1

2k−1 . Each set Ai+1 is obtained by sampling each element from Ai

with probability qi = max(n−2i·ν , n−ρ).
Fix 0 ≤ i ≤ k + 1/ρ + 1 and for every vertex u ∈ Ai \ Ai+1, let p(u) ∈ Ai+1 be the node

of Ai+1, which is closest to u, and let d(u, Ai+1) := d(u, p(u)) (assume d(u, ∅) = ∞). We
call p(u) the pivot of u. We define a bunch of u to be a set B(u) := {v ∈ Ai : d(u, v) <

d(u, Ai+1)}. Also, we define a set C(v), called the cluster of v ∈ Ai \ Ai+1, defined as
C(v) = {u ∈ V : d(u, v) < d(u, Ai+1)}.

Note that if v ∈ B(u) then u ∈ C(v), but the converse does not necessarily hold. The way
we define the bunches and clusters here follows [18], but differs slightly from the definitions
in [31,34], where each vertex has a separate bunch and cluster defined for each level i (and
stores the union of these for all levels).

The clusters are connected in a sense that if a node u ∈ C(v) then any node z on the
shortest path between v and u is also in C(v). This property is important for bounding the
running time (as also noted in [31,34]):

▷ Claim 7. Let u ∈ C(v), and let z ∈ V be on a shortest path between v and u. Then
z ∈ C(v).

Proof. Let v ∈ Ai. If z ̸∈ C(v) then by definition d(z, Ai+1) ≤ d(v, z). On the other
hand, since z is on the shortest path between u and v: d(u, Ai+1) ≤ d(z, u) + d(z, Ai+1) ≤
d(u, z) + d(z, v) = d(u, v), which contradicts the fact that u ∈ C(v). ◁

The hopset is then obtained by adding an edge (u, v) for each u ∈ Ai \ Ai+1 and
v ∈ B(u) ∪ {p(u)}, and setting the weight of this edge to be d(u, v). These distances can be
computed by maintaining the clusters.

▶ Lemma 8 ([18, 23]). Let G = (V, E, w) be a weighted, n-vertex graph, k be an integer
such that 1 ≤ k ≤ log log n and 0 < ρ, 0 < ϵ < 1. Assume the sets Ai and bunches are
defined as in Definition 6. Define a graph H = (V, EH , wH), such that for each u ∈ Ai \ Ai+1
and v ∈ B(u) ∪ {p(u)}, we have an edge (u, w) ∈ EH with weight dG(u, v). Then H is a
(β, 1 + ϵ)-hopset of size O(n1+ 1

2k−1 ), where β = (O( k+1/ρ
ϵ )k+1/ρ+1.

8 In [18] two algorithms with different sampling probabilities are given, where one removes a factor of k
in the size. This factor does not impact our overall running time, so we will use the simpler version.
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For reference we sketch a proof of the hopset properties in the full version. Our main
result is based on a new construction consisted of a hierarchy of hopsets. Our dynamic hopset
requires a new stretch analysis as estimates on the shortest paths are obtained from different
data structures, but the size analysis is basically the same.

While we are generally interested in a hopset that is not much denser than the input,
as we will see the running time (both in static and dynamic settings) is mainly determined
by the number of clusters a node belongs to, rather than the size of the hopset. Moreover,
unlike an emulator, for computing the distances using a hopset, we also need to consider the
edges in G, and a small hopbound is the key to efficiency rather than the sparsity.

The hopset of [18] has some structural similarities to the emulators of [35]. One main
difference is that the sampling probabilities are adjusted (lower-bounded by n−ρ) to allow
for efficient construction of these hopsets in various models, at the cost of slightly weaker
size/hopbound tradeoffs. This adjustment is also crucial for our efficient decremental
algorithms. Inspired by the construction described, in Section 2.2 we describe a new static
hopset algorithm, and later in Section 2.3 we adapt it to decremental settings.

2.2 New static hopset based on path doubling and scaling
As a warm-up, before moving to our new dynamic hopset construction, we provide a simple
static hopset and explain why we expect to maintain such a structure more efficiently than
the structure in Section 2.1 in dynamic settings. Our main contribution is to maintain a
dynamic hopset efficiently using ideas in the simple algorithm described in this section.

At a high level, computing one of the main components of the hopset of Lemma 8 involves
multiple single-source shortest paths computations. Maintaining single-source shortest paths
is easy in the decremental setting, if we limit ourselves to paths of low length (or allow
approximation). Namely, assuming integer edge weights, one can maintain single source
shortest paths up to length d under edge deletions in total O(md) time.

If we simply modified the construction of the hopset of Lemma 8, and computed shortest
paths up to length d instead of shortest paths of unbounded length, we would obtain a
d-restricted hopset. We describe this idea in more detail in Section 3, where we show
that an adaptation of the techniques by [31] allows us to maintain a d-restricted hopset in
deceremental settings, in total time O(dmnρ), for a parameter 0 < ρ < 1

2 . However, for
large d such a running time is prohibitive. In order to address this challenge, in this section
we describe a static hopset, which can be computed using shortest path explorations up to
only a polylogarithmic depth, yet can be used to approximate arbitrarily large distances. In
the next sections we leverage this property to maintain a similar hopset in the decremental
setting efficiently. This will require overcoming other obstacles, notably the fact that the
dynamic shortest path problems that we need to solve are not decremental.

Path doubling. Assume that we are given a procedure Hopset(G, β, d, ϵ) that constructs a
(d, β, 1 + ϵ) hopset. In Section 3, we provide such an algorithm that uses only shortest path
computation up to polylogarithmic depth. We argue that by applying the Hopset(G, β, d, ϵ)
procedure repeatedly we can compute a full hopset, and in this process by utilizing the
previously added hopset edges we can restrict our attention to short-hop paths only.

More formally, we construct a sequence of graphs H0, . . . , Hlog W , such that Hj is a hopset
that handles pairs of nodes with distance in range [2j−1, 2j), for 0 ≤ j ≤ log W . This implies
that

⋃j
r=0 Hr is a (2j , β, (1+ ϵ)j)-hopset of G. Note that for 0 ≤ j ≤ log β we can set Hj = ∅,

since G covers these scales. We would like to use G ∪j−1
r=0 Hr to construct Hj based on the

following observation that has been previously used in other (static) models (e.g. parallel
hopsets of Cohen [13]).
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Consider u, v, dG(u, v) ∈ [2j−1, 2j), and let π be the shortest path between u and v in
G. Then π can be divided into three segments π1, π2 and π3, where π1 and π3 have length
at most 2j−1 and π2 consists of a single edge. But we know there is a path in G ∪j−1

r=0 Hr

with at most β-hops that approximates each of π1 and π2. Hence for constructing Hj we
can compute approximate shortest paths by restricting our attention to paths of consisting
of at most 2β + 1 hops in G ∪j−1

r=0 Hr.
This idea, which we call path doubling, has been previously used in hopset constructions in

distributed/parallel models (e.g. [13,17,18]), but to the best of our knowledge this is the first
use of this approach in a dynamic setting. Applying this idea in parallel/distributed settings is
relatively straight-forward, since having bounded hop paths already leads to efficient parallel
shortest path explorations (e.g. by using Bellman-Ford). However, utilizing it efficiently in
dynamic settings is more involved for several reasons: we have to simultaneously maintain the
clusters (including their connectivity property), apply a scaling idea on the whole structure,
and handle insertions in our hopset algorithm and its analysis.

But first we describe a scaling idea that at a high-level allows to go from h-hop-bounded
explorations to h-depth bounded explorations on a scaled graph.

Scaling. We review a scaling algorithm that allows us to utilize the path doubling idea.
Similar scaling techniques are used in dynamic settings [5, 9, 21] for single-source shortest
paths, but as we will see, using the scaling idea in our setting is more involved since it has to
be carefully combined with other components of our construction.

This idea can summarized in the following scaling scheme due to Klein and Sub-
ramanian [24], which, roughly speaking, says that finding shortest paths of length ∈ [2j−1, 2j)
and at most ℓ hops, can be (approximately) reduced to finding paths of length at most O(ℓ)
in a graph with in integral weights. This is done by a rounding procedure that adds a small
additive term of roughly ϵ0w(e)

ℓ to each edge e. Then for a path of ℓ hops the overall stretch
will be (1 + ϵ0).

▶ Lemma 9 ([24]). Let G = (V, E, w) be a weighted undirected graph. Let R ≥ 0 and ℓ ≥ 1 be
integers and ϵ0 > 0. We define the scaled graph to be a graph Scale(G, R, ϵ0, ℓ) := (V, E, ŵ),
such that ŵ(e) = ⌈ w(e)

η(R,ϵ0) ⌉, where η(R, ϵ0) = ϵ0R
ℓ . Then for any path π in G such that π has

at most ℓ hops and weight R ≤ w(π) ≤ 2R we have,
ŵ(π) ≤ ⌈2ℓ/ϵ0⌉,
w(π) ≤ η(R, ϵ0) · ŵ(π) ≤ (1 + ϵ0)w(π).

Similar scaling ideas have been used in the h-SSSP algorithm for maintaining approximate
shortest paths [5]. The algorithm maintains a collection of trees and to return a distance
estimate, it finds the tree that best approximates a given distance. But we note that in
utilizing the scaling techniques in our final dynamic hopset construction we cannot simply
maintain a disjoint set of bounded hop shortest path trees. We need to maintain the whole
structure of the hopset on the scaled graphs together: firstly, based on definition of bunches
in Lemma 8, nodes keep on leaving and joining clusters, so we cannot simply maintain a set
of shortest trees from a fixed set of roots. We need to maintain the connectivity of clusters as
described in Section 2.1 at the same time as maintaining the shortest path trees. Additionally,
while we are maintaining distances over the set of clusters we also need to handle insertions
introduced by smaller scales.

To maintain these efficiently, we need to apply the scaling to the whole structure, including
the hopset edges added so far. But when we utilize the smaller scale hopset edges (for applying
path doubling) insertions or distance decreases are introduced. As we will see, handling
insertions at the same time the clusters (and the corresponding distances) are updated makes
the stretch/hopbound analysis more involved.
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Next we combine the scaling with the path doubling techniques. The path doubling
property states that we can restrict our attention to (2β + 1)-hop limited shortest path
computation, and the scaling idea ensures that such (2β+1)-hop bounded paths in G∪

⋃j−1
r=0 Hr

correspond to paths bounded in depth by d = ⌈ 2ℓ
ϵ0

⌉ = O( β
ϵ0

) in the scaled graph Gscaled =
Scale(G ∪

⋃j−1
r=0 Hr, 2j , ϵ0, 2β + 1). Informally, this mean it is enough to construct shortest

path trees up to depth ℓ on the scaled graphs in our hopset construction.
We can now summarize our new static hopset construction in Algorithm 1. Simil-

arly to Scale, for a graph G = (V, E, w) we define Unscale(G, R, ϵ, ℓ) to be a graph
(V, E, w′), where for each e ∈ E, w′(e) = η(R, ϵ) · w(e). In static settings, the procedure
Hopset(G, β, d, ϵ) for constructing a d-restricted hopset can be performed by running a
(β, 1 + ϵ)-hopset construction algorithm in which the shortest path explorations are restricted
to depth ℓ. In Section 3 we describe a decremental algorithm for this procedure, and describe
how it leads to a (d, β, 1 + ϵ)-restricted hopset. Note that we can set β = poly log n, and so
the shortest path explorations can be bounded by a polylogairthmic value.

Algorithm 1 Simple static hopset.

1 for j = 1 to ⌈log W ⌉ do
2 Gscaled := Scale(G ∪

⋃j−1
r=0 Hr, 2j , ϵ0, 2β + 1)

3 Ĥ := Hopset(Gscaled, β, ⌈ 2(2β+1)
ϵ0

⌉, ϵ)
4 Hj := Unscale(Ĥ, 2j , ϵ0, 2β + 1))
5 H := H ∪ Hj

It is not hard to see that in such a static construction, three different approximation
factors are combined in each scale: a (1 + ϵ)-stretch due to the Hopset procedure, a (1 + ϵ1)-
factor from the restricted hopset, and a (1 + ϵ0)-factor due to scaling. This is summarized in
the following lemma.

▶ Lemma 10. Let G be a graph and H be a (d, β, 1 + ϵ1) hopset of G. Let Gscaled =
Scale(G ∪ H, d, ϵ0, 2β + 1) and let H ′ = Unscale(Hopset(Gscaled, d, ⌈ 2(2β+1)

ϵ0
⌉, ϵ2)). Then

H ∪ H ′ is a (2d, β, (1 + ϵ)(1 + ϵ1)(1 + ϵ0)) hopset of G.

Obtaining such a guarantee in dynamic settings is going to be more involved, since we
also need to handle insertions, and at the same time ensure that the update time remains
small. Moreover the stretch analysis will require combining estimates obtained by different
procedures.

2.3 Near-Optimal Decremental Hopsets

In this section we describe how we can overcome the challenges of the dynamic settings in
order to maintain a decremental hopset in near-optimal update-time.

The first step of our algorithm is constructing a d-restricted version of the hopset
described in Section 2.1. As discussed, for this we can use the techniques by [31] to maintain
a (d, β, 1 + ϵ)-hopset in Õ(dmnρ) total update time, where 0 < ρ < 1

2 . Now in order to
remove the time dependence on d, we use the path doubling and scaling ideas described as
follows: we maintain this data structure on a sequence of scaled graphs simultaneously, and
argue that this data structure gives us a hopset on G after unscaling the edge weights.
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Sequence of restricted hopsets. Similiar to Section 3.1, our decremtnal algorithm maintains
the sequence of graphs H0, . . . , Hlog W , where for each 0 ≤ j ≤ log W ,

⋃j
r=0 Hr is a (2j , β, (1+

ϵ)j)-hopset of G. For each scale we show the following:

▶ Lemma 11. Consider a graph G = (V, E, w) subject to edge deletions, and parameters 0 <

ϵ < 1, ρ < 1
2 . Assume that we have maintained H̄j := H1, ..., Hj, which is a (2j , β, (1 + ϵ)j)-

hopset of G. Then given the sequence of changes to G and H̄j, we can maintain a graph
Hj+1, such that H̄j ∪ Hj+1 is a (2j+1, β, (1 + ϵ)j+1)-hopset of G. This restricted hopset can
be maintained in Õ((m + ∆)nρ · β

ϵ ) total time, where m is the initial size of G, and ∆ is the
number of edges inserted to H̄j over all updates, β = ( 1

ϵ·ρ )O(1/ρ).

Note that the lemma does not hold for any restricted hopset, and in dynamic settings we
need to use special properties of our construction to prove this.

To prove this lemma we use the techniques of [31] to maintain the clusters. For obtaining
near-optimal update time, we combine this algorithm with the path doubling and scaling
ideas described earlier. However, in order to utilize these ideas, we need to deal with the fact
that inserting hopset edges from smaller scales introduces insertions.

Handling insertions. In addition to maintaining clusters and distances decrementally, in our
final construction we need to handle edge insertions. This is because we run it on a graph
G ∪

⋃j−1
r=0 Hr (after applying scaling of Lemma 9). While edges of G can only be deleted, new

edges are added to the H that we need to take into account for obtaining faster algorithms.
At a high-level, the algorithm of Roditty and Zwick [31] decrementally maintains a

collection of single-source shortest path trees (up to a bounded depth) using the Even-
Shiloach algorithm (ES-tree) [33] at the same time as maintaining a clustering. To handle
edge insertions, we modify the algorithm to use the monotone ES-tree idea proposed by [21,22].

The goal of a monotone ES-tree is to support edge insertions in a limited way. Namely,
whenever an edge (u, v) is inserted and the insertion of the edge causes a distance decrease
in the tree, we do not update the currently maintained distance estimates. Still the inserted
edge may impact the distance estimates in later stages by preventing some estimates from
increasing after further deletions.

While it is easy to see that this change keeps the running time roughly the same as in
the decremental setting, analyzing the correctness is a nontrivial challenge. This is because
the existing analyses of a monotone ES-tree work under specific structural assumptions and
do not generalize to any construction. Specifically, while [21] analyzed the stretch incurred
by running monotone ES-trees on a hopset, the proof relied on the properties of the specific
hopset used in their algorithm. Since the hopset we use is quite different, we need a different
analysis, which combines the static hopset analysis, with the ideas used in [21], and also take
into account the stretch incurred due to the fact that the restricted hopsets are maintained on
the scaled graphs. Note also that our main hopset is not a simply a decremental maintenance
of hopsets of [16], as our estimates are obtained from a sequence of hopsets and insertions in
one scale introduce insertions in the next scale. This is why we need a new argument and
cannot simply rely on arguments in [21] and [16].

Putting it together. We now go back to the setting of Lemma 11, and use a procedure
similar to Algorithm 1. Given a 2j-restricted hopset H̄j = H1 ∪ ... ∪ Hj for distances up to
2j , we can now construct a graph Gj by applying the scaling of Lemma 9 to G ∪ H̄j and
setting R = 2j , ℓ = 2β + 1. Then we can efficiently maintain an ℓ-restricted hopset on Gj .
Then by Lemma 11 we can use this to update Hj+1. Importantly, ℓ is independent of R, and
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thus we can eliminate the factor R to get Õ(βmnρ) total update time. Our final algorithm
is a hierarchical construction that maintains the restricted hopsets on scaled graphs and the
original graph simultaneously.

Stretch and hopbound analysis. As discussed, applying the path-doubling idea to the
hopset analysis is straightforward in static settings (and can be to some extent separated
from the rest of the analysis) as is the case in [18]. However in our adapted decremental
hopset algorithm this idea needs to be combined with the properties of the monotone ES tree
idea and the fact that distance estimate are obtained from a sequence of hopsets on the scaled
graph. In particular, in our stretch analysis we need to divide paths into smaller segments,
such that the length of some segments is obtained from smaller iterations i, and the length of
some segments are obtained from this combination of monotone ES tree estimates based on
path doubling and scaling. We need a careful analysis to show that the stretch obtained from
these different techniques combine nicely, which is based on a threefold inductive analysis:
1. An induction on i, the iterations of the base hopset, which controls the sampling rate

and the resulting size and hopbound tradeoffs.
2. An induction on the scale j, which allows us to cover all ranges of distances [2j , 2j+1] by

maintaining distances in the appropriate scaled graphs.
3. An induction on time t that allows us to handle insertions by using the estimates from

previous updates in order to keep the distances monotone.
The overall stretch argument needs to deal with several error factors in addition to the
base hopset stretch. First, the error incurred by using hopsets for smaller scales, which we
deal with by maintaining our hopsets by setting ϵ′ = ϵ

log n . This introduces polylogarithmic
factors in the hopbound. The second type of error comes from the fact that the restricted
hopsets are maintained for scaled graphs, which implies the clusters are only approximately
maintained on the original graph. This can also be resolved by further adjusting ϵ′. Finally,
since we use an idea similar to the monotone ES tree of [21,22], we may set the level of nodes
in each tree is to be larger than what it would be in a static hopset. But we argue that the
specific types of insertions in our algorithm will still preserve the stretch. At a high-level
this is because in case of a decrease we use an estimate from time t − 1, which we can show
inductively has the desired stretch. We note that while the monotone ES tree is widely used,
we always need a different construction-specific analysis to prove the correctness.

Technical differences with previous decremental hopsets. We note that while the use of
monotone ES tree and the structure of the clusters in our construction are similar to [21], our
algorithm has several important technical differences. First, our hopset algorithm is based on
different base hopset with a polylogarithmic hopbound, which as noted is crucial for obtaining
near-optimal bounds in most of our applications. Additionally, we use a different approach to
maintain the hopset efficiently by using path doubling and maintaining restricted hopsets on a
sequence of scaled graphs. Among other things, in [21] a notion of approximate ball is used that
is rather more lossy with respect to the hopbound/stretch tradeoffs. By maintaining restricted
hopsets on scaled graphs, we are also effectively preserving approximate clusters/bunches
with respect to the original graph, but as explained earlier, the error accumulation combines
nicely with the path-doubling idea. Moreover, [21] uses an edge sampling idea to bound the
update time, which we can avoid by utilizing the sampling probability adjustments in [18],
and the ideas in [31]. Finally, our algorithm is based on maintaining the clusters up to a low
hop, whereas they directly maintain bunches/balls.
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2.4 Applications in Decremental Shortest Paths

Our algorithms for maintaining approximate distances under edge deletions are as follows.
First, we maintain a (β, 1 + ϵ)-hopset. Then, we use the hopset and Lemma 9 to reduce the
problem to the problem of approximately maintaining short distances from a single source.
For our application in MSSP and APSP the best update time is obtained by setting the
hopbound to be polylgarithmic whereas for SSSP the best choice is β = 2Õ(

√
log n). Using this

idea for SSSP and MSSP mainly involves using the monotone ES tree ideas described earlier.
Maintaining the APSP distance oracle is slightly more involved but uses the same techniques
as in our restricted hopset algorithm. This algorithm is based on maintaining Thorup-Zwick
distance oracle [34] more efficiently. At a high-level, we maintain both a (β, 1 + ϵ)-hopset
and Thorup-Zwick distance oracle simultaneously, and balance out the time required for
these two algorithms. The hopset is used to improve the time required for maintaining the
distance oracle from O(mn) (as shown in [31]) to O(βmn1/k), but with a slightly weaker
stretch of (2k − 1)(1 + ϵ). Querying distances is then the same as in the static algorithm
of [34], and takes O(k) time. In the full version of this paper, we explain how our hopset can
be used for applications in approximate shortest paths and distance sketches.

3 Decremental Hopset

In this section we describe two decremental hopset algorithms with different tradeoffs. The
starting-point of our constructions are the static hopsets described in Section 2.1. But in
order to get an efficient dynamic algorithm, we need to modify this construction in several
ways. First we explain how we can adapt ideas by Roditty-Zwick [31] to obtain an algorithm
for computing a d-restricted hopset. The total running time of this algorithm is O(dmnρ)
(where ρ < 1 is a constant). While existentially this construction matches the state-of-the-art
static hopsets with respect to size and hopbound tradeoffs, the update time is undesirable
for large values of d, and thus in Section 3.1 we explain how we can remove this dependence
from the running time at the cost of a slightly worst hopbound guarantee.

Maintaining a restricted hopset. We start by adapting the decremental algorithm by [31]
that maintains the Thorup-Zwick distance oracles [34] with stretch (2k − 1) for pairs of nodes
within distance d in Õ(dmn1/k) total time, but we use it to obtain a d-restricted hopset. In
particular, using ideas in [31], and by restricting the shortest path trees up to depth d, we
can maintain a variant of the hopset defined in Lemma 8 in which the hopset guarantee
only holds for nodes within distance d. In the full version, we describe how we adapt the
algorithm of [31] to our settings to prove the following theorem.

▶ Theorem 12. Fix ϵ > 0, k ≥ 2 and ρ ≤ 1. Given a graph G = (V, E, w) with integer
and polynomial weights, subject to edge deletions we can maintain a (d, β, 1 + ϵ)-hopset,
with β = O

(
( 1

ϵ · (k + 1/ρ))k+1/ρ+1)
in O(d(m + n

1+ 1
2k−1 )nρ) total time. The size/hopbound

guarantee holds with high probability against an oblivious adversary.

This algorithm has a large update time for d-restricted hopsets, when d is large. Next we
show how we can eliminate this update time dependence on d, which is the main technical
component of this work.
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3.1 Decremental hopsets with improved update time
Next we provide a new hopset algorithm that is based on maintaining these restricted hopsets
on a sequence of scaled graphs, and show how this improves the update time, in exchange
for a small (polylogarithmic) loss in the hopbound.

Recall that our algorithm maintains a sequence of graphs H0, . . . , Hlog W , where for each
1 ≤ j ≤ log W , H0 ∪ . . . ∪ Hj is a 2j-restricted hopset of G. Instead of computing each Hj

separately, we use G ∪
⋃j−1

r=0 Hr to construct Hj . The first technical challenge is making the
running time independent of the distance bound 2j , which is what we would get by directly
using the algorithm of [31]. We observe that at the cost of some small approximation errors,
any path of length ∈ [2j−1, 2j) in G can be approximated by a path of at most 2β + 1 hops in
G ∪

⋃j−1
r=0 Hr. This relies on having the 2j-restricted hopset H̄j , which allows us to maintain

the hopset H̄j+1.
Second, while G is undergoing deletions, Hj may be undergoing edge insertions incurred

by restricted hopset edges added for smaller scales, which we discuss next. All the missing
details in this section can be found in the full-version of this paper.

Handling edge insertions. We handle edge insertions by combining of the monotone ES-tree
algorithm [21] (and further used in the hopset construction of [22]). We summarize this
idea and the relevant properties in the full version. As stated earlier, the algorithm itself
is a simple extension of the Even-Schiloach tree. At a high-level we maintain an ES tree
for each cluster and when an insertion causes the level of a node in an ES tree to decrease,
we ignore the insertion and keep the same level. The more challenging aspect of using the
monotone ES tree idea is proving the correctness (stretch), as this does not extend to all
types of insertions but only for insertion with certain inductive structural properties. That
is why even though this idea is widely used, we always need a construction-specific proof of
correctness. In Theorem 14 we prove that specifically for the insertions in our final hopset
algorithm the use of monotone ES tree does not violate our stretch argument.

Path doubling and scaling. We first state the path doubling idea more formally for a
static hopset in the following lemma. However for utilizing this idea dynamically we need to
combine it with other structural properties of our hopsets and the two algorithms described
above.

▶ Lemma 13. Given a graph G = (V, E), 0 < ϵ1 < 1, the set of (β, 1 + ϵ1)-hopsets
Hr, 0 ≤ r < j for each distance scale (2r, 2r+1], provides a (1 + ϵ1)-approximate distance for
any pair x, y ∈ V , where d(x, y) ≤ 2j+1 using paths with at most 2β + 1 hops.

This implies that it is enough to compute (2β + 1)-hop limited distances in restricted
hopsets for each scale. For using this idea in dynamic settings we have to deal with some
technicalities. We should show that we can combine the rounding with the modification
needed for handling insertions.

A hierarchy of restricted hopsets. We define a scaled graph using Lemma 9 as follows:
Gj := Scale(G ∪

⋃j
r=0 Hr, 2j , ϵ2, 2β + 1). Here we set R = 2j , ℓ = 2β + 1, and ϵ2 is a

parameter that we tune later. We first describe the operations performed on this scaled
graph. We then explain how we can put things together for all scales to get the desired
guarantees. The key insight for scaling G ∪

⋃j
r=0 Hr, 2j is that we can obtain Hj+1 by

computing an O(ℓ)-restricted hopset of Gj (using the algorithm of Lemma 11) and scaling
back the weights of the hopset edges.
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In addition to the graph G undergoing deletions, our decremental algorithm maintains
the following data structures for each 1 ≤ j ≤ log W :

The set H̄j =
⋃j

r=0 Hr, union of all hopset edges for distance scales up to [2j , 2j+1].
The scaled graphs G1, ..., Gj .
Data structure obtained by constructing an O(β/ϵ2)-restricted hopset on Gj using
Theorem 12 for the appropriate parameter ϵ2 < 1. We denote this data structure by Dj .

We update the data structures described as follows: we maintain d-restricted hopsets
for d = ⌈ 2(2β+1)

ϵ2
⌉ starting on j = 0, ..., log W in increasing order of j to compute hopset

edges Hj . After processing all the changes in scaled graph Gj , we add the inserted edges
to Gj+1. Then we process the changes in Gj+1 by computing a d-restricted hopset again
and repeat until all distance scales of covered. As described, when the distances increase a
node may join a new cluster which will lead to a set of insertions in H and in turn insertions
in a sequence of graphs Gj . Note that we need to update both the restricted hopsets on
the scaled graphs (denoted by Dj) and the hopset Hj for G obtained by scaling back the
distances using Lemma 9. A pseudocode of this algorithm and its running time analysis can
be found in the full version.

Hopset stretch and hopbound. We next show the stretch and hopbound of the hopset
algorithm described for a single-scale by combining properties of the monotone ES-tree
algorithm with the static hopset argument and the rounding framework.

▶ Theorem 14. Given a graph G = (V, E), and 0 ≤ ϵ2 < 1, assume that we have maintained
a (2j , β, (1 + ϵj))-restricted hopset H̄j, and let Hj+1 be the hopset obtained by running the
above algorithm on G ∪ H̄j. Fix 0 < δ ≤ 1

8(k+1/ρ+1) , and consider a pair x, y ∈ V where
dt,G(x, y) ∈ [2j , 2j+1]. Then for 0 ≤ i ≤ k + 1/ρ + 1, either of the following conditions holds:
1. d

((3/δ)i)
G∪H̄j+1

(x, y) ≤ (1 + 8δi)(1 + ϵj)(1 + ϵ2)dt,G(x, y) or,
2. There exists z ∈ Ai+1 such that,

d
((3/δ)i)
G∪H̄j+1

(x, z) ≤ 2(1 + ϵj)(1 + ϵ2)dt,G(x, y).

Moreover, by maintaining a monotone ES tree on Gj+1 up to depth ⌈ 2(2β+1)
ϵ2

⌉, and applying
the rounding in Lemma 9, we can maintain (1 + ϵj+1)-approximate single-source distances
up to distance 2j+2 from a fixed source s on G, where 1 + ϵj+1 = (1 + ϵj)(1 + ϵ2)2(1 + ϵ) and
β = (3/δ)k+1/ρ+1.

Proof. The stretch argument is based on a threefold induction on i, j-th scale, and time t.
By fixing i, j, t, and a source node s, we show that there is a (1 + ϵj)-stretch path between s

and any other node with β hops (or if we are using previous scale 2β + 1-hops) such that
each segment of this path has the desired stretch based on the inductive claim on one of
these three factors. At a high level induction on i and j follows from static properties of our
hopset. To show that bounded depth monotone ES tree maintains the approximate distances,
we note that any segment of the path undergoing an insertion consistent of a single shortcut
and the weight on such an edge is a distance estimate between its endpoints.

It is easy to see that we never underestimate distances. Roughly speaking, we either
obtain an estimate from rounding estimates obtained from smaller scales, which is an upper
bound on the original estimate, or we ignore a distance decrease.

We use a double induction on i and time t, and also rely on distance computed up to
scaled graph Gj . First, using these distance estimates for smaller scales, we argue that when
we add an edge to H̄j+1 it has the desired stretch. Let Lt,j(u, v) denote the level of node v
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in the tree rooted at u after running the monotone ES tree up to depth D = ⌈ 2(2β+1)
ϵ ⌉ on

graph Gj . This proof is based on a cyclic argument: assuming we have correctly maintained
distances up to a given scale using our hopset, we show how we can compute the distances
for the next scale. In particular, we first assume that based on the theorem conditions we are
given H̄j and have maintained all the clusters and the corresponding distances in G1, ..., Gj

with stretch 1 + ϵj . This lets us analyze Hj+1. Then to complete the argument, we show
how given the hopsets of scale [2j , 2j+1], we can compute approximate SSSP distances for
the next scale based on the monotone ES tree on Gj+1.

First, in the following claim, we observe that the edge weights inserted in the latest scale
have the desired stretch by using our inductive assumption that all the shortest path trees
on each cluster on G1, ..., Gj are approximately maintained. We use such distance to add
edges in each cluster to construct Hj+1, and we observe the following about the weights on
these edges:

▶ Observation 15. Let v ∈ B(u) such that dt,G(u, v) ≤ 2j+1. Consider an edge (u, v)
added to Hj+1 after running the algorithm on G1, ..., Gj for D = ⌈ 2(2β+1)

ϵ2
⌉ rooted at node v.

Let wj+1(u, v) := minj
r=1 η(2r, ϵ2)Lr(u, v), that is the unscaled edge weight. Then we have

dt,G(u, v) ≤ wj+1(u, v) ≤ (1 + ϵj)(1 + ϵ2)dt,G(u, v).

This claim implies that the weights of hopset edges assigned by the algorithm correspond
to approximate distance of their endpoints. Let dt,j(x, y) := minj

r=1 η(2r, ϵ2)Lt,j(x, y) which
would be the estimate we obtain by for distance between x and y after scaling back distances
on Gj . In other words this is the hop-bounded distance after running monotone ES tree on
Gj and scaling up the weights.

For any time t and the base case of i = 0, we have three cases. If y ∈ B(x) then edge
(x, y) is in the hopset Hj+1, and by Observation 15 the weight assigned to this edge is
at most (1 + ϵj)(1 + ϵ2)dt,G(x, y). In this case the first condition of the theorem holds.
Otherwise if x ∈ A1, then z = x trivially satisfies the second condition. Otherwise we have
x ∈ A0/A1, and by setting z = p(x) we know that there is an edge (x, z) ∈ H̄j such that
dt,j(x, z) ≤ (1 + ϵ2)dG∪H̄j

(x, y) (by definition of p(x) and using the same argument as above).
Hence the second condition holds.

By inductive hypothesis assume the claim holds for i. Consider the shortest path π(x, y)
between x and y. We divide this path into 1/δ segments of length at most δdt,G(x, y) and
denote the a-th segment by [ua, va], where ua is the node closest to x (first node of distance
at least aδdt,G(x, y)) and va is the node furthest to x on this segment (of distance at most
(a + 1)δdt,G(x, y)).

We then use the induction hypothesis on each segment. First consider the case where for
all the segments the first condition holds for i, then there is a path of (3/δ)i(1/δ) ≤ (3/δ)i+1

hops consisted of the hopbounded path on each segment. We can show that this path satisfies
the first condition for i + 1. In other words,

d
((3/δ)i+1)
t,G∪H̄j+1

(x, y) ≤
1/δ∑
a=1

d
((3/δ)i)
t,G∪H̄j+1

(ua, va)+d
(1)
t,G(va, ua+1) ≤ (1+8δi)(1+ϵj)(1+ϵ2)dt,G(x, y)

Next, assume that there are at least two segments for which the first condition does not
hold for i. Otherwise, if there is only one such segment a similar but simpler argument can
be used. Let [ul, vl] be the first such segment (i.e. the segment closest to x, where ul is the
first and vl is the last node on the segment), and let [ur, vr] be the last such segment.
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First by inductive hypothesis and since we are in the case that the second condition holds
for segments [ul, zl] and [ur, vr], we have,

d
((3/δ)i)
t,G∪H̄j+1

(ul, zl) ≤ 2(1 + ϵ2)(1 + ϵj)dt,G(ul, vl), and,

d
((3/δ)i)
t,G∪H̄j+1

(vr, zr) ≤ 2(1 + ϵ2)(1 + ϵj)dt,G(ur, vr)

Again, we consider two cases. First, in case zr ∈ B(zl) (or zl ∈ C(zr)), we have added
a single hopset edge (zr, zl) ∈ H̄j+1. Note that dt,G(zr, zl) ≤ 2j+1, since dt,G(zr, zl) ≤
dt,G(x, y) ≤ 2j+1. Hence by Observation 15 the weight we assign to (zr, zl) is at most
(1 + ϵ2)(1 + ϵj)dt,G(zr, zl).

On the other hand, by triangle inequality, and the above inequalities (which are based on
the induction hypothesis) we get,

d
(1)
H̄j+1

(zl, zr) ≤ (1 + ϵ2)(1 + ϵj)dG(zl, zr) (1)

≤ (1 + ϵ2)(1 + ϵj)[d((3/δ)i)
G∪H̄j+1

(ul, zl) + dG(ul, vr) + d
((3/δ)i)
G∪H̄j+1

(zr, vr)] (2)

By applying the inductive hypothesis on segments before [ul, vl], and after [ur, vr], we
have a path with at most (3/δ)i for each of these segments, satisfying the first condition for
the endpoints of the segment. Also, we have a 2(3/δ)i +1-hop path going through ul, zl, zr, vr

that satisfies the first condition for ul, vr.
Putting all of these together, we argue that there is a path of hopbound (3/δ)i+1 satisfying

the first condition. In particular, we have (the subscript t is dropped in the following),

d
(3/δ)(i+1)
G∪H̄j+1

(x, y) ≤
l−1∑
a=1

[d((3/δ)i)
G∪H̄j+1

(ua, va) + d
(1)
G (va, ua+1)] + d

((3/δ)i)
G∪H̄j+1

(ul, zl) (3)

+ d
(1)
H̄j+1

(zl, zr) + d
((3/δ)i)
G∪H̄j+1

(zr, vr) + d
(1)
G (vr, ur+1) (4)

+
1/δ∑

a=r+1
[d((3/δ)i)

G∪H̄j+1
(ua, va) + d

(1)
G (va, ua+1)] (5)

≤ (1 + 8δi)(1 + ϵj)(1 + ϵ2)[dG(x, ul) + dG(vr, y)] + dG(ul, vr) (6)
+ (1 + ϵ2)(1 + ϵj)[2dG(ul, zl) + 2dG(zr, vr)] (7)
≤ (1 + ϵ2)(1 + ϵj)[8δdG(x, y) + (1 + 8δi)dG(x, y)] (8)
≤ (1 + 8δ(i + 1))(1 + ϵ2)(1 + ϵj)dG(x, y) (9)

In the first inequality we used the induction on i for each segment, and triangle inequality.
In the second inequality we are using the fact that nodes uj , vj for all j are on the shortest
path between x and y in G, and we are replacing d

(1)
H̄j+1

(zl, zr) with inequality 2. In line 8 we
used the fact that the length of each segment is at most δ · dG(x, y). Hence we have shown
that the first condition in the lemma statement holds.

Finally, consider the case where zr ̸∈ B(zl). If zl ̸∈ Ai+2, we consider z = p(zl), where
zl ∈ Ai+2. We now claim that this choice of z satisfies the second lemma condition.

We have added the edge (zl, z) to the hopset. Since zr ̸∈ B(zl), we have dt−1,G(zl, p(zl)) ≤
dt−1,G(zl, zr) ≤ dt,G(x, y) ≤ 2j+1. Therefore we can use Observation 15 on the edge (zl, p(zl)).
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d
(3/δ)(i+1)
G∪H̄j+1

(x, y) ≤
l−1∑
a=1

[d((3/δ)i)
G∪H̄j+1

(ua, va) + d
(1)
G (va, ua+1)] (10)

+ d
((3/δ)i)
G∪H̄j+1

(ul, zl) + (1 + ϵ2)(1 + ϵj)d(1)
H̄j+1

(zl, z) (11)

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)dG(x, ul) + d
((3/δ)i)
G∪H̄j+1

(ul, zl) (12)

+ (1 + ϵ2)(1 + ϵj)dH̄j+1
(zl, zr) (13)

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)dG(x, ul) + d
((3/δ)i)
G∪H̄j+1

(ul, zl) (14)

+ (1 + ϵ2)(1 + ϵj)[2d
((3/δ)i)
G∪H̄j+1

(zl, ul) + dG(ul, vr) + d
(3/δ)i

G∪H̄j+1
(vr, zr)] (15)

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)d((3/δ)i)
G∪H̄j+1

(x, vr) + 6δ(1 + ϵj)dG(x, y) (16)

≤ 2(1 + ϵ2)(1 + ϵj)dG(x, y) (17)

In the last inequality we used the fact that we set δ < 1
8(k+1/ρ+1) and thus 8δi < 1. The

only remaining case is when zℓ ∈ Ai+2, in which case a similar reasoning follows by setting
z = zl.

Next, we need to prove that after adding hopset edges Hj+1 we can maintain approximate
single-source shortest path distances from a given source s to conclude the proof of this
theorem. For this we need to use scaling again, and by Lemma 9 an additional (1 + ϵ2)-factor
will be added to the stretch. This enables us to show that Observation 15 can be used for
the next scale, i.e. that we can set the weights for the next scale by maintaining the clusters
and (1 + ϵj+1) approximate distance rooted at a source s when we have d(s, v) ∈ [2j+1, 2j+2],
and hence close the inductive cycle in the argument. This argument uses a similar type of
case-by-case analysis as the above argument combined with path-doubling. We omit this
argument here due to space limitations. The complete proof can be found in the full version
of this paper. ◀

Theorem 14 allows us to hierarchically use the restricted hopsets for smaller scales to
compute the distance for larger scales, that is in turn used to update the hopset edges in
the larger scales. Finally, for getting the final stretch and hopbound we set the parameters
ϵ′ = ϵ

6 log W , ϵ2 = ϵ′ (error incurred by rounding), and δ = ϵ
8(k+1/ρ+1) (details can be found

in the full version). Putting it all together we get the following theorem:

▶ Theorem 16. The total update time in each scaled graph Gj, 1 ≤ j ≤ log W , over all
deletions is Õ((β/ϵ′)(n1+ 1

2k−1 + m)nρ), and hence the total update time for maintaining
(β, 1 + ϵ)-hopset with hopbound β = O( log W

ϵ · (k + 1/ρ))k+1/ρ+1 is Õ( β
ϵ · mnρ · log W ).

4 Applications in Decremental Approximate Shortest Path

In the full version of this paper, we use our hopsets to maintain approximate shortest paths
and distance sketches. At a high level, we maintain a (β, 1 + ϵ)-hopset using the appropriate
parameter settings in Theorem 16. The applications in (1 + ϵ)-SSSP and (1 + ϵ)-MSSP are
straightforward extensions of Theorem 14.

In our approximate APSP data structure we simultaneously maintain a (β, 1 + ϵ)-hopset
for by setting β to be polylogarithmic and a Thorup-Zwick distance oracle [34]. Our algorithm
for maintaining distance oracles of [34] is similar to the restricted hopset algorithm, combined
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with the rounding procedure in Lemma 9 that allows us to maintain clusters up to O(β/ϵ)
hops. One main difference between these algorithms is in the information/distances stored
and the fact that the sampling probabilities stay fixed in case of distance oracles. In order to
maintain (2k − 1)(1 + ϵ)-approximate APSP, we set the parameters ρ and k in such a way
that updating the hopset and the distance oracle are roughly the same. By maintaining the
distance oracle, querying distances is the same as in the static algorithm of [34], and takes
O(k) time, which is constant when k is constant.
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Abstract
We solve the Bin Packing problem in O∗(2k) time, where k is the number of items less or equal to
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case of only large (i.e., greater than one third) items. Our algorithm is actually designed to work
for a more general Vector Bin Packing problem, in which items are multidimensional vectors. We
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1 Introduction

NP-hard problems often have special cases that can be solved in polynomial time, e.g., Vertex
Cover is tractable in graphs with the Kőnig property, Dominating Set is tractable in trees, and
Longest Common Subsequence is tractable in permutations. Many of these problems remain
(fixed-parameter) tractable with a distance from the polynomially solvable case taken as a
parameter, e.g., Vertex Cover Above Matching [16], Dominating Set in bounded treewidth
graphs [1], or Longest Common Subsequence parameterized by the maximum occurrence
number [6]. In parameterized complexity, this concept is sometimes dubbed distance from
triviality [6].
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87:2 Tight Vector Bin Packing with Few Small Items

In the Bin Packing problem, we are given n items from Q⩾0, and we have to pack them
into the smallest possible number of unit-sized bins. It is a classic strongly NP-hard problem.
When all items are large, i.e., greater than 1/3, then no three items can fit into a single bin
and the problem reduces to the Maximum Matching problem, and hence it can be solved in
polynomial time [5].

Bannach et al. [2] are the first to study Bin Packing parameterized by the number k of
small (i.e., ⩽ 1/3) items – which is the distance from the above tractable case. They give
algorithms running in randomized O∗(k! · 4k) time, and deterministic O∗((k!)2 · 2k

)
time.1

Their randomized algorithm works even for a more general Vector Bin Packing problem, in
which items are d-dimensional vectors from Qd

⩾0, and a set of items fits into a bin if their
coordinate-wise sum does not exceed 1 in any coordinate. (The notion of a small item is
more complex in the multidimensional case; see Section 1.1 for the definition.)

We improve upon their result by giving an O∗(2k) randomized time algorithm for Vector
Bin Packing. We complement it with a matching conditional lower bound, showing that
the constant 2 in the base of the exponent cannot be further improved, unless the Strong
Exponential Time Hypothesis (SETH) fails.

Our algorithm works by reducing the problem to finding a perfect matching of a given
total weight in an edge-weighted (multi-)graph. The graph has only O(n) nodes, but can
have up to O(2kn2) edges, whose weights are integers of the order of 2k · k. To solve the
matching problem in the desired O∗(2k) time, we give a variant of the classic Mulmuley-
Vazirani-Vazirani algorithm [12] with only a linear dependence on the edge weights and the
number of edges – which may be of independent interest.

Our techniques also lead to improved algorithms for the two other problems studied by
Bannach et al. [2], i.e., the Vector Multiple Knapsack and Vector Bin Covering problems, as
well as for the Perfect Matching with Hitting Constraints problem, studied by Marx and
Pilipczuk [11].

1.1 Vector Bin Packing with Few Small Items
First, let us formally define Vector Bin Packing as a decision problem. We remark that
(Vector) Bin Packing is also often studied as an optimization problem – especially in the
context of approximation algorithm – but one can always switch between the two variants
via binary search, loosing at most of a factor of O(log n) in the running time.

Vector Bin Packing

Given: a set of n items V = {v1, . . . , vn} ⊆ Qd
⩾0,

and an integer ℓ ∈ Z+ denoting the number of unit-sized bins.

Decide: if the items can be partitioned into ℓ bins B1 ∪ · · · ∪ Bℓ = V such that∑
v∈Bi

v[j] ⩽ 1 for every bin i ∈ [ℓ] and every dimension j ∈ [d].2

Note that the assumption that bins are unit-sized is without loss of generality, as one can
always independently scale each dimension in order to meet that constraint. We can also
safely assume that V is a set, as one can handle multiple occurrences of the same item by
introducing one extra dimensions with negligibly small but unique coordinates.

1 We use O∗(·) notation to suppress factors polynomial in the input size n, i.e., O∗(f(k)) = f(k) · nO(1).
2 We use [n] to denote the set of integers {1, 2, . . . , n}.
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Unlike in the one-dimensional Bin Packing problem, where a small item can be defined
simply as smaller or equal to 1/3, we use a more complex definition, introduced by Bannach
et al. [2]. Let V ⊆ Qd

⩾0 be a set of d-dimensional items. We say that a subset V ′ ⊆ V is
3-incompatible if no three distinct items from V ′ fit into a unit-sized bin, i.e., for every
distinct u, v, w ∈ V ′ there exists a dimension i ∈ [d] such that u[i] + v[i] + w[i] > 1. Now we
can define the parameterized problem that we study.

Vector Bin Packing with Few Small Items

Parameter: the number of small items k.

Given: a set of n items V = {v1, . . . , vn} ⊆ Qd
⩾0,

a subset of k items VS ⊆ V such that VL = V \ VS is 3-incompatible,
and an integer ℓ ∈ Z+ denoting the number of unit-sized bins.

Decide: if the items can be partitioned into ℓ bins B1 ∪ · · · ∪ Bℓ = V such that∑
v∈Bi

v[j] ⩽ 1 for every bin i ∈ [ℓ] and every dimension j ∈ [d].

We say that items in VS are small, and the remaining items in VL = V \ VS are large.
Note that we assume that a subset of small items is specified in the input. This way we can
study the complexity of the packing problem independently of the complexity of finding a
(smallest) subset of small items. This is similar, e.g., to the standard practice for treewidth
parameterization, where one assumes that a suitable tree decomposition is given in the input
(see, e.g., [4]). We remark that if only the set of all items V is given, a smallest possible
subset of small items can be found in O∗(2.27k) time [14] via a reduction to the 3-Hitting
Set problem [2].

1.2 Our results
Our main result is an O∗(2k) time randomized algorithm for Vector Bin Packing with Few
Small Items. The algorithm consists of two parts: reducing the packing problem to a
matching problem, and solving the matching problem. More formally, we first prove the
following.

▶ Lemma 1. An n-item instance of Vector Bin Packing with k small items can be reduced, in
deterministic time O(2kn2kd), to the problem of finding an exact-weight perfect matching in
a (multi-)graph. The graph has O(n) vertices, O(2kn2) edges, and non-negative integer edge
weights that do not exceed O(2kk). The target exact total weight of a matching is O(2kk).

The above matching problem is dubbed Exact Matching, and is known to be in random-
ized3 (pseudo-)polynomial time since the Mulmuley-Vazirani-Vazirani algorithm [12]. The
algorithm directly solves the 0/1 weights variant of Exact Matching in simple graphs. A
prior reduction of Papadimitriou and Yannakakis [15] handles arbitrary non-negative integer
edge weights and multiple parallel edges. The reduction replaces each edge of weight w by a
path of length 2w + 1 with alternating 0/1 edge weights.

The reduction multiplies the number of vertices by the edge weights and by the number
of edges. Further, Mulmuley-Vazirani-Vazirani is not a linear time algorithm. Hence, this
would give us only a 2O(k)nO(1) time algorithm for Vector Bin Packing. This is already an
improvement over the previous factorial time algorithm, but still not our desired 2knO(1)

running time.

3 It is a big open problem to derandomize the algorithm, see, e.g., [18].
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87:4 Tight Vector Bin Packing with Few Small Items

There are more direct and faster ways to solve the general Exact Matching problem
than going through the Papadimitriou-Yannakakis reduction. It seems folklore to handle
arbitrary edge weights by replacing a monomial x, corresponding to a weight-one edge in
the Mulmuley-Vazirani-Vazirani algorithm, with xw, where w is the edge weight. It remains
to handle multiple parallel edges. A crucial part of the algorithm is the so-called isolation
lemma. It assigns random costs to edges, ensuring that the minimum cost perfect matching
of the target weight is unique, and hence it cannot cancel out in the algebraic computations.
The range of costs, required to ensures that property, on one hand depends on the number
of edges, and on the other hand, determines the bitsize of the costs, on which the algorithm
later needs to do arithmetic.

Due to the number of edges in Lemma 1, a direct application of isolation lemma would
lead to an O∗(4k) time algorithm. To mitigate this issue, we carefully apply isolation lemma
to pairs of vertices, and hence the number of edges appears in the running time only as a
linear additive factor.

▶ Theorem 2. Given an edge-weighted multigraph with n nodes and m edges, and an integer t,
a randomized Monte-Carlo algorithm can decide whether there is a perfect matching of total
weight exactly t in Õ(t · n8 + m) time.

Lemma 1 and Theorem 2 together imply our main result.

▶ Theorem 3. There is a randomized Monte Carlo algorithm solving Vector Bin Packing
with Few Small Items in O∗(2k) time.

Lower bound

We show that the above result is tight, via a matching conditional lower bound, under
the Strong Exponential Time Hypothesis (SETH) [7]. The hypothesis states that deciding
k-CNF-SAT with n variables requires time 2skn for limk→∞ sk = 1. In particular, it implies
that deciding CNF-SAT requires 2(1−ε)n time, for every ε > 0. SETH is a standard hardness
assumption for conditional lower bounds in fine-grained and parameterized complexity [4, 20].
We prove the following lower bound for the (non-parameterized) Vector Bin Packing problem.

▶ Theorem 4. Unless SETH fails, Vector Bin Packing cannot be solved in O∗(2(1−ε)n) time,
for any ε > 0. This holds even restricted to instances with only two bins and dimension
d = O(n).

Since k ⩽ n, the corollary for the parameterized version of the problem follows immediately,
proving that the algorithm of Theorem 3 is tight.

▶ Corollary 5. Unless SETH fails, Vector Bin Packing with Few Small Items cannot be solved
in O∗(2(1−ε)k) time, for any ε > 0. This holds even restricted to instances with only two bins
and dimension d = O(n).

We remark that our lower bound crucially relies on multiple dimensions. The best known
hardness result for the (one-dimensional) Bin Packing problem rules out only 2o(n) time
algorithms [9], assuming the Exponential Time Hypothesis (ETH) [8]. It is a big open
problem whether an O(1.99n) time algorithm for Bin Packing exists. Recently, Nederlof et
al. [13] gave such an algorithm for any constant number of bins. This is in contrast to Vector
Bin Packing, which, as we show, requires 2(1−ε)n time already for two bins.
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Other applications
Bannach et al. [2] studied two further problems closely related to the Vector Bin Packing
problem – namely, Vector Multiple Knapsack and Vector Bin Covering – under similar
parameterizations.

In the Vector Multiple Knapsack problem, each item comes with a profit, and instead of
having to pack all the items, we aim to pack a subset of the items into a fixed number of
bins while maximizing the overall profit of the packed items. In the few small items regime,
the fastest known algorithm so far has a running time of O∗(k! · 4k), where k is the number
of small items [2]. Adapting our algorithm to handle the profits and the obstacle that only a
subset of items might be packed, we obtain the following theorem.

▶ Theorem 6. There is a randomized Monte Carlo algorithm solving Vector Multiple
Knapsack with Few Small Items in O∗(2k) time when item profits are bounded by poly(n).

In the Vector Bin Covering problem, we aim to cover bins. Intuitively speaking, instead
of packing the items into as few bins as possible, we want to partition them into as many
bins as possible while satisfying a covering constraint for each bin. This new desired property
of a solution leads to a slightly different definition of the set of small items: instead of any
three large items not fitting together into a bin, now they cover a bin. So far, the fastest
algorithm solving this problem parameterized by the number k of small items4 runs in time
O∗(k! · 4k) [2]. We give the following improvement.

▶ Theorem 7. There is a randomized Monte Carlo algorithm solving Vector Bin Covering
with Few Small Items in O∗(2k) time.

Further, our results directly imply an improved running time for the Perfect Matching
with Hitting Constraints problem. This problem asks whether we can find a perfect matching
in a graph using at least one edge from each of given subsets of edges. It was studied by
Marx and Pilipczuk [11] as a tool for solving a subgraph isomorphism problem in forests.
They gave an algorithm (for the matching problem) running in time 2O(k)nO(1), where k is
the number of edge subsets. Their algorithm shares certain similarities with our Vector Bin
Packing algorithm. They use, however, a less efficient encoding of subsets into edge weights
(using 2k bits, compared to k log k bits we achieve in Lemma 9), and they only coarsely
analyze the polynomial dependence on the weights when solving Exact Matching. Avoiding
these two inefficiencies, we prove the following theorem.

▶ Theorem 8. There is a randomized Monte Carlo algorithm solving Perfect Matching with
Hitting Constraints in O∗(2k) time.

2 From Vector Bin Packing to Exact Matching

▶ Lemma 1. An n-item instance of Vector Bin Packing with k small items can be reduced, in
deterministic time O(2kn2kd), to the problem of finding an exact-weight perfect matching in
a (multi-)graph. The graph has O(n) vertices, O(2kn2) edges, and non-negative integer edge
weights that do not exceed O(2kk). The target exact total weight of a matching is O(2kk).

4 Even though Bannach et al. do not explicitly adapt their definition of a small item to this problem,
they indeed work with the same definition as we do. In the full version on arXiv [3, page 11] they write:
“The large vectors have the property that every subset of three vectors cover a container.”
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Proof. We interpret the problem of finding a packing as the problem of finding a perfect
matching with a certain total weight in an edge-weighted (multi-)graph. Intuitively, each
large item is represented by a vertex, and an edge connects two large items if they fit together
into a bin. The edge weight indicates a set of small items which can be packed together with
the endpoints (i.e., the corresponding large items). The goal is to match (pack) all large
items while achieving the total weight that corresponds to all small items being assigned to
some pairing of large items.

Formally, we first add 2ℓ − |VL| dummy items ⟨0, . . . , 0⟩ ∈ Qd
⩾0 to the set VL so that each

bin will contain exactly two large items. A dummy item can be paired with another dummy
item (no original large item is in that bin), or with an original large item (only one original
large item is in that bin). For each large item v ∈ VL (including the dummy items), create a
vertex uv. For each pair of large items v1, v2 ∈ VL, v1 ≠ v2, and for each subset V ′

S ⊆ VS of
small items, introduce an edge between uv1 and uv2 if v1[ℓ] + v2[ℓ] +

∑
v∈V ′

S
v[ℓ] ⩽ 1 for all

ℓ ∈ [d], i.e., the small items fit together with the two large ones into a bin.5 The weight of
the edge will depend on V ′

S (but not on v1 and v2).
We need to design the edge weights such that each collection of edges of a certain total

weight corresponds to a collection of subsets of small items that form a partition of the set
of all small items Vs, and vice versa. A naive, but incorrect, solution would be to label the
small items with integers 1, 2, . . . , k, and assign to a subset X ⊆ [k] the integer whose binary
representation corresponds to the indicator vector of X, i.e.,

∑
x∈X 2x−1. It is true that,

with such weights, any collection of edges whose associated subsets form a partition of Vs has
the total weight 1 . . . 12 = 2k − 1. However, the reverse statement is not true: it is possible
to obtain the total weight 2k − 1 by, e.g., taking 2k − 1 edges that each allow small item 1
but no other small items.

As we will show in Lemma 9, in order to prevent such false positives, it suffices to
concatenate the indicator vectors with (log k)-bit counters denoting the number of elements
in a set.6 More formally, we assign to a subset X ⊆ [k] the weight |X| · 2k +

∑
x∈X 2x−1,

i.e., the (k + log k)-bit integer whose k least significant bits correspond to the indicator
vector of X and the log k most significant bits form the integer equal to the cardinality of X.
The target total weight k · 2k + (2k − 1) can only be achieved by summing weights given to
subsets forming a partition of Vs, i.e., by assigning each small item to (exactly) one matching
edge. ◀

▶ Lemma 9. Fix the universe size k ∈ N, and let f : 2[k] → N be given by

f(X) = |X| · 2k +
∑
x∈X

2x−1.

Then, a family X1, . . . , Xn ⊆ [k] is a partition7 of [k] if and only if

f(X1) + · · · + f(Xn) = k · 2k + (2k − 1).

5 Note that it is important to add an edge for each fitting subset, and not, e.g., only for inclusion-wise
maximal fitting subsets. That is because we design the edge weights so that an exact matching
corresponds to a partition (and not to a cover) of the set Vs.

6 Marx and Pilipczuk [11] solve a similar issue by concatenating the indicator vector with its reverse, i.e.,
they assign to X weight

∑
x∈X

(22k−x + 2x−1). Their approach results in weights of the order of 4k,
which is prohibitively large for achieving O∗(2k) running time.

7 That is, X1 ∪ · · · ∪ Xn = [k], and Xi ∩ Xj = ∅ for every i ̸= j.
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Proof. The “partition ⇒ sum” direction follows from a simple calculation. Let us prove the
“sum ⇒ partition” direction. For i ∈ [k], let ci denote the number of sets containing element i.
We want to show that ci = 1, for every i. We have

f(X1) + · · · + f(Xn) =
( k∑

i=1
ci

)
· 2k +

k∑
i=1

ci2i−1.

Note that the k least significant bits of the sum f(X1) + · · · + f(Xn) are lower bounding the
term

∑k
i=1 ci2i−1, and the remaining bits are upper bounding the term

∑k
i=1 ci, that is,

k∑
i=1

ci2i−1 ⩾ 2k − 1 =
k ones︷ ︸︸ ︷
1 . . . 12, and

k∑
i=1

ci ⩽ k.

For i = 0, 1, . . . , k, let pi = c1 + · · · + ci, with p0 = 0. Observe that pi ⩾ i, for every i,
as otherwise there are not enough bits to set the one in every position among the i least
significant bits of the sum f(X1) + · · · + f(Xn).8 Moreover, pk =

∑k
i=1 ci ⩽ k, and thus

pk = k. Last but not least, by definition, ci = pi − pi−1. We have

2k − 1 ⩽
k∑

i=1
2i−1ci =

k∑
i=1

2i−1(pi − pi−1) =
k∑

i=1
2i−1pi −

k∑
i=1

2i−1pi−1

=
k∑

i=1
2i−1pi −

k−1∑
i=0

2ipi = 2kpk +
k∑

i=1
(2i−1 − 2i)pi − 20p0 = 2kpk −

k∑
i=1

2i−1pi

= 2k · k −
k∑

i=1
2i−1pi

⩽ 2k · k −
k∑

i=1
2i−1i = 2k · k −

(
(k − 1) · 2k + 1

)
= 2k − 1.

Hence, all the inequalities must be tight. In particular, pi = i for every i, and thus ci = 1,
i.e., each element of the universe is contained in exactly one set of the family. ◀

3 Fast Exact Weight Matching in Multigraphs

In this section we give our variant of the Mulmuley-Vazirani-Vazirani algorithm, with only a
linear dependence on the edge weights and a linear additive dependence on the number of
edges, proving Theorem 2.

3.1 The Pfaffian
At the heart of the matching algorithm lies a computation of the Pfaffian of a skew-symmetric
matrix of certain polynomials. In order to introduce the notion of a Pfaffian properly, let us
fix some definitions and notation first.

8 It follows from the fact that the number of one-bits in the sum is less or equal to the total number of
one-bits in the summands, and that this holds even if we look only at the i least significant bits.
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For an n × n matrix A, we denote by A[i, j] the value in the i-th row and j-th column.
We say that A is skew-symmetric if and only if A[i, j] = −A[j, i] for every i, j ∈ [n]. Let M
be a perfect matching in the complete graph Kn. We can look at M as a sequence of edges
in some arbitrary order, i.e.,

M = (i1, j1), (i2, j2), . . . , (in/2, jn/2),

where, by convention, ik ⩽ jk for any k. Now, we define the sign of M as follows:

sgn M = sgn
(

1 2 3 4 ··· n−1 n
i1 j1 i2 j2 ··· in/2 jn/2

)
,

where the right-hand side is the sign of a permutation. One can easily show that this
definition does not depend on the chosen order of the edges.

Now, we are ready to give the definition of a Pfaffian.

▶ Definition 10 (Pfaffian). Let A be an n × n skew-symmetric matrix. The Pfaffian of A is
denoted by pf(A) and is defined as follows

pf(A) =
∑{

sgn M ·
∏

(ik,jk)∈M

A[ik, jk]
∣∣∣∣ M perfect matching in Kn

}
.

We note that since A is skew-symmetric, our convention that ik ⩽ jk does not affect the
definition of the Pfaffian at all – if we were to switch ik and jk, the sign of the matching
changes, but so does the sign of the product of the weights.

Several equivalent definitions of a Pfaffian exist in the literature. However, we have
chosen this one, as it immediately illustrates the connection between the Pfaffian and perfect
matchings.

The Pfaffian of a matrix over an arbitrary field can be computed by, e.g., a variant of the
Gaussian elimination. However, since we are dealing with polynomial matrices, we would
like to avoid divisions. Fortunately, several division-free polynomial time algorithms for
computing Pfaffian exist [10, 17, 19].

Incidentally, Mahajan, Subramanya, and Vinay [10] give a dynamic programming al-
gorithm computing the Pfaffian of a matrix with entries from an arbitrary ring that makes
O(n4) additions and multiplications (see also survey [17] for an alternative exposition)9. By
analysing the structure of their algorithm, we get the following result for matrices with
polynomial entries.

▶ Theorem 11 (cf. [10], Section 4). Given an n × n matrix A of univariate polynomials of
degree at most d and integer coefficients bounded by M , the Pfaffian pf(A) can be computed
in Õ(n6d log M) time.

Proof. The algorithm in [10], Section 4, is described as a weighted DAG HA with each vertex
corresponding to a state of the dynamic program. The weights on the edges are signed entries
of the matrix A. There is an auxiliary starting state s ∈ HA and the dynamic programming
value for a state v ∈ HA is a sum of products of weights along all the paths from s to v.

Moreover, HA has O(n3) vertices, depth equal to O(n) and indegree of each vertex
equal to O(n). Therefore, if the entries of A are polynomials of degree d and coefficients
bounded by M , then the values of the dynamic programming states are polynomials with

9 Urbańska’s algorithm [19] runs even faster, in O(n3.03) time. But since we care more about getting linear
dependence on the target weight in our matching algorithm, rather than optimizing the polynomial
dependence on n, we have chosen to use a slightly slower, yet simpler algorithm for the sake of clarity.
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a degree bounded by O(nd) and coefficients bounded by O(nnMn). Hence, by using FFT,
we can perform each arithmetic operation in Õ(n2d log M) time. The number of arithmetic
operations needed is proportional to the number of edges in HA, which is O(n4). This yields
the desired time bound. ◀

Since we do not need to compute the whole Pfaffian in the Exact Matching problem,
but are only interested in the coefficient of the monomial xt (which conveys the information
about matchings of the target weight t), we can speed up the computation by a factor of n.

▶ Corollary 12. Given an integer t and an n × n matrix A of univariate polynomials with
integer coefficients bounded by M , a coefficient of the monomial xt in pf(A) can be computed
in Õ(n5t log M) time.

Proof. In the algorithm from Theorem 11, we can perform all the arithmetic operations
modulo xt+1. Then, the degree of the polynomials is bounded by O(t) instead of O(nd), and
a similar analysis follows. ◀

3.2 The algorithm
We first recall the central lemma of the Mulmuley-Vazirani-Vazirani algorithm, used to deal
with possible cancellations caused by varying signs in the Pfaffian definition.

▶ Lemma 13 (Isolation Lemma, cf. [12]). Let S be a finite set, and let F ⊆ 2S be a family of
subsets of S. To each element x ∈ S, we assign an integer cost c(x) chosen uniformly and
independently at random from {1, . . . , 2|S|}. For a subset S′ ⊆ S, we define a total cost of
S′ to be c(S′) =

∑
x∈S′ c(x). Then,

P(there is a unique minimum total cost set in F ) ⩾ 1
2 .

Now we are ready to present the matching algorithm.

▶ Theorem 2. Given an edge-weighted multigraph with n nodes and m edges, and an integer t,
a randomized Monte-Carlo algorithm can decide whether there is a perfect matching of total
weight exactly t in Õ(t · n8 + m) time.

Proof. We first present the algorithm. Then we argue its correctness and analyse the running
time.

Algorithm. For every {u, v} ∈
(

V
2
)
, let E{u,v} = {e ∈ E : e connects u and v} denote the

set of (parallel) edges between nodes u and v. For an edge e ∈ E, we use w(e) ∈ Z⩾0 to
denote the weight of e. Moreover, we assume w.l.o.g. that V = [n].

The algorithm works as follows.

1. Set λ = 2mn.
2. For every {i, j} ∈

(
V
2
)
, assign a cost c({i, j}) uniformly at random from {1, . . . , 2

(
n
2
)
}.

3. Set up an n × n matrix A of univariate polynomials: For each i, j ∈ [n], i ⩽ j, put

A[i, j] = λc({i,j})
∑

e∈E{i,j}

xw(e), and A[j, i] = −A[i, j].

4. Compute the coefficient of xt in pf(A) using the algorithm from Corollary 12.
5. If the coefficient of xt in pf(A) is nonzero return YES, otherwise return NO.

ICALP 2022



87:10 Tight Vector Bin Packing with Few Small Items

Correctness. We use coeft(pf(A)) to denote the coefficient of xt in pf(A). For every perfect
matching M in the complete graph Kn, let

f(M) = sgn M · λc(M) · #perfect matchings in G of weight t contained10 in M

denote the contribution of matching M to the coefficient coeft(pf(A)). Now, we have

coeft(pf(A)) =
∑{

f(M)
∣∣ M perfect matching in Kn

}
. (1)

Let F be the family of all perfect matchings in Kn that contain a perfect matching in G

of weight exactly t. If F = ∅, then every summand in (1) is zero. Hence, coeft(pf(A)) = 0
and our algorithm answers correctly.

If F ̸= ∅, then by Isolation Lemma, with probability at least 1/2, there is only one
minimum cost perfect matching N ∈ F .

Let c = c(N ). Observe that the number of perfect matchings in G of weight t that
are contained in N is trivially bounded by mn < λ. This means that |f(N )| < λc+1. In
other words, f(N ) is divisible by λc, but not by λc+1. On the other hand, every other
summand in (1) is divisible by λc+1, as N is the unique minimum cost matching. Therefore,
coeft(pf(A)) is divisible by λc, but not by λc+1 – so it cannot be zero.

If we want to amplify the probability of giving the correct answer to 1 − 1/nC , for some
constant C > 0, we repeat the algorithm C log n times.

Time cost analysis. The time needed to complete steps 1–3 is O(n2 + m). Since the
coefficients of the polynomial entries of A are bounded by 2mn·2(n

2) = 2O(n3 log m), we get
that invoking the algorithm from Corollary 12 takes Õ(t · n8 log m) time. In total, that yields
Õ(t · n8 + m) time complexity. ◀

4 Lower bound

▶ Theorem 4. Unless SETH fails, Vector Bin Packing cannot be solved in O∗(2(1−ε)n) time,
for any ε > 0. This holds even restricted to instances with only two bins and dimension
d = O(n).

Proof. Given a CNF formula with n variables and m clauses,11 we will construct n + 1
instances of Vector Bin Packing such that the formula is satisfiable if and only if at least one
of them is a yes-instance. Intuitively, this corresponds to guessing the number of variables set
to true in a satisfying assignment. Formally, for t ∈ {0, . . . , n}, the t-th Vector Bin Packing
instance is a yes-instance if and only if the formula has a satisfying assignment with exactly
t variables set to true.

Let us fix t. The t-th instance consists of n + 2 items V = {v1, . . . , vn, T, F } ⊆ Qm+2
⩾0 .

The first n items correspond to the n variables; the remaining two items T and F are used to
break the symmetry – in any feasible solution they are necessarily in two different bins, which
we call the T -bin and the F -bin, respectively. Packing item vi to the T -bin corresponds to
setting variable i to true, and packing it to the F -bin corresponds to setting the variable to
false.

10 We say that a matching (in multigraph G) is contained in another matching (in the complete graph Kn)
if the set of n/2 pairs of endpoints is the same for the two matchings.

11 Note that, thanks to the sparsification lemma [8], we can assume that m = O(n).
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The items are (m + 2)-dimensional. The first m dimensions correspond to clauses, and
we will discuss them in a moment. Dimension m + 1 ensures that T and F go to different
bins; we have T [m + 1] = F [m + 1] = 1, and vi[m + 1] = 0 for every i ∈ [n]. Dimension m + 2
ensures that (at most) t items go to the T -bin and (at most) n − t items go to the F -bin; we
have T [m + 2] = (n − t)/n, F [m + 2] = t/n, and vi[m + 2] = 1/n for every i ∈ [n].

Now, fix a clause j ∈ [m]. We set

vi[j] =


0/2n, if variable i appears in a positive literal in clause j,

1/2n, if variable i does not appear in clause j,

2/2n, if variable i appears in a negative literal in clause j.

Let nj denote the number of variables that appear negated in clause j. We set

T [j] = 1 − t + nj − 1
2n

, and F [j] = 0.

This ends the description of the instance. To finish the proof, it remains to show that the
above items can be packed into two bins if and only if the formula has a satisfying assignment
with exactly t variables set to true.

Note that there is a natural one-to-one correspondence between (not necessarily satisfying)
assignments that set exactly t variables to true and (not necessarily feasible) Vector Bin
Packing solutions that are feasible in the last two dimensions. We now show that, for j ∈ [m],
such an assignment satisfies clause j if and only if the corresponding solution is feasible in
dimension j. The F -bin is never overfull in dimension j. To analyse the T -bin, let α, β, γ

denote the numbers of variables set to true that, in clause j, appear in a positive literal,
do not appear, and appear in a negative literal, respectively. Let δ denote the number of
variables set to false that appear in clause j in a negative literal. Note that t = α + β + γ,
and nj = γ + δ. Consider the following chain of equivalent inequalities, starting with the
condition saying that the T -bin is not overfull in dimension j.

α · 0/2n + β · 1/2n + γ · 2/2n ⩽ 1 − T [j]
β + 2γ ⩽ t + nj − 1
β + 2γ ⩽ (α + β + γ) + (γ + δ) − 1

1 ⩽ α + δ

The last inequality states that clause j is satisfied. ◀

5 Other applications

In this section we explain how the techniques presented in our paper can be adapted to also
solve Vector Multiple Knapsack and Vector Bin Covering, two closely related problems to
the Vector Bin Packing problem. The main difference lies in the reduction to the Exact
Matching problem, which has to integrate profits of the items, or the new covering property,
respectively. Further, we show that our techniques directly apply to the Perfect Matching
with Hitting Constraints problem, leading to an improved running time.

Vector Multiple Knapsack
In Vector Multiple Knapsack, instead of packing all items into the smallest number of bins,
we aim to place a subset of items with profits into a fixed number of bins while maximizing
the profit of the packed items. Like in Vector Bin Packing, small items hinder us from solving
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the problem using a polynomial time algorithm for the maximum weight perfect matching.
Hence, following Bannach et al. [2], we study the problem parameterized by the number k of
small items.

Vector Multiple Knapsack with Few Small Items

Parameter: the number of small items k.

Given: a set of n items V = {v1, . . . , vn} ⊆ Qd
⩾0, item profits p(v1), . . . , p(vn) ∈ Z+,

a subset of k items VS ⊆ V such that VL = V \ VS is 3-incompatible,
an integer ℓ ∈ Z+ denoting the number of unit-sized bins,
and an integer P ∈ Z+, denoting the goal profit.

Decide: if a subset V ′ of the items can be partitioned into ℓ bins B1 ∪ · · · ∪ Bℓ = V ′

such that
∑

v∈Bi
v[j] ⩽ 1 for every bin i ∈ [ℓ] and every dimension j ∈ [d],

and
∑

v∈V ′ p(v) ⩾ P .

To solve the problem, we reduce the instance to the Exact Matching problem as in
Section 2. It remains to handle the fact that only a subset of items has to be packed,
and that we need to integrate the profits. We do so in the following manner: With each
edge between v1 and v2 and the weight corresponding to V ′

S ⊆ VS , we associate the cost of
p(v1) + p(v2) +

∑
v∈V ′

s
p(v). Further, we introduce g = n − 2 · ℓ new vertices b1, b2 . . . , bg,

called blocker vertices. These vertices serve as “garbage collectors” for the items which are
not packed in any of the ℓ bins, i.e., they match g unpacked items, and by that block them.
To do so, for each V ′

S ⊆ VS , each large vector vi, and each blocker vertex bj , introduce an edge
between vi and bj with weight dependent on V ′

S as before, and cost 0. Note that, because of
the dummy items introduced in the reduction in Section 2, we can assume that each bin in
an optimal solution contains exactly two large items (some original, some dummy), so we
know that exactly g = n − 2 · ℓ large items has to be handled by blockers.

Using Lemma 9, clearly, each yes-instance of the Vector Multiple Knapsack problem has
a prefect matching of weight exactly k · 2k + (2k − 1) and cost at least P in the above graph,
and vice versa. This is due to the equivalence of choosing ℓ edges with non-zero costs and
the packing of the ℓ bins. The remaining items can be matched with the blocker vertices,
and all small items are covered due to the weights.

We are left with solving the following matching problem: Given a (multi-)graph with edge
weight and edge costs, find a perfect matching with a given total weight and the maximum
possible total cost. This can be done with a slight modification of the algorithm of Theorem 2.
Indeed, note that the algorithm already looks for a perfect matching minimizing the sum of
edge costs coming from Isolation Lemma. All we have to do is to (1) combine input costs with
Isolation Lemma costs, and (2) turn minimization into maximization. For (1), it suffices to
put the input cost into the most significant bits, and the Isolation Lemma cost into the least
significant bits of the combined edge cost. For (2), to find out what the maximum (instead
of the minimum) possible total cost is, it suffices to look at the most (instead of the least)
significant digit in the λ-ary representation of the coefficient coeft(pf(A)). Last but not least,
we remark that Isolation Lemma is symmetric with respect to minimization/maximization,
i.e., it also ensures that the maximum total cost set is unique with probability at least 1/2.

To analyze the running time, let pmax = maxv∈V p(v) denote the maximum item profit.
The maximum input cost of an edge is (k + 2)pmax. Hence, the coefficients of the polyno-
mial entries of matrix A are now bounded by 2m(k+2)pmaxn·2(n

2) = 2O(pmaxn4 log m), and the
matching algorithm takes Õ(t · pmaxn9 log m) time. This leads to the following theorem.
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▶ Theorem 6. There is a randomized Monte Carlo algorithm solving Vector Multiple
Knapsack with Few Small Items in O∗(2k) time when item profits are bounded by poly(n).

Vector Bin Covering

Another set of problems asks to cover the largest number of bins possible. In the one-
dimensional setting, covering typically refers to the bin capacity being exceeded by the set of
items packed into it. This property can be extended in multiple ways to a d-dimensional case,
for example by requiring that at least one dimension is exceeded. However, other properties,
such as “all dimension have to be exceeded”, “certain set combinations of dimensions have to
be exceeded”, et cetera, are possible as well. Our algorithm works for all such definitions of
covering. Thus, in the following, we refer to the one chosen as the covering property P.

Following our story line to study a parameter capturing a distance to triviality, we consider
the problem variant parameterized by the number k of small items. However, the property of
being a small item depends on P , so we introduce a new definition for the covering problems:
We say that a subset V ′ ⊆ V is 3-covering if every three distinct items from V ′ cover a
unit-sized bin w.r.t. P.

Vector Bin Covering with Few Small Items

Parameter: the number of small items k.

Given: a set of n items V = {v1, . . . , vn} ⊆ Qd
⩾0,

a subset of k items VS ⊆ V such that VL = V \ VS is 3-covering w.r.t. P,
and an integer ℓ ∈ Z+ denoting the number of unit-sized bins.

Decide: if the items can be partitioned into ℓ bins B1 ∪ · · · ∪ Bℓ = V such that∑
v∈Bi

v satisfies P for every bin i ∈ [ℓ].

The algorithm proceeds similarly to the one for Vector Bin Packing. However, we have
to handle the fact that a bin can contain more than two large items in this case. Thus,
we first guess the number of bins ℓi admitting i large items for i ∈ {0, 1, 2}. This yields
O(ℓ3) = O(n3) guesses. The remaining bins will be covered by triples of the unassigned large
items. Hence, the guess has to satisfy that ℓ0 + ℓ1 + ℓ2 + ⌊(n − k − ℓ1 − 2ℓ2)/3⌋ ⩾ ℓ.

Now we construct the graph as in Section 2 with 2ℓ0 +ℓ1 dummy items. For each V ′
S ⊆ VS ,

an edge is introduced between v1 and v2 if v1 + v2 +
∑

v∈V ′
S

v covers the bin w.r.t. P. The
weight of the edge is defined by V ′

S as before. Additionally, we introduce (n − k − ℓ1 − 2ℓ2)
blocker vertices, and introduce an edge of weight 0 between each blocker vertex and each
large item. The blocker vertices collect all large items not being placed into bins with 0, 1,
or 2 large items.

With Lemma 9 being proven, clearly, each yes-instance of the Vector Bin Covering
problem has a perfect matching of weight k · 2k + (2k − 1) in the above graph, and vice
versa. Indeed, a matching has to choose (n − k − ℓ1 − 2ℓ2) edges between blocker vertices
and large items. These are the ones greedily packed as triples. Note that this might leave
up to two large items unpacked, which will be assigned to an arbitrary, already covered bin.
The remaining packing is defined by the remaining matching edges as previously.

This together with Theorem 2 leads to the following result.

▶ Theorem 7. There is a randomized Monte Carlo algorithm solving Vector Bin Covering
with Few Small Items in O∗(2k) time.
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Perfect Matching with Hitting Constraints
The Perfect Matching with Hitting Constraints problem asks whether there exists a perfect
matching in a graph using at least one edge from each given set of edges. Formally, the
problem is defined as follows.

Perfect Matching with Hitting Constraints

Parameter: the number of edge subsets k.

Given: a graph G = ⟨V, E⟩,
and k (not necessarily disjoint) edge subsets E1, . . . , Ek ⊆ E.

Decide: if there is a perfect matching M in G such that
there exists k distinct edges e1, . . . , ek ∈ M such that ei ∈ Ei for every i ∈ [k].

We again reduce this problem to finding an exact weight perfect matching in a multigraph.
Our approach is similar to the one of Marx and Pilipczuk [11]. However, in their reduction,
they introduce larger edge weights, and, by that, obtain a larger running time. We can
circumvent this using edge weights as defined in Lemma 9.

In detail, we create a copy of each edge e ∈ Ei, for each i ∈ [k], and assign weight
1 · 2k + 2i−1 to it – i.e., we concatenate the indicator vector of the singleton {i} with the
counter set to 1, as previously. The original edge gets weight 0. The target weight is
t = k · 2k + (2k − 1). Clearly, there exists a perfect matching with hitting constraints in G if
and only if there is a perfect matching in the transformed graph with edge weights summing
up to the correct target value t, see Lemma 9.

This together with Theorem 2 leads to the following result.

▶ Theorem 8. There is a randomized Monte Carlo algorithm solving Perfect Matching with
Hitting Constraints in O∗(2k) time.
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Abstract
Deciding whether a diagram of a knot can be untangled with a given number of moves (as a part of
the input) is known to be NP-complete. In this paper we determine the parameterized complexity
of this problem with respect to a natural parameter called defect. Roughly speaking, it measures
the efficiency of the moves used in the shortest untangling sequence of Reidemeister moves.

We show that the II− moves in a shortest untangling sequence can be essentially performed
greedily. Using that, we show that this problem belongs to W[P] when parameterized by the defect.
We also show that this problem is W[P]-hard by a reduction from Minimum axiom set.
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1 Introduction

A classical and extensively studied question in algorithmic knot theory is to determine
whether a given diagram of a knot is actually a diagram of an unknot. This question is
known as the unknot recognition problem. The first algorithm for this problem was given by
Haken [12]. Currently, it is known that the unknot recognition problem belongs to NP ∩ co-
NP but no polynomial time algorithm is known. See [13] for the NP-membership and [19]
for co-NP-membership (co-NP-membership modulo Generalized Riemann Hypothesis was
previously established in [16]). In addition, a quasi-polynomial time algorithm for unknot
recognition has been recently announced by Lackenby [20].

One possible path for attacking the unknot recognition problem is via Reidemeister moves
(see Figure 2): if D is a diagram of an unknot, then D can be untangled to a diagram U with
no crossing by a finite number of Reidemeister moves. In addition, Lackenby [17] provided a
polynomial bound (in the number of crossings of D) on the required number of Reidemeister
moves. This is an alternative way to show that the unknot recognition problem belongs to
NP, because it is sufficient to guess the required Reidemeister moves for unknotting.

EA
T

C
S

© Clément Legrand-Duchesne, Ashutosh Rai, and Martin Tancer;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 88; pp. 88:1–88:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2022.88
https://arxiv.org/abs/2111.05001
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


88:2 Parameterized Complexity of Untangling Knots

Figure 1 An example of a diagram.

However, if we slightly change our viewpoint, de Mesmay, Rieck, Sedgwick, and Tancer [23]
showed that it is NP-hard to count the number of required Reidemeister moves exactly.
(An anologous result for links has been shown to be NP-hard slightly earlier by Koenig
and Tsvietkova [15].) More precisely, it is shown in [23] that given a digram D and a
parameter k as input, it is NP-hard to decide whether D can be untangled using at most k

Reidemeiser moves. For more background on unknotting and unlinking problems, we also
refer to Lackenby’s survey [18].

The main aim of this paper is to extend the line of research started in [23] by determining
the parameterized complexity of untangling knots via Reidemeister moves. On the one
hand, it is easy to see that if we consider parameterization by the number of moves, then
the problem is in FPT (class of fixed parameter tractable problems). This happens due to
a somewhat trivial reason: if a diagram D can be untangled with at most k moves, then
D contains at most 2k crossings, thus we can assume that the size of D is (polynomially)
bounded by k. In notions of parameterized complexity, this gives a kernel of size bounded by
k which immediately gives the FPT membership. In the full version, we provide a bit more
details; see Observation 1 in the full version.

On the other hand, we also consider parameterization with an arguably much more
natural parameter called the defect (used in [23]). This parameterization is also relevant
from the point of view of above guarantee parameterization introduced by Mahajan and
Raman [21]. Here we show that the problem is W[P]-complete with respect to the defect.
This is the core of the paper.

In order to state our main result more precisely, we need a few preliminaries on diagrams
and Reidemeister moves. For purposes of this part of the introduction, we also assume that
the reader is at least briefly familiar with complexity classes FPT and W[P]. Otherwise we
refer to the end of the introduction, where we briefly overview these classes.

Diagrams and Reidemeister moves. A diagram of a knot is a piecewise linear map
D : S1 → R2 in general position; for such a map, every point in R2 has at most two
preimages, and there are finitely many points in R2 with exactly two preimages (called
crossings). Locally at a crossing two arcs cross each other transversely, and the diagram
contains the information of which arc passes “over” and which “under”. This we usually
depict by interrupting the arc that passes under. Diagrams are always considered up-to
isotopy. The unique diagram without crossings is denoted U (untangled). See Figure 1 for
an example of a diagram.

Let D be a diagram of a knot. Reidemeister moves are local modifications of the diagram
depicted in Figure 2. We distinguish Reidemeister moves of types I, II, and III as depicted in
the figure. In addition, for types I and II, we distinguish whether the moves remove crossings
(types I− and II−) or whether they introduce new crossings (types I+ and II+).

A diagram D is a diagram of an unknot if it can be transformed to the untangled diagram
U by a finite sequence of Reidemeister moves. (This is well known to be equivalent to stating
that the lift of the diagram to R3, keeping the underpasses/overpasses, is ambient isotopic to
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I−

I+

II−

II+

III

Figure 2 Reidemeister moves.

the unknot, that is standardly embedded S1 in R3.) The diagram on Figure 1 is a diagram
of an unknot. Diagrams may be encoded purely combinatorially as 4-regular plane graphs
(with some additional combinatorial information) and the size of this encoding is comparable
to the number of crossings. Similarly, the Reidemeister moves can be encoded by purely
combinatorial data. For more details we refer to Sections 2 and 3 of the full version.

Parameterization via defect. As we discussed earlier, parameterization in the number of
Reidemeister moves has the obvious disadvantage that once we fix k, the problem becomes
trivial for arbitrarily large inputs (they are obviously a NO instance). We also see that if we
have a diagram D with n crossings and want to minimize the number of Reidemeister moves
to untangle D, presumably the most efficient way is to remove two crossings in each step,
thus requiring at least n/2 steps. This motivates the following definition of the notion of
defect.

Given a diagram D, by an untangling of D we mean a sequence D = (D0, . . . , Dℓ) such
that D = D0; Di+1 is obtained from Di by a Reidemeister move; and Dℓ = U is the diagram
with no crossings. Then we define the defect of an untangling D as above as

def(D) := 2ℓ − n

where n is the number of crossings in D. Note that ℓ is just the number of Reidemeister
moves in the untangling. It is easy to see that def(D) ≥ 0 and def(D) = 0 if and only if
all moves in the untangling are II− moves. Therefore, def(D) in some sense measures the
number of “extra” moves in the untangling beyond the trivial bound. (Perhaps, a more
accurate expression for this interpretation would be ℓ − n/2 = 1

2 def(D) but this is a minor
detail and it is more convenient to work with integers.) In addition, it is possible to get
diagrams with arbitrarily large number of crossings but with defect bounded by a constant
(even for defect 0 this is possible). The defect also plays a key role in the reduction in [23]
which suggests that the hardness of the untangling really depends on the defect.

As we have seen above, asking the question whether a diagram can be untangled with
defect at most k is same as asking if it can be untangled in k/2 moves above the trivial,
but tight lower bound of n/2. This fits perfectly in the framework of above guarantee
parameterization, which was introduced by Mahajan and Raman [21] for Max-Sat and
Max-Cut problems. In this framework, when there is a trivial lower bound for the solution
in terms of the size of the input, parameterizing by solution size trivially gives an FPT
algorithm by either giving a trivial answer if the input is large, or bounding size of the
input by a function of the solution size. Hence, for those problems, it makes more sense to
parameterize above a tight lower bound. The paradigm of above guarantee parameterization
has been very successful in the field of parameterized complexity and many results have been
obtained [1, 4, 5, 9, 10, 11, 22].

For these reasons, we find the defect to be a more natural parameter than the number of
Reidemeister moves. Therefore, we consider the following problem.
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▶ Problem (Unknotting via defect).
Input A diagram D of a knot.
Parameter k.
Question Can D be untangled with defect at most k?

▶ Theorem 1. The problem Unknotting via defect is W[P]-complete.

The proof of Theorem 1 consists of two main steps: W[P]-membership and W[P]-hardness.
Both of them are non-trivial.

For W[P]-membership, roughly speaking, the idea is to guess a small enough set of
special crossings on which we perform all possible Reidemeister moves, while we remove other
crossings in a greedy fashion. In order to succeed with such an approach we will need some
powerful and flexible enough lemmas on changing the ordering of Reidemeister moves in some
untangling by swapping them. In Section 2 we provide an algorithm for W[P]-membership
but we only sketch why it works correctly. For more details, we refer to Sections 4 and 5 of
the full version.

For W[P]-hardness, we combine some techniques that were quite recently used in showing
parameterized hardness of problems in computational topology [2, 3], along with the tools
in [23] for lower bounding the defect. Namely, we use a reduction from the Minimum axiom
set problem, which proved to be useful in [2, 3]. Roughly speaking, from an instance I of
the Minimum axiom set problem, we need to build a diagram which has a small defect if
and only if I admits a small set of axioms. For the “if” part, we use properties of Brunnian
rings to achieve our goal. For the “only if” part, we need to lower bound the defect of our
construction. We use the tools from [23] to show that the defect (of some subinstances) is at
least 1. Then we use the very simple but powerful boosting lemma (Lemma 9) that shows
that the defect is actually high. We describe the reduction in Section 4 and we sketch in a
bit more detail why it may work. We refer to the Section 6 of the full version for a proof of
correctness.

We conclude this part of introduction by proving a lemma on the properties of the defect
which we will use soon after. Given a Reidemeister move m, let us define the weight of this
move w(m) via the following table:

Type of the move II− I− III I+ II+

w(m) 0 1 2 3 4

▶ Lemma 2 (Lemma 3 in full version). Let D be an untangling of a diagram D. Then def(D)
equals to the sum of the weights of the Reidemeister moves in D.

The lemma is proved in the full version by a simple induction.

A brief overview of the parameterized complexity classes. Here we briefly overview the
notions from parameterized complexity needed for this paper. For further background, we
refer the reader to monographs [6, 7, 8]. A parameterized problem is a language L ⊆ Σ∗ × N,
where Σ∗ is the set of strings over a finite alphabet Σ and the input strings are of the form
(x, k). Here the integer k is called the parameter. In the rest of the paper, given an input
for a parameterized problem, n denotes the size of the input and k denotes the value of the
parameter on this input.

A parameterized problem belongs to the class FPT (fixed parameter tractable) if it can
be solved by a deterministic Turing machine in time f(k) · nc where c > 0 is some constant
and f(k) is some computable function of k. In other words, if we fix k, then the problem
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can be solved in polynomial time while the degree of the polynomial does not depend on
k. This is, of course, sometimes not achievable and there is a wider class XP of problems,
that can be solved in time O(nf(k)) by a deterministic Turing machine. The problems in
XP are still polynomial time solvable for fixed k, however, at the cost that the degree of the
polynomial depends on k.

Somewhere in between FPT and XP there is an interesting class W[P]. A parameterized
problem belongs to the class W[P] if it can be solved by a nondeterministic Turing machine in
time h(k) · nc provided that this machine makes only O(f(k) log n) non-deterministic choices
where f(k), h(k) are computable functions and c > 0 is some constant. Given an algorithm
for some computational problem Π, we say that this algorithm is a W[P]-algorithm if it is
represented by a Turing machine satisfying the conditions above.

Given two parameterized problems Π and Π′, we say that Π reduces to Π′ via an
FPT-reduction if there exist computable functions f : Σ∗ × N → Σ∗ and g : Σ∗ × N → N
such that (i) (x, k) ∈ Π if and only if (f(x, k), g(x, k)) ∈ Π′ for every (x, k) ∈ Σ∗ × N; (ii)
g(x, k) ≤ g′(k) for some computable function g′; and (iii) there exists computable function
h and a fixed constant c > 0 such that for all input string, f(x, k) can be computed by a
deterministic Turing-machine in O(h(k)nc) steps. Our definition of reduction is consistent
with [8, Definition 2.1] or [6, Definition 13.1], though some authors, e.g., [7, Definition 20.2.1]
require g(x, k) = g′(k) in (ii).

The classes FPT, W[P] and XP are closed under FPT-reductions. A problem Π is said
to be C-hard where C is a parameterized complexity class, if all problems in C can be
FPT-reduced to Π. Moreover, if Π ∈ C, we say that Π is C-complete.

2 An algorithm for W[P]-membership

In this section we provide the algorithm used to prove W[P]-membership in Theorem 1.

Brute force algorithm. First, let us however look at a brute force algorithm for Unknotting
via defect which does not give W[P]-membership. Spelling it out will be useful for explaining
the next steps. We will exhibit this algorithm as a non-deterministic algorithm, which will
be useful for comparison later on. In the algorithm, D is a diagram, and k is an integer,
not necessarily positive. Also, given a diagram D and a feasible Reidemeister move m, then
D(m) denotes the diagram obtained from D after performing m.

BruteForce(D, k):
1. If k < 0, then output No. If D = U is a diagram without crossings and k ≥ 0, then output

Yes. In all other cases continue to the next step.
2. (Non-deterministic step.) Enumerate all possible Reidemeister moves m1, . . . , mt in D up

to isotopy. Make a “guess” which move mi is the first to perform. Then, for such mi, run
BruteForce(D(mi), k − w(mi)).

Therefore, altogether, the algorithm outputs Yes, if there is a sequence of guesses in step
2 which eventually yields Yes in step 1.

It can be easily shown that the algorithm terminates because whenever step 2 is performed,
either k − w(mi) < k, or mi is a II− move, k − w(mi) = k, but D(mi) has fewer crossings
than D.

It can be also easily shown by induction that this algorithm provides a correct answer
due to Lemma 2. Indeed, step 1 clearly provides a correct answer, and regarding step 2,
if D(mi) can be untangled with defect at most k − w(mi), then Lemma 2 shows that D
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can be untangled with defect at most k. Because, this way we try all possible sequences of
Reidemeister moves, the algorithm outputs Yes if and only if D can be untangled with defect
at most k.

On the other hand, this algorithm (unsurprisingly) does not provide W[P]-membership
as there are at least n/2 Reidemeister moves, which is unbounded in k. Thus not all moves
can be guessed non-deterministically.

Naive greedy algorithm. In order to fix the problem with the previous algorithm, we want
to reduce the number of non-deteministic steps. It turns out that the problematic non-
deterministic steps in the previous algorithm are those where k does not decrease. (Because
the other steps appear at most k times.) Therefore, we want to avoid non-deterministic steps
where we perform a II− move. The naive way is to perform such steps greedily and hope
that if D untangles with defect at most k, there is also such a “greedy” untangling (and
therefore, we do not have to search through all possible sequences of Reidemeister moves).
This is close to be true but it does not really work in this naive way. Anyway, we spell this
naive algorithm explicitly, so that we can easily upgrade it in the next step, though it does
not always provide the correct answer to Unknotting via defect.

NaiveGreedy(D, k):
1. If k < 0, then output No. If D = U is a diagram without crossings and k ≥ 0, then output

Yes. In all other cases continue to the next step.
2. If there is a feasible Reidemeister II− move m, run NaiveGreedy(D(m), k) otherwise

continue to the next step.
3. (Non-deterministic step.) If there is no feasible Reidemeister II− move, enumerate all

possible Reidemeister moves m1, . . . , mt in D up to isotopy. Make a “guess” which mi is
the first move to perform and run NaiveGreedy(D(mi), k − w(mi)).

The algorithm must terminate for the same reason why BruteForce terminates. It can
be shown that this is a W[P]-algorithm. However, we do not do this here in detail as this is
not our final algorithm. The key is that the step 3 is performed at most (k + 1)-times.

If the algorithm outputs Yes, then this is a correct answer from the same reason as
in the case of BruteForce. However, as we hinted earlier, outputting No need not be a
correct answer to Unknotting via defect. Indeed, there are known examples of diagrams
of an unknot when untangling requires performing a II+ move, see for example [14]. With
NaiveGreedy, we would presumably undo such II+ move immediately in the next step, thus
we would not find any untangling using the II+ move. We have to upgrade the algorithm a
little bit to avoid this problem (and a few other similar problems).

Special greedy algorithm. The way to fix the problem above will be to guess in advance
a certain subset S of so-called special crossings. This set will be updated in each non-
deterministic step described above so that the newly introduced crossings will become special
as well. Then, in the greedy steps we will allow to perform only those II− moves which avoid
S. (This also means that a II+ move cannot be undone by a II− move avoiding S in the
next step.) It will turn out that we may also need to perform II− moves on S but there will
not be too many of them, thus such moves can be considered in the non-deterministic steps.

For the description of the algorithm, we introduce the following notation. Let D be a
diagram of a knot and S be a subset of the crossings of D; we will refer to crossings in S

as special crossings. Then we say that a feasible Reidemeister II− move m is greedy (with
respect to S), if it avoids S; that is, the crossings removed by m do not belong to S. On the
other hand, a feasible Reidemeister move m is special (with respect to S) if it is
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a I− or a II− move removing only crossings in S; or
a III move such that all three crossings affected by m are special; or
a I+ or a II+ move performed on the edges with all their endpoints in S.

Given a move m in D, special or greedy with respect to S, by S(m) we denote the
following set of crossings in D(m).

If m is a greedy II− move or if m is a III move, then S(m) = S (under the convention
that the three crossings affected by m persist in D(m)).
If m is a special II− move or a I− move, then S(m) is obtained from S by removing the
crossings removed by m.
If m is a I+ or a II+ move, then S(m) is obtained from S by adding the crossings
introduced by m.

Now, we can describe the algorithm.

SpecialGreedy(D, k):
0. (Non-deterministic step.) Guess a set S of at most 3k crossings in D. Then run Special

Greedy(D, S, k).

SpecialGreedy(D, S, k):
1. If k < 0, then output No. If D = U is a diagram without crossings and k ≥ 0, then output

Yes. In all other cases continue to the next step.
2. If there is a feasible greedy Reidemeister II− move m with respect to S, run Special

Greedy(D(m), S(m), k) otherwise continue to the next step.
3. (Non-deterministic step.) If there is no feasible greedy Reidemeister II− move with respect

to S, enumerate all possible special Reidemeister moves m1, . . . , mt in D with respect to S

up to isotopy. If there is no such move, that is, if t = 0, then output No. Otherwise, make
a guess which mi is performed first and run SpecialGreedy(D(mi), S(mi), k − w(mi)).

The bulk of the proof of W[P]-membership in Theorem 1 will be to show that the
algorithm SpecialGreedy(D, k) provides a correct answer to Unknotting via defect. Of
course, if the algorithm outpus Yes, then this is the correct answer by similar arguments for
the previous two algorithms. Indeed, Yes answer corresponds to a sequence of Reidemeister
moves performed in step 2 or guessed in step 3 (no matter how we guessed S in step 0 and
the role of S in the intermediate steps of the run of the algorithm is not important if we
arrived at Yes). The defect of the untangling given by this sequence of moves is at most k

by Lemma 2. On the other hand, we also need to show that if D untanlges with defect at
most k, then we can guess some such untangling while running the algorithm. This is based
on the following two auxiliary results.

For stating the results, we inductively define the notation D(m1, . . . , mk−1, mk) :=
D(m1, . . . , mk−1)(mk) provided that mk is a feasible Reidemeister move in D(m1, . . . , mk−1).
We also say that a sequence (m1, . . . , mk) is a feasible sequence of Reidemeister moves for
D if mi is a feasible Redemeister move in D(m1, . . . , mi−1) for every i ∈ [k]. Similarly,
we inductively define S(m1, . . . , mk−1, mk) := S(m1, . . . , mk−1)(mk), provided that the
move mk is special or greedy in D(m1, . . . , mk−1) with respect to S(m1, . . . , mk−1). Then
(m1, . . . , mk) is a feasible sequence of Reidemeister moves for the pair (D, S) if S(m1, . . . , mk)
is well defined this way; that is, each move mi in the sequence is special or greedy (with
respect to the intermediate set S(m1, . . . , mi−1) of special crossings).

▶ Lemma 3 (Lemma 8 in full version). Let D be a diagram of a knot and let (m1, . . . , mℓ) be
a feasible sequence of Reidemeister moves in D. Then there is a set of crossings S in D such
that (m1, . . . , mℓ) is feasible for (D, S).

In addition, if this sequence induces an untangling with defect at most k, then |S| ≤ 3k.
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▶ Theorem 4 (Theorem 9 in full version). Let D be a diagram of a knot and S be a set of
crossings in D. Let (m1, . . . , mℓ) be a feasible sequence of Reidemeister moves for (D, S),
inducing an untangling of D with defect k. Assume that there is a greedy move m̃ in D with
respect to S. Then there is a feasible sequence of Reidemeister moves for (D, S) starting with
m̃ and inducing an untangling of D with defect k.

Roughly speaking, the idea of the proof of Lemma 3 is to add into S all crossings that
will eventually become affected by some of the moves m1, . . . , mℓ which are not II− moves.
These moves must be special. However, if we have a II− move removing a crossing that we
have already added to S, then this move also has to be special and we add the other crossing
to S as well. This does not propagate further, and we can bound the number of special II−

moves which also provides a bound on S. Details are given in the full version. Proof of
Theorem 4 requires more work and we sketch it in Section 3.

Correctness of the algorithm. Here we explain that the algorithm SpecialGreedy(D, k)
provides the answer Yes whenever there is an untangling with defect at most k modulo
Lemma 3 and Theorem 4. We also need to know that this is a W[P]-algorithm (mainly) by
bounding the number of non-deterministic steps. This part is relatively straightforward and
we refer to Section 4 of full version for details.

Given an input (D, k) such that D admits an untangling with defect k, by Lemma 3,
there is a set of crossings S in D of size at most 3k such that there is a sequence M of
Reidemeister moves feasible for (D, S) inducing an untangling of D with defect at most k.
Thus it is sufficient to show that SpecialGreedy(D, S, k) outputs Yes if such a sequence for
a given S exists. (In fact this is if and only if but we only need the if case.) We will show
this by a double induction on k and cr(D), where cr(D) is the number of crossings in D.
The outer induction is on k, the inner one is on cr(D). It would be sufficient to start our
induction with the pair (k, cr(D)) = (0, 0); however, whenever cr(D) = 0, then the algorithm
outputs Yes in step 1. Thus we may assume that cr(D) > 0.

If (D, S) admits any greedy move, then we are in step 2. For every greedy move m there is
a sequence of Reidemeister moves starting with m feasible for (D, S) inducing an untangling
of D with defect at most k by Theorem 4. This move has weight 0. Thus by Lemma 2 there is
a sequence of Reidemeister moves feasible for (D(m), S(m)) inducing an untangling of D(m)
with defect at most k. In addition cr(D(m)) < cr(D), thus SpecialGreedy(D(m), S(m), k)
outputs Yes by induction.

If (D, S) does not admit any greedy move, then we are in step 3. We in particular
know that the first move in the sequence M must be special. We guess this move as
we are in a non-deterministic step and denote it mi (in consistence with the notation in
step 3). Now, if we remove mi from M, this is a feasible sequence for (D(mi), S(mi))
inducing an untangling of D(mi) with defect at most k − w(mi) by Lemma 2. Thus Special
Greedy(D(mi), S(mi), k − w(mi)) outputs Yes by induction, as we need.

3 Sketch for a proof of Theorem 4

Here we sketch a proof of Theorem 4. In general, the Reidemeister moves are not commutative:
if (m, m′) is a feasible sequence of Reidemeister moves in a diagram D, we cannot even
expect that m′ is feasible in D. A fortiori we cannot expect that (m′, m) is feasible in D

and that the resulting diagram would be the same when applying (m, m′). For the proof
of Theorem 4, we need commutativity of the greedy moves under certain circumstances.
In particular, we need to be able to swap the greedy moves with the neighbors so that we
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can shift them both forward and backward through the sequence. Hint that this might be
sometimes possible is the following: if m and m′ can be performed inside disjoint balls, then
they commute. In this section, we only state the lemmas on rearranging Reidemeister moves.
The proofs of these lemmas (and their corollaries) are in the full version. Then we deduce
Theorem 4 from the lemmas up to minor details explained in the full version.

First, we extend our earlier notation: Let D be a diagram of a knot, S be a set of crossings
and (m1, . . . , mk) be a sequence of Reidemeister moves feasible for a pair (D, S). Then by
(D, S)(m1, . . . , mk) we denote the pair (D′, S′) obtained by applying moves (m1, . . . , mk) to
(D, S). In our earlier notation, this means that D′ = D(m1, . . . , mk) and S′ = S(m1, . . . , mk).
We also denote a II− move removing crossings x and y by {x, y}II− .

The first lemma allows to perform a greedy move m earlier in a sequence (m′, m).

▶ Lemma 5 (Lemma 10 in full version). Let D be a diagram of a knot and S be a set of
crossings in D. Let m = {x, y}II− be a II− move in D, greedy with respect to S. Let m′ be a
feasible move for the pair (D, S) which avoids {x, y}. Then there is a move m̂′ feasible in
D(m) of same type as m′ and the following conditions hold:

(i) m is greedy in D(m′) with respect to S(m′), in particular m is feasible in (D, S)(m′)
(ii) m̂′ is feasible in (D, S)(m); and
(iii) (D, S)(m, m̂′) = (D, S)(m′, m).

Lemma 5 is proved by a careful local analysis depending on the type of m′. By a suitable
induction, Lemma 5 implies the following corollary for longer sequences of moves.

▶ Corollary 6 (Corollary 11 in full version). Let D be a diagram, S be a set of crossings in
D, ℓ ≥ 2, and (m1, . . . , mℓ) be a feasible sequence of Reidemeister moves for the pair (D, S).
Assume that mℓ is a II− move which is also feasible and greedy in D with respect to S. Then
there is a sequence of Reidemester moves (mℓ, m̂1, . . . , m̂ℓ−1) feasible for (D, S) such that

(i) (D, S)(m1, . . . , mℓ) = (D, S)(mℓ, m̂1, . . . , m̂ℓ−1); and
(ii) w(mi) = w(m̂i) for i ∈ [ℓ − 1].

We will also need a variant of Corollary 6 which allows to postpone a greedy move. The
following corollary allows us to do that. (this follows from a lemma analogous to Lemma 5
which we skip here).

▶ Corollary 7 (Corollary 13 in full version). Let D be a diagram, S be a set of crossings
in D, ℓ ≥ 2 and (m1, . . . , mℓ) be a feasible sequence of moves for (D, S). Assume that
m1 = {x1, y1}II− and mℓ = {xℓ, yℓ}II− are II− moves where x1, y1, xℓ, yℓ ̸∈ S (in particular
m1 is greedy in D with respect to S). Finally, assume also that {x1, xℓ}II− is a feasible
Reidemeister move for (D, S) (again, it must be greedy). Then, there is a feasible sequence
(m̂2, m̂3, . . . , m̂ℓ−1, m1) of moves for (D, S) such that

(i) (D, S)(m1, . . . , mℓ−1) = (D, S)(m̂2, m̂3, . . . , m̂ℓ−1, m1); and
(ii) w(mi) = w(m̂i) for i ∈ {2, . . . , ℓ − 1}.

Last, but not the least, both the corollaries above essentially only allow swapping the
moves. In the corollaries above, mi is essentially the same move as m̂i up to a combinatorial
description (not discussed in this extended abstract) which is a reason why we use a different
notation. Such corollaries cannot be sufficient for a proof of Theorem 4 in the case that m̃

(from the statement of the theorem) is not in the sequence (m1, . . . , mℓ). We also need to be
able to replace some greedy moves with different ones which is the content of the following
lemma.
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▶ Lemma 8 (Lemma 14 in full version). Let D be a diagram of a knot and let m = {x, y}II− ,
m̃ = {x, z}II− be two feasible Reidemeister moves in D where y ̸= z. Assume also that
m′ = {w, z}II− is feasible in D(m) with x, y, z, w mutually distinct. Then

(i) m̃′ = {w, y}II− is feasible in D(m̃); and
(ii) D(m, m′) = D(m̃, m̃′).

Lemma 8 is again proved by local analysis in the full version.

Proof of Theorem 4 (sketch). First, let us assume that m̃ = mj for some j ∈ [ℓ]. If j = 1,
there is nothing to prove, thus we may assume j ≥ 2. Then, by using Corollary 6 on the
sequence (m1, . . . , mj), we get a sequence of moves (mj , m̂1, . . . , m̂j−1) feasible for (D, S).
By item (i) of Corollary 6, the sequence (mj , m̂1, . . . , m̂j−1, mj+1, . . . , mℓ) is also feasible for
(D, S) and induces an untangling of D. By item (ii) of Corollary 6 and Lemma 2, the defect
of this sequence equals k, and that is what we need.

Thus it remains to consider the case where m̃ ≠ mj for every j ∈ [ℓ]. Because m̃ is greedy,
it is a II− move; say m̃ = {x, z}II− . Because the final diagram D(m1, . . . , mℓ) has no crossings,
the crossings x and z have to be removed by some moves in the sequence (m1, . . . , mℓ). Say
that a move mi removes x and mj removes z. Since m̃ is greedy with respect to S, we get
x, z /∈ S. This also implies that x /∈ S(m1, . . . , mi−1) (see the full version for details). Thus
mi has to be greedy move in D(m1, . . . , mi−1) with respect to S(m1, . . . , mi−1). Similarly,
mj is greedy in D(m1, . . . , mj−1) with respect to S(m1, . . . , mj−1). Because we assume that
m̃ is not in the sequence (m1, . . . , mℓ), we get i ≠ j; without loss of generality i < j. Let y

and w be such that mi = {x, y}II− and mj = {w, z}II− . As these moves are greedy, we get
y, w ̸∈ S (we again refer to the full version for more detail).

Let D′ := D(m1, . . . , mi−1) and S′ := S(m1, . . . , mi−1). By Corollary 7, applied
to D′, S′ and the sequence (mi, . . . , mj) feasible for (D′, S′), we get another sequence
(m̂i+1, . . . , m̂j−1, mi) feasible for (D′, S′). (For verifying the assumptions of the corollary
note that m̃ is feasible for (D′, S′) as all the moves m1, . . . , mi−1 are special or greedy,
thus they cannot remove x or z nor affect the arcs connecting them.) Then we get that
(m̂i+1, . . . , m̂j−1, mi, mj , . . . , mℓ) is also feasible for (D′, S′) by item (i) of Corollary 7.

Next, let D′′ := D′(m̂i+1, . . . , m̂j−1) and S′′ := S′(m̂i+1, . . . , m̂j−1). By a similar
argument as above, we get that m̃ is feasible in (D′′, S′′). (Note that the moves mi, mj

removing x and z have not been performed yet in order to get D′′.) By Lemma 8 used
in D′′, we get that m̃′ := {w, y}II− is feasible in (D′′, S′′)(m̃) and (D′′, S′′)(mi, mj) =
(D′′, S′′)(m̃, m̃′). Altogether, by expanding D′′ and D′

(m1, . . . , mi−1, m̂i+1, . . . , m̂j−1, m̃, m̃′, mj+1, . . . , mℓ) (1)

is an untangling of D, feasible for (D, S). We also get that the defect of this untangling is
equal to k by Lemma 2 and item (ii) of Corollary 7, when we used it. Note that all the
moves mi, mj , m̃ and m̃′ are II− moves, thus they do not contribute to the weight.

The sequence (1) is not the desired sequence yet, because it does not start with m̃.
However, it contains m̃, thus we can further modify this sequence to the desired sequence
starting with m̃ as in the first paragraph of this proof. ◀

4 W[P]-hardness

In this section we sketch a proof of W[P]-hardness part of Theorem 1. This is done by an
FPT-reduction from Minimum axiom set defined below.
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4.1 Minimum axiom set
It is well known that the Minimum axiom set problem is W[P]-hard; see [8, Exercise 3.20]
or [7, Lemma 25.1.3] (however, let us recall that our definition of FPT-reduction is consistent
with [8]).

▶ Problem (Minimum axiom set).
Input A finite set S, and

a finite set R which consists of pairs of form (T, t) where T ⊆ S and t ∈ S.
Parameter k.
Question Does there exist a subset S0 ⊆ S of size k such that if we define inductively

Si to be the union of Si−1 and all t ∈ S such that there is T ⊆ Si−1 with
(T, t) ∈ R, then

⋃∞
i=1 Si = S?

The problem above deserves a brief explanation. The elements of S are called sentences
and the elements of R are relations. A relation (T, t) with T = {t1, . . . , tm} should be
understood as an implication

t1 ∧ t2 ∧ · · · ∧ tm ⇒ t.

Given a set S0 ⊆ S, let us define the consequences of S0 as c(S0) :=
⋃∞

i=1 Si where Si is
defined as in the statement of the problem. Intuitively, c(S0) consists of all sentences that
can be deduced from S0 via the relations (implications) in R. As we work with finite sets,
c(S0) = Si for some high enough i. A set A is a set of axioms if c(A) = S. Therefore, the
goal of the minimum axiom set problem is to determine whether there is a set of axioms of
size k. Note that the axiom sets are upward-closed: If A is an axiom set and A ⊆ A′ ⊆ S,
then A′ is an axiom set as well.

The following boosting lemma is very useful in our reduction.

▶ Lemma 9 (Boosting lemma; Lemma 15 in full version). Let (S, R) be an input of the
minimum axiom set problem (ignoring the parameter for now). Let µ : S → Z be a non-
negative function. Given U ⊆ S, let µ(U) =

∑
s∈U µ(s). Assume that µ(U) ≥ 1 for all

U such that S \ U is not an axiom set. (Equivalently, U meets every axiom set.) Then
µ(S) ≥ k∗ where k∗ is the size of a minimum axiom set.

Proof. Let Z := {s ∈ S : µ(s) = 0} be the zero set of µ. Then µ(Z) = 0, thus S \ Z is a set
of axioms by the assumptions. This gives |S \ Z| ≥ k∗ and, in addition, µ(S) = µ(S \ Z) ≥
|S \ Z| ≥ k∗ because µ(s) ≥ 1 for every s ∈ S \ Z. ◀

4.2 Construction of the reduction
Our aim is to show that there is an FPT-reduction from the Minimum axiom set to
Unknotting via defect. It is not hard to see (see the full version) that we can assume that
the input (S, R, k) is preprocessed; i.e., (i) R does not contain relations of the form (∅, t); (ii)
for every s ∈ S there is a relation of a form (T, s) in R; and (iii) t ̸∈ T for every (T, t) ∈ R.

Doubling the instance. Now let (S, R, k) be a preprocessed instance of the Minimum
axiom set. We will need the following doubled instance: Let Ŝ := {ŝ : s ∈ S} be an
auxiliary copy of S. Given T = {t1, . . . , tm} ⊆ S, let T̂ := {t̂1, . . . , t̂m}. Then we define
R̂ := {(T̂ , t̂) : (T, t) ∈ R}. Then (S ∪ Ŝ, R ∪ R̂, 2k) is a double of the instance (S, R, k). The
proof of the following observation is straightforward and it is given in the full version; see
Observation 16 there.
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Figure 3 A Brunnian link.

▶ Observation 10. The pair (S, R) admits an axiom set of size k if and only if its double
(S ∪ Ŝ, R ∪ R̂) admits an axiom set of size 2k.

Brunnians. A Brunnian link is a nontrivial link that becomes trivial whenever one of the
link components is removed. We will use the following well known construction of a Brunnian
link with ℓ ≥ 2 components. We take an untangled unknot and we interlace it with two
“neighboring” unknots as in Figure 3, left. We repeat this ℓ-times and we get a Brunnian
link with ℓ components as in Figure 3, right.

Gadgets. From now on let (S, R, k) be a preprocessed instance of the Minimum axiom set
and (S ∪ Ŝ, R ∪ R̂, 2k) be its double. Our aim is to build a diagram D(S, R) such that
D(S, R) untangles with defect 2k if and only if (S, R) has an axiom set of size k. We will
build D(S, R) using several gadgets. Formally speaking, gadgets will be maps of a form
G : I1 ⊔ · · · ⊔ Ih → R2 where I1 ⊔ · · · ⊔ Ih stands for a disjoint union of intervals [0, 1]. We
will work with them in the same way as with diagrams. In particular, we assume the same
transversality assumptions on crossings as for diagrams and we mark the underpasses and
overpasses. We also extend the notion of arc to this setting: It is a set G(A), where A is a
closed subinterval of one of the intervals in I1 ⊔ · · · ⊔ Ih.

Sentence gadget. For each sentence s ∈ S we define a sentence gadget G(s) as follows.
(We will also create an analogous gadget G(ŝ) for ŝ ∈ Ŝ which we specify after describing
G(s).) We consider all relations R ∈ R of the form (T, s). Let ℓ = ℓ(s) be the number of
such relations and we order these relations as R1(s), . . . , Rℓ(s), or simply as R1, . . . , Rℓ if s

is clear from the context (which is the case now). Note that ℓ ≥ 1 due to preprocessing.
Now we take our Brunnian link with ℓ+1 components, which we denote by C0(s), . . . , Cℓ(s),

in the order along the Brunnians. We disconnect each component of this Brunnian link in an
arc touching the outer face and we double each such disconnected component. See Figure 4,
left. For the further description of the construction, we assume that our construction is
rotated exactly as in the figure. (If ℓ ̸= 2, then we just modify the length of C0(s) and insert
more or fewer components Ci(s) in the same way as C1(s) and C2(s) are inserted for ℓ = 2.)
Now we essentially have a collection of interlacing arcs where each former component of
Brunnians yields a pair of parallel arcs with four loose ends.

We merge each pair of arcs, coming from Ci(s) into a single arc γi(s) as follows; see
Figure 4, right. For the pair coming from Ci(s) for i ̸= 0, we connect the bottom loose ends
by a straight segment up to isotopy. In Figure 4, right, we have isotoped the figure a bit
which will be useful in further steps of the construction, and we call this subarc the head of
γi(s). For the pair coming from C0(s), we first cross the arcs next to the top loose ends as
well as next to the bottom loose ends as in the figure. Then we connect the bottom loose
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γ0(s)

γ1(s)

γ2(s)

former C0(s)

former C1(s)

former C2(s)

intermediate step in the construction G(s)

y(s)

head

head

Figure 4 The sentence gadget with ℓ = 2.

ends. Note that if we remove γ1(s), . . . , γl(s) from the figure, then the crossings on γ0(s) can
be removed by a II− move. This finishes the construction of G(s). The gadget G(ŝ) is a
mirror image of G(s) along the vertical line (y-axis).

Merging gadget. We will also need a merging gadget depicted on Figure 5. We order all
sentences as s1, . . . , sm. The merging gadget consists of subgadgets M(s1), M(ŝ1), M(s2), . . . ,

M(sm), M(ŝm) separated by the dotted lines in the figure. Each subgadget has several loose
ends. Two or four of them serve for connecting it to other subgadgets. The remaining ones
come in pairs and the number of pairs equals to ℓ(s) + 1. (Recall that this is the number
of components of the sentence gadget G(s).) These pairs of loose ends will be eventually
connected to the loose ends of γ0(s), . . . , γℓ(s)(s) in the top-down order.

Interconnecting the gadgets. Now, we describe how to interconnect the gadgets.
We place the sentence gadgets G(s1), . . . , G(sm) to the left of the merging gadget M in a

top-down ordering. Similarly, we place G(ŝ1), . . . , G(ŝm) to the right, again in a top-down
ordering. First, for any s̄ ∈ S ∪ Ŝ and i ∈ {0, 2, 3, . . . , ℓ(s̄)} (that is, i ̸= 1), we connect γi(s̄)
with the (i + 1)th pair of loose ends of M(s̄) by a pair of parallel arcs as directly as possible
without introducing new crossings; see Figure 7 (left).

Now we want to connect γ1(s̄) to the second pair of loose ends of M(s̄). For simplicity,
we describe this in the case s̄ = s ∈ S. The case s̄ ∈ Ŝ is mirror symmetric. We pull a pair
of parallel arcs from γ1(s) with the aim to reach M(s) while obeying the following rules:
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M(s1)

M(ŝ1)

M(s2)

M(ŝ2)

M(sm)

M(ŝm)

γ0(s1)γ1(s1)γ2(s1)

Figure 5 The merging gadget. The gadget is rotated. See also Figure 7 for correct orientation of
the gadget when connecting it to other gadgets.

γi(s
′)

γ1(s)

M(s)

Figure 6 Interlacing the parallel arcs pulled out of γ1(s) with γj(s′).

(R1) We are not allowed to cross the merging gadget or the sentence gadgets (except the
case described in the third rule below). We keep the newly introduced arcs on the left
side from the merging gadget.

(R2) We are allowed to cross other pairs of parallel arcs introduced previously (when
connecting γi(s′) to M(s′) for some i and s′). However, if we cross such a pair, we
require that all four newly introduced crossings are resolved simultaneously (for example
the new pair of parallel arcs is always above the older one). We even allow a self
crossing of the newly introduced parallel arcs (but we again require that four newly
introduced crossings are resolved simultaneously).

(R3) For every relation R = (T, s′) where s ∈ T , let R = Ri(s′). We interlace the newly
introduced parallel arcs with γi(s′) as in Figure 6.

(R4) The total number of crossing is of polynomial size in the size of our instance (S, R).

As we have quite some freedom how to perform the construction obeying the rules
above, the resulting construction is not unique. An example how to get this construction
systematically is sketched on Figure 7(right): The newly introduced pair of arcs is pulled
little bit to the right, then we continue down towards the level of G(sm), then up towards the
level of G(s1), and then back down to the original position. On this way we make a detour
towards γj(s′) whenever we need to apply the rule (R3). Finally, we connect the parallel
arcs to M(s) without any further detour. This finishes the construction of D(S, R).

A small set of axioms implies small defect. Now we very briefly sketch the easier implication
that if (S, R) admits an axiom set of size k, then D(S, R) can be untangled with defect 2k.
For every sentence s in some fixed minimum axiom set, we unscrew the loop next to y(s)
(compare with Figure 4, right) and we also unscrew the loops next to y(ŝ). This is altogether
2k I− moves. If we show that the remaining crossings can be removed by II− moves only,
then we are done via Lemma 2. It is not hard to see that for s in the minimum axiom set, the
initial unscrewing allows to simplify the gadget G(s) essentially to M(s) via II− moves. This
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M(s1)

M(ŝ1)

M(s2)

M(ŝ2)

M(sm)

M(ŝm)

γ0(s1)

γ1(s1)

γ2(s1)

G(s1)

γ0(sm)

γ1(sm)

γ2(sm)

G(sm)

γ0(s2)

γ1(s2)

G(s2)

M(s1)

M(ŝ1)

M(s2)

M(ŝ2)

M(sm)

M(ŝm)

γ0(s1)

γ1(s1)

γ2(s1)

G(s1)

γ0(sm)

γ1(sm)

γ2(sm)

G(sm)

γ0(s2)

γ1(s2)

G(s2)

Figure 7 Left: The first step of interconnecting the gadgets – connecting M(s) to the arcs
γi(s) for i ̸= 1. The mirror symmetric part for ŝ is not displayed. Right: The second step of
interconnecting the gadgets – connecting M(s) to the arc γ1(s).

in particular releases at least one of the heads (see Figure 4, right) of the gadgets implied
by the sentences in the minimum axiom set. Such a gadget can be then simplified again
by II− moves. By repeating this procedure we simplify all gadgets G(s1), . . . , G(sm) and
analogously G(ŝ1), . . . , G(ŝm). Then we remove remaining crossings by m more II− moves.

Big minimum axiom sets implies big defect. It turns out that the core of the second
implication in the reduction is to show the following: If the minimum axiom set for (S, R)
has size at least k, then any untangling of D(S, R) has defect at least 2k. For a proof of
this claim we use the approach from [23] that allows to show by a local analysis that for
some diagrams the defect of any untangling is strictly positive. On the other hand, this local
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analysis does not show much more than that the defect is at least 1 but we need 2k. In order
to circumvent this problem we use the boosting lemma (Lemma 9) and we verify, roughly
speaking, that the defect is at least 1 also for certain subdiagrams corresponding to sets of
sentences U such that S \ U is not an axiom set (as in the assumptions of Lemma 9). Then
Lemma 9 implies that the defect is as high as we need.
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Abstract
In the k-outconnected directed Steiner tree problem (k-DST), we are given an n-vertex directed
graph G = (V, E) with edge costs, a connectivity requirement k, a root r ∈ V and a set of terminals
T ⊆ V . The goal is to find a minimum-cost subgraph H ⊆ G that has k edge-disjoint paths from
the root vertex r to every terminal t ∈ T . The problem is NP-hard, and inapproximability results
are known in several parameters, e.g., hardness in terms of n: log2−ε n-hardness for k = 1 [Halperin
and Krauthgamer, STOC’03], 2log1−ε n-hardness for general case [Cheriyan, Laekhanukit, Naves
and Vetta, SODA’12], hardness in terms of k [Cheriyan et al., SODA’12; Laekhanukit, SODA’14;
Manurangsi, IPL’19] and hardness in terms of |T | [Laekhanukit, SODA’14].

In this paper, we show the approximation hardness of k-DST for various parameters.
Ω (|T |/ log |T |)-approximation hardness, which holds under the standard complexity assumption
NP ̸= ZPP. The inapproximability ratio is tightened to Ω (|T |) under the Strongish Planted
Clique Hypothesis [Manurangsi, Rubinstein and Schramm, ITCS 2021]. The latter hardness
result matches the approximation ratio of |T | obtained by a trivial approximation algorithm,
thus closing the long-standing open problem.
Ω

(
2k/2/k

)
-approximation hardness for the general case of k-DST under the assumption NP ̸=

ZPP. This is the first hardness result known for survivable network design problems with an
inapproximability ratio exponential in k.
Ω

(
(k/L)L/4)

-approximation hardness for k-DST on L-layered graphs for L ≤ O (log n). This
almost matches the approximation ratio of O(kL−1 · L · log |T |) achieved in O(nL)-time due to
Laekhanukit [ICALP’16].

We further extend our hardness results in terms of |T | to the undirected cases of k-DST,
namely the single-source k-vertex-connected Steiner tree and the k-edge-connected group Steiner tree
problems. Thus, we obtain Ω (|T |/ log |T |) and Ω (|T |) approximation hardness for both problems
under the assumption NP ̸= ZPP and the Strongish Planted Clique Hypothesis, respectively. This
again matches the upper bound obtained by trivial algorithms.
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1 Introduction

Fault-Tolerant and Survivable Network Design have been an active area of research for decades
as enterprises depend more on communication networks and distributed computing. The need
to design a network that can operate without disruption when one or more components fail
has been growing dramatically. Henceforth, network scientists have formulated many models
to address these problems. Amongst them, the simplest and arguably most fundamental
problem in the area is the minimum-cost k-outconnected spanning subgraph (k-OCSS) problem
that captures the problem of designing a multi-casting network with survivability property.
The k-OCSS problem is a generalization of the minimum spanning tree and the minimum-cost
arborescence problems, where the goal is to design a network that can operate under failures
of at most k − 1 points. More formally, k-OCSS asks to find a minimum-cost subgraph such
that the root vertex is k-connected to every other vertex.

In this paper, we study the analog of k-OCSS in the presence of Steiner vertices, namely
the k-outconnected directed Steiner tree problem (k-DST): Given a directed graph G = (V, E)
with cost ce on arcs, a root vertex r and a set of terminals T , the goal is to find a minimum-
cost subgraph H ⊆ G such that H has k edge-disjoint paths from the root r to every terminal
t ∈ T , i.e., the root remains connected to every terminal even after the removal of k − 1 arcs.
The k-DST problem is a natural generalization of the classical directed Steiner tree problem
(DST) to high connectivity settings.

The undirected counterpart of k-DST is the minimum-cost single source k-edge-connected
Steiner tree problem, which admits a factor-two approximation algorithm [28], and the
vertex-connectivity variant admits an O(k log k)-approximation algorithm due to Nutov [36].
The k-DST problem, on the other hand, has no non-trivial approximation algorithm for k ≥ 3,
except for the special case of L-layered graph, which admits O(kL · L · log |T |)-approximation
algorithm due to Laekhanukit [33]. The cases of k = 1 and k = 2 are also notorious problems
themselves, as both admit polylogarithmic approximation algorithms that run in quasi-
polynomial time, but no polynomial-time approximation algorithms with sub-polynomial
approximation. It has been long-standing open problems whether such algorithms exist for
DST and 2-DST.

In this paper, we obtain several inapproximability results for k-DST. First, we show an
approximation hardness of Ω (|T |/ log |T |) for k-DST under NP ̸= ZPP, which holds when k

is larger than |T |, thus implying that a trivial |T |-approximation algorithm for the problem
is tight up to the lower order term.

▶ Theorem 1. For k > |T |, unless NP = ZPP, it is hard to approximate the k-DST problem
to within a factor of Ω (|T |/ log |T |).

Assuming the Strongish Planted Clique Hypothesis (SPCH) [35], our hardness result is tight
up to a constant factor, and it, indeed, rules out f(|T |) · poly(n)-time o(|T |)-approximation
algorithm for any function f depending only on |T |. See discussion in the appendices of the
full version of this paper.
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Table 1 Summary of the results for k-DST.

Parameter Lower Bound Lower Bound Upper Bound
(This paper) (Previous)

Connectivity k Ω
(
2k/2/k

)
Ω (k/ log k) unknown for general k ≥ 3

Theorem 4 [34]

Connectivity k, Depth L Ω
(
(k/L)(1−ϵ)L/4−2

)
Ω (k/ log k) O

(
kL−1 · L · log |T |

)
Theorem 3 [34] [33]

Terminals |T | Ω(|T |/ log |T |) |T |1/4−ϵ |T |
Theorem 1 [32] folklore

▶ Theorem 2. Assuming the Strongish Planted Clique Hypothesis, there is no f(|T |) ·poly(n)-
time o(|T |)-approximation algorithm for the k-DST problem.

Next, we show that the k-DST admits no O
(
(k/L)L/4)

-approximation algorithm even
on an L-layered graph, which consists of L parts, called layers, and every arc joins a vertex
from the i-th layer to the (i + 1)-th layer.

▶ Theorem 3. It is hard to approximate the k-DST problem on L-layered graphs G = (V, E)
for Ω(1) ≤ L ≤ O (log |V |) to within a factor of Ω

(
(k/L)(1−ϵ)L/4−2

)
for any constant ϵ > 0,

unless NP = ZPP.

In addition, we obtain an approximation hardness exponential in k by setting a different
parameter in the reduction, which improves upon the previously known approximation
hardness of Ω (k/ log k) due to Manurangsi [34] (which is in turn based on the two previous
results [32, 11]), and is the first known approximation hardness for connectivity problems
whose ratio is exponential in the connectivity requirement.

▶ Theorem 4. For k < |T |, it is hard to approximate the k-DST problem to within a factor
of Ω

(
2k/2/k

)
, unless NP = ZPP.

Using the technique of Cheriyan, Laekhanukit, Naves and Vetta [11], which is based on
the padding technique introduced by Kortsarz, Krauthgamer and Lee [31], we extend our
hardness result to the undirected counterpart of k-DST, namely, the single source k-vertex-
connected Steiner tree problem (k-ST) (a.k.a. undirected rooted subset k-connectivity, shorty,
rooted-k-VC) and the special case of k-DST, namely k-edge-connected group Steiner tree
problem (k-GST).

The latter problem is a natural fault-tolerant generalization of the classical group Steiner
tree problem [19], which has been studied in [29, 24, 6, 3]. To the best of our knowledge,
a non-trivial approximation algorithm for this problem is known only for k = 1, 2. For
k ≥ 3, only a bicriteria approximation algorithm, where the connectivity requirement can
be dropped by a factor O(log n), is known in [6]. Nevertheless, a trivial |T |-approximation
algorithm exists for all values of k and we also show its tightness (up to the lower order term)
for sufficiently large k.

▶ Theorem 5. For k > |T |, unless NP = ZPP, it is hard to approximate the k-ST problem
to within a factor of Ω (|T |/ log |T |).

▶ Theorem 6. For k > |T |, unless NP = ZPP, it is hard to approximate the k-GST problem
to within a factor of Ω (|T |/ log |T |), where |T | is the number of groups.
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Related work

The k-DST is well-studied in the special case where all vertices are terminals. This problem
is, as mentioned, known as the k-outconnected spanning subgraph problem (k-OCSS), which
admits polynomial-time algorithms due to the seminal work of Frank and Tardos [17] (also,
see [16]). However, while k-OCSS is polynomial-time solvable, its undirected counterpart is
NP-hard. Nevertheless, Frank-Tardos’s algorithm has been used as subroutines to derive a
2-approximation algorithm for the undirected variant of k-DST and its generalization [30].

In the presence of Steiner vertices, k-DST becomes much harder to approximate. For
the case of k = 1, the best known polynomial-time approximation algorithms are |T |ϵ, for
any constant ϵ > 0, due to the work of Charikar et al. [8], and the same approximation ratio
(with an additional log factor) applies for the case k = 2 due to the work of Grandoni and
Laekhanukit [22]. These two special cases of k-DST, especially for the case k = 1, have
been perplexing researchers for many decades as it admits polylogarithmic approximation al-
gorithms in quasi-polynomial-time, whereas there is no known sub-polynomial-approximation
algorithm for the problems; see, e.g., [8, 23, 20, 22]. It has been a long-standing open problem
whether polylogarithmic or even sub-polynomial-approximation ratios can be achieved in
polynomial time. Some special cases of k-DST have been studied in the literature. Laekha-
nukit [33] studied the k-DST instances on L-layered graphs, and its extensions to the
L-shallow instances, and presented an O(kL · L · log |T |)-approximation algorithm that runs
in nO(L) time. Polynomial-time polylogarithmic approximation algorithms for k-DST are
known in quasi-bipartite graphs [7, 37] (also, see [18, 27] for the case k = 1, which matches
the approximation lower bound of (1 − ϵ) ln k, assuming P ̸= NP, inherited from the Set
Cover problem [14, 12]).

For the undirected case of k = 1, namely the Steiner tree problem, it admits a 1.39-
approximation algorithm due to the breakthrough result of Byrka et al. [2] and admits a
73
60 -approximation algorithm on quasi-bipartite graphs due to the work of Goemans et al. [21].
For k ≥ 2, the problems on undirected graphs are branched into edge and vertex connectivity
variants. This is not the case for directed graphs as there is a simple approximation-
preserving reduction from edge-connectivity to vertex-connectivity and vice versa. For the
edge-connectivity problem, it admits a 2-approximation algorithm by using Frank-Tardos’s
algorithm as subroutines when there is no Steiner vertex [30], and a 2-approximation algorithm
via iterative rounding due to the seminal result of Jain [28], which also applies for the more
general case of the edge-connectivity survivable network design problem. For the vertex-
connectivity problem, there is a 2-approximation algorithm for k = 2 due to Fleischer, Jain
and Williamson [15], but the problem becomes hard polynomial in k, for sufficiently large
k [11], assuming P ̸= NP. The best known approximation algorithm for the single-source
k-vertex-connectivity problem on undirected graphs is O(k log k) due to Nutov [36].

The network design problem where the connectivity requirements are between pairs of
vertices is sometimes called point-to-point network design. A natural generalization is to
extend the requirements to be between subsets of vertices, called groups. The classical problem
in this genre is the well-studied group Steiner tree problem (see, e.g., [19, 9, 10, 25, 26, 4]).
The group Steiner tree problem admits an approximation ratio of O(log q log n) [19], which
requires a probabilistic metric-tree embedding [1, 13]. This approximation ratio is almost
tight as it matches the lower bound of O(log2−ϵ n), for any constant ϵ > 0, due to the
hardness result of Halperin and Krauthgamer [26] assuming NP ̸⊆ ZPTIME(npolylog(n)); also,
see the improved hardness result in [23]. The fault-tolerant variant of the group Steiner tree
problem is called the k-edge-connected group Steiner tree problem, studied in [29, 24, 6, 3].
As mentioned, true approximation algorithms for this problem are known only for k = 1, 2
[19, 29, 24]. For k ≥ 3, only a bi-criteria approximation algorithm is known [6].
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Organization

Section 2 is devoted to preliminary notations, definitions and facts. The reductions for k-DST
are presented in Section 3, 4 and 5. We give some intuitions on the techniques in Section 3
and describe the reduction for hardness in terms of |T | in Section 4 and for hardness in terms
of k in Section 5. In Section 6 we briefly discuss the results for k-DST. Finally, we extend
our techniques to undirected graphs and tighten the Ω (|T |/ log |T |) lower bound to Ω (|T |)
under a stronger complexity hypothesis. These results are presented in the appendices of the
full version of this paper.

2 Preliminaries

We use a standard graph terminology. Let G = (V, E) be any graph, which can be either
directed or undirected. For undirected graphs, we refer to the elements in E as the “edges”
of G and denote by degG(v) the number of edges incident to a vertex v ∈ V . For directed
graphs, we refer to the elements in E as the “arcs” of G and denote by indegG(v) the number
of arcs entering v. The notation for an edge/arc is (u, v), or sometimes u → v for an arc.
For a path between vertex u and w, we call it a (u, w)-path and write it as (u, v, . . . , w) for
both directed and undirected graphs, or u → v → · · · → w for only directed graphs. The
graphs may have multiple edges/arcs between two same vertices u and v, and both degG(v)
and indegG(v) count multiple ones. We drop G from the notations when it is clear from the
context. When more than one graph is considered, we use V (G) to clarify the vertex set of
G, and E(G) the edge/arc set.

k-(Edge)-Connected Directed Steiner Tree

The k-(edge)-connected directed Steiner tree problem (k-DST) is defined as follows. An input
instance is of the form (k, G, r, T ) where k ∈ Z≥1 is the connectivity requirement, G = (V, E)
is a directed graph with weight (or cost) on arcs c : E → Q≥0, r ∈ V is called root and
T ⊆ V is a set of terminals. A subgraph H = (V, F ) of G is k-connected if there exist k

edge-disjoint paths in H from r to t for each terminal t ∈ T . Sometimes we also refer to a
k-connected subgraph as a feasible solution to the k-DST problem. The problem is to find a
k-connected subgraph H = (V, F ) of minimum cost c(H) =

∑
e∈F c(e).

Here, we define the problem in terms of edge-connectivity. A vertex-connectivity variant is
defined similarly except that it asks for (openly) vertex-disjoint paths instead of edge-disjoint
paths. Both variants are equivalent in terms of approximability on directed graphs because
there exist straightforward polynomial-time approximation-preserving reductions from any
one to the other.

(Minimum) Label Cover

An instance of the label cover problem is given by an (undirected) bipartite graph G =
(U , V, E), a set of labels Σ = [g] and (projection) constraints πuv : Σ → Σ on each edge
(u, v) ∈ E . A multilabeling σ : U ∪ V → 2Σ is a subset of labels assigned to each vertex.
We say that σ covers an edge (u, v) ∈ E if πuv(a) = b for some a ∈ σ(u) and b ∈ σ(v).
A multilabeling is feasible if it covers all the edges of E . The problem asks for a feasible
multilabeling σ with minimum cost c(σ) =

∑
u∈U∪V |σ(u)|.

Manurangsi [34] proved that the label cover problem has a hardness gap in terms of the
maximum degree of G.

ICALP 2022



89:6 Almost Tight Approximation Hardness for k-DST

▶ Theorem 7 ([34]). For every positive integer g > 1, unless NP = ZPP, it is hard to
approximate a label cover instance of maximum degree O(g log g) and alphabet size O(g4 log2 g)
within a factor of g.

The following corollary can be deduced straightforwardly.

▶ Corollary 8. It is hard to approximate a label cover instance of maximum degree ∆ and
alphabet size O

(
∆4/polylog(∆)

)
to within a factor of Ω (∆/ log ∆), or to within a factor of

Ω
(
∆1−ε

)
for any constant ε > 0, unless NP = ZPP.

To obtain the hardness results on k-DST (and related problems), we present reductions
from the label cover problem on an instance (G = (U , V, E), Σ = [g], π = {πuv : Σ → Σ}(u,v)∈E)
of maximum degree ∆. For the ease of presentation, let U = {u1, u2, . . .} and V = {v1, v2, . . .}.

Finally, we prepare a technical lemma for future reference. We say that a subgraph I of
G is an induced matching if 1) I is a matching, i.e., each vertex in G is the endpoint of at
most one edge in E(I) and 2) I is an induced subgraph, i.e., all edges with two endpoints
both in V (I) are included in E(I).

▶ Lemma 9 (Folklore). Let G = (U, V, E) be a bipartite graph of maximum degree ∆. There
exist a partition of the edges E = E1 ∪ E2 ∪ · · · ∪ E∆ such that each Ei is a matching of
G, and a partition E′

1, E′
2, . . . , E′

δ of E for some δ ≤ 2∆2 such that each E′
i is an induced

matching. Furthermore, such partitions can be found in polynomial time.

3 Overview of the Reductions

To give some intuitions on how our reductions work, we dedicate this section to providing an
overview. We have two main reductions, which are tailored for inapproximability results in
different parameters, say |T | and k.

Both of the reductions inherit approximation hardness from the same source – the
label cover problem, denoted by (G, Σ, π). We design reductions that have a one-to-one
correspondence between a feasible solution to the label cover problem and that to the k-DST
problem, i.e.,

Completeness: Given a feasible multilabeling σ of the label cover instance (G, Σ, π),
there is a corresponding k-connected subgraph H of G such that c(σ) = c(H).
Soundness: Given a k-connected subgraph H of the k-DST instance, there is a corres-
ponding feasible multilabeling σ of the label cover instance (G, Σ, π) such that c(σ) = c(H).

We note that certain details in the ideas mentioned below are intentionally omitted, which
can be found in later chapters.

Basic Construction

First, we present the basic construction for the case k = 1, which is sufficient to maintain
the completeness property (but not the soundness). We start by adding a root vertex r and
terminal vertices tij , one for each edge (ui, vj) ∈ E . Observe that each terminal corresponds
to an edge in the label cover instance. Thus, we wish to make an (r, tij)-path in G to
correspond to a labeling that covers an edge in G, which we call a cover path. To be more
precise, if the edge (ui, vj) is covered by a label pair (a, b), then the corresponding cover path
in G is the path r → ua

i → vb
j → vj → tij where the vertices ua

i and vb
j are simply added to

the graph G. The appearance of the vertex ua
i ∈ V along the cover path can be interpreted

as assigning the label a to the vertex ui ∈ U , and similarly, vb
j means assigning the label b to
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the vertex vj ∈ V . See Figure 1 for illustration. Note that any feasible multilabeling covers
all the edges of G, so we can collect all cover paths (and the involved vertices) to form a
subgraph, where the root is already 1-connected to the terminals. By setting the weight of
all arcs r → ua

i and vb
j → vj to be 1 while leaving other arcs zero-cost, the subgraph has the

same cost as the multilabeling.

r

ua
i

vb
j vj tij

Figure 1 A cover path (r, ua
i , vb

j , vj , tij).

r

ua
i

vb
j vj tij

ua
i′

Figure 2 An illegal path (r, ua
i′ , vb

j , vj , tij).

However, the soundness property does not hold on the basic construction because it
creates many illegal (r, tij)-paths. Such a path goes from the root to a terminal tij by using
the route that differs from (ui, vj) ∈ E , e.g., r → ua

i′ → vb
j → vj → tij , where i′ ̸= ui; see

Figure 2. This means that, although a solution is feasible to the 1-DST instance, the subgraph
may not have a cover path for every terminal. Thus, the corresponding multilabeling may
leave some edges in the label cover instance uncovered. To ensure that at least one cover path
exists for every terminal, we need to modify our instance using the padding arc technique.

Padding Arcs

Consider an illegal (r, tij)-path in the basic construction. While we wish the (r, tij)-path to
visit vertices ua

i and vb
j , which corresponds to a satisfying labeling to the edge (ui, vj) in the

label cover instance, the illegal path instead visits ua′

i′ with ui′ ̸= ui. In particular, the illegal
path exploits a cover path for some other edge (ui′ , vj) that share the same endpoint with
(ui, vj).

To prevent this from happening, we construct a zero-cost padding path from the root to
the terminal tij that shares some arcs with the illegal path. These two paths are mutually
exclusive in contributing to the edge-connectivity between the root r and the terminal tij .
As we set the connectivity requirement to be the same as the indegree of tij , it forces all the
padding paths for tij to be used in any feasible solution. Once all the padding paths are
used to form k − 1 edge-disjoint (r, tij), the only path available is forced to be a cover path.

Size of |T | and k

The construction as mentioned above yields a one-to-one correspondence between the feasible
solutions to k-DST and that of the label cover problem. However, the size of the construction
in terms of the parameter k (resp., |T |) is too large comparing to the inapproximation factor
of Ω(∆/ log ∆) inherited from the label cover problem. Specifically, the value of k can be
as large as the number of illegal paths, and the value of |T | can be as large as |E| = |U| · ∆.
Therefore, we need to optimize the size of |T | and k, where we use two different techniques,
one for each parameter.

To control the size of the terminal set, we partition the edge set E into ∆ matchings, and
only one terminal is constructed for each matching rather than having one terminal
for each edge. This, thus, reduces the size of T to ∆.1

1 Laekhanukit [32] applies a similar techniques using strong edge-coloring, which gives a worse factor of
∆2.
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To control the connectivity requirement k, we partition the edge set E into δ ≤ 2∆2

induced matchings and create a d-ary tree structure with δ leaves, where d is an
adjustable parameter. Roughly speaking, by exploiting the tree structure, we need to add
to each terminal only d padding arcs for each of the O(logd δ) layers of the tree. Thus,
the connectivity requirement k is reduced to O(d logd δ).

Generalized to Undirected Settings

We also apply the techniques mentioned above to the undirected settings. For the undirected
k-connected Steiner tree problem (k-ST), we migrate the reduction for k-DST with a
hardness result in terms of |T | to its vertex-connectivity version, with necessary adaptions,
thus reproducing the same |T |/ log |T | inapproximability. The k-connected group Steiner
tree problem (k-GST) is a generalization of the k-ST problem that turns out to be one of
the key components in designing approximation algorithms for k-DST [38, 22] for k = 1, 2.
By incorporating ideas from [5], we achieved the same q/ log q inapproximability for even the
edge-disjoint version of k-GST where q is the number of groups. The main difficulty is that
undirected edges allow new illegal paths to enter a terminal. Fortunately, by equalizing the
connectivity requirement and the size of a group, it turns out we can handle the extra paths.
See the appendices in the full version of this paper for a complete presentation.

4 Inapproximability in Terms of the Number of Terminals

In this section, we discuss the hardness reduction that is tailored for the parameter |T |. Our
reduction takes as input a label cover instance (G, Σ, π) and then produces a k-DST instance
(k, G = (V, E), r, T ) as an output. The reduction runs in polynomial-time, and there is a
one-to-one mapping between the solutions to the two problems. Thus, the inapproximability
result of label cover is mapped to the inapproximability of k-DST directly. The main focus
in this section is in reducing the number of terminals by exploiting edge-disjoint paths.

Base Construction

The construction starts from a basic building block.
1. First, create a graph G with a single vertex, the root r.
2. (Refer to Figure 3) For each ui ∈ U , create in G each vertex ua

i from Ai = {ua
i : a ∈ Σ};

connect r to ua
i by an arc (r, ua

i ) of cost one.
3. (Refer to Figure 4) For each vj ∈ V , create a counterpart of it (also named vj) in G and

create each vertex vb
j from Bj =

{
vb

j : b ∈ Σ
}

; connect vb
j to vj by an arc (vb

j , vj) of cost
one.

4. (Refer to Figure 5) For each (ui, vj) ∈ E and a, b ∈ Σ, connect ua
i to vb

j by a zero-cost arc
if πuivj

(a) = b.

Final Construction

Finally, we have to add some zero-cost arcs so called padding arcs to the base construction,
which are meant to enforce the constraints of the label cover problem into the k-DST instance.
We first partition the edge set E of the graph G in the label cover instance into ∆ matchings,
denoted by E1, E2, . . . , E∆. This step can be done in polynomial-time due to Lemma 9. We
then create a set of ∆ terminals corresponding to these matchings.
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r

u1
i

u2
i

u3
i

Figure 3 Σ = {1, 2, 3}.

vj

v1
j v2

j

Figure 4 Σ = {1, 2}.

u1
i u2

i u3
i

v1
j v2

j v3
j

Figure 5 πuivj (x) = x mod 3 + 1.

1. For each matching Em, add a terminal tm to G and connect the counterpart of each
vj ∈ V (Em) ∩ V in G to tm. (Refer to Figure 6).

Next, we add some padding arcs to form padding paths that “kills” illegal paths.
2. Instead of connecting ua

i to vb
j for the edges (ui, vj) ∈ E such that πuivj (a) = b directly,

we add an internal node wab
ij and replace the original arc (ua

i , vb
j) in G by arcs (ua

i , wab
ij )

and (wab
ij , vb

j). (Here and thereafter refer to Figure 7.)
3. For each ua

i , we connect r to ua
i by degG(ui) copies of an arc (r, ua

i ).
4. For 1 ≤ m ≤ ∆, (ui, vj) ∈ E and a, b ∈ Σ such that πuivj

(a) = b, if (ui, vj) ∈ Em, then we
add an arc (ua

i , tm); otherwise, we add an arc (wab
ij , tm). Thus, we finally have |Σ| · |Em|

arcs from the vertex set {ua
i : ui ∈ U , a ∈ Σ} to tm, and |Σ| · (|E| − |Em|) arcs from the

internal vertex set
{

wab
ij : πuivj (a) = b

}
to tm.

5. We set k = max1≤m≤∆ indegG(tm). To make the connectivity requirement uniform, we
add k − indegG(tm) copies of an arc (r, tm) for each terminal tm.

Please see Figure 7 for an illustration. Observe that the connectivity requirement k is
exactly the indegree of each terminal. Thus, all of its incoming arcs are needed in any feasible
solution. Now, consider the edge (ui, vj′) in the figure, which is not in Em. It is possible that
a feasible solution includes the path r → ua

i → wab′

ij′ → vb′

j′ → vj′ → tm, which is an illegal
path for the terminal tm. However, if we wish to route k-edge-disjoint paths between the
root r and tm, then the arc wab′

ij′ → tm must be used, and the only way to use this arc is to
traverse from ua

i → wab′

ij′ . This prevents the illegal path from using this arc, meaning that it
cannot be included in any k-edge-disjoint (r, tm)-paths. Less formally, we may say that it
gets killed by the padding path r → ua

i → wab′

ij′ → tm.

Why Do We Need A Matching?

Consider a terminal tm. Our construction promises edge-disjoint cover paths from r to tm

for every edge in Em. However, if the edges in Em do not form a matching, then two cover
paths may share some edge. That is, the corresponding subgraph of a feasible multilabeling
may have connectivity less than k, and the completeness property breaks.

Next, we prove the one-to-one correspondence between solutions to the two instances.
Wlog., assume that any solution to the k-DST problem contains all of the zero-cost arcs.

Completeness

Given a feasible multilabeling σ of the label cover instane (G, Σ, π), we show that there is
a corresponding feasible subgraph H = (V, F ) of G = (V, E) such that c(σ) = c(H). The
set F consists of three types of arcs: 1) all zero-cost arcs in G; 2) the one-cost arcs (r, ua

i )
for each ui ∈ U and a ∈ σ(ui); 3) the one-cost arcs (vb

j , vj) for each vj ∈ V and b ∈ σ(vj).
Clearly, c(H) = c(σ) and the definition of F induces an injective mapping.
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u⋆
1 u⋆

2 u⋆
3

v⋆
1 v⋆

2 v⋆
3

v1 v2 v3

t1 t2

Figure 6 The terminal t1 corresponds to
the matching {(1, 1), (2, 2), (3, 3)} and t2 cor-
responds to {(2, 1), (3, 2)}.

r

ua
i ua′

i′

wab
ij

wab′

ij′ wa′b′

i′j′

vb
j vb′

j′

vj vj′

tm tm′

Figure 7 Padding arcs are dashed. The matching
Em contains the edges (ui, vj) and (ui′ , vj′ ), and the
matching Em′ contains the edge (ui, vj′ ).

Next we prove the feasibility of H . That is, we will show that, for any terminal tm, there
exist k edge-disjoint paths from r to tm. We will construct a set of such paths, namely
P . Note that every arc entering tm must be contained in a distinct path in P because
indegH(tm) = k. This gives four types of paths.

(r, tm): The arc itself forms a path from r to tm.
(ua

i , tm): We choose one of the zero-cost arcs (r, ua
i ) to combine with (ua

i , tm) to constitute
a path r → ua

i → tm. Since Em is a matching, by construction we know that the arc
(ua

i , tm) has multiplicity one in G and thus the paths in this category are edge-disjoint.
After selecting paths in this way, there are still degG(ui) − 1 unoccupied copies of the
zero-cost arc (r, ua

i ) if ui ∈ V (Em); or degG(ui) unoccupied copies otherwise.
(wab

ij , tm): We choose one of the zero-cost arcs (r, ua
i ) and the arc (ua

i , wab
ij ) to constitute

a path r → ua
i → wab

ij → tm. If ui ∈ V (Em), such paths use degG(ui) − 1 copies of the
zero-cost arc (r, ua

i ), otherwise degG(ui) copies are used. In both cases it is valid to do so
because the first two categories of path leave enough copies. It is clear that the paths up
to this point are edge-disjoint.
(vj , tm): In this case there is a unique ui ∈ U such that (ui, vj) ∈ Em. It holds that
πuivj (a) = b for some a ∈ σ(ui), b ∈ σ(vj) since σ covers the edge (ui, vj). We choose the
one-cost arcs (r, ua

i ) ∈ F and (vb
j , vj) ∈ F to constitute a path r → ua

i → wab
ij → vb

j →
vj → tm. Since Em is a matching, the paths here are edge-disjoint. Note that previous
paths only use arcs added in the final construction except for arcs of the form (ua

i , wab
ij ),

while here we only use arcs from the base construction. The construction of G guarantees
(ua

i , wab
ij ) is not used by previous paths if (ui, vj) ∈ Em.

Therefore, we selected k edge-disjoint paths in H from r to tm successfully.

Soundness

Given a k-connected subgraph H = (V, F ) (that contains all zero-cost arcs) of the k-DST
instance (k, G, r, T ), we show that there is a corresponding feasible multilabeling σ of the
label cover instance (G, Σ, π) such that c(σ) = c(H). The multilabeling σ is specified by
checking the one-cost arcs in H, i.e., set σ(ui) as {a ∈ Σ : the one-cost arc (r, ua

i ) is in F}
for ui ∈ U and set σ(vj) as

{
b ∈ Σ : (vb

j , vj) ∈ F
}

for vj ∈ V. Clearly, c(σ) = c(H) and the
definition of σ induces an injective mapping.
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We prove that there exist ai ∈ σ(ui) and bj ∈ σ(vj) such that πuivj (ai) = bj for each
edge (ui, vj) ∈ E . Recall that E is partitioned into ∆ matchings E1, E2, . . . , E∆. Let us fix
an arbitrary matching Em and discuss the edges inside Em. Consider the set S of arcs in
G coming into the terminal tm. By our construction, S contains k arcs of the following
categories:
1. |Em| arcs of type (vj , tm);
2. |Σ| · (|E| − |Em|) arcs of type (wa′b′

i′j′ , tm) (one for each (ui′ , wj′) ̸∈ Em and a′, b′ ∈ Σ such
that πui′ vj′ (a′) = b′);

3. |Σ| · |Em| arcs of type (ua
i , tm) (one for each (ui, vj) ∈ Em and a ∈ Σ);

4. k − |Em| − |Σ| · |E| arcs of type (r, tm).

Let P be the subgraph formed by the k edge-disjoint paths from r to tm in H. The
connectivity requirement forces that each arc in S must belong to some path in P , so we can
also categorize the paths in P into the four types above. Let P2-4 be the subgraph consisting
of all type-2,3,4 paths, and Pi similarly. We prove two observations:

▷ Claim 10. We have the following facts for paths.
I: ∀(ui′ , vj′) ̸∈ Em, ∀a′, b′ ∈ Σ such that πui′ vj′ (a′) = b′, (ua′

i′ , wa′b′

i′j′ ) ∈ P2 ̸∈ P1.
II: ∀(ui, vj) ∈ Em and a, b ∈ Σ such that πuivj

(a) = b, there are degG(ui) arcs (r, ua
i ) in P2-4.

Proof. Note that we need a type-2 path from all wa′b′

i′j′ such that πui′ vj′ (a′) = b′, and using the
arc (ua′

i′ , wa′b′

i′j′ ) is the only way to enter wa′b′

i′j′ to form a type-2 path. So (ua′

i′ , wa′b′

i′j′ ) belongs
to P2 and not in P1 (edge disjoint with P2).

For the second claim, there are degG(ui) − 1 edges (ui, vj′) ∈ E \ Em. Plugging in Claim-I
implies that there are degG(ui)−1 type-2 paths that use ua

i . Moreover, because (ui, vj) ∈ Em,
there is another type-3 path that use ua

i . So, in total there are degG(ui) paths in P2-4 that
use ua

i , and Claim-II follows. ◁

Then, fix an arbitrary (ui, vj) ∈ Em, we claim that the type-1 paths P1 induce a, b ∈ Σ
such that πuivj (a) = b. Let p be the type-1 path that goes through vj . For the path p to
enter vj , it must go through a one-cost arc (vb

j , vj) for some b ∈ Σ, and thus b ∈ σ(vj). Then,
there are two ways to enter vb

j :
1. from wa′b

i′j for some (ui′ , vj) /∈ Em and a′ ∈ π−1
ui′ vj

(b);
2. from wab

ij for (ui, vj) ∈ Em and some a ∈ π−1
uivj

(b).
The first way is infeasible because (ua′

i′ , wa′b
i′j ) ̸∈ P1 due to Claim-I. Hence, the only way

is the second and p must be exactly r → ua
i → wab

ij → vb
j → vj → tm. Putting together

Claim-II and the edge-disjointness of P1 and P2-4, there are degG(ui) + 1 arcs (r, ua
i ) in total

in P . Thus the one-cost arc (r, ua
i ) must be included in P ⊆ H because there are totally

degG(ui) + 1 arcs (r, ua
i ) in G and thus a ∈ σ(ui). Therefore, we conclude that the arbitrarily

fixed edge (ui, vj) is covered by πuivj
(a) = b, where a ∈ σ(ui) and b ∈ σ(vj).

Hardness Gap

The one-to-one correspondence between solutions to the two problems is established by
collecting the proofs for completeness and soundness. Furthermore, the reduction can be
done in polynomial time in the size of the label cover instance and it guarantees that |T | = ∆.
Plugging in Corollary 8, the following inapproximability result for the k-DST problem is
obtained.

▶ Theorem 1. For k > |T |, unless NP = ZPP, it is hard to approximate the k-DST problem
to within a factor of Ω (|T |/ log |T |).

ICALP 2022
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5 Inapproximability in Terms of the Connectivity Requirement

This section presents a hardness reduction, which is tailored for the approximation hardness
in terms of the connectivity requirement k. Our reduction again takes a label cover instance
(G, Σ, π) as an input and produces a k-DST instance (k, G = (V, E), r, T ). As we wish to
obtain an inapproximability in terms of k, them main focus is in controlling the size of k.

Base Construction

Our reduction starts from a basic building block.
1. Let G be an empty graph. For each vertex ui ∈ U , create in G a counterpart of it (also

named ui) and a set of vertices Ai = {ua
i : a ∈ Σ}; connect ui to each ua

i ∈ Ai by an arc
(ui, ua

i ) of cost one.
2. For each vertex vj ∈ V, create in G a counterpart of it (also named vj) and a set of

vertices Bj =
{

vb
j : b ∈ Σ

}
; connect each vb

j ∈ Bj to vj by an arc (vb
j , vj) of cost one.

3. For each edge (ui, vj) ∈ E , add to G a terminal tij and connect vj to tij by a zero-cost
arc (vj , tij). For a, b ∈ Σ, connect ua

i ∈ Ai to vb
j ∈ Bj by a zero-cost arc if πuivj (a) = b.

Gadget of d-ary Arborescence

All arcs created hereafter have zero cost. By Lemma 9, E is partitioned into δ ≤ 2∆2 induced
matchings E1, E2, . . . , Eδ. Let d ≥ 2 be an integral parameter to be determined later. We add
to G a complete d-ary out-rooted tree (arborescence) Q of height h = ⌈logd δ⌉ with a rooted
vertex r; we set r as the root of the k-DST instance G. Choose an arbitrary order for the
vertices in each layer of Q and use qj

i to denote the j-th vertex of at the i-th layer. Note
that q1

0 is the root r. We then join each leaf qj
h (1 ≤ j ≤ δ) of Q to the counterpart in G of

each vertex ui ∈ V (Ej) ∩ U . See Figure 8 and Figure 9 for an illustration. Intuitively, if we
add a padding path that passes qj

i , all illegal paths that go through the subtree rooted at qj
i

will get killed.

u1 u2 u3

w1 w2 w3

Figure 8 A bipartite graph G with three
induced matchings: E1 = {(u1, w1), (u3, w2)},
E2 = {(u2, w1), (u3, w3)}, E3 = {(u2, w2)}.

r/q1
0

q1
1 q2

1

q1
2 q2

2 q3
2 q4

2

u1 u2 u3

Figure 9 The gadget when d = 2 with
induced matchings E1, E2 and E3.

Final Construction

In the final construction, we add some padding arcs to the based graph. These arcs form
padding paths, which then kill all the illegal paths through the help of the d-ary arborescence.
1. For each arc (qj

i , qj′

i+1) of Q, we replace it by two arcs (qj
i , wjj′

i ) and (wjj′

i , qj′

i+1).
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We still use Q to denote the original arborescence for notational convenience.
2. For each 1 ≤ i ≤ h − 1 and j, we add d − 1 copies of an arc (r, qj

i ) to G.
3. (Refer to Figure 10) For each terminal tij , suppose the edge (ui, vj) is in the group Em

(corresponding to qm
h ). There is a unique path in the d-ary arborescence from r to qm

h :
(r = qj0=1

0 ) → qj1
1 → qj2

2 → · · · → qjh=m
h . At each level 1 ≤ ℓ ≤ h, there are d − 1 siblings

of qjℓ

ℓ , and for each sibling qj ̸=jℓ

ℓ , we add a zero-cost arc from w
jℓ−1j
ℓ−1 to the terminal tij .

After the construction, the in-degree of each terminal tij is h(d − 1) + 1 and we set k as it.

Why Does it Work under Grouping by Induced Matchings?

For any edge (ui, vj) ∈ Em, now we can promise that there must be a path from r to tij going
through the leaf qm

h and the vertex ui ∈ V (G). Let us examine if illegal paths are bypassing
either qm

h or ui. The padding arcs can kill illegal paths from r to tij that depart from the unique
path r → qj1

1 → qj2
2 → · · · → qjh=m

h → ui at some vertex qhℓ

ℓ for ℓ < h. It remains to check
if there is an illegal path of the form r → qj1

1 → qj2
2 → · · · → qjh=m

h → ui′ → · · · → vj → tij

for some ui′ ̸= ui. The existence of such ui′ implies that (ui′ , vj) ∈ Em, which contradicts
that Em is an induced matching.

r/q1
0

q1
1 q2

1

q1
2 q2

2 q3
2 q4

2

w11
0 w12

0

w11
1 w12

1 w23
1 w24

1

u1 u2 u3

t11

Figure 10 Padding arcs for the terminal t11 are dashed. Note that the vertices ui have outgoing
arcs, but not drawn here.

Completeness

Given a feasible multilabeling σ of the instance (G, Σ, π), we show that there is a corresponding
k-connected subgraph H = (V, F ) of G = (V, E) such that c(σ) = c(H). The set F consists of
three types of arcs: 1) all zero-cost arcs in G; 2) the one-cost arcs (ui, ua

i ) for each ui ∈ U and
a ∈ σ(ui); 3) the one-cost arcs (vb

j , vj) for each vj ∈ V and b ∈ σ(vj). Clearly, c(H) = c(σ)
and the definition of F induces an injective mapping.

Now we prove that for any terminal tij ∈ T there are k edge-disjoint paths, denoted by
P , in H from r to tij . Let Em be the induced matching that contains tij . There is a unique
path p = (r = qj0=1

0 ) → qj1
1 → · · · → qjh=m

h in the arborescence Q from r to qm
h . Since

indegH(tij) = k, each arc entering tij must be contained in P . We consider two cases:

ICALP 2022
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1. (vj , tij): The feasibility of σ induces a ∈ σ(ui) and b ∈ σ(vj) such that πuivj (a) = b,
so that (ui, ua

i ), (ua
i , vb

j), (vb
j , vj) ∈ F . Guided by the path p, we add to P the path

r → wj0j1
0 → qj1

1 → wj1j2
1 → · · · → w

jh−1jh=m
h−1 → qjh=m

h → ui → ua
i → vb

j → vj → tij .
2. (wjℓj′

ℓ , tij): Here j′ ̸= jℓ+1. We add to P the path r → qjℓ

ℓ → wjℓj′

ℓ → tij .

For 0 ≤ ℓ < h, the type-1 path goes through qjℓ

ℓ → w
jℓjℓ+1
ℓ → q

jℓ+1
ℓ+1 , while each type-2

path goes through r → qjℓ

ℓ → wjℓj′

ℓ → tij for some j′. Since j′ ≠ jℓ+1, the type-1 path and
the type-2 paths do not share any common arc. For the type-2 paths themselves, for each
0 ≤ ℓ < h they consume in total d − 1 duplicates of the arc (r, qjℓ

ℓ ), which is prepared well in
the second step of the final construction of G.

Soundness

Given a k-connected subgraph H = (V, F ) (that contains all zero-cost arcs) of the k-DST
instance (k, G, r, T ), we show that there is a corresponding feasible multilabeling σ of the
label cover instance (G, Σ, π) such that c(σ) = c(H). We define σ as follows: set σ(ui) as
{a ∈ Σ : (ui, ua

i ) ∈ F} for ui ∈ U and set σ(vj) as
{

b ∈ Σ : (vb
j , vj) ∈ F

}
for vj ∈ V . Clearly,

c(σ) = c(H) and the definition of σ induces an injective mapping. Then we prove that σ

covers all the edges in E .
Consider an edge (ui, vj) ∈ Em and its corresponding terminal tij . Let (r = qj0=1

0 ) →
qj1
1 → · · · → qjh=m

h be the unique path in the arborescence Q from r to qm
h . Let P be any

set of k edge-disjoint paths from r to tij in H. The fact that indegG(tij) = k = h(d − 1) + 1
forces P to contain all arcs entering tij . These arcs are of two types:
1. One arc (vj , tij);
2. h(d − 1) arcs of (wjℓj′

ℓ , tij) for 0 ≤ ℓ < h and j′ ̸= jℓ+1.
Let P1 be the only path in P that uses the type-1 arc, and let P2 be the union of paths
in P that use type-2 arcs. By backtracking the paths in P2 from tij for two steps, it
holds, for 0 ≤ ℓ < h and j′ ̸= jℓ+1, that (qjℓ

ℓ , wjℓj′

ℓ ) ∈ P2. Thus, the path P1 has to be
qj0=1
0 → wj0j1

0 → qj1
1 → · · · → qm

h → · · · → vj → tij . Let us backtrack P1 from vj . The
previous vertex must be vb

j for some b ∈ Σ, and ua
i′ for some a ∈ Σ, and ui′ , and then qm

h .
If i′ ̸= i, then by the construction of G, we know that ui′ ∈ V (Em). However, it also holds
that vj ∈ V (Em) because (ui, vj) ∈ Em. Thus, the induced subgraph on V (Em) contains both
(ui, vj) and (ui′ , vj), contradicting the matching property of Em. Therefore, i′ = i, implying
that a ∈ σ(ui), b ∈ σ(vj) and πuivj (a) = b because (ui, ua

i ), (ua
i , vb

j), (vb
j , vj) ∈ P1 ⊆ P ⊆ H.

Hardness Gap

In this subsection, we deduce approximation hardness for k-DST. Clearly, the reduction can
be made in polynomial time in the size of the input label cover instance. By setting different
values of the parameter d, we have the following two propositions.

▶ Theorem 3. It is hard to approximate the k-DST problem on L-layered graphs G = (V, E)
for Ω(1) ≤ L ≤ O (log |V |) to within a factor of Ω

(
(k/L)(1−ϵ)L/4−2

)
for any constant ϵ > 0,

unless NP = ZPP.

Proof. Let L be the height (the maximum length of paths) of the underlying graph in the
k-DST instance. Recall that in the construction we have a modified d-ary arborescence and
5 base levels with vertices ui, ua

i , vb
j , vj and tij . So, L = 2⌈logd δ⌉ + 5. By Lemma 9, δ is at

most 2∆2. Thus, L ≤ 2⌈logd(2∆2)⌉+ 5. To complete the proof, we add some dummy vertices
to the modified d-ary arborescence so that the height becomes exactly 2⌈logd(2∆2)⌉ + 5.
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We fix d = ∆x ≥ 2 for some 0 < x ≤ 1. Then k = ⌈logd δ⌉(d − 1) + 1 ≤ (d −
1)(2 log ∆/ log d + 1/ log d + 1) + 1 ≤ (2/x + 2) ∆x. We also have that 4/x ≤ L =
2⌈logd(2∆2)⌉ + 5 ≤ 4/x + 8. Therefore, (k/L)

(1−ϵ)L
4 −2 ≤ ∆1−ϵ, and we have the claimed

result on layered graphs by plugging in Corollary 8. The parameter x can be used to obtain
specific values of L that we want. ◀

▶ Theorem 4. For k < |T |, it is hard to approximate the k-DST problem to within a factor
of Ω

(
2k/2/k

)
, unless NP = ZPP.

Proof. Recall that k = h(d − 1) + 1 = ⌈logd δ⌉(d − 1) + 1 where δ ≤ 2∆2. If we set d = 2,
then k = ⌈log δ⌉ + 1 ≤ 2 log ∆ + 3. If k is too small, then we can add dummy arcs from r to
terminals to make k ≥ log ∆. Plugging in Corollary 8, the claimed hardness gap follows. ◀

6 Discussion

In this paper we obtain improved inapproximability results for the k-DST problem in terms
of parameters k and |T |. All of the results are derived from the same hardness source,
the (minimum) label cover problem, which admits no ∆/ log ∆-approximation algorithm
under standard complexity assumptions, where ∆ is the maximum degree of the underlying
bipartite graph in the label cover problem. The label cover problem also admits no 2log1−ε N -
approximation algorithm for any constant ε > 0, where N is the underlying graph size. Note
that 2log1−ε N = No(1). If we apply the reduction in the Ω(|T |/ log |T |)-hardness, then it
transfers to ko(1) which is even worse than the previous Ω(k/ log k)-hardness, not to say the
factor of Ω(2k/2/k) in this paper. If we apply the reduction in the Ω(2k/2/k)-hardness, then
it transfers to |T |o(1) which is still much worse than |T |1/4−ε and Ω(|T |/ log |T |).
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Abstract
Given a simple graph G and an integer k, the goal of the k-Clique problem is to decide if G contains
a complete subgraph of size k. We say an algorithm approximates k-Clique within a factor g(k) if
it can find a clique of size at least k/g(k) when G is guaranteed to have a k-clique. Recently, it was
shown that approximating k-Clique within a constant factor is W[1]-hard [20].

We study the approximation of k-Clique under the Exponential Time Hypothesis (ETH). The
reduction of [20] already implies an nΩ( 6

√
log k)-time lower bound under ETH. We improve this lower

bound to nΩ(log k). Using the gap-amplification technique by expander graphs, we also prove that
there is no ko(1) factor FPT-approximation algorithm for k-Clique under ETH.

We also suggest a new way to prove the Parameterized Inapproximability Hypothesis (PIH)
under ETH. We show that if there is no n

O( k
log k

)-time algorithm to approximate k-Clique within a
constant factor, then PIH is true.
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1 Introduction

In this paper, we study the k-Clique problem: given a simple graph G and an integer k,
decide whether G contains a complete subgraph of size k. As shown in [18], k-Clique is one
of the most classical NP-complete problems. Its inapproximability in the classical complexity
regime has also been studied extensively [10, 4, 5, 14, 11, 15, 28]. Along a long line of
research, it was proved that even approximating Clique into a ratio of n1−ε is NP-hard.

In recent years, the hardness of approximating k-Clique has received increased attention
in the parameterized complexity regime. When guaranteed that the maximum clique is of
size k, people wonder if there is an algorithm which runs in f(k)nO(1) time, and can find a
clique of size at least k/g(k), for some computable functions f and g. Such an algorithm is
called a g(k)-FPT-approximation for the k-Clique problem.
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Previously, [6] ruled out all g(k)-FPT-approximation algorithms of k-Clique for any
g(k) = o(k) under the Gap Exponential Time Hypothesis (Gap-ETH) 1. They even showed
that assuming Gap-ETH, it is impossible to find a clique of size ε(k) in f(k)no(ε(k)) time.
However, as Gap-ETH is such a strong hypothesis that it already gives a gap in hardness of
approximation, it is still of great interest to prove the same lower bound under an assumption
without an inherent gap. People may further wonder:

Assuming ETH, does finding a clique of size ε(k) in k-Clique require f(k)nΩ(ε(k)) time?

In a recent work [20], Lin showed that k-Clique does not admit constant factor FPT-
approximation algorithms unless W[1] = FPT. This was the first successful attempt to bypass
Gap-ETH to prove the hardness of approximating k-Clique. Unfortunately, [20] reduces a
k-Clique instance to a constant gap k′-Clique2 instance with k′ = 2k6 . As there is no
f(k)no(k) time algorithm for k-Clique assuming ETH, [20] actually ruled out f(k)no( 6

√
log k)

time constant approximation algorithms for k-Clique under ETH. Comparing to [6], such a
lower bound is still far beyond satisfaction, and it remains open to avoid the huge parameter
blow-up in the gap-producing reduction to obtain a better lower bound.

The main result of this paper is

▶ Theorem 1. Assuming ETH, for any constant c > 1 and any computable function f , no
algorithm can find a clique of size k/c in the k-Clique problem in f(k)no(log k) time.

As an application, we combine our main result with the classical gap-amplification
technique to rule out any ko(1)-ratio FPT-approximation algorithms for k-Clique under
ETH. Let us not fail to mention that [24] recently proved similar lower bound based on a
weaker hypothesis W[1] ̸= FPT. Our result is formally stated as follows.

▶ Corollary 2. Assuming ETH, for any g(k) = ko(1), the k-Clique problem has no g(k)-
FPT-approximation algorithm.

We also study the relationship between the constant gap k-Clique problem and the
parameterized inapproximablity hypothesis (PIH) [21], a central conjecture in parameterized
complexity. Roughly speaking, PIH states that it is impossible to approximate a 2-CSP
instance over k variables with alphabet [n] to a constant factor in FPT time. It is known
in [10] that if PIH is true, then there is no FPT algorithm for constant gap k-Clique.
However, the reverse direction is not known yet. Furthermore, although PIH can be deduced
from Gap-ETH via standard reductions in [7, 8], proving PIH under gap-free hypotheses
(e.g. ETH, W[1] ̸= FPT) is still quite open and is believed to require a PCP-like theorem
in parameterized complexity. We show that an almost-tight running time lower bound of
constant gap k-Clique could imply PIH. Our theorem suggests a new way to prove PIH
under ETH, namely, by using constant gap k-Clique as an intermediate problem. It is
formally stated as follows.

▶ Theorem 3. If there is no f(k)nO( k
log k ) time algorithm for constant gap k-Clique, then

PIH is true.

1 Gap-ETH states that no subexponential time algorithm can distinguish whether a 3SAT formula is
satisfiable or every assignment satisfies at most 1 − ε fraction of clauses for some ε > 0.

2 Given k ∈ N, ε ∈ (0, 1) and a simple graph G, the constant gap k-Clique problem is to decide whether
G contains a Kk subgraph or G contains no Kεk subgraph.
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1.1 Our Techniques

From 3SAT to gap k-Clique. Recall that the reduction in [20] consists of two steps.
First, it reduces k-Clique to k2-VectorSum, while introducing a quadratic blow-up
of the parameter. Next, it transforms k-VectorSum to CSP on k′ = 2O(k3) variables
{xa⃗1,...,⃗ak

: a⃗1, . . . , a⃗k ∈ Fk}, and then to constant gap k′-Clique. The two steps together
cause the parameter to grow from k to 2O(k6).

To give a tighter lower bound of constant gap k-Clique under ETH, we deal with the
above two steps separately. First, we show a reduction directly from 3SAT to k-VectorSum,
resulting in a tighter lower bound of k-VectorSum under ETH. Then, we give a more succinct
reduction from k-VectorSum to CSP on k′ = 2O(k) variables {xa1,...,ak

: a1, . . . , ak ∈ F},
and then to constant gap k′-Clique. In our new reduction, the parameter blow-up throughout
is only 2O(k), leading to an nΩ(log k) lower bound for constant gap k-Clique.

Since the second step is more complicated, we will briefly introduce the ideas here.
Given an k-VectorSum instance (V1, . . . , Vk, t⃗), we build a CSP instance on variable set
X = {xa1,...,ak

: a1, . . . , ak ∈ F}. Each variable takes value in Fm where m is the dimension
specified by the k-VectorSum problem. In the yes-case, let v⃗1 ∈ V1, . . . , v⃗k ∈ Vk be a
solution that sum up to t⃗, we expect xa1,...,ak

to take the value
∑

i∈[k] aiv⃗i. Similar to [20],
we want to make the following three types of tests:

∀(a1, . . . , ak), (b1, . . . , bk) ∈ Fk, test whether xa1,...,ak
+ xb1,...,bk

= xa1+b1,...,ak+bk
.

∀(a1, . . . , ak) ∈ Fk, a ∈ F, test whether xa1,...,ai+a,...,ak
− xa1,...,ak

∈ aVi.
∀(a1, . . . , ak) ∈ Fk, a ∈ F, test whether xa1+a,...,ak+a − xa1,...,ak

= at⃗.

If an assignment passes most of the linearity tests, then there must be vectors u⃗1, . . . , u⃗k ∈
Fm such that xa1,...,ak

=
∑

i∈[k] aiu⃗i for most (a1, . . . , ak) ∈ Fk. The second step is meant to
guarantee that the selected vectors indeed come from the input. Finally we need the third
step to check whether they sum up to t⃗.

Note that in our reduction from 3SAT to k-VectorSum, we require the dimension m to
be at least Ω(k log n). Thus in the CSP instance, we cannot simply leave the alphabet to be
Fm = nΩ(k), which is too large. To reduce the dimension, we pick ℓ = Θ(k + log n) matrices
A1, . . . , Aℓ ∈ Fk×m independently at random, and define a new CSP problem on variable set
Y = {yα⃗,β⃗ : α⃗, β⃗ ∈ Fk}, where each yα⃗,β⃗ is supposed to take the value

yα⃗,β⃗ = (α⃗A1xβ⃗ , . . . , α⃗Aℓxβ⃗)

= (α⃗A1
∑
i∈[k]

βiv⃗i, . . . , α⃗Aℓ

∑
i∈[k]

βiv⃗i)

=
∑

i∈[k],j∈[k]

βiαj(A1[j]v⃗i, . . . , Aℓ[j]v⃗i)

≜
∑

i∈[k],j∈[k]

βiαjCi,j .

(1)

Now the alphabet size is only Fℓ = 2O(k)nO(1). With this idea in mind, we add local
constraints to enforce that the assignment to Y is of the above quadratic form (in terms of
α1, . . . , αk and β1, . . . , βk), and then use locally decodable properties of quadratic polynomials
to extract information about vectors v⃗1, . . . , v⃗k.

In a high level, our construction generalizes that of [20] by replacing the linear code with
the Reed–Muller code based on quadratic polynomials.

ICALP 2022
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Expander graph production. To obtain an FPT time lower bound for k-Clique with ko(1)

gap, we apply the standard expander graph product technique. Starting from a constant gap
k-Clique instance, we amplify the gap using an expander graph H on vertex set [k]. The
new instance contains kt groups of vertices. Each group corresponds to a unique path of
length-t random walk on H, and forms an independent set of size nt. A vertex in a group
represents a length-t sequence of vertices from the original instance. Two (sequences of)
vertices are linked if and only if the vertices contained in them form a clique in the original
instance. By properties of expander graphs, we get a kt-Clique instance with gap (ε′)t

for some constant ε′. Take t = o(log k), we can rule out ko(1)-ratio FPT-approximation
algorithms for k-Clique under ETH.

From gap k-Clique to PIH. The proof that strong lower bound of constant gap k-Clique
implies PIH goes as follows. First, we reduce constant gap k-Clique to constant gap k-
Biclique in the canonical way. Next, we use a combinatorial object called disperser to
amplify the gap from a constant to k

log k . The result then follows from the Kõvári-Sós-Turán
Theorem which states that every 2k-vertex graph without a Klog k,log k-subgraph has at most
O((2k)2− 1

log k ) edges.

1.2 Organization of the Paper
The paper is organized as follows. In Section 2, we put some preliminaries, including the
definitions of problems, hypotheses, and some algebraic and combinatorial tools used in our
proofs. In Section 3, we prove the ETH lower bound of constant gap k-Clique. In Section 4,
we show how to amplify the gap to rule out ko(1)-ratio FPT-approximation algorithms for
k-Clique under ETH. In Section 5, we show how an almost-tight running time lower bound
of constant gap k-Clique implies PIH. Finally, in Section 6, we conclude with a few open
questions.

2 Preliminaries

2.1 Problems
Here we list all the computational problems which are relevant to our paper.

3SAT. The input is a 3-CNF formula φ with m clauses on n variables. The goal is to
decide whether there is a satisfying assignment for φ.
CSP. The input of a constraint satisfaction problem is a set of variables X = {x1, . . . , xn}
together with a family of constraints {C1, C2, . . . , Cm} and an alphabet Σ. For every
i ∈ [m], Ci = (s⃗i, Ri), where s⃗i = (xj1 , . . . , xjℓi

) is an ℓi-tuple of variables for some
ℓi ∈ [n], and Ri ⊆ Σℓi indicates a restriction on valid assignments for those ℓi variables.
The goal is to find an assignment σ : X → Σ such that for all i ∈ [m], σ(s⃗i) ∈ Ri. We
call n, m, q and |Σ| respectively the number of vertices, the number of clauses, the arity
(= maxi∈[m] ℓi), and the alphabet size of this CSP problem.
k-Clique. The input is an undirected graph G = (V1∪̇ . . . ∪̇Vk, E) with n vertices divided
into k disjoint groups. The goal is to decide whether we can pick one vertex from each
group, such that they form a clique of size k.
k-Biclique. The input is an undirected bipartite graph G =
(V1∪̇ . . . ∪̇Vk, U1∪̇ . . . ∪̇Uk, E), where n vertices are divided into 2k disjoint groups.
The goal is to decide whether we can pick one vertex from each group, such that they
form a biclique Kk,k.
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Densest k-Subgraph. The input is an undirected graph G = (V1∪̇ . . . ∪̇Vk, E) with n

vertices divided into k disjoint groups. The goal is to pick one vertex from each group,
such that they induce maximum number of edges.
k-VectorSum. The input consists of k groups of vectors V1, . . . , Vk ⊆ Fd together with
a target vector t⃗ ∈ Fd, where F is a finite field of constant size. The goal is to decide
whether there exists v⃗1 ∈ V1, . . . v⃗k ∈ Vk such that

∑k
i=1 v⃗i = t⃗. Throughout our paper

we only need the version that t⃗ equals to 0⃗, and will omit it afterwards.

2.2 Hypotheses
Now we list some computational complexity hypotheses which are related to our results.

▶ Hypothesis 4 (Exponential Time Hypothesis (ETH) [16, 17, 25]). 3SAT with n variables
and m = O(n) clauses cannot be solved deterministically in 2o(n) time. Moreover, this holds
even when restricted to formulae in which each variable appears in at most three clauses.

Note that the original statement in [16] is does not enforce the requirement that each
variable appears in at most three clauses. For the restricted version, we first apply the
Sparsification Lemma in [17], which implies that without loss of generality we can assume
the number of clauses m = O(n). Then we apply Tovey’s reduction [25], which produces a
3SAT instance with at most 3m + n = O(n) variables and each variable appears in at most
three clauses. Thus the restricted version is equivalent to the original statement.

The next hypothesis is Parameterized Inapproximability Hypothesis (PIH), a central
conjecture in parameterized complexity. We state it in terms of inapproximability of Densest
k-Subgraph as follows.

▶ Hypothesis 5 (Parameterized Inapproximability Hypothesis (PIH) [21]). There exists a
constant ε > 0 such that Densest k-Subgraph has no (1 + ε) factor FPT-approximation
algorithm. In other words, no algorithm can distinguish the following two cases in f(k) · nO(1)

time, for any computable function f :
(Completeness.) There exist v1 ∈ V1, . . . , vk ∈ Vk such that they form a clique.
(Soundness.) For any v1 ∈ V1, . . . , vk ∈ Vk, they induce only

(
k
2
)
/(1 + ε) edges.

The factor (1 + ε) can be replaced by any constant larger than 1, and the conjecture
remains equivalent. Note that the original statement of PIH in [21] says that Densest
k-Subgraph is W[1]-hard to approximate, but for our use, we choose a relaxed form which
states that it has no constant ratio FPT-approximation algorithm, as in [12].

It is worth noting that the relationship between PIH and gap k-Clique is not completely
known yet. If for a graph the number of edges induced by k vertices is only ≈ ε2(k

2
)
, it

cannot have a clique of size > εk. Thus, PIH implies k-Clique does not admit constant
ratio FPT-approximation algorithms. However, the other direction is not necessarily true
(forbidding small clique does not imply low edge density), and it remains an important open
problem that whether PIH holds if we assume k-Clique is hard to approximate within any
constant factor in FPT time [12].

2.3 Low Degree Test
Let F be a field of prime cardinality. We say a function f is δ-close to a function class F if it
is possible to modify at most δ fraction of values of f such that the modified function lies
in F .

ICALP 2022
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The canonical low degree test proposed in [23] can query a function f at d + 2 points, and
accepts with probability 1 whenever f is a degree-d polynomial,
rejects with probability at least ε > 0 if f is not δ-close to degree-d polynomials, where
ε, δ are two constants.

Throughout our paper we will consider the function class F to be vector-valued degree-d
polynomials, namely,

F = {(f1, f2, . . . , fℓ) : Fm → Fℓ | ∀i ∈ [ℓ], fi is a degree-d multivariate polynomial}.

By slightly modifying the proof in [23], the low degree test can be easily generalized to
vector-valued version, as formally stated below:

▶ Lemma 6. Let d < |F|/2 and m ∈ N. There is an algorithm which, by querying the
function f = (f1, f2, . . . , fℓ) : Fm → Fℓ at d + 2 points,

accepts with probability 1 whenever f lies in F ,
rejects with probability at least min(δ/2, cd−2) if f is not δ-close to F , where c, δ are two
constants.

Moreover, the queries are generated by selecting x⃗, h⃗ ∈ Fm uniformly at random, and f is
queried at {x⃗ + i⃗h|0 ≤ i < d + 2}.

The proof is implicit in literature. We omit it here due to the page limitation. Readers
can refer to our arxiv version 3 for a full proof.

2.4 Expander Graphs
Given a d-regular undirected graph G on n vertices, define its normalized adjacency matrix
to be a matrix A where Aij equals to the number of edges between (i, j) divided by d. Define

λ(G) = max
∥v⃗∥=1,⟨v⃗,⃗1⟩=0

∥Av⃗∥2 .

G is an (n, d, λ)-expander if and only if λ(G) ≤ λ, and we have the following two Lemmas.

▶ Lemma 7 ([2]). Let G be an (n, d, λ)-expander, B ⊆ [n] be a set of size ≤ εn for some
0 < ε < 1 and (X1, X2, . . . , Xt) be a sequence of random variables denoting a length-t random
walk where the starting vertex is also picked uniformly at random. Then,

Pr[∀1 ≤ i ≤ t, Xi ∈ B] ≤ ((1 − λ)
√

ε + λ)t−1.

▶ Lemma 8 ([22]). For some constants d ∈ N, λ < 1 and for sufficiently large n, an
(n, λ, d)-expander can be constructed in nO(1) time.

2.5 Disperser
▶ Definition 9 (Disperser [9, 26, 27]). For positive integers m, k, ℓ, r ∈ N and constant
ε ∈ (0, 1), an (m, k, ℓ, r, ε)-disperser is a collection I of k subsets I1, . . . , Ik ⊆ [m], each of
size ℓ, such that the union of any r different subsets from the collection has size at least
(1 − ε)m.

3 https://arxiv.org/abs/2111.14033

https://arxiv.org/abs/2111.14033


B. Lin, X. Ren, Y. Sun, and X. Wang 90:7

Dispersers could be constructed efficiently by probabilistic methods, as in the following
Lemma.

▶ Lemma 10. For positive integers m, ℓ, r ∈ N and constant ε ∈ (0, 1), let ℓ = ⌈ 3m
εr ⌉

and let I1, . . . , Ik be random ℓ-subsets of [m]. If ln k ≤ m
r then I = {I1, . . . , Ik} is an

(m, k, ℓ, r, ε)-disperser with probability at least 1 − e−m.

Due to the page limitation, we also put the proof into the Appendix of our arxiv version.

3 An Improved Lower Bound for Constant Gap k-Clique under ETH

3.1 Reduction from 3SAT to k-VectorSum
To prove Theorem 1, we first need an f(k) · nΩ(k)-time lower bound for k-VectorSum under
ETH. Previously, it is known that k-Clique has no f(k) · no(k)-time algorithms assuming
ETH [8]. Combining this with the reduction from k-Clique to Θ(k2)-VectorSum [1],
we only have an f(k) · nΩ(

√
k)-time lower bound for k-VectorSum under ETH. It is an

interesting question whether there is an FPT reduction from k-Clique to k′-VectorSum
with k′ = O(k). In this section, we give a reduction directly from 3SAT to k-VectorSum,
which suits our purpose. Recall that in the ETH statement we can assume without loss of
generality that each variable appears in at most 3 clauses, which is a key ingredient in our
proof.

▶ Theorem 11. There is a reduction which, for every integer k ∈ N, and every 3SAT
formula φ with m clauses and n variables such that each variable appears in at most 3
clauses, outputs a k-VectorSum instance Γ = (F, d, V1, . . . , Vk) with the following properties
in 2O(n/k) time.

F = F5.
d = O(n).
For any i ∈ [k], distinct u⃗, v⃗ ∈ Vi and any a ∈ F5 \ {0}, u⃗ ̸= a · v⃗.
For any i ∈ [k], distinct u⃗, v⃗, w⃗ ∈ Vi and any a ∈ F5 \ {0}, u⃗ − w⃗ ̸= a · (w⃗ − v⃗).
(Completeness.) If φ is satisfiable, then there exists v⃗1 ∈ V1, . . . , v⃗k ∈ Vk such that∑k

i=1 v⃗i = 0⃗.
(Soundness.) If φ is not satisfiable, then for any v⃗1 ∈ V1, . . . , v⃗k ∈ Vk,

∑k
i=1 v⃗i ̸= 0⃗.

▶ Remark 12. Note if the size of the produced k-VectorSum instance N appears to be only
2o(n/k), we can use brute force to solve it in Nk = 2o(n) time, thus solve 3SAT in 2o(n) time.
Therefore, we only need to consider the case N = 2Θ(n/k) without loss of generality, and in
this case d = O(n) = O(k log N).

Proof of Theorem 11. Let C = C1∪̇ . . . ∪̇Ck be a partition of the clauses into k approximately
equal-sized parts. We will let vectors in Vi represent partial satisfying assignments for Ci,
and use entries of vectors to check consistency of those partial assignments.

Define X to be the set of variables appearing in exactly two different parts and define Y

to be the set of variables appearing in three different parts. Let d = |X| + 2|Y |, we associate
one entry of vector to each variable x ∈ X and two entries to each variable y ∈ Y . In
the following, we abuse notation a bit and use v⃗[x] to denote the entry in a vector v⃗ ∈ Fd

associated to a variable x ∈ X, and use v⃗[y, 1], v⃗[y, 2] to denote the two entries associated to
a variable y ∈ Y .

The construction of vector set Vi proceeds as follows. Let Zi be the set of variables
appearing in Ci. For an assignment τ : Zi → {0, 1} which satisfies all clauses in Ci, we map
it to a vector v⃗ ∈ Fd in the following way.
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Let x ∈ Zi ∩ X be a variable appearing in Cj1 and Cj2 (j1 < j2),
in case that τ(x) = 0, set v⃗[x] = 0.
in case that τ(x) = 1, set v⃗[x] = 1 if i = j1, and set v⃗[x] = −1 if i = j2.

Let y ∈ Zi ∩ Y be a variable appearing in Cj1 , Cj2 and Cj3 (j1 < j2 < j3),
in case that τ(y) = 0, set v⃗[y, 1] = 0 and v⃗[y, 2] = 0.
in case that τ(y) = 1, set v⃗[y, 1] = 1 and v⃗[y, 2] = 1 if i = j1; set v⃗[y, 1] = −1 and
v⃗[y, 2] = 0 if i = j2; and set v⃗[y, 1] = 0 and v⃗[y, 2] = −1 if i = j3.

For the remaining entries of v⃗ (which are associated to variables in (X ∪ Y ) \ Zi), set
them to be 0.

It’s easy to see the whole reduction runs in 2O(n/k) time, and the dimension d = O(n).
Now we prove the third and the fourth properties.
For two distinct vectors u⃗, v⃗ ∈ Vi, suppose u⃗[j] ̸= v⃗[j]. It must be the case that one of

them is 0 and the other is ±1. Thus they still differ after being multiplied by any a ∈ F5 \{0}.
For three distinct vectors u⃗, v⃗, w⃗ ∈ Vi, suppose u⃗[j] ̸= w⃗[j], then either v⃗[j] = w⃗[j] or

v⃗[j] = u⃗[j]. In the former case, u⃗[j] − w⃗[j] ̸= 0 = w⃗[j] − v⃗[j], so they still differ after
being multiplied by any a ∈ F \ {0}. In the latter case, suppose u⃗ − w⃗ = a · (w⃗ − v⃗), then
u⃗[j] − w⃗[j] = a · (w⃗[j] − v⃗[j]) will lead to a = −1 and thus u⃗ = v⃗, a contradiction. Therefore,
u⃗ − w⃗ ̸= a · (w⃗ − v⃗) for any a ∈ F5 \ {0}.

Next follows the proof of completeness and soundness.

Completeness. If the 3SAT formula φ has a satisfying assignment τ , we can pick one
vector v⃗i from each Vi according to the restriction of τ on Zi ∩ (X ∪ Y ). Let v⃗ =

∑k
i=1 v⃗i be

the sum of picked vectors.
For a variable x ∈ X, let Cj1 , Cj2(j1 < j2) be the two clause parts in which x appears,
in case that τ(x) = 0, v⃗[x] = 0 since this entry equals to 0 in all vectors.
in case that τ(x) = 1, v⃗[x] = 1 + (−1) = 0 where 1 comes from v⃗j1 [x] and −1 comes from
v⃗j2 [x].

For a variable x ∈ Y , let Cj1 , Cj2 , Cj3(j1 < j2 < j3) be the three clause parts in which x

appears.
in case that τ(x) = 0, v⃗[x, 1] = v⃗[x, 2] = 0 since these entries equal to 0 in all vectors.
in case that τ(x) = 1, v⃗[x, 1] = 1 + (−1) = 0 where 1 comes from v⃗j1 [x, 1] and −1 comes
from v⃗j2 [x, 1], and v⃗[x, 2] = 1 + (−1) = 0 where 1 comes from v⃗j1 [x, 1] and −1 comes from
v⃗j3 [x, 1].

Soundness. If the 3SAT formula φ has no satisfying assignments, any collection of partial
assignments satisfying individual clause parts must be inconsistent on some variable in X ∪Y .
For any v⃗1 ∈ V1, . . . , v⃗k ∈ Vk, let v⃗ =

∑k
i=1 v⃗i.

Suppose assignments for a variable x ∈ X which appears in Cj1 and Cj2 are inconsistent,
there must be one 0 and one ±1 in v⃗j1 [x] and v⃗j2 [x]. Since this entry equals to 0 in all other
vectors, it results that v⃗[x] ̸= 0.

Suppose assignments for a variable x ∈ Y which appears in Cj1 , Cj2 and Cj3 (j1 < j2 < j3)
are inconsistent. If the values for x specified by v⃗j1 and v⃗j2 are inconsistent, there must be
one 0 and one ±1 in v⃗j1 [x, 1] and v⃗j2 [x, 1], while in all other vectors this entry equals to 0,
thus v⃗[x, 1] ̸= 0. Otherwise the value for x specified by v⃗j1 and v⃗j3 must be inconsistent,
there must be one 0 and one ±1 in v⃗j1 [x, 2] and v⃗j3 [x, 2], while in all other vectors this entry
equals to 0, thus v⃗[x, 2] ̸= 0.

Therefore,
∑k

i=1 v⃗i ̸= 0⃗ as desired. ◀
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3.2 Reduction from k-VectorSum to Constant Gap k-Clique
▶ Theorem 13. There is an FPT reduction which, given as input a k-VectorSum instance
Γ0 = (F, d, V1, . . . , Vk) with the following properties:

F = F5,
d = O(k log n) where n =

∑k
i=1 |Vi| denotes instance size,

for any i ∈ [k], distinct u⃗, v⃗ ∈ Vi and any a ∈ F5 \ {0}, u⃗ ̸= a · v⃗,
for any i ∈ [k], distinct u⃗, v⃗, w⃗ ∈ Vi and any a ∈ F5 \ {0}, u⃗ − w⃗ ̸= a · (w⃗ − v⃗).

outputs a k′-Clique instance G = (V, E) such that
k′ ≤ ck for some constant c,
(Completeness.) if Γ0 is a yes-instance of k-VectorSum, then G contains a clique of
size k′,
(Soundness.) if Γ0 is a no-instance of k-VectorSum, then G doesn’t contain a clique of
size εk′ for some constant ε < 1.

The first step of the reduction involves ℓ = 2k + 4 log n matrices A1, . . . , Aℓ ∈ Fk×d. For
α ∈ Fk, v ∈ Fd, define a bilinear function f(α, v) = (⟨α, A1v⟩, . . . , ⟨α, Aℓv⟩) ∈ Fℓ, where ⟨·, ·⟩
denotes inner product.

▶ Lemma 14 ([20]). We can find ℓ = 2k +4 log n matrices A1, A2, · · · , Aℓ in time polynomial
in n, k, which satisfy the following properties:
1. for any nonzero vector v⃗ ∈ Fd, there exists i ∈ [ℓ] such that Aiv⃗ ̸= 0⃗,
2. for any i ∈ [k], distinct u⃗, v⃗ ∈ Vi and nonzero α ∈ Fk, f(α, u⃗) ̸= f(α, v⃗),
3. for any i ∈ [k], distinct u⃗, v⃗, w⃗ ∈ Vi and α, α′ ∈ Fk, f(α, u⃗) + f(α′, v⃗) ̸= f(α + α′, w⃗).

The reduction then goes as follows. For every α, β ∈ Fk, we introduce a variable xα,β

which takes value in Fℓ. In the yes-case of k-VectorSum, there exists v⃗1 ∈ V1, . . . , v⃗k ∈
Vk such that

∑k
i=1 v⃗i = 0⃗, and we expect xα,β to be f(α,

∑k
i=1 βiv⃗i), in other words,∑k

i=1
∑k

j=1 αiβj(A1[i]v⃗j , . . . , Aℓ[i]v⃗j) where Aw[i] indicates the i-th row of the w-th matrix.
Note that f(α,

∑k
i=1 βiv⃗i) is a degree-2 polynomial of α and β.

For simplicity of notation, we will use ei ∈ Fk to denote the i-th unit vector, and use
1 ∈ Fk to denote the all-one vector.

We want to apply four types of tests on those variables:
1. Check whether x : F2k → Fℓ is a vector-valued degree-2 polynomial. This can be done

by the low-degree test described in Lemma 6. For each α⃗, β⃗, t⃗1, t⃗2 ∈ Fk, check whether
{xα⃗+i·⃗t1,β⃗+i·⃗t2

|0 ≤ i ≤ 3} are point values of a degree-2 polynomial. Each test is applied
on 4 variables, and we say the arity of each such test is 4 in shorthand.

2. Check whether x which maps (α, β) to xα,β is linear in both α and β, i.e., whether
xα+α′,β = xα,β + xα′,β , ∀α, α′, β ∈ Fk, and xα,β+β′ = xα,β + xα,β′ , ∀α, β, β′ ∈ Fk. The
arity of each such test is 3.

3. For each u ∈ [k], α, β ∈ Fk, check whether xα,β+eu − xα,β = f(α, v⃗) ∈ Fℓ for some v⃗ ∈ Vu.
The arity of each such test is 2.

4. For each α, β ∈ Fk, check whether xα,β+1 − xα,β = 0⃗. The arity of each such test is 2.

Construction of the Graph. The vertices are divided into three types. Vertices in each
type are further partitioned into groups, and each group forms an independent set:
type-1 There are (|F|2k)2 groups, each of which indicates a test of type 1, and consists of

≤ |F|4ℓ vertices corresponding to all satisfying assignments of the 4 variables in the test.
type-2 There are 2(|F|k)3 groups, each of which indicates a test of type 2, and consists of

≤ |F|2ℓ vertices corresponding to all satisfying assignments of the 3 variables in the test.
type-3 There are |F|2k groups indexed by (α, β) ∈ F2k, each consisting of Fℓ vertices which

correspond to Fℓ possible assignments for variable xα,β .
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We make copies of vertices, so that the numbers of type-1 groups and type-2 groups are
the same, and their sum equals to the number of type-3 groups. Specifically, the three types of
vertices are made into 2, |F|k, 4F2k copies, respectively. The total number of groups is therefore
k′ = 8|F|4k, while the total number of vertices is at most 2|F|4k+4ℓ + 2|F|4k+2ℓ + 4|F|4k+ℓ =
|F|O(k+log n).

The edges are specified as follows:
1. A variable (type-3) vertex and a test (type-1/2) vertex are linked if and only if they

specify the same assignment for the variable, or the test is irrelevant of that variable.
2. Two test vertices are linked if and only if they are consistent in all variables which appear

in both tests.
3. Two variable vertices are linked if and only if the assignments specified by them can pass

the above-mentioned third and fourth tests, or there is no such a test between them.

Two different copies of a same vertex are always linked.

Proof of Completeness. If Γ0 is a yes-instance of k-VectorSum, i.e., there exists v⃗1 ∈
V1, . . . , v⃗k ∈ Vk such that

∑k
i=1 v⃗i = 0⃗, by letting xα,β take value f(α,

∑k
i=1 βiv⃗i), it’s easy

to see that such an assignment can pass all tests. Therefore, by picking a vertex from each
group accordingly, one can obtain a clique of size k′.

Proof of Soundness. If Γ0 is a no-instance of k-VectorSum, we will prove that there is
no clique of size ≥ (1 − ε)k′ in G for some small constant ε.

Prove by contradiction. If there is a clique of size ≥ (1 − ε)k′, it must contain vertices
from ≥ (1 − 2ε) fraction of type-3 groups which represent variables, vertices from ≥ (1 − 4ε)
fraction of type-1 groups which represent low-degree tests, vertices from ≥ (1 − 8ε) fraction
of type-2 groups which represent linearity tests xα+α′,β = xα,β + xα′,β and vertices from
≥ (1 − 8ε) fraction of type-2 groups which represent linearity tests xα,β+β′ = xα,β + xα,β′ .

In the following, we will denote by xα,β the assignment for xα,β specified by the clique.
If no assignment for xα,β is specified, set xα,β arbitrarily as long as it is consistent with all
selected test vertices (it is always possible since the selected test vertices are themselves
consistent). As almost all low-degree tests and linearity tests are passed, we have:

▶ Lemma 15. If ε < c
16 where c is the constant in Lemma 6, and there is a clique of size

≥ (1 − ε)k′, then the function π(α, β) = xα,β (α, β ∈ Fk) is 9ε-close to a function on α, β of
the form

k∑
i=1

k∑
j=1

αiβjCi,j

where Ci,j ∈ Fl denotes the coefficient of the term αiβj.

Proof. Plugging δ = 9ε into Theorem 6, if π(α, β) is not δ-close to any degree-2 polynomial,
at least min(δ/2, cd−2) > 4ε fraction of the degree-2 polynomial tests will not be passed.
However, when there is a clique of size ≥ (1 − ε)k′, only ≤ 4ε fraction of degree-2 polynomial
tests may fail. Therefore, π must be 9ε-close to a function of the form

k∑
i=1

k∑
j=1

αiαjAi,j +
k∑

i=1

k∑
j=1

βiβjBi,j +
k∑

i=1

k∑
j=1

αiβjCi,j +
k∑

i=1
Diαi +

k∑
i=1

Eiβi + F (2)

where each coefficient is in Fl. We only need to prove that if they also pass most of the
linearity tests on α and on β, all coefficients except Ci,j must be zeros.
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Suppose Ai,j ̸= 0 for some i, j ∈ [k]. Regarding xα+α′,β − xα,β − xα′,β as a function on 3k

variables α1 . . . αk, α′
1 . . . α′

k, β1 . . . βk and expand it by (2). There is a term Ai,j(αiα
′
j +α′

iαj)
which can never be canceled. The function xα+α′,β − xα,β − xα′,β is not a zero function and
by Schwartz-Zippel Lemma, only 2

|F| fraction of α, α′, β can make it equal to zero. However,
by union bound, there are at least 1 − 8ε − 3 · (9ε) > 2

|F| fraction of (α, α′, β) such that
xα,β , xα′,β , xα+α′,β are all specified value according to the clique, consistent with equation
(2), and satisfying xα,β + xα′,β = xα+α′,β , a contradiction. Therefore, ∀i, j ∈ [k], Ai,j = 0.

Similar arguments can be applied for the other coefficients and are omitted here. The
only term remaining is

∑k
i=1
∑k

j=1 αiβjCi,j as desired. ◀

We call a variable xα,β good if the clique consists of a variable vertex of it and it satisfies
xα,β =

∑k
i=1
∑k

j=1 αiβjCi,j . Let ε′ = 2ε + 9ε, from the above we know at least (1 − ε′)
fraction of variables are good. Recall that from the construction of our graph and the
property of clique, all arity-2 constraints between good variables are satisfied.

We call an α ∈ Fk excellent if Prβ∈RFk [xα,β is good] ≥ 2
3 . By Markov’s Inequality, at

least 1 − 3ε′ fraction of α’s are excellent.

▶ Lemma 16. For each excellent α and for each u ∈ [k],
∑k

i=1 αiCi,u = f(α, v⃗) for some
unique v⃗ ∈ Vu.

Proof. For any fixed u ∈ [k] and α, the set of edges between the vertex of xα,β

and the vertex of xα,β+eu
for all β can be partitioned into disjoint length-5 cycles

{xα,β , xα,β+eu
, . . . , xα,β+4eu

} since the characteristic of F is 5. Observe that if at most
two variables in a 5-cycle are not good, there still exist two adjacent vertices that are good.

For an excellent α, at most 1
3 ≤ 2

5 fraction of variables xα,β are not good by definition, so
there must exists a β ∈ Fk such that xα,β and xα,β+eu

are both good variables. According
to the definition of good variables, we have

xα,β+eu
− xα,β =

k∑
i=1

αiCi,u

and from the third type of constraints between them we can infer that

xα,β+eu
− xα,β = f(α, v⃗)

for some v⃗ ∈ Vu.
Additionally, since for v⃗ ∈ Vu, f(α, v⃗) are all different (the second property in Lemma

14), for an excellent α and for all u ∈ [k], we can deduce
∑k

i=1 αiCi,u = f(α, v⃗) for some
unique v⃗ ∈ Vu. ◀

In the following when u ∈ [k] is fixed and omitted, we use v⃗α to denote the unique vector
in Vu specified by an excellent α. For an α which is not excellent, we also assign a unique
vector v⃗α ∈ Vu to it arbitrarily so that vα is defined for all α ∈ Fk.

▶ Lemma 17. If there is a clique of size ≥ (1 − ε)k′, then for each u ∈ [k],

Ci,u = (A1[i]v⃗, . . . , Aℓ[i]v⃗)

for some unique v⃗ ∈ Vu, where Aw[i] indicates the i-th row of the w-th matrix.

Proof. Fix any u ∈ [k], we first argue that at least ≥ 3
10 fraction of α specify the same

v⃗ ∈ Vu. It suffices to prove

Pr
α,α′∈RFk

[v⃗α = v⃗α′ ] ≥ 3
10 .
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If this is not true, by union bound 3 · 3
10 + 3(3ε′) < 1, there must exist α, α′ such that

the following two conditions hold:
1. α, α′, α + α′ are all excellent.
2. v⃗α, v⃗α′ , v⃗α+α′ are all different.

Now that they are all excellent, we have

f(α + α′, v⃗α+α′) =
k∑

i=1
(αi + α′

i)Ci,u

= f(α, v⃗α) + f(α′, v⃗α′),

contradicting with the third property in Lemma 14.
Therefore, at least 3

10 − 3ε′ > 1
|F| fraction of α are all excellent and specify the same

v⃗ ∈ Vu. Now suppose Ci,u ̸= (A1[i]v⃗, . . . , Aℓ[i]v⃗), then there are at most 1
|F| fraction of

α ∈ Fk making
∑k

i=1 αiCi,u = f(α, v⃗) by Schwartz-Zippel Lemma. However, we have > 1
|F|

fraction of such α, a contradiction. ◀

▶ Lemma 18. If there is a clique of size ≥ (1 − ε)k′, then there exists v⃗1 ∈ V1, ..., v⃗k ∈ Vk

such that
∑k

i=1 v⃗i = 0⃗.

Proof. From Lemma 17 we know that for each u ∈ [k], Ci,u = (A1[i]v⃗, . . . , Aℓ[i]v⃗) for some
unique v⃗ ∈ Vu. Thus xα,β indeed equals to f(α,

∑k
i=1 βiv⃗i) for every good variable xα,β .

The remaining proof is very similar to the proof of Lemma 16. Edges between the vertex
of xα,β and the vertex of xα,β+1 for all β ∈ Fk can be divided into disjoint length-5 cycles
{xα,β , xα,β+1, . . . , xα,β+4·1} since the characteristic of F is 5.

For an excellent α, at most 1
3 ≤ 2

5 fraction of variables xα,β are not good, so there must
be two variables xα,β and xα,β+1 which are both good. According to the definition of good
variables, we have

xα,β+s − xα,β = f

(
α,

k∑
i=1

v⃗i

)

and from the fourth type of constraints between them we can infer that

xα,β+1 − xα,β = 0⃗.

Therefore, f(α,
∑k

i=1 v⃗i) = 0⃗ for every excellent α.
Suppose

∑k
i=1 v⃗i ̸= 0⃗, then there exists i ∈ [ℓ] such that Ai(

∑k
i=1 v⃗i) ̸= 0⃗ by the first

property in Lemma 14. There are at most 1
|F| fraction of α such that f(α,

∑k
i=1 v⃗i) = 0⃗ by

Schwartz-Zippel Lemma, but we have ≥ 1 − 3ε′ fraction of excellent α, a contradiction. ◀

3.3 Putting Things Together
Combing Theorem 11 with Theorem 13, we obtain an improved lower bound for constant
gap k-Clique under ETH as follows.

▶ Theorem 1. Assuming ETH, for any constant c > 1 and any computable function f , no
algorithm can find a clique of size k/c in the k-Clique problem in f(k)no(log k) time.

Proof. Without loss of generality assume f is non-decreasing and unbounded. Given a 3SAT
formula φ with n variables, each appearing in at most 3 clauses, we first run the reduction
in Theorem 11 to produce a k-VectorSum instance of size 2O(n/k), then run the reduction
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in Theorem 13 to produce a constant gap ck-Clique instance of size at most ck2O(n/k).
Using the graph product method, we can amplify the gap to any constant, while keeping the
parameter k′ = cO(k) and instance size n′ ≤ cO(k)2O(n/k). Therefore, an f(k′)no(log k′) time
algorithm for constant gap k′-Clique would lead to an algorithm for 3SAT in

f(k′)(n′)o(log k′) ≤ f(cO(k))(cO(k)2O(n/k))o(k) ≤ 2o(n)

time, contradicting ETH. The last inequality holds because n can be sufficiently large
compared to k. ◀

Below we present two remarks about possible extensions of our results on ETH lower
bounds of gap k-Clique.

▶ Remark 19 (On higher degree Reed-Muller Codes). It is natural to extend our idea to obtain
a reduction from k-VectorSum to a CSP problem with < 2o(k) variables using Reed–Muller
code with larger degree polynomials. However, the reduction from CSP to k-Clique has such
an important property: when there is a clique of size εk for some constant ε, the following
two conditions hold:
1. A constant fraction of arity-d constraints (d > 2) are satisfied.
2. All arity-2 constraints between a constant fraction of variables are satisfied.
The second condition holds because an arity-2 constraint between two variables can be
directly transformed into an edge between two vertices. If there is a large clique, it means all
arity-2 constraints between the involved variables are simultaneously satisfied. However, if we
use larger degree polynomials, the arity of constraints has to be larger, too. It cannot directly
fit into the framework of k-Clique. If this barrier can be broken, it may be possible to
obtain reductions with an even smaller parameter blow-up using larger degree polynomials.

▶ Remark 20 (On locally decodable codes). Our reduction implicitly depends on the property
of 2-query locally decodable code, that we could decode f(α, v⃗i) for some fixed α by querying
only 2 positions. As pointed out in [13], 2-query locally decodable code has at least an
exponential blow up. Hence our method is optimal in this sense. We could also consider how
to remove this dependence.

4 ko(1)-Ratio FPT Inapproximability of k-Clique under ETH

In this section, we show how to use expander graphs to amplify the gap efficiently, and how
it leads to an improved inapproximability ratio of k-Clique in FPT time under ETH. The
idea comes from the classical technique used to amplify gap in the non-parameterized version
of Clique problem, which was proposed by Alon et al. [3].

▶ Theorem 21. For some constants d ∈ N, 0 < λ < 1 and for any t ∈ N, there is an
algorithm which runs in O(k2d2t|V |2t) time, on input an instance Γ = (V, E) of k-Clique
problem, outputs an instance Γ′ of k′-Clique problem such that

k′ = kdt−1.
(Completeness.) If Γ has a k-clique, then Γ′ has a k′-clique.
(Soundness.) If Γ has no εk-clique, then Γ′ has no clique of size k′((1 − λ)

√
ε + λ)t−1.

Proof. Let H be an (k, λ, d)-expander constructed from Lemma 8. We construct Γ′ as
follows. Each of the k′ = kdt−1 groups in Γ′ is associated with a unique path of length-t
random walk on H. We use (c1, . . . , ct) to name a group in Γ′, where each ci ∈ [k] indicates
a group in Γ.
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A vertex in Γ′ is a length-t sequence of vertices in Γ. Namely, there is a vertex (u1, . . . , ut)
in the (c1, . . . , ct)-th group in Γ′ if and only if each ui is belongs to group ci in Γ. Therefore,
the total number of vertices is at most kdt−1|V |t in Γ′.

A vertex (u1, . . . , ut) in group (c1, . . . , ct) is linked to a vertex (v1, . . . , vt) in group
(d1, . . . , dt) if and only if

(c1, . . . , ct) ̸= (d1, . . . , dt),
and the vertices {v1, . . . , vt, u1, . . . , ut} form a clique in Γ.

The reduction runs in O(k2d2t|V |2t) time by simply enumerating every pair of vertices in
Γ′ and checking if there is an edge between them.

Completeness. Let {v1, . . . , vk} be an k-clique in Γ. Then in group (c1, . . . , ct) in Γ′, we
can pick the vertex (vc1 , . . . , vct). It’s easy to see those vertices form an kdt−1-clique.

Soundness. For any clique V in Γ′, let U be the collection of vertices in Γ which appear
as part of the name of a vertex in V . Since V is a clique in Γ′, it follows by construction
that U is also a clique in Γ and thus |U | ≤ εk. Recall that each (c1, . . . , ct) represents a
length-t random walk on H, and all those ci’s lie in a set of size ≤ εk (which corresponds
to the collection of groups that vertices in U belong to). By plugging n = k, |B| ≤ εk

into Lemma 7, the number of different groups that vertices in V belong to is bounded by
kdt−1((1 − λ)

√
ε + λ)t−1, and so is |V |. ◀

For any function δ(k) = o(1), by setting t to be as large as some o(log k), we can make
ε′ = ((1 − λ)

√
ε + λ)t−1 smaller than k−δ(k) while keeping k′ = kdt−1 ≤ kO(1). Thus, by

combining Theorem 1 and Theorem 21, we have the following corollary.

▶ Corollary 2. Assuming ETH, for any g(k) = ko(1), the k-Clique problem has no g(k)-
FPT-approximation algorithm.

5 From Constant Gap k-Clique to PIH

In this section we will show that strong lower bound of constant gap k-Clique implies
PIH. For simplicity of notation, we additionally define problems Gap-clique(k, ℓ) and
Gap-biclique(k, ℓ) (k > ℓ), whose definitions are almost the same as k-Clique and
k-Biclique, except that the soundness parameter is ℓ. We have the following theorem:

▶ Theorem 3. If Gap-clique(k, εk) does not admit f(k) · nO( k
log k )-time algorithms for

some 0 < ε < 1, then PIH is true.

The proof is relatively elementary and consists of three steps: first reduce constant gap
k-Clique to constant gap k-Biclique, then use a disperser to compress the soundness
parameter to log k

k , finally use the Kővári-Sós-Turán Theorem to show that in the soundness
case, the density of every 2k-vertex bipartite subgraph is low.

▶ Lemma 22. If Gap-clique(k, εk) does not admit f(k) · nO( k
log k )-time algorithms for

some 0 < ε < 1, then neither does Gap-biclique(k, 1+ε
2 k).

Proof. We reduce a Gap-clique(k, εk) instance G = (V1∪̇ . . . ∪̇Vk, E) to a Gap-biclique(k,
1+ε

2 k) instance G′ = (U1∪̇ . . . ∪̇Uk, W1∪̇ . . . ∪̇Wk, E) as follows.
The vertex sets in each side are just copies of V , i.e., Ui = Wi = Vi, ∀i ∈ [k]. Two vertices

u ∈ Ui, w ∈ Wj where i ̸= j are linked if and only if their corresponding vertices are linked in
G, while two vertices u ∈ Ui, w ∈ Wi are linked iff they correspond to the same vertex in G.
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The completeness case is obvious. In the soundness case, suppose we can pick 1+ε
2 k

vertices from different parts of U and 1+ε
2 k vertices from different parts of W such that they

form a biclique. Let the collection of picked vertices be S. Then there must be an index set I
of size εk such that ∀i ∈ I, (S ∩ Ui ̸= ∅) ∧ (S ∩ Wi ̸= ∅). Moreover, |S ∩ Ui| = |S ∩ Wi| = 1 by
our construction of edges between Ui and Wi. Then consider the set

⋃
i∈I(S ∩ Ui) which is of

size at least εk. The vertices in it must form a clique of size |I| in the original graph G. ◀

▶ Lemma 23. If Gap-biclique(k, εk) does not admit f(k) · nO( k
log k )-time algorithms

for some constant 0 < ε < 1, then for any constant 0 < c < 1, no algorithm can solve
Gap-biclique(k, c log k) in f(k) · nO(1) time.

Proof. Given a Gap-biclique(k, εk) instance G = (U1∪̇ . . . ∪̇Uk, W1∪̇ . . . ∪̇Wk, E), let
ℓ = ⌈ 3k

εc log k ⌉ and let I = (I1, . . . , Ik) be a (k, k, ℓ, c log k, 1 − ε)-disperser. Since the size of I
is independent of n, we can deterministically enumerate all possible I to find a valid one in
f(k) time. The existence of such a disperser is guaranteed by Lemma 10. We construct a
new Gap-biclique(k, c log k) instance G′ = (U ′

1∪̇ . . . ∪̇U ′
k, W ′

1∪̇ . . . ∪̇W ′
k, E) as follows.

The groups of vertices in G′ correspond to the combination of groups in G according
to the disperser. Specifically, for 1 ≤ i ≤ k, let Ii = {i1, . . . , iℓ}, then each vertex in U ′

i

will correspond to a tuple of vertices (ui1 , . . . , uiℓ
) where uij comes from Uij in G for all

1 ≤ j ≤ ℓ. The construction of right vertices W ′
1, . . . W ′

k is similar. The size of the new
instance is therefore at most nℓ = nO( k

log k ).
An edge between a left vertex (ui1 , . . . , uiℓ

) and a right vertex (wj1 , . . . , wjℓ
) exists if and

only if the vertices {ui1 , . . . , uiℓ
, wj1 , . . . , wjℓ

} form a biclique Kℓ,ℓ in G.
The completeness case is still obvious, and we focus on the soundness case. Prove by

contradiction, if there exists c log k vertices from different groups of U ′ and c log k vertices
from different groups of W ′ which form a biclique Kc log k,c log k, let S be the collection of
vertices which appear as part of one of the 2c log k tuples. For 1 ≤ i ≤ k, arbitrarily pick one
vertex from each S ∩ Ui, S ∩ Wi if not empty, then we claim that the resulting collection must
be a biclique of size ≥ εk on both sides. The promise of biclique is from our construction,
while the size is guaranteed by properties of the disperser.

Therefore, an f(k) ·nO(1) time algorithm for the Gap-biclique(k, c log k) problem would

lead to an f(k) ·
(

nO( k
log k )

)O(1)
= f(k) · nO( k

log k ) time algorithm for Gap-biclique(k, εk)
problem. This completes the proof. ◀

▶ Theorem 24 (Kõvári-Sós-Turán, [19]). For any graph G on n vertices, if G does not contain
Ka,a as a subgraph, then G has at most O(n2−1/a) edges.

Proof of Theorem 3. By plugging in a = c log k for some sufficiently small constant 0 < c < 1
such that the O(k2−1/(c log k)) in Theorem 24 is no more than ε′k2 for some constant 0 < ε′ < 1,
Theorem 24 and Lemma 23 imply that if Gap-biclique(k, εk) does not admit f(k)·nO( k

log k )-
time algorithms, then no FPT algorithm can distinguish the following cases for a k-Biclique
instance G = (U, W, E) with

(Completeness.) there exists u1 ∈ U1, . . . , uk ∈ Uk, w1 ∈ W1, . . . wk ∈ Wk such that they
form a biclique Kk,k.
(Soundness.) for all u1 ∈ U1, . . . , uk ∈ Uk, w1 ∈ W1, . . . wk ∈ Wk, the vertex set
{u1, . . . , uk, v1, . . . , vk} induce a subgraph with at most O(k2−1/(c log k)) ≤ ε′k2 edges for
some constant 0 < ε′ < 1.
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We link all pairs of vertices which are on the same side but not in the same group. In
the completeness case, we can find 2k vertices from distinct groups such that they form a
clique and thus the number of edges induced is

(2k
2
)
. In the soundness case, the number of

edges induced by 2k vertices from distinct groups is at most ε′k2 + 2
(

k
2
)

< ε′′(2k
2
)

for some
0 < ε′′ < 1.

At last, by Lemma 22, if Gap-clique(k, εk) does not admit f(k) · nO( k
log k )-time

algorithms for some 0 < ε < 1, then neither does Gap-biclique(k, 1+ε
2 k), hence no

FPT-algorithm can approximate Densest k-Subgraph to an ε′′ factor. ◀

6 Conclusion

In this paper, we provide a tighter ETH-lower bound for constant gap k-Clique by replacing
the Hardamard code used in [20] by the Reed-Muller Code with degree-2 polynomials. We use
gap amplification techniques by expander graphs to rule out ko(1)-ratio FPT-approximation
algorithms for k-Clique under ETH. We also study the relationship between the constant
gap k-Clique problem and PIH. We show that almost tight lower bounds for constant gap
k-Clique can imply PIH.

A natural open question is whether we can derive such a lower bound for constant gap
k-Clique under ETH. Formally, it is stated as follows:

Question 1. Assuming ETH, does constant gap k-Clique admit an algorithm in f(k) ·
nO( k

log k ) time?
It is also worth noting that assuming ETH, there is no 2o(n)-time algorithm for non-

parameterized Max-Clique problem on n-vertex graphs. Hence, it is natural to ask whether
our technique can be analogously applied to non-parameterized Max-Clique to obtain tight
lower bounds:

Question 2. Assuming ETH, does constant gap Max-Clique admit an algorithm in 2o(n)

time?
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Abstract
For a satisfiable CNF formula ϕ and an integer t, a weak backdoor set to treewidth-t is a set of
variables such that there is an assignment to this set that reduces ϕ to a satisfiable formula that has
an incidence graph of treewidth at most t. A natural research program in the work on fixed-parameter
algorithms (FPT algorithms) for SAT is to delineate the tractability borders for the problem of
detecting a small weak backdoor set to treewidth-t formulas. In this line of research, Gaspers and
Szeider (ICALP 2012) showed that detecting a weak backdoor set of size at most k to treewidth-1 is
W[2]-hard parameterized by k if the input is an arbitrary CNF formula. Fomin, Lokshtanov, Misra,
Ramanujan and Saurabh (SODA 2015), showed that if the input is d-CNF, then detecting a weak
backdoor set of size at most k to treewidth-t is fixed-parameter tractable (parameterized by k, t, d).
These two results indicate that sparsity of the input plays a role in determining the parameterized
complexity of detecting weak backdoor sets to treewidth-t.

In this work, we take a major step towards characterizing the precise impact of sparsity on the
parameterized complexity of this problem by obtaining algorithmic results for detecting small weak
backdoor sets to treewidth-t for input formulas whose incidence graphs belong to a nowhere-dense
graph class. Nowhere density provides a robust and well-understood notion of sparsity that is at the
heart of several advances on model checking and structural graph theory. Moreover, nowhere-dense
graph classes contain many well-studied graph classes such as bounded treewidth graphs, graphs that
exclude a fixed (topological) minor and graphs of bounded expansion.

Our main contribution is an algorithm that, given a formula ϕ whose incidence graph belongs to
a fixed nowhere-dense graph class and an integer k, in time f(t, k)|ϕ|O(1), either finds a satisfying
assignment of ϕ, or concludes correctly that ϕ has no weak backdoor set of size at most k to
treewidth-t.

To obtain this algorithm, we develop a strategy that only relies on the fact that nowhere-dense
graph classes are biclique-free. That is, for every nowhere-dense graph class, there is a p such that it
is contained in the class of graphs that exclude Kp,p as a subgraph. This is a significant feature of
our techniques since the class of biclique-free graphs also generalizes the class of graphs of bounded
degeneracy, which are incomparable with nowhere-dense graph classes. As a result, our algorithm
also generalizes the results of Fomin, Lokshtanov, Misra, Ramanujan and Saurabh (SODA 2015) for
the special case of d-CNF formulas as input when d is fixed. This is because the incidence graphs of
such formulas exclude Kd+1,d+1 as a subgraph.
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1 Introduction

A central concept in the design of fixed-parameter algorithms for SAT is the notion of
backdoor sets introduced by Williams et al. [41], which was also introduced under a different
name by Crama et al. [9]. These are sets of variables in the input formula whose instantiation
can lead to a dramatic simplification of the formula, moving the formula into a class where
SAT is easy to solve, such as Horn formulas. Backdoor sets provide a natural way to express
the deviation of a SAT instance from well-studied “islands of tractability” (i.e., tractable
cases of SAT) and allow us to study the question -“could we easily solve SAT instances that
do not necessarily fall neatly within a known tractable fragment, yet are ‘close’ to them?”

To formalize this idea, fix a class of CNF formulas, call it C, which is also called the
base class. Let ϕ be the input instance of SAT. If ϕ is satisfiable, then a nonempty subset
B of the variables in ϕ is a weak backdoor of ϕ to the class C (or a weak C-backdoor set) if
there exists an assignment τ to the variables in B such that the reduced instance ϕ[τ ] is a
satisfiable formula in the class C. We say that B is a strong backdoor of ϕ to the class C (or
strong C-backdoor set) if, for every assignment τ to the variables in B, the reduced instance
ϕ[τ ] is in C. Clearly, if C is a class of formulas on which SAT can be efficiently solved and
one knows a weak/strong C-backdoor set of the input instance, then a straightforward way of
checking satisfiability and computing a satisfying assignment of the input instance involves
exploring all instantiations of the variables in the backdoor set and efficiently solving the
simplified instances.

Over the last two decades, there has been an active theoretical research program on SAT –
the design of algorithms for SAT by exploring the parameterized complexity of computing and
utilizing small backdoor sets to an efficiently-solvable class of CNF formulas. The study of the
parameterized complexity of the problem of finding small backdoor sets was formally initiated
by Nishimura et al. [33] and over the past decade and a half, there has been an extensive study
of backdoors for SAT in the realm of parameterized complexity (see [37, 39, 35, 26, 13, 21]
for a partial list). We refer to the survey of Gaspers and Szeider [25] for an overview of
many of these works. In recent years, the success brought to the parameterized complexity
of SAT by the study of backdoor detection has been replicated for CSP [2, 4, 20, 17, 18] and
Mixed-ILP [16]. We refer to the survey [22] for a more comprehensive picture of the state of
the art on backdoors to CSPs.

A basic part of this research program exploring the parameterized complexity of SAT is
to answer the question:

For which input formulas is the detection of small backdoors to the class of
bounded-treewidth formulas fixed-parameter tractable?

Bounded-treewidth formulas are CNF formulas whose incidence graphs have bounded
treewidth and it is well-known that SAT is efficiently solvable on these [10, 15, 38]. The
study of computing small backdoors to bounded-treewidth formulas from the parameterized
complexity perspective was initiated by Gaspers and Szeider in [23] and further studied in
[24, 26]. Gaspers and Szeider [23] gave an FPT-approximation algorithm for the problem of
computing a strong backdoor set to Acyclic formulas, which was later extended to bounded-
treewidth formulas [26]. Specifically, they gave an algorithm that runs in time f(k)|ϕ|O(1),
for some computable function f , and either detects a strong backdoor in ϕ of size at most
2k to bounded-treewidth formulas or reports that there is no such strong backdoor of size
at most k. Since approximate backdoor sets are also sufficient to solve SAT, they were
able to conclude that SAT parameterized by the size of a smallest strong backdoor set to
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bounded-treewidth formulas is fixed-parameter tractable with no restrictions on the input.
On the other hand, the picture for weak backdoor sets is much less comprehensive and is the
main motivation behind our work.

State of the art for detecting weak backdoors

In [23], Gaspers and Szeider studied the problem of detecting a weak backdoor of size at
most k to Acyclic formulas, i.e, formulas with incidence graphs of treewidth at most 1. They
showed that this problem is W[2]-hard in general but fixed-parameter tractable (FPT) on
d-CNF formulas for every fixed d. This implies that d-SAT parameterized by the size of
a smallest weak backdoor set to Acyclic formulas is fixed-parameter tractable. This result
was subsequently improved by Fomin et al. [13], who showed that d-SAT parameterized by
the size of a smallest weak backdoor set to bounded-treewidth formulas is fixed-parameter
tractable. The lack of progress in this direction since then, means that the state of the art
on detecting weak backdoors to bounded-treewidth formulas continues to experience a huge
gap between instances for which we know parameterized hardness results (i.e., general CNF
formulas) and instances for which we have FPT algorithms (i.e., d-CNF). Where exactly does
the tractability border lie? This brings us to the overarching goal of identifying maximal
classes of CNF formulas for which SAT is FPT when parameterized by the size of a smallest
weak backdoor set to the class of bounded-treewidth formulas.

Our work

Since the incidence graphs of d-CNF formulas only have linearly-many edges in the number
of clauses, a natural step towards the overarching goal outlined above is to first understand
the effect that the “sparsity” of the input incidence graph has on the tractability of the
problem. In particular, could one show that as long as the input has bounded degeneracy
or is nowhere dense [32], then SAT is FPT parameterized by the size of a smallest weak
backdoor set to bounded-treewidth formulas? Nowhere density yields a robust notion of a
maximal sparse graph class and nowhere-dense graph classes have been at the heart of major
developments in graph theory and model checking [31, 27, 29] in the last decade. Therefore,
one could reasonably hope to harness the techniques developed in these efforts, towards our
purpose. Starting from this point, in this paper, we obtain tractability results that take us
simultaneously beyond the class of nowhere-dense graphs and graphs of bounded degeneracy.
Towards this, we initiate the study of weak backdoor detection on biclique-free formulas.
More precisely, we consider Kd,d-free formulas, which are CNF formulas where no set of d
clauses contain literals from d variables in their common intersection. In graph-theoretic
terms, the incidence graphs of Kd,d-free formulas exclude the complete bipartite graph Kd,d

as a subgraph. Kd,d-free graphs are very wide class of sparse graphs and include many
well-studied graph classes such as bounded treewidth graphs, graphs that exclude a fixed minor,
graphs of bounded expansion, nowhere-dense graphs and graphs of bounded degeneracy. That
is, for any of the classes – bounded treewidth graphs, graphs that exclude a fixed minor,
graphs of bounded expansion, nowhere-dense graphs and graphs of bounded degeneracy,
there is a p such that the class is contained in the class of Kp,p-free graphs (see Figure 1 for
an illustration of the inclusion relation between these classes).

1.1 Our results
In order to present our results in the most general terms possible, we consider weak backdoor
sets not just to bounded treewidth formulas, but what we call F-minor-free formulas. Let
F be a finite set of graphs. For a CNF formula ϕ, a set S of variables is called a weak
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Bounded treewidth

Excluded minor

Excluded topological minor

Bounded expansion

Nowhere dense

Biclique-free

Planar

Bounded genus

Bounded degeneracy

Incidence graphs of
d-CNF formulas

Figure 1 Inclusion relation between the class of biclique-free graphs considered in this paper
and well-studied graph classes in the literature (figure based on [40]). If there in arrow of the form
A → B, then class A is a subclass of B.

F-minor-free backdoor set of ϕ if it is a weak backdoor set of ϕ into the class of CNF formulas
whose incidence graphs exclude every graph in F as a minor. Notice that a weak backdoor
set of a formula into treewidth-t formulas is also a weak F -minor-free backdoor set for some
F – take F to be precisely the set of forbidden minors for graphs of treewidth at most t.
Note that the size of F depends only on t. The reason for studying the problem in this
more general setting is that it allows us to also obtain an additional result from the proof
techniques used for our main result. Moreover, due to the extensive work in parameterized
complexity on connections between vertex-deletion problems to bounded treewidth graphs
and vertex-deletion problems to minor-free graphs, there is a rich collection of powerful
algorithmic techniques that we are able to draw from (see, for example, [14, 19, 13]).

We now state our central result formally and discuss our corollaries and further context.

▶ Theorem 1. For every d ∈ N, there is a computable function fd and an algorithm Ad that
satisfies the following:
1. Ad takes as input a Kd,d-free formula ϕ, a family F of graphs containing at least one

planar graph, and an integer k.
2. Ad runs in time fd(F , k) · |ϕ|O(d).
3. Ad either outputs a weak F-minor-free-backdoor set of ϕ of size at most k, or concludes

correctly that ϕ has no weak F-minor-free-backdoor set of size at most k.
Let us first make a few remarks regarding the time-complexity of the algorithm described

in the above statement. First of all, in the running time of the above algorithm, the exponent
in the term |ϕ|O(d) is independent of k and F . Secondly, as our main goal is to obtain a
fixed-parameter tractability classification result, and as we have proved our result in such
general terms, we have not attempted to optimize the function fd. Indeed, due to the
standard step of invoking Courcelle’s theorem as a subroutine when the input treewidth
is already bounded (see, for example, [23, 26]) one should not expect this algorithm to be
practical as presented. However, our result is an important proof of concept demonstrating
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fixed-parameter tractability for such a general class of inputs. We believe that optimizing
the function fd is a more meaningful research question for specific subclasses of Kd,d-free
formulas, e.g., formulas with incidence graphs that exclude a fixed graph as a minor.

We now describe the main consequences of our result. As discussed, it is well-known that
satisfiability of a t-tw formula (i.e., a CNF formula whose incidence graph has treewidth at
most t) can be tested in linear time for every fixed t and moreover, a satisfying assignment
can be computed in the same time. Therefore, we can combine Theorem 1 with the fact
that graphs of treewidth at most t have a finite and computable set of forbidden minors that
include the (t+ 1) × (t+ 1)-grid, which is a planar graph. This leads us to the first FPT
algorithm for SAT on Kd,d-free formulas (for fixed d) parameterized by t + wbt(ϕ). Here,
wbt(ϕ) denotes the size of a smallest weak t-tw-backdoor set of ϕ. The formal statement
follows.

▶ Theorem 2. For every d ∈ N, there is a computable function fd and an algorithm that,
given t ∈ N, a Kd,d-free formula ϕ and an integer k, runs in time fd(t, k)|ϕ|O(d) and either
finds a satisfying assignment of ϕ, or concludes correctly that ϕ has no weak t-tw-backdoor
set of size at most k.

An immediate corollary of the above theorem is that d-SAT is FPT parameterized by
t+ wbt(ϕ) for every fixed d. To obtain this, notice that a d-CNF formula is Kd+1,d+1-free.

A further consequence of the techniques used to prove Theorem 1 is in the case of weak
backdoor sets to nested formulas. These form a subclass of K3,3-free formulas and are
known to have treewidth at most 3 (see preliminaries for the formal definition of nested
formulas). However, this is not a precise characterization of these formulas, so we need a
minor modification in the proof of Theorem 1 to obtain the following result.

▶ Theorem 3. For every d ∈ N, there is a computable function fd and an algorithm that,
given t ∈ N, a Kd,d-free formula ϕ and an integer k, runs in time fd(t, k)|ϕ|O(d) and either
finds a satisfying assignment of ϕ, or concludes correctly that ϕ has no weak backdoor set of
size at most k to the class of nested formulas.

Hardness results for strong and weak backdoor detection

To complement our algorithmic results, we also show new hardness results that strengthen
existing results. Towards this, we present a polynomial-time algorithm that, given a Set
Cover instance I = (U,S), numbers d, d′ ≥ 2 and a non-negative number k, outputs a CNF
formula ϕ such that if I has a set cover of size k, then ϕ has a strong/weak backdoor set of
size k to the class of empty formulas, which are formulas with no clauses. Conversely, if ϕ
has a strong/weak backdoor set of size k to any subclass of Kd,d′ -free formulas, then I has a
set cover of size k. This algorithm is effectively a reduction that implies that for any class C
that is a superclass of empty formulas and a subclass of Kd,d-free formulas for some d ∈ N,
the problem of detecting a strong/weak backdoor to C of size at most k is at least as hard as
solving Set Cover parameterized by the solution size (i.e., it is W[2]-hard).

In particular, notice that for every t ≥ 0, there exists a d ≥ 2 such that t-tw-CNF is a
subclass of Kd,d-free formulas. Moreover, nested formulas are subclasses of K3,3-free formulas.
Hence, we obtain the following consequences.

▶ Theorem 4. For every t ≥ 0, family F that contains a planar graph but does not contain
an independent set, and for each class C ∈ {t-tw formulas, nested formulas, F-minor-
free formulas}, the problem of detecting a strong/weak backdoor set to C of size at most k is
W [2]-hard parameterized by k.
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Table 1 Our results for weak backdoor detection in relation to the state of the art. Each row
corresponds to a base class into which we are finding a backdoor set. Each column corresponds to a
possible class of inputs.

Input: d-CNF Input: Kd,d-free CNF Input: CNF

Acyclic FPT [23] FPT (Theorem 2) W[2]-hard [23]
Nested FPT FPT (Theorem 3) W[2]-hard (Theorem 4)

tw-t (for every t) FPT [13] FPT (Theorem 2) W[2]-hard (Theorem 4)
Planar-F minor-free FPT FPT (Theorem 1) W[2]-hard (Theorem 4)

This theorem strengthens the hardness result of Gaspsers and Szeider [23] and shows
that not only is it W[2]-hard to detect small weak backdoor sets (with no restriction on the
input) to Acyclic formulas, but also to treewidth-t formulas for every fixed t.

2 Preliminaries

CNF Formulas

We consider propositional formulas in conjunctive normal form (CNF). In our algorithms
to compute weak backdoor sets to bounded-treewidth formulas, we do not assume that the
clauses exclude a pair of complementary literals. However, when the goal is to solve SAT, it
can be assumed without loss of generality that the input formula does not contain a clause
with a pair of complementary literals. For a CNF formula ϕ, we use var(ϕ) and cla(ϕ) to refer
to the sets of variables and clauses in ϕ, respectively. We say that a variable x is positive
(negative) in a clause C if x ∈ C (x ∈ C), and we write var(C) for the set of variables that
are positive or negative in C, while we use lit(C) to denote the set of literals in C. For a set
C of clauses, we use var(C) to denote

⋃
C∈C var(C) and call this set the set of variables of

C. Given a CNF formula ϕ and a truth assignment τ , ϕ[τ ] denotes the truth assignment
reduct of ϕ under τ , which is the CNF formula obtained from ϕ by first removing all clauses
that are satisfied by τ and second removing from the remaining clauses all literals x, x with
x ∈ var(τ). The assigned variables are also removed.

Incidence graphs

The incidence graph of a CNF formula ϕ, inc(ϕ), is the bipartite graph whose vertices are
the variables and clauses of ϕ, and where vertices corresponding to a variable x and a clause
C are adjacent if and only if x ∈ var(C). Further, an edge between a vertex corresponding
to x ∈ var(ϕ) and C ∈ cla(ϕ) has the polarity (or label) + if x ∈ lit(C) and x /∈ lit(C) and
is labeled − if x ∈ lit(C) and x /∈ lit(C). If x, x ∈ lit(C), then this edge is labeled b. For
an incidence graph G, we abuse notation and use var(G) to refer to the vertices of G that
correspond to variables in ψ(G), and cla(G) to refer to the vertices of G that correspond to
clauses in ψ(G). Also, for a vertex subset Y ⊆ V (G), we continue to use the notations var(Y )
and cla(Y ) to refer to the sets var(G) ∩ Y and cla(G) ∩ Y , respectively. We say that a graph
is Kd,d-free if it does not contain Kd,d as a subgraph. Notice that the Kd,d-free incidence
graphs correspond to CNF formulas where no set of d clauses contain literals from d distinct
variables in their common intersection.



D. Lokshtanov, F. Panolan, and M. S. Ramanujan 91:7

Nested formulas

A CNF formula ϕ is nested [28] precisely if the graph inc(univ(ϕ)) is planar, where univ(ϕ) is
obtained from ϕ by adding any universal clause c⋆ containing a literal from each variable
of ϕ. Moreover, inc(ϕ) has treewidth at most 3 if ϕ is nested. Hence, one can determine
satisfiability of nested formulas in polynomial time. Nested formulas are a subclass of planar
CNF formulas and so, are also a subclass of K3,3-free formulas.

Treewidth

Let G be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T )) where T is
a tree and X is a collection of subsets of V (G) such that: (i) ∀e = (u, v) ∈ E(G), there
is t ∈ V (T ) : {u, v} ⊆ Xt, and (ii) ∀v ∈ V (G), T [{t | v ∈ Xt}] is a non-empty connected
subtree of T . We call the vertices of T nodes and the sets in X bags of the tree decomposition
(T,X ). The width of (T,X ) is equal to max{|Xt|−1 | t ∈ V (T )} and the treewidth of G is the
minimum width over all tree decompositions of G. A nice tree decomposition is a pair (T,X )
where (T,X ) is a tree decomposition such that T is a rooted tree and the following conditions
are satisfied: (i) Every node of the tree T has at most two children; (ii) if a node t has two
children t1 and t2, then Xt = Xt1 = Xt2 ; and (iii) if a node t has one child t1, then either
|Xt| = |Xt1 |+ 1 and Xt1 ⊂ Xt (in this case we call t1 an introduce node) or |Xt| = |Xt1 | − 1
and Xt ⊂ Xt1 (in this case we call t1 a forget node). It is possible to transform a given tree
decomposition (T,X ) into a nice tree decomposition (T ′,X ′) in time O(|V |+ |E|) [3]. A set
X ⊆ V (G) is a treewidth-t modulator for a graph G if the treewidth of G−X is at most t.

Boundaried graphs

A t-boundaried graph is a triple (G,B, ℓG) where G is a graph, B ⊂ V (G) of size t with each
vertex v ∈ B having a unique label ℓG(v) ∈ {1, . . . , t}. We refer to B as the boundary of G.
We often refer to a t-boundaried graph simply as G with the function ∂(G) returning the
boundary of G and the function ℓG denoting the labeling function on the boundary. In other
cases, it will be useful to mention the boundary explicitly, in which case we will use (G,B).
When the size of the boundary is irrelevant to the discussion, we simply use “boundaried
graph” instead of “t-boundaried graph”.

Let G = (X,C,E) be a boundaried incidence graph with boundary ∂(G) =
{b1, . . . , b|∂(G)|}, where ∂(G) ⊆ (X ∪ C) and bi = ℓ−1

G (i). We use ϑ(G) to denote the
|∂(G)|-length binary word given as: ϑ(G)[i] = 0 if bi ∈ X and ϑ(G)[i] = 1 otherwise.

▶ Definition 5 (Boundary types and mergeability). We say that two boundaried incidence graphs
G1 = (X1, C1, E1) and G2 = (X2, C2, E2) have the same boundary type if ϑ(G1) = ϑ(G2).
If G1 and G2 have the same boundary type, then we say that G1 and G2 are mergeable if for
every u1, v1 ∈ ∂(G1) and u2, v2 ∈ ∂(G2) such that ℓG1(u1) = ℓG2(u2) and ℓG1(v1) = ℓG2(v2),
at most one out of (u1, v1) and (u2, v2) is an edge in G1 and G2 respectively.

Gluing operation and compatibility of boundaried graphs

A pair of boundaried incidence graphs G1 and G2 that are mergeable can be “glued” together
along their boundaries to obtain a new incidence graph, which we denote by G1 ⊕G2. The
gluing operation takes the disjoint union of G1 and G2 and identifies the vertices of ∂(G1)
and ∂(G2) with the same label. If there are vertices u1, v1 ∈ ∂(G1) and u2, v2 ∈ ∂(G2) such
that ℓG1(u1) = ℓG2(u2) and ℓG1(v1) = ℓG2(v2) then G has vertices u formed by unifying u1
and u2 and v formed by unifying v1 and v2. That is, u1 and u2 are merged to form the
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supernode u and v1 and v2 are merged to form the supernode v. The new vertices u and v

are adjacent if (u1, v1) ∈ E(G1) or (u2, v2) ∈ E(G2). The polarities of the edges in G1 and
G2 are inherited in G1 ⊕G2 in the natural way.

▶ Definition 6 (d-compatibility of boundaried graphs). Let G1 and G2 be two t-boundaried
Kd,d-free incidence graphs. We say that G1 and G2 are d-compatible if they are mergeable
and further, G1 ⊕G2 is also a Kd,d-free graph.

Minors and nowhere-dense graph classes

Given an edge e = (x, y) of a graph G, the graph G/e is obtained from G by contracting the
edge e, that is, the endpoints x and y are replaced by a new vertex vxy which is adjacent to
the original neighbors of x and y (except x and y). A graph H obtained by a sequence of
edge-contractions is said to be a contraction of G. We denote it by H ≤c G. A graph H is
a minor of a graph G if H is the contraction of some subgraph of G and we denote it by
H ≤m G. We say that a graph G is H-minor-free when it does not contain H as a minor.
We also say that a graph class G is H-minor-free (or, excludes H as a minor) when all its
members are H-minor-free. It is well-known [36] that if H ≤m G then tw(H) ≤ tw(G).

The notion of shallow minors is required to define nowhere-dense graph classes. The
radius of a connected graph G is the minimum over all vertices v of G of the maximum
distance between v and another vertex. For non-negative integer r, a graph H is a shallow
minor at depth r of a graph G if there exists a subgraph X of G whose connected components
have radius at most r, such that H is a simple graph obtained from G by contracting each
component of X into a single vertex and then taking a subgraph.

We now recall the notion of nowhere-dense graph classes. Although the only property
of a nowhere-dense graph class we require is that they are biclique-free, we give the formal
definition here for the sake of completeness.

▶ Definition 7. A class C of graphs is nowhere dense if there is a function f : N→ N such
that for every r ≥ 0, Kf(r) is not a shallow minor at depth r of the graph G, for every G ∈ C.

▶ Proposition 8. (see Fact 1, [40]) Let C be a nowhere-dense class of graphs and let f be
the corresponding function as described in the above definition. Then, there is a number t
depending only on f such that for any G ∈ C, G does not contain Kt,t as a subgraph.

Unbreakability

Roughly speaking, a graph is unbreakable if it is not possible to “break” it into two large
parts by removing only a small number of vertices. We now give the formal definition. A pair
(X,Y ) where X ∪ Y = V (G) is a separation if there is no edge with one endpoint in X \ Y
and the other in Y \X. The order of (X,Y ) is |X ∩Y |. If there exists a separation (X,Y ) of
order at most c such that |X \ Y | ≥ s and |Y \X| ≥ s, called an (s, c)-witnessing separation,
then G is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable. The following lemma states
that it is possible to determine (approximately) whether a graph is unbreakable or not using
a fixed-parameter algorithm, and lemmas similar to it can be found in [5, 30].

▶ Proposition 9 ([30]). There exists an algorithm that, given s, c ∈ N and a graph G, runs
in time 2O(c(s+c)) · n3 log n and either returns an ( s

2c , c)-witnessing separation or correctly
concludes that G is (s, c)-unbreakable.

▶ Observation 10. Let t, δ, τ⋆ ∈ N, where t ≤ 2τ⋆. Let (G,Z) be a t-boundaried graph and
let (X,Y ) be a (δ, τ⋆)-witnessing separation. Then, one of the pairs (G[X], (X∩Y )∪ (Z∩X))
or (G[Y ], (X ∩ Y ) ∪ (Z ∩ Y )) is a t′-boundaried graph, where t′ ≤ 2τ⋆.
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By repeatedly invoking the above observation, one can “zoom in” to a separation of small
order in the graph such that one of the sides is large and induces an unbreakable subgraph.

▶ Lemma 11. Let δ, δ⋆, τ⋆ ∈ N be such that δ⋆ = 2τ⋆ · δ. Let (X,Y ) be a separation of order
at most 2τ⋆ in a graph G such that |X| ≥ δ. There is an algorithm that, given G,X, Y , runs
in time 2O(τ⋆·δ⋆) · nO(1) and returns a separation (X̃, Ỹ ) of order at most 2τ⋆ in G such that
|X̃| ≥ δ and G[X̃] is (δ⋆, τ⋆)-unbreakable.

▶ Remark 12. Roughly speaking, the notions of boundaried incidence graphs, mergeability,
and d-compatibility allows us to split our original input (formula’s) incidence graph along a
small balanced separator (of size at most some t) and treat the two sides of the separator
as t-boundaried d-compatible graphs and focus our attention on one of these two graphs in
order to make further progress. The notion of unbreakability plus Lemma 11 gives us a kind
of “base case” where we are able to stop splitting our instance along such small separators
and use the additional structure imposed by unbreakability to make progress.

3 Algorithm for Weak Planar-F-minor-free-Backdoor Detection

In this section, we discuss the proof of Theorem 1. We begin with the following definitions
and assumptions.

Recall that d is fixed, i.e., it is a constant for us.
We assume that k > d. Otherwise, we could simply guess (and verify) a weak-backdoor
set of size at most k in time |ϕ|O(d). Here, k is the integer taken as input by the algorithm
A described in Theorem 1.
We assume that F is a family of graphs containing at least one planar graph and use η
to denote a computable upper bound on the treewidth of F -minor-free graphs.
Define τ(k, d) = kd+1, τ ′(η, k, d) = τ(k, d) + 2η + 2.
We pick δ(η, k, d) to be a large enough function of τ ′(η, k, d) to be decided later.
Set δ′(η, k, d) = 2τ ′(η,k,d) · δ(η, k, d).
Let ∆(η, k, d) = δ′(η, k, d) + 2τ ′(η, k, d).
For ease of readability, we omit the arguments of these functions when they are clear
from the context, e.g., we replace ∆(η, k, d) with ∆.

3.1 Overview of our algorithm
We first briefly describe the ideas used by Fomin et al. [13] in their randomized FPT algorithm
to detect weak η-tw-backdoor sets when the input formula is d-CNF. We then outline the
similarities and main differences with our algorithm.

Algorithm of Fomin et al [13]

Let G be the input incidence graph. Say that a set X ⊆ V (G) is an η-modulator if
tw(G − X) ≤ η. Fomin et al. observed that if X is a set of variables that form a weak
η-tw-backdoor, then the set N(X) of their neighbors in the incidence graph is an η-modulator.
Note that |N(X)| could be arbitrarily large compared to |X|. They then give a preprocessing
procedure that ensures that for every η-tw-backdoor set X, the set N(X) is incident to a
large fraction of the edges in G. Therefore, if one picks an edge uniformly at random, then
the clause endpoint of the edge belongs to N(X) with constant probability. Further, since
the clauses are of constant size d, we have that a randomly chosen variable from the clause
belongs to X with a constant probability, some f(d, η). The algorithm then simply branches
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on the chosen variable x in the usual way – in one branch, the formula is simplified by setting
x to 1 and recurse, and in the other branch, x is set to 0 and the residual instance is recursed
upon.

The main obstacle in our setting is that simply obtaining a clause in N(X) is not good
enough since clauses can be arbitrarily large. This motivates us to look for a “domination
core” within the incidence graph. That is, if we find sufficiently many clause vertices in
N(X), then it is possible to identify a small subset of variables that intersect X. However,
being able to locate the required number of clause vertices in N(X) is far from obvious even
though we have access to the preprocessing rule of Fomin et al. For instance, each time we
locate a vertex in N(X) and remove it, the preprocessing rule could kick in again and even
remove vertices of X. A similar issue arises in the recent work of Choudhary et al. [6] for
Feedback Vertex Set on linear hypergraphs (whose incidence graphs are K2,2-free). As
a result, they needed to design problem specific preprocessing rules that heavily utilize the
fact that they are dealing with deletion to graphs of treewidth 1. Moreover, their approach
only works when the input incidence graph is K2,2-free and extending it to our far more
general setting appears to be a challenging task.

Our approach

To overcome the obstacle described above, we take a different route and use the notion of
unbreakability [5] to argue that if we “zoom into” a subgraph that is large enough, has high
treewidth, is separated from the rest of the graph by a small boundary and is unbreakable,
then it is possible to identify sufficiently many vertices from N(X) and a domination core
can be extracted from this [34, 11, 12]. This is the main technical contribution of the paper
and we believe that this approach can find further applications.

Our algorithm relies on Lemma 11 and Lemmas 13-16. Out of these, the next three
lemmas correspond to the three main cases that we will encounter in our algorithm. In the
following three lemmas, let G⋆ denote the input incidence graph, let G and H be Kd,d-free
t-boundaried d-compatible incidence graphs (t ≤ 2τ ′) with the same boundary type such
that G⋆ = G⊕H . Moreover, suppose that |∂(G)| ≤ 2τ ′ and G is (δ′, τ ′)-unbreakable. Recall
that ∂(G) and ∂(H) denote the boundaries of G and H respectively. Moreover, we use n to
denote the number of vertices in the incidence graph under consideration.

The first lemma states that if G has sufficiently high tree-width, then it is possible to
compute a small family of clause-sets, each containing few clauses, such that if G⋆ contains
a small variable set S⋆ such that deleting its neighborhood reduces the treewidth of G
significantly, then in at least one of these clause-sets, every clause contains a variable of S⋆.
In graph-theoretic terms, it shows that one can compute a small family of small clause-vertex
sets, such that in at least one of these small clause-vertex sets, every vertex is adjacent to S⋆.
▶ Lemma 13 (Case 1: High treewidth piece). Suppose tw(G) > ∆. Let S⋆ ⊆ var(G⋆) be such
that |S⋆| ≤ k and tw(G⋆ −NG⋆ [S⋆]) ≤ η. There is an algorithm that, given G⋆, G and H as
input, runs in time (δ′)O(dτ ′)nO(1), and outputs a family Q of subsets of cla(G⋆) of size τ
each, with the following properties.
1. |Q| = (δ′)O(dτ ′), and
2. there exists Q ∈ Q such that each clause in Q contains a variable from S⋆.

The following lemma is used to handle a situation similar to that above, with the only
difference being that the treewidth of G is not too high. On the other hand, it is also high
enough to ensure that any weak F -minor-free-backdoor set of G⋆ intersects G in at least one
vertex. The proof of this lemma uses Arnborg et al.’s extension [1] of Courcelle’s Theorem and
the fact that the existence of a small weak F-minor-free-backdoor set is CMSO-expressible
(see, for example, [23]). We refer the reader to [7, 1, 8] for a detailed introduction to CMSO.
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▶ Lemma 14 (Case 2: Moderately-high treewidth piece). Suppose that η < tw(G−∂(G)) ≤ ∆.
We can compute a set S ⊆ var(G) in time g(η, k, d) · nO(1) for some computable function g,
such that the following hold.
1. S has size at most g(η, k, d), and
2. S has a non-empty intersection with a weak F-minor-free-backdoor set of size at most k

for G⊕H (if one exists).

The next lemma shows that if G has low-treewidth but has a large number of vertices,
then one can obtain a strictly smaller, equivalent instance by closely following the graph-
replacement arguments used by Fomin et al. [13], which in turn was inspired by ideas used
in [19] for kernelization.

▶ Lemma 15 (Case 3: Low treewidth piece). Suppose that |V (G)| ≥ δ and tw(G− ∂(G)) ≤ η.
Then, there is a Kd,d-free incidence graph G′ such that the following hold.
1. |V (G′)| < |V (G⋆)|.
2. For every γ ≤ k, ψ(G⋆) has a weak F-minor-free-backdoor set S of size at most γ if and

only if ψ(G′) has a weak F-minor-free-backdoor set S′ of size at most γ.
3. Given G⋆, G and H, one can obtain G′ in time ĝ(F , k, d) · nO(1) for some computable

function ĝ.

Having stated the three central lemmas that we will be using, we next demonstrate
an immediate application of Lemma 13, following which we give the proof of Theorem 1
assuming the correctness of the three central lemmas.

Recall that Lemma 13 provides us a family of subsets of cla(G⋆) such that there is one
subset where each clause contains a variable from S. In the following lemma we explain
how to get a variable in S from such a family. The proof the lemma uses the concept of
domination core, which is used in the study of parameterized complexity of dominating set
on Kd,d-free graphs [34, 11, 12]. Recall that k > d.

▶ Lemma 16 (Domination core). There is an algorithm that, given a set ZC ⊆ cla(ϕ) of τ
clauses of a Kd,d-free formula ϕ, each of whose variable set intersects some fixed variable
set S ⊆ var(ϕ) of size at most k, runs in polynomial time and outputs a set ZV of at most d
variables that intersects S.

Proof. Let Z0
C = ZC . We define v1, . . . , vr ∈ var(ϕ) and C1, . . . , Cr ⊆ ZC as follows. For

every i ∈ [r], we select vi to be the lexicographically first variable disjoint from the previously
selected variables, that occurs most frequently among the clauses in the set Zi−1

C . We
set Zi

C := Ninc(ϕ)(vi) ∩ Zi−1
C . We now observe that for every i ∈ [d], either S intersects

{v1, . . . , vi} or |Zi
C | ≥ |Z

i−1
C |/k. This is because S has size at most k and every clause in ZC

contains a variable of S. In particular, we have that either S intersects ZV = {v1, . . . , vd} or
it must be the case that |Zd

C | ≥ k (since |Z0
C | ≥ kd+1), implying the existence of a Kd,d in

inc(ϕ), which is a contradiction. This completes the proof of the lemma. ◀

We are now ready to complete the proof of Theorem 1 assuming Lemmas 11-16. We
restate it here for the reader’s convenience.

▶ Theorem 1. For every d ∈ N, there is a computable function fd and an algorithm Ad that
satisfies the following:
1. Ad takes as input a Kd,d-free formula ϕ, a family F of graphs containing at least one

planar graph, and an integer k.
2. Ad runs in time fd(F , k) · |ϕ|O(d).
3. Ad either outputs a weak F-minor-free-backdoor set of ϕ of size at most k, or concludes

correctly that ϕ has no weak F-minor-free-backdoor set of size at most k.
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Proof. We focus on solving the decision version of the problem. This is because, if the input
is a yes-instance, then a weak F -minor-free backdoor set of size at most k can be computed
using self-reducibility. Let I = (ϕ,F , k) denote the input instance and let G be the incidence
graph of ϕ. Suppose that G has treewidth at most ∆. Then, one can use Courcelle’s theorem
to solve the problem (see, for example, [23, 26]). Hence, we may assume that G has treewidth
> ∆. In particular, |V (G)| > ∆. Now, using Proposition 9, we either conclude that G is
(δ′, τ ′)-unbreakable or we compute a (δ, τ ′)-witnessing separation.

In the first case, we define ∂(G) = ∅ and H to be an edgeless graph with ∂(H) = ∅. We
then invoke Lemma 13 to compute a set Q of size δ′O(dτ ′) comprising sets of τ clauses each
such that for some Q ∈ Q, each clause in Q contains a variable in some fixed weak backdoor
set S⋆ (if one exists). Recall that inc(ϕ) − Ninc(ϕ)[S⋆] has treewidth at most η, satisfying
the premise of Lemma 13. We then invoke Lemma 16 on every Q ∈ Q to compute a set
ZV of at most d · δ′O(dτ ′) variables that intersects S⋆. For every x ∈ ZV and α ∈ {0, 1}, we
recursively solve the problem on the instance Ix,α = (ϕ[x = α], k − 1). We conclude that I is
a yes-instance if and only if there is an x ∈ ZV and α ∈ {0, 1} such that Ix,α is a yes-instance.

Now, consider the second case, i.e., the case where we compute a (δ, τ ′)-witnessing
separation (X,Y ) for G. Notice that this separation satisfies the premises of Lemma 11 (by
taking the same δ, taking δ⋆ be δ′ and τ⋆ to be τ ′). Hence, we execute the algorithm of
this lemma to compute a separation (X̃, Ỹ ) of order at most 2τ ′ in G such that |X̃| ≥ δ and
G[X̃] is (δ′, τ ′)-unbreakable. Let G̃ = G[X̃] and let H̃ = G[Ỹ ]. At this point, we have that
|V (G̃)| ≥ δ, |∂(G̃)| ≤ 2τ ′ and G̃ is (δ′, τ ′)-unbreakable.

Consider the following three cases depending on whether the “piece” G̃− ∂(G̃) has high
treewidth or moderately-high treewidth or low treewidth. In each case, we will either strictly
reduce the size of the instance or compute a bounded set of variables upon which to branch.

Case 1: tw(G̃ − ∂(G̃)) > ∆. We invoke Lemma 13 with G := G̃ and H := H̃ to compute
Q and then Lemma 16 on the sets in Q as described above. This gives us a set ZV of at
most d · δ′O(dτ ′) variables that intersects a weak F-minor-free-backdoor set S⋆ of ϕ of
size at most k. Now, for every x ∈ ZV and α ∈ {0, 1}, we recursively solve the problem
on the instance Ix,α = (ϕ[x = α],F , k − 1). We conclude that I is a yes-instance if and
only if there is an x ∈ ZV and α ∈ {0, 1} such that Ix,α is a yes-instance.

Case 2: η < tw(G̃ − ∂(G̃)) ≤ ∆. We invoke Lemma 14 with G := G̃ and H := H̃ to
compute a set S ⊆ var(G) of size at most g(η, k, d) that has a non-empty intersection with
a weak F -minor-free-backdoor set of G of size at most k (if one exists). For every x ∈ S
and α ∈ {0, 1}, we recursively solve the problem on the instance Ix,α = (ϕ[x = α],F , k−1).
We conclude that I is a yes-instance if and only if there is an x ∈ S and α ∈ {0, 1} such
that Ix,α is a yes-instance.

Case 3: tw(G̃ − ∂(G̃)) ≤ η. We invoke Lemma 15 with G := G̃ and H := H̃ to compute
an equivalent instance (ϕ′,F , k) such that |ϕ′| < |ϕ| and recurse on (ϕ′,F , k).

This completes the description of our algorithm. Each step of the algorithm has running
time χ(η, d, k) for some computable function χ and at the end of each, we either make
2d · δ′O(dτ ′) recursive calls with a strictly smaller budget k or strictly reduce the size of the
instance. Hence, the running time follows. The correctness is derived from that of the three
main lemmas (Lemmas 13, 14, 15) and the domination core lemma (Lemma 16). ◀

It remains to prove the three main lemmas. Lemma 13 captures the new technical insight
at the heart of this work, and so we focus on that lemma in this extended abstract. We also
give a proof sketch of Lemma 14 and as the proof of Lemma 15 closely mirrors the algorithm
of Fomin et al. [13], we omit the details of this lemma in this extended abstract.
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3.2 Handling unbreakable boundaried instances
Protrusions

For a graph G and S ⊆ V (G), we define ∂G(S) as the set of vertices in S that have a neighbor
in V (G)\S. For a set S ⊆ V (G) the neighborhood of S is NG(S) = ∂G(V (G)\S). When it is
clear from the context, we omit the subscripts. An r-protrusion in a graph G is a set X ⊆ V
such that |∂(X)| ≤ r and tw(G[X]) ≤ r. The size of a protrusion is the number of vertices in
it. An α-cover in G is a set S such that

∑
v∈S d(v)) ≥ α ·

∑
v∈V (G) d(v) = 2α|E(G)|. Here,

d(v) denotes the degree of the vertex v.
We begin with the following lemma that states that if a graph does not have large

r-protrusions and there is a set Z of vertices whose deletion results in a graph of constant
treewidth, then a constant fraction of the edge-set is incident on Z.

▶ Lemma 17. Let r = 2η + 2, and α = 1
18(η+1)2 . Let J be a graph and Z ⊆ V (J) such that

tw(J − Z) ≤ η. If J has no r-protrusion of size at least r′, then Z is an α
r′ -cover of J .

Lemma 17 can be inferred directly from the proof of Lemma 3 in [14], although it does
not state concrete values for the various parameters involved in the statement. The following
lemma provides a procedure to extract, from a given Kd,d-free incidence graph with no large
protrusions, a small set of clauses such that at least one of the clauses in this set contains a
backdoor variable.

▶ Lemma 18 (Protrusion-free instances). Let J be a Kd,d-free incidence graph and let
k, r′ ∈ N. Let S ⊆ var(J) be a non-empty inclusion-wise minimal set such that |S| ≤ k and
tw(J −N [S]) ≤ η. Moreover, suppose that J has no (2η + 2)-protrusion of size at least r′.
There is an algorithm that, given J , runs in polynomial time, and outputs a subset D of
cla(J) such that |D| = (k · η · r′)O(d), and there exists a clause C ∈ D that contains a variable
from S.

Proof. Since J is an incidence graph, S is a variable set, and tw(J −N [S]) ≤ η, it follows
that tw(J − N(S)) ≤ η. Invoking Lemma 17 with Z = N(S), we infer that N(S) is an
α′

r′ -cover of J , where α′ = 1
18(η+1)2 . Let α = α′

k·r′ , g = α
2d , and h =

∏d−1
i=0 (α − ig). Let

X = var(J) and C = cla(J). Now we define a weight function w on C as follows. For every
C ∈ C, w(C) = d(C)

m , where m is the number of edges in J and d(C) denotes the degree of
the vertex C in J . Extending the weight function to sets in the natural way, we conclude
that w(C) =

∑
C∈C w(C) = 1 by definition. It will be useful to keep in mind that picking

an edge of J uniformly at random and picking the clause-vertex that appears as one of the
endpoints of this edge corresponds to picking a vertex C ∈ C with probability w(C).

Next, we identify sufficiently small sets Y ⊆ X and D′ ⊆ C and prove that either S∩Y ≠ ∅
or NJ(S) ∩ D′ ̸= ∅. The sets D′ and Y are defined as follows: D′ is the set of vertices in C
whose weight is greater than g and Y is the set of vertices in X such that it has no neighbor
in D′, and the sum of weights on its neighbors is at least α. Formally,

D′ = {y ∈ C | w(y) > g}

Y = {x ∈ X \N(D′) | w(N(x)) ≥ α}

Notice that for every x ∈ Y , |N(x) \ D′| ≥ 2d. This is because w(N(x)) ≥ α = 2gd and
every clause in C \ D′ has weight at most g.

▷ Claim 19. Either N(S) ∩ D′ ̸= ∅ or S ∩ Y ̸= ∅.

We next claim that the sets D′ and Y are sufficiently small for our purposes.

ICALP 2022



91:14 Backdoor Sets on Nowhere Dense SAT

▷ Claim 20. |D′| ≤ 36(η + 1)2d · k · r′ and if N(S)∩D′ = ∅, then |Y | ≤ d · (36k · r′(η+ 1)2)d.

Given the above two claims, the algorithm is straightforward. We first construct D′ and
Y . If |Y | ≤ d · (36k · r′(η + 1)2)d, then we output a set D which is the union of D′ and a
set of clauses comprising one arbitrary neighbor of each vertex in Y . Otherwise, we simply
output D = D′. From Claim 20, it follows that the size of D is bounded by (k · η · r′)O(d).
Moreover, from both claims above, we conclude that some clause in D contains a variable
in S. Since computing D′ and Y can be done in polynomial time, this algorithm runs in
polynomial time as required. This completes the proof of the lemma. ◀

In the following, let G and H be Kd,d-free t-boundaried d-compatible incidence graphs
(t ≤ 2τ ′) with the same boundary type, |∂(G)| ≤ 2τ ′ and G is (δ′, τ ′)-unbreakable. Recall
that ∂(G) and ∂(H) denote the boundaries of G and H respectively. Throughout this section,
we denote by G⋆, the graph G⊕H.

▶ Lemma 13 (Case 1: High treewidth piece). Suppose tw(G) > ∆. Let S⋆ ⊆ var(G⋆) be such
that |S⋆| ≤ k and tw(G⋆ −NG⋆ [S⋆]) ≤ η. There is an algorithm that, given G⋆, G and H as
input, runs in time (δ′)O(dτ ′)nO(1), and outputs a family Q of subsets of cla(G⋆) of size τ
each, with the following properties.
1. |Q| = (δ′)O(dτ ′), and
2. there exists Q ∈ Q such that each clause in Q contains a variable from S⋆.

Proof. First we prove the following claim that will allow us to invoke Lemma 18 on certain
subraphs of G.

▷ Claim 21. For every set R ⊆ V (G) of size at most τ , G − R does not contain a
(2η + 2)-protrusion of size at least δ′ + 2η + 2

Proof. For the sake of contradiction, suppose there exists R ⊆ V (G) of size at most τ and
A ⊆ V (G−R) such that G[A] is a (2η + 2)-protrusion of size at least δ′ + 2η + 2. That is,
|∂G−R(A)| ≤ 2η+2 and |A| ≥ δ′ +2η+2. Set X = A∪R and Y = R∪(V (G)\(A\∂G−R(A)))
and observe that (X,Y ) is a separation in G of order at most |R|+|∂G−R(A)| ≤ τ+2η+2 = τ ′,
and |X\Y | = |A\∂G−R(A)| ≥ δ′. We now claim that |Y \X| = |V (G)\(A∪R)| ≥ δ′. Suppose
to the contrary that |V (G)\(A∪R)| < δ′. Then, tw(G) ≤ tw(G[A])+ |V (G)\(A∪R)|+ |R| ≤
2η + 2 + δ′ + τ ≤ ∆, which is a contradiction to the premise of the lemma. ◁

We next define a recursive procedure FindClauses. The input to FindClauses is G, a set
R ⊆ cla(G) and an integer q ∈ {1, . . . , τ} such that |R|+ q = τ . The output is a family Q′ of
subsets of cla(G) \R of size q each, such that |Q′| ≤ (k · η · δ′)c·d·q, for some constant c > 0.
The following are the steps of the procedure FindClauses(G,R, q).

1: First we apply Lemma 18 where J = G − R and r′ = δ′ + 2η + 2 (the above claim
guarantees that the premise of this lemma is satisfied by this choice of J and r′). Let D
be the output of the algorithm of Lemma 18.

2: If q = 1, then we output {{C} | C ∈ D} and stop.
3: If q > 1, then for each C ∈ D, we recursively call the procedure FindClauses with input

G, R ∪ {C} and q − 1 to obtain a set QC . Let Q′
C = {Q ∪ {C} | Q ∈ QC}. We return

Q′ =
⋃

C∈D Q′
C and stop.

Let c be a constant such that the output of Lemma 18 (i.e., D) has cardinality bounded
by (k · η · r′)c·d. It can be proved that |Q′| ≤ (k · η · δ′)c·d·q by induction on q.
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As the number of nodes in the recurrence tree is bounded by |Q′| and the algorithm
in Lemma 18 runs in polynomial time, the running time of the procedure FindClauses is
bounded by |Q′| · nO(1).

Before moving to the description of the main algorithm of this lemma, we develop some
additional notation. For every Z ⊆ ∂(G), let Z ′ = cla(Z)∪ {c ∈ cla(G) | ∃v ∈ c : v ∈ var(Z)}
and let Z ′′ be the subset of Z ′ comprising the (lexicographically) first min{τ, |Z ′|} elements.
In other words, if Z ′ has at least τ elements, then we truncate it to size τ and obtain Z ′′

and otherwise, Z ′′ = Z ′.
We are now ready to describe our main algorithm. We begin by setting Q := ∅. We then

compute Z ′′ for every Z ⊆ ∂(G) and for every Z ′′ such that |Z ′′| = τ , we set Q = Q ∪ {Z ′′}.
For every Z ′′ such that |Z ′′| < τ , we set Q′

Z′′ ← FindClauses(G,Z ′′, τ − |Z ′′|) and we set
Q = Q ∪ {{Q} ∪ Z ′′ | Q ∈ Q′

Z′′}. When we have completed iterating over all Z ⊆ ∂(G) and
updating Q, we return it.

The correctness of the algorithm results from the following claim.

▷ Claim 22. There exists Q ∈ Q such that each clause in Q contains a variable from S⋆.

It remains to argue the size bound on the output family and the running time of the
algorithm. Since q ≤ τ in every call to FindClauses and we have at most 2|∂(G)| ≤ 2τ ′ such
calls it follows that the cardinality of the output family is bounded by (k · η · δ′)c·d·τ · 22τ ′

which is upper bounded by (δ′)O(dτ ′). By the same reasoning and from the upper bound on
the running time of FindClauses, the running time of this algorithm is (δ′)O(dτ ′)nO(1). ◀

3.3 Handling boundaried instances with moderately high treewidth
▶ Definition 23 (Label-wise isomorphism). Let G1 and G2 be two graphs, and let t be a fixed
positive integer. For i ∈ {1, 2}, let fGi be a function that associates with every vertex of
V (Gi) some subset of [t]. The image of a vertex v ∈ Gi under fGi

is called the label of that
vertex. We say that that G1 is label-wise isomorphic to G2, and denote it by G1 ∼=t G2, if
there is a map h : V (G1)→ V (G2) such that (a) h is one to one and onto; (b) (u, v) ∈ E(G1)
if and only if (h(u), h(v)) ∈ E(G2) and (c) fG1(v) = fG2(h(v)). We call h a label-preserving
isomorphism.

Notice that the first two conditions of Definition 23 simply indicate that G1 and G2 are
isomorphic. Now, let G be a t-boundaried graph with t distinguished vertices, uniquely
labeled from 1 to t. Given such a t-boundaried graph G, we define a canonical labeling
function µG : V (G)→ 2[t]. The function µG maps every distinguished vertex v with label
ℓ ∈ [t] to the set {ℓ}, that is µG(v) = {ℓ}, and for all vertices v ∈ V (G) \ ∂(G) we have that
µG(v) = ∅.

Next we define a notion of labeled edge contraction. Let H be a graph together with a
function fH : V (H)→ 2[t] and (u, v) ∈ E(H). Furthermore, let H ′ be the graph obtained
from H by identifying the vertices u and v into wuv, removing all the parallel edges and
removing all the loops. Then by labeled edge contraction of an edge (u, v) of a graph H, we
mean obtaining a graph H ′ with the label function fH′ : V (H ′)→ 2[t]. For x ∈ V (H ′)∩V (H)
we have that fH′(x) = fH(x) and for wuv we define fH′(wuv) = fH(u) ∪ fH(v). Now we
introduce a notion of labeled minors of a t-boundaried graph. Let H be a graph together
with a function f : V (H) → 2[t] and G be a t-boundaried graph with canonical labeling
function µG. A graph H is called a labeled minor of G, if we can obtain a labeled isomorphic
copy of H from G by performing edge deletion and labeled edge contraction. The h-folio of
a t-boundaried graph G is the set Mh(G) of all t-labeled minors of G on at most h vertices.
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▶ Lemma 14 (Case 2: Moderately-high treewidth piece). Suppose that η < tw(G−∂(G)) ≤ ∆.
We can compute a set S ⊆ var(G) in time g(η, k, d) · nO(1) for some computable function g,
such that the following hold.
1. S has size at most g(η, k, d), and
2. S has a non-empty intersection with a weak F-minor-free-backdoor set of size at most k

for G⊕H (if one exists).

Proof. Fix a weak F-minor-free-backdoor set S⋆ in G⋆. Since G− ∂(G) has treewidth at
least η + 1, it must be the case that S⋆ intersects V (G). We ensure that the variables in
∂(G) are added to the returned set S and so, we may assume henceforth that S⋆ is disjoint
from ∂(G).

Let S⋆
1 = S⋆∩V (G). Let τ⋆ : S⋆ → {0, 1} be a partial assignment such that the incidence

graph of ϕ[τ⋆] is F-minor free and let τ : var(ϕ)→ {0, 1} be a satisfying assignment for ϕ
that extends τ⋆. Let τ⋆

1 denote the restriction of τ⋆ to S⋆
1 . Let Zkill ⊆ ∂(G) denote those

clauses in ∂(G) that are satisfied by τ⋆ and hence do not appear in ϕ[τ⋆]. Let Zsatext ⊆ ∂(G)
denote those clauses on the boundary that survive in ϕ[τ⋆] and have at least one neighbor
disjoint from V (G) that satisfies it according to τ . Consider the t′-boundaried graph G′

1
obtained from G by restricting the vertex set to those vertices that survive in inc(ϕ[τ⋆]).
Notice that the boundary of G′ is precisely ∂(G) \Zkill. Finally, consider the h-folioMh(G′

1)
where h is an upper bound on the largest graph in F . The labels of the graphs in Mh(G′

1)
correspond to the vertices in ∂(G) \ Zkill.

Now, let S⋆
2 ⊆ var(G) \ ∂(G), τ⋆

2 : S⋆
2 → {0, 1} and τ̃ : var(G) → {0, 1} such that the

following hold:
|S⋆

2 | ≤ |S⋆
1 |,

τ̃ extends τ⋆
2 , τ̃ coincides with τ on var(∂(G)) and τ̃ satisfies all clauses in cla(G) \

(Zsatext ∪ Zkill),
Mh(G′

1) =Mh(G′
2) where G′

2 is the graph obtained from G by deleting Zkill and then
restricting the vertex set to those vertices that survive after instantiating the vertices in
S⋆

2 with τ⋆
2 .

▷ Claim 24. Ŝ = (S⋆ \ S⋆
1 ) ∪ S⋆

2 is also a weak backdoor set of ϕ of size at most k to
F -minor-free formulas.

In order to compute the required set S, it is sufficient to iterate over all r ∈ [k] (guessing
|S⋆

1 |), assignments to the variables in ∂(G) (guessing τ on the variables in the boundary), all
possible (pairs) of disjoint subsets of cla(∂(G)) (guessing Zsatext and Zkill) and all possible
t′-labeled minors on at most h vertices (guessing Mh(G′

1)) and decide whether there exists a
set S⋆

2 that satisfies the properties listed above and if yes, compute one. Finally, we return
the union of all such sets. Notice that the number of such iterations is bounded by a function
of η, k, d and hence the returned set has size at most g(η, k, d) for some computable function
g. Moreover, a set of the required kind in each iteration can be computed using Courcelle’s
theorem (see [23, 26] for MSO sentences capturing weak backdoors and minor exclusion). ◀

4 Hardness results for Backdoor Detection

Recall that an empty formula is a CNF formula with no clauses. Such formulas are trivially
satisfiable.

▶ Lemma 25. Let d, d′ ≥ 2 be two positive integers. There is a polynomial-time algorithm
that takes as input d, d′, an instance (U,S, k) of Set Cover and outputs a CNF formula ϕ
with the following properties:
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1. If (U,S, k) is a yes-instance of Set Cover, then ϕ has a strong/weak backdoor set of
size at most k to the class of empty formulas.

2. If ϕ has strong/weak backdoor set of size at most k to any subclass of Kd,d′-free formulas,
then (U,S, k) is a yes-instance of Set Cover.

Proof. Let (U,S, k) be the given instance of Set Cover. Now, we construct a CNF formula
ϕ as follows. For each element x ∈ U , we have a set of d′(k + 1) variables {xi,j | i ∈ [d′], j ∈
[k + 1]}. For each S ∈ S, we have a set of d variables {yS,i | i ∈ [d]}. Thus,

var(ϕ) = {xi,j | x ∈ U, i ∈ [d′], j ∈ [k + 1]} ∪ {yS,i | S ∈ S, i ∈ [d]}.

Next, we explain the construction of the set of clauses of ϕ. For each element x ∈ U , let
Sx be the family of sets in S that contain x. For each x ∈ U , we make d′(k + 1) + 1 clauses
as follows.

Cx = {yS,i, yS,i | S ∈ Sx, i ∈ [d]}, and
for all i ∈ [d′] and j ∈ [k + 1], Tx(i, j) = Cx ∪ {xi,j , xi,j}.

This completes the construction of ϕ. It is easy to verify that the construction can be done
in polynomial time.

Next we prove the correctness of the algorithm. Consider the first statement. Let P be a
solution for (U,S, k) of Set Cover. We claim that Z = {yS,1 | S ∈ P} is a strong backdoor
set as well as a weak backdoor set of ϕ of size at most k to the class of empty formulas.
Since P is a set cover, we have that for any x ∈ U , Cx contains a variable from Z, which
appears both positively and negatively in Cx. Thus, for any assignment for the variables in
Z, Cx is satisfied for all x ∈ U . This also implies that for any x ∈ U, i ∈ [d′], and j ∈ [k + 1],
Tx(i, j) is satisfied because Cx ⊆ Tx(i, j). In other words, every clause is satisfied by every
assignment to Z. This shows that Z is a strong backdoor set of ϕ of size at most k to the
class of empty formulas. Since each such sub-formula is trivially satisfiable, we also conclude
that every assignment to the variables in Z can be extended to a satisfying assignment of ϕ.
This implies that Z is also a weak backdoor set of ϕ of size at most k to the class of empty
formulas.

We now prove the second statement. Let Z be a strong or weak C-backdoor set of size at
most k for the CNF formula ϕ, where C is a subclass of Kd,d′ -free formulas. Let,

P = {S ∈ S | there exists j ∈ [d] such that yS,j ∈ Z}.

We prove that P is indeed a solution for the Set Cover instance (U,S, k). Since |Z| ≤ k,
we have that |P| ≤ k. For the sake of contradiction assume that P is not a set cover
of (U,S). Then, there exists an element x ∈ U that does not belong to any set in P.
This implies that none of the variables in Cx is present in Z. Consider the set of clauses
T = {Tx(i, j) | i ∈ [d′], j ∈ [k+1]}. Cx is a subset of every clause in T . Moreover, the clauses
in {Tx(i, j)\Cx | i ∈ [d′], j ∈ [k+1]} have pairwise disjoint variable sets. Since var(Cx)∩Z = ∅
and |Z| ≤ k, there exists j ∈ [k+ 1] such that the clauses Tx(1, j), . . . Tx(d′, j) do not contain
a variable from Z. Let Q be an arbitrary set in S containing x. Notice that yQ,1, . . . , yQ,d /∈ Z
because of our assumption that x is not covered by P. As yQ,1, . . . , yQd

∈ var(Cx), we have
that yQ,1, . . . , yQ,d ∈ var(Tx(i, j)) for all i ∈ [d′]. That is, the subgraph of inc(ϕ) induced on
yQ,1, . . . , yQ,d and Tx(1, j), . . . , Tx(d′, j) forms a Kd,d′ . Moreover this subgraph remains in
the incidence graph of the formula obtained by simplifying ϕ based on any assignment to Z.
This is a contradiction to the assumption that Z is a strong/weak C-free backdoor set for ϕ.
This completes the proof of the second statement. ◀

Lemma 25 implies Theorem 4 as argued in Section 1.
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5 Conclusion

We have shown the fixed-parameter tractability of SAT parameterized by the size of a
smallest weak backdoor to bounded-treewidth formulas, when the input belongs to the class
of formulas whose incidence graphs are Kd,d-free. This implies the same result when the
incidence graph of the input formula excludes a fixed (topological) minor or is from a class
of bounded expansion or even from a nowhere-dense graph class. Thus, our main result
advances our understanding of the parameterized complexity of SAT well beyond previously
studied sparse inputs. In fact, we have shown that all nowhere-dense input formulas are
tractable in this setting and moreover, by extending our result to biclique-free formulas, we
have also identified natural classes of tractable formulas incomparable with nowhere-dense
classes, i.e., formulas of bounded degeneracy.

We also reiterate that our main objective was to obtain a classification result and so, we
have not attempted to optimize the running time and relied on invocations to Courcelle’s
theorem where it is standard in the literature on backdoor set detection. However, given the
single-exponential (in k) running time of the algorithms in [13] that significantly improved
upon similarly large exponential factors in [23, 26], it is not unreasonable to expect targeted
research in this direction to yield similar speed-ups. A promising starting point towards this
could be to consider subclasses of biclique-free graphs (e.g., graphs of bounded expansion)
and identify those input classes where such a single-exponential dependence on k can be
achieved.
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Abstract
The classical coding theorem in Kolmogorov complexity states that if an n-bit string x is sampled
with probability δ by an algorithm with prefix-free domain then K(x) ≤ log(1/δ) + O(1). In a recent
work, Lu and Oliveira [31] established an unconditional time-bounded version of this result, by
showing that if x can be efficiently sampled with probability δ then rKt(x) = O(log(1/δ)) + O(log n),
where rKt denotes the randomized analogue of Levin’s Kt complexity. Unfortunately, this result is
often insufficient when transferring applications of the classical coding theorem to the time-bounded
setting, as it achieves a O(log(1/δ)) bound instead of the information-theoretic optimal log(1/δ).

Motivated by this discrepancy, we investigate optimal coding theorems in the time-bounded
setting. Our main contributions can be summarised as follows.

• Efficient coding theorem for rKt with a factor of 2. Addressing a question from [31],
we show that if x can be efficiently sampled with probability at least δ then rKt(x) ≤ (2 + o(1)) ·
log(1/δ) + O(log n). As in previous work, our coding theorem is efficient in the sense that it provides
a polynomial-time probabilistic algorithm that, when given x, the code of the sampler, and δ, it
outputs, with probability ≥ 0.99, a probabilistic representation of x that certifies this rKt complexity
bound.

• Optimality under a cryptographic assumption. Under a hypothesis about the security of
cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a
bound of the form rKt(x) ≤ (2 − o(1)) · log(1/δ) + poly(log n). Under a weaker assumption, we
exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal
parameters.

• Optimal coding theorem for pKt and unconditional Antunes-Fortnow. We consider pKt

complexity [17], a variant of rKt where the randomness is public and the time bound is fixed. We
observe the existence of an optimal coding theorem for pKt, and employ this result to establish an
unconditional version of a theorem of Antunes and Fortnow [5] which characterizes the worst-case
running times of languages that are in average polynomial-time over all P-samplable distributions.
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1 Context and Background

A sampler is a probabilistic function that outputs Boolean strings. For any string x ∈ {0, 1}∗

in its range, let µ(x) denote the probability with which x is generated. The Coding Theorem
in Kolmogorov complexity states that if the sampler is computable and its domain is a
prefix-free set, then for every x in its range

K(x) ≤ log(1/µ(x)) + O(1),

where K(·) is the prefix-free Kolmogorov complexity. In other words, strings that are sampled
with non-trivial probability have short representations. Note that the coding theorem achieves
optimal expected length, since no uniquely decodable code can have expected length smaller
than

∑
µ(x) log2(1/µ(x)), the entropy of the sampler (the sum is over all x in the range of

the sampler, assumed here to be finite).
The coding theorem is a central result in Kolmogorov complexity.1 While it has found a

number of applications in theoretical computer science (see, e.g., [28, 25, 1]), it comes with an
important caveat: many aspects of the theory of Kolmogorov complexity are non-constructive.
For instance, there is provably no algorithm that estimates K(x). Similarly, for arbitrary
samplers, there is no effective compressor achieving the short representation provided by the
coding theorem2 and also no upper bound on the running time required to decompress x

from it.
In order to translate results and techniques from Kolmogorov complexity to the setting

of efficient algorithms and computations, several time-bounded variants of Kolmogorov
complexity have been proposed. We refer to the book [29], thesis [25], and surveys [2, 3, 16, 4]
for a comprehensive treatment of this area and its numerous applications to algorithms,
complexity, cryptography, learning, and pseudorandomness, among other fields. We highlight
that many exciting new results, which include worst-case to average-case reductions for NP
problems [20, 21] and complexity-theoretic characterizations of one-way functions [30, 36], rely
in a crucial way on time-bounded Kolmogorov complexity. These recent developments further
motivate the investigation of key results from Kolmogorov complexity in the time-bounded
setting.

In time-bounded Kolmogorov complexity we consider the minimum description length
of a string x with respect to machines that operate under a time constraint. We informally
review next two central notions in this area (see Section A for precise definitions). For a
Turing machine M, we let |M| denote its description length according to a fixed universal
machine U . M(ε) denotes the computation of M over the empty string.

Kt Complexity. [26] This notion simultaneously considers description length and running
time when measuring the complexity of a string x.

Kt(x) = min
TM M, t≥1

{|M| + log t | M(ε) outputs x in t steps} .

Kt Complexity. [37] In contrast with Kt, here we fix the time bound t : N → N, and consider
the minimum description with respect to machines that run in time at most t(|x|).

Kt(x) = min
TM M

{|M| | M(ε) outputs x in t(|x|) steps} .

1 For instance, [25] describes it as one of the four pillars of Kolmogorov complexity.
2 However, there exists a probabilistic polynomial-time compressor that given x and an integer m ≥

log(1/µ(x)) outputs a description of x of length m + small polylogarithmic overhead [6].
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While Kt complexity is tightly related to optimal search algorithms (see [24] for a recent
application), Kt is particularly useful in settings where maintaining a polynomial bound on
the running time t is desired (see, e.g., [20]).

Antunes and Fortnow [5] introduced techniques that can be used to establish (conditional)
coding theorems for Kt and Kt. In particular, if a sampler runs in polynomial time and
outputs a string x with probability at least δ, then Kt(x) ≤ log(1/δ) + O(log n). Note that
this coding theorem also achieves an optimal dependence on the probability parameter δ.
However, the results of [5] rely on a strong derandomization assumption. For this reason,
their application often lead to conditional results.

More recently, [31] established an unconditional coding theorem for a randomized analogue
of Kt complexity. Before explaining their result, we review the definitions of rKt and rKt.3

rKt Complexity. [35] In this definition, we consider randomized machines that output x

with high probability.

rKt(x) = min
RTM M, t≥1

{|M| + log t | M(ε) outputs x in t steps with probability ≥ 2/3} .

rKt Complexity. [10, 32]4 This is the randomized analogue of Kt, where the time bound t

is fixed in advance.

rKt(x) = min
RTM M

{|M| | M(ε) outputs x in t(|x|) steps with probability ≥ 2/3} .

In both cases, we can think of the randomized Turing machine M as a probabilistic
representation of the input string x, in the sense that x can be recovered with high probability
from its description. These measures allow us to employ methods from time-bounded
Kolmogorov complexity in the setting of randomized computation, which is ubiquitous in
modern computer science. For instance, [35, 32] employed rKt and rKt to obtain bounds on
the compressibility of prime numbers and other objects and to show that certain problems
about time-bounded Kolmogorov complexity can be intractable. We note that, under
derandomization assumptions (see [35]), for every string x, rKt(x) = Θ(Kt(x)). Similarly,
one can conditionally show that Kt(x) is essentially rKt(x), up to a O(log |x|) additive
term (see [17]). Consequently, insights obtained in the context of probabilistic notions of
Kolmogorov complexity can often inform the study of more classical notions such as Kt
and Kt.

Among other results, [31] established the following unconditional coding theorem in
time-bounded Kolmogorov complexity: if a sampler runs in polynomial time and outputs a
string x with probability at least δ, then rKt(x) = O(log(1/δ) + O(log n). While this result
can be used to port some applications of the coding theorem from Kolmogorov complexity to
the time-bounded setting, in many cases it is still insufficient. This is because its dependence
on the probability parameter δ is not optimal, which is often crucial in applications (see,
e.g., [5, 1]).

2 Results

In this work, we investigate optimal coding theorems in time-bounded Kolmogorov complexity.
We describe our results next.

3 See Appendix A for a formal treatment.
4 [10] refers to this notion as CBPt complexity.
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2.1 A Tighter Efficient Coding Theorem

Our first result addresses the question posed in [31, Problem 37].

▶ Theorem 1. Suppose there is an efficient algorithm A for sampling strings such that A(1n)
outputs a string x ∈ {0, 1}n with probability at least δ. Then

rKt(x) ≤ 2 log(1/δ) + O
(
log n + log2 log(1/δ)

)
,

where the constant behind the O(·) depends on A and is independent of the remaining
parameters. Moreover, given x, the code of A, and δ, it is possible to compute in time
poly(n, |A|), with probability ≥ 0.99, a probabilistic representation of x certifying this rKt-
complexity bound.

In [9, Lemma 4], it was observed that by hashing modulo prime numbers one can obtain
short descriptions of strings. As discussed in [31, Section A.2.1], for each efficient sampling
algorithm, this technique implies that if some string x is produced with probability ≥ δ,
then rKt(x) ≤ 3 log(1/δ) + O(log n).5 In contrast, Theorem 1 achieves a bound of the form
(2 + o(1)) · log(1/δ) + O(log n).

Theorem 1 readily improves some parameters in the applications of the coding theorem
for rKt discussed in [31], such as the efficient instance-based search-to-decision reduction for
rKt. We omit the details.

In [33, Section 3.1], we discuss extensions of this result. In particular, we describe precise
bounds on the running time used in producing the corresponding probabilistic representation,
and discuss computational aspects of the compression and decompression of x in detail. In
[33, Appendix A], we discuss the computation of a probabilistic representation of the string
x when one does not know a probability bound δ.

2.2 Matching Lower Bound Under a Cryptographic Assumption

It is possible to extend techniques from [5] to show the following conditional result (see [33,
Section 3.2]).

▶ Proposition 2. Assume there is a language L ∈ BPTIME
[
2O(n)] that requires nondetermin-

istic circuits of size 2Ω(n) for all but finitely many n. Suppose there is an efficient algorithm
A for sampling strings such that A(1n) outputs a string x ∈ {0, 1}n with probability at least
δ > 0. Then

rKt(x) ≤ log(1/δ) + O(log n).

While Proposition 2 provides a better bound than Theorem 1, the result is only existential,
i.e., it does not provide an efficient algorithm that produces a probabilistic representation of
x. In other words, Proposition 2 does not establish an efficient coding theorem. Our next
result shows that the bound achieved by Theorem 1 is optimal for efficient coding theorems,
under a cryptographic assumption.

5 The bound from [31, Section A.2.1] is different because it does not take into account the running time,
which incurs an additional overhead of log(1/δ).
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The Cryptographic Assumption. For a constant γ ∈ (0, 1), we introduce the γ-Crypto-
ETH assumption, which can be seen as a cryptographic analogue of the well-known exponential
time hypothesis about the complexity of k-CNF SAT [23]. Informally, we say that γ-
Crypto-ETH holds if there is a pseudorandom generator G : {0, 1}ℓ(n) → {0, 1}n computable
in time poly(n) that fools uniform algorithms running in time 2γ·ℓ(n). Any seed length
(log n)ω(1) ≤ ℓ(n) ≤ n/2 is sufficient in our negative results.

In analogy with the well-known ETH and SETH hypotheses about the complexity of
k-CNF SAT, we say that Crypto-ETH holds if γ-Crypto-ETH is true for some γ > 0, and
that Crypto-SETH holds if γ-Crypto-ETH is true for every γ ∈ (0, 1). Since a candidate PRG
of seed length ℓ(n) can be broken in time 2ℓ(n)poly(n) by trying all possible seeds, these
hypotheses postulate that for some PRGs one cannot have an attack that does sufficiently
better than this naive brute-force approach.

We stress that these assumptions refer to uniform algorithms. In the case of non-uniform
distinguishers, it is known that Crypto-SETH does not hold (see [15, 14, 13] and references
therein). We provide a formal treatment of the cryptographic assumption in [33, Section 4].

▶ Theorem 3 (Informal). Let γ ∈ (0, 1) be any constant. If γ-Crypto-ETH holds, there is no
efficient coding theorem for rKt that achieves bounds of the form (1 + γ − o(1)) · log(1/δ) +
poly(log n).

Theorem 3 shows that if Crypto-ETH holds then the best parameter achieved by an
efficient coding theorem for rKt is (1+Ω(1)) · log(1/δ)+poly(log n). This exhibits an inherent
gap in parameters between the efficient coding theorem (Theorem 1) and its existential
analogue (Proposition 2). On the other hand, if the stronger Crypto-SETH hypothesis holds,
then no efficient coding theorem for rKt achieves parameter (2 − o(1)) · log(1/δ) + poly(log n).
In this case, Theorem 1 is essentially optimal with respect to its dependence on δ.

Fine-grained complexity of coding algorithms for polynomial-time samplers. An rKt bound
refers to the time necessary to decompress a string x from its probabilistic representation.
On the other hand, an efficient coding theorem provides a routine that can compress x in
polynomial time. More generally, a coding procedure for a sampler A consists of a pair of
probabilistic algorithms (Compress, Decompress) that aim to produce a “good” codeword p

for every string y sampled by A. The quality of p depends on three values: the length of p,
the number of steps tC used to produce p from y (the compression time), and the number of
steps tD used to produce y from p (the decompression time). It is interesting to understand
the trade-off between these three values. Toward this goal, we aggregate them in a manner
similar to rKt, by defining the 2-sided-rKt complexity of y to be, roughly, |p| + log(tC + tD)
(the formal definition, see [33, Definition 25]), is more complicated because it takes into
account that Compress and Decompress are probabilistic). Thus according to 2-sided-rKt,
each bit gained by a shorter codeword is worth doubling the compression/decompression time.
For instance, for simple samplers (say, having a finite range, or generating strings with the
uniform distribution), there exist trivial polynomial time Compress and Decompress, which
in case y is sampled with probability at least δ, produce a codeword p with |p| = log(1/δ)
(provided Compress and Decompress know δ). Such a coding procedure certifies for each
sampled string a 2-sided-rKt complexity of log(1/δ) + O(log n). We say that the sampler
admits coding with 2-sided-rKt complexity bounded by log(1/δ) + O(log n). In general, we
have to include also the error probability of Compress and Decompress, which we omit in this
informal discussion.

Similarly to Theorem 1 and Theorem 3 (and also with similar proofs), we establish the
following theorem.
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▶ Theorem 4 (Informal). The following results hold.
(a) (Upper Bound) Every polynomial-time sampler admits coding with 2-sided-rKt complexity

2 log(1/δ) + O(log2 log(1/δ)) + O(log n).
(b) (Conditional Lower Bound) Let γ ∈ (0, 1) be any constant. If γ-Crypto-ETH holds, there

exists a polynomial-time sampler that does not admit coding with 2-sided-rKt complexity
bounded by (1 + γ − o(1)) · log(1/δ) + poly(log n), unless the error probability is greater
than 1/7.

2.3 An Optimal Coding Theorem and Unconditional Antunes-Fortnow
While Theorem 1 improves the result from [31] to achieve a bound that is tight up to a factor
of 2 and that is possibly optimal among efficient coding theorems, it is still insufficient in
many applications. We consider next a variant of rKt that allows us to establish an optimal
and unconditional coding theorem in time-bounded Kolmogorov complexity.

Fix a function t : N → N. For a string x ∈ {0, 1}∗, the probabilistic t-bounded Kolmogorov
complexity of x (see [17]) is defined as

pKt(x) = min
{

k

∣∣∣∣ Pr
w∼{0,1}t(|x|)

[
∃ M ∈ {0, 1}k, M(w) outputs x within t(|x|) steps

]
≥ 2

3

}
.

In other words, if k = pKt(x), then with probability at least 2/3 over the choice of the
random string w, x admits a time-bounded encoding of length k. In particular, if two parties
share a typical random string w, then x can be transmitted with k bits and decompressed in
time t = t(|x|). (Recall that here the time bound t is fixed, as opposed to rKt, where a log t

term is added to the description length.)
It is possible to show that Kt(x), rKt(x), and pKt(x) correspond essentially to the same

time-bounded measure, under standard derandomization assumptions [17].6 One of the
main benefits of pKt is that it allows us to establish unconditional results that are currently
unknown in the case of the other measures.7

▶ Theorem 5. Suppose there is a randomized algorithm A for sampling strings such that
A(1n) runs in time T (n) ≥ n and outputs a string x ∈ {0, 1}n with probability at least δ > 0.
Then

pKt(x) = log(1/δ) + O(log T (n)) ,

where t(n) = poly(T (n)) and the constant behind the O(·) depends on |A| and is independent
of the remaining parameters.

Theorem 5 provides a time-bounded coding theorem that can be used in settings where
the optimal dependence on δ is crucial. As an immediate application, it is possible to show an
equivalence between efficiently sampling a fixed sequence wn ∈ {0, 1}n of objects (e.g., n-bit
prime numbers) with probability at least δn/poly(n) and the existence of bounds for the

6 More precisely, under standard derandomization assumptions, pKt(x) and rKt′
(x) coincide up to an

additive term of O(log |x|), provided that t′ = poly(t). A similar relation holds between Kt and rKt.
7 While in this work we focus on coding theorems, we stress that pKt is a key notion introduced in [17]

that enables the investigation of meta-complexity in the setting of probabilistic computations. It has
applications in worst-case to average-case reductions and in learning theory.
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corresponding objects of the form pKpoly(wn) = log(1/δn) + O(log n).8 This is the first tight
equivalence of this form in time-bounded Kolmogorov complexity that does not rely on an
unproven assumption.

As a more sophisticated application of Theorem 5, we establish an unconditional form
of the main theorem from Antunes and Fortnow [5], which provides a characterization of
the worst-case running times of languages that are in average polynomial-time over all
P-samplable distributions.

We recall the following standard notion from average-case complexity (see, e.g., [8]). For
an algorithm A that runs in time TA : {0, 1}∗ → N and for a distribution D supported over
{0, 1}∗, we say that A runs in polynomial-time on average with respect to D if there is some
constant ε > 0 such that

E
x∼D

[
TA(x)ε

|x|

]
< 1.

As usual, we say that a distribution D is P-samplable if it can be sampled in polynomial
time.

▶ Theorem 6. The following conditions are equivalent for any language L ⊆ {0, 1}∗.
(i) For every P-samplable distribution D, L can be solved in polynomial-time on average

with respect to D.
(ii) For every polynomial p, there exists a constant b > 0 such that the running time of some

algorithm that computes L is bounded by 2O(pKp(x)−K(x)+b log(|x|)) for every input x.

In contrast, [5] shows a conditional characterisation result that employs Kt complexity in
the expression that appears in Item (ii).

3 Techniques

In this section, we provide an informal overview of our proofs and techniques.

Efficient Coding Theorem for rKt (Theorem 1). Breaking down the result into its compon-
ents, Theorem 1 shows that for any polynomial-time sampler A, there exist a probabilistic
polynomial-time algorithm Compress and an algorithm Decompress with the following proper-
ties: Compress on input an n-bit string x and δ (which estimates from below the probability
with which A samples x), returns a codeword cx of length log(1/δ) + poly(log n) such that
Decompress with probability ≥ 0.99 reconstructs x in time 1/δ · exp(poly(log n)). Note that
the probabilistic representation of x certifying the rKt bound in Theorem 1 can be obtained
from the codeword cx and Decompress, and that obtaining a running time with a factor
of (1/δ)1+o(1) is crucial in order to get a final rKt bound of the form (2 + o(1)) · log(1/δ).
(Actually, Compress does not have to depend on A, the 0.99 can be 1 − ε for arbitrary
ε > 0, and the poly(log n) term is O(log n + log2 log(1/δ)), but we omit these details in our
discussion). We explain what are the challenges in obtaining Compress and Decompress and
how they are overcome. We remark that the construction is different from the approaches
described in [31].

8 An efficient sampler immediately implies the corresponding pKt bounds via Theorem 5. On the other
hand, objects of bounded pKt complexity can be sampled by considering a random sequence of bits
and a random program of appropriate length. We refer to [31, Theorem 6] for a weaker relation and its
proof. Since the argument is essentially the same, we omit the precise details.
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Decompress can run the sampler K := O(1/δ) times and obtain a list of elements S∗ (the
list of suspects) that with high probability contains x. Compress has to provide information
that allows Decompress to prune S∗ and find x. Since the algorithms do not share randomness,
Compress does not know S∗, and so compression has to work for any S ⊆ {0, 1}n of size K,
only assuming that x ∈ S. Compress can use a bipartite lossless expander graph G, which
is a graph with the property that any set S of left nodes with size |S| ≤ K has at least
(1 − ε)D|S| neighbors, where D is the left degree. Such graphs are called ((1 − ε)D, K)
lossless expanders and they have numerous applications (see e.g., [11, 22]). An extension
of Hall’s matching theorem shows that for any set S of K left nodes, there is a matching
that assigns to each x ∈ S, (1 − ε)D of its neighbors, so that no right node is assigned
twice (i.e., the matching defines a subgraph with no collisions). Compress can just pick the
codeword cx to be one random neighbor of x. Then, Decompress can do the pruning of S∗

as follows. Having S∗ and cx, it does the matching, and, since with probability 1 − ε, cx is
only assigned to x, Decompress can find x. There is one problem though. The algorithms
for maximum matching in general bipartite graphs do not run in linear time (see [12, 34],
and the references therein). Therefore, the decompression time would have a dependency
on δ too large for us. Fortunately, lossless expanders can be used to do “almost” matching
faster. [6] introduces invertible functions (see [33, Definition 12]) for the more demanding
task in which the elements of S appear one-by-one and the matching has to be done in the
online manner. We do not need online matching, but we take advantage of the construction
in [6] to obtain a fast matching algorithm. It follows from [6], that in a lossless expander it is
possible to do a greedy-type of “almost” matching, which means that every left node in S is
matched to (1 − ε)D of its neighbors (exactly what we need), but with poly(log n) collisions.
The collisions can be eliminated with some additional standard hashing (see the discussion
on [33, Page 14] for details). As we explain on [33, Page 14], this leads to decompression
time K · D · poly(n) and the length of the codeword cx is log |R| + |hash-code|, where R is
the right set of the lossless expander. To obtain our result, the degree D has to be 2poly(log n)

and |R| has to be K · 2poly(log n).
Building on results and techniques from [18], [6] constructs a ((1−ε)D, K) explicit lossless

expander with left side {0, 1}n, degree D = 2d for d = O(log(n/ε) · log k), and right side R,
with size verifying log |R| = k + log(n/ε) · log k (where k := log K). To obtain in Theorem 1
the dependency on n to be O(log n) (which is optimal up to the constant in O(·)), we show
the existence of a ((1 − ε)D, K) explicit expander with d = O(log n + log(k/ε) · log k) and
log |R| = k + O(log n + log(k/ε) · log k). This lossless expander is constructed by a simple
composition of the above lossless expander from [6] with a lossless expander from [18], with
an appropriate choice of parameters (see [33, Section 3.1.1]).

Conditional Lower Bound for Efficient Coding Theorems (Theorem 3). Our goal is to
show that there is no efficient coding theorem for rKt that achieves bounds of the form
(1 + γ − o(1)) · log(1/δ) + poly(log n), under the assumption that γ-Crypto-ETH holds for
γ ∈ (0, 1). We build on an idea attributed to L. Levin (see e.g. [25, Section 5.3]). To provide
an overview of the argument, let Gn : {0, 1}ℓ(n) → {0, 1}n be a cryptographic generator of
seed length ℓ(n) = n/2 witnessing that γ-Crypto-ETH holds. In other words, Gn has security
2γ·ℓ(n) against uniform adversaries. We define a sampler Sn as follows. On input x ∈ {0, 1}n,
which we interpret as a random string, it outputs Gn(x′), where x′ is the prefix of x of
length ℓ(n). We argue that if an efficient algorithm F is able to compress every string y in
the support of Dist(Sn), the distribution induced by the sampler Sn, to an rKt encoding of
complexity (1 + γ − ε) · log(1/δ′(y)) + C · (log n)C , where δ′(y) is a lower bound on δ(y) (the
probability of y under Dist(Sn)), we can use F to break Gn. (Note that F expects as input
n, y, δ′, and code(S).)
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The (uniform) distinguisher D computes roughly as follows. Given a string z ∈ {0, 1}n,
which might come from the uniform distribution Un or from Gn(Uℓ(n)) ≡ Dist(Sn), D

attempts to use F to compress z to a “succinct” representation, then checks if the computed
representation decompresses to the original string z. If this is the case, it outputs 1, otherwise
it outputs 0. (Note that we haven’t specified what “succinct” means, and it is also not
immediately clear how to run F , since it assumes knowledge of a probability bound δ′. For
simplicity of the exposition, we omit this point here.) We need to argue that a test of this
form can be implemented in time 2γ·ℓ(n), and that it distinguishes the output of G from a
random string.

To achieve these goals, first note that a typical random string cannot be compressed
to representations of length, say, n − poly(log n), even in the much stronger sense of (time-
unbounded) Kolmogorov complexity. Therefore, with some flexibility with respect to our
threshold for succinctness, the proposed distinguisher is likely to output 0 on a random string.
On the other hand, if F implements an efficient coding theorem that achieves rKt encodings
of complexity (1+γ −ε) · log(1/δ′(y))+poly(log n), the following must be true. Using that the
expected encoding length of any (prefix-free) encoding scheme is at least H(Dist(Sn)), where
Dist(Sn) is the distribution of strings sampled by Sn and H is the entropy function, we get (via
a slightly stronger version of this result) that a non-trivial measure of strings y in the support
of Dist(Sn) have rKt encoding length at least (1 − ε/4) · log(1/δ(y)). Consequently, for such
strings, an upper bound on rKt complexity of (1+γ −ε) · log(1/δ′(y))+poly(log n) when δ′(y)
is sufficiently close to δ(y) implies that the running time t of the underlying machine satisfies
log t ≤ (γ − ε/2) log(1/δ(y)) + poly(log n). Using that ℓ(n) = n/2 and δ(y) ≥ 2−ℓ(n) for any
string y in the support of Dist(Sn), it is easy to check that (asymptotically) t ≤ 2(γ−ε/4)·ℓ(n).
For this reason, we can implement a (slightly modified) distinguisher D in time less than
2γ·ℓ(n), by trying different approximations δ′(z) for an input string z and by running the
decompressor on the produced representation for at most t steps on each guess for δ(z). By
our previous discussion, a non-trivial measure of strings from Dist(Sn) will be accepted by D,
while only a negligible fraction of the set of all strings (corresponding to the random case)
will be accepted by D.

Implementing this strategy turns out to be more subtle than this. This happens because
F is a probabilistic algorithm which does not need to commit to a fixed succinct encoding.
We refer to the formal presentation in [33, Section 4] for details, where we also discuss the
bound on the seed length ℓ(n).

Coding Theorem for pKt (Theorem 5) and Unconditional [5] (Theorem 6). The proof
of our optimal coding theorem for pKt builds on that of the conditional coding theorem
for Kt from [5], which can be viewed as a two-step argument. Roughly speaking, the first
step is to show that if there is a polynomial-time sampler that outputs a string x ∈ {0, 1}n

with probability δ, then the polynomial-time-bounded Kolmogorov complexity of x is about
log(1/δ) + O(log n) if we are given a random string. After this, they “derandomize” the
use of random strings using a certain pseudorandom generator, which exists under a strong
derandomization assumption. Our key observation is that the use of random strings arises
naturally in probabilistic Kolmogorov complexity, and particularly in this case the random
strings can be “embedded” into the definition of pKt. As a result, we don’t need to perform the
afterward derandomization as in original proof of [5], and hence get rid of the derandomization
assumption.

Next, we describe how to use Theorem 5, together with other useful properties of pKt,
to obtain an unconditional version of Antunes and Fortnow’s main result. Let µ be a
Kolmogorov complexity measure, such as Kpoly, rKpoly or pKpoly. The key notion in the proof
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is the distribution (in fact, a class of semi-distributions) called mµ, which is defined as
mµ(x) := 1/2µ(x). More specifically, following [5], it is not hard to show that, for every
language L, L can be decided in polynomial-time on average with respect to mµ if and
only if its worst-case running time is 2O(µ(x)−K(x)) on input x (see [33, Lemma 25]). Then,
essentially, to show our result we argue that L can be decided in polynomial time on average
with respect to mµ if and only if the same holds with respect to all P-samplable distributions.

Recall that if a distribution D dominates another distribution D′ (i.e., D(x) ≳ D′(x)
for all x) and L is polynomial-time on average with respect to D, then the same holds
with respect to D′ (see Definition 9 and Fact 10). Therefore, to replace mµ above with
P-samplable distributions, it suffices to show that mµ is “universal” with respect to the class
of P-samplable distributions, in the following sense.
1. mµ dominates every P-samplable distribution. (This is essentially an optimal source

coding theorem for the Kolmogorov measure µ.)
2. mµ is dominated by some P-samplable distribution.
The above two conditions require two properties of the Kolmogorov measure µ that are
somewhat conflicting: the first condition requires the notion of µ to be general enough so
that mµ can “simulate” every P-samplable distribution, while the second condition needs µ

to be restricted enough so that mµ can be “simulated” by some P-samplable (i.e., simple)
distribution. For example, if µ is simply the time-unbounded Kolmogorov complexity K (or
even the polynomial-space-bounded variant), then it is easy to establish an optimal source
coding theorem for such a general Kolmogorov measure; however it is unclear how to sample
in polynomial-time a string x with probability about 1/2K(x), so in this case µ does not satisfy
the second condition. On the other hand, if µ is some restricted notion of time-bounded
Kolmogrov complexity measure such as Kpoly or rKpoly, then one can obtain polynomial-time
samplers that sample x with probability about 1/2Kpoly(x) or 1/2Kpoly(x) (up to a polynomial
factor); however, as in [5], we only know how to show an optimal source coding theorem
for Kpoly (or rKpoly) under a derandomization assumption. Therefore, in this case µ does
not satisfies the first condition. Our key observation is that the notion pKpoly, which sits in
between K and Kpoly (or rKpoly),9 satisfies both conditions described above (see [33, Lemmas
36 and 37]).

4 Concluding Remarks and Open Problems

Our results indicate that Theorem 1 might be optimal among efficient coding theorems
for rKt, i.e., those that efficiently produce representations matching the existential bounds.
In the case of pKt, the corresponding coding theorem (Theorem 5) is optimal. We have
described a concrete application of Theorem 5 (Theorem 6). A second application appears
in [17]. In both cases, achieving an optimal dependence on the probability parameter δ is
critical, and for this reason, the result from [31] is not sufficient.

Naturally, we would like to understand the possibility of establishing an unconditional
coding theorem for rKt with an optimal dependence on the probability parameter δ. While
the validity of Crypto-ETH implies that no efficient coding theorem with this property exist,
we have an existential coding theorem of this form under a derandomization assumption
(Proposition 2). In the case of Kt complexity, it is known that an unconditional coding
theorem with optimal dependence on δ implies that EXP ̸= BPP (see [25, Theorem 5.3.4]).

9 We can show that for every x ∈ {0, 1}∗ and every computable time bound t : N → N, K(x) ≲ pKt(x) ≤
rKt(x) ≤ Kt(x).
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However, the techniques behind this connection do not seem to lead to an interesting
consequence in the case of rKt and rKt. Consequently, an optimal coding theorem for rKt
might be within the reach of existing techniques.

It would also be interesting to establish Theorem 3 under a weaker assumption, or to refute
Crypto-SETH. A related question is the possibility of basing Crypto-ETH on the existence of
one-way functions of exponential hardness. Existing reductions are not strong enough to
provide an equivalence between one-way functions and cryptographic pseudorandomness in
the exponential regime (see [38, 19]).

Finally, are there more applications of pKt complexity and of Theorem 5? Since this
coding theorem is both optimal and unconditional, we expect more applications to follow.
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A Definitions and Basic Results

Time-bounded Kolmogorov complexity. For a function t : N → N, a string x, and a
universal Turing machine U , let the time-bounded Kolmogorov complexity be defined as

Kt
U (x) = min

p∈{0,1}∗
{|p| | U(p) outputs x in at most t(|x|) steps} .
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A machine U is said to be time-optimal if for every machine M there exists a constant c such
that for all x ∈ {0, 1}n and t : N → N satisfying t(n) ≥ n,

Kct log t
U (x) ≤ Kt

M (x) + c,

where for simplicity we write t = t(n). It is well known that there exist time-optimal
machines [29, Th. 7.1.1]. In this paper, we fix such a machine U , and drop the index U

when referring to time-bounded Kolmogorov complexity measures. It is also possible to
consider prefix-free notions of Kolmogorov complexity. However, since all our results hold up
to additive O(log |x|) terms, we will not make an explicit distinction.

Henceforth we will not distinguish between a Turing machine M and its encoding p

according to U . If p is a probabilistic Turing machine, we define tp ∈ N ∪ {∞} to be the
maximum number steps it takes p to halt on input λ (the empty string), where the maximum
is over all branches of the probabilistic computation.

rKt complexity and probabilistic representations. A probabilistic representation of a string
x is a probabilistic Turing machine p that on input λ halts with x on the output tape
with probability at least 2/3. The rKt-complexity of a string x is the minimum, over all
probabilistic representations p of x, of p + log tp. A probabilistic representation p of x certifies
rKt-complexity bounded by Γ if |p| + log tp ≤ Γ.

Distributions and semi-distributions. We consider distributions over the set {0, 1}∗. We
will identify a distribution with its underlying probability density function of the form
D : {0, 1}∗ → [0, 1]. A distribution D is a semi-distribution if

∑
x∈{0,1}∗ D(x) ≤ 1, and is

simply called a distribution if the sum is exactly 1. In this subsection, we will use the word
“distribution” to refer to both distribution and semi-distribution.

Samplers. A sampler is a probabilistic algorithm A with inputs in {1}n such that A(1n)
outputs a string x ∈ {0, 1}n.10 It defines a family of distributions {µA,n}n∈N, where µA,n is
the distribution on {0, 1}n defined by µA,n(x) = PrA[A(1n) = x].

Average-case complexity. We now review some standard definitions and facts from average-
case complexity. We refer to the survey [8] for more details.

▶ Definition 7 (Polynomial-time Samplable [7]). A distribution D is called P-samplable if
there exists a polynomial p and a probabilistic algorithm M such that for every x ∈ {0, 1}∗,
M outputs x with probability D(x) within p(|x|) steps.

▶ Definition 8 (Polynomial Time on Average [27]). Let A be an algorithm and D be a
distribution. We say that A runs in polynomial-time on average with respect to D if there
exist constants ε and c such that,∑

x∈{0,1}∗

tA(x)ε

|x|
D(x) ≤ c,

10 For simplicity, we assume that A(1n) samples a string of length n. Our coding theorems also hold for
algorithms used to define P-samplable distributions, see Definition 7, with obvious changes in the proofs.
Also, as in [31], our results can be easily generalised to samplers that on 1n output strings of arbitrary
length. In this case, while the length of x might be significantly smaller than n, an additive overhead of
log n + O(1) is necessary in our coding theorems, as we need to encode 1n.
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where tA(x) denotes the running time of A on input x. For a language L we say that L

can be solved in polynomial time on average with respect to D if there is an algorithm that
computes L and runs in polynomial-time on average with respect to D.

▶ Definition 9 (Domination). Let D and D′ be two distributions. We say that D dominates
D′ if there is a constant c > 0 such that for every x ∈ {0, 1}∗,

D(x) ≥ D′(x)
|x|c

.

▶ Fact 10 (See e.g., [5, Lemma 3.3]). Let D, D′ be two distributions, and let A be an algorithm.
If

A runs in polynomial time on average with respect to D, and
D dominates D′

Then A also runs in polynomial time on average with respect to D′.
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We revisit recent developments for the Maximum Weight Independent Set problem in graphs
excluding a subdivided claw St,t,t as an induced subgraph [Chudnovsky, Pilipczuk, Pilipczuk,
Thomassé, SODA 2020] and provide a subexponential-time algorithm with improved running
time 2O(

√
n log n) and a quasipolynomial-time approximation scheme with improved running time

2O(ε−1 log5 n).
The Gyárfás’ path argument, a powerful tool that is the main building block for many algorithms

in Pt-free graphs, ensures that given an n-vertex Pt-free graph, in polynomial time we can find a
set P of at most t − 1 vertices, such that every connected component of G − N [P ] has at most
n/2 vertices. Our main technical contribution is an analog of this result for St,t,t-free graphs:
given an n-vertex St,t,t-free graph, in polynomial time we can find a set P of O(t log n) vertices
and an extended strip decomposition (an appropriate analog of the decomposition into connected
components) of G − N [P ] such that every particle (an appropriate analog of a connected component
to recurse on) of the said extended strip decomposition has at most n/2 vertices.
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1 Introduction

The complexity of the Maximum Weight Independent Set problem (MWIS for short),
one of the classic combinatorial optimization problems, varies depending on the restrictions
imposed on the input graph from polynomial-time solvable (e.g., in bipartite or chordal graphs)
through known to admit a quasipolynomial-time algorithm (graphs with bounded longest
induced path [15]), a polynomial-time approximation scheme and a fixed-parameter algorithm
(planar graphs [8]), a quasipolynomial-time approximation scheme (graphs excluding a fixed
subdivided claw as an induced subgraph [10, 11]), to being NP-hard and hard to approximate
within n1−ε factor in general graphs [20, 26]. A methodological study of this behavior leads
to the following question:

For which structures in the input graph, the assumption of their absence from the
input graph makes MWIS easier and by how much?

The “absence of structures” notion can be made precise by specifying the forbidden structure
and the containment relation, for example as a minor, topological minor, induced minor,
subgraph, or induced subgraph. The last one – induced subgraph relation – is the weakest
one, and thus the most expressible. This leads to the study of the complexity of MWIS in
various hereditary graph classes, that is, graph classes closed under vertex deletion and thus
definable by a (possibly infinite) list of forbidden induced subgraphs.

While a general classification of all hereditary graph classes with regards to the complexity
of MWIS (or other classic graph problems) may be too complex, classifying graph classes
with one forbidden induced subgraph looks more feasible. That is, we focus on H-free graphs,
graphs excluding a fixed graph H as an induced subgraph. Furthermore, the complexity of a
given problem (here, MWIS) in H-free graphs may indicate the impact of forbidding H as
an induced subgraph on the complexity of MWIS in more general settings.

As observed by Alekseev [5, 6], the fact that MWIS remains NP-hard and APX-hard
in subcubic graphs, together with the observation that subdividing every edge twice in a
graph increases the size of the maximum independent set by exactly the number of edges of
the original graph, leads to the conclusion that MWIS remains NP-hard and APX-hard in
H-free graphs unless every connected component of H is a path or a tree with three leaves.

In what follows, for integers t, a, b, c > 0, by Pt we denote the path on t vertices, and
by Sa,b,c we denote the tree with three leaves within distance a, b, and c from the unique
vertex of degree 3 of the tree. Since 1980s, it has been known that MWIS is polynomial-time
solvable in P4-free graphs (because of their strong structural properties) and in S1,1,1-free
graphs [23, 25] (because the notion of an augmenting path from the matching problem
generalizes to MWIS in S1,1,1-free, i.e., claw-free graphs). For many years, only partial
results in subclasses were obtained until the area started to develop rapidly around 2014.

Lokshtanov, Vatshelle, and Villanger [21] adapted the framework of potential maximal
cliques [9] to show a polynomial-time algorithm for MWIS in P5-free graphs; this was later
generalized to P6-free graphs [17] and other related graph classes [3, 4]. More importantly
for this work, Bacsó et al. [7] observed that the classic Gyárfás’ path argument, developed to
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show that for every fixed t the class of Pt-free graphs is χ-bounded [18, 19], also easily gives
a subexponential-time algorithm for MWIS in Pt-free graphs. The crucial corollary of the
Gyárfás’ path argument lies in the following.

▶ Theorem 1. Given an n-vertex graph G, one can in polynomial time find an induced path
Q in G such that every connected component of G − N [V (Q)] has at most n/2 vertices.

For Pt-free graphs the said path Q has at most t − 1 vertices. Bacsó et al. [7] observed that
branching either on the highest degree vertex (if this degree is larger than

√
n) or on the

whole set N [V (Q)] for the path Q coming from Theorem 1 (otherwise) gives an algorithm
with running time bound exponential in

√
n · poly(t, log n).

Chudnovsky, Pilipczuk, Pilipczuk, and Thomassé [10, 11] added to the mix an observation
that a simple branching algorithm is able to get rid of heavy vertices: vertices of the
input graph whose neighborhood contains a large fraction of the sought independent set.
Once this branching is executed and the graph does not have heavy vertices, the set N [Q]
from Theorem 1 contains only a small fraction of the sought solution and, if one aims
for an approximation algorithm, can be just sacrificed, yielding a quasipolynomial-time
approximation scheme (QPTAS) for MWIS in Pt-free graphs. Using this as a starting point
and leveraging on the celebrated three-in-a-tree theorem of Chudnovsky and Seymour [13],
they developed a much more involved QPTAS and a subexponential algorithm (with running
time bound 2n8/9poly(log n,t)) for MWIS in St,t,t-free graphs.

Consider the following simple template for a branching algorithm for MWIS: if the
current graph is disconnected, solve independently every connected component; otherwise,
pick a vertex (pivot) v and branch whether v is in the sought independent set (recursing on
G − N [v]) or not (recursing on G − v). The performance of such an algorithm highly depends
on how we choose the pivot v. Theorem 1 suggests that in Pt-free graphs the vertices of Q

may be good choices: there is only a bounded number of them, and the deletion of the whole
neighborhood N [V (Q)] splits G into multiplicatively smaller pieces. In a breakthrough result,
Gartland and Lokshtanov [15] showed how to choose the pivot and measure the progress of the
algorithm, obtaining a quasipolynomial-time algorithm for MWIS in Pt-free graphs. Later,
Pilipczuk, Pilipczuk, and Rzążewski [24] provided an arguably simpler measure, leading to
an improved (but still quasipolynomial) running time bound. These developments have been
subsequently generalized to a larger class of problems beyond MWIS and to C>t-free graphs
(graphs without induced cycle of length more than t) [16].

This progress suggests that MWIS may be actually solvable in polynomial time in H-free
graphs for all open cases, that is, whenever H is a forest whose every connected component
has at most three leaves. However, we seem still far from proving it: not only we do not
know how to improve the quasipolynomial bounds of [15, 24] to polynomial ones, but also it
remains unclear how to merge the approach of [15, 24] with the way how [10, 11] used the
three-in-a-tree theorem [13].

In this work, we make a step in this direction, providing an analog of Theorem 1 for
St,t,t-free graphs. Before we state it, let us briefly discuss what we can hope for in the class
of St,t,t-free graphs.

Consider an example of a graph G being the line graph of a clique K. The graph G

is S1,1,1-free, but does not admit any (balanced in any useful sense) separator of the form
N [P ] for a small set P ⊆ V (G). The MWIS problem on G translates back to the maximum
weight matching problem in the clique K; this problem is polynomial-time solvable, but
with very different methods than branching. In particular, we are not aware of any way of
solving maximum weight matching in a clique in quasipolynomial time by simple branching.

ICALP 2022



93:4 Max Independent Set in Graphs with No Long Claws

Thus, we expect that an algorithm for MWIS in St,t,t-free graphs, given such a graph G,
will discover that it is actually working with the line graph of a clique and apply maximum
weight matching techniques to the preimage graph K.

Chudnovsky and Seymour, in their project to understand claw-free graphs [12], developed
a good way of describing that a graph “looks like a line graph” by the notion of an extended
strip decomposition. The formal definition can be found in Section 2. Here, we remark that
in an extended strip decomposition of a graph, one can distinguish particles being induced
subgraphs of the graph; an algorithm for MWIS can recurse on individual particles, compute
the maximum weight independent sets there, and combine the results into a maximum
weight independent set in the whole graph using a maximum weight matching algorithm on
an auxiliary graph (cf. [10, 11]). Thus, an extended strip decomposition of a graph with
particles of multiplicatively smaller size is very useful for recursion; it can be seen as an
analog of splitting into connected components of multiplicatively smaller size, as it is in the
case of the components of G − N [V (Q)] in Theorem 1.

With the above discussion in mind, we can now state our main technical result.

▶ Theorem 2. Given an n-vertex graph G and t ⩾ 1, one can in polynomial time either:
output an induced copy of St,t,t in G, or
output a set P consisting of at most 11 log n + 6 induced paths in G, each of length at
most t + 1, and a rigid extended strip decomposition of G − N [

⋃
P ∈P V (P )] whose every

particle has at most n/2 vertices.

Combining Theorem 2 with previously known algorithmic techniques, we derive two
algorithms for MWIS in St,t,t-free graphs. Actually, our algorithms work in a slightly more
general setting. For integers s, t ⩾ 1, by sSt,t,t we denote the graph with s connected
components, each isomorphic to St,t,t. Recall that by the observation of Alekseev [5, 6] the
only graphs H, for which we can hope for tractability results for MWIS in H-free graphs,
are forests whose every component has at most three leaves. We observe that each such H

is contained in sSt,t,t, for some s and t depending on H. Thus algorithms for sSt,t,t-free
graphs, for every s and t, cover all potential positive cases.

First, we observe that the statement of Theorem 2 seamlessly combines with the method
how [7] obtained a subexponential-time algorithm for MWIS in Pt-free graphs. As a result,
we obtain a subexponential-time algorithm for MWIS in sSt,t,t-free graphs with improved
running time as compared to [10, 11].

▶ Theorem 3. Let s, t ⩾ 1 be constants. Given an n-vertex sSt,t,t-free graph G with weights
on vertices, one can in time exponential in O(

√
n log n) compute an independent set in G of

maximum possible weight.

Second, we observe that the statement of Theorem 2 again seamlessly combines with the
method how [10, 11] obtained a QPTAS for MWIS in Pt-free graphs, obtaining an arguably
simpler QPTAS for MWIS in sSt,t,t-free graphs with improved running time (compared
to [10, 11]).

▶ Theorem 4. Let s, t ⩾ 1 be constants. Given an n-vertex sSt,t,t-free graph G with
weights on vertices, and a real ε > 0, one can in time exponential in O(ε−1 log5 n) compute
an independent set in G that is within a factor of (1 − ε) of the maximum possible weight.

After preliminaries in Section 2, we prove Theorem 2 in Section 3. Proofs of Theorems 3
and 4 are provided in Section 4. Finally, we discuss future steps in Section 5.
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2 Preliminaries

Notation. For a family Q of sets, by
⋃

Q we denote
⋃

Q∈Q Q. If the base of a logarithmic
function is not specified, we mean the logarithm of base 2, i.e., log n := log2 n. For a function
w : V → Z⩾0 and subset V ′ ⊆ V , we denote w(V ′) :=

∑
v∈V ′ w(v).

Let G be a graph. For X ⊆ V (G), by G[X] we denote the subgraph of G induced by X,
i.e., (X, {uv ∈ E(G) : u, v ∈ X}). If the graph G is clear from the context, we will often
identify induced subgraphs with their vertex sets. The sets X, Y ⊆ V (G) are complete to
each other if for every x ∈ X and y ∈ Y the edge xy is present in G. Note that this, in
particular, implies that X and Y are disjoint. We say that two sets X, Y touch if X ∩ Y ̸= ∅
or there is an edge with one end in X and another in Y .

For a vertex v, by NG(v) we denote the set of neighbors of v, and by NG[v] we denote
the set NG(v) ∪ {v}. For a set X ⊆ V (G), we also define NG(X) :=

⋃
v∈X NG(v) − X, and

NG[X] = NG(X) ∪ X. If it does not lead to confusion, we omit the subscript and write
simply N(·) and N [·].

By T (G), we denote the set of all triangles in G. Similarly to writing xy ∈ E(G), we will
write xyz ∈ T (G) to indicate that G[{x, y, z}] ≃ K3.

Extended strip decompositions. Now let us define a certain graph decomposition which
will play an important role in the paper. An extended strip decomposition of a graph G is a
pair (H, η) that consists of:

a simple graph H,
a set η(x) ⊆ V (G) for every x ∈ V (H),
a set η(xy) ⊆ V (G) for every xy ∈ E(H), and its subsets η(xy, x), η(xy, y) ⊆ η(xy),
a set η(xyz) ⊆ V (G) for every xyz ∈ T (H),

which satisfy the following properties (also see Figure 1):
1. {η(o) | o ∈ V (H) ∪ E(H) ∪ T (H)} is a partition of V (G),
2. for every x ∈ V (H) and every distinct y, z ∈ NH(x), the set η(xy, x) is complete to

η(xz, x),
3. every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (H) ∪ E(H) ∪ T (H), or is

as follows:
u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (H) and y, z ∈ NH(x), or
u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(H), or
u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (H).

Note that for an extended strip decomposition (H, η) of a graph G, the number of vertices
of H can be much larger than the number of vertices of G. However, in such case many sets
η(·) are empty and thus H is “unnecessarily complicated.” An extended strip decomposition
(H, η) is rigid if (i) for every xy ∈ E(H) it holds that η(xy, x) ̸= ∅, and (ii) for every
x ∈ V (H) such that x is an isolated vertex it holds that η(x) ̸= ∅. Observe that if we restrict
η to V ′ ⊂ V (G), i.e. we keep in η only vertices of V ′, (H, η) after the restriction remains an
extended strip decomposition, but it might not be rigid any more.

▶ Observation 5. Let (H, η) be a rigid extended strip decomposition of an n-vertex graph G.
Then |E(H)| ⩽ n and |V (H)| ⩽ 2n.

Proof. Recall that since (H, η) is rigid, for every xy ∈ E(H) we have that ∅ ≠ η(xy, x) ⊆
η(xy), and for every isolated vertex x of H we have η(x) ̸= ∅.
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x

x′

z
z′

y
y′

H

η(xy, x)

η(xy, y)

η(xy)

η(x)

η(xyz)

Figure 1 A graph H and an extended strip decomposition (H, η) of a graph G. Sets η(·)
corresponding to vertices, edges, and the triangle of H are marked green, blue, and orange, respectively.
The edges between distinct sets are drawn thick if they must exist, and thin if they may exist.

Let V0 and V+ denote, respectively, the sets of vertices of H with degree 0 and more
than 0. As the family {η(xy) | xy ∈ E(H)} ∪ {η(x) | x ∈ V0} consists of pairwise disjoint
nonempty subsets of V (G), we conclude that |E(H)| + |V0| ⩽ n and therefore |E(H)| ⩽ n.

Note that by the handshaking lemma we have |E(H)| ⩾ |V+|/2, and so |V (H)| =
|V0| + |V+| ⩽ |V0| + 2|E(H)| ⩽ 2n by the previous argument. ◀

We say that a vertex v ∈ V (G) is peripheral in (H, η) if there is a degree-one vertex
x of H, such that η(xy, x) = {v}, where y is the (unique) neighbor of x in H. For a set
Z ⊆ V (G), we say that (H, η) is an extended strip decomposition of (G, Z) if H has |Z|
degree-one vertices and each vertex of Z is peripheral in (H, η).

The following theorem by Chudnovsky and Seymour [13] is a slight strengthening of their
celebrated solution of the famous three-in-a-tree problem. We will use it as a black-box to
build extended strip decompositions.

▶ Theorem 6 (Chudnovsky, Seymour [13, Section 6]). Let G be an n-vertex graph and consider
Z ⊆ V (G) with |Z| ⩾ 2. There is an algorithm that runs in time O(n5) and returns one of
the following:

an induced subtree of G containing at least three elements of Z,
a rigid extended strip decomposition (H, η) of (G, Z).

Let us point out that actually, an extended strip decomposition produced by Theorem 6
satisfies more structural properties, but of our purpose, we will only use the fact that it is
rigid.

Particles of extended strip decompositions. Let (H, η) be an extended strip decomposition
of a graph G. We introduce some special subsets of V (G) called particles, divided into five
types.
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vertex particle: Ax := η(x) for each x ∈ V (H),

edge interior particle: A⊥
xy := η(xy) − (η(xy, x) ∪ η(xy, y)) for each xy ∈ E(H),

half-edge particle: Ax
xy := η(x) ∪ η(xy) − η(xy, y) for each xy ∈ E(H),

full edge particle: Axy
xy := η(x) ∪ η(y) ∪ η(xy) ∪

⋃
z : xyz∈T (H)

η(xyz) for each xy ∈ E(H),

triangle particle: Axyz := η(xyz) for each xyz ∈ T (H).

Observe that the number of all particles of (H, η) is at most O(|V (H)|3). However, the
number of nonempty particles is linear in the number of vertices of G.

▶ Observation 7. Let (H, η) be an extended strip decomposition of an n-vertex graph. Then
the number of nonempty particles of (H, η) is bounded by 4n.

Proof. Let V ′, E′, T ′, respectively, be the subsets consisting of those elements o of V (H),
E(H), or T (H), for which η(o) ̸= ∅. Observe that each o ∈ V ′ ∪ T ′ gives rise to one
nonempty particle Ao, and each xy ∈ E′ gives rise to at most four nonempty particles:
A⊥

xy, Ax
xy, Ay

xy, Axy
xy. Moreover, since {η(o) | o ∈ V ′ ∪ E′ ∪ T ′} are pairwise disjoint subsets

of V (G), we have that |V ′| + |E′| + |T ′| ⩽ n. Hence, the number of nonempty particles is
bounded by |V ′| + |T ′| + 4|E′| = (|V ′| + |T ′| + |E′|) + 3|E′| ⩽ 4n. ◀

A vertex particle Ax is trivial if x is an isolated vertex in H . Similarly, an extended strip
decomposition (H, η) is trivial if H is an edgeless graph. The following observation follows
immediately from the definitions of an extended strip decomposition and particles.

▶ Observation 8. Let (H, η) be an extended strip decomposition of a graph G. For each
xy ∈ E(H) the following hold:
1. A⊥

xy ⊆ Ax
xy ⊆ Axy

xy,
2. for any vx ∈ η(xy, x) and vy ∈ η(xy, y) we have N(Axy

xy) = N(vx) ∪ N(vy) − Axy
xy.

We conclude this section by recalling an important property of particles of extended strip
decompositions, observed by Chudnovsky et al. [10].

▶ Theorem 9 (Chudnovsky et al. [10, Lemma 6.8]). Let (H, η) be an extended strip decompo-
sition of G. Suppose P1, P2, P3 are three induced paths in G that do not touch each other,
and moreover each of P1, P2, P3 has an endvertex that is peripheral in (H, η). Then in (H, η)
there is no particle that touches each of P1, P2, P3.

3 Main result

In this section, we prove our main result, i.e., Theorem 2. Let us first give an overview of
our approach. We present a recursive algorithm that, for a given graph G, will return one of
the outcomes of Theorem 2. Let n := |V (G)| be the number of vertices in the input graph;
the value of n will not change throughout the recursive steps of the algorithm. We start
with finding a Gyárfás path Q navigating towards the largest component in G. That is, by
Theorem 1, we find Q such that each connected component of G − N [Q] is of size at most
n
2 . Finding such a small connected component is a great outcome as we can readily include
it as a small trivial vertex particle of an extended strip decomposition we are constructing.
We say that a particle is small if its size is at most n

2 , and an extended strip decomposition
is refined if all its particles are small. Observe that if |Q| ≤ 3t + 1, we immediately get the

ICALP 2022



93:8 Max Independent Set in Graphs with No Long Claws

desired refined extended strip decomposition of G. Otherwise, we proceed to the main part
of the algorithm. At each step, we will remove some vertices from Q, and will measure the
progress of our algorithm in the number of the remaining vertices of Q.

Formally, we create a set Q of at most two non-touching induced paths such that
⋃

Q ⊆ Q.
At each step of recursion we obtain a set Q̂ with |

⋃
Q̂| ≤ 2

3 |
⋃

Q| that represents Q for the
next step. Hence, in 11 log n recursive steps, |

⋃
Q| drops below 3t+1. In the base case of the

recursion, when |
⋃

Q| ≤ 3t + 1, we return the refined trivial extended strip decomposition
ensured by maintaining the property that G − N [

⋃
Q] has connected components of size at

most n
2 throughout the recursive steps. In each step of recursion, we further split the induced

path(s) in Q so we are able to use Theorem 6 to obtain an extended strip decomposition
(H, η). If (H, η) is already refined, then we are done. Otherwise, it contains a particle A

that is not small. We use Theorem 9 to select at most two paths touching A. Then it is
easy to separate A with the respective touching paths from the rest of the graph. The graph
induced by A and the touching paths form a smaller instance, i.e., an instance where |

⋃
Q|

drops by a factor of 2
3 . We need to ensure that at every recursive step, we include only a

constant number of paths of length t + 1 into P (i.e., the set of paths in the second outcome
of Theorem 2). We now prove the core recursive formulation of the algorithm formally.

▶ Lemma 10 (Recursion). Given a graph G and a set Q of at most two induced paths
(vertex disjoint non-adjacent), and a refined extended strip decomposition of G − N [

⋃
Q]. In

polynomial time, we can output one of the following:
an induced copy of St,t,t in G, or
P, X ⊆ N [

⋃
P], and a refined extended strip decomposition (H, η) of G − X, so that

|P| ≤ 6 log3/2 (|
⋃

Q|) + 6 and the longest path in P has at most t + 1 vertices.

Proof. If the longest path of Q has at most 3t + 1 vertices, return P := Q where each path
in P may be further split in at most three paths on at most t + 1 vertices, and X := N [

⋃
P ].

Hence, we output the extended strip decomposition we were given by the assumptions of the
lemma.

Otherwise, let Q1 be the longest path in Q. Let u1 and u2 be the
(⌊

|Q1|
3

⌋
+ 1

)
-th and

the
(

2
⌊

|Q1|
3

⌋
+ 2

)
-th vertex of Q1, respectively. The removal of u1 and u2 from Q1 divides

the path into three induced non-touching subpaths Q1
1, Q2

1, and Q3
1, each of length at least t.

Let Q2 be the remaining path of Q, should it exist. We define S := {Q1
1, Q2

1, Q3
1, Q2} if Q2

exists, or S := {Q1
1, Q2

1, Q3
1}, otherwise. Consult Figure 2 to see an overview of the definitions

described in this paragraph. For each path P ∈ S we define pref(P ) as the set comprising:
first t − 1 vertices of P (or all vertices of P if |P | < t − 1), and
the separating vertex of Q1 directly preceding P if P ∈ {Q2

1, Q3
1}.

It can be easily seen that the set of vertices pref(P ) forms an induced path of length at most t.
We finally define shells of paths in S. Given a path P ∈ S, we set shell(P ) := N [pref(P )]−

⋃
S

if |P | ≥ t and shell(P ) := N [pref(P )] otherwise. Intuitively, if |P | < t, the shell of P takes the
whole neighborhood as we do not have a use for a short path in the next stage of our algorithm.
For a long enough path P (|P | > t), the shell of P intersects all short paths (shorter than t)
connecting the first vertex of P with the rest of the graph. In other words, each path from
the first vertex of P to any vertex of G − shell(P ) outside of P will have length at least t.
To ease the notation, we define S≥t := {P ∈ S | |P | ≥ t}, shell(S) :=

⋃
P ∈S shell(P ), and

pref(S) :=
⋃

P ∈S pref(P ).
Now, we use the algorithm from Theorem 6 on Z being the set of the first vertices of

paths in S≥t and the graph defined as G − shell(S). If Theorem 6 produced an induced
tree with three leaves among Z, it contains an induced St,t,t, since those must have been
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pref(Q1
1) pref(Q1

2)

u1 u2

Q1
1 Q2

1

{ {{ {
shell(Q1

1) shell(Q2
1) shell(Q2

1)

pref(Q2)
{
shell(Q2)

Q1

Q2

pref(Q1
3)

{
Q3

1

{
Figure 2 Definitions of pref(S) and shell(S) in case of |Q2| ≥ t.

induced branches at least t vertices long in G − shell(S). Hence, we obtained an extended
strip decomposition (H ′, η′) of G − shell(S). If the obtained decomposition is refined, we
return P := pref(S), X := shell(S), and the extended strip decomposition (H := H ′, η := η′).

Therefore, the obtained extended strip decomposition (H ′, η′) of G − shell(S) contains
a particle A which is not small, i.e., A is composed of at least n

2 vertices. As every vertex
in Z is peripheral in (H ′, η′), we know that no three paths in S≥t touch one particle by
Theorem 9. Therefore, we take the set Q̂ of at most two paths, say P1 and P2, touching A

(for convenience, let P1 or P2 be an empty set if it does not exist). We now compute the
maximum proportion of

⋃
Q put to Q̂. If both P1, P2 ⊆ Q1, then this fraction is at most

2
3 as by the definition |Qi

1| ≤ |Q1|
3 , for i ∈ {1, 2, 3}. If one is Q2 and the other comes from

Q1, then we estimate a + 1−a
3 = 2a+1

3 ≤ 2
3 for a = |Q2|/|

⋃
Q| ≤ 1

2 . Hence, we know that
|
⋃

Q̂| ≤ 2
3 |

⋃
Q|. We define Ĝ := A ∪ P1 ∪ P2 to use Lemma 10 on a smaller instance. Now,

we need to verify that the assumption of the lemma holds. We claim the following:

▷ Claim 11. Ĝ − N [
⋃

Q̂] has a refined extended strip decomposition.

Proof. As Ĝ is an induced subgraph of G and G − N [
⋃

Q] has a refined extended strip
decomposition, we know that Ĝ − N [

⋃
Q] has a refined extended strip decomposition.

First, recall that N [u1] − (Q1
1 ∪ Q2

1) ⊆ shell(Q2
1), which is disjoint with V (Ĝ). Analogously

N [u2] − (Q2
1 ∪ Q3

1) is disjoint with V (Ĝ). Also, if |Q2| < t then Q2 is disjoint with V (Ĝ) as
well. Hence, Ĝ − N [

⋃
Q] ≃ Ĝ − N [

⋃
S≥t]. Also, recall that the only paths among S≥t that

touch A are in Q̂. Hence, observe that Ĝ − N [
⋃

S≥t] ≃ Ĝ − N [
⋃

Q̂]. ◁

Therefore, we can apply Lemma 10 inductively on Ĝ and Q̂, obtaining P̂ and X̂, and
a refined extended strip decomposition (Ĥ, η̂) of Ĝ − X̂. We need to combine the extended
strip decomposition obtained from the recursion with the extended strip decomposition
(H ′, η′) we obtained earlier.

We can always suppose that particle A is of type Axy
xy for some edge xy ∈ E(H ′), unless

A is of type Ax for an isolated vertex x ∈ V (H ′). That is because Axy
xy is the superset of all

possible particle types. As Theorem 6 gives us that both η′(xy, x) and η′(xy, y) are nonempty,
we can select vx ∈ η′(xy, x) and vy ∈ η′(xy, y) (possibly vx = vy). By Observation 8, the set

X ′ := (N(vy) ∪ N(vx)) − V (A)
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separates A from the rest of G. Set P ′ := {{vx}, {vy}}. In the case of Ax such that x ∈ V (H)
is an isolated vertex, we set P ′ := ∅ and X ′ := ∅ and still such A is separated from the rest
of G by X ′. We return:

P := P̂ ∪ P ′ ∪ pref(S),
X := X̂ ∪ X ′ ∪ shell(S),
an extended strip decomposition (H, η) of G − X, where H is Ĥ with an additional
isolated vertex w, and η is η̂ restricted only to vertices in A − X with an additional trivial
vertex particle η(w) containing all vertices of G − X − A.

Recall that during the recursion, we do not require rigidity, therefore, we do not mind
restricting η only to a subset of vertices. Note that indeed, G − X − A may contain parts of
P1 or P2, however, η(w) does not touch any vertices contained in η̂ restricted to A − X as
X ′ ⊆ X completely separated A − X from G − X − A.

We compute that |P| ≤ 6 + 6 log3/2

(∣∣∣⋃ Q̂
∣∣∣) + 6 ≤ 6 log3/2 (|

⋃
Q|) + 6 as we added at

most six new paths into P . Observe that the described algorithm runs in polynomial time as
we just computed that the depth of recurrence is logarithmic in |

⋃
(Q)| ≤ |V (G)| and each

recursive call takes polynomial time in the size of G. ◀

Proof of Theorem 2. Using Theorem 1 we find a Gyárfás path Q. We get the desired
outcome by Lemma 10 on G with Q := {Q}. The extended strip decomposition needed
by the lemma’s assumption is trivial. That is, each connected component of G − Q is
represented by a vertex particle of small size. Note that Lemma 10 provides an extended
strip decomposition of G − X, where X ⊆

⋃
P and Theorem 2 only requires an extended

strip decomposition of G −
⋃

P , so we can restrict the obtained extended strip decomposition
to V (G) −

⋃
P. We conclude the proof of Theorem 2 by the following calculation:

6 log3/2 n + 6 ≤ 11 log n + 6.

Note that for any extended strip decomposition (H, η) we can easily add the assumption
that sets η(xy, x) ̸= ∅ for any edge xy ∈ E(H). As suppose η(xy, x) = ∅; then we can
update (H, η) by adding η(xy) to η(y) and removing xy from H. Moreover, we can simply
remove any empty trivial vertex particle form η and the corresponding isolated vertex from
H. Therefore, we may suppose that the obtained extended strip decomposition is rigid. ◀

In the following simple corollary we apply Theorem 2 to sSt,t,t-free graphs, for some
s, t ≥ 1.

▶ Corollary 12. Let s ⩾ 1, t ⩾ 1 be constants. Let G be an sSt,t,t-free graph on n vertices.
Then in polynomial time we can find a set X consisting of at most

(s − 1)(3t + 1) + (11 log n + 6)(t + 1)

vertices and a rigid extended strip decomposition of G − N [X] whose every particle has at
most n/2 vertices.

Proof. Induction on s. If s = 1, then we obtain the result immediately by Theorem 2. Thus
let us assume that s ⩾ 2 and the theorem holds for (s − 1)St,t,t-free graphs.

We exhaustively check if there is some Y ⊆ V (G) with |Y | = 3t+1, such that G[Y ] ≃ St,t,t;
we can do it in time n3(t+1)+O(1) = nO(1). If such Y does not exist, then we can immediately
apply Theorem 2, and the proof is complete. Thus suppose that Y exists.

We observe that the graph G′ := G − N [Y ] is (s − 1)St,t,t-free. Denote n′ := |V (G′)|. By
the inductive assumption, in time (n′)O(1) = nO(1) we can obtain a set X ′ ⊆ V (G′) of size at
most (s − 2)(3t + 1) + (11 log n′ + 6)(t + 1) and a rigid extended strip decomposition (H, η)
of G′ − N [X ′] whose every particle is of size at most n′/2.



K. Majewski et al. 93:11

We set X = Y ∪ X ′. Now X and (H, η) satisfy the statement of the theorem, as
G′ − N [X ′] = G − N [X] and n′ ⩽ n. The total running time is polynomial in n as the depth
of the recursion is s − 1. ◀

4 Algorithmic applications

In this section we will show how to combine Theorem 2 with the approach of Chudnovsky et
al. [10, 11] in order to obtain a QPTAS and a subexponential-time algorithm for MWIS in
St,t,t-free graphs, i.e., we prove Theorems 3 and 4.

Both algorithms follow the same general outline; let us sketch it before we get into the
details of each particular case. Each algorithm is a recursive procedure, which consists of
two phases. In the first one, we deal with the vertices of G that are heavy, which means that
their neighborhood is “large”, where the exact meaning of “large” depends on the particular
algorithm.

Once there are no heavy vertices, i.e., the neighborhood of each vertex is “small”, we
proceed to the second phase. We call Corollary 12 for the current instance G, obtaining
a small-sized set X and a rigid extended strip decomposition (H, η) of G − N [X], whose
every particle is of small size. The crux is that since we are in the second phase, all vertices
in X are not heavy, and since X is of small size, the whole set N [X] is “small”. We treat
N [X] separately in a way that depends on the particular algorithm.

Next, for each particle A of (H, η), we call the algorithm recursively for G[A], obtaining
(a good approximation of) a maximum-weight independent set in G[A]. Finally, we combine
the obtained results to derive (a good approximation of) a maximum-weight independent set
in G. This last step is based on the idea of Chudnovsky et al. [10, 11] to reduce the problem
to finding a maximum-weight matching in a graph obtained by a simple modification of H.
Since the size of H is linear in |V (G)| (by Observation 5), this problem can be solved in
time polynomial in |V (G)| using, e.g., the classic algorithm of Edmonds [14]. The last step is
encapsulated in the following lemma, whose exact statement comes from Abrishami et al. [1].

▶ Lemma 13 (Chudnovsky et al. [10, 11]). Let ς ∈ [0, 1] be a real number. Let G be an
n-vertex graph equipped with a weight function w : V (G) → Z⩾0. Suppose that G is given
along with an extended strip decomposition (H, η), where H has N vertices.
Let I0 ⊆ V (G) be a fixed independent set in G. Furthermore, assume that for each particle
A of (H, η) we are given an independent set I(A) in G[A] such that w(I(A)) ⩾ ς · w(I0 ∩ A).
Then in time polynomial in n + N we can compute an independent set I in G such that
w(I) ⩾ ς · w(I0).

Let us stress out that the algorithm from Lemma 13 does not need to know the value of
ς or the independent set I0.

The main difference between our approach and the one of Chudnovsky et al. [11] is that
we use Theorem 2 and its consequence, i.e., Corollary 12. The previous algorithms used
a similar statement but with a worse (and much more involved) guarantee on the size of X

and each particle. Furthermore, the way we obtain our set X is significantly simpler.

4.1 Proof of Theorem 3
Before we proceed to the proof, let us first explain the meaning of “small”, and how to deal
with N [X] in this particular case. Here the neighborhood of a vertex is “small” if it has few
vertices (more specifically, at most

√
n/t). In the first phase, we deal with heavy vertices v

(i.e., of large degree) with simple branching: we guess whether v is included in our optimum
solution or not. Since the degree of v is large, in the first branch, we obtain significant
progress, which is enough to obtain a subexponential running time.
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In the second phase, since N [X] is the neighborhood of O(log n) vertices, each of degree
O(

√
n), the total size of N [X] is O(

√
n log n). Thus we can afford to exhaustively guess the

intersection of our optimum solution with N [X].

Proof of Theorem 3. Let s, t ⩾ 1 be constants and let (G,w) be an instance of MWIS,
where G is sSt,t,t-free and has n vertices. We observe that if n is small, i.e., bounded by a
constant, then we can solve the problem by brute force. Thus we assume that n ⩾ n0, where
n0 is a constant (depending on s and t) whose exact value follows from the reasoning below.

First, consider the case that there exists v ∈ V (G) such that deg v ⩾
√

n/t. We branch
on including v in the final solution: we either delete v from G, or we delete N [v] and add v

to the solution returned by the recursive call. Then we output the one of these two solutions
that has a larger weight. The correctness of this step of the algorithm is straightforward.

Hence, we can assume that for every v ∈ V (G) it holds that deg v ⩽
√

n/t. By
Corollary 12, since G is sSt,t,t-free, we obtain a set X of size (s−1)(3t+1)+(11 log n+6)(t+
1) ⩽ 12(t + 1) log n (here we use that n is large), and a rigid extended strip decomposition
(H, η) of G′ = G − N [X] whose every particle has at most n/2 vertices.

We exhaustively guess an independent set J ⊆ N [X]; think of it as an intersection of the
intended optimum solution with N [X]. Consider the graph G′′ := G′ − N [J ]. We modify
(H, η) by removing the vertices from N [J ] from the sets η(·). Let us call the obtained strip
decomposition (H, η′); note that it might not be rigid. We call the algorithm recursively for
the subgraph G′′[A] for every nonempty particle A of (H, η′). Let I(A) be the solution. If
A = ∅, then I(A) = ∅. By the inductive assumption I(A) is a maximum-weight independent
set in G′′[A]. Then we use Lemma 13 for ς = 1 to combine the solutions into a maximum-
weight independent set IJ of G′′. Finally, we return the independent set J ∪ IJ whose weight
is maximum over all choices of J . Note that the correctness of this step is guaranteed by the
exhaustive guessing of J and Lemma 13.

Running time. Let F (n) denote the running time of our algorithm for n-vertex instances.
We prove that F (n) = 2O(√

tn log n). If n < n0, then the claim clearly holds. So let us assume
that n ⩾ n0.

In the first case we call the algorithm for two instances, one of size n − 1 and one of size
at most n −

√
n/t. Hence,

F (n) ⩽ F (n − 1) + F (n −
√

n/t) = 2
O

(
n log n√

n/t

)
⩽ 2O(√

tn log n).

Here we skip the description how this recursion is solved, as it is pretty standard. For
a formal proof we refer the reader to Bacsó et al. [7, Lemma 1].

It remains to analyze the running time of the step in which the maximum degree of
vertices in G is bounded by

√
n/t. Corollary 12 asserts that we obtain X and the rigid

extended strip decomposition (H, η) of G′ = G − N [X] in time polynomial in n. There are
2O(

√
n/t·t log n) = 2O(

√
nt log n) ways of choosing the set J . In polynomial time we modify

(H, η) into (H, η′).
Observe that while (H, η′) might not be rigid, it was obtained from a rigid extended

strip decomposition (H, η) by deleting some vertices from the sets η(·). In particular, both
decompositions have the same sets of particles, and every nonempty particle of (H, η′) is also
a nonempty particle of (H, η). Thus by Observation 7 we call the algorithm recursively for at
most 4n nonempty particles, each of size at most n/2. By Observation 5, the total number
of particles of (H, η′) is polynomial in n. Finally, having computed a maximum-weight
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independent set contained in each particle, by Lemma 13, we can compute the final solution
in time polynomial in n. Hence, there are constants c, c1, c2, where c ≫ c1, c2, such that
total running time of this step is bounded by:

F (n) ⩽ 2c1·
√

nt log n
(

nc2 + 4n · 2c·
√

tn/2 log (n/2)
) c≫c1,c2

⩽ 2c·
√

tn log n, (1)

and so is the total complexity of the algorithm. ◀

4.2 Proof of Theorem 4
Again let us start with explaining the algorithm-specific details of the outline presented at
the start of Section 4.

We will use the notion of β-heavy vertices from [10, 11]. Consider a graph G, a weight
function w : V (G) → Z⩾0, and an independent set I ⊆ V (G). Let β ∈ (0, 1/2] be a real. We
say that a vertex v ∈ V (G) is β-heavy (with respect to I) if w(N [v] ∩ I) > β · w(I). A set J

is good for I if J ⊆ I and N [J ] contains all vertices that are β-heavy with respect to I.

▶ Lemma 14 (Chudnovsky et al. [10, 11]). Let G be an n-vertex graph for n > 2, w : V (G) →
Z⩾0 be a weight function, I ⊆ V (G) be an independent set, and β ∈ (0, 1/2] be a real. Then
there exists a set J of size at most ⌈β−1 log n⌉ which is good for I.

Now the vertex is heavy if it is β-heavy for some carefully chosen parameter β. This
means that a neighborhood of a vertex is “large” if it contains a significant (⩾ β) fraction
of the weight of IOPT. In the first phase, we exhaustively guess the set J that is good for a
fixed optimum solution IOPT. Note that J is of small size and since J ⊆ IOPT, we know that
N(J) contains no vertices from IOPT and thus can be safely removed from the graph.

Since J is good for IOPT, we know that G − N [J ] contains no heavy vertices, and for this
graph we call Corollary 12. Now, as N [X] is a neighborhood of few non-heavy vertices, we
know that the total weight of IOPT ∩ N [X] is small and thus can be sacrificed, as we aim for
an approximation.

Proof of Theorem 4. Let s, t ⩾ 1 be constants and let (G,w) be an instance of MWIS,
where G is sSt,t,t-free and has n vertices. Let ε ∈ (0, 1) be fixed. Fix a maximum-weight
independent set IOPT in G with respect to w. We describe a procedure that finds in G

an independent set I of weight at least (1 − ε) · w(IOPT).
Let N be the minimum power of two greater than or equal to the size of our initial

instance. Note that n ⩽ N < 2n. The value of N will not change throughout the execution
of the algorithm.

The algorithm itself is a recursive procedure. The arguments of each call are a graph G′,
which is an induced subgraph of G, the weight function on V (G′) obtained by restricting
the domain of w, and an integer h, which can be intuitively understood as the depth of the
current call in the recursion tree. Since it does not lead to confusion, we will always denote
the weight function by w. We will keep the invariant that for each call (G′,w, h) it holds
that |V (G′)| ⩽ N/2h. The initial call, corresponding to the root of the recursion tree, is for
(G,w, 0).

Consider a call for the instance (G′,w, h). If |V (G′)| < n0, where n0 is a constant
(depending on s and t) that follows from the reasoning below, then we can solve the problem
by brute force. Thus let us assume that n ⩾ n0. In particular, N > 1.
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We set

β(h, ε) := ε

12(t + 1) log (N/2h) · ((1 − ε) log N + ε(h + 1)) . (2)

It is straightforward to verify that for h < log N we have β(h, ε) ∈ (0, 1/2]. On the other
hand, if h ⩾ log N , then G′ is of constant size and thus β(h, ε) is not computed for such h.

Let J be the family of all independent sets in G′ of size at most ⌈β(h, ε)−1 log (N/2h)⌉.
For each J ∈ J we proceed as follows. If |V (G′ − N [J ])| < n0, then we compute a maximum-
weight independent set IJ in G′ − N [J ] by brute force. Otherwise, we use Corollary 12,
to obtain a set XJ ⊆ V (G′ − N [J ]) and a rigid extended strip decomposition (H, η) of
G′ − N [J ] − N [XJ ] such that each particle of (H, η) is of size at most |V (G′ − N [J ])|/2. By
Corollary 12, we obtain

|XJ | ⩽ (s − 1)(3t + 1) + (11 log |V (G′ − N [J ])| + 6)(t + 1)
⩽ 12(t + 1) log |V (G′)| ⩽ 12(t + 1) log(N/2h). (3)

Let YJ := N(J) ∪ N [XJ ]. We modify (H, η) into an extended strip decomposition of G′ − YJ

as follows. For each v ∈ J , we add to H an isolated vertex xv, and set η(xv) = {v}.1 Let us
call this extended strip decomposition (H ′, η′). Observe that each particle of (H ′, η′) is of
size at most |V (G′ − N [J ])|/2 ⩽ |V (G′)|/2. Furthermore, since (H, η) is rigid, so is (H ′, η′).

For each nonempty particle A of (H ′, η′) we call the algorithm recursively on an instance
(G′[A],w, h + 1). Let I(A) be the value returned by the algorithm. For each empty particle
A we set I(A) := ∅. Finally, we apply the algorithm from Lemma 13, in order to obtain
an independent set IJ of G′ − YJ and thus of G′. Recall that the value of ς is not needed to
apply Lemma 13; we will define it in the next paragraph when we discuss the approximation
guarantee. As the solution, we return the set IJ of maximum weight, over all choices of
J ∈ J .

Approximation guarantee. Consider the recursion tree of our algorithm. We mark some
nodes of the recursion tree. First, we mark the root. Now consider some marked node z

corresponding to a call (G′,w, h), such that z is not a leaf node. Observe that by Lemma 14,
there is some J ∈ J (for this particular instance) which is good for IOPT ∩ V (G′). Fix such
J . If there is more than one, we choose one arbitrarily. We mark the children of z that
correspond to the calls on the particles of the extended strip decomposition of G′ − YJ .

Let T be the subtree of the recursion tree induced by the marked nodes. Note that each
leaf of T is a leaf of the whole recursion tree, i.e., it corresponds to an instance of constant
size. Since at each level of the recursion, the size of the instance drops by at least half, we
observe that each instance at level h (where the root is at level 0) is of size at most N/2h.
Consequently, the depth of T is at most log N .

Consider a call for an instance (G′,w, h) and let J be good for IOPT. Let us estimate
w(IOPT ∩ YJ). First, observe that since J ⊆ IOPT, we have that w(IOPT ∩ N(J)) = 0.
Moreover, since J was chosen to be good, there are no β(h, ε)-heavy vertices in V (G′ −N [J ]),
and in particular, in N [XJ ]. Hence,

w(IOPT ∩ YJ) = w(IOPT ∩ N [XJ ]) ⩽ |XJ | · β(h, ε) · w(IOPT ∩ V (G′))
(2) and (3)

⩽
ε

(1 − ε) log N + ε(h + 1) · w(IOPT ∩ V (G′)). (4)

1 Another possible way of dealing with the set J would be to add it directly in the computed solution.
However, we decided to restore J to the graph, so that these vertices are handled by Lemma 13 and do
not require any special treatment.
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The following claim shows that the solution computed for the instance (G′,w, h) at each
node of T is a reasonable approximation of IOPT ∩ V (G′).

▷ Claim 15. Let z be a node of T , and let (G′,w, h) be the instance corresponding
to z. Let I be the independent set returned by the algorithm for the call at z. Then
w(I) ⩾

(
1 − ε + εh

log N

)
· w (IOPT ∩ V (G′)).

Proof. First, observe that if z is a leaf of T , then the statement of the claim is satisfied.
Indeed, in this case I is computed by brute force, and hence w(I) = w(IOPT ∩ V (G′)).

Recall that the algorithm returns the solution of maximum weight among all choices of
J ∈ J , so clearly we have w(I) ⩾ w(IJ), where J is good for IOPT ∩ V (G′).

We proceed by induction on h. First, consider a node z at the level h = log N . As the
depth of T is at most log N , we observe that z must be a leaf, so the claim follows by the
observation above.

Assume that the claim holds for h + 1 ∈ [log N ] and consider a node z at level h. If
z is a leaf, then again, we are done. Otherwise, let A be the set of nonempty particles
of the extended strip decomposition of G′ − YJ . For every such particle A, we recursively
computed an independent set I(A). By the inductive assumption, we have that w(I(A)) ⩾(

1 − ε + ε(h+1)
log N

)
w(IOPT ∩V (G′[A])); note that these recursive calls are at level h+1. Clearly,

the same holds for empty particles because ∅ is there an optimum solution.
Thus, by Lemma 13 applied to IOPT and ς = 1 − ε + ε(h+1)

log N , we obtain an independent
set IJ in G′ − YJ , such that

w(IJ) ⩾
(

1 − ε + ε(h + 1)
log N

)
w(IOPT ∩ V (G′ − YJ))

=
(

1 − ε + ε(h + 1)
log N

) (
w(IOPT ∩ V (G′)) − w(IOPT ∩ YJ)

)
. (5)

Combining (5) with (4) and simplifying the formula, we obtain

w(IJ) ⩾
(

1 − ε + εh

log N

)
w(IOPT ∩ V (G′)),

which concludes the proof of the claim. ◁

Since the root of the recursion tree belongs to T , the final result I returned for the call
at the root (i.e., for (G,w, 0)) satisfies

w(I) ⩾ (1 − ε) · w (IOPT ∩ V (G)) = (1 − ε) · w(IOPT).

This concludes the discussion of the approximation guarantee.

Running time. Recall that the recursion tree has depth at most log N . Let us show the
following claim concerning the running time.

▷ Claim 16. Let z be a node of the recursion tree, and let (G′,w, h) be the instance
corresponding to z. Then the algorithm solves this instance in time 2O(ε−1 log4 N log(N/2h−1)).

Proof. Let F (h) denote the upper bound for the running time of our algorithm, depending on
the level of the call in the recursion tree. We aim to show that there is an absolute constant
c, such that for N sufficiently large we have

F (h) ⩽ 2c·ε−1 log4 N log(N/2h−1).
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Recall that |V (G′)| ⩽ N/2h. If z is a leaf, then the instance is of constant size, and thus
the claim holds (assuming that c is sufficiently large). In particular this happens if h = log N .
So let us assume that the claim holds for the calls at level h + 1 and that h < log N .

Recall that we first enumerate the family J of all independent sets of size at most
⌈β(h, ε)−1 log(N/2h)⌉. Observe that

|J | ⩽ |V (G′)|⌈β(h,ε)−1 log(N/2h)⌉ ⩽ 2log(N/2h)⌈β(h,ε)−1 log(N/2h)⌉,

and the family J can be enumerated in time polynomial in its size.
For each J ∈ J , using Corollary 12 and modifying its outcome, in polynomial time

we obtain a set XJ and a rigid extended strip decomposition (H ′, η′) of G − YJ , where
YJ = N [XJ ] ∪ N(J).

Next, we call the algorithm recursively for at most 4 · |V (G′)| ⩽ 4 · N/2h instances, each
at depth h + 1. Finally, use use Lemma 13 to obtain our solution in time polynomial in
|V (G′)| and thus in N/2h.

Thus the running time is bounded by the following expression (here c1, c2, c3 are absolute
constants, such that c1 and c2 are much smaller than c3, and c3 = c/12(t + 1)):

F (h) ⩽ 2c1·β(h,ε)−1 log2(N/2h) ·
(
(N/2h)c2 + 4 · (N/2h) · F (h + 1)

)
c3≫c1,c2

⩽ 2c3·β(h,ε)−1 log2(N/2h) · 2c·ε−1 log4 N log(N/2h)

= exp
{

c3 · β(h, ε)−1 log2(N/2h) + c · ε−1 log4 N log(N/2h)
}

⩽ exp
{

c3 · 12(t + 1) ·
(

1 − ε

ε
log N + (h + 1)

)
log3(N/2h) + c · ε−1 log4 N log(N/2h)

}
h<log N

⩽ exp
{

c · ε−1 log4 N + c · ε−1 log4 N log(N/2h)
}

= exp
{

c · ε−1 log4 N(log(N/2h) + 1)
}

= exp
{

c · ε−1 log4 N log(N/2h−1)
}

.

This completes the proof of the claim. ◁

Now we apply Claim 16 to the initial call (G,w, 0) and obtain that the overall running time
is

2O(ε−1 log5 N) = 2O(ε−1 log5 n),

as N < 2n. This completes the proof. ◀

5 Conclusion

In the QPTAS of Chudnovsky, Pilipczuk, Pilipczuk, and Thomassé [10, 11] it was more
convenient to measure the weight of parts of the graph not by the number of vertices, but by
the weight of the intersection of the sought solution with the part in question. We observe
that we can adapt Theorem 2 to this setting of unknown weight function.

▶ Theorem 17. Given an n-vertex graph G and an integer t, one can in time nO(t log n)

either:
output an induced copy of St,t,t in G, or
output a family F satisfying the following:

1. every element of F is a pair of a set P consisting of at most 11 log n + 6 induced paths
in G, each of length at most t + 1, and an extended strip decomposition of G − N [

⋃
P ];
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2. for every weight function w : V (G) → Z⩾0 there exists a pair in F such that every
particle in the extended strip decomposition of the pair has weight at most half of the
total weight of G;

3. the size of F is bounded by nO(log n).

Proof sketch. As observed in [10, 11], in G one can identify at most n2 induced paths
such that for every weight function w : V (G) → Z⩾0, at least one of the identified path is
a Gyárfás’ path for w, that is, a path Q such that every connected component of G − N [Q]
is of weight at most half of the weight of G. Thus, we can guess the path Q as in the proof
in Theorem 2 out of at most n2 candidates.

Then, in the recursive step in the proof of Theorem 2, instead of choosing the heavy
particle to recurse on, we guess which particle is heavy (or that none exists). It is easy to see
that any extended strip decomposition in the process will have fewer than n inclusion-wise
maximal particles; thus, this gives nO(log n) possible outputs to enumerate. ◀

We think the log n factor in Theorem 2 is an artifact of our technique, and is not necessary.
Therefore, we pose the following conjecture.

▶ Conjecture 18. For every integer t ⩾ 1 there exists a constant ε > 0 and an integer s such
that every St,t,t-free graph G admits a set P ⊆ V (G) of size at most s such that G − N [P ]
admits a rigid extended strip decomposition whose every particle has at most (1 − ε)|V (G)|
vertices.

Abrishami, Chudnovsky, Dibek, and Rzążewski [2] very recently announced a polynomial-time
algorithm for MWIS in St,t,t-free graphs of bounded degree. Their argument is quite involved
and revisits the proof of the three-in-a-tree theorem [13].

Confirming Conjecture 18 would imply the same result almost immediately, possibly with
a better running time. Indeed, one needs to branch on N [P ] and recurse on the remainder
of every particle of (H, η). The maximum degree of H is bounded by a function of the
maximum degree of G (i.e., is a constant), which ensures that the sum of sizes of all particles
is linear in |V (G)|. This in turns implies that the total complexity of the algorithm can be
bounded by a polynomial function. Note that the same approach using Theorem 2 yields
quasipolynomial running time bound.

We see Theorem 2 as the analog of Theorem 1 in the classes of St,t,t-free graphs: with
its help, obtaining a QPTAS or a subexponential algorithm was relatively simple, following
the ideas of [7, 10, 11]. We expect it is a first step to get a quasipolynomial-time algorithm
for MWIS in St,t,t-free graphs, similarly as Theorem 1 is an essential ingredient of the
algorithms for Pt-free graphs [15, 24]. However, there is a lot of work to be done: the way
how [15, 24] measure the progress of the branching algorithm is quite intricate; furthermore,
for the class of C>t-free graphs (graphs excluding all cycles of length more than t as induced
subgraphs, a proper superclass of Pt-free graphs) while an analog of Theorem 1 is known, the
corresponding measure of the progress of the branching algorithm is much more involved [16].
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Abstract
The AP-LCA problem asks, given an n-node directed acyclic graph (DAG), to compute for every
pair of vertices u and v in the DAG a lowest common ancestor (LCA) of u and v if one exists, i.e. a
node that is an ancestor of both u and v but no proper descendent of it is their common ancestor.
Recently [Grandoni et al. SODA’21] obtained the first sub-n2.5 time algorithm for AP-LCA running
in O(n2.447) time. Meanwhile, the only known conditional lower bound for AP-LCA is that the
problem requires nω−o(1) time where ω is the matrix multiplication exponent.

In this paper we study several interesting variants of AP-LCA, providing both algorithms and
fine-grained lower bounds for them. The lower bounds we obtain are the first conditional lower
bounds for LCA problems higher than nω−o(1). Some of our results include:

In any DAG, we can detect all vertex pairs that have at most two LCAs and list all of their
LCAs in O(nω) time. This algorithm extends a result of [Kowaluk and Lingas ESA’07] which
showed an Õ(nω) time algorithm that detects all pairs with a unique LCA in a DAG and outputs
their corresponding LCAs.
Listing 7 LCAs per vertex pair in DAGs requires n3−o(1) time under the popular assumption
that 3-uniform 5-hyperclique detection requires n5−o(1) time. This is surprising since essentially
cubic time is sufficient to list all LCAs (if ω = 2).
Counting the number of LCAs for every vertex pair in a DAG requires n3−o(1) time under the
Strong Exponential Time Hypothesis, and nω(1,2,1)−o(1) time under the 4-Clique hypothesis.
This shows that the algorithm of [Echkardt, Mühling and Nowak ESA’07] for listing all LCAs
for every pair of vertices is likely optimal.
Given a DAG and a vertex wu,v for every vertex pair u, v, verifying whether all wu,v are valid
LCAs requires n2.5−o(1) time assuming 3-uniform 4-hyperclique requires n4−o(1) time. This defies
the common intuition that verification is easier than computation since returning some LCA per
vertex pair can be solved in O(n2.447) time.
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1 Introduction

A lowest common ancestor (LCA) of two nodes u and v in a directed acyclic graph (DAG) is
a common ancestor c of u and v such that no proper descendent of c is a common ancestor
of u and v. The AP-LCA problem asks to compute for every pair of nodes in a given DAG,
some LCA, provided a common ancestor exists.

Computing LCAs is an important problem with a wide range of applications. For
instance, LCA computation is a key ingredient in verification of the correctness of distributed
computation (e.g. [10]), object inheritance in object oriented programming languages such as
C++ and Java (e.g. [2, 19, 26]), and computational biology for finding the closest ancestor
of species in rooted phylogenetic networks (e.g. [22]).

Computing LCAs is very well-understood in trees [7, 8, 17, 24, 27, 37, 38, 40]. Aït-Kaci,
Boyer, Lincoln and Nasr [2] were one of the first to consider LCAs in DAGs, focusing on
lattices and lower semilattices with object inheritance in mind. Nykänen and Ukkonen [36]
obtained efficient algorithms for directed trees and asked if there is a subcubic time algorithm
for AP-LCA in DAGs.

Bender, Martin Farach-Colton, Pemmasani, Skiena and Sumazin [6] gave the first subcubic,
O(n(3+ω)/2) ≤ O(n2.687), time algorithm for AP-LCA in DAGs, where ω < 2.37286 is the
matrix multiplication exponent [4]. They also showed that AP-LCA is equivalent to the
so-called All-Pairs Shortest LCA Distance problem. Czumaj, Kowaluk and Lingas [30, 18]
improved the AP-LCA running time to O(n2.575) using a reduction to the Max-Witness
Product problem. With the current best bounds for rectangular matrix multiplication [33],
their algorithm runs in O(n2.529) time.

Notice that all subcubic algorithms above would run in Õ(n2.5) time1 if ω = 2. For more
than a decade, this running time remained unchallenged. It seemed that AP-LCA might
actually require n2.5−o(1) time, similar to several other n2.5 time problems such as computing
the Max-Witness product (see e.g. [34]).

Recently, Grandoni, Italiano, Lukasiewicz, Parotsidis and Uznanski [25] showed that this
is not the case, giving an algorithm that runs in O(n2.447) time, or in Õ(n7/3) time if ω = 2.

It is not hard to show (see [6, 18]) that any algorithm for AP-LCA can be used to solve
Boolean Matrix Multiplication (BMM), and hence beating O(nω) time for AP-LCA would
likely be difficult. No higher conditional lower bounds are known for the problem. It is still
open whether O(nω) time can actually be achieved for AP-LCA.

Partial progresses have been made for DAGs with special structures or for variants of
AP-LCA. Czumaj, Kowaluk and Lingas [18] showed that AP-LCA is in O(nω) time for
low-depth DAGs. Kowaluk and Lingas [31] showed that in O(nω log n) time one can return
an LCA for every vertex pair that has a unique LCA. Eckhardt, Mühling and Nowak [20]
showed that one can solve the AP-All-LCA problem, which asks to output all LCAs for every
pair of vertices, in O(nω(1,2,1)) time. Here ω(1, 2, 1) ≤ 3.252 is the exponent of multiplying
an n × n2 by an n2 × n matrix. AP-LCA was also studied in the weighted setting [5], the
dynamic setting [20] and the space-efficient setting [32].

This paper considers the following questions:
1. Can we return all LCAs for every pair of nodes that has at most 2 LCAs, in Õ(nω) time,

extending Kowaluk and Lingas’s algorithm [31]?
2. The AP-LCA problem asks us to exhibit a single LCA for each vertex pair. What if we

want to list 2, 3, . . . , k LCAs? How fast can we do it?

1 Õ hides poly-logarithmic factors.
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So far two variants of LCA are studied: list a single LCA per pair and list all LCAs per
pair. What about listing numbers in between? This is just as natural. In phylogenetic
networks for instance, there can be multiple LCAs per species pair, but typically not too
many. Then listing a constant number of LCAs fast can give a better picture than listing
a single representative. Other applications of AP-LCA would similarly make more sense
for listing multiple LCAs.

3. How fast can we count the number of LCAs each vertex pair has?
4. Suppose that for every pair of nodes u, v in a DAG we are given a node wu,v. Can we

efficiently determine whether wu,v is an LCA of u and v, for each u, v? One would think
that if AP-LCA can be solved faster than O(n2.5) time, then this verification version of
the problem should also be solvable faster.

We provide algorithms and fine-grained conditional lower bounds to address the above
questions. Our lower bounds are the first conditional lower bounds higher than nω−o(1) for
LCA problems.

1.1 Our results
Detecting and listing O(1) LCAs. Our results for this part are summarized in Table 1.

Table 1 A summary of our results for detecting and listing LCAs. In the second and third columns,
we give the best known runtime exponents for AP-AtLeastk-LCA and AP-List-k-LCA respectively.
An exponent of 3 above corresponds to the trivial brute-force algorithm. In the fourth and fifth
columns, we give the best conditional lower bounds for the exponent of AP-AtLeastk-LCA, and the
corresponding hardness sources for the lower bounds. The exponents and lower bounds in the last
row are for AP-All-LCA problem. All values in parentheses are the corresponding values when ω = 2.

k AP-AtLeastk-LCA Exponent AP-List-k-LCA Exponent Best Lower Bound Source of LB
1 ω (2) Folklore 2.447 (7/3) [25] ω (2) [6] BMM
2 ω (2) [31], Thm 26 2.529 (2.5) Thm 3 ω (2) [6] BMM
3 ω (2) Thm 27 2.529 (2.5) Thm 3 ω (2) [6] BMM
4 3 3 2.5 Thm 30 (4, 3)-Hyperclique
5 3 3 2.666 Thm 30 (5, 3)-Hyperclique
6 3 3 2.8 Thm 30 (6, 3)-Hyperclique
7 3 3 3 Thm 30 (5, 3)-Hyperclique

All N/A ω(1, 2, 1) (3) [20] ω(1, 2, 1) (3) Thm 4, 5 SETH, 4-Clique

Let us define AP-Exactk-LCA, AP-AtLeastk-LCA and AP-AtMostk-LCA as the problems of
deciding for every pair of vertices in a given DAG, whether they have exactly, greater than
or equal to, and less than or equal to k LCAs, respectively.

We study how fast AP-Exactk-LCA, AP-AtLeastk-LCA and AP-AtMostk-LCA can be solved
for constant k. More generally, we study the problem of returning k LCAs per vertex pair if
it has at least k LCAs, or all LCAs if it has fewer. We call the latter problem AP-List-k-LCA.

For any constant k, one can return up to k LCAs for every vertex pair in a DAG in cubic
time using a trivial brute-force algorithm2. More generally, if ω = 2, the O(nω(1,2,1)) time
AP-All-LCA algorithm in [20] would also run in essentially cubic time.

2 We first compute a topological ordering of the graph in O(n2) time and the transitive closure in O(nω)
time using [23]. For each vertex pair (u, v), we scan the vertices in the reverse order of the topological
ordering, and declare the current vertex w a new LCA if w can reach both u and v and w cannot reach
any LCAs found so far. We stop the scan as soon as we find k LCAs or reach the end of the topological
ordering. Given the transitive closure, each reachability check can be finished in O(1) time, so the
overall running time of the algorithm is O(kn3).
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It is thus interesting to study for what values of k, AP-Exactk-LCA, AP-AtLeastk-LCA,
AP-AtMostk-LCA and AP-List-k-LCA are solvable in truly subcubic, O(n3−ε) for ε > 0, time.

We show that for every constant k, the listing problem AP-List-k-LCA and the decision
problem AP-AtLeastk-LCA are subcubically equivalent. This statement appears as Theorem 28
in the main text. Thus, the values k for which one problem is in subcubic time are exactly
the same for the other problem.

We also prove a convenient equivalence between AP-Exactk-LCA, AP-AtLeastk-LCA and
AP-AtMostk-LCA:

▶ Theorem 1. For any constant k ≥ 0, the running times of AP-Exactk-LCA, AP-AtMostk-
LCA and AP-AtLeast(k + 1)-LCA are the same up to constant factors.

Now we can focus on AP-Exactk-LCA, and due to the above equivalence, we also obtain
results for the other variants.

Next, we extend the result of Kowaluk and Lingas [31] for pairs with unique LCAs to
pairs with two LCAs by showing that AP-Exactk-LCA can be solved in O(nω) time for both
k = 1, 2. Moreover, the corresponding witness LCAs can be listed in the same time.

▶ Theorem 2. AP-Exact1-LCA and AP-Exact2-LCA can be solved in O(nω) time with high
probability by Las Vegas algorithms. Moreover, finding the LCAs for vertex pairs (u, v) that
have exactly 1 or 2 LCAs can also be solved in O(nω) time with high probability.

This theorem appears as Theorems 26 and 27 in the main text. By our equivalence theorem,
the same result applies to AP-AtLeast(k + 1)-LCA and AP-AtMostk-LCA for k = 1, 2.

Our algorithm for AP-Exact1-LCA is different from that of [31]. The algorithm of [31] is
deterministic while ours is randomized, so it is seemingly weaker. We nevertheless include
our approach to AP-Exact1-LCA as it is simple and saves a factor of log n. Additionally, our
approach generalizes to AP-Exact2-LCA.

As our techniques no longer seem to work for the case of deciding if there are exactly
3 LCAs, we turn to conditional lower bounds. We prove that under popular fine-grained
hypotheses, the following hold in the word-RAM model with O(log n) bit words (Theorem 30):
AP-Exactk-LCA requires time n2.5−o(1) for k = 3, n8/3−o(1) for k = 4, n2.8−o(1) for k = 5 and
n3−o(1) for k = 6.

With our earlier equivalence theorem in mind, our conditional lower bound for AP-Exact3-
LCA means that detecting for each pair whether it has at least 4 LCAs, or listing 4 LCAs
per vertex pair also requires n2.5−o(1) time. In particular, this shows that listing 4 LCAs is
more difficult than listing just one LCA per vertex pair, as the latter has an O(n2.447) time
algorithm [25].

Furthermore, our conditional lower bound for AP-Exact6-LCA also implies that AP-
AtLeast7-LCA requires n3−o(1) time, and hence the clearly even harder problem of listing 7
LCAs per vertex pair requires n3−o(1) time. This is intriguing since as we mentioned earlier,
we can list all LCAs per pair in essentially cubic time if ω = 2.

We also show the following algorithmic results for AP-List-2-LCA and AP-List-3-LCA.

▶ Theorem 3. For k = 2 and k = 3, the AP-List-k-LCA problem can be deterministically
solved in Õ(n2+λ) time, where λ satisfies the equation ω(1, λ, 1) = 1 + 2λ. Here, ω(1, λ, 1) is
the exponent of multiplying an n × nλ by an nλ × n matrix.

The running time for AP-List-k-LCA above matches the best known running time for Max-
Witness product [18]. Using the current best bounds for rectangular matrix multiplication [33],
the runtime we get for AP-List-k-LCA is O(n2.529) for k = 2 and 3.
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Counting LCAs. We now turn our attention to computing the number of LCAs for every
pair of vertices in a DAG. We call this problem AP-#LCA. As shown in [20], we can list all
LCAs for every pair of vertices in O(nω(1,2,1)) time, which is essentially cubic time if ω = 2.
Thus in particular, we can also count all the LCAs in the same amount of time.

One might wonder, can the counts be computed faster, in truly subcubic time? We show
that under the Strong Exponential Time (SETH) Hypothesis [29, 13, 14], this is impossible,
even if we are only required to return the count for a vertex pair if it is smaller than some
superconstant function g(n). Notice that we can solve this restrained case in O(n3g(n)) time
using the brute-force algorithm, so the following theorem is tight up to no(1) factors when
g(n) is Õ(1).

▶ Theorem 4. Assuming SETH, AP-#LCA requires n3−o(1) time, even if we only need to
return the minimum between the count and g(n) for any g(n) = ω(1).

The current best running time O(nω(1,2,1)) for listing LCAs and also for AP-#LCA is
actually supercubic, however. For the current best bounds on ω(1, 2, 1), it is O(n3.252) [33].
In fact, there are serious limitations of the known matrix multiplication techniques [3, 15, 16]
that show that current techniques cannot be used to prove that ω(1, 2, 1) < 3.05.

In this case, the cubic lower bound for AP-#LCA under SETH would not be entirely
satisfactory. We thus present a tight conditional lower bound from the 4-Clique problem.

The 4-Clique problem asks, does a given n-node graph contain a clique on 4 nodes?
The fastest known algorithm for 4-Clique runs in Õ(nω(1,2,1)) time [21], which has remained
unchallenged for almost two decades. We show that an improvement over the O(nω(1,2,1))
time for AP-#LCA would also solve 4-Clique faster.

▶ Theorem 5. If the AP-#LCA problem can be solved in T (n) time, then 4-Clique can be
computed in O(T (n) + nω) time.

Verifying LCAs. Oftentimes in algorithms, one is also concerned with the problem of
verifying an answer besides computing an answer. In many cases, verification is an easier
problem than computation. For instance, even though computing the product of two n × n

matrices A and B currently is only known to be possible in O(n2.373) time, verifying whether
the product of A and B is a matrix C can be done in randomized Õ(n2) time. This was the
basis of the Blum-Luby-Rubinfeld linearity test [9].

We consider the following two verification variants of AP-LCA which we call Ver-LCA and
AP-Ver-LCA. In both variants, we are given an n-node DAG, and for every pair of nodes
u, v in the DAG, we are also given a node wu,v. In Ver-LCA, we want to determine whether
all wu,v are LCAs for their respective pair u, v, i.e. that the matrix w of candidate LCAs
is all correct (or conversely, that there is some pair that has an incorrect entry). In the
AP-Ver-LCA variant we want to know for every u, v whether wu,v is an LCA of u and v, so
this variant is potentially more difficult. After we compute the transitive closure of the graph,
it takes O(n) time to verify whether a vertex wu,v is indeed an LCA of u and v. Thus, both
Ver-LCA and AP-Ver-LCA can be solved in O(n3) time. No faster algorithm is known to the
best of our knowledge.

Kowaluk and Lingas [31] solved a variant of AP-Ver-LCA concerning vertex pairs that
have at most 2 LCAs. Specifically, given one or two nodes per pair they showed how to verify
that those nodes are all the LCAs for the pair, in O(nω) time. However, their algorithm is
not able to compute 2 LCAs for vertex pairs that have exactly 2 LCAs in O(nω) time.

Surprisingly, we provide strong evidence that Ver-LCA and AP-Ver-LCA are actually
harder than AP-LCA, as AP-LCA can be solved in O(n2.5−ε) time for ε > 0, while under
popular fine-grained hypotheses, Ver-LCA and AP-Ver-LCA require n2.5−o(1) time.
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Our first hardness result is that the running time of AP-Ver-LCA is at least as high as
that of the Max-Witness problem, whose current best running time is O(n2.529) [30, 33]. If
ω = 2, then Max-Witness would be solvable in Õ(n2.5) time, and it is hypothesized [34] that
no n2.5−o(1) time algorithms exist for it.

▶ Theorem 6. If the AP-Ver-LCA problem can be solved in T (n) time, then the Max-Witness
problem can be solved in Õ(T (n)) time.

Note that Czumaj, Kowaluk and Lingas’s algorithm [18] for AP-LCA is essentially a
reduction from AP-LCA to Max-Witness. Combined with their algorithm, the above theorem
says that we can solve AP-Ver-LCA in T (n) time, then we can solve AP-LCA in Õ(T (n)) time.

Our second result is the hardness of Ver-LCA based on the hardness of the (4, 3)-Hyperclique
problem: given a 3-uniform hypergraph on n nodes, return whether it contains a 4-hyperclique.
This problem is hypothesized to require n4−o(1) time [35], and solving it in O(n4−ε) time for
ε > 0 would imply improved algorithms for Max-3-SAT and other problems (see [35] and the
discussion therein).

▶ Theorem 7. Assuming the (4, 3)-Hyperclique hypothesis, Ver-LCA requires n2.5−o(1) time.

Thus, verifying candidate LCAs is most likely harder than finding LCAs, defying the
common intuition that verification should be easier than computation.

1.2 Paper Organization
In Section 2, we give necessary definitions. In Section 3, we list basic relationships among AP-
Exactk-LCA, AP-AtMostk-LCA and AP-AtLeastk-LCA, including Theorem 1. In Section 4, we
show O(nω) time algorithms for AP-Exact1-LCA and AP-Exact2-LCA, proving Theorem 2. In
Section 5, we consider the AP-List-k-LCA problem. In Section 6, we prove several conditional
lower bounds for AP-Exactk-LCA and AP-#LCA, including Theorem 4 and Theorem 5.
In Section 7, we show conditional lower bounds for AP-Ver-LCA, proving Theorem 6 and
Theorem 7. Finally, in Section 8, we conclude with several open problems.

2 Preliminaries

2.1 Notation
Let G = (V, E) be a DAG. For every u, v ∈ V , we use LCA(u, v) to denote the set of vertices
that are LCAs for vertex pair u and v. We use u⇝ v to denote that u can reach v via zero
or more edges and use u ̸⇝ v to denote that u cannot reach v. In particular, u⇝ u for every
u ∈ V . We also use Anc(u) to denote the set of vertices that can reach u. For any V ′ ⊆ V ,
we use G[V ′] to denote the subgraph in G induced by the vertex set V ′.

We use ω < 2.37286 to denote the matrix multiplication exponent [4]. For any constants
a, b, c ≥ 0, we use ω(a, b, c) to denote the exponent of multiplying an na × nb matrix by an
nb × nc matrix, in the arithmetic circuit model. Note that the fastest known algorithms for
square [4] and rectangular [33] matrix multiplication all work in the arithmetic circuit model.

It is well-known that ω(a, b, c) = ω(b, c, a) (see e.g. [12]).

2.2 Variants of AP-LCA
Given a DAG G = (V, E), we study the following variants of AP-LCA.

▶ Definition 8 (AP-Exactk-LCA). Decide if |LCA(u, v)| = k for every pair u, v ∈ V .
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▶ Definition 9 (AP-AtMostk-LCA). Decide if |LCA(u, v)| ≤ k for every pair u, v ∈ V .

▶ Definition 10 (AP-AtLeastk-LCA). Decide if |LCA(u, v)| ≥ k for every pair u, v ∈ V .

▶ Definition 11 (AP-#LCA). Compute |LCA(u, v)| for every pair u, v ∈ V .

▶ Definition 12 (AP-List-k-LCA). Compute for every pair u, v ∈ V a list of k distinct LCAs.
If any pair u, v ∈ V has fewer than k LCAs, output all of their LCAs.

▶ Definition 13 (AP-All-LCA). For every pair u, v ∈ V , output LCA(u, v).

▶ Definition 14 (AP-Ver-LCA). Given a candidate vertex wu,v for each pair u, v ∈ V , decide
if wu,v ∈ LCA(u, v) for every pair u, v ∈ V .

▶ Definition 15 (Ver-LCA). Given a candidate vertex wu,v for each pair u, v ∈ V , decide if
there exists u, v ∈ V such that wu,v is not an LCA for u and v.

2.3 Fine-Grained Hypotheses
In this section, we list the hypotheses we use in this paper.

Eisenbrand et al. [21] gave the current best algorithm for 4-Clique that runs in O(nω(1,2,1))
time. The 4-Clique hypothesis states that we cannot improve this algorithm much.

▶ Hypothesis 16 (4-Clique Hypothesis [11, 1]). On a Word-RAM with O(log n) bit words,
detecting a 4-clique in an n-node graph requires nω(1,2,1)−o(1) time.

▶ Hypothesis 17 ((ℓ, k)-Hyperclique Hypothesis, [35]). Let ℓ > k > 2 be constant integers.
On a Word-RAM with O(log n) bit words, detecting whether an n-node k-uniform hypergraph
contains an ℓ-hyperclique requires nℓ−o(1) time.

Using common techniques (see e.g. [39]), the (ℓ, k)-Hyperclique hypothesis actually implies
the hardness of the following unbalanced version of (ℓ, k)-Hyperclique.

▶ Fact 18. Assuming the (ℓ, k)-Hyperclique hypothesis, on a Word-RAM with O(log n) bit
words, detecting whether a k-uniform ℓ-partite hypergraph with na1 , . . . , naℓ vertices on each
part for a1, . . . , aℓ > 0 requires na1+···+aℓ−o(1) time.

▶ Hypothesis 19 (Max-k-SAT Hypothesis, [35]). On a Word-RAM with O(log n) bit words,
for any k ≥ 3, given a k-CNF formula on n variables and poly(n) clauses, determining the
maximum number of clauses that can be satisfied by a Boolean assignment of the variables
requires 2n−o(n) time.

▶ Hypothesis 20 (Strong Exponential Time Hypothesis (SETH), [28, 13, 14]). On a Word-
RAM with O(log n) bit words, for every ϵ > 0, there exists k such that k-SAT on n variables
cannot be solved in O(2(1−ϵ)n) time.

▶ Definition 21. The Max-Witness product C of two n × n Boolean matrices A and B is
defined as

C[i, j] = max{k | A[i, k] = B[k, j] = 1}

where the maximum is defined to be −∞ if no such witness exists.

The best running time to compute the Max-Witness product is O(n2+λ) where λ satisfies
the equation ω(1, λ, 1) = 1 + 2λ [18]. This running time is Õ(n2.5) if ω = 2. It is used as a
hypothesis that this running time cannot be improved much.

▶ Hypothesis 22 (Max-Witness Hypothesis, [34]). On a Word-RAM with O(log n) bit words,
computing the Max-Witness product of two n × n matrices requires n2.5−o(1) time.
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3 Relationships among AP-Exactk-LCA, AP-AtMostk-LCA and
AP-AtLeastk-LCA

In this section, we consider the relationships between AP-Exactk-LCA, AP-AtMostk-LCA and
AP-AtLeastk-LCA. Our results are depicted in Figure 1 and are proven in the full version of
the paper.

AP-Exact0-LCA

AP-AtMost0-LCA

AP-AtLeast1-LCA

AP-Exact1-LCA

AP-AtMost1-LCA

AP-AtLeast2-LCA

AP-Exact2-LCA

AP-AtMost2-LCA

AP-AtLeast3-LCA

. . .

. . .

. . .

Figure 1 Reductions between AP-AtMostk-LCA, AP-Exactk-LCA and AP-AtLeastk-LCA. All arrows
in this figure represent O(n2) time reductions from an instance to another instance with the same
input sizes up to constant factors.

We first show the following lemma (whose proof is deferred to the full version) which then
allows us to show that AP-Exact(k + 1)-LCA (resp. AP-AtMost(k + 1)-LCA, AP-AtLeast(k + 1)-
LCA) is harder than AP-Exactk-LCA (resp. AP-AtMostk-LCA, AP-AtLeastk-LCA) for k ≥ 0.

▶ Lemma 23. Given a DAG G with n vertices, we can create another DAG G′ with 2n + 1
vertices and a map ρ : V (G) → V (G′) in O(n2) time such that for every u, v ∈ V (G), the
number of LCAs of u and v in G is exactly one fewer than the number of LCAs of ρ(u) and
ρ(v) in G′.

▶ Corollary 24. For any k ≥ 0, an instance of AP-Exactk-LCA (resp. AP-AtMostk-LCA,
AP-AtLeastk-LCA) with n vertices reduces to an instance of AP-Exact(k + 1)-LCA (resp.
AP-AtMost(k + 1)-LCA, AP-AtLeast(k + 1)-LCA) with O(n) vertices in O(n2) time.

Finally, we recall the relationship among AP-Exactk-LCA, AP-AtMostk-LCA and AP-
AtLeastk-LCA.

▶ Theorem 1. For any constant k ≥ 0, the running times of AP-Exactk-LCA, AP-AtMostk-
LCA and AP-AtLeast(k + 1)-LCA are the same up to constant factors.

4 Algorithms for AP-Exactk-LCA

As noted in the introduction, AP-Exactk-LCA can be solved in O(n3) time for any constant
k. Interestingly, an algorithm by Kowaluk and Lingas [31] that finds and verifies the LCAs
for vertex pairs with a unique LCA implies that AP-Exact1-LCA can be solved in Õ(nω)
time deterministically. In this section, we present an alternative randomized algorithm for
AP-Exact1-LCA, and also extend the algorithm for AP-Exact2-LCA.

The following claim is essential to our AP-Exact1-LCA algorithm. We defer its proof to
the full version fo the paper.
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▷ Claim 25. Given a DAG G = (V, E), for every pair of vertices u, v ∈ V , we have that

Anc(u) ∩ Anc(v) =
⋃

w∈LCA(u,v)

Anc(w). (1)

Moreover, if Anc(u) ∩ Anc(v) =
⋃

w∈S Anc(w) for some S ⊆ V , it must be the case that
LCA(u, v) ⊆ S.

▶ Theorem 26. There exists an O(nω) time Las Vegas algorithm for AP-Exact1-LCA that
succeeds with high probability. Additionally, this algorithm can find the unique LCA for all
pairs of vertices that have exactly 1 LCA.

Proof. For every pair of vertices u and v with a unique LCA w, we rewrite Equation (1) as
Anc(u) ∩ Anc(v) = Anc(w). In fact, Claim 25 gives us that this holds if and only if w is a
unique LCA of the pair u and v.

Let f : V → Zp be a random function for some p = Θ(n10). For every S ⊆ V , we will use
f(S) to denote

∑
x∈S f(x). Then with high probability, for any u, v, x ∈ V ,

Anc(u) ∩ Anc(v) = Anc(x) if and only if f(Anc(u) ∩ Anc(v)) = f(Anc(x)).

To see this, note that for S, S′ ⊆ V , if S ≠ S′, then f(S)−f(S′) is a sum of a nonzero number
of independent uniform random variables from Zp. Thus if S ̸= S′, then Pr [f(S) = f(S′)] =
1
p . Since we are comparing O(n2) such sets of the form f(Anc(x)) and f(Anc(u) ∩ Anc(v)),
by a union bound, the probability that two distinct sets collide is O(n4/p).

Therefore, it suffices to compute f(Anc(x)) and f(Anc(u) ∩ Anc(v)) for all u, v, x ∈ V .
For each x ∈ V (G), it is easy to compute f(Anc(x)) =

∑
v∈Anc(x) f(v) in O(n) time. To

compute F (u, v) = f(Anc(u) ∩ Anc(v)) for all u, v ∈ V , we construct the following matrices.
Let A be the transitive closure of G and let B[x, v] = f(x) · A[x, v]. Now, note that the
(u, v)-th entry of C = AT B gives us C[u, v] =

∑
x∈Anc(u)∩Anc(v) f(x) = F (u, v), as desired.

Therefore, we can compute all F (u, v) in O(nω) time.
Now, we sort the list L = {f(v) | v ∈ V (G)} in Õ(n) time. For each u, v ∈ V , we can find

an arbitrary wu,v such that F (u, v) = f(wu,v) in Õ(1) time. Assuming none of the O(n2) sets
we are interested in collide, which happens with probability at least 1−O(n4/p) = 1−O(1/n6),
we find such a wu,v if and only if it is the unique LCA of u, v ∈ V .

To make this algorithm Las Vegas, we first notice that if our algorithm does not report a
wu,v, then u and v does not have a unique LCA. For the vertex pairs that our algorithm
does find a wu,v, we run [31]’s verification algorithm (Theorem 2 in [31]) to verify if each
wu,v is in fact the unique LCA of u, v in O(nω) time. If we find any errors, we can simply
repeat the algorithm. ◀

Now we show how to extend our AP-Exact1-LCA algorithm to AP-Exact2-LCA.

▶ Theorem 27. There exists an O(nω) time Las Vegas algorithm for AP-Exact2-LCA that
succeeds with high probability. Additionally, this algorithm can find the two LCAs for all
pairs of vertices with exactly 2 LCAs.

Proof. For all pair of vertices u and v with exactly two LCAs, say a and b, we rewrite (1) as
Anc(u) ∩ Anc(v) = Anc(a) ∪ Anc(b). Moreover, for any u, v, a, b such that the above equation
holds, it must be the case that either both a and b are the only LCAs of u and v, or exactly
one of them is the unique LCA (and the other is a common ancestor). We can detect the
latter case with high probability by performing the algorithm as described in Theorem 26.
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Let f : V (G) → Zp be a random function for some p = Θ(n10). By the same argument
as Theorem 26, with high probability, for any u, v, a, b ∈ V ,

Anc(u)∩Anc(v) = Anc(a)∪Anc(b) if and only if f(Anc(u)∩Anc(v)) = f(Anc(a)∪Anc(b)).

Let F (u, v) = f(Anc(u)∩Anc(v)) and H(a, b) = f(Anc(a)∪Anc(b)). As we saw in Theorem 26,
we can compute F (u, v) in O(nω) time.

To compute H(a, b), note that Anc(a) ∪ Anc(b) = Anc(a) ∩ Anc(b). First, we compute the
transitive closure A of G in O(nω) time. Then, we construct an n × n matrix M by setting
M [x, a] = 1 − A[x, a]. Now, construct another matrix N by setting N [x, b] = f(x) · M [x, b].
Then, it is easy to see that

(MT N)[a, b] =
∑

x∈Anc(a)∩Anc(b)

f(x) = f(Anc(a) ∩ Anc(b)).

Therefore, one can compute

H(a, b) = f(Anc(a) ∪ Anc(b)) = f(V ) − f(Anc(a) ∩ Anc(b)) = f(V ) − (MT N)[a, b]

for all a, b ∈ V in O(nω) time.
Now, sort L = {H(a, b) | a, b ∈ V }. For each u, v which does not have a unique LCA,

search for an arbitrary pair au,v, bu,v (if one exists) such that F (u, v) = H(au,v, bu,v) in Õ(1)
time. With probability 1 − O(1/n6), we find such a pair for each u, v if and only if au,v and
bu,v are the only two LCAs of u and v.

To make this algorithm Las Vegas, we first notice that if our algorithm does not report a
pair au,v, bu,v, then u and v does not have exactly two LCAs. For vertex pairs for which our
algorithm does find two LCA candidates, we run [31]’s verification algorithm (it is described
in a remark in [31]) to verify that au,v and bu,v are the only two LCAs of u and v in O(nω)
time. If we find any errors, we can simply repeat the algorithm from the beginning. ◀

Note that our technique for AP-Exact1-LCA and AP-Exact2-LCA does not extend to AP-
Exact3-LCA because it would require us to list f(Anc(x) ∪ Anc(y) ∪ Anc(z)) for all x, y, z ∈ V ,
which easily exceeds nω time. In fact, in Section 6, we show it is unlikely to obtain an Õ(nω)
time algorithm for AP-Exact3-LCA by proving that any O(n2.5−ϵ) time algorithm for ϵ > 0
for AP-Exact3-LCA would refute the (4, 3)-Hyperclique hypothesis. Thus, AP-Exact3-LCA is
indeed (conditionally) harder than AP-Exact1-LCA and AP-Exact2-LCA.

5 AP-LCA Listing Algorithms

In this section, we consider the AP-List-k-LCA problem. First, we show that AP-AtLeastk-LCA
and AP-List-k-LCA are subcubically equivalent, i.e. either both or neither have a truly subcubic
time algorithm.

▶ Theorem 28. Suppose AP-AtLeastk-LCA can be computed in T (n) time for a constant k.
Then, AP-List-k-LCA can be computed in O(

√
n3 · T (n)) time. In particular, AP-AtLeastk-LCA

and AP-List-k-LCA are subcubically equivalent.

Proof. Suppose we are given a DAG G = (V, E). First compute a topological ordering π of
the vertices in O(n2) time, and the transitive closure D in O(nω) time. Now, for every pair
of vertices u and v, we inductively find their k topologically latest (with respect to π) LCAs.

Suppose we have found the set S(u, v) of the topologically latest ℓ−1 LCAs for every pair
of vertices u, v, for some 1 ≤ ℓ ≤ k with respect to π. Now, partition the vertices into sets
V = V1 ⊔ V2 ⊔ · · · ⊔ Vn/L, where V1 contains the first L vertices in the topological ordering,
V2 contains the next L and so on for a parameter L that we will set later.
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Let LCAG[W ](u, v) denote the set of LCAs of u and v in the subgraph induced by W

(note the distinction between LCAG[W ](u, v) and LCA(u, v) ∩ W ). Consider the vertex set
Ui = Vi ⊔Vi+1 ⊔· · ·⊔Vn/L and the induced subgraph Gi = G[Ui]. We will prove the following
claim in the full version of the paper.

▷ Claim 29. For u, v ∈ Ui, it must be the case that LCAGi(u, v) = LCA(u, v) ∩ Ui.

Now we describe our algorithm. For i = n/L, n/L − 1, . . . , 1, run AP-AtLeastℓ-LCA on
each Gi. For each (u, v) ∈ V × V , keep track of the largest index iu,v where AP-AtLeastℓ-LCA
outputs 1, i.e. largest index such that |LCAGi

(u, v)| ≥ ℓ. By Claim 29, this must mean that
|LCA(u, v) ∩ Uiu,v | ≥ ℓ whereas |LCA(u, v) ∩ Uiu,v−1| < ℓ. In other words, the ℓth LCA lies
in Viu,v

. By Corollary 24, we can compute AP-AtLeastℓ-LCA in time O(T (n)). Therefore,
this step takes O

(
n
L · T (n)

)
time in total.

Next, for each u, v ∈ V , note that the topologically ℓth LCA must lie in the vertex
partition Viu,v

, if iu,v exists. Therefore, it suffices to find the latest vertex x ∈ Viu,v
such

that x ∈ Anc(u) ∩ Anc(v) and no y ∈ S(u, v) is a descendent of x. Such an x must in fact be
the ℓth LCA. Note that these checks can be done in O(1) time for each x ∈ Viu,v

using the
transitive closure D. If there is no iu,v such that AP-AtLeastℓ-LCA outputs 1, then u and v

have fewer than ℓ LCAs. This step takes O(ℓ · L) = O(L) time for each pair u, v ∈ V .
Since we have to iteratively find up to k LCAs per vertex pair, the overall runtime of the

algorithm is O(nω + k( n
L · T (n) + n2 · L)). Choosing L =

√
T (n)/n, we have a runtime of

O(
√

n3 · T (n)).
Moreover, it is clear that if there is a subcubic algorithm for AP-List-k-LCA, we can use

the same algorithm to solve AP-AtLeastk-LCA with an Õ(n2) additional cost. Therefore the
two problems are in fact subcubically equivalent. ◀

In Theorem 26 and Theorem 27, we showed O(nω) time algorithms for AP-Exact1-LCA
and AP-Exact2-LCA. By their equivalences with AP-AtLeast2-LCA and AP-AtLeast3-LCA
respectively, we can also solve AP-AtLeast2-LCA and AP-AtLeast3-LCA in O(nω) time. By
Theorem 28, these imply O(n(ω+3)/2) time algorithms for AP-List-2-LCA and AP-List-3-LCA.

In the following theorem, we show that we can further improve the O(n(3+ω)/2) running
time for AP-List-2-LCA and AP-List-3-LCA to Õ(n2+λ) time where ω(1, λ, 1) = 1 + 2λ.
Interestingly this running time matches the current best running time of the Max-Witness
problem [18]. For these algorithms, we use an idea from [31] about comparing the sizes of
two sets for verifying whether a set of one or two vertices are all the LCAs.

▶ Theorem 3. For k = 2 and k = 3, the AP-List-k-LCA problem can be deterministically
solved in Õ(n2+λ) time, where λ satisfies the equation ω(1, λ, 1) = 1 + 2λ. Here, ω(1, λ, 1) is
the exponent of multiplying an n × nλ by an nλ × n matrix.

We defer the proof of Theorem 3 to the full version of the paper.

6 Lower Bounds

In this section, we show our conditional lower bounds for AP-Exactk-LCA and AP-#LCA.
These lower bounds are the first conditional lower bounds for LCA problems that are higher
than nω−o(1).
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6.1 Lower Bounds for AP-Exactk-LCA
First, we show lower bounds for the AP-Exactk-LCA problem by reducing from 3-uniform
hypercliques. Combined with Corollary 24, the following theorem also shows that, for all
constant k ≥ 6, AP-Exactk-LCA requires n3−o(1) time.

▶ Theorem 30. Assuming the (4, 3)-Hyperclique hypothesis, AP-Exact3-LCA requires n2.5−o(1)

time. Assuming the (5, 3)-Hyperclique hypothesis, AP-Exact4-LCA and AP-Exact6-LCA require
n8/3−o(1) and n3−o(1) time respectively. Also, assuming the (6, 3)-Hyperclique hypothesis,
AP-Exact5-LCA requires n14/5−o(1) time.

Proof. All four reductions share the same underlying ideas. Thus, we only give full details
for the first reduction. The remaining reductions are deferred to the full version of the paper.

(4, 3)-Hyperclique → AP-Exact3-LCA. Suppose we are given a 3-uniform 4-partite hypergraph
G on vertex sets A, B, C, U , where |A| = |B| = |C| =

√
n, and |U | = n. By Fact 18, the

(4, 3)-Hyperclique hypothesis implies that it requires (|A||B||C||U |)1−o(1) = n2.5−o(1) time to
determine whether G contains a 4-hyperclique.

We construct the following instance of AP-Exact3-LCA as depicted in Figure 2. The graph
G′ contains 3 layers of vertices V1, V2, V3. Vertex set V1 is a copy of U , vertex set V2 equals
(A × B) ⊔ (B × C) ⊔ (C × A) and vertex set V3 equals (A × B) ⊔ C. To distinguish vertices
from V2 and V3, we use subscript 2 and 3, e.g. (a, b)2 and (a, b)3, to denote vertices from V2
and V3 respectively.

We also add the following edges to the graph G′:
Add a directed edge from every vertex in V1 to every vertex in V3.
Add a directed edge from any vertex in V2 to any vertex in V3 as long as they do not
have inconsistent labels. For instance, for every a ∈ A, b ∈ B, c ∈ C, we add an edge from
(a, b)2 to (a, b)3 and to c3, but we do not add an edge from (a, b)2 to (a, b′)3 if b ̸= b′.
For every u ∈ V1 and every (x, y)2 ∈ V2, add a directed edge from u to (x, y) if and only
if there is not a 3-hyperedge among u, x and y.

U

u

A × B

(a′, b′)2

B × C

(b′′, c′′)2

C × A

(c′′′, a′′′)2

A × B

(a, b)3

C

c3

{u, a′, b′} ̸∈ E
{u, b′′, c′′} ̸∈ E

{u, c′′′, a′′′} ̸∈ E

a′ = a

b′ = b

all
b′′ = b c′′ = c a′′′ = a

c′′′ = c

all all

V1

V2

V3

Figure 2 Construction of G′ in Theorem 30 from the 3-uniform 4-hyperclique instance. Between
the parts where we mark “all”, we add all possible edges. Between the parts where we mark a
condition, we only add an edge when the corresponding condition holds.
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We consider the set of LCAs for every pair of (a, b)3, c3 ∈ V3.
First, since G′ is a three layered graph, all common ancestors of (a, b)3 and c3 in V2 are

their LCAs. Since we only add edges from V2 to V3 when the labels are consistent, it is easy
to verify that the set of LCAs in V2 is {(a, b)2, (b, c)2, (c, a)2}.

Now we claim that a, b, c are in a 4-hyperclique in G if and only if (a, b)3 and c3 have an
LCA in V1 and there is a 3-hyperedge among a, b, c in G.

Suppose a, b, c are in a 4-hyperclique with a vertex u ∈ V (G). Since G is 4-partite,
we must have u ∈ U . The copy of u in G′ is clearly a common ancestor of (a, b)3 and
c3, since we add all possible edges from V1 to V3. Because a, b, c, u is in a 4-hyperclique,
{a, b, u}, {b, c, u}, {c, a, u} ∈ E(G). Therefore, in G′ we do not add edges from u to any of
(a, b)2, (b, c)2 and (c, a)2. Since these are the only common ancestors of (a, b)3 and c3 in V2,
u in fact cannot reach any other vertex that can reach both (a, b)3 and c3, which makes u an
LCA. Clearly, there is a 3-hyperedge among a, b, c in G.

To prove the converse, suppose u ∈ V1 is an LCA of (a, b)3 and c3 and there is a 3-
hyperedge among a, b, c in G. In that case, u cannot reach any vertex that can reach both
(a, b)3 and c3. In particular, u cannot reach any of (a, b)2, (b, c)2, (c, a)2. When we add edges
from V1 to V2, we have that {a, b, u}, {b, c, u}, {c, a, u} are all 3-hyperedges in G. Also, since
{a, b, c} is a 3-hyperedge, there is indeed a 4-hyperclique with vertices a, b, c, u.

Thus, a, b, c are in a 4-hyperclique in G if and only if the number of LCAs of (a, b)3 and
c3 is not 3 and there is a 3-hyperedge among a, b, c in G. Thus, given the result of an AP-
Exact3-LCA computation of G′, we can easily determine if G has a 4-hyperclique. Therefore,
assuming the (4, 3)-Hyperclique hypothesis, AP-Exact3-LCA requires n2.5−o(1) time. ◀

▶ Remark 31. Note that in all our reductions to AP-Exactk-LCA for 3 ≤ k ≤ 5, we only
need to output the results for o(n2) pairs of u and v. For instance, in the reduction from
(4, 3)-Hyperclique to AP-Exact3-LCA, we only need to output whether (u, v) has exactly 3
LCAs for u ∈ A × B and v ∈ C. The total number of such pairs is only O(n1.5). This is
the main reason why we do not get n3−o(1) conditional lower bounds for AP-Exactk-LCA for
3 ≤ k ≤ 5. On the other hand, in the reduction to AP-Exact6-LCA, we do have Θ(n2) queries.

Williams [41] showed that Max-3-SAT reduces to 3-uniform hypercliques. Lincoln,
Vassilevska Williams and Williams [35] further generalized this reduction to a reduction
from Constraint Satisfaction Problem (CSP) on degree-3 formulas to 3-uniform hypercliques.
Therefore, Theorem 30 also works assuming the Max-3-SAT hypothesis or the hardness of
maximizing the number of satisfying clauses in degree-3 CSP formulas.

▶ Corollary 32. Assuming Max-3-SAT (or even max degree 3 CSP formulas) on N variables
and poly(n) clauses requires 2N−o(N) time, AP-Exact3-LCA, AP-Exact4-LCA, AP-Exact5-LCA
and AP-Exact6-LCA requires n2.5−o(1), n8/3−o(1), n14/5−o(1) and n3−o(1) time respectively.

6.2 Lower Bounds for Counting LCAs
In this section, we show two conditional lower bounds for AP-#LCA, one based on SETH
and one based on the 4-Clique hypothesis.

The next lemma is a crucial tool for the SETH lower bound. It is a generalization of our
previous reduction from (5, 3)-Hyperclique to AP-Exact6-LCA.

▶ Lemma 33. If there exists a T (N) time algorithm for AP-Exact
(2(k−1)

k−1
)
-LCA for graphs with

N vertices, then there exists an O(f(k) poly(n)f(k)T (2n/3)) time algorithm for Max-k-SAT
with n variables and poly(n) clauses for some function f .
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To prove the lemma, we first reduce Max-k-SAT to k-uniform (2k − 1)-hyperclique, which
is a straightforward generalization of Williams’ Max-2-SAT algorithm [41]. Then we reduce
k-uniform (2k − 1)-hyperclique to AP-Exact

(2(k−1)
k−1

)
-LCA, building on ideas similar to the

proof of Theorem 30. The full proof can be found in the full version of the paper.

▶ Remark 34. Lemma 33 implies that if we assume the Max-k-SAT hypothesis, then AP-
Exact

(2(k−1)
k−1

)
-LCA requires n3−o(1) time. Since our reduction uses (2k−1, k)-Hyperclique as an

intermediate problem, the same lower bound also holds assuming the (2k − 1, k)-Hyperclique
hypothesis.

Now we show our SETH lower bound using Lemma 33.

▶ Theorem 4. Assuming SETH, AP-#LCA requires n3−o(1) time, even if we only need to
return the minimum between the count and g(n) for any g(n) = ω(1).

Proof. For the sake of contradiction, assume AP-#LCA has an O(n3−ϵ) time algorithm
for ϵ > 0 when the algorithm only needs to return the minimum between the count and
g(n). For any fixed k, when n is large enough, we have

(2(k−1)
k−1

)
< g(n), so we can solve

AP-Exact
(2(k−1)

k−1
)
-LCA in O(n3−ϵ) time. Thus, by Lemma 33, we can solve Max-k-SAT (and

thus k-SAT) with n variables and poly(n) clauses in time

O(f(k) poly(n)f(k)(2n/3)3−ϵ) = O(f(k) poly(n)f(k)2(1−ϵ/3)n) = O(poly(n) · 2(1−ϵ/3)n),

which would refute SETH. ◀

Finally, we present our reduction from 4-Clique to AP-#LCA, showing an nω(1,2,1)−o(1)

lower bound for AP-#LCA assuming the current algorithm for 4-Clique is optimal.

▶ Theorem 5. If the AP-#LCA problem can be solved in T (n) time, then 4-Clique can be
computed in O(T (n) + nω) time.

Proof. Suppose we are given a 4-Clique instance G = (V, E). Without loss of generality, we
assume G is a 4-partite graph with four vertex parts V = A ⊔ B ⊔ C ⊔ D of size n each.

First, make a copy G′ = (V ′, E′) of G, and modify the edge set of G′ as follows:
Remove all edges between A and B.
Direct all edges from D to A and B.
Direct all edges from C to A, B and D.

Then we add two additional vertex sets A′ and B′ to G′, where A′ is a copy of A and B′

is a copy of B. We use a′ to denote the copy of a ∈ A in A′ and use b′ to denote the copy of
b ∈ B in B′. We also add the following edges:

For every a ∈ A, add an edge (a′, a).
For every b ∈ B, add an edge (b′, b).
For every a ∈ A, b ∈ B, add two edges (a′, b) and (b′, a).
For every a ∈ A, c ∈ C, add an edge (c, a′) if {c, a} ̸∈ E.
For every b ∈ B, c ∈ C, add an edge (c, b′) if {c, b} ̸∈ E.

This construction of the graph is also depicted in Figure 3. From there, it is clear that
G′ is a 3-layered graph.

▷ Claim 35. For every a ∈ A, b ∈ B, c ∈ C, c is an LCA of a and b in G′ if and only if
{c, a}, {c, b} ∈ E and there doesn’t exist any d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E.
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C

c

A′

a′

D

d

B′

b′

A

a

B

b

{c, a} ̸∈ E
{c, d} ∈ E

{c, b} /∈ E

a′ = a

all

{d, a} ∈ E {d, b} ∈ E

all
b′ = b

{c, a} ∈ E {c, b} ∈ E

Figure 3 Construction of G′ in Theorem 5 given a 4-partite 4-Clique instance. Between parts
where we mark “all”, we add all possible edges. Between parts where we mark a condition, we only
add an edge when the corresponding condition holds.

Proof. First, suppose c is an LCA of a and b. For the sake of contradiction, suppose {c, a} ̸∈ E.
Then by the construction of G′, (c, a′) ∈ E′. Also, (a′, a), (a′, b) ∈ E′, so c cannot be an
LCA. This leads to a contradiction, so we must have {c, a} ∈ E. Similarly, we must have
{c, b} ∈ E. Finally, suppose for the sake of contradiction that there exists a d ∈ D such
that {c, d}, {d, a}, {d, b} ∈ E, then by construction, (c, d), (d, a), (d, b) ∈ E′, so c cannot be
an LCA. Thus, there doesn’t exist any d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E.

Now we prove the converse direction. Suppose {c, a}, {c, b} ∈ E and there doesn’t exist
any d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E. By our construction, (c, a), (c, b) ∈ E′, so c is
at least a common ancestor of a and b. Since G′ is a 3-layered graph, it suffices to show that
there isn’t any vertex u in the middle layer such that (c, u), (u, a), (u, b) ∈ E′. First, for any
u ∈ A′, if u ̸= a′, then (u, a) ̸∈ E′; if u = a′, then (c, u) ̸∈ E′ because {c, a} ∈ E. Therefore,
there isn’t any u ∈ A′ such that (c, u), (u, a), (u, b) ∈ E′. Similarly, there isn’t any u ∈ B′

such that (c, u), (u, a), (u, b) ∈ E′. For any d ∈ D, we already have the condition that at
least one of {c, d}, {d, a}, {d, b} is not in E, so at least one of (c, d), (d, a), (d, b) is not in E′.
Therefore, c is an LCA. ◁

Using this claim, we describe our algorithm below.
First, run AP-#LCA to compute |LCA(a, b)| for all (a, b) ∈ A × B. Since G′ is a three-

layered graph, the set of LCAs of a and b in the middle layer is exactly the set of their common
neighbors in the middle layer. Therefore, we can easily compute |LCA(a, b) ∩ (A′ ∪ B′ ∪ D)| in
O(nω) time by using matrix multiplication to count the number of their common neighbors
in the middle layer. Also, clearly, there isn’t any LCA of a and b in A or B. Thus, we can
compute the number of c ∈ C that is an LCA of a and b by

|LCA(a, b) ∩ C| = |LCA(a, b)| − |LCA(a, b) ∩ (A′ ∪ B′ ∪ D)|.

By Claim 35, |LCA(a, b) ∩ C| is exactly the number of c ∈ C such that {c, a}, {c, b} ∈ E

and there doesn’t exist any d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E.
Next, in O(nω) we can use matrix multiplication again to compute Q(a, b) for every (a, b)

where Q(a, b) is defined as the number of c ∈ C such that {c, a}, {c, b} ∈ E.
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Note that Q(a, b)−|LCA(a, b)∩C| is exactly the number of c ∈ C such that {c, a}, {c, b} ∈
E and there exists d ∈ D such that {c, d}, {d, a}, {d, b} ∈ E. Thus, a and b are in a 4-clique
if and only if {a, b} ∈ E and Q(a, b) − |LCA(a, b) ∩ C| > 0.

Overall, if we can compute AP-#LCA in T (n) time, then we can solve the 4-partite
4-Clique instance in O(T (n) + nω) time. ◀

Since AP-#LCA is easier than AP-All-LCA, this lower bound shows that the AP-All-LCA
algorithm in [20] is in fact conditionally optimal.

7 AP-Ver-LCA

In this section, we show two conditional lower bounds for AP-Ver-LCA, based on the Max-
Witness hypothesis and the (4, 3)-Hyperclique hypothesis. First, recall the following theorem:

▶ Theorem 6. If the AP-Ver-LCA problem can be solved in T (n) time, then the Max-Witness
problem can be solved in Õ(T (n)) time.

At the high level, we reduce the MaxWitness problem to O(log n) calls of the AP-Ver-LCA
problem using a parallel binary search technique.

Proof. Without loss of generality, suppose n = 2ℓ for some integer ℓ. Suppose we have two
n × n Boolean matrices A and B, each already padded with a column and row of ones to
ensure that there always exists a Boolean witness. Now, we will describe an algorithm to
compute C = Max-Witness(A, B) using an AP-Ver-LCA algorithm ℓ = log n times. At the high
level, we will be using a parallel binary search to find the maximum witness corresponding
to each entry of C.

Construct a tripartite graph G on vertices V = I ⊔ J ⊔ K, where |I| = |J | = |K| and
identify each of the sets with [n]. Add a directed edge from k ∈ K to i ∈ I if A[i, k] = 1
and an edge from k ∈ K to j ∈ J if B[k, j] = 1. Then, computing C[i, j] is the same as
determining the largest k ∈ K that is a common ancestor of both i ∈ I and j ∈ J . Now, we
will iteratively find the tth bit in the binary representation of each C[i, j] for t = 1, . . . , ℓ

(the first bit is the highest order bit, and the last bit is the lowest order bit). In the first
iteration, we do the following.

Phase 1: Construct a graph G1 by first making a copy of G and adding a vertex w. Then,
we add a directed edge from w to every vertex in I ∪ J . Now, add a directed edge from w to
all vertices k ∈ K whose binary representation starts with 1. Finally, run AP-Ver-LCA where
we guess w is an LCA for all pairs (i, j) ∈ I × J . If w is in fact an LCA, set c

(1)
i,j = 0, and

otherwise, set c
(1)
i,j = 1.

More generally, at the tth iteration of the algorithm, we do the following.

Phase t: At the tth iteration of the algorithm for 1 ≤ t ≤ ℓ, construct the graph Gt as
follows. First, make a copy of G. Then, for each string b = b1b2 . . . bt−1 ∈ {0, 1}t−1, create a
vertex wb. Now, add an edge from wb to all vertices in K whose binary representation starts
with b1b2 . . . bt−1||1. Then, add an edge from every wb to every vertex in I ∪ J . If c

(t−1)
i,j = b,

guess that wb is an LCA for (i, j) ∈ I × J . Run AP-Ver-LCA with all of these guesses. If the
algorithm outputs yes for (i, j), set c

(t)
i,j = b||0. Otherwise, set c

(t)
i,j = b||1.

We show by induction that at Phase t, c
(t)
i,j is the first t bits of C[i, j]. In Phase 1, note

that w is an LCA for (i, j) ∈ I × J exactly when none of its children are common ancestors
of (i, j). In other words, (i, j) has no common ancestor (and hence no witness) k ∈ K whose
first bit is 1.
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Suppose at iteration t − 1, this claim is true. In other words, for each i, j, di,j = c
(t−1)
i,j

corresponds to the first t − 1 bits of C[i, j]. Then, at iteration t, we guessed that wdi,j is
an ancestor. Since wdi,j

only has children whose first t bits are di,j ||1, it is an LCA of (i, j)
exactly when none of these children are common ancestors, i.e. the largest common ancestor
of (i, j) has binary representation starting with di,j ||0. Otherwise, it starts with di,j ||1, as
desired.

Therefore, after ℓ iterations, we have that C[i, j] = c
(ℓ)
i,j (where we interpret ci,j as an ℓ-bit

binary integer). The algorithm does O(n2) work at each phase to construct Gt, and then
invokes an AP-Ver-LCA algorithm. Hence the overall runtime is Õ(n2 + T (n)) = Õ(T (n)), as
desired. ◀

▶ Theorem 7. Assuming the (4, 3)-Hyperclique hypothesis, Ver-LCA requires n2.5−o(1) time.

Proof. Suppose we are given a 3-uniform 4-partite hypergraph G on vertex sets A, B, C, U ,
where |A| = |B| = |C| =

√
n, and |U | = n. The (4, 3)-Hyperclique hypothesis implies that it

requires n2.5−o(1) time to determine whether G contains a 4-hyperclique by Fact 18.
We construct the following Ver-LCA instance G′ on O(n) vertices.
The graph G′ contains 3 layers of vertices V1, V2, V3 with an additional vertex s. We set

V1 to be A × B, set V2 to be a copy of U and set V3 to be (B × C) ⊔ (C × A).
We also add the following edges to the graph G′.
Add a directed edge from every v1 ∈ V1 to every v3 ∈ V3.
Add a directed edge from (a, b) ∈ V1 to u ∈ V2 if and only if {u, a, b} ∈ E(G).
Add a directed edge from u ∈ V2 to (b, c) ∈ V3 if and only if {u, b, c} ∈ E(G). Similarly,
add a directed edge from u ∈ V2 to (c, a) ∈ V3 if and only if {u, c, a} ∈ E(G).
Add a directed edge from s to every other vertex in G′. This ensures that every pair of
vertices has some common ancestors, and thus has at least one LCA.

We claim that for every a ∈ A, b ∈ B, c ∈ C, a, b, c are in a 4-hyperclique in G if and only
if {a, b, c} ∈ E(G) and (a, b) is not an LCA of (b, c) and (c, a) in G.

First, if a, b, c are in a 4-hyperclique with u, then clearly {a, b, c} ∈ E(G). Also, by the
construction of G′, ((a, b), u), (u, (b, c)), (u, (c, a)) are all edges in G′. Thus, (a, b) can reach
a vertex u which can reach both (b, c) and (c, a), so (a, b) is not an LCA of (b, c) and (c, a).

Conversely, if {a, b, c} ∈ E(G) and (a, b) is not an LCA of (b, c) and (c, a), then since (a, b)
can reach both (b, c) and (c, a) via edges added from V1 to V3, (a, b) must be able to reach
some vertex that can reach both (b, c) and (c, a). Such a vertex must belong to V2. Say the
vertex is u, then by the construction of G′, we must have {a, b, u}, {b, c, u}, {c, a, u} ∈ E(G).
Together with the hyperedge {a, b, c}, a, b, c is in a 4-hyperclique.

Therefore, we can run Ver-LCA on G′ with the following set of LCA candidates:
For every a ∈ A, b ∈ B, c ∈ C such that {a, b, c} ∈ E(G), let w(b,c),(c,a) = (a, b).
For every other pair of vertices u, v ∈ V (G′), we use Grandoni et al.’s algorithm [25] to
find an actual LCA ℓu,v for them in O(n2.447) time and set wu,v = ℓu,v.

If some LCA candidate is incorrect, it must be that (a, b) is not an LCA for (b, c) and (c, a)
for some a ∈ A, b ∈ B, c ∈ C such that {a, b, c} ∈ E(G) and thus by previous discussion, the
hypergraph G has a 4-hyperclique. On the other hand, if all LCA candidates are correct,
then the hypergraph G does not have a 4-hyperclique.

Therefore, assuming the (4, 3)-Hyperclique hypothesis, Ver-LCA requires n2.5−o(1) time. ◀

Our conditional lower bounds for AP-Ver-LCA and Ver-LCA are surprising because they
suggest that AP-Ver-LCA and Ver-LCA require n2.5−o(1) time, while AP-LCA can be computed
in O(n2.447) time [25]. This defies the common intuition that verification should be easier
than computation.
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8 Open problems

We conclude this work by pointing out some potential future directions.
1. Does there exist a subcubic time algorithm for AP-Exactk-LCA for any 3 ≤ k ≤ 5? Or,

can we show an n3−o(1) conditional lower bound for AP-Exactk-LCA for any such k? How
about AP-Ver-LCA?

2. Is it possible to show conditional lower bounds for AP-List-k-LCA without using AP-
AtLeastk-LCA as an intermediate problem? For instance, since AP-AtLeastk-LCA has
O(nω) time algorithms for k ≤ 3, we cannot hope to get a higher than nω lower bound for
AP-List-k-LCA for k ≤ 3 using AP-AtLeastk-LCA as an intermediate problem. However,
the current best algorithm for AP-List-1-LCA runs in O(n2.447) and the best algorithm
for AP-List-2-LCA and AP-List-3-LCA runs in O(n2.529) time.

3. All our reductions reduce to instances of LCA variants in graphs with O(1) layers. In
such graphs, some variants could have faster algorithms. In particular, AP-LCA has an
Õ(nω) time algorithm [18] for graphs with O(1) layers, and thus we cannot hope to show
a higher conditional lower bound using our techniques. In order to overcome this, we
need to find reductions that show hardness for LCA variants in graphs with many layers.

4. Are there any other related problems whose verification version is easier than the compu-
tation version? Can we reduce these problems to or from AP-LCA?
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1 Introduction

Given an edge-weighted graph with a vertex called depot, a subset of vertices with demands,
called terminals, and an integer tour capacity k, the capacitated vehicle routing problem
(CVRP) asks for a minimum length collection of tours starting and ending at the depot such
that those tours together cover all the demand and the total demand covered by each tour is
at most k. In the unit demand version, each terminal has unit demand, which is covered by
a single tour;1 in the splittable version, each terminal has a positive integer demand and the
demand at a terminal may be covered by multiple tours.

The CVRP was introduced by Dantzig and Ramser in 1959 [15] and is arguably one of
the most important problems in Operations Research. Books have been dedicated to vehicle
routing problems, e.g., [26, 18, 14, 3]. Yet, these problems remain challenging, both from a
practical and a theoretical perspective.

Here we focus on the special case when the underlying metric is a tree. That case has
been the object of much research. The splittable tree CVRP was proved NP-hard in 1991 [24],
so researchers turned to approximation algorithms. Hamaguchi and Katoh [21] gave a simple
lower bound: every edge must be traversed by enough tours to cover all terminals whose
shortest paths to the depot contain that edge. Based on this lower bound, they designed
a 1.5-approximation in polynomial time [21]. The approximation ratio was improved to
(
√

41 − 1)/4 by Asano, Katoh, and Kawashima [4] and further to 4/3 by Becker [6], both
results again based on the lower bound from [21]. On the other hand, it was shown in [4] that
using this lower bound one cannot achieve an approximation ratio better than 4/3. More
recently, researchers tried to go beyond a constant factor so as to get a (1 + ϵ)-approximation,
at the cost of relaxing some of the constraints. When the tour capacity is allowed to be

1 Thus we may identify the demand coverd with the number of terminals covered.

EA
T

C
S

© Claire Mathieu and Hang Zhou;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 95; pp. 95:1–95:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:claire.mathieu@irif.fr
https://www.irif.fr/~claire/
mailto:hzhou@lix.polytechnique.fr
http://www.normalesup.org/~zhou/
https://doi.org/10.4230/LIPIcs.ICALP.2022.95
https://arxiv.org/abs/2111.03735
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


95:2 A PTAS for Capacitated Vehicle Routing on Trees

violated by an ϵ fraction, there is a bicriteria PTAS for the unit demand tree CVRP due to
Becker and Paul [10]. When the running time is allowed to be quasi-polynomial, Jayaprakash
and Salavatipour [22] very recently gave a quasi-polynomial time approximation scheme
(QPTAS) for the unit demand and the splittable versions of the tree CVRP. In this paper,
we close this line of research by obtaining a (1 + ϵ)-approximation without relaxing any of
the constraints – in other words, a polynomial-time approximation scheme (PTAS).

▶ Theorem 1. There is an approximation scheme for the unit demand capacitated vehicle
routing problem (CVRP) on trees with polynomial running time.

▶ Corollary 2. There is an approximation scheme for the splittable capacitated vehicle routing
problem (CVRP) on trees with running time polynomial in the number of vertices n and the
tour capacity k.

To the best of our knowledge, this is the first PTAS for the CVRP in a non-trivial metric
and for the entire range of the tour capacity. Previously, PTASs for small capacity as well as
QPTASs were given for the CVRP in several metrics, see Section 1.1.3.

1.1 Related Work
Our algorithms build on [22] and [10] but with the addition of significant new ideas, as we
now explain.

1.1.1 Comparison with the QPTAS in [22]
Jayaprakash and Salavatipour noted in [22] that

“it is not clear if it (the QPTAS) can be turned into a PTAS without significant new ideas.”

The running time in [22] is nOϵ(log4 n). Where do those four log n factors in the exponent
come from? At a high level, the QPTAS in [22] consists of three parts: (1) reducing the
height of the tree; (2) designing a bicriteria QPTAS; (3) going from the bicriteria QPTAS to
a true QPTAS. Our approach builds on [22] but differs from it in each of the three parts, so
that in the end we get rid of all of four log n factors, hence a PTAS.

(1) Jayaprakash and Salavatipour [22] reduce the input tree height from O(n) to Oϵ(log2 n);
whereas instead of the input tree, we consider a tree of components (Lemma 9) and
reduce its height to Oϵ(1), see Figure 1. Pleasingly, the height reduction (Section 4)
is much simpler than in [22]. The analysis differs from [22] and uses the structure
of a near-optimal solution established in Section 3 and the bounded distance property
(Definition 3 and Theorem 5).

(2) In the adaptive rounding used in [22], they consider the entire range [1, k] of the demands
of subtours and partition the subtour demands into buckets, resulting in Ωϵ(log k) different
subtour demands after rounding. In our approach, we define large and small subtours
inside components, depending on whether their demands are Ωϵ(k) (Definition 14). Then
we transform the solution structure to eliminate small subtours (Section 3), hence only
Oϵ(1) different subtour demands after rounding. This elimination requires a delicate
handling of small subtours. Thanks to the additional structure, our analysis of the
adaptive rounding is simpler than in [22], and in particular, we do not need the concept
of buckets.
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Figure 1 Height reduction for a tree of components. The left figure represents the initial tree of
components, where each triangle represents a component. We partition the components into classes
(indicated by blue, yellow, and orange), according to the distances from the roots of the components
to the root of the tree, and we reduce the height within each class to 1 (right figure), see Section 4.
The thick green path in the left figure represents a tour in an optimal solution. The red circular
nodes are the terminals visited by that tour. The corresponding tour in the new tree (right figure)
spans the same set of terminals.

(3) Jayaprakash and Salavatipour show that the orphan tokens, which are removed from the
tours exceeding capacity, can probably be covered by duplicating a small random set
of tours in the optimal solution. Their approach requires remembering the demands of
Ω(log n) subtours passing through each edge. To avoid this Ω(log n) factor, our approach
to cover the orphan tokens (Section 3.1) is different, see Figure 2. The analysis of our
approach (Sections 3.2 and 3.3) contains several novelties of this paper.

1.1.2 Comparison with the Bicriteria PTAS in [10]
Why is the algorithm in [10] a bicriteria PTAS, but not a PTAS?

Becker and Paul [10] start by decomposing the tree into clusters. (1) They require that
each leaf cluster is visited by a single tour. When the violation of the tour capacity is not
allowed, this requirement does not preserve a (1 + ϵ)-approximate solution. (2) They also
require that each small internal cluster is visited by a single tour. To that end, they modify
the optimal solution by reassigning all terminals of a small cluster to some existing tour at
the cost of possibly violating the tour capacity. Such modifications do not seem achievable
in the design of a PTAS.

In this paper, we start by defining components (Lemma 9), inspired by clusters in [10].
Unlike [10], we allow terminals in any component to be visited by multiple tours. However,
allowing many subtours inside a component could result in an exponential running time for
a dynamic program. To prevent that, we modify the solution structure inside a component
so that the number of subtours becomes bounded (Theorem 13). Instead of considering
all subtours simultaneously as in [10], we distinguish small subtours from large subtours
(Definition 14). Inspired by [10], we combine small subtours and reallocate them to existing
tours such that the violation of the tour capacity is an O(ϵ) fraction, see Steps 1 to 3 of
the construction in Section 3.1. Next, we use the iterated tour partitioning (ITP) and its
postprocessing to reduce the demand of the tours exceeding capacity (Figure 2), which is a
novelty in this paper, see Steps 4 to 6 of the construction in Section 3.1. The ITP algorithm
and its postprocessing are analyzed in Sections 3.2 and 3.3. In particular, we bound the
cost due to the ITP algorithm thanks to the bounded distance property (Theorem 5) and to
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(a) Constructing a traveling salesman tour. (b) Adding connections to the depot.

Figure 2 Covering the orphan tokens (in red). In Figure 2a, the orphan tokens are contained
in the small pieces (in brown) that are removed from the tours exceeding capacity. We add the
thick paths (in green) to connect all of the small pieces to the root of the tree. The cost of the thick
paths is an O(ϵ) fraction of the optimal cost (Lemma 17 and Corollary 18), thanks to the bounded
distance property. The induced traveling salesman tour is a double cover of the tree spanning the
orphan tokens. Next, we apply the iterated tour partitioning (ITP) algorithm on that tour. In
Figure 2b, the two paths (in blue and in orange) represent the connections to the depot added by
the ITP algorithm. Their cost is again an O(ϵ) fraction of the optimal cost (Lemma 19), thanks to
the bound on the number of orphan tokens and the bounded distance property.

the parameters in our component decomposition that are different from those in [10], see
Remark 10. Besides the above novelties in our approach, the height reduction (Figure 1, see
also Section 4), the adaptive rounding (Section 5), the reduction to bounded distances, as
well as part of the dynamic program are new compared with [10]. These additional techniques
are essential in the design of our PTAS, because of the more complicated solution structure
inside components in our approach compared with the solution structure inside clusters
in [10].

1.1.3 Other Related Work

Constant-factor approximations in general metric spaces

The CVRP is a generalization of the traveling salesman problem (TSP). In general metric
spaces, Haimovich and Rinnooy Kan [20] introduced a simple heuristics, called iterated tour
partitioning (ITP). Altinkemer and Gavish [2] showed that the approximation ratio of the
ITP algorithm for the unit demand and the splittable CVRP is at most 1 +

(
1− 1

k

)
CTSP,

where CTSP ≥ 1 is the approximation ratio of a TSP algorithm. Bompadre, Dror, and
Orlin [12] improved this bound to 1 +

(
1− 1

k

)
CTSP −Ω

( 1
k3

)
. The ratio for the unit demand

and the splittable CVRP on general metric spaces was recently improved by Blauth, Traub,
and Vygen [11] to 1 + CTSP − ϵ, for some small constant ϵ > 0.

QPTASs

Das and Mathieu [16] designed a QPTAS for the CVRP in the Euclidean space; Jayaprakash
and Salavatipour [22] designed a QPTAS for the CVRP in trees and extended that algorithm
to QPTASs in graphs of bounded treewidth, bounded doubling or highway dimension. When
the tour capacity is fixed, Becker, Klein, and Saulpic [7] gave a QPTAS for planar graphs
and bounded-genus graphs.
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PTASs for small capacity

In the Euclidean space, there have been PTAS algorithms for the CVRP with small capacity k:
work by Haimovich and Rinnooy Kan [20], when k is constant; by Asano et al. [5] extending
techniques in [20], for k = O(log n/ log log n); and by Adamaszek, Czumaj, and Lingas [1],
when k ≤ 2logf(ϵ)(n). For higher dimensional Euclidean metrics, Khachay and Dubinin [23]
gave a PTAS for fixed dimension ℓ and k = O(log

1
ℓ (n)). Again when the capacity is bounded,

Becker, Klein and Schild [9] gave a PTAS for planar graphs; Becker, Klein, and Saulpic [8]
gave a PTAS for graphs of bounded highway dimension; and Cohen-Addad et al. [13] gave
PTASs for bounded genus graphs and bounded treewidth graphs.

Unsplittable CVRP

In the unsplittable version of the CVRP, every terminal has a positive integer demand, and
the entire demand at a terminal should be served by a single tour. On general metric
spaces, the best-to-date approximation ratio for the unsplittable CVRP is roughly 3.194
due to the recent work of Friggstad et al. [17]. For tree metrics, the unsplittable CVRP
is APX-hard: indeed, it is NP-hard to approximate the unsplittable tree CVRP to better
than a 1.5 factor [19] using a reduction from the bin packing problem. Labbé, Laporte and
Mercure [24] gave a 2-approximation for the unsplittable tree CVRP. The approximation
ratio for the unsplittable tree CVRP was improved to (1.5 + ϵ) very recently by Mathieu and
Zhou [25], building upon several techniques in the current paper.

1.2 Overview of Our Techniques
The main part of our work focuses on the unit demand tree CVRP, and we extend our results
to the splittable tree CVRP in the end of this work.

▶ Definition 3 (bounded distances). Let Dmin (resp. Dmax) denote the minimum (resp.
maximum) distance between the depot and any terminal in the tree. We say that an instance
has bounded distances if Dmax <

( 1
ϵ

) 1
ϵ −1 ·Dmin.

Theorem 1 follows directly from Theorems 4 and 5.

▶ Theorem 4. There is a polynomial time (1 + 4ϵ)-approximation algorithm for the unit
demand CVRP on the tree T with bounded distances.

▶ Theorem 5. For any ρ ≥ 1, if there is a polynomial time ρ-approximation algorithm for
the unit demand (resp. splittable, or unsplittable) CVRP on trees with bounded distances,
then there is a polynomial time (1 + 5ϵ)ρ-approximation algorithm for the unit demand (resp.
splittable, or unsplittable) CVRP on trees with general distances.

Theorem 5 may be of independent interest for the splittable and the unsplittable versions of
the tree CVRP.

Outline for unit demand instances with bounded distances (Theorem 4)

First, we show that there exists a near-optimal solution with a simple structure, and
afterwards, we use a dynamic program to compute the best solution with that structure.

In Section 3, we consider the components of the tree T (Lemma 9) and we show that
there exists a near-optimal solution such that terminals within each component are visited
by a constant Oϵ(1) number of tours and that each of those tours visits Ωϵ(k) terminals in
that component (Theorem 13). The proof of Theorem 13 contains several novelties in our
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v1

v2 v3

v4 v5

Figure 3 At each vertex of the tree, the dynamic program memorizes the capacities used by the
subtours in the subtree and their total cost. Terminals within each component are visited by Oϵ(1)
tours and each of those tours visits Ωϵ(k) terminals in that component. Here is an example of the
flow of execution in the dynamic program. First, independent computation in each component. Next,
computation in the subtrees rooted at vertices v4 and v5. Then computation for the subtrees rooted
at vertices v2 and v3. Finally, computation for the subtree rooted at vertex v1. The output is the
best solution in the subtree rooted at v1. Vertices v1, v4, and v5, whose degrees may be arbitrarily
large, are where adaptive rounding of the subtour demands is needed to maintain polynomial time.
The cost due to the rounding is small thanks to the way components are defined and the bounded
distance property, and does not accumulate excessively because the height is bounded (Section 4).

work. We start by defining large and small subtours inside a component, depending on the
number of terminals visited by the subtours. To construct a near-optimal solution with that
structure, first, we detach small subtours from their initial tours, combine small subtours
in the same component, and reallocate the combined subtours to existing tours. Then we
remove subtours from tours exceeding capacity. To connect the removed subtours to the root
of the tree, we include the spines subtours (Definition 12) of all internal components, and
we obtain a traveling salesman tour. Next, we apply the iterated tour partitioning (ITP)
algorithm on that tour, see Figure 2. Finally, in a postprocessing step, we eliminate the small
subtours created due to the ITP algorithm. The complete construction is in Section 3.1; the
feasibility of the construction is in Section 3.2; and the analysis on the constructed solution
is in Section 3.3, which in particular uses the bounded distance property.

In Section 4, we transform the tree T into a tree T̂ that has Oϵ(1) levels of components
(Figure 1) and satisfies the following property.

▶ Fact 6. The tree T̂ defined in Section 4 can be computed in polynomial time. The
components in the tree T̂ are the same as those in the tree T . Any solution for the unit
demand CVRP on the tree T̂ can be transformed in polynomial time into a solution for the
unit demand CVRP on the tree T without increasing the cost.

Thanks to the structure of the near-optimal solution on T (Section 3) and to the bounded
distance property, the optimal cost for T̂ is increased by an O(ϵ) fraction compared with the
optimal cost for T (Theorem 23).

In Section 5, we apply the adaptive rounding on the demands of the subtours in a
near-optimal solution on T̂ . Recall that in the design of the QPTAS by Jayaprakash and
Salavatipour [22], the main technique is to show the existence of a near-optimal solution
in which the demand of a subtour can be rounded to the nearest value from a set of only
poly-logarithmic threshold values. In our work, we reduce the number of threshold values to
a constant Oϵ(1) (Theorem 26). To analyze the adaptive rounding, observe that an extra
cost occurs whenever we detach a subtour and complete it into a separate tour by connecting
it to the depot. We bound the extra cost thanks to the structure of a near-optimal solution
inside components (Section 3), the reduced height of the components (Section 4), as well as
the bounded distance property.
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In the full version of the paper, we design a polynomial-time dynamic program that
computes the best solution on the tree T̂ that satisfies the constraints on the solution
structure imposed by previous sections. The algorithm combines a dynamic program inside
components and two dynamic programs in subtrees, see Figure 3. Thus we obtain the
following Theorem 7.

▶ Theorem 7. Consider the unit demand CVRP on the tree T̂ . There is a dynamic program
that computes in polynomial time a solution with cost at most (1+4ϵ) ·opt, where opt denotes
the optimal cost for the unit demand CVRP on the tree T .

Theorem 4 follows directly from Theorem 7 and Fact 6.

Reduction from general distances to bounded distances (Theorem 5)

In the full version of the paper, we prove Theorem 5. We use Baker’s technique to split tours
into pieces such that each piece covers terminals that are within a certain range of distances
from the depot. This requires duplicating some parts of the tours so that each piece of the
tour is connected to the depot.

Extension to the splittable setting (Corollary 2)

In the full version of the paper, we extend the result in Theorem 1 to the splittable setting,
thus obtaining Corollary 2.

Open questions

Previously, Jayaprakash and Salavatipour [22] extended their QPTAS on trees to QPTASs
on graphs of bounded treewidth and beyond, including Euclidean spaces. While some of our
techniques extend to those settings, others do not seem to carry over without significant
additional ideas, so it is an interesting open question whether the techniques in our paper
could be used in the design of PTAS algorithms for other metrics, such as graphs of bounded
treewidth, planar graphs, and Euclidean spaces.

2 Preliminaries

Let T be a rooted tree (V, E) with root r ∈ V and edge weights w(u, v) ≥ 0 for all (u, v) ∈ E.
The root r represents the depot of the tours. Let n denote the number of vertices in V . Let
V ′ ⊆ V denote the set of terminals, such that a token is placed on each terminal v ∈ V ′. Let
k ∈ [1, n] be an integer capacity of the tours. The cost of a tour t, denoted by cost(t), is the
overall weight of the edges on that tour. We say that a tour visits a terminal v ∈ V ′ if the
tour picks up the token at v.2

▶ Definition 8 (unit demand tree CVRP). An instance of the unit demand version of the
capacitated vehicle routing problem (CVRP) on trees consists of

an edge weighted tree T = (V, E) with n = |V | and with root r ∈ V representing the
depot,
a set V ′ ⊆ V of terminals,
a positive integer tour capacity k such that k ≤ n.

2 Note that a tour might go through a terminal v without picking up the token at v.
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r

rc

c
ec

Figure 4 Decomposition into components. In this example, the tree is decomposed into four leaf
components and six internal components. An internal component c has a root vertex rc and an exit
vertex ec.

A feasible solution is a set of tours such that
each tour starts and ends at r,
each tour visits at most k terminals,
each terminal is visited by one tour.

The goal is to find a feasible solution such that the total cost of the tours is minimum.

Let OPT (resp. OPT1, OPT2, or OPT3) denote an optimal (resp. near-optimal) solution
to the unit demand CVRP, and let opt (resp. opt1, opt2, or opt3) denote the value of that
solution.

Without loss of generality, we assume that every vertex in the input tree T has exactly
two children, and that the terminals are the same as the leaf vertices of the tree. Indeed,
general instances can be reduced to instances with these properties by inserting edges of
weight 0, removing leaf vertices that are not terminals, and slicing out internal vertices of
degree two, see, e.g. [10] for details.

For any vertex v ∈ V , a subtour at the vertex v is a path that starts and ends at v and
only visits vertices in the subtree rooted at v. The demand of a subtour is the number of
terminals visited by that subtour. For each vertex v ∈ V , let dist(v) denote the distance
between v and the depot in the tree T . For technical reasons, we allow dummy terminals to
be included in the solution at internal vertices of the tree.

Throughout the paper, we define several constants depending on ϵ: Γ (Lemma 9),
α (Theorem 13), Hϵ (Lemma 21), and β (Theorem 26). They satisfy the relation that
Hϵ ≫ Γ≫ 1≫ ϵ≫ α≫ β.

Decomposition of the Tree into Components

The component decomposition (Lemma 9) is inspired by the cluster decomposition by Becker
and Paul [10]. The proof of Lemma 9 is similar to arguments in [10]; we give its proof in the
full version of the paper for completeness.

▶ Lemma 9. Let Γ = 12
ϵ . There is a polynomial time algorithm to compute a partition of the

edges of the tree T into a set C of components (see Figure 4), such that all of the following
properties are satisfied:

Every component c ∈ C is a connected subgraph of T ; the root vertex of the component c,
denoted by rc, is the vertex in c that is closest to the depot.
We say that a component c ∈ C is a leaf component if all descendants of rc in tree T are
in c, and is an internal component otherwise. A leaf component c interacts with other
components at vertex rc only. An internal component c interacts with other components
at two vertices only: at vertex rc, and at another vertex, called the exit vertex of the
component c, and denoted by ec.
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Every component c ∈ C contains at most 2Γ · k terminals. We say that a component is
big if it contains at least Γ · k terminals. Each leaf component is big.
If the number of components in C is strictly greater than one, then we have: (1) there
exists a map from all components to big components, such that the image of a component
is among its descendants (including itself), and each big component has at most three
pre-images; and (2) the number of components in C is at most 3/Γ times the total demand
in the tree T .

▶ Remark 10. The root and the exit vertices of components are a rough analog of portals used
in approximation schemes for other problems: they are places where the dynamic program
will gather and synthesize information about partial solutions before passing it on.

Compared with [10], the decomposition in Lemma 9 uses different parameters: the number
of terminals inside a leaf component is Θ(k/ϵ), whereas in [10] the number of terminals inside
a leaf cluster is Θ(ϵ · k); the threshold demand to define big components is Θ(k/ϵ), whereas
in [10] the threshold demand to define small clusters is Θ(ϵ2 · k).

▶ Definition 11 (subtours in components and subtour types). Let c be any component. A
subtour in the component c is a path that starts and ends at the root rc of the component,
and such that every vertex on the path is in c. The type of a subtour is “passing” if c is an
internal component and the exit vertex ec belongs to that subtour; and is “ending” otherwise.

A passing subtour in c is to be combined with a subtour at ec. In a leaf component, there is
no passing subtour.

▶ Definition 12 (spine subtour). For an internal component c, we define the spine subtour
in the component c, denoted by spinec, to be the connection (in both directions) between the
root vertex rc and the exit vertex ec of the component c, without visiting any terminal.

From the definition, a spine subtour in a component is also a passing subtour in that
component.

Without loss of generality, we assume that any subtour in a component c either visits at
least one terminal in c or is a spine subtour; that any tour traverses each edge of the tree at
most twice (once in each direction); and that any tour contains at most one subtour in any
component.3

3 Solutions Inside Components

In this section, we prove Theorem 13, which is a main novelty in this paper.

▶ Theorem 13. Let α = ϵ( 1
ϵ +1). Consider the unit demand CVRP on the tree T with bounded

distances. There exist dummy terminals and a solution OPT1 visiting all of the real and the
dummy terminals, such that all of the following holds:
1. For each component c, there are at most 2Γ

α + 1 tours visiting terminals in c;
2. For each component c and each tour t visiting terminals in c, the number of the terminals

in c visited by t is at least α · k;
3. We have opt1 ≤ (1 + ϵ) · opt.

3 If a tour contains several subtours in a component c, we may combine those subtours into a single
subtour in c without increasing the cost of the tour.
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3.1 Construction of OPT1

▶ Definition 14 (large and small subtours). We say that a subtour is large if its demand is at
least α · k, and small otherwise.

The construction of OPT1, starting from an optimal solution OPT, is in several steps.

Step 1: Detaching small subtours

Prune each tour of OPT so that it only visits the terminals that do not belong to a small
subtour in any component, and is minimal. In other words, if a tour t in OPT contains a
small ending subtour te in a component c, then we remove te from t; and if a tour t in OPT
contains a non-spine small passing subtour tp in a component c, then we remove tp from t,
except for the spine subtour of c.

Let A denote the set of the resulting tours. Note that each tour in A is connected.
The removed pieces of a non-spine small passing subtour tp may be disconnected from one
another.

The parts of OPT that have been pruned consist of the set E , each element being a small
ending subtours in a component, and of the set P , each element being a group of pieces in a
component obtained from a non-spine small passing subtour by removing the corresponding
spine subtour. The demand of a group of pieces in P is the number of terminals in all of the
pieces in that group.

Step 2: Combining small subtours within components

For each component c, repeatedly concatenate subtours in c from the set E so that in
the end, all resulting subtours in c from the set E have demands between α · k and 2α · k
except for at most one subtour.
For each component c, repeatedly merge groups in c from the set P so that in the end,
all resulting groups in c from the set P have demands between α · k and 2α · k except for
at most one group.

Let E ′ and P ′ denote the corresponding sets after the modifications for all components c.
Let B = E ′ ∪ P ′. An element of B is either a subtour or a group of pieces in a component c.
For each component c, all elements of B in the component c have demands between α · k
and 2α · k except for at most two elements with smaller demands.

Step 3: Reassigning small subtours

Construct a bipartite graph with vertex sets A and B and with edge set E. Let a be any
tour in A, and let a0 denote the corresponding tour in OPT. Let b be any element in B. The
set E contains an edge between a and b if and only if the element b contains terminals from
a0; the weight of the edge (a, b) is the number of terminals in both b and a0. By Lemma 1
from [10], there exists an assignment f : B → A such that each element b ∈ B is assigned
to a tour a ∈ A with (a, b) ∈ E and that, for each tour a ∈ A, the demand of a plus the
overall demand of the elements b ∈ B that are assigned to a is at most the demand of the
corresponding tour a0 plus the maximum demand of any element in B.

Let A1 denote the set of pseudo-tours induced by the assignment f . Each pseudo-tour in
A1 is the union of a tour a ∈ A and the elements b ∈ B that are assigned to a.



C. Mathieu and H. Zhou 95:11

Step 4: Correcting tour capacities

For each pseudo-tour a1 in A1, if the demand of a1 exceeds k, we repeatedly remove an
element b ∈ B from a1, until the demand of a1 is at most k.

Let A2 denote the resulting set of pseudo-tours. Every pseudo-tour in A2 is a connected
tour of demand at most k (Lemma 15). Let B∗ ⊆ B denote the set of the removed elements
b ∈ B. The elements in B∗ are represented by the small pieces in Figure 2a (Page 4).

Step 5: Creating additional tours

We connect the elements of B∗ to the depot by creating additional tours as follows.
Let Q denote the union of the spine subtours for all internal components. Q is represented
by the green thick paths in Figure 2a. Let X denote a multi-subgraph of T that is the
union of the elements in B∗ and the edges in Q. Observe that each element in B∗ is
connected to the depot through edges in Q. Thus X is connected, and induces a traveling
salesman tour tTSP visiting all terminals in B∗. Without loss of generality, we assume
that, for any component c, if tTSP visits terminals in c, then those terminals belong to a
single subpath pc of tTSP, such that pc does not visit any terminal from other components.
If the traveling salesman tour tTSP is within the tour capacity, then let A3 denote the set
consisting of a single tour tTSP. Otherwise, we apply the iterated tour partitioning (ITP)
algorithm [20] on tTSP: we partition tTSP into segments with exactly k terminals each,
except possibly the last segments containing less than k terminals. For each segment, we
connect its endpoints to the depot so as to make a tour, see Figure 2b. Let A3 denote
the resulting set of tours.

Let A4 = A2 ∪A3.

Step 6: Postprocessing

For each component c, we rearrange the small subtours in A4 as follows.
For each tour t in A4 that contains a small subtour in c, letting tc denote this small
subtour, if tc is an ending subtour, we remove tc from t; if tc is a passing subtour, we
remove tc from t, except for the spine subtour in c. The total demand of all of the
removed small subtours in c is at most k (Lemma 16).
We create an additional tour t∗

c from the depot that connects all of the removed small
subtours in c. If the demand of t∗

c is less than α · k, then we include dummy terminals at
rc into the tour t∗

c so that its demand is exactly k.
Let A5 denote the resulting set of tours after removing small subtours from A4. Let A6
denote the set of newly created tours {t∗

c}c∈C .
Finally, let OPT1 = A5 ∪A6.
In Section 3.2, we show that OPT1 is a feasible solution to the unit demand tree CVRP;

in Section 3.3, we prove the three properties of OPT1 in the claim of Theorem 13.

3.2 Feasibility of the Construction
▶ Lemma 15. Every pseudo-tour in A2 is a connected tour of demand at most k.

Proof. Let a2 be any pseudo-tour in A2. By the construction in Step 4, the demand of a2 is
at most k. It suffices to show that a2 is a connected tour.

Observe that a2 is the union of a tour a ∈ A and some elements b1, . . . , bq from B, for
q ≥ 0. From the construction, any tour a ∈ A is connected. Consider any bi for i ∈ [1, q].
Observe that f(bi) = a, so the edge (a, bi) belongs to the bipartite graph (A, B). If bi is a
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subtour at rc for some component c, then rc must belong to the tour a; and if bi is a group
of pieces in some component c, then the spine subtour of c must belong to the tour a. So the
union of a and bi is connected. Thus a2 = a ∪ b1 ∪ · · · ∪ bq is a connected tour. ◀

▶ Lemma 16. In any component c, the total demand of all of the removed small subtours in
c at the beginning of Step 6 is at most k.

Proof. Let c be any component. The key is to show that the number of non-spine small
subtours in c that are contained in tours in A4 is at most 4. Since A4 = A2 ∪A3, we analyze
the number of non-spine small subtours in c that are contained in tours in A2 and in A3,
respectively.

The tours in A2 contain at most two non-spine small subtours in c, since at most two
elements of B in component c have demands less than α · k.

We claim that the tours in A3 contain at most two non-spine small subtours in c. If A3
consists of a single tour tTSP, the claim follows trivially since any tour contains at most one
subtour in c from our assumption. Next, we consider the case when A3 is generated by the
ITP algorithm. From our assumption, if tTSP visits terminals in c, then those terminals
belong to a single subpath pc of tTSP, such that pc does not visit any terminal from other
components. By applying the ITP algorithm on tTSP, we obtain a collection of segments.
All segments that intersect pc visit exactly k terminals in c, except for possibly the first and
the last of those segments visiting less than k terminals in c. Hence at most two non-spine
small subtours in c among the tours in A3.

Therefore, the number of non-spine small subtours in c in the solution A4 is at most 4.
Since each small subtour has demand at most α · k, the total demand of the removed small
subtours is at most 4 · α · k < k. ◀

3.3 Analysis of OPT1

Let c ∈ C be any component. From Lemma 9, c contains at most 2Γ · k real terminals. Each
tour in A5 visiting terminals in c visits at least α · k real terminals in c, so there are at most
2Γ
α tours in A5 visiting terminals in c. There is a single tour in A6, the tour t∗

c , that visits
terminals in c. Hence the first property of the claim. From the construction of t∗

c , the second
property of the claim follows.

It remains to analyze the cost of OPT1. Compared with OPT, the extra cost in OPT1
is due to Step 5 and Step 6 of the construction. This extra cost consists of the cost of the
edges in Q (Step 5), the cost in the ITP algorithm to connect the endpoints of all segments
to the depot (Step 5), and the cost of the postprocessing (Step 6), which we bound in
Corollary 18 and Lemmas 19 and 20, respectively. Both Corollary 18 and Lemma 20 are
based on Lemma 17.

▶ Lemma 17. We have
∑

component c

dist(rc) ≤ ϵ

8 · opt.

Proof. For any edge e in T , let u and v denote the two endpoints of e such that u is the
parent of v. Let Te denote the subtree of T rooted at v. Let ne denote the number of
terminals in Te. From the lower bound in [21], we have

opt ≥
∑
e∈T

2 · w(e) · ne

k
.

Since each big component contains at least Γ · k terminals, we have

ne ≥
∑

big component c⊆Te

Γ · k.
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Thus

opt ≥
∑
e∈T

2 · w(e) ·
∑

big component c⊆Te

Γ

=
∑

big component c

Γ ·
∑

e∈T such that c⊆Te

2 · w(e)

=
∑

big component c

Γ · 2 · dist(rc).

From Lemma 9, there exists a map from all components to big components such that the
image of a component is among its descendants (including itself) and each big component
has at most three pre-images. Thus

3 ·
∑

big component c

dist(rc) ≥
∑

component c

dist(rc).

Therefore,

opt ≥ 2 · Γ
3 ·

∑
component c

dist(rc).

The claim follows since Γ = 12
ϵ . ◀

▶ Corollary 18. We have cost(Q) ≤ ϵ
4 · opt.

Proof. Observe that every edge in Q belongs to the connection (in both directions) between
the depot and the root of some component c. By Lemma 17, we have

cost(Q) ≤ 2 ·
∑

component c

dist(rc) ≤ ϵ

4 · opt. ◀

▶ Lemma 19. Let ∆1 denote the cost in the ITP algorithm to connect the endpoints of all
segments to the depot in Step 5. We have ∆1 ≤ ϵ

4 · opt.

Proof. Let n′ denote the number of terminals in the tree T . First, we show that the number
of terminals on tTSP is at most 4α · n′. Observe that the number of terminals on tTSP is
the overall removed demand in Step 4. Consider any pseudo-tour a1 ∈ A1 whose demand
exceeds k. Let a0 denote the corresponding tour in OPT. By the construction, the demand
of a1 is at most the demand of a0 plus the maximum demand of any element in B. Since
the demand of a0 is at most k and the demand of any element in B is at most 2α · k, the
demand of a1 is at most k + 2α · k. Let a2 denote the corresponding tour after the correction
of capacity in Step 4. Since any element in B has demand at most 2α · k, the demand of
a2 is at least k − 2α · k. So the total removed demand from a1 in Step 4 is at most 4α · k.
There are at most n′

k pseudo-tours a1 ∈ A1 whose demands exceed k. Summing over all
those pseudo-tours, the overall removed demand in Step 4 is at most n′

k · 4α · k = 4α · n′.
Hence the number of terminals on tTSP is at most 4α · n′.

If 4α · n′ ≤ k, then tTSP is within the tour capacity, so the ITP algorithm is not applied
and ∆1 = 0. It remains to consider the case in which 4α · n′ > k. By the construction in the
ITP algorithm, every segment visits exactly k terminals except possibly the last segment.
Thus the number ℓITP of resulting tours in the ITP algorithm is

ℓIPT ≤
4α · n′

k
+ 1. (1)
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Since 4α · n′ > k, we have ℓIPT < 8α·n′

k . Since ∆1 ≤ ℓITP · 2 ·Dmax and using Definition 3
and the definition of α in the claim of Theorem 13, we have

∆1 <
8α · n′

k
· 2 ·

(
1
ϵ

) 1
ϵ −1
·Dmin <

ϵ

2 ·
n′

k
·Dmin.

On the other hand, the solution OPT consists of at least n′

k tours, so opt ≥ 2n′

k · Dmin.

Therefore, ∆1 ≤ ϵ
4 · opt. ◀

▶ Lemma 20. Let ∆2 denote the cost of the postprocessing (Step 6). Then ∆2 ≤ ϵ
2 · opt.

Proof. For each leaf component c, the cost to connect the small subtours in c to the depot
in Step 6 is at most 2 · dist(rc); and for each internal component c, the cost to connect the
small subtours in c to the depot is at most 2 · dist(rc) + cost(spinec). Summing over all
components, we have

∆2 ≤
∑

component c

2 · dist(rc) +
∑

internal component c

cost(spinec).

By Lemma 17, we have∑
component c

2 · dist(rc) ≤ ϵ

4 · opt

and ∑
internal component c

cost(spinec) = cost(Q) ≤ ϵ

4 · opt.

Thus ∆2 ≤ ϵ
2 · opt. ◀

From Corollary 18 and Lemmas 19 and 20, we have opt1 ≤ opt + cost(Q) + ∆1 + ∆2 ≤
(1 + ϵ) · opt. This completes the proof for Theorem 13.

4 Height Reduction

In this section, we transform the tree T into a tree T̂ so that T̂ has Oϵ(1) levels of components,
see Figure 1. We assume that the tree T has bounded distances. To begin with, we partition
the components according to the distances from their roots to the depot.

▶ Lemma 21. Let D̃ = α · ϵ ·Dmin. Let Hϵ = ( 1
ϵ ) 2

ϵ +1. For each i ∈ [1, Hϵ], let Ci ⊆ C denote
the set of components c ∈ C such that dist(rc) ∈

[
(i− 1) · D̃, i · D̃

)
. Then any component

c ∈ C belongs to a set Ci for some i ∈ [1, Hϵ].

Proof. Let c ∈ C be any component. We have

dist(rc) ≤ Dmax <

(
1
ϵ

) 1
ϵ −1
·Dmin = Hϵ · D̃,

where the second inequality follows from Definition 3, and the equality follows from the
definition of α in Theorem 13 and the definitions of D̃ and Hϵ. Thus there exists i ∈ [1, Hϵ]
such that c ∈ Ci. ◀
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▶ Definition 22 (maximally connected sets and critical vertices). We say that a set of compon-
ents C̃ ⊆ Ci is maximally connected if the components in C̃ are connected to each other and
C̃ is maximal within Ci. For a maximally connected set of components C̃ ⊆ Ci, we define the
critical vertex of C̃ to be the root vertex of the component c ∈ C̃ that is closest to the depot.

Figure 1 (Page 3) is an example with three levels of components: C1, C2, and C3, indicated
by different colors. There are four maximally connected sets of components. The critical
vertices are represented by rectangular nodes.

Algorithm 1 Construction of the tree T̂ (see Figure 1).

1: for each i ∈ [1, Hϵ] do
2: for each maximally connected set of components C̃ ⊆ Ci do
3: z ← critical vertex of C̃
4: for each component c ∈ C̃ do
5: δ ← rc-to-z distance in T

6: Split the tree T at the root vertex rc of the component c ▷ rc is duplicated
7: Add an edge between the root of the component c and z with weight δ

8: T̂ ←the resulting tree

Let T̂ be the tree constructed in Algorithm 1. We observe that Algorithm 1 is in
polynomial time, and Fact 6 follows from the construction. We show in Theorem 23 that the
optimal cost for T̂ is increased by an O(ϵ) fraction compared with the optimal cost for T .

▶ Theorem 23. Consider the unit demand CVRP on the tree T̂ . There exist dummy
terminals and a solution OPT2 visiting all of the real and the dummy terminals, such that
all of the following holds:
1. For each component c, there are at most 2Γ

α + 1 tours visiting terminals in c;
2. For each component c and each tour t visiting terminals in c, the number of the terminals

in c visited by t is at least α · k;
3. We have opt2 < (1 + 3ϵ) · opt, where opt denotes the optimal cost for the unit demand

CVRP on the tree T .

In the rest of the section, we prove Theorem 23.

4.1 Construction of OPT2

Consider any tour t in OPT1. Let U denote the set of terminals visited by t.4 We define
the tour t̂ as the minimal tour in the tree T̂ that spans all terminals in U , see Figure 1. Let
OPT2 denote the set of the resulting tours on the tree T̂ constructed from every tour t in
OPT1. Then OPT2 is a feasible solution to the unit demand CVRP on T̂ .

4.2 Analysis of OPT2

The first two properties in Theorem 23 follow from the construction and Theorem 13.
In the rest of the section, we analyze the cost of OPT2.

▶ Lemma 24. Let t denote any tour in OPT1. Let t̂ denote the corresponding tour in OPT2.
Then cost(t̂) ≤ (1 + ϵ) · cost(t).

4 We assume that t is a minimal tour in T spanning all terminals in U .
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Proof. We follow the notation on U from Section 4.1. Let C(U) denote the set of components
c ∈ C that contains a (possibly spine) subtour of t̂. Observe that the cost of t̂ consists of the
following two parts:
1. for each component c ∈ C(U), the cost of the subtour in c from the tour t; we charge that

cost to the subtour in t;
2. for each component c ∈ C(U), the cost of the edge (rc, z), where z denotes the father

vertex of rc in T̂ . Note that z is a critical vertex on t̂. We analyze that cost over all
components c ∈ C(U) as follows.

Let Z ⊆ V denote the set of critical vertices z ∈ V on t̂. For any critical vertex z ∈ Z, let
Y (z) denote the set of edges (z, v) in the tree T̂ such that v is a child of z and that the edge
(z, v) belongs to the tour t̂. The overall cost of the second part is the total cost of the edges
in Y (z) for all z ∈ Z.

Fix a critical vertex z ∈ Z. Let (z, v1) denote the edge in Y (z) such that dist(v1) is
minimized, breaking ties arbitrarily. From the minimality of dist(v1), the z-to-v1 path in
T does not go through any component in C(U). From the construction, the cost of the
edge (z, v1) in T̂ equals the cost of the z-to-v1 path in T . It is easy to see that the z-to-v1
path in T belongs to the tour t. Indeed, tour t̂ traverses the edge (z, v1) on its way to
visit some terminals of U in the subtree rooted at v1. In order to visit the corresponding
terminals in T , tour t must traverse the z-to-v1 path. We charge the cost of the edge (z, v1)
in T̂ to the z-to-v1 path in T . Next, we analyze the cost due to the other edges in Y (z).
Consider one such edge (z, v). From the construction, there exists i ∈ [1, Hϵ], such that both
dist(z) and dist(v) belong to

[
(i− 1) · D̃, i · D̃

)
. Thus the cost of the z-to-v path in T equals

dist(v)− dist(z) < D̃, so the extra cost in t̂ due to the edge (z, v) is at most 2 · D̃ (for both
directions). Therefore, the extra cost in t̂ due to those |Y (z)| − 1 edges in Y (z) is at most
2 · D̃ · (|Y (z)| − 1).

Summing over all vertices z ∈ Z, and observing that all charges are to disjoint parts of t,
we have

cost(t̂) ≤ cost(t) + 2 · D̃ ·
∑
z∈Z

(|Y (z)| − 1). (2)

It remains to bound
∑

z∈Z(|Y (z)| − 1). The analysis uses the following basic fact in trees.

▶ Fact 25. Let H be a tree with L leaves. For each vertex u in H, let m(u) denote the
number of children of u in H. Then∑

u∈H

(m(u)− 1) ≤ L− 1.

We construct a tree H as follows. Starting from the tree spanning U in T̂ , we contract
vertices in each component c ∈ C(U) into a single vertex; let H denote the resulting tree. It
is easy to see that each leaf in H corresponds to a component c ∈ C(U) that contains at least
one terminal in U (using the definition of C(U) and the fact that any descending component
of c do not belong to C(U)). From the second property of Theorem 23 (which follows from
Theorem 13), terminals in U belong to at most 1/α components. Thus, by Fact 25 we have∑

z∈Z

(|Y (z)| − 1) ≤ (1/α)− 1.

Combined with Equation (2), we have

cost(t̂)− cost(t) < 2 · D̃ · (1/α) = 2 · α · ϵ ·Dmin · (1/α) = 2ϵ ·Dmin,

using the definition of D̃ in Lemma 21. Since cost(t) ≥ 2 ·Dmin, the claim follows. ◀
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Applying Lemma 24 on each tour t in OPT1 and summing, we have opt2 ≤ (1 + ϵ) · opt1.
By Theorem 13, opt1 ≤ (1 + ϵ) · opt, thus opt2 ≤ (1 + 3ϵ) · opt. This completes the proof of
Theorem 23.

5 Adaptive Rounding on the Subtour Demands

In this section, we prove Theorem 26. We use the adaptive rounding to show that, in a
near-optimal solution, the demands of the subtours at any critical vertex are from a set of
Oϵ(1) values. This property enables us to later guess those values in polynomial time by a
dynamic program.

▶ Theorem 26. Let β = 1
4 · ϵ

( 4
ϵ +1). Consider the unit demand CVRP on the tree T̂ . There

exist dummy terminals and a solution OPT3 visiting all of the real and the dummy terminals,
such that all of the following holds:
1. For each component c, there are at most 2Γ

α + 1 tours visiting terminals in c;
2. For each critical vertex z, there exist 1

β integer values in [α · k, k] such that the demands
of the subtours at the children of z are among these values;

3. We have opt3 < (1 + 4ϵ) · opt, where opt denotes the optimal cost for the unit demand
CVRP on the tree T .

5.1 Construction of OPT3

We construct the solution OPT3 by modifying the solution OPT2.
Let I ⊆ V denote the set of vertices v ∈ V that is either the root of a component or

a critical vertex. Consider any vertex v ∈ I in the bottom up order. Let OPT2(v) denote
the set of subtours at v in OPT2. We construct a set A(v) of subtours at v satisfying the
following invariants:

the subtours in A(v) have a one-to-one correspondence with the subtours in OPT2(v);
and
the demand of each subtour of A(v) is at most that of the corresponding subtour in
OPT2(v).

The construction of A(v) is according to one of the following three cases on v.

Case 1: v is the root vertex rc of a leaf component c in T̂

Let A(v) = OPT2(v).

Case 2: v is the root vertex rc of an internal component c in T̂

For each subtour a ∈ OPT2(v), if a contains a subtour at the exit vertex ec of component
c, letting t denote this subtour and t′ denote the subtour in A(ec) corresponding to t, we
replace the subtour t in a by the subtour t′. Let A(v) be the resulting set of subtours at v.

Case 3: v is a critical vertex in T̂

We apply the technique of the adaptive rounding, previously used by Jayaprakash and
Salavatipour [22] in their design of a QPTAS the tree CVRP. The idea is to round up the
demands of the subtours at the children of v so that the resulting demands are among 1

β

values.
Let r1, . . . , rm be the children of v in T̂ . For each subtour a ∈ OPT2(v) and for each

i ∈ [1, m], if a contains a subtour at ri, letting t denote this subtour and t′ denote the subtour
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in A(ri) corresponding to t, we replace t in a by t′. Let A1(v) denote the resulting set of
subtours at v.

Let Wv denote the set of the subtours at the children of v in A1(v), i.e., Wv = A(r1) ∪
· · · ∪ A(rm). If |Wv| ≤ 1

β , let A(v) = A1(v). In the following, we consider the non-trivial
case when |Wv| > 1

β . We sort the subtours in Wv in non-decreasing order of their demands,
and partition these subtours into 1

β groups of equal cardinality.5 We round the demands
of the subtours in each group to the maximum demand in that group. The demand of a
subtour is increased to the rounded value by adding dummy terminals at the children of v.
We rearrange the subtours in Wv as follows.

Each subtour t ∈ Wv in the last group is discarded, i.e., detached from the subtour in
A1(v) to which it belongs.
Each subtour t ∈Wv in other groups is associated in a one-to-one manner to a subtour
t′ ∈ Wv in the next group. Letting a (resp. a′) denote the subtour in A1(v) to which t

(resp. t′) belongs, we detach t from a and reattach t to a′.
Let A(v) be the set of the resulting subtours at v after the rearrangement for all t ∈Wv.

For each subtour t that is discarded in the construction, we complete t into a separate
tour by adding the connection (in both directions) to the depot. Let B denote the set of
these newly created tours. Let OPT3 = A(r) ∪B.

It is easy to see that OPT3 is a feasible solution to the unit demand CVRP, i.e., each
tour in OPT3 is connected and visits at most k terminals, and each terminal is covered by
some tour in OPT3.

5.2 Analysis of OPT3

From the construction, in any component c ∈ C, the non-spine subtours in OPT3 are the
same as those in OPT2. From Theorem 23, we obtain the first property in Theorem 26, and
in addition, each subtour at a child of a critical vertex in OPT2 has demand at least α · k.
The second property of the claim follows from the construction of OPT3.

It remains to analyze the cost of OPT3. Let ∆ = opt3 − opt2. Observe that ∆ is due to
adding connections to the depot to create the tours in the set B.

Fix any i ∈ [1, Hϵ]. Let Z ⊆ V denote the set of vertices v ∈ V such that v is the
critical vertex of a maximally connected component C̃ ⊆ Ci. For any v ∈ Z, we analyze
the number of discarded subtours in the set Wv defined in Section 5.1. If |Wv| ≤ 1

β , there
is no discarded subtour in Wv; if |Wv| > 1

β , the number of discarded subtours in Wv is
⌈β · |Wv|⌉ < β · |Wv|+ 1 < 2β · |Wv|. Let W denote the disjoint union of Wv for all vertices
v ∈ Z. Thus W contains at most 2β · |W | discarded subtours. Let ∆i denote the cost to
connect the discarded subtours in W to the depot. We have

∆i ≤ 2β · |W | · 2 ·Dmax <
1
2 · ϵ

( 4
ϵ +1) · |W | · 2 ·

(
1
ϵ

) 1
ϵ −1
·Dmin = ϵ

Hϵ
· α · |W | ·Dmin, (3)

where the second inequality follows from the definition of β (Theorem 26) and Definition 3,
and the equality follows from the definitions of α (Theorem 13) and of Hϵ (Lemma 21). From
the second property of the claim, each subtour in W has demand at least α · k, so there are
at least α · |W | tours in OPT3. Any tour in OPT3 has cost at least 2 ·Dmin, so we have

opt3 ≥ 2 · α · |W | ·Dmin. (4)

5 We add empty subtours to the first groups if needed in order to achieve equal cardinality among all
groups.
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From Equations (3) and (4), we have

∆i <
ϵ

2 ·Hϵ
· opt3.

Summing over all integers i ∈ [1, Hϵ], we have ∆ =
∑

i ∆i ≤ ϵ
2 · opt3. Thus

opt3 ≤
2

2− ϵ
· opt2.

By Theorem 23, opt2 ≤ (1 + 3ϵ) · opt. Therefore, opt3 ≤ (1 + 4ϵ) · opt. This completes the
proof of Theorem 26.
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Abstract
We consider the problem of reconstructing a graph G in two natural sampling models: 1) each
sample corresponds to a random induced subgraph and 2) for a fixed adjacency matrix AG for G,
each sample corresponds to a random principal submatrix (i.e., a submatrix formed by deleting the
same set of rows and columns) of AG. We refer to these models as the “unordered” and “ordered”
models respectively. The two models are motivated by work on the reconstruction conjecture in
combinatorics and trace reconstruction in theoretical computer science. Despite the superficial
similarities between the models, we show that the sample complexity of reconstruction can be
exponentially different. Our main results are as follows:

In the unordered model, we show that almost all graphs can be reconstructed with Θ(p−2 log n)
samples if each node is included in the random subgraph with any constant probability p; this
is optimal. We show our upper bound extends to smaller values of p as well. In contrast,
for arbitrary graphs, we show that exp(Ω(n)) samples are required for reconstruction even for
2-regular graphs. One of the key technical steps in the first result is showing that, with high
probability, any subgraph isomorphism in a random graph has at most O(log n) non-fixed points.
In the ordered model, we show that any graph with constant arboricity or degeneracy (i.e., every
induced subgraph has constant average degree) can be reconstructed with exp(Õ(n1/3)) samples
and that arbitrary graphs can be reconstructed with exp(Õ(n1/2)) samples. The results about
almost all graphs in the first model carry over to the second. One of the key technical steps in the
first result is showing that reconstruction of low degeneracy graphs can be reduced to learning a
small number of moments of sets of the form {i−j : j < i, (i, j) ∈ E} and {j −i : i < j, (i, j) ∈ E}
where G = ([n], E) is the unknown graph.
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1 Introduction

We consider the problem of reconstructing an undirected graph G on n nodes in the following
two natural sampling models:

Unordered Model: Each node is sampled independently with probability p. The
returned sample is the induced subgraph G[A] where A is the set of sampled nodes. We
wish to reconstruct G up to isomorphism.
Ordered Model: Let AG be a fixed adjacency matrix for G. Each node is sampled
independently with probability p. For each node not sampled, the corresponding row and
column of AG are deleted and the returned sample corresponds to the resulting submatrix.
We wish to reconstruct AG.
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96:2 Graph Reconstruction from Random Subgraphs

We are interested in the sample complexity of reconstruction in each model, i.e., the number
of samples required to reconstruct the original graph with high probability. When p = 1/2,
the problem in the unordered model is how many uniformly random induced subgraphs
are required to reconstruct a graph. The problem in the ordered model is how many
random principal submatrices (i.e., submatrices formed by symmetric row/column deletions)
are required to reconstruct a symmetric binary matrix with 0s on the diagonal. We will
be interested in reconstructing both arbitrary graphs and random graphs (i.e., almost all
graphs). In the ordered model, we are also interested in reconstructing low-degeneracy graphs.
Degeneracy is perhaps the most natural notion of sparsity in graphs and sparsity has played
an important role in other reconstruction problems such as compressed sensing [12] and trace
reconstruction [20].

Unordered Model and Reconstruction from k-Decks. Reconstruction in the unordered
model is closely connected to the problem of reconstruction from k-decks. Given an undirected
graph G, its k-deck is the multiset of all

(
n
k

)
induced subgraphs on k of the vertices of G.

The (n − 1)-deck is typically referred to as just the deck. The Reconstruction Conjecture,
due to Kelly [17] and Ulam [31], asks whether there exist two different graphs with at
least three nodes, that have the same deck. Bollobas [3] proved that almost all graphs
can be reconstructed by taking three graphs from its deck. Furthermore, almost all sets of
three graphs from the deck of G suffice to reconstruct it. Recently, Spinoza and West [30]
generalized this result to the following. Let ε > 0 be an arbitrarily small constant and let
ℓ ≤ (1 − ε)n/2. Then, almost all graphs can be reconstructed from some subset of

(
ℓ+2

2
)

induced subgraphs from the (n − ℓ)-deck. Note that if a k-deck is sufficient to reconstruct a
graph, then one approach to bounding the sample complexity in our problem is to analyze the
sample complexity of reconstructing the k-deck; this could be done by repeatedly sampling
subgraphs of the appropriate size and estimating the number of copies of each such subgraph
in the graph. However, the results above suggest it might be possible to reconstruct random
graphs more efficiently. Many of the above results rely on showing that for almost all graphs
G, any two “large” subgraphs of G are not isomorphic. In our problem we need to consider
subgraphs of G that are significantly smaller and have to bound the number of isomorphisms
rather than ensuring there are none.

Ordered Model and Trace Reconstruction. There is also a natural variant of the k-deck
problem for matrices where now the k-deck corresponds to the multiset of all submatrices
or principal submatrices. For example, reconstruction from such k-decks was studied by
Kós et al. [18] and they showed that the O(n2/3)-deck was sufficient for reconstruction. Our
problem in the ordered model can be thought of a stochastic variant of this problem.

Our problem is also closely related to the trace reconstruction problem. In this problem
the goal is to reconstruct an unknown binary string x ∈ {0, 1}n from independent random
subsequences, or “traces”, where each subsequence is formed by deleting each bit with
probability q = 1 − p and then concatenating the remaining bits. The trace reconstruction
problem was first proposed by Batu et al. [2]. Since then, the problem attracted a lot
of attention and ended up branching out into several directions and variants [4, 10, 10, 11,
13–16, 20–22, 26, 27, 29, 32]. The best upper and lower bounds known for this problem are
exp(Õ(n1/5)) and Ω̃(n2/3) traces respectively, and were both proved recently by Chase [6, 7].
Our approach for reconstructing arbitrary graphs is very similar to the approach in [20, 27],
but the result on reconstructing low-degenerary graphs requires combining those ideas with
a “peeling” approach that iteratively reconstructs the neighborhood of low degree nodes,
removes these nodes, and recurses on the remaining graph.
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There is a natural variant of the classical string trace reconstruction problem where
we have an unknown n × n binary matrix, and each trace is a sub-matrix obtained by
deleting each row and column independently with probability q. The best known upper
bound for this variant is exp(Õ(n1/2)) traces [20]. The matrix variant is different from
the string version because there are now dependencies between the bits that are deleted.
The matrix variant is very closely related to the ordered model we consider; the only slight
difference is that in the ordered model there is the symmetric constraint when deleting
rows and columns of the adjacency matrix. There has also recently been work on tree
reconstruction [4, 10, 21] that, although related somewhat to our work, primarily deals with
different models of deletion channels that are only defined for rooted trees. There have
been recent advances in a “smoothed” variant of the problem where each bit of the string is
replaced by a uniform random bit with some probability [8]. Another variant, coded trace
reconstruction, involving efficiently encodable codes that can be recovered despite some
constant probability of edit errors, has also been studied extensively [5, 9, 10]. A generalized
formulation of the problem where instead of a single unknown string, we draw a string at
random from some distribution over strings and pass it through a deletion channel, has also
garnered some recent interest [1,25]. Note that in both the ordered and unordered model, the
main challenge to reconstruction is that the nodes are not labelled. However, we note that
are also other interesting reconstruction problems arising in the context of labelled graph,
see e.g., Mossel and Ross [23], but these consider very different models from those considered
here.

1.1 Our Results
1. Unordered Model: We show that for almost all graphs, Θ(p−2 log n log(1/δ)) traces

(where in this model a trace is a randomly induced subgraph) suffice for reconstruction
with probability at least 1 − δ, as long as the retention probability p is Ω̃(1/n1/6). Note
that this is optimal for the range of p considered since Θ(p−2 log n) traces are required to
ensure every edge appears in at least one trace.1 In contrast, we show that reconstructing
arbitrary graphs is hard: even distinguishing between a pair of 2-regular graphs may
require exp(Ω(n)) traces. We show, however, that if the maximum degree of G is at most
one, then it can be reconstructed with Θ(n) traces. One of the key technical steps in
the first result is showing that, with high probability, any subgraph isomorphism in a
random graph has at most O(log n) non-fixed points. This contrasts with a classic result
by Müller [31] that shows that there are isomorphic subgraphs (where the isomorphism
may contain an unbounded number of non-fixed points) of size n/2 but no isomorphic
subgraphs of size n(1 + ε)/2 for any constant ε > 0.

2. Ordered Model: Our main result in the ordered model is that exp(Õ(n1/3)) samples
(i.e., a random principal submatrix of the adjacency matrix) suffice to reconstruct graphs
of constant degeneracy, as long as the retention probability p is a constant. Recall that
the degeneracy of a graph is the smallest k ∈ N such that every induced subgraph has a
vertex of degree at most k.2 One of the key technical steps in the first result is showing

1 This follows by considering a graph that consists of n/2 vertex-disjoint edges. The edges of such
a graph appear in a trace independently of one another. Hence, the probability that every edge
appears in at least one of t traces is (1 − (1 − p2)t)n/2 and this is at most (1 − 2/n)n/2 ≤ 1/e if
t < log1−p2 (2/n) = Ω(log(n)/p2).

2 Note that the degeneracy of a graph is constant factor related to the arboricity of the graph. It is a
robust notion of the sparsity of a graph in that it ensures that the induced subgraph on any r nodes
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96:4 Graph Reconstruction from Random Subgraphs

that reconstruction of low degeneracy graphs can be reduced to learning a small number of
moments of sets of the form {i − j : j < i, (i, j) ∈ E} and {j − i : i < j, (i, j) ∈ E}. These
moments can then be learned via an extension of methods from complex analysis that
have been developed for the trace reconstruction problem. Our results represents a strong
separation between sample complexity of reconstruction in the ordered and unordered
models since 2-regular graphs are a special case of low degeneracy graphs. Finally, we
show that any graph can be reconstructed with exp(Õ(n1/2)) traces. The upper bound
is established via a slight modification of a result by Krishnamurthy et al. [20]; they
considered independent row/column deletions and the modification is required to deal
with the fact that in our setting a row is deleted iff the corresponding column is deleted.

2 Reconstruction of Almost All Graphs in the Unordered Model

For reconstructing almost all graphs in the unordered model, the high level approach is:
1. Determine a consistent labeling of all nodes in the traces such that two nodes receive the

same label iff they correspond to the same node in the unknown graph G. Determining
this labelling will be the main technical challenge in our approach and it is especially
challenging in the unordered model (compared to the ordered model) because there is no
apparent ordering of the nodes that are observed in a trace.

2. If each pair of nodes of G appears together in some trace, we know whether or not there
exists an edge between these two nodes. Note that

T := 3p−2 log n

traces are sufficient to ensure this second condition with high probability.3

The natural question is how to determine a consistent labeling. We do this by considering
all pairs of traces and for each node in the first trace of the pair we determine which node, if
any, it corresponds to in the second trace. If we do this for all pairs of traces and every node
of G appears in at least one trace, then for each node of G we identify all of its occurrences
amongst the traces. Hence, the problem of finding a consistent labeling reduces to the
problem of finding corresponding nodes in two traces.

How do we find and label corresponding nodes between two traces? Suppose one trace is
the induced subgraph on a set of nodes A and the second trace is the induced subgraph on a
set of nodes B. To find the corresponding nodes, a possible approach is the find the largest
subgraph in G[A] that is isomorphic to a subgraph in G[B]. If this subgraph were G[A ∩ B]
and G[A ∩ B] were asymmetric, i.e., had no non-trivial automorphisms, then this would
allow us to identify corresponding nodes. If G is random, there is indeed reason to hope that
G[A ∩ B] is the largest common subgraph. In fact, if the probability p used in the generation
of the traces is strictly greater than 1/

√
2 we can show that this approach works exactly as

stated, via a classic graph theory result by Müller [24]. His result establishes that for any
constant ε > 0, for almost every graph G, the induced subgraphs with at least (1 + ε)n/2
vertices have no nontrivial automorphisms and are pairwise non-isomorphic. We omit the
details as we will instead prove a more general result that applies even when p < 1/

√
2. To

has O(r) edges.
3 Throughout this paper, we will mean a “high probability” bound to be one that holds with probability

1 − 1/poly(n). In this case, the high probability bound follows because the probability that there exists
a pairs of nodes that does not appear up in the same trace is at most

(
n
2

)
(1 − p2)T ≤ n2e−p2T .
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prove the more general result, in the next section we will define a family of graphs called
distinctive graphs and prove that a random graph is distinctive with high probability. In the
following section, we show that it is possible to find corresponding nodes between two traces
with high probability if the graph G is distinctive. This will require more than just finding
the largest pair of isomorphic subgraphs, as described below.

2.1 Active Isomorphisms and Distinctive Graphs
Strengthening Müller’s result to apply to subgraphs of size less than n/2 would give a possible
approach to finding corresponding nodes when p < 1/

√
2. Unfortunately this is not possible:

a random graph contains two isomorphic subgraphs on n/2 nodes with probability at least
1/2. For example, for any pair of nodes u and v, G[C ∪ {u}] ∼= G[C ∪ {v}] where C consists
of nodes that are neighbors of both u and v or neighbors of neither, and the expected size
of C ∪ {u} is n/2. However, note that the isomorphism in this example will consist almost
entirely of fixed points. And indeed, this turns out to be a constraint that we can leverage
to our benefit: if we disallow isomorphisms with many fixed points, we can break the n/2
barrier in Müller’s result.

▶ Definition 1 (Active Isomorphisms). Given a graph G and two subsets A, B of vertices,
say A and B have an active isomorphism if there exists an isomorphism between G[A] and
G[B] with no fixed points. Say G has an active subgraph isomorphism of size M if there
exist vertex subsets A and B with |A| = |B| = M with an active isomorphism.

We next show that a random graph drawn from G(n, 1/2) is unlikely to have large active
subgraph isomorphisms.

▶ Theorem 2. For all sufficiently large n, with high probability, a random graph on n vertices
has no active subgraph isomorphisms of size M = 20 log n.

Proof. Let G be a random graph drawn from G(n, 1/2), and let A, B ⊆ V (G) be subsets
of size M and let φ : A → B be a bijection that has no fixed points. Consider the pairs
A := {{a1, a2} : a1, a2 ∈ A, a1 ̸= a2} and B := {{b1, b2} : b1, b2 ∈ B, b1 ̸= b2}. Note that
φ naturally induces a bijection φ′ from A to B. Each vertex pair A is either an edge or a
non-edge; we think of these as the two types of pairs. The map φ is an isomorphism precisely
when φ′ preserves types. Note that while φ has no fixed points, φ′ may have fixed points. In
particular, {u, v} is a fixed point of φ′ iff φ(u) = v and φ(v) = u. Hence, if t is the number
of non-fixed points of φ′, it follows that t ≥

(
M
2

)
− M/2. Define a directed graph G on the

vertex set A ⊔ B with:
An arc from {u, u′} ∈ A to {v, v′} ∈ B if φ′({u, u′}) = {v, v′}.
An arc from {v, v′} ∈ B to {w, w′} ∈ A if {v, v′} = {w, w′}.

See Figure 1 for an example. Since each node has out-degree and in-degree at most 1
(where every node in A has out-degree exactly 1), G is a disjoint union of even cycles and
odd paths that start in A and end in B. For φ to be an isomorphism, all nodes in the same
connected component of G must have the same type. If the component is a path with k

nodes in B, the probability all nodes of the component have the same type is 1/2k. If the
component is a cycle with k nodes in B, the probability is 1/2k−1. Hence, the probability of
φ being an isomorphism is 1/2|B|−c where c is the number of cycles. Note that there are at
most |B| − t cycles with exactly one node in B and the rest have at least two nodes in B.
Hence, (|B| − t) + 2(c − |B| + t) ≤ |B| and this implies |B| − c ≥ t/2. Hence, the probability
φ is an isomorphism is at most 1/2t/2.
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96:6 Graph Reconstruction from Random Subgraphs

The probability of A and B having an active isomorphism is bounded above by the total
number of bijections from A to B with all points non-fixed, times the probability of such
a bijection being an isomorphism, which is bounded above by M ! · 2−t/2 ≤ 2M log M−t/2 ≤
2M log M− 1

2 (M
2 )+M/4. Taking the union bound over all subgraphs of size M still gives

(
n
M

)2 ·
2M log M− 1

2 (M
2 )+M/4 ≤ 23M log n+M/4− 1

2 (M
2 ) = 2−40 log2 n+10 log n ≤ 2−30 log2 n = n−Ω(log n).

◀

{v1, v2} {v3, v4} {v4, v5} {v3, v6} {v1, v3} {v2, v4}

{v1, v2} {v3, v4} {v3, v6} {v4, v7} {v2, v4} {v1, v3}

A

B

fixed pairs non-fixed pairs

Figure 1 A construction from the proof of Theorem 2. Here, the blue arcs represent the
isomorphism φ′ between pairs in A and pairs in B, while red arcs represent the same pair of vertices.

▶ Corollary 3 (Extension to Müller). For all sufficiently large n, with high probability, there
are no two isomorphic subgraphs of a random n-vertex graph G for which the isomorphism
has 20 log n or more non-fixed points.

Proof. Theorem 2 immediately implies there does not exist a subgraph isomorphism with
more than M non-fixed points because a subgraph isomorphism with M non-fixed points
implies the existence of a size M active subgraph isomorphism. ◀

Suppose a graph G has a subgraph H that has no nontrivial automorphisms. We can
now fix a canonical ordering τ of V (H), and define the signature of a vertex v ∈ V (G) with
respect to H as the length-|V (H)| binary vector whose ith entry is 1 if and only if v is
adjacent to the ith vertex of H in the ordering τ . For a fixed asymmetric subgraph H, we
say vertices u, v ∈ V (G) are distinguishable with respect to H if and only if they have distinct
signatures with respect to H.

▶ Definition 4 (Distinctive Graphs). We say that a graph G on n vertices is distinctive if the
following conditions are met:
1. Any subgraph of G on 200 log n or more vertices is asymmetric.
2. For any two subsets A, B ⊆ V (G) satisfying G[A] ∼= G[B], there are at most 200 log n

non-fixed points in the isomorphism between them.
3. For all but a 1/n fraction of subgraphs H of G with |V (H)| ≥ 200 log n, the vertices in

V (G) are pairwise distinguishable with respect to H.

Note that the isomorphism in the second condition in the definition is well-defined and unique,
because G[A] and G[B] of size more than 200 log n are asymmetric by the first condition;
similarly, the third condition is well-defined, because H is asymmetric, also by the first
condition.

▶ Theorem 5. Almost all graphs are distinctive.
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Proof. Consider a random graph G. The probability that any particular k-node random
subgraph has a non-identity isomorphism is at most 2k log k−k2/100 (see e.g. Theorem 3.1
in [28]). Taking the union bound over all

(
n
k

)
subgraphs of G and all possible sizes of the

subgraph from k to n, the probability of G having a non-asymmetric subgraph on k or more
vertices is at most 2log n(1+2k)+k−k2/100, which is 1/poly(n) for k ≥ 200 log n. The second
follows directly from Corollary 3 above. The third is due to the following counting argument.
Fix a random subgraph H of G of size at least 200 log n. For a fixed v ∈ V (G), the probability
of there being an edge to any given vertex of H is 1/2, and these are independent for different
vertices v. Therefore, the signature of a vertex v with respect to a fixed H corresponds to a
uniformly random binary string if v ̸∈ H. If v ∈ H, the string is uniformly random aside
from the index corresponding to v, which is deterministically 0. The probability that two
of these signatures match is at most 2−|V (H)|+1 ≤ 2−200 log n+1 ≤ n−199. Therefore, by the
union bound, the probability that two vertices in G have the same signature with respect
to H is at most

(
n
2
)
/n199 ≤ 1/n197. Therefore, the expected fraction of random subgraphs

H of size at least 200 log n with the property that there are two distinct vertices that are
indistinguishable with respect to H is at most 1/n197. The probability this fraction exceeds
1/n is at most 1/n196 by an application of the Markov bound. ◀

2.2 Reconstruction of Distinctive Graphs
Let G be a distinctive graph on n vertices. In this section, we will show an upper bound on the
sample complexity of reconstructing G from uniformly random induced subgraphs, obtained
by retaining each vertex independently with probability p ≥ 12n−1/6 log2/3 n. Recall that
if we take T := 3p−2 log n samples uniformly at random, then we see each pair of vertices
appear together in some trace.

Consider first just two such random induced subgraphs G[A] and G[B] where A and B

are subsets of the nodes formed independently by sampling each node in G with probability
p. Let H be the largest graph that appears as an induced subgraph of both G[A] and G[B].
Let A′ ⊆ A and B′ ⊆ B be the nodes in A and B that induce H. Note that it could be
that A′ = B′ = A ∩ B, but while G[A ∩ B] is a subgraph of both G[A] and G[B], we do not
know if it is the largest subgraph that appears in both. However, since |A′| = |B′| ≥ |A ∩ B|
and E[|A ∩ B|] = p2n ≫ 200 log n by our choice of p we know |A′| = |B′| ≥ 200 log n with
high probability. Then, by Distinctive Property 1, we can assume that G[A′] and G[B′] are
asymmetric and that there is a unique isomorphism φ between the copy of H in G[A] and
the copy of H in G[B].

Let us now subsample the vertices in G[A′] with probability

α := 1
1200T 2 log n

,

and call the resulting set of vertices C ′ ⊂ A′. Observe that the number of vertices not fixed
by φ is at most 200 log n by Distinctive Property 2. So by Markov’s inequality, the probability
that we subsample such a non-fixed point is at most 200α log n. So with probability at least
1 − 200α log n, the set C ′ consists entirely of fixed points in φ and is therefore entirely in the
intersection A ∩ B.

Let DC′ be the distribution of C ′, i.e., we sample A, find H, and then subsample the
nodes of H. For the sake of analysis, suppose we can identify the nodes in A ∩ B and let C

be the set formed by sampling from A ∩ B with probability α. Let DC be the distribution of
C. Both the definition of DC′ and DC is with respect to some fixed A and B.

▶ Theorem 6. The variational distance between DC and DC′ is at most 200α log n.
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Proof. Let x, y ∈ {0, 1}|(A∩B)∪A′| be the characteristic vectors of C and C ′ respectively,
where we have padded each of their domains up with zeros if necessary, for notational
convenience. Let γi(b) := P(xi = b) and βi(b) := P(yi = b) where b ∈ {0, 1}. Define
S1 := A ∩ B, and S2 := A′. Then, ℓ1(DC , DC′) is∑

z∈{0,1}|(A∩B)∪A′|

∣∣∣∣ ∏
i

γi(zi) −
∏

i

βi(zi)
∣∣∣∣

≤
∑

i

∑
b∈{0,1}

∣∣∣∣γi(b) − βi(b)
∣∣∣∣

=
∑

i∈S1∩S2

∑
b∈{0,1}

∣∣∣∣γi(b) − βi(b)
∣∣∣∣ +

∑
i∈S1\S2

∑
b∈{0,1}

∣∣∣∣γi(b) − βi(b)
∣∣∣∣

+
∑

i∈S2\S1

∑
b∈{0,1}

∣∣∣∣γi(b) − βi(b)
∣∣∣∣.

where the first inequality follows from the fact the ℓ1-distance between two product distribu-
tions is at most the sum of the ℓ1 distance between the marginals.4

Of these, the first term vanishes, as the inner difference is zero, whereas the two other terms
are bounded by 2α for each term, giving us ℓ1(X, Y ) ≤ 2α(|S1 \S2|+ |S2 \S1|) ≤ 2α ·200 log n.
Since the variational distance is half the ℓ1-distance, the stated result follows. ◀

▶ Corollary 7. If p ≥ 12n−1/6 log2/3 n, then with probability at least 1 − 400α log n (where
the probability is taken over the choice of A, B and the subsampling of A), C ′ satisfies the
condition in distinctive property 3.

Proof. Let S be the event that the graph we draw satisfies Distinctive Property 3. Then,
by Theorem 6, we know PDC

(S) − PDC′ (S) ≤ ∥DC − DC′∥T V ≤ 200α log n. Recall that
T = 3p−2 log n and α = 1/(1200T 2 log n). Therefore,

E[|C|] = p2nα = p2n

1200T 2 log n
= p2n · p4

1200 · 9 log2 n · log n
> 250 log n

for p ≥ 12n−1/6 log2/3 n. By an application of the Chernoff bound, |C| ≥ 200 log n with high
probability. Because G is distinctive, this implies that C satisfies the condition in Distinctive
Property 3. Note that for p = Ω̃(n−1/6), we have 200α log n = Ω̃(n−2/3) ≫ 1/n, and so it
follows that PDC′ (S) is at least 1 − 1/n − 200α log n ≫ 1 − 400α log n. So, with the stated
probability, C ′ satisfies the property of condition 3. ◀

This gives rise to our main result, the following algorithm for reconstructing G.

▶ Theorem 8. Let G be a distinctive graph on n vertices and δ > 0. We can reconstruct
G with probability at least 1 − δ from Θ(p−2 · log n · log(1/δ)) traces, when the retention
probability p satisfies p = Ω̃(n−1/6).

4 This can be verified via induction of the number of marginals since by the triangle inequality:∣∣∣∣ ∏
i≥1

γi(zi) −
∏
i≥1

βi(zi)
∣∣∣∣ ≤

∣∣∣∣ ∏
i≥1

γi(zi) − α1(z1)
∏
i≥2

βi(zi)
∣∣∣∣ +

∣∣∣∣α1(z1)
∏
i≥2

βi(zi) −
∏
i≥1

βi(zi)
∣∣∣∣
.

where the second term when summed over z equals the ℓ1 distance between the first marginal and we
apply the induction hypothesis to the first term.
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Proof. The proof relies on the following observation. Suppose that for any two traces G1
and G2, and any vertices x ∈ G1 and y ∈ G2, we can identify whether or not x and y are
the “same” in the sense of corresponding to the same original vertex in G. Now, if we have
enough traces so that each vertex in the original graph G appears in at least one of them,
then we can consistently cluster all the vertices in all the traces into n clusters, with the
vertices in each cluster corresponding to the same vertex in G. These clusters give rise to a
“labeling” of the nodes in the traces with labels 1 through n. If now, in addition, each pair of
vertices in G appear together in some trace, we have a way of identifying whether there is an
edge between the pair of nodes in G, and therefore we can recover the isomorphism class of
G, which is equivalent to reconstructing G in the unordered setting. This corresponds to the
approach highlighted in the high level description at the start of this section.

Formally, we have the following algorithm for reconstructing G given T = 3p−2 log n

random induced subgraphs of G. For any two of these subgraphs, we can find the largest
common subgraph to both of them, and then subsample from it with probability α as defined
above. By Corollary 7, this subsampled subgraph satisfies the third distinctive property
with high probability, and so we can use it to obtain the signatures of all vertices in A ∪ B,
enabling us to label the two sampled subgraphs consistently with respect to each other. With
high probability, every pair of vertices will appear together in one of the sampled subgraphs.
Therefore, as long as we have a consistent labeling of all vertices in these subgraphs with
respect to each other, we will have a consistent labeling of the entire graph G, and therefore
be able to reconstruct it.

The probability of this happening, by union bounding over the at most T 2 pairs of random
subgraphs we generated, is at least 1 − 400T 2α log n = 1 − 400T 2 log n · 1

1200T 2 log n = 1 − 1
3 =

2/3. We can now reduce the failure probability to δ by repeating the process O(log 1/δ)
times and taking the most commonly reconstructed graph. This requires an additional factor
of O(log 1/δ) in the number of traces. ◀

▶ Corollary 9. Let n be a sufficiently large integer and p = Ω̃(n−1/6). For almost all n-node
graphs, Θ(p−2 · log n · log(1/δ)) traces suffice for reconstruction with probability at least 1 − δ.

3 Reconstruction of Arbitrary Graphs in the Unordered Model

We next consider reconstructing arbitrary graphs and show that even distinguishing two
fixed graphs may require 2Ω(n) random induced subgraphs, highlighting the vast gap between
random graphs and arbitrary graphs. In fact the lower bound even applies to distinguishing
between two graphs with maximum degree 2. This immediately implies a lower bound
for reconstruction. Note that for any constant p, the entire graph is selected as a random
subgraph with probability pn and therefore O(1/pn) = 2O(n) is a trivial upper bound on the
sample complexity for full reconstruction. So the following lower bound establishes that this
trivial upper bound is optimal.

▶ Theorem 10. Distinguishing the cycle C2n with high probability from two disjoint copies
of the cycle Cn requires 2Ω(n) traces in the unordered model.

Proof. Let D1 be the distribution over subgraphs generated when the original graph is C2n.
Let D′1 be the distribution conditioned on the event A that we now define. Partition the
vertices of C2n into n pairs of “opposite” nodes (i.e. pairs of nodes at a distance exactly n

from each other). Let A be the event that there exists an opposite pair in which both nodes
are deleted. Note that Pr(A) = 1 − (1 − q2)n where q is the deletion probability.
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· · ·

· · ·
C2n

· · ·

· · ·

· · ·

· · ·
Cn Cn

Figure 2 The construction for the proof of Theorem 10. The event A is the deletion of a pair of
“opposite” nodes, such as the pair shown in red on the left; the even B is the deletion of a pair of
nodes, one from each of the cycles, such as the pair shown in red on the right. Observe that these
two events leave us with the same graph.

Now suppose the input graph is two copies of Cn. Let D2 be the distribution over
subgraphs generated. Let D′2 be the distribution conditioned on the following event B.
Partition the vertices into pairs of nodes where each pair consists of exactly one node from
each Cn. Let B be the event that there exists a pair in which both nodes are deleted. Note
that Pr(B) = 1 − (1 − q2)n. Therefore, by the triangle inequality, we can bound the total
variational distance between D1 and D2 as follows:

∥D1−D2∥T V ≤ ∥D1−D′1∥T V +∥D′1−D′2∥T V +∥D′2−D2∥T V = O(Pr(A)+Pr(B)) = 2−Ω(n)

where we used the fact that D′1 = D′2 and substituted q = 1/2. Hence, we need at least 2Ω(n)

samples to distinguish between D1 and D2. ◀

It is worth remarking here that we needed degree-2 graphs for the example in Theorem
10, as evidenced by the following observation, which we state as a theorem.

▶ Theorem 11. For any δ > 0, a graph with maximum degree one can be reconstructed with
probability at least 1 − δ in Θ(n log(1/δ)) samples.

Proof. A graph with maximum degree one is a matching and some isolated vertices. It
suffices, therefore, to learn the size k ≤ n/2 of the matching. This size in the random
subgraph is distributed as Bin(k, 1/4). But the unknown value k can be determined by
taking the average matching observed over t = O(n) traces. Specifically, let X be defined to
be the average matching size. Then, because k is an integer, if we have |X − k/4| < 1/8, then
4X rounded to the nearest integer is exactly k. We have E[X] = k/4 and V[X] ≤ k/(4t).
Hence, by Chebyshev’s inequality, we have Pr[|X − k/4| ≥ 1/8] ≤ k/(4t)

1/82 ≤ 1/10, where
t = cn for some sufficiently large constant c. We can boost the probability up as before for
an additional log(1/δ) factor. ◀

4 Reconstruction of Low Degeneracy Graphs in the Ordered Model

In this section, we turn our attention to the ordered model. We show that the sample
complexity of reconstructing graphs with constant degeneracy is exp(Õ(n1/3)), as long as the
retention probability p is a constant. Recall that the degeneracy of an undirected graph is
the smallest value d such that every induced subgraph has a node of degree at most d. Note
that the degeneracy is within a factor 2 of the arboricity, i.e., the minimum number of forests
into which its edges can be partitioned. Hence, the result applies to a natural and large class
of graphs, that includes all trees, planar graphs, and indeed, all graphs of bounded treewidth.
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4.1 Discussion of Challenges
Given a graph G and its adjacency matrix A, let us first consider what happens structurally
to the matrix A when we pass it through a deletion channel. For instance, consider the
degree sequence, viewed as the sequence of row weights of the matrix A. Of course, the
number of terms in the degree sequence in general decreases (and we would expect about pn

terms to survive in expectation), but observe that the terms that do survive may also change
in value. In fact, each surviving vertex v now contributes a term to the degree sequence that
is drawn from the distribution Bin(deg(v), p). However, the value of a particular element
of the degree sequence in the trace is not in general independent of its position within that
trace. This is because the decrease in its value is not independent of the total number of
neighbors that are deleted in the channel. The shift in position, on the other hand, is only
dependent on the number of neighbors that appear before the corresponding row that are
deleted. This is the main difficulty that our approach circumvents.

4.2 The Offset Method
We assume that we have a fixed n-vertex graph G with a fixed adjacency matrix A. For any
vertex i ∈ [n], we define the backward and forward offsets.

A←(i) = {i − j : j < i, (i, j) ∈ E} A→(i) = {j − i : i < j, (i, j) ∈ E}

For example, if

A =

 0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


then we have backward offsets A←(1) = ∅, A←(2) = {1}, A←(3) = {1}, and A←(4) = {1, 2},
and forward offsets A→(1) = {1}, A→(2) = {1, 2}, A→(3) = {1}, and A→(4) = ∅. Of course,
A←(1) = A→(n) = ∅ for any adjacency matrix.

Let ai,k =
∑

x∈A←(i) xk and bi,k =
∑

x∈A→(i) xk, where by convention we set 00 = 0 and
10 = 1. These are the offset moments of order k for vertex i. Note that ai,0 + bi,0 is the
degree of vertex i.

We need the following result due to Krasikov and Roddity, whose proof follows from
Corollaries 2.4 and 2.5 in [19].

▶ Theorem 12 (Krasikov-Roddity, 1997). Let S = {u1, . . . , ud} be any subset of {0, 1, . . . , n−1}
of size d. Then, S is uniquely determined by the system

ur
1 + . . . + ur

d = nr, r = 1, . . . , d.

Now we state the core idea of our proof, which relies on the following observation about
the quantities {ai,k} and {bi,k} that we just defined.

▶ Theorem 13. Let G have degeneracy d. Then, the values {ai,k}i∈[n] and {bi,k}i∈[n] for
k = 0, . . . , d uniquely determine G. In other words, reconstructing {ai,k} and {bi,k} with
high probability suffices to reconstruct G with high probability.

Proof. We use induction on the number of non-isolated nodes. The base case when the
number of non-isolated nodes is 0 is trivial. Suppose the Theorem is true when there are up
to t non-isolated nodes. Let G be a d-degenerate graph with t + 1 non-isolated nodes. There
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exists a node i with degree at most d, with backward and forward offsets A←(i) and A→(i)
respectively, and offset moments ai,k and bi,k for k = 0, . . . , d. By Theorem 12, given ai,k

and bi,k we can reconstruct A←(i) and A→(i).
The idea is to identify this vertex i and reconstruct its neighbors, and induct on the

remaining graph with these edges between node i and its neighbors removed. Clearly, i is
identifiable from the zeroth moment. Let G′ be the graph formed by removing all edges
incident to i. For all remaining vertices j, let a′j,k and b′j,k be the corresponding offset
moments. Observe that a′j,k and b′j,k can be computed from i, aj,k, bj,k, A←(i), and A→(i);
furthermore, G′ itself is a d-degenerate graph with at most t − 1 non-isolated nodes, and so
by induction, there is no other such graph with t − 1 non-isolated nodes with the same offset
moments. We can now reconstruct G′ precisely by induction, and add in the missing edges
from vertex i using A←(i) and A→(i). ◀

▶ Remark 14. Note that the quantities ai,k and bi,k for k = 0, 1, . . . , d would suffice to learn
the neighborhood of node i directly (given Theorem 12) if the degree of node i were at most
d, and we could bypass induction altogether. But if the degree is strictly bigger than d,
we would have to first reconstruct other parts of the graph so that, after doing so, there
are at most d unknown edges incident to i. This is where the inductive argument becomes
necessary.

We now state the main result of this section. We relegate the somewhat technical proof to
the next subsection. This proof uses similar complex analytic techniques as in [27], which are
now standard in the literature, which involve bounding the values of Littlewood polynomials
on the unit circle in the complex plane. In our case, crucially, we need to understand how
the moments behave, which requires additional work.

▶ Theorem 15. {ai,k}i∈[n] and {bi,k}i∈[n] can be reconstructed with high probability using
exp(Õ(d2/3n1/3)) traces.

4.3 Computing Offset Moments: Proof of Theorem 15
Recall that p and q are the retention and deletion probability respectively, so that p + q = 1.
In this subsection, we make a simplification: if p ∈ (1/m, 1/(m − 1)] for some integer m, we
assume, without loss of generality, that p = 1/m. This makes the analysis easier. Of course,
given a deletion channel corresponding to retention probability p, we can always manually
simulate one with any lower retention probability, so this is a valid assumption.

Recall that the object of interest in this subsection is the kth moment, where k can go up
to the degeneracy d, which suffices by Theorem 13. We denote by ãj,k and b̃j,k the observed
(i.e., sampled) values of aj,k and bj,k respectively from our traces. Consider the polynomial∑

i≥1 bi,kwi−1, and consider its expected value when we look at the trace from the deletion
channel. We have, by linearity of expectation,

E

∑
i≥1

b̃i,kwi−1

 =
∑
i≥1

wi−1E[̃bi,k]. (1)

Consider the event that the ith row of the trace comes from the jth row of the original
adjacency matrix A, for some i ≤ j ≤ n. This happens precisely when exactly i − 1 of the
first j − 1 rows are retained, and the jth row is also retained, which happens with probability(

j−1
i−1

)
piqj−i. However, the value of bj,k changes as well, which we need to account for.
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To analyze this change, the first key thing to observe is that the shift in the eventual
position of bj,k is independent of the change in its value; the former is a function of the rows
before j that are deleted, while the latter is a function of the rows after j that are deleted,
and we assert independence in the deletion probability of each row.

It remains to analyze the expected value of bj,k after A is passed through the deletion
channel. Recall that bj,k =

∑
x∈A→(j) xk, the sum of kth powers of the forward offsets in row

j. Now, for a given offset x in the row under consideration, it survives with probability p,
and if so, ends up as the offset 1 + y, where y is a random variable that follows a Bin(x − 1, p)
distribution, since each of the x − 1 columns between the diagonal and the original offset can
be deleted with probability p. Therefore, the value of bj,k is∑

x∈A→(j)

p(1 + y)k, (2)

where y ∼ Bin(x − 1, p). Since each offset is bounded above by n, and there are at most n of
them, this expression is bounded above by O(nk+1).

We also need a lower bound: ignoring the extra factor of p, each of the k + 1 terms in the
expansion of (2) is an integer multiple of a power of y, and so the expected value of each
such term is an integer multiple of m−k (since the terms less than 1 are all products of the
form prqs, where r + s ≤ k). Therefore, each nonzero term in the expectation is bounded
away in absolute value from 0 by m−k−1.

An exactly symmetric argument holds for the expected value of aj,k as well, by “indexing”
in the opposite direction to bj,k. Denote by Φa(j, k) and Φb(j, k) these expected values of
aj,k and bj,k respectively, where Φa(j, k) and Φb(j, k) are between Ω(m−k−1) and O(nk+1).
The lower bound is necessary, as we do not want these expected values to be (exponentially)
close to zero.

It follows from the arguments above that (1) reduces to (using backward offsets instead
of forward ones, by a symmetric argument):

E

∑
i≥1

ãi,kwi−1

 =
∑
i≥1

wi−1
n∑

j=i

(
j − 1
i − 1

)
piqj−iΦa(j, k)

=
∑
j≥1

Φa(j, k)
j∑

i=1

(
j − 1
i − 1

)
piwi−1qj−i.

With a change of variables, this becomes

∑
j≥1

Φa(j, k)p
j−1∑
i′=0

(
j − 1

i′

)
(pw)i′qj−1−i′ =

∑
j≥1

Φa(j, k)p(pw + q)j−1

We write pw + q = z. To obtain a lower bound on the variational distance between two
distributions coming from two different matrices, say A and A′ with ãi,k and ã′i,k denoting
the distribution of backward offsets from them respectively, we obtain

E

∑
i≥1

(ãi,k − ã′i,k)wi−1

 =
n∑

j=1
(Φa(j, k) − Φ′a(j, k))pzj−1. (3)

The right side of equation (3) is a polynomial in z of degree less than n, where by the triangle
inequality, each nonzero coefficient is upper bounded in absolute value by O(nk+1), and lower
bounded by Ω(m−k−1).
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We now need a technical and non-trivial lemma. This is a generalization of Theorem 7
in [20], which in turns adapts a lemma in [27]. The arguments in those papers can be
extended in a straightforward way to apply the same results to powers higher than 2, which
is the core idea of this lemma. We use a localized lower bound on a generalized version of
Littlewood polynomials, where the coefficients can be (up to) polynomially large instead of
being in {−1, 0, 1}. We omit the proof here.

▶ Lemma 16 (Generalized Littlewood polynomial bound). Let G(z) be a nonzero complex
polynomial in z with its degree bounded by n, integer coefficients, and each coefficient bounded
in absolute value by O(nr). Then, for any fixed positive L, there is some z⋆ ∈ {eiθ : −π/L ≤
θ ≤ π/L} such that |G(z⋆)| ≥ n(1−L)(r+1).

This lemma enables us to conclude the following.

▶ Lemma 17. We have,∑
i≥1

∣∣E [
ãi,k − ã′i,k

] ∣∣ ≥ exp
(

−Ω̃(k + k2/3n1/3)
)

.

Proof. Multiplying both sides of (3) by mk+1 yields a polynomial precisely of the kind
described in Lemma 16 on the right hand side. Therefore, applying Lemma 16, we conclude
that for some z⋆ ∈ {eiθ : −π/L ≤ θ ≤ π/L},

mk+1
∑
i≥1

∣∣E [
ãi,k − ã′i,k

] ∣∣ · |(z⋆)i−1| ≥
∣∣∣∣E[ ∑

i≥1
mk+1(ãi,k − ã′i,k)(z⋆)i−1]∣∣∣∣

≥ n(1−L)(k+2+ log m
log n (k+1)).

Noting that |z⋆| < exp(C1/L2) for some finite constant C1, we now obtain

mk+1
∑
i≥1

∣∣E [
ãi,k − ã′i,k

] ∣∣ ≥ n(1−L)(k+2+ log m
log n (k+1)) exp(−C1n/L2)

= exp
(
−C2kL log n − C1n/L2)

for some constant C2. Here, C2 is dependent on log m, which is constant when the retention
probability p is a constant. The right hand side of this equation is maximized when L is
Õ(n1/3/k1/3). We then conclude∑

i≥1

∣∣E [
ãi,k − ã′i,k

] ∣∣ ≥ m−k−1 · exp
(

−Ω̃(k2/3n1/3)
)

= exp
(

−Ω̃(k + k2/3n1/3)
)

,

where k = O(n) can be absorbed into the second term. ◀

To finish the proof of Theorem 15, we just need a standard union bound argument.

▶ Theorem 18 (Folklore). Let F be a family of distributions where any two distributions
A, B ∈ F have variational distance at least ε, for some ε > 0. Then, we can distinguish any
member of F using O(log(|F|)/ε2) samples.

Using Theorem 18 directly on the distributions defined in the proof of Theorem 15 proves
that we can recover {ai,k}i∈[n] in exp(Õ(k2/3n1/3)) traces. This holds for {bi,k}i∈[n] as well,
proving Theorem 15.
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5 Reconstructing Arbitrary Graphs in the Ordered Model

In this section, we prove that arbitrary adjacency matrices can be reconstructed with high
probability using exp(Õ(n1/2)) samples in the ordered model. This is in contrast to the
unordered model where we showed, in Theorem 10, that exp(Ω(n)) samples were necessary.
The proof is a small modification of an existing result by Krishnamurthy et al. [20] on the
problem on reconstructing arbitrary binary matrices when rows and columns are deleted
independently.

▶ Theorem 19. For graph reconstruction, exp(O(n1/2√
q log n/p)) traces suffice with high

probability to recover an arbitrary adjacency matrix A ∈ {0, 1}n×n, where p is the retention
probability and q = 1 − p.

Proof Sketch. In our problem, the ith row is deleted iff the ith column is deleted, while the
proof in [20] breaks when there are such dependencies. However, it is possible to make a
small modification in the existing proof to handle this. The idea is to re-index the entries
of the matrices such that the probability the entry in position (i′, j′) of the original matrix
ends up in position (i, j) can be expressed conveniently in terms of two independent random
variables. Let us formalize the change and sketch the rest of the approach.

For a matrix A ∈ {0, 1}n×n, let Ã denote a matrix trace. Let us denote the (i, j)th
entry of the matrix as Ai,j , for i, j = 0, 1, . . . , n − 1, an indexing protocol we adhere to for
every matrix. We restrict our attention to the entries above the diagonal, which suffices
for reconstruction. For complex numbers w1, w2 ∈ C, similar to the proof of Theorem 15,
observe that

E

 n−1∑
i,j=0

Ãi,i+jwi
1wj

2

 = p2
∑
i,j

wi
1wj

2

∑
ki≥i,kj≥j

Aki,ki+kj

(
ki

i

)(
kj − 1
j − 1

)
piqki−ipj−1qkj−j

= p2
n−1∑

k1=0,k2=1
Ak1,k1+k2(pw1 + q)k1(pw2 + q)k2

Thus, for two adjacency matrices A, B, we have

1
p2E

 n−1∑
i,j=0

(Ãi,i+j − B̃i,i+j)wi
1wj

2

 =
n−1∑
k1=0
k2=1

(Ak1,k1+k2 − Bk1,k1+k2)(pw1 + q)k1(pw2 + q)k2

≜ f(z1, z2),

where z1 = pw1 + q and z2 = pw2 + q. The rest of the argument is identical to the proof of
Krishnamurthy et al. [20]. Specifically, since all the coefficients of f(z1, z2) are in {−1, 0, 1},
and the degree is n − 1 in each variable it can be shown that for any L > 0 there exist
z⋆

1 , z⋆
2 ∈ {eiθ : |θ| ≤ π/L} such that |f(z⋆

1 , z⋆
2)| ≥ exp(−C1L2 log n) for some constant C1. If

z⋆
1 = pw⋆

1 + q and z⋆
2 = pw⋆

2 + q then |w⋆
1 |, |w⋆

2 | ≤ exp(C2q/(Lp)2) for some constant C2.
Substituting these bounds and applying the triangle inequality gives,

1
p2

∑
i,j

∣∣∣∣E[Ãi,i+j − B̃i,i+j ]
∣∣∣∣ ≥ f(z⋆

1 , z⋆
2)

|w⋆
1 |n|w⋆

2 |n

≥ exp
(

−C1L2 log n − 2C2qn

L2p2

)
≥ exp

(
−C

√
nq log n

p

)
≜ ε
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where the second inequality follows by optimizing for L, similar to our approach in the
previous section. So if we estimate each E[Ãi,i+j ] and E[B̃i,i+j ] up to additive error bounded
above by p2ε/(2n2), we can distinguish between A and B. This immediately leads to the
claimed bound via a union bound over all possible pairs and adjacency matrices. ◀

It seems difficult to construct lower bounds the sample complexity of reconstruction in
the ordered model, beyond an obvious reduction from string trace reconstruction as follows.
Given a binary string σ = (x1, . . . , xn), we can create the ordered graph Gσ on n + 1 vertices
v1, . . . , vn+1 by adding edges of the form (vi, vn+1) if and only if xi = 1. Clearly, there is an
injective map from length-n binary strings to (n + 1)-vertex ordered graphs. Furthermore,
taking a trace of a binary string by passing it through a deletion channel with probability q of
deletion corresponds exactly to taking a trace from the ordered subgraph conditioned on the
vertex n + 1 being preserved. This automatically implies a lower bound of Ω̃(n3/2) samples
for graph reconstruction in the ordered model due to [6]. On the surface, the ordered graph
reconstruction problem seems to be fundamentally harder than the string trace reconstruction
problem as well, but it is significantly harder to improve the lower bound.

6 Conclusion and Open Problems

We considered two natural graph reconstruction problems: reconstructing a graph from
random induced subgraphs (the unordered model) and reconstructing an graph adjacency
matrix via random symmetric submatrices (the ordered model). We showed that for almost
all graphs G on n nodes, Θ(p−2 log n) random induced subgraphs are necessary and sufficient
to reconstruct G with high probability if each subgraph is formed by deleting each node with
probability 1 − p. In contrast, we showed that there exist pairs of graphs that require 2Ω(n)

random induced subgraphs to distinguish even when p = 1/2. We showed that exp(Õ(n1/3)
random symmetric submatrices are sufficient to construct sparse graphs (specifically, graphs
with constant degeneracy or arboricity) and observed that exp(Õ(n1/2)) random symmetric
submatrices are sufficient to reconstruct arbitrary graphs.

Some Open Questions. In a fairly general sense, our results resolve the sample complexity
of graph reconstruction in the unordered model. However, it may interesting to also consider
time complexity. For example, the current approach requires isomorphism testing for an
exponential number of pairs of subgraphs and it seems plausible that a more efficient approach
could exist. For the ordered model, it is natural to ask whether the sample complexity of our
upper bounds can be improved. Proving lower bounds for trace construction type problems
is notoriously difficult and there is currently an exponential gap between the best lower
and upper bounds. However, more tractable open questions include whether our results are
optimal for mean-based algorithms [27], i.e., algorithms that only use the expected value of
each bit in the trace. Another potential direction is whether it is possible to adapt ideas from
Chase’s recent work [7] to improve the exponential dependence on n or the degeneracy d.
This may require substantial work in finding the two-dimensional extensions to several results.
Of course, while d-degenerate graphs are a robust class of structures in themselves, it would
be a natural next step to try to relax that condition altogether. Removing this constraint
means denser rows of the adjacency matrix, which seems to require many more samples to
effectively reconstruct, as well as novel ideas that go beyond the Krasikov-Roddity methods
of set reconstruction from [19]. However, there may well be other classes of graphs that our
current approach is suitable for and easily generalizable to. For instance, graphs with high
girth are a natural candidate for trying to reconstruct using the techniques of this paper, as
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small-diameter neighborhoods in an arbitrary high-girth graph are acyclic, and therefore the
high-girth condition is akin to a “local” bounded-degeneracy condition. It seems natural to
try and extend our approach to this class of graphs as well. Yet another direction to explore
would be to consider lower values of p in the unordered model. Our current bounds are
good enough for p = Ω̃(1/n1/6), but we suspect this bound is an artifact of our approach
rather than being inherent to the problem. While the majority of the related literature on
similar problems typically concern themselves with constant p, which are covered by our
work, exploring e.g., p = O(poly log n)/n may require new techniques.

References
1 Frank Ban, Xi Chen, Adam Freilich, Rocco A. Servedio, and Sandip Sinha. Beyond trace

reconstruction: Population recovery from the deletion channel. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 745–768, 2019. doi:10.1109/
FOCS.2019.00050.

2 Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing
strings from random traces. In Symposium on Discrete Algorithms, 2004.

3 Bela Bollobas. Almost every graph has reconstruction number three. Journal of Graph Theory,
14(1):1–4, 1990.

4 Tatiana Brailovskaya and Miklós Z. Rácz. Tree trace reconstruction using subtraces. CoRR,
abs/2102.01541, 2021. arXiv:2102.01541.

5 Joshua Brakensiek, Ray Li, and Bruce Spang. Coded trace reconstruction in a constant
number of traces. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 482–493, 2020. doi:10.1109/FOCS46700.2020.00052.

6 Zachary Chase. New lower bounds for trace reconstruction. Annales de l’Institut Henri
Poincaré, Probabilités et Statistiques, 57(2):627–643, 2021. doi:10.1214/20-AIHP1089.

7 Zachary Chase. Separating words and trace reconstruction. In STOC 2021: Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, June 2021, pages 21–31,
2021.

8 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-time
trace reconstruction in the smoothed complexity model. In Dániel Marx, editor, Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021, pages 54–73. SIAM, 2021. doi:10.1137/1.9781611976465.5.

9 Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and Joao Ribeiro. Coded trace
reconstruction. IEEE Transactions on Information Theory, PP:1–1, May 2020. doi:
10.1109/TIT.2020.2996377.

10 Sami Davies, Miklos Z. Racz, and Cyrus Rashtchian. Reconstructing trees from traces. In Alina
Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on Learning
Theory, volume 99 of Proceedings of Machine Learning Research, pages 961–978, Phoenix, USA,
25–28 June 2019. PMLR. URL: http://proceedings.mlr.press/v99/davies19a.html.

11 Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for
trace reconstruction. In Symposium on Theory of Computing, 2017.

12 Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.
Birkhäuser, 2013. doi:10.1007/978-0-8176-4948-7.

13 Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction with varying deletion
probabilities. In Workshop on Analytic Algorithmics and Combinatorics, 2018.

14 Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. The Annals of Applied
Probability, 30(2):503–525, 2020. doi:10.1214/19-AAP1506.

15 Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for
random strings and arbitrary deletion probability. In Conference On Learning Theory, COLT
2018, Stockholm, Sweden, 6-9 July 2018., pages 1799–1840, 2018.

ICALP 2022

https://doi.org/10.1109/FOCS.2019.00050
https://doi.org/10.1109/FOCS.2019.00050
http://arxiv.org/abs/2102.01541
https://doi.org/10.1109/FOCS46700.2020.00052
https://doi.org/10.1214/20-AIHP1089
https://doi.org/10.1137/1.9781611976465.5
https://doi.org/10.1109/TIT.2020.2996377
https://doi.org/10.1109/TIT.2020.2996377
http://proceedings.mlr.press/v99/davies19a.html
https://doi.org/10.1007/978-0-8176-4948-7
https://doi.org/10.1214/19-AAP1506


96:18 Graph Reconstruction from Random Subgraphs

16 Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace recon-
struction with constant deletion probability and related results. In Symposium on Discrete
Algorithms, 2008.

17 Paul J. Kelly. A congruence theorem for trees. Pacific Journal of Mathematics, 7(1):961–968,
1957. doi:pjm/1103043674.

18 Géza Kós, Péter Ligeti, and Péter Sziklai. Reconstruction of matrices from submatrices.
Mathematics of Computation, 2009. doi:10.1090/S0025-5718-09-02210-8.

19 I. Krasikov and Y. Roditty. On a reconstruction problem for sequences. Journal of Combinat-
orial Theory, Series A, 1997.

20 Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal. Trace
reconstruction: Generalized and parameterized. IEEE Trans. Inf. Theory, 67(6):3233–3250,
2021. doi:10.1109/TIT.2021.3066010.

21 Thomas Maranzatto and Lev Reyzin. Reconstructing arbitrary trees from traces in the tree
edit distance model. CoRR, abs/2102.03173, 2021. arXiv:2102.03173.

22 Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In
European Symposium on Algorithms, 2014.

23 Elchanan Mossel and Nathan Ross. Shotgun assembly of labeled graphs. IEEE Transactions
on Network Science and Engineering, 6(2):145–157, 2019. doi:10.1109/TNSE.2017.2776913.

24 Vladimír Müller. Probabilistic reconstruction from subgraphs. Commentationes Mathematicae
Universitatis Carolinae, 017(4):709–719, 1976. URL: http://eudml.org/doc/16787.

25 Shyam Narayanan. Improved algorithms for population recovery from the deletion channel. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1259–1278. SIAM, 2021.
doi:10.1137/1.9781611976465.77.

26 Shyam Narayanan and Michael Ren. Circular Trace Reconstruction. In James R. Lee, editor,
12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185
of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:18, Dagstuhl,
Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ITCS.2021.18.

27 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3) samples. In Symposium
on Theory of Computing, 2017.

28 Jaroslav Nesetril. Graph theory and combinatorics. Fields Institute Summer Thematic Program
on the Mathematics of Constraint Satisfaction, 2011.

29 Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel: Subpolyno-
mially many traces suffice. In Symposium on Foundations of Computer Science, 2017.

30 Hannah Spinoza and Douglas West. Reconstruction from the deck of k-vertex induced
subgraphs. Journal of Graph Theory, 90(4):497–522, 2019.

31 S. M. Ulam. A collection of mathematical problems. Interscience Tracts in Pure and Applied
Mathematics, no. 8. Interscience Publishers, New York-London, 1960.

32 Krishnamurthy Viswanathan and Ram Swaminathan. Improved string reconstruction over
insertion-deletion channels. In Symposium on Discrete Algorithms, 2008.

https://doi.org/pjm/1103043674
https://doi.org/10.1090/S0025-5718-09-02210-8
https://doi.org/10.1109/TIT.2021.3066010
http://arxiv.org/abs/2102.03173
https://doi.org/10.1109/TNSE.2017.2776913
http://eudml.org/doc/16787
https://doi.org/10.1137/1.9781611976465.77
https://doi.org/10.4230/LIPIcs.ITCS.2021.18
https://doi.org/10.4230/LIPIcs.ITCS.2021.18


The SDP Value of Random 2CSPs
Amulya Musipatla #

Carnegie Mellon University, Pittsburgh, PA, USA

Ryan O’Donnell #

Carnegie Mellon University, Pittsburgh, PA, USA

Tselil Schramm #

Stanford University, CA, USA

Xinyu Wu #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We consider a very wide class of models for sparse random Boolean 2CSPs; equivalently, degree-2
optimization problems over {±1}n. For each model M, we identify the “high-probability value” s∗

M
of the natural SDP relaxation (equivalently, the quantum value). That is, for all ϵ > 0 we show
that the SDP optimum of a random n-variable instance is (when normalized by n) in the range
(s∗

M − ϵ, s∗
M + ϵ) with high probability. Our class of models includes non-regular CSPs, and ones

where the SDP relaxation value is strictly smaller than the spectral relaxation value.
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1 Introduction

A large number of important algorithmic tasks can be construed as constraint satisfaction
problems (CSPs): finding an assignment to Boolean variables to optimize the number of
satisfied constraints. Almost every form of constraint optimization is NP-complete; thus
one is led to questions of efficiently finding near-optimal solutions, or understanding the
complexity of average-case rather than worst-case instances. Indeed, understanding the
complexity of random sparse CSPs is of major importance not just in traditional algorithms
theory, but also in, e.g., cryptography [25], statistical physics [27], and learning theory [14].

Suppose we fix the model M for a random sparse CSP on n variables (e.g., random k-SAT
with a certain clause density). Then it is widely believed that there should be a constant c∗

M
such that the optimal value of a random instance is c∗

M ± on→∞(1) with high probability
(whp). (Here we define the optimal value to mean the maximum number of simultaneously
satisfiable constraints, divided by the number of variables.) Unfortunately, it is extremely
difficult to prove this sort of result; indeed, it was considered a major breakthrough when
Bayati, Gamarnik, and Tetali [6] established it for one of the simplest possible cases: Max-Cut
on random d-regular graphs (which we will denote by MCd). Actually “identifying” the
value c∗

M (beyond just proving its existence) is even more challenging. It is generally possible
to estimate c∗

M using heuristic methods from statistical physics, but making these estimates

EA
T

C
S

© Amulya Musipatla, Ryan O’Donnell, Tselil Schramm, and Xinyu Wu;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 97; pp. 97:1–97:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amusipatla@gmail.com
mailto:odonnell@cs.cmu.edu
mailto:tselil@stanford.edu
mailto:xinyuwu@cmu.edu
https://doi.org/10.4230/LIPIcs.ICALP.2022.97
https://arxiv.org/abs/2108.01038
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


97:2 The SDP Value of Random 2CSPs

rigorous is beyond the reach of current methods. Taking again the example of Max-Cut on
d-regular random graphs, it was only recently [16] that the value c∗

MCd
was determined up to

a factor of 1 ± od→∞(1). The value for any particular d, e.g. c∗
MC3

, has yet to be established.
Returning to algorithmic questions, we can ask about the computational feasibility of

optimally solving sparse random CSPs. There are two complementary questions to ask: given
a random instance from model M (with presumed optimal value c∗

M ± on→∞(1)), can one
efficiently find a solution achieving value ⪆ c∗

M, and can one efficiently certify that every
solution achieves value ⪅ c∗

M? The former question is seemingly a bit more tractable; for
example, a very recent breakthrough of Montanari [29] gives an efficient algorithm for (whp)
finding a cut in a random graph G(n, p) graph of value at least (1 − ϵ)c∗

G(n,p). On the other
hand, we do not know any algorithm for efficiently certifying (whp) that a random instance
has value at most (1 + ϵ)c∗

G(n,p). Indeed, it reasonable to conjecture that no such algorithm
exists, leading to an example of a so-called “information-computation gap”.

To bring evidence for this we can consider semidefinite programming (SDP), which
provides efficient algorithms for certifying an upper bound on the optimal value of a CSP [20].
Indeed, it is known [35] that, under the Unique Games Conjecture, the basic SDP relaxation
provides essentially optimal certificates for CSPs in the worst case. In this paper we in
particular consider Boolean 2CSPs – more generally, optimizing a homogeneous degree-2
polynomial over the hypercube – as this is the setting where semidefinite programming is
most natural. Again, for a fixed model M of random sparse Boolean 2CSPs, one expects
there should exist a constant s∗

M such that the optimal SDP-value of an instance from M is
whp s∗

M ± on→∞(1). Philosophically, since semidefinite programming is doable in polynomial
time, one may be more optimistic about proving this and explicitly identifying s∗

M. Indeed,
some results in this direction have recently been established.

1.1 Prior work on identifying high-probability SDP values
Let us consider the most basic case: MCd, Max-Cut on random d-regular graphs. For ease of
notation, we will consider the equivalent problem of maximizing 1

nx
T(−A)x over x ∈ {±1}n,

where A is the adjacency matrix of a random n-vertex d-regular graph.1 Although s∗
MCd

, the
high-probability SDP relaxation value, was pursued as early as 1987 [8] (see also [18]), it was
not until 2015 that Montanari and Sen [30] established the precise result s∗

MCd
= 2

√
d− 1.

That is, in a random d-regular graph, whp the basic SDP relaxation value [8, 37, 15, 34] for
the size of the maximum cut is ( d

4 +
√
d− 1 ± on→∞(1))n. Here the special number 2

√
d− 1

is the maximum eigenvalue of the d-regular infinite tree.
The proof of this result has two components: showing Sdp(−A) ≥ 2

√
d− 1 − ϵ whp,

and showing Sdp-Dual(−A) ≤ 2
√
d− 1 + ϵ whp. Here Sdp(A) = max{⟨ρ,A⟩ : ρ ⪰

0, ρii = 1
n ∀i} denotes the “primal” SDP value on matrix A (commonly associated with the

Goemans–Williamson rounding algorithm [23]), and Sdp-Dual(A) = min{λmax(A+diag(ζ)) :
avgi(ζi) = 0} denotes the (equal) “dual” SDP value on A. To show the latter bound, it
is sufficient to observe that Sdp-Dual(−A) ≤ λmax(−A), the “eigenvalue bound”, and
λmax(−A) ≤ 2

√
d− 1 + on(1) whp by Friedman’s Theorem [21]. As for lower-bounding

Sdp(−A), Montanari and Sen used the “Gaussian wave” method [19, 13, 24] to construct
primal SDP solutions achieving at least 2

√
d− 1 − ϵ (whp). The idea here is essentially to

build the SDP solutions using an approximate eigenvector (of finite support) of the infinite
d-regular tree achieving eigenvalue 2

√
d− 1 − ϵ; the fact that SDP constraint “ρii = 1

n ∀i”
can be satisfied relies heavily on the regularity of the graph.

1 Throughout this work, boldface is used to denote random variables.
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▶ Remark 1. The Montanari–Sen result in passing establishes that the (high-probability)
eigenvalue and SDP bounds coincide for random regular graphs. This is consistent with
a known theme, that the two bounds tend to be the same (or nearly so) for graphs where
“every vertex looks similar” (in particular, for regular graphs). This theme dates back to
Delorme and Poljak [15], who showed that Sdp-Dual(−A) = λmax(−A) whenever A is the
adjacency matrix of a vertex-transitive graph.

Subsequently, the high-probability SDP value s∗
M was established for a few other models

of random regular 2CSPs. Deshpande, Montanari, O’Donnell, Schramm, and Sen [17] showed
that for M = NAE3c – meaning random regular instances of NAE-3SAT (not-all-equals
3Sat) with each variable participating in c clauses – we have s∗

M = 9
8 − 3

8 ·
√

c−1−
√

2
c . We

remark that NAE-3SAT is effectively a 2CSP, as the predicate NAE3 : {±1}3 → {0, 1}
may be expressed as 3

4 − 1
4 (xy + yz + zx), supported on the “triangle” formed by variables

x, y, z. The analysis in this paper is somewhat similar to that in [30], but with the infinite
graph X = K3 ⋆ K3 ⋆ · · · ⋆ K3 (c times) replacing the d-regular infinite tree. This X is
the 2c-regular infinite “tree of triangles” depicted (partly, in the case c = 3) in Figure 1.
More generally, [17] established the high-probability SDP value for large random (edge-
signed) graphs that locally resemble Kr ⋆ Kr ⋆ · · · ⋆ Kr, the (r − 1)c-regular infinite “tree of
cliques Kr”. (The r = 2 case essentially generalizes [30].) As in [30], s∗

M coincides with the
(high-probability) eigenvalue bound. The upper bound on s∗

M is shown by using Bordenave’s
proof [9] of Friedman’s Theorem for random (c, r)-biregular graphs. The lower bound on s∗

M
is shown using the Gaussian wave technique, relying on the distance-regularity of the graphs
Kr ⋆ Kr ⋆ · · · ⋆ Kr (indeed, it is known that every infinite distance-regular graph is of this
form).

Figure 1 The 6-regular infinite graph K3 ⋆ K3 ⋆ K3, modeling random 3-regular NAE3-SAT.

Mohanty, O’Donnell, and Paredes [28] generalized the preceding two results to the case
of “two-eigenvalue” 2CSPs. Roughly speaking, these are 2CSPs formed by placing copies
of a small weighted “constraint graph” H – required to have just two distinct eigenvalues –
in a random regular fashion onto n vertices/variables. (This is indeed a generalization [17],
as cliques have just two distinct eigenvalues.) As two-eigenvalue examples, [28] considered
CSPs with the “CHSH constraint” – and its generalizations, the “Forrelationk” constraints
– which are important in quantum information theory [11, 1]. Here the SDP value of an
instance is particularly relevant as it is precisely the optimal “quantum entangled value” of
the 2CSP [12]. Once again, it is shown in [28] that the high-probability SDP and eigenvalue
bounds coincide for these types of CSPs. The two-eigenvalue condition is used at a technical
level in both the variant of Bordenave’s theorem proven for the eigenvalue upper bound, and
in the Gaussian wave construction in the SDP lower bound.

ICALP 2022
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Most recently, O’Donnell and Wu [33] used the results of Bordenave and Collins [10]
(a substantial generalization of [9]) to establish the high-probability eigenvalue relaxation
bound for very wide range of random 2CSPs, encompassing all those previously mentioned:
namely, any quadratic optimization problem defined by random “matrix polynomial lifts”
over literals.

1.2 Our work
In this work, we establish the high-probability SDP value s∗

M for random instances of any
2CSP model M arising from lifting matrix polynomials (as in [33]). This generalizes all pre-
viously described work on SDP values, and covers many more cases, including random lifts of
any base 2CSP (as used in certain community detection models) and random graphs modeled
on any free/additive/amalgamated product. Such graphs have seen numerous applications
within theoretical computer science, for example the zig-zag product in derandomization
(e.g. [36]) and lifts of 2CSPs in the study of the stochastic block model (e.g [2]). At the end
of this section we derive a corollary of our main theorem with applications to the latter. See
Section 2 for more details and definitions, and see [33] for a thorough description of the kinds
of random graph/2CSP models that can arise from matrix polynomials.

Very briefly, a matrix polynomial p is a small, explicit “recipe” for producing random
n-vertex edge-weighted graphs, each of which “locally resembles” an associated infinite
graph Xp. For example, p3(Y1, Y2, Y3) := Y1 + Y2 + Y3 is a recipe for random (edge-signed)
3-regular n-vertex graphs, and here Xp3 is the infinite 3-regular tree. As another example, if
p333(Z1,1, . . . , Z3,3) denotes the following matrix polynomial –(

0 Z1,1Z∗
1,2 + Z2,1Z∗

2,2 + Z3,1Z∗
3,2 Z1,1Z∗

1,3 + Z2,1Z∗
2,3 + Z3,1Z∗

3,3
Z1,2Z∗

1,1 + Z2,2Z∗
2,1 + Z3,2Z∗

3,1 0 Z1,2Z∗
1,3 + Z2,2Z∗

2,3 + Z3,2Z∗
3,3

Z1,3Z∗
1,1 + Z2,3Z∗

2,1 + Z3,3Z∗
3,1 Z1,3Z∗

1,2 + Z2,3Z∗
2,2 + Z3,3Z∗

3,2 0

)
(1)

– then p333 is a recipe for random (edge-signed) 6-regular n-vertex graphs where every vertex
participates in 3 triangles. In this case, Xp333 is the infinite graph (partly) depicted in
Figure 1. The Bordenave–Collins theorem [10] shows that if A is the adjacency matrix of
a random unsigned n-vertex graph produced from a matrix polynomial p, then whp the
“nontrivial” spectrum of A will be within ϵ (in Hausdorff distance) of the spectrum of Xp. In
the course of derandomizing this theorem, O’Donnell and Wu [33] established that for random
edge-signed graphs, the modifier “nontrivial” should be dropped. As a consequence, in the
signed case one gets λmax(A) ≈ λmax(Xp) up to an additive ϵ, whp; i.e., the high-probability
eigenvalue bound for CSPs derived from p is precisely λmax(Xp). We remark that for simple
enough p there are formulas for λmax(Xp); regarding our two example above, it is 2

√
2 for

p = p3, and it is 5 for p = p333. In particular, if p is a linear matrix polynomial, λmax(Xp)
may be determined numerically with the assistance of a formula of Lehner [26] (see also [22]
for the case of standard random lifts of a fixed base graph).

In this paper we investigate the high-probability SDP value – denote it s∗
p – of a large

random 2CSP (Boolean quadratic optimization problem) produced by a matrix polynomial p.
Critically, our level of generality lets us consider non-regular random graph models, in contrast
to all previous work. Because of this, we see cases in contrast to Remark 1, where (whp) the
SDP value is strictly smaller than the eigenvalue relaxation bound. As a simple example,
for random edge-signed (2, 3)-biregular graphs, the high-probability eigenvalue bound is√

2 − 1 +
√

3 − 1 = 1 +
√

2 ≈ 2.414, but our work establishes that the high-probability SDP
value is

√
13
4 + 2

√
2 − 1

10 ≈ 2.365.
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An essential part of our work is establishing the appropriate notion of the “SDP value”
of an infinite graph Xp, with adjacency operator A∞. While the eigenvalue bound λmax(A∞)
makes sense for the infinite-dimensional operator A∞, the SDP relaxation does not. The
definition Sdp(A∞) = max{⟨ρ,A∞⟩ : ρ ⪰ 0, ρii = 1

n ∀i} does not make sense, since “n”
is ∞. Alternatively, if one tries the normalization ρii = 1, any such ρ will have infinite trace,
and hence ⟨ρ,A∞⟩ may be ∞. Indeed, since the only control we have on A∞’s “size” will be
an operator norm (“∞-norm”) bound, the expression ⟨ρ,A∞⟩ is only guaranteed to make
sense if ρ is restricted to be trace-class (i.e., have finite “1-norm”).

On the other hand, we know that the eigenvalue bound λmax(A∞) is too weak, intuitively
because it does not properly “rebalance” graphs Xp that are not regular/vertex-transitive.
The key to obtaining the correct bound is introducing a new notion, intermediate between
the eigenvalue and SDP bounds, that is appropriate for graphs Xp arising from matrix
polynomial recipes. Although these graphs may be irregular, their definition also allows them
to be viewed as vertex-transitive infinite graphs with r × r matrix edge-weights. In light of
their vertex-transitivity, Remark 1 suggests that a “maximum eigenvalue”-type quantity –
suitably defined for matrix-edge-weighted graphs – might serve as the sharp replacement for
SDP value. We introduce such a quantity, calling it the partitioned SDP bound. Let G be
an n-vertex graph with r × r matrices as edge-weights, and let A be its adjacency matrix,
thought of as a Hermitian n× n matrix whose entries are r × r matrices. We will define

PartSdp(A) = sup{⟨ρ,A⟩ : ρ ⪰ 0, tr(ρ)ii = 1
r }, (2)

where here tr(ρ) refers to the r × r matrix obtained by summing the entries on A’s main
diagonal (themselves r × r matrices), and tr(ρ)ii denotes the scalar in the (i, i)-position
of tr(ρ). This partitioned SDP bound may indeed be regarded as intermediate between
the maximum eigenvalue and the SDP value. On one hand, given a scalar-edge-weighted
n-vertex graph with adjacency matrix A, we may take r = 1 and then it is easily seen that
PartSdp(A) coincides with λmax(A). On the other hand, if we regard A as a 1 × 1 matrix
and take r = n (so that we a have single vertex with a self-loop weighted by all of A), then
PartSdp(A) = Sdp(A).

In the full version, we define PartSdp(A) even for bounded-degree infinite graphs with
r × r edge-weights. Furthermore, it has the following SDP dual:

PartSdp-Dual(A) = inf{λmax(A+ 1n×n ⊗ diag(ζ)) : avg(ζ1, . . . , ζr) = 0}.

We show in the full version that there is no SDP duality gap between PartSdp(A) and
PartSdp-Dual(A), even in the case of infinite graphs. It is precisely the common value
of PartSdp(Xp) and PartSdp-Dual(Xp) that is the high-probability SDP value of large
random 2CSPs produced from p; our main theorem is the following:

▶ Theorem 2. Let p be a matrix polynomial with r× r coefficients. Let A∞ be the adjacency
operator (with r×r entries) of the associated infinite lift Xp, and write s∗

p = PartSdp(A∞) =
PartSdp-Dual(A∞). Then for any ϵ, β > 0 and sufficiently large n, if An is the adjacency
matrix of a random edge-signed n-lift of p, it holds that s∗

p − ϵ ≤ Sdp(An) ≤ s∗
p + ϵ except

with probability at most β.

Note that PartSdp(A∞) is a fixed value only dependent on the polynomial p, a finitary
object.

The upper bound Sdp(An) ≤ PartSdp-Dual(A∞) + ϵ in this theorem can be derived
from the results of [10, 33]. Our main work is to prove the lower bound Sdp(An) ≥
PartSdp(A∞) − ϵ. For this, our approach is inspired by the Gaussian Wave construction

ICALP 2022



97:6 The SDP Value of Random 2CSPs

of [30, 17] for d-regular graphs (in the random lifts model), which can be viewed as constructing
a feasible Sdp(An) solution of value λmax(A∞) − ϵ using a truncated eigenfunction of A∞.
Since local neighborhoods in A∞ look like local neighborhoods in An with high probability,
the eigenfunction can be “pasted” almost everywhere into the graph Gn, which gives an SDP
solution of value near λmax(A∞).

This approach runs into clear obstacles in our setting. Indeed, the raw eigenfunctions are
of no use to us, as the SDP value may be smaller than the spectral relaxation value. Instead,
we first show that there is a ρ0 with only finitely many nonzero entries that achieves the sup
in Equation (2) up to ϵ. This is effectively a finite r×r matrix-edge-weighted graph. We then
show that this ρ0 can (just as in the regular case) whp be “pasted” almost everywhere into
the graph Gn defined by An, which gives an SDP solution of value close to PartSdp(A∞).
The fact that Xp and Gn are regarded as regular tree-like graphs with matrix edge-weights
(rather than as irregular graphs with scalar edges-weights) is crucially used to show that the
“pasted solution” satisfies the finite SDP’s constraints “ρii = 1

n ∀i”.

1.2.1 Application to hypothesis testing in block models
Montanari and Sen’s aforementioned work [30] was motivated in part by the following question:
can the basic SDP value serve as a hypothesis test for distinguishing Erdős-Rényi block models
from random graphs with a planted partition/max-cut structure? Though polynomial-time
hypothesis tests are known to exist whenever the task is information-theoretically possible [31]
(even for the robust version of the problem, using a non-basic SDP [4]), the question of
whether the canonical basic (Goemans–Williamson) SDP value can be used to hypothesis
test is still interesting. Montanari and Sen show that the answer is affirmative for average
degree d = Θ(1) large enough, but for small constant d their question remains open.

Using our results, we resolve the analogue of the question of Montanari and Sen in
the large-planted-cut regime of the random-lift version of the block model, the so-called
“equitable block model” [2]. The n-vertex equitable 2-community block model with internal
degree a and external degree b is the distribution Block(n, a, b) defined as a random n/2-lift
of the 2-vertex graph with b parallel edges and a self-loops on each vertex.

▶ Corollary 3. For any ϵ, β > 0 and sufficiently large n, if Gn ∼ Block(n, a, b) and An is
the adjacency matrix of Gn, then∣∣∣Sdp(−An) − max(b− a, 2

√
a+ b− 1)

∣∣∣ ≤ ϵ

except with probability at most β.

The bound b−a is achieved by the integral cut which partitions the vertices according to their
preimage in the 2-vertex graph. The upper bound Sdp(−An) ≤ max(b− a, 2

√
a+ b− 1) + ϵ

follows from the eigenvalue bound on −An. As above, what is new is our lower bound which
shows that Sdp(−An) ≥ 2

√
a+ b− 1 − ϵ.

In an (a+ b)-regular random graph, the result of Montanari and Sen [30] (see also [3])
implies that Sdp(−An) = 2

√
a+ b− 1 ± ϵ with high probability. Hence, Corollary 3 proves

that the basic (Goemans–Williamson) SDP value is the same in both models and so does not
furnish a hypothesis testing algorithm when b − a < 2

√
a+ b− 1. This is consistent with

the prediction of [2], who conjecture that when b − a < 2
√
a+ b− 1, no polynomial-time

algorithm can robustly (under the addition of random noise) hypothesis test between random
regular graphs and the equitable block model.2 In [2], the authors give a lower bound for a
different SDP relaxation, but they do not characterize the basic SDP value.

2 We remark that in the Erdős-Rényi version of the 2-community block model, the threshold for information-
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2 Preliminaries

To preface the following definitions and concepts, we remark that our “real” interest is in
graphs/2CSPs with real scalar weights. The introduction of matrix edge-weights facilitates
two things: helping us define a wide variety of interesting scalar-weighted graphs via matrix
polynomial lifts; and, facilitating the definition of PartSdp(·), which we use to bound the
SDP relaxation value of the associated 2CSPs. Our use of potentially complex matrices is
also not really essential; we kept them because prior work that we utilize ([10], the tools in
Section 3) is stated in terms of complex matrices. However the reader will not lose anything
by assuming that all Hermitian matrices are in fact symmetric real matrices.

2.1 Matrix-weighted graphs
In the following definitions, we’ll restrict attention to graphs with at-most-countable vertex
sets V and bounded degree. We also often use bra-ket notation, with (|v⟩)v∈V denoting the
standard orthonormal basis for the complex vector space ℓ2(V ).

▶ Definition 4 (Matrix-weighted graph). Fix any r ∈ N+. A matrix-weighted graph will refer
to a directed simple graph G = (V,E) with self-loops allowed, in which each directed edge e
has an associated weight ae ∈ Cr×r. If (v, w) ∈ E =⇒ (w, v) ∈ E and a(w,v) = a∗

(v,w),
we say that G is an undirected matrix-weighted graph. The adjacency matrix of G is the
operator A, acting on ℓ2(V ) ⊗Cr, given by∑

(v,w)∈E

|w⟩⟨v| ⊗ a(v,w).

It can be helpful to think to think of A in matrix form, as a |V | × |V | matrix whose entries
are themselves r × r edge-weight matrices. Note that if G is undirected if and only if A is
self-adjoint, A = A∗.

▶ Definition 5 (Extension of a matrix-weighted adjacency matrix). Given a |V | × |V | matrix A
with r× r entries, we may also view it as a |V |r× |V |r matrix with scalar entries. When we
wish to explicitly call attention to the distinction, we will call the latter matrix the extension
of A, and denote it by Ã.

2.2 Matrix polynomials
▶ Definition 6 (Matrix polynomial). Let Y1, . . . , Yd be formal indeterminates that are their
own inverses, and let Z1, . . . , Ze be formal indeterminates with formal inverses Z∗

1 , . . . , Z
∗
e .

For a fixed r, we define a matrix polynomial to be a formal noncommutative polynomial p
over the indeterminates Y1, . . . , Z

∗
e , with coefficients in Cr×r. In particular, we may write

p =
∑

w

aww,

where the sum is over words w on the alphabet of indeterminates, each aw is in Cr×r, and
only finitely many aw are nonzero. Here we call a word reduced if it has no adjacent YiYi or
ZiZ

∗
i pairs. We will denote the empty word by 1.

theoretic and computational distinguishability coincide. However, in the equitable case, the models
are always information-theoretically distinguishable, since in Block(n, a, b) there is always an integral
solution of value exactly b − a, and this will not occur in the d-regular case with high probability.
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As we will shortly describe, we will always be considering substituting unitary operators
for the Zi’s, and unitary involution operators for the Yi’s. Thus we can think of Z∗

i as both
the inverse and the “adjoint” of indeterminate Zi, and similarly we think of Y ∗

i = Yi.

▶ Definition 7 (Adjoint of a polynomial). Given a matrix polynomial p =
∑

w aww as above,
we define its adjoint to be

p∗ =
∑

w

a∗
ww

∗,

where a∗ is the usual adjoint of a ∈ Cr×r, and w∗ is the adjointed reverse of w. That is,
if w = w1 · · ·wk then w∗ = w∗

k · · ·w∗
1, where 1∗ = 1, Y ∗

i = Yi, and Z∗∗
i = Zi. We say p is

self-adjoint if p∗ = p formally.

Note that in any self-adjoint polynomial, some terms will be self-adjoint, and others will
come in self-adjoint pairs. In this work, we will only be considering self-adjoint polynomials.

2.3 Lifts of matrix polynomials
▶ Definition 8 (n-lift). Given a matrix polynomial over the indeterminates Y1, . . . , Z

∗
e , we

define an n-lift to be a sequence L = (M1, . . . ,Md, P1, . . . , Pe) of n × n matrices, where
each Pi is a signed permutation matrix and each Mi is a signed matching matrix.3 A random
n-lift L = (M1, . . . ,Md,P 1, . . . ,P e) is one where the matrices are chosen independently
and uniformly at random. A random unsigned n-lift L = (M1, . . . ,Md,P 1, . . . ,P e) is one
where the permutation and matching matrices are chosen independently and uniformly at
random, and all the signs are +1.

▶ Definition 9 (Evaluation/substitution of lifts.). Given an n-lift L and a word w, we define
Lw to be the n× n operator obtained by substituting appropriately into w: namely, Yi = Mi,
Zi = Pi, and Z∗

i = P ∗
i for each i (and substituting the empty word with the n× n identity

operator). Given also a matrix polynomial p =
∑

w aww, we define the evaluation of p at L
to be the following operator on Cn ⊗Cr:4

p(L) =
∑

w

Lw ⊗ aw.

▶ Remark 10. Note that each Pi is unitary and each Mi a unitary involution (as promised), so
p∗(L) = p(L)∗. Thus p(L) is a self-adjoint operator whenever p∗ is a self-adjoint polynomial.
In this case we also have that p(L) may be viewed as the adjacency matrix of an undirected
graph on vertex set [n] with r × r edge-weights.

Note that the evaluation p(L) of a matrix polynomial may be viewed as the adjacency
matrix of a undirected graph on [n] with r × r edge-weights; or, its extension may be viewed
as the adjacency matrix of an undirected graph on [n] × [r] with scalar edge-weights. In this
way, each fixed matrix polynomial p, when applied to a random lift, gives rise to a random
(undirected, scalar-weighted) graph model.

3 A signed matching matrix is the adjacency matrix of a perfect matching with ±1 edge-signs. If d > 0
then we must restrict to even n.

4 Note that coefficients aw are written on the left in p, as is conventional, but we take the tensor/Kronecker
product on the right so that the matrix form of p(L) may be more naturally regarded as an n × n
matrix with r × r entries.
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▶ Example 11. A simple example is the matrix polynomial

p(Y1, Y2, Y3) = Y1 + Y2 + Y3.

Here r = 1 and each coefficient is just the scalar 1. This p gives rise to a model of random
edge-signed 3-regular graphs on [n].

By moving to actual matrix coefficients with r > 1, one can get the random (signed)
graph model given by randomly n-lifting any base r-vertex graph H.

▶ Example 12. As a simple example,

p(Z1, Z2, Z3) =
(

0 1
0 0

)
Z1+

(
0 0
1 0

)
Z∗

1 +
(

0 1
0 0

)
Z2+

(
0 0
1 0

)
Z∗

2 +
(

0 1
0 0

)
Z3+

(
0 0
1 0

)
Z∗

3

is the recipe for random 3-regular (edge-signed) (n+ n)-vertex bipartite graphs. The reader
may like to view this as a 2 × 2 matrix of polynomials,

p(Z1, Z2, Z3) =
(

0 Z1 + Z2 + Z3
Z∗

1 + Z∗
2 + Z∗

3 0

)
,

but recall that we actually Kronecker-product the coefficient matrices “on the other side”. So
rather than as a 2 × 2 block-matrix with n × n blocks, we think of the resulting adjacency
matrix as an n× n block-matrix with 2 × 2 blocks; equivalently, an n-vertex graph with 2 × 2
matrix edge-weights.

▶ Example 13. The matrix polynomial p333 mentioned in (1) gives an example of a nonlinear
polynomial with matrix coefficients. Again, we wrote it there as a 3 × 3 matrix of polynomials
for compactness, but for analysis purposes we will view it as a degree-2 polynomial with 3 × 3
coefficients.

▶ Definition 14 (∞-lift). Formally, we extend Definition 8 to the case of n = ∞ as follows.
Let V∞ denote the free product of groups Z⋆d

2 ⋆Z⋆e, with its components generated by g1, . . . , gd,
h1, h

−1
1 , . . . , he, h

−1
e . Thus the elements of V∞ are in one-to-one correspondence with the

reduced words over indeterminates Y1, . . . , Z
∗
e . The generators g1, . . . , gd, h1, . . . , he act as

permutations on V∞ by left-multiplication, with the first d in fact being matchings. We
write σ1, . . . , σd+e for these permutations, and we also identify them with their associated
permutation operators on ℓ2(V∞). Finally, we write L∞ = (σ0, . . . , σd+2e) for “the” ∞-lift
associated to p. (Note that this lift is “unsigned”.)

▶ Definition 15 (Evaluation at the ∞-lift, and Xp.). The evaluation of a matrix polynomial p
at the infinity lift L∞ is now defined just as in Definition 9; the resulting operator p(L∞)
operates on ℓ2(V∞) ⊗Cr. We may think of the result as a matrix-weighted graph on vertex
set V∞, and we will sometimes denote this graph by Xp. When p is understood, we often
write A∞ = p(L∞) for the adjacency operator of Xp, which can be thought of as an infinite
matrix with rows/columns indexed by V∞ and entries from Cr×r, or as its “extension” Ã∞,
an infinite matrix with rows/columns indexed by V∞ × [r] and scalar entries.

▶ Example 16. For the polynomial p = Y1 + · · · + Yd, the corresponding graph Xp is the
infinite (unweighted) d-regular tree.

We may now state a theorem which is essentially the main result (“Theorem 2”) of [10].
The small difference is that our notion of random n-lifts, which includes ±1 signs on
the matchings/permutations, lets one eliminate mention of “trivial” eigenvalues (see [33,
Thms. 1.9, 10.10]).
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▶ Theorem 17. Let p be a self-adjoint matrix polynomial with coefficients from Cr×r on
indeterminates Y1, . . . , Z

∗
e . Then for all ϵ, β > 0 and sufficiently large n, the following holds:

Let An = p(Ln), where Ln is a random n-lift, and let A∞ = p(L∞). Then except with
probability at most β, the spectra spec(An) and spec(A∞) are at Hausdorff distance at most ϵ

2.4 Random lifts as optimization problems
Given a Hermitian (i.e., self-adjoint) matrix A ∈ Cn×n, we are interested in the task
of maximizing x⊤Ax over all Boolean vectors x ∈ {±1}n. (Since A is Hermitian, the
quantity x⊤Ax is always real, so this maximization problem makes sense.) This is the
same as maximizing the homogeneous degree-2 (commutative) polynomial

∑
i,j Aijxixj over

x ∈ {±1}n, and it is also essentially the same task as the Max-Cut problem on (scalar-
)weighted undirected graphs. More precisely, if G is a weighted graph on vertex set [n] with
adjacency matrix A, then G’s maximum cut is indicated by the x ∈ {±1}n that maximizes
x⊤(−A)x. For the sake of scaling we will also include a factor of 1

n in this optimization
problem, leading to the following definition:

▶ Definition 18 (Optimal value). Given a Hermitian matrix A ∈ Cn×n, we define

Opt(A) = sup
x∈{±1}n

{ 1
nx

TAx
}

= sup
x∈
{

± 1√
n

}n

{
xTAx

}
.

(For finite-dimensional A, the sups and infs mentioned in this section are all achieved.)

We remark that

xTAx = tr(xTAx) = tr(xx⊤A) = ⟨xx⊤, A⟩,

where we use the notation ⟨B,C⟩ = tr(BC). Thus we also have

Opt(A) = sup
ρ∈Cutn

{ 1
n ⟨ρ,A⟩

}
,

where Cutn is the “cut polytope”, the convex hull of all matrices of the form xxT for
x ∈ {±1}n. (Since ⟨ρ,A⟩ is linear in ρ, maximizing over the convex hull is the same as
maximizing over the extreme points, which are just those matrices of the form xxT.)

The above optimization problem has a natural relaxation: maximizing 1
nx

TAx over all
unit vectors x. This leads to the following efficiently computable upper bound on Opt(A):

▶ Definition 19 (Eigenvalue bound). Given a Hermitian matrix A ∈ Cn×n, we define the
eigenvalue bound to be

Eig(A) = sup{⟨ρ,A⟩ : ρ ⪰ 0, tr(ρ) = 1},

where here ρ ⪰ 0 denotes that ρ is (Hermitian and) positive semidefinite.

The matrices ρ being optimized over in Eig(A) are known as density matrices; i.e., Eig(A)
is the maximal inner product between A and any density matrix. Note that if ϱ ∈ Cutn,
then ρ = 1

nϱ is a density matrix. Thus, Eig(A) is a relaxation of Opt(A), or in other words,
Opt(A) ≤ Eig(A).

The set of density matrices is convex, and it’s well known that its extreme points are all
the rank-1 density matrices; i.e., those ρ of the form xxT for x ∈ Cn with ∥x∥2

2 = 1. Thus in
Eig(A) it is equivalent to just maximize over these extreme points:

Eig(A) = sup
x∈Cn

∥x∥2
2=1

{
⟨xxT, A⟩

}
= sup

x∈Cn

∥x∥2
2=1

{
xTAx

}
.
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From this formula we see that Eig(A) is also equal to λmax(A), the maximum eigenvalue
of A; hence the terminology “eigenvalue bound”. One may also think of Eig(A) and λmax(A)
as SDP duals of one another.

We now mention another well known, tighter, upper bound on Opt(A).

▶ Definition 20 (Basic SDP bound). Given a Hermitian matrix A ∈ Cn×n, the basic SDP
bound is defined to be

Sdp(A) = sup{⟨ρ,A⟩ : ρ ⪰ 0, ρii = 1
n , ∀i}.

Recall that an n× n matrix ϱ is a correlation matrix [38] if it is PSD and has all diagonal
entries equal to 1. Thus Sdp(A) is equivalently maximizing 1

n ⟨ϱ,A⟩ over all correlation
matrices ϱ. We also note that any cut matrix is a correlation matrix, and any correlation
matrix is a density matrix, hence so

Opt(A) ≤ Sdp(A) ≤ Eig(A).

▶ Definition 21 (Dual SDP bound). The semidefinite dual of Sdp(A) is the following [15]:

Sdp-Dual(A) = inf
ζ∈Rn

avg(ζ1,...,ζn)=0

{λmax(A+ diag(ζ))}.

Despite the fact that the usual “Slater condition” for strong SDP duality fails in this case
(because the set of correlation matrices isn’t full-dimensional), one can still show [34] that
Sdp(A) = Sdp-Dual(A) indeed holds for finite-dimensional A.
▶ Remark 22. In this work we frequently consider matrix-weighted graphs with adjacency
matrices A, thought of as n×n matrices with entries from Cr×r. For such matrices, whenever
we write Opt(A), we mean Opt(Ã) for the nr × nr “extension” matrix Ã (see Definition 5),
and similarly for Eig(A), λmax(A), Sdp(A), Sdp-Dual(A).

As mentioned in Section 1, the eigenvalue bound λmax(A) makes sense when A is the
adjacency matrix of an infinite graph (with bounded degree). However Sdp(A) does not
extend to the infinite case, as the number “n” appearing in its definition is not finite. On the
other hand, we now introduce a new, intermediate, “maximum eigenvalue-like” bound that
is appropriate for matrix-weighted graphs. This is the “partitioned SDP bound” appearing
in the statement of our main Theorem 2. In the following Section 3, we will show that it
generalizes well to the case of infinite graphs.

▶ Definition 23 (Partitioned SDP bound). Let A be an n× n Hermitian matrix with entries
from Cr×r. We define its partitioned SDP bound to be

PartSdp(A) = sup{⟨ρ,A⟩ : ρ ⪰ 0, tr(ρ) ∈ 1
r Corrr},

where:
the matrices ρ are also thought of as n× n matrices with entries from Cr×r;
⟨ρ,A⟩ is interpreted as ⟨ρ̃, Ã⟩;
tr(ρ) denotes the sum of the diagonal entries of ρ, which is an r × r matrix;
Corrr is the set of r × r correlation matrices;
in other words, the final condition is that tr(ρ)ii = 1

r for all i ∈ [r].

▶ Remark 24. As mentioned, the partitioned SDP bound can be viewed as “intermediate”
between the eigenvalue bound and the SDP bound. To explain this, suppose A is an n× n

Hermitian matrix. On one hand, we can regard A as an n × n matrix with 1 × 1 matrix
entries (r = 1); in this viewpoint, PartSdp(A) = Eig(A). On the other hand, we can
regard A as a 1 × 1 matrix with a single n × n matrix entry (r = n); in this viewpoint,
PartSdp(A) = Sdp(A).
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It is easy to see that the partitioned SDP bound indeed has an SDP formulation, and we
now state its SDP dual:

▶ Definition 25. The SDP dual of PartSdp(A) is the following:

PartSdp-Dual(A) = inf
ζ∈Rr

avg(ζ1,...,ζr)=0

{λmax(A+ 1n×n ⊗ diag(ζ))}.

Weak SDP duality, PartSdp(A) ≤ PartSdp-Dual(A), holds as always, but again it is not
obvious that strong SDP duality holds. In fact, not only does strong duality hold, it even
holds in the case of infinite matrices A. This fact is crucial for our work, and proving it the
subject of the upcoming technical section.

3 The infinite SDPs

This technical section is deferred to the full version and we only state some results here. First,
we show that strong duality PartSdp(A) = PartSdp-Dual(A) holds, even for infinite
matrices A with r × r entries. Even in the finite case this is not trivial, as the feasible
region for the SDP PartSdp(A) is not full-dimensional, and hence the Slater condition
ensuring strong duality does not apply. The infinite case involves some additional technical
considerations, needed so that we may eventually apply the strong duality theorem for conic
linear programming of Bonnans and Shapiro [7, Thm. 2.187]. Second, we show that in the
optimization problem PartSdp(A), values arbitrarily close to the optimum can be achieved
by matrices ρ of finite support (i.e., with only finitely many nonzero entries). Indeed (though
we don’t need this fact), these finite-rank ρ need only have rank at most r. This fact is
familiar from the case of r = 1, where the optimizer in the eigenvalue bound Definition 19
is achieved by a ρ of rank 1 (namely |ψ⟩⟨ψ| for any maximum eigenvector |ψ⟩). Finally, we
consolidate all these results into a theorem statement suitable for use with graphs produced
by infinite lifts of matrix polynomials.

3.1 SDP duality for matrix edge-weighted graphs
Let V∞ be a countable set of nodes and let G∞ be a bounded-degree graph on V∞ with
matrix edge-weights from Cr×r. Let A∞ be the adjacency operator for G∞, acting on
ℓ2(V∞) ⊗Cr and assumed self-adjoint; we may think of it as an infinite matrix with rows
and columns indexed by V∞, and with entries from Cr×r.

For any ϵ > 0, there exists:
ζ̂ ∈ Rr with avgj(ζ̂j) = 0;
a finite subset F ⊂ V∞;
a PSD matrix ρ with rows/columns indexed by V∞ and entries from Cr×r, supported on
the rows/columns F , with

tr(ρ)jj = 1
r , j = 1 . . . r;

such that for

Â = Ã∞ + 1V∞ ⊗ diag(ζ̂),

we have

s∗ := λmax(Â) = PartSdp-Dual(A∞) = PartSdp(A∞) ≥ ⟨ρ,A∞⟩ = ⟨ρF , AF ⟩ ≥ s∗ − ϵ,

(3)

where ρF , AF denote ρ,A∞ (respectively) restricted to the rows/columns F .
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4 The SDP value of random matrix polynomial lifts

In this section we prove our main Theorem 2. To that end, let p be any self-adjoint matrix
polynomial over indeterminates Y1, . . . , Yd, Z1, . . . , Z

∗
e with r×r coefficients. Let A∞ = p(L∞)

denote the adjacency operator of the infinite lift Xp, and write s∗ = PartSdp(A∞) =
PartSdp-Dual(A∞) as in Equation (3). Fix any ϵ, β > 0, and let An = p(L) denote the
adjacency matrix of a corresponding n-lift, formed from L = (M1, . . . ,Md,P 1, . . . ,P e).
Our goal is to show that except with probability at most β (assuming n is sufficiently large),

s∗ − ϵ ≤ Sdp(An) = Sdp-Dual(An) ≤ s∗ + ϵ.

Given our setup, the upper bound follows easily from prior work, namely Theorem 17.
Let ζ̂ and Â be as in Section 3.1, and consider the matrix polynomial p′ defined by

p′ = p+ diag(ζ̂)1.

Then on one hand, the ∞-lift of p′ has adjacency operator precisely Â; on the other hand,

A′
n := p′(L) = An + 1n×n ⊗ diag(ζ̂).

Thus Theorem 17 tells us that except with probability β/2 (provided n is large enough), the
spectra spec(A′

n) and spec(Â) are at Hausdorff distance at most ϵ, from which it follows that

λmax(A′
n) ≤ λmax(Â) + ϵ = s∗ + ϵ.

But this indeed proves Sdp-Dual(An) ≤ s∗ + ϵ, because ζ̂ has avg(ζ̂) = 0 and hence is
feasible for Sdp-Dual(An).

It therefore remains to prove Sdp(An) ≥ s∗ − ϵ.

4.1 A lower bound on the basic SDP value
In this section we complete the proof of our main theorem by showing that Sdp(An) ≥ s∗ − ϵ

except with probability at most o(1) = on→∞(1) (which is at most β/2 as needed, provided
n is large enough).

Let F , ρ, ρF , AF be as in Section 3.1, except with that section’s “ϵ” replaced by ϵ/2, so
that ⟨ρF , AF ⟩ ≥ s∗ −ϵ/2. Adding finitely many vertices to F if necessary, we may assume that
it consists of all reduced words over Y1, . . . , Yd, Z1, . . . , Z

∗
e of length at most some finite f0.

We also make the following definition:

▶ Definition 26 (Cycle in a lift). Given an n-lift L, a cycle of length ℓ > 0 is a pair (i, w),
where i ∈ [n] and w is a reduced word of length ℓ such that Lw |i⟩ = ± |i⟩, and ⟨i|Lw′ |i⟩ = 0
(i.e., Lw′ |i⟩ ̸= ± |i⟩) for all proper prefixes w′ of w.

We will employ the following basic random graph result, [10, Lem. 23], stated in our language:

▶ Lemma 27. For the random n-lift L, the expected number of cycles of length ℓ is O(ℓ(d+
2e− 1)ℓ).

Applying this for all ℓ ≤ f := 2f0 + deg(p) and using Markov’s inequality, we conclude:

▶ Corollary 28. Except with probability at most n−.99, the random n-lift L has at most
O(n.99) cycles of length at most f . In this case, we can exclude a set of “bad” vertices
B ⊆ [n] with |B|/n ≤ O(n−.01) = o(1) so that:

∀i ̸∈ B, ∀ reduced words w with 0 < |w| ≤ 2f0 + deg(p), ⟨i|Lw|i⟩ = 0.
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We henceforth fix an outcome L = L (and hence An = An) such that the conclusion of
Corollary 28 holds, accruing our o(1) probability of failure. Under this assumption, we will
show Sdp(An) ≥ s∗ − ϵ/2 − o(1), which is sufficient to complete the proof.

▶ Remark 29. Note that our choice of L depends only on the structure (i.e. the non-zero
entries of An), not the signs. Therefore, we can take the signs in L to be arbitrary; in
particular, L can be unsigned.

Our plan will be to first construct a “provisional” near-feasible PSD solution σ for
Sdp(An), with rows/columns indexed by [n] and with r × r entries, such that:

|⟨σ,An⟩ − ⟨ρF , AF ⟩| ≤ o(1), and hence ⟨σ,An⟩ ≥ s∗ − ϵ/2 − o(1);
for i ̸∈ B, the r × r matrix σii has diagonal entries 1

nr .
Then, we will show how to “fix” σ to a some σ′ that is truly feasible for Sdp(An), while still
having ⟨σ′, An⟩ ≥ ⟨σ,An⟩ − o(1) ≥ s∗ − ϵ/2 − o(1).

4.1.1 Constructing a near-feasible solution
▶ Definition 30. For each i ∈ [n], we define a linear operator Φi : CF → Cn by

Φi =
∑
v∈F

Lv |i⟩⟨v| ,

and also Φ̃i = Φi ⊗ 1r×r. We furthermore define σi to be the n× n matrix with r× r entries
whose extension σ̃i is

σ̃i = Φ̃i · ρ̃F · Φ̃T
i .

▶ Remark 31. σ̃i is PSD, being the conjugation by Φ̃i of the PSD operator ρ̃F .

▶ Proposition 32. If i ̸∈ B, then Φ̃T
i ÃnΦ̃i = ÃF .

Proof. Thinking of Φ̃T
i ÃnΦ̃i as an F × F matrix of r × r matrices, it follows that its (u, v)

entry is given by∑
term aww in p

⟨i|Lv∗wu|i⟩ aw.

On the other hand, the (u, v) entry of AF is by definition∑
term aww in p

1[v∗wu = 1]aw,

where “v∗wu = 1” denotes that the reduced form of word v∗wu is the empty word. We
therefore have equality for all u, v provided ⟨i|Lv∗wu|i⟩ = 0 whenever v∗wu ̸= ∅. But
Corollary 28 tells us this indeed holds for i ̸∈ B, because |v∗wu| ≤ 2f0 + deg(p). ◀

▶ Corollary 33. For i ̸∈ B we have ⟨σi, An⟩ = ⟨ρF , AF ⟩.

Proof. When i ̸∈ B,

⟨σi, An⟩ = tr(σ̃iÃn) = tr(Φ̃iρ̃F Φ̃T
i Ãn) = tr(ρ̃F Φ̃T

i ÃnΦ̃i) = tr(ρ̃F ÃF ) = ⟨ρF , AF ⟩,

where the last equality used Proposition 32 ◀
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We now define our “provisional” SDP solution σ via

σ = avg
i∈[n]

{σi};

this is indeed PSD, being the average of PSD operators. Using Corollary 33, |B|/n = o(1),
and the fact that |⟨σi, An⟩| ≤ O(1) for every i (since σi only has O(1) nonzero entries, each
bounded in magnitude by O(1)), we conclude:

▶ Proposition 34. |⟨σ,An⟩ − ⟨ρF , AF ⟩| ≤ o(1), and hence ⟨σ,An⟩ ≥ s∗ − ϵ/2 − o(1).

Now similar to Proposition 35 we have the following:

▶ Proposition 35. If j ̸∈ B, then the (j, j) entry of σ is 1
n tr(ρF ) (and hence is an r × r

matrix with diagonal entries equal to 1
nr ).

Proof. By definition, the (j, j) entry of σ is

= avg
i∈[n]

∑
u,v∈F

⟨j|Lu|i⟩ ⟨u|ρF |v⟩ ⟨i|Lv∗
|j⟩

= 1
n

∑
u,v∈F

⟨u|ρF |v⟩ ·
∑
i∈[n]

⟨j|Lu|i⟩ ⟨i|Lv∗
|j⟩

= 1
n

∑
u,v∈F

⟨u|ρF |v⟩ · ⟨j|Luv∗
|j⟩ (since

∑
i |i⟩⟨i| = 1)

where we are writing ⟨u|ρF |v⟩ for the r × r matrix at the (u, v) entry of ρF . Now when
j ̸∈ B, we have that ⟨j|Lvw∗ |j⟩ = 1[vw∗ = ∅] by Corollary 28, since |vw∗| ≤ 2f0. Thus all
summands above drop out, except for the ones with u = v; this indeed gives 1

n tr(ρF ). ◀

4.1.2 Fixing σ

Finally, we slightly fix σ to make it truly feasible for Sdp(A). Let σ′ be the n× n matrix,
with entries from Cr×r, defined as follows:

σ′
ij =


σij if i, j ̸∈ B,
1

nr1r×r if i = j ∈ B,
0 else.

This σ′ is easily seen to be PSD, being a principal submatrix of the PSD matrix σ, direct-
summed with the PSD matrix 1

nr1r×r. As well, the nr × nr extension matrix σ̃′ has all
diagonal entries equal to 1

nr , by Proposition 35. Thus σ̃′ is feasible for Sdp(An) = Sdp(Ãn),
and it remains for us to show that

⟨σ,An⟩ − ⟨σ′, An⟩ ≤ o(1); (4)

this will imply ⟨σ′, An⟩ ≥ s∗ − ϵ/2 − o(1) by Proposition 34, and hence Sdp(An) ≥ s∗ − ϵ

(for sufficiently large n), as desired.
We have

⟨σ,An⟩ − ⟨σ′, An⟩ = ⟨σ − σ′, An⟩ ≤ ∥σ̃ − σ̃′∥1∥Ãn∥∞.

Next,

∥Ãn∥∞ = ∥p(L)∥∞ = ∥
∑

w

Lw ⊗ aw∥∞ ≤
∑

w

∥Lw∥∞ · ∥aw∥∞ =
∑

w

∥aw∥∞ ≤ O(1).

ICALP 2022
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Here the final equality is because each Lw is a signed permutation matrix (hence has
∥Lw∥∞ = 1), and the final inequality is because p has only constantly many coefficients, of
constant size. Thus to establish Inequality (4), it remains to show ∥σ̃ − σ̃′∥1 ≤ o(1).

Define the orthogonal projection matrices ΠB =
∑

i∈B |i⟩⟨i| ⊗ 1r×r and similarly ΠB,
where B = [n] \B. Observe that

σ′ = 1
nr ΠB + ΠBσΠB ,

and thus

∥σ̃ − σ̃′∥1 = ∥σ̃ − Π̃Bσ̃Π̃B − 1
nr Π̃B∥1 ≤ ∥σ̃ − Π̃Bσ̃Π̃B∥1 + 1

nr ∥Π̃B∥1.

But 1
nr ∥Π̃B∥1 = |B|

n = o(1), so it remains to show

∥σ̃ − Π̃Bσ̃Π̃B∥1 ≤ o(1).

Note that σ̃ ∈ Cnr×nr is nearly a density matrix: it is PSD, and all but a 1 − o(1) fraction
of its diagonal entries are 1

nr , with the remaining ones being bounded in magnitude by O( 1
n ).

Thus tr(σ̃) = 1 ± o(1), and we can therefore scale σ̃ by a 1 ± o(1) factor to produce a true
density matrix σ̂. Clearly it now suffices to show

∥σ̂ − Π̃Bσ̂Π̃B∥1 ≤ o(1).

But this follows from Winter’s Gentle Measurement Lemma [39, Lem. 9], which bounds the
quantity on the left by

√
8λ, where λ = 1 − tr(σ̂Π̃B) = o(1). This completes the proof.

5 Application to block models

In this section we will describe the application of our results to the hypothesis testing
problem in block models; that is, using the (Goemans–Williamson) SDP value of the negated
adjacency matrix Sdp(−A) to distinguish between uniformly regular d-regular graphs and
the “equitable stochastic block model” described by Bandeira et al and others [32, 5, 2].

In the n-vertex equitable 2-community block model, the n vertices are divided into two
groups, and each vertex has a edges to vertices of the same group, and b edges to vertices
of the other group (and a+ b = d). A random graph of this form is generated by taking a
random unsigned n/2-lift of the 2-vertex graph which has b parallel edges, and a self-loops
on each vertex. The corresponding polynomial which describes the lift is

p(Y1, . . . , Y2a, Z1, . . . , Zb) =
(

1 0
0 0

)( a∑
i=1

Yi

)
+
(

0 0
0 1

)( 2a∑
i=a+1

Yi

)

+
(

0 1
0 0

)( b∑
i=1

Zi

)
+
(

0 0
1 0

)( a∑
i=1

Z∗
i

)
. (5)

By evaluating p at a random unsigned n/2-lift L = (M1, . . . ,M2a,P 1, . . . ,P b) we obtain
(the adjacency matrix of) a random graph An in the n-vertex equitable 2-community block
model. We note that the infinite lift p(L∞) is (multiple copies of) the infinite d-regular graph;
thus in particular we have spec(A∞) = [−2

√
d− 1, 2

√
d− 1].

To upper bound Sdp(−An), we use the eigenvalue bound Sdp(−An) ≤ λmax(−An). In
contrast to the previous sections of our paper, the finite random lift here is unsigned, hence
we need to take some care with the “trivial eigenvalues” of the resulting lift.
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▶ Definition 36 (Trivial eigenvalues). Given a matrix polynomial p with coefficients from Cr×r,
the associated trivial eigenvalues are simply the (multiset of) eigenvalues of p(1, . . . , 1) ∈
Cr×r.

Note that the trivial eigenvalues of our polynomial in Equation (5) are those of
(
a b

b a

)
,

namely a + b and a − b. In the case of unsigned matrix polynomial lifts, Bordenave and
Collins [10] show the following:

▶ Theorem 37. Let p be a self-adjoint matrix polynomial with coefficients from Cr×r on
indeterminates Y1, . . . , Z

∗
e . Write T for the trivial eigenvalues of p. Then for all ϵ, β > 0 and

sufficiently large n, the following holds:
Let An = p(Ln), where Ln is a random unsigned n-lift, and let A∞ = p(L∞). Then

except with probability at most β, the spectra spec(An,⊥) \ T and spec(A∞) are at Hausdorff
distance at most ϵ.

Applying this to the equitable stochastic block model, it means that the nontrivial
eigenvalues of graphs in the model are between −2

√
d− 1 − ϵ and 2

√
d− 1 + ϵ with high

probability (i.e., the same range as for random d-regular graphs). Recalling that the
trivial eigenvalues of −An are −(a+ b) and −(a− b), we indeed get λmax(An) ≤ max(b−
a, 2

√
a+ b− 1) + ϵ with high probability, implying the upper bound in Corollary 3

As for the lower bound in Corollary 3, we refer to Remark 29 to see that the proof in
Section 4.1 holds regardless of signs on the lift used to construct the SDP solution. Thus
Section 4.1 also establishes a lower bound of Sdp(−An) ≥ 2

√
a+ b− 1 − ϵ. Meanwhile, in

the Block(n, a, b) we can always take an integral solution that is the ±1-indicator for the
two communities in the partition; this will have value exactly b− a and hence we also always
have Sdp(−An) ≥ b− a. This completes the proof of the lower bound in Corollary 3.
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Abstract
For a permutation π : [k] → [k], a function f : [n] → R contains a π-appearance if there exists
1 ≤ i1 < i2 < · · · < ik ≤ n such that for all s, t ∈ [k], f(is) < f(it) if and only if π(s) < π(t). The
function is π-free if it has no π-appearances. In this paper, we investigate the problem of testing
whether an input function f is π-free or whether f differs on at least εn values from every π-free
function. This is a generalization of the well-studied monotonicity testing and was first studied
by Newman, Rabinovich, Rajendraprasad and Sohler [28]. We show that for all constants k ∈ N,
ε ∈ (0, 1), and permutation π : [k] → [k], there is a one-sided error ε-testing algorithm for π-freeness
of functions f : [n] → R that makes Õ(no(1)) queries. We improve significantly upon the previous
best upper bound O(n1−1/(k−1)) by Ben-Eliezer and Canonne [7]. Our algorithm is adaptive, while
the earlier best upper bound is known to be tight for nonadaptive algorithms.
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1 Introduction

Given a permutation π : [k] → [k], a function f : [n] → R contains a π-appearance if there
exists 1 ≤ i1 < i2 < · · · < ik ≤ n such that for all s, t ∈ [k] it holds that f(is) < f(it) if
and only if π(s) < π(t). In other words, the function restricted to the indices {i1, . . . , ik}
respects the ordering in π. The function is π-free if it has no π-appearance. For instance, the
set of all real-valued monotone non-decreasing functions over [n] is (2, 1)-free. The notion
of π-freeness is well-studied in combinatorics, where the famous Stanley-Wilf conjecture
about the bound on the number of π-free permutations f : [n] → [n] has spawned a lot of
work [13, 14, 5, 25, 3], ultimately culminating in a proof by Marcus and Tardos [26]. The
problem of designing algorithms to determine whether a given permutation f : [n] → [n]
is π-free is an active area of research [2, 1, 10], with linear time algorithms for constant k

[23, 20]. Apart from the theoretical interest, practical motivations to study π-freeness include
the study of motifs and patterns in time series analysis [11, 32, 24].

In this paper, we study property testing of π-freeness, first studied by Newman, Rabinovich,
Rajendraprasad and Sohler [28]. Specifically, given ε ∈ (0, 1), an ε-testing algorithm for
π-freeness accepts an input function f that is π-free, and rejects if at least εn values of
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f need to be changed for it to become π-free1. This problem is a generalization of the
well-studied monotonicity testing on the line ((2, 1)-freeness), which was one of the first works
in combinatorial property testing, and is still being studied actively [17, 18, 12, 15, 6, 16, 31].

Newman, Rabinovich, Rajendraprasad and Sohler [28] showed that for a general permuta-
tion π of length k, the problem of π-freeness can be ε-tested using a nonadaptive2 algorithm of
query complexity Ok,ε(n1−1/k).3 Additionally, they showed that, for nonadaptive algorithms,
one cannot obtain a significant improvement on this upper bound for k ≥ 4. In a subsequent
work, Ben-Eliezer and Canonne [7] improved this upper bound to Ok,ε(n1−1/(k−1)), which
they showed to be tight for nonadaptive algorithms. For monotone permutations π of
length k, namely, either (1, 2, . . . , k) or (k, k − 1, . . . , 1), [28] presented an algorithm with
query complexity (ε−1 log n)O(k2) to ε-test π-freeness. This was improved, in a sequence of
works [8, 9], to Ok,ε(log n), which is optimal for constant ε even for the special case of testing
(2, 1)-freeness [19].

Despite the extensive study and advances in testing freeness of monotone permutations,
improving the complexity of testing freeness of arbitrary permutations has remained open all
this while. For arbitrary permutations of length at most 3, [28] gave an adaptive algorithm
for testing freeness with query complexity (ε−1 log n)O(1). However, the case of general k > 3
has remained elusive. In particular, the techniques of [28] for k = 3 do not seem to generalize
even for k = 4.

As remarked above, optimal nonadaptive algorithms are known for any k [7], but, their
complexity tends to be linear in the input length as k grows. For the special case of (2, 1)-
freeness, it is well-known that adaptivity does not help at all in improving the complexity
of testing [18, 19]. Adaptivity is known to help somewhat for the case of testing freeness
of monotone permutations of length k, where, every nonadaptive algorithm has query
complexity Ω((log n)log k) [8], and the Ok,ε(log n)-query algorithm of Ben-Eliezer, Letzter,
and Waingarten [9] is adaptive. Adaptivity significantly helps in testing freeness of arbitrary
permutations of length 3 as shown by [28] and [7].

Our results. In this work, we give adaptive ε-testing algorithms for π-freeness of permuta-
tions π of arbitrary constant length k with complexity Õk,ε(no(1)). Hence, testing π-freeness
has quite efficient sublinear algorithms even for relatively large patterns. Our result shows a
strong separation between adaptive and nonadaptive algorithms for testing pattern freeness.

▶ Theorem 1.1. Let ε ∈ (0, 1), k ∈ N and π : [k] → [k] be a permutation. There exists an
ε-tester for π-freeness of functions f : [n] → R with query complexity Õk,ε(nO(1/ log log log n)).

Discussion of our techniques. The algorithm that we design has one-sided error and rejects
only if it finds a π-appearance in the input function f : [n] → R. In the following paragraphs,
we present some ideas behind a Õ(

√
n)-query algorithm for detecting a π-appearance in a

function f that is ε-far from π-free, for a permutation π of length 4. The case of length-4
permutations is not much different from the general case (where, we additionally recurse
on problems of smaller length patterns). The Õ(

√
n) queries algorithm, however, is much

1 Algorithms in this area are typically randomized, and the decisions to accept and reject are with high
constant probability. See [33, 22] for definitions of property testing.

2 An algorithm whose queries do not depend on the answers to previous queries is a nonadaptive algorithm.
It is adaptive otherwise.

3 Throughout this work, we are interested in the parameter regime of constant ε ∈ (0, 1) and k. The
notation Ok,ε(·) hides a factor that is an arbitrary function of these parameters.
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simpler than the general one, but it outlines many of the ideas involved in the latter one.
A more detailed description appears in Section 3. The formal description of the general
algorithm is given in Section 4. The correctness proof and query complexity analysis of the
general algorithm can be found in the full version [30].

For a parameter ε ∈ (0, 1), a function f is ε-far from π-free if at least an εn of its values
needs to be changed in order to make it π-free. In other words, the Hamming distance of
f from the closest π-free real-valued function over [n] is at least εn. A folklore fact is that
the Hamming distance and the deletion distance of f to π-freeness are equal, where the
deletion distance of f to π-freeness is the cardinality of the smallest set S ⊆ [n] such that f

restricted to [n] \ S is π-free. By virtue of this equality, a function that is ε-far from π-free
has a matching of π-appearances of cardinality at least εn/4. This observation facilitates our
algorithm and all previous algorithms on testing π-freeness, including monotonicity testers.

The basic ingredient in our algorithms is the use of a natural representation of f : [n] → R
by a Boolean function over a grid [n] × R(f), where R(f) denotes the range of f . Specifically,
we visualize the function as a grid of n points in R2, such that for each i ∈ [n], the point
(i, f(i)) is a marked point of the grid. We denote this grid with marked points as Gn.
This view has been useful in the design of approximation algorithms for the related and
fundamental problem of estimating the length of Longest Increasing Subsequence (LIS) in a
real-valued array [35, 34, 27, 29]. Adopting this view, for any permutation π, a π-appearance
at places (i1, . . . , ik) in f corresponds naturally to a k-tuple of points {ij , f(ij)}, j = 1 . . . k

in Gn, for which their relative order (in Gn) forms a π-appearance. The converse is also true:
every π-appearance in the Boolean grid Gn corresponds to a π-appearance in f .

We note that the grid Gn is neither known to nor directly accessible by the algorithm,
and in particular, R(f) is not assumed to be known. A main first step in our algorithm is to
approximate the grid Gn by a coarser m × m grid of boxes, Gm,m, for m << n, a parameter
that will determine the query complexity. The grid Gm,m is defined as follows. Suppose
that we have a partition of R(f) into m disjoint contiguous intervals of increasing values,
referred here as “layers”, I1, . . . , Im, and let S1, . . . , Sm be a partition of [n] into m contiguous
intervals of equal length, referred to as “stripes”. These two partitions decompose Gn and
the f -points in it into m2 boxes which form the grid of cells Gm,m. The (i, j)-th cell of this
grid is the Cartesian product Si × Ij , and is denoted box(Si, Ij). We view the non-empty
cells in Gm,m as a coarse approximation of Gn (and of the input function, equivalently). The
grid Gm,m has a natural order on its boxes (viewed as points in [m] × [m]).

While Gm,m is also not directly accessible to the algorithm, it can be well-approximated
very efficiently. Fixing m, we use sampling by Õ(m) queries to identify and mark the boxes
in Gm,m that contain a non-negligible density of points of Gn. This provides a good enough
approximation of the grid Gm,m. For the rest of this top-level explanation, assume that we
have fixed m << n, and we know Gm,m; that is, we know the the number of points of Gn

belonging to each box in Gm,m, but not necessarily the points themselves.
If we find k nonempty boxes in Gm,m that form a π-appearance when viewed as points

in the [m] × [m] grid, then Gn (and hence f) contains a π-appearance for any set of k

points that is formed by selecting one point from each of the corresponding boxes. See
Figure 1(A) for such a situation, for π = (3, 2, 1, 4). We first detect such π-appearances by
our knowledge of Gm,m. However, the converse is not true: it could be that Gn contains
many π-appearances, where the corresponding points, called “legs”, are in boxes that share
layers or stripes, and hence do not form π-appearances in Gm,m. See e.g., Figure 1(B) for
such an appearance for π = (3, 2, 1, 4). Thus, assuming that the function is far from being
π-free, and no π-appearances are detected in Gm,m, there must be many π-appearances in
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which some legs share a layer or a stripe in Gm,m. In this case, the seminal result of Marcus
and Tardos [26], implies that only O(m) of the boxes in Gm,m are non-empty. An averaging
argument implies that if f is ε-far from being π-free, then after deleting layers or stripes
in Gm,m with ω(1) dense boxes, we are still left with a partial function (on the undeleted
points) that is ε′-far from being π-free, for a large enough ε′.

Now, to be specific, consider π = (3, 2, 1, 4) although all the following ideas work for any
specific 4-length permutation. Any π-appearance has its four legs spread over at most 4
marked boxes. This implies that there are only constantly many non-isomorphic ways of
arranging the marked boxes containing any particular π-appearance (in terms of the order
relation among the marked boxes, and the way the legs of the π-appearance are included
in them). These constantly many ways are called “configurations” in the sequel. Thus any
π-appearance is consistent with a certain configuration. Additionally, in case multiple points
in a π-appearance share some marked boxes, this appearance induces the appearances of
permutations of length smaller than 4 in each box (which are sub-permutations ν of π). If a
constant fraction of the π-appearances are spread across multiple marked boxes, there will
be many such ν-appearances in the marked boxes in the coarse grid. Hence, one phase of
our algorithm will run tests for ν-appearances for smaller patterns ν (which can be done
in polylog n queries using known testers for patterns of length at most 3) on each marked
box, and combine these ν-appearances to detect a π-appearance, if any. This phase, while
seemingly simple will require extra care, as combining sub-patterns appearances into a global
π-appearance is not always possible. This is a major issue in the general case for k > 4.

The simpler case is when there is a constant fraction of π-appearances such that all
4 points of each such appearance belong to a single marked box. This can be solved by
randomly sampling a few marked boxes and querying all the points in them to see if there
are any π-appearances. A special treatment has to be made in the case a constant fraction
of the π-appearances have their legs belonging to the same layer or the same stripe. But this
will be an easy extension of the “one-box” case.

To obtain the desired query complexity, consider first setting m = Õ(
√

n). Getting a good
enough estimate of Gm,m as described above take Õ(m) = Õ(

√
n) queries. Then, testing

each box for ν-freeness, for smaller permutations ν takes polylog n per test, but since this is
done for all marked boxes, this step also takes Õ(m) = Õ(

√
n). Finally, in the last simpler

case, we may just query all indices in a sampled box that contains at most n/m =
√

n indices,
by our setting of m. This results in a Õ(

√
n)-query tester for π-freeness.

To obtain a better complexity, we reduce the value of m, and, in the last step, we randomly
sample a few marked boxes and run the algorithm recursively. This is so, since, in the last
step, we are in the case that for a constant fraction of the π-appearances, all four legs of
each π-appearance belong to a single marked box (or a constant number of marked boxes
sharing a layer or stripe). The depth of recursion depends monotonically on n/m and the
larger it is the smaller is the query complexity. The bound we describe in this article is
nO(1/ log log n log n) which is due to the exponential deterioration of the distance parameter ε

in each recursive call. Our algorithm for permutations of length k > 4 uses, in addition to
the self-recursion, a recursion on k too.

Finally, even though it was not explicitly mentioned, we call ν-freeness or π-freeness
algorithms on marked boxes (or a collection of constantly many marked boxes sharing a
layer or stripe) and not the entire grid. Since we do not know which points belong to the
marked boxes, but only know that their density is significant, we can access points in them
only via sampling and treating points that fall outside the desired box as being erased.
This necessitates the use of erasure-resilient testers [16]. Such testers are known for all
permutation patterns of length at most 3 [16, 29, 28]. In addition, the basic tester we design
is also erasure-resilient, which makes it possible for it to be called recursively.
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Some additional complications we had to overcome. In the recursive algorithm for k-
length permutation freeness, k ≥ 4, we need to find ν-appearances that are restricted to
appear in specific configurations, for smaller length permutations ν. To exemplify this notion,
consider testing ν = (1, 3, 2)-freeness. In the usual (unrestricted) case, f : [n] 7→ R has a
ν-appearance if the values at any three indices have a ν-consistent order. In a restricted case,
we may ask ourselves whether f is free of ν-appearances where the indices corresponding to
the 1, 3-legs of a ν-appearance are at most n/2 (that is in the first half of [n]), while the index
corresponding to the 2-leg is larger than n/2. This latter property seems at least as hard to
test as the unrestricted one. In particular, for the ν-appearance as described above, it could
be that while f is far from being ν-free in the usual sense, it is still free of having restricted
ν-appearances. In our algorithm, we need to test (at lower recursion levels) freeness from
such restricted appearances. The extra restriction is discussed in Section 3 and Section 4.

Open questions. The major open question is to determine the exact (asymptotic) complexity
of testing π-freeness of arbitrary permutations π : [k] → [k], k ≥ 3. While the gaps for k = 3
are relatively small (within polylog n range), the gaps are yet much larger for k ≥ 4. We do
not have any reason to think that the upper bound obtained in this draft is tight. We did
not try to optimize the exponent of n in the Õ(no(1)) expression, but the current methods
do not seem to bring down the query complexity to polylog n. We conjecture, however, that
the query complexity is polylog n for all constant k. Another open question is whether the
complexity of a two-sided error testing might be lower than of one-sided error testing.

Finally, Newman and Varma [29] used lower bounds on testing pattern freeness of
monotone patterns of length k ≥ 3 (for nonadaptive algorithms), to obtain lower bounds
on the query complexity of nonadaptive algorithms for LIS estimation. Proving any lower
bound better than Ω(log n) for adaptively testing freeness, for arbitrary permutations of
length k for k ≥ 3, may translate in a similar way to lower bounds on adaptive algorithms
for LIS estimation.

Other definitions of π-freeness. In the definition of π-freeness, we required strict inequalities
on function values to have an occurrence of the pattern. A natural variant is to allow weak
inequalities, that is – for a set indices 1 ≤ i1 < i2 · · · < ik ≤ n a weak-π appearance is
when for all s, t ∈ [k] it holds that f(is) ≤ f(it) if and only if π(s) < π(t). Such a relaxed
requirement would mean that having a collection of k or more equal values is already a
π-appearance for any pattern π. For monotone patterns of length k, the deletion distance
equals to the Hamming distance, for any k, for this relaxed definition as well. We do not know
if this is true for larger k for non-monotone patterns in general, although we suspect that the
Hamming distance is never larger than the deletion distance by more than a constant factor.
Proving this will be enough to make our results true for testing freeness of any constant
size forbidden permutation, even with the relaxed definition. We show that the Hamming
distance is equal to the deletion distance for patterns of length at most 4. Hence, Theorem 1.1
also holds for weak-π-freeness for k ≤ 4.

Another variant that may seem related is when the forbidden order pattern is not
necessarily a permutation (that is, arbitrary function from [k] to [k] which is not one-
to-one). For example, for the 4-pattern α = (1, 2, 3, 1), an α-appearance in f at indices
i1 < i2 < i3 < i4 is when f(i1) < f(i2) < f(i3) and f(i4) = f(i1), as dictated by the order in
α. For testing freeness of such patterns, Ω(

√
n) adaptive lower bounds exist (due to a simple

probabilistic argument) even for the very simple case of (1, 1)-freeness, which corresponds to
the property of being a one-to-one function.
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An interesting point to mention, in this context, is that for testing freeness of forbidden
permutations, a major tool that we use is the Marcus-Tardos bound. Namely, that the
number of 1’s in an m × m Boolean matrix that does not contain a specific permutation
matrix of order k is O(m). For non-permutation patterns, similar bounds are not true in
general anymore, but do hold in many cases (or hold in a weak sense, e.g., only slightly more
than linear). In such cases, the Marcus-Tardos bound could have allowed relatively efficient
testing. However, the lower bounds hinted above for the (1, 1)-pattern makes the testing
problem completely different from that of testing forbidden permutation patterns.

Another area where we have significant gaps in our knowledge is about testing for pattern
freeness for functions of bounded or restricted range (for the special case of (2, 1)-freeness,
such a study was initiated by Pallavoor, Raskhodnikova and Varma [31] and followed upon
by others [6, 29]). We do know that in the very extreme case, that is, for functions from the
line [n] to a constant-sized range, pattern freeness is testable in constant time even for much
more general class of forbidden patterns [4].

Lastly, if we restrict our attention to functions f : [n] → [n] that are themselves
permutations, Fox and Wei [21] argued that for some special types of distance measures such
as the rectangular-distance and Kendall’s tau distance, testing π-freeness can be done in
constant query complexity. Testing π-freeness w.r.t. the Hamming or deletion distances is
very different, and still remains open for this setting.

Organization. Section 2 contains the notation, important definitions, and a discussion of
some key concepts related to testing π-freeness. Section 3 contains a high level overview of
an Õ(

√
n)-query algorithm for patterns of length 4. The formal description of our π-freeness

tester for permutations π of length k ≥ 4 and the proof ideas for a special case appear
in Section 4. All the missing proofs can be found in the full version [30].

2 Preliminaries and discussion

For a function f : [n] → R, we denote by R(f) the image of f . We often refer to the elements
of the domain [n] as indices, and the elements of R(f) as values. For S ⊆ [n], f |S denotes
the restriction of f to S. Throughout, n will denote the domain size of the function f .

We often refer to events in a probability space. For ease of representation, we will say
that an event E occurs with high probability, denoted “w.h.p.”, if Pr(E) > 1 − n− log n, to
avoid specifying accurate constants.

Let Sk denote the set of all permutations of length k. We view π = (a1, . . . , ak) ∈ Sk as
a function (and not as a cyclus), that is, where π(i) = ai, i ∈ [k]. We refer to ai as the ith
value in π, and as the ai-leg of π. Thus e.g., for π = (4, 1, 2, 3), the first value is 4, and the
third is 2, while the 4-leg of π is at the first place and its 1-leg is at the second place. We
often refer to π ∈ Sk as a k-pattern.

2.1 Deletion distance vs. Hamming distance
Let f : [n] → R. The deletion distance of f from being π-free is Ddistπ(f) = min{|S| : S ⊆
[n], f |[n]\S is π-free}. Namely, it is the cardinality of the smallest set S ⊆ [n] that intersects
each π-appearance in f . The Hamming distance of f from being π-free, Hdistπ(f) is the
minimum of dist(f, f ′) = |{i : i ∈ [n], f(i) ̸= f(i′)}| over all functions f ′ : [n] → R that
are π-free. For 0 ≤ ε < 1 we say that f is ε-far from π-freeness in deletion distance, or
Hamming distance, if distπ(f) ≥ εn, and otherwise we say that f is ε-close to π-freeness,
where distπ(f) is the corresponding distance.
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▷ Claim 2.1. Ddistπ(f) = Hdistπ(f)

Claim 2.1 is extremely important for testing π-freeness, and is what gives rise to all
testers of monotonicity, as well as π-freeness that are known. This is due to the fact that the
tests are really designed for the deletion distance, rather then the Hamming distance. The
folklore observation made in Claim 2.2 facilitates such tests, and Claim 2.1 makes the tests
work also for the Hamming distance. Due to Claim 2.1, we say that a function f is ε-far
from π-free without specifying the distance measure.

Let π ∈ Sk and f : [n] → R. A matching of π-appearances in f is a collection of
π-appearances that are pairwise disjoint as sets of indices in [n]. The following claim is
folklore and immediate from the fact that the size of a minimum vertex cover of a k-uniform
hypergraph is at most k times the cardinality of a maximal matching.

▷ Claim 2.2. Let π ∈ Sk. If f : [n] → R is ε-far from being π-free, then there exists a
matching of π-tuples of size at least εn/k.

All our algorithms have one-sided error, i.e., they always accept functions that are π-free.
For functions that are far from being π-free, using Claim 2.2, our algorithms aim to detect
some π-appearance, providing a witness for the function to not be π-free. Hence, in the
description below, and throughout the analysis of the algorithms, the input function is
assumed to be ε-far from π-free.

2.2 Viewing a function as a grid of points
Let f : [n] → R. We view f as points in an n × |R(f)| grid Gn. The horizontal axis of Gn

is labeled with the indices in [n]. The vertical axis of Gn represents the image R(f) and
is labeled with the distinct values in R(f) in increasing order, r1 < r2 < . . . < rn′ , where
|R(f)| = n′ ≤ n. We refer to an index-value pair (i, f(i)), i ∈ [n] in the grid as a point. The
grid has n points, to which our algorithms do not have direct access. In particular, we do
not assume that R(f) is known. The function is one-to-one if |R(f)| = n.

Note that if M is a matching of π-appearances in f , then M defines a corresponding
matching of π-appearances in Gn. We will always consider this alternative view, where the
matching M is a set of disjoint π-appearances in the grid Gn.

2.2.1 Coarse grid of boxes
For a pair of subsets (S, I), where S ⊆ [n] and I ⊆ R(f), we denote by box(S, I), the subgrid
S × I of Gn with the set of points in Gn (corresponding to f) in this subgrid. In most cases,
S and I will be intervals in [n] and R(f), respectively, and hence the name box. The length
of box(S, I) is defined to be |S|. A box is nonempty if it contains at least one point and is
empty otherwise.

Consider an arbitrary collection of pairwise disjoint contiguous value intervals L =
{I1, . . . Im}, such that I ⊆ ∪i∈[m]Ii. The set L naturally defines a partition of the points
in box(S, I) into m horizontal layers, Li = {(j, f(j)) : j ∈ S, f(j) ∈ Ii}, i ∈ [m]. A layer is
multi-valued if it has two points with different values. It is said to be single-valued otherwise.

Assume that, in addition to a set of layers L, we have a partition of S into disjoint intervals
S = ∪m

1 Si where Si = [ai, bi], and bi < ai+1, i = 1, . . . m−1, then S = (S1, . . . Sm) partitions
box(S, I) and the points in it, into m vertical stripes {St(S)}S∈S where St(S) = box(S, I)
contains the points {(i, f(i)) : i ∈ S}. The layering L together with the stripes S partition
box(S, I) into a coarse grid Gm,m of boxes {box(Si, Ij)}i,j∈[m] that is isomorphic to the

ICALP 2022



98:8 Strongly Sublinear Algorithms for Testing Pattern Freeness

3

2

1

4

3
2

1

4

3
2

1

4

4

2

1

3

1

4

3
2

3
2

1

4

3

2

1

4

1

4

3
2

3

2

1

4

(A) (B) (C) (D) (E)

(F) (G) (H) (I)

Figure 1 Each rectangle represents a different grid Gn, where the green shaded boxes correspond
to some nonempty boxes in those grids. Each figure represents a different configuration type with
respect to the appearance of some 4-length pattern. The dots and the numbers indicate possible
splittings of the 4 legs of π. Figure (E) represents the pattern (4, 2, 1, 3) and all others represent the
pattern (3, 2, 1, 4).

grid [m] × [m]. Note that box(S, I) could even be the entire grid Gn. Given such a grid
Gm,m, the layer of box(Si, Ij), denoted L(box(Si, Ij)), is box(S, Ij) and its stripe, denoted
St(box(Si, Ij)), is box(Si, I).

We say that layer L is below layer L′, and write L < L′, if the largest value of a point
in L is less than the smallest value of a point in L′. For stripes St(S), St(S′), we write
St(S) < St(S′) if the largest index in S is smaller than the smallest index in S′. For the grid
Gm,m and two boxes B1, B2 in it, B1 < B2 if L(B1) < L(B2) and St(B1) < St(B2).

2.2.2 Patterns among and within nonempty boxes
Consider a coarse grid of boxes, Gm,m, defined as above on the grid of points Gn. There
is a natural homomorphism from the points in Gn to the nonempty boxes in Gm,m where
those points fall. For f and a grid of boxes Gm,m as above, we refer to this homomorphism
implicitly. This homomorphism defines when Gm,m contains a π-appearance in a natural
way. For example, consider the permutation π = (3, 2, 1, 4) ∈ S4. We say that Gm,m contains
π if there are nonempty boxes B1, B2, B3, B4 such that St(B1) < St(B2) < St(B3) < St(B4)
and L(B3) < L(B2) < L(B1) < L(B4) (see Figure 1(A)).

▶ Observation 2.3. Let L, S be a partition of Gn into layers and stripes as above, with
|L| = m, |S| = m then if Gm,m contains π then Gn (and equivalently f) has a π-appearance.

The converse of Observation 2.3 is not true; Gn may contain a π-appearance while Gm,m

does not. This happens when some of the boxes that contain the π-appearance share a layer
or a stripe. Two boxes are directly-connected if they share a layer or a stripe. The transitive
closure of the relation directly-connected is called connected. An arrangement of boxes where
every two boxes are connected is called a connected component, or simply, a component. The
size of a connected component is the number of boxes in it.

For π ∈ Sk, a π-appearance in Gn implies that the k points corresponding to such a
π-appearance are in i ≤ k distinct components in Gm,m, where the jth component Cj may
contain bj boxes each containing at least one point of the corresponding π-appearance. We
refer to the π-values in the corresponding boxes of the components as legs. For example, for
π = (3, 2, 1, 4), the π-appearance shown in Figure 1(B) is contained in two boxes that share
the same layer, and hence form one component. The left box contains the 3, 2 legs of the
π-appearance and other contains the 1, 4 legs. A different 1-component 2-boxed appearance
in the same two boxes has 3 appearing in B1 and all the other legs in B2 as in Figure 1(C).
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Examples for π = (3, 2, 1, 4)-appearances with two components C1, C2 are illustrated in
Figure 1(F) and Figure 1(H). In the first, C1, C2 contain 2 boxes each, where C1 contains the
(3, 4) legs of the appearance, each in one box, and C2 contains the (1, 2) legs. In the second,
each component is 1-boxed, where the first contains the (3, 2, 1)-legs and the other contains
the 4-leg of the appearance. Figure 1(A) contains a (3, 2, 1, 4)-appearance in 4 components.
Some other possible appearances with 1 component and 3 components are illustrated in
Figure 1(B), Figure 1(C), Figure 1(D) and Figure 1(G).

To sum up, each π-appearance in Gn defines an arrangement of nonempty boxes in
Gm,m that contain the legs of that appearance. This arrangement is defined by the relative
order of the layers and stripes among the boxes, and has at most k components. Such
a box-arrangement that can contain the legs of a π-appearance is called a configuration.
Note that there may be many different π-appearances in distinct boxes, all having the same
configuration C. Namely, in which, the arrangements of the boxes in terms of the relative
order of layers and stripes are identical. So, a configuration is just a set of boxes (or points)
in the k × k grid. An actual set of boxes in Gm,m forming a specific type of configuration is
referred to as a copy of that configuration.

Let c(k) be the number of all possible configurations that are consistent with a π-
appearance, for π ∈ Sk. For any fixed π, the number c(k) of distinct types of configurations
is constant as shown in the following observation.

▶ Observation 2.4. c(k) ≤ 2O(k log k)

A configuration C does not fully specify the way in which a π-appearance can be present.
It is necessary to also specify the way the k legs of the π-appearance are partitioned among
the boxes in a copy of C. Let B denote a set of boxes forming the configuration C. Let
ϕ : [k] → B denote the mapping of the legs of the π-appearance to boxes in B, where
ϕ(j), j ∈ [k] denotes the box in B containing the j-th leg of the π-appearance. We say that
the copy of C formed by the boxes in B contains a ϕ-legged π-appearance.

A configuration C in which the boxes form p ≥ 2 components, and that is consistent
with a π-appearance, defines ν1, . . . , νp -appearances, respectively, in the p components of C,
where νj for j ∈ [p] is the subpermutation of π that is defined by the restriction of π to the
j-th component. In addition, C defines the corresponding mappings ϕj , j = 1, . . . p, of the
corresponding legs of each νj to the corresponding boxes in the jth component. For example,
consider π = (3, 2, 1, 4) and the box arrangement shown in Figure 1(F). That arrangement
has two connected components: one that contains B1, B4 and the other that contains B2, B3,
where we number the boxes from left to right (by increasing stripe order). Further, the (only)
consistent partition of the legs of π into these boxes is π(i) ∈ Bi, i ∈ [4]. In particular, it
means that the component formed by B1, B4 contains the 3, 4 legs of π and the component
formed by B2, B3 contains the 2, 1 legs of π. Thus, in terms of the discussion above, the
component formed by B1, B4 has a ν1 = (1, 2)-appearance (corresponding to the 3, 4 legs
of π), with leg mapping ϕ1 mapping the 1-leg into B1 and the 2-leg into B4. Similarly, the
component formed by B2, B3 has a ν2 = (2, 1)-appearance (corresponding to the 2, 1 legs of
π) with corresponding leg mapping ϕ2 that maps the 2-leg into B2 and the 1-leg into B3.
Note that the converse is also true: every ν1 appearance in the component B1 ∪ B4, with a
leg-mapping ϕ1 (that is, in which the 1, 2 legs are in B1, B4 respectively), in addition to a ν2
appearance in B2 ∪ B3 with the leg-mapping ϕ2, results in a π-appearance in Gm,m.

This latter comment leads to the crucial observation that if π defines the corresponding
ν1, . . . , νp appearances in the p components of the configuration C, then, any ν1, . . . , νp-
appearances in the p components of any copy of C with consistent leg-mappings is a π-
appearance in C. This is formally stated below.
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▶ Definition 2.5. Let ν ∈ Sr. Let B1, . . . , Bp be a set of boxes forming one component C

and ϕ : [r] 7→ {B1, . . . , Bp} be an arbitrary mapping of the legs of a ν-appearance to boxes.
We say that C has a ϕ-legged ν-appearance if there is a ν-appearance in ∪p

j=1Bj in which for
each i ∈ [r], the i-th leg of ν appears in the box Bϕ(i).

▶ Observation 2.6. Let π ∈ Sk and assume that there exists a π-appearance in Gn that
in the grid of boxes Gm,m forms a configuration C that contains t components C1, . . . , Ct,
with Cj having rj boxes, j = 1, . . . , t respectively. Let the restriction of this π-appearance to
C1, . . . , Ct define the permutation patterns ν1, . . . νt in C1, . . . , Ct, with leg mappings ϕ1, . . . ϕt,
respectively.

Then, any collection of configuration copies of Cj , j = 1, . . . t, for which ∪t
1Cj is a copy

of C, and ϕj-legged νj-appearances in Ci, i = 1, . . . , t, defines a π-appearance in ∪t
1Cj. ⌟

2.3 Erasure-resilient testing
Erasure-resilient (ER) testing, introduced by Dixit, Raskhodnikova, Thakurta and Varma [16],
is a generalization of property testing. In this model, algorithms get oracle access to functions
for which the values of at most α fraction of the points in the domain are erased by an
adversary, for α ∈ [0, 1). As part of our algorithm for testing π-freeness for π ∈ Sk for k ≥ 4,
we call testers for smaller subpatterns on sub-regions of the grid Gn which may be defined by,
say, box(S, I) for some S ⊆ [n], I ⊆ R(f). In this case, the only access to points in box(S, I)
is by sampling indices from S and checking whether their values fall in I. If the values do
not fall in I, we can treat them as erasures. Given the assurance that the number of points
falling in box(S, I) is a constant fraction of |S|, we can simply run ER testers on f |S to test
for these smaller subpatterns.

3 High level description of the basic algorithm for π ∈ S4

Many of the high level ideas in the design of our π-freeness tester of complexity Õ(no(1)) are
described in this section. For simplicity, we describe first the ideas behind a Õ(

√
n)-query

tester for π-freeness of π ∈ S4. Towards the end of this section, we briefly describe how to
generalize these ideas to obtain the query complexity of Õ(no(1)) and for longer constant-
length permutations. For simplicity, we assume in what follows that the input function
f : [n] → R is one-to-one. The algorithm for functions that are not one-to-one differs in a
few places and these are explained in Section 4.1.

For the purposes of this high level description, we fix the forbidden permutation π =
(3, 2, 1, 4). The same algorithm works for any π ∈ S4. We view f as an (implicitly given)
n × |R(f)| grid Gn consisting of points (i, f(i)) for i ∈ [n], where, in particular, R(f) is
neither known nor bounded. Our first goal is to approximate Gn by a coarse grid of boxes
Gm,m, as described above, for m =

√
n. This is done by querying f on Θ̃(m) random indices,

after which we obtain a partition L of R(f) into m′ = Θ(m) horizontal layers (value intervals).
Then we partition the index set [n] into m′ contiguous intervals {Si}m′

i=1 of equal length.
This results in a grid Gm′,m′ in which we estimate the density of each box as the number of
sampled points falling in that box, normalized by n/m′. A box box(Si, Ij), i, j ∈ [m′] will
be tagged as dense if it contains Ω(1) fraction of sampled points. All of the above takes
Õ(m) = Õ(

√
n) queries, for the above choice of m. It satisfies the following properties with

high probability:
Each layer, that is box([n], Ij), j ∈ [m′], has approximately the same number of points.
It is either the case that the dense boxes contain all but an insignificant fraction of the
points in Gn, or the total number of marked boxes is larger than m′ log n.
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Next, we use the following lemma of Marcus and Tardos.

▶ Lemma 3.1 ([26]). For any π ∈ Sk, k ∈ N, there is a constant κ(k) ∈ N such that for any
r ∈ N, if a grid Gr,r contains at least κ(k) · r marked points, then it contains a π-appearance
among the marked points.

Let κ = κ(4). Using Lemma 3.1, we may assume that there are at most κ · m′ non-empty
boxes in Gm′,m′ , as otherwise, we already would have found a π-appearance in Gm′,m′ , which
by Observation 2.3, implies a π-appearance in Gn and in f as well. Hence, as a result of
the gridding, if we do not see a π-appearance among the sampled points, the second item
above implies that there are Θ(m′) dense boxes in Gm′,m′ and that these boxes cover a large
fraction of the points of Gn.

An averaging argument implies that, for an appropriate constant d = d(ε), only a small
constant fraction of layers (or stripes) contain more than d nonempty boxes. Therefore, since
the grid Gn is ε-far from being π-free, the restriction of Gn to the layers and stripes that
contain at most d boxes each, is also ε′-far from π-free for a large enough constant ε′ < ε.
This implies that Gn restricted to the points in dense boxes that belong to layers and stripes
containing at most d dense boxes each, has a matching M of π-appearances of size at least
ε′n/4. We assume in what follows that this is indeed the situation.

An important note at this point, is that every dense box B is contained in O(d3) (that is,
constantly many) 1-component configurations with at most 4 dense boxes. This implies that
there are O(m) such copies of 1-component configurations in Gm′,m′ .

Recall that every π-appearance in M defines a configuration of at most 4 components in
Gm′,m′ . Hence, the matching M of size |M | = Ω(n) can be partitioned into 4 sub-matchings
M = M1 ∪ M2 ∪ M3 ∪ M4, where Mi, i = 1, . . . , 4 consists of the π-appearances participating
in configurations having exactly i components. Since |M | = Ω(n) it follows that at least one
of Mi, i = 1, 2, 3, 4 is of linear size. Now, any π-appearance in M4 is an appearance in 4
distinct dense boxes in Gm′,m′ , where no two share a layer or a stripe. In that case, such an
appearance can be directly detected from the tagged Gm′,m′ with no further queries.

The description of the rest of the algorithm can be viewed as a treatment of several
independent cases regarding which of the constantly many configuration types contributes the
larger mass out of the Ω(n) π-appearances in M1 ∪ M2 ∪ M3. There are only two significant
cases, but to ease the reader, we split these two cases into the more natural larger number of
cases, and observe at the end that most cases can be treated conceptually in the same way.

Case 1: Assume that |M1| ≥ ε′n/3, and further, for simplicity, that a constant fraction of the
π-appearances in M1 are in a single-box component. Then, on average, a dense box, out of
the Θ(m′) dense boxes, is expected to contain at least Θ(n/m′) = Θ(m′) = Θ(

√
n) many

π-appearances. Thus a random dense box B is likely to have Θ(
√

n) many π-appearances,
and hence, making queries to all points of such a box will enable us to find one such
π-appearance. This takes an additional n/m′ = Θ(

√
n) queries, which is within the query

budget.
Next, consider the case that a constant fraction of the π-appearances in M1 belong to a
configuration C that has more than one dense box (but only one connected component).
By a similar argument, a random dense box is expected to participate in at least Θ(n/m′)
many π-appearances of copies of configuration-type C. Since each dense box is part
of at most O(d3) (constantly many) connected components of at most 4 dense boxes,
sampling a random dense box B and querying all the indices in each of the components
that contain at most 4 dense boxes and involve B, is likely to find a π-appearance with
high probability. Each connected component is over at most 4n/m′ indices, resulting in
O(n/m′) queries.
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Case 2: |M3| ≥ ε′n/3, and assume first that a constant fraction of the members in M3
belong to copies of a configuration C of 3 components B1, B2, B3, where each one is a
single box. For our current working example, π = (3, 2, 1, 4), assume further that B1
contains the 3, 2 legs of a π-appearance and B2, B3 contain its 1 and 4 legs, respectively
(see Figure 1(G) for an example). In this case B1 is not (2, 1)-free (as B1 contains the
(3, 2)-subpattern of π).
By an averaging argument, it follows that there is a dense box B for which: (a) B is far
from (2, 1)-free, and (b) there are corresponding dense boxes B2, B3 that, together with
B, form a copy of the configuration C. Now, a test follows easily. We test every dense
box for (2, 1)-freeness, which can be done in O(log n) queries per box, and hence in Õ(m)
in total. Then, by the guarantee above we will find the corresponding B and B2, B3 and
a π-appearance in it (by Observation 2.6 with the trivial mapping).
A similar argument holds for a 3-component configuration C′ in which one component
contains more than one box, and for any configuration of 3 components.

Case 3: Assume now that |M2| ≥ ε′n/3, and that the corresponding configurations of the
π-appearances in M2 contain two single-box components B1, B2, where B1 holds the
first 3 legs of π and B2 holds the 4-th leg. E.g., For π = (3, 2, 1, 4), the configuration
C contains two boxes B1, B2 where B1 contains the subpattern (3, 2, 1) and B2 is any
nonempty box such that B1 < B2, (see Figure 1(H) for an illustration). An averaging
argument, as made in Case 2, shows that there is a dense box B1 for which (a) B1 is far
from (3, 2, 1)-free, and (b) there is a corresponding dense box B2 that, together with B1,
forms a copy of the configuration C. This suggests a test that is conceptually similar to
the test in Cases 1 and 2. We test each box for being (3, 2, 1)-free. This can be done in
polylog n queries (e.g., [8]). Then once finding a (3, 2, 1) in B1 for which (a) and (b) hold,
B1 ∪ B2 contains a π-appearance.
We note here that for the example above, we ended by testing for (3, 2, 1)-freeness which is
relatively easy. For a different configuration or π, we might need to test B1 for a different
ν ∈ S3, but this can be done for any ν ∈ S3 using O(polylog n) queries [28]. Hence the
same argument and complexity guarantee hold for any 2-component configuration C as
above.

Case 4: A more complicated situation arises when |M2| ≥ ε′n/3, and the corresponding
configurations of the π-appearances in M2 are formed of two components D, B, with
D holding 3 legs of π in 2 or 3 boxes (rather than in one box as in Case 3). E.g.,
π = (4, 2, 1, 3), and the configuration C as illustrated in Figure 1(E).
By a similar averaging argument to that made in Case 2, it follows that there is a dense
box B1 for which (a) there are dense boxes B2, B3 forming a copy D′ of D with B1, and
a dense box B such that the configuration formed by D′, B is a copy of C, and (b) there
are Ω(n/m) = Ω(

√
n) ϕ-legged (3, 2, 1)-appearances in D′, where ϕ is consistent with the

leg mapping that is induced by the configuration C. This implies a conceptually similar
test to that of the simpler Case 3 above - we test each of the O(m) components D for
(3, 2, 1)-freeness, and then with the existence of the corresponding box B we find a π-
appearance. However, this is not perfectly accurate: the algorithm for finding ν = (3, 2, 1)
in D′, although efficient, might find a (3, 2, 1)-appearance where the 3 legs appear in
B1 or in B1 ∪ B2. But this does not extend with B to form a π-appearance, as the leg
mapping is not consistent with the one that is induced by C. Namely, unlike before, we
do not only need to find a ν-appearance in D but rather a ϕ-legged ν-appearance with
respect to a fixed mapping ϕ (that in this case maps each leg to a different box in the
component D′).
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To resolve the problem we need to efficiently test ϕ-legged ν-appearances in multi-boxed
components. This, however, we currently do not know how to do. Instead, we design a
test that either finds a ϕ-legged ν-appearance, or finds the original π-appearance. This is
done using the procedure AlgTestπ(ν, ϕ, D, m, ε) that will be described in Section 4.

Case 5: The last case that we did not consider yet is when most of the π-appearances are
in a configuration containing more than one component, with at least two components
containing two (or more) legs each. For π ∈ S4 the only such case is when the configuration
C contains exactly two components, each containing exactly two legs of π. Returning to
our working example with π = (3, 2, 1, 4), such examples are depicted e.g., in Figure 1(B)
or 1(F). For the explanation below, we will discuss the case that the configuration C is
as in Figure 1(F). Namely, it contains components D1 that is above D2, with two boxes
each D1 = {B1, B4} and D2 = {B2, B3}, and so that every box contains exactly one leg
of π (boxes are numbered by order from left to right in Gm′,m′). Our goal is to find two
copies D′

1, D′
2 of the components D1, D2 respectively, that form a copy of C, and to find a

ϕ1-legged appearance of (1, 2) in D′
1, and a ϕ2-legged appearance of (2, 1) in D′

2, so that
Observation 2.6 will implies that these two appearances form together a π appearance.
Indeed, an averaging argument shows that there are D′

1, D′
2 as above, with D′

i containing
Ω(n/m) ϕi-legged appearances of νi for i = 1, 2. However, we do not know that sampling
a pair D′

1, D′
2 in some way, will result in such a good pair. Rather, we are only assured of

the existence of only one such pair! Hence, in this case we need to test every component
D′, and for every ν ∈ S2, and for every leg mapping ϕ, for a ϕ-legged ν-appearance in D′

in order to find such an asserted pair of components. Such restricted ν-appearances can
be tested in O(log n) queries per component. Therefore, this takes Õ(m) queries in total.
The same argument holds for any π ∈ S4, and for every configuration that is consistent
with Case 5.

Concluding remarks

At some places in the algorithm above, we had to test for ν-appearances (or restricted
ν-appearances) in “dense” subgrids of Gn. For this, we need that all our algorithms
are ER, which will be implicitly clear from the description. We also need to take care
of reducing the total error when we do non-constant number of by tests, or want to
guarantee a large success probability for a large number of events - this is done by trivial
amplification that results in a multiplicative polylog n factor.
In Case 1, we reduced the problem of finding a π-appearance in Gn, that is assumed to
be ε-far from π-free, to the same problem on a subrange of the indices (formed by a small
component) of size Θ(n/m) (with a smaller but constant distance parameter ε′ < ε). For
the setting of m =

√
n, solving the problem on the reduced domain was trivially done by

querying all indices in the subrange. In the general algorithm, where our goal is a query
complexity of no(1), we set m = nδ for an appropriately small δ and apply self-recursion
in Case 1.
In Cases 2, 3, 4 we end up testing ν-freeness for ν ∈ S2 ∪ S3 in dense boxes, or ϕ-legged
ν-freeness of such ν in components of multiple dense boxes. An average argument shows
that this can simply be done by sampling one box or component, and making queries to
all indices therein. This however, is true only for π ∈ S4.
Case 5 is different: here sampling a small number of components does not guarantee an
expected large number of the corresponding appearances. This is the reason that we
need to test all components with at most 2 dense boxes, for ϕ-legged ν-freeness, and for
every ν ∈ S2 and leg mapping ϕ. Algorithm AlgTestπ(ν, ϕ, D, m, ε) can do this for any

ICALP 2022



98:14 Strongly Sublinear Algorithms for Testing Pattern Freeness

ν ∈ S2 ∪ S3 in nδ queries for an arbitrary small constant δ. Since we have to do it in
Case 5, we may do the same in cases 2, 3, 4 as well! As a result, the algorithm above will
contain only two cases: Case 1 where we reduce the problem to the same problem but on
a smaller domain, and the new Case 2 where we test every small component for ϕ-legged
ν-appearance for every ν ∈ S2 ∪ S3 and every leg mapping ϕ – namely a case in which we
reduce the problem to testing (restricted appearances) for smaller patterns.
In view of the comment above, the idea behind improving the complexity to nδ for
constant 0 < δ < 1 is obvious: Choosing m = nδ/2 will result in an m × m grid, where
Layering can be done in Õ(nδ/2) queries. Then, Case 2 will be done in an additional nδ

queries by setting a query complexity for AlgTestπ(ν, ϕ, D, m, ε) to be nδ/2 per component.
The self-recursion in Case 1 will result in the same problem over a range of n/m. For
the fixed m = nδ/2, this will result in a recursion depth of 2/δ, after which the domain
size will drop down to m and allow making queries to all corresponding indices. This
results in a total of Õ(nδ) queries, including the amplification needed to account for the
accumulation of errors and deterioration of the distance parameter at lower recursion
levels.
Generalized testing and testing beyond k = 4. Applying the same ideas to
π ∈ Sk, k ≥ 5 works essentially the same way, provided we can test for ϕ-legged ν-
freeness of ν ∈ Sr for r < k. This we know how to do for ν ∈ S3 but not beyond. In
particular, one difficulty is that after gridding, a superlinear number of non-empty boxes
do not guarantee such appearance, as Lemma 3.1 does not apply. However, for our goal
of testing π-freeness for π ∈ Sk, we can relax the task of finding ϕ-legged ν-freeness of
ν ∈ Sr, r ≤ k to the following problem which we call “generalized-testing ν w.r.t. π”,
denoted GeneralizedTestingπ(ν, D, ϕ): The inputs are a permutation ν ∈ Sr, a component
D, and a leg mapping ϕ. Our goal is to find either a ϕ-legged ν-appearance OR a π-
appearance in D. The way we solve this generalized problem is very similar, conceptually,
to the way we solve the unrestricted problem. This will be defined formally in the next
section.

4 Generalized testing of forbidden patterns

In this section, we formally define the problem of testing (or deciding) freeness from ν-
appearances with a certain leg-mapping. We then provide an algorithm for a relaxation of
this testing problem, which we call GeneralizedTestingπ(ν, ϕ, D). This will imply, in turn, our
algorithm for testing π-freeness.

Recall that Gn denotes the n × n grid that represents the input function f : [n] → R.
Let Gℓ,ℓ be a partition of Gn into a grid of boxes for arbitrary ℓ ≥ 1, and D be a connected
component in Gℓ,ℓ containing t boxes B1, . . . , Bt. Let ν ∈ Sr, and let ϕ : [r] 7→ [t] be
an arbitrary mapping of the legs of ν into the boxes of D, where t ≤ r. We say that
1 ≤ i1 ≤ . . . ≤ ir ≤ n is a ϕ-legged ν-appearance if (i1, . . . , ir) forms a ν-appearance in Gn

such that (ij , f(ij)) ∈ Bx for x = ϕ(j), j = 1, . . . , r. That is, the corresponding legs of the
ν-appearance are mapped into the boxes given by ϕ. For example, consider Figure 1(B),
ν = (3, 2, 1, 4), and D the component formed by the two boxes in the same layer. The
function ϕ maps the 3 and 2-legs of the appearance to the left box and the 1 and 4-legs to
the right box.

For ϕ, ν as above, the property of containing a ϕ-legged ν-appearance is a generalization
of the problem of pattern-freeness; taking ℓ = 1, Gℓ,ℓ is just Gn itself viewed as one single
box D. Any ν-appearance in Gn is a ϕ-legged ν-appearance for the constant function ϕ ≡ D.
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The complexity of testing ϕ-legged ν-freeness is not clear and was not previously explicitly
studied. For permutations of length 2 as well as for longer monotone permutations, its
complexity is identical to unrestricted testing and can be done in polylog n queries. For
length 3 non-monotone permutations it can be done in polylog n queries using similar ideas
as in [28]. For larger k ≥ 4 the complexity is open.

While testing ϕ-legged ν-freeness is interesting in its own, we encounter it only as a
sub-problem in the testing of standard π-freeness. This motivates the following definition.

Let π ∈ Sk, Gn be fixed. Further let Gℓ,ℓ be a decomposition of Gn into boxes and D

be a t-boxed one component over boxes (B1, . . . , Bt), t ≤ r, in Gℓ,ℓ. For inputs ν ∈ Sr,
and ϕ : [r] 7→ {B1, . . . , Bt}, the problem GeneralizedTestingπ(ν, ϕ, D), is to find a ϕ-legged
ν-appearance in D OR to find any (unrestricted) π-appearance. The distance of D from
being ϕ-legged ν-free is defined naturally. The distance for the generalized testing w.r.t
π, GeneralizedTestingπ(ν, ϕ, D), is defined as the distance from being free of ϕ-legged ν-
appearance regardless of the π-appearances.

Our algorithm for GeneralizedTestingπ(ν, ϕ, D) is called AlgTestπ(ν, ϕ, D, m, ε) (presented
in Algorithm 1), where π ∈ Sk is fixed. The algorithm has inputs: ν ∈ Sr, r ≤ k, a
component D in a decomposition Gℓ,ℓ of Gn that contain boxes B1, . . . , Bt, t ≤ r, and
a function ϕ : [r] → {B1, . . . Bt}. In addition, it gets a distance parameter ε, and a free
parameter m that that is used to control the query complexity which will be Õ(mr) for
m ≥ nΩ(1/ log log log n). With high probability, the algorithm either finds a π-appearance or a
ϕ-legged ν-appearance in D, if D is ε-far from being free of ϕ-legged ν-appearances.

The algorithm is recursive. A recursion is done by reducing ν to smaller length patterns,
and/or self-reduction to the same ν but on a smaller length box D′. The base cases are
when the length of D is small enough to allow queries to all indices in D, or when ν ∈ S2, in
which case the algorithm is reduced to testing monotonicity.

The permutation π ∈ Sk is fixed and hardwired into the algorithm. Gn is assumed to
fixed and not part of the recursion. The actual input is the t-boxed component D in a grid
of boxes Gℓ,ℓ over Gn (that is, a sub-function of the original function f).

In general, the complexity of testing ϕ-legged ν-appearances may depend on ϕ and ν.
Our algorithm does not use any structure of π. The only role of π in the algorithm is to
ensure that after gridding D, the resulting grid Dm,m contains only a linear in m number of
marked boxes (as otherwise, by Lemma 3.1, a π-appearance is guaranteed).

Finally, and as we already pointed out, the algorithm for GeneralizedTestingπ(ν, ϕ, D)
will allow us to test for π-freeness in Gn by calling AlgTestπ(π, ϕ, Gn, m, ε), where ϕ is the
constant function that maps each of the k legs to the single box Gn.

The following theorem asserts the correctness of AlgTestπ(π, ϕ, Gn, m, ε) and the corre-
sponding query complexity. We assume that ℓ and a corresponding component D in the grid
of boxes Gℓ,ℓ, inside Gn, is given.

▶ Theorem 4.1. Let ε ∈ (0, 1) and ν ∈ Sr, r ≤ k. Let D = box(S, I) be a connected
component in Gℓ,ℓ, composed of boxes B1, . . . , Bt, t ≤ r and ϕ : [r] → {B1, . . . Bt}. If D

is ε-far from being free of ϕ-legged ν-appearances, then AlgTestπ(ν, ϕ, D, m, ε) finds, either
a ϕ-legged ν-appearance or a π-appearance, with probability at least 1 − o(1). Its query
complexity is Õ(nηr), for η ∈ (0, 1) and m = nη.

We note that since AlgTestπ(ν, ϕ, D, m, ε) either finds π or a ϕ-legged ν-appearance in D,
then if D is free of ϕ-legged ν-appearance, the algorithm will never return such an appearance.
As a result, the corollary below follows by calling AlgTestπ(π, ϕ, Gn, m, ε).
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Algorithm 1 AlgTestπ(ν, ϕ, D, m, ε).

Input: pattern ν ∈ Sr; D is a component in Gℓ,ℓ containing boxes B1, . . . , Bt for 1 ≤ t ≤ r;
the function ϕ : [r] 7→ {B1, . . . , Bt} is a leg-mapping of ν into the boxes of D.

Goal: Find a ϕ-legged ν-appearance or an unrestricted π-appearance, in D.
1: Let S = ∪i∈[r] St(Bϕ(i)) and I = ∪i∈[r]L(Bϕ(i)) define box(S, I) in Gℓ,ℓ that contains D

(or the subcomponent of D where a ν-appearance should be found).
2: Base cases:

1. If |S| ≤ m query all indices in S. Output “π-appearance is found” or “ϕ-legged
ν-appearance is found” if one of these is found, otherwise output “not found”.

2. If r ≤ 2, use the test for restricted appearance of 2-patterns. This is easy and will not
be described in this manuscript. If r = 1, output “ϕ-legged ν-appearance is found” if
ϕ(1) contains a point. If k = 1, output “π is found” if D contains a point.

3. If the sampled points in D already contains a ϕ-legged ν-appearance, or contains a
π-appearance then output: “found ϕ-legged ν-appearance” or “found π-appearance”
respectively.

3: Gridding D: We set β = ε
200kκ(k) . Call Gridding on box(S, I) with parameters:

(S, I, m, β). The details on the procedure Gridding can be found in the full version [30].
As a result, we obtain a decomposition of box(S, I) (and D) into an m′ × m′ grid of
sub-boxes Dm′,m′ , m ≤ m′ ≤ 2m, where a subset of boxes are marked and a subset of
the marked boxes are dense.

4: Simple case: If Dm′,m′ contains more than κ(k) · m′ marked sub-boxes then output
“found π-appearance”.

5: Sparsification: Delete every stripe and layer in Dm′,m′ that contains more than
d = 100kκ(k)/ε marked sub-boxes. Delete all non-dense sub-boxes.

6: Multi-component configurations: For every possible configuration C of sub-boxes
that is consistent with ϕ such that C forms components C1, . . . Cp, p > 1, the pair (ν, ϕ)
define sub-permutations of ν : ν1, . . . , νp and subfunctions of ϕ : ϕ1, . . . , ϕp on C1, . . . Cp

respectively.
Let c denote the number of distinct configurations with at most r components.
Recursively call AlgTestπ(νi, ϕi, Di, m, ε′) with distance parameter ε′ = 9ε

10kcr2·r!·(2d)r

for every component Di, where Di is a copy of Ci in Dm′,m′ , and is contained in D. Note
that the recursive call is done for smaller length patterns νis.

Output “found ϕ-legged ν-appearance” if for a copy (D1, . . . , Dp) of (C1, . . . , Cp),
the region Di contains a ϕi-legged νi-appearance for each i = 1, . . . , p. Or output “found
π-appearance” if a π-appearance is found among the sampled points.

7: One component configurations: Let A be the set of all possible copies of configurations
C in Dm′,m′ for which C forms one component, and that are contained in D. Note that
A contains O(m) such copies.

8: loop log3 n
εr times:

9: Sample a member D′ from A. For each ϕ-consistent mapping ϕ′, recursively call
AlgTestπ(ν, ϕ′, D′, m, ε′′) with ε′′ = 9ε

20k·(2d)r·(r−1)!·rr .
▷ A mapping ϕ′ from the legs of a ν-appearance to the sub-boxes in Dm′,m′ , is

ϕ-consistent if for each i-leg, i = 1, . . . , r, the sub-box ϕ′(i) is contained in the box ϕ(i).
10: end loop
11: If no output is declared in any of the previous steps, output “not-found”.
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Figure 2 Different configurations for (1,3,2)-appearances.

▶ Corollary 4.2. There is a 1-sided error test for π-freeness, for every π ∈ Sk of query-
complexity Õ(nδk) for arbitrary δ > 1/ log log log n.

4.1 Proof of Correctness
In this section, we give a description of the algorithm and the proof sketch for the first
non-base case of testing ϕ-legged ν-freeness of ν ∈ Sr, r = 3, with respect to an arbitrary
π ∈ Sk and for some fixed k ≥ 4. The full proof of Theorem 4.1 can be found in the full
version [30].

4.1.1 An example for ν ∈ S3

For this exposition, we fix ν = (1, 3, 2), and D being composed of 2 boxes B1 B2, in the same
layer, where B1 is to the left of B2, and ϕ maps the 1, 3 legs of ν to B1, and the 2-leg to B2.
See Figure 2(D) for illustration of one such case. In the figure, the green boxes represent B1
and B2. The orange boxes indicate the subboxes in the finer grid formed when gridding is
called on the green boxes.

We note that Figure 2(D) illustrates the hardest case for ν ∈ S3. There are additional
one-component configurations in which the boxes are in the same stripe or layer, but these
turn out to be much easier. We will set m = m(n) to be defined later and express the
complexity as a function of m. We do not specify π since, as explained above, π is only
needed at Step 4 when the number of marked boxes is superlinear in m′ in some recursive
call. The same argument holds for any π ∈ Sk, k ≥ 4.
Algorithm for ν = (1, 3, 2) and B1, B2 as above:
1. We assume that B1, B2 have at most s ≤ n indices each, and that the distance of B1 ∪ B2

from being free from ϕ-legged ν-appearance is at least ε = Ω(1). In particular B1, B2 are
dense. We start in Step 3 of Algorithm 1 where we do gridding of the union of B1 and
B2 into a m′ × m′ grid, Dm′,m′ , of sub-boxes (each having roughly at most s/m′ indices),
where m ≤ m′ ≤ 2m. We either find a π-appearance among the sampled points or we
may assume, after Steps 4, 5 that there are O(m′) dense sub-boxes in B1 ∪ B2 and that
each layer and each stripe contains O(1) dense boxes. This is obtained by an averaging
argument and is described in the formal proof in the full version. It shows that if B1 ∪ B2
contains a large matching of ϕ-legged ν-appearances, then so does the restricted domain
after deleting points from non-dense boxes, and deleting layers and stripes that contain
too many dense boxes. This steps takes Õ(m) queries (the complexity of gridding).

2. A ϕ-legged ν-appearance in B1 ∪B2 can be in 8 possible configurations in the grid Dm′,m′ ,
as depicted in Figure 2. Consider first C1, . . . , C4 as in Figure 2(A)-(D), that form 2 or 3
components each. For these, a ϕ-legged ν-appearance in B1 ∪ B2 decomposes into two
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or three subpatterns, and for which any restricted appearances in the corresponding
components results in a ϕ-legged ν-appearance. E.g., in Figure 2(B) the configuration
C2 contains one component D1 = (B1,3, B2,2), where B1,3 ∈ B1, B2,2 ∈ B2, and another
single boxed component B1,1 ∈ B1, where Bi,j is the orange subbox contained within the
green box Bi and such that the j-th leg belongs to Bi,j for i ∈ [2], j ∈ [3].
In Step 6, we test each of the O(m) many copies of D1 for a ϕ′-legged (2, 1)-appearance
for which ϕ′(2) = B1,3 and ϕ′(1) = B2,2. Then for any such D1-copy in which a such
ϕ′-legged (2, 1)-appearance is found, any nonempty dense box B1,1 forming with D1 a
copy of C2 results in a ϕ-legged ν-appearance.
Since this is a reduction to generalized 2-pattern appearance, the recursion stops here
with O(log n)-complexity per copy of D1. Hence, altogether this will contribute a total of
Õ(m) queries. The same argument holds for any of Ci, i = 1, 2, 3, 4.
If a desired appearance is found, then clearly a correct output is produced.
Finally, if indeed (B1, B2) contains Ω(s) (that is, linear in the length of B1 ∪ B2) many
ϕ-legged ν-appearances that are consistent with one of the configurations Ci, i = 1, 2, 3, 4,
then there will be such a D1 and corresponding B1,1 that together contribute Ω(s/m)
(that is – linear in the domain size of D1) such subpattern appearances by an averaging
argument.
We note that for the more general case of r > 3, the reduction will be done in higher
complexity per component (that is dependent on m rather than just O(log n)).

3. Consider now Ci, i = 5, 6, 7, 8 that form 1-component each (with 2 or 3 orange subboxes).
In these cases, if such appearances contribute ε′ to the total distance, then a simple
averaging argument shows that for a uniformly sampled component, its distance will be
linear from being free from ϕ-legged ν-appearances. Hence in Step 9, sampling such a
component will enable us to recursively find a ϕ-legged ν-appearance with high probability.
Since the length of a component on which the recursive call is made is Θ(s/m), the
complexity of this step is Õ(q(s/m)), where q(∗) is the complexity of the algorithm, for
the case of ν ∈ S3, in terms of the length of D.

The correctness of the algorithm follows from the fact that if D is indeed far from being
ϕ-legged ν-free, then it must be that there are linearly many ϕ-legged ν-appearances in at
least one of the 8 configurations discussed above, and for each case, either a π-appearance or
a ϕ-legged ν-appearance is found, by induction.

The base case is for m = n for which the trivial algorithm that queries all indices is
obviously correct, and has complexity n. To understand the query complexity for general
m, let a be the smallest integer for which ma ≥ n. We express the query complexity for
functions over a domain of length n, and parameter m as q(m, a) for a as defined above. We
get that, omitting polylogarithmic factors, q(m, 1) = m = s (that is the base case above),
and q(m, a) = m + m + q(m, a − 1) where the first summand is the number of queries made
by the gridding, the second is the number of queries made by Step 2 above (corresponding
to Step 6 in AlgTest), and the last is the query complexity of the recursive call on subbox of
length s/m with the same m, for which the corresponding a′ = a − 1.

The recursion equation implies that q(a, m) = Õ(am), which implies a query complexity
nδ by choosing m = nδ. We note that this is true as long as m (and hence δ) is large enough,
as the recursion depth is a and there is an exponential deterioration of the distance parameter
at each recursive call in Steps 2 and 3 above (corresponding to Steps 6 and 9 in AlgTest).
However, for arbitrary constant δ < 1 we can achieve complexity nδ and this is true even for
δ = 1/ log log log n for which the complexity becomes no(1).
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A final note that is due here, is that for ν ∈ Sr with r ≥ 4, the complexity of Step 2
above is not O(log n), and thus the complexity dependence on m becomes important.

References
1 Shlomo Ahal and Yuri Rabinovich. On complexity of the subpattern problem. SIAM J. Discret.

Math., 22(2):629–649, 2008. doi:10.1137/S0895480104444776.
2 Michael H. Albert, Robert E. L. Aldred, Mike D. Atkinson, and Derek A. Holton. Algorithms for

pattern involvement in permutations. In Peter Eades and Tadao Takaoka, editors, Algorithms
and Computation, 12th International Symposium, ISAAC 2001, Proceedings, volume 2223 of
Lecture Notes in Computer Science, pages 355–366. Springer, 2001.

3 Noga Alon and Ehud Friedgut. On the number of permutations avoiding a given pattern. J.
Comb. Theory, Ser. A, 89(1):133–140, 2000. doi:10.1006/jcta.1999.3002.

4 Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular languages
are testable with a constant number of queries. SIAM J. Comput., 30(6):1842–1862, 2000.
doi:10.1137/S0097539700366528.

5 Richard Arratia. On the Stanley-Wilf conjecture for the number of permutations avoiding a
given pattern. The Electronic Journal of Combinatorics, 6:1–4, 1999.

6 Aleksandrs Belovs. Adaptive lower bound for testing monotonicity on the line. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2018, pages 31:1–31:10, 2018.

7 Omri Ben-Eliezer and Clément L. Canonne. Improved bounds for testing forbidden order
patterns. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, pages 2093–2112. SIAM, 2018.

8 Omri Ben-Eliezer, Clément L. Canonne, Shoham Letzter, and Erik Waingarten. Finding mono-
tone patterns in sublinear time. In David Zuckerman, editor, 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2019, pages 1469–1494. IEEE Computer Society,
2019.

9 Omri Ben-Eliezer, Shoham Letzter, and Erik Waingarten. Optimal adaptive detection of
monotone patterns. CoRR, abs/1911.01169, 2019. arXiv:1911.01169.

10 Benjamin Aram Berendsohn, László Kozma, and Dániel Marx. Finding and counting permu-
tations via CSPs. Algorithmica, pages 1–26, 2021.

11 Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in time
series. In Usama M. Fayyad and Ramasamy Uthurusamy, editors, Knowledge Discovery in
Databases: Papers from the 1994 AAAI Workshop, 1994. Technical Report WS-94-03, pages
359–370. AAAI Press, 1994.

12 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM Journal on Computing, 41(6):1380–1425, 2012.
doi:10.1137/110826655.

13 Miklós Bóna. Exact and asymptotic enumeration of permutations with subsequence conditions.
PhD thesis, Massachusetts Institute of Technology, 1997.

14 Miklós Bóna. The solution of a conjecture of Stanley and Wilf for all layered patterns. J.
Comb. Theory, Ser. A, 85(1):96–104, 1999. doi:10.1006/jcta.1998.2908.

15 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Proceedings of the ACM Symposium on Theory of
Computing (STOC) 2013, pages 419–428, 2013.

16 Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin Varma. Erasure-
resilient property testing. SIAM J. Comput., 47(2):295–329, 2018. doi:10.1137/16M1075661.

17 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In RANDOM-APPROX, 1999,
Proceedings, pages 97–108, 1999.

ICALP 2022

https://doi.org/10.1137/S0895480104444776
https://doi.org/10.1006/jcta.1999.3002
https://doi.org/10.1137/S0097539700366528
http://arxiv.org/abs/1911.01169
https://doi.org/10.1137/110826655
https://doi.org/10.1006/jcta.1998.2908
https://doi.org/10.1137/16M1075661


98:20 Strongly Sublinear Algorithms for Testing Pattern Freeness

18 Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. Journal of Computer and System Sciences, 60(3):717–751, 2000. doi:10.1006/
jcss.1999.1692.

19 Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput., 189(1):107–
116, 2004. doi:10.1016/j.ic.2003.09.003.

20 Jacob Fox. Stanley-Wilf limits are typically exponential. CoRR, abs/1310.8378, 2013. arXiv:
1310.8378.

21 Jacob Fox and Fan Wei. Fast property testing and metrics for permutations. Comb. Probab.
Comput., 27(4):539–579, 2018. doi:10.1017/S096354831800024X.

22 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

23 Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time. In
Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, pages 82–101. SIAM, 2014.

24 Eamonn J. Keogh, Stefano Lonardi, and Bill Yuan-chi Chiu. Finding surprising patterns in a
time series database in linear time and space. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2002, pages 550–556.
ACM, 2002.

25 Martin Klazar. The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture. In Formal
power series and algebraic combinatorics, pages 250–255. Springer, 2000.

26 Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley-Wilf
conjecture. J. Comb. Theory, Ser. A, 107(1):153–160, 2004. doi:10.1016/j.jcta.2004.04.
002.

27 Michael Mitzenmacher and Saeed Seddighin. Improved sublinear time algorithm for longest
increasing subsequence. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, pages 1934–1947. SIAM, 2021.

28 Ilan Newman, Yuri Rabinovich, Deepak Rajendraprasad, and Christian Sohler. Testing
for forbidden order patterns in an array. Random Struct. Algorithms, 55(2):402–426, 2019.
doi:10.1002/rsa.20840.

29 Ilan Newman and Nithin Varma. New sublinear algorithms and lower bounds for LIS estimation.
In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium
on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages
100:1–100:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

30 Ilan Newman and Nithin Varma. Strongly sublinear algorithms for testing pattern freeness.
CoRR, abs/2106.04856, 2021. arXiv:2106.04856.

31 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized
property testing of functions. ACM Trans. Comput. Theory, 9(4):17:1–17:19, 2018. doi:
10.1145/3155296.

32 Pranav Patel, Eamonn J. Keogh, Jessica Lin, and Stefano Lonardi. Mining motifs in massive
time series databases. In Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM 2002), pages 370–377. IEEE Computer Society, 2002.

33 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996. doi:10.1137/S0097539793255151.

34 Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. Approximation algorithms
for LCS and LIS with truly improved running times. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, pages 1121–1145, 2019.

35 Michael E. Saks and C. Seshadhri. Estimating the longest increasing sequence in polylogarith-
mic time. SIAM Journal on Computing, 46(2):774–823, 2017.

https://doi.org/10.1006/jcss.1999.1692
https://doi.org/10.1006/jcss.1999.1692
https://doi.org/10.1016/j.ic.2003.09.003
http://arxiv.org/abs/1310.8378
http://arxiv.org/abs/1310.8378
https://doi.org/10.1017/S096354831800024X
https://doi.org/10.1145/285055.285060
https://doi.org/10.1016/j.jcta.2004.04.002
https://doi.org/10.1016/j.jcta.2004.04.002
https://doi.org/10.1002/rsa.20840
http://arxiv.org/abs/2106.04856
https://doi.org/10.1145/3155296
https://doi.org/10.1145/3155296
https://doi.org/10.1137/S0097539793255151


An Optimal-Time RLBWT Construction in
BWT-Runs Bounded Space
Takaaki Nishimoto #

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Shunsuke Kanda #

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Yasuo Tabei #

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Abstract
The compression of highly repetitive strings (i.e., strings with many repetitions) has been a central
research topic in string processing, and quite a few compression methods for these strings have been
proposed thus far. Among them, an efficient compression format gathering increasing attention is
the run-length Burrows–Wheeler transform (RLBWT), which is a run-length encoded BWT as a
reversible permutation of an input string on the lexicographical order of suffixes. State-of-the-art
construction algorithms of RLBWT have a serious issue with respect to (i) non-optimal computation
time or (ii) a working space that is linearly proportional to the length of an input string. In this
paper, we present r-comp, the first optimal-time construction algorithm of RLBWT in BWT-runs
bounded space. That is, the computational complexity of r-comp is O(n+r log r) time and O(r log n)
bits of working space for the length n of an input string and the number r of equal-letter runs in
BWT. The computation time is optimal (i.e., O(n)) for strings with the property r = O(n/ log n),
which holds for most highly repetitive strings. Experiments using a real-world dataset of highly
repetitive strings show the effectiveness of r-comp with respect to computation time and space.
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1 Introduction

Highly repetitive strings (i.e., strings including many repetitions) have become common in
research and industry. For instance, the 1000 Genomes Project [32] was established for the
purpose of building a detailed catalogue of human genetic variation, and it has sequenced a
large number of human genomes. Nowadays, approximately 60 billion pages are said to exist
on the Internet, and large sections of those pages (e.g., version-controlled documents) are
highly repetitive. There is therefore a growing demand to develop scalable data compression
for efficiently storing, processing, and analyzing a gigantic number of highly repetitive strings.

To fulfill this demand, quite a few data compression methods for highly repetitive strings
have been developed. Examples are LZ77 [34], grammar compression [19, 12, 31, 14], block
trees [2], and many others [25, 22, 10]. Among them, an efficient compression format
gathering increased attention is the run-length Burrows–Wheeler transform (RLBWT), which
is a run-length encoded BWT [6] as a reversible permutation of an input string on the
lexicographical order of suffixes. Recently, researchers have focused on developing string
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Table 1 Summary of state-of-the-art RLBWT construction algorithms. The update time in the
rightmost column is the time needed to construct a new RLBWT from the current RLBWT for a
character newly added to the string. The update time of r-comp is amortized. T is an input string
of alphabet size σ and length n; |PFP| is the size of the dictionary and factorization created by the
prefix-free parsing of T [5].

Method Type Running time Working space (bits) Update time
D. Belazzougui+ [4] indirect O(n) O(n log σ) Unsupported

J. Munro+ [20] indirect O(n) O(n log σ) Unsupported
D.Kempa [15] indirect O(n/ logσ n + r log7 n) O(n log σ + r log6 n) Unsupported

D.Kempa+[16] indirect O(n log σ/
√

log n) O(n log σ) Unsupported
Big-BWT [5] indirect O(n) O(|PFP| log n) Unsupported

KK method [17, 23] direct O(n(log log n)2 + r log8 n) O(r polylog n) Unsupported
PP method [30] direct O(n log r) O(r log n) O(log r)

Faster-PP method [28] direct O(n log r) O(r log n) O(log r)
r-comp (this study) direct O(n + r log r) O(r log n) O(1 + (r log r)/n)

processing methods such as locate query [13, 1, 3, 26], document listing [7], and substring
enumeration [27] on RLBWT. Although several algorithms for constructing the RLBWT
from an input string have been proposed thus far, there is no prior work that achieves the
computational complexity of optimal time (i.e., time linearly proportional to the length of
the input string) and BWT-runs bounded space (i.e., a working space linearly proportional to
the number of equal-letter runs in the BWT and logarithmically proportional to the length
of the input string).

Contribution. We present r-comp, the first construction algorithm of RLBWT that achieves
optimal time and BWT-runs bounded space. R-comp directly constructs the RLBWT of an
input string. It reads one character of an input string at a time from the reversed string and
gradually builds the RLBWT corresponding to the suffixes read so far. The state-of-the-art
online construction methods [30, 28] use inefficient data structures such as dynamic wavelet
trees and B-trees for inserting each character into the current RLBWT at an insertion
position, which is the most time-consuming part in an RLBWT construction. We present a
new divided BWT (DBWT) representation of BWT and a new bipartite graph representation
on DBWT called LF-interval graph to speed up the construction of RLBWT. The DBWT
and LF-interval graph are efficiently built while reading each character one by one, and they
enable us to quickly compute an appropriate position for inserting each character into the
current RLBWT of the string. Another remarkable property of r-comp is the ability to
extend the RLBWT for a newly added character without rebuilding the data structures used
in r-comp from the beginning.

As a result, the computational complexity of r-comp is O(n + r log r) time and O(r log n)
bits of working space for the length n of an input string and the number r of equal-letter
runs in BWT. In particular, the computational complexity is optimal (i.e., O(n)) for strings
with the property r = O(n/ log n), which holds for most highly repetitive strings. We
experimentally tested the ability of r-comp to compress various highly repetitive strings, and
we show that r-comp performs better than other methods with respect to computation time
and space.

2 Related work

There are two types of methods for indirectly or directly constructing the RLBWT of a
string (see Table 1 for a summary of state-of-the-art construction algorithms of RLBWT). In
the indirect constructions of RLBWT, the BWT of an input string is first built and then the
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BWT is encoded into the RLBWT by run-length encoding. Several efficient algorithms for
constructing the BWT of a given string have been proposed [4, 16, 21, 8, 16, 20]. Let T be
a string of length n with an alphabet of size σ, and let r be the number of equal-letter runs
in its BWT. Kempa [15] proposed a RAM-optimal time construction of the BWT of string
T with compression ratio n/r = Ω(polylog n). The algorithm runs in O(n/ logσ n) time with
O(n log σ) bits of working space. Kempa and Kociumaka also proposed a BWT construction
in O(n log σ) bits of working space [16]. This algorithm runs in O(n log σ/

√
log n) time,

which is bounded by o(n) time for a string with log σ = o(
√

log n). These algorithms are not
space efficient for highly repetitive strings in that their working space is linearly proportional
to the length of the input string.

Big-BWT [5] is a practical algorithm for constructing the BWT of a huge string using
prefix-free parsing, which constructs a dictionary of strings and a factorization from string T .
Although Big-BWT runs in optimal time (i.e., O(n)) with O(|PFP| log n) bits of working space
for the sum |PFP| of (i) the lengths of all the strings in the dictionary and (ii) the number of
strings in the factorization, Big-BWT is not space efficient for highly repetitive strings in
the worst case, because |PFP| can be

√
n times larger than r, resulting in Ω(r

√
n log n) bits

of working space (see the full version of the paper [24] for the proof). Even worse, several
data structures used in these indirect constructions cannot be updated. Thus, one needs
to rebuild the data structures from scratch for a newly added character, which reduces the
usability of indirect constructions of RLBWT.

In the direct constructions of RLBWT, Policriti and Prezza [30] proposed an algorithm
for the construction of RLBWT, which we call PP method. The PP method reads an input
string in reverse by one character, and it gradually builds the RLBWT corresponding to the
suffix that was just read, where an inefficient dynamic wavelet tree is used for inserting a
character into the RLBWT at an appropriate position, limiting the scalability of the PP
method in practice. Ohno et al. [28] proposed a faster method, which we call Faster-PP
method, by replacing the dynamic wavelet tree used in the PP method by a B-tree. Whereas
both the PP method and Faster-PP method run with the same time and space complexities –
O(n log r) time and O(r log n) bits of working space – the time complexity is not the optimal
time for most highly repetitive strings.

Kempa and Kociumaka [17] proposed a conversion algorithm, which is referred to as
KK method, from the LZ77 parsing [34] of T to the RLBWT in O(z log7 n) time with
O(z polylog n) bits of space, where z is the number of phrases in the parsing. Theoretically,
we can compute the RLBWT of an input string by combining the KK method with an
algorithm for computing the LZ77 parsing (e.g., [23]), and the working space of their
conversion is bounded by O(r polylog n) bits because z = O(r log n) [22]. Kempa and
Langmead [18] proposed a practical algorithm for constructing a compressed grammar from
an input string in Ω(n) time using an approximate LZ77 parsing. Because these methods use
several static data structures that cannot be updated, the data structures must be rebuilt
from scratch when a new character is added.

Although there are several algorithms for indirectly or directly constructing the RLBWT,
no previous work has been able to achieve optimal time (i.e., O(n) time) with BWT-runs
bounded space (i.e., O(r log n) bits). We present r-comp, the first direct construction of
RLBWT that achieves optimal time with BWT-runs bounded space for most highly repetitive
strings. Details of r-comp are presented in the following sections.

This paper is organized as follows. Section 3 introduces basic notions used in this paper,
and a DBWT representation of BWT is presented in Section 4. Section 5 presents an
LF-interval graph representation of DBWT and a fast update operation on LF-interval
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$ a
a $ b
a bba$ b
a bbabba$ b
a bbabbabba$ $
b a$ b
b abba$ b
b abbabba$ b
b ba$ a
b babba$ a
b babbabba$ a

$ a
a $ b
a abbabbabba$ $
a bba$ b
a bbabba$ b
a bbabbabba$ a
b a$ b
b abba$ b
b abbabba$ b
b ba$ a
b babba$ a
b babbabba$ a

L11F11 L12F12

Sorted suffixes of T11

x1 = 11
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Figure 1 (Left) Sorted suffixes of T11 = abbabbabba$, F11, and L11. (Right) Sorted suffixes of
T12 = aabbabbabba$, F12, and L12.

graphs. The r-comp algorithm is presented in Section 6. Section 7 presents the experimental
results using the r-comp algorithm on benchmark and real-world datasets of highly repetitive
strings.

3 Preliminaries

Basic notation. An interval [b, e] for two integers b and e (b ≤ e) represents the set
{b, b + 1, . . . , e}. Let T be a string of length n over an alphabet Σ = {1, 2, . . . , nO(1)} of
size σ, and |T | be the length of T (i.e., |T | = n). Let T [i] be the i-th character of T (i.e.,
T = T [1], T [2], . . . , T [n]) and T [i..j] be the substring of T that begins at position i and ends
at position j. Let Tδ be the suffix of T of length δ (1 ≤ δ ≤ n), i.e., Tδ = T [(n− δ + 1)..n].
A rank query rank(T, c, i) on a string T returns the number of occurrences of character c in
T [1..i], i.e., rank(T, c, i) = |{j | T [j] = c, 1 ≤ j ≤ i}|.

For a string P , P [i] < P [j] means that the i-th character of P is smaller than the j-th
character of P . Moreover, T ≺ P means that T is lexicographically smaller than P . Formally,
T ≺ P if and only if either of the following two conditions holds: (i) there exists an integer i

such that T [1..i− 1] = P [1..i− 1] and T [i] < P [i]; (ii) T is a prefix of P (i.e., T = P [1..|T |])
and |T | < |P |. Here, occ<(T, c) denotes the number of characters smaller than character c

in string T (i.e., occ<(T, c) = |{j | j ∈ {1, 2, . . . , n} s.t. T [j] < c}|). Special character $ is
the smallest character in Σ. Throughout this paper, we assume that special character $ only
appears at the end of T (i.e., T [n] = $ and T [i] ̸= $ for all {1, 2, . . . , n− 1}).

A run is defined as the maximal repetition of the same character. Formally, a substring
T [i..j] of T is a run of the same character c if it satisfies the following three conditions: (i)
T [i..j] is a repetition of the same character c (i.e., T [i] = T [i + 1] = · · · = T [j] = c); (ii) i = 1
or T [i− 1] ̸= c; (iii) j = n or T [j + 1] ̸= c.

We use base-2 logarithm throughout this paper. Our computation model is a unit-cost
word RAM with a machine word size of Θ(log n) bits. We evaluate the space complexity
in terms of the number of machine words. A bitwise evaluation of space complexity can be
obtained with a log n multiplicative factor.

BWT, LF function, and RLBWT. The BWT [6] of a suffix Tδ is a permuted string Lδ of
Tδ, and it is constructed as follows: all the suffixes of Tδ are sorted in the lexicographical
order and the character preceding each suffix is taken. Formally, let x1, x2, . . . , xδ be
the starting positions of the sorted suffixes of Tδ (i.e., x1, x2, . . . , xδ are a permutation
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Figure 2 DBWT-repetitions and their corresponding F-intervals on F11 for a DBWT D11 =
a, bb, b, $, bbb, aa, a of BWT L11 in Figure 1. Each rectangle on L11 represents a DBWT-repetition,
and each rectangle on F11 represents an F-interval on F11. Each directed arrow indicates the
F-interval corresponding to the DBWT-repetition on L11.

of sequence 1, 2, . . . , δ such that Tδ[x1..δ] ≺ Tδ[x2..δ] ≺ · · · ≺ Tδ[xn..δ]). Then, Lδ =
Tδ[x1 − 1], Tδ[x2 − 1], . . . , Tδ[xδ − 1]), where Tδ[0] is defined as the last character of Tδ (i.e.,
Tδ[0] = Tδ[δ] = $). Similarly, the permuted string Fδ of suffix Tδ consists of the first
characters of the sorted suffixes of Tδ, i.e., Fδ = Tδ[x1], Tδ[x2], . . . , Tδ[xδ].

Figure 1 illustrates the sorted suffixes of T11 and T12 for T = aabbabbabba$. Here,
x1, x2, . . . , x11 are the starting positions of the sorted suffixes of T11. Moreover, L11 =
abbb$bbbaaa and F11 = $aaaabbbbbb. The BWT of T is L12 = ab$bbabbbaaa.

There is a one-to-one correspondence between Lδ and Fδ because the two strings are
permutations of Tδ. Formally, for two integers i, j ∈ {1, 2, . . . , δ}, Lδ[i] corresponds to Fδ[j]
if and only if either of the following two conditions holds: (i) xi − 1 = xj or (ii) xi = 1 and
xj = δ. LF function LFδ is a bijective function from Lδ to Fδ [11]. Function LFδ(i) = j for
two integers i, j ∈ {1, 2, . . . , δ} if and only if Lδ[i] corresponds to Fδ[j]. LF formula [11] is a
well-known property of LF function, and it enables us to compute the corresponding position
in Fδ from a position in Lδ. Namely, LFδ(i) is equal to the summation of (i) the number
of characters in Lδ smaller than Lδ[i] and (ii) the number of Lδ[i] in the prefix Lδ[1..i], i.e.,
LFδ(i) = occ<(Lδ, Lδ[i]) + rank(Lδ, i, Lδ[i]).

BWT can be separated into all the runs of the same character. We call each run BWT-run.
For BWT Lδ, r BWT-runs P1, P2, . . . , Pr satisfy (i) Lδ = P1, P2, . . . , Pr and (ii) each Pi

(i = 1, 2, . . . , r) is a run of the same character in Lδ. The RLBWT of a suffix Tδ is defined as
a sequence of r pairs (P1[1], |P1|), (P2[1], |P2|), . . ., (Pr[1], |Pr|). The RLBWT can be stored
in r(log n + log σ) bits, and we can recover Tδ from the RLBWT using LF function (e.g.,
[26]). Throughout this paper, r denotes the number of BWT-runs in the BWT of T .

In Figure 1, the BWT-runs in the BWT L11 of T11 are a, bbb, $, bbb, and aaa. The
RLBWT of T11 is (a, 1), (b, 3), ($, 1), (b, 3), and (a, 3).

4 DBWT

The divided BWT (DBWT) is a general concept in the RLBWT and is the foundation
of the LF-interval graph. Formally, the DBWT Dδ of BWT Lδ is defined as a sequence
Lδ[p1..(p2 − 1)], Lδ[p2..(p3 − 1)], . . . , Lδ[pk..(pk+1 − 1)] for p1 = 1 < p2 < · · · < pk < pk+1 =
n + 1, where Lδ[pi..(pi+1 − 1)] for each i = 1, 2, . . . , k is a repetition of the same character.
We call each repetition of the same character in the DBWT DBWT-repetition. A DBWT-
repetition is not necessarily a run. DBWT Dδ is equal to the RLBWT of Tδ if and only if
Lδ[pi..(pi − 1)] for each i ∈ {1, 2, . . . , k} is a run.
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In Figure 2, sequence D11 = a, bb, b, $, bbb, aa, a of equal-letter repetitions is a DBWT
for BWT L11 of string T11. The DBWT-repetitions in D11 are the strings enclosed by the
rectangles on L11.

The DBWT of a BWT is not unique because a BWT can be divided by various criteria.
We present a criterion for DBWT in the following in order to efficiently build RLBWT. The
LF function maps each DBWT-repetition Lδ[pi..(pi+1 − 1)] into the consecutive characters
on interval [LFδ(pi), LFδ(pi+1 − 1)], which is called an F-interval on Fδ. The LF formula
enables us to compute LFδ(j) for each position j ∈ [pi, (pi+1 − 1)] on the i-th DBWT-
repetition in O(1) time using the starting position pi of the DBWT-repetition and the F-
interval [LFδ(pi), LFδ(pi+1 − 1)] corresponding to the DBWT-repetition as follows: LFδ(j) =
LFδ(pi) + j − pi.

In Figure 2, each F-interval on F11 corresponding to a DBWT-repetition on L11 is enclosed
by a rectangle. The F-intervals on F11 are [1, 1], [2, 2], [3, 4], [5, 5], [6, 7], [8, 8], and [9, 11].
The F-interval corresponding to the second DBWT-repetition bb is [6, 7].

Let α be a user-defined parameter no less than 2 (i.e., α ≥ 2). DBWT-
repetition Lδ[pi..(pi+1 − 1)] is said to cover the starting position LFδ(pj) of an F-interval
[LFδ(pj), LFδ(pj+1)] on Fδ if interval [pi, (pi+1 − 1)] on Fδ contains the position LFδ(pj) (i.e.,
LFδ(pj) ∈ [pi, (pi+1 − 1)]). The DBWT-repetition is said to be α-heavy if it covers at least
α starting positions of the F-intervals on Fδ for parameter α ≥ 2. Similarly, F-interval
[LFδ(pi), LFδ(pi+1 − 1)] on Fδ is said to cover the starting position pj of a DBWT-repetition
Lδ[pj ..(pj+1 − 1)] if interval [LFδ(pi), LFδ(pi+1 − 1)] on Lδ contains the position pj (i.e.,
pj ∈ [LFδ(pi), LFδ(pi+1 − 1)]). An F-interval is said to be α-heavy if it covers at least
α starting positions of DBWT-repetitions for parameter α ≥ 2. A DBWT is said to be
α-balanced if the DBWT includes neither α-heavy DBWT-repetitions nor F-intervals, and
Dα

δ denotes an α-balanced DBWT of BWT Lδ.
In Figure 2 with α = 3, the fifth DBWT-repetition bbb of D11 covers two starting positions

of F-intervals [6, 7] and [8, 8] on F11, and the DBWT-repetition is not 3-heavy. The F-interval
[9, 11] of the fifth DBWT-repetition covers the starting positions of two DBWT-repetitions
aa and a. Moreover, the F-interval of the fifth DBWT-repetition is not 3-heavy. Thus, D11
is 3-balanced because D11 includes neither 3-heavy DBWT-repetitions nor F-intervals.

In the next section, the α-balanced DBWT is used to derive the time needed to update
an LF-interval graph.

5 LF-interval graph

An LF-interval graph is a bipartite graph that represents both (i) the correspondence between
each pair of elements in Lδ and Fδ according to the LF function and (ii) a covering relationship
between DBWT-repetitions and F-intervals on a DBWT. The LF-interval graph Grp(Dδ) for
DBWT Dδ of k DBWT-repetitions Lδ[p1..(p2 − 1)], Lδ[p2..(p3 − 1)], . . . , Lδ[pk..(pk+1 − 1)] is
defined as 4-tuple (U ∪ V , ELF ∪EL ∪EF , BU ∪BV , BL ∪BF ), as detailed in the following.

Set U = {u1, u2, . . . , uk} is a set of nodes, and ui for each i ∈ {1, 2, . . . , k} represents the i-
th DBWT-repetition Lδ[pi..(pi+1−1)] on DBWT Dδ. Moreover, set V = {v1, v2, . . . , vk} is a
set of nodes, and vi for each i ∈ {1, 2, . . . , k} represents the F-interval [LFδ(pi), LFδ(pi+1−1)]
mapped from the i-th DBWT-repetition represented as ui on DBWT Dδ by the LF function.

The set ELF of undirected edges in LF-interval graph Grp(Dδ) represents the correspond-
ence between DBWT-repetitions on DBWT Dδ and F-intervals on Fδ according to the LF
function. Formally, ELF ⊆ (U × V ) is a set of undirected edges between U and V , and
(ui, vj) ∈ ELF holds if and only if the i-th DBWT-repetition Lδ[pi..(pi+1 − 1)] represented
as ui is mapped to the j-th F-interval [LFδ(pj), LFδ(pj+1 − 1)] represented as vj . Namely,
ELF = {(u1, v1), (u2, v2), . . . , (uk, vk)}.
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BU (u1) = BV (v1) = (a, 1)
BU (u2) = BV (v2) = (b, 2)
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BU (u6) = BV (v6) = (a, 2)
BU (u7) = BV (v7) = (a, 1)

BL(u1, v4) = 0
BL(u2, v1) = 0
BL(u3, v6) = 1
BL(u4, v7) = 0
BL(u5, v2) = 0
BL(u6, v5) = 0
BL(u7, v5) = 2
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BF(v1, u2) = 0
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BF(v3, u5) = 2
BF(v4, u1) = 0
BF(v5, u6) = 0
BF(v6, u2) = 1
BF(v7, u4) = 0

Figure 3 LF-interval graph Grp(D11) for DBWT D11 in Figure 2.

Two sets EL and EF of directed edges represent the covering relationship between DBWT-
repetitions and F-intervals on DBWT Dδ. Set EL ⊆ (U × V ) is a set of directed edges
from U to V , and (ui, vj) ∈ EL holds if and only if F-interval [LFδ(pj), LFδ(pj+1 − 1)],
represented as vj , covers the starting position pi of DBWT-repetition Lδ[pi..(pi+1 − 1)],
represented as ui. Formally, EL = {(ui, vj) | 1 ≤ i, j ≤ k s.t. pi ∈ [LFδ(pj), LFδ(pj+1 − 1)]}.
Similarly, EF ⊆ (V × U) is a set of directed edges from V to U , and (vj , ui) ∈ EF

holds if and only if DBWT-repetition Lδ[pi..(pi+1 − 1)], represented as ui, covers the
starting position LFδ(pj) of F-interval [LFδ(pj), LFδ(pj+1 − 1)], represented as vj . Formally,
EF = {(vj , ui) | 1 ≤ i, j ≤ k s.t. LFδ(pj) ∈ [pi, (pi+1 − 1)]}.

Function BU : U → (Σ,N) is a label function for the set U of nodes, and it maps each
node ui ∈ U to a pair consisting of the character in Σ and the length in N = {1, 2, . . .}
for the i-th DBWT-repetition represented by ui. Namely, BU (ui) = (Lδ[pi], pi+1 − pi).
Similarly, BV : V → (Σ,N) is a label function for the set V of nodes, and it maps each
node vi ∈ V to a pair consisting of the character in Σ and the length in N for the repetition
Fδ[LFδ(pi)..LFδ(pi+1 − 1)] of the same character on the F-interval represented by vi. Namely,
BV (vi) = (Fδ[LFδ(pi)], LFδ(pi+1−1)−LFδ(pi)+1). For all i ∈ {1, 2, . . . , k}, BU (ui) = BV (vi)
holds by the LF formula.

Function BL : EL → N is a label function for the set EL of directed edges, and it maps each
edge (ui, vj) ∈ EL to an integer value representing the difference between the starting position
pi of DBWT-repetition Lδ[pi..(pi+1− 1)], represented as ui, and the starting position LFδ(pj)
of F-interval [LFδ(pj), LFδ(pj+1 − 1)], represented as vj . Namely, BL(ui, vj) = pi − LFδ(pj).

Similarly, BF : EF → N is a label function for the set EF of directed edges, and it
maps each edge (vj , ui) ∈ EF to an integer value representing the difference between the
starting position LFδ(pj) of F-interval [LFδ(pj), LFδ(pj+1 − 1)], represented as vj , and the
starting position pi of DBWT-repetition Lδ[pi..(pi+1 − 1)], represented as ui. Namely,
BF (vj , ui) = LFδ(pj)− pi.

Figure 3 illustrates LF-interval graph Grp(D11) for DBWT D11 in Figure 2. For U =
{u1, u2, . . . , u7} and V = {v1, v2, . . . , v7}, each node ui ∈ U (respectively, vj ∈ V ) is enclosed
by a rectangle on L11 (respectively, F11). We have ELF = {(u1, v1), (u2, v2), (u3, v3),
(u4, v4), (u5, v5), (u6, v6), (u7, v7)}. We depict each undirected edge in set ELF by solid
lines. Moreover, EL = {(u1, v4), (u2, v1), (u3, v6), (u4, v7), (u5, v2), (u6, v5), (u7, v5)}, and
EF = {(v1, u2), (v2, u5), (v3, u5), (v4, u1), (v5, u6), (v6, u2), (v7, u4)}. Each directed edge in
the two sets EL and EF is depicted by a dotted arrow. The four label functions BU , BV ,
BL, and BF are listed in Figure 3.
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5.1 Dynamic data structures for the LF-interval graph
Several dynamic data structures are used for efficiently updating LF-interval graph Grp(Dδ).
Two doubly linked lists are used for supporting the insertions and deletions of nodes in U

and V . The nodes in U should be totally ordered with respect to the starting position of
the DBWT-repetition, which is represented as a node in U . Namely, u1 < u2 < · · · < uk.
The nodes in set U are stored in a doubly linked list, where each node ui ∈ U has previous
and next pointers connecting to the previous and next nodes, respectively, in the total
order of nodes in U . Similarly, the nodes in V should be totally ordered with respect
to the starting position of the F-interval, which is represented as a node in V . Namely,
vπ1 < vπ2 < . . . < vπk

holds for permutation π1, π2, . . . , πk of sequence 1, 2, . . . , k such that
LFδ(pπ1) < LFδ(pπ2) < . . . < LFδ(pπk

). The nodes in V are stored in another doubly linked
list, where each node vi ∈ V has previous and next pointers connecting to the previous and
next nodes in the increasing order of nodes in V , respectively. The space of two doubly
linked lists storing nodes in U and V is O(k log n) bits.

All the nodes corresponding to α-heavy DBWT-repetitions in U are stored in an array
data structure in any order. Similarly, all the nodes corresponding to α-heavy F-intervals in
V are stored in another array data structure in any order. The two arrays take O(k log n)
bits of space. Each array stores nothing if Dδ is α-balanced.

An order maintenance data structure [9] is used for comparing two nodes in U with the
total order of U , and the data structure supports the following three operations: (i) the
order operation determines whether or not node ui ∈ U precedes node uj ∈ U in the total
order of U ; (ii) the insertion operation inserts node ui ∈ U right after node uj ∈ U in the
total order of U ; (iii) the deletion operation deletes node ui ∈ U from U . The data structure
supports these three operations in O(1) time with O(k log n) bits of space, and it is used
with a B-tree that stores the nodes in V , as explained below.

A B-tree (a type of self-balancing search tree) is built on the set V of nodes using the
combination of the order maintenance data structure, where each node vi in V is totally
ordered with respect to (i) the total order of the node ui in U that is connected to vi by an
edge in ELF (i.e., (ui, vi) ∈ ELF ) and (ii) the first character Lδ[pi] of the DBWT-repetition
is represented as ui. For a node vi ∈ V , the B-tree stores a pair (ui, Lδ[pi]) as the key of the
node vi. Nodes in V are totally ordered using the key, and vi ∈ V precedes vj ∈ V if and
only if either of the following conditions holds: (i) Lδ[pi] < Lδ[pj ] or (ii) Lδ[pi] = Lδ[pj ] and
ui precedes uj in the total order of U (i.e., i < j). Condition (ii) is efficiently computed in
O(1) time by the order maintenance data structure of U . According to the following lemma,
the order of keys in the B-tree is the same as that of the nodes stored in the doubly linked
list of V (i.e., the order of the nodes in the B-tree is vπ1 < vπ2 < . . . < vπk

).

▶ Lemma 1. For two distinct nodes vi, vj ∈ V , the key of vi precedes that of vj in the B-tree
of V if and only if vi precedes vj in the doubly linked list of V (i.e., LFδ(pi) < LFδ(pj)).

Proof. See the full version of the paper [24]. ◀

The B-tree with the order maintenance data structure supports the three operations of
search, insertion, and deletion for any node in V in O(log k) time with O(k log n) bits of
space.

5.2 Extension of BWT ([30, 28])
The BWT of a suffix can be extended from the BWT of a shorter suffix [30, 28]. In this
section, we review the extension of BWT, which is used for updating the LF-interval graph.
The BWT Lδ+1 of a suffix Tδ+1 of length δ + 1 can be computed from the BWT Lδ of the
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Figure 4 Each step in the update operation for the LF-interval graph in Figure 3. New nodes
and edges created in each step are colored in red.

suffix Tδ of length δ using the following two steps: (i) special character $ in Lδ is replaced
with the first character c of Tδ+1 (i.e., c = T [n− δ]); (ii) special character $ is inserted into
Lδ at a position ins. Here, ins is computed by the LF formula as follows: for the position rep
of special character $ in Lδ (i.e., Lδ[rep] = $), ins = occ<(Lδ, c) + rank(Lδ, rep, c) + 1.

In Figure 1, BWT L12 of suffix T12 can be extended from L11 of suffix T11. The first
character c of T12 is a, and special character $ is replaced with a at rep = 5 on L11. The
insertion position ins for L11 is 3 because occ<(L11, a) + rank(L11, rep, a) + 1 = 3.

5.3 Foundation of updates of the LF-interval graph
Given the first character c in suffix Tδ+1 of length δ + 1, an update operation of LF-
interval graph Grp(Dα

δ ) for an α-balanced DBWT Dα
δ = Lδ[p1..(p2 − 1)], Lδ[p2..(p3 −

1)], . . . , Lδ[pk..(pk+1 − 1)] of Tδ updates Grp(Dα
δ ) to Grp(D2α+1

δ+1 ) for a (2α + 1)-balanced
DBWT D2α+1

δ+1 of Tδ+1. The update operation updates the given LF-interval graph according
to the extension of BWT. This operation consists of four main steps: (I) replace node, (II)
split node, (III) insert node, and (IV) update edge. Note that the update operation presented
in this section is a foundation for the ones presented in the following two subsections, where
several modifications are made to the foundation for faster operation.

(I) Replace node. This step replaces the node ui ∈ U labeled ($, 1) with a new one ui′

labeled (c, 1), and it updates V according to the replacement of the node in U . Node ui can
be found in O(1) time by keeping track of it on U . The doubly linked list of U is updated
according to the replacement. The node vi ∈ V connected to ui by edge (ui, vi) ∈ ELF is
removed from V , and a new node vi′ labeled (c, 1) is inserted into V at the position next to
the most backward node vg of the nodes whose keys are smaller than key (ui, c). Node vg

can be found in O(log k) time using the B-tree of V . This step takes O(log k) time in total.
Figure 4-(I) shows an example of the replace-node step for the LF-interval graph Grp(D11)

in Figure 3. Node u4 ∈ U labeled ($, 1) on Grp(D11) is replaced with node u8 labeled (a, 1).
Node v4 ∈ V , which is connected to u4 by edge (v4, u4) ∈ ELF , is removed from V , and edge
(v4, u4) is removed from ELF . A new node v8 with label (a, 1) is inserted into V . This node
is inserted into the doubly linked list of V at the position next to v1 (i.e., vg = v1).

(II) Split node. The insert-node step (as the next step) inserts a new node representing
special character $ into U . However, before the insert-node step, the split-node step splits
a node uj ∈ U into two new nodes at an appropriate position on the doubly linked list of
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U . This step is executed for inserting the new node representing special character $ into
U at a appropriate position in the insert-node step. Following the extension of BWT in
Section 5.2, node uj ∈ U has label (Lδ[pj ], pj+1 − pj) for the two starting positions pj and
pj+1 satisfying pj < ins < pj+1 for the insertion position ins of special character $. Such a
node uj exists if and only if (i) the BWT Lδ+1 of Tδ+1 does not have special character $ as
the last character (i.e., ins ̸= δ + 1) and (ii) pi ̸= ins for all i ∈ {1, 2, . . . , k}. This is because
p1 < p2 < . . . < pk+1 and pk+1 = δ + 1 hold.

If node uj does not exist in U , this step does not split nodes. Otherwise, uj is replaced
with two new nodes uj′ and uj′+1 in the doubly linked list of U , where uj′ is previous to
uj′+1. The new nodes uj′ and uj′+1 are labeled as (Lδ[pj ], ins− pj) and (Lδ[pj ], pj+1 − ins)
using insertion position ins, respectively.

Although we do not know position ins in the split-node step, we can find node uj . This
is because (i) set V contains node vgnext representing the F-interval starting at position ins
unless ins = δ + 1, and (ii) vgnext is next to vg in the doubly linked list of V for the node vg

searched for in the replace-node step. The following lemma ensures that we can find uj and
compute the labels of the new nodes in O(1) time.

▶ Lemma 2. The following two statements hold after executing the replace-node step: (i) we
can check whether uj exists or not in O(1) time; (ii) we can find uj and compute the labels
of two nodes uj′ and uj′+1 in O(1) time.

Proof. See the full version of the paper [24]. ◀

Next, set V is updated according to the replacement of nodes in U , i.e., for undirected
edge (uj , vj) ∈ ELF , node vj is replaced with two new nodes vj′ and vj′+1 in the doubly
linked list of V , where vj′ is previous to vj′+1. Nodes vj′ and vj′+1 have the same labels of
uj′ and uj′+1, respectively. Therefore, this step takes O(1) time.

Figure 4-(II) illustrates an example of the split-node step. In this example, ins = 3,
vgnext = v6, vj = v2, vj′ = v9, and vj′+1 = v10 hold. In Figure 3, the directed edge starting
at node v6 is labeled as integer 1 by function BF (v6, u2), and the directed edge points to
node u2 with label (b, 2). Hence, node u2 is replaced with two nodes u9 and u10. Two nodes
u9 and u10 are labeled with pairs (b, 1) and (b, 1), respectively. Node v2 is connected to u2
by edge (v2, u2) ∈ ELF , and v2 is replaced with two nodes v9 and v10. Here, v9 and v10 are
labeled with pairs (b, 1) and (b, 1), respectively.

(III) Insert node. This step inserts a new node ux′ labeled ($, 1) into U , and it updates V

according to the insertion of U . Analogous to the extension of BWT described in Section 5.2,
the position for inserting the new node in the doubly linked list of U is determined according
to the following three cases: (i) Node uj ∈ U was found and it was split into two nodes
uj′ and uj′+1 in the split-node step. In this case, node ux′ is inserted at the position next
to uj′ ∈ U on the doubly linked list of U . (ii) Node uj was not found, and new node vi′

is inserted at the position next to the last element on the doubly linked list of V in the
replace-node step. In this case, ux′ is inserted at the position next to the last element on
the doubly linked list of U . (iii) Node uj was not found, and vi′ is inserted at the position
previous to a node vgnext ∈ V on the doubly linked list of V . In this case, vgnext is connected
to a node ux ∈ U by a directed edge in EF , and ux′ is inserted into the doubly linked list of
U at the position previous to ux.

Next, this step creates a new node vx′ labeled ($, 1), and it is inserted into the doubly
linked list of V . The new node is inserted at the top of the list, because the new label
includes special character $. This step takes O(1) time.
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Figure 4-(III) illustrates an example of the insert-node step. Because the split-node step
replaced node u2 with two nodes u9 and u10, the insert-node step inserts node u11 labeled
($, 1) at the position next to u9 on the doubly linked list of U . On the other hand, the
step inserts node v11 labeled ($, 1) in the doubly linked list of V at the position previous to
node v1.

(IV) Update edge. This step updates the set ELF of undirected edges and two sets EL and
EF of directed edges according to the two sets U and V , which were updated in the previous
steps. This step consists of two phases: (i) for the nodes of ui, vi, uj , and vj removed in
the replace-node and split-node steps, the edges connected to these nodes are removed from
ELF , EL, and EF ; (ii) new edges connecting new nodes (i.e., uj′ , uj′+1, vi′ , and vj′+1) are
added to ELF , EL, and EF . The labels of new directed edges are computed at the second
phase. The number of removed edges and new edges can be bounded by O(α) because (i)
every node in the LF-interval graph for an O(α)-balanced DBWT is connected to O(α)
edges, (ii) the DBWT represented by the given LF-interval graph Grp(Dα

δ ) is α-balanced,
and (iii) the LF-interval graph Grp(D2α+1

δ+1 ) outputted by this update operation represents
a (2α + 1)-balanced DBWT. Because the number of updated edges is small, this step can
be performed in O(α) time. See the full version of the paper [24] for the details of the
update-edge step. Formally, we obtain the following lemma.

▶ Lemma 3. The update-edge step takes O(α) time.

Proof. See the full version of the paper [24]. ◀

In Figure 4-(IV), four edges (u8, v8), (u9, v9), (u10, v10), and (u11, v11) connecting new
nodes are added to ELF . Six directed edges (u1, v11), (u9, v1), (u11, v8), (u10, v6), (u8, v7),
and (u5, v9) are added to EL. Similarly, seven directed edges (v11, u1), (v1, u9), (v8, u11),
(v6, u10), (v7, u8), (v9, u5), and (v10, u5) are added to EF .

Update of the data structures. Similar to the update-edge step, the four data structures
in the LF-interval graph (i.e., the order maintenance data structure, the B-tree of set V , and
two arrays that store nodes representing α-heavy DBWT-repetitions and F-intervals) are
updated according to the removed nodes and new nodes.

See the full version of the paper [24] for the details of the algorithm updating the four
data structures. The following lemma concerning the update time of the four data structures.

▶ Lemma 4. Updating the four data structures takes O(α + log k) time.

Proof. See the full version of the paper [24]. ◀

The update operation takes O(α + log k) time in total. The following lemma concerning
the theoretical results on this update operation holds.

▶ Theorem 5. The following two statements hold: (i) the update operation takes O(α+log k)
time; (ii) the update operation takes as input the LF-interval graph for an α-balanced DBWT
Dα

δ of BWT Lδ, and it outputs the LF-interval graph for a (2α+1)-balanced DBWT D2α+1
δ+1 of

BWT Lδ+1 with at most two α-heavy DBWT-repetitions and at most two α-heavy F-intervals.

Proof. See the full version of the paper [24]. ◀
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From Theorem 5, the update operation outputs the LF-interval graph for a (2α + 1)-
balanced DBWT D2α+1

δ+1 of BWT Lδ+1, which is not α-balanced. The output DBWT D2α+1
δ+1 is

balanced into an α-balanced DBWT Dα
δ+1 by the balancing operation presented in Section 5.6.

The update of the LF-interval graph presented in this section takes O(α + log k) time, which
results in an O(αn + n log k)-time construction of the RLBWT from an input string of length
n. The following two sections (Section 5.4 and Section 5.5) present two modified updates of
the LF-interval graph in O(α + log k)-time and O(α)-time, respectively, in order to achieve
the O(αn + r log r)-time construction of an RLBWT with O(r log n) bits of working space.

5.4 O(α + log k)-time update of LF-interval graph
This section presents the update operation update(Grp(Dα

δ ), c) taking an LF-interval graph
Grp(Dα

δ ) and the first character c of suffix Tδ+1 as input and running in O(α + log k) time
by modifying the foundation of the update operation presented in Section 5.3. For the node
ui−1 previous to the node ui representing special character $ in the doubly linked list of U

and the node ui+1 next to ui, update operation update(Grp(Dα
δ ), c) is applied if neither ui−1

nor ui+1 has labels including character c.
We first present a modified update of the B-tree of V in O(log k) time. This update

replaces the original update of the B-tree. The following lemma holds with respect to nodes
searched for using the B-tree of V in the replace-node step of this update operation.

▶ Lemma 6. For the node vg ∈ V searched for using the B-tree of V in the replace-node
step of the update operation update(Grp(Dα

δ ), c), vg satisfies any one of the following three
properties: (i) for undirected edge (ug, vg) ∈ ELF and node ug+1 ∈ U next to ug in the
doubly linked list of U , the two consecutive nodes ug and ug+1 have labels including different
characters, and the label of ug+1 does not include special character $; (ii) for the node
ug+2 ∈ U next to ug+1 in the doubly linked list of U , the two nodes ug and ug+2 have labels
including different characters, and the label of ug+1 includes special character $; (iii) the
label of ug includes special character $.

Proof. See the full version of the paper [24]. ◀

Thus, the B-tree of V stores only the nodes in V satisfying one of the three conditions of
Lemma 6, because Lemma 6 ensures only such nodes are searched for in the replace-node
step of this update operation.

The target nodes inserted into the B-tree of V (respectively, the target nodes deleted
from the B-tree of V ) are limited to four (respectively, three) according to the following
lemma.

▶ Lemma 7. Nodes ui ∈ U and vi ∈ V are the nodes removed from U and V by the replace-
node steps, respectively. Node ui−1 ∈ U is the node previous to node ui in the doubly linked
list of U , and vi−1 ∈ V is the node connected to ui−1 by undirected edge (ui−1, vi−1) ∈ ELF .
Node vj ∈ V is the node removed from V by the split-node step, and vj′ , vj′+1 ∈ V are the
nodes newly created by the same step. Similarly, vi′ ∈ V and vx′ ∈ V are the nodes created
by the replace-node and insert-node steps, respectively. Then, the following two statements
hold for the update operation update(Grp(Dα

δ ), c): (i) targets inserted into the B-tree of V

can be limited to only four nodes vi−1, vi′ , vx′ , and vj′+1; (ii) the targets deleted from the
B-tree of V can be limited to only three nodes, vi−1, vi, and vj.

Proof. See the full version of the paper [24]. ◀
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Thus, all the nodes inserted into the B-tree of V can be found by searching for only
four nodes vi−1, vi′ , vx′ , and vj′+1 and checking whether or not each one, vi−1, vi′ , vx′ , and
vj′+1, satisfies one of the three conditions presented in Lemma 6. Similarly, all the nodes
deleted from the B-tree of V can be found by searching for only three nodes vi−1, vi, and vj

and checking whether or not each of these nodes satisfies one of the three conditions. This
modified update of the B-tree takes O(log k) time in total.

The algorithm of update operation update(Grp(Dα
δ ), c) is the same as that of the original

update operation presented in Section 5.3 except for the algorithm updating the B-tree of V .
Hence, update operation update(Grp(Dα

δ ), c) takes O(α + log k) time in total. The following
lemma concerning the theoretical results on this update operation holds.

▶ Lemma 8. Assume that the B-tree of V in LF-interval graph Grp(Dα
δ ) contains only nodes

satisfying one of the three conditions of Lemma 6: (i) update operation update(Grp(Dα
δ ), c)

runs in O(α+log k) time; (ii) the update operation outputs the LF-interval graph Grp(D2α+1
δ+1 )

for a (2α + 1)-balanced DBWT D2α+1
δ+1 of BWT Lδ+1 with at most two α-heavy DBWT-

repetitions and at most two α-heavy F-intervals; (iii) the B-tree of V in the outputted
LF-interval graph contains only nodes satisfying one of the three conditions of Lemma 6.

In the next subsection, the second modified update operation of LF-interval graph achieves
O(α) time using the B-tree of V containing only nodes satisfying one of the three conditions
of Lemma 6.

5.5 O(α)-time update of LF-interval graph
This section presents fast update operation fastUpdate(Grp(Dα

δ ), c), which takes an LF-
interval graph Grp(Dα

δ ) and the first character c of suffix Tδ+1 as input and runs in O(α)
time. This time is achieved by modifying the foundation of the update operation presented
in Section 5.3, and the B-tree of V needs to contain only nodes of satisfying one of the three
conditions of Lemma 6 in the input and output LF-interval graphs, similar to the update
operation in Section 5.4 (Lemma 8).

For node ui−1 ∈ U previous to node ui ∈ U that represents special character $ in the
doubly linked list of U and node ui+1 ∈ U next to ui, the fast update operation is applied
if either or both ui−1 and ui+1 have a label including character c; the update operation in
Section 5.4 is applied otherwise. The large computational demand of the update operation
on LF-interval graphs presented in Section 5.3 derives from the access and update of the
B-tree of V in O(log k) time, resulting in an O(α + log k) time update of LF-interval graphs.
We present two improvements to the foundation of the update operation: (i) deletion and
insertion operations of the B-tree of V in O(1) time and (ii) the replace-node step in O(1)
time without using the B-tree of V . The details of the fast operation are presented in the
full version of the paper [24].

Deletion and insertion operations of B-tree in constant time. Generally, inserting/deleting
a key into/from the B-tree of V takes O(log k) time. We present O(1)-time deletion and
insertion operations of a specific node in the B-tree of V without the need for heavyweight
operations to maintain the balance of the B-tree.

Recall that (i) ui′ ∈ U and vi′ ∈ V are the nodes created by the replace-node step, (ii)
vj ∈ V is the node removed from V by the split-node step, and (iii) ux′ ∈ U and vx′ ∈ V are
the nodes created by the insert-node step. Let ui′−1 ∈ U (respectively, ui′+1 ∈ U) be the
node previous to node ui′ (respectively, the node next to node ui′) in the doubly linked list
of U after the insert-node step has been executed. Then, there exist two nodes vi′−1 and
vi′+1 ∈ V such that (ui′−1, vi′−1), (ui′+1, vi′+1) ∈ ELF .
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Figure 5 Three cases A, B, and C for preprocessing deletions/insertions in the B-tree. Gray
nodes are stored in the B-tree.

In the fast update operation, the target nodes deleted from the B-tree are limited to
at most four nodes vi, vj , vi′−1, and vi′+1, which is similar to Lemma 7-(ii). In the doubly
linked list of V , node vi is replaced with the new node vx′ created in the insert-node step of
the update operation. Because the two nodes vi and vx′ represent special character $, both
satisfy the third condition of Lemma 6. Thus, both nodes vi and vx′ are placed on the root
of the B-tree. Hence, vi can be deleted and vx′ can be inserted into the B-tree in O(1) time
without balancing the B-tree.

Next, in the doubly linked list of V , node vj is replaced with the two nodes vj′ and
vj′+1 ∈ V that were created in the split-node step of the update operation. Node vj′ satisfies
none of the three conditions of Lemma 6. Thus, vj is deleted from the B-tree of V , and vj′+1
(that is, not vj′) is only inserted into the B-tree of V if vj is contained in the B-tree of V

because of the next lemma.

▶ Lemma 9. The following two statements hold: (i) vj′ satisfies none of the three conditions
of Lemma 6; (ii) for the node uj( ̸= ui−1) connected to vj by undirected edge (uj , vj) ∈ ELF ,
vj′+1 satisfies any one of the three conditions of Lemma 6 if and only if vj satisfies any one
of the three conditions.

Proof. See the full version of the paper [24]. ◀

Because vj is replaced with vj′+1 in the doubly linked list of V , the element representing
vj can be replaced with the element representing vj′+1 in the B-tree from Lemma 1. Hence,
vj is deleted from the B-tree of V and vj′+1 is inserted into the B-tree of V in O(1) time
without balancing the B-tree. Illustrations of the replacement of two nodes vi and vj in the
doubly linked list of V can be found in the full version of the paper [24].

The above procedure inserts vj′+1 into the B-tree of V even if the node satisfies none of
the three conditions of Lemma 6. This is because Lemma 9-(ii) assumes that uj ̸= ui−1 holds,
but uj ̸= ui−1 is not always true. If the assumption holds, vj′+1 is appropriately inserted into
the B-tree of V . Otherwise (i.e., vj′+1 = vi′−1 holds), node vj′+1 is appropriately deleted
from the B-tree of V in O(1) time, which is explained next.

Two nodes vi′−1 and vi′+1 are appropriately deleted from the B-tree of V , and new nodes
are inserted into the B-tree of V in the update operation of the LF-interval graph. For
updating the B-tree of V in O(1) time, we merge at most three nodes vi′ , vi′−1, and vi′+1
into a new node in a prepossessing step. The merging of nodes and update of the B-tree are
performed according to the following three cases.
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Case A: vi′−1 has a label including character c and vi′+1 does not have a label including
character c (Figure 5-(i)). First, the two consecutive nodes ui′−1 with label (c, ℓ) and ui′

with label (c, 1) are merged into a new one uy′ with label (c, ℓ + 1) in the doubly linked list
of U . Then, set V is updated according to the merge of the two nodes in U , i.e., the two
consecutive nodes vi′−1 and vi′ are merged into a new one vy′ with label (c, ℓ + 1) in the
doubly linked list of V .

Node vi′+1 is kept in the B-tree of V (if the node is contained in the B-tree). Node vi′−1
is deleted from the B-tree of V and new node vy′ is inserted only if vi′−1 is contained in the
B-tree of V . Because vi′−1 is replaced by vy′ in the doubly linked list of V , vi′−1 can be
deleted from the B-tree of V and vy′ can be inserted in O(1) time from Lemma 1.

Case B: vi′−1 does not have a label including character c, and vi′+1 has a label including
character c (Figure 5-(ii)). First, the two consecutive nodes ui′ and ui′+1 with label (c, ℓ′)
are merged into a new node uy′ with label (c, ℓ′ + 1) in the doubly linked list of U . Then, set
V is updated according to the merge of the two nodes in U .

In this case, vi′−1 is contained in the B-tree of V , and the node is kept. Node vi′+1 is
deleted from the B-tree of V and new node vy′ is inserted only if vi′+1 is contained in the
B-tree of V . Because vi′+1 is replaced with vy′ in the doubly linked list of V , vi′+1 is deleted
from the B-tree of V and vy′ is inserted in O(1) time from Lemma 1.

Case C: both vi′−1 and vi′+1 have labels including the same character c (Figure 5-(iii)).
First, the three consecutive nodes ui′−1, ui′ and ui′+1 are merged into a new node uy′ with
label (c, ℓ + ℓ′ + 1) including the same character c in the doubly linked list of U . Then, set V

is updated according to the merge of the three nodes in U .
In this case, vi′−1 is not contained in the B-tree of V . Node vi′+1 is deleted from the

B-tree and the new node vy′ is inserted if vi′+1 is contained in the tree; otherwise, vy′ is not
inserted into the tree. Because vi′+1 is replaced by vy′ in the doubly linked list of V , vi′+1 is
deleted and vy′ is inserted into the B-tree of V in O(1) time from Lemma 1.

One of the three cases always holds (see the full version of the paper [24]). The pre-
processing of the B-tree of V (i.e., the merging of nodes) does not affect Lemma 9. Hence,
updating the B-tree takes O(1) time.

Replace-node step in constant time. The replace-node step is performed in O(1) time by
finding the position for inserting a new node vi′ with label (c, 1) into the doubly linked list
of V without accessing the B-tree of set V . This is made possible if either or both ui−1 and
ui+1 have labels including the same character c. The following lemma holds.

▶ Lemma 10. If either or both ui−1 and ui+1 have labels including the same character c,
the position for inserting the new node vi′ into the doubly linked list of V can be found in
O(1) time.

Proof. See the full version of the paper [24]. ◀

The following lemma concerning the conclusion of the fast update operation holds.

▶ Lemma 11. Assume that the B-tree of V in LF-interval graph Grp(Dα
δ ) contains only

the nodes that satisfy one of the three conditions of Lemma 6: (i) fast update operation
fastUpdate(Grp(Dα

δ ), c) runs in O(α) time; (ii) the fast update operation outputs the LF-
interval graph for a (2α + 1)-balanced DBWT D2α+1

δ+1 of BWT Lδ+1 with at most two α-heavy
DBWT-repetitions and at most two α-heavy F-intervals; (iii) the B-tree of V in the outputted
LF-interval graph contains only nodes satisfying one of the three conditions of Lemma 6.
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Proof. See the full version of the paper [24]. ◀

Both update operation update(Grp(Dα
δ ), c) and fast update operation

fastUpdate(Grp(Dα
δ ), c) output the LF-interval graph for a (2α + 1)-balanced DBWT

D2α+1
δ+1 of BWT Lδ+1 with at most two α-heavy DBWT-repetitions and at most two α-heavy

F-intervals. The outputs are balanced by the balancing operation presented in the next
subsection such that the LF-interval graph represents an α-balanced DBWT Dα

δ+1 of BWT
Lδ+1.

5.6 Balancing operation of the LF-interval graph
Balancing operation balance(Grp(Dδ)) takes the LF-interval graph Grp(Dδ) for a DBWT Dδ

of BWT Lδ as input, and it outputs the LF-interval graph Grp(Dα
δ ) for an α-balanced DBWT

Dα
δ of the same BWT. The basic idea behind the balancing operation is to iteratively remove

each of nodes representing α-heavy DBWT repetitions and α-heavy F-intervals from the
given LF-interval graph by splitting the chosen node into two nodes. The balancing operation
repeats this process until it obtains the LF-interval graph for an α-balanced DBWT.

We explain the algorithm of the balancing operation. At each iteration, the balancing
operation processes the LF-interval graph for an O(α)-balanced DBWT with O(α) α-heavy
DBWT-repetitions and O(α) α-heavy F-intervals. Let (ui, vi) ∈ ELF be an undirected edge
such that node ui ∈ U represents an α-heavy DBWT-repetition, or node vi ∈ V represents
an α-heavy F-interval. At the iteration, node ui is split into two nodes, and vi is split into
two nodes according to the splitting of ui. The LF-interval graph Grp(DO(α)

δ ) is updated
according to the splitting of ui and vi. One iteration of the balancing operation takes O(α)
time. See the full version of the paper [24] for the details of the balancing operation.

The following lemma concerning the theoretical results on the balancing operation holds.

▶ Lemma 12. For the LF-interval graph Grp(D2α+1
δ ) for a (2α+1)-balanced DBWT including

at most two α-heavy DBWT-repetitions and at most two α-heavy F-intervals, we assume
that the B-tree of V in the LF-interval graph contains only nodes satisfying one of the three
conditions of Lemma 6. Then, balancing operation balance(Grp(D2α+1

δ )) takes O(α) time per
iteration for all α ≥ 4, and the B-tree of V in the outputted LF-interval graph contains only
nodes satisfying one of the three conditions of Lemma 6.

Proof. See the full version of the paper [24]. ◀

6 R-comp algorithm

In this section, we present the r-comp algorithm, and we also present its space and time
complexities. The r-comp algorithm takes input string T and parameter α ≥ 2, and it
outputs the RLBWT of T . The pseudo-code of r-comp is given in Algorithm 1.

The algorithm reads T from its end to its beginning (i.e., T [n], T [n− 1], . . . , T [1]), and it
gradually builds the LF-interval graph Grp(Dα

n) for an α-balanced DBWT Dα
n of BWT Ln of

T . At each δ ∈ {1, 2, . . . , n− 1}, LF-interval graph Grp(Dα
δ ) for an α-balanced DBWT Dα

δ of
BWT Lδ of T [(n− δ + 1)..n] (i.e., suffix Tδ) is built. For the node ui ∈ U representing special
character $ in the doubly linked list of set U of nodes in LF-interval graph Grp(Dα

δ ), two
nodes ui−1 ∈ U and ui+1 ∈ U are previous and next to node ui, respectively, in the list. If
neither the label of ui−1 nor the label of ui+1 includes the (n−δ)-th character c of T (i.e., the
first character c of Tδ+1), the update operation update(Grp(Dα

δ ), c) described in Section 5.4 is
applied; otherwise the fast update operation fastUpdate(Grp(Dα

δ ), c) described in Section 5.5
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Algorithm 1 R-comp algorithm. The algorithm takes string T and parameter α ≥ 2 as input, and
it outputs the RLBWT of T . n : length of T ; Dα

δ : α-balanced DBWT of BWT Lδ of T [(n−δ +1)..n];
Grp(Dα

δ ) : the LF-interval graph of α-balanced DBWT Dα
δ .

1: function r-comp(T , α)
2: Dα

1 ← $ ▷ Initialize Dα
1 as special character $

3: build Grp(Dα
1 )

4: for δ = 1, 2, . . . , n− 1 do
5: c← T [n− δ] ▷ Read character c from T [n− δ]
6: if neither the label of ui−1 nor the label of ui+1 includes character c then
7: Grp(D2α+1

δ+1 )← update(Grp(Dα
δ ), c) ▷ The update operation in Sec. 5.4

8: else
9: Grp(D2α+1

δ+1 )← fastUpdate(Grp(Dα
δ ), c) ▷ The fast update operation in Sec. 5.5

10: end if
11: Grp(Dα

δ+1)← balance(Grp(D2α+1
δ+1 )) ▷ The balancing operation in Sec. 5.6

12: end for
13: Recover Dα

n from Grp(Dα
n)

14: Convert Dα
n into the RLBWT of T

15: Return the RLBWT
16: end function

is applied. Both the update operation and the fast update operation output an LF-interval
graph Grp(D2α+1

δ+1 ) for DBWT D2α+1
δ+1 of BWT Lδ+1 that is not α-balanced. Thus, the r-comp

algorithm balances the LF-interval graph such that it represents an α-balanced DBWT Dα
δ+1

using the balancing operation in Section 5.6 as Grp(Dα
δ+1). After (n− 1) iterations of those

steps, the LF-interval graph Grp(Dα
n) for α-balanced DBWT Dα

n of BWT Ln is obtained; it
is then converted into Dα

n using the doubly linked list of U . Finally, Dα
n is converted into

the RLBWT of T .

6.1 Space and time complexities
Space complexity. The r-comp algorithm requires O(k log n) bits of space for k DBWT-
repetitions in the DBWT Dα

n because the LF-interval graph Grp(Dα
n) for the DBWT requires

O(k log n) bits of space. The value of k depends on the number of executions of update, fast
update, and balancing operations executed by the r-comp algorithm. The following lemma
ensures that k can be bounded by O(r).

▶ Lemma 13. We modify the fast update operation. Then, the following three statements
hold: (i) this modification does not affect Lemma 11; (ii) k ≤ r + ksplit; (iii) ksplit ≤ 2r

⌈α/2⌉−7
holds for any constant α ≥ 16.

Proof. See the full version of the paper [24]. ◀

Because k = O(r) by Lemma 13, the following theorem is obtained.

▶ Theorem 14. The r-comp algorithm takes O(r log n) bits of working space for α ≥ 16.

Time complexity. The bottleneck of r-comp is the update operation of LF-interval graph
with O(α + log k) time in Section 5.4. The number of executions of the update operation
can be bounded by O(r). This fact indicates that we can bound the running time of r-comp
by O(αn + r log k), i.e., O(αn + r log r). Finally, we obtain the following theorem.

ICALP 2022
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▶ Theorem 15. R-comp runs in O(αn + r log r) time for α ≥ 16.

Proof. See the full version of the paper [24]. ◀

7 Experiments

Setup. We empirically tested the performance of the r-comp algorithm on strings from four
datasets with different types of highly repetitive strings: (i) nine strings from the Pizza&Chili
repetitive corpus [29]; (ii) three strings (boost, samtools, and sdsl) of the latest revisions
of Git repositories, each of which is 1GB in size; (iii) a 37GB string (enwiki) of English
Wikipedia articles with a complete edit history [33]; and (iv) a 59GB string (chr19.1000)
obtained by concatenating chromosome 19 from 1,000 human genomes in the 1000 Genomes
Project [32]. See the full version of the paper [24] for the relevant statistics in the datasets.
The ratio n/r of string length n to the number r of BWT-runs in BWT is the compression
ratio of each string. The strings with high compression ratios are versions of Wikipedia
articles (einstein.de.txt and einstein.en.txt), revisions of Git repositories (boost, samtools, and
sdsl), and 1000 human genomes (chr19.1000).

We implemented two versions of the r-comp algorithm (i.e., r-comp and r-compsaving).
Here, r-comp is the straightforward implementation of the r-comp algorithm presented in
Section 6; r-compsaving is a space-saving implementation of the r-comp algorithm. This
version is more space efficient than r-comp because it uses a grouping technique with
parameter g = 16. We compared r-comp and r-compsaving with three state-of-the-art
algorithms, one indirect construction algorithm of RLBWT (Big-BWT) and two direct
construction algorithms of RLBWT (the PP and Faster-PP methods), which were reviewed
in Section 2 and summarized in Table 1. The comparisons were performed using a single
thread on one core of a CPU. The source code of the r-comp algorithm is available at
https://github.com/kampersanda/rcomp. See the full version of the paper [24] for the
details of the setup.

Results. A comparison of the r-comp variants (r-comp and r-compsaving) shows that the
working space of r-compsaving was 3.8–4.4 times smaller than that of r-comp, whereas the
construction time of r-compsaving was at most only 2.0 times slower and at most 2.0 times
faster on world_leaders and samtools. These results show r-compsaving has a high compression
performance when compared with r-comp. Comparisons of the experimental results of
r-compsaving and the other methods are presented below.

r-compsaving was the fastest in the comparison to the direct RLBWT constructions of
the PP and Faster-PP methods. Especially for strings with a large ratio n/r, r-compsaving
was 81–118 times faster than the PP method and 3.8–5.1 times faster than the Faster-PP
method; the working space of r-compsaving was 2.4–6.1 times larger than that of the PP
method and 2.8–2.9 times larger than that of the Faster-PP method, which shows that the
working space of r-compsaving is reasonable considering its construction time. For the large
dataset enwiki, r-compsaving finished the construction in 6.8 hours, whereas the Faster-PP
method took 15.4 hours. In addition, the PP method did not finish within 24 hours. For the
1000 human genomes chr19.1000, r-compsaving finished the construction in 11 hours, whereas
the PP and Faster-PP methods did not finish within 24 hours.

In the comparison between r-comp and Big-BWT, r-comp was more space efficient
than Big-BWT on most strings. Because r was much smaller than |PFP|, the results are
consistent with the theoretical bound O(r log n) of the working space of the r-comp algorithm
(Theorem 14). On strings with large values of |PFP|/r, whereas r-compsaving was slower

https://github.com/kampersanda/rcomp
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than Big-BWT, the difference in the construction times between r-compsaving and Big-BWT
were reasonable if one considers the space efficiency of r-compsaving. For example, for boost,
r-comp was 26 times more space efficient and only 2.7 times slower; for world_leaders, r-comp
was 3.9 times more space efficient and only 1.5 times slower.

On the large datasets (i.e., enwiki and chr19.1000), r-comp was more space-efficient
but slower than Big-BWT; r-comp was 2.3 times space-efficient but 10 times slower than
Big-BWT on enwiki; r-comp was 2.5 times space-efficient but 11 times slower than Big-BWT
on chr19.1000.

Overall, r-compsaving was the fastest RLBWT construction in O(r log n) bits of space.
Although Big-BWT was faster than r-compsaving, it was not space efficient for several strings
(e.g., boost). On most datasets, r-compsaving achieved a better tradeoff between construction
time and working space. Furthermore, r-comp has a huge advantage in that it supports the
insertion of a new character into RLBWT, while BigBWT does not support such an insertion
operation.

8 Conclusion

We presented r-comp, the first optimal-time construction algorithm of RLBWT in O(n)
time with O(r log n) bits of working space for highly repetitive strings with r = O(n/ log n).
Experimental results using benchmark and real-world datasets of highly repetitive strings
demonstrated the superior performance of the r-comp algorithm.

The idea behind the DBWT presented in this paper has a wide variety of applications,
and it is applicable to the construction of various types of data structures. Therefore, a future
task is to develop optimal-time constructions of various data structures for fast queries.
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Abstract
We identify two new big clusters of proof complexity measures equivalent up to polynomial and
log n factors. The first cluster contains, among others, the logarithm of tree-like resolution size,
regularized (that is, multiplied by the logarithm of proof length) clause and monomial space, and
clause space, both ordinary and regularized, in regular and tree-like resolution. As a consequence,
separating clause or monomial space from the (logarithm of) tree-like resolution size is the same
as showing a strong trade-off between clause or monomial space and proof length, and is the same
as showing a super-critical trade-off between clause space and depth. The second cluster contains
width, Σ2 space (a generalization of clause space to depth 2 Frege systems), both ordinary and
regularized, as well as the logarithm of tree-like size in the system R(log). As an application of
some of these simulations, we improve a known size-space trade-off for polynomial calculus with
resolution. In terms of lower bounds, we show a quadratic lower bound on tree-like resolution size for
formulas refutable in clause space 4. We introduce on our way yet another proof complexity measure
intermediate between depth and the logarithm of tree-like size that might be of independent interest.
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1 Introduction

With the rise of computer science, questions like “can we solve a problem?” got a quantitative
counterpart: “how hard is it to solve a problem?”. Proof complexity deals with the quantitative
version of “can we prove a theorem?”, namely, the question “how hard is it to prove a theorem?”.
The systematic study of the latter question for propositional proof systems started with
Cook and Reckhow [13], where its fundamental role in complexity theory was identified.

The most natural, arguably also the most important, measure of the complexity of a
proof is its size, and indeed, much of the research in propositional proof complexity has
concentrated on proof size lower bounds. But given in particular their role in proof systems
of practical significance, several other natural complexity measures have been considered, and
that has led to a considerable line of study about relations between them (simulations), lack
of relations thereof (separations) and the inherent impossibility of optimizing two different
measures at once (trade-offs). To aid further discussion, let us review those measures and
previous results that are most pertinent to this work.
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A measure that directly emerged from the study of proof size lower bounds is width;
the width of a resolution proof is the number of literals in the largest clause occurring in
the proof. Its importance was accentuated by Ben-Sasson and Wigderson [8], who, building
on the earlier works of Clegg et al. [12] and Impagliazzo et al. [23] showing an analogous
result for polynomial calculus, showed that a short resolution proof can be transformed into
a narrow one. Namely, we have

W (F ⊢ ⊥) ≤ log ST (F ⊢ ⊥) + W (F ), (1)

W (F ⊢ ⊥) ≤ O
(√

n log SR(F ⊢ ⊥)
)

+ W (F ). (2)

Here W (F ⊢ ⊥), ST (F ⊢ ⊥) and SR(F ⊢ ⊥) stand for the minimum width, tree-like size and
DAG-like size respectively of refuting an unsatisfiable CNF F in resolution; similar notation
is employed throughout the paper. W (F ) is the maximum width of a clause in F .

Space complexity for propositional proofs was introduced in [16, 1]. Esteban and Torán [16]
showed that a short tree-like resolution proof can be transformed into a resolution proof of
small clause space:

CSpace(F ⊢ ⊥) ≤ log ST (F ⊢ ⊥). (3)

Atserias and Dalmau [2] demonstrated the first instance of the relationship between space
and width, showing that a resolution proof having small clause space can be transformed
into a narrow one:

W (F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥) + W (F ). (4)

Constructive versions of their result were given by Filmus et al. [18] and Razborov (unpub-
lished), see also Krajíček [26, Theorem 5.5.5]. It is worth noting that (3) and (4) taken
together provide a refinement of (1) and that, viewed this way, we relate two sequential
measures (tree-like size and width) with a space measure as an intermediate. We will see
more examples of such an interplay in this paper.

More recently, Bonacina [9] showed that for total space in resolution (measured as the
sum of widths of clauses in a configuration) we have

W (F ⊢ ⊥) ≤ O
(√

TSpace(F ⊢ ⊥)
)

+ W (F ), (5)

and Galesi et al. [19] showed a weakened version of (4), but for the analogue of clause space
in stronger proof systems operating with polynomials (or in fact even arbitrary Boolean
functions of monomials):

W (F ⊢ ⊥) ≤ O
(

(MSpace(F ⊢ ⊥))2
)

+ W (F ). (6)

Regularized1 versions µ∗ of space complexity measures are defined by multiplying the
measure in question µ by the logarithm of the proof length; these were considered e.g. by
Ben-Sasson [4] and Razborov [37]. The latter paper also contains a suggestion that the
“right” level of precision when comparing measures of this kind are up to polynomial and
log n factors;2 we will henceforth call two measures equivalent if they simulate each other

1 The paper [37] used the word “amortized” but Sam Buss pointed out to us that it is somewhat misleading
in this context.

2 Note that the size/length measures appear in this set-up under a logarithm. Hence this corresponds to
quasi-polynomial simulations in the Cook-Reckhow framework.
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in this sense. The paper [37] identified a big cluster of ordinary and regularized space
complexity measures, including total and variable space, that are all equivalent to proof
depth in resolution. One notable measure that defied this classification was (regularized)
clause space.3

Our contributions
In this paper we identify two other big clusters of equivalent complexity measures not covered
by the results in [37]. The cumulative picture combining both previously known and new
results is summarized in Figure 1. There, arrows are to be interpreted as inequalities, and ≈

log SR

W ≈ log ST,R(log) ≈ Σ2Space ≈ Σ2Space∗

MSpace

CSpace

log ST ≈ TCSpace ≈ RCSpace
≈ CSpace∗ ≈ MSpace∗

DP

D ≈ TSpace ≈ TSpace∗ ≈ VSpace∗

VSpace

Figure 1 Simulations.

as equality, both up to polynomial and log n factors. A solid arrow from µ1 to µ2 indicates
that a separation between µ1 and µ2 is known, that is, it additionally indicates that there
exists a sequence {Fn} of unsatisfiable CNFs such that µ2(Fn ⊢ ⊥) ≥ (µ1(Fn ⊢ ⊥)+log n)ω(1).
To improve readability, we have omitted from Figure 1 the argument F ⊢ ⊥.

Let us briefly explain this picture. The first new cluster is centered around the logarithm
of tree-like resolution size. Given the proof method of the simulation (3) in [16], it can be
obviously strengthened in two directions: by replacing the left-hand side with clause space in
tree-like resolution or by replacing it with regularized clause space. Tree-like clause space in
resolution was shown to be equivalent to the logarithm of tree-like size in the same paper [16,
Corollary 5.1]; in other words, after this replacement in the left-hand side, the bound (3)
becomes tight, within the precision we are tolerating.

3 A technical remark: [37, Theorem 3.2] does not apply to clause space as it is not bounded from below
by the number of variables.
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We show that the second variant, that is regularized clause space, is also equivalent to
the logarithm of tree-like resolution size, and this result extends to also include regularized
monomial space to the same cluster. Given that [16, Corollary 5.1] also holds for (ordinary)
clause space in regular resolution [16, Corollary 4.2], this means that all these space measures
turn out to be equivalent to each other and to the log of tree-like resolution size. We also
remark (given the results above, this readily follows from definitions) that regularized versions
of the clause space in tree-like or regular resolution are also in this cluster.

The question of whether (ordinary) clause space also belongs here is what we consider to
be a major, and most likely very difficult, open problem. But since it has turned out to be
closely related to several other threads in proof complexity, we prefer to keep the momentum
and defer further discussion to the concluding Section 5.

Our second cluster is presided by resolution width. First, we introduce a natural analogue
of clause space in DNF resolution that we call Σ2 space. This can be seen as an extension
of clause space to depth 2 Frege systems; indeed, the restriction of Σ2 space to depth 1 Frege
is precisely clause space, and its restriction to k-DNF resolution, for constant k, coincides,
up to a constant factor, with the concept of space that has been studied before for such
systems (see e.g. [15, 7]). In our model, configurations are arbitrary sets of DNFs, and
we charge k for every individual k-DNF in the memory. Clearly, Σ2Space ≤ CSpace and
Σ2Space∗ ≤ CSpace∗. Then we strengthen the Atserias-Dalmau bound (4) by replacing
CSpace with Σ2Space and continue to show that both ordinary and regularized versions of
Σ2 space are actually equivalent to resolution width.

Thus, remarkably, the difficult open question on whether we have a strong trade-off
between space and length for clause space gets a relatively easy negative solution for a
stronger proof system. We have also been able to locate in this cluster another interesting
size measure: the size of tree-like proofs in the system R(log), which gives a somewhat
unexpected generalization of (1). We have not been able to retrieve the equivalence of
width and tree-like size in R(log) from the literature in exactly this form but it is implicit in
Lauria [27] and, with a bit of effort, can be traced back as far as Krajíček [24].

It is worth noting that some of the simulations in this cluster work only in the syntactical
setting. This comes in contrast with what happens with the other two clusters: all simulations
involving clause, monomial, variable and total space, also work in a purely semantic setting.
For example, in case of monomial space we can allow arbitrary Boolean functions of monomials
as memory configurations and allow any number of sound inferences to be performed at once
in each step.

We use (some of) these simulations to prove:
1. There are unsatisfiable CNFs F of size O(n) with S(F ⊢ ⊥) ≤ O(n), W (F ⊢ ⊥) ≤ O(1)

and MSpace∗(F ⊢ ⊥) ≥ Ω(n/ log n) (Theorem 4.1).
This is an improvement on the previously known bounds MSpace∗(F ⊢ ⊥) ≥ Ω(n2/11) [3],
MSpace∗(F ⊢ ⊥) ≥ Ω(n1/4) [22] and MSpace∗(F ⊢ ⊥) ≥ n1/2/(log n)O(1) [21]. Unlike
these previous results, our proof is remarkably simple.

2. There are unsatisfiable CNFs F of size O(n) with CSpace(F ⊢ ⊥) = 4 and ST (F ⊢ ⊥) ≥
Ω(n2/ log n) (Theorem 4.7).
This is a first, admittedly modest, step toward separating clause space and, say, tree-like
size; as we already said, we will discuss this question in more details in Section 5. It is for
this proof that we need the last unexplained entry DP on Figure 1: it stands for positive
depth, and it is a one-sided version of depth. We also remark that the space bound in
this result is optimal. More precisely, we make a relatively simple observation (Theorem
4.2) that CSpace(F ⊢ ⊥) ≤ 3 if and only if F is “essentially Horn” in which case it will
possess a linear size tree-like resolution refutation.
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Finally, let us briefly summarize what is known (to the best of our knowledge) in terms
of separating the measures in Figure 1. Let us start with “true” separations, i.e. separations
that work modulo polynomial overheads and log n factors. From now on, for proof complexity
measures µ1, µ2 we will use the notation µ1 ⪯ µ2 to stand for µ1(F ⊢ ⊥) ≤ (µ2(F ⊢
⊥) log n)O(1) for any CNF F in n variables; µ1 ≈ µ2 is the same as µ1 ⪯ µ2 ∧ µ2 ⪯ µ1.
Clearly ⪯ is transitive, and this implies that ≈ is an equivalence relation and ⪯ imposes a
partial order on its equivalence classes.

Bonet and Galesi [10] proved that W ̸⪯ log SR. More precisely, there are constant width
formulas F of size O(n3) such that SR(F ⊢ ⊥) ≤ O(n3) and W (F ⊢ ⊥) ≥ Ω(n). Ben-
Sasson [4] proved that VSpace ̸⪯ CSpace, and after negating the variables in his formulas,
this works two more levels up on Figure 1. Namely, there are constant-width formulas F

of size O(n) such that VSpace(F ⊢ ⊥) ≥ Ω(n/ log n) while DP (F ⊢ ⊥) ≤ O(1). This also
provides a separation between DP and D that, though, is much easier to prove directly [38,
Theorem 4.6]. Without negating the variables, it is easy to see that Ben-Sasson’s proof
actually gives DP (F ⊢ ⊥) ≥ Ω(n/ log n), thus separating DP from log ST and hence from
the whole middle cluster. Again, it is also easy to see this directly. Ben-Sasson, Håstad and
Nordström [31, 6] separated clause space from width; while it is believed that their formulas
should also have large monomial space complexity, the questions of separating clause space
from monomial space, as well as monomial space from width are widely open.

Separating space complexity measures from their own regularized versions appear to be a
very daunting task in general. As follows from Figure 1, for variable space this is equivalent
to separating it from depth [38]. A quadratic separation between VSpace and VSpace∗ was
proved in [37, Section 6], with a disappointingly elaborate proof. Nothing is known in terms
of separating CSpace from (the cluster of) CSpace∗: Theorem 4.7 makes a progress in that
direction, but it is admittedly rather modest. Nothing seems to be known for CSpace vs.
MSpace, and our structural picture provides a good heuristic explanation of the difficulty
of this question: it would also separate MSpace from MSpace∗. Finally, in [32] a quadratic
separation between width and monomial space has been established using methods very
different from those in [6].

The paper is organized as follows. After giving the necessary definitions in Section 2, in
Section 3 we refine (many simulations do not actually involve a polynomial overhead or extra
log n factors) and prove the relations of Figure 1. In Section 4 we prove items 1 and 2 above.
The paper is concluded with a few remarks and open problems in Section 5.

2 Preliminaries

A literal is a propositional variable x or its negation x. We let x
def= x. A clause is a disjunction

(possibly empty) of literals over distinct variables, and a term is a conjunction (possibly
empty) of such literals. For a clause C = ℓ1 ∨ · · · ∨ ℓw, we define the term C

def= ℓ1 ∧ · · · ∧ ℓw;
similarly for a term t = ℓ1 ∧ · · · ∧ ℓw, t

def= ℓ1 ∨ · · · ∨ ℓw. The width of a clause or a term is
the number of literals it contains. A CNF formula is a conjunction of clauses, and a DNF
formula is a disjunction of terms. The width, W (F ), of a CNF or DNF formula F is the
width of the largest clause or term it contains. A CNF or DNF formula of width at most w

is called w-CNF or w-DNF respectively. Clauses may be alternatively viewed as 1-DNFs,
but the latter class is slightly larger as tautological 1-DNFs like x ∨ x are allowed.

A partial (truth) assignment (often called restriction) is a mapping from a subset V of
all propositional variables to {0, 1}; it is naturally extended to the negations of the variables
in V by α(x) def= α(x). The result of applying a partial assignment α to a CNF formula F is
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another CNF formula F |α, obtained by deleting from F all literals ℓ such that α(ℓ) = 0 and
deleting all clauses containing a literal ℓ such that α(ℓ) = 1. Similarly for DNF formulas. F |α
is called the restriction of F to α. For a formula F , we write α |= F if every total extension
of α satisfies F or, in other words, if F |α is semantically equal to 1. For a set of formulas
S, α |= S means α |=

∧
F ∈S F , and for two sets of formulas S and T , we write S |= T if all

total assignments satisfying every formula in S also satisfy every formula in T . For a clause
C, we denote by αC the minimal partial assignment such that αC |= C.

Resolution is a proof system operating with clauses. Its inference rules are:

C

C ∨ D
,

C ∨ x D ∨ x

C ∨ D
. (7)

The leftmost one is called the weakening rule; the rightmost one is called the resolution
rule. We refer to the variable x in an application of the resolution rule as the variable being
resolved. One of the reasons to include the (redundant) weakening rule is that it makes
resolution proofs closed under restricting by a partial assignment.

The width W (π) of a resolution proof π is defined as the maximum width of a clause in
it, and the width W (F ⊢ ⊥) is usually defined as the minimum width W (π) of a resolution
refutation π of F . This definition, however, is ill-suited for those CNFs that themselves have
large width, like the pigeonhole principle. We have found it way more natural and convenient
to work with its slightly modified version used in [20] that we will denote by W (⊢F ⊥). It is
defined as follows.

Instead of just allowing the clauses C of F as axioms, we allow them to participate in
the form of the following more general F -cut rule:

D ∨ ℓ1 . . . D ∨ ℓr

D
, (8)

where ℓ1 ∨ . . . ∨ ℓr is a clause of F . In case some D ∨ ℓj contains contradictory literals, it is
removed from the premises. In particular, when D = C, the list of premises becomes empty
so the clauses of F are still available as axioms.

It is easy to see that W (⊢F ⊥) ≤ W (F ⊢ ⊥) ≤ W (⊢F ⊥)+W (F )−1, hence the difference
between the standard definition and ours becomes immaterial when W (F ) is small, and it
does not have any noticeable impact on the size of a refutation.

One immediate advantage of this definition is that if we replace W (F ⊢ ⊥) with W (⊢F ⊥)
in (1), (2), (4), (5) or (6), we need not keep the annoying terms W (F ) any more, they just
disappear. Simulations on Figure 1 will work without any restrictions on the width of the
refuted CNF. More advantages of a similar flavor will become clear later, see Theorems 3.4
and 4.2 in particular.

Let us also remark that resolution with the F -cut rule is nothing else but Gentzen’s sequent
calculus with only atomic cuts, restricted to proving sequents of the form C1, . . . , Cm →,
where C1, . . . , Cm are clauses (see [32]).

DNF resolution, or depth 2 Frege, is the straightforward extension of resolution where we
allow, apart from variables in the resolution rule, also formulas of depth 14 to be resolved.
DNF resolution operates with DNF formulas. Its axioms and inference rules are:

x ∨ x
,

G

G ∨ H
,

G ∨ t1 H ∨ t2

G ∨ H ∨ (t1 ∧ t2)
,

G ∨ t H ∨ t

G ∨ H
,

4 For this reason, some authors use the term “depth 1 Frege” for DNF resolution; we prefer to stick to
the convention under which depth refers to lines in a Hilbert-style proof.
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where G and H are DNF formulas and t, t1, t2 and t1 ∧ t2 are terms. The leftmost rule is the
weakening rule in this context, and the rightmost rule is called the cut rule. The remaining
rule allows us to deal with ∧ connectives, and is called ∧-introduction.

For a non-decreasing function f : N → N, R(f) is the subsystem of DNF resolution where
each DNF in a proof of size s is required to have width at most f(s). R(k) for k a constant
is usually denoted by Res(k) (thus, resolution is Res(1)). DNF resolution and R(f) were
first introduced in [25].

Next, we would like to consider systems for manipulating terms. The syntactic details of
such systems will not matter for our results, but for concreteness, let us present a prominent
system of algebraic flavor originally introduced in [12]. We will actually use an extension,
proposed in [1], called polynomial calculus with resolution and abbreviated as PCR. PCR
works with a fixed field F. Clauses/terms are represented as monomials. The syntactic
objects PCR operates with are polynomials in F[x1, . . . , xn, x1, . . . , xn], represented as linear
combinations over F of monomials, and a proof line P is to be interpreted as asserting that
P = 0. The axioms and inference rules of the system are:

ℓ2 − ℓ
,

ℓ + ℓ − 1
,

P Q

αP + βQ
,

P

ℓP
,

where ℓ ∈ {x1, . . . , xn, x1, . . . , xn}, P, Q ∈ F[x1, . . . , xn, x1, . . . , xn] and α, β ∈ F.
In each of the above systems, non-logical axioms are given as a set of clauses S, viewed

as a CNF formula F (in PCR, a clause C = ℓ1 ∨ · · · ∨ ℓk ∈ S is represented as the monomial
ℓ1 . . . ℓk). A proof of the unsatisfiability of F , or a refutation of F , is a derivation of a syntactic
contradiction, denoted by ⊥, from the clauses of F . In resolution and DNF resolution ⊥ is
the empty clause; in PCR, it is the polynomial 1.

We can view proofs as DAGs, by drawing edges from premises to conclusions in applications
of the inference rules. If a proof DAG is a tree, that is every formula or polynomial in it
is used as a premise at most once, then we say that the proof is tree-like. The size of a
tree-like proof is the number of its leaves, and its depth is the length of its longest root-to-leaf
path. We will also consider a one-sided version of depth, which we call positive depth. (The
analogue of this notion in the context of computational complexity was recently defined in
[29].) The positive depth of a tree-like resolution proof is the maximum number of negative
literals introduced along a root-to-leaf path. We denote tree-like size, depth and positive
depth by ST , D and DP respectively.

To define space complexity measures, we need to consider a different topology, namely
view a proof as a sequence of memory configurations [16, 1]. A memory configuration will be
a set of clauses in resolution, a set of DNF formulas in DNF resolution, or a set of polynomials
in PCR. In a proof from a CNF F then, to go from a memory configuration to the next we
may do one of the following:
Axiom Download: add a clause of the formula F , or a logical axiom of the system we are

working with;
Erasure: delete a clause/DNF formula/polynomial, or
Inference: add the result of applying an inference rule to formulas in the current configuration.
A proof in configurational form is said to be tree-like if, whenever a formula is used as a
premise in an inference rule, it is immediately erased from the memory.

The clause space of a configuration in resolution is the number of clauses it contains, its
variable space the number of distinct variables it contains, and its total space the total number
of literals, counting repetitions, it contains. For DNF resolution, we will be interested in
what we call Σ2 space of a configuration. The Σ2 space of a configuration M = {G1, . . . , Gs}
is defined as the sum of widths: Σ2Space(M) def= W (G1) + . . . + W (Gs). For PCR, we will
consider the monomial space, which is the number of distinct monomials in a configuration.

ICALP 2022



100:8 Space Characterizations of Complexity Measures and Size-Space Trade-Offs

For a space measure µ on configurations and a proof π = M1, . . . , Mt, we naturally let
µ(π) def= max {µ(Mi) | 1 ≤ i ≤ t}. As in [37], we will also consider regularized versions µ∗

defined as µ∗(π) def= µ(π) · log |π|, where |π| def= t is the length of π. All logarithms in this paper
have base 2.

Finally, for a complexity measure µ on proofs, we write µ(F ⊢ G) for the minimum value
of µ(π), taken over all proofs of G from F ; if such a proof does not exist, we set µ(F ⊢ G)
to be ∞. In most cases, the measure µ clearly suggests what the underlying proof system
should be. For example, W (F ⊢ ⊥) is the minimum width of a resolution refutation of F ,
and MSpace∗(F ⊢ ⊥) is the minimum regularized monomial space of a PCR refutation (in
configurational form) of F . ST (F ⊢ ⊥) shall mean the minimum size of a tree-like resolution
refutation of F . We shall use the notation ST,R(f)(F ⊢ ⊥) to mean the minimum size of a
tree-like R(f)-refutation of F . TCSpace(F ⊢ ⊥) is the minimum clause space taken over all
tree-like configurational refutations of F in resolution. Likewise, RCSpace(F ⊢ ⊥) stands for
the clause space in regular resolution, i.e. the subsystem of resolution where we require that
a variable cannot be resolved more than once on any path in (the DAG resulting from the
expansion of) the configurational proof π.

3 Simulations

3.1 Tree-like resolution size and regularized monomial space

First we show that log ST in resolution, TCSpace, RCSpace, CSpace∗ and MSpace∗, are all
equivalent. Our main new contribution is the following simulation.

▶ Theorem 3.1. For any unsatisfiable CNF formula F over n variables,

log ST (F ⊢ ⊥) ≤ 2MSpace∗(F ⊢ ⊥) log(n + 1),
TCSpace(F ⊢ ⊥) ≤ 2 (MSpace∗(F ⊢ ⊥) + 1) .

Proof. The proof is analogous to the construction in [37] showing that depth is upper bounded
by regularized variable space. Let M1, . . . , Mt be a refutation of F in configurational form,
of monomial space s. We show, by induction on d, that for every interval [i..j] ⊆ [1..t] with
j > i, j − i ≤ 2d, and for every clause D such that αD |= Mi and αD |= ¬Mj , it holds that
ST (F ⊢ D) ≤ (n + 1)ds and, moreover, the assumed tree-like resolution proof can be carried
out in clause space at most ds + 2. The theorem follows by taking [i..j] := [1..t], d := ⌈log t⌉
and D := ⊥.

Suppose that d = 0, so that j = i + 1. The statement is vacuously true except when
the step consists in downloading an axiom C from F , simply because in all other cases we
have Mi |= Mi+1 and hence D with the specified properties does not even exist. Let D

be a clause for which αD |= Mi and αD |= ¬(Mi ∪ {C}). Then we necessarily must have
αD |= ¬C, which is equivalent to saying that D is a weakening of C.

For the inductive step, suppose that d > 0, let [i..j] ⊆ [1..t] be any interval with j − i ≤ 2d,
j > i+1, and let D be a clause such that αD |= Mi and αD |= ¬Mj . Set k := i+ ⌈(j − i)/2⌉,
so that k − i ≤ 2d−1 and j − k ≤ 2d−1. Let the list m1, . . . , ms contain all monomials
occurring in Mk. For a clause A and a monomial m = ℓ1 . . . ℓr, consider the following
derivation of A:
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A ∨ ℓ1

A ∨ ℓ2

A ∨ ℓr A ∨ ℓ1 ∨ . . . ∨ ℓr

A ∨ ℓ1 ∨ . . . ∨ ℓr−1

...

A ∨ ℓ1 ∨ ℓ2

A ∨ ℓ1
A

Call this derivation tree TA;m. For the required tree-like resolution proof of D, start with
TD;m1 . To every leaf of TD;m1 labelled by a clause D′, append the tree TD′;m2 . Continue this
process for all m1, . . . , ms. If at any point during this construction, a forbidden disjunction
containing a variable and its negation occurs, then we delete that node and contract at its
parent. The resulting tree T has at most (n + 1)s leaves, and each of its leaves is labelled by
a clause E such that αE |= Mk or αE |= ¬Mk. From the induction hypothesis, there are
tree-like resolution proofs of all those clauses from F , of size (n + 1)(d−1)s. Therefore, there
is a tree-like resolution proof of D from F of size (n + 1)ds.

To see that this proof can be carried out in clause space at most ds + 2, notice that the
proof designated by T can be carried out in clause space s + 2. Proceed with this proof,
and whenever a clause at its leaves is downloaded, keep all current clauses in memory (there
are at most s of them – the maximum clause space is hit when the parent of two leaves is
brought to memory), and derive it in clause space at most (d − 1)s + 2. The fact that such a
derivation exists is guaranteed by the induction hypothesis. The resulting proof has clause
space at most s + (d − 1)s + 2 = ds + 2. ◀

For the rest of the relations, we claim that for an unstatisfiable CNF F in n variables,

RCSpace(F ⊢ ⊥) ≤ TCSpace(F ⊢ ⊥) ≤ log ST (F ⊢ ⊥) + 2
≤ 2MSpace∗(F ⊢ ⊥) log(n + 1) + 2 ≤ 2CSpace∗(F ⊢ ⊥) log(n + 1) + 2

≤ 2RCSpace∗(F ⊢ ⊥) log(n + 1) + 2 ≤ 2 (RCSpace(F ⊢ ⊥))2 log(n + 1) log(2n) + 2.

The first inequality follows from the observation that every tree-like refutation can be pruned
to the regular form, and this operation does not increase its space. The second inequality is
[16, Theorem 2.1], and the third is Theorem 3.1. The fourth and the fifth inequalities are
obvious. Finally, the last inequality follows from [16, Corollary 4.2].

As a byproduct, we get that TCSpace ≈ RCSpace. This comes in sharp contrast with
the situation for size, where there is an exponential separation between tree-like and regular
resolution [5].

We also see from [16, Corollary 4.2] that, somewhat surprisingly, instead of regularizing
clause space by multiplying it by the logarithm of size, we could have as well used a much
weaker regularization multiplying by the logarithm (!) of depth, and the resulting measure
would still be in this cluster. This allows us to re-cast the main open problem of whether
CSpace ≈ CSpace∗ in terms of the existence of a super-critical (in the sense of [36]) trade-off
between clause space and depth.

The remaining (non-trivial) simulation on Figure 1 involving this cluster is:

▶ Theorem 3.2. For any unsatisfiable CNF formula F , TCSpace(F ⊢ ⊥) ≤ DP (F ⊢ ⊥) + 2.

Proof. The argument is a refinement of the argument in [16] showing that tree-like clause
space is bounded by depth. We show, by induction on T, that if T is a tree-like resolution
proof of a clause E from F of positive depth d, then there is a tree-like resolution proof, in
configurational form, of E from F of clause space at most d + 2.
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If T has size at most 2, then d ≤ 1, and TCSpace(F ⊢ ⊥) ≤ 3. Otherwise, let T1 and
T2 be the subproofs of T proving the two clauses E1 and E2 respectively from which E is
derived via an application of the resolution rule and possibly applications of the weakening
rule. One of T1 and T2, say T1, must have positive depth at most d − 1. From the induction
hypothesis, there is a tree-like proof π1 of E1 of clause space at most d + 1, and a tree-like
proof π2 of E2 of clause space at most d + 2. Deriving first E2 using π2, and then, keeping
E2 in memory, deriving E1 using π1, we get a proof of E of clause space at most d + 2. ◀

3.2 Resolution width and Σ2 space
The simulations for our second cluster will depend upon the following “locality” property of
DNF resolution.

▶ Lemma 3.3. Let α be a partial assignment. For each of the inference rules of DNF
resolution, if both premises contain a term satisfied by α, then α satisfies some term in the
conclusion.

The main theorem of this section says that as long as we transition from depth 1 Frege to
depth 2 Frege, then not only width continues to be smaller than space, but in fact it becomes
(almost) equal to it. As a historical remark, an extension of the Atserias-Dalmau bound (4)
for the case of Res(k) is sketched in [18], and, although it is not stated explicitly, it is also
apparent in [15].

▶ Theorem 3.4. For any unsatisfiable CNF formula F ,

1
5Σ2Space(F ⊢ ⊥) ≤ W (⊢F ⊥) ≤ Σ2Space(F ⊢ ⊥).

Proof. Let M1, . . . , Mt be a DNF resolution refutation of F , of Σ2 space s. We will construct
a sequence T1, . . . , Tt of derivations in the system “resolution plus the F -cut rule (8)”. The
property we are going to maintain is that for every clause D labelling a leaf of Ti, either D

is a weakening of a clause C in F (call such a leaf an axiom leaf ) or the following hold:
1. for every G ∈ Mi, αD satisfies some term of G;
2. W (D) ≤ Σ2Space(Mi).

T1 has one vertex labelled by the empty clause. Now suppose we have constructed Ti−1
such that 1 and 2 hold for all non-axiom leaves. For every such leaf v labelled by a clause D,
do the following.

Axiom Download: Suppose that Mi = Mi−1 ∪ {C}, where C = ℓ1 ∨ · · · ∨ ℓr is either a
clause of F (viewed as a 1-DNF) or a logical axiom x ∨ x. If C and D contain conflicting
literals, then item 1 is automatically satisfied and we do nothing at this leaf. Next, C ⊆ D

would have implied that C is a clause of F which is impossible since we have assumed
that the leaf is non-axiom. Thus, there exists at least one j ∈ [r] such that ℓj ̸∈ D, and
for any such j we add to v a child labelled by D ∨ ℓj . This will be an application of the
F -cut rule if C is a clause or of the resolution rule if C is x ∨ x.
Erasure: Suppose that Mi ⊆ Mi−1. Add to v a single child labelled by a clause E ⊆ D

such that W (E) ≤ Σ2Space(Mi) and for every G ∈ Mi, αE satisfies some term of G.
The case of an inference is immediately taken care of by Lemma 3.3, D does not change.

Since ⊥ ∈ Mt, Tt may not contain any non-axiom leaves and hence defines a refutation.
Also, it is clear from the construction and property 2 above that any clause D appearing in
it must satisfy W (D) ≤ max1≤i≤t Σ2Space(Mi) = s. Hence W (⊢F ⊥) ≤ s.
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For the converse inequality, suppose that C1, . . . , Ct is a refutation in the system “resol-
ution plus the F -cut rule”, of width w. For every i ∈ [t], set Gi :=

∨i
j=1 Cj . Each Gi is a

w-DNF. For our small space refutation, we will first derive Gt and Gt−1 ∨ Ct, then cutting
on Ct derive from these formulas Gt−1, then derive Gt−2 ∨ Ct−1, and continue this way
until we get the empty clause. Notice that Gi−1 ∨ Ci is either a tautology with an obvious
derivation in DNF resolution, or Ci is a clause of F . In the latter case, we can immediately
derive Gi−1 ∨ Ci. Otherwise, Ci will be the result of applying either the resolution rule or
the weakening rule or F -cut rule to some clauses among C1, . . . , Ci−1. In either case, it can
be checked that Gi−1 ∨ Ci has a tree-like proof of Σ2 space at most 3w, and therefore the
proof above can be carried in Σ2 space at most 5w. ◀

▶ Remark 3.5. The second part of this proof implies that a posteriori, DNF resolution will
retain its power in terms of space even if we restrict the formula space (the maximum number
of DNFs in a configuration) to a constant. This in turn immediately implies, also a posteriori,
that we can balance our definition of Σ2 space replacing in it W (G1) + . . . + W (Gs) with
s · max(W (G1), . . . , W (Gs)), and the resulting measure will still be equivalent to Σ2 space.
We are not aware of a direct proof of this simulation by-passing width.

We get from Theorem 3.4 that strong length-space trade-offs conjectured for variable,
clause and monomial space, are ruled out for DNF resolution. In particular, we get:

▶ Corollary 3.6. For any unsatisfiable CNF formula F with n variables,

Σ2Space∗(F ⊢ ⊥) ≤ O
(

(Σ2Space(F ⊢ ⊥))2 log n
)

.

Proof. Let s := Σ2Space(F ⊢ ⊥). By the first part of Theorem 3.4, F has a width
O(s) resolution refutation with the additional F -cut rule. We apply to this refutation the
construction from the second part of Theorem 3.4 in which we can clearly assume t ≤ nO(s)

(since all clauses in the sequence can be assumed to be different). By an easy inspection, the
length of the resulting refutation will still be nO(s). Therefore,

Σ2Space∗(F ⊢ ⊥) ≤ O(s2 log n). ◀

▶ Corollary 3.7. If F has a constant Σ2 space refutation, then it has a refutation of constant
Σ2 space and polynomial length.

Proof. The refutation constructed in the proof of Corollary 3.6 will in our case also have
constant Σ2 space. ◀

Let us finally deal with the remaining measure, tree-like proofs in R(log).

▶ Theorem 3.8. Let F be an unsatisfiable CNF formula over n variables. Then

Σ2Space(F ⊢ ⊥)1/2 ≤ log ST,R(log)(F ⊢ ⊥) ≤ O(W (⊢F ⊥) log n).

Proof. For the upper bound, let π be a resolution refutation of F of width w := W (⊢F ⊥).
Apply to it the construction in the second part of the proof of Theorem 3.4 once again. By
inspection (cf. the proof of Corollary 3.6), this refutation is tree-like, has size nO(w) and every
term occurring in it has width at most w. Padding it with dummy formulas if necessary, we
can assume that it has size ≥ 2w which makes it into a tree-like R(log) refutation of the
required size.
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For the lower bound, the argument is an adaptation of the argument in [16] showing
(3). Namely, by pebbling, a tree-like proof T of size s > 1 can be turned into a proof in
configurational form, where each configuration contains at most log s formulas occurring in
T. If T is a refutation in R(log), then all terms occuring in T have width at most log s, so
the resulting refutation has Σ2 space (log s)2. ◀

▶ Remark 3.9. For the more conventional system Res(log n), the subsystem of DNF resolution
where each DNF in a refutation of F is required to have width O(log n), n the number of
variables of F , the second inequality in Theorem 3.8 is false (see Figure 2). This follows from
an easy adaptation of the proof of [15, Corollary 14].

4 Size-space trade-offs and tree-like size lower bounds

4.1 A lower bound on regularized monomial space

One application of the results of the previous section is that they easily allow us to show
trade-offs5 between regularized clause or monomial space and size.

It is known [22, 21] that there are formulas F of size Θ(n) that have a resolution
refutation of size O(n) (and thus a O(n) refutation in the stronger system PCR), but
MSpace∗(F ⊢ ⊥) ≥ n1/2/(log n)O(1). Theorem 3.1, combined with the lower bounds of [5]
and [17] on log ST and TCSpace immediately gives the following improvement.

▶ Theorem 4.1. For every n ≥ 0, there is a formula F of size Θ(n) that has a resolution
refutation of size O(n), width O(1), and such that MSpace∗(F ⊢ ⊥) ≥ Ω (n/ log n) .

Proof. [5] demonstrates the existence of an O(1)-CNF F that has resolution refutations
of size O(n), width O(1), and such that log ST (F ⊢ ⊥) ≥ Ω(n/ log n). In fact, [5] shows
that Ω(n/ log n) is also the lower bound on the number of points the Delayer can score in
the Prover-Delayer game of [35] played on F . Now, it is proved in [17] that this number of
points is precisely equal to TCSpace(F ⊢ ⊥) and then the result immediately follows from
the second inequality in Theorem 3.1. ◀

4.2 Trade-offs between positive depth and tree-like size for Horn
formulas and tree-like size lower bounds

We would like next to focus on tree-like size lower bounds for resolution attained for formulas
with small clause space. We will show that a tree-like resolution refutation of a Horn formula
actually describes a pebbling strategy, the space and time of the strategy being the positive
depth and size respectively of the proof. This gives a more transparent version of the result
of [5] used in the proof of Theorem 4.1, which moreover has a natural generalization allowing
us to prove some tree-like lower bounds for formulas of small clause space.

5 We would like to stress that, following the (perhaps, unfortunate) convention established in the previous
papers, we mean potential trade-offs. In other words, we prove lower bounds on the regularized space and
we only know that our method fails to extend them to the ordinary monomial space. As we explained
in Section 1 and will further elaborate in Section 5, proving actual trade-offs in this setting is a major
and difficult open problem.
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4.2.1 Horn formulas – basics
Horn formulas, that include pebbling formulas, have seen a plethora of applications in proof
complexity over the past two decades, including separating resolution size from tree-like
resolution size [5], separating width from variable space and clause space [4, 6, 7], separating
depth from tree-like clause space [38], and giving trade-offs [4, 7, 22, 3], to name a few.

A CNF formula is called Horn if every clause in it has at most one non-negated variable.
Equivalently, a Horn formula is a set of implications involving variables, with at most one
variable at the right hand side of the implication. An implication of the form x1, . . . , xk → y

is asserting that if all the xi’s are true, then y is true; x1, . . . , xk → is asserting that one of
the xi’s is false, → y is asserting that y is true, and → is a contradiction.

The following result states that Horn formulas make up, in a certain sense, the easiest
class of formulas for proof complexity. For its purposes, it is convenient to define a slightly
modified version CSpace(⊢F ⊥) of the clause space, in the same vein we defined W (⊢F ⊥)
above. Namely, we replace the three standard rules with the following
Three-in-one rule: from a configuration M, infer any configuration M∗ ⊆ M ∪ F ∪ {C},

where C is obtained from clauses in M, F via the resolution or weakening rule.

▶ Theorem 4.2. Let F be a CNF formula. The following are equivalent:
1. F contains an unsatisfiable CNF sub-formula resulting from a Horn formula by negating

some of its variables;
2. CSpace(F ⊢ ⊥) ≤ 3;
3. CSpace(⊢F ⊥) ≤ 1;
4. W (⊢F ⊥) ≤ 1.

Proof. For 1 =⇒ 2, we can w.l.o.g. assume that F itself is an unsatisfiable Horn formula.
We show, by induction on the number of variables n, that it can be refuted in clause space
3. The base case is trivial. Now, suppose that n > 0, and let y be a variable such that F

contains the clause → y. Such a clause must exist, for if every clause contained a negated
variable, then we could satisfy F by setting every variable to false. Setting y := 1, we get an
unsatisfiable Horn formula F |y:=1 with n − 1 variables. From the induction hypothesis, there
is a clause space 3 refutation of F |y=1. Weakening every clause in it by y gives us a space 3
proof of y from F . Now we only have to download y and infer ⊥.

For 2 =⇒ 3, let M1, . . . , Mt be a space 3 refutation of the formula F ; we can assume
w.l.o.g. that it does not contain weakening rules. Consider a path in the corresponding
refutation tree of maximum possible length, say Ci ∈ Mti (0 ≤ i ≤ h) are such that
t0 < . . . < th = t, C0 is an axiom, Ch = ⊥ and for i ≥ 1, Ci is obtained by resolving
Ci−1 with some Di−1 ∈ Mti−1. It remains to show that Di−1 is actually an axiom for any
i ≥ 1. For i = 1 this follows from the maximality of the chosen path. For i ≥ 2, we have
Mti−1 = {Ci−2, Di−2, Ci−1}. Therefore Ci−1 is consistent (and hence not resolvable) with
the two other clauses in Mti−1 . All clauses that may have been inferred in Mti−1+1, . . . , Mti

must have Ci−1 as one of their premises and, as a consequence, are also not resolvable with
Ci−1. Hence the only clauses in those configurations that may be resolvable with Ci−1 (in
particular, Di−2) are the axioms.

The implication 3 =⇒ 4 is proven by an argument similar to the first part of the proof
of Theorem 3.4. Namely, a space 1 refutation of minimum length in the three-in-one model
must necessarily be a sequence {C1}, . . . , {Ct}, where Ci+1 is obtained by resolving Ci with
a clause in F . The non-axiom leaves of the tree Ti will simply be all those literals among
ℓi,1, . . . , ℓi,ri

, where Ci = ℓi,1 ∨ . . . ∨ ℓi,ri
, that are not axioms of F . It can routinely be
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checked that, as in the proof of Theorem 3.4, Ti will be a resolution derivation using only
the F -cut rule (notice that to keep the width 1, the weakening rule has to be incorporated
into the F -cut rule).

Finally, for 4 =⇒ 1, we again proceed by induction on the number of variables n of F .
The base case is trivial. Suppose that n > 0. The fact that there is a width 1 refutation
of F , forces F to have a one literal clause (since the refutation must start somewhere), say
ℓ. Setting ℓ := 1, we get a width 1 refutation of F |ℓ:=1. From the induction hypothesis, a
sub-formula G of F |ℓ:=1 is unsatisfiable Horn up to negating some variables. Let Ĝ be the
corresponding sub-formula of F ; Ĝ is obtained from G by restoring ℓ to some of its clauses.
Then Ĝ ∧ ℓ is an unsatisfiable Horn sub-formula of F . ◀

4.2.2 Tree-like resolution proofs as pebbling strategies
The paper [4] shows that a configurational resolution refutation π of the so-called pebbling
contradiction PebG on a graph G defines a pebbling strategy on G, of time at most |π| and
space equal to the variable space VSpace(π). These are strategies in the so-called black-white
game of [14]. We shall show that a tree-like resolution proof T of any Horn formula H defines
a pebbling strategy of time equal to the size of T and space essentially equal to the positive
depth of T. These are strategies in the more basic black-only pebbling game that in the case
H = PebG corresponds to the black-only pebbling game on G. Urquhart [38] showed how
to relate them to ordinary depth. In a sense, our Proposition 4.3 below can be viewed as a
(far-reaching) refinement of his result.

The rules of the black-only pebbling game, played on a Horn formula H, are as follows.
There is a limited amount of pebbles. Pebbles are placed on the variables of H according to
the rules:
1. A pebble can be placed on a variable y if x1, . . . , xk → y is a clause of H , and all x1, . . . , xk

have pebbles on them. In particular, a pebble can be always placed on any variable y

such that → y is a clause of H.
2. A pebble can be removed from a variable at any time.
A configuration of the pebbling game is a set of the variables of H. A pebbling strategy is a
sequence of configurations, each resulting from the previous one by one of the rules above.
We say that a pebbling strategy refutes H if it ends with a configuration where for some
clause x1, . . . , xk → of H , all variables x1, . . . , xk are pebbled. Note that if H is unsatisfiable,
then such a clause must exist.

▶ Proposition 4.3. Let H be an unsatisfiable Horn formula. A tree-like resolution refutation
T of H of size s and positive depth d can be converted into a pebbling strategy that, starting
with the empty configuration, refutes H in at most s steps and using at most d + 1 pebbles.

Proof. We begin with a slight modification of our refutation. Namely, viewing T as a decision
tree, its nodes naturally correspond to partial assignments, and for the clause C sitting at
the node α, we have α |= ¬C. Let us replace C with the maximal clause satisfying this
property. This will give us a refutation, of the same size and positive depth, in which the
resolution rule (7) is reduced to

C ∨ x C ∨ x

C
(9)

and leaves are labelled by weakenings of axioms in H.
This refutation need not necessarily consist of Horn formulas even if the original one did

so. Nonetheless we will still represent clauses in the sequential form S → T , where S, T are
disjoint sets of variables, like at the beginning of Section 4.2.1. Note that |S| ≤ d for any
clause S → T appearing in T.
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We shall now show by induction that every subtree of T deriving a clause S → T , leads to
a pebbling strategy that, starting with pebbles on all variables of S and using at most d + 1
pebbles, either refutes H, or ends with a configuration which has pebbles on all variables
of S and on one variable of T . Thus, if T is empty then the former must occur and, in
particular, the strategy corresponding to the empty sequent → will start with no pebbles
on the variables of H and will refute H.

Suppose that S → T is at a leaf. If there are variables x1, . . . , xk in S such that
x1, . . . , xk → is a clause of H, then that leaf describes a strategy that, starting with pebbles
on all variables in S, immediately refutes H. Otherwise, there must be variables x1, . . . , xk

in S and a variable y in T such that x1, . . . , xk → y is a clause of H. Then the strategy of
that leaf is to put a pebble on y. Since |S| ≤ d, the number of pebbles used is at most d + 1,
as required.

If S → T is not at a leaf, then consider its left and right subtrees T1 and T2 proving
S, x → T and S → T, x respectively (cf. (9)). The strategy corresponding to S → T is
defined as follows. First follow T2’s strategy. If that strategy either refutes H or places a
pebble on one of T ’s variables, then we are done. Otherwise, when the strategy of T2 is
concluded, there are pebbles on S and x. Remove all other pebbles and follow the strategy
of T1. The bound d + 1 on the number of pebbles used at any moment follows from the
same bound for T1 and T2.

Clearly, the number of steps of the pebbling strategy corresponding to → is at most the
size of T, and the required bound on the number of pebbles was already noticed. ◀

▶ Remark 4.4. The proof of Proposition 4.3 relies on an intuitionistic interpretation of the
resolution rule. In the intuitionistic tradition, the denotational view of assigning truth values
is, philosophically, nonsense. A proposition is “true” if it is provable, and a proof of e.g. a
formula S → T is a construction that given proofs of all the elements of S produces a proof
of some element in T . What Proposition 4.3 says is that a tree-like resolution derivation of
S → T precisely describes such a construction, assuming that proofs of all the clauses of
H are known. Moreover this construction will be economical in the number of steps and
memory if the size and the positive depth respectively of the proof are small. Let us further
notice, that although Proposition 4.3 is stated for Horn formulas, it really is general; it could
be stated, with minimal modifications, for arbitrary CNFs.

4.2.3 Tree-like size lower bounds
The following theorem turns pebbling time-space trade-offs for a Horn formula H into tree-like
size lower bounds for its substituted version H[∨2]. We formulate it in a somewhat general
form, to account for various kinds of pebbling trade-offs in the literature. The substituted
version F [∨2] of a CNF F (x1, . . . , xn) is defined by replacing xi with yi ∨ zi for mutually
distinct variables {y1, z1, . . . , yn, zn}, followed by converting the result back to the CNF form
in the straightforward way.

▶ Theorem 4.5. Let H be an unsatisfiable Horn formula on n variables. Suppose that every
pebbling strategy that refutes H in s steps and using d pebbles, starting with no pebbles on
its variables, satisfies (d − 1) · f(s) ≥ g(n) for non-decreasing positive functions f, g. Then
f(t) log t ≥ g(n), where t

def= ST (H[∨2] ⊢ 0).

Proof. Create a probability space of partial assignments by choosing independently for every
variable x of H, which was substituted by y ∨ z, one of y and z with probability 1/2 and
setting it to zero. Note that for any α from this space, H[∨2]|α is identical to H up to
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renaming its variables and hence T|α is a refutation of H, again up to renaming variables.
Let T be an arbitrary tree-like resolution refutation of H[∨2] of size t represented as in the
proof of Proposition 4.3. That is weakenings are omitted from the resolution rule, and appear
at the leaves only. Let D1, . . . , Dk be all clauses of positive depth g(n)/f(t) occurring in T.
We have that

P

[
k∨

i=1
(Di|α ̸= 1)

]
≤

k∑
i=1

P [Di|α ̸= 1] ≤ k2−g(n)/f(t) ≤ t2−g(n)/f(t).

If f(t) log t < g(n), then the above probability is smaller than 1, which means that there is a
point α in our sample space such that T|α is a tree-like resolution refutation of size at most
t and positive depth ≤ g(n)/f(t). This, from Proposition 4.3, gives a pebbling strategy that
refutes H in t steps using d pebbles, where (d − 1) · f(t) < g(n). ◀

Recall that for a DAG G, the pebbling contradiction PebG is defined as the Horn formula
consisting of all clauses S → x, where x ∈ V (G) and S is the set of all its immediate
predecessors, as well as the clauses x → for any sink x. Plugging into Theorem 4.5 various
DAGs from the literature with known bounds on their pebbling complexity and various
functions f , we can get several corollaries. The first is a simplified proof of the separation by
Ben-Sasson et al.

▶ Corollary 4.6 [5]. There are formulas of size O(n) having DAG-like resolution refutations
of size O(n), every tree-like resolution refutation of which requires size exp(Ω(n/ log n)).

Proof. This is by setting f := 1 in Theorem 4.5, and using the graphs of [34] having constant
in-degree and requiring Ω(n/ log n) pebbles to pebble. ◀

The next result was promised in the introduction. It should be compared with Theorem 4.2.

▶ Theorem 4.7. There are formulas of size O(n) having tree-like resolution refutations of
clause space 4, every tree-like resolution refutation of which has size Ω(n2/ log n).

Proof sketch. This is by setting f(t) := t in Theorem 4.5, and using the graphs of [28,
Theorem 2.3.2] having linear size and exhibiting a dt ≥ Ω(n2) trade-off. These graphs can be
pebbled using 3 pebbles, and that immediately gives that CSpace(PebGn

[∨2] ⊢ ⊥) ≤ O(1).
By being more careful, it is possible to bring the space down to the minimum possible value,
namely 4, for which a super-linear lower bound on tree-like resolution size is possible. ◀

By using the construction from [28, Theorem 4.2.6], Theorem 4.7 can be further generalized
to a lower bound (n/ log n)Ω(k) on the tree-like resolution size of refuting formulas with clause
space k. Let us further notice that the fact that the space 4 refutation in Theorem 4.7 is
tree-like might be interesting, as typically tree-like resolution size lower bounds have been
proven in the literature based on the prover-delayer game of [35], which also gives a lower
bound for the clause space of tree-like resolution refutations (cf. Theorem 4.1).

5 Concluding remarks

We showed that log ST , CSpace∗ and MSpace∗ are equivalent up to polynomial and log n

factors, demonstrating a picture perfectly analogous to the picture involving D, VSpace∗

and TSpace∗ in [37]. The most important question remains (widely) open:
▶ Problem 5.1. Is it true that CSpace ≈ log ST or MSpace ≈ log ST ? Recall for comparison
that log ST ≈ CSpace∗ ≈ MSpace∗.
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Equivalently, do there exist strong trade-offs between clause (or monomial) space and length?
It should be contrasted with trade-offs results in e.g. [7, 3], and it is a perfect analogue of
Urquhart’s question [38] about variable space vs. depth studied in [37, Section 6]. Let us
make a few more remarks about this problem.

Firstly, for very small space essentially this question was already asked in the literature
before. Namely (see e.g. [30, Open Problem 16]), are there formulas having constant clause
space refutations and with the property that any such refutation must necessarily have
super-polynomial length? Suitably adjusting it to our framework:

▶ Problem 5.2 (small space variant). Are there formulas that have (log n)O(1) clause or
monomial space refutations and with the property that any such refutation must be of super-
quasi-polynomial length exp((log n)ω(1))? Equivalently, any tree-like resolution refutation
must have super-quasi-polynomial length.

In terms of the perceived difficulty, we do not discern too much of a difference between
Problems 5.1, 5.2 and Nordström’s question. In fact, we would like to cautiously conjecture
that there are formulas F with CSpace(F ⊢ ⊥) ≤ 5 and CSpace∗(F ⊢ ⊥) ≥ exp

(
nΩ(1)). But

the only result we were able to prove in that direction is the rather weak Theorem 4.7.
Secondly, as suggested by Figure 1, any strong separation between monomial space and

clause space would immediately solve Problem 5.1 for monomial space. As we consider the
latter to be most likely very difficult, we take it as a good heuristic explanation of why we
have not seen any progress on the former problem as well. But let us ask this, and one
obviously relevant question, explicitly anyway:

▶ Problem 5.3. Is it true that CSpace ≈ MSpace? Is it true that MSpace ≈ W?

We note that by the result from [31, 6], at least one of these must be false. A quadratic
separation between width and monomial space has been recently proved by the first author
(manuscript in preparation). For a discussion on related topics, see also [11, Section 7.5.5].

Finally, while all these conjectured trade-offs are very strong, they are still not super-
critical in the sense of [36] (the required lower bound on length never exceeds 2n). However,
as we pointed out in Section 3.1 in all these questions refutation length can be replaced with
depth. Since the depth, as a stand-alone measure, is always bounded by n, these actually are
questions about the existence of a super-critical trade-off between clause space and depth.

We have (somewhat surprisingly) proved that DNF resolution behaves very differently
from resolution with respect to space. Intermediate systems based on Res(k) for a constant
k were studied in a similar context before, and it is very natural to wonder what is the
situation for those systems.

Let us first remark that for Res(k)-refutations, the definition of space from [15, 7] (formula
space) coincides with ours up to a factor of k so we need not distinguish between the two.
Then Theorem 3.1 readily generalizes to this regime and gives log ST,Res(k) ≈ Res(k)Space∗,

extending the bottom half of Figure 1 as shown in Figure 2. The proof of Corollary 3.6,
however, fails for a constant k as badly as it fails for k = 1. Hence we have one more question
to ask:

▶ Problem 5.4 (Res(k)-variant). Is there a constant k > 0 such that log ST,Res(k) ≈ Res(k)Space
or at least log ST,Res(k) ⪯ CSpace?

Let us also mention that as k increases, both hierarchies, log ST,Res(k) (and, hence, also
Res(k)Space∗) and Res(k)Space are proper ([15] and [7] respectively). This excludes the
dual version of Remark 3.5: while the formula space of DNF resolution refutations can be
reduced to constant, this is not true for the widths of individual formulas in the memory.
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W ≈ log ST,R(log) ≈ Σ2Space ≈ Σ2Space∗

CSpace

log ST ≈ CSpace∗ ≈ MSpace∗ ≈ · · ·

Res(2)Space

Res(3)Space

log ST,Res(2) ≈ Res(2)Space∗

log ST,Res(3) ≈ Res(3)Space∗

...

MSpace

...

log ST,Res(log n) ≈ Res(log n)Space∗

Res(log n)Space

Figure 2 Σ2 space and tree-like size for subsystems of DNF resolution.

The relation between VSpace and CSpace is also unknown in one direction (the opposite
one is taken care of by [4]). Let us re-iterate the problem posed e.g. in [37]:

▶ Problem 5.5. Is it true that CSpace ⪯ VSpace?

Just as with the questions of similar nature discussed above, a negative answer would also
imply a separation between VSpace and VSpace∗, hence we can expect it to be very difficult.
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Abstract
We connect learning algorithms and algorithms automating proof search in propositional proof
systems: for every sufficiently strong, well-behaved propositional proof system P , we prove that the
following statements are equivalent,

Provable learning. P proves efficiently that p-size circuits are learnable by subexponential-size
circuits over the uniform distribution with membership queries.
Provable automatability. P proves efficiently that P is automatable by non-uniform circuits
on propositional formulas expressing p-size circuit lower bounds.

Here, P is sufficiently strong and well-behaved if I.-III. holds: I. P p-simulates Jeřábek’s system
WF (which strengthens the Extended Frege system EF by a surjective weak pigeonhole principle);
II. P satisfies some basic properties of standard proof systems which p-simulate WF; III. P proves
efficiently for some Boolean function h that h is hard on average for circuits of subexponential size.
For example, if III. holds for P = WF, then Items 1 and 2 are equivalent for P = WF. The notion of
automatability in Item 2 is slightly modified so that the automating algorithm outputs a proof of a
given formula (expressing a p-size circuit lower bound) in p-time in the length of the shortest proof
of a closely related but different formula (expressing an average-case subexponential-size circuit
lower bound).

If there is a function h ∈ NE ∩ coNE which is hard on average for circuits of size 2n/4, for each
sufficiently big n, then there is an explicit propositional proof system P satisfying properties I.-III.,
i.e. the equivalence of Items 1 and 2 holds for P .
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1 Introduction

Learning algorithms and automatability algorithms searching for proofs in propositional
proof systems are central concepts in complexity theory, but a priori they appear rather
unrelated.
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Learning algorithms. In the PAC model of learning introduced by Valiant [34], a circuit
class C is learnable by a randomized algorithm L over the uniform distribution, up to error
ϵ, with confidence δ and membership queries, if for every Boolean function f computable
by a circuit from C, when given oracle access to f , L outputs with probability ≥ δ over
the uniform distribution a circuit computing f on ≥ (1 − ϵ) inputs. An important task
of learning theory is to find out if standard circuit classes such as P/poly are learnable by
efficient circuits. A way to approach the question is to connect the existence of efficient
learning algorithms to other standard conjectures in complexity theory. For example, we can
try to prove that efficient learning of P/poly is equivalent to P = NP or to the non-existence
of strong pseudorandom generators. In both cases one implication is known: P = NP implies
efficient learning of P/poly (with small error and high confidence) which in turn breaks
pseudorandom generators. However, while some progress on the opposite implications has
been made, they remain open, cf. [2, 33].

Automatability. The notion of automatability was introduced in the work of Bonet, Pitassi
and Raz [6]. A propositional proof system P is automatable if there is an algorithm A

such that for every tautology ϕ, A finds a P -proof of ϕ in p-time in the size of the shortest
P -proof of ϕ. That is, even if P does not prove all tautologies efficiently, it can still be
automatable. Establishing (non-)automatability results for concrete proof systems is one
of the main tasks of proof complexity. This led to many attempts to link the notion of
automatability to other standard complexity-theoretic conjectures. For example, recently
Atserias and Müller [3] proved that automating Resolution is NP-hard and their work has
been extended to other weak proof systems, e.g. [12, 13, 14]. For stronger systems, it is
known that automating Extended Frege system EF, Frege or even constant-depth Frege
would break specific cryptographic assumptions such as the security of RSA or Diffie-Hellman
scheme, cf. [23, 6, 5]. It remains, however, open to obtain non-automatability of strong
systems like Frege under a generic assumption such as the existence of strong pseudorandom
generators, let alone to prove the equivalence between such notions.

In the present paper we derive a conditional equivalence between learning algorithms
for p-size circuits and automatability of proof systems on tautologies encoding circuit lower
bounds.

1.1 Our result
An ideal connection between learning and automatability would say that for standard proof
systems P ,

“P is automatable if and only if P/poly is learnable efficiently”.

We establish this modulo some provability conditions and a change of parameters. Ad-
ditionally, we need to consider automatability only w.r.t. formulas encoding circuit lower
bounds. More precisely, denote by tt(f, s) a propositional formula which expresses that
boolean function f represented by its truth-table is not computable by a boolean circuit of
size s represented by free variables, see Section 3. So tt(f, s) is a tautology if and only if f is
hard for circuits of size s. Note that f is represented by 2n bits, if n is the number of inputs
of f , so the size of tt(f, s) is 2O(n). Similarly, let tt(f, s, t) be a formula expressing that
circuits of size s fail to compute f on ≥ t-fraction of inputs. In our main result (Theorem 1)
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we use a slightly modified notion of automatability where the automating algorithm for
a proof system P is non-uniform and outputs a P -proof of a given formula tt(f, nO(1)) in
p-time in the size of the shortest P -proof of tt(f, 2no(1)

, 1/2 − 1/2no(1)), see Section 3.1

▶ Theorem 1 (Informal, cf. Theorem 18). Let P be any propositional proof system which
APC1-provably p-simulates WF and satisfies some basic properties, e.g. P = WF. Moreover,
assume that P proves efficiently tt(h, 2n/4, 1/2 − 1/2n/4) for some boolean function h. Then,
the following statements are equivalent:
1. Provable learning. P proves efficiently that p-size circuits are learnable by 2no(1)-size

circuits, over the uniform distribution, up to error 1/2−1/2no(1) , with membership queries
and confidence 1/2no(1) .

2. Provable automatability. P proves efficiently that P is automatable by non-uniform
circuits on formulas tt(f, nO(1)).

WF is an elegant strengthening of EF introduced by Jeřábek [15], which corresponds to
the theory of approximate counting APC1, a theory formalizing probabilistic p-time reasoning,
see Section 2.2. Concrete proof systems which APC1-provably p-simulate WF and satisfy the
basic properties from Theorem 1 include WF itself or even much stronger systems such as set
theory ZFC (if we interpret ZFC as a suitable system for proving tautologies, see Section 5).
We emphasize that the conditional equivalence from Theorem 1 holds for any sufficiently
strong proof system satisfying some basic properties. The error and confidence of learning
algorithms can be amplified “for free”, see Section 2.1, but we did not make the attempts to
prove that the amplification is efficiently provable already in WF.

Perhaps the most unusual aspect of Theorem 1 is its usage of metamathematics: we
do not prove the equivalence between automatability and learning but between provable
automatability and provable learning. We believe that the usage of metamathematics is not
a substantial deviation. It would be very surprising if, e.g., an efficient learning algorithm
existed but not provably (in some natural proof system).

Plausibility of the assumption. The main assumption in Theorem 1 is the provability of
a circuit lower bound tt(h, 2n/4, 1/2 − 1/2n/4). This assumption has an interesting status.
Razborov’s conjecture about hardness of Nisan-Wigderson generators implies a conditional
hardness of formulas tt(h, nO(1)) for Frege (for every h), cf. [31], and it is possible to consider
extensions of the conjecture to all standard proof systems, even set theory ZFC. On the other
hand, all major circuit lower bounds for weak circuit classes and explicit boolean functions
are known to be effciently provable in EF 2, cf. [29, 25]. If we believe that explicit circuit
lower bounds such as tt(h, 2n/4, 1/2 − 1/2n/4), for some h ∈ EXP, are true, it is also perfectly
plausible that they are efficiently provable in a standard proof system such as ZFC 3 or EF.
Notably, if EF proves efficiently tt(h, 2n/4) for some boolean function h, then EF simulates
WF, cf. [22, Lemma 19.5.4]. If there is a p-time algorithm which given a string of length 2n

(specifying the size of tt(h, 2n/4)) generates an EF-proof of tt(h, 2n/4), then EF is p-equivalent
to WF. To see that, combine Lemma 12 with the fact (proved in [15]) that APC1 proves the
reflection principle for WF.

1 We believe that the gap between tt(f, nO(1)) and tt(f, 2no(1)
, 1/2 − 1/2no(1)

) can be almost closed, if
one uses learning of subexponential-size circuits instead of p-size circuits in Item 1 of Theorem 1 and
tt-formulas expressing subexponential-size circuit lower bounds in Item 2.

2 This has not been verified for lower bounds obtained via the algorithmic method of Williams [35].
3 Efficient provability of tt(h, 2n/4, 1/2 − 1/2n/4) in ZFC, for some h ∈ EXP, would follow from the

standard provability of this lower bound in ZFC.

ICALP 2022
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As a corollary of Theorem 1 we show that, under a standard hardness assumption, there
is an explicit proof system P for which the equivalence holds. This, follows, essentially, by
“hard-wiring” tautologies tt(h, 2n/4, 1/2 − 1/2n/4) to WF.

▶ Corollary 2 (cf. Corollary 22). Assume there is a NE ∩ coNE-function hn : {0, 1}n 7→ {0, 1}
such that for each sufficiently big n, hn is not (1/2 + 1/2n/4)-approximable by 2n/4-size
circuits.4 Then there is a proof system P (which can be described explicitly given the
definition of hn) such that Items 1 and 2 from Theorem 1 are equivalent.

The proof of Theorem 1 reveals also a proof complexity collapse which we discuss in the
arXiv version of the paper.

1.2 Outline of the proof
Our starting point for the derivation of Theorem 1 is a relation between natural proofs and
automatability which goes back to a work of Razborov and Krajíček. Razborov [30, 28]
proved that certain theories of bounded arithmetic cannot prove explicit circuit lower bounds
assuming strong pseudorandom generators exist. Krajíček [19, 21] developed the concept
of feasible interpolation (a weaker version of automatability, cf. [22]) and reformulated
Razborov’s unprovability result in this language, see [22, Section 17.9] for more historical
remarks.

▶ Theorem 3 (Razborov-Krajíček [30, 28, 19] - informal version). Let P be a proof system
which simulates EF and satisfies some basic properties. If P is automatable and P proves
efficiently tt(h, nO(1)) for some function h, then there are P/poly-natural proofs useful against
P/poly.

The second crucial ingredient we will use is a result of Carmosino, Impagliazzo, Kabanets
and Kolokolova, who showed that natural proofs can be turned into learning algorithms [8].
This allows us to conclude the following.

▶ Theorem 4 (Informal). Let P be a proof system simulating EF and satisfying some basic
properties. If P proves efficiently tt(h, nO(1)) for some function h, then automatability of P
implies the existence of subexponential-size circuits learning p-size circuits over the uniform
distribution, with membership queries.

Theorem 4 directly implies that if strong pseudorandom generators exist and EF proves ef-
ficiently tt(h, nO(1)) for some h, then EF is automatable if and only if there are subexponential-
size circuits learning p-size circuits over the uniform distribution, with membership queries.
The disadvantage of this observation is that, unlike in Theorem 1, its assumptions are known
to imply that both sides of the desired equivalence are false.

We note that the proof of Theorem 4 can be used to show also that optimal and
automatable proof systems imply learning algorithms. In fact, it is possible to prove,
unconditionally, that there is some propositional proof system P such that automatability
of P is equivalent to the existence of subexponential-size circuits infnitely often learning
P/poly over the uniform distribution. The proof is, however, non-constructive so (unlike in
Corollary 2) we do not know which system P satisfies the equivalence. We discuss these
results in more detail in the arXiv version of the paper.

4 A circuit C with n inputs γ-approximates function f : {0, 1}n 7→ {0, 1} if Prx∈{0,1}n [C(x) = f(x)] ≥ γ.
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The entrance of metamathematics. Unfortunately, it is unclear how to derive the opposite
implication in Theorem 4. We do not know how to automate, say, EF assuming just the
existence of efficient learning algorithms. In order to get the reverse, we need to assume that
an efficient learning algorithm is provably correct in a proof system P , which p-simulates WF.
For simplicity, let P = WF. If we assume that WF proves efficiently for some small circuits
that they can learn p-size circuits, we can show that there are small circuits such that WF
proves efficiently that these circuits automate WF on formulas tt(f, nO(1)). In more detail,
we first formalize in APC1 the implication that WF-provable learning yields automatability of
WF on tt(f, nO(1)) - if a learning circuit A does not find a small circuit for a given function
f , the automating circuit uses WF-proof of the correctness of A to produce a short WF-proof
of tt(f, nO(1)). Then, we translate the APC1-proof to WF and conclude that WF proves that
WF-provable learning implies automatability of WF. This allows us to show that if we have
WF-provable learning, then WF is WF-provably automatable on tt(f, nO(1)).

It is important that assuming WF-provable learning, we are able to derive WF-provable
automatability of WF, and not just automatability of WF. This makes it possible to obtain
the opposite direction and establish the desired equivalence: If we know that WF proves
that WF is automatable, we can formalize the proof of Theorem 4 in WF and conclude the
existence of WF-provable learning algorithms.

Benefits of bounded arithmetic. The proof of Theorem 1 relies heavily on formalizations.
Among other things we need to formalize the result of Carmosino, Impagliazzo, Kabanets
and Kolokolova in APC1

5, and use an elaborated way of expressing complex statements about
metacomplexity by propositional formulas: existential quantifiers often need to be witnessed
before translating them to propositional setting. The framework of bounded arithmetic
allows us to deal with these complications in an elegant way: we often reason in bounded
arithmetic, possibly using statements of higher quantifier complexity, and only subsequently
translate the outcomes to propositional logic, if the resulting (proved) statement has coNP
form. Notably, already propositional formulas expressing probabilities in the definition of
learning algorithms require more advanced tools - the probabilities are encoded using suitable
Nisan-Wigderson generators which come out of the notion of approximate counting in APC1,
cf. Section 3.2.

1.3 Related results

Learning algorithms and automatability have been linked already in the work of Alekhnovich,
Braverman, Feldman, Klivans and Pitassi [1], who showed an informal connection between
learning of weak circuit classes and automatability of some weak systems such as tree-like
Resolution. As already mentioned, Atserias and Müller [3] proved that automating Resolution
is NP-hard and their work has been extended to other weak proof systems, see e.g. [12, 13, 14].
A direct consequence of these results is that efficient algorithms automating the respective
proof systems can be used to learn efficiently classes like P/poly. A major difference between
these results and ours is that for our results to apply, the proof system needs to be sufficiently
strong, while for the other results, the proof system needs to be weak (in the sense that lower
bounds for the system are already known).

5 We will actually formalize “CIKK” just conditionally, in order to avoid the formalization of Bertrand’s
postulate.

ICALP 2022



101:6 Learning Algorithms Versus Automatability of Frege Systems

1.4 Open problems
Unconditional equivalence between learning and automatability. Is it possible to avoid
the assumption on the provability of a circuit lower bound in Theorem 1 and establish an
unconditional equivalence between learning and automatability?

Complexity theory from the perspective of metamathematics. Our results demonstrate
that in the context of metamathematics it is possible to establish some complexity-theoretic
connections which we are not able to establish otherwise. We exploit the metamathematical
nature of the notion of automatability: efficient P -provability of the correctness of an
algorithm implies efficient P -provability of automatability of P . Is it possible to take
advantage of metamathematics in other contexts and resolve other important open problems
in this setting? For example, could we get a version of the desired equivalence between the
existence of efficient learning algorithms and the non-existence of cryptographic pseudorandom
generators, cf. [26, 33, 27]? The question of basing cryptography on a worst-case assumption
such as P ̸= NP could be addressed in this setting by showing that if a sufficiently strong
proof system P proves efficiently that there is no strong pseudorandom generator6, then P is
p-bounded.

Circuit lower bound tautologies. How essential are circuit lower bound tautologies in
our results? Consider fundamental questions of proof complexity (p-boundness, optimality,
automatability) w.r.t. formulas tt(f, s). Do they coincide with the original ones? Are
formulas tt(f, s) the hardest ones, do they admit optimal proof systems, or can we turn
automatability on formulas tt(f, s) into automatability on all formulas?

2 Preliminaries

2.1 Natural proofs and learning algorithms
[n] denotes {1, . . . , n}. Circuit[s] denotes fan-in two Boolean circuits of size at most s. The
size of a circuit is the number of gates.

▶ Definition 5 (Natural property [32]). Let m = 2n and s, d : N 7→ N. A sequence of circuits
{C2n}∞

n=1 is a Circuit[s(m)]-natural property useful against Circuit[d(n)] if
1. Constructivity. Cm has m inputs and size s(m),
2. Largeness. Prx[Cm(x) = 1] ≥ 1/mO(1),
3. Usefulness. For each sufficiently big m, Cm(x) = 1 implies that x is a truth-table of a

function on n inputs which is not computable by circuits of size d(n).

▶ Definition 6 (PAC learning). A circuit class C is learnable over the uniform distribution
by a circuit class D up to error ϵ with confidence δ, if there are randomized oracle circuits
Lf from D such that for every Boolean function f : {0, 1}n 7→ {0, 1} computable by a circuit
from C, when given oracle access to f , input 1n and the internal randomness w ∈ {0, 1}∗,
Lf outputs the description of a circuit satisfying

Pr
w

[Lf (1n, w) (1 − ϵ)-approximates f ] ≥ δ.

6 The formalization of this statement would assume the existence of a p-size circuit which for any p-size
circuit defining a potential pseudorandom generator outputs its distinguisher.
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Lf uses non-adaptive membership queries if the set of queries which Lf makes to the oracle
does not depend on the answers to previous queries. Lf uses random examples if the set of
queries which Lf makes to the oracle is chosen uniformly at random.

In this paper, PAC learning always refers to learning over the uniform distribution. While,
a priori, learning over the uniform distribution might not reflect real-world scenarios very well
(and on the opposite end, learning over all distributions is perhaps overly restrictive), as far
as we can tell it is possible that PAC learning of p-size circuits over the uniform distribution
implies PAC learning of p-size circuits over all p-samplable distributions. Binnendyk,
Carmosino, Kolokolova, Ramyaa and Sabin [4] proved the implication, if the learning
algorithm in the conclusion is allowed to depend on the p-samplable distribution.

Boosting confidence and reducing error. The confidence of the learner and its error can
be improved generically, see the arXiv version of the paper. We can thus often ignore the
optimisation of these parameters.

Natural proofs vs learning algorithms. Natural proofs are actually equivalent to efficient
learning algorithms with suitable parameters. In this paper we need just one implication.

▶ Theorem 7 (Carmosino-Impagliazzo-Kabanets-Kolokolova [8]). Let R be a P/poly-natural
property useful against Circuit[nk] for k ≥ 1. Then, for each γ ∈ (0, 1), Circuit[nkγ/a] is
learnable by Circuit[2O(nγ )] over the uniform distribution with non-adaptive membership
queries, confidence 1, up to error 1/nkγ/a, where a is an absolute constant.

2.2 Bounded arithmetic and propositional logic
Theories of bounded arithmetic capture various levels of feasible reasoning and present a
uniform counterpart to propositional proof systems.

The first theory of bounded arithmetic formalizing p-time reasoning was introduced by
Cook [10] as an equational theory PV. We work with its first-order conservative extension
PV1 from [24]. The language of PV1, denoted PV as well, consists of symbols for all p-time
algorithms given by Cobham’s characterization of p-time functions, cf. [9]. A PV-formula
is a first-order formula in the language PV. Σb

0 (=Πb
0) denotes PV-formulas with only

sharply bounded quantifiers ∃x, x ≤ |t|, ∀x, x ≤ |t|, where |t| is “the length of the binary
representation of t”. Inductively, Σb

i+1 resp. Πb
i+1 is the closure of Πb

i resp. Σb
i under positive

Boolean combinations, sharply bounded quantifiers, and bounded quantifiers ∃x, x ≤ t resp.
∀x, x ≤ t. Predicates definable by Σb

i resp. Πb
i formulas are in the Σp

i resp. Πp
i level of the

polynomial hierarchy, and vice versa. PV1 is known to prove Σb
0(PV)-induction:

A(0) ∧ ∀x (A(x) → A(x+ 1)) → ∀xA(x),

for Σb
0-formulas A, cf. Krajíček [18].

Buss [7] introduced the theory S1
2 extending PV1 with the Σb

1-length induction:

A(0) ∧ ∀x < |a|, (A(x) → A(x+ 1)) → A(|a|),

for A ∈ Σb
1. S1

2 proves the sharply bounded collection scheme BB(Σb
1):

∀i < |a| ∃x < a,A(i, x) → ∃w ∀i < |a|, A(i, [w]i),

ICALP 2022
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for A ∈ Σb
1 ([w]i is the ith element of the sequence coded by w), which is unprovable in PV1

under a cryptographic assumption, cf. [11]. On the other hand, S1
2 is ∀Σb

1-conservative over
PV1. This is a consequence of Buss’s witnessing theorem stating that S1

2 ⊢ ∃y,A(x, y) for
A ∈ Σb

1 implies PV1 ⊢ A(x, f(x)) for some PV-function f .
Following a work by Krajíček [20], Jeřábek [15, 16, 17] systematically developed a theory

APC1 capturing probabilistic p-time reasoning by means of approximate counting.7 The
theory APC1 is defined as PV1 + dWPHP (PV) where dWPHP (PV) stands for the dual
(surjective) pigeonhole principle for PV-functions, i.e. for the set of all formulas

x > 0 → ∃v < x(|y| + 1)∀u < x|y|, f(u) ̸= v,

where f is a PV-function which might involve other parameters not explicitly shown. We
devote Section 2.3 to a more detailed description of the machinery of approximate counting
in APC1.

Any Πb
1-formula ϕ provable in PV1 can be expressed as a sequence of tautologies ||ϕ||n

with proofs in the Extended Frege system EF which are constructible in p-time (given a string
of the length n), cf. [10]. Similarly, Πb

1-formulas provable in APC1 translate to tautologies
with p-time constructible proofs in WF, an extension of EF introduced by Jeřábek [15]. We
describe the translation and system WF in more detail below.

As it is often easier to present a proof in a theory of bounded arithmetic than in the
corresponding propositional system, bounded arithmetic functions, so to speak, as a uniform
language for propositional logic.

We refer to Krajíček [22] for basic notions in proof complexity.

▶ Definition 8 (WF (WPHP Frege), cf. Jeřábek [15]). Let L be a finite and complete language
for propositional logic, i.e. L consists of finitely many boolean connectives of constant arity
such that each boolean function of every arity can be expressed by an L-formula, and let R
be a finite, sound and implicationally complete set of Frege rules (in the langauge L). A
WF-proof of a (L-)circuit A is a sequence of circuits A0, . . . , Ak such that Ak = A, and each
Ai is derived from some Aj1 , . . . , Ajℓ

, j1, . . . , jℓ < i by a Frege rule from R, or it is similar
to some Aj, j < i, or it is the dWPHP axiom,

m∨
ℓ=1

(rℓ ̸= Ci,ℓ(Di,1, . . . , Di,n)),

where n < m and rℓ are pairwise distinct variables which do not occur in circuits A, Ci,ℓ′ , or
Aj for j < i, but may occur in circuits Di,1, . . . , Di,n.

The similarity rule in Definition 8 is verified by a specific p-time algorithm which checks
that circuits Ai and Aj can be “unfolded” to the same (possible huge) formula, cf. [15,
Lemma 2.2.]. Intuitively, the NLOG (⊆ P) algorithm recognizes if two circuits are not similar
by guessing a partial path through them, going from the output to the inputs, where on at
least one instruction the circuits disagree. As defined WF depends on the choice of Frege rules
and language L, but for each choice the resulting systems are p-equivalent, so we can identify
them. The dWPHP axiom refers to “dual weak pigeonhole principle” postulating the existence
of an element r1, . . . , rm outside the range of a p-size map Ci,1, . . . , Ci,m : {0, 1}n 7→ {0, 1}m.

7 Krajíček [20] introduced a theory BT defined as S1
2 + dWPHP (PV) and proposed it as a theory for

probabilistic p-time reasoning.
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The dWPHP axiom comes with a specification of circuits Ci,1, . . . , Ci,m, Di,1, . . . , Di,n so that
we can recognize the axiom efficiently. The role of circuits Di,1, . . . , Di,n in the dWPHP axiom
is to allow WF to postulate not only that r1, . . . , rm is not the output of Ci,1, . . . , Ci,m on a
specific input x1, . . . xn but to postulate that r1, . . . , rm is not the output of Ci,1, . . . , Ci,m

on other inputs (which could depend on r1, . . . , rm) either.
The translation of a Πb

1 formula ϕ into a sequence of propositional formulas ||ϕ||n works as
follows. For each PV-function f(x1, . . . , xk) and numbers n1, . . . , nk we have a p-size circuit
Cf computing the restriction f : 2n1 ×· · ·×2nk 7→ 2b(n1,...,nk), where b is a suitable “bounding”
polynomial for f . The formula ||f ||n(p, q, r) expresses that Cf outputs r on input p, with q

being the auxiliary variables corresponding to the nodes of Cf . The formula ||ϕ(x)||n(p, q)
is defined as ||ϕ′(x)||n(p, q), where ϕ′ is the negation normal form of ϕ, i.e. negations in ϕ′

are only in front of atomic formulas. The formula ||ϕ′(x)||n(p, q) is defined inductively in a
straightforward way so that || . . . || commutes with ∨,∧. The atoms p correspond to variables
x, atoms q correspond to the universally quantified variables of ϕ and to the outputs and
auxiliary variables of circuits Cf for functions f appearing in ϕ. Sharply bounded quantifiers
are replaced by polynomially big conjuctions resp. disjunctions. For the atomic formulas we
have,

||f(x) = g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′) →
∧

i

ri = r′
i,

||¬f(x) = g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′) → ¬
∧

i

ri = r′
i,

||f(x) ≤ g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′) →
∧

i

(ri ∧
∧
j>i

(rj = r′
j) → r′

i),

||¬f(x) ≤ g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′) → ¬
∧

i

(ri ∧
∧
j>i

(rj = r′
j) → r′

i).

2.3 Approximate counting
In order to prove our results we will need to use Jeřábek’s theory of approximate counting.
This section recalls the properties of APC1 we will need.

By a definable set we mean a collection of numbers satisfying some formula, possibly
with parameters. When a number a is used in a context which asks for a set it is assumed
to represent the integer interval [0, a), e.g. X ⊆ a means that all elements of set X are
less than a. If X ⊆ a, Y ⊆ b, then X × Y := {bx + y | x ∈ X, y ∈ Y } ⊆ ab and
X∪̇Y := X ∪ {y + a | y ∈ Y } ⊆ a + b. Rational numbers are assumed to be represented
by pairs of integers in the natural way. We use the notation x ∈ Log ↔ ∃y, x = |y| and
x ∈ LogLog ↔ ∃y, x = ||y||.

Let C : 2n → 2m be a circuit and X ⊆ 2n, Y ⊆ 2m definable sets. We write C : X ↠ Y

if ∀y ∈ Y ∃x ∈ X, C(x) = y. Jeřábek [17] gives the following definitions in APC1 (but they
can be considered in weaker theories as well).

▶ Definition 9. Let X,Y ⊆ 2n be definable sets, and ϵ ≤ 1. The size of X is approximately
less than the size of Y with error ϵ, written as X ⪯ϵ Y , if there exists a circuit C, and v ̸= 0
such that

C : v × (Y ∪̇ϵ2n) ↠ v ×X.

X ≈ϵ Y stands for X ⪯ϵ Y and Y ⪯ϵ X.
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Since a number s is identified with the interval [0, s), X ⪯ϵ s means that the size of X is
at most s with error ϵ.

The definition of X ⪯ϵ Y is an unbounded ∃Πb
2-formula even if X,Y are defined by

circuits so it cannot be used freely in bounded induction. Jeřábek [17] solved this problem
by working in HARDA, a conservative extension of APC1, defined as a relativized theory
PV1(α) + dWPHP (PV(α)) extended with axioms postulating that α(x) is a truth-table of
a function on ||x|| variables hard on average for circuits of size 2||x||/4, see Section 3.2. In
HARDA there is a PV1(α) function Size approximating the size of any set X ⊆ 2n defined by
a circuit C so that X ≈ϵ Size(C, 2n, 2ϵ−1) for ϵ−1 ∈ Log, cf. [17, Lemma 2.14]. If X ∩ t ⊆ 2|t|

is defined by a circuit C and ϵ−1 ∈ Log, we can define

Pr
x<t

[x ∈ X]ϵ := 1
t
Size(C, 2|t|, 2ϵ−1

).

The presented definitions of approximate counting are well-behaved:

▶ Proposition 10 (Jeřábek [17]). (in PV1) Let X,X ′, Y, Y ′, Z ⊆ 2n and W,W ′ ⊆ 2m be
definable sets, and ϵ, δ < 1. Then

i) X ⊆ Y ⇒ X ⪯0 Y ,
ii) X ⪯ϵ Y ∧ Y ⪯δ Z ⇒ X ⪯ϵ+δ Z,
iii) X ⪯ϵ X

′ ∧W ⪯δ W
′ ⇒ X ×W ⪯ϵ+δ+ϵδ X

′ ×W ′.
iv) X ⪯ϵ X

′ ∧ Y ⪯δ Y
′ and X ′, Y ′ are separable by a circuit, then X ∪ Y ⪯ϵ+δ X

′ ∪ Y ′.

▶ Proposition 11 (Jeřábek [17]). (in APC1)
1. Let X,Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n, ϵ, δ, θ, γ < 1, γ−1 ∈ Log. Then

(i) X ⪯γ Y or Y ⪯γ X,
(ii) s ⪯ϵ X ⪯δ t ⇒ s < t+ (ϵ+ δ + γ)2n,
(iii) X ⪯ϵ Y ⇒ 2n\Y ⪯ϵ+γ 2n\X,
(iv) X ≈ϵ s ∧ Y ≈δ t ∧X ∩ Y ≈θ u ⇒ X ∪ Y ≈ϵ+δ+θ+γ s+ t− u.

2. (Disjoint union) Let Xi ⊆ 2n, i < m be defined by a sequence of circuits and ϵ, δ ≤ 1,
δ−1 ∈ Log. If Xi ⪯ϵ si for every i < m, then

⋃
i<m(Xi × {i}) ⪯ϵ+δ

∑
i<m si.

3. (Averaging) Let X ⊆ 2n × 2m and Y ⊆ 2m be definable by circuits, Y ⪯ϵ t and Xy ⪯δ s

for every y ∈ Y , where Xy := {x| ⟨x, y⟩ ∈ X}. Then for any γ−1 ∈ Log,

X ∩ (2n × Y ) ⪯ϵ+δ+ϵδ+γ st.

When proving Σb
1 statements in APC1 we can afford to work in S1

2+dWPHP (PV)+BB(Σb
2)

and, in fact, assuming the existence of a single hard function in PV1 gives us the full power
of APC1. Here, BB(Σb

2) is defined as BB(Σb
1) but with A ∈ Σb

2.

▶ Lemma 12 ([25]). Suppose S1
2 + dWPHP (PV) +BB(Σb

2) ⊢ ∃yA(x, y) for A ∈ Σb
1. Then,

for every ϵ < 1, there is k and PV-functions g, h such that PV1 proves

|f | ≥ |x|k ∧ ∃y, |y| = ||f ||, Ch(y) ̸= f(y) → A(x, g(x, f))

where f(y) is the yth bit of f , f(y) = 0 for y > |f |, and Ch is a circuit of size ≤ 2ϵ||f ||

generated by h on f, x. Moreover, APC1 ⊢ ∃yA(x, y).
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3 Formalizing complexity-theoretic statements

3.1 Circuit lower bounds
An “almost everywhere” formulation of a circuit lower bound for circuits of size s and a
function f says that for every sufficiently big n, for each circuit C with n inputs and size s,
there exists an input y on which the circuit C fails to compute f(y).

If f : {0, 1}n → {0, 1} is an NP function and s = nk for a constant k, this can be written
down as a ∀Σb

2 formula LB(f, nk),

∀n, n > n0 ∀ circuit C of size ≤ nk ∃y, |y| = n, C(y) ̸= f(y),

where n0 is a constant and C(y) ̸= f(y) is a Σb
2 formula stating that a circuit C on input y

outputs the opposite value of f(y).
If we want to express s(n)-size lower bounds for s(n) as big as 2O(n), we add an extra

assumption on n stating that ∃x, n = ||x||. That is, the resulting formula LBtt(f, s(n))
has form “∀x, n;n = ||x|| → . . . ”. Treating x, n as free variables, LBtt(f, s(n)) is Πb

1 if f
is, for instance, SAT because n = ||x|| implies that the quantifiers bounded by 2O(n) are
sharply bounded. Moreover, allowing f ∈ NE lifts the complexity of LBtt(f, s(n)) just to ∀Σb

1.
The function s(n) in LBtt(f, s(n)) is assumed to be a PV-function with input x (satisfying
||x|| = n).

In terms of the Log-notation, LB(f, nk) implicitly assumes n ∈ Log while LBtt(f, nk)
assumes n ∈ LogLog. By chosing the scale of n we are determining how big objects are going
to be “feasible” for theories reasoning about the statement. In the case n ∈ LogLog, the
truth-table of f (and everything polynomial in it) is feasible. Assuming just n ∈ Log means
that only the objects of polynomial-size in the size of the circuit are feasible. Likewise, the
theory reasoning about the circuit lower bound is less powerful when working with LB(f, nk)
than with LBtt(f, nk). (The scaling in LBtt(f, s) corresponds to the choice of parameters in
natural proofs and in the formalizations by Razborov [29].)

We can analogously define formulas LBtt(f, s(n), t(n)) expressing an average-case lower
bound for f , where f is a free variable (with f(y) being the yth bit of f and f(y) = 0 for
y > |f |). More precisely, LBtt(f, s(n), t(n)) generalizes LBtt(f, s(n)) by saying that each
circuit of size s(n) fails to compute f on at least t(n) inputs, for PV-functions s(n), t(n).
Since n ∈ LogLog, LBtt(f, s(n), t(n)) is Πb

1.

Propositional version. An s(n)-size circuit lower bound for a function f : {0, 1}n → {0, 1}
can be expressed by a 2O(n)-size propositional formula tt(f, s),∨

y∈{0,1}n

f(y) ̸= C(y)

where the formula f(y) ̸= C(y) says that an s(n)-size circuit C represented by poly(s)
variables does not output f(y) on input y. The values f(y) are fixed bits. That is, the whole
truth-table of f is hard-wired in tt(f, s).

The details of the encoding of the formula tt(f, s) are not important for us as long as the
encoding is natural because systems like EF considered in this paper can reason efficiently
about them. We will assume that tt(f, s) is the formula resulting from the translation of Πb

1
formula LBtt(h, s), where n0 = 0, n, x are substituted after the translation by fixed constants
so that x = 22n , and h is a free variable (with h(y) being the yth bit of h and h(y) = 0 for
y > |h|) which is substituted after the translation by constants defining f .
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Analogously, we can express average-case lower bounds by propositional formulas
tt(f, s(n), t(n)) obtained by translating LBtt(h, s(n), t(n)2n), with n0 = 0, fixed x = 22n and
h substituted after the translation by f .

3.2 Learning algorithms
A circuit class C is defined by a PV-formula if there is a PV-formula defining the predicate
C ∈ C. Definition 6 can be formulated in the language of HARDA: A circuit class C (defined
by a PV-formula) is learnable over the uniform disribution by a circuit class D (defined by a
PV-formula) up to error ϵ with confidence δ, if there are randomized oracle circuits Lf from
D such that for every Boolean function f : {0, 1}n 7→ {0, 1} (represented by its truth-table)
computable by a circuit from C, for each γ−1 ∈ Log, when given oracle access to f , input 1n

and the internal randomness w ∈ {0, 1}∗, Lf outputs the description of a circuit satisfying

Pr
w

[Lf (1n, w) (1 − ϵ)-approximates f ]γ ≥ δ.

The inner probability of approximability of f by Lf (1n, w) is counted exactly. This is possible
because f is represented by its truth-table, which implies that 2n ∈ Log.8

Propositional version. In order, to translate the definition of learning algorithms to pro-
positional formulas we need to look more closely at the definition of HARDA.

PV1 can be relativized to PV1(α). The new function symbol α is then allowed in the
inductive clauses for introduction of new function symbols. This means that the language of
PV1(α), denoted also PV(α), contains symbols for all p-time oracle algorithms.

▶ Proposition 13 (Jeřábek [15]). For every constant ϵ < 1/3 there exists a constant n0 such
that APC1 proves: for every n ∈ LogLog such that n > n0, there exist a function f : 2n → 2
such that no circuit of size 2ϵn computes f on ≥ (1/2 + 1/2ϵn)2n inputs.

▶ Definition 14 (Jeřábek [15]). The theory HARDA is an extension of the theory PV1(α) +
dWPHP (PV(α)) by the axioms
1. α(x) is a truth-table of a Boolean function in ||x|| variables,
2. LBtt(α(x), 2||x||/4, 2||x||(1/2 − 1/2||x||/4)), for constant n0 from Proposition 13,
3. ||x|| = ||y|| → α(x) = α(y).

By inspecting the proof of Lemma 2.14 in [17], we can observe that on each input
C, 2n, 2ϵ−1 the PV1(α)-function Size calls α just once (to get the truth-table of a hard
function which is then used as the base function of the Nisan-Wgiderson generator). In fact,
Size calls α on input x which depends only on |C|, the number of inputs of C and w.l.o.g.
also just on |ϵ−1| (since decreasing ϵ leads only to a better approximation). In combination
with the fact that the approximation Size(C, 2n, 2ϵ−1) ≈ϵ X, for X ⊆ 2n defined by C, is
not affected by a particular choice of the hard boolean function generated by α, we get that
APC1 proves

LBtt(y, 2||y||/4, 2||y||(1/2 − 1/2||y||/4)) ∧ ||y|| = S(C, 2n, 2ϵ−1
) → Sz(C, 2n, 2ϵ−1

, y) ≈ϵ X,

where Sz is defined as Size with the only difference that the call to α(x) on C, 2n, 2ϵ−1 is
replaced by y and S(C, 2n, 2ϵ−1) = ||x|| for a PV-function S.

8 It could be interesting to develop systematically a standard theory of learning algorithms in APC1 and
WF, but it is not our goal here. Note, for example, that when we are learning small circuits it is not clear
how to boost the confidence to 1 in APC1, because we don’t have counting with exponential precision.
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This allows us to express Prx<t[x ∈ X]ϵ = a, where ϵ−1 ∈ Log and X ∩ t ⊆ 2|t| is defined
by a circuit C, without a PV1(α) function, by formula

∀y (LBtt(y, 2||y||/4, 2||y||(1/2−1/2||y||/4))∧||y|| = S(C, 2|t|, 2ϵ−1
) → Sz(C, 2|t|, 2ϵ−1

, y)/t = a).

We denote the resulting formula by Pry
x<t[x ∈ X]ϵ = a. We will use the notation Pry

x<t[x ∈
X]ϵ in equations with the intended meaning that the equation holds for the value Sz(·, ·, ·, ·)/t
under corresponding assumptions. For example, t · Pry

x<t[x ∈ X]ϵ ⪯δ a stands for “∀y, ∃v, ∃
circuit Ĉ (defining a surjection) which witnesses that LBtt(y, 2||y||/4, 2||y||(1/2 − 1/2||y||/4)) ∧
||y|| = S(C, 2|t|, 2ϵ−1) implies Sz(C, 2|t|, 2ϵ−1

, y) ⪯δ a”.
The definition of learning can be now expressed without a PV1(α) function: If circuit

class C is defined by a PV-function, the statement that a given oracle algorithm L (given
by a PV-function with oracle queries) learns a circuit class C over the uniform distribution
up to error ϵ with confidence δ can be expressed as before with the only difference that we
replace Prw[Lf (1n, w) (1 − ϵ)-approximates f ]γ ≥ δ by

y

Pr
w

[Lf (1n, w) (1 − ϵ)-approximates f ]γ ≥ δ.

Since the resulting formula A defining learning is not Πb
1 (because of the assumption LBtt)

we cannot translate it to propositional logic. We will sidestep the issue by translating only the
formula B obtained from A by deleting subformula LBtt (but leaving ||y|| = S(·, ·, ·) intact)
and replacing the variables y by fixed bits representing a hard boolean function. In more detail,
Πb

1 formula B can be translated into a sequence of propositional formulas leary
γ(L, C, ϵ, δ)

expressing that “if C ∈ C is a circuit computing f , then L querying f generates a circuit
D such that Pr[D(x) = f(x)] ≥ 1 − ϵ with probability ≥ δ, which is counted approximately
with precision γ”. Note that C, f are represented by free variables and that there are also free
variables for error γ from approximate counting and for boolean functions y. As in the case
of tt-formulas, we fix |f | = 2n, so n is not a free variable. Importantly, leary

γ(L, C, ϵ, δ) does
not postulate that y is a truth-table of a hard boolean function. Nevertheless, for any fixed
(possibly non-uniform) bits representing a sequence of boolean functions h = {hm}m>n0

such that hm is not (1/2 + 1/2m/4)-approximable by any circuit of size 2m/4, we can obtain
formulas learh

γ(L, C, ϵ, δ) by substituting bits h for y.
Using a single function h in learh

γ(L, C, ϵ, δ) does not ruin the fact that (the translation of
function) Sz approximates the respective probability with accuracy γ because Sz queries a
boolean function y which depends just on the number of atoms representing γ−1 and on the
size of the circuit D defining the predicate we count together with the number of inputs of
D. The size of D and the number of its inputs are w.l.o.g. determined by the number of
inputs of f .

If we are working with formulas learh
γ(L, C, ϵ, δ), where h is a sequence of bits representing

a hard boolean function, in a proof system which cannot prove efficiently that h is hard,
our proof system might not be able to show that the definition is well-behaved - it might
not be able to derive some standard properties of the function Sz used inside the formula.
Nevertheless, in our theorems this will never be the case: our proof systems will always know
that h is hard.

In formulas leary
γ(L, C, ϵ, δ) we can allow L to be a sequence of nonuniform circuits, with

a different advice string for each input length. One way to see that is to use additional input
to L in Πb

1 formula B, then translate the formula to propositional logic and substitute the
right bits of advice for the additional input. Again, the precise encoding of the formula
leary

γ(L, C, ϵ, δ) does not matter very much to us but in order to simplify proofs we will
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assume that leary
γ(L,Circuit[nk], ϵ, δ) has the from ¬tt(f, nk) → R, where n, k are fixed, f is

represented by free variables and R is the remaining part of the formula expressing that L
generates a suitable circuit with high probability.

3.3 Automatability
Let Φ be a class of propositional formulas. We say that a proof system P is automatable
w.r.t. Φ up to proofs of size s, where s : Φ 7→ N is a function, if there is a PV-function A

such that for each ϕ ∈ Φ and each t-size P -proof of ϕ with t ≤ s, A(ϕ, 1t) is a P -proof of ϕ.
In our main theorem we will need a slightly modified notion of automatability where the

automating algorithm outputs a proof of a given tautology ϕ which is not much longer than
a proof of an associated tautology ψ. (Formula ψ will be closely related to ϕ: while ϕ will
express a worst-case lower bound, ψ will express an average-case lower bound for the same
function.)

Let Φ be a class of pairs of propositional formulas. We say that a proof system P is
automatable w.r.t. Φ up to proofs of size s if there is a PV-function A such that for each
pair ⟨ψ, ϕ⟩ ∈ Φ and each t-size P -proof of ψ with t ≤ s, A(ϕ, 1t) is a P -proof of ϕ.

Propositional version. If Φ is defined by a PV-function and s ∈ Log is a PV-function, the
statement that an algorithm A (given by a PV-function) automates system P w.r.t. Φ up
to proofs of size s is Πb

1. Therefore, it can be translated into a sequence of propositional
formulas autP (A,Φ, s). Again, in formulas autP (A,Φ, s) we can allow A to be a sequence of
nonuniform circuits and s to be arbitrary possibly nonuniform parameter.

4 Learning algorithms from natural proofs in APC1

The formalization of the transformation of natural proofs into learning algorithms follows
from a straightforward inspection of the original proof. The proof can be found in the arXiv
version of the paper.

▶ Theorem 15. There is a PV-function L such that APC1 proves: For k ≥ 1, d ≥ 2,
2nd

, ndk, δ−1 ∈ Log, δ < 1/N3 and a prime nd ≤ p ≤ 2nd, let RN be a circuit with N = 2n

inputs such that for sufficiently big N ,
1. RN (x) = 1 implies that x is a truth-table of a boolean function with n inputs hard for

Circuit[n10dk],
2. {x | RN (x) = 1} ⪰δ 2N/N .

Then, circuits with nd inputs and size ndk are learnable by circuit L(RN , p) over the uniform
distribution with membership queries, confidence 1/N4, up to error 1/2 − 1/N3. Here, the
confidence is counted approximately with error δ using PV-function Sz and the corresponding
assumptions LBtt expressing hardness of a boolean function y, i.e. using formulas Pry[·]δ.

5 Main theorem

Our main theorem holds for any “decent” proof system p-simulating WF, which is well-behaved
in the sense that it APC1-provably satisfies some basic properties.

▶ Definition 16 (APC1-decent proof system). A propositional proof system P is APC1-decent
if the language L of P is finite and complete, i.e. L consists of connectives of constant arity
such that each boolean function of every arity can be expressed by an L-formula, P proves
efficiently its own reflection principle, i.e. formulas stating that if π is a P -proof of ϕ then ϕ

holds, cf. [22], and there is a PV-function F such that APC1 proves:
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1. P p-simulates WF, i.e. F maps each WF-proof of ϕ to a P -proof of ϕ.
2. P admits substitution property: F maps each triple ⟨ϕ, ρ, π⟩ to a P -proof of ϕ|ρ, where π

is a P -proof of ϕ and ϕ|ρ is formula ϕ after applying substitution ρ which replaces atoms
of ϕ by formulas.

3. F maps each pair ⟨π, π′⟩, where π is a P -proof of ϕ and π′ is a P -proof of ϕ → ψ, to a
P -proof of ψ.

In Definition 16, WF refers to some fixed system from the set of all WF systems. It follows
from the proof of Lemma 17 that if APC1 proves that P p-simulates a WF-system Q, then
for every WF-system R, APC1 proves that P p-simulates R, so the particular choice of the
WF-system does not matter. When we use connectives ∧,∨,¬,→ in an APC1-decent system
P , we assume that these are expressed in the language of P .

▶ Lemma 17. Each WF system is APC1-decent. Moreover, for each APC1-decent proof
system P the following holds.
1. For every Frege rule which derives ϕ from ϕ1, . . . , ϕk, there is a PV-function F such that

APC1 proves that F maps each (k + 1)-tuple ⟨π1, . . . , πk, ρ⟩ to a P -proof of ϕ|ρ, where πi

is a P -proof of ϕi|ρ for a substitution ρ replacing each atom of ϕ, ϕ1, . . . , ϕk by a formula.
2. There is a PV-function F such that APC1 proves that F maps each pair ⟨ϕ, b⟩, for

assignment b satisfying formula ϕ, to a P -proof of ϕ(b).
3. Let π be a P -proof of E → ϕ, where E defines a computation of a circuit which is

allowed to use atoms from ϕ as inputs but other atoms of E do not appear in ϕ, i.e. E
is the conjunction of extension axioms of EF built on atoms from ϕ. Then, there is a
poly(|π|)-size P -proof of ϕ.

Proof. WF is known to prove efficiently its own reflection principle, cf. [15]. In order to show
that it is APC1-decent, it thus suffices to prove that it satisfies Items 1-3 from Definition 16.

Item 2 is established already in PV1 by Σb
1-induction on the length of the proof π (which

can be used because of ∀Σb
1-conservativity of S1

2 over PV1): F replaces each circuit C from π

by C|ρ and preserves all WF-derivation rules.
Item 1 holds trivially if the given WF-system P is the WF-system P ′ from Definition 16.

Otherwise, we use implicational completeness of P and the completeness of the language of
P to simulate all O(1) Frege rules of P ′ by O(1) steps in P . (This does not require that the
implicational completeness of P is provable in APC1 because we need to simulate only O(1)
Frege rules of finite size). Similarly, by Σb

1-induction and the completeness of the language of
P , we simulate each circuit in the language of P ′ by a circuit in the language of P and show
that this simulation preserves the similarity rule. Then, given an s-size P ′-proof of ϕ, we
obtain a poly(s)-size P -proof of ϕ using the simulation of Frege rules of P ′, the similarity
rule and dWPHP axiom, together with substituting the right circuits in Frege rules. This is
done again in PV1 by Σb

1-induction on the length of the P ′-proof.
Item 3 follows by simulating modus ponens as in the proof of Item 1.

For the “moreover” part, see the arXiv version of the paper. ◀

APC1-decent proof systems can be much stronger than WF. For example, consider ZFC
as a propositional proof system: a ZFC-proof of propositional formula ϕ is a ZFC-proof of
the statement encoding that ϕ is a tautology. We can add the reflection of ZFC to WF,
i.e. we will allow WF to derive (substitutional instances of) formulas stating that “If π is a
ZFC-proof of ϕ, then ϕ holds.” The new system is as strong as ZFC w.r.t. tautologies and it
is easy to see that it is APC1-decent. (The reflection of the system can be proved in APC1
extended with an axiom postulating the reflection for ZFC.)
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▶ Theorem 18 (Learning versus automatability). Let P be an APC1-decent proof system and
assume there is a sequence of boolean functions h = {hn}n>n1 , for a constant n1, such that P
proves efficiently tt(hn, 2n/4, 1/2 − 1/2n/4). Then, for each constant K and constant γ < 1,
the following statements are equivalent.
1. Provable learning. For each k ≥ 1 and ℓ ≥ K + 1, there are 2Knγ -size circuits A such

that for each sufficiently big n, P proves efficiently

learh
1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, 1/2Knγ

).

2. Provable automatability. For each k ≥ 1, for each function s(n) ≥ 2n, there is a
constant K ′ and sK′-size circuits B such that P proves efficiently

autP (B,Φ, s),

where Φ is the set of pairs ⟨tt(f, 2Knγ

, 1/2 − 1/2Knγ ), tt(f, nk)⟩ for all boolean functions
f with n inputs.

Proof. (1. → 2.) We first prove the following statement in APC1.

▷ Claim 19 (in APC1). Assume that π is a P -proof of leary
1/2ℓnγ (A,Circuit[nk], 1/2−1/2Knγ

, δ)
for a circuit A and a boolean function y represented by fixed bits in formula leary

1/2ℓnγ (·, ·, ·, ·).
Further, assume that the probability that A on queries to f outputs a circuit D such
that Pr[D(x) = f(x)] ≥ 1/2 + 1/2Knγ is < δ, where the outermost probability is counted
approximately with error 1/2ℓnγ using PV-function Sz and the corresponding assumptions
LBtt expressing hardness of y, i.e. using formulas Pry[·]1/2ℓnγ for the same y as above - we
treat y as a free variable here. Then there is a poly(|π|)-size P -proof of tt(f, nk) or y does
not satisfy the assumptions of Pry[·]1/2ℓnγ .

To see that the claim holds, we reason in APC1 as follows. Assume π is a P -
proof of leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, δ) but A on queries to f outputs a circuit
(1/2 + 1/2Knγ )-approximating f with probability < δ. Then, either y does not satisfy the
assumptions of Pry[·]1/2ℓnγ or there is a trivial 2O(n)-size P -proof of ¬tt(f, nk) → ¬R(b), for
predicate R from the definition of leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, δ) and a complete
assignment b. The P -proof is obtained by evaluating function Sz which counts the confidence
of A - note that functions f, y and algorithm A are represented inside P by fixed bits so
the P -proof just evaluates a 2O(n)-size circuit on some input, which is possible by Lemma
17, Item 2. (We use here also the fact that APC1 knows that the probability statement
expressed by function Sz translates to ¬R in the negation normal form.) The formula
¬tt(f, nk) → ¬R(b) is obtained from ¬R(b) by an instantiation of a single Frege rule, which
is available by Lemma 17, Item 1. Applying again Lemma 17, Item 1, from a P -proof of
leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, δ) and a P -proof of ¬tt(f, nk) → ¬R(b), we construct
a poly(|π|)-size P -proof of tt(f, nk). This proves the claim.

Next, observe that APC1 proves that “If for a sufficiently big n and ℓ ≥ K + 1 the
probability that a circuit A on queries to f outputs a circuit (1/2 + 1/2Knγ )-approximating
f is ≥ 1/2Knγ , where the probability is counted approximately with error 1/2ℓnγ using
PV-function Sz and the corresponding assumptions LBtt, then there is a circuit of size |A|
(1/2 + 1/2Knγ )-approximating f or y does not satisfy the assumptions of Pry[·]1/2ℓnγ .” This
is because, if such a circuit did not exist, a trivial surjection would witness that 2m times the
probability that A outputs a circuit (1/2 + 1/2Knγ )-approximating f , counted approximately
with error 1/2ℓnγ using function Sz, is ⪯1/2ℓnγ 0. Here, 2m is the domain of the surjection.
By Proposition 11 1.ii), this would imply 2m/2Knγ

< 2m+1/2ℓnγ , which is a contradiction
for ℓ ≥ K + 1 and sufficiently big n.
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Therefore, Claim 19 implies that APC1 proves that “For sufficiently big n and ℓ ≥ K + 1,
if π is a P -proof of leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, 1/2Knγ ) for circuits A of size
2Knγ , then there is a P -proof of tt(f, nk) or there is a 2Knγ -size circuit (1/2 + 1/2Knγ )-
approximating f or there is a 2||y||/4-size circuit (1/2+1/2||y||/4)-approximating y or ||y|| ≤ n0

or ||y|| ̸= S(·, 2m, 22ℓnγ

);” for n0 from Definition 14. Since this is a Σb
1-statement, by Lemma

12, PV1 proves the same statement with the existential quantifiers witnessed by PV-functions
assuming they are given a boolean function h′ which is hard for circuits of size 2||h′||/4, for
sufficiently big |h′|.

The last statement provable in PV1 is Πb
1 so we can translate it to EF. This gives us

poly(|π|, 2n)-size circuits B0 such that for sufficiently big n, EF proves efficiently

“If ℓ ≥ K + 1,
h′ is not computable by a particular circuit of size 2||h′||/4, |h′| is sufficiently big,
y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,
||y|| = S(·, 2m, 22ℓnγ

)
and π is a P -proof of leary

1/2ℓnγ (A,Circuit[nk], 1/2 − 1/2Knγ

, 1/2Knγ ) for 2Knγ -size A,
then B0 (given π, h′ and formula tt(f, nk)) outputs a P -proof of tt(f, nk)

or B0 outputs a 2Knγ -size circuit (1/2 + 1/2Knγ )-approximating f .”.9

If we now assume that P proves efficiently tt(hn, 2n/4, 1/2 − 1/2n/4) and that Item 1 holds,
then by Definition 16, Items 1-3, for each k, there are p-size circuits B1 such that for each
sufficiently big n, P proves efficiently “B1 (given just formula tt(f, nk)) outputs a P -proof of
tt(f, nk) or B1 outputs a 2Knγ -size circuit (1/2 + 1/2Knγ )-approximating f .” (We use here
also the fact that PV1 knows that S(·, 2m, 22ℓnγ

) depends just on n.) Consequently, since P
proves efficiently its own reflection, for each sufficiently big n, P proves efficiently that “if π
is a P -proof of tt(f, 2Knγ

, 1/2 − 1/2Knγ ) then B1 outputs a P -proof of tt(f, nk)”.10 Finally,
we make the P -proofs work for all n by increasing the size of B1 by a constant. This finishes
the proof of case (1. → 2.).

(2. → 1.) The opposite implication can be obtained from Lemma 20 and 21 which formalize
Theorem 4.

▶ Lemma 20. For each d ≥ 2, each k ≥ 10d and each sufficiently big c, there is a PV-function
L such that for each PV-function B the theory APC1 proves: Assume the reflection principle
for P holds, π is a P -proof of

tt(hn ⊕ g, 2Knγ

, 1/2 − 1/2Knγ

) ∨ tt(g, 2Knγ

), (1)

where g is represented by free variables, and that B automates P on Φ up to size |π|c. Then,
for prime nd ≤ p ≤ 2nd, where 2nd ∈ Log, for δ−1 ∈ Log such that δ < 1/N3 = 23n,
L(B, π, p) is a poly(2n, |π|)-size circuit learning circuits with m = nd inputs and size mk/10d,

9 Formally, the statement “If a particular assignment a satisfies formula ϕ, then formula ψ holds” means
that “If a is the output of a computation of a specific circuit W (where W is allowed to use as
inputs atoms from ψ, but other atoms of W do not appear in ψ), and a satisfies ϕ, then ψ”. By
Lemma 17, Item 3, if we assume that the statement is efficiently provable in P and that P proves
efficiently ϕ, then P proves efficiently ψ. Note also that for A,B ∈ Σb

0, the translation ||A → B||
is ¬||¬A|| → ||B||, which might not be the same formula as ||A|| → ||B||. Nevertheless, EF proves
efficiently that E → (||A|| ↔ ¬||¬A||), where E postulates that auxiliary variables of ||A|| encode the
computation of a suitable circuit. Therefore, in systems like EF or P , if we have a proof of ||A|| and
||A → B||, we can remove the assumption E after proving E → ||B||, assuming “non-input” variables of
E do not occur in ||B||, and ignore the difference between ||A|| and ¬||¬A||.

10 It is assumed that the encoding of the statement coincides with the encoding of autP .
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with confidence 1/N4, up to error 1/2 − 1/N3, where the confidence is counted approximately
with error δ using PV-function Sz and the corresponding assumptions LBtt expressing hardness
of a boolean function y, i.e. using formulas Pry[·]δ.

▶ Lemma 21 (“XOR trick”). PV1 proves that for all boolean functions g, h′′ with n inputs, for
sufficiently big n, LBtt

′(h′′, 3 · 2Knγ

, 2n(1/2 − 1/2Knγ )) implies LBtt
′(h′′ ⊕ g, 2Knγ

, 2n(1/2 −
1/2Knγ )) ∨ LBtt

′(g, 2Knγ ), where LBtt
′ is obtained from LBtt by setting n0 = 0 and skipping

the universal quantifier on n, i.e. all formulas LBtt
′ refer to the same n.

The proof of Lemma 21 is almost immediate: By Σb
1-induction, a 2Knγ -size circuit C1

computing g and a 2Knγ -size circuit C2 (1/2+1/2Knγ )-approximating h′′ ⊕g can be combined
into a circuit C1 ⊕ C2 of size 3 · 2Knγ which (1/2 + 1/2Knγ )-approximates h′′.

The implication (2. → 1.) can be derived from Lemma 20 and 21 as follows. Since the
APC1-provable statement from Lemma 20 is Σb

1, similarly as above, we can witness it and
translate to EF at the expense of introducing an additional assumption about the hardness of
a boolean function h′. That is, for each p-size circuit B there are poly(|π|, 2nd)-size circuits
A and poly(|π|, 2nd)-size EF-proofs of

“If the reflection principle for P is satisfied by a particular assignment,
π is a P -proof of (1),
h′ is not computable by a particular circuit of size 2||h′||/4, |h′| is sufficiently big,
y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,
||y|| = S(·, ·, 2|δ−1|)
and nd ≤ p ≤ 2nd is a prime,

then, for δ < 1/N3, leary
δ (L(B, π, p),Circuit(mk/10d), 1/2 − 1/N3, 1/N4)

or A(B, π, h′) outputs a falsifying assignment of autP (B,Φ, |π|c).”.

Analogously, PV1-proof from Lemma 21 yields p-size EF-proofs of the implication “tt(hn, 3·
2Knγ

, 1/2 − 1/2Knγ ) is falsified by a particular assignment or (1) holds”. By the assumption
of the theorem, there are p-size P -proofs of tt(hn, 3 · 2Knγ

, 1/2 − 1/2Knγ ) for sufficiently big
n. Hence, by Definition 16, Items 1-3, there are p-size P -proofs of (1) for sufficiently big n.
As P proves efficiently also its own reflection, this yields poly(2nd)-size P -proofs of

“If h′ is not computable by a particular circuit of size 2||h′||/4, |h′| is sufficiently big,
y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,
||y|| = S(·, ·, 2|δ−1|)
and nd ≤ p ≤ 2nd is a prime,

then, for δ < 1/N3, leary
δ (L(B, π, p),Circuit(mk/10d), 1/2 − 1/N3, 1/N4)

or A(B, π, h′) outputs a falsifying assignment of autP (B,Φ, |π|c).”.

By Bertrand’s postulate there is a prime nd ≤ p ≤ 2nd, so EF proves that p is a prime by
a trivial 2O(nd)-size proof which verifies all possible divisors. Therefore, choosing d > 1/γ,
Item 2 and p-size P -proofs of tt(hn, 2n/4, 1/2 − 1/2n/4) imply Item 1.

It remains to prove Lemma 20.
Suppose π is a P -proof of (1). Assuming that B automates P on Φ, we want to

obtain a P/poly-natural property useful against Circuit[nk]. To do so, observe (first, without
formalizing it in APC1) that for each g, B can be used to find a proof of tt(hn ⊕ g, nk)
or to recognize that tt(g, 2Knγ ) holds - if tt(g, 2Knγ ) was falsifiable, there would exist a
poly(|π|)-size P -proof of tt(hn ⊕g, 2Knγ

, 1/2−1/2Knγ ) obtained by substituting the falsifying
assignment to the proof of (1) and thus B would find a short proof of tt(hn ⊕ g, nk), for
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sufficiently big c. Since for random g, both hn ⊕ g and g are random functions, we know
that with probability ≥ 1/2 B finds a proof of tt(hn ⊕ g, nk) or with probability ≥ 1/2 it
recognizes that tt(g, 2Knγ ) holds. In both cases, B yields a P/poly-natural property useful
against Circuit[nk].

Let us formalize reasoning from the previous paragraph in APC1. Let N = 2n and B′

be the algorithm which uses B to search for P -proofs of tt(hn ⊕ g, nk) or to recognize that
tt(g, 2Knγ ) holds. B′ uses π to know how long it needs to run B. Assume for the sake of
contradiction that

G0 := {g ⊕ hn | B′(g) outputs a P -proof of tt(hn ⊕ g, nk)} ⪯0 2N/3

G1 := {g | B′(g) recognizes that tt(g, 2Knγ

) holds} ⪯0 2N/3.

It is easy to construct a surjection S witnessing that 2N ⪯0 G0 ∪G1: S maps g ∈ G1 to g
and g ∈ G0 to g ⊕ hn. Following the argument above we conclude that S is a surjection: for
each g, either g ∈ G1 (and S(g) = g) or g ⊕ hn ∈ G0 (and S(g ⊕ hn) = g). Here, we use
the assumption that APC1 knows that P admits the substitution property and simulates
Frege rules. Thus, by Proposition 10 iv), 2N ⪯0 2 · 2N/3, which yields a contradiction by
Proposition 11 1.ii). Consequently, by Proposition 11 1.i), G0 ⪰δ 2N/3 or G1 ⪰δ 2N/3 for
δ−1 ∈ Log. Since g ∈ G0 and g ∈ G1 are decidable by p-size circuits and we assume the
reflection principle for P (which implies that G0 is useful), this means that either G0 or G1
defines a P/poly-natural property useful against Circuit[nk].

Finally, by the APC1-formalization of [8], Theorem 15, we obtain poly(2n, |π|)-size circuit
L(B, π, p) learning circuits with m = nd inputs and size nk/10, over the uniform distribution,
with membership queries, confidence 1/N4, up to error 1/2 − 1/N3. ◀

▶ Corollary 22. Assume there is a NE ∩ coNE-function hn : {0, 1}n 7→ {0, 1} such that for
each sufficiently big n, hn is not (1/2 + 1/2n/4)-approximable by 2n/4-size circuits. Then
there is a proof system P (which can be described explicitly11 given the definition of hn)
such that for each constant K and γ < 1, Items 1 and 2 from Theorem 18 are equivalent.
Moreover, the equivalence holds for each APC1-decent system simulating P .

Proof. See the arXiv version of the paper. ◀
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Abstract
We introduce a new data structure for answering connectivity queries in undirected graphs subject
to batched vertex failures. Precisely, given any graph G and integer parameter k, we can in fixed-
parameter time construct a data structure that can later be used to answer queries of the form:
“are vertices s and t connected via a path that avoids vertices u1, . . . , uk?” in time 2O(k). In the
terminology of the literature on data structures, this gives the first deterministic data structure for
connectivity under vertex failures where for every fixed number of failures, all operations can be
performed in constant time.

With the aim to understand the power and the limitations of our new techniques, we prove an
algorithmic meta theorem for the recently introduced separator logic, which extends first-order logic
with atoms for connectivity under vertex failures. We prove that the model-checking problem for
separator logic is fixed-parameter tractable on every class of graphs that exclude a fixed topological
minor. We also show a weak converse. This implies that from the point of view of parameterized
complexity, under standard complexity theoretical assumptions, the frontier of tractability of
separator logic is almost exactly delimited by classes excluding a fixed topological minor.

The backbone of our proof relies on a decomposition theorem of Cygan, Lokshtanov, Pilipczuk,
Pilipczuk, and Saurabh [SICOMP ’19], which provides a tree decomposition of a given graph into
bags that are unbreakable. Crucially, unbreakability allows to reduce separator logic to plain first-
order logic within each bag individually. Guided by this observation, we design our model-checking
algorithm using dynamic programming over the tree decomposition, where the transition at each
bag amounts to running a suitable model-checking subprocedure for plain first-order logic. This
approach is robust enough to provide also an extension to efficient enumeration of answers to a
query expressed in separator logic.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Finite Model Theory; Mathematics of computing → Graph algorithms

Keywords and phrases Combinatorics and graph theory, Computational applications of logic, Data
structures, Fixed-parameter algorithms and complexity, Graph algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.102

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2111.03725

Funding This paper is a part of project BOBR that has received funding from the European Research

 
 
 
 
 
 
 
 
 

a

Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 948057) and part of the French-German Collaboration ANR/DFG Project UTMA
supported by the German Research Foundation (DFG) through grant agreement No 446200270.

EA
T

C
S

© Michał Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Toruńczyk, and
Alexandre Vigny;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 102; pp. 102:1–102:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
mailto:schirrmacher@uni-bremen.de
https://orcid.org/0000-0002-1740-7478
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
mailto:szymtor@mimuw.edu.pl
https://orcid.org/0000-0002-1130-9033
mailto:vigny@uni-bremen.de
https://orcid.org/0000-0002-4298-8876
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://arxiv.org/abs/2111.03725
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


102:2 Algorithms for First-Order Logic with Connectivity

Acknowledgements We thank Ismaël Jecker, Pierre Ohlmann and Wojciech Przybyszewski for useful
discussions. In particular, Wojciech Przybyszewski showed how to improve the dependency on k in
the running time from double exponential to single exponential in Theorem 1.1 (see Theorem 2.4).

1 Introduction

1.1 Connectivity under vertex failures
In many applications, we do not need to answer a query once but rather need to repeatedly
answer queries over dynamically changing data. A prime example are databases, where a
database is repeatedly modified and queried by the users. In most cases, the modifications
to the database can be expected to be small compared to its size, which suggests that in
a preprocessing step, we can set up a data structure that is efficiently updated after each
modification and that allows for efficient querying. In 1997, Frigioni and Italiano introduced
the dynamic subgraph model [22], which allows to conveniently model such dynamic situations
in the particular case of connectivity in network infrastructures that are subject to node
or link failures. This model, which has been studied intensively in the data structures
community under the name of connectivity oracles under vertex failures, is as follows. We
are given a graph G and an integer k. We imagine that G is a network in which at every
moment, at most k vertices (or edges) are inactive (are subject to failures). The goal is
to construct a data structure that supports the following two operations. First, one can
update G by resetting the set of failed vertices to a given set of size at most k. Second, one
can query G by asking, for a given pair of vertices s and t, whether s and t can be connected
by a path that avoids the failed vertices.

Following the introduction of the problem by Frigioni and Italiano [22] and the more
general problem of batched vertex or edge failures by Pătraşcu and Thorup [37]1, there has
been a long line of work on data structures for connectivity oracles under vertex and edge
failures. We refer to a remarkably comprehensive literature overview in the work of Duan
and Pettie [17], which also provides the currently best bounds for the problem as far as
combinatorial and deterministic data structures are concerned. Their data structure can be
initialized in time O(|G|∥G∥ · log |G|), takes O(k∥G∥ log |G|) space, and supports updates
in O(k3 log3 |G|) time and queries in O(k) time. Here |G| is the vertex count of G and ∥G∥
is the joint number of edges and vertices in G. These bounds can be slightly improved at
the cost of allowing randomization, however, the polylogarithmic dependency on the size of
the graph in the update time persists. As noted in [17], from known results it is possible
to derive data structures with constant time complexity of operations for k ⩽ 3 (or k ⩽ 4
for edge failures), but, citing their words, “scaling these solutions up, even to an arbitrarily
large constant k, becomes prohibitively complex, even in the simpler case of edge failures.”

Recently, van den Brand and Saranurak [42] proposed a very different approach to the
problem, using which they obtained a randomized data structure that can be initialized in
time O(|G|ω), takes O(|G|2 log |G|) space, and supports updates in O(kω) time and queries
in O(k2) time (where ω is the exponent for the boolean matrix multiplication).

In particular, the update and the query time are constant for constant k; to the best
of our knowledge, this is the only data structure that has this property known so far. The
approach is algebraic and, simplifying it substantially, boils down to storing a matrix of

1 Strictly speaking, in [37] Pătraşcu and Thorup considered only edge failures. To the best of our
knowledge, (batched) vertex failures on general graphs were first investigated by Duan and Pettie [16].
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counts of walks between pairs of vertices and extracting answers to queries using algebraic
operations on those counts. To manipulate the counts efficiently, one needs to work on their
short hashes, for instance in the form of elements from a fixed finite field. This introduces
randomization and avoiding it within this methodology seems difficult. We remark that the
data structure of van den Brand and Saranurak [42] works even for the more general problem
of reachability in directed graphs under vertex failures, and can handle arc insertions.

As the first main contribution of this paper, we prove the following theorem. Note
that querying whether two vertices are connected by a path avoiding failed vertices is
equivalent to an update followed by a connectivity query in the terminology of previous
works [42, 16, 17, 37].

▶ Theorem 1.1. Given a graph G and an integer k, one can in time 22O(k) · |G|2∥G∥
construct a data structure that may answer the following queries in time 2O(k): given
s, t ∈ V (G) and k vertices u1, . . . , uk of G, are s and t connected in G by a path that avoids
the vertices u1, . . . , uk? The space usage of the data structure is 22O(k) · ∥G∥.

Note that in Theorem 1.1, for every fixed k, all operations are supported in constant time
(which is exponential in k). Also, the data structure is entirely deterministic and purely
combinatorial. To the best of our knowledge, this is the first deterministic (non-randomized)
data structure with constant time queries. Note also that for a fixed k, the space usage of
our data structure is linear in the size of the graph, as opposed to the quadratic dependency
in the result of van den Brand and Saranurak [42].

We remark that in the first version of this paper [36], the query time in Theorem 1.1 is
stated as 22O(k) instead of 2O(k). The improved query time is due to an improvement in one
of the ingredients of our proof (see Theorem 2.4 below), provided by Wojciech Przybyszewski.

The doubly-exponential dependencies on k may seem high, however we also derive two
variants of our data structure that achieve the following tradeoffs:

The space usage and the query time can be reduced to 2O(k2) · ∥G∥ and kO(1), respectively,
while the construction time becomes 2O(k2) · |G|O(1).
The space usage and the query time can be replaced with kO(1)·|G|2 and kO(1), respectively,
while the construction time becomes 2O(k log k) · |G|O(1).

Note the first statement offers both more efficient queries (the query time is even
polynomial in k), and smaller space usage. The slight drawback is that the polynomial factor
in the construction time becomes unspecified, but it is still of the form |G|O(1). In the second
statement, the space usage becomes polynomial in k at the expense of making it quadratic
in |G|. The tradeoffs are obtained by a non-trivial replacement of particular components in
the proof of Theorem 1.1; see the discussion in Section 6 of the full version. We consider the
statement provided in Theorem 1.1 to be the cleanest formulation, hence we put a primary
focus on it.

As for the proof of Theorem 1.1, our approach is completely new compared to the previous
approaches [42, 16, 17, 37]. Our key combinatorial observation is that connectivity queries
over a constant number k of vertex failures can be evaluated in constant time provided the
underlying graph G is sufficiently well-connected. The requirement on the well-connectedness
of G depends on the number k. Obviously, there is no guarantee that the input graph G

satisfies this property. We therefore use a decomposition theorem of Cygan, Lokshtanov,
Pilipczuk, Pilipczuk, and Saurabh [15] that (roughly) states the following (see Theorem 2.1).
For every graph G and fixed number k, there is a tree decomposition where every intersection
of adjacent bags has bounded size and every bag is well-connected for parameter k. Moreover,
such a tree decomposition can be computed in time 2O(k2)|G|2∥G∥. The data structure of
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Theorem 1.1 is constructed around the tree decomposition T provided by the theorem of
Cygan et al. [15]. Intuitively speaking, whether s and t are connected via a path that avoids
the vertices u1, . . . , uk can be decided using dynamic programming over T . We employ
known techniques developed for answering queries on trees in constant time, for instance a
deterministic variant of Simon’s factorization [12], to be able to compute the outcome of this
dynamic programming efficiently for any query given on input.

We provide a more detailed overview of the proof of Theorem 1.1 in Section 2. All proofs are
provided in the full version [36] (numbers referring to https://arxiv.org/abs/2111.03725v1).

1.2 Algorithmic meta theorems

Once an algorithmic technique has been applied to solve a specific problem, it is very desirable
to understand the power and the limitations of that technique, that is, to understand which
other problems can be solved with that technique and which problems cannot. An approach
to this very general goal is to prove an algorithmic meta theorem: a theorem that establishes
tractability for a whole class of problems, possibly on certain restricted input instances. As
logic allows to conveniently define classes of algorithmic problems, namely, the class of all
problems that can be expressed in the logic under consideration, algorithmic meta theorems
are often formulated as model-checking problems for a logic. In the model-checking problem
for a logic L on a class of graphs C we are given a graph G ∈ C and a sentence φ ∈ L, and
the task is to decide whether φ holds in G. The archetypal result of this form is a result of
Courcelle stating that every formula of monadic-second order logic (MSO2) can be evaluated
in linear time on all graphs whose treewidth is bounded by some fixed constant [13]. This
result has been extended to various other logics L and graph classes C .

This approach to algorithmic meta theorems can be made precise in the language of
parameterized complexity, as follows. Say that L is tractable on C if the model-checking
problem for C and L is fixed-parameter tractable (fpt): it can be solved in time f(φ) · ∥G∥c,
for some computable function f and a constant c, both depending only on C . Results about
tractability of a logic L on a class C imply the tractability of a vast array of problems
– namely all problems that can be expressed in the logic L – on a given class of graphs.
For instance, if model-checking first-order logic (FO) is fpt on a class of graphs C , then in
particular the dominating set problem is fpt on C , since the existence of a dominating set
of size k can be expressed by a first-order sentence with k + 1 quantifiers that range over
the vertices of the graph. Similarly, the independent set problem is then also fpt on C . On
the other hand, if the more powerful logic MSO2 is tractable on a class of graphs C , then
the 3-colorability problem, or the hamiltonicity problem are polynomial-time solvable on C ,
since both those problems can be expressed using an MSO2 sentence, whose quantifiers that
range over sets of vertices and edges of the graph.

There has been a long line of work on fixed-parameter tractability of model-checking FO,
as it is arguably the most fundamental logic. This culminated in the work of Grohe, Kreutzer
and Siebertz [24], who proved that this problem is fixed-parameter tractable on every class
that is nowhere dense. Those classes include for example the class of planar graphs, or every
class with bounded maximum degree, or of bounded genus. Without going into details,
nowhere denseness is a general notion of uniform sparseness in graphs, and it is broader
than most well-studied concepts of sparseness considered in structural graph theory, such
as excluding a fixed (topological) minor. As observed by Dvořák et al. [19], the result of
Grohe et al. is tight in the following sense: whenever C is not nowhere dense and is closed
under taking subgraphs, then FO model-checking on C is as hard as on general graphs, that

https://arxiv.org/abs/2111.03725v1
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is, AW[⋆]-hard. This means that as far as subgraph-closed classes are concerned, sparsity –
described formally through the notion of nowhere denseness – exactly delimits the area of
tractability of FO and the limits of the locality method for FO model-checking.

The aforementioned classic theorem of Courcelle [13] states that the model-checking
problem for MSO2 is fixed-parameter tractable on a class C if C has bounded treewidth.
The proof translates the given sentence into a suitable tree automaton working on a tree
decomposition of the input graph; this approach brings a wide range of automata-based tools
to the study of MSO2 on graphs. Again, as shown by Kreutzer and Tazari [31] and Ganian et
al. [23], under certain complexity assumptions this is (almost) the most one could hope for: on
subgraph-closed classes whose treewidth is poly-logarithmically unbounded, model-checking
of MSO2 becomes intractable from the parameterized perspective. So for MSO2, bounded
treewidth (almost) delimits the frontier of tractability, at least for subgraph-closed classes,
and automata-based techniques exactly explain what can be done algorithmically.

With the aim to provide a meta theorem that captures the essence of the techniques
developed to answer connectivity under vertex failures, we search for a logic that can express
these queries. It is easy to see that MSO2 is strong enough, but in fact, MSO2 is much
stronger and as explained above, it is intractable beyond graphs of bounded treewidth. On
the other hand, FO can only express local properties and in particular, it cannot even express
the very simple query of whether two vertices are in the same connected component. This
naturally leads to an extension of FO that may use connectivity under vertex failures as
atomic formulas. Such a logic was very recently introduced independently by Bojańczyk [6]
and by Schirrmacher et al. [39] under the name separator logic, and denoted FO+conn.
This logic extends FO by predicates connk(s, t, u1, . . . , uk) (one for each k ⩾ 0) with the
following semantics: if s, t, u1, . . . , uk are vertices of a graph G, then connk(s, t, u1, . . . , uk)
holds if and only if there is a path that connects s with t and does not pass through any
of the vertices u1, . . . , uk. Thus, separator logic involves very basic connectivity queries
that have a global character, unlike plain FO, which is local. As a consequence, separator
logic can express many interesting algorithmic properties, such as acyclicity, k-connectivity,
the feedback vertex set problem parameterized by solution size and many recently studied
elimination distance problems [9]. On the other hand, while connk(s, t, u1, . . . , uk) predicates
are expressible in MSO2, it is no surprise that the expressive power of FO+conn is strictly
weaker than that of MSO2. For example, MSO2 can express bipartiteness, while FO+conn
cannot [39, Theorem 3.11]. Separator logic is also incomparable with the recently introduced
compound logic [20]. While compound logic can express the atomic connectivity predicates
under vertex failures, it is not closed under negation. On the other hand, compound logic
can express the exclusion of minors, a property not expressible in separator logic.

As the second main result of the paper, we prove an algorithmic meta theorem for
separator logic. We show that the frontier of tractability of FO+conn is almost exactly
delimited by classes of graphs that exclude a fixed topological minor. More precisely, we
prove the following complementary results.

▶ Theorem 1.2. Let C be a class of graphs that exclude a fixed graph as a topological minor.
Then given G ∈ C and an FO+conn sentence φ, one can decide whether φ holds in G in
time f(φ) · ∥G∥3, where f is a computable function depending on C .

Our result implies e.g. the recent result about elimination distance to bounded degree [3],
but it is much more general as it unifies in particular all elimination distance problems to
classes definable in separator logic on classes that exclude a topological minor. Note that it
does not subsume the result of [27] as e.g. the elimination distance to bipartite graphs and
vertex planarization cannot be expressed by separator logic.
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Figure 1 Correspondences between logics and properties of graph classes. An arrow L ↭ P
between a logic L and a property P of graph classes denotes a correspondence: the logic L is
tractable on a graph class C if and, under additional assumptions, only if, the class C has the
property P. Our result is the central correspondence (∗).

For the lower bound, we will need a technical assumption. We say that a class C admits
efficient encoding of topological minors if for every graph H there exists G ∈ C such that H

is a topological minor of G, and, given H , such G together with a suitable topological minor
model can be computed in time polynomial in |H|. Note that in particular such G can be
only polynomially larger than H.

▶ Theorem 1.3. Let C be a subgraph-closed class of graphs that admits efficient encoding of
topological minors. Then the model-checking of FO+conn on C is AW[⋆]-hard, even for the
fragment that uses only connk predicates with k ⩽ 2.

On the one hand, these results show that separator logic is a natural logic whose expressive
power lies strictly between FO and MSO2, and which corresponds, in the sense described
above, to a natural property of classes of graphs that lies between bounded treewidth and
nowhere denseness, see Figure 1. On the other hand, the proof of Theorem 1.2 provides a
general meta-explanation of the technique of dynamic programming over tree decompositions
with unbreakable parts. In particular, the tractability result provided by Theorem 1.2
generalizes several recent algorithmic results for concrete problems expressible in separator
logic [3, 10, 32]. However, there are some concrete problems where the general methodology
non-trivially applies and which seem not to be captured by our meta-theorem [1, 27].

The proof of Theorem 1.3 is easy (see Section 3), so we focus on sketching the proof
of Theorem 1.2, which is the main technical contribution of the second part of the paper.
Let us fix an FO+conn sentence φ, and let k + 2 be the maximum arity of connectivity
predicates appearing in φ. Again, the key observation is that connk predicates can be
rewritten to plain FO provided the graph is well-connected, and the reason for this is the
same combinatorial observations that underlies the proof of Theorem 1.1. Coming back to
our dynamic programming on the tree decomposition, we choose to present it using a new
framework based on automata, as this brings us closer to the classic understanding of logic on
tree-decomposable graphs. Intuitively, the automaton processes a given tree in a bottom-up
manner, but we assume that on the children of every node there is an additional structure of
a graph. We say that such trees are augmented with graphs. When the automaton processes
a node x, it chooses a transition based on an FO query executed on the graph on the children
of x, where each child is labeled with the state computed for it before in the run. Then
testing whether a formula φ ∈ FO+conn holds on a graph G is reduced to deciding whether
an automaton constructed from φ accepts such an augmented tree, constructed from the tree
decomposition provided by the theorem of Cygan et al. [15]. The run of the automaton can be
computed efficiently when the graphs augmenting the tree admit efficient FO model-checking,
which is the case when the input graph excludes a fixed topological minor.
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The benefit of this approach is that other questions related to the logic FO+conn can
be reduced in the same way to questions about tree automata over augmented trees. We
showcase this by proving that given an FO+conn query φ(x̄) with free variables and a graph G

from a fixed topological-minor-free class C , the answers to φ(x̄) on G can be enumerated
with constant delay after fpt preprocessing (see Theorem 8.2 of the full version for a precise
statement). Similarly, the formula φ(x̄) can be queried in constant time after fpt preprocessing
(see Theorem 8.1 of the full version). In general, we believe that the framework of automata
over augmented trees may be of independent interest, as it seems to be a convenient model
for understanding dynamic programming procedures over tree-decomposable structures.

Similar fpt query-answering and enumeration algorithms for plain FO have been obtained
for classes with bounded expansion [30, 41], low degree [18], and nowhere dense classes [40]
and for MSO2 on trees and graphs of bounded treewidth [5, 29, 4]. Our general approach
based on augmented trees allows us to generalize those results to trees that are augmented
with graphs coming from a nowhere dense class, and to a certain logic combining the power
of MSO on trees and FO on graphs.

Let us comment on the novelty of using the decomposition theorem of Cygan et al. [15].
The result of Cygan et al. [15] has been used several times for various graph problems [14,
15, 35, 33, 38]. Our application is the most similar to (and in fact, draws inspiration
from) the work of Lokshtanov et al. [34], who proved the following statement: for every
CMSO2 sentence φ and k ∈ N, model-checking φ on general graphs can be reduced to model-
checking φ on (q, k)-unbreakable graphs, where q is a constant depending on φ and k. As
FO+conn is subsumed by CMSO2, this result can be almost applied to establish Theorem 1.2.
The caveat is that the unbreakable graph output by the reduction needs to admit efficient FO
model-checking so that the considered FO+conn sentence can be decided in fpt time after
rewriting it to plain FO. In essence, we show that it is possible to guarantee this provided
the input graph excludes a fixed topological minor. We remark that the work of Lokshtanov
et al. [34] does not use the decomposition theorem of Cygan et al. [15] directly, but relies on
its conceptual predecessor, the recursive understanding technique [11, 28].

Organization. In the extended abstract we give a detailed overview over the proofs of our
main results: Theorem 1.1, Theorem 1.2, and Theorem 1.3. We provide all formal definitions
and proofs in the full version [36]. The theorem numbers for references in the full version are
provided in parenthesis.

2 Connectivity under vertex failures: overview of Theorem 1.1

In this section we provide an overview of the proofs of Theorem 1.1. This proof exposes all
main ideas in a purely algorithmic setting. Then we discuss how the same methodology can
be used for Theorem 1.2. In this introduction we assume familiarity with basic terminology
of tree decompositions.

Unbreakability. As mentioned in Section 1, the central idea of this work is to tackle
problems involving connectivity predicates using a decomposition into well-connected – or,
more formally, unbreakable – parts. We first need to recall a few definitions.

A separation in a graph G is a pair (A, B) of vertex subsets such that A ∪ B = V (G)
and there are no edges in G between A − B and B − A. The order of the separation is the
cardinality of the separator A ∩ B. A vertex subset X is (q, k)-unbreakable in a graph G if
for every separation (A, B) in G of order at most k in G, either |A ∩ X| ⩽ q or |B ∩ X| ⩽ q.
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So intuitively speaking, a separation of order k cannot break X in a balanced way: one of
the sides must contain at most q vertices of X. For example, cliques and k + 1-connected
graphs are (k, k)-unbreakable, and square grids are (O(k2), k)-unbreakable.

The notion of unbreakability has been implicitly introduced in the context of parameterized
algorithms by Kawarabayashi and Thorup in their work on the k-Way Cut problem [28]. This
work has brought about the method of recursive understanding, which was then made explicit
by Chitnis, Cygan, Hajiaghayi, Pilipczuk, and Pilipczuk in the technique of randomized
contractions [11]. Intuitively, recursive understanding is a Divide&Conquer scheme using
which one can reduce problems on general graphs to problems on suitably unbreakable graphs,
provided certain technical conditions are satisfied. The technique was also applied in the
context of model-checking: Lokshtanov, Ramanujan, Saurabh, and Zehavi [34] proved that
the problem of deciding a property expressed in CMSO2 in fpt time on general graphs can
be reduced to the same problem on suitably unbreakable graphs. This result was used to
provide algorithms for computing elimination distance to certain graph classes [2, 21, 26],
which is very much related to separator logic (see [39, Example 3.5]).

In this work, we will not use recursive understanding or randomized contractions per se,
but their conceptual successor: the decomposition into unbreakable parts. Precisely, the
following theorem was proved by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh [15].

▶ Theorem 2.1 ([15]). There is a function q(k) ∈ 2O(k) such that given a graph G and
k ∈ N, one can in time 2O(k2) · |G|2∥G∥ construct a (rooted) tree decomposition T = (T, bag)
of G satisfying the following.

All adhesions in T are of size at most q(k); and
every bag of T , say at node x, is (q(k), k)-unbreakable in the subgraph of G induced by
the union of bags at all descendants2 of x.

We remark that a different variant of Theorem 2.1 was later proved by Cygan, Komosa,
Lokshtanov, Pilipczuk, Pilipczuk, and Wahlström [14]. This variant provides much stronger
unbreakability guarantees – q(k) = k – at the cost of relaxing the unbreakability to hold
only in the whole graph G. See Section 3 of the full version for a discussion. The variant
of [14] can be also used in our context and this leads to improving some quantitative bounds,
however for simplicity, we focus on Theorem 2.1 in this overview.

A typical usage of Theorem 2.1 is to apply bottom-up dynamic programming on the
obtained tree decomposition T = (T, bag). The subproblem for a node x of T corresponds to
finding partial solutions in the subgraph of G induced by the union of bags at descendants
of x, for every possible behavior of such a partial solution on the adhesion connecting x with
its parent. That this adhesion has size at most q(k) gives an upper bound on the number
of different behaviors. To solve such a subproblem one needs to aggregate the solutions
computed for the children of x by solving an auxiliary problem on the subgraph induced
by the bag of x. In various problems of interest, the unbreakability of the bag becomes
helpful in solving the auxiliary problem. This general methodology has been successfully
used to give multiple fpt algorithms for cut problems [15, 14, 38], most prominently for
Minimum Bisection [15]. More recent uses include a parameterized approximation scheme
for the Min k-Cut problem [35] and a fixed-parameter algorithm for Graph Isomorphism
parameterized by the size of the excluded minor [33]. On a high level, we apply the same
methodology here.

2 We follow the convention that every node is its own ancestor and descendant.
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The case of totally unbreakable graphs. Let us come back to the problem of evaluating
connectivity queries: we are given a graph G and after some preprocessing of G, we would like
to be able to quickly evaluate for given vertices s, t, u1, . . . , uk whether connk(s, t, u1, . . . , uk)
holds. Consider first the following special case: the whole G is (q, k)-unbreakable for some
parameter q (or more formally, V (G) is (q, k)-unbreakable in G). The key observation is
that then, whether connk(s, t, u1, . . . , uk) holds can be easily decided in time polynomial
in q and k as follows.

Run a breadth-first search from s in G − {u1, . . . , uk}, but terminate the search once q + 1
different vertices have been reached. If the search reached t, then for sure connk(s, t, u1, . . . , uk)
holds. If the search finished before reaching q +1 different vertices and it did not reach t, then
for sure connk(s, t, u1, . . . , uk) does not hold. In the remaining case, perform a symmetric
procedure starting from t. The key observation is that if both breadth-first searches – from s

and from t – got terminated after reaching q+1 different vertices, then the (q, k)-unbreakability
of G implies that {u1, . . . , uk} do not separate s from t. So then connk(s, t, u1, . . . , uk) holds.
It is straightforward to implement this procedure in time polynomial in q and k given the
standard encoding of G through adjacency lists.

In the general case, we cannot expect the given graph G to be (q, k)-unbreakable for any
parameter q bounded in terms of k. However, we can use Theorem 2.1 to compute a tree
decomposition T of G into parts that are (q, k)-unbreakable for q ∈ 2O(k). The idea is that
then, a query connk(s, t, u1, . . . , uk) can be evaluated by bottom-up dynamic programming
on T . By suitably precomputing enough auxiliary information about T , this evaluation can
be performed in time depending only on q and k.

Evaluating a query on the decomposition. Consider then the following setting: we are
given the decomposition T = (T, bag) provided by Theorem 2.1, and for given s, t, u1, . . . , uk

we would like to decide whether connk(s, t, u1, . . . , uk) holds. So far let us not optimize the
complexity: the goal is only to design a general algorithmic mechanism which will be later
implemented efficiently using appropriate data structures.

For every node x of T , let adh(x) be the adhesion between x and its parent (or ∅
if x is the root), let cone(x) be the union of the bags at the descendants of x, and let
comp(x) = cone(x) − adh(x). Call a node x affected if comp(x) contains a vertex of
{s, t, u1, . . . , uk}, and unaffected otherwise. Further, let D(x) = adh(x) ∪ (comp(x) ∩ {s, t});
note that |D(x)| ⩽ q + 2. Our goal is to compute the following (connectivity) profile for every
node x of T :

profile(x) =
{

{a, b} ∈
(

D(x)
2

) ∣∣∣ a and b are connected in G[cone(x) − {u1, . . . , uk}]
}

.

We remark that the tree decomposition T can be chosen so that it satisfies the following
basic connectivity property: for every node x and vertices a, b ∈ adh(x), there is a path
connecting a and b whose all internal vertices belong to comp(x). Thus, for every unaffected
node x, we have that profile(x) =

(
D(x)−{u1,...,uk}

2
)
.

It is easy to see that the profile of x is uniquely determined by the profiles of the children
of x and the subgraph induced by the bag of x. The following lemma shows that this can be
done efficiently.

▶ Lemma 2.2 (informal statement, Lemma 4.4 in the full version). Let x be a node of T .
Suppose that for each affected child z of x we are given profile(z). Then, subject to suitable
preprocessing of G, one can compute profile(x) in time polynomial in q.
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Note that every node has at most k +2 affected children, hence the input to the algorithm
of Lemma 2.2 is of size polynomial in q.

Let us sketch the proof of Lemma 2.2. In essence, we apply the same strategy as the
one from the case when the whole graph G is unbreakable. We define the bag graph of x,
denoted bgraph(x), as the graph3 obtained from G[bag(x)] by turning the adhesion adh(z)
into a clique, for every child z of x. Note that bgraph(x) does not depend on the query, and
thus can be precomputed upon initialization. As bag(x) is (q, k)-unbreakable in G[cone(x)],
to test whether two vertices a, b ∈ bag(x) are connected in G[cone(x) − {u1, . . . , uk}] it
suffices to apply breadth-first searches from a and b in bgraph(x) that are terminated after
reaching q + 1 different vertices, except that these searches are forbidden to use vertices
from {u1, . . . , uk} ∩ bag(x) as well as those edges originating from contracting the adhesion
of affected children into cliques that are not in respective profiles. Provided bgraph(x) is
precomputed and a list of affected children together with their profiles is given on input, it
is easy to implement this algorithm so that it runs in time polynomial in q. Thus we can
decide for every pair {a, b} ∈

(adh(x)
2

)
whether it should be included in profile(x). A similar

reasoning can be applied to pairs in
(

D(x)
2

)
that include s or t.

By applying Lemma 2.2 bottom-up, we can compute all the profiles in
time qO(1)·|T | ⩽ qO(1)·|G|. Then we can read whether connk(s, t, u1, . . . , uk) holds by checking
whether {s, t} belongs to the profile of the root of T . Hence, the query connk(s, t, u1, . . . , uk)
can be evaluated in time qO(1) · |G|.

Data structure. Our final goal is to enrich the decomposition T with some additional
information so that the mechanism presented above can be executed in time depending only
on q.

For a vertex v of G, let top(v) be the unique top-most node of T whose bag contains v.
Let Ŝ := {s, t, u1, . . . , uk} and let X = {top(v) : v ∈ Ŝ}.

node in Y

node in X

node in Y’ 

function 

parent

(lca closure of  X)

(image of    )

Figure 2 The sets X, Y and Y ′. Only the nodes from Y ∪ Y ′ are marked in the figure, wheras
the shaded areas indicate subtrees consisting of nodes which are not marked in the figure. Every
affected node lies on a path from some y ∈ Y to f(y) ∈ Y ′.

3 The bag graph bgraph(x) is actually defined slightly differently for technical reasons, as the graph
obtained from G[cone(x)] by contracting, for each y ∈ children(x), the set comp(y) into a single vertex,
identified with y. See the full version for the details.
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Note that |X| ⩽ |Ŝ| ⩽ k + 2 and that a node of T is affected if and only if it is an
ancestor of a node from X. Let now Y be the lowest common ancestor closure of X: the set
comprising X and all lowest common ancestors of pairs of vertices of X. It is well-known
that then |Y | ⩽ 2|X| − 1 ⩽ 2k + 3. We also add the root of T to Y in case it is not already
present; thus |Y | ⩽ 2k + 4. Observe that if for every vertex v we store a pointer to top(v),
and we set up the data structure for lowest common ancestor queries of Harel and Tarjan [25]
on T , then for given s, t, u1, . . . , uk the set Y can be computed in time polynomial in k. For
every node y in Y let f(y) denote the closest ancestor of y whose parent belongs to Y , or y if
no such ancestor exists (see Figure 2). Note that every affected node lies on a path joining y

with f(y), for some y ∈ Y . Let Y ′ = {f(y) | y ∈ Y }. Then Y ′ is the set of all nodes that are
affected children of a node in Y . Note that every element in Y ′ has exactly one preimage
under f , that is, there is an function f−1 : Y ′ → Y such that f(f−1(y′)) = y′ for all y′ ∈ Y ′.
In particular, |Y ′| ⩽ |Y |. Using a slight modification of the data structure of Harel and
Tarjan [25], we can compute Y ′ as well as the function f−1 : Y ′ → Y in time polynomial
in k.

The idea is that when evaluating query connk(s, t, u1, . . . , uk), we can compute the profiles
only for the nodes of Y ∪ Y ′, instead of all affected nodes of T . Note that the root of T was
explicitly added to Y , so we will still be able to read the answer to connk(s, t, u1, . . . , uk)
from the profile of the root.

We process the nodes of Y ∪ Y ′ in a bottom-up manner. Consider then any element
x ∈ Y ∪ Y ′; our task is to compute its profile based on the profiles of its strict descendants
belonging to Y ∪ Y ′. We distinguish two cases. In the first case, x ∈ Y , so we may compute
profile(x) using the algorithm of Lemma 2.2. The second case is of an element x ∈ Y ′; then
x = f(y) where y = f−1(x). Observe that the path from y to x consists of affected nodes,
whose siblings are unaffected nodes. We now show how profile(x) can be computed from
profile(y).

For two nodes c, d of T , where c is an ancestor of d, let torso(c, d) be the set of all
pairs {a, b} ∈

(adh(c)∪adh(d)
2

)
such that in G there is a path from a to b whose all internal

vertices belong to comp(c)−cone(d). Then to compute profile(x) from profile(y), construct an
auxiliary graph with vertices (adh(x) ∪ adh(y) and edges profile(y) ∪ torso(x, y). Now observe
that profile(x) is the reachability relation in this graph restricted to adh(x) − {u1, . . . , uk}.
The key point implying the correctness of this observation is that there are no vertices from X

in comp(x) − comp(y).
Observe now that the values of torso(c, d) for (c, d) ranging over ancestor/descendants

pairs in T are independent of the query. Therefore, upon initialization we can compute a
data structure that can be queried for those valued efficiently. The statement below describes
two possible implementations.

▶ Lemma 2.3 (Lemmas 4.2 and 6.2 of the full version, combined and improved). Given T , one
can set up data structures that can answer torso(c, d) queries with the following specifications:
1. initialization time qO(1) · |G|2∥G∥, memory usage qO(1) · |G|2, query time qO(1); or
2. initialization time 2O(q2) · |G|, memory usage 2O(q2) · |G|, query time qO(1).

The first point of Lemma 2.3 is actually straightforward: just compute and store all
the O(|T |2) = O(|G|2) answers to the torso queries, each in time qO(1) · ∥G∥ using qO(1)

applications of breadth-first search. The second point, which trades exponential dependency
on q for obtaining linear memory usage and initialization time, is more interesting. Before
we discuss it, let us observe that we may now complete the proof of Theorem 1.1. Indeed,
using the data structure from the second point of Lemma 2.3, we can compute profile(x)
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from profile(y) for each x ∈ Y ′ and y = f−1(x). By performing this procedure for all the at
most 2(2k + 4) nodes of Y ∪ Y ′ in a bottom-up manner, we eventually compute the profile
of the root of T , from which the answer to the query can be read. The running time is
dominated by qO(1) calls to the data structure of the second point of Lemma 2.2, each taking
2O(q2) = 22O(k) time.

Finally, let us discuss the proof of the second point of Lemma 2.3. We reduce this
problem to the problem of evaluating product queries in a semigroup-labeled tree, defined
as follows. Suppose T is a rooted tree whose edges are labeled with elements of a finite
semigroup S. The task is to set up a data structure that for given nodes x, y, where x is an
ancestor of y, outputs the product of the elements of S on the path in T from x to y. The
problem of evaluating torso queries can be reduced to this abstract setting by considering a
suitable semigroup of bi-interface graphs, which represent connectivity between corresponding
adhesions; see [7, 8] for the origins of this concept. This semigroup has size 2O(q2). So it
then suffices to use the following result.

▶ Theorem 2.4 (Przybyszewski). There is a data structure for the problem of evaluating
product queries in a tree T labeled with elements of a finite semigroup S that achieves query
time log(|S|)O(1), memory usage |S|O(1) · |T |, and initialization time |S|O(1) · |T |.

Note that this formulation is an improvement over Theorem 5.1 in the first version of our
paper [36], as the query time |S|O(1) is replaced by log(|S|)O(1). This improvement is due to
Wojciech Przybyszewski.

This finishes the proof of Theorem 1.1. Note that in the argumentation there are two
modules that can be replaced with other solutions:

The decomposition of Theorem 2.1 can be replaced with the more recent variant from [14].
This allows us to have q = k, implying that all the 22O(k) factors are replaced with 2O(k2).
The cost is increasing the polynomial factor of the initialization time to an unspecified
term |G|O(1) and several technical complications in the analysis, which nevertheless can
be overcome.
Instead of using the data structure of the second point of Lemma 2.3, we can use the
first point. This allows us to have polynomial dependency on q in the query time and
space usage at the cost of quadratic dependence on |G| in the memory usage.

In particular, if only the first replacement is performed, then we obtain a data structure
with initialization time 2O(k2)·|G|O(1), memory usage 2O(k2)·∥G∥, and query time kO(1), and if
both are performed, then we obtain a data structure with initialization time 2O(k log k) · |G|O(1),
memory usage kO(1) · |G|2, and query time kO(1).

3 Model-checking FO+conn: Theorems 1.2 and 1.3

We now turn to the proofs of Theorem 1.2 and Theorem 1.3. In those theorems, we fix a
class C and consider the model-checking problem for the logic FO+conn, that is, the problem
of deciding whether a given FO+conn sentence holds in a given graph G ∈ C .

Lower bound. First let us explain why we require C to exclude a fixed topological minor
in Theorem 1.2. Clearly, the model-checking problem for FO+conn generalizes the model-
checking problem for FO, so C should be in particular a class for which it is known that
FO model-checking is FPT. This is the case not only for classes that exclude a topological
minor but also for all nowhere dense classes [24]. So let us see why it is not enough to merely
assume that C is nowhere dense.
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For a graph G and k ∈ N, the k-subdivision G(k) of G is obtained from G by replacing
each edge by a path of length k + 1. It follows from the definition of nowhere denseness that
the class C of all graphs of the form G(n), where G is an arbitrary graph on n vertices, is
nowhere dense. However, a formula of FO+conn can easily recover G from G(n), at least
when G has no vertices of degree 2. Indeed, the original vertices of G are precisely the
vertices of G(n) that have degree at least 3, which can be expressed by an FO formula φV (x).
Furthermore, two such vertices u, v are adjacent in G if and only if there is some vertex z of
degree 2 in G(n) such that for every vertex w of G(n), conn2(z, w, u, v) holds only if w has
degree 2 in G(n). This condition can be written using an FO+conn formula φE(u, v). Using
this observation, any FO sentence φ can be replaced by an FO+conn sentence φ′, so that
for every graph G as above, φ holds in G if and only if φ′ holds in G(n). Essentially, φ′ is
obtained from φ by replacing every atomic formula E(x, y) (denoting adjacency) by φE(x, y),
and guarding all quantifiers by φV (x). Therefore, if we could efficiently model-check φ′ on
the nowhere dense class C , we could as well model-check φ on the class of all graphs (of
size at least 3 and minimum degree at least 3), as follows: given an arbitrary graph G, first
construct the graph G(n) ∈ C (in time polynomial in n = |V (G)|) and then test φ′ on G(n).
Hence, if FO+conn model-checking was fpt on C , then FO model-checking would be fpt
on the class of all graphs, implying FPT = AW[⋆]. So nowhere dense graph classes are too
general for the statement of Theorem 1.2 to hold. Intuitively, the notion of nowhere denseness
is not preserved under contracting long paths, which can be simulated in the logic FO+conn.

The same simple argument proves Theorem 1.3. Indeed, the argument works not only for
the graph G(n) obtained as the n-subdivision of G but also for any subdivision G′ (obtained
by replacing each edge independently by any number of vertices) of G, as long as G′ can be
computed from G in polynomial time. The condition that C is subgraph-closed and admits
efficient encoding of topological minors guarantees precisely that for any given graph G we
can construct, in polynomial time, a graph G′ which is a subdivision of G and belongs to C .
This yields Theorem 1.3 (see Section 9 of the full version for details).

Upper bound. We now give some details concerning the proof of Theorem 1.2, which is the
second main contribution of the paper.

The starting observation is that for a (q, k)-unbreakable graph G, the query
connk(u, v, x1, . . . , xk) can be expressed in plain FO. Indeed, this query fails if and only if
there is a set A of at most q vertices which contains exactly one of the vertices u and v,
and such that all neighbors of vertices of A outside of A are contained in {x1, . . . , xk}. The
existence of such a set of q vertices can be expressed using q existential quantifiers followed
by a universal quantifier. So FO+conn with connectivity queries of arity at most k + 2 is
equally expressive as plain FO on (q, k)-unbreakable graphs, as long as q is a constant.

Now, if the graph G is not (q, k)-unbreakable, we work with the tree decomposition into
(q, k)-unbreakable parts given by Theorem 2.1, where q = q(k) is a constant depending on k.
The next observation is that the constant-time querying algorithm used in the proof of The-
orem 1.1 and explained above, can be seen as a formula on a suitably defined logical structure.
Indeed, if we look into the data structure answering the queries connk(u, v, x1, . . . , xk), we
notice that each such query triggers a constant number of operations asking about the least
common ancestor of two nodes in the tree decomposition, or asking about the membership
of a vertex to a bag. Additionally, the algorithm may ask, for two vertices u, v belonging to
a bag x, whether u and v are adjacent in the original graph, or whether they are adjacent
in the bag graph bgraph(x). Finally, the algorithm also performs torso queries. We may
therefore construct a logical structure, corresponding to the data structure, such that this
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basic functionality is expressible by a first-order formula in this structure. Then the query
connk(u, v, x1, . . . , xk) becomes expressible using a plain FO formula in the logical structure.
It will then remain to show that we can model check FO formulas in fpt on the resulting
logical structure.

It is convenient to abstract away the details of our logical structure, and represent it
in the following form: It is a tree T (possibly vertex-labeled), together with additional
edges (possibly labeled) between some nodes which are siblings in the tree. We call such
a structure an augmented tree. In such a tree, the set of children of any node v carries a
structure of a graph. In the particular case of our construction, those graphs will precisely
correspond to bag graphs. Recall that a bag graph is obtained from the subgraph induced
by a bag by turning all adhesions towards children into cliques. It is not difficult to show
(see Lemma 3.4 of the full version) that if the original graph G is H-topological-minor free,
then the resulting bag graphs are H ′-topological-minor-free for some H ′ depending on H

and on k.4 Hence, we obtain a tree augmented with H ′-topological-minor-free graphs. And
the original query connk(u, v, x1, . . . , xk) can be now represented as an FO formula in the
augmented tree, where the FO formula may use the ancestor relation ⩽ on the tree nodes,
as well as the adjacency relation between the siblings. Showing this basically amounts to
revisiting the proof of Lemma 2.2 and arguing that the atomic algorithmic operations can
now be simulated by FO formulas in the augmented tree.

Let us note here that the remainder of the argument would go through even if we assumed
that the resulting tree is augmented with graphs from a fixed nowhere dense class C ′ which
is not necessarily topological-minor-free. However, if the original graph G merely belongs
to a nowhere dense class C , then the bag graphs, and hence the graphs in the augmented
tree, no longer need to belong to any fixed nowhere dense class. In fact, they may contain
arbitrarily large cliques.

Continuing with the proof, now it remains to show that we can solve FO model-checking
on trees augmented with H ′-topological-minor-free graphs in fixed-parameter time, where
the FO formulas may use the ancestor relation in the tree as well as the edge relation among
the siblings. For this, we lift the usual, automata-based techniques for model-checking on
trees, to the case of augmented trees. We define automata that process augmented trees in
a bottom-up fashion, labeling the nodes of the tree with states from a finite set of states,
starting from the leaves and proceeding towards the root. At any node x, to determine
the state of the automaton at x, we consider the graph induced on the children of x in
the augmented tree, vertex-labeled by the states computed earlier. Then the state at x is
determined by evaluating a fixed collection of first-order sentences on this labeled graph.
In this way, all nodes of the tree are labeled by states, and the automaton accepts the
augmented tree depending on the state at the root.

By construction, it can be decided in fpt time whether or not a given such automaton
accepts a given tree that is augmented with graphs that come from, say, a nowhere dense
class. Additionally, using standard techniques, we show that for every first-order sentence φ

on augmented trees there is such an automaton that determines whether φ holds in a given
augmented tree. Therefore, FO model-checking is fpt on trees augmented with graphs from a
nowhere dense class; this in particular applies to classes with excluded topological minors.

4 Here we refer to the bgraph as defined in Footnote 3.



M. Pilipczuk, N. Schirrmacher, S. Siebertz, S. Toruńczyk, and A. Vigny 102:15

To summarize, to model-check a sentence φ of FO+conn on a H-topological-minor-free
graph G, we perform the following reasoning:
1. Using Theorem 2.1, compute a tree decomposition T of G with (q, k)-unbreakable bags,

where k + 2 is the maximal arity of the connectivity predicates in φ, and q = q(k).
2. Turn T into a tree T ′ augmented with H ′-topological-minor free graphs, where H ′

depends on H and k.
3. In the augmented tree T ′, the connectivity predicate connk(u, v, x1, . . . , xk) can be

expressed using a plain FO formula. This follows by analyzing how connectivity predicates
are evaluated in constant time, and observing that the atomic operations can be performed
using FO formulas in the augmented trees.

4. Therefore, also φ can be expressed as a plain FO formula φ′, which is evaluated in T ′.
5. Convert φ′ into an automaton A processing augmented trees, using standard automata-

based techniques.
6. Run A on T ′ in a bottom-up fashion. This involves performing FO queries on the graphs

induced on the children of any given node, and uses one of the known algorithms for FO
model-checking on H ′-topological-minor-free graphs.

In Section 7 of the full version we describe the basic toolbox of automata on augmented
trees, explaining in detail the last two steps above, abstracting away from the specific applic-
ation, and providing further results on augmented trees, e.g. concerning query enumeration.
In fact, with the same methods we can show that not only FO model-checking is fpt on
trees augmented with graphs from a nowhere dense class, but also a more general logic
FO(MSO(≼, A) ∪ Σ) combining the power of FO on the augmenting graphs with MSO on
trees can be solved in fpt on augmented trees. We then show in Section 8 (of the full
version) how to express the predicates connk on augmented trees using this more general
logic FO(MSO(≼, A) ∪ Σ).

4 Discussion

In this work we have added computational problems related to conn queries in graphs and
the logic FO+conn to the growing list of applications of the decomposition theorem of Cygan
et al. [15]. Several questions can be asked about possible improvements of the obtained
complexity bounds, especially regarding the data structure of Theorem 1.1.

First, in both the model-checking algorithm of Theorem 1.2 and the construction algorithm
of the data structure of Theorem 1.1, the main bottleneck for the polynomial factor is the
running time of the algorithm to compute the tree decomposition of Cygan et al. (see
Theorem 2.1). This running time is cubic in the size of the graph, while in both applications
presented in this work, the remainder of the construction takes fpt time with at most quadratic
dependence on the graph size. Therefore, it seems imperative to revisit Theorem 2.1 with
the purpose of improving the time complexity of the construction algorithm.

Second, in Section 6 of the full version we showed how to improve the time complexity of
queries to polynomial in k by using the weakly unbreakable tree decomposition provided
by [14]. The drawback is that the space usage of the data structure becomes kO(1) · |G|2.
However, the quadratic dependence on |G| is caused only by the brute-force implementation
of the data structure for torso queries provided by Lemma 6.2 of the full version. So now we
have two implementations of this data structure:

Theorem 2.4 and Lemma 4.2 (of the full version) offers query time qO(1) and space usage
2O(q2) · |T |.
Lemma 6.2 (of the full version) offers query time qO(1) and space usage qO(1) · |T |2.

Is it possible to design a data structure that would offer query time qO(1) while keeping the
space usage at qO(1) · |T |?
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Abstract
The problem of uniformly sampling hypergraph independent sets is revisited. We design an efficient
perfect sampler for the problem under a similar condition of the asymmetric Lovász local lemma.
When specialized to d-regular k-uniform hypergraphs on n vertices, our sampler terminates in
expected O(n log n) time provided d ≤ c · 2 k

2 where c > 0 is a constant, matching the rapid mixing
condition for Glauber dynamics in Hermon, Sly and Zhang [10]. The analysis of our algorithm is
simple and clean.
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1 Introduction

The problem of uniformly sampling hypergraph independent sets, or equivalently the solutions
of monotone CNF formulas, has been well-studied in recent years. Consider a hypergraph
Φ = (V,C) on |V | = n vertices. A set S ⊆ V is an independent set if C ∩S ̸= C for all C ∈ C.
Assuming the hypergraph is d-regular and k-uniform, [10] showed that the natural Glauber
dynamics mixes in O(n log n) time when d ≤ c · 2 k

2 for some constant c > 0. The sampler
implies a fully polynomial-time randomized approximation scheme (FPRAS) for counting
hypergraph independent sets [13]. On the other hand, it was shown in [1] that there is no
FPRAS for the problem when d ≥ 5 · 2 k

2 , unless NP = RP. Therefore, the result of [10] is
tight up to a multiplicative constant.

The proof in [10] analyzes the continuous-time Glauber dynamics under the framework
of information percolation developed in [14] for studying the cutoff phenomenon of the Ising
model. In this framework, one can view the coupling history of a Markov chain as time-space
slabs, and the failure of the coupling at time t as a discrepancy path percolating from t back
to the beginning. The analysis of this structure can result in (almost) optimal bounds in
many interesting settings.

The percolation analysis in [10] is technically complicated due to the continuous nature
of the chain which leads to involved dependencies in both time and space. Recently, discrete
analogs of the time-space slabs have been introduced in sampling solutions of general CNF

1 Part of the work was done while the author was an undergraduate student at Shanghai Jiao Tong
University.
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formulas in the Lovász local lemma regime [11, 8]. Notably in [8], an elegant discrete
time-space structure, tailored to systematic scan, was introduced to support the analysis of
coupling from the past (CFTP) paradigm [17]. In contrast to simulating Glauber dynamics,
the method of CFTP allows to produce perfect samples (i.e. without approximation error)
from stationary distribution.

In this article, we refine the discrete time-space structure in [8], which we call the witness
graph, and apply it to the problem of sampling hypergraph independent sets. This leads to an
efficient CFTP sampler that (1) outputs perfect samples; (2) matches the bound in [10] and
operates also in the asymmetric case under Lovász local lemma-like condition; and (3) has
significantly simpler analysis. More specifically, we study a natural grand coupling of the
systematic scan for sampling hypergraph independent sets. To apply the method of CFTP,
one needs to detect the coalescence of the grand coupling efficiently at each stage of the
algorithm. The monotone property of hypergraph independent sets allows us to reduce the
detection to arguing about percolation on the witness graph. This observation provides
sufficient flexibility for us to carefully bound related probabilities. We first show that, under
a condition similar to the asymmetric Lovász local lemma, a perfect sampler exists.

▶ Theorem 1. Let G collects all hypergraphs Φ = (V,C) such that

∀C ∈ C : 2|C| · 2−|C| ≤ (1− ε) · x(C) ·
∏

C′∈ΓΦ2 (C)

(1− x(C ′)),

for some constant ε ∈ (0, 1) and function x : C → (0, 1). Here ΓΦ2(C) denotes the set of
hyperedges within distance 2 to C in Φ (excluding C itself).

There exists an algorithm that inputs a hypergraph Φ ∈ G and outputs an independent set
of Φ uniformly at random, in expected time

O

(
− 1

log(1− ε) · log
(∑

C∈C

x(C)
1− x(C)

)
·
∑
C∈C

∑
v∈C

dv|C|

)
,

where dv is number of hyperedges in Φ that contains v.

In the proof of Theorem 1, we view a discrepancy path of the coupling percolating from
time t back to the beginning as an object similar to the witness tree in [16] for certifying
the non-termination of a randomized algorithm. This is an interesting analogy between an
algorithm that samples the solutions of CNF formulas and an algorithm that finds them. We
map the discrepancy paths in the witness graph to connected trees generated by multi-type
Galton-Watson process in the hypergraph. As a result, a certain spatial mixing property
implies the rapid mixing of the chain.

For k-uniform d-regular hypergraphs, the result in Theorem 1 translates to the condition
d ≤ c·2k/2

k1.5 for some constant c > 0 by choosing x(C) = 1
d2k2 . We give a refined analysis for

this symmetric case to remove the denominator:

▶ Theorem 2. Let G collects all k-uniform d-regular hypergraphs Φ = (V,C) such that

d ≤

(
1
4

√
9− ε

2 − 1
2

)
· 2k/2.

for some constant ε ∈ (0, 1). There exists an algorithm that inputs a hypergraph Φ ∈ G
and outputs a hypergraph independent set of Φ uniformly at random, in expected time
O
(
− 1

log(1−ε) · k
2d2n · (log n + log d)

)
where n := |V |.
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Compared to the result in [10], our sampler has the advantage of being perfect. Our
analysis inductively enumerates discrepancy paths, taking into account the structure of the
overlapping between hyperedges. Thanks to the clean structure of the witness graph, our
proof is much simpler than the one in [10].

Relation to sampling solutions of general CNF formulas

The problem of sampling hypergraph independent sets is a special case of sampling the
solutions of general CNF formulas or CSP instances which draw a lot of recent attention
[15, 3, 11, 8, 12, 7, 6, 5, 4, 2, 9]. For general k-CNF formulas where each variable is of degree
d (corresponding to the k-uniform d-regular hypergraphs here), the best condition needed
for an efficient sampler is d < 1

poly(k) · 2
k

40/7 [11, 8] which is much worse than the condition
d < c · 2 k

2 for hypergraph independent sets. A main reason is that for general CNF formulas,
the state space of the local Markov chain is no longer connected, and therefore one needs to
project the chain onto a sub-instance induced by some special set of variables. The loss of
the projection step, however, is not well-understood. On the other hand, this is not an issue
for hypergraph independent sets and therefore (almost) optimal bounds can be obtained.

We remark that the technique developed here for non-uniform graphs can also be applied
to general CNF formulas to analyze the projection chain.

2 Preliminaries

2.1 Hypergraph independent sets
Recall in the introduction we mentioned that a set S ⊆ V is an independent set of a
hypergraph Φ = (V,C) if S ∩ C ̸= C for every C ∈ C. Sometimes we represent it as
a (binary) coloring σ ∈ {0, 1}V , which is the indicator for S. That is, we say σ is an
hypergraph independent set if ∀C ∈ C, ∃v ∈ C : σ(v) = 0. Denoting by ΩΦ the collection
of all independent sets of Φ, our goal is to efficiently produce a sample from the uniform
measure µ on ΩΦ.

Let us fix some notations used throughout our discussion:
We assume V := [n] and m := |C|. We denote the degree of a vertex v ∈ V as
dv := |{C ∈ C : v ∈ C}| and the maximum degree as d := maxv∈V dv. A hypergraph is
d-regular if every vertex is of degree d and is k-uniform if every hyperedge is of size k.
For any C ∈ C, we use Γ+

Φ2(C) to denote the set of hyperedges C ′ such that either
C ∩C ′ ̸= ∅ or there exists C∗ such that C ∩C∗ ̸= ∅ and C∗ ∩C ′ ≠ ∅. Furthermore, let
ΓΦ2(C) := Γ+

Φ2(C) \ {C}.
For any coloring σ ∈ {0, 1}V , we use σv←r to denote the coloring obtained after recoloring
v ∈ V by r ∈ {0, 1} in σ.

2.2 Systematic scan and coupling from the past
Fix a hypergraph Φ = (V,C) and the uniform distribution µ over ΩΦ. We use the so-called
systematic scan Markov chain to sample independent sets from µ.

Let us define a transition map f : ΩΦ × V × {0, 1} → ΩΦ by

f(σ; v, r) :=
{

σv←r if σv←r ∈ ΩΦ;
σ otherwise.

ICALP 2022
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It takes the given coloring σ ∈ ΩΦ and tries to recolor vertex v with the proposed r. Next,
we fix a deterministic scan sequence v1, v2, . . . where vi := (i mod n) + 1 and write

F (σ; r1, . . . , rt) := f(f(· · · f(σ; v1, r1) · · · ); vt, rt).

Basically, it begins with the given coloring σ ∈ ΩΦ and runs f for t steps to update vertex
colors. The vertices are updated periodically as specified by the scan sequence; the proposed
colors for every steps are provided by the arguments r1, . . . , rt. For a collection of initial
states S ⊆ ΩΦ, we use F (S; r1, . . . , rt) to denote the set {F (σ; r1, . . . , rt) : σ ∈ S}.

▶ Definition 3. The systematic scan is a Markov chain (Xt) defined by

Xt := F (σ; R1, . . . , Rt) ∀t

for some σ ∈ ΩΦ and some independent Bernoulli(1/2) variables R1, R2, . . . .

The systematic scan is not a time-homogeneous Markov chain. However, we can (and
will) bundle every n steps into an atomic round so that the bundled version – denoting
its transition matrix PΦ – is homogeneous. It is easy to check that PΦ is irreducible and
aperiodic with stationary distribution µ.

Given a Markov chain with stationary µ, in the usual Markov chain Monte Carlo method,
one obtains a sampler for µ as follows: Starting from some initial X0, simulate the chain for
t steps with sufficiently large t and output Xt. The fundamental theorem of Markov chains
says that if the chain is finite, irreducible and aperiodic, then the distribution of Xt converges
to µ when t approaches infinity. However, since we always terminate the simulation after
some fixed finite steps, the sampler obtained is always an “approximate” sampler instead of
a “perfect” one.

The work of [17] proposed an ingenious method called coupling from the past (CFTP) to
simulate the given chain in a reverse way with a random stopping time. A perfect sampler
for µ can be obtained in this way. Roughly speaking, it essentially simulates an infinite
long chain using only finitely many steps. To achieve this, it relies upon a routine to detect
whether the (finite) simulation coalesces with the virtual infinite chain. Once the coalescence
happens, one can output the result of the simulation – which is also the result of the infinite
chain and thus follows the stationary distribution perfectly.

We use CFTP to simulate our systematic scan and obtain a desired perfect sampler
for hypergraph independent sets. The key ingredient to apply CFTP is how to detect the
coalescence. We describe and analyze our algorithm in Section 3.

3 Perfect Sampler via Information Percolation

In this section, we describe our perfect sampler for hypergraph independent sets. With the
help of a data structure introduced in [8], we apply the argument of information percolation
to analyze the algorithm. We utilize the monotonicity of the hypergraph independent sets
and establish a sufficient condition for the algorithm to terminate.

3.1 The witness graph
In this section, we introduce the notion of witness graph HT = (VT , ET ) for the systematic
scan up to some time T ∈ N. A similar structure was used in [8] for sampling general CNF
formulas.
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1 2

3

Φ = (V, C)

4

T1 · · ·

C D

eC,4 eC,5 eC,6

V := {1, 2, 3, 4}
C := {C,D}

eC,1 = {1}
eC,2 = {1, 2} eD,2 = {2}

eD,3 = {2, 3}
eC,4 = {1, 2, 4} eD,4 = {2, 3, 4}
eC,5 = {5, 2, 4}
eC,6 = {5, 6, 4} eD,6 = {6, 3, 4}

eD,7 = {6, 7, 4}
eC,8 = {5, 6, 8} eD,8 = {6, 7, 8}
... ...

Figure 1 An illustration of the witness graph. In this example, the hypergraph Φ has four vertices
and two hyperedges. We list the vertices of the witness graph in the table on the right. The lower
left picture visualizes three vertices in HT ; all of them have label C.

Given a vertex v ∈ V , we denote its last update time up to moment t as

UpdTime(v, t) = max {t∗ ≤ t : vt∗ = v} .

Clearly UpdTime(v, t) ∈ (t− n, t] is a deterministic number.
For C ∈ C and t ∈ [T ], let eC,t := {UpdTime(v, t) : v ∈ C} be timestamps when the

elements in C got their latest updates up to time t. Conversely, we say eC,t has label C and
denote it by C(eC,t) := C.

The vertex set of witness graph is given by

VT := {eC,t : t ∈ [T ], vt ∈ C ∈ C} .

We put a directed edge eC,t → eC′,t′ into ET if and only if t′ ∈ (eC,t ∩ eC′,t′) \ {t}. Note
that HT is acyclic, since max e > max e′ for any directed edge e→ e′. We remark that the
witness graph is a deterministic object which by itself does not incorporate any randomness.

The following lemma measures the number of vertices labelled by a certain C ∈ C that are
2-distant from a given vertex in the witness graph. It is useful throughout the enumeration
in later discussions.

▶ Lemma 4. For any eC,t ∈ VT and C ′ ∈ C, we have |eC′,t′ ∈ VT : dist(eC,t, eC′,t′) = 2| ≤
2|C ′|.

Proof. If C ′ /∈ Γ+
Φ2(C) then |eC′,t′ ∈ VT : dist(eC,t, eC′,t′) = 2| = 0. Otherwise, t′ ∈ [t −

2n + 2, t), and there are at most 2|C ′| timestamps eC′,t′ satisfying t′ ∈ [t− 2n + 2, t). ◀

3.2 Coalescence and percolation
For any L ∈ N we fix T = T (L) := n(L + 1). On top of the witness graph HT we define
a probability space as follows. We tie an independent Bernoulli(1/2) variable Bt to each
time point t ∈ [T ]. We say a vertex e ∈ VT is open if Bt = 1 for all t ∈ e, and call a set of
vertices P ⊆ V open if all e ∈ P are open. The event BL is defined as

“HT contains an induced open path P = (e1, . . . , eL) ⊆ VT of length L where
e1 ∩ (T − n, T ] ̸= ∅”.

For the coming few pages, the notation BL(R1, . . . , RT ) indicates that we are using
(external) random variables R1, . . . , RT as concrete realizations of our abstract variables
B1, . . . , BT . Needless to say, R1, . . . , RT themselves should be independent Bernoulli(1/2)
for such notation to make sense.

ICALP 2022
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Starting from Section 4, however, we will switch back to the abstract setting and sweep
the concrete realization under the rug.

Recall F is the transition map for our systematic scan.

▶ Lemma 5. Assume L ∈ N, T := n(L+1) and R1, . . . , RT are independent Bernoulli(1/2)
variables. If |F (ΩΦ; R1, . . . , RT )| > 1 then BL = BL(R1, . . . , RT ) happens.

To prove Lemma 5 we specify a grand coupling, namely a family of Markov chains that
share the same random sequence R1, . . . , RT provided by the lemma.

For every σ ∈ ΩΦ, define a copy of systematic scan (Xσ,t)0≤t≤T by

Xσ,t := F (σ, R1, . . . , Rt) ∀0 ≤ t ≤ T.

In addition, we define an auxiliary Markov chain (Yt)0≤t≤T by

Y0 := {1}V
, Yt := Y vt←Rt

t−1 ∀1 ≤ t ≤ T.

The chain (Yt)0≤t≤T dominates the execution of (Xσ,t)0≤t≤T by monotonicity:

▶ Proposition 6. For all σ ∈ ΩΦ and 0 ≤ t ≤ T , we have Xσ,t ≤ Yt.

Proof. Initially, Xσ,0 = σ ≤ {1}V = Y0 for all σ ∈ ΩΦ. At any time t ≥ 1, all the chains
update the same vertex vt and (i) if Rt = 0 then Xσ,t(vt) = 0; (ii) if Rt = 1 then Yt(vt) = 1.
So the ordering Xσ,t ≤ Yt is preserved throughout. ◀

▶ Proposition 7. Let 0 ≤ t ≤ T be a time point. If there exist σ, τ : Xσ,t(vt) ̸= Xτ,t(vt),
then there is a hyperedge C ∈ C containing vt such that C \ {vt} was fully colored by “1” in
exactly one of Xσ,t and Xτ,t. Furthermore, Yt(C) = {1}C .

Proof. Since Xσ,t(vt) ̸= Xτ,t(vt), we know that Rt = 1 and thus Yt(vt) = 1. According to
the definition of transition map f , one of the two chains failed to recolor vt by “1” because
there exists a hyperedge C such that C \ {vt} was fully colored “1” in that chain just
before time t. Hence Yt(C \ {vt}) = {1}C\{vt} by Proposition 6. Putting together we have
Yt(C) = {1}C . ◀

We are now ready to prove Lemma 5.

Proof of Lemma 5. Assume |F (ΩΦ; R1, . . . , RT )| > 1; that is, there exist σ, τ ∈ ΩΦ and
v ∈ V such that Xσ,T (v) ̸= Xτ,T (v). We inductively construct a path in HT as follows:
1. Set i← 1. Let t1 := UpdTime(v, T ) ∈ (T − n, T ].
2. While ti ≥ n do the following. Regarding Proposition 7 and the fact Xσ,ti

(vti
) ̸= Xτ,ti

(vti
),

there is a hyperedge Ci ∈ C containing vti
such that Ci \ {vti

} was fully colored by “1”
in exactly one of Xσ,ti

and Xτ,ti
. So we may find an earliest time ti+1 ∈ ei := eCi,ti

such
that Xσ,ti+1(vti+1) ̸= Xτ,ti+1(vti+1) and ti+1 < ti. Moreover, Yti(Ci) = {1}Ci implies that
ei is open. Let i← i + 1 and repeat.

Note that ti+1 ∈ ei by definition. On the other hand ti+1 ∈ ei+1 = eCi+1,ti+1 since
vti+1 ∈ Ci+1. Combining with the condition ti+1 < ti, we see ti+1 ∈ (ei ∩ ei+1) \ {ti} and
consequently ei → ei+1 is indeed an edge in HT . Therefore the above procedure returns an
open (not necessarily induced) path P ◦ = (e1, . . . , er) ⊆ VT where r is the number of rounds.
It starts at vertex e1 that intersects (T − n, T ], and ends at vertex er that intersects [1, n).

Let P ⊆ P ◦ be a shortest path from e1 to er in HT [P ◦]. It must be an induced path in
HT since HT is acyclic. It is open since P ⊆ P ◦. Finally, every vertex e ∈ P “spans” a time
interval of at most n, so the length of P is at least T/n− 1 = L. ◀
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3.3 The perfect sampler
We are ready to introduce our perfect sampler for hypergraph independent sets. Let L ∈ N
be a parameter to be fixed later (roughly in the order of O(log m)) and T = T (L) := n(L + 1)
as usual. The algorithm follows the standard framework of CFTP.

Algorithm 1 The CFTP sampler of hypergraph independent sets.

Input: A hypergraph Φ = (V,C).
Output: An independent set of Φ sampled uniformly from µ.

1 j ← 0;
2 repeat
3 j ← j + 1;
4 generate independent Bernoulli(1/2) variables R−jT +1, . . . , R−(j−1)T ;
5 until not Detect(Φ, R−jT +1, . . . , R−(j−1)T );
6 return F

(
{0}V ; R−jT +1, . . . , R0

)
.

Algorithm 2 The Detect subroutine.

Input: A hypergraph Φ = (V,C) and a sequence R1, . . . , RT .
Output: Whether BL(R1, . . . , RT ) happens.

1 foreach C ∈ C do
2 foreach t ∈ [T ] : vt ∈ C do
3 foreach v ∈ C \ {vt} do
4 foreach C ′ ∈ C : v ∈ C ′ ̸= C do
5 t′ ← UpdTime(v, t);
6 connect eC,t → eC′,t′ if both of them are open with regard to

R1, . . . , RT ;

7 breadth-first search from all eC,t : C ∈ C, t ∈ (T − n, T ] until the current vertex
intersects [1, n);

8 return if the path has length ≥ L.

▶ Theorem 8. Suppose there exist constant ε ∈ (0, 1) and β such that Pr [BL] ≤ β · (1− ε)L

for all L. With the concrete choice L :=
⌈

log(2β)
− log(1−ε)

⌉
, Algorithm 1 terminates with probability

1 and has expected running time O
(

log(2β)
− log(1−ε) ·

∑
C∈C

∑
v∈C dv|C|

)
. Moreover, its output

distribution ν is exactly µ upon termination.

Proof. The Detect subroutine (Algorithm 2) essentially constructs the witness graph HT

and decides if BL(R1, . . . , RT ) happens. Since the inputs fed by Algorithm 1 are always
independent Bernoulli(1/2) variables as required, we have

p := Pr
[
Detect(Φ, R−jT +1, . . . , R(−j−1)T )

]
= Pr [BL] ≤ β · (1− ε)L = 1

2 .

where the inequality follows from the assumption of the theorem.
Note that Algorithm 1 feeds disjoint (hence independent) sequences into Algorithm 2 in

different rounds, so the corresponding return values are independent. Therefore, the total
number of rounds J follows geometric distribution Geom(1− p). In particular Pr [J <∞] = 1
and E [J ] = 1

1−p ≤ 2. So the algorithm terminates with probability 1.
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Next we analyze the running time of a single call to Algorithm 2. Each iteration of the
nested loop can be implemented in constant time: We index each vertex eC,t by the pair
(C, t) to allow random access; the test of openness can be computed and stored beforehand
to facilitate fast lookup. So the nested loop takes

O

(∑
C∈C

|C| · L ·
∑
v∈C

dv

)
time to finish. The standard breadth-first search consumes time proportional to the number
of edges in the witness graph, which is bounded by the same quantity.

Finally, recall that Algorithm 1 calls Algorithm 2 J times. But E [J ] ≤ 2, so the expected
running time of our sampler is O

(
L ·
∑

C∈C
∑

v∈C dv|C|
)
.

We could now turn to show ν = µ as advertised. Upon termination, the percolation event
BL(R−JT +1, . . . , R−(J−1)T ) does not happen and hence

∣∣F (ΩΦ; R−JT +1, . . . , R−(J−1)T )
∣∣ = 1

by Lemma 5. But this in particular means

|F (ΩΦ; R−JT +1, . . . , R0)| = 1. (1)

For each integer s ≥ 0, we define a (virtual) copy (Zs
t )−sn≤t≤0 of systematic scan which

starts from {0}V at time −sn:

Zs
t := F

(
{0}V ; R−sn+1, . . . , Rt

)
.

Let νs denote the distribution of Zs
0 . Then lims→∞ νs = µ by convergence theorem. On the

other hand,

∥νs − ν∥ ≤ Pr
[
F
(
{0}V ; R−sn+1, . . . , R0

)
̸= F

(
{0}V ; R−JT +1, . . . , R0

)]
(coupling)

≤ Pr [sn < JT ] (by (1))
→ 0. (as s→∞)

Hence ν = lims→∞ νs = µ. ◀

3.4 Proofs of Theorem 1 and Theorem 2
Armed with Theorem 8, we only need to bound Pr [BL] under various conditions. We bound
the quantity in Section 4. As a result, Theorem 1 follows from Lemma 9 and Theorem 2
follows from Lemma 13.

4 Percolation on Witness Graphs

Let Φ = (V,C) be a hypergraph with |V | = n and let HT be its witness graph for any
T = (L + 1)n, L ∈ N. We will analyze the probability Pr [BL] in the abstract probability
space, where each time point t ∈ [T ] is associated with an independent Bernoulli(1/2)
variable.

4.1 General hypergraphs
▶ Lemma 9. If there exists a constant ε ∈ (0, 1) and a function x : C→ (0, 1) satisfying

∀C ∈ C : 2|C| · 2−|C| ≤ (1− ε) · x(C) ·
∏

C′∈ΓΦ2 (C)

(1− x(C ′)),

then Pr [BL] ≤
∑

C∈C
x(C)

1−x(C) · (1− ε)⌊L+1
2 ⌋ for all L ∈ N.
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For every C ∈ C, we use PC,L to denote the collection of induced paths (e1, e2, . . . , eL) in
HT where e1 ∩ (T − n, T ] ̸= ∅ and the label of e1 is C (namely C(e1) = C). Let

P2
C,⌊L+1

2 ⌋
:=
{

(e1, e3, e5 . . . , e2⌊L−1
2 ⌋+1) : (e1, e2, e3 . . . , eL) ∈ PC

}
.

Then by the union bound, we have

Pr [BL] ≤
∑
C∈C

∑
P∈PC,L

Pr [P is open] ≤
∑
C∈C

∑
P∈P2

C,⌊ L+1
2 ⌋

Pr [P is open]

=
∑
C∈C

∑
(e1,...,e

⌊ L+1
2 ⌋

)∈P2
C,⌊ L+1

2 ⌋

⌊L+1
2 ⌋∏

i=1
2−|C(ei)|, (2)

where the last equality follows from the fact that ei ∩ ei+1 = ∅ holds for every pair of
consecutive vertices of a path in P2

C,⌊L+1
2 ⌋

.

▶ Lemma 10. If there exists a function x : C→ (0, 1) satisfying

∀C ∈ C : 2|C| · 2−|C| ≤ (1− ε) · x(C) ·
∏

C′∈ΓΦ2 (C)

(1− x(C ′)),

then

∑
C∈C

∑
(e1,...,e

⌊ L+1
2 ⌋

)∈P2
C,⌊ L+1

2 ⌋

⌊L+1
2 ⌋∏

i=1
2−|C(ei)| ≤

∑
C∈C

x(C)
1− x(C) · (1− ε)⌊

L+1
2 ⌋.

Lemma 9 is clearly a consequence of Lemma 10. We prove the latter by analyzing a
multi-type Galton-Watson branching process.

4.1.1 Multi-type Galton-Watson branching process
Recall Φ = (V,C) is a fixed hypergraph and we assume that there exists a function x : C→
(0, 1) assigning each C ∈ C a number in (0, 1). A C-labelled tree is a tuple τ = (Vτ , Eτ ,L)
where L : Vτ → C labels each vertex in Vτ with a hyperedge in C.

Let C ∈ C be a hyperedge. Consider the following process which generates a random
C-labelled tree with the root labelled with C:

First produce a root vertex u with label C. Initialize the active set A as {u}.
Repeat the following until A is empty:

Pick some u ∈ A.
For every C ′ ∈ Γ+

Φ2(L(u)): create a new child for u labelled with C ′ with probability
x(C ′) independently; Add the new child to A.
Remove u from A.

We let TC be the set of all labelled trees that can be generated by the above process and
let µTC

be the distribution over TC induced by the process.

▶ Lemma 11. For every labelled tree τ = (Vτ , Eτ ,L) ∈ TC , it holds that

µTC
(τ) = 1− x(C)

x(C) ·
∏

v∈Vτ

x(L(v)) ·
∏

C′∈ΓΦ2 (L(v))

(1− x(C ′)).
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Proof. For a vertex v ∈ Vτ we use Wv ⊆ Γ+
Φ2(L(v)) to denote the set of labels that do not

occur as a label of some child nodes of v. Then clearly, the probability that the Galton-Watson
branching process produces exactly the tree τ is given by

µTC
(τ) = 1

x(C)
∏

v∈Vτ

x(L(v))
∏

C′∈Wv

(1− x(C ′)).

In order to get rid of the Wv, we can rewrite the expression as

µTC
(τ) = 1− x(C)

x(C)
∏

v∈Vτ

x(L(v))
1− x(L(v))

∏
C′∈Γ+

Φ2 (L(v))

(1− x(C ′))

= 1− x(C)
x(C)

∏
v∈Vτ

x(L(v))
∏

C′∈ΓΦ2 (L(v))

(1− x(C ′)). ◀

For every ℓ ≥ 1, we also use TC,ℓ to denote the set of labelled trees in TC containing
exactly ℓ vertices. In the following, we slightly abuse notation and say that a labelled tree
τ = (Vτ , Eτ ,L) ∈ TC (or TC,ℓ) if there exists some τ ′ ∈ TC (or TC,ℓ) such that τ and τ ′ are
isomorphic.

4.1.2 Proof of Lemma 10
Let ℓ = ⌊L+1

2 ⌋. It follows from the assumption that for every C ∈ C,

∑
P =(e1,e2,...,eℓ)∈P2

C,ℓ

ℓ∏
i=1

2−|C(ei)|

≤ (1− ε)ℓ ·
∑

P =(e1,e2,...,eℓ)∈P2
C,ℓ

ℓ∏
i=1

1
2|C(ei)|

· x(C(ei))
∏

C′∈ΓΦ2 (C(ei))

(1− x(C ′)). (3)

We now define a mapping Ψ : P2
C,ℓ → TC,ℓ that maps each P = (e1, e2, . . . , eℓ) to a

labelled directed path τ = (Vτ , Eτ ,L) where
Vτ = {u1, u2, . . . , uℓ};
Eτ = {(ui, ui+1) : i ∈ [ℓ− 1]}; and
for every i ∈ [ℓ], L(ui) = C(ei).

The mapping Ψ is not necessarily an injection, but we can bound its multiplicity.

▶ Lemma 12. For every labelled tree τ = (Vτ , Eτ ,L) ∈ TC,ℓ with Vτ = {u1, . . . , uℓ} and
Eτ = {(ui, ui+1) : i ∈ [ℓ− 1]}, it holds that

∣∣Ψ−1(τ)
∣∣ ≤ 2ℓ−1 ·

ℓ∏
i=1
|L(ui)|.

Proof. We prove it by induction:
1. When ℓ = 1, the lemma holds because there are at most |C| timestamps e with label C

such that e ∩ (T − n + 1, T ] ̸= ∅;
2. We assume the statement holds for ℓ ≥ 1. Let Vτ = {u1, u2, . . . , uℓ, uℓ+1} and Vτ ′ =
{u1, u2, . . . , uℓ}. According to the definition of Ψ, we know that for all P ∈ Ψ−1(τ), it was
extended from some P ′ ∈ Ψ−1(τ ′). Therefore, it suffices to analyze the possible extension
from P ′ to P ∈ Ψ−1(τ). Assuming P ′ = (e1, e2, . . . , eℓ) and P = {e1, e2, . . . , eℓ, eℓ+1}, if P
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was extended from P ′, then dist(eℓ, eℓ+1) = 2 and C(eℓ+1) = L(uℓ+1). Therefore, there
are at most 2|L(uℓ+1)| timestamps eℓ+1 satisfying P ∈ Ψ−1(τ) according to Lemma 4.
Combining with the induction hypothesis, the statement holds for ℓ + 1. ◀

Clearly for those τ ∈ TC,ℓ which are not directed paths, its pre-image Ψ−1(τ) = ∅. Therefore,
it follows from Lemma 11 and Lemma 12 that∑

P =(e1,e2,...,eℓ)∈P2
C,ℓ

ℓ∏
i=1

1
2|C(ei)|

· x(C(ei))
∏

C′∈ΓΦ2 (C(ei))

(1− x(C ′))

≤
∑

τ=(Vτ ,Eτ ,L)∈TC,ℓ:
Vτ ={u1,...,uℓ}

ℓ∏
i=1

x(L(ui))
∏

C′∈ΓΦ2 (L(ui))

(1− x(C ′))

= x(C)
1− x(C)

∑
τ∈TC,ℓ

µTC
(τ)

<
x(C)

1− x(C) .

4.2 Refined analysis for uniform hypergraphs
If the instance Φ = (V,C) is a d-regular k-uniform hypergraph, we can choose x(C) = 1

d2k2

in Lemma 9 and the condition becomes d ≤ c·2k/2

k1.5 for some constant c > 0. In this section,
we present a refined analysis for this case which removes the denominator k1.5.

▶ Lemma 13. For all ε ∈ (0, 1) and k ≥ 2, if

d ≤

(
1
4

√
9− ε

2 − 1
2

)
· 2k/2

then Pr [BL] ≤ k
2k ·m · (1− ε)⌊L

2 −1⌋ for all L ∈ N.

For every induced path (u1, . . . , uℓ) in HT , and L > 0, we use P(u1,...,uℓ),L to denote the
collection of induced paths in HT of length L with prefix (u1, . . . , uℓ)2.

▶ Lemma 14. For all ε ∈ (0, 1) and k ≥ 2, if

d ≤

(
1
4

√
9− ε

2 − 1
2

)
· 2k/2

then for every u ∈ VHT
and every L ∈ N,

Pr
[
∃ open P ∈ P(u),L

∣∣ u is open
]
≤ (1− ε)⌊L

2 −1⌋.

We first show that Lemma 13 follows from Lemma 14.

Proof of Lemma 13. By the union bound, we have

Pr [BL] ≤
∑
C∈C

∑
eC,t:t∈(T−n,T ]

Pr
[
∃ open P ∈ P(eC,t),L

]
=
∑
C∈C

∑
eC,t:t∈(T−n,T ]

Pr
[
∃ open P ∈ P(eC,t),L

∣∣ eC,t is open
]
·Pr [eC,t is open]

≤ km(1− ε)⌊L
2 −1⌋ · 2−k. ◀

2 Unlike the notation PC,L defined in Section 4.1, we do not require u1 ∩ {T − n + 1, . . . , T } ̸= ∅ here.
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The remaining part of the section is devoted to a proof of Lemma 14. We apply induction
on L. The base case is that L = 1 and L = 2, in which the lemma trivially holds. For larger
L and every path P = (u1, u2, u3 . . . , uL) ∈ P(u1),L, we discuss how the vertices u1, u2 and
u3 overlap.

Recall for every u = eC,t ∈ VT , C(u) = C is its label. Similar to [10], we classify the
tuple (u1, u2, u3) into three categories.

We say u2 is good if |C(u2) ∩ C(u1)| ≤ α · k where α ∈ [0, 1] is a parameter to be set;
If u2 is not good, we say (u2, u3) is of type I if C(u3) ∩ C(u1) ̸= ∅;
If u2 is not good, we say (u2, u3) is of type II if C(u3) ∩ C(u1) = ∅.

Then we can write

Pr
[
∃ open P ∈ P(u1),L

∣∣ u1 is open
]

(4)
≤ Pr

[
∃ open P = (u1, u2, u3, . . . ) ∈ P(u1),L where u2 is good

∣∣ u1 is open
]

+ Pr
[
∃ open P = (u1, u2, u3, . . . ) ∈ P(u1),L where (u2, u3) is of type I

∣∣ u1 is open
]

+ Pr
[
∃ open P = (u1, u2, u3, . . . ) ∈ P(u1),L where (u2, u3) is of type II

∣∣ u1 is open
]

In the following, we bound the probabilities in the three cases respectively.

u2 is good

In this case, we have |C(u2) ∩ C(u1)| ≤ α · k. Therefore, conditioned on u1 being open, at
least (1− α) · k variables in u2 are free (i.e. independent of those variables related to u1).
The number of choices of C(u2) is at most k · d and the number of choices of u2 with fixed
C = C(u2) is at most k. Combining this with the induction hypothesis, we have

Pr
[
∃ open P = (u1, u2, u3, . . . ) ∈ P(u1),L where u2 is good

∣∣ u1 is open
]

= Pr

 ⋃
good u∗

2

[
∃ open P ∈ P(u1,u∗

2),L

] ∣∣∣∣∣∣ u1 is open


≤

∑
good u∗

2

Pr
[
∃ open P ∈ P(u1,u∗

2),L

∣∣ u1 is open
]

=
∑

good u∗
2

Pr [u∗2 is open | u1 is open] ·Pr
[
∃ open P ∈ P(u1,u∗

2),L

∣∣ (u1, u∗2) is open
]

=
∑

good u∗
2

Pr [u∗2 is open | u1 is open] ·Pr
[
∃ open P ′ ∈ P(u∗

2),L−1
∣∣ u∗2 is open

]
≤ k2d · 2−(1−α)k · (1− ε)⌊

L−3
2 ⌋. (5)

(u2, u3) is of type I

In this case, we know C(u3) is adjacent to C(u1) in Φ and therefore the number of the choices
of C(u3) is at most kd. The choice of u3 with fixed C = C(u3) is at most 2k by Lemma 4. On
the other hand, since P is an induced path, u1∩u3 = ∅ and Pr [u3 is open | u1 is open] = 2−k.
Combining these facts with the induction hypothesis, we have
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Pr
[
∃ open P = (u1, u2, u3, . . . ) ∈ P(u1),L where (u2, u3) is of type I

∣∣ u1 is open
]

≤ Pr

 ⋃
u∗

3 : ∃u2, (u2, u∗
3) type I

[
∃ open P ′ ∈ P(u∗

3 ),L−2

] ∣∣∣∣∣∣ u1 is open


≤

∑
u∗

3 : ∃u2, (u2, u∗
3) type I

Pr
[
∃ open P ′ ∈ P(u∗

3 ),L−2

∣∣ u1 is open
]

=
∑

u∗
3 : ∃u2, (u2, u∗

3) type I

Pr
[

u
∗
3 is open

∣∣ u1 is open
]
·Pr
[
∃ open P ′ ∈ P(u∗

3 ),L−2

∣∣ (u1, u
∗
3) is open

]
=

∑
u∗

3 : ∃u2, (u2, u∗
3) type I

Pr
[

u
∗
3 is open

∣∣ u1 is open
]
·Pr
[
∃ open P ′ ∈ P(u∗

3 ),L−2

∣∣ u
∗
3 is open

]
≤ 2k

2
d · 2−k · (1− ε)⌊ L−4

2 ⌋
. (6)

(u2, u3) is of type II

This case is more complicated. We will enumerate all type II pairs (u2, u3) and bound the
sum of probabilities that some path in P(u2,u3),L−1 is open conditioned on u1 being open.
To this end, we first enumerate all pairs (C2, C3) ∈ C2 and then consider all pairs (u2, u3)
with C(u2) = C2 and C(u3) = C3.

For a fixed pair (C2, C3), we aim to bound the probability

∑
(u2,u3) is of type II,
C(u2)=C2,C(u3)=C3

Pr
[
∃ open P ∈ P(u1,u2,u3),L

∣∣ u1 is open
]

. (7)

To ease the notation, we let C1 := C(u1). In order for the above sum to be nonzero, we must
have |C2 ∩ C1| > α · k and C3 ∩ C1 = ∅. Let a := |C2 ∩ C1| and b := |C3 ∩ C2|. Recall the
notations in Section 3.1. For those (u2, u3) with C(u2) = C2 and C(u3) = C3, we can write
them as u2 = eC2,t2 and u3 = eC3,t3 respectively. In the following, all pairs (u2, u3) discussed
are of type II.

Note that eC2,t2 =: u2 ≠ u′2 := eC2,t′
2

if and only if t2 ̸= t′2. Similarly eC2,t2 =: u′3 ̸= u′3 :=
eC2,t′

2
if and only if t3 ̸= t′3. Moreover, if u2 ≠ u′2, then |u2 ∩ u1| ̸= |u′2 ∩ u1| and similarly if

u3 ̸= u′3, then |u3 ∩ u2| ̸= |u′3 ∩ u2|. As a result, we can enumerate type II pairs (u2, u3) by
enumerating the sizes of u2 ∩ u1 and u3 ∩ u2 respectively. On the other hand, if we know
that |u2 ∩ u1| = i and |u3 ∩ u2| = j, then,

Pr
[
∃ open P ∈ P(u1,u2,u3),L

∣∣ u1 is open
]

= Pr [u2 is open | u1 is open] ·Pr [u3 is open | (u1, u2) is open]
·Pr

[
∃ open P ∈ P(u1,u2,u3),L

∣∣ (u1, u2, u3) is open
]

≤ Pr [u2 is open | u1 is open] ·Pr [u3 is open | u2 is open]
·Pr

[
∃ open P ′ ∈ P(u3),L−2

∣∣ u3 is open
]

= 2−(k−i) · 2−(k−j) ·Pr
[
∃ open P ′ ∈ P(u3),L−2

∣∣ u3 is open
]

.
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These facts together with the induction hypothesis give∑
(u2,u3) is of type II:
C(u2)=C2,C(u3)=C3

Pr
[
∃ open P ∈ P(u1,u2,u3),L

∣∣ u1 is open
]

≤
a∑

i=1

b∑
j=1

2−(k−i) · 2−(k−j) · (1− ε)⌊
L−4

2 ⌋

≤ 2a+b−2k · 4(1− ε)⌊
L−4

2 ⌋.

It remains to enumerate (C2, C3) pairs. Since we know that |C2 ∩ C1| > α · k, the number of
choices of C2 is at most d·k

α·k = d
α

3. For every fixed C2, we let C =
{

C
(1)
3 , C

(2)
3 , . . . , C

(m)
3

}
be

the collection of all possible C3. Denote a := |C2 ∩ C1| as before and for every i ∈ [m] let
bi :=

∣∣∣C(i)
3 ∩ C2

∣∣∣. The probability of interest can therefore be written as

Pr
[
∃ open (u1, u2, u3, . . . ) ∈ P(u1),L where (u2, u3) is of type II and C(u2) = C2

∣∣ u1 is open
]

≤
∑

(u1,u2,u3,... )∈P(u1),L:
(u2,u3) is of type II,

C(u2)=C2

Pr
[
∃ open P ∈ P(u1,u2,u3),L

∣∣ u1 is open
]

≤

(
m∑

i=1

2a+bi−2k

)
· 4(1 − ε)⌊ L−4

2 ⌋.

To bound the term
∑m

i=1 2a+bi−2k, let us list some properties of the numbers involved:
a ≤ k and 1 ≤ m ≤ (k − a)d;
1 ≤ bi ≤ k − a for all i ∈ [m];∑m

i=1 bi ≤ (k − a)d. (This can be seen by an argument similar to the last footnote and
the fact that C3 ∩ C1 = ∅.)

Roughly the numbers are acting against each other: If a and m are large then the bi’s are
small. So it is possible to control

∑m
i=1 2a+bi−2k reasonably:

▶ Lemma 15. Suppose a ≤ k and 1 ≤ m ≤ (k−a)d. Then for any integers b1, . . . , bm ∈ [k−a]
such that

∑m
i=1 bi ≤ (k − a)d, we have the inequality

∑m
i=1 2a+bi−2k ≤ d · 2−k.

We arrange the proof in Appendix A. Returning to previous discussion, we derive

Pr
[
∃ open P = (u1, u2, u3, . . . ) ∈ P(u1),L where (u2, u3) is of type II

∣∣ u1 is open
]

≤ 4d2

α
· 2−k · (1− ε)⌊

L−4
2 ⌋. (8)

Putting all together
Plugging Equations (5), (6) and (8) into Equation (4), we have

Pr
[
∃ open P ∈ P(u1),L

∣∣ u1 is open
]

≤
(

k2d · 2−(1−α)k + 2k2d · 2−k + 4d2

α
· 2−k

)
· (1− ε)⌊

L−4
2 ⌋

<

(
2αk+2k2d + 4

α
d2
)

2−k · (1− ε)⌊
L−4

2 ⌋

3 To see this, consider the following way to enumerate all C2 incident to C1 in Φ: First pick a vertex
in C1 and then pick one of its incident hyperedges. This way we enumerated (with repetitions) k · d
hyperedges in total, and every hyperedge C2 : |C2 ∩ C1| > α · k is enumerated at least α · k times.
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where we used a very crude inequality 2αk +2 < 2αk+2. Let us take α = α(k) := 1
2 + 3−2 log k

k ∈
[0, 1] for any k ≥ 2. Note that 2αk+2k2 = 25+k/2 by definition. On the other hand, from
basic calculus one may find that α(k) : k ∈ N attains minimum value 1/8 at k = 8, thus
4/α ≤ 32 = 25. Hence the above bound continues as:

· · · ≤
(

2k/2d + d2
)

25−k · (1− ε)⌊
L−4

2 ⌋

≤ (1− ε) · (1− ε)⌊
L−4

2 ⌋

≤ (1− ε)⌊
L−2

2 ⌋

where the second line is due to our assumption d ≤
(

1
4

√
9−ε

2 −
1
2

)
· 2k/2 =: d∗. To see this,

observe that the function g(d) := 2k/2d + d2 is monotonically increasing when d ≥ 0, and
that g(d∗) = (1− ε) · 2k−5.
▶ Remark 16. When ε := 0.1, say, the condition becomes (approximately) d ≤ 0.027 · 2k/2.
Taking smaller ε will allow larger applicable range of d, but it comes at the price of slowing
down the sampler (by a multiplicative log-factor; see Theorem 8).

If k is sufficiently large we can further improve our bound to d ≲
√

33−ε−1
16 · 2k/2.
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A Proof of Lemma 15

For each j ∈ [k − a] we introduce a counter xj := |{i : bi = j}| that counts the number of
bi’s taking a specific value j. Then the constraint of the lemma translates to

k−a∑
j=1

j · xj ≤ (k − a)d,

and we want to show
k−a∑
j=1

2a+j−2k · xj ≤ d · 2−k.

To this end, we consider a (relaxed) linear program with variables x1, . . . , xk−a:

max
k−a∑
j=1

2a+j−2k · xj

s.t
k−a∑
j=1

j · xj ≤ (k − a)d

xj ≥ 0 (∀j ∈ [k − a]).

By the strong duality theorem of linear programming, its maximum value equals the
minimum value of the dual program

min (k − a)d · y
s.t j · y ≥ 2a+j−2k (∀j ∈ [k − a])

y ≥ 0.

Clearly the minimum value is obtained when y is as small as possible. It is clear that the
sequence hj := 2j

j is monotonically increasing for integers j ≥ 1, so the minimum possible y

is given by the (k − a)-th constraint, namely

y∗ := 2a+(k−a)−2k

k − a
= 2−k

k − a
.

Therefore, the minimum value of the dual – also the maximum value of the primal – is exactly
d · 2−k, as desired.



Threshold Rates of Code Ensembles: Linear Is Best
Nicolas Resch #

Cryptology Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Chen Yuan #

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China

Abstract
In this work, we prove new results concerning the combinatorial properties of random linear codes.
By applying the thresholds framework from Mosheiff et al. (FOCS 2020) we derive fine-grained
results concerning the list-decodability and -recoverability of random linear codes.

Firstly, we prove a lower bound on the list-size required for random linear codes over Fq ε-close
to capacity to list-recover with error radius ρ and input lists of size ℓ. We show that the list-size
L must be at least logq (q

ℓ)−R

ε
, where R is the rate of the random linear code. This is analogous

to a lower bound for list-decoding that was recently obtained by Guruswami et al. (IEEE TIT
2021B). As a comparison, we also pin down the list size of random codes which is logq (q

ℓ)
ε

. This
result almost closes the O( q log L

L
) gap left by Guruswami et al. (IEEE TIT 2021A). This leaves open

the possibility (that we consider likely) that random linear codes perform better than the random
codes for list-recoverability, which is in contrast to a recent gap shown for the case of list-recovery
from erasures (Guruswami et al., IEEE TIT 2021B).

Next, we consider list-decoding with constant list-sizes. Specifically, we obtain new lower bounds
on the rate required for:

List-of-3 decodability of random linear codes over F2;
List-of-2 decodability of random linear codes over Fq (for any q).

This expands upon Guruswami et al. (IEEE TIT 2021A) which only studied list-of-2 decodability of
random linear codes over F2. Further, in both cases we are able to show that the rate is larger than
that which is possible for uniformly random codes.

A conclusion that we draw from our work is that, for many combinatorial properties of interest,
random linear codes actually perform better than uniformly random codes, in contrast to the
apparently standard intuition that uniformly random codes are best.
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where Fq is the finite field of order q,1 in which case we can insist that C be a subspace of Fn
q .

We call such a code linear and denote it C ≤ Fn
q . As we are mostly concerned with linear

codes in the sequel we will always set Σ = Fq.2
In order for a code to be useful for information transmission in noisy environments, we

require C to satisfy noise-resilience properties, which amounts to insisting that the codewords
are “difficult to confuse.” A basic way to do this is to define a distance metric on Fn

q and
then insist that the codewords are not too clustered. The standard choice is the (relative)
Hamming distance which is defined as d(x⃗, y⃗) = 1

n |{i ∈ [n] : xi ̸= yi}| for x⃗, y⃗ ∈ Fn
q : in

words, it is the fraction of coordinates on which the vectors x⃗ and y⃗ differ. The minimum
distance of a code is then the minimum distance between two distinct codewords, i.e.,
δ := min{d(c⃗, d⃗) : c⃗, d⃗ ∈ C, c⃗ ̸= d⃗}.

Beyond the minimum distance, there are other proxies for a code’s noise-resilience that
are widely studied. First and foremost, a popular relaxed notion of noise-resilience is provided
by list-decodability, which informally asks that the code not be “too” clustered around any
one point. More precisely, a code is said to be (ρ, L)-list-decodable if there are never L or
more codewords that are all within distance ρ of some vector z ∈ Fn

q , i.e.,

∀z⃗ ∈ Fn
q , |{x⃗ ∈ C : d(x⃗, z⃗) ≤ ρ}| < L .

The integer L is called the list-size. This notion, originally introduced by Elias and Wozen-
craft [6, 35], finds uses within coding theory and beyond in, e.g., complexity theory [27, 2, 33],
cryptography [25], and learning theory [8].

We will also investigate another relaxation of list-decoding: list-recovery. Here, we are
given a collection of input lists S1, . . . , Sn ⊆ Fq of bounded size, and the requirement is that
there are not too many codewords that agree too much with these input lists. More precisely,
for an integer ℓ ≤ q we require that

∀S⃗ = (S1, . . . , Sn) ∈
(
Fq

ℓ

)n

, |{x⃗ ∈ C : d(x⃗, S⃗) ≤ ρ}| < L .

In the above, we are denoting by
(Fq

ℓ

)
the family of all ℓ-element subsets of Fq, and we are

extending the Hamming distance notation d(·, ·) via

d(x⃗, S⃗) = 1
n

|{i ∈ [n] : xi /∈ Si}| .

Note that (ρ, 1, L)-list-recovery is equivalent to list-decoding, demonstrating that list-
recoverability is indeed a generalization of list-decodability. While list-recovery was initially
introduced as a stepping stone towards list-decoding [11, 12, 13, 14] it has since found many
new uses in theoretical computer science more broadly [20, 24, 29, 7, 22, 23].

In order for a code to provide for efficient information transmission, we would like for
the code’s rate to be as large as possible, which is a measure of the amount of information
transmitted per symbol of a codeword. More precisely, the code’s rate R is defined as logq |C|

n ;
when the code is linear, this is simply dim(C)

n .
At its core, coding theory is concerned with determining the achievable tradeoffs between

a code’s rate and its noise-resilience for various noise models. In this work, we focus upon
the list-decodability and list-recoverability of codes. An important question we ask is how

1 In this case, we will of course insist that q be a prime power.
2 For nonlinear codes this does potentially lose some generality, as the alphabet size in that case could

be any integer. We do remark that our results concerning arbitrary codes hold for all integer q, but
emphasizing this point is not relevant to our purposes.
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large the list-size L must be for these tasks. This is useful in practice, as the main constraint
on the run time of most list-decoding/recovery algorithms is due to the need to process the
list. Further, in applications of list-recoverable codes to constructions of expanders [20] the
quality of the expansion is directly governed by the list-size.

Random Ensembles of Codes. As a stepping-stone towards a thorough understanding
of the achievable tradeoffs (which is believed to be a very challenging problem), we take
cues from much of the literature and study the behaviour of “typical” codes. That is, we
sample codes of a prescribed rate according to natural distributions and investigate their
list-decodability/-recoverability. In particular, we consider random linear codes, which are
uniformaly sampled subspaces of Fn

q of the prescribed dimension. We also study uniformly
random subsets of Fn

q of the prescribed size, which we call random codes.
In our work, we endeavour to provide a more fine-grained understanding of the combina-

torial properties of these code ensembles. In this way, we help to uncover the landscape of
achievable parameters for various code properties of interest. Beyond its theoretical interest,
many code constructions [14, 19, 22, 23] use (small) linear codes as a component, and better
list-decodability/recoverability of these inner codes improves these constructions.

In our results, we highlight a (perhaps surprising) fact: for list-decoding/recovery, random
linear codes seem to perform better than uniformly random codes. On the one hand, even
for the basic property of minimum distance it has already been observed that random linear
codes (which achieve the Gilbert-Varshamov bound) outperform uniformly random codes.
On the other hand, for problems such as list-decoding and list-recovery much of the literature
appears to be focused on showing that random linear codes are “not too much worse” than
uniformly random codes. We hope our work encourages the coding theory community to
change perspective and endeavour to prove that random linear codes are in fact better.

1.1 Our Results
List-Recoverability of Random Linear Codes. As a first result, we provide a new lower
bound on the list-size of random linear codes for list-recoverability. For context, we recall
the list-recoverability capacity theorem, which gives us some coarse-grained information
regarding achievable tradeoffs. For an integer 1 ≤ ℓ < q, error-radius ρ ∈ (1 − ℓ/q) and ε > 0
it states the following:

If R ≤ 1 − hq,ℓ(ρ) − ε, there exist (ρ, ℓ, L)-list-recoverable codes with L = O(ℓ/ε).
If R ≥ 1 − hq,ℓ(ρ) + ε, there do not exist (ρ, ℓ, L)-list-recoverable codes with L = o(qεn).

In the above, the function hq,ℓ(·) is the (q, ℓ)-entropy function; its precise definition is not
important at the moment so we defer it to Section 2. Informally, when studying codes of
rate ε below the capacity for a small ε > 0 we refer to them as capacity-approaching and call
ε as the gap-to-capacity.

This already tells us that the capacity for (ρ, ℓ, L)-list-recovery is 1 − hq,ℓ(ρ) if we insist
that L be subexponential in n. However, we can ask for more fine-grained information:
in particular, exactly how large must the list-size L be as a function of ε and the other
parameters?

For random linear codes, we prove the following lower bound.

▶ Theorem 1 (List-Recoverability Lower Bound for Random Linear Codes). Let 1 ≤ ℓ ≤ q be
integers with q a prime power and fix ρ ∈ (0, 1 − ℓ/q). Fix δ > 0. For sufficiently small ε > 0,

a random linear code in Fn
q of rate 1 − hq,ℓ(ρ) − ε is whp not

(
ρ, ℓ, ⌊ logq (q

ℓ)−(1−hq,ℓ(ρ))
ε − δ⌋

)
-

list-recoverable.

ICALP 2022
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Table 1 This table summarizes much of the work on the list-recoverability of random linear codes
(RLC) and random codes (RC). The lower bound of [15] only applies when q = pΩ(1/ε) for a prime
p, and in [32] η > 0 is viewed as a small constant. [15] also offers a similar lower bound for the case
of list-recovery from erasures.

Source Model Radius Rate List-size bound

Folklore RC ρ > 0 1 − hq,ℓ(ρ) − ε ≤ O(ℓ/ε)
[37] RLC ρ > 0 1 − hq,ℓ(ρ) − ε ≤ qO(ℓ/ε)

[32] RLC ρ = 1 − ℓ
q

− η 0.99(1 − hq/ℓ(α) − logq(ℓ)) ≤ qO(ln2(ℓ/η))

[15] RLC ρ = 0 1 − logq(ℓ) − ε ≥ ℓΩ(1/ε)

Theorem 1 RLC ρ > 0 1 − hq,ℓ(ρ) − ε >
logq (q

ℓ)−(1−hq,ℓ(ρ))
ε

Theorem 2 RC ρ > 0 1 − hq,ℓ(ρ) − ε ≈ logq (q
ℓ)

ε

For context, we consider the case of uniformly random codes. In this case, we obtain a
tight result.

▶ Theorem 2 (List-Recoverability for Random Codes). Let 1 ≤ ℓ ≤ q be integers with q a
prime power and fix ρ ∈ (0, 1 − ℓ/q). Fix δ > 0. For sufficiently small ε > 0, a random code

in Fn
q of rate 1 − hq,ℓ(ρ) − ε is whp not

(
ρ, ℓ, ⌊ logq (q

ℓ)
ε − δ⌋

)
-list-recoverable.

On the other hand, for any ε > 0 and n sufficiently large, a random code in Fn
q of rate

1 − hq,ℓ(ρ) − ε is whp
(

ρ, ℓ, ⌈ logq (q
ℓ)

ε ⌉ + 1
)

-list-recoverable.

In this way, we pin down the list-recoverability for random codes to one of two or three
possible values: ⌊ logq (q

ℓ)
ε + 0.99⌋, ⌈ logq (q

ℓ)
ε ⌉ (if it’s different) or ⌈ logq (q

ℓ)
ε ⌉ + 1.

Comparing Theorems 1 and 2 we see that our lower bound on random linear codes is less
than the precise bound we have on random codes. One could potentially draw the conclusion
that Theorem 1 should be improved. However, we believe that it is in fact tight. For the case
of list-decoding binary codes it has already been shown that random linear performs better
than uniformly random, and the bounds we obtain are the natural generalizations of the
(tight) results for that case. We therefore conjecture that Theorem 1 is indeed tight. This
stands in stark contrast to erasure list-recovery:3 for this model, it is known that random
linear codes can require lists of size ℓΩ(1/ε) [15] (at least, if the field has large characteristic),
whereas the lists for random codes can be just O(ℓ/ε). A summary of the state-of-the-art for
list-recovery of RLCs and RCs is provided in Table 1.

▶ Remark 3. It might appear that our conjecture that random linear codes outperform
random codes for list-recovery is contradicted by the result of [15]. However, we emphasize
that the capacity for erasure list-recovery is larger, so if a code is ε-close to capacity for
list-recovery from erasures for small ε > 0 it is above capacity for list-recovery from errors,
the model we study. Hence, this lower bound does not contradict our conjecture. One can
also consider the model where ρ approaches the limit 1 − ℓ/q as is done in [32]; in this case
we still suspect that random linear codes outperform uniformly random codes, but this is
just speculation and further investigation is required.

3 Here, the requirement is that for all subsets S1, . . . , Sn ⊆ Fq where at least (1 − ρ)n of the Si’s satisfy
|Si| ≤ ℓ (and the others may be all of Fq), the number of codewords in S1 × · · · × Sn is less than L.
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List-decoding with small lists. Next, we turn our attention to the challenge of list-decoding
when the output list-size L is a (small) constant. Thus, we are no longer in the regime where
we can expect to approach the list-decoding capacity, and we are interested to know by how
much we are required to back off if, say, L = 3, 4.

First, we consider the case where L = 4 for the binary field, which we also refer to
as list-of-3 decoding. Here and throughout, we also use the following notation (which
is slightly abusive): for q ≥ 2 and nonnegative reals x1, . . . , xt with x1 + · · · + xt ≤ 1,
Hq(x1, . . . , xt) =

∑t
i=1 xi logq

1
xi

+ (1 − x1 − · · · − xt) logq
1

1−x1−···−xt
.

We first prove the following possibility result for random linear codes. In the following,

Bρ =
{

(x1, x2) ∈ R2 : x1 + 2x2 ≤ 4ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0
}

.

▶ Theorem 4 (List-of-3 decoding Random Linear Binary Codes). Let ρ ∈ (0, 5/16)4 and suppose

R < 1 − max
(x1,x2)∈Bρ

H2(x1, x2) + 2x1 + x2 log2 3
3 .

Then a random linear code over Fq of rate R is whp (ρ, 4)-list-decodable.

For context, we also study the list-of-3 decodability of random codes over the binary
alphabet. In this case, we can prove the following:

▶ Theorem 5 (List-of-3 decoding Random Binary Codes). Let ρ ∈ (0, 5/16) and suppose

R > 1 − max
(x1,x2)∈Bρ

1 + H2(x1, x2) + 2x1 + x2 log2 3
4 .

Then a random code over {0, 1} of rate R is whp not (ρ, 4)-list-decodable.
On the other hand, if

R < 1 − max
(x1,x2)∈Bρ

1 + H2(x1, x2) + 2x1 + x2 log2 3
4 ,

then a random code over {0, 1} is whp (ρ, 4)-list-decodable.

As 1+F
4 ≥ F

3 whenever F ≤ 3, we see that the bound in Theorem 4 is greater than the
bound from Theorem 5. Using terminology that we later make precise, we see that the
threshold rate for list-of-3 decoding binary random linear codes strictly exceeds that of binary
random codes.

Next, we study list-of-2 decoding over alphabets of size q > 2. And again, our theorems
demonstrate that random linear codes strictly outperform random codes. Define

Dρ := {(x1, x2) ∈ R2 : x1 + x2 ≤ 3ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0}.

▶ Theorem 6 (List-of-2 decoding Random Linear q-ary Codes). Let ρ ∈ (0, 1/3) and suppose

R < 1 − max
(x1,x2)∈Dρ

Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)
2 .

Then a random linear code over Fq of rate R is whp (ρ, 3)-list-decodable.

4 If ρ ≥ 5/16 it is known that there are no (ρ, 4)-list-decodable codes with postive rate [1].
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▶ Theorem 7 (List-of-2 decoding Random q-ary Codes). Let Fq be an alphabet of size q. Let
ρ ∈ (0, 1/3) and suppose

R > 1 − max
(x1,x2)∈Dρ

1 + Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)
3 .

Then a random code over Fq of rate R is whp not (ρ, 3)-list-decodable.
On the other hand, if

R < 1 − max
(x1,x2)∈Dρ

1 + Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)
3 ,

then a random code over Fq is whp (ρ, 3)-list-decodable.

Again, we can see that the bound from Theorem 6 is greater than the bound from Theo-
rem 7. We therefore conjecture that this phenomenon of random linear codes outperforming
random codes extends to more values of L. To provide more evidence for this conjecture, we
extend an argument for binary random linear codes of [10, 26] to larger values of L, and by
comparing it to a computation of the threshold rate for random binary codes, show that for
many parameter regimes of interest we do indeed have random linear codes outperforming
random codes.

1.2 Techniques
In order to obtain our results, we rely on a recently developed toolkit for proving threshold
rates for combinatorial properties of random (linear) codes. This toolkit was developed by
Mosheiff et al. [28] on the way to proving that LDPC codes achieve list-decoding capacity;
recent works [15, 16] have found further uses for the techniques in investing combinatorial
properties of random linear codes. An analogous threshold toolkit for random codes was
provided in [17].

Broadly speaking, the techniques of [28, 17] apply when considering a property of codes
defined by forbidding a family of “bad” subsets, each of which have constant cardinality
(independent of n). For example, the property of (ρ, L)-list-decodability is defined by
forbidding all L-element subsets B = {x1, . . . , xL} of a Hamming ball B(z, ρ) = {x ∈ Fn

q :
d(x, z) ≤ ρ} from appearing in the code. In [28], it is proved that for any such local property
there is a threshold rate R∗ such that:

If R < R∗, a random linear code satisfies the property with high probability;
If R > R∗, a random linear code fails to satisfy the property with high probability.

The theorem furthermore characterizes the threshold rate R∗ as the solution to a certain
optimization problem. In this work, we endeavour to compute new bounds on the threshold
rate R∗ for various properties of interest.

In the remainder, we provide intuition for the characterization of the threshold rate from
[28]. First, we identify subsets B ⊆ Fn

q of size L with the matrix in Fn×L
q whose columns are

given by B (the choice of ordering is immaterial), and we say that a matrix M is contained
in a code C if C contains all of M ’s columns. For a collection of matrices M ⊆ Fn×L

q , we
would like to compute the threshold rate R∗ for “M-freeness,” i.e., the code property of not
containing a matrix in M.

As we are interested in list-decoding/recovery, we define a set of matrices M such that
if C contains a matrix from M then C is not list-decodable/recoverable. We say that the
collection M is “bad” for list-decoding/recovery. As intuition, for list-decoding we can just
take the set of matrices where each column lies in some ball B(z, ρ). Next, we would like
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to show that M is “abundant” in the sense that it is very likely that C contains a matrix
M ∈ M. In other words, if XM denotes the indicator random variable for the event M ⊆ C,
then we should expect XM :=

∑
M∈M XM ≥ 1.

It is relatively easy to compute E[XM] and see when it exceeds 1; however, to conclude
that XM is likely to be large one needs a concentration bound. Such a bound is often
provided by estimating the variance of XM. Broadly construed, [28] applies the second
moment method to demonstrate that there is really only one reason that XM would fail to
be concentrated: it is because for some compressing matrix A ∈ FL×L′

q with L′ ≤ L the set
{MA : M ∈ M} is too small.

List-Recovery. First, we endeavour to prove a lower bound on the list-size for list-recovery.
This means that we need to say that if the list-size is too small then the random linear code
quite likely contains a matrix from a set M of bad matrices for list-recovery. In light of the
above, to conclude our argument we need to show that for any compressing matrix A, the
set {MA : M ∈ M} remains large.

To do this, we use information-theoretic techniques: we identify each of our bad matrices
M ∈ M with an appropriate type, which is a distribution τ ∼ FL

q defined as the empirical
distribution of M ’s rows. A lower bound on {MA : M ∈ M} is then implied by a lower
bound on the entropy of the random variable Au⃗ for u⃗ ∼ τ . We are also free to choose the
type τ which is “bad” for a certain property, in the sense that if a code contains a matrix of
type τ then it fails to satisfy the property.

For the case of (ρ, ℓ, L)-list-recovery, the following type is bad: one samples uniformly
S ∈

(Fq

ℓ

)
and then outputs u⃗ = (u1, . . . , uL) ∈ FL

q , where each ui is independently uniform
over S with probability 1 − ρ and uniform over Fq \ S otherwise. It thus follows that a
lower bound on {AM : M ∈ M} is implied by a lower bound on the entropy of the random
variable Au⃗ for u⃗ ∼ τ .

Obtaining this lower bound requires a rather lengthy argument; we overview the main
ideas now. We begin by partitioning the coordinates of Au⃗ into subsets J1, . . . , Jk ⊆ [L′],
where each Ji depends on at least 2 “fresh” coordinates from u⃗, along with (perhaps) a set
of leftover coordinates Jk+1. We then provide two arguments depending on the maximum
size of a part. If, say, |J1| is large, then we can show that (Au⃗)J1 already experiences a
large entropy increase. This is shown by demonstrating that these coordinates alone already
allow us to nontrivially guess the subset S. Otherwise, we argue that all the parts provide a
nontrivial increase in the entropy, and since there must be a large number of parts in this
case, by summing over all the parts we provide an adequate lower bound.

This result generalizes the list-decoding lower bound that was provided in [15, Theorem
IV.1]. The argument in that paper exploited the fact that a sample from the bad type for
list-decoding has a simpler structure: it looks like v⃗ + α1⃗, where v⃗ is a q-ary Bernoulli
random variable and α ∈ Fq is uniformly random. In our case, we do not have this nice
linear structure,5 making the analysis more intricate.

List-Decoding with Small Lists. For our results concerning list-decoding with small lists,
we again use the thresholds framework. In this case, we need to consider any type that is
bad for (ρ, 3) or (ρ, 4)-list-decoding. For these small values of L, we are able to identify the
linear map A which leads to the maximum relative entropy Hq(Aτ)

dim(Aτ) : in each case, it is given
by the map sending (x1, . . . , xL) 7→ (x1 − xL, . . . , xL−1 − xL).

5 One might be tempted to look at v⃗ + w⃗ where v⃗ is q-ary Bernoulli and w⃗ is uniform over S, but note
that for ℓ − 1 choices for vi ∈ F∗

q the sum vi + wi still lies in S.
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To provide the proof, we break up the vector spaces based on the number of distinct
coordinates of the entries, and observe that a type which is bad for list-decodability can
only put so much probability mass on each of these parts. To conclude, we rely on the
concavity of the entropy function as well as some combinatorial reasoning concerning the
subspaces of F4

2 and F3
q . Even for these small values of L we need to be quite careful to avoid

a massive explosion in the number of cases to consider, as we must look at all compressing
linear maps A.

Random Codes. For the case of random codes, we can compute the threshold rates for all
the properties of interest in a relatively straightforward way, as the characterization from [17]
does not require us to consider any sort of compressing mapping on the types. Quite notably,
in all cases we see that random linear codes appear to perform better than random codes.
This is perhaps in contrast to commonly held beliefs: in this sense, a main goal of our work
is to disseminate this counterintuitive phenomenon.

1.3 Related Work
In Section 1.2 we outlined the works [28, 15, 17] which developed and studied the thresholds
toolkit that we apply. In this section, we provide more context for the study of random
linear codes and their list-decodability/-recoverability. In what follows, q always denotes the
alphabet size and ε the “gap-to-capacity” for a capacity-approaching code.

List Size Lower Bounds for Random (Linear) Codes. As we provide lower bounds for list-
recovery of random linear codes, we briefly survey the known lower bounds for list-decoding.
First, Guruswami and Narayanan [21] showed that capacity-approaching random (linear)
codes require lists of size Ωρ,q(1/ε): by inspecting the proof one can note that the implied
constant tends to 0 as ρ → 1−1/q, or if q → ∞. While on the surface their approach appears
very different to ours, their use of a second-moment method is akin to the proofs underlying
the thresholds framework from [28], so the approaches are in fact somewhat similar. Later,
Li and Wootters [26] gave a ∼ 1/ε list-size lower bound for capacity-approaching random
codes. Again, the argument relies on the second-moment method.

In [15], a lower bound for the list-decodability of capacity-approaching random linear
codes is given, showing that lists of size ∼ hq(ρ)

ε are required: our list-recovery list-size
lower bound is a generalization of this result. Lastly, in [17] the threshold rate for (ρ, 2)-
list-decodability is computed, providing a lower bound and an upper bound: this segues us
nicely into a discussion of the work on computing upper bounds on list-sizes.

List Size Upper Bounds for Random Linear Codes. There has been a long line of work [37,
10, 9, 5, 34, 31, 32, 26, 17] studying the list-decodability of capacity-approaching random
linear codes, and we now highlight some relevant results. First, Zyablov and Pinkser [37]
demonstrated that capacity-approaching RLCs are indeed (ρ, L)-list-decodable, albeit with
L = qΩ(1/ε). Subsequent work has endeavoured to prove list-decodability with L = O(1/ε).
The existence of such linear codes over F2 was first demonstrated by [10]; later, [26] showed
that this holds with high probability for randomly sampled linear codes, and subsequently [15]
showed this is true for average-radius6 list-decoding.

6 In this model, it is required that the code does not contain L points whose average distance from a
centre is less than ρ. Thus, it is a stricter requirement than standard list-decoding.
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As for larger alphabets, [9] showed that lists of size Oρ,q(1/ε) do indeed suffice for random
linear codes. We further remark that their argument uses a certain Ramsey-theoretic concept
called a 2-increasing sequence to choose the order in which to reveal coordinates, which
is vaguely reminiscent of the “fresh” coordinates that we have defined by the Ji’s in our
list-recovery lower bound argument. A drawback of this work is that the implied constant in
the Oρ,q(·) notation degrades as ρ → 1−1/q or if q grows too large. In light of this restriction,
a line of works [5, 34, 31] has studied the “high noise regime,” where ρ = 1 − 1/q − η and one
endeavours to show that lists of size O(1/η2) suffice for codes of rate Ω(η2). These results
are still not quite optimal in the sense that the implied constants (even for the rate) lag
behind the parameters achievable by random codes. Lastly, for list-recoverability with input
list-size ℓ it appears that the best upper bound on the list-size is due to [32], where it is
shown that lists of size (qℓ)O(log(ℓ)/ε) suffice.

Lower Bounds for List Sizes of Arbitrary Codes. While we exclusively study random
(linear) codes, we view these as a proxy for determining the actual achievable tradeoffs. As
lists of size Θ(1/ε) are required for random codes, it is natural to wonder if all capacity-
approaching (ρ, L)-list-decodable codes require lists of size Ω(1/ε). Blinovsky [4, 3] has shown
a lower bound of Ωρ(log(1/ε)). In the high noise regime, viz., ρ = 1 − 1/q − η, Guruswami
and Vadhan [21] provided a Ωq(1/η2) lower bound on the list size. Lastly, for average-radius
list-decoding Guruswami and Narayanan [18] proved a Ωρ(1/

√
ε) lower bound.

1.4 Open Problems
In this work, we have progressed our understanding of combinatorial properties of random
(linear) codes. A main conclusion of our work is that for list-decoding/recovery, random
linear codes perform better.7

There are many open problems which remain to be studied and we list some below.
Provide the corresponding upper bounds on the threshold rate for (ρ, 4)-list-decoding
binary random linear codes, and the threshold rate for (ρ, 3)-list-decoding q-ary random
linear codes.
Provide the corresponding lower bound on the threshold rate for (ρ, ℓ, L)-list-recovery
in the capacity-approaching regime. In fact, for q > 2, the threshold rate for (ρ, L)-list-
decoding is still open. This is quite likely a very challenging problem; the only tight
argument we have is due to [10, 26] (see also [15]) which only applies to list-decoding
over the binary field, and this argument appears too “rigid” to apply in more generality.
Get a better understanding for worst-case codes. In particular, to the best of our
knowledge the Plotkin points for (ρ, L)-list-decoding for q > 2 are not known. That is,
compute the minimum value ρ∗ such that for all ρ > ρ∗, there are no q-ary (ρ, L)-list-
decodable code families with positive rate. (Recent work [36] expresses the Plotkin point
as a solution to a certain optimization problem, but we do not see how to extract a simple
expression from this.)

1.5 Organization
In the subequent section, we introduce the necessary notations and definitions that we will
use in this work, along with the tools from [28, 17] that we apply. In Section 3, we provide
our lower bound on the list-size for the list-recoverability of random linear codes which

7 For list-recovery, we admittedly only provide some evidence in this direction.

ICALP 2022



104:10 Threshold Rates of Code Ensembles: Linear Is Best

approach capacity. In Section 4, we lower bound the threshold rate for list-of-2 decoding (for
general q) and list-of-3 decoding (in the binary case). We also compare random linear codes
to random codes over the binary alphabet for more values of L. For space reasons, most of
the technical proofs are deferred to the full version.

2 Prelimaries

Miscellaneous Notations. For an integer n ≥ 1, we denote [n] := {1, 2, . . . , n}. For a set X

we denote by
(

X
ℓ

)
the family of all subsets of X with ℓ elements, and similarly

(
X
≤ℓ

)
denotes

the family of all subsets of X with ≤ ℓ elements. Throughout, Fq denotes the finite field
with q elements, for q a prime power.

For clarity, vectors are typically denoted with an arrow overtop. Given a vector x⃗ ∈ Fn
q

and a subset I ⊆ [n] we denote by x⃗I the length |I| vector (xi : i ∈ I) ∈ F|I|
q . We reserve 1⃗

for the all-1’s vector; if we wish to emphasize its length we subscript it, i.e., 1⃗D is the all-1’s
vector of length D. Random variables are typically written in boldface, e.g., x, y, etc. In
particular, random vectors are denoted, e.g., u⃗.

Coding Theory Terminology. A code C is a subset of Fn
q for Fq the finite field of order

q, a prime power. Elements c⃗ ∈ C are called codewords, the integer n is the block-length,
and the integer q is the alphabet size; such a code is also called q-ary. When q = 2 the
code is deemed binary. We are typically interested in linear codes, which are C ≤ Fn

q ,
i.e., they are subspaces. The rate of a code C is R = R(C) := logq |C|

n and its minimum
distance is δ = δ(C) := min{d(c⃗, d⃗) : c⃗ ̸= d⃗, c⃗, d⃗ ∈ C}, where d(x⃗, y⃗) = 1

n |{i ∈ [n] : xi ̸= yi}|
is the (relative) Hamming distance from x⃗ to y⃗. We also slightly extend this notation as
follows: for a vector x⃗ ∈ Fn

q and a tuple of subsets S⃗ = (S1, . . . , Sn), Si ⊆ Fq, we define
d(x⃗, S⃗) := 1

n |{i ∈ [n] : xi /∈ Si}|, i.e., the fraction of coordinates i for which x⃗ “disagrees”
with the corresponding subset of S⃗.

A random linear code of rate R is a uniformly random subspace of Fn
q of dimension

Rn.8 As this concept will arise regularly in this work, we occasionally use the abbreviation
RLC. A random code of rate R is a random subset of Fn

q obtained by including each element
independently with probability q(R−1)n.9 For this concept, we use the abbreviation RC.

2.1 List-decodability and List-recoverability
In this work, we study combinatorial properties of linear codes. Of primary interest to us
are list-decodability and list-recoverability, which we now define.

▶ Definition 8 (List-decodability). Let ρ ∈ (0, 1 − 1/q) and L ≥ 1. A code C ⊆ Fn
q is called

(ρ, L)-list-decodable if for all z⃗ ∈ Fn
q ,

|{c⃗ ∈ C : d(c⃗, z⃗) ≤ ρ}| < L .

8 In fact, there are different ways to sample linear codes. For concreteness, we typically implicitly use the
model where a random parity check matrix H ∈ F(1−R)n×n

q is sampled and we output C = ker(H). Of
course, there is a small chance C has rate larger than R, but as this probability is exponentially small
in n it is immaterial to our conclusions. We also briefly use the model where a random G ∈ FRn×n

q is
sampled and we output C = im(G).

9 By Chernoff bounds, such a code as rate R ± o(1) with high probability.
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We also use the terminology “list-of-L-decoding” for (ρ, L + 1)-list-decoding, e.g., list-of-2-
decoding corresponds to (ρ, 3)-list-decoding.

The list-decoding capacity is the value R∗(ρ) such that for any R < R∗(ρ) there exists
L > 1 such that infinite families of (ρ, L)-list-decodable codes of rate at least R exist, but for
any R > R∗(ρ) such an infinite family does not exist. It is known that

R∗(ρ) = 1 − hq(ρ) ,

where

hq(ρ) = ρ logq

q − 1
ρ

+ logq

1
1 − ρ

is the q-ary entropy function.

▶ Definition 9 (List-recoverability). Let ρ ∈ (0, 1−1/q), 1 ≤ ℓ ≤ q and L ≥ 1. A code C ⊆ Fn
q

is called (ρ, ℓ, L)-list-recoverable if for all tuples of subsets S⃗ = (S1, . . . , Sn) ∈
(Fq

≤ℓ

)n,

|{c⃗ ∈ C : d(c⃗, S⃗) ≤ ρ}| < L .

In analogy to the list-decoding capacity, the list-recovery capacity is the value R∗(ρ, ℓ)
such that for any R < R∗(ρ, ℓ) there exists L > 1 such that infinite families of (ρ, ℓ, L)-list-
recoverable codes of rate at least R exist, but for any R > R∗(ρ, ℓ) such an infinite family
does not exist. It is known that

R∗(ρ, ℓ) = 1 − hq,ℓ(ρ) ,

where

hq,ℓ(ρ) = ρ logq

q − ℓ

ρ
+ (1 − ρ) logq

ℓ

1 − ρ

is the (q, ℓ)-entropy function.

2.2 Information-Theoretic Concepts
For a random variable x over a domain X we denote its entropy by

H(x) =
∑
x∈X

Pr[x = x] log 1
Pr[x = x] ,

where we use the convention 0 log 1
0 = 0. If τ is a distribution then we define H(τ) to be the

entropy of a random variable distributed according to τ .
Given another random variable y supported on a set Y, the conditional entropy of x

given y is

H(x|y) = E
y∼y

[H(x|y = y)] =
∑

x∈X ,y∈Y
Pr[x = x, y = y] log Pr[x = x]

Pr[x = x, y = y] .

Intuitively, this is the expected amount of entropy remaining in x after revealing y. Condi-
tional entropy satisfies the chain rule H(x, y) = H(x|y) + H(y), which can be extended by
induction to larger collections of random variables.

We also use the notion of mutual information, which is a measure of the amount of
information one random variable gives about another and is defined as follows:

I(x; y) = H(x) − H(x|y) = H(y) − H(y|x) = H(x, y) − H(x) − H(y) .
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(The equalities are justified by the chain rule.) We also consider the conditional mutual
information, defined as follows:

I(x; y|z) = H(x|z) − H(x|y, y) = H(y|z) − H(y|x, z) = H(x, y|z) − H(x|z) − H(y|z) ,

where z is another random variable.
Conditional entropy, mutual information and conditional mutual information all satisfy

the data-processing inequality: for any function f supported on Y (the domain of Y ), we
have

H(x|f(y)) ≥ H(x|y) , I(x; y) ≥ I(x; f(y)) , I(x; y|z) ≥ I(x; f(y)|z) .

We will also use Fano’s inequality.

▶ Theorem 10 (Fano’s Inequality.). Let x be a random variable supported on X , y a random
variable supported on Y and f : Y → X . Define perr := Pr[f(y) ̸= x]. Then,

H(x|y) ≤ h(perr) + perr · log(|X | − 1) .

When we wish to change the base of the logarithm with which the entropy or mutual
information, the desired base is subscripted. That is,

Hq(x) := H(x)
log q

, Iq(x; y) := I(x; y)
log q

,

and similarly for the conditional versions of these quantities. Finally, as a slight abuse of
notation, we also write

Hq(x1, . . . , xt) =
t∑

i=1
xi logq

1
xi

+ (1 − x1 − · · · − xt) logq

1
1 − x1 − · · · − xt

if x1, . . . , xt are positive numbers satisfying
∑t

i=1 xi ≤ 1. (We caution that for q > 2,
Hq(x) ̸= hq(x).)

2.3 Thresholds
We now introduce the specialized notations and tools that we will need in order to apply
the machinery of [28]. First, for a distribution τ ∼ Fb

q and a linear map A : Fb
q → Fc

q, we let
Aτ denote the distribution of the random vector Au⃗ for u⃗ ∼ τ . In more detail, Aτ has the
following probability mass function:

Pr
v⃗∼Aτ

[v⃗ = y⃗] =
∑

x⃗∈A−1(y⃗)

Pr
u⃗∼τ

[u⃗ = x⃗] .

While we are generally concerned with understanding the probability that certain “bad sets”
lie in our code, it is in fact more convenient to work with matrices. For a matrix M ∈ Fn×b

q

and a code C ⊆ Fn
q we say that C contains M if the columns of M are contained in C.

Every matrix is assigned a type, and the type of a matrix is determined by the matrix’s
empirical row distribution as follows:

▶ Definition 11 (τM , dim(τ), Mn,τ ). For a matrix M ∈ Fn×b
q , we define its type τM to be

the distribution given by the empirical distribution of M ’s rows. That is, for all v⃗ ∈ Fb
q we

have

τM (v⃗) := |{i ∈ [n] : ith row of M equals v⃗}|
n

.
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For a distribution τ on Fb
q, dim(τ) denotes the dimension of the span of τ ’s support, i.e.,

dim(τ) := dim(span(supp(τ))).

We denote by Mn,τ the set of all matrices in Fb×n
q with empirical row distribution τ . We

call a type τ b-local if τ ∼ Fb
q; note that a b-local type has dim(τ) ≤ b.

▶ Remark 12. Technically, for a distribution τ ∼ Fb
q it could be the case that Mn,τ is empty

just because, for some v⃗ ∈ Fb
q, τ(v⃗) /∈ {0, 1/n, 2/n, . . . , (n − 1)/n, 1}. For such τ , we can

define Mn,τ to consist of those matrices which contain either ⌊n · τ(v⃗)⌉ or ⌈n · τ(v⃗)⌉ copies
of v⃗. As we are always dealing with the setting where n is assumed to be sufficiently large
compared to all other parameters, this does not affect the analysis. Hence, we may safely
ignore this technicality, which we do for the clarity of exposition.

Our target is an understanding of the threshold rate for a combinatorial property of
random linear codes. The combinatorial properties that we will study are those that are
defined by excluding a set of types, as follows.

▶ Definition 13 (τ -freeness, local properties). Given a code C and a type τ , we say that C is
τ -free if C does not contain any matrix M ∈ Mn,τ , i.e., no matrix M of type τ .

For a set T of types, where each τ ∼ Fb
q for some b ∈ N, we say that C is T -free if it is

τ -free for all τ ∈ T . We refer to T -freeness as a b-local property of codes.

For a more in-depth discussion of the definition, we refer the reader to, [28, Section 2] or
[30, Chapter 3]. To provide some intuition, we demonstrate how (ρ, ℓ, L)-list-recoverability
may be described as an L-local property. We define T to be the set of all types τ ∼ FL

q such
that for some (correlated) distribution ν ∼

(Fq

ℓ

)
,

∀i ∈ [L], Pr
(u⃗,S)∼(τ,ν)

[ui /∈ S] ≤ ρ (1)

and furthemore we require

∀1 ≤ i < j ≤ L, Pr
u⃗∼τ

[ui ̸= uj ] > 0 .

(This second condition amounts to requiring that any matrix of type τ has distinct columns.)
We refer to the collection of all these types as Tρ,ℓ,L.

We now characterize (up to o(1) terms) the threshold rate of a property.

▶ Theorem 14 ([30], Theorem 3.3.9: Thresholds for Random Linear Codes). Fix b ∈ N and let
T be a set of b-local types. Then the threshold rate for T -freeness is

1 − max
τ∈T

min
A

{
Hq(Aτ)
dim(Aτ)

}
± on→∞(1) , (2)

where the minimum is taken over all surjective linear maps A : Fb
q → Fc

q with c ≤ b.

Let us specialize to the case of τ -freeness for a single type τ . Suppose that R >

1 − minA

{
Hq(Aτ)
dim(Aτ)

}
. Theorem 14 tells us that it is unlikely that a RLC of rate R is τ -free.

Stated differently, we can expect that there is at least one matrix of type τ contained in
such an RLC. In fact, while we do not prove this, it is in fact likely that there will be
many such matrices. For this reason, we use the following terminology for types τ satisfying
R > 1 − minA

{
Hq(Aτ)
dim(Aτ)

}
: we call them abundant.
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In proving an upper bound Rupper on the threshold rate for a property of interest (e.g.,
(ρ, ℓ, L)-list-recovery), we will follow the following steps. First, we define an appropriate set
type τ and prove that a code satisfies the property of interest only if it is τ -free. Informally,
we refer to this as a proof that τ is bad for the property of interest. Next, we show that
for RLCs of rate Rupper, the type τ is abundant. This is the more challenging part of the
theorem, as the minimization over the set of all linear maps A is quite challenging to control.
Nonetheless, we are able to carry out this program for (ρ, ℓ, L)-list-recovery, as advertised.

In proving a lower bound on Rlow on the threshold rate for a property of interest (e.g.,
(ρ, 3)-list-decoding), we need to consider any type that is bad for list-decoding, and then
show that it is implicitly rare: that is, for some matrix A, there are relatively few matrices
of type Aτ , and hence it is likely no matrix of that type lies in the RLC. That is, we must
upper bound the ratio of the entropy of Aτ with the dimension of Aτ . Here, we have the
freedom to choose A, but the argument must apply to all types τ . This is especially tricky
when given a type τ whose support is contained in a strict subspace, as then the bound on
the entropy must be commensurately smaller. It is for this reason that we only consider
small values of L, as one suffers from a combinatorial explosion in the number of possible
support spaces for the types.

Thresholds for Random Codes. For thresholds of random codes, the characterization
theorem is simpler in the sense that we do not have to minimize over compressive mappings,
at least if the property satisfies certain technical conditions. Fortunately, the characterization
applies to list-recoverability, and hence also list-decodability.

▶ Theorem 15 ([17], Theorem 2: Thresholds for Random Codes). Let b ∈ N and let T be
a set of b-local types. Let T be a convex approximation for T . Then the threshold rate for
T -freeness is

1 − maxτ∈T Hq(τ)
b

.

▶ Proposition 16 ([17], Lemma 1). Tρ,ℓ,L is a convex approximation for the property of
(ρ, ℓ, L)-list-recoverability.

3 Lower Bound on List-Size for List-Recovery

Througout this section, the following notations are fixed:
q ∈ N is a (fixed) prime power;10

ℓ ∈ N satisfies 1 ≤ ℓ < q;
ρ ∈ R satisfies 0 < ρ < 1 − ℓ

q ; and
δ > 0 is a small constant.

All these parameters are constants, independent of the growing parameter n. Our main
result in this section is the following theorem.

▶ Theorem 17. There exists εq,ℓ,ρ,δ > 0 such that for all 0 < ε < εq,ℓ,ρ,δ and n sufficiently

large, a random linear code in Fn
q of rate 1−hq,ℓ(ρ)−ε is not

(
ρ, ℓ, ⌊ logq (q

ℓ)−(1−hq,ℓ(ρ))
ε − δ⌋

)
-

list-recoverable with probability 1 − o(1).

10 When we discuss random codes, q may be any positive integer.
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The proof of this theorem follows the same outline as has been used in, e.g., [15]. Namely,
we begin by defining a L-local type which we show is bad for (ρ, ℓ, L)-list-recovery. Later, we
prove that the type is indeed abundant, which is the more challenging part of the theorem.

The bad L-local type is defined as follows.

▶ Definition 18 (The bad type for (ρ, ℓ, L)-list-recoverability). Fix L ∈ N. Define the distribu-
tion τ ∼ FL

q via the following procedure for sampling a random vector u⃗ = (u1, . . . , uL):
First, S ∼

(Fq

ℓ

)
is sampled uniformly at random;

Second, for i = 1, . . . , L, we sample ui ∼ Fq as

Pr[ui = x|S = S] =
{

1−ρ
ℓ if x ∈ S
ρ

q−ℓ if x /∈ S
,

and conditioned on S = S, the coordinates u1, . . . , uL are independent.

Note that such a type does indeed lie in the set Tρ,ℓ,L. Indeed, if ν ∼ S we clearly have

∀i ∈ [L], Pr
(u⃗,S)∼(τ,ν)

[ui /∈ S] = ρ

and we also readily have Pru⃗∼τ [ui ̸= uj ] > 0. From [17], we conclude that τ is bad for
(ρ, ℓ, L)-list-recovery.

We now claim that the type τ is indeed abundant, i.e., that it has sufficiently large
(relative) entropy. This is the more technical part of the proof, and its proof is deferred to
the full version.

▶ Lemma 19. There exists an integer Lρ,q,ℓ,δ such that for all integers L ≥ Lρ,q,ℓ,δ, the
following holds. Let u⃗ ∼ τ , and let A ∈ FL′×L

q with L′ ≤ L and rank(A) = L′. Then

Hq(Au⃗) ≥ L′·hq,ℓ(ρ)+logq

(
q

ℓ

)
−1+hq,ℓ(ρ)−δ ≥ L′·

(
hq,ℓ(ρ) +

logq

(
q
ℓ

)
− 1 + hq,ℓ(ρ) − δ

L

)
.

Assuming Lemma 19, we now show that this does indeed yield our target Theorem 17.

Proof of Theorem 17. Let Lρ,q,ℓ,δ/2 be the promised constant from Lemma 19, and choose

εq,ℓ,ρ,δ := logq (q
ℓ)−1+hq,ℓ(ρ)

Lρ,q,ℓ,δ/2+1 . Let ε < εq,ℓ,ρ,δ. Let L =
⌊ logq (q

ℓ)−1+hq,ℓ(ρ)
ε − δ

⌋
, and define τ as

in Definition 18 with this choice of L.
By Lemma 19, as L ≥ Lρ,q,ℓ,δ/2 we have that for all surjective linear maps A : FL

q → FL′

q

Hq(Aτ)
L′ ≥ hq,ℓ(ρ) +

logq

(
q
ℓ

)
− 1 + hq,ℓ(ρ) − δ/2

L
.

We note further that as τ has full support the same is true for Aτ , i.e., dim(Aτ) = L′. Thus,
by Theorem 14 we have that the threshold rate for τ -freeness is at most

1 − hq,ℓ(ρ) −
logq

(
q
ℓ

)
− 1 + hq,ℓ(ρ) − δ/2

L
− on→∞ < 1 − hq,ℓ(ρ) − ε ,

where the last inequality holds for large enough n. In other words, a random linear code of
rate 1 − hq,ℓ(ρ) − ε contains a matrix M ∈ Mn,τ with probability 1 − o(1). As we know that
a code C which contains a matrix of type τ is not (ρ, ℓ, L)-list-recoverable, our theorem is
proved. ◀
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3.1 List-recoverability lower bound for random codes
For context, we provide nearly matching upper and lower bounds for list-recovery for
uniformly random codes. There is a similar result for list-recovery provided in [17], but it is
not optimized for the case of capacity-approaching codes.

▶ Theorem 20. There exists εq,ℓ,ρ,δ such that for all 0 < ε < εq,ℓ,ρ,δ and n sufficiently large,

a random code in Fn
q of rate 1 − hq,ℓ(ρ) − ε is not

(
ρ, ℓ, ⌊ logq (q

ℓ)
ε − δ⌋

)
-list-recoverable.

On the other hand, for any ε > 0 and n sufficiently large, a random code in Fn
q of rate

1 − hq,ℓ(ρ) − ε is
(

ρ, ℓ, ⌈ logq (q
ℓ)

ε + 1⌉
)

-list-recoverable.

In this way, we can essentially pin-down the list size of a rate 1 − hq,ℓ(ρ) − ε random code
to one of three possible values. This is similar to the result on the list-decodability of binary
random linear codes from [15]. Again, the proof is deferred to the full version.

4 List-Decoding with Small Lists

In this section, we investigate the list-decodability of random codes and random linear codes
with constant list size. Specifically, for list-of-3 decoding over the binary field, we can show
that the threshold rate for list-decoding of random linear codes is strictly better than that
for list-decoding uniformly random codes. Further, for larger field sizes we are able to show
that the threshold rate for list-of-2 decoding over Fq is strictly better for random linear
codes than for uniformly random codes. This extends the result of [17] which only applies to
list-of-2 decoding for binary codes.

For our lower bound on the threshold rates for RLCs, we follow the following procedure.
First, we consider any type that is bad for, e.g., (ρ, 3)-list-decoding, i.e., a type from Tρ,1,3.
For any such type τ , we upper bound Hq(Aτ)

dim(Aτ) for the linear map A sending (x1, x2, x3) 7→
(x1 − x3, x2 − x3). This is straightforward when the dim(Aτ) is full (requiring essentially
only the concavity of the entropy function); when it is smaller, more careful reasoning is
required. For space reasons, all the proofs of this section are deferred to the full version.

As a final contribution, we recall that in [15] it is shown that over the binary field the
threshold rate for random linear codes is strictly better than random codes in the capacity-
approaching regime. We observe that their techniques can be extended to show that such a
trend holds for any constant list size L (assuming the decoding radius ρ is not too large). To
do this, we first prove a lower bound on the threshold rate of binary random linear codes by
applying the argument in [26] and an upper bound on the threshold rate of binary random
codes following the argument in [15]. Although our proof resorts to known techniques, such
results were not stated before and greatly strengthen our belief that random linear codes
perform better than random codes. In light of the available evidence, a reasonable conjecture
would be that the for all alphabet sizes, the threshold rate of random linear codes is strictly
better than that of random codes.

4.1 List-of-3 Decoding for Binary Alphabet
In this section, we study the threshold rate for list-of-3 decoding binary codes. We recall
that the Plotkin point for list-of-3 decoding binary codes, i.e., the maximum value of ρ for
which (ρ, 4)-list-decoding with positive rate is possible, is 5/16 [1]. Our main theorem is the
following:
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▶ Theorem 21. Let ρ ∈ (0, 5/16). The threshold rate for (ρ, 4)-list-decoding a random linear
code over F2 is at least

1 − max
{

H2(x1, x2) + 2x1 + x2 log2 3
3 : x1 + 2x2 ≤ 4ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0

}
.

Next, for context, we consider the threshold rate for (ρ, 4)-list-decoding uniformly random
codes.

▶ Theorem 22. Let ρ ∈ (0, 5/16). The threshold rate for (ρ, 4)-list decoding random code
over {0, 1} is

1 − max
{

1 + H2(x1, x2) + 2x1 + x2 log2 3
4 : x1 + 2x2 ≤ 4ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0

}
.

As 1+F
4 ≥ F

3 for all F ≤ 3, the lower bound on the threshold rate provided by Theorem 21
is greater than the exact value from Theorem 22. This demonstrates that random linear
codes do indeed perform better.

4.2 List-of-2 Decoding for Arbitrary Alphabets
We now study list-of-2 decoding over Fq for q ≥ 3. Here, the Plotkin point is to the best of
our knowledge unknown, and we just prove our result for ρ < 1/3.

▶ Theorem 23. Let ρ ∈ (0, 1/3). The threshold rate for (ρ, 3)-list decoding random linear
code over Fq with q ≥ 3 is at least

1 − max
{

Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)
2

: x1 + 2x2 ≤ 3ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0
}

.

For context, we again consider random codes.

▶ Theorem 24. Let ρ ∈ (0, 1/3). The threshold rate for (ρ, 3)-list decoding random code over
Fq is

1 − max
{ 1 + Hq(x1, x2) + x1 logq 3(q − 1) + x2 logq(q − 1)(q − 2)

3
: x1 + 2x2 ≤ 3ρ, x1 + x2 ≤ 1, x1, x2 ≥ 0

}
.

Again, by noting 1+F
3 ≥ F

2 for all F ≤ 2, we conclude that random linear codes do indeed
perform better: the lower bound on the threshold rate furnished by Theorem 23 is strictly
greater than the exact threshold rate of Theorem 24.

4.3 List Decoding for Binary Alphabets with Larger Lists
In this subsection, we observe that the list-decodability of random linear codes is better than
random codes over the binary field for any list size L.

We begin by stating our possibility result for random linear codes. The proof is an
adaptation of the argument from [10, 26] which we omit due to the space limit.

▶ Theorem 25. For any fixed list size L and δ > 0, a random linear code over the binary
field of rate 1 − h2(ρ) − h2(ρ)

L−1−2δ − δ is (ρ, L)-list decodable with probability 1 − 2−Ωδ,L(n).

Next, we provide an upper bound on the list size of a random code. The proof, which
appears in the full version, uses the threshold framework.
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▶ Theorem 26. Let L be a fixed constant list size and δ be any positive constant. With high
probability, a random code with rate L−1

L (1 − h2(ρ)) − h2(2ρ−2ρ2)−h2(ρ)
L + δ is not (ρ, L)-list

decodable.

From these two theorems, we note the following. If we let δ tend to 0, the upper bound
provided by Theorem 26 is smaller than that provided by Theorem 25 as (3 + 1

L−1 )h2(ρ) −
h2(2ρ − 2ρ2) < 1, assuming ρ is not too large.
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Abstract
Two of the most common models for channels with synchronisation errors are the Binary Deletion
Channel with parameter p (BDCp) – a channel where every bit of the codeword is deleted i.i.d with
probability p, and the Poisson Repeat Channel with parameter λ (PRCλ) – a channel where every
bit of the codeword is repeated Poisson(λ) times.

Previous constructions based on synchronisation strings yielded codes with rates far lower than
the capacities of these channels [6, 9], and the only efficient construction to achieve capacity on
the BDC at the time of writing this paper is based on the far more advanced methods of polar
codes [23].

In this work, we present a new method for concatenating synchronisation codes and use it to
construct simple and efficient encoding and decoding algorithms for both channels with nearly
optimal rates.
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1 Introduction

The theory of error-correcting–codes deals with methods for encoding messages to be sent
over noisy media in such a manner that they can be correctly decoded afterwards. Initially
introduced by Shannon [22], this field has proven to be instrumental in understanding the
theory of computation, and has had a wide variety of applications in other fields, such as
communications, and computational biology [24].

The most commonly considered models are “Synchronous Models” - models where the
message may be altered or erased, but every letter that was received can be traced back to
its original position in the transmitted message. This category includes models such as the
Binary Symmetry Channel (BSC) where some of the bits in the transmitted message are
flipped (i.e. changed from 1 to 0 or vice versa), and the Binary Erasure Channels (BEC)
where some of the bits of the transmitted message are replaced with a question mark (but
are not removed, thus preserving the alignment between the transmitted message and the
received message). These models can be adversarial (such as [14]), where the code must
correct any error the channel may produce, or average-case (such as [22]), where the effect of
the channel is random and decoding only needs to succeed w.h.p.
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Synchronous models are very well researched, and have a variety of efficient encoding
and decoding algorithms [24]. The main method used for such channels are linear error-
correcting–codes and they rely heavily on the fact that the letters of the received messages
can be mapped back into letters of the transmitted messages.

However, in many real world applications, deletions and insertions can cause the received
codewords to be misaligned and the decoder must also deal with synchronisation errors [18, 17].
Perhaps the most intuitive asynchronous channel is the Binary Deletion Channel. This is a
channel where every transmitted bit is deleted i.i.d with probability p (where 1 > p > 0 is a
parameter of the channel).

Here, unlike with the binary erasure channel, deleted bits are not replaced with a question
mark, but are completely removed from the sequence, shifting the rest of the received
codeword. For instance, when transmitting the codeword w = (1, 0, 0, 0, 1, 1), the BEC may
result in the received codeword rBEC = (1, 0, ?, ?, 1, ?) while a similar pattern of deletions
would result in the received codeword rBDC = (1, 0, 1).

This channel represents a simple model for many real-life systems in which there is a loss
of information due to synchronisation errors. Moreover, the tools developed for this channel
have been instrumental in a variety of other fields [18, 17].

A slightly more complex model which we will also consider, is the Poisson Repeat Channel
with parameter λ > 0 (PRCλ). This is a channel where every transmitted bit is received
Poisson(λ) times. While originally used to help prove lower bounds on the capacity of binary
deletion channels, Poisson repeat channels are interesting in their own right. Indeed, Poisson
repeats can model every-day examples like a sticky key in a keyboard, as well as deeper
technological issues such as errors in single photon generation (a crucial step in light-based
quantum computing) [2].

However, the PRC also presents a slightly greater challenge. This is because bits
can now be received more than once, resulting in several new types of synchronisation
errors. Continuing with our previous example where the codeword w = (1, 0, 0, 0, 1, 1) was
transmitted, the received codeword in the BDC model will always start with at most a single
1 bit, unless all three 0s were deleted. In the Poisson repeat channel, this is not the case and
the received codeword rPRC = (1, 1, 0, 1) is a possible outcome.

Several previous results have shown an interesting connection between these two noise
models. For instance, Mitzenmacher and Drinea’s lower bound for the capacity of the BDC
channel [19] is based on their previous lower bound for the capacity of the PRC channel, and
Con and Shpilka’s constructive codes for the BDC channel [6] are also applicable to the PRC
channel.

In this paper we will focus our attention on these two channels, but we believe our tools
and approaches can be applicable to other asynchronous channels as well.

1.1 Previous Work

Asynchronous channels present us with a varied field of research, and we will not be able to
cover all of its results here. The excellent surveys by Mitzenmacher, Cheraghchi et al and
Mercier et al [18, 17, 5] give a more detailed background.

Determining the capacity of the BDCp channel, remains an open problem, and so far it
has been answered only for some extremal cases. When p→ 0, the capacity of this channel is
1−h(p) [15] (where h(·) is the binary entropy function), when p→ 1, the capacity is µ(1− p)
where 1

9 < µ ≤ 0.4143− o(1) [19, 8] (where o(1) is w.r.t the block size n), and [25] give lower
bounds for some of the intermediate values of p.
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However, the lower bound on the capacity by Mitzenmacher and Drinea [19] is not
based on an efficient construction. Recently, Con and Shpilka constructed a family of
error-correcting-codes with rate r ≥ 1−p

16 for the BDCp channel and r ≥ λ
17 for the PRCλ

(when λ < 1
2 ) [6], improving upon the results of Guruswami and Li who presented the first

explicit codes with rate Θ(1− p) in [9]. This was improved upon by, Tal et al and by Pfister
and Tal who showed that polar codes can be used to construct efficiently decodable codes
with optimal rates for the BDC channel [23, 20].

Haeupler and Shahrasbi [13] construct a family of efficient codes for InsDel channels with
a sufficiently large alphabet, and Haeupler, Rubinstein and Shahrasbi improve the decoder
in [12], reaching quasi-linear complexity.

In the adversarial model, Guruswami and Wang [10] showed that there are codes with
rate 1− Õ

(√
δ
)

that can correct up to δn errors. This rate was improved by Cheng et al. [3]
and further by Haeupler [11]. More recently it was shown by Con, Shpilka and Tamo [7] that,
surprisingly, linear error correcting codes are also effective for adversarial InsDel channels.

1.2 Main Contribution
In this work we will construct a family of codes, with efficient encoding and decoding
algorithms, whose rates are arbitrarily close to the capacities of the BDC and PRC channels.
Unlike the previous results of Tal et al. and of Pfister and Tal [23, 20], this construction
does not require the more advanced machinery of polar codes. Furthermore, the construction
presented has a decoding error probability of exp

(
−Θ

(
n

1
6

))
(where n is the block length)

with a quasi-linear complexity decoder, while Pfister and Tal’s code requires n
3
2 +ε time for

the same error probability.
Both our code and Pfister and Tal’s construction assume that we are given some inner

code which achieves a high rate on the channel but which does not necessarily have efficient
encoding and decoding algorithms, and both methods produce a new version of this code
with efficient encoding and decoding. However, Pfister and Tal’s construction requires this
code to be generated by a hidden-Markov distribution, while the construction presented here
can be used with any inner code. Li et al. proved that there exists a finite hidden-Markov
distribution code that achieves capacity for this channel [16] and this model can clearly be
found in O(1) time using an enumeration technique similar to the one described in Section 4.1,
but such a code has not been found yet.

▶ Theorem 1 (Main Result (informal)). Any (possibly inefficient) family of codes for either
the BDC or the PRC channel can be converted into a family of codes for the same channel
with an arbitrarily close rate, that has encoding and decoding algorithms with a quasi-linear
complexity.

It should be noted that while this complexity is asymptotically very good, it hides within
it a very large constant factor, and while we do not have an exact bound on it, we expect it
to grow as the rate of the code approaches the capacity of the channel.

Nonetheless, this allows us to construct to construct a family of efficient codes which
achieve rates of 1−p

9 for the BDCp channel, thus completing the line of works started by
Guruswami and Li [9] and continued by Con and Shpilka [6].

Our construction is based on a new technique for tracking inner codewords in a concaten-
ation of synchronisation codes, which we hope may be useful in other cases as well:

Most previous constructions use buffers of 0s as the delimiters between inner codewords.
Then, by bounding the probability that the channel would transform any substring of the
inner codeword into a sufficiently long sequence of 0s, they can ensure that long sequences of
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0s in the received codeword mostly correspond to delimiters. In other words, when separating
the received codeword into inner codewords, one searches the entire string for patterns that
may have come from a delimiter.

In our construction, we will use delimiters in a very different manner. Instead of searching
the entire codeword for the delimiters, we will use our knowledge of the length of the inner
codeword and the average expansion of the channel to produce a prior estimate for the
distance between consecutive delimiters. Using this prior estimate, we are able to find the
delimiters one after another, without looking at the entire codeword.

This new method allows us to drastically reduce the probability that even a single inner
delimiter will be missed, while reducing the overhead of the delimiters to a negligible fraction
of the codeword. The ability to decode under the assumption that all delimiters will be
found simplifies the outer code in our construction, and the fact that we will not search for
a delimiter within an inner codeword allows us to use a general inner code, resulting in a
nearly optimal rate.

1.3 An Overview of Con and Shpilka’s Construction
Since our approach will be similar to that of [6], we will begin with a short overview of their
construction, which is based on a concatenation of codes.

Initially, the message is divided into segments of length σ = O(1). These are thought of
as members of an alphabet Σ of size |Σ| = 2σ and can be encoded using [13]. Each letter in
the encoded message is then converted back to a string of σ binary symbols and is encoded
using an inner code. Since the inner code is only applied to strings of length σ = O(1), it
can be inefficient without affecting the asymptotic complexity of the encoding / decoding
algorithms. The encoded strings are appended and separated by delimiters - in this case
buffers of 0s.

Con and Shpilka’s construction has a quasi-linear encoding algorithm and a quadratic
decoding algorithm, where the computational bottleneck of the decoding algorithm comes
from decoding the outer code. The improved decoding algorithm for Haupler and Shahrasbi’s
code [12] can be used with Con and Shpilka’s code to reduce the complexity of their decoding
algorithm to a quasi-linear time as well.

1.4 Sketch of the Proof
Our construction will be based on a similar strategy, but with a few key differences. Firstly,
we note that most of the overhead of this code is caused by the fact that the inner code is
designed to preserve a certain structure.

By removing this structure we are able to significantly increase the rate of our code.
However, this comes at a cost - separating unstructured codewords from the delimiters is
made far more difficult. We overcome this using a slightly more complex construction of
delimiters and a careful analysis.

In addition, the delimiters themselves account for another constant fraction of the overhead
of Con and Shpilka’s code. By using a recursive concatenation, we are able to reduce the
cost of these delimiters to a negligible fraction of the overhead.

At each step of this recursion, we will assume that there exists a BDC/PRC code with
message length k and block length n, and we will construct a code with message length k2

and block length n′ = (1 + o(1)) nk.
We will do this by separating the k2 bit message into k strings of k bits each. We will

think of each of these k-bit strings as a member of an alphabet of size |Σ| = 2k and use a
ReedSolomon [k + 2t, k, t]2k code to give it some redundancy (i.e. a Reed-Solomon code over
a field of size 2k, message length k and block length k + 2t with distance t = o(k)).
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If we were constructing a code for a discrete memoryless channel (DMC) such as the
BEC, this step might not be very surprising, because without synchronisation errors we could
map the received codeword back into the letters of the Reed-Solomon codeword. However,
in our case this might seem somewhat counter-intuitive, since Reed Solomon codes offer
no protection against the synchronisation errors we are trying to correct. This step works
for asynchronous channels as well because our delimiters are designed to fully preserve the
synchronisation between inner codewords and the Reed Solomon code will only need to
compensate for a small number of local decoding failures of inner codewords.

We will encode each of the k + 2t letters of the Reed Solomon codeword using our inner
code. This will output a list of k + 2t strings of length n bits each. Finally, we will append
these strings after inserting a delimiter between each two.

The delimiters will be made up of two parts: a positioning string which will help us find
the delimiter and two partitioning strings which will help us separate between the delimiters
and the inner codewords themselves. The reason that we need partitioning strings, is that
we make no assumptions about the structure of the inner code. Therefore, any sequence of
bits that originated from the delimiter could have originated from the inner codeword.

For instance, suppose we had used buffers of 0s as our delimiters. Since we make no
assumptions about the structure of the inner code, we have no way of knowing whether or
not the inner codeword begins with a sequence of 0s, so we can’t tell where the delimiter
ends and the inner codeword begins.

This makes separating the two a very difficult task and will be at the heart of our
construction. Our separation between inner codewords and delimiters will not be completely
accurate, but we will be able to bound the effect this has on the decoding failure probability
by using the fact that the inner code is designed to deal with (some) deletions.

Both parts of the delimiter will be based on an idea we call “valleys”. Similar to the
markers defined by Cheraghchi et al [4], we will define valleys to be a long sequence of 0s
followed by a long sequence of 1s (when looking at the cumulative sum of the string minus
1
2 , these translate to local minima - see Figure 1). Unless one of these two sequences is
completely deleted by the channel, a valley in the transmitted message will result in a valley
in the received message.

We will use this observation to align indices within the received message to their source
in the transmitted message. We will start with an estimate of where the center of some
valley from the transmitted message should be in the received message, and then we will go
downhill to the nearest local minima (see Algorithm 1). By bounding both the probability
that one of these sequences was removed and the probability that our initial estimate was
outside the bounds of the received valley, we can correlate the center of the received valley
to the center of the transmitted valley with high probability.

Each positioning string will be a long valley, and each partitioning string will be a short
valley. We set the positioning string to be long, because we need to be able to find its center,
given only a very rough estimate. On the other hand, setting the partitioning strings this
long would reduce the accuracy of its separation from the inner codewords.

The decoding algorithm will be similar to the encoding algorithm, but in a reversed order.
First, we will align the received message by locating the centers of the positioning strings.
Then we will use the partitioning strings to separate the delimiters from the inner codewords,
and apply the inner code decoding to obtain the inner codewords. Finally, we use the Reed
Solomon decoding to correct up to t errors that may have occurred.
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1.5 Organization
In Section 2 we will define basic notations, show some well-known inequalities that we will use
in our analysis and present the basic building block of our construction. Section 3 contains
the construction of our recursive step and in Section 4 we will prove the basis of the recursion
and show how we can connect it to the recursive step. In Section 5 we will extend our results
to the Poisson repeat channel. Finally, in Section 6 we will discuss the implications and
limitations of these results, as well as potential avenues for future research. We leave the
slightly more technical proof that of our bound for the decoding failure probabilities to the
full version (see Section 6 of the full version [21]).

2 Preliminaries

2.1 Average-case Codes
▶ Definition 2. Let Σ be a finite set and let k, n ∈ N be positive integers.

We will say that C is a random channel acting on the alphabet Σ and block-length n if
it maps any member of Σn to a distribution on some set Y.

Furthermore, we will say that encoding and decoding algorithms E : Σk → Σn, D : Y →
Σk for this channel with message length k have rate ρ = k

n and a decoding falure probability
(DFP) of

δ = max
m∈{0,1}k

{Pr [D(C(E(m))) ̸= m]} .

In other words, the DFP of a code is the probability that a message will be decoded
incorrectly if the message was chosen adversarially, but the effects of the channel were
random.

▶ Definition 3. Let C be a random channel. We will say that F = {(Ei, Di)}i∈N is a family
of codes for C if:

The message lengths ki of Ei, Di are unbounded (ki −−−→
i→∞

∞).
The DFPs δi of Ei, Di in C are vanishing (δi −−−→

i→∞
0).

Throughout the decoding process we will often attempt to align the received message
with the transmitted codeword.

▶ Definition 4. When the channel acts independently on each letter of the input (i.e. when
C (b1, . . . , bn) = C (b1) . . . C (bn)), we will say that the ith coordinate of a message transmitted
over some asynchronous channel and the jth coordinate of the received message are aligned,
if the first i− 1 letters of the transmitted message were mapped to a string of length at most
j by the channel and the first i letters of message were mapped to at least j letters by the
channel.

2.2 Probability Inequalities
Throughout this paper we will bound the probability that several parts of our construction
will fail. This will require several bounds on the tails of Poisson and binomial distributions,
which we will present in this section. Perhaps the most important tool at our disposal will
be the Chernoff bound.
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▶ Theorem 5 (Chernoff Bound for Binomial and Poisson Distributions). For all 1
2 > ε, p > 0,

n ∈ N and λ > 0:

Pr [|Bin (p, n)− pn| > εpn] ≤ 2 exp
(
−1

4ε2pn

)

Pr [|Poisson (λ)− λ| > ελ] ≤ 2 exp
(
−1

4ε2λ

)
.

This theorem is based on the Chernoff bound (see Section 2.2 of [1]) and an analysis of
entropy functions. We leave its slightly technical proof to the full version (see Appendix 8.1
of [21]).

Another special case of the Chernoff bound (see Appendix 8.2 of [21]) is

▶ Theorem 6 (Binomial Tail). For all α > e2, 1
α+1 > p > 0 and n ∈ N:

Pr [Bin (p, n) > (α + 1)pn] ≤ exp
(
−1

2 log (α) αpn

)
.

2.3 Aligning Valleys
Our main tool in aligning the messages will be an idea we call valleys.

▶ Definition 7. We will define a valley with faces of length x and y to be a string of x 0s
followed by y 1s.

In other words Valley(x, y) = 0x1y.
We will define the center of a valley to be the index where it transitions from 0s to 1s

(i.e. the index of the last 0 bit).

Suppose the codeword contains some valley V = Valley(x, y). This is encoded by the
channel into a valley whose face lengths are i.i.d Bin(1− p, x) and Bin(1− p, y) (or Pois(λ, x)
and Pois(λ, y) for the PRC channel). Assuming neither side of the valley was completely
deleted, the center of the received valley and the center of the transmitted valley should be
aligned.

Our definition of valleys is similar to the markers considered in [4], but we will view our
valleys very differently. Cheraghchi et al construct their inner code so that is is unlikely to
contain a long sequence of 0s. This allows them to find the delimiters by searching for the
next sequence of 0s and then use the marker to zero in on the center of the delimiter.

In our decoding algorithm, we will produce an approximate estimate for where the center
of a certain valley should be, and by finding its actual center we will be able to align that
index to a position within the transmitted message. We will do so using Algorithm 1.

Intuitively, this algorithm works by using the observation that if the valley was not
distorted by the channel too much and our initial estimate for its center was not off by too
much, then we known whether or not our guess was to the right or to the left (since the left
face of the valley has 0s and the right face has 1s). We can then correct our position. If we
are on the left face, go right until we reach the center and vice versa.

In order to clarify this approach we will consider a simple example. Suppose we are
building a code for the BDCp channel with parameter p = 1

2 and we decide to use a valley of
length 32 on either side to align some index.

That is, our transmitted message would be as follows (where the bold digit signifies the
center of the valley).

m = [. . .]0000000000000000000000000000000011111111111111111111111111111111[. . .]

ICALP 2022
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Algorithm 1 Align Valley.

Input : a received codeword w ∈ {0, 1}∗, estimated center of valley j

Output : the center of the valley j′

j′ ← j;
if w[j] = 0 then

while w[j′] ̸= 1 do
i← i + 1 ;

end
return j′ − 1 ;

else
while w[j′] ̸= 0 do

i← i− 1 ;
end
return j′ ;

end

Suppose the channel made the following deletions:

d = [. . .] · · · 0 · · · · · ·000 · 0 · ·00 · · · ·0 · 0 · 0 · ·0 · ·1 · 1 · 11 · 11 · 1 · · · 111 · 1111111 · · · · · 1[. . .]

Furthermore, assume that we have some prior estimate that the center of the received
valley should be 5 bits from its actual position.

Then the received codeword would be as follows, where the underlined digit signifies our
prior estimate for the center of the valley.

w = [. . .]00000000000111111111111111111[. . .]

Algorithm 1 would start from this initial estimate and advance to the left, returning the
correct center of the valley.

w = [. . .]00000000000111111111111111111[. . .]

In Figure 1 we show a geometric representation of this algorithm.

3 Recursive Step

In this section we will define the recursive step in our construction, explain the rationale
behind it and begin to prove its correctness. Intuitively, the main theorem we will prove here
is that any error correcting code for the BDC with message length k can be transformed
into a code with message length k2 and that the DFP, rate and complexity of the new code
“scale well”. More formally we will show that:

▶ Theorem 8 (Recursive Step). For some constants c1, c2, c3, k0, δ0 > 0 and for all k > k0,
d > 0, 2k−1−k > t > 0, δ0 > δ > 0, 1 > p > 0 and any error correcting code C for the BDCp

channel with message length k, block length n and DFP δ, there exists an error correcting
code C ′ for the BDCp with message length k2, block length n′ ≤ (k + 2t)(n + d

1−p ) and DFP:

δ′ ≤ Pr [Bin (δc1 , k + 2t) > t] + c3 (k + 2t) exp
(
−c2 min {d,

d2

k
}
)

.

Furthermore, there exist an encoder and decoder for C ′ with time complexity Õ (n′) using
up to k + 2t calls to the encoder and decoder of C.
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Figure 1 A visual representation of the algorithm for aligning valley centers on a specific example
of a valley with parameters (32, 32), being sent over a BDCp channel with parameter p = 1

2 . The
plots go up by 1

2 whenever the relevant string has a 1 and down by 1
2 whenever it has a 0. A) The

transmitted message, with the green dot representing the center of the valley. B) First, the channel
deletes some of the bits resulting in a skewed valley. We are given some prior estimate for the center
of the valley (red arrow). The algorithm goes down the valley (blue arrow), until it terminates at
the center (green dot).

We will use this construction in two scenarios: to improve the base of the recursion and
for the steps of the recursion. In Table 1, we present the parameters of Theorem 8 and the
asymptotic values for both use cases.

Table 1 The parameters of Theorem 8, and their asymptotic values in the two use cases.

Parameter Description Recursion Base | Step

k Message Length

n Block Length Θ
(

k
1−p

)
d Delimiter Length Θ

(
k

2
3

)
t Reed Solomon Redundancy o (k) | Θ

(
k

2
3

)
δ Inner Code DFP o(1) | exp

(
− c2

2 k
1
6

)
c1, c2, c3 Constants 1

34 , 1
256 , 6

The first set of values is used for improving of the base of the recursion. In this case, our
only bound on δ will be that it is an arbitrarily small constant, but its relation to k will
not be exactly known. Our goal in this step of the construction will be to reduce the error
probability at the cost of an arbitrarily small but non-negligible cost to the rate of the code,
and we will accomplish this by setting t to be of the order of Θ

(
δ

c1
2 k
)

.
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The second scenario is that of a step in our recursion. We will construct our recursion in
such a manner that the DFP of the inner code will be bounded by δ < exp

(
− c2

2 k
1
6

)
. By

setting t = d = Θ
(

k
2
3

)
we will be able ensure that on the one hand, the DFP of the final

code will be δ′ ≪ exp
(
− c2

2
(
k2) 1

6
)

while on the other, the rate of the code will be reduced

by only a factor of 1−O
(

t+d
k

)
= 1−O

(
k

1
3

)
= 1− o(1).

The construction of the code C ′ : {0, 1}k2 → {0, 1}n′ is as described in the introduction.
First, the input string is split into k parts of length k each. These are considered as elements
in an alphabet of size 2k and a Reed Solomon encoding with parameters [k + 2t, k, t]2k is
applied to them. Each of these is encoded using the encoder of C, a delimiter is appended to
each codeword and the concatenation of all of these strings is outputted.

Similarly, the decoding algorithm works by locating the delimiters, separating them from
the inner codewords and then decoding each inner codeword using the decoder of C. The
decoded inner codewords are once again viewed as letters in an alphabet of size 2k and the
Reed Solomon decoding is applied.

We will define a delimiter with parameters α, β to be a valley of length β surrounded by
two valleys of length α. In other words

Delimiter (α, β) = Valley (α) Valley (β) Valley (α) = 0α1α0β1β0α1α

The exact values of α and β are presented in the full version (see Section 6 of [21]), but

they will be of the order of α = Θ
(

log ( 1
δ )

1−p

)
and β = d

2(1−p) − 2α = Θ
(

k
2
3

1−p

)
.

In order to complete the construction, we still need to provide methods of locating the
delimiters in the received codeword and separating them from the inner codewords. These
steps will be explained in the following subsections.

3.1 Positioning Strings

We will use the positioning strings to locate the delimiters one at a time.
Let us denote by Li the location of the center of the ith positioning string in the received

codeword. We can estimate the location of the center of the first positioning string as being
around E [L1] = (1 − p)(n + 2α + β) bits from the beginning of the received codeword.
However, this is only a rough estimate and in reality L1 ∼ Bin (n + 2α + β, 1− p). We want
to find the exact center.

This is where the valleys come into play. With high probability, |L1 − E [L1] | will not be
much larger than σL1 =

√
p(1− p)(n + 2α + β) (where σL1 is the standard deviation of L1),

and at least 1−p
2 β of the bits on either side of the valley will survive the channel. Therefore,

so long as
√

p(1− p)(n + 2α + β)≪ 1−p
2 β, we can expect Algorithm 1 to find the value of

L1 w.h.p.
Once we have found the ith delimiter, we go on to search for the i + 1-th. At each step

we use the aligned center of the previous positioning string Li to obtain an estimate for
Li+1 ∼ Li + Bin (n + 4α + 2β, 1− p), and use its valley to correct our estimate. In the full
version we show that the probability that even a single positioning string will not be correctly
found is at most (k + 2t) exp

(
−c2 min {d, d2

k }
)

(see Section 6 of [21]).
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3.2 Partitioning Strings

Once we have located the centers of all of the delimiters, we still need to separate them
from the inner codewords. This step is surprisingly difficult, because, unlike Con and
Shpilka [6] who designed their inner code to preserve a certain structure that would help
them differentiate it from the delimiters, we reduce our overhead precisely by making no
assumptions about the structure of the inner code.

For instance, if we were to use buffers of 0s as our delimiters and the inner codewords
surrounding the delimiter happened to start / end with sequences of 0s, then we would have
had a hard time telling which of the 0s belonged to the delimiter and which belonged to the
inner codeword. The same applies for any choice of the delimiters.

Our solution to this problem will be based on two ideas. First, we will attempt to
approximate the correct separation as accurately as possible. However, this will not yield a
perfect separation and we will need to mitigate the effects of this inaccuracy.

The first step will be accomplished by surrounding the positioning string with two valleys.
When decoding we can find the centers of these valleys by going from the positioning string
until the ends of its valley and then proceeding to the bottom of the next/previous valleys.

Once we have found the center of a partitioning string, we can estimate the length of
the faces of its valley. Each of those will be i.i.d distributed according to F ∼ Bin (1− p, α).
By guessing f = (1 − p)α we will get a good approximation of F (to within an error of
Θ
(√

p(1− p)α
)

).

If we were to use this estimate as the separation between the delimiter and the inner
codeword we would have a two sided error probability, either due to overshooting (attributing
some bits of the inner codeword to the delimiter) or due to undershooting.

In the former case, this would cause us to delete some additional bits from the inner
codeword. Since the inner code is designed to deal with deletions, it stands to reason that it
might also be able to decode received messages if they were also subject to a small amount
of additional deletions. This claim is not straightforward, since the inner code deals with
random deletions and we will be subjecting it to a very structured set of deletions. However,
with a careful analysis we can bound the effect these deletions can have on the DFP of the
inner code.

However, in the latter case we would end up erroneously inserting part of the delimiter
to one end of the inner codeword. Since the inner code is for a deletion channel, it might
not be able to correctly decode the inner codeword, even after a small number of insertions.
Therefore, we have no way of bounding the effect this could have on its DFP.

That is why we want to reduce the probability of undershooting significantly more than
the probability of overshooting. To do this, instead of taking the estimate f = EF , we will
use the estimate f = E [F ] + ησF for some parameter η (where σF is the standard deviation
of F ).

If F was at most η standard deviations from its expectancy, then we would have f − F ∈
[0, 2ησF ]. The lower bound means that no bits from the delimiter would ever trickle into the
inner codeword, and the upper bound limits the number of bits from the inner codeword we
will delete by accidentally attributing them to the delimiter.

In the full version of the paper we bound both the probability that f −F /∈ [0, 2ησF ] and
the effect these deletions could have on the DFP of the inner code (see Section 6 of [21]).
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4 The Recursive Construction

In the previous section we defined the manner in which we recursively concatenate our code
to increase the message length at a negligible cost to the rate of the code and the complexity
of its encoder and decoder. In this section we will construct the base of this recursion and
set the parameters for the recursive steps.

4.1 The Base of the Recursion
When choosing the base of the recursion we are in essence transforming a lower bound on the
capacity of the channel to an actual error correcting code. We will do this in a very inefficient
manner, but as with Con and Shpilka’s inner code, since this code will have message and
block length of O(1), this does not affect the asymptotic complexity of our construction.

In order to begin our recursion, we will need a base code with sufficiently low DFP and
sufficiently large message length. By definition, a lower bound on the capacity of the channel
is a proof that there exists a family of codes for the channel with r ≥ capacity− ε for any
ε > 0. Therefore for any k0, δ0 > 0 there are some codes in that family with message length
k > k0 and DFP δ < δ0. Let κ be the smallest such block length. Since κ is determined by k0
and δ0, and since k0 and δ0 are constant parameters of our construction, κ = f (k0, δ0) = O(1)
must also be constant.

We will enumerate over values of k > k0 and for each of them we will attempt to construct
a base code. This process will terminate when k = κ, so it will require only a finite number
of iterations.

Since we are looking for an encoding map from some finite set of messages {0, 1}k (where
k is the message length) to some finite set of codewords {0, 1}n (where n < 9

1−p k = O(1) is
the block length), and a decoding map from {0, 1}≤n → {0, 1}k, there are only finitely many
pairs of this form. By enumerating over all of these pairs and evaluating their DFP, we will
be able to find a base code with message length k if one exists.

Since all of the steps in this process had a constant complexity, our construction of
the inner code had a constant O(1) complexity. It should be noted that this algorithm is
extremely inefficient and that we do not even know how to bound its complexity (except
that it is O(1)). We hope that future research will address this issue.

4.2 Connecting the Recursive Steps
All that remains now is to combine the recursive step shown in Section 3 with the base case
constructed in the previous subsection.

Throughout most of the recursion we will use the recursive step defined in Theorem 8 in
the following setting:

δk < exp
(
−c2

2 k
1
6

)
dk = k

2
3

tk = k
2
3 .

(1)

Applying the recursion Theorem 8, for sufficiently large k, we have:

δk2 ≤ Pr [Bin (δc1 , k + 2t) > t] + c3 (k + 2t) exp
(
−c2 min {d,

d2

k
}
)

. (2)
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We use Theorem 6 to bound the first term in the new decoding failure probability for
sufficiently small δ, by

Pr [Bin (δc1 , k + 2t) > t] ≤ exp
(
−c1

4 log
(

1
δ

)
t

)
≤ 1

2 exp
(
−c2

2 t
)

and the second term for sufficiently large k by

(k + 2t) exp
(
−c2 min {d,

d2

k
}
)

= exp
(
−c2k

1
3 + O (log (k))

)
≤ 1

2 exp
(
−c2

2 k
1
3

)
.

Combining these inequality gives us a bound on the new DFP:

δk2 ≤ exp
(
−c2

2 k
1
3

)
. (3)

The overhead of the code can also be easily bounded. From the recursion theorem, we
know that nk2 ≤

(
nk + dk

1−p

)
(k + 2tk). Since nk ≥ k

1−p (from the upper bounds on the
capacity of these channels) and dk = tk = k

2
3 , we have:

nk2 ≤
(

1 + k− 1
3

)2 k2

k
nk ≤

[(
1 + k− 1

3

)
·
(

1 + k− 1
6

)]2 k2
√

k
n√

k =

=
[(

1 + k− 1
3

)
·
(

1 + k− 1
6

)
· . . . ·

(
1 + (kbase)− 1

3
)]2

︸ ︷︷ ︸
=:X

k2

kbase
nkbase .

(4)

Since nkbase = 1
rbase

kbase (where rbase is the rate of the base code), it is easy to see that
rk2 = k2

nk2
= 1

X rbase. By bounding the value of X, we can bound the increase in the overhead
of the code due to the recursion.

X =
[(

1 + k− 1
3

)
·
(

1 + k− 1
6

)
· · · · ·

(
1 + (kbase)− 1

3
)]2

≤ exp
(

2k− 1
3 + 2k− 1

6 + · · ·+ 2(kbase)− 1
3
)
≤ exp

(
2 (kbase)− 1

3

1− (kbase)− 1
3

)
.

(5)

For a sufficiently large kbase, it is clear that this value can be set arbitrarily close to 1,
giving our code a nearly optimal rate.

However, this does not conclude our construction, since in each step of the recursion we
assumed that δk ≤ exp

(
− c2

2 k
1
3

)
, but our base construction only produced a code with an

arbitrarily small δbase and its relationship to kbase is unknown.

4.3 Completing the Construction
In order to bridge this gap, we apply the recursive step to the base code one more time,
with slightly different parameters. We will denote by k0, δ0, d0, t0, n0 the parameters of the
first application of the recursive step and by kbase = k0

2, nbase, δbase the parameters of the
resulting code.

As before, we will set d = k
2
3 , but unlike the previous setting, since δ0 is not necessarily

as small as we would want it to be, we will need to set the value of t to be somewhat larger.
In particular, we will set t0 = ⌈δ0

c1
2 k0⌉. Theorem 6 shows that, for sufficiently small δ0,

the probability that a binomial variable with parameters [δ0, k0 + 2t0] will be greater than t0
is of the order of exp (−Θ(k0)). Therefore, for sufficiently large k0, the DFP after the first
step of the recursion would be:

δbase < exp (−Θ(k0)) + exp
(
−c2k0

1
3 + o

(
k0

1
3

))
< exp

(
−c2

2 kbase
1
6

)
. (6)
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Finally, we need to bound the rate of the entire code. Using Equations (4) and (5), we
are able to bound the rate:

rk2 < Xrbase ≤ exp
(

2 (kbase)− 1
3

1− (kbase)− 1
3

)
rbase

≤ exp
(

2 k0
− 1

3

1− k0
− 1

3

)(
1 + δ0

c1
2

)
r0.

(7)

For sufficiently large k0 and sufficiently small δ0, this can be arbitrarily close to r0 which
in turn can be arbitrarily close to the capacity of the channel, obtaining an arbitrarily close
to optimal rate for our code.

4.4 Decoding Complexity

The recursive step promises at most k + 2t calls to the lower level of the construction and
Õ (n′) other operations. Let Tbase be the encoding / decoding complexity of the base scenario,
let Tk be the total complexity of the operation for our code with message length k and Ik be
the complexity due to operations which are not part of the lower levels of the recursion (i.e.
finding the delimiters, separating them from the inner codewords and decoding the Reed
Solomon encoding).

Similar to our bound on the rate of the code, we can bound the decoding / encoding
complexities by:

Tk2 = (k + 2t)Tk + Ik2 = Ik2 +
(

k + 2k
2
3

)
Tk

= Ik2 +
(

k + 2k
2
3

)
Ik +

(
k + 2k

2
3

)(√
k + 2k

1
3

)
T√

k

≤ Ik2 + exp
(

2 k0
− 1

3

1− k0
− 1

3

)
k2

k
Ik +

(
k + 2k

2
3

)(√
k + 2k

1
3

)
T√

k ≤ . . .

· · · ≤ exp
(

2 k0
− 1

3

1− k0
− 1

3

)(
k2

k
Ik + k2

√
k

I√
k + · · ·+ k2

kbase
Ikbase + k2

kbase
Tbase

)
.

(8)

The recursive step can have at most a quasi-linear complexity on top of its calls to the
inner code (see Theorem 8). Therefore, Ik = Õ (n). Inserting this into Equation (8), we are
can see that Tk2 = Õ (n′).

5 Adaptation to the Poisson Repeat Channel

In this section we will adapt the construction of our code for the BDC channel detailed
in the last two sections, to the PRC channel. Adapting the recursive step will be fairly
straightforward. However, adapting the base step will be a bit more tricky.

When working with the BDC, we used the fact that the received message could not be
longer than the transmitted one. This allowed us to build a decoding table that can return
some value for any of the possible received messages. However, the PRC could (with very
low probability) expand a transmitted message to an arbitrarily long received message, and
we will need to adapt our construction to address this issue.
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5.1 Adapting the Recursive Step

▶ Theorem 9 (Recursive-Step for the PRC). There exist some constants c1, c2, k0, δ0 > 0,
such that for any k > k0, d > 0, 2k−1 − k > t > 0, δ0 > δ > 0, λ > 0 and any error
correcting code C for the PRCλ channel with block length k, message length n and DFP δ,
there exists an error correcting code C ′ for the PRCλ with block length k2, message length
n′ ≤ (k +2t)(n+ d

λ ) and DFP δ′ ≤ Pr [Bin (δc1 , k + 2t) > t]+(k + 2t) exp
(
−c2 min {d, d2

k }
)

.

Furthermore, there exist an encoder and decoder for C ′ with time complexity Õ (n′) using
up to k + 2t calls to the encoder and decoder of C.

We will construct the recursive step almost exactly as in Section 3, only changing 1− p

to λ in our conversion of lengths of bits over the channel.

5.2 Adapting the Base of the Recursion

In this section, we will adapt our construction of the base of our recursion from Section 4 to
the PRC. It is easy to see that for any λ > 0, there exists a family of codes for this channel
with some non-negligible rate ρ = Θ(1) w.r.t the message length (for instance, by applying
the jigsaw construction of [19] with the Morse code distribution). We will set k0, δ0 to be
the minimal value of the message length k and DFP δ for which there exists such a base
code that will suffice for our construction.

Unlike the previous construction, here we will only be able to approximate the DFP of
our base code, so we will need to set two bounds. Let κ1 ≥ k0 be the minimal message length
for which there is a code in the family of codes such that it has a DFP of at most δ0, and let
κ2 ≥ k0 be the minimal message length for which there is a code in the family of codes such
that it has a DFP of at most δ0

2 . Similar to the construction in Section 4.1, we do not have
an explicit bound on κ1, κ2, but we know that they are bounded by some O(1) constant.

As in Section 4.1, we will enumerate over values of k ≥ k0, but this time we only promise
that our enumeration will end somewhere between κ1 and κ2. For each such k, we enumerate
over all n ≤ ρk, encoders C : {0, 1}k → {0, 1}n and decoders D : {0, 1}m → {0, 1}k, where
m is the smallest integer for which:

Pr [Poisson(λn) ≥ m] ≤ δ

2 .

For each of these encoder-decoder pairs, we enumerate over all messages in {0, 1}k and
encode them using the encoder. For each codeword, we enumerate over all possible results of
applying the channel to the codeword that have output length at most m.

We sum the probabilities of the eventualities where this process would result in a decoding
failure (cases where the channel outputted more than m bits are counted as failures), and
take the message with the highest DFP. This gives us an approximation of

DFPactual ≤ DFPestimate ≤ DFPactual + δ

2 .

If the estimated DFP is at most δ, then we output the pair of encoder-decoder tables. It
is easy to see that if the actual DFP is at most δ

2 then the estimate DFP is at most δ and
we will output it. Therefore our process either terminates before κ2 or at κ2 and must have
a constant complexity.
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6 Discussion

In this paper we presented several new techniques for constructing error-correcting–codes for
asynchronous channels, and used them to prove a method of transforming lower bounds on
the capacities of the BDC and PRC channels to efficient encoding and decoding algorithms.
This answers the main question considered [6] and [9].

However, this construction is far from practical. For instance, the inner code at the basis
of our recursion is constructed in a doubly exponential time in the size of the inner codes
message length. Even our bound on the decoding failure of the inner code is δ

1
34 = exp

(
k

1
6

34

)
which is technically o(1) but converges extremely slowly.

Furthermore, this work deals only with BDC and PRC channels. While these channels
offer us a chance to model the behaviour of asynchronous channels, they do not represent
the more realistic channels which contain both synchronisation errors and bit-flipping errors.
To this end, the binary InsDel channel offers a more comprehensive model and it remains an
open question whether the methods described here can be used to construct efficient codes
for it as well.

Finally, now that we have a framework for efficient encoding and decoding for the BDC
and PRC channels, we can return to the question of the capacity of these channels. We know
that when p→ 1 this capacity scales proportionally to 1− p, but the factor of this conversion
is still unknown. Mitzenmacher and Drinea [19] showed that these capacities are at least
1−p

9 , and [8] gave an upper bound of 0.4143(1− p)± on(1), but this gap is far from closed.
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Abstract
In this work we give two new algorithms that use similar techniques for (non-monotone) submodular
function maximization subject to a cardinality constraint. The first is an offline fixed-parameter
tractable algorithm that guarantees a 0.539-approximation for all non-negative submodular functions.
The second algorithm works in the random-order streaming model. It guarantees a (1/2 + c)-
approximation for symmetric functions, and we complement it by showing that no space-efficient
algorithm can beat 1/2 for asymmetric functions. To the best of our knowledge this is the first
provable separation between symmetric and asymmetric submodular function maximization.
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1 Introduction

We study the algorithmic problem of selecting a small subset of k elements out of a (very)
large ground set of n elements. In particular, we want the small subset to consist of k elements
that are valuable together, as is captured by an objective function f : 2E → R≥0. Without
any assumptions on f it is hopeless to get efficient algorithms; we make the assumption that
f is submodular1, one of the most fundamental and well-studied assumptions in combinatorial
optimization.

Alas, even for submodular functions, strong impossibility results are known. Two of
the most important frameworks we have for circumventing impossibility results are (i)
approximation algorithms – look for solutions that are only approximately optimal; and (ii)
paramerterized complexity – look for algorithms of which the runtime is efficient as a function
of the large ground set n, but may have a worse dependence2 on the smaller parameter

1 I.e., functions where the marginal value of an element is decreasing as the set grows.
2 Formally, an algorithm is said to be fixed-parameter tractable if it runs in time h(k) · poly(n) for any

function h. Here h could be arbitrarily fast growing, e.g. doubly-exponential or Ackermann – this is
asymptotically faster than the naive nk. In this work we will be more ambitious (and closer to practice)
and present algorithms that run in time 2Õ(k) · n.
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k. To appreciate the relevance of parameterized complexity in practice, it’s important to
note that in many applications of submodular maximization k is indeed quite small, e.g. in
data summarization [4], we want an algorithm that, given a large image dataset chooses a
representative subset of images that must be small enough to fit our screen.

Submodular optimization has been thoroughly studied under the lens of approximation
algorithms; much less work has been done about its parameterized complexity (with the
exception of [27], see discussion of related works). In either case, strong, tight hardness
results are known. In this work we show that combining both approaches gives surprisingly
powerful algorithms.

On the technical level, we develop novel insights to design and analyze fixed-parameter
tractable (FPT) algorithms for (non-monotone) submodular function maximization. We
instantiate these ideas to give new results in two settings: offline (“classical”) algorithms
for which we are interested in the running time and query complexity3, and random-order
streaming algorithms for which we mostly care about the memory cost.

Main result I: offline algorithms
Our first result is an (offline) FPT algorithm that guarantees an improved approximation
ratio for submodular function maximization.

To compare our result with the approximation factors achievable by polynomial-time
algorithms, we first briefly survey the existing algorithmic and hardness results.

On the algorithmic side, the current state-of-art polynomial-time algorithm for general
non-monotone submodular functions achieves 0.385-approximation [5]. For sub-classes
of submodular functions, better polynomial-time approximation algorithms are known:
notable examples include monotone functions (the greedy algorithm achieves (1 − 1/e)-
approximation [25]), and symmetric functions4 (the state-of-the-art approximation factor is
0.432 [11]).

From the hardness perspective, known results rule out polynomial query complexity
algorithms with approximation factors better than 1/2 or 0.491 for symmetric [10, 28] or
asymmetric functions [14], respectively. It is also known that even FPT algorithms cannot
beat (1− 1/e)-approximation, and this holds even for monotone submodular functions [24].

In FPT time, the streaming algorithm of [2] implies a 1/2-approximation algorithm for
general non-monotone functions (although it is not explicitly stated as an FPT algorithm in
their paper), which slightly beats the aforementioned 0.491 bound for asymmetric functions.
However, this result does not tell us whether FPT algorithms can beat the 1/2 bound for
symmetric functions. A-priori, it was plausible that 1/2-approximation is the best achievable
approximation by FPT algorithms for symmetric functions and hence general non-monotone
functions. (In fact, prior to discovering our new algorithms, we had expected that the
1/2-approximation would indeed be the best that FPT algorithms can achieve.)

We are thus excited to report that we were able to design an FPT algorithm (Algorithm 4)
that not only outperforms all the previous algorithms but also surpasses all the upper
limits on the approximation factor in the existing hardness results, by a significant margin,
regardless of whether the function is symmetric or not:

3 I.e., the function f is given as a value oracle. The query complexity is number of queries made by the
algorithm, which is clearly a lower bound of the runtime.

4 I.e. functions that assign the same value to a set and its complement, which capture some of the most
important applications of non-monotone submodular functions, including mutual information and cuts
in (undirected) graphs and hypergraphs.
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▶ Theorem 1 (FPT algorithm). There is a 0.539-approximation algorithm for cardinality
constrained submodular maximization that has runtime and query complexity 2Õ(k) · n.

Main result II: random-order streaming
Our FPT algorithm (Algorithm 4) uses a subroutine (Algorithm 1) which can be interpreted
as a random-order streaming algorithm, and thus, in addition to our FPT result, we also
hope to understand the power and the limit of Algorithm 1 in the random-order streaming
model. In this model (see the detailed setup in Section 2), a streaming algorithm makes a
single pass over a stream of elements arriving in a uniformly random order. An algorithm
keeps a carefully chosen subset of the elements it has seen in a buffer of bounded size. At
any point in the stream, the algorithm can make unlimited queries of the function values
on subsets of the elements in the buffer. The goal is to obtain a good approximation of the
offline optimum while keeping the buffer small (ideally, polynomial in k and independent
of n).

We show that Algorithm 1 achieves 1/2-approximation for general non-monotone sub-
modular functions5 and beats 1/2-approximation for symmetric functions using Õ(k2)-size
buffer6:

▶ Theorem 2 (Random-order streaming algorithm). For cardinality constrained submodular
function maximization in the random-order streaming model, there is an algorithm using
Õ(k2)-size buffer that achieves 1/2-approximation for general non-monotone submodular
functions and 0.5029-approximation for symmetric submodular functions.

We complement the algorithmic result with a tight 1/2-hardness result in the random-order
streaming setting:

▶ Theorem 3 (1/2-hardness for random-order streaming). If n = 2o(k), any (1/2 + ε)-
approximation algorithm for cardinality-constrained non-monotone submodular maximization
in the random-order streaming model must use an Ω(n/k2)-size buffer. In fact, this hardness
result holds against stronger algorithms that are not captured by the standard random-order
streaming model for submodular maximization (see Remark 9).

This hardness result is quite surprising because it shows in contrast to monotone submodular
maximization, non-monotone submodular maximization in the random-order setting is not any
easier than that in the worst-order setting where the elements arrive in the worst-case order
– for worst-order streaming model, it is known that Ω(n/k3)-size buffer is required to beat
1/2-approximation even if the submodular function is monotone [13], but for random-order
model, recent work by [1] gives a (1−1/e−ε)-approximate algorithm using O(k/2poly(ε))-size
buffer, which is improved to O(k/ε) by a simpler algorithm of [20].

Furthermore, notice that our algorithmic result and hardness result together exhibit a
separation between symmetric and asymmetric submodular functions in the random-order
streaming setting. This separation is interesting because in the literature, tight hardness
result for general non-monotone functions often continues to hold for symmetric functions.
For example, for unconstrained non-monotone submodular maximization, there is a family of
symmetric functions for which (1/2 + ε)-approximation requires 2Ω(n) queries [10, 28], and
there are efficient matching 1/2-approximation algorithms even for asymmetric functions [6].

5 The 1/2-approximation of Algorithm 1 for general non-monotone functions is not interesting by itself
– 1/2-approximation was achieved even if the elements arrive in the worst-case order [2]. However,
Algorithm 1, which takes advantage of the random order, led us to the discovery of the 1/2-hardness in
the random-order setting.

6 These algorithmic results also hold for the (similar but incomparable) secretary with shortlists model [1].
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To the best of our knowledge, our result is the first provable separation of symmetric
and asymmetric submodular maximization in any setting, let alone a natural setting that
gains a lot of interests recently. Although admittedly we would be more excited to see
such separation in the more classic offline setting of constrained non-monotone submodular
maximization, currently we are still far from figuring out whether there is a separation in
this setting (because of the gap between the current best 0.432-approximation algorithm for
symmetric functions and the current best 0.491-hardness for general asymmetric functions
we mentioned earlier), and we hope our result can provide some insights on how to resolve
this problem.

Future directions
Our FPT algorithm achieves significantly better-than-1/2 approximation for general non-
monotone submodular functions in the offline setting, and its subrountine Algorithm 1 breaks
the 1/2 hardness for symmetric submodular functions in the random-order streaming setting
– but what is the best possible approximation ratio in those respective settings? We leave
this as an open problem for future work.

We remark that no FPT (small-buffer resp.) algorithm can break the 1− 1/e barrier for
symmetric functions in the offline (random-order streaming resp.) setting. For asymmetric
functions, this follows from the classic work of [24] for monotone submodular functions which
we mentioned earlier. For symmetric submodular maximization, the monotone functions
exhibiting (1−1/e)-hardness are obviously not symmetric; but in appendix of the full version,
we are able to give a simple black-box approximation-preserving reduction from symmetric
non-monotone to asymmetric monotone submodular function maximization that works in
both the offline and random-order streaming settings:

▶ Proposition 4. For cardinality-constrained symmetric submodular function maximization,
any algorithm guaranteeing a (1− 1/e + ε)-approximation must:
Offline use nΩ(k) queries; or
Random-order streaming use Ω(n)-buffer size.

1.1 Additional related work
FPT submodular optimization
The study of parameterized complexity of submodular maximization was initiated by [27]
who focused on monotone submodular functions. [27] gives an FPT approximation scheme
for monotone submodular functions that are either p-separable or have a bounded ratio
of total singleton contribution (

∑
e∈E f({e})) to total value (f(E)). However, for general

monotone submodular functions even FPT algorithms (in terms of query complexity) cannot
break the classic 1− 1/e barrier [24]. Furthermore, even for the special case of max-k-cover,
no FPT algorithms can beat 1− 1/e assuming gap-ETH [8, 21].

Streaming submodular optimization
Our work is related to recent works on maximizing submodular functions in random order
streams [1, 20, 26], but all the latter focus on monotone functions. Submodular optimization
in worst-order streaming models has also been extensively studied in recent years, e.g. [4, 7,
19, 9, 12, 23, 3, 17, 18, 22, 2, 15, 16, 13]. In the worst-order literature, most relevant to our
work is [2] who gave a 1/2-approximation for general (non-monotone) submodular functions,
and [13] who proved a matching inapproximability.
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2 Preliminaries

▶ Definition 5. Given a ground set of elements E, a function f : 2E → R≥0 is submodular
if for all S ⊆ T ⊆ E and i ∈ E \ T , f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T ). Moreover, we
denote the marginal gain by f(X|S) := f(X ∪ S)− f(S).

▶ Definition 6. A function f : 2E → R≥0 is symmetric if for all S ⊆ E, f(S) = f(E \ S).

In this paper, we always consider maximizing non-negative submodular functions
over n elements under a cardinality constraint k, i.e., maxX∈E,|X|≤k f(X). The following
lemma [10] for non-negative submodular functions will be useful.

▶ Lemma 7. Let f : 2E → R≥0 be a submodular function. Further, let R be a random
subset of T ⊆ E in which every element occurs with probability at least p (not necessarily
independently). Then, E[f(R)] ≥ pf(T ) + (1− p)f(∅).

Moreover, we are interested in the fixed-parameter tractable algorithms.

▶ Definition 8. For submodular maximization over n elements with cardinality constraint
k, we say an algorithm is fixed-parameter tractable (FPT) if it has runtime h(k) · poly(n),
where h can be any finite function.

Besides, we are also interested in studying low-memory algorithms for submodular max-
imization in the random-order streaming model, and in this setting, we only care about
the memory cost but not the runtime. We follow the standard setup of streaming model
for submodular maximization in the literature (see e.g., the model in the original work [4,
Section 3] and more recent works [2, 16, 20]), and the only additional assumption we make is
that the elements arrive in uniformly random order (which was studied in e.g., [1, 20]).

Random-order streaming model
In the random-order streaming model, an algorithm is given a single pass over a dataset
in a streaming fashion, where the stream is a uniformly random permutation of the input
dataset and each element is seen once. The algorithm is allowed to store the elements or any
information in a memory buffer with certain size. To be precise, at any point during the
runtime of the algorithm,

memory cost = number of stored elements + number of bits of stored information.

Note that the elements and information are treated separately. One can think of the elements
as physical tokens7, and the algorithm has a limited number of special slots to store the
tokens. Besides these special slots, the algorithm has other limited space to store arbitrary
information. The total memory cost should not exceed the algorithm’s memory size.

Every time when a new element arrives, the algorithm can decide how to update its
memory buffer, i.e., whether to store the new element or remove other elements in its memory,
and what information to add or remove. At any time, the algorithm can make any number

7 The standard streaming model for submodular maximization assumes the elements are stored like
physical tokens rather than using arbitrary encoding, because the model eventually wants to restrict the
algorithm’s access to the value oracle. If we store elements using arbitrary encoding, it is not clear how
to restrict oracle access for general submodular functions (although it is possible to define such model
for some special applications). There is another model that allows elements to be stored in arbitrary
encoding [13, Appendix B] - this model does not restrict oracle access at all, but instead it assumes
that the elements appearing in the stream are a small part of the ground set.
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of queries to the value oracle of the objective submodular function, but it is only allowed to
query the value of any subset of the elements that are stored in its memory. For example, at
some point during the stream, suppose the algorithm stores an element e, and it makes a
query of the value of set {e} and writes the result of the query in its memory in any format
it prefers (e.g., “the value of {e} is...”), and then it removes element e. After removing e, it
will never be allowed to query the value of any set that contains e in the future, but it can
still keep the information “the value of {e} is...”, which it wrote before, in its memory, as
long as it wants.

At the end of the stream, the algorithm outputs a subset of elements that are stored in
its memory as the solution set.

▶ Remark 9. Our streaming algorithm falls into the above model and has low memory cost
(specifically, Õ(k2)). Our hardness result in fact holds against stronger algorithms that are
allowed to (i) store infinite bits of information (i.e., only the number of stored elements
counts as memory cost) and (ii) output any size-(≤ k) subset of elements as the solution set
(i.e., during the stream, the algorithm is still only allowed to query any subset of elements
stored in its memory, but at the end of the stream, it can output any size-(≤ k) subset of
the ground set as it wants8).

Finally, we note that all the missing proofs of this extended abstract can be found in the
full version of our paper on arXiv (the URL is provided on the title page).

3 The core algorithm

In this section, we present the core algorithm of this work (Algorithm 1), which is actually
our streaming algorithm. Our FPT algorithm will use this core algorithm as a subroutine.
The goal of this section is to establish the common setup for the analysis of our FPT
algorithm for general submodular functions and the analysis of the streaming algorithm for
symmetric submodular functions. In this process, we will also do a warm-up that shows a
1/2-approximation for the core algorithm on general submodular functions.

Algorithm 1 SymmetricStream(f, E, k, ε).

1: Partition the first ε fraction of the random stream E into windows w1, . . . , w3k of equal
size.

2: S0 ← ∅
3: H ← ∅
4: for i← 1 to 3k do
5: ei ← arg maxe∈wi

f(e|Si−1)
6: Si ← Si−1 ∪ {ei}
7: for e ∈ E \ {w1, w2, . . . , w3k} do
8: for i = 1, 2, . . . , 3k do
9: if f(e|Si−1) > f(ei|Si−1) and |H| < 18k2 log k/ε then

10: H ← H ∪ {e}
11: return arg maxX⊆S3k∪H, |X|≤k f(X)

8 I.e., it can output something like “My solution set is {1,3,11,...}” even if elements 1, 3, 11 are not in its
memory.
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At a high level, Algorithm 1 divides the first ε fraction of the stream into 3k windows9

and greedily selects the element ei with the best marginal gain in each window i. (Although
we use the notation Si in the pseudocode for clarity, we only need to keep track of one
ordered solution set in the first for loop.) Then it freezes the solution set, and for the rest of
the stream, it only selects the first 18k2 log k/ε elements that have better marginal gain than
ei conditioned on the (i− 1)-th partial solution for some 0 ≤ i ≤ 3k − 1. Finally, it finds the
best size-k solution from all the selected elements by brute force. Due to line 9, the memory
usage is O(k2 log k/ε). The runtime before the final brute-force search is O(nk) because of
the for loops, and the brute-force search takes time k

(|S3k∪H|
k

)
= 2Õ(k) as |S3k| = 3k and

|H| = O(k2 log k/ε), and hence, the total runtime is O(nk) + 2Õ(k) (which is not polynomial
in k, but in this paper, we focus on the memory bound for streaming setting and FPT
algorithms for offline setting).

3.1 Warm-up
As a warm-up, we show the 1/2-approximation of our core algorithm for general submodular
functions, which also helps set up the proof of our main algorithmic results. Before getting
to the technical proof, we provide the intuition for Algorithm 1 in the following. First, we
want to make sure that with high probability |H| never meets the size threshold in the if
condition at line 9, and thus the size threshold essentially does not affect our analysis. This
follows by a standard argument (see Lemma 11).

Because the stream is in random order, most optimal elements will be visited during the
for loop at line 7. A part of them OH will be picked by the algorithm, and the other part
OL will not be selected. Consider the set S|OL| defined in the algorithm. Because of the if
condition at line 9, the elements in S|OL| have better marginal contribution than OL, and
we can show that f(S|OL|) ≥ f(OL|S|OL|), which is somewhat similar to the classic greedy
algorithm for monotone submodular maximization. Since OH ∪ S|OL| and S|OL| are two
candidate solutions under the radar of the algorithm’s final brute-force search, the algorithm
achieves at least

f(OH ∪ S|OL|) + f(S|OL|)
2 ≥

f(OH ∪ S|OL|) + f(OL|S|OL|)
2 ≥

f(OH ∪OL ∪ S|OL|)
2 , (1)

where the last inequality is by submodularity.
To complete the analysis, we observe that f(OH ∪OL ∪ S|OL|) is not significantly worse

than f(OH ∪OL), and hence 1/2-approximation follows from (1). Indeed, because S|OL| is
chosen from a random ε fraction of E, it cannot hurt OH ∪OL significantly – otherwise, there
should be many other elements similar to S|OL|, and together they would hurt OH ∪OL so
much that would eventually contradict non-negativity. This is formally shown in Lemma 10.
Using Lemma 10 and Lemma 11, we can prove the 1/2-approximation. The proof of Lemma 10
and Lemma 11 can be found in the full version.

▶ Lemma 10. Let O denote the optimal size-k solution. Then, for any constants ε ∈ (0, 1]
and ε′ > 0,

with probability at least 1− ε/ε′, there does not exist a set Y of elements in the first ε

fraction of the stream such that f(Y |O) ≤ −ε′f(O),
and moreover, with probability at least 1− 3ε/(ε′)2, for all ℓ ∈ {ε′k, 2ε′k, . . . , k}, for any
S ⊆ S3ℓ \ S2ℓ, f(S|O ∪ S2ℓ) ≥ −ε′f(O).

9 The choice of 3k suffices to beat 1/2 approximation for symmetric submodular function, but it is
conceivable that a larger budget might improve the final constant. For our FPT algorithm, dividing
into k windows would also work, but that does not improve the runtime asymptotically.
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▶ Lemma 11. With probability 1 − 3/k, |H| < 18k2 log k/ε, namely, Algorithm 1 never
ignores any elements due to the memory threshold (line 9).

▶ Theorem 12. Algorithm 1 achieves (1/2−O(
√

ε)−O(1/k))-approximation for non-negative
non-monotone submodular functions in the random-order streaming model.

Proof. Let O be the size-k optimal set, and let O′ ⊆ O be the subset of optimal elements
that appear in the last 1 − ε fraction of the stream. We partition O′ into OL and OH ,
where OL are the optimal elements that are not selected by the algorithm, and OH are
those selected. Let SL be short for solution S|OL| in the algorithm. If the good event in
the first bullet point of Lemma 10 with ε′ =

√
ε happens (which we denote by A1), then

f(SL|OL ∪OH) ≥ f(SL|O) ≥ −
√

εf(O), where the first inequality is by submodularity. If
A1 happens, we have that

f(OH ∪ SL) + f(OL|SL) = f(OH |SL) + f(SL ∪OL)
≥ f(OH |SL ∪OL) + f(SL ∪OL) (By submodularity)
= f(OL ∪OH ∪ SL)
= f(OL ∪OH) + f(SL|OL ∪OH)
≥ f(OL ∪OH)−

√
εf(O). (2)

Let OL = {o1, o2, . . . , o|L|}. If the good event in Lemma 11, denoted by A2, happens, then,
we have the following simple observation by design of the algorithm.

▶ Observation 13. If A2 happens, then for any o ∈ OL, f(o|Si−1) ≤ f(ei|Si−1), for all
i ∈ [3k], because o is skipped by the algorithm.

Given A2, using the above observation, we have that

f(OL|SL) ≤
∑

o∈OL

f(o|SL) (By submodularity)

≤
|OL|∑
i=1

f(oi|Si−1) (By submodularity)

≤
|OL|∑
i=1

f(ei|Si−1) (By Observation 13)

= f(SL). (By telescoping sum) (3)

Combining Eq. (2) and (3), we get

f(OH ∪ SL) + f(SL) ≥ f(OL ∪OH)−
√

εf(O). (4)

By Lemma 7, E[f(O′)] ≥ (1− ε)f(O). By a Markov argument,

E[f(O′) | A1, A2] ≥ (1− ε−
√

ε− 3/k)f(O), (5)

and hence, by taking expectation for both sides of Eq. (4), we have that

E[f(OH ∪ SL) + f(SL) | A1, A2] ≥ E[f(OL ∪OH) | A1, A2]−
√

εf(O)
≥ (1− ε− 2

√
ε− 3/k)f(O).

Finally, E[f(OH ∪ SL) + f(SL)] ≥ Pr(A1, A2) · E[f(OH ∪ SL) + f(SL) | A1, A2] ≥ (1 −√
ε− 3/k)(1− ε− 2

√
ε− 3/k)f(O) = (1−O(

√
ε + 1/k))f(O). The proof finishes because

OH ∪ SL and SL are both subsets of S3k ∪H, so one of them must achieve at least half of
(1−O(

√
ε + 1/k))f(O). ◀



A. Rubinstein and J. Zhao 106:9

3.2 Our plan for the algorithmic results
The proof of our main algorithmic results (Theorem 17, Theorem 14 and Theorem 15) is
based on factor-revealing convex programs10. We know that factor-revealing programs are not
intuitive and hence not easy to understand, although they are effective tools for formalizing
the proof. Therefore, in the future sections of this extended abstract, instead of formally
proving the main results, we will provide the intuition and interpretable (but less formal)
analysis for our algorithmic results. We recommend the readers read the intuition
and informal interpretable analysis in this extended abstract, and then check the
formal proofs that involve factor-revealing programs starting from Section 3.2 in
the full version.

For convenience, in the informal interpretable analysis in this extended abstract, we will
continue using the notations O, OL, OH that have appeared in this section.

4 FPT algorithms for non-monotone submodular functions

In this section, building on Algorithm 1, we give FPT algorithms that achieves better-than-
1/2 approximation for general non-monotone submodular functions. We first present a basic
FPT algorithm that achieves 0.512-approximation to show the main ideas, then we discuss
how to improve the basic algorithm to get 0.539-approximation.

4.1 The basic FPT algorithm
Essentially, after running Algorithm 1, our basic FPT algorithm (Algorithm 2) searches for
OH by brute force, and then starting with OH as the initial solution set, it runs classic greedy
algorithm to construct a size-k solution set, and it repeats this step many times without
replacement, i.e., each time the elements selected by greedy algorithm are removed from
ground set, and finally it returns the best size-k solution set among all the repetitions. The
pseudocode is given in Algorithm 2.

Algorithm 2 FPT(f, E, k, ε, T ).

1: Initialize an empty set X∗.
2: Run Algorithm 1 on the input11 (f, E, k, ε) and keep S3k and the final version of H in

Algorithm 1.
3: for each size-(≤ k) subset Oguess

H ⊆ H do
4: Initialize an empty set of elements I.
5: for i = 1, 2, . . . , T do
6: Run greedy algorithm with Oguess

H as the initial solution set12 to build a size-k
solution set Oguess

H ∪Xi. Add Xi to I and remove Xi from E.
7: Let X ′ = arg maxX⊆S3k∪H∪I, |X|≤k f(X) and let X∗ = X ′ if f(X ′) > f(X∗).
8: Add I back to E.
9: return X∗

10 The certificates for these convex programs can be found in the full version.
11 Randomly permute E if it is not in random order.
12 Specifically, the greedy algorithm starts with solution set X = Oguess

H and runs in k − |X| iterations.
In each iteration, it selects the element e in E that maximizes f(e|X) and add e to X. (We assume
without loss of generality that the maximal f(e|X) is always non-negative. Otherwise, we can add
dummy elements to E.)
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Algorithm 2 runs in fixed-parameter polynomial time. Indeed, because |H| = Õ(k2) by
design of Algorithm 1, the outer loop has less than k

(
Õ(k2)

k

)
= 2Õ(k) iterations, and for the

inner loop, we will only need T to be an arbitrarily large constant. Greedy algorithm runs
in O(kn) time. Moreover, since |I| ≤ Tk and |S3k ∪H| = Õ(k2) with high probability, the
brute-force step (Line 7) in Algorithm 2 takes time k

(
Õ(k2)

k

)
= 2Õ(k). Furthermore, the

runtime of Algorithm 1 excluding the exhaustive search in its last step is polynomial. Hence,
the total runtime is n · 2Õ(k).

Instead of formally proving the approximation ratio for Algorithm 2 (which we will do in
the full version), we give an interpretable analysis for the better-than-1/2 approximation.
At very high level, the intuition is that if Algorithm 1 only gets 1/2 approximation, then it
must be the case that f(OH) = f(OH ∪OL)

2 . Now we consider the candidate solution OH ∪Xi

for i ∈ {1, 2, 3}, and we can argue that if f(Xi|OH) = 0, i.e., the candidate solution does not
beat 1/2, then Xi must hurt OH ∪ OL a lot. Moreover, By submodularity, X1 ∪X2 ∪X3
hurts OH ∪OL by at least the sum of how much each Xi (i ∈ {1, 2, 3}) hurts. Together, we
show that this would contradict non-negativity of the function. Now we explain this intuition
in more details.

Informal interpretable analysis
The starting point is the analysis of Theorem 12. We can show that for the instance to be
hard, in the sense that Algorithm 1 is only able to get 1/2 approximation, then it requires
f(OH) = f(OH ∪OL)

2 (this will be explained with more details in the interpretable analysis
provided before Theorem 17, but for now, let us take this as given). Because OH is selected
by Algorithm 1, in the outer iteration when Algorithm 2 guesses OH correctly, it runs classic
greedy algorithm many times based on OH without replacement. Consider the set X1 selected
in the first run of greedy algorithm. By standard analysis of greedy algorithm, we can derive
that f(X1|OH) ≥ f(OL|OH ∪X1). If f(X1|OH) = 0 (otherwise X1 ∪OH beats 1/2), then
f(OL|OH ∪X1) ≤ 0, which implies f(OL ∪OH ∪X1) ≤ f(OH ∪X1) = f(OH) = f(OH ∪OL)

2 .
Hence f(X1|OL ∪ OH) ≤ − f(OH ∪OL)

2 . WLOG, the first run of greedy did not select most
of OL, because otherwise f(X1|OH) should be significantly large. Therefore, similarly, we
can derive that if f(X2|OH) = 0, where X2 is selected in the second run of greedy, then
f(X2|OL∪OH) ≤ − f(OH ∪OL)

2 . By submodularity, f(X1∪X2|OL∪OH) ≤ f(X1|OL∪OH) +
f(X2|OL ∪ OH) ≤ −f(OH ∪ OL). Notice that this implies f(X1 ∪ X2 ∪ OL ∪ OH) ≤ 0.
Hence, the third run of greedy algorithm must obtain very large f(X3|OH) (and hence
X3 ∪ OH beats 1/2), because otherwise we can repeat above argument and show that
f(X1∪X2∪X3∪OL∪OH) < 0, which violates non-negativity of the function f . Furthermore,
by running greedy many times, we are able to extract even more value from OL, which is
formally formulated by the factor-revealing programs in the proof in the full version.

▶ Theorem 14. For sufficiently large constant T and sufficiently small constant ε, Algorithm 2
achieves 0.512-approximation for non-negative non-monotone submodular maximization with
a cardinality constraint.

4.2 Improved FPT algorithm
Algorithm 2 can be improved to achieve better approximation ratio. In this subsection, we
present the improved algorithm, the pseudocode of which is given in Algorithm 4. In the full
version, we will provide the intuition behind this algorithm (which involves the formal proof
of Theorem 14) and the formal proof for the improved approximation factor.
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Algorithm 3 Recursive(f, E, k, I, t, T ).

1: Initialize empty sets I ′ and X∗.
2: for each size-(≤ k) subset Oguess

t ⊆ I do
3: for i = 1, 2, . . . , T do
4: Run greedy algorithm on E with Oguess

t as the initial solution set to build a size-k
solution set Oguess

t ∪Xi.
5: Add Xi to I ′ and remove Xi from E.
6: Add I ′ back to E.
7: if t ≤ T then
8: Run Algorithm 3 on input (f, E, k, I ∪ I ′, t + 1, T ), which returns solution set X ′.
9: Let X∗ = X ′ if f(X ′) > f(X∗).

10: else
11: Let X∗ = arg maxX⊆I, |X|≤k f(X).
12: return X∗

Algorithm 4 FPT+(f, E, k, ε, T ).

1: Initialize an empty set of elements I.
2: Run Algorithm 1 on input (f, E, k, ε) and keep S3k and the final version of H in

Algorithm 1.
3: Run Algorithm 3 on input (f, E, k, S3k ∪H, 1, T ), which returns X∗.
4: return X∗

▶ Theorem 15. For sufficiently large constant T and sufficiently small constant ε, Algorithm 4
achieves 0.539-approximation for non-negative non-monotone submodular maximization with
a cardinality constraint.

5 (1/2 + c)-approximation for random-order streaming symmetric
submodular maximization

In this section, we show that Algorithm 1 beats 1/2-approximation for symmetric non-
monotone submodular functions using Õ(k2) memory. Together with our lower bound result
(Theorem 18), this separates the symmetric non-monotone submodular functions from general
non-monotone submodular functions in the random-order streaming model. To our best
knowledge, this is first such separation.

The following lemma is the key feature of symmetric submodular functions which we will
take advantage of, and it basically says for symmetric submodular function, a set can not
hurt another set by more than its own value.

▶ Lemma 16. For any non-negative symmetric submodular function f : V → R≥0, for any
disjoint X, Y ⊆ V , f(X|Y ) ≥ −f(X).

Proof. By submodularity, f(X|Y ) ≥ f(X|V \X) = f(V )− f(V \X), and by symmetry and
non-negativity, f(V )− f(V \X) = f(∅)− f(X) ≥ −f(X). ◀

Instead of showing the technical proof of the better-than-1/2 approximation (which is
provided in the full version), we give the interpretable analysis for why Algorithm 1 can
beat 1/2 for symmetric submodular functions. The interpretable analysis is still a little
lengthy and technical. At very high level, the idea is if none of S|OL| and OH ∪ S|OL| and
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OH ∪ (S2|OL| \ S|OL|) beats 1/2, then we can show that (i) f(OH) = f(OL) = f(OH ∪OL)
2 ,

(ii) f(OH |S2|OL|) = −f(OH), and (iii) f(S3|OL| \ S2|OL||S2|OL|) ≥ (1 − 1/e)f(OL). The
punchline is that using (ii), we can further show that (iv) f(S3|OL| \S2|OL||OH) ≥ f(S3|OL| \
S2|OL||S2|OL|) (basically, the argument is if OH hurts S2|OL| a lot, then by Lemma 16, which
is due to symmetry, one can argue OH can not hurt S3|OL| more than how much it hurts
S2|OL|). Therefore, by (i) and (iii) and (iv), we know that OH ∪ (S3|OL| \ S2|OL|) beats 1/2
approximation. Now we explain this idea in more details.

Informal interpretable analysis
The starting point is the analysis for Theorem 12. The reader can first review the intuition
given in the beginning of the subsection of Theorem 12. There we argued that the algorithm
achieves half of f(OH ∪ S|OL|) + f(S|OL|) ≥ f(OH ∪ OL), and hence for the instance
to be hard (in the sense that the algorithm only gets 1/2 approximation), it requires
f(OH ∪S|OL|) = f(S|OL|) = f(OH ∪OL)

2 . This implies f(OH |S|OL|) = 0, and by submodularity
f(OH |OL∪S|OL|) ≤ 0, and hence f(OH∪OL∪S|OL|) ≤ f(OL∪S|OL|). Recall that we argued
S|OL| can not hurt OH ∪OL significantly, and thus, f(OH ∪OL) ≤ f(OH ∪OL ∪ S|OL|) ≤
f(OL ∪ S|OL|), but since f(S|OL|) = f(OH ∪OL)

2 , we have that f(OL|S|OL|) = f(S|OL|), which
implies13 f(S|OL|) ≥ f(OL). Moreover, since f(S|OL|) = f(OH ∪OL)

2 , we have f(OL) ≤
f(OH ∪OL)

2 and hence f(OH) ≥ f(OH ∪OL)
2 , but we also have f(OH) ≤ f(OH ∪OL)

2 because
otherwise OH ∪ S|OL| should have beaten 1/2-approximation as S|OL| does not hurt OH

significantly, and therefore it holds that f(OH) = f(OL) = f(OH ∪OL)
2 .

Now consider the set S2|OL| \ S|OL|. If f(S2|OL| \ S|OL||OH) = 0 (otherwise S2|OL| \
S|OL| ∪OH beats 1/2), then by submodularity and the fact that S2|OL| \ S|OL| does not hurt
anything significantly (which is yet another application of Lemma 10), we have f(S2|OL| \
S|OL||OH ∪ S|OL|) = 0 and hence f(OH ∪ S2|OL|) = f(OH ∪ S|OL|) = f(OH ∪OL)

2 . Notice that
f(OL|OH∪S2|OL|) = f(OL∪OH∪S2|OL|)−f(OH∪S2|OL|) ≥ f(OL∪OH)−f(OH∪S2|OL|) =
f(OH ∪OL)

2 , where the inequality is again due to the fact that S2|OL| does not hurt. Therefore,
similar to how we argued f(S|OL|) ≥ f(OL), we can show that f(S2|OL| \ S|OL||S|OL|) ≥
f(OL). Since f(S2|OL|) ≥ f(S2|OL| \ S|OL||S|OL|) + f(S|OL|) ≥ 2f(OL) = 2f(OH) and
f(OH ∪ S2|OL|) = f(OH ∪OL)

2 = f(OH), we have that f(OH |S2|OL|) ≤ −f(OH), and together
with Lemma 16, we have that f(OH |S2|OL|) = −f(OH).

Here comes the final punchline – If S3|OL|/S2|OL| has significant marginal contribution to
S2|OL|, then S3|OL|/S2|OL| must have at least the same marginal contribution to OH (and
therefore, OH ∪ S3|OL|/S2|OL| will beat 1/2). Specifically, this follows from

f(S3|OL|/S2|OL||OH) ≥ f(S3|OL|/S2|OL||OH ∪ S2|OL|)
(By submodularity)

= f(OH |S3|OL|)− f(OH |S2|OL|) + f(S3|OL|/S2|OL||S2|OL|)
≥ −f(OH)− f(OH |S2|OL|) + f(S3|OL|/S2|OL||S2|OL|)

(By Lemma 16)

= f(S3|OL|/S2|OL||S2|OL|)
(By f(OH |S2|OL|) = −f(OH))

13 Intuitively, by the if condition at line 9 of Algorithm 1, we can show that the marginal contribution of
each iterate of S|OL| is at least f(OL|S|OL|)

|OL| , but because f(OL|S|OL|) = f(S|OL|), each iterate actually
makes the same marginal contribution. Notice that the first iterate should make contribution more
than any element in OL by the if condition.
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(One can check the first equality is true by expanding both sides of the equality.) It remains
to show f(S3|OL|/S2|OL||S2|OL|) is indeed significantly large. This is essentially due to
f(OL|OH ∪ S2|OL|) ≥ f(OH ∪OL)

2 , which we argued earlier, and the if condition at line 9. In
particular, we can show f(S3|OL|/S2|OL||S2|OL|) is at least 1−1/e fraction of f(OL|S2|OL|) by
the standard analysis of the classic greedy algorithm for monotone submodular maximization.

In the full version, we will formally prove the better-than-1/2 approximation of Algorithm 1
using the factor-revealing programs.

▶ Theorem 17. For sufficiently small ε and large k, Algorithm 1 achieves strictly better-
than-1/2 approximation for non-negative non-monotone symmetric submodular functions in
the random-order streaming model.

On a side note, the constant we get here is by no means tight. (Indeed, we have an
improvement, which may also improve the constant for our FPT algorithm, but it requires
numerically solving non-convex programs rather than the convex programs in our proofs.)
What is interesting is the separation between symmetric and general submodular functions
in the random-order streaming model. Also, it is tempting to conjecture that Algorithm 1
achieves optimal 1− 1/e approximation for monotone submodular functions, given its success
in the non-monotone regime. Nonetheless, we have a hard instance that refutes this conjecture.
The details would be made available to the interested reader upon request.

6 Tight 1/2 hardness for random-order streaming non-monotone
submodular maximization

In this section, we present the lower bound result for non-monotone submodular maximization
in the random-order streaming model (described in Section 2). The approximation factor in
the lower bound result is tight because of the upper bound in Theorem 12 for example.

▶ Theorem 18. Assuming n = 2o(k), any (1/2 + ε)-approximation algorithm for non-
monotone submodular maximization in the random-order streaming model must use Ω(n/k2)
memory. In fact, this hardness result holds against even stronger algorithms (see Remark 9)
that are beyond the scope of the standard random-order streaming model for submodular
maximization.

The formal proof is provided in the full version. Here we give the construction of the hard
instance and explain the main idea.

Construction of the hard instance
The function f we construct here is essentially a cut function on an unweighted bipartite
directed hypergraph14 plus a modular function. The ground set V := A1 ∪A2 for f is the set
of n vertices of the graph, where A1 and A2 denote the two parts respectively. Specifically,
A2 := {u1, . . . , uεk}, and A1 is partitioned into ℓ := (n− εk)/b buckets of vertices B1, . . . , Bℓ,
each of size b := k − εk. Now we describe a random generating procedure that generates the
hyperedges in the graph:
1. First, for each i ∈ [ℓ], we sample a random subset of vertices Ni ⊂ A2 of size |Ni| = ε2k,

and for each uj ∈ Ni, we create a directed hyperedge from Bi to uj .

14 A directed hyperedge in a directed hypergraph is represented by some (U, v), where U is a subset of
vertices, and v /∈ U is a vertex. For any subset of vertices S, a hyperedge (U, v) is cut by S iff |U ∩S| > 0
and v /∈ S. It is well-known that such cut function is submodular.
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2. Then, we slightly modify the graph generated in step 1 as follows: We sample a uniformly
random g ∈ [ℓ]. For each uj ∈ Ng, we remove the hyperedge from Bg to uj , and instead,
for each v ∈ Bg, we create a directed hyperedge from {v} to uj . (That is, for each
uj ∈ Ng, we replace the hyperedge from Bg to uj with individual edges from each v ∈ Bg

to uj .)
The final submodular function f : V → R≥0 is the sum of the cut function on the above
generated hypergraph plus the modular function c(S) := (ε2k2) · |S∩A2|

|A2| . See Figure 1 for an
illustration.

Figure 1 An illustration of our hard instance: At the top we have all εk vertices of A2, each
of which has value εk. At the bottom we have all (n − εk) vertices of A1 that are separated into
ℓ = (n − εk)/b buckets, each of which has b = k − εk vertices. We choose a bucket Bg (with yellow
filling and dashed outline) uniformly at random. There are εk individual edges (orange and dashed)
from each vertex in bucket Bg to Bg’s neighborhood Ng, and there are εk hyperedges (blue and
solid) from every other bucket Bi (with gray filling and solid outline) to its neighborhood Ni.

Basically, in the above hard instance, we constructed a single good bucket Bg (which is
incident to independent individual edges and hence can contribute high value in a cut) and
lots of bad buckets Bi (which is incident to hyperedges and hence can only contribute low
value in a cut) for all i ∈ [ℓ] \ {g}.

The optimal solution for this hard instance is Bg ∪ (A2 \Ng), i.e., the union of the vertices
in the good bucket Bg and the vertices in A2 except Bg’s neighborhood Ng, and specifically,
the edges incident to Bg contribute half of the optimal value due to the cut function, and
A2 \Ng contributes the other half due to the modular function c.

However, it is hard for an o(n/k2)-memory algorithm to find out which bucket is the good
bucket. Intuitively, to tell whether a bucket Bi is the good bucket, the algorithm needs to
query the value of a set that contains at least two vertices of Bi, because otherwise, the value
of the set does not depend on whether Bi is incident to individual edges or hyperedges. In
order to query the value of a set that contains at least two vertices of Bi, the algorithm has to
store at least two vertices of Bi in its memory, because of the restriction in the random-order
streaming model (see Section 2). Since the algorithm has low memory, it cannot store two
elements for many Bi’s at the same time. Using this observation, we can prove w.h.p. the
algorithm cannot find the good bucket Bg during the entire stream. Furthermore, we can
show by standard concentration inequality that w.h.p. any size-(≤ k) solution set that does
not contain enough vertices of Bg has at most half of the optimal value.

Although it was easy to describe the basic idea above, formalizing it requires nontrivial
efforts, and we believe that the techniques in our formal proof, which we provide in the full
version, are interesting and could be applied for proving hardness of other problems in the
random-order streaming setting.
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Approximate Triangle Counting via Sampling and
Fast Matrix Multiplication
Jakub Tětek ! Ï
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Abstract

There is a simple O( n3

ϵ2T
) time algorithm for 1±ϵ-approximate triangle counting where T is the number

of triangles in the graph and n the number of vertices. At the same time, one may count triangles
exactly using fast matrix multiplication in time Õ(nω). Is it possible to get a negative dependency on
the number of triangles T while retaining the state-of-the-art nω dependency on n? We answer this
question positively by providing an algorithm which runs in time O

(
nω

T ω−2

)
· poly(no(1)/ϵ). This is

optimal in the sense that as long as the exponent of T is independent of n, T , it cannot be improved
while retaining the dependency on n. Our algorithm improves upon the state of the art when T ≫ 1
and T ≪ n.

We also consider the problem of approximate triangle counting in sparse graphs, parameterized
by the number of edges m. The best known algorithm runs in time Õϵ

(
m3/2

T

)
[Eden et al., SIAM

Journal on Computing, 2017]. An algorithm by Alon et al. [JACM, 1995] for exact triangle counting
that runs in time Õ(m2ω/(ω+1)). We again get an algorithm whose complexity has a state-of-the-art
dependency on m while having negative dependency on T . Specifically, our algorithm runs in time
O
(

m2ω/(ω+1)

T 2(ω−1)/(ω+1)

)
·poly(no(1)/ϵ). This is again optimal in the sense that no better constant exponent

of T is possible without worsening the dependency on m. This algorithm improves upon the state of
the art when T ≫ 1 and T ≪

√
m.

In both cases, algorithms with time complexity matching query complexity lower bounds were
known on some range of parameters. While those algorithms have optimal query complexity for the
whole range of T , the time complexity departs from the query complexity and is no longer optimal
(as we show) for T ≪ n and T ≪

√
m, respectively. We focus on the time complexity in this range

of T . To the best of our knowledge, this is the first paper considering the discrepancy between query
and time complexity in graph parameter estimation.
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1 Introduction

The problem of counting triangles in a graph is both a fundamental problem in graph
algorithms and a problem with many applications, for example in network science [5], biology
[8, 19, 21] or sociology [25, 15]. Triangle counting is, also for these reasons, one of the basic
procedures in graph mining. Consequently, triangle counting has received a lot of attention
both in the theoretical and applied communities.
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There are algorithms for exact triangle counting that have time complexity Õ(nω) 1 and
Õ(m2ω/(ω+1)) [3] where ω is the smallest constant such that two n × n matrices can be
multiplied in time nω+o(1).

A natural variant of this problem is approximate triangle counting. In this problem, we are
given a graph with T triangles and want to output T̂ = (1± ϵ)T with probability 2/3. Several
algorithms are known for approximate triangle counting that have negative dependence on
the number of triangles T . Assuming the algorithm may sample random vertices and edges,
there are algorithms that run in time Oϵ( n3

T ) 2 and Õϵ( m3/2

T ) [9]3. However, no algorithm is
known that would get the best of both worlds – algorithms with state-of-the-art dependency
on n or m while being negatively dependent on T . We show two such algorithms in this
paper. Moreover, our algorithms are optimal in the following sense: the dependence on T in
the time complexity of our algorithms cannot be improved without worsening the dependency
on n or m as long as the exponent of T is constant (i.e., is independent of n, m, T ). This
optimality follows from the lower bound shown by Eden, Levi, Ron, and Seshadhri [9], as we
show in the full version of this paper.

The main contribution of our paper is an algorithm for approximate triangle counting
that runs in time Õϵ

(
nω

T ω−2

)
. We then use it to give an algorithm for the same problem

running in time Õϵ

(
m2ω/(ω+1)

T 2(ω−1)/(ω+1)

)
. This improves upon our first algorithm for sparse graphs.

Note that both time complexities are sublinear for sufficiently large values of T . To the best
of our knowledge, this is the first work that uses fast matrix multiplication in sublinear-time
algorithms. Assuming constant ϵ, our algorithms improve upon the state-of-the-art when
T ≪ n, and T ≫ 1 or T ≪

√
m and T ≫ 1 (for Algorithm 4 and Algorithm 5, respectively).

In other words, our algorithms improve upon the state of the art when the time complexity
(of both our and the state-of-the-art algorithms) is ≫ n2 and ≫ m, respectively. Figure 1
shows a plot of the complexity of our algorithms, in comparison to other algorithms for
approximate triangle counting.

The basic approach we use is to sample vertices, recursively count triangles in the subgraph
induced by these sampled vertices, and estimate the total number of triangles based on
this count. The main hurdle in this approach is that when a vertex is contained in many
triangles (we call such a vertex triangle-heavy, and triangle-light otherwise), this results in a
poor concentration of the number of triangles in the induced subgraph as the inclusion of
one vertex can make a large difference in the number of triangles. We get around this by
introducing a procedure based on fast matrix multiplication which finds all vertices contained
in many triangles, and a procedure for approximately counting triangles that contain at
least one such vertex. We count triangles that consist of light vertices separately. The fact
that the vertices are light helps us ensure concentration of our estimate. These triangles are
counted using a recursive approach. An obstacle to overcome is that in some cases the time
spent in each successive level of recursion may grow exponentially.

1 We use Õ(f(x)) with the meaning that it ignores an f(x)o(1) factor; this is necessary as ω only
determines the time complexity up to no(1). This differs from the usual use in which Õ(f(x)) =
∪c>0O(f(x) logc f(x)). Õϵ in addition ignores poly( 1

ϵ ).
2 This algorithm follows from a paper of Lipton, Naughton, Schneider, and Seshadhri [20]. In this paper,

the authors show an algorithm that gives a relative approximation to the bias of a Bernoulli trial. One
may reduce approximate triangle counting to this problem by picking at random three vertices and
checking whether they form a triangle. See also the presentation of Watanabe [24].

3 The main result of the paper is an algorithm and lower bound in a slightly different setting. This
algorithm is only mentioned in the paper briefly.
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Figure 1 Comparison of the time complexities, assuming ϵ is constant. This plot assumes the
best currently known bound ω < 2.3728596 from [2]. For more detail, see Table 1.

We find it surprising that it is sufficient to use matrix multiplication to find the vertices
contained in many triangles. That is, the matrix multiplication is only used to decide which
triangles are going to be counted by which subroutine, while the counting itself is done
without the help of matrix multiplication.

The setting. When an algorithm runs in sublinear time, it is of importance how the
algorithm is allowed to access the graph. This is because the algorithm does not have the
time to pre-process the whole graph. We assume the following standard setting: the algorithm
may in constant time (1) get the i-th vertex, (2) get the j-th neighbor of a given vertex, (3)
query the degree of a given vertex, and (4) given two vertices, tell whether they are adjacent
or not (this is called the pair query). In the second part of this paper, we assume a setting
where instead of the query (1), we can in constant time (1’) get the i-th edge. This setting is
also standard in the area of sublinear algorithms. As the main contribution of this paper is
in the superlinear regime (as this is where we improve upon the state of the art), we do not
describe the settings in more detail. See, for example, [13] for a more detailed description.

Time complexity vs. query complexity. In the area of sublinear algorithms, it is customary
to focus on the query complexity (that is the number of queries, in the above sense, performed)
of an algorithm, as opposed to the time complexity. The time complexity is then usually
(near-)linear in the query complexity. However, this is the case only in the sublinear regime,
and it breaks down when the time complexity is superlinear4. In this case, one may always
read the whole graph in O(n + m) queries. The time complexity is then usually significantly
larger than the query complexity. This regime is our main focus.

Specifically, an algorithm is described in [9] that uses the edge access query (1’) and has
query complexity Õϵ(min(n + m, m3/2/T )). This is known to be near-optimal5 [11]. In the
sublinear regime (that is, for T large enough), the asymptotic time complexity is the same

4 It may seem confusing talking about a sublinear-time algorithm having superlinear time complexity.
The reason is that an algorithm is usually said to be sublinear time if its complexity is sublinear for
some setting of the parameters (but not necessarily for all).

5 Whenever we talk about optimality, we consider the case of ϵ being constant.
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as the query complexity and it is, therefore, also near-optimal. However, in the superlinear
regime, the time complexity is polynomially larger than the query complexity. Up until now,
nothing was known about whether the time complexity can be improved in this case. We
answer this question positively. In doing this, we give, to the best of our knowledge, the first
algorithm answering a question of this type (that is, a question regarding the discrepancy
between the time and query complexities in the superlinear regime).

1.1 Our results
The main contributions of this paper are the following two algorithms for approximate
triangle counting. The first algorithm (Algorithm 4) is suitable for dense graphs and its
time complexity is parameterized by n, T , and ϵ. The second algorithm (Algorithm 5) is
suitable for sparse graphs and its time complexity is parameterized by m and T . Both of our
algorithms have a state-of-the-art dependency on n, m while being negatively dependent on T .
Our algorithms improve upon the existing algorithms when 1≪ T ≪ n and 1≪ T ≪

√
m,

respectively.
We compare these results to the previous work in the following table. These time

complexities are also plotted in Figure 1.

Table 1 Algorithms for approximate triangle counting. Algorithms with complexity independent
of ϵ in fact solve exact triangle counting. (Note that algorithms with dependency on ϵ have the
dependency hidden in Oϵ in this table.)

Dense Sparse

This work Õϵ

(
nω

T ω−2

)
Õϵ

(
m2ω/(ω+1)

T 2(ω−1)/(ω+1)

)
Sampling algorithm [20] Oϵ( n3

T
)

Fast matrix multiplication Õ(nω)

Alon, Yuster, and Zwick[3] Õ(m2ω/(ω+1))

Eden et. al. [9] Ω
(

min(n2, n3

T
)
)

Õϵ( m3/2

T
), Ω

(
min(m, m3/2

T
)
)

1.2 Related work
Algorithms. The number of triangles in a graph can be trivially counted in time O(n3). Itai
and Rodeh [16] obtained an algorithm that runs in time O(m3/2), a significant improvement for
sparse graphs. A simpler algorithm with the same complexity, based on bounds on arboricity
has been given by Chiba and Nishizeki [7]. A more efficient algorithm for approximate
triangle counting has been obtained by Kolountzakis, Miller, Peng, and Tsourakakis [18]. In
their paper, the authors presented an algorithm that runs in time Õϵ(m + m3/2

T ). This has
been later improved by Eden et. al. [9] to Õϵ( n

T 1/3 + m3/2

T ) when having vertex queries and
not edge queries (having query (1) but not (1′)) and to Õϵ( m3/2

T ) when having edge queries
(query (1′)).

While fast matrix multiplication gives a Õ(nω) algorithm for exact triangle counting, it
is not immediately clear an improvement can be achieved in sparse graphs. In their paper,
Alon, Yuster, and Zwick [3] show an algorithm for exact triangle counting that runs in
time Õ(m2ω/(ω+1)). This algorithm works by counting triangles whose all vertices have high
degree using matrix multiplication while using a naïve algorithm for the rest of the graph.
We use a variant of this approach for approximate triangle counting in sparse graphs in
Section 3.
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Sampling from graphs in order to estimate the number of triangles has been considered
many times [23, 22, 17, 6]; for more details, see the introduction of [17]. The bounds then
often depend on an upper bound on the number of triangles containing any single edge or
similar parameters, for example in [22] or [23]. In this paper, we go further in the sense
that we use a similar sampling approach (in fact, we use the same sampling scheme that
was used in [6] but use a finer analysis) but explicitly ensure the bound on the number of
triangles containing any single vertex. In other papers using similar sampling schemes, it is
just assumed that this or a similar bound is already satisfied for the input instance.

Lower bounds. From the side of lower bounds, Eden et. al. [9] have proven a lower bound
on the query complexity, thus also implying a lower bound on the time complexity. This
lower bound is presented for the setting when random edge queries are not allowed, but the
lower bound of Ω(min(m, m3/2/T )) also holds in the setting when they are. This was made
explicit by Eden and Rosenbaum [12] who presented a significantly simpler proof based on
communication complexity.

▶ Theorem 1 (Theorem 4.7 of [12]). For any n, m ∈ O(n2), T ∈ O(m3/2), it holds that
any multiplicative-approximation algorithm for the number of triangles in a graph must
perform Ω

(
min

(
m, m3/2

T

))
queries, where the allowed queries are degree queries, pair

queries, random neighbor queries, random vertex queries, and random edge queries.

We use this lower bound to prove the claim that the exponent of T in Theorem 12 is optimal,
out of all algorithms running in time Õ(nω/T c) for some constant c and similarly the exponent
in Theorem 15 is optimal out of all algorithms running in time Õ(m2ω/(ω+1)/T c).

By choosing m = Θ(n2) in the above theorem, it follows that

▶ Corollary 2. For any n and T ∈ O(n3), it holds that any multiplicative-approximation
algorithm for the number of triangles in a graph must perform Ω

(
min

(
n2, n3

T

))
queries,

where the allowed queries are degree queries, pair queries, neighbor queries, random vertex
queries, and random edge queries.

Fast matrix multiplication. There is a large literature on fast matrix multiplication. We
only mention here the asymptotically most efficient matrix multiplication algorithm which
is currently the algorithm by Alman and Williams [2] which runs in time Õ(nω) for some
ω < 2.3728596.

1.3 Technical overview
1.3.1 Triangle counting in dense graphs
Sampling and (lack of) concentration. Suppose we sample each vertex independently
with some probability p. The expected number of triangles in the subgraph induced by the
sampled vertices is then p3T . If we were able to show concentration around the expected
value, we could count the number of triangles in this subgraph and based on that, estimate
the number of triangles in the original graph.

Unfortunately, the number of triangles is not concentrated; for example, in the case when
there is one vertex that is contained in all triangles. We show that we get concentration
if we limit the number of triangles containing any single vertex. We, therefore, have some
threshold τ and call all vertices that are contained in more than τ triangles triangle-heavy.
Assume that the graph does not have any triangle-heavy vertices. By choosing τ sufficiently
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small and by choosing p sufficiently large, we may get a good estimate of the number of
triangles in the original graph, based on the number of triangles in the subgraph induced by
the sampled vertices.

In the final algorithm, we separately count triangles that contain at least one triangle-
heavy vertex and triangles that do not. For this, we need to be able to find all triangle-heavy
vertices in the graph and then estimate the number of triangles that contain at least one
triangle-heavy vertex. We efficiently count triangles with no triangle-heavy vertex by reducing
the problem to one on a smaller graph by the sampling procedure we just described.

Finding triangle-heavy vertices by matrix multiplication. We now sketch how to find the
set of vertices that are contained in many triangles. We sample each vertex with some small
probability p′. This gives a subset of vertices of size ≈ p′n. We find all vertices that are
contained in a triangle in the subgraph induced by the sampled vertices in time O

(
(p′n)ω

)
by

using matrix multiplication. We repeat this experiment an appropriate number of times. We
report vertices that were contained in at least one triangle in at least one repetition of the
experiment. If a vertex is contained in few triangles, the probability that it is reported can
be bounded by using union bound over all triangles it is contained in and over all iterations.
The intuition for why vertices contained in many triangles are reported with good probability
is the following. We bound the variance of the total number of triangles that the vertex will
be in over all repetitions. The repetitions are independent, but there are correlations between
triangles within one repetition. If we set the probability p′ to be small enough, we can show
that these correlations are small. This allows us to show concentration of the number of
triangles containing any single vertex that are observed in the sampled subgraphs.

Counting triangles with triangle-heavy vertices. Suppose we are given a subset of vertices
such that each of those vertices is contained in many triangles. We now sketch how to give
a factor 3 + ϵ approximation to the number of triangles that contain at least one of these
vertices. In the body of the paper, we then give a (1 + ϵ)-approximation by a more careful
argument.

We estimate separately for each vertex the number of triangles it is contained in. The
fact that each vertex individually is in many triangles allows us to employ a concentration
argument separately for each vertex. We then use union bound over all vertices. Specifically,
for each vertex v from the set of vertices that is given to us, we perform the following
experiment many times: we sample two vertices and we check whether they form a triangle
with v. We use the proportion of the experiments that ended up with a triangle to estimate
the number of triangles v is contained in. We add together the estimates for all vertices in
the set. This is where the factor 3 comes from – a triangle may be counted from all its 3
vertices.

Recursive algorithm. The last trick we introduce is that we use recursion to approximately
count the triangles in the sampled subgraph. Doing this in such a way to give a correct
algorithm with the desired complexity is the technically most challenging part of our paper.
An obstacle is that we need the precision to be increasing in the depth of recursion. Specifically,
in our algorithm, the allowed error decreases at an exponential rate in the depth of recursion.
Moreover, we need to use probability amplification, meaning that the number of recursive
calls also grows exponentially with the depth of recursion. This leads, in some situations, to
the time complexity of the k-th level of recursion increasing exponentially in k; we bound
this time.
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1.3.2 Triangle counting in sparse graphs
We set a parameter θ and say a vertex is degree-heavy if its degree is at least θ and degree-light
otherwise. We count separately (a) triangles on the subgraph induced by the degree-heavy
vertices and (b) triangles that contain at least one degree-light vertex. This is basically the
idea used by Alon, Yester, and Zwick [3] for their exact triangle-counting algorithm. We
use our algorithm for approximate triangle counting in dense graphs to count the triangles
from case (a) and sampling to count the triangles (b). The sampling-based estimation is
based on ideas from [7, 9]. Specifically, we assign each triangle to its vertex with the lowest
degree (breaking ties arbitrarily). We then repeatedly perform the following experiment:
pick an edge uniformly at random; consider its endpoint v with the lower degree; pick one
of its neighbors at random; check whether it forms a triangle together with the edge we
have sampled and whether the triangle is assigned to v. If so, return d(v), otherwise return
0. We estimate the number of triangles based on the average of the returned values of the
experiments.

1.4 Notation
Throughout the paper, we denote the number of vertices and edges of a graph by n and m,
respectively. We use T to denote the number of triangles. We define a± b = [a− b, a + b].
This can be used for example in (1 ± ϵ)a which is then equal to [(1 − ϵ)a, (1 + ϵ)a]. We
call (1 ± ϵ)-approximation to a number a any number b such that b ∈ (1 ± ϵ)a. Similarly,
we call additive ±c approximation to a number a any number b such that b ∈ a ± c. We
call diamond a graph isomorphic to and butterfly a graph isomorphic to . By “the
number of diamonds in G” we mean the number of, not necessarily induced, subgraphs of G

isomorphic to a diamond. We similarly talk about “the number of butterflies in a graph”.
We denote the subgraph of G induced by V ′ ⊆ V by G[V ′].

2 Triangle counting in dense graphs

In this section, we present the main result of our paper – an algorithm for approximate
triangle counting, parameterized by n and the number of triangles T . In the lemmas that
follow, we prove, among other things, bounds on the expectation of the estimators. We do
this because our algorithm requires some “advice” and having a bound on the expectation
will allow us to remove the need for this advice, as we describe in Section 2.5. We now define
some notation that we will need.

We call a vertex triangle-dense for a parameter τ if there are at least τ triangles that
contain the vertex and triangle-light if at most τ/20 triangles contain it (there can thus be
vertices that are neither triangle-light nor triangle-heavy). We define Tv to be the number of
triangles containing the vertex v. We abuse notation and also denote by Tv the set of all
triangles containing v. We use Tv(G) instead when we want to explicitly specify the graph.
T denotes the number of triangles in G but we again abuse notation and use this to also
denote the set of triangles. Again, if we want to specify the graph, we use T (G).

We now prove a simple lemma on fractional moments of the binomial distribution. We
will use this to bound the time complexity of matrix multiplication executed on a random
subgraph of some given graph. Specifically, we will use it on a subgraph obtained by keeping
each vertex with some appropriately chosen probability and removing the other vertices. The
lemma also holds for other exponents than ω, but fixing the exponent allows for a simpler
proof.
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▶ Lemma 3. Assume p ≥ 1/n. It holds that E(Bin(n, p)ω) = O(nωpω).

Proof. Bin(n, p) has its third moment equal to

(n(n− 1)(n− 2)p3) + 3(n(n− 1)p2) + np = O(n3p3)

where the equality holds because p ≥ 1/n. Since ω < 3, the function xω/3 is concave. By the
Jensen’s inequality, we then get E(Bin(n, p)ω) ≤

(
E(Bin(n, p)3)

)ω/3 = O(nωpω). ◀

2.1 Triangle-light subgraph
We show a reduction from the problem of approximately counting triangles in a graph with
no triangle-heavy vertices to the problem of approximately counting triangles in a smaller
graph. Before that, we need to prove the following lemma.

▶ Lemma 4. Let G be a graph with T triangles such that any vertex is contained in at most
τ triangles and let D, B be the number of diamonds and butterflies in G, respectively. Then
D + B ≤ 3

2 τT .

Proof. Let S be the number of pairs (△1,△2) of triangles in G such that △1 and △2 share at
least one vertex. It holds D + B ≤ S/2 (the factor of 2 is there because the pairs are ordered).
Consider a fixed triangle △1 = uvw. How many triangles are there that share a vertex with
△1? Each of the vertices u, v, w can be contained in at most τ − 1 other triangles. There
can be, therefore, at most 3(τ − 1) incidences between △1 and other triangles containing at
least one of the vertices u, v, w. Therefore D + B ≤ S/2 ≤ 3T (τ − 1)/2. ◀

We are now ready to prove the following lemma. Note that to use it (in order to set the
probability p), one has to have a lower bound on the number of triangles. We resolve this
issue later.

▶ Lemma 5. Let G′ = (V ′, E′) be the induced subgraph of G resulting from keeping each vertex
with probability p ≥ max(5 1

3√
ϵ2T

, 10 1
ϵ
√

T/τ
) and removing it otherwise. Let T̂ = |T (G′)|/p3.

Then T̂ is an unbiased estimate of T . Moreover if any vertex v ∈ G is contained in at most
τ triangles, then T̂ ∈ (1± ϵ)T with probability at least 19/20.

Proof. Let △ be a triangle in G. Let X△ = 1 if △ ∈ T (G′) and 0 otherwise. Let T ′ = T (G′).
It holds that

E(T̂ ) = E(T ′/p3) =
∑
△∈T

E(X△)/p3 = T

and the estimate is, therefore, unbiased.
We now bound V ar(T ′). Recall that T (G) is the set of triangles in G. Let D(G) the set

of diamonds in G, B(G) the set of butterflies in G, and T̈ (G) the set of disjoint (unordered)
pairs of triangles in G. Let D = |D(G)|, B = |B(G)|, and T̈ = |T̈ (G)|. By {△1,△2} ∈ D(G)
we mean that △1 ∪△2 = A for some A ∈ D(G) and analogously for B(G) and T̈ (G).

We first bound the second moment of T ′

E(T ′2) =E

(( ∑
△∈T (G)

X△

)2
)

=E
( ∑

△∈T (G)

X2
△

)
+ E

( ∑
△1,△2∈T (G)

△1 ̸=△2

X△1X△2

)
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=E
( ∑

△∈T (G)

X2
△

)
+ E

(
2

∑
{△1,△2}∈D(G)

X△1X△2

)
+ E

(
2

∑
{△1,△2}∈B(G)

X△1X△2

)
+ E

(
2

∑
{△1,△2}∈T̈ (G)

X△1X△2

)
=p3T + 2p4D + 2p5B + 2p6T̈

≤p3T + 2(D + B)p4 + p6T 2

≤p3T + 3p4τT + p6T 2

where we have used that D + B ≤ 3
2 τT (by Lemma 4) and 2T̈ ≤ T 2. At the same time,

E(T ′) = p3T . Therefore,

V ar(T ′) = E(T ′2)− E(T ′)2 ≤ p3T + 3p4τT.

This means that E(T̂ ) = T and V ar(T̂ ) = V ar( 1
p3 T ′) = 1

p3 T + 3
p2 τT . Since p ≥

max(5 1
3√

ϵ2T
, 10 1

ϵ
√

T/τ
), it holds V ar(T̂ ) ≤ (1/53 + 3/102)ϵ2T 2 < 1

20 ϵ2T 2. It, therefore

holds by the Chebyshev inequality that P (|T̂ − T | ≥ ϵT ) ≤ 1/20. ◀

2.2 Triangle-heavy subgraph
We now show an algorithm that approximately counts triangles that contain at least one
vertex from set VH where VH is some given set that does not contain any triangle-light
vertices.

Algorithm 1 Count (1 ± ϵ)-approximately triangles in G containing a vertex from VH .

1 for v ∈ VH do
2 T̂v ← 0
3 repeat 360 n2 log n

ϵ2τ times
4 Sample u, w ∈ V

5 Let ℓ = |{u, v, w} ∩ VH}|
6 If uvw forms a triangle, increment T̂v by ϵ2τ

360ℓ log n

7 return
∑

v∈VH
T̂v

▶ Lemma 6. Given a set VH , Algorithm 1 returns an unbiased estimate of the number of
triangles containing at least one vertex from VH .

Assume VH contains all triangle-heavy vertices of G and no triangle-light vertices. Then
Algorithm 1 returns (1± ϵ)-approximation of the number of triangles that contain at least
one triangle-heavy vertex with probability at least 1−O( 1

n ). It runs in time O
(

T n2 log n
ϵ2τ2

)
.

Proof. We introduce charges on vertices. For any triangle △ that contains at least one vertex
that is in VH , we divide and charge single unit to the vertices in △∩ VH , dividing it fairly
(if there are, e.g., two vertices from VH in the triangle, they are both charged 1/2). Let χv

be the charge on vertex v. The total amount charged (that is,
∑

v∈VH
χv) is equal to the

number of triangles that contain at least one vertex from VH . Note that this is the quantity
we want to estimate.
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The algorithm considers v ∈ VH and samples one pair of vertices u, w. Consider the
amount charged by uvw to v; call it χ′

v. It holds that E(χ′
v) = χv/n2. When uvw form a

triangle, the algorithm increments T̂v by ϵ2τ
360ℓ log n = χ′

vϵ2τ
360 log n . Therefore, the increment is, in

expectation, equal to χvϵ2τ
360n2 log n . Since there are n2 log n

360ϵ2τ repetitions, it holds

E(T̂v) = 360n2 log n

ϵ2τ
· χvϵ2τ

360n2 log n
= χv.

By the linearity of expectation, we have E(
∑

v∈VH
T̂v) =

∑
v∈VH

χv which we said above is
equal to the number of triangles with empty intersection with VH .

We now prove concentration around mean. For each vertex, we have 360n2 log n
ϵ2τ independent

random variables corresponding to the increments in T̂ . These random variables have values
between 0 and ϵ2τ

360 log n and their sum has expectation χv ≥ Tv

3 ≥
τ
60 where the second

inequality holds from the assumption that VH contains no triangle-light vertices. By the
Chernoff bound,

P (|T̂v − Tv| ≥ ϵTv) ≤ 2 exp
(
− ϵ2τ/60

3ϵ2τ/(360 log n)

)
≤ 2

n2 .

By the union bound, it holds for all v that T̂v is an (1±ϵ)-approximate of Tv, with probability
at least 1− 2

n . On this event, the algorithm correctly gives a (1± ϵ)-approximation of the
number of triangles containing at least one triangle-heavy vertex. ◀

2.3 Finding the triangle-heavy subgraph
In this section, we show how to find a set of vertices that contains each triangle-heavy vertex
with probability at least 2/3 and each triangle-light vertex with probability at most 1/3.
This guarantee may be strengthened by probability amplification (applying the probability
amplification separately to each vertex) to make sure that, with high probability, all triangle-
heavy vertices are reported, and none of the triangle-light vertices are. This only adds a
O(log n) factor to the time complexity of this subroutine.

We solve separately the case τ ≤ n and τ ≥ n. On the range τ ≤ n, we get an algorithm
running in time Õ( nω

τω−2 ). On the range τ ≥ n, we get time complexity O( n3

τ ) ⊆ Õ( nω

τω−2 )
(the inclusion holds on this range of τ). This means that on this range, our bound is not
tight. However, this is the case only on the range of T for which a near-optimal algorithm
was already known, and we only show this for completeness; the reader may wish to skip the
case of τ ≥ n. Putting the guarantees for the two ranges together, it follows that

▶ Corollary 7. There is an algorithm that with probability at least 1 − O( 1
n ) reports all

triangle-heavy vertices and no triangle-light vertices while having time complexity Õ( nω

τω−2 ).

2.3.1 The case τ ≤ n

▶ Lemma 8. Assuming τ ≤ n, Algorithm 2 lists any triangle-heavy vertex with probability
at least 2/3 and any triangle-light vertex with probability at most 1/3. It has expected time
complexity Õ( nω

τω−2 ).

6 This may be done as follows. Raise the adjacency matrix of G[Vi] to the third power. Each diagonal
element in this matrix corresponds to a vertex (as rows and columns correspond to vertices and diagonal
vertices have both the row and column corresponding to the same vertex). Consider the vertices that
have a non-zero value on the corresponding diagonal position. These are exactly the vertices contained
in some triangle by standard equivalence between taking powers of adjacency matrices and between
counting walks in graphs.
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Algorithm 2 Distinguish triangle-heavy vertices from triangle-light vertices.

1 M← ∅
2 for i ∈ [k = 6τ2] do
3 Vi ← sample each vertex v ∈ V independently with probability p = τ−1

4 V ′
i ← find all vertices contained in a triangle in G[Vi] in time Õ(|Vi|ω) 6

5 M←M ∪ V ′
i

6 return M

Proof. Consider a triangle-light vertex v. That is, there are at most τ/20 triangles in G

containing v. The probability that a triangle is discovered in one iteration is, by the union
bound, at most τp3/20. Taking a union bound over the k iterations, the probability that a
triangle containing v is found (and thus v reported) is at most kτp3/20 < 1/3.

Consider a triangle-heavy vertex v. Let Xi for i ∈ [k] be the number of triangles containing
v discovered in the i-th iteration. For △ ∈ T , let X△,i be an indicator that triangle △ is
discovered in i-th iteration. It now holds Xi =

∑
△∈T,v∈△ X△,i. Let X =

∑k
i=1 Xi.

By the linearity of expectation, it holds that

E(X) = E
( k∑

i=1
Xi

)
= kp3Tv = 6Tv/τ.

We now bound the variance of X. We first bound

V ar(Xi) ≤ E(X2
i ) = E

( ∑
△1,△2∈Tv

X△1,iX△2,i

)
≤ p3Tv + p4T 2

v

where the last inequality holds because there are ≤ T 2
v terms (i.e. pairs of triangles containing

v) that are 1 with probability ≤ p4 (such pairs have at least 4 vertices) and there are Tv

terms (i.e. pairs of triangles containing v) that are 1 with probability p3 (these are pairs that
have △1 = △2 and the pair thus has 3 vertices). Since the iterations are independent, it
holds that

V ar(X) = V ar
( k∑

i=1
Xi

)
= kV ar(Xi) ≤ 6τ2(p3Tv + p4T 2

v ) = 6
τ

Tv + 6
τ2 T 2

v ≤
12T 2

v

τ2

where the last inequality holds because Tv ≥ τ . It, therefore, holds by the Chebyshev
inequality that

P (X = 0) ≤ V ar(X)
E(X)2 ≤

12T 2
v /τ2

(6Tv/τ)2 = 1/3.

We now argue the time complexity. It holds that |Vi| ∼ Bin(n, p). By Lemma 3, each
iteration has expected time complexity Õ(nωpω) because of the assumption p = 1/τ ≥ 1/n.
There are O(p−2) iterations. The total time complexity is thus Õ(p−2pωnω) = Õ

(
nω

τω−2

)
. ◀

2.3.2 The case τ > n

We repeat that this case only applies to the range where an optimal algorithm is already
known (see the beginning of Section 2.3) and we only show this for completeness; the reader
may wish to skip this part.
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Algorithm 3 Distinguish triangle-heavy vertices from triangle-light vertices.

1 M← ∅
2 for v ∈ V do
3 repeat k = 2n2/τ times
4 Sample u, w ∈ V

5 if uvw ∈ T then
6 M←M∪ {v}

7 return M

▶ Lemma 9. Algorithm 3 lists any triangle-heavy vertex with probability at least 2/3 and
any triangle-light vertex with probability at most 1/3. It runs in time Õ( n3

τ ).

Proof. Consider the probability that a triangle-light vertex v is reported. Similarly to the
case τ ≤ n, it holds by the union bound over all incident triangles and over the k iterations
that this probability is at most τ/20 · k · 1/n2 ≤ 1/3.

Consider now the probability a triangle-heavy vertex v is reported. In each iteration,
the probability that we find an incident triangle is Tv/n2 ≥ τ/n2. The probability that we
report v is now at least 1− (1− τ/n2)2n2/τ ≥ 1− 1/e2 ≥ 2/3. ◀

2.4 Recursive algorithm
We now take the subroutines presented above and put them together into one recursive
algorithm. Our proof of correctness works by induction on the depth of recursion. For this
reason, the statement assumes the input graph can be random, as we use the inductive
hypothesis on a sampled subgraph of the input graph. This algorithm requires advice T̃ such
that T̃ ≤ E(T ) (note that T is a random variable as the input graph may be random); we
will remove the need for advice later. As we already mentioned, for the advice removal, we
will need to prove a bound on the expectation of the estimate.

We show an algorithm that gives additive approximation. The reason is that this is better
suited for performing recursive calls. Specifically, the time complexity of getting relative
approximation is worse when T is small. If it happened that most triangles contained a
triangle-heavy vertex, we would recurse on a subgraph with few triangles, making it more
costly to get the relative approximation. We then show how this algorithm can be turned
into an algorithm that gives relative approximation.

Note that line 11 can be efficiently implemented as follows: We pick X ∼ Bin(n, p), then
sample X vertices without replacement, keep only the vertices from V \ VH .

▶ Lemma 10. Suppose G is a (possibly random) graph. Given parameters A, T̃ , Algorithm 4
returns T̂ such that E(T̂ ) ≤ E(T ) 7. Moreover, if T̃ ≥ E(T ), Algorithm 4 returns T̂ ∈ T ±A

with probability at least 4/5. It runs in expected time Õ
(

nω

(A2/T̃ )ω−2 + T̃ 4+1/3T n2

A6

)
.

Proof. The structure of the proof is as follows. We first prove that E(T̂ ) ≤ E(T ). We
prove this by induction. We then go on to prove correctness (that is, that the returned
answer is (1± ϵ)-approximation with probability 4/5), also by induction. In both cases, the
induction is on the depth of recursion. Note that, while the instances on which the algorithm

7 Since the graph can be random, T is a random variable
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Algorithm 4 Estimate the number of triangles in G, advice T̃ , and error parameter A.

1 q ← 1/ log(nT/A)
2 if A2 ≤ 107

q T̃ then
3 return number of triangles in G, computed using matrix multiplication
4 if T̃ < 1/5 then
5 return 0
6 q ← 1/ log

(
nT
A

)
7 T̃ ′ = 20T̃

8 τ ← A2q2

40000T̃ ′

9 VH ← triangle-heavy vertices w.r.t. τ using Corollary 7
10 T̂H ← estimate number of triangles with non-empty intersection with VH using

Algorithm 1 with ϵ = qA/(2T̃ ′)
11 V ′ ← sample each vertex from V \ VH independently with probability

p = 20
√

τT̃ ′

qA = 1/10
12 T̂V ′ ← estimate number of triangles in G[V ′] by a recursive call with A = (1− q)p3A

and with T̃ = T̃ p3; amplify success probability to 19/20 by taking median of 7
independent executions

13 return T̂H + T̂V ′/p3

is called in the recursive calls are random, the recursion tree is deterministic. This means
that performing induction on the depth of recursion is formally correct. Finally, we prove the
time complexity; in this part, we analyze the whole recursion tree instead of using induction.

Estimate’s expected value. We now prove E(T̂ |G) ≤ E(T |G). We prove this by induction
on the depth of recursion. If the condition on line 2 is satisfied, then T̂ = T and the inequality
thus holds. If the condition on line 4 is satisfied, then T̂ = 0 and the inequality also holds.
Consider now the case when neither of these conditions are satisfied. By the inductive
hypothesis, E(T̂V ′ |V ′, G) ≤ E(TV ′ |V ′, G). Moreover, by Lemma 5, E(TV ′/p3|VH , G) =
E(T (G[V \ VH ])|VH , G) and therefore

E(T̂V ′/p3|VH , G) = E(E(T̂V ′/p3|V ′, G)|VH , G)
≤ E(E(TV ′/p3|V ′, G)|VH , G)
= E(TV ′/p3|VH , G) = E(T (G[V \ VH ])|VH , G).

It follows from Lemma 6 that E(T̂H |VH , G) is an unbiased estimate of the number of triangles
in G containing at least one vertex from VH . This implies that E(T̂H |G) = T −T (G[V \VH ]).
We now put this all together:

E(T̂ ) = E
(
E(T̂H |VH , G) + E(T̂V ′/p3|VH , G)

)
≤ E

(
E(T̂H |VH , G)

)
+ E

(
E(T (G[V \ VH ])|VH , G)

)
= E(T − T (G[V \ VH ])) + E(T (G[V \ VH ])) = E(T ).

Note that this bound on the expectation is not using in any way that VH contains all
triangle-heavy vertices and no triangle-light vertices.
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Correctness. We first focus on the base case. Consider the case A2 ≤ T̃ . In this case, the
condition on line 2 is satisfied. The algorithm is then clearly correct.

We now focus on the case when the condition on line 4 is satisfied. Consider one call of
the algorithm in the tree of recursion where this is the case. Let k be the depth of this call
in the tree. We denote by G, T, n, A, T̃ , ϵ the respective values in this specific call. We use
the subscript 0 to denote the respective values in the original call. For example, T0 would be
the number of triangles in the whole graph on which the algorithm was executed.

It holds that E(T ) ≤ 1/103kT0 ≤ 1/103kT̃0 = T̃ . It holds by the Markov’s inequality
that P (5T̃ ≥ T ) ≥ 4/5. When T̃ < 1/5 (this is the condition on line 4), this means that
P (T = 0) ≥ 4/5, meaning that the algorithm is correct in this case and runs in time O(1).

We now prove the inductive step. Consider one recursive call, regardless of the level of
recursion. Again, we use G, T, n, A, T̃ , ϵ to denote the respective values. We assume that
T̃ ′ ≥ T in this call. This holds with probability at least 19/20 by the Markov inequality
as T̃ ′ = 20T̃ ≥ 20E(T ). We now bound the error probability by 3/20. Together with the
fact that P (T̃ ′ ≥ T ) ≥ 19/20, this gives a bound on the probability of the call returning an
invalid answer of 4/20. Let ϵ = qA

2T̃ ′ . It then holds ϵ ≤ qA
2T . We have p = 1/10. We show that

p ≥ max(5 1
3√

ϵ2T
, 10 1

ϵ
√

T/τ
) (this is the assumption of Lemma 5). It holds 1

10 ≥ 10 1
ϵ
√

T/τ

from the way we set τ . Because A2 ≥ 107

q T̃ , it also holds

5 1
3
√

ϵ2T
≤ 5

3
√

qA2/(4T̃ ′)
≤ 5

3
√

q 107

q T̃ /(4T̃ ′)
= 1

10 .

By Lemma 5, it holds with probability at least 19/20 that

T (G[V ′])/p3 ∈ (1± ϵ)T (G[V \ VH ]) ⊆ T (G[V \ VH ])± qA/2.

By the induction hypothesis, it holds that with probability at least 19/20, T̂V ′ = T (G[V ′])±
(1 − q)p3A. Note that E(Tk+1) = E(E(TV ′ |G)) ≤ E(T/103) ≤ T̃ /103 = T̃k+1, where the
subscript k+1 refers to the respective values at a call on recursion depth k + 1. This means
that the assumption on T̃ is satisfied. Also note that to get success probability 19/20,
it does suffice to take the median of 7 independent executions (as can be easily checked,
P (Bin(7, 1/5) ≥ g) < 1/20). Putting this together, with probability at least 18/20, it holds
that

T̂V ′/p3 ∈ T (G[V ′])/p3 ± (1− q)A ⊆ T (G[V \ VH ])± (1− q/2)A.

Moreover, with probability at least 19/20, T̂H = T (VH) ± ϵT (VH) ⊆ T (VH) ± qA/2 by
Lemma 6 where the inclusion holds because we have set ϵ = qA/(2T̃ ′) ≤ qA/(2T ) ≤
qA/(2T (VH)). By the union bound, with probability at least 17/20, |T̂H − T (VH)| ≤ qA/2
and |T (V ′)/p3−T (V \VH)| ≤ (1− q/2)A, in which case T̂H + T̂L/p3 = T ±A – the resulting
answer is correct. Including the probability that T̃ ′ ≤ T (we assumed in the analysis that
this is not the case), we get that the answer is correct with probability at least 16/20.

Time complexity. We again consider one recursive call and use G, T, n, A, T̃ , ϵ to denote the
respective values in this one call, and the subscript 0 is used to refer to the respective values
in the original call. We first show that we may ignore in the analysis the time spent on line 3.
Counting triangles exactly by using fast matrix multiplication takes Õ(nω) ⊆ Õ

(
nω

τω−2 + T̃ 4T n2

A6

)
time (the inclusion holds thanks to the assumption A2 ≤ T̃ which is satisfied on line 3). This
is equal to the bound on the time complexity of the call that we use below. In the rest of the
proof, we therefore ignore the time spent on line 3.
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The time complexity of line 9 is Õ( nω

τω−2 ) and complexity of line 10 is Õ( T n2

ϵ2τ2 ) = Õ( T̃ ′4T n2

q2A6 )
by Corollary 7 and Lemma 6, respectively (note that ϵ is defined on line 10). Since
p = 1/10, the number of vertices in a depth k recursive call is stochastically dominated by
Bin(n, 1/10k) 8 while the value of A is in a depth k recursive call multiplied by factor of(
(1− q)p3)k =

(
(1− q)/103)k and T̃ ′ = 1/103kT̃ ′

0. In each recursive call, we make 7 recursive
calls for the probability amplification. The number of calls at recursion depth k is then 7k.
The expected time spent in the depth k recursive calls on line 9 is

E
(

7k nω log n

τω−2

)
≤ Õ

(
7k nω

0 /10ωk

(q2ϵ2
0(1− q)k ∗ T̃ ′

0/103k)ω−2

)
= Õ

(
q4−2ω

( 7 · 103(ω−2)

(1− q)ω−210ω

)k

· nω
0

ϵ2
0T ω−2

0

)
.

This decreases exponentially since ω ≤ 2.5 9and, therefore, the time on line 9 is dominated
by the first call. (By changing constants in the algorithm, this argument can be made to
work even for asymptotically slower sub-cubic matrix multiplication algorithms.) However,
the time spent on line 10 is

E
(

7k T̃ ′4Tn2

q2A6

)
= 7k T̃ ′4E(T )n2

q2A6 ≤ 7k T̃ ′4
0/104·3k · T0/103k · n2/102k

q2A6
0(1− q)6k/106·3k

=
( 10

1− q

)k

· T̃ ′4
0T0n2

0
q2A6

0

which increases at an exponential rate. We now upper bound the number of recursive calls
(in other words, we upper bound k). In each subsequent recursive call, T̃ decreases by a
factor of 1/p3 = 103. This means that after log1000 T̃ + O(1) recursive calls, it will hold that
T̃ ≤ 1/20, in which case the algorithm finishes on line 4 in time O(1) with no additional
recursive calls. Therefore k ≤ log1000 T̃ + O(1). Since the amount of work at each level
of recursion increases exponentially, the work is dominated by the last level of recursion.
Thanks to our bound on k, the amount of time spent on line 8 is

O

(( 10
1− q

)log1000 T̃0+O(1)
· T̃ 4

0 T0n2

q2A6
0

)
=O
(

(1− q)− log1000 T̃0
T̃

4+1/3
0 T0n2

q2A6
0

)
=O
( T̃

4+1/3+log1000(1/(1−q))
0 T0n2

q2A6
0

)
and substituting q = 1/ log(nT/A), we get that the total time complexity is

Õ

(
q4−2ωnω

ϵ2T ω−2 + T̃ 4+1/3+log1000(1/(1−q))Tn2

q2A6

)
= Õ

(
nω

ϵ2T ω−2 + T̃ 4+1/3Tn2

A6

)
. ◀

We now get the following claim, which guarantees relative approximation, unlike Lemma 10.

▶ Proposition 11. There is an algorithm that, given ϵ > 0 and T̃ returns an estimate T̂ of
T , such that E(T̂ ) ≤ E(T ) of T and if, moreover, T ≤ T̃ ≤ 2T , it holds T̂ ∈ (1± ϵ)T with
probability at least 4/5. It runs in expected time Õ( nω

(ϵ2T )ω−2 + n2

ϵ6T 2/3 ).

Proof. By substituting A = ϵT̃ /2, it is sufficient to calculate approximation with additive
error A. This can be done by Lemma 10, giving us the desired bounds. ◀

8 This is the case as in each level of recursion, we keep each triangle-light vertex with probability p = 1/10
while removing all other vertices with high probability.

9 The argument works for ω > 2.5 if some constants in the algorithms are modified.
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2.5 Removing advice
We remove the dependency on T̃ by performing a geometric search. This method has been
used many times before, for example in [9, 14, 1, 10, 4, 11]. In our case, it is slightly more
complicated in that our algorithm requires both a lower and an upper bound on T . For
this reason, we describe the method in completeness. We also prove a variant that gives
a guarantee of absolute approximation. We will need this for triangle counting in sparse
graphs.

▶ Theorem 12. There is an algorithm that, given ϵ > 0 (respectively A) returns T̂ ∈
(1 ± ϵ)T (respectively T̂ ∈ T ± A) with probability at least 2/3. It runs in expected time
Õ( nω

(ϵ2T )ω−2 + n2

ϵ6T 2/3 ) (respectively Õ( nω

(A2/T̃ )ω−2 + T 5+1/3n2

A6 )).

Proof. We present the argument for the relative approximation. The exact same argument
gives the absolute approximation by using Lemma 10 in place of Proposition 11.

We start with T̃ =
(

n
3
)

and, in each step, divide T̃ by a factor of two. When it holds that
T̂ ≥ T̃ where T̂ is the estimate returned by the algorithm, we return T̂ as the final estimate
of T .

We now argue correctness. The estimate T̂ given by the algorithm is always non-negative
and it holds E(T̂ ) ≤ T . By Markov’s inequality, P (T̂ ≥ 2T ) ≤ 1/2, regardless of the
choice of T̃ . We amplify this probability to Θ(1/ log n) by taking the median of Θ(log log n)
independent executions. When T̂ ≥ T̃ (this is when we return T̂ as the final estimate), it
holds with probability at least 1 − O(1/ log n) that T̃ ≤ 2T as otherwise, it would be the
case that T̂ ≥ T̃ ≥ 2T which holds with probability O(1/ log n). Conditioned on T̃ ≤ 2T ,
the algorithm gives a (1± ϵ)-approximate estimate (respectively additive ±A estimate) by
Proposition 11 (respectively Lemma 10). By the union bound, the failure probability is then
arbitrarily small if we make the constants in Θ sufficiently small.

We now argue the time complexity. The probability amplification only increases the time
complexity by a O(log log n) factor. When T̃ ≤ T , with probability 1−O(1/ log n) we return
the estimate and quit. We now consider the calls of the algorithm with T̃ ≤ T . The time
complexity increases exponentially (as T is decreasing exponentially) while the probability
of performing a call is decreasing at a rate faster than exponential. Therefore, the time
complexity is dominated by the first call when T̃ ≤ T . This time complexity is as claimed by
Proposition 11 (respectively Lemma 10). ◀

2.6 Optimality
The lower bound of Eden et. al. [9] implies that our algorithm is in certain sense optimal.
Specifically, the exponent in the dependency on T cannot be improved without worsening
the dependency on n, as long as the exponent of T is constant. That still leaves open the
possibility of improving the dependency on n and getting an algorithm with a non-constant
exponent of T .

▶ Proposition 13. Suppose there is an algorithm which runs in time Õ
(

nω

T δ

)
for some constant

δ, and returns a constant-factor approximation of T with probability at least 2/3. Then
δ ≤ ω − 2.

Proof. Suppose δ > ω − 2. Then, for T = Θ(n), the algorithm runs in time o(n). This is in
contradiction to the lower bound of from [9] which states that any such algorithm has to run
in time Ω(n). ◀
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3 Triangle counting in sparse graphs

We now show how Algorithm 4 can be used to get an efficient algorithm for counting triangles
in a sparse graph. The algorithm finds all vertices with degree at least some parameter θ,
then it uses Algorithm 4 to count triangles in the subgraph induced by these vertices and
uses sampling in the rest of the graph. We set θ = m(ω−1)/(ω+1)

T (ω−3)/(ω+1)ϵ(2ω−6)/(ω+1) .
For sake of simplicity, we show an algorithm with an additional O(m) term in its

complexity. As the time complexity of the algorithm from [4] is lower in the sublinear regime
than what we claim, we may obtain an algorithm with the desired complexity by running
the two algorithms in parallel and terminating when one of them finishes. In this section, we
use a total order ≺ defined as u ≺ v if d(u) ≤ d(v) and ties broken arbitrarily in a consistent
way.

Algorithm 5 Estimate the number of triangles in G and advice T̃ .

1 θ ← m(ω−1)/(ω+1)

T (ω−3)/(ω+1)ϵ(2ω−6)/(ω+1)

2 VH ← find all vertices v with d(v) ≥ θ

3 T̂H ← count triangles in G[VH ] using Algorithm 4 with error ±ϵT̃ /2; amplify success
probability to 5

6

4 M ← 0
5 repeat k = 12 θm

ϵ2T̃
times

6 e← pick an edge uniformly at random
7 uv ← e, such that u ≻ v

8 w ← pick a random neighbor of v

9 if v ̸∈ VH and w ≻ v and uvw ∈ T then
10 M ←M + d(v)

11 T̂L = m
2k M

12 return T̂H + T̂L

We now prove the main theorem for triangle counting in sparse graphs. The last part in
the following theorem is there to enable us to remove advice like we did in Section 2.5.

▶ Lemma 14. Let us have a graph G. Given parameters 1 > ϵ > 0 and advice T̃ , Algorithm 5
returns T̂ such that P (T̂ ≥ 2T ) ≤ 2/3. Moreover, if T̃ ≤ T , Algorithm 5 returns T̂ ∈ (1± ϵ)T
with probability at least 4/5. It runs in expected time

Õ
( m2ω/(ω+1)

ϵ4(ω−1)/(ω+1)T̃ 2(ω−1)/(ω+1)
+ m4/(ω+1)

ϵ2(9+ω)/(ω+1)T 4(5−ω)/(3(ω+1)) + m
)

.

With the current best bound on ω, we get running time of Õ( m1.408

ϵ1.628T 0.814 + m1.186

ϵ6.744T 1.038 ). For
constant ϵ, the second term is significantly smaller than the first one.

Proof. Let TL be the set of triangles that are not contained in G[VH ] – or equivalently, that
have their ≺-minimal vertex outside of VH – and, by an abuse of notation, also the number
of such triangles. Let TH be the number of triangles contained in G[VH ].

Let Xi be the increment in M in the i-th iteration of the loop on line line 5. We now
calculate the expectation of M after all k iterations. Let us fix a triangle △ ∈ T and
define X ′

i = Xi if uvw = △ in the i-th iteration and X ′
i = 0 otherwise (note that u, v, w

are defined in the algorithm). If a is the vertex of △ minimal w.r.t. ≺, it now holds that
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E(X ′
i) = d(a)P (X ′

i = d(a)). It holds that X ′
i = d(a) if and only if v = a and uvw = △. For

this to happen, the algorithm has to sample in the i-th iteration the edge uv or wv. This
happens with probability 2/m. Then, it has to be the case that the random neighbor sampled
on line 7 is the single vertex of △ not in e. This happens with probability 1/d(a). This
gives us that E(X ′

i) = d(a)
md(a) = 2/m. By summing over all triangles in TL and by linearity of

expectation, it holds that E(Xi) = 2TL/m. Therefore, the estimate T̂L = m
2k M = m

2k

∑k
i=1 Xi

is an unbiased estimate of TL.
We now bound the variance. We use the inequality10 V ar(X) ≤ sup(X)E(X) to get

V ar(Xi) ≤ θE(Xi) = 2θTL/m. Therefore V ar(mXi/2) = 1
2 θmTL. Taking average of 12 θm

ϵ2T̃

independent trials, we get variance 1
24 ϵ2T̃ TL ≤ 1

24 ϵ2T 2. By the Chebyshev’s inequality, it
therefore holds that

P (|T̂L − TL| ≥ ϵT/2) ≤ V ar(T̂L)
(ϵT/2)2 ≤ 1/6.

At the same time, by Lemma 10, it holds that T̂H ∈ TH ± ϵT̃ /2 ⊆ TH ± ϵT/2 with
probability at least 5/6 (note that we have amplified the success probability). By the
union bound, with probability at least 2/3, it holds that both |T̂L − TL| ≤ ϵT/2 and
|T̂H − TH | ≤ ϵT/2. Therefore, the algorithm returns a (1 ± ϵ)-approximate answer with
probability at least 2/3.

We now argue the time complexity. We spend O(n) time on line 2. There are no more
than m/θ vertices with degree at least θ. Triangles in G[VH ] are therefore counted, by
Theorem 12, in time

Õ

(
(m/θ)ω

(A2/T̃ )ω−2
+T

5+1/3
H (m/θ)2

A6

)
≤ Õ

(
(m/θ)ω

(ϵ2T̃ )ω−2
+ (m/θ)2

ϵ6T 2/3

)
= Õ

( m2ω/(ω+1)

ϵ4(ω−1)/(ω+1)T̃ 2(ω−1)/(ω+1)
+ m4/(ω+1)

ϵ2(ω+1)/(ω+1)T (7−ω)/(ω+1)

)
.

The time spent in each iteration of the loop on line 5 is O(1). The total time spent in the
loop is therefore

O
( θm

A2/T̃

)
= O

( θm

ϵ2T̃

)
= O

( m2ω/(ω+1)

ϵ4(ω−1)/(ω+1)T̃ 2(ω−1)/(ω+1)

)
.

Putting these two time complexities together, we get the desired running time.
We now prove that P (T̂ ≥ 2T ) ≤ 2/3 11. Since ϵ < 1, it holds that P (T̂H ≥ 2TH) ≤

P (T̂H ≥ (1 + ϵ)TH) ≤ 1/6 as we have amplified the success probability of Algorithm 4 to 5
6 .

Moreover, as we have shown, E(T̂L) = TL and, therefore, P (T̂L ≥ 2TL) ≤ 1/2 ◀

By the same argument as in Section 2.5, we may remove the need for advice 12. We run
the algorithm in parallel with the algorithm from [4], resulting in an algorithm with its time
complexity being the minimum of the complexities of the two respective algorithms. This
gives us the following claim.

10 sup(X) is the smallest x such that P (X > x) = 0.
11 We cannot use the Markov’s inequality in a straightforward way. The reason is that it is not clear how

to bound the expectation of the estimate coming from Theorem 12. While we do have a bound on the
expectation of the estimate given by, Algorithm 4 it is not clear a bound of this type carries over when
we perform the advice removal.

12 Instead of directly using the Markov inequality in the argument, we may use the last part of Lemma 14
to get the same guarantee.
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▶ Theorem 15. There is an algorithm that returns a (1± ϵ)-approximation of the number
of triangles with probability at least 2/3. It runs in time

Õ
( m2ω/(ω+1)

ϵ4(ω−1)/(ω+1)T̃ 2(ω−1)/(ω+1)
+ m4/(ω+1)

ϵ2(9+ω)/(ω+1)T 4(5−ω)/(3(ω+1))

)
.

3.1 Optimality
Like in the case of dense graphs, we show that our algorithm is in certain sense optimal.

▶ Proposition 16. Suppose there is an algorithm that uses both random vertex and random
edge queries, which runs in time Õ

(
m2ω/(ω+1)

T δ

)
for some constant δ, and returns a constant-

factor approximation of T with probability at least 2/3. Then δ ≤ 2(ω − 1)/(ω + 1).

Proof. Suppose δ > 2(ω − 1)/(ω + 1). Then, for T = Θ(
√

m), the algorithm runs in time
o(m). This is in contradiction to the lower bound from [9] which states that any such
algorithms has to run in time Ω(m). ◀
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Abstract
Zero-free based algorithms are a major technique for deterministic approximate counting. In
Barvinok’s original framework [4], by calculating truncated Taylor expansions, a quasi-polynomial
time algorithm was given for estimating zero-free partition functions. Patel and Regts [29] later
gave a refinement of Barvinok’s framework, which gave a polynomial-time algorithm for a class of
zero-free graph polynomials that can be expressed as counting induced subgraphs in bounded-degree
graphs.

In this paper, we give a polynomial-time algorithm for estimating classical and quantum partition
functions specified by local Hamiltonians with bounded maximum degree, assuming a zero-free
property for the temperature. Consequently, when the inverse temperature is close enough to zero by
a constant gap, we have a polynomial-time approximation algorithm for all such partition functions.
Our result is based on a new abstract framework that extends and generalizes the approach of Patel
and Regts.
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1 Introduction

Let Ω = [q]V be a finite space of configurations, where V is a set of n variables. Let
H1, . . . , Hm be a collection of local constraints, where each Hj : Ω → C is independent of all
but a small subset of variables, and let H =

∑m
j=1 Hj . The partition function of the given

system is defined by

ZH(β) =
∑
σ∈Ω

exp(−β · H(σ)), (1)

where the parameter β is usually called the inverse temperature.
The computational complexity of partition functions is one of the central topics in

theoretical computer science, which has been found wide applications in computational
counting, combinatorics, and statistical physics. To date, numerous algorithms as well
as hardnesses of approximation for the partition functions of various systems have been
established, to list a few [20, 32, 15, 21, 39, 37, 35, 36, 25, 34, 13, 26, 6, 10, 7]. The most
important question here is, what property captures the approximability of partition functions.
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It is widely believed that for various classes of partition functions of interests, the
hardness of approximation is captured by the locus of complex zeros. The study of the
locus of complex zeros has a rich history in statistical physics, for example, in the famous
Lee-Yang theorem [24]. In computer science, the absence of complex zeros may imply efficient
approximation algorithms for partition functions [4, 29, 31, 19, 27, 26, 30, 12, 17, 16, 18, 33,
9, 11]. This line of research was initiated by Barvinok’s pioneering works [1, 2, 3, 4, 5], which
used truncated Taylor expansions to approximate non-vanishing polynomials and established
quasi-polynomial time approximations of partition functions with no complex zeros within a
region. Later in a seminal work of Patel and Regts [29], this quasi-polynomial running time
was improved to polynomial time for a class of graph polynomials which can be expressed as
induced subgraph sums in graphs of constant maximum degree. And this polynomial-time
framework was further extended by Liu, Sinclair and Srivastava [27] to hypergraph 2-spin
systems with no complex-zeros for the external field.

For the quantum version, several (classical) algorithms have been proposed, including [23,
18, 28], to estimate the quantum generalization of the partition function defined as in (1)
where H is the Hamiltonian. Yet, an important question remains to answer is the polynomial-
time approximability of the quantum or classic partition function in the form of (1) assuming
its zero-freeness.

1.1 Our results
We show the polynomial-time approximability of partition functions assuming zero-freeness,
for both classical and quantum partition functions.

Let V be a set of n sites (also called vertices or particles). Let q ≥ 2 be an integer.
Throughout the paper, we assume that each site u ∈ V is associated with a q-dimensional
Hilbert space Vu, and let V =

⊗
u∈V Vu. A Hamiltonian H is a Hermitian matrix in V . The

support of a Hamiltonian H, denoted by supp(H), is the minimal set of sites on which H

acts non-trivially. Given a Hamiltonian H, exp(H) is defined by exp(H) =
∑∞

ℓ=1
1
ℓ! H

ℓ, and
the partition function ZH : C → C induced by H is defined as follows:

∀β ∈ C, ZH(β) ≜ Tr [exp(−βH)] . (2)

We are interested in partition functions induced by local Hamiltonians with bounded
maximum degrees.

▶ Definition 1 (local Hamiltonian). A Hamiltonian H ∈ V is said to be k-local if H can be
expressed as

H =
m∑

j=1
Hj ,

where each Hj acts non-trivially on at most k sites, i.e. |supp(Hj)| ≤ k. A Hamilto-
nian H ∈ V called a (k, d)-Hamiltonian if H is k-local and for every v ∈ V , deg(v) ≜
|{j | v ∈ supp(Hj)}| ≤ d.

Notice that if all Hj ’s are diagonal, then H is diagonal as well. The quantum partition
function ZH(β) then degenerates to the classical partition function defined in (1). Indeed, in
such diagonal case we have

ZH(β) =
∑

σ∈[q]V

exp(−β · H(σ)),
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where H(σ) =
∑m

j=1 Hj(σ) and Hj(σ) represents the σ-th diagonal entry of Hj . Since each
Hj is diagonal and acts non-trivially on subset supp(Hj) of at most k sites, the value of
Hj(σ) is determined by the variables in supp(Hj). Hence the ZH(β) above is precisely the
classical partition function defined in (1).

The quantum partition functions encode rich information about quantum systems, e.g. the
free energy and ground state energy. Meanwhile, the non-diagonal property, especially the
non-commutativity of multiplication for non-diagonal matrices, imposes great challenges for
the computation of partition functions.

We prove the following zero-free based approximability of quantum partition functions.

▶ Theorem 2 (Theorem 15, informal). Let Ω ⊆ C be a “well-shaped” complex region (formal-
ized by Definition 12) and k, d ≥ 1 be constants. There is a deterministic algorithm which
takes a (k, d)-Hamiltonian H on n sites and a β from interior of Ω as input, and outputs an
estimation of the quantum partition function ZH(β) in polynomial time in n, if ZH satisfies
the zero-free property such that |log ZH | ≤ poly(n) on Ω.

The formal statement (Theorem 15) is more general: it further takes into account the
measurement of the quantum system. Such generalization may encode broader classes
of partition functions, e.g. the ones with external fields, and also enable sampling from
Gibbs state. Following a recent major advance for quantum zero-freeness of Harrow et
al. [18], we give concrete applications (in Section 5), namely, polynomial-time algorithms for
approximating the quantum partition function (Theorem 21) and sampling from the Gibbs
state (Theorem 25) in a high-temperature regime (where β is close to zero by a constant gap),
improving the quasi-polynomial-time algorithms in [18]. A polynomial-time approximation
of the quantum partition functions in a slightly bigger high-temperature regime was obtained
in [28] using the cluster expansion technique [19], by transforming the quantum partition
function to a polymer model and showing the convergence of the cluster expansion assuming
high temperature.

We prove polynomial-time approximability of the quantum partition function directly
from a black-box property of zero-freeness, without further restricting the parameters of
the model. Moreover, our result is proved in a new abstract framework, namely, functions
specified by abstract neighborhood structures called dependency graphs. We prove the
following general result.

▶ Theorem 3 (Theorem 14, informal). Suppose that functions {fG} specified by dependency
graphs G satisfies certain boundedness property of its Taylor coefficients (formalized in
Definition 10). Let Ω ⊆ C be a “well-shaped” complex region. There is a deterministic
algorithm which takes a dependency graph G of O(1) max-degree and x from the interior of
Ω as input, and outputs an estimation of fG(x) in polynomial time in size n of G, if fG(0)
is easy to compute and fG satisfies the zero-free property such that |log fG| ≤ poly(n) on Ω.

The abstract framework is described in Definition 10. As verified in Section 3, our
framework subsumes previous polynomial-time frameworks for zero-free based algorithms
([29] and [27]) as special cases, and more importantly, it extends the previous frameworks to
become compatible with infinite-degree polynomials and non-commutative systems, which
are crucial for quantum partition functions.

ICALP 2022
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2 Preliminaries

2.1 Local Hamiltonians
Given a Hamiltonian H in V, we use supp(H) to denote the support of H, the minimal set
of sites on which H acts non-trivially. Formally, if S is the support of H, then S is the
minimal subset of V satisfying that H = HS ⊗ IV \S , where HS is a Hamiltonian in the
space

⊗
v∈S Vv and IV \S is the identity matrix in the space

⊗
v∈V \S Vv. Readers may refer

to [14, 22] for a thorough treatment.

2.2 Basic facts about complex functions
A complex-valued function f : Ω → C defined on a complex domain Ω ⊆ C is called
holomorphic if for every point z ∈ Ω, the complex derivative exists in a neighborhood of
z. A holomorphic function f : Ω → C is infinitely differentiable and equals locally to its
Taylor series. A biholomorphic function is a bijective holomorphic function whose inverse
is also holomorphic Furthermore, a function f : C → C is called an entire function if it
is holomorphic on C. A region Ω ⊆ C is simply connected if C \ Ω is connected, where
C = C ∪ {∞} denotes the extended complex plane.

The logarithm of a complex-valued function f , denoted by g = log f , is a function such
that f(z) = eg(z). For holomorphic function f : Ω → C \ {0} on simply connected region
Ω ⊆ C, such log f always exists (see e.g. [38]). Specifically, for an arbitrarily fixed pair
z0, c0 ∈ C satisfying that f(z0) = ec0 , we have

∀z ∈ Ω, log f(z) =
∫

P

f ′(w)
f(w) dw + c0, (3)

where P is an arbitrary path in Ω connecting z and z0. Throughout the paper, we mainly
deal with such holomorphic f on simply connected Ω that 0 ∈ Ω and f(0) ∈ R+. For such
case, the definition of log f is uniquely determined by z0 = 0 and the real c0 = ln(f(0)).

2.3 Approximation of non-vanishing function
We now recap the polynomial interpolation technique of Barvinok [4] to estimate values of
non-vanishing holomorphic functions.

For b ∈ R+, we use Db to denote the complex disc of radius b centered at the origin.
Formally,

Db = {z ∈ C| |z| < b} .

In particular, let D = D1 denote the unit disc.
For β ∈ C and δ ∈ R+, we use Sβ,δ to denote δ-strip of interval [0, β] = {tβ | t ∈ [0, 1]}.

Formally,

Sβ,δ = {z ∈ C | dist(z, [0, β]) < δ} .

where dist(·, ·) denotes Euclidean distance. It is clear that both Db and Sβ,δ are simply
connected.

The following is the key property of zero-freeness for complex-valued functions.

▶ Definition 4 (zero-freeness). Let M > 0 be finite positive real. A holomorphic function f

on a simply connected region Ω ⊆ C is M -zero-free on Ω if |log f(z)| ≤ M for all z ∈ Ω.
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Notice that the zero-freeness of f on Ω implies that f is non-vanishing on the same region.
A definition of log f is assumed in the context when this concept is used.

For any polynomial p ∈ C[z] that does not vanish on D, the polynomial p automatically
exhibits the above zero-freeness property with a bounded gap on Db for any b ∈ (0, 1).

▶ Lemma 5. Let p ∈ C[z] be a polynomial of degree d, and let b ∈ (0, 1). If p(z) ̸= 0 for all
z ∈ D, then p is M -zero-free on Db for M = d ln 1

1−b + |log p(0)|.

Proof. Let ζ1, ζ2, . . . , ζd ∈ C denote the roots of polynomial p. For any z ∈ Db,

|log p(z)| =

∣∣∣∣∣∣log p(0) +
d∑

j=1
log
(

1 − z

ζj

)∣∣∣∣∣∣
≤ |log p(0)| −

d∑
j=1

ln
(

1 −
∣∣∣∣ z

ζj

∣∣∣∣)
≤ |log p(0)| + d ln 1

1 − b
.

The inequalities are due to that all |ζj | > 1 since p(z) ̸= 0 for all z ∈ D. ◀

The following lemma of Barvinok says that any holomorphic function on D can be
approximated by its truncated Taylor expansion if it is zero-free on D.

▶ Lemma 6 (Barvinok [4]). Let g : D → C be holomorphic and M > 0. If |g(z)| ≤ M for all
z ∈ D, then for any z ∈ D and any m ∈ N+,∣∣∣∣∣g(z) −

m∑
k=0

g(k)(0)
k! zk

∣∣∣∣∣ ≤ M

δ
(1 − δ)m+1,

where δ = dist(z, ∂D) denotes the Euclidean distance between z and boundary of unit disc.

When Lemma 6 is applied to g = log f for some holomorphic f : D → C \ {0}, one can obtain
a multiplicative approximation of f on D assuming zero-freeness of f on D. To make such
approximation effective, we should be able to compute the Taylor coefficients of g = log f .

The following Newton’s identity relates the Taylor coefficients of g = log f to those of f .

▶ Lemma 7 (Newton’s identity). Let f(z) =
∑+∞

k=0 fkzk be an entire function such that
f(z) ̸= 0 for all z ∈ D. Then g(z) = log f(z) =

∑+∞
k=0 gkzk is well-defined on D, and

ngn = nfn −
n−1∑
k=1

kgkfn−k.

Proof. By the definition of g = log f , we have f ′ = g′f . Therefore,

nfn = 1
(n − 1)!f

(n)(0) = 1
(n − 1)!

n−1∑
k=0

(
n − 1

k

)
f (k)(0)g(n−k)(0)

=
n−1∑
k=0

(n − k)gn−kfk

=
n∑

k=1
kgkfn−k. ◀

ICALP 2022
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When the zero-free region is not unit disc, some preprocessing is needed. The following
polynomial transformation from D to any Sβ,δ is a consequence of [4, Lemma 2.2.3].

▶ Lemma 8. For any β ∈ C, δ ∈ (0, 1), there is an explicitly constructed polynomial pβ,δ of
degree d = d(β, δ) satisfying

pβ,δ(0) = 0 and pβ,δ(1 − δ0) = β for some δ0 ∈ (0, 1);
pβ,δ(D) ⊆ Sβ,δ;

The following proposition was proved in [4, Lemma 2.2.3], which explicitly gave a
polynomial mapping a disk with radius slightly larger than 1 to a strip.

▶ Proposition 9. Let δ ∈ (0, 1) be a constant, and let qδ ∈ C[z] be defined as follows:

qδ(z) = 1∑n
k=1

Ck

k

n∑
k=1

(Cz)k

k
,

where C = 1 − exp
(
− 1

δ

)
, n =

⌊(
1 + 1

δ

)
exp(1 + 1

δ )
⌋
.

Then for all |z| < ρ, where ρ = 1−exp(−1− 1
δ )

1−exp(− 1
δ ) > 1,

1. qδ(0) = 0, qδ(1) = 1,
2. Re (qδ(z)) ∈ [−δ, 1 + 2δ] and |Im (qδ(z))| ≤ 2δ.

Proof of Lemma 8. We now prove Lemma 8 using Proposition 9. Without loss of generality,
we assume that β ̸= 0. Note that the polynomial qδ defined in Proposition 9 satisfies
qδ(0) = 0, qδ(1) = 1, and qδ(Dρ) ⊆ S1,4δ.

Therefore, we can set pβ,δ(z) = βqδ′(ρ′z), where δ0 = δ
4|β| and ρ′ = 1−exp(−1− 1

δ′ )
1−exp(− 1

δ′ ) . We

conclude our proof by observing that pβ,δ(D) ⊆ Sβ,δ and pβ,δ(0) = 0, pβ,δ

(
1
ρ′

)
= β. ◀

3 Approximation of Zero-Free Holomorphic Function

We now introduce an abstraction for partition functions, namely, multiplicative holomorphic
functions specified by a class of abstract structures called dependency graphs.

A dependency graph is a vertex-labeled graph G = (V, E, L), where (V, E) is an undirected
simple graph, and L = (Lv)v∈V assigns each vertex v ∈ V a label Lv. Two labeled graphs
G = (V, E, L) and G′ = (V ′, E′, L′) are isomorphic if there is a bijection ϕ : V → V ′ such
that the two simple graphs (V, E) and (V ′, E′) are isomorphic under ϕ and Lv = L′

ϕ(v) for all
v ∈ V . Furthermore, we say that two labeled graphs G = (V, E, L) and G′ = (V ′, E′, L′) are
disjoint if V ∩ V ′ = ∅. A family G of dependency graphs is called downward-closed if for any
G = (V, E, L) ∈ G and any S ⊆ V we have G[S] ∈ G, where G[S] stands for the subgraph of
G induced by subset S ⊆ V preserving labels.

We use f· to denote an operator that maps each dependency graph G in G to an entire
function fG : C → C (i.e. fG is holomorphic on C), such that fG gives the same entire
function for isomorphic dependency graphs G. Such an f· is multiplicative if for any G that
is disjoint union of G1, G2, we have fG = fG1fG2 .

▶ Definition 10 (boundedness). Let G be a downward-closed family of dependency graphs.
Let α, β ≥ 1. A multiplicative f· is called (α, β)-bounded on G if for any G = (V, E, L) ∈ G,
we have fG(0) ∈ R+ and

fG(z) = fG(0) +
+∞∑
ℓ=1

∑
S⊆V

λG[S],ℓ

 zℓ,
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where the complex coefficients (λH,ℓ)H∈G,ℓ∈N+ are invariant for isomorphic dependency
graphs H, and satisfy that λH,ℓ ̸= 0 only if |VH | ≤ αℓ, and each λH,ℓ can be calculated within
βℓ · poly(ℓ) time.

For (α, β)-bounded f·, it always holds that fG(0) ∈ R+. Then we always fix the definition
of log f to be the one uniquely defined by Eq.(3) with z0 = 0 and c0 = ln(f(0)) being real.
Such log f is well defined within a neighborhood of the origin.

As we will formally verify in Section 3.2, this notion of bounded holomorphic functions
specified by dependency graphs generalizes the bounded induced graph counting polynomials
(BIGCPs) of Patel and Regts [29]. A major difference here is that fG may not be a polynomial
of finite degree.

We show that for (α, β)-bounded f·, the approach of Patel and Regts [29] based on
Newton’s identity and local enumeration of connected subgraphs can efficiently compute
Taylor coefficients of log fG, even though the function fG can now encode problems far
beyond counting subgraphs.

▶ Theorem 11 (efficient coefficient computing). Let G be a downward-closed family of
dependency graphs, and f· be (α, β)-bounded on G for α, β ≥ 1. There exists a deterministic
algorithm which given any G ∈ G and ℓ ∈ N+ as input, outputs the ℓ-th coefficient of the
Taylor series of log fG at the origin in time Õ

(
n(8eβ∆)αℓ

)
, where n is the number of vertices,

∆ is the maximum degree of G, and Õ(·) hides poly(∆, ℓ, log(n)).

The theorem will be proved in Section 4.
Due to Riemann mapping theorem in complex analysis, for any proper and simply

connected region Ω ⊂ C and any point z0 ∈ Ω, there is a biholomorphic function h from
D to Ω such that h(0) = z0. We are interested in those good regions Ω ⊆ C such that a
transformation h from D to Ω does not only exist but also has efficiently computable Taylor
coefficients.

▶ Definition 12 (good region). Let γ ≥ 1. A simply connected region Ω ⊆ C is γ-good if
0 ∈ Ω and given any x ∈ Ω, there exists a holomorphic function hx on D along with a zx ∈ D
such that:
1. hx(D) ⊆ Ω, hx(0) = 0 and hx(zx) = x;
2. for every ℓ ∈ N+, the ℓ-th Taylor coefficient hx,ℓ of hx at 0 can be determined in γℓpoly(ℓ)

time.
Given a γ-good region Ω ⊆ C and δ ∈ (0, 1), we use Ωδ to denote the set of all x ∈ Ω with
zx ∈ D1−δ.

Any convex region is 1-good, given access to an oracle that determines the distance to its
boundary.

▶ Fact 13. Let Ω ⊆ C be a convex region. Suppose that for any z ∈ Ω, dist(z, ∂Ω) can be
determined in O(1) time. Then Ω is 1-good.

Proof of Fact 13. The convexity of Ω implies that dist([zl, zr], ∂Ω) = min(dist(zl), dist(zr))
for arbitrary complex values zl, zr ∈ Ω, where [zl, zr] = {zl + t(zr − zl) | t ∈ [0, 1]}. Hence,
for each x ∈ Ω, we set fx = px,δ, a polynomial defined in Proposition 9. We conclude the
proof by observing that the k-th coefficient of px,δ can be determined in O(k) time. ◀

Applying our Theorem 11 to log fG, combining with Barvinok’s approximation (Lemma 6)
and our notion of good region, we obtain the following theorem for multiplicative approxima-
tion of zero-free fG’s.

ICALP 2022
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▶ Theorem 14 (efficient ε-approximation). Let α, β, γ ≥ 1. Let G be a downward-closed
family of dependency graphs, and f· be (α, β)-bounded on G. Let Ω ⊂ C be a γ-good region.

For any δ ∈ (0, 1), there is a deterministic algorithm which takes G ∈ G, x ∈ Ωδ

and an error bound ε ∈ (0, 1) as input, and outputs an estimation f̂G(x) of fG(x) within
ε-multiplicative error:

1 − ε ≤

∣∣∣f̂G(x)
∣∣∣

|fG(x)| ≤ 1 + ε,

in Õ
(

n
(

M
δε

)C
)

time with C = α
δ ln(8e∆(β + γ)), where ∆ is the maximum degree of G, if

provided that fG is M-zero-free on Ω ⊂ C and the value of fG(0) is also provided to the
algorithm.

Note that in above theorem, the zero-freeness property can be verified on any particular
class of dependency graphs, although the boundedness property should be guaranteed on
a downward-closed family. When applying this theorem, the value of fG(0) is usually
trivial to compute (e.g. fG(0) = 1), and the M -zero-freeness is usually established for some
M = poly(n) (e.g. M = O(n)) on n-vertex dependency graphs. In such typical cases, the
running time in Theorem 14 is bounded as

(
n
δε

)O( 1
δ log ∆).

Proof of Theorem 14. Let h = hx be a holomorphic function that transforms D to the
γ-good region Ω with h(zx) = x, where zx ∈ D1−δ since x ∈ Ωδ. And let fh

G = fG ◦ h.
First, observe that fh

G is M -zero-free on D, because
∣∣log fh

G(z)
∣∣ = |log fG(h(z))| ≤ M

holds for all z ∈ D since h(D) ⊆ Ω and fG is M -zero-free on Ω. Then by Lemma 6, for any
z ∈ D, the difference between log fh

G(z) and the truncated Taylor expansion at 0 is bounded
by ∣∣∣∣∣log fh

G(z) −
m∑

k=0

(
log fh

G

)(k) (0)
k! zk

∣∣∣∣∣ ≤ M

δ
(1 − δ)m+1 < ε, (4)

for m = ⌈ 1
δ ln M

δε ⌉.
It remains to verify that fh

· is (α, β + γ)-bounded on G. By Theorem 11, this will prove
the theorem.

For ℓ ∈ N+, let h
(ℓ)
k denote the k-th Taylor coefficient of h(z)ℓ at z = 0. Since h(0) = 0,

we have

h(z)ℓ =
(+∞∑

k=1
hkz

)ℓ

=
+∞∑
k=ℓ

h
(ℓ)
k zk

Since fG is (α, β)-bounded and h(0) = 0, we have

fh
G(z) = fG(0) +

+∞∑
ℓ=1

∑
S⊆V

λG[S],ℓ

h(z)ℓ

= fG(0) +
+∞∑
ℓ=1

∑
S⊆V

λG[S],ℓ

(+∞∑
k=ℓ

h
(ℓ)
k zk

)

= fG(0) +
+∞∑
k=1

∑
S⊆V

(
k∑

ℓ=1
h

(ℓ)
k λG[S],ℓ

)
zk

= fG(0) +
+∞∑
k=1

∑
S⊆V

λh
G[S],k

 zk,
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where λh
H,k for any H ∈ G and k ∈ N+ is defined as

λh
H,k ≜

k∑
ℓ=1

h
(ℓ)
k λH,ℓ.

Clearly, λh
H,k = 0 if |VH | > αk, where VH denotes the vertex set of H, since λH,ℓ = 0 if

|VH | > αℓ. And it can be verified that any λh
H,k can be determined within (β + γ)kpoly(k)

time. This is because within βkpoly(k) time, one can list all λH,1, . . . , λH,k, and for each
1 ≤ ℓ ≤ k, h

(ℓ)
k is just the coefficient of zk in

(
h1z + h2z2 + · · · + hkzk

)ℓ, which can be
calculated in poly(k) time given all h1, . . . , hk, which can be listed beforehand in γkpoly(k)
time. Overall, this takes at most (β + γ)kpoly(k) time.

Therefore, fh
· is (α, β + γ)-bounded. ◀

3.1 Quantum partition functions
We formally prove Theorem 2. Recall the definition of quantum partition function ZH in (2).
We extend this definition by considering measurement.

Recall that V =
⊗

u∈V Vu where V is the set of n sites and each Vu is a q-dimensional
Hilbert space. A measurement O is a positive operator in V . The quantum partition function
induced by Hamiltonian H under measurement O, both in V, is defined by

ZH,O(β) ≜ Tr [exp(βH)O] . (5)

Furthermore, a measurement O is tensorized if O =
⊗

v∈V Ov where supp(Ov) = {v}.
We show that under tensorized measurement O, the quantum partition functions ZH,O

defined by local Hamiltonians with O(1) maximum degree are (1, O(1))-bounded. Together
with Theorem 14 we obtain the following theorem.

▶ Theorem 15. Let Ω ⊂ C be a γ-good region for γ ≥ 1. For any δ ∈ (0, 1), there is a
deterministic algorithm such that given any (k, d)-Hamiltonian H and tensorized measurement
O, provided that 1

Tr[O] ZH,O is M-zero-free on Ω, for any temperature β ∈ Ωδ and error
bound ε ∈ (0, 1), the algorithm outputs an estimation of ZH,O(β) within ε-multiplicative error
in Õ

(
n
(

M
δε

)C
)

time with C = 1
δ ln

(
8ed

(
2q3k + γ

))
.

Note that when the measurement O is the identity, ZH,O is precisely the partition function
ZH , which implies Theorem 2. As discussed in the introduction, Theorem 15 covers all
classical partition functions (with or without external field) when temperature is the complex
variable.

Following a recent work of Harrow, Mehraban and Soleimanifar [18], Theorem 15 gives
polynomial-time approximations of quantum partition functions defined by local Hamiltonians
with O(1) maximum degree when the inverse temperature β is close to zero. And following a
standard routine of self-reduction, in the same regime, we have a polynomial-time approximate
sampler from the quantum Gibbs state after the measurement in the computational basis.
These applications are given in Section 5.

Proof of Theorem 15. Given a (k, d)-Hamiltonian H =
∑m

j=1 Hj , we can construct a de-
pendency graph GH = (U, E, L) as follows:
1. U = [m] is the vertex set;
2. E =

{
{x, y} ∈

(
U
2
)

| supp(Hx) ∩ supp(Hy) ̸= ∅
}

;
3. for any x ∈ U , its label is given by Lx = Hx.
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Let Gk denote the family of all such GH where H is a k-local Hamiltonian. It is obvious that
such Gk is downward-closed.

Let O =
⊗

v∈V Ov be a tensorized measurement. For any G = GH ∈ Gk, where
H =

∑m
j=1 Hj , define:

fG(z) = 1
Tr [O]ZH,O(z) = 1

Tr [O]Tr

exp

−z
m∑

j=1
Hj

O

 .

The rest of the proof verifies that such f· is (1, 2q3k)-bounded on Gk, which is sufficient
to prove the theorem by Theorem 14.

We first verify that such f· is multiplicative. For any G = (U, E, L) ∈ Gk that is
the disjoint union of G1 = (U1, E1, L1) and G2 = (U2, E2, L2), there exists a bipartition
V = V1 ⊎ V2 such that supp(Hx) ⊆ V1 for all x ∈ U1 and supp(Hy) ⊂ V2 for all y ∈ U2. Let
HUi =

∑
x∈Ui

Hx for i = 1, 2. We have,

fG(z) = 1
Tr[O]Tr [exp (−z(HU1 + HU2)) O]

= 1
Tr[O]Tr[exp(−zHU1) exp(−zHU2)O]

= 1
Tr[O]TrV1

[
exp(−zHU1)

⊗
v∈V1

Ov

]
TrV2

[
exp(−zHU2)

⊗
v∈V2

Ov

]

= 1
Tr2[O]

Tr[exp(−zHU1)O]Tr[exp(−zHU2)O]

= fG1(z)fG2(z)

Here the subscripts V1, V2 in TrV1 , TrV2 indicates the sets of sites that the operators act on.
Therefore, f· is multiplicative.

For any G = (U, E, L) ∈ Gk and any ℓ ∈ N+, define

λG,ℓ = 1
ℓ!

1
Tr[O]

∑
f :[ℓ]onto→ U

Tr

 ℓ∏
j=1

Hf(j)

O

 . (6)

Observe that λG,ℓ = 0 if |U | > ℓ as there is no surjection from [ℓ] to U . Moreover, for
H =

∑
x∈U Hx,

fG(z) = 1 +
+∞∑
ℓ=1

βℓ

ℓ! Tr
[
HℓO

]
= 1 +

+∞∑
ℓ=1

zℓ

ℓ!
∑

x1,x2,...,xℓ∈U

Tr

 ℓ∏
j=1

Hxj

O


= 1 +

+∞∑
ℓ=1

∑
S⊆U

λG[S],ℓ

 zℓ.

It remains to show that λG,ℓ can be determined within (2q3k)ℓpoly(ℓ) time.
Fix a G = (U, E, L) ∈ Gk. For any S ⊆ U , define

HS,ℓ ≜
∑

f :[ℓ]onto→ S

ℓ∏
j=1

Hf(j).



P. Yao, Y. Yin, and X. Zhang 108:11

Clearly, λG,ℓ = 1
ℓ!

1
Tr[O] Tr [HU,ℓO]. Moreover, the following recurrence holds for HS,ℓ:

HS,ℓ =
∑
j∈S

Hj

(
HS,ℓ−1 + HS\{j},ℓ−1

)
, (7)

where the boundary cases are given by H∅,0 = I, and HS,ℓ = 0 (the 0-matrix) if ℓ < |S|,
or S = ∅ but ℓ > 0. Note that HS,ℓ acts non-trivially on at most k |S| sites, where
each site corresponds to a q-dimensional Hilbert space, thus HS,ℓ can be represented as
a matrix of size at most qk|S| × qk|S| and the recursion step (7) can be evaluated in time
O(|S|q3k|S|). Therefore, for any S ⊆ U that 1 ≤ |S| ≤ ℓ, HS,ℓ can be computed in time
O(2|S|ℓ|S|q3k|S|) = O(ℓ22ℓq3kℓ) by a dynamic programming that constructs a 2S × [ℓ] table
according to the recurrence (7). And finally, λG,ℓ = 1

ℓ!
1

Tr[O] Tr [HU,ℓO] can be computed
from HU,ℓ in O(q3kℓ) time because HU,ℓ acts non-trivially on at most k|U | ≤ kℓ sites and O
is tensorized. ◀

3.2 Induced subgraph counting
Our framework (Definition 10) subsumes bounded induced graph counting polynomials
(BIGCP) defined by Patel and Regts [29].

A BIGCP p· defines multiplicative graph polynomials pG for all graphs G = (V, E).
Moreover, there exists integer α ≥ 1 and sequence λH,ℓ of complex values such that the
following conditions are satisfied.
1. For any graph G = (V, E), pG can be expressed as

pG(z) = 1 +
m(G)∑
ℓ=1

 ∑
H=(VH ,EH )

|VH |≤αℓ

λH,ℓ · ind(H, G)

 zℓ,

where ind(H, G) represents the number of induced subgraphs G[S], S ⊆ V , isomorphic
to H.

2. λH,ℓ can be determined in O(βℓ) time for some constant β ≥ 1.

For any G = (V, E), we define a dependency graph G∗ = (V, E, L) where L labels
every v ∈ V with a trivial symbol ∗. Let G denote the family of all G∗, which is clearly
downward-closed. We define fG∗ = pG.

Note that∑
H=(VH ,EH )

|VH |≤αℓ

λH,ℓind(H, G) =
∑
S⊆V

|S|≤αℓ

λG[S],ℓ.

Therefore, any BIGCP p· corresponds to an f· that is (α, β)-bounded on G∗.

3.3 Boolean CSP with external field
A Boolean-variate constraint satisfaction problem (Boolean CSP) is specified by a Φ =
(V, E, ϕ), where H = (V, E) is a hypergraph and ϕ = (ϕe)e∈E such that each ϕe : {0, 1}e → C
is a Boolean-variate complex-valued constraint function. Furthermore, Φ = (V, E, ϕ) is a
(k, d)-formula if |e| ≤ k for every e ∈ E and deg(v) = |{e ∈ E | v ∈ e}| ≤ d for every v ∈ V .
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The partition function for a Boolean CSP Φ = (V, E, ϕ) of external field λ is defined as:

ZΦ(λ) =
∑

σ∈{0,1}V

(∏
e∈E

ϕe(σ|e)
)

λ∥σ∥1 .

In [27], Liu, Sinclair and Srivastava formulated the above partition function as counting
hypergraph insects and gave a polynomial-time algorithm for such a partition function
assuming its zero-freeness. Such partition functions are also subsumed in our framework.

Given a Boolean CSP Φ = (V, E, ϕ), a dependency graph GΦ = (VΦ, EΦ, LΦ) can be
constructed as follows:
1. VΦ = V ;
2. for any distinct u, v ∈ VΦ = V , {u, v} ∈ EΦ iff {u, v} ⊆ e for some e ∈ E;
3. for any v ∈ VΦ = V , its label Lv = (ϕe)e∈E,v∈e.
Note that each constraint ϕe appears in labels of all v ∈ e, and the maximum degree of GΦ
is bounded by ∆ ≤ (k − 1)d for a (k, d)-formula Φ.

Let Gk,d denote the family of all such dependency graphs GΦ, where Φ = (V, E, ϕ) is a
(k, d)-formula, and all their induced subgraphs. Obviously, such Gk,d is downward-closed.

Let G ∈ Gk,d. Without loss of generality, suppose that G = GΦ[U ] is the subgraph of the
dependency graph GΦ induced by U ⊆ V , where Φ = (V, E, ϕ) is a Boolean CSP.

We define

fG(λ) =
∑

σ∈{0,1}U

∏
e∈E

e∩U ̸=∅

ϕU
e (σ|U∩e)λ∥σ∥1 ,

where ϕU
e : U ∩ e → C is defined as that for any τ ∈ {0, 1}U∩e,

ϕU
e (τ) = ϕe(τ∗),

where τ∗ ∈ {0, 1}e extends τ and assigns all v ∈ e \ U with 0. It is easy to verify that such
definition fG uses only the information stored in the dependency graph G, thus it is well
defined. Meanwhile, it is also easy to verify that f· is multiplicative and fG(λ) = ZΦ(λ) if
G = GΦ.

For G = GΦ[U ] where Φ = (V, E, ϕ) and U ⊆ V , define λG,ℓ, as

λG,ℓ =


∏

e∈E
e∩U ̸=∅

ϕU
e (1U∩e), |U | = ℓ

0, o.w.

Each λG,ℓ can be determined in poly(k, d, ℓ) time.
Observe that,

fG(λ) = 1 +
|U |∑
ℓ=1

∑
σ∈{0,1}U

∥σ∥1=ℓ

∏
e∈E

e∩U ̸=∅

ϕU
e (σ|U∩e)λℓ = 1 +

|U |∑
ℓ=1

∑
S⊆U
|S|=ℓ

∏
e∈E

e∩S ̸=∅

ϕS
e (1S∩e)λℓ

= 1 +
+∞∑
ℓ=1

∑
S⊆U

λG[S],ℓ

λℓ.

Therefore, f· is a (1, 1)-bounded on Gk,d.
Applying Theorem 14, we immediately obtain the following corollary. Similar bound has

been proved in [27], but here we only need to encode the problem in our framework.
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▶ Corollary 16. Let Ω ⊆ C be a γ-good region for γ ≥ 1. For any δ ∈ (0, 1), there is a
deterministic algorithm such that given any (k, d)-formula Φ for Boolean CSP, provided
that ZΦ is M-zero-free on Ω, for any external field λ ∈ Ωδ and error bound ε ∈ (0, 1), the
algorithm outputs an estimation of ZΦ(λ) within ε-multiplicative error in Õ

(
n
(

M
δε

)C
)

time
with C = 1

δ ln (8ekd(1 + γ)).

Since such ZΦ(λ) is a polynomial with finite degree, by Fact 13 and Lemma 5, if Ω ⊆ C is a
convex region and ZΦ does not vanish on a slightly larger region Ω′ = {(1 + δ)z | z ∈ Ω} for
some constant gap δ ∈ R+, then M = Oδ(n) and hence the algorithm in Corollary 16 runs
in
(

n
ε

)O(ln(kd)) time.

3.4 A barrier to non-multiplicative functions
Our framework based on functions fG induced by dependency graphs G is fairly expressive.
However, the current technique crucially relies on the multiplicative property of fG. The
current method would meet a barrier when dealing with systems lacking such property.

We explain this using a concrete example. Consider the following generalization of (1):

∀β ∈ C, ZH,H′(β) ≜ Tr [exp(−βH + H ′)] . (8)

Here, H and H ′ are two Hamiltonians in V . It encompasses the transverse Ising model and
XXZ model. Unfortunately, this partition function fails to fit in our framework due to its
non-multiplicative nature, even when H ′ is a tensorized operator. For Hamiltonians H1, H2
such that supp(H1) ∩ supp(H2) = ∅ and a tensorized operator H ′ =

⊗
v∈V H ′

v, the following
equality fails to hold in general: ZH1+H2,H′(β) = 1

Tr[exp(H′)] ZH1,H′(β)ZH2,H′(β).
For example, let

H1 = I
⊗1 0

0 0

, H2 =

1 0

0 0

⊗ I, H ′ = −

0 0

0 1

⊗0 0

0 1

.

For β = 1, it holds that ZH1+H2,H′(β) = Tr [exp(−H1 − H2 + H ′)] = 3e−1 + e−2 but
Tr [exp(H ′)] = e−1 + 3 and ZHi,H′(β) = Tr [exp(−Hi + H ′)] = 3e−1 + 1 for i ∈ {1, 2}.

The main obstacle comes from the non-commutativity of Hamiltonians and it remains open
to design a polynomial-time algorithm for such partition function assuming only zero-freeness.

4 Efficient Coefficient Computing

In this section we prove Theorem 11. First we need to establish the following lemma.

▶ Lemma 17. Let G be a downward-closed family of dependency graphs, and f· be (α, β)-
bounded on G for α, β ≥ 1. Recursively define the sequence (ζH,i)H∈G,ℓ∈N+ of complex
numbers as follows: for any H = (VH , EH , LH) ∈ G and any ℓ ∈ N+,

ζH,ℓ = λH,ℓ −
ℓ−1∑
s=1

s

ℓ

∑
S,T ⊆VH

S∪T =VH

ζH[S],sλH[T ],ℓ−s. (9)

It holds that ζH,ℓ ̸= 0 only if H is connected and |VH | ≤ αℓ. Moreover, for any G =
(V, E, L) ∈ G,

log fG(z) = log fG(0) +
+∞∑
ℓ=1

∑
S⊆V

ζG[S],ℓ

 zℓ. (10)

As in [29, 27], the following result of Borgs et al. [8] is used.
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▶ Fact 18 (Lemma 2.1 (c) in [8]). Let G = (V, E) be a graph with maximum degree ∆, v ∈ V

be a vertex and ℓ ∈ N≥1. Then the number of connected subgraphs of size ℓ containing v is at
most (e∆)ℓ−1

2 .

With this fact, we can enumerate all connected induced subgraphs G[S] of |S| ≤ ℓ vertices
efficiently.

▶ Lemma 19. There exists a deterministic algorithm which takes a dependency graph
G = (V, E, L) on n = |V | vertices with maximum degree ∆ and a positive integer ℓ ∈ N+ as
input, and outputs

C≤ℓ = {S ⊆ V | |S| ≤ ℓ, G[S] is connected}, (11)

in time Õ(n(e∆)ℓ), where Õ(·) hides poly(∆, ℓ, log(n)).

Proof. Let Cv
=ℓ denote the collection of such S ⊆ V containing v ∈ V that |S| = ℓ and G[S]

is connected. Clearly C≤ℓ =
⋃

v∈V
j≤ℓ

Cv
=j . Now construct each Cv

=ℓ inductively. When ℓ = 1,

Cv
=1 = {{v}}. For ℓ ≥ 2, we enumerate all S ∈ Cv

=ℓ−1 and u ∈ V \ S such that G[S ∪ {u}] is
connected, and include S ∪ {u} into Cv

=ℓ. It is easy to see that this correctly constructs Cv
=ℓ.

By Fact 18, |Cv
=ℓ| ≤ (e∆)ℓ−1/2. Representing each set S as a string of vertices in S sorted in

increasing order of vertices, the set Cv
=ℓ can be stored by a standard dynamic data structure

such as prefix trees, so that it takes O(∆ℓ(e∆)ℓ−1) time to iterate over all (S, u) ∈ Cv
=ℓ−1 × V

such that G[S ∪ {u}] may be connected, and for each such (S, u) pair it takes poly(∆, ℓ, log n)
time to check weather G[S ∪ {u}] is connected or S ∪ {u} is already in Cv

=ℓ, and insert S into
Cv

=ℓ if necessary. Overall, it takes Õ(n(e∆)ℓ) time to construct C≤ℓ. ◀

Combining the above algorithm with (9), we can compute coefficients ζH,ℓ for log fG

efficiently.

▶ Lemma 20. Let G be a downward-closed family of dependency graphs, and f· be (α, β)-
bounded on G for α, β ≥ 1. There exists a deterministic algorithm which takes a dependency
graph G = (V, E, L) ∈ G on n = |V | vertices with maximum degree ∆ and a positive integer
ℓ ∈ N+ as input, and outputs (ζG[S],ℓ)S∈C≤αℓ

within Õ
(
n(8eβ∆)αℓ

)
time, where C≤αℓ is

defined in Eq. (11).

The lemma follows by first enumerating all S ∈ C≤αℓ, which takes Õ
(
n(e∆)αℓ

)
time

according to Lemma 19, and second for every S ∈ C≤αℓ, taking H = G[S] and computing
ζH,ℓ using a dynamic programming given by Eq. (9), which takes Õ(8αℓβℓ) time.

Let log fG(z) = log fG(0) +
∑+∞

ℓ=1 gG,ℓz
ℓ. Due to Lemma 17, ζG[S],ℓ = 0 if G[S] is

disconnected or |S| > αℓ, thus due to Eq. (9), the ℓ-th Taylor coefficient of log fG is given by

gG,ℓ =
∑
S⊆V

ζG[S],ℓ =
∑

S∈C≤αℓ

ζG[S],ℓ.

Therefore, Theorem 11 is proved. It only remains to prove Lemma 17.

Proof of Lemma 17. Fix an arbitrary G ∈ G, and consider fG. Let log fG = log fG(0) +∑+∞
ℓ=1 gG,ℓz

ℓ denote the Taylor’s expansion of log fG at the origin, and fG(z) = fG(0) +∑+∞
ℓ=1 fG,ℓz

ℓ denote the Taylor’s expansion of fG at the origin. We prove by induction on
ℓ ≥ 1 that

gG,ℓ =
∑
S⊆V

ζG[S],ℓ, (12)

which implies (10).
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For the induction basis, when ℓ = 1, by Lemma 7 we have gG,1 = fG,1. by the definition
of bounded graph function in Definition 10, fG,1 =

∑
S⊆V λG[S],1; and it follows from (9)

that λG[S],1 = ζG[S],1. Altogether, we have

gG,1 = fG,1 =
∑
S⊆V

λG[S],1 =
∑
S⊆V

ζG[S],1.

Now suppose that the induction hypothesis (12) holds for all ℓ′ < ℓ. We have

∑
S⊆V

ζG[S],ℓ =
∑
S⊆V

λG[S],ℓ −
ℓ−1∑
s=1

s

ℓ

∑
L,R⊆V
L∪R=S

ζG[L],s · λG[R],ℓ−s


=
∑
S⊆V

λG[S],ℓ −
ℓ−1∑
s=1

s

ℓ

∑
L⊆V

ζG[L],s

∑
R⊆V

λG[R],ℓ−s


= fG,ℓ −

ℓ−1∑
s=1

s

ℓ
gG,sfG,ℓ−s (I.H.)

= gG,ℓ. (Lemma 7)

This finishes the inductive proof of (12).
Next, we prove that ζH,ℓ = 0 if H = (VH , EH , LH) ∈ G is disconnected or |VH | > αℓ.

Recall that f· is (α, β)-bounded, we have λH,ℓ = 0 for |VH | > αℓ. Then the fact that ζH,ℓ = 0
for |VH | > αℓ can be verified by induction on ℓ ≥ 1. Specifically, by Eq. (9),

ζH,ℓ = λH,ℓ −
ℓ−1∑
s=1

s

ℓ

∑
S,T ⊆VH

S∪T =VH

ζH[S],sλH[T ],ℓ−s.

For the basis, ζH,1 = λH,1 = 0 when |VH | > α. In general, observe that assuming |VH | > αℓ,
for any S ∪ T = VH , it must hold that either |S| > αs or |T | > α(ℓ − s). Therefore, assuming
|VH | > αℓ, ζH,ℓ = 0 follows from the induction hypothesis.

Finally, it remains to verify that ζH,ℓ = 0 if H is disconnected, which follows from the
multiplicative property of f·. By contradiction, assume that ζH,ℓ ≠ 0 for some disconnected
H ∈ G. Let S∗ ⊆ VH be a minimal subset of V such that H[S∗] is disconnected and
ζH[S∗],ℓ ̸= 0. Since H[S∗] is disconnected, there exist nonempty L, R ⊆ S∗ such that
L ∪ R = S∗ and L, R are disconnected in H [S∗]. Due to the multiplicative property of f·, we
have fG[S∗] = fG[L] · fG[R]. Therefore,

gG[S∗],ℓ = gG[L],ℓ + gG[R],ℓ =
∑
S⊆L

ζG[S],ℓ +
∑
S⊆R

ζG[S],ℓ, (13)

where the first equation can be formally verified for any disjoint dependency graphs G1, G2 ∈ G
and any z in the neighborhood of the origin, such that for an arbitrary path P in Ω connecting
z and the origin,

log fG1∪G2(z) = log fG1∪G2(0) +
∫

P

f ′
G1∪G2

(z)
fG1∪G2(z) dz

= log fG1(0) + log fG2(0) +
∫

P

(
f ′

G1
(z)

fG1(z) +
f ′

G2
(z)

fG2(z)

)
dz

= log fG1(z) + log fG2(z).
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On the other hand,

gG[S∗],ℓ =
∑

S⊆S∗

ζG[S],ℓ = ζG[S∗],ℓ +
∑

S⊂S∗

ζG[S],ℓ = ζG[S∗],ℓ +
∑
S⊆L

ζG[S],ℓ +
∑
S⊆R

ζG[S],ℓ, (14)

where the last equation is due to the minimality of S∗. Combining (13) and (14), we have
ζG[S∗],ℓ = 0, a contradiction. ◀

5 Applications

In this section, we prove that any zero-free partition function of local Hamiltonians with
bounded maximum degree is polynomial-time approximable if the inverse temperature is
close enough to 0. This is formally stated by the following theorem. Recall the definition of
the partition function ZH,O induced by Hamiltonian H under measurement O in (5).

▶ Theorem 21. Let k, d ∈ N+, h > 0, δ ∈ (0, 1) and β0 = 1
5ekdh . There is a deterministic

algorithm such that given any (k, d)-Hamiltonian H =
∑m

j=1 Hj on n sites satisfying ∥Hj∥ ≤ h

and tensorized measurement O, for any temperature β ∈ D(1−δ)β0 and error bound ε ∈ (0, 1),
the algorithm outputs an estimation of ZH,O(β) within ε-multiplicative error in Õ

((
n
δε

)C
)

time with C = 1
δ (ln 8ed + 3k ln q) + 1.

It was established in [18] that any partition function ZH(β) exhibits zero-freeness property
in a high-temperature regime (when the inverse temperature β is close to 0). A similar
lemma holds for partition functions ZH,O(β) under tensorized measurement O.

▶ Lemma 22 (high temperature zero-freeness). Let h ∈ R+, H =
∑m

j=1 Hj be a (k, d)-
Hamiltonian on n sites, and O be a tensorized measurement. If ∥Hj∥ ≤ h for all 1 ≤ j ≤ m,
then for any β ∈ Dβ0 where β0 = 1

5edkh , it holds that
∣∣∣log ZH,O(β)

Tr[O]

∣∣∣ ≤ n.

Theorem 21 follows directly from Lemma 22 and Theorem 15.
The proof of Lemma 22 extends the zero-freeness analysis in [18] to the case where a

tensorized measurement O is present. We will see that the same inductive proof based on
cluster expansion works for this more general case.

Define HX the Hamiltonian H restricted on X by

HX =
∑

i∈[m]
supp(Hi)⊆X

Hi,

and define the partition function ZH,O restricted on X by ZX
H,O(β) = TrX [exp(−βHX)OX ],

where OX =
⊗

v∈X Ov, and Z∅
H,O = 1 by convention. Here the subscript X in TrX indicates

that the operators act on the sites in X.
Moreover, recall the dependency graph GH = (U, E, L) defined in the proof of Theorem 15:

1. U = [m];
2. E = {(x, y) ∈ U × U | x ̸= y, supp(Hx) ∩ supp(Hy) ̸= ∅};
3. Lx = Hx for any x ∈ U .

We are now ready to introduce the cluster expansions of partition functions. The following
lemma was an extension of [18, Lemma 26] with tensorized measurement O.
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▶ Lemma 23 (high temperature expansion [18, Lemma 26]). Let h ∈ R+, H =
∑m

i=1 Hi be a
(k, d)-Hamiltonian, O be a tensorized measurement and β0 = 1

e(e−1)dh . If ∥Hi∥ ≤ h, then the
following holds for all Λ ⊆ V , x ∈ Λ and β ∈ Dβ0 .

ZΛ
H,O(β) = Tr[Ox]ZΛ\{x}

H,O (β) +
∑

S⊆[m]
∃j∈S,x∈supp(Hj)

GH [S] is connected

WS(β)ZΛ\RS

H,O (β),

where WS(β) =
∑+∞

l=|S|
(−β)l

l!
∑

(i1,...,il)∈Sl

∪l
j=1{ij}=S

TrRS

[∏l
j=1 Hij

ORS

]
, and RS =

⋃
j∈S supp(Hj).

We also need the following technical lemma from [18].

▶ Lemma 24 (Harrow, Mehraban and Soleimanifar [18, Lemma 27]). Let H =
∑m

i=1 Hi be a
(k, d)-Hamiltonian, and β0 = 1

5edkh , then for |β| < β0∑
S⊆[m]

∃j∈S,x∈supp(Hj)
GH [S] is connected

(
e|β|h − 1

)|S|
exp(dhe2 |β| |RS |) ≤ e(e − 1)dh |β| .

Proof Sketch of Lemma 22. Fix an arbitrary Λ ⊆ V . As observed in [18], it suffices to
prove that removal of any single site x ∈ Λ can only produce a bounded additive overhead to
log ZΛ

H,O(β). Formally, we are going to prove that when |β| < β0, for any x ∈ Λ,∣∣∣∣∣log

∣∣∣∣∣ 1
Tr[Ox]

ZΛ
H,O(β)

Z
Λ\{x}
H,O (β)

∣∣∣∣∣
∣∣∣∣∣ ≤ e2dh |β| . (15)

The proof is by induction on |Λ|. The induction basis with |Λ| = 1 is easy to establish.
Now suppose that (15) holds for all smaller Λ. By Lemma 23 and Lemma 24, we have

∣∣∣∣∣log

∣∣∣∣∣ 1
Tr[Ox]

ZΛ
H,O(β)

Z
Λ\{x}
H,O (β)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
log

∣∣∣∣∣∣∣∣∣∣∣
1 +

∑
S⊆[m]

∃j∈S,x∈supp(Hj)
GH [S] is connected

WS(β)
(

1
Tr[Ox]

Z
Λ\RS

H,O (β)

Z
Λ\{x}
H,O (β)

)∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
(∗)
≤ − log

1 −
∑

S⊆[m]
∃j∈S,x∈supp(Hj)

GH [S] is connected

|WS(β)|
(

exp
(
−e2dh |β|

)
Tr[ORS

]

)

≤ − log

1 −
∑

S⊆[m]
∃j∈S,x∈supp(Hj)

GH [S] is connected

(exp(|β| h) − 1)|S|

exp(e2dh |β|)


≤ − log(1 − e(e − 1)dh |β|) ≤ e2dh |β| ,

where (∗) follows from the induction hypothesis and the last inequality follows from the fact
that − log

(
1 − e−1

e y
)

≤ y for all y ∈ [0, 1]. ◀
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Besides estimation of partition function, another related important computational problem
is to sample according to the Gibbs state.

The quantum Gibbs state specified by Hamiltonian H ∈ V and inverse temperature
β ∈ R+ is:

ρH(β) = exp(−βH)
ZH(β) .

The classical distribution µH,β over [q]V is the quantum Gibbs state ρH(β) after meas-
urement in the computational basis, i.e.

∀σ ∈ [q]V , µH,β(σ) = ZH,Oσ
(β)

ZH(β) ,

where Oσ = |σ⟩⟨σ|. Note that µH,β is a well-defined distribution over [q]V . To see this, first
note that

∑
σ Oσ = I is the identity matrix in V, and hence

∑
σ ZH,Oσ

(β) = ZH(β); and
second, both Oσ and exp(βH) are positive semidefinite since H is Hermitian and β ∈ R+,
and hence ZH,Oσ

(β) = Tr [exp(βH)Oσ] ≥ 0.
In the same regime as Theorem 21, we have a polynomial-time approximate sampler from

µH,β , the classical distribution obtained after measurement of the quantum Gibbs state in
the computational basis.

▶ Theorem 25. Let k, d ∈ N+, h > 0, δ ∈ (0, 1) and β0 = 1
5ekdh . There is a randomized

algorithm such that given any (k, d)-Hamiltonian H =
∑m

j=1 Hj on n sites satisfying ∥Hj∥ ≤
h, for any temperature β ∈ D(1−δ)β0 and error bound ε ∈ (0, 1), the algorithm outputs an
approximate sample σ ∈ [q]V within ε total variation distance from the distribution µH,β, in
Õ
((

n
δε

)C
)

time with C = 1
δ (2 ln 8ed + 6k ln q) + 3.

Proof. We leverage the algorithm in Theorem 21 as a subroutine, and give the following
classical algorithm for approximate sampling from µH,β .

Without loss of generality, we may assume that V = [n]. Let Mj = |j⟩⟨j| for 1 ≤ j ≤ q,
and Mv,j =

(⊗v−1
ℓ=1 I

)
⊗ Mj ⊗

(⊗n
ℓ=v+1 I

)
. Our procedure for sampling σ ∈ [q]V is as

follows.
1. Initialize O with the identity operator on Hilbert space H;
2. Iterate v from 1 to n;
3. For each j from 1 to n, estimate zv,j = ZH,Ov−1Mv,j

(β) within ε0 = ε
10n -multiplicative

error.
4. samples j ∈ [q] proportional to z̃v,j , the estimation of zv,j , updates O with OMv,j , and

assigns σ(v) with j.
Note that O is a tensorized measurement during the process. Hence, Theorem 21 guar-
antees an estimation of zv,j within ε0-multiplicative error in Õ(

(
n
εδ

)C) time with C =
1
δ (2 ln 8ed + 6k ln q) + 2. Furthermore, note that for each configuration σ ∈ [q]V ,

Pr[σ is generated]
µH,O(σ) =

n∏
v=1

zv,σ(v)∑
j∈[q] zv,j

∑q
j=1 z̃v,j

z̃v,σ(v)
,

and for each v ∈ V and j ∈ [q],

1 − ε0 ≤ z̃v,j

zv,j
≤ 1 + ε0.
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Hence,

1 − ε
(∗)
<

(
1 − ε

1 + ε

)n

≤ Pr[σ is generated]
µH,O(σ) ≤

(
1 + ε0

1 − ε0

)n (⋆)
< 1 + ε,

where (⋆) follows from
(

1+ε0
1−ε0

)
≤ (1 + 3ε0)n < exp( 3

10 ε) < 1 + ε, and (∗) follows from (⋆)
and 1

1+ε > 1 − ε. Therefore, the total varaince distance between µH,O and the output from
our sampler will differ at most ε.

We conclude the proof by observing that our algorithm calls the subrountine O(nq) times
with parameter ε0 = ε

10n , which takes Õ
((

n
ε

)C
)

time with C = 1
δ (2 ln 8ed + 6k ln q) + 3 in

total. ◀
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Faster Cut-Equivalent Trees in Simple Graphs
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Abstract
Let G = (V, E) be an undirected connected simple graph on n vertices. A cut-equivalent tree of
G is an edge-weighted tree on the same vertex set V , such that for any pair of vertices s, t ∈ V ,
the minimum (s, t)-cut in the tree is also a minimum (s, t)-cut in G, and these two cuts have the
same cut value. In a recent paper [Abboud, Krauthgamer and Trabelsi, STOC 2021], the authors
propose the first subcubic time algorithm for constructing a cut-equivalent tree. More specifically,
their algorithm has 1Õ(n2.5) running time. Later on, this running time was significantly improved
to n2+o(1) by two independent works [Abboud, Krauthgamer and Trabelsi, FOCS 2021] and [Li,
Panigrahi, Saranurak, FOCS 2021], and then to (m + n1.9)1+o(1) by [Abboud, Krauthgamer and
Trabelsi, SODA 2022].

In this paper, we improve the running time to Õ(n2) graphs if near-linear time max-flow
algorithms exist, or Õ(n17/8) using the currently fastest max-flow algorithm. Although our algorithm
is slower than previous works, the runtime bound becomes better by a sub-polynomial factor in
dense simple graphs when assuming near-linear time max-flow algorithms.
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1 Introduction

It is well known from Gomory and Hu [10] that any undirected graph can be compressed
into a single tree while all pairwise minimum cuts are preserved exactly. More specifically,
given any undirected graph G = (V, E) on n vertices and m edges, there exists an edge
weighted tree T on the same set of vertices V , such that: for any pair of vertices s, t ∈ V ,
the minimum (s, t)-cut in T is also a minimum (s, t)-cut in G, and their cut values are equal.
Such trees are called Gomory-Hu trees or cut-equivalent trees. In the original paper [10],
Gomory and Hu showed an algorithm that reduces the task of building a cut-equivalent tree
to n− 1 max-flow instances. Gusfield [13] modified the original algorithm Gomory and Hu
so that no graph contractions are needed when applying max-flow subroutines. So far, in
weighted graphs, faster algorithms for building cut-equivalent trees were only byproducts of
faster max-flow algorithms. In the recent decade, there has been a sequence of improvements
on max-flows using the interior point method [16, 20, 19, 15, 6], and the current best running
time is Õ(m + n1.5) by [6], so computing a cut-equivalent tree takes time Õ(mn + n2.5).

1 Õ hides poly-logarithmic factors.
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When G is a simple graph, several improvements have been made over the years. Bhalgat
et al. [14] designed an Õ(mn) time algorithm for cut-equivalent trees using a tree packing
approach based on [9, 7]. Recent advances include an upper bound of O(m3/2n1/6) by
Abboud, Krauthgamer and Trabelsi [2], and in a subsequent work [3] by the same set of
authors, they proposed the first subcubic time algorithm that constructs cut-equivalent trees
in simple graphs, and their running time is n2.5+o(1). Recently, by two independent works
[4, 18], this running time was improved to n2+o(1) which is almost-optimal in dense graphs,
and further to a subquadratic time (m + n1.9)1+o(1) by [5].

All of these upper bounds rely on the current fastest max-flow algorithm with runtime
Õ(m + n1.5). However, even if we assume the existence of a Õ(m)-time max-flow algorithm,
the above algorithms still have n2+o(1) running time in dense graphs which contains an extra
sub-polynomial factor.

1.1 Our results
Let MF(m0, n0) be the running time complexity of max-flow computation in unweighted
multi-graphs with m0 edges and n0 vertices, and let MF(m0) = MF(m0, m0) for convenience.

The main result of this paper is a near-quadratic time algorithm assuming existence of
quasi-linear time max-flow algorithms. For a detailed comparison with recent published
works, please refer to the table below where conditional runtime refers to the assumption of
near-linear time max-flow algorithms.

▶ Hypothesis 1. MF(m0, n0) = Õ(m0 + n0).

▶ Theorem 2. Let G = (V, E) be a simple on n vertices. Under Hypothesis 1, there is a
randomized algorithm that constructs a cut-equivalent tree of G in Õ(n2) time with high
probability. Using the current fastest max-flow algorithm [6], the running time becomes
Õ(n17/8).

reference conditional runtime unconditional runtime
[3] Õ(n2.5) n2.5+o(1)

[4] n2+o(1) n2+o(1)

[18] n2+o(1) n2+o(1)

[5] (m + n1.75)1+o(1) (m + n1.9)1+o(1)

new Õ(n2) Õ(n17/8)

Comparison with subsequent works. In a very recent but unpublished online preprint [1] (see
also a note by [21]), significant progress has been made where an unconditional Õ(n2) runtime
has been achieved for cut-equivalent trees in general weighted graphs, which completely
subsumes our result.

1.2 Technical overview
Our algorithm is largely based on the framework of [3]. In this subsection, we will discuss
the running time bottlenecks of [3] and how to bypass them. For simplification, consider the
following task. Let T be a partition tree which is an intermediate tree of the Gomory-Hu
algorithm. Take an arbitrary node N ⊆ V of T which represents a vertex subset of V . Let
GT [N ] = (VT [N ], ET [N ]) be the auxiliary graph obtained by contracting each component of
T \ {N} into a single vertex in the original graph G.
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Fix a pivot vertex p ∈ N , we want to find a sequence of vertices v1, v2, · · · , vl ∈ N ,
and compute a sequence of latest minimum cuts (Li, VT [N ] \ Li), 1 ≤ i ≤ l in GT [N ] for
(vi, p), 1 ≤ i ≤ l, where vi ∈ Ki, p /∈ Ki, such that:

(1) l ≥ Ω(|N |).

(2) For each 1 ≤ i ≤ l, |Li| ≤ |N |/2.
If we cut all sides Li ∩N off of N and form tree nodes, then by the above two properties all
tree nodes are vertex subsets of N of size at most |N |/2. So, if we can recursively repeat this
procedure on smaller subsets, then it would produce a cut-equivalent tree in logarithmically
many rounds.

For this task, the basic idea of [3] is to apply expander decompositions. Suppose the
original graph G is decomposed into disjoint clusters V = C1 ∪C2 ∪ · · · such that each G[Ci]
is a ϕ-expander, and the total number of inter-cluster edges is bounded by Õ(ϕn2). For
simplicity let us assume G is a roughly regular graph and each vertex v ∈ V has degree
degG(v) ∈ [n/2, n). For each v, suppose (Lv, V \ Lv) is the latest min-cut for (v, p), and
let Cv be the ϕ-expander of the expander decomposition that contains v. Vertices of N are
divided into three types.

1. Vertices in clusters whose size is less than n/4, namely |Cv| < n/4.

2. Vertices in clusters whose size is at least n/4, namely |Cv| ≥ n/4, plus that |Cv ∩ Lv| ≤
10/ϕ. Note that there are only a constant number of such clusters.

3. |Cv| ≥ n/4, plus that |Cv \ Lv| ≤ 10/ϕ.

The first bottleneck

To compute Lv for type-1 vertices, we simply go over all such v’s, and compute the max-flow
from v to p in GT [N ]. Since each type-1 vertex must contribute n/2−n/4 = n/4 inter-cluster
edges as the input graph G is simple, the total number of type-1 vertices does not exceed
Õ(ϕn), summing over all tree nodes N of T .

For type-2 vertices, using the isolating cut lemma devised in [3, 17], we can compute all
the sides Lv in Õ(MF(volG(N))/ϕ) time, which sum to Õ(MF(n2)/ϕ) over all nodes N of T .
So, under Hypothesis 1, the total time cost of type-1 and type-2 vertices is Õ(ϕn3 + n2/ϕ),
which is always larger than n2.5. So in their algorithm [3], parameter ϕ is equal to 1/

√
n.

Our observation is that applying max-flow for each type-1 vertex is too costly. To
overcome this bottleneck, we simply avoid computing cuts (Lv, VT [N ] \ Lv) for both type-1
and type-2 vertices. If the total number of type-2&3 vertices is larger than the total number
of type-1 vertices, then we can skip all type-1 vertices. However, if the number of type-1
vertices dominates in N , then the number of type-2&3 vertices is at most Õ(ϕn) over all
such kind of N . In this case, the total degree volG(N) is at most Õ(ϕn2), and therefore,
when summing over all nodes N of T , computing all type-1 vertices takes time at most
Õ(ϕ2n3), instead of Õ(ϕn3), and so the new balance would be Õ(ϕ2n3 + n2/ϕ). Therefore,
if we choose ϕ = n−1/3, it becomes n7/3 which is already better than n2.5. In the final
algorithm, we will classify expander sizes using log n many different thresholds, instead of
just one threshold (which is n/4 here), and so in the end we can set ϕ = 1/ logO(1) n. In
general cases where graph G has various vertex degrees, we need to apply boundary-linked
expander decomposition from a recent work [11]; especially we need to make use of property
(3) in Definition 4.2 of [11].
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The second bottleneck

In the work [3], in order to compute latest min-cuts (Lv, VT [N ] \ Lv) for type-3 vertices,
they consider the laminar family formed by all sides Lv. If the laminar family has tree depth
at most k, then their algorithm can compute cuts (Lv, VT [N ] \ Lv) by applying k + 10/ϕ

max-flows in GT [N ]. To ensure that the depth is bounded by k, they need a first randomly
refine node N into |N |/k sub-nodes which takes |N |/k Gomory-Hu steps. Hence, in total, it
requires at least k + |N |/k >

√
|N | max-flow invocations, which leads to a n2.5 running time

under Hypothesis 1.
To bypass this barrier, the observation is that the depth of the laminar family in each

ϕ-expander is already small, so actually we do not need the help from the refinement step.
More precisely, instead of looking at the entire laminar family formed by sets {Lv}v∈N , we
only look at the laminar family formed by sets {Cv ∩ Lv}v∈N for each cluster C. It can be
proved that the depth of this smaller laminar family is always bounded by O(1/ϕ). In the
end, to compute latest min-cuts (Lv, VT [N ] \ Lv) for all type-2&3 vertices, we will only use
O(1/ϕ) max-flow instances in total.

2 Preliminaries

Let G = (V, E) be an arbitrary simple graph on n vertices and m edges with unit-capacities.
For any v ∈ V , let degG(v) be the number of its neighbors in V . For any subset S ⊆ V , define
volG(S) =

∑
v∈S degG(v), and let outG(S) count the number of edges in E ∩ (S × (V \ S)),

and define G[S] to be the induced subgraph of S on G.
Introduced in [8], the latest minimum (s, t)-cut is a minimum (s, t)-cut such that the side

containing s has minimum size as well. It is proved that latest minimum cuts are unique,
and can be computed by any max-flow algorithm for (s, t).

Here are some basic facts about min-cuts.

▶ Lemma 3 (Lemma 2.8 in [3]). For any vertices a, b, p ∈ V , assume (A, V \A) and (B, V \B)
are min-cuts for (a, p), (b, p) respectively. If b ∈ A, then (A ∪B, V \ (A ∪B)) is a min-cut
for (a, p) as well.

▶ Lemma 4 (Lemma 2.9 in [3]). For any vertices a, b, p ∈ V , assume (A, V \A) and (B, V \B)
are min-cuts for (a, p), (b, p) respectively. If a /∈ B and b /∈ A, then (A \B, V \ (A \B)) is a
min-cut for (a, p).

2.1 Cut-equivalent trees

A cut-equivalent tree is a tree T on V with weighted edges, such that for any pair s, t ∈ V ,
there is a minimum cut (S, V \ S) in G such that it is also a minimum cut in T with the
same cut value. Now let us turn to define some terminologies for cut-equivalent trees.

Partition trees

A partition tree T of graph G is a tree whose nodes U1, U2, · · · , Ul represent disjoint subsets
of V such that V = U1 ∪ U2 ∪ · · · ∪ Ul. For each node U of T , the auxiliary graph
GT [U ] = (VT [U ], ET [U ]) of U is built by contracting each component of T \ {U} into a
single vertex in the original graph G.
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Gomory-Hu algorithm

Gomory-Hu algorithm provides a flexible framework for constructing a cut-equivalent tree.
The algorithm begins with a partition tree T which is the single node that subsumes the
entire vertex set V , and creates more nodes iteratively by refining its nodes. In each iteration,
the algorithm picks an arbitrary node that represent a non-singleton subset U ⊆ V , and
selects two arbitrary vertex s, t ∈ U . Then, compute the minimum cut (S, VT [U ]\S) between
s, t in the auxiliary graph GT [U ]. Finally, split node U into two nodes that correspond to
subsets S ∩ U and (VT [U ] \ S) ∩ U respectively, connected by an edge with weight equal to
the value of the cut (S, VT [U ] \ S) in GT [U ]. For each node W that was U ’s neighbor on T ,
reconnect W to node S ∩ U if S contains the contracted node that subsumes W ; otherwise
reconnect W to node (VT [U ] \ S) ∩ U .

A tree is called GH-equivalent, if it is a partition tree that can be constructed during
Gomory-Hu algorithm by certain choice of nodes U to split and pairs of vertices s, t ∈ U .

Refinement with respect to subsets

Consider a partition tree T which is GH-equivalent. Let U be one of T ’s node and let R ⊆ U

be a subset. A refinement of T with respect to R is to repeatedly execute a sequence of
Gomory-Hu iterations by always picking two different vertices from s, t ∈ R that are currently
in the same node of T and refine T using a minimum (s, t)-cut. So after the refinement of T
with respect to R, T is still GH-equivalent.

▶ Lemma 5 ([12]). For any node U of T and any subset R ⊆ U , a refinement of T with
respect to R can be computed in time Õ(|R| ·MF(volG(U))).

▶ Lemma 6 (see definition of partial trees in [3]). After the refinement on a GH-equivalent
tree T with respect to R, for any a, b ∈ R, let Na ∋ a and Nb ∋ b be nodes of T . Then, the
min-cut of (Na, Nb) in T is a min-cut in G for (a, b) as well.

k-partial trees

A k-partial tree T is a GH-equivalent partition tree such that all vertices u ∈ V such that
degG(u) ≤ k are singletons of T . The following lemma states that k-partial trees always
exist and can be computed efficiently for small k’s.

▶ Lemma 7 ([14]). There is an algorithm that, given an undirected graph with unit edge capac-
ities and parameter k on n vertices, computes a k-partial tree in time min{Õ(nk2), Õ(mk)}.

2.2 Expander decomposition
For any pair of disjoint sets S, T ⊆ V , let EG(S, T ) be the set of edges between S, T in G. The
conductance of a cut (S, V \ S) is ΦG(S) = |EG(S, V \ S)|/ min{volG(S), volG(V \ S)}, and
the conductance of a graph G is defined as ΦG = minS ΦG(S). A graph G is a ϕ-expander if
ΦG ≥ ϕ.

For any vertex subset S ⊆ V and positive value x > 0, let G[S]x be the subgraph induced
on S where we add ⌈x⌉ self-loops to each vertex v ∈ S for every boundary edge (v, w), w /∈ S.
As an example, in graph G[S]1 the degrees of all vertices are the same as in the original
graph G.

We need a strong expander decomposition algorithm from a recent work [11].
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▶ Definition 8 (boundary-linked expander decomposition [11]). Let G = (V, E) be a graph on
n vertices and m edges, and α, ϕ ∈ (0, 1) be parameters. An (α, ϕ)-expander decomposition
of V consists of a partition C = {C1, C2, · · · , Ck} of V such that the following holds.
(1)

∑k
i=1 outG(Ci) ≤ log4 n · ϕm.

(2) For any i, G[Ui]α/ϕ is a ϕ-expander.
(3) For any i, outG(Ci) ≤ log7 n · ϕvolG(Ci).
In the original paper [11], the upper bounds are stated with O(·) notations that hide constant
factors; here we simply raise the exponent of log-factors to simplify the notations.

▶ Lemma 9 ([11]). Given any unweighted graph G = (V, E) on n vertices and m edges, for
any α, ϕ ∈ (0, 1) such that α ≤ 1/ logc m where c is a certain constant, a (α, ϕ)-expander
decomposition can be computed in Õ(m/ϕ) with high probability.

2.3 Isolating cuts
▶ Lemma 10 (isolating cuts [3]). Given an undirected edge-weighted graph H = (X, F, ω), a
pivot vertex p ∈ X, and a set of terminal vertices T ⊆ X. For each u ∈ T , let (Ku, X \Ku)
be the latest minimum (u, p)-cut for each u ∈ T . Then, in time Õ(MF(|F |, |X|)) we can
compute |T | disjoint sets {K ′

u}u∈T such that for each u ∈ T , if Ku ∩T = {u} then K ′
u = Ku.

3 Quadratic time Gomory-Hu tree under Hypothesis 1

3.1 The main algorithm
In this section we try to prove the first half of Theorem 2. Let G = (V, E) denote the
simple graph as our input data. Define some parameters: ϕ = 1

10 logc+10 n
is a global

conductance parameter that is used to construct expander decompositions, and r = 10 log5 n

is a sampling parameter which is needed when choosing pivots; here c is the same constant
as in Definition 8. Without loss of generality, assume

√
n is an integral power of 2. Define a

degree set D = {
√

n, 2
√

n, 22√n, · · · , n}.

Preparation

Throughout the algorithm, T will be the cut-equivalent tree under construction, where each
of T ’s node will represent a subset of vertices of V . As a preparation step, compute a
(ϕ, ϕ)-expander decomposition on G and obtain a partitioning C = {C1, C2, · · · , Ck} of V .
Categorize clusters in C according to their sizes: for each 2i, define Ci to be the set of clusters
whose sizes are within interval [2i, 2i+1).

At the beginning, initialize T to be a
√

n-partial tree by applying the algorithm from [14]
that takes running time Õ(n2).

Iteration

In each round, we will divide simultaneously all nodes of T which contains at least 20r

vertices in V . In the end, the total number of rounds will be bounded by Õ(1). To describe
our algorithm, let us focus on any single node N ⊆ V of T whose size |N | is at least 20r.
The first step is to refine the partition of N by a set of random pivots. More specifically,
sample a pivot subset R ⊆ N of size 10r by picking each vertex with probability proportional
to its degree in G; more precisely, repeatedly sample for 10r times a vertex from N where
each vertex v ∈ N is selected with probability degG(v)/volG(N).
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Then, refine the node N of T by computing a partial tree with respect to R using
Lemma 5, which further divides N into several subsets each containing a distinct vertex from
R. After applying this pivot-sampling & refining step to each of the original node of T , T
has undergone one pass of partition, and now each node U of T is associated with a unique
pivot vertex p ∈ U ∩R.

For the rest, let us focus on each node U of the current T as well as its pivot p, such that
U ⊆ N is a subdivision of the previous node N but volG(U) ≥ 0.5volG(N). For each k ∈ D,
define Uk = {u ∈ U | degG(u) ∈ [k, 2k)}, so U =

⋃
k∈D Uk. Take a parameter d ∈ D such

that d|Ud| is maximized, namely d ∈ arg maxk∈D k|Uk|. Therefore, 2d|Ud| ≥ volG(U)/ log n.
Next, for each index i, define cnt[i] to be the number of vertices from Ud that lie within
clusters from Ci. Take s = 2iU such that cnt[iU ] is maximized.

For each cluster C ∈ CiU
such that C ∩ Ud is nonempty, conduct the expander search

routine described in the next subsection (Algorithm 2) to compute cuts (Ku, VT [U ] \Ku)
in the auxiliary graph GT [U ] for a set WC of vertices u ∈ WC ⊆ C ∩ Ud with respect to
pivot p; so u ∈ Ku, p ∈ VT [U ] \Ku. It will be guaranteed that for each u ∈ WC , we have
volG(Ku ∩ U) ≤ 0.5volG(N). In the end, define W =

⋃
C∈CiU

WC .
We will prove that all (Ku, VT [U ] \Ku) are latest min-cuts for (u, p). Since all latest

minimum cuts (Ku, VT [U ] \Ku) are with respect to p, they should form a laminar family.
Then, for each u ∈W such that Ku is maximal in the laminar family, split Ku ∩ U off the
node U and create a new node for vertex set Ku ∩ U . Since we always take maximal Ku’s,
all of these sets are disjoint in VT [U ], so the creation of new nodes on T is well-defined.
Pseudo-code CondGomoryHu summarizes our algorithm.

Algorithm 1 CondGomoryHu(G = (V, E)).

1 initialize a partition tree T , as well as parameters ϕ, r;
2 while ∃N ⊆ V , U a node of T , |N | ≥ 20r do
3 for node N of T with |N | ≥ 20r do
4 repeat for 10r times: each time we sample a vertex u ∈ N with probability

degG(u)
volG(N) , and let the sampled set be R;

5 call Lemma 5 on node N with respect to R;
6 for node U ⊆ N of T such that volG(U) > 0.5volG(N) do
7 take d ∈ D such that d|Ud| is maximized;
8 take s = 2iU such that cnt[iU ] is maximized;
9 for each C ∈ CiU

do
10 run expander search on C within node U to compute a subset

WC ⊆ C ∩ Ud, and the latest min-cuts (Ku, VT [U ] \Ku) for each
u ∈WC ;

11 define W =
⋃

C∈CiU
WC ;

12 for each u ∈W such that Ku is maximal, split Ku ∩ U off of U and create
a new node on T ;

13 for node N of T such that |N | < 20r do
14 repeatedly refine N using the generic Gomory-Hu steps until all nodes are

singletons;
15 return T as a cut-equivalent tree;
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3.2 Finding latest min-cuts in expanders

Our algorithm is similar to the one from [3]. The input to this procedure is a node U ⊆ V

of the current partition tree T under construction, together with parameters s, d defined
previously, as well as an expander C ∈ CiU

that intersects Ud. The output of this procedure
will be a subset WC ⊆ C∩Ud, and their cuts (Ku, VT [U ]\Ku) for all u ∈WC in the auxiliary
graph GT [U ], with the extra property that volG(Ku ∩ U) ≤ 0.5volG(N). In the end, we will
show that with high probability, all these cuts are latest min-cuts in GT [U ].

To describe our algorithm, consider all vertices u ∈ C ∩Ud and their latest minimum cuts
(Lu, VT [U ] \ Lu) with respect to pivot p ∈ U . Let λu be the cut value of (Lu, VT [U ] \ Lu)
in GT [U ]. All of the sets Lu ∩ C ∩ Ud should form a laminar family, which corresponds
to a tree structure T d

p [C], where each tree node M of T d
p [C] packs a subset of C ∩ Ud,

such that for all u ∈ M the set Lu ∩ C ∩ Ud are the same. More specifically, T d
p [C]

is constructed as follows: first arrange the laminar family {Lu ∩ C ∩ Ud}u∈C∩Ud
as a

tree, and then for each node Lu ∩ C ∩ Ud on this tree, associate with this node the set
M = {v ∈ C ∩ Ud | Lv ∩ C ∩ Ud = Lu ∩ C ∩ Ud} ⊆ Lu ∩ C ∩ Ud.

We need to emphasize that our algorithm does not know T d
p [C] at the beginning, but it

will gradually explore part of T d
p [C] during the process.

Preparation

Initialize WC = ∅. Assume |C ∩ Ud| ≥ 10/ϕ2; otherwise we could simply reset WC = C ∩ Ud

and run |C ∩Ud| instances of max-flow to compute all latest cuts. As a preparatory step, the
algorithm repeatedly takes a random subset T ⊆ C∩Ud by selecting each vertex independently
with probability ϕ. Then apply Lemma 10 on graph GT [U ] to compute isolating cuts of
terminal vertices from T with respect to pivot p. This procedure goes on for 10 log n/ϕ

iterations, and for each u ∈ C ∩Ud, let (Ai
u, VT [U ] \Ai

u) be the isolating cut computed for u

in the i-th iteration; if u was not selected by T in the i-th iteration, simply set Ai
u = {u}.

Finally, let Au be the set among {Ai
u}1≤i≤10 log n/ϕ such that the cut value of (Au, VT [U ]\Au)

in the auxiliary graph GT [U ] is minimized; to break ties, we select Ai
u that minimizes |Ai

u|.
Let κu be the cut value of (Au, VT [U ] \Au) for u ∈ C ∩ Ud.

If one of |Au ∩C ∩Ud| > 2/ϕ, then the algorithm fails and aborts; we will prove that the
failure probability is small.

Exploring T d
p [C]

A node M of T d
p [C] is called large if |C∩Ud\Lu| ≤ 2/ϕ for any u ∈M , and if |Lu∩C∩Ud| ≤

2/ϕ it is called small. Similarly, a vertex u ∈ C ∩ Ud is called large, if |C ∩ Ud \ Lu| ≤ 2/ϕ;
otherwise if |Lu ∩ C ∩ Ud| ≤ 2/ϕ, it is called small.

▶ Lemma 11. All large nodes on T d
p [C] should lie on a single path ended at root.

Proof. Suppose otherwise there exists two different large nodes M1, M2 of T d
p [C] such that

M1 ∩ M2 = ∅. Take any u1 ∈ M1, u2 ∈ M2. Since M1, M2 are large nodes, we know
|C ∩ Ud \ Lu1 | ≤ 2/ϕ, |C ∩ Ud \ Lu2 | ≤ 2/ϕ. As C ∩ Ud ∩ Lu1 and C ∩ Ud ∩ Lu2 are
disjoint, we have |C ∩ Ud| ≤ |C ∩ Ud \ Lu1 |+ |C ∩ Ud \ Lu2 | ≤ 4/ϕ, which contradicts that
|C ∩ Ud| ≥ 10/ϕ2. ◀
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The main idea of our algorithm is to find the lowest large node on T d
p [C]; to clarify a bit

more, here “lowest” means farthest from root. Initialize a set S ← C ∩ Ud and maintain an
ordering of vertices in S according to the cut value of κu, also initialize variable Q← ∅.

Repeat the following procedure: take u ∈ S\Q such that κu is maximized. Apply max-flow
in graph GT [U ] to compute the latest min-cut Lu for (u, p). Consider two possibilities.

Lu is small. Then assign S ← S \ (Q ∪ Lu), and Q← ∅.
Lu is large. If Lu ∩ C ∩ Ud = S, then add u to Q; otherwise if Lu ∩ C ∩ Ud ̸= S, reset
S ← Lu ∩ C ∩ Ud and Q← {u}.

The repetition terminates if either (1) |C ∩ Ud \ S| > 2/ϕ or (2) |Q| > 2/ϕ. In the first
case, assign WC ← {u ∈ S | volG(Au ∩ U) ≤ 0.5volG(N)}, Ku ← Au and terminate. Note
that this notation volG(Au ∩ U) is well-defined, since all vertices in U are also vertices in V ,
not contracted vertices in VT [U ].

Now suppose we are in the second case. Let L = Lv for an arbitrary v ∈ Q. We will
prove afterwards that (L, VT [U ] \ L) is the latest min-cut corresponding to the lowest large
node. Let κ be the cut value of (L, VT [U ] \ L), and define B = {u ∈ S | κu > κ}. Assign
WC ← {u ∈ S \B | volG(Au ∩ U) ≤ 0.5volG(N)}, Ku ← Au and for each u ∈WC .

After that, take an arbitrary v ∈ Q. If it satisfies that volG(L ∩ U) ≤ 0.5volG(N), then
update WC = WC ∪ {v} and Kv ← L. The whole exploration procedure is summarized as
pseudo-code ExploreTree.

Algorithm 2 ExploreTree(U, p, d, C).

1 prepare Au and κu for all u ∈ C ∩ Ud;
2 initialize S ← C ∩ Ud, Q← ∅;
3 while max{|C ∩ Ud \ S|, |Q|} ≤ 2/ϕ do
4 take u ∈ arg maxv∈S\Q{κv};
5 apply max-flow to compute Lu;
6 if u is small then
7 S ← S \ (Q ∪ Lu), and Q← ∅;
8 else
9 if Lu ∩ C ∩ Ud = S then

10 Q← Q ∪ {u};
11 else
12 S ← Lu ∩ C ∩ Ud, Q← {u};

13 if |C ∩ Ud \ S| > 2/ϕ then
14 return WC ← {u ∈ S | volG(Au ∩ U) ≤ 0.5volG(N)}, Ku ← Au, ∀u ∈WC ;
15 else
16 define B = {u ∈ S | κu > κ} where κ is the cut value of (S, VT [U ] \ S);
17 WC ← {u ∈ S \B | volG(Au ∩ U) ≤ 0.5volG(N)}, Ku ← Au, ∀u ∈WC ;
18 draw an arbitrary vertex v ∈ Q and set L = Lv;
19 if volG(L ∩ U) ≤ 0.5volG(N) then
20 assign WC ←WC ∪ {v} and Kv ← L;
21 return WC ;
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3.3 Proof of correctness
First we prove a basic property of isolating cuts, which is also used in [3].

▶ Lemma 12 ([3]). For each u ∈ C ∩Ud, either |Lu ∩C ∩Ud| ≤ 2/ϕ or |C ∩Ud \Lu| ≤ 2/ϕ;
namely each vertex is either large or small. Furthermore, with high probability, when u is
small, Au = Lu.

Proof. Since degG(u) < 2d, the cut value of (Lu, VT [U ] \ Lu) is smaller than 2d. Unpack
all contracted vertices of VT [U ], and let L′

u ⊆ V be the set of vertices belonging to Lu

or contracted in Lu. Therefore, since GT [U ] is a contracted graph of G, the cut value of
(Lu, VT [U ] \ Lu) is equal to the cut value of (L′

u, V \ L′
u).

Suppose otherwise that |L′
u ∩C ∩Ud| > 2/ϕ and |C ∩Ud \L′

u| > 2/ϕ. Then, by property
(2) of the (ϕ, ϕ)-expander decomposition, G[C]1 is a ϕ-expander, and so the number of edges
between L′

u ∩ C and C \ L′
u is at least ϕ ·min{volG(L′

u ∩ C), volG(C \ L′
u)} > 2d, which is a

contradiction.
Let us turn to the second half of the statement. Suppose u is small, and so |Lu∩C∩Ud| ≤

2/ϕ. Then, since T selects each vertex in C ∩ Ud with probability ϕ, with probability
ϕ · (1− ϕ)l > ϕ/8, T ∩Lu ∩C = {u} is a singleton. In this case, by Lemma 10, Ai

u = Lu. As
T is sampled for 10 log n/ϕ times, with high probability Au = Lu. ◀

Here is a basic fact regarding large vertices.

▶ Lemma 13. For any large vertex u, λu < κu.

Proof. If λu = κu, then the latest min-cut should be contained in Au, which contains at
most 2/ϕ vertices from C ∩ Ud, and so u cannot be large. ◀

Next we analyze the behavior of the while-loop in ExploreTree.

▶ Lemma 14. If Q ̸= ∅, then for each u ∈ Q, Lu ∩ C ∩ Ud = S.

Proof. Each time S is updated, either Q adds a vertex u on line-10 such that Lu∩C∩Ud = S,
or Q is updated to {u} on line-12. So the equality always holds. ◀

▶ Lemma 15. At the beginning of any iteration of the while-loop, ∀v ∈ S, if v is large, then
we have Lv ∩ C ∩ Ud ⊆ S.

Proof. We prove this statement by induction on the number of iterations. Initially, this
holds as S = C ∩ Ud. For any intermediate iteration, consider two cases.

u is small. We claim that before updating S, for all large vertices v ∈ S \ (Q∪Lu), Lv and
Lu ∪Q are disjoint; if this can be proved, then we conclude Lv ∩ C ∩ Ud ⊆ S \ (Q ∪ Lu),
as Lv ∩ C ∩ Ud ⊆ S holds before.
Suppose that Lv ∩ Lu ̸= ∅. Then as all latest minimum cuts form a laminar family and
that v /∈ Lu, it must be Lu ⊆ Lv. As v is large, Lv ∩ C ∩ Ud contains more vertices than
Av ∩ C ∩ Ud, and so by Lemma 13, we have λv < κv. Now, by line-4, since κu is the
largest among all vertices in S \Q, κv ≤ κu. Finally, using Lemma 12, we know κu = λu

as u is small. Concatenating all the inequalities we have:

λv < κv ≤ κu = λu

which contradicts the fact that (Lu, VT [U ] \ Lu) is a min-cut for (u, p) as Lu ⊆ Lv.
Now suppose that Lv ∩Q ≠ ∅, say w ∈ Lv ∩Q. Then by Lemma 14, v ∈ S ⊆ Lw, and so
both w, v are in Lv ∩ Lw, which means Lv = Lw, and so Lv ∩ Lu = Lw ∩ Lu = Lu ̸= ∅,
which is a contradiction as discussed just before.
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u is large. In this case, the algorithm would reassign S ← Lu ∩ C ∩ Ud. Then, for all
v ∈ S, as (Lv, VT [U ] \ Lv) is the latest minimum cut, it must be Lv ⊆ Lu, irrespective of
whether v is large or not. ◀

Next we prove that when the while-loop ends, either all vertices in S are small, or S

corresponds to the cut of the lowest large node on T d
p [C].

▶ Lemma 16. If |C ∩ Ud \ S| > 2/ϕ, then all vertices in S are small.

Proof. Consider any vertex u ∈ S. If u is large, then by Lemma 15, Lu ∩ C ∩ Ud ⊆ S, and
so |C ∩ Ud \ Lu| ≥ |C ∩ Ud \ S| > 2/ϕ, which contradicts the definition of being large. ◀

▶ Lemma 17. After the while-loop ends, if |C ∩ Ud \ S| ≤ 2/ϕ and |Q| > 2/ϕ, then
(L, VT [U ] \ L) is the latest min-cut of the lowest large node on T d

p [C]. Moreover, B = {u ∈
S | κu > κ} is the set of all vertices u such that Lu ∩ C ∩ Ud = S, and consequently all
Lu, ∀u ∈ B are equal.

Proof. As the while-loop ends with |Q| > 2/ϕ, the last iteration must have ended on line-10.
Therefore, (L, VT [U ]\L) is the latest min-cut of some u ∈ Q. Suppose otherwise (L, VT [U ]\L)
is not the latest min-cut of the lowest large node on the imaginary tree T d

p [C]. Then, there
exists a large vertex v ∈ L ∩C ∩ Ud such that Lv ∩C ∩ Ud ⊊ S but |C ∩ Ud \ Lv| ≤ 2/ϕ. As
|Q| > 2/ϕ, there must exist w ∈ Lv ∩Q. By Lemma 14, v ∈ L ∩C ∩ Ud = S = Lw ∩C ∩ Ud,
so both v, w are in Lv ∩ Lw, and consequently Lv = Lw, Lv ∩ C ∩ Ud = S, contradiction.

Now let us turn to the second half of the statement. Consider any u ∈ B. (Au, VT [U ]\Au)
cannot be a min-cut as κu > κ. By Lemma 12, u must be a large vertex. On the one hand,
by Lemma 15, Lu ∩ C ∩ Ud ⊆ S, and on the other hand, Lu ∩ C ∩ Ud cannot be strictly
smaller than S as S is the lowest already. Hence Lu ∩ C ∩ Ud = S.

For any u /∈ B, by definition κu ≤ κ. If u is large, then λu < κu ≤ κ, so Lu ∩C ∩Ud ⊊ S,
which also contradicts that S corresponds to the lowest large node on T d

p [C]. ◀

Finally, we prove that all cuts (Ku, VT [U ] \ Ku) output by the algorithm are latest
min-cuts with high probability.

▶ Lemma 18. All cuts (Ku, VT [U ] \Ku) output by the algorithm are latest min-cuts with
high probability.

Proof. If the algorithm terminates on line-14, then by Lemma 16, all vertices in WC

are small. So by Lemma 12, Lu = Au = Ku, ∀u ∈ WC . Otherwise, if the algorithm
terminates on line-21, then by Lemma 17, all vertices in WC are small. Hence, by Lemma 12,
Lu = Au = Ku, ∀u ∈WC \B; also, for any u ∈WC ∩B, we have Lu = L = Ku. ◀

3.4 Running time analysis
First we analyze the running time of each call of expander search.

▶ Lemma 19. The total running time of the expander search in graph GT [U ] is bounded by
Õ(MF(volG(U), |VT [U ]|)/ϕ).

Proof. During the preparation step, each invocation of Lemma 10 induces a set of max-flow
instances whose total size is bounded by Õ(|ET [U ]|) = Õ(volG(U)). Since it is repeated for
O(log n/ϕ) times, the total time is at most Õ(MF(volG(U), |VT [U ]|)/ϕ).

Next, let us analyze the cost of ExploreTree.
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▷ Claim 20. After each iteration of the while-loop, the value of |C ∩ Ud \ S|+ |Q| always
increases by at least 1, so the total number of max-flow instances during the loop is bounded
by O(1/ϕ).

Proof of claim. If an iteration ends on line-10, Q increases by one while S does not change.
If an iteration of the while-loop ends on line-7, then on the one hand, by Lemma 14 we have
Q ⊆ S; on the other hand, by the pseudo-code, u /∈ Q before updating S, Q. Hence, after
line-7, |C ∩ Ud \ S|+ |Q| increases by at least 1.

If an iteration ends on line-12, we claim that before updating S, Q, we have Lu ∩Q = ∅.
In fact, by Lemma 14, for any w ∈ Q, Lw ∩C ∩Ud = S. By Lemma 15, as Lu ∩C ∩Ud ̸= S,
it must be Lu ∩ C ∩ Ud ⊊ S = Lw ∩ C ∩ Ud. Hence, w /∈ Lu. As w is arbitrary, we know
Q ∩ Lu = ∅. Therefore, after updating S ← Lu ∩ C ∩ Ud, |C ∩ Ud \ S| has increased by |Q|.
Notice that after updating Q, |Q| = 1. So |C ∩ Ud \ S|+ |Q| has increased by one. ◁

Since each while-loop conducts one max-flow in graph GT [U ], by the above claim, the
total cost of the while-loop involves max-flow instances of total size Õ(volG(U)/ϕ), and the
reduction time is dominated by the same amount. After the while-loop, the running time is
linear in the size of output, so it is not the bottleneck. ◀

Next we analyze the running time during refinement of U .

▶ Lemma 21. The total running time of cutting vertices (the for-loop on line-6 of CondGo-
moryHu) from U takes total time of Õ( n

s ·MF(2d · cnt[iU ] log2 n, |VT [U ]|)).

Proof. On the one hand, the number of clusters in CiU
is at most n/s since each cluster has

size at least s. So, by Lemma 19, the total time of expander search is Õ( n
s ·MF(volG(U))).

By maximality of d|Ud| and cnt[iU ], we have that:

volG(U) ≤ 2d|Ud| log n ≤ 2d · cnt[iU ] log2 n

Since the number of edges in GT [U ] is volG(U), the overall time complexity would be
Õ( n

s ·MF(2d · cnt[iU ] log2 n, |VT [U ]|)). ◀

To bound the total time across all different nodes of T that correspond to the same choice
of (s, d), we need the following lemma.

▶ Lemma 22. In any single iteration of the while-loop on line-2 of CondGomoryHu, over all
different nodes U of T that correspond to the same choice of (s, d), we have

∑
U cnt[iU ] ≤

4sn/d.

Proof. If s ≥ d/4, then since all such nodes U are packing disjoint subsets of vertices of V ,∑
U cnt[iU ] ≤ n ≤ 4sn/d. So next we only consider the case where s < d/4.
When s < d/4, we can upper bound the total number of vertices in clusters in CiU

whose degrees in G are within the interval [d, 2d). Take any cluster C ∈ CiU
and any vertex

u ∈ C ∩ Ud. Since |C| < 2s = d/2 and G is a simple graph, at least d/2 of u’s neighbors in
G are outside of C. So the crossing edges contributed by u is at least d/2. By property (3)
of the Definition 8, the total number of crossing edges should be bounded as:∑

C∈CiU

outG(C) ≤ log7 n · ϕ ·
∑

C∈CiU

volG(C) ≤ log7 n · ϕ ·
∑

C∈CiU

(4s2 + outG(C))

≤ 4 log7 n · ϕsn + log7 n · ϕ
∑

C∈CiU

outG(C)
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As ϕ = 1
10 logc+10 n

, we have
∑

C∈CiU
outG(C) ≤ 8 log7 n · ϕsn < sn. As each vertex in C ∩Ud

contributes d/2 to the above summation, the total number of vertices from Ud in CiU
is

bounded by 2sn/d. ◀

Combining the above two lemmas gives the following corollary.

▶ Corollary 23. Under Hypothesis 1, the time of dividing all nodes of T for a single iteration
of the while-loop on line-2 in CondGomoryHu is bounded by Õ(n2).

The next thing would be analyzing the total number of rounds of the while-loop. Similar
to [3], we first need to prove that with high probability, the number of u ∈ C ∪ Ud such that
volG(Ku) > 0.5volG(U) is roughly at most |Ud|/r.

▶ Lemma 24. With high probability over the choice of R ⊆ N , the total number of u ∈ Ud

such that volG(Lu ∩ U) > 0.5volG(N) is at most 4|Ud| log2 n
r .

Proof. The proof is similar to the one in [3]. To avoid confusion, let T old be the version of T
before refining with respect to R, and let T refer to the tree after refinement. For each pair
of vertices in the super node x, q ∈ N , define (Γq

x, VT old [N ] \ Γq
x) to be the latest minimum

cut of (x, q) in GT old [N ]. Define Mq
x to be the set of all vertices y ∈ N such that x ∈ Γq

y.
Basic concentration inequalities show that for any q, x, if volG(Mq

x) ≥ log n
r volG(N), then

with high probability, Mq
x ∩R ̸= ∅.

The following claim is a crucial relationship between Γp
u and Lu.

▷ Claim 25 (Observation 4.3 in [3]). Γp
u ∩ U = Lu ∩ U .

Proof of claim. As (Lu, VT [U ]\Lu) is the latest minimum cut in GT [U ] which is a contracted
graph of GT old [N ] following standard Gomory-Hu steps, (Lu, VT [U ] \ Lu) is a min-cut for
(u, p) in GT old [N ]. Since (Γp

u, VT old [N ] \ Γp
u) is the latest minimum cut in GT old [N ], we have

Γp
u ∩ U ⊆ Lu ∩ U . Next we only focus on the other direction.

Let W1, W2, · · · , Wl ⊆ VT old [N ] be all contracted vertices of VT [U ] which are crossed
by Γp

u; in other words, Γp
u ∩Wi ̸= ∅ and Wi \ Γp

u ̸= ∅ for all 1 ≤ i ≤ l. Since N is refined
using pivots from R, according to Lemma 6, we know that for each i there exists a pivot
qi ∈ R ∩Wi such that (Wi, VT old [N ] \Wi) is a minimum cut for (qi, p); in fact, qi ∈ R ∩Wi

are in the neighboring nodes of U in T .
We claim that qi ∈ Γp

u; otherwise if qi /∈ Γp
u, as u /∈Wi, by Lemma 4, the cut (X, VT old [N ]\

X) where X = Γp
u\Wi is also a minimum cut for (u, p), which contradicts that (Γp

u, VT old [N ]\
Γp

u) is the latest min-cut.
Construct a new cut (Y, VT old [N ] \ Y ) where Y = Γp

u ∪
⋃l

i=1 Wi. On the one hand, as
qi ∈ Γp

u, ∀i, by repeatedly applying Lemma 3 we know (Y, VT old [N ] \ Y ) is a minimum cut
for (u, p) as well; On the other hand, Y does not cross any contracted nodes in GT [U ], so
(Y, VT [U ] \ Y ) is a valid cut in GT [U ] as well. As (Lu, VT [U ] \Lu) is the latest cut in GT [U ],
we know Lu ∩ U ⊆ Y ∩ U = Γp

u ∩ U . This concludes our proof. ◁

Consider the set of all u ∈ Ud such that volG(Lu ∩ U) > 0.5volG(N); let them
be u1, u2, · · · , ul. By the above claim, it must be volG(Γp

ui
∩ N) ≥ volG(Γp

ui
∩ U) =

volG(Lui
∩ U) > 0.5volG(N) as well. Therefore, any two sets Γp

ui
, Γp

uj
must intersect. Since

(Γp
ui

, VT old [N ] \ Γp
ui

) are latest cuts with respect to the same pivot p, they should form a
total order, say Γp

u1
⊆ Γp

u2
⊆ · · ·Γp

ul
, and so by definition u2, u3, · · · , ul ∈Mp

u1
.

▷ Claim 26. Mp
u1
∩R = ∅.
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Proof of claim. If ∃w ∈Mp
u1
∩R, then by definition, u ∈ Γp

w. As (Γp
w, VT old [N ] \ Γp

w) is the
latest min-cut for (w, p) in GT old [N ], any min-cut for (w, p) in GT old [N ] should contain u on
the same side as w. By Lemma 6, u should belong to the part which contains w after the
refinement with respect to R, which makes a contradiction as u stays with p in the same
part. ◁

By the above lemma, we know volG(Mp
u1

) < log n
r volG(N), and hence we have:

d(l − 1) ≤ volG(Mp
u1

) <
log n

r
volG(N) ≤ 2 log n

r
volG(U) ≤ 4 log2 n

r
d|Ud|

So l ≤ 4|Ud| log2 n
r . ◀

Finally we need to bound the total number of rounds in the while-loop. Call a cluster
C ∈ CiU

bad, if the total number of vertices u ∈ C ∩Ud such that volG(Lu∩U) > 0.5volG(N)
is more than 0.1|C ∩ Ud|; otherwise it is called good.

▶ Lemma 27. Consider any invocation of ExploreTree with input parameters U, p, d, C.
Suppose cluster C is good, then |WC | > 0.8|C ∩ Ud|.

Proof. First consider the case where ExploreTree terminated on line-14. The while-loop must
have terminated on line-7. Then as u is small, |S| ≥ |C ∩ Ud| − 2/ϕ− |Q| − |C ∩ Lu ∩ Ud| ≥
|C ∩ Ud| − 6/ϕ. Therefore, |WC | ≥ |C ∩ Ud| − 6/ϕ− 0.1|C ∩ Ud| > 0.8|C ∩ Ud|.

Now suppose ExploreTree terminated on line-21. In this case, C ∩ Ud \WC only includes
vertices in C ∩ Ud \ S, plus vertices v ∈ C ∩ Ud such that volG(Lv ∩ U) > 0.5volG(N). Since
C is good, we know |WC | ≥ |C ∩ Ud| − 2/ϕ− 0.1|C ∩ Ud| > 0.8|C ∩ Ud|. ◀

▶ Lemma 28.
∑

C∈CiU
is bad |C ∩ Ud| ≤ 40|Ud| log2 n

r .

Proof. By Lemma 24, the total number of vertices u such that volG(Lu ∩U) > 0.5volG(N) is
at most 4|Ud| log2 n

r . By definition of badness, we have
∑

C∈CiU
is bad |C∩Ud| ≤ 40|Ud| log2 n

r . ◀

▶ Lemma 29. For each node U such that volG(U) > 0.5volG(N), and for each set Ku = Lu

which is cut off by our algorithm, we have volG(Ku ∩ U) ≤ 0.5volG(N). Furthermore, let P

be the rest of U after cutting all Ku’s. Then volG(P ) ≤ (1− 1
2 log2 n

)volG(U).

Proof. The first half of the claim is automatically guaranteed by the algorithm. Let us only
consider the second half.

By Lemma 27, the total volume that has been cut off from U is at least∑
C∈CiU

is good
d|WC | ≥

∑
C∈CiU

is good
0.8d|C ∩ Ud| ≥

0.8d

log n
|Ud| − 0.8d

∑
C∈CiU

is bad
|C ∩ Ud|

≥ 0.8d

log n
|Ud| −

32d log2 n

r
|Ud| ≥

0.8
log2 n

volG(U)− 32
log3 n

volG(U)

≥ 1
2 log2 n

volG(U)

Hence, the volume of volG(P ) is reduced by a factor of at most 1− 1
2 log2 n

. ◀

By Lemma 29, after each round of the while-loop, for each node U ⊆ N , either we already
have volG(U) ≤ 0.5volG(N) after the refinement with respect to random set R, or U is further
divided into sub-nodes whose volume are at most max{0.5volG(N), (1 − 1

2 log2 n
)volG(U)}.

Therefore the number of rounds is at most log3 n. So the total running time should be Õ(n2)
as well under Hypothesis 1.
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4 Unconditional cut-equivalent trees

4.1 The main algorithm

In this section we will prove the second half of Theorem 2 using existing max-flow algorithms.
The algorithm is mostly the same as the previous algorithm conditioning on Hypothesis 1,
and the extra work is to deal with the additive n1.5 term that appears in the running time
of max-flow algorithm from [6]. Similar to the previous algorithm, we will also use the same
set of parameters ϕ, r, and use degree set D = {

√
n, 2
√

n, 22√n, · · · , n}.

Preparation

Throughout the algorithm, T will be the cut-equivalent tree under construction, where each
of T ’s node will represent a subset of vertices of V . As a preparation step, compute a
(ϕ, ϕ)-expander decomposition on G and obtain a partitioning C = {C1, C2, · · · , Ck} of V .
Categorize clusters in C according to their sizes: for each 2i, define Ci to be the set of clusters
whose sizes are within interval [2i, 2i+1).

Iteration

In each round, the algorithm tries to simultaneously subdivide all nodes of T which contains
at least 20r vertices in V . Following the same procedure as in the previous algorithm, for each
node N of T , further refine N into a set of smaller sub-nodes. Then, for each such sub-node
U , define variables d, Ud and s = 2iU accordingly. If (1) d ≥ n3/4 or (2) s > n3/4/

√
d, we

would continue to the do same as in algorithm CondGomoryHu which invokes the expander
search procedure.

The unconditional algorithm diverges from the conditional algorithm in Theorem 2 from
here if d < n3/4 and s ≤ n3/4/

√
d. Intuitively, when s is relatively small, the number of

expanders whose sizes are roughly s would be large, and so expander searches would be
costly because of the additive term n1.5 in the running time of computing max-flow. What
we would do is to directly apply Lemma 7 on graph GT [U ] to isolate all vertices in Ud on
the tree T once and for all. The pseudo-code is summarized as GomoryHu.

4.2 Running time analysis

▶ Lemma 30. Each round of the while-loop in GomoryHu takes time Õ(n17/8).

Proof. Let us study an arbitrary iteration. Suppose the condition on line-6 holds, namely
d ≥ n3/4 or s > n3/4/

√
d. Then in this case we would do exactly the same as in the conditional

algorithm, and the only difference we are invoking the max-flow algorithm from [6]. According
to Lemma 21, we could upper bound the running time as

Õ(n

s
·MF(2d · cnt[iU ] log2 n, |VT [U ]|)) = Õ(nd

s
cnt[iU ] + n

s
· |VT [U ]|1.5)

for each node U . Since all tree nodes U are disjoint vertex subsets of V ,
∑

U∈T |VT [U ]|1.5 ≤
n1.5. Therefore, by Lemma 22, this sums to Õ(n2 + n2.5

s ).
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Algorithm 3 GomoryHu(G = (V, E)).

1 initialize a partition tree T , as well as parameters ϕ, r;
2 while ∃N ⊆ V , U a node of T , |N | ≥ 20r do
3 for node N of T with |N | ≥ 20r do
4 repeat for 10r times: each time we sample a vertex u ∈ N with probability

degG(u)
volG(N) , and let the sampled set be R;

5 call Lemma 5 on node N with respect to R;
6 for node U ⊆ N of T such that volG(U) > 0.5volG(N) do
7 take d such that d|Ud| is maximized;
8 take s = 2iU such that cnt[iU ] is maximized;
9 if d ≥ n3/4 or s > n3/4/

√
d then

10 for each C ∈ CiU
do

11 run expander search on C within node U to compute a subset
WC ⊆ C ∩ Ud, and the latest min-cuts (Ku, VT [U ] \Ku) for each
u ∈WC ;

12 define W =
⋃

C∈CiU
WC ;

13 for each u ∈W such that Ku is maximal, split Ku ∩ U off of U and
create a new node on T ;

14 else
15 apply Lemma 7 on the auxiliary graph GT [U ] with input parameter

k = 2d, so that all vertices in Ud become singletons in T ;

16 for node U of T such that |U | < 20r do
17 repeatedly refine U using the generic Gomory-Hu steps until all nodes are

singletons;
18 return T as a cut-equivalent tree;

We first claim that s ≥
√

2d. In fact, by maximality of cnt[iU ], there exists at least one
cluster C ∈ CiU

that intersects Ud. Take any u ∈ C ∩ Ud. Then since G is a simple graph,
more than d− s neighbors of u are outside of C, thus outG(C) > d− s. By property (3) of
Definition 8, we have:

outG(C) ≤ log7 n · ϕvolG(C) ≤ log7 n · ϕ(4s2 + outG(C))

As ϕ = 1
10 logc+10 , we have outG(C) ≤ 0.4s2 + 0.1outG(C), and so outG(C) < 0.5s2. As

outG(C) > d− s, we have s >
√

2d.
When d ≥ n3/4, as s ≥

√
2d > n3/8 we have Õ(n2 + n2.5

s ) = Õ(n17/8). If d < n3/4 and
s > n3/4/

√
d, then we also bound the total running time as Õ(n2 + n

sϕ · n
1.5) = Õ(n17/8).

Now suppose the condition on line-6 does not hold, then d < n3/4 and s ≤ n3/4/
√

d.
In this case, similar to Lemma 22, we can prove that the total volume volG(U) over all
different U ’s is bounded by Õ(ns). So applying Lemma 7 in this round takes time at most
Õ(nsd) = Õ(n17/8). ◀

▶ Lemma 31. The total number of rounds of the while-loop in GomoryHu is bounded by
O(log3 n).
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Proof. If each round of the while-loop, if d ≥ n3/4 or s > n3/4/
√

d for node U , then according
to the proof of Lemma 29, the volume of each subdivision is bounded by max{0.5volG(N), (1−

1
2 log2 n

)volG(U)}. If d < n3/4 and s ≤ n3/4/
√

d, then all vertices in Ud become singletons on
T ; also, and for the same reason, all subdivision of U should be at most (1− 1

2 log2 n
)volG(U).

Therefore, the number of while-loop iterations is at most O(log3 n). ◀
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Abstract
We develop value iteration-based algorithms to solve in a unified manner different classes of combina-
torial zero-sum games with mean-payoff type rewards. These algorithms rely on an oracle, evaluating
the dynamic programming operator up to a given precision. We show that the number of calls to
the oracle needed to determine exact optimal (positional) strategies is, up to a factor polynomial
in the dimension, of order R/ sep, where the “separation” sep is defined as the minimal difference
between distinct values arising from strategies, and R is a metric estimate, involving the norm of
approximate sub and super-eigenvectors of the dynamic programming operator. We illustrate this
method by two applications. The first one is a new proof, leading to improved complexity estimates,
of a theorem of Boros, Elbassioni, Gurvich and Makino, showing that turn-based mean payoff games
with a fixed number of random positions can be solved in pseudo-polynomial time. The second
one concerns entropy games, a model introduced by Asarin, Cervelle, Degorre, Dima, Horn and
Kozyakin. The rank of an entropy game is defined as the maximal rank among all the ambiguity
matrices determined by strategies of the two players. We show that entropy games with a fixed rank,
in their original formulation, can be solved in polynomial time, and that an extension of entropy
games incorporating weights can be solved in pseudo-polynomial time under the same fixed rank
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Gurvich, Karzanov and Khachyan [25] to solve the optimality equation of deterministic mean
payoff games. Zwick and Paterson [47] derived peudo-polynomial bounds for the same games
by analyzing value iteration. Friedmann showed that policy iteration, originally introduced
by Hoffman and Karp in the setting of zero-sum games [26], and albeit being experimentally
fast on typical instances, is generally exponential [22]. We refer to the survey of [9] for more
information and additional references.

Entropy games have been introduced by Asarin et al. [10]. They are combinatorial games,
in which one player, called Tribune, wants to maximize a topological entropy, whereas its
opponent, called Despot, wishes to minimize it. This topological entropy quantifies the
freedom of a half-player, called People. Although the formalization of entropy game is recent,
specific classes or variants of entropy games appeared earlier in several fields, including the
control of branching processes, population dynamics and growth maximization [42, 38, 37, 46],
risk sensitive control [27, 8], mathematical finance [5], or matrix multiplication games [10].
Asarin et al. showed that entropy games also belong to the class NP ∩ coNP. Akian et al.
showed in [1] that entropy games reduce to ordinary stochastic mean payoff games with
infinite action spaces (actions consist of probability measures and the payments are given by
relative entropies), and deduced that the subclass of entropy games in which Despot has a
fixed number of significant positions (positions with a non-trivial choice) can be solved in
polynomial time. The complexity of entropy games without restrictions on the number of
(significant) Despot positions is an open problem.

1.2 Main Results
We develop value iteration-based algorithms to solve in a unified manner different classes
of combinatorial zero-sum games with mean-payoff type rewards. These algorithms rely
on an oracle, evaluating approximately the dynamic programming operator of the game.
Our main results include universal estimates, providing explicit bounds for the error of
approximation of the value, as a function of two characteristic quantities, of a metric nature.
The first one is the separation sep, defined as the minimal difference between distinct values
induced by (positional) strategies. The second one, R, is defined in terms the norm of
approximate sub and super-optimality certificates. These certificates are vectors, defined as
sub or super-solutions of non-linear eigenproblems. For games such that the mean payoff
is independent of the initial state, we show that (exact) optimal strategies can be found
in a number of calls to the oracle bounded by the ratio R/ sep, up to a factor polynomial
in the number of states, see Theorems 10 and 18. We also obtain a similar complexity
bound for games in which the mean payoff does depend on the initial state, under additional
assumptions.

We provide two applications of this method.
The first application is a new proof of an essential part of the theorem of Boros, Elbassioni,

Gurvich and Makino [16], showing that turn-based stochastic mean payoff games with a fixed
number of random positions can be solved in pseudo-polynomial time. The original proof
relies on a deep analysis of a generalization to the stochastic case of the “pumping algorithm”
of [25]. Our analysis of value iteration leads to improved complexity estimates. Indeed, we
bound the characteristic numbers R and sep in a tight way, by exploiting bit-complexity
estimates for the solutions of Fokker–Planck and Poisson-type equations of discrete Markov
chains.

The second application concerns entropy games. Let us recall that in such a game, the
value of a pair of (positional) strategies of the two players is given by the Perron root of a
certain principal submatrix of a nonnegative matrix, which we call the ambiguity matrix,
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as it measures the number of nondeterministic choices of People. We show that entropy
games with a fixed rank, and in particular, entropy games with a fixed number of People’s
states, can be solved in pseudo-polynomial time; see Corollary 32. These results concern
the extended model of entropy games introduced in [1], taking into account weights. Then,
entropy games in the sense of [10] (implying a unary encoding of weights) that have a fixed
rank can be solved in polynomial time. These results rely on separation bounds for algebraic
numbers arising as the eigenvalues of integer matrices with a fixed rank.

1.3 Related Work
The idea of applying value iteration to analyze the complexity of deterministic mean-payoff
games goes back to the classical work of Zwick and Paterson [47]. In some sense, the present
approach extends this idea to more general classes of games. When specialized to stochastic
mean payoff games with perfect information, our bounds should be compared with the ones of
Boros, Elbassioni, Gurvich, and Makino [16, 15]. The authors of [16] generalize the “pumping”
algorithm, developed for deterministic games by Gurvich, Karzanov, and Khachiyan [25], to
the case of stochastic games. The resulting algorithm is also pseudopolynomial if the number
of random positions is fixed, see Remark 26 for a detailed comparison. The algorithm of
Ibsen-Jensen and Miltersen [28] yields a stronger bound in the case of simple stochastic
games, still assuming that the number of random positions is fixed. A different approach,
based on an analysis of strategy iteration, was developed by Gimbert and Horn [24] and more
recently by Auger, Badin de Montjoye and Strozecki [11]. The value iteration algorithm for
concurrent mean payoff games, under an ergodicity condition, has been studied by Chatterjee
and Ibsen-Jensen [19]. Theorem 18 there bounds the number of iterations needed to get
an ϵ-approximation of the mean-payoff. When specialized to this case, Theorem 13 below
improves this bound by a factor of | log ϵ|.

We build on the operator approach for zero-sum games, see [13, 34, 36]. Our study of
entropy games is inspired by the works of Asarin et al. [10] and Akian et al. [1]. We rely
on the existence of optimal positional strategies for entropy games, established in [1] by
an o-minimal geometry approach [14] and also, on results of non-linear Perron–Frobenius
theory, especially the Collatz–Wielandt variational formulation of the escape rate of an order
preserving and additively homogeneous mapping [35, 23, 2, 4].

The present work, providing complexity bounds based on value iteration, grew out from
an effort to understand the surprising speed of value iteration on random stochastic games
examples arising from tropical geometry [7], by investigating suitable notions of condition
numbers [6]. An initial version of some of the present results (concerning turn based stochastic
games) appeared in the PhD thesis of one of the authors [40].

1.4 Organization of the Paper
In Section 2 we recall the definitions and basic properties of turn-based stochastic mean
payoff games and entropy games, and also key notions in the “operator approach” of zero-sum
games, including the Collatz–Wielandt optimality certificates.

The universal complexity bounds based on value iteration are presented in Section 3.
First, we deal with games whose value is independent of the initial state, and then, we extend
these results to determine the set of initial states with a maximal value.

The applications to turn-based stochastic mean payoff games and to entropy games are
provided in Section 4 and Section 5. The detailed proofs can be found in the extended version
of the present paper.

ICALP 2022
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2 Preliminaries on Dynamic Programming Operators and Games

2.1 Introducing Shapley Operators: The Example of Stochastic
Turn-Based Zero-Sum Games

Shapley operators are the two-player version of the Bellman operators (a.k.a. dynamic
programming or one-day operators) which are classically used to study Markov decision
processes. In this section, we introduce the simplest example of Shapley operator, arising
from stochastic turn-based zero-sum games.

A stochastic turn-based zero-sum game is a game played on a digraph (V , E ) in which the
set of vertices V has a non-trivial partition V = VMin ⊎ VMax ⊎ VNat. There are two players,
called Min and Max, and a half-player, Nature. The sets VMin, VMax and VNat represent
the sets of states at which Min, Max, and Nature respectively play. The set of edges E

represents the allowed moves. We assume E ⊂ VMin × VMax ∪ VMax × VNat ∪ VNat × VMin,
meaning that Min, Max, and Nature alternate their moves. More precisely, a turn consists of
three successive moves: when the current state is j ∈ VMin, Min selects and edge (j, i) in E

and the next state is i ∈ VMax. Then, Max selects an edge (i, k) in E and the next state is
k ∈ VNat. Next, Nature chooses an edge (k, j′) ∈ E and the next state is j′ ∈ VMin. This
process can be repeated, alternating moves of Min, Max, and Nature.

We make the following assumption.

▶ Assumption 1. Each player has at least one available action in each state in which he has to
play, i.e., for all j ∈ VMin, i ∈ VMax, and k ∈ VNat, the sets {i′ : (j, i′) ∈ E }, {k′ : (i, k′) ∈ E }
and {j′ : (k, j′) ∈ E } are non-empty.

Furthermore, every state k ∈ VNat controlled by Nature is equipped with a probability
distribution on its outgoing edges, i.e., we are given a vector (Pkj)j∈VMin with rational entries
such that Pkj ⩾ 0 for all i and

∑
(k,j)∈E Pkj = 1. We suppose that Nature makes its decisions

according to this probability distribution, i.e., it chooses an edge (k, j) with probability Pkj .
Moreover, we are given two integer matrices A, B ∈ ZVMax×VMin . These matrices encode the
payoffs of the game in the following way: if the current state of the game is j ∈ VMin and
Min selects an edge (j, i), then Player Min pays to Max the amount −Aij . Similarly, if the
current state of the game is i ∈ VMax and Max selects an edge (i, k), then Max receives from
Min the payment Bik.

We first consider the game in horizon N , in which each of the two players Min and Max
makes N moves, starting from a known initial state, which by convention we require to be
controlled by Min. In this setting, a history of the game consists of the sequence of states
visited up to a given stage. A strategy of a player is a function which assigns to a history of
the game a decision of this player. A pair of strategies (σ, τ ) of players Min and Max induces
a probability measure on the set of finite sequences of states. Then, the expected reward of
Max, starting from the initial position j0, is defined by

Rj0(σ, τ) := Eστ

(N−1∑
p=0

(−Aipjp
+ Bipkp

)
)

,

in which the expectation Eσ,τ refers to the probability measure induced by (σ, τ), and
j0, i0, k0, j1, i1, k1, . . . is the random sequence of states visited when applying this pair of
strategies. The objective of Max is to maximize this reward, while Min wants to minimize
it. The game in horizon N starting from state j is known to have a value vN

j and optimal
strategies σ∗ and τ∗, meaning that

Rj(σ∗, τ) ⩽ vN
j := Rj(σ∗, τ∗) ⩽ Rj(σ, τ∗) ,
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for all strategies σ of Min and τ of Max. The value vector vN := (vN
j )j∈VMin keeps track

of the values of all initial states. A classical dynamic programming argument, see e.g. [33,
Th. IV.3.2], shows that

v0 = 0, vN = F (vN−1) ,

where the Shapley operator F is the map from RVMin to RVMin defined by

Fj(x) := min
(j,i)∈E

(
−Aij + max

(i,k)∈E

(
Bik +

∑
(k,l)∈E

Pklxk

))
, for all j ∈ VMin . (1)

Assumption 1 guarantees that F is well defined. One can also consider the mean-payoff
stochastic game, in which the payment gj0(σ, τ ) received by Player Max becomes the limiting
average of the sum of instantaneous payments, i.e.,

gj0(σ, τ) := lim inf
N→+∞

Eστ

( 1
N

N−1∑
p=0

(−Aipjp
+ Bipkp

)
)

. (2)

We say that a strategy is positional if the decision of the player depends only of the current
state. A result of Liggett and Lippman [31] entails that a mean payoff game has a value χj

and that there exists a pair of optimal positional strategies (σ∗, τ∗), meaning that

gj(σ∗, τ) ⩽ χj := gj(σ∗, τ∗) ⩽ gj(σ, τ∗) ,

for every initial state j ∈ VMin and pair of non-necessarily positional strategies (σ, τ) of
players Min and Max. A result of Mertens and Neyman [32] entails in particular that the
value of the mean-payoff game coincides with the limit of the normalized value of the games
in horizon N , i.e.,

χ = lim
N→∞

vN

N
= lim

N→∞

F N (0)
N

,

where F N = F ◦ · · · ◦ F denotes the Nth iterate of F and 0 the vector that has all entries
equal to 0.
▶ Remark 1. In our model, players Min, Max, and Nature play successively, so that a turn
decomposes in three stages, resulting in a Shapley operator of the form (1). Alternative
models, like the one of [16], in which a turn consists of a single move, reduce to our model
by adding linearly many dummy states, and rescaling the mean payoff by a factor 3.

2.2 The Operator Approach to Zero-Sum Games
We shall develop a general approach, which applies to various classes of zero-sum games with
a mean-payoff type payment. To do so, it is convenient to introduce an abstract version of
Shapley operators, following the “operator approach” of stochastic games [36, 34]. This will
allow us to apply notions from nonlinear Perron–Frobenius theory, especially sub and super
eigenvectors, and Collatz-Wielandt numbers, which play a key role in our analysis.

Recall that the sup-norm is defined by ∥x∥∞ := maxi∈[n] |xi|. We also use the Hilbert’s
seminorm [23], which is defined by ∥x∥H := t(x) − b(x), where t(x) := maxi∈[n] xi (read
“top”) and b(x) := mini∈[n] xi (read “bottom”). We endow R with the standard order ⩽,
which is extended to vectors entrywise.

A self-map F of Rn is said to be order-preserving when

x ⩽ y =⇒ F (x) ⩽ F (y) for all x, y ∈ Rn , (3)

ICALP 2022
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and additively homogeneous when

F (λ + x) = λ + F (x) for all λ ∈ R and x ∈ Rn , (4)

where, for any z ∈ Rn, λ + z stands for the vector with entries λ + zi.

▶ Definition 2. A self-map F of Rn is an (abstract) Shapley operator if it is order-preserving
and additively homogeneous.

A basic example is provided by the Shapley operator of a turn-based stochastic mean-payoff
game (1). Here, the additive homogeneity axiom captures the absence of discount. We shall
see in the next section a different example, arising from entropy games.

We point out that any order-preserving and additively homogeneous self-map F of Rn is
nonexpansive in the sup-norm, meaning that

∥F (x) − F (y)∥∞ ⩽ ∥x − y∥∞ for all x, y ∈ Rn .

Using the nonexpansiveness property, we get that the existence and the value of the limit
limN→∞(F N (x)/N) are independent of the choice of x ∈ RN . We call this limit the escape
rate of F , and denote it by χ(F ). When F is the Shapley operator of a turn-based stochastic
mean-payoff game, fixing x = 0, we see that F N (x) coincides with the value vector in horizon
N , and so χj(F ) yields the mean-payoff when the initial state is j, consistently with our
notation χj in Section 2.1.

The escape rate is known to exist under some “rigidity” assumptions. The case of
semialgebraic maps is treated in [34], whereas the generalization to o-minimal structures
(see [43] for background), which is needed in the application to entropy games, is established
in [14].

▶ Theorem 3 ([34] and [14]). Suppose that the function F : Rn → Rn is nonexpansive in
any norm and that it is semialgebraic, or, more generally, defined in an o-minimal structure.
Then, the escape rate χ(F ) does exist.

This applies in particular to Shapley operators of turn-based mean-payoff games, since in
this case the operator F , given by (1), is piecewise affine, and a fortiori semialgebraic. In the
case of entropy games, we shall see in the next section that the relevant Shapley operator is
defined by a finite expression involving the maps log, exp, as well as the arithmetic operations,
and so that it is definable in a richer stucture, which is still o-minimal. We emphasize that
no knowledge of o-minimal techniques is needed to follow the present paper, it suffices to
admit that the escape rate does exist for all the classes of maps considered here, and this
follows from Theorem 3.

When the map F is piecewise-affine, a result finer than Theorem 3 holds:

▶ Theorem 4 ([30]). A piecewise affine self-map F of Rn that is nonexpansive in any norm
admits an invariant half-line, meaning that there exist z, w ∈ Rn such that

F (z + βw) = z + (β + 1)w

for any β ∈ R large enough. In particular, the escape rate χ(F ) exists, and is given by the
vector w.

This entails that F k(z + βw) = z + (β + k)w, and so, by nonexpansiveness of F , for all
x ∈ Rn, F k(x) = kχ(F ) + O(1) as k → ∞. This expansion is more precise than Theorem 3,
which only states that F k(x) = kχ(F ) + o(k).
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For a general order-preserving and additively homogeneous self-map of Rn, and in
particular, for the Shapley operators of the entropy games considered below, an invariant half-
line may not exist. However, we can still recover information about the sequences (F k(x)/k)k

through non-linear spectral theory methods. Assuming that F is an order-preserving and
additively homogeneous self-map of Rn, the upper Collatz–Wielandt number of F is defined by:

cw(F ) := inf{µ ∈ R : ∃z ∈ Rn, F (z) ⩽ µ + z} , (5)

and the lower Collatz–Wielandt number of F by:

cw(F ) := sup{µ ∈ R : ∃z ∈ Rn, F (z) ⩾ µ + z} . (6)

It follows from Fekete’s subadditive lemma that the two limits limk→∞ t(F k(0)/k) and
limk→∞ b(F k(0)/k), which may be thought of as upper and lower regularizations of the
escape rate, always exist, see [23]. In the examples of interest to us, the escape rate χ(F )
does exist, it represents the mean-payoff vector, and then limk→∞ t(F k(0)/k) = t(χ(F )) =
maxj χj(F ) is the maximum of the mean payoff among all the initial states. Similarly,
limk→∞ b(F k(0)/k) = b(χ(F )) is the minimum of these mean payoffs.

The interest of the vectors z arising in the definition of Collatz-Wielandt numbers is to
provide approximate optimality certificates, allowing us to bound mean payoffs from above
and from below. Indeed, if F (z) ⩽ µ + z, using the order-preserving property and additively
homogeneity of F , we get that F k(z) ⩽ kµ + z for all k ∈ N, and, by nonexpansiveness of
F , limk→∞ t(F k(0)/k) = limk→∞ t(F k(z)/k) ⩽ µ. Similarly, if F (z) ⩾ µ + z, we deduce
that limk→∞ b(F k(0)/k) ⩾ µ. The following result of [23], which can also be obtained as a
corollary of a minimax result of Nussbaum [35], see [2], shows that these bounds are optimal.

▶ Theorem 5 ([23, Prop. 2.1], [2, Lemma 2.8 and Rk. 2.10]). Let F be an order-preserving
and additively homogeneous self-map of Rn. Then, limk→∞ t(F k(x)/k) = cw(F ) and
limk→∞ b(F k(x)/k) = cw(F ) for any x ∈ Rn.

Thus, when F is the Shapley operator of a game, the quantities cw(F ) and cw(F ) respectively
correspond to the greatest and smallest mean payoff among all the initial states.

A simpler situation arises when there is a vector v ∈ Rn and a scalar λ ∈ R such that

F (v) = λ + v . (7)

The scalar λ, which is unique, is known as the ergodic constant, and (7) is referred to as the
ergodic equation. Then, cw(F ) = cw(F ) = λ. The vector v is known as a bias or potential. It
will be convenient to have a specific notation for the ergodic constant λ when the ergodic
equation is solvable, then, we set erg(F ) := λ. The existence of a solution (λ, v) of (7)
is guaranteed by certain “ergodicity” assumptions [3]. When the Shapley operator F is
piecewise affine, it follows form Kohlberg’s theorem (Theorem 4) that the ergodic equation (7)
is solvable if and only if the mean payoff is independent of the initial state.

Denote R̄ := R ∪ {−∞}. Properties (3) and (4) also make sense for self-maps of R̄n, by
requiring them to hold for all x, y ∈ R̄n and λ ∈ R̄. Any order-preserving and additively
homogeneous self-map F of Rn admits a unique continuous extension F̄ to R̄n, obtained by
setting, for x ∈ R̄n,

F̄ (x) := inf{F (y) : y ∈ Rn, y ⩾ x} . (8)

Moreover, F̄ is still order-preserving and additively homogeneous, see [18] for details. Hence,
in the sequel, we assume that any order-preserving and additively homogeneous self-map F

of Rn is canonically extended to R̄n, and we will not distinguish between F and F̄ .

ICALP 2022
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2.3 Entropy Games
Entropy games were introduced in [10]. We follow the presentation of [1] since it extends the
original model, see Remark 9 for a comparison.

Similarly to stochastic turn-based zero-sum games, an entropy game is played on a digraph
(V , E ) in which the set of vertices (V , E ) has a non-trivial partition V = VMin ⊎ VMax ⊎ VNat.
As in the case of stochastic turn-based games, players Min, Max, and Nature control the
states VMin, VMax, VNat respectively and they alternate their moves, i.e., E ⊂ VMin × VMax ∪
VMax ×VNat ∪VNat ×VMin. We also suppose that the underlying graph satisfies Assumption 1.
In the context of entropy games, player Min is called Despot, player Max is called Tribune,
and Nature is called People. For this reason, we denote VD := VMin, VT := VMin, and
VP := VNat. The name “Tribune” coined in [10], refers to the magistrates interceding on
behalf of the plebeians in ancient Rome.

The first difference between stochastic turn-based games and entropy games lies in the
behavior of Nature: while in stochastic games Nature makes its decisions according to some
fixed probability distribution, in entropy games People is a nondeterministic player, i.e.,
nothing is assumed about the behavior of People. The second difference lies in the definition
of the payoffs received by Tribune. We suppose that every edge (p, d) ∈ E with p ∈ VP and
d ∈ VD is equipped with a multiplicity mpd which is a (positive) natural number. The weight
of a path is defined to be the product of the weights of the arcs arising on this path. For
instance, the path (d0, t0, p0, d1, t1, p1, d2, t2) where di ∈ VD, ti ∈ VT and pi ∈ VP , makes 2
and 1/3 turn, and its weight is mp0d1mp1d2 . A game in horizon N is then defined as follows:
if (σ, τ ) is a pair of strategies of Despot and Tribune, then we denote by RN

d (σ, τ ) the sum of
the weights of paths with initial state d that make N turns and that are consistent with the
choice of (σ, τ ). Tribune wants to maximize this quantity, while Despot wants to minimize it.
As for stochastic turn-based games, a dynamic programming argument given in [1] shows
that the value V N ∈ RVD

>0 of this game does exist, and that it satisfies the recurrence

V 0 = 1, V N = T (V N−1) ,

where 1 is the vector whose entries are identically one and the operator T : RVD
>0 → RVD

>0 is
defined by

Td(x) := min
(d,t)∈E

max
(t,p)∈E

∑
(p,l)∈E

mplxl, for all d ∈ VD . (9)

To define a game that lasts for an infinite number of turns, we consider the limit

V ∞
d (σ, τ) := lim sup

N→+∞
(RN

d (σ, τ))1/N ,

which may be thought of as a measure of the freedom of People. The logarithm of this limit
is known as a topological entropy in symbolic dynamics. The following result shows that
the value of the entropy game V ∞

d does exist and that it coincides with the limit of the
renormalized value (V N

d )1/N = [T N (1)]1/N
d of the finite horizon entropy game, so that the

situation is similar to the case of stochastic turn-based games, albeit the renormalization
now involves a Nth geometric mean owing to the multiplicative nature of the payment.

▶ Theorem 6 ([1]). The entropy game with initial state d has a value V ∞
d . Moreover, there

are (positional) strategies σ∗ and τ∗ of Despot and Tribune, such that, for all d ∈ VD,

V ∞
d (σ∗, τ) ⩽ V ∞

d = V ∞
d (σ∗, τ∗) ⩽ V ∞

d (σ, τ∗),
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for all strategies σ and τ of the two players. In addition, the value vector V ∞ := (V ∞
d )d∈VD

coincides with the vector

lim
N→∞

(
T N (1)

)1/N ∈ RVD
>0 ,

in which the operation ·1/N is understood entrywise.

Entropy games can be cast in the general operator setting of Section 2.2, by introducing the
conjugate operator F : RVD → RVD ,

F := log ◦T ◦ exp (10)

in which exp: RVD 7→ RVD
>0 is the map which applies the exponential entrywise, and log :=

exp−1. Since the maps log and exp are order preserving, and since the weights mpl appearing
in the expression of T (x) in (9) are nonnegative, the operator F is order preserving. Moreover,
using the morphism property of the map log and exp with respect to multiplication and
addition, we see that F is also additively homogeneous, hence, it is an abstract Shapley
operator in the sense of Definition 2. Moreover, it is definable in the real exponential
field, which was shown to be an o-minimal structure by Wilkie [45], and this is precisely
how Theorem 6 is derived in [1] from Theorem 3. Actually, entropy games are studied in [1]
in a more general setting, allowing history dependent strategies and showing that positional
strategies are optimal. It is also shown there that the game has a uniform value in the sense
of Mertens and Neyman [32].

When the (positional) strategies σ, τ are fixed, the value can be characterized by a classical
result of Perron–Frobenius theory.

▶ Definition 7. Given a pair of strategies (σ, τ) of Despot and Tribune, we define the
ambiguity matrix Mσ,τ ∈ RVD×VD

⩾0 , with entries (Mσ,τ )k,l = mτ(σ(k)),l if
(
τ(σ(k)), l

)
∈ E

and (Mσ,τ )k,l = 0 otherwise, i.e., this is the weighted transition matrix of the subgraph G σ,τ

obtained by keeping only the arcs VD → VT and VT → VP determined by the two strategies.

The digraph G σ,τ can generally be decomposed in strongly connected components C1, . . . , Cs,
and each of these components, Ci, determines a principal submatrix of Mσ,τ , denoted by
Mσ,τ [Ci], obtained by keeping only the rows and columns in Ci ∩ VD. We denote by ρ(·)
the spectral radius of a matrix, which is also known as the Perron root when the matrix is
nonnegative and irreducible, see [12] for background.

▶ Proposition 8 ([38], [46, Th. 5.1]). The value of the subgame with initial state d, induced
by a pair of strategies σ, τ , coincides with

max{ρ(Mσ,τ [Ci]) : there is a dipath d → Ci in G σ,τ } .

▶ Remark 9. In the original model of Asarin et al. [10], an entropy game is specified by
finite sets of states of Depot and Tribune, D and T , respectively, by a finite alphabet Σ

representing actions, and by a transition relation ∆ ⊂ T × Σ × D ∪ D × Σ × T . A turn
consists of four successive moves by Despot, People, Tribune, and People: in state d ∈ D,
Despot selects an action a ∈ Σ, then, People moves to one state t ∈ P such that (d, a, t) ∈ ∆.
Then, Tribune selects an action b ∈ Σ, and People moves to one state d′ ∈ D such that
(t, b, d′) ∈ ∆. This reduces to the model of [1] by introducing dummy states, identifying a turn
in the game of [10] to a succession of two turns in the game of [1]. Another difference is that
the payment, in [10], corresponds to maxd∈D lim supN→∞(RN

d )1/N , and this is equivalent
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Algorithm 1 Basic value iteration algorithm.
1: procedure ValueIteration(F )
2: ▷ F a Shapley operator from Rn to Rn

3: u := 0 ∈ Rn

4: repeat u := F (u) ▷ At iteration ℓ, u = F ℓ(0) is the value vector of the game in finite horizon ℓ
5: until t(u) ⩽ 0 or b(u) ⩾ 0
6: if t(u) ⩽ 0 then return “cw(F ) ⩽ 0” ▷ Player Min wins for all initial states
7: else return “cw(F ) ⩾ 0” ▷ Player Max wins for all initial states
8: end
9: end

to letting Tribune choose the initial state before playing the game. Then, the value of the
game in [10] coincides with the maximum of the values of the initial states, maxd V ∞

d , see [1,
Prop. 11]. Finally in [10], the arcs have multiplicity one, whereas we allow integer multiplicies
(coded in binary), as in [1].

3 Bounding the Complexity of Value Iteration

In this section, F is an (abstract) Shapley operator, i.e., an order-preserving and additively
homogeneous self-map of Rn.

3.1 A Universal Complexity Bound for Value Iteration
The most straightforward idea to solve a mean-payoff game is probably value iteration: we
infer whether or not the mean-payoff game is winning by solving the finite horizon game, for
a large enough horizon. This is formalized in Algorithm 1.

When the non-linear eigenproblem F (w) = erg(F ) + w is solvable, we shall use the
following metric estimate, which represents the minimal Hilbert’s seminorm of a bias vector

R(F ) := inf {∥w∥H : w ∈ Rn, F (w) = erg(F ) + w} .

In general, however, this non-linear eigenproblem may not be solvable. Then, we consider,
for λ ∈ R,

Sλ(F ) = {v ∈ Rn : λ + v ⩽ F (v)}, Sλ(F ) = {v ∈ Rn : λ + v ⩾ F (v)} .

▶ Theorem 10. Procedure ValueIteration (Algorithm 1) is correct as soon as cw(F ) > 0
or cw(F ) < 0, and it terminates in a number of iterations Nvi bounded by

inf
{

∥v∥H
λ

: λ > 0 , v ∈ Sλ(F ) ∪ S−λ(F )
}

. (11)

In particular, if F has a bias vector and erg(F ) ̸= 0, we have Nvi ⩽
R(F )

| erg(F )| .

We prove this theorem by using the Collatz-Wielandt variational characterization of the limits
limk→∞ t(F k(x)/k) and limk→∞ b(F k(x)/k), see Theorem 5. A special case of Theorem 10
in which the existence of a bias vector is assumed appeared in [6] (without proof).
▶ Remark 11. The infimum in (11) is generally not attained. Consider for instance F :
R2 → R2 given by F (x) = (log(exp(x1) + exp(x2)), x2) − α, where α > 0. Then, since
F2(x) = x2 − α < x2, we have Sλ(F ) = ∅ for λ > 0. Besides, since x − λ ⩾ F (x) if and only
if x1 − λ ⩾ log(exp(x1) + exp(x2)) − α and x2 − λ ⩾ x2 − α, it follows that S−λ(F ) ̸= ∅
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Algorithm 2 Value iteration in finite precision arithmetics.
1: procedure FPValueIteration(F̃ )
2: u := 0 ∈ Rn, ℓ := 0 ∈ N, ϵ ∈ R>0
3: repeat u := F̃ (u); ℓ := ℓ + 1 ▷ We suppose that the operator F is evaluated in approximate

arithmetics, so that F̃ (u) is at most at distance ϵ in the sup-norm from its true value F (u).
4: until ℓϵ + t(u) ⩽ 0 or −ℓϵ + b(u) ⩾ 0
5: if ℓϵ + t(u) ⩽ 0 then return “cw(F ) ⩽ 0” ▷ Player Min wins for all initial states
6: end
7: if −ℓϵ + b(u) ⩾ 0 then return “cw(F ) ⩾ 0” ▷ Player Max wins for all initial states
8: end
9: end

Algorithm 3 Approximating the value of a mean-payoff game when it is independent of the initial
state, and computing approximate optimality certificates, working in finite precision arithmetic.
1: procedure ApproximateConstantMeanPayoff(F )
2: u, x, y := 0 ∈ Rn, ℓ := 0 ∈ N, δ ∈ R>0 ▷ The number δ is the desired precision of approximation.
3: repeat u := F̃ (u); ℓ := ℓ + 1 ▷ The operator F is evaluated in approximate arithmetic, so that

F̃ (u) is at most at distance ϵ := δ/8 in the sup-norm from its true value F (u).
4: until t(u) − b(u) ⩽ (3/4)δℓ
5: κ := b(u)/ℓ; λ := t(u)/ℓ
6: u := 0
7: for i = 1, 2, . . . , ℓ − 1 do u := F̃ (u); x := max{x, −iκ + u}; y := min{y, −iλ + u}
8: done
9: return “[cw(F ), cw(F )] is included in the interval [κ − δ/8, λ + δ/8], which is of width at most δ.

Furthermore, we have κ − δ/8 + x ⩽ F (x) and λ + δ/8 + y ⩾ F (y).” ▷ All initial states have a value
in [κ − δ/8, λ + δ/8].

10: end

if and only if λ < α. Now let v ∈ S−λ(F ) for some λ < α. Without loss of generality, we
may assume b(v) = 0. Then, we have v1 − λ ⩾ log(exp(v1) + exp(v2)) − α ⩾ log 2 − α and
so ∥v∥H

λ ⩾ 1 + log 2−α
λ . We conclude that the infimum in (11) is equal to log 2

α but it is not
attained.

3.2 Value Iteration in Finite Precision Arithmetics
Algorithm 1 can be adapted to work in finite precision arithmetic. Consider the variant given
in Algorithm 2. We assume that each evaluation of the Shapley operator F is performed
with an error of at most ϵ > 0 in the sup-norm. In this section, we denote by F̃ : Rn → Rn

the operator which approximates F , as in Procedure FPValueIteration, so it satisfies

∥F̃ (x) − F (x)∥∞ ⩽ ϵ for all x ∈ Rn. (12)

The following result is established by exploiting nonexpansiveness properties of Shapley
operators.

▶ Theorem 12. Procedure FPValueIteration (Algorithm 2) is correct as soon as cw(F ) >

2ϵ or cw(F ) < −2ϵ, and it terminates in a number of iterations N ϵ
vi bounded by

inf
{

∥v∥H
λ − 2ϵ

: λ > 2ϵ , v ∈ Sλ(F ) ∪ S−λ(F )
}

. (13)

In particular, if F has a bias vector and | erg(F )| > 2ϵ, we have N ϵ
vi ⩽

R(F )
| erg(F )|−2ϵ .

Procedure ApproximateConstantMeanPayoff returns sub and super-eigenvectors x

and y, satisfying κ − δ/8 + x ⩽ F (x) and λ + δ/8 + y ⩾ F (y), which, by Theorem 5, entails
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that [cw(F ), cw(F )] is included in the interval [κ − δ/8, λ + δ/8]. The construction of these
sub and sup-eigenvectors, by taking infima and suprema of normalized orbits of F , is inspired
by [23, Proof of Lemma 2].

▶ Theorem 13. Suppose that cw(F ) = cw(F ), and let ρ denote this common value. Then,
Procedure ApproximateConstantMeanPayoff (Algorithm 3) halts and is correct for any
given desired precision of approximation δ ∈ R>0. Furthermore, if R := max{∥v∥H, ∥w∥H},
where v, w ∈ Rn are any two vectors that satisfy ρ − δ/8 + v ⩽ F (v) and ρ + δ/8 + w ⩾ F (w),
then this procedure stops after at most ⌈8R/δ⌉ iterations of the first loop.

3.3 Finding the States of Maximal Value
In this section, we will show how the value iteration algorithm can be adapted to decide
whether or not a given game has constant value, and to find the set of states that have the
maximal value. Our analysis is based on an abstract notion of dominion. As previously,
we suppose that F : Rn → Rn is an order-preserving and additively homogeneous operator.
Recall that thanks to (8), F is canonically extended to define a self-map of R̄n. Furthermore,
given a nonempty set S ⊂ [n], we define the operator F S : R̄S → R̄S as F S := pS ◦F ◦ iS ,
where pS : R̄n → R̄S is the projection on the coordinates in S which is defined as usual
by pS

j (x) = xj for j ∈ S , and iS : R̄S → R̄n is defined by iSj (x) = xj if j ∈ S and
iSj (x) = −∞ otherwise.

▶ Definition 14. A dominion (of Player Max) is a nonempty set D ⊂ [n] such that F D

preserves RD , i.e., such that F D(x) ∈ RD for all x ∈ RD .

As discussed in [7, 3], for stochastic mean-payoff games (with finite action spaces), a dominion
of a player can be interpreted as a set of states such that the player can force the game
to stay in this set if the initial state belongs to it. This terminology differs from the one
of [29], in which a dominion is required in addition to consist only of initial states that are
winning for this player. The algorithms that we discuss in this section require an additional
assumption on the structure of the Shapley operator F .

▶ Assumption 2. We assume that the limit χD := limℓ→∞
(F D)ℓ(0)

ℓ ∈ RD exists for every
dominion D ⊂ [n]. Furthermore, we assume that the set Dmax := {j ∈ [n] : χ

[n]
j = cw(F )} is

a dominion and that it satisfies cw(F Dmax) = cw(F Dmax) = cw(F ).

▶ Remark 15. We note that the first part of Assumption 2 holds automatically when the
Shapley operator F : Rn → Rn is definable in an o-minimal structure. Indeed, in this case
the relation (8) implies that F D is definable in the same structure for every dominion D , so
χD exists by Theorem 3. We will see that the second part of the assumption applies to the
games considered in this paper.

▶ Remark 16. Assumption 2 will allow us to make an induction on the number states, by a
reduction to a simpler game with a reduced state space D . In particular, the assumption that
the limit χD = limℓ→∞

(F D)ℓ(0)
ℓ exists will allow us to apply value iteration to the Shapley

operator of the reduced game, F D .

From now on, we denote χ := χ[n] and Dmax := {j ∈ [n] : χj = cw(F )}. The following
theorem applies to Shapley operators for which an a priori separation bound is known: if
cw(F ) > cw(F ), it requires an apriori bound δ > 0 such that cw(F ) − cw(F ) > δ. We
note that the existence of the approximate sub and super-eigenvectors v and w used in this
theorem follows from Theorem 5 and from Assumption 2.
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Algorithm 4 Deciding if the value is constant.
1: procedure DecideConstantValue(F, δ, R)
2: u := 0 ∈ Rn, ℓ := 0 ∈ N.
3: F̃ := any map such that F̃ (u) is at most at distance ϵ := δ/8 in the sup-norm from F (u).
4: repeat u := F̃ (u); ℓ := ℓ + 1
5: until t(u) − b(u) ⩽ (3/4)δℓ or ℓ = 1 + ⌈8R/δ⌉
6: if ℓ = 1 + ⌈8R/δ⌉ then
7: S := {i : ui = b(u)}
8: return S ▷ The value of the game depends on the initial state. We have χi < cw(F ) for all

i ∈ S .
9: else

10: return ∅ ▷ The value of the game is independent of the initial state.
11: end
12: end

▶ Theorem 17. Suppose that F is such that either cw(F ) = cw(F ) or cw(F ) − cw(F ) > δ

for some δ > 0. Let Dmax be the set of states of maximal value and R := max{∥v∥H, ∥w∥H},
where v, w ∈ RDmax are any two vectors that satisfy cw(F ) − δ/8 + v ⩽ F Dmax(v) and
cw(F ) + δ/8 + w ⩾ F Dmax(w). Then, Procedure DecideConstantValue (Algorithm 4) is
correct.

Let

sep(F ) := inf
D

(
cw(F D) − cw(F D)

)
where the infimum is taken over all the dominions D of F which contain all the states of
maximal value and satisfy cw(F D) − cw(F D) > 0.

To state the final result of this section, we will suppose that we have an access to an
oracle that approximates F to a given precision ϵ > 0. More precisely, given a point x ∈ R̄n,
the oracle is supposed to output a point y ∈ R̄n that satisfies yj = −∞ for all j ∈ [n] such
that Fj(x) = −∞ and |Fj(x) − yj | ⩽ ϵ for all j such that Fj(x) ̸= −∞. We have

▶ Theorem 18. Let δ > 0 be such that δ < sep(F ), Dmax be the set of states of maximal
value and R := max{∥v∥H, ∥w∥H}, where v, w ∈ RDmax are any two vectors that satisfy
cw(F ) − δ/8 + v ⩽ F Dmax(v) and cw(F ) + δ/8 + w ⩾ F Dmax(w). Then, the set of initial
states of maximal value can be found by making at most n2 + n⌈8R/δ⌉ calls to oracle that
approximates F to precision ϵ := δ/8.

4 Application to Stochastic Mean-Payoff Games

In this section, we apply our results to stochastic mean-payoff games. We start by bounding
the separation sep and the metric estimate R(F ), when F is the Shapley operator of a
stochastic turn-based zero-sum game as in (1). We recall that the entries of A and B are
integers. This is not more special than assuming that the entries of A and B are rational
numbers (we may always rescale rational payments so that they become integers). We set

W := max {|Aij − Bik| : i ∈ VMax, j ∈ VMin, k ∈ VNat} . (14)

We also assume that the probabilities Pkj are rational, and that they have a common
denominator M ∈ N>0, Pkj = Qkj/M , where Qkj ∈ [M ] for all k ∈ VNat and j ∈ VMin.
We say that a state k ∈ VNat is a significant random state if there are at least two indices
j, j′ ∈ VMin such that Pkj > 0 and Pkj′ > 0. We denote by s the number of significant
random states and by n := |VMin| the number of states controlled by Min. The following
estimates follow from optimal bit-complexity results for Markov chains, established in [41].
These improve an estimate in [16].

ICALP 2022



110:14 Universal Complexity Bounds for Value Iteration

▶ Lemma 19. We have sep(F ) > 1/(nMmin{s,n−1})2.

▶ Lemma 20. Suppose that cw(F ) = cw(F ). Then, there exists a vector u ∈ RVMin such
that F (u) = cw(F ) + u and

R(F ) ⩽ ∥u∥H ⩽ 8nWMmin{s,n−1} .

The existence of the bias vector follows from Kohlberg’s theorem (Theorem 4). The bias
is generally not unique (even up to an additive constant) and the main difficulty then is
to find a “short” bias. The one which is constructed in the proof of this lemma relies on
the notion of Blackwell optimality. This notion requires to consider the discounted version
of the game, in which the payment (2) is replaced by Eστ

∑∞
p=0(1 − α)p(−Aipjp

+ Bipkp
),

where 0 < α < 1 and 1 − α is the discount factor. The discounted game with initial state
i has a value, xi(α), and the value vector, x(α) = (xi(α)) ∈ Rn is the unique solution of
the fixed point problem x(α) = F ((1 − α)x(α)). Then, a strategy of a player is Blackwell
optimal if it is optimal in all the discounted games with a discount factor sufficiently close to
1. It can be obtained by selecting minimizing or maximizing actions when evaluating the
expression F ((1 − α)x(α)), for α > 0 close enough to 0. Moreover, it follows from Kohlberg’s
proof that x(α) admits an expansion x(α) = χ(F )/α + u + o(α) when α → 0+, where u

is a bias vector. If Q is the stochastic matrix determined by a pair of Blackwell optimal
strategies of the two players, and if r is the associated one-stage payment vector, then, the
bias vector u satisfies a Poisson-type equation χ(F ) + u = r + Qu. Moreover, this special
bias vector has the remarkable property of having a zero expectation with respect to all
invariant measures of Q, and together with the bit-complexity estimate of [41, Th. 1.5] for
the solution of Poisson-type equations, this leads to the proof of Lemma 20.

Thanks to these estimates, we arrive at the following corollaries.

▶ Corollary 21. Let F be a Shapley operator as above, supposing that F has a bias vector
and that erg(F ) is nonzero. Then, procedure ValueIteration stops after

Nvi ⩽ 8n2WM2 min{s,n−1} (15)

iterations and correctly decides which of the two players is winning.

▶ Remark 22. When specialized to deterministic mean-payoff games, i.e., when s = 0,
Corollary 21 yields Nvi = O(n2W ) which is precisely the bound that follows from the analysis
of value iteration by Zwick and Paterson [47].

▶ Corollary 23. Suppose that F has a bias vector and let µ := nMmin{s,n−1}. Then, Procedure
ApproximateConstantMeanPayoff, applied to F and to δ := µ−2, terminates in at
most

128n3WM3 min{s,n−1}

calls to the oracle. Moreover the interval returned by this procedure contains a unique rational
number of denominator at most µ, which coincides with the value, and optimal policies can
be obtained from the approximate optimality certificates generated by the procedure.

Let us explain how the optimal strategies are obtained from the output of Procedure
ApproximateConstantMeanPayoff. This procedure returns sub and super-eigenvectors
x and y that satisfy κ − δ/8 + x ⩽ F (x) and λ + δ/8 + y ⩾ F (y) where λ = erg(F ). By
selecting, for each state j ∈ VMin, a minimizing action in the expression

Fj(y) = min
(j,i)∈E

(
−Aij + max

(i,k)∈E

(
Bik +

∑
(k,l)∈E

Pklyk

))
,
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one gets a positional strategy which guarantees to Min a value at most λ + δ/8. A similar
method is used to construct a positional strategy of Max. Then, since δ = µ−2 is smaller
than the separation bound between values of different strategies, we deduce these policies
guarantee a value of λ to each of the players, and so, they are optimal.

▶ Corollary 24. Let µ := nMmin{s,n−1}. Then, we can find the set of states with maximal
value of a stochastic mean-payoff game by performing at most 65n4WM3 min{s,n−1} calls to
the oracle approximating F with precision δ := 1/µ2.

▶ Remark 25. If we are given the matrices A, B, P explicitly, then the operator F can
be evaluated exactly in O(E) complexity, where E is the number of edges of the graph
representing a stochastic mean-payoff game. In particular, there is no need to construct an
approximation oracle in order to apply the results of this section. Nevertheless, even in this
case it may be beneficial to use an approximation oracle. Indeed, if we evaluate F exactly,
then each value iteration u := F (u) increases the number of bits needed to encode u. As a
result, value iteration would require exponential memory. In order to avoid this problem, one
can replace F with an approximation oracle F̃ obtained as follows. Let µ := nMmin{s,n−1}

and ϵ := 1/(8µ2). Given x ∈ R̄VMin , we first compute y := F (x) exactly and then round the
finite coordinates of y in such a way that the rounded vector ỹ satisfies |yj − ỹj | ⩽ ϵ whenever
yj ̸= −∞ and ỹj is a rational number with denominator at most 8µ2. One can check that if
we use F̃ obtained in this way as an approximation oracle, then all algorithms presented in
this section require O

(
nE log(nMW )

)
memory, which is polynomial in the size of the input.

▶ Remark 26. Since a single call to the oracle approximating F can be done in O(E)
arithmetic operations, by combining Corollary 24 with Corollary 23 we see that the set of
states with maximal value, and a pair of optimal strategies within this set can be found in
O(n4EWM3 min{s,n−1}) complexity. This should be compared with the algorithm BWR-
FindTop from [16] which achieves the same aim using a pumping algorithm instead of
value iteration. If we combine the estimate from [41] with the complexity bound presented
in [16] for the pumping algorithm, then we get that BWR-FindTop has O(V 6EWs2sM4s +
V 3EW log W ) complexity, where V is the number of vertices of the graph. In particular, our
result gives a better complexity bound. Furthermore, the authors of [16] show that, given an
oracle access to BWR-FindTop and to another oracle that solves deterministic mean-payoff
games, one can completely solve stochastic mean-payoff games with pseudopolynomial number
of calls to these oracles, provided that s is fixed. Hence, we can speed-up this algorithm by
replacing the oracle BWR-FindTop with our algorithms.

5 Solving Entropy Games With Bounded Rank

Recall that the dynamic programming operator T of an entropy game, as well as its conjugate
F , which we call the Shapley operator of an entropy game, were defined in (9),(10). As in
the last section, we denote n := |VD| and we put W := max(p,k)∈E mpk.

We define the rank of the entropy game to be the maximum of the ranks of the ambiguity
matrices, see Definition 7. The following result is established by combining a separation bound
of Rump [39] for algebraic numbers, with bounds on determinants of nonnegative matrices
with entries in an interval, building on the study of Hadamard’s maximal determinant
problem for matrices with entries in {0, 1} [20].

▶ Theorem 27. Suppose two pairs of strategies yield distinct values in an entropy game of
rank r, with n Despot’s states. Then, these values differ at least by ν−1

n,r where

νn,r := 2r(r + 1)8rr−2r2+r+1(ne)4r2(
1 ∨ W

2
)4r2

.
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We show that the value of an entropy game is always in the interval [1, nW ]. Then, a
separation bound for values of different pairs of strategies entails a separation bound for
their logarithm, differing only by a nW factor:

▶ Corollary 28. Suppose two pairs of strategies yield distinct values in an entropy game of
rank r, with n Despot’s states. Then, the logarithms of these values differ at least by ν̂−1

n,r

where

ν̂n,r := nWνn,r .

▶ Proposition 29. Let 0 < δ < 1. Then, there exist vectors w, z ∈ RVD
>0 such that

e−δb(V ∞)w ⩽ T (w), eδt(V ∞)z ⩾ T (z), and max{∥ log w∥H, ∥ log z∥H} ⩽ 1200(n3 log W +
n2 log δ−1).

This proposition is established by observing that for a given value of δ, w and z are defined
by semi-linear constraints, and by using bitlength estimates on the generators and vertices of
polyhedra defined by inequalities.

By applying Theorem 18 to the Shapley operator F = log ◦T ◦ exp, and by using the
bounds Corollary 28 and Proposition 29, we get:

▶ Theorem 30. In an entropy game of rank at most r, we can find the set of initial states
with maximal value by performing O(nRn,rν̂n,r) calls to an oracle approximating F with
precision δ/8 where δ = (ν̂n,r)−1.

The following decomposition property for entropy games extends a classical property of
deterministic mean payoff games. Once the set of Despot’s states with maximal value is known,
it allows one to determine the value of the other states by reduction to an entropy game induced
by the other states of Despot. To state this property formally, we denote by Dmax ⊂ VD the
states of Despot of maximal value, and we put VP

Dmax := {p ∈ VP : ∃k ∈ Dmax, (p, k) ∈ E }
and VT

Dmax := {t ∈ VT : ∃p ∈ VP
Dmax , (t, p) ∈ E }.

▶ Lemma 31 (Decomposition property). Let S1 := Dmax⊎VT
Dmax ⊎VP

Dmax and S2 := V \S1.
Furthermore, suppose that S2 is nonempty. Consider the induced digraphs G [S1] and G [S2]
of the original graph G = (V , E ). Then, the entropy games arising by restricting the graph
to G [S1] and G [S2] satisfy Assumption 1. Furthermore, if (σ1, τ1) are optimal strategies of
Despot an Tribune in the induced entropy game on G [S1] and (σ2, τ2) are optimal strategies
of Despot and Tribune in the induced entropy game on G [S2], then the joint strategies

∀k ∈ VD, σ(k) =
{

σ1(k) if k ∈ Dmax,
σ2(k) otherwise,

∀t ∈ VT , τ(t) =
{

τ1(t) if t ∈ VT
Dmax ,

τ2(t) otherwise.
(16)

are optimal in the original game.

We also note that the Shapley operator of an entropy game can be approximated in polynomial
time, this follows by using a result of Borwein and Borwein [17] on the approximation of
the log and exp maps, together with a scaling argument, see [1, Lemma 27]. Then, by
combining Theorem 30 and Lemma 31, we get:

▶ Corollary 32. A pair of optimal policies of an entropy game of rank r can be found in
O(n2Rn,rν̂n,r) calls to an oracle that return F with a precision of 1/(16ν̂n,r). Then, entropy
games in the original model of Asarin et al. [10] and with a fixed rank are polynomial-time
solvable, whereas entropy games with weights, in the model of Akian et al. [1], and with a
fixed rank, are pseudo-polynomial time solvable.
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▶ Corollary 33. Entropy games with weights and with a fixed number of People’s positions
are pseudo-polynomial time solvable.

We say that a state of a game is significant if there are several options in this state,
in particular, a state p of People is significant if there are at least two distinct arcs (p, k)
and (p, l) in E . We may ask whether the statement of Corollary 33 carries over to entropy
games with a fixed number of significant People’s states. The following result shows that
this can not be derived from the universal value iteration bounds, since value iteration needs
Ω(W n−1) iterations to recognize the optimal strategy.

▶ Theorem 34. There is a family of Gn(W ) of Despot-free entropy games, and a constant
C > 0, with the following properties:
1. Gn(W ) has arc weights ⩽ W , only one significant Tribune’s position, with two actions,

and 2n + 1 People’s positions among which there are only 4 significant positions;
2. The action of Tribune that is optimal in the mean-payoff entropy game is never played, if

Tribune plays optimally in the entropy game of finite horizon k, for all k ⩽ CW n−1.
Let us explain how the game Gn(W ) is constructed. We start by estimating the positive
root of a special polynomial pn.

▶ Proposition 35. Consider the polynomial pn(x) = xn − W (xn−1 + · · · + 1), where W > 0.
Then, pn has a unique positive root, xn(W ), which satisfies

xn(W ) = W + 1 − 1/W n−1 + o(1/W n−1) , as W → ∞ .

This is established by applying the Newton-Puiseux algorithm [44] to the equation pn(x) = 0
parameterized by W . Then, we define the companion matrix of pn, An = An(W ), together
with the sequence (z(k))k∈N,

An(W ) :=
(

W . . . W W

In−1 0

)
, z(k) = max(1⊤

n Ak
n1n, α1⊤

n−1Ak
n−11n−1) , (17)

where for all k ⩾ 1, 1k is the vector of dimension k with unit entries, Ik the identity matrix
of dimension k, and α > 1. We note that An is an irreducible nonnegative matrix, so, the
unique positive root of pn is actually the Perron root of An. Using Proposition 35, as well
as explicit bounds for the left Perron eigenvector of An, we can show that the maximum
in (17) is achieved by the rightmost term for k ⩽ k∗ and by the leftmost term for k > k∗

where k∗ = (log 2)W n−1 + o(W n−1). Moreover, z(k) can be interpreted as the value in
horizon k + 1 of an entropy game satisfying the conditions of the theorem. Indeed, the
leftmost term 1⊤

n Ak
n1n can be interpreted as the value in horizon k + 1 of a Despot-free

and Tribune-free entropy game, with n + 1 People’s states, among which there are only two
significant states: one encoding the first row of An, and another one encoding the row vector
1⊤

n . The term α1⊤
n−1Ak

n−11n−1 also admits an interpretation as the value of a similar game.
We finally construct the entropy game Gn(W ) by allowing Tribune to choose whichever of
these elementary games is played. This can be implemented by taking the disjoint union of
the graphs of the two elementary games, and adding one significant state of Tribune, with
only two actions. One action gives rise to the left term of the maximum in (17), whereas the
other action gives rise to the right term, so that the value of the corresponding entropy game
in horizon k is precisely z(k − 1). Since λn > λn−1, in the mean-payoff entropy game, the
optimal action for Tribune is to choose the term with the highest geometric growth, i.e., to
play “left”, which guarantees a geometric growth of λn. However, for k ⩽ k∗ + 1, the optimal
action of Tribune in the game of horizon k is always to play “right”. This shows Theorem 34.

ICALP 2022
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6 Concluding Remarks

We developed generic value iteration algorithms, which apply to various classes of zero-sum
games with mean payoffs. These algorithms admit universal complexity bounds, in an
approximate oracle model – we only need an oracle evaluating approximately the Shapley
operator. These bounds involve three fundamental ingredients: the number of states, a
separation bound between the values induced by different strategies, and a bound on the
norms of Collatz-Wielandt vectors. We showed that entropy games with a fixed rank (and in
particular, entropy games with a fixed number of People’s states) are pseudo-polynomial time
solvable. This should be compared with the result of [1], showing that entropy games with
a fixed number of Despot positions are polynomial-time solvable. Since fixing the number
of states of Despot or People leads to improved complexity bounds, one may ask whether
entropy games with a fixed number of significant Tribune states are polynomial or at least
pseudo-polynomial, this is still an open question.
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Abstract
The topological properties of a set have a strong impact on its computability properties. A striking
illustration of this idea is given by spheres and closed manifolds: if a set X is homeomorphic to a
sphere or a closed manifold, then any algorithm that semicomputes X in some sense can be converted
into an algorithm that fully computes X. In other words, the topological properties of X enable one
to derive full information about X from partial information about X. In that case, we say that X

has computable type. Those results have been obtained by Miller, Iljazović, Sušić and others in the
recent years. A similar notion of computable type was also defined for pairs (X, A) in order to cover
more spaces, such as compact manifolds with boundary and finite graphs with endpoints.

We investigate the higher dimensional analog of graphs, namely the pairs (X, A) where X is a
finite simplicial complex and A is a subcomplex of X. We give two topological characterizations
of the pairs having computable type. The first one uses a global property of the pair, that we call
the ϵ-surjection property. The second one uses a local property of neighborhoods of vertices, called
the surjection property. We give a further characterization for 2-dimensional simplicial complexes,
by identifying which local neighborhoods have the surjection property.

Using these characterizations, we give non-trivial applications to two famous sets: we prove that
the dunce hat does not have computable type whereas Bing’s house does. Important concepts from
topology, such as absolute neighborhood retracts and topological cones, play a key role in our proofs.
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1 Introduction

Computable analysis is a theory formalizing computations on real numbers using finite
but arbitrary precision, and allowing to investigate the theoretical possibility of solving
problems on real numbers. The computable aspects of topology are an important research
topic in computable analysis. Computability of homology groups was investigated in [10],
computability of planar continua in [18], computability of the Brouwer fixed-point theorem
was studied in [20] and [3], and computability of Polish spaces is addressed in [11].

A particularly rich topic is the computability of subsets of the plane and of Euclidean
spaces. For instance, the computability of Julia sets has thoroughly been studied [4], the
computability of the Mandelbrot set is still an open problem [13] and the computability of
the set of solutions of a computable equation is generally a non-trivial problem [21].
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These studies reveal that many natural definitions of sets induce a semi-algorithm, and
finding a proper algorithm computing the set can be challenging. Informally, a compact
subset of the plane is semicomputable if there is an algorithm that for each pixel, semidecides
whether the pixel is disjoint from the set, i.e. halts exactly in that case. A compact subset
of the plane is computable if there is an algorithm that decides, for each pixel, whether it
intersects the set. This idea can be generalized to higher dimensions, and to subsets of many
mathematical spaces.

Although semicomputability of compact sets is strictly weaker than computability in
general, it turns out that they are equivalent for many natural sets, and that this phenomenon
comes from the topological properties of these sets. For instance, it was prove by Miller [19]
that semicomputability and computability are equivalent for spheres, and for every set that is
homeomorphic to a sphere. This result leads to the following definition: say that a compact
space X has computable type if any semicomputable set Y that is homeomorphic to X is
actually computable. This property has been intensively studied by Miller [19] and more
recently by Iljazović and his co-authors [5, 17, 9, 15, 6, 7] in the recent years. A striking
aspect of this property is that it builds a bridge between computability theory and topology.
The following results were obtained:

The n-dimensional sphere Sn (which is the higher dimensional analog of the circle) has
computable type [19],
Every closed n-manifold (these are compact spaces which are locally homeomorphic to Rn,
e.g. the n-dimensional sphere and the n-dimensional torus) has computable type [17].

A line segment or a disk fails to have this property: it is not difficult to build a semicomputable
disk which is not computable. However, a similar result can be proved if one requires in addi-
tion that the boundary of the set is semicomputable. It leads to the following generalization
from compact spaces X to pairs (X, A) where X and A ⊆ X are compact: a pair (X, A) has
computable type if for any semicomputable pair (Y, B) that is homeomorphic to (X, A), Y

is computable. The following results have been obtained for pairs:
The n-dimensional ball (which is the higher dimensional analog of the disk) with its
bounding sphere (Bn, Sn−1) has computable type [19],
Every compact manifold with boundary (M, ∂M) has computable type [17],
Every finite (topological) graph (G, V1), where V1 is the set of vertices of degree 1, has
computable type [15].

Our goal in this paper is to study the property of having computable type for a broader
class of spaces, to characterize the pairs having computable type and to develop a unifying
argument for the known examples. Our first observation is that graphs and manifolds have
the common property that they are locally topological cones as follows (see Figure 1 for an
illustration of this idea):

A finite graph is locally a cone of a finite set,
A 2-dimensional manifold is locally a disk, which is the cone of a circle, and more generally
an n-dimensional manifold is locally an n-ball, which is the cone of an (n − 1)-sphere.

In this article, we study the class of finite simplicial complexes which is a large class of
spaces that are also locally topological cones, as illustrated in Figure 1c.

Finite simplicial complexes are the higher dimensional analogs of finite graphs. They
are made of simplices that are attached together along their faces. This class of compact
topological spaces is large enough to include many examples (e.g., most common compact
manifolds, geometrical models from computer graphics) and can be easily described using finite
combinatorial information, so we can hope to obtain a full characterization of computable
type for them. We do not consider infinite simplicial complexes because the usual topologies
make them non-compact.
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(a) A local cone in a graph. (b) A local cone in a 2-
manifold.

(c) A local cone in a sim-
plicial complex.

Figure 1 Examples of local cones in 3 types of spaces.

Let (X, A) be a pair consisting of a finite simplicial complex X and a subcomplex A. We
call such a pair a simplicial pair. Our main problem is to understand which simplicial
pairs (X, A) have computable type. We give a thorough answer, by giving two topological
characterizations of the simplicial pairs (X, A) having computable type. One of them is
global whereas the other one is local. The local characterization makes it very easy to check
whether a simplicial pair (X, A) has computable type, by inspecting the neighborhoods
of each vertex separately. Those neighborhoods are called local cones, because they are
topological cones with the vertex as the tip (precise definitions will be given in the article).
We then use the local characterization to prove or disprove that specific sets, such as Bing’s
house and the dunce hat, have computable type. The previous techniques developed in
the literature were too specific to be applied to these sets. Our techniques not only make it
possible to treat any simplicial complex, but also provide a simple and visual way to settle
the question for many sets.

The proofs are non-trivial but the statements are elegant and easy to apply. For instance
it is very easy to apply our results to show that the dunce hat does not have computable type.
However, the internals of the proofs of the theorems are rather involved and we are not aware
of any simpler, more direct argument. Therefore our results provide significant progress in
the understanding of the computable type property. Moreover, our approach in this article
is new in the sense that the proofs are very different from the arguments developed in the
literature on the computable type property.

It turns out that the computability property we are studying is intimately related
to topology, so we need to use topology in our investigation. However, we only assume
familiarity with basic topology (e.g., continuity and compactness). When we use more
advanced topological notions, we give the necessary background (e.g. cones, simplicial
complexes).

The results. Let us summarize the main results of this paper. We will be working with
pairs (X, A) consisting of a compact metric space X and a compact subset A, to be informally
thought as the boundary of X. A typical example is given by the pair (Bn+1, Sn) consisting
of the (n + 1)-dimensional ball and the n-dimensional sphere:

Bn+1 = {x ∈ Rn+1 : ∥x∥ ≤ 1},

Sn = {x ∈ Rn+1 : ∥x∥ = 1},

where ∥·∥ is the Euclidean norm or any equivalent norm. We introduce two important
properties of pairs, given in Definition 3.1 and restated here.

▶ Definition. A pair (X, A) has the surjection property if every continuous function f :
X → X satisfying f |A = idA is surjective.

Let ϵ > 0. A pair (X, A) has the ϵ-surjection property if every continuous function f :
X → X satisfying f |A = idA and d(f, idX) < ϵ is surjective.
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For instance, a consequence of Brouwer’s fixed-point theorem is that the pair (Bn+1, Sn)
has the surjection property.

The main result of the paper is Theorem 3.4, which relates computable type with these
two properties. We restate it here. We recall that a simplicial pair (X, A) consists of a
finite simplicial complex X and a subcomplex A ⊆ X.

▶ Theorem. Let (X, A) be a simplicial pair such that A has empty interior in X. The
following conditions are equivalent:
1. (X, A) has computable type,
2. There exists ϵ > 0 such that (X, A) has the ϵ-surjection property,
3. Every local cone pair of (X, A) has the surjection property.

Condition 2. is the global property mentioned above and condition 3. is the local one.
This theorem reduces a computability-theoretic property to purely topological ones. We
develop further techniques to determine whether a pair has computable type, by applying
this theorem or by analyzing when the topological properties are satisfied. The first one is
stability under finite unions (Theorem 4.1 and Corollary 4.2).

▶ Theorem (Finite union). Let (X, A) be a simplicial pair and (Xi, Ai)i≤n be pairs of
subcomplexes such that X =

⋃
i≤n Xi and A =

⋃
i≤n Ai. If each (Xi, Ai) has computable

type, then (X, A) has computable type.

The second one is a further characterization of the 2-dimensional simplicial pairs having
computable type, by reducing the surjection property for local cone pairs to a simple property
of graphs (Theorem 4.4). We demonstrate the strength of that result by giving non-trivial
applications to two famous sets: the dunce hat (Figure 4a) and Bing’s house (Figure 5).

In order to make the paper understandable to a larger audience, we give informal proofs
of the main results. The detailed proofs can be found in the full version [14].

The paper is organized as follows. In Section 2, we give the needed background on
computability of sets, simplicial complexes and cone spaces. In Section 3, we define the
surjection property and the ϵ-surjection property, state and prove our main result. In
Section 4, we present techniques to prove or disprove the (ϵ-)surjection property. As an
application, we prove that the dunce hat does not have computable type whereas the Bing’s
house does, by studying the local cones of each of the two sets. In Section 5, we briefly discuss
the possible notions of boundary ∂X of a simplicial complex X that make the pair (X, ∂X)
have computable type. We finally formulate open questions and discuss a generalization of
our results in Section 6.

2 Preliminaries

We give here some necessary preliminaries in computability theory and topology. We start
with this central definition.

▶ Definition 2.1. A pair (X, A) consists of a compact metrizable space X and a compact
subset A ⊆ X. A copy of a pair (X, A) in a topological space Z is a pair (Y, B) such
that Y ⊆ Z is homeomorphic to X and A is sent to B by the homeomorphism.
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2.1 Computability of sets
We recall definitions and results about the Hilbert cube and computable type. We will
mainly use the following notion from computability theory: a set A ⊆ N is computably
enumerable (c.e.) if there exists a Turing machine that, on input n ∈ N, halts if and only
if n ∈ A. This notion immediately extends to subsets of countable sets, whose elements can
be encoded by natural numbers.

Computability in the Hilbert cube. We work in the Hilbert cube because it is universal
among the separable metrizable spaces, in particular every compact metrizable space embeds
in the Hilbert cube.

▶ Definition 2.2. The Hilbert cube is the space Q = [0, 1]N endowed with the metric d(x, y) =∑
i 2−i|xi − yi|. We let (Bi)i∈N be a computable enumeration of the open balls B(x, r)

where x ∈ Q has finitely many non-zero rational coordinates and r > 0 is rational; these Bis
are called rational balls.

▶ Notation 1. If X ⊆ Q and f, g : X → Q, then let dX(f, g) = supx∈X d(f(x), g(x)).
We recall definitions of computability of compact subsets of the Hilbert cube. The reader

can find more details about computability of sets in [2, 16].

▶ Definition 2.3 (Computability of sets). A compact set X ⊆ Q is:
Semicomputable if there exists a c.e. set E ⊆ N such that Q \ X =

⋃
i∈E Bi,

Computable if it is semicomputable and {i ∈ N : X ∩ Bi ̸= ∅} is c.e.
A pair (X, A) in Q is semicomputable if both X and A are semicomputable.

Intuitively, X is semicomputable if there is an algorithm that takes any rational cube as
input (a voxel) and semidecides whether that cube is disjoint from X, i.e. halts exactly in
this case. X is computable if there is an algorithm that decides whether a cube intersects
the set.

For instance, the Mandelbrot set is semicomputable because its definition gives an
algorithm that can eventually detect that a point is outside this set; whether it is computable
is an open problem, see [13].

▶ Example 2.4. The line segment I = [0, 1], embedded in the simplest way as [0, 1]×{q} ⊆ Q

where q = (0, 0, . . .), is computable. However, if A ⊆ N is the halting set (a non-computable
c.e. set) and xA =

∑
n∈A 2−n, then [xA, 1] × {q} is a copy of I which is semicomputable but

not computable.

The Hilbert cube itself is a computable subset of itself. A compact set X ⊆ Q is
semicomputable if and only if the set {(i1, . . . , in) ∈ N∗ : X ⊆ Bi1 ∪ . . . ∪ Bin

} is c.e., and it
is computable if and only if in addition it contains a dense computable sequence. A function f :
Q → Q is computable if there exists a c.e. set E ⊆ N2 such that f−1(Bi) =

⋃
(i,j)∈E Bj .

The image of a (semi)computable set under a computable function is a (semi)computable
set. Semicomputable sets have very useful properties: if X ⊆ Q is semicomputable and f, g :
X → Q are computable, then {q ∈ Q : dX(f, g) < q} is c.e.

Computable type. The next definition is the main notion of this article (see [17]).

▶ Definition 2.5. A pair (X, A) has computable type if for every semicomputable copy (Y, B)
of the pair in the Hilbert cube, Y is computable.

A compact space X has computable type if the pair (X, ∅) has.
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▶ Remark 2.6. In fact, in [17] computable type was defined separately for copies in computable
metric spaces and computably Haudorff spaces. In a forthcoming article, we show that taking
the copies in computably Hausdorff spaces, computable metric spaces or the Hilbert cube are
all equivalent using the fact that computable metric spaces embed effectively in the Hilbert
cube, as well as Schröder’s computable metrization theorem [22].

2.2 Topology
We recall some notions which will be used, like simplicial complexes and cone spaces. We will
work with compact metrizable spaces only, and may omit this assumption in the statements.

▶ Definition 2.7. Let (X, A) be a pair. A retraction r : X → A is a continuous function
such that r|A = idA. If a retraction exists, then we say that A is a retract of X.

Simplicial complex. Let V = {0, . . . , n} and P+(V ) be the set of non-empty subsets of
V . An abstract finite simplicial complex is a set S ⊆ P+(V ) such that if σ ∈ S

and ∅ ≠ σ′ ⊂ σ, then σ′ ∈ S. Its elements σ ∈ S are called the simplices of S. If σ ∈ S

has n + 1 elements, then σ is an n-simplex. The vertices of S are the singletons {i} ∈ S.
σ ∈ S is free if there exists exactly one σ′ ∈ S with σ ⊊ σ′. A subcomplex of S is an
abstract simplicial complex contained in S.

The support of a vector x = (x0, . . . , xn) ∈ [0, 1]n+1 is supp(x) = {i : xi ̸= 0} . The
standard realization of an abstract simplicial complex S is the set

|S| =
{

x = (x0, . . . , xn) ∈ [0, 1]n+1 :
∑

i

xi = 1, supp(x) ∈ S
}

.

Any space homeomorphic to the standard realization of an abstract finite simplicial complex
is called a finite simplicial complex. We often identify an abstract simplicial complex and
its standard realization.

A simplicial pair (X, A) consists of a finite simplicial complex X and a subcomplex A.
▶ Remark 2.8. For technical reasons, we will implicitly assume that A contains all the free
vertices of X (those are the points x having a neighborhood homeomorphic to [0, 1) with a
homeomorphism sending x to 0).

In a simplicial complex, each vertex has a neighborhood which is usually called a star
and is topologically a cone. Our main result will relate the computable type property with
a property of these local cones. Because we are dealing with pairs, we need to define local
cone pairs, as follows.

▶ Definition 2.9. Let (X, A) be the standard realization of a simplicial pair and vi =
(0, . . . , 0, 1, 0, . . . , 0) be a vertex. The local cone pair at vi is (Ki, Mi) defined by:

Ki = {x ∈ X : xi ≥ 1/2},

Mi = {x ∈ X : xi = 1/2} ∪ (Ki ∩ A).

Note that the coefficient 1/2 is arbitrary and could be replaced by any number in (0, 1).
▶ Remark 2.10. We call (Ki, Mi) a cone pair because K is a topological cone: let Li = {x ∈
X : xi = 1/2}, Ki is a copy of the cone of Li, obtained from Li × [0, 1] by identifying all the
points (l, 0) together. The point obtained by this identification is the tip of the cone and
corresponds to the vertex vi. If Ni = {x ∈ A : xi = 1/2}, then Mi is the union of Li and of
the cone of Ni.
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In the language of simplicial complexes, Ki corresponds to the star of vi and Li to the
link of vi. Ki is homeomorphic to the union of simplices containing vi. Each such simplex
has a face that does not contain vi, and Li is the union of these faces.

3 The (ϵ-)surjection property and computable type for simplicial pairs

We now present the main result of this paper, that identifies which simplicial pairs have
computable type, using the following topological properties.

▶ Definition 3.1. A pair (X, A) has the surjection property if every continuous function f :
X → X satisfying f |A = idA is surjective.

A pair (X, A) in Q has the ϵ-surjection property for some ϵ > 0, if every continuous
function f : X → X satisfying f |A = idA and dX(f, idX) < ϵ is surjective.

▶ Example 3.2.
For every n ∈ N, the (n + 1)-dimensional ball and its bounding n-dimensional sphere form
a pair (Bn+1, Sn) that has the surjection property. It is a consequence of an equivalent
formulation of Brouwer’s fixed-point theorem that Sn is not a retract of Bn+1 (Corollary
2.15 in [12]).
The pair (Sn, ∅) does not have the surjection property (take a constant function f : Sn →
Sn), but has the ϵ-surjection property if ϵ is sufficiently small. It can be proved using
classical results in topology, or as a consequence of Theorem 3.4 below.
If A ⊊ X is a retract of X, then the pair (X, A) does not have the surjection property, as
witnessed by the retraction.

Although the ϵ-surjection property depends on the particular copy of a pair (X, A),
quantifying over ϵ yields a topological invariant, i.e. a property of the pair that is satisfied
either by all copies or by none of them.

▶ Proposition 3.3. Whether there exists ϵ > 0 such that (X, A) has the ϵ-surjection property
does not depend on the copy of (X, A) in Q.

Proof. If (Y, B) is a copy of (X, A), then let ϕ : X → Y be a homeomorphism such
that ϕ(A) = B. By compactness of X, ϕ is uniformly continuous so given ϵ > 0, there
exists δ > 0 such that if d(x, x′) < δ then d(ϕ(x), ϕ(x′)) < ϵ. If (Y, B) has the ϵ-surjection
property, then we show that (X, A) has the δ-surjection property. Let f : X → X be
continuous, satisfying f |A = idA and dX(f, idX) < δ. Define g = ϕ ◦ f ◦ ϕ−1 : Y → Y : one
has g|B = idB and dY (g, idY ) < ϵ by choice of δ so g is surjective, hence f is surjective. ◀

We now state the main result of this paper.

▶ Theorem 3.4 (The main theorem). Let (X, A) be a simplicial pair such that A has empty
interior in X. The following statements are equivalent:
1. (X, A) has computable type,
2. (X, A) has the ϵ-surjection property for some ϵ > 0,
3. All the local cone pairs (Ki, Mi) have the surjection property.

We separate the proof into several independent parts.
▶ Remark 3.5. A single topological space X has many different simplicial decompositions,
i.e. many abstract simplicial complexes whose realizations are homeomorphic to X. For
instance, a triangle can be decomposed into many smaller triangles. At first sight, the third
condition in Theorem 3.4 depends on the choice of the decomposition, because the local
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cone pairs are taken at the vertices of the decomposition. However, the theorem implies that
the choice of the simplicial decomposition is irrelevant, because conditions 1. and 2. do not
depend on the decomposition: if all the cone pairs in a simplicial decomposition have the
surjection property, then it is still true for all other simplicial decompositions of the space.

For a simplicial pair that is itself homeomorphic to a cone pair, we obtain a further
equivalence, which is a consequence of Theorem 3.4.

Let (L, N) be a simplicial pair. The simplicial cone pair induced by (L, N) is the
pair (K, M) defined by K = Cone(L) and N = L ∪ Cone(N), as in Remark 2.10.

▶ Corollary 3.6. Let (K, M) be a simplicial cone pair such that M has empty interior in K.
The following statements are equivalent:
1. (K, M) has computable type,
2. (K, M) has the ϵ-surjection property for some ϵ > 0,
3. (K, M) has the surjection property.

Proof. The surjection property implies the ϵ-surjection property for any pair. Conversely, if
the pair (K, M) has the ϵ-surjection property then each local cone pair has the surjection
property, but (K, M) is itself homeomorphic to one of its local cone pairs. ◀

The rest of this section is devoted to the proof of this result. We will give several
applications in the next section.

3.1 The ϵ-surjection property implies computable type
In this section we give an informal idea of the proof of 2. ⇒ 1. in Theorem 3.4. The idea of
the proof is that if A has empty interior in X and (X, A) has the ϵ-surjection property, then
for an open set U the following conditions are equivalent:

U intersects X,
There exists a continuous non-surjective function g : (X \U)∪A → X such that g|A = idA

and dX(g, idX) < ϵ.
This equivalence is straightforward. If U intersects X, then let g be the inclusion map.
Conversely, if such a g exists then (X \U)∪A must differ from X by the ϵ-surjection property
for (X, A), so U intersects X.

The finite simplicial complex X has good topological properties because it is a compact
Absolute Neighborhood Retract (ANR), which means that any copy of X in Q is a retract of
some neighborhood of that copy. The detailed proof consists in showing how to use these
properties to prove that the existence of such a function g can be detected by an algorithm
if (X, A) is semicomputable. The main idea is that one does not need to search for an
arbitrary continuous function g, but for a computable one. Therefore, one can test whether
an open set U intersects X, which makes X computable.

3.2 The ϵ-surjection property is equivalent to the local surjection
property

In this section we give an informal proof of the equivalence 2. ⇔ 3. in Theorem 3.4

The ϵ-surjection property implies the local surjection property. It is easy to see that if
a local cone pair does not have the surjection property, then for any ϵ > 0, the pair (X, A)
does not have the ϵ-surjection property. It relies on the particular property of a cone that
it contains arbitrarily small copies of itself, obtained by scaling it down: for any λ ∈ (0, 1),
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the set Ki(λ) = {x ∈ X : xi ≥ λ} is a copy of Ki and it has arbitrarily small diameter as λ

approaches 1. Given ϵ > 0, consider λ such that Ki(λ) has diameter less than ϵ. Take a
non-surjective function f from Ki(λ) to itself which is the identity on the corresponding
set Mi(λ), and extend it to a non-surjective function g : X → X by simply defining g(x) = x

for x outside Ki(λ). One has d(g, idX) < ϵ, showing that (X, A) does not have the ϵ-surjection
property.

The local surjection property implies the ϵ-surjection property. Now, assume that for
every ϵ > 0, (X, A) does not have the ϵ-surjection property. We show that some local
cone pair does not have the surjection property. The idea is to start from a sufficiently
small ϵ > 0, to be defined later, and a non-surjective function h : X → X such that h|A = idA

and d(h, idX) < ϵ and consider its restriction h0 to a local cone K which is not contained
in the image of h. This function h0 does not immediately disprove the surjection property
for the local cone pair (K, M) because h0(K) may not be contained in K and h0 may not
be the identity on M . However, h0 almost satisfies these properties: h0(K) is at distance ϵ

from K and h0 is ϵ-close to the identity on M . Again, using the fact that K is a compact
Absolute Neighborhood Retract (ANR) and the properties derived from that, if one takes ϵ

sufficiently small, then one can transform h0 into a continuous function G that sends K to
itself, is the identity on M and is still non-surjective. Therefore, (K, M) does not have the
surjection property.

3.3 Computable type implies the ϵ-surjection property
We prove 1. ⇒ 2. in Theorem 3.4. We show that if a simplicial pair (X, A) does not have
the ϵ-surjection property for any ϵ > 0, then it has a semicomputable copy in Q that is not
computable. In order to build that semicomputable copy, we show that the pair fails in a
computable way to have the ϵ-surjection property, which is expressed by Definition 3.7.

For two non-empty compact sets A, B ⊆ Q, their Hausdorff distance is

dH(A, B) = max(max
a∈A

d(a, B), max
b∈B

d(b, A)).

▶ Definition 3.7. Let ϵ > 0 and (X, A) ⊆ Q fail to have the ϵ-surjection property. Say
that δ > 0 is an ϵ-witness if there exists a continuous function f : X → X such that f |A =
idA, dX(f, idX) < ϵ and dH(f(X), X) > δ.

Say that (X, A) has computable witnesses if there is a computable function ϵ 7→ δ(ϵ)
such that for every ϵ > 0, δ(ϵ) is an ϵ-witness.

For a compact pair (X, A) (not necessarily simplicial), having computable witnesses is
sufficient to build a semicomputable copy which is not computable.

▶ Theorem 3.8. Let (X, A) ⊆ Q be a computable pair having computable witnesses. (X, A)
does not have computable type.

Informal proof. In order to give some intuition, let us show precisely another but related
result: if we only assume that (X, A) does not have the surjection property, then one can
encode the halting problem for one program p in a copy of (X, A), in the following sense.
Given p, one can produce an algorithm that semicomputes a copy (Xp, Ap) of (X, A); any
algorithm computing Xp could be used to decide whether p halts.

Let (X0, A0) ⊆ Q be a semicomputable copy of (X, A) and δ > 0 be such that there exists a
non-surjective continuous function f :X0 → X0 such that f |A0 = idA0 and dH(X0, f(X0))>δ.
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Given a program p, we define a copy (Xp, Ap). If p does not halt, then (Xp, Ap) = (X0, A0).
If p halts, then (Xp, Ap) is another copy (X1, A1) defined by the following algorithm.

Start enumerating the complements of X0 and A0. If p eventually halts then consider a
copy (X1, A1) of (X0, A0) with the following properties:

(X1, A1) is compatible with (i.e. disjoint from) the current enumeration of the complements
of X0 and A0,
dH(X1, X0) > δ.

The existence of f implies the existence of (X1, A1), which can be effectively found. We then
continue enumerating the complements of X1 and A1.

We have just given an algorithm that semicomputes a copy (Xp, Ap) of (X, A), be
it (X0, A0) or (X1, A1). Any algorithm that computes Xp could be used to know whether p

halts: p halts if and only if dH(Xp, X0) > δ, which can be decided from the computable
information about Xp.

Now, assuming that (X, A) does not have the ϵ-surjection property for any ϵ, and using
the assumption that a witness δ(ϵ) can be computed from any ϵ, we apply this strategy
against all the programs in parallel and at infinitely many scales. The idea is simple but the
details are rather technical. ◀

Note that the standard realization of a simplicial pair is computable. We now show that
if it has witnesses, then it always have computable witnesses, which together with Theorem
3.8 concludes the proof of 1. ⇒ 2. in Theorem 3.4.

▶ Proposition 3.9. If a simplicial pair (X, A) does not have the ϵ-surjection property for
any ϵ > 0, then its standard realization has computable witnesses.

Proof. By 3. ⇒ 2. in Theorem 3.4, there exists a local cone pair (Ki, Mi) which does not
have the surjection property, so there exists a non-surjective function f0 : Ki → Ki such
that f0|Mi = idMi . One can assume w.l.o.g. that dX(f0, idX) < 1. Let δ0 > 0 be such
that dH(f0(X), X) > δ0. Given ϵ > 0, the number δ = δ0ϵ can be computed from ϵ and is
an ϵ-witness. Indeed, the function f obtained by applying f0 to a version of Ki scaled by a
factor ϵ and extended as the identity elsewhere satisfies all the conditions. ◀

4 Techniques for the (ϵ-)surjection property

Theorem 3.4 enables one to reduce the computable type property to topological properties,
namely the ϵ-surjection property and the surjection property for local cone pairs. Proving or
disproving these properties may not be straightforward, so we develop a few techniques that
help in many cases.

4.1 Finite union
The first result is a way to prove that a simplicial pair has the ϵ-surjection property by
decomposing it as a finite union of pairs that all have the ϵ-surjection property.

▶ Theorem 4.1 (Finite union). Let (X, A) be a finite simplicial pair and (Xi, Ai)i≤n be
pairs of subcomplexes such that X =

⋃
i≤n Xi and A =

⋃
i≤n Ai. If every pair (Xi, Ai)

has the ϵ-surjection property for some ϵ > 0, then (X, A) has the δ-surjection property for
some δ > 0.
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Informal proof. We are using good topological properties of finite simplicial complexes. For
each i, there exists a neighborhood Ui of Xi and a retraction ri : Ui → Xi with a special
property: if x belongs to the topological interior of Xi, then the only preimage of x by ri

is x.
Let δ be sufficiently small and assume that (X, A) does not have the δ-surjection property.

Let f : X → X be continuous, non-surjective and satisfy f |A = idA and dX(f, idX) < δ.
There must be i ≤ n and x in the interior of Xi that is not in the image of f . We can then
create a function fi : Xi → Xi as follows: fi is the restriction of ri ◦ f to Xi (it is possible
if δ is sufficiently small, so that f(Xi) ⊆ Ui).

The special property of ri implies that x is not in the image of fi. Moreover, fi is
continuous, is the identity on Ai and is ϵ-close to idXi if δ is sufficiently small. ◀

▶ Corollary 4.2. Let (X, A) be a simplicial pair and (Xi, Ai)i≤n be pairs of subcomplexes such
that X =

⋃
i≤n Xi and A =

⋃
i≤n Ai. If every pair (Xi, Ai) has computable type, then (X, A)

has computable type.

For instance, if a finite simplicial complex X is a finite union of subcomplexes that are
homeomorphic to spheres, then X has computable type. More generally, if a finite simplicial
pair (X, A) is a finite union of pairs of subcomplexes (Xi, Ai) that are homeomorphic to
pairs (Sn, ∅) or (Bn+1, Sn), then (X, A) has computable type.

4.2 Cone of a graph
In a 2-dimensional simplicial pair, the local cones are cones of graphs. We obtain a charac-
terization of the surjection property for such cones. In order to state the result, we need
to define the cone pair induced by a pair, already informally discussed in Remark 2.10.
Let (L, N) be a pair. We define the cone pair (K, M) := Cone(L, N) as follows:

K = Cone(L) is the quotient of L × [0, 1] by the equivalence relation (x, 0) ∼ (y, 0),
M = L ∪ Cone(N), where L is embedded in K as L × {1}.

The space L is called the base of the cone K = Cone(L), and the equivalence class L × {0}
is called the tip of K.

▶ Example 4.3. Let us illustrate this notion on the usual example of balls and spheres:
Cone(Sn, ∅) = (Bn+1, Sn) with the tip at the center of Bn+1,
Cone(Bn, Sn−1) = (Bn+1, Sn) with the tip in Sn.

Here is the main result of this section.

▶ Theorem 4.4. Let (L, N) be a pair such that L is a finite graph and N is a subset of its
vertices. The following statements are equivalent:
1. Cone(L, N) has the surjection property,
2. Every edge is in a cycle or a path starting and ending in N .

We follow the usual convention that in a graph, a path and a cycle do not visit a vertex
twice, i.e. they are topologically a line segment and a circle respectively. In particular, a
path connects two different points.

▶ Example 4.5 (Star pair). Fix some n ≥ 1 and let X be the star with n branches and A be
the n endpoints of these branches (see Figure 2), with a special case for n = 1: Cone({v}, ∅) =
(B1, S0). The pair (X, A) is precisely Cone(A, ∅). As A has no edge, it satisfies the conditions
of Theorem 4.4, therefore (X, A) has the surjection property. One can then obtain Iljazović’s
result that every finite graph has computable type [15], because the local cones of a finite
graph are stars, which have the surjection property.
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(a) Star with 5 branches. (b) Star with 1 branch.

Figure 2 The star pairs (X, A) have the surjection property (Example 4.5) (X in yellow, A in
black).

▶ Example 4.6 (n squares). Fix some n ≥ 2 and let X be the union of n squares which all meet
in one common edge and A be the union of all the other edges (see Figure 3). The pair (X, A)
has the surjection property. Indeed, (X, A) = Cone(A, ∅) and A is a graph which is a union
of circles (each circle is the boundary of the union of two squares). Therefore, Cone(A, ∅) has
the surjection property by Theorem 4.4. Finally, (X, A) has computable type by Corollary
3.6.

Figure 3 A union of 5 squares is the cone of a graph; the tip is at the center, the graph is in
black (Example 4.6).

We expect a generalization of Theorem 4.4 to cones of arbitrary simplicial complexes, by
using the notions of n-cycles and relative n-cycles from homology, generalizing cycles and
paths respectively [12].

In the next section we apply Theorem 4.4, giving an example of a cone pair of a graph
which does not have the surjection property.

4.3 The dunce hat

The dunce hat D is the space obtained from a solid triangle by gluing its three sides
together, with the orientation of one side reversed (see Figure 4a). It is a classical example,
introduced by Zeeman [23], of a space that is contractible but not intuitively so. It is a
2-dimensional simplicial complex with no free edge, i.e. no edge that belongs to one triangle
only.

▶ Theorem 4.7. The dunce hat does not have computable type.

Proof. First, it is possible to turn the dunce hat into a simplicial complex, so we can apply
our results. The vertices of the triangle are identified to a point v, and we show that the
local cone pair at that point does not have the surjection property. Indeed, in Figure 4c
one can see that the local cone pair at v is Cone(L, ∅) = (Cone(L), L) where L is the graph
consisting of two circles joined by a line segment.

We apply Theorem 4.4: L is a finite graph containing an edge which is neither in a cycle
nor in a path from N to N (N is empty), therefore Cone(L, N) does not have the surjection
property. Theorem 3.4 then implies that the dunce hat does not have computable type. ◀
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(a) Dunce hat.

v

vv

(b) Local cone pair.
v

(c) Local cone pair.

Figure 4 (a) The dunce hat is obtained by gluing the edges with the indicated orientations; (b)
and (c) a local cone pair (Cone(L), L) = Cone(L, ∅) with tip at v, with L in black.

As far as we know, there is no simple and visual way of building a semicomputable copy
of the dunce hat that is not computable, i.e. the involved construction carried out in the
proof of Theorem 3.4 cannot be avoided. The same remark applies to the pair (Cone(L), L)
depicted in Figure 4c.

If A is the identified edges of the triangle, then it can be proved, by analyzing its local
cone pairs, that the pair (D, A) has computable type. In particular, the local cone pair
at v is Cone(L, N) where N consists of the two endpoints of the middle interval, so L is the
union of two circles and a line segment between two points of N , hence Cone(L, N) has the
surjection property by Theorem 4.4.

▶ Remark 4.8 (Quotient vs pair). It is proved in [8] that for any compact pair (X, A) where A

has empty interior, if the quotient space X/A has computable type then the pair (X, A) has
computable type. It is also proved that the converse implication fails, the counter-example is
given by the circle X and a subset A consisting of a converging sequence together with its
limit. The pair (X, A) has computable type, simply because X itself has computable type.
However, X/A is homeomorphic to the Hawaiian earring which does not have computable
type. This quotient is not a finite simplicial complex.

We give another counter-example of a quotient space which is a finite simplicial complex.
Let L = C1 ∨ I ∨ C2, X be the cylinder of L and A the two bases of the cylinder. Inspecting
the local cones one can show that (X, A) has computable type but X/A does not.

4.4 Bing’s house, or the house with two rooms

All the known examples of sets having computable type are non-contractible (note that we
are not considering pairs, but single sets), and one might conjecture that no contractible set
has computable type. We give a counter-example, which is a famous space that was defined
as a counter-example for other properties. It was invented by Bing [1] and is now called
Bing’s house, or the house with two rooms. The set is depicted in Figure 5, together with
a half-cut to help visualizing it. It is an example of a space which is contractible but not
intuitively so. It can be endowed with a simplicial complex structure (by triangulating each
flat surface). It is then a 2-dimensional simplicial complex with no free edge, which means
that every edge belongs to at least two triangles.

Using our results we easily show that this set has computable type as a single set,
i.e. without adjoining a boundary to it.

▶ Theorem 4.9. Bing’s house has computable type.

It is worth noticing that thanks to our results, it can be proved by looking at pictures
only, although the argument can be formalized.
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(a) Bing’s house. (b) Half-cut.

Figure 5 Bing’s house with two rooms and a half-cut of it (the full house is obtained by adding
the symmetric reflection of the half-cut through the front vertical plane). It consists of two rooms,
each of which can be accessed from outside through a tunnel crossing the other room. Each tunnel
is linked by an internal wall to a side wall.

Proof. Using Theorem 3.4, it is sufficient to inspect the possible local cones. One easily sees
that there are three types of possible cones, depicted in Figure 6. The basis of each cone
is a graph which is a union of 1, 2 or 3 cycles, so by Theorem 4.4 each cone pair has the
surjection property, therefore Bing’s house has computable type by Theorem 3.4.

a

b

c
c a b c

Figure 6 The local cones in Bing’s house: their bases (in black) are graphs that are unions of
cycles. Each point of Bing’s house is the tip of one of these three cones: two points are tips of the
third cone, all the other points on the dashed lines are tips of the second cone, all the other points
are tips of the first cone. ◀

5 Boundary

Given a simplicial complex X, a natural problem is to understand whether there is a minimal
notion of boundary ∂X such that the pair (X, ∂X) has computable type. We make a few
observations about three possible candidates. Let

∂1X be the union of simplices that are contained in exactly one simplex of the next
dimension, i.e. ∂1X is the union of the free simplices of X,
∂+X be the union of simplices that are contained in at least one simplex of the next
dimension,
∂oddX be the union of simplices that are contained in an odd number of simplices of the
next dimension.

In the proofs of the next results, we say that a simplex M in X is maximal if it is not
contained in a higher-dimensional simplex of X.

▶ Proposition 5.1. Every simplicial pair (X, ∂+X) has computable type.
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Proof. Let (Mi)i≤n be an enumeration of the maximal simplices of X. Mi is a ball, let ∂Mi

be its bounding sphere, which is a subcomplex of Mi. One has X =
⋃

i≤n Mi and ∂+X =⋃
i≤n ∂Mi. Each pair (Mi, ∂Mi) has the surjection property (Example 3.2), so (X, ∂+X) has

the ϵ-surjection property for some ϵ by Theorem 4.1. As a result, (X, ∂+X) has computable
type by Theorem 3.4. ◀

▶ Proposition 5.2. Let X be a finite simplicial complex and A a subcomplex. If (X, A) has
computable type, then A contains ∂1X.

Proof. Assume that some simplex ∆ belongs to ∂1X but not to A. We show that for
every ϵ > 0, (X, A) does not have the ϵ-surjection property, implying that (X, A) does
not have computable type by Theorem 3.4. Let ϵ > 0. Let ∆′ be the unique maximal
simplex having ∆ as a face (∆′ has one more vertex than ∆). There is a non-surjective
function f : ∆′ → ∆′ which is ϵ-close to the identity and is the identity on the other faces
of ∆′: f slightly pushes points of ∆′ away from ∆. We extend f as the identity on the rest
of X, which gives a continuous function because ∆ is free. As ∆ is not in A, f is the identity
on A. ◀

The following observations can be made:
Although (X, ∂1X) has computable type when X is a 1-dimensional complex (i.e., a
graph), it is no more true for 2-dimensional complexes. For the dunce hat D, one
has ∂1D = ∅ but we saw in Theorem 4.7 that (D, ∅) does not have computable type.
While (X, ∂+X) always has computable type by Proposition 5.1, ∂+X is far from optimal.
For instance, it is always non-empty (unless X is a single point), but for any sphere Sn,
the pair (Sn, ∅) already has computable type.
In a subsequent paper we prove that (X, ∂oddX) always has computable type, using
homology. Observe that ∂oddX is in general not optimal, as the example of graphs
shows: (X, ∂1X) has computable type and ∂1X is usually smaller than ∂oddX, which
contains all the vertices of odd degrees.

6 Open questions and generalization

We leave two open questions.

▶ Question 1. Is there a canonical notion of boundary ∂X for a simplicial complex X, such
that (X, ∂X) always has computable type, and ∂X is minimal in some sense?

▶ Question 2. For simplicial pairs (L, N), is it possible to characterize the surjection property
for Cone(L, N) in terms of the homology of (L, N)?

We finally mention that the proof of the main result actually applies to more general
spaces. For instance one can prove that if (M, ∂M) is a compact manifold with boundary,
then Cone(M, ∂M) has computable type because it satisfies the surjection property, although
it is not always a simplicial complex. These results will appear in a forthcoming article.
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Abstract
Decidability of the problems of unboundedness and simultaneous unboundedness (aka. the diagonal
problem) for higher-order recursion schemes was established by Clemente, Parys, Salvati, and
Walukiewicz (2016). Then a procedure of optimal complexity was presented by Parys (2017); this
procedure used a complicated type system, involving multiple flags and markers. We present here a
simpler and much more intuitive type system serving the same purpose. We prove that this type
system allows to solve the unboundedness problem for a widely considered subclass of recursion
schemes, called safe schemes. For unsafe recursion schemes we only have soundness of the type
system: if one can establish a type derivation claiming that a recursion scheme is unbounded then it
is indeed unbounded. Completeness of the type system for unsafe recursion schemes is left as an
open question. Going further, we discuss an extension of the type system that allows to handle the
simultaneous unboundedness problem.

We also design and implement an algorithm that fully automatically checks unboundedness of a
given recursion scheme, completing in a short time for a wide variety of inputs.
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1 Introduction

Higher-order recursion schemes (recursion schemes for short) proved to be useful in model-
checking programs using higher-order functions, see e.g. Kobayashi [13] (recursion schemes
are algorithmically manageable abstractions of such programs, faithfully representing the
control flow). Higher-order functions are widely used in functional programming languages,
like Haskell, OCaml, and Lisp; additionally, higher-order features are now present in most
mainstream languages like Java, JavaScript, Python, or C++.
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The formalism of recursion schemes is equivalent via direct translations to simply-typed
λY -calculus [27] and to higher-order OI grammars [9, 16]. Collapsible pushdown systems [11]
and ordered tree-pushdown systems [6] are other equivalent formalisms. Recursion schemes
cover some other models such as indexed grammars [1] and ordered multi-pushdown auto-
mata [3].

The usefulness of recursion schemes follows from the fact that trees generated by them
have decidable MSO theory [20]. When the property to be verified is given by a parity
automaton (a formalism equivalent to the MSO logic), and when the recursion scheme is
of order m, the model-checking problem is m-EXPTIME-complete; already for reachability
properties the problem is (m − 1)-EXPTIME-complete [14]. Although this high complexity
may be threatening, there exist algorithms that behave well in practice. They make use of
appropriate systems of intersection types. Namely, a Japanese group created model-checkers
TRecS [13] and HorSat [4], and prototype verification tools, MoCHi [15] and EHMTT
verifier [28], on top of them. A group hosted in Oxford created model-checkers HORSC [19]
and TravMC2 [18]. Necessarily these model-checkers are very slow on some worst-case
examples, but on schemes generated from some real life higher-order programs they usually
work in a reasonable time (while in the worst-case a huge type derivation may be required, it
is often the case that there exists a small type derivation that can be found quickly).

In recent years, interest has arisen in model checking recursion schemes against properties
that are not regular (i.e., not expressible in the MSO logic). This primarily concerns the
unboundedness problem for word languages recognized by recursion schemes [22], and its
generalization – the simultaneous unboundedness problem (aka. the diagonal problem) [10,
7, 26]. Decidability of the latter problem implied computability of downward closures
(with respect to the subsequence relation) for these languages [29], and decidability of their
separability by piecewise testable languages [8]. It was also possible to establish decidability of
the WMSO+U logic (an extension of MSO with a quantifier U, talking about unboundedness)
over trees generated by recursion schemes [25].

Moreover, there is also a link to asynchronous shared-memory programs, being a common
way to manage concurrent requests in a system. In asynchronous programming, each
asynchronous function is a sequential program. When run, it can change the global shared
state of the program and run other asynchronous functions. A scheduler repeatedly and
non-deterministically executes pending asynchronous functions. Majumdar, Thinniyam
and Zetzsche [17] have proven that when asynchronous functions are modeled as recursion
schemes, the question whether there is an a priori upper bound on the number of pending
executions of asynchronous functions can be reduced to the problem we consider here, namely
the unboundedness problem for a single recursion scheme.

In this paper we revisit the (simultaneous) unboundedness problem for word languages
recognized by recursion schemes. This problem asks, for a set of letters Σa and a language of
words L (recognized by a recursion scheme), whether for every n ∈ N there is a word in L

where every letter from Σa occurs at least n times. Equivalently, one can consider a recursion
scheme generating an infinite tree t and ask whether for every n ∈ N there is a finite branch in
t where every letter from Σa occurs at least n times. The problem is already interesting when
|Σa| = 1; then we talk about the unboundedness problem. Decidability of the simultaneous
unboundedness problem was first established by Hague, Kochems, and Ong [10], for a well-
recognized subclass of recursion schemes, called safe schemes [9, 12, 2, 5, 27]. The solution was
then generalized to all recursion schemes by Clemente, Parys, Salvati, and Walukiewicz [7].
These two algorithms are useless in practice, not only because their complexity is much higher
than the optimal one, but mainly because they perform some transformations of recursion
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schemes that are extremely costly in every case, not only in the worst case. The complexity
of the problem for recursion schemes (namely, (m − 1)-EXPTIME-completeness for schemes of
order m) was settled by Parys [26]; moreover, his solution uses intersection types, and thus
it is potentially suitable for implementation (by analogy to the regular model-checking case,
where algorithms using type systems led to reasonable implementations). In the single-letter
case (|Σa| = 1) the problem is still (m−1)-EXPTIME-complete; a slightly simpler type system
for this case was presented by Parys [22]. Unfortunately, the type systems of Parys [22, 26]
have two drawbacks. First, they are quite complicated: type judgments can be labeled by
different kinds of flags and markers, which influence type derivations in a convoluted way.
Second (and related to first), it seems that the number of choices for these flags and markers
is quite large, and thus finding type derivations even for quite simple recursions schemes may
be very costly. Having these drawbacks in mind, we leave experimental evaluation of these
algorithms for future work.

In this paper we rather consider a much simpler type system, proposed by Parys in his
survey [24], based on an earlier work concerning lambda-terms representing functions on
numerals [21]. This type system is much easier than the previous one: every type is labeled
only by a single “productivity flag” having an intuitive meaning. Namely, the flag says
whether the lambda-term under consideration is responsible for creating occurrences of the
letter from Σa. It was only conjectured that this type system may be used to solve the
unboundedness problem.

Our contributions are as follows:
We prove that the type system allows to solve the unboundedness problem for all safe
recursion schemes.
We show that the algorithm using the type system solves the unboundedness problem for
safe recursion schemes of order m in (m − 1)-EXPTIME (being optimal).
We prove soundness of the type system for all (i.e., also unsafe) recursion schemes, saying
that if one has found a type derivation claiming that a recursion schemes is unbounded
then it is indeed unbounded. Completeness of the type system for unsafe recursion
schemes is left as an open problem.
We implement an algorithm solving the unboundedness problem by means of the proposed
type system, and we present results of our experiments. The outcome of the algorithm is
always correct if the recursion scheme given on input is safe. When the recursion scheme
is not safe, proofs of its unboundedness found by the algorithm are still guaranteed to be
correct. However, our theorems do not guarantee that the algorithm will find a proof of
unboundedness in the unsafe case, so if the algorithm fails to find such a proof, it does
not mean that the unsafe recursive scheme is necessarily bounded.
We then generalize the type system to the simultaneous unboundedness problem (i.e.,
the multiletter case), obtaining the same properties: algorithm in (m − 1)-EXPTIME for
safe recursion schemes of order m, and soundness for all recursion schemes.
We implement an optimized version of our algorithm, InfSat, which is fast for a wide
variety of inputs. We build upon the implementation of HorSat [4]. We modify HorSat
benchmarks to conform to InfSat input format, and present their results to show that
InfSat is able to handle inputs described by Broadbent and Kobayashi [4] as “practical”
as well as additional benchmarks crafted to measure the speed of InfSat.

2 Preliminaries

The set of sorts is constructed from a unique basic sort o using a binary operation →. Thus
o is a sort and if α, β are sorts, so is (α → β). The order of a sort is defined by: ord(o) = 0,
and ord(α → β) = max(1 + ord(α), ord(β)).
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A signature Σ is a set of typed constants, that is, symbols with associated sorts. We
assume that sorts of all constants in the signature are of order at most 1, that is, of the form
o → · · · → o →︸ ︷︷ ︸

r

o; for a constant of such a sort, r is called its arity. We fix a distinguished

constant ω ∈ Σ of arity 0 (it will be used in places where a computation diverges).
The set of infinitary simply-typed lambda-terms is defined coinductively as follows. A

constant a ∈ Σ of sort α is a lambda-term of sort α. For each sort α there is a countable set
of variables xα, yα, . . . that are also lambda-terms of sort α. If M is a lambda-term of sort
β and xα a variable of sort α then λxα.M is a lambda-term of sort α → β. Finally, if M is a
lambda-term of sort α → β and N is a lambda-term of sort α then M N is a lambda-term
of sort β. As usual, we identify lambda-terms up to alpha-conversion. We often omit the
sort annotation of variables, but formally every variable has a sort. We use the standard
notions of free variables, substitution, and beta-reduction (of course during substitution and
beta-reduction we rename bound variables to avoid name conflicts). A lambda-term is called
closed when it does not have free variables. For a lambda-term M of sort α, the order of M ,
denoted ord(M), is defined as ord(α).

The complexity of a lambda-term M is the maximum of orders of those subterms of
M that are not of the form a M1 . . . Mk, where a is a constant and k ≥ 0 (or 0 if there
are no such subterms). Note that for most lambda-terms M the complexity is just the
maximum of orders of all subterms of M ; the difference is only at complexity 0 and 1: we
want lambda-terms built entirely from constants to have complexity 0, not 1.

A closed lambda-term of sort o and complexity 0 is called a tree. Equivalently, a lambda-
term is a tree if it is of the form a M1 . . . Mr, where M1, . . . , Mr are trees, and r is the arity
of a. While talking about a branch of a tree, we mean a finite branch that ends in a leaf
not being ω-labeled. Formally, a (finite) branch of a tree T = a T1 . . . Tr is a sequence of
constants a1, a2, . . . , ak such that a1 = a ̸= ω, and either a2, . . . , ak (with k ≥ 2) is a finite
branch of some Ti, or r = 0 and k = 1.

We consider Böhm trees only for closed lambda-terms of sort o. For such a lambda-term
M , its Böhm tree is constructed by coinduction, as follows: if there is a sequence of beta-
reductions from M to a lambda-term of the form a M1 . . . Mr, and T1, . . . , Tr are Böhm
trees of M1, . . . , Mr, respectively, then a T1 . . . Tr is a Böhm tree of M ; if there is no such a
sequence of beta-reductions from M , then the constant ω is a Böhm tree of M . It is folklore
that every closed lambda-term of sort o has exactly one Böhm tree (the order in which
beta-reductions are performed does not matter); this tree is denoted by BT (M). Notice
that a Böhm tree is indeed a tree, and that if M is finite then its Böhm tree equals the
beta-normal form of M .

A recursion scheme G is a finite representation of a closed lambda-term Λ(G) that is of
sort o and regular, that is, has finitely many different subterms. We postpone the definition of
a recursion scheme until Section 6. As the order of G we understand the complexity of Λ(G).
We do not claim that every regular lambda-term of sort o can be directly represented by a
recursion scheme, however we remark that every regular lambda-term of sort o is equivalent
(in the sense of having the same Böhm tree) to some lambda-term represented by a recursion
scheme.

Simultaneous unboundedness problem. Fix a set of important constants Σa. We say that
a closed lambda-term M of sort o is unbounded (with respect to Σa) if for every n ∈ N there
exists a finite branch of BT (M) with at least n occurrences of every constant from Σa. The
simultaneous unboundedness problem (SUP) is to decide, given a recursion scheme G, whether
Λ(G) is unbounded.

In the special case of |Σa| = 1 we talk about the unboundedness problem.
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3 Type system

In this section we present a type system that allows us to solve the (single-letter) unboun-
dedness problem. The type system was first proposed in Parys’ survey [24], without any
correctness proofs.

In the remaining part of the paper, except for Section 7, we assume that the signature
Σ consists of four constants: a of arity 1, b of arity 2, and c and ω of arity 0, where only
a is important, that is Σa = {a}. This is without loss of generality, since we can replace a
constant of arbitrary arity by a combination of these four constants, without changing the
answer to the unboundedness problem.

Before defining the type system (and safety), let us state a theorem describing its desired
properties:

▶ Theorem 3.1. The following two statements are equivalent for every safe closed lambda-
term M of sort o:
(1) M is unbounded (i.e., for every n ∈ N there exists a finite branch of BT (M) with at

least n occurrences of the constant a);
(2) for every n ∈ N there exists v ≥ n such that one can derive ∅ ⊢ M : (v, r).

In this theorem, type judgments contain a natural number v, called a productivity value.
The goal of this value is to approximately count the number of occurrences of the important
constant a on a selected branch of BT (M).

Types in the type system differ from sorts in that on the left side of →, instead of a
single type, we have a set of so-called type pairs (f, τ), where τ is a type, and f ∈ {pr, np} is
a productivity flag (where pr stands for productive, and np for nonproductive). The unique
atomic type is denoted r. More precisely, for each sort α we define the set T α of types of
sort α as follows:

T o = {r}, T α→β = P({pr, np} × T α) × T β ,

where P denotes the powerset. A type (T, τ ) ∈ T α→β is denoted as
∧

T →τ , or
∧

i∈I(fi, τi)→τ

when T = {(fi, τi) | i ∈ I}. In this notation we implicitly assume that all the pairs (fi, τi)
are different. The empty intersection is denoted by ⊤. Moreover, to our terms we will not
only assign a type τ , but also a productivity flag f ∈ {pr, np} (which together form a pair
(f, τ)). Let us emphasize that for every sort α the set T α is finite.

Intuitively, a lambda-term has type
∧

T → τ when it can return τ , while taking an
argument for which we can derive all type pairs from T ; simultaneously, while having such
a type, the lambda-term is obligated to use its arguments in all ways described by type
pairs from T . For example, the lambda-term λx.c does not use its argument, and hence it is
necessarily of type ⊤ → r (i.e.,

∧
T → τ with T = ∅).

To determine the productivity flag f assigned to a lambda-term M , we should imagine
that M is a subterm of a closed term K of sort o, and we should select some finite branch
in BT (K) (with the intuition that different choices of the branch correspond to different
type derivations). Then, we assign to M the flag pr (productive) when the subterm M is
responsible for increasing the number of occurrences of the constant a on the selected branch.
To be more precise, a lambda-term is responsible for producing occurrences of a constant a
in two cases. First, when it explicitly contains the constant a – assuming that this a will be
placed on the selected branch. Second, when it takes a productive argument (i.e., an argument
responsible for producing a) and uses it at least twice. The first possibility occurs for example
in the lambda-term M1 = λx.a x; the constant a is explicitly produced. In order to see
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the second possibility, consider the lambda-term M2 = λy.λx.y (y x), and suppose that the
argument received for y is the aforementioned productive lambda-term λx.a x, which outputs
the constant a. Then, the lambda-term M2 is itself responsible for increasing the number of
occurrences of a in the resulting tree, compared to the number of occurrences produced by
the argument. Notice that the same lambda-term M2 has also another type: the argument
received for y may be nonproductive (say λx.x), and then M2 becomes nonproductive as
well. Next, let us compare M2 with the lambda-term M ′

2 = λy.λx.y x, when used with the
argument λx.a x. Although the argument is used, and one a is output, the lambda-term M ′

2
has nothing to do with increasing the number of occurrences of a; it is nonproductive.

A type judgment is of the form Γ ⊢ M : (v, τ), where we require that the type τ and
the lambda-term M are of the same sort. The type environment Γ is a set of bindings of
variables of the form xα : (g, τ), where g ∈ {pr, np} and τ ∈ T α. In Γ we may have multiple
bindings for the same variable. By dom(Γ) we denote the set of variables x which are bound
by Γ, and by Γ↾pr we denote the set of only those bindings x : (g, τ) from Γ in which g = pr.
We are not only interested in whether some type can be derived, but we also want to assign
a value to every derivation; to this end, a type judgment contains a number v ∈ N, which is
called a productivity value. Having v = 0 corresponds to the np flag, while positive values
correspond to the pr flag. Thus, while a productivity flag says only whether any occurrence
of the important constant a is produced, the productivity value approximates (is a lower
bound on) the number of produced occurrences of this constant. Note that in type judgments
we store the productivity value, coming from the infinite set N, while in types we abstract
this value to the productivity flag, which allows us to have finitely many types.

We now present rules of the type system, starting from rules for constants:

∅ ⊢ a : (1, (f, r) → r) ∅ ⊢ c : (0, r)

∅ ⊢ b : (0, (f, r) → ⊤ → r) ∅ ⊢ b : (0, ⊤ → (f, r) → r)

Notice that in the rule for b we have a type (f, r) (with an arbitrary flag f) only for one of
the two arguments; this corresponds to the fact that we are interested in a single branch of
the Böhm tree, so we want to descend only to a single child. Moreover, we do not have a
rule for the constant ω, because by definition a branch cannot contain occurrences of this
constant.

While typing a variable x, we take its type from the type environment, and we use 0
as the productivity value. The lambda-term x itself is not responsible for producing any
constants, no matter whether the lambda-term substituted for x will produce any constants
or not. A lambda-term becomes productive when a productive variable x is used twice; we
account for that in the application typing rule (@).

x : (f, τ) ⊢ x : (0, τ)

When we pass through a lambda-binder, we simply move some type pairs between the
argument and the type environment:

Γ ∪ {x : (fi, τi) | i ∈ I} ⊢ K : (v, τ) x ̸∈ dom(Γ)
Γ ⊢ λx.K : (v,

∧
i∈I(fi, τi) → τ)

(λ)

Before giving the last rule, we need one more definition. Given a family of type environ-
ments (Γi)i∈J , a duplication factor, denoted dupl((Γi)i∈J ), equals

∑
i∈J

∣∣Γi↾pr
∣∣ −

∣∣⋃
i∈J Γi↾pr

∣∣.
It counts the number of repetitions (“duplications”) of productive type bindings in the type
environments: a productive type binding belonging to one type environment does not add
anything, a productive type binding belonging to two type environments adds 1, and so on.
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0 ̸∈ I ∀i ∈ I. (fi = pr) ⇔ (vi > 0 ∨ Γi↾pr ̸= ∅)
Γ0 ⊢ K : (v0,

∧
i∈I(fi, τi) → τ) Γi ⊢ L : (vi, τi) for each i ∈ I⋃

i∈{0}∪I Γi ⊢ K L : (dupl((Γi)i∈{0}∪I) +
∑

i∈{0}∪I vi, τ)
(@)

Here, by using the notation
∧

i∈I(fi, τi), we assume that the pairs (fi, τi) are all different.
In the rule above, the condition (fi = pr) ⇔ (vi > 0 ∨ Γi↾pr ̸= ∅) means that when K

requires a “productive” argument, then either we can apply an argument L that is itself
productive, or we can apply a nonproductive L that uses a productive variable (the argument
obtained after substituting something for this variable will become productive).

Using the dupl function we realize the intuition that when a variable responsible for
creating occurrences of a (i.e., productive) is used at least twice, then the lambda-term is
itself responsible for increasing the number of occurrences of a; thus we add dupl to the
productivity value.

Because we are interested in counting duplications of type bindings, it was necessary
to require that every type binding from the type environment is actually used somewhere
(in particular Γ ⊢ M : (f, τ) does not necessarily imply Γ, x : (g, σ) ⊢ M : (f, τ)). On the
other hand, a type environment is a set: a repeated usage of a type binding is counted in the
productivity value, but is not reflected in the type environment.

Let us underline that although we consider infinite lambda-terms, all type derivations are
required to be finite. This may look suspicious, but note that when a lambda-term has type
⊤ → τ (like, e.g., the constant b), then we need no derivation for its argument.

▶ Example 3.2. Let us give an example of a derivation for a lambda-term λy.λz.y (y (a z))
of sort (o → o) → o → o. In this particular derivation, we will assume that y and z are both
productive.

⊢ a : (1, (pr, r) → r) z : (pr, r) ⊢ z : (0, r)
z : (pr, r) ⊢ a z : (1, r)

(@)

In the innermost application, we have an important constant a and a productive variable z.
The important constant has value 1. The value of z is 0 because, even though it is productive,
any important constants it produces will be just moved from the argument substituted for z.
No important constant will be lost or produced during this process. There are no duplicates
of variables in the application a z, so the value of the application is equal to sum of values,
that is, 1.

y : (pr, (pr, r) → r) ⊢ y : (0, (pr, r) → r) z : (pr, r) ⊢ a z : (1, r)
z : (pr, r), y : (pr, (pr, r) → r) ⊢ y (a z) : (1, r)

(@)

We apply y to a z. Variable y is productive and takes a productive argument, which means
that it incorporates its argument into the tree it produces and somehow increases the number
of important constants in the process. However, this increase is computed in the lambda-term
that is substituted for y, not here, hence it has value 0.

y : (pr, (pr, r) → r) ⊢ y : (0, (pr, r) → r) z : (pr, r), y : (pr, (pr, r) → r) ⊢ y (a z) : (1, r)
z : (pr, r), y : (pr, (pr, r) → r) ⊢ y (y (a z)) : (2, r)

(@)
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Both sides have y in the environment here, so the duplication factor in y (y (a z)) is 1. We
add it to the sum of values from both sides of the application, obtaining 2.

z : (pr, r), y : (pr, (pr, r) → r) ⊢ y (y (a z)) : (2, r)
y : (pr, (pr, r) → r) ⊢ λz.y (y (a z)) : (2, (pr, r) → r)

(λ)

⊢ λy.λz.y (y (a z)) : (2, (pr, (pr, r) → r) → (pr, r) → r)
(λ)

The lambda-binders move z and y from the environment into the type without changing
the value. The final value for this closed lambda-term is 2, as it always adds one important
constant to the Böhm tree and, when something that increases the number of important
constants is substituted for y, it applies that twice, causing at least one extra important
constant to be added compared to what just one instance of y would do.

Note that it is possible to derive other type judgments for the lambda-term y (y (a z)). For
example, the value would be equal to one if y was not productive, even if z was productive:

y : (np, (pr, r) → r), z : (pr, r) ⊢ y (y (a z)) : (1, r).

The rationale is that while y takes productive arguments, it uses them exactly once and does
not add an important constant to the Böhm tree either, so applying it any number of times
will not change the number of important constants.

4 Soundness

In this section we prove the soundness of the type system, as described by following lemma,
from which the (2) ⇒ (1) implication of Theorem 3.1 follows immediately:

▶ Lemma 4.1. If we can derive ∅ ⊢ M : (v, r), where M is a closed lambda-term of sort o,
then BT (M) has a finite branch containing at least v occurrences of a.

We prove Lemma 4.1 as follows. First, as in work of Parys [26, 24] we observe that instead
of working directly with infinite lambda-terms M , we can “cut off” parts of M not involved
in the finite derivation of ∅ ⊢ M : (v, r), (i.e., subterms used as arguments for which no type
pair is required). Formally, by cutting off we mean replacing by lambda-terms of the form
λx1. · · · .λxk.ω, where the variables x1, . . . , xk are chosen so that the sort of the lambda-term
is appropriate. In consequence, it is enough to prove Lemma 4.1 for finite lambda-terms.

Second, we repeatedly use Lemma 4.2 below, reducing M to its beta-normal form N ,
and never decreasing the productivity value. Finally, we observe that the beta-normal
form N is simply a tree; a derivation of ∅ ⊢ N : (v′, r), using only the rules for constants
and application, describes some branch of this tree containing exactly v′ occurrences of the
important constant a. It remains to justify the following lemma, which describes a single
beta-reduction:

▶ Lemma 4.2. If we can derive ∅ ⊢ M : (v, r), where M is a finite closed lambda-term
of sort o, and M is not in the beta-normal form, then we can derive ∅ ⊢ N : (v′, r) for a
lambda-term N such that M →β N , and for some v′ satisfying v ≤ v′.

While proving this lemma, we consider the leftmost outermost redex, (λx.K) L. Thanks
to this choice, L is necessarily a closed subterm. This simplifies the situation: it is enough
to consider empty type environments (we remark, however, that Lemma 4.2 can be shown
in a similar way for every reduction, not only for the leftmost outermost reduction). We
want to replace every subderivation D for a type judgment ∅ ⊢ (λx.K) L : (w, τ) concerning
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this redex with a derivation D′ for Γ ⊢ K[L/x] : (w′, τ). We obtain D′ by appropriately
reorganizing subderivations of D: we take the subderivation of D concerning K, we replace
every leaf deriving a type σ for x by the subderivation of D deriving this type σ for L, and
we update type environments and productivity values appropriately.

Notice that every subderivation concerning L is moved to at least one leaf concerning x

(nothing can disappear). The only reason why the value of the derivation can decrease is
that potentially a productive type binding x : (pr, σ) was duplicated (say, n times) in the
derivation concerning K. In D′ this binding is no longer present (in K[L/x] there is no x)
so the value decreases by n, but in this situation the subderivation deriving σ for L becomes
inserted in n + 1 leaves. This subderivation is productive, so by creating n additional copies
of this subderivation we increase the value at least by n, compensating the loss caused by
elimination of x. This implies that w ≤ w′, and consequently v ≤ v′. Check Appendix A of
the full version for more details.

5 Completeness for safe lambda-terms

In this section we prove completeness for a subclass of lambda-terms called safe lambda-terms.
The question whether completeness holds for general lambda-terms is left open.

A lambda-term M is superficially safe when for every free variable x of M it holds that
ord(M) ≤ ord(x). A lambda-term M is safe if it is superficially safe, and if for its every
subterm of the form K L1 . . . Lk, where K is not an application and k ≥ 1, all subterms
K, L1, . . . , Lk are superficially safe. This definition of safety coincides with the definitions
from Salvati and Walukiewicz [27], and from Blum and Ong [2].

Completeness for safe lambda-terms is given by the following lemma.

▶ Lemma 5.1. For every m ∈ N there exists a function Hm : N → N such that if M is a
closed safe lambda-term of sort o and complexity at most m, and in BT (M) there is a finite
branch having at least n occurrences of a, then we can derive ∅ ⊢ M : (v, r) for some v such
that n ≤ Hm(v).

While proving this lemma, it is convenient to split the productivity value into two parts.
Given some fixed ℓ ∈ N, instead of type judgments of the form Γ ⊢ N : (v, τ) we consider
extended type judgments of the form Γ ⊢ N : (u ⊕ℓ w, τ), where u + w = v. On u we
accumulate only duplication factors concerning variables of order at least ℓ, and on w the
remaining part of the value (i.e., duplication factors concerning variables of order smaller
than ℓ, plus the number of rules for the constant a). Having this definition, we can state a
counterpart of Lemma 4.2:

▶ Lemma 5.2. Suppose that we can derive Γ ⊢ K[L/x] : (u ⊕ℓ w, τ), where L is closed, has
order ℓ, and does not use any variables of order at least ℓ. Then we can derive Γ ⊢ (λx.K) L :
(u′ ⊕ℓ w′, τ) for some u′, w′ such that 2u · w ≤ 2u′ · w′ and u + w = 0 ⇒ u′ + w′ = 0.

Similarly to Lemma 4.2, the derivation concerning (λx.K) L in the above lemma is
obtained by appropriately reorganizing subderivations of the derivation concerning K[L/x].
In the type derivation concerning K[L/x], there are some (zero or more) subderivations
concerning L. A difficulty is caused by the fact that the same type pair (f, σ) may be derived
for multiple copies of L in K[L/x], using different subderivations. For every such (f, σ)
derived for L we should choose just one subderivation, so that we can use it for the only copy
of L in (λx.K) L. We choose the subderivation that provides the largest second component
of the value; the other subderivations are removed. The value of the new derivation decreases,
because some subderivations are removed, and increases, because we have a new variable x,
that may cause some duplications.
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It remains to see that the value u′ ⊕ℓ w′ of the new derivation satisfies the inequality
2u · w ≤ 2u′ · w′. Consider some type pair (f, σ) derived for L. If f = np, the value of the
removed subderivations is 0, and the duplications of x : (f, σ) in the type environment are not
counted, so such a type pair does not cause any change of the value. Suppose that f = pr, and
that we have removed n subderivations proving the type pair (f, σ) for L; this may decrease
the second component of the value at most n + 1 times (the n removed subderivations have
values not greater than the one that remains). Simultaneously, in K we use n + 1 times the
variable x with this type pair (f, σ), which increases the value (the total duplication factor)
by n. The key point is that L does not use any variables of order at least ℓ, and thus the
first component (concerning variables of order at least ℓ) of the value of subderivations for
L is 0. Thus, we decrease the second component of the value at most n + 1 times, and we
increase the first component of the value by at least n. Since 2n ≥ n + 1, we obtain the
required inequality between values.

It is also important that L is closed so that after removing some subderivations concerning
L, the type environment of the whole derivation remains unchanged. This finishes the proof
of Lemma 5.2 (a more formal proof, containing all details, can be found in Appendix B.1 of
the full version).

We now come back to the proof of Lemma 5.1. First, as in the previous section, we can
assume that M is finite by “cutting off” (i.e., replacing with λx1. · · · .λxk.ω) its parts not
needed for producing the selected finite branch of BT (M).

Second, it is convenient to assume here that M is homogeneous. A sort α1 →· · ·→ αk → o
is homogeneous if ord(α1) ≥ · · · ≥ ord(αk) and all α1, . . . , αk are homogeneous. A lambda-
term is homogeneous if its every subterm has a homogeneous sort. It is known that every
finite closed safe lambda-term M of sort o can be converted into a lambda-term M ′ that is
additionally homogeneous [23], but has the same beta-normal form. Analyzing how M is
transformed into M ′ (in [23]), it is tedious but straightforward to check that we can derive
∅ ⊢ M : (v, r) if and only if we can derive ∅ ⊢ M ′ : (v, r); this is done in Appendix B.2 of the
full version.

It is thus enough to prove Lemma 5.1 assuming that M is finite and homogeneous. To
this end, we consider a particular sequence of reductions leading from M to its beta-normal
form BT (M). Namely, whenever a lambda-term N reached so far (i.e., after some number
of reductions) from M is of complexity ℓ + 1, then we reduce in N a redex (λx.K) L such
that ord(λx.K) = ℓ + 1, and no variables of order at least ℓ occur in L, both as free variables
and as bound variables; we call such a redex ℓ-good. Such a redex always exists: among
redexes with ord(λx.K) = ℓ + 1 it is enough to choose the rightmost one. The complexity of
a lambda-term cannot increase during a beta-reduction, thus in the sequence of reductions
we can find lambda-terms Mm, Mm−1, . . . , M0, where Mm = M , and M0 = BT (M), and the
complexity of every Mℓ+1 is at most ℓ + 1, and Mℓ can be reached from Mℓ+1 by a sequence
of ℓ-good reductions.

Homogeneity is preserved during beta-reductions. Moreover, ℓ-good beta-reductions
preserve safety (while this is not true for arbitrary beta-reductions). Indeed, homogeneity for
an ℓ-good redex (λx.K) L implies that ord(L) = ℓ (the first argument is of the highest order,
i.e., of order ℓ), thus safety implies that all free variables of L are of order at least ℓ. But, by
the definition of an ℓ-good redex, no variables of order at least ℓ occur in L. It follows that
L is closed. While substituting a closed lambda-term L for x, all superficially safe subterms
of K remain superficially safe (no new free variables appear). Thus the lambda-term after
the ℓ-good beta-reduction remains safe.
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Recall the sequence of lambda-terms Mm, Mm−1, . . . , M0 defined above. Assuming that
in BT (M) = M0 there is a finite branch having exactly n occurrences of a, we can derive
∅ ⊢ M0 : (n, r) using only the rules for application and constants. Suppose now that we
can derive ∅ ⊢ Mℓ : (vℓ, r) for some ℓ ∈ {0, . . . , m − 1}. We want to find a derivation of
∅ ⊢ Mℓ+1 : (vℓ+1, r), where for arbitrarily large values vℓ, the values vℓ+1 are also arbitrarily
large (more precisely, we obtain the inequality vℓ ≤ 2vℓ+1). Notice that between Mℓ+1 and
Mℓ there may be arbitrarily many (ℓ-good) reductions. Consider thus some ℓ-good redex
(λx.K) L that is reduced at some moment between Mℓ+1 and Mℓ. By definition, L does not
use any variables of order at least ℓ and, as already observed, L is closed; thus, Lemma 5.2
can be applied. We start with ∅ ⊢ Mℓ : (0 ⊕ℓ vℓ, r) (notice that in Mℓ there are no variables of
order ℓ or higher, so the first component of the value is 0). Then, we use Lemma 5.2 for every
ℓ-good beta-reduction between Mℓ+1 and Mℓ. This leads to ∅ ⊢ Mℓ+1 : (uℓ+1 ⊕ℓ wℓ+1, r),
where vℓ ≤ 2uℓ+1 · wℓ+1 ≤ 2vℓ+1 (taking vℓ+1 = uℓ+1 + wℓ+1), as required.

The function Hm, appearing in the statement of Lemma 5.1, can be defined as a tower of
powers of 2 of height m: H0(v) = v and Hℓ+1(v) = Hℓ(2v). Then from n ≤ Hℓ(vℓ) it follows
that n ≤ Hℓ+1(vℓ+1); since n = H0(v0), we thus obtain the desired inequality n ≤ Hm(vm).

6 The algorithm

Both design and implementation of our algorithm is based on the HorSat algorithm, a
saturation-based algorithm for model checking recursion schemes against alternating automata
by Broadbent and Kobayashi [4].

Our type system was described in previous sections to work with any infinitary lambda-
term. The algorithm, in turn, inputs infinitary lambda-terms represented in a finite way, in
the form of a recursion scheme. To be concrete, we make this representation explicit now: A
recursion scheme G = (Σ, N , R, Xst) consists of

a signature Σ (i.e., a set of constants with assigned arities),
a set N of nonterminals with assigned sorts (formally, nonterminals are just distinguished
variables),
a mapping R from nonterminals in N to finite lambda-terms such that R(X) is of the
same sort as X, has no free variables other than nonterminals from N , and is of the form
λx1. · · · .λxn.K, where the subterm K does not contain any lambda-binders, and
a starting nonterminal Xst ∈ N of sort o.

We assume that elements of N are not used as bound variables, and that R(X) is not a
nonterminal. Furthermore, as in previous sections, we assume for simplicity that Σ = {a, b, c},
where the constants a, b, c have arity 1, 2, 0, respectively (the implementation, however, accepts
arbitrary signatures).

Given a recursion scheme G, and a lambda-term M (possibly containing some nonterminals
from N ), let ΛG(M) be the lambda-term obtained as a limit of applying repeatedly the
following operation to M : take an occurrence of some nonterminal X, and replace it by R(X)
(the nonterminals should be chosen so that every nonterminal is eventually replaced). We
remark that while substituting R(X) for a nonterminal X, there is no need for any renaming
of variables (capture-avoiding substitution), since R(X) does not have free variables other
than nonterminals. The infinitary lambda-term represented by G is defined as ΛG(Xst), and
denoted Λ(G). Observe that Λ(G) is a closed lambda-term of sort o. We say that G is safe if
R(X) is safe for every X ∈ N ; then Λ(G) is safe as well.
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The goal of the algorithm is to determine whether Λ(G) for a given recursion scheme G is
unbounded or not. In the light of Theorem 3.1, this boils down to checking whether one can
derive ∅ ⊢ Λ(G) : (v, r) for arbitrarily large values of v. The idea is to find a single derivation
with a productive “loop”; by repeating this loop, one can increase the productivity value
arbitrarily. We make this more precise now.

First, we determine type pairs that can be derived for non-terminals. Namely, for v ∈ N
let p(v) = pr if v > 0 and pr(v) = np otherwise. Let TG be the smallest set containing all
bindings X : (p(v), τ) (with X ∈ G) such that we can derive ∅ ⊢ R(X) : (v, τ), potentially
using ∅ ⊢ Y : (w, σ) for (Y : (p(w), σ)) ∈ TG as assumptions (i.e., as additional typing rules).

Note that productivity values in derivations may be shifted (i.e., increased/decreased
by a constant): we can derive ∅ ⊢ R(X) : (v, τ) out of an assumption ∅ ⊢ Y : (w, σ) if and
only if we can derive ∅ ⊢ R(X) : (v + (w′ − w), τ) out of an assumption ∅ ⊢ Y : (w′, σ) with
p(w) = p(w′). It is thus enough to try assumptions ∅ ⊢ Y : (w, σ) with w = 0 and w = 1
only.

We have only finitely many bindings that may be potentially added to TG , as there are
finitely many possible types per sort and each nonterminal of G has a fixed sort. Moreover,
taking into account the above, there are only finitely many derivations that may be potentially
created for lambda-terms R(X). It follows that TG may be computed using saturation (i.e.,
as the least fixed point). The following lemma is immediate:

▶ Lemma 6.1. For any nonterminal X ∈ N and any type pair (f, τ) one can derive
ΛG(X) : (v, τ) for some v with p(v) = f if and only if (X : (f, τ)) ∈ TG.

Next, knowing which type judgments may be derived, we want to detect a productive cycle.
To this end, we create a graph with bindings from TG as nodes, called a derivation graph.
We draw an edge from X : (p(v), τ) to Y : (p(w), σ) if one can derive ∅ ⊢ R(X) : (v, τ ) using
∅ ⊢ Y : (w, σ) as an assumption, and potentially using some other assumptions ∅ ⊢ Z : (u, ρ)
with (Z : (p(u), ρ)) ∈ TG (the assumption ∅ ⊢ Y : (w, σ) necessarily has to be used, at
least once). Such an edge is called productive if v > w. Note that this may happen for
three reasons: 1) in the derivation there is some positive duplication factor or an important
constant, 2) some other assumption ∅ ⊢ Z : (u, ρ) with u > 0 is used, or 3) the assumption
∅ ⊢ Y : (w, σ) is used more than once and w > 0. Note that edges of the derivation graphs
can be incrementally computed at the time of computing TG . We now obtain the main
theorem, adding Point (3) equivalent to Point (2) from Theorem 3.1:

▶ Theorem 6.2. The following two statements are equivalent for every recursion scheme
G = (Σ, N , R, Xst):
(2) one can derive ∅ ⊢ Λ(G) : (v, r) for arbitrarily large values of v,
(3) (Xst : (pr, r)) ∈ TG and the derivation graph contains a cycle with a productive edge,

reachable from Xst : (pr, r).

By Theorem 3.1, assuming additionally that G is safe, Point (2) (and hence Point (3) as
well) is also equivalent to the property we want to check:
(1) Λ(G) is unbounded.

Proof. Point (2) follows from Point (3) quite directly. Indeed, an edge from X : (pr, τ) to
Y : (pr, σ) means that any derivation of ∅ ⊢ ΛG(Y ) : (w, σ) can be extended to a derivation
of ∅ ⊢ ΛG(X) : (v, τ) for some v ≥ w (in the sense that the latter contains the former as a
subderivation), where v > w if the edge is productive. Following edges on the cycle with a
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productive edge we can thus extend a derivation of ∅ ⊢ ΛG(X) : (v, τ ) into a larger derivation
of ∅ ⊢ ΛG(X) : (v′, τ), where v′ > v; doing this repeatedly increases the productivity value
arbitrarily. Finally, we can use the path from Xst : (pr, r) to the cycle, making the created
derivation a part of a derivation concerning Λ(G) = ΛG(Xst).

Let us move on to the implication from Point (2) to Point (3). First, consider all possible
derivations of ∅ ⊢ R(X) : (v, τ) (with arbitrary X ∈ N , v, τ) that may use assumptions
(additional typing rules) ∅ ⊢ Y : (v′, τ ′) for nonterminals Y , as in the definition of TG .
Because R(X) for every X ∈ N is a finite lambda-term, and |N | is finite as well, there exists
a bound B such that any derivation as above uses assumptions for nonterminals in at most
B leaves, and simultaneously the growth of productivity value caused by duplication factor
or important constants in the derivation is at most B.

Next, we prove (by induction on the size of a derivation) that if we can derive ∅ ⊢ ΛG(X) :
(v, τ) with v ≥ (2B)k for some k ∈ N, then (X : (p(v), τ)) ∈ TG and in the derivation graph
there is a path from this node having at least k productive edges. Indeed, out of a derivation
of ∅ ⊢ ΛG(X) : (v, τ) we can reconstruct a derivation of ∅ ⊢ R(X) : (v, τ); whenever the
former derivation contains a (strictly smaller) subderivation concerning ΛG(Y ) for some
nonterminal Y , in the latter we use an assumption concerning Y , which is in TG by the
induction hypothesis. This already shows that (X : (p(v), τ)) ∈ TG . If k = 0, we are done.
Suppose that k ≥ 1. By properties of the bound B, in the derivation of ∅ ⊢ R(X) : (v, τ)
there has to be an assumption ∅ ⊢ Y : (v′, τ ′) with v′ ≥ v−B

B ≥ v
2B (from v we subtract B

for duplication factors and important constants inside the derivation of ∅ ⊢ R(X) : (v, τ),
and we divide the remaining part of the productivity value into at most B assumptions),
that is, we can derive ∅ ⊢ ΛG(Y ) : (v′, τ ′). If v′ = v ≥ (2B)k, then we have an edge to a node
from which there is a path having at least k productive edges, by the induction hypothesis.
Otherwise v > v′ ≥ (2B)k−1, so we have a productive edge to a node, from which there is a
path having at least k − 1 productive edges, by the induction hypothesis.

Starting with X = Xst and k > |TG | we obtain a path from (Xst : (pr, r)) containing more
than |TG | productive edges; this path has to reach a cycle with a productive edge, as needed
for Point (3). ◀

6.1 Implementation
Our implementation is based on the implementation of HorSat [4] (more precisely: of
HorSat2, a revised version of the HorSat algorithm, due to Kobayashi and Terao). The
main reason behind the efficiency of our (and HorSat’s) implementation is that we do
not compute all possible bindings in TG . We derive only types which may be useful in a
derivation of a type of the starting nonterminal Xst.

To this end, we first perform a 0-CFA analysis of the input to compute which lambda-terms
may flow into particular nonterminal parameters. For example, if we have a nonterminal X

with a parameter x, we find all applications in the form MX N , where MX is a lambda-term
where the head is X or may eventually be substituted by X; then the lambda-term N is
flowing into the parameter x. Note that 0-CFA analysis gives an overestimation. For example,
for a nonterminal Y with two parameters x and y it is possible to write two applications,
Y M N and Y M ′ N ′, transformed in such a way that, according to 0-CFA output, M may
flow into x at the same time as N ′ into y. This behavior can exponentially (with respect to
the number of arguments) increase the number of possible typings of Y that the algorithm
has to check.

Thanks to 0-CFA analysis, we have a complete list of lambda-terms which may be
substituted for parameters of nonterminals, which limits the set of computed types of
nonterminals while still retaining all types required to type Xst. This is sufficient to start a
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loop where new types are found. In this loop, nonterminals (more precisely: the lambda-
terms R(X) for nonterminals X) are typed using information about types flowing into
their parameters. New types of nonterminals enable finding new types of lambda-terms in
which these nonterminals occur. These lambda-terms again flow into parameters of some
nonterminals, so the new types enable finding additional typings of these nonterminals,
returning to the beginning of the loop. This loop continues until a fixpoint, that is, until no
new typings of nonterminals or lambda-terms flowing into their parameters can be computed.
As there is a finite number of possible typings of nonterminals and lambda-terms in any given
recursion scheme, this fixpoint will be reached after finitely many steps. During this loop,
each time we type a nonterminal, we take note of typings of nonterminals that were used in
the derivation (i.e., are subtrees in the final derivation tree), and incrementally construct the
derivation graph described earlier in this section. This way we find all parts of the derivation
graph that are reachable from Xst : (pr, r); the optimizations made by 0-CFA only remove
unreachable parts.

We perform typing of terms without lambda-bindings in a top-down manner, that is, we
iterate over all possible types an application may have, find compatible types for its left-hand
side, and then type-check its right-hand side under each possible environment with its desired,
already known type. The top-down approach is particularly efficient when the constant b is
present in the term, since its argument with type ⊤ does not have to be type-checked. This
is also the case for nonterminals with arguments of type ⊤.

We also include three optimizations similar to the ones present in HorSat:
After a new type of a nonterminal is found, we type all lambda-terms that contain it in a
way where the new typing is used at least once. This optimization can be turned off with
a flag -nofntty.
After a new type of a lambda-term flowing into a parameter x of a nonterminal X is
found, we search for new typings of R(X) (or its subterms that flow into parameters of
other nonterminals) in a way where at least one instance of the parameter x has the new
type. This optimization can be turned off with a flag -noftty.
When no parameter of a nonterminal X is used as a left-hand side of an application in
R(X), we infer types of parameters of X from left-hand sides of applications instead of
using types of lambda-terms flowing into these parameters. Then R(X) does not have to
be typed whenever a new type is computed for lambda-terms flowing into its parameters.
This optimization can be turned off with a flag -nohvo.

6.2 Benchmarks
We prepared benchmarks for the implementation of our algorithm by modifying benchmarks
presented in the HorSat paper [4]. HorSat is an algorithm that efficiently checks whether
an alternating tree automaton (ATA) accepts the Böhm tree of the lambda-term defined
by a recursion scheme. This problem is different from ours, however, it also performs an
analysis on the same trees and is also m-EXPTIME-complete, where the difficulty depends on
the order m of the lambda-term. Hence, we use benchmark results presented in the HorSat
paper [4] as an indication that the terms used there are difficult to analyze.

The details on the original benchmarks and their origin can be found in the HorSat
paper [4]. According to authors of the aforementioned paper, these benchmarks contain
practical data. Indeed, some of them model analysis of an XHTML document or a short
computer program. Analysis of many of them was not completed in a reasonable time by
other model checking algorithms similar to HorSat, while HorSat only failed to analyze
benchmark fibstring in a reasonable time.
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Table 1 InfSat benchmark results in all combinations of optimization flags.

Flags and run times in seconds

Benchmark name or
d(
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y
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-n
of

tt
y

-n
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ty

-n
oh

vo

jwig-cal_main 2 0.942 0.930 1.572 0.611 1.574 0.607 0.728 0.783
spec_cps_coerce1-c 3 66.28 3.921 3.285 102.2 0.647 3.517 38.105 4.557
xhtmlf-div-2 2 9.591 9.555 7.457 9.238 7.426 9.007 7.387 7.478
xhtmlf-m-church 2 9.689 9.655 7.481 9.235 7.470 9.172 7.459 7.562
fold_fun_list 7 0.425 0.025 OOM 0.402 OOM 0.024 OOM OOM
fold_right 5 25.01 0.017 0.277 23.75 0.028 0.016 0.265 0.028
search-e-church 6 127.7 14.96 338.1 119.5 12.19 14.11 325.9 13.53
zip 4 2.618 153.4 64.79 27.30 201.5 150.0 68.63 98.81
filepath 2 TO OOM OOM OOM OOM OOM OOM OOM
filter-nonzero-1 5 59.69 1.635 37.56 64.19 2.636 1.641 39.52 1.922
filter-nonzero 5 0.641 0.106 0.570 0.670 0.138 0.106 0.653 0.083
map-plusone-2 5 5.384 1.082 2.591 5.065 0.851 1.092 5.633 1.125
cfa-life2 14 TO TO OOM TO TO TO TO TO
cfa-matrix-1 8 1.794 2.376 1.672 1.708 2.124 2.310 1.582 2.280
cfa-psdes 7 0.017 0.022 0.019 0.026 0.022 0.018 0.041 0.029
tak_inf 8 10.48 5.842 12.16 9.759 11.88 5.739 11.58 8.858
dna 2 0.118 0.106 0.050 0.115 0.074 0.109 0.055 0.074
fibstring 4 0.022 0.024 0.016 0.023 0.020 0.023 0.015 0.020
g45 4 41.12 45.73 7.819 16.46 56.61 46.54 1.629 46.06
l 3 0.012 0.023 0.016 0.017 0.017 0.022 0.015 0.017
fib02_odd_fin 4 0.007 0.014 0.009 0.013 0.013 0.013 0.014 0.013
fib_even_inf 4 0.545 2.854 0.697 0.505 2.555 2.637 0.697 2.604
two_add_inf 4 0.022 0.018 0.023 0.024 0.015 0.012 0.021 0.015
two_succ_inf 4 0.005 0.006 0.005 0.006 0.004 0.005 0.006 0.005

TO means timeout (10 minutes), OOM means out of memory error.

Let us describe how we modified the benchmarks to fit our analysis. We left the original
recursion scheme intact and selected a few important constants that are present close to
leaves of generated trees to increase the difficulty. The result was a decision problem whether
the operations described by important constants in modelled programs could be executed
unbounded number of times, assuming the program halted. Additionally, we added four
benchmarks specific to InfSat that answer mathematical questions such as whether there
exist arbitrarily large odd numbers defined as Church numerals.

We present results of our benchmarks in Table 1. They were performed on a laptop
with Intel Core i5-7600K, 16GB RAM. We consider these results a success, as only two
benchmarks on practical data failed to compute within ten minutes. As InfSat is the first
efficient algorithm solving the simultaneous unboundedness problem, we do not have any data
to which we could compare our benchmark results. At this stage, we can assess effectiveness
of our optimizations. We can see that using all optimization flags produced good results
consistently, however, each optimization happened to slow down some benchmarks. The
reason is that optimizations turned off by -noftty and -nofntty add substantial polynomial
overhead when generating list of possible environments and optimization turned off by -nohvo
changes the way types of some terms are computed. However, all of them can exponentially
reduce the computation time in many cases which is why they are turned on by default.
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7 Multi-letter case

It is not difficult to modify the type system to handle simultaneous unboundedness. In this
part, instead of a single important constant a of arity 1, we consider important constants
a1, . . . , as, all of arity 1 (Σa is the set containing them all). Besides them, in the signature Σ
we have a constant b of arity 2, and constants c and ω of arity 0.

In the type system instead of a single productivity flag in {pr, np}, we have a productivity
set, being a subset of Σa, and saying which important letters are produced. Likewise, instead
of a productivity value in N, we have a productivity function v : Σa → N, specifying a value
separately for every letter. The rules of the type system are adopted in the expected way:
v(ai) increases when we use constant ai, and when we duplicate a type binding for a type
pair (A, σ) with ai ∈ A.

One more change is, however, necessary. Indeed, while proving Lemma 5.2 in the multi-
letter case, we cannot choose a single subderivation concerning L that has the greatest value,
since now a value is not a number, but rather a function. Instead, for every constant ai we
can choose a subderivation concerning L for which the i-th coordinate of the value is the
greatest. We thus need to allow s (i.e., |Σa|) subderivations for every type pair.

To this end, on the left of the arrow in a type, we do not have a set of types, but rather
a multiset of types, where we allow to have at most s copies of every type. Likewise, in the
type environment we have at most s copies of every type binding.

Formally, an s-multiset is a multiset that contains at most s copies of every element. The
set of s-multisets of elements of X is denoted P≤s(X). Notice that 1-multisets are just sets,
hence P≤1(X) = P(X). A union of s-multisets U, V , denoted U ∪ V , is defined as follows:
if U and V contain, respectively, n and m copies of an element x, then U ∪ V contains
min(n + m, s) copies of this element. We use the notation {xi | i ∈ I} for

⋃
i∈I{xi}, where

{xi} is the multiset containing xi once.
For each sort α we define the set T α

s of types of sort α as follows:

T o
s = {r}, T α→β

s = P≤s(P(Σa) × T α
s ) × T β

s .

We again use the notation with → and
∧

, but this time while writing
∧

i∈I(fi, τi) → τ , we
assume that any pair occurs as (fi, τi) at most s times.

A type judgment is of the form Γ ⊢ M : (v, τ), where v : Σa → N, and where we require
that the type τ and the lambda-term M are of the same sort. The type environment Γ is an
s-multiset of bindings of variables of the form xα : (A, τ), where A ⊆ Σa is a productivity set
and τ ∈ T α

s is a type. For a ∈ Σa by Γ↾a we denote the s-multiset of those binding from Γ
that have a in their productivity set.

By 0 we denote the function from Σa to N that maps every ai to 0, and by χi the function
that maps ai to 1 and all other aj to 0. The type system consists of the following rules:

∅ ⊢ ai : (χi, (A, r) → r) ∅ ⊢ c : (0, r)

∅ ⊢ b : (0, (A, r) → ⊤ → r) ∅ ⊢ b : (0, ⊤ → (A, r) → r) x : (A, τ) ⊢ x : (0, τ)

Γ ∪ {x : (Ai, τi) | i ∈ I} ⊢ K : (v, τ) x ̸∈ dom(Γ)
Γ ⊢ λx.K : (v,

∧
i∈I(Ai, τi) → τ)

(λ)
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We define the duplication factor dupl((Γj)j∈J ), as the function (from Σa to N) that maps
every important constant a ∈ Σa to

∑
j∈J |Γj↾a| −

∣∣∣⋃j∈J Γj↾a

∣∣∣.
0 ̸∈ I ∀i ∈ I. Ai = {a ∈ Σa | vi(a) > 0 ∨ Γi↾a ̸= ∅}

Γ0 ⊢ K : (v0,
∧

i∈I(Ai, τi) → τ) Γi ⊢ L : (vi, τi) for each i ∈ I⋃
i∈{0}∪I Γi ⊢ K L : (dupl((Γi)i∈{0}∪I) +

∑
i∈{0}∪I vi, τ)

(@)

Recall that this time any pair may occur as (fi, τi) at most s times.
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Abstract
We consider the parameterized verification problem for distributed algorithms where the goal is
to develop techniques to prove the correctness of a given algorithm regardless of the number of
participating processes. Motivated by an asynchronous binary consensus algorithm [3], we consider
round-based distributed algorithms communicating with shared memory. A particular challenge in
these systems is that 1) the number of processes is unbounded, and, more importantly, 2) there is a
fresh set of registers at each round. A verification algorithm thus needs to manage both sources of
infinity. In this setting, we prove that the safety verification problem, which consists in deciding
whether all possible executions avoid a given error state, is PSPACE-complete. For negative instances
of the safety verification problem, we also provide exponential lower and upper bounds on the
minimal number of processes needed for an error execution and on the minimal round on which the
error state can be covered.
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1 Introduction

Distributed algorithms received in the last decade a lot of attention from the automated
verification community. Parameterized verification emerged as a subfield that specifically
addresses the verification of distributed algorithms. The main challenge is that distributed
algorithms should be proven correct for any number or participating processes. Parameterized
models are thus infinite by nature and parameterized verification is in general unfeasible [2].
However, one can recover decidability by considering specific classes of parameterized models,
as in the seminal work by German and Sistla where identical finite state machines interact via
rendezvous communications [14]. Since then, various models have been proposed to handle
various communication means (see [11, 7] for surveys).

Shared memory is one possible communication means. This paper makes first steps
towards the parameterized verification of round-based distributed algorithms in the shared-
memory model; examples of such algorithms can be found in [4, 3, 16]. In particular, our
approach covers Aspnes’ consensus algorithm [3] which we take as a motivating example.
Shared-memory models without rounds have been considered in the literature: the verification
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of safety properties for systems with a leader and many anonymous contributors interacting
via a single shared register is coNP-complete [12, 13]; and for Büchi properties, it is NP-
complete [10]. Randomized schedulers have also been considered for shared-memory models
without leaders; the verification of almost-sure coverability is in EXPSPACE, and is PSPACE-
hard [9]. Finally, safety verification is PSPACE-complete for so-called distributed memory
automata, that combine local and global memory [8].

Round-based algorithms make verification particularly challenging since they use fresh
copies of the registers at each round, and an unbounded number of asynchronous processes
means that verification must handle a system with an unbounded number of registers. This
is why existing verification techniques fall short at analyzing such algorithms combining two
sources of infinity: an unbounded number of processes, and an unbounded number of rounds
(hence of registers).

Algorithm 1 Aspnes’ consensus algorithm [3].

1 int k := 0, bool p ∈ {0, 1}, (rgb [r])b∈{b0,b1},r∈N all initialized to ⊥;
2 while true do
3 read from rgb0 [k] and rgb1 [k];
4 if rgb0 [k] = ⊤ and rgb1 [k] = ⊥ then p := 0;
5 else if rgb0 [k] = ⊥ and rgb1 [k] = ⊤ then p := 1;
6 write ⊤ to rgbp [k];
7 if k > 0 then
8 read from rgb1−p [k−1];
9 if rgb1−p [k−1] = ⊥ then return p;

10 k := k+1;

Algorithm 1 gives the pseudocode of the binary consensus algorithm proposed by
Aspnes [3], in which the processes communicate through shared registers. The algorithm
proceeds in asynchronous rounds, which means that there is no a priori bound on the
round difference between pairs of processes. Furthermore, reading from and writing to
registers are separate operations, and a sequence of a read and a write cannot be performed
atomically. Each round r has two shared registers rgbi [r] for i ∈ {0, 1}; notation bi is used in
register indices to avoid confusion with other occurrences of digits 0 and 1. All registers are
initialized to a default value ⊥, and within an execution, their value may only be updated
to ⊤. Intuitively, rgbi [r] = ⊤ if i is the proposed consensus value at round r.

As usual in distributed consensus algorithms, each process starts with a preference value p.
At each round, a process starts by reading the value of the shared registers of that round
(Line 3). If exactly one of them is set to ⊤, the process updates its preference p to the
corresponding value (Lines 4 and 5). In all cases, it writes ⊤ to the current-round register
that corresponds to its preference p (Line 6). Then, it reads the register of the previous
round corresponding to the opposite preference 1−p (Line 8), and if it is ⊥, the process
decides its preference p as return value for the consensus (Line 9). To be able to decide its
current preference value, a process thus has to win a race against others, writing to a register
of its current round k while no other process has written to the register of round k−1 for the
opposite value. Note that a process can read from and write to the registers of its current
round, whereas the registers of the previous rounds are read-only.

The expected properties of such a distributed consensus algorithm are validity, agreement
and termination. Validity expresses that if all processes start with the same preference p, then
no process can return a value different from p. Agreement expresses that no two processes
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can return different values. Finally, termination expresses that eventually all processes should
return a value. The termination of Aspnes’ algorithm is only guaranteed under some fairness
constraints on the adversary that schedules the moves of processes [3]. Its validity and
agreement properties hold unconditionally. Our objective is to develop automated verification
techniques for safety properties, which include validity and agreement.

For a single round –corresponding to one iteration of the while loop– safety properties
can be proved applying techniques from [12, 13]. The additional difficulty here lies in the
presence of unboundedly many rounds and thus of unboundedly many shared registers. Other
settings of parameterized verification exist for round-based distributed algorithms, but none
of them apply to asynchronous shared-memory distributed algorithms: they either concern
fault-tolerant threshold-based algorithms [5, 6], or synchronous distributed algorithms [15, 1].

Contributions

In this paper, we introduce round-based register protocols, a formalism that models round-
based algorithms in which processes communicate via shared memory. Figure 1 depicts a
representation of Aspnes’ algorithm in this formalism.

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0
b0

(⊤)

read0
b1

(⊤)

read 0
b0 (⊥)

read0
b1

(⊥)

read0
b1

(⊥)

read0
b0 (⊥)

read0
b1

(⊤)

read0
b0

(⊤)

writeb0 (⊤)

writeb1 (⊤)

k = 0 ∨ read−1
b1

(⊤)

k = 0 ∨ read−1
b0

(⊤)

Inc

Inc

k > 0 ∧ read−1
b1

(⊥)

k > 0 ∧ read−1
b0

(⊥)

p = 0

p = 1

Figure 1 A round-based register protocol for Aspnes’ noisy consensus algorithm. Since the first
round (k = 0) slightly differs from the others, to avoid duplication of the state space, we allow for
guards on round number k in the transition labels.

Round-based register protocols form a class of models inspired by register protocols [12,
9, 13], which were introduced to represent shared-memory distributed algorithms without
rounds. In register protocols, states typically represent the control point of each process as
well as the value of its private variables. For instance, the preference p of the process is
encoded in the state space: in the top part, p = 0 and in the bottom part p = 1, as reflected
by the states indices. To allow for multiple rounds and round increments, as in Line 10,
we extend register protocols with a new action Inc that labels the transitions from state Ep
to state Ap, for each preference p ∈ {0, 1}. The processes may read from the registers of
the current round but also from those of previous rounds, so reads must specify not only
the register identifier but also the lookback distance to the current round: for a process in
round k, read−d

bp
(x) represents reading value x from register rgbp [k−d].

The validity and agreement properties translate as follows on the register protocols.
For validity, one needs to check two properties, one for each common preference p ∈ {0, 1}.
Namely, if all processes start in state A0 (resp. A1), then no processes can enter state R0
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(resp. R1). Agreement requires that, independently from the initial state of each process
in {A0, A1}, no executions reach a configuration with at least one process in R0 and at least
one process in R1. Both validity and agreement are safety properties.

After introducing round-based register protocols, we study the parameterized verification
of safety properties, with the objective of automatically checking whether a configuration
involving an error state can be covered for arbitrarily many processes. Our main result is the
PSPACE-completeness of this verification problem. We develop an algorithm exploiting the
fact that the processes may only read the values of registers within a bounded window on
rounds. However, a naive algorithm focusing on the v latest rounds only is hopeless: perhaps
surprisingly, we show that the number of active rounds (i.e., rounds where a non-idle process
is in) may need to be as large as exponential to find an execution covering an error state.
The cutoff i.e., the minimal number of processes needed to cover an error state, may also be
exponential. The design of our polynomial space algorithm addresses these difficulties by
carefully tracking first-write orders, that is, the order in which registers are written to for
the first time. One of the main technical difficulties of the algorithm is making sure that
enough information is stored in this way, allowing the algorithm to solve the verification
problem, while also staying in polynomial space.

The rest of the paper is structured as follows. To address the verification of safety
properties for round-based register protocols, after introducing their syntax and semantics
(Section 2.1), we first observe that they enjoy a monotonicity property (Section 2.2), which
justifies the definition of a sound and complete abstract semantics (Section 2.3). We then
highlight difficulties of coming up with a polynomial space decision procedure (Section 3.1).
Namely, we provide exponential lower bounds on (1) the minimal round number, (2) the min-
imal number of processes, and (3) the minimal number of active rounds in error executions.
We then introduce the central notion of first-write orders and its properties (Section 3.2).
Section 3.3 details our polynomial-space algorithm, and Section 3.4 presents the complexity-
matching lower bound.

2 Round-based shared-memory systems

2.1 Register protocols with rounds
▶ Definition 1 (Round-based register protocols). A round-based register protocol is a tuple
P = ⟨Q, q0, d,D, v,∆⟩ where

Q is a finite set of states with a distinguished initial state q0;
d ∈ N is the number of shared registers per round;
D is a finite data alphabet containing d0 the initial value and D \ {d0} the values that can
be written to the registers;
v is the visibility range (a process on round k may read only from rounds in [k − v, k]);
∆ ⊆ Q × A × Q is the set of transitions, where A = {Inc} ∪ {read−i

α (x) | i ∈ [0, v],
α ∈ [1, d], x ∈ D} ∪ {writeα(x) | α ∈ [1, d], x ∈ D \ {d0}} is the set of actions.

Intuitively, in a round-based register protocol, the behavior of a process is described by
a finite-state machine with a local variable k representing its current round number; note
that each process has its own round number, as processes are asynchronous and can be on
different rounds. Moreover, there are d registers per round, and the transitions can read and
modify these registers. Transitions in round-based register protocols can be labeled with
three different types of actions: the Inc action simply increments the current round number
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of the process; action read−i
α (x) can be performed by a process at round k when the value of

register α of round k−i is x; finally, with the action writeα(x), a process at round k writes
value x to the register α of round k. Note that all actions read−i

α (x) must satisfy i ≤ v; in
other words, processes of round k can only read values of registers of rounds k − v to k.

For complexity purposes, we define the size of the protocol P = ⟨Q, q0, d,D, v,∆⟩ as
|P| = |Q| + |D| + |∆| + v + d (thus implicitly assuming that v is given in unary).

Before defining the semantics of round-based register protocols, let us introduce some
useful notations. For round number k, we write rgα[k] the register α of round k, we let
Regk = {rgα[k] | α ∈ [1, d]} denote the set of registers of round k, and Reg =

⋃
k∈N Regk the

set of all registers.
Round-based register protocols execute on several processes asynchronously. The processes

communicate via the shared registers, and they progress in a fully asynchronous way through
the rounds. A location (q, k) ∈ Q × N describes the current state q and round number k
of a process, and Loc = Q × N is the set of all locations. A configuration intuitively
describes the location of each process, as well as the value of each register. Since processes
are anonymous and indistinguishable, the locations of all processes can be represented by
maps Loc → N describing how many processes populate each location. Formally, a concrete
configuration is a pair γ = (µ, d) ∈ NLoc × DReg such that

∑
(q,k)∈Loc µ(q, k) < ∞. We write

Γ = NLoc × DReg for the set of all concrete configurations. For a concrete configuration γ =
(µ, d), the location multiset µ is denoted loc(γ) and the value d(k)(α) of register α at round k
in γ is written datargα[k](γ). The size of γ corresponds to the number of involved processes:
|γ| =

∑
(q,k)∈Loc µ(q, k). Configuration γ is initial if for every (q, k) ̸= (q0, 0), loc(γ)(q, k) = 0,

and for every register ξ, dataξ(γ) = d0. The set of initial concrete configurations therefore
consists of all initn = ((q0, 0)n, dReg

0 ). A register is blank when it still has initial value d0. The
support of the multiset loc(γ) is supp(γ) = {(q, k) | loc(γ)(q, k) > 0}. Finally, for γ, γ′ ∈ Γ,
we write data(γ) = data(γ′) whenever for all ξ ∈ Reg, dataξ(γ) = dataξ(γ′).

The evolution from a concrete configuration to another reflects the effect of a process
taking a transition in the register protocol. A move is thus an element θ = (δ, k) consisting
of a transition δ ∈ ∆ and a round number k; Moves = ∆ × N is the set of all moves.
For two concrete configurations γ, γ′, we say that γ′ is a successor of γ if there is a move
((q, a, q′), k) ∈ Moves satisfying one of the following conditions, depending on the action type:

(i) a = Inc, loc(γ)(q, k) > 0, loc(γ′) = loc(γ) ⊖ (q, k) ⊕ (q′, k+1), and data(γ′) = data(γ);
(ii) a = read−i

α (x) with x ∈ D, datargα[k−i](γ) = x, loc(γ)(q, k) > 0, loc(γ′) = loc(γ) ⊖
(q, k) ⊕ (q′, k) and data(γ′) = data(γ);

(iii) a = writeα(x) with x ∈ D \ {d0}, datargα[k](γ′) = x, loc(γ)(q, k) > 0, loc(γ′) =
loc(γ) ⊖ (q, k) ⊕ (q′, k) and for all ξ ∈ Reg \ {rgα[k]}, dataξ(γ′) = dataξ(γ).

Here, ⊕ and ⊖ are operations on multisets, respectively adding and removing elements. The
first case represents round increment for a process and the register values are unchanged.
The second case represents a read: it requires that the correct value is stored in the
corresponding register, that the involved process moves, and that the register values are
unchanged. By convention, here, if k − i < 0, i.e., for registers with negative round numbers,
we let datargα[k−i](γ) = d0. Finally, the last case represents a write action; it only affects
the corresponding register, and the state of the involved process. Note that in all cases,
|γ| = |γ′|: the number of processes is constant. If γ′ is a successor of γ by move θ, we write
γ

θ−→ γ′. A concrete execution is an alternating sequence γ0, θ1, γ1, . . . , γℓ−1, θℓ, γℓ of concrete
configurations and moves such that for all i, γi

θi+1−−−→ γi+1. In such a case, we write γ0
∗−→ γℓ,

and we say that γℓ is reachable from γ0. A location (q, k) is coverable from γ0 when there
exists γ ∈ Reach(γ0) such that (q, k) ∈ loc(γ0), and similarly a state q is coverable from γ0
when there exist k ∈ N such that (q, k) is coverable from γ0.
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q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

Figure 2 A simple round-based register protocol.

Given a concrete configuration γ ∈ Γ, Reachc(γ) denotes the set of all configurations that
can be reached from γ: Reachc(γ) = {γ′ | γ ∗−→ γ′}.

We are now in a position to define our problem of interest:

Safety problem for round-based register protocols
Input: A round-based register protocol P = ⟨Q, q0, d,D, v,∆⟩ and a state qerr ∈ Q

Question: Is it the case that for every n ∈ N, for every γ ∈ Reachc(initn) and for every
round number k, loc(γ)(qerr, k) = 0?

The state qerr is referred to as an error state that all executions should avoid. An error
configuration is a configuration in which the error state qerr appears, and an error execution is
an execution containing an error configuration. Given a protocol P and a state qerr, in order
to check whether (P, qerr) is a positive instance of the safety problem, we will look for an
error execution, and therefore check the dual problem: whether there exist a size n and a
configuration γ ∈ Reachc(initn) such that for some round number k, loc(γ)(qerr, k) > 0.

▶ Example 2. We illustrate round-based register protocols and their safety problem on
the model depicted in Figure 2. This protocol has a single register per round (d = 1, and
the register identifier is thus omitted), and set of symbols D = {d0, a, b}. Let us give two
examples of concrete executions. State q4 is coverable from init1 with the sequence of moves:

π1 =
(
⟨(q0, 0)⟩, rg[0]=d0

rg[1]=d0

) ⟨q0,Inc,q2⟩,0−−−−−−−→
(
⟨(q2, 1)⟩, rg[0]=d0

rg[1]=d0

) ⟨q2,write(a),q3⟩,1−−−−−−−−−−−→
(
⟨(q3, 1)⟩, rg[0]=d0

rg[1]=a )
)

⟨q3,read−1(d0),q4⟩,1−−−−−−−−−−−−→
(
⟨(q4, 1)⟩, rg[0]=d0

rg[1]=a
)
.

State q6 is coverable from init2 as witnessed by the concrete execution:

π2 =
(
⟨(q0, 0), (q0, 0)⟩, rg[0]=d0

rg[1]=d0

) ⟨q0,write(a),q1⟩,0−−−−−−−−−−−→
(
⟨(q0, 0), (q1, 0)⟩, rg[0]=a

rg[1]=d0

) ⟨q0,Inc,q2⟩,0−−−−−−−→(
⟨(q2, 1), (q1, 0)⟩, rg[0]=a

rg[1]=d0

) ⟨q2,read−1(a),q5⟩,1−−−−−−−−−−−−→
(
⟨(q5, 1), (q1, 0)⟩, rg[0]=a

rg[1]=d0

) ⟨q5,read0(d0),q6⟩,1−−−−−−−−−−−→(
⟨(q6, 1), (q1, 0)⟩, rg[0]=a

rg[1]=d0

)
.

However, it can be observed that no concrete execution can cover both states at the same
round whatever the number of processes, thus preventing from covering qerr. We justify this
observation in Subsection 3.2. This example is a positive instance of the safety problem. ⌟

▶ Example 3. The validity of Aspnes’ algorithm can be expressed as two safety properties,
with A0 (resp. A1) as initial state, and R1 (resp. R0) as error state. Let us argue that
the protocol of Figure 1 is safe for q0 = A0 and qerr = R1; the other case is symmetric.
Towards a contradiction, suppose there exists an execution π : initn

∗−→ γ1
θ−→ γ2

∗−→ γ where
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γ2 contains a process in the bottom part, and γ2 is the first such configuration along π. Then
θ = ((B0, read0

b1
(⊤), C1), k) for some k, thus implying that datargb1 [k](γ1) = ⊤. However, b1

can only be written to rgb1 [k] by a process already in the bottom part, which contradicts the
minimality of γ2.

To formally encode agreement of Aspnes’ algorithm as a safety property, we make two
slight modifications to the protocol from Figure 1. We add an extra initial state q0 with silent
outgoing transitions to A0 and to A1; we also add an error state qerr that can be covered
only if R0 and R1 are covered in a same execution. To do so, one can mimick the gadget at
q4 and q6 in Figure 2, using an extra letter b ∈ D and adding Inc loops on both R0 and R1,
allowing processes to synchronize on the same round, before writing and reading b.

Checking validity and agreement automatically for Aspnes’ algorithm requires the ma-
chinery that we develop in the rest of the paper. ⌟

2.2 Monotonicity
Similarly to other parameterized models, and specifically shared-memory systems [13, 9],
round-based register protocols enjoy a monotonicity property called the copycat property.
Intuitively, this property states that if a location can be populated with one process, then,
increasing the size of the initial configuration, it can be populated by an arbitrary number of
them without affecting the behaviour of the other processes. Formally:

▶ Lemma 4 (Copycat property). Let q ∈ Q, k, n,N ∈ N and γi, γf ∈ Γ such that γf ∈
Reachc(γi) and (q, k) ∈ supp(γf). Then there exist γ′

i , γ
′
f ∈ Γ such that γ′

f ∈ Reachc(γ′
i ) and:

|γ′
i | = |γi| +N , supp(γ′

i ) = supp(γi), and data(γ′
i ) = data(γi);

loc(γ′
f) = loc(γf) ⊕ (q, k)N and data(γ′

f) = data(γf).
The copycat property strongly relies on the fact that operations on the registers are

non-atomic. In particular it is crucial that processes cannot atomically read and write to a
given register, since that could prevent another process from copycating its behaviour.

By the copycat property, the existence of an execution covering the error state qerr implies
the existence of similar executions for any larger number of processes, which motivates the
notion of cutoff. Formally, given (P, qerr) a negative instance of the safety problem, the cutoff
is the least n0 ∈ N such that for every n ≥ n0 there exist γn ∈ Reachc(initn) and kn ∈ N

with loc(γn)(qerr, kn) > 0.
Another consequence is that any value that has been written to a register can be rewritten,

at the cost of increasing the number of involved processes.

▶ Corollary 5. Let n ∈ N, π : initn
∗−→ γ1

∗−→ γ a concrete execution and ξ ∈ Reg a register
such that dataξ(γ1) ̸= d0. There exist n′ ≥ n and a concrete execution π′ : initn′

∗−→ γ′ such
that loc(γ) ⊆ loc(γ′), dataξ(γ′) = dataξ(γ1) and for all ξ′ ̸= ξ, dataξ′(γ′) = dataξ′(γ).

2.3 Abstract semantics
The copycat property suggests that, for existential coverability properties, the precise number
of processes populating a location is not relevant, only the support of the location multiset
matters. As for registers, the only important information to remember is whether they still
contain the initial value, or they have been written to (the support then suffices to deduce
which values can be written and read). In this section, we therefore define an abstract
semantics for round-based register protocols, and we prove it to be sound and complete for
the safety problem.
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Formally, an abstract configuration, or simply a configuration, is a pair σ ∈ 2Loc×2Reg, with
location support loc(σ) ∈ 2Loc and set of written registers FW(σ) ∈ 2Reg. We write Σ for the
set 2Loc × 2Reg of all configurations. The (unique) initial configuration is σinit = ({(q0, 0)}, ∅).
Configuration σ′ is a successor of configuration σ if there exists a move θ = ((q, a, q′), k) ∈
Moves such that one of the following conditions holds:

(i) a = Inc, (q, k) ∈ loc(σ), loc(σ′) = loc(σ) ∪ {(q′, k+1)}, and FW(σ′) = FW(σ);
(ii) a = read−i

α (x) with x ̸= d0, (q, k) ∈ loc(σ), rgα[k−i] ∈ FW(σ), loc(σ′) = loc(σ) ∪
{(q′, k)}, FW(σ′) = FW(σ) and there is a transition (q1,writeα(x), q2) ∈ ∆ with
(q1, k−i), (q2, k−i) ∈ loc(σ);

(iii) a = read−i
α (d0), (q, k) ∈ loc(σ), rgα[k−i] /∈ FW(σ), loc(σ′) = loc(σ) ∪ {(q′, k)} and

FW(σ′) = FW(σ);
(iv) a = writeα(x) with x ̸= d0, (q, k) ∈ loc(σ), loc(σ′) = loc(σ) ∪ {(q′, k)} and FW(σ′) =

FW(σ) ∪ {rgα[k]}.
In this case, we write σ

θ−→ σ′. An (abstract) execution is an alternating sequence of
configurations and moves ρ = σ0, θ1, σ1, . . . , σℓ−1, θℓ, σℓ such that for all i, σi

θi+1−−−→ σi+1, and
we write σ ∗−→ σℓ. Similarly to the concrete semantics, Reach(σ) = {σ′ | σ ∗−→ σ′} denotes
the set of reachable configurations from σ. Again, a location (q, k) is coverable from σ when
there exists σ′ ∈ Reach(σ) such that (q, k) ∈ loc(σ′), and similarly a state q is coverable from
σ when there exist σ′ ∈ Reach(σ) and k ∈ N such that (q, k) ∈ loc(σ′). We simply say that
a configuration is reachable if it is reachable from the initial configuration σinit, and that a
location (resp. a state) is coverable if it is coverable from the initial configuration σinit.

▶ Example 6. Consider again the protocol of Example 2. The (abstract) execution associated
with the concrete execution π1 in this example is

ρ1 =
(
{(q0, 0)}, ∅

) ⟨q0,Inc,q2⟩,0−−−−−−−→
(
{(q0, 0), (q2, 1)}, ∅

) ⟨q2,write(a),q3⟩,1−−−−−−−−−−−→(
{(q0, 0), (q2, 1), (q3, 1)}, {rg[1]}

) ⟨q3,read−1(d0),q4⟩,1
−−−−−−−−−−−−−→

(
{(q0, 0), (q2, 1), (q3, 1), (q4, 1)}, {rg[1]}

)
.

Similarly, the execution associated with π2 is

ρ2 =
(
{(q0, 0)}, ∅

) ⟨q0,write(a),q1⟩,0−−−−−−−−−−−→
(
{(q0, 0), (q1, 0)}, {rg[0]}

) ⟨q0,Inc,q2⟩,0−−−−−−−→(
{(q0, 0), (q1, 0), (q2, 1)}, {rg[0]}

) ⟨q2,read−1(a),q5⟩,1
−−−−−−−−−−−−→

(
⟨(q0, 0), (q1, 0), (q2, 1), (q5, 1)⟩, {rg[0]}

)
⟨q5,read0(d0),q6⟩,1
−−−−−−−−−−−−→

(
⟨(q0, 0), (q1, 0), (q2, 1), (q5, 1), (q6, 1)⟩, {rg[0]}

)
. ⌟

Note that, in contrast to the concrete semantics, the location support of configurations
cannot decrease along an abstract execution. One can easily be convinced that any concrete
execution can be lifted to an abstract one, by possibly increasing the support, which is not a
problem as long as one is interested in the verification of safety properties. Conversely, from
an abstract execution, for a large enough number of processes, using the copycat property one
can build a concrete execution with the same final location support. Altogether, the abstract
semantics is therefore sound and complete to decide the safety problem on round-based
register protocols.

▶ Theorem 7. Let P be a round-based register protocol, qerr a state and k ∈ N. Then:

∃n ∈ N, ∃γ ∈ Reachc(initn) : (qerr, k) ∈ loc(γ) ⇐⇒ ∃σ ∈ Reach(σinit) : (qerr, k) ∈ loc(σ).

Moreover, for negative instances of the safety problem, the proof of Theorem 7 yields an
upper bound on the cutoff, which is linear in the round number at which qerr is covered.

▶ Corollary 8. If there exists k ∈ N such that (qerr, k) is coverable, then, letting N =
2|Q|(k+1)+1, there exists π : initN

∗−→ γ such that (qerr, k) ∈ loc(γ).
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3 Decidability and complexity of the safety problem

3.1 Exponential lower bounds everywhere!
To highlight the challenges in coming up with a polynomial space algorithm, we first state
three exponential lower bounds when considering safety verification of round-based register
protocols. Namely, we prove that (1) the minimal round are which the error state is covered,
(2) the minimal number of processes needed for an error execution, and (3) the minimal
number of simultaneously active rounds within an error execution, all may need to be
exponential in the size of the protocol.

Exponential minimal round

▶ Proposition 9. There exists a family (BCm)m≥1 of round-based register protocols with qerr
an error state, visibility range v = 0 and number of registers per round d = 1, such that
|BCm| = O(m) and the minimum round at which qerr can be covered is in Ω(2m).

q0qtick

q1,0 q1,1

. . .

qi,0 qi,1

. . .
qm,0 qerr

read(waiti)
write(waiti+1)

Inc

read(waitm)
Inc read(movem)

read(move1)
write(wait2)

Inc

read(move1)
write(move2)

Inc

read(movei)
write(waiti+1)

Inc

read(movei)
write(movei+1)

Inc

read(waiti)
write(waiti+1)

Inc
write(move1)

Inc

Figure 3 Protocol BCm for which an exponential number of rounds is needed to cover qerr. For
the sake of readability, transitions may be labelled by a sequence of actions: e.g., the transition
from qi,0 to qi,1 is labelled by read(move1), write(wait2), Inc. Such sequences of actions are not
performed atomically: one should in principle add intermediate states to split the transition into
several consecutive transitions, with one action each. We also use silent transitions (with no action
label) that do not perform any action. The tick gadget in grey will be modified in subsequent figures.

The protocol BCm, depicted in Figure 3, encodes a binary counter on m bits. The
high-level idea of this protocol is that the counter value starts with 0 and is incremented at
each round; setting the most significant bit to 1 puts a process in qerr. In order to cover qerr,
any concrete execution needs at least m+1 processes: one in qtick ticking every round, and
one per bit, in states {qi,0, qi,1} to represent the value of the counter’s i-th bit. At round k,
the value of the i-th least significant bit is 0 if at least one process is at (qi,0, k), and 1 if
at least one process is at (qi,1, k). Finally, at round 2m−1, setting the m-th least significant
bit –of weight 2m−1– to 1 corresponds to (qerr, 2m−1) being covered.

The following proposition is useful for the analysis of BCm. It states that, in register
protocols where v = 0 and d = 1, coverable locations can be covered with a common
execution.
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▶ Proposition 10. In a register protocol P with v = 0 and d = 1, for any finite set L of
coverable locations, there exists n ∈ N and an execution ρ : σinit

∗−→ σ such that, for all
(q, k) ∈ L, (q, k) ∈ loc(σ).

Our protocol BCm satisfies the following property, that entails Proposition 9.

▶ Proposition 11. Let k ∈ [0, 2m−1]. Location (qerr, k) is coverable in BCm iff k = 2m−1.

q0qtickqsink
write(move1)

Inc

(a) An exponential number of processes is needed
to cover qerr.

q0qtick

qB

qC

qD

qA

Inc

write(a)

Inc

rea
d−

1 (d0)

read −1(move1 ) write
(m

ov
e1)

write(move1 )

(b) An exponential number of active rounds is
needed to cover qerr.

Figure 4 Two modifications of the tick mechanism of (BCm)m≥1 yielding protocols that need
respectively an exponential number of processes and an exponential number of active rounds.

Exponential cutoff

▶ Proposition 12. There exists a family (Pm)m≥1 of round-based register protocols with qerr
an error state, v = 0 and d = 1, such that |Pm| = O(m) and the minimal number of processes
to cover an error configuration is in Ω(2m).

The protocol Pm is easily obtained from BCm by modifying the tick mechanism so
that each tick must be performed by a different process, as illustrated in Figure 4a. Since
exponentially many ticks are needed to cover qerr, the cutoff is also exponential.

Exponential number of simultaneously active rounds

We have seen that the minimal round at which the error state can be covered may be
exponential. Perhaps more surprisingly, we now show that the processes may need to spread
over exponentially many different rounds. We formalise this with the notion of active rounds.
At a configuration along a given execution, round k is active when some process is at round
k and not idle, i.e., it performs a move later in the execution. The number of active rounds
of an execution is the maximum number of active rounds at each configuration along the
execution.

Towards a polynomial space algorithm for the safety problem, a polynomial bound on the
number of active rounds would allow one to guess on-the-fly an error execution by storing
only non-idle processes for the current configuration. However, such a polynomial bound
does not exist:

▶ Proposition 13. There exists a family (P ′
m)m≥1 of round-based register protocols with qerr

an error state, v = 1 and d = 1, such that |P ′
m| = O(m) and the minimal number of active

rounds for any error execution is in Ω(2m).
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The protocol P ′
m is again obtained from BCm by modifying the tick mechanism, as

illustrated in Figure 4b. The transitions from qtick to qB and from qB to qC ensure that, for
all k ∈ [0, 2m−1], a must be written to rg[k] before it is written to rg[k−1]. The transitions
from qC to qD and from qD to qtick, on the contrary, ensure that, for all k ∈ [1, 2m−1], move1
must be written to rg[k−1] before it is written to rg[k]. Hence, in an error execution, when
move1 is first written to rg[0], all rounds from 1 to 2m−1 must be active, and the number of
active rounds is at least 2m−1.

Note that Proposition 13 requires v > 0. Generally for round-based register protocols
with v = 0, processes in different rounds do not interact and an error execution can be
reordered: all moves on round 0 first, then all moves on round 1, and so on, so that the
number of active rounds is at most 2. Therefore, when v = 0, a naive polynomial-space
algorithm for the safety problem consists in computing all coverable states round after round.

3.2 Compatibility and first-write orders
The compatibility of coverable locations expresses that they can be covered in a common
execution. Formally, two locations (q1, k1) and (q2, k2) are compatible when there exists
ρ : σinit

∗−→ σ such that (q1, k1), (q2, k2) ∈ loc(σ). In contrast to several other classes of
parameterized models (such as broadcast protocols for instance), for round-based register
protocols, not all coverable locations are compatible, which makes the safety problem trickier.

▶ Example 14. The importance of compatibility can be illustrated on the protocol of Figure 2,
whose safety relies on the fact that, for all k ≥ 1, locations (q4, k) and (q6, k) –although both
coverable– are not compatible. Intuitively, in order to cover (q4, k), one must write a to rg[k]
and then read d0 from rg[k−1], while in order to cover (q6, k), one must read a from rg[k−1]
and then read d0 from rg[k]. Since d0 cannot be written, covering (q4, k) requires a write to
rg[k] while rg[k−1] is still blank, and covering (q6, k) requires the opposite. ⌟

More generally, the order in which registers are first written to appears to be crucial for
compatibility. We thus define in the sequel the first-write order associated with an execution,
and use it to give sufficient conditions for compatibility of locations, that we express as being
able to combine executions covering these locations.

▶ Definition 15. For ρ = σ0, θ1, · · · θℓ, σℓ an execution, move θi is a first write (to rgα[k]) if
θi = ((q,writeα(x), q′), k) and rgα[k] /∈ FW(σi−1). The first-write order of ρ is the sequence
of registers fwo(ρ) = ξ1 : . . . :ξm such that the j-th first write along ρ writes to ξj.

Following Example 6, fwo(ρ1) = rg[1] and fwo(ρ2) = rg[0]. Two executions with same
first-write order can be combined into a “larger” one with same first-write order.

▶ Lemma 16. Let ρ1 : σinit
∗−→ σ1 and ρ2 : σinit

∗−→ σ2 be two executions such that fwo(ρ1) =
fwo(ρ2). Then, there exists ρ : σinit

∗−→ σ such that loc(σ) = loc(σ1) ∪ loc(σ2), FW(σ) =
FW(σ1) = FW(σ2), and fwo(ρ) = fwo(ρ1) = fwo(ρ2).

It follows that, for any fixed first-write order, there is a maximal support that can be
covered by executions having that first-write order.

To extend the previous result, we exploit the fact that executions do not read registers
arbitrarily far back. It is sufficient to require the first-write orders to have the same projections
on all round windows of size v. Formally, for a first-write order f, and two round numbers
k, k′ ∈ N with k ≤ k′, proj[k,k′](f) denotes the restriction of f to registers from rounds k to k′.
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▶ Lemma 17. Let ρ1 : σinit
∗−→ σ1 and ρ2 : σinit

∗−→ σ2 be two executions of a register protocol
with visibility range v, such that, for all k ∈ N, proj[k−v,k](fwo(ρ1)) = proj[k−v,k](fwo(ρ2)).
Then, there exists ρ : σinit

∗−→ σ such that loc(σ) = loc(σ1) ∪ loc(σ2), FW(σ) = FW(σ1) =
FW(σ2), and, for all k ∈ N, proj[k−v,k](fwo(ρ)) = proj[k−v,k](fwo(ρ1)) = proj[k−v,k](fwo(ρ2)).

▶ Example 18. Agreement of Aspnes’ algorithm is closely related to the notion of location
(in)compatibility. Intuitively, one requires that no pair of locations (R0, k0) and (R1, k1)
are compatible. Their incompatibility is a consequence of a difference between the first-
write orders of the executions that respectively cover them. First, for every k ≥ 1 and
every execution ρ : σinit

∗−→ σ
∗−→ σ′, if rgbi [k] ∈ FW(σ) and rgb1−i [k − 1] /∈ FW(σ), then

rgb1−i [k] /∈ FW(σ′); indeed, since rgb1−i [k] /∈ FW(σ), all locations in loc(σ) whose states
correspond to p = 1 − i are either on round ≤ k − 1 or on round k not on state E1−i, and
⊥ can no longer be read from rgb1−i [k]; by induction, for all k′ ≥ k, rgb1−i [k

′] /∈ FW(σ′). Let
ρ0 : σinit

∗−→ σ0 and ρ1 : σinit
∗−→ σ1 such that, for all i ∈ {0, 1}, (Ri, ki) ∈ loc(σi). For all

i ∈ {0, 1}, moves θi := ((Ci,writebi(⊤), Di), ki) and θ′
i := ((Di, read−1

b1−i
(⊥), Ri), ki) are in

ρi, and θi appears before θ′
i in ρi. Therefore, by letting i such that ki ≤ k1−i, ρi requires

that rgbi [ki] is first-written while rgb1−i [ki − 1] is still blank, and therefore that rgbi [k1−i]
is left blank, while ρ1−i requires a first write on rgbi [k1−i], which proves that (R0, k0) and
(R1, k1) are incompatible. Note that fwo(ρ0) and fwo(ρ1) do not have the same projection
on [k1−i − 1, k1−i], which justifies that Lemma 17 does not apply. ⌟

3.3 Polynomial-space algorithm
We now present the main contribution of this paper.

▶ Theorem 19. The safety problem for round-based register protocols is in PSPACE.

To establish Theorem 19, because PSPACE is closed under complement and thanks to
Savitch’s theorem, it suffices to provide a nondeterministic procedure that finds an error
execution (if one exists) within polynomial space. We do this in two steps: first, we give
a nondeterministic procedure that iteratively guesses projections of a first-write order and
computes the set of coverable locations under those projections, but does not terminate;
second, we justify how to run this procedure in polynomial space and that it can be stopped
after an exponential number of iterations (thus encodable by a polynomial space binary
counter).

The high-level idea of the nondeterministic procedure is to iteratively guess a first-write
order f, and to simultaneously compute the set of coverable locations under f. Thanks
to Lemma 17, rather than considering a precise first-write order, the algorithm guesses
its projections on windows of size v. Concretely, at iteration k, the algorithm guesses
Fk = proj[k−v,k](f) and computes the set Sk(Fk) of states that can be covered at round k

under f. These sets are computed incrementally along the prefixes of Fk, called progressions,
which are considered in increasing order. For each prefix, we check whether a first write to
the last register is feasible, that is, whether some coverable location is the source of such a
write; we reject the computation otherwise.

Algorithm 2 provides the skeleton of this procedure. In Line 3 of Algorithm 2, the
sequence of registers Fk is constructed from Fk−1 by removing the registers at round (k−v−1)
and non-deterministically inserting some registers at round k. By convention, in the special
case where k = 0, F0 is set to a sequence of registers of round 0. From Line 4 on, one
considers the successive progressions of Fk, i.e., prefixes of increasing length, Line 5 setting
f to the prefix of Fk of length i. At Line 7, the set of coverable states at round k for
progression f = g :ξ is inherited from the one for progression g.
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Algorithm 2 Non-deterministic polynomial space algorithm to compute the set of coverable
states round by round.

Variables computed : F = (Fk)k∈N, (Sk(f))k∈N,f∈Prefixes(Fk)
1 Initialisation: S0(ε) := {q0}; ∀(k, f) ̸= (0, ε), Sk(f) := ∅; ;
2 for k from 0 to +∞ do
3 non-deterministically choose Fk from Fk−1 ;
4 for i from 0 to length(Fk) do
5 f := prefixi(Fk) ;
6 if f ̸= ϵ then
7 Let f = g :ξ, and set Sk(f) := Sk(f) ∪ Sk(g);
8 add to Sk(f) the states that can be covered from round k−1 by Inc moves;
9 if first write to last(f) is feasible then

10 saturate Sk(f) by read and write moves;
11 else
12 Reject;

The next line requires an extra definition. For every k ∈ N and every prefix f of Fk, the
synchronisation ϕkk−1(f) is the longest prefix of Fk−1 that coincides with f on rounds k−v
to k−1, i.e. such that proj[k−v,k−1](ϕkk−1(f)) = proj[k−v,k−1](f). This is always well defined
since Fk is obtained from Fk−1 by removing registers of round k−v−1, and inserting registers
of round k. So ϕkk−1(f) can be obtained from f by removing registers of round k, and inserting
back those of round k−v−1 that, in Fk−1, are before the first register of round in [k−v, k−1]
that is not in f . Similarly, we define the prefixes of f corresponding to previous rounds. For
every r < k−1 and every prefix f of Fk, the synchronisation ϕkr (f) is defined inductively
by ϕkr (f) := ϕr+1

r (ϕkr+1(f)), so that ϕkr (f) := ϕr+1
r (ϕr+2

r+1(. . . (ϕk−1
k−2(ϕkk−1(f))) . . . )). Last, by

convention, ϕkk(f) := f .

▶ Example 20. We illustrate the notion of synchronisation function on a toy example.
Consider the sequence of registers F1 = α1 :β1 :γ0 : δ0 : ϵ1 : ζ0, where the subscripts denote
the rounds, and assume that v = 1. The sequence F2 is obtained from F1 by removing
the round 0 registers γ0, δ0, ζ0, and by inserting some registers of round 2. For instance,
one nondeterministically construct F2 = α1 : η2 : β1 : θ2 : ϵ1. In that case, for instance
ϕ2

1(α1 : η2 : β1) = α1 : β1 : γ0 : δ0; in words, when we are at iteration 2 with progression
α1 :η2 :β1, the corresponding progression at iteration 1 is α1 :β1 :γ0 :δ0. Also, ϕ2

1(α1 :η2) = α1
and ϕ2

1(α1 :η2 :β1 :θ2) = α1 :β1 :γ0 :δ0 :ϵ1 :ζ0.
On iteration further, one could have F3 = η2 : κ3 : θ2 and thus ϕ3

1(η2 : κ3) = ϕ2
1(ϕ3

2(η2 :
κ3)) = ϕ2

1(α1 :η2 :β1) = α1 :β1 :γ0 :δ0. ⌟

Now, Sk(f) is defined in two steps. First, Line 8 adds to Sk(f) the states that can
be immediately obtained by an Inc move from states coverable at round k−1. Formally,
Sk(f) := Sk(f) ∪ {q′ ∈ Q | ∃q ∈ Sk−1(ϕkk−1(f)), (q, Inc, q′) ∈ ∆}. Line 9 then checks that
a first write to the last register in f is feasible; that is, if f = g : rgα[k], then, one checks
whether there exists a write transition (q,writeα(x), q′) ∈ ∆ with x ̸= d0 and q ∈ Sk(g).
Second, in Line 10, we saturate Sk(f) by all possible moves at round k. Formally, we add
every state q′ ∈ Q \ Sk(f) such that there exist q ∈ Sk(f) and (q, a, q′) ∈ ∆ where action a

satisfies one of the following conditions:
a = read−j

α (d0) and rgα[k−j] does not appear in f ;
a = read−j

α (x) with x ̸= d0, rgα[k−j] appears in f and there exist q1, q2 ∈ Sk−j(ϕkk−j(f))
such that (q1,writeα(x), q2) ∈ ∆;
a = writeα(x) and rgα[k] appears in f .
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In Line 12, the computation is rejected since the guessed first-write order is not feasible.

Characterisation of the sets Sk(Fk) computed in Algorithm 2

For a family of first-write order projections F = (Fk)k∈N and a round k, we define
Qcover(F , k) = {q | ∃ρ : σinit

∗−→ σ s.t. (q, k) ∈ loc(σ) and ∀r ≤ k, proj[r−v,r](fwo(ρ)) = Fr}.
In words, Qcover(F , k) is the set of states that can be covered at round k by an execution
whose first-write order projects to the family F on windows of size v.

Observe that the only non-deterministic choice in Algorithm 2 is the choice of the
sequences Fk; hence, for a given F = (Fk)k∈N, there is at most one non-rejecting computation
whose first-write order projections agrees with family F . In that case, we say that the F-
computation of Algorithm 2 is non-rejecting.

▶ Theorem 21. For F = (Fk)k∈N a family of projections, if the F-computation of Algorithm 2
is non-rejecting, then the computed sets (Sk(Fk))k∈N satisfy, for all k ∈ N, Sk(Fk) =
Qcover(F , k). Also, for any execution ρ from σinit, letting F = (proj[k−v,k](fwo(ρ)))k≥0, the
F-computation of Algorithm 2 is non-rejecting.

Building on Algorithm 2, our objective it to design a polynomial space algorithm to decide
the safety problem for round-based register protocols. Theorem 21 shows the correctness of
the nondeterministic procedure in the following sense: a non-rejecting computation computes
all coverable states for the guessed first-write order, and any possible first-write order admits
a corresponding non-rejecting computation. To conclude however, the space complexity
should be polynomial in the size of the protocol, and termination must be guaranteed by
some stopping criterion.

Staying within space budget. As presented, Algorithm 2 needs unbounded space to execute
since it stores all sequences of first-write orders Fk and all sets Sk(f). To justify that
polynomial space is sufficient, we first observe that some computed values can be ignored
after each iteration. Precisely, iteration k only uses variables of iteration k−1 for increments
and of iterations k−v to k−1 for read/write moves. Thus, at the end of iteration k, all
variables indexed with round k−v can be forgotten. It is thus sufficient to store the variables
of v+1 consecutive rounds.

To conclude, observe also that the maximum length of any sequence Fk is d(v+1).
Therefore each Fk has at most d(v+1)+1 prefixes, and there are at most (d(v+1)+1)(v+1)
sets Sr(f) with r ∈ [k−v, k] for a fixed round number k. We also do not need to store the
value of k. All in all, the algorithm can be implemented in space complexity O(Q · d · v2).

Ensuring termination. To exhibit a stopping criterion, we apply the pigeonhole principle
to conclude that after a number of iterations at most exponential in Q · d · v2, the elements
stored in memory repeat from a previous iteration, so that the algorithm starts looping. If
qerr was not covered at that point, it cannot be covered in further iterations. One can thus
use an iteration counter, encoded in polynomial space in the size of the protocol, to count
iterations and return a decision when the counter reaches its largest value.

Note that, for negative instances of the safety problem, this gives an exponential upper
bound on the round number at which qerr is covered. Combined with Corollary 8, it yields
an exponential upper bound on the cutoff too. Both match the lower bounds established in
Propositions 9 and 12.

▶ Corollary 22. Let P be a round-based register protocol, and qerr an error state. If (P, qerr)
is a negative instance of the safety problem, then there exist K,N ∈ N both exponential in |P|
such that there exist k ≤ K and a concrete execution π : initN

∗−→ γ such that (qerr, k) ∈ loc(γ).



N. Bertrand, N. Markey, O. Sankur, and N. Waldburger 113:15

With the space constraints and stopping criterion discussed above, the nondeterministic
algorithm decides the safety problem for round-based register protocols. Indeed, it suffices
to execute Algorithm 2 up until iteration K and check whether qerr appears in one the sets
Sk(Fk). If qerr is found in some Sk(Fk) with k ≤ K, then qerr ∈ Qcover(F , k), where (Fr)r≤k
is the family of projections picked by the computation of the algorithm. Thus, the protocol
is unsafe. Conversely, if the protocol is unsafe, then there exist k ≤ K and ρ : σinit

∗−→ σ

such that (qerr, k) ∈ loc(σ). Letting F = (proj[r−v,r](fwo(ρ)))r∈N, the F-computation of the
algorithm is non-rejecting, and since qerr ∈ Qcover(F , k), one has qerr ∈ Sk(Fk).

3.4 PSPACE lower bound
▶ Theorem 23. The safety problem for round-based register protocols is PSPACE-hard, even
for fixed v = 0 and fixed d = 1.

Proof. The proof is by reduction from the validity of QBF.
From a 3-QBF instance, we define a round-based register protocol PQBF with an error state

qerr so that the answer to the safety problem is no if and only if the answer to QBF-validity
is yes, i.e., state qerr is coverable if, and only if, the QBF instance is valid. This proves that
the safety problem is coPSPACE-hard, and therefore that it is PSPACE-hard since PSPACE =
coPSPACE.

The protocol PQBF that we construct from a QBF instance is partly inspired by the
binary counter from Figure 3. Recall that in BCm, each bit is represented by a subprotocol,
and every round corresponds to an increment of the counter value. In PQBF, each variable
is represented by a subprotocol, and every round corresponds to considering a different
valuation and evaluating whether it makes the inner SAT formula true. PQBF uses a single
register per round (d = 1), and the subprotocol corresponding to variable x writes at each
round the truth value of x in the considered valuation. The protocol is designed to enumerate
all relevant valuations, and take the appropriate decision about the validity.

We fix an instance ϕ of 3-QBF over the 2m variables {x0, · · · , x2m−1}

ϕ = ∀x2m−1∃x2m−2∀x2m−3∃x2m−4 . . . ∀x1∃x0
∧

1≤j≤p

aj ∨ bj ∨ cj ,

with for every j ∈ [1, p], aj , bj , cj ∈ {xi,¬xi | i ∈ [0, 2m−1]} are the literals and write ψ for
the inner 3-SAT formula.

From ϕ we construct a round-based register protocol on the data alphabet

D := {waiti, yesi, noi | i ∈ [0, 2m]} ∪ {xi,¬xi | i ∈ [0, 2m−1]} ∪ {d0} ,

that in particular contains two symbols xi and ¬xi for each variable xi. Moreover, we let
v = 0 and d = 1.

Thanks to Proposition 10, when v = 0 and d = 1, all coverable locations are compatible,
for every finite number of coverable locations, there exists an execution that covers all these
locations. We therefore do not have to worry about with which execution a location is
coverable, and we will simply write that a location is coverable or is not coverable and that a
symbol can be written or cannot be written to a given register.

The protocol we construct is represented in Figure 5; it contains several gadgets that
we detail in the sequel. Before that we provide a high-level view of PQBF. In PQBF, each
variable xi is represented by a subprotocol Gi, and every round corresponds to considering a
different valuation and evaluating whether it makes the inner SAT formula true with the
gadget Pcheck(ψ). The gadget Gi writes at each round the truth value of xi in the considered
evaluation. The protocol enumerates all valuations: a given round k will correspond to one
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q0

gadget
Pcheck(ψ)
(Figure 6)

...gadget G0
(Figure 7)

gadget G2m−1
(Figure 7)

qyes qno qint qerrif yes

Inc
write(yes0)

if no

Inc
write(no0)

Inc

read(yes2m)

Figure 5 Overview of the protocol PQBF. All transitions to gadgets go to their initial states.

valuation of the variables of ψ, in which variable x is true if x can be written to rg[k], and
false if ¬x can be written to rg[k]. The enumeration of the valuations and corresponding
evaluations of ψ are performed so as to take the appropriate decision about the validity of
the global formula ϕ.

We start by describing the gadget Pcheck(ψ), depicted in Figure 6, that checks whether ψ
is satisfied by the valuation under consideration. State qyes corresponds to ψ evaluated to

qψ q1 q2 ... qyes

qno

read(a1)

read(b1)
read(c1)

read(a2)

read(b2)
read(c2)

read(¬a1)
read(¬b1)
read(¬c1)

read(¬a2)
read(¬b2)
read(¬c2)

read(¬a3)
read(¬b3)
read(¬c3)

Figure 6 Gadget Pcheck(ψ) that checks whether ψ is satisfied by the current valuation.

true and qno corresponding to ψ evaluated to false. Note that we allow transitions labelled by
sequences of actions; for instance the transition from state qψ to state qno consists of three
consecutive reads. The following lemma proves that the gadget Pcheck(ψ) indeed checks how
ψ evaluates for the current valuation.

▶ Lemma 24. Let k ∈ N. Suppose that (qψ, k) is coverable and that we have a valuation ν

of the variables of ψ such that, for every i ∈ [0, 2m−1]:
if ν(xi) = 1, then xi can be written to rg[k], and ¬xi cannot,
if ν(xi) = 0, then ¬xi can be written to rg[k], and xi cannot.

Then (qyes, k) is coverable if and only if ν |= ψ, and (qno, k) is coverable if and only if ν |= ¬ψ.

We now explain how valuations are enumerated, and how the different quantifiers are
handled. The procedure next, given valuation ν, computes the next valuation next(ν) that
needs to be checked. Eventually, the validity of the formula will be determined by checking
whether ν0 |= ψ (where ν0 assigns 0 to all variables) and nextk(ν0) |= ψ for increasing values
of k ≥ 1.
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Let ν a valuation of all variables, and define the valuation next(ν). Let ϕi denote
the subformula Qxi . . . ∀x1∃x0ψ where Q = ∃ if i is even, and Q = ∀ otherwise. We
write ν |= ϕi when ϕi is true when its free variables x2m−1, . . . , xi+1 are set to their
values in ν. The procedure next uses variables bi ∈ {yes, no,wait} for each i ∈ [0, 2m],
whose role is the following. We will set b0 = yes if ν |= ψ, and b0 = no otherwise. For
any 1 ≤ i ≤ 2m−1, bi = yes means ν |= ϕi; bi = no means ν ̸|= ϕi; while bi = wait means that
more valuations need to be checked to determine whether ν |= ϕi or not. Given a valuation
ν, the procedure next computes, at each iteration i, the truth value of xi in valuation next(ν)
and the value of bi+1. After 2m iterations, this provides the new valuation next(ν) against
which ψ must be checked. Formally, b0 = yes if ν |= ψ, and b0 = no otherwise, and for all
i ∈ [0, 2m− 1]:

If bi = wait, then next(ν)(xi) := ν(xi) and bi+1 := wait.
Otherwise

If i is even (existential quantifier).
∗ if bi = yes, then next(ν)(xi) := 0 and bi+1 := yes,
∗ if bi = no and ν(xi) = 0, then next(ν)(xi) := 1 and bi+1 := wait,
∗ if bi = no and ν(xi) = 1, then next(ν)(xi) := 0 and bi+1 := no.
if i is odd (universal quantifier),
∗ if bi = no, then next(ν)(xi) := 0 and bi+1 := no,
∗ if bi = yes and ν(xi) = 0, then next(ν)(xi) := 1 and bi+1 := wait,
∗ if bi = yes and ν(xi) = 1, then next(ν)(xi) := 0 and bi+1 := yes.

Note that variable b2m is computed but not used in the computation. Its value will play the
role of a result, e.g., in Lemma 25.

The following lemma formalizes how validity can be checked using next. It is easily proven
by induction on m.

▶ Lemma 25. ϕ is valid if and only if, when iterating next from valuation ν0, one eventually
obtains a computation of next that sets b2m to yes. Otherwise, one eventually obtains a
computation of next that sets b2m to no.

▶ Example 26. Let us illustrate the next operator and Lemma 25 on a small example.
Assume

ϕ = ∃x2∀x1∃x0 ¬x2 ∧ ¬x1 ∧ (x1 ∨ ¬x0),

which is not a valid formula. To determine that ϕ is not valid, we start by checking the
valuation ν0 = (0, 0, 0), writing ν0 as the tuple (ν0(x0), ν0(x1), ν0(x2)). Let ν = next(ν0). ν0
satisfies the inner formula, hence we set b0 = yes. By following the procedure of next, we
obtain ν(x0) = 0, b1 = yes in the first iteration (in fact, ν0 |= ϕ0); and ν(x1) = 1, b2 = wait
in the second iteration. In fact, even though ν0 |= ψ, because x1 is quantified universally,
we cannot yet conclude: we must also check whether ψ holds by setting x1 to 1. This is
what b2 = wait means, and this is why ν(x1) is set to 1. Lastly, we obtain ν(x2) = 0 and
b3 = wait, therefore ν = (0, 1, 0).

Let ν′ = next(ν) = next2(ν0). We observe that ν ̸|= ψ and set b0 = no. We then have
ν′(x0) = 1, b1 = wait, and therefore ν′(x1) = 1 and ν′(x2) = 0. In the end, ν′ = (0, 1, 1).

The computation of next3(ν0) then sets x2 to 1 because no valuation with x2 = 0 satisfied
the formula. We obtain next3(ν0) = (1, 0, 0) and next4(ν0) = (1, 0, 1). The computation of
next5(ν0) sets b2m to no, establishing that ϕ is not valid. ⌟
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Now, we define, for all i ∈ [0, 2m−1], a gadget Gi that will play the role of variable xi. At
each round, gadget Gi receives from gadget Gi−1 a value in {waiti, yesi, noi} (except for gadget
G0 which receives this value from Pcheck(ψ)). It transmits a value in {waiti+1, yesi+1, noi+1}
to Gi+1, and modifies the value of variable xi accordingly, writing either xi or ¬xi to the
register. These gadgets Gi are given in Figure 7a if xi is existentially quantified (i.e., i even),

qfalse,i qtrue,i

write(¬xi)
Inc

read(waiti)
write(waiti+1)

write(¬xi)
Inc

read(yesi)
write(yesi+1)

write(¬xi)
Inc

read(noi)
write(waiti+1)

write(xi)
Inc

read(waiti)
write(waiti+1)

write(xi)
Inc

read(yesi)
write(yesi+1)

write(xi)
Inc

read(noi)
write(noi+1)

(a) Gadget Gi for existentially quantified variable
xi (i.e., i even).

qfalse,i qtrue,i

write(xi)
Inc

read(waiti)
write(waiti+1)

write(xi)
Inc

read(noi)
write(noi+1)

write(xi)
Inc

read(yesi)
write(waiti+1)

write(¬xi)
Inc

read(waiti)
write(waiti+1)

write(¬xi)
Inc

read(yesi)
write(yesi+1)

write(¬xi)
Inc

read(noi)
write(noi+1)

(b) Gadget Gi for universally quantified variable
xi (i.e., i odd).

Figure 7 Illustration of the gadgets Gi.

and Figure 7b if xi is universally quantified (i.e., i odd). Using those gadgets Gi and Pcheck(ψ)
together with the earlier described gadget Pcheck(ψ), we define the protocol PQBF represented
in Figure 5.

Finally, the following lemma justifies the correctness of our construction by formalising
the relation between next and PQBF.

▶ Lemma 27. Let k ∈ N and νk := nextk(ν0), the valuation obtained by applying next k
times from ν0 := 02m. For all i ∈ [0, 2m−1]:

(qfalse,i, k) is coverable if and only if νk(xi) = 0,
(qtrue,i, k) is coverable if and only if νk(xi) = 1,
¬xi can be written to rg[k] if and only if νk(xi) = 0,
xi can be written to rg[k] if and only if νk(xi) = 1.

Moreover, if k > 0, then for all j ∈ [0, 2m]:
yesj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to yes,
noj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to no,
waitj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to wait.
Combining Lemma 27 with Lemma 25 proves that there exists a register to which yes2m

can be written if and only if ϕ is valid. Also, qerr is coverable in PQBF if and only if there
exists a register to which yes2m can be written, concluding the proof of Theorem 23. ◀

It may seem surprising that the safety problem is PSPACE-hard already for d = 1 and
v = 0, i.e., with a single register and no visibility on previous rounds. For single register
protocols without rounds, safety properties can be verified in polynomial time with a simple
saturation algorithm. This complexity blowup highlights the expressive power of rounds,
independently of the visibility on previous rounds.
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Theorems 19 and 23 yield the precise complexity of the safety problem.

▶ Corollary 28. The safety problem for round-based register protocols is PSPACE-complete.

4 Conclusion

This paper makes a first step towards the automated verification of round-based shared-
memory distributed algorithms. We introduce the model of round-based register protocols
and solves its parameterized safety verification problem. Precisely, we prove that this problem
is PSPACE-complete, providing in particular a non-trivial polynomial space decision algorithm.
We also establish exponential lower and upper bounds on the cutoff and on the minimal
round at which an error is reached.

Many interesting extensions could be considered, such as assuming the presence of a
leader as in [13], or considering other properties than safety. In particular, for algorithms
such as Aspnes’, beyond validity and agreement that are safety properties, one would need
to be able to handle liveness properties (possibly under a fairness assumption) to prove
termination.
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Abstract
We present an algorithm that constructs a deterministic Büchi automaton in polynomial time from
given sets of positive and negative example words. This learner constructs multiple DFAs using
a polynomial-time active learning algorithm on finite words as black box using an oracle that we
implement based on the given sample of ω-words, and combines these DFAs into a single DBA. We
prove that the resulting algorithm can learn a DBA for each DBA-recognizable language in the limit
by providing a characteristic sample for each DBA-recognizable language. We can only guarantee
completeness of our algorithm for the full class of DBAs through characteristic samples that are, in
general, exponential in the size of a minimal DBA for the target language. But we show that for
each fixed k these characteristic samples are of polynomial size for the class of DBAs in which each
subset of pairwise language-equivalent states has size at most k.
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1 Introduction

The problem of constructing finite automata from example words (also referred to as passive
learning of automata) has been investigated since the 1970ies [8, 26, 14], see [17] for a survey.
The task is to develop an algorithm that infers a finite automaton from a given sample
S = (S+, S−) such that all words from the finite set S+ of positive examples are accepted,
and all words from the finite set S− are rejected. Such an algorithm can be viewed as a
way of learning an automaton from a given set of examples, and we therefore refer to such
algorithms as learners in the following.

Besides the running time of a learner, it is also of interest for which languages it can
learn a finite automaton. In order to characterize learners that are robust and generalize
from the sample, Gold proposed the notion of “learning in the limit” [13]. Given a class C
of regular languages, a learner is said to learn every language in C in the limit, if for each
language L ∈ C there is a characteristic sample SL that is consistent with L and such that
the learner returns a DFA for L for each sample that is consistent with L and contains all
examples from SL. In this case, we also say that the learner is complete for the class C.

In [14] Gold presents a learner that constructs in polynomial time a DFA for a given
sample and that can learn every regular language in the limit. Moreover, for each regular
language L there is a characteristic sample of size polynomial in the minimal DFA for L.
Such a learner is said to learn every regular language in the limit from polynomial data.
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The key property that is used in most learning algorithms for regular languages is the
characterization of regular languages by the Myhill/Nerode congruence: For a language L,
two words u, v are equivalent if they cannot be distinguished by the language, that is, if
for each word w, either both uw, vw are in L, or both are not in L. It is a basic result
from automata theory that L is regular iff the Myhill/Nerode congruence has finitely many
classes, and that these classes can be used as state set of the minimal DFA for L (see basic
textbooks on automata theory, e.g. [15]). The idea for Gold’s algorithm is to infer the
Myhill/Nerode congruence from the sample S = (S+, S−) based on the following idea. Two
words u, v cannot be equivalent for any language that is consistent with S, if there is a
word w such that uw ∈ S+ iff vw ∈ S−. Roughly speaking, Gold’s algorithm uses such
“obviously distinguishable” words as states for a DFA. If the sample does not contain enough
information, it can happen that the resulting DFA is not consistent with the sample, and
then the algorithm simply defaults to returning a DFA for S+. The algorithm RPNI [21]
avoids this problem by starting from a tree-shaped DFA for S+, and then trying to merge
states of this DFA in a specific order. If a merge leads to a DFA that is inconsistent with
the sample, then the merge is discarded. Otherwise, the two states are merged, and the
algorithm continues with this smaller DFA. This algorithm runs in polynomial time and
learns every regular language in the limit from polynomial data [21]. Since then, many
variations of such state merging techniques have been proposed and implemented, e.g., in
the framework learnlib [16] and the library flexfringe [27]

While there is a lot of work on construction of DFAs from samples, very little is known
about this problem for automata on infinite words, so called ω-automata. These have been
studied since the early 1960s as a tool for solving decision problems in logic [11] (see also [24]),
and are nowadays used in procedures for formal verification and synthesis of reactive systems
(see, e.g., [6, 25, 19] for surveys and recent work). Syntactically, ω-automata are very similar
to NFA resp. DFA (standard nondeterministic resp. deterministic finite automata on finite
words), and they also share many closure and algorithmic properties. However, while the
definition of the Myhill/Nerode congruence can easily be lifted to ω-languages, it does not give
a characterization of the regular ω-languages. In particular, deterministic ω-automata may
need several different language equivalent states in order to accept some regular ω-languages
(as opposed to DFAs). As a consequence, deterministic ω-automata do not share the good
properties of DFAs, e.g., minimization of deterministic Büchi automata is NP-hard [23], and
also the methods for learning DFAs cannot be directly transferred to ω-automata. In fact, the
current algorithms for constructing deterministic ω-automata from examples are adaptions
of the algorithm of Gold [5] and of RPNI [9], and they are only known to learn ω-languages
with informative right congruence (IRC) in the limit. The class IRC [4] consists of those
languages that can be accepted by deterministic ω-automata without different language
equivalent states, and thus can be handled by an adaption of the methods from finite words.

In this paper we propose a passive learning algorithm that is complete for the class of
ω-languages that can be accepted by deterministic Büchi automata (DBA) (meaning that it
can learn every language form that class in the limit). To the best of our knowledge, this is the
first learning algorithm that is complete for a relevant class of ω-languages beyond languages
with IRC. While DBA languages still form a strict subclass of the regular ω-languages, each
regular ω-language is a finite Boolean combination of DBA languages [24], and therefore the
DBA languages form an important class for understanding learning problems for ω-automata.

Our algorithm uses a learning algorithm for DFAs as sub-procedure, but interestingly
an active learning algorithm. Such algorithms have to infer the DFA of a target language
based on queries that are answered by an oracle. Angluin proposed an algorithm that learns
the minimal DFA for a target language L based on membership and equivalence queries
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in polynomial time [1]. A membership query asks for a specific word if it is in the target
language, and the oracle answers “yes” or “no”. An equivalence query asks if a hypothesis
DFA accepts the target language, and the oracle provides a word as counterexample if it does
not. We make use of such an active learning algorithm as black box in order to infer a set of
DFAs that are then used to build the DBA. Roughly, our algorithm works as follows for a
given ω-sample S = (S+, S−) consisting of ultimately periodic ω-words (the use of ultimately
periodic words is standard in learning of ω-automata [18, 3, 5, 9]):

Infer a right congruence ∼ that is consistent with S. This can be done using the same
methods as for finite words.
For each class of ∼ learn a DFA using an active learning algorithm as black box, answering
the queries of this algorithm based on the information in S.
Combine the DFAs into a DBA: Start in the DFA for the initial class of ∼. Whenever a
DFA reaches an accepting state, redirect the transition into the initial state of the DFA
for the current class, and make this transition accepting for the Büchi condition.1

This algorithm runs in polynomial time and can learn every DBA language in the limit. The
characteristic sample for a DBA language L that we use for showing the learning in the
limit result can be of size exponential in a smallest DBA for L. But we also show that it is
polynomial if we fix the size of sets of pairwise language equivalent states in the DBAs. This
generalizes known results for learning in the limit from polynomial data for languages with
IRC [5, 9].

Besides the work on passive learning, there are also some papers on active learning of
ω-languages from queries. In general, it seems that efficient active learning of deterministic
omega-automata is more difficult than efficient passive learning. This is witnessed by the
fact that a polynomial time active learner (with membership and equivalence queries) yields
an efficient passive learner, and that polytime active learning IRC ω-languages is not easier
than polytime active learning general omega-languages (see [9] for both results). For this
reason, the currently known active learning algorithms either learn different representations
for ω-languages, as for example families of DFAs in [3], or include syntactic information on
the target automaton in the form of loop index queries [20].

The remainder of the paper is structured as follows. In Section 2 we introduce basic
terminology and definitions used in the paper. Subsequently, in Section 3 we present our
learning algorithm and prove that it is a consistent polynomial time DBA-learner. In Section 4
we prove the completeness result that our algorithm can learn every DBA language in the
limit. In Section 5 we analyze the size of the characteristic samples from the completeness
proofs, and we conclude in Section 6.

2 Preliminaries

For a finite alphabet Σ we denote by Σ∗ and Σω the set of all finite and infinite words over
Σ, respectively and define Σ+ = Σ∗ \ {ε}, where ε denotes the empty word. A language
is a subset of Σ∗ and an ω-language a subset of Σω. We sometimes simply write language
instead of ω-language, the meaning should always be clear from the context. We use ⪯ to
denote the canonical or length-lexicographic order on finite words over Σ, in which words
are first ordered by length, and words of same length are ordered lexicographically for some
underlying linear order of the alphabet. For a finite word u and a finite or infinite word v,

1 We use Büchi acceptance on transitions, i.e., a run is accepting if it passes infinitely many accepting
transitions.
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we write u ⊑ v if ux = v for some x ∈ Σ∗ or x ∈ Σω, respectively, and call u a prefix of v.
We use Prf(w) to denote the set of all prefixes of a finite or infinite word w and extend this
notation to a set X of words in the natural way, i.e. Prf(X) =

⋃
w∈X Prf(w).

We say that (u, v) ∈ Σ∗ × Σ+ is a representation of w ∈ Σω if uvω = w. If an ω-word
w has such a representation, we call w ultimately periodic, and we denote the set of all
possible representations Σ∗ × Σ+ with UP. For a finite word u and a (ω)-language L, we
define u−1L = {w | uw ∈ L}. Note that if L is an ω-language, then u−1L is an ω-language
as well. For a word w, we use w[i, j] to denote the infix of w from position i to position j

and set w[i, j] = ε if i > j. We write (u, v) ⪯ (u′, v′) if u ⪯ u′ or u = u′ and v ⪯ v′. For a
set X ⊆ UP of representations, we define JXKω = {uvω | (u, v) ∈ X}.

A deterministic transition system (TS) is given as a tuple T = (Q, Σ, ι, δ), where Q is
a finite, non-empty set of states, Σ is the finite alphabet, ι ∈ Q is the initial state and
δ : Q× Σ→ Q is the transition function. We use |T | to refer to the size of T , which is the
number of states in Q. The run of T on some word w = w0w1 . . . ∈ Σ∗ ∪ Σω is the unique
(possibly infinite) sequence ρ = run(T , w) = q0w0q1w1 . . . with q0 = ι and qi+1 = δ(qi, wi)
for i < |w|. For a finite word w, we use T (w) to denote the last state of run(T , w). We define
the infinity set, referred to as inf(ρ), of a run ρ = q0w0q1w1 . . . , as the set containing all
pairs (q, a) such that there exist infinitely many positions i with qi = q and wi = a. For a
finite run ρ = q0w0 . . . wn−1qn and a set X ⊆ Q× Σ, we use ρ ∩X to denote the transitions
of ρ that are in X, i.e. ρ ∩X = {(qi, wi) ∈ X | i < n}.

By equipping T with a set of final states F ⊆ Q, we obtain a deterministic finite
automaton (DFA) A = (Q, Σ, ι, δ, F ). The language accepted by A is denoted as L(A) and
contains all words w ∈ Σ∗ such that T (w) ∈ F . By combining a transition system T with
a Büchi condition (on transitions), which is a set β ⊆ Q × Σ, we obtain a deterministic
Büchi automaton (DBA) A = (Q, Σ, ι, δ, β). Its accepted language L(A) contains all infinite
words w such that inf(run(T , w))∩β ≠ ∅. When we depict a DBA with acceptance condition
β in a figure, we underline the label a of a transition leaving the state q, if (q, a) ∈ β.
We can use the terminology for transition systems also for automata by simply ignoring
the acceptance component. Similarly, the size of an automaton is equal to the size of the
underlying transition system.

The class of DBA-recognizable languages is a strict subclass of the class of the regular
ω-languages, which are defined in terms of nondeterministic Büchi automata. We do not
detail the definition here because it is not relevant for our paper (see [24] for a survey of the
topic). It is well known that two regular ω-languages, and hence also two DBA-recognizable
languages, are equal iff they coincide on the ultimately periodic words [11] (see also [12]).

We call a relation ∼ ⊆ Σ∗ × Σ∗ a right congruence if u ∼ w implies ua ∼ wa for all
a ∈ Σ. For u ∈ Σ∗ we write [u]∼ for the set of all v ∈ Σ∗ with u ∼ v, also referred to as the
equivalence class of u. For a language L ⊆ Σ∗ or L ⊆ Σω, we define the right congruence of
L, denoted by ∼L, as u ∼L v iff u−1L = v−1L.

A right congruence ∼ defines the canonical TS T∼ = (Q∼, Σ, [ε]∼, δ∼) where Q∼ is the
set of classes in ∼ and δ([u]∼, a) = [ua]∼. Due to this correspondence, we write c ∈ Q∼ to
denote that c is a class of ∼. Similarly, we can associate with every TS T a congruence
∼T ⊆ Σ∗ × Σ∗, where u ∼T v iff T (u) = T (v). Let p, q be states of some automaton A that
accepts the language L, and let c be a class of ∼L. By abuse of notation, we use q ∈ c if A
reaches q on some word u ∈ c. Further, we write p ∼ q if p ∈ c and q ∈ c for some class c.
We use Lc for a class c of ∼L to denote the language u−1L for a u ∈ c.
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An ω-sample is a pair S = (S+, S−) with S+, S− ⊆ UP and JS+Kω ∩ JS−Kω = ∅. We
refer to words in S+ as positive, while those in S− are called negative. Since we only use
ω-samples in our algorithm, we often simply write sample instead of ω-sample. We only
consider finite samples, and the size of S, denoted as |S|, is defined as the sum of all |u|+ |v|
for (u, v) ∈ S+ ∪S−. Furthermore, we call a sample S = (S+, S−) consistent with a language
L, if L∩ JS−Kω = ∅ and JS+Kω ⊆ L. Similarly, an automaton A is called consistent with S if
L(A) is consistent with S. We say that u, v ∈ Σ∗ are separated by S if there exists a word
w ∈ Σω such that uw, vw ∈

(
JS+Kω ∪ JS−Kω

)
and

(
uw ∈ JS+Kω ⇔ vw ∈ JS−Kω

)
. A DFA D

is called prefix-consistent with the ω-sample S = (S+, S−) if for all w ∈ JS+Kω we have that
Prf(w) ∩ L(D) ̸= ∅ and Prf(JS−Kω) ∩ L(D) = ∅.

A right congruence ∼ is consistent with S if u ̸∼ v for all u, v ∈ Σ∗ that are separated
by S. In a partial TS T , the transition function δ can have undefined values. While the
definition of run also applies to partial TS, it is possible that the run of a partial TS on some
words is undefined. A partial TS T has a conflict with a sample S if there are u, v ∈ Σ∗ that
are separated by S but lead to the same state in T (which in particular means that the runs
of T on u and v must exist). Note that ∼ is consistent with S iff the corresponding TS T∼
has no conflict with S.

A passive learner (for DBAs) is a function f that maps ω-samples to DBAs. f is called a
polynomial-time learner if f can be computed in polynomial time. A learner f is consistent
if it constructs from each ω-sample S = (S+, S−) a DBA A such that S is consistent with
L(A). We say that f can learn every DBA language in the limit if for each DBA language
L there is a characteristic sample SL such that L(f(SL)) = L and f(SL) = f(S) for each
sample S that is consistent with L and contains SL (so f produces the same DBA for L

for all samples containing SL). For a class C of DBA languages we say that f can learn
every language in C in the limit from polynomial data if the characteristic samples for the
languages in C are of polynomial size (in the smallest DBA for the corresponding language).

We also consider the standard active learning scenario for DFAs, in which the learning
algorithm can obtain information on the target language L by posing membership and
equivalence queries to an oracle [1]. In the following let L be a regular language. An oracle T

for L answers a membership query mem(w) with either “yes” or “no”, depending on whether
the w is in the target language L or not. In an equivalence query equiv(AH), the active
learner proposes a hypothesis AH to T . If AH accepts precisely the target language L, the
oracle returns “yes”. Otherwise, T answers “no” and additionally provides the learner with a
word from the symmetric difference of L(AH) and L, which serves as a counterexample. We
make use of the following result.

▶ Theorem 1 ([1], Theorem 6). Let L be a regular language and T be an oracle for L. There
exists an active learner AL that returns the minimal DFA AL for L. Moreover, the runtime of
AL is polynomial in the size of the minimal DFA and the length of the longest counterexample
provided by T , and the size of all hypotheses used in equivalence queries is polynomial in the
size of AL.

3 A Learner for DBAs

In this section we introduce DBAInf (for DBA inference), a passive learner for deterministic
Büchi automata, and describe how it constructs a DBA from a finite ω-sample. We start
with an informal description of the underlying idea, then provide a formal description of the
learning algorithm, and finally show that DBAInf is a consistent polynomial time learner for
the class of DBAs.
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Figure 1 Illustrations for the high-level description of DBAInf. On the left a DBA A accepting
the words in which the infix aa appears infinitely often. The DFA D on the right is constructed in
an intermediate step of DBAInf from the ω-sample given in Example 2.

High-Level Description of the Idea

DFA-learners for languages of finite words are based on the fact that for the minimal DFA of a
regular language, there is a one-to-one correspondence between states and equivalence classes
of the right congruence of the language. DFA-learners basically extract a right congruence
from the sample (consisting of finite words) that is then used for defining the transition
system for the resulting DFA. The central obstacle in passive learning for ω-automata is
the lack of such a one-to-one correspondence between states and equivalence classes. For
example, the language L over the alphabet {a, b} consisting of all words in which the infix
aa occurs infinitely often cannot be recognized by a DBA with only one state. However, L

has only one equivalence class, since for all u ∈ Σ∗, w ∈ Σω we have uw ∈ L if and only if
w ∈ L. Thus, given an ω-sample that is consistent with L, the extracted right congruence
will only have one class since the ω-sample does not separate any words.

We explain the idea underlying DBAInf for languages with only one equivalence class
such as L, that is, if the sample does not separate any two words. The formal description
then also covers the general case.

Basically, DBAInf attempts to identify specific subwords, also referred to as the positive
patterns of L in the following description, that appear infinitely often precisely in words
belonging to L. Consider, for example, the DBA A depicted in Figure 1 on the left, which
accepts L. Regardless of which state A is in, reading the pattern aa makes A use an accepting
transition, which means aa is a positive pattern of L. On the right-hand side of Figure 1
a DFA D that accepts all positive patterns of L is depicted. From D we can now obtain a
DBA for L, which we refer to as DBA(D), by replacing each transition leading into a final
state (state aa in the example) with an accepting transition that leads to the initial state
(state ε in the example). In the example in Figure 1, the operation DBA(D) returns a DBA
isomorphic to A.

The core idea of DBAInf is to learn such a DFA for the positive patterns. For this purpose,
given some ω-sample S = (S+, S−), DBAInf uses an active learning algorithm AL for DFAs
as black-box, and answers the queries of this algorithm based on S. To ensure that DBA(D)
is consistent with S, we require that the active learning algorithm learns a DFA D that does
not accept any infix of a loop of a negative example, and that for any position in a positive
example an infix starting at this position is accepted. So whenever AL asks an equivalence
query for a hypothesis D, DBAInf checks whether D satisfies this condition and stops if yes.
Otherwise, a positive or negative example is found on which D violates the condition and a
corresponding finite word is returned.

▶ Example 2. Consider an ω-sample S = (S+, S−) with JS+Kω = {(aba)ω} and JS−Kω =
{bω, (ab)ω}. Recall that JS+Kω refers to the ω-words, while S+ itself is specified by pairs
(u, v) of finite words representing uvω. The precise representation of the ultimately periodic
words in JS+Kω and JS−Kω does not play any role. In the first step, DBAInf infers a right
congruence that is consistent with S. Since S does not separate any finite words, this
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Input: An ω-sample S = (S+, S−).
Output: The deterministic Büchi automaton A.
1. Extract a right congruence ∼ from S by constructing a TS T∼
2. Build a sample S(c) for each ∼-class c

3. Compute a DFA Dc = PrfCons(S(c)) for each class c of ∼
4. Return the DBA A := DBA(T∼, (Dc)c∈∼)

Figure 2 An overview of the algorithm DBAInf. The individual steps are explained in the text.

right congruence has only one class c = [ε]∼. For this class, DBAInf now uses an active
learning algorithm AL for DFAs. In order to answer the queries of AL, DBAInf constructs an
ω-sample S(c) with S

(c)
+ = {(ε, aab), (ε, aba), (ε, baa)}, representing all the suffixes of JS+Kω,

and S
(c)
− = {(ε, b), (ε, ab), (ε, ba)}, representing all the suffixes of JS−Kω starting at a position

in a loop (which is the same in this example as all suffixes of JS−Kω). The precise execution
of DBAInf now depends on the active learning algorithm AL that is used. We do not detail a
precise active learner here but simply explain how queries would be answered. The queries
that we use in this example correspond to a version of Angluin’s algorithm by Rivest and
Schapire [22], see also [7, Section 19.4].

AL starts by asking membership queries for ε, a, b, which are all answered negatively
because these are all prefixes of JS(c)

− Kω (and hence infixes of loops of negative examples from
S). Then AL asks an equivalence query for the DFA that rejects all words. Since this DFA
does not accept prefixes of all words in JS(c)

+ Kω, DBAInf selects the smallest (u, v) ∈ S
(c)
+

such that no prefix of uvω is accepted by the DFA. In this example this is (ε, aab). The
counterexample that is given to AL is the shortest prefix of J(ε, aab)Kω = (aab)ω that is not a
prefix of JS(c)

− Kω, in this case aa. After this counterexample, AL asks a few more membership
queries, namely for ba, aaa, ab, aba, aaaa, aaba which are answered negatively for prefixes of
JS(c)

− Kω (that is, ba, ab, aba), and positively for all other words. With this information, AL
asks an equivalence query for the DFA D shown in Figure 1. Since D accepts a prefix for
each word in JS(c)

+ Kω and rejects all prefixes of words in JS(c)
− Kω, the execution of AL ends.

Then DBAInf returns the DBA obtained by the operation DBA(D), which is isomorphic to
A in Figure 1. ◀

This idea can be generalized to more than one equivalence class by first extracting a
right congruence ∼ from S that is consistent with S, and then learning one DFA for each
equivalence class c of ∼ with a more refined definition of the samples S(c) that is illustrated
for a single class in Example 2. These DFAs are combined into a DBA by taking the product
of T∼ with the union of the Dc, and redirecting transitions of the DFAs that lead to an
accepting state into the initial state of the Dc for the current class c given by T∼. The details
are given in the formal description of the algorithm.

Formal Description of the Learner

The overall structure of the algorithm DBAInf in shown in Figure 2. The individual steps
are described in more detail below. In the description, S = (S+, S−) always refers to the
ω-sample that is the input for DBAInf. After the description, we illustrate the steps with an
example.

Step 1. The algorithm DBAInf starts by constructing a right congruence ∼ that is consistent
with S, represented by a TS T∼ = (Q∼, Σ, [ε]∼, δ∼). For obtaining an algorithm that can
learn every DBA language in the limit, it is important to use a method that can infer the right
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congruence ∼L of any DBA language L in the limit. This is possible by slightly modifying
one of the algorithms described in [5, 10], which learn ω-automata with an acceptance
condition, while we are only interested in a right congruence in this step. Because of this
different setting, we briefly describe a possible construction for T∼ similar to the algorithm
in [10]. The transition system T∼ is built incrementally by considering prefixes of positive
examples in JS+Kω that exit the transition system (via an undefined transition). In order to
guarantee termination in polynomial time, only prefixes up the length k · ℓ2 are considered,
with k = max{|u| | (u, v) ∈ S+} and ℓ = max{|v| | (u, v) ∈ S+}. The construction of T∼
proceeds as follows:

Start with only the initial state ε ∈ Q∼ and no transitions. Then repeat:
Pick the smallest u and a in canonical order such that ua is a prefix of a positive
example word, |ua| ≤ k · ℓ2, and δ∼(u, a) is not yet defined. If no such ua exists, exit
the loop.
If there is v ∈ Q∼ such that setting δ∼(u, a) = v does not lead to a conflict of T∼ with
S, then define δ∼(u, a) = v for the least such v in canonical order. Otherwise, add ua

to Q∼ and let δ∼(u, a) = ua.
If there remain positive examples in JS+Kω for which the run in T∼ is not defined (because
of missing transitions), complete T∼ by adding appropriate paths to disjoint loops for all
such elements of JS+Kω.
Finally, add a sink state as target for all remaining undefined transitions.

This construction runs in polynomial time (because of the limit on the length of the considered
ua, and since all tests can be carried out in polynomial time). By construction, T∼ has no
conflict with S, and hence the associated right congruence ∼ is consistent with S, as required.
In the following, we identify states in Q∼ with the corresponding equivalence classes of ∼.

Step 2. For each equivalence class c ∈ Q∼, we define a sample S(c) = (S(c)
+ , S

(c)
− ) based on

the infixes of example words starting in positions i such that T∼(w[1, i− 1]) = c. Formally,
we have that S

(c)
+ contains for each xw ∈ JS+Kω with T∼(x) = c the minimal (u, v) ∈ UP

such that w = uvω. We define S
(c)
− to contain for each xw ∈ JS−Kω with T∼(x) = c the

minimal (ε, v) such that w = vω and T∼(xv) = c, if such a word v exists.
Note that this definition formally ranges over infinitely many x, but for each (u, v) in S

it suffices to consider the prefixes x of length at most |u|+ |v||Q∼| because the run of uvω in
T∼ has an initial part of length at most u followed by a period of length at most |v||Q∼|.
This observation gives a polynomial bound on the number of elements in S(c) and also on
their size.

Step 3. In the third step, DBAInf constructs for each class c of ∼ a DFA Dc that is
prefix-consistent with S(c). This construction is achieved by passing S(c) to the algorithm
PrfCons, which is depicted in Algorithm 1. Given an ω-sample R = (R+, R−), PrfCons uses a
polynomial-time active learning algorithm AL for DFAs, and answers the queries of AL based
on R. We assume that R− only contains periodic words, which is satisfied by the samples
S(c) on which PrfCons is applied.

▶ Lemma 3. For every ω-sample R = (R+, R−) with R− ⊆ {ε} × Σ+, PrfCons terminates
in polynomial time and returns a DFA that is prefix-consistent with R.

Proof. We first show that all answers given to AL during the execution of PrfCons are
consistent with the language P = Σ∗ \ Prf(JR−Kω): If a membership query mem(x) is
answered positively, then x /∈ Prf(JR−Kω) and hence x ∈ P . Analogously, a negative answer
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Algorithm 1 PrfCons.

Input: An ω-sample R = (R+, R−) with R− ⊆ ({ε} × Σ+).
Output: A DFA D that is prefix-consistent with R.
Simulate an active learning algorithm AL for DFAs that satisfies the properties of
Theorem 1, and answer its queries as follows:

Query mem(x)
if x ∈ Prf(JR−Kω) then

answer “no”
else

answer “yes”
Query equiv(D)

if D is prefix-consistent with R then
stop simulation and output D

else if there exists a w ∈ JR+Kω with Prf(w) ∩ L(D) = ∅ then
pick the minimal (u, v) ∈ R+ such that uvω ∩ L(D) = ∅
return shortest x ⊑ uvω with x /∈ Prf(JR−Kω) as counterexample

else
let (ε, v) ∈ R− be minimal such that Prf(vω) ∩ L(D) ̸= ∅
return shortest prefix x of vω with x ∈ L(D) as counterexample

to mem(x) implies x ∈ Prf(JR−Kω), meaning x /∈ P . For an equivalence query equiv(D), we
distinguish the two cases in PrfCons. In the first case, the returned counterexample x is
not accepted by D and is not in Prf(JR−Kω). So x ∈ P and giving x as counterexample
means that it should be accepted. In the other case, the query is answered with a prefix
x ∈ Prf(vω) ∩ L(D) for some (ε, v) ∈ R− such that x is accepted by D. So x /∈ P and should
be accepted. Hence, all answers provided to AL are consistent with the language P .

Since a DFA that accepts P is prefix-consistent with R, the execution of AL either
terminates with a DFA for P , or it terminates earlier if a prefix-consistent DFA D is used in
an equivalence query. Therefore, all hypotheses D used by AL are of size polynomial in the
size of a minimal DFA for P (see Theorem 1). It is not hard to verify that P can be accepted
by a DFA whose size is polynomial in |R| using the prefixes of JR−Kω as non-accepting states,
and introducing a loop on v for each (ε, v) ∈ R− when reaching a prefix of vω that is not
a prefix of any other word in JR−Kω. Adding an accepting sink for all missing transitions
results in a DFA for P . (A similar construction is described in more detail in [5] for the
construction of the “table look-up DPA”.)

To conclude that the execution of AL terminates in polynomial time, it remains to
verify that the lengths of the provided counterexamples are indeed polynomial in |R|. The
counterexample for an equivalence query on D is a shortest word that is prefix of an example
from R and is accepted/rejected by D (depending on the case). These words are clearly
polynomial in the size of R and D, and hence polynomial in the size of R. ◀

Step 4. The constructed DFAs are combined into a DBA by taking the product of T∼ with
the union of the Dc, and redirecting transitions of the DFAs that lead to an accepting state
into the initial state of the Dc for the current class c given by T∼.

Formally, we assume that the state sets of the Dc are pairwise disjoint, and define
DBA(T∼, (Dc)c∈Q∼) = (Q, Σ, ι, δ, β) as follows:

Q := Q∼ ×
⋃

c∈Q∼
Qc

ι := ([ε]∼, ι[ε]∼) (note that ι[ε]∼ is the initial state of D[ε]∼)
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Figure 3 Illustrations for the execution of DBAInf on the sample S given in Example 4.

For (c, q) ∈ Q and a ∈ Σ let q′ = δĉ(q, a) for the unique ĉ ∈ Q∼ with q ∈ Qĉ, and let
c′ = δ∼(c, a). Then

δ((c, q), a) =
{

(c′, q′) if q′ /∈ Fĉ

(c′, ιc′) if q′ ∈ Fĉ

((c, q), a) ∈ β if q′ ∈ Fĉ.

This DBA is returned by the algorithm DBAInf. Note that syntactically, a tuple of
the form (T∼, (Dc)c∈Q∼) is the same as a family of DFAs, which are considered for active
learning of ω-languages in [3]. The semantics is, however, very different. Families of DFAs
can represent all regular ω-languages but turning them into a deterministic ω-automaton
for the represented language involves an exponential blow-up, in general [2]. So the way we
use these tuples of DFAs here is not related to these families of DFAs. Before we prove that
DBAInf is a consistent polynomial time DBA-learner, we illustrate it with an example.

▶ Example 4. As an example for the execution of DBAInf, consider S = (S+, S−) with

JS+Kω = {aω, (ba)ω, (ca)ω, a(bc)ω, a(bcb)ω, a(cbc)ω} and
JS−Kω = {bω, cω, (bc)ω, aa(bc)ω, abω, acω}.

DBAInf first extracts a right congruence ∼ consisting of two equivalence classes. The
corresponding transition system T∼ is shown in Figure 3 on the left. The words ε and a are
separated by S, since a(bc)ω ∈ S+ and (bc)ω ∈ S−. The b, c-loops on [ε]∼ do not introduce
a conflict, as well as the a-transition from [a]∼ to [ε]∼. The b-transition from [a]∼ cannot
go back to [ε]∼ because this would introduce a conflict for the words b and ab, which are
separated by S, again because of a(bc)ω ∈ S+ and (bc)ω ∈ S−. Hence, there is a b-loop on
[a]∼. Similarly, for the c-transition from [a]∼. The resulting transition system is complete,
so no further states have to be added.

In the second step, the samples S[ε]∼ and S[a]∼ are computed. The positive components
of these samples are S

[ε]∼
+ = {(ε, a), (ε, ba), (ε, ab), (ε, ca), (ε, ac), (a, bc), (a, bcb), (a, cbc)} and

S
[a]∼
+ = {ε} × {a, ba, ab, ca, ac, bc, cb, bcb, bbc, cbb, cbc, bcc, ccb}.

To illustrate how these samples are constructed, consider (ba)ω ∈ S+. It induces the
sequence of classes ([ε]∼[ε]∼[a]∼[a]∼)ω in T∼ and thus contributes (ε, ba) and (ε, ab) to both
S

[ε]∼
+ and S

[a]∼
+ . The example a(bcb)ω induces the sequence [ε]∼([a]∼)ω, and hence contributes

(a, bcb) to S
[ε]∼
+ , and {ε}×{bcb, cbb, bbc} to S

[a]∼
+ . Similarly, for the other positive examples.

The negative components are S
[ε]∼
− = {ε} × {b, c, bc, cb} and S

[a]∼
− = {ε} × {b, c}. For

example, aa(bc)ω induces the class sequence [ε]∼[a]∼([ε]∼)ω. This adds (ϵ, bc) and (ε, cb) to
S

[ε]∼
− and nothing to S

[a]∼
− because the only position with class [a]∼ after the first a is not in

the periodic part, and hence there is no v such that avω = aa(bc)ω. Similarly, for the other
negative examples.
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Executing PrfCons on these samples gives rise to two DFAs D[ε]∼ and D[a]∼ with 2 and 4
states, respectively, which are depicted in the middle of Figure 3. Next to that (on the right)
in Figure 3, the DBA A that is the result of DBA(T∼,D[ε]∼ ,D[a]∼) is shown. The states of A
are pairs of states of T∼ and of the union of D[ε]∼ and D[a]∼ . Accepting transitions that reset
into D[ε]∼ are depicted in orange and those that reset into D[a]∼ are colored teal. On the
very right of Figure 3, a minimal DBA B that accepts the same language as A is depicted.
The states of B are colored according to the class of ∼ that they belong to.

Consistency

We now prove that DBAInf always infers a DBA that is consistent with the given ω-sample.

▶ Theorem 5. DBAInf is a consistent polynomial time DBA-learner.

Proof. Let S = (S+, S−) be an ω-sample and ∼ be a right congruence that is consistent
with S, as constructed by DBAInf in the first step (represented by T∼ = (Q∼, Σ, [ε]∼, δ∼)).
As in Figure 2, let Dc be the DFA constructed from S(c) for each class c of ∼. Further, let
A = DBA(T∼, (Dc)c∈Q∼) be the DBA returned by DBAInf. The extraction of T∼ and the
construction of the samples S(c) can be done in polynomial time. By Lemma 3 PrfCons runs
in polynomial time for each class c and returns a DFA Dc whose size is polynomial in |S|.
Hence, the construction of DBA(T∼, (Dc)c∈Q∼) and thus the overall procedure DBAInf can
be completed in polynomial time.

For consistency, first note that in the construction of A, the first component of the states
is always updated according to δ∼. Therefore, for each u ∈ Σ∗, the state (c, q) reached by A
after reading u is such that c is the class of u, i.e., T∼ reaches c when reading u.

We start by showing that A rejects all words in S−. Let w = uvω for a (u, v) ∈ S−.
As w is ultimately periodic, we can write the run of A on w as ρπω. Pick a position
i ≥ max{|u|, |ρ|} such that A uses an accepting transition when reaching position i in w.
If no such position exists, then A uses only finitely many accepting transitions and hence
rejects w. It is easily verified that if such a position i exists, we can write uvω = xyω and
ρπω = ρ̂(π̂)ω such that |x| = |ρ̂| = i and |y| = |π̂|. Let c be the class reached after reading
x, meaning T∼(x) = c and A is in state (c, ιc) after reading x. This means π̂ starts and
ends in (c, ιc) and thus δ∼(c, y) = c. Since xyω = uvω ∈ JS−Kω, we have (ε, y) ∈ S

(c)
− by the

definition of S(c). Because the DFA Dc is prefix-consistent with S(c) by Lemma 3, it does
not accept any prefix of yω. Thus, Dc will never reach a final state when reading the suffix
of w starting at position i. By definition this means A uses no accepting transitions after
position i in w, and hence rejects w.

Now let us show that A accepts all words in S+. Let w = uvω ∈ JS+Kω and let ρ be the
run of A on w. Let i be a position such that ρ is in a state of the form (c, ιc) at position i.
Then A uses an accepting transition after position i: If ρ is in state (c, ιc) at position i, this
means that also T∼(w[1, i− 1]) = c, and we can find words u ∈ Σ∗, w′ ∈ Σω such that |u| = i

and w = uw′. By definition of S
(c)
+ , we have that w′ ∈ JS(c)

+ Kω. Since Dc is prefix-consistent
with S(c), there exists a prefix x ⊑ w′ that is accepted by Dc. Hence, A uses an accepting
transition on the prefix x of w′. From that we can conclude that ρ uses infinitely many
accepting transitions since ρ starts in ([ε]∼, ι[ε]∼) and each accepting transition ends in a
state of the form (c, ιc) for a class c of ∼. ◀

4 Completeness of the Learning Algorithm

In this section we establish that the class of DBA languages can be learned in the limit
by DBAInf. For obtaining this completeness result, we show how to construct a sample SL

for a DBA language L such that DBAInf constructs a DBA for L from each sample S that
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contains SL and is consistent with L. We separate the construction of SL in two parts. The
first part ensures that DBAInf infers the right congruence ∼L in the first step. The second
part ensures that, based on the correct right congruence ∼L, a DBA for L is constructed. We
keep the first part short as the idea for this is the same as for RPNI on finite words [21] and
the passive learner for ω-automata from [9]. Roughly, the sample has to cover all transitions
and states of T∼L

and provide examples that separate all different states. This has to be
done in a specific way using minimal words reaching the states and transitions of T∼L

.

▶ Lemma 6. For every DBA language L there exists an ω-sample S∼L such that |S∼L | is
polynomial in the size of L and DBAInf extracts ∼L from every sample that is consistent
with L and contains S∼L .

The remainder of this section is about the second part of the construction of SL: DBAInf
returns a DBA that consists of smaller DFAs Dc for each class c of the extracted congruence
∼. We want to ensure that these DFAs satisfy certain conditions that are captured in the
definition of “safe” below.

▶ Definition 7. Let L be a DBA language and

K(L) = {u ∈ Σ+ | for all y ∈ Σ∗ if (uy)−1L = L then (uy)ω ∈ L}.

We call a DFA D safe for L, if
1. for each word w ∈ L, D accepts some prefix of w, and
2. L(D) ⊆ K(L).

Our goal is to build the sample SL in such a way that the samples S(c) constructed in
the second step of DBAInf ensure that AL learns a DFA that is safe for Lc according to
Definition 7 above. Then Lemma 10 further below shows that the DBA returned by DBAInf
accepts L. For this purpose, we consider for each class c an execution of AL in which the
answers given to the queries of AL are consistent with K(Lc). The answers used in this run
of AL are used to define the part of the sample that ensures that PrfCons(S(c)) returns a
DFA that is safe for Lc (see Algorithm 2, Lemma 11, and Lemma 12). In order to ensure
that the execution of AL terminates, we need to show that K(Lc) is regular, which we do
first in Lemma 8 and Lemma 9. For this we assume that A = (Q, Σ, ι, δ, β) is some DBA
that accepts L. Let

Kq(A) = {u ∈ Σ∗ | for all v ∈ Σ∗ : if q
uv−→ q then run(A, uv) ∩ β ̸= ∅}

be the set of all words u, that do not lie on a rejecting loop starting in the state q. As
an example consider the DBA B on the right of Figure 3. We have Kq0(B) = Σ∗aΣ∗,
Kq1(B) = Σ∗(a + b)Σ∗, and Kq2(B) = Σ∗(a + c)Σ∗. In general, a DFA for Kq(A) can be
constructed by using A with initial state q, and one new accepting sink state to which all
accepting transitions of A are redirected, and all transitions from states p such that each
path from p to q contains an accepting transition.

▶ Lemma 8. For every DBA A and each state q ∈ Q, the language Kq(A) is regular and
can be recognized by a DFA of size at most |A|+ 1.

Proof. To construct a DFA that recognizes Kq(A), we first extract the transition system T
underlying A. Then we remove from T all transitions which are accepting in A. Subsequently,
we build the set G consisting of all transitions q

a−→ p such that p and q lie in different SCCs
of T . This allows us to finally define the DFA B = (Q ∪ {⊤}, Σ, q, δ′, {⊤}) with

δ′(q, a) =
{

p if (q a−→ p) /∈ (β ∪G)
⊤ otherwise.
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It is easily verified that the size of B is indeed linear in |Q| as only one state is added. Further,
we can show that B accepts Kq(A) by considering both directions of the mutual inclusion:

Let w ∈ L(B), then the run of B on w must end in the only final state, ⊤. This state can
clearly only be reached if a transition τ ∈ beta ∪G is used. If τ ∈ β, then A must use
the accepting transition τ on w and hence any extension of w leading back to q is also
guaranteed to use an accepting transition. Otherwise, τ ∈ G and thus from q the word
w reaches a state p ∈ T , which lies in a different SCC. This either happens if p and q

lie in different SCCs in A or if all paths leading from p to q use at least one accepting
transition in G. Clearly in both cases we have w ∈ Kq(A).
On any word w ∈ Kq(A), the DBA A reaches from q some state p such that either p is in
a different SCC or every path returning to q uses an accepting transition. In the former
case the two states also lie in different SCCs and hence there exists some transition τ

connecting the SCCs. By construction, however, we know that τ ∈ G and hence it is
redirected to the final state ⊤ in B. On the other hand if both states lie in the same SCC,
then removing all accepting transitions guarantees that q can no longer be reached from
p, as every path uses an accepting transition. Thus, p and q are in different SCCs in T
and thus by an analogous argument, B accepts w. ◀

We can now express K(Lc) as intersection of the languages Kq(A) for states q in class c. As
example, consider again the DBA B on the right of Figure 3. The states q1 and q2 belong
to the class [a]∼. The intersection Kq1(B) ∩ Kq2(B) consists of all words that contain a or
contain both b and c. This is the language K(L(B)[a]∼).

▶ Lemma 9. Let A be a DBA, L = L(A) and c be a class of ∼L. Then K(Lc) =
⋂

q∈cKq(A),
and in particular K(Lc) is regular.

Proof. For the first inclusion of the equality, let u ∈ K(Lc). Assume to the contrary that
there is some q ∈ c with u /∈ Kq(A). Then there is v ∈ Σ∗ such that in A we have q

uv−→ q

without using an accepting transition. Note that q ∈ c implies that A with initial state q

accepts Lc. But then (uv)−1Lc = Lc and (uv)ω /∈ Lc, which is a contradiction to u ∈ K(Lc).
For the inclusion from right to left, let u ∈ Kq(A) for all states q with q ∈ c. Consider

an arbitrary v ∈ Σ∗ with (uv)−1Lc = Lc. We need to show that (uv)ω ∈ Lc because then
u ∈ K(Lc). We pick some state q0 ∈ c and consider the run ρ = q0

uv−→ q1
uv−→ q2

uv−→ . . . of
A on (uv)ω from q0. For all i, we have qi ∈ c since (uv)−1Lc = Lc. There is some state q

such that the set of indices I = {i ∈ N | q = qi} is infinite. But then for any i, j ∈ I with
i < j there must be an accepting transition between qi and qj in ρ by definition of Kq(A),
and hence (uv)ω ∈ Kc(L).

Regularity of K(Lc) follows as it is a finite intersection of languages that are regular by
Lemma 8. ◀

In the following Lemma, we show that if each constructed DFA Dc for a class c satisfies
the conditions of Definition 7 with respect to the language Lc, then the resulting DBA
accepts precisely L.

▶ Lemma 10. Let L ⊆ Σω be a DBA-recognizable language, and for each c ∈ Q∼L
let Dc be

a DFA that is safe for Lc. Then DBA(T∼L
, (Dc)c∈Q∼L

) accepts L.

Proof. In the following let A = DBA(T∼L
, (Dc)c∈Q∼L

). For the first inclusion consider a
word w ∈ L. The run of A on w begins in (c0, ιc0), where c0 = [ε]∼L

and ιc0 refers to the
initial state of Dc0 . As w ∈ L, we clearly also have that w ∈ Lc0 , which by the first condition
in the definition of “safe” (Definition 7) implies that v0 ∈ L(Dc0) for some prefix v0 of w.
Thus, on the prefix v0, A uses an accepting transition and reaches some state (c1, ιc1) for
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c1 = T∼L
(v0). Now let w1 be the infinite word such that w = v0w1. Since T∼L

reaches c1
on v0, we have that w1 ∈ Lc1 and thus by the first condition there exists a prefix v1 ⊑ w1
such that v1 ∈ L(Dc1). Thus, the run of A from (c1, ιc1) on v1 uses an accepting transition
and reaches the state (c2, ιc2) for some class c2 with T∼L

(v0v1) = c2. Repeated application
of this argument yields a factorization w = v0v1 . . . and an infinite sequence (ci)i∈N with
c0 = [ε]∼L

, such that ci+1 = δ∗
∼L

(ci, vi) and vi ∈ L(Dci) for all i ∈ N. The run ρ of A on
w = v0v1 . . . can similarly be factorized into ρ = ρ0ρ1 . . . , such that ρi begins in (ci, ιci

) and
ends in (ci+1, ιci+1). Additionally, each of these factors ρi uses an accepting transition. This
means that the run of A on w uses infinitely many accepting transitions and thus w ∈ L(A).

For the other inclusion, let w ∈ L(A) and ρ be the run of A on w. Since ρ uses infinitely
many accepting transitions, there exists a factorization w = v0v1 . . . and a sequence (ci)i∈N
with c0 = [ε]∼L

such that (c0, ιc0) v0−→ (c1, ιc1) v1−→ . . . in A and on each vi the last transition
is accepting and all the other transitions are non-accepting. By construction of A, each
vi is accepted by the DFA Dci

and hence by the second condition of “safe” (Definition 7)
also vi ∈ K(Lc). Consider now any DBA B that accepts L. By Lemma 9 we know that
K(Lc) =

⋂
q∈cKq(B) for all classes c ∈ Q∼L

. Let π be the unique run of B on w = v0v1 . . . ,
then π can be written as ιB = q0

v0−→ q1
v1−→ · · · . As B has a finite number of states, we

know that there exists an infinite set I of indices such that qi = qj for all i, j ∈ I. Note
that because B accepts L, we have qi ∈ ci for all i ∈ N. But then since vi ∈ Kci

(L) and
Kci(L) ⊆ Kqi(B) (by Lemma 9) for all i ∈ I, between any two visits to a state qi with i ∈ I,
B uses an accepting transition. As I is an infinite set, this guarantees that the run of B on
w uses infinitely many accepting transitions and hence w ∈ L(B) = L. ◀

In the following, we describe how a sample can be constructed to guarantee that PrfCons
yields a DFA that is safe for some DBA language L. For this we use a specific execution of
the active learning algorithm AL, shown in Algorithm 2. We refer to this specific execution
as the L-run of AL and denote the sample that it produces with SAL,L. We present the L-run
in form of an algorithm, but we are only interested in the definition of the sample SAL,L and
not its computation. Therefore, we do not go into further detail regarding the computation
of each individual operation. Note that the L-run of AL is defined along the same lines as
the algorithm PrfCons shown in Algorithm 1, but now the queries are answered based on the
language L and not based on a sample. The ω-words added to the sample SAL,L ensure that
PrfCons will give the same answers to the queries of AL for any sample that includes SAL,L

and is consistent with L.

▶ Lemma 11. For a DBA-recognizable language L, the size of SAL,L is polynomial in the
size of a minimal DFA for K(L). Furthermore, the DFA D returned by the L-run of AL is
safe for L.

Proof. We first explain why all the answers of the L-run to the queries of AL are consistent
with K(L). For the membership queries this is obvious from the definition of K(L). For
equivalence queries, consider the first case. The word x that is given as counterexample
satisfies the definition of K(L) and is not accepted by the current hypothesis D, so giving
this counterexample is consistent with K(L). Let us argue that such a word x always exists.
Let A = (Q, Σ, ι, δ, β) be a DBA with L(A) = L. Since uvω ∈ L, it is accepted from all
states that are equivalent to the initial state. So there is a prefix z ⊑ uvω such that for every
q that is equivalent to ι, the run from q on uvω uses an accepting transition on the prefix
z. Now assume that y is such that (zy)−1L = L. Then the run of A on (zy)ω is accepting
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Algorithm 2 Definition of SAL,L by a specific execution of AL, called L-run of AL.

Input: A DBA accepting L ⊆ Σω.
Output: The ω-sample SAL,L = (SAL,L

+ , SAL,L
− ) and the DFA D

SAL,L
+ ← ∅, SAL,L

− ← ∅
Simulate an active learning algorithm AL that satisfies the properties of Theorem 1,
and answer its queries as follows:

Query mem(x)
if (xy)ω /∈ L for some y ∈ Σ∗ with (xy)−1L = L then

SAL,L
− ← SAL,L

− ∪ {(ε, xy)} for the shortest such y and answer “no”
else

answer “yes”
Query equiv(D)

if there exists a word w ∈ L with Prf(w) ∩ L(D) = ∅ then
pick the minimal (u, v) such that uvω ∈ L and Prf(uvω) ∩ L(D) = ∅
SAL,L

+ ← SAL,L
+ ∪ {(u, v)}

choose minimal x ⊑ uvω with (xy)−1L = L⇒ (xy)ω ∈ L for all y ∈ Σ∗

forall x′ ⊑ x with x′ ̸= x do
choose the minimal y′ such that (x′y′)ω /∈ L and (x′y′)−1L = L

SAL,L
− ← SAL,L

− ∪ {(ε, x′y′)}
return x as counterexample

else if there is some v ∈ Σ+ with vω /∈ L, v−1L = L and Prf(vω)∩L(D) ̸= ∅ then
pick v to be the minimal word with this property
SAL,L

− ← SAL,L
− ∪ {(ε, v)}

return minimal x ⊑ vω such that x ∈ L(D) as counterexample
else

terminate the execution of AL and output SAL,L, D

because it uses an accepting transition on each z-segment. Hence, z is in K(L) and there
exists a minimal prefix x of uvω with this property that can be given as counterexample. In
the second case of an equivalence query, the selected x ⊑ vω is accepted by D, but it is not
in K(L) because there is a y such that xy = vk for some k.

Thus, all answers to AL are consistent with K(L), and therefore all hypothesis DFAs
D are of polynomial size in AK(L) (since AL satisfies the conditions of Theorem 1). From
that one can derive that the counterexamples given to AL, and also the examples added to
SAL,L for equivalence queries are of polynomial size in AK(L). Hence, the computation time
taken by AL is also polynomial in AK(L), and the size of the words in membership queries is
polynomial in AK(L). This implies that also the size of the examples added to SAL,L for the
answers of membership queries is polynomial in AK(L).

It remains to show that the DFA D computed by the L-run of AL is safe for L (see
Definition 7). The first case of an equivalence query guarantees that for each w ∈ L, some
prefix x ⊑ w is accepted by D. To verify that the second condition of Definition 7 is satisfied,
let u ∈ L(D). If u /∈ K(L), then there exists a word y ∈ Σ∗ such that (uy)−1L = L and
(uy)ω /∈ L. This means that the second case of the equivalence query matches with v = uy,
and hence the simulation of D will not stop as long as D accepts a word outside K(L). ◀
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For a DBA-recognizable language L, we now define the sample

SL = S∼L ∪
( ⋃

c∈Q∼L

rc · SAL,Lc
)

for the smallest rc ∈ Σ∗ such that T∼L
(rc) = c

where the union and concatenation operation on samples is done component wise, and
“smallest” refers to the length-lexicographic ordering. The next lemma establishes that each
DFA Dc for a class c that DBAInf constructs from a consistent sample containing SL is safe
for Lc.

▶ Lemma 12. Let L be a DBA language with right congruence ∼. If S = (S+, S−) is
consistent with L and contains SL, then for each class c, PrfCons(S(c)) returns a DFA Dc

that is safe for Lc.

Proof. Since S is consistent with L, we know that JS(c)
+ Kω ⊆ Lc and JS(c)

− Kω ∩ Lc = ∅. We
show that PrfCons(S(c)) gives the same answers to AL as the Lc-run.

For a membership query mem(x):
If “no” is answered during the Lc-run of AL, then there exists some (ε, xy) ∈ SAL,Lc

−
with (xy)ω /∈ Lc and (xy)−1Lc = Lc. By definition, we have rc(xy)ω ∈ JSL

−Kω for
some rc ∈ Σ∗ with T∼(rc) = c. Because (xy)−1Lc = Lc, it further holds that also
T∼(rcxy) = c. This means (xy)ω ∈ JS(c)

− Kω and thus PrfCons(S(c)) also answers “no”.
If the Lc-run of AL answers “yes”, then (xy)ω ∈ Lc for all y ∈ Σ∗ with (xy)−1Lc = Lc.
But then x cannot be a prefix of JS(c)

− Kω because S
(c)
− contains only periodic words

and JS(c)
− Kω ∩ Lc = ∅.

Consider an equivalence query equiv(D):
Whenever the Lc-run goes to the first case, the minimal (u, v) with uvω ∈ Lc and
Prf(uvω) ∩ L(D) = ∅ is in SAL,Lc

+ . By definition, this means (rcu, v) ∈ SL
+ ⊆ S+ and

thus PrfCons(S(c)) also goes to the first case. Note that there cannot be a (û, v̂) ∈ S
(c)
+

with Prf(ûv̂ω) ∩ L(D) = ∅ and (û, v̂) ≺ (u, v), as otherwise (û, v̂) would have been
selected by the Lc-run. Further, PrfCons(S(c)) picks the same prefix x ⊑ uvω: For all
strict prefixes x′ ⊏ x, we have (rc, x′y′) ∈ SAL,L

− for the minimal y′ ∈ Σ∗ such that
(x′y′)−1Lc = Lc and some rc ∈ Σ∗ with T∼(rc) = c. But then x′ ∈ Prf(JS(c)

− Kω) and
thus PrfCons(S(c)) cannot return x′ as a counterexample.
If the Lc-run goes to the second case, then D accepts a prefix of all words in Lc and
hence for each w ∈ JS(c)

+ Kω we have Prf(w) ∩ L(D) ̸= ∅. Thus, PrfCons(S(c)) also goes
to the second case. By construction, we have that (ε, v) ∈ SAL,L

− for the minimal
v with vω /∈ Lc, v−1Lc = Lc and Prf(vω) ∩ L(D) ̸= ∅. Thus, (rc, v) ∈ SL

− ⊆ S−,
which guarantees that (ε, v) ∈ S

(c)
− . There can be no (ε, v̂) ∈ S

(c)
− with v̂ ≺ v and

Prf(v̂ω) ∩ L(D) ̸= ∅, since (ε, v̂) ∈ S
(c)
− implies v̂ω /∈ Lc and v̂−1Lc = Lc, which

would contradict the minimality of v. Therefore, PrfCons(S(c)) returns the same
counterexamples as the Lc-run.

So PrfCons(S(c)) computes the same DFA as the Lc-run and therefore this DFA is safe for
Lc by Lemma 11. ◀

By combining the previous results, we are now able to establish that DBAInf can learn
all DBA-recognizable languages in the limit.

▶ Theorem 13. DBAInf is a polynomial-time DBA-learner that learns every DBA-recognizable
language in the limit.
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Proof. Let L be a DBA-recognizable language and S = (S+, S−) be a sample that is
consistent with L and contains SL. Polynomial runtime of DBAInf was already established
in Theorem 5, so it remains to show that DBAInf constructs a DBA for L from the sample
S. By Lemma 6, we know that DBAInf extracts ∼L from S. In the third step, DBAInf
constructs a DFA Dc from S(c) for each ∼L-class c. It is guaranteed by Lemma 12 that each
Dc is safe for Lc. Thus, we can conclude from Lemma 10 that L(DBA(T∼L

, (Dc)c∈Q∼L
)) = L

and hence DBAInf returns a DBA which accepts precisely L. ◀

5 Sample Size

As stated in Theorem 13, DBAInf can learn every DBA language in the limit, i.e., for each
DBA language L there is a characteristic ω-sample SL such that DBAInf constructs a DBA
for L when executed on an ω-sample S that is consistent with L and contains SL. In this
section, we analyze the size of this sample in terms of the size of L, which is the size of a
smallest DBA for L. The characteristic sample SL that is constructed in Section 4 consists
of the following components:

The sample S∼L whose size is polynomial in the size of L, see Lemma 6.
The samples SAL,Lc (prefixed by a word rc) that ensure that the DFAs Dc satisfy the
properties of Lemma 10. The size of these samples is polynomial in the size of a minimal
DFA for K(Lc) according to Lemma 11.

This raises the question on the size of the minimal DFA for K(Lc) compared to the size of L.
It turns out that this size can be exponential in the size of L.

▶ Proposition 14.
1. Let L be recognizable by a DBA A with n states, and let c be a class of ∼L. The number

of states of the minimal DFA for K(Lc) is in O((n + 1)k) where k is the number of states
of A that are in class c.

2. There is a family (L(k))k≥1 of DBA languages such that ∼L(k) has only one class, Lk

can be accepted by a DBA with k states, and the minimal DFA for K(L(k)) has 2k many
states for each k ≥ 1.

Proof (sketch). The first claim directly follows from K(Lc) =
⋂

q∈cKq(A) (see Lemma 9)
and Lemma 8. For the second claim, let Σk = {1, . . . , k} for k > 0, and define the language
L(k) ⊆ Σω

k as the set of all ω-words that contain infinitely many occurrences of each symbol
from Σk. Since membership in L(k) does not depend on any finite prefix, each ∼L(k) has only
one class. Each L(k) can be accepted by a DBA A(k) with k states that repeatedly verifies
the occurrence of each symbol from Σk in ascending order. The language K(L(k)) consists of
all u that contain all letters from Σk. It is not difficult to check that the minimal DFA for
K(L(k)) has 2k states. ◀

This means that the size of the characteristic sample for L that we construct in our
completeness proof can be of size exponential in the size of L. But if we fix the number of
states in each equivalence class, then we obtain a class of DBA languages that can be learned
in the limit from polynomial data by DBAInf. For this purpose, we say that a DBA language
L has a k-informative right congruence if it can be accepted by a DBA with at most k

different states per ∼L equivalence class. By k-IRC(DBA) we denote the corresponding class
of languages. The DBA languages with informative right congruence from [4] correspond
to the class 1-IRC(DBA). As a direct consequence of Proposition 14 and the fact that the
characteristic sample for L is polynomial in the size of L and K(L), we obtain:

▶ Theorem 15. For every fixed k, DBAInf can learn every language in k-IRC(DBA) in the
limit from polynomial data (the degree of the polynomial depends on k).
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The existing polynomial time learners for deterministic ω-automata used with a Büchi
condition are known to learn every language in 1-IRC(DBA) from polynomial data [5, 9].
The algorithm in [5] cannot learn any DBA language outside of 1-IRC(DBA), and while the
algorithm in [9] can learn DBA languages outside 1-IRC(DBA), there are very simple DBA
languages that it cannot learn.

For understanding the worst-case exponential size of the characteristic sample for L, we
take a closer look at the operation DBA(T∼, (Dc)c∈Q∼) that is used for constructing the DBA
A from the DFAs (Dc)c∈Q∼ computed in Step 3. (see Figure 2). Lemma 10 asserts that
A accepts L if each Dc is safe for Lc (see Definition 7). In the completeness proof we use
DFAs Dc for the languages K(Lc), which are safe of Lc but can be of exponential size in A
as shown in Proposition 14. This raises the question whether DFAs that are safe for Lc need
to be, in general, of exponential size. We show that this is not the case, formally stated in
Lemma 17 further below. For the proof of Lemma 17 we use the following lemma.

▶ Lemma 16. Let A be a DBA with n states and w ∈ Σ∗ be word. If A uses n2 + 1 accepting
transitions on the run on w starting in a state q, then A uses at least one accepting transition
on its run on w from each state p with p ∼L(A) q.

Proof (sketch). If this is not the case, one can find two language equivalent states p, q and
a word u ∈ Σ∗ such that u loops on p without an accepting transition, and u loops on q with
an accepting transition in the loop, contradicting the language equivalence of p and q. ◀

▶ Lemma 17. Let A be a DBA with n states, L = L(A) and ∼ be the right congruence of L.
For each class c of ∼ there is a DFA Dc of size polynomial in |A| such that Dc is safe for
Lc, and thus DBA(T∼, (Dc)c∈Q∼) accepts L.

Proof (sketch). For a class c of ∼ pick a state qc ∈ c as initial state of Dc, and simulate
A while incrementing a counter each time A uses an accepting transition. If this counter
exceeds n2 + 1, then go to an accepting sink. From Lemma 16 and Lemma 9 it follows that
Dc is safe for Lc. ◀

This shows that the way how we compose a DBA from DFAs can, in principle, produce
polynomial size DBAs for each DBA language L. So the reason for the exponential size of
the characteristic sample of L in the completeness proof is not enforced by the operation
that is used to build the DBA from the DFAs, but is rather coming from the way how we
extract information from that sample to obtain the DFAs.

6 Conclusion

We have presented a passive learning algorithm DBAInf for DBAs that constructs a consistent
DBA in polynomial time for a given ω-sample, and can learn every DBA language in the
limit. Previously, the only known class of ω-languages learnable in the limit was the class of
languages with informative right congruence [5, 9], whose definition eliminates one of the
most difficult properties of ω-automata, namely that deterministic ω-automata often need
several language equivalent states for accepting a language. While the characteristic samples
for DBAInf that are used in the completeness proof are of exponential size in the worst-case,
we obtain learnability in the limit from polynomial data for the class of DBAs that have no
more than k states that are all pairwise language equivalent, for each fixed k. This includes
the class of DBA languages with informative right congruence for k = 1.
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Our algorithm uses an active learning algorithm for DFAs as black-box. Our first attempts
to build a DBA learner, following the same basic idea but using a passive learner for DFAs
instead of an active one, failed. The reason for this seems to be that one carefully needs to
select the information from the ω-sample that used for building the DFAs, in order to obtain
a robust DBA learner with the learning in the limit property. An active learning algorithm
selects this information with its queries. In future work we plan to investigate whether these
ideas can be extended to deal with all regular ω-languages by learning deterministic parity
automata. It is also an open question whether our approach can be improved in order to
obtain learnability in the limit from polynomial data for all DBA languages.
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Abstract
Given a Markov decision process (MDP) M and a formula Φ, the strategy synthesis problem asks if
there exists a strategy σ s.t. the resulting Markov chain M [σ] satisfies Φ. This problem is known to
be undecidable for the probabilistic temporal logic PCTL. We study a class of formulae that can
be seen as a fragment of PCTL where a local, bounded horizon property is enforced all along an
execution. Moreover, we allow for linear expressions in the probabilistic inequalities. This logic is at
the frontier of decidability, depending on the type of strategies considered. In particular, strategy
synthesis is decidable when strategies are deterministic while the general problem is undecidable.

2012 ACM Subject Classification Mathematics of computing → Stochastic processes

Keywords and phrases Markov decision processes, synthesis, PCTL

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.115

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: http://arxiv.org/abs/2204.14107

Funding This work is partially supported by the ARC project Non-Zero Sum Game Graphs:
Applications to Reactive Synthesis and Beyond (Fédération Wallonie-Bruxelles), the EOS project
Verifying Learning Artificial Intelligence Systems (F.R.S.-FNRS & FWO), the COST Action 16228
GAMENET (European Cooperation in Science and Technology), by the PDR project Subgame
perfection in graph games (F.R.S.- FNRS), and the DST-SERB SRG/2021/000466 “Zero-sum and
Nonzero-sum Games for Controller Synthesis of Reactive Systems” project.

1 Introduction

Given an MDP M and a probabilistic temporal logic formula Φ, the strategy synthesis
problem is to determine if there exists a strategy σ to resolve the nondeterminism in M

such that the resulting Markov chain (MC) M [σ] satisfies Φ, and if so, to construct one
such strategy. The probabilistic temporal logic that we study in this paper allows us to
express rich probabilistic global temporal constraints over a bounded horizon that must be
enforced along all computations. Let us illustrate our logic with a few examples. The formula
A G(P(F5 Good) ≥ 0.95) expresses that it must always be the case, under the strategy σ,
that along all computations, the probability to reach a good state within 5 steps is at least
0.95. This is a quantitative bounded horizon Büchi property. In addition, our logic allows for
comparing the probability of different events: A GP(F5 Good) ≥ 2 × P(F10 Bad)) expresses
that under the strategy σ, along all computations, it is always the case that the probability to
reach a good state within 5 steps is at least twice the probability of reaching a bad state within
10 steps. The ability to compare probabilities of different events, while not present in classical
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logics like PCTL, is necessary to express properties like probabilistic noninterference [13].
This feature has been introduced and studied in probabilistic hyperlogics, e.g. [2], where
the ability to compare probabilities plays a central role in describing applications. While
hyperlogics are very expressive and highly undecidable, we study here the ability to compare
probabilities in a weaker logical setting in order to understand more finely the decidability
border that probabilistic comparisons, and more generally linear expressions, induce.

While the model-checking problem for PCTL and MDPs is decidable [6], the synthesis
problem is in general undecidable [15].1 Synthesis for PCTL [15], HyperPCTL [2], and as well
as for our logic (as shown in Theorem 37) is undecidable. To recover decidability, we explore
two options. First, we consider subclasses of strategies: memoryless deterministic strategies
(MD), memoryless randomized strategies (MR), and history-dependant deterministic strategies
(HD) are important classes to be considered. Second, we identify syntactically defined
sublogics with better decidability properties. For instance, while for PCTL objectives the
synthesis problem for HD strategies is highly undecidable (Σ1

1-complete) [15], it has been
shown that the problem is decidable for the cases of MD and MR strategies [15]. The synthesis
problem for the qualitative fragment of PCTL, where probabilistic operator can only be
compared to constant 0 and 1, is decidable for HD strategies. An important contribution
of this paper is to show that the synthesis problem for our sublogics is decidable for HD
strategies. To the best of our knowledge, this is the first decidability result for a class of
unbounded memory strategies (here HD) and quantitative probabilistic temporal properties.

Main technical contributions. We introduce the logic L-PCTL and two sublogics. L-PCTL
extends PCTL with linear constraints over probability subformulae. We first study the
window L-PCTL fragment that only allows bounded until or bounded weak until operators
in the path formulae. The results for this fragment are presented in Table 1(a) where
columns distinguish between memoryless (M) and history-dependent strategies (H), and
rows between deterministic (D) and randomized strategies (R). Second, we study the global
window L-PCTL extension of this logic in which window formulae appear in the scope of an
A G operator that imposes the window formula to hold on every state of every computation.
The results for this fragment are presented in Table 1(b). Third, we adapt results from the
literature to the full logic as summarized in Table 1(c). An L-PCTL formula is flat if it does
not have nested probabilistic operators, while it is non-strict if it does not contain strict
comparison operators (> or <) for comparing probability expressions.

Our two main technical contributions are focused on the synthesis problem for the global
window L-PCTL logic. First, we introduce a fixpoint characterization of the set of strategies
that enforces an L-PCTL window property globally. This characterization is effective for
HD strategies, leads to a 2EXPTIME algorithm, and we provide an EXPTIME lower bound.
Furthermore, the fixpoint characterization allows us to prove that the synthesis problem
is in coRE for the class of history-dependent randomized (HR) strategies for the flat and
non-strict fragment of global window L-PCTL. Second, we prove that the synthesis problem
for HR strategies is undecidable with an original technique that reduces the halting problem
of 2-counter Minsky machines (2CM) to our synthesis problem. We believe that the fixpoint
characterization and the 2CM encoding are of independent interest.

1 The difference between the two problems is essentially as follows: in the model-checking problem, each
probabilistic operator in the formula is associated with one strategy (or scheduler) while in the synthesis
problem, a unique strategy is fixed and used for all the probabilistic operators.
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Table 1 A summary of our results for the synthesis problem on MDPs for L-PCTL formulae.

(a) synthesis for window L-PCTL.

M H

D NP-complete
[5]

PSPACE-complete
Prop. 27

R
PSPACE

Sqrt-Sum-hard
Prop. 29, [15]

EXPSPACE
PSPACE-hard

Thm. 17

(b) synthesis for global window L-PCTL.

M H

D NP-complete
2EXPTIME

EXPTIME-hard
Prop. 28

R
PSPACE

Sqrt-Sum-hard
Prop. 30

coRE-completea

Σ1
1-hard

Thm. 24, 37
a if the formula is flat and non-strict

(c) synthesis for L-PCTL.

strategies: Memoryless History-dependent

Deterministic NP-complete
[5]

Σ1
1-complete

[15]

Randomized
EXPTIME

Sqrt-Sum-hard
[16], [15]

Σ1
1-hard
[15]

Finally, the satisfiability problem [7] for PCTL (and its variants) can be reduced to the
synthesis problem. The decidability of the satisfiability problem for PCTL is a long standing
open problem. Our decidability result for the synthesis problem for HD strategies and
global window PCTL formulae can be transferred to the following version of the satisfiability
problem: given a granularity g for the probabilities, and a global window PCTL formula
Φ, does there exist an MC with granularity g that satisfies Φ? (Theorem 31). This gives
a new positive decidability result for the satisfiability problem with an unbounded horizon
fragment of PCTL and unbounded MCs.

Related work. The model-checking problem for PCTL is decidable [6] and should not be
confused with the synthesis problem. In [15], the authors study the synthesis problem for
PCTL on MDPs and stochastic games. In [5] it is shown that both randomization and
memory in strategies are necessary even for flat window PCTL formulae. Further, [5] shows
that the synthesis of MD strategies for PCTL objectives is NP-complete, and [16] shows that
MR synthesis is in EXPTIME.2 For the qualitative fragment of PCTL, deciding the existence
of MR and HD strategies have been shown to be NP-complete and EXPTIME-complete,
respectively [15]. As previously mentioned, the synthesis problems for HD and HR strategies
in the general case of (quantitative) PCTL objectives are highly undecidable [15].

In [11], a probabilistic hyperlogic (PHL) has been introduced to study hyperproperties
of MDPs. PHL allows quantification over strategies, and includes PCTL∗ and temporal
logics for hyperproperties such as HyperCTL∗ [10]. Hence the model-checking problem in
PHL can ask for the existence of a strategy for hyperproperties, and has been shown to be

2 For the existence of MR strategies for PCTL objectives, in the introduction of [15], it is claimed that
the problem is in PSPACE, with a reference to [16]. However, in [16] only an EXPTIME upper bound
is proven, for the more general problem of stochastic games. The proof encodes the problem as a
polynomial-size formula in the first-order theory of the reals with a fixed alternation of quantifiers so
that deciding it is in EXPTIME. The claim seems to be that the complexity of their approach drops
to PSPACE when all states are controllable. There is no convincing argument there for that claim, in
particular their formula still contains universal quantifiers.
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undecidable [11]. Another related work is [1], where HyperPCTL [2] has been extended with
strategy quantifiers, and studies hyperproperties over MDPs. The model-checking problem
for this logic is also undecidable. In both of these undecidability proofs, the constructed
formula contains unbounded finally (F) properties that cannot be expressed in the global
window fragment of PCTL that we study here. In both [11] and [1], the model-checking
problem is decidable when restricted to MD strategies but is undecidable for HD strategies.

The PCTL satisfiability problem is open for decades. In [14], decidability of finite and
infinite satisfiability has been considered for several fragments of PCTL using unbounded
finally (F) and unbounded always (G) operators. In [9], satisfiability for bounded PCTL has
been considered where the number of steps or horizon used in the operators is restricted
by a bound. In [4], a problem related to the satisfiability problem called the feasibility
problem has been studied. Given a PCTL formula φ, and a family of Markov chains defined
using a set of parameters and with a fixed number of states, the feasibility problem is to
identify a valuation for the parameters such that the realized Markov chain satisfies φ. In
the satisfiability problem that we study here, the number of states is however not fixed a
priori and can be arbitrarily large.

2 Preliminaries

A probability distribution on a finite set S is a function d : S → [0, 1] such that
∑

s∈S d(s) = 1.
We denote the set of all probability distributions on set S by Dist(S).

▶ Definition 1. A Markov chain (MC) is a tuple M = ⟨S, sinit,P, AP, L⟩ where S is a
countable set of states, sinit ∈ S is an initial state, P : S → Dist(S) is a transition function,
AP is a non-empty finite set of atomic propositions, and L : S → 2AP is a labelling function.

If P maps a state s to a distribution d so that d(s′) > 0, we write s
d(s′)−−−→ s′ or simply s → s′,

and we denote P(s, s′) the probability d(s′). We say that the atomic proposition p holds on
a state s if p ∈ L(s).

A finite path ρ = s0s1 · · · si in an MC M is a sequence of consecutive states, so that for
all j ∈ [0, i − 1], sj → sj+1. We denote |ρ| = i the length of ρ, last(ρ) = si and first(ρ) = s0.
We also consider states to be paths of length 0. Similarly, an infinite path is an infinite
sequence ρ = s0s1 · · · so that for all j ∈ N, sj → sj+1. If ρ is a finite (resp. infinite) path
s0s1 · · · , we let ρ[i] denote si, ρ[:i] denote the finite prefix s0 · · · si, and ρ[i:] denote the finite
(resp. infinite) suffix sisi+1 · · · .

We denote the set of all finite paths in M by FPathsM . We introduce notations for the
subsets FPathsi

M (resp. FPaths≤i
M , FPaths<i

M ) of paths of length i (resp. of length at most or
less than i). Let FPathsM (s) denote the set of paths ρ in FPathsM such that first(ρ) = s.
More generally, FPathsM (ρ) denotes the set of paths which admit ρ as a prefix. Similarly, we
let PathsM be the set of infinite paths of M , and extend the previous notations for fixing an
initial state or a shared prefix. In particular, PathsM (ρ) is called the cylinder of ρ.

If ρ = s0 . . . si is a finite path and ρ′ = sisi+1 . . . is a finite or infinite path so that
first(ρ′) = last(ρ), let ρ · ρ′ = s0 . . . sisi+1 . . . denote their concatenation.

▶ Definition 2. Let s be a state of an MC M . The MC M naturally defines a probability
measure µs

M on (PathsM (s), Ωs
M ), where Ωs

M is the σ-algebra of cylinders, i.e. the sets
PathsM (ρ) with ρ ∈ FPathsM (s), their complements and countable unions.

The measure of a cylinder PathsM (ρ) is the product of the probabilities of each transition in
the finite path ρ, and by Carathéodory’s extension theorem we get a measure µs

M over Ωs
M .

As s is always obvious from context (first state of the paths being considered), we omit it
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Figure 1 An MC and two MDPs, with states si and actions {a, b}. In MCs, transitions are
labelled by their probability, and the probability is 1 if unspecified. In MDPs, transitions are labelled
by their action and probability. If the action is unspecified (black transitions), then every action
allows this transition. The initial state is s0. In our examples, the set of atomic propositions is the
set of states, so that the proposition si holds on state si only.

from the measure notation, in favour of µM . We note that FPathsM (s) is a set of finite words
over a countable alphabet, and as such is countable. In particular, if C ⊆ FPathsM (s) is a set
of prefixes forming disjoint cylinders,3 then µM (

⋃
ρ∈C PathsM (ρ)) =

∑
ρ∈C µM (PathsM (ρ)).

Moreover, if Π ⊆ PathsM (s) is the complement of a measurable set Π′, µM (Π) = 1 − µM (Π′).

▶ Definition 3. A Markov decision process (MDP) is a tuple M = ⟨S, A, sinit,P, AP, L⟩,
where S is a finite set of states, A is a finite set of actions, sinit ∈ S is an initial state,
P : S × A → Dist(S) is a transition function4, AP is a non-empty finite set of atomic
propositions, and L : S → 2AP is a labelling function.

If P maps a state s and an action a to a distribution d so that d(s′) > 0, we write s
a,d(s′)−−−−→ s′

or simply s
a−→ s′, and we denote P(s, a, s′) the probability d(s′). We extend from MCs to

MDPs the definitions and notations of finite and infinite paths, now labelled by actions and
denoted ρ = s0

a0−→ s1
a1−→ · · · . Moreover, for a finite path ρ, we denote by ρ · as (resp. sa · ρ)

the concatenation of ρ with last(ρ) a−→ s (resp. of s
a−→ first(ρ) with ρ).

We say that M is stored in size |M| if the number of states |S|, the number of actions
|A| and the number of transitions s

a−→ s′ in M are bounded by |M|. Then, |FPaths≤i
M|, the

number of paths of horizon at most i, is in |M|O(i). Moreover, the probabilities in P are
assumed to be rational numbers stored as pairs of integers a

b in binary, so that a, b ≤ 2|M|.
A (probabilistic) strategy is a function σ : FPathsM → Dist(A) that maps finite paths ρ

to distributions on actions. A strategy σ is deterministic if the support of the distribution
σ(ρ) has size 1 for every ρ, it is memoryless if σ(ρ) depends only on the last state of ρ, i.e. if
σ satisfies that for all ρ, ρ′ ∈ FPathsM, last(ρ) = last(ρ′) implies σ(ρ) = σ(ρ′). We denote by
σ(ρ, a) the probability of the action a in the distribution σ(ρ).

An MDP M = ⟨S, A, sinit,P, AP, L⟩ equipped with a strategy σ defines an MC, denoted
M[σ], obtained intuitively by unfolding M and using σ to define the transition probabilities.
Formally M[σ] = ⟨FPathsM, sinit,Pσ, AP, L′⟩, with finite paths of M as states, transitions
defined for all ρ ∈ FPathsM, a ∈ A and s ∈ S by Pσ(ρ, ρ · as) = σ(ρ, a)P(last(ρ), a, s′), and

3 PathsM (ρ) and PathsM (ρ′) share a path if and only if either ρ is a prefix of ρ′ or ρ′ is a prefix of ρ.
4 This formalism implies that every action is available from every state. This is w.l.o.g., as one can model

illegal actions by sending them to a special state.
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atomic propositions assigned by L′(ρ) = L(last(ρ)). In particular, note that since S is finite
FPathsM is infinite but countable. We say that a finite path ρ in M matches a finite path ρ′

in M[σ] if last(ρ′) = ρ, so that they follow the same sequence of states and actions. We say
that a path ρ ∈ FPathsM has probability m in M[σ] if ρ matches ρ′ ∈ FPathsM[σ] and m is
the measure of PathsM[σ](ρ′). It corresponds to the likelihood of having ρ as a prefix when
following σ and starting from first(ρ).

We may omit M or M from all previous notations when they are clear from the context.
MC notations may use σ as shorthand for M[σ], e.g. µσ is the probability measure induced
by M[σ], and FPathsσ refers to finite paths of non-zero probability under σ.

▶ Example 4. Consider the MC on the left of Figure 1, and the property asking to reach
the state s2 in at most two steps. Consider the set of paths of length at most two from s0 to
s2. Let Π = Paths(s0s2) ⊎ Paths(s0s1s2) ⊎ Paths(s0s3s2) be the infinite paths obtained from
their cylinders. Then, the probability of reaching s2 in two steps when starting from s0 is
µ(Π) = 1

4 + 1
16 + 1

4 = 9
16 . Note that the probability of reaching s2 in two steps when starting

from s1 is also 9
16 . Every other state reaches s2 with probability 1 in two steps. Consider

now the MDP in the middle of Figure 1, and the property asking that the state reached after
the first transition is s1. For every strategy σ, the probability that this property holds in
M[σ] is equal to σ(s0, a) 1

2 + σ(s0, b) 1
4 = σ(s0, a) 1

2 + (1 − σ(s0, a)) 1
4 = σ(s0, a) 1

4 + 1
4 .

Probabilistic CTL with Linear expressions. A formula of L-PCTL is generated by the
nonterminal Φ in the following grammar:

▶ Definition 5 (L-PCTL in normal form, syntax).

Φ := p | ¬p | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 |
n∑

i=1
ciP [φi] ≽ c0

φ := Xℓ Φ | Φ1 Uℓ Φ2 | Φ1 Wℓ Φ2 | Φ1 U∞ Φ2 | Φ1 W∞ Φ2

where p ranges over the atomic propositions in AP, ℓ ranges over N, and n ∈ N>0,
(c0, · · · , cn) ∈ Zn, ≽ ∈ {≥, >} define linear inequalities.

We call a formula generated by Φ a state formula, and a formula generated by φ a path
formula. The horizon label of a path formula is the label of its root operator, i.e. either
ℓ or ∞. Intuitively, the Next operator Xℓ Φ means that Φ holds in exactly ℓ steps, the
(unbounded) Until and Weak until operators U∞ and W∞ are defined as usual in CTL, and
their bounded version Φ1 Uℓ Φ2 and Φ1 Wℓ Φ2 impose a horizon on the reachability of Φ2.
We will use the standard notations X, U and W, defined by X1, U∞ and W∞, respectively.

▶ Definition 6 (L-PCTL in normal form, semantics). For a fixed MC M of states S, we
inductively define JΦKM as a set of states, and for each state s we define JφKs

M as a measurable
set of infinite paths starting from s:

JpKM = {s ∈ S | p ∈ L(s)} J¬pKM = {s ∈ S | p ̸∈ L(s)}
JΦ1 ∧ Φ2KM = JΦ1KM ∩ JΦ2KM JΦ1 ∨ Φ2KM = JΦ1KM ∪ JΦ2KMt

n∑
i=1

ciP [φi] ≽ c0

|

M

= {s ∈ S |
n∑

i=1
ci µM (JφiK

s
M ) ≽ c0}

r
Xℓ Φ

zs

M
= {ρ ∈ Paths(s) | ρ[ℓ] ∈ JΦKM }

r
Φ1 Uℓ Φ2

zs

M
= {ρ ∈ Paths(s) | ∃j ≤ ℓ, ρ[j] ∈ JΦ2KM ∧ ∀i < j, ρ[i] ∈ JΦ1KM }
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r
Φ1 Wℓ Φ2

zs

M
= {ρ ∈ Paths(s) | ∀j ≤ ℓ, (ρ[j] ∈ JΦ1KM ∨ ρ[j] ∈ JΦ2KM )

∨ ∃i < j, ρ[i] ∈ JΦ2KM }
JΦ1 U Φ2K

s
M = {ρ ∈ Paths(s) | ∃j ∈ N, ρ[j] ∈ JΦ2KM ∧ ∀i < j, ρ[i] ∈ JΦ1KM }

JΦ1 W Φ2K
s
M = {ρ ∈ Paths(s) | ∀j ∈ N, (ρ[j] ∈ JΦ1KM ∨ ρ[j] ∈ JΦ2KM )

∨ ∃i < j, ρ[i] ∈ JΦ2KM }

Then, we write s |=M Φ (resp. ρ |=M φ) if s ∈ JΦKM (resp. ρ ∈ JφKfirst(ρ)
M ), and say that s

satisfies Φ (resp. ρ satisfies φ). We denote by ≡ the semantic equivalence of state or path
formulae (that holds on all MCs). Finally, we write M |= Φ if sinit |=M Φ. Note that by
restricting the linear inequalities to n = 1 and ℓ = 1 in Xℓ, we recover the standard definition
of PCTL (see e.g. [6]).

We define usual notions as syntactic sugar, so that state formulae allow for ⊥ := p∧¬p and
⊤ := p ∨ ¬p (for any p ∈ AP). We allow rational constants c1 and all comparison symbols in
{≤, <, =, ̸=, >, ≥} in linear expressions, with

∑n
i=1 ciP [φi] ≼ c0 :=

∑n
i=1(−ci)P [φi] ≽ −c0

and =, ̸= defined as conjunctions or disjunctions. Moreover, path formulae allow for Fℓ Φ :=
⊤ Uℓ Φ and Gℓ Φ := Φ Wℓ ⊥. We allow the negation operation ¬ in state and path formulae,
and recover a formula in normal form using De Morgan’s laws, the negation of inequalities
(≥ becomes < and > becomes ≤), and the duality rule ¬(Φ1 Wℓ Φ2) ≡ (¬Φ1 ∧ ¬Φ2) Uℓ ¬Φ1.
Finally, boolean implication and equivalence are defined as usual. A notable property is
Φ1 Wℓ Φ2 ≡ (Φ1 Uℓ Φ2) ∨ Gℓ Φ1.

We encode L-PCTL formulae as trees, whose internal nodes are labelled by state or path
operators and whose leaves are labelled by atomic propositions. Let ℓmax ≥ 1 denote an
upper bound on horizon labels ℓ of subformula of Φ where ℓ is finite. The constants ci in
linear expressions are encoded in binary, and the horizon labels ℓ are encoded in unary, so
that if the overall encoding of Φ is of size |Φ|, we shall have ℓmax ≤ |Φ|. We argue that this
choice is justified from a larger point of view that extends PCTL to PCTL∗ by allowing
boolean operations in path formulae, as the bounded horizon operators Xℓ, Uℓ, Wℓ can be
seen as syntactic sugar for a disjunction of nested X operators of size O(ℓ).

▶ Definition 7. An L-PCTL formula Φ (in normal form) is a window formula if the horizon
label ℓ of every path operator in Φ is finite, so that the unbounded U and W are not used. It
is a non-strict formula if ≽ is always ≥ in its linear inequalities. It is a flat formula if the
measure operator P is never nested, so that if Φ is seen as a tree, every branch has at most
one node labelled by a linear inequality

∑n
i=1 ciP [φi] ≽ c0.

▶ Definition 8. A global window formula is a formula of the shape A G Φ, with Φ a window
L-PCTL formula. It is satisfied by a state s of M if every infinite path in PathsM (s) satisfies
the path formula G Φ, or equivalently if every state reachable from s satisfies Φ.

▶ Lemma 9. The global window formula A G Φ is satisfied on a state s of M if and only if
s satisfies the L-PCTL formula P [G Φ] = 1.

Proof. If A G Φ holds on s, then µM (JG ΦKs
M ) = µM (PathsM (s)) = 1. If A G Φ is not

satisfied on s, then there exists a finite path ρ leading to a state that violates Φ, so that the
entire cylinder PathsM (ρ) satisfies the path formula F ¬Φ. It follows that µM (JG ΦKs

M ) =
1 − µM (JF ¬ΦKs

M ) ≤ 1 − µM (PathsM (ρ)) < 1. ◀

▶ Example 10. Consider the MC M to the left of Figure 1. Let Φ be the L-PCTL formula
P

[
F2 s2

]
≥ 9

16 . It is a window formula, that is flat and non-strict. As detailed in Example 4,
every state of M satisfies Φ. Therefore, M satisfies the global window formula A G Φ.
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Consider now the MDP M to the right of Figure 1. Let σ denote the memoryless strategy
that chooses, in s0 and s1, action a with probability 1

2 and action b with probability 1
2 . While

M[σ] is an infinite MC by definition, it is bisimilar to the MC on the left of Figure 1 and
must satisfy the same PCTL formulae, so that M[σ] |= A G Φ. In Section 3, we will show
that σ is the only strategy on M that satisfies A G Φ.

Model checking and synthesis problems. The model-checking problem of an L-PCTL
formula Φ and of a finite MC M is the decision problem asking if M |= Φ. The synthesis
problem of an L-PCTL formula Φ and of an MDP M asks if there exists a strategy σ so that
M[σ] |= Φ. We also consider the sub-problems that restrict the set of strategies to subsets
defined by constraints on the memory or on determinism. For example, the memoryless
(resp. deterministic) synthesis problem asks for a memoryless (resp. deterministic) strategy
satisfying the formula. They are indeed distinct problems:

▶ Example 11. Consider the MDP in the middle of Figure 1. Let Φ be the window formula
(P

[
F2 s1

]
= 5

8 ) ∧ (P [X s1] ≥ 1
2 ∨ P [X s1] ≤ 1

4 ). First, s0 |= P [X s1] ≥ 1
2 ⇔ σ(s0, a) = 1 and

s0 |= P [X s1] ≤ 1
4 ⇔ σ(s0, a) = 0, so that the first move must be deterministic. If the first

action is a, and the transition s0
a−→ s0 is chosen, then the next choice must be b to ensure

P
[
F2 s1

]
= 5

8 . Similarly, if the first action is b, the next choice on s0 must be a. Moreover,
s1 |= Φ under any strategy. Thus, the only strategies that satisfy A G Φ are the strategies
that alternate between a and b as long as we are in s0, while no memoryless strategy satisfies
A G Φ. On the other hand, in Example 10 randomisation is needed. An example that require
both randomisation and memory can be constructed by combining both examples.

▶ Proposition 12. The model-checking problem for L-PCTL formulae and finite MCs can
be solved in PTIME. This comes at no extra cost when compared to standard PCTL [6].

Proof. This problem is detailed in [6, Thm. 10.40] for a PCTL definition that only al-
lows expressions of the shape c1P [φ] ≽ c0 to quantify over path formulae. Extending to∑n

i=1 ciP [φi] ≽ c0 is straight-forward, as their algorithm computes the measure of P [φ], and
then checks if the comparison holds. The intuition is that the measure of bounded operators
Xℓ, Uℓ and Wℓ are obtained by O(ℓ) vector-matrix multiplications, while unbounded U and
W are seen as linear equation systems. Overall, the complexity is in |M |O(1)|Φ|ℓmax. ◀

3 Synthesis for global window PCTL

In this section, we detail complexity results on the synthesis problem for global window
L-PCTL formulae. We fix a Markov decision process M, a formula A G Φ where Φ is a
window L-PCTL formula, and ask if there exists a strategy σ so that M[σ] |= A G Φ. We
also address the sub-problems concerning deterministic or memoryless strategies.

Solving window formulae. We start by constructing a strategy σ so that M[σ] |= Φ. The
formula Φ can be seen syntactically as a tree with state or path operators on internal nodes
and atomic propositions on leaves. The window length of a branch of this tree is the sum of
the horizon labels ℓ of path operators in the branch. The window length of the formula Φ is an
integer L obtained as the maximum over every branch of Φ of their respective window lengths.
In particular, L ≤ |Φ|ℓmax. For example, if Φ = P

[
XP

[
X2 p1

]
≥ 1

2
]

≤ 1
2 ∨ P

[
F2 p3

]
> 0,

then ℓmax = 2 and L = max(1 + 2, 2) = 3.

▶ Definition 13. Let s be a state of M and Φ be a window L-PCTL formula of window
length L. A window strategy for s of horizon L is a mapping ∂ : FPaths<L

M (s) → Dist(A).
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A window strategy ∂ for state s can be seen as a partial strategy, only defined on paths
of length under L that start from s. Formally, ∂ defines a set of strategies σ : FPathsM →
Dist(A), where the first L steps from s are specified by ∂, and the subsequent steps are not.
This set of strategies is called the cylinder of the window strategy ∂. In particular, if two
strategies σ and σ′ are in the cylinder of the window strategy ∂, then the MCs M[σ] and
M[σ′] coincide for the first L steps from s, in the sense that every path ρ ∈ FPaths<L

M (s) has
the same probability m in M[σ] and in M[σ′]. In this case, we say that m is the probability
of ρ under ∂.

We may conflate a window strategy ∂ with an arbitrary strategy σ in its cylinder, so that
FPaths<L

∂ (s) is a set of paths in M[σ]. Then, we say that the window strategy ∂ for state s

satisfies Φ, noted s |=∂ Φ, if s |=σ Φ for all σ in the cylinder of ∂. Conversely, a strategy
σ : FPathsM → Dist(A) naturally defines a window strategy ∂ρ for every fixed prefix ρ, so
that for all ρ′ ∈ FPaths<L

M (last(ρ)), ∂ρ(ρ′) = σ(ρ · ρ′).

▶ Lemma 14. Let Φ be a window L-PCTL formula of window length L, σ be a strategy for
M, and let ∂s be the window strategy defined by σ on state s and horizon L (the fixed prefix
is s). Then, it holds that s |=σ Φ ⇔ s |=∂s

Φ.

Thus, the synthesis problem on window formulae reduces to finding a window strategy
∂ for sinit so that sinit |=∂ Φ. Let ∂ be a window strategy for state s and horizon L. Let
Xs denote a finite set of variables xρ,a, with ρ ∈ FPaths<L

M (s), and a ∈ A. The window
strategy ∂ can be seen as a point in the real number space RXs , where xρ,a encodes ∂(ρ, a).
Conversely, every point in RXs so that ∀x ∈ Xs, we have x ∈ [0, 1], and ∀ρ ∈ FPaths<L

M (s), we
have

∑
a∈A xρ,a = 1 represents a window strategy. Therefore, the points of RXs that encode

a window strategy can be described by a finite conjunction of linear inequalities x ≥ 0, x ≤ 1
and xρ,a1 + · · · + xρ,ak

= 1 over the variables Xs.
We want to similarly characterise the set of window strategies satisfying a given window

L-PCTL formula. As will become apparent later on, we will need polynomial inequalities.

▶ Definition 15. The first-order theory of the reals (FO-R) is the set of all well-formed
sentences of first-order logic that involve universal and existential quantifiers and logical
combinations of equalities and inequalities of real polynomials.5

We allow the use of strict comparison operators {<, ̸=, >} as the negation of their non-strict
versions. We also assume that the formula is written in prenex normal form (PNF), i.e. as a
sequence of alternating blocks of quantifiers followed by a quantifier-free formula. Finally, if
S = {x1, · · · , xk} is a finite set of variables, we use the notation ∃ S as shorthand for the
quantifier sequence ∃x1 · · · ∃xk.

This theory is decidable, and admits a doubly-exponential quantifier elimination proce-
dure [18]. Of particular interest is the existential fragment of FO-R, denoted ∃-R, where only
∃ is allowed. It is decidable in PSPACE [8].

We say that an FO-R formula of free variables X is non-strict if it is satisfied by a closed
set of points in RX . In particular, an FO-R formula that only uses non-strict comparison
symbols {≤, =, ≥} and that is negation-free6 is non-strict.

▶ Proposition 16. Let s be a state of M and Φ be a window L-PCTL formula. The set of
window strategies ∂ such that s |=∂ Φ can be represented in ∃-R as a PNF formula of free
variables Xs. This formula is of size |Φ||M|O(L), and can be computed in EXPTIME. If Φ is
flat and non-strict then the ∃-R formula is non-strict.

5 The primitives operations are multiplication and addition, the comparison symbols are {≤, =, ≥}.
6 A formula is negation-free if the Boolean negation operator ¬ is not used.
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Proof sketch. We encode the problem in the theory of the reals, by using free variables
xρ,a ∈ [0, 1] that have the value of ∂(ρ, a), existential variables yρ,Φ′ ∈ {0, 1} that are
true if the state subformula Φ′ is satisfied when one follows ∂ after a fixed history of ρ,
and existential variables zρ,φ ∈ [0, 1] having the probability that the path subformula φ is
satisfied when one follows ∂ after a fixed history of ρ. The z variables use “local consistency
equations” that equate the probability of a path formula on the current state as a linear
combination of its probability on the successor states. For the Xℓ Φ′ formula this translates
into zρ,Xℓ Φ′ =

∑
s

a−→s′ xρ,aP(s, a, s′)zρ·as′,Xℓ−1 Φ′ for example. The y variables can then be
defined, so that yρ,(

∑n

i=1
ciP[φi]≽c0) = 1 if and only if

∑n
i=1 cizρ,φi

≽ c0. Lastly we ask that
ys,Φ = 1. To maintain the non-strict property, some subtlety is needed in the way nested
probabilistic operators are dealt with. ◀

If we use a PSPACE decision procedure for ∃-R on the formula of Proposition 16, we get:

▶ Theorem 17. The synthesis problem for window L-PCTL formulae is in EXPSPACE.

▶ Example 18. Consider the MDP M to the right of Figure 1, and Φ = P
[
F2 s2

]
≥ 9

16 . Let
us describe the formula obtained by Proposition 16. s0 |=∂ Φ can be encoded schematically as
the formula ∃zs0,F2 s2∃zs0as1,F1 s2 , s.t. zs0,F2 s2 = xs0,a

2 zs0as1,F1 s2 + xs0,a

2 + xs0,b

2 ∧zs0as1,F1 s2 =
xs0as1,b

2 ∧zs0,F2 s2 ≥ 9
16 . For readability reasons, we simplified boolean expressions involving ⊤

or ⊥ when appropriate, and we omitted the variables that can be simplified out immediately,
as well as the constraints making sure that the variables x encode probabilities.

After quantifier elimination, and using xs0,a +xs0,b = 1, we get xs0,a xs0as1,b ≥ 1
4 . Observe

that, as mentioned in Example 10, a window strategy ∂ that sets xs0,a = xs0as1,b = 1
2 satisfies

Φ. Similarly, s1 |=∂ Φ can be encoded as xs1,a xs1as0,b ≥ 1
4 .

Fixed point characterisation of global window formulae. Let Φ be a window L-PCTL
formula of window length L. In this subsection, we describe a fixed point characterisation of
the synthesis problem for the global window formula A G Φ.

A window strategy portfolio Π of horizon L (in short, a portfolio Π) maps each state s to
a set Πs of window strategies for s of horizon L. A window strategy portfolio can be seen
as a set of points in RXs for every state s. Given two window strategy portfolios Π and Π′

of horizon L, we write Π ⊆ Π′ if for all s ∈ S, it holds that Πs ⊆ Π′
s. Then, the set of all

window strategy portfolios of horizon L is a complete lattice w.r.t. ⊆, where for a set S of
portfolios, the meet

d
S (resp. the join

⊔
S) maps s to

⋂
Π∈S Πs (resp.

⋃
Π∈S Πs).

Let s
a−→ s′ be a transition in M, and let ∂, ∂′ be window strategies for s and s′,

respectively, of horizon L. We say that ∂ and ∂′ are compatible w.r.t. s
a−→ s′ if they make the

same decisions on shared paths, i.e. for all ρ ∈ FPaths<L
M (s′) the probability of sa · ρ under ∂

equals the probability of ρ under ∂′ multiplied by ∂(s, a)P(s, a, s′). In particular, whenever
sa · ρ has non-zero probability under ∂ and |ρ| < L − 1, we have ∂(sa · ρ) = ∂′(ρ). Similarly,
we say that ∂ and a set Πs′ of window strategies for s′ are compatible w.r.t. s

a−→ s′ if either
∂(s, a) = 0 or there exists a window strategy ∂′ in Πs′ so that ∂ and ∂′ are compatible
w.r.t. s

a−→ s′.
Let f map portfolios to portfolios, so that f(Π) maps s ∈ S to the set f(Π)s of window

strategies ∂ ∈ Πs so that for each s
a−→ s′ in M, we have that ∂ and Πs′ are compatible

w.r.t. s
a−→ s′. Intuitively, f removes from Πs the window strategies ∂ that are not compatible

with any continuation after a transition s
a−→ s′ for some action a. Then, f is expressible in

the theory of the reals:
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▶ Lemma 19. Let Π be a portfolio, encoded as an ∃-R formula Rs, of free variables Xs,
for every state s. Assume that each Rs is a PNF formula of size F . Then, f(Π)s can also
be encoded as a PNF formula, of size in O(|M|F ) + |M|O(L). Moreover, if the formulae
associated with Π are non-strict, so are the formulae of f(Π).

Proof. Let s
a−→ s′ be a transition in M, and let ∂, ∂′ be window strategies for s and s′,

encoded as points in RXs and RXs′ , respectively. If ρ ∈ FPaths<L
M (s′), then let POLY(ρ)

denote the polynomial
∏

0≤i<|ρ| xρ[:i],ai
P(si, ai, si+1). Then, the strategies ∂ and ∂′ are

compatible w.r.t. s
a−→ s′ if for all ρ ∈ FPaths<L−1

M (s′) so that POLY(ρ) > 0, for all a′ ∈ A

we have xsa·ρ,a′ = xρ,a′ . Then, if Πs′ is encoded as the formula Rs′ , we get that ∂ and Πs′

are compatible w.r.t. s
a−→ s′ if there exists a valuation of Xs′ that encodes a window strategy

∂′ so that ∂ and ∂′ are compatible w.r.t. s
a−→ s′. This property corresponds to the formula

defined by

F(s, a, s′) := ∃Xs′ , Rs′
∧

∧
ρ∈FPaths<L−1

M (s′)

POLY(ρ) = 0 ∨
∧

a′∈A

xsa·ρ,a′ = xρ,a′

Therefore, if Πs is encoded as Rs then the formula Rs ∧
∧

s
a−→s′ xs,a = 0 ∨ F(s, a, s′)

encodes f(Π)s. Observe that it introduces non-strict comparisons, existential quantifiers, and
no negation operations, and is of size in F + |M|(F + |M|O(L)). ◀

▶ Example 20. Consider again the MDP M to the right of Figure 1. Let Π be the portfolio
where Πs0 is defined by xs0,a xs0as1,b ≥ 1

4 ∧ xs0as1,b ≤ c with c ∈
[ 1

2 , 1
]

, Πs1 is defined
by xs1,a xs1as0,b ≥ 1

4 ∧ xs1as0,b ≤ c , and Π is ⊤ on every other state of M.7 Then, using
Lemma 19 yields that a formula equivalent to xs0,a xs0as1,b ≥ 1

4 ∧ xs0as1,b ≤ 1 − 1
4c encodes

f(Π)s0 . Symmetrically, f(Π)s1 can be encoded as xs1,a xs1as0,b ≥ 1
4 ∧ xs1as0,b ≤ 1 − 1

4c .

▶ Lemma 21 (Knaster-Tarski, Kleene). The operator f is Scott-continuous (upwards and
downwards), and is thus monotone. Let Q be a set of window strategy portfolios of horizon L
that forms a complete lattice w.r.t. ⊆. Then, the set of fixed points of f in Q forms a complete
lattice w.r.t. ⊆. Moreover, f has a greatest fixed point in Q equal to

d
{fn(

⊔
Q) | n ∈ N}.

Let Φ be a window L-PCTL formula of window length L. Let QΦ = {Π | ∀s ∈ S, ∀∂ ∈
Πs, s |=∂ Φ} be the set of portfolios containing window strategies of horizon L that ensure Φ.
It is closed by

d
and

⊔
, and therefore forms a complete lattice. The greatest element

⊔
QΦ

is the full portfolio mapping every s to all window strategies ∂ so that s |=∂ Φ. We denote
ΠΦ the greatest fixed point of f in QΦ, that must exist by Lemma 21.

▶ Proposition 22. Let s0 be a state, and let Φ be a window L-PCTL formula. Then, ΠΦ
s0

̸= ∅
if and only if there exists a strategy σ so that s0 |=σ A G Φ.

Proof sketch. On the one hand, we show that if σ is a strategy so that s0 |=σ A G Φ, and if
Πs0,σ is the set of window strategies obtained for state s and horizon L from fixed prefixes of
non-zero probability in σ, then Πs0,σ is a fixed point of f in QΦ so that Πs0,σ

s0
̸= ∅. On the

other hand, we show that from every fixed point Π of f in QΦ that is non-empty on a state
s0, we can inductively construct a strategy σ so that s0 |=σ A G Φ, that intuitively consists
in picking successive window strategies from Π that are compatible with each other. ◀

7 We omitted the constraints that ensure that all variables encode probabilities.
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Therefore, computing ΠΦ solves the synthesis problem for global window L-PCTL formulae.
By Lemma 21, we have that ΠΦ is the limit of the non-increasing sequence (fi(

⊔
QΦ))i∈N,

with
⊔

QΦ being the full portfolio that can be obtained as an ∃-R formula by Proposition 16,
so that fi(

⊔
QΦ) is computable by Lemma 19 as an ∃-R formula of size in |Φ||M|O(L+i).

▶ Example 23. Let M be the MDP to the right of Figure 1, and Φ = P
[
F2 s2

]
≥ 9

16 . As
detailed in Example 18, the set of strategies (

⊔
QΦ)s0 is described by xs0,axs0as1,b ≥ 1

4 , the set
of strategies (

⊔
QΦ)s1 is described by xs1,axs1as0,b ≥ 1

4 , and the set
⊔

QΦ is described by ⊤ on
all other states.8 By Example 20, fi(

⊔
QΦ)s0 is described by xs0,axs0as1,b ≥ 1

4 ∧ xs0as1,b ≤ ci,
where the constant ci is defined by c0 = 1 and ci+1 = 1 − 1

4ci
. Similarly, fi(

⊔
QΦ)s1 is

described by xs1,axs1as0,b ≥ 1
4 ∧ xs1as0,b ≤ ci, and fi(

⊔
QΦ) is ⊤ on all other states. The

sequence (ci)i∈N is a decreasing sequence that converges towards 1
2 (but never reaches it).

The limit of this sequence is the greatest fixpoint ΠΦ
s0

, described by xs0,axs0as1,b ≥
1
4 ∧ xs0as1,b ≤ 1

2 on s0, xs1,axs1as0,b ≥ 1
4 ∧ xs1as0,b ≤ 1

2 on s1, ⊤ everywhere else. If we follow
the proof of Proposition 22, we can recover the only choice on s0 and s1 that ensures A G Φ:
play a and b with probability 1

2 .

We note that this fixed point computation is not an algorithm: as we have seen in
Example 23 the fixed point may not be reachable in finitely many steps. In this case, we do
not know if the limit will be empty or not. Nonetheless, this characterisation yields multiple
corollary results, that we detail in the remainder of this section.

Flat, non-strict formulae. If Φ is flat and non-strict then fi(
⊔

QΦ) maps every state to a
compact set.9 The limit of an infinite decreasing sequence of non-empty compact sets in RXs

is non-empty. Therefore, if the limit of a decreasing sequence of compact sets is the empty
set, it must be reached after finitely many steps. Thus, if ΠΦ

s = ∅, then there exists i ∈ N so
that fi(

⊔
QΦ)s = ∅.

▶ Theorem 24. The synthesis problem for flat, non-strict global window L-PCTL formulae
is in coRE.

As we will detail in Section 4, the synthesis problem for flat, non-strict global window
formulae is undecidable (coRE-hard), and therefore coRE-complete.

▶ Remark 25. From the proof of Proposition 16, it follows that if Φ is non-flat, that is, it
contains nested probabilistic operators, then the set of window strategies ∂ such that s |=∂ Φ
may not be closed and hence

⊔
QΦ is not necessarily a compact set.

▶ Remark 26. Note that in Example 23 we were able to compute by hand the limit of the
sequence of ∃-R formulae describing fi(

⊔
QΦ), and obtained an ∃-R formula for the greatest

fixed point ΠΦ
s . This is not always possible: there exists an MDP M and a flat, non-strict

global window formula A G Φ so that ΠΦ
s cannot be expressed in FO-R. Indeed, FO-R

formulae can be seen as finite words over a countable alphabet, so that there are countably
many of them. If by contradiction ΠΦ

s was always expressible in FO-R, we could enumerate
all FO-R formulae and check for each of them if it describes a fixed-point of f where sinit is
mapped to a non-empty set, two properties also expressible in FO-R by using Lemma 19.
This would show that the synthesis problem is recursively enumerable, therefore in RE ∩ coRE
i.e. decidable, which is absurd as it is coRE-complete as we will see in Section 4.

8 Once again, we omit the constraints that ensure that all variables encode probabilities.
9 Non-strict formulae describe closed sets, and all variables are in [0, 1] as they encode probabilities.
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Deterministic strategies. In this paragraph, we study the synthesis problem for determinis-
tic strategies. First, note that the window strategy defined by a deterministic strategy for
a given prefix and horizon is also deterministic. Conversely, if ∂ is a deterministic window
strategy then there exists a deterministic strategy in its cylinder. Therefore, Lemma 14
carries over, and finding a deterministic strategy satisfying a window formula reduces to
finding a deterministic window strategy for it. Then, note that for a fixed state s, each de-
terministic window strategy can be seen as a boolean assignment over the set Xs of variables,
and we have that |Xs| = |M|O(L). Therefore, the set of deterministic window strategies is
finite, of doubly-exponential size 2|M|O(L) . We denote by W the number of deterministic
window strategies. By guessing a window strategy and verifying it in EXPTIME, we get
a NEXPTIME upper bound on the synthesis problem for window formulae. By guessing a
strategy in an online manner we can lower this complexity, and show that the problem is in
fact PSPACE-complete.

▶ Proposition 27. The synthesis problem for window L-PCTL formulae is PSPACE-complete
when restricted to deterministic strategies.

Proof. We present a non-deterministic algorithm, running in polynomial space, that accepts
all positive instances of the synthesis problem with deterministic strategies. We will guess a
deterministic window strategy ∂ and check that Φ holds on the resulting MC. In order to
avoid guessing an exponential certificate (the entire strategy ∂), we will perform a depth-first
search (DFS) traversal of the MDP, starting from sinit and of horizon L, where we guess
every decision of ∂ in an online manner (∂(ρ) is guessed when the search path, that is the
path from sinit to the current state, is ρ for the first time). We will compute along the
way information that ultimately lets us evaluate if Φ holds on the root node of the search.
At any point in the DFS, when the current path traversed from sinit is ρ, this information
represents partial evaluations of subformulae of Φ on states along ρ, according to the strategy
∂. Formally, we equip each state in the DFS with a set of formulae to be evaluated. For
each path formula φ in the set, we store the probability of satisfying the formula according
to paths previously visited by the DFS. Once all of the subtree below a state has been seen
by the search, this value matches the probability P [φ], and we can then use this value to
evaluate the state formulae that needs to know P [φ] on the current state. In order to define
the sets of subformulae to evaluate, we can use the same induction rules as in the proof of
Proposition 16, that reduce the evaluation of a formula such as Xℓ Φ1 or Φ1 Uℓ Φ2 on a given
state to the evaluation of Φ1, Φ2, Xℓ−1 Φ1 or Φ1 Uℓ−1 Φ2 on the current or the next state.
Overall, we need to remember a path of length at most L, a set of subformulae of Φ on
each state in this path, and a probability for each such path formula. Assuming that the
probabilities can be stored in polynomial space, this is indeed a PSPACE algorithm.

We argue that these probabilities can always be stored in polynomial space. Indeed, they
correspond to the measure, in the MC defined by ∂, of a finite union of cylinders defined
by prefixes of length at most L. Since ∂ is deterministic, these measures are finite sums
of real numbers obtained as the product of at most L constants appearing as transition
probabilities on M. Using a standard binary representation of rational numbers as irreducible
fractions, we get that since L is polynomial in |Φ| these probabilities are always rational and
of polynomial size.

We show a reduction from the synthesis problem with a generalized reachability objective
in a two-player game. Given an arena with a set V of vertices that are partitioned into
vertices belonging to Player 1 and Player 2, given an initial vertex v0, and reachability sets
F1, . . . , Fk, the problem asks for a (deterministic) Player 1 strategy that ensures reaching
each of the sets against any Player 2 strategies. The generalized reachability problem is
PSPACE-complete [12].
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We construct an MDP M with Q = V set of states and transitions which are the same
as the edges of the two-player game arena. A Player 1 vertex corresponds to a state in the
MDP such that for every outgoing edge (v, vi) from v, we have an action ai labelling the
transition (v, vi) in M. For a Player 2 vertex v, all the outgoing edges (v, vi) correspond to
transitions for the same action to vertices vi with equal probability. Also a state v ∈ Q in M
is labelled xi for i ≤ i ≤ k if and only if the corresponding vertex v ∈ Fi in the two-player
game. Further, if Player 1 has a wining strategy in the generalized reachability game, then
she can visit all the reachability sets within a total of nk steps with a deterministic strategy.

Now consider the property Φ defined as
∧k

i=1 P
[
Fnk xi

]
= 1. There exists a deterministic

strategy from v0 in M satisfying Φ if and only if Player 1 has a winning strategy for the
generalized reachability objective. ◀

As there are finitely many deterministic window strategies of horizon L, the fixed point
computation always terminates and thus provides decidability. We also reduce the problem
asking if an alternating Turing machine running in polynomial space accepts a given word to
deterministic strategy synthesis.

▶ Proposition 28. The synthesis problem for global window L-PCTL formulae is in
2EXPTIME when restricted to deterministic strategies. Moreover, it is EXPTIME-hard.

Proof. For global window formulae, we need to change the set QΦ, defined in Section 3, to
only contain deterministic window strategies. It is still a complete lattice, and Proposition 22
carries over for deterministic strategies. Moreover, for every portfolio Π, there are finitely
many strictly smaller portfolios, at most |M|W . As the sequence (fi(

⊔
QΦ))i∈N is non-

increasing, the fixed point is reached in at most |M|W steps. Each step can be performed
without relying on the theory of the reals, by representing the window strategies explicitly as
trees of depth L. Applying the operator f on a portfolio amounts to checking if a tree is a
prefix of another. Overall, the fixed point computation is doubly-exponential.

Note that if we rely on computing ∃-R formulae for (fi(
⊔

QΦ))i∈N instead of these explicit
sets of strategies, the formulae could a priori grow to sizes in |Φ||M|O(L+|M|W ), so that we
end up with a triply-exponential upper bound.

For the EXPTIME-hardness, we use APSPACE = EXPTIME and present a polynomial
reduction from alternating polynomial-space Turing machines. We consider a Turing machine
of states Q and tape alphabet Σ, so that each state q is equipped with a label L(q) ∈ {∀, ∃},
except for the accepting and rejecting states q⊤ and q⊥, where L(q) = q. Let w ∈ Σ∗ be an
input word, and let n ∈ N be a bound on the length of the tape used when running w on the
machine. Since we considered a polynomial space machine, n is polynomial. W.l.o.g., we
assume that for every input, the Turing machine we consider above halts, and the input is
accepted if and only if it halts in q⊤.

Let M be the MDP from Figure 2, where each named state is assigned an identical
label. We describe a window formula Φ that ensures that controller only makes choices that
faithfully represent an execution of the alternating Turing machine. Let N = 2n + 5 be the
number of steps needed to follow a cycle from s to s in M. If l is a label in M, we shorten
the L-PCTL formula P

[
FN l

]
= 1 as FN

1 l. It means that every path of length N must reach
l. Intuitively, a run of the Turing machine can be described as a path in this MDP, where
one full loop around s describes a configuration of the Turing machine: visiting ai means
that cell number i contains a, visiting aH

i means that additionally the reading head is in
position i, and entering the gadget qa means that we are in state q and will read an a. Either
controller or the environment gets to pick the next transition, and then we go back to s.
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Figure 2 The MDP used in the reduction from APSPACE to deterministic synthesis for global
window formulae. The colored transitions m1, m2, . . . represent different actions, black transitions
are available for every action, and the probability of a transition is 1 if unspecified. The letters a, b,
c enumerate the tape alphabet Σ, while q1, q2, . . . enumerate the states in Q, with q⊤ the accepting
state. The only randomized transition is in the universal gadget qa, and uses a uniform distribution
over reachable states.

The formula Φ is obtained as the conjunction of the following constraints:
In order to ensure that the tape is initialized appropriately, we ask for every letter a ∈ Σ

in position i > 1 in the input word w that sinit ⇒ FN
1 ai. If the first letter in w is a and the

initial state of the Turing machine is q1, we also ask sinit ⇒ FN
1 aH

1 ∧ FN
1 qa

1 .
In order to simulate the transitions on the tape cells correctly, we ask for every 1 ≤ i < n,

a, c ∈ Σ and transition q
a,b,L−−−→ q′ that

(s ∧ FN
1 ci ∧ FN

1 aH
i+1) ⇒ P

[
XN−2((q a,b,L−−−→ q′) ⇒ FN

1 cH
i ∧ FN

1 bi+1)
]

= 1 .

We similarly ask for every 1 ≤ i < n, a, c ∈ Σ and transition q
a,b,R−−−→ q′ that

(s ∧ FN
1 aH

i ∧ FN
1 ci+1) ⇒ P

[
XN−2((q a,b,R−−−→ q′) ⇒ FN

1 bi ∧ FN
1 cH

i+1)
]

= 1 .

The other tape cells should be left untouched, so that for every 1 ≤ i < n, a, b ∈ Σ and
transition q

c,d,L−−−→ q′, we ask that

(s ∧ FN
1 ai ∧ FN

1 bi+1) ⇒ P
[
XN−2((q c,d,L−−−→ q′) ⇒ FN

1 ai)
]

= 1 .
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Similarly for every transition transition q
c,d,R−−−→ q′, we ask that

(s ∧ FN
1 ai ∧ FN

1 bi+1) ⇒ P
[
XN−2((q c,d,R−−−→ q′) ⇒ FN

1 bi+1)
]

= 1 .

Finally, in order to update the state, we ask for every transition q
a,b,D−−−→ q′ with D ∈ {L, R}

and every 1 ≤ i ≤ n, c ∈ Σ that (q a,b,D−−−→ q′) ∧ FN
1 cH

i ⇒ FN
1 q′c .

Then, we let q⊤ and q⊥ be the labels that hold on all states qa
⊤ and qa

⊥, respectively, for all
a ∈ Σ. We consider the global window formula A G[(Φ ∨ q⊤) ∧ ¬q⊥], and show that there is a
winning strategy for this formula in M if and only if the alternating Turing machine accepts
the input word w. Indeed, an alternating Turing machine equipped with an initial word can
be seen as a turn-based two-player zero-sum reachability game played on the execution tree
of the machine, where we ask if there exists a strategy for player ∃ that ensures against every
strategy of ∀ the state q⊤ is reached. ◀

Memoryless strategies. We study the synthesis of memoryless strategies. The window
strategy defined by a memoryless strategy for a given prefix and a horizon is also memoryless.
Conversely, a memoryless window strategy has a memoryless strategy in its cylinders. By
Lemma 14, finding a memoryless strategy satisfying a window formula reduces to finding
a memoryless window strategy for it. Let s be a state. As usual, a window strategy ∂ for
state s can be seen as an assignment in [0, 1] for variables Xs. However, the memoryless
property asks that ∂(ρ) = ∂(ρ′) for all ρ, ρ′ that share the same last state s′, or equivalently
xρ,a = xlast(ρ),a for all ρ. Thus, we can replace every instance of xρ,a by xlast(ρ),a in the ∃-R
formula of Proposition 16, so that the set of free variables used to represent a memoryless
window strategy for s is Xs = {xs′,a | ∃ρ ∈ FPaths<L

M (s), s′ = last(ρ)}. Similarly, the variables
yρ,Φ and zρ,φ can be replaced by by ylast(ρ),Φ and zlast(ρ),φ respectively, as the satisfaction of
a state formula, or the probability of satisfying a path formula, only depend on the current
state. The formula is now of polynomial size, so that we obtain as a corollary:

▶ Proposition 29. The synthesis problem for window L-PCTL formulae is in PSPACE when
restricted to memoryless strategies.

Further, following a reduction in [15], it can be shown that the MR synthesis problem for
window L-PCTL objectives is at least as hard as the Square-Root-Sum problem which is
known to be in PSPACE, but whose exact complexity is a longstanding open problem.

We now study the memoryless synthesis problem for global window formulae. For each
state s, let Rs denote the ∃-R formula encoding the window formula Φ for state s, as per
Proposition 29. The free variables are the variables in Xs ⊆ X = {xs′,a | s′ ∈ S, a ∈ A}. A
memoryless strategy σ can be seen as a point in RX , so that σ(s, a) is assigned to xs,a. For
all states s and s′, we define a variable rs,s′ ∈ {0, 1} quantified existentially, and construct a
formula ensuring that if rs,s′ = 0 then s′ is not reachable from s under the strategy σ. This
formula states rs,s = 1 for all states s, and asks that the variables r are a solution to the
system of equations asking, for all s, s′, s′′ and a, that if rs,s′ = 1 and xs′,aP(s′, a, s′′) > 0
then rs,s′′ = 1. Therefore, the set of states s′ so that rs,s′ = 1 is an over-approximation.10

Then, the formula asking that there exists a value for each variable r so that Rs′

holds whenever rs,s′ = 1 represents the memoryless strategies that satisfy Φ on an over-
approximation of the states reachable from s, which is equivalent to satisfying A G Φ when

10 For example, the formula is satisfied if rs,s′ is 1 for all s, s′, which represents an over-approximation of
the set of states reachable from s where every state is reachable.
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starting from state s. Note that since the variables rs,s′ are existentially quantified, and Φ is
only required to be satisfied on states reachable from s, then there always exists a valuation
for these r variables that sets rs,s′ to 1 if and only if s′ is reachable from s. It follows that:

▶ Proposition 30. The synthesis problem for global window L-PCTL formulae is in PSPACE
when restricted to memoryless strategies.

PCTL satisfiability. We now consider the satisfiability problem, that asks, given a formula
Φ, if there a exists an MC M so that M |= Φ. This is a longstanding open problem for
PCTL formulae. One can also consider variants of the problem, that either restrict Φ to a
sublogic of PCTL or limit M to MCs that belong to a particular set, such as finite MCs
or MCs where all probabilities are rational numbers. The decidability of these variants is
also open and, as noted in [7], some PCTL formulae are only satisfiable by infinite MCs. In
particular, we say that an MC M has granularity bounded by N ∈ N if every probability
in the transition function P is equal to a rational a

b with b ≤ N . The bounded granularity
satisfiability problem asks, given Φ and N , if there exists an MC of granularity bounded by N

that satisfies Φ. The bounded granularity satisfiability problem for global window L-PCTL
formulae can be reduced to the HD strategy synthesis problem for global window L-PCTL
formulae. Therefore, we obtain the following result as a corollary of Proposition 28:

▶ Theorem 31. The bounded granularity satisfiability problem for global window L-PCTL
formulae is decidable in complexity doubly-exponential in |Φ| and N . Moreover, finite MCs
are sufficient, in the sense that for every formula A G Φ that admits a model M of granularity
bounded by N , there exists a finite MC M ′ of granularity bounded by N so that M ′ |= A G Φ.

Proof sketch. Given a formula with atomic propositions AP, and a granularity bound N ,
we intuitively consider an MC of states 2AP with an action for every distribution over 2AP

whose granularity is bounded by N , so that this action describes the next states and their
probabilities. Then, every MC of granularity bounded by N can be seen as a deterministic
strategy in this MDP, so that strategy synthesis and MC satisfiability are equivalent. We can
then apply Proposition 28. Moreover, finite MCs are sufficient as finite-memory strategies
are sufficient for global window PCTL when restricted to deterministic strategies. ◀

4 Undecidability

In Section 3, we have shown that the synthesis problem for flat, non-strict global window
L-PCTL formulae is in coRE. In this section, we argue that it is coRE-hard and that it
becomes Σ1

1-hard when relaxing the hypothesis that the formulae considered are non-strict.
When considering flat non-strict formulae, we proceed via a reduction from the non-

halting problem of a two-counter Minsky machine. A two-counter Minsky machine consists
of a list of instructions l1 : ins1, . . . , ln : insn and two counters c2 and c3 (the indices 2 and 3
are chosen to ease the notations) where, for all i ≤ n, we have insi an instruction in one the
following types, for j ∈ {2, 3} and 1 ≤ k, m ≤ n: Incj(k): cj := cj + 1; goto k; Branchj(k, m):
if cj = 0 then goto k; else cj := cj − 1, goto m; H: halt. The semantics of these instructions
is straightforward. The non-halting problem for Minsky machine, denoted MinskyNotStop, is
to decide, given a machine Msk, if its execution is infinite. This problem is undecidable, as
stated in the theorem below.

▶ Theorem 32 ([17]). MinskyNotStop is coRE-complete.
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Figure 4 The end of a gadget on the left, and
the beginning of another one on the right.
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Figure 5 The be-
ginning of a gadget.

Given Msk = l1 : ins1, . . . , ln : insn on two counters c2 and c3, we build an MDP M and
an L-PCTL formula Φ such that there exists a strategy σ for M s.t. M[σ] |= Φ if and only
if Msk ∈ MinskyNotStop. The crucial point of the reduction is to encode the values of the
counters that may take unbounded values. It is done in M by encoding these values in the
probability (chosen by the strategy σ) to see a given predicate in the next few steps. More
specifically, in the situation where the counters are such that {c2 7→ x2; c3 7→ x3}, we consider
the probability p(x2, x3) = 5

6 × 1
2x2 × 1

3x3 . We then associate to each different instruction a
gadget, i.e. an MDP, and a formula encoding the update of probability p(x2, x3) according to
how the counters are changed by the corresponding instruction. Inside a gadget, one can find
predicates of the shape (P·). They are used to define the formulae specifying the expected
behavior of the strategy. Furthermore, there is also an entering and an exiting probability
which correspond to the encoding of the counters respectively before and after the effect of
the instructions. We define below formally the notion of well-placed gadgets.

▶ Definition 33 (Gadgets). A gadget Gd is an MDP with an entering probability and an
exiting probability. Consider Figure 3 that represents how every gadget Gd ends. The
exiting probability pex

Gd is the probability σ2(a) to visit the state on the top. It is equal to
pex

Gd = Ps(F1 P), i.e. the probability that F1 P holds on state s. Consider Figure 5. All gadgets
begin as in this figure: a state s′ with a successor satisfying the predicate P′. The entering
probability pen

Gd is the probability σ1(a) to see P′, that is: pen
Gd = Ps′(F1 P′). A gadget is

well-placed if, as for the gadget on the right of Figure 4, it is preceded by two dummy states,
themselves immediately preceded by a gadget.

Before looking at how specific instructions are encoded in the counters and the formula, we
have to ensure that the exiting probability of a gadget is equal to the entering probability of
the following well-placed gadget. This is done with the formula: Φkeep := Pkeep ⇒ (P(F1 P) =
6 · P(F4 P′)). These definitions ensure the following proposition:

▶ Proposition 34 (Entering probability of a well-placed gadget). Assume that a well-placed
gadget Gd′ follows a gadget Gd.Then, for a strategy σ s.t. the formula A G Φkeep is satisfied, the
exiting probability of gadget Gd is equal to the entering probability of gadget Gd′: pex

Gd = pen
Gd′ .

Due to lack of space, we only exhibit the gadgets encoding the increment of a counter
and for testing if a counter value is 0. Consider the increment of counter c2. By definition of
p(x2, x3), incrementing that counter is simulated by multiplying the probability by 1

2 .We
define the gadget Gdc2++ and the formula Φc2++ ensuring that the probability is indeed
multiplied by 1

2 . The gadget Gdc2++ is depicted in Figure 6.In addition, we define the
L-PCTL formula Φc2++ such that Φc2++ := Pc2++ ⇒ (P(F2 Pc2) = 6 · 2 · P(F3 P+)). The
interest of these definitions lies in the proposition below.
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Figure 6 The gadget Gdc2++ for the
operation c2 := c2 + 1.
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counter c2 = 0.

▶ Proposition 35 (Incrementing Gadget Specification). If the entering probability pen
Gdc2++

of
the gadget Gdc2++ is equal to p(x2, x3) with x2, x3 ∈ N, then whenever the formula A G Φc2++
is satisfied, the exiting probability pex

Gdc2++
of this gadget is equal to pex

Gdc2++
= p(x2 + 1, x3).

We now consider the gadget that tests if a counter value is 0, let us exemplify it with
counter c2 in gadget Gdc2=0 depicted in Figure 7. The gadget Gd=5/6 used on the right tests
that both counters have value 0 (i.e. the entering probability is equal to 5/6).Then, the
idea is as follows: as long as counter c3 has a positive value, the strategy σ has to take the
bottom branch to decrement it and once this counter has reached 0, it can take the top
branch to check that the probability is indeed equal to 5/6. Note that one cannot decrement
counter c2 in this gadget, hence if its value is positive, there is no way to pass the test of the
comparison to 5/6. To ensure that the choice at state sc2=0 is deterministic, we consider the
formula Φ0,1 := Pchoose ⇒ (P(X P0,1) = 1 ∨ P(X P′

0,1) = 1). We have the proposition below:

▶ Proposition 36 (Testing Gadget Specification). Assume that the entering probability pen
Gdc2=0

of the gadget Gdc2=0 is equal to p(x2, x3) for some x2, x3 ∈ N. Then, there is a strategy σ

such that the formula A G[Φkeep ∧ Φ0,1 ∧ Φc3−− ∧ Φ=5/6] is satisfied if and only if x2 = 0.

We can similarly test that a counter is different from 0. A gadget corresponding to a
branching instruction can then be defined by using these gadgets.Finally, a gadget corre-
sponding to the Halt instruction only consists of a gadget where no strategy σ can satisfy the
formula considered. Overall, we can combine all these gadgets to encode all the instructions
of the Minsky machine Msk.We obtain the theorem below.

▶ Theorem 37. The synthesis problem for flat, non-strict global window L-PCTL formulae
is coRE-hard.

When considering arbitrary flat formulae without the non-strict constraint, we can adapt
the proof to reduce from the problem asking if there is an execution of a Minsky Machine
that visits infinitely often the first instruction [3], so that the strategy synthesis problem
becomes highly undecidable.

▶ Theorem 38. The synthesis problem for flat global window L-PCTL formulae is Σ1
1-hard.

The construction here is similar to the case with the non-strict constraint, except that
whenever the first instruction is seen, a choice is given to the strategy which can set in how
many number of steps n the first instruction will be seen again (note that this number may
be arbitrarily large). This choice is encoded by resetting a new counter c5 to value n, which
is then decremented each time the first instruction is not seen, and a problem arises if this
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counter ever reaches 0. In terms of probability, the value p(x2, x3) is initially multiplied by 1
5n

and then multiplied by 5 each time the first instruction is not seen. Hence, the probabilities
chose by σ may be arbitrarily close to 0, but cannot be equal to 0. This is where we need
the non-strict comparison with 0.
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1 Introduction

Nash equilibria (NEs), a fundamental solution concept in game theory, are defined as strategy
profiles such that no player can improve their payoff by changing unilaterally their strategy.
So NEs can be interpreted as self-inforcing contracts from which there is no incentive to
deviate unilaterally. Unfortunately, NEs are known to suffer, in sequential games like infinite
duration games played on graphs, from the issue of non-credible threats: to enforce a NE,
some players may threaten other players to play irrationally in order to punish deviations.
This is allowed by the definition of NEs, as in case of deviation from one player, the other
players are not bound to rational behaviors anymore and they can therefore play irrationally
w.r.t. their own objectives in order to sanction the deviating player. This drawback of NEs
has triggered the introduction of the notion of subgame-perfect equilibria (SPEs) [22], a more
complex but more natural solution concept for sequential games. A strategy profile is an
SPE if after every history, i.e. in every subgame, the strategies of the players still form an
NE. Thus, SPEs impose rationality even after a deviation and only rational behaviors can be
used to coerce the behavior of other players.

In this paper, we study the complexity of SPE problems in infinite-duration sequential
games played on graphs with mean-payoff objectives. While NEs always exist in those games,
as proved in [8], SPEs do not always exist as shown in [23, 7]. The SPE threshold problem, i.e.
the problem of deciding whether a given mean-payoff game admits an SPE satisfying some
constraints on the payoffs it grants to the players, has recently been proved to be decidable
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in [3]. However, its worst-case computational complexity is open: [3] provides only an NP
lower bound and a 2ExpTime upper bound. In this paper, we close this complexity gap
and prove that the problem is actually NP-complete.

Contributions. The starting point of our algorithm is the characterization of SPEs recently
presented in [3], based on the notions of requirement and negotiation function. A requirement
on a game G is a function λ : V → R ∪ {±∞}, where V is the state space of G. For a
given state v, the value λ(v) should be understood as the minimal payoff that the player
controlling the state v will require in a play traversing v in order to avoid deviating. A
requirement captures, therefore, some level of rationality of the players. The negotiation
function transforms each requirement λ into a (possibly stronger) requirement nego(λ), such
that nego(λ)(v) is the best payoff that the player controlling v can ensure, while playing
against a coalition of the other players that play rationally with regards to the requirement
λ. A play is the outcome of an SPE if and only if it satisfies the requirement λ∗, the least
fixed point of the negotiation function – or equivalently, one of its fixed points. We recall
that result in Lemma 29. In order to obtain our nondeterministic polynomial time algorithm,
the rest of the paper constructs a notion of witness recognizing the positive instances of the
SPE threshold problem. Such witnesses admit three pieces. First, we show that the size of
λ∗ can be bounded by a polynomial function of the size of the game (Theorem 37). This
result is obtained by showing that the set of fixed points of the negotiation function can
be characterized by a finite union of polyhedra that in turn can be represented by linear
inequations. While the number of inequations that are needed for that characterization may
be large (it cannot be bounded polynomially), we show that each of those inequations have
coefficients and constants whose binary representations can be bounded polynomially. As the
least fixed point is the minimal value in this set, it is represented by a vertex of one of those
polyhedra. Then this guarantees, using results that bounds the solutions of linear equalities,
that the least fixed point has a binary representation that is polynomial and so it can be
guessed in polynomial time by a nondeterministic algorithm: it will be the first piece of our
notion of witness, in the non-deterministice algorithm we design to solve the SPE threshold
problem. Second, we define a witness of polynomial size for the existence of a play, consistent
with a given requirement, which generates a payoff vector between the desired thresholds
(Theorem 38). This play is not guaranteed to be regular. Third, we define a witness of
polynomial size to prove that a requirement is indeed a fixed point of the negotiation function.
This notion of certificate relies on a new and more compact game characterization of the
negotiation function called the reduced negotiation game (Definition 41, Theorem 44). These
results are far from trivial as we also show that SPEs may rely on strategy profiles that are
not regular and require infinite memory. As both the least fixed point and its two certificates
can be guessed and verified in polynomial time, we obtain NP membership for the threshold
problem, closing the complexity gap left open in [3] (Theorem 48).

Additionally, all the previous results do also apply to ε-SPEs, a quantitative relaxation of
SPEs. In particular, Theorem 48 does also apply to the ε-SPE threshold problem.

Related works. Non-zero sum infinite duration games have attracted a large attention in
recent years, with applications targeting reactive synthesis problems, see e.g. [1, 9, 10, 14, 19]
and their references. We now detail other works more closely related to our contributions.

In [7], Brihaye et al. introduce and study the notion of weak SPE, which is a weakening
of the classical notion of SPE. This weakening is equivalent to the original SPE concept
on reward functions that are continuous. This is the case for example for the quantitative
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reachability reward function, on which Brihaye et al. solve the SPE threshold problem
in [6]. The mean-payoff cost function is not continuous and the techniques used in [7], and
generalized in [11], cannot be used to characterize SPEs for the mean-payoff reward function.

In [21], Meunier develops a method based on Prover-Challenger games to solve the
problem of the existence of SPEs on games with a finite number of possible payoffs. In
mean-payoff games, the number of possible payoffs is uncountably infinite.

In [15], Flesch and Predtetchinski present another characterization of SPEs on games
with finitely many possible payoffs, based on a game structure with infinite state space.
In [3], Brice et al. define the notions of requirements and negotiation function. They
prove that the negotiation function is characterized by a zero-sum two-player game called
abstract negotiation game, which is similar to the game introduced in the characterization of
Flesch and Predtetchinski. As a starting point for algorithms, they also provide an effective
representation of this game, called concrete negotiation game, which turns out to be a
zero-sum finite state multi-mean-payoff games [24]. Finally, they use those tools to prove that
the SPE threshold problem is decidable for mean-payoff games. They left open the question
of its precise complexity: they provide a NP lower bound and a 2ExpTime upper bound.
In [5], the same authors use those tools to close the complexity gap for the SPE threshold
problem in parity games, which had been proved to be ExpTime-easy and NP-hard by
Ummels and Grädel in [16]. They prove that the problem is actually NP-complete. The
techniques used in that paper heavily rely on the fact that parity objectives are ω-regular,
which is not the case of mean-payoff games in general.

In [13], Chatterjee et al. study mean-payoff automata, and give a result that can be
translated into an expression of all the possible payoff vectors in a mean-payoff game. In [2],
Brenguier and Raskin give an algorithm to build the Pareto curve of a multi-dimensional
two-player zero-sum mean-payoff game. To do so, they study systems of equations and of
inequations, and they prove that they always admit simple solutions (with polynomial size).
Those technical results will be used along this paper.

Structure of the paper. In Section 2, we introduce the necessary background. Section 3
recalls the notions of requirement and negotiation function, and link them to NEs and SPEs.
Section 4 recalls results about the size of solutions of systems of equations or inequations, and
use them to bound the size of the least fixed point of the negotiation function. Section 5 defines
a witness for the existence of a λ-consistent play between two given thresholds. Section 6
introduces the reduced negotiation game that is a new compact characterization of the
negotiation function. Finally, Section 7 applies those results to prove the NP-completeness
of the SPE threshold problem on mean-payoff games. The proofs that are not presented here
can be found in appendices of [4], the full version of this paper.

2 Background

Games, strategies, equilibria. In all what follows, we study infinite duration turn-based
quantitative games on finite graphs with complete information.

▶ Definition 1 (Game). A non-initialized game is a tuple G = (Π, V, (Vi)i∈Π, E, µ), where:
Π is a finite set of players;
(V,E) is a directed graph, called the underlying graph of G, whose vertices are sometimes
called states and whose edges are sometimes called transitions, and in which every state
has at least one outgoing transition. For the simplicity of writing, a transition (v, w) ∈ E

will often be written vw;
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(Vi)i∈Π is a partition of V , in which Vi is the set of states controlled by player i;
µ : V ω → RΠ is an payoff function, that maps each infinite word ρ to the tuple µ(ρ) =
(µi(ρ))i∈Π of the players’ payoffs.

An initialized game is a tuple (G, v0), often written G↾v0 , where G is a non-initialized game
and v0 ∈ V is a state called initial state. We often use the word game, alone, for both
initialized and non-initialized games.

▶ Definition 2 (Play, history). A play (resp. history) in the game G is an infinite (resp.
finite) path in the graph (V,E). It is also a play (resp. history) in the initialized game
G↾v0 , when v0 is its first vertex. The set of plays (resp. histories) in the game G (resp. the
initialized game G↾v0) is denoted by PlaysG (resp. PlaysG↾v0 ,HistG,HistG↾v0). We write
HistiG (resp. HistiG↾v0) for the set of histories in G (resp. G↾v0) of the form hv, where v is
a vertex controlled by player i.

Given a play ρ (resp. a history h), we write Occ(ρ) (resp. Occ(h)) the set of vertices that
appear in ρ (resp. h), and Inf(ρ) the set of vertices that appear infinitely often in ρ. For a
given index k, we write ρ≤k (resp. h≤k), or ρ<k+1 (resp. h<k+1), the finite prefix ρ0 . . . ρk

(resp. h0 . . . hk), and ρ≥k (resp. h≥k), or ρ>k−1 (resp. h>k−1), the infinite (resp. finite)
suffix ρkρk+1 . . . (resp. hkhk+1 . . . h|h|−1). Finally, we write first(ρ) (resp. first(h)) the first
vertex of ρ (and last(h) the last vertex of h).

▶ Definition 3 (Strategy, strategy profile). A strategy for player i in the initialized game
G↾v0 is a function σi : HistiG↾v0 → V , such that vσi(hv) is an edge of (V,E) for every hv. A
history h is compatible with a strategy σi if and only if hk+1 = σi(h0 . . . hk) for all k such
that hk ∈ Vi. A play ρ is compatible with σi if all its prefixes are.

A strategy profile for P ⊆ Π is a tuple σ̄P = (σi)i∈P , where each σi is a strategy for player
i in G↾v0 . A play or a history is compatible with σ̄P if it is compatible with every σi for i ∈ P .
A complete strategy profile, usually written σ̄, is a strategy profile for Π. Exactly one play is
compatible with a complete strategy profile: we write it ⟨σ̄⟩, and call it the outcome of σ̄.

When i is a player and when the context is clear, we will often write −i for the set Π \ {i}.
When τ̄P and τ̄ ′

Q are two strategy profiles with P ∩ Q = ∅, we write (τ̄P , τ̄
′
Q) the strategy

profile σ̄P ∪Q such that σi = τi for i ∈ P , and σi = τ ′
i for i ∈ Q.

Before moving on to SPEs, let us recall that an NE is a strategy profile such that no
player has an incentive to deviate unilaterally.

▶ Definition 4 (Nash equilibrium). Let G↾v0 be a game. The strategy profile σ̄ is a Nash
equilibrium – or NE for short – in G↾v0 if and only if for each player i and for every strategy
σ′

i, called deviation of σi, we have the inequality µi (⟨σ′
i, σ̄−i⟩) ≤ µi (⟨σ̄⟩).

An SPE is a strategy profile whose all substrategy profiles are NEs.

▶ Definition 5 (Subgame, substrategy). Let hv be a history in the game G. The subgame
of G after hv is the game (Π, V, (Vi)i, E, µ↾hv)↾v, where µ↾hv maps each play to its payoff in
G, assuming that the history hv has already been played: formally, for every ρ ∈ PlaysG↾hv,
we have µ↾hv(ρ) = µ(hρ). If σi is a strategy in G↾v0 , its substrategy after hv is the strategy
σi↾hv in G↾hv, defined by σi↾hv(h′) = σi(hh′) for every h′ ∈ HistiG↾hv.

▶ Remark. The initialized game G↾v0 is also the subgame of G after the one-state history v0.

▶ Definition 6 (Subgame-perfect equilibrium). Let G↾v0 be a game. The strategy profile σ̄ is
a subgame-perfect equilibrium – or SPE for short – in G↾v0 if and only if for every history h
in G↾v0 , the strategy profile σ̄↾h is a Nash equilibrium in the subgame G↾h.

The notion of subgame-perfect equilibrium refines the notion of Nash equilibrium and
excludes coercion by non-credible threats.
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(a) Two Nash equilibria.
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(b) An example for the operator ⌞.

Figure 1 Illustration for preliminary notions.

▶ Example 7. Consider the game pictured in Figure 1a. It is initialized with initial state a,
and has two players, player # and player 2, who own respectively the circle and the square
vertices. The payoff function assigns to each player a payoff of 1 for the play abdω, and 0
for all the other plays. Two different strategy profiles are represented here, one by the blue
colored transitions, which has outcome abdω, one by the red colored ones, which has outcome
acgω. Both are NEs: clearly, no player can increase their payoff by deviating from the blue
choices, and in the case of the red profile, a deviation of player 2 can only lead to the play
acfω, and a deviation of player # to abeω – both plays give to both player the payoff 0.
However, for player 2, going from b to e is not a rational choice, hence the red profile is not
an SPE, while the blue profile is one.

An ε-SPE is a strategy profile which is almost an SPE: if a player deviates after some
history, they will not be able to improve their payoff by more than a quantity ε ≥ 0. Note
that a 0-SPE is an SPE, and conversely.

▶ Definition 8 (ε-SPE). Let G↾v0 be a game, and ε ≥ 0. A strategy profile σ̄ from v0 is an
ε-SPE if and only if for every history h, for every player i and every strategy σ′

i, we have
µi(⟨σ̄−i↾h, σ

′
i↾h⟩) ≤ µi(⟨σ̄↾h⟩) + ε.

Mean-payoff games. We now turn to the definition of mean-payoff objectives.

▶ Definition 9 (Mean-payoff, mean-payoff game). In a graph (V,E), we associate to each
mapping r : E → Q the mean-payoff function:

MPr : h0 . . . hn 7→ 1
n

n−1∑
k=0

ri (hkhk+1) .

A game G = (Π, V, (Vi)i, E, µ) is a mean-payoff game if its underlying graph is finite, and if
there exists a tuple (ri)i∈Π of reward functions, such that for each player i and every play ρ:

µi(ρ) = lim inf
n→∞

MPri
(ρ≤n).

The mapping ri is called reward function of player i: it represents the immediate reward
that each action grants to player i. The final payoff of player i is their average payoff along
the play, classically defined as the limit inferior1 over n (since the limit may not be defined)
of the average payoff after n steps. When the context is clear, we liberally write MPi(h) for
MPri

(h), and MP(h) for the tuple (MPi(h))i, as well as r(uv) for the tuple (ri(uv))i.

1 An alternative definition of mean-payoff games exists, with a limit superior instead of inferior. While
in zero-sum one dimensional games, the two definitions lead to the same notion of optimality, this is
not the case when considering multiple dimensions, see e.g. [24]. All the results presented in this paper
apply only on mean-payoff games defined with a limit inferior.
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In the sequel, we develop a worst-case optimal algorithm to solve the ε-SPE threshold
problem, which is a generalization of the SPE threshold problem, defined as follows.

▶ Definition 10 (ε-SPE threshold problem). Given a rational number ε ≥ 0, a mean-payoff
game G↾v0 and two thresholds x̄, ȳ ∈ QΠ, does there exist an ε-SPE σ̄ in G↾v0 such that
x̄ ≤ µ(⟨σ̄⟩) ≤ ȳ?

That problem is already known, by [3], to be 2ExpTime and NP-hard. The proof given
in that paper does also show that NP-hardness still holds when ε is fixed to 0. Let us also
add that the existence of an SPE in a given mean-payoff game, i.e. the same problem with
no thresholds and with ε = 0, is itself NP-hard.

▶ Definition 11 (SPE existence problem). Given a mean-payoff game G↾v0 , does there exist
an SPE in G↾v0?

▶ Lemma 12. The SPE existence problem is NP-hard.

Set of possible payoffs. A first important result that we need is the characterization of the
set of possible payoffs in a mean-payoff game, which has been introduced in [13]. Given a
graph (V,E), we write SC(V,E) the set of simple cycles it contains. Given a finite set D of
dimensions and a set X ⊆ RD, we write ConvX the convex hull of X. We will often use the
subscript notation Convx∈Xf(x) for the set Convf(X).

▶ Definition 13 (Downward sealing). Given a set Y ⊆ RD, the downward sealing of Y is the
set ⌞Y =

{
(minz̄∈Z zd)d∈D

∣∣ Z is a finite subset of Y
}
.

▶ Example 14. In R2, if Y is the blue area in Figure 1b, then ⌞Y is the union of the blue
area and the gray area.

▶ Lemma 15 ([13]). Let G be a mean-payoff game, whose underlying graph is strongly
connected. The set of the payoffs µ(ρ), where ρ is a play in G, is exactly the set:

⌞

(
Conv

c∈SC(V,E)
MP(c)

)
.

Two-player zero-sum games. We now recall several definitions and two classical results
about two-player zero-sum games.

▶ Definition 16 (Two-player zero-sum game). A two-player zero sum game is a game G with
Π = {1, 2} and µ2 = −µ1.

▶ Definition 17 (Borel game). A game G is Borel if the function µ, from the set V ω equipped
with the product topology to the Euclidian space RΠ, is Borel, i.e. if, for every Borel set
B ⊆ RΠ, the set µ−1(B) is Borel.

▶ Remark. Mean-payoff games are Borel (see [12]).

▶ Lemma 18 (Determinacy of Borel games, [20]). Let G↾v0 be a zero-sum Borel game, with
Π = {1, 2}. Then, we have the following equality:

sup
σ1

inf
σ2

µ1(⟨σ̄⟩) = inf
σ2

sup
σ1

µ1(⟨σ̄⟩).

That quantity is called value of G↾v0 , denoted by val1(G↾v0).
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▶ Definition 19 (Optimal strategy). Let G↾v0 be a zero-sum Borel game, with Π = {1, 2}.
The strategy σ1 is optimal in G↾v0 if infσ2 µ1(⟨σ1, σ2⟩) = val1(G↾v0).

Let us now define memoryless strategies, and a condition under which they can be optimal.

▶ Definition 20 (Memoryless strategy). A strategy σi in a game G↾v0 is memoryless if for
every vertex v ∈ Vi and for all histories h and h′, we have σi(hv) = σi(h′v).

We usually write σi(·v) for the state σi(hv) for every h. For every game G↾v0 , we write
ML (G↾v0) for the set of memoryless strategies in G↾v0 .

▶ Definition 21 (Shuffling). Let ρ, η and θ be three plays in a game G. The play θ is a
shuffling of ρ and η if there exist two sequences of indices k0 < k1 < . . . and ℓ0 < ℓ1 < . . .

such that η0 = ρk0 = ηℓ0 = ρk1 = ηℓ1 = . . . , and:

θ = ρ0 . . . ρk0−1η0 . . . ηℓ0−1ρk0 . . . ρk1−1ηℓ0 . . . ηℓ1−1 . . . .

▶ Definition 22 (Convexity, concavity). A function f : PlaysG → R is convex if every shuffling
θ of two plays ρ and η satisfies f(θ) ≥ min{f(ρ), f(η)}. It is concave if −f is convex.

▶ Remark. Mean-payoff functions, defined with a limit inferior, are convex.

▶ Lemma 23. In a two-player zero-sum game played on a finite graph, every player whose
payoff function is concave has an optimal strategy that is memoryless.

Proof. According to [18], this result is true for qualitative objectives, i.e. when µ can only
take the values 0 and 1. It follows that for every α ∈ R, if a player i, whose payoff function is
concave, has a strategy that ensures µi(ρ) ≥ α (understood as a qualitative objective), then
they have a memoryless one. Hence the equality:

val1(G↾v0) = sup
σ1∈ML(G↾v0 )

inf
σ2

µ1(⟨σ̄⟩).

Since the underlying graph (V,E) is finite, memoryless strategies exist in finite number, hence
the supremum above is realized by a memoryless strategy σ1 that is, therefore, optimal. ◀

3 Requirements and negotiation

We now recall some notions and results from [3], which are the starting point of our algorithm.

Requirements. In the sequel, we write R the set R ∪ {±∞}.

▶ Definition 24 (Requirement). A requirement on the game G is a mapping λ : V → R.

For a given state v, the quantity λ(v) represents the minimal payoff that the player
controlling v will require in a play traversing the state v.

▶ Definition 25 (λ-consistency). Let λ be a requirement on a game G. A play ρ in G is
λ-consistent if and only if, for all i ∈ Π and n ∈ N with ρn ∈ Vi, we have µi(ρ≥n) ≥ λ(ρn).
The set of λ-consistent plays from a state v is denoted by λCons(v).

▶ Remark. The set λCons(v) can be empty, and is not regular in general.

▶ Definition 26 (λ-rationality). Let λ be a requirement on a mean-payoff game G. Let i ∈ Π.
A strategy profile σ̄−i is λ-rational if and only if there exists a strategy σi such that, for
every history hv compatible with σ̄−i, the play ⟨σ̄↾hv⟩ is λ-consistent. We then say that the
strategy profile σ̄−i is λ-rational assuming σi. The set of λ-rational strategy profiles in G↾v

is denoted by λRat(v).
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Negotiation. In mean-payoff games, as well as in a wider class of games (see [3] and [15]),
SPEs are characterized by the fixed points of the negotiation function, a function from the
set of requirements into itself. We always use the convention inf ∅ = +∞.

▶ Definition 27 (Negotiation function). Let G be a game. The negotiation function is the
function that transforms each requirement λ on G into a requirement nego(λ) on G defined,
for each i ∈ Π and v ∈ Vi, by:

nego(λ)(v) = inf
σ̄−i∈λRat(v)

sup
σi

µi(⟨σ̄⟩).

The quantity nego(λ)(v) is the best payoff the player controlling the state v can enforce
if the other players play rationally with regards to the requirement λ.
▶ Remark. The negotiation function satisfies the following properties.

It is monotone: if λ ≤ λ′ (for the pointwise order), then nego(λ) ≤ nego(λ′).
It is also non-decreasing: for every λ, we have λ ≤ nego(λ).
There exists a λ-rational strategy profile from v against the player controlling v if and
only if nego(λ)(v) ̸= +∞.

Link with SPEs. The SPE outcomes in a mean-payoff game are characterized by the fixed
points of the negotiation function, or equivalently by its least fixed point. That result can be
extended to ε-SPEs. To that end, we recall the notion of ε-fixed points of a function.

▶ Definition 28 (ε-fixed point). Let ε ≥ 0, let D be a finite set and let f : RD → RD be a
mapping. A tuple x̄ ∈ RD is a ε-fixed point of f if for each d ∈ D, for ȳ = f(x̄), we have
yd ∈ [xd − ε, xd + ε].

▶ Remark. A 0-fixed point is a fixed point, and conversely.

▶ Lemma 29 ([3]). Let G↾v0 be a mean-payoff game, and let ε ≥ 0. The negotiation function
on G has a least ε-fixed point λ∗, and given a play ρ in G↾v0 , the three following assertions
are equivalent: (1) the play ρ is an ε-SPE outcome; (2) the play ρ is λ-consistent for some
ε-fixed point λ of the negotiation function; (3) the play ρ is λ∗-consistent.

The abstract negotiation game. Given λ and u ∈ V , the quantity nego(λ)(u) can be
characterized as the value of a negotiation game, a two-player zero-sum game opposing the
player Prover, who simulates a λ-rational strategy profile and wants to minimize player i’s
payoff, and the player Challenger, who simulates player i’s reaction by accepting or refusing
Prover’s proposals. Two negotiation games were defined in [3]. Conceptually simpler, the
abstract negotiation game Absλi(G)↾u unfolds as follows:

from the state v, Prover chooses a λ-consistent play ρ from the state v and proposes it to
Challenger. If Prover has no play to propose, the game is over and Challenger gets the
payoff +∞.
Once a play ρ has been proposed, Challenger can accept it. Or he can deviate, and choose
a prefix ρ≤k with ρk ∈ Vi and a new transition ρkw ∈ E.
In the former case, the game is over. In the latter, it starts again from the state w.

If Challenger finally accepts a proposal ρ, then his payoff is µi(ρ). If he deviates infinitely
often, then Prover’s proposals and his deviations construct a play π̇ = ρ

(0)
≤k0

ρ
(1)
≤k1

ρ
(2)
≤k2

. . . .
Then, Challenger’s payoff is µi(π̇). It has been proved in [3] that the equality nego(λ)(u) =
valC(Absλi(G)↾u) holds. Thus, the abstract negotiation game captures a first intuition on
how the negotiation function can be computed.
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Figure 2 Iterations of the negotiation function.

▶ Example 30. Let G be the game of Figure 2, where each edge is labelled by the rewards
r# and r2. Below the states, we present the requirements λ0 : v 7→ −∞, λ1 = nego(λ0),
λ2 = nego(λ1), λ3 = nego(λ2), and λ4 = nego(λ3). Let us explicate those computations,
using the abstract negotiation game. From λ0 to λ1: since every play is λ0-consistent, Prover
can always propose whatever she wants. From the state a, whatever she (trying to minimize
player #’s payoff) proposes, Challenger can always make player # deviate in order to loop
on the state a. Then, in the game G, player # gets the payoff 1, hence λ1(a) = 1. From
the state b, Prover (trying to minimize player 2’s payoff) can propose the play (bc)ω. If
Challenger makes player 2 deviate to go to the state a, then Prover can propose the play
a(bc)ω. Even if Challenger makes player 2 deviate infinitely often, he cannot give him more
than the payoff 0, hence λ1(b) = 0. Similar situations happen from the states c and d, hence
λ1(c) = λ1(d) = 0. From λ1 to λ2: now, from the state b, whatever Prover proposes at
first, Challenger can make player 2 deviate and go to the state a. From there, since we
have λ1(a) = 1, Prover has to propose a play in which player # gets the payoff 1. The only
such plays do also give the payoff 1 to player 2, hence λ2(b) = 1. Similar situations explain
λ3(c) = 1, and λ4(c) = 1. Finally, plays ending with the loop aω are all λ4-consistent, hence
Prover can always propose them, hence the requirement λ4 is a fixed point of the negotiation
function – and therefore the least. By Lemma 29, the SPE plays in G are exactly the plays
in which both player # and player 2 get the payoff 1.

The concrete negotiation game. The abstract negotiation game cannot be directly used
for an algorithmic purpose, since it has an infinite state space. However, it can be turned
into a game on a finite graph if Prover does not propose plays as a whole, but edge by edge.
In the concrete negotiation game Concλi(G)↾(u,{u}), the states controlled by Prover have
the form (v,M), where M ⊆ V memorizes the states seen since the last time Challenger
did deviate, in order to control that the play Prover is constructing since that moment is
effectively λ-consistent: for each u ∈ M , Prover has to give to the player controlling u at
least the payoff λ(u). Similarly, the states controlled by Challenger are of the form (vv′,M),
where vv′ ∈ E is an edge proposed by Prover. The game unfolds as follows:

from the state (v,M), Prover chooses a transition vv′ and proposes it to Challenger.
Once a transition vv′ has been proposed, Challenger can accept it. Or, if v ∈ Vi, he can
deviate, and choose a new transition vw.
If the former case, the game starts again from the state (v′,M ∪ {v′}). In the latter, it
starts from the state (w, {w}).

For every play π = (ρ0,M0)(ρ0ρ
′
0,M0)(ρ1,M1)(ρ1ρ

′
1,M1) . . . in Concλi(G), we write

π̇ = ρ0ρ1 . . . the play in G constructed by Prover’s proposals and Challenger’s deviations.
Then, Challenger’s payoff in the play π is either +∞ if there exists an index k such that the
suffix π≥2k contains no deviation and π̇≥k is not λ-consistent, and µi(π̇) otherwise.
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In [3], a first algorithm was proposed to solve the ε-SPE threshold problem, using the
fact that in the concrete negotiation game, Challenger has a memoryless optimal strategy,
to design a complete representation of the negotiation function, and to compute its least
ε-fixed point. However, that algorithm requires doubly exponential time, because it needs to
enumerate all the memoryless strategies available for Challenger, whose number is exponential
in the size of the concrete game, itself exponential in the size of G. Here, we make use of the
concrete negotiation game only to bound the size of the least ε-fixed point: our algorithm
will use a third negotiation game, the reduced negotiation game.

4 Size of the least ε-fixed point

In this section, after having recalled some results about the sizes of solutions to linear
equations and inequations, we prove that the least ε-fixed point of the negotiation function in
a game G has a size that is polynomial in the size of G and ε. The first piece of the witnesses
identifying positive instances of the ε-SPE threshold problem will then be an ε-fixed point of
the negotiation function of polynomial size.

About size, equations and inequations. We define here the notion of size that we use.

▶ Definition 31 (Size). The size of a rational number r = p
q , where p, q ∈ Z are co-prime, is

the quantity ∥r∥ = 1 + ⌈log2(|p| + 1)⌉ + ⌈log2(|q| + 1)⌉. The size of an irrational number is
+∞. The size of the infinite numbers is ∥ + ∞∥ = ∥ − ∞∥ = 1. The size of a tuple x̄ ∈ OD,
where D is a set and O is a set of objects for which the notion of size has been defined, is the
quantity cardD +

∑
d∈D ∥xd∥. Similarly, the size of a function f : D → X is the quantity

cardD +
∑

d∈D ∥f(d)∥, and the size of a set X ⊆ O is the quantity cardX +
∑

x∈X ∥x∥.

The proof of Theorem 37 below requires the manipulation of polytopes, e.g. downward
sealings of convex hulls (from Lemma 15), expressed as solution sets of systems of linear
inequations.

▶ Definition 32 (Linear equations, inequations, systems). Let D be a finite set. A linear
equation in RD is a pair (ā, b) ∈

(
RD \

{
0̄
})

× R. The solution set of the equation (ā, b) is
the set Sol=(ā, b) = {x̄ ∈ RD | ā · x̄ = b}, where · denotes the canonical scalar product on
the euclidian space RD. A set X ⊆ RD is a hyperplane of RD if it is the solution set of
some linear equation. A system of linear equations is a finite set Σ of linear equations. The
solution set of the system Σ is the set Sol=Σ =

⋂
(ā,b)∈Σ Sol=(ā, b). A set X ⊆ RD is a linear

subspace of RD if it is the solution set of some system of linear equations.
A linear inequation in RD is a pair (ā, b) ∈

(
RD \

{
0̄
})

× R. The solution set of the
inequation (ā, b) is the set Sol≥(ā, b) = {x̄ ∈ RD | ā · x̄ ≥ b}. A set X ⊆ RD is a
half-space of RD if it is the solution set of some linear inequation. A system of linear
inequations is a finite set Σ of linear inequations. The solution set of the system Σ is the
set Sol≥Σ =

⋂
(ā,b)∈Σ Sol≥(ā, b). A set X ⊆ RD is a polyhedron of RD if it is the solution

set of some system of linear inequations Σ. A vertex of X is a point x̄ ∈ RD such that
{x̄} = Sol=(Σ′) for some subset Σ′ ⊆ Σ. A polytope is a bounded polyhedron.

▶ Remark. Polyhedra are closed sets. The polytopes of RD are exactly the sets of the form
Conv(S), where S is a finite subset of RD.

▶ Lemma 33 ([13]). Let Σ be a system of inequations, and let X = Sol≥(Σ). The set ⌞X is
itself a polyhedron, and there exists a system of inequations Σ′ such that ⌞X = Sol≥(Σ′) and
that for every (ā′, b′) ∈ Σ′, there exists (ā, b) ∈ Σ with ∥(ā′, b′)∥ ≤ ∥(ā, b)∥.
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▶ Lemma 34 ([2], Theorem 1). There exists a polynomial P1 such that, for every system of
equations Σ, there exists a point x̄ ∈ Sol=Σ, such that ∥x̄∥ ≤ P1

(
max(ā,b)∈Σ∥(ā, b)∥

)
.

▶ Corollary 35. For every system of inequations Σ, each vertex x̄ of the polyhedron Sol≥(Σ)
has size ∥x∥ ≤ P1

(
max(ā,b)∈Σ∥(ā, b)∥

)
.

Note that in Lemma 33, in Lemma 34 and in Corollary 35, the number of equations or
inequations has no influence. A consequence of Lemma 34 is the following result.

▶ Lemma 36. There exists a polynomial P2 such that, for each finite set D and every finite
subset X ⊆ RD, there exists a system of linear inequations Σ, such that Sol≥(Σ) = Conv(X)
and ∥(ā, b)∥ ≤ P2(∥X∥) for every (ā, b) ∈ Σ.

Size of the least ε-fixed point. The following theorem bounds the size of the least fixed
point of the negotiation function. As we used the notation x̄ for tuples so far, we use the
notation ¯̄x for tuples of tuples.

▶ Theorem 37. There exists a polynomial P3 such that for every mean-payoff game G, the
least ε-fixed point λ∗ of the negotiation function has size ∥λ∗∥ ≤ P3(∥G∥ + ∥ε∥).

Proof sketch. It has been proved in [3] that Challenger has a memoryless optimal strategy
in every concrete negotiation game. Given a requirement λ, a player i, a state v ∈ Vi and a
memoryless strategy τC, we can construct the set of payoff vectors µ(π̇), where π is a play in
Concλi(G)↾(v,{v}) compatible with τC, as a union of polytopes defined using Lemma 15. If
we intersect the upward closures of those sets, then nego(λ)(v) is equal to the least value
xi, where x̄ belongs to that intersection. Therefore, if Xλ ⊆ RV ×Π is the product of those
intersections, then for each i and v ∈ Vi, we have nego(λ) = inf{xvi | ¯̄x ∈ Xλ}.

To each tuple of tuples ¯̄x ∈ RV ×Π, we associate the requirement λ¯̄x defined by λ¯̄x(v) =
xvi − ε for each i ∈ Π and v ∈ Vi. Then, we define X =

{¯̄x
∣∣ ¯̄x ∈ Xλ¯̄x

}
, and we show

that any requirement λ is an ε-fixed point of the negotiation function if and only λ = λ¯̄x
for some ¯̄x ∈ X. Then, the set X is itself a union of polyhedra, hence the linear mapping
¯̄x 7→

∑
v λ¯̄x(v) has its minimum over X on some vertex ¯̄x of one of those polyhedra. The

requirement λ∗ is equal to λ¯̄x, hence its size can be bounded using Corollary 35. ◀

5 Constrained existence of a λ-consistent play

We claim that a non-deterministic algorithm can recognize the positive instances of the
ε-SPE threshold problem by guessing an ε-fixed point λ of the negotiation function. Once
λ has been guessed, according to Lemma 29, two assertions must be proved: on the one
hand, that there exists a λ-consistent play between the two desired thresholds, and on the
other hand, that λ is actually an ε-fixed point of the negotiation function. The latter will be
handled later through the concept of reduced negotiation game. Now, we tackle the former,
and provide the second piece of our notion of witness: to prove the existence of a λ-consistent
play ρ with x̄ ≤ µ(ρ) ≤ ȳ, we need to guess the sets W = Inf(ρ) and W ′ = Occ(ρ), and a
tuple of tuples ¯̄α ∈ [0, 1]Π×SC(W ) indicating how ρ combines the cycles of W , i.e. such that:

µ(ρ) =

min
j∈Π

∑
c∈SC(W )

αjcMPi(c)


i

.

▶ Theorem 38. There exists a polynomial P4 such that for every mean-payoff game G↾v0 ,
for every x̄, ȳ ∈ RV , and for every requirement λ on G, there exists a λ-consistent play ρ in
G↾v0 satisfying x̄ ≤ µ(ρ) ≤ ȳ if and only if there exist two sets W ⊆ W ′ ⊆ V and a tuple of
tuples ¯̄α ∈ [0, 1]Π×SC(W ) such that:
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the set W is strongly connected in (V,E), and accessible from the state v0 using only and
all the states of W ′;
for each player i, we have

∑
c αic = 1, and:

xi ≤ min
j∈Π

∑
c∈SC(W )

αjcMPi(c) ≤ yi;

for each player i and v ∈ W ∩ Vi, we have:

min
j∈Π

∑
c∈SC(W )

αjcMPi(c) ≥ λ(v);

∥ ¯̄α∥ ≤ P4(∥G, x̄, ȳ, λ∥).
Proof. Let us first notice that given a set X ⊆ RΠ, the elements of the set ⌞(ConvX) are
exactly the tuples of the form:(

min
j∈Π

∑
x∈X

αjxx

)
i∈Π

for some tuple ¯̄α ∈ RΠ×X satisfying
∑

x αix = 1 for each x.
Now, let us assume that W , W ′ and ¯̄α exist. Then, there exists a play η with Occ(η) =

Inf(η) = W with payoff vector:

µ(η) =
(

min
j∈Π

∑
x∈X

αjxx

)
i∈Π

.

Moreover, since W is accessible from v0 using all and only the vertices of W ′, there exists
a history hη0 from v0 to η0 with Occ(h) = W ′. Then, the play ρ = hη is λ-consistent and
satisfies x̄ ≤ µ(ρ) ≤ ȳ.

Conversely, if the play ρ exists: let W = Inf(ρ) and W ′ = Occ(ρ). The polytope:

Z =

µ(η)

∣∣∣∣∣∣∣
η ∈ λCons(G↾v0 ),

Inf(η) = W,

Occ(η) = W ′,

and x̄ ≤ µ(η) ≤ ȳ

 =
{

z̄ ∈ ⌞

(
Conv

c∈SC(W )
MP(c)

) ∣∣∣∣ x̄ ≤ z̄ ≤ ȳ, and
∀i, ∀v ∈ W ′ ∩ Vi, zi ≥ λ(v)

}

(the equality holds by Lemma 15) is nonempty (it contains at least µ(ρ)). By Lemma 36, the
set Convc∈SC(W )MP(c) is defined by a system of inequations which all have size ∥(ā, b)∥ ≤
P2 (maxc∥MP(c)∥). Since by Lemma 33, the inequations defining ⌞

(
Convc∈SC(W )MP(c)

)
are not larger, there exists a polynomial P6, independent of G, x̄, ȳ and λ, such that Z is
defined by a system of inequations Σ such that for every (ā, b) ∈ Σ, we have ∥(ā, b)∥ ≤
P6(∥(G, x̄, ȳ, λ)∥). Therefore, by Corollary 35, the polytope Z admits a vertex z̄ of size
∥z̄∥ ≤ P1(P6(∥(G, x̄, ȳ, λ)∥)).

Then, since we have z̄ ∈ ⌞

(
Conv

c∈SC(W )
MP(c)

)
, that vertex is, according to Definition 13, of

the form:

z̄ =
(

min
j

∑
c

αjcMPj(c)
)

i

for some tuple of tuples ¯̄α ∈ [0, 1]Π×SC(W ) with
∑

c αic = 1 and having, by Corollary 35
again, size ∥ ¯̄α∥ ≤ P1

(
maxi∈Π

∑
c∈SC(W )∥MPi(c)∥ + ∥zi∥

)
, i.e. ∥ ¯̄α∥ ≤ P4(∥(G, x̄, ȳ, λ)∥) for

some polynomial P4 independent of G, x̄, ȳ and λ. ◀

Now, we need the third piece of our witness, which will be evidence of the fact that the
requirement λ is an ε-fixed point of the negotiation function.



L. Brice, J.-F. Raskin, and M. van den Bogaard 116:13

6 The reduced negotiation game

The abstract negotiation game has an infinite (and uncountable) state space in general, and
the concrete negotiation game has an exponential one. In [5], the infiniteness of the abstract
negotiation game has been handled in the case of parity games, by proving that Prover has
an optimal strategy that is memoryless, and that proposes only simple plays with a finite
representation. Unfortunately, this result does not apply to mean-payoff games, where Prover
needs infinite memory in general. That fact is illustrated in the next example.
▶ Example 39. In the game of Figure 3a, the requirement λ defined by λ(a) = λ(b) = 1 is a
fixed point of the negotiation function (it is actually the least fixed point). Indeed, from the
state a (the situation is symmetrical from the state b), consider the strategy for Prover that
proposes always, from the state v, the play vb|h|2(a3b3)ω, where h is the history that has
already been constructed by her proposals and Challenger’s deviations. If Challenger accepts
such a play, then he gets the payoff 1. If he deviates infinitely often, then Prover loops longer
and longer on the state b, and he also gets the payoff 1. The loop on b corresponds to what
we will call later a punishing cycle. Now, if Prover uses only finite memory, Challenger can
get a payoff better than 1 by always deviating and go to b as soon as he can: then, edges
giving to player # the reward 2 will occur with a nonzero frequency.

However, the plays proposed by Prover in the previous example are very similar: only the
number of repetitions of the loop b does increase. More generally, one observes that Prover
can play optimally while always proposing a play of the form hcnρ, where h, c and ρ are
constant, and only the number n increases, quadratically with the time – so that Challenger’s
payoff is dominated by the mean-payoff MPi(c) if he deviates infinitely often.

▶ Definition 40 (Punishment family). A punishment family is a set of plays of the form:

{hcnρ | n > 0, µ(ρ) = x̄,Occ(ρ) = W}

where h is a simple history, c is a nonempty simple cycle, and where W ⊆ V and x̄ ∈ RΠ.
The cycle c is called its punishing cycle. For every β ∈ N, a β-punishment family is a
punishment family with ∥x̄∥ ≤ β. A β-punishment family is represented by the data h, c,
µ(ρ) and Occ(ρ), and that representation has a size smaller than or equal to the quantity
3cardV ⌈log2(cardV + 1)⌉ + β.

We write hc∞ρ for the punishment family {hcnρ′ | n > 0, µ(ρ′) = µ(ρ),Occ(ρ′) = Occ(ρ)}.
Beware that the play ρ matters only for its payoff vector and the vertices it traverses: if
Occ(ρ) = Occ(ρ′) and µ(ρ) = µ(ρ′), then hc∞ρ = hc∞ρ′. We write µ(hc∞ρ) for the common
payoff vector of all elements of hc∞ρ, and we will say that hc∞ρ is λ-consistent if all its
elements are (or equivalently, if one of its elements is). Let us clarify that a punishment
family is not an equivalence class: for example, in the game of Figure 3a, the play abω belongs
to both a∞bω and ab∞bω, which are distinct. We can now define the reduced negotiation
game, where Prover proposes β-punishment families instead of plays.

▶ Definition 41 (Reduced negotiation game). Let G be a mean-payoff game, let λ be a
requirement, let i be a player, let v0 ∈ Vi and let β be a natural integer. The corresponding
reduced negotiation game is the game Redβ

λi(G)↾v0 = ({P,C}, S, (SP, SC),∆, ν)↾v0 , where:
the player P is called Prover, and the player C Challenger ;
the states controlled by Prover are the states of G, i.e. SP = V ;
the states controlled by Challenger are the states of the form [hc∞ρ], (c, u) or [h′v], where:
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a b

#
2
2
2

#
2
2
2

#
0
2
1

#
1
2
0

(a) The game G.

a ab∞(a3b3)ω

aa

(b, b)

b

. . .

. . .

. . . . . .

⊤ ⊥

(b) The reduced negotiation game.

Figure 3 A game on which Prover needs infinite memory.

hc∞ρ is a λ-consistent β-punishment family,
there exists a state ρk ∈ Vi along the play ρ such that ρku ∈ E,
and h′v is a history such that h′ is a prefix of the history hc, and last(h′) ∈ Vi;

plus two additional states, written ⊤ and ⊥;
with the same notations, the set ∆ contains the transitions of the form:
v[hc∞ρ] (Prover proposes a punishment family);
v⊥ (Prover gives up);
[hc∞ρ]⊤ (Challenger accepts Prover’s proposal);
[hc∞ρ][h′v] (Challenger deviates before the punishing cycle – pre-cycle deviation);
[hc∞ρ](c, u) (Challenger deviates after the punishing cycle – post-cycle deviation);
[h′v]v and (c, u)u (Prover has now to propose a new play);
⊤⊤ and ⊥⊥ (the play is over);

given a history H = H0 . . . Hn ∈ HistRedβ
λi(G) that does not reach the state ⊥, we write

Ḣ = h(1) . . . h(n) the history or play in G defined by, for each k:
if Hk−1Hk = v[hc∞ρ], then h(k) is empty;

if Hk−1Hk = [hc∞ρ]⊤, then h(k) . . . h(n) = hc|h
(1)...h(k−1)h|2

ρ (the number of times the
cycle c is repeated depends quadratically on the time);
if Hk−1Hk = [hc∞ρ][h′v], then h(k) = h′;

if Hk−1Hk = [hc∞ρ](c, v), then h(k) = hc|h
(1)...h(k−1)h|2

h′, where h′ is among the
shortest histories such that Occ(h′) ⊆ Occ(ρ), last(h′) ∈ Vi and last(h′)v ∈ E;
if Hk−1Hk = [h′v]v or (c, v)v, then h(k) is empty;

and that definition is naturally extended to plays: for example, if G is the game of Figure 3a
and if π = a[ab∞aω][aa]a[ab∞aω](b, b)b[b∞aω]⊤ω, then π̇ = a ·ab22 ·ab72

aω = a2b4ab49aω;
the payoff function ν is defined, for each play π, by νC(π) = −νP(π) = +∞ if π reaches
the state ⊥, and νC(π) = −νP(π) = µi(π̇) otherwise.

▶ Example 42. Figure 3b illustrates a (small) part of the game Red2
λ#(G)↾a, where G is the

game of Figure 3a, and λ(a) = λ(b) = 1. Blue states are owned by Prover, orange ones
by Challenger. When Prover proposes the punishment family ab∞(a3b3)ω, the function νC
interprets it as the play ab|h|2(a3b3)ω, where h is the history that has already been constructed
so far.

▶ Remark. Reduced negotiation games are Borel, and are played on a finite graph.
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Link with the negotiation function. We will now prove that the reduced negotiation game
captures the negotiation function, as do the abstract and concrete ones. For that purpose,
we first need the following key result.

▶ Lemma 43. In a reduced negotiation game, Prover has a memoryless optimal strategy.

Proof. This lemma is a consequence of Lemma 23: the payoff function νC is concave. Indeed,
let ξ be a shuffling of two plays π and χ. If either π or χ reaches the state ⊥ (in which case
both do), then we immediately have νC(ξ̇) ≤ max{νC(π̇), νC(χ̇)} = +∞. Otherwise, the play
ξ̇ is a shuffling of π̇ and χ̇, and since mean-payoff objectives defined with a limit inferior are
convex, we have νC(ξ̇) ≤ max{νC(π̇), νC(χ̇)}. ◀

This lemma enables us to prove that the reduced negotiation game is equivalent to the
other negotiation games.

▶ Theorem 44. There exists a polynomial P4 such that for every mean-payoff game G,
every requirement λ with rational values, each player i and each v0 ∈ Vi, for every β ≥
P4(∥G∥ + ∥λ∥), we have nego(λ)(v0) = valC

(
Redβ

λi(G)↾v0

)
.

Proof. For every mean-payoff game G and every requirement λ, we assume:

β ≥ P1 (P2 (∥{MP(c) | c ∈ SC(G)}∥))

and for each v ∈ V :

β ≥ ∥λ(v)∥ + 3,

which are indeed quantities that are bounded by a polynomial of ∥G∥ + ∥λ∥.

First direction: nego(λ)(v0) ≥ valC
(

Redβ
λi(G)↾v0

)
.

Let σ̄−i be a strategy profile in G that is λ-rational assuming a strategy σi, and let
x = supσ′

i
µi(⟨σ̄−i, σ

′
i⟩). We wish to prove that there exists a strategy τP in the reduced

negotiation game such that supτC
νC(⟨τ̄⟩) ≤ x. Thus, we will have proved that the quantity

valC
(

Redβ
λi(G)↾v0

)
is smaller than or equal to every such x, and therefore smaller than

or equal to nego(λ)(v0).
Let us define simultaneously the strategy τP and a mapping φ : HistPRedβ

λi(G)↾v0 →
HistG↾v0 , such that for each history H , the punishment family τP(H) will be defined from
the play ⟨σ̄↾φ(H)⟩. We guarantee inductively that if H ∈ HistPRedβ

λi(G)↾v0 is compatible
with τP, then φ(H) ∈ HistG↾v0 is compatible with σ̄−i. First, let us define φ(v0) = v0.
Let H ∈ HistPRedβ

λi(G)↾v0 be a history compatible with τP as it has been defined so
far, and such that φ(H) has already been defined. Let η0 = ⟨σ̄↾φ(H)⟩. By induction
hypothesis, the history φ(H) is compatible with σ̄−i, hence the play η0 is λ-consistent,
and satisfies µi(η0) ≤ x.
Let η0

≤ℓ be the shortest prefix of η0 that is not simple, i.e. such that there exists k < ℓ

with η0
k = η0

ℓ . If MPi

(
η0

k+1 . . . η
0
ℓ

)
≤ x, then we define τP(H) =

[
η0

≤k

(
η0

k+1 . . . η
0
ℓ

)∞
ρ
]
,

where ρ is a play such that Occ(ρ) = Occ
(
η0

>ℓ

)
, that µi(ρ) ≤ x, and that ∥µ(ρ)∥ ≤ β.

Such a play exists, because the polytope:

Z =
{
µ(ρ)

∣∣∣∣ ∀j, ∀v ∈ Vj ∩ Occ(η0), µj(ρ) ≥ λ(v),
and Occ(ρ) = Occ

(
η0

>ℓ

) }
is nonempty (it contains η0

>ℓ), and has at least one vertex z̄ with zi ≤ x (because
µi(η0

>ℓ) ≤ x), which by Lemma 36 and Corollary 35 has size ∥z̄∥ ≤ β.
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Otherwise, if MPi

(
η0

k+1 . . . η
0
ℓ

)
> x, we define η1 = η0

≤kη
0
>ℓ, and we iterate the process,

which does necessarily terminate – because µi(η0) ≤ x. As a consequence, it effectively
defines the proposal τP(H) =

[
ηn

≤k

(
ηn

k+1 . . . η
n
ℓ

)∞
ρ
]
, for some n. Then, for each prefix

hv, we define φ
(
H
[
ηn

≤k

(
ηn

k+1 . . . η
n
ℓ

)∞
ρ
]

[hv]v
)

= φ(H)η0
≤m, where η0

≤m is the prefix
of η0 of which n simple cycles have been pulled out to obtain the prefix h of ηn; and
similarly, for each pair (c, v), we define φ

(
H
[
ηn

≤k

(
ηn

k+1 . . . η
n
ℓ

)∞
ρ
]

(c, v)v
)

= φ(H)η0
≤m,

where η0
≤m is the prefix of η0 from which n simple cycles have been pulled out to obtain

the shortest prefix ηn
≤p of ηn such that ηn

p ∈ Vi and ηn
p v ∈ E.

Thus, the mapping φ is defined on every history compatible with τP, and the image of
such a history is always a history compatible with σ̄−i. We define it arbitrarily on other
histories. Note that for each history H, the history Ḣ can be obtained from φ(H) by
pulling out cycles c satisfying MPi(c) > x, and adding cycles d with MPi(d) ≤ x. As a
consequence, if MPi(φ(H)) ≤ x, then MPi(Ḣ) ≤ x – and the same result is true when we
naturally extend the mapping φ to plays.
Let us now prove that supτC

νC(⟨τ̄⟩) ≤ supσ′
i
µi(⟨σ̄−i, σ

′
i⟩). Let π be a play compatible

with τP:
the state ⊥ does not appear in π, because Prover’s strategy does never use a transition
to it.
If π has the form π = H[hc∞ρ]⊤ω: then, we have νC(π) = µi(ρ) ≤ x.
If π is made of infinitely many deviations: the play φ(π) is compatible with σ̄−i, hence
µi(φ(π)) ≤ x; which implies µi(π̇) ≤ x, i.e. νC(π) ≤ x.

Second direction: nego(λ)(v0) ≤ valC
(

Redβ
λi(G)↾v0

)
.

Let τP be a memoryless strategy for Prover in the reduced negotiation game, and let
y = supτC

νC(⟨τ̄⟩). We want to show that nego(λ)(v0) ≤ y: by Lemma 43, it will be enough
to conclude. If y = +∞, it is clear. Let us assume that y ≠ +∞. Then, we will define a
strategy profile σ̄, where σ̄−i is λ-rational assuming σi, such that supσ′

i
µi(⟨σ̄−i, σ

′
i⟩) ≤ y:

we proceed inductively by defining the play ⟨σ̄↾hv⟩ for each history hv compatible with σ̄−i

such that h is empty, or last(h) ∈ Vi and v ̸= σi(h). Such a history is called a bud history.
After other histories, the strategy profile can be defined arbitrarily. To that end, we
construct a mapping ψ which maps each bud history to a history ψ(hv) ∈ HistPRedβ

λi(G)↾v0

that is compatible with τP. This mapping will induce a definition of σ̄: since y ̸= +∞, we
have τP(ψ(hv)) ̸= ⊥: let then [h′c∞ρ] = τP(ψ(hv)). We then define ⟨σ̄↾hv⟩ = h′c|hh′|2

ρ,
which is a λ-consistent play since h′c∞ρ is a λ-consistent punishment family, by definition
of the reduced negotiation game.
Let now h0v be a bud history: we assume that σ̄ has been defined on every prefix of h0,
but not on h0v itself. If h0 is empty, that is if h0v = v0, then we define ψ(h0v) = v0.
Otherwise, let us write h0 = h1wh2, where h1w is the longest prefix of h0 that is a bud
history – that is, its longest prefix such that ψ(h1w) has been defined, or its shortest
prefix such that wh2 is compatible with σ̄↾h1w. Let H = ψ(h1w), and let [hc∞ρ] = τP(H).
We have defined ⟨σ̄↾h1w⟩ = hc|h1h|2

ρ, and consequently, the history wh2 is a prefix of
that play. If it is a prefix of the history hc, then we define ψ(h0v) = H[hc∞ρ][wh2v]v.
Otherwise, we define ψ(h0v) = H[hc∞ρ](c, v)v.
Now, the strategy profile σ̄ has been defined, and since all the punishment families
proposed by Prover are λ-consistent, the strategy profile σ̄−i is λ-rational assuming
σi. Let η be a play compatible with σ̄−i, and let us prove that µi(η) ≤ y. If η has
finitely many prefixes that are bud histories, then let η≤n be the longest one: we have
η≥n = hcn+|h|ρ, where [hc∞ρ] = τP(ψ(η≤n)). Then, we have µi(η) = µi(ρ) ≤ y.
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Now, if η has infinitely many such prefixes, then there exists a unique play π in the
reduced negotiation game such that for any prefix η≤n of η that is a bud history, the
history ψ(η≤n) is a prefix of π. Then, if π contains finitely many post-cycle deviations,
then there exist two indices m and n such that η≥m = π̇≥n, hence µi(η) = µi(π̇) ≤ y.
Finally, if π contains infinitely many post-cycle deviations, i.e. infinitely many occurrences
of a state of the form (c, v), then let us choose such state that minimizes the quantity
MPi(c). The play η has the form:

η = h0c
k2

0h1c
k2

1h2 . . . ,

where for each n, we have kn =
∣∣∣h0c

k2
0 . . . ck2

n−1hn

∣∣∣. Then, if we write M = max ri, we
have:

MPi

(
h0c

k2
0 . . . hnc

k2
n

)
≤ 1
kn + k2

n|c| − 1
(
knM +

(
k2

n|c| − 1
)

MPi(c)
)
,

which converges to MPi(c) when n tends to +∞, hence µi(η) ≤ MPi(c). Now, since τP is
memoryless, there exists a play of the form HCω that is compatible with it, and such
that (c, v) ∈ Occ(C) ⊆ Inf(π); and by definition of y, we have MPi(Ċ) = νC(HCω) ≤ y.
By minimality of MPi(c), we have MPi(Ċ) = MPi(c), hence MPi(c) ≤ y, and therefore
µi(η) ≤ y. ◀

Thus, a given requirement λ is an ε-fixed point of nego if and only if for each i and v ∈ Vi,
there exists a memoryless strategy τP in the game Redβ

λi, with β = P4(∥G∥ + ∥λ∥), such
that supτC

νC(⟨τ̄⟩) ≤ λ(v) + ε. The reduced negotiation game has an exponential size, but it
contains only cardV states that are controlled by Prover: memoryless strategies for Prover
are therefore objects of polynomial size. Thus, such memoryless strategies constitute the
third and last piece of our notion of witness.

7 Algorithm and complexity

We are now in a position to define formally our notion of witness.

▶ Definition 45 (Witness). Let I = (G↾v0 , x̄, ȳ, ε) be an instance of the ε-SPE threshold prob-
lem. A witness for I is a tuple

(
W,W ′, ¯̄α, λ, (τv

P )v

)
, where W ⊆ W ′ ⊆ V ; ¯̄α ∈ [0, 1]Π×SC(W );

λ is a requirement; and each τv
P is a memoryless strategy in the game Redβ

λi(G)↾v, where
β = P4(∥G∥ + ∥λ∥). A witness is valid if:

each strategy τv
P satisfies the inequality supτC

νC(⟨τv
P , τC⟩) ≤ λ(v) + ε;

the sets W and W ′ and the tuple of tuples ¯̄α satisfy the hypotheses of Theorem 38.

▶ Remark. The sets W and W ′, as well as the tuple of strategies (τv
P )v, have polynomial size.

In order to bound the size of witnesses by a polynomial, we only have to bound ∥λ∥ and
∥∥ ¯̄α
∥∥.

The ε-SPE threshold problem will be NP-easy if we show, first, that there exists a valid
witness of polynomial size if and only if the instance is positive, and second, that the validity
of a witness can be decided in polynomial time. The former is a consequence of Lemma 29,
Theorem 37, Theorem 38, Theorem 44, and Lemma 43:

▶ Lemma 46. There exists a polynomial P5 such that an instance I of the ε-SPE threshold
problem admits a valid witness of size P5(∥I∥) if and only if it is a positive instance.

Let us now tackle the latter.

ICALP 2022



116:18 The Complexity of SPEs in Mean-Payoff Games

▶ Lemma 47. Given an instance of the ε-SPE threshold problem and a witness for it, deciding
whether that witness is valid is P-easy.

Proof. The validity of a witness is defined by two conditions. As regards the second one, all
the hypotheses of Theorem 38 can be checked in polynomial time with classical algorithms.
Let us now show how the first condition can also be checked in polynomial time.

Let n = cardV . Given a memoryless strategy τv
P of Prover in a reduced negotiation

game, one can construct in a time polynomial in ∥τv
P ∥ the graph Redβ

λi(G)[τv
P ], defined as the

underlying graph of Redβ
λi(G) where all the transitions that are not compatible with τv

P have
been omitted, as well as all the states that are, then, no longer accessible from the state v.
That graph has indeed a polynomial size, because it is composed only of:

at most n vertices of the form w ∈ V ;
at most n vertices of the form τP(·w) (either equal to ⊥ or of the form [hc∞ρ]);
at most n2 vertices of the form (c, w);
at most 2n2 vertices of the form [h′w′], where h′ is a prefix of the history hc for some
punishment family [hc∞ρ] = τP(·w);
possibly the state ⊤.

We call this connected graph the deviation graph. Note that if among those vertices,
there is the vertex ⊥, then since the vertices that are not accessible have been removed, we
have supτC

νC(⟨τ̄⟩) = +∞ and the problem can be solved immediately. In what follows, we
assume that it is not the case, i.e. that for each w, the state τP(·w) has the form [hc∞ρ].
Deciding whether supτC

νC(⟨τ̄⟩) ≤ α is then equivalent to deciding whether there exists a
path π, in that graph, such that νC(π) > α. Such a play can have three forms.

It can end in the state ⊤, i.e. with Challenger accepting Prover’s proposal. The existence
of such a play can be decided immediately, by checking whether in the deviation graph,
there exists a vertex of the form [hc∞ρ] with µi(hc∞ρ) > α.
It can avoid the state ⊤, and comprise finitely many post-cycle deviations. This is the case
if and only if there exists a cycle C in the deviation graph, without post-cycle deviations,
such that MPi(Ċ) > α. The existence of such a cycle can be decided in polynomial time
with Karp’s algorithm (see [17]).
It can avoid the state ⊤, and comprise infinitely many post-cycle deviations. In that case,
we have νC(π) ≤ MPi(c) for each state of the form (c, w) appearing infinitely often along
π; then, there exists a cycle C in the deviation graph, such that every state of the form
(c, w) along C satisfies MPi(c) > α. Conversely, if such a cycle exists, then π exists. The
existence of such a cycle can be decided in polynomial time with Karp’s algorithm.

Therefore, the existence of such a play is decidable in polynomial time. ◀

Thus, given an instance of the ε-SPE threshold problem, a valid witness can be guessed
and checked in polynomial time. Since the ε-SPE threshold problem has been proved to be
NP-hard in [3], we finally obtain the following theorem:

▶ Theorem 48. The ε-SPE threshold problem in mean-payoff games is NP-complete.
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Abstract
In this paper, we look at good-for-games Rabin automata that recognise a Muller language (a
language that is entirely characterised by the set of letters that appear infinitely often in each word).
We establish that minimal such automata are exactly of the same size as the minimal memory
required for winning Muller games that have this language as their winning condition. We show
how to effectively construct such minimal automata. Finally, we establish that these automata can
be exponentially more succinct than equivalent deterministic ones, thus proving as a consequence
that chromatic memory for winning a Muller game can be exponentially larger than unconstrained
memory.
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1 Introduction

Games. Games, as considered in this work, are played by two antagonistic players, called
the existential and universal players, who move a token around finite edge-coloured directed
graphs. When the token lands on a position belonging to one of the players, this player
moves it along an outgoing edge onto a new position. At the end of the day, the players
have constructed an infinite path, called a play, and the winner is determined based on some
language W of winning infinite sequences of colours, called the winning condition (we call W-
games the games which use the winning condition W). Solving such games consists of deciding
whether the existential player has a winning strategy, i.e. a way to guarantee, whatever
the moves of the opponent are, that the play will end up in the winning condition. Solving
infinite duration games is at the crux of many algorithms used in verification, synthesis,
and automata theory [9, 19, 38, 30]. Difficulties in solving them are both theoretical and
practical, and many questions pertaining to game resolution still remain unanswered.
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Memory. Several parameters are relevant for solving a game: its size, of course, but also its
winning condition and the complexity of winning strategies. A measure of this complexity
is the memory used by a strategy. The simplest strategies are those that use no memory
(positional strategies): decisions depend exclusively on the current position, and not on the
past of the game. A strategy uses a finite amount of memory if the information that we
need to retain from the past can be summarized by a finite state machine that processes
the sequence of moves played in the game. In this case, the amount of memory used by the
strategy is the number of states of this machine. Given a winning condition W, a fundamental
question is what is the minimal quantity m such that if the existential player wins a W-game,
there is a winning strategy using a memory of size m (we call m the memory requirements of
W). In addition to its size, a memory also has structure, which further elucidates the game
dynamics. Understanding both the size and the structure of memories for W is a crucial step
to design algorithms for solving W-games.

Question A: Give a structural description of the optimal memory in W-games.

Muller conditions. While there is a large zoo of winning conditions in the literature, here
we are interested in ω-regular ones (described by finite state automata over infinite words),
and, in particular, so called Muller conditions, for which the winner depends only on the
colours that are seen infinitely often in the play. Memory requirements for Muller conditions
have been studied in depth by Dziembowski, Jurdziński and Walukiewicz [15]. They provide
a “formula” for computing the size of the minimal memory sufficient for winning in all games
with a given Muller winning condition, based on the Zielonka tree [43], which describes the
structure of a Muller condition. The Zielonka tree has also been used to characterise the
memory requirements of Muller conditions when randomised strategies are allowed [21] and
to provide minimal parity automata recognising a Muller condition [11]. This fundamental
structure is also at the heart of our contribution.

Game reductions and good-for-gameness. When confronted with a W-game, a standard
solution is to reduce it to a game with a larger underlying graph, but a simpler winning
condition. The typical way to do this (but not the only one) is to perform the composition of
the game with a suitable automaton with another acceptance condition W′ that accepts the
language W. The result is an W′-game which has as size the product of the size of the original
game and the size of the automaton. There is a subtlety here: not all automata can be used
for this operation. For a non-deterministic automaton, this is in general incorrect, while
using a deterministic automaton is always correct. So here, finding a minimal deterministic
automaton for a given language improves the complexity of game resolution, and there is a
large body of research in this direction (see [11, 26, 31] for Muller conditions, [1, 10, 41, 42]
for minimisation of automata, and [32, 39, 36, 37, 40, 34, 31, 14, 29] for determinisation).
However, some non-deterministic automata can also be used to perform this reduction. These
are called good-for-games automata (GFG) [20, 12].

Some languages are known to be recognised by good-for-games automata that are
exponentially more succinct than any equivalent deterministic automaton [27], and several
lines of research concerning good-for-games automata are under study (how to decide
“good-for-gameness” [3, 27, 4, 6], how expressive is “good-for-gameness” for pushdown
automata [28, 18] what are good-for-games quantitative automata [5], etc). However, one
key question that has not yet been addressed concerning good-for-games automata is how to
design techniques as general as possible for building them. To the best of our knowledge, the
only existing result in this direction is a polynomial-time algorithm to minimise co-Büchi
GFG automata [1].
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Question B: Provide general tools for constructing good-for-games automata.

In this paper, in the context of Muller conditions, we relate these two lines of study, and
in particular give partial answers to the general questions A and B. Indeed, we show that
the memory needed to win in L-games for a Muller language L coincides with the size of
minimal GFG Rabin automata for L, and, in this sense, we give a structural description
of the memory for Muller games, thus giving a refined answer to question A in this case.
We also provide an optimal way to construct these minimal good-for-games automata, thus
answering question B in the context of Muller conditions.

Contributions

1. We show that for all ω-regular languages L, the size (number of states) of a good-for-games
Rabin-automaton for L is an upper bound on the memory that the existential player
needs to implement winning strategies for L-games. This inequality is straightforward,
but had not been stated explicitly prior to this work.

2. We establish that when L is a Muller language, the following two quantities are equal:
the least size of a good-for-games Rabin-automaton for L and the least memory required
for the existential player in all L-games in which she wins. Furthermore, we provide
an efficient way to construct such a minimal automaton from the Zielonka tree of the
condition [43]. This automaton can be seen, in a certain way, as a quotient of the minimal
deterministic parity automaton for this language, as described in [11].
Let us note that the least amount of memory needed to win a Muller game was described
precisely by Dziembowski, Jurdziński and Walukiewicz [15]. We show here that the optimal
strategy described in [15] can be implemented in a good-for-games Rabin-automaton. In
combination with Item 1, this provides another proof of the upper bound in [15].

3. Finally, we provide a family of Muller languages such that the smallest GFG Rabin
automata recognising it are of linear size in the number of letters, while equivalent de-
terministic Rabin automata grow exponentially. Note that the least size of a deterministic
Rabin automaton for a Muller language L is known to coincide with the chromatic
memory needed for winning L-games [10] (i.e. a memory that is updated based only on
the letters seen, independently of the position in the game). The question of equivalence
between chromatic memory and memory was asked by Kopcyński [23, 24], and an arbit-
rary difference between these two notions was established only recently by Casares [10].
Our new result, which is incomparable, shows that the chromatic memory can grow
exponentially in the size of the alphabet, even when the general memory remains linear.

Together these three points develop techniques to solve Muller games in an optimal way
by means of good-for-games Rabin automata reductions. The last point shows that an
exponential gain can be achieved compared to using classical deterministic Rabin automata.
Overall, our contribution supplements our understanding of Muller languages and highlights
the – so far unexplored – fundamental role of GFG automata in the equation. Indeed,
up to now GFG automata had mainly been studied for their succinctness, expressivity or
algorithmic properties. Here, we shed light on a novel dimension of this automata class.

Related work. There is vast amount of literature on the memory requirements of different
games. The first results in this direction where the proofs of the positionality of parity
conditions and half-positionality of Rabin conditions [16, 22] and the finite-memory determ-
inacy of Muller games [19]. The exact memory requirements of Muller conditions where
characterised in [15]. In his PhD Thesis [23, 24], Kopczyński characterises several classes of
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conditions that are half-positional, introduces the concept of chromatic memories (memories
that are updated based only on colours seen) and provides an algorithm to decide the
chromatic memory requirements of a winning condition. Conditions that are positional for
both players over all graphs where characterised in [13] and those that are positional over
finite graphs in [17]. More recently, these two results have been generalized to finite-memory
conditions [8, 7]. The memory requirements have been proved to be different to the chromatic
memory requirements in general [10], but conditions that are finite-memory determined are
also chromatic-finite-memory determined [25].

Structure of this document. In Section 2, we describe the classical definitions related to
our work such as games, automata and good-for-gamesness. In Section 3, we show why
good-for-games Rabin automaton can be used as a memory structure for the existential
player, the optimality of the construction for Muller conditions, and how to construct the
least such automaton. In Section 4, we establish that this construction can be exponentially
more succinct than deterministic Rabin automata. Section 5 concludes the paper.

2 Definitions

Notations. |A| denotes the cardinality of a set A, P(A) its power set and P+(A) = P(A)\{∅}.
For a finite non-empty alphabet Σ, we write Σ∗ and Σω for the sets of finite and infinite
words over Σ, respectively. The empty word is denoted by ε. Given w = w0w1w2 · · · ∈ Σω,
we denote Inf (w) ⊆ Σ the set of letters that appear infinitely often in w. We let w[i..j] be
the finite word wiwi+1...wj if i ≤ j, and ε if j < i.

We extend maps σ : A → B to A∗ and Aω component-wise and we denote these extensions
by σ whenever no confusion arises. For a positive rational number q ∈ Q we denote by ⌊q⌋
the greatest integer n ∈ N such that n ≤ q.

2.1 Games and their memory
Games. We consider turn-based infinite duration games played between the existential
and the universal player (referred to as Exist and Univ) over a directed graph. Formally, a
Γ-coloured game is a tuple G = (V = VE ⊎ VA, E, x0,W), which consists of a set of vertices
V partitioned into Exist’s positions VE and Univ’s ones, VA; a set of transitions (also called
edges or moves) E ⊆ V × (Γ ∪ {ε}) × V ; an initial vertex x0 ∈ V and a subset W ⊆ Γω of
winning sequences. We make the assumptions that there is at least one move from every
position and that no cycle is labelled exclusively by ε. We will denote by γ : E → Γ ∪ {ε}
the function that assigns to each edge its colour. We write Out(x) for the set of outgoing
moves from x, that is, Out(x) = {e ∈ E : e = (x, c, x′) for some x′ ∈ V, c ∈ Γ ∪ {ε}}. If Γ is
a game using the winning condition W we call it a W-game.

Each player moves a pebble along an outgoing edge whenever it lands on a position
belonging to that player, forming an infinite path π ∈ Eω starting in x0 called a play.

We denote γ(π) sequence of colours labelling π omitting the ε labels (we remark that
γ(π) ∈ Γω, since there are no cycles entirely labelled by ε). The play is winning for the
existential player if γ(π) ∈ W. A partial play is a finite path π ∈ E∗ in G starting in x0.
A strategy for the existential player is a function σ : E∗ → E such that if a partial play π

ends in a position x ∈ VE , then σ(π) ∈ Out(x). We say that a play π is consistent with the
strategy σ if for every partial play π′ that is a prefix of π ending in a position controlled by
Exist, the next edge in π is σ(π′). The strategy σ is winning if every play consistent with σ

is winning for the existential player. We say that the game G is won by the existential player
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if that player has a winning strategy in G. A strategy is positional if it can be represented by
a function σ : VE → E (that is, the choice of the next transition only depends on the current
position, and not on the history of the path).

Winning conditions. We fix an alphabet Γ.
Muller. A Muller condition over the alphabet Γ is given by a family F ⊆ P+(Γ). A word

w ∈ Γω satisfies the Muller condition F if Inf (w) ∈ F . The language of the Muller
condition LF ⊆ Γω contains the ω-words that satisfy F .

Rabin. A Rabin condition over the alphabet Γ is represented by a family of Rabin pairs R =
{(G1, R1), . . . , (Gr, Rr)}, where Gi, Ri ⊆ Γ and Gi ∩ Ri = ∅. The Rabin pair j is said
to be green in c if c ∈ Gj , to be red in c if c ∈ Rj , or to be orange in c if none of the
previous occur. A word w ∈ Γω satisfies the Rabin condition R if Inf (w) ∩ Gj ̸= ∅ and
Inf (w) ∩ Rj = ∅ for some index j ∈ {1, . . . , r}. Said differently, there is a Rabin pair j

which is red in finitely many letters from w, and green for infinitely many letters of w.
The language of the Rabin condition LR ⊆ Γω contains the ω-words that satisfy R.

Parity. To define a parity condition we suppose that Γ ⊆ N. A word w ∈ Γω satisfies the
parity condition if the maximum in Inf (w) is even. The language of the parity condition
contains the ω-words that satisfy it.

We say that a language L ⊆ Γω is a Muller language if it is the language of some
Muller condition F . Equivalently, L is a Muller language if it can be described as a boolean
combination of atomic propositions of the form “the letter “a” appears infinitely often” and
their negations. Note that languages of Rabin conditions are languages of Muller conditions,
and that languages of parity conditions are languages of Rabin conditions, but the converses
do not hold. Given a Muller condition F ⊆ P+(Γ) and a subset C ⊆ Γ, we define the
restriction of F to C as the Muller condition over C given by F|C = {A ⊆ C : A ∈ F}.

Memory structures. A memory structure for the game G of moves E is a tuple M =
(M, m0, µ, σ) where M is a set of memory states, m0 ∈ M is an initial memory state,
µ : M × E → M is an update function, and σ : M × VE → E maps each position x owned
by the existential player to a move from x. The size of M is the cardinal of M . We extend
the function µ to paths by induction: µ(m, ε) = m, and µ(m, πe) = µ(µ(m, π), e) for a
path π · e ∈ E∗. The memory structure M induces a strategy σM : E∗ → VE given by
σM(π) = σ(µ(m0, π), Last(π)), where Last(π) is the last position of the partial play π.

We say that M is a chromatic memory structure if there is a function µc : M ×(Γ∪{ε}) →
M such that µc(m, ε) = m for every m ∈ M and µ(m, e) = µc(m, γ(e)) for all edges e ∈ E.

The memory requirements of a winning condition W are defined as the least integer n

such that if G is an W-game won by the existential player, then she has a winning strategy
given by a memory of size at most n. We denote this quantity by mem(W).

We say that a winning condition W is exist-positional (also called half-positional) if
mem(W) = 1. Equivalently, W is exist-positional if Exist has a winning positional strategy
whenever Exist has a winning strategy at all.

2.2 Automata and good-for-gameness
Automata. A non-deterministic automaton A = (Q, Σ, Q0, ∆, Γ,W) (or simply an auto-
maton) consists of a finite set of states Q, an input alphabet Σ, a non-empty set of initial states
Q0 ⊆ Q, a transition relation ∆ ⊆ Q×Σ×Γ×Q and an acceptance condition W ⊆ Γω. We will
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write δ : Q × Σ → P(Q) for the function δ(q, a) = {q′ ∈ Q : (q, a, c, q′) ∈ ∆ for some c ∈ Γ}.
The size of the automaton, |A|, is the number of its states. A run of the automaton over a
word a0a1a2 · · · ∈ Σω is a sequence of transitions of the form:

ρ = (q0, a0, c0, q1)(q1, a1, c1, q2) · · · ∈ ∆ω, such that q0 ∈ Q0 is an initial state.

A run is accepting if c0c1c2 · · · ∈ W. If an accepting run over a word w ∈ Σω exists, the
automaton accepts w. The set of accepted words is the language accepted by the automaton,
written L(A). The automaton is deterministic if Q0 is a singleton and ∆ is such that for all
states q and letter a ∈ Σ, there exists exactly one transition of the form (q, a, c, q′). In this
case, for all words w ∈ Σω there exists one and exactly one run of the automaton over w.

An automaton using an acceptance condition W (resp. an acceptance condition of type
X ∈ {Muller, Rabin, parity}) is called an W-automaton (resp. X-automaton).

Good-for-gameness. The automaton A is good-for-games (GFG) if there is a resolver for
it, consisting of a choice of an initial state r0 ∈ Q0 and a function r : Σ∗ × Σ → ∆ such that
for all words w ∈ L(A), the run t0t1... ∈ ∆ω, called the run induced by r and defined by
ti = r(w[0..i − 1], w[i]), starts in r0 and is an accepting run over w. In other words, r should
be able to construct an accepting run in A letter-by-letter with only the knowledge of the
word so far, for all words in L(A).

2.3 The Zielonka tree of a Muller condition
A tree T = (N, ⊑) is a nonempty finite set of nodes N equipped with an order relation ⊑
called the ancestor relation (x is an ancestor of y if x ⊑ y), such that (1) there is a minimal
node for ⊑, called the root, and (2) the ancestors of an element are totally ordered by ⊑. The
converse relation is the descendant relation. Maximal nodes are called leaves, and the set
of leaves of T is denoted by Leaves(T ). Given a node n of a tree T , the subtree of T rooted
at n is the tree T restricted to the nodes that have n as ancestor. A node n′ is a child of n if
it is a minimal strict descendant of it. The set of children of n is written ChildrenT (n). The
height of a tree T is the maximal length of a chain for the ancestor relation. An A-labelled
tree is a tree T together with a labelling function ν : N → A.

▶ Definition 1 ([43]). Let F ⊆ P+(Γ) be a Muller condition. A Zielonka tree for F , denoted
ZF = (N, ⊑, ν : N → P+(Γ)) is a P+(Γ)-labelled tree with nodes partitioned into round
nodes and square nodes, N = N⃝ ⊎ N□ such that:

The root is labelled Γ.
If a node is labelled X ⊆ Γ, with X ∈ F , then it is a round node, and its children are
labelled exactly with the maximal subsets Y ⊆ X such that Y ̸∈ F .
If a node is labelled X ⊆ Γ, with X ̸∈ F , then it is a square node, and its children are
labelled exactly with the maximal subsets Y ⊆ X such that Y ∈ F .

We remark that if n is a node of ZF , then the subtree of ZF rooted at n is a Zielonka
tree for F|ν(n), (the restriction of F to the label of n).

We equip trees with an order in order to navigate in them. An ordered Zielonka tree is a
Zielonka tree for which the set of children of each node is equipped with a total order(“from
left to right”). The function Nextn maps each child of n to its successor for this order, in a
cyclic way. For each node n ∈ N and each leaf l below n we define the set Jumpn(l) containing
a leaf l′ if there are two children n1, n2 of n such that n1 ⊑ l, n2 ⊑ l′ and n2 = Nextn(n1)
(we remark that n1 = n2 if n has only one child). For n = l we define Jumpn(l) = {l}. That
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is, l′ ∈ Jumpn(l) if we can reach l′ by the following procedure: we start at l, we go up the
tree until finding the node n, we change to the next branch below n (in a cyclic way) and we
re-descend to l′. From now on, we will suppose that all Zielonka trees are ordered, without
explicitly mentionning it.

▶ Example 2. We will use the following Muller condition as a running example throughout
the paper. Let Γ = {a, b, c} and let F be the Muller condition defined by:

F = {{a, b}, {a, c}, {b}}.

In Figure 1 we show the Zielonka tree for F . We use Greek letters to name the nodes of
the tree, N . We have that Jumpα(δ) = {ε, ζ} and Jumpγ(ζ) = {ε}. The numbering of the
branches will be used in Section 3.2.

a, b, c

a, b a, c

a a c

α

β γ

δ ε ζ

1 1 2

Figure 1 Zielonka tree ZF for F = {{a, b}, {a, c}, {b}}.

▶ Definition 3 ([15]). Let T be a tree with nodes partitioned into round and square nodes,
its memory for the existential player (memory for short), denoted mem-tree(T ), is defined
inductively as:

1 if T has exactly one node.
The sum of the memories of the subtrees of T rooted at the children of the root, if the
root is round.
The maximum of the memories of the subtrees of T rooted at the children of the root, if
the root is square.

For instance, for the Zielonka tree from Example 2, mem-tree(ZF ) = 2.

The key result justifying the introduction of this notion is that it characterises precisely the
quantity of memory required for winning an F -game, as shown by the next proposition.

▶ Proposition 4 ([15]). For all Muller conditions F , mem(F) = mem-tree(ZF ).

3 GFG Rabin automata correspond to memory structures for Muller
games

In this section, we prove the following result:

▶ Theorem 5. Let L be a Muller language. The memory requirements for L coincide with
the size of a minimal GFG Rabin automaton recognising L.

In Section 3.1 we show the first direction: the size of a GFG Rabin automaton for a
Muller language L is always an upper bound on the memory required by the existential
player on L-games. In Section 3.2, we show how to construct a GFG Rabin automaton from
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the Zielonka tree of a Muller condition of size mem-tree(ZL) = mem(L), completing the
equivalence. Moreover, we can build this minimal GFG Rabin automaton in polynomial time
given the Zielonka tree of the Muller condition.

3.1 A GFG Rabin automaton induces a memory structure for any game
In this section, we establish Corollary 10 which states that the size of a GFG Rabin
automaton A accepting a Muller language L is an upper bound on the memory required
for winning all L-games. Concretely, given an L-game won by the existential player, we
are able to construct a memory structure inducing a winning strategy based on A. The
argument is standard: we construct the product game of A and the L-game, which is a Rabin
game in which the existential player enjoys a positional winning strategy; then we use the
A-component of this product as a memory structure for a strategy in the original L-game.

▶ Lemma 6. Let A = (Q, Σ, Q0, ∆, Γ,W) be a GFG W-automaton recognising a language
L ⊆ Σω, with W exist-positional. Then if G is an L-game won by Exist, she can win it using
a strategy given by a memory structure M = (Q, r0, µ, σ).

Proof. Let G = (V = VE ⊎ VA, E, x0, L) and A = (Q, Σ, r0, ∆, Γ,W), where r0 ∈ Q0 is the
initial state chosen by some resolver. We consider the product W-game G′ in which:

Positions are elements in V ′ = (V × Q) ∪ (V × Γ × P(Q)). The initial position is (x0, r0).
Exist’s positions are V ′

E = (VE × Q) ∪ (V × Γ × P(Q)).
There is an ε-coloured edge from (x, q) to (x′, c, δ(q, c)) if (x, c, x′) ∈ E, c ̸= ε, and to
(x′, q) if (x, ε, x′) ∈ E.
There is a c-labelled edge from (x, c, S) to (x, q′) for all q′ ∈ S ⊆ Q.
The winning condition is W.

In short, in this game the players still negotiate a play in G, but in addition, the existential
player must simultaneously build an accepting run on the labelling of this play in A.

If A is GFG then whenever the existential player wins in G, she also wins in G′ [20,
Theorem 3] by playing a winning strategy on the G component of G′ and using the resolver
for A to choose the successor state in the A component.

This strategy is not necessarily positional. However, since W is exist-positional, the
existential player also has a positional strategy s : V ′

E → E′. We can now build a memory
structure Ms = (Q, r0, µ, σ) that projects the strategy s onto G (and updates itself with the
projection of s onto A):

µ(q, e) = q if e is an ε-coloured move of G and
µ(q, (x, c, x′)) = q′ where q′ = s(x′, c, δ(q, c)) otherwise;
σ(q, x) = s(x, q).

Since s is a winning strategy in G′, its projection onto G is a strategy that only agrees
with plays with labels in L(A), that is, winning plays. ◀

▶ Remark 7. Note that there is a slight subtlety here: the resolver, which induces a winning
strategy in the product game, does not need to be positional. In fact, it might require
exponential memory [27, Theorem 1]. Yet, for each L-game, a memory based on A suffices.

▶ Lemma 8 ([22, 43]). Rabin conditions are exist-positional.

As a direct consequence we obtain the following Proposition.
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▶ Proposition 9. Let L be a Muller language accepted by a GFG Rabin automaton A. Then,
in every L-game G won by the existential player, she can win using a strategy given by a
memory structure of size |A|.

▶ Corollary 10. If A is a GFG Rabin automaton accepting a Muller language L, then
mem(L) ⩽ |A|.

3.2 An optimal construction of a GFG Rabin automaton
So far, we have seen that given a GFG Rabin automaton, it can serve as a memory structure
for the games of which it accepts the winning condition. In this section we do the converse:
we build a minimal GFG Rabin automaton for a Muller language L of the same size as the
minimal memory required to win in L-games.

3.2.1 The construction
▶ Proposition 11. Let F ⊆ P+(Γ) be a Muller condition. There exists a GFG Rabin
automaton recognising LF of size mem(F).

To prove Propositon 11, we build a GFG Rabin automaton RF = (Q, Γ, q0, ∆, Γ′, R) for
LF based on the Zielonka tree ZF , as illustrated in Figure 2. We use a mapping from the
leaves of ZF to the states of the automaton that guarantees that two leaves of which the
last common ancestor is a round node cannot map to the same state. The number of states
required to satisfy this condition (⋆ below) coincides with mem-tree(ZF ). Then, for each
leaf of ZF and letter c ∈ Γ, we identify its last ancestor n in ZF containing c, and, using
the Jumpn function (defined in Section 2.3), pick a leaf below the next child of n. We add a
c-transition with label n between the states mapped to from these leaves. This way, we can
identify a run in the automaton with a promenade through the nodes of the Zielonka tree.
If during this promenade a unique minimal node (for ⊑) is visited infinitely often, it is not
difficult to see that the sequence of input colours belongs to F if and only if the label of this
minimal node is an accepting set (it is a round node). We devise a Rabin condition over the
set of nodes of the Zielonka tree accepting exactly these sequences of nodes.

We now describe the construction of the automaton RF = (Q, Γ, q0, ∆, N, R) formally,
starting from the Zielonka tree ZF = (N, ⊑, ν : N → P+(Γ)), and then proceed to prove its
correctness.

States. First, we set Q = {1, 2, . . . , mem-tree(ZF )} and we label the leaves of ZF by a
mapping η : Leaves(ZF ) → {1, 2, . . . , mem-tree(ZF )} verifying the property:

If n ∈ ZF is a round node with children n1 ̸= n2, for any pair
of leaves l1 and l2 below n1 and n2, respectively, η(l1) ̸= η(l2). (⋆)

▶ Lemma 12. For every Zielonka tree ZF there is a mapping verifying Property ⋆ of the
form η : Leaves(ZF ) → {1, 2, . . . , mem-tree(ZF )} .

Proof. We prove it by induction in the height of ZF . Let n1, . . . , nk be the children of
the root of ZF . We write Fi to denote the Muller condition restricted to ν(ni) and ηi :
Leaves(ZFi

) → {1, 2, . . . , mem-tree(ZFi
)} be a labelling verifying Property ⋆, for 1 ≤ i ≤ k.

We distinguish two cases according to the shape of the root.
If the root of ZF is a square node (Γ /∈ F), then the mapping η(l) = ηi(l) if the leaf l

belongs to the subtree ZFi
verifies Property ⋆.
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If the root of ZF is a round node (Γ ∈ F), then mem-tree(ZF ) =
∑k

i=1 mem-tree(ZFi),
and we can partition {1, 2, . . . , mem-tree(ZF )} into disjoint sets C1, . . . , Ck of size |Ci| =
mem-tree(ZFi

). We write σi for a bijection from {1, . . . , mem-tree(ZFi
)} to Ci. Then, the

mapping η(l) = σi(ηi(l)), if the leaf l belongs to the subtree ZFi verifies Property ⋆. ◀

We suppose that the image of the leftmost leaf under η is 1 and choose the initial state
q0 to be 1. In Example 2, the labelling η(δ) = η(ε) = 1, η(ζ) = 2 verifies Property ⋆.

Transitions. For each leaf l ∈ Leaves(ZF ) and each letter c ∈ Γ, we define a c-transition
from η(l), with an output label from Γ′ = N , as follows: let n be the maximal ancestor of
l that contains the letter c in its label and let l′ be the leftmost leaf in Jumpn(l)1. Then,
(η(l), c, n, η(l′)) ∈ ∆. That is, if we are in a state η(l), when we read the letter c ∈ Γ we can
choose to go up in the Zielonka tree from l until visiting a node n with c in its label. We
produce the letter n as output, then we change to the next child of n (in a cyclic way) and
we descend to the leftmost leaf below it. The destination is the η-label of this leaf2.

Following the above definition, we obtain a mapping from transitions in the automaton
to Leaves(ZF ) × Γ × N × Leaves(ZF ). We say that l and l′ are the leaves corresponding to
the transition (q, a, n, q′) if this transition is sent to (l, a, n, l′) by this mapping. The node n

produced as output is the last common ancestor of l and l′. The automaton obtained in this
way might present multiple transitions labelled by the same input letter between two states.
We will show in Proposition 18 that duplicated transitions can be removed.

Acceptance condition. We define a Rabin condition over the alphabet Γ′ = N , that is the
set of nodes of the Zielonka tree. We define a Rabin pair for each round node of ZF (that is,
nodes whose label is an accepting set of letters for F): R = {(Gn, Rn)}n∈N⃝ . Let n be a
round node and n′ be a general node of ZF :{

n′ ∈ Gn if n′ = n,

n′ ∈ Rn if n′ ̸= n and n is not an ancestor of n′.

That is, for the letter n′, the Rabin pairs corresponding to round ancestors of n′ are not
affected by it (they are “orange in n′”). If this node n′ is round, then it belongs to Gn′ (this
pair is “green in n′”). For any other node n ∈ N⃝, we have n′ ∈ Rn (the pair is “red in n′”).
▶ Remark 13. The construction presented depends on the order of the nodes of the Zielonka
tree. However, the size of the resulting automaton is independent of this order.

▶ Example 14. Let F = {{a, b}, {a, c}, {b}} be the Muller condition from Example 2. The
labelling of the leaves of the Zielonka tree given by η(δ) = η(ε) = 1, η(ζ) = 2 verifies
Property ⋆. Figure 2 shows the GFG Rabin automaton obtained by following this procedure.

The Rabin condition of this automaton is given by two Rabin pairs (corresponding to the
round nodes of the Zielonka tree in Figure 1):

Gβ = {β}, Rβ = {α, γ, ε, ζ},
Gγ = {γ}, Rγ = {α, β, δ}.

1 We could add all transitions {(η(l), n, η(l′)) : l′ ∈ Jumpn(l)} to ∆. However, a resolver for the GFG
automaton just needs to make use of one of these transitions, so in order to simplify the automaton we
make an arbitrary choice (the leftmost leaf).

2 We remark that l′ is the target of the transition of the Zielonka tree parity automaton from l reading
letter “c” [11]. See also Section 3.2.3.
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1 2a : δ

b : β c : α

a : ε
b : α

c : γ

a : γ

b : α

c : ζ

Figure 2 The GFG Rabin automaton obtained from the Zielonka tree ZF .

3.2.2 Proof of correctness
▶ Lemma 15. Let w = n0n1n2 · · · ∈ Nω be an infinite sequence of nodes of the Zielonka
tree. The word w satisfies the Rabin condition defined above if and only if there is a unique
minimal node for the ancestor relation in Inf (w) and this minimal node is round (recall that
the root is the minimal element in ZF ).

Proof. Suppose that there is a unique minimal node in Inf (w), called n, and that n is round.
We claim that w is accepted by the Rabin pair (Gn, Rn). It is clear that Inf (w) ∩ Gn ≠ ∅,
because n ∈ Gn. It suffices to show that Inf (w) ∩ Rn = ∅: By minimality, any other node
n′ ∈ Inf (w) is a descendant of n (equivalently, n is an ancestor of n′), so n′ /∈ Rn.

Conversely, suppose that w ∈ Nω satisfies the Rabin condition. Then, there is some
round node n ∈ N⃝ such that Inf (w) ∩ Gn ̸= ∅ and Inf (w) ∩ Rn = ∅. Since Gn = {n}, we
deduce that n ∈ Inf (w). Moreover, as Inf (w) ∩ Rn = ∅, all nodes in Inf (w) are descendants
of n. We conclude that n is the unique minimal node in Inf (w), and it is round. ◀

▶ Lemma 16. The automaton RF recognises the language LF and is good-for-games.

Proof. L(RF ) ⊆ LF : Let u ∈ L(RF ) and let w ∈ Nω be the sequence of nodes produced
as output of an accepting run over u in RF . By Lemma 15, there is a unique minimal
node n for ⊑ appearing infinitely often in w and moreover n is round. Let n1, . . . , nk be
an enumeration of the children of n (from left to right), with labels ν(ni) ⊆ Γ (we remark
that ν(ni) /∈ F , for 1 ≤ i ≤ k). We will prove that Inf (u) ⊆ ν(n) and Inf (u) ⊈ ν(ni) for
1 ≤ i ≤ k. By definition of the Zielonka tree, as n is round, this implies that Inf (u) ∈ F .

Since eventually all nodes produced as output are descendants of n (by minimality),
Inf (u) must be contained in ν(n) (by definition of the transitions of RF ).

We suppose, towards a contradiction, that Inf (u) ⊆ ν(nj) for some 1 ≤ j ≤ k. Let
Qi = {η(l) : l is a leaf below ni} be the set of states corresponding to leaves under ni, for
1 ≤ i ≤ k. We can suppose that the leaves corresponding to transitions of an accepting run
over u are all below n, and therefore, transitions of such a run only visit states in

⋃k
i=1 Qi.

Indeed, eventually this is going to be the case, because if some of the leaves l, l′ corresponding
to a transition (q, a, n′, q′) are not below n, then n′ would not be a descendant of n (since
n′ is the least common ancestor of l and l′). Also, by Property ⋆, we have Qi ∩ Qj = ∅,
for all i ̸= j. By definition of the transitions of RF , if c ∈ Γ is a colour in ν(n) but not in
ν(ni), all transitions from some state in Qi reading the colour c go to Qi+1, for 1 ≤ i ≤ k − 1
(and to Q1 if i = k). Also, if c ∈ ν(ni), transitions from states in Qi reading c stay in Qi.
We deduce that a run over u will eventually only visit states in Qj , for some j such that
Inf (u) ⊆ ν(nj). However, the only transitions from Qj that would produce n as output are
those corresponding to a colour c /∈ ν(nj), so the node n is not produced infinitely often, a
contradiction.
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LF ⊆ L(RF ) and good-for-gameness: We will describe a strategy for a resolver in RF
using as memory the set of leaves of the Zielonka tree3. It will verify at every step that if the
memory is on the leaf l, then RF is on the state η(l). The initial state of the memory is the
leftmost leaf of ZF . If we are on the memory state l and the letter c ∈ Γ is read, we take the
transition (η(l), c, n, η(l′)) ∈ ∆, where n is the maximal ancestor of l such that c ∈ ν(n) and
l′ is the leftmost leaf in Jumpn(l); the memory state is updated to l′. Let us suppose that
a word u ∈ LF is given as input to the automaton. We will see that the run produced by
this strategy is accepting. We can suppose that the only colours appearing in u are those of
Inf (u). Let n be the leftmost ⊑-maximal node such that Inf (u) ⊆ ν(n). Since Inf (u) ∈ F ,
n is a round node. We will prove that the run produced by the resolver above only produces
nodes that are descendants of n (including n) infinitely often and that it produces n infinitely
often and is therefore accepting. Let n1, . . . , nk be the children of n from left to right, and
let L1, . . . , Lk be the (disjoint) sets of leaves below them, respectively. By the definition of
the transitions and the strategy, the memory will eventually only consider leaves in

⋃k
i=1 Li,

and will produced as output nodes that are descendants of n (including n itself). Also, each
time that the memory is in some state in Li and a colour not in ν(ni) is given, a transition
leading to some state in η(Li+1) (η(L1) if i = k) producing the node n as output is taken.
Since Inf (u) is not contained in ν(ni) for 1 ≤ i ≤ k (by the maximality assumption), this
occurs infinitely often. ◀

▶ Remark 17. We have shown that given as input the Zielonka tree of a Muller condition F
we can build in polynomial time a minimal GFG Rabin automaton for LF . On the other
hand, with the same input, it is NP-complete to decide whether there is a deterministic Rabin
automaton of size k recognising LF [10, Theorem 31]. Therefore, unless P = NP, there are
Muller languages for which minimal deterministic Rabin automata are strictly greater than
minimal GFG Rabin automata. We will explicitly show some of these languages in Section 4.

3.2.3 Relation with the Zielonka-tree parity automaton
The Zielonka tree has been previously used to provide a minimal deterministic parity
automaton for a Muller condition [11, 33]. The automata states are the leaves of the Zielonka
tree, and the transition from a leaf l reading colour c goes to the leftmost leave in Jumpn(l),
where n is the last ancestor of l containing colour c. For example, Figure 3 shows a parity
automaton recognising the Muller condition F = {{a, b}, {a, c}, {b}} from Example 2.

δ, 1 ε, 1 ζ, 2
a : 0

b : 1

c : 2
a : 0

b : 2

c : 1

a : 1

b : 2

c : 0

Figure 3 Parity automaton PF obtained from the Zielonka tree from Figure 1.

3 This strategy is given by the (deterministic) Zielonka tree parity automaton PF . It suffices to note that
there is a morphism from PF to RF preserving all edges and the acceptance of loops.
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This minimal parity automaton PF is closely related to the GFG Rabin automaton RF
presented in Section 3.2. More precisely, the automaton RF can be regarded as a quotient of
PF given by the numbering η : Leaves(ZF ) → {1, . . . , mem-tree(ZF )}. That is, to obtain RF
we merge the states η−1(i) for 1 ≤ i ≤ mem-tree(ZF ) and we keep all transitions. Moreover,
the strategy for a resolver for RF as presented in the proof of Lemma 16 is exactly given by
the deterministic automaton PF . However, we note that in general a parity condition is not
sufficient in RF to accept LF and we need to replace it by a Rabin one.

We observe that the GFG Rabin automaton from Figure 2 is obtained as a quotient of
the deterministic parity automaton in Figure 3.

3.2.4 Simplifications and optimisations
Given an automaton A = (Q, Σ, Q0, ∆, Γ,W) we say that it has duplicated edges if there are
some pair of states q, q′ ∈ Q and two different transitions between them labelled with the
same input letter: (q, a, α, q′), (q, a, β, q′) ∈ ∆.

As remarked previously, the construction we have presented provides an automaton
potentially having duplicated edges, which can be seen as an undesirable property (even if
some automata models such as the HOA format [2] allow them). We show next that we can
always derive an equivalent automaton without duplicated edges. Intuitively, in the Rabin
case, if we want to merge two transitions having as output letters α and β, we add a fresh
letter (αβ) to label the new transition. For each Rabin pair, this new letter will simulate the
best of either α or β depending upon the situation.

▶ Proposition 18 (Simplification of automata). Let A be a Muller (resp. Rabin) automaton
presenting duplicated edges. There exists an equivalent Muller (resp. Rabin) automaton A′

on the same set of states without duplicated edges. Moreover, if A is GFG, A′ can be chosen
GFG. In the Rabin case, the number of Rabin pairs is also preserved.

Proof. For the Rabin case, let A′ be an automaton that is otherwise as A except that instead
of the transitions ∆ of A it only has one a-transition q

a:x−−→ q′ ∈ ∆′ (with a fresh colour x per
transition) per state-pair q, q′ and letter a ∈ Σ. That is, ∆′ = {(q, a, xj , q′) : (q, a, y, q′) ∈
∆ for some y}. The new Rabin condition {(G′

1, R′
1), . . . , (G′

r, R′
r)} is defined as follows. For

each transition q
a:x−−→ q′:

x ∈ G′
i if q

a:y−−→ q′ ∈ ∆ for some y ∈ Gi (there is a green transition for the ith pair)
x ∈ R′

i if for all q
a:y−−→ q′ ∈ ∆, y ∈ Ri (there is no green or orange transition for the ith

pair).

We claim that L(A′) = L(A). Indeed, if u ∈ L(A), as witnessed by some run ρ and a
Rabin pair (Gi, Ri), then the corresponding run ρ′ in A′ over u is also accepting with Rabin
pair (G′

i, R′
i): the transitions of Inf (ρ) ∩ Gi induce transitions of Inf (ρ′) ∩ G′

i and the fact
that Inf (ρ) ∩ Ri = ∅ guarantees that Inf (ρ′) ∩ R′

i = ∅.
Conversely, if u ∈ L(A′) as witnessed by a run ρ′ and Rabin pair (G′

i, R′
i), then there is

an accepting run ρ over u in A: such a run can be obtained by choosing for each transition
q

a:x−−→ q′ of ρ′ where x ∈ G′
i a transition q

a:y−−→ q′ ∈ ∆ such that y ∈ Gi, which exists by
definition of A′, for each transition q

a:x−−→ q′ where x /∈ Gi ∪ Ri a transition q
q,y−−→ q′ ∈ ∆

such that y /∈ Ri, which also exists by definition of A′, and for other transitions q
a:x−−→ q′

(that is, those for which x ∈ R′
i) an arbitrary transition q

a:y−−→ q′ ∈ ∆. Since ρ′ is accepting,
we have Inf (ρ′) ∩ Gi ̸= ∅ and Inf (ρ) ∩ Ri = ∅, that is, ρ is also accepting.

For the Muller case, the argument is even simpler. As above, we consider A′ that is
otherwise like A except that instead of the transitions ∆ of A, it only has one a-transition
q

a:x−−→ q′ ∈ ∆′ (with a fresh colour per transition) per state-pair q, q′ and the accepting
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condition is defined as follows. A set of transitions T is accepting if and only if for each
t = q

a:x−−→ q′ ∈ T there is a non-empty set St ⊆ {q
a:y−−→ q′ ∈ ∆} such that

⋃
t∈T St is

accepting in A. In other words, a set of transitions in A′ is accepting if for each transition
we can choose a non-empty subset of the original transitions in A that form an accepting
run in A.

We claim that L(A′) = L(A). Indeed if u ∈ L(A), as witnessed by some run ρ, the run
ρ′ that visits the same sequence of states in A′ is accepting as witnessed by the transitions
that occur infinitely often in ρ.

Conversely, assume u ∈ L(A′), as witnessed by a run ρ′ and a non-empty subset St for
each transitions t that occurs infinitely often in ρ′ such that

⋃
t∈Inf (ρ) St is accepting in A.

Then there is an accepting run ρ over u in A that visits the same sequence of states as
ρ′ and chooses instead of a transition t ∈ Inf (ρ) each transition in St infinitely often, and
otherwise takes an arbitrary transition. The set of transitions ρ visits infinitely often is
exactly

⋃
t∈Inf (ρ) St, and is therefore accepting.

Finally, observe that in both cases, if A if GFG, then the automaton A′ without duplicate
edges is also GFG since A′ is obtained from A by merging transitions. Indeed, the resolver r

of A induces a resolver r′ for A′ by outputting the unique transition with the same letter
and state-pair as r. By the same argument as above, the run induced by r′ is accepting if
and only if the run induced by r is. ◀

▶ Example 19. The GFG Rabin automaton from Figure 2 has duplicated transitions. In
Figure 4 we present an equivalent GFG Rabin automaton without duplicates. For this, we
have merged the self-loops in state 1 labelled with a and b respectively. We have added the
output letters (αβ) and (δε). The new Rabin pairs are given by:

G′
β = {β, (αβ)}, R′

β = {α, γ, ε, ζ},
G′

γ = {γ}, R′
γ = {α, β, (αβ), δ}.

1 2

a : (δε)

b : (αβ)

c : α

c : γ

a : γ

b : α

c : ζ

Figure 4 The simplified GFG Rabin automaton.

▶ Remark 20 (Optimisation on the number of Rabin pairs). An important parameter in the
study of Rabin automata is the number of Rabin pairs used. The automaton presented in
this Section uses a number of Rabin pairs that equals the number of round nodes in the
Zielonka tree. This can be improved by using only the round nodes in the Zielonka directed
acyclic graph (obtained from the tree by merging nodes with the same labels). However,
even this latter option is not always optimal and we conjecture that minimising the number
of Rabin pairs without increasing the size of the automaton is NP-complete.
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4 GFG Rabin automata recognising Muller conditions can be
exponentially more succinct than deterministic ones in number of
states

On his PhD Thesis [23, 24], Kopczyński raised the question of whether the general and the
chromatic memory requirements of winning conditions always coincide. By Theorem 5 and
[10, Theorem 28], in the case of Muller conditions, this question is equivalent to the following:

Is there a Muller language L such that minimal GFG Rabin automata recognising L

are strictly smaller than deterministic Rabin automata for L?

In [10] this question is answered positively. It is shown that for every n ∈ N there is a Muller
language Ln over an alphabet Γn such that a minimal GFG Rabin automaton for it has
size 2, but a minimal deterministic Rabin automaton for it has size n. However, the size
of the alphabet Γn in that example also has size n. A natural question is whether GFG
Rabin automata recognising Muller conditions can be exponentially more succinct than
deterministic ones, when also taking into account the alphabet size. This is indeed the case:

▶ Theorem 21. There exists a constant α > 1, a sequence of natural numbers n1 < n2 <

n3 . . . and a sequence of Muller conditions Fni
over Γni

= {1, . . . , ni} such that
a minimal GFG Rabin automaton for LFni

has size ⌊ni/2⌋,
a minimal deterministic Rabin automaton for LFni

has size at least αni .
A lower bound for such a constant is α = 1.116.

We devote the rest of this Section to proving Theorem 21. In brief, the Muller conditions
in question require half the colours to be seen infinitely often. The construction of the small
GFG Rabin automaton follows from constructing the Zielonka tree of the condition. For
the lower bound on the deterministic Rabin automaton, we reduce the problem to finding
a lower bound on the chromatic number of a certain graph, which we finally show to be
sufficiently large for a family of our Muller conditions.

Let n ∈ N. We define the following Muller condition over Γn = {1, . . . , n}:

Fn = {C ⊆ Γn : |C| = ⌊n/2⌋}.

The Zielonka tree of Fn is depicted in Figure 5 (for n even).

1, 2, . . . , n

1, 2, . . . , n
2 1, 3, . . . , , n

2 + 1 . . . n
2 , . . . , n

1, . . . , n
2 − 1 . . . 2, . . . , n

2 1, 3, . . . , n
2 . . . 3, . . . , n

2 + 1 n
2 , . . . , n − 1 . . . n

2 + 1, . . . , n

Figure 5 Zielonka tree ZFn for Fn = {C ⊆ Γn : |C| = ⌊n/2⌋}.

Each round node in ZFn
has exactly ⌊n/2⌋ children, and therefore mem-tree(ZFni

) =
⌊n/2⌋. Thus, a minimal GFG Rabin automaton recognising LFn has size ⌊n/2⌋ (by Proposi-
tion 4 and Theorem 5).

We now give a lower bound for deterministic Rabin automata recognising LFn . Our main
tool will be Lemma 22, which uses the notion of cycles. A cycle of an automaton A is a set of
transitions forming a closed path (not necessarily simple). The set of states of a cycle consists
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of those states that are the source of some transition in it. If A is a Rabin automaton, we say
that a cycle is accepting (resp. rejecting) if the colours c1, . . . , ck appearing in its transitions
form a word (c1c2 . . . ck)ω that satisfies (resp. does not satisfy) the Rabin condition.

▶ Lemma 22 ([11]). Let A be a deterministic Rabin automaton. If ℓ1 and ℓ2 are two rejecting
cycles in A with some state in common, then the union of ℓ1 and ℓ2 is also a rejecting cycle.

For the following, let A be a deterministic Rabin automaton recognising LFn
. For each

subset of letters C ⊆ Γn, we define a final C-Strongly Connected Component (C-FSCC for
short) as a set of states P of A such that:

For every pair of states p, q ∈ P , there is a word w ∈ C∗ labelling a path from p to q.
For every p ∈ P and w ∈ C∗, the run over w starting in p remains in P .

It is easy to see that for every C ⊆ Γn there exists some C-FSCC in A.

▶ Lemma 23. Let C1, C2 ⊆ Γn such that |Ci| < ⌊n/2⌋, for i = 1, 2 and such that |C1 ∪ C2| =
⌊n/2⌋. If P1 and P2 are two C1 and C2-FSCC, respectively, then P1 ∩ P2 = ∅.

Proof. For i = 1, 2, let ℓi be a cycle visiting all states of Pi and reading exactly the set
of letters Ci. By definition of LFn , ℓi is a rejecting cycle. If P1 and P2 had some state in
common, we could take the union of the cycles ℓ1 and ℓ2, producing an accepting cycle,
which is impossible by Lemma 22. ◀

We associate the following (undirected) graph GFn = (VFn , EFn) to the Muller condition Fn:
VFn

= P(Γn).
There is an edge between two subsets C1, C2 ⊆ Γn if and only if |Ci| < ⌊n/2⌋, for i = 1, 2,
and |C1 ∪ C2| = ⌊n/2⌋.

That is, we connect two vertices if they correspond to rejecting sets but taking their
union we obtain an accepting set.

We reduce finding lower bounds in the size of deterministic Rabin automata to giving
lower bounds for the chromatic number of GFn . A colouring of an undirected graph G =
(V, E ⊆ V × V ) is a mapping c : V → Λ such that c(v) = c(v′) ⇒ (v, v′) /∈ E for every pair
of nodes v, v′ ∈ V . We say that such a colouring has size |Λ|. The chromatic number of G is
the minimal number k such that G has a colouring of size k. We denote it χ(G).

▶ Lemma 24. A lower bound for the size of a minimal deterministic Rabin automaton
recognising LFn is given by χ(GFn).

Proof. Let A be a deterministic Rabin automaton recognising LFn
with states Q. We define

a colouring c of GFn
using Q as colours. For each C ⊆ Γn, we let PC be a C-FSCC and we pick

a state qC ∈ PC . We define c(C) = qC . We prove that this is a correct colouring. Suppose
that C1 and C2 are two vertices in GFn

connected by some edge, that is, |Ci| < ⌊n/2⌋ and
|C1 ∪ C2| = ⌊n/2⌋. If qC1 = qC2 , it means that PC1 ∩ PC2 ̸= ∅, contradicting Lemma 23. ◀

▶ Remark 25. The definition of GFn
is not specific to this Muller condition. It can be defined

analogously for any other Muller condition and Lemma 24 holds by the same argument.

▶ Proposition 26. There exists a constant α > 1 and a sequence of natural numbers
n1 < n2 < n3 . . . such that αni ≤ χ(GFni

).

In order to prove Proposition 26 we introduce some further graph-theoretic notions. Let
G = (V, E) be an undirected graph. An independent set of G is a set S ⊆ V such that
(v, v′) /∈ E for every pair of vertices v, v′ ∈ S.
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▶ Lemma 27. Let R ⊆ V , and let GR = (R, E|R×R) be the subgraph of G induced by R.
Then, χ(G) ≥ χ(GR).

▶ Lemma 28. Let m be an upper bound on the size of the independent sets in G. Then

χ(G) ≥ |V |
m

.

Proof. Let c : V → Λ be a colouring of G with |Λ| = χ(G). Then, by definition of a colouring,
for each x ∈ Λ, c−1(x) is an independent set in G, so |c−1(x)| ≤ m. Also, V =

⋃
x∈Λ c−1(x),

so

|V | =
∑
x∈Λ

|c−1(x)| ≤ χ(G) · m. ◀

We will find a subgraph of GFn
for which we can provide an upper bound on the size of

its independent sets. The upper bound is provided by the following theorem (adapted from
[35, Theorem 15]).

▶ Theorem 29 ([35], Theorem 15). Let n > k > 2t such that k − t is a prime number.
Suppose that B is a family of subsets of size k of Γn such that |A ∩ B| ̸= t for any pair of
subsets A, B ∈ B. Then,

|B| ≤
(

n

k − t − 1

)
.

We conclude this section with the proof of Proposition 26.

Proof of Proposition 26. Let p be a prime number and let n = 5p. We will study the
subgraph of GFn formed by the subsets of size exactly k = ⌊3n/10⌋. We denote this subgraph
by Hn,k. Two subsets A, B ⊆ Γn of size k verify that |A ∪ B| = ⌊n/2⌋ if and only if
|A ∩ B| = ⌊n/10⌋. We set t = ⌊n/10⌋. We get k − t = p so we can apply Theorem 29
and we obtain that any independent set in Hn,k has size at most

(
n

1
5 n−1

)
. By Lemma 28,

χ(Hn,k) ≥
(

n
⌊ 3

10 n⌋
)
/
(

n
1
5 n−1

)
. By Lemma 27 we know that this lower bound also holds for GFn

.
Using Stirling’s approximation we obtain that

χ(GFn
) ≥

(
n

⌊ 3
10 n⌋

)
/

(
n

1
5 n − 1

)
= Ω

((
(1/5)1/5(4/5)4/5

(3/10)3/10(7/10)7/10

)n
)

= Ω(1.116n).

To conclude, we take an enumeration of prime numbers, p1 < p2 < . . . and we set
ni = 5pi. ◀

▶ Remark 30 (Choices of k and t). The choice of k = ⌊3n/10⌋ and t = ⌊n/10⌋ in the previous
proof might appear quite enigmatic. We try to explain them now.

We want to find a number k such that there is not a big family of sets {Ai ⊆ Γn} of
size |Ai| = k such that |Ai ∪ Aj | ̸= n/2, and express this fact in terms of |Ai ∩ Aj |. Since
|A ∪ B| = 2k − |A ∩ B|, if we define t = 2k − n/2, then |A ∪ B| ̸= n/2 if and only if
|A ∩ B| ̸= t, so the value of t will be completely determined by the choice of k. Our objective
is to minimise the upper bound given in Theorem 29 (what we do by minimising k − t)
while making sure that the hypothesis k > 2t is verified. In the boundary of this condition
(k = 2t) we obtain k = n/3, so we express our choices as k = (1/3 − ε)n and t = (1/6 − 2ε)n.
Moreover, k − t = (1/6 + ε)n has to be a prime number (for infinite n). If 1/6 + ε = 1/q for
some q ∈ N, we would succeed by considering n of the form q · p, for p a prime number. We
will therefore take ε = 6−q

6q , for some q, 1 ≤ q ≤ 5. With the optimal choice, q = 5, we obtain
k = 3n/10, t = n/10 and k − t = n/5. Since k and t will not be integers for n of the form 5p

(p a prime number) we are forced to take the integer part in the proof of Proposition 26.
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5 Conclusion

We believe that our work is a significative advance in the understanding of the memory
needed for winning ω-regular games. In combination with the literature, we can describe the
current understanding of Muller languages as follows:

The least memory necessary for winning all won L-games equals the least number of
states of a GFG Rabin automaton for L.
Computing this quantity can be done in polynomial time for L given by its Zielonka tree.
The least chromatic memory necessary for winning all won L-games equals the least
number of states of a deterministic Rabin automaton for L.
Computing this quantity is NP-complete for L given by its Zielonka tree.
The chromatic memory can be arbitrarily larger than the memory. It can be exponential
in the size the alphabet, even while the memory remains linear.

This description shows that GFG automata play a key, and, up till now, unexplored role in
understanding the complexity of Muller languages and that this role is – in some respect –
even more important than that of the more classical deterministic automata.
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Abstract
Reachability, distance, and matching are some of the most fundamental graph problems that have
been of particular interest in dynamic complexity theory in recent years [8, 13, 11]. Reachability can
be maintained with first-order update formulas, or equivalently in DynFO in general graphs with
n nodes [8], even under O( log n

log log n
) changes per step [13]. In the context of how large the number

of changes can be handled, it has recently been shown [11] that under a polylogarithmic number
of changes, reachability is in DynFO[⊕](≤, +, ×) in planar, bounded treewidth, and related graph
classes – in fact in any graph where small non-zero circulation weights can be computed in NC.

We continue this line of investigation and extend the meta-theorem for reachability to distance
and bipartite maximum matching with the same bounds. These are amongst the most general classes
of graphs known where we can maintain these problems deterministically without using a majority
quantifier and even maintain witnesses. For the bipartite matching result, modifying the approach
from [15], we convert the static non-zero circulation weights to dynamic matching-isolating weights.

While reachability is in DynFO(≤, +, ×) under O( log n
log log n

) changes, no such bound is known for
either distance or matching in any non-trivial class of graphs under non-constant changes. We show
that, in the same classes of graphs as before, bipartite maximum matching is in DynFO(≤, +, ×)
under O( log n

log log n
) changes per step. En route to showing this we prove that the rank of a matrix

can be maintained in DynFO(≤, +, ×), also under O( log n
log log n

) entry changes, improving upon the
previous O(1) bound [8]. This implies a similar extension for the non-uniform DynFO bound for
maximum matching in general graphs and an alternate algorithm for maintaining reachability under
O( log n

log log n
) changes [13].
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1 Introduction

In traditional complexity theory it is assumed that the given input remains fixed throughout
the computation. However in real-life scenarios, many situations involve an evolving input
where parts of the data change frequently. Recomputing everything from scratch for these
large datasets after every change is not an efficient option. Therefore, the goal is to
dynamically maintain some auxiliary data structure to help us recompute the results quickly.

The dynamic complexity framework of Patnaik and Immerman [28] is one such approach
that has its roots in descriptive complexity [23] and is closely related to the setting of Dong,
Su, and Topor [14]. Here we would like to make the updates and queries by first-order logic
formulas. For example, by maintaining some auxiliary relations, the reachability relation
can be updated after every single edge modification in FO [8] i.e., the reachability query is
contained in the dynamic complexity class DynFO [28]. The motivation to use first-order
logic as the update method has connections to other areas. From the circuit complexity
perspective, this implies that such queries are highly parallelizable, i.e., can be updated by
polynomial-size circuits in constant-time due to the correspondence between FO and uniform
AC0 circuits [2]. From the perspective of database theory, such a program can be translated
into equivalent SQL queries.

The area has seen renewed interest in proving further upper bounds results, partly
after the resolution of the long-standing conjecture [28] that reachability is in DynFO under
single edge modifications [8]. A natural direction to extend this result is to see which other
fundamental graph problems also admit such efficient dynamic programs. The closely related
problems of maintaining distance and matching are two such examples, though a DynFO
bound for these problems in general graphs has been elusive so far. The best known bound
for distance is DynTC0 [20] and non-uniform DynAC0[⊕] [5]. Here, the updates are computed
in FO formulas with majority quantifiers (uniform TC0 circuits) and non-uniform FO formulas
with parity quantifiers (AC0[⊕] circuits), respectively. For matching, we have a non-uniform
DynFO bound for maintaining the size of the maximum matching [8]. The only non-trivial
class of graphs where both these problems are in DynFO is bounded treewidth graphs [12].

At the same time progress has been made to understand how large a modification to
the input can be handled by similar dynamic programs. It is of particular interest since, in
applications, changes to a graph often come as a bulk set of edges. It was shown that reach-
ability can be maintained in DynFO(≤, +, ×) under changes of size O(log n/ log log n) [13] in
graphs with n nodes. Here, the class DynFO(≤, +, ×) extends DynFO by access to built-in
arithmetic, which is more natural for bulk changes. To handle larger changes, it is known
that even for reachability, changes of size larger than polylogarithmic cannot be handled in
DynFO [11]. And for changes of polylogarithmic size, the previous techniques seem to require
extending DynFO by majority quantifiers [13]. Under bulk changes of polylog(n) size, we
can even maintain distance and the size of a maximum matching in the uniform and the
non-uniform version of DynFO[MAJ](≤, +, ×), respectively [13, 26].
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Making further progress in this direction, recently it has been shown in [11] that reach-
ability is in DynFO[⊕](≤, +, ×) (i.e., update formulas may use parity quantifiers) under
polylog(n) changes in the class of graphs where polynomially bounded non-zero circulation
weights can be computed statically in the parallel complexity class NC. A weight function
for the edges of a graph has non-zero circulation if the (alternate) sum of the weights of
the edges of every directed cycle is non-zero (see Section 2 for more details). Planar [29],
bounded genus [10], bounded treewidth [11], single crossing minor-free [4] are some of the
well-studied graph classes for which non-zero circulation weights can be computed in NC.

In this work, we first extend this result to prove similar meta-theorems for maintaining
distance (including a shortest path witness) and the search version of minimum weight
bipartite maximum matching (MinWtBMMSearch) in the same classes of graphs.

▶ Theorem 1. Distance and MinWtBMMSearch are in DynFO[⊕](≤, +, ×) under polylog(n)
edge changes on classes of graphs where non-zero circulation weights can be computed in NC.

Note that these are the only classes of graphs known where we can maintain both these
problems deterministically without using a majority quantifier and even maintain a witness
to the solution (in other words, maintain a solution to the search problem).

While reachability can be maintained in DynFO(≤, +, ×) under bulk changes in general
graphs, no such bound is known for either distance or matching in any non-trivial class of
graphs under a non-constant number of changes. Since maintaining the size of maximum
matching reduces to maintaining the rank of a matrix via bounded expansion first-order
truth-table (bfo-tt) reduction [8], the following gives a non-uniform DynFO(≤, +, ×) bound
for maintaining the size of maximum matching in general graphs to O( log n

log log n ) changes.

▶ Theorem 2. Rank of a matrix from Zn×n
p is in DynFO(≤, +, ×) under O( log n

log log n ) entry
changes.

Earlier it was known that the rank of a matrix with small integer entries can be maintained
in DynFO under changes that affect a single entry [8]. As reachability reduces to matrix
rank via bfo-reduction [8], Theorem 2 also gives an alternative algorithm for maintaining
reachability in DynFO(≤, +, ×) under O( log n

log log n ) changes. This is interesting in its own right
as it generalizes the rank-method for maintaining reachability [8] even under bulk changes
without going via the Sherman-Morrison-Woodbury identity [13].

Finally, building on Theorem 2, we show another meta theorem for maintaining the size
of a maximum matching in bipartite graphs (BMMSize) in DynFO(≤, +, ×) under slightly
sublogarithmic bulk changes, in the same class of graphs as in Theorem 1. Previously, no
DynFO(≤, +, ×) bound was known even in planar graphs under single edge changes.

▶ Theorem 3. BMMSize is in DynFO(≤, +, ×) under O( log n
log log n ) edge changes on classes of

graphs for which non-zero circulation weights can be computed in NC.

Main Technical Contributions. There are two major technical contributions of this work:
Converting the statically computed non-zero circulation weights for bipartite matchings to
dynamically isolating weights for bipartite matchings. Our main approach (described in
detail in Section 3) is to assign polynomially bounded isolating weights to the edges of
an evolving graph so that the minimum weight solution under these weights is unique.
While static non-zero circulation weights guarantee this under deletions, for insertions,
the dynamization is based on the seminal work of [15]. They construct isolating weights
for perfect matching for arbitrary bipartite graphs, but which are quasipolynomially
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Table 1 Previously known and new results in graphs with non-zero circulation weights in NC.

Problem #changes
O(1) O( log n

log log n
) logO(1) n

Reach DynFO [8] DynFO [13] DynFO[⊕] [11]
Distance DynFO[⊕] DynFO[⊕] DynFO[⊕]

BMMSize DynFO DynFO DynFO[⊕]

BMMSearch DynFO[⊕] DynFO[⊕] DynFO[⊕]

large in the size of the graphs. By assigning such weights only to the changed part
of the graph and carefully combining with the previously assigned weights, we make
sure the edge weights remain small as well as isolating throughout, using the Muddling
Lemma (see Section 2). Our construction parallels that of [11] where dynamic isolating
weights for reachability in non-zero circulation graphs were constructed based on the
static construction from [24]. In addition to extending the reachability result (Theorem 1)
this also enables us to prove a DynFO(≤, +, ×) bound (Theorem 3) for bipartite maximum
matching (previously, a rather straightforward application of non-zero circulation weights
in planar graphs could only achieve a DynFO[⊕] bound under single edge changes [26]).
Maintaining rank of a matrix under sublogarithmically many changes. This involves
non-trivially extending the technique from [8], which maintains rank under single entry
changes, and combining it with [13] which shows how to compute the determinant of a
small matrix of dimension O( log n

log log n ) in FO(≤, +, ×).

Organization. After some preliminaries in Section 2, in Section 3 we discuss the connection
between dynamic isolation and static non-zero circulation and show its applications for
matching and distance in Section 4 and Section 6, respectively. In Section 5, we describe
the DynFO(≤, +, ×) algorithm for maximum matching, which is built on the rank algorithm
under bulk changes from Section 7. Finally, we conclude with Section 8.

2 Preliminaries and Notations

Dynamic Complexity. The goal of a dynamic program is to answer a given query on an
input structure subjected to insertion or deletion of tuples. The program may use an auxiliary
data structure over the same domain. Initially, both input and auxiliary structures are empty;
and the domain is fixed during each run of the program.

For a (relational) structure I over domain D and schema σ, a change ∆I consists of
sets R+ and R− of tuples for each relation symbol R ∈ σ. The result I + ∆I is the input
structure where RI is changed to (RI ∪ R+) \ R−. The set of affected elements is the (active)
domain of tuples in ∆I. A dynamic program P is a set of first-order formulas specifying how
auxiliary relations are updated after a change. For a state S = (I, A) with input structure
I and auxiliary structure A we denote the state of the program after applying a change
sequence α and updating the auxiliary relations accordingly by Pα(S).

The dynamic program maintains a q-ary query Q under changes that affect k elements if
it has a q-ary auxiliary relation ans that at each point stores the result of Q applied to the
current input structure. I.e., for each non-empty sequence α of changes affecting k elements,
the relation ans in Pα(S∅) and the relation Q(α(I∅)) coincide, where the state S∅ = (I∅, A∅)
consists of an input structure I∅ and an auxiliary structure A∅ over some common domain
that both have empty relations, and α(I∅) is the input structure after applying α.
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If a dynamic program maintains a query, we say that the query is in DynFO. Similar
to DynFO, one can define the class of queries DynFO(≤, +, ×) that allows for auxiliary
relations initialized as a linear order, and the corresponding addition and multiplication
relations. One can further extend this class by allowing parity quantifiers to yield the
class DynFO[⊕](≤, +, ×) and majority quantifiers to yield the class DynFO[MAJ](≤, +, ×).
The parity and majority functions of n bits a1, . . . , an are true if

∑n
i=1 ai = 1 (mod 2)

and
∑n

i=1 ai ≥ n/2, respectively. As we focus on changes of non-constant size, we include
arithmetic in our setting. See [13, 11] for more details.

The Muddling Lemma [11] states that to maintain many natural queries, it is enough to
maintain the query for a bounded number of steps, that we crucially use in this paper. In
the following, we first recall the necessary notions before stating the lemma.

A query Q is almost domain-independent if there is a c ∈ N such that Q(A)[(adom(A) ∪
B)] = Q(A[(adom(A) ∪ B)]) for all structures A and sets B ⊆ A \ adom(A) with |B| ≥ c.
Here, adom(A) denotes the active domain, the set of elements that are used in some tuple of A.
A query Q is (C, f)-maintainable, for some complexity class C and some function f : N → R,
if there is a dynamic program P and a C-algorithm A such that for each input structure I
over a domain of size n, each linear order ≤ on the domain, and each change sequence α of
length |α| ≤ f(n), the relation Q in Pα(S) and Q(α(I)) coincide, where S = (I,A(I, ≤)).
ACi is the class of problems that can be solved using polynomial-size circuit of O(logi n)
depth and NC = ∪iACi.

▶ Lemma 4 (Muddling Lemma [11]). Let Q be an almost domain independent query, and let
c ∈ N be arbitrary. If the query Q is (ACd, 1)-maintainable under changes of size logc+d n

for some d ∈ N, then Q is in DynFO(≤, +, ×) under changes of size logc n.

There are several roughly equivalent ways to view the complexity class DynFO as capturing:
The dynamic complexity of maintaining a Pure SQL database under fixed (first-order)
updates and queries (the original formulation from [28]).
The circuit dynamic complexity of maintaining a property where the updates and queries
use uniform AC0 circuits (see [2] for the equivalence of uniform AC0 and FO).
The parallel dynamic complexity of maintaining a property where the updates and queries
use constant time on a CRCW PRAM (for the definition of Concurrent RAM, see [23]).

The first characterization is popular in the Logic and Database community, while the second
is common in more complexity-theoretic contexts. The third one is useful to compare and
contrast this class with dynamic algorithms, which essentially classify dynamic problems in
terms of the sequential time for updates and queries. Operationally, our procedure is easiest
to view in terms of the second or even the third viewpoint. We would like to emphasize that
modulo finer variations based on built-in predicates (like arithmetic and order) in the first
variation, uniformity in the second one and built-in predicates (like shift) in the third one,
the three viewpoints are entirely equivalent.

We refer the readers to [8, 13, 11] for more discussion on the basics of the dynamic
complexity framework.

Weight function and Circulation. Let G = (V, E) be an undirected graph with vertex set
V and edge set E. By G = (V, E⃗

⃗

) denote the corresponding graph where each of its edges is
replaced by two directed edges, pointing in opposite directions. Let |V | = n and we use the
natural interpretation of the universe i.e., the set of vertices as the natural numbers from [n].

A set system M on a universe U is a family of subsets of U i.e. M ⊆ 2U . Examples
include the family of s, t-shortest paths and perfect matchings in a graph. A weight function
w : U → Z≥0 (the set of non-negative integers) induces a weight of w(M) =

∑
e∈M w(e) on
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an element M ∈ M. Such a weight function is said to be isolating for M if there is at most
one element M0 ∈ M with the minimum weight. The notion of isolation can be extended to
a collection of families of graphs such as the collection of families of s, t-shortest paths for all
s, t ∈ V . The weight function w(e) = 2(n+1)u+v for e = {u, v}, u < v, is a trivial isolating
function – instead we want to give weights polynomially bounded in the size of the universe.
A randomized construction of such a weight function is known for arbitrary set systems [27].

A function w : E⃗

⃗

→ Z is called skew-symmetric if for all e ∈ E⃗

⃗

, w(e) = −w(er) (where er

represent the edge with its direction reversed). The circulation of a directed cycle under a
skew symmetric weight function is the absolute value of the sum of weights of the directed
edges in the cycle. The skew-symmetric weight function w induces a non-zero circulation on
the graph if every directed cycle in the graph gets a non-zero circulation under w.

We know from [3] that if w assigns non-zero circulation to every cycle that consists of
edges of E⃗

⃗

, then it isolates a directed path between each pair of vertices in G = (V, E⃗

⃗

). Also,
if G is a bipartite graph, then the weight function w can be used to construct a weight
function w′ : E → Z that isolates a perfect matching in G [29]. For planar [29], bounded
genus [10], bounded treewidth [11], and for any single crossing minor-free graph [4] non-zero
circulation weights can be computed deterministically in Logspace, which is a subclass of NC.

Our convention represents by ⟨w1, . . . , wk⟩ the weight function that on edge e takes weight∑k
i=1 wi(e)Bk−i, where w1, . . . , wk are weight functions such that maxk

i=1 (n · wi(e)) ≤ B.

Maintaining Witnesses. The proof of [27] for the construction of a perfect matching witness
carries over to the dynamic setting also and allow us to maintain a witness to the solution in
DynFO[⊕](≤, +, ×). Since the perfect matching is isolated, from its weight one can infer the
edges in the matching by deleting the edges one a time in parallel and see if the weight remains
unchanged and accordingly place the edge in the matching. This is doable in FO[⊕](≤, +, ×).
The extraction procedure for shortest path and maximum cardinality matching is similar.

3 Dynamic Isolation from Static Non-Zero Circulation

We know (from Section 2) that non-zero circulation weights are isolating weights. Thus,
statically (when the given graph does not change over time) we can use them to obtain
efficient parallel algorithm for distance and matching. However maintaining these weights
seems to be hard in an evolving graph. This is because even for planar graphs where static
non-zero circulation weights are easy to construct [3, 9, 29] maintaining them dynamically
seems to need a dynamic planar embedding algorithm. And that alone doesn’t seem to
suffice since even small changes in the input can lead to large changes in the embedding
and that will require us to change the weights of many edges (since weight of the edges are
determined by the embedding [3, 29]). This induces us to side-step maintaining non-zero
circulation weights.

In this paper, we circumvent this problem by modifying the approach of [15] to convert
the given static nonzero-circulation weights to dynamic isolating weights. Notice that [15]
yields a black box recipe to produce isolating weights of quasipolynomial magnitude for
bipartite graphs, which we label as FGT-weights in the following way. Let e1, e2, . . . be
the edges of a bipartite graph. Consider a non-zero circulation of exponential magnitude
viz. w0(ei) = 2i. Next, consider a list of ℓ = O(log n) primes p⃗ = (p1, . . . , pℓ), each of
O(log n) bits, which yield a weight function wp⃗(ei). This is defined by taking the ℓ weight
functions w0 mod pj for j ∈ {1, . . . , ℓ} and concatenating them with shifting the weights to
the higher-order bits appropriately, that is: wp⃗(e) = ⟨w0(e) mod p1, . . . , w0(e) mod pℓ⟩. This
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is so that there is no overflow from the j-th to the (j − 1)-th weight for any j ∈ {2, . . . , ℓ}.
In [15], it was proved that for every graph there exist some set of ℓ primes such that the
respective weight function wp⃗ isolates a perfect matching in the graph.

Suppose we start with a graph with static polynomially bounded weights ensuring non-
zero circulation. In a step, some edges are inserted or deleted. The graph after deletion is
a subgraph of the original graph; hence the non-zero circulation remains non-zero after a
deletion1, but we have to do more in the case of insertions. We aim to give the newly inserted
edges FGT-weights in the higher-order bits while giving weight 0 to all the original edges
in G again in the higher-order bits. Thus the weight of all perfect matchings that survive
the deletions in a step remains unchanged. Moreover, if none such survive but new perfect
matchings are introduced (due to insertion of edges) the lightest of them is determined solely
by the weights of the newly introduced edges. In this case, our modification of the existential
proof from [15] ensures that the minimum weight perfect matching is unique.

In order to handle bulk insertion of N = logO(1) n edges, we need to apply the FGT-recipe
described above to a set system with a universe of N elements. This yields quasipolyno-
mial (N logO(1) N ) weights in N which are therefore still subpolynomial in n (2(log log n)O(1) =
2o(log n) = no(1)). Further, the number of primes is polyloglog (logO(1) N = (log log n)O(1))
and so sublogarithmic (logo(1) n). Hence, the number of possible different weights is subpoly-
nomial, which allows us to derandomize our algorithm by going over all possible FGT-weight
functions defined above. We point out that in [11] a similar scheme is used for reachability
and bears the same relation to [24] as this section does to [15]. We have the following lemma,
which we prove in Section 3.1. Our proof of the lemma is crucially based on [15] but our
proof is self contained except for Lemma 9 which we assume as a black box.

▶ Lemma 5. Let G be a bipartite graph with non-zero circulation wold. Suppose N = logO(1) n

edges are inserted into G to yield Gnew. Then we can compute polynomially many weight
functions in FO(≤, +, ×) that have O(log n) bit weights, and at least one of them, wnew is
isolating. Furthermore, the weights of the original edges remain unchanged under wnew.

3.1 Details of Maintaining Dynamic Isolating Weights
We divide the edges of the graph into real and fictitious, where the former represents the
newly inserted edges and the latter original undeleted edges2.

Next, we follow the proof idea of [15] but focus on assigning weights to only real edges
which are N = logO(1) n in number. We do this in log N stages starting with a graph G0 = G

and ending with an acyclic graph Gℓ that contains a unique perfect matching if and only if
G contains a perfect matching, where ℓ = log N . At each step, we maintain the following.

▶ Invariant 6. For i ≥ 1, Gi contains no cycles with at most 2i+1 real edges.

Assuming this invariant we complete the proof of Lemma 5:

Proof of Lemma 5. From the invariant above Gℓ does not contain any cycle that consists
of real edges. From the construction of Gℓ, if G has a perfect matching, then so does Gℓ

and hence it is a perfect matching. Notice that Wℓ is obtained from p1, . . . , pℓ that include
O((log log n)2) = o(log n) many bits. Thus there are (sub)polynomially many such weighting
functions Wℓ, depending on the primes p⃗. Let w = B · Wℓ + wold where we recall that Wℓ(e)

1 If we merely had isolating weights, this would not necessarily preserve isolation.
2 We use the terms old ↔ fictitious and new ↔ real interchangeably in this section.
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is non-zero only for the new (real) edges and wold is non-zero only for the old (fictitious)
edges. Thus, any perfect matching that consists of only old edges is lighter than any perfect
matching containing at least one new edge. Moreover, if the real edges in two matchings
differ, then, from the construction of Wℓ (for some choice of p⃗) both matchings cannot be
the lightest as Wℓ real isolates a matching. Thus the only remaining case is that we have two
distinct lightest perfect matchings, which differ only in the old edges. But the symmetric
difference of any two such perfect matchings is a collection of cycles consisting of old edges.
But each cycle has a non-zero circulation in the old graph and so we can obtain a matching
of even lesser weight by replacing the edges of one of the matchings in one cycle by the edges
of the other one. This contradicts that both matchings were of least weight. ◀

Next we show how Invariant 6 is maintained. Notice that the case i = 0 follows from the
above discussion and the induction starts at i > 0.

We first show how to construct Gi+1 from Gi such that if Gi satisfies the inductive
invariant 6, then so does Gi+1. In the i-th step, let Ci+1 be the set of cycles that contain at
most 2i+2 real edges, for i > 1. For each such cycle C = f0, f1, . . . containing k ≤ 2i+2 real
edges (with f0 being the least numbered real edge in the cycle), edge-partition the cycle into
4 consecutive paths Pj(C) for j ∈ {0, 1, 2, 3} such that the first three paths contain exactly
⌊ k

4 ⌋ real edges and the last path contains the rest. In addition ensure that the first edge in
each path is a real edge. Let the first edge of the 4-paths be respectively f ′

0(= f0), f ′
1, f ′

2, f ′
3.

We identify each cycle in Ci+1 with these 4-tuples ⟨f ′
0, f ′

1, f ′
2, f ′

3⟩.
For a cycle C ∈ Ci+1, we define a set C ′ which consists of only real edges of C. Similarly,

C′
i+1 = {C ′ | C ∈ Ci+1 ∧ C ′ ̸= ∅}. Note that there can be many cycles in Ci+1 corresponding

to a single set in C′
i+1 (i.e., those cycles that contain the same set of real edges). We fix a

particular C ∈ Ci+1 for every C ′ ∈ C′
i+1 with which it is associated. The 4-tuple associated

with the cycle C is also associated with the corresponding set C ′. We have the following
which shows that the associated 4-tuples ⟨f ′

0, f ′
1, f ′

2, f ′
3⟩ uniquely characterise sets in C′

i+1.

▷ Claim 7. There is at most one set in C′
i+1 that has a given 4-tuple ⟨f ′

0, f ′
1, f ′

2, f ′
3⟩ associated

with it.

Proof. Suppose two distinct sets C ′
1, C ′

2 ∈ C′
i+1 have a common 4-tuple ⟨f ′

0, f ′
1, f ′

2, f ′
3⟩ associ-

ated with them. Let C1, C2 be two cycles corresponding to C ′
1 and C ′

2, respectively. Then for
at least one j ∈ {0, 1, 2, 3}, Pj(C1) ̸= Pj(C2). Hence, Pj(C1) ∪ Pj(C2) is a closed walk in Gi

containing at most 2 × ⌈ 2i+2

4 ⌉ = 2i+1 real edges, contradicting the assumption on Gi. ◁

This shows that there are at most N4 elements in C′
i+1 because that is the maximum

number of distinct 4-tuples of real edges. We define circulation for the sets in C′
i+1 via

the circulation for those in Ci+1. We know that for every C ′ ∈ C′
i+1 there is at least one

C ∈ Ci+1 corresponding to it. Let w be a weight function that gives non-zero weights to
only real edges of the graph. Circulation of C ′ ∈ C′

i+1 with respect to w is defined as
cw(C ′) = cw(C) = |w(e1) − w(e2) + w(e3) − . . . |, where ei ∈ C. This is well-defined since in
bipartite graphs the parity of the length of any two paths between the same pair of vertices
is the same. Thus, all C such that they have C ′ associated with it, have the same circulation
since the sign associated with a real edge does not change for any such C. Now we will use
the following lemma to ensure non-zero circulations to sets in C′

i+1.

▶ Lemma 8 (Based on Lemma 2 in [16]). For every constant k > 0 there is a constant k0 > 0
such that for every set S of m-bit integers with |S| ≤ mk, the following holds: There is a
k0 log m-bit prime number p such that for any x, y ∈ S, if x ̸= y then x ̸≡ y mod p.
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We apply the above lemma to the set cw0(C′
i+1) = {cw0(C ′) : C ′ ∈ C′

i+1}. Here, the weight
function w0 assigns weights w0(ej) = 2j to the real edges which are e1, e2, . . . , eN in an
arbitrary but fixed order. Notice that from the above claim, the size of this set is |C′

i+1| ≤ N4.
Since w0(ej) is j-bits long hence cw0(C) for any cycle C ∈ Ci that has less than 2i+2 real
edges is at most i + j + 2 < 4N -bits long. Thus, we obtain a prime pi+1 of length at most
k0 log (4N) by picking k = 4. We define wi+1(ej) = w0(ej) mod pi+1. By Lemma 8 we know
that circulation of each set in C′

i+1 is non-zero with respect to wi+1. Therefore, circulation
of all the cycles in Ci+1 is nonzero with respect to wi+1 (remember that wi+1 assign nonzero
weights to only real edges).

Now consider the following crucial lemma from [15]:

▶ Lemma 9 ([15]). Let G = (V, E) be a bipartite graph with a weight function w. Let C

be a cycle in G such that cw(C) ̸= 0. Let E1 be the union of all minimum weight perfect
matchings in G. Then the graph G1 = (V, E1) does not contain the cycle C. Moreover, all
the perfect matchings in G1 have the same weight.

Let B be a large enough constant (though bounded by a polynomial in N) to be specified
later. We shift the original accumulated weight function Wi and add the new weight function
wi+1 to obtain: Wi+1(e) = Wi(e)B + wi+1(e). Apply Wi+1 on the graph Gi to obtain the
graph Gi+1. Inductively suppose we have the invariant 6 that the graph Gi did not have
any cycles containing at most 2i+1 real edges. This property is preserved when we take all
the perfect matchings in Gi and apply Wi+1 yielding Gi+1. Moreover, from Lemma 9 and
the construction of wi+1, the cycles of Ci disappear from Gi+1 restoring the invariant. This
yields a weight function Wℓ using that ℓ = log n (see the discussion before Invariant 6).

Notice that it suffices to take B greater than the number of real edges times the maximum
of wi(e) over i, e. Showing that G1 contains no cycle with at most 4 real edges mimics the
above more general proof, and we skip it here. We say that a weight function that gives
non-zero weights to the real edges, real isolates M for a set system M if the minimum weight
set in M is unique with respect to that weight function. In our context, M will refer to the
set of perfect/maximum matchings.

4 Maximum Cardinality Matching Search in DynFO[⊕](≤, +, ×)

In this section, we convert the static algorithm for maximum matching search in bipartite
graphs into a dynamic algorithm with the help of the isolating weights from the previous
section. In the static setting [6] the problem reduces to determining non-singularity of an
associated matrix given a non-zero circulation for the graph.

The algorithm extracts what is called a min-weight generalized perfect matching (min-
weight GPM), that is, a matching along with some self-loops. The construction proceeds by
adding a distinct edge (v, tv) on every vertex v ∈ V (G) with a self-loop on the new vertex
tv to yield the graph G′. The idea is to match as many vertices as possible in G′ using
the actual edges of G while reserving the pendant edges (v, tv) to match vertices that are
unmatched by the maximum matching. If a vertex v is matched in a maximum matching of
G then the vertex tv is “matched” using a self-loop.

Given a non-zero circulation weight w′′′ for G the weight function for G′ is w =
⟨w′, w′′, w′′′⟩. Here we represent by w′ the function that is identically 0 for all the self
loops and is 1 for all the other edges. w′′(e) is zero except for pendant edges e = (v, tv), for
v ∈ V (G), which have w′′(e) = v (where v is interpreted as a number in {1, . . . , |V (G)|})
such that all vertices get distinct numbers. The paper [6] considers the weighted Tutte matrix
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T where for an edge (u, v) the entry T (u, v) = ±xw(u,v) (say, with a positive sign iff u < v)
and is zero otherwise. It shows that in the univariate determinant polynomial det(T ) the
least degree term xW with a non-zero coefficient must have this coefficient equal to ±1 and
the exponent W is the weight of the minimum weight generalized perfect matching in G′.
Further this min-weight GPM consists of a maximum cardinality matching in G along with
the edges (v, tv) for all the vertices v unmatched in the maximum matching. The edges in
the maximum matching can then be obtained by checking if, on removing the edge (u, v),
the weight of the min-weight maximum matching increases.

The idea behind the proof is as follows:
1. The most significant weight function w′ ensures that the cardinality of the actual edges

(i.e. edges from G) picked in the min-wight GPM in G′ equals the cardinality of the
maximum matching in G. This is because the GPM would cover as many of the tv

vertices with self-loops as possible to minimize the weight that ensures the corresponding
v must be covered by an actual edge.

2. The next most significant weight function w′′ is used to ensure that all the min-weight
GPMs use the same set of pendant edges. This is because, otherwise, there is an
alternating path in the symmetric difference of the two GPMs that starts and ends at
self-loops tu, tv. Then, the difference in the weights w′′ of the two matchings restricted
to the path is u − v ≠ 0 and we can find a GPM of strictly smaller weight by replacing
the edges of one matching with the edges of the other matching restricted to the path,
contradicting that both matchings were the lightest GPMs.

3. The least significant weight function w′′′ then isolates the GPM since all min-weight GPMs
are essentially perfect matchings restricted to the same set S of vertices, namely those
that are not matched by the corresponding pendant edges and the non-zero circulation
weights on G ensures that these are isolating weights on the induced graph G[S].

We claim that we just need isolating weights w′′′ instead of non-zero circulation weights
to ensure that the above technique works. Replacing non-zero circulations with isolating
weights does not affect the first two steps. It would seem, the third step does not work
since isolating weights for G might not be isolating weights for the subgraph G[S]. However,
Lemma 5 can be applied to the graph G[S] directly – notice that in the above proof sketch S

is determined by the first two weight functions w′, w′′ and does not depend on the third w′′′.
As described above, we need to maintain the determinant of a certain matrix A related

to the Tutte matrix in order to find the size of the maximum cardinality matching. For a
small change matrix B, the Matrix Determinant Lemma [30, 17]

det(A + UBV ) = det(I + BV A−1U) det(A)

allows us to maintain the determinant by reducing it to maintaining the inverse of the matrix.
To maintain the inverse, the Sherman-Morrison-Woodbury formula [19]

(A + UBV )−1 = A−1 − A−1U(I + BV A−1U)−1BV A−1

tells us how the task of recomputing the inverse of a non-singular matrix A under small
changes B reduces to that of computing the inverse of a small matrix (I +BV A−1U) statically.
So we need to ensure that the matrix remains invertible throughout which is what we achieve
below by tinkering with the definition of the Tutte matrix. We have the following definition:

▶ Definition 10. The generalized Tutte matrix is a matrix with rows and columns indexed
by V (G′) = V (G) ∪ {tv : v ∈ V (G)} and with the following weights on edges: T (tv, tv) = 1,
T (v, v) = xw∞ and T (a, b) = ±x⟨w′,w′′,w′′′⟩(a,b) whenever a, b ∈ V (G′), a ̸= b. It is ensured
in the above that T (a, b) = −T (b, a). Here w∞ is a polynomially bounded number larger than
the largest of the weights ⟨w′, w′′, w′′′⟩ (a, b).
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Note that the generalized Tutte matrix is not unique. We now have the following:

▶ Lemma 11. Let T be a generalized Tutte matrix defined above, then the highest exponent
w such that xw divides det(T ) is twice the weight of the min-weight GPM in G′. Further,
the matrix T is invertible.

Proof. From the properties of the weight function ⟨w′, w′′, w′′′⟩ we see that the minimum
weight generalized perfect matching is unique see [6, Lemma 9]. The exponent of the least
degree monomial is twice the weight of the min-weight GPM when we take superposition of
the unique min-weight GPM with itself [6, Observation 14]. The self loops on the vertices tv

appear only once in a monomial and twice in the superposition, but because their weight is
zero under ⟨w′, w′′, w′′′⟩ it will not affect the exponent.

In order to guarantee invertibility of T we just need to prove that the product of the
diagonal terms yields a monomial of much higher degree than any other monomial and of
coefficient one, since this implies that the matrix is non-singular because this monomial cannot
be canceled out by the rest of the monomials. Consider the product of the diagonal entries
viz. x

|V (G′)|
2 w∞ = x|V (G)|w∞ . Any monomial with less than |V (G)| diagonal entries T (v, v)

is bound to be of much smaller exponent. Now the monomials which use an off-diagonal
entry T (v, u) or T (v, tv) must miss out on the diagonal entry in the v-th row, making the
exponent much smaller. ◀

4.1 Maintaining the Determinant and Inverse of a Matrix
We need the following definitions and results about univariate polynomials, matrices of
univariate polynomials and operations therein over a finite field of characteristic 2. Let F2
be the field of characteristic 2 containing 2 elements. For (potentially infinite) power series
f, g ∈ F2[[x]], we say f m-approximates g (denoted by f ≈m g) if the first m terms of f

and g are the same. We will extend this notation to matrices and write F ≈m G where
F, G ∈ F2[[x]]ℓ×ℓ are matrices of power series. We will have occasion to use this notation
only when one of F, G is a matrix of polynomials, that is, a matrix of finite power series.

Notice that if A ∈ F2[x]n×n with the degree of entries bounded by w∞, then there exists
A−1 ∈ F2[[x]]n×n. For us, only the monomials with degrees at most w∞ are relevant. Thus
we will assume that we truncate A−1 at w∞ many terms to yield matrix A′ ≈w∞ A−1. Then
we have the following:

▶ Lemma 12 (Lemma 10 in [11]). Suppose A ∈ F2[x]n×n is invertible over F2[[x]], and
C ∈ F2[x]n×n is an m-approximation of A−1. If A + UBV is invertible over F2[[x]] with
U ∈ F2[x]n×ℓ, B ∈ F2[x]ℓ×ℓ, and V ∈ F2[x]ℓ×n, then (A + UBV )−1 ≈m C − CU(I +
BV CU)−1BV C. Furthermore, if ℓ ≤ logc n for some fixed c and all involved polynomials
have polynomial degree in n, then the right-hand side can be computed in FO[⊕](≤, +, ×)
from C and ∆A.

Similar to the above (using the closure of m-approximation under product), we get an
approximate version of the Matrix Determinant Lemma, that is:

▶ Proposition 13. Suppose A ∈ F2[x]n×n is invertible over F2[[x]], and C ∈ F2[x]n×n is
an m-approximation of A−1 and polynomial d(x) ≈m det(A) then d · det(I + BV CU) ≈m

det(A + UBV ).

We can now proceed to prove Theorem 1:
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Proof of Theorem 1. By putting m = w∞ and applying Lemma 12 and Propositions 13
to the generalized Tutte matrix from Lemma 11 and using the (Muddling) Lemma 4, we
complete the matching part of Theorem 1 (see Section 6 for the proof involving distance). ◀

5 Maximum Cardinality Matching in DynFO(≤, +, ×)

In this section we prove Theorem 3 by giving a DynFO(≤, +, ×) algorithm for maintaining
the size of a maximum matching under O( log n

log log n ) changes. Notice that the approach in the
previous section has the limitation that it only gives a DynFO[⊕](≤, +, ×) bound as we need
to maintain polynomials of large (polynomial in n) degree. Instead, the main ingredient here
is a new algorithm for maintaining the rank of a matrix in DynFO(≤, +, ×) under O( log n

log log n )
changes (Section 7). Our matching algorithm follows the basic approach of the non-uniform
DynFO algorithm of [8]. Here, since we use deterministic isolation weights (as opposed
to the randomized isolation weights of [27]), with some more work, we obtain a uniform
DynFO(≤, +, ×) bound under bulk changes.

The algorithm of [8] builds on the well-known correspondence between the size of maximum
matching and the rank of the Tutte matrix of the corresponding graph – if a graph contains
a maximum matching of size m then the associated Tutte matrix is of rank 2m [25]. The
dynamic rank algorithm from Section 7 cannot be applied directly since the entries of the
Tutte matrix are indeterminates. However, the rank can be determined by replacing each
xij by 2w(i,j). Here w assigns a positive integer weight to every edge (i, j) under which the
maximum matching gets unique minimal weight, i.e., it is matching-isolating. Using the
Isolation Lemma [27], it can be shown that the correspondence between the rank and the
size of the maximum matching does not change after such a weight transformation [22, 8].

Our algorithm diverges from [8] as we need to deterministically compute these isolating
weights and also, to somehow maintain those. Since we do not know how to maintain such
weights directly, as in Section 4, we convert the static non-zero circulation weights to dynamic
isolating weights using the Muddling Lemma 4. Given a graph G, let Bw be its weighted
Tutte matrix with each xij replaced by 2w(i,j) for an isolating weight function w. Initially,
the static non-zero circulation weights provide such weights. Since we are only interested
in computing the rank of Bw, we do not need to make the initial modifications of adding
pendant edges or self-loops to G as before. So the weight function w is just the non-zero
circulation weight ⟨w′′′⟩ here. In the dynamic process, similar to Section 4, we use the
FGT-weights wnew on top for the newly inserted edges. We have the following:

▶ Lemma 14. Given a dynamic algorithm for maintaining the rank of an integer matrix
under k = O(logc n) changes at each step for some fixed constant c, we can maintain the size
of the maximum matching in the same complexity class under O(k) changes for the class of
graphs where non-zero circulation weights can be computed in NC.

Proof. Given a graph G, assume we have an algorithm for computing the non-zero circulation
weight function w in NCi ⊆ AC[ logi n

log log n ] for some fixed integer i. Once these weights w are
available, rank(Bw) can be found in NC2 [1] which is contained in AC[ log2 n

log log n ]. Since O(k)
changes can occur at each step, during this time, total of O(k · ( logi n

log log n + log2 n
log log n )) many new

changes accumulate. As w assigns non-zero circulation weights to the edges of G, we can
assign weight 0 to the deleted edges and the weights remain isolating. For the newly inserted
edges, which are only polylog(n) many, we compute the polynomially bounded FGT-weights
in AC0 using Lemma 9. Thanks to Lemma 4, in O( logi n

log log n + log2 n
log log n )) many steps we can take

care of all the insertions by adding k new edges at each step along with k old ones in double
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the speed using our rank algorithm. Note that, during the static rank computation phase,
we do not restart the static algorithm for computing the weight w. Instead, we recompute
these weights once the rank computation using them finishes. More precisely, we can think
of a combined static procedure that computes the non-zero circulation weights followed by
the rank of the weighted Tutte matrix Bw in NCb for b=max(i, 2). And on this combined
procedure, we apply our Muddling Lemma 4. ◀

We can now prove Theorem 3:

Proof of Theorem 3. Similar to [8, Theorem 16] this implies a uniform bounded expansion
first-order truth-table (bfo-tt) reduction from maximum matching to rank in this special
case.3 Since DynFO(≤, +, ×) is closed under bfo-tt reductions [8, Proposition 4] and dynamic
rank maintenance is in DynFO(≤, +, ×) under O( log n

log log n ) changes (Theorem 2), in classes of
graphs where non-zero circulation weights can be computed in NC we have the result. ◀

6 Maintaining Distance under Bulk Changes

In this section, extending the reachability result of [11], we show that distances can be
maintained in DynFO[⊕](≤, +, ×) under polylog(n) changes in classes of graphs where non-
zero circulation can be computed in NC. We start with describing the reachability algorithm
of [11] followed by the necessary modifications needed for maintaining distance information.

6.1 Outline of the Approach for Reachability
Let G = (V, E) be the given n-node graph with an isolating weight assignment w. For
a formal variable x, let the corresponding weighted adjacency matrix A = A(G,w)(x) be
defined as follows: if (u, v) ∈ E, then A[u, v] = xw(u,v), and 0 otherwise. Consider the matrix
D = (I − A)−1, where I is the identity matrix. Notice that the matrix (I − A) is invertible
over the ring of formal power series (see [13]). Here D =

∑∞
i=0(A)i is a matrix of formal

power series in x and in the (s, t)-entry, the coefficient of the i-th terms gives the number of
walks from s to t of weight i.

As w isolates the minimal weight paths in G, it is enough to compute these coefficients
modulo 2 for all i up to some polynomial in n since there is a unique path with the minimal
weight if one exists. So, it is enough to compute and update the inverse of the matrix I − A.
Though to do it effectively, we compute the n-approximation C of D, which is a matrix of
formal polynomials that agrees with the entries of D up to degree i ≤ n terms. This precision
is preserved by the matrix operations we use, see [13, Proposition 14].

When applying a change ∆G to G that affects k nodes, the associated matrix A is updated
by adding a suitable change matrix ∆A with at most k non-zero rows and columns, and can
therefore be decomposed into a product UBV of suitable matrices U, B, and V , where B is
a k × k matrix. To update the inverse, we employ the Sherman-Morrison-Woodbury identity
(cf. [19]), which gives a way to update the inverse when A is changed to A + ∆A as follows:

(A + ∆A)−1 = (A + UBV )−1 = A−1 − A−1U(I + BV A−1U)−1BV A−1.

3 Intuitively, bounded expansion first-order (bfo) reductions are first-order reductions such that each
tuple in a relation and each constant of the input structure affects at most a constant number of tuples
and constants in the output structure. A bfo-tt reduction bears the same relation to a bfo-reduction as
a truth-table reduction bears to a many-one reduction. For a formal definition see [8, Section 3.2] where
it was first formalized.
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The right-hand side can be computed in FO[⊕](≤, +, ×) for k = logO(1) n since modulo
2 computation of (1) multiplication and iterated addition of polynomials over Z and (2)
computation of the inverse of I + BV A−1U which is also a k × k matrix is possible in
FO[⊕](≤, +, ×) for (matrices of) polynomials with polynomial degree [18]. Finally, we need
to assign weights to the changed edges as well so that the resulting weight assignment remains
isolating. We show how to achieve this starting with non-zero circulation weights. Using [11,
Theorem 5] we can assume that such a weight assignment is given, and that we only need to
update the weights once.

Let u be skew-symmetric non-zero circulation weights for G and let nk be the polynomial
bound on the weights. Further, let w be the isolating weight assignment that gives weight
nk+2 + u(e) to each edge e ∈ E. During the ACd initialization, we compute the weights u

and w and an nb-approximation matrix C of (I − A(G,w)(x))−1 mod 2 for some constant b.
When changing G via a change ∆E with deletions E− and insertions E+, the algorithm

proceeds as follows: To compute the isolating weights w−, the non-zero circulation weights
u− for G− are obtained from u by setting the weight of deleted edges e ∈ E− to 0. As u−

gives the same weight to all simple cycles in G− as u gives to these cycles in G, it has non-zero
circulation. To handle E+ it can be shown that [11, Lemma 11] there is a FO-computable
(from w, E+ and the reachability information in G) family W ′ of polynomially many weight
assignments such that ∃w′ ∈ W ′ isolating for (V, E \ E− ∪ E+).

Hence we need to maintain polynomially many different instances of the graph with
different weight functions from W ′ such that in at least one of them the paths are isolated.
The idea is that if there is an s-t-path using at least one inserted edge from E+, then there
is a unique minimal path among all s-t-paths that use at least one such edge, while ignoring
the weight of the paths that is contributed by edges from E. The edge weights from E+ are
multiplied by a large polynomial to ensure that the combined weight assignment with the
existing weights for edges in E remains isolating. Since the weights are constructed only for
a graph with N = logO(1) n many nodes, and although they are not polynomially bounded
in N , they are in n. Please refer to [11, Section 6] for more details.

From the above discussion, to prove a similar bound for distances, it suffices to show
that (1) after every polylog(n) changes, we can ensure the edge weights remain “shortest
path-isolating” and (2) under such weights the distance can be updated in FO[⊕](≤, +, ×).

6.2 Dynamic Isolation of Shortest Paths
In the following, we first describe how the isolating weights for reachability can be modified
to give weights for isolating shortest paths. Similar to maintaining reachability, our algorithm
handles deletions and insertions differently. In case of deletion, we set the weight of the deleted
edges e ∈ E− to 0 and due to the non-zero circulation weights, the weights remain isolating.
For insertions, the idea is to do a weight refinement by shifting the original edge weights
w(e) (1 in case of unweighted graphs) to the highest order bits in the bit-representation, in
the presence of other newly assigned weights to the edges.

We define a new weight functions w∗ = ⟨w, w′, u⟩ and assign these weights to the inserted
edges e ∈ E+. The existing edges E are not assigned any w′ weight and all those bits remain
zeroes. So we get a family of weight functions W ∗. Here w is the polynomially-bounded
original edge weights, w′ is one of the (polynomially many) isolating weights from the
family W ′ assigned to the newly added edges E+ during the dynamic process, and u are
the non-zero circulation weights that are computed statically. The combined weights w∗ is
FO-constructible from the weights w, w′ and u as all involving numbers are O(log n) bits long
(see [21, Theorem 5.1]). The correctness of the fact that these weights are indeed shortest
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path isolating follows from [11, Lemma 11] with the observation that since the original edge
weights are shifted to the highest-order bits, the minimum weight path with these combined
weights corresponds to the shortest path in the original graph.

The update algorithm for maintaining reachability can be extended to maintaining
distances also [13]. Here, instead of checking only the non-zeroness of the (s, t)-entry in the
polynomial matrix C, we compute the minimum degree term as well (with coefficient 1), which
can be done in FO[⊕](≤, +, ×). By construction, the degree of a term in this polynomial
is same as the weight of the corresponding walk under the dynamic isolating weights and
applying an easy transformation gives us back the original weights, that is, the weight of the
shortest path from s to t in G′. This proves the distance part of Theorem 1.

7 Maintaining Rank under Bulk Changes

In this section we prove Theorem 2. For ease of exposition, we build upon the algorithm
as described in [7, Section 3.1]. Before going into the details of the proof, we start with
defining some important notation, followed by our overall proof strategy. Let A be a n × n

matrix over Zp, where p = O(n3) is a prime. Let K be the kernel of A. For a vector v ∈ Zn
p ,

we define S(v) = {i ∈ n | (Av)i ̸= 0}, where (Av)i denotes the ith coordinate of the vector
Av. Let B be a basis of Zn

p . A vector v ∈ B is called i-unique with respect to A and B if
(Av)i ̸= 0 and (Aw)i = 0 for all other w ∈ B. A basis B is called A-good if all the vectors in
B − K are i-unique with respect to A and B. For a vector v ∈ B − K, the minimum i for
which it is i-unique is called the principal component of v, denoted as pc(v).

Starting with an A-good basis B, and introducing a small number of changes to yield A′

may lead to B losing its A-goodness. To restore this, we alter the matrix B in two phases
to obtain an A′-good basis B′. The first phase involves identifying a full rank submatrix in
A′ corresponding to the changed entries, inverting it, and restoring the pc’s of the columns
of that full rank submatrix. In the second phase, we restore the pc’s of the rest of vectors,
which had lost the pc’s either because of the changes or during Phase 1. The rough outline is
similar to that of [7] but in order to handle non-constant changes we have to make non-trivial
alterations and use efficient small matrix inversion from [13]. We have Theorem 2 from the
following lemma, whose proof is provided in Section 7.1:

▶ Lemma 15. Let A, A′ ∈ Zn×n
p be two matrices such that A′ differs from A in O( log n

log log n )
places. If B is an A-good basis then we can compute an A′-good basis B′ in FO(≤, +, ×).

▶ Proposition 16 ([8]). Let A ∈ Zn×n
p and B an A-good basis of Zn

p . Then rank(A) =
n − |B ∩ K| is the number of vectors in the basis that have a pc.

▷ Claim 17. If the rank of an n × n matrix A is r then there exists a prime p =
O(max(n, log N)3) such that the rank of A over Zp is also r, where N is the maximum
absolute value the entries of the matrix A contain.

Proof. We know that if the rank of A is r then there exists a r × r submatrix As of A such
that its determinant is nonzero. The value of this determinant is at most n!Nn, which can
be represented by O(n(log n + log N)) many bits. Therefore, this determinant is divisible by
at most O(n(log n + log N)) many primes. Thus by the prime number theorem, we can say
that for a large enough n there exists a prime p of magnitude O(max(n, log N)3) such that
determinant of As is not divisible by p. ◁

Hence, to compute the rank of A, it is sufficient to compute the rank of the matrices (A mod
p) for all primes p of size O(max(n, log N)3) and take the maximum among them. Below we
show how to maintain the rank of the matrix A mod p for a fixed prime p. We replicate the
same procedure for all the primes in parallel.
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A′ is the matrix that is obtained by changing k many entries of A. Notice that if B is
not A′-good basis, that means there are some vectors in B − K ′ which are not i-unique with
respect to B and A′, where K ′ is the kernel of A′. A vector w ∈ B − K ′ which was i-unique
(i ∈ [n]) with respect to A and B may no longer be i-unique with respect to A′ and B for
the following two reasons, (i) i /∈ S′(w), (ii) there may be more than one vector w′ such that
i ∈ S′(w′). For a vector v, S′(v) denotes the set of non-zero coordinates of the vector A′v.
Below we give an AC0 algorithm to construct an A′-good basis.

In several places we make use of the fact that sum and product of polylog(n) many
numbers each with of polylog(n) bits can be computed in AC0 [21, Theorem 5.1].

7.1 Construction of an A′-good basis

Let k = O( log n
log log n ) and M = (A′B)R,C be the n × n matrix where R is the set of rows and

C is the set of columns of M . We know that A′B differs from AB in a set R0 of at most k

many rows. Let MR0,∗ be the matrix M restricted to the rows in the set R0.

▷ Claim 18. There exists a prime q = O(log3 n) such that the rank of (MR0,∗ mod q) is
equal to the rank of (MR0,∗ mod p).

Proof. The proof follows from the proof of Claim 17. ◁

From the above claim, it follows that a row basis of (MR0,∗ mod p) remains a row basis of
(MR0,∗ mod q) for some O(log log n)-bit prime q. Next, we have two constructive claims:

▷ Claim 19. A row basis R1 of (MR0,∗ mod q) can be found in AC0.

Proof. Note that number of rows in R0 are O( log n
log log n ); thus, the number of the subsets of

the rows of R1 are polynomially many (in n), and each row in the set R0 can be indexed by
O(log log n) many bits. An element of Zq can also be represented by O(log log n) many bits.
Therefore, for a fixed subset S of R0, all the linear combinations of the rows of S can be
represented by O(log n) many bits. We try all the linear combinations in parallel. Also, we
do this for all the subsets in parallel. The subset with the maximum cardinality in which
all the linear combinations result in non-zero values will be the maximum set of linearly
independent rows in (MR0,∗ mod q). ◁

▷ Claim 20. A column basis C1 of (MR1,∗ mod q) can be found in AC0.

Proof. To find the maximum set of linearly independent columns in the matrix MR1,∗ we
just check in parallel if the rank of MR1,i is greater than the rank of MR1,i−1 for all i ∈ [m].
Let c1, c2 . . . cm be the columns in the matrix MR1,∗. Note that the set of columns ci such
that the rank of MR1,i is more than the rank of MR1,i−1, form a maximum set of linearly
independent columns in MR1,i. We can check this in AC0. ◁

We are going to construct four matrices D(1), E(1), D(2), E(2) successively such that the
product B′ = B × D(1) × E(1) × D(2) × E(2) is an A′-good basis. For this, we need to show
that each column ci of A′B′ is either an all zero-column or there exists a unique j such that
the j-th entry of the column is non-zero. In other words, each column of B′ is either i-unique
or it is in the kernel of A′. We will show how to obtain each of the four matrices above as
well as take their product in AC0. We need a technical lemma before we start.
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Combining Matrices. Here we state a lemma about constructing matrices from smaller
matrices that we we will use several times. Let X ∈ Zn×n

p be a matrix and let X1,1 ∈ Zℓ×ℓ
p ,

X1,2 ∈ Zℓ×(n−ℓ)
p , X2,1 ∈ Z(n−ℓ)×ℓ

p , X2,2 ∈ Z(n−ℓ)×(n−ℓ)
p be 4 matrices and let R, C ⊆ [n] be

two subsets of indices of cardinality ℓ each. Let R̄ = [n] \ R, C̄ = [n] \ C. Then we have:

▶ Lemma 21. Given the matrices Xi,j for I, J ∈ [2] and the sets R, C explicitly for
|R| = |C| = ℓ = (log n)O(1), we can construct, in AC0, the matrix Y such that YR,C = X1,1,
YR,C̄ = X1,2, YR̄,C = X2,1 and YR̄,C̄ = X2,2.

Proof. Notice that the sets R, C can be sorted in AC0 because computing the position
posR(r) of an element r ∈ R (i.e., the number of elements not larger than r) is equivalent to
finding the sum of at most ℓ bits (which are zero for elements of R larger than r and one
otherwise).

The position posR̄(r′) of an element r′ ∈ R̄ (i.e. the number of elements of R̄ not larger
than r′) can also be found in AC0. This is because we can first find the set R(r′) = {ri ∈
R : ri < r′} in AC0. Then posR̄(r′) = r′ − |R(r′)| because there are r′ rows with indices at
most r′ and out of these all but |R(r′)| are in R̄ and thus can be computed in AC0. We can
similarly compute posC(c), posC̄(c′) for c ∈ C and c′ ∈ C̄.

Finally given i, j ∈ [n] the element Yi,j is X1,1
posR(i),posC (j) if i ∈ R, j ∈ C. Similarly if

i ∈ R̄, j ∈ C then it is X2,1
posR̄(i),posC (j), if i ∈ R, j ∈ C̄ then it is X1,2

posR(i),posC̄ (j) and if
i ∈ R̄, j ∈ C̄ then it is X2,2

posR̄(i),posC̄ (j). This completes the proof. ◀

Phase 1. First, we restore the i-uniqueness of the columns indexed by the set C1. Let
RC1 be the set of rows in R indexed by the same set of indices as C1 in C. We right
multiply M with another matrix D(1) ∈ Zn×n

p such that D
(1)
RC1 ,C1

is the inverse of MR1,C1

and D
(1)
R−RC1 ,C−C1

is the identity matrix and all the other entries of D(1) are zero. Since the
inverse of a k × k matrix can be computed in AC0 [11], matrix D(1) can be obtained in AC0

via Lemma 21.
Let M (1) = M × D(1), note that M (1)

R1,C1 is an identity matrix. Since M = A′ × B, we
have M (1) = M × D(1) = A′ × B × D(1). Note that since M (1)

R1,C1 is an identity matrix, the
vectors corresponding to the columns in C1 in the matrix B × D(1) can now easily be made
i-unique. Since M (1)

R1,C1 is an identity matrix, all columns in the matrix M (1)
R1,C−C1 can

be written as the linear combinations of columns of M (1)
R1,C1 . Let M̃ (1) be a matrix defined

as M̃ (1) = M (1) × E(1), where E(1) ∈ Zn×n
p is constructed as follows. (i) E

(1)
RC1 ,∗ is same as

M
(1)
R1,∗. (ii) E

(1)
R−RC1 ,C1

is the zero matrix. (iii) E
(1)
R−RC1 ,C−C1

is the negative identity matrix.
Using Lemma 21, we can construct E(1) in AC0. Note that M̃

(1)
R1,C1

is an identity matrix and
M̃

(1)
R1,C−C1

is a zero matrix. Thus we can say that vectors corresponding to columns in C1 in
the matrix B × D(1) × E(1) are i-unique for some i ∈ R1.

Next, we perform a procedure similar to Phase 1 for those vectors which lost their pc’s
when we changed the matrix from A to A′, i.e. those vectors w which were i-unique for some
i, but i /∈ S′(w).

Phase 2. There can be at most k vectors which lost their pc’s while changing the matrix
from A to A′. Some of these vectors might get their pc’s set in Phase 1. Let C̃2 be the
remaining set of vectors in B. Notice C1 ∩ C̃2 is empty. To set the pc’s of these vectors, we
repeat the above procedure for the matrix M̃

(1)
∗,C̃2

as follows.
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Find the column basis C2 of M̃
(1)
∗,C̃2

in AC0 recalling that |C̃2| ≤ k and using Claim 19

on the transpose of M̃
(1)
∗,C̃2

. By considering the transpose of M̃
(1)
∗,C2

and applying Claim 20

we can get a row basis R2 of M̃
(1)
∗,C2

. Notice that R1 ∩ R2 is empty. We construct a
matrix D(2) ∈ Zn×n

p in AC0 using Lemma 21 such that D
(2)
RC2 ,C2

contains the inverse of
M̃

(1)
R2,C2

, D
(2)
R−RC2 ,C−C2

is an identity matrix and the rest of the entries of D(2) are zero.
Here RC2 is the set of rows indexed by the same indices as in the set C2 of columns. Let
M̃ (2) = M̃ (1) × D(2) × E(2), where E(2) is constructed in AC0 (using Lemma 21) so that: (i)
M̃

(2)
R1∪R2,C1∪C2

is the identity matrix. (ii) M̃
(2)
R1,C−C1

and M̃
(2)
R−R1,C̃2−C2

are zero matrices.
Finally, we have B′ = B × D(1) × E(1) × D(2) × E(2). Since each column of the newly
constructed matrices contains at most (k + 1) non-zero entries, we can obtain B′ in AC0.

▷ Claim 22. B′ is an A′-good basis.

Proof. First, we prove that the vectors which lost their pc’s, either get new pc’s or they
are modified to be in the kernel of A′. Let w ∈ B be a vector that lost its pc and it is not
captured in both Phase 1 or Phase 2. Assume it is not captured in Phase 1, i.e. the vector
A′w does not belong to the column set indexed by C1. Then it will be captured in Phase 2.
If it is not captured in Phase 2 as well, then we can say that A′w does not belong to the
columns indexed by the set C2. Therefore it can be written as a linear combination of the
vectors in C2. In Phase 2, we modify such vectors in a way that A′w becomes a zero vector,
i.e. w goes into the kernel of A′. Also, note that the vector which did not lose their pc’s and
are not captured in Phase 1 and Phase 2, do not lose their pc’s in the procedure. ◁

We prove that we can maintain the number of pc’s in B in AC0 using the next claim. However,
we need to set up some notation first. Let P old, P new be respectively, the number of pc’s
before and after the phases. Let V new

R1
and V new

R2
denote the set of vectors that have their pc’s

in the rows R1 and R2, after the phases. Let V old
R0

denote the set of vectors that have their
pc’s in the rows R0 before starting of Phase 1 and V1 denotes the set of vectors which have
their pc’s in the rows R − R0 before the Phase 1 and attain pc’s in the rows R1 after Phase
2. Note that all the cardinalities of all the sets of vectors mentioned above are O( log n

log log n ).
Therefore, we can compute their cardinalities in AC0.

▷ Claim 23. P new = P old − |V old
R0

| + |V new
R1

| + |V new
R2

| − |V1|.

Proof. First, we assume that all the vectors in the set V old
R0

lose their pc’s after the phases
therefore we subtract |V old

R0
| from P . But some of these vectors get their pc’s in Phase 1

and Phase 2. Therefore, we add |V new
R1

| and |V new
R2

| back to the sum. Notice that V new
R1

may
contain those vectors as well that had their pc’s in the rows indexed by R − R0 before Phase
1. That means these vectors had a pc before and after the two phases, but we added their
number |V new

R1
|. Therefore, we subtract the number of such vectors by subtracting |V1| from

the total sum. ◁

This brings us to the proof of Lemma 15.

Proof of Lemma 15. The proof is complete from the above claims because the number of
pc’s is precisely the rank of the matrix as a consequence of Proposition 16. ◀
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8 Conclusion

In this work, we prove two meta-theorems for distance and maximum matching, which
provide the best known dynamic bounds in graphs where non-zero circulation weights can
be computed in parallel. This includes important graph classes like planar, bounded genus,
bounded treewidth graphs. We show how to non-trivially modify two known techniques and
combine them with existing tools to yield the best known dynamic bounds for more general
classes of graphs, and at the same time allow for bulk updates of larger cardinality. While for
bipartite matching we are able to show a DynFO(≤, +, ×) bound it would be interesting to
achieve this also for maintaining distances, even in planar graphs under single edge changes.
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Abstract
The ZX-calculus is a graphical language for reasoning about quantum computation using ZX-
diagrams, a certain flexible generalisation of quantum circuits that can be used to represent linear
maps from m to n qubits for any m, n ≥ 0. Some applications for the ZX-calculus, such as quantum
circuit optimisation and synthesis, rely on being able to efficiently translate a ZX-diagram back into
a quantum circuit of comparable size. While several sufficient conditions are known for describing
families of ZX-diagrams that can be efficiently transformed back into circuits, it has previously
been conjectured that the general problem of circuit extraction is hard. That is, that it should
not be possible to efficiently convert an arbitrary ZX-diagram describing a unitary linear map into
an equivalent quantum circuit. In this paper we prove this conjecture by showing that the circuit
extraction problem is #P-hard, and so is itself at least as hard as strong simulation of quantum
circuits. In addition to our main hardness result, which relies specifically on the circuit representation,
we give a representation-agnostic hardness result. Namely, we show that any oracle that takes as
input a ZX-diagram description of a unitary and produces samples of the output of the associated
quantum computation enables efficient probabilistic solutions to NP-complete problems.
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1 Introduction

Quantum circuit notation is widely used in the field of quantum computing to denote
computations to be executed on a quantum computer. While quantum circuits are a useful
tool for representing computations on a quantum computer, they are somewhat inconvenient
for reasoning about computations (such as proving equalities or doing simplifications); and for
representing computations in alternative models like the one-way model of measurement-based
quantum computation (MBQC) [40], or surface code lattice surgery [31].
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ZX-diagrams are an alternative, more general representation of quantum computations,
which allow complex operations to be described using a few simple generating operators.
ZX-diagrams come with an equational theory, called the ZX-calculus [11], which allows
one to perform many useful calculations graphically, without resorting to concrete matrix
computations. While ZX-diagrams can be seen as an extension of circuits [12], they also
readily admit encodings of the one-way model [23] and lattice surgery [20], and allow one to
reason more easily about such procedures. There are several known complete axiomatisations
of the ZX-calculus [37, 49], where any true equality of linear maps can be proved graphically.
For a review on the ZX-calculus we refer to [47].

The ZX-calculus has been used in a variety of areas. It was used to optimise T-count [34,
18], braided circuits [29] and MBQC [4]; to find a new normal form for Clifford circuits [22]; to
do more effective classical simulation using stabiliser decompositions [35]; and to reason about
surface codes [26, 27], mixed-state quantum computations [9], natural language processing [10],
condensed matter systems [14], counting problems [21, 44] and spin-networks [24].

As a strict extension of quantum circuit language, ZX-diagrams may express operations
in a form that do not correspond directly to a quantum circuit. This added flexibility makes
it easier to find novel strategies to simplify quantum circuits, but it comes at a cost: given
a ZX-diagram representing a unitary linear map, it might be non-trivial to transform it
back into a circuit of comparable size. Such a translation might however be necessary if,
for instance, we want to run the computation described by a ZX-diagram on a gate-based
quantum computer.

We refer to the above problem, as the circuit extraction problem: given a ZX-diagram
which denotes a unitary operator U , find a unitary circuit (i.e., a quantum circuit without
measurements) that implements U . In recent years, some progress has been made on this
problem [22, 34, 4, 41, 33, 19]. However, all known methods for efficient extraction of circuits
from ZX-diagrams rely on additional conditions, in particular requiring there to be some
kind of flow on the diagram, a concept imported from MBQC [6]. Such conditions allow
the diagram to be rewritten incrementally into a unitary circuit. Since many ZX-calculus
rewrites preserve these conditions, it is possible to perform optimisation of quantum circuits
using ZX-calculus rules and still recover circuits efficiently.

However, it is worth trying to generalise these conditions as much as possible, or even
remove them. For instance, it was noted in [34] that a certain transformation of ZX-diagrams
would decrease the T-count (an important metric for quantum circuit optimisation), but in
the process broke the invariant (the existence of a gflow), preventing a circuit from being
extracted efficiently using known techniques. Given all this it is then natural to wonder
about the following question:

Is there some efficient procedure to translate any
unitary ZX-diagram into a quantum circuit?

In this paper we present strong evidence that there is no such efficient procedure, by
showing that the circuit extraction problem is #P-hard in the worst case. The complexity
class #P contains for instance the problem of strong simulation of quantum circuits, and
counting the number of satisfying solutions to a Boolean formula, so #P-hard problems
are expected to be intractable. We prove #P-hardness by giving an encoding of Boolean
formulae into unitary ZX-diagrams in such a way that extracting a polysize circuit provides
a solution to the associated #SAT instance. A consequence of our result is that if there were
a polynomial time algorithm for circuit extraction, then P = NP.

Alternatively, since there is an evident translation from a ZX-diagram into a quantum
circuit with postselection, this result can equivalently be seen as expressing the hardness
of translating a postselected circuit that is promised to be proportional to a unitary into a



N. de Beaudrap, A. Kissinger, and J. van de Wetering 119:3

circuit without postselection. While intuitively this seems likely to be hard, particularly in
light of Aaronson’s landmark result that PostBQP = PP [1], our hardness result seems to
be quite different in nature due to the unitarity promise. In particular, the postselection does
not seem to be the “source of power” in our proof: the measurement outcomes corresponding
to the post-selections in our circuits occur with some bounded probability, independent of
the problem size.

One could ask how much our hardness result is tied to the fact that we require a procedure
that produces quantum circuits from ZX-diagrams. Especially, when considering that in
most cases we are not interested in the circuit itself, but instead we simply want to sample
the output of the quantum computation. Perhaps one could find some other procedure to
“program” a quantum computer using a ZX-diagram describing a unitary and obtain samples
of measurement outcomes. We show that an efficient such procedure is unlikely to exist for
arbitrary ZX-diagrams, by finding that such a procedure allows you to probabilistically solve
NP-hard problems. So if there were some way to generically translate unitary ZX-diagrams
into procedures which could be realised in polynomial time on a quantum computer, it would
follow that the entire polynomial hierarchy is in BQP, and in particular that NP ⊆ BQP.

The paper is structured as follows. We start by covering preliminaries on quantum
circuits, ZX-diagrams and the necessary complexity theory in Section 2. Then in Section 3
we formally define the circuit extraction problem and prove it is hard. Section 4 considers
several variations on circuit extraction, and in Section 5 we find some upper bounds on the
hardness of circuit extraction. We end with some concluding remarks in Section 6.

2 Preliminaries

2.1 Quantum circuits
Since we wish to extract “a circuit” from a ZX-diagram, it will be helpful to first consider
what we actually mean by a circuit.

In quantum computational theory, a “circuit” is a description of a computational process
consisting of operations which may be decomposed as a sequence of primitive “gates” and
“measurements”, which act on one or more qubits to change the states of those qubits. The
state-space of a qubit is identified with unit vectors of the finite-dimensional Hilbert space
H2 ∼= C2; the state of k qubits in parallel is described by the tensor product H⊗k

2 . A
“gate” is an operation which is applied to one or more qubits and implements a unitary
transformation U : H⊗k

2 → H⊗k
2 on the associated state space. A “measurement” is an

operation which transforms a state |ψ⟩ ∈ H⊗k
2 to some state p−1/2

j Πj |ψ⟩ where {Π1,Π2, . . .}
is a set of projections that sum up to the identity operator I, the pj gives the probability
of observing that particular measurement outcome and is given by pj = ⟨ψ|Πj |ψ⟩, and the
index j provides the classical “outcome” indicating which transformation occurred. A gate
or measurement acting on a small number of qubits can be applied to a larger set of qubits
by taking the tensor product with an appropriate number of identity operators. A “circuit”
is then a composition of such gates and measurements on some number of qubits, acting in
sequence or in parallel, to describe more complex (and in general, non-deterministic and
irreversible) transformations of a quantum state-space. To define a reasonable model of
computational complexity using quantum circuits, one usually elaborates the above with a
description of how one would specify a circuit as part of a family of unitary operators, acting
on inputs of various sizes. For our purposes, it will suffice to require that the coefficients of the
gates be efficiently computable, and in particular provided explicitly in some representation
which suffices to approximate them to O(poly(n)) bits of precision in time O(poly(n)) for an
n qubit circuit.
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It will be convenient to refer to one specific such gate-set – an infinite set B of gates,
consisting of the single-qubit gates Zα for arbitrary angles α, the single-qubit Hadamard
gate H and the two-qubit gate CNOT:

Zα =
(

1 0
0 eiα

)
H = 1√

2

(
1 1
1 −1

)
CNOT =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (1)

This gate set forms a universal gate set, meaning that a unitary acting on any number of
qubits can be written as a circuit consisting of these gates [38]. Other universal gate-sets
exist, but so long as one considers gate sets whose parameters are efficiently computable
from some input parameters and which act only on a bounded numbers of qubits (e.g., at
most two or three qubits), the size of a circuit to represent a given unitary operator can only
vary by a constant factor, so that for the purpose of complexity theory, the details of the
specific gate set chosen are not important.

A circuit which contains no measurements, and therefore consists entirely of unitary gates,
is called a “unitary circuit”. A unitary circuit is reversible, and “deterministic” in the sense
that an idealised realisation of such a circuit will transform the state-space in the same way
each time. As this is a convenient feature for the design and analysis of quantum algorithms,
much of the literature on quantum algorithms concerns itself with unitary circuits, and much
of the design of quantum computers is concerned with how to reliably implement unitary
circuits.

2.2 ZX-diagrams

We provide a brief overview of ZX-diagrams. For a review see [47], and for a book-length
introduction see Ref. [13].

ZX-diagrams form a diagrammatic language similar to the familiar quantum circuit
notation. A ZX-diagram (or simply diagram) consists of wires and spiders. Wires entering
the diagram from the left are inputs; wires exiting to the right are outputs. Given two
diagrams we can compose them by joining the outputs of the first to the inputs of the second,
or form their tensor product by simply stacking the two diagrams [11, 12].

Spiders are linear operations which can have any number of input or output wires. There
are two varieties: Z-spiders depicted as green dots and X-spiders depicted as red dots:

α... ... := |0 · · · 0⟩⟨0 · · · 0| + eiα |1 · · · 1⟩⟨1 · · · 1|

α... ... := |+ · · · +⟩⟨+ · · · +| + eiα |- · · · -⟩⟨- · · · -|

(2)

Here |0⟩ and |1⟩ represent the standard basis vectors of C2 which are the eigenvectors of the
Pauli Z matrix; the states |±⟩ := 1√

2 (|0⟩ ± |1⟩) are sometimes referred to as the “Hadamard
basis”, and are eigenvectors of the Pauli X matrix. If you are reading this document in
monochrome or otherwise have difficulty distinguishing green and red, Z spiders will appear
lightly-shaded and X darkly-shaded. Note that here the number of inputs and outputs do
not have to match. When α = 0, we will not write the phase on the spider.
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▶ Example 2.1. We can immediately write down some simple state preparations and unitaries
in the ZX-calculus:

= |0⟩ + |1⟩ =
√

2 |+⟩

= |+⟩ + |-⟩ =
√

2 |0⟩

α = |0⟩⟨0| + eiα |1⟩⟨1| =: Zα

α = |+⟩⟨+| + eiα |-⟩⟨-| =: Xα

(3)

We can also represent the effects that are dual to the states above using spiders:

= ⟨0| + ⟨1| =
√

2 ⟨+|

= ⟨+| + ⟨-| =
√

2 ⟨0| (4)

In the diagrams above we write explicit scalars to represent a proportionality constant. In
this paper (non-zero) scalar factors will not be important. However, do note it is always
possible to represent any scalar as an explicit ZX-diagram (of constant size). For this reason,
our results will also apply to other proposed normalisations of the ZX generators, such as
those in Refs. [17, 14, 24].

We can compose ZX-diagrams in two ways, either horizontally by connecting the wires
together, which corresponds to the regular composition of linear maps, or vertically, which
corresponds to the tensor product of linear maps. Any ZX-diagram is built by composing
spiders (and permutations of wires) together in these ways.

On a formal level we consider a ZX-diagram D with n inputs and m outputs as a morphism
D : n → m in a category. This category is the compact-closed PROP (symmetric monoidal
category where the objects correspond to natural numbers and the tensor is addition) freely
generated by the Z- and X-spider generators. The interpretation as a linear map is then a
strongly monoidal functor into the category of Hilbert spaces, which is fully specified by the
interpretation of the spiders (2). This level of formality won’t be needed in this paper. The
interested reader can look at for instance Refs. [11, 9, 8].

A more intuitive way to view ZX-diagrams is as tensor networks [39]: the spiders are the
tensors, and a connection between spiders denotes a contracted index.

The Z- and X-spiders satisfy the following symmetries:

α = α
...

...

...... ...

= = ... α
... =α

... ......

...α
...

α = α
...

...

...... ...

= = ... α
... =α

... ......

...α
...

(5)

Here we are writing an equality of ZX-diagrams. This is to be understood as saying that
the linear maps these ZX-diagrams represent are equal. In particular: in each equality the
number of open wires extending to the left is the same, and similarly for the number of
open wires extending to the right. Because of these symmetries we can treat ZX-diagrams as
(labeled) undirected graphs: if we attach labeled nodes to the open wires at the input and
output to distinguish their roles, arbitrary topological deformations of the diagram do not
affect its interpretation as a linear map.
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It is often convenient to introduce a symbol – a yellow square – for the Hadamard gate.
This is defined by the equation:

=:π
2

π
2

π
2H = e−iπ/4 (6)

The CNOT gate also has a straightforward representation as a ZX-diagram:

CNOT =
√

2 (7)

Here we are allowed to draw a horizontal wire as per the symmetries (5) whether this wire is
an input or an output is irrelevant.

Seeing as we can represent Zα, H and CNOT gates as ZX-diagrams, we can represent
the gate set B of Eq. (1), and hence we can in fact represent any unitary as a ZX-diagram.
The above demonstrates that ZX-diagrams can be used as an alternative representation
for quantum circuits. However, ZX-diagrams are also more versatile than unitary circuits.
Consider for example the following construction of the CZ gate as a ZX-diagram:

CZ ∝ = . (8)

The right-hand-side demonstrates a different diagrammatic construction for CZ, that does not
immediately look circuit-like, with the Hadamard-box representing some sort of interaction
of two qubits rather than the evolution of a single qubit.

In fact, this versatility is reflected in the property that ZX-diagrams are universal for
all linear maps between any number of qubits [11]. To see this, note that we can represent
states as in Eq. (3). By composing tensor products of these states with some unitary we can
write down any quantum state. By the map-state duality of quantum theory (i.e. the Choi-
Jamiołkowski isomorphism), we can then also write every linear map, see for instance [47]
for the details.

The universality of the gate-set B and of the ZX-calculus means that any unitary operator
on some fixed number of qubits may be represented by some “gadget” in the ZX calculus,
consisting of some fixed diagram of finite size – though as the example of CZ in Eq. (8)
shows, there may also be “gadgets” which represent a unitary operator which do not consist
of sequential and parallel composition of gates. Indeed, even the representation of the CNOT
is by a simple “gadget” of two nodes, which is not describable as a composition of the other
single-node “gadgets”. In this respect, ZX-diagrams represent a more versatile notation than
a conventional circuit notation. This raises the question of how, given a representation of
some unitary U as a ZX-diagram, one might find another representation of U which consists
of just compositions from the universal gate-set B. This is the problem that this paper is
concerned with.

ZX-diagrams are more than just a notation for unitary circuits (and non-unitary operators
more generally): they may be used to perform computations. Specifically, ZX-diagrams come
with a set of graphical rewrite rules, which may be used to find equivalent diagrams which
represent the same state or operator, just as one might manipulate an algebraic expression.
This rewrite system is complete [37, 49]: unlike other circuit diagrams, one may show that
two equivalent ZX-diagrams are equivalent though transformations of diagrams alone. The
possible advantage of this is that ZX-diagrams can often concisely represent operators which
have a very large number of non-zero coefficients, and so that this reasoning can be done
efficiently while it could not be done using the matrices directly. For instance, one of the
rewrite rules we will use in this paper is spider fusion:
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β... ...

α ...... =... ... ...α+β

β... ...

α ...... =... ... ...α+β (9)

These rules say that we can fuse together adjacent spiders of the same colour.
While these rewrite rules are not immediately relevant to our results, the fact that it

is possible to compute with ZX-diagrams is the motivation for considering this particular
representation of unitary circuits, and also motivates the concept of considering different
ZX-diagrams which represent the same unitary transformation. We refer the interested
reader to [47] for an overview.

2.3 Circuit extraction

In the above section we saw that we can get ZX-diagrams directly from quantum circuits. We
can also get ZX-diagrams from considering measurement patterns in the one-way model [40].
In the one-way model of quantum computation we start with a large graph state, on which
we then do subsequent measurements, where the choice of measurement angle and axis
may depend on previous measurement outcomes. This leads to another universal model
of quantum computation. The one-way model can be straightforwardly represented in the
ZX-calculus [23, 4].

An important property of a one-way computation is that we can perform a computation
deterministically, so that we perform the same overall computation regardless of individual
measurement outcomes. A sufficient property for ensuring that deterministic processes are
possible on a given resource state is that its underlying graph has a property known as
gflow [6]. This is an efficiently verifiable combinatorial condition on the entangled resource.

When we represent a one-way computation with gflow as a ZX-diagram, the gflow ensures
that certain “local” parts of the diagram correspond to individual unitary gates, in a way
which can be iteratively translated into an actual unitary circuit. In this case we can
hence extract a unitary quantum circuit from the ZX-diagram that represents the one-way
computation. See for instance [22, 4, 41] for several variations on this idea.

Measurement-based quantum computation like the one-way model is a type of non-unitary
quantum computation. Another type of non-unitary model is given by doing lattice surgery
in the surface code [30, 20]. A lattice surgery procedure can also be represented as a ZX-
diagram [20]. Just as in the one-way model, there is a flow condition that ensures such a
calculation is deterministic, and that the resulting ZX-diagram can be step-by-step rewritten
into a unitary circuit [19].

We see that there are several quantum computational models that can be written in
terms of ZX-diagrams, which can be rewritten into a unitary quantum circuit efficiently
when they satisfy some condition. The type of flow condition required for these procedures
ensures that the diagram can’t get “too wild” in the middle, so that we can stepwise rewrite
the diagram into something that looks more like a circuit. A natural question to ask then is
how much we can weaken such additional conditions, and in particular if we can transform a
ZX-diagram into a circuit efficiently in the most general setting, where the only condition we
require of the ZX-diagram is that it is proportional to a unitary. The main result of this
paper is that such a general efficient procedure most likely does not exist.
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2.4 Background on computational complexity
Finally, we provide some background on computational complexity. We assume knowledge
of P, the boolean satisfiability problem SAT, oracle machines, NP and nondeterministic
Turing machines (NTMs) in general. Our results concern Cook reductions (in fact, usually
Cook[1] reductions). A Cook reduction from a problem X to another problem Z is an
algorithm for solving X using a deterministic Turing machine which halts in polynomial
time, but which may query an oracle (in the case of a Cook[1] reduction, exactly once) for Z.
This implies that, modulo some polynomial-time computation, the problem Z is at least as
hard as X; and that if Z ∈ P, we also have X ∈ P. In symbols we may write X ∈ PZ. Our
results will generally concern problems Z related to ZX-diagrams and problems X which are
at least NP-hard (i.e., they suffice to solve SAT).

Quantum circuits form a model of computation, which may be considered to generate
random outcomes through measurement operations. Note that, just as with the study of
boolean circuits as a model of computation, one often considers a quantum circuit to be
described by some polynomial-time computable procedure (a sort of “effective blueprint”),
which for a given n ≥ 0 requires time poly(log n) to produce a circuit taking inputs of
size n. While this constraint is not essential when considering a single circuit on its own
(the description of the circuit itself is a finite specification), this constraint prevents us
from considering what might otherwise seem like “quantum algorithms” for uncomputable
problems (in the same way that one must for boolean circuits). Additionally, to prevent
unbounded computational power from being hidden elsewhere in the description of a quantum
circuit, one often imposes constraints on the gates and measurements allowed in a circuit.
For instance, requiring that gates only act on a small constant number of qubits, and that for
parametrised gates like Zα the parameter α is efficiently computable. The class BQP consists
of decision problems which can be decided with bounded error (with error probability less
than, say, 1

3 ) by quantum circuit families satisfying these reasonable constraints. This class
represents the decision problems that can be practically solved by an (idealised) quantum
computer.

It is not expected that either of NP or BQP contain the other. So if we can reduce
in polynomial time (by many-to-one or oracle reductions) an NP-complete problem to
some problem X, then we expect X to be intractable for quantum computers. Certain
modifications of the quantum computational model do allow for more difficult problems to be
solved, however. For instance, PostBQP is the class of problems which may be solved with
bounded error by a uniform quantum circuit family, conditioned on some other measurement
yielding a specific outcome (which occurs with non-zero probability). This “conditioning”
restriction is known as postselection, and appears to be operationally very powerful, as
PostBQP coincides with the class PP, of decision problems for which a “yes” instance is
accepted on more than half of the branches of some NTM halting in polynomial time.

The class P is closed under oracles: a deterministic Turing machine equipped with an
oracle for some problem in P cannot decide more problems in polynomial time than a
normal Turing machine, so that PP = P. The same is true for BQP: any decision problem
solvable (with bounded error) by a uniform family of quantum circuits, can also be solved
(with bounded error) by some other family of quantum circuits without oracle access, so
that BQPBQP = BQP. The same is not true, however, for NP: it is not known whether
NPNP (the class of decision problems, for which there is an NTM with an oracle for a
problem in NP, halts in polynomial time and accepts in some branch precisely for “yes”
instances) is equal to NP. It is widely conjectured that Σp

2 := NPNP ≠ NP, and indeed
that Σp

3 := NPΣp
2 = NPNPNP

≠ NPNP, and so forth. The union of Σp
n := NPΣp

n−1 for all
n > 1, defines the class PH, called the polynomial hierarchy [42].
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The hardness results which we are most concerned with involve problems in #P: the
class of problems which may be reduced to counting the number of accepting branches of
some NTM on a given input. In particular, we are interested in the problem #SAT, of
counting the number of “solutions” x ∈ {0, 1}n to an instance of SAT, presented as a formula
for a function f : {0, 1}n → {0, 1}, where a “solution” satisfies f(x) = 1. The problem
#SAT is #P-complete [46], as is tensor contraction over the natural numbers [15], and
“strong simulation” (i.e., precise estimation of explicit measurement probabilities) of uniform
quantum circuit families [48]. The #P-completeness here means that a Cook reduction from
any of these problems to some problem Z, establishes that there is a Cook reduction from
any problem X ∈ #P to Z. in this case we say then that Z is “#P-hard”. The computational
power of #P is considered to be significantly greater than that of NP. In particular, Toda [43]
showed that PH ⊆ P#P.

3 Proof of hardness of Circuit extraction

We now present the central problem of our work.

CircuitExtraction
Input: A ZX-diagram D with n inputs and outputs and at most k wires and/or
spiders, and a set G of unitary gates (each acting on at most O(1) qubits).
Promise: The operator denoted by D is proportional to a unitary.
Output: Either (a) a poly(n, k)-size circuit C, expressed as a sequence of gates from
G and expressing an n-qubit unitary that is proportional to the operator denoted by
D, if such a circuit exists; or (b) a message that no such circuit exists, if that is the
case.

Note that here we make no assumptions on the specific gate set G, apart from the
computability of the coefficients as described in Section 2.1, and that the number of qubits
which is bounded by some constant. One might object to the requirement that the output
list of gates must be polynomially related to the size of the input ZX-diagram: however, as
we are interested in whether the extraction problem can be solved efficiently, the restriction
on the size of C follows from the time required to represent it as a list of gates.
▶ Remark 3.1. For a finite gate set we can consider the gate set G as being supplied as
concrete matrices, while for an infinite set we could consider it as being supplied as an
efficient procedure for translating a “gate label” into a matrix. For concreteness sake we can
take G = B, the gate set (1). This gate set contains the parametrised gate Zα. Formally a
circuit will then specify these phases α via some efficiently computable procedure.

The above problem can of course also be stated for any related graphical language for
quantum operations, such as the ZH-calculus [3] or the ZW-calculus [28]. Since such diagrams
can be efficiently translated into one another, these problems are of equivalent hardness.
There are some other reasonable variations we can consider of CircuitExtraction that we
will discuss in the next section.

We will now show that CircuitExtraction is #P-hard. We do this by building a diagram
that is proportional to a unitary based on a SAT instance, and showing that the resulting
matrix the diagram represents is uniquely determined by the number of solutions of the
instance.

Let f : {0, 1}n → {0, 1} be a Boolean formula with poly(n) terms. We say a bit string
x ∈ {0, 1}n is a solution to f when f(x) = 1. The first step will be to build a ZX-diagram
that implements the linear map Lf that takes n qubits to 1 qubit by Lf |x⟩ = |f(x)⟩. We
can of course represent f as a tree of AND and NOT operations so that to construct Lf it
suffices to find linear maps that implement AND and NOT on |x⟩.
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We may consider ZX diagrams for “quantum” versions of the boolean logical AND
gate and NOT gate, i.e., linear operators such that NOT|0⟩ = |1⟩, NOT|1⟩ = |0⟩, and
AND|x, y⟩ 7→ |x · y⟩. We could just appeal to the universality of ZX-diagrams to establish
that there are diagrams that represent these operations, but for completeness sake let us
give some concrete diagrams to realise these operations (up to a constant factor):

NOT = π AND ∝ - π
4 - π

2

- π
4

- π
4

π
4

The NOT gate is just an Xπ gate, but the AND is more complicated. It is based on the
representation of the CCZ gate from [35] that uses 4 T gates. Its correctness can be verified
by inputting |0⟩ and |1⟩ on the inputs and seeing that it has the correct action on all these
inputs.

By combining these diagrammatic gadgets for NOT and AND we can build the operation
Lf as a ZX-diagram using poly(n) spiders. Now, note that:

Lf

... =
∑

x

Lx|x⟩ =
∑

x

|f(x)⟩ = N0

2n
|0⟩ + N1

2n
|1⟩ =: a0|0⟩ + a1|1⟩ (10)

where N1 is the number of solutions of f , N0 = 2n −N1 is the number of “non-solutions” of
f , and we set a0 = N0/N and a1 = N1/N for N := 2n = N0 +N1. The resulting state is not
normalised: to normalise it we should multiply both sides by (a2

0 + a2
1)−1/2.

We use the “state” described in Eq. (10) as the input of a controlled operation. By
choosing the controlled operation appropriately, we will be left with something proportional
to a unitary. We may for instance consider the following diagram:

Lf

...
− π

2 (11)

To see this is unitary first recall that a Y rotation over an angle α applied to |0⟩ gives
Yα|0⟩ = cos( α

2 )|0⟩ + sin( α
2 )|1⟩. Hence the state of Eq. (10), when properly normalised, can

be written as Yα|0⟩ for α = 2 sin−1 ( a1√
a2

0+a2
1
). We can then calculate:

Lf

... − π
2

− π
2

∝ Yα =
− π

2

− π
2 α π

2 = α = α

(12)

In the above, we use the relation Yα = Z− π
2
XαZπ

2
, and some simple ZX-calculus rewrites

(namely that β = and α −α = ). Hence, the diagram of Eq. (11) is
proportional to an Xα rotation where α is uniquely determined by the number of solutions
to f . Note that this operation can be easily represented (with at most three gates) using a
gate-set such as {H,Zα,CNOT}, in which the set of values of allowed angles α include those
that may arise in the diagram of Eq. (12) for some number of solutions N1 to the formula f ;
such an operation will be representable using other gate-sets as well.1

1 Note that the gate-set described here cannot be a single, finite gate set for all values of n. However, the
angles α arising out of instances of satisfiability in this way can be specified in O(n) bits, precisely by
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▶ Theorem 3.2. CircuitExtraction is #P-hard.

Proof. #SAT is a #P-complete problem, so it suffices to show that we can count the number
of solutions to a Boolean formula using a call to an oracle which solves CircuitExtraction.
Given a Boolean formula f : {0, 1}n → {0, 1} with poly(n) terms, construct the diagram of
Eq. (11). The diagram here for Lf uses poly(n) of the diagrammatic gadgets for NOT and
AND, and hence the complete diagram consists of poly(n) spiders, each of which may be
restricted to having at most 3 wires. We may apply the CircuitExtraction oracle on this
diagram subject to a suitable gate set that can exactly generate the possible X-rotations Xα

which may arise. As C is a single-qubit circuit with at most poly(n) gates, we can calculate
the unitary it implements, up to any required precision 2−O(poly(n)), in polynomial time.
We know that the operation realised is of the form Xα, so to determine the value of N1, it
suffices to estimate the entries of the resulting Xα to within an error of 1

2
√

2 . Determining
the value of a1/

√
a2

0 + a2
1 to 2n bits of precision is sufficient to do this. ◀

▶ Corollary 3.3. If there is a polynomial time algorithm for CircuitExtraction, then
P = P#P. In particular, the polynomial hierarchy collapses to the first level: P = NP = PH.

Proof. If CircuitExtraction can be done in polynomial time, then the above shows that
we can solve #SAT in polynomial time, and hence NP ⊆ P#P = P. ◀

▶ Remark 3.4. Our construction of the diagram we use to prove our result might seem
somewhat arbitrary. To motivate it some more, first realise that instead of the function Lf ,
we could have used the standard unitary quantum oracle for a Boolean function Uf which
acts on n+ 1 qubits via Uf |x, b⟩ = |x, b⊕ f(x)⟩. We can get Lf out of Uf by post-selecting
the top n qubits to ⟨+|. Using the language of post-selection, we may then present a circuit
version of Eq. (11):

Uf

|+⟩

|+⟩

...

|0⟩

iX

⟨+|

⟨+|

⟨+|

...

(13)

The top part is calculating the number of solutions, while the bottom part ensures that this
information is fed into a qubit in such a way that the overall operation is proportional to a
unitary. The choice of iX is for the sake of simplicity: any unitary U that satisfies U = −U†

would also suffice, such as iY or iZ.
▶ Remark 3.5. Even though we can view the diagram as a post-selected circuit, this does not
seem to be where the power of the procedure comes from, as it is for instance in Aaronson’s
characterisation PostBQP = PP [1]. In our setting the probability of observing the “correct”
outcome is bounded from below by a constant, and does not depend on n. This means in
particular that by doing repeat-until-success we could with high probability implement the
circuit Eq. (13) on a quantum computer. However, this does not allow you to solve #SAT,
as adjacent possibilities of the rotation angle α are exponentially close. So rather, the power
of the procedure comes from getting an explicit description of the circuit which allows us to
exactly calculate the rotation angle.

characterising them in the way we have, by relating some integer ranging in {0, 1, . . . , 2n} via inverse
trigonometric functions. For remarks on what can be achieved with finite gate-sets, the reader may be
interested in the related problem ApproxCircuitExtraction, in Section 4.
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4 Variations on extraction

There are several variations on circuit extraction which we can consider, all of which also
turn out to be hard.

The essential trick we used in our proof is that our resulting circuit has just one qubit,
and hence a description of a unitary on it can easily be transformed into the actual unitary it
implements by just multiplying all the resulting matrices. But of course the same statement
remains true if we have slightly more than one qubit, say a logarithmic amount in the size of
the SAT instance. We also see that it then doesn’t matter if our circuit contains auxiliary
qubits, measurements, or classically-controlled corrections. All of these can be efficiently
calculated as long as the number of qubits is small enough. Therefore, let’s define the
following variant of circuit extraction.

AuxCircuitExtraction
Input: A ZX-diagram D with n inputs and outputs and at most k wires and/or
spiders, and a set G of unitary gates (each acting on at most O(1) qubits).
Promise: The operator denoted by D is proportional to a unitary.
Output: Either (a) a deterministic n-qubit circuit implementing the unitary of
the input ZX-diagram, described as a poly(n, k) length list of gates, auxiliary qubit
preparations, measurements, and classical corrections, with at most O(log k) auxiliary
qubits; or (b) a message that no such circuit exists, if that is the case.

▶ Theorem 4.1. AuxCircuitExtraction is #P-hard.

Proof. We construct the same diagram as in the proof of Theorem 3.2 to solve a #SAT
instance, except that we can no longer assume that the final circuit will act only on a single
qubit: instead it may act on up to O(log k) qubits, including the operations on the auxiliary
qubits. The size of the matrices involved when trying to calculate the resulting unitary is
O(2log poly(k)) = O(poly(k)), where here k is the size of the input diagram. We may then still
multiply the matrices together in polynomial time to obtain sufficiently precise estimates of
the coefficients. ◀

One might also object that requiring the output unitary to exactly represent the ZX-
diagram is too strong – in particular, impossible in general even with an approximately
universal, finite gate set – and wish for an approximate output instead. We say that a unitary
operator Ũ is an ε-approximation of another unitary U for some ε > 0, if ∥Ũ − eiαU∥ < ε

for some global phase α. Here, ∥M∥ denotes the operator norm of M : the largest singular
value of M .

ApproxCircuitExtraction
Input: A ZX-diagram D with n inputs and outputs and at most k wires and/or
spiders, a set G of unitary gates (each acting on at most O(1) qubits), and a precision
parameter ε > 0.
Promise: The operator denoted by D is proportional to a unitary.
Output: Either (a) a poly(n, k, log(1/ε))-size circuit C, expressed as a sequence of
gates from G and expressing an n-qubit unitary Ũ which is an ε-approximation to
either the operator denoted by D, or some operator proportional to it; or (b) a message
that no such circuit exists, if that is the case.

▶ Theorem 4.2. ApproxCircuitExtraction is #P-hard.
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Proof. For a given SAT instance f : {0, 1}n → {0, 1} we again construct the same diagram
as in the proof of Theorem 3.2 which denotes a unitary Xα , where α allows us to determine
the number of solutions to f . This diagram has poly(n) spiders. Set ε = 2−cn for some
large enough constant c. Then applying ApproxCircuitExtraction gives rise to a circuit,
which has poly(poly(n), log(1/2−cn)) = poly(n) gates. We can hence just multiply out the
matrices in order to determine the unitary U it implements. This unitary U approximates
Xα to degree 2−cn. Since the top left entry of Xα is real, we can first multiply U by the
appropriate global phase to ensure it is also real. If we have picked c large enough then the
entries of U are then within 1

2 2−n of that of Xα so that we can determine α by rounding to
the nearest allowed value. ◀

Note that, even for exponentially small angles α as might arise when f has few solutions,
circuits of polynomial size do exist for Xα when G is an approximately universal gate-set:
using the Solovay–Kitaev algorithm [36, 16] or any of its many refinements (see e.g. Ref. [5]
and references therein), we may synthesise circuits approximating Xα to any precision ε in
time scaling polynomially in log(1/ε). The difficulty of ApproxCircuitExtraction stems
from determining which angle α to approximate. One might nevertheless want to consider a
variation on ApproxCircuitExtraction with a polynomial dependence on 1/ε instead of
log 1/ε. We believe this variant will still be hard: see Remark 4.4.

Let us consider one final variation on extraction. One could argue that the reason that
we end up with a hard problem in these instances, is because requiring the output to be
some kind of circuit is too restrictive. The ultimate goal of circuit extraction is that we wish
for the ZX-diagram to be run on a quantum computer in order to obtain some probability
distribution over outcomes; but the complexity of CircuitExtraction and its variations
seems to arise from the complexity of finding a precise description of the procedure to do so.
Cutting out the middle-man, we may consider any process which takes as input a unitary
ZX-diagram, and produces bit strings as output whose distribution conforms with the one
we expect from the unitary.

UnitaryZXSampling
Input: A ZX-diagram D with n inputs and outputs and at most k wires and/or
spiders.
Promise: The operator denoted by D is proportional to some unitary U .
Output: A sample x ∈ {0, 1}n from a probability distribution, given by (or sufficiently
close to) |⟨x|U |0· · · 0⟩|2.

It is clear that UnitaryZXSampling is at least as hard as BQP: we could just input
a ZX-diagram that directly represents a quantum circuit, in which case this problem is
equivalent to simulating that circuit. The reason we write here that the probabilities just
have to be “sufficiently close” is because the exact number doesn’t matter for the following
theorem. (For instance: we could allow the probability to additively deviate by 1/3 from the
true value.)

▶ Theorem 4.3. There is a randomised polynomial reduction from NP to UnitaryZX-
Sampling. In other words: with access to a PromiseUnitaryZXSampling oracle – which
produces the expected output if the input diagram is unitary and arbitrary output otherwise –
we can with high probability solve NP-complete problems.
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Proof. SAT is an NP-complete problem. To randomly reduce NP it however suffices
to consider the problem USAT by the Valiant–Vazirani theorem [45]. USAT asks us to
determine whether a Boolean formula is satisfiable, given the promise that it has at most one
solution. Using the randomised reduction from SAT to USAT, we consider how to solve
USAT using a PromiseUnitaryZXSampling oracle.

Let f : {0, 1}n → {0, 1} be a Boolean formula that has at most one solution. Construct
the diagram Eq. (11) as in the previous proofs: as a unitary this implements the identity iff
f is not satisfiable, and Xα for some fixed angle α > 0 when f is satisfiable. In the latter
case, the value of α is exponentially small, but known precisely, as f has exactly one solution
in this case. So we can say the circuit implements Xs·α where s ∈ {0, 1} encodes whether f
is satisfiable or not.

Let M be the one-qubit (non-unitary) matrix that maps |0⟩ 7→ |0⟩ and Xα|0⟩ 7→ |1⟩,
so that in particular MXs·α|0⟩ = |s⟩. By universality of ZX-diagrams we can find some
(constant sized) diagram to represent M . We can then calculate:

Lf

...
− π

2

M
s · α M

=
(12) sπ

= sπ= (14)

Here the last step is just spider fusion (9). We see then that the ZX-diagram on the left in
Eq. (14) implements either the identity, or an Xπ operation (that is to say, a NOT operation),
depending on whether f is satisfiable. When we feed this ZX-diagram to an oracle for
PromiseUnitaryZXSampling, we get either the output 0 or 1, where a 0 indicates with
high probability that the circuit is the identity, and a 1 indicates that the circuit is a NOT
operation. We can repeatedly call the oracle to get additional samples to increase our
confidence in the result.

Now suppose f is a general instance of SAT, which may have more than one solution.
Using the Valiant–Vazirani reduction multiple times we probabilistically produce different
Boolean formulae f1, . . . , fm. If f is not satisfiable, then none of the fj will be satisfiable
either and this is what the PromiseUnitaryZXSampling will tell us as well. If f is
satisfiable, then a significant fraction of the fj will have a unique solution, so that our oracle
tells us they are satisfiable. For the other fj the oracle will return some arbitrary output. So
by picking m large enough there will with high probability be some fj that will be uniquely
satisfiable, and so we can conclude that f is satisfiable as well.

Hence, we can determine with arbitrary high probability whether a SAT instance is
satisfiable using enough calls to PromiseUnitaryZXSampling. ◀

▶ Remark 4.4. For ApproxCircuitExtraction we allowed a polynomial dependence on
log 1/ε for the circuit size. We believe this is reasonable as the Solovay–Kitaev algorithm
allows you to find a poly(log 1/ε)-sized circuit when approximating a unitary. However, one
can also consider the hardness of the problem when we allow the circuit size to depend on
poly(1/ε), or even when the circuit size does not depend at all on the error. One might
suspect that this could change the hardness of the problem. (As an analogy: one may compute
the permanent of an n×n matrix with positive entries to within a multiplicative error of ε in
time poly(n, 1/ε) [32], despite the exact problem being #P-complete.) However, note that if
we can approximately do circuit extraction up to some constant error (say ε = 1/10), we can
feed the resulting circuit to a quantum computer in order to solve UnitaryZXSampling.
Hence, even if we were to relax ApproxCircuitExtraction to allow an output circuit
of size poly(1/ε), an efficient algorithm for ApproxCircuitExtraction would imply that
NP ⊆ BQP by Theorem 4.3.



N. de Beaudrap, A. Kissinger, and J. van de Wetering 119:15

▶ Remark 4.5. If we knew that the number of solutions to the SAT instance was some other
fixed number, then we could pick a different matrix M ′ to boost the state up to Xπ gate
as in the proof of Theorem 4.3. If we pick M ′ “slightly wrong”, then the resulting diagram
will just be close to Xπ. One might think that we could use such a procedure to try and
determine the number of solutions to f by doing binary search on the number of solutions,
and so boost the power of UnitaryZXSampling to #P. However, the problem with this is
that the resulting diagrams are not proportional to a unitary most of the time. There might
be some way around this issue, so that UnitaryZXSampling is still #P-hard: we leave this
as an open problem.

▶ Remark 4.6. Note that if we were to consider a version of UnitaryZXSampling, without
the promise of unitarity, such an oracle would be as powerful as PostBQP, since we can
represent any ZX-diagram as a post-selected quantum circuit (and conversely). In our case,
the power again comes not so much from postselection, as being able to take advantage of the
versatility of ZX-diagrams to gain access, in some way, to extract very precise information
regarding a #P problem.

5 Upper bounding the complexity of CircuitExtraction

Given that CircuitExtraction is #P-hard, one might ask whether or not the problem is
#P-complete (or more precisely: FP#P-complete since we are not making a decision but
rather outputting a circuit), in the sense that a Turing machine with access to a #P oracle
would be able to solve it, for some given polynomial upper bound on circuit size and some
given gate-set (perhaps with suitable restrictions), in polynomial time. We have not managed
to prove such a completeness result. We will however present the following upper bounds
on decision problem versions of circuit extraction, relying on techniques from [2] that relate
calculating amplitudes of quantum circuits to counting complexity problems.

First, consider the following decision problem: given a ZX-diagram, and a circuit,
determine whether the circuit implements a unitary which is proportional to that represented
by the ZX-diagram (whether by a factor of eiθ for some angle θ, or a more general complex
number). This problem is in coNP#P. To sketch why this is, consider a circuit C representing
a unitary U , and a ZX diagram D representing an operator V . If a0 and a1 are two non-zero
coefficients from U , and b0 and b1 are the corresponding (non-zero) pair of coefficients from
the matrix V represented by D, then U ∝ V only if a0/b0 = a1/b1 for all possible such pairs.
We also require that for any coefficient a in U which is zero, the corresponding coefficient b
of V is also zero. Taken together, this implies that for all corresponding pairs of coefficients
of U and V we should have a0b1 = a1b0. This is also sufficient for U ∝ V to hold. Now, a
#P oracle allows one to calculate coefficients2 of ZX-diagrams and circuits. Hence, if U ̸∝ V ,
an NTM with access to a #P oracle can non-deterministically find a witness that these
two operators are not in fact proportional to one another. Thus, determining whether a
circuit does not represent a unitary which is denoted (up to scalar factors) by a ZX-diagram,
is in NP#P.

The above result has a simple corollary: determining whether a ZX-diagram is proportional
to a unitary itself belongs to coNP#P. We may see this by the fact that a ZX-diagram
denoting an operator V , which is proportional to a unitary, satisfies V V † ∝ I. We may

2 In this case, it is not necessary to compute complete information about a0, a1, b0, and b1: it suffices
to compute information about individual components of the products a0b1 and a1b0 when considering
these as numbers in some number field over Q. See Ref. [2] for the details.

ICALP 2022



119:16 Circuit Extraction for ZX-Diagrams Can Be #P-Hard

represent V V † by composing the diagram D with its adjoint (which is the left-to-right mirror
image of D, with all phase angles negated). This composite diagram may easily be computed,
at which point we may ask whether the operator it represents is proportional to the identity
by a non-zero scalar factor. As we note above, this problem is in coNP#P.

Finally, using these ideas, we may consider the decision problem of determining for a
ZX-diagram D denoting an operator V and some gate set G and polynomial length bound
N , whether there exists a circuit of at most N gates over G which implements V (up to a
scalar). This problem is in NPNP#P

: for an NTM with access to an NP#P oracle, it suffices
to make a nondeterministic guess at a circuit of length N (where each gate may be the
identity operator, or some gate G ∈ G acting on a non-deterministically chosen set of qubits)
and then query the oracle to determine whether the circuit realises V . A deterministic Turing
machine, with access to an oracle for this problem, could then solve CircuitExtraction
in polynomial time using standard techniques, using the oracle to facilitate a search for a
circuit to realise D.

These observations represent the most straightforward approach to determining an upper
bound for the circuit extraction problem, and seem to place it at a level of complexity
significantly higher than P#P. If we conceive of #P as broadly representing the complexity of
evaluating a tensor network, a superficial analogy between CircuitExtraction and boolean
circuit minimisation [25, 7] would seem to suggest that CircuitExtraction is likely to be
hard for some complexity class higher than P#P (barring some collapse of complexity classes).

6 Conclusion

In this paper we studied the problem of extracting a quantum circuit description from a
unitary ZX-diagram. We’ve shown that this problem is #P-hard by reducing #SAT to an
application of circuit extraction. We’ve also studied some variations where we allow auxiliary
qubits, classical control, and/or approximate synthesis of the desired unitary, and have shown
that these problems are also #P-hard. In addition, we studied the hardness of a machine that
takes in a unitary ZX-diagram and outputs measurement samples from that ZX-diagram,
and have shown that such a machine allows one to probabilistically solve NP-hard problems.

A conclusion to be drawn from our results is that if we want some efficient procedure
to transform a unitary ZX-diagram into a quantum circuit, then we will have to have some
additional information about the structure of the ZX-diagram. In the known procedures for
efficient circuit extraction [4, 41, 19], this additional information takes the form of a kind
of “flow” on the diagram that prevents parts of the diagram from becoming too unwieldy.
An immediate question then is if there are other types of, more general, promises on the
structure of the diagram which then allow you to extract a circuit from it.

Aaronson showed that sampling from a post-selected quantum circuit is hard [1]. Our
results imply that some other tasks surrounding unitary post-selected circuits (that is,
circuits which perform a unitary transformation conditioned on some post-selection) are hard.
However, this hardness seems to stem not from the post-selection itself, as the post-selections
can be simulated with high probability in our case. Rather, the hardness seems to stem from
a hypothetical ability to find an equivalent, deterministic way to realise the same operation –
which implies an ability to extract difficult-to-access information about the input diagram.

A question related to circuit extraction from ZX-diagrams is circuit extraction from
deterministic measurement patterns (in for instance the one-way model or lattice surgery).
When we have a deterministic measurement pattern, we can represent each branch of the
computation by a ZX-diagram denoting a unitary. Our hardness proof does however not
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immediately translate to this setting, as it might be that the fact that all of these ZX-diagrams
are branches of the same measurement pattern forces some kind of structure on the diagrams
that might make it easier to rewrite them into circuits. The diagrams we used to show
hardness of circuit extraction are as far as we are aware not representable as branches of
some deterministic measurement pattern, so that we can’t use the same proof. We leave it
for future work to determine the hardness of extracting unitary circuits from deterministic
measurement patterns.
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Hiding Pebbles When the Output Alphabet Is
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Abstract
Pebble transducers are nested two-way transducers which can drop marks (named “pebbles”) on
their input word. Blind transducers have been introduced by Nguyên et al. as a subclass of pebble
transducers, which can nest two-way transducers but cannot drop pebbles on their input.

In this paper, we study the classes of functions computed by pebble and blind transducers, when
the output alphabet is unary. Our main result shows how to decide if a function computed by a
pebble transducer can be computed by a blind transducer. We also provide characterizations of these
classes in terms of Cauchy and Hadamard products, in the spirit of rational series. Furthermore,
pumping-like characterizations of the functions computed by blind transducers are given.
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1 Introduction

Transducers are finite-state machines obtained by adding outputs to finite automata. In
this paper, we assume that these machines are always deterministic and have finite inputs,
hence they compute functions from finite words to finite words. In particular, a deterministic
two-way transducer consists of a two-way automaton which can produce outputs. This model
computes the class of regular functions, which is often considered as one of the functional
counterparts of regular languages. It has been largely studied for its numerous regular-like
properties: closure under composition [4], equivalence with logical transductions [9] or regular
transducer expressions [5], decidable equivalence problem [11], etc.

Pebble transducers and blind transducers. Two-way transducers can only describe functions
whose output size is at most linear in the input size. A possible solution to overcome this
limitation is to consider nested two-way transducers. In particular, the nested model of
pebble transducers has been studied for a long time (see e.g. [10, 8]).

A k-pebble transducer is built by induction on k ≥ 1. For k = 1, a 1-pebble transducer
is just a two-way transducer. For k ≥ 2, a k-pebble transducer is a two-way transducer
that, when on any position i of its input word, can launch a (k−1)-pebble transducer. This
submachine works on the original input where position i is marked by a “pebble”. The
original two-way transducer then outputs the concatenation of all the outputs returned by
the submachines that it has launched along its computation. The intuitive behavior of a
3-pebble transducer is depicted in Figure 2. It can be seen as program with 3 nested loops.
The class of word-to-word functions computed by k-pebble transducers for some k ≥ 1 is
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120:2 Hiding Pebbles When the Output Alphabet Is Unary

known as polyregular functions. It has been quite intensively studied over the past few years
due to its regular-like properties such as closure under composition [8], equivalence with
logical interpretations [3] or other transducer models [2], etc.

Input word⊢ ⊣
Main machine

Input word⊢ ⊣
Submachine launched in •

pebble

Input word⊢ ⊣
Subsubmachine launched in •

pebblepebble

Figure 1 Behavior of a 3-pebble transducer.

A subclass of pebble transducers named blind transducers was recently introduced in [13].
For k = 1, a 1-blind transducer is just a two-way transducer. For k ≥ 2, a k-blind transducer
is a two-way transducer that can launch a (k−1)-blind transducer like a k-pebble transducer.
However, there is no pebble marking the input of the submachine (i.e. it cannot see the
position i from which it was called). The behavior of a 3-blind transducer is depicted in
Figure 2. It can be seen as a program with 3 nested loops which cannot see the upper loop
indexes. We call polyblind functions the class of functions computed by blind transducers. It
is closed under composition and deeply related to lambda-calculus [12].

Input word⊢ ⊣
Main machine

Input word⊢ ⊣
Submachine launched in •

Input word⊢ ⊣
Subsubmachine launched in •

Figure 2 Behavior of a 3-blind transducer.

We study here polyregular and polyblind functions whose output alphabet is unary. Up
to identifying a word with its length, we thus consider functions from finite words to N.
With this restriction, we show that one can decide if a polyregular function is polyblind, and
connect these classes of functions to rational series.

Relationship with rational series. Rational series over the semiring (N, +, ×). are a well-
studied class of functions from finite words to N. They can be defined as the closure of
(unary output) regular functions under sum +, Cauchy product C (product for formal power
series) and Kleene star ∗ (iteration of Cauchy products). It is also well known that rational
series are closed under Hadamard product H (component-wise product) [1].

The first result of this paper states that polyregular functions are exactly the subclass
of rational series “without star”, that is the closure of regular functions under + and C ( H

can also be used but it is not necessary). This theorem is obtained by combining several
former works. Our second result establishes that polyblind functions are exactly the closure
of regular functions under + and H . It is shown in a self-contained way.

The aforementioned classes are depicted in Figure 3. All the inclusions are strict and this
paper provides a few separating examples (some of them were already known in [6]).
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RATIONAL SERIES
= closure of regular under +, C , ∗ (, H )

REGULAR
= two way transducers

POLYBLIND
= blind transducers

= closure of regular under +, H

POLYREGULAR
= pebble transducers

= closure of regular under +, C (, H )

w 7→ |w|a (number of a in w)

w 7→ |w|a1 × · · · × |w|ak

an1 ban2 b · · · banm b 7→
m∑

i=1

(ni)k with k ≥ 2

w 7→ 2|w|

Figure 3 Classes of functions from finite words to N studied in this paper.

Class membership problems. We finally show how to decide whether a polyregular function
with unary output is polyblind. It is by far the most involved and technical result of this
paper. Furthermore, the construction of a blind transducer is effective, hence this result
can be viewed as program optimization. Indeed, given a program with nested loops, our
algorithm is able to build an equivalent program using “blind” loops if it exists.

In general, decision problems for transductions are quite difficult to solve, since contrary
to regular languages, there are no known “canonical” objects (such as a minimal automaton)
to represent (poly)regular functions. It is thus complex to decide an intrinsic property of a
function, since it can be described in several seemingly unrelated manners. Nevertheless, the
membership problem from rational series to polyregular (resp. regular) functions was shown
to be decidable in [7, 6]. It is in fact equivalent to checking if the output of the rational
series is bounded by a polynomial (resp. a linear function) in its input’s length.

However, both polyregular and polyblind functions can have polynomial growth rates.
To discriminate between them, we thus introduce the new notion of repetitiveness (which is
a pumping-like property for functions) and show that it exactly captures the polyregular
functions that are polyblind. The proof is a rather complex induction on the depth k ≥ 1
of the k-pebble transducer representing the function. We show at the same time that
repetitiveness is decidable and that a blind transducer can effectively be built whenever this
property holds. Partial results were obtained in [6] to decide “blindness” of the functions
computed by 2-pebble transducers. Some of our tools are inspired by this paper, such as the
use of bimachines and factorization forests. Nevertheless, our general result requires new
proof techniques (e.g. the induction techniques which insulate the term of “highest growth
rate” in the function) and concepts (e.g. repetitiveness).

Outline. We first describe in Section 2 the notions of pebble and blind transducers. In the
case of unary outputs, we recall the equivalent models of pebble, marble and blind bimachines
introduced in [6]. These bimachines are easier to handle in the proofs, since they manipulate
a monoid morphism instead of having two-way moves. In Section 3 we recall the definitions
of sum +, Cauchy product C , Hadamard product H and Kleene star ∗ for rational series.
We then show how to describe polyregular and polyblind functions with these operations.
Finally, we claim in Section 4 that the membership problem from polyregular to polyblind
functions is decidable. The proof of this technical result is sketched in sections 5 and 6. Due
to space constraints we focus on the most significant lemmas.

ICALP 2022
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2 Preliminaries

N is the set of nonnegative integers. If i ≤ j, the set [i:j] is {i, i+1, . . . , j} ⊆ N (empty if
j < i). The capital letter A denotes an alphabet, i.e. a finite set of letters. The empty word
is denoted by ε. If w ∈ A∗, let |w| ∈ N be its length, and for 1 ≤ i ≤ |w| let w[i] be its i-th
letter. If I = {i1 < · · · < iℓ} ⊆ [1:|w|], let w[I] := w[i1] · · · w[iℓ]. If a ∈ A, let |w|a be the
number of letters a occurring in w. We assume that the reader is familiar with the basics of
automata theory, in particular one-way and two-way automata, and monoid morphisms.

Two-way transducers. A deterministic two-way transducer is a deterministic two-way
automaton (with input in A∗) enhanced with the ability to produce outputs (from B∗) when
performing a transition. The output of the transducer is defined as the concatenation of these
productions along the unique accepting run on the input word (if it exists): it thus describes
a (partial) function A∗ → B∗. Its behavior is depicted in Figure 4. A formal definition can
be found e.g. in [6]. These machines compute the class of regular functions.

Input word⊢ ⊣
Run of the machine

Figure 4 Behavior of a two-way transducer.

▶ Example 2.1. The function a1 · · · an 7→ a1 · · · an#an · · · a1 can be computed by a two-way
transducer which reads its input word from left to right and then from right to left.

From now on, the output alphabet B of our machines will always be a singleton. By
identifying B∗ and N, we assume that the functions computed have type A∗ → N.

▶ Example 2.2. Given a ∈ A, the function nba : A∗ → N, w 7→ |w|a is regular.

Blind and pebble transducers. Blind and pebble transducers extend two-way transducers
by allowing to “nest” such machines. A 1-blind (resp. 1-pebble) transducer is just a two-way
transducer. For k ≥ 2, a k-blind (resp. k-pebble) transducer is a two-way transducer which,
when performing a transition from a position 1 ≤ i ≤ |w| of its input w ∈ A∗, can launch
a (k−1)-blind (resp. (k−1)-pebble) transducer with input w (resp. w[1:i−1]w[i]w[i+1:|w|]
i.e. w where position i is marked). The two-way transducer then uses the output of this
submachine as if it was the output produced along its transition. The intuitive behaviors are
depicted for k = 3 in figures 1 and 2. Formal definitions can be found e.g. in [13, 6].

▶ Example 2.3. Let a1, . . . , ak ∈ A, then nba1,...,ak
: w 7→ |w|a1 ×· · ·×|w|ak

can be computed
by a k-blind transducer. The main transducer processes its input from left to right, and it
calls inductively a (k−1)-blind transducer for nba1,...,ak−1 each time it it sees an ak.

▶ Example 2.4. The function 2 -powers : an1b · · · anmb 7→
∑m

i=1 n2
i can be computed by

a 2-pebble transducer. Its main transducer ranges over all the a of the input, and calls
a 1-pebble (= two-way) transducer for each a, which produces ni if the a is in the i-th
block (it uses the pebble to detect which block is concerned). Similarily, the function
k -powers : an1b · · · anmb 7→

∑m
i=1 nk

i for k ≥ 1 can be computed by a k-pebble transducer.

▶ Definition 2.5. We define the class of polyregular functions (resp. polyblind functions)
as the class of functions computed by a k-pebble (resp. k-blind) transducer for some k ≥ 1.

It is not hard to see that polyblind functions are a subclass of polyregular functions. Indeed,
a blind transducer is just a pebble transducer “without pebbles”.
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Bimachines. In this paper, we shall describe formally the regular, polyregular and polyblind
functions with another computation model. A bimachine is a transducer which makes a
single left-to-right pass on its input, but it can use a morphism into a finite monoid to check
regular properties of the prefix (resp. suffix) ending (resp. starting) in the current position.
This notion of bimachines enable us to easily use algebraic techniques in the proofs, and in
particular factorization forests over finite monoids.

▶ Definition 2.6. A bimachine M := (A, M, µ, λ) is:
an input alphabet A, a finite monoid M and a monoid morphism µ : A∗ → M ;
an output function λ : M × A × M → N.

M computes f : A∗ → N defined by f(w) :=
∑|w|

i=1 λ(µ(w[1:i−1]), w[i], µ(w[i+1:|w|])) for
w ∈ A∗. The production of each term of this sum is depicted intuitively in Figure 5.

Input word w[i]w[1:i−1] w[i+1:|w|]

µ(w[1:i−1]) µ(w[i+1:|w|])

Figure 5 Behavior of a bimachine when producing λ(µ(w[1:i−1]), w[i], µ(w[i+1:|w|)).

When dealing with bimachines, we consider without loss of generality total functions
such that f(ε) = 0 (the domains of two-way transducers are regular languages [14], and
the particular image of ε does not matter). In this context, it is well known that regular
functions of type A∗ → N are exactly those computed by bimachines (in other words, it
means that regular functions and rational functions are the same). Now we recall how [6]
has generalized this result to k-blind and k-pebble transducers. Intuitively, a bimachine with
external functions is a bimachine enriched with the possibility to launch a submachine for
each letter of the input (it outputs the sum of all the outputs returned by these submachines).

▶ Definition 2.7 ([6]). A bimachine with external pebble (resp. external blind, resp. external
marble) functions M = (A, M, µ,H, λ) consists of:

an input alphabet A;
a finite monoid M and a morphism µ : A∗ → M ;
a finite set H of external functions h : (A ⊎ A)∗ → N (resp. A∗ → N, resp. A∗ → N);
an output function λ : M × A × M → H.

Given 1 ≤ i ≤ |w| a position of w ∈ A∗, let hi := λ(µ(w[1:i−1]), w[i], µ(w[i+1:|w|])) ∈ H. A
bimachine M with external pebble functions computes a function f : A∗ → N defined by
f(w) :=

∑
1≤i≤|w| hi(w[1:i−1]w[i]w[i+1:|w|]). Intuitively, it means that for each position

1 ≤ i ≤ |w|, M calls an external function hi (depending on a regular property of w[1:i−1],w[i]
and w[i+1:|w|]) with input w[1:i−1]w[i]w[i+1:|w|] (that is “w with a pebble on position i”),
and uses the result hi(w[1:i−1]w[i]w[i+1:|w|]) of this function in its own output.

For a bimachine with external blind (resp. marble) functions, the output is defined by
f(w) :=

∑
1≤i≤|w| hi(w) (resp. f(w) :=

∑
1≤i≤|w| hi(w[1:i])). In this case M calls hi with

argument w (resp. the prefix of w ending in position i).

▶ Definition 2.8 ([6]). Given k ≥ 1, a k-pebble (resp. k-blind, resp. k-marble) bimachine is:
for k = 1, a bimachine (withtout external functions, see Definition 2.6);
for k ≥ 2, it a bimachine with external pebble (resp. external blind, resp. external marble)
functions (see Definition 2.7) which are computed by (k−1)-pebble (resp. (k−1)-blind,
resp. (k−1)-marble) bimachines. These (k−1)-bimachines are implicitly fixed and given
by the external functions of the main bimachine.

ICALP 2022
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▶ Remark 2.9. For pebble bimachines, a natural question is whether the inner bimachines can
ask which pebble was dropped by which ancestor, or whether they can only see that “there
is a pebble”. Both models are in fact equivalent, since the number of pebbles is bounded.
Now we recall in Theorem 2.10 that pebble and blind bimachines are respectively equivalent to
the aforementioned pebble and blind transducers. More interestingly, the marble bimachines
(which call “prefixes”) also correspond to pebble transducers. In our proofs, we shall
preferentially use the marble model to represent polyregular functions.

▶ Theorem 2.10 ([6]). For all k ≥ 1, k-pebble transducers, k-pebble bimachines and k-marble
bimachines compute the same class of functions. Furthermore, k-blind transducers and k-blind
bimachines compute the same class of functions.

3 From pebbles to rational series

The class of rational series (which are total functions A∗ → N) is the closure of regular
functions under sum, Cauchy product and Kleene star. It is well known that it can be
described by weighted automata, furthermore this class is closed under Hadamard product
(see e.g. [1, Theorem 5.5]). Let us recall the definition of these operations for f, g : A∗ → N:

the sum f + g : w 7→ f(w) + g(w);
the Cauchy product f C g : w 7→

∑|w|
i=0 f(w[1:i])g(w[i+1:|w|]);

the Hadamard product f H g : w 7→ f(w)g(w);
if and only if f(ε) = 0, the Kleene star f∗ :=

∑
n≥0 fn where f0 : ε 7→ 1, u ̸= ε 7→ 0 is

neutral for Cauchy product and fn+1 := f C fn.

▶ Example 3.1. In Example 2.3 we have nba1,...,ak
= nba1 H · · · H nbak

.

▶ Example 3.2. Let f, g : {a, b}∗ → N defined by f(wa) = 2 for w ∈ A∗ and f(w) = 0
otherwise; g(anbw) = n for w ∈ A∗ and g(w) = 0 otherwise. It is easy to see that
f C g(an1b · · · anmb) =

∑m
i=1 ni(ni−1). Hence 2 -powers = nba +f C g (see Example 2.4).

We are now ready to state the first main results of this paper. The first one shows that
polyregular functions correspond to the subclass of rational series where the use of star is
disallowed (and it also corresponds to rational series whose “growth” is polynomial).

▶ Theorem 3.3. Let f : A∗ → N, the following conditions are (effectively) equivalent:
1. f is polyregular;
2. f is a rational series with polynomial growth, i.e. f(w) = O(|w|k) for some k ≥ 1;
3. f belongs to the closure of regular functions under sum and Cauchy product;
4. f belongs to the closure of regular functions under sum, Cauchy and Hadamard products.

Proof sketch. 1 ⇔ 2 follows from [7, 6]. For 2 ⇒ 3, it is shown in [1, Exercise 1.2 of
Chapter 9] that the rational series of polynomial growth can be obtained by sum and Cauchy
products from the characteristic series of rational languages (which are regular functions).
Having 3 ⇒ 4 is obvious. Finally for 4 ⇒ 2, it suffices to note that regular functions have
polynomial growth, and this property is preserved by +, C and H . ◀

Note that Hadamard products do not increase the expressive power of this class. However,
removing Cauchy products gives polyblind functions, as shown in Theorem 3.4.

▶ Theorem 3.4. Let f : A∗ → N, the following conditions are equivalent:
1. f is polyblind;
2. f belongs to the closure of regular functions under sum and Hadamard product.
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Proof sketch. We first show 1 ⇒ 2 by induction on k ≥ 1 when f is computed by a k-blind
bimachine. For k = 1, it is obvious. Let us describe the induction step from k ≥ 1 to
k+1. Let f be computed by a bimachine M = (A, M, µ,H, λ), with external blind functions
computed by k-blind bimachines. Given h ∈ H, let f ′

h be the function which maps w ∈ A∗ to
the cardinal |{1 ≤ i ≤ |w| : λ(µ(w[1:i−1]), w[i], µ(w[i+1:|w|])) = h}|. Then f ′

h is a regular
function and f =

∑
h∈H f ′

h H h. The result follows by induction hypothesis.
For 2 ⇒ 1, we show that functions computed by blind bimachines are closed under

sum and Hadamard product. For the sum, we use the blind transducer model to simulate
successively the computation of the two terms of a sum. For the Hadamard product, we
show by induction on k ≥ 1 that if f is computed by a k-blind bimachine and g is polyblind,
then f H g is polyblind. If k = 1, we transform the bimachine for f in a blind bimachine
computing f H g by replacing each output n ∈ N by a call to a machine computing n × g.
If k ≥ 2, using the notations of the previous paragraph we have f =

∑
h∈H f ′

h H h, thus
f H g =

∑
h∈H f ′

h H (h H g). By induction hypothesis, each h H g is polyblind. Hence we
compute f H g by replacing in M each external function h by the function h H g. ◀

We conclude this section by recalling that polyregular (resp. polyblind) functions with
unary output enjoy a “pebble minimization” property, which allows to reduce the number of
nested layers depending on the growth rate of the output.

▶ Definition 3.5. We say that a function f : A∗ → N has growth at most k if f(w) = O(|w|k).

▶ Theorem 3.6 ([7, 6, 13]). A a polyregular (resp. polyblind) function f can be computed by
a k-pebble (resp. k-blind) transducer if and only it has growth at most k. Furthermore this
property can be decided and the construction is effective.

▶ Remark 3.7. The result also holds for blind transducers with non-unary outputs [13].
However, it turns out to be false for pebble transducers with non-unary outputs (unpublished
work of the author of [2]).
In the next section, we complete the decidability picture by solving the membership problem
from polyregular to polyblind functions.

4 Membership problem from polyregular to polyblind

In this section, we state the most technical and interesting result of this paper, which
consists in deciding if a polyregular function is polyblind. We also give in Theorem 4.6 a
semantical characterization of polyregular functions which are polyblind, using the notion of
repetitiveness. Intuitively, a k-repetitive function is a function which, when given two places
in a word where the same factor is repeated, cannot distinguish between the first and the
second place. Hence its output only depends on the total number of repetitions of the factor.

▶ Definition 4.1 (Repetitive function). Let k ≥ 1. We say that f : A∗ → N is k-repetitive if
there exists η ≥ 1, such that the following holds for all α, α0, u1, α1, . . . , uk, αk, β ∈ A∗ and
ω ≥ 1 multiple of η. Let W : Nk → A∗ defined by:

W : X1, . . . , Xk 7→

(
α0

k∏
i=1

ui
ωXiαi

)
.

and let w := W (1, . . . , 1). Then there exists a function F : Nk → N such that for all
X := X1, . . . , Xk ≥ 3 and Y := Y1, . . . , Yk ≥ 3, we have:

f(αw2ω−1W (X)wω−1W (Y )wωβ) = F (X1 + Y1, . . . , Xk + Yk).
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▶ Remark 4.2. If f is k-repetitive, f is also (k−1)-repetitive, by considering an empty uk.

Let us now give a few examples in order so see when this criterion holds, or not.

▶ Example 4.3. The function nba1,...,ak
(see Example 2.3) is k-repetitive for all k ≥ 1.

▶ Example 4.4. If f : A∗ → N where A = {a} is a singleton, then f is k-repetitive for all
k ≥ 1. Indeed, αw2ω−1W (X)wω−1W (Y )wωβ ∈ A∗ is itself a function of X1+Y1, . . . , Xk +Yk,
hence so is its image f(αw2ω−1W (X)wω−1W (Y )wω).

▶ Example 4.5. For all k ≥ 2, the function k -powers : an1b · · · anmb 7→
∑m

i=1 nk
i is not

1-repetitive. Let us choose any ω ≥ 1 and fix α = β := ε, u1 := a and α0 = α1 := b, then:

k -powers(W (X1, Y1)) = k -powers
(
(baωb)2ω−1baωX1b(baωb)ω−1baωY1b(baωb)ω

)
= ωk(4ω − 2) + ωkXk

1 + ωkY k
1

which is not a function of X1 + Y1 for k ≥ 2.

We are now ready to state our main result of this paper.

▶ Theorem 4.6. Let k ≥ 1 and f : A∗ → N be computed by a k-pebble transducer. Then f

is polyblind if and only if it is k-repetitive. Furthermore, this property can be decided and
one can effectively build a blind transducer for f when it exists.

▶ Remark 4.7. By Theorem 3.6, we can even build a k-blind transducer.

Theorem 4.6 provides a tool to show that some polyregular functions are not polyblind:

▶ Example 4.8. By Example 4.5, the polyregular function k -powers is not k-repetitive for
k ≥ 2. Therefore it is not polyblind. Also note that it is computable by a k-pebble transducer,
but not by an ℓ-pebble transducer for ℓ < k (Theorem 3.6).

An immediate consequence of Theorem 4.6 is obtained below for functions which have both
a unary output alphabet and a unary input alphabet. This result was already obtained by
the authors of [13] using other techniques, in an unpublished work.

▶ Corollary 4.9. Polyblind and polyregular functions over a unary input alphabet coincide.

Proof. Polyregular functions with unary input are k-repetitive by Example 4.4. ◀

5 Repetitive functions and permutable bimachines

The rest of this paper is devoted to the proof of Theorem 4.6. Since k-pebble transducers
and k-marble bimachines compute the same functions (Theorem 2.10), it follows directly
from Theorem 5.1 below (the notions used are defined in the next sections).

From now on, we assume that a k-marble bimachine uses the same morphism µ : A∗ → M

in its main bimachine, and inductively in all its submachines computing the external functions.
We do not lose any generality here, since it is always possible to get this situation by taking
the product of all the morphisms used. We also assume that µ is surjective (we do no lose
any generality, since it is possible to replace M by the image µ(M)).
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▶ Theorem 5.1. Let k ≥ 2 and f : A∗ → N be computed by M = (A, M, µ,H, λ) a k-marble
bimachine. The following conditions are equivalent:
1. f is polyblind;
2. f is k-repetitive;
3. M is 23|M |-permutable (see Definition 5.11) and the function f ′′ (built from Proposi-

tion 6.1) is polyblind.
Furthermore this property is decidable and the construction is effective.

Let us now give the skeleton of the proof of Theorem 5.1, which is rather long and involved.
The propositions on which it relies are shown in the two following sections.

Proof of Theorem 5.1. 1 ⇒ 2 follows from Proposition 5.2. For 2 ⇒ 3, if f is k-repetitive
then M is 23|M |-permutable by Proposition 5.12. Then Proposition 6.1 gives f = f ′+f ′′ where
f ′ is polyblind and f ′′ is computable by a (k−1)-marble bimachine. By Proposition 5.2, f ′ is
(k−1)-repetitive. Since f is also (k−1)-repetitive, then f ′′ = f−f ′ is also (k−1)-repetitive by
Claim 5.3. Thus by induction hypothesis f ′′ is polyblind. For 3 ⇒ 1, since in Proposition 6.1
we have f = f ′+f ′′ where f ′ and f ′′ are polyblind, then f is (effectively) polyblind. The
decidability is also obtained by induction: one has to check that M is 23|M |-permutable
(which is decidable) and inductively that f ′′ is polyblind. ◀

Now we present the tools used in this proof. We first show that polyblind functions are
repetitive. Then we introduce the notion of permutability, and show that repetitive functions
are computed by permutable marble bimachines.

5.1 Polyblind functions are repetitive
Intuitively, a blind transducer cannot distinguish between two “similar” iterations of a given
factor in a word, since it cannot drop a pebble for doing so. We get the following using
technical but conceptually easy pumping arguments.

▶ Proposition 5.2. A polyblind function is k-repetitive for all k ≥ 1.

Proof idea. We first show that a regular function (computed by a bimachine without external
functions) is k-repetitive for all k ≥ 1. In this case, η is chosen as the idempotent index of the
monoid used by the bimachine. Then, it is easy to conclude by noting that k-repetitiveness
is preserved under sums and Hadamard products. ◀

The induction which proves Theorem 5.1 also requires the following result. Its proof is
obvious since k-repetitiveness is clearly preserved under subtractions.

▷ Claim 5.3. If f, g are k-repetitive and f−g ≥ 0, then it is k-repetitive.

5.2 Repetitive functions are computed by permutable machines
In this subsection, we show that k-marble bimachines which compute k-repetitive functions
have a specific property named permutability (which turns out to be decidable).

Productions. We first introduce the notion of production. In the rest of this paper, the
notation {{· · · }} represents a multiset (i.e. a set with multiplicities). If S is a set and m is a
multiset, we write m ⊆ S to say that each element of m belongs to S (however, there can be
multiplicities in m but not in S). For instance {{1, 1, 2, 3, 3}} ⊆ N.
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▶ Definition 5.4 (Production). Let M = (A, M, µ,H, λ) be a k-marble bimachine, w ∈ A∗.
We define the production of M on {{i1, . . . , ik}} ⊆ [1:|w|] as follows if i1 ≤ · · · ≤ ik:

if k = 1, prodw
M ({{i1}}) := λ(µ(w[1:i1−1]), w[i1], µ(w[i1+1:|w|])) ∈ N;

if k ≥ 2, let h := λ(µ(w[1:ik−1]), w[ik], µ(w[ik+1:|w|])) ∈ H and Mh be the (k−1)-marble
bimachine computing h. Then prodw

M ({{i1, · · · , ik}}) := prodw[1:ik]
Mh

({{i1, . . . , ik−1}}).
The value prodw

M ({{i1, · · · , ik}}) with i1 ≤ · · · ≤ ik thus corresponds to the value output
when doing a call on position ik, then on ik−1, etc. Now let {{I1, . . . , Ik}} be a multiset of sets
of positions of w (i.e. for all 1 ≤ i ≤ k we have Ii ⊆ [1:|w|]). We define the production of M
on {{I1, . . . , Ik}} as the combination of all possible productions on positions among these sets:

prodw
M ({{I1, . . . , Ik}}) :=

∑
{{i1,...,ik}}⊆[1:|w|]

with ij∈Ij for 1≤j≤k

prodw
M ({{i1, . . . , ik}}) .

▶ Remark 5.5. Note that we no longer have i1 ≤ · · · ≤ ik.
By rewriting the sum which defines the function f from M, we get the following.

▶ Lemma 5.6. Let M be a k-marble bimachine computing a function f : A∗ → N. Let
w ∈ A∗ and J1, . . . Jn be a partition of [1:|w|]:

f(w) =
∑

{{I1,...,Ik}}⊆{J1,...,Jn}

prodw
M ({{I1, . . . , Ik}}) .

Following the definition of bimachines, the production prodw
M ({{i1, · · · , ik}}) should only

depend on w[i1], . . . , w[ik] and of the image under µ of the factors between these positions.
Now we formalize this intuition in a more general setting.

▶ Definition 5.7 (Multicontext). Given x ≥ 0, an x-multicontext consists of two sequences
of words v0, · · · , vx ∈ A∗ and u1, · · · , ux ∈ A∗. It is denoted v0Ju1Kv1 · · · JuxKvx.

Let w := v0u1 · · · ukvk ∈ A∗. For 1 ≤ i ≤ k, let Ii ⊆ [1:|w|] be the set of positions
corresponding to ui. We define the production on the multicontext v0Ju1Kv1 · · · JukKvk by:

prodM (v0Ju1Kv1 · · · JukKvk) := prodw
M ({{I1, . . . , Ik}}) . (1)

As stated in Proposition-Definition 5.8, this quantity only depends on the ui and the images
of the vi under the morphism µ of M, which leads to a new notion of productions.

▶ Proposition-Definition 5.8. Let M = (A, M, µ,H, λ) be a k-marble bimachine. Let
v0u1 · · · ukvk ∈ A∗ and v′

0u1 · · · ukv′
k ∈ A∗ be such that µ(vi) = µ(v′

i) for all 0 ≤ i ≤ k.
Then: prodM (v0Ju1Kv1 · · · JukKvk) = prodM (v′

0Ju1Kv′
1 · · · JukKv′

k). Let mi := µ(vi) = µ(v′
i),

we define prodM (m0Ju1Km1 · · · JukKmk) as the previous value.

▶ Remark 5.9. In the following, we shall directly manipulate multicontexts of the form
m0Ju1Km1 · · · JuxKmx with mi ∈ M and ui ∈ A∗. Note that an x-multicontext and a
y-multicontext can be concatenated to obtain an (x + y)-multicontext.
We finally introduce the notion of (x, K)-iterator, which corresponds to an x-multicontext in
which the words ui have length at most K ≥ 0 and have idempotent images under µ. Recall
that e ∈ M is idempotent if and only if ee = e.

▶ Definition 5.10 (Iterator). Let x, K ≥ 0 and µ : A∗ → M . An (x, K)-iterator for
µ is an x-multicontext of the form m0 (

∏x
i=1 eiJuiKeimi) such that m0, . . . , mx ∈ M and

u1, . . . , ux ∈ A∗ are such that for all 1 ≤ i ≤ x, |ui| ≤ K and ei = µ(ui) ∈ M is idempotent.
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Permutable k-marble bimachines. We are now ready to state the definition of permutability
for marble bimachines. Intuitively, this property means that, under some idempotency
conditions, prodM (m0Ju1Km1 · · · JukKmk) only depends on the 1-multicontexts of each JuiK,
which are m0µ(u1) · · · miJuiKmi+1µ(ui+1) · · · mk ∈ M for 1 ≤ i ≤ k. In particular, it does
not depend on the relative position of the ui nor on the mi which separate them. Hence, it
will be possible to simulate a permutable k-marble bimachine by a k-blind bimachine which
can only see the 1-multicontext of one position at each time.

▶ Definition 5.11. Let M be a k-marble bimachine using a surjective morphism µ : A∗ → M .
Let K ≥ 0, we say that M is K-permutable if the following holds whenever ℓ + x + r = k:

for all (ℓ, K)-iterator L and (r, K)-iterator R;
for all (x, K)-iterator m0 (

∏x
i=1 eiJuiKeimi) such that e := m0 (

∏x
i=1 eimi) idempotent;

for all 1 ≤ j ≤ x, define the left and right contexts:

leftj := e

(
j∏

i=1
mi−1ei

)
and rightj :=

Ñ
x∏

i=j

eimi

é
e.

Then if σ is a permutation of [1:x], we have:

prodM

(
L em0

(
x∏

i=1
eiJuiKeimi

)
e R

)
= prodM

(
L

(
x∏

i=1
leftσ(i) Juσ(i)K rightσ(i)

)
R

)
.

An visual description of permutability is depicted in Figure 6.

L R
e m0e1 e1

Ju1K

e1m1e2 e2

Ju2K

e2m2e3 e3

Ju3K

e3m3 e

= e

=: left1 =: right1

=: left2 =: right2

=: left3 =: right3

(a) Initial multicontext and definition of the leftj / rightj for 1 ≤ j ≤ 3.

L R
left3 e3

Ju3K

right3 left1

Ju1K

e1 right1 left2 e2

Ju2K

right2

(b) Multicontext which separates the factors using the leftj / rightj and σ.

Figure 6 Productions which must be equal in Definition 5.11, with x = 3 and σ = (3, 1, 2).

The next result follows from a technical proof based on iteration techniques (it can be
understood as a kind of pumping lemma on iterators).

▶ Proposition 5.12. Let M be a k-marble bimachine computing a k-repetitive function.
Then M is K-permutable for all K ≥ 0.

Let us finally note that being K-permutable (for a fixed K) is a decidable property. Indeed,
it suffices to range over all ℓ + x + r = k and (ℓ, K)-, (x, K)- and (r, K)-iterators (there are
finitely many of them, since they correspond to bounded sequences which alternate between
monoid elements and words of bounded lengths), and compute their productions.
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6 From permutable bimachines to polyblind functions

The purpose of this section is to show Proposition 6.1, which allows us to perform the
induction step in the proof of Theorem 5.1, by going from k to k−1 marbles.

▶ Proposition 6.1. Let M = (A, M, µ,H, λ) be a 23|M |-permutable k-marble bimachine
computing a function f : A∗ → N. One can build a polyblind function f ′ : A∗ → N and a
function f ′′A∗ → N computed by a (k−1)-marble bimachine such that f = f ′ + f ′′.

Proof overview. It follows from Equation 2 and Lemma 6.14 that:

f = (sum-depM + sum-indM) ◦ forestµ (see Theorem 6.5 for the definition of forestµ)

= sum-ind′
M ◦ forestµ︸ ︷︷ ︸
=:f ′

+ (sum-depM + sum-ind′′
M) ◦ forestµ︸ ︷︷ ︸

=:f ′′

By Lemma 6.14 one has f ′′ ≥ 0. Furthermore, sum-ind′
M is polyblind, hence f ′ is polyblind

since the class of polyblind functions is closed under pre-composition by regular functions
(even when the outputs are not unary, see [13]). Similarly, it follows from lemmas 6.12
and 6.14 that sum-depM and sum-ind′′

M are polyregular with growth at most k−1 (see
Definition 3.5), hence so is their sum and its pre-composition by a regular function [2]. Thus
f ′′ is polyregular and has growth at most k−1. By theorems 2.10 and 3.6, it can be computed
by a (k−1)-marble bimachine. ◀

Now we give the statements and the proofs of lemmas 6.12 and 6.14. An essential tool is the
notion of factorization forest, which is recalled below.

6.1 Factorization forests
If µ : A∗ → M is a morphism into a finite monoid and w ∈ A∗, a factorization forest (called
µ-forest in the following) of w is an unranked tree structure defined as follows.

▶ Definition 6.2 (Factorization forest [15]). Given a morphism µ : A∗ → M and w ∈ A∗, we
say that F is a µ-forest of w if:

either F = a and w = a ∈ A;
or F = ⟨F1⟩ · · · ⟨Fn⟩, w = w1 · · · wn and for all 1 ≤ i ≤ n, Fi is a µ-forest of wi ∈ A+.
Furthermore, if n ≥ 3 then µ(w1) = · · · = µ(wn) is an idempotent of M .

▶ Remark 6.3. If ⟨F1⟩ · · · ⟨Fn⟩ is a µ-forest, then so is ⟨Fi⟩⟨Fi+1⟩ . . . ⟨Fj⟩ for 1 ≤ i ≤ j ≤ n.
The empty forest ε is the unique µ-forest of the empty word ε.

We shall use the standard tree vocabulary of “height” (a leaf is a tree of height 1), “child”,
“sibling”, “descendant” and “ancestor” (both defined in a non-strict way: a node is itself one
of its ancestors/descendants), etc. We denote by Nodes(F) the set of nodes of F . In order
to simplify the statements, we identify a node t ∈ Nodes(F) with the subtree rooted in this
node. Thus Nodes(F) can also be seen as the set of subtrees of F , and F ∈ Nodes(F). We
say that a node is idempotent if is has at least 3 children (see Definition 6.2).

Given µ : A∗ → M , we denote by Forestsµ(w) the set of µ-forests of w ∈ A∗. If K ≥ 0,
let ForestsK

µ (w) be the µ-forests of w of height at most K. Note that Forestsµ(w) is a set of
tree structures which can also be seen as a language over Â := A ⊎ {⟨, ⟩}. Indeed, a forest of
w can also be seen as “the word w with brackets” in Definition 6.2.



G. Douéneau-Tabot 120:13

a a c a c b b c b b b c

Figure 7 The µ-forest ⟨aa⟩⟨c⟨a⟨cbbcb⟩⟩bbc⟩ on aacacbbcbbbc.

▶ Example 6.4. Let A = {a, b, c}, M=({1, −1, 0}, ×) with µ(a) := −1 and µ(b) := µ(c) := 0.
Then F := ⟨aa⟩⟨c⟨a⟨cbbcb⟩⟩bbc⟩ ∈ Forests5

µ(aacacbbcbbbc) (we dropped the brackets around
single letters for more readability) is depicted in Figure 7. Double lines are used to denote
idempotent nodes (i.e. with more than 3 children).

A celebrated result states that for any word, a forest of bounded height always exist
and it can be computed by a bimachine (with non-unary output alphabet), or a two-way
transducer. The following theorem can also be found in [2, Lemma 6.5].

▶ Theorem 6.5 ([15]). Given a morphism µ : A∗ → M , we have Forests3|M |
µ (w) ̸= ∅ for

all w ∈ A∗. Furthermore, one can build a two-way transducer (with a non-unary output
alphabet) which computes a total function forestµ : A∗ → (Â)∗, w 7→ F ∈ Forests3|M |

µ (w).

6.2 Iterable nodes and productions
We define the iterable nodes Iters(F) ⊆ Nodes(F) as the set of nodes which have both a left
and a right sibling. Such nodes are thus exactly the middle children of idempotent nodes.

▶ Definition 6.6. Let F ∈ Forestsµ(w), we define inductively the iterable nodes of F :
if F = a ∈ A is a leaf, Iters(F) := ∅;
otherwise if F = ⟨F1⟩ · · · ⟨Fn⟩, then:

Iters(F) := {Fi : 2 ≤ i ≤ n−1} ∪
⋃

1≤i≤n

Iters(Fi).

Now we define a notion of skeleton which selects the right-most and left-most children.

▶ Definition 6.7. Let F ∈ Forestsµ(w) and t ∈ Nodes(F), we define the skeleton of t by:
if t = a ∈ A is a leaf, then Skel(t) := {t};
otherwise if t = ⟨F1⟩ · · · ⟨Fn⟩, then Skel(t) := {t} ∪ Skel(F1) ∪ Skel(Fn).

Intuitively, Skel(t) ⊆ Nodes(F) contains all the descendants of t except those which are
descendant of a middle child. We then define the frontier of t, denoted FrF (t) ⊆ {1, . . . , |w|}
as the set of positions of w which belong to Skel(t) (when seen as leaves of F).

▶ Example 6.8. In Figure 7, the top-most blue node t is iterable. Furthermore Skel(t) is the
set of blue nodes, FrF (t) = {4, 5, 9} and w[FrF (t)] = acb.

Using the frontiers, we can naturally lift the notion of productions of a k-marble bimachine
from multisets of sets of positions to multisets of nodes in a forest.

▶ Definition 6.9. Let M = (A, M, µ,H, λ) be a k-marble bimachine, w ∈ A∗, F ∈ Forestsµ(w)
and t1, . . . , tk ∈ Nodes(F). We let prodF

M ({{t1, . . . , tk}}) := prodw
M ({{FrF (t1), . . . , FrF (tk)}}).
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Using Lemma 5.6, we can recover the function f from the productions over the nodes.
Lemma 6.10 roughly ranges over all possible tuples of calling positions of M.

▶ Lemma 6.10. Let f : A∗ → N be computed by a k-marble bimachine M = (A, M, µ,H, λ).
If w ∈ A∗ and F ∈ Forestsµ(w), we have:

f(w) =
∑

{{t1,...,tk}}⊆Iters(F)∪{F}

prodF
T ({{t1, . . . , tk}}) .

Proof. It follows from [6] that for all w ∈ A∗ and F ∈ Forestsµ(w), the set of frontiers
{FrF (t) : t ∈ Iters(F) ∪ {F}} is a partition of [1:|w|]. We then apply Lemma 5.6. ◀

6.3 Dependent multisets of nodes
The multisets {{t1, . . . , tk}} ⊆ Iters(F) ∪ {F} of Lemma 6.10 will be put into two categories.
The independent multisets are those whose nodes are distinct and “far enough” in F . The
remaining ones are said dependent; their number is bounded by a polynomial of degree k−1.

▶ Definition 6.11 (Independent multiset). Let µ : A∗ → M , w ∈ A∗ and F ∈ Forestsµ(w),
we say that a multiset T := {{t1, . . . , tk}} ⊆ Iters(F) is independent if for all 1 ≤ i ̸= j ≤ k:

ti is not an ancestor of tj;
ti is not the immediate left sibling of an ancestor of tj;
ti is not the immediate right sibling of an ancestor of tj.

Note that if T is independent, then F ̸∈ T since it is not an iterable node. We denote by
Indk(F) the set of independent multisets. Conversely, let Depk(F) be the set of multisets
{{t1, . . . , tk}} ⊆ Iters(F) ∪ {F} which are dependent (i.e. not independent). By Lemma 6.10,
if M = (A, M, µ,H, λ) computes f : A∗ → N and F ∈ Forestsµ(w), then:

f(w) =
∑

T∈Indk(F)

prodF
M (T) +

∑
T∈Depk(F)

prodF
M (T) (2)

The idea is now to compute these two sums separately. We begin with the second one.

▶ Lemma 6.12. Given a k-marble bimachine M = (A, M, µ,H, λ), the following function is
(effectively) polyregular and has growth at most k−1:

sum-depM : (Â)∗ → N, F 7→


∑

T∈Depk(F)

prodF
M (T) if F∈Forests3|M|

µ (w) for some w∈A∗;

0 otherwise.

▶ Remark 6.13. For this result, we do not need to assume that M is permutable.

6.4 Independent multisets of nodes
In order to complete the description of f from Equation 2, it remains to treat the productions
over independent multisets of nodes. When {{t1, . . . , tk}} ∈ Indk(F), all the ti must be distinct,
hence we shall denote it by a set {t1, . . . , tk}. We define the counterpart of sum-depM:

sum-indM : (Â)∗ → N, F 7→


∑

T∈Indk(F)

prodF
M (T) if F∈Forests3|M|

µ (w) for some w∈A∗;

0 otherwise.
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▶ Lemma 6.14. Given a k-marble bimachine M which is 23|M |-permutable, one can build a
polyblind function sum-ind′

M : (Â)∗ → N and a polyregular function sum-ind′′
M : (Â)∗ → N

with growth at most k−1, such that sum-indM = sum-ind′
M + sum-ind′′

M.

If sum-indM was a polynomial, then sum-ind′
M should roughly be its term of highest degree

and sum-ind′′
M corresponds to a corrective term.

The rest of this section is devoted to the proof of Lemma 6.14. In order to simplify the
notations, we extend a morphism µ to its µ-forests by µ(F) := µ(w) when F ∈ Forestsµ(w).
Given t ∈ Nodes(F), we denote by depthF (t) its depth in the tree structure F (the root has
depth 1, and it is defined inductively as usual). Now we introduce the notion of linearization
of t ∈ Nodes(F), which is used to describe w[FrF (t)] as a 1-multicontext.

▶ Definition 6.15 (Linearization). Let µ : A∗ → M , w ∈ A∗ and F ∈ Forestsµ(w). The
linearization of t ∈ Nodes(F) is a 1-multicontext mJuKm′ defined by induction:

if t = F then linF (t) := Jw[FrF (F)]K;
otherwise F = ⟨F1⟩ · · · ⟨Fn⟩, and t ∈ Nodes(Fi) for some 1 ≤ i ≤ n. We define:
linF (t) := µ(F1) · · · µ(Fi−1) linFi(t)µ(Fi+1) · · · µ(Fn).

We finally introduce the notion of architecture. Intuitively, it is a simple tree which describes
the positions of a set of nodes T ∈ Indk(F) in its forest F . We build it inductively on the
example depicted in Figure 8. At the root, we see that there is no node of T in the left
subtree, hence we replace it by its image under µ. The right subtree is an idempotent node
whose leftmost and rightmost subtrees have no node in T. We thus replace this idempotent
node by a leaf containing the multiset of the linearizations and depths of the t ∈ T. Since
our machine M is permutable, this simple information will be enough to recover prodF

M (T).

a a c a c b b c b b b c

(a) In blue, a set T of 3 independent nodes in the forest from Figure 7.

µ(aa) {{(µ(cac)JbKµ(bcbbbc),5), (µ(cacbb)JcKµ(bbbc),5), (µ(cacbbcbb)JbKµ(c),3)}}

(b) The corresponding architecture.

Figure 8 A set of independent nodes and its architecture.

▶ Definition 6.16 (Architecture). Let w ∈ A∗, F ∈ Forestsµ(w) and T ∈ Indk(F). We define
the architecture of T in F by induction as follows:

if F = ε, then k = 0. We define arcF (T) := ε;
if F = a, then k = 0. We define arcF (T) := µ(a);
otherwise F = ⟨F1⟩ · · · ⟨Fn⟩ with n ≥ 1:

if k = 0, we set arcF (T) = ⟨µ(F)⟩;
else if T1 := T ∩ Nodes(F1) ̸= ∅, then T1 ∈ Ind|T1|(F1) (since F1 ̸∈ T by iterability)
and T∖ T1 ∈ Indk−|T1|(⟨F2⟩ · · · ⟨Fn⟩) (since F2 ̸∈ T by independence). We set:
arcF (T) := ⟨arcF1(T1)⟩ arc⟨F2⟩···⟨Fn⟩(T∖ T1).
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else if Tn := T∩ Nodes(Fn) ̸= ∅, we define symmetrically:
arcF (T) := arc⟨F1⟩···⟨Fn−1⟩(T∖ Tn)⟨arcFn(Tn)⟩
else T1 = Tn = ∅ but k > 0, thus n ≥ 3 and µ(F) is idempotent. We define:
arcF (T) := ⟨{{(linF (t), depthF (t)) : t ∈ T}}⟩

Given a morphism, the set of architectures over bounded-height forests is finite.

▷ Claim 6.17. The set Arcs3|M |
µ := {arcF (T) : T ∈ Indk(F), F ∈ Forests3|M |

µ (w), w ∈ A∗} is
finite, given k ≥ 0 and a morphism µ : A∗ → M .

Proof. The architectures from Arcs3|M |
µ are tree structures of height at most 3|M |. Further-

more they have a branching bounded by k+3 and their leaves belong to a finite set (they are
either idempotents e ∈ M , or multisets of at most k elements of the form (mJuKm′, d) with
m, m′ ∈ M , |u| ≤ 23|M | and 1 ≤ d ≤ 3|M |). ◁

Using the permutability of the k-marble bimachine, we show that the production over a set
of independent nodes only depends on its architecture. This result enables us to define the
notion of production over an architecture.

▶ Proposition-Definition 6.18. Let M = (A, M, µ,H, λ) be a 23|M |-permutable k-marble
bimachine. Let w, w′ ∈ A∗, F ∈ Forests3|M |

µ (w) and F ′ ∈ Forests3|M |
µ (w′), T ∈ Indk(F) and

T′ ∈ Indk(F ′) such that A := arcF (T) = arcF ′(T′). Then prodF
M (T) = prodF ′

M (T′).
We define prodM (A) as the above value.

By using the previous statements, we get for all w ∈ A∗ and F ∈ Forests3|M |
µ (w):

sum-indM(F) =
∑

T∈Indk(F)

prodF
M (T) =

∑
A∈Arcs3|M|

µ

∑
T∈Indk(F)
arcF (T)=A

prodF
M (T)

=
∑

A∈Arcs3|M|
µ

prodM (A) × countA(F)

where countA(F) := |{T ∈ Indk(F) : arcF (T) = A}|. It describes the number of multisets
of independent nodes which have a given architecture. Now we show how to compute this
function as a sum of a polyblind function and a polyregular function with lower growth.

▶ Lemma 6.19. Let µ : A∗ → M . Given an architecture A ∈ Arcs3|M |
µ , one can build:

a polyblind function count′
A : (Â)∗ → N;

a polyregular function count′′
A : (Â)∗ → N with growth at most k−1;

such that countA(F) = count′
A(F) + count′′

A(F) for all F ∈ Forests3|M |
µ (w) and w ∈ A∗.

To conclude the proof of Lemma 6.14, we define the function (which is polyblind):

sum-ind′
M :=

∑
A∈Arcs3|M|

µ

prodM (A) × count′
A.

We define similarly the following function which is polyregular and has growth at most k−1:

sum-ind′′
M =

∑
A∈Arcs3|M|

µ

prodM (A) × count′′
A.
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7 Outlook

This paper provides a technical solution to a seemingly difficult membership problem. This
result can be interpreted both in terms of nested transducers (i.e. programs with visible or
blind recursive calls) and in terms of rational series. We conjecture that the new techniques
introduced here (especially the induction techniques), and the concepts of productions on
words and forests, give an interesting toolbox to tackle other decision problem for transducers
such as equivalence or membership issues. It could also be interesting to characterize polyblind
functions as the series computed by specific weighted automata over (N, +, ×).
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Abstract
We propose a syntax of regular expressions, which describes languages of tree-width 2 graphs. We
show that these languages correspond exactly to those languages of tree-width 2 graphs, definable in
the counting monadic second-order logic (CMSO).
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1 Introduction

Regular word languages form a robust class of languages. One of the witnesses for this
robustness is the variety of equivalent formalisms defining them. They can be described by
finite automata, by monadic second-order (MSO) formulas, by regular expressions or by finite
monoids [3, 6, 10]. Each of these formalisms has some advantages, depending on the context
where it is used. For example, MSO is close to natural language, regular expressions define
regular languages via their closure properties, automata have good algorithmic properties
and can be used as actual algorithms to decide membership in a language, etc. Similarly,
regular tree languages have equivalent formalisms, for various kinds of trees [11, 13, 9].

We will here further generalize the structures considered, by moving to graphs of bounded
tree-width. Intuitively, they can be thought of as “graphs which resemble trees”. In this
framework, we already know that counting MSO (CMSO), an extension of MSO with counting
predicates, and recognizability by algebra are equivalent [1, 2], yielding a notion that could
be called “regular languages of graphs of tree-width k”. Engelfriet [7] also proposes a regular
expressions formalism matching this class, but by his own admission, these expressions closely
mimic the behavior of CMSO. The main feature missing in Engelfriet’s regular expressions is
a mechanism for iteration, which is the central operator for word regular expressions: the
Kleene star.

In this paper, we propose a syntax of regular expressions for languages of tree-width 2
graphs, that follow more closely the spirit of regular expressions on words, using Kleene-like
iterations. This constitutes a first step towards the long term objective of obtaining such
expressions for languages of graphs of tree-width k. We believe the case of tree-width 2 is
already a significant step in itself. Graphs of tree-width 2 form a robust class of graphs with
several interesting characterizations. One of them is the characterization via the forbidden
minor K4, the complete graph with four vertices. By the Robertson-Seymour theorem [12], it
is known that for every k ∈ N, the class of tree-width k graphs is characterized by a finite set
of excluded minors. However, this result is not constructive, and only the forbidden minors
for k ≤ 3 are known.
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121:2 Regular Expressions for Tree-Width 2 Graphs

Let us now give more intuition about our expressions for graphs of tree-width 2. Our
Kleene-like iteration is defined in terms of least fixed points µx. e. However without restriction,
such an operator is too powerful and takes us outside of the CMSO-definable graphs. This
phenomenon actually already happens on words: with an arbitrary fixed point, we can write
µx. (axb), defining the non-regular language {anxbn | n ∈ N}. The Kleene star on words can
be seen as a restriction of the least fixed point operator: only fixed points of the form µx. ex

are allowed, where x does not appear in e. Here the idea is the same, but our restriction
will be more involved, and will require a fine understanding of the structure of tree-width 2
graphs.

This work was inspired by the work of Gazdag and Németh [8] on regular expressions for
bisemigroups and binoids. One of the main difference with our work is that their operators
are only associative, while the operations generating our graphs satisfy more properties.

The paper is structured as follows. Sec. 2 is a preliminary section where we introduce
graphs of tree-width 2, the logic CMSO and recognizability by algebra, which are known to
be equivalent. In Sec 3, we introduce regular expressions, explain the condition that the
iteration should satisfy, and give some examples to illustrate it. At the end of this section,
we state our main result, which says that this formalism is equivalent to the two introduced
in the preliminary section. We introduce in Sec. 4 the logic CMSOr, an extension of CMSO
with a very restricted form of quantification over relations, and show that it is equivalent
to CMSO. Based on this, we show in section 5 that regularity implies CMSO-definability.
Finally, we show in section 6 that recognizability implies regularity, proving our main result.

2 Preliminaries

Let Σ1 and Σ2 be two disjoint sets of unary and binary letters respectively. Throughout the
paper, we work with the alphabet Σ = Σ1 ∪ Σ2.

2.1 Tree-width 2 graphs
▶ Definition 1 (Graphs). A graph G is a tuple (V,E1, E2, s, t, l1, l2, ι, o), where V is a set of
vertices, E1 and E2 are two disjoint sets of unary and binary edges, s : E1 ⊎ E2 → V and
t : E1 → V are a source and a target functions specifying the source and the target of each
edge1, l1 : E1 → Σ1 and l2 : E2 → Σ2 are labeling functions indicating the label of each edge,
ι is the input vertex and o is the output vertex, ι and o are the interface vertices of G. All
the vertices of G which are not interface vertices are called inner vertices. The interface of G
is the pair (ι, o) if ι ̸= o, or the vertex ι otherwise. An a-edge is an edge labeled by the letter
a. We say that G is unary if ι = o, and binary otherwise. The interface of a binary edge e is
(s(e), t(e)), the interface of a unary edge e is s(e). An interface in G is a list of vertices of
length 1 or 2. A graph is empty if it has no edges, and if all its vertices are interface vertices.

▶ Remark 2. What we call here a graph is what is usually called a hypergraph (because
of the unary edges) with interface. We depict graphs with unlabeled ingoing and outgoing
arrows to denote the input and the output, respectively.

▶ Definition 3 (Paths). A path p of G is a non-repeating list (v0, e1, v1, . . . , en, vn) where vi

is a vertex of G and ei is an edge of G, such that the interface of ei is either (vi−1, vi) or
(vi, vi−1), for every i ∈ [1, n]. The path p is directed if the interface of ei is (vi−1, vi) for
every i ∈ [1, n]. The vertex v0 is the input of p, vn is its output and (v0, vn) its interface.
The path p is safe if it does not contain an interface vertex of G as an inner vertex.

1 For unary edges, we specify only their source.
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▶ Example 4. Here are some examples of graphs. The c-edge in the graph G a unary edge.

▶ Definition 5 (tw2 graphs). Consider the signature σ containing the binary operations ·
and ∥, the unary operations ◦ and dom, and the nullary operations 1 and ⊤. We define tw2
terms as the terms generated by the signature σ and the alphabet Σ:

t, u := a | t·u | (t ∥ u) | t◦ | dom(t) | 1 | ⊤ a ∈ Σ

We define the graph of a term t, G(t), by induction on t, by letting:

G (1) = G (⊤) = G (a) = G (b) = b

and interpreting the operations of the syntax as follows:

G·H = G H G∥H = G

H

dom(G) = G◦ = G

In the picture above, we represent the graph G by an arrow from its input to its output. For
example, the graph dom(G) is obtained from G by relocating the output to the input. We
usually write tu instead of t·u and give priorities to the symbols of σ so that ab∥c parses to
(a·b)∥c. We define the set of tw2 graphs as the graphs of the terms above. The graphs of a
and a ∥ 1, where a ∈ Σ, are called atomic.

We will sometimes identify terms with the graphs they generate. For example we may say
that (a ∥ b) is binary or connected to say that its graph is so.

▶ Example 6. Below, from left to right, two tw2 graphs and a graph which is not tw2.

▶ Remark 7. The tw2 graphs are exactly those graphs whose skeleton2 has tree-width 2 [4].

▶ Definition 8 (Graph languages). Sets of graphs are called graph languages. A graph
language is unary or binary if all its graphs have this arity.

2.2 Counting monadic second-order logic
We introduce CMSO, the counting monadic second-order logic, which is used to describe
graph languages.

2 The skeleton of a graph is the graph obtained by forgetting the labels and the orientation of the edges,
and by adding an edge between the input and the output.
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▶ Definition 9 (The logic CMSO). Let V be the relational signature which contains two
binary symbols source and target, two unary symbols input and output and a unary symbol a
for each (unary or binary) letter a ∈ Σ.

Let X1 be a countable set of first-order variables and X2 a countable set of set variables
The formulas of CMSO are defined as follows:

φ,ψ := r(x1, . . . , xn) | x ∈ X | x = y | ∃x.φ | ∃X.φ | φ∨ψ | ¬φ | (|X| ≡ k) [m]

where r is an n-ary symbol of V, x1, . . . , xn, x ∈ X1, X ∈ X2 and k,m ∈ N. Free and bound
variables are defined as usual. A sentence is a formula without free variables. We use the
usual syntactic sugar, for example φ ⇒ ψ as a shortcut for ¬φ ∨ ψ.

We define the semantics of CMSO formulas. To handle free variables, CMSO formulas
are interpreted over pointed graphs.

▶ Definition 10 (Semantics of CMSO). Let G be a graph and Γ be a set of variables. An
interpretation of Γ in G is a function mapping each first-order variable of Γ to an edge or
vertex of G, and each set variables to a a set of edges and vertices of G. A pointed graph
is a pair ⟨G, I⟩ where G is a graph and I is an interpretation of a set of variables Γ in G.
If Γ is empty, we denote it simply as G. Let φ be a CMSO formula whose free variables
are Γ and let ⟨G, I⟩ be a pointed graph such that I is an interpretation of Γ. We define the
satisfiability relation ⟨G, I⟩ |= φ as usual, by induction on the formula φ. Here is an example
of the semantics of some CMSO formulas:

source(v, e) : the source of the edge e is the vertex v. input(v) : v is the input of G.
target(e, v) : the target of the edge e is the vertex v. output(v) : v is the output of G.

(|X| = k)[m] : the size of X is congruent to k modulo m. a(e) : e is an a-edge.

If φ is a sentence, we define L(φ), the graph language of φ as follows:

L(φ) = {G | G is a graph and G |= φ} .

▶ Definition 11 (CMSO definability). A graph language is CMSO definable if it is the graph
language of a CMSO sentence.

▶ Example 12. The language of graphs having an a-edge from the input to the output is
definable in CMSO, by the following formula for instance:

φ := ∃e. ∃i. ∃o. input(i) ∧ output(o) ∧ a(e) ∧ source(i, e) ∧ target(e, o)

Note that the graphs of this language may not be tw2 graphs.

▶ Example 13. The set of tw2 graphs is a CMSO definable language. Indeed, tw2 graphs are
those graphs which exclude K4, the complete graph with four vertices, as minor. The set of
graphs which exclude a fixed set of minors can be easily defined in CMSO [5].

The set of tw2 graphs having an a-edge from the input to the output is definable in
CMSO, by the conjunction of the formula φ of Ex. 12 and the formula defining tw2 graphs.

We state below a localization result, which allows us to transform a CMSO sentence into
another one which talks only about a part of the original graph.

▶ Proposition 14. Let φ be a CMSO sentence, x, y ∈ X1 and X ∈ X2. There is a CMSO
formula φ|(x,X,y) such that, for every graph G and interpretation I : (x 7→ s,X 7→ H, y 7→ t),
such that (s,H, t) is a subgraph of G, we have:

⟨G, I⟩ |= φ|(x,X,y) ⇔ (s,H, t) |= φ
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▶ Remark 15. There is another presentation of the syntax of CMSO, where we remove
first-order variables and the formulas including them, and add the following formulas:

X ⊆ Y and r(X1 . . . , Xn) where r is an n-ary symbol of V.

The formula X ⊆ Y is interpreted as “X is a subset of Y ” and r(X1 . . . , Xn) as “for each i,
Xi is a singleton containing xi and r(x1 . . . , xn)”. This presentation is more convenient in
proofs by induction as there are less cases to analyze.

2.3 Recognizability
We can specify languages of graphs by means of σ-algebras, generalizing to graphs the notion
of recognizability by monoids. A σ-algebra A is the collection of a set D called its domain,
and for each n-ary operation o of σ, a function oA : Dn → D. A homomorphism h : A → B
between two σ-algebras A and B is a function from the domain of A to the domain of B
which preserves the operations of σ. Note that the set of tw2 graphs, where the operations of
σ are interpreted as in Def. 5, forms a σ-algebra which we denote by Gtw2 .

▶ Definition 16 (Recognizability). We say that a language L of tw2 graphs is recognizable if
there is a σ-algebra A with finite domain, a homomorphism h : Gtw2 → A and a subset P of
the domain of A such that L = h−1(P ).

▶ Theorem 17. If a language of tw2 graphs is CMSO definable, then it is recognizable.

2.4 Operations on graph languages
The operations of σ can be lifted from graphs to graph languages in the natural way. We say
that an operation on graph languages is CMSO compatible if, whenever its arguments are
CMSO definable, then so is its result.

▶ Proposition 18. Union and the operations of σ are CMSO compatible.

We define two additional operations: substitution and iteration.

▶ Definition 19 (Substitution and iteration). Let x be a letter, L and M be tw2 graph languages
and let be G a tw2 graph. We define the set of graphs G[L/x] by induction on G as follows:

x[L/x] = L, a[L/x] = a (a ̸= x) and o(G1 . . . , Gn)[L/x] = o(G1[L/x], . . . , Gn[L/x])

where o is an n-ary operation of σ. We define M [L/x] as:

M [L/x] =
⋃

G∈M

G[L/x]

We define similarly the simultaneous substitution M [L⃗/x⃗], where L⃗ and x⃗ are respectively a
list of tw2 graph languages and a list of letters of the same length.

For every n ≥ 1, we define the language Ln,x and the iteration µx.L as follows:

L1,x := L, Ln+1,x =: L[Ln,x/x] ∪ Ln,x, µx.L :=
⋃

n≥1
Ln,x.

▶ Remark 20. Substitution and iteration are not CMSO compatible in general. For instance,
the iteration of the CMSO language {axb}, which is the set {anxbn | n ∈ N}, is not CMSO
definable. However, under a guard condition that we introduce later, we recover CMSO
compatibility.
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We finally consider two restricted forms of iteration called Kleene and parallel iteration.

▶ Definition 21 (Kleene and parallel iteration). We define the Kleene iteration L+ and the
parallel iteration L∥ of a language L as follows, where x is a letter not appearing in L:

L+ = (µx. L·x)[L/x], L∥ = (µx. L∥x)[L/x].

2.5 Pure graphs and modules
▶ Definition 22 (Pure graphs.). Let G be a graph. If we remove the interface vertices of G
we obtain one or several connected components which we call the faces of G. The arity of a
face is the number of interface vertices of G it is incident to.

We say that G is pure if it has at least one face and all it faces have the same arity as itself.
We say that G is prime if it has exactly one face, and composite if it has at least two faces.

▶ Remark 23. Pure graphs are connected and non-empty. Not all graphs are pure.

▶ Definition 24 (Type of a pure graph). The type of a pure graph is a pair specifying its
arity and whether it is prime or composite. We say that a graph is series if it is binary and
prime, parallel if it is binary and composite, domain if it is unary and prime and test if it is
unary and composite. We denote by s, p, d and t the type series, parallel, domain and test
respectively. Series, parallel domain and test graphs look like this:

A graph language is (of type) series, parallel, domain or test if all its graphs have this type.

There is a canonical way to decompose pure graphs of type series, parallel and test.

▶ Proposition 25 ([4]). Let G be a pure graph. The graph G has the following shape:

G := P0 · U1 · P1 . . . Un · Pn if G is series,
G := S0 ∥ · · · ∥ Sn if G is parallel,
G := D0 ∥ · · · ∥ Dn if G is test,

Pj being parallel or atomic, Ui unary, Si series and Di domain, for all j ∈ [0, n], i ∈ [1, n].

Here is a picture illustrating this proposition:
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▶ Definition 26 (Contexts). Let S be a set of special (unary and binary) letters, and let
n ≥ 1. An n-context is a graph such that n of its edges, called holes, are numbered from 1 to
n, and labeled by n distinct special letters. We call 1-contexts simply contexts.

Let C be an n-context whose holes are h1 . . . , hn and let H1, . . . ,Hn be graphs such that
hi and the Hi have the same arity, for all i ∈ [1, n]. We define C[H1, . . . ,Hn] as the graph
obtained from the disjoint union of C and H1, . . . ,Hn, by removing the holes of G, and for
every i ∈ [1, n] identifying the input of hi with the input of Hi, the output of hi with the
output of Hi, and by letting its interface of to be that of C.

▶ Definition 27 (Islands and modules). An island of a graph G is a graph H such that there
is a context C satisfying G = C[H]. A module is a island which is pure. Two islands (or
modules) of a graph are parallel if they have the same interface.
Since modules are pure, we can speak of series, parallel, domain and test modules of a graph.

The following picture illustrates a unary and binary island of a graph.

▶ Remark 28. Our notion of modules is different from the one usually used in graph theory,
more precisely in the setting of modular decompositions.

▶ Remark 29. The parallel composition of two islands of a graph G with the same interface
is also an island of G with the same interface. Similarly, the parallel composition of two
modules of a graph G with the same interface is also a module of G with the same interface.
This justifies the following definition.

▶ Definition 30 (Maximal islands and modules). Let G be a graph and I an interface in G.
The maximal island at I is the parallel composition of all the islands of G whose interface is
I, we denote it by max-islandG(I). The maximal module at I is the parallel composition of
all the modules of G whose interface is I, we denote it by max-moduleG(I).

▶ Remark 31. The maximal module at a given interface does not always exist.

▶ Proposition 32. Being series, parallel, domain, test, an island, a module, a maximal
island, a maximal module are CMSO definable properties.

3 Regular expressions for tw2 graphs

3.1 Regular expressions for word and multiset graphs

▶ Definition 33 (Word and multiset alphabets). Let Σw be the set of terms whose graphs have
the following form, where a, b ∈ Σ2 and c ∈ Σ1:

Let Σm be the set of terms whose graphs have the following form, where a ∈ Σ2 and b ∈ Σ1:
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Word graphs are the graphs generated from those of Σw by series composition, and multiset
graphs are the graphs generated from those of Σm by parallel composition.

▶ Example 34. Below, from left to right, a word graph and two multiset graphs.

▶ Definition 35 (Word an multiset expressions). Word expressions are defined as follows:

e, f := a | e · f | e ∪ f | e+ (a ∈ Σw)

Multiset pre-expressions are defined as follows:

e, f := a | (e ∥ f) | e ∪ f | e∥ (a ∈ Σm)

Multiset expressions are those pre-expressions, where each sub-term appearing under a
parallel iteration, is built using a single element a ∈ Σm (all the other operations are allowed).
The graph language of an expressions is defined as usual.

▶ Remark 36. To see why the condition on multiset regular expressions is useful, consider the
expression e = (a∥b). The language of its parallel iteration is the set of multiset graphs which
have the same number of a-edges and b-edges, and this is not a CMSO definable language.

3.2 Context-free expressions
▶ Definition 37 (Context-free expressions). We define context-free expressions as the set of
terms generated by the following syntax:

e, f := ew | em

| e · f | (e ∥ f) | e◦ | dom(e) | 1 | ⊤
| e ∪ f | e[f/x] | µx.e

where ew and em are respectively word and multiset regular expressions. We define the
language of a context-free expression e, denoted L(e), by induction on e, interpreting the
operations of the syntax as described in Sec. 2.4.

Regular expressions for tw2 graphs will be defined as a restriction of context-free expressions,
where substitution and iteration are allowed only under a guard condition that we shall
explain in the following.

3.3 The guard condition
▶ Definition 38 (Guarded letters). Let G be a graph and x a letter. We say that:

x is s-guarded in G if x is binary and every x-labeled edge of G is parallel to a module.
x is p-guarded in G if x is binary and no x-labeled edge of G is parallel to a module.
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x is d-guarded in G if x is unary.
x is t-guarded in G if x is unary and no x-labeled edge of G is parallel to a module.

Let τ ∈ {s, p, d, t} be a type and L a graph language. We say that x is τ -guarded in L if it is
τ -guarded in every graph of L.

▶ Definition 39 (Guard condition). Let x be a letter, M a tw2 graph language and L a pure
language of type τ . The substitution M [L/x] is guarded if x is τ -guarded in M . The iteration
µx.L is guarded if x is τ -guarded in L.

We say that the iteration µx.L is of type τ if L is of type τ .

▶ Definition 40 (Regular expression). A regular expression is a context-free expression where
every substitution and iteration is guarded. A language of graphs is regular if it is the
language of some regular expression.

▶ Remark 41. When L is test and x is a unary letter, then µx.L is always guarded.

▶ Proposition 42. We can decide if a context-free expression is regular.

▶ Remark 43. Be aware that prop. 42 is about deciding a syntactic property of e, namely
that the iterations and substitutions are guarded. However, the problem of determining if a
context-free expression defines a CMSO language is undecidable. This apparent contradiction
comes from the fact that some context-free expressions, which are not guarded, define CMSO
languages, as we shall see in the upcoming examples.

3.4 Examples
▶ Example 44. The iteration µx.axb is not guarded. Indeed, the language of axb is series,
as it contains a single series graph G. However, the letter x is not s-guarded in G, because it
is not parallel to any module of G. The graph of this iteration look like this:

▶ Example 45. The iteration µx.a(x ∥ c)b is guarded. Indeed the language of a(x ∥ c)b is
series, actually it contains a single graph G, depicted below left, which is series. The letter x
is s-guarded in G, because it is parallel to a module, namely the c-edge. The graph of this
iteration look like this:

Note the similarity between the graph language of µx.axb and that of µx.a(x ∥ c)b: the
former is obtained by forgetting the c-edges of the latter. Yet, the latter is CMSO definable,
while the former is not. In the case of µx.a(x ∥ c)b, the c-edges will guide a CMSO formula
to relate the a-edges and the b-edges of the same iteration depth. This is the main intuition
behind the guard condition for series languages.

▶ Example 46. The iteration µx.(axa ∥ axa) is guarded. Indeed, the language of (axa ∥ axa)
is parallel, as it contains a unique graph G (the left graph below) which is parallel. The
letter x is p-guarded because all the occurrences of x are not parallel to any module of G.
Note that the graphs of this expression have the following shape: they all start with a binary
tree whose edges are labeled by a, end ends with the mirror image of this tree, while the
corresponding leafs are connected by an x-edge. Those trees are colored in red below.
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At first glance, this expression dos not seem to be CMSO definable, as it seems that we need
to test whether a graph starts and ends with the same tree. We will see however that the
language of this expression, as those of all regular expressions, is CMSO definable.

The guard condition is not “perfect”, in the sense that some non-guarded context-free
expressions might generate CMSO definable languages, as shown in the following example.

▶ Example 47. The context-free expression (µx.axb)[1/a, 1/x, 1/b] is not regular because the
iteration µx.axb is not guarded. However its language, the graph of 1, is CMSO definable.

▶ Remark 48. Intuitively, the guard condition allows only those graphs where series and
parallel operations alternate. This why we add the word and multiset expressions: to allow
graphs where we can iterate only series or parallel operations respectively.

3.5 Main result
The main result of this paper is the following theorem:

▶ Theorem 49. Let L be a language of tw2 graphs. We have:

L is recognizable ⇔ L is CMSO definable ⇔ L is regular

Thanks to Thm. 17, CMSO definability implies recognizablity. We show that regularity
implies CMSO definability in Sec. 5 and that recognizabilty implies regularity in Sec. 6.

4 Companion relations

▶ Definition 50 (Companion relation). Let G be a graph. Two paths of G are orthogonal if
they do not share any edge, and whenever they share a vertex, it is necessarily an interface
vertex of one of them. A set of paths is a set of orthogonal paths if its paths are pairwise
orthogonal.

A relation R on the vertices of G is a companion relation if there is a set of orthogonal
paths P such that (v, w) ∈ R iff (v, w) is the interface of a path p ∈ P . We say that p is a
witness for (v, w), and that P is a witness for the relation R.

▶ Example 51. The relation indicated by the green dotted arrows below is a companion
relation. This is not the case for the one indicated by the red dotted arrows.

We introduce CMSOr, an extension of CMSO where quantification over companion
relations is possible.
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▶ Definition 52 (The logic CMSOr). Let Xr be a set of relation variables, whose elements
are denoted R,S, . . . . The formulas of CMSOr are of the following form:

φ := CMSO | ∃R. φ | (x, y) ∈ R (R ∈ Xr, x, y ∈ X1).

As for CMSO, we need to define the semantics of a formula over pointed graphs to handle
free variables.

▶ Definition 53 (Semantics of CMSOr). Let G be a graph and Γ be a set of variables. An
interpretation of Γ is as usual, but here every relation variable is mapped to a binary relation
on the vertices of G. We define the satisfiability relation ⟨G, I⟩ |= φ as usual, by induction
on the formula φ. The only new cases are the quantification ∃R which is interpreted as “there
exists a companion relation R on the vertices of the graph”, and the formulas (x, y) ∈ R

which are interpreted as “there is a pair of vertices (x, y) in R”.

4.1 The logic CMSOr have the same expressive power as CMSO
To guess a companion relation in CMSO, we show how to encode a set of guarded paths by a
collection of sets called a footprint.

▶ Definition 54 (Frontier edges of a path). Let p = (v0, e1, v1, . . . , en, vn) be a path. If n > 1,
we call e1 the opening edge of p and en its closing edge. If n = 0, we call e0 its single edge.
Opening, closing and single edges are called the frontier edges of p, the other edges are called
its inner edges.

▶ Definition 55 (Footprint). A footprint in a graph G is the following collection of data:
a partition of the vertices of G into non-path and path vertices, a partition of edges into
non-path and path edges, a partition of path edges into frontier and inner edges, a partition
of frontier edges into opening, closing and single edges and a partition of path edges into
direct and inverse edges.

The partition of path edges into direct and inverse ones provides them with a new
orientation: they conserve their original orientation if they are direct, or get reversed (we
swap the source and target) if they are inverse edges.

Let F be a footprint. A path p is encoded by F if its edges and vertices are path edges and
path vertices of F, if its inner, frontier, opening, closing and single edges are edges of the
corresponding sets in F. Moreover, p must form a directed path with the new orientation
dictated by F.

▶ Example 56. We represent below a footprint in the left graph of Ex. 51. Non-path edges
and vertices are grey, path vertices are black, opening edges are green, closing edges are
yellow, single edges are pink and all the other inner edges are black. For path edges, we
display the new orientation induced by the footprint instead of the original one. The set of
paths encoded by this footprint are a witness that the green relation of Ex. 51 is a companion
relation.

▶ Proposition 57. Let G be a graph and P a set of orthogonal paths of G. There is a
footprint F such that P is the set of paths encoded by F.

▶ Corollary 58. If a language is CMSOr definable then it is CMSO definable.
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5 Regular implies CMSO definable

▶ Theorem 59. If a language is regular, then it is CMSO definable.

To prove Thm. 59, we proceed by induction on regular expressions. The cases of word
and multiset regular expressions follow from the similar result for words and commutative
words. The cases of union and the operations of the signature σ follow from Prop. 18. We
are left with the cases of substitution and iteration; the rest of this section is dedicated to
proving the following proposition.

▶ Proposition 60. Let x be a letter and L and M be languages of tw2 graphs. We have:

M [L/x] is guarded and L and M are CMSO-definable ⇒ M [L/x] is CMSO-definable.
µx.L is guarded and L is CMSO-definable ⇒ µx.L is CMSO-definable.

We handle the case of iteration, the case of substitution being similar. We show first that
the iteration of a CMSO definable language, without any guard condition, is definable in an
extension of CMSO where we are allowed to quantify existentially over sets of subgraphs
of the input graph, which we call CMSOd. This logic is obviously strictly more expressive
then CMSO, because it amounts to quantify over sets of sets. Based on this, we show that
the guarded iteration of a CMSO definable language is definable in CMSOr, the extension of
CMSO with companion relations defined in the previous section. This concludes the proof,
the logic CMSOr being equivalent to CMSO.

5.1 Iteration of CMSO formulas is CMSOd definable
5.1.1 Decompositions
When a graph is in the iteration µx.L of some language L, it is possible to structure it into
a tree shaped decomposition, such that each part of this decomposition “comes from L”. In
the following, we define such decompositions.

▶ Definition 61 (Independent graphs). Let G be a graph and H,K be subgraphs of G. We
say that H and K are independent if they do not share any edge; and whenever they share a
vertex, it is necessarily an interface vertex of both H and K.

▶ Definition 62 (Decompositions). A decomposition of G is a set D of modules of G such
that G ∈ D and for every pair of graphs in D, they are either independent, or module one of
the other. We call the graphs of a decomposition its components. We call the interfaces of D
the set of interfaces of its components.

Let H and K be components of a decomposition D. We say that H is a child of K, if H
is a module of K, and if there is no component C of D, distinct from H and K, such that H
is a module of C and C is a module of K.

The graph G is called the head of D. A component of D is a leave if it does not contain
another component of D as a module.

▶ Definition 63 (Body of a component). Let G be a graph, D a decomposition of G and C a
component of D.

The body of C is the subgraph of G whose vertices are those of C minus the inner
vertices of its children; and whose edges are those of C minus those of its children.

The x-body of C is the graph whose interface is the interface of C, whose vertices are
the vertices of the body of C, and whose edges are the edges of the body of C plus, for each
child F of C, an x-edge whose interface is the interface of F . We denote it by x-bodyD(C).
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▶ Definition 64 (L-decompositions). Let L be a graph language. An L-decomposition of a
graph G is a decomposition of G such that the x-body of each of its components is in L.

▶ Remark 65. The body of a component is a subgraph of G, but its x-body is not a subgraph
of G in general, because of the added x-edges.

▶ Proposition 66. Let L be a graph language. We have:

G ∈ µx.L ⇔ ∃D. D is an L-decomposition of G.

5.1.2 The logic CMSOd

Let φ be a CMSO formula defining a graph language L. Using Prop 66, we can express that
a graph G is in the iteration µx.L by guessing a decomposition D of G, and ensuring that
the x-body of each component satisfies φ. But guessing a set of subgraphs is not expressible
in CMSO. This is why we introduce CMSOd, an extension of CMSO where this is allowed.

▶ Definition 67 (CMSOd logic). Let Xd be a set of graph set variables, whose elements are
denoted X ,Y . . . . The formulas of CMSOd are of the following form:

φ := CMSO | ∃X . φ | (s, Z, t) ∈ X (X ∈ Xd, Z ∈ X2, s, t ∈ X1).

Free and bound variables are defined as usual. As for CMSO, we need to define the semantics
of a formula over pointed graphs to handle free variables.

▶ Definition 68 (Semantics of CMSOd). Let G be a graph and Γ be a set of variables.
An interpretation of Γ is a function mapping every first-order variable of Γ to an edge

or vertex of G, every set variable to a set of edges and vertices of G, and every graph set
variable to a set of subgraphs of G.

We define the satisfiability relation ⟨G, I⟩ |= φ as usual, by induction on φ. The only new
cases compared to CMSO are the quantification ∃X which is interpreted as “there exists a set
of subgraphs X ”, and the formulas (s, Z, t) ∈ X which are interpreted as “the graph whose
input is s, whose output is t and whose set of edges and vertices is Z, is an element of X ”.

▶ Proposition 69. There is a CMSOd formula decomp(X ), without graph set quantification,
such that for every graph G and every set of subgraphs D of G, we have:

⟨G,X 7→ D⟩ |= decomp(X ) ⇔ D is a decomposition of G.

5.1.3 Iteration is expressible in CMSOd

Given a CMSO formula φ, we construct a formula JφK having X as unique free variable,
which expresses the fact that the x-body the head of the decomposition X satisfies φ. To
construct JφK, we need the following definition.

▶ Definition 70 (Complete sets). Let D be a decomposition of a graph G.
Let H be a set of edges and vertices of G. We say that H is complete if, whenever it

contains an edge or an inner vertex of a child C of G (seen as a component of D), then it
contains all the edges and inner vertices of C.

Let K be a set of edges and vertices of the x-body of G. We denote by completeD(K) the
set of edges and vertices of G, obtained from K by replacing every x-edge coming from a
child C of G by the set of edges and inner vertices C.
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▶ Remark 71. Note that if H is complete, there is a set S such that H = completeD(S).

Here is a picture illustrating complete sets. The green part is the body of G and the
purple modules are its children. The yellow sets are complete, but the pink one is not.

▶ Proposition 72. The following formulas are CMSOd definable:

childX (Y ) : Y is the set of edges and inner vertices of a child of the input
graph w.r.t. the decomposition X .

is-completeX (Y ) : Y is complete wrt X .

body-edgeX (Y ) : Y is a singleton containing an edge from the body of the input
graph wrt X .

sourceX (Y, Z) : childX (Z) and Y is a singleton containing the input of the cor-
responding child.

targetX (Y, Z) : the same as above, where input should be replaced by output.

choiceX (Y, Z) : Z contains all the body elements of Y , and for every child con-
tained in Y , Z contains exactly one element of this child.

We construct the formula JφK by induction on the structure of φ. We suppose that φ is build
using the syntax of CMSO where only set variables are allowed.

▶ Definition 73. Let φ be a CMSO formula whose free variables are Γ. We define the CMSOd

formula JφK, whose free variables are Γ ∪ {X }, by induction as follows:

Jφ ∨ ψK = JφK ∨ JψK

J¬φK = ¬ JφK

J(|Y | ≡ k)[m]K = ∃Z. choiceX (Y,Z) ∧ (|Z| ≡ k)[m]
JY ⊆ ZK = Y ⊆ Z

Ja(Y )K = a(Y ) (a ̸= x)
Jx(Y )K = childX (Y ) ∨ (body-edgeX (Y ) ∧ x(Y ))
J∃Y. φK = ∃Y. is-completeX (Y ) ∧ JφK

Jsource(Y, Z)K = (body-edgeX (Z) ∧ source(Y,Z)) ∨ (childX (Z) ∧ sourceX (Y,Z))
Jtarget(Y,Z)K = (body-edgeX (Z) ∧ target(Y, Z)) ∨ (childX (Z) ∧ targetX (Y,Z))

Transfer results are results of this form: to check that a transformation f(G) of a structure
G satisfies a formula φ, construct a formula f−1(φ) that G should satisfy. The proposition
below is a transfer result, where the transformation is the x-body.

▶ Proposition 74. Given a CMSO sentence φ defining, there is a CMSOd formula JφK having
X as unique free variable, such that for every graph G and every decomposition D of G whose
components are non-empty:

⟨G,X 7→ D⟩ |= JφK ⇔ x-bodyD(G) |= φ.
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The formula JφK expresses the fact that the x-body of the head of a decomposition
satisfies φ. Using this formula and the localization construction of Prop. 14, we construct a
formula µx.L saying that the x-body of all the components of a decomposition satisfy φ.

▶ Definition 75. If φ is a CMSO formula, we let µx.φ be the following CMSOd formula:

µx.φ := ∃X . decomp(X ) ∧ ∀s.∀Z. ∀t. (s, Z, t) ∈ X ⇒ JφK |(s,Z,t)

The following proposition says that the language of µx.φ is the iteration of that of φ.

▶ Proposition 76. If φ is a CMSO formula defining a language of non-empty graphs, then:

L(µx.φ) = µx.L(φ).

▶ Corollary 77. If L is CMSO definable then µx.L is CMSOd definable.

5.2 Guarded iteration of CMSO languages is CMSOr

The idea here is that when the iteration µx.L is guarded, L-decompositions can be encoded
by sets of edges and vertices and by companion relations.

5.2.1 The case of test languages
Let µx.L be a guarded iteration of type test, G ∈ µx.L and D an L-decomposition of G.
Suppose that G is the left graph below, and that the red vertices are the interfaces3 of D.

We claim that, thanks to the guard condition, this information is enough to reconstruct the
whole decomposition D. More precisely, we claim that the components of D are exactly the
maximal modules of G, whose interfaces are the red vertices, as depicted above.

▶ Definition 78. Let G be a graph and S be a set of vertices of G. We define Dt(S) as the
set of maximal modules of G, whose type is test, and whose interfaces belong to S.

▶ Proposition 79. Let µx.L be a guarded iteration of type test. We have:

G ∈ µx.L ⇔ ∃S. S is a set of vertices of G and
Dt(S) is an L-decomposition of G.

Proof. (⇒) Follows from Prop. 66. To prove (⇐), we define the property Pn as follows:

Pn : ∀G. G ∈ Ln,x ⇒ ∃S. S is a set of vertices of G and
Dt(S) is an L-decomposition of G.

We prove, by induction on n, that Pn is valid for every n ≥ 1, and this is enough to conclude.

3 Recall that test graphs are unary, hence all the components of a decomposition of G are unary.
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When n = 1, take S to be the singleton containing the interface of G. We have that
Dt(S) = {G} and since G ∈ L, we have that Dt(S) is an L-decomposition of G.

Let G ∈ Ln+1,x. By definition, there is a k-context H and graphs G1, . . . , Gk such that:

G = H[G1, . . . , Gk], H[x, . . . , x] ∈ L and Gi ∈ Ln,x, for i ∈ [1, k].

Thanks to the guard condition, there is no module of H parallel to a hole of H . For every
i ∈ [1, k], let Si be the set of vertices provided by the induction hypothesis applied to the
graph Gi. Here is a picture illustrating these notations:

The set of subgraphs D defined below is an L-decomposition of G.

D := Dt(S1) ∪ · · · ∪ Dt(Sk) ∪ {G}

To conclude we only need to find a set of vertices S of G such that Dt(S) = D. Let
S = S1 ∪ · · · ∪ Sk ∪ {ι}, where ι is the interface of G. Let us show that Dt(S) = D. This is a
consequence of the following lemma:

▶ Lemma 80. Let C be a context, K a graph and I an interface in H of the same arity as
the hole of C. Suppose that the hole of C is not parallel to any module. We have:

max-module C[K](I) = max-module K(I) ◀

▶ Theorem 81. Suppose that µx.L is a guarded iteration of type test. We have:

L is CMSO definable ⇒ µx.L is CMSO definable

Proof. Let φ be a CMSO formula whose language is L. We transform the CMSOd formula
µx.φ of Def. 75, whose language is µx.L, into a CMSO formula µxg.φ of the same language.
The formula µxg.φ is obtained by replacing the quantification ∃X . by the set quantification
∃S. , and by replacing every sub-formula of µx.φ of the form (s, Z, t) ∈ X by this formula:

(s = t) ∧ s ∈ S ∧ “(s, Z, t) is a maximal module”

The last part of this formula is expressible in CMSO thanks to Prop. 32. The language of
µxg.φ is the set of graphs for which we can find an L-decomposition encoded by a set of
vertices S, and this is precisely the language µx.L thanks to Prop. 79. ◀

5.2.2 The case of domain languages
Let µx.L be a guarded iteration of type domain, G ∈ µx.L and D an L-decomposition of G.
Contrarily to the test case, the interfaces of D are not enough to reconstruct D. Indeed, in
this case, a component of D whose interface is v is not necessarily the maximal module at v,
but some domain module of interface v, among possibly many others. A way to determine
if a domain module is in the decomposition is to check whether it contains an interface of
the decomposition. This works only for the components which are not the leaves of the
decomposition. This is why we need to say explicitly which domain modules are the leaves.
We do so by coloring the edges of the later.
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In the following, we show that a set of vertices of a graph (representing the interfaces
of a decomposition) together with a coloring of this graph (indicating which modules are
leaves), is enough to recover the decomposition.

▶ Definition 82 (Coloring, active modules.). A coloring of a graph G is a set of its edges
called leaf edges. A module of G is active if it contains a leaf edge.

▶ Definition 83 (Dd(S, col)). Let G be a graph, S a set of vertices and col a coloring of G.
We let Dd(S, col) bet the set of active modules of G of type d, whose interfaces belong to S.

▶ Proposition 84. Let µx.L : d be a guarded iteration. We have:

G ∈ µx.L ⇔ ∃S, col. S is a set of vertices and col a coloring of G such that
Dd(S, col) is an L-decomposition of G.

Proof. Similar to the proof of prop. 79. ◀

As in the previous section, we use Prop. 84 to get the following theorem.

▶ Theorem 85. Suppose that µx.L : d be a guarded iteration. We have:

L is CMSO definable ⇒ µx.L is CMSO definable

5.2.3 The case of parallel languages
The case of guarded iterations of type parallel is similar to the test case. Let µx.L be a
guarded iteration of type parallel, G ∈ µx.L and D an L-decomposition of G. We show that
the interfaces I of D is enough to recover the whole decomposition D, because its components
are the maximal modules of G whose interfaces belong to I. However, in this case, I is no
longer a set of vertices, but a set of pairs of vertices, that is a relation on the vertices of G.
We will show that this relation is necessarily a companion relation. Using this result and the
fact that CMSO and CMSOr have the same expressive power, we prove that the iteration is
CMSO definable.

▶ Definition 86 (Dp(R)). Let G be a graph and R a relation on the vertices of G. We define
Dp(R) as the set of maximal modules of G, whose type is parallel, and whose interfaces
belong to S.

▶ Proposition 87. Let µx.L be a guarded iteration of type parallel. We have:

G ∈ µx.L ⇔ ∃R. R is a set of vertices of G and
Dp(R) is an L-decomposition of G.

▶ Proposition 88. Let µx.L be an iteration of type parallel and let G a graph. The interfaces
of every L-decomposition of G form a companion relation.

Proof. We prove by induction on n ≥ 1 that the interfaces of every L-decomposition of
depth n of some graph G form a companion relation, witnessed by a set of paths P , such
that the interface of G is witnessed by two parallel paths of P .

When n = 1, the decomposition D is reduced to the graph G. Since G is parallel, it has
two parallel paths whose interface is the interface of G. Take P to be these two paths.

Suppose that D is a decomposition of depth n+ 1. Hence it is of the form:

D = D1 ∪ . . .Dk ∪ {G}
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where Di is an L-decomposition of depth at most n, of a graph Gi, for every i ∈ [1, k]. Let
Pi be the set of paths provided by the induction hypothesis for Di, and let pi, qi be the two
paths witnessing the interface of Gi, for i ∈ [1, k].

We set H := x-bodyD(G). Since H is parallel, it has two parallel paths p and q whose
interface is the interface of H . We transform the paths p and q of H into the paths p′ and q′

of G as follows. The paths p′ and q′ are obtained from p and q respectively by the following
procedure: if e is an x-edge of H which is substituted by some Gi, then replace e by the
path of pi. Let P be the following set of paths:

P = (P1 \ {p1}) ∪ . . . (Pk \ {pk}) ∪ {p′, q′} .

The set P is orthogonal and witnesses the interfaces of D. Moreover, the interface of G is
witnessed by two parallel paths of P , namely p′ and q′. This concludes the proof. ◀

▶ Theorem 89. Suppose that µx.L is a guarded iteration of type parallel. We have:

L is CMSO definable ⇒ µx.L is CMSO definable

5.2.4 The case of series languages
Let µx.L be a guarded iteration of type series, G a graph in µx.L and D an L-decomposition
of G whose set of interfaces is I. As for the domain case, the set I is not enough to reconstruct
the decomposition D, and we need a coloring of the graph to determine which modules are
the leaves of the decomposition D. We show also that the set of interfaces I is a companion
relation, which will be enough to conclude.

▶ Definition 90 (Ds(R, col)). Let G be a graph, R a relation on the vertices of G and col
a coloring of G. We let Ds(R, col) bet the set of active modules of G of type series, whose
interfaces belong to R.

▶ Proposition 91. Let µx.L be a guarded iteration of type series. We have:

G ∈ µx.L ⇔ ∃R, col. R is a relation on the vertices of G,
col is a coloring of G and
Ds(R, col) is an L-decomposition of G.

▶ Proposition 92. Let µx.L be a guarded iteration of type series and let G be a graph. The
interfaces of every L-decomposition of G form a companion relation.

▶ Theorem 93. Suppose that µx.L is a guarded iteration of type series. We have:

L is CMSO definable ⇒ µx.L is CMSO definable

6 Recognizable implies regular

▶ Theorem 94. If a language of tw2-graphs is recognizable, then it is regular.

We proceed gradually, by showing that this result holds for domain-free graphs, for
domain-free graphs, then for tw2 graphs.

▶ Definition 95 (Domain-free). A graph is domain-free if all its domain modules are atomic.

To give an example of how these proofs work, suppose that we have the following property:
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▶ Proposition 96. If a language of domain-free graphs is recognizable, then it is regular.

Using Prop. 96, let us show the following property:

▶ Proposition 97. If a language of domain graphs is recognizable, then it is regular.

Proof. Let L be a language of domain graphs, A an algebra whose domain is D, h : Gtw2(Σ) →
A a homomorphism and F ⊆ D such that h−1(F ) = L. Let us show that Lv, the set of
graphs over Σ whose image is v, is regular for every v ∈ D.

We associate every v ∈ D with a new letter xv and let Γ := {xv | v ∈ D}. If Q ⊆ D, we
denote by XD the letters of Γ corresponding to these elements. We extend the homomorphism
h to tw2-graphs over the alphabet Σ ∪ Γ by letting h(xv) = v for every xv ∈ Γ.

Let v ∈ D, Q ⊆ D and X ⊆ Γ. We define the set of graphs LQ,X
v as follows. We let G be

in this set if and only if:
G is a domain graph over the alphabet Σ ∪X,
the image of G is v,
the image of the strict domain modules of G belong to Q.

Let us show that LQ,X
v is regular when XQ ∩X = ∅. We proceed by induction on the size

of Q. Suppose that Q = ∅. This case is based on the following lemma, obtained by case
analysis on the graph G.

▶ Lemma 98. Let G be a domain graph whose domain modules, distinct from G itself, are
all atomic. There is a domain-free graph H such that G = dom(H).

For every w ∈ D, let MX
w be the set of domain-free graphs over the alphabet Σ ∪X whose

image is w. By Lem. 98, we have the following equation:

L∅,X
v =

⋃
w∈D

dom(w)=v

dom(Mw)

which concludes the base case, thanks to Prop. 96. To handle the inductive case, we notice
the following equality:

LQ∪{w},X
v = LQ,X∪{xw}

v [µxw. L
Q,X∪{xw}
w /xw][LQ,X

w /xw] ◀

7 Conclusion

We are interested in studying the complexity-theoretic properties of our expressions. For
instance understanding the complexity of deciding whether an expression is guarded, and
what are the costs of translations between different formalisms (expressions, CMSO, algebra).
This can help us get a better grasp of what role these expressions can play, and what is the
fine interplay between these different formalisms. As stated in the introduction, this work on
tree-width 2 graphs is meant to constitute a first step towards the case of tree-width k.
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Abstract
We study synthesis of reactive systems interacting with environments using an infinite data domain.
A popular formalism for specifying and modelling such systems is register automata and transducers.
They extend finite-state automata by adding registers to store data values and to compare the
incoming data values against stored ones. Synthesis from nondeterministic or universal register
automata is undecidable in general. However, its register-bounded variant, where additionally a
bound on the number of registers in a sought transducer is given, is known to be decidable for
universal register automata which can compare data for equality, i.e., for data domain (N, =). This
paper extends the decidability border to the domain (N, <) of natural numbers with linear order.
Our solution is generic: we define a sufficient condition on data domains (regular approximability)
for decidability of register-bounded synthesis. The condition is satisfied by natural data domains
like (N, <). It allows one to use simple language-theoretic arguments and avoid technical game-
theoretic reasoning. Further, by defining a generic notion of reducibility between data domains, we
show the decidability of synthesis in the domain (Nd, <d) of tuples of numbers equipped with the
component-wise partial order and in the domain (Σ∗, ≺) of finite strings with the prefix relation.
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1 Introduction

Synthesis. Reactive synthesis aims at the automatic construction of an interactive system
from its specification. A system is usually modelled as a transducer. In each step, it reads
an input from the environment and produces an output. In this way, the transducer, reading
an infinite sequence of inputs, produces an infinite sequence of outputs. Specifications are
modelled as a language of desirable input-output sequences. The synthesis problem then
asks to automatically construct a transducer whose input-output sequences belong to a given
specification. Traditionally [30, 4], the inputs and outputs have been modelled as letters from
a finite alphabet. This, however, limits the application of synthesis. Recently researchers have
started investigating synthesis of systems working on data domains [12, 24, 15, 25, 2, 14].
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Automata as specifications. In the finite-alphabet setting, specifications are usually given
as logical formulas and a synthesiser performs a series of translations: first, from the formula
to an automaton, then from the automaton to a game, and finally it searches for a winning
strategy in the game. It is the second step, from automata to games, that captures the
game-theoretic essence of synthesis, whereas the first step is an orthogonal problem of finding
a convenient logical formalism. In the context of synthesis over data domains, this first step
is problematic as there is no decidable, and expressive enough, logic having a corresponding
automaton model. For that reason, in this paper we focus on the second step and use
automata for specifications.

Register automata. A well-studied automata formalism for specifying and modelling data
systems are register automata and transducers [22, 28, 23, 33]. Register automata extend
classical finite-state automata to infinite alphabets D by introducing a finite number of
registers. In each step, the automaton reads a data value d ∈ D, compares it with the values
held in its registers, then depending on this comparison it decides to store d into some
of its registers, and finally moves to a successor state. This way, it builds a sequence of
configurations (pairs of state and register values) representing its run on reading a word from
Dω: it is accepting if the visited states satisfy a certain condition, e.g. parity. Transducers
are similar except that in each step they also output the content of one register.

Universal register automata. Unlike classical finite-state automata, the expressive power of
register automata depends on whether they are deterministic, nondeterministic, or universal
(a.k.a. co-nondeterministic). Among these, universal register automata suit synthesis best.
First, they can specify request-grant properties: every requested data shall be eventually
outputted. This is a key property in reactive synthesis, and in the data setting it can be
expressed by a universal register automaton but not by a nondeterministic one. Furthermore,
universal register automata are closed, in linear time, under intersection. Hence they allow
for succinct conjunction of properties, which is desirable in synthesis as specifications usually
consist of many independent properties. Finally, in the register-free setting universal automata
are often used to obtain synthesis methods feasible in practice [26, 31, 17, 4].

Data domains with order. Another factor affecting expressivity of register automata is the
data-comparison operators. Originally, register automata compared data for equality only,
i.e., operated in data domain (D, =) [22]. This limits synthesis applications as we cannot
specify priority arbiters [8] that should give a resource to a requesting process with the lowest
ID. Such properties require data domains with linear order < (in addition to =). Further,
there are data domains with dense order, like (Q, <), and those with discrete order, like
(N, <). The domain (Q, <) is well-suited for abstracting physical phenomena like changing
temperature in a room. However, for abstracting hardware, the domain (N, <) suits better
as it excludes Zeno-like behaviours (when a process ID gets infinitely closer to another ID
but never reaches it). The domain (N, <) is also interesting from the theoretical point of
view as it demands new proof techniques.

Known synthesis results for register automata. Already for (D, =), the synthesis problem
of register transducers from universal register automata is undecidable [12, 15]. Decidability
is recovered in the deterministic case [15, 14], but, as argued above, universal automata are
more desirable in synthesis. To circumvent undecidability, the works [24, 15, 25] studied
register-bounded synthesis: given a universal register automaton and a bound k on the number
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Table 1 Decidability of register-
unconstrainted synthesis.

(D, =) (Q, <) (N, <)
DRA ✓[14] ✓[14] ✓[14]
NRA ✗[15] ✗ ✗

URA ✗[15] ✗ ✗

Table 2 Decidability of register-bounded
synthesis.

(D, =) (Q, <) (N, <)
DRA ✓[24] ✓[13] ✓[this paper]
NRA ✗[15] ✗ ✗

URA ✓[24] ✓[13] ✓[this paper]

of transducer registers, return a k-register transducer realising the automaton or “No” if no
such transducer exists. They showed the decidability of register-bounded for (D, =), and it is
not hard to adapt their techniques to (Q, <) and other oligomorphic domains [6], however the
domain (N, <) remained elusive. Tables 1 and 2 summarise known and new results, where
DRA/NRA/URA stand for deterministic/nondeterministic/universal register automata.

Contributions. We prove that register-bounded synthesis is decidable for (N, <) in time
doubly exponential in the number of registers of the specification automaton and of the
sought transducer. Our procedure is effective: it constructs a transducer if one exists. When
the total number of registers is fixed, it is ExpTime-c, matching the complexity of classical
(register-free) synthesis. This result generalises the works of [15, 25, 24] on (D, =). We then
extend the decidability boundary farther to include the domain (Nd, <d) of tuples of naturals
with the component-wise partial order, and the domain (Σ∗,≺) of strings with the prefix
relation.

Technical contributions. Our proof technique is generic and greatly simplifies the task of
proving new synthesis decidability results by removing the need to reason about synthesis
alltogether. We now describe the technique in detail.

The key idea of existing approaches [24, 15, 25] is to reduce the register-bounded synthesis
problem in a data domain to a two-player Church game with a finite alphabet and an
ω-regular winning condition. In such a game, two players alternately play for an infinite
number of rounds. Adam, modelling the environment, picks a test over the k registers
describing how its input data compares with the current content of the registers of a sought
transducer. Eve, modelling the system, picks a subset of the k registers, meant to store the
data, and a register whose value is meant for output. No data are manipulated in the game.
Infinite plays in the game induce infinite sequences of tests, assignments, and outputs over
the k registers, called action words; they are over a finite alphabet. Action words are meant
to abstract data words; an action word is feasible if there is at least one data word that
satisfies all its tests and assignments. The reduction ensures that any strategy of Eve winning
in the game can be converted into a k-register transducer realising the specification, and
vice versa. To this end, the game winning condition declares a play to be won by Eve if all
data words satisfying the action word induced by the play are accepted by the specification
automaton. In particular, a play whose action word is unfeasible is won by Eve as it does
not correspond to any environment-system interaction in the data domain. In the case of
(D, =), such winning conditions are known to be ω-regular [24, 15, 25]. However, in (N, <)
the set of feasible action words is not ω-regular [14], and neither is the winning condition.
Such winning conditions could be expressed by nondeterministic ωS automata [5], but games
with such objectives are not known to be decidable, to the best of our knowledge.

To overcome the latter obstacle, we introduce the notion of ω-regularly approximable
(regapprox) data domains. A regapprox data domain has an ω-regular over-approximation of
the set of feasible action words that is exact on the lasso-shaped action words (of the form
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uvω). Thus, in regapprox domains the set of feasible lasso-shaped action words is ω-regular.
This allows us to avoid dealing with non-ω-regularity and reduce synthesis to solving classic
ω-regular games. Our first technical contribution is the generic decidability result:

For regapprox domains, register-bounded synthesis from URA is decidable.

The procedure is constructive: for realisable specifications it outputs a transducer. Note
that all oligomorphic domains [6], e.g. (D, =) and (Q, <), are regapprox, because their sets of
feasible action words are ω-regular, so our result subsumes works [15, 25, 24]. For (N, <), we
construct its over-approximation relying on the result [14], and then instantiate the theorem.

There are many domains with discrete order resembling (N, <): the domain (Z, <) of
integers, the domain (Nd, <d) of tuples of naturals with the component-wise partial order, and
even the domain (Σ∗,≺) of strings with the prefix relation. To further simplify decidability
proofs on these domains, we define a natural and generic notion of reducibility between
data domains. Intuitively, a data domain D reduces to D′ if there is a rational transduction
that relates action words in D and D′ while preserving feasibility. Our second technical
contribution is the reduction result:

If D reduces to D′, and D′ is regapprox, then D is regapprox.

This implies that a synthesis procedure for D′ can be used to solve synthesis in D. We illustrate
the technique by reducing to (N, <) the domains (Nd, <d) and (Σ∗,≺). The reduction for
(Σ∗,≺) relies on the work [10]. These reductions entail the decidability of register-bounded
synthesis on these domains.

Related works. We already mentioned the works [24, 15, 25, 13] on synthesis of register
transducers in domains (D, =) and (Q, <), and that our result generalises them for the
case of URAs. The paper [14] studies Church’s synthesis for DRA specifications, where a
data strategy not necessarily with finitely-many states is sought. However, they show that
considering register transducers is sufficient, with with the number of registers equal that of
the specification automaton. Hence our register-bounded synthesis procedure for URAs can
also be used to solve the Church’s synthesis problem.

Another formalism for specifications of data systems is that of variable automata [20]. The
paper [16] studies synthesis of symbolic transducers from specifications given in a fragment
of nondeterministic variable automata. They solve synthesis for data domain (Q, <) and
leave the domain (N, <) for future work. Variable automata are incomparable with register
automata, and their particular fragment cannot express request-grant properties of arbiters
that we believe is desirable in synthesis.

Our proof techniques resemble those from some works on satisfiability of data logics.
Constraint LTL [11] extends Linear Temporal Logic (LTL) by atoms allowing one to compare
data values within the horizon or pre-defined length. The satisfiability of this logic is decidable
for data domains (D, =), (Q, <), (N, <) [11], and (Σ∗,≺) [10]. Their proof technique relies
on the abstraction of data values at different moments by relations between each other. For
the data domain (N, <), they additionally prove that considering lasso-shaped witnesses
of satisfiability is sufficient. Our generic synthesis result uses a similar idea by defining
regapprox domains. We note that formulas in Constraint LTL can always be translated into
universal register automata (which are more expressive) [32]. Hence our approach can be
used to solve register-bounded synthesis from Constraint LTL.

The papers [19, 27] suggest a sound/incomplete procedure to synthesis from Temporal
Stream Logic. This logic extends LTL by adding the atoms that are either first-order predicate
terms or are assignments of variables to a first-order function term. Similarly, transducers
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can test data using the predicate terms and update its values by the function terms. A
transducer satisfies a specification if it does so under every interpretation of predicates and
functions. It is possible to model domains like (D, =) and (Q, <) in their formalism, by
encoding the axioms for > and = into specification. This would give a sound/incomplete
synthesis approach. Our approach is less general but retains the completeness.

More generally, our notion of regular approximation echoes a general idea common to
verification techniques, for example of programs manipulating data variables (see, e.g., [21]),
to abstract concrete behaviours by regular ones. When an over-approximation is used, it is
guaranteed that if the abstract program satisfies some safety properties, so does the concrete
program. This yields sound algorithm which are not necessarily complete. Here in the
context of register automata, instead, we require that the over-approximation is exact on
lasso-like executions, and show that this implies completeness (for the synthesis problem).

2 Synthesis Problem

Let N = {0, 1, . . . } denote the set of natural numbers including 0.

Data domain and data words. A data domain is a tuple D = (D, P, C, c0) consisting of
an infinite countable set D of data values, a finite set P of interpreted predicates (predicate
names with arities and their interpretations) which must contain the equality predicate =, a
finite set C ⊂ D of constants, and a distinguished initialiser constant c0 ∈ C. For example,
(N, {<, =}, {0}, 0) is the data domain of natural numbers with the usual interpretation of <, =,
and 0. In the tuple notation, we often omit the brackets, as well as the mention of = and of c0
when the initialiser constant is clear from the context. E.g., we write (N, <, 0) for (N, {<, =},
{0}, 0). Another familiar example is (Z, <, 0), which is the data domain of integers with
the usual <, =, and 0. Throughout the paper we assume that the satisfiability problem of
quantifier-free formulas built on the signature (P, C) is decidable in D, and whenever we
state complexity results, the satisfiability problem is additionally assumed to be decidable in
PSpace. This is the case for all data domains considered in this paper. Finally, data words
are infinite sequences d0d1 . . . ∈ Dω, and for two sets I and O and a language L ⊆ (I ·O)ω,
we call I and O its input and output alphabets respectively.

Action words. Fix a data domain D = (D, P, C, c0) and a finite set R of elements called
registers. A register valuation (over D) is a mapping ν : R → D. Given a valuation ν, a
variable x (not necessarily in R), and a data value d ∈ D, define ν[x← d] to be the valuation
R ∪ {x} → D that maps x to d and every r ∈ R \ {x} to ν(r). We extend this notation to
any finite set A = {a1, . . . , an} by letting ν[A← d] = ν[a1← d] . . . [an← d].

A test (over D) is a conjunction (∧) of distinct literals over predicates P and constants
C, encoded as a set of literals p(x1, . . . , xa) and ¬p(x1, . . . , xa), where p ∈ P , a is the arity
of p and x1, . . . , xa ∈ R ∪ C ∪ {⋆}. The symbol ⋆ is a fresh symbol used as a placeholder
for incoming data values. By convention, ∧∅ = ⊤, and the empty set encodes the test that
is always true. Depending on the context, we use the formula or set notation. A register
valuation ν : R → D and data value d ∈ D satisfy a test φ, written ν, d |= φ, if ν[⋆← d]
satisfies φ, where predicates and constants are interpreted in the data domain D. A test φ is
maximal if it specifies the relation between all variables and constants wrt. the predicates,
i.e. it is a maximally consistent conjunction of literals: φ =

∧
p∈P

p of arity r

∧
x1,...,xr

∈R∪C∪{⋆}
lp,x1,...,xr

,

where lp,x1,...,xr ∈ {p(x1, . . . , xr),¬p(x1, . . . , xr)}. Maximal tests are mutually exclusive: a
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given valuation cannot satisfy simultaneously two of them. Observe that a test is equivalent
to a (possibly exponential) disjunction of maximal ones. Let TstDR denote the set of all
possible tests over registers R in domain D, and MTstDR ⊂ TstDR the subset of maximal ones.

▶ Example. Consider domain (N, <, 0) and R = {r}. Atomic formulas are r < ⋆, ⋆ = r,
r < 0, ⋆ = 0, etc. The test 0 < r ∧ r < ⋆ specifies that the content of register r is strictly
positive and that the incoming data is greater than it. It is not maximal, since it does not
contain the atoms 0 < ⋆, ¬(⋆ = r), ¬(⋆ = 0), ¬(r = 0). For readability, we write 0 < r < ⋆.

An assignment is a set asgn ⊆ R of registers meant to store the current input data
value. Let AsgnR = 2R denote the set of all possible assignments. An action is a pair
(tst, asgn) ∈ TstR×AsgnR. We now describe how valuations are updated: given a valuation
ν, a data value d, a test tst and an assignment asgn, we say that the valuation ν′ is the
successor of ν following action (tst, asgn) on reading d, written ν

d,tst,asgn−−−−−→ ν′, if the data
value satisfies the test, i.e. ν, d |= tst, and ν′ = ν[asgn← d].

An automaton action word, or simply action word, is an infinite sequence of actions
a = (tst0, asgn0)(tst1, asgn1) . . . ∈ (TstR×AsgnR)ω. It is feasible by a sequence of valuation-
data pairs (ν0, d0)(ν1, d1) . . . if ν0 : r ∈ R 7→ c0, i.e. ν0 maps every r ∈ R to c0, and for all
i: νi

di,tsti,asgni−−−−−−−→ νi+1. We then say that the data word d0d1 . . . is compatible with a. Let

AWD
R denote the set of action words over R in D, and FEASD

R the subset of feasible ones. We
may write either AWR, or AWD or just AW when D, R or both are clear from the context,
similarly for FEAS.

▶ Example. Consider domain (N, <, 0) and R = {r}. For r ∈ R, the assignment {r} is
denoted ↓ r. The action word (0 < ⋆, ↓ r)(⋆ < r, ↓ r)ω is unfeasible in (N, <, 0), because it
requires having an infinite chain of strictly decreasing values, which is not possible since N
is well-founded. The same action word can be interpreted in (Z, <, 0) and in (Q, <, 0) and
there it is feasible, as well as in (Q+, <, 0) since Q+ is dense.

Register automata. A register automaton over data domain D is a tuple S = (Q, q0, R, δ, α),
where Q is a finite set of states containing the initial state q0, R is a finite set of registers,
δ ⊆ Q×TstR×AsgnR×Q is a transition relation, and α : Q→ {1, ..., c} is a priority function
where c is the priority index. A configuration of S is a pair (p, ν) ∈ Q×DR; it is initial if
p = q0 and ν : r ∈ R 7→ c0. The configuration (q, ν′) is a successor of (p, ν) on reading data
value d ∈ D and taking transition p′ tst,asgn−−−−→ q′ ∈ δ, written (p, ν) d,tst,asgn−−−−−→

S
(q, ν′) or simply

(p, ν) d−→
S

(q, ν′), if p = p′, q = q′ and ν
d,tst,asgn−−−−−→ ν′, i.e. ν, d |= tst and ν′ = ν[asgn← d].

A run of S over a data word d0d1 . . . is a sequence of configurations ρ = (q0, ν0)(q1, ν1) . . .

such that (q0, ν0) is initial and for every i, (qi+1, νi+1) is a successor of (qi, νi) on reading
di, on taking some transition qi

tsti,asgni−−−−−→ qi+1 ∈ δ. We then say that the automaton action
word (tst0, asgn0)(tst1, asgn1) . . . labels ρ; note that it is feasible by ν0d0ν1d1 . . .. The run ρ is
accepting if the maximal priority appearing infinitely often in α(q0)α(q1) . . . is even, otherwise
it is rejecting. A data word may have several runs of S. For universal register automata,
abbreviated URA, a word is accepted if all its runs are accepting; for nondeterministic
automata, there should be at least one accepting run. The set of all data words over D

accepted by S is called the language of S and denoted L(S). We may write LD(S) to
emphasise that L(S) is defined over D.

A finite (parity) automaton (without registers) is a tuple (Σ, Q, q0, δ, α), where Σ is a
finite alphabet, δ ⊆ Q×Σ×Q, and the definition of runs, accepted words, and language is
standard. Such automata operate on words from Σω.
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p q
0 < ⋆, ↓m

r < ⋆ < m, ↓r

⋆ = 0, ↓r

(a) A register automaton over (N, <, 0) (state q
is accepting).

0

value

execution

m

r

(b) An example of the sequence of values taken by re-
gisters r and m along the run.

Figure 1 A register automaton whose action words do not form an ω-regular language.

Syntactical language of a register automaton. A register automaton S = (Q, q0, R, δ, α) can be
treated syntactically, it then induces a universal finite automaton Ssynt = (Σ, Q, q0, δ, α) with
Σ = TstR×AsgnR. Note that since Ssynt is universal, words that have no run are accepted.
Notice that the language of Ssynt may contain action words which are not feasible.

▶ Example. Consider the automaton of Figure 1a. Its syntactical language is
(0 < ⋆, ↓m)

(
(r < ⋆ < m, ↓r) | (0 = ⋆, ↓r)

)ω

which includes not only feasible but also unfeasible action words, e.g. (0 < ⋆, ↓m)(r < ⋆ <

m, ↓r)ω. The feasible accepted action words have the form

(0 < ⋆, ↓m)
∞∏

i=1

(
(r < ⋆ < m, ↓r)ni(0 = ⋆, ↓r)

)
such that the numbers (ni)i are uniformly bounded by some value; the bound corresponds
to the first read data value. This language is not ω-regular but an ωB-language [5].

Register transducers. A k-register transducer is a tuple T = (Q, q0, R, δ), where Q, q,
R (|R| = k) are as in automata but δ : Q×MTst → Asgn×R×Q. Note that δ is a total
function; moreover, since we restrict to maximal tests, exactly one test holds per incom-
ing data value, so the transducers are deterministic and complete. A configuration is a
pair (p, ν) ∈ Q×DR. From configuration (p, ν), on reading d ∈ D, the transducer takes
the unique transition p

tst,asgn|r−−−−−→ q such that ν, d |= tst, updates its configuration to (q, ν′)

where ν
d,tst,asgn−−−−−→ ν′, and outputs the value ν′(r). Note that the output is produced after

assignment. We then write (p, ν) d,tst,asgn|r,ν′(r)−−−−−−−−−−→
T

(q, ν′), or simply (p, ν) d|ν′(r)−−−−→
T

(q, ν′).
A run of T on an input data word di0d

i
1 . . . is a sequence (q0, ν0)(q1, ν1) . . . such that

(q0, ν0) is initial and for all i ≥ 0, (qi, νi)
dii ,tsti,asgni|ri,doi−−−−−−−−−−−→ (qi+1, νi+1) for some unique

doi ∈ D. The sequence do0d
o
1 . . . is the output word of T on reading di0d

i
1 . . .; since the

transducers are deterministic and have a run on every input word, the output word is
uniquely defined. The sequence di0d

o
0d

i
1d

o
1 . . . is called the input-output word. We then

say that the transducer action word tst0(asgn0, r0)tst1(asgn1, r1) . . . ∈
(
MTst·(Asgn×R)

)ω

is feasible by (ν0, di0, do0)(ν1, di1, do1) . . .. It is naturally associated with the automaton ac-
tion word (tst0, asgn0)(⋆ = r0,∅)(tst1, asgn1)(⋆ = r1,∅) . . ., which is then feasible by
ν0d

i
0ν1d

o
0ν1d

i
1ν2d

o
1 . . . . The set of all transducer action words over R in data domain D

is denoted by TWD
R. The language L(T ) consists of all input-output words of T .
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A finite transducer is a standard Mealy machine: it is a tuple (Σ, Γ, Q, q0, δ), where Σ and
Γ are finite input and output alphabets, δ : Q×Σ→ Γ×Q, and the definition of language is
standard. Treating a register transducer T syntactically gives a finite transducer denoted
Tsynt of the same structure as T with Σ = MTstR and Γ = AsgnR×R.

Synthesis problem. Fix a data domain (D, P, C, c0). A register transducer T realises a
register automaton S if L(T ) ⊆ L(S). The register-bounded synthesis problem is:

input: k ∈ N and a URA S;
output: yes iff there exists a k-register transducer which realises S.

In this paper, when the synthesis problem is decidable, we are able to synthesise, i.e.,
effectively construct, a transducer realising the specification. We now make two remarks.
First, notice that the number of transducer states is finite but unconstrained. Thus, register-
bounded synthesis generalises classical register-free synthesis from (data-free) ω-regular
specifications. Second, observe that transducers are complete, and therefore produce an
ouptput word on every input word. Thus, a specification for which some input words do not
have an associated output word is unrealisable. It is known that in the finite-alphabet case,
the refined synthesis problem of good-enough synthesis [1], which requires a transducer to
react only to inputs that belong to the domain of the specification, is still decidable. However,
the good-enough register-bounded synthesis is undecidable [13, Chapter 8].

▶ Example. We illustrate the synthesis problem by describing a specification, its URA, and
a register transducer realising it.

Let us start with the specification of priority arbiters. Such an arbiter reads an ID of
a process requesting the resource, and outputs an ID of a process to whom the resource
is granted. The specification requires that every requesting process is either acknowledged
consecutively twice on the output, or this is done for a process of higher ID. We model the
specification using the URA over (N, <, 0) with a single register from Figure 2a.

win

wout

pout

pin

p2
in p2

out sin

fin fout

⊤ ⊤

⊤, ↓r

⋆ < r ⊤

¬(⋆<r), ↓r ⊤ ⋆ = r

¬(⋆ = r)

⊤

⊤

(a) URA for the priority-arbiter specification.

q0 q1

q2q3

⋆ > r1 | ↓r1, ↑r1

¬(⋆>r1) | ↑r1
¬(⋆>r1) | ↑r1

⋆ > r1 | ↓r2, ↑r1
⋆ > r2 | ↓r2, ↑r2

¬(⋆>r2) | ↑r2

¬(⋆>r2) | ↑r2

⋆ > r2 | ↓r1, ↑r2

(b) Register transducer realising the specifica-
tion.

Figure 2 A URA specification and a transducer implementing it.

The automaton reads words interleaving between arbiter data input and output, so its states
are partitioned into box states (for reading input) and circle states (for reading output). The
double-circle states are rejecting and can be visited only finitely often. Thus, a run looping in
wait states win and wout is accepting. Branching is universal, hence some run always loops
around win and wout . On reading an ID of a requesting process, a copy of the automaton
moves from win to a pending state pout while storing the ID into register r. It stays in states
pout and pin as long as the request is not acknowledged, and such an infinite run is rejecting.
If the request is eventually acknowledged (transitions from pout to a sink state sin), the run
dies, so it is accepting. If a run reaches the failure state fin, it is rejecting.
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Figure 2b depicts a transducer with two registers r1 and r2 realising the above specification.
On the left of the vertical bar are the tests over the inputs received by the transducer (in
red), and on the right is the output action performed by the transducer (in green). For
example, from state q0 to q1, if the input data d is larger than the data stored in register
r1, the transducer stores it into r1, and outputs the content of r1. The transducer uses one
register to store the maximal value seen so far, while outputting the content of the other
register, and the roles of these registers interchange as the transducer transits along the
states. Thus, the instance of register-bounded synthesis with the described URA and k = 2
has a positive answer. However, when k = 1 the answer is negative.

3 Sufficient Condition for Decidable Synthesis for URA

In this section, we first show a reduction from register-bounded synthesis to (register-free)
finite-alphabet synthesis. In the following, we fix a data domain D. Given a specification S

(as a URA over D) and a bound k, we show how to construct a finite-alphabet specification
W F

S,k on action words over k registers, which is realisable by a finite-alphabet transducer iff
S is realisable by a k-register transducer (Lemma 1). The main idea is to see the actions of
the URA and of the sought k-register transducer as finite-alphabet letters. In particular,
the specification W F

S,k accepts a transducer action word ak iff every action word aS of the
specification S, such that both ak and aS are feasible by the same data word, is accepted by
Ssynt. One can compose automata and transducer action words through a form of parallel
product, which allows to talk about their joint feasibility. Then, in general, W F

S,k is not
necessarily ω-regular, and in a second step, we provide sufficient conditions on the data
domain making synthesis wrt. W F

S,k decidable, namely, that it can be under-approximated by
an ω-regular language which coincides with W f

S,k over lasso words (Section 3.1). We obtain
a general decidability result for data domains having this property (Theorem 4). We then
instantiate this result for data domain (N, <, 0) (Section 3.2).

In the following, we fix a URA S with registers RS and a disjoint set Rk consisting of k

registers, and let R = RS ⊎Rk. Given a transducer action word ak = tstk
0 (asgnk

0 , rk
0 ) . . . ∈

TWD
Rk

and an automaton action word aS = (tstSi0 , asgnSi
0 )(tstSo0 , asgnSi

0 ) . . . ∈ AWD
RS

, the
product ak ⊗ aS of ak and aS is the automaton action word over registers R defined as
(tstk

0∧tstSi0 , asgnk
0∪asgnSi

0 )((⋆ = rk
0 )∧tstSo0 , asgnSi

0 ) . . . , which is essentially the parallel product
of aS and of the automaton word associated with ak.

We now show how to abstract a data specification given as URA S with registers RS by
a finite-alphabet specification over k-register transducer action words. Let FEASD

R be the set
of automata action words over R feasible in D, then we define

W F
S,k =

{
ak ∈ TWRk

| ∀aS ∈ AWRS
: ak ⊗ aS ∈ FEASD

R ⇒ aS ∈ L(Ssynt)
}

.

Thus, W F
S,k rejects a feasible transducer action word ak iff there is an automaton action word

aS feasible by the same data word as ak and rejected by S.

▶ Lemma 1. These two are equivalent:
a URA S is realisable by a k-register transducer,
W F

S,k is realisable (by a finite-alphabet transducer).

Proof. ⇒: Assume that S is realisable by a register transducer T , i.e. LD(T ) ⊆ LD(S). Let
ak ∈ L(Tsynt), and let aS ∈ AWRS

such that ak ⊗ aS ∈ FEASD
R. Then, ak ⊗ aS is feasible by

some input-output data word w = di0d
o
0d

i
1d

o
1 . . . . By definition of the product, both ak and

aS are feasible by w. Since LD(T ) ⊆ LD(S), if aS labels a run of S on w, it means that it is
accepting otherwise w /∈ LD(S) since S is a universal automaton. Thus, aS ∈ L(Ssynt).
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⇐: Conversely, assume that W F
S,k is realisable by some finite transducer M , and let T

be the associated register transducer, i.e. such that Tsynt = M . Let w ∈ LD(T ) and let ak

be the action word labelling the run of T on w. Let aS be an action word labelling a run
of S on w if it exists (it might be that w is accepted by S by having no run on it). Then,
ak ⊗ aS is feasible by w. By definition of W F

S,k, it means that aS ∈ L(Ssynt), so aS labels an
accepting run of S on w. Overall, all runs of S on w are accepting, so w ∈ LD(S). Thus,
LD(T ) ⊆ LD(S), i.e. T realises S. ◀

3.1 General Decidability Result
In (N, <, 0), W F

S,k is not ω-regular in general. To overcome this obstacle, we define the notion
of ω-regularly approximable data domains. Such domains have an ω-regular equi-realisable
subset of W F

S,k.
Let lassoR be the set of lasso-shaped1 action words over a given set of registers R; we

write lasso when R is clear. A data domain D is ω-regularly approximable (regapprox) if for
every R there exists an ω-regular language QFEASR ⊆ (TstR×AsgnR)ω satisfying

QFEASR ∩ lassoR ⊆ FEASR ⊆ QFEASR

and recognisable by a nondeterministic Büchi automaton that can be effectively constructed
given R. The definition implies that FEASR and QFEASR coincide on lasso words. Such a
set QFEASR is called regular approximation and written as QFEAS when R is clear.
▶ Example. The data domains (D, =) and (Q, <) are regapprox because their sets FEASR for
every R are ω-regular, so there is no need to approximate them. On these domains, to check
whether a given action word is feasible, one can track the relations between the registers and
check if the read tests are consistent with these relations. For instance, if r1 < r2 but we
read the test ∗ = r1 = r2, then the action word is unfeasible.

The domain (N, <, 0) is also regapprox. Here, it is not sufficient to track the relations
between the registers. We also need to ensure that between any two stored data values only
a bounded number of different values is inserted along the action word. (Recall the example
on page 7 with Figure 1a.) However, when an action word is lasso-shaped, it suffices to
check the absence of an infinite number of such insertions. The latter can be checked by an
ω-regular automaton, which allows for proving the regapproximability of (N, <, 0).

Finally, consider the data domain (N, {S, =}, {0}, 0), where S is the successor relation,
i.e. S(a, b) holds iff a = b + 1. This domain is not regapprox. Intuitively, this is because the
domain allows for counting, which enables non ω-regular phenomena even in lasso words.
We prove this by contradiction. Consider the following ω-regular language of action words
over a single register r:

L =
{(

S(∗, r), ↓r
)n(

S(r, ∗), ↓r
)m(
∗ = 0 = r,∅

)ω | n, m ∈ N
}

,

i.e. the value in r is incremented n times, then decremented m times, then compared to zero
and not updated. L contains feasible as well as unfeasible action words. Every feasible word
of L has n = m, hence FEAS ∩ L is not ω-regular. Moreover, every word of L is a lasso, thus
L ∩ lasso = L. Let us assume that the data domain is regapprox, witnessed by QFEAS for
R = {r}. Since QFEAS ∩ lasso = FEAS ∩ lasso by definition, we get

QFEAS ∩ L = QFEAS ∩ lasso ∩ L = FEAS ∩ lasso ∩ L = FEAS ∩ L.

The language QFEAS ∩ L is ω-regular, but FEAS ∩ L is not. Contradiction. Therefore
(N, {S, =}, {0}, 0) is not regapprox. ◀

1 A word w is lasso-shaped (or regular, or ultimately periodic) if it is of the form w = uvω for some finite
words u and v.
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Given a URA S with registers RS and k, we define
W QF

S,k =
{

ak | ∀aS : ak ⊗ aS ∈ QFEASR ⇒ aS ∈ L(Ssynt)
}

,

where R = RS ⊎Rk. The definition of W QF
S,k differs from W F

S,k only in using QFEASR instead
of FEASR. Since FEASR ⊆ QFEASR, we have W QF

S,k ⊆W F
S,k.

We now show that W QF
S,k is ω-regular (which essentially follows from ω-regularity of QFEAS

and Ssynt), and estimate the size of an automaton recognising W QF
S,k and the time needed to

construct it. For that we use the following terminology for functions of asymptotic growth:
a function is poly(t) if it is O(tκ), exp(t) if it is O(2tκ), and 2exp(t) if it is O(22tκ

), for a
constant κ ∈ N. When poly, exp, and 2exp are used with several arguments, the maximal
among them shall be taken for t. The construction and complexity analysis rely on standard
automata techniques; see the full version for details.

▶ Lemma 2. Let S be a URA and let k ≥ 1. Then, W QF
S,k is ω-regular. Moreover, W QF

S,k

is recognisable by a universal co-Büchi automaton with O(2kNnc) many states that can be
constructed in time poly(N, n, exp(r, k)), where n, r, and c are the number of states, registers,
and priorities in S, and N is the number of states in a nondeterministic Büchi automaton
recognising QFEASRS⊎Rk

.

We now prove that W F
S,k and W QF

S,k are equi-realisable. For ω-regular specifications (like
W QF

S,k) there is no distinction between realisability by finite- and infinite-state transducers [7].
This is not known for W F

S,k specifications over domains such as (N, <, 0); we leave this
question for future work, and in this paper focus on realisability by finite-state transducers.

▶ Lemma 3. W F
S,k is realisable by a finite-state transducer iff W QF

S,k is realisable by a finite-
state transducer.

Proof. Direction ⇐ follows from the inclusion FEAS ⊆ QFEAS, which implies W QF
S,k ⊆W F

S,k.
Consider direction ⇒. Let T be a finite-state transducer that T does not realise W QF

S,k. We
show that T does not realise W F

S,k either. First, we have that L(T ) ̸⊆W QF
S,k, so the language

{ak ⊗ aS ∈ AWD
R | ak ∈ L(T ) ∧ ak ⊗ aS ∈ QFEAS ∧ aS /∈ L(Ssynt)} is nonempty. Since

QFEAS and L(Ssynt) are ω-regular, and since T is a finite-state transducer, this language is
ω-regular. Thus, it contains a lasso-shaped word ak ⊗ aS ; by definition of the product, both
ak and aS are then lasso-shaped. Since QFEAS ∩ lasso ⊆ FEAS, we get that aS is feasible,
i.e. ak ⊗ aS ∈ {ak ⊗ aS | ak ∈ L(T ) ∧ ak ⊗ aS ∈ FEAS ∧ aS /∈ L(Ssynt)}, which implies that
L(T ) ̸⊆W F

S,k: T does not realise W F
S,k. ◀

We are now able to prove the main result of this paper.

▶ Theorem 4. Let D be a regapprox data domain such that for every set of registers R, one
can construct a nondeterministic Büchi automaton with nQF states recognising QFEASR in
time f(|R|) for some function f . Then:

register-bounded synthesis for URAs over D is decidable in time exp(exp(k, r), nQF, n, c) +
f(k + r), where n is the number of states of the URA, c its number of priorities, r its
number of registers, k is the number of transducer registers. It is ExpTime-c for fixed r

and k.
For every positive instance of the register-bounded synthesis problem, one can construct,
within the same time complexities, a register transducer realising the specification.

Proof. Lemmas 1,2,3 reduce register-bounded synthesis to (finite-alphabet) synthesis for the
ω-regular specification W QF

S,k. Since synthesis wrt. to ω-regular specifications is decidable,
we get the decidability part of the theorem. Let us now study the complexity. Let RS
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be the set of r registers of the URA and Rk be a disjoint set of k registers. First, one
needs to construct an automaton recognising QFEASRS∪Rk

. This is done by assumption
in time f(k + r). Then, one can apply Lemma 2 and get that W QF

S,k can be recognised by
universal co-Büchi automaton A with O(2knqf nc) states, which can be constructed in time
poly(nqf , n, exp(r, k)). A universal co-Büchi automaton with m states can be determinised
into a parity automaton with exp(m) states and poly(m) priorities (see e.g. [29]). Recall
that the alphabet of A is Tstk ∪ (Asgnk × Rk). Hence by determinising A, and seeing it
as a two-player game arena, we get a parity game with exp(k) edges (corresponding to
the actions of Adam and Eve), exp(exp(k), nQF, n, c)) states, and poly(exp(k), nQF, n, c))
priorities. The latter can be solved in polynomial time in the number of its states, as
the number of priorities is logarithmic in the number of states (see e.g. [9]), giving the
overall time complexity exp(exp(k), nQF, n, c)) for solving the game. If we sum this to the
complexity of constructing an automaton for W QF

S,k plus the complexity for construction
an automaton for QFEAS, we get exp(exp(k), nQF, n, c)) + poly(nQF, n, exp(r, k)) + f(r + k),
which is exp(exp(k, r), nQF, n, c)) + f(r + k). If both r and k are fixed, then exp(k, r) and
f(r + k) are constants, so the complexity is exponential only. It is folklore that the hardness
holds in the register-free setting (for r = k = 0). See for example [18, Proposition 6] for a
proof in the finite word setting over a finite alphabet (which straightforwardly generalises
to infinite words). There, the proof is done for nondeterministic finite automata, but by
determinacy, hardness also holds for universal automata, as they are dual.

Now, if a URA specification is realisable for some given k, then by Lemmas 1 and 3,
W QF

S,k is realisable by a finite-alphabet transducer M . Since W QF
S,k ⊆W F

S,k, M also realises the
specification W F

S,k. The mapping ·synt which turns a register transducer into a finite-alphabet
transducer is bijective, and hence there exists a register transducer T such that Tsynt = M .
The proof of Lemma 1 exactly shows that T realises S, hence we are done. ◀

3.2 Register-bounded Synthesis over Data Domain (N, <, 0)

We instantiate Theorem 4 for the data domain (N, <, 0). In [14], though there was no general
notion of ω-regular approximability for data domains, it was implicitly used for (N, <, 0).
The following fact follows from [14, Thm.8] after adapting to our notions.2

▶ Fact 5. For all R, (N, <, 0) has a witness QFEASR of ω-regular approximability expressible
by a nondeterministic parity automaton with exp(|R|) states and poly(|R|) priorities, which
can be constructed in time exp(|R|).

A parity automaton can be translated to a nondeterministic Büchi automaton with a quadratic
number of states, so we can instantiate Theorem 4 on domain (N, <, 0) and get:

▶ Theorem 6. For a URA in (N, <, 0) with r registers, n states, and c priorities, k-register-
bounded synthesis is solvable in time exp(exp(r, k), n, c): it is singly exponential in n and c,
and doubly exponential in r and k. It is ExpTime-c for fixed k and r.

2 Strictly speaking, their paper considers maximal tests only. However, using their deterministic automaton
for QFEASR over action words with maximal tests, we can construct a nondet. automaton recognising
quasi-feasible action words with all tests, incl. partial ones. Our nondet. automaton, on reading a partial
test, guesses its completion into a maximal test and simulates the original automaton on it.



L. Exibard, E. Filiot, and A. Khalimov 122:13

4 Reducibility Between Data Domains

Theorem 6 relies on the study of feasibility of action words in (N, <, 0) of [14], which requires
some effort. Such a study could in principle be generalised to domains such as Z-tuples,
as well as finite strings with the prefix relation, by leveraging the results of [10]. However,
this would come at the price of a high level of technicality. We choose a different path, and
introduce a notion of reducibility between domains, which allows us to reuse the study of
(N, <, 0) and yields a compositional proof of the decidability of register-bounded synthesis
for the quoted domains.

▶ Definition. A data domain D reduces to a data domain D′ if for every finite set of registers
R, there exists a finite set of registers R′ and a rational relation3 K between R-automata
action words in D and R′-automata action words in D′ that preserves feasibility, in the
sense that for every R-action word a ∈ (TstDRAsgnR)ω: a is feasible in D iff there exists an
R′-action word in K(a) ∈ (TstD

′

R′ AsgnR′)ω feasible in D′.4

▶ Remark. Reducibility is a transitive relation, since rational relations are closed under
composition [3, Theorem 4.4], and feasibility preservation is transitive.

Since K is rational and preserves feasibility, for all R, K−1(QFEASR′) is a witness of
regapproximability, where R′ is as in the above definition (see the proof below for details),
thus we get:

▶ Lemma 7. If D reduces to D′ and D′ is regapprox, then D is regapprox.

Proof. Let R be a fixed set of registers, and let R′ be a set of registers satisfying the definition
of reducibility. Let FEAS (respectively, FEAS′) be the set of R-action words feasible in D

(resp., feasible R′-action words in D′).
Our goal is to define an ω-regular set QFEAS (for R) s.t. QFEAS∩lasso ⊆ FEAS ⊆ QFEAS.

Since D′ is regapprox, there is an ω-regular set QFEAS′ (for R′) s.t. QFEAS′ ∩ lasso ⊆
FEAS′ ⊆ QFEAS′. Define QFEAS = K−1(QFEAS′); as the preimage of an ω-regular set by a
rational relation, it is (effectively) ω-regular, thus satisfying one of the condition for D to be
regapprox.

We now show that FEAS ⊆ QFEAS. Before proceeding, notice that FEAS = K−1(FEAS′),
since K preserves feasibility. Since FEAS′ ⊆ QFEAS′, we have K−1(FEAS′) ⊆ K−1(QFEAS′),
hence FEAS ⊆ QFEAS.

It remains to show that QFEAS ∩ lasso ⊆ FEAS. The inclusion QFEAS′ ∩ lasso ⊆ FEAS′

implies K−1(QFEAS′ ∩ lasso) ⊆ K−1(FEAS′) = FEAS (the latter equality is because FEAS =
K−1(FEAS′)). We prove that QFEAS ∩ lasso ⊆ K−1(QFEAS′ ∩ lasso), which entails the
desired result. Pick an arbitrary a ∈ QFEAS ∩ lasso. Since K is rational, K(a) is ω-regular.
Moreover, QFEAS′ is ω-regular, which entails that K(a)∩QFEAS′ is ω-regular as well. Since
a ∈ K−1(QFEAS′), the intersection K(a) ∩ QFEAS′ is nonempty. Since K(a) ∩ QFEAS′ is
ω-regular and nonempty, it contains a lasso word a′. Thus, a′ ∈ K(a) ∩ QFEAS′ ∩ lasso,
hence a ∈ K−1(QFEAS′ ∩ lasso). ◀

As a direct consequence of Lemma 7 and Theorem 4, we get the following result:

3 Given two finite alphabets Σ and Γ, a relation K ⊆ Σω × Γω is rational if there exists an ω-regular
language L ⊆ (Σ ∪ Γ)ω such that K = {(projΣ(u), projΓ(u)) | u ∈ L}. This is equivalent to saying that
it can be computed by a nondeterministic asynchronous finite-state transducer over input Σ with output
in Γ∗. See, e.g., [3, Section 3].

4 Note that we do not forbid the existence of unfeasible action words in the image.
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▶ Theorem 8. If a data domain D reduces to a regapprox data domain, then register-bounded
synthesis is decidable for D. Moreover, for any positive instance of the register-bounded
synthesis problem over D, one can effectively construct a register transducer realising the
specification of that instance.

4.1 Adding Labels to Data Values
As a first application, we show that one can equip data values with labels from a finite
alphabet while preserving regapproximability. By Theorem 8, this yields decidability of
register-bounded synthesis for such domains.

Formally, given a data domain D = (D, P, C, c0) and a finite alphabet Σ, we define the
domain of Σ-labeled data values over D as Σ×D = (Σ×D, P ∪{labσ | σ ∈ Σ}, Σ×C, (σ0, c0)),
where σ0 ∈ Σ is a fixed but arbitrary element of Σ and, for each σ ∈ Σ, labσ(γ, d) holds if
and only if γ = σ.

▶ Lemma 9. For all finite alphabet Σ and data domain D, Σ×D reduces to D.

Proof. Wlog we assume that the set of constants C is the singleton {c0} (modulo adding new
predicates to P ). Let Σ = {σ0, σ1, . . . , σn}, where σ0 is such that (σ0, c0) is the initialiser
of Σ × D. We first define an encoding at the level of data words. Let µ : Σ → D be
an injective mapping such that µ(σ0) = c0. A data word u over D is a µ-encoding of
v = (σi1 , d1)(σi2 , d2) . . . if it is equal to µ(σ1) . . . µ(σn)µ(σi1)d1µ(σi2)d2 . . . . The data word
u is a valid encoding of v if it is a µ-encoding of v for some µ.

Now, the idea is to define a rational relation K from action words a over Σ×D to actions
words b over D such that a is feasible by some u iff there exists b such that (a, b) ∈ K

and b is feasible by a valid encoding of u. Let R be a set of registers and assume a is
built over R. Let R′ = {rσ | σ ∈ Σ} ⊎ R. Then, any b such that (a, b) ∈ K should
ensure that the n first data values are distinct and store them in rσ1 , . . . , rσn

respectively.
So, we require that b is of the form b = bΣ · ba where bΣ = (tstσ1 , ↓ rσ1) . . . (tstσn , ↓ rσn)
such that for all 1 ≤ i ≤ n, tsti =

∧
1≤j≤i ⋆ ≠ rσj

. The second part ba is an encoding
of the tests and assignments of a = (tst0, asgn0)(tst1, asgn1) . . . . It is of the form ba =
(tstlab

0 ,∅)(tstdata
0 , asgn0)(tstlab

1 ,∅)(tstdata
1 , asgn1) . . . , where for all i ≥ 0:

for every predicate p ∈ P of arity n, for every x1, . . . , xn ∈ R∪ {⋆}: if (¬)p(x1, . . . , xn) ∈
tsti, then (¬)p(x1, . . . , xn) ∈ tstdata

i , and
for all σ ∈ Σ and x ∈ R ∪ {⋆}: labσ(x) ∈ tstlab

i iff (rσ = x) ∈ tsti.
Correctness follows from the construction; see the extended paper for details. ◀

The latter result combined with Theorem 8 yields:

▶ Corollary 10. Let D be an regapprox data domain and Σ be a finite alphabet, then
register-bounded synthesis is decidable for Σ×D.

4.2 Quantifier-Free Interpretations
When the relation between valuations over D and over D′ is local, it is more convenient
to operate directly at the level of tests. To that end, we define a notion of quantifier-free
interpretation (see [13, Section 12.3.6] for a presentation of the notion in the context of data
words), that allows us to encode elements of D as tuples of elements of D′.

A quantifier-free interpretation (or interpretation for short) of dimension l ≥ 1 with
signature (P, C) over a data domain D′ = (D′, P ′, C ′) is given by quantifier-free for-
mulas over signature (P ′, C ′). The formula ϕdomain(x1, . . . , xl) defines the domain D =
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{(d1, . . . , dl) | D′ |= ϕdomain(d1, . . . , dl)}. Then, for each constant symbol c ∈ C, the
formula ϕc(x1, . . . , xl) defines the encodings5 of c as the tuples (dc

1, . . . , dc
l ) ∈ D that

satisfy ϕc, i.e. such that D′ |= ϕc(dc
1, . . . , dc

l ). Finally, for each predicate p ∈ P of ar-
ity a (including =), the formula ϕp(x1

1, . . . , x1
l , . . . , xa

1 , . . . , xa
l ) defines the predicate pD ={

(d1
1 , . . . , d1

l , . . . , da
1 , . . . , da

l )
∣∣D′ |= ϕR(d1

1 , . . . , d1
l , . . . , da

1 , . . . , da
l )

}
.

▶ Lemma 11. (Z, <, 0) can be defined as a 2-dimensional interpretation of (N, <, 0).

Proof. The encoding consists of two copies of N, one for positive and one for negative integers,
whose order is reversed. Formally, ϕdomain(x1, x2) := x1 = 0 ∨ x2 = 0. Then, ϕ0(x1, x2) :=
x1 = 0 ∧ x2 = 0; ϕ=((x1, x2), (y1, y2)) := x1 = y1 ∧ x2 = y2 and ϕ<((x1, x2), (y1, y2)) :=
(x2 = y2 = 0 ∧ x1 < y1) ∨ (x1 = y1 = 0 ∧ x2 > y2) ∨ (x1 = 0 ∧ y1 > 0). Then, (Z, <, 0) is
isomorphic to this structure, through the bijection n ≥ 0 7→ (n, 0) and n < 0 7→ (0,−n). ◀

More generally, d-uples of integers can be easily encoded. In the following, we fix d ≥ 1.
For (n1, ..., nd), (m1, ..., md) ∈ Zd, define (n1, ..., nd) <d (m1, ..., md) iff for all i ∈ {1, ..., d},
ni ≤ mi and nj < mj for some j ∈ {1, . . . , d}; it is a partial order on Zd. The predicate =d

is defined as expected.

▶ Lemma 12. (Zd, =d, <d, 0d) can be defined as a d-dimensional interpretation of (Z, <, 0).

Proof. Any tuple belongs to the domain, so we let ϕdomain := ⊤. Then, ϕ0(x1, . . . , xd) :=∧
1≤i≤d xi = 0, ϕ=((x1, . . . , xd), (y1, . . . , yd)) :=

∧
1≤i≤d xi = yi, and similarly for ϕ<. ◀

The following theorem allows us to lift our results to the two domains above:

▶ Theorem 13. If D is a quantifier-free interpretation over D′, then D reduces to D′.

Proof (Sketch). We outline the proof, and refer to the extended paper for details. Let
D′ = (D′, P ′, C ′) be a data domain, and D be an interpretation over D′ of dimension l ≥ 1
with signature (P, C). The main idea is, given a set of registers R, to consider l copies of
this set, meant to store each dimension of the interpretation. We also add l copies of C to
store the encoding of constants, and, since tests are conducted before assignment, l registers
to store each component of the input tuple. Overall, an action word a over R is sent to
one over (R ∪ C ∪ {d})× {1, . . . , l}, where d is a fresh register variable. Then we construct
the sought relation K as follows: first, it prefixes its image with a sequence of actions that
store the encoding of constants in the corresponding registers, check that they indeed satisfy
their respective ϕc, and ensure that all registers in R × {1, . . . , l} are initialised with the
encoding of c0. Note that the formulas are not necessarily conjuncts, so we put them in
disjunctive normal form and consider all tests that are conjuncts of the DNF. Then, each
action is processed separately: an action (tst, asgn) of a is associated with a sequence of
2l + 1 actions that consist in reading each component of the input data value ⋆, store it in
the corresponding copy of d, check that ⋆ indeed belongs to the domain (ϕdomain), and that
it satisfies tst (using the (ϕp)p∈P to encode the predicates). Again, this implies converting
the formulas in DNF, so a given action is in general associated with multiple ones. Since K

consists in adding a prefix and then processing each action separately, it is rational. Moreover,
it preserves feasibility; more precisely for any action word a, each of its corresponding data
word can be associated with its encoding in K(a). ◀

By Theorems 6, 13 and 8, as well as Lemma 11, we get:

5 Note that we do not assume the encoding to be unique.
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▶ Corollary 14. Register-bounded synthesis is decidable for (Z, <, 0).

Then, since (Z, <, 0) reduces to (N, <, 0), and reducibility is transitive, we get, by
Lemma 12 and Theorems 13 and 8:

▶ Corollary 15. Register-bounded synthesis is decidable for (Zd, =d, <d, 0d).

▶ Remark. One can similarly show that Nd reduces to N. More generally, the above method
allows one to lift decidability of register-bounded synthesis to tuples of data values where
predicates are applied component-wise. Besides, note that Nd also reduces to Zd, by restricting
Zd to nonnegative values.

4.3 Finite Strings with the Prefix Relation
In this section, we show that synthesis is decidable over the data domain (Σ∗, =,≺, ϵ), where
Σ is a finite alphabet and ≺ denotes the prefix relation, leveraging a result of [10] that
encodes prefix constraints as integer ones. This still requires some work, as we cannot use
the notion of interpretation: a string valuation is encoded as an integer valuation with a
quadratic number of registers. In the sequel, Σ is a fixed finite set of size l ≥ 2.

First, (Σ∗, =,≺, ϵ) reduces to the richer domain (Σ∗, =, clen=, clen<, ϵ), where, given
u, v ∈ Σ∗, clen(u, v) denotes the length of the longest common prefix of u and v, and,
for ◁ ∈ {<, =}, clen◁(u, v, u′, v′) holds whenever clen(u, v) ◁ clen(u′, v′). The reduction is
direct, and follows the same lines as [10, Lemma 3]: u ≺ v is encoded as (clen(u, u) =
clen(u, v)) ∧ (clen(u, u) < clen(v, v)), and K is a morphism on tests and the identity over
assignments.

▶ Lemma 16. (Σ∗, =,≺, ϵ) reduces to (Σ∗, =, clen=, clen<, ϵ).

Note also that satisfiability of tests over both domains is decidable, and NP-complete [10,
Lemma 7]. It now remains to show that (Σ∗, =, clen=, clen<, ϵ) reduces to (N, =, <, 0).
The proof draws on ideas similar to that of [10, Lemmas 8,9], which mainly relies on [10,
Lemmas 5,6]. Here, it remains to lift them to our synthesis framework, and ensure that
feasibility is preserved despite the dependencies induced by registers.

▶ Lemma 17. (Σ∗, =, clen=, clen<, ϵ) reduces to (N, =, <, 0).

Proof. We describe the main ideas of the proof; a full proof can be found in the extended
version. From [10, Lemma 5,6], we know that a string valuation is characterised by the length
of the longest common prefixes of all its pairs of values, when prefix constraints are concerned.
This allows to encode Σ∗ in N: given a set R of registers, we introduce a register πr,s for each
(r, s) ∈ R′ = (R ∪ {x})2, where x is an additional register name that denotes the input data
value ⋆ in Σ∗. Along the execution, a register πr,s is meant to contain clen(ν(r), ν(s)). Note
that in particular, πr,r contains the length of the word stored in r. At each step, we read
a sequence of |R| integers that each corresponds to the value of clen(⋆, r) for some r ∈ R,
that we store in the corresponding register π⋆,r. We then check that they satisfy the clen
constraints, as well as the properties of [10, Proposition 2]. The latter consist in logical
formulas that can be encoded as tests in (N, =, <, 0), as they only use = and <.

Using [10, Lemma 6], from a sequence of integer valuations (called counter valuations
in [10]) that satisfy those properties, we can reconstruct a sequence of string valuations. As
the integer valuations additionally satisfy the clen constraints, so does the string valuations.
Thus, if an image R′-action word is feasible, the original action word is feasible. The converse
direction is easier: given a sequence ν0ν1 . . . of string valuations that is compatible with the
R-action word, at step i one fills each πr,s with clen(νi(r), νi(s)). ◀
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By Theorems 6 and 8, we get:

▶ Corollary 18. Register-bounded synthesis is decidable for (Σ∗, =,≺, ϵ).

▶ Remark 19 (Complexity analysis). Note that the data domains in Corollaries 14, 15 and 18
all reduce to (N, <, 0) (all via some rational relations K depending on a set of registers R).
The time complexities of those corollaries depend on the complexities of constructing, given
a set of registers R, a nondeterministic Büchi automaton recognising K−1(QFEAS(N,<,0)

R ) for
all the rational relations K defined in the proofs of those corollaries. It can be seen from those
proofs that for any such rational relation K, it is possible to construct a nondeterministic
Büchi transducer AK with polynomially many states in |R| recognising K. By taking the
synchronized product of AK with a nondeterministic automaton recognising QFEAS(N,<,0)

R ,
say of size nqf , and by projecting it on its inputs, one obtains a nondeterministic Büchi
automaton recognising K−1(QFEAS(N,<,0)

R ). It can be computed in time poly(nqf ). By Fact 5
and Theorem 4, one gets that the time complexities of k-register-bounded synthesis for data
domains (Z, =, <, 0), (Zd, =d, <d, 0d) (for a fixed d) and (Σ∗, =,≺, ϵ) is doubly exponential
in k and r the number of registers of the specification, and singly exponential in the number
of states of the URA and its number of priorities.

5 Conclusion

We have shown that register-bounded synthesis from specifications expressed by universal
register-automata over (N, <, 0) is decidable within the same time complexity class as the
case of URA over (N, =), completing the picture on synthesis from register automata over
(N, =) and (N, <, 0): (unbounded) synthesis is undecidable for nondeterministic register
automata [15], decidable for deterministic register automata over (N, =) [15] and over
(N, <) [14], and register-bounded synthesis is decidable for URA over (N, =) [24, 15, 25] and
(N, <, 0) (this paper), and undecidable for nondeterministic register automata [15]. We also
get decidability for the data domains of integers, of tuples of integers and of finite words with
the prefix relation, by reducing them to (N, <, 0). A simple complexity analysis (Remark 19)
yields a doubly exponential decision procedure for register-bounded synthesis over these
domains. Systematising this complexity analysis calls for a notion of polynomial reduction
between data domains, that we leave for future work.

There are other challenging future research directions: first, universal automata, as argued
in the introduction, are well suited for synthesis, and have been show in the register-free
setting to be amenable to synthesis procedures which are feasible in practice [26, 31, 17, 4].
We plan on investigating extensions of these works to the register setting. In particular, our
synthesis algorithm first reduces the problem to a synthesis problem over a finite alphabet with
a specification given by a universal co-Büchi automaton. The latter problem is classically
solved by reduction to a parity game obtained by determinising the universal co-Büchi
automaton, e.g. by using Safra’s determinization procedure. It is an interesting question
whether Safraless procedures from [26, 31, 17] could be combined with our game reduction to
get more practical algorithms. Another challenging research direction is to consider synthesis
problems from logical specifications instead of automata, as the nice correspondences between
automata and logics for word languages over finite alphabets do not carry over to data words.
Nevertheless, URA encompass Constraint LTL [32], and we believe their expressive power
could allow one to target other temporal-like logics with data.
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Abstract
We study problems connected to first-order logic in graphs of bounded twin-width. Inspired by
the approach of Bonnet et al. [FOCS 2020], we introduce a robust methodology of local types and
describe their behavior in contraction sequences – the decomposition notion underlying twin-width.
We showcase the applicability of the methodology by proving the following two algorithmic results.
In both statements, we fix a first-order formula φ(x1, . . . , xk) and a constant d, and we assume that
on input we are given a graph G together with a contraction sequence of width at most d.

One can in time O(n) construct a data structure that can answer the following queries in time
O(log log n): given w1, . . . , wk, decide whether φ(w1, . . . , wk) holds in G.
After O(n)-time preprocessing, one can enumerate all tuples w1, . . . , wk that satisfy φ(x1, . . . , xk)
in G with O(1) delay.

In the first case, the query time can be reduced to O(1/ε) at the expense of increasing the construction
time to O(n1+ε), for any fixed ε > 0. Finally, we also apply our tools to prove the following statement,
which shows optimal bounds on the VC density of set systems that are first-order definable in graphs
of bounded twin-width.

Let G be a graph of twin-width d, A be a subset of vertices of G, and φ(x1, . . . , xk, y1, . . . , yl) be
a first-order formula. Then the number of different subsets of Ak definable by φ using l-tuples
of vertices from G as parameters, is bounded by O(|A|l).
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1 Introduction

Twin-width is a graph parameter recently introduced by Bonnet et al. [7]. Its definition is
based on the concept of a contraction sequence: a sequence of partitions of the vertex set of
the graph that starts with the partition into singletons, where every subsequent partition is
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obtained from the previous one by merging two parts ending with the partition with one part.
The main idea lies in measuring the width of a contraction sequence: it is the smallest integer
d such that at every step, every part of the current partition is impure – neither completely
adjacent nor completely non-adjacent – towards at most d other parts of that partition. The
twin-width of a graph G is the smallest possible width of a contraction sequence of G. Thus,
one may thinkthat a graph of bounded twin-width can be gradually “folded” into a single
part so that at every point, every part has a non-trivial interaction with only a bounded
number of other parts.

We remark that while twin-width was originally defined for graphs, the idea can be, and
has been, generalized to any classes of binary relational structures, for instance ordered
graphs [4] or permutations [8]. In this work we focus on the graph setting for simplicity.
However, all our results lift to arbitrary structures over a fixed relational signature in which
all relation symbols have arities at most two.

Since its recent introduction, multiple works have investigated combinatorial, algorithmic,
and model-theoretic aspects of twin-width. In this work we are mostly interested in the
two last ones. As proved by Bonnet et al. [7], provided a graph G is given together with a
contraction sequence of width bounded by a constant, every property expressible in first-order
logic can be verified in linear time on G; in other words, the model-checking problem for
first-order logic can be solved in linear fixed-parameter tractable time. Further, bounded
twin-width is preserved under transductions: if a class of graphs C has bounded twin-width,
then any class that can be obtained from C by a fixed (first-order) transduction also has
bounded twin-width [7]. Finally, as proved by Bonnet et al. [4], classes of ordered graphs that
have bounded twin-width exactly coincide with those that are monadically NIP, that is, do
not transduce all graphs. All these results witness that twin-width is a model-theoretically
important notion and a vital element of the emerging structural theory for graphs based
around the notion of a (first-order) transduction. See [8, 13] for further discussion.

In this work we take a closer look at the model-checking algorithm for graphs of bounded
twin-width, proposed in [7]. The basic technical notion used there is that of a morphism tree.
While this is not explicit in [7], it is clear that morphism trees are combinatorial objects
representing strategies in a form of an Ehrenfeucht-Fraïsse game, and basic operations on
morphism trees correspond to manipulations on strategies. Mirroring the standard approach
taken in finite model theory, one should be able to define a notion of a type suited for the
setting of contraction sequences, as well as a corresponding model of an Ehrenfeucht-Fraïsse
game that can be used to argue about properties of types such as compositionality. Providing
robust foundations for such a type-based methodology for contraction sequences is the main
goal of this work.

We remark that the type/game based perspective of the approach of [7], which we
explained above, was recently briefly outlined in [5, Section 5].

Our contribution. We introduce the notion of a local type that is suited for describing first-
order properties of tuples of vertices in vertex-partitioned graphs. Intuitively speaking, the
rank-k local type of a tuple w in a graph G with vertex partition P is the set of all quantifier
rank k formulas satisfied by w, where we restrict quantification as follows. Whenever a new
vertex, say z, is quantified, one has to specify the part P ∈ P which contains z, but at depth
i of quantification one can quantify only over parts that are at distance at most 2k−i from
parts containing already quantified vertices (including vertices of w). Here, we mean the
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distance in the impurity graph: the graph on parts of P where two parts of P are adjacent if
and only if they are neither completely adjacent nor completely non-adjacent. This definition
mirrors, in logical terms, the morphism trees of Bonnet et al. [7]. In particular, it applies the
same idea that the radius of quantification decreases exponentially with the depth.

We prove a set of fundamental lemmas for manipulation of local types upon consecutive
steps in a contraction sequence. These reflect the mechanics of morphism trees of [7], but by
basing the argumentation essentially on Ehrenfeucht-Fraïssé games, the obtained explanation
is arguably simpler and more insightful. Also, contrary to [5, 7], the introduced toolbox
applies to tuples of vertices, and not only to single parts in the contraction sequence. This is
important in our applications, which we discuss next.

We use the toolbox of local types to give the following algorithmic results on first-
order expressible problems in graphs of bounded twin-width. The first one concerns the
problem of query answering, and the second concerns the problem of query enumeration. In
both theorems we assume that the graph is specified through a contraction sequence; this
is explained in Section 2. For a tuple of parameters p, the notation Op(·) hides factors
depending on p.

▶ Theorem 1. Suppose we are given an n-vertex graph G specified through a contraction
sequence P1, . . . , Pn of width d, and a first-order formula φ(x), where x is a set of variables.
Then one can construct in time Od,φ(n) a data structure that can answer the following queries
in time Od,φ(log log n): given w ∈ V (G)x, decide whether G |= φ(w).

▶ Theorem 2. Suppose we are given an n-vertex graph G specified through a contraction
sequence P1, . . . , Pn of width d, and a first-order formula φ(x), where x is a set of variables.
Then after preprocessing in time Od,φ(n), one can enumerate all tuples w ∈ V (G)x such that
G |= φ(w) with Od,φ(1) delay.

Note that in Theorem 1 there is a factor of the form Od,φ(log log n) appearing in the
query time. This is a consequence of using a data structure for orthogonal range queries
of Chan [9] that supports queries in time O(log log n). As explained in [19], there is also a
simple data structure for orthogonal range queries that, for any fixed ε > 0, offers query
time O(1/ε) at the expense of increasing the construction time and the space complexity
to O(n1+ε). By replacing the usage of the data structure of Chan with this simple data
structure, we may obtain the same tradeoff in Theorem 1: The query time is reduced to
O(1/ε), while the construction time and the space complexity is increased to O(n1+ε); this
holds for any fixed ε > 0.

Theorems 1 and 2 mirror classic results on evaluation and enumeration of monadic
second-order queries on trees [2, 10, 14] (which imply analogous results for graphs of bounded
treewidth and of bounded cliquewidth), and of first-order queries on classes of bounded
expansion [11, 15] and nowhere dense classes [22]. Therefore, we believe that the applications
discussed above witness the robustness of the developed methodology.

As another application, we prove optimal bounds on VC density of set systems definable
in graphs of bounded twin-width. Suppose φ(x, y) is a first-order formula with free variables
partitioned into x and y. For a graph G and a subset of vertices A, we define the Stone space

Sφ(A) := { { a ∈ Ax | G |= φ(a, b) } : b ∈ V (G)y } .

ICALP 2022
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In other words, every tuple b ∈ V (G)y gives rise to the subset φ(A, b) ⊆ Ax consisting of
those tuples a that together with b satisfy φ. Then the Stone space Sφ(A) consists of all
sets φ(A, b) that can be defined in this way. See for example [18] for a discussion of this
notion and its applications.

In general graphs, Sφ(A) can be as large as the whole powerset of Ax. However, under
various structural assumptions, it will be typically much smaller. For instance, suppose that
the twin-width of G is bounded by a constant d. Then by combining the results of Bonnet et
al. [7] with that of Baldwin and Shelah [3], one can argue that the VC dimension of Sφ(A),
regarded as a set system over universe Ax, is bounded by a constant depending only on d and
φ. Consequently, by the Sauer-Shelah Lemma [21, 23], the cardinality of Sφ(A) is bounded
polynomially in |A|. However, the degree of this polynomial bound, which is known as the
VC density (studied for example in [1]), still depends on d and φ, and in a quite non-explicit
way. We prove that in fact, there is a much sharper upper bound: the VC density is bounded
by just the number of variables in y.

▶ Theorem 3. Let G be a graph of twin-width at most d, A be a subset of vertices of G, and
φ(x, y) be a first-order formula. Then

|Sφ(A)| ⩽ Od,φ

(
|A||y|

)
.

It is easy to see (see e.g. [18]) that even in edgeless graphs one cannot hope for a bound
better than |A||y|, and therefore the bound of Theorem 3 is asymptotically optimum.

Theorem 3 mirrors analogous results for monadic second-order formulas on classes of
bounded treewidth or cliquewidth [16], and for first-order formulas on classes of bounded
expansion and nowhere dense classes [18]. We remark that the case |x| = |y| = 1 follows
from the fact that classes of bounded twin-width are closed under first-order transductions,
combined with known linear upper bounds on the neighborhood complexity1 in classes of
bounded twin-width [6, 20]. Tackling multiple free variables requires a better understanding
of types for tuples of vertices, which is exactly where our methodology of local types comes
into play.

Organization. After preliminaries in Section 2, we present the framework of local types
in Section 3. Then we prove Theorem 1 in Sections 4. Theorems 2 is proved in Section 5.
Theorem 3 is deferred to the full version, due to space constraints. Easy proofs of statements
marked with ♠ are also deferred to the full version.

2 Preliminaries

Graphs. In this paper we work with finite, undirected graphs and we use standard graph
notation. By |G| we denote the number of vertices of a graph G.

A pair of disjoint vertex subsets A, B ⊆ V (G) is complete if every vertex of A is adjacent
to every vertex of B, and anti-complete if there is no edge with one endpoint in A and the
other one in B. The pair A, B is pure if it is complete or anti-complete, and impure otherwise.

1 In our notation, bounds on neighborhood complexity exactly correspond to the case when x = {x},
y = {y}, and φ(x, y) just checks that x and y are adjacent.
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A trigraph is a structure in which there is a vertex set and every pair of distinct vertices
is bound by exactly one of the following three symmetric relations: adjacency, non-adjacency,
and impurity. Thus, graphs are trigraphs without impurities. Given a partition of P of the
vertex set of a graph G, we define the quotient trigraph G/P as the trigraph on vertex set P
where distinct A, B ∈ P are adjacent if the pair A, B is complete in G, non-adjacent if the
pair is anti-complete, and impure towards each other if A, B is impure. For a trigraph H,
its impurity graph Imp(H) is the graph on vertex set H where two vertices u, v ∈ V (H) are
considered adjacent if they are impure towards each other in H.

Contraction sequences. Let G be a graph on n vertices. A contraction sequence for G is a
sequence P1, . . . , Pn of partitions of the vertex set of G such that:

P1 is the partition into singletons;
Pn is the partition with one part;
for each t ∈ [n], t > 1, Pt is obtained from Pt−1 by taking some two parts A, B ∈ Pt−1

and contracting them: replacing them with a single part A ∪ B ∈ Pt.
Indices t ∈ [n] will be called times. The width of the contraction sequence P1, . . . , Pn is
the maximum degree in graphs Imp(G/Pt), at all times t ∈ [n]. The twin-width of G is the
minimum possible width of a contraction sequence of G.

If G is supplied with a total order ⩽ on V (G), then a subset of vertices A is convex if it
forms an interval in ⩽, that is, if a, b ∈ A then also c ∈ A whenever a ⩽ c ⩽ b. A partition is
convex if all its parts are convex, and a contraction sequence is convex if all its partitions
are convex.

Additional notation for partitions and contraction sequences. Fix a graph G with a
partition P of its vertices. We will use the following notation.

Denote GP := G/P and Gimp
P := Imp(GP). By distP(·, ·) we denote the distance function

in Gimp
P : for A, B ∈ P, distP(A, B) is the minimum length of a path in Gimp

P connecting A

and B, and +∞ if there is no such path. We extend this notation to subsets, or tuples of
elements of P : distP(X, Y ) denotes the minimum, over all A occurring in X and B occurring
in B, of distP(A, B).

For a set of parts F ⊆ P and a radius parameter r ∈ N, the r-vicinity of F , denoted
Vicinityr

P(F), is the trigraph induced in GP by all parts at distance at most r from any part
belonging to F , that is

Vicinityr
P(F) := GP [{A ∈ P | distP(A, F) ⩽ r}].

We may use notation Vicinityr
P(·) for single parts or tuples of parts with the obvious meaning.

For brevity, whenever a graph G and its contraction sequence P1, . . . , Pn are clear from
the context, we fix the following notation. First, in all the notation defined above, concerning
partitions, we write s in the subscript instead of Ps. So for instance we write Gs to denote
GPs

, and Gimp
s to denote Gimp

Ps
, and dists(·, ·) to denote distPs

(·, ·), etc.
Fix a finite set of variables x. For a pair of times s, t ∈ [n], s ⩽ t, and a tuple of parts

u ∈ Px
s , we define the tuple u⟨s → t⟩ ∈ Px

t as follows: for each y ∈ x, u⟨s → t⟩(y) is the
unique part of Pt that contains u(y). For a tuple u ∈ V (G)x of vertices and s ∈ [n], by
u⟨s⟩ ∈ Px

s we denote the unique tuple whose y-component, for y ∈ x, is the part of Ps

containing u(y).

ICALP 2022
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For s ∈ [n − 1], by Bs+1 we denote the unique part of Ps+1 that is the union of two parts
in Ps. For a parameter r ∈ N, we define the r-relevant region in Gs as follows:

Relevantr
s := Gs[{C ∈ Ps | C ⊆ Bs+1, or C ∈ Ps+1 and dists+1(C, Bs+1) ⩽ r}].

In other words, Relevantr
s is the trigraph induced in Gs by the two parts of Ps that get

contracted into Bs+1 and all parts of Ps that stay intact in Ps+1 and are at distance at most
r from Bs+1 in Gimp

s+1.
Note that we have |Relevantp

s | ⩽ Od,p(1) for all s ∈ [n − 1]. The next lemma shows that
the p-relevant regions can be computed efficiently.

▶ Lemma 4 (♠). Suppose a graph G on vertex set [n] is provided through a convex contraction
sequence P of width d. Then for a given p ∈ N, one can in time Od,p(n) compute the trigraphs
Relevantp

s for all s ∈ [n − 1].

Specifying a graph through its contraction sequence. In all algorithmic statements we
will assume that a graph is given by specifying its contraction sequence together with some
auxiliary information encoding the edge relation. We now make this precise.

Let P1, . . . , Pn be a contraction sequence of a graph G. We assume that every part
participating in the partitions P1, . . . , Pn (that is, every element of the union P1 ∪ · · · ∪ Pn,
where each Pi is viewed as a set of sets of vertices) is specified through a unique identifier taking
a single machine word. For P1, the identifiers of (singleton) parts coincide with identifiers
of the corresponding vertices. Then sequence P1, . . . , Pn is represented by providing the
following information for every time s ∈ [n], s > 1:

The identifiers of the two parts A, A′ ∈ Ps−1 that get contracted at time s, and the
identifier of the obtained part B = A ∪ A′ ∈ Ps.
A list of identifiers of parts C ∈ Ps such that the pair B, C is impure in G (that is, the
impurities incident to B in Imp(G/Ps)).
For each part C on the list above, the relation (completeness, anti-completeness, or
impurity) between C and A and between C and B in G/Ps−1.

It is easy to see that this representation uniquely defines the graph G. Since the representation
takes Od(1) machine words at any time s, we can thus represent an n-vertex graph of twin-
width d using Od(n) machine words.

We now show that, for a graph given through a contraction sequence, one can reindex
the vertex set using integers from [n] so that the contraction sequence becomes convex.

▶ Lemma 5 (♠). Suppose a graph G is given by specifying a contraction sequence P1, . . . , Pn

of width d. Then one can in time Od(n) compute a bijection η : V (G) → [n] such that
mapping G and P1, . . . , Pn through η yields an isomorphic graph G′ on vertex set [n] and
its contraction sequence P ′

1, . . . , P ′
n such that P ′

1, . . . , P ′
n is convex in the natural order on

integers in [n].

Note that if a graph is reindexed using Lemma 5, then every part participating in the
resulting contraction sequence is an interval in [n]. Hence, as the identifier of a part we can
simply use a pair of vertices – the left endpoint and the right endpoint – and such identifiers
can be computed in time Od(n) by scanning the contraction sequence. We will therefore
assume that contraction sequences are convex with respect to a fixed ordering of the vertices,
and the (convex) parts are identified by their endpoints.
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First-order logic. We fix a countable set of variables, together with its enumeration. If Ω is
a set and x is a finite set of variables, then an x-tuple with entries in Ω is a function from x
to Ω. Tuples are by convention denoted with boldface small letters, e.g. u or v. The set of
all x-tuples with entries in Ω is denoted by Ωx. When a ∈ Ωx is an x-tuple and b ∈ Ω, then
by ab we denote the (x ∪ {y})-tuple that extends a and maps the first variable (according to
the fixed enumeration of all variables) y not in x, to b.

We consider standard first-order logic on graphs by modeling them as relational structures
where the universe is the vertex set and there is a single binary predicate signifying adjacency.
For a graph G, a formula φ(x), where x is the set of free variables of φ, and a tuple of
vertices w ∈ V (G)x, we write G |= φ(w), or G, w |= φ(x), to denote that w satisfies φ(x) in
G. We sometimes consider formulas with an explicitly partitioned set of free variables, e.g.,
φ(x, y). Sentences are formulas with no free variables.

Logical types. While the usual definition of a logical type of quantifier rank k of a tuple a
of vertices of G is the set of all formulas φ(x) such that G |= φ(a), we will rely on a definition
which is more suitable for our purposes and is well known to be equivalent, by the result of
Ehrenfeucht and Fraïssé (see for example [12]).

Let x be a finite set of variables. An atomic type with variables x is a maximal consistent
set S of formulas of the form x = y, x ̸= y, E(x, y), ¬E(x, y), where x, y ∈ x. Here by
consistent we mean that there is some graph G and a tuple w ∈ V (G)x that satisfies all
formulas occurring in the atomic type (this is decidable, as it is sufficient to consider graphs
G with |G| ⩽ |x|).

For a ∈ V (G)x, the atomic type of a in G is the atomic type with variables x which
consists of all formulas of the form E(x, y) or x = y, where x, y ∈ x, such that G, a |= x = y

or G, a |= E(x, y).

▶ Definition 6. Let G be a graph x a finite set of variables and k ∈ N. For every a ∈ V (G)x

we define its type of quantifier rank k, denoted tpk(a), as follows.
If k = 0, then tp0(a) is the atomic type of a in G.
If k > 0, then tpk(a) = {tpk−1(ab) | b ∈ V (G)}.

For k ⩾ 1 we also set tpk(G) = {tpk−1(a) | a ∈ V (G)}.

This definition is usually intuitively explained in terms of Ehrenfeucht-Fraïssé games. Namely,
two x-tuples a and b of vertices of two graphs G and H, respectively, have equal types
of quantifier rank k if and only if Duplicator wins the k-round game on the graphs G and
H, where the initial pebbles in G and H are placed on the vertices occurring in a and in
b, respectively. Indeed, suppose tpk(a) = tpk(b), where k > 0, and that Spoiler places a
pebble on a vertex c of G. Then, since tpk−1(ac) ∈ tpk(a) by definition and tpk(a) = tpk(b),
we have that there is some d ∈ tpk(b) such that tpk−1(bd) ∈ tpk(b). Then Duplicator
responds by placing the pebble on the vertex d, and we have that tpk−1(ac) = tpk−1(bd)
so, by inductive assumption, Duplicator wins in the k − 1 round game from the current
configuration, which shows that Duplicator has a winning strategy in the k round game
starting from a and b. The implication in the other direction proceeds similarly.

As is well known, the set of types of x-tuples of quantifier rank k that are realized by
some tuple a, in some graph, is non-computable, even though this set has size bounded in
terms of x and k. To overcome this problem, the usual solution is to define the set of abstract
types (that may not be realized as actual types), which is computable from x and k, has
bounded size, and contains all types that may arise. This is done as follows.

ICALP 2022
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Define Types0
x as the set of all atomic types over x and Typesk

x := {M | M ⊆ Typesk−1
xy }.

Note that for any G and any a ∈ V (G)x it holds that tpk(a) ∈ Typesk
x, but Typesk

x can also
contain objects which are not realized by any tuple of vertices a of any graph.

For a graph G we set Typesk
x(G) := {tpk(a) | a ∈ V (G)x}. Note that we have tpk(G) =

Typesk−1
x (G).

The following is well known and follows from the fact that our definition of types is
equivalent to the usual definition of types using formulas.

▶ Proposition 7. Let G be a graph, x a set of variables and k ∈ N.
|Typesk

x(G)| = Ok,x(1),
For any a ∈ V (G)x and any first-order formula φ(x) of quantifier rank at most k one
can determine whether G |= φ(a) from tpk(a) in time Ok,x(1).
For any first-order sentence φ of quantifier rank at most k one can determine whether
G |= φ from tpk(G) in time Ok(1).

3 Local types

In this section we define local types of quantifier rank k for partitioned graphs, or local k-types
for short. They provide a framework for the results proved in the rest of the paper. The key
lemmas are Lemma 14 and Lemma 16 and their corollaries Lemma 15 and Lemma 17.

3.1 Local types for partitioned graphs
Let G be a graph and P be a partition of its vertex set, and let x be a set of variables. For
an x-tuple a ∈ V (G) write a⟨P⟩ for the x-tuple u ∈ Px such that u(x) is the part containing
a(x), for all x ∈ x.

▶ Definition 8. Let G be a graph, P be a partition of its vertex set, x a nonempty set of
variables, and k ∈ N. For any a ∈ V (G)x we define the local k-type of a, denoted ltpk

P(a),
as follows:

ltp0
P(a) is the atomic type of a together with the x-tuple a⟨P⟩ ∈ Px of parts of P

corresponding to a,
for k > 0, let ltpk

P(a) = {ltpk−1
P (ab) | b ∈ w for some w ∈ P with distP(a⟨P⟩, w) ⩽ 2k−1}.

As with usual types of quantifier-rank k defined in the previous section, it is often
convenient to think about equality of local types in terms of games. We now briefly describe
the corresponding variant of Ehrenfeucht-Fraïssé games game. This game will be played on a
single graph G with a fixed partition P of its vertex set (one can also imagine it being played
on two copies of the same graph with the same partition). The starting position of the game
is determined by two x-tuples a and b of vertices of G (where x is nonempty) such that for
every y ∈ x we have that a(y) is in the same part of P as b(y). The game is played for k

rounds as the usual Ehrenfeucht-Fraïssé game with the following extra restrictions on the
moves of the players: (1) In the ith round, Spoiler picks one of the tuples a and b, and he
will then proceed to extending it. Suppose that he picks a, the other case being symmetric.
Spoiler then picks a vertex a in any part P ∈ P such that distP(P, Q) ⩽ 2k−1, where Q

is some part containing a vertex of a. He then appends a to a to form the tuple aa. (2)
Duplicator replies by picking a vertex b in the same part P and extending the other tuple b
to bb. The game then continues to the next round, with aa and bb forming the new position.
Duplicator wins after k rounds if the two tuples have equal atomic types.
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It is not difficult to see that Duplicator wins the k-round game described above, starting
from the configuration a and b, if and only if ltpk

P(a) = ltpk
P(b). This is made formal in the

following proposition, whose proof is an immediate consequence of Definition 8.

▶ Proposition 9. Let G be a graph and P be a partition of the vertices of G, and let x a
tuple of variables and k ∈ N. Then the following holds for any a, b ∈ V (G)x:

ltp0
P(a) = ltp0

P(b) if and only if the atomic types of a and b are the same, and a⟨P⟩ =
b⟨P⟩;
If k > 0 then ltpk

P(a) = ltpk
P(b) if and only if for any P ∈ P with distP(a⟨P⟩, P ) ⩽ 2k−1

the following holds: for any c ∈ P there exists c′ ∈ P such that ltpk−1
P (ac) = ltpk−1

P (bc′),
and conversely, for any c′ ∈ P there exists c ∈ P such that ltpk−1

P (ac) = ltpk−1
P (bc′).

We will also need to have an abstract set containing all types which could potentially
occur for any k ∈ N and u ∈ Px. Note that this includes also types which are not realized in
G (or even in any graph).

▶ Definition 10. Let x be a nonempty set of variables and k ∈ N. Fix a graph
G together with a vertex-partition P. For u ∈ Px we define Types0

u,P := {(α, u) |
α is an atomic type with variables x}. For k > 0 let M be the set of all parts w of P
with distP(u, w) ⩽ 2k−1 and let M ′ :=

⋃
w∈M Typesk−1

uw,P . We then define

Typesk
u,P := {S | S ⊆ M ′}.

Define also Typesk
u,P(G) := {ltpk(a) | a ∈ V (G)x, u = a⟨P⟩}.

Then Typesu,P(G) is the set of all local k-types realized in u, and is a subset of Typesk
u,P .

3.2 Properties of local types
In this section we establish the properties of local k-types used in the rest of the paper.

In the rest of this paper, we assume that we have fixed a graph G and a contraction se-
quence P1, . . . , Pn of G. We write ltpk

s (·) to denote ltpk
Ps

(·), Typesu,s(·) to denote Typesu,P(·),
and dists(·, ·) to denote distPs

(·, ·).
The following two lemmas establish some basic properties of local k-types. The proof of

Lemma 11 follows immediately from the definition.

▶ Lemma 11. The following holds at any time s ∈ [n] and k ⩾ 1.
If ltpk

s(a) = ltpk
s(b), then ltpk−1

s (a) = ltpk−1
s (b).

If ltpk
s(a) = ltpk

s(b), then a⟨s⟩ = b⟨s⟩.

▶ Lemma 12 (♠). Let s ∈ [n] be a time and x a tuple of variables, and k ⩾ 0. Then
|Typesk

u,s| ⩽ Od,k,x(1), for all u ∈ Px
s . Moreover, given vicinity Vicinity2k

s (u), one can
compute Typesk

u,s in time Od,k,x(1).

The following lemma relates local types for partitioned graphs to usual first-order types,
as defined in the preliminaries.

▶ Lemma 13 (♠). Let x be a tuple of variables and a ∈ V (G)x. One can compute tpk(a)
from ltpk

n(a) in time Ok,d,x(1).

The next lemma is a version of compositionality of local types and plays a key role in
computing local types.
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▶ Lemma 14. Fix two disjoint sets of variables x and y. Let a, a′ ∈ V x and b, b′ ∈ V y be
such that ltpk

s(a) = ltpk
s(a′) and ltpk

s(b) = ltpk
s(b′). Let u = a⟨s⟩ and v = b⟨s⟩ and assume

that dists(u, v) > 2k. Then ltpk
s(ab) = ltpk

s(a′b′).

Proof. We prove the statement by induction on k. For k = 0, to prove that ltp0
s(ab) =

ltp0
s(a′b′), we have to show that the atomic types of ab and a′b′ are the same. Fix an

atomic formula φ(x, y), with x, y ∈ x ∪ y. We show that G, ab |= φ(x, y) if and only if
G, a′b′ |= φ(x, y). If x and y both belong to x then the conclusion follows by assumption
that ltp0

s(a) = ltp0
s(a′). The same holds if x and y both belong to y.

So, by symmetry, it is enough to consider the case when x ∈ x and y ∈ y. Since by our
assumption dists(u, v) > 20 = 1, any part of u is pure to any part v, and so in particular the
part a(x)⟨s⟩ is pure towards b(y)⟨s⟩. Because a(x), a′(x) ∈ a(x)⟨s⟩ and b(y), b′(y) ∈ b(y)⟨s⟩,
this implies that G, ab |= φ(x, y) if and only if G, a′b′ |= φ(x, y), as required.

For k > 0, let c be a vertex in a part w = c⟨s⟩ such that dists(uv, w) ⩽ 2k−1. Our
task is to show that there exists c′ ∈ w such that ltpk−1

s (abc) = ltpk−1
s (a′b′c′). Since

dists(u, v) > 2k, exactly one of dists(u, w) ⩽ 2k−1 and dists(v, w) ⩽ 2k−1 has to hold;
without loss of generality assume that dists(u, w) ⩽ 2k−1 holds. Since ltpk

s(a) = ltpk
s(a′),

there exists c′ ∈ w such that ltpk−1
s (ac) = ltpk−1

s (a′c′). Because dists(u, v) > 2k and
dists(u, w) ⩽ 2k−1, we have dists(uw, v) > 2k−1, so we can apply the induction hypothesis
to ac, a′c′ and b, b′, which yields that ltpk−1

s (abc) = ltpk−1
s (a′b′c′), as desired. ◀

The following lemma follows directly from Lemma 14, except for the part about efficient
computation.

▶ Lemma 15. Let s ∈ [n] be a time and x and y are disjoint sets of variables. Suppose
u ∈ Px

s and v ∈ Py
s are tuples of parts such that dists(u, v) > 2k. Then there is a function

f : Typesk
u,s × Typesk

v,s → Typesk
uv,s such that for every pair of tuples a ∈ V x and b ∈ V y

satisfying u = a⟨s⟩ and v = b⟨s⟩, we have

ltpk
s(ab) = f(ltpk

s(a), ltpk
s(b)).

Moreover, given k, u, v, and the vicinity Vicinity2k

s (uv), one can compute f in time
Od,k,x,y(1).

Regarding the computation of function f in the above lemma, by “computing f in time
Od,k,x,y(1)” we do not mean just evaluating f on any given input in desired time, but
constructing the whole input-output table for f . The reason why this can be computed from
k, u, v and Vicinity2k

s (uv) in time Od,k,x,y(1) is that the input and output sets have size
bounded by Od,k,x,y(1) and the proof in Lemma 14 uses only information from Vicinity2k

s (uv).
A concrete approach to implementing this computation similar to that of [7] can be found in
the full version.

The next lemma will allow us to determine how the k-type of a tuple a develops over
time.

▶ Lemma 16. Let s ∈ [n] be a time and let a ∈ V x, a′ ∈ V x be two tuples of vertices such
that ltpk

s(a) = ltpk
s(a′). Then ltpk

s+1(a) = ltpk
s+1(a′).

Proof. By induction on k. For k = 0 note that ltp0
s(a) = ltpk

s(a′) implies that atomic types
of a and a′ are the same and a⟨s⟩ = a′⟨s⟩. It is easily seen that then also a⟨s + 1⟩ = a′⟨s + 1⟩,
as desired.
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For k > 0, let u = a⟨s + 1⟩ = a′⟨s + 1⟩. We need to show that for any w ∈ Ps+1 with
dists+1(u, w) ⩽ 2k−1 and any b ∈ w there is b′ ∈ w such that ltpk−1

s+1 (ab) = ltpk−1
s+1 (a′b′),

and symmetrically, that for any b′ ∈ w there is b ∈ w such that ltpk−1
s+1 (ab) = ltpk−1

s+1 (a′b′).
We focus on the first option; the proof of the second one is analogous. Let v = b⟨s⟩. We
distinguish two possibilities:

dists(u, v) ⩽ 2k−1: In this case, since ltpk
s(a) = ltpk

s(a′), there exists b′ ∈ v such that
ltpk−1

s (ab) = ltpk−1
s (a′b′). Then by induction hypothesis it follows that ltpk−1

s+1 (ab) =
ltpk−1

s+1 (a′b′), as desired.
dists(u, v) > 2k−1: In this case we note that ltpk

s(a) = ltpk
s(a′) implies that ltpk−1

s (a) =
ltpk−1

s (a′), and we set b′ := b. We can now apply Lemma 14 to a, a′ and b, b′ to see
that ltpk−1

s (ab) = ltpk−1
s (a′b′), and by induction hypothesis it follows that ltpk−1

s (ab) =
ltpk−1

s (a′b′), as desired. ◀

Lemma 16 implies that there exists a function which maps ltpk
s(a) to ltpk

s+1(a), and by
induction we get the following lemma.

▶ Lemma 17. Let s, t ∈ [n] be times with s ⩽ t. Suppose u ∈ Px
s and let v = u⟨s → t⟩. Then

there exists a function f : Typesk
u,s → Typesk

v,t such that for every tuple a ∈ V x satisfying
u = a⟨s⟩, we have

ltpk
t (a) = f(ltpk

s(a)).

Moreover, if t = s + 1, then given k, u, v and the relevant region Relevant2k(|x|+1)
s , one can

compute f in time Od,k,x(1), provided that for every y ∈ x we have that v(y) ∈ Relevant2k|x|
s .

As in the case of Lemma 15, the whole input-output table of function f can be com-
puted in time Od,k,x,y(1) from k, u, v and Relevant2k

s , since the proof of Lemma 16 uses
only information from Relevant2k(|x|+1)

s . Again, a concrete approach to implementing this
computation similar to that of [7] can be found in the full version.

We will also use the fact that when going from time s to s + 1 the local k-types of tuples
in parts which are not in the trigraph Relevant2k

s are not affected.

▶ Lemma 18 (♠). Let x be a finite set of variables, s ∈ [n] a time, k ∈ N and let u ∈ Px
s

be such for every y ∈ x it holds that u(y) ̸∈ V (Relevant2k

s ). Then u⟨s → s + 1⟩ = u, and
for every a with u = a⟨s⟩ we have that ltpk

s(a) = ltpk
s+1(a). In particular, Typesk

u,s+1(G) =
Typesk

u,s(G).

Model checking on graphs of bounded twin-width. With the machinery from the previous
subsection we can now reprove the result of [7] that the first-order model checking problem
on any class C of graphs of twin-width at most d is solvable in time Od,φ(n), provided that
the contraction sequence of the input graph G is provided together with G.

▶ Theorem 19. Let G be a graph on n vertices represented through its contraction sequence
P1, . . . , Pn of width d. Then for any sentence φ of quantifier rank q one can decide whether
G |= φ in time Od,φ(n).

Proof. Let q be the quantifier rank of φ and set k := q − 1 and r := 2k. We will show how
to compute the set Typesk

x(G) in desired time, and since tpq(G) = Typesq−1
x (G), the result

will follow by Proposition 7.
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As a preprocessing step, the algorithm computes in time Od,k(n) the trigraphs Relevantr
s

for all s ∈ [n − 1]; this can be done due to Lemma 4. For the rest of the proof, let
us for any time s ∈ [n] denote by Ts the set of all sets of realized types at time s, i.e.
Ts := {Typesk

w,s(G) | w ∈ Ps}.
The algorithm first computes T1 by computing Typesk

w,1(G) for each w ∈ P1; since each
such part w contains exactly one vertex, this can be done in time Ok(1) for any w, and
so this takes time Ok(n) in total. From this point on the algorithm will proceed through
times 2 to n and for every time s it will compute Ts from Ts−1. By Lemma 18, any
part w of Ps−1 which is not in Relevant2k

s−1 is the same in Ps as in Ps−1 and we have that
Typesk

w,s−1(G) = Typesk
w,s(G), which means that the computation only needs to be performed

on parts from Relevant2k

s−1. We distinguish the following two possibilities:
If v, w are the two parts of Ps−1 which get contracted into a part u ∈ Ps, then the
algorithm applies the function from Lemma 17 to all members of Typesk

v,s−1(G) and
Typesk

w,s−1(G) and collects the results into Typesk
u,s(G).

If w is any other part in Relevantr
s−1, then the algorithm applies the function from

Lemma 17 to all members of Typesk
w,s−1 and collects the results into Typesk

w,s(G).
In each of the above cases the computation can be done in time Od,k(1), since each application
of the function from Lemma 17 can be done in time Od,k,1(1) and by Lemma 12 we have
that |Typesk

w,s−1(G)| ⩽ Od,k(1). Moreover, since |Relevantr
s−1| ⩽ Od,k(1), the computation

of Ts from Ts−1 can be done in time Od,k(1). There are n − 1 steps to obtain Tn and so the
whole computation takes time Od,k(n). Now Tn contains only Typesk

w,n(G) where w is the
only part of Pn. By Lemma 13, from each local k-type in Typesk

w,n(G) one can compute the
corresponding k-type from Typesk

x(G) in time Ok(1). This finishes the proof. ◀

4 Query answering

In this section we prove Theorem 1. For the remainder of this section let us fix a graph G

and a contraction sequence P1, . . . , Pn of G of width d, where n = |V (G)|. In all algorithmic
statements that follow, we assume that G and P are given on input.

Throughout this section our data structures work with the standard word RAM model.

4.1 Proximity oracle
For vertices u, v ∈ V (G) and r ∈ N, we define

firstCloser(u, v) = min{t | distt(u⟨t⟩, v⟨t⟩) ⩽ r}.

In other words, firstCloser(u, v) is the first time t such that the parts of Pt containing u and
v are at distance at most r in the impurity graph Gimp

t . Note that whenever u ̸= v, we have
1 < firstCloser(u, v) ⩽ n. The main goal of this section is to construct an auxiliary data
structure for answering queries about the values of firstCloser(·, ·). This is described in the
lemma below.

▶ Lemma 20. For a given r ∈ N, one can in time Od,r(n) compute a data structure
that can answer the following queries in time Od,r(log log n): given u, v ∈ V (G), output
firstCloser(u, v).

By Lemma 5, we may assume that the vertex set V (G) is equal to [n], and P is a convex
contraction sequence for the usual order on [n]. In particular, pairs of vertices can be
identified with points in a plane, and intuitively, every pair of sets A, B ⊆ V (G) corresponds
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to a rectangle A × B ⊆ [n] × [n]. This correspondence will be important in the proof of
Lemma 20, whose key technical component is the data structure for orthogonal range queries
due to Chan [9], for manipulating rectangles in a plane. (We remark that the applicability of
this data structure in the context of twin-width has already been observed in [19].) Let us
recall the setting.

A rectangle is a set of pairs of integers of the form {(x, y) : a ⩽ x ⩽ a′, b ⩽ y ⩽ b′}
for some integers a, a′, b, b′. In all algorithmic statements that follow, every rectangle is
represented by such a quadruple (a, a′, b, b′). In the problem of orthogonal range queries, we
are given a list of pairwise disjoint rectangles R = {R1, . . . , Rm}, all contained in [n] × [n],
and the task is to set up a data structure that can efficiently answer the following queries:
given (x, y) ∈ [n] × [n], output the index of the rectangle in R that contains (x, y), or output
⊥ if there is no such rectangle. Chan proposed the following data structure for this problem.

▶ Theorem 21 ([9]). Assuming |R| = O(n), there is a data structure for the orthogonal
range queries that takes O(n) space, can be initialized in time O(n), and can answer every
query in time O(log log n).

We remark that there is also a simple data structure for orthogonal range queries that
for any fixed ε > 0, achieves query time O(1/ε) at the expense of space complexity and
initialization time O(n1+ε). See the appendix of [19] for details. As we mentioned in Section 1,
replacing the usage of the data structure of Chan with this simple data structure results in
an analogous tradeoff in Theorem 1.

We reduce the statement of Lemma 20 to the result of Chan using the following lemma.

▶ Lemma 22 (♠). One can in time Od,r(n) compute a list Q of pairs of the form (R, t),
where R ⊆ [n] × [n] is a rectangle and t ∈ [n], such that the following holds:

the rectangles in pairs from Q form a partition of [n] × [n], and
for each (u, v) ∈ [n] × [n], if (R, t) ∈ Q is the unique pair satisfying (u, v) ∈ R, then we
have firstCloser(u, v) = t.

Lemma 20 follows from Lemma 22 as follows. Let Q be the list provided by Lemma 22;
note that |Q| ⩽ Od,r(n), because this is an upper bound on the running time of the algorithm
computing Q. Let R be the list of rectangles appearing in the pairs from Q. Set up a data
structure of Theorem 21 for R and, additionally, for each R ∈ R remember the unique t ∈ [n]
such that (R, t) ∈ Q. Then upon query (u, v) ∈ [n] × [n], it suffices to use the data structure
of Theorem 21 to find the unique R ∈ R containing (u, v) and return the associated integer t.

4.2 The tree of r-close x-tuples
In this section we are going to construct an auxiliary data structure for handling local types.
Fix a number k ∈ N; this is the quantifier rank of the types we would like to tackle. Denote
r := 2k. Also fix a finite set x of variables, an n-vertex graph G, together with a contraction
sequence P1, . . . , Pn.

For s ∈ [n] and a tuple u ∈ Px
s , we call u r-close at the time s if one cannot partition u

into two nonempty tuples u′, u′′ such that dists(u′, u′′) > r. Equivalently, if one considers
an auxiliary graph on vertex set u where two parts are connected iff they are at distance at
most r in Gimp

s , then u is r-close iff this auxiliary graph is connected. Note that if u ∈ Px
s is

r-close at the time s, then for every t with s ⩽ t ⩽ n, the tuple u⟨s → t⟩ is also r-close at
the time t.

ICALP 2022



123:14 Twin-Width and Types

For s ∈ [n] with s > 1, by Bs denote the part of Ps that is the union of two parts in
Ps−1. Let Tr,x be the set consisting of all pairs of the form (u, s) such that s ∈ [n], u ∈ Px

s

is r-close at the time s, and at least one of the following conditions is satisfied:
s = 1; or
s > 1 and dists(Bs, u) ⩽ r; or
s < n and dists+1(Bs+1, u⟨s → s + 1⟩) ⩽ r.

Note that as u is assumed to be r-close, if the second condition holds then u ⊆
Vicinityr|x|

s (Bs), and if the third condition holds then u⟨s → s + 1⟩ ⊆ Vicinityr|x|
s+1(Bs+1).

Since the trigraphs Vicinityr|x|
s (Bs) and Vicinityr|x|

s+1(Bs+1) are of size Od,k,x(1), it follows that
Tr,x contains Od,k,x(n) elements in total: n elements for s = 1 and Od,k,x(1) elements for
each 1 < s ⩽ n.

We consider an ancestor relation ≼ on Tr,x defined as follows:

(v, t) ≼ (u, s) if and only if s ⩽ t and u⟨s → t⟩ = v.

It is easy to see Tr,x together with ≼ defines a rooted tree whose tree order is ≼. The root is
(r, n), where r is the unique tuple of Px

n , the one that maps all variables of x to the unique
part of Pn. From now on we identify the set Tr,x with the tree it induces. Therefore, we call
the elements of Tr,x nodes and the child-parent pairs in Tr,x the edges of Tr,x.

▶ Definition 23. We call Tr,x the tree of r-close x-tuples associated with G and the contraction
sequence P1, . . . , Pn.

Recall that r = 2k, and k ∈ N is fixed. For every node (u, s) ∈ Tr,x, let Typesk
u,s be the set

of all possible k-local types of tuples w ∈ V (G)x satisfying u = w⟨s⟩. By Lemma 12, there
is a constant M = Od,k,x(1) such that |Typesk

u,s| ⩽ M for every node (u, s), and Typesk
u,s

can be computed in time Od,k,x(1) given access to Gs and u.
Consider nodes (u, s), (v, t) ∈ Tr,x such that (v, t) is the parent of (u, s). Let e =

((u, s), (v, t)) be the corresponding edge of Tr,x. By Lemma 17, there exists a function
fe : Typesk

u,s → Typesk
v,t such that for every tuple w ∈ V (G)x with u = w⟨s⟩, we have

ltpk
t (w) = fe(ltpk

s(w)). (1)

We now verify that all the objects introduced above can be computed efficiently.

▶ Lemma 24 (♠). One can in time Od,k,x(n) compute the nodes and the edges of Tr,x (where
r = 2k) as well as, for every edge e of Tr,x, the function fe.

We can finally state and prove the main result of this section.

▶ Lemma 25. One can in time Od,k,x(n) construct a data structure that can answer the
following queries in time Od,k,x(1): given w ∈ V (G)x, two nodes (v, t) ≼ (u, s) of Tr,x such
that u = w⟨s⟩ and v = w⟨t⟩, and the type ltpk

s(w), output the type ltpk
t (w).

Proof. Using Lemma 24 construct the tree Tr,x and functions fe for the edges of Tr,x. By
Lemma 12, there is a constant M = Od,k,x(1) such that |Typesk

u,s| ⩽ M for every node (u, s).
Let I := [M ] be an indexing set of size M . Since for every node (u, s) we have |Typesk

u,s| ⩽ M ,
we can set an arbitrary injection ιu,s : Typesk

u,s → I. For an edge e = ((u, s), (v, t)), we set

ge := ι−1
u,s ; fe ; ιv,t.

Thus, ge is a function from I to I that, intuitively, is just fe reindexed using the index set I.
Clearly, functions ιu,s and ge defined above can be computed in total time Od,k,x(n).

We will use the following result proved in [17].
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▶ Theorem 26 (Theorem 5.1 of [17]). Let S be a semigroup and T be a rooted tree with edges
labelled with elements of S. Then one can in time |S|O(1) · |T | construct a data structure
that can answer the following queries in time |S|O(1): given nodes u, v ∈ T such that v is an
ancestor of u, output the (top-down) product of elements of S associated with the edges on
the path from v to u. The data structure uses |S|O(1) · |T | space.

Let S be the semigroup of functions from I to I with the product defined as f · g = g; f .
Thus, the functions ge form a labelling of edges of Tr,x with elements of S. Apply Theorem 26
to this S-labelled tree, and let S be the obtained data structure. Now, to answer a query
about nodes (u, s), (v, t), and type α = ltpk

s(w) as in the lemma statement, it suffices to
apply the following procedure:

Compute α̃ := ιu,s(α).
Query S to compute the compositions of functions ge along the path from (u, s) to (v, t)
in Tr,x. Call the resulting function h.
Compute β̃ := h(α̃).
Output β := ι−1

v,t(β̃).
The correctness of the procedure follows from a repeated use of (1), and it is clear that the
running time is Od,k,x(1). ◀

4.3 Data structure

With all the tools prepared, we can prove Theorem 1.
Let k be the quantifier rank of φ. We set up two auxiliary data structures:
The data structure of Lemma 20 for radius parameter r = 2k. Call this data structure P.
For every z ⊆ x, the data structure of Lemma 25 for parameter k and the set of variables z.
Call this data structure Wz.

Moreover, using Lemma 4, we compute for each time s ∈ [n − 1] the trigraph Relevantp
s ,

where p := r(|x| + 1). These objects constitute our data structure, so by Lemmas 20, 25,
and 4, the construction time is Od,φ(n) as promised. It remains to show how to implement
queries.

Suppose we are given a tuple w ∈ V (G)x and we would like to decide whether G |= φ(w).
By Lemma 13, to answer this it suffices to compute ltpk

n(w). In the following, for z ⊆ x, by
wz we denote the restriction of w to the variables of z.

For each time s ∈ [n], let Hs be the graph on vertex set x such that y, y′ ∈ x are adjacent
in Hs if and only if dists(w⟨s⟩(y), w⟨s⟩(y′)) ⩽ r. The following are immediate:

For all 1 ⩽ s ⩽ t ⩽ n, Ht is a supergraph of Hs. That is, if y, y′ ∈ x are adjacent in Hs,
then they are also adjacent in Ht.
If z ⊆ x is such that Hs[z] is connected for some s ∈ [n], then wz⟨s⟩ is r-close at the
time s.

Using the data structure P, we may compute firstCloser(y, y′) for all {y, y′} ∈
(x

2
)

in total
time Od,φ(log log n). Let S ⊆ [n] be the set of all those numbers, and include 1 and n in S

in addition. Thus |S| ⩽ 2 +
(|x|

2
)
⩽ Oφ(1). We imagine S as ordered by the standard order

⩽, hence we may talk about consecutive elements of S.
Note that the knowledge of the numbers firstCloser(y, y′) for {y, y′} ∈

(x
2
)

allows us to
compute the graphs Hs for all s ∈ S. Further, observe that if t ∈ [S] is such that s ⩽ t < s′

for some s, s′ ∈ S that are consecutive in S, then Ht = Hs.
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Let L be the set of all pairs of the form (z, s) where s ∈ S, z is a connected component
of Hs, and either s = 1 or z is not connected in Hs−1. Clearly, L has size Od,φ(1) and can
be computed in time Od,φ(1). Observe the following.

▷ Claim 27. For each (z, s) ∈ L, we have (wz⟨s⟩, s) ∈ Tr,z. If moreover s > 1, then for every
y ⊆ z that is a connected component of Hs−1, we have (wy⟨s − 1⟩, s − 1) ∈ Tr,y.

Proof. If s = 1, then z being a connected component of H1 means that z is a constant tuple.
Hence wz⟨1⟩ is r-close at the time 1, implying that (wz⟨1⟩, 1) ∈ Tr,z.

Assume then that s > 1. As z is not connected in Hs−1 and is connected in Hs, it
follows that for every connected component y of Hs−1 that is contained in z, we have
dists(wy⟨s⟩, Bs) ⩽ r, and in particular dists(wz⟨s⟩, Bs) ⩽ r. The latter statement implies
that (wz⟨s⟩, s) ∈ Tr,z due to fulfilling the second condition in the definition of Tr,z. Further,
since y is a connected component of Hs−1, wy⟨s − 1⟩ is r-close at the time s − 1. So
(wy⟨s − 1⟩, s − 1) ∈ Tr,y due to fulfilling the third condition in the definition of Tr,y. ◁

We now compute the types ltpk
s (wz) for all (z, s) ∈ L. We do this in any order on L with

non-decreasing s, hence when processing (z, s) we may assume that the corresponding types
have already been computed for all (y, t) ∈ L with t < s.

Assume first that s = 1. Then (z, 1) ∈ L means that z is a connected component of H1,
which in turn means that wz is a constant tuple. In this case ltpk

1(wz) can be computed
trivially.

Assume then that s > 1. Since (z, s) ∈ L, we have that z is a connected component of
Hs, but in Hs−1, z breaks into two or more smaller connected components.

Consider any such component y; that is, y is a connected component of Hs−1 that is
contained in z. By Claim 27, we have (wy⟨s − 1⟩, s − 1) ∈ Tr,y. Let then t ⩽ s − 1 be
the smallest time such that y is a connected component of Ht; clearly we have t ∈ S and
(y, t) ∈ L. By Claim 27 again, (wy⟨t⟩, t) ∈ Tr,y. Since the type ltpk

t (wy) has been already
computed before, we may use one query to Wy to compute the type ltpk

s−1(wy).
Having performed the procedure described above for every connected component y of

Hs−1 that is contained in z, we may repeatedly use Lemma 15 to compute the type ltpk
s−1(wz).

Note that for different components y, y′ as above, we have dists−1(wy⟨s − 1⟩, wy′⟨s − 1⟩) > r

due to y and y′ being non-adjacent in Hs−1. Furthermore, all trigraphs required in the
applications of Lemma 15 can be easily deduced from the trigraph Relevantp

s−1 and the
description of the contraction performed at the time s − 1; these are stored in our data
structure.

Finally, it remains to apply Lemma 17 to compute the type ltpk
s(wz) from ltpk

s−1(wz).
Again, the trigraphs needed in this application can be easily deduced from Relevantp

s−1 and
the contraction performed at the time s − 1. This finishes the computation of types ltpk

s (wz)
for all (z, s) ∈ L; note that the running time is Od,φ(1).

Finally, let t be the smallest time such that x is connected in Ht. Such t exists since x is
connected in Hn. Clearly, t ∈ S. By definition we have (x, t) ∈ L, so the type ltpk

t (w) has
been computed. By Claim 27, (w⟨t⟩, t) ∈ Tr,x. So we can now use the data structure Wx one
last time to compute ltpk

n(w). This finishes the proof of Theorem 1.
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5 Query enumeration

In this section we prove Theorem 2, which we recall below for convenience.

▶ Theorem 2. Suppose we are given an n-vertex graph G specified through a contraction
sequence P1, . . . , Pn of width d, and a first-order formula φ(x), where x is a set of variables.
Then after preprocessing in time Od,φ(n), one can enumerate all tuples w ∈ V (G)x such that
G |= φ(w) with Od,φ(1) delay.

First, we need to define our notion of enumerators, and prepare some tools for working
with them.

Enumerators. Let x1, . . . , xn be a sequence of elements. An enumerator of the sequence
x1, . . . , xn is a data structure that implements a single method, such that at the ith invocation
of the method, it outputs the element xj of the sequence, where j = i mod n, and reports
an “end of sequence” message if j = 0. We say that the enumerator has delay t if each
invocation takes at most t computation steps, including the steps needed to output the
element xj (assuming each element has a fixed representation). An enumerator for a set X is
an enumerator for any sequence x1, . . . , xn with {x1, . . . , xn} = X and n = |X|. Enumerators
for Cartesian products and disjoint unions of sets can be obtained in an obvious way:

▶ Lemma 28. Suppose we are given an enumerator for a set X with delay t and an
enumerator for a set Y with delay t′, where t, t′ ⩾ 1. Then we can construct in time O(1) an
enumerator with delay t + t′ + O(1) for the set X × Y and – if X and Y are disjoint – for
the set X ⊎ Y .

We will also construct enumerators for disjoint unions of families of sets, as follows.

▶ Lemma 29. Suppose X1, . . . , Xn are pairwise disjoint, nonempty sets, such that Xi has
an enumerator Ei with delay t. Suppose furthermore we have an enumerator for the sequence
E1, . . . , En with delay t′. Then one can construct, in time O(1) an enumerator for the set⋃

1⩽i⩽n Xi with delay t + t′ + O(1).

Finally, we will use the following lemma, proved in [17, Lemma 7.15].

▶ Lemma 30. Fix a finite set Q of size q and a set of functions F ⊆ QQ. There is a constant
c computable from q and an algorithm that, given a rooted tree T , in which each edge vw

(v child of w) is labelled by a function fvw : Q → Q, computes in time c · |T | a collection
(Ew)w∈V (T ) of enumerators, where each Ew is an enumerator with delay c that enumerates
all descendants v of w such that the composition of the functions labeling the edges of the
path from v to w, belongs to F .

This yields the following.

▶ Corollary 31 (♠). Fix a number q. There is a constant c computable from q and an
algorithm that, given a rooted tree T , in which each node v is labeled by a set Xv with
|Xv| ⩽ q and a set Yv ⊆ Xv, and each edge vw (v child of w) is labelled by a function
fwv : Xv → Xw, computes in time c · |T | a collection (Eτ

w)w∈V (T ),τ∈Xw
of enumerators, where

each Eτ
w is an enumerator with delay c that enumerates all descendants v of w such that there

is some σ ∈ Yv that is mapped to τ by the composition f : Xv → Xw of the functions labeling
the edges of the path from v to w.
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Proof of Theorem 2. We now proceed to the proof of Theorem 2.
Fix a number k, a set of variables x, an n-vertex graph G, together with its contraction

sequence P1, . . . , Pn. Denote r := 2k.
For every s ∈ [n] and x-tuple u ∈ Px

s , and local type τ ∈ Typesk
u,s, denote

Sτ
u,s := {w ∈ V (G)x | w⟨s⟩ = u and ltpk

s(w) = τ}.

Recall that the root of Tr,x is the pair (r, n), where r is the constant x-tuple with all
components equal to the unique part of Pn. Then Sτ

r,n is the set of all x-tuples w ∈ V (G)x

with ltpk
n(w) = τ . From Lemma 13 and Lemma 7 we get:

▶ Lemma 32. Fix a formula φ(x) of quantifier-rank k. Then there is a set Γ ⊆ Typesn
r,n

such that φ(G) := {w ∈ V (G)x | G |= φ(w)} is the disjoint union of the family of sets
{Sτ

r,n | τ ∈ Γ}.

Therefore, an enumerator for φ(G) can be obtained by concatenating enumerators for
the sets Sτ

r,n, for τ ∈ Γ. Note that here we are concatenating only Ok,d,x(1) enumerators, by
Lemma 12, so, by applying Lemma 28 repeatedly, the resulting enumerator can be obtained
in time Ok,d,x(1) and has delay Ok,d,x(1). So to prove Theorem 2, it suffices to prove that
we can efficiently compute an enumerator for each of the sets Sτ

r,n.
Recall that Tr,x is the tree of r-close x-tuples (see Def. 23), and can be computed in

time Od,k,x(n), by Lemma 24. In the following proposition, we will show how to compute
enumerators for all of the sets Sτ

u,s, for (u, s) ∈ Tr,x. All the enumerators jointly will be
computed in time Od,k,x(n).

▶ Proposition 33. Fix a nonempty set x of variables and k ∈ N. Assume G is a graph on n

vertices provided on input through a contraction sequence P1, . . . , Pn of width d. Then one
can in time Od,k,x(n) construct a data structure that associates, to every node (u, s) of Tr,x

and every local type τ ∈ Typesk
u,s, an enumerator for all tuples in Sτ

u,s with delay Od,k,x(1).

As noted above, Theorem 2 follows from Proposition 33, using Lemma 32. The rest of
Section 5 is devoted to proving Proposition 33.

We prove Proposition 33 by induction on |x|. So suppose the statement holds for all strict
subsets of x. Recall that we may construct the tree Tr,x, in time Od,k,x(n), using Lemma 24.

Let v, u be two nodes of Tr,x with v = (v, t) and u = (u, s) and u ≼ v. By Lemma 25,
there is a function fvu : Typesk

v,t → Typesk
u,s such that for every w ∈ V (G)x, with u = w⟨t⟩

we have fvu(ltpk
t (w)) = ltpk

s(w).

For a tuple w ∈ V (G)x, let s ∈ [n] be the first time such that w⟨s⟩ is r-close at time s,
where r = 2k. We then say that w registers at (u, s), where u = w⟨s⟩. By Claim 27, in this
case, the pair (u, s) is a node of Tr,x.

For each node (u, s) of Tr,x and type τ ∈ Typesk
u,s, denote:

Rτ
u,s = {w ∈ V (G)x | w registers at (u, s) and ltpk

s(w) = τ}.

Fix a node (u, s) ∈ Tr,x and a type τ ∈ Typesk
u,s. Clearly, every tuple w ∈ Sτ

u,s

registers at exactly one descendant v = (v, t) of u = (u, s) (possibly, v = u), and moreover,
fvu(ltpk

t (w)) = τ . This proves the following.

▶ Lemma 34. For every node u ∈ Tr,x and type τ ∈ Typesk
u, the set Sτ

u is the disjoint union
of all the sets Rσ

v , for v ∈ Tr,x with v ≽ u and σ ∈ Typesk
v such that fvu(σ) = τ .
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We prove the following two lemmas.

▶ Lemma 35 (♠). For every given node u = (u, s) ∈ Tr,x and type τ ∈ Typesk
u,s, an

enumerator for the set Rτ
u,s with delay Od,k,x(1) can be constructed in time Od,k,x(1).

▶ Lemma 36 (♠). One can construct in time Od,k,x(n) a collection of enumerators Eτ
u , one

per each node u = (u, s) ∈ Tr,x and type τ ∈ Typesk
u,s, where Eτ

u has delay Od,k,x(1) and
enumerates all descendants v = (v, t) of u in Tr,x such that there is some σ ∈ Typesk

v,t with
fvu(σ) = τ and Rσ

v,t ̸= ∅.

Combining Lemma 34, Lemma 35, Lemma 36 and Lemma 29 yields the required collection
of enumerators for each of the sets Sk

u,s, thus proving Proposition 33 and Theorem 2. The
proof of Lemma 36 uses Corollary 31, and is omitted, due to space constraints. We now
sketch the proof of Lemma 35.

Proof sketch for Lemma 35. The case when u is a leaf, that is, s = 1, is easily solved, since
in this case Rτ

u,s is either empty, or consists of a single tuple. In the case when u is an inner
node, consider the set

V := {v ∈ Px
s−1 | v⟨s − 1 → s⟩ = u}.

It is easy to see that V has size Ok,x,d(1), and can be computed in this time, given u ∈ Tr,x.
Fix v ∈ V , and consider the graph Hv with vertices x where any two distinct y, y′ ∈ x are

adjacent whenever dists(v(y), v(y′)) ⩽ r. Let Cv denote the set of connected components
of Hv, where each connected component is viewed as a set y ⊆ x of vertices of Hv. Then
each of the sets Cv, can be computed in time Ok,x,d(1), given (u, s) ∈ Tr,x and v ∈ V . Call
a tuple v ∈ V disconnected if Hv is such. Note that if v is disconnected and y ∈ Cv, then
|y| < |x|.

Fix a disconnected tuple v ∈ V and y ∈ Cv. Denote by vy the restriction of v to y. Note
that the pair (vy, s − 1) is a node of Tr,y. Indeed, by assumption, dists(Bs, u) ⩽ r holds, so
dists(Bs, v⟨s → s + 1⟩) ⩽ r, and in particular dists(Bs, vy⟨s → s + 1⟩) ⩽ r. Moreover, vy is
r-close, since y is a connected component of Hv. As |y| < |x|, by inductive assumption, we
have already computed enumerators for the sets Sσ

vy,s−1, for all adequate local types σ.
From Lemma 15 we deduce that the set Rτ

u,s is the disjoint union of sets of the form
S τ̄

v,s−1, where:
1. v ∈ V is disconnected;
2. τ̄ := (τy : y ∈ Cv) is a tuple of types with τy ∈ Typesk

vy,s−1 and which is “merged” into
the type τ , using the function from Lemma 15;

3. the set S τ̄
v,s−1 is a Cartesian product of the sets S

τy
vy,s−1.

Since for the sets S
τy
vy,s−1 we have enumerators by inductive assumption, by Lemma 28,

we can compute in time Ok,d,x(1) an enumerator for the set S τ̄
v,s−1, with delay Ok,d,x(1).

Finally, we obtain an enumerator for Rτ
u,s, by concatenating the Ok,d,x(1) enumerators for

the sets S τ̄
v,s−1. This finishes the proof sketch for Lemma 35. ◀
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Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition
systems with a pushdown store. A PVASS is said to be bidirected if every transition (pushing/popping
a symbol or modifying a counter) has an accompanying opposite transition that reverses the effect.
Bidirectedness arises naturally in many models; it can also be seen as a overapproximation of
reachability. We show that the reachability problem for bidirected PVASS is decidable in Ackermann
time and primitive recursive for any fixed dimension. For the special case of one-dimensional
bidirected PVASS, we show reachability is in PSPACE, and in fact in polynomial time if the stack
is polynomially bounded. Our results are in contrast to the directed setting, where decidability of
reachability is a long-standing open problem already for one dimensional PVASS, and there is a
PSPACE-lower bound already for one-dimensional PVASS with bounded stack.

The reachability relation in the bidirected (stateless) case is a congruence over Nd. Our upper
bounds exploit saturation techniques over congruences. In particular, we show novel elementary-time
constructions of semilinear representations of congruences generated by finitely many vector pairs. In
the case of one-dimensional PVASS, we employ a saturation procedure over bounded-size counters.

We complement our upper bound with a TOWER-hardness result for arbitrary dimension and
k-EXPSPACE hardness in dimension 2k + 6 using a technique by Lazić and Totzke to implement
iterative exponentiations.
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be incremented and decremented, but not tested for zero. Reachability in both models is
understood in isolation [5, 11, 37, 12, 38], but the reachability problem for their combination
is a long-standing open problem.

Pushdown VASS. A pushdown VASS (PVASS) combines PDS and VASS. A PVASS consists
of finitely many control states and has access to both a pushdown stack (as in PDS) and
counters (as in VASS). A PVASS is d-dimensional if it has d counters. A PVASS is a natural
combination of the simple building blocks of PDS and VASS. The reachability problem
for PVASS has remained a long-standing open problem [39, 50, 15], even if we combine a
pushdown with a single counter.

Bidirectedness. A step toward deciding reachability is to first study natural relaxations of
the reachability relation. A relaxation that has recently attracted attention is bidirectedness.
Bidirectedness assumes that for each transition from state p to q in our infinite-state system,
there exists a transition from q to p with opposite effect. For example, in bidirected pushdown
systems, for each transition from p to q pushing γ on the stack, there is a transition from
q to p that pops γ. Likewise, in bidirected VASS, if there is a transition from p to q

that adds some vector v ∈ Zd to counters, then there is a transition from q to p adding
−v. It turns out that several tasks in program analysis can be formulated or practically
approximated as reachability in bidirected pushdown systems [8, 54] or bidirected multi-
pushdown systems [51, 52, 55, 40, 41, 31]. Bidirected systems have also been considered in
algorithmic group theory as an algorithmic framework to provide simple algorithms for the
membership problem in subgroups [42].

Reachability in bidirected systems is usually considerably more efficient than in the
general case. In bidirected pushdown systems, reachability can be solved in almost linear
time [8] whereas a truly subcubic algorithm for the general case is a long-standing open
problem [26, 9]. Reachability in bidirected VASS is equivalent to the uniform word problem
in finitely presented commutative semigroups, which is EXPSPACE-complete [43]. A separate
polynomial time algorithm for bidirected two-dimensional VASS was given in [41]. Moreover,
recent results on reachability in bidirected valence systems shows complexity drops across a
large variety of infinite-state systems [21]: For almost every class of systems studied in [21],
the complexity of bidirected reachability is lower than in the general case (the only exception
being pushdown systems, where the complexity is P-complete in both settings). For example,
reachability in bidirected Z-VASS, and even in bidirected Z-PVASS, is in P [21].

However, little is known about bidirected PVASS. They have recently been studied
in [31], where decidability of reachability in dimension one is shown. However, as in the
non-bidirected case, decidability of reachability in bidirected PVASS is hitherto not known.

Contributions. We show that in bidirected PVASS (of arbitrary dimension), reachability is
decidable. Moreover, we provide an Ackermann complexity upper bound, and show that in
any fixed dimension, reachability is primitive recursive.

▶ Theorem 1.1. Reachability in bidirected pushdown VASS is in ACKERMANN, and primitive
recursive (in F4d+11) if the dimension d is fixed.

Here, (Fα)α is an ordinal-indexed hierarchy of fast-growing complexity classes [48],
including F3 = TOWER and Fω = ACKERMANN. The formal definition of the hierarchy can
be found in Section 4.3. A recurring theme in our upper bounds is that saturation techniques,
the standard method to analyze pushdown systems, combine surprisingly well with counters
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in the bidirected setting. Saturation is used in each of our upper bounds. In Section 3,
we begin the exposition with a short, self-contained proof that reachability is decidable in
bidirected PVASS. It shows that non-reachability is always certified by an inductive invariant
of a particular saturation procedure. In Section 4, we show the Ackermann upper bound.
Here, we saturate a congruence relation that encodes the reachability relation. The upper
bound relies on two key ingredients. First, we use results about Gröbner bases of polynomial
ideals to show that in elementary time, one can construct a Presburger formula for the
congruence generated by finitely many vector pairs. This construction serves as one step in
the saturation. To show termination in Ackermannian time, we rely on a technique from [16]
to bound the length of strictly ascending chains of upward closed sets of vectors. Here, the
difficulty is to transfer this bound from chains of upward closed sets to chains of congruences.

In Section 5 we present a PSPACE algorithm for bidirected PVASS in dimension one.

▶ Theorem 1.2. Reachability in 1-dimensional bidirected pushdown VASS is in PSPACE.

Here, we rely on an observation from [31] that reachability in bidirected one-dimensional
PVASS reduces to (i) coverability in bidirected one-dimensional PVASS and (ii) reachability
in one-dimensional bidirected Z-PVASS. Since (ii) is known to be in P [21], we show that
(i) can be done in PSPACE. For this, we use saturation to compute, for each state pair (p, q),
three bounds on counter values that determine whether coverability holds. We show that
these bounds have at most exponential absolute value, which yields a PSPACE procedure.

Finally in Section 6, we show that reachability in bidirected PVASS is TOWER-hard. For
this, we adapt a technique from [33] that shows a TOWER lower bound for general PVASS.

▶ Theorem 1.3. Reachability in bidirected PVASS is TOWER-hard, and k-EXPSPACE-hard
in dimension 2k + 6.

Related work. The model of pushdown VASS is surrounded by extensions and restrictions
of the storage mechanism for which decidability is understood, the most prominent being
the recent Ackermann-completeness for reachability in VASS [11, 37, 12, 38]. If instead of
the stack, we have a counter with zero tests, then reachability is still decidable [47, 4]. Here,
decidability even holds if we have a zero-testable counter and one additional counter that can
be reset [18, 17]. Furthermore, the extension of VASS by nested zero tests, where for each
i ∈ {1, . . . , d}, we have an instruction that tests all counters 1, . . . , i for zero simultaneously,
also allows deciding reachability [47, 3] and can be seen as a special case of pushdown
VASS [1]. Another decidability result concerns the coverability problem: Here, we are given a
configuration c1 and a control state q and want to know whether from c1, one can reach some
configuration in control state q. It is known that the reachability problem for d-dimensional
PVASS reduces to coverability in (d + 1)-dimensional PVASS, and that coverability in
1-dimensional PVASS is decidable [39]. According to [15], the latter problem is PSPACE-hard
and in EXPSPACE. Furthermore, if the counters in a PVASS are allowed to go negative
during a run, then we speak of an integer PVASS (Z-PVASS). For these, reachability is
known to be decidable [25] and NP-complete [24]. However, if we extend the model of PVASS
by allowing resets on the counters, then even coverability is undecidable in dimension one [50].

For VASS, several generalizations of bidirectedness have been studied. It is EXPSPACE-
complete whether given two configurations are mutually reachable [35]. Moreover, if two
configurations are mutually reachable, then their distance is at most doubly exponential
(linear for fixed dimension) in their size [36]. Furthermore, for cyclic VASS (where each
transition can be reversed by some execution), it is known that the reachability set has a
semilinear representation of at most exponential size [6]. Let us note that in the VASS/Petri
net literature, sometimes [6] (but not entirely consistently [35]) the term reversible is used to
mean bidirected. However, this clashes with the reversibility notion in dynamical systems [30].
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2 Preliminaries

Vectors and semilinear sets. We denote integer vectors by bold letters x. The maximum
norm of x is denoted by ∥x∥. The i-th unit vector is denoted by ei. The componentwise order
≤ on Nd is a well-quasi order (wqo), i.e. for any infinite sequence x1, x2, . . . over Nd there exist
i < j with xi ≤ xj . We write x < y if x ≤ y and x ≠ y. This implies that the set min(X)
of minimal elements in any X ⊆ Nd is finite. We denote by X↑ = {y ∈ Nk | ∃x ∈ X : x ≤ y}
the upwards closure of X. We also write x↑ for {x}↑. A congruence on a commutative
monoid (M, +), for example M = Nd, is an equivalence relation Q ⊆M×M where (a, b) ∈ Q
implies (a + c, b + c) ∈ Q for all a, b, c ∈M . We also write a ∼Q b instead of (a, b) ∈ Q.

For X ⊆ Nk we denote by X∗ the submonoid generated by X. A set L ⊆ Nk is linear
if it is of the form L = b + P ∗ for some base vector b ∈ Nk and some finite set P ⊆ Nk

of period vectors. Finite unions of linear sets are called semilinear. It is well-known that
a set is semilinear if and only if it is definable in Presburger arithmetic, i.e. first-order
logic over (N, +,≤, 0, 1). Furthermore, one can effectively convert between these formats in
elementary time: While defining semilinear sets in Presburger arithmetic is straightforward,
for the converse we can use Cooper’s quantifier elimination [10] running in triply exponential
time [44], see also [23] for an excellent overview. We will confuse a semilinear S with its
representation, which is either a list of base and period vectors for each linear set or a defining
Presburger formula, and denote by ∥S∥ the size of its representation.

Pushdown VASS. A d-dimensional pushdown VASS (PVASS) is a tuple P = (Q, Γ, T )
where Q is a finite set of states, Γ is a finite stack alphabet, and T ⊆ Q× Zd ×Op(Γ)×Q is
a finite set of transitions. Here Op(Γ) = {a, ā | a ∈ Γ} ∪ {ε} is the set of operations on the
stack. A configuration over P is a tuple (q, x, s) ∈ Q× Nd × Γ∗. The one-step relation → is
the smallest binary relation on configurations such that for all (p, v, α, q) ∈ T and x ∈ Nd

with x + v ≥ 0 we have: (i) If α ∈ Γ ∪ {ε} then (p, x, s)→ (q, x + v, sα) (ii) if α = ā then
(p, x, sa)→ (q, x + v, s). Its transitive-reflexive closure is denoted by ∗−→. We say that P is
bidirected if (p, v, α, q) ∈ T implies (q,−v, ᾱ, p) ∈ T where we set ¯̄a = a for a ∈ Γ and ε̄ = ε.
The reachability problem for bidirected PVASS asks: Given a bidirected PVASS P and two
states s, t, does (s, 0, ε) ∗−→ (t, 0, ε) hold?

The counter updates u in a PVASS transition (p, u, q) can be given in either unary or
binary encoding since there are logspace translations in both directions: To add a binary
encoded number u to a counter we push the binary notation of u to the stack, and repeatedly
decrement the stack counter while incrementing u. Since this computation is deterministic,
the simulation also works for bidirected PVASS.

For the Ackermann upper bound it is convenient to use pushdown VASS with a single
state. A pushdown VAS (PVAS) P = (Γ, T ) in dimension d consists of a finite stack alphabet
Γ and a finite set of transitions T ⊆ Nd × Nd × (Γ ∪ Γ̄ ∪ {ε}). Here, a configuration is a pair
(x, s) ∈ Nd × Γ∗. The effect of a transition (u, v, α) is subtracting u from the d counters,
assuming that the counters stay non-negative, and then adding v. A PVAS P is bidirected if
(u, v, a) ∈ T implies (v, u, ā) ∈ T . A bidirected PVASS in dimension d can be simulated by a
bidirected PVAS in dimension d + 2 where the two additional counters add up to the number
of states and specify the current state. Hence, one can reduce the reachability problem for
bidirected PVASS to the reachability problem for bidirected PVAS: Given a bidirected PVAS
P and two vectors s, t ∈ Nd, does (s, ε) ∗−→ (t, ε) hold?
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3 Decidability

In this section, we present a simple and self-contained proof that reachability is decidable
in bidirected PVASS. Consider the reachability relation between configurations with empty
stack. For any states p, q, define the set Rp,q ⊆ Nd × Nd with

Rp,q = {(u, v) | u, v ∈ Nd, (p, u, ε) ∗−→ (q, v, ε)}.

We will prove that each Rp,q is semilinear, for which we rely on the fact that these sets
are slices. A slice is a subset S ⊆ Nk such that if u, u + v, u + w ∈ S for some u, v, w ∈
Nk, then u + v + w ∈ S. Observe that each Rp,q ⊆ N2d is a slice. This is because if
(u, v), (u + u1, v + v1), (u + u2, v + v2) ∈ Rp,q, then there is a run

(p, u + u1 + u2, ε) ∗−→ (q, v + v1 + u2, ε) ∗−→ (p, u + v1 + u2, ε) ∗−→ (q, v + v1 + v2, ε),

where the middle part exists due to bidirectedness. Thus, the pair (u + u1 + u2, v + v1 + v2)
belongs to Rp,q. The following was first shown in [14, Proposition 7.3].

▶ Theorem 3.1 (Eilenberg & Schützenberger 1969). Every slice is semilinear.

This seems to be stronger than the somewhat better-known fact that each congruence on Nd

is semilinear: Observe that every congruence on Nd, seen as a subset of N2d, is a slice. In
the case of congruences, a relatively simple proof was obtained by Hirshfeld [27]. We present
a proof of Theorem 3.1 that combines ideas from both [14] and [27] and is (in our opinion)
simpler than each.

For a set X ⊆ Nk, let min X be the set of minimal elements of X, with respect to the usual
component-wise ordering ≤ on Nk. Since this ordering is a well-quasi ordering, min X is finite
for every set X. Suppose S ⊆ Nk is a slice. For each u ∈ S, let S−u := {v ∈ Nk | u+v ∈ S}.
Then u ≤ v implies S − u ⊆ S − v. Consider for each u ∈ S the submonoid

Mu = (min(S − u \ {0}))∗.

In other words, Mu is the submonoid of Nk generated by the non-zero minimal elements of
S−u. Note that for u, v ∈ S, we have Mu = Mv if and only if (S−u\{0}) ↑ = (S−v\{0}) ↑.
Since S is a slice, we have u + Mu ⊆ S for every u ∈ S. Since u ∈ u + Mu, we trivially have

S =
⋃

u∈S

u + Mu.

Since each u + Mu is semilinear, it suffices to show that S is covered by finitely many sets
u + Mu. We first observe that if u ≤ v and Mu = Mv, then u + Mu already covers v + Mv.

▶ Lemma 3.2. Let u, v ∈ S. If u ≤ v and Mu = Mv, then v + Mv ⊆ u + Mu.

Proof. We will use the following claim: For every w ∈ S with u ≤ w ≤ v, we have
Mu = Mw = Mv. Indeed, since Mu = Mv, we have min(S − u \ {0}) = min(S − v \ {0}).
Moreover, since S is a slice, we have S − u ⊆ S −w ⊆ S − v. Therefore, min(S −w \ {0})
coincides with min(S − u \ {0}) and min(S − v \ {0}), which implies Mw = Mu = Mv.

Let us prove the lemma. We proceed by induction on ∥v − u∥. If u = v, then we are
done. Otherwise, there exists an m ∈ min(S − u \ {0}) such that u + m ≤ v. By our claim,
we have Mu = Mu+m = Mv. Therefore, induction implies v ∈ u + m + Mu+m. But since
m ∈Mu and Mu+m ⊆Mu, this implies v ∈ u + Mu. ◀

The following implies semilinearity of S.
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▶ Lemma 3.3. There is a finite set F ⊆ S such that S =
⋃

u∈F u + Mu.

Proof. Suppose not. Then there is an infinite sequence u1, u2, . . . ∈ S such that each set
ui + Mui

contributes a new element. By Dickson’s lemma u1, u2, . . . contains a subsequence
v1, v2, . . . with vi ≤ vi+1 for all i ≥ 1. Since then S − v1 ⊆ S − v2 ⊆ · · · , the sequence
(S − v1 \ {0}) ↑ ⊆ (S − v2 \ {0}) ↑ ⊆ · · · becomes stationary, again by Dickson’s lemma, and
therefore also the sequence Mv1 , Mv2 , . . .. By Lemma 3.2, this means that only finitely many
terms in the sequence v1 + Mv1 , v2 + Mv2 , . . . contribute new elements, a contradiction. ◀

Saturation invariants. We have seen that the reachability relations Rp,q are all semilinear.
However, since the semilinearity proof is non-constructive, this does not explain how to decide
reachability. Nevertheless, we shall use semilinearity to show that in case of non-reachability,
there exists a certificate. This yields a decision procedure consisting of two semi-algorithms in
the style of Leroux’s algorithm for reachability in VASS [34]: One semi-algorithm enumerates
potential runs, and one enumerates potential certificates for non-reachability.

We assume that we are given a bidirected d-dimensional PVASS with state set Q and
stack alphabet Γ. We may assume that all transitions are of the form p

γ−→ q or p
γ̄−→ q for

γ ∈ Γ or p
v−→ q for v ∈ Zd. Our certificates for non-reachability will be in the form of what

we call saturation invariants. Imagine a (non-terminating) naive saturation algorithm that
attempts to compute the sets Rp,q by adding vector pairs one-by-one to finite sets Fp,q. It
would start with Fp,q = ∅ and then add pairs: For each transition p

v−→ q and each vector
u ∈ Nd with u + v ∈ Nd, it would add the pair (u, u + v) to Fp,q. Moreover, if (u, v) ∈ Fp,q

and (v, w) ∈ Fq,r, it would add (u, w) to Fp,r. Finally, if there are transitions p
γ−→ p′ and

q′ γ̄−→ q and there is a (u, v) ∈ Fp′,q′ , then it would add (u, v) to Fp,q.
Intuitively, a saturation invariant is a forward inductive invariant of this naive saturation

algorithm. Let us make this precise. For subsets R1, R2 ⊆ Nd × Nd, we define

R1 ◦R2 = {(u, w) ∈ Nd × Nd | ∃v ∈ Nd : (u, v) ∈ R1, (v, w) ∈ R2}.

A saturation invariant consists of a family (Ip,q)(p,q)∈Q2 of sets Ip,q ⊆ Nd × Nd for which
1. For each transition p

v−→ q, v ∈ Zd, each u ∈ Nd with u+v ∈ Nd, we have (u, u+v) ∈ Ip,q.
2. For each p, q, r ∈ Q, we have Ip,q ◦ Iq,r ⊆ Ip,r.
3. For each p, p′, q, q′ ∈ Q for which there are transitions p

γ−→ p′, q′ γ̄−→ q for some γ ∈ Γ, we
have Ip′,q′ ⊆ Ip,q.

There is a natural ordering of such families (Ip,q)(p,q)∈Q2 defined by inclusion: We write
(Ip,q)(p,q)∈Q2 ≤ (Jp,q)(p,q)∈Q2 , if Ip,q ⊆ Jp,q for each p, q ∈ Q. In this sense, we can speak of
a smallest saturation invariant.

▶ Lemma 3.4. The family (Rp,q)(p,q)∈Q2 is the smallest saturation invariant.

Proof. By induction on the length of a run, it follows that (Rp,q)(p,q)∈Q2 is included in every
saturation invariant. Moreover, (Rp,q)(p,q)∈Q2 is clearly a saturation invariant itself. ◀

Our certificates will consist of saturation invariants defined in Presburger arithmetic. A
family (Ip,q)(p,q)∈Q2 is Presburger-definable if for each (p, q) ∈ Q2, the set Ip,q is semilinear.
According to Theorem 3.1, the family (Rp,q)(p,q)∈Q2 is Presburger-definable. Therefore, the
following is a direct consequence of Lemma 3.4.

▶ Theorem 3.5. For each s, t ∈ Q, we have (0, 0) /∈ Rs,t if and only if there exists a
Presburger-definable saturation invariant (Ip,q)(p,q)∈Q2 such that (0, 0) /∈ Is,t.
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Algorithm 1 Algorithm for bidirected reachability in PVAS.

Data: Bidirected d-dim. PVAS P = (Γ, T )
1 R0 := Cong({(u, v) | (u, v, ε) ∈ T});
2 for i = 1, 2, . . . do
3 Ri ← Ri−1;
4 for (u, u′, a) ∈ T and (v′, v, ā) ∈ T do
5 Ri ← Ri ∪ {(x + u, y + v) | (x + u′, y + v′) ∈ Ri−1, x, y ∈ Nd};
6 Ri ← Cong(Ri);
7 if Ri = Ri−1 then return Ri;

This yields our algorithm: One semi-algorithm enumerates transition sequences and
terminates if one of them is a run witnessing (s, 0, ε) ∗−→ (t, 0, ε). The other semi-algorithm
enumerates Presburger-definable families (Ip,q)(p,q)∈Q2 in the form of Presburger formulas.
Using Presburger arithmetic, it is then easy to check whether (i) (Ip,q)(p,q)∈Q2 is a saturation
invariant and (ii) (0, 0) /∈ Is,t. If a saturation invariant is found, the semi-algorithm reports
non-reachability. By Theorem 3.5, one of the two semi-algorithms must terminate.

4 Ackermann upper bound

In this section, we show that reachability in bidirected PVASS is solvable in Ackermann time
in the general case and in primitive recursive complexity in every fixed dimension.

One way to avoid enumeration in the algorithm of Section 3 would be to start with the
semilinear one-step relation described in the first condition of saturation invariants, and
then to enlarge it according to the second and third condition. Moreover, one could take
the slice closure (the smallest slice that includes the current set) after each enlargement.
Since slices satisfy an ascending chain condition [14, Corollary 12.3], this would ensure
termination. In fact, computing the slice closure of a semilinear set is possible with an
algorithm by Grabowski [22]. Unfortunately, the latter is itself based on enumeration and
we are not aware of any complexity bounds for computing slice closures. Therefore, we use
an analogous algorithm that uses congruences instead of slices. Since congruences can be
encoded in polynomial ideals, we can tap into the rich toolbox of Gröbner bases to compute
the congruence generated by a semilinear set.

4.1 The saturation algorithm
In the following we will work with pushdown VAS instead of pushdown VASS. Our decision
procedure for bidirected reachability relies on the crucial fact that the reachability relation
RP = {(s, t) ∈ Nd×Nd | (s, ε) ∗−→ (t, ε)} of a bidirected pushdown VAS P is a congruence: It
is always reflexive, transitive and additive, even for directed pushdown VAS, and symmetric for
bidirected systems. Therefore, whenever we have found an underapproximation R ⊆ RP we
can replace R by the smallest congruence containing R. The smallest congruence containing
a set R ⊆ Nd × Nd is denoted by Cong(R). We also say that R is a basis of (or generates)
Cong(R). Recall that every congruence on Nd is a slice. Therefore, congruences are semilinear
and ascending chains of congruences stabilize.

Algorithm 1 is a saturation algorithm that computes a semilinear representation for
RP . The sets Ri are maintained by semilinear representations or Presburger formulas.
Since in this section we only prove elementary complexity bounds, we can use both formats
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interchangeably. Observe that the update in line 5 and the equality test in line 7 can be
expressed in Presburger arithmetic. The computation of Cong(·) will be explained in the
next subsection. Consider the values of Ri for i ≥ 1 after line 6 of Algorithm 1. They form
an ascending chain of congruences (Ri)i≥1, which implies that the algorithm must terminate.
For the correctness one can prove by induction on i that (x, y) ∈ Ri if and only if there
exists a run between (x, ε) and (y, ε) whose stack height does not exceed i. Moreover, if the
algorithm terminates after k iterations then Rk = RP .

We will use a primitive recursive algorithm (which is elementary in fixed dimension) to
compute Cong(Ri) from a semilinear representation for Ri. Using the tools from [49] we can
then prove upper bounds for the length of the ascending chain.

4.2 Semilinear representations for congruences
In this section, we present an algorithm that, for a given semilinear representation for a set
R ⊆ Nd × Nd, computes a semilinear representation for Cong(R). Its run time is bounded
by a tower of exponentials in ∥R∥ of height O(d) (Theorem 4.4). Note that for bidirected
VASS, it is known that in exponential space, one can compute a semilinear representation
of the reachability set [32, 6]. In other words, one can compute in exponential space a
representation of the congruence class of a given vector x ∈ Nd. In contrast, our algorithm
computes a semilinear representation of the entire congruence.

Let the function expk be inductively defined by exp0(x) = x and expk+1(x) = expk(2x).
In the following we show how to compute a semilinear representation for a congruence Q
given by a semilinear basis R ⊆ Nd×Nd in time expO(d)(∥R∥). In fact, we can assume that R

is finite since a linear set L = b + P ∗ is contained in Cong(FL) where FL = {b, b + p | p ∈ P},
and, therefore, a semilinear set

⋃m
i=1 Li generates the same congruence as

⋃m
i=1 FLi . The

semilinear representation of Q will be obtained by induction on the dimension d via a
decomposition of Nd into smaller regions. A region is a linear set L = b + P ∗ ⊆ Nd

where P ⊆ {e1, . . . , ed}. Its dimension is |P |. In particular all sets b↑ = b + {e1, . . . , ed}∗

are regions. For a region L = b + P ∗ and a congruence Q, we define the congruence
QL = {(x, y) ∈ (P ∗)2 | (b + x, b + y) ∈ Q} on the submonoid P ∗.

A submonoid S ⊆ Nk is subtractive if x, y ∈ S and x ≤ y implies y−x ∈ S. For example,
the non-negative restriction G ∩ Nk of a group G ⊆ Zk is a subtractive submonoid. The
following lemma is well-known, see [14, Proposition 7.1] or the full version [20] for a proof.

▶ Lemma 4.1. Every subtractive submonoid S ⊆ Nk is of the form S = M∗ where M is the
finite set of the minimal nonzero elements in S.

Eilenberg and Schützenberger observed that for every slice S there exists an element
s ∈ S such that S − s is a subtractive submonoid [14, Proposition 7.2]. As a consequence,
for every congruence Q on Nd there exists b ∈ Nd such that Qb↑ is a subtractive submonoid.
We provide an elementary bound on b.

▶ Lemma 4.2. Given a finite basis R for a congruence Q on Nd, one can compute in
elementary time a vector b ∈ Nd and a finite set M ⊆ N2d such that Qb↑ = M∗.

Gröbner bases. It remains to compute a semilinear representation of Q on the complement
of b↑. We will decompose Nd \ b↑ into disjoint (d − 1)-dimensional regions Lj , compute
bases for the restrictions QLj

, and proceed inductively. To compute the bases for QLj
, we

will exploit the well-studied connection between congruences on Nd and binomial ideals [43].
Let Z[x] be the polynomial ring in the variables x = (x1, . . . , xd) over Z. We write xu for
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the monomial x
u(1)
1 · · ·xu(d)

d . An ideal is a nonempty set I ⊆ Z[x] such that f, g ∈ I and
h ∈ Z[x] implies f + g, hf ∈ I. An ideal I is finitely represented by a basis B, i.e. I is
the smallest ideal containing B. By Hilbert’s basis theorem any ideal I ⊆ Z[x] has a finite
basis. One of the main tools in computer algebra for handling polynomial ideals are Gröbner
bases, e.g. to solve the ideal membership problem. We defer the reader to [2] for details on
Gröbner bases and only mention the properties required for our purposes. A Gröbner basis
is defined with respect to an admissible monomial ordering, e.g. a lexicographic ordering
on the monomials. Buchberger’s algorithm [7] computes for a given basis for an ideal I the
unique reduced Gröbner basis for I in doubly exponential space [13].

A basis R for a congruence Q on Nd can be translated into the polynomial ideal I ⊆ Z[x]
generated by BR = {xu−xv | (u, v) ∈ R}. It is known that s ∼Q t if and only if xs−xt ∈ I

[43, Lemma 1 and 2]. Moreover, the reduced Gröbner basis of I with respect to an admissible
monomial order always consists of differences of monomials xs − xt [29, Theorem 2.7].

The following lemma can be reduced to two known applications of Gröbner bases. Let
I ⊆ Z[x] be an ideal. For a subsequence y of x we call I ∩Z[y] the elimination ideal, which is
indeed an ideal in Z[y]. For b ∈ Nd we define the ideal quotient I : xb = {p ∈ Z[x] | pxb ∈ I},
which is also an ideal. It is known that one can compute Gröbner bases for I ∩ Z[y] and
I : xb in elementary time [2, Section 6], see the full version [20] for more details.

▶ Lemma 4.3. Given a finite basis R for a congruence Q on Nd and a region L ⊆ Nd, one
can compute in elementary time a finite basis for QL.

We are ready to compute a semilinear representation of Cong(R) in expO(d)(n) time. We
proceed by induction over d. Using Lemma 4.2 we can write Qb↑ = M∗. We decompose
Nd =

⋃m
i=0 Lj into regions where L0 = b↑ and L1, . . . , Lm are (d− 1)-dimensional regions.

By Lemma 4.3 we can compute bases for QLi
for i ∈ [1, m] and by induction hypothesis

semilinear representations for QLi . In this way, we obtain semilinear representations for the
restrictions Qi = Q∩ L2

i for each i ∈ [0, m]. Finally, we can express s ∼Q t by a Presburger
formula that says that there exists a sequence of intermediate vectors of length 2(m + 1)
where adjacent elements are related by an R-step or are contained in some relation Qi.

▶ Theorem 4.4. Given a semilinear basis R for a congruence Q on Nd, one can compute a
semilinear representation for Q in time expc1d(n) for some absolute constant c1.

4.3 Ascending chains of congruences
To bound the length of the chain of congruences Ri in Algorithm 1 we use a length function
theorem [49, Theorem 3.15], see also [16]. In general, such theorems allow to derive complexity
bounds for algorithms whose termination arguments are based on well-quasi orders.

Fast-growing complexity classes. In the following we state a simplified version of [49,
Theorem 3.15], which is sufficient for our application. We start by introducing fast-growing
functions and complexity classes. Recall that the Cantor normal form of an ordinal α ≤ ωω

is the unique representation α = ωα1 + · · ·+ ωαp where α > α1 ≥ · · · ≥ αp. In this form α is
a limit ordinal if and only if p > 0 and αp > 0. A fundamental sequence for a limit ordinal λ

is a sequence (λ(x))x<ω of ordinals with supremum λ. Given a limit ordinal λ ≤ ωω whose
Cantor normal form is λ = β + ωk+1, we use the standard fundamental sequence (λ(x))x<ω,
defined inductively as ωω(x) = ωx+1 and (β + ωk+1)(x) = β + ωk · (x + 1). Given a function
h : N→ N the Hardy hierarchy (hα)α≤ωω relative to h is defined by

h0(x) = x, hα+1(x) = hα(h(x)), hλ(x) = hλ(x)(x).
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Using the Hardy functions (Hα)α relative to H(x) = x + 1 we can define the fast-growing
complexity classes (Fα)α from [48]. We denote by F<α the class of functions computed by
deterministic Turing machines in time O(Hβ(n)) for some β < ωα. By Fα we denote the class
of decision problems solved by deterministic Turing machines in time O(Hωα(p(n))) for some
function p ∈ F<α. We define PRIMITIVE-RECURSIVE =

⋃
k<ω Fk and ACKERMANN = Fω.

Controlled bad sequences. By Dickson’s lemma, any sequence of vectors x1, x2, . . . with
xi ̸≤ xj for all i < j must be finite. Such a sequence is also called bad. To obtain complexity
bounds on the length of bad sequences we need to restrict to sequences that do not grow in
an uncontrolled fashion. In the following let g : N→ N be monotone, strictly inflationary, i.e.
g(x) > x for all x, and super-homogeneous, i.e. g(xy) ≥ g(x) · y for all x, y ≥ 1. A sequence
of vectors x0, x1, . . . , xℓ is (g, n)-controlled if ∥xi∥ ≤ gi(n) for all i ∈ [0, ℓ]. The following
statement follows from [49, Theorem 3.15] and [49, Eq. (3.13)].

▶ Theorem 4.5. Any (g, n)-controlled bad sequence over Nk has length at most gωk (nk).

A chain in Nk is a sequence S0 ⊊ S1 ⊊ · · · ⊊ Sℓ of subsets Si ⊆ Nk. The chain is
(g, n)-controlled if for each i ∈ [0, ℓ− 1] there exists si ∈ Si+1 \ Si with ∥si∥ ≤ gi(n). A set
X ⊆ Nk is upwards closed if X = X↑. Observe that any (g, n)-controlled chain of upwards
closed sets in Nk is bounded by 1 + gωk (nk) since we obtain a (g, n)-controlled bad sequence
s0, s1, . . . , sℓ−1 by picking arbitrary si ∈ Si+1 \ Si with ∥si∥ ≤ gi(n).

Translating congruences into upwards closed sets. The key trick in our upper bound for
ascending chains of congruences is to translate congruences into upwards closed sets. This
allows us to translate bounds on the length of ascending chains of upward closed sets into
corresponding bounds for congruences. The translation works as follows. To each congruence
Q on Nd, we associate the upwards closed set U(Q) ⊆ N4d with

U(Q) = {(x, y, u, v) | (x, y) ∈ Q, (x + u, y + v) ∈ Q, (u, v) ̸= (0, 0)}↑.

Clearly Q1 ⊆ Q2 implies U(Q1) ⊆ U(Q2). In fact, strict inclusion is also preserved:

▶ Lemma 4.6. Let Q1 and Q2 be congruences with Q1 ⊆ Q2. Then (i) U(Q1) ⊆ U(Q2) and
(ii) for each q ∈ Q2 \ Q1, there is a p ∈ U(Q2) \ U(Q1) with ∥p∥ ≤ ∥q∥.

Proof. Statement (i) is immediate. For statement (ii) let (s, t) ∈ Q2 \ Q1 be minimal. Since
(0, 0) ∈ Q1 we must have (s, t) ̸= (0, 0) and there exists (x, y) ∈ Q1 with (x, y) < (s, t).
We choose such a vector (x, y) in which (u, v) := (s, t) − (x, y) is minimal. Clearly,
(x, y, u, v) ∈ U(Q2). We claim that (x, y, u, v) /∈ U(Q1). Towards a contradiction, suppose
that there exists (x1, y1, u1, v1) ≤ (x, y, u, v) with (x1, y1) ∈ Q1, (u1, v1) ̸= (0, 0), and
(x1 + u1, y1 + v1) ∈ Q1. Since Q1 is a congruence we have

x + u1 = (x− x1) + x1 + u1 ∼Q1 (x− x1) + y1 + v1

∼Q1 (x− x1) + x1 + v1 = x + v1 ∼Q1 y + v1.

If (u1, v1) = (u, v) then this contradicts (x + u, y + v) = (s, t) /∈ Q1. If (u1, v1) < (u, v)
then (s, t) = (x + u1, y + v1) + (u− u1, v − v1) contradicts the minimality of (u, v). ◀

If (Qi)i≤ℓ is a (g, n)-controlled chain of congruences in Nd then by Lemma 4.6, (U(Qi))i≤ℓ

is a (g, n)-controlled chain of upwards closed subsets of N4d and thus has length at most
1 + gω4d(4dn). Hence, the same bound applies to (Qi)i≤ℓ.
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▶ Lemma 4.7. Any (g, n)-controlled chain of congruences in Nd has length ≤ 1 + gω4d(4dn).

Putting together Theorem 4.4 and Lemma 4.7 we can conclude that Algorithm 1 terminates
after Hω4d+3(e(n)) iterations for some elementary function e(n).

▶ Proposition 4.8. Reachability in bidirected pushdown VAS is in ACKERMANN, and in
F4d+3 if the dimension d is fixed.

The detailed complexity analysis can be found in the full version [20]. The result above
also holds for bidirected pushdown VASS (Theorem 1.1) by simulating the state in two
additional counters. Hence the complexity for dimension d increases from F4d+3 to F4d+11.

5 One-dimensional pushdown VASS

In this section we prove that reachability is in polynomial space for bidirected 1-PVASS
(Theorem 1.2). For the rest of this section consider a 1-PVASS P = (Q, Γ, T ) of |Q| = n

states. To simplify our bounds, we assume |Γ| = 2. This can be achieved with a simple
encoding: To simulate stack letters a1, . . . , ak, we can encode each ai by the string abiabk−ia.

Preliminaries. We extend the usual component-wise ordering ≤ to tuples (Z ∪ {−∞, ω})k.
Given two functions f, g : X → (Z ∪ {−∞, ω})k, we write f ≤ g to denote that f(x) ≤ g(x)
for each x ∈ X. We define the one-step Z relation ↪→ for P similarly to the one-step relation
−→ but with a Z-counter, i.e., we do not require the counter to remain non-negative. A path
from p to q consists of the initial state p and a sequence of transitions of P, such that it
induces a run (p1, x1, w1) ↪→ (p2, x2, w2) ↪→ . . . ↪→ (pj , xj , wj), with the requirement that
p1 = p, x1 = 0 and w1 = wj = ε. Given such a path P , we let

MaxSH (P ) = maxi |wi| be the maximum stack height along P ,
w(P ) = xj be the value of the counter at the end of P , and
m(P ) = mini xi be the minimum value of the counter along P . Note that m(P ) ≤ 0, as
the counter is 0 at the beginning of P .

We also write P for the reverse of P . We denote by {p ⇝ q} the set of paths from p to
q, and let {p ⇝ q}k = {P ∈ {p ⇝ q} : MaxSH (P ) ≤ k} be the set of such paths with
stack height at most k. Given two paths P1 and P2, we write P1 ≤ P2 to denote that
(m(P1), w(P1)) ≤ (m(P2), w(P2)).

We say that a state q is reachable from a state p if (p, 0, ε) ∗−→ (q, 0, ε). We say that q is
Z-reachable from p if there is a path P ∈ {p⇝ q} with w(P ) = 0 (hence state reachability
implies Z-reachability). Given additionally a natural number i ∈ N, we say that p covers
(q, i) if (p, 0, ε) ∗−→ (q, i + j, ε) for some j ≥ 0. Thus reachability implies coverability for i = 0.
The following is a simpler proof of a reduction observed in [31]: For bidirected 1-PVASS,
reachability reduces to coverability and Z-reachability.

▶ Lemma 5.1. For any two states p, q of P, we have that p reaches q iff (i) p covers (q, 0),
(ii) q covers (p, 0), and (iii) p Z-reaches q.

Proof. Clearly if p reaches q then conditions (i)-(iii) hold, so we only need to argue about the
reverse direction. If p does not cover (q, 1), since p covers (q, 0), we have that p reaches q, and
we are done. Similarly, if q does not cover (p, 1), we have that q reaches p and thus we are done.
Finally, assume that p covers (q, 1) and q covers (p, 1), and let Pp and Pq be the corresponding
paths witnessing coverability. Let P be a path witnessing that p Z-reaches q. We construct
the path Hℓ witnessing the reachability of q from p as Hℓ = (Pp ◦Pq)ℓ ◦P ◦ (Pp ◦Pq)ℓ, where
ℓ is chosen such that w((Pp ◦ Pq)ℓ) ≥ −m(P ). ◀
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In light of Lemma 5.1, for Theorem 1.2, it suffices to show that for bidirected 1-PVASS, both
Z-reachability and coverability can be decided in PSPACE. The former is known already:
Reachability in Z-PVASS belongs to NP [24]; in the bidirected case, it is even decidable in
P [21]. Thus, the rest of this section is devoted to deciding coverability in PSPACE.

▶ Lemma 5.2. Coverability in 1-dimensional bidirected pushdown VASS is in PSPACE.

Summary functions. We define a summary function γk : Q×Q→ (Z≤0 ∪ {−∞})× (Z ∪
{−∞, ω}), parametric on k ∈ N, as γk(p, q) = (a, b), where a and b are defined as follows.

a = max({m(P ) : P ∈ {p⇝ q}k}) b = sup({w(P ) : P ∈ {p⇝ q}k and m(P ) = a})

with the convention that max(∅) = sup(∅) = −∞. We occasionally write γk(p, q) = (a, _)
to denote that γk(p, q) = (a, b) for some b. We further define a summary function δk : V →
(Z≤0 ∪ {−∞}), parametric on k ∈ N, as follows.

δk(p) = max({m(P ) : P ∈ {p⇝ p}k and w(P ) > 0})

Recall that we use n = |Q| for the number of states in P. It is well-known that in any
pushdown system of n states (and only two stack letters), a shortest path between two
states has length 2O(n2) (e.g. this follows by inspecting a proof of the pumping lemma for
context-free languages [28, Lemma 6.1]; a precise bound was obtained in [45]). Since both
the weight and the minima of any path are lower-bounded by minus the length of the path,
if {p⇝ q}k ̸= ∅, then a shortest path in {p⇝ q}k witnesses γk(p, q) = (a, b) where a and b

are at most exponentially negative. This is established in the following lemma.

▶ Lemma 5.3. Consider any two states p, q and natural number k, and let γk(p, q) = (a, b).
If a > −∞ then a, b ≥ −β, for β = 2O(n2).

The bidirectedness of P also leads to the following lemma.

▶ Lemma 5.4. Consider any two states p, q and natural number k, and let γk(p, q) = (a, b).
There exists a constant α independent of P and k, such that, if b > 2αn2 , then b = ω.

The intuition behind the summary functions γk and δk is as follows. Lemma 5.3 and
Lemma 5.4 hint on an algorithm to decide coverability by saturating γk iteratively for
increasing k. The lemmas state that the finite values of γk are exponentially bounded, and
thus the process is guaranteed to reach a fixpoint within exponentially many iterations. An
obstacle to this approach is that γk may fail to capture paths that are useful in subsequent
iterations. In particular, γk(p, q) misses paths that can reach q with a larger counter at the
cost of a lower minima on the way. The following lemma shows that δk captures the effects
of all paths missed by γk, and allows the two summaries to be mutually saturated.

▶ Lemma 5.5. For any states p, q, let γk(p, q) = (a, b), and assume there exists a path
P ∈ {p⇝ q}k with w(P ) > b. Then δk(p) ≥ m(P ).

Moreover, the values of δk are also exponentially bounded, and thus the mutual saturation
can be carried out in polynomial space.

▶ Lemma 5.6. For any state p, if δk(p) > −∞ then δk(p) ≥ −β, for β = 2O(n2).

In the remainder of this section we describe the saturation procedure for γk and δk.
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Finite graphs. We consider weighted finite graphs G = (VG, EG, wG) where wG : EG → Z.
Moreover, we assume that every connected component of G is strongly connected. By a
small abuse we extend some of the above notation on P to such graphs. Given two nodes u,
v in G, we write {u⇝ v}G for the set of paths from u to v in G. We similarly extend the
summary functions to γG and δG, defined by the corresponding paths P ∈ {u⇝ v}G.

▶ Lemma 5.7. Given a graph G as above, the summary functions γG and δG can be computed
in polynomial time.

Computing γk and δk. We now describe a dynamic-programming algorithm for computing
γk and δk, for increasing values of k. We let Γ⊥ = Γ∪ {⊥}, where ⊥ is a special symbol, and
assume without loss of generality that every transition in P that manipulates the counter
does not affect the stack. Afterwards we will argue that the algorithm terminates within
exponentially many iterations.
1. We start with k = 0. We construct a graph G0 that consists of nodes ⟨p,⊥⟩ where p

is a state of P. Moreover, G0 contains the corresponding transitions of P that do not
manipulate the stack. In particular, for every transition (p, i, ε, q) ∈ T we have an edge
⟨p,⊥⟩ i−→ ⟨q,⊥⟩ in G0. We use Lemma 5.7 to compute γG0 and δG0 , and report that, for
all states p and q, we have γ0(p, q) = γG0(⟨p,⊥⟩, ⟨q,⊥⟩) and δ0(p) = δG0(⟨p,⊥⟩).

2. We repeat the following until γGk and δGk have converged. We construct a graph Gk as
follows. For every state p and every σ ∈ Γ⊥, we have a node ⟨p, σ⟩ in Gk. We then do
the following.
a. Let δGk−1(⟨p,⊥⟩) = c. We insert a node ⟨p′, σ⟩, and if −∞ < c, we insert two edges

manipulating the counter ⟨p, σ⟩ c−→ ⟨p′, σ⟩ and ⟨p′, σ⟩ −c+1−−−→ ⟨p, σ⟩.
b. For every state q, let γGk−1(⟨p,⊥⟩, ⟨q,⊥⟩) = (a, b). If −∞ < a, we insert a node ⟨p, q, σ⟩

and two edges manipulating the counter ⟨p, σ⟩ a−→ ⟨p, q, σ⟩ and ⟨p, q, σ⟩ −a+b′

−−−−→ ⟨q, σ⟩,
where b′ = b if b < ω and b′ = 0 otherwise.

3. Finally, for each stack letter σ ∈ Γ, we connect nodes of the form ⟨p,⊥⟩ and ⟨q, σ⟩ using
the transitions of P that manipulate the stack. That is, for every transition (p, 0, σ, q) ∈ T ,
we insert an edge ⟨p,⊥⟩ −→ ⟨q, σ⟩, and for every transition (p, 0, σ, q) ∈ T , we insert an
edge ⟨p, σ⟩ −→ ⟨q,⊥⟩.

4. We use Lemma 5.7 to compute γGk and δGk , and report that, for all states p and q, we
have γk(p, q) = γGk (⟨p,⊥⟩, ⟨q,⊥⟩) and δk(p) = δGk (⟨p,⊥⟩).

We first argue that the graphs Gk consist of strongly connected components, and thus
Lemma 5.7 is applicable.

▶ Lemma 5.8. For all k ∈ N, every connected component of Gk is strongly connected.

Given some σ ∈ Γ⊥ and k ≥ 1, we denote by Gk ⇂ σ the subgraph of Gk induced by
the nodes whose last element is σ. It follows directly from the construction of Gk that, for
every pair of states p, q of P and σ ∈ Γ⊥, for every path P that goes from ⟨p, σ⟩ to ⟨q, σ⟩
and is contained in Gk ⇂ σ, there is a path H ∈ {p ⇝ q}k−1 with P ≤ H. In turn, this
implies that the summary functions γGk and δGk are always dominated by paths in P of
stack height at most k, i.e., for all states p and q, we have γGk (⟨p,⊥⟩, ⟨q,⊥⟩) ≤ γk(p, q) and
δGk (⟨p,⊥⟩) ≤ δk(p) for all k ∈ N. The following lemma states that γGk and δGk compute γk

and δk exactly, by arguing that γGk and δGk also dominate all paths of P with stack height
at most k. In turn, this establishes the correctness of the algorithm.

▶ Lemma 5.9. For all k ∈ N and states p, q ∈ Q, we have γk(p, q) = γGk (⟨p,⊥⟩, ⟨q,⊥⟩) and
δk(p) = δGk (⟨q,⊥⟩).
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Thus, to decide whether p covers (q, 0), we saturate γk and δk and check whether
γk(p, q) = (0, _). The termination and complexity of the algorithm follows from the
boundedness of the finite values of γk and δk (Lemma 5.3, Lemma 5.4 and Lemma 5.6),
which concludes Lemma 5.2.

▶ Lemma 5.10. The above algorithm terminates and uses polynomial space.

Finally, note that if we have a polynomial bound on the stack height, then the saturation
procedure runs in polynomial time, which also leads to reachability in polynomial time (a
closer analysis yields an O(n3) bound per iteration). In particular, the PSPACE-hardness
proof for 1-dimensional directed PVASS from [15] cannot be directly transferred to bidirected
PVASS: The 1-PVASS constructed in [15] has a polynomially bounded stack height. See
the full version [20] for details on how exactly the reduction fails. Without a bound on the
stack height, the saturation might indeed take exponential time: There are 1-dimensional
bidirected PVASS on which shortest coverability witnesses require an exponential stack
height (see the full version [20] for an example).

6 Tower lower bound

In this section, we show that reachability in bidirected PVASS is TOWER-hard with respect
to elementary reductions, and k-EXPSPACE-hard in dimension 2k + 6. Recall that TOWER
is the class of all problems computable by deterministic Turing machines in time (or space)
bounded by a tower of exponentials of elementary height.

Lower bound for directed PVASS. We first recall the TOWER-hardness proof by Lazić
and Totzke [33] for reachability in directed PVASS. They reduce the expn(1)-bounded
halting problem for counter programs of size n, which is TOWER-complete with respect
to elementary reductions (which allow us to replace the parameter n with an arbitrary
elementary function e(n)) [19]. A counter program is a finite sequence of commands which
manipulate non-negative counters, initially set to zero. The commands include increments
x := x + 1, decrements x := x− 1, conditionals if x = 0 then goto L1 else goto L2 (where
L1 and L2 are line numbers), and halt. If a counter of value 0 is decremented, the program
aborts. The expn(1)-bounded halting problem asks whether given a counter program of size
n, starting from the first command and all counters set to zero, a command halt can be
reached using a run during which all counters are bounded by expn(1) and are all zero at
the end.

As in most lower bounds for vector addition systems and their extensions, for each counter
x we store a complement counter x̄, maintaining the invariant x + x̄ = B for some (large)
bound B. This can be achieved by complementing every in/decrement of x by a de/increment
of x̄, and vice versa. Then, a zero test if x = 0 then goto L1 else goto L2 can be replaced
by guessing whether x = 0 and x ̸= 0: In the former case we add and subtract B to x and
continue with L1. In the latter case we add and subtract B to x̄ and continue with L2.

The challenge is to implement the addition (and subtraction) with a large number B, here
B = expn(1), using a polynomially large system. Suppose we have counters c1, . . . , cn with
complement counters c̄1, . . . , c̄n satisfying ck + c̄k = expk(1) for all k. Lazić and Totzke [33]
show how to construct for all k = 1, . . . , n a poly(k)-sized PVASS that adds expk(1) to ck. It
operates by pushing exactly expk−1(1) many zeros to the stack, repeatedly incrementing the
expk−1(1)-bit binary counter on the stack, while simultaneously decrementing ck, and finally
popping exactly expk−1(1) many ones from the stack. Observe that the operations on the
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stack can be implemented with the help of ck−1 that can be in/decremented by expk−1(1)
by induction hypothesis. Before simulating the counter program, each complement counter
c̄k has to be set to expk(1), which can be done in a similar fashion.

Simulation by bidirected systems. In the following we will make the above construction
outlined by Lazić and Totzke [33] explicit and show that the simulation is correct even after
making the PVASS bidirected. To this end we need the following argument already found in
Post’s undecidability proof of the word problem for Thue systems [46, Lemma II]. Consider a
deterministic transition system where the final state does not have any outgoing transitions.
To such a system we now add reverse edges to make it bidirected. Clearly, any original
run is present in the bidirected system. Conversely, consider a run to the final state in the
bidirected system, which may use the new reverse edges. It cannot end on a reverse edge,
since there is no outgoing forward edge from the final state. So as long as the run contains
reverse edges, at least one of these edges must be followed by one in the forward direction.
Let us call them p

ā−→ q and q
b−→ r. As the original system was deterministic q has exactly

one outgoing edge, and hence (q b−→ r) = (q a−→ p). Since the effects of ā and b cancel out, we
can omit both of them from the run. Iterating this argument eventually yields a run with no
reverse edges. It follows that adding reverse edges to a fully deterministic system does not
change its reachability set (this was originally shown by Mayr and Meyer [43] for their proof
of EXPSPACE-hardness of reachability for bidirected VAS).

The construction of Lazić and Totzke is not fully deterministic. However, it only uses
very restricted nondeterminism that will not impact our simulation of the counter machine.

Gadget construction. Since we also want to show a k-EXPSPACE lower bound for dimension
2k + 6, we use a slightly more refined analysis: We will assume that two numbers k and
n are given as input and construct a system that simulates counters bounded by expk(n)
instead of expk(1) as in Lazić and Totzke.

In the following a gadget G consists of a PVASS and two distinguished terminal states s

and t. We consider vectors x ∈ N2k where the first k components are viewed the values of k

counters c1, . . . , ck and the last k components are the values of k complementary counters
c̄1, . . . , c̄k. Without further mention, any update on a counter c is always understood with
complementary update on c̄ so that the sums ci + c̄i remain constant.

Given two numbers k, n (in unary), we will inductively construct a gadget Gk with stack
alphabet Γk. This gadget will allow us to add expk(n) to a counter. The gadget’s size will
grow exponentially in k (and polynomially in n), and later, we improve the construction to
grow only polynomially in k. The gadget G1 simply increments c1 by 2n. Assuming Gk−1 is
already constructed, we construct the gadget Gk. The gadget Ḡk−1 is obtained from Gk−1
by reversing all transitions, and interchanging its terminal states. Its behavior is inverse to
that of Gk−1, as it subtracts expk−1(n) from ck−1. Let Zk−1 = Gk−1 ◦ Ḡk−1 be the gadget
obtained by composing Gk−1 with Ḡk−1, which is a zero test of ck−1. We can naturally
view Gk−1, Ḡk−1 and Zk−1 as gadgets with 2k counters, where ck and c̄k are untouched.
The gadget Gk is displayed in Figure 1 where 0 and 1 are fresh stack symbols and Inck is a
subprocedure which increments the binary counter on the stack.

To prove correctness of the gadget Gk we need a bit of notation. For brevity we
write [x1, . . . , xk] for (x1, . . . , xk, exp1(n)− x1, . . . , expk(n)− xk). Our gadgets will always
assume that the “lower” counters cj are set to zero and that the invariant is satisfied. A
counter vector of the form [0, . . . , 0, xi, . . . , xk] is called i-initialized. Moreover, we call a run
(s, u, w) ∗−→ (t, v, w′) in a gadget i-initialized if either u or v is i-initialized.

ICALP 2022
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Inck:
p0 p1 p2 p3 p4

Zk−1

ck−1+= 1
1̄

0̄1

ck−1−= 1
0

Zk−1 ck+= 1

q0 q1 q2 q3 q4 q5

Gk−1

ck−1−= 1
0

Zk−1

Inck

Zk−1

ck−1+= 1
1̄

ck+= 1 Ḡk−1

Figure 1 Gadgets Inck and Gk.

▶ Proposition 6.1. The k-initialized runs in Gk from q0 to q5 are precisely the runs

(q0, [0, . . . , 0], w) ∗−→Gk
(q5, [0, . . . , 0, expk(n)], w) for w ∈ Γ∗

k−1.

Next we will analyse the bidirected version of Gk. In order to distinguish the original
transitions from the reverse transitions we define for a PVASS G the relations↔G =→G ∪ ←G

and ∗↔G, denoting the reflexive transitive closure of ↔G. Similarly to the argument by
Post [46, Lemma II], we can prove the following:

▶ Proposition 6.2. Let u, v ∈ N2k where u or v is k-initialized.
If (q0, u, w) ∗↔Gk

(q5, v, w′) then (q0, u, w) ∗−→Gk
(q5, v, w′).

If q ∈ {q0, q5} and (q, u, w) ∗↔Gk
(q, v, w′) then u = v and w = w′.

We need to reduce the size of Gk so that it can be constructed in time polynomial in k.
Since Gk uses ten copies of the subgadget Gk−1 (each zero test Zk−1 uses two copies of
Gk−1), we cannot simply insert Gk−1 by copying it, as this would induce exponential growth
of the number of states of our system. Instead, we instantiate each gadget Gk−1 once. Then,
whenever a gadget would be used between two states p, q, we push a fresh stack symbol tp,q

and move to Gk−1. When exiting Gk−1 we pop tp,q and return to q. Since this symbol is
unique for every pair of states, it uniquely determines where we can leave the gadget to, even
if there are multiple incoming and outgoing transitions at the gadget Gk−1. Finally, one can
verify that Proposition 6.2 still holds for this adapted version of Gk.

Simulating the counter program. We are ready to finish the lower bound proof. We are
given a counter program of size n with three counters x1, x2, x3 and want to reduce the
expk+1(n)-bounded halting problem to the reachability problem for bidirected PVASS using
2k + 6 counters. To this end, we construct the gadget Gk+1 three times: Each of these three
instances has, instead of ck+1 (and its complement), a counter xi (and its complement) for
some i ∈ {1, 2, 3}. However, the three instances of Gk+1 share the counters c1, . . . , ck (and
their complements). Thus, in total, we have 2 · k + 2 · 3 = 2k + 6 counters. If k is fixed, this
yields our k-EXPSPACE lower bound ([19]). If k is part of the input, the problem becomes
TOWER-complete. We start by initializing the complement counters c̄1, . . . , c̄k in sequence,
using variants of the gadgets Gi that (i) operate on the balance counter c̄i instead of ci, (ii)
do not decrement ci when incrementing c̄i, and (iii) operate on the lower i− 1 counters as
normal. Similarly we initialize x̄1, x̄2, x̄3 to expk+1(n). Finally, in order to have an all-zero
configuration in the final state, we de-initialize these counters before entering the final state.

Increments and decrements in the counter program are directly translated into counter
updates in the PVASS. A conditional if xi = 0 then goto L1 else goto L2 is replaced by a
nondeterministic guess of whether xi = 0 or xi ̸= 0, verifying this (in)equality, and jumping
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to L1 or L2. Here we use variants of the zero tests Zk+1 = Gk+1 ◦ Ḡk+1 which on their
highest level operate on x and x̄ (instead of ck+1 and c̄k+1). The question of reachability of
halt is then a reachability instance on the bidirected version of the PVASS.

If the counter program halts then we can find a corresponding computation in the PVASS.
Conversely, consider a successful run of the bidirected PVASS which uses a minimal number
of reverse transitions. By Proposition 6.2 we can assume that no gadget Gk+1 and Ḡk+1
(and their variants) is entered and exited through the same terminal state. Furthermore,
any subrun passing through such a gadget can be assumed to use only forward transitions.
Hence the only reverse transitions remaining are from increments or decrements. Observe
that the last occurrence of such a reverse transition τ̄ must be followed by its corresponding
forward transition τ . Hence we can cancel τ with τ̄ , contradiction.

7 Conclusion

We have shown that the reachability problem in bidirected pushdown VASS is decidable, with
an Ackermann upper bound and a TOWER lower bound. Moreover, in the one-dimensional
case, the problem is in PSPACE, whereas P-hardness was shown in [21]. Thus, the exact
complexity, both in the general and the one-dimensional case, remains open.

Another direction for future research is to study bidirected versions of other infinite-state
models. For example, pushdown VASS are the simplest level in a hierarchy of infinite-state
models for which decidability of the reachability problem is open [53]. Perhaps the techniques
from this paper can be applied to show decidability of all levels in the bidirected setting.
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Abstract
We consider the distributed control synthesis problem for systems with locks. The goal is to find
local controllers so that the global system does not deadlock. With no restriction this problem is
undecidable even for three processes each using a fixed number of locks. We propose two restrictions
that make distributed control decidable. The first one is to allow each process to use at most two
locks. The problem then becomes complete for the second level of the polynomial time hierarchy,
and even in Ptime under some additional assumptions. The dining philosophers problem satisfies
these assumptions. The second restriction is a nested usage of locks. In this case the synthesis
problem is Nexptime-complete. The drinking philosophers problem falls in this case.
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1 Introduction

Synthesis of distributed systems has a big potential since such systems are difficult to write,
test, or verify. The state space and the number of different behaviors grow exponentially
with the number of processes. This is where distributed synthesis can be more useful than
centralized synthesis, because an equivalent, sequential system may be very big. The other
important point is that distributed synthesis produces by definition a distributed system,
while a synthesized sequential system may not be implementable on a given distributed
architecture. Unfortunately, very few settings are known for which distributed synthesis is
decidable, and those that we know require at least exponential time.

The problem was first formulated by Pnueli and Rosner [27]. Subsequent research showed
that, essentially, the only decidable architectures are pipelines, where each process can send
messages only to the next process in the pipeline [20, 23, 11]. In addition, the complexity
is non-elementary in the size of the pipeline. These negative results motivated the study
of distributed synthesis for asynchronous automata, and in particular synthesis with so
called causal information. In this setting the problem becomes decidable for co-graph
action alphabets [12], and for tree architectures of processes [14, 25]. Yet the complexity
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is again non-elementary, this time w.r.t. the depth of the tree. Worse, it has been recently
established that distributed synthesis with causal information is undecidable for unconstrained
architectures [17]. Distributed synthesis for (safe) Petri nets [10] has encountered a similar
line of limited advances, and due to [17], is also undecidable in the general case, since it
is inter-reducible to distributed synthesis for asynchronous automata [3]. This situation
raised the question if there is any setting for distributed synthesis that covers some standard
examples of distributed systems, and is manageable algorithmically.

In this work we consider distributed systems with locks; each process can take or release a
lock from a pool of locks. Locks are one of the most classical concepts in distributed systems.
They are also probably the most frequently used synchronization mechanism in concurrent
programs. We formulate our results in a control setting rather than synthesis – this avoids
the need for a specification formalism. The objective is to find a local strategy for each
process so that the global system does not get stuck. For unrestricted systems with locks we
hit again an undecidability barrier, as for the models discussed above. Yet, we find quite
interesting restrictions making distributed control synthesis for systems with locks decidable,
and even algorithmically manageable.

The first restriction we consider is to limit the number of locks available to each process.
The classical example are dining philosophers, where each philosopher has two locks cor-
responding to the left and the right fork. Observe that we do not limit the total number
of processes, or the total number of locks in the system. We show that the complexity of
this synthesis problem is at the second level of the polynomial hierarchy. The problem gets
even simpler when we restrict it to strategies that cannot block a process when all locks are
available. We call them locally live strategies. We obtain an NP-algorithm for locally live
strategies, and even a Ptime algorithm when the access to locks is exclusive. This means
that once a process tries to acquire a lock it cannot switch to some other action before getting
the lock.

The second restriction is nested lock usage. This is a very common restriction in the
literature [19], simply saying that acquiring and releasing locks should follow a stack discipline.
Drinking philosophers [4] are an example of a system of this kind. We show that in this case
distributed synthesis is Nexptime-complete, where the exponent in the algorithm depends
only on the number of locks.

We formalize the distributed synthesis problem as a control problem [28]. A process is
given as a transition graph where transitions can be local actions, or acquire/release of a
lock. Some transitions are controllable, and some are not. A controller for a process decides
which controllable transitions to allow, depending on the local history. In particular, the
controller of a process does not see the states of other processes. Our techniques are based
on analyzing patterns of taking and releasing locks. In decidable cases there are finite sets of
patterns characterizing potential deadlocks.

The notion of patterns resembles locking disciplines [7], a tool frequently used to prevent
deadlocks. An example of a locking discipline is “take the left fork before the right one” in
the dining philosophers problem. Our results allow to check if a given locking discipline may
result in a deadlock, and in some cases even list all deadlock-avoiding locking disciplines.

In summary, the main results of this work are:
ΣP

2 -completeness of the deadlock avoidance control problem for systems where each
process has access to at most 2 locks.
An NP algorithm when additionally strategies need to be locally live.
A Ptime algorithm when moreover lock access is exclusive.
A Nexptime algorithm and the matching lower bound for the nested lock usage case.
Undecidability of the deadlock avoidance control problem for systems with unrestricted
access to locks.
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Related work

Distributed synthesis is an old idea motivated by the Church synthesis problem [5]. Actually,
the logic CTL has been proposed with distributive synthesis in mind [6]. Given this long
history, there are relatively few results on distributed synthesis. Three main frameworks have
been considered: synchronous networks of input/output automata, asynchronous automata,
Petri games.

The synchronous network model has been proposed by Pnueli and Rosner [27]. They
established that controller synthesis is decidable for pipeline architectures and undecidable in
general. The undecidability result holds for very simple architectures with only two processes.
Subsequent work has shown that in terms of network shape pipelines are essentially the only
decidable case [20, 23, 11]. Several ways to circumvent undecidability have been considered.
One was to restrict to local specifications, specifying the desired behavior of each automaton
in the network separately. Unfortunately, this does not extend the class of decidable
architectures substantially [23]. A further-going proposal was to consider only input-output
specifications. A characterization, still very restrictive, of decidable architectures for this
case is given in [13].

The asynchronous (Zielonka automata) model was proposed as a reaction to these negative
results [12]. The main hope was that causal memory helps to prevent undecidability arising
from partial information, since the synchronization of processes in this model makes them
share information. Causal memory indeed allowed to get new decidable cases: co-graph
action alphabets [12], connectedly communicating systems [24], and tree architectures [14, 25].
There is also a weaker condition covering these three cases [16]. This line of research suffered
however from a very recent result showing undecidability in the general case [17].

Distributed synthesis in the Petri net model, Petri games, has been proposed recently
in [10]. The idea is that some tokens are controlled by the system and some by the environment.
Once again causal memory is used. Without restrictions this model is inter-reducible with the
asynchronous automata model [3], hence the undecidability result [17] applies. The problem
is Exptime-complete for one environment token and arbitrary many system tokens [10]. This
case stays decidable even for global safety specifications, such as deadlock, but undecidable in
general [9]. As a way to circumvent the undecidability, bounded synthesis has been considered
in [8, 18], where the bound on the size of the resulting controller is fixed in advance. The
approach is implemented in the tool AdamSYNT [15].

The control formulation of the synthesis problem comes from the control theory com-
munity [28]. It does not require to talk about a specification formalism, while retaining
most useful aspects of the problem. A frequently considered control objective is avoidance
of undesirable states. In the distributed context, deadlock avoidance looks like an obvious
candidate, since it is one of the most basic desirable properties. The survey [32] discusses the
relation between the distributed control problem and Church synthesis. Some distributed
versions of the control problem have been considered, also hitting the undecidability barrier
very quickly [29, 31, 30, 1].

We would like to mention two further results that do not fit into the main threads outlined
above. In [33] the authors consider a different synthesis problem for distributed systems: they
construct a centralized controller for a scheduler that would guarantee absence of deadlocks.
This is a very different approach to deadlock avoidance. Another recent work [2] adds a new
dimension to distributed synthesis by considering communication errors in a model with
synchronous processes that can exchange their causal memory. The authors show decidability
of the synthesis problem for 2 processes.

ICALP 2022



125:4 Distributed Controller Synthesis for Deadlock Avoidance

Outline of the paper

In the next section we define systems with locks, strategies, and the control problem.
We introduce locally live strategies as well as the 2-lock, exclusive, and nested locking
restrictions. This permits to state the main results of the paper. The following three
sections consider systems with the 2-lock restriction. First, we briefly give intuitions behind
the Σp

2-completeness in the general case. Section 4 presents an NP algorithm for the
distributed synthesis problem for locally live strategies. Section 5 gives a Ptime algorithm
under the exclusive restriction. Next, we consider the nested locking case, and show that
the problem is Nexptime-complete. Finally, we prove that without any restrictions the
synthesis problem for systems with locks is undecidable. The full version can be found at
https://arxiv.org/4272787.

2 Main definitions and results

A lock-sharing system is a distributed system with components (processes) synchronizing
over locks. Processes do not communicate, but they synchronize using locks from a global
pool. Some transitions of processes are uncontrollable, intuitively the environment decides
if such a transition is taken. The goal is to find a local strategy for each process so that
the entire system never deadlocks. The strategy can observe only local transitions – it does
not see transitions performed by other processes, nor states other processes are in. While
the system is finite state, the challenge comes from the locality of strategies. Indeed, the
unrestricted problem is undecidable. The main contribution of this work are restrictions that
make the problem decidable, and even solvable in Ptime.

In this section we define lock-sharing systems, strategies, and the deadlock avoidance
control problem, that is the topic of this paper. We then introduce restrictions on the general
problem and state the main decidability and complexity results.

A finite-state process p is an automaton Ap = (Sp, Σp, Tp, δp, initp) with a set of locks Tp

that it can acquire or release. The transition function δp : Sp ×Σp
·→ Op(Tp)× Sp associates

with a state from Sp and an action from Σp an operation on some lock and a new state; it is
a partial function. The lock operations are acquire (acqt) or release (relt) some lock t from
Tp, or do nothing: Op(Tp) = {acqt, relt | t ∈ Tp} ∪ {nop}. Figure 1 gives an example.

A local configuration of process p is a state from Sp together with the locks p currently
owns: (s, B) ∈ Sp × 2Tp . The initial configuration of p is (initp, ∅), namely the initial
state with no locks. A transition between configurations (s, B) a,op−−−→ (s′, B′) exists when
δp(s, a) = (op, s′) and one of the following holds:

op = nop and B = B′;
op = acqt, t /∈ B and B′ = B ∪ {t};
op = relt, t ∈ B, and B′ = B \ {t}.

A local run (a1, op1)(a2, op2) · · · ofAp is a finite or infinite sequence over Σp×Op(Tp) such that
there exists a sequence of configurations (initp, ∅) = (s0, B0) (a1,op1)−−−−−→p (s1, B1) (a2,op2)−−−−−→p · · ·
While the run is determined by the sequence of actions, we prefer to make lock operations
explicit. We write Runsp for the set of runs of Ap.

A lock-sharing system S = ((Ap)p∈Proc, Σs, Σe, T ) is a set of processes together with a
partition of actions between controllable and uncontrollable actions, and a set T of locks. We
have T =

⋃
p∈Proc Tp, for the set of all locks. Controllable and uncontrollable actions belong

to the system and to the environment, respectively. We write Σ =
⋃

p∈Proc Σp for the set of
actions of all processes and require that (Σs, Σe) partitions Σ. The sets of states and action
alphabets of processes should be disjoint: Sp ∩ Sq = ∅ and Σp ∩ Σq = ∅ for p ̸= q. The sets
of locks are not disjoint, in general, since processes may share locks.

https://arxiv.org/4272787


H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:5

hungry

think
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right

acqtp+1

acqtp

acqtp

acqtp+1

reltp , reltp+1

Figure 1 A dining philosopher p. Dashed transitions are controllable.

▶ Example 1. The dining philosophers problem can be formulated as control problem
for a lock-sharing system S = ((Ap)p∈Proc, Σs, Σe, T ). We set Proc = {1, . . . , n} and
T = {t1, . . . , tn} as the set of locks. For every process p ∈ Proc, process Ap is as in Figure 1,
with the convention that tn+1 = t1. Actions in Σs are marked by dashed arrows. These
are controllable actions. The remaining actions are in Σe. Once the environment makes a
philosopher p hungry, she has to get both the left (tp) and the right (tp+1) fork to eat. She
may however choose the order in which she takes them; actions left and right are controllable.

A global configuration of S is a tuple of local configurations C = (sp, Bp)p∈Proc provided
the sets Bp are pairwise disjoint: Bp ∩ Bq = ∅ for p ̸= q. This is because a lock can be
taken by at most one process at a time. The initial configuration is the tuple of initial
configurations of all processes.

Such systems are asynchronous, with transitions between two configurations done by a
single process: C

(p,a,op)−−−−−→ C ′ if (sp, Bp) (a,op)−−−−→p (s′
p, B′

p) and (sq, Bq) = (s′
q, B′

q) for every
q ̸= p. A global run is a sequence of transitions between global configurations. Since our
systems are deterministic we usually identify a global run by the sequence of transition labels.
A global run w determines a local run of each process: w|p is the subsequence of p’s actions
in w.

A control strategy for a lock-sharing system is a tuple of local strategies, one for each
process: σ = (σp)p∈Proc. A local strategy σp says which actions p can take depending on a
local run so far: σp : Runsp → 2Σp , provided Σe ∩ Σp ⊆ σp(u), for every u ∈ Runsp. This
requirement says that a strategy cannot block environment actions.

A local run u of a system respects σp if for every non-empty prefix v(a, op) of u, we have
a ∈ σp(v). Observe that local runs are affected only by the local strategy. A global run w

respects σ if for every process p, the local run w|p respects σp. We often say just σ-run,
instead of “run respecting σ”.

As an example consider the system for two philosophers from Example 1. Suppose that
both local strategies always say to take the left transition. So hungry1, left1, acq1

t1
, acq1

t2

is a local run of process 1 respecting the strategy; similarly hungry2, left2, acq2
t2

, acq2
t1

for
process 2. (We use superscripts to indicate the process doing an action.) The global
run hungry1, hungry2, left1, left2, acq1

t1
, acq2

t2
respects the strategy and blocks, since each

philosopher needs a lock the other one owns.

▶ Definition 2 (Deadlock avoidance control problem). A σ-run w leads to a deadlock in σ if
w cannot be prolonged to a σ-run. A control strategy σ is winning if no σ-run leads to a
deadlock in σ. The deadlock avoidance control problem is to decide if for a given system
there is some winning control strategy.

ICALP 2022
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In this work we consider several variants of the deadlock avoidance control problem.
Maybe surprisingly, in order to get more efficient algorithms we need to exclude strategies
that can block a process by itself:

▶ Definition 3 (Locally live strategy). A local strategy σp for process p is locally live if every
local σp-run u can be prolonged to a σp-run: there is some b ∈ Σp such that ub is a local run
respecting σp. A strategy σ is locally live if every local strategy is so.

In other words, a locally live strategy guarantees that a process does not block if it runs
alone. Coming back to Example 1: a strategy always offering one of the left or right actions
is locally live. A strategy that offers none of the two is not. Observe that blocking one
process after the hungry action is a very efficient strategy to avoid a deadlock, but it is not
the intended one. This is why we consider locally live to be a desirable property rather than
a restriction.

Note that being locally live is not exactly equivalent to a strategy always proposing at
least one outgoing transition. In our semantics, a process blocks if it tries to acquire a lock
that it already owns, or to release a lock it does not own. But it becomes equivalent thanks
to the following remark:

▶ Remark 4. We can assume that each process keeps track in its state which locks it owns.
Note that this assumption does not compromise the complexity results when the number of
locks a process can access is fixed. We will not use this assumption in Section 6, where a
process can access arbitrarily many locks (in nested fashion).

Without any restrictions our synthesis problem is undecidable.

▶ Theorem 5. The deadlock avoidance control problem for lock-sharing systems is undecidable.
It remains so when restricted to locally live strategies.

We propose two cases when the control problem becomes decidable. The two are defined
by restricting the usage of locks.

▶ Definition 6 (2LSS). A process Ap = (Sp, Σp, Tp, δp, initp) uses two locks if |Tp| = 2. A
system S = ((Ap)p∈Proc, Σs, Σe, T ) is 2LSS if every process uses two locks.

Note that in the above definition we do not bound the total number of locks in the system,
just the number of locks per process. The process from Figure 1 is 2LSS. Our first main
result says that the control problem is decidable for 2LSS.

▶ Theorem 7. The deadlock avoidance control problem for 2LSS is Σp
2-complete.

For the lower bound we use strategies that take a lock and then block. This does not
look like a very desired behavior, and this is the reason for introducing the concept of locally
live strategies. The second main result says that restricting to locally live strategies helps.

▶ Theorem 8. The deadlock avoidance control problem for 2LSS is in NP when strategies
are required to be locally live.

We do not know if the above problem is in Ptime. We can get a Ptime algorithm under
one more assumption.

▶ Definition 9 (Exclusive systems). A process p is exclusive if for every state s ∈ Sp: if s

has an outgoing transition with some acqt operation then all outgoing transitions of s have
the same acqt operation. A system is exclusive if all its processes are.
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hungry
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acqtp+1

acqtp

acqtp

acqtp+1

reltp
, reltp+1

reltp

reltp+1

Figure 2 A flexible philosopher p. She can release a fork if the other fork is not available.

▶ Example 10. The process from Figure 1 is exclusive, while the one from Figure 2 is not.
The latter has a state with one acqtp+1

and one reltp
outgoing transition. Observe that in

this state the process cannot block, and has the possibility to take a lock at the same time.
Exclusive systems do not have such a possibility, so their analysis is much easier.

▶ Theorem 11. The deadlock avoidance control problem for exclusive 2LSS is in Ptime,
when strategies are required to be locally live.

Without local liveness, the problem stays Σp
2-hard for exclusive 2LSS. Our last result uses a

classical restriction on the usage of locks:

▶ Definition 12 (Nested-locking). A local run is nested-locking if the order of acquiring and
releasing locks in the run respects a stack discipline, i.e., the only lock a process can release
is the last one it acquired. A local strategy is nested-locking if all local runs respecting the
strategy are nested-locking. A strategy is nested-locking if all local strategies are nested-locking.

The process from Figure 1 is nested-locking, while the one from Figure 2 is not.

▶ Theorem 13. The deadlock avoidance control problem is Nexptime-complete when
strategies are required to be nested-locking.

3 Two locks per process

We give some intuitions as to why the deadlock avoidance problem for 2LSS is Σp
2-complete

(Theorem 7).
When every process uses only two locks there are only few patterns of local lock usage

that are relevant for deadlocks. A finite local run u of process p using locks t1, t2 can be of
one of the following four types:

p owns both locks at the end of u;
p owns no lock at the end of u;
p owns only one lock, say t1, at the end of u, and the last lock operation of u is acqt1

;
p owns only one lock, say t1, at the end of u, and the last lock operation of u is relt2 .

A pattern of a run is its type, and the set of available actions at the end. If a run reaches a
deadlock then the only available actions are to acquire locks owned by other processes.

We fix a 2LSS ({Ap}p∈Proc, Σs, Σe, T ) over the set of processes Proc. We assume that it
satisfies Remark 4.

ICALP 2022
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Given a strategy σ = (σp)p∈Proc, we call a local σ-run risky if it ends in a state from
which every outgoing action allowed by σ acquires some lock (this includes states with no
outgoing transition). A local σ-run is neutral if it ends in a configuration (s, B) with B = ∅.

▶ Definition 14. We define the pattern of a risky σp-run up as follows. Let Towns be the set
of locks that p owns after executing up and Tblocks the set of locks that outgoing transitions
allowed by σp after up need to acquire.

The pattern of up is the tuple (Towns, Tblocks, ord) with:
If up is of the form u1(a, acqt1

)u2(b, relt2)u3 with no action on t1 in u2 and no action
on either t1 or t2 in u3 then ord = (t1, t2).
Otherwise ord = ⊥.

Note that in light of Remark 4, Towns and Tblocks are necessarily disjoint. Furthermore
if ord is of the form (t1, t2) then Towns = {t1}, and either Tblocks = ∅ or Tblocks = {t2}.

A strategy σ = (σp)p∈Proc respects a family of sets of patterns (Pattp)p∈Proc if for all
p ∈ Proc, the patterns of all risky σp-runs belong to Pattp.

In this definition, Towns and Tblocks serve as witnesses of deadlock configurations, in which
all required locks are owned by another process, and no lock is owned by two different processes.
Further, the ord component indicates the fourth case described before the definition.

Our key result in this part is Lemma 15. It gives simple, necessary and sufficient,
conditions on the family of patterns of local σ-runs (up)p∈Proc that lead to a deadlock under
a suitable scheduling. The difficulty is to verify if there exists a global run which is a
combination of those local runs. For that, all processes must own disjoint sets of locks at the
end. The rest can be inferred from the types of runs listed above.

We describe how to schedule local runs into a global one depending on the four types
listed before Definition 14.

In the first case we can assume that p’s run is scheduled at the end of the global run, as
it ends up keeping both locks anyway, so no other process will use them after p.
In the second case, we can assume that p’s run is scheduled at the beginning of the global
run, as it is neutral.
In the third case, we can split p’s run in two parts: a first, neutral part which can be
scheduled at the beginning, and a second part in which p acquires t1 and there is no lock
operation afterwards. The second part can be scheduled at the end, because no other
process will use t1 after p.
In the final case, p acquires t1, never releases it but later uses t2. This can be a problem
if for instance another process does the same with t1 and t2 reversed. The first process
that takes its first lock would prevent the other from finishing its local run. We express
these constraints by requiring the existence of a global order in which process take locks
without releasing them.

▶ Lemma 15. Let σ = (σp)p∈Proc be a control strategy. For all p let Pattp be the set of
patterns of local risky σp-runs of p. The control strategy σ is not winning if and only if there
exists for each p a pattern (Tp

owns, Tp
blocks, ordp) ∈ Pattp such that:⋃

p∈Proc Tp
blocks ⊆

⋃
p∈Proc Tp

owns,
the sets Tp

owns are pairwise disjoint,
there exists a total order ≤ on T such that for all p, if ordp = (t, t′) then t ≤ t′.

Proof. Suppose σ is not winning, let u be a run ending in a deadlock. For each process p let
up be the corresponding local run. The local run up is risky, as otherwise up could be extended
in a longer run consistent with σ. Thus up has a pattern (Tp

owns, Tp
blocks, ordp) ∈ Pattp.
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We check that those patterns (up)p∈Proc meet the requirements of the lemma. Clearly as
we are in a deadlock, all locks that some process wants are taken, hence the first condition
is satisfied. Furthermore, no two processes can own the same lock, implying the second
condition. Finally, let ≤ be a total order on locks given by the order of the last operations
on each lock in u: we set t ≤ t′ iff the last operation on t in u is before the last one on t′. Let
p be a process, and suppose ordp is (t, t′). Then up has the form u1(a, acqt)u2(b, relt′)u3
with no action on t in u2 or u3. Hence, t ≤ t′.

The other direction is a bit more complicated. Suppose that for each p there is a pattern
(Tp

owns, Tp
blocks, ordp) ∈ Pattp such that those patterns satisfy all three conditions of the

lemma. Let ≤ be a suitable total order on locks for the third condition, and let < be its
strict part. For every p there exists a risky local run up yielding the chosen pattern for p.

We start by executing all neutral runs up one by one in some order. All locks are free
after these executions.

For all p such that Tp
owns = {t} and ordp = ⊥, we can decompose up as u1(a, acqt)u2

with no action on locks in u2. We execute all runs u1, which are neutral and thus leave all
locks free after execution.

Finally, we execute all up such that ordp ̸= ⊥ in increasing order on the first component
of ordp according to ≤. For all such p, let (t, t′) = ordp, so we have Tp

owns = {t} and t < t′.
As all Tp

owns are disjoint, before executing up all locks greater or equal to t according to ≤
are free. In particular, t and t′ are free, thus we can execute up. In the end all locks are free
except the ones belonging to Tp

owns for those processes p.
Now we execute the remaining part of the up with Tp

owns = {t} and ordp = ⊥ (referred
to as (a, acqt)u2 before). Those runs do not contain any action on locks besides the first
acquire. As all Tp

owns are disjoint, the locks they acquire are free, hence all those runs can
be executed.

The remaining runs are the ones such that Tp
owns = {t, t′}. As all Tp

owns are disjoint,
both these locks are free, hence up can be executed as p can only use these two locks.

We have combined all local runs into one global run reaching a configuration where
all processes have to acquire a lock from

⋃
p∈Proc Tp

blocks to keep running, and all locks in⋃
p∈Proc Tp

owns are taken. As
⋃

p∈Proc Tp
blocks ⊆

⋃
p∈Proc Tp

owns, we have reached a deadlock.
◀

The algorithm for Theorem 7 proceeds in four phases:
guess a set of patterns Pattp, one for each process p,
check that there are local strategies σp such that the patterns of all runs belong to Pattp,
let the adversary guess a pattern in each Pattp,
check whether those patterns satisfy the conditions of Lemma 15.

The alternation between guessing and adversarial guessing yields a Σp
2 algorithm.

The lower bound is obtained by a reduction from ∃∀-SAT. The system controls existential
variables, the environment controls universal ones. There are two locks for each variable,
acquiring one of them is interpreted as choosing the value of the variable. Note that this
construction relies on processes that take a lock and then block on their own in states with
no outgoing transitions. In the following section we will forbid such unnatural behavior by
considering only locally live strategies.

We use some extra processes to enforce that the system wins if and only if the valuation
given by the choices of the two players satisfies the SAT formula. The interesting part is
that even though it looks like the guessing values of variables is done concurrently by the
system and the environment, the whole setting enforces a ∃∀ dependency.
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4 Two locks per process with locally live strategies

We describe how to solve the control problem for 2LSS and locally live strategies in NP, as
stated in Theorem 8.

We fix a 2LSS satisfying the assumption discussed in Remark 4. We will show that the
relevant information about a strategy σ can be formalized as a finite lock graph Gσ and a
lockset family Locksσ; the latter is a family of sets of sets of locks (see definitions below).
This information is very similar to the one described by patterns in the previous section.
As we work with locally live strategies, the set of possible patterns of local runs is more
restricted and we can view this more conveniently as a graph.

Our algorithm first guesses an abstract lock graph G and lockset family Locks. Then it
performs two checks:
Step 1 check if there is some strategy σ with G = Gσ and Locks = Locksσ, and
Step 2 check if there is no deadlock scheme for G and Locks (see Definition 21 below).
A deadlock scheme is some kind of forbidden situation. It is easy to get a co-NP algorithm for
the second step: just guess the scheme and check that it has the right shape. The challenge
is to do this in Ptime. This is necessary if we want to get an NP algorithm.

We introduce now some notions in order to define Gσ and Locksσ conveniently. Consider
a local run u of a process p:

(initp, ∅) = (s0, B0) (a1,op1)−−−−−→p (s1, B1) · · · (ai,opi)−−−−−→p (si, Bi) .

We say that u has set of locks B if B = Bi. A σp-run u is B-locked by the local strategy σp

if every transition in σp(u) has as operation acqt for some t ∈ B. Process p is B-lockable by
σp if it has a neutral, B-locked σp-run.

The intuition is that in order to get a deadlock, a B-lockable process can be scheduled
first. It can do a run leading to a state where it requires some of the locks in B without
holding any locks. So, the process will be blocked if we ensure that all locks in B are already
taken. For example, consider the process in Figure 1. The run hungry, left is {tp}-locked,
as the unique next action is acqtp

. The process is {tp}-lockable by σp if e.g. σp always
chooses the left action. Indeed, in this case the run hungry, left is a neutral σp-run, which
is {tp}-locked. Process p is not {tp+1}-lockable by a strategy σp choosing always the left
action, as there is no neutral σp-run leading to acqtp+1

.

▶ Definition 16 (Lockset family Locksσ). A lockset for a local strategy σp is a set Lp ⊆ 2Tp

of sets B such that p is B-lockable by σp. A lockset family for σ is Locksσ = (Lp)p∈Proc.

▶ Definition 17 (Lock graph Gσ). For a strategy σ, a lock graph Gσ = ⟨T, Eσ⟩ has an edge
t1

p−→ t2 whenever there is some σp-run u of p that has {t1} and is {t2}-locked. If there is
such a run u where the last lock operation in u is acqt1

then the edge is called green, and
otherwise it is called blue.

We will say that σ allows a blue edge t1
p

↪−→ t2 or a green edge t1
p7−→ t2. We write t1

p−→ t2
when the color of the edge is irrelevant.

For example, a strategy choosing the left action in Figure 1 yields the green edge tp
p7−→ tp+1.

Lockset families say on which sets of locks each process can block while not holding any
lock. An edge t1

p−→ t2 in the lock graph corresponds to a run of p where P owns lock t1 (the
source of the edge) and waits for the other lock t2 (the target of the edge).

A lockset represents a run of the second type in the previous section, a green edge a run
of the third type, and a blue edge a run of the fourth type with no similar run of the third
type. The first type cannot appear in a deadlock when strategies are locally live, as processes
always have an available action.
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Since we have assumed nothing about how strategies are given, it is not clear how to
compute Gσ. Instead of restricting to, say, finite memory strategies, we will work with
arbitrary lock graphs and lockset families. This is possible thanks to Lemma 19 below, that
allows to check if a graph is the lock graph of some strategy. For this we need to define
lockset families and lock graphs abstractly. Notice that the size of both these objects is
bounded, as the set of locks per process is fixed for 2LSS.

▶ Definition 18. A lockset family is a tuple of sets of locks indexed by processes (Lp)p∈Proc,
with Lp ⊆ 2Tp . A lock graph is an edge-labeled graph G = ⟨T, E ⊆ T×Proc×{blue, green}×T ⟩
where nodes are locks from the set T and every edge is labeled by a process and a color. A
cycle in G is called proper if all its edges are labeled by different processes. It is denoted as
green if it contains at least one green edge; otherwise, so if all edges are blue, it is denoted
blue.

At this point we have enough notions to carry out the first step on page 10.

▶ Lemma 19. Given a lock graph G and a lockset family Locks, it is decidable in Ptime if
there is a locally live strategy σ such that G = Gσ and Locksσ = Locks.

The proof is by reduction to model-checking a fixed-size MSOL formula over a given
regular tree. For every process p we need to check if there is a local strategy σp satisfying
the conditions imposed by G and Locks = (Lp)p∈Proc. Consider the regular tree of all local
runs of process p. The formula says that there is a strategy tree inside this regular tree such
that Lp contains exactly those sets B such that the subtree has some neutral, B-locked path;
and for every edge in G labelled by p there is a path of the required shape in the subtree.
This can be expressed by an MSOL formula of constant size, as the process uses only 2 locks.
From the MSOL formula we get a tree automaton of constant size. The emptiness check of
its product with the tree automaton accepting the unfolding of the automaton Ap can be
done in Ptime.

In the rest of the section we discuss the second step. We first define a Z-deadlock scheme
for some set Z of locks. Intuitively, this is a situation showing that there is a run blocking
all locks in Z. Then a deadlock scheme is a Z-deadlock scheme for some Z big enough to
block all processes.

▶ Definition 20 (Z-deadlock scheme). Let G = ⟨T, E⟩ be a lock graph, Locks = (Lp)p∈Proc
a lockset family, and Z a set of locks. We define ProcZ as the set of processes whose both
accessible locks are in Z, ProcZ = {p ∈ Proc : Tp ⊆ Z}. A Z-deadlock scheme is a function
dsZ : ProcZ → E ∪ {⊥} such that:

For all p ∈ ProcZ , if dsZ(p) ̸= ⊥ then dsZ(p) is an edge of G labeled by p.
If p ∈ ProcZ and Lp = ∅ then dsZ(p) ̸= ⊥.
For all t ∈ Z there exists a unique p ∈ ProcZ such that dsZ(p) is an outgoing edge from t.
The subgraph of G, restricted to dsZ(ProcZ) does not contain any blue cycle.

The main point of this definition is that for every lock in Z there is an outgoing edge in
dsZ . Intuitively, it means that we have a run where every lock from Z is taken, and every
process in ProcZ requires a lock from Z.

▶ Definition 21 (Deadlock scheme). A deadlock scheme for G and Locks = (Lp)p∈Proc is a
Z-deadlock scheme such that for every process p ∈ Proc \ProcZ there is B ∈ Lp with B ⊆ Z.

Thus a deadlock scheme represents a situation where all processes are blocked, since every
process not in ProcZ can be brought into a state where it needs a lock from Z, but all these
locks are taken.
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The next lemma says that the absence of deadlock schemes characterizes winning strategies.
We could reuse the patterns defined above to obtain a shorter proof but we prefer to give a
slightly longer but elementary one.

▶ Lemma 22. A locally live control strategy σ is winning if and only if there is no deadlock
scheme for its lock graph Gσ and its lockset family Locksσ.

Proof. Suppose σ is not winning. Then there exists a global σ-run u leading to a deadlock.
As a consequence, in the deadlock configuration all processes must be trying to acquire some
lock that is already taken.

We then construct a deadlock scheme (BT , ds) as follows. Let BT be the set of locks
taken in the deadlock configuration, and for all p ∈ Proc, define ds(p) as:
⊥ if p does not own any lock in the deadlock configuration,
t1

p−−→ t2 if p owns t1 and is trying to acquire t2 in the deadlock configuration (the color
of the edge is determined by the run, it is irrelevant for the argument).

Clearly for all p ∈ Proc the value ds(p) is either ⊥ or a p-labeled edge of the lock graph Gσ.
Suppose ds(p) = ⊥, and let t1, t2 be the two locks accessible by p. As the final configuration

is a deadlock, all actions allowed by σp are necessarily acqt1
or acqt2

. So p is {t1, t2}-lockable.
Furthermore, as we are in a deadlock, the lock(s) blocking p are in BT (if they were free, p

would be able to advance), therefore p is BT -lockable.
For every t ∈ BT , there is a process p holding t in the final configuration. As we are in

a deadlock, p is trying to acquire its other accessible lock t′ (recall that the definition of
control strategy demands that at least one action be available to each process at all times).
Thus ds(p) is an edge from t to t′. Furthermore t′ cannot be free as we are in a deadlock,
thus t′ ∈ BT . There are no other outgoing edges from t as no other process can hold t while
p does.

Finally let t1
p1−→ t2 · · ·

pk−→ tk+1 be a cycle with t1 = tk+1 in the subgraph of Gσ restricted
to BT and ds(Proc). One of the locks ti was the last lock taken in the run u (say by process
pi). We show now by contradiction that the edge ti

pi−→ ti+1 is green. If pi would have
released ti+1 after the last acqti

in u, then pi+1 would have done its last acqti+1
later, a

contradiction. The subgraph of Gσ restricted to BT and ds(Proc) has therefore no blue
cycles, therefore (BT , ds) is a deadlock scheme.

For the other direction, suppose we have a deadlock scheme (BT , ds) for the lock graph
Gσ. As (BT , ds(Proc)) does not contain a blue cycle, we can pick a total order ≤ on locks
such that for all blue edges t1

p
↪−→ t2 ∈ ds(Proc), we have t1 ≤ t2.

By definition of the lock graph, for each process p ∈ Proc we can take a local run up of
Ap respecting σ with the following properties.

If ds(p) = ⊥ then p is BT -lockable. So there exists a neutral run up leading to a state
where all outgoing transitions require locks from BT .
If ds(p) = t1

p
p−−→ t2

p then there is up of the form u1
p(a, acqt1

p
)u2

p(a′, acqt2
p
) without relt1

p

transition in u2
p. Moreover if ds(p) is green then we know that there is no relt2

p
transition

in u2
p.

We now combine these runs to get a run respecting σ ending in a deadlock configuration.
For each process p such that ds(p) = ⊥, execute the local run up. Since up is neutral, all
locks are available after executing it. The only possible actions of p after this run are to
acquire some locks from BT .

Next, for every process p such that ds(p) is a green edge, execute the local run u1
p. This

is also a neutral run. After this run p is in a state where σp allows to take lock t1
p, but p

does not own any lock.
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Next, in increasing order according to ≤, for every lock t with an outgoing blue edge
ds(p) = t

p
↪−→ t′ execute the run up, except for the last acqt′ action. After this run lock t is

taken by p, and all actions allowed by σp are acqt′ actions. Since there is only one outgoing
edge from every lock, and since we are respecting the order ≤, both t and t′ are free before
executing that run. Hence it is possible to execute this run.

Finally, we come back to processes p such that ds(p) is a green edge. For every such
process we execute acqt1

p
followed by u2

p. This is possible because t1
p is free as there is a

unique outgoing edge from t1
p. After executing these runs every process p with ds(p) ̸= ⊥ is

in a state when the only possible action is acqt2
p
.

At this stage all locks that are sources of edges from ds(Proc) are taken. Since every lock
in BT is a source of an edge, all locks from BT are taken. Thus no process p with ds(p) = ⊥
can move as it needs some lock from BT . Similarly, no process p with ds(p) ̸= ⊥ can move,
as they need locks pointed by targets of the edges ds(p), and these are in BT too. So we
have constructed a run respecting σ and reaching a deadlock. ◀

From now on we concentrate on deciding if there is some deadlock scheme for a given
graph G along with a lockset family Locks. Our approach will be to repeatedly eliminate
edges from G or add locks to Z, and construct a deadlock scheme on Z at the same time.

As a preparatory step we observe that we can almost ignore the lockset family. Examining
the definition of Z-deadlock scheme we see that the only information about Locks it uses is
whether Lp = ∅ or not. Hence we call a process solid if Lp = ∅, and fragile otherwise. The
second condition in the definition of Z-deadlock scheme becomes: if p ∈ ProcZ is solid then
dsZ(p) ̸= ⊥.

The next lemma gives an important composition principle for deadlock schemes. Suppose
we already have a set of “kernel” locks Z on which we know how to construct a Z-deadlock
scheme. Then the lemma says that in order to get a deadlock scheme for G it is enough to
consider the remaining part G \ Z.

▶ Lemma 23. Let Z ⊆ T be such that there is no edge labeled by a solid process from a lock
of Z to a lock of T \Z in G. Suppose dsZ : ProcZ → E ∪ {⊥} is a Z-deadlock scheme. Then
there is a deadlock scheme for G if and only if there is one equal to dsZ over ProcZ .

The rest of the proof is a sequence of stages. We start with H = G and Z = ∅. At each
stage we remove some edges in H or extend Z. This process continues till some obstacle to
the existence of a deadlock scheme is found, or till Z is big enough to be a deadlock scheme.
We use three invariants:

▶ Invariant 1. G admits a deadlock scheme if and only if H does.

▶ Invariant 2. There are no edges labeled by a solid process from Z to T \ Z in H.

▶ Invariant 3. There exists a Z-deadlock scheme.

▶ Proposition 24. There is a polynomial time algorithm to decide if a lock graph G and a
lockset family Locks have a deadlock scheme.

The final argument behind Theorem 8 is as follows. We start by non-deterministically
guessing G and Locks. These are of polynomial size with respect to the size of the 2LSS. We
can check in polynomial time that there exists a strategy σ giving G and Locks (Lemma 19).
If that is not the case, we reject the input. Otherwise we check if G and Locks admit a
deadlock scheme (Proposition 24). By Lemma 22, the strategy σ is winning if and only if
the check says that there is no deadlock scheme in G and Locks.
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5 Solving the exclusive case in Ptime

In this section we study exclusive 2LSS. We have shown an NP algorithm for the deadlock
avoidance control problem when restricting to locally live strategies. Here we show that the
problem is in Ptime if the 2LSS is exclusive (Definition 9). This is possible because the
exclusive assumption simplifies the structure of lock graphs, and makes the lockset family
unnecessary.

Throughout this section we fix an exclusive 2LSS, call it S. The exclusive property
prohibits situations as in Figure 2 where a state has one outgoing acqtp+1

transition, and
one reltp

transition. Compared to the previous section we do not need to make a difference
between solid and fragile processes. We can even ignore colors on the arrows. This is a
consequence of the following two lemmas.

▶ Lemma 25. Let σ be a locally live control strategy and Gσ its lock graph. For all t1, t2 ∈ T ,
if Gσ has a blue edge t1

p
↪−→ t2 then it has a green edge t2

p7−→ t1.

▶ Lemma 26. Let σ be a locally live control strategy and Gσ its lock graph. For every edge
t1

p−→ t2 in G, process p is {t1, t2}-lockable.

Thanks to these simplifications there is a much more direct way of checking if a strategy
is winning. Take a locally live strategy σ. Consider a decomposition of Gσ into strongly
connected components (SCC). We say that an SCC is a direct deadlock if it contains at least
two nodes, and:

either it has an edge that is not a double edge: t1
p−−→ t2 but not t1

p←−− t2, for some p;
or all edges in the component are double edges and there is a proper cycle, i.e., all edges
are labeled by different processes.

A deadlock SCC is a direct deadlock SCC or an SCC that can reach some direct deadlock
SCC. Let BTσ be the set of all the locks appearing in some deadlock SCC. We obtain a
simple characterization of winning strategies.

▶ Proposition 27. A strategy σ is winning if and only if there exists a process that is not
BTσ-lockable.

Building on this result we can give a method to decide if there is a winning strategy in
the system S. For every process p and every set of edges between two locks of p we check
if there is a local strategy inducing exactly these edges. This can be done in a similar way
as Lemma 19. We say that an edge la belled by p is unavoidable if all the local strategies
σp induce this edge. Let GS be the graph whose nodes are locks and edges are unavoidable
edges.

We calculate a set BTS in a similar way as BTσ in the previous proposition except that
we use slightly more general basic SCCs of GS . A direct semi-deadlock SCC is either a direct
deadlock SCC or an SCC containing at least two nodes, only double edges, and two locks t1
and t2 such that for some process p not inducing a double edge between t1, t2 in GS : every
strategy for p induces at least one edge between t1 and t2. Then a semi-deadlock SCC is an
SCC that can reach some direct semi-deadlock SCC, or is itself a direct semi-deadlock SCC.

Let BTS be the set of locks appearing in semi-deadlock SCCs of GS . Theorem 11 follows
from the next proposition.

▶ Proposition 28. Let S be an exclusive 2LSS. There is a winning locally live strategy for
the system if and only if there exists a locally live strategy σp for some process p preventing
it from acquiring any lock from BTS .
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The algorithm computes BTS , and then checks if for some process p the condition from
the proposition holds. This check amounts to solving a safety game on a finite graph – the
transition graph of process p.

6 Nested-locking strategies

We switch to another decidable case, where we require that locks are acquired and released in
stack-like manner. Our goal is Theorem 13 saying that the deadlock avoidance control problem
is Nexptime-complete when restricted to nested-locking strategies (cf. Definition 12).

In the context of this section we cannot assume that a process knows which locks it has
(cf. Remark 4). In consequence, it is not realistic to require that a strategy is locally live.
Yet, the lower bound works also for locally live strategies.

We will use some notions about local runs as defined on page 10.

▶ Definition 29. A stair decomposition of a local run u is

u = u1acqt1
u2acqt2

. . . ukacqtk
uk+1

where in the configuration reached by u1acqt1
u2acqt2

. . . ui the set of locks held by the process
is {t1, . . . , ti−1} for every i > 0, and there is no operation on ti in ui+1 . . . uk+1. (We omit
the actions associated with each operation as they are irrelevant here).

Every nested-locking run has a unique stair decomposition.
Without the locally live assumption we may have runs simply ending because there are

no outgoing actions. Recall that given a strategy σ, a risky σ-run is a local σ-run ending in a
state from which every outgoing action allowed by σ acquires some lock. We define patterns
of risky local runs that will serve as witnesses of reachable deadlocks.

▶ Definition 30. Consider a stair decomposition u1acqt1
u2acqt2

· · ·ukacqtk
uk+1 of a risky

σ-run u of a process p. Suppose the run is Tblocks-blocked, and let Towns = {t1, . . . , tk}. We
associate with u a stair pattern (Towns, Tblocks,⪯), where ⪯ is the smallest partial order on
the set Tp of locks of p satisfying: for all i, for all t ∈ Tp, if the last operation on t in the
run is after the last acqti

then ti ⪯ t. A behavior of σ is a family of sets of stair patterns
(Pp)p∈Proc, where Pp is the set of stair patterns of local risky σ-runs of p.

Similarly to Lemma 22 we can show that the family of patterns for a strategy determines
if it is winning.

▶ Lemma 31. A nested-locking control strategy σ with behavior (Pp)p∈Proc is not winning
if and only if for every p ∈ Proc there is a stair pattern (T p

owns, T p
blocks,⪯p) ∈ Pp such that:⋃

p∈Proc Tp
blocks ⊆

⋃
p∈Proc Tp

owns,
the sets Tp

owns are pairwise disjoint,
there exists a total order ⪯, on the set of all locks T , compatible with all ⪯p.
Similarly to Lemma 19 we can check if there is a strategy whose set of patterns has only

patterns from a given family. Observe that the depth of nesting is bounded by the number
of locks.

▶ Lemma 32. Given a lock-sharing system ((Ap)p∈Proc, Σs, Σe, T ), a process p ∈ Proc and
a set of patterns Pp, we can check in polynomial time in |Ap| and 2|T | whether there exists a
nested-locking local strategy σp with set of patterns included in Pp.

▶ Proposition 33. The deadlock avoidance control problem is decidable for lock-sharing
systems with nested-locking strategies in non-deterministic exponential time.
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Proof. The decision procedure guesses a set of patterns Pp for each process p, of size at
most 22|T ||T |! ≤ 2O(|T | log(|T |). Then it checks if there exist local strategies yielding subsets
of those sets of patterns. This takes exponential time by Lemma 32. If the result is negative
then the procedure rejects. Otherwise, it checks if some condition from Lemma 31 does not
hold. It it finds one then it accepts, otherwise it rejects.

Clearly, if there is a winning nested-locking strategy then the procedure can accept by
guessing the family of patterns corresponding to this strategy. For this family the check from
Lemma 32 does not fail, and one of the conditions of Lemma 31 must be violated.

Conversely, if the decision procedure concludes that there exists a winning strategy, then
let (Pp)p∈Proc be the guessed family of sets of patterns. We know that there exists a strategy
σ with behaviors (P ′

p)p∈Proc such that P ′
p ⊆ Pp for all p ∈ Proc. Furthermore, as there are

no patterns in (Pp)p∈Proc satisfying the requirements of Lemma 31, there cannot be any in
the P ′

p either. Hence σ is a winning strategy. ◀

7 Undecidability for unrestricted lock-sharing systems

In this section we show that the deadlock avoidance control problem for lock-sharing systems
is undecidable for three processes with a fixed number of locks. Three locks used in non-nested
fashion allow to synchronize two processes in lock-step manner. This is an essential ingredient
for the undecidability proof.

We have defined lock-sharing systems so that initially all locks are free. First we show the
undecidability result supposing that we are allowed to start with a designated distribution of
locks. Later we describe how to implement initial lock distributions using extra locks.

▶ Lemma 34. The control problem for lock-sharing systems with 3 processes, fixed initial
configuration and fixed number of locks per process is undecidable.

The proof uses the usual recipe for the undecidability of distributed synthesis [26, 27].
Two processes P and P synchronize with a third process C over a stream of bits chosen
by their strategy. The process C is partially controlled by the environment, which selects
non-deterministically an interleaving of the two streams and parses the interleaving with a
finite automaton. This is enough to get undecidability by a reduction from an infinite Post
Correspondence Problem (PCP).

Consider an instance (αi, βi)i∈I of PCP on the alphabet {0, 1}. A solution is an infinite
sequence i1i2 . . . ∈ Iω such that αi1αi2 . . . = βi1βi2 . . .. The two streams sent by P and P

to C, are α = αi1i1αi2i2 . . . and β = βj1j1βj2j2 . . . , resp. With finite memory C can check
equality of the two words (αi1αi2 · · · = βj1βj2 . . . ) or equality of the two index sequences
(i1i2 . . . = j1j2 . . . ). Since P and P are not aware of what C does, the streams are fixed by
the strategies and do not depend on what C is checking.

The locks used in the proof are {c, s0, s1, p, c, s0, s1, p}. Process C and P use locks from
{c, s0, s1, p} to synchronize and similarly for C, P and {c, s0, s1, p}.

It remains to explain the synchronization mechanism. The two processes P and C

synchronize over a bit of information, say bit 0, by executing specific finite runs using the
locks {s0, c, p} in non-nested fashion. Initially, C owns {s0, c} and P owns {p}. First, C

releases lock s0 and P acquires it, which we denote as C
s0−→ P . Here, P is waiting for C

to release s0, and the two actions rels0 of C and acqs0
of P are ordered. The rest of the

run follows a similar pattern: at each step, one of the processes is waiting to take a lock
released by the other process. With the same notation, the run proceeds with P

p−−→ C, and
continues until each process owns the same locks it owned at the start: each lock is sent
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twice, from its initial owner to the other process, and back. To sum up, the exchange of bit
0 between C and P corresponds to C

s0−→ P
p−→ C

c−→ P
s0−→ C

p−→ P
c−→ C. In other

words, processes C and P respectively perform two local runs:

C : rels0 acqp relc acqs0
relp acqc P : acqs0

relp acqc rels0acqprelc

Observe that P and C need to execute these sequences in lock-step manner, as one of the
two processes waits for a lock from the other.

In order to synchronize over bit 1, the two processes perform a similar synchronization,
using s1 instead of s0. The communication between C and P is identical, except that it uses
locks from {c, s0, s1, p}.

In each round, P and C must agree beforehand on a bit they are going to synchronize on,
either s0 or s1. Otherwise the two processes get blocked, and P will get blocked too, as it
needs locks held by C. A bit stream between C and P is encoded as a concatenation of such
runs, and similarly for C, P . The content of the two bit streams is chosen by the strategies of
P, P , C. Since the strategy has infinite memory, there is no upper bound on the complexity
of the streams. Interestingly, two locks are not enough for two processes to synchronize over
a bit stream.

▶ Lemma 35. There is a polynomial-time reduction from the control problem for lock-sharing
systems with initial configuration to the control problem where all locks are initially free. The
reduction adds |Proc| new locks.

We sketch the proof idea. Assume that we have pairwise disjoint sets (Ip)p∈Proc of locks,
and a lock-sharing system S in which each process p initially owns exactly the locks in Ip.
We build another lock-sharing systems S∅ that starts with all locks initially free, makes every
process acquire all locks in Ip, and then simulates S.

It is important that the initialization phase of S∅ does not interfere with the simulation
of S. We ensure this by using one additional lock kp per process, called the “key” of p.

For process p, the initialization sequence consists of three steps.
1. First, p takes one by one (in a fixed arbitrary order), all its initial locks in Ip.
2. Second, p takes and releases, one by one (in a fixed arbitrary order) all the keys of the

other processes (kq)q ̸=p.
3. Finally, p acquires its key kp and keeps it forever.
After acquiring kp process p reaches the initial state in S.

In order to prevent the initialization phase to create extra deadlocks, there is a local nop
loop on every state of the initialization sequence. This way, a deadlock may only occur if all
processes have finally completed their initialization sequences. Note that the initialization
phase does not interfere with the simulation of S. This is because the exchange of keys
guarantees that up to the moment where a process p has completed the initialization in S∅,
no other process has used any lock from Ip.

8 Conclusions

Motivated by a recent undecidability result for distributed control synthesis [17] we have
considered a model for which the problem has not been investigated yet. With hindsight it
is strange that the well-studied model of lock synchronization has not been considered in
the context of distributed synthesis. One reason may be the “non-monotone” nature of the
synthesis problem. It is not the case that for a less expressive class of systems the problem is
necessarily easier because the controllers get less powerful, too.

ICALP 2022
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The two decidable classes of lock-sharing systems presented here are rather promising.
Especially because the low complexity results cover already non-trivial problems. All our
algorithms are based on analyzing lock patterns. While in this paper we consider only finite
state processes, the same method applies to more complex systems, as long as solving the
centralized control problem in the style of Lemma 19 is decidable. This is for example the
case for pushdown systems.

There are numerous directions that need to be investigated further. We have focused on
deadlock avoidance because this is a central property, and deadlocks are difficult to discover
by means of testing or verification. Another option is partial deadlock, where some, but not
all, processes are blocked. The concept of Z-deadlock scheme from Definition 20 should help
here, but the complexity results may be different. Reachability, and repeated reachability
properties need to be investigated, too.

We do not know if the upper bound from Theorem 8 is tight. The algorithm for verifying
if there is a deadlock in a given strategy graph, Proposition 24, is already quite complicated,
and it is not clear how to proceed when a strategy is not given.

Another research direction is to consider probabilistic controllers. It is well known that
there are no symmetric solutions to the dining philosophers problem but there is a randomized
one [21, 22]. Symmetric solutions are quite important for resilience issues as it is preferable
that every process runs the same code. The Lehmann-Rabin algorithm is essentially the
system presented in Figure 2 where the choice between left and right is made randomly. This
is one of the examples where randomized strategies are essential. Distributed synthesis has a
potential here because it is even more difficult to construct distributed randomized systems
and prove them correct.
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Abstract
We use results from communication complexity, both new and old ones, to prove lower bounds for
unambiguous finite automata (UFAs). We show three results.
1. Complement: There is a language L recognised by an n-state UFA such that the complement

language L requires NFAs with nΩ̃(log n) states. This improves on a lower bound by Raskin.
2. Union: There are languages L1, L2 recognised by n-state UFAs such that the union L1 ∪ L2

requires UFAs with nΩ̃(log n) states.
3. Separation: There is a language L such that both L and L are recognised by n-state NFAs but

such that L requires UFAs with nΩ(log n) states. This refutes a conjecture by Colcombet.
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1 Introduction

Given two finite automata recognising languages L1, L2 ⊆ Σ∗ a basic question is to determine
the state complexity of various language operations. How many states are needed in an
automaton that recognises the union L1 ∪ L2? How about the intersection L1 ∩ L2? The
complement L1 := Σ∗ \ L1? The answer depends on the type of automaton considered, such
as deterministic (DFA), nondeterministic (NFA), or unambiguous (UFA). Recall that a UFA
is an NFA that has at most one accepting computation on any input.

State complexities have been extensively studied for various types of automata and
language operations; see, e.g., [9, 15] and their references, or the excellent compendium on
Wikipedia [22]. For example, complementing an NFA with n states may require 2n states [3],
even for automata with binary alphabet [14]. Surprisingly, several extremely basic questions
about UFAs remain open. For example, it was shown only in 2018 by Raskin [20] that the
state complexity for UFA complementation is not polynomial: for any n ∈ N there exists a
language L recognised by an n-state UFA such that any UFA (or even NFA) that recognises L

has at least n(log log log n)Ω(1) states. This superpolynomial blowup refuted a conjecture that
it may be possible to complement UFAs with a polynomial blowup [5].

In this paper, as our main results, we prove three new blowup theorems.

▶ Theorem 1 (Complement). For every n ∈ N there is a language L ⊆ {0, 1}∗ recognised by
an n-state UFA such that any NFA that recognises L requires nΩ̃(log n) states.

▶ Theorem 2 (Union). For every n ∈ N there are languages L1, L2 ⊆ {0, 1}∗ recognised by
n-state UFAs such that any UFA that recognises L1 ∪ L2 requires nΩ̃(log n) states.
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▶ Theorem 3 (Separation). For every n ∈ N there is a language L ⊆ {0, 1}∗ such that both L

and L are recognised by n-state NFAs but any UFA that recognises L requires nΩ(log n) states.

Discussion of main results. Theorem 1 upgrades Raskin’s slightly-superpolynomial
bound into a quasipolynomial bound nΩ̃(log n). (Here we use the notation Ω̃(m) to suppress
poly(log m) factors.) However, we note that Raskin’s language is unary, |Σ| = 1, while
ours is binary, |Σ| = 2, and hence the two results are incomparable in this sense. As for
positive results, it is known that the trivial 2n upper bound for UFA complementation can
be improved: the complement of any n-state UFA can be recognised by a UFA with at
most poly(n) · 2n/2 states [15, 13]. Closing the exponential gap here between the lower and
upper bounds remains a tantalising open problem. It was highlighted as one of the foremost
challenges in the recent Dagstuhl workshop Unambiguity in Automata Theory [6].

Theorem 2 establishes the first superpolynomial lower bound for the union operation.
Letting ⊔ denote disjoint union, observe that

L1 ∪ L2 = L1 ⊔ (L2 ∩ L1). (1)

Since disjoint union and intersection are polynomial for UFAs, it follows from (1) and
Theorem 2 that the same nΩ̃(log n) lower bound holds for complementing UFAs. However,
we stress that Theorem 1 has a stronger conclusion than this, since it proves a lower bound
against NFAs, not just UFAs. The observation (1) also yields the upper bound poly(n) · 2n/2

by using the complement construction from [15, 13].

Theorem 3 refutes a conjecture by Colcombet [5, Conjecture 2]. Indeed, he conjectured
that for any pair of NFAs recognising languages L1, L2 such that L1 ∩ L2 = ∅, there is
a polynomial-sized UFA that recognises some L that separates L1 and L2 in the sense
that L1 ⊆ L and L ∩ L2 = ∅. Theorem 3 refutes this even in the special case L1 = L2.
Related separability questions are classical in formal language theory and have attracted
renewed attention; see, e.g, [8] and the references therein. Separating automata have also
been used recently to elegantly describe quasipolynomial time algorithms for solving parity
games in an automata theoretic framework; see [4, Chapter 3] and [7].

1.1 Technique: Communication complexity
Our three main theorems rely on results – both new and old – in communication complexity;
see [18, 19] for the standard textbooks. In communication complexity, one studies functions of
the form F : {0, 1}n ×{0, 1}n → {0, 1} that determine the following two-party communication
problem: Alice holds x ∈ {0, 1}n, Bob holds y ∈ {0, 1}n, and their goal is to output F (x, y)
while communicating as few bits as possible between them. Communication complexity is
a classical tool to prove lower bounds for automata. Indeed, it is well known that if the
language {xy : F (x, y) = 1} is recognised by a small DFA (resp. NFA, UFA) then F admits
an efficient deterministic (resp. nondeterministic, unambiguous) protocol. We revisit this
connection in light of recent developments in communication complexity.

Theorem 1 is a relatively straightforward consequence of a recent result of Balodis
et al. [2]. They exhibited a two-party function whose co-nondeterministic communication
complexity is nearly quadratic in its unambiguous complexity (which matches an upper
bound due to Yannakakis [23]). We translate this separation into the language of automata
theory, virtually in a black-box fashion.
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Theorem 2, by contrast, is our main technical contribution. We will show that it follows
from the following analogous communication result, which we prove in this paper.

▶ Theorem 4. For every m ∈ N there exists a function F (x, y) with unambiguous com-
munication complexity at most m such that the logical-or of two copies of F , namely,
F ∨(xx′, yy′) := F (x, y) ∨ F (x′, y′), has unambiguous communication complexity Ω̃(m2).

This is a new result in communication complexity; the unambiguous complexity of F ∨ has
not been studied previously. We prove Theorem 4 using the popular query-to-communication
lifting technique that has been wildly successful in the past decade to prove communication
lower bounds (including in [2]). In this technique, one starts by proving a lower bound on
the query (aka decision tree) complexity of a boolean function f : {0, 1}n → {0, 1}. A lifting
theorem (e.g., [12]) then transforms f into an analogous communication problem F in such a
way that the communication complexity of F is characterised by the query complexity of f .
This reduces the task of proving communication lower bounds into the much easier task of
proving query lower bounds.

Interestingly, our proof of Theorem 4 formalises a kind of converse to the observation (1)
above (saying that union can be computed via a complement). Namely, we show that
unambiguously computing the union necessarily requires computing a complement, and
therefore we can rely on an existing query lower bound for complementation [11].

Theorem 3, finally, is a straightforward consequence of a classical quadratic separation
between two-sided nondeterministic communication complexity and unambiguous communic-
ation complexity due to Razborov [21].

1.2 Bonus result: Approximate nonnegative rank
Along the way to Theorem 4 we inadvertently stumbled upon another separation result that
addresses a question raised by Kol et al. [16]. They studied the ϵ-approximate nonnegative
rank rk+

ϵ (M) of a nonnegative matrix M ∈ Rn×n. Here, rk+
ϵ (M) is defined as the least

nonnegative rank rk+(N) of a matrix N ∈ Rn×n such that |Mij − Nij | ≤ ϵ for all i, j;
see Section 3 for precise definitions. In particular, Kol et al. [16] asked whether for all
error parameters 0 < ϵ < δ < 1/2 and boolean matrices M ∈ {0, 1}n×n we have the
polynomial relationship rk+

ϵ (M) ≤ O(rk+
δ (M)C) where C = C(ϵ, δ) is a constant. In short,

does approximate nonnegative rank admit efficient error reduction? (It is known that the
more usual notion, approximate rank, does [1].) We provide the following negative answer.

▶ Theorem 5 (No efficient error reduction). For every m ∈ N there exists a boolean matrix
M with rk+

1/4(M) ≤ m but such that rk+
10−5(M) ≥ mΩ̃(log m).

Previously, a negative answer was known only for partial boolean matrices M ∈
{0, 1, ∗}n×n that allow “don’t care” entries Mij = ∗ [12]. Our Theorem 5 still leaves
open the possibility (also raised by [16]) that, for a total boolean matrix M , we can bound
rk+

ϵ (M) as a polynomial function of rk+
δ (M) + rk+

δ (M) where M is the boolean complement.

1.3 Open problems
Our quasipolynomial lower bounds for automata are not known to be tight; in all cases the
best known upper bounds are exponential. Curiously enough, the analogous communication
results are tight for communication protocols. This suggests two opportunities.
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Can other techniques from communication complexity improve the lower bounds further?
Perhaps via multi-party communication complexity?
Can techniques for proving upper bounds on communication complexity be adapted to
prove upper bounds on the size of automata?

1.4 Definitions of automata
An NFA is a quintuple A = (Q, Σ, δ, I, F ), where Q is the finite set of states, Σ is the finite
alphabet, δ ⊆ Q × Σ × Q is the transition relation, I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of accepting states. We write q

a−→ r to denote that (q, a, r) ∈ δ. A finite
sequence q0

a1−→ q1
a2−→ · · · an−−→ qn is called a run; it can be summarized as q0

a1···an−−−−→ qn. The
NFA A recognizes the language L(A) := {w ∈ Σ∗ | ∃ q0 ∈ I . ∃ f ∈ F . q0

w−→ f}. The NFA A
is a DFA if |I| = 1 and for every q ∈ Q and a ∈ Σ there is exactly one q′ with q

a−→ q′. The
NFA A is a UFA if for every word w = a1 · · · an ∈ Σ∗ there is at most one accepting run
for w, i.e., a run q0

a1−→ q1
a2−→ · · · an−−→ qn with q0 ∈ I and qn ∈ F . Any DFA is a UFA.

2 UFA Complementation

In this section we prove Theorem 1.

▶ Theorem 1 (Complement). For every n ∈ N there is a language L ⊆ {0, 1}∗ recognised by
an n-state UFA such that any NFA that recognises L requires nΩ̃(log n) states.

The proof uses concepts from communication complexity, in particular a recent result
from [2] and a nondeterministic lifting theorem from [12]. We start by recalling these tools.

2.1 DNFs and nondeterministic protocols
Unambiguous DNFs. Let D = C1 ∨ · · · ∨ Cm be an n-variate boolean formula in disjunctive
normal form (DNF). DNF D has width k if every Ci is a conjunction of at most k literals. We
call such D a k-DNF. For conjunctive normal form (CNF) formulas the width and k-CNFs
are defined analogously. DNF D is said to be unambiguous if for every input x ∈ {0, 1}n

at most one of the conjunctions Ci evaluates to true, Ci(x) = 1. For any boolean function
f : {0, 1}n → {0, 1} define

C1(f) as the least k such that f can be written as a k-DNF;
C0(f) as the least k such that f can be written as a k-CNF;
UC1(f) as the least k such that f can be written as an unambiguous k-DNF.

Note that C0(f) = C1(¬f). The following recent result separates two of these measures.

▶ Theorem 6 ([2, Theorem 1]). For every k ∈ N there exists a function f : {0, 1}n → {0, 1}
where n ≤ poly(k) and such that UC1(f) ≤ k and C0(f) ≥ Ω̃(k2). ◀

In words, for every k there is an unambiguous k-DNF such that any equivalent CNF requires
width Ω̃(k2). The bound is almost tight, as every unambiguous k-DNF has an equivalent
k2-CNF; see [10, Section 3].

Nondeterministic protocols and rectangle covers. Next we recall standard notions from two-
party communication complexity; see [18, 19] for textbooks. Consider a two-party function
F : X × Y → {0, 1}. A set A × B ⊆ X × Y (with A ⊆ X and B ⊆ Y ) is called a rectangle.
Rectangles R1, . . . , Rk cover a set S ⊆ X × Y if

⋃
i Ri = S. For b ∈ {0, 1}, the cover number
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Covb(F ) is the least number of rectangles that cover F −1(b). The nondeterministic (resp., co-
nondeterministic) communication complexity of F is defined as N1(F ) := log2 Cov1(F ) (resp.,
N0(F ) := log2 Cov0(F )). Note that N0(F ) = N1(¬F ). The nondeterministic communication
complexity can be interpreted as the number of bits that two parties (Alice and Bob), holding
inputs x ∈ X and y ∈ Y , respectively, need to communicate in a nondeterministic (i.e., based
on guessing and checking) protocol in order to establish that F (x, y) = 1; see [18, Chapter 2]
for details.

Nondeterministic lifting. Next we formulate a lifting theorem, which allows us to transfer
lower bounds on the DNF width of an n-bit boolean function f to the nondeterministic
communication complexity of a related two-party function F . We first choose a small two-
party function g : {0, 1}b × {0, 1}b → {0, 1}, often called a gadget. Then we compose f with g

to construct the function F := f ◦ gn that maps {0, 1}bn × {0, 1}bn → {0, 1} where Alice gets
as input x ∈ {0, 1}bn, Bob gets as input y ∈ {0, 1}bn, and their goal is to compute

F (x, y) := f(g(x1, y1), . . . , g(xn, yn)) where xi, yj ∈ {0, 1}b.

The following is a nondeterministic lifting theorem [12, 10].

▶ Theorem 7 ([10, Theorem 4]). For any n ∈ N there is a gadget g : {0, 1}b ×{0, 1}b → {0, 1}
with b = Θ(log n) such that for any function f : {0, 1}n → {0, 1} we have, for F := f ◦ gn,

N0(F ) = Ω(C0(f) · b)

(and thus also N1(F ) = Ω(C1(f) · b)). ◀

Protocols can simulate automata. Finally, we need a simple folklore connection between
automata and protocols. To formalise this, we tacitly identify a function F : {0, 1}m1 ×
{0, 1}m2 → {0, 1} with the language F −1(1) = {xy ∈ {0, 1}m1+m2 | F (x, y) = 1}.

▶ Lemma 8. If a two-party function F : {0, 1}m1 × {0, 1}m2 → {0, 1} admits an NFA with
s states, then Cov1(F ) ≤ s (that is, N1(F ) ≤ log s).

Proof. Let A = (Q, Σ, δ, I, F ) be an NFA with L(A) = {xy ∈ {0, 1}m1+m2 | F (x, y) = 1}.
We show that F −1(1) is covered by at most |Q| rectangles. Indeed, F −1(1) equals⋃

q∈Q

({x ∈ {0, 1}m1 | ∃ q0 ∈ I . q0
x−→ q}) × ({y ∈ {0, 1}m2 | ∃ f ∈ F . q

y−→ f}) .

(Alternatively, in terms of a nondeterministic protocol, the first party, holding x ∈ {0, 1}m1 ,
produces a run for x from an initial state to a state q and then sends the name of q, which
takes log2 |Q| bits, to the other party. The other party then produces a run for y from q to
an accepting state.) ◀

2.2 Proof of Theorem 1
For k ∈ N, let f : {0, 1}n → {0, 1} be the function from Theorem 6. That is, f has an
unambiguous k-DNF with k = nΩ(1) (hence, log n = O(log k)) and C0(f) = Ω̃(k2). Let
g : {0, 1}b × {0, 1}b → {0, 1} with b = Θ(log n) and F := f ◦ gn : {0, 1}bn × {0, 1}bn → {0, 1}
be the two-party functions from the lifting theorem Theorem 7. We will show that Theorem 1
holds for the language F −1(1).
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First we argue that F has an unambiguous DNF of small width. Indeed, g and ¬g have
unambiguous 2b-DNFs, which can be extracted from the deterministic decision tree of g. By
plugging these unambiguous 2b-DNFs for g and ¬g into the unambiguous k-DNF for f (and
“multiplying out”), one obtains an unambiguous 2bk-DNF, say D, for F .

Over the 2bn variables of F , there exist at most (2(2bn) + 1)2bk different conjunctions
of at most 2bk literals. So D consists of at most nO(bk) conjunctions. From D we obtain a
UFA A that recognizes F −1(1) ⊆ {0, 1}2bn, as follows. Each initial state of A corresponds
to a conjunction in D. When reading the input x ∈ {0, 1}2bn, the UFA checks that the
corresponding assignment to the variables satisfies the conjunction represented by the initial
state. This check requires at most O(bn) states for each initial state. Thus, A has at most
nO(bk) = 2Õ(k) =: N states in total. (We use N in place of n in the statement of Theorem 1.)

On the other hand, by Theorem 7, we have N0(F ) = Ω(C0(f) · b) = Ω̃(k2). So by
Lemma 8 any NFA that recognizes F −1(0) has at least 2Ω̃(k2) states. Any NFA that recognizes
{0, 1}∗ \ L(A) can be transformed into an NFA that recognizes F −1(0) = {0, 1}2bn \ L(A) by
taking a product with a DFA that has 2bn + 2 states. It follows that any NFA that recognizes
{0, 1}∗ \ L(A) has at least 2Ω̃(k2)/(2bn + 2) = 2Ω̃(k2) = N Ω̃(log N) states. ◀

3 UFA Union

In this section, we prove Theorem 2.

▶ Theorem 2 (Union). For every n ∈ N there are languages L1, L2 ⊆ {0, 1}∗ recognised by
n-state UFAs such that any UFA that recognises L1 ∪ L2 requires nΩ̃(log n) states.

We follow the same high-level approach that we already saw in Section 2. Namely, we
will first show that computing the ∨-operation is hard for unambiguous DNFs and then lift
that hardness to unambiguous protocols, which then implies the same hardness for UFAs.
There are, however, two challenges in carrying out this plan.

1. It is an open problem to prove an unambiguous lifting theorem. That is, it is not known
whether the unambiguous communication complexity of f ◦ gn is at least Ω(UC1(f)). To
circumvent this issue, we study instead a linear relaxation of unambiguous DNFs. These
objects are called conical juntas and they do admit a lifting theorem [12, 17].

2. There is no existing result showing that the ∨-operation is hard for unambiguous DNFs
and/or conical juntas. We show a result of this type. The proof is by a reduction to the
hardness of negating conical juntas, which is a known result [11].

3.1 Conical juntas
A nonnegative function h : {0, 1}n → R≥0 is a d-junta if h depends on at most d variables.
For example, a conjunction of d literals is a d-junta. Moreover, we say f : {0, 1}n → R≥0
is a conical d-junta if it can be written as a nonnegative linear combination of d-juntas.
Equivalently, f is a conical d-junta if it can be written as f =

∑
i wiCi where each Ci is a

width-d conjunction and wi ∈ R≥0 are nonnegative coefficients. For example, if f can be
written as an unambiguous d-DNF, f = C1 ∨ · · · ∨ Cm, then f =

∑
i Ci is a conical d-junta

with 0/1 coefficients. The nonnegative degree of f , denoted deg+(f), is the least d such
that f is a conical d-junta. In particular, if f is boolean-valued, then deg+(f) ≤ UC1(f).
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We also need to work with approximate conical juntas that compute a given function
only to within some point-wise error ϵ > 0. This is important because the available lifting
theorems for deg+ incur some error, and hence we need to prove lower bounds that are
robust to this error. Indeed, we define the ϵ-approximate nonnegative degree of f , denoted
deg+

ϵ (f), as the least nonnegative degree of a conical junta g such that

|f(x) − g(x)| ≤ ϵ for all x ∈ {0, 1}n.

▶ Remark. An awkward aspect of working with approximate conical juntas is that the error
parameter ϵ is not well behaved. For 0 < ϵ < δ < 1/2 we of course have deg+

δ (f) ≤ deg+
ϵ (f)

but it is not a priori clear whether the converse inequality holds with a modest loss in the
degree. In fact, in Section 5, we will end up showing that there can be a polynomial gap
between the nonnegative degrees corresponding to two different error parameters – and this
is related to our bonus result discussed in the introduction. As a consequence, our theorems
in this section have to track the error parameters with some care.

Linear programming formulation. Approximate nonnegative degree can be captured using
an LP. Write Cn

d for the set of all conjunctions of width at most d over n variables. In the
(Primal) programme below, we have a variable wC ∈ R for every C ∈ Cn

d . In the associated
(Dual) programme, we have a variable Φ(x) ∈ R for each x ∈ {0, 1}n.

min ϵ

subject to |
∑

C wCC(x) − f(x)| ≤ ϵ, ∀x ∈ {0, 1}n

wC ≥ 0, ∀C ∈ Cn
d

(Primal)

max ⟨Φ, f⟩ :=
∑

x Φ(x)f(x)
subject to ∥Φ∥ :=

∑
x |Φ(x)| ≤ 1

⟨Φ, C⟩ ≤ 0, ∀C ∈ Cn
d

(Dual)

We have that deg+
δ (f) ≤ d iff the optimal value of (Primal) is at most δ. Alternatively, by

strong LP duality, we have deg+
δ (f) > d iff there exists a feasible solution Φ to (Dual) such

that ⟨Φ, f⟩ > δ. It is typical to think of such feasible Φ: {0, 1}n → R as a dual certificate
that witnesses a lower bound on approximate nonnegative degree.

3.2 Hardness of ∨
The goal of this subsection is to prove Theorem 9 below, which states that the ∨-operation
is hard for unambiguous DNFs and even approximate conical juntas. Given an n-bit boolean
function f we define a 2n-bit function by f∨(xy) := f(x) ∨ f(y) where x, y ∈ {0, 1}n.

▶ Theorem 9 (Hardness of ∨). For every m ∈ N, there exists a boolean function f : {0, 1}n →
{0, 1} with n ≤ poly(m) such that UC1(f) ≤ m and deg+

1.5×10−5(f∨) ≥ Ω̃(m2).

We show Theorem 9 by combining two lemmas, Lemmas 10 and 11, below. The first
lemma, proved in [11], states that unambiguous DNFs are hard to negate, even by approximate
conical juntas. The second lemma, which remains for us to prove, states that, for conical
juntas, computing f∨ is at least as hard as computing the negation ¬f . Hence Theorem 9
follows immediately by combining these lemmas.
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▶ Lemma 10 (Hardness of ¬ [11, Lemma 8]). For every m ∈ N, there exists a boolean function
f : {0, 1}n → {0, 1} with n ≤ poly(m) such that UC1(f) ≤ m and deg+

0.05(¬f) ≥ Ω̃(m2). ◀

▶ Lemma 11 (∨ harder than ¬). For every δ > 0 there exists an ϵ = ϵ(δ) > 0 such that for
every boolean function f , we have deg+

ϵ (f∨) ≥ Ω(deg+
δ (¬f)). Moreover, ϵ :=

( ln(1+δ)
⌈log3/4 δ⌉

)2.

It remains to prove Lemma 11. We do it in two steps. In Claim 12 we show that the
approximate nonnegative degree of f∨ is at least that of 2 − f by exhibiting a dual certificate.
Then in Claim 13 we show that the approximate nonnegative degree of 2 − f = 1 + ¬f is at
least that of ¬f via a powering trick. The error parameter ϵ will degrade in both of these
steps. (We will later see that this degradation is, in fact, unavoidable; see Section 5.)

▷ Claim 12. We have deg+
ϵ2(f∨) ≥ deg+

ϵ (2 − f) for any boolean-valued f and error ϵ.

Proof. Let d := deg+
ϵ (2 − f) and let Φ: {0, 1}n → {0, 1} be a dual certificate witnessing this.

That is, ⟨Φ, 2 − f⟩ > ϵ, ∥Φ∥ ≤ 1, and ⟨Φ, C⟩ ≤ 0 for all C ∈ Cn
d−1. To construct a dual

certificate Φ∨ : {0, 1}2n → {0, 1} witnessing deg+
ϵ2(f∨) ≥ d, we consider the negated tensor

product (which was found by an educated guess)

Φ∨(x, y) := −Φ(x)Φ(y).

It remains to check that this is feasible for the dual programme and also that ⟨Φ∨, f∨⟩ > ϵ2.
1. ∥Φ∨∥ =

∑
x,y |Φ∨(x, y)| =

∑
x,y |Φ(x)Φ(y)| =

∑
x,y |Φ(x)| · |Φ(y)| = ∥Φ∥2 ≤ 1.

2. For any conjunction C ∈ C2n
d−1, we write C(x, y) = C1(x)C2(y) where C1, C2 ∈ Cn

d−1. Now

⟨Φ∨, C⟩ =
∑

x,y Φ∨(x, y)C(x, y)

=
∑

x,y −Φ(x)Φ(y) · C1(x)C2(y)

= −
[ ∑

x Φ(x)C1(x)
][ ∑

y Φ(y)C2(y)
]

= − ⟨Φ, C1⟩ ⟨Φ, C2⟩
≤ 0.

3. Observe that ⟨Φ, −f⟩ ≥ ⟨Φ, 2 − f⟩ since 1 ∈ Cn
d−1 for the constant-1 function. Thus

⟨Φ∨, f∨⟩ =
∑

x,y Φ∨(x, y)f∨(x, y)

=
∑

x,y −Φ(x)Φ(y)(f(x) + f(y) − f(x)f(y))

=
∑

x,y −Φ(x)Φ(y)(2f(x) − f(x)f(y))

=
∑

x −Φ(x)f(x) ·
[ ∑

y Φ(y)(2 − f(y))
]

= ⟨Φ, −f⟩ · ⟨Φ, 2 − f⟩
≥ ⟨Φ, 2 − f⟩ · ⟨Φ, 2 − f⟩ (above observation)
> ϵ2.

where the third equality holds since we have
∑

x,y Φ(x)Φ(y)f(x) =
∑

x,y Φ(x)Φ(y)f(y)
by exchanging x and y. ◁

▷ Claim 13. For any δ > 0 define ϵ := ln(1+δ)
⌈log3/4 δ⌉ > 0. Then for any boolean-valued function f

we have deg+
ϵ (1 + f) ≥ Ω(deg+

δ (f)).

Proof. We may assume δ < 1/2 (and hence ϵ < 1/4) as otherwise the claim is trivial. Suppose
deg+

ϵ (1 + f) = d is witnessed by a conical d-junta g that ϵ-approximates 1 + f . Define
g′ := ((g + ϵ)/2)k where the exponent is k := ⌈log3/4 δ⌉. By multiplying out the terms in
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this definition, we see that g′ has nonnegative degree kd = O(d). We claim that g′ is a
δ-approximation of f . Indeed, if f(x) = 0, then g′(x) ≤ (1/2 + ϵ)k ≤ (3/4)k ≤ δ. If f(x) = 1,
then 1 ≤ (g(x) + ϵ)/2 ≤ 1 + ϵ, and thus 1 ≤ g′(x) ≤ (1 + ϵ)k ≤ exp(ϵk) ≤ 1 + δ. ◁

Proof of Lemma 11. Using Claim 12 and Claim 13 (but with ¬f in place of f), we have,
for any δ > 0 and ϵ := ln(1+δ)

⌈log3/4 δ⌉ :

deg+
ϵ2(f∨) ≥ deg+

ϵ (2 − f) = deg+
ϵ (1 + ¬f) ≥ Ω(deg+

δ (¬f)). ◀

3.3 Unambiguous protocols and nonnegative rank
Our goal will be to lift the hardness of the ∨-operation (Theorem 9) to communication
complexity. In this subsection, we recall the concepts that are needed for this goal, namely,
unambiguous protocols, (approximate) nonnegative rank, and a lifting theorem from nonneg-
ative degree to nonnegative rank [12, 17].

Unambiguous protocols. Recall from Section 2.1 the notions of nondeterministic protocols
and rectangle covers. For a two-party function F : X × Y → {0, 1}, the partition number
Par1(F ) is the least number of pairwise disjoint rectangles that cover F −1(1). Note that
Cov1(F ) ≤ Par1(F ). The unambiguous communication complexity of F is defined as U1(F ) :=
log2 Par1(F ). Note that N1(F ) ≤ U1(F ). Unambiguous communication complexity can be
interpreted as the least communication cost of a nondeterministic protocol that has at most
one accepting computation on every input. We also have the following folklore lemma, proved
the same way as Lemma 8, which states that UFAs are simulated by unambiguous protocols.

▶ Lemma 14. If a two-party function F : {0, 1}m1 × {0, 1}m2 → {0, 1} admits an UFA with
s states, then Par1(F ) ≤ s (that is, U1(F ) ≤ log s). ◀

Nonnegative rank. We often think of a two-party function F : X × Y → {0, 1} as a boolean
matrix F ∈ {0, 1}X×Y , sometimes called the communication matrix of F . For a nonnegative
matrix M ∈ RX×Y

≥0 we define its nonnegative rank, denoted rk+(M), as the least r such
that M can be written as a sum of r nonnegative rank-1 matrices, i.e., M =

∑r
i=1 uiv

T
i ,

where ui ∈ RX
≥0 and vi ∈ RY

≥0 are nonnegative vectors. Note that for a boolean matrix F ,

Par1(F ) ≥ rk+(F ) and thus U1(F ) ≥ log rk+(F ). (2)

Indeed, if F −1(1) can be partitioned into r rectangles, F −1(1) = R1 ⊔ · · · ⊔ Rr, then F can
be written as a sum of r nonnegative rank-1 matrices, F = M1 + · · · + Mr, where Mi is 1 on
the rectangle Ri and 0 elsewhere. As with nonnegative degree, we define an approximate
version of nonnegative rank. The ϵ-approximate nonnegative rank of M , denoted rk+

ϵ (M), is
defined as the least rk+(N) over all nonnegative matrices N that ϵ-approximate M , i.e.,

|Mij − Nij | ≤ ϵ for all i, j.

Nonnegative lifting. Finally, we formulate a theorem that lifts lower bounds on the
nonnegative degree of an n-bit boolean function f to the nonnegative rank of the composed
function F = f ◦ gn (which was defined in Section 2.1).

▶ Theorem 15 ([12, 17]). Fix constants δ > ϵ > 0. For any n ∈ N there is a gadget
g : {0, 1}b × {0, 1}b → {0, 1} with b = Θ(log n) such that for any f : {0, 1}n → {0, 1} we have

log rk+
ϵ (f ◦ gn) ≥ Ω(deg+

δ (f) · b). ◀
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3.4 Proof of Theorem 2 (and also Theorem 4)
We start with the function f : {0, 1}n → {0, 1} given by Theorem 9 such that for m = poly(n),

UC1(f) ≤ m, (3)
deg+

1.5×10−5(f∨) ≥ Ω̃(m2). (4)

We then use the gadget g on b = Θ(log n) bits from the lifting theorem Theorem 15 to
construct F := f ◦ gn. By the same argument as in Section 2.2 we see that the resulting
F : {0, 1}nb × {0, 1}nb → {0, 1} enjoys the following upper bounds, derived from (3).

F admits an unambiguous DNF of width 2bm = Õ(m).
F admits an UFA of size 2Õ(m).
F admits an unambiguous protocol of cost U1(F ) ≤ Õ(m).

On the other hand, we note that F ∨ = (f ◦ gn)∨ = f∨ ◦ gn. Hence, we may combine (2),
Theorem 15, and (4) to conclude that

U1(F ∨) ≥ log rk+
10−5(F ∨) ≥ Ω(deg+

1.5×10−5(f∨)) ≥ Ω̃(m2). (5)

This finishes the proof of Theorem 4. We proceed with the proof of Theorem 2. To this end,
we define two languages

L1 := {xx′yy′ : x, x′, y, y′ ∈ {0, 1}bn and F (x, y) = 1},

L2 := {xx′yy′ : x, x′, y, y′ ∈ {0, 1}bn and F (x′, y′) = 1}.

Both L1 and L2 admit UFAs of size poly(n) · 2Õ(m) = 2Õ(m) =: N . By contrast, we
have L1 ∪ L2 = (F ∨)−1(1), and this union language requires UFAs of size 2Ω̃(m2) = N Ω̃(log N)

by (5) and Lemma 14. This concludes the proof of Theorem 2. ◀

4 UFA Separation

In this section, we prove Theorem 3.

▶ Theorem 3 (Separation). For every n ∈ N there is a language L ⊆ {0, 1}∗ such that both L

and L are recognised by n-state NFAs but any UFA that recognises L requires nΩ(log n) states.

Loosely speaking, in our construction, we define NFAs A1, A2 that recognize (sparse) set
disjointness and its complement. For n ∈ N and k ≤ n we define

Disjn
k := {(S, T ) | S ⊆ [n], T ⊆ [n], |S| = |T | = k, S ∩ T = ∅} .

Define also ⟨Disjn
k ⟩ := {⟨S⟩⟨T ⟩ | (S, T ) ∈ Disjn

k } where ⟨S⟩ ∈ {0, 1}n is such that the ith
letter of ⟨S⟩ is 1 if and only if i ∈ S, and similarly for ⟨T ⟩. Note that ⟨S⟩, ⟨T ⟩ each contain k

times the letter 1. To prove Theorem 3 it suffices to prove the following lemma.

▶ Lemma 16. For any n ∈ N let k := ⌈log2 n⌉. There are NFAs A1, A2 with nO(1) states
such that L(A1) = ⟨Disjn

k ⟩ and L(A2) = {0, 1}∗ \ ⟨Disjn
k ⟩. Furthermore, any UFA that

recognizes ⟨Disjn
k ⟩ has at least nΩ(log n) states.

In the rest of the section we prove Lemma 16 by following Razborov’s analysis of sparse
set disjointness [21]. In particular, we will give a self-contained proof of the existence of
polynomial-sized NFAs for ⟨Disjn

k ⟩ and its complement, but the main argument also comes
from communication complexity.
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4.1 Proof of Lemma 16
First we prove the statement on UFAs. Write

([n]
k

)
:= {S ⊆ [n] | |S| = k}. Let F :

([n]
k

)
×([n]

k

)
→ {0, 1} be the two-party function with F (S, T ) = 1 if and only if (S, T ) ∈ Disjn

k .
It is shown, e.g., in [18, Example 2.12] that the communication matrix of F has full
rank, rk(F ) =

(
n
k

)
. Let F ′ : {0, 1}n × {0, 1}n → {0, 1} be such that F ′(x, y) = 1 if and

only if xy ∈ ⟨Disjn
k ⟩. Then F is a principal submatrix of F ′, so

(
n
k

)
≤ rk(F ′). Using (2)

and Lemma 14 it follows that any UFA, say A, that recognizes ⟨Disjn
k ⟩ has at least

(
n
k

)
≥ ( n

k )k

states. With k := ⌈log2 n⌉, it follows that A has nΩ(log n) states.
It is easy to see that there is an NFA, A2, with nO(1) states and L(A2) = {0, 1}∗ \⟨Disjn

k ⟩.
Indeed, we can assume that the input is of the form ⟨S⟩⟨T ⟩; otherwise A2 accepts. NFA A2
guesses i ∈ [n] such that i ∈ S ∩ T and then checks it.

Finally, we show that there is an NFA, A1, with nO(1) states and L(A1) = ⟨Disjn
k ⟩. We

can assume that the input is of the form ⟨S⟩⟨T ⟩; otherwise A1 rejects. NFA A1 “hard-codes”
polynomially many sets Z1, . . . , Zℓ ⊆ [n]. It guesses i ∈ [ℓ] such that S ⊆ Zi and Zi ∩ T = ∅
and then checks it. It remains to show that there exist ℓ = nO(1) sets Z1, . . . , Zℓ ⊆ [n] such
that for any (S, T ) ∈ Disjn

k there is i ∈ [ℓ] with S ⊆ Zi and Zi ∩ T = ∅. The argument uses
the probabilistic method and is due to [21]; see also [18, Example 2.12]. We reproduce it
here due to its elegance and brevity.

Fix (S, T ) ∈ Disjn
k . Say that a set Z ⊆ [n] separates (S, T ) if S ⊆ Z and Z ∩ T = ∅. A

random set Z ⊆ [n] (each i is in Z with probability 1/2) separates (S, T ) with probability 2−2k.
Thus, choosing ℓ :=

⌈
22k ln

(
n
k

)2⌉
= nO(1) random sets Z ⊆ [n] independently, the probability

that none of them separates (S, T ) is

(1 − 2−2k)ℓ < e−2−2kℓ ≤
(

n
k

)−2
.

By the union bound, since |Disjn
k | <

(
n
k

)2, the probability that there exists (S, T ) ∈ Disjn
k

such that none of ℓ random sets separates (S, T ) is less than 1. Equivalently, the probability
that for all (S, T ) ∈ Disjn

k at least one of ℓ random sets separates (S, T ) is positive. It follows
that there are Z1, . . . , Zℓ ⊆ [n] such that each (S, T ) ∈ Disjn

k is separated by some Zi. ◀

5 Bonus result: Approximate nonnegative rank

In this section, we prove Theorem 5.

▶ Theorem 5 (No efficient error reduction). For every m ∈ N there exists a boolean matrix
M with rk+

1/4(M) ≤ m but such that rk+
10−5(M) ≥ mΩ̃(log m).

We first illustrate the idea in the context of nonnegative degree. In contrast to Theorem 9
(which states that ∨ is hard to approximate to within tiny error), we show that the ∨-operation
is, in fact, easy to approximate when we allow large enough error.

▷ Claim 17. For any boolean-valued f , we have deg+
1/4(f∨) ≤ deg+(f).

Proof. Let g : {0, 1}2n → R≥0 be given by g(x, y) := (f(x) + f(y))/2 + 1/4. Then

g(x, y) =


1/4 if f(x) = f(y) = 0,

5/4 if f(x) = f(y) = 1,

3/4 otherwise.

Thus g is a 1/4-approximation to f∨. Note also that deg+(g) ≤ deg+(f), as desired. ◁
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We can now repeat the same idea for nonnegative rank. In Section 3.4 we construc-
ted a boolean matrix (two-party function) F such that log rk+(F ) ≤ U1(F ) ≤ m and
log rk+

10−5(F ∨) ≥ Ω̃(m2). We claim that log rk+
1/4(F ∨) ≤ O(m), which would finish the proof

of Theorem 5. Indeed, analogously to Claim 17, we can define a nonnegative matrix by
G(xx, yy′) := (F (x, y) + F (x′, y′))/2 + 1/4. This is a 1/4-approximation to F ∨ and we have
rk+(G) ≤ 2 · rk+(F ) + 1 ≤ 2m+1 + 1, as claimed.
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Abstract
Over twenty years ago, Goldmann and Russell initiated the study of the complexity of the equation
satisfiability problem (PolSat) and the NUDFA program satisfiability problem (ProgramSat)
in finite groups. They showed that these problems are in P for nilpotent groups while they are
NP-complete for non-solvable groups.

In this work we completely characterize finite groups for which the problem ProgramSat can
be solved in randomized polynomial time under the assumptions of the Randomized Exponential
Time Hypothesis and the Constant Degree Hypothesis. We also determine the complexity of PolSat
for a wide class of finite groups. As a by-product, we obtain a classification for ListPolSat, a
version of PolSat where each variable can be restricted to an arbitrary subset. Finally, we also
prove unconditional algorithms for these problems in certain cases.
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1 Introduction

Non-uniform deterministic finite automata (NUDFA) are a well-known concept introduced by
Barrington [1], which proves its usefulness in describing important classes of languages defined
by Boolean circuits such as NC1 [2], ACC0 and AC0 [6]. Formally, a NUDFA (also called G-
program) over a group G “ pG, ¨ q computing an n-ary function f : t0, 1un

ÞÝÑ t0, 1u consists
of an l-ary polynomial p over G (i.e. the term over G with some variables replaced with
constants from G), a set S Ď G (the accepting set) and a sequence of l triples (instructions)
of the form xij , g

j
0, g

j
1y where 1 ď ij ď n and gj

0, g
j
1 P G for 0 ď j ď l (the number of the

triple) such that fpxq “ 1 iff ppg1
xi1
, g2

xi2
, . . . , gl

xil
q P S. Note that this definition of NUDFA

is not exactly the same as the one introduced in [1] but it is equivalent to the original one. In
particular, there are obvious linear time transformations between the two program definitions.
Moreover, this new definition does not change the class of languages recognized by NUDFA’s
over a fixed group.
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The natural problem to decide whether the language recognized by a given NUDFA over
a fixed group is non-empty (ProgramSat) was introduced in [14] and considered together
with the problem of the existence of a solution to a given equation of polynomials over
some fixed finite group (PolSat – here the input consists of polynomials p and q with
variables x1, . . . , xn, the question is whether there is some a P Gn with ppaq “ qpaq). In
the case of (finite) groups PolSat can be reduced to ProgramSat. In [14] Goldmann and
Russell established a polynomial-time algorithm for ProgramSat in nilpotent groups and
concluded that also PolSat for nilpotent groups is in P. On the other hand, their proof that
PolSat for non-solvable groups is NP-complete implies NP-completeness of ProgramSat
for such groups. This last fact was proved directly in [4]. These results reflect the ability of
expressing all the functions ANDn by short polynomials of a particular group or by short
NUDFA programs. It was known that over any fixed non-solvable group ANDn can be
computed by NUDFAs (of size polynomial in n) [2], while over nilpotent groups NUDFAs
are able to compute ANDn only of bounded arity n [5]. Note also that over solvable but
non-nilpotent groups NUDFA programs are in fact able to compute all of the ANDn’s [2],
but sometimes these programs are of exponential length, namely 2Ωpnq [5].

It turned out that for a fixed group G the length of the shortest NUDFA program (over
G) computing ANDn plays a crucial role in classifying the computational complexity of
ProgramSatpGq. On the one hand, it was proved in [4] that, if the size of the shortest
NUDFA program over a group G computing ANDn is 2Ωpnq (following [4] we say that G is
AND-weak), then there exists a quasi-polynomial time algorithm solving ProgramSatpGq.
On the other hand, the same paper shows that, if G is AND-strong (i.e. for every n there
exists an efficiently computable NUDFA over G of polynomial size computing ANDn), then
ProgramSat for a wreath product G ≀ Zk is NP-complete if k ě 4. The problem is that
determining the length of a shortest NUDFA program over a fixed group G computing
ANDn is often highly non-trivial. Because of this difficulty with estimating the size of ANDn

(occurring, in fact, in many models of computations), [5] introduced the so-called Constant
Degree Hypothesis (CDH). In a circuit language it can be stated as follows: Consider a
circuit of depth three where the input gates are connected to bounded fan-in AND gates
followed by a layer of MODp gates and a MODq gate as output gate. Under CDH such a
circuit needs size 2Ωpnq for computing ANDn (see [15, 16]). In this paper we will only use
that CDH implies that groups of the form G “ Gp ¸N, where Gp is a p-group and N is a
nilpotent group, are AND-weak (see Theorem 10 in [5]).

The difficulty of determining which groups are AND-weak is probably the reason why
for almost 20 years after publishing [14] and [4] not too much progress has been made in
characterizing the complexity of ProgramSat and PolSat for solvable but non-nilpotent
groups. A number of results [19, 18, 11] were proved but all of them were restricted to
showing polynomial time algorithms solving PolSat for some subclasses of groups with
so-called Fitting length at most 2 (groups G having a nilpotent normal subgroup N such
that G{N is nilpotent), see [12] for a most comprehensive result. An important step towards
the full classification of the computational complexity of ProgramSat for finite groups was
made in 2020 when we proved in [20, 30, 23] that for every finite group of Fitting length at
least 3 the problem PolSat (and in a consequence also ProgramSat) is not in P, unless
the Exponential Time Hypothesis (ETH) fails. Shortly thereafter in [21] the first three
authors gave examples of groups with Fitting length 2 and non-tractable PolSat (and
ProgramSat), again, under the assumption of ETH.

This paper (among other things) gives a full characterization of finite groups for which
ProgramSat is tractable in randomized polynomial time. Our classification also works for a
related problem we call ListPolSatpGq: given polynomials p and q with variables x1, . . . , xn
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and a list of subsets A1, . . . , An Ď G, decide whether there is a “ pa1, . . . , anq P A1ˆ . . .ˆAn

with ppaq “ qpaq. While we are not aware of any previous results on ListPolSat for finite
algebras, it has been studied in the form of equations with rational constraints in [29] for
word equations and in [10] for groups. Our classification of the complexity of these problems
relies on both above-mentioned complexity assumptions (hypotheses): rETH and CDH.

▶ Theorem 1. Under the assumption of rETH and CDH, the problems ProgramSatpGq
and ListPolSatpGq for a finite group G are in RP if and only if there is a prime p and a
normal p-subgroup Gp of G with G{Gp being nilpotent.

Note that our results partially confirm the intuition behind CDH, which was stated over
30 years ago: we show that in all cases in which there is a chance for AND-weakness, it is
implied by CDH.

The proof of Theorem 1 is based on two main ideas. The first one is to show that, if
some group G is AND-weak, then ProgramSatpGq satisfies what we call the none-or-many
property: if a language recognized by a given program over G is not empty, then this
language contains at least a polynomial fraction of all words (see Lemma 10). This gives
us a randomized polynomial time algorithm solving ProgramSatpGq for groups which are
AND-weak. Now, assuming CDH we immediately obtain the upper bound from Theorem 1.
The second idea is to use polynomials witnessing the non-nilpotency of G to produce relatively
short (of subexponential size) programs (and polynomials) expressing CNF-formulas. This,
together with rETH ensures us that there is no polynomial time randomized algorithm
solving ProgramSat for a group G which does not have a normal p-subgroup Gp with
a nilpotent quotient G{Gp. In fact, we prove the main lemmas of this part of the proof
(Lemma 14 and Theorem 16) in the much more general setting of solvable algebras (in a
sense universal algebraic sense) from a so-called congruence permutable variety. We use two
powerful universal algebraic tools: Tame Congruence Theory [17] and Commutator Theory
[13] to prove Lemma 14, which tells us how to use non-nilpotency to produce polynomials
over non-nilpotent algebras which imitate polynomials over finite fields. We conclude with
a subexponential reduction from 3-CNF-SAT to ProgramSat which is based on the
polynomials of small degree from [3] that describe symmetric periodic functions and were
used to construct relatively small modular circuits for AND.

The situation for PolSat is more involved: indeed, we are far from getting full classifica-
tion. The main reason is that in this case we cannot restrict the arguments of a polynomial
to certain values. Hence, we need much more control to be able to use the polynomials from
[3] in the proof of Theorem 16. In order to state Theorem 16 in the group case, we write
CGpAq “ t g P G | ga “ ag for all a P A u for the centralizer of a normal subgroup A of G:

▶ Theorem 2. Let G be a finite solvable group with two minimal non-trivial normal subgroups
A and B such that |A| and |B| are coprime and CGpAq ¨ CGpBq ‰ G. Then the problem
PolSatpGq is not in RP under rETH.

▶ Corollary 3. If a finite group rG has a quotient as in Theorem 2, then PolSatp rGq is not
in RP under rETH.

Notice that the conditions for hardness in Theorem 1 and Theorem 2 are quite similar.
Indeed, if we are not in the RP-case of Theorem 1, then there are two different primes in
|rG,Gs| witnessed by two normal subgroups A and B of G (but contained in rG,Gs) of
coprime order with CGpAq ‰ G ‰ CGpBq as opposed to CGpAq ¨ CGpBq ‰ G in Theorem 2.
This subtle difference prevents us from giving a classification as Theorem 1 for the case of
PolSat (for details, we refer to the proof of Theorem 16). Moreover, Theorem 4 shows that
this is not due to our ignorance but there are indeed groups for which PolSat is in RP and
ProgramSat is not (under rETH).
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▶ Theorem 4. Let G be the semidirect product N¸H of nilpotent groups N and H and let
|G| have at most two prime factors. Then PolSatpGq is in RP under CDH. Moreover, if H
is abelian, PolSatpGq is in RP unconditionally.

Note here that the last sentence of Theorem 4 gives an unconditional upper bound
for the complexity of PolSat. This together with Theorem 1 enables us to classify the
computational complexity of PolSat for dihedral groups (i.e the groups of symmetries of
regular polygons, where Dm “ Zm ¸ Z2 denotes the symmetry group of the m-gon).

▶ Corollary 5 (Classification of dihedral groups).
(i) If m “ 2αpβ for α, β P N and an odd prime p, then PolSatpDmq is in RP.
(ii) Otherwise PolSatpDmq cannot be solved in RP under rETH (resp. P under ETH).

Furthermore, based on Theorem 2 we obtain (under the assumption of CDH and rETH)
a classification of PolSat for wreath products of nilpotent groups.

▶ Corollary 6. Let G and H be nilpotent groups. Under CDH and rETH, PolSatpG ≀ Hq
is in RP if an only if G is a p-group or |G| ¨ |H| has at most two prime divisors.

In [12] a question was asked about the computational complexity of PolSat for several
examples of groups. Among them were four groups of order 24 (complexity of PolSat for
groups of smaller order was known previously). In this paper we determine the computational
complexity of PolSat for three of these groups: D12, pZ2 ˆ Z2 ˆ Z3q ¸ Z2 and Z3 ¸Q,
where Q is the quaternion group. It turns out that PolSat for these groups is in RP (see
Corollary 5 and Example 21). On the other hand, S4, the fourth of the groups mentioned
above, was shown in [20, 23] to have non-tractable PolSat problem (assuming ETH).

2 Preliminaries

We use rm.. ns to denote the interval of integers tm, . . . , nu, the difference of sets is denoted
by A ´ B. We use standard notation from complexity theory, which can be found in any
textbook on complexity, e.g. [27]. In particular, we write RP for randomized polynomial
time (with one-sided error).

ETH and rETH. The Exponential Time Hypothesis (ETH) and its randomized version
rETH (see e.g. [9]) is the conjecture that there is some δ ą 0 such that every (randomized)
algorithm for 3-CNF-SAT needs time Ωp2δnq in the worst case where n is the number of
variables of the given 3-CNF-SAT instance. By the Sparsification Lemma [25, Thm. 1]
this is equivalent to the existence of some ϵ ą 0 such that every algorithm for 3-CNF-SAT
needs (randomized) time Ωp2ϵpm`nqq in the worst case where m is the number of clauses of
the given 3-CNF-SAT instance (see also [8, Thm. 14.4]). In particular, under ETH/rETH
there is no (randomized) algorithm for 3-CNF-SAT running in time 2opn`mq. Here we only
consider one-sided errors; clearly our results also remain true when understanding rETH
with two-sided error.

Group Theory. Throughout, we only consider finite groups G with underlying set (universe)
G. We follow the notation of [28]. For groups G and H we write H ď G if H is a subgroup
of G and H ă G if H is a proper subgroup of G. For a subset X Ď G we write ⟨X⟩ for the
subgroup generated by X. We write rx, ys “ x´1y´1xy for the commutator. The commutator
of subgroups X,Y ď G is defined by rX,Ys “ ⟨ rx, ys | x P X, y P Y ⟩.
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Let N ď H be a normal subgroup of G. We define the centralizer of H modulo N as
CGpH{Nq “ t g P G | rg, hs P N for all h P H u. The center of a group is ZpGq “ CGpGq.
Nilpotent groups can be defined inductively: G is nilpotent of class 1 if it is abelian; G is
nilpotent of class c if G{ZpGq is nilpotent of class c ´ 1. A group is called a p-group (for
p prime) if its order is pk for some k P N. It is well-known that a finite group is nilpotent
iff it is a direct product of p-groups (see e.g. 5.1.3 and 5.2.4 in [28]). We will use this fact
without further reference. If G “ NH where N is a normal subgroup of G and H a subgroup
with N XH “ t1u, G is called a semidirect product and we write G “ N¸H. Notice that
G{N “ H in this case. Elements of N¸H can be viewed as pairs pn, hq with n P N and
h P H with the multiplication rule pn1, h1qpn2, h2q “ pn1

h1n2, h1h2q where h1n2 “ h1n2h
´1
1

is an action (via automorphisms) of H on N. We will use the following classical result (see
e.g. [28, 9.1.2]):

▶ Fact 7 (Schur-Zassenhaus Theorem). If G is a group with a normal subgroup N and |N |
and |G{N| are coprime, then G “ N¸G{N.

To define the wreath product G ≀ H of groups G and H, we start with the direct power
GH “ t f : H Ñ G u. Now H has a natural left action on GH given by phfqpyq “ fph´1yq for
f P GH , h P H and y P H . Now the wreath product G ≀ H is defined to be the corresponding
semidirect product GH ¸H.

Algebra. A finite algebra A is a finite universe A together with a finite number of ki-ary
fundamental operations fi : Aki Ñ A for i P I. A term is a composition of fundamental
operations and a polynomial is a term with some variables replaced by constants from A; we
write PolpAq for the set of polynomials over A. An equivalence relation which preserves all
operations of A is called a congruence (more precisely, an equivalence relation α Ď AˆA is a
congruence iff for every fundamental operation f , say r-ary, of A and pa1, b1q, . . . , par, brq P α

we have pfpaq, fpbqq P α). We usually write a α
” b to express that pa, bq P α. For a congruence

relation α on A the congruence class containing an element a is denoted by a{α and A{α is
the set of all congruence classes of α. The congruences of an algebra A, when ordered by
inclusion (denoted by α ď βq, form the complete lattice with the top element 1A “ AˆA

and the bottom element 0A consisting of all pairs pa, aq for a P A. We frequently omit the
subscripts in 0A and 1A. Given two congruences β and γ, we write β_γ for the join, which is
the smallest congruence containing both β and γ. A congruence α is called join-irreducible iff,
whenever α “ β_ γ for congruences β and γ, already α P tβ, γu. Note that a join-irreducible
α has a unique congruence α´ such that α´ ă α and there is no β with α´ ă β ă α.

A normal subgroup N of a group G defines a congruence αN “
␣

pa, bq P G2
ˇ

ˇ a´1b P N
(

.
As G{N “ G{αN, we do not distinguish between congruences and normal subgroups.

The commutator rH,Ks of normal subgroups of a group has been generalized as an
operation on congruences for arbitrary algebras (see [13]) and then used to extend notions of
solvability and nilpotency onto such algebras. For a precise definition of the commutator
rα, βs of congruences α and β we refer to [13] and simply note that for groups it is the usual
commutator. We say that a congruence α centralizes β modulo γ iff rα, βs ď γ. The biggest
α which centralizes β modulo γ is denoted by pγ : βq and called the centralizer of β modulo
γ. In the group case this agrees exactly with the usual definition of the centralizer.

Another important concept of universal algebra derived from group theory is a Malcev
term: it is a term d satisfying dpy, x, xq “ dpx, x, yq “ y. The existence of such a term implies
many nice properties of an algebra (e.g. connected with the behaviour of commutators and
the congruence lattice). In the group case, the term dpx, y, zq “ xy´1z is an example of a
Malcev term. An algebra with a Malcev term is called a Malcev algebra.
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Some of our proofs use advanced tools of universal algebra: the Commutator Theory and
the Tame Congruence Theory as presented in the books [13] and [17]. The reader may find a
not too long introduction to the needed notions and facts from these theories in [24].

Satisfiability problems. For the definition of a G-program (aka. NUDFA over G) and
ProgramSat we refer to the introduction. Usually, we denote both polynomials and
G-programs by p and, for a simpler notation, also use p to denote the function f :
t0, 1un Ñ t0, 1u computed by the G-program. For a unified treatment of ListPolSat
and ProgramSat, we further define 2-ListPolSat which is like ListPolSat but the Ai

all may contain only two elements. Notice that in groups, as we can multiply by inverses, we
can assume that the input for these problems consists of only one polynomial (plus the lists
restricting variables). Thus, in the group setting we call a P Gn a solution to an instance ppxq
for PolSatpGq if ppaq “ 1. Likewise, we call some a P t0, 1un a solution for a G-program p
if ppaq “ 1 (recall that p computes a function t0, 1un Ñ t0, 1u). It is obvious that we can
treat 2-ListPolSat as a “subproblem” of ProgramSat in which NUDFA’s programs have
the following property: for every two instructions pij , gj

0, g
j
1q, pik, gk

0 , g
k
1 q of the program, if

ij “ ik, then gj
0 “ gk

0 and gj
1 “ gk

1 . Also note that even for general algebras PolSatpAq is
the special case of ListPolSatpAq where all the Ai are A. These observations and some
other well-known results are summarized as follows (see also [14, 4]):

▶ Lemma 8. Let G be a group. Then
If H “ G{N, then PolSatpHq ďdtt PolSatpGq.
If H ď G or H “ G{N, then ProgramSatpHq ďm ProgramSatpGq and
ListPolSatpHq ďm ListPolSatpGq.
PolSatpGq ďm 2-ListPolSatpGq
2-ListPolSatpGq ďm ProgramSatpGq and 2-ListPolSatpGq ďm ListPolSatpGq.

Here A ďm B denotes a polynomial-time many-one reduction and A ďdtt B denotes a
polynomial-time disjunctive truth-table reduction: one instance x for A is reduced to several
instances y1, . . . , yk of B such that x P A if and only if there is some i with yi P B.

3 CDH and the Many-Solutions Property

We wish to treat NUDFA programs and polynomials (with variables restricted to lists)
in a unified setting. For this we have to face the problem that programs are defined on
Boolean domains whereas the domain of a variable of a polynomial is (a subset of) a group.
So with an instance of ListPolSat {ProgramSat we associate an indicator function
f :

śn
i“1 Ai Ñ t0, 1u with |Ai| ě 2 (Ai Ď G resp. Ai “ t0, 1u) such that fpxq “ 1 iff x is a

solution to the corresponding NUDFA program/polynomial equation with lists. In these cases
we measure the size of f (denoted by sizepfq) by the size of the smallest program/polynomial
representing it (in the second case together with the sizes of lists). More precisely, in the
definition of the size we take the smallest possible representation for f .

Note that independently of the model the function f was created in, if we replace some
variables by constants, or restrict some of the Ai’s from the domain to smaller sets A1

i Ď Ai

with |A1
i| ě 2, we still obtain an indicator function (of possibly smaller arity) for another

ListPolSat {ProgramSat instance. Moreover, the size of a function after such operations
does not increase. This is the crucial property we use in Proposition 9 below. We will use
the following notation:
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f rxJ{as for a function obtained from f by substituting xj by aj for all j P J ,
f|B for a function obtained from f by restricting the domain of f , that is

śn
i“1 Ai, to

B “
śn

i“1 Bj (for Bj Ď Aj),
f rxi{as for the substitution of one variable.

Also we combine these notations, e.g. by writing f rxI{b, xi{as|B.
Our aim is to bound the size of a general function using previous knowledge about the size

for describing the AND function. In order to do so, we call f :
śn

i“1 Ai Ñ t0, 1u with |Ai| ě 2
for all i an n-ary spike if there is some a P

śn
i“1 Ai with fpaq “ 1 and for all x ‰ a we have

fpxq “ 0. Let γ : NÑ N be the function γpnq “ min t sizepfq | f is an n-ary spike u. Notice
that γ is monotone. Thus, its inverse γ´1pmq “ max tn P N | γpnq ď m u as a function
NÑ N is well-defined and also monotone.

Sometimes we will also write γProg,G or γPol,G when we want to specify the model.

▶ Proposition 9. Let f be an n-ary indicator function with domain A “
śn

i“1 Ai. Then
either f is constant zero or

ˇ

ˇf´1p1q
ˇ

ˇ { |A| ě 1{ |A|γ
´1

psizepfqq. In particular, if γpnq P 2Ωpnq,
then

ˇ

ˇf´1p1q
ˇ

ˇ { |A| ě 1{sizepfqOp1q.

Proof. Our proof relies on the same idea as [21, Theorem 6.1]; however, we have to overcome
the difficulty to deal with non-boolean domains. If f is constantly 1 the statement holds;
otherwise f is non-nonstant. The idea is to successively substitute constants for variables
while not increasing the density of f´1p1q in the full domain: If there is some i P r1 .. ns
such that for all a P Ai the function f rxi{as is not constant 0, we choose b P Ai such that
ˇ

ˇf rxi{bs
´1p1q

ˇ

ˇ is minimal among all
ˇ

ˇf rxi{as
´1p1q

ˇ

ˇ for a P Ai. Observe that f rxi{bs is not
a constant function and

ˇ

ˇf rxi{bs
´1p1q

ˇ

ˇ ď
ˇ

ˇf´1p1q
ˇ

ˇ { |Ai|. Now, we proceed by induction
eventually obtaining some I Ď r1 .. ns and b P

ś

iPI Ai such that f rxI{bs is not constant,
1 ď

ˇ

ˇf rxI{bs
´1p1q

ˇ

ˇ ¨
ś

iPI |Ai| ď
ˇ

ˇf´1p1q
ˇ

ˇ, and for every i P r1 .. ns ´ I there is some a P Ai

such that f rxI{b, xi{as is constant zero. Now, we can restrict all remaining variables to
two-element sets and we obtain a pn´ |I|q-ary spike. As during this process the size of f
does not increase, we obtain:

ˇ

ˇf´1p1q
ˇ

ˇ

|A|
ě

ś

iPI |Ai|
śn

i“1 |Ai|
“

1
ś

r1..ns´I |Ai|
ě

1
|A|n´|I|

ě
1

|A|γ
´1psizepfqq . ◀

We say that ProgramSatpGq, ListPolSatpGq or PolSatpGq has the none-or-many
property if for any instance p of length m either p has no solution or a random assignment will
be a solution with 1{mOp1q probability (recall that we call a P Gn a solution to an instance
ppxq for PolSatpGq if ppaq “ 1 and similarly for ListPolSatpGq and ProgramSat).

▶ Lemma 10. Let G be a group with γProg,Gpnq P 2Ωpnq. Then, the problems
ProgramSatpGq, ListPolSatpGq and PolSatpGq have the none-or-many property.

In particular, ProgramSatpGq, ListPolSatpGq and PolSatpGq are in RP.

For the proof of Lemma 10 notice that a G-program for a spike is never longer than a
polynomial for a spike. Therefore, the requirement γProg,Gpnq P 2Ωpnq also can be used
for ListPolSat. The result for PolSat then follows by Lemma 8. For some polynomial
or G-program p we use Proposition 9 to get a bound

ˇ

ˇp´1p1q
ˇ

ˇ { |Gn| ě 1{ |G|γ
´1

p|p|q
P

1{ |G|Oplog|p|q
Ď 1{|p|Op1q.

▶ Remark 11. Notice that, if G is a group with γProg,Gpnq P 2Ωpnq, then by [4, Theorem 2]
ProgramSatpGq, ListPolSatpGq and PolSatpGq also can be solved in deterministic
quasi-polynomial time (notice that [4, Theorem 2] technically is not for ListPolSatpGq but
the proof can easily be adapted).
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CDH-based conditional algorithms. Let us recall the consequence of the constant degree
hypothesis (CDH) which has been proved in Theorem 10 of [5]:
(A) Let Gp be a p-group, N a nilpotent group and G “ Gp ¸N. If CDH is true, then every

G-program computing the n-ary AND function has length 2Ωpnq.
Note that [5] gives a proof of CDH in the case that N is abelian, see (C) in Section 6 below.
As an immediate consequence of Lemma 10 and (A), we obtain our next result.

▶ Corollary 12. Let Gp be a p-group, N a nilpotent group and G “ Gp¸N. If CDH is true,
then ProgramSatpGq, ListPolSatpGq or PolSatpGq have the none-or-many property.

In particular, if CDH is true, then ProgramSatpGq, ListPolSatpGq and PolSatpGq
are in RP.

4 Lower Bounds

In this section we will prove our hardness conditions. Instead of ProgramSat we will prove
intractability of 2-ListPolSat. For that we need go deeply into the local structure of finite
algebras (called sometimes as Tame Congruence Theory) as described in [17]. In our setting,
i.e. solvable Malcev algebras, this local structure, (relative to a pair of congruences α ă β,
i.e. α ă β with no congruence γ in between: α ă γ ă β) reduces to a vector space over a
finite field. The prime that is the characteristic of this field, is also called the characteristic
of the pair pα, βq. For a join-irreducible congruence γ we define its characteristic to be the
characteristic of the pair pγ´, γq.

Different characteristics of two join-irreducible congruences is one of two important
ingredients we use in the proof of Theorem 16. The second one is what we call congruence
collaboration: Two congruences α and β of an algebra A are called collaborating if there are
3 different elements a, c, b P A satisfying a α´β— c

β— b or a α— c
β´α— b, where x R— y stands for

px, yq P R. Notice that in a group case any two distinct non-trivial normal subgroups are
collaborating. We will also use following easy observation.

▶ Lemma 13. For two congruences φ ‰ 1A ‰ ψ of an algebra A we have φY ψ ‰ 1A.

Proof. Suppose φ Y ψ “ 1A ‰ φ. To see that then pa, bq P ψ for all a, b P A, note first
that pa, bq P ψ whenever pa, bq R φ. Now let pa, bq P φ. Obviously φ ‰ 1A gives an element
c P A ´ a{φ “ A ´ b{φ. But the previous case puts both pc, aq and pc, bq into ψ, so that
pa, bq P ψ as claimed. ◀

Note that Lemma 13 cannot be extended to more than 2 congruences: in a finitely dimensional
vector space the union of all 1-dimensional subspaces covers the entire space.

In the next Lemma we use the polynomial which witnesses the lack of a centralization to
produce a polynomial of the algebra which imitates a given polynomial over the field GF ppq.
A similar argument was used in [22].

▶ Lemma 14. Let A be a finite solvable Malcev algebra. Moreover, let γ be a join-irreducible
congruence of characteristic p such that pγ´ : γq ‰ 1. Then for:

every pair pe, aq P γ of different elements,
every subset J Ď A that is a union of pγ´ : γq-cosets,
and every n-ary polynomial wpxq of degree s over the field GF ppq that sends the set
t0, 1un to t0, 1u

there is an n-ary polynomial rwsγ,J,a,e of the algebra A such that
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both the size of rwsγ,J,a,e and the time needed to compute it are bounded by 2Ops¨log nq,
for any tuple x P An we have

rwsγ,J,a,epxq “

"

a, if wpbJpx1q, . . . , bJpxnqq “ 1,
e, if wpbJpx1q, . . . , bJpxnqq “ 0,

where bJ : A ÝÑ t0, 1u is defined by bJpxq “ 1 iff x P J.

Proof. First put γ‹ “ pγ´ : γq and let td0, d1, . . . , dru be a transversal of the quotient A{γ‹.
Moreover, pick a pγ´, γq-minimal set V and two elements pe1, a1q P γ|V ´ γ´. By N denote
the trace of V containing both e1 and a1. Note that pA|N q{γ´ is polynomially equivalent to
a one-dimensional vector space over a field of characteristic p. In fact we will use only its
additive structure ppA|N q{γ´,`q which is isomorphic to a certain power of pZp,`q. We can
assume that e1{γ´ is the neutral element of this group and that addition in this group is
realized (modulo γ´) by the polynomial x` y “ dpx, e1, yq, where d is a Malcev term for A.
Note that, despite the fact that the addition defined above is guaranteed to behave nicely
only modulo γ´, the properties of the Malcev term give us that e1 ` e1 “ dpe1, e1, e1q “ e1.
Since we will be summing the large amount of summands, to keep the sum relatively short
(i.e. of the length which is polynomial in the sum of the summands’ lengths) we will compose
the addition in a balanced binary way, i.e. the tree of a polynomial realizing the sum of m
summands is supposed to be the complete binary tree with m leaves – we will point out
when this is necessary. Now we use the argument for the second half of Lemma 3.1 in [22] to
show that for any pair pc, dq R γ‹ there is a binary polynomial scdpx, yq of A, satisfying

scdpe
1, yq “ e1, for all y P A,

scdpa
1, cq

γ´

” e1, (1)
scdpa

1, dq “ a1.

Because pe1, a1q R γ´ and γ is join-irreducible, we know that γ “ Θpe1, a1q. Now if pc, dq R γ‹
then rΘpc, dq,Θpe1, a1qs ę γ´ so that Exercise 6.6 in [13] supplies us with a binary polynomial

spx, yq of A such that spe1, cq
γ´

” spa1, cq but spe1, dq
γ´

ı spa1, dq. The second property gives
Θpspe1, dq, spa1, dqq “ γ Q pe1, a1q and therefore there is a unary polynomial p of A that takes
the pair pspe1, dq, spa1, dqq to pe1, a1q (see e.g. Lemma 3.2 in [24]). Now it should be easy to
check that for the polynomial scdpx, yq “ dppspx, yq,pspe1, yq, e1q we have

scdpe
1, yq “ dppspe1, yq,pspe1, yq, e1q “ e1,

scdpa
1, cq “ dppspa1, cq,pspe1, cq, e1q

γ´

” dppspe1, cq,pspe1, cq, e1q “ e1,

scdpa
1, dq “ dppspa1, dq,pspe1, dq, e1q “ dpa1, e1, e1q “ a1,

as claimed in (1).
Using the fact that rγ, γ‹s ď γ´ we can keep conditions (1) modulo γ´ by varying the

second variable modulo γ‹:

scdpe
1, yq “ e1, for each y P A,

scdpa
1, yq

γ´

” e1, for each y P c{γ‹,

scdpa
1, yq

γ´

” a1, for each y P d{γ‹.

(2)

Now we want c and d to range over our transversal of A{γ‹ so that for i ‰ j we put
sijpx, yq “ eV sdidj

peV pxq, yq, where eV is the unary idempotent polynomial of A with range
V . Obviously sij satisfies all the properties of sdidj listed in (2), but the polynomial sij has
its range contained in V and for any fixed y P A the mapping V Q v ÞÝÑ sijpv, yq P V is
either a permutation of the pγ´, γq-minimal set V or collapses γ|V to γ´, i.e. it is constant
modulo γ´ on γ|V -classes.
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Hence, as for v P N and y P di{γ´ the map v ÞÝÑ sijpv, yq is not a permutation, we have
si,jpv, yq

γ´

” si,jpa
1, yq

γ´

” e1 “ si,jpe
1, yq, which allows us to replace the second line in (2) by:

sijpv, yq
γ´

” e1, for each v P N and y P di{γ
‹. (3)

Now for each j “ 0, . . . , r put sjpv, yq “ si1jp. . . sir´1jpsirjpv, yq, yq . . . , yq, with ti1, . . . , iru “
t0, 1, . . . , ru ´ tju. Obviously sj has its range contained in V . We will show that

sjpe
1, yq “ e1, for each y P A,

sjpv, yq
γ´

” e1, for each v P N and y P A´ dj{γ
‹,

sjpa
1, yq

γ´

” a1, for each y P dj{γ
‹.

(4)

Indeed, the first and the last item follow directly from the definition of sj . For the middle
one, note that for v P N , y P diℓ

{γ‹, and v1 “ siℓ`1jp. . . sir´1jpsirjpv, yq, yq . . . , yq we have
v1

γ
” siℓ`1p. . . sir´1jpsirjpe

1, yq, yq . . . , yq “ e1, i.e. v1 P N so that (2) yields siℓjpv
1, yq

γ´

” e1, and
consequently sjpv, yq “ si1jp. . . siℓ´1jpsiℓjpv

1, yq, yq . . . , yq
γ´

” si1jp. . . siℓ´1jpe
1, yq . . . , yq “ e1.

This establishes (4).

Now for a positive integer m and a γ‹-block, i.e. the product Qi1,...,in “ di1{γ
‹ ˆ . . .ˆ

dim
{γ‹ Ď Am we define p1`mq-ary polynomial qi1,...,im

pv, y1, . . . , ymq by putting

qi1,...,im
pv, y1, . . . , ymq “ sim

psim´1p. . . si2psi1pv, y1q, y2q . . . , ym´1q, ymq.

Then we observe that due to (4) we have

qi1,...,im
pe1, yq “ e1, for all y P Am,

qi1,...,im
pv, yq

γ´

” e1, for v P N and y R Qi1,...,im
,

qi1,...,im
pa1, yq

γ´

” a1, for y P Qi1,...,im
.

(5)

Note that the length of the polynomial qi1,...,im is bounded by 2Opmq, as it is a composition
of m polynomials of the form sj each of which having the size bounded by the same constant
that depends only on A.

Now, if Q “ Q1 Y . . .YQl, with each Qi being a single n-dimensional γ‹-block, we sum
up (in a balanced binary way) the polynomials qipxq produced, as above, separately for each
block Qi to get qQpxq satisfying

qQpe
1, xq “ e1, for each x P Am,

qQpv, xq
γ´

” e1, if v P N and x R Q,

qQpa
1, xq

γ´

” a1, if x P Q.
(6)

The balanced way in which the qi’s are summed up guaranties that the resulting polyno-
mial qQ has its length bounded by 2Opmq, even if there are exponentially many summands
determined by the blocks contained in Am.

Now, let w be an n-ary polynomial over the field GF ppq of degree s. To produce the
associated polynomial rwsγ,J,a,e of A we first produce rwsγ,J,a1,e1 and then compose it with
a unary polynomial ppxq that maps a1 to a and e1 to e (the algebra A has such a polynomial
p as pe, aq P γ “ Θpe1, a1q). To produce the required n-ary polynomial rwsγ,J,a1,e1 we first
construct a p1` nq-ary polynomial pwqγ,J,a1,e1 satisfying

pwqγ,J,a1,e1pe1, xq “ e1, for each x P An,

pwqγ,J,a1,e1pv, xq “ e1, if v P N and wpbJpx1q, . . . , bJpxnqq “ 0,
pwqγ,J,a1,e1pv, xq “ v, if v P V and wpbJpx1q, . . . , bJpxnqq “ 1,

(7)

to put rwsγ,J,a1,e1pxq “ pwqγ,J,a1,e1pa1, xq, which, by the last two lines in (7), will do the job.
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To transform the polynomial wpxq over the field GF ppq into pwqγ,J,a1,e1pa1, xq, we first
assume that wpxq is given as sum of monomials and that the monomials of wpxq are of the
form xi1 ¨ . . . ¨ xim

(with m ď s) or are constant 1 (i.e., the monomials carry no leading
constant – we can achieve this by replacing 2x by x ` x etc.). When passing from w to
pwqγ,J,a1,e1pa1, xq the constant 1 will be represented by the unary polynomial eV pvq, while
the monomial xi1 ¨ . . . ¨ xim turns into qT mpv, xi1 , . . . ximq. Since J has been assumed to be
a join of γ‹-cosets, Jm is obviously a sum of γ‹-blocks. Note also that for y P Am we have
qJmpyqpa1, yq Ď e1{γ´ Y a

1{γ´ and, due to (6), we have

qJmpyqpa1, yq
γ´

” a1 iff y P Jm iff bJpy1q ¨ bJpy2q ¨ . . . ¨ bJpymq “ 1. (8)

Now we sum up (appropriate amount of) the polynomials eV pvq and appropriate polynomials
qQpv, xi1 , . . . xim

q to get pwqγ,J,a1,e1pa1, xq (again we have to be careful to use a balanced
summation tree). Next we are using the fact that there is an isomorphism of the group Zp

with the subgroup of ppA|N q{γ´,`q generated by a1{γ´ that sends 1 to a1{γ´. Applying
this isomorphism to (8) we get

pwqγ,J,a1,e1pe1, xq “ e1, for each x P Am,

pwqγ,J,a1,e1pa1, xq
γ´

” e1, if wpbJpx1q, . . . , bJpxnqq “ 0,
pwqγ,J,a1,e1pa1, xq

γ´

” a1, if wpbJpx1q, . . . , bJpxnqq “ 1.
(9)

Since there are at most Opnsq “ Op2s¨log nq monomials of degree at most s, while the
polynomials qJm representing them has sizes bounded by 2Opsq the length of pwqγ,J,a1,e1pv, xq

is at most 2Ops¨log nq.
Finally to pass from (9) to (7) we start with reminding that for a fixed x P An the

mapping V Q v ÞÝÑ pwqγ,J,a1,e1pv, xq P V either permutes the set V or collapses γ|V to γ´,
i.e. it is constant modulo γ´ on γ|V -classes. Thus, iterating pwqγ,J,a1,e1pv, xq in the first
variable a sufficient number of times, we may additionally assume that pwqγ,J,a1,e1pv, xq is
either the identity map on V or it is constant, modulo γ´, on γ|V -classes, depending on
whether wpbpxqq is 1 or 0. Thus, wpbpxqq “ 1 gives us the third equality in (7).

In the other case, pwqγ,J,a1,e1pv, xq collapses the entire trace N to e1{γ´ so that we have
pwqγ,J,a1,e1pv, xq

γ´

” e1 for v P N . Now we go down along the chain 0 “ θ0 ă θ1 ă . . . ă

θl “ γ´ to show that pwqγ,J,a1,e1pv, xq
θi
” e1 yields pwqγ,J,a1,e1pv, xq

θi´1
” e1. Since the unary

polynomial f : V Q v ÞÝÑ pwqγ,J,a1,e1pv, xq P V does not permute V , fpAq “ fpV q Ĺ V . This
gives that for each i “ l, . . . , 1 the polynomial f collapses θi to θi´1, as otherwise V would
properly contain a pθi´1, θiq-minimal set. But this is impossible in view of Lemma 4.30 in
[17]. Therefore, composing l times the polynomial f we get that this composition satisfies
pwqγ,J,a1,e1pv, xq “ e1 so that (7) is shown. This iteration inflates the size of pwqγ,J,a1,e1pv, xq

by raising it to the l-th power so that it is still bounded by 2Ops¨log nq. ◀

We are going to use the following fact that is borrowed from [3] (see [21, Fact 3.4] for a
recent proof).

▶ Fact 15. Let p be a prime and ν ě 1 be an integer. Then there is a polynomial wpxq P
GF ppqrxs of degree at most pν ´ 1, such that for x P t0, 1un

Ď Zn
p we have

wpxq “

"

0, if
ˇ

ˇx´1 p0q
ˇ

ˇ ” 0 modulo pν ,
1, else.

Now we are in a position to prove the following.
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▶ Theorem 16. Let A be a finite solvable Malcev algebra and α, β be two collaborating
join-irreducible congruences of different characteristics. Then, assuming the (randomized)
Exponential Time Hypothesis, the following hold:

if pα´ : αq _ pβ´ : βq ă 1, then PolSatpAq is not in P (resp. RP),
if pα´ : αq ă 1 and pβ´ : βq ă 1, then 2-ListPolSatpAq is not in P (resp. RP).

More precisely, we show that under rETH there is no randomized algorithm of running time
2opplog n{ log log nq

2
q for these problems. Before we prove Theorem 16, let us point out how it

implies Theorem 2 from the introduction:

Proof of Theorem 2. As A and B are minimal normal subgroups, they are join-irreducible.
As A ‰ B, they are collaborating and by assumption they are of different characteristic.
The condition CGpAq ¨ CGpBq ‰ G is just the same as pα´ : αq _ pβ´ : βq ă 1 written in a
group language (here A “ α, B “ β and α´ “ β´ “ t1u). Now we apply Theorem 16. ◀

Proof of Theorem 16. Since α, β are collaborating, without loss of generality we may assume
that there are 3 different elements a, e, b P A such that pa, eq P α and pe, bq P β ´ α. Let d
denote a Malcev term for A. Observe here that
(*) for u P ta, eu and v P tb, eu we have dpu, e, vq “ e iff u “ e “ v.
Indeed, dpa, e, eq “ a and dpe, e, bq “ b, while dpa, e, bq “ e would give b “ dpe, e, bq α

”

dpa, e, bq “ e, contrary to our choice of pb, eq P β ´ α.
To unify our arguments for both PolSatpAq and 2-ListPolSatpAq, observe that

α˚ “ pα´ : αq ă 1 and β˚ “ pβ´ : βq ă 1 gives α˚ Y β˚ ‰ 1, by Lemma 13. This allows us
to pick a pair pc, dq P A2 satisfying
[P] pc, dq R α˚ _ β˚,
[LP] pc, dq R α˚ Y β˚,
depending on which of the two problems PolSatpAq , 2-ListPolSatpAq we are considering.

With the help of Lemma 14 and Fact 15, to each 3-CNF-SAT formula Φpxq having n
variables x “ px1, . . . , xnq and ℓ clauses we are going to associate two n-ary polynomials
tΦpxq and sΦpxq of length 2Op

?
ℓ¨log ℓq such that

[P] Φpxq is satisfiable iff the equation tΦpxq “ e has a solution x in An,
[LP] Φpxq is satisfiable iff the equation sΦpxq “ e has a solution x in the set tc, dun.
To do that, let p and q be the characteristics of α and β, respectively, and pick µ, ν P N with
pµ´1 ď

?
ℓ ă pµ and qν´1 ď

?
ℓ ă qν . Now Fact 15 supplies us with ℓ-ary polynomials (with

their variables ci’s later to be substituted by the clauses Ci’s of the formula Φpxq):
wppc1, . . . , cℓq P GF ppqrcs, with degree bounded by pµ ´ 1,
wqpc1, . . . , cℓq P GF pqqrcs, with degree bounded by qν ´ 1,

which on c P t0, 1uℓ take values from t0, 1u, such that wppcq “ 0 iff
ˇ

ˇc´1 p0q
ˇ

ˇ ” 0 mod pµ

(resp. wqpcq “ 0 iff
ˇ

ˇc´1 p0q
ˇ

ˇ ” 0 mod qµ).
With a 3-ary clause Cpz1, z2, z3q we associate a polynomial C 1pz1, z2, z3q of degree 3 over

GF ppq (resp. GF pqq) in an obvious way, so that for example the clause z1 _ z2 _␣z3 goes
to 1´ pp1´ z1q ¨ p1´ z2q ¨ z3q. Now for Φpxq “

Źℓ
i“1 Ci we feed up the polynomials wp and

wq by substituting C 1
i for the variable ci to produce (at most 3ℓ-ary) polynomials wΦ

p pzq and
wΦ

q pzq of degrees bounded by 3ppµ ´ 1q and 3pqν ´ 1q, respectively. Note that again the new
polynomials wΦ

p (or wΦ
q ) on arguments from t0, 1u return values from the same set t0, 1u,

but this time 0 is taken exactly on valuations of variables in Φ under which the number of
unsatisfied clauses is divisible by pµ (or by qν , respectively). The important feature is that
(**) the polynomials wΦ

p and wΦ
q simultaneously return 0 on a valuation from the set t0, 1u

iff this valuation satisfies Φ.
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Indeed, wΦ
p pzq “ 0 “ wΦ

q pzq tells us that the number of unsatisfied clauses in Φ is divisible
both by pµ and qν . Since p ‰ q, this number is divisible by pµ ¨ qν ą ℓ. However, there are
only ℓ clauses, so that none of them is unsatisfied by z.

Now with the help of Lemma 14 we are able to define

tΦpxq “ d
´

“

wΦ
p

‰

α,Jα,a,e
pxq, e,

“

wΦ
q

‰

β,Jβ ,b,e
pxq

¯

,

where a and b are as above and the sets Jα,Jβ ‰ H, A are chosen to be sums of α˚- or β˚-
cosets, respectively. Since our assumption for the problem PolSat says that α˚_β˚ ă 1, one
way to ensure this is by putting Jα “ Jβ to be a single α˚_β˚-coset, e.g. d{pα˚_β˚q. Now,
combining Lemma 14 with the properties (*) and (**), we know that for x “ px1, . . . , xnq P A

n

we have tΦpxq “ e iff Φpbpx1q, . . . , bpxnqq “ 1, where b “ bJα
“ bJβ

.
In case of 2-ListPolSat the polynomial sΦ is defined in a similar way, i.e. we put

sΦpxq “ d
´

“

wΦ
p

‰

α,Jα,a,e
pxq, e,

“

wΦ
q

‰

β,Jβ ,b,e
pxq

¯

,

but this time we cannot ensure α˚ _ β˚ ă 1. Instead we can bound the range for the xi’s in
A to be smaller. In fact, we restrict these ranges to tc, du so that, by the very same argument
as before, the sets Jα “ d{α˚ and Jβ “ d{β˚ will do the job.

Finally, Fact 15 together with Lemma 14 ensure us that the sizes of
“

wΦ
p

‰

α,Jα,a,e
, and

“

wΦ
q

‰

β,Jβ ,b,e
, and therefore of both tΦpxq and sΦpxq, are bounded by 2Op

?
ℓ¨log ℓq. Thus,

ETH (resp. rETH) puts both the problems PolSatpAq and 2-ListPolSatpAq outside
P (resp. RP). Indeed, assume that PolSatpAq or 2-ListPolSatpAq could be decided in
(randomized) time 2opplog m{ log log mq

2
q where m is the length of the input polynomial. Then

we could decide a 3-CNF-SAT instance of length ℓ in (randomized) time

2opplog 2Op
?

ℓ¨log ℓq
{ log log 2Op

?
ℓ¨log ℓq

q
2
q “ 2op

?
ℓ

2
¨log2 ℓ{ log2

p
?

ℓ¨log ℓqq “ 2opℓq. ◀

5 A Dichotomy for ProgramSat

Proof of Theorem 1. First, consider the case that G has a normal p-subgroup Gp such
that G{Gp is nilpotent (possibly Gp is trivial). Then G{Gp “ Hp ˆH for some maximal
p-group Hp (also Hp might be trivial). We denote the preimage of Hp in G by rGp “ HpGp.
Since |H| and

ˇ

ˇ

ˇ

rGp

ˇ

ˇ

ˇ
are coprime, by the Schur-Zassenhaus theorem (Fact 7), we conclude

that G “ rGp ¸H and so, by Corollary 12, ListPolSatpGq and ProgramSatpGq are in
RP under CDH.

On the other hand, assume that G is not of the above form. If G is non-solvable,
ListPolSatpGq and ProgramSatpGq are NP-complete by [14], hence, not in RP under
rETH. If G is solvable but does not have a nilpotent normal subgroup N with nilpotent
quotient G{N, then [23] (for certain cases also [20, 30]) shows that PolSatpGq (hence, also
ListPolSatpGq and ProgramSatpGq) is not in P under ETH. The same proof shows that
these problems are not in RP under rETH (as a randomized algorithm for ListPolSatpGq
or ProgramSatpGq would lead to a randomized algorithm for 3-CNF-SAT).

Finally, let N denote the smallest normal subgroup such that G{N is nilpotent. Such an
N exists and it is nilpotent as we excluded already all the other cases. Moreover, we know
that |N | has at least two distinct prime divisors p and q since otherwise, we would be in the
RP case. Notice that N is the direct product of its Sylow subgroups. Thus, after taking
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a quotient (recall that ListPolSatpG{Hq ď ListPolSatpGq and ProgramSatpG{Hq ď
ProgramSatpGq, see Lemma 8), we may assume that there are precisely two non-trivial
normal subgroups A and B of G below N and |A| “ pα and |B| “ qβ for some α, β ě 1 and
N “ AˆB. Clearly A and B are join-irreducible.

Now assume for a contradiction that CGpAq “ G. Observe that CGpAq “ CGpN{Bq
because rg, as “ 1 if and only if rg, abs P B for b P B. This means that N{B is in the center
of G{B. Thus, as G{N “ pG{Bq{pN{Bq is nilpotent, this implies that G{B is nilpotent
contradicting that N is the smallest normal subgroup such that G{N is nilpotent.

By symmetry we also have CGpBq ‰ G. Since A and B are collaborating, we have verified
the requirements of Theorem 16 showing that 2-ListPolSatpGq is not in RP under rETH.
By Lemma 8 also ListPolSatpGq and ProgramSatpGq are not in RP under rETH. ◀

6 Unconditional Algorithms

Proving lower bounds for a non-trivial computational model is usually a challenging task.
Rare examples of results of such kind are either proven in some very restricted settings,
or rely on additional assumptions. The same issue affects programs over groups and their
expressiveness of AND, where essentially our knowledge can be summarized as follows:
(B) For a nilpotent group N there is a constant dN such that there is no N-program for the

n-ary AND function for n ě dN ([5, Corollary to Theorem 6]).
(C) If Q “ Gq ¸A for some q-group Gq and abelian group A, then γProg,Qpnq P 2Ωpnq

([5, Corollary to Theorem 9], recall the definition of γProg,Qpnq in Section 3).
Lemma 10 implies that these two cases lead to RP algorithms for ProgramSat, ListPolSat,
and PolSat. In fact, for ProgramSat for nilpotent groups and for PolSat, in both cases
(B) and (C), even polynomial time algorithms have been obtained [14, 12]; however, as for
now, ProgramSat in case (C) is only known to have quasi-polynomial time algorithms [4].

The main aim of the next theorem is to present a new lower bound result for groups that
are direct products of these presented in (B), (C), which then by Lemma 10 also leads to RP
algorithms. To the best of our knowledge this is the first result going beyond the cases (B)
and (C) in this direction.

▶ Theorem 17. Let N be a nilpotent group, A an abelian group, Q “ Gq ¸A for some
q-group Gq and let G ď NˆQ. Then γProg,Gpnq P 2Ωpnq.

The fact that this lower bound applies also to subgroups of the product will allow us to
construct a series of natural examples of groups for which we achieve efficient algorithms. Of
particular interest is the case that A is also a subgroup of N, so there is some non-trivial
interaction between N and Q.

The proof of Theorem 17 relies on a similar construction as used in [7] for showing that
for every low degree polynomial there is a large affine subspace on which the polynomial is
constant. For the proof we need some preparation: For a, b P

śn
i“1 |Ai| with a “ pa1, . . . , anq

and b “ pb1, . . . , bnq we define HammingDistpa, bq “ |t i P r1 .. ns | ai ‰ bi u|. The following
easy combinatorial observation has been used in slightly different forms in [4, Theorem 2] or
[21, Theorem 6.1].

▶ Fact 18. Let f be an n-ary indicator function with domain A “
śn

i“1 Ai with |Ai| ě 2
for all i and sizepfq ă γpnq. Let b P f´1p1q. Then there is some a P f´1p1q with b ‰ a and
HammingDistpa, bq ď γ´1psizepfqq ` 1.
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Proof. As sizepfq ă γpnq, there is some c P f´1p1q with c ‰ b. Writing b “ pb1, . . . , bnq and
c “ pc1, . . . , cnq that means bi ‰ ci for some i. Now, set b1 “ pb1, . . . , bi´1, ci, bi`1, . . . , bnq,
i.e., b1 agrees with b on all but the i-th coordinate. Consider some a with f rxi{cispaq “ 1 of
minimal Hamming distance k to b1 (note that possibly a “ b

1). Then setting all variables on
which a and b

1 agree to this constant and restricting all other variables xj (with aj ‰ bj) to
taj , bju, we obtain a k-ary spike. Thus, sizepfq ě γpkq and Fact 18 follows. ◀

Proof of Theorem 17. It is enough to consider G “ NˆQ, as lower bounds for subgroups
are inferred from their containing group. We can think of a G-program in the direct product
as a system of two separate programs sharing the same variables. Thus, let p be an N-
program and q a Q-program with variables x1, . . . , xn for a spike (i.e., the n-ary AND
function). Without loss of generality, we can assume that the all-zero vector 0 is the only
satisfying assignment to the conjunction of p and q (we can achieve this by simply replacing
variables by their negations if necessary – this does not increase the size of the programs).
Thus, we can also associate p,q with one-element accepting sets tspu, tsqu respectively. Now
we show that |q| P 2Ωpnq.

We will identify a vector b P t0, 1un with the subset b´1
p1q of r1 .. ns. By (B) there is a

constant d such that no N-program can be a d-ary spike. We are going to exploit this fact
by proving that, if q is relatively short, then there must be a relatively large boolean cube
on which p behaves like an AND. Note that for b1, . . . , bd P t0, 1un with bi X bj “ H for all
i ‰ j we can simulate the behaviour of p on B “

!

řd
i“1 αibi

ˇ

ˇ

ˇ
αi P t0, 1u

)

by creating a

new d-ary program p̂py1, . . . , ydq “ pp
řd

i“1 yibiq. Indeed, consider an instruction xj, g, hy of
p: if j is not in any of the bi just replace it with constant g and if j P bi for some i replace it
with the instruction xi, g, hy. To find a cube of our interest we start with the following claim.

▷ Claim 19. Let Q̃ “ Q2d . If |q| ă γProg,Q̃pn{d´ 1q, then there are b1, . . . , bd P t0, 1un with
bi X bj “ H for all i ‰ j such that qpxq “ 1 for all x P

!

řd
i“1 αibi

ˇ

ˇ

ˇ
αi P t0, 1u

)

Ď t0, 1un.

Proof. For k P r1 .. ds consider the group Qk “ Q2k . As having more coordinates clearly
gives more expressive power to a program, we have γProg,Q̃pnq ď γProg,Qk

pnq.
Assume we already constructed b1, . . . , bk for some k P r0 .. d´ 1s (for k “ 0 that means

we have no bi’s). Let Xk “
Ťk

i“1 bi. We additionally require by induction that |Xk| ď kn{d.
First observe that a new vector bk`1 which could extend the sequence b1, . . . , bk needs to
satisfy a system of 2k equations qpα1b1 ` α2b2 ` . . .` αkbk ` xq “ 1, one equation for each
α P t0, 1uk. As we expect bk`1 to have disjoint support with all preceding bi’s, we just put
xi “ 0 for i P Xk, so that each qαpxq “ qpα1b1 ` . . .` αkbk ` xq is of arity n´ |Xk|. Notice
that we can encode those 2k conditions as one program condition in the group Qk “ Q2k . To
produce a program q̂pxq “ pqαpxqqαPt0,1uk with associated accepting set tsqu

2k , we replace
each instruction of q with one in the new domain: whenever j R Xk we just replace xj, g, hy
with xj, pg, . . . , gq, ph, . . . , hqy and whenever j P bi (for some i P r1 .. ks) we replace it by the
constant pcαqαPt0,1uk , where cα “ g when αi “ 0 and cα “ h when αi “ 1.

Since |q̂| ď |q| ď γProg,Q̃pn{d ´ 1q and n ´ |Xk| ě
n
d , we know by Fact 18 that not

only 0 is a solution to q̂pxq “ 1 but we have another solution with Hamming weight at
most γ´1

Prog,Q̃p|q̂|q ` 1 ď γ´1
Prog,Q̃pγProg,Q̃pn{d ´ 1qq ` 1 “ n{d. We can clearly choose this

solution to become bk`1 and finish the induction by noticing that |Xk`1| “ |Xk| `
ˇ

ˇbk`1
ˇ

ˇ ď

kn{d` n{d “ pk ` 1qn{d. ◁

Finally, by (C), we know that γProg,Q̃pnq ě 2δn´C for some suitable constants δ and C.
Assume for a contradiction that |q| ď 2δn{d´C´d´1 ď γProg,Q̃pn{d ´ 1q. By Claim 19 we
obtain a boolean cube B “

!

řd
i“1 αibi

ˇ

ˇ

ˇ
pα1, . . . , αdq P t0, 1ud

)

Ď t0, 1un with qpBq “ t1u.
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It means that the equation ppxq “ 1 has only one solution 0 in the set B, otherwise the
system pppxq,qpxqq would not define the spike (with accepting set tpsp, sqqu). But now to
get a contradiction define a program p̂py1, . . . , ydq “ ppy1b1 ` . . .` ydbdq, which must be a
d-ary spike – contrary to the choice of d. ◀

As an immediate consequence of Theorem 17 and Lemma 10 we get the following.

▶ Corollary 20. Let N be a nilpotent group, A abelian, Q “ Gq ¸A for some q-group Gq

and let G ď N ˆQ. Then ProgramSatpGq, ListPolSatpGq or PolSatpGq have the
none-or-many property.

In particular, ProgramSatpGq, ListPolSatpGq and PolSatpGq are in RP.

Proof of Corollary 5. We can apply Corollary 20 to dihedral groups of order 2αpβ . Indeed,
each such group is a subgroup of D2α ˆDpβ , where D2α is nilpotent and Dpβ is isomorphic
to the semidirect product Zpβ ¸ Z2. So for each such group PolSat is in RP (if α P t0, 1u it
is even in P by [18, Corollary 2]). On the other hand, all other dihedral groups Dm have a
quotient Dk where k is odd and has exactly two different prime divisors. By [21, Theorem
7.1], PolSatpDkq is not in P under ETH. The same argument also shows that it is not in
RP under rETH. By Lemma 8 this transfers to Dm. We can see this also as a consequence
of Theorem 2: the minimal normal subgroups A and B are just cyclic subgroups of Zm of
coprime odd order. The centralizer of both of them is Zm ă Dm. Hence, Theorem 2 tells us
that PolSatpDmq is not in RP under rETH. ◀

The positive case of the proof of Corollary 5 obviously generalizes to groups G with a
nilpotent normal subgroup N of order pαqβ such that G{N is abelian of order pγ (just apply
the Schur-Zassenhaus Theorem, Fact 7). In particular, this applies as follows:

▶ Example 21. Note that the complexity of PolSat for three natural examples of order 24,
namely the dihedral group D12, the quaternion group Q acting over Z3 (i.e. Z3 ¸Q), and
the group pZ2 ˆ Z2 ˆ Z3q ¸ Z2 was left unsolved in [12, Problem 3]. Now our Corollary 20
covers all of these examples.

7 Extending Randomized Algorithms for PolSat

The smallest example of a group of Fitting length two for which we know superpolynomial
lower bounds under ETH is D15 [21]. We can embed D15 into the group D3 ˆD5 which has
polynomial-time decidable PolSat. On the contrary, both ProgramSat and ListPolSat
share superpolynomial complexities under ETH in this case. Moreover, for a given group
G, under assumption of CDH and ETH the problem ProgramSatpGq is in P whenever
ListPolSatpGq is. So, in a sense, complexities of ProgramSat and ListPolSat seem to
coincide, while the complexity of PolSat may differ in certain cases. It is due to the fact
that upper bounds for PolSat are not inherited by the subgroups in a very strong way:

▶ Observation 22. Every group of Fitting length two can be embedded into a group with
PolSat in RP under CDH. Moreover, if G is nilpotent-by-abelian, it can be embedded into
a group with PolSat in P (unconditionally).

Proof. Let G be a group of Fitting length two. Thus, there is some nilpotent normal
subgroup N such that G{N is nilpotent. Since N is nilpotent, we can write it as a direct
product N “ Gp1 ˆ ¨ ¨ ¨ ˆ Gpk

for pi-groups Gpi . Let Ni “
ś

j‰i Gpj . Then Gpi is a
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normal nilpotent subgroup of G{Ni and pG{Niq{Gpi is nilpotent. Thus, by Theorem 1
PolSatpG{Niq is in RP under CDH. Finally, notice that G embeds into the direct product
śk

i“1 G{Ni, which by Lemma 8 has also PolSat in RP under CDH.
For the second part just observe that, if G is nilpotent-by-abelian, G{Ni has a normal

pi-subgroup with abelian quotient and so by [12, Theorem 1] PolSat is in P. ◀

The unusual properties of PolSat allow us to create larger classes of groups with
polynomial time algorithms than for the other two problems.

Proof of Theorem 4. We start with some preparation and decompose G into smaller groups.
Since |G| has only two prime factors, say p and q, we can write N “ NqˆNp and H “ HpˆHq

where Np,Hp are p-groups and Nq,Hq are q-groups. Notice that Np and Nq are also normal
in G (this is because they are characteristic subgroups of N). We define subsets L,R, P,Q of
G by putting L “ NqHp, R “ NpHq, P “ NpHp and Q “ NqHq. Notice that we defined
indeed subgroups L,R,P, and Q since each of them is a product of a normal subgroup and
a subgroup (though they might not be normal subgroups) and LR “ G “ PQ. In particular,
we can write each g P G uniquely as g “ ℓr where ℓ P L and r P R. Moreover, they are all
semidirect products: L “ Nq ¸Hp, R “ Np¸Hq, P “ Np¸Hp and Q “ Nq ¸Hq, where
the actions of Hp and Hq on Np and Nq are the restrictions of the actions of H on N.

We will now prove the many-solutions property for G by restricting the variables to
the subgroups L and R. However, we cannot apply Corollary 12 directly; instead, we will
construct another group G1 with the desired properties for which we can apply Corollary 12
for ListPolSat.

We define G1 “ P¸Q where the action is given by the action of Hq ď Q on Np ď P
(and P and Nq ď Q commute). Notice that there is a canonical bijection (in general not an
isomorphism) between G and G1 and we have R ď G1. Moreover, notice that G1 meets the
requirements of Corollary 12 and G{Nq “ pNp ¸ pHp ˆHqq “ pNp ¸Hpq ¸Hq “ G1{Nq.

Our next step is to transform a polynomial q P PolpGq to a polynomial θpqq P PolpG1q

which, when restricting variables to R, has the same solution set (this makes sense as R is
both a subgroup of G and G1).

In order to do so, write qpxq “ g0h0ξ1g1h1 ¨ ¨ ¨ ξmgmhm where gi P Nq and hi P Hp

(i.e., gihi P L) and the ξi are constants from R “ Np ¸ Hq or variables. We define
θ : PolpGq Ñ PolpG1q by θpqq “ g0h0ξ1p

h0g1qh1 ¨ ¨ ¨ ξmp
h0¨¨¨hm´1gmqhm, where hg “ hgh´1

denotes the action of h P Hp on g P Nq (considered in G); we view hg as a fixed element of
Nq ď G1 and forget that it comes from the action in G. Notice that up to a constant factor
|θpqq| and |q| are equal. We say x is a solution of q if qpxq “ 1.

▷ Claim 23. Let x P Rn. Then x is a solution of q if and only if x is a solution of θpqq.

Proof. As G{Nq “ G1{Nq, we may assume that qpxq and θpqqpxq are both in Nq. Then, in
G we have

qpxq “ g0h0ξ1g1h1 ¨ ¨ ¨ ξmgmhm

“ g0
h0ξ1g1 ¨ ¨ ¨

h0ξ1¨¨¨hm´1ξmgm ¨ h0ξ1 ¨ ¨ ¨hm´1ξmhm

“ g0
h0ξ1g1 ¨ ¨ ¨

h0ξ1¨¨¨hm´1ξmgm.

On the other hand, in G1 we have

θpqqpxq “ g0h0ξ1p
h0g1qh1 ¨ ¨ ¨ ξmp

h0¨¨¨hm´1gmqhm

“ g0
ξ1ph0g1q ¨ ¨ ¨

ξ1¨¨¨ξmph0¨¨¨hm´1gmq ¨ h0ξ1 ¨ ¨ ¨hm´1ξmhm

“ g0
ξ1ph0g1q ¨ ¨ ¨

ξ1¨¨¨ξmph0¨¨¨hm´1gmq.
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Now, we can read the last line as an element of G interpreting hg “ hgh´1 again as the
action of h P Hp on g P Nq. As in G the ξi commute with hi modulo Np, which is contained
in the centralizer of Nq in G, we conclude that as an equality in G we have

θpqqpxq “ g0
h0ξ1g1 ¨ ¨ ¨

h0ξ1¨¨¨hm´1ξmgm.

This proves the claim. ◁

If a polynomial q P PolpGq has a solution with variables restricted to R, by Claim 23,
θpqq also has a solution with variables restricted to R. Now, we can apply Corollary 12
(in the CDH case) or Corollary 20 (if H is abelian), which gives us that a polynomial
fraction 1{|θpqq|Op1q of all assignments y P Rn are satisfying for θpqq (i.e., there are at least
|R|

n
{|θpqq|Op1q satisfying assignments among |R|n possible assignments). By Claim 23 also

at least a polynomial fraction 1{|q|Op1q of all assignments y P Rn are satisfying for q.
By symmetry the same argument applies to a polynomial with variables restricted to L:

if a polynomial q P PolpGq with variables restricted to L has a solution, at least 1{|q|Op1q of
all assignments y P Ln are satisfying for q.

Since G “ LR, we can show the none-or-many property for G as follows: assume p
is a polynomial with a solution a “ pa1, . . . , anq. We can write each ai “ ℓiri with ℓi P L

and ri P R. Let q be the polynomial obtained from p by substituting every variable xi

by ℓiyi where yi is a new variable. We know that q has a solution when restricting all
variables to R – hence, it has at least |R|n{|p|Op1q solutions in Rn. For each of these solutions
r1 “ pr11, . . . , r

1
nq P R

n again we obtain a polynomial r from p by replacing each variable
xi by zir

1
i where zi is a new variable restricted to L. Now, r has at least |L|n{|p|Op1q

many solutions. Since any of these solutions gives us a solution to p, we obtain at least
|R|

n
{|p|Op1q

¨ |L|
n
{|p|Op1q solutions for p.

Therefore, picking random assignments leads to an RP algorithm (like in Lemma 10). ◀

A straightforward (though not the smallest) example for Theorem 4 not covered by
previous results is the wreath product Z6 ≀ Z6 “ pZ6q

6 ¸ Z6. By Theorem 4 we know
that PolSat is in RP for this group, whereas ProgramSat is not in RP under rETH by
Theorem 1.

As we show in Corollary 6, we can even classify the complexity of PolSat for arbitrary
wreath products. Before we outline the proof, let us remark that, if G is nilpotent and H
abelian, then PolSatpG ≀ Hq is in RP as soon as G is a p-group or |G| and |H| only have
the same two prime divisors – without requiring CDH. This is an immediate consequence of
Corollary 20 and Theorem 4.

Proof sketch of Corollary 6. The CDH-based RP algorithms are due to Corollary 12 and
Theorem 4. Being not in the RP case, |G| has at least two prime divisors q ‰ r. Moreover,
|H| has a third prime divisor p ‰ q, r. Thus, we will find a wreath product pZq ˆ Zrq ≀ Zp

as a subgroup of a quotient of G ≀ H. By [26, Theorm 4.1.10] neither Zq ≀ Zp nor Zr ≀ Zp is
nilpotent. Thus, we can find covering pairs of normal subgroups Bq,Aq and Br,Ar such
that CZq≀Zp

pBq{Aqq ‰ Zq ≀ Zp. It remains to lift them to G ≀ H and apply Corollary 3. ◀

8 Conclusion

In this paper, under the assumptions of rETH and CDH, we fully classified in which cases
the computational complexity of ProgramSat and ListPolSat for finite groups is in RP.
It seems that eliminating the assumptions (especially rETH) can be really hard, but there is
still a chance to improve Theorem 1 by showing polynomial time deterministic algorithms
instead of the randomized ones:
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▶ Problem 1. Is there a polynomial time deterministic algorithm solving ProgramSatpGq
and ListPolSatpGq for G such that there is a prime p and a normal p-subgroup Gp of G
with G{Gp being nilpotent?

We took a step towards full classification of the complexity of PolSat for finite groups.
Our study reveals that the interactions of normal subgroups of different characteristics play
a crucial role. To conclude we present an example of a group of Fitting length 2 for which
the complexity of PolSat can not be resolved by our results.

▶ Problem 2. What is the computational complexity of PolSatpGq for

G “ pZ3 ˆ Z5 ˆ Z7q ¸ pZ2 ˆ Z2q,

where the first Z2 acts on Z3 ˆ Z5 by inversion and the second Z2 acts on Z5 ˆ Z7 by
inversion?

Note that the group G from Problem 2 has Z3, Z5, and Z7 as normal subgroups of different
characteristics with CGpZpq ‰ G for p “ 3, 5, 7 and CGpZpq ¨ CGpZqq “ G for p ‰ q. In
particular, the last property prevents us from using Theorem 2 or Corollary 3. On the other
hand, four different primes dividing the size of G blocks Theorem 4 from being applied here.
Moreover, also Corollary 12 cannot be applied here since the largest nilpotent quotient of G
is Z2 ˆ Z2 and the kernel of the projection is clearly not a p-group.
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Abstract
A linearly ordered (LO) k-colouring of an r-uniform hypergraph assigns an integer from {1, . . . , k}
to every vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently,
for r = 3, if two vertices in an edge are assigned the same colour, then the third vertex is assigned a
larger colour (as opposed to a different colour, as in classic non-monochromatic colouring). Barto,
Battistelli, and Berg [STACS’21] studied LO colourings on 3-uniform hypergraphs in the context of
promise constraint satisfaction problems (PCSPs). We show two results.

First, given a 3-uniform hypergraph that admits an LO 2-colouring, one can find in polynomial
time an LO k-colouring with k = O(

√
n log log n/ log n), where n is the number of vertices of the

input hypergraph. This is established by building on ideas from algorithms designed for approximate
graph colourings.

Second, given an r-uniform hypergraph that admits an LO 2-colouring, we establish NP-hardness
of finding an LO 3-colouring for every constant uniformity r ≥ 5. In fact, we determine the precise
relationship of polymorphism minions for all uniformities r ≥ 3, which reveals a key difference
between r = 3, 4 and r ≥ 5 and which may be of independent interest. Using the algebraic approach
to PCSPs, we actually show a more general result establishing NP-hardness of finding an LO
(k + 1)-colouring for LO k-colourable r-uniform hypergraphs for k ≥ 2 and r ≥ 5.
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1 Introduction

The computational complexity of the approximate graph colouring problem [16] is an out-
standing open problem in theoretical computer science. Given a 3-colourable graph G on n

vertices, is it possible to find a k-colouring of G? On the tractability side, the current best
is a polynomial-time algorithm of Kawarabayashi and Thorup [23] that finds a k-colouring
with k = k(n) = n0.199 colours. On the intractability side, the state-of-the-art for constant
k has only recently been improved from k = 4, due to Khanna, Linial, and Safra [24] and
Guruswami and Khanna [17] to k = 5, due to Barto, Bulín, Krokhin, and Opršal [5]. The
authors of [5] introduced a general algebraic methodology for studying the computational
complexity of so-called promise constraint satisfaction problems (PCSPs). Going beyond the
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work in [5], for graphs with a promised higher chromatic number than three, the current best
intractability results for constantly many extra colours is due to Wrochna and Živný [27],
building on the work of Huang [22].

The situation is much better understood for the approximate hypergraph colouring problem
with the classic notion of a colouring leaving no edge monochromatic. A celebrated result of
Dinur, Regev, and Smyth established that finding an ℓ-colouring of a 3-uniform hypergraph
that is k-colourable is NP-hard for every constant 2 ≤ k ≤ ℓ [14] (and this also implies the
same result on r-uniform hypergraphs for every constant uniformity r ≥ 3).

Different variants of approximate hypergraph colourings, such as rainbow colourings,
were studied, e.g. in [2, 10, 18, 19, 12], but most complexity classifications related to these
problems are open. Some intractability results are also known for colourings with a super-
constant number of colours. For graphs, conditional hardness was established by Dinur and
Shinkar [15]. For hypergraphs, intractability results were obtained by Bhangale [9] and by
Austrin, Bhanghale, and Potukuchi [1].

Barto, Battistelli, and Berg have recently studied systematically a certain type of PCSPs
on non-Boolean domains and identified a very natural variant of k-colourings of 3-uniform
hypergraphs, called linearly ordered (LO) k-colourings [4]. A k-colouring of a 3-uniform
hypergraph with colours [k] = {1, . . . , k} is an LO colouring if, for every edge, it holds that,
if two vertices are coloured with the same colour, then the third vertex is coloured with a
larger colour. (In the classic non-monochromatic colouring, the requirement is that the third
vertex should be coloured with a different colour, but not necessarily a larger one.) An LO
2-colouring is thus a “1-in-3” colouring. Barto et al. asked whether finding an LO k-colouring
of a 3-uniform hypergraph is NP-hard for a fixed k ≥ 3 if the input hypergraph is promised
to admit an LO 2-colouring.

Contributions

While we do not resolve the question raised in [4], we obtain non-trivial results, both positive
(algorithmic) and negative (hardness).

First, we present an efficient algorithm for finding an LO colouring of a 3-uniform
hypergraph with super-constantly many colours if an LO 2-colouring is promised to exist.
In more detail, for a given 3-uniform hypergraph H on n vertices that admits an LO 2-
colouring, we present a polynomial-time algorithm that finds an LO k-colouring of H with
k = k(n) = O(

√
n log log n/ log n) colours. As mentioned above, there are only a few results

on hypergraph colourings with super-constantly many colours.

Second, we establish intractability of finding an LO 3-colouring of an r-uniform hypergraph
if an LO 2-colouring is promised for every constant uniformity r ≥ 5. In fact, we prove
a more general result that finding an LO (k + 1)-colouring of an r-uniform hypergraph
admitting an LO k-colouring is intractable for every constant k ≥ 2 and r ≥ 5. This result
is based the algebraic approach to PCSPs and in particular on minions [5]. As a matter
of fact, we establish the precise relationships of the polymorphism minions of the LO 2- vs
3-colourings on r-uniform hypergraphs for r ≥ 3, which may be of independent interest. This
gives the advertised intractability result but also an impossibility result on certain types of
polynomial-time reductions (namely pp-constructions [5]) between LO 2- vs 3-colourings on
r-uniform hypergraphs for r ≥ 5 and r = 3, 4.
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2 Preliminaries

An r-uniform hypergraph H is a pair (V, E) where V is the set of vertices of the hypergraph,
and E ⊆ V r is the set of edges of the hypergraph. In our context the order of the vertices in
each edge is irrelevant. We will allow vertices to appear multiple times in edges; however, we
exclude edges of form (v, . . . , v) – such edges would be impossible in the problems we will
consider anyway. We say that two distinct vertices u, v are neighbours if they both belong to
some edge e ∈ E. Let N(u) be the set of neighbours of u. Call a set S an independent set of
a hypergraph H if and only if no two members of S are neighbours.

A linearly ordered (LO) k-colouring of an r-uniform hypergraph H = (V, E) is an
assignment c : V → [k] of colours from [k] = {1, . . . , k} to the vertices of H such that, for
each edge (v1, . . . , vr) ∈ E, the sequence c(v1), . . . , c(vr) has a unique maximum. We omit
the “k-” if the number of colours is unimportant.

▶ Example 1. Consider the hypergraph H = (V, E), where V = [4] = {1, 2, 3, 4} and
E = {(1, 2, 3), (1, 2, 4)}. The assignment c = {1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 2} is an LO
2-colouring, and c′(x) = x is an LO 4-colouring. On the other hand, c′′(x) = 3 − c(x) is
not an LO colouring at all, since both of the edges have two equal maximal elements when
mapped through c′′.

Finding an LO k-colouring, for constant k ≥ 3, of a 3-uniform hypergraph that admits an
LO 2-colouring was studied by Barto et al. [4] in the context of promise constraint satisfaction
problems (PCSPs), which we define next.

2.1 Promise CSPs

Promise CSPs have been introduced in the works of Austrin, Guruswami, and Håstad [3] and
Brakensiek and Guruswami [11]. We follow the notation and terminology of Barto, Bulín,
Krokhin, and Opršal [5], adapted to structures consisting of a single relation.

An r-ary structure is a pair D = (D, RD), where RD ⊆ Dr and D is finite. We call D the
domain of the structure, and RD the relation of the structure. For two r-ary structures A, B,
a homomorphism from A to B is a function h : A → B such that, for each (a1, . . . , ar) ∈ RA,
we have (h(a1), . . . , h(ar)) ∈ RB. This is written h : A → B. If we wish to assert only the
existence of such a homomorphism, we write A → B.

We now define the search version of the fixed-template PCSP problem. Given two r-ary
structures A → B, the problem PCSP(A, B) is the following: given an r-ary structure
I → A, find a homomorphism h : I → B. The decision version of this problem is: given an
r-ary structure I, output yes if I → B, and output no if I ̸→ A. Observe that the decision
version can be reduced to the search version: to solve the decision version, run an algorithm
for the search version, then check if it gives a correct answer. We will use PCSP(A, B) to
mean the decision version when proving hardness, and the search version when showing
algorithmic results.

LO colourings can be readily seen as PCSPs. First, observe that an r-uniform hypergraph
can be seen as an r-ary structure. Second, define an r-ary structure LOr

k with domain [k],
and whose relation contains a tuple (c1, . . . , cr) if and only if the sequence c1, . . . , cr has a
unique maximum. Then, an LO k-colouring of an r-uniform hypergraph H is the same as a
homomorphism from H (viewed as an r-ary structure) to LOr

k. Thus, the problem of finding
an LO k-colouring of an r-uniform hypergraph that has an LO 2-colouring is the same as
PCSP(LOr

2, LOr
k).

ICALP 2022
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In Section 3, we study the computational complexity of PCSP(LO3
2, LO3

k(n)), were k(n)
depends on the input size; here n denotes the number of vertices of the input (3-uniform)
hypergraph. As in Example 1, this is obviously possible for k(n) = n. As our first contribution,
we will present an efficient algorithm with k(n) = O(

√
n log log n/ log n).

In Section 5, we study the computational complexity of PCSP(LOr
k, LOr

k+1) for constant
uniformity r ≥ 3 and constant arity k ≥ 2. We establish intractability of PCSP(LOr

k, LOr
k+1)

for r ≥ 5 and k ≥ 2, cf. Corollary 23 (for k = 2) and Corollary 25 (for k ≥ 2) in
Section 5. These results are based on the algebraic theory of minions [5], briefly introduced
in Section 4. In fact, we establish the precise relationships of the polymorphism minions of
PCSP(LOr

2, LOr
3) for all r ≥ 3 (cf. Theorem 22 in Section 5).

In the full version of this paper [25] we show stronger results, namely NP-hardness of
PCSP(LOr

k, LOr
ℓ) for every constant k and ℓ with 2 ≤ k ≤ ℓ and every constant uniformity

r ≥ ℓ − k + 4.

3 Algorithmic results

Within this section, we will prove algorithmic results for finding LO colourings of 3-uniform
hypergraphs that have LO 2-colourings, using a non-constant number of colours. We will
describe two algorithms: a simpler one that uses O(

√
n) colours; and a more complicated

one that builds on the first, that uses O(
√

n log log n/ log n) colours. The initial algorithm is
inspired by Wigderson’s algorithm for the approximate graph colouring problem [26]: like
that algorithm it considers a “sparse case” and a “dense case”; however, our algorithm is
more complex due to the fact that an LO colouring is different to a normal graph colouring.
A particularly salient difference is that our algorithm picks a high-degree edge, whereas
Wigderson’s algorithm picks a high-degree vertex. Our second, more complex algorithm
refines the first one by selecting more than one edge at a time (similarly to the work of Berger
and Rompel [8], although, like Wigderson’s algorithm [26], they choose several vertices at a
time, not several edges as we do), and by using an improved algorithm for finding independent
sets (studied by Halldórsson [21]).

In both algorithms, the general strategy will be to colour some vertices with large colours,
then to recursively colour the rest of the hypergraph. The exact choice of “large colour” is
made only after the recursive colouring (since only at that point do we know how large the
colours need to be). We will not keep track of the bookkeeping needed to do this, in order to
make the algorithms easier to explain.

3.1 First algorithm
Fix some 3-uniform hypergraph H = (V, E), with n vertices and m edges. Suppose that this
hypergraph admits an LO 2-colouring c∗. We first show a way to extend a partial colouring
consistent with c∗ until it intersects each edge of H in zero, one or three vertices.

▶ Lemma 2. There exists a polynomial-time algorithm that, given a partial LO 2-colouring c

that coincides with c∗ on its domain, extends c into a partial LO 2-colouring extend(c) that
does not intersect any edge of H in exactly 2 vertices and remains consistent with c∗ on its
domain. The algorithm will also run in polynomial time even if c isn’t consistent with c∗ or
even an LO 2-colouring, in which case it will return an arbitrary extension of c.

Proof. The following algorithm suffices: while c intersects an edge (x, y, z) in precisely two
vertices (say x, y), extend c with z 7→ 4 − c(x) − c(y). This algorithm clearly extends c until
it intersects no edges in precisely 2 vertices. Furthermore, since c∗ is an LO 2-colouring, for
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each edge (x, y, z) we have c∗(x) + c∗(y) + c∗(z) = 4. Thus, if we assume that c is initially
consistent with c∗, we can show that each extension keeps c consistent with c∗. We conclude
by noting that each extension can be done in polynomial time, and that there are at most n

extensions – and that this is the case even if c doesn’t coincide with c∗ on its domain, or
isn’t even an LO colouring. ◀

We now show how to find a large independent set if the hypergraph is sparse enough.

▶ Lemma 3. If every edge in H contains a vertex with at most ∆ ≥ 0 neighbours, then we
can find an independent set with n/(∆ + 1) = Ω(n/∆) vertices in polynomial time. This
holds even if ∆ happens not to be an integer.

Proof. This condition implies that there exists at least one vertex with most ∆ neighbours: if
there exists at least one edge then one of the vertices in it must be this vertex; otherwise, all
vertices have 0 ≤ ∆ neighbours. By adding that vertex to the independent set, removing it
and its neighbours from the hypergraph, and repeating this process until no vertices remain,
we can find the required independent set. ◀

Our algorithm will colour a certain part of the hypergraph with O(1) colours, colouring
the rest recursively, with strictly smaller colours. The following lemma gives us a sufficient
goal for the size of what must be coloured in one step.

▶ Lemma 4. A recursive procedure that colours Ω(
√

n) vertices (where n refers to the current
size of the hypergraph, not the initial size) with O(1) colours at each step will use O(

√
n)

colours overall.

Proof. Let T (n) be the number of colours needed to colour a hypergraph with at most n

vertices. It is sufficient to prove that T (n) = O(
√

n) for n a power of two, since for arbitrary
n we can consider the next largest power of two, which is at most 2n. For some such n,
consider how many colours are needed to colour half the hypergraph. At each step until
the hypergraph is halved, we colour at least Ω(

√
n/2) = Ω(

√
n) vertices with O(1) colours.

Equivalently, we colour half the hypergraph with O(
√

n) colours. Thus we deduce that
T (n) ≤ T (n/2)+O(

√
n). Applying the Master method of Cormen et al. [13] to the recurrence

U(n) = U(n/2) + α
√

n, where α comes from the constant hidden in the recurrence for T , we
can deduce that T (n) = O(

√
n). (Applying this method requires satisfying the “regularity

condition”:
√

n/2 ≤ c
√

n for some c < 1 and large enough n; this holds for c = 1/
√

2.) ◀

These results together help us create the algorithm we want.

▶ Theorem 5. There exists a polynomial-time algorithm that finds an LO O(
√

n)-colouring
for a hypergraph with an LO 2-colouring.

Proof. We provide a recursive algorithm.
1. If the hypergraph has no edges (x, y, z) where all of x, y and z have at least

√
n neighbours,

then find an independent set with Ω(n/
√

n) = Ω(
√

n) vertices, colour that independent
set with a large colour, and recursively colour the rest of the hypergraph with smaller
colours. This is possible by Lemma 3.

2. Otherwise, let (x, y, z) be an edge where all of x, y and z have at least
√

n neighbours.
3. Iterate over u ∈ {x, y, z}.
4. Construct a partial colouring cu where cu(u) = 2 and cu(v) = 1 for v ∈ N(u).
5. Construct extend(cu), and check if it is a partial LO 2-colouring. This is possible by

Lemma 2.
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6. If it is, colour the vertices in the domain of extend(cu) with two large colours, depending
on the colours they got in extend(cu) (i.e. for some large enough C, colour v with
C + extend(cu)(v)), and then recursively colour the rest of the hypergraph with smaller
colours.

We establish the correctness of this algorithm by showing its soundness and completeness.
We begin by showing completeness. The only way we could possibly fail to return

something is if, for all u ∈ {x, y, z}, the function extend(cu) is not a proper partial LO
2-colouring. However, for at least one u ∈ {x, y, z}, it must be the case that c∗(u) = 2, and
thus that c∗(v) = 1 for v ∈ N(u). Thus, for this value of u, c∗ is consistent with cu on its
domain, and therefore extend(cu) must be a proper partial LO 2-colouring.

Now we show soundness: whenever we return a colouring, we return an LO O(
√

n)-
colouring. We first show that we return an LO colouring. Observe that in the case covered
in step 1, all the edges that do not intersect the independent set that we find are properly
coloured recursively. Furthermore all edges that do intersect the independent set intersect it
in exactly one vertex. This vertex is assigned a colour larger than the colours of the other
vertices in the edge, so all such edges are also properly coloured. In the case covered in steps
2–6, note that if we return anything, then extend(cu) is a proper partial LO 2-colouring. Note
that all edges intersecting the domain of extend(cu) in zero or three vertices are correctly
coloured (either recursively, or since extend(cu) is an LO colouring). Furthermore, since the
vertices in the domain of extend(cu) are assigned large colours, those edges that intersect this
domain in one vertex are also properly coloured. Thus in this case, since no edge intersects
extend(cu) in two vertices, we also return a proper LO colouring. Thus in all cases we return
an LO colouring.

To see that we return an LO O(
√

n)-colouring, note that in all cases we colour Ω(
√

n)
vertices with O(1) colours at each iteration (in the first case because we colour an independent
set with this size; in the second because cu must be defined on N(u), which has at least

√
n

vertices). Thus, by Lemma 4, we use O(
√

n) colours overall.
We conclude by noting that this algorithm has recursive depth at most n, and does

polynomial work at each step – thus it works in polynomial time. ◀

3.2 Second algorithm

As before, fix some 3-uniform hypergraph H = (V, E), with n vertices and m edges, and
suppose that this hypergraph admits an LO 2-colouring c∗. We first reduce our general
problem to the special case of finding an LO 3-colouring for a linear 3-uniform hypergraph
that admits an LO 2-colouring. We call a hypergraph linear if no pair of vertices belongs to
more than one edge.

▶ Example 6. The hypergraph from Example 1 is not linear since vertices 1 and 2 belong to
two edges.

The key property of linear hypergraphs we will use is the following: if a vertex v in an
r-uniform hypergraph has d neighbours v1, . . . , vd, then v is contained in at most d edges.
This is the case since each pair (v, vi) can belong to at most one edge, and (v, . . . , v) cannot
appear as an edge. If H weren’t linear, then v could have belonged to at least

(
d

r−1
)

edges,
one for each set of r − 1 of the d neighbours. (In fact, there are even more possible edges,
since vertices are allowed to appear multiple times.)
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▶ Theorem 7. If H is a 3-uniform hypergraph with an LO 2-colouring, then we can find, in
polynomial time, a linear 3-uniform hypergraph H ′ with an LO 2-colouring, such that an LO
3-colouring of H can be computed from an LO 3-colouring of H ′ in polynomial time.

Proof. The following procedure is sufficient: while H contains two edges of form (x, y, z) and
(x, y, z′), identify z with z′. This works because z and z′ must be coloured the same in any
LO 2-colouring of H (as, in any LO 2-colouring c, c(x) + c(y) + c(z) = c(x) + c(y) + c(z′) = 4,
and thus c(z) = c(z′)). Thus H ′ also remains LO 2-colourable. Furthermore, by reversing the
identifications, any LO 3-colouring of H ′ can be made into an LO 3-colouring of H. Finally,
this procedure clearly takes polynomial time and results in a linear hypergraph H ′. ◀

Thus we will assume that H is linear. We now show how to find a large independent
set when the hypergraph is sparse enough, using a series of lemmata and an algorithm of
Halldórsson [21].

▶ Lemma 8. Suppose each edge of H has at least one vertex with at most ∆ ≥ 1 neighbours.
Then H has Ω(n) vertices with at most ∆ neighbours.

Proof. Let x be the number of vertices with at most ∆ neighbours. We will show x = Ω(n)
by double counting |E|. Note that each edge in |E| contains at least one vertex with at most
∆ neighbours; furthermore, each such vertex belongs to at most ∆ edges (since H is linear).
Thus |E| ≤ x∆. Now note that each vertex with more than ∆ neighbours belongs to more
than ∆/2 edges, and each edge contains 3 vertices. Thus 3|E| > (n − x)∆/2. Therefore
(n − x)∆/6 < x∆, which implies x = Ω(n). ◀

▶ Lemma 9. Suppose all vertices in H have at most ∆ ≥ 1 neighbours. Then H has an
independent set with at least Ω(|E|/∆) vertices.

Proof. Let S be the set of values mapped to 2 by c∗; note that S is an independent set.
Consider the mapping f : V → N, where f(u) is zero if u ̸∈ S, and otherwise is equal to the
number of edges that u belongs to. Since each edge contains exactly one vertex mapped to 2
by c∗, we deduce that

∑
u∈V f(u) =

∑
u∈S f(u) = |E|. Now, each value of f(u) is at most ∆

(since H is linear); thus we deduce that |S|∆ ≥
∑

u∈S f(u) = |E|, and thus |S| ≥ |E|/∆. ◀

▶ Theorem 10 ([21, Theorem 4.4]). There exists a polynomial-time algorithm that, if given
a graph G with average degree d, which has an independent set with size s, can find an
independent set with size Ω(s log d/d log log d).

The primal graph P (H) of H is a graph with the same vertices as H, and where two
vertices are linked by an edge if and only if they are neighbours in H . Since the primal graph
preserves neighbours, an independent set in H is independent in P (H) and vice versa.

▶ Example 11. The primal graph P (H) of the hypergraph H from Example 1 has {1, 2, 3, 4}
as vertices and {(1, 2), (2, 3), (3, 1), (2, 4), (4, 1)} as edges.

▶ Theorem 12. There exists a polynomial-time algorithm that, if given a linear hypergraph
H with an LO 2-colouring where each vertex has most ∆ = O(

√
n/ log log n) neighbours, can

find an independent set with Ω(
√

n log n/
√

log log n) vertices.
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Proof. Consider the average degree d of the primal graph P (H) of H. Observe that the
independent sets of H and P (H) coincide. Suppose d ≤ 6

√
n. Thus P (H) has O(n 6

√
n) edges,

and thus O(n/ 6
√

n) = o(n) vertices of P (H) have degree larger than 3
√

n. By a simple greedy
algorithm applied to the Ω(n) vertices of P (H) with degree at most 3

√
n (repeatedly select

the vertex with minimum degree), we can find an independent set of P (H) (and thus of H)
with Ω(n/ 3

√
n) vertices, which is sufficient.

Now suppose d ≥ 6
√

n. Note that there exists an independent set with s = Ω(|E|/∆)
vertices. Since each edge of H gives rise to at most three edges of P (H), we deduce
that d = O(|E|/n). Thus s/d = Ω(|E|/∆)/O(|E|/n) = Ω(n/∆) = Ω(

√
n log log n). Also,

log d/ log log d ≥ log 6
√

n/ log log 6
√

n = Ω(log n/ log log n) for large enough n. Thus, the
independent set algorithm from [21] applied to P (H) will give us an independent set of P (H)
(and thus of H) with Ω(

√
n log n/

√
log log n) vertices. ◀

▶ Corollary 13. If we are given instead a hypergraph where each edge has a vertex with at
most ∆ = O(

√
n/ log log n) neighbours, then, by applying the algorithm of Theorem 12 to

the subhypergraph formed by taking only the Ω(n) vertices with at most ∆ neighbours, we can
still get an independent set with size Ω(

√
n log n/

√
log log n).

As before, our algorithm will be recursive. We now investigate how many vertices must
be coloured in one recursive step.

▶ Lemma 14. A recursive procedure that colours Ω
(√

n log n/
√

log log n
)

vertices (where n

refers to the current size of the hypergraph, not the initial size) with O(1) colours at each
step will use O(

√
n log log n/ log n) colours overall.

Proof. Use the same strategy and notation as in Lemma 4. For n a large power of two, until
halving n, in one step, we colour Ω(

√
n/2 log(n/2)/

√
log log(n/2)) = Ω(

√
n log n/

√
log log n)

vertices with O(1) colours. The “large enough” part is important to get n/2 to the interval
where x 7→

√
x log x/

√
log log x is increasing. Thus, with the same logic as before, T (n) ≤

T (n/2) + O(
√

n log log n/ log n) for large enough n. Applying the Master method of Cormen
et al. [13] in the same way as in Lemma 4, T (n) = O(

√
n log log n/ log n). (Again, we need

the regularity condition:
√

n/2 log log(n/2)/ log(n/2) ≤ c
√

n log log n/ log n for some c < 1
and large enough n; this can be shown for e.g. c = 0.9, n ≥ 6.) ◀

With this result in hand, we now give a stronger algorithm for our problem, inspired by
the strategy of Berger and Rompel [8]: we select multiple edges at once, not only one.

▶ Theorem 15. There is a polynomial-time algorithm that finds an LO O(
√

n log log n/ log n)-
colouring for a hypergraph that has an LO 2-colouring.

Proof. Consider the following nondeterministic, recursive algorithm.
1. Make H linear by identifying vertices.
2. Let k = ⌈log3 n⌉.
3. Let c0 be an empty partial colouring.
4. For i from 1 to k:

a. Let (xi, yi, zi) be an edge for which xi, yi and zi do not belong to the domain of ci−1,
and the minimum of the numbers of neighbours of xi, yi and zi not in the domain of
ci−1 is as large as possible. If such an edge does not exist, then exit this loop, setting
ck = ci−1.

b. Nondeterministically choose ui ∈ {xi, yi, zi}.
c. Augment ci−1 with ui 7→ 2 and v 7→ 1 for v ∈ N(ui); let the result of “extend”-ing this

new function be ci.
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5. If ck is not a proper LO 2-colouring, then this nondeterministic execution fails.
6. Colour the vertices in the domain of ck with two large colours according to ck (i.e. colour

u with C + ck(u) for some large enough C). Remove the domain of ck from H, letting
the result be H ′

7. If each edge in H ′ has a vertex with at most O(
√

n/ log log n) neighbours, then find an
independent set in H ′ with size Ω(

√
n log n/

√
log log n) and colour it with a large colour

(but smaller then those used in the previous step), removing it from H ′.
8. Recursively colour the rest of the hypergraph with smaller colours.
Since only logarithmically many nondeterministic choices from among a constant number of
options are made, and polynomial work is done otherwise, this algorithm can be made into a
polynomial-time deterministic one. Thus we show that it is correct, by showing that it is
sound and complete.

To show completeness we need to show that at least one sequence of nondeterministic
choices doesn’t fail. It is therefore sufficient to show that, for one choice of u1, . . . , uk, all
of ci are consistent with c∗. We see that, if ci−1 is consistent with c∗, then one choice of
ui exists that makes ci consistent with c∗ (the member of {xi, yi, zi} that is assigned 2 by
c∗). Since c0 is empty and thus consistent with c∗ on its domain, we deduce inductively that
one set of nondeterministic choices that keeps ci consistent with c∗ exists, and thus that the
algorithm is complete.

Now we show soundness. Just as in the first algorithm, we always colour either by
colouring the domain of some LO 2-colouring that doesn’t intersect any edges in precisely 2
vertices with two large colours, according to that colouring; or by colouring an independent
set with one large colour. (The LO colouring ck intersects each edge in zero, one or three
vertices due to the use of “extend”.) We showed in the first algorithm that these procedures,
followed by colouring what remains with smaller colours, lead to a proper LO colouring. We
now need to show that we use O(

√
n log log n/ log n) colours. To this end, we show that we

colour Ω(
√

n log n/
√

log log n) vertices in each iteration – since colouring this many vertices
with O(1) colours at each recursive step will lead to an O(

√
n log log n/ log n) colouring

overall, as shown in Lemma 14. If the condition in step 7 is satisfied, then we clearly colour
the required number of vertices; thus suppose it is not satisfied. In this case, there exists
an edge e in H ′ whose vertices have Ω(

√
n/ log log n) neighbours. This implies that, during

step a., the edge (xi, yi, zi) could have been selected to be e. Since the number of neighbours
of a vertex in H ′ is a lower bound for the number of neighbours of a vertex in H that do
not belong to the domain of ci−1, we find that selecting e would have made the minimum of
the numbers of neighbours of xi, yi and zi to have been at least Ω(

√
n/ log log n). Thus the

actual values of xi, yi and zi must all have at least this many neighbours not in the domain
of ci−1. Also, an edge is always found in step a. – since e can always be selected. This
implies that c0 is augmented by at least Ω(

√
n/ log log n) vertices at each of the k = Θ(log n)

iterations in step 4; thus ck is defined on Ω(
√

n log n/
√

log log n) vertices. We thus deduce
that in this case we also colour enough vertices. We conclude that the algorithm is sound.

Regarding the running time, note that if a (non-deterministic) guess in Step 4.b passes
the test in Step 5, then no more guesses are made in this recursive call because the recursive
call made in Step 8 cannot fail via our completeness proof. Thus the algorithm runs in
polynomial time. ◀

4 Algebraic theory of fixed-template promise CSPs

We recount the algebraic theory of fixed-template PCSPs developed in [5] and specialised to
structures with a single relation (of arity r).
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The p-the power of an r-ary structure A = (A, RA) is a structure Ap = (Ap, RAp) where

RAp

= {((a1
1, . . . , ap

1), . . . , (a1
r, . . . , ap

r)) | (a1
1, . . . , a1

r) ∈ RA, . . . , (ap
1, . . . , ap

r) ∈ RA}.

In other words, a tuple of RAp contains r vectors of p elements of A, such that if these are
written as a matrix with r rows and p columns, each column is a member of RA. For two
r-ary structures A, B, a p-ary polymorphism from A to B is a homomorphism f : Ap → B.

▶ Example 16. Consider the binary structure A = ([2], RA), where RA is the binary
disequality relation ̸= (restricted to [2]2). The power A5 has domain [2]5 and relation
{(a, b) | a, b ∈ [2]5, ai ̸= bi, i = 1, . . . , 5}. This relation is constructed as follows: (a, b)
belongs to the relation if and only if every column of a matrix with 5 columns and 2 rows
constructed out of a, b satisfies ̸=. The matrix is the following one:(

a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

)
.

Thus, for each column to satisfy ̸=, we must have ai ̸= bi for i = 1, . . . , 5, as indicated above.
Now, consider a quinary polymorphism f : A5 → A. This is a function f : [2]5 → [2]

that satisfies the following property: if given a matrix with 2 rows and 5 columns, such that
each column is a member of RA, then by applying f to the rows of this matrix we also get a
member of RA. For instance, for the matrix(

1 2 2 1 1
2 1 1 2 2

)
,

we deduce that the pair (f(1, 2, 2, 1, 1), f(2, 1, 1, 2, 2)) ∈ RA i.e. f(1, 2, 2, 1, 1) ̸= f(2, 1, 1, 2, 2).
One such polymorphism is given by selecting the values of f from [2] such that f(x1, . . . , x5) ≡∑5

i=1 xi (mod 2).

The real power of this theory comes from minions.1A minion M is a sequence of sets
M(0), M(1), . . ., equipped with an operation that, for f ∈ M(p) and π : [p] → [q], yields
fπ ∈ M(q). The operation must satisfy the following conditions:

For f ∈ M(p), if id : [p] → [p] is the identity on [p], then fid = f .
For f ∈ M(p), π : [p] → [q] and σ : [q] → [t], we have fσ◦π = (fπ)σ.

An important class of minion is the polymorphism minion. The polymorphism minion
M = Pol(A, B) for two structures A, B with the same arity is a minion where M(p) is the
set of p-ary polymorphisms from A to B, and where, for f : Ap → B, π : [p] → [q], fπ is
given by fπ(x1, . . . , xq) = f(xπ(1), . . . , xπ(p)). It is not difficult to check that, if f : Ap → B
and π : [p] → [q], then fπ : Aq → B, as required.

In order to be able to relate polymorphism minions with the complexity of PCSPs, we
use minion homomorphisms.2 A minion homomorphism from M to N is a mapping ξ that
takes each M(p) to N (p) and that satisfies the following condition: for any π : [p] → [q] and
f ∈ M(p), ξ(f)π = ξ(fπ). The following theorem links minion homomorphisms to PCSPs.
In particular, minion homomorphisms capture precisely a certain type of polynomial-time
reductions, know as primitive-positive constructions,3 studied for CSPs [6] and PCSPs [5].

1 In category-theoretic terms, a minion is a functor from the skeleton of the category of finite sets to the
category of sets. The objects of the first category are sets [p] for p ∈ N, and the arrows are functions
between them. The functor equivalent to a minion M takes [p] to M(p), and π : [p] → [q] to f 7→ fπ.

2 In category-theoretic terms, a minion homomorphism is just a natural transformation.
3 Primitive-positive constructions (or pp-constructions, for short) capture so-called “gadget reductions”,

cf. [6, Section 3].
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▶ Theorem 17 ([5, Theorems 3.1 and 4.12]). For r-ary structures A, B and r′-ary structures
A′, B′, a primitive-positive construction-based polynomial-time reduction from PCSP(A′, B′)
to PCSP(A, B) exists if and only if Pol(A, B) → Pol(A′, B′).

Unfortunately, it is usually a complex task to explicitly construct minion homomorphisms.
An auxiliary construction called the free structure allows us to construct them more easily. For
an arbitrary minion M and an r-ary structure A = (A, RA), the free structure F = FM(A)
is an r-ary structure whose domain is F = M(|A|). To construct its relation RF, first identify
A with [n] for n = |A|, and then enumerate the tuples of RA as vectors r1, . . . , rk, where
k = |RA|. Construct functions π1, . . . , πr : [k] → [n] where πi(j) = rj

i . (If we were to arrange
r1, . . . , rk into a matrix with r rows and k columns, then πi(1), . . . , πi(k) is the i-th row of
the matrix.) Now, the tuple (f1, . . . , fr), where f1, . . . , fr ∈ M(n), belongs to RF if and only
if, for some f ∈ M(k) we have fi = fπi

.

▶ Example 18. Consider some polymorphism minion M and the ternary structure LO3
3.

We will construct F = FM(LO3
3). The domain is M(3). To construct the relation of F, we

first arrange the 15 tuples of RLO3
3 into a matrix with 3 rows and 15 columns:2 1 1 3 1 1 3 2 3 1 2 1 3 2 2

1 2 1 1 3 1 2 3 1 3 1 2 2 3 2
1 1 2 1 1 3 1 1 2 2 3 3 2 2 3

 .

Row i of this matrix can be seen as a function πi : [15] → [3]. Now the relation RF contains
precisely the tuples (fπ1 , fπ2 , fπ3) for all f ∈ M(15). Substituting the definition for fπi

, we
find that these polymorphisms fπ1 , fπ2 , fπ3 are:

(x, y, z) 7→f (y, x, x, z, x, x, z, y, z, x, y, x, z, y, y)
(x, y, z) 7→f (x, y, x, x, z, x, y, z, x, z, x, y, y, z, y)
(x, y, z) 7→f (x, x, y, x, x, z, x, x, y, y, z, z, y, y, z)

Observe that the matrix and the arguments of f are actually arranged in the same configura-
tion, with 1 replaced by x, 2 by y and 3 by z.

The following theorem connects minion homomorphisms and the free structure.

▶ Theorem 19 ([5, Lemma 4.4]). If M is a minion and A, B are r-ary structures, the
homomorphisms h : FM(A) → B are in a (natural) 1-to-1 correspondence to the minion
homomorphisms ξ : M → Pol(A, B).4 As a consequence, FM(A) → B if and only if
M → Pol(A, B).

5 Hardness results

In this section we will investigate the hardness of PCSP(LOr
k, LOr

k+1). First, we will
establish that PCSP(LOr

k, LOr
k+1) is NP-hard for r ≥ 5 and k ≥ 2. In particular, this proves

intractability of PCSP(LOr
2, LOr

3) for r ≥ 5. Second, we will show that PCSP(LOr
2, LOr

3)
with r ≥ 5 cannot be reduced to PCSP(LOr

2, LOr
3) with r = 3 and r = 4 using primitive-

positive constructions (i.e. gadget reductions [5]).

4 In category-theoretic terms, F−(A) and Pol(A, −) are functors between (in opposite directions) the
category of r-ary structures and the category of minions, and F−(A) ⊣ Pol(A, −).
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We will use a hardness result of Guruswami and Trevisan [20] (stated as Theorem 20
below) on the 1-in-r exact hitting set. An instance of this problem is an r-uniform hypergraph,
and an admissible solution is a subset of its vertices. We are then asked to maximise the
number of edges e for which exactly one vertex of e belongs to the chosen subset. An instance
is called α-satisfiable if it is possible to find a subset of vertices such that a proportion of α

of all the edges satisfy this condition. An instance is called satisfiable if it is 1-satisfiable.
We will call the problem of distinguishing a satisfiable 1-in-r exact hitting set instance from
one that is not even α-satisfiable the α-gap 1-in-r exact hitting set problem. Guruswami
and Trevisan state a weaker version of the following theorem, but their proofs establish the
following.

▶ Theorem 20 ([20, Theorem 10, Theorem 12, Lemma 13]). For any ϵ > 0, for large enough
r, the (1/(e − ϵ))-gap 1-in-r exact hitting set problem is NP-hard.

▶ Corollary 21. PCSP(LOr
2, LOr

3) is NP-hard for large enough r.

Proof. Observe that the instances of (1/2)-gap 1-in-r exact hitting set and PCSP(LOr
2, LOr

3)
are both r-uniform hypergraphs. We show that the identity function is a reduction from the
first problem to the second. For completeness, note that a satisfiable instance of 1-in-r exact
hitting set is also immediately a Yes-instance of PCSP(LOr

2, LOr
3). For soundness, consider

a Yes-instance of PCSP(LOr
2, LOr

3) i.e. an r-uniform hypergraph with an LO 2-colouring
and thus also an LO 3-colouring. Under this colouring each edge either has a unique vertex
assigned 3, or a unique vertex assigned 2; thus, at least half of the edges must contain exactly
one 2, or at least half of the edges must contain exactly one 3. We deduce that taking either
the set of vertices assigned 2, or the set of vertices assigned 3, gives us a solution that satisfies
at least half the edges of the hypergraph, viewed as a hitting set instance. ◀

How can we now leverage this basic hardness result to other values of r? We will use
chains of minion homomorphisms to do this. We define Mr = Pol(LOr

2, LOr
3). Our main

result in this section is the following.

▶ Theorem 22. The relationships between the minions Mr = Pol(LOr
2, LOr

3) for r ≥ 3 are
as shown in Figure 1, i.e., all homomorphisms not drawn or implied do not exist.

M3

M5 M6 . . . Mr . . .

M4

Figure 1 Minion homomorphism order of minions Mr for r ≥ 3.

Combining Theorems 17 and 22 gives the following.

▶ Corollary 23. PCSP(LOr
2, LOr

3) is NP-hard for r ≥ 5. Moreover, there is no polynomial-
time reduction using pp-constructions from PCSP(LOr

2, LOr
3) to PCSP(LO3

2, LO3
3) and from

PCSP(LOr
2, LOr

3) to PCSP(LO4
2, LO4

3) for r ≥ 5.

A simple proof shows the following:

▶ Theorem 24. For every r ≥ 5 and ℓ > k ≥ 2, Pol(LOr
k+1, LOr

ℓ+1) → Pol(LOr
k, LOr

ℓ).
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Proof. Consider any p-ary polymorphism f ∈ Pol(LOr
k+1, LOr

ℓ+1)(p). Consider the value of
f for inputs a1, . . . , ap ∈ [k]; due to the following matrix with r ≥ 3 rows

a1 + 1 . . . ap + 1
a1 . . . ap

...
. . .

...
a1 . . . ap

 ,

we can deduce that f(a1, . . . , ap) < f(a1 + 1, . . . , ap + 1) ∈ [ℓ + 1]. This implies that
f(a1, . . . , ap) ∈ [ℓ]. We claim this implies that f , restricted to [k]p, is a polymorphism of
Pol(LOr

k, LOr
ℓ). Consider matrix of inputs aj

i where i ∈ [p], j ∈ [r], such that each column
a1

i , . . . , ar
i is a tuple of LOr

k. Thus each column is also a tuple of LOr
k+1. Since f is a

polymorphism of PCSP(LOr
k+1, LOr

ℓ+1), we deduce that

(f(a1
1, . . . , a1

p), . . . , f(ar
1, . . . , f r

p ))

is a tuple of LOr
ℓ+1 i.e. has a unique maximum. But we already know these values belong to

[ℓ]. Since they have a unique maximum, they are a tuple of LOr
ℓ . Thus f , restricted to [k]p,

is a polymorphism of Pol(LOr
k, LOr

ℓ).
We now claim that the map f 7→ f |[k]p taking a p-ary polymorphism to its restriction on

[k]p is a minion homomorphism Pol(LOr
k+1, LOr

ℓ+1) → Pol(LOr
k, LOr

ℓ). To see why, consider
any polymorphism f ∈ Pol(LOr

k+1, LOr
ℓ+1)(p) and a function π : [p] → [q]. What we need to

prove is that

(fπ)|[k]p = (f |[k]p)π.

But note that, for x1, . . . , xp ∈ [k],

((fπ)|[k]p)(x1, . . . , xp) = fπ(x1, . . . , xp) = f(xπ(1), . . . , xπ(p))

= (f |[k]p)(xπ(1), . . . , xπ(p)) = (f |[k]p)π(x1, . . . , xp).

This concludes the proof. ◀

Theorem 24 and Corollary 23 imply the following:

▶ Corollary 25. PCSP(LOr
k, LOr

k+1) is NP-hard for r ≥ 5 and k ≥ 2.

In order to construct the minion homomorphisms, we first exhibit a simple necessary and
sufficient condition for the existence of a minion homomorphism to Pol(LOr

2, LOr
k), and a

sufficient condition for such a homomorphism to not exist.

▶ Lemma 26. Fix r ≥ 3 and k ≥ 3. Consider any polymorphism minion M. For any
element f ∈ M(r), let f1(x, y) = f(y, x, . . . , x), f2(x, y) = f(x, y, x, . . . , x), . . . , fr(x, y) =
f(x, . . . , x, y). Now, M → Pol(LOr

2, LOr
k) if and only if there exists some ω : M(2) → [k]

such that, for all f ∈ M(r), there exists a unique maximum value among ω(f1), . . . , ω(fr).

Proof. We construct FM(LOr
2). The tuples of the relation of LOr

2 are all the r-dimensional
vectors containing exactly one 2, with the other entries equal to 1. We can arrange these
tuples into an r-by-r matrix where the diagonal contains 2 and all the other elements are 1.
Replacing 1 with x and 2 with y, and applying f , we get the definitions of f1, . . . , fr. Thus
the relation of FM(LOr

2) contains precisely the tuples of form (f1, . . . , fr) for f ∈ M(r).
Thus our condition amounts to the existence of a homomorphism ω : FM(LOr

2) → LOr
k.

By Theorem 19, this is equivalent to M → Pol(LOr
2, LOr

k). ◀
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For the next lemma, call a function f block-symmetric with respect to a partition of the
arguments of f into blocks if f is not changed by arbitrarily permuting the arguments in the
blocks. For instance (x, y, z) 7→ x + y is block-symmetric with respect to the blocks {x, y}
and {z}.

▶ Lemma 27. Fix r ≥ 3 and a polymorphism minion M. If M has a block-symmetric
polymorphism of arity r with respect to a partition in which all blocks consist of at least two
elements, then M ̸→ Mr.

Proof. We use the same notation as in the proof of Lemma 26. Let f be this block-symmetric
polymorphism, and note that no polymorphism among f1, . . . , fr appears exactly once, due
to block-symmetry. Thus, for any ω : M(2) → [3], the sequence ω(f1), . . . , ω(fr) does not
have a unique maximum. Applying the previous lemma gives us the required result. ◀

▶ Theorem 28. For any r ≥ 5, Mr → Mr+1.

Proof. We will establish the statement via Lemma 26. We will use the assignment ω :
M(2) → [3] given by ω(f) = f(1, 2). To check that this satisfies our condition, we need to
investigate M(r+1)

r . Observe that an (r + 1)-ary polymorphism f ∈ M(r+1)
r is a function

from [2]r+1 to [3]; if it is applied to the rows of an r × (r +1) matrix whose columns are tuples
of the relation of LOr

2 (i.e. they contain one 2 and otherwise are 1), then the resulting values
contain a unique maximum. Similarly to Barto et. al. [4], we view f as a function from the
powerset of [r + 1] to [3]. (Thus, the input tuple (1, 2, 1, 2) is seen as equivalent to the input
set {2, 4}.) Under this view, f is a polymorphism if and only if, for any partition A1, . . . , Ar

of [r + 1], the sequence f(A1), . . . , f(Ar) has a unique maximum element. (Observe that
each part Ai corresponds to a row in the matrix mentioned earlier). To show that ω satisfies
our condition, what we need to prove is that the sequence f{1}, . . . , f{r + 1} has a unique
maximum. We have three cases depending on the maximum of these values.

Maximum is 3. Suppose that at least one of f{1}, . . . , f{r+1} is 3. Without loss of generality,
say f{1} = 3. Suppose for contradiction that another of the values is also 3; without loss
of generality, say f{2} = 3. But consider the partition {1}, {2}, {3, . . . , r + 1}, ∅, . . . , ∅
of [r + 1] into r sets. Since f is a polymorphism, the images of these sets must have a
unique maximum value. But if f{1} = f{2} = 3 this is impossible! So if f{1} = 3, then
this is the unique maximum of the sequence f{1}, . . . , f{r + 1}.

Maximum is 2. Now, suppose that all of f{1}, . . . , f{r + 1} are either 1 or 2, and that at
least one of these (say f{1}) is 2. Suppose for contradiction that another value (say f{2})
is also 2. Due to the partitions {1}, {2}, {3, 4}, {5}, . . . , {r + 1}; {1}, {2}, {3}, {4},
{5, 6}, {7}, . . . , {r + 1} we deduce that f{3, 4} = f{5, 6} = 3. This is impossible because
of the partition {1, 2, 7, . . . , r + 1}, {3, 4}, {5, 6}, ∅, . . . , ∅. Thus in this case f{1} = 2 is
the unique maximum of the sequence f{1}, . . . , f{r + 1}.

Maximum is 1. Finally, suppose that f{1} = . . . = f{r + 1} = 1. Consider the partitions
{1, 2}, {3}, . . . , {r + 1}; {1}, {2}, {3, 4}, {5}, . . . , {r + 1}; and {1}, . . . , {4}, {5, 6}, {7},
. . . , {r + 1}. Since all the singletons have image 1, the two-element sets here must have
image 2 or 3. At least two of them must therefore have the same image; if that image is 3,
then we have a contradiction like in the last case. Thus suppose, without loss of generality,
that f{1, 2} = f{3, 4} = 2. Considering the partition {1, 2}, {3, 4}, {5}, . . . , {r + 1}, ∅,
we find that f(∅) = 3. But this cannot happen, due to partition ∅, . . . , ∅, {1, . . . , r + 1}.
Thus this case is impossible.

Our assignment of values to polymorphisms of M(2)
r is correct. Therefore we deduce that

Mr → Mr+1. ◀
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▶ Theorem 29. For any r ≥ 3, k ≥ 3, Pol(LOr+2
2 , LOr+2

k ) → Pol(LOr
2, LOr

k). In particular,
for k = 3, Mr+2 → Mr.

Proof. We use the same notation convention as in Theorem 28, and we take ω(f) = f(1, 2).
Thus, we want to prove that, if f is a function that takes subsets of [r] to [k] such that, for any
partition A1, . . . , Ar+2, the sequence f(A1), . . . , f(Ar+2) has a unique maximum, then the
sequence f{1}, . . . , f{r} has a unique maximum. But consider the partition {1}, . . . , {r}, ∅, ∅,
and note that the largest value cannot be f(∅) (since f(∅) appears twice). Thus we deduce
that one of f{1}, . . . , f{r} is the maximum, and furthermore that this maximum is strictly
larger than all the other values in this sequence. Thus, Mr+2 → M. ◀

Proof of Theorem 22. We have Mr+1 → Mr+2 → Mr, so Mr+1 → Mr for every r ≥ 5
by Theorems 28 and 29. Thus, M5 ⇄ M6 ⇄ . . .; furthermore, by Theorem 29, we have
M5 → M3. Finally, by Theorem 28 and Theorem 29, we have M5 → M6 → M4.

It remains to show that (i) M3 ̸→ Mr for any r ≥ 4 and that (ii) M4 ̸→ Mr for any
r ≥ 3, r ̸= 4. An auxiliary function will be useful for both: let f : N → N map 0 to 2, 1 to 1,
and all other values to 3.

Regarding (i), note that M3 has a quaternary block-symmetric polymorphism with
respect to a partition in which all blocks have size 2, viz. (a, b, c, d) 7→ f(a + b). Thus, by
Lemma 27, M3 ̸→ M4. Since Mr → M5 → M4 for r ≥ 4, we deduce that M3 ̸→ Mr.

Regarding (ii), note that M4 has a ternary symmetric polymorphism, viz. (a, b, c) 7→
f(a + b + c). Thus, by Lemma 27, M4 ̸→ M3. Since Mr → M5 → M3 for r ≥ 3, r ̸= 4, we
deduce that M4 ̸→ Mr. ◀

In Theorem 28, using Theorem 17, we showed that hardness of PCSP(LOr
2, LOr

3) for
some large r implies hardness of PCSP(LO5

2, LO5
3). We now show that the same is true

for PCSP(LOr
2, LOr

k): hardness of PCSP(LOr
2, LOr

k) for some large r implies hardness of
PCSP(LOr(k)

2 , LOr(k)
k ), for some r(k) that depends only on k.

▶ Theorem 30. For k ≥ 4, r ≥ 4k − 3, Pol(LOr
2, LOr

k) → Pol(LOr+1
2 , LOr+1

k ).

Note that the lower bound on r in the statement is 4k − 3, which is worse than the bound
for k = 3 in Theorem 28. We do not know whether a smaller bound is possible for k > 3.

Proof. Fix some k and let Nr = Pol(LOr
2, LOr

k). We show that Nr → Nr+1 for r ≥ 4k − 3.
Use the same notation as in Theorem 28, and the same choice of ω; what we want to show

is that if f ∈ N (r+1)
r then the sequence f{1}, f{2}, . . . , f{r + 1} has a unique maximum.

Recall that f satisfies the property that, if A1, . . . , Ar is a partition of {1, . . . , r + 1}, then
f(A1), . . . , f(Ar) has a unique maximum. We now split into three cases, depending on the
maximum of f{1}, . . . , f{r + 1}.
Maximum is k. The maximum must be unique in this case. If we suppose, contrarily and

without loss of generality, that f{1} = f{2} = k, then the partition {1}, {2}, {3, . . . , r +
1}, ∅, . . . , ∅ yields our contradiction.

Maximum is 1. This case is impossible. Consider the partitions {1, 2}, {3}, . . . , {r + 1};
{1}, {2}, {3, 4}, {5}, . . . , {r + 1}; . . . ; {1}, . . . , {4k − 3, 4k − 2}, {4k − 1}, . . . , {r + 1}.
These partitions exist since 4k − 2 ≤ r + 1. All of the two-element sets must be mapped
to some values in {2, . . . , k} (they cannot be 1 since then all the parts in the previous
partitions map to 1), and there are 2k −1 two-element sets. Thus by pidgeonhole principle
three sets must be mapped to the same value. Thus suppose f{1, 2} = f{3, 4} = f{5, 6}.
Considering the partition {1, 2}, {3, 4}, {5, 6}, {7}, . . . , {r + 1}, ∅, ∅ we find that none of
the images through f can be the unique maximum (since the first three and the last two
are equal, and all the rest are 1). Thus we have the required contradiction.
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Maximum is neither. Suppose that the maximum is 1 < k′ < k, and suppose that the
maximum is not unique. Thus without loss of generality let f{1} = f{2} = k′. Now
consider the partitions {1}, {2}, {3, 4}, {5}, . . . , {r + 1}; . . . ;{1}, {2}, . . . , {4k − 4}, {4k −
3, 4k − 2}, {4k − 1}, . . . , {r + 1}. The two-element sets must be mapped to a value from
{k′+1, . . . , k} i.e. to one of at most k−2 values, and there are 2k−2 sets. Thus at least three
of these sets are assigned the same value. Suppose without loss of generality that f{3, 4} =
f{5, 6} = f{7, 8}. Then the partition {1}, {2}, {3, 4}, {5, 6}, {7, 8}, {9}, . . . , {r + 1}, ∅, ∅
gives us a contradiction: the images of the first two sets, the next three sets, and the last
two sets form equal blocks; and all other sets have images that are not greater than the
images of the first two sets.

Thus, since our choice of ω is valid, by Lemma 26, we find that Nr → Nr+1. ◀

6 Conclusions

The question about the complexity of PCSP(LO3
2, LO3

k) for constant k ≥ 3 raised in [4]
stays open. The complexity of PCSP(LOr

k, LOr
ℓ) is open except for the hardness obtained

in our work. In this paper, we show NP-hardness for k ≥ 2, ℓ = k + 1, and any r ≥ 5. In the
full version of this paper [25], we show NP-hardness for 2 ≤ k ≤ ℓ and any r ≥ ℓ − k + 4.

The minion homomorphisms (and lack thereof) between the polymorphism minions
Pol(LOr

2, LOr
3) for various values of r have interesting implications for the complexity of

PCSPs more broadly. First, if one were to prove that this problem is hard for r = 3 or
r = 4, then our results imply that hardness in linearly ordered colourings does not necessarily
follow from minion homomorphisms and thus in particular cannot be obtained via “gadget
reductions” [5]. This is in contrast to the case of (non-promise) CSPs, where it is known [7]
(cf. also [6])5 that all NP hardness can be shown using minion homomorphisms.6 Second,
our results show that, if one proves that PCSP(LOr

2, LOr
ℓ) is hard for some large arity r,

then it is hard PCSP(LOr′

2 , LOr′

ℓ ) for some arity r′ = r′(ℓ) that depends only on ℓ.
Going beyond the realm of fixed-template PCSPs [5] (which limits the number of colours

by a constant), what is the smallest function k(n) for which PCSP(LO3
2, LO3

k(n)) is solvable
efficiently? There is no clear reason to believe that positive result from the present paper
with k(n) = O(

√
n log log n/ log n) is optimal.
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Abstract
The stochastic shortest path problem (SSPP) asks to resolve the non-deterministic choices in a
Markov decision process (MDP) such that the expected accumulated weight before reaching a target
state is maximized. This paper addresses the optimization of the variance-penalized expectation
(VPE) of the accumulated weight, which is a variant of the SSPP in which a multiple of the variance
of accumulated weights is incurred as a penalty. It is shown that the optimal VPE in MDPs with
non-negative weights as well as an optimal deterministic finite-memory scheduler can be computed
in exponential space. The threshold problem whether the maximal VPE exceeds a given rational
is shown to be EXPTIME-hard and to lie in NEXPTIME. Furthermore, a result of interest in its
own right obtained on the way is that a variance-minimal scheduler among all expectation-optimal
schedulers can be computed in polynomial time.
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1 Introduction

Markov decision processes (MDPs) are a standard operational model comprising randomiza-
tion and non-determinism and are widely used in verification, articifical intelligence, robotics,
and operations research. In each state of an MDP, there is a non-deterministic choice from a
set of actions. Each action is equipped with a weight and a probability distribution according
to which the successor state is chosen randomly. In the analysis of systems modelled as
MDPs, one typically is interested in the worst- or best-case behavior, where worst and best
case range over all resolutions of the non-determinism. So, the resulting algorithmic problems
on MDPs usually ask to resolve non-deterministic choices by specifying a scheduler such
that the resulting probabilistic behavior is optimized with respect to an objective function.
If the weights are used to model one of various quantitative aspects of a system such as
costs, resource consumption, rewards, or utility, a frequently encountered such optimization
problem is the stochastic shortest path problem (SSPP) [5,8]. It asks to optimize the expected
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value of the accumulated weight before reaching a target state. Example applications include
the analysis of worst-case expected termination times of probabilistic programs or finding
the optimal controls in a motion planning scenario with random external influences.

While a solution to the SSPP provides guarantees on the behavior of a system in all
environments or indicates the optimal control to maximize expected rewards, it completely
disregards all other aspects of the resulting probability distribution of the accumulated weight
besides the expected value. In almost all practical applications, however, the uncertainty
coming with the probabilistic behavior cannot be neglected. In traffic control systems or
energy grids, for example, large variability in the throughput comes at a high cost due to the
risk of traffic jams or the difficulty of storing surplus energy. Also a probabilistic program
employed in a complex environment might be of more use with a higher expected termination
time in exchange for a lower chance of extreme termination times.

To overcome these shortcomings of the SSPP, various additional optimization problems
have been studied in the literature: Optimizing conditional expected accumulated weights
under the condition that certain system states are reached allows for a more fine-grained
system analysis by making it possible to determine the worst- or best-case expectation in
different scenarios [4, 20]. Given a probability p, quantiles on the accumulated weight in
MDPs, also called values-at-risk in the context of risk analysis, are the best bound B such
that the accumulated weight exceeds B with probability at most p in the worst or best
case [11,27]. The conditional value-at-risk and the entropic value-at-risk are more involved
measures that have been studied in this context [1,14]. They quantify how far the probability
mass of the tail of the probability distribution lies above the value-at-risk. The arguably
most prominent measure for the deviation of a random variable from its expected value is
the variance. The computation of the variance of accumulated weights has been studied in
Markov chains [28] and in MDPs [16, 17]. The investigations of variance in MDPs in the
literature is discussed in more detail in the “Related Work” section below.

Variance-penalized expectation (VPE). In this paper, we investigate a variant of the SSPP
in which the costs caused by probabilistic uncertainty are priced in to the objective function:
We study the optimization of the variance-penalized expectation (VPE), a well-known measure
that combines the expected value µ and the variance σ2 into the single objective function
µ− λ · σ2 where λ is a parameter that can be varied to aim for different tradeoffs between
expectation and variance. In the context of optimization problems on MDPs, the VPE has
been studied, e.g., in [7, 9].

Furthermore, the VPE finds use in an area of research primarily concerned with the
tradeoffs between expected performance and risks, namely, the theory of financial markets
and investment decision-making: In 1952, Harry Markowitz introduced modern portfolio
theory that evaluates portfolios in terms of expected returns and variance of the returns
[18], for which he was later awarded the Nobel Prize in economics. A portfolio lies on the
Markowitz efficient frontier if the expected return cannot be increased without increasing the
variance and, vice versa, the variance cannot be decreased without decreasing the expectation.
The final choice of a portfolio on the efficient frontier depends on the investors preferences.
In this context, the VPE µ− λ · σ2 is a simple, frequently used way to express the preference
of an investor using the single parameter λ capturing the risk-aversion of the investor (see,
e.g., [10]). In more involved accounts, the investor’s preference is described in terms of a
utility function mapping returns to utilities. For the commonly used exponential utility
function u(x) = −e−αx and normally distributed returns, the objective of an investor trying
to maximize expected utility turns out to be equivalent to the maximization of the VPE
with parameter λ = α/2 [2, 23].
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Figure 1 The left hand side shows the MDP M for Example 1. On the right hand side, all possible
combinations of expected accumulated weight and variance for schedulers for M are depicted. The
points corresponding to the four deterministic schedulers are marked by the corresponding action.
Furthermore, the blue line indicates all points at which µ − 1 · σ2 = 20/9 and the arrow indicates
the direction in which the value of this objective function increases.

For an illustration of the VPE, consider the following example:

▶ Example 1. Consider the MDP M depicted in Figure 1 where non-trivial probability values
as well as the weights accumulated are denoted next to the transitions. We want to analyze
the possible trade-offs between the variance and the expected value of the accumulated
weight that we can achieve in this MDP.

The only non-deterministic choice is in the state sinit. Choosing action α leads to goal
with expected weight and variance 0. For the remaining actions, the accumulated weight
follows a geometric distribution where in each step some weight k is accumulated and goal is
reached with some probability p after the step. For such a distribution, it is well-known that
the expected accumulated weight is k/p and the variance is (k/p)2 · (1 − p). Plugging in the
respective values for the distributions reached after actions β, γ, and δ, we obtain the pairs
of expectations and variances as depicted on the right-hand side of Figure 1. In particular,
choosing γ leads to an expectation of 10/3 and a variance of 10/9.

Making use of randomization over two different actions τ and σ with probability p and
1−p, respectively, for some p ∈ (0, 1), we will see in Remark 12 in Section 4 that the expected
values and variances under the resulting schedulers lie on a parabolic line segment depicted
in black that is uniquely determined by the expected values and variances under τ and σ.
By further randomization over multiple actions, combinations of expectation and variance in
the gray region in Figure 1 can be realized.

Consider now the VPE with parameter λ = 1. The dashed blue line in Figure 1 marks all
points at which µ− 1 · σ2 = 20/9. The arrow indicates in which direction the value of the
VPE increases. So, it turns out that choosing action γ maximizes the VPE in this case; the
slightly lower expectation compared to δ is compensated by a significantly lower variance.
Geometrically, we can observe that the optimal point for the VPE for any parameter will
always lie on the border of the convex hull of the region of feasible points in the µ-σ2-plane as
the VPE is a linear function of expectation and variance. For varying values of λ, also α (for
λ ≥ 3) and δ (for λ ≤ 1/13) can constitute the optimal choice in sinit for the maximization of
the VPE, while β is not optimal for any choice of λ as it lies in the interior of the convex
hull of the feasible region. The results of Section 4 will show that in general, the optimal
point for the VPE can be achieved by a deterministic finite-memory scheduler. ⌟

ICALP 2022
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Contribution. The main results of this paper are the following:
1. Among all schedulers that optimize the expected accumulated weight before reaching a

target, a variance-minimal scheduler can be computed in polynomial time and chosen to
be memoryless and deterministic (Section 3).

2. The maximal VPE in MDPs with non-negative weights can be computed in exponential
space. The maximum is obtained by a deterministic scheduler that can be computed in
exponential space as well (Section 4). As memory, an optimal scheduler only needs to keep
track of the accumulated weight up to a bound computable in polynomial time. As soon as
the bound is reached, optimal schedulers can switch to the behavior of a variance-minimal
scheduler among the expectation-minimal schedulers that can be computed by result 1.

3. The threshold problem whether the maximal VPE is greater or equal to a rational ϑ is in
NEXPTIME and EXPTIME-hard (Section 4).

Related work. Accumulated rewards. In [16], a characterization of variance-minimal scheul-
ders among the schedulers maximizing the expected accumulated weight in MDPs is given.
Here, we provide a simpler proof based on the calculations of [28]; we moreover show how to
compute such schedulers in polynomial time. [16] also contains hints for a similar character-
ization of discounted reward, and developments for mean payoff. Another closely related
work is [17] which study the following multi-objective problem for the accumulated weight in
finite-horizon MDPs: given η, ν is there a scheduler achieving an expectation of at least η, and
a variance of at most ν? This problem is shown to be NP-hard, and exact pseudo-polynomial
time algorithm is given for the existence of a scheduler with expectation η and variance
≤ ν. Furthermore, pseudo-polynomial approximation algorithms are given for optimizing
the expectation under a constraint on the variance, and optimizing the variance under a
constraint on the expectation.

Discounted rewards. In [12], the author proves that memoryless moment-optimal sched-
ulers exist for the discounted reward, that is, schedulers that maximize the expectation,
minimize the variance, maximize the third moment, and so on. Moreover, an algorithm is
described to compute such schedulers. In [25], a formula for the variance of the discounted
reward is given for memoryless schedulers and for the finite-horizon case, in MDPs and
semi-MDPs. Variance-minimal schedulers among those maximizing the expected discounted
reward until a target set is reached are studied in [29] for MDPs with varying discount
factors. [31] presents a policy iteration algorithm to minimize variance of the discounted
weight among schedulers achieving an expectation equal to a given constant.

Mean payoff. For mean payoff objectives, variance was studied in [26] for memoryless
strategies, and algorithms were given to compute schedulers that achieve given bounds on
the expectation and the variance [6]. The latter paper also considers the minimization of the
variability, which is the average of the squared differences between the expected mean-payoff
and each observed one-step reward. In [15], the author considers optimizing the expected
mean payoff and the average variance. Average variance is defined as the limsup of the
variances of the partial sums. They show how to minimize average variance among ϵ-optimal
strategies for the expected mean payoff. Policy iteration algorithms were given in [30, 32] to
minimize variance or variability of the mean payoff (without constraints on the expectation).

Variance-penalized expectation. The VPE was studied for finite-horizon MDPs with
terminal rewards in [7]. In [9], this notion was studied for the expectation and the variability
of both mean payoff and discounted rewards. [33] presents a policy iteration algorithm
converging against local optima for a similar measure.
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2 Preliminaries

We give basic definitions and present our notation (for details, see, e.g., [24]). Afterwards,
we provide auxiliary results on expected frequencies used in the subsequent sections.

2.1 Notation and definitions
Notations for Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S,Act, P, sinit, goal,wgt) where S is a finite set of states, Act a finite set of actions,
P : S × Act × S → [0, 1] ∩ Q the transition probability function, sinit ∈ S the initial state,
goal ∈ S a designated target state, and wgt : S × Act → Z the weight function. We require
that

∑
t∈S P (s, α, t) ∈ {0, 1} for all (s, α) ∈ S × Act. We say that action α is enabled

in state s iff
∑

t∈S P (s, α, t) = 1 and denote the set of all actions that are enabled in
state s by Act(s). In this paper, for all MDPs, we assume that goal is the only trap
state in which no actions are enabled, that goal is reachable from all other states s, and
that all states are reachable from sinit . The paths of M are finite or infinite sequences
s0 α0 s1 α1 . . . where states and actions alternate such that P (si, αi, si+1) > 0 for all i ≥ 0.
For π = s0 α0 s1 α1 . . . αk−1 sk, wgt(π) = wgt(s0, α0) + . . . + wgt(sk−1, αk−1) denotes the
accumulated weight of π, P (π) = P (s0, α0, s1) · . . . · P (sk−1, αk−1, sk) its probability, and
last(π) = sk its last state. A path is called maximal if it is infinite or ends in the trap state
goal. The size of M is the sum of the number of states plus the total sum of the logarithmic
lengths of the non-zero probability values P (s, α, s′) as fractions of co-prime integers and the
weight values wgt(s, α).

An end component of M is a strongly connected sub-MDP formalized by a subset S′ ⊆ S

of states and a non-empty subset A(s) ⊆ Act(s) for each state s ∈ S′ such that for each
s ∈ S′, t ∈ S and α ∈ A(s) with P (s, α, t) > 0, we have t ∈ S′ and such that in the resulting
sub-MDP all states are reachable from each other. An end-component is a 0-end-component
if it only contains cycles whose accumulated weight is 0 (so-called 0-cycles) so that the
accumulated weight is bounded on all (infinite) paths in the end component. We will further
use the mean payoff measure as tool to classify end-components. For an infinite path ζ,
the mean payoff is defined as MP(ζ) = lim infn→∞

1
n wgt(pref (ζ, n)) where pref (ζ, n) is the

prefix of length n of ζ.

Scheduler. A scheduler for M is a function S that assigns to each non-maximal path π a
probability distribution over Act(last(π)). If the choice of a scheduler S depends only on the
current state, i.e., if S(π) = S(π′) for all non-maximal paths π and π′ with last(π) = last(π′),
we say that S is memoryless. In this case, we also view schedulers as functions mapping states
s ∈ S to probability distributions over Act(s). A scheduler S that satisfies S(π) = S(π′)
for all pairs of finite paths π and π′ with last(π) = last(π′) and wgt(π) = wgt(π′) is called
weight-based and can be viewed as a function from state-weight pairs S × Z to probability
distributions over actions. If there is a finite set X of memory modes and a memory update
function U : S×Act ×S×X → X such that the choice of S only depends on the current state
after a finite path and the memory mode obtained from updating the memory mode according
to U in each step, we say that S is a finite-memory scheduler. A scheduler S is called
deterministic if S(π) is a Dirac distribution for each path π in which case we also view the
scheduler as a mapping to actions in Act(last(π)). Given a scheduler S, ζ = s0 α0 s1 α1 . . .

is a S-path iff ζ is a path and S(s0 α0 . . . αk−1 sk)(αk) > 0 for all k ≥ 0. Given a scheduler
S and a finite S-path π, we define the residual scheduler S↑π by S↑π(ρ) = S(π ◦ ρ) for
each finite path ρ starting in last(π).

ICALP 2022
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Probability measure. We write PrSM,s to denote the probability measure induced by a
scheduler S and a state s of an MDP M. It is defined on the σ-algebra generated by the
cylinder sets Cyl(π) of all maximal extensions of a finite path π = s0 α0 s1 α1 . . . αk−1 sk

starting in state s, i.e., s0 = s, by assigning to Cyl(π) the probability that π is realized under S,
which is S(s0)(α0)·P (s0, α0, s1)·S(s0α0s1)(α1)·. . .·S(s0α0 . . . sk−1)(αk−1)·P (sk−1, αk−1, sk).
For details, see [24].

For a random variable X that is defined on (some) maximal paths in M, we denote the
expected value of X under the probability measure induced by a scheduler S and state s
by ES

M,s(X). We define Emin
M,s(X) = infS ES

M,s(X) and Emax
M,s(X) = supS ES

M,s(X) where S

ranges over all schedulers for M under which X is defined almost surely. The variance of X
under the probability measure determined by S and s in M is denoted by VS

M,s(X) and
defined by

VS
M,s(X) def= ES

M,s((X − ES
M,s(X))2) = ES

M,s(X2) − ES
M,s(X)2.

Furthermore, for a measurable set of paths ψ with positive probability, ES
M,s(X|ψ) denotes

the conditional expectation of X under ψ. If s = sinit, we sometimes drop the subscript s.
These notations are extended to end-components of a given MDP, which are themselves

seen as MDPs. We may, for instance, write Emin
E,s (X) where E is an end-component of M,

and s is a state in E , and the minimization ranges over schedulers of M that do not leave E .

Accumulated weight. For maximal paths ζ of M, we define the following random variable
goal:

goal(ζ) =
{

wgt(ζ) if ζ ⊨ ♢goal,
undefined otherwise.

Recall that we only take schedulers under which a random variable is defined almost surely
into account when addressing minimal or maximal expected values. For the expected value
of goal to be defined, it is necessary that goal is reached almost surely. We call a scheduler
S with PrSM(♢goal) = 1 proper. So, in the definition of the maximal (or minimal) expected
accumulated weight Emax

M ( goal) = supS ES
M( goal), S ranges over all proper schedulers.

2.2 Auxiliary conclusions from results on expected frequencies
In this section, we present conclusions from well-known results on the expected frequencies
of state-weight pairs in MDPs in the formulation in which we use them in the paper. Let
M = (S,Act, P, sinit, goal,wgt) be an MDP with weights in Z and let S be a scheduler. For
each state-weight pair (s, w) ∈ S × Z, we define the expected frequency ϑSs,w under S by

ϑSs,w
def= ES

M(number of visits to s with accumulated weight w)

where the random variable “number of visits to s with accumulated weight w” counts the
number of prefixes π of a maximal paths ζ with last(π) = s and wgt(π) = w. Note also that
in MDPs M in which all end components have negative maximal expected mean-payoff, the
expected frequencies of all state-weight pairs are finite under any scheduler.

▶ Lemma 2. Let M be an MDP and let S be a scheduler such that the expected frequency
ϑSs,w are finite for all state-weight pairs (s, w) ∈ S × Z. Then, there is a weight-based
(randomized) scheduler T with ϑSs,w = ϑTs,w for all (s, w) ∈ S × Z.
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Proof sketch. Analogous to [24, Theorem 5.5.1]: For each state-weight pair (s, w) and each
action α ∈ Act(s), let ϑSs,w,α be the expected number of times that α is chosen under S

after finite path ending in state s with weight w. Define the scheduler T as a function from
S × Z → Distr(Act) by letting

T(s, w)(α) def=
ϑSs,w,α

ϑSs,w

. ◀

▶ Corollary 3. Let M be an MDP. Let S be a scheduler for which ES
M( goal) and VS

M( goal)
are defined and for which the expected frequency ϑSs,w are finite for all state-weight pairs
(s, w) ∈ S × Z. Then, there is a weight-based scheduler T with

ES
M( goal) = ET

M( goal) and VS
M( goal) = VT

M( goal).

Proof. The expected value and the variance of goal under a scheduler S depend only on
the expected frequencies ϑSgoal,w with w ∈ Z. ◀

In this paper, we address questions concerning the possible combinations of expected
value and variance of the random variable goal. Due to this corollary, we can restrict our
attention to weight-based schedulers for all investigations in the sequel.

Given two scheduler S and T, our definition of schedulers does not directly allow us
to define a new scheduler R that behaves according to S with probability p ∈ (0, 1) and
according to T with probability 1−p. For each state-weight pair (s, w) the expected frequency
under the hypothetical scheduler R would be p · ϑSs,w + (1 − p) · ϑTs,w. The following lemma
states that a scheduler achieving these frequencies exists:

▶ Lemma 4. Let M be an MDP as above and let S and T be schedulers such that the
expected frequency ϑSs,w and ϑTs,w are finite for all state-weight pairs (s, w) ∈ S × Z. Further,
let p ∈ (0, 1). Then, there exists a scheduler R such that ϑRs,w = p · ϑSs,w + (1 − p) · ϑTs,w for
all state-weight pairs (s, w).

Proof sketch. Let ϑSs,w,α be defined as in the proof above. We define the weight-based
scheduler R as follows: For all state-weight pairs (s, w) and all α ∈ Act(s), let

R(s, w)(α) =
p · ϑSs,w,α + (1 − p) · ϑTs,w,α

p · ϑSs,w + (1 − p) · ϑTs,w

.

The proof of the correctness is analogous to [13, Theorem 9.12]. ◀

This lemma allows us to introduce the following notation:

▶ Definition 5. Given M, S and T as in the previous lemma, we denote the scheduler R

whose existence is stated in the lemma by p · S ⊕ (1 − p) · T.

3 Minimal variance among expectation-optimal schedulers

Let us call a scheduler expectation-optimal if it maximizies the expectation of goal from a
given state s. In this section, we prove a result that is of interest in its own right and that
will play a crucial role in our investigation of the optimization of the VPE in the following
section. Namely, we show how to compute a scheduler that minimizes the variance among
expectation-optimal schedulers in polynomial time. Note that in MDPs with weights in
Z, the mimimization of the expectation of goal can be reduced to the maximization by
multiplying all weights with −1. This change of weights does not affect the variance and
hence all results of this section also apply to expectation-minimal schedulers.

ICALP 2022
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We assume that in a given MDP M = (S,Act, P, sinit,wgt, goal), the maximal achievable
expectation of goal is finite. This can be checked in polynomial time [3] and, when this value
is finite, it is achievable by memoryless deterministic strategies. By [3], all end components E
of M are then either 0-end components or satisfy Emax

E (MP) < 0.
The algorithm proceeds as follows. First, a transformation is applied so as to ensure

that the only end-components in M are such that the maximal achievable expected mean
payoff is negative; while preserving the expectation and the variance of goal (Lemma 6).
We then prune the MDP so that all actions are optimal for maximizing the expected goal
(Lemma 7). It follows that all schedulers then achieve the same expected goal. We then
derive an equation system in which the variances at each state are unknowns, while the
expectations are known constants (Lemma 8). We conclude by showing that this equation
system admits a unique solution and is solvable in polynomial time. Omitted proofs can be
found in [22].

▶ Lemma 6 ([3]). Let M = (S,Act, P, sinit,wgt, goal) be an MDP with Emax
M ( goal) < ∞.

There is a polynomial transformation which outputs an MDP M′ with the following properties:
1. M′ has no 0-end-components,
2. there is a mapping f from schedulers of M to those of M′ such that for all proper

schedulers S for M, ES
M( goal) = Ef(S)

M′ ( goal), and VS
M( goal) = Vf(S)

M′ ( goal).
3. there is a mapping g from schedulers of M′ to those of M such that for all proper

schedulers S for M′, Eg(S)
M ( goal) = ES

M′( goal), and Vg(S)
M ( goal) = VS

M′( goal).

From now on, by the previous lemma, we assume that M only has end-components E
with Emax

M (MP) < 0. We start by computing Emax
M ( goal) with the following equation:

µs =
{

0 if s = goal,
maxa∈Act(s)

∑
s′∈S P (s, a, s′)(wgt(s, a) + µs′) otherwise. (∗)

By [5], (∗) has the unique solution µs = Emax
M ( goal) and this solution is computable

in polynomial time via linear programming. Let us define Actmax(s) as the set of actions
from s which satisfy (∗) with equality, i.e. Actmax(s) def= {a ∈ Act(s) | µs = wgt(s, a) +∑

s′∈S P (s, a, s′)µs′}, and let M′ be obtained by restricting M to actions from Actmax. By
standard arguments (see [22]), we can show the following lemma:

▶ Lemma 7. Let (µs)s∈S be the solution of (∗) for an MDP M. Let M′ obtained from M
as above. Then, M′ has no end-components. Moreover, for all s ∈ S, all schedulers S of
M′ achieve ES

M′ [ goal] = µs.

So, in order to find the variance-minimal scheduler among expectation optimal schedulers
for M, it is sufficient to find a variance-minimal scheduler for M′. We derive the following
lemma by adapting [28] to MDPs.

▶ Lemma 8. Consider an MDP M, and assume that there is a vector (µs)s∈S of values
such that all schedulers S satisfy ∀s ∈ S,ES

M,s( goal) = µs. Then, (Vinf
M,s( goal))s∈S is the

unique solution of the following equation:

Vs =
{

0 if s = goal,
mina∈Act(s)

∑
t∈S P (s, a, t)

(
(wgt(s, a) + µt − µs)2 + Vt

)
otherwise. (∗∗)

Note that the equation system (∗∗) is the same as the equation system used to minimize
the expected accumulated weight before reaching goal under the weight function wgt ′ that
assigns the non-negative weight (wgt(s, a) + µt − µs)2 to the transition (s, α, t). So, this
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equation system is solvable in polynomial time [8]. Using that all schedulers in M′ achieve
an expected accumulated weight of µs when starting in state s, the results of this section
can be combined to the following theorem.

▶ Theorem 9. Given an MDP M such that Emax
M [ goal] < ∞, a memoryless deterministic,

expectation-optimal scheduler S such that VS
M,s[ goal] is minimal among all expectation-

optimal schedulers for any state s is computable in polynomial time.

4 Variance-penalized expectation

The goal of this section is to develop an algorithm to compute the optimal variance-penalized
expectation (VPE). Given a rational λ > 0, we define the VPE with parameter λ under a
scheduler S as

VPE[λ]SM
def= ES

M( goal)−λ ·VS
M( goal) = ES

M( goal)−λ ·ES
M( goal2)+λ ·(ES

M( goal))2.

Task. Compute the maximal variance-penalized expectation

VPE[λ]max
M

def= sup
S

VPE[λ]SM

where the supremum ranges over all proper schedulers. Furthermore, compute an optimal
scheduler S with VPE[λ]SM = VPE[λ]max

M .

Throughout this section, we will restrict ourselves to MDPs M = (S,Act, P, sinit,wgt, goal)
with a weight function wgt : S × Act → N, i.e., we only consider MDPs with non-negative
weights. Key results established in this section do not hold in the general setting with
arbitrary weights and further complications arise. In the conclusions we will briefly discuss
these complications.

As before, we are only interested in schedulers that reach the goal with probability 1. If
the maximal expectation Emax

M ( goal) < ∞, it is well-known that in this case of non-negative
weights, all end components of M are 0-end components [3,8]. Hence, w.l.o.g., we can assume
that M has no end components throughout this section by Lemma 6. In this case, goal is
defined on almost all paths under any scheduler. So, in particular the values ES

M( goal) and
VS

M( goal) are defined for all schedulers S. Furthermore, as we have seen in Corollary 3,
it is sufficient to consider weight-based schedulers for the optimization of VPEs. The main
result of this section is the following:

▶ Main result. Given an MDP M and λ as above, the optimal value VPE[λ]max
M and an

optimal scheduler S can be computed in exponential space. Given a rational ϑ, the threshold
problem whether VPE[λ]max

M ≥ ϑ is in NEXPTIME and EXPTIME-hard.

To obtain the main result, we will first prove that the maximal VPE is obtained by
a deterministic scheduler (Section 4.1). This result can then be used for the EXPTIME-
hardness proof for the threshold problem (Section 4.2). The key step to obtain the upper
bounds of the main result is to show that optimal schedulers have to minimize the weight
that is expected to still be accumulated after a computable bound of accumulated weight
has been exceeded. We call such a bound a saturation point (Section 4.3). Finally, we show
how to utilize the saturation point result to solve the threshold problem and to compute the
optimal VPE (Section 4.4). Proofs omitted in this section can be found in [22].
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▶ Remark 10. In the formulation presented here, the goal is to maximize the expected
accumulated weight with a penalty for the variance. All results and proofs in this section,
however, hold analogously for the variant supS −ES

M( goal) − λ ·VS
M( goal) of the maximal

VPE in which the goal is to minimize the expected accumulated weight while receiving a
penalty for the variance. In particular, the same saturation point works and optimal schedulers
still have to minimize the expected accumulated weight as soon as the accumulated weight
exceeds the saturation point. ⌟

4.1 Existence of optimal deterministic schedulers
We begin this section with a lemma describing how the variance of accumulated weight
behaves under convex combinations of schedulers. This will allow us to show that the maximal
VPE can be approximated by deterministic schedulers with the help of Lemma 14 describing
a connection between randomization and convex combinations. This first lemma follows via
basic arithmetic form the fact that the expected values of goal and goal2 depend linearly
on the expected frequencies of the state-weight pairs (goal, w) with w ∈ N.

▶ Lemma 11. Let M = (S,Act, P, sinit,wgt, goal) be an MDP with non-negative weights and
no end components. Let S and T be two schedulers for M. Let p ∈ (0, 1). The scheduler
R

def= p · S ⊕ (1 − p) · T satisfies

VR
M( goal) = p ·VS

M( goal)+(1−p) ·VT
M( goal)+p · (1−p) · (ES

M( goal)−ET
M( goal))2.

Proof sketch. The claim follows from straight-forward calculations using that the expected
values of goal and goal2 depend linearly on the expected frequencies of the state-weight
pairs (goal, w) with w ∈ N. ◀

▶ Remark 12. Given two schedulers S and S′ under which the expectation and variance
are (η, ν) and (η′, ν′), respectively, such that η < η′, there is a unique convex combination T

of the two schedulers with expectation x for all x ∈ [η, η′]. Viewing the variance of these
convex combinations as a function V : [η, η′] → R, we can observe the following using the
previous Lemma 11:

V (x) = ν+ x− η

η′ − η
·(ν′ −ν)+ x− η

η′ − η
· η

′ − x

η′ − η
·(η′ −η)2 = ν+ x− η

η′ − η
·(ν′ −ν)+(x−η) ·(η′ −x).

The coefficient before x2 in this quadratic polynomial hence is always −1. ⌟

The following lemma stating the continuity of the VPE will be useful in several ways:
If we manipulate schedulers at one state-weight pair at a time, we can reason about the
scheduler we obtain in the limit after manipulating the scheduler at all state-weight pairs, e.g.,
in the proof of Theorem 15 below. Further, it will allow us to prove that there is an optimal
scheduler, i.e., that the supremum in the definition of VPE[λ]max

M is in fact a maximum.

▶ Lemma 13 (Continuity of VPE). Let M and λ > 0 be as above. The variance-penalized
expectation as a function from weight-based schedulers to R is (uniformly) continuous in the
following sense: Given ε > 0, there is a natural number Nε such that for all weight-based
schedulers S and T that agree on all state-weight pairs (s, w) with w ≤ Nε, we have∣∣∣VPE[λ]SM − VPE[λ]TM

∣∣∣ < ε.

Proof sketch. The claim follows from the fact that the probability that a high amount of
weight w is accumulated under any scheduler decreases exponentially as w tends to ∞. ◀
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For the final ingredient to show that deterministic schedulers approximate the optimal
VPE, we take a closer look at the relation of randomization to convex combinations of
schedulers. For the following lemma, let S be a weight-based scheduler for an MDP M as
before. Assume that there is a state-weight pair (s, w) ∈ S × N reachable under S such that
S chooses two different actions α and β with probabilities q and 1 − q, respectively, for some
q ∈ (0, 1). Let Sα be the scheduler that agrees with S on all state-weight pairs except for
(s, w) and that chooses α with probability 1 at (s, w). Define Sβ analogously. The technical
proof of the following lemma can be found in [22].

▶ Lemma 14. Let M, S, Sα, Sβ, and q be as above. There is a value p ∈ (0, 1) such that
the expected frequencies of all state-weight pairs are the same under S and p ·Sα ⊕(1−p) ·Sβ.

▶ Theorem 15 (Deterministic schedulers approximate optimal VPE). Let M be an MDP with
non-negative weights and without end components and let λ > 0. For each scheduler S, there
is a deterministic weight-based scheduler T with

VPE[λ]TM ≥ VPE[λ]SM.

Proof sketch. W.l.o.g., we can assume that S is weight-based by Corollary 3. At a single
state-weight pair (s, w) at which S makes use of randomization between, we can (potentially
repeatedly) apply Lemma 14 and Lemma 11 to find a scheduler S′ that does not make use
of this randomization but satisfies VPE[λ]S′

M ≥ VPE[λ]SM. Going through all state-weight
pairs in this fashion, we can construct an infinite sequence of schedulers with non-decreasing
VPE in which randomization is successively removed at all state-weight pairs. In the limit,
we obtain a well defined deterministic weight-based scheduler T. Lemma 13 allows us to
conclude that VPE[λ]TM ≥ VPE[λ]SM. ◀

In the definition of the maximal variance-penalized expectation VPE[λ]max
M = supS VPE[λ]SM,

it is sufficient to let the supremum range over deterministic weight-based schedulers S in the
light of this theorem. For the proof of the existence of optimal schedulers, we make use of
an analytic argument: Continuous functions on compact space obtain their maximum. The
continuity shown in Lemma 13 applied to the space of deterministic weight-based schedulers
can be reformulated as continuity with respect to a metric on this space. Namely, we define
the metric dM on the set of deterministic weight-based schedulers as follows: Given two
deterministic weight-based schedulers S and T for M, first let

m(S,T) def= min{w | there is a state s ∈ S with S(s, w) ̸= T(s, w)}.

We then define dM(S,T) def= 2−m(S,T). This metric indeed turns the set of deterministic
weight-based schedulers into a compact space as shown in [20]:

▶ Lemma 16 (Compactness of the space of deterministic weight-based schedulers [20]). Let M
be as above. The space of all deterministic weight-based schedulers with the topology induced
by the metric dM is compact.

▶ Theorem 17 (Existence of an optimal deterministic weight-based scheduler). Let M and
λ > 0 be as above. There is a deterministic weight-based scheduler S with

VPE[λ]SM = VPE[λ]max
M .

Proof. The claim follows from Lemma 13, Theorem 15, and Lemma 16, as continuous
functions on compact spaces obtain their maximum. ◀
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Figure 2 The MDP M used in Example 19.

4.2 Hardness of the threshold problem
The result that the maximal variance-penalized expectation can be achieved by a deterministic
scheduler can be used for the following hardness result:

▶ Theorem 18. Given an MDP M with non-negative weights and two rationals λ, ϑ > 0,
deciding whether VPE[λ]max

M ≥ ϑ is EXPTIME-hard. Furthermore, for acyclic MDPs M, the
problem is PSPACE-hard.

Proof sketch. We reduce from the following problem which is shown to be EXPTIME-hard
in general and PSPACE-hard for acyclic MDPs in [11]: Given an MDP M and a natural
number T > 0 such that goal is reached in M almost surely under all schedulers, decide
whether there is a scheduler S such that PrSM( goal= T ) = 1.

The idea is to construct an MDP M′ that reaches goal with weight T with probability
1/2 directly and otherwise behaves like M. By choosing λ sufficiently large, we can show
that VPE[λ]max

M′ ≥ T is only possible if and only if there is a scheduler with VS
M( goal) = 0.

This scheduler then has to reach goal with weight T on all paths. The necessary technical
calculations can be found in [22]. ◀

4.3 Saturation Point
In the sequel, we will provide a series of results that allow us to further restrict the class of
deterministic schedulers that we have to consider when maximizing the variance-penalized
expectation. In the end, we obtain a finite set of deterministic finite-memory schedulers
among which there is a scheduler achieving the optimal variance-penalized expectation. In
particular, this means that the optimum is computable.

The key step is the insight that we can provide a natural number K computable in
polynomial time such that an optimal scheduler S for the variance-penalized expectation has
to minimize the expected accumulated weight before reaching goal once a weight of at least
K has already been accumulated on a run. Furthermore, the behavior of S after a weight of
at least K has been accumulated must minimize the variance of the weight that will still be
accumulated among all expectation-minimal schedulers. We call this value K a saturation
point.

▶ Example 19. The MDP M in Figure 2 aims to provide some intuition on the results of
this section. The state c in this MDP is reached with accumulated weight n with probability
(1/2)n+1 for all n ∈ N. Then, the choice has to be made whether to collect weight +1 or
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0 before moving to goal. We want to take a closer look at a family of special weight-based
deterministic finite-memory schedulers for M: Let Sk be the scheduler that chooses action
α in c if the accumulated weight is less than k and otherwise chooses action β.

For these schedulers, we can explicitly provide expectation and variance: The probability
that the scheduler Sk chooses α in c is 1 − (1/2)k. As the expected accumulated weight
before reaching c is 1, we obtain a total expected accumulated weight of

ESk

M ( goal) = 2 − 1
2k
.

To obtain the variance, we compute ESk

M ( goal2):

ESk

M ( goal2) =
k−1∑
n=0

1
2k+1 · (n+ 1)2 +

∞∑
n=k

1
2k+1 · n2

=
∞∑

n=0

1
2k+1 · (n+ 1)2 −

∞∑
n=k

1
2k+1 · (2n+ 1) = 6 − 2k + 3

2k
.

We can then easily compute the variance

VSk

M ( goal) = ESk

M ( goal2) − (ESk

M ( goal))2 = 2 + 1 − 2k
2k

− 1
4k
.

For λ = 1, we obtain the following VPE:

VPE[λ]Sk

M = k − 1
2k−1 + 1

4k
.

Comparing scheduler Sk to Sk+1, we obtain: VPE[λ]Sk+1
M − VPE[λ]Sk

M = 2 − k/2k − 3/4k.
This difference is negative for k ≥ 2 and positive for k = 1. We conclude that among the
schedulers Sk, the scheduler S2 is VPE-optimal. Interestingly, this means choosing not to
accumulate the additional weight +1 by choosing α is better already for small amounts of
accumulated weight. Intuitively, the reason is that choosing α for an accumulated weight
≥ 2 has a larger effect on the variance than on the expectation. Increasing the expectation
in particular also increases the squared deviation of the path that reach goal with weight 1
which has probability 1/2 under Sk for k ≥ 2. The saturation point result of this section
will tell us that an optimal scheduler always has to minimize the weight that is expected to
still be accumulated weight once sufficiently much weight has already been accumulated. ⌟

Let M = (S,Act, P, sinit,wgt, goal) be an MDP without end components and with non-
negative weights as above and let λ > 0 be a rational. Before we define K and show that it
can be computed in polynomial time, we need some additional notation.

For each state s ∈ S, define es
def= Emin

M,s( goal). For each state s ∈ S \ {goal}, we define
the subset Actmin(s) ⊆ Act(s) of actions allowing to minimize the expectation analogously to
Actmax before: Actmin(s) def= {α ∈ Act(s) | es = wgt(s, α) +

∑
t∈S P (s, α, t) · et}. Choosing an

action not belonging to Actmin(s) in state s ensures that the expected accumulated weight
before reaching goal is higher than the minimal possible value. Further, we can define the
minimal amount by which choosing a non-minimizing action increases the expectation:

δ
def= min{(wgt(s, α) +

∑
t∈S

P (s, α, t) · et) − es | s ∈ S \ {goal} and α ∈ Act(s) \ Actmin(s)}.

If the set on the right hand side is empty, all schedulers minimize the expected accumulated
weight before reaching goal and the claims of this section hold trivially. So, we can assume
that this set is non-empty. By the definition of Actmin, we observe that δ > 0.
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Next, we can compute an upper bound U1 for Emax
M,s( goal) for all states s by computing

the maximal value U1
def= maxs∈S Emax

M,s( goal).
Finally, let ε be the minimal transition probability present in M. As M has no end

components, the only trap state goal is reached within n
def= |S| steps under each scheduler

with probability at least εn. Let W be the largest weight in M. Within n steps at most a
weight of n ·W is accumulated. We use these observations for the following two values:

First, we can provide a value B1/2 such that the probability that a weight above B1/2
is accumulated under any scheduler is at most 1/2: For this, let b1/2 be such that
((1 − εn))b1/2 ≤ 1/2. This is the case if and only if b1/2 is at least

log(1/2)
log(1 − εn) = − 1

log(1 − εn) <
1
εn
.

So, we can choose b1/2 to be 1
εn . Then, with probability at most 1/2, a path has length

at least n · b1/2. This allows us to defined B1/2
def= b1/2 · n ·W .

Second, we compute an upper bound U2 for maxs∈S Emax
M,s( goal2): With probability εn

a path has weight at most n · W ; with probability (1 − εn) · εn it has weight at most
2 · n ·W ; with probability (1 − εn)2 · εn it has weight at most 3 · n ·W ; and so on. So, we
get that maxs∈S Emax

M,s( goal2) ≤
∑∞

i=0(1 − εn)i · εn · ((i+ 1) · n ·W )2. This allows us to
define

U2
def= 2 · n2 ·W 2

ε2n
≥ (2 − εn) · n2 ·W 2

ε2n
=

∞∑
i=0

(1 − εn)i · εn · ((i+ 1) · n ·W )2.

We are now in the position to define the saturation point K: Let K be the least natural
number with

K ≥ B1/2 = n ·W
εn

and K ≥ U1/λ+ U2 + 2U1 + U2
1 /2

δ
+ 1.

The definition of K is arguably a bit cumbersome, but the choices will become clear in the
proof of Theorem 20. All values involved except for δ and U1 can be computed directly
from n, W , and ε in polynomial time. The values δ and U1 require to maximize or minimize
the expected value of goal from all states, i.e., to solve an SSPP which can be done in
polynomial time by linear programming [5, 8].

▶ Theorem 20 (Saturation point). Let M, λ > 0 and K be as above. Let S be a scheduler
with VPE[λ]SM = VPE[λ]max

M . Then, for each finite S-path π with wgt(π) ≥ K, the residual
scheduler S↑π satisfies

ES↑π
M,last(π)( goal) = Emin

M,last(π)( goal).

Proof sketch. Let S be a scheduler with VPE[λ]SM = VPE[λ]max
M . Suppose there is a S-path

π′ with wgt(π′) ≥ K such that ES↑π′

M,last(π′)( goal) > Emin
M,last(π′)( goal). Then, there must

be an S-path π that extends π′ such that S chooses an action α ̸∈ Actmin(last(π)) with
positive probability.

The residual scheduler T of S after π in case S chooses α then satisfies ET
M,last(π)( goal) ≥

Emin
M,last(π)( goal) + δ. We let S′ be a scheduler that behaves like S unless S chooses α after

π. In this case, S′ minimizes the expected value of goal from then on. We consider the
difference VPE[λ]S′

M − VPE[λ]SM. Using the bounds U1 and U2 and that the probability of π
is at most 1/2 as K ≥ B1/2, we obtain a lower bound for this difference that consists of an
expression in terms of U1, U2, and λ plus the term

λ · wgt(π) · (ET
M,last(π)( goal) − Emin

M,last(π)( goal)).
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Observing that this term is greater or equal to λ · K · δ, the definition of K was chosen
exactly so that we can conclude that VPE[λ]S′

M −VPE[λ]SM > 0. So, S was not VPE-maximal
yielding a contradiction. ◀

By the results of Section 3, there is a memoryless deterministic scheduler V that minimizes
the variance among all schedulers minimizing the expected accumulated weight before reaching
goal. More precisely, for all states s, the scheduler V satisfies EV

M,s( goal) = Emin
M,s( goal)

and VV
M,s( goal) = infM VM

M,s( goal) where the infimum ranges over all schedulers M with
EM

M,s( goal) = Emin
M,s( goal). We use the existence of this scheduler in the following theorem.

▶ Theorem 21. Let M, λ > 0, K, and V be as above. Let S be a deterministic scheduler with
VPE[λ]SM = VPE[λ]max

M . Let T be the scheduler that agrees with S on all paths π with weight
less than K and that chooses actions according to the memoryless deterministic scheduler V

after paths π′ with wgt(π′) ≥ K. This scheduler T satisfies VPE[λ]TM = VPE[λ]max
M , too.

Proof sketch. Given a scheduler S with VPE[λ]SM = VPE[λ]max
M , and a path π with wgt(π) ≥

K, we compare the scheduler S to the scheduler S′ that behaves like S, but switches
to the behavior of V after π. We obtain that VPE[λ]S′

M ≥ VPE[λ]SM is equivalent to
EV

M( goal2) ≤ ES↑π
M ( goal2). This holds because VV

M( goal) ≤ VS↑π
M ( goal) as V and S↑π

achieve the same expectation. Using a continuity argument as before, we show that changing
the behavior of S to V after all paths with weight at least K does not decrease the VPE. ◀

Put together, we have shown that the maximal VPE is obtained by a weight-based
deterministic scheduler that switches to the memoryless behavior of V as soon as a weight of
at least K has been accumulated, which also means that it uses only finite memory.

4.4 Computation of the optimal VPE
Given an MDP M = (S,Act, P, sinit,wgt, goal) with non-negative weights and without end
components and λ > 0 as before, let K be the saturation point given above. Note that K is
computable in polynomial time and that hence its numerical value is at most exponential
in the size of M. We construct the following MDP M′ that encodes the weights that
are accumulated until the saturation point is exceeded into the state space: Let W be
the maximal weight occurring in M. The set of states is S′ = S × {0, 1, . . . ,K + W − 1}.
The set of actions remains unchanged. The new probability transition function is given
by P ′((s, w), (t, w + wgt(s, α))) def= P (s, α, t) for all s, t ∈ S, all w < K, and all α ∈ Act(s).
All remaining transition probabilities are 0. Note that this means that all states of the
form (goal, w) with w ∈ {0, 1, . . . ,K + W − 1} and of the form (s, w) with s ∈ S and
w ∈ {K,K + 1, . . . ,K + W − 1} are trap states in M′. The initial state is s′

init
def= (sinit, 0).

The weight function is not relevant in M′.
Let V be the memoryless deterministic scheduler for M as in Theorem 21 that specifies

the optimal behavior in order to maximize the variance-penalized expectation as soon as a
weight of at least K has been accumulated. Let us call the set of weight-based deterministic
schedulers for M that behave like V after a weight of at least K has been accumulated
by WDK(M). Clearly, there is a natural one-to-one-correspondence between memoryless
deterministic schedulers for M′ and schedulers in WDK(M).

By the results of Section 3, for each state s ∈ S, we can compute the values

es
def= EV

M,s( goal) and qs
def= EV

M,s( goal2) = VV
M,s( goal) + e2

s

in polynomial time. The following lemma now allows us to express the VPE in M in terms
of reachability probabilities in M′.
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▶ Lemma 22. Let M, M′, K and λ be as above. Given a scheduler S ∈ WDK(M) also
viewed as a memoryless deterministic scheduler for M′, let

µ
def=

∑
w<K

PrSM′(♢(goal, w)) · w +
∑

s∈S,w≥K

PrSM′(♢(s, w)) · (w + es). (†)

Then,

VPE[λ]SM = µ− λ ·
( ∑

w<K

PrSM′(♢(goal, w)) · (w − µ)2)

+
∑

s∈S,w≥K

PrSM′(♢(s, w)) · ((w − µ)2 + 2(w − µ)es + qs))
)
. (‡)

Proof. It is clear that µ = ES
M( goal). So, we have to show that

VS
M( goal) = ES

M(( goal − µ)2)

=
∑

w<K

PrSM′(♢(goal, w)) · (w − µ)2)

+
∑

s∈S,w≥K

PrSM′(♢(s, w)) · ((w − µ)2 + 2(w − µ)es + qs)). (◦)

The event ♢(s, w) that (s, w) is reached in M′ corresponds to the event that a path in
M has a prefix of weight w ending in s. We denote this event in M also by ♢(s, w). If
PrSM′(♢(s, w)) > 0 for w ≥ K, then

ES
M(( goal − µ)2|♢(s, w))

=EV
M,s(( goal + w − µ)2)

=(w − µ)2 + 2(w − µ) · EV
M,s( goal) + EV

M,s( goal2).

So, the sums in equation (◦) sum up the conditional expectation of ( goal − µ)2 in M under
the conditions that (goal, w) is reached for w < K or that the state s is the first one reached
when the accumulated weight exceeds K with weight w ≥ K, multiplied by the respective
probabilities of the conditions. ◀

Putting everything together, we arrive at the main result.

▶ Theorem 23. Let M and λ be as above. Given a rational ϑ, the threshold problem whether
VPE[λ]max

M ≥ ϑ is in NEXPTIME. The optimal value VPE[λ]max
M and an optimal scheduler

can be computed in exponential space.

Proof. The threshold problem can be decided in non-deterministic exponential time as
follows: Given M and λ, compute K in polynomial time and construct M′ as above (of
exponential size) in exponential time. Guess a memoryless deterministic scheduler S for M′

also viewed as a scheduler in WDK(M). The reachability probabilities for all trap states in
M′ under S can then be computed in time polynomial in the size of M′. With the help of
equations (†) and (‡) from Lemma 22, VPE[λ]SM can be computed from these reachability
probabilities in time polynomial in the size of M′. If VPE[λ]SM ≥ ϑ, accept. By Theorem
21, VPE[λ]max

M ≥ ϑ iff there is a scheduler S in WDK(M) with VPE[λ]SM ≥ ϑ. Due to the
one-to-one correspondence between schedulers in WDK(M) and memoryless deterministic
schedulers for M′, this establishes the correctness of the algorithm.

To compute the optimal value VPE[λ]max
M , we compute VPE[λ]SM for all schedulers S

in WDK(M) in the same fashion and always store the highest value found so far. As the
memoryless schedulers for M′ have an exponentially large representation, this can be done
in exponential space and the optimal scheduler can be returned as well. ◀
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5 Conclusion

In our results, there remains a complexity gap between the EXPTIME-lower bounds and
the exponential-space and NEXPTIME-upper bounds for the optimization of the VPE in
MDPs with non-negative weights and the corresponding threshold problem, respectively.
Here, we want to shed some light on this complexity gap: It is well-known that the possible
vectors of expected frequencies of all states in an MDP can be characterized by a linear
equation system (see, e.g., [13]). Using this linear equation system for the exponentially
large MDP constructed in Section 4.4 and equations (†) and (‡) from that section, the
threshold problem for the maximal VPE can be reformulated as the satisfiability problem
of an exponentially sized system of quadratic inequalities. The optimization problem can
likewise be formulated as an exponentially large quadratically constrained quadratic program
(QCQP). This satisfiability problem and QCQPs are NP-hard in general. The question
whether the inequality system of exponential size we obtain here has a special structure
which allows it to be solved in exponential time remains open here.

This observation stands in contrast to conceptually similar saturation point results
straight-forwardly leading to exponential time algorithms (see, e.g., [21]). For example, the
threshold problem for conditional expectations: “Given a set T ⊆ S, is there a scheduler S

with ES
M( goal | ♢T ) ≥ ϑ?” admits a saturation point result in MDPs with non-negative

weights as well [4]. Deriving a system of inequalities as above, however, leads to a system of
linear inequalities after straight-forward transformations. Hence, this approach directly leads
to an exponential time algorithm for the threshold problem for conditional expectations. For
the VPE, the system of inequalities seems to be inherently of a polynomial nature which can
be seen as an indication that the situation here is fundamentally more difficult.

Further, we restricted our attention to MDPs with non-negative weights. When allowing
positive and negative weights, the key result, the existence of a saturation point, does not
hold anymore. For conditional expectations and other problems relying on the existence
of a saturation point, the switch to integer weights makes the problems even at least as
hard as the Positivity problem for linear recurrence sequences, a number theoretic problem
whose decidability has been open for many decades (see [19,21]). The question whether such
a hardness result for the threshold problem of the VPE, rendering decidability impossible
without a breakthrough in number theory, can be established remains as future work.

Further possible directions of research include the investigation of the following multi-
objective threshold problem: Given η and ν, is there a scheduler with expectation at least
η and variance at most ν? As the variance treats good and bad outcomes symmetrically,
replacing the variance in the VPE by a one-sided deviation measure, such as the lower
semi-variance that only takes the outcomes worse than the expected value into account,
constitutes another natural extension of this work.
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Abstract
We present a fully abstract encoding of λref, the call-by-value λ-calculus with references, in the π-
calculus. By contrast with previous full abstraction results for sequential languages in the π-calculus,
the characterisation of contextual equivalence in the source language uses a labelled bisimilarity. To
define the latter equivalence, we refine existing notions of typed bisimulation in the π-calculus, and
introduce in particular a specific component to handle divergences.

We obtain a proof technique that allows us to prove equivalences between λref programs via the
encoding. The resulting proofs correspond closely to normal form bisimulations in the λ-calculus,
making proofs in the π-calculus expressible as if reasoning in λref.

We study how standard and new up-to techniques can be used to reason about diverging terms
and simplify proofs of equivalence using the bisimulation we introduce. This shows how the π-calculus
theory can be used to prove interesting equivalences between λref programs, using algebraic reasoning
and up-to techniques.
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1 Introduction

Milner [11] described the first encodings from the λ-calculus to the π-calculus for both
call-by-name and call-by-value. These encodings are shown to be sound with respect to
contextual equivalence, enabling the use of the π-calculus as a model to prove equivalence
between λ-terms. In sequential languages like the λ-calculus or extensions thereof, contextual
equivalence is often considered as the canonical equivalence. The π-calculus offers a rich
theory of behavioural equivalences and preorders to reason coinductively and algebraically
about processes. In the π-calculus, several powerful up-to techniques can be used and
combined in a modular way to make bisimulation proofs shorter and more readable [10, 16].
Labelled bisimulations can also be refined by means of type systems.

Nevertheless, for sequential languages, while such equivalences in the π-calculus lead to
sound encodings with respect to contextual equivalence, completeness does not hold, due to
the parallel nature of the π-calculus. Full abstraction is obtained for stronger equivalences
in the source language, generally based on trees: Lévy-Longo Trees for the call-by-name
λ-calculus [18], and η-eager normal form bisimilarity for call-by-value [3]. More generally,
we are not aware of full abstraction results relating a contextual equivalence in a sequential
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language and a labelled bisimilarity between process terms in the encoding. Existing results
either use a finer relation than contextual equivalence in the source language, or obtain full
abstraction for a contextually-defined equivalence in the π-calculus [1, 21].

In this work, we study λref, the call-by-value λ-calculus with references. Our first main
contribution is to characterise contextual equivalence in λref using a labelled bisimilarity in
the π-calculus. The encoding of functions is extended with references as described in [4]. To
define our labelled bisimulation, we rely on well-bracketed bisimulation [5], wb-bisimulation
for short. Wb-bisimulations enforce a well-bracketing discipline between function calls and
returns, and is formalised by a type system. Using a type system limits the interactions
a process can have with its environment, and thus makes the corresponding bisimulation
coarser than an untyped one.

This study allows us to understand the expressiveness of wb-bisimulation and to improve
it. As mentioned in [2], to capture contextual equivalence in λref, deferred divergent terms
need to be taken into account. Intuitively such terms hide a divergence behind stuck terms,
like e.g. in (λy. Ω)(xV ), where Ω is an always diverging term and V is a value: the stuck
term xV prevents the β-reduction yielding Ω to be applied. Still, this term is contextually
equivalent to Ω. We define an equivalent notion for typeable π-terms, called π-divergence,
which is used to refine wb-bisimulation yielding a notion of bisimulation with divergence in
the π-calculus.

Another main contribution of this work is to define this new bisimulation with divergence
and to study how up-to techniques, existing and new, can be used to simplify bisimulation
proofs for this new equivalence. As π-divergence is defined coinductively, up-to techniques
can also be defined to enhance the proofs of divergence. We also introduce a new up-to
technique, to which we return below; this technique is compatible, meaning that it fits in the
existing theory of up-to techniques for the π-calculus.

We do not prove full abstraction with respect to contextual equivalence in λref directly,
but rather exploit its characterisation using normal form bisimilarity [2]. Normal form
bisimulations in [2], which we call nfb in the sequel, and bisimulations with divergence in the
π-calculus are strongly connected, and we can establish the following result:

If R is a nfb, then the encoding of R is a bisimulation with
divergence up to expansion in the π-calculus. (1)

This property allows us to prove that bisimilarity with divergence is complete w.r.t.
nfb. Thanks to (1), when proving equivalences of λref-terms, the π-calculus machinery
running under the hood is almost invisible: the bisimulations we manipulate are mainly built
using (the encoding of) λref-terms. This makes π-calculus a powerful environment to prove
equivalences between λref programs. We illustrate this power via several examples throughout
the paper. In some cases, we are able to compare λref programs using equivalences which
are finer, and simpler to use, than bisimulation with divergence.

We now give more details about the encoding from λref to the π-calculus. Milner’s
original encoding of the untyped call-by-value λ-calculus does not handle equivalences
between terms with free variables well. This issue is amended in [3] by moving to the internal
π-calculus [19], where only fresh names can be transmitted. For instance, the resulting
encodings of (λz. z)(xV ) and xV are equivalent, which is not the case for Milner’s original
encoding.

Our results are based on the optimised version of the encoding of [3], where administrative
reductions introduced in the encoding of the application are removed. In the optimised
encoding, a stuck term like xV is translated into a process that cannot reduce. Additionally,
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the translation of an evaluation context always yields an evaluation context, which is not the
case in the encoding of [3]. These two properties lead to a tight statement of operational
correspondence: the encoding of a λref-term can perform an internal communication only if
the source term has a reduction.

When considering non-internal transitions, the picture becomes more complicated because
residual processes appear. We write JMKp for the encoding of M at p – as usual, the π-calculus
encoding of a term is parametric over some name p. To illustrate operational correspondence
for non-internal transitions, we have for instance JE[xV ]Kp

x(y,q)−−−−→≳ JV Ky | q(z). JE[z]Kp, where
E is an evaluation context and ≳ stands for the expansion preorder. The encoding of the stuck
term E[xV ] sends two links at x, one to its argument V (via y) and one to its continuation
E (via q). Both processes are then accessible by the context, and can be executed (possibly
in parallel). Intuitively, the value and continuation belong to some environment. This is
close to what happens in a nfb, whereby terms are related in the presence of an environment,
containing both values and contexts. Thus, it is natural to encode a nfb as a binary relation
on π-calculus processes.

To prevent the context from performing unwanted transitions (like parallel calls), we use
the type system for well-bracketing from [5]. Typing constraints give rise to type-allowed
transitions. With this restriction, we obtain a typed version of operational correspondence
which is in one-to-one correspondence with the clauses defining nfb. In particular, in the
transition of JE[xV ]Kp above, the resulting process is the encoding of the corresponding state
in the nfb. Soundness and completeness of the encoding, as well as property (1), are obtained
as consequences of such operational correspondence.

We explain briefly the new up-to technique we introduce. Intuitively, transitions in λref

may generate several copies of the same value, which are stored in the environment. In [2],
the environment is a set, and thus duplicates are removed for free. In the standard π-calculus,
these copies would be the same replicated process, and duplicates could be removed using the
standard law !P | !P ∼ !P . In the internal π-calculus, each copy is accessible via a distinct
name. However, when these copies are only accessible by the context, it is sound to remove
duplicates. The new up-to technique we introduce, called up-to body, formalises this idea.
Together with standard up-to techniques for the pi-calculus, we use the up-to body technique
to prove several examples of equivalences between λref programs.

Paper outline

We start by presenting the necessary background: we describe λref and normal form bisimu-
lations from [2] in Section 2; in Section 3, we introduce the Asynchronous Internal π-calculus,
AIπ, and the type system for well-bracketing. We continue with the contributions of this
work, describing the encoding for λref terms in Section 4. We also show an operational
correspondence and examples that can be proved with untyped equivalences, using algebraic
reasoning and standard algebraic laws. The extension of the encoding to bisimulation states,
together with the definition of bisimulation with divergence, are given in Section 5, where we
establish full abstraction. We present up-to techniques for wb-bisimulation in Section 6, and
show how they can be used on some examples.

2 Normal Form Bisimulation for a λ-Calculus with References

We define the syntax of the λ-calculus with references, noted λref:

Terms: M, N ::= V
∣∣ M N

∣∣ ℓ := M ; N
∣∣ !ℓ

∣∣ new ℓ := V in M

Values: V, W ::= x
∣∣ λx. M

Evaluation contexts: E, F ::= [·]
∣∣ E M

∣∣ V E
∣∣ ℓ := E; M

ICALP 2022
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Free variables for terms and contexts are defined as usual with λx. M as binder. We write
M{V/x} for the usual capture-avoiding substitution of x by V in M . And we let

∫
range

over simultaneous substitutions {V1/x1} . . . {Vn/xn} where x1, . . . , xn are pairwise different
variables.

Free references for terms and contexts, noted fr(M) and fr(E), are defined similarly,
with new ℓ := V in M binding ℓ in M . Notice that ℓ is not a value, meaning that in
new ℓ := V in M , ℓ is local to the term M . To give access to a local reference, M may pass
functions λx. !ℓ and λx. ℓ := x instead of ℓ.

A store, noted h, g, . . . , is a partial fonction with finite domain from references to values.
We write ∅ for the empty store and dom(h) for the set of references on which h is defined.
For any ℓ, V , we write h ⊎ ℓ = V for the store h extended with a reference ℓ containing V

and h[ℓ := V ] for the store h with the content of ℓ updated to the value V .
The semantics are defined on configurations ⟨h | M⟩ where h is a store.
We assume that for all configurations ⟨h | M⟩, we have fr(M) ⊆ dom(h) and for all

ℓ ∈ dom(h), fr(h(ℓ)) ⊆ dom(h). This assumption ensures that any free reference used in
terms is defined in h.

Reductions between configurations are defined as follows:

⟨h | (λx. M)V ⟩ → ⟨h | M{V/x}⟩ (β)
⟨h | !ℓ⟩ → ⟨h | h(ℓ)⟩ (Read)

⟨h | ℓ := v; M⟩ → ⟨h[ℓ := v] | M⟩ (Write)
⟨h | new ℓ := v in M⟩ → ⟨h ⊎ ℓ = v | M⟩ (Alloc)

⟨h | E[M ]⟩ → ⟨g | E[N ]⟩ if ⟨h | M⟩ → ⟨g | N⟩ (Eval)

A term M in a configuration ⟨h | M⟩ which cannot reduce is called a normal form. It
can either be a value, or a stuck term of the form E[yV ].

▶ Lemma 1. For any ⟨h | M⟩ we have:
1. either ⟨h | M⟩ → ⟨h′ | M ′⟩ for some ⟨h′ | M ′⟩
2. or M is a value
3. or M is of the form E[yV ].

We write ⇒ for →∗ and we say that ⟨h | M⟩ and ⟨g | N⟩ co-terminate when ⟨h | M⟩ ⇒
⟨h′ | M ′⟩ with M ′ being a normal form iff ⟨g | N⟩ ⇒ ⟨g′ | N ′⟩ with N ′ being a normal form.
A term (resp. context) is closed (resp. reference-closed) if its set of free variables (resp. free
references) is empty. A substitution

∫
is closing terms M, N, . . . if M

∫
, N

∫
, . . . are closed.

▶ Definition 2. Two reference-closed terms are contextually equivalent, written M ≍ N , if
for all closing substitutions

∫
and reference-closed contexts E, ⟨∅ | E[M

∫
]⟩ and ⟨∅ | E[N

∫
]⟩

co-terminate.

To define normal form bisimulations, we need to introduce the notion of triples, used
in [2].

We use a tilde, like in Ṽi, to denote a (possibly empty) tuple. Triples are of the form
(Ṽi, σ, c) and (Ṽi, σ, h) where: Ṽi is a tuple of values, σ is a stack of evaluation contexts, c is
a configuration and h is a store. These are the elements being compared in a normal form
bisimulation. We provide some comments about the role of triples.

The tuple Ṽi stores the values accumulated by the environment, and we write (Ṽi, V )
for the tuple Ṽi extended with the additional value V . A stack of evaluation contexts σ

corresponds to interrupted contexts that must be executed to complete the computation. ⊙
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stands for the empty stack and E :: σ for the stack obtained by adding E on top of σ. The
store is accessible by all the other objects of the triple, values or contexts – in (Ṽi, σ, c), the
store is part of c.

Intuitively, a triple of the form (Ṽi, σ, c) is active, meaning it is computing up until a
normal form term is obtained, at which point the computation proceeds to triples of the
form (Ṽi, σ, h) where the environment is carrying on the computation, deciding to call one of
the accumulated functions or to resume the computation by evaluating the context at the
top of the stack.

For instance, in the triple (Ṽi, σ, ⟨h | E[yV ]⟩), the environment is about to get access to
V and the function corresponding to y will run before eventually (in absence of divergence)
returning the result that will be used by E. Thus, the “next” triple is ((Ṽi, V ), E :: σ, h):
value V and context E are added to the corresponding tuple and stack, and h is kept
identical while the environment is deciding for the next move. This evolution can be seen in
Definitions 4 and 5.

Following [8], we first need to introduce an auxiliary relation which performs an immediate
beta reduction in a term of the form V W whenever possible.

▶ Definition 3 (Relation ≻). We write V W ≻ N when V = λy. N ′ and N = N ′{W/y} or
when V = z and N = V W .

We say that a term is deferred diverging if it hides a diverging behaviour behind a
stuck term, e.g (λx. Ω)(yV ). This notion can be extended to triples to capture all diverging
behaviours, including deferred ones, as defined below. Intuitively, a triple is diverging if it
contains a diverging, possibly deferred, context or configuration.

Formally, the set of diverging triples is defined coinductively using a diverging set.

▶ Definition 4 (Diverging set). A set S of triples is diverging if the two following conditions
hold:
1. (Ṽi, σ, c) ∈ S implies

a. if c → c′, then (Ṽi, σ, c′) ∈ S

b. if c = ⟨h | V ⟩, then σ ̸= ∅ and ((Ṽi, V ), σ, h) ∈ S

c. if c = ⟨h | E[yV ]⟩, then ((Ṽi, V ), E :: σ, h) ∈ S

2. (Ṽi, σ, h) ∈ S implies
a. for every j and fresh x, (Ṽi, σ, ⟨h | M⟩) ∈ S with Vjx ≻ M

b. if σ = E :: σ′, then (Ṽi, σ′, ⟨h | E[x]⟩) ∈ S for x fresh
We note λdiv the largest diverging set.

We say that a relation R is a triples relation if the two elements of any pair of triples
in R both contain a tuple of values and stack of the same size, and either both contain a
configuration or both contain a store.

We can now define the normal form bisimulation:

▶ Definition 5 (nfb). A symmetric triples relation R is a normal form bisimulation when
there exists a diverging set S such that:
1. (Ṽi, σ1, c) R (W̃i, σ2, d) implies

a. if c → c′, then d ⇒ d′ and (Ṽi, σ1, c′) R (W̃i, σ2, d′)
b. if c = ⟨h | V ⟩, then either

i. d ⇒ ⟨g | W ⟩ and ((Ṽi, V ), σ1, h) R ((W̃i, W ), σ2, g), or
ii. σ1 ̸= ∅ and ((Ṽi, V ), σ1, h) ∈ S

c. if c = ⟨h | E[yV ]⟩, then either
i. d ⇒ ⟨g | F [yW ]⟩ and ((Ṽi, V ), E :: σ1, h) R ((W̃i, W ), F :: σ2, g), or
ii. ((Ṽi, V ), E :: σ1, h) ∈ S
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2. (Ṽi, σ1, h) R (W̃i, σ2, g) implies
a. for every j and fresh x, (Ṽi, σ1, ⟨h | M⟩) R (W̃i, σ2, ⟨g | N⟩) with Vjx ≻ M and

Wjx ≻ N

b. if σ1=E :: σ′
1 and σ2=F :: σ′

2, then (Ṽi, σ′
1, ⟨h | E[x]⟩) R (W̃i, σ′

2, ⟨g | F [x]⟩) for x fresh

Normal form bisimilarity, ≈λ, is the largest normal form bisimulation.

Definition 5 reformulates the bisimulation from [2]. This gives the same equivalence while
being more suitable to establish the operational correspondence of the encoding (Theorem 17).
We can thus rely on the following result.

▶ Theorem 6 (Full abstraction [2, Theorems 3,4]). For all λref-terms M, N , we have
(∅, ⊙, ⟨∅ | M⟩) ≈λ (∅, ⊙, ⟨∅ | N⟩) iff M ≍ N .

This means that to prove that two reference-closed terms are contextually equivalent,
we can provide a normal form bisimulation R relating the two terms and its corresponding
diverging set S.

3 AIπ, the Asynchronous Internal π-Calculus

We present the Asynchronous Internal π-calculus, AIπ, and the type system for well-bracketing
from [5]. The syntax is given by the following grammar:

Processes P, Q ::= 0
∣∣ a(̃b) P

∣∣ a(̃b). P
∣∣ !a(̃b). P

∣∣ P | Q
∣∣ (νa)P

∣∣ K⌊ã⌋
Recursive definitions K ≜ (ã) P

As for λref values, b̃ denotes a tuple of names. We also write a(_). P for a(z). P when
z /∈ fn(P ). Here, a(̃b) P is a bound asynchronous output, introduced in [1]. This corresponds
to (ν b̃)(a⟨̃b⟩. 0 | P ) in the standard π-calculus, that is, a non-blocking output which carries
bound names used in P . Constants are defined as an abstraction (K ≜ (ã) P ), where ã are
distinct names, bound in P . Given an abstraction (ã) P , we note ((ã) P )⌊b̃⌋ the process
P {̃b/̃a}. Thus K⌊ã⌋ represents the process in the definition of K substituted with the names
ã (as expressed by the rule Cst in the operational semantics).

The full set of rules defining the Labelled Transition System (LTS) is given in Figure 1.
Symmetric rules for Par and Comm have been omitted. It is similar to that of Iπ with the
additional rules:

Async
P

µ−→ P ′

a(̃b) P
µ−→ a(̃b) P

b̃ ∩ (fn(µ) ∪ bn(µ)) = ∅
a /∈ bn(µ)

AComm

P
a(̃b)−−→ P ′

a(̃b) P
τ−→ (ν b̃)P ′

AComm allows P to communicate with the bound output, and Async allows P to perform
any action that does not involve the names bound by the output.

Our type system is based on Milner’s sorting. Names are split into sorts. In our case, we
will use 3 sorts: F,R,C. The sorting function Σ is defined by Σ(F) = (F, C) and Σ(R) = Σ(C) = F.
We call function names, ranged over with w, x, y, z, . . . , names in F, reference names, ranged
over with ℓ, ℓ′, . . . , names in R, and continuation names, ranged over with p, q, r, . . . , names
in C.

On top of the sorting, we adapt the type system for well-bracketing from [5] to AIπ. The
type system imposes that continuation names are receptive linear, meaning that they can
be used only once in output and once in input (hence linear) and the input is immediately
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Inp

a(̃b). P
a(̃b)−−→ P

Out

a(̃b) P
a(̃b)−−→ P

Async
P

µ−→ P ′

a(̃b) P
µ−→ a(̃b) P

b̃ ∩ (fn(µ) ∪ bn(µ)) = ∅
a /∈ bn(µ)

AComm

P
a(̃b)−−→ P ′

a(̃b) P
τ−→ (ν b̃)P ′

Rep
a(̃b). P

µ−→ P ′

!a(̃b). P
µ−→ P ′ | !a(̃b). P

Res
P

µ−→ P ′

(νa)P µ−→ (νa)P ′
a /∈ fn(µ) ∪ bn(µ)

Par
P

µ−→ P ′

P | Q
µ−→ P ′ | Q

bn(µ)∩ fn(Q) = ∅

Comm

P
a(̃b)−−→ P ′ Q

a(̃b)−−→ Q′

P | Q
τ−→ (ν b̃)(P ′ | Q′)

Cst
P {̃b/̃a} µ−→ P ′

K⌊b̃⌋ µ−→ P ′
K ≜ (ã) P

Figure 1 Labelled Transition Semantics for AIπ.

available as soon as it is created (hence receptive). Additionally, creations and communications
at continuation names behave in a well-bracketed manner, meaning that the communication
will first occur at the name created last.

We use two constants, noted ▷F and ▷C, defined as follows:

▷C≜ (p, q) p(x). q(y) y ▷F x with p, q being continuation names
▷F≜ (x, y) !x(z, p). y(w, q) (q ▷C p | w ▷F z) with x, y being function names

These constants represent a link, also called forwarder or dynamic wire [17], which
transforms outputs at the first name into outputs at the second. As their usage only differs
in the linearity of continuation names and the arity, we often use the same symbol ▷ to
denote both ▷F and ▷C.

wb-Nil

∅ ⊢wb 0

wb-AOutC
ρ ⊢wb P

p : o, ρ ⊢wb p(y) P

wb-AOutF
p : i, ρ ⊢wb P

ρ ⊢wb x(y, p) P

wb-AOutR
ρ ⊢wb P

ρ ⊢wb ℓ(y) P

wb-InpC
p : o ⊢wb P p ̸= q

q : i, p : o ⊢wb q(y). P

wb-InpF
p : o ⊢wb P

∅ ⊢wb x(y, p). P, !x(y, p). P

wb-InpR
p : o ⊢wb P

p : o ⊢wb ℓ(y). P

wb-ResC1
ρ, p : ⋆, ρ′ ⊢wb P

ρ, ρ′ ⊢wb (νp)P

wb-ResC2
ρ ⊢wb P

ρ ⊢wb (νp)P
p /∈ ρ

wb-ResFR
ρ ⊢wb P

ρ ⊢wb (νy)P , (νℓ)P

wb-Par
ρ ⊢wb P ρ′ ⊢wb Q

ρ′′ ⊢wb P | Q
ρ′′ ∈ inter(ρ; ρ′)

wb-FwC

p : i, q : o ⊢wb p ▷C q

wb-FwF

∅ ⊢wb x ▷F y

Figure 2 Type system for well-bracketing.
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We present the typing rules for well-bracketing in Figure 2. Judgements are of the form
ρ ⊢wb P with ρ being a stack. In rules wb-InpF and wb-ResFR, the conclusion is of the
form ρ ⊢wb P, Q to indicate that both ρ ⊢wb P and ρ ⊢wb Q can be inferred from the
premise.

A stack is a sequence of tagged names, the tag being either i, o or ⋆ denoting respectively
input, output and both capabilities. Upon creation, a continuation comes with both capab-
ilities (wb-ResC1), that are used once as input and output (wb-InpC and wb-AOutC).
In wb-AOutF, a continuation is created and its input capability is passed to P , while its
output capability is sent by the communication. This capability can then be used after the
input in wb-InpF. As continuation names are receptive, inputs cannot appear after another
input (wb-InpF and wb-InpC).

Intuitively, a stack expresses the expected usage of the free continuation names in a
process. Stacks are given by the following grammars:

ρ ::= ρo
∣∣ ρi ρo ::= p : o, ρi

∣∣ p : ⋆, ρo
∣∣ ∅ ρi ::= p : i, ρo

∣∣ ∅

Moreover, a name may appear at most once in a stack, so we will say that a name is o-tagged
in ρ when the name appears with tag o in ρ and similarly for i and ⋆.

As a ⋆-tagged name represents both output and input capabilities, a stack can be seen as
an alternation of input- and output-tagged names. For instance, if we have

p1 : o, p2 : i, p3 : ⋆, p4 : o ⊢wb P

then p1, . . . , p4 are the free continuation names in P ; among these, p1 will be used first, as an
output at p1; then p2 will be used, in an input interaction with the environment. P possesses
both the output and the input capability on p3, and will use both capabilities by performing
a reduction at p3; the computation for P terminates with an output at p4.

Thus, to compose two processes P and Q in parallel, the usage of continuations of P | Q

is an interleaving of the ones of P and Q (wb-Par). Names with capabilities shared between
P and Q can be used as synchronisation point. Formally, the interleaving of two stacks is
described by the following definition:

▶ Definition 7. The interleaving relation is defined as a ternary relation between stacks,
written ρ ∈ inter(ρ1 ; ρ2), and defined as follows:

∅ ∈ inter(∅; ∅)
ρ ∈ inter(ρ1 ; ρ2) implies ρ ∈ inter(ρ2 ; ρ1).
ρ ∈ inter(ρ1 ; ρ2) implies p : η, ρ ∈ inter(p : η, ρ1 ; ρ2), where η ∈ {o, i, ⋆} and p : η, ρ1
is a stack.
Whenever ρ ∈ inter(ρi; ρo), we have p : ⋆, ρ ∈ inter(p : o, ρi ; p : i, ρo).

Even though the grammar allows it, it is not possible to type a process ρ ⊢ P with ρ

ending with p : i or p : ⋆.
As continuation names are used linearly, when both input and output are present in the

process, i.e., when the name is ⋆-tagged in the stack, this name should not be observable.
We call clean a stack where no name is ⋆-tagged. We note c(ρ) the clean stack obtained by
removing all ⋆-tagged names from ρ, and ρ ⊨wb P when there exists ρ′ with ρ′ ⊢wb P and
c(ρ′) = ρ. Using clean stacks, we can define typed transitions.
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▶ Definition 8. When ρ ⊨wb P , we write [ρ; P ] µ−→ [ρ′; P ′] if P
µ−→ P ′ and one of the following

holds:
1. µ = p(x) and ρ = p : o, ρ′

2. µ = p(x) and ρ = p : i, ρ′

3. µ = x(y, p) and ρ′ = p : i, ρ

4. µ = x(y, p) and ρ′ = p : o, ρ

5. µ ∈ {ℓ(x), ℓ(x), τ} and ρ′ = ρ.

▶ Lemma 9 (Subject reduction). If [ρ; P ] µ−→ [ρ′; P ′], then for any Q with ρ ⊨wb Q and
Q

µ−→ Q′, we have ρ′ ⊨wb Q′.

A relation R is wb-typed if for any (ρ, P, Q) ∈ R, we have ρ ⊨wb P and ρ ⊨wb Q. We
define the typed version of the expansion preorder, written ≳wb, by restricting to typed

transitions. As usual, we write τ̂−→ for τ−→ ∪ id and µ̂−→ for µ−→ otherwise. The weak variants of
the transitions are defined by chaining with ⇒def= τ−→

∗
: for instance, µ=⇒def= ⇒ µ−→⇒.

▶ Definition 10 (Wb-expansion). A wb-typed relation R is a wb-expansion when (ρ, P, Q) ∈ R
implies:

If we have [ρ; P ] µ−→ [ρ′; P ′], then there exists Q′ such that Q
µ̂−→ Q′ and (ρ′, P ′, Q′) ∈ R.

If we have [ρ; Q] µ−→ [ρ′; Q′], then there exists P ′ such that P
µ=⇒ P ′ and (ρ′, P ′, Q′) ∈ R.

We note ≳wb the largest wb-expansion.

We omit ρ, writing P ≳wb Q when ρ is obvious from the context. This typed expansion is
coarser than its untyped variant, which is written ≳ [19].

Wb-bisimulation, and wb-bisimilarity noted ≈wb, are defined as wb-expansion by replacing

Q
µ̂−→ Q′ with Q

µ̂=⇒ Q′ in Definition 10. The untyped version is written ≈.

4 Encoding Terms and Values in AIπ

In this section, we describe the encoding of λref-terms into AIπ processes. This leads to
a clean operational correspondence where the encoding of a term may perform a unique
transition according to the case distinction of Lemma 1.

We define the encoding in Figure 3. The encoding JMK of a term M is defined as
an abstraction (p) P , and we use the notation JMKq (resp. JV Kv

y) to note JMK⌊q⌋ (resp.
JV Kv⌊y⌋). Intuitively, JMKp is a computation that returns a value at p while JV Kv

y is a value
that can be accessed at y.

This encoding extends the one from [3] with the additional constructs for handling
references. A reference is represented by an output transmitting the stored value. Access to
a reference is performed by receiving that output and emitting it back (possibly updated).

To remove any ambiguity in the rules, we consider that M (appearing in JMNK,
Jℓ := M ; NK and JV MK) cannot be a value. This distinction enables optimisations that
intuitively remove some communications signaling the end of a subcomputation. This is
reminiscent of the colon translation from [15], in the setting of continuation-passing style
translations. For any reference-closed configurations ⟨h | M⟩, we have p : o ⊢wb J⟨h | M⟩Kp.

We extend the encoding to evaluation contexts as shown in Figure 4. When an evaluation
context is applied to a non-value term, its encoding correspond to encode the context first
and then apply it to the encoding of the term:

▶ Lemma 11. For any E M such that M is not a value, we have JE[M ]Kp = JEK[JMK]p.
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Functions

JV K def= (p) p(y) JV Kv
y JxV K def= (p) x(z, q) (JV Kv

z | q ▷ p)

J(λx. N)V K def= (p) (νy, w)(Jλx. NKv
y | JV Kv

w | y(w′, r′) (w′ ▷ w | r′ ▷ p))

JV MK def= (p) (νy)(JV Kv
y | (νr)(JMKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))

JMNK def= (p) (νq)(JMKq | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))

Imperative constructs

J!ℓK def= (p) ℓ(w). (ℓ(y) y ▷ w | p(z) z ▷ w) Jℓ := V ; NK def= (p) ℓ(_). (ℓ(y) JV Kv
y | JNKp)

Jℓ := M ; NK def= (p) (νq)(JMKq | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp))

Jnew ℓ := V in NK def= (p) (νq)(JV Kq | q(z). (νℓ)(ℓ(y) y ▷ z | JNKp))

Configurations

JhK def=
∏
ℓ0∈ℓ̃

(ℓ0(y) Jh(ℓ0)Kv
y) with ℓ̃ = dom(h) J⟨h | N⟩K def= (p) (ν ℓ̃)(JhK | JNKp)

where JV Kv is defined as:

Jλx. NKv def= (y) !y(x, q). JNKq JxKv def= (y) y ▷ x

Figure 3 Encoding of terms and configurations into AIπ.

J[·]K def= [·] JFNK def= (p) (νq)(JF Kq | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))

Jℓ := F ; NK def= (p) (νq)(JF Kq | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp))

JV F K def= (p) (νy)(JV Kv
y | (νr)(JF Kr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))

Figure 4 Encoding of evaluation contexts.

Proof. We proceed by induction on E:
1. when E = [·], the result is immediate.
2. when E = FN , we have

JE[M ]Kp = (νq)(JF [M ]Kq | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p))).

By induction, we have that JF [M ]Kq = JF K[JMK]q and thus:

JE[M ]Kp = (νq)(JF K[JMK]q | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))
= JEK[JMK]p
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3. when E = V F , we have

JE[M ]Kp = (νy, r)(JV Kv
y | JF [M ]Kr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)).

By induction, we have that JF [M ]Kr = JF K[JMK]r.
So JE[M ]Kp = (νy, r)(JV Kv

y | JF K[JMK]r | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)) = JEK[JMK]p.
4. when E = ℓ := F ; N , then JE[M ]Kp = (νq)(JF [M ]Kq | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp)).

By induction, we have that JF [M ]Kq = JF K[JMK]q.
So JE[M ]Kp = (νq)(JF K[JMK]q | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp)) = JEK[JMK]p. ◀

Because we distinguish between values and non-values in the encoding, the previous lemma
does not hold when M is a value. In that case, the encoding performs some “optimisations”.
To relate the two processes, we need that on the encoding, forwarders act like substitutions.

▶ Lemma 12. We have
1. (νx)(JMKp | x ▷ y) ≳ JM{y/x}Kp

2. (νx)(JV Kv
z | x ▷ y) ≳ JV {y/x}Kv

z

3. (νp)(JMKp | p ▷ q) ≳ JMKq

4. (νy)(JV Kv
y | x ▷ y) ≳ JV Kv

x

Lemma 12 is proved by induction on the encoding of M or V to prove the four properties
in conjonction. Indeed, there are dependencies between these properties which prevent us
from treating them separately. This result is proved for the optimised encoding of the plain
call-by-value λ-calculus [3] and it extends to the additional constructs of λref. As a result of
the optimisation, we have the following lemma when applying a context to a value:

▶ Lemma 13. For any value V and context E, JEK[JV K]p ≳ JE[V ]Kp.

Proof. We proceed by induction on E:
when E = [·], this is trivial.
When E = (λx. M) [·], we have

JEK[JV K]p = (νy, r)(Jλx. MKv
y | JV Kr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p))

→ (νy, w)(Jλx. MKv
y | JV Kv

w | y(w′, r′) (w′ ▷ w | r′ ▷ p)) = JE[V ]Kp

As this transition is deterministic by construction, we obtain that JEK[JV K]p ≳ JE[V ]Kp.
This also holds for the three following cases.
When E = x [·], we have

JEK[JV K]p = (νy, r)(JxKv
y | JV Kr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p))

→2 (νy, w, w′, r′)(JxKv
y | x(w′′, r′′) (w′′ ▷ w′ | r′′ ▷ r′) | JV Kv

w | w′ ▷ w | r′ ▷ p)
≳ (νy)JxKv

y | x(w′′, r′′) (νw, w′, r′)(w′′ ▷ w′ | w′ ▷ w | JV Kv
w | r′′ ▷ r′ | r′ ▷ p)

≳ (νw)(x(w′′, r′′) (JV Kv
w′′ | r′′ ▷ p)) = JxV Kp

When E = [·] M , we have

JEK[JV K]p = (νq)(JV Kq | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))
→ (νy)(JV Kv

y | (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p))) = JxV Kp

When E = ℓ := [·]; M , we have

JEK[JV K]p = (νq)(JV Kq | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp))
→ (νw)(JV Kv

w | ℓ(_). (ℓ(y) y ▷ w | JNKp))
≳ ℓ(_). (ℓ(y) (νw)(JV Kv

w | y ▷ w) | JNKp)
≳ ℓ(_). (ℓ(y) JV Kv

y | JNKp) = JE[V ]Kp
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when E = F M or V F or ℓ := F ; M with F ̸= [·], then F [V ] is not a value, so
JE[V ]Kp = JE′K[JF [M ]K]p for some E′ and the result follows by induction as ≳ is a
congruence. ◀

We can now establish operational correspondence.

▶ Proposition 14 (Untyped Operational Correspondence). For any M, h with dom(h) = ℓ̃ and
fresh q0, J⟨h | M⟩Kq0 has exactly one immediate transition, and exactly one of the following
clauses holds:
1. ⟨h | M⟩ → ⟨h′ | N⟩ and J⟨h | M⟩Kq0

τ−→ P with P ≳ J⟨h′ | N⟩Kq0

2. M is a value, J⟨h | M⟩Kq0

q0(x0)−−−−→ P and P = (ν ℓ̃)(JhK | JMKv
x0

).

3. M is of the form E0[yV0] for some E0, y and V0, and we have J⟨h | M⟩Kq0

y(x0,p0)−−−−−→ P

with P ≳ (ν ℓ̃)(JhK | JV0Kv
x0

| p0(z). JE0[z]Kq0).
In the first case, the τ transition is deterministic, so we can prove that the following

holds: J⟨h | M⟩Kq0 ≳ J⟨h′ | N⟩Kq0 .

Using the existing equivalences in AIπ from Section 3, we can prove that the encodings
of two λref-terms are equivalent. The equivalence and preorder used here are finer than
bisimilarity with divergence which is sound as stated in Section 5. These examples show how
the standard theory of the π-calculus is enough to prove interesting properties of λref-terms.
These properties do not require us to use the triples defined in Section 5 nor to take into
account the possibility of deferred divergence.

▶ Example 15 (Unused reference). For any reference ℓ, value V and any term M with
ℓ /∈ fr(M), we have Jnew ℓ := V in MKp ≳ JMKp.

Proof. We write

Jnew ℓ := V in MKp ≳ J⟨∅ | new ℓ := V in M⟩Kp

≳ J⟨ℓ = V | M⟩Kp by Proposition 14
≳ (νℓ)(ℓ(y) JV Kv

y) | JMKp ≳ JMKp

We use ≳ to perform a deterministic reduction and then to use simple laws and remove
inaccessible processes. This result can be extended in presence of store by congruence, giving
J⟨h | new ℓ := V in M⟩Kp ≳ J⟨h | M⟩Kp. ◀

▶ Example 16 (One-use context). Let f1
def= λx. if !ℓ = tt then ℓ := ff ; tt else ff and

f2
def= λx. tt and E = [·] (xλy. y). Then Jnew ℓ := tt in E[f1]Kp ≈ JE[f2]Kp

Proof. By Proposition 14 and congruence of ≳ we have:

JE[f2]Kp ≳ x(z, q) (Jλy. yKv
z | q(w). Jf2wKp)

≳ x(z, q) (Jλy. yKv
z | q(w). JttKp)

Using standard laws for ≳, we relate the encoding of the first program to the same process:

Jnew ℓ := tt in E[f1]Kp ≳ (νℓ)(Jℓ = ttK | x(z, q) (Jλy. yKv
z | q(w). Jf1wKp))

≳ x(z, q) (Jλy. yKv
z | q(w). J⟨ℓ = tt | f1w⟩Kp)

≳ x(z, q) (Jλy. yKv
z | q(w). J⟨ℓ = ff | tt⟩Kp)

≳ x(z, q) (Jλy. yKv
z | q(w). JttKp)

Note that we are outside AIπ because we are using constants (tt, ff). Adapting our setting
to simple types can be done by having sorts F, R, C and forwarders ▷C,▷F for each type T ,
the forwarders being defined inductively on T instead of being constants. ◀
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JṼiKx̃

def=
∏

i

JViKv
xi

with x̃ = x̃i

JE1 :: · · · :: EnK
p̃q

def=
∏
i≤n

pi(z). JEi[z]Kqi with p̃q = p1, q1, . . . , pn, qn

J(Ṽi, σ, h)K
x̃;p̃q

def= (ν ℓ̃)(JṼiKx̃
| JσK

p̃q
| JhK) with ℓ̃ = dom(h)

J(Ṽi, σ, ⟨h | M⟩)K
x̃;q0,p̃q

def= (ν ℓ̃)(JṼiKx̃
| JσK

p̃q
| JhK | JMKq0) with ℓ̃ = dom(h)

Figure 5 Encoding for triples.

5 A π-Calculus Characterisation of Contextual Equivalence in λref

We can now move on to show our full abstraction result. To do so, we first extend the
encoding to the triples defined in Section 2. This leads to an operational correspondence
similar to Proposition 14 but for triples (Theorem 17). However, thanks to triples, it is
possible to state Theorem 17 without using explicit AIπ constructs, so that each transition
relates the encoding of triples. The bisimulation with divergence can then be defined and
shown fully abstractly using mainly the operational correspondence theorem.

We describe in Figure 5 the encoding of triples (Section 2). It builds on the encoding in
Figure 3, with values being encoded as expected. To encode σ, every evaluation context E

in σ is encoded as the process p(z). JE[z]Kq so that, intutively, E[z] can be executed as soon
as the input at p is triggered. Both J(Ṽi, σ, c)K

x̃;q0,p̃q
and J(Ṽi, σ, h)K

x̃;p̃q
are typeable with

stacks that we write ρ
q0,p̃q

and ρ
p̃q

respectively.

▶ Theorem 17 (Operational Correspondence).
We relate transitions for the encoding of both kind of triples:
When [ρ; J(Ṽi, σ, c)K

x̃;q0,p̃q
] µ−→ [ρ′; P ] with x̃ = x̃i and p̃q = p1, q1, . . . , pn, qn then:

1. either c → c′, µ = τ and P ≳ J(Ṽi, σ, c′)K
x̃;q0,p̃q

2. or c = ⟨h | V0⟩, µ = q0(x0) and P ≳ J((Ṽi, V0), σ, h)K
x0,x̃;p̃q

3. or c = ⟨h | E0[y V0]⟩, µ = y(x0, p0) and P ≳ J((Ṽi, V0), E0 :: σ, h)K
x0,x̃;p0,q0,p̃q

When [ρ; J(Ṽi, σ, h)K
x̃;p̃q

] µ−→ [ρ′; P ] with x̃ = x̃i and p̃q = p1, q1, . . . , pn, qn then:
1. either µ = xj(z, q0) and P ≳ J(Ṽi, σ, ⟨h | N⟩)K

x̃;q0,p̃q
with Vjz ≻ N .

2. or σ = E1 :: σ′ and µ = p1(z) and P ≳ J(Ṽi, σ′, ⟨h | E1[z]⟩)K
x̃;q1,p2,q2,...,pn,qn

The following result is useful for the full abstraction proof.

▶ Corollary 18. If J(Ṽi, σ, c)K
x̃;q0,p̃q

⇒ P ′, then there exists a configuration c′ with c ⇒ c′

and P ′ ≳ J(Ṽi, σ, c′)K
x̃;q0,p̃q

.

Note that we rely on untyped expansion, which does not make any assumption about
sequentiality of processes, in Theorem 17 and Corollary 18. This shows the robustness of the
encoding.

The following example shows that by contrast with the encoding of configurations, the τ

transition in the first case of Theorem 17 is not deterministic.

▶ Example 19. J({λz. ℓ := z}, ⊙, ⟨ℓ = y | !ℓ⟩)Kx1;q0 ̸≳ J({λz. ℓ := z}, ⊙, ⟨ℓ = y | y⟩)Kx1;q0 .
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Indeed, as the π-calculus is concurrent, the encoding of λz. ℓ := z may be executed to
change the content of ℓ before the read is executed. However, we can recover this result
by using ≳wb which forbids the concurrent transitions. This makes ≳wb useful to handle
reductions for triples.

We now introduce the notion of divergence for π-terms. This leads to the definition
of bisimulation with divergence which coarsens ≈wb to account for divergent terms. The
induced equivalence for λref-terms corresponds to nfb.

A wb-typed set is a set of pairs (ρ, P ) with ρ clean and ρ ⊨wb P .

▶ Definition 20 (πdiv). A wb-typed set S is π-divergent if whenever we have (ρ, P ) ∈ S, then
ρ ̸= ∅ and for all µ, ρ′, P ′ with [ρ; P ] µ−→ [ρ′; P ′], we have (ρ′, P ′) ∈ S.

We write πdiv for the largest π-divergent set.

Intuitively, the computation ends when the stack gets empty, meaning there is no pending
continuation. Processes in πdiv thus correspond to processes which cannot terminate, hence
the name of π-divergence.

The following example shows that the divergence of a process depends on the stack used
to type it.

▶ Example 21. Let us consider

P
def= (νx)(p1(z). x(y, r1) r1 ▷ q1 | p2(z). q2(y) x(y′, r). r(z′) 0),

ρ1 = p1 : i, q1 : o, p2 : i, q2 : o, ρ2 = p2 : i, q2 : o, p1 : i, q1 : o.

We have both ρ1 ⊨wb P and ρ2 ⊨wb P .
[ρ1; P ] p1(z)−−−→ [ρ′; P ′] is the only typed-allowed transition and P ′ has no typed-allowed

transition. Thus, (ρ1, P ) ∈ πdiv.
On the other hand, [ρ2; P ] p2(z)−−−→ q2(y)−−−→ p1(z0)−−−−→ τ−→ τ−→ q1(z′)−−−−→ [∅; P ′]. So (ρ2, P ) /∈ πdiv.

▶ Definition 22. A wb-typed symmetric relation R is a bisimulation with divergence if there
exists a π-divergent set S such that whenever we have (σ, P, Q) ∈ R and [σ; P ] µ−→ [σ′; P ′],
then one of the following holds:

1. there exists Q′ with Q
µ̂=⇒ Q′ and (σ′, P ′, Q′) ∈ R;

2. µ is an output and (σ′, P ′) ∈ S.
We write ≈div for the largest bisimulation with divergence. We write P ≈ρ

div Q when
(ρ, P, Q)∈ ≈div.

Bisimilarity with divergence is coarser than wb-bisimilarity and thus also coarser than
the untyped bisimilarity.

To establish soundness, we rely on Theorem 17 (operational correspondence). The set of
triples whose encoding is π-diverging is itself diverging, so we can prove that the relation
induced by ≈div is a nfb.

▶ Theorem 23 (Soundness). If JMKp ≈p:o
div JNKp, then M ≍ N .

The completeness is proved by showing that the encoding of a divergent set is π-divergent
up to ≳ and then Property (1) from the introduction, namely that the encoding of a nfb is a
bisimulation with divergence up to ≳.

▶ Theorem 24 (Completeness). If M ≍ N , then JMKp ≈p:o
div JNKp.
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6 Up-to Techniques for ≈div in AIπ, and Applications

Up-to techniques are defined as functions from relations to relations. The idea of up-to
techniques is to weaken the requirement by applying the up-to technique to the relation R
in clause 1 of Definition 22. Standard up-to techniques like up-to expansion or up-to context
can be adapted to our typed setting as in [5].

Similar up-to techniques for sets can also be defined and exploited for π-divergent sets.
In order for up-to context to be sound, we must forbid contexts where the hole is guarded by
a replicated input. Indeed, replicated input may only be typed with an empty set so they
cannot be diverging. This is similar to λref, where Ω is divergent but λx. Ω is not.

Thanks to up-to techniques, to prove that two processes are equivalent, we can give R,
a bismulation with divergence up to using S, a π-divergent set up to. This is used in the
equivalences proven in Section 6.2.

6.1 A new up-to technique for AIπ: up-to body

In AIπ, functions are encoded as a replicated process of the form !x(y, p). T , which we denote
T x. When identical calls result in the same value being sent, it creates copies of that value,
leading to processes of the form T x | T y | . . . | T z, with x, y, . . . , z being all different names.
This behaviour makes bisimulations infinite, as they would need to contain processes with an
arbitrary number of processes in parallel, despite all of them sharing the same body. We
introduce a new technique, up-to body, which allows us to remove these duplicated copies.
Indeed, it is sound to keep only one copy when comparing processes: any discriminating
interaction with the environment involving multiple copies can be mimicked by a similar
interaction with only one copy. The up-to body technique is defined by the following rule:

(ρ, E[T x
1 ], F [T x

2 ]) ∈ R
(ρ, E[T z

1 | T x
1 ], F [T z

2 | T x
2 ]) ∈ body(R)

x, z /∈ n(E) ∪ n(F ) ∪ fn(T1) ∪ fn(T2)

Up-to body differs from up-to context because we keep the possibly different evaluation
contexts, E and F . These contexts correspond to private resources shared among the copies.
In our case, the private resource is the local store, but this technique can be exported to the
plain π-calculus. The technique for sets is defined similarly, with (ρ, E[T z | T x]) ∈ body(S)
whenever (ρ, E[T x]) ∈ S and x, z /∈ n(E) ∪ fn(T ).

Using up-to body, it is possible to prove the analog of (1) from Section 1 but using normal
form bisimulations from [2] instead of the formulation we have given in Definition 5.

We now present a simple example that demonstrates the use of up-to body.

▶ Example 25. new ℓ := z in λx. λy. !ℓ ≍ λx. λy. z

Proof. We reason using the soundness of the encoding, and define

R = {(ρq, Jnew ℓ := z in λx. λy. !ℓKq, Jλx. λy. zKq),
(∅, J(λx. λy. !ℓ, ), ⊙, ℓ = zKx0 , J(λx. λy. z, ), ⊙, ∅Kx0)
(∅, J(λx. λy. !ℓ, λy. !ℓ), ⊙, ℓ = zKx0,x1 , J(λx. λy. z, λy. z), ⊙, ∅Kx0,x1)}.

We can show that R is a bisimulation with divergence up to ≳wb, context and body. The
up-to body technique makes it possible to stop the relation after the third pair. ◀
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6.2 Examples
We now present an example that involves the encoding of triples, but does not require us
to take into account deferred divergences. To validate the laws below, we thus rely on ≈wb
which is included in ≈div (Definition 22).

▶ Example 26 (Optimised access). Two consecutive read and/or write operations can be
transformed into an equivalent single operation.

For any pair (f1, f2) from the following (() is the unique inhabitant of the unit type):(
f1 = λ(). ℓ := !ℓ, f2 = λ(). ()

)(
f1 = λn. λm. ℓ := n; ℓ := m, f2 = λn. λm. ℓ := m

)(
f1 = λn. ℓ := n; !ℓ, f2 = λn. ℓ := n; n

)(
f1 = λ(). let x = !ℓ in let y = !ℓ in M, f2 = λ(). let x = !ℓ in M{x/y}

)
we have for any E, y, V0, we have Jnew ℓ := V0 in E[y f1]Kq1 ≈wb Jnew ℓ := V0 in E[y f2]Kq1 .

Proof. First, we have that J((f1, ), E :: ⊙, ℓ := V0)Kx;p1,q1 ≈wb J((f2, ), E :: ⊙, ℓ := V0)Kx;p1,q1

using (fi, ) to denote the singleton containing fi. Indeed, we define a relation R as follows:

R = {(ρ
p̃q

, J((Ṽi, f1), σ, h⊎ℓ = V )K
x̃;p̃q

, J((Ṽi, f2), σ, h⊎ℓ = V )K
x̃;p̃q

)
∣∣ for all Ṽi, σ, h, V, x̃, p̃q}

and we show that R is a wb-bisimulation up to ≳wb and evaluation context.
Then we use Theorem 17 to show

Jnew ℓ := V0 in E[x fi]Kq1 ≳ J(∅, ⊙, ⟨ℓ = V0 | E[y fi]⟩Kq1

y(x,p1)−−−−→≳ J(fi, ), E :: ⊙, ℓ = V0)Kx;p1,q1

with the output being the only transition that the intermediate process can perform. ◀

The proof of this law could become even simpler by adopting the type system of [4]: we
could prove prove directly that Jf1Kp and Jf2Kp are equivalent.

Relation R above would have the same base if we were to reason in the source language.
If we were to show new ℓ := V in E[y f1] ≍ new ℓ := V in E[y f2] using nfb, we would need
to add triples with the same normal form term on both sides.

We present some examples involving deferred divergence from the literature.

▶ Example 27. ⟨∅ | x V Ω⟩ ≍ ⟨∅ | Ω⟩, where V is a value and Ω is an always diverging term.

Proof. Take R = {(ρq, J⟨∅ | x V Ω⟩Kq, J⟨∅ | Ω⟩Kq)} and S = {(ρr, JΩKr)}.
S is π-divergent, so ≳wbctxt(S) is too, where ctxt stands for the up-to context technique.

Then we show that R is a bisimulation with divergence up to context with ≳wbctxt(S) as
the π-divergent set.

[ρq; J⟨∅ | x V Ω⟩Kq] x(y,p)−−−−→ [ρp,q; P ] is the only type-allowed transition.
By Theorem 17, we know that P ≳ J({V }, [·] Ω :: ⊙, ∅)Ky;pq.
As (ρp,q, J({V }, [·] Ω :: ⊙, ∅)Ky;pq) ∈ ctxt(S), we indeed have (ρp,q, P ) ∈ ≳wbctxt(S). ◀

▶ Example 28 (Example 9 from [2]).

V1 = λx. if !ℓ then Ω else k := tt W1 = λx. Ω

V2 = λf . f V1; if !k then Ω else ℓ := tt W2 = λf . f W1

We have new ℓ := ff in new k := ff in V2 ≍ W2.
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Proof. Given a context E, we write En for E :: E :: · · · :: E :: ⊙ with n occurences of E.
Let E

def= (λ(). if !k then Ω else ℓ := tt)[·], and F
def= (λ(). ())[·]. We define R as

{(ρq, Jnew ℓ := ff in new k := ff in V2Kq, JW2Kq),
(∅, J(V2, ), ⊙, ℓ = ff ⊎ k = ffKx2 , J(W2, ), ⊙, ∅Kx2)}

⋃
{(ρ

p̃q
, J(V1, V2), En, ℓ = ff ⊎ k = ffK

x̃i;p̃q
, J(W1, W2), F n, ∅K

x̃i;p̃q
),

(ρ
q0,p̃q

, J(V1, V2), En, ⟨ℓ = ff ⊎ k = tt | ()⟩K
x̃i;q0,p̃q

, J(W1, W2), F n, ⟨∅ | Ω⟩K
x̃i;q0,p̃q

),
(ρ

p̃q
, J(V1, V2), En, ℓ = tt ⊎ k = ffK

x̃i;p̃q
, J(W1, W2), F n, ∅K

x̃i;p̃q
)∣∣ for all p̃q, n with |p̃q| = 2n }

and S as {(ρq, JΩKq), (ρ
p̃q

, J(V1, V2), En, ℓ = ff ⊎ k = ttK
x̃i;p̃q

) for all p̃q, n with |p̃q| = 2n}.
R is a bisimulation up to ≳wb, context and body. Multiple calls to V1, W1 create multiples

continuations, but thanks to up-to body, multiples calls to V2, W2 do not create multiples
copies of V1, W1. All in all, we have the same number of pairs in the candidate bisimulation
relation as in the relation in [2]. ◀

By modifying this example so as to allocate the references inside V2, we get Example 15
from [8]. In that case, V2 does not have free reference names. This makes it possible to use
up-to parallel composition between the encoding of V2 and V1 preventing multiples calls to
V2. This usage of up-to parallel composition is similar to the up-to separation technique
introduced in [8].

7 Related and Future Works

7.1 Related works

The equivalence in [8] is similar to nfb, for an extension of λref. It is also fully abstract
w.r.t. contextual equivalence. Up-to techniques for nfb are defined in [2], and used to prove
several equivalences between λref programs. We can redo essentially the same proofs in our
setting. Both works use techniques that are specific to nfb or its variant, and are arguably
less standard than the up-to techniques we exploit in the π-calculus. In particular, the up-to
separation from [8] is expressible using up-to context in the π-calculus.

A full abstraction result for PCF programs in AIπ is presented in [1], using a contextual
equivalence in a typed setting. The type system captures closely the behaviour of the
encoding of PCF terms, in the sense that any process whose type is the translation of a PCF
type is behaviourally equivalent to the encoding of a source term, and in particular cannot
be stateful. It seems difficult to find a labelled bisimilarity for this equivalence, and thus to
use proof techniques as in our paper.

Our encoding is based on the one of [3], which has been used to show a close connection
between operational game semantics and the π-calculus for call-by-value in [7]. Both works
focus on this stateless calculus to show the correspondence with Lassen trees.

The type system of Section 3 is inspired by evaluation stacks used to ensure the bracketed
condition in game semantics [9]. Game semantics can also be used to provide a fully abstract
model for RefML, which is a language similar to λref [12, 13]. By being more operational,
our approach is usable more directly to reason about λref programs. This is similar to
operational game semantics which are complete for recursion-free programs with integer
references [6].
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7.2 Future works
The type system of [4] makes it possible to reason about references in a parallel setting. We
believe that its addition to our type system would allow us to extend our full abstraction
result to open references, i.e., references that can be returned by functions.

It would be interesting to see whether ≈div characterises a contextually-defined equivalence
in AIπ. In comparison, such a result holds for ≈wb [5]: this equivalence corresponds to a
typed barbed equivalence with a notion of typed barb to restrict the visibility of observables.
One lead would be limiting barbs to be only outputs on continuation names. This may work
only for the image of the encoding, but not for all typeable processes.

We would like to see whether the techniques we have developed can be exploited in other
languages. Idealized ALGOL has both functional and imperative aspects, so our techniques
may adapt to it. When extending λref with control operators [20], well-bracketing is not
required, so we can weaken the type system to simply ensure sequentiality. Because of the
links with game semantics, object-oriented languages [14] can be interesting too.
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Abstract
We settle two long-standing open problems about Conway’s Life, a two-dimensional cellular auto-
maton. We solve the Generalized grandfather problem: for all n ≥ 0, there exists a configuration that
has an nth predecessor but not an (n + 1)st one. We also solve (one interpretation of) the Unique
father problem: there exists a finite stable configuration that contains a finite subpattern that has
no predecessor patterns except itself. In particular this gives the first example of an unsynthesizable
still life. The new key concept is that of a spatiotemporally periodic configuration (agar) that has a
unique chain of preimages; we show that this property is semidecidable, and find examples of such
agars using a SAT solver.

Our results about the topological dynamics of Game of Life are as follows: it never reaches
its limit set; its dynamics on its limit set is chain-wandering, in particular it is not topologically
transitive and does not have dense periodic points; and the spatial dynamics of its limit set is
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1 Introduction

Conway’s Game of Life is a famous two-dimensional cellular automaton defined by John
Horton Conway in 1970 and popularized by Martin Gardner [14]. A cellular automaton
can be thought of as zero-player game: the board is set up, and a simple rule determines
the dynamics. In the case of Game of Life, the board is the two-dimensional infinite grid,
where some grid cells are live, and some are dead (or empty); the evolution rule, executed
simultaneously in all cells, is that a dead cell becomes live if it has exactly three live (cardinal
or diagonal) neighbors, and a live cell stays live if and only if it has two or three live neighbors.

Iterating this rule gives rise to very complicated dynamics. Engineering patterns with
interesting behaviors, and searching for such patterns by computer, has been an ongoing
effort since the invention of the rule. For readers interested in delving into this world, we
cite the very recent (and freely available) book [19] of Johnston and Greene. One result that

EA
T

C
S

© Ville Salo and Ilkka Törmä;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 131; pp. 131:1–131:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vosalo@utu.fi
https://orcid.org/0000-0002-2059-194X
mailto:iatorm@utu.fi
https://orcid.org/0000-0001-5541-8517
https://doi.org/10.4230/LIPIcs.ICALP.2022.131
https://arxiv.org/abs/2202.07346
https://github.com/ilkka-torma/gol-agars
https://archive.softwareheritage.org/swh:1:dir:395e8074fa419c9af6799cc0b60c9c80a9947eae;origin=https://github.com/ilkka-torma/gol-agars;visit=swh:1:snp:9a3fef5d1667c738ab786a9fb7f31be69d4e5c32;anchor=swh:1:rev:a39d66a4a9278a1a6cfb5adc1a8282cd2f18d556
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


131:2 What Can Oracles Teach Us About the Ultimate Fate of Life?

exemplifies the complexity of Game of Life is that it is intrinsically universal [10], meaning
that Game of Life can simulate any two-dimensional cellular automaton f (including proper
self-simulation), so that the states of f correspond to large blocks with special content, and
one step of f is simulated in multiple steps of Game of Life.

Game of Life can be thought of as a mathematical complex system, namely it is a system
where complex global behavior arises from interacting (simple) local rules. Such systems can
be notoriously difficult to study. We can often use computer simulations to make empirical
observations about typical and eventual behavior, but it can be very difficult to actually
prove that a particular behavior persists on larger scales (even if it seems like its failure
would require a massive conspiracy). Usually one can only successfully analyze systems
that are very simple [13], or their behavior simulates a phenomenon that is mathematically
well-understood, say of an algebraic [8] or number theoretic [20] nature, or the systems are
specifically constructed for some purpose [23]. Due to intrinsic universality, it seems unlikely
that Game of Life fits in any of these classes.

Indeed, for Game of Life, despite decades of study by enthusiasts, almost no non-trivial
mathematical results exist that state limitations on its eventual behavior. In other words,
as a dynamical system, we know very little about it. From computer simulations, one can
conclude that Game of Life is highly “chaotic”, and one can make educated guesses about
things like the typical population density after a large number of iterations; however, it is
very hard to make such claims rigorous. Rigorous results about Game of Life do exist, but
they concern mostly the behavior of Game of Life on nice configurations (the engineering
feats discussed above are of this type), and no known pattern behaves predictably in a general
context; alternatively, they deal with one-step or static behavior [12].

In this paper, we study Game of Life through its agars, which are the Game of Life
community’s term for spatiotemporally periodic points. More specifically, we observe that
a simple algorithm (essentially Wang’s partial algorithm from [32]) can be used to find all
agars with small enough periodicity parameters that have a unique chain of predecessors. We
then study finite patches of these agars, and find some with interesting backwards forcing
properties. Namely, these patterns behave deterministically in the (a priori nondeterministic)
backwards dynamics of Game of Life. This intuitively allows us to study the “last iterations”
of Game of Life (after an unknown number of steps), and leads to a wealth of results about
how Game of Life behaves “in the limit”.

One practical difficulty is that the algorithm we use is not of the usual kind, but rather it
is in the class FPNP of problems that are solvable in polynomial time with an NP oracle.
Throughout this work, modern SAT solvers have constantly impressed and even humbled us
by how freely they can be used as such oracles.1 While their role is not very explicit in the
final write-up of the paper, this work would not have been possible without them.

We do not expect the method of studying the eventual dynamics through self-enforcing
patterns to be specific to Game of Life. Indeed, one can apply it directly to any cellular
automaton rule (with any number of dimensions), and the idea can presumably be adapted
to other systems as well. The reason we study a single example cellular automaton is that
the results require us to find a “witness”, usually a self-enforcing agar, and there is no a
priori bound on how long this pattern-crunching will take – or whether it will succeed at
all – for a particular rule. A single agar also tends to only work for a single rule or trivial

1 For example, in our experience, general-purpose constraint-solvers and our own CA-specific solvers often
fail even on the basic problem of finding a Game of Life preimage, while SAT solvers happily tell us, say,
whether a preimage exists with particular constraints, and can find preimages for higher powers of Life.
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modifications thereof. The choice of precisely Game of Life as the example rule to study
is not mathematically motivated, it is simply a well-known simple rule that has already
been studied extensively. Some of our programs are available on GitHub at [30], for readers
interested in trying the methods out on other rules.

1.1 The protagonists

(a) Köynnös. (b) Kynnös. (c) Marching band.

Figure 1 Patches of the agars. A 3-by-3 grid of the repeating patterns is shown for each. Cyan
cells are live.

We begin with a brief discussion of the agars that we use to prove our results. These will
be explained in more detail in separate sections.

Figure 1a shows the pattern we call köynnös2. The infinite agar obtained by repeating this
pattern infinitely in each direction has no preimage other than itself; we say it is self-enforcing.
Up to symmetries there are exactly 11 self-enforcing agars of size 6× 3. Köynnös has the
special property that it is impossible to stabilize a finite difference to this configuration:
if one modifies the agar in finitely many cells, the difference spreads at the speed of light
(one column of cells per time step, which is the maximal speed at which information can be
transmitted by Game of Life). We say it cannot be stabilized from the inside.

Figure 1b shows the pattern we call kynnös3. The corresponding infinite agar is again
self-enforcing. Up to symmetries there are at least 52 self-enforcing agars of size 6× 6 (we
were unable to finish the search, so it is possible that more exist). Kynnös has two special
properties. First, it contains a finite patch such that if a configuration has this patch in its
image, then the configuration already had that patch in place, i.e. one cannot synthesize it
from any other patch. Second, unlike köynnös, it can be stabilized from the inside.

Figure 1c shows the pattern we call marching band4. This agar has temporal period two.
Its most important property is that an infinite south half-plane of this pattern must shrink if
there is a difference on its border, meaning that in the nondeterministic inverse dynamics of
Game of Life, an infinite south half-plane of this pattern “marches” to the north.

To find the marching band, we searched through all w × h-patterns such that the
corresponding agar with periods (w, 0) and (0, h) is temporally (exactly) t-periodic, for the
parameter range 2 ≤ w ≤ 9, 2 ≤ h ≤ 5, 2 ≤ t ≤ 3. There were no self-enforcing agars with
temporal period 3 in this range, and there were exactly 14 self-enforcing agars with period 2.
The marching band is the only one that has the marching property in any direction.

2 Finnish for vine.
3 Finnish for that which is tilled.
4 English for marssiorkesteri.

ICALP 2022



131:4 What Can Oracles Teach Us About the Ultimate Fate of Life?

1.2 Results
Denote by g : {0, 1}Z2 → {0, 1}Z2 the Game of Life cellular automaton, where dead cells are
represented by 0 and live cells by 1. In this section, we list all our new technical contributions
about g. The reader should consult Section 2 for precise definitions of terms used in this
section. First, we solve the Generalized grandfather problem: for all n ≥ 0, there exists a
configuration that has an nth predecessor but not an (n + 1)st one.

▶ Theorem 1 (Generalized grandfather problem). For each n ≥ 0, there exists x ∈ {0, 1}Z2

with g−n(x) ̸= ∅ and g−(n+1)(x) = ∅.

The case of n = 0 (that g is not surjective) was resolved by R. Banks in 1971, only a year
after the introduction of Game of Life. Conway stated the Grandfather problem, namely the
case n = 1 of the above, in 1972, and promised $50 in the Lifeline newsletter [31] for its solu-
tion. This stayed open until 2016, when the cases n ∈ {1, 2, 3} were proved by the user mtve
of the ConwayLife forum. We note (see Lemma 16 for the proof) that while Theorem 1 refers
to infinite configurations, the analogous statements for finite patterns or finite-population
configurations are equivalent to it. Cellular automata satisfying the conclusion of Theorem 1
are sometimes called “unstable” [24], though we avoid this terminology here, as “stable” has
another meaning in Game of Life jargon.

More specifically, we prove the following two results, which strengthen Theorem 1 in
different directions. The first result is proved using köynnös and is based on the fact it cannot
be stabilized from the inside. The notation g−n(p) for a finite pattern p of shape D ⊂ Z2

stands for the set of patterns of shape D + [−n, n]2 that evolve into p in n steps.

▶ Theorem 1.1. There exists a polynomial time algorithm that, given n ≥ 0 in unary,
produces a finite pattern p with g−n(p) ̸= ∅ and g−(n+1)(p) = ∅.

The algorithm is very simple: change the value of one cell in the agar, apply the Game of
Life rule n times, and pick the central [−30− 6n, 30 + 6n]× [−27− 8n, 27 + 8n]-patch of the
resulting configuration as p. An example with n = 28 is shown in Figure 2 (with insufficient
padding: the periodic background should extend 164 cells further to the left and right, and
220 cells up and down).

Figure 2 A “level-29 orphan” obtained by perturbing köynnös: these angry deities could be found
28 seconds after the Big Bang, then went extinct.
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The second result is proved using kynnös, and is based on the facts that kynnös admits a
self-enforcing patch and that it can be stabilized from the inside. The following was first
pointed out by Adam Goucher [16].

▶ Theorem 1.2. For any large enough n, there exists an n× n pattern which appears in the
kth image of Game of Life, but does not appear in its (k + 1)st image, where 2n2/368−O(n) ≤
k ≤ 2n2 .

This is (up to a suitable equivalence relation) the optimally slow growth rate for higher
level orphans. The same idea can be used to obtain the following results about the limit set
of Game of Life. Also called the eventual image, it is the set of configurations with arbitrarily
long chains of predecessors. The language of the limit set refers to the set of finite patterns
occurring in it.

▶ Theorem 2. The limit set of Game of Life has PSPACE-hard language.

The language might well be much harder. Even for one-dimensional cellular automata it
can be Π0

1-complete [6, 18]; we do not know if Game of Life reaches this upper bound.
We also obtain information about the symbolic dynamical nature of the limit set. A set

of configurations is sofic if it can be defined by Wang tiles, or squares with colored edges:
in a valid tiling of Z2, colors of adjacent edges are required to match, and the tiles can
additionally be marked with 0 and 1 to project each valid tiling to a binary configuration.
The set of those projections is called a sofic shift. Sofic systems form a large and varied
class of subshifts, for example their one-dimensional projections can be essentially arbitrary
(subject only to an obvious computability condition) [11, 1]. We show that the limit set of
Game of Life cannot be defined by a tile set in this way.

▶ Theorem 3. The limit set of Game of Life is not sofic.

Besides illuminating the iterated images of Game of Life and its limit set, the self-enforcing
kynnös patch itself solves a second open problem, namely the Unique father problem stated
by John Conway in [31, 5]: is there a still life (a finite-population configuration that is a
fixed point of g) whose only predecessor is itself, “with some fading junk some distance away
not being counted”? We solve one interpretation of this problem.

▶ Theorem 4 (Unique father problem). There exists a finite still life configuration x that
contains a finite subpattern p such that every preimage of x also has subpattern p.

One can also imagine stronger variants of the Unique father problem: for example, we
could require p to contain all live cells of x, or all cells in their convex hull. These stay open.

Theorem 4 also tells us something about the dynamics of Game of Life restricted to its
limit set, i.e. its limit dynamics. The chain-wandering property essentially means that there
is a finite pattern that occurs in the limit set of Game of Life, but never returns to itself
under the dynamics no matter how we fill the surrounding infinite plane. In fact, we are
even allowed to completely rewrite the entire configuration on every step, apart from the
domain of the pattern.

▶ Theorem 5. Game of Life is chain-wandering on its limit set.

Much is known about the kinds of things that can happen in Game of Life orbits, in
particular it is well known that Game of Life is computationally universal and can simulate
any cellular automaton. Nevertheless, to our knowledge all existing methods of simulating
unbounded computation require the rest of the configuration to be empty (or at least stay out
of the way). With our methods, we can enforce computations in a finite region (conditioned
on its end state) even when it is completed into an infinite configuration by an adversary.

ICALP 2022
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▶ Theorem 6. The reachability problem of Game of Life is PSPACE-hard, i.e. given two
finite patterns p, q ∈ {0, 1}D whose domain D has polynomial extent, it is PSPACE-hard to
tell whether there exists a configuration x with x|D = p and gn(x)|D = q for some n ≥ 0.

Finally, the properties of the marching band’s backwards dynamics imply that the limit
set contains patterns that cannot be “glued” together too close: there are two n× n patterns
such that no configuration of the limit set contains both of them separated by a distance less
than n/15.

▶ Theorem 7. For all large enough n there exist patterns p, q ∈ {0, 1}[0,n−1]2 such that p

and q appear in the limit set, but p ⊔ σ(0,⌊n/15⌋)(q) does not.

▶ Corollary 8. The limit set of Game of Life is not block-gluing (thus has none of the gluing
properties listed in [4]).

1.3 Programs
Some of the programs we used can be found on GitHub at [30]. We have included Python
scripts enumerating self-enforcing agars, and scripts checking the claimed properties of our
three agars. In particular one can find implementations of Algorithms 1 and 2. The scripts
use the PySAT [28] library to call the Minisat [26] SAT solver (the library supports many
other solvers as well).

2 Definitions

Our intervals are discrete. To simplify formulas, we denote by[
a b c d

e f g h

]
= ([−a, b]× [−c, d]) \ ([−e, f ]× [−g, h])

a rectangular discrete annulus when the second rectangle fits fully inside the first, that is,
−a ≤ −e ≤ f ≤ b and −c ≤ −g ≤ h ≤ d.

We assume some familiarity with topological and symbolic dynamics and give only brief
definitions, see e.g. [22] for a basic reference. We denote by S a finite alphabet. A configuration
or point is an element of SZd . More generally, a pattern (or sometimes patch in more informal
contexts) is a function p : dom(p) → S, where dom(p) ⊂ Zd is the domain of p. If S ⊂ N,
then by

∑
p we denote the sum

∑
v⃗∈dom(p) p(v⃗). For v⃗ ∈ Zd, a pattern p and D ⊂ Zd, we

write q = p|D for the restriction dom(q) = D ∩ dom(p), q(v⃗) = p(v⃗). A pattern is finite if its
domain is, and a configuration is finite if its sum as a pattern is finite. If p, q are patterns with
disjoint domains, define p⊔ q = r by dom(r) = dom(p)∪dom(q), r|dom(p) = p, r|dom(q) = q.
The extent of a pattern is the minimal hypercube containing the origin and its domain. For
two patterns, write eq(q, q′) for the set of vectors v⃗ ∈ dom(q)∩dom(q′) such that q(v⃗) = q′(v⃗),
and diff(q, q′) for those that satisfy q(v⃗) ̸= q′(v⃗). For computer science purposes, we note
that patterns with polynomial extent have an efficient encoding as binary strings.

The full shift is the set of all configurations SZd with the product topology (where S

has the discrete topology), under the action of Zd by homeomorphisms σv⃗(x)u⃗ = xv⃗+u⃗

called shifts. We use the same formula to define σv⃗(p) for patterns p (of course shifting the
domain correspondingly). A pattern p defines a cylinder [p] = {x ∈ SZd | x|dom(p) = p}.
Cylinders defined by finite patterns are a base of the topology, and their finite unions are
exactly the clopen sets. The symbol partition is the clopen partition {[s] | s ∈ S} where s is
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identified with the pattern p : {⃗0} → S with p(⃗0) = s. The space SZd is homeomorphic to
the Cantor space, and is metrizable. One possible metric is dist : (SZ2)2 → R, dist(x, y) =
2− sup{n | x|[−n,n]×[−n,n]=y|[−n,n]×[−n,n]} with 2−∞ = 0.

A cellular automaton (or CA) is a continuous self-map f : SZd → SZd that commutes
with the shifts. The neighborhood is a set N ⊂ Zd such that f(x)⃗0 is determined by x|N ; a
finite neighborhood always exists by the Curtis-Hedlund-Lyndon theorem [17]. It is easy to
show that there is always a unique minimal neighborhood under inclusion. A state 0 ∈ S

is quiescent if f(0Zd) = 0Zd . A subshift is a closed subset X of SZd invariant under shifts.
Its language is the set of finite patterns p such that [p] ∩X ̸= ∅, and we say these patterns
appear or occur in the subshift. Patterns that do not appear in f(SZd) are usually called
orphans. We say p is a level-n orphan if it appears in fn−1(SZd) but not in fn(SZd) (so the
usual orphans are level-1). The limit set of a cellular automaton f is Ω(f) =

⋂
n fn(SZd). It

is a subshift invariant under f . A subshift of finite type is a subshift of the form
⋂

σv⃗(C)
where C is clopen. A sofic shift is a subshift which is the image of a subshift of finite type
under a shift-commuting continuous function.

We are mainly interested in d = 2, S = {0, 1}, and the Game of Life cellular automaton
g : {0, 1}Z2 → {0, 1}Z2 defined by

g(x)v⃗ = 1 ⇐⇒ (xv⃗ = 0 ∧
∑

(x|v⃗ + K) = 3)

∨(xv⃗ = 1 ∧
∑

(x|v⃗ + K) ∈ {2, 3}),

where K = [−1, 1]2 \ {(0, 0)}.
A fixed point (of a CA f) is x ∈ SZd such that f(x) = x. In the context of Game of

Life these are also called stable configurations or still lifes. Spatial and temporal generally
refer respectively to the Zd-action of shifts and the action of a CA. In particular a spatially
periodic point is a configuration x ∈ SZd which has a finite orbit under the shift dynamics,
and temporal periodicity means fn(x) = x for some n ≥ 1. Spatiotemporal periodicity means
that both hold; in the Game of Life context spatiotemporal points are also called agars.

If f : X → X is a continuous function, an ϵ-chain from x to y is x = x0, x1, . . . , xk = y

with k ≥ 1 such that dist(f(xi), xi+1) < ϵ for 0 ≤ i < k. We say f is chain-nonwandering if
for all ϵ > 0 and x ∈ X there is an ϵ-chain from x to itself; otherwise f is chain-wandering.
(In the literature, chain-nonwandering is more commonly known as chain-recurrence, but
both terms are logical.) We say f is topologically transitive if for all nonempty open sets
U, V we have fn(U) ∩ V ̸= ∅ for some n. It is sensitive (to initial conditions) if there exists
ϵ > 0 such that for all x ∈ X and δ > 0 there exists y ∈ X with dist(x, y) < δ and n ∈ N
such that dist(fn(x), fn(y)) ≥ ϵ. We say f has dense periodic points if its set of temporally
periodic points is dense.

3 Proofs

We begin by introducing a formalism for forced cells in the preimages of a given pattern or
configuration. The general topological idea is the following: if we have a zero-dimensional
space X and a family of closed sets I which is closed under arbitrary intersections and
contains the empty set, then to any continuous f : X → X we can associate a map f̂ : I → I
by

f̂(A) =
⋂
{B ∈ I | f−1(A) ⊂ B}. (1)

We call this the dual map of f with respect to I.

ICALP 2022
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In our situation, X = SZd and f : SZd → SZd is a cellular automaton. We define three
families of subsets of SZd :
I consists of the cylinders [p] ⊂ SZd defined by all patterns p, plus the empty set ∅, which
we denote by ⊤. The entire space SZd , which is the cylinder of the empty pattern, is
denoted by ⊥.
F ⊂ I consists of all cylinders [p] defined by finite patterns p.
C ⊂ I consists of the singletons [x] = {x} for full configurations x ∈ SZd .

Note that F ∩ C = ∅. The family F is naturally stratified into finite subsets FM = {[p] |
p ∈ SM}, where M ⊂ Zd ranges over finite sets. For a cylinder [p] ∈ I, equation (1) defines
f̂([p]) ∈ I as the cylinder [q], where q contains exactly those cells whose values are the same
in all f -preimages of p, or ⊤ if p has no f -preimages (i.e. is an orphan). Also, f̂(⊤) = ⊤.

▶ Example 9. Consider S = {0, 1, 2} and the cellular automaton f : SZ → SZ defined by

f(x)0 =
{

2, if x0 = 2,

min(x0, x1), otherwise.

The minimal neighborhood of f is N = {0, 1}. The pattern p = 002 of domain {0, 1, 2}
has preimages f−1(p) = {0020, 0021, 0022, 1020, 1021, 1022} of domain {0, 1, 2, 3}. Thus
f̂([p]) = [q], where q = 02 has domain {1, 2}, since the values of these cells are the same in
all preimages. The pattern p′ = 102 has no preimages, so f̂([p′]) = ⊤.

We define a partial order on I by [p] ≤ [q] whenever [q] ⊂ [p], and α ≤ ⊤ for all α ∈ I.
The intuition is that [p] ≤ [q] corresponds to the pattern q specifying more cells than p, and
thus containing more information. As the empty set ⊤ in a sense specifies the maximal
amount of information – a contradiction – it is the largest element. Note that C consists of
the maximal elements of I \ {⊤}.

We give I the topology with basis sets Up = {α ∈ I | [p] ≤ α} for [p] ∈ F as well as {⊤},
making ⊤ an isolated point. This space is not Hausdorff (T2), indeed it only satisfies the
Kolmogorov (T0) separation axiom. The induced topology on C is the standard compact
Cantor topology, and F is a dense subset of I \ {⊤}. Every nonempty open set contains ⊤:
“the contradiction is dense”.

▶ Lemma 10. The dual map f̂ : I → I is continuous.

We are simply saying that if a (possibly infinite) pattern forces some particular value in
some cell in the preimage, then actually some finite patch already forces it. The proof is a
straightforward compactness argument.

Proof. Continuity at ⊤ is obvious. We show continuity at a cylinder [p] ∈ I. Suppose first
that f̂([p]) = [q], and let [r] ∈ F be such that [q] ∈ Ur. This means that p forces the pattern
q in its f -preimages, and r is a finite subpattern of q. There exists a finite subpattern s of p

that forces r, for otherwise we could take larger and larger subpatterns of p along with two
preimages that disagree on dom(r), and in the limit obtain two preimages of p that disagree
on dom(r). Hence f̂(Us) ⊂ Ur.

Suppose then that f̂([p]) = ⊤, meaning that p is an orphan. It is well known that p

contains a finite subpattern r that is also an orphan. Then f̂(Ur) = {⊤}. ◀

We list some other easy properties of f̂ . For α, β ∈ I write α ∥ β for α ∩ β ≠ ⊤. In the
case of cylinders, this means that the corresponding patterns agree on the intersection of
their domains. For a pattern p, write f(p) for the pattern obtained by applying the local rule
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of f (with the minimal neighborhood) in every position whose neighborhood is contained in
the domain of p (and only those positions are included in the domain of f(p)). Note that
with this definition f([p]) ⊂ [f(p)], and the inclusion may be strict.

▶ Lemma 11.
F ∪ {⊤} is preserved under f̂ . Indeed, we have f̂(FM ) ⊂ FM+N ∪ {⊤} where N is the
minimal neighborhood of f .
f̂ is monotone, i.e. α ≤ β implies f̂(α) ≤ f̂(β).
f̂ ◦ ĝ ≤ f̂ ◦ g pointwise.
for all α ∈ I, either f̂(α) = ⊤ or f̂(α) = [p] with [f(p)] ≤ α; in particular [f(p)] ∥ α in
the latter case.
for all α ∈ I, we have f̂(σv⃗(α)) = σv⃗(f̂(α)).

The next few results refer to FPNP, the class of function problems solvable in deterministic
polynomial time with the help of an oracle that can solve an NP decision problem in one step.
Of course, the oracle can be invoked repeatedly to construct NP certificates in a polynomial
number of steps. This class naturally captures the method of using SAT solvers as black
boxes to compute preimages of finite patterns.

▶ Lemma 12. For a fixed CA f , given p ∈ F , the image f̂([p]) can be computed in FPNP.
It remains computable if f is also given as input.

Proof. Since f̂(FM ) ⊂ FM+N , we only need to determine which coordinates in M + N are
forced in preimages. This requires at most 1 + |M + N | calls to an NP oracle: one to request
a preimage, and for each v⃗ ∈M + N , one to request a pair of preimages which differ at v⃗. ◀

The proof above is the easiest way to get the theoretical result, but for practical purposes
we give Algorithm 1, which tends to find the f̂ -image much quicker (and is just as quick to
implement). It is written for an “incremental oracle”, meaning we can only add constraints
to it (represented by the set F ) when we make a new query. In this case, we compute a
single f -preimage q of the input pattern p, and then compute additional preimages that
differ from q on progressively smaller sets of cells. Modern SAT solvers tend to support such
incremental access – of course, on the side of theory it is easy to see that the class FPNP is
the same whether or not queries are restricted to be incremental.

Algorithm 1 Finding f̂([p]) for a finite pattern p ∈ SM .

function HatCA(f, p)
Let O ← NP oracle.
if O finds a pattern q ∈ f−1(p) then

Let D ←M + N .
Let F ← {(q, D)}.
loop

if O finds a pattern q′ ∈ f−1(p) with q′|E ̸= r|E for all (r, E) ∈ F then
Let D ← D ∩ eq(q, q′).
Let F ← F ∪ {(q′, D)}

else
return q|D

else
return ⊤
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Our results rely on the existence of patterns p that force large patterns into their preimages,
meaning that f̂([p]) is large in the sense of ≤. We say a pattern p is self-enforcing under
f if [p] ≤ f̂([p]). In a slight abuse of terminology, we also say that a temporally t-periodic
configuration x ∈ SZd is self-enforcing if (̂f t)([x]) = [x]. A self-enforcing agar is then a
spatially and temporally periodic configuration that has a unique chain of preimages.

▶ Lemma 13. The set of all pairs (f, x) such that f is a CA on SZd and x ∈ SZd is a
self-enforcing agar is recursively enumerable.

Proof. Let x ∈ SZd be a self-enforcing agar with spatial periods n1e⃗1, . . . , nde⃗d and temporal
period t. Denote the iterated CA by h = f t, and let B = [0, n1 − 1]× · · · × [0, nd − 1]. We
need to find a certificate for ĥ([x]) = [x]. For this, observe that by continuity of ĥ there is a
finite subpattern p of x such that ĥ([y]) ≥ [x|B] for every configuration y ∈ [p]. This implies
ĥ([p]) ≥ [x|B]. By Lemma 12, this latter inequality can be checked in FPNP.

We claim that p is a certificate that x is a self-enforcing agar. Let v⃗ ∈ V = ⟨n1e⃗1, . . . , nde⃗d⟩
be arbitrary. We compute

ĥ([x]) = σv⃗(ĥ([x])) ≥ σv⃗(ĥ([p])) ≥ σv⃗([x|B]) = [x|v⃗ + B],

and since Zd =
⋃

v⃗∈V (v⃗ + B), this implies ĥ([x]) = [x]. ◀

▶ Remark 14. The semi-algorithm described in the proof is not very practical: given an agar,
we have no information about how large the certificate could be, so for each agar we either
need to guess some certificate size, or we have to keep trying increasingly large certificates.
Our implementation runs in parallel a search for other periodic preimages for the agar – if
such a preimage exists, then clearly the agar does not enforce itself, and we can stop looking
for a certificate. We omit the pseudocode.

Most agars in the range we searched were either self-enforcing or had another periodic
preimage. There exist two-dimensional cellular automata whose set of self-enforcing agars is
not computable (by a relatively simple reduction from the tiling problem of Wang tiles [2],
which we omit), but we do not know whether this is the case for Game of Life.

Say a pattern p ⊂ SM is locally fixed for the CA f if there exists a pattern q ∈ SM+N

(where N is the minimal neighborhood of f) such that p = q|M = f(q)|M .

▶ Lemma 15. For every CA f on SZd , every locally fixed pattern p ∈ SM admits a unique
maximal self-enforcing subpattern. For a fixed CA g, given p, a vector v⃗ ∈ Zd and n ≥ 1 in
unary, it can be computed in FPNP for the CA f = σv⃗ ◦ gn.

Proof. Since p has finitely many subpatterns and the empty pattern is trivially self-enforcing,
p admits at least one maximal self-enforcing subpattern. If D, D′ ⊂M satisfy f̂([p|D]) ≥ [p|D]
and f̂([p|D′]) ≥ [p|D′], then f̂([p|D ∪D′]) ≥ [p|D ∪D′] by monotonicity of f̂ . Thus q = p|E
for E =

⋃
{D ⊂M | f̂([p|D]) ≥ [p|D]} is the unique self-enforcing subpattern.

Then fix g, and let p, v⃗ and n be given. We apply Algorithm 2 to the CA f = σv⃗ ◦ gn.
On each iteration of the loop, the algorithm replaces p with the maximal subpattern forced
by p (here we use the fact that p is locally fixed). Since q is a subpattern forced by itself, by
monotonicity it is also forced by each of these subpatterns, and thus remains a subpattern
on each iteration. Since q is maximal and p has finitely many subpatterns, the algorithm
eventually converges on q.

Finally, Algorithm 2 is in FPNP, since the number of iterations of the loop is at most
|M |, and HatCA(f, p) is in FPNP with respect to these parameters. ◀
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Algorithm 2 Finding the maximal self-enforcing subpattern of a locally fixed pattern p ∈ SM .

function SelfEnforcingSubpattern(p)
loop

Let q ← HatCA(f, p)|M .
if q = p then

return q

else
Let p← q.

To conclude this section, we show that in the formulation of the Generalized grandfather
problem (which we prove as Theorem 1), it makes no difference whether we consider
unrestricted configurations, finite configurations or finite patterns. This is well-known in
cellular automata theory.

▶ Lemma 16. Let f : SZd → SZd be a cellular automaton with a quiescent state 0 ∈ S, and
n ∈ N. The following are equivalent:
1. There exists a finite configuration x ∈ SZd such that f−n(x) contains a finite configuration,

and f−(n+1)(x) = ∅.
2. There exists x ∈ SZd such that f−n(x) ̸= ∅ and f−(n+1)(x) = ∅.
3. There exists a finite pattern p such that f−n(p) ̸= ∅ and f−(n+1)(p) = ∅.

Proof. The implication 1 =⇒ 2 is clear, and 2 =⇒ 3 is the classical compactness argument
that we used to prove Lemma 10.

We prove 3 =⇒ 1. Take an arbitrary q ∈ f−n(p), and complete it into a finite
configuration y ∈ SZd by setting yv⃗ = 0 for all v⃗ ∈ Zd \ dom(q). Then x = fn(y) satisfies the
conditions of item 1: f−n(x) contains the finite configuration y, while f−(n+1)(x) = ∅ since
x contains an occurrence of p. ◀

3.1 Köynnös
We begin by studying köynnös, which we recall is obtained from the 6× 3 pattern

P =
1 1 1 0 0 0
0 1 0 1 1 1
0 0 0 0 1 0

by repeating P horizontally and vertically to define an infinite 6× 3-periodic configuration
xP ∈ {0, 1}Z2 . Observe that every 0 in xP is surrounded by exactly four 1s, and every 1 by
exactly three 1s. Thus we have g(xP ) = xP , so that xP is indeed an agar. Moreover, we
claim that xP has no other predecessors than itself: g−1(xP ) = {xP }. This is due to the
following lemma.

▶ Lemma 17. Let x be in the spatial orbit of köynnös. Then ĝ(x|[−12, 17]× [−12, 14]) ≥
x|[−8, 13]× [−9, 10].

Proof. Applying Algorithm 1 to σv⃗(xP )|[−12, 17]× [−12, 14] for all v⃗ ∈ [0, 5]× [0, 2] gives
the result. The intersection of the domains of the patterns ĝ(x|[−12, 17]× [−12, 14]) for such
x = σv⃗(xP ) is shown in Figure 3, and clearly contains the rectangle [−8, 13]× [−9, 10]. ◀

Put concretely, the lemma states that if R is a periodic continuation of P of size 30× 27
and Q is its predecessor, then P must occur at the center of Q (and indeed many more cells
are forced, even beyond what we state in the lemma). This is indeed a certificate for xP
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being a self-enforcing agar, as in the proof of Lemma 13: for any predecessor y ∈ g−1(xP )
and cell v⃗ ∈ Zd, Lemma 17 gives σv⃗(y)|[−8, 13]× [−9, 10] = σv⃗(xP )|[−8, 13]× [−9, 10], so in
particular yv⃗ = xP

v⃗ .

Figure 3 The intersection of the domains of ĝ(x|[−12, 17] × [−12, 14]) for x in the spatial orbit of
köynnös, drawn in white inside [−13, 18] × [−13, 15]. The area [−8, 13] × [−9, 10] is highlighted in
blue.

As a corollary of Lemma 17, finite perturbations of xP can never be erased by g. We
prove a stronger claim: all finite perturbations spread to the left and right at a speed of
one column per time step. In particular, köynnös cannot be stabilized from the inside. We
note that, as the agar kynnös studied in the next section does not possess this property, we
cannot use it to prove Theorem 1.1, at least with the same method.

▶ Lemma 18. Consider a rectangle R = [−nW , nE ]× [−nS , nN ] and the surrounding annulus
A =

[
nW +1 nE+1 nS+1 nN +1

nW nE nS nN

]
of thickness 1. Let p be a pattern such that the domain of g(p)

contains A ∪ R, and suppose p|A = g(p)|A = xP |A. If diff(xP , g(p)) ∩ R ⊂ [a, b]× Z, then
diff(xP , p) ∩R ⊂ [a + 1, b− 1]× Z.

Note that we may have b−a ≤ 1, in which case the conclusion becomes diff(xP , p)∩R = ∅,
or equivalently, xP |R = p|R.

Proof. Since the orbit of köynnös and g are left-right symmetric, it is enough to prove
that diff(xP , p) ∩ R ⊂ (−∞, b − 1]. We prove the contrapositive: suppose there exists
(i, j) ∈ diff(xP , p) ∩R for some i ≥ b, and let i be maximal. We split into cases based on the
congruence class of i modulo 6, that is, the column of P that i lies in. Note that the bottom
left cell of P is at the origin in xP , and the domain of P is the rectangle [0, 5] × [0, 2]. If
i ∈ {0, 2, 3}+ 6Z, we choose j as maximal, and otherwise we choose it as minimal.

We handle the case i ∈ 2 + 6Z, the others being similar or easier. If j ∈ 3Z, then
p(i+1,j+1) = xP

(i+1,j+1) = 1 has four other 1s in its neighborhood, and becomes 0 in g(p).
If j ∈ 1 + 3Z, then p(i+1,j) = xP

(i+1,j+1) = 1 has four or five other 1s in its neighborhood,
and becomes 0 in g(p). If j ∈ 2 + 3Z, then p(i+1,j+1) = xP

(i+1,j+1) = 0 has three 1s in its
neighborhood, and becomes 1 in g(p). In each case diff(xP , g(p)) intersects {i + 1} × Z. ◀

For any D ⊂ Z2, the subpattern of köynnös of shape D + [0, 29] × [0, 26] forces the
subpattern of shape D + [4, 25] × [3, 22] to occur in its g-preimage, by Lemma 17. By
Lemma 18, we force more: a non-köynnös area inside a hollow patch of köynnös expands
horizontally under g, so under ĝ the horizontal extent of the hole must shrink. We do not
give a precise statement for this general fact, and only apply the lemma in the case of annuli.
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▶ Lemma 19. Let x be in the orbit of köynnös. Suppose the following inequalities hold:

mW − nW ≥ 30, mE − nE ≥ 30, mS − nS ≥ 27, mN − nN ≥ 27.

Denote Q = x| [ mW mE mS mN
nW nE nS nN

]. If nE + nW ≥ 2, then

ĝ(Q) ≥ x|
[
mW − 4 mE − 4 mS − 3 mN − 4
nW − 1 nE − 1 nS + 4 nN + 3

]
while if nE + nW ∈ {0, 1} we have

ĝ(Q) ≥ x|[−(mW − 4), mE − 4]× [−(mS − 3), mN − 4]

One may consider the latter case a special case of the former: there too, the hole shrinks
horizontally by two steps, and since its width is at most two it disappears.

Proof. The inequalities simply state that the annulus Q is thick enough that each of its cells
is part of a 30× 27 rectangle contained in Q. From Lemma 17, we get ĝ(Q) ≥ x|A, where
A =

[
mW −4 mE−4 mS−3 mN −4
nW +4 nE+4 nS+4 nN +3

]
is a slightly thinner annulus. If there is no g-preimage for Q,

then ĝ(Q) = ⊤ and we are done. Suppose then that it has a preimage R. Since R ≥ ĝ(Q) ≥
x|A, both Q and R agree with x on the thickness-1 annulus

[
nW +5 nE+5 nS+5 nN +4
nW +4 nE+4 nS+4 nN +3

]
⊂ A.

Lemma 18 implies that R agrees with x on
[

mW −4 mE−4 mS−3 mN −4
nW −1 nE−1 nS+4 nN +3

]
, as claimed. ◀

We now prove Theorem 1.1, and thus give the first proof of Theorem 1. In fact, we give a
simple formula that produces configurations that have an nth preimage, but no (n + 1)st one.

▶ Lemma 20. Let x be in the orbit of köynnös, and suppose ∅ ≠ diff(y, x) ⊂ B = [0, a]× [0, n]
where a ∈ {0, 1}. Then

p = gk(y)|[−30− 6k, 30 + a + 6k]× [−27− 8k, 27 + n + 8k]

appears in the kth image of g, but not in the (k + 1)st.

Proof. By definition, p appears in the kth image of g. It suffices to show its ĝk+1-image is
⊤. Namely, we then have ĝk+1(p) ≥ ĝk+1(p) = ⊤ by Lemma 11, which means precisely that
p has no gk+1-preimage.

Let q be the restriction of p to[
30 + 6k 30 + a + 6k 27 + 8k 27 + n + 8k

k a + k k n + k

]
.

Observe that q agrees with x because g has radius 1, so by Lemma 19 and induction, we can
deduce that

ĝj(q) ≥ x|
[
30 + 6k − 4j 30 + a + 6k − 4j 27 + 8k − 3j 27 + n + 8k − 4j

k − j a + k − j k + 4j n + k + 3j

]
for all j ≤ k. This is because for j ≤ k − 1 we have

30 + 6k − 4j − (k − j) ≥ 30, 30 + a + 6k − 4j − (a + k − j) ≥ 30,

27 + 8k − 3j − (k + 4j) ≥ 27, 27 + n + 8k − 4j − (n + k + 3j) ≥ 27,

and thus we can inductively apply the lemma. But in

ĝk(q) ≥ x|
[
30 + 2k 30 + a + 2k 27 + 5k 27 + n + 4k

0 a 5k n + 4k

]
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the annulus still has sufficient thickness (i.e. the inequalities still hold for j = k), so we can
apply the second case of the lemma to get

ĝk+1(q) ≥ x|[−(26 + 2k), 26 + 2k]× [−(24 + 5k), 23 + n + 4k] = r.

By Lemma 11 we have ĝk+1(p) ≥ ĝk+1(q) ≥ r, and by the same lemma we either have
ĝk+1(p) = ⊤ (as desired), or

gk+1(ĝk+1(p)) ≤ gk+1(ĝk+1(p)) ∥ p.

But since the speed of light is 1 and x is a fixed point, we have

gk+1(r) ≥ x|[−(25 + k), 25 + k]× [−(23 + 4k), 22 + n + 3k] ≥ x|[−k, a + k]× [−k, n + k]

and x|[−k, a + k] × [−k, n + k] ∥ p. But Lemma 18 applied k times to y implies that
diff(x, gk(y)), and thus diff(x, p), intersects [−k, a + k]× [−k, n + k], a contradiction. Thus
we indeed must have ĝk+1(p) = ⊤. ◀

3.2 Kynnös
Denote by

Q =

0 0 1 1 0 1
0 0 1 0 1 1
1 1 0 0 0 0
0 1 0 1 1 0
1 0 0 1 1 0
1 1 0 0 0 0

the fundamental domain of kynnös, and by xQ ∈ {0, 1}Z2 the associated 6 × 6-periodic
configuration with g(xQ) = xQ. The following lemma states that it contains a self-enforcing
patch (it is essentially a more precise stement of Theorem 4).

▶ Lemma 21. There is a finite set D ⊂ Z2 such that p = xQ|D satisfies ĝ(p) = p.
Furthermore, there is a finite-support configuration x ∈ [p] with g(x) = x.

The patch p is shaped like a 22× 28 rectangle with 8 cells missing from each corner. It
is depicted in Figure 4, together with the still life x containing it. The patch was found
by simply applying the function of Algorithm 2 to the 70 × 70-patches of the agars we
found during our searches. Kynnös was the first configuration that yielded a nonempty
self-enforcing patch, which we then optimized to its current size. This lemma directly implies
Theorem 4, and almost directly Theorem 5.

Proof of Theorem 5. Let y be the finite-support configuration obtained by taking x from
the previous lemma and adding a glider that is just about to hit the kynnös patch. It can be
checked by simulation that the patch can be annihilated this way. Observe that y is in the
limit set Ω(g): simply shoot the glider from infinity. If ϵ > 0 is very small, in any ϵ-chain
starting from y we see the patch destroyed. It is impossible to reinstate it, as the existence
of a first step in the chain where it appears again contradicts Lemma 21. ◀

As stated, kynnös can be stabilized from both inside and outside. Figure 5 shows a still
life configuration containing a “ring” of kynnös with a hole of 0-cells inside it. From the
figure it is easy to deduce the existence of such rings of arbitrary size and thickness.
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Figure 4 A self-enforcing patch of kynnös and a still life containing it. The still life has the
minimal number of live cells, 306, of any still life containing the patch. The number was minimized
by Oscar Cunningham. [7]

Note that if the ring is at least 22 cells thick, then its interior is completely surrounded by
a ring-shaped self-enforcing pattern consisting of translated, rotated and partially overlapping
copies of the 28× 22 self-enforcing patch, through which no information can pass without
destroying it forever. If we then replace the empty cells inside the ring with an arbitrary
pattern, the resulting finite pattern P occurs in the limit set Ω(g) if and only if the interior
pattern evolves periodically under g. Namely, if the pattern occurs in Ω(g), then it has an
infinite sequence of preimages, each of which must contain the self-enforcing kynnös ring.
The interior has a finite number of possible contents (2m for an interior of m cells), so it must
evolve into a periodic cycle, of which P is part. From this idea, and some engineering with
gadgets found by other researchers and Life enthusiasts, we will obtain Theorems 1.2, 2 and
3. The first one was essentially proved by Adam Goucher [16]. Note the difference between
these rings and the köynnös annuli of Section 3.1: the latter force strictly smaller versions of
themselves in their preimages, and do not admit nontrivial periodically evolving interiors.

Figure 5 A stable ring of kynnös.

Proof of Theorem 1.2. Given integers k, m ≥ 1 with k odd, we construct a configuration
x ∈ {0, 1}Z2 such that the support of gn(x) is contained in [0, 32k+73]× [0, 46m] for all n ≥ 0,
and g48·4(2k+1)m(x) is not g-periodic. When the support of g48·4(2k+1)m(x) is surrounded by
a kynnös ring of width 22, the resulting pattern has a 48 · 4(2k+1)mth preimage, but not
arbitrarily old preimages. If we choose k = 23s and m = 16s for some s ≥ 0, the resulting
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pattern has size (736s + O(1)) × (736s + O(1)), and the chain of preimages has length
48 · 4736s2+16s. Choosing s = n/736−O(1) yields the lower bound, and the upper bound is
the trivial one (even ignoring the fact we do not modify the boundaries).

The main components of x are the period-48 glider gun [27], which produces one glider
every 48 time steps, and the quadri-snark [29], which emits one glider at a 90 degree angle
for every 4 gliders it receives. The support of x consists of a single period-48 gun aimed at a
sequence of (2k +1)m quadri-snarks, each of which receives the gliders the previous one emits.
They effectively implement a quaternary counter with values in [0, 4(2k+1)m − 1]. The glider
emitted by the final quasi-snark will collide with the kynnös ring, ensuring that the pattern
right before the impact does not occur in the limit set Ω(g), but has a chain of preimages of
length at least 48 · 4(2k+1)m. An example pattern and a schematic for m = n = 2 are given
in Figure 6. It is easy to extrapolate to arbitrary m, n ≥ 1 from the figure. ◀

p48 gun

QS

QS

QS

QS

QS

QS

QS

QS

QS

QS

Figure 6 A configuration corresponding to k = m = 2 in the proof of Theorem 1.2.

To implement more complex Life patterns with desired properties, we use the fact that
Life is intrinsically universal, that is, capable of simulating all Z2 cellular automata. Formally,
for any other CA f : ΣZ2 → ΣZ2 , there are numbers K, T ≥ 1 and an injective function
τ : Σ → {0, 1}K×K such that for all configurations x ∈ ΣZ2 we have gT (τ(x)) = τ(f(x)),
where τ is applied cellwise in the natural way. We use the simulation technique of [10], which
allow us to easily simulate patterns with fixed boundary conditions. This means that any
rectangular pattern R ∈ Σa×b can be simulated by a finite-support configuration of g in
such a way that simulated cells whose f -neighborhood is not completely contained in the
rectangle [0, a− 1]× [0, b− 1] are forced to retain their value.

Proof of Theorem 2. Let L ⊂ {0, 1}∗ be a PSPACE-hard language decidable in linear
space, such as TQBF. Define a Turing machine M as follows. Given input w ∈ {0, 1}∗, M

determines whether w ∈ L using at most |w| additional tape cells and without modifying w.
If w ∈ L, then it erases the additional tape cells and returns to its initial state, thus looping
forever. If w /∈ L, then M stays in a rejecting state forever. We simulate M by a cellular
automaton f in a standard way: each cell is either empty, or contains a tape symbol and
possibly the state of the computation head.

Next, we simulate the CA f by g as described above. Given a word w ∈ {0, 1}∗, let
P (w) be the pattern corresponding to a simulated initial configuration of M on input w with
|w| additional tape cells and fixed boundary conditions, surrounded by a kynnös ring. If
w ∈ L, then P (w) occurs in the limit set Ω(g), since it can be completed into a g-periodic
configuration in which the simulated M repeatedly computes w ∈ L. If w /∈ L, then P (w)
does not occur in Ω(g), since the interior of the ring eventually evolves into a simulated
configuration with M in a rejecting state, never returning to P (w). ◀
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Extending P (w) by zeroes on all sides (resp. repeating it periodically), we obtain that it
is PSPACE-hard whether a given finite-support configuration (resp. periodic configuration)
appears in the limit set.

Proof of Theorem 6. Let L be as in the previous proof, and let M be a Turing machine
that, on input w ∈ {0, 1}∗, decides w ∈ L using no additional tape cells. Then M erases
the entire tape and enters an accepting or rejecting state depending on the result of the
computation. We simulate M by g as in the previous proof. Given w ∈ {0, 1}∗, let p be
the pattern corresponding to a tape of M containing w and an initial state, and q the one
corresponding to |w| blank tape cells and an accepting state of M , both surrounded by a
ring of kynnös of the same dimensions. Then q is reachable from p if and only if w ∈ L: if q

is to be reached, the ring of p must stay intact, enclosing a correct simulation of M . ◀

Of course, again by extending the resulting patterns by 0-cells (resp. repeating them
periodically), we obtain PSPACE-hardness of reachability between two given finite-support
(resp. periodic) configurations, i.e. given the full descriptions of two configurations x, y ∈
{0, 1}Z2 , the question of whether gn(x) = y for some n ≥ 0. However, this reachability
problem is in fact even Σ0

1-complete (resp. PSPACE-complete) directly by intrinsic universality.
For the case of finite configurations, one needs a variant of intrinsic universality where the
zero state of an arbitrary cellular automaton is represented by an all-zero pattern; such a
variant was proved in [15].

Proof of Theorem 3. Let M be a two-dimensional Turing machine whose tape alphabet
has two distinguished values, denoted a and b. When M is initialized on a rectangular tape
containing only as and bs, it repeatedly checks whether its left and right halves are equal,
destroying the tape if they are not. We again simulate M by a CA f , and then f by g. Then
a simulated rectangular tape with the head of M in its initial state, surrounded by a kynnös
ring, is in Ω(g) if and only if the two halves of the tape are equal.

It was proved in [21] that for all sofic shifts X ⊂ SZ2 there exists an integer C > 1 with
the following property. For all n ≥ 1 and configurations x1, . . . , xCn ∈ X, there exist i ̸= j

such that the configuration y = (xi|[0, n− 1]2) ⊔ (xj |Z2 \ [0, n− 1]2) is in X. Assuming for a
contradiction that Ω(g) is sofic, consider the configurations x(P ) ∈ Ω(g) for P ∈ {a, b}n×n

that contain a kynnös ring and a simulated tape of M with two identical P -halves. Based on
the above, when n is large enough that 2n2

> CKn, we can swap the right half of one x(P )
with that of another to obtain a configuration y ∈ Ω(g) containing a simulated tape of M

with unequal halves inside a kynnös ring, a contradiction. ◀

We remark that a weaker version of Theorem 1.2 (where 1/368 is replaced by a much
smaller, or even implicit, constant) could also be proved by intrinsic universality.

3.3 The marching band
Let h = g2. Denote by

R =

1 0 0 0 0 0 1 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 0 1 0 0 0

the fundamental domain of the marching band, and by xR ∈ {0, 1}Z2 the associated 8× 4-
periodic configuration with h(xR) = xR. The following is proved just like Lemma 17. Note
that the forced region extends outside the original pattern.

ICALP 2022
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▶ Lemma 22. Let x be in the spatial orbit of the marching band. Then ĥ(x|[0, 47]× [0, 43]) ≥
x|[10, 29]× [−1, 44].

Proof of Theorem 7. Let x be in the orbit of xR, and let p = x|[−a, b] × [−c, d]. By the
previous lemma, as long as a + b ≥ 48 and c + d ≥ 44 we have ĥ(p) = x|[−(a− 10), b− 18]×
[−(c + 1), d + 1]. Iterating this we get

ĥn(x|[−10n, 18n + 47]× [0, 43]) ≥ x|[0, 47]× [−n, n + 43].

Denote S = [−10n, 18n + 47]× [0, 43]. Let P = x|S and Q = σu⃗(x)|v⃗ + S for some u⃗ ∈ Z2

and v⃗ = (0, 2n). Both patterns appear in the limit set of g, since they are extracted from
a fixed point of h = g2. Observe that since the domains of ĥn(P ) and ĥn(Q) intersect, we
can pick the shift u⃗ so that one of the forced bits is different in some position in ĥn(P ) and
ĥn(Q), which clearly means ĥn(P ⊔Q) = ⊤.

Now, P and Q each fit inside a 29n× 29n rectangle (if n ≥ 47), and the patterns cannot
be glued in the limit set with gluing distance at most 2n, since the glued pattern should have
an nth h-preimage. This gives the statement. ◀

4 Chaotic conclusions

There are several definitions of topological chaos. We refer the reader to [3] for a survey.
Briefly, a system is called Auslander-Yorke chaotic if it is topologically transitive and is
sensitive to initial conditions, and Devaney chaotic if it is Auslander-Yorke chaotic and
additionally has dense periodic points. As far as we know, before our results it was open
whether Game of Life exhibits these types of chaos on its limit set; the following corollary
shows that it does not.

▶ Theorem 23. The Game of Life restricted to its limit set is not topologically transitive,
and does not have dense periodic points.

Proof. Either of these properties clearly implies chain-nonwanderingness, contradicting
Theorem 5. ◀

Two other standard notions of chaos are Li-Yorke chaos and positive entropy (we omit
the definitions). Game of Life exhibits these trivially, since it admits a glider. More generally,
intrinsic universality implies that it exhibits any property of spatiotemporal dynamics of
cellular automata that is inherited from subsystems of finite-index subactions of the spacetime
subshift. Sensitivity in itself is also sometimes considered a notion of chaos. This remains
wide open.

▶ Question 1. Is Game of Life sensitive to initial conditions?

One can also ask about chaos on “typical configurations”. For example, take the uniform
Bernoulli measure (or some other distribution) as the starting point, and consider the
trajectories of random configurations. We can say essentially nothing about this setting.

In our topological dynamical context, a natural way to formalize this problem is through
the generic limit set as defined in [25]. It is a subset of the phase space of a dynamical
system that captures the asymptotic behavior of topologically large subsets of the space.
We omit the exact definition, but for a cellular automaton f , this is a nonempty subshift
invariant under f [9]. It follows that the generic limit set is contained in the limit set, and
that the language of the generic limit set of g contains the letter 0 (because the singleton
subshift {1Z2} is not g-invariant).
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We say a cellular automaton f on SZd is generically nilpotent if its generic limit set
contains only one configuration, which must then be the all-s configuration for a quiescent
state s ∈ S. This is equivalent to the condition that every finite pattern can be extended
into some larger pattern p such that for large enough n ∈ N, we have fn(x)0⃗ = s for all
x ∈ [p]. By the previous observation, if Game of Life were generically nilpotent, we would
have s = 0. We strongly suspect that it is not generically nilpotent, i.e. the symbol 1 occurs
in the generic limit set. However, we have been unable to show this.

▶ Question 2. Is Game of Life generically nilpotent?

Chaos is usually discussed for one-dimensional dynamical system, but we find its standard
ingredients, such as topological transitivity and periodic points, quite interesting. We have
been unable to resolve most of these.

▶ Question 3. Is the limit set of Game of Life topologically transitive as a subshift?

▶ Question 4. Does the limit set of Game of Life have dense totally periodic points as a
subshift?
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1 Introduction

The theory of processes has a long tradition, notably in the study of concurrency, pioneered
by seminal works of Milner [30, 29] and many others [2]. In labelled transition systems, a
popular model of computation in process theory, processes branch nondeterministically. This
means that any given action or observation transitions a starting state into any member
of a predetermined set of states. In Milner’s CCS [29], nondeterminism appears as a
binary operation that constructs from a pair of programs e and f the program e+ f that
nondeterministically chooses between executing either e or f . This acts precisely like the
join operation in a semilattice. In fact, elements of a free semilattice are exactly sets, as the
free semilattice generated by a collection X is the set P+

ω X of finite nonempty subsets of
X [26]. This is our first example of a more general phenomenon: the type of branching in
models of process calculi can often be captured with an algebraic theory.

A second example appears in the probabilistic process algebra literature, where the process
denoted e+p f flips a weighted coin and runs e with probability p and f with probability
1 − p. The properties of +p are axiomatised and studied in convex algebra, an often revisited
algebraic theory of probability [1, 47, 35, 46]. The free convex algebra on a set X is the set
DωX of finitely supported probability distributions on X [46, 11, 23].
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A third example is guarded Kleene algebra with tests (GKAT), where the process e+b f

proceeds with e if a certain Boolean predicate b holds and otherwise proceeds with f ,
emulating the if-then-else constructs of imperative programming languages [27, 8, 28]. If
the predicates are taken from a finite Boolean algebra 2At, the free algebra of if-then-else
clauses on a set X is the function space XAt. This explains why adjacency sets for tree
models of GKAT programs take the form of functions At → X.

This paper proposes a framework in which these languages can be uniformly described and
studied. We use the algebra of regular behaviours (or ARB) introduced in [30] as a prototypical
example. ARB employs nondeterministic choice as a branching operation, prefixing of terms
by atomic actions, a constant representing deadlock, variables, and a recursion operator
for each variable. Specifications are interpreted using structural operational semantics in
the style of [34], which sees the set Exp of all process terms as one large labelled transition
system. This is captured succinctly as a coalgebra, in this case a function

β : Exp → P(V +A× Exp) (1)

Only finitely branching processes can be specified in ARB, so we will replace P with Pω

in (1). From a technical point of view, Pω is the monad on the category Sets of sets and
functions presented by the algebraic theory of semilattices with bottom.

By substituting the finite powerset functor in (1) with other monads presented by algebraic
theories, we obtain a parametrised family of process types that covers the examples above
and a general framework for studying the processes of each type. Instantiating the framework
with an algebraic theory gives a fully expressive specification language for processes and a
complete axiomatisation of behavioural equivalence for specifications.

One striking feature of many of the specification languages we construct is that they
contain a fragment consisting of nonstandard analogues of regular expressions. We call these
expressions star expressions and the fragment composed of star expressions the star fragment.
Star fragments extend several existing analogues of basic regular algebra found in the process
theory literature, including basic process algebra [5] and Andova’s probabilistic basic process
algebra [1], by adding recursion operators modelled after the Kleene star.

Milner is the first to notice the star fragment of ARB in [30]. He observes that the algebra
of processes denoted by star expressions is more unruly than Kleene’s algebra of regular
languages, and that it is not clear what the appropriate axiomatisation should be. He offers
a reasonable candidate based on Salomaa’s first axiomatisation of Kleene algebra [39], but
ultimately leaves completeness as an open problem. This problem has been subjected to
many years of extensive research [15, 14, 16, 3, 20, 19]. A potential solution has recently
been announced by Clemens Grabmayer and will appear in the upcoming LICS.

Replacing nondeterministic choice with the if-then-else branching structure of GKAT,
we obtain the process behaviours explored in the recent rethinking of the language [40].
This makes the open problem of axiomatising GKAT (without the use of extremely powerful
axioms like the Uniqueness Axiom of [44]), stated first in [44] and again in [40], yet another
problem of axiomatising an algebra of star expressions. Our general characterisation of star
expressions puts all these languages under one umbrella, and shows how they are derived
canonically from a single abstract framework.

In summary, the contributions of this paper are as follows:
We present a family of process types parametrised by an algebraic theory (Section 2)
together with a uniform syntax and operational semantics (Section 3). We show how these
can be instantiated to concrete algebraic theories, including guarded semilattices and
pointed convex algebras. These provide, respectively, a calculus of processes capturing
control flow of simple imperative programs and a calculus of probabilistic processes.
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We define an associated denotational semantics and show that it agrees with the
operational semantics (Section 4). This coincidence result is important in order to
prove completeness of the uniform axiomatisation we propose for each process type
(Section 5).
Finally, we study the star fragment of our parameterised family and propose a sound
axiomatisation for this fragment (Section 6). We show that star fragments of concrete
instances of our calculi yield known examples in the literature, e.g. Guarded Kleene
Algebra with tests (GKAT) [44, 40] and probabilistic processes of Stark and Smolka [45].

Related work is surveyed in Section 7, and future research directions are discussed in Section 8.

2 A Parametrised Family of Process Types

In this section, we present a family of process types parametrised by a certain kind of
algebraic theory. The processes we care about are stateful, meaning they consist of a set
of states and a suitably structured set of transitions between states. Stateful systems fit
neatly into the general framework of universal coalgebra [37], which stipulates that the type
of structure carried by the transitions can be encoded in an endofunctor on the category
Sets of sets and functions. Formally, given a functor B : Sets → Sets, a B-coalgebra is a
pair (X,β) consisting of a set X of states and a structure map β : X → BX. A coalgebra
homomorphism h : (X,β) → (Y, ϑ) is a function h : X → Y satisfying ϑ ◦ h = B(h) ◦ β.
Many types of processes found in the literature coincide with B-coalgebras for some B, and
so do their homomorphisms. For example, finitely branching labelled transition systems are
Pω(A× Id)-coalgebras, and deterministic Moore automata are O × IdA-coalgebras [36].

In this paper, we consider coalgebras for functors of the form

BM := M(V +A× Id) (2)

for fixed sets V and A and a specific kind of functor M : Sets → Sets. Intuitively, there are
two layers to the process behaviours we care about: one layer consists of either an output
variable in V or an action from A that moves on to another state, and the other layer
(encoded by M) combines output variables and action steps in a structured way.

▶ Example 1. When M = Pω, we obtain Milner’s nondeterministic processes [30]. Coalgebras
for BPω

are functions of the form β : X → Pω(V +A×X), or labelled transition systems
with an additional decoration by variables. Write x a−→ y to mean (a, y) ∈ β(x) and x ⇒ v to
mean v ∈ β(x). The image below posits a well-defined BPω

-coalgebra

v x1 x2 x3
a1 a1 a2

Its state space is {x1, x2, x2}, A includes a1 and a2, and v is a variable in V .

Algebraic Theories and Their Monads

We are particularly interested in BM -coalgebras when M is the functor component of a
monad (M,η, µ) that is presented by an algebraic theory capturing a type of branching.
A monad consists of natural transformations η : Id ⇒ M and µ : MM ⇒ M , called the
unit and multiplication respectively, satisfying two laws: µ ◦ ηM = idM = µ ◦ M(η) and
µM ◦ µ = M(µ) ◦ µ. For our purposes, an algebraic theory is a pair (S,E) consisting of a
polynomial endofunctor S =

∐
σ∈I Idnσ on Sets called an algebraic signature and a set E

of equations in the signature S. An element σ of I should be thought of as an operation
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with arity nσ. An algebraic theory (S,E) presents a monad (M,η, µ) if there is a natural
transformation ρ : SM ⇒ M such that for any set X, (MX, ρX) is the free (S,E)-algebra
on X. That is, (MX, ρX) satisfies E and for any S-algebra (Y, φ) also satisfying E and any
function h : X → Y , there is a unique S-algebra homomorphism ĥ : (MX, ρX) → (Y, φ) such
that h = ĥ◦η. This universal property implies that any two presentations of a given algebraic
theory are isomorphic, so we speak simply of “the” monad presented by an algebraic theory.

▶ Example 2. The finite powerset functor is part of the monad (Pω, {−},
⋃

) that is presented
by the theory of semilattices (with bottom). The theory of semilattices is the pair (1+Id2, SL),
since the arity of a constant operation is 0 and + is a binary operation, and SL consists of

x+ 0 (SL1)= x x+ x
(SL2)= x x+ y

(SL3)= y + x x+ (y + z) (SL4)= (x+ y) + z

Not every algebraic theory has such a familiar presentation as the theory of semilattices,
but it is nevertheless true that every algebraic theory presents a monad. If we let S∗X

denote the set of S-terms, expressions built from X and the operations in S, then (S,E)
automatically presents the monad (M,η, µ) where MX = (S∗X)/E := {[q]E | q ∈ S∗X} is
the set of E-congruence classes of S-terms, η computes congruence classes of variables, and µ
evaluates terms. This is witnessed by letting the transformation ρ be the restriction of µ to
the operations of S on S-terms. We take this to be the default presentation of an arbitrary
algebraic theory.

Our aim is to develop a (co)algebraic framework for studying BM -coalgebras when M is
the functor part of a monad presented by an algebraic theory. We will make three assumptions
about the algebraic theories. First, we rule out the case of M being the constant 1 functor.

▶ Assumption 1. The theory E is nontrivial, meaning that the equation x = y is not a
consequence of E for distinct x and y.

This is equivalent to requiring that the unit η is injective. That is, the E-congruence
classes [x]E and [y]E in MX are distinct for distinct variables x and y in X.

Second, we assume the existence of a constant symbol denoting deadlock, which might
occur when recursing on unguarded programs.

▶ Assumption 2. Algebraic theories contain a designated constant 0.

Finally, to keep the specifications of processes finite, we make the following assumption
despite the fact that it has no bearing on the results presented before Section 5.

▶ Assumption 3. Each operation from S has a finite arity.

We conclude this section with examples of algebraic theories and the monads they present.

▶ Example 3. For a fixed finite set At of atomic tests, the algebraic theory of guarded
semilattices is the pair (1 +

∐
b⊆At Id2,GS), where GS consists of the equations

x+b x
(GS1)= x x+At y

(GS2)= x x+b y
(GS3)= y+b̄ x (x+b y) +c z

(GS4)= x+bc (y+c z)

Here, +b is the binary operation associated with the subset b ⊆ At, b̄ := At\ b, and bc := b∩ c.
The theory of guarded semilattices is presented by the monad ((1 + Id)At, λξ.(−),∆∗), where
(λξ.x)(ξ) = x and ∆∗(F )(ξ) = F (ξ)(ξ). The idea is that +b acts like an if-then-else clause
in an imperative program. This is reflected in a free guarded semilattice ((1 + X)At, ρX),
where for a pair of maps h1, h2 : At → X we define

ρX(h1 +b h2)(ξ) :=
{
h1(ξ) if ξ ∈ b

h2(ξ) otherwise
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The theory of guarded semilattices dates back to the algebras of if-then-else clauses
studied in [28, 27, 8, 7]. For instance, guarded semilattices are examples of McCarthy
algebras, introduced by Manes in [27].1

▶ Example 4. The theory of pointed convex algebras studied in [12] is (1 +
∐

p∈[0,1] Id2,CA),
where CA consists of the equations

x+px
(CA1)= x x+1y

(CA2)= x x+py
(CA3)= y+p̄x (x+py)+q z

(CA4)= x+pq (y+ qp̄
1−pq

z)

Here, +p is the binary operation with index p ∈ [0, 1], p̄ := 1 − p, and pq ̸= 1. This theory
presents the pointed finite subprobability distribution monad (Dω(1 + Id), δ(−),

∑
), where

Dω(1 +X) =
{
θ : X → [0, 1]

∣∣∣∣ {x | θ(x) > 0} is finite∑
x∈X θ(x) ≤ 1

}
for any set X, and for any x ∈ X, θ ∈ Dω(1 +X), and Θ ∈ Dω(1 + Dω(1 +X)),

δx(y) = [x = y?]
∑

(Θ)(θ) =
∑
y∈X

Θ(θ) · θ(y)

This is witnessed by the transformation ρ that takes 0 to the trivial subdistribution and
computes the Minkowski sum ρX(θ+pψ) = p·θ+(1−p)·ψ for each p ∈ [0, 1], θ, ψ ∈ Dω(1+X).

▶ Example 5. The theory of pointed convex semilattices studied in [12, 49, 10] combines the
theory of semilattices and the theory of convex algebras. It has both a binary operation +
mimicking nondeterministic choice and the probabilistic choice operations +p indexed by
p ∈ [0, 1]. Formally, it is given by the pair (1 + Id2 +

∐
p∈[0,1] Id2,CS), where CS is the union

of SL, CA, and the distributive law

(x+ y) +p z
(D)= (x+p z) + (y +p z)

This theory presents the pointed convex powerset monad (C, ηC , µC), where CX is the set of
finitely generated convex subsets of Dω(1 +X) containing δ0, and for x ∈ X and Q ∈ CCX,

ηC(x) = {p·δx | p ∈ [0, 1]} µC(Q) =
⋃

Θ∈Q

{ ∑
U∈C0X

Θ(U) · θU

∣∣∣∣∣ (∀U ∈ C0X) θU ∈ U

}

The witnessing transformation ρC takes 0 to {δ0}, computes the Minkowski sum (extended
to subsets) in place of +p, and interprets the + operation as the convex union

ρC
X(U + V ) = {p · θ1 + (1 − p) · θ2 | p ∈ [0, 1], θ1 ∈ U, θ2 ∈ V }

3 Specifications of Processes

Fix an algebraic theory (S,E) presenting a monad (M,η, µ). In this section, we give a
syntactic and uniformly defined specification system for BM -coalgebras and an associated
operational semantics. We are primarily concerned with the specifications of finite processes,
and indeed the process terms we construct below denote processes with finitely many states.
The converse is also true, that every finite BM -coalgebra admits a specification in the form
of a process term, but we defer this result to Section 5 because of its relevance to the
completeness theorem there.

1 More information on the theory of guarded semilattices can be found in [42, Appendix A].
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ϵ(v) = η(v)
ϵ(ae) = η((a, e))

ϵ(σ(e1, . . . , en)) = σ(ϵ(e1), . . . , ϵ(en))
ϵ(µv e) = ϵ(e)[µv e//v]

Figure 1 Operational semantics of process terms. Here, v ∈ V , a ∈ A, and e, ei ∈ Exp.

The syntax of our specifications consists of variables from an infinite set V , actions from
a set A, and operations from S. The set Exp of process terms is given with the grammar

e, ei ::= 0 | v | σ(e1, . . . , en) | ae | µv e

where v ∈ V , a ∈ A, and σ is an S-operation. Abstractly, process terms form the initial
ΣM -algebra (Exp, α), where ΣM : Sets → Sets is the functor defined by

ΣM := S + V +A× Id + V × Id

and the algebra map α : ΣM Exp → Exp evaluates ΣM -terms.
Intuitively, the symbol 0 is the designated constant of S denoting the deadlock process,

which takes no action. Output variables are used in one of two ways, depending on the
expression in which they appear. A variable v is free in an expression e if it does not appear
within the scope of µv and bound otherwise. If v is free in e, then v denotes “output v”.
Otherwise, v denotes a goto statement that returns the computation to the µv that binds v.
The process σ(e1, . . . , en) is the process that branches into e1, . . . , en using an n-ary operation
σ as the branching constructor. The expression ae denotes the process that performs the
action a and then proceeds with e. Finally, µv e denotes recursion in the variable v.

Small-step Semantics

Next we give a small-step (operational) semantics to process terms that is uniformly defined
for the process types in our parametrised family. Many of the algebraic theories we consider
lack a familiar presentation, which ultimately prevents the corresponding semantics from
taking the traditional form of a set of inference rules describing transition relations. We
take an abstract approach instead by defining a BM -coalgebra structure ϵ : Exp → BM Exp
that mirrors the intuitive descriptions of the executions of process terms above. The formal
description of ϵ is summarised in Figure 1.

The operational interpretation of the recursion operators requires further explanation.
Intuitively, µv e performs the process denoted by e until it reaches an exit in channel v,
at which point it loops back to the beginning. However, this is really only an accurate
description of recursion in v when e performs an action before exiting in v. For example, the
process µv v not only never exits in channel v, but it also never performs any action at all.
Thus, the operational interpretation of µv v is indistinguishable from that of deadlock. We
deal with this issue as follows: if an exit in channel v is immediately reached by a branch
of e, then we replace that exit with deadlock in µv e. Formally, we say that a variable v is
guarded in a process term e if (i) e ∈ V \ {v}, (ii) e = af or (iii) e = µv f for some f ∈ Exp,
or (iv) either e = µu e1 or (v) e = σ(e1, . . . , en) and v is guarded in ei for each i ≤ n. In our
calculus, we syntactically allow for recursion in unguarded variables, but one should keep in
mind that those variables are ultimately deadlock under the recursion operator.
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The operational interpretation of recursion is formally defined using a guarded syntactic
substitution operator [g//v] : BM Exp → BM Exp,2 a variant of the usual syntactic substitution
of variables. Given g ∈ Exp, we first define [g//v] by induction on S∗(V +A× Exp) as

u[g//v] =
{
η(u) u ̸= v

η(0) u = v

(a, f)[g//v] = (a, f [g/v])
σ(p1, . . . , pn)[g//v] = σ(p1[g//v], . . . , pn[g//v])

where u ∈ V , pi ∈ S∗(V +A× Exp), f ∈ Exp, and [g/v] replaces free occurrence of v with g.
The following lemma completes the description of the operational semantics of process terms.

▶ Lemma 6. For any g ∈ Exp and v ∈ V , the map [g//v] factors uniquely through BM Exp.

Formally, the map ϵ assigns to each process term e an E-congruence class ϵ(e) of terms from
S∗(V +A×Exp). A term from S∗(V +A×Exp) is a combination of variables v and transition-
like pairs (a, ei), so there is often only a small conceptual leap from the coalgebra structure
ϵ to a more traditional representation of transitions as decorated arrows. We provide the
following examples as illustrations of this phenomenon, as well as the specification languages
and operational semantics of terms defined above.3

▶ Example 7. The algebra of control flows, or ACF, is obtained from the theory of guarded
semilattices of Example 3 and M = (1 + Id)At. Given a structure map β : X → B(1+Id)AtX

and b ⊆ At, write x b|a−−→ y if β(x)(ξ) = (a, y) for all ξ ∈ b, and x b=⇒ v if β(x)(ξ) = v for all
ξ ∈ b. The operational semantics returns the constant map λξ.v given a variable v ∈ V and
interprets conditional choice as guarded union. For example, let e = µw (a1(v +b a2w) +b u)
and f = v +b a2e. The process denoted by e is

u e f v

b | a1

b̄ | a2

b̄ b

▶ Example 8. The algebra of probabilistic actions, or APA, is obtained from the theory
of pointed convex algebras of Example 4 and M = Dω(1 + Id). For a structure map
β : X → BDω(1+Id)X, write x k|a−−→ y when β(x)(a, y) = k and e k=⇒ v when β(e)(v) = k. The
operational semantics returns the Dirac distribution δv for v ∈ V and interprets probabilistic
choice as the Minkowski sum. The process denoted by e = µv (a1u+ 1

2
(a2v + 1

3
w)) is

w e u u

1
2 | a1

1
3

1
6 | a2

1

▶ Example 9. The algebra of nondeterministic probabilistic actions, or ANP, is obtained from
the theory of pointed convex semilattices of Example 5. For a structure map β : X → BCX,
write x →◦ k|a

999K y to mean there is a θ ∈ β(x) such that θ(a, y) = k, and x k=⇒ v to mean

there is a θ ∈ β(x) with θ(v) = k. The operational semantics returns ηC(v) given v ∈ V ,
interprets nondeterministic choice as convex union, and replaces probabilistic choice with
Minkowski sum. For example, e = µv ((a1v + 1

3
a2w) + a2v) denotes

◦ e ◦ w w

1 | a2
1
3 | a1

2
3 | a2 1

2 Technically, it is only partially defined. See [42, Appendix C] for details.
3 See [42, Appendix B] in the full version of the paper.
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ζ(γ(v)) = [v]E
ζ(γ(a, t)) = [(a, t)]E

ζ(γ(σ(t1, . . . , tn))) = [σ(ζ(t1), . . . , ζ(tn))]E
ζ(γ(µv t)) = ζ(t){γ(µv t)//v}

Figure 2 The ΣM -algebra structure of (Z, γ). Here, v ∈ V , a ∈ A, t, ti ∈ Z for i ≤ n, and σ is
an n-ary operation from S. By Lambek’s lemma [25], ζ : Z → BM Z is a bijection, so the first three
equations determine γ : V + SZ + A × V → Z. The fourth is a behavioural differential equation [36].

4 Behavioural Equivalence and the Final Coalgebra

In this section, we relate the operational semantics arising from the coalgebra structure on
Exp in the previous section to a denotational semantics, which arises through the definition
of a suitable algebra structure on the domain of process behaviours.

For an arbitrary functor B : Sets → Sets, a behaviour is a state of the final B-coalgebra
(Z, ζ), the unique (up to isomorphism) coalgebra (if it exists) such that there is exactly one
homomorphism !β : (X,β) → (Z, ζ) from every B-coalgebra (X,β). It follows from general
considerations that the functor BM admits a final coalgebra [37]. The universal property of
the final BM -coalgebra produces the homomorphism !ϵ : (Exp, ϵ) → (Z, ζ). The behaviour
!ϵ(e) is called the final (coalgebra) semantics of e, also known as its operational semantics [38].

For example, the final BPω -coalgebra consists of bisimulation equivalence classes of
finite and infinite labelled trees of a certain form [4]. In this setting, (Exp, ϵ) is a labelled
transition system and the final semantics !ϵ constructs a tree from a process term by unrolling.
Intuitively, this captures the behaviour of a specification by encoding all possible actions and
outgoing messages at each time-step in its execution.

In addition to forming the state space of the final BM -coalgebra, the set of process
behaviours also carries the structure of a ΣM -algebra (Z, γ), summarised in Figure 2. Now,
(Exp, α) is the initial ΣM -algebra, which in particular means there is a unique algebra
homomorphism ⌈⌊−⌉⌋ : (Exp, α) → (Z, γ). The behaviour ⌈⌊e⌉⌋ is called the initial (algebra)
semantics of e [18], and provides a denotational semantics to our process calculus.

The algebra structure γ : ΣMZ → Z of (Z, γ) can be seen as a reinterpretation of the
programming constructs of the language Exp that mimics the operational semantics of process
terms. The basic constructs are the content of the first three equations in Figure 2: output
variables are evaluated so as to behave like the variables of (Exp, ϵ), the behaviour at performs
a and moves on to t, and σ(t1, . . . , tn) branches into the behaviours t1, . . . , tn with additional
structure determined by the operation σ. Interpreting recursive behaviours like µv t requires
coalgebraic analogues of syntactic and guarded syntactic substitution from Section 3.

For a given behaviour s ∈ Z and a variable v ∈ V , the behavioural substitution of s for v
is the map {s/v} : Z → Z defined by the identity

ζ(t{s/v}) =


ζ(s) ζ(t) = [v]E
[u]E ζ(t) = [u]E ̸= [v]E
[(a, r{s/v})]E ζ(t) = [(a, r)]E
σ(ζ(t1{s/v}), . . . , ζ(tn{s/v})) ζ(t) = [σ(ζ(t1), . . . , ζ(tn))]E

for any t ∈ Z. The guarded behavioural substitution of s for v is constructed in analogy
with guarded syntactic substitution from the previous section. We start by defining guarded
behavioural substitution in S∗(V +A× Z) as
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u{s//v} =
{
u u ̸= v

0 u = v

(a, r){s//v} = (a, r{s/v})
σ(r1, . . . , rn){s//v} = σ(r1{s//v}, . . . , rn{s//v})

where u ∈ V , a ∈ A, and r, ri ∈ Z for i ≤ n. This map lifts to an operator BMZ → BMZ

for the same reason as the guarded syntactic substitution operator. This completes the
description of the algebraic structure of (Z, γ) in Figure 2.

▶ Theorem 10. Let ⌈⌊−⌉⌋ be the unique algebra homorphism (Exp, α) → (Z, γ). For any
process term e ∈ Exp, we have !ϵ(e) = ⌈⌊e⌉⌋.

In other words, the final semantics given with respect to operational rules in Exp
coincides with the initial semantics given with respect to the programming constructs
in Z. Consequently, we write ⌈⌊−⌉⌋ in place of !ϵ and simply refer to ⌈⌊e⌉⌋ as the semantics of e.

5 An Axiomatisation of Behavioural Equivalence

An important corollary of Theorem 10 is that behavioural equivalence is a ΣM -congruence
on (Exp, α), meaning that it is preserved by all the program constructs of ΣM . This opens
the door to the possibility of deriving behavioural equivalences between process terms from
just a few axioms. The purpose of this section is to show that all behavioural equivalences
between process terms can be derived from the equations in E presenting (M,η, µ) as well as
three axiom schemas concerning the recursion operators.

The first two out of the three recursion axiom schemas are

(R1) µv e = e[µv e//v]
w not free in e

(R2)
µv e = µw (e[w/v])

Above, e[µv e//v] is the expression obtained by replacing every guarded free occurrence of v
in e with the expression µv e and every unguarded occurrence of v in e with 0, in analogy
with the operator on BM Exp of the same name.4

The axiom (R1) essentially allows for a sort of guarded unravelling of recursive terms.
This has the effect of identifying µv v with 0, for example, as well as µv av with a(µv av).
The latter satisfies our intuition that µv av should solve the recursive specification x = ax in
the indeterminate x. The axiom (R2) allows for recursion variables to be swapped for fresh
variables. This amounts to the observation that pairs of terms like µv av and µw aw should
both denote the unique solution to x = ax.

The third recursion axiom schema can be stated in the form of the proof rule

g = e[g/v] v guarded in e
(R3)

g = µv e

We let R denote the set of equations derived from (R1)-(R3), and we let ≡ denote the smallest
congruence in (Exp, α) containing the set of equations derived from E and R. When we refer
to examples like ARB, ACF, APA, and ANP, we are often identifying each of these with their
associated algebras (Exp/≡, α̂) of process terms modulo ≡.

4 Indeed, the identity ϵ(e[µv e//v]) = ϵ(e)[µv e//v] holds for all e ∈ Exp and v ∈ V [42, Lemma C.9].
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Soundness

We would like to argue that ≡ is sound with respect to behavioural equivalence, meaning
that ⌈⌊e⌉⌋ = ⌈⌊f⌉⌋ whenever e ≡ f . This is indeed the case, and can be derived from the fact
that the set of congruence classes of process terms itself forms a BM -coalgebra. For an
arbitrary function h : X → Y , call the set ker(h) := {(x, y) | h(x) = h(y)} the kernel of h.

▶ Lemma 11. The congruence ≡ is the kernel of a coalgebra homomorphism.

We write [−]≡ : Exp → Exp/≡ for the quotient map and (Exp/≡, ϵ̄) for the coalgebra
structure on Exp/≡ making [−]≡ a coalgebra homomorphism (there is at most one such
coalgebra structure [37]). As ⌈⌊−⌉⌋ is the unique coalgebra homomorphism (Exp, ϵ) → (Z, ζ),
and because there is also a coalgebra homomorphism !ϵ̄ : (Exp/≡, ϵ̄) → (Z, ζ), it must be the
case that !ϵ̄ ◦ [−]≡ = ⌈⌊−⌉⌋. By Lemma 11, if e ≡ f , then ⌈⌊e⌉⌋ = !ϵ̄([e]≡) = !ϵ̄([f ]≡) = ⌈⌊f⌉⌋.
This establishes the following.

▶ Theorem 12 (Soundness). Let e, f ∈ Exp. If e ≡ f , then ⌈⌊e⌉⌋ = ⌈⌊f⌉⌋.

Soundness allows us to derive at least a subset of all the behavioural equivalences between
process terms from the axioms in E and R. If our aspiration were simply to have a set of
behaviour-preserving code-transformations, then we could simply stop here and be satisfied,
since in principle we could see the axioms of E and R as rewrite rules that satisfy this purpose.

Completeness

Aiming a bit higher than deriving only a subset of the behavioural equivalences between
process terms, we move on to show the converse of Theorem 12, that ≡ is complete with
respect to behavioural equivalence. We use [41, Lemma 5.1], which can be stated as follows.

▶ Lemma 13. Let B : Sets → Sets be an endofunctor with a final coalgebra (Z, ζ), and let
C be a class of B-coalgebras. If C is closed under homomorphic images5 and has a final
object (E, ε), then !ε : E → Z is injective.

A subcoalgebra of a B-coalgebra (X,β) is an injective map ι : U ↪→ X such that β|U
factors through B(ι). A B-coalgebra is locally finite if every of its states is contained in
(the image of) a finite subcoalgebra. We instantiate Lemma 13 in the case where B = BM ,
(E, ε) = (Exp/≡, ϵ̄), and C is the class of locally finite BM -coalgebras. Completeness of
≡ with respect to behavioural equivalence follows shortly after, for if ⌈⌊e⌉⌋ = ⌈⌊f⌉⌋, then
!ϵ̄([e]≡) = !ϵ̄([f ]≡). By Lemma 13, !ϵ̄ is injective, so [e]≡ = [f ]≡ or equivalently e ≡ f . To
establish the converse of Theorem 12, it suffices to show that our choices of (E, ε) and C
satisfy the hypotheses of Lemma 13.

Before we continue, we would like to remind the reader of Assumption 3, that S only has
operations of finite arity, as up until now it has not been strictly necessary.

▶ Lemma 14. The coalgebra (Exp, ϵ) is locally finite.

Proof. Given e ∈ Exp, we construct a subcoalgebra of (Exp, ϵ) that has a finite set of states
that includes e. To this end, define U : Exp → Pω(Exp) by

U(v) = {v} U(ae) = {ae} ∪ U(e) U(σ(e1, . . . , en)) = {σ(e1, . . . , en)} ∪
⋃
i<n

U(ei)

U(µv e) = {µv e} ∪ U(e)[µv e//v] = {µv e} ∪ {f [µv e//v] | f ∈ U(e)}

5 Ie., if (X, β) ∈ C and h : (X, β) → (Y, ϑ), then (h[X], ϑ|h[X]) ∈ C.
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Note that e ∈ U(e) for all e ∈ Exp and that U(e) is finite. We begin with following claim,
which says that the outgoing transitions of e are given in terms of expressions from U(e):
for any e ∈ Exp, there is a representative S-term p ∈ ϵ(e) such that p ∈ S∗(V +A× U(e)).
This can be seen by induction on the construction of e, the only interesting case being in
the inductive step µv e. Here, let p ∈ ϵ(e) and observe that p[µv e//v] is a representative of
ϵ(µv e) in S∗(V +A× U(µv e)).

To finish the proof of the lemma, fix an e ∈ Exp and define a sequence of sets beginning
with U0 = {e} and proceeding with

Un+1 = Un ∪
⋃

e0∈Un

{g | (∃a ∈ A)(∃p ∈ ϵ(e0) ∩ S∗(V +A× U(e0))) (a, g) appears in p}

Then U0 ⊆ U1 ⊆ · · · ⊆ U(e) and the latter set is finite, so U :=
⋃
Un is finite and contained

in U(e). We define a coalgebra structure ϵU : U → BMU by taking ϵU (e) = [p]E where if
e ∈ Un, then p is a representative of ϵ(e) in S∗(V +A× Un+1). Since S∗(V +A× Un+1) ⊆
S∗(V +A× U), this defines a BM -coalgebra structure on U . Where ι : U ↪→ Exp, we have
ϵ(ι(e)) = ϵ(e) = BM (ι) ϵU (e), so (U, ϵU ) is a finite subcoalgebra of (Exp, ϵ) containing e. ◀

The class of locally finite coalgebras is closed under homomorphic images: if (X,β) is
locally finite and h : (X,β) → (Y, ϑ) is a surjective homomorphism, then for any y ∈ Y and
x ∈ X such that h(x) = y, and for any finite subcoalgebra U of (X,β) containing x, h[U ]
is a finite subcoalgebra of (Y, ϑ) containing y [21]. Since y was arbitrary, it follows from
Lemma 11 that (Exp/≡, ϵ̄) is locally finite.

What remains to be seen among the hypotheses of Lemma 13 is that (Exp/≡, ϵ̄) is the
final locally finite coalgebra, meaning that for any locally finite coalgebra (X,β) there is a
unique coalgebra homomorphism (X,β) → (Exp/≡, ϵ̄). Every homomorphism from a locally
finite coalgebra is the union of its restrictions to finite subcoalgebras, so it suffices to see that
every finite subcoalgebra of (X,β) admits a unique coalgebra homomorphism into (Exp/≡, ϵ̄).

To this end, we make use of an old idea, possibly originating in the work of Salomaa [39].
We associate with every finite coalgebra a certain system of equations whose solutions (in
Exp/≡) are in one-to-one correspondence with coalgebra homomorphisms into (Exp/≡, ϵ̄).
Essentially, if a system admits a unique solution, then its corresponding coalgebra admits a
unique homomorphism into (Exp/≡, ϵ̄). This would then establish finality.

▶ Definition 15. A (finite) system of equations is a sequence of the form {xi = ei}i≤n where
xi ∈ V and ei ∈ Exp for i ≤ n, and none of x1, . . . , xn appear as bound variables in any of
e1, . . . , en. A system of equations {xi = ei}i≤n is guarded if x1, . . . , xn are guarded in ei for
each i ≤ n. A solution to {xi = ei}i≤n is a function ϕ : {x1, . . . , xn} → Exp such that

ϕ(xi) ≡ ei[ϕ(x1)/x1, . . . , ϕ(xn)/xn]

for all i ≤ n and x1, . . . , xn do not appear free in ϕ(xi) for any i ≤ n.

Every finite BM -coalgebra (X,β) gives rise to a guarded system of equations in the
following way: for each p ∈ S∗(V +A×X), define p† inductively as

v† = v (a, e)† = ae σ(f1, . . . , fn)† = σ(f†
1 , . . . , f

†
n)

and for each x ∈ X, let px be a representative of β(x). The6 system of equations associated
with (X,β) is then defined to be {x = p†

x}x∈X . We treat the elements of X as variables in
these equations, and note that by definition every y ∈ X is guarded in p†

x.

6 Technically speaking, there could be many systems of equations associated with a given coalgebra. We
say “the” system of equations because any two have the same set of solutions up to E.
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▶ Theorem 16. Let (X,β) be a finite BM -coalgebra and ϕ : X → Exp a function. Then the
composition [−]≡ ◦ ϕ : X → Exp/≡ is a BM -coalgebra homomorphism if and only if ϕ is a
solution to the system of equations associated with (X,β).

Proof. We begin by observing that ϵ̄ : Exp/≡ → BM Exp/≡ is a bijection. Indeed, the map
(−)♡ : BM Exp → Exp/≡ defined to be the unique map satisfying

[v]♡E = [v]≡ [(a, e)]♡E = [ae]≡ [σ(p1, . . . , pn)]♡E = σ([p1]♡E , . . . , [pn]♡E )

is its inverse. By construction, ϵ̄([p]♡E ) = [p]E for any p ∈ S∗(V +A× Exp), so it suffices to
see that ϵ̄([e]≡)♡ = [e]≡ for all e ∈ Exp. This can be done by induction on the construction
of e, and again the only interesting case is µv e. For this case, observe that

ϵ̄([µv e]≡)♡ = (BM ([−]≡)(ϵ(e)[µv e//v]))♡

= (BM ([−]≡)(ϵ(e[µv e//v])))♡

= (ϵ̄([e[µv e//v]]≡))♡ ([−]≡ a coalg. homom.)
= (ϵ̄([e]≡)[[µv e]≡//v])♡

= ϵ̄([e]≡)♡[[µv e]≡//v] (*)
= [e[µv e//v]]≡ (induct. hyp.)
= [µv e]≡ (R1)

We have used several properties of syntactic substitution in the above calculation; see [42,
Appendix C] for details. We have also used that guarded syntactic substitution commutes
with (−)♡ in (*), but this follows from an easy induction on terms in S∗(V +A× (Exp/≡)).

Now let {x = p†
x}x∈X be the system of equations associated with the coalgebra (X,β).

Observe that for any x, y ∈ X, if y appears in px, then it is guarded in p†
x. This means that

ϕ : X → Exp is a solution to {x = p†
x}x∈X if and only if ϕ(x) ≡ p†

x[ϕ(y)//y]y∈X . Now, if
β(x) = [px]E, we see that

(BM ([−]≡ ◦ ϕ)(β(x)))♡ = (BM ([−]≡) ◦BM (ϕ)([px]E))♡ (functoriality)
= (BM ([−]≡)([px]E[ϕ(y)//y]y∈X))♡ (BM (ϕ) an alg. homom.)
= ([px]E[[ϕ(y)]≡//y]y∈X)♡

= [p†
x[ϕ(y)//y]y∈X ]≡

Thus, ϕ is a solution to the system {x = p†
x}x∈X if and only if

[−]≡ ◦ ϕ(x) = (−)♡ ◦BM ([−]≡ ◦ ϕ) ◦ β(x) (3)

for every x ∈ X. The maps (−)♡ and ϵ̄ are inverse to one another, so Equation (3) is
equivalent to the identity ϵ̄ ◦ [−]≡ ◦ ϕ = BM ([−]≡ ◦ ϕ) ◦ β. This identity is the defining
property of a coalgebra homomorphism of the form [−]≡ ◦ ϕ. ◀

As a direct consequence of Theorem 16, we see that a finite subcoalgebra U ↪→ Exp of
(Exp, ϵ) is a solution to the system of equations associated with (U, ϵ|U ).

▶ Example 17. The system of equations associated with the automaton in Example 7 is the
two-element set {x1 = a1x2 +b u, x2 = v +b a2x1}. The map ϕ : {x1, x2} → Exp defined by
ϕ(x1) = µw (a1(v +b a2w) +b u) and ϕ(x2) = v +b a2 ϕ(x1) is a solution.
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Theorem 16 establishes a one-to-one correspondence between solutions to systems and
coalgebra homomorphisms as follows. Say that two solutions ϕ and ψ to a system {xi = ei}i≤n

are ≡-equivalent if ϕ(xi) ≡ ψ(xi) for all i ≤ n. Starting with a solution ϕ : X → Exp to the
system associated with (X,β), we obtain the homomorphism [−]≡ ◦ ϕ using Theorem 16.
A pair of solutions ϕ and ψ are ≡-equivalent if and only if [−]≡ ◦ ϕ = [−]≡ ◦ ψ, so up to
≡-equivalence the correspondence ϕ 7→ [−]≡ ◦ ϕ is injective. Going in the opposite direction
and starting with a homomorphism ψ : (X,β) → (Exp/≡, ϵ̄), let ex be a representative of ψ(x)
for each x ∈ X and define ϕ := λx.ex. Then ϕ is a solution to (X,β), and [−]≡ ◦ϕ = ψ. Thus,
up to ≡-equivalence, solutions to systems are in one-to-one correspondence with coalgebra
homomorphisms into (Exp/≡, ϵ̄).

Say that a system admits a unique solution up to ≡ if it has a solution and any two solutions
to the system are ≡-equivalent. Since, up to ≡-equivalence, solutions to a system associated
with a coalgebra (X,β) are in one-to-one correspondence with coalgebra homomorphisms
(X,β) → (Exp/≡, ϵ̄), it suffices for the purposes of satisfying the hypotheses of Lemma 13 to
show that every finite guarded system of equations admits a unique solution up to ≡. The
following theorem is a generalisation of [30, Theorem 5.7].

▶ Theorem 18. Every finite guarded system of equations admits a unique solution up to ≡.

The proof is a recreation of the one that appears under [30, Theorem 5.7] with the more
general context of our paper in mind. Remarkably, the essential details of the proof remain
unchanged despite the jump in the level of abstraction between the two results.

Completeness of ≡ with respect to behavioural equivalence is now a direct consequence
of Lemma 13 and Theorems 16 and 18.

▶ Corollary 19 (Completeness). Let e, f ∈ Exp. If ⌈⌊e⌉⌋ = ⌈⌊f⌉⌋, then e ≡ f .

One way to interpret this theorem is that the algebra (Exp/≡, α̂) of process terms modulo
≡ is isomorphic to a subalgebra of (Z, γ), or dually (Exp/≡, ϵ̄) is a subcoalgebra of (Z, ζ). It
is in this sense that ARB, ACF, APA, and ANP are algebras of behaviours.

6 Star Fragments

In this section we study a fragment of our specification languages consisting of star expressions.
These include primitive actions from A, a form of sequential composition, and analogues of
the Kleene star. We do not aim to give a complete axiomatisation of behavioural equivalence
for star expressions, as even in simple cases this is notoriously difficult. Nevertheless, we think
it is valuable to extrapolate from known examples a speculative axiomatisation independent
of the specification languages from previous sections.

Fix an algebraic theory (S,E) and assume S consists of only constants and binary
operations. Its star fragment is the set SExp of expressions given by the grammar

e, ei ::= c | 1 | a | e1 +σ e2 | e1e2 | e(σ)

where a ∈ A, c is a constant in S, and σ is a binary S-operation.
The star fragment of an algebraic theory is a fragment of Exp in the sense that star

expressions can be thought of as shorthands for process terms, as we explain next. In this
translation, we fix a distinguished variable u ∈ V , called the unit, which will denote successful
termination, and we also fix a variable v distinct from the unit, which will appear in the
fixpoint. The translation of star expressions to process terms is defined to be

1 7→ u a 7→ au e1 +σ e2 7→ σ(e1, e2) e1e2 7→ e1[e2/u] e(σ) 7→ µv (e[v/u]+σu)
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ℓ(c) = [c]E
ℓ(1) = [✓]E
ℓ(a) = [(a, 1)]E

ℓ(e1 +σ e2) = σ(ℓ(e1), ℓ(e2))
ℓ(ef) = p(ℓ(f), [(a1, e1f)]E, . . . , [(an, enf)]E)

ℓ(e(σ)) = p([0]E, [(a1, e1e
(σ))]E, . . . , [(an, ene

(σ))]E) +σ [✓]E

Figure 3 The coalgebra structure map ℓ : SExp → LM SExp. Here, c is a constant of S, σ is a binary
operation of S, a ∈ A, and e, ei ∈ SExp. In the last two equations, ℓ(e) = [p(✓, (a1, e1), . . . , (an, en))]E
for some p ∈ S∗({✓} + A × SExp).

Sequential composition of terms is associative and distributes over branching operations on
the right-hand side7: for any e1, e2, f ∈ SExp, (e1 +σ e2)f and e1f +σ e2f translate to the
same process term. Similarly, the intuitively correct identities 1e = e = e1 hold modulo
translation, as well as the identity 0e = 0.8

The operational semantics for star expressions is given by an LM -coalgebra (SExp, ℓ) in
Figure 3, where LM = M({✓} + A × Id). Abstractly, the operational interpretation ℓ(e)
of a star expression e is obtained by translating e into a process term (also called e) and
then identifying u with ✓ in ϵ(e). While the notation is somewhat opaque at this level of
generality, in specific instances the map ℓ amounts to a familiar transition structure.

▶ Example 20. The star fragment of ACF from Example 3 and Example 7 coincides with
GKAT, the algebra of programs introduced in [24] and studied further in [44, 40]. Instantiating
SExp in this context reveals the syntax

ei ::= 0 | 1 | a | e1 +b e2 | e1e2 | e(b)

for b ⊆ At and a ∈ A. This is nearly the syntax of GKAT, the only difference being the
presence of 1 and 0 instead of Boolean constants b ⊆ At. This is merely cosmetic, as we can
just as well define b := 1 +b 0.

In this context, M = (1 + Id)At, and so LM
∼= (2 + A × Id)At, which is the precise

coalgebraic signature of the automaton models of GKAT expressions. It is readily checked
that the operational semantics of GKAT also coincides with the operational semantics of the
star fragment of ACF given above.

▶ Example 21. The star fragment of APA from Example 4 and Example 8 is a subset of the
calculus of programs introduced in [11], but with an iteration operator for each p ∈ [0, 1].
Instantiating SExp in this context reveals the syntax

ei ::= 0 | 1 | a | e1 +p e2 | e1e2 | e(p)

for p ∈ [0, 1] and a ∈ A. The process e(p) can be thought of as a generalised Bernoulli process
that runs e until it reaches ✓ and then flips a weighted coin to decide whether to start from
the beginning of e or to terminate successfully.

We now provide a candidate axiomatisation for the star fragment while leaving the
question of completeness open. Say that a star expression e is guarded if the unit is guarded
in e as an expression in Exp. We define E∗ to be the theory consisting of E, the axiom schema

(E∗1) 1e = e1 = e

(E∗2) ce = c

(E∗3) e1(e2e3) = (e1e2)e3

(E∗4) (e+τ 1)(σ) = (e+τ 0)(σ)

7 But not on the left-hand side! Observe the difference between the processes a(b + c) and ab + ac here.
8 But not e0 = 0! See also the previous footnote.
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and the inference rules

e is guarded
(E∗5)

e(σ) = ee(σ) +σ 1

g = eg +σ f e is guarded
(E∗6)

g = e(σ)f

In the specific cases where E = SL and E = GS, E∗ is equivalent to the candidate
axiomatisations for the star fragments of ARB [30] and ACF [44, 40].9

There is a difference between our axioms and the axioms in [30, 44, 40]: instead of (E∗5),
all equations of the form e(σ) = ee(σ) +σ 1 appear in loc cit, even those where e is unguarded.
We adopt (E∗5) instead because the unrestricted version of (E∗5) fails to be sound for the star
expressions of APA. For example, if e = 1 + 1

3
a, then ee(1/2) + 1

2
1 7/12

===⇒ ✓ while e( 1
2 ) 1/2

==⇒ ✓.
We are confident that a completeness result can be obtained in several instances of the

framework for the axiomatisation we have suggested above. However, in several cases this
cannot happen. For example, there is no way to derive the identity ((a + 1

2
1) + b)∗ =

((a + 1
2

0) + b)∗ from CS∗ (see Example 5) despite these expressions being behaviourally
equivalent. What is likely missing from CS is a number of axioms that would allow 1 to
be moved to the top level of every S-term (and then replaced by 0 using (E∗4)). Algebraic
theories where this is doable are called skew-associative, which we define formally as follows.

▶ Definition 22. An algebraic theory (S,E) consisting of constants and binary operations is
called skew-associative if for any pair of binary operations σ1, τ1, there is a pair of binary
operations σ2, τ2 such that σ1(x, τ1(y, z)) = τ2(σ2(x, y), z) appears in E.

Many of the examples we care about are skew-associative, including the theories of
semilattices, guarded semilattices, and convex algebras.

▶ Question 1. Assume (S,E) is a skew-associative algebraic theory. If e and f are
behaviourally equivalent star expressions, is it true that E∗ ⊢ e = f?

7 Related Work

Our framework can be seen as a generalisation of Milner’s ARB [30] that reaches beyond
nondeterministic choice and covers several other process algebras already identified in the
literature. For example, instantiating our framework in the theory of pointed convex algebras
produces the algebra we have called APA (see Example 8), which only differs from the algebra
PE of Stark and Smolka [45] in the axiom (R1). In loc cit, the requirement that the variable
be guarded in the recursed expression is absent because recursion is computed as a least
fixed point in their semantics. This is not how we interpret recursion. We have included
the guardedness requirement because it is necessary for the soundness of the axiom in our
semantics: for example, where e = u + 1

2
v, we have µv e 1/2

==⇒ u and e[µv e/v] 3/4
==⇒ u. In

contrast, both µv e and e[µv e/v] exit in u with probability 1 in [45].
For another example, instantiating our framework in the theory CS of pointed convex

semilattices gives ANP (see Example 5), which differs from the calculus of Mislove, Ouaknine,
and Worrell [31] on two points. Firstly, their axiomatisation contains an unguarded version
of (R1), like in [45]. Secondly, the underlying algebraic theory of [31] corresponds to CS
extended with the axiom x+p 0 = 0. The resulting theory is known in the literature as that
of convex semilattices with top [11].

9 See [42, Appendix F] for details.
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Star expressions for non-deterministic processes appeared in the work of Milner [30] as a
fragment of ARB and can be thought of as a bisimulation-focused analogue of Kleene’s regular
expressions for NFAs. While the syntaxes of Milner’s star expressions and Kleene’s regular
expressions are the same, there are several important differences between their interpretations.
For example, sequential composition is interpreted as the variable substitution ef := e[f/u]
in Milner’s paper, which fails to distribute over + on the left. A notable insight from [30] is
that, despite these differences, an iteration operator (−)∗ can be defined for Milner’s star
expressions that satisfies many of the same identities as the Kleene star. Given a variable v
distinct from the unit and a process term e of ARB in which at most the unit is free,

e∗ = µv (e[v/u] + u)

defines the iteration operator in Milner’s star fragment of ARB. In Section 6, we generalised
this construction of Milner for the more general process types that we considered in this paper.
Our proposed axiomatization is also inspired by Milner’s work. We expect completeness of
our general calculus will be a hard problem, as completeness in the instantiation to ARB was
open for decades despite the extensive literature on the subject [15, 14, 16, 3, 20].

There are clear parallels between our work and the thesis of Silva [43], in which a family of
calculi is introduced that includes one-exit versions of ARB, ACF, and APA (see Examples 2,
7, and 8). The main difference is that our framework is parametric on a finitary monad
on Sets whereas Silva’s is centered around one particular theory (semilattices). However,
her work considers general polynomial functors on Sets, which we have not yet done in our
paper. We could achieve a similar level of generality by replacing A× Id in our signatures
ΣM , BM , and LM with an arbitrary polynomial functor.

Our results are also in the same vein as the work of Myers on coalgebraic expressions [32].
Coalgebraic expressions generalise the calculi of [43] to arbitrary finitary coalgebraic signatures
on a variety of algebras, and furthermore have totally defined recursion operators similar
to ours. However, the focus of the framework of coalgebraic expressions is on language
semantics, achieved by lifting the coalgebraic signature to a variety. This distinguishes the
framework from our approach: we focus on bisimulation semantics. This focus is also the
reason we interpret our BM -coalgebras in Sets and not in the Kleisli category of the monad
M , as is done in [22] to capture trace semantics of coalgebras.

Finally, there is also a notable connection to the iterative theories of Elgot [13, 6, 7, 33].
Theorem 18 in particular implies that our process algebras are examples of iterative algebras.

8 Future Work

In this paper, we introduced a family of process types whose branching structure is determined
by an algebraic theory. We provided each process type with a fully expressive specification
language paired with a sound and complete axiomatisation of behavioural equivalence.

There are several instantiations of our framework that we have not yet explored and are of
interest. For example, processes with multiset branching given by the theory of commutative
monoids produces nondeterministic processes with a simplistic notion of resources. Another
example is nondeterministic weighted processes with branching captured by the monad
arising from the weak distributive law between the free semimodule and powerset monads [9].
Yet another instantiation arises from the theory of monoids (presenting the list monad),
which produces processes related to breadth-first search algorithms.

Star fragments offer a uniform construction of Kleene-like algebras for a variety of
paradigms of computing. However, our framework does not suggest an axiomatisation of the
star fragment that combines nondeterministic and probabilistic choice, as the theory CS is
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not skew-associative (see Definition 22). We would like to expand our framework to include
this fragment as it provides an interesting but nonstandard interpretation of a part of the
language ProbNetKAT used to verify probabilistic networks [17].

We would also like to investigate the question at the end of Section 6 of whether E∗

is complete for skew-associative theories. In particular, we believe that a connection can
be made to the work of Grabmayer and Fokkink [20] on LLEE-charts, which provides a
completeness theorem for the so-called 1-free expressions of the star fragment of ARB. Our
process algebras also have uniformly defined 1-free star fragments, and it is not difficult to
give 1-free versions of the axiomatisation E∗. We intend to suitably generalise LLEE-charts to
arbitrary skew-associative theories and prove completeness theorems for 1-free star fragments.

Finally, we would like to know whether our operational semantics for process terms is an
instance of the mathematical operational semantics introduced by Turi and Plotkin [48].
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The Dimension Spectrum Conjecture for Planar
Lines
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Abstract
Let La,b be a line in the Euclidean plane with slope a and intercept b. The dimension spectrum
sp(La,b) is the set of all effective dimensions of individual points on La,b. Jack Lutz, in the early
2000s posed the dimension spectrum conjecture. This conjecture states that, for every line La,b, the
spectrum of La,b contains a unit interval.

In this paper we prove that the dimension spectrum conjecture is true. Specifically, let (a, b) be
a slope-intercept pair, and let d = min{dim(a, b), 1}. For every s ∈ [0, 1], we construct a point x

such that dim(x, ax + b) = d + s. Thus, we show that sp(La,b) contains the interval [d, 1 + d].
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1 Introduction

The effective dimension, dim(x), of a point x ∈ Rn gives a fine-grained measure of the
algorithmic randomness of x. Effective dimension was first defined by J. Lutz [5], and
was originally used to quantify the sizes of complexity classes. Unsurprisingly, because of
its strong connection to (classical) Hausdorff dimension, effective dimension has proven to
be geometrically meaningful [3, 15, 1, 9]. Indeed, an exciting line of research has shown
that one can prove classical results in geometric measure theory using effective dimension
[7, 10, 11, 13]. Importantly, these are not effectivizations of known results, but new results
whose proofs rely on effective methods. Thus, it is of considerable interest to investigate the
effective dimensions of points of geometric objects such as lines.

Let La,b be a line in the Euclidean plane with slope a and intercept b. Given the point-wise
nature of effective dimension, one can study the dimension spectrum of La,b. That is, the set

sp(La,b) = {dim(x, ax + b) |x ∈ R}

of all effective dimensions of points on La,b. In the early 2000s, Jack Lutz posed the dimension
spectrum conjecture for lines. That is, he conjectured that the dimension spectrum of every
line in the plane contains a unit interval.

The first progress on this conjecture was made by Turetsky.

▶ Theorem 1 (Turetsky [18]). The set of points x ∈ Rn with dim(x) = 1 is connected.

This immediately implies that 1 ∈ sp(La,b) for every line La,b. The next progress on the
dimension spectrum conjecture was by Lutz and Stull [11]. They showed that the effective
dimension of points on a line is intimately connected to problems in fractal geometry. Among
other things, they proved that 1+d ∈ sp(La,b) for every line La,b, where d = min{dim(a, b), 1}.
Shortly thereafter, Lutz and Stull [12] proved the dimension spectrum conjecture for the
special case where the effective dimension and strong dimension of (a, b) agree.
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In this paper, we prove that dimension spectrum conjecture is true. For every s ∈ (0, 1),
we construct a point x such that dim(x, ax + b) = d + s, where d = min{dim(a, b), 1}. This,
combined with the results of Lutz and Stull, imply that

[d, 1 + d] ⊆ sp(La,b),

for every planar line La,b. The proof of the conjecture builds on the techniques of [11]. The
primary difficulty of the conjecture is the case when the dimension of x is less than the
difficulty of the line (a, b). We expand on the nature of this dim(x) < dim(a, b) obstacle
in Section 3.1. Our main technical contribution is showing how to overcome this difficulty
by encoding the information of a into our point x. Further complications arise in the
“high-dimensional” case, i.e., when dim(a, b) > 1. In this case, we combine the encoding idea
with a non-constructive argument.

Apart from its intrinsic interest, recent work has shown that the effective dimensions of
points has deep connections to problems in classical analysis [10, 11, 13, 17, 8]. Lutz and
Lutz [7] proved the point-to-set principle, which characterizes the Hausdorff dimension of a
set by effective dimension of its individual points. Lutz and Stull [11], using the point-to-set
principle, showed that lower bounds on the effective dimensions of points on a line are
intimately related to well-known problems of classical geometric measure theory such the
Kakeya and Furstenberg conjectures.

The structure of the paper is as follows. In Section 2, we recall the basic definitions and
results of Kolmogorov complexity and effective dimension we need. In Section 3, we recall
the strategy of Lutz and Stull [11] to give strong lower bounds on the effective dimension of
points on a line. In Sections 3 and 3.1 we give intuition about this strategy, and discuss why
it is not enough to settle the dimension spectrum conjecture.

In Section 4, we prove the dimension spectrum conjecture for lines with effective dimension
at most one. We also give a brief overview of this proof, and how it overcomes the strategy
discussed in Section 3. In Section 5, we prove the dimension spectrum conjecture for lines
with effective dimension greater than one. We also give intuition of this proof, and how it
overcomes the difficulties when the line is high-dimensional.

Finally, in the conclusion, we discuss open questions and avenues for future research.

2 Preliminaries

The conditional Kolmogorov complexity of a binary string σ ∈ {0, 1}∗ given binary string
τ ∈ {0, 1}∗ is

K(σ|τ) = min
π∈{0,1}∗

{ℓ(π) : U(π, τ) = σ} ,

where U is a fixed universal prefix-free Turing machine and ℓ(π) is the length of π. The
Kolmogorov complexity of σ is K(σ) = K(σ|λ), where λ is the empty string. Thus, the
Kolmogorov complexity of a string σ is the minimum length program which, when run on
a universal Turing machine, eventually halts and outputs σ. We stress that the choice of
universal machine effects the Kolmogorov complexity by at most an additive constant (which,
especially for our purposes, can be safely ignored). See [4, 16, 2] for a more comprehensive
overview of Kolmogorov complexity.

We can extend these definitions to Euclidean spaces by introducing “precision” paramet-
ers [9, 7]. Let x ∈ Rm, and r, s ∈ N. The Kolmogorov complexity of x at precision r is

Kr(x) = min {K(p) : p ∈ B2−r (x) ∩ Qm} .
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The conditional Kolmogorov complexity of x at precision r given q ∈ Qm is

K̂r(x|q) = min {K(p) : p ∈ B2−r (x) ∩ Qm} .

The conditional Kolmogorov complexity of x at precision r given y ∈ Rn at precision s is

Kr,s(x|y) = max
{

K̂r(x|q) : q ∈ B2−r (y) ∩ Qn
}

.

We abbreviate Kr,r(x|y) by Kr(x|y).
The effective Hausdorff dimension and effective packing dimension1 of a point x ∈ Rn are

dim(x) = lim inf
r→∞

Kr(x)
r

and Dim(x) = lim sup
r→∞

Kr(x)
r

.

Intuitively, these dimensions measure the density of algorithmic information in the point x.
By letting the underlying fixed prefix-free Turing machine U be a universal oracle machine,

we may relativize the definition in this section to an arbitrary oracle set A ⊆ N. The definitions
of KA

r (x), dimA(x), DimA(x), etc. are then all identical to their unrelativized versions, except
that U is given oracle access to A. Note that taking oracles as subsets of the naturals is
quite general. We can, and frequently do, encode a point y into an oracle, and consider the
complexity of a point relative to y. In these cases, we typically forgo explicitly referring to
this encoding, and write e.g. Ky

r (x).
Among the most used results in algorithmic information theory is the symmetry of

information. In Euclidean spaces, this was first proved, in a slightly weaker form in [7], and
in the form presented below in [11].

▶ Lemma 2. For every m, n ∈ N, x ∈ Rm, y ∈ Rn, and r, s ∈ N with r ≥ s,
(i) |Kr(x|y) + Kr(y) − Kr(x, y)

∣∣ ≤ O(log r) + O(log log ∥y∥) .

(ii) |Kr,s(x|x) + Ks(x) − Kr(x)| ≤ O(log r) + O(log log ∥x∥) .

2.1 Initial segments versus K-optimizing rationals
For x = (x1, . . . , xn) ∈ Rn and a precision r ∈ N, let x↾r = (x1↾r, . . . , xn↾r), where each

xi↾r = 2−r⌊2rxi⌋

is the truncation of xi to r bits to the right of the binary point. For r ∈ (0, ∞), let
x↾r = x↾⌈r⌉.

We can relate the complexity Kr(x) of x at precision r and the initial segment complexity
K(x↾r) of the binary representation of x. Lutz and Stull [11] proved the following lemma,
and its corollaries, relating these two quantities. Informally, it shows that, up to a logarithmic
error, the two quantities are equivalent.

▶ Lemma 3. For every m, n ∈ N, there is a constant c such that for all x ∈ Rm, p ∈ Qn,
and r ∈ N,

|K̂r(x|p) − K(x↾r | p)| ≤ K(r) + c .

This has the following two useful corollaries.

1 Although effective Hausdorff was originally defined by J. Lutz [6] using martingales, it was later shown
by Mayordomo [14] that the definition used here is equivalent. For more details on the history of
connections between Hausdorff dimension and Kolmogorov complexity, see [2, 15].
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▶ Corollary 4. For every m ∈ N, there is a constant c such that for every x ∈ Rm and r ∈ N,

|Kr(x) − K(x↾r)| ≤ K(r) + c .

▶ Corollary 5. For every m, n ∈ N, there is a constant c such that for all x ∈ Rm, y ∈ Rn,
and r, s ∈ N,

|Kr,s(x|y) − K(x↾r | y↾s)| ≤ K(r) + K(s) + c .

3 Previous Work

The proof of our main theorem will use the tools and techniques introduced by Lutz and
Stull [11]. In this section we will state the main lemmas needed for this paper. We will
devote some time giving intuition about each lemma. In Subsection 3.1, we give an informal
discussion on how to combine these lemmas to give bounds on the effective dimensions of
points on a line. We will also discuss where these tools break down, motivating the techniques
introduced in this paper.

The first lemma, informally, states the following. Suppose that La,b intersects (x, ax + b)
and the complexity of (a, b) is low (item (i)). Further assume that (item (ii)), if Lu,v is any
other line intersecting (x, ax + b) such that ∥(a, b) − (u, v)∥ < 2−m then either
1. u, v is of high complexity, or
2. u, v is very close to a, b.
Then it is possible to compute an approximation of (a, b) given an approximation of (x, ax+b)
and first m bits of (a, b). Indeed, we can simply enumerate over all low complexity lines,
since we know that the only candidate is essentially (a, b).

▶ Lemma 6 (Lutz and Stull [11]). Suppose that A ⊆ N,a, b, x ∈ R, m, r ∈ N, δ ∈ R+, and
ε, η ∈ Q+ satisfy r ≥ log(2|a| + |x| + 5) + 1 and the following conditions.

(i) KA
r (a, b) ≤ (η + ε) r.

(ii) For every (u, v) ∈ B2−m(a, b) such that ux + v = ax + b,

KA
r (u, v) ≥ (η − ε) r + δ · (r − t) ,

whenever t = − log ∥(a, b) − (u, v)∥ ∈ (0, r].
Then,

KA
r (a, b, x) ≤ Kr(x, ax + b) + Km,r(a, b | x, ax + b) + 4ε

δ
r + K(ε, η) + O(log r) .

The second lemma which will be important in proving our main theorem is the following. It
is essentially the approximation version of the simple geometric fact that any two lines intersect
at a single point. In other words, if ax + b = ux + v and you are given an approximation of
(a, b) and an approximation of (u, v), then you can compute an approximation of x. Moreover,
the quality of the approximation of x depends linearly on the distance between (u, v) and
(a, b).

▶ Lemma 7 ([11]). Let a, b, x ∈ R. For all u, v ∈ B1(a, b) such that ux + v = ax + b, and
for all r ≥ t := − log ∥(a, b) − (u, v)∥,

Kr(u, v) ≥ Kt(a, b) + Kr−t,r(x|a, b) − O(log r) .

The primary function of this lemma is to give a lower bound on the complexity of any line
intersecting (x, ax + b), i.e., ensuring condition (ii) of the previous lemma.
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Finally, we also need the following oracle construction of Lutz and Stull. The purpose of
this lemma is to show that we can lower the complexity of our line (a, b), thus ensuring item
(i) of Lemma 6. Crucially, we can lower this complexity using only the information contained
in (a, b).

▶ Lemma 8 ([11]). Let r ∈ N, z ∈ R2, and η ∈ Q ∩ [0, dim(z)]. Then there is an oracle
D = D(r, z, η) satisfying

(i) For every t ≤ r, KD
t (z) = min{ηr, Kt(z)} + O(log r).

(ii) For every m, t ∈ N and y ∈ Rm, KD
t,r(y|z) = Kt,r(y|z) + O(log r) and Kz,D

t (y) =
Kz

t (y) + O(log r).

3.1 Combining the lemmas
We now briefly discuss the strategy of [11] which combines the above lemmas to give non-
trivial bounds on the effective dimension of points on a line. Suppose (a, b) is a line with
dim(a, b) = d, and x is a point with dima,b(x) = s. We will also make the crucial assumption
that d ≤ s. Roughly, Lutz and Stull showed that, for sufficiently large r

Kr(x, ax + b) ≥ (s + d)r.

The strategy is as follows. Note that to simplify the exposition, all inequalities in this
discussion will be approximate. Using Lemma 8, we find an oracle D which reduces the
complexity of (a, b) to some η ≤ d, i.e., KD

r (a, b) = ηr. Combining this with Lemma 7, we
get a lower bound on every line (u, v) intersecting (x, ax + b). That is, we show for any such
line,

KD
r (u, v) ≥ ηt + s(r − t) − O(log r)

By our choice of η, this implies that

KD
r (u, v) > ηr

In particular, relative to D, both conditions of Lemma 6 are satisfied and we have the
sufficient lower bound.

In the previous sketch, it was crucial that the dimension of (a, b) was less than s, in order
for the lower bound from Lemma 7 to be useful. In the case where dim(a, b) is much larger
than dima,b(x), this strategy breaks down, and further techniques are required.

We also note that this seems to be a very deep issue. As discussed in the Introduction,
the point-to-set principle of J. Lutz and N. Lutz [7] allows us to translate problems from
(classical) geometric measure theory into problems of effective dimension. The same issue
discussed in this section occurs when attacking the notorious Kakeya and Furstenberg set
conjectures using the point-to-set principle. While resolving this obstacle in full generality
is still elusive, we are able to get around it in the context of the Dimension Spectrum
Conjecture.

4 Low-Dimensional Lines

In this section, we prove the spectrum conjecture for lines with dim(a, b) ≤ 1.

▶ Theorem 9. Let (a, b) ∈ R2 be a slope-intercept pair with dim(a, b) ≤ 1. Then for every
s ∈ [0, 1], there is a point x ∈ R such that

dim(x, ax + b) = s + dim(a, b).

We begin by giving an intuitive overview of the proof.

ICALP 2022
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4.1 Overview of the proof
As mentioned in Section 3.1, the main obstacle of the Dimension Spectrum Conjecture occurs
when the dimension of x is lower than the dimension of the line (a, b). As mentioned in
Section 3.1, in general, this issue is still formidable. However, in the Dimension Spectrum
Conjecture, we are given the freedom to specifically construct the point x, allowing us
overcome this obstacle.

The most natural way to construct a sequence x with dima,b(x) = s is to start with a ran-
dom sequence, and pad it with long strings of zeros. This simple construction, unfortunately,
does not seem to work.

We are able to overcome the obstacle by padding the random sequence with the bits of a,
instead of with zeros. Thus, given an approximation (x, ax + b) we trivially have a decent
approximation of a (formalized iin Lemma 10). This allows us, using Lemma 6, to restrict
our search for (a, b) to a smaller set of candidate lines.

4.2 Proof for low-dimensional lines
Fix a slope-intercept pair (a, b), and let d = dim(a, b). Let s ∈ (0, d). Let y ∈ R be random
relative to (a, b). Thus, for every r ∈ N,

Ka,b
r (y) ≥ r − O(log r).

Define the sequence of natural numbers {hj}j∈N inductively as follows. Define h0 = 1. For
every j > 0, let

hj = min
{

h ≥ 2hj−1 : Kh(a, b) ≤
(

d + 1
j

)
h

}
.

Note that hj always exists. For every r ∈ N, let

x[r] =
{

a[r − ⌊shj⌋] if r ∈ (⌊shj⌋, hj ] for some j ∈ N
y[r] otherwise

where x[r] is the rth bit of x. Define x ∈ R to be the real number with this binary expansion.
One of the most important aspects of our construction is that we encode (a subset of)

the information of a into our point x. This is formalized in the following lemma.

▶ Lemma 10. For every j ∈ N, and every r such that shj < r ≤ hj,

Kr−shj ,r(a, b | x, ax + b) ≤ O(log hj).

Proof. By definition, the last r − shj bits of x are equal to the first r − shj bits of a. That is,

x[shj ] x[shj + 1] . . . x[r] = a[0] a[1] . . . a[r − shj ]
= a↾(r − shj).

Therefore, since additional information cannot increase Kolmogorov complexity,

Kr−shj ,r(a | x, ax + b) ≤ Kr−shj ,r(a | x)
≤ O(log hj).

Note that, given 2−(r−shj)-approximations of a, x, and ax + b, it is possible to compute an
approximation of b. That is,

Kr−shj
(b | a, x, ax + b) ≤ O(log hj).
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Therefore, by Lemma 2 and the two above inequalities,

Kr−shj ,r(a, b | x, ax + b) = Kr−shj ,r(a | x, ax + b)
+ Kr−shj ,r(b | a, x, ax + b) + O(log r)

≤ O(log hj) + Kr−shj ,r(b | a, x, ax + b) + O(log r)
≤ O(log hj). ◀

The other important property of our construction is that (a, b) gives no information about
x, beyond the information specifically encoded into x.

▶ Lemma 11. For every j ∈ N, the following hold.
1. Ka,b

t (x) ≥ t − O(log hj), for all t ≤ shj.
2. Ka,b

r (x) ≥ shj + r − hj − O(log hj), for all hj ≤ r ≤ shj+1.

Proof. We first prove item (1). Let t ≤ shj . Then, by our construction of x, and choice of y,

Ka,b
t (x) ≥ Ka,b

t (y) − hj−1 − O(log t)
≥ t − O(log t) − log hj − O(log t)
≥ t − O(log hj).

For item (2), let hj ≤ r ≤ shj+1. Then, by item (1), Lemma 2 and our construction of x,

Ka,b
r (x) = Ka,b

hj
(x) + Ka,b

r,hj
(x) − O(log r) [Lemma 2]

≥ shj + Ka,b
r,hj

(x) − O(log r) [Item (1)]

≥ shj + Ka,b
r,hj

(y) − O(log r)

≥ shj + r − hj − O(log r), ◀

and the proof is complete.

We now prove bounds on the complexity of our constructed point. We break the proof
into two parts. In the first, we give lower bounds on Kr(x, ax + b) at precisions shj < r ≤ hj .
Intuitively, the proof proceeds as follows. Since r > shj , given (x, ax + b) to precision
r immediately gives a 2−r+shj approximation of (a, b). Thus, we only have to search for
candidate lines (u, v) which satisfy t = ∥(a, b) − (u, v)∥ < 2−r+shj . Then, because of the
lower bound on t, the complexity Kr−t(x) is maximal. In other words, we are essentially in
the case that the complexity of x is high. Thus, we are able to use the method described in
Section 3.1. We now formalize this intuition in the proof.

▶ Lemma 12. For every γ > 0 and all sufficiently large j ∈ N,

Kr(x, ax + b) ≥ (s + d)r − γr,

for every r ∈ (shj , hj ].

Proof. Let η ∈ Q such that

d − γ/4 < η < d − γ2.

Let ε ∈ Q such that

ε < γ(d − η)/16.
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Note that

4ε

1 − η
≤ γ

4

We also note that, since η and ε are constant,

K(η, ε) = O(1).

Let D = D(r, (a, b), η) be the oracle of Lemma 8 and let δ = 1 − η.
Let (u, v) be a line such that t := ∥(a, b) − (u, v)∥ ≥ r − shj , and ux + v = ax + b. Note

that r − t ≤ shj . Then, by Lemma 7, Lemma 8 and Lemma 11(1),

KD
r (u, v) ≥ KD

t (a, b) + KD
r−t,r(x | a, b) − O(log r) [Lemma 7]

≥ KD
t (a, b) + Kr−t,r(x | a, b) − O(log r) [Lemma 8]

≥ KD
t (a, b) + r − t − O(log r). [Lemma 11(1)]

There are two cases by Lemma 8. For the first, assume that KD
t (a, b) = ηr. Then

≥ ηr + r − t − O(log r) [Definition of dim]
= (η − ε)r + r − t [r is large]
≥ (η − ε)r + (1 − η)(r − t)

For the second, assume that KD
t (a, b) = Kt(a, b). Then

KD
r (u, v) ≥ Kt(a, b) + r − t − O(log r)

≥ dt − o(t) + r − t − O(log r) [Definition of dim]
= ηr + (1 − η)r − t(1 − d) − εr [r is large]
≥ ηr − εr + (1 − η)(r − t) [d > η]
≥ (η − ε)r + (1 − η)(r − t). (1)

Therefore, in either case, we may apply Lemma 6,

Kr(x, ax + b) ≥ KD
r (a, b, x) − Kr−shj ,r(a, b |, x, ax + b) [Lemma 6]

− 4ε

1 − η
r − K(η, ε) − O(log r)

≥ KD
r (a, b, x) − Kr−shj ,r(a, b | x, ax + b) − γ

4 r − γ

8 r

= KD
r (a, b, x) − Kr−shj ,r(a, b | x, ax + b) − 3γ

8 r. (2)

By Lemma 11(1), our construction of oracle D, and the symmetry of information,

KD
r (a, b, x) = KD

r (a, b) + KD
r (x | a, b) − O(log r) [Lemma 2]

= KD
r (a, b) + Kr(x | a, b) − O(log r) [Lemma 8(ii)]

≥ ηr + Kr(x | a, b) − O(log r) [Lemma 8(i)]
≥ ηr + shj − O(log r) [Lemma 11(1)]

≥ ηr + shj − γ

4 r. (3)
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Finally, by Lemma 10,

Kr−shj ,r(a, b | x, ax + b) ≤ γ

8 r. (4)

Together, inequalities (2), (3) and (4) imply that

Kr(x, ax + b) ≥ KD
r (a, b, x) − Kr−shj ,r(a, b |, x, ax + b) − 3γ

8 r

≥ ηr + shj − γ

4 r − γ

8 r − 3γ

8 r

≥ dr − γ

4 r + shj − 3γ

4 r

≥ dr + shj − γr

≥ (s + d)r − γr,

and the proof is complete. ◀

We now give lower bounds on the complexity of our point, Kr(x, ax + b), when hj < r ≤
shj+1. Intuitively, the proof proeeds as follows. Using the previous lemma, we can, given a
2−hj -approximation of (x, ax + b), compute a 2−hj -approximation of (a, b). Thus, we only
have to compute the last r − hj bits of (a, b). Importantly, since r > hj , the last r − hj bits
of x are maximal. Hence, we can simply lower the complexity of the last r − hj bits of (a, b)
to roughly s(r − hj). Thus, we are again, essentially, in the case where dim(x) ≥ dim(a, b)
and the techniques of Section 3.1 work. We now formalize this intuition.

▶ Lemma 13. For every γ > 0 and all sufficiently large j ∈ N,

Kr(x, ax + b) ≥ (s + d)r − γr,

for every r ∈ (hj , shj+1].

Proof. Recall that we are assuming that s < d. Let ŝ ∈ Q ∩ (0, s) be a dyadic rational such
that

γ/8 < s − ŝ < γ/4.

Let d̂ ∈ Q ∩ (0, dim(a, b)) be a dyadic rational such that

γ/8 < dim(a, b) − d̂ < γ/4.

Define

α = s(r − hj) + dim(a, b)hj

r
,

and η ∈ Q ∩ (0, α) by

η = ŝ(r − hj) + d̂hj

r
.

Finally, let ε = γ2/64. Note that

α − η = s(r − hj) + dhj − ŝ(r − hj) − d̂hj

r

= (s − ŝ)(r − hj) + (d − d̂)hj

r

≤
γ
4 (r − hj) + γ

4 hj

r

= γ

4 (5)
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Similarly,

α − η = s(r − hj) + dim(a, b)hj − ŝ(r − hj) − d̂hj−1

r

= (s − ŝ)(r − hj) + (dim(a, b) − d̂)hj

r

>
γ
8 (r − hj) + γ

8 hj

r

= γ

8 (6)

In particular,

4ε

α − η
≤ γ/4. (7)

We also note that

K(ε, η) ≤ K(γ, ŝ, d̂, r, hj) ≤ O(log r), (8)

since j was chosen to be sufficiently large and γ is constant.
Finally, let D = D(r, (a, b), η) be the oracle of Lemma 8. Note that we chose D so that,

roughly, D lowers the complexity of the last r − hj bits of (a, b) to s(r − hj).
Let (u, v) be a line such that t := ∥(a, b) − (u, v)∥ ≥ hj , and ux + v = ax + b. Then, by

Lemmas 7, 8 and 11,

KD
r (u, v) ≥ KD

t (a, b) + KD
r−t,r(x | a, b) − O(log r) [Lemma 7]

≥ KD
t (a, b) + Kr−t,r(x | a, b) − O(log r) [Lemma 8]

≥ KD
t (a, b) + s(r − t) − O(log r). [Lemma 11(1)]

There are two cases. In the first, KD
t (a, b) = ηr. Then,

KD
r (u, v) ≥ ηr + s(r − t) − O(log r)

≥ (η − ε)r + s(r − t)
≥ (η − ε)r + (α − η)(r − t).

In the other case, KD
t (a, b) = Kt(a, b). Then,

KD
r (u, v) ≥ Kt(a, b) + s(r − t) − O(log r)

≥ dt − o(t) + s(r − t) − O(log r) [Definition of dim]
= dhj + d(t − hj) + s(r − t) − o(r)
= dhj + d(t − hj) + s(r − hj) − s(t − hj) − o(r)
= αr + (d − s)(t − hj) − o(r)
= ηr + (α − η)r + (d − s)(t − hj) − o(r)
≥ ηr + (α − η)(r − t) − o(r)
≥ (η − ε)r + (α − η)(r − t).
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Therefore we may apply Lemma 6, which yields

KD
r (a, b, x) ≤ Kr(x, ax + b) + KD

hj ,r(a, b, x | x, ax + b) [Lemma 6]

+ 4ε

α − η
r + K(ε, η) + O(log r)

≤ Kr(x, ax + b) + KD
hj ,r(a, b, x | x, ax + b)

+ γ

4 r + γ

8 r [Choice of η, ε]

= Kr(x, ax + b) + KD
hj ,r(a, b, x | x, ax + b) + 3γ

8 r. (9)

By Lemma 11, and our construction of oracle D,

KD
r (a, b, x) = KD

r (a, b) + KD
r (x | a, b) − O(log r) [Lemma 2]

= ηr + Kr(x | a, b) − O(log r) [Lemma 8]
≥ ηr + shj + r − hj − O(log r) [Lemma 11(2)]

≥ αr − γ

4 r + shj + r − hj − O(log r)

≥ s(r − hj) + dhj − γ

4 r + shj + r − hj − O(log r)

≥ (1 + s)r − (1 − d)hj − γ

4 r. (10)

By Lemmas 12, and 2, and the fact that additional information cannot increase Kolmogorov
complexity

Khj ,r(a, b, x | x, ax + b) ≤ Khj ,hj (a, b, x | x, ax + b)
= Khj

(a, b, x) − Khj
(x, ax + b) [Lemma 2]

= Khj
(a, b) + Khj

(x | a, b)
− Khj

(x, ax + b) [Lemma 2]
= Khj (a, b) + shj − Khj (x, ax + b) [Lemma 11]

≤ Khj
(a, b) + shj − (s + d)hj + γ

16hj [Lemma 12]

≤ dhj + hj/j − dhj + γ

16r [Definition of hj ]

≤ γ

8 r (11)

Combining inequalities (9), (10) and (11) , we see that

Kr(x, ax + b) ≥ KD
r (a, b, x) − γ

8 r − 3γ

8 r

≥ (1 + s)r − (1 − d)hj − γ

4 r − γ

4 r

≥ (1 + s)r − (1 − d)hj − γr.

Note that, since d ≤ 1, and hj ≤ r,

(1 + s)r − hj(1 − d) − (s + d)r = r(1 − d) − hj(1 − d)
= (r − hj)(1 − d)
≥ 0.
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Thus,

Kr(x, ax + b) ≥ (1 + s)r − hj(1 − d) − γr

≥ (s + d)r − γr,

and the proof is complete for the case s < dim(a, b). ◀

We are now able to prove our main theorem of this section.
▶ Theorem 9. Let (a, b) ∈ R2 be a slope-intercept pair with dim(a, b) ≤ 1. Then for every
s ∈ [0, 1], there is a point x ∈ R such that

dim(x, ax + b) = s + dim(a, b).

Proof. Let (a, b) ∈ R2 be a slope-intercept pair with

d = dim(a, b) ≤ 1.

Let s ∈ [0, 1]. If s = 0, then

Kr(a, a2 + b) = Kr(a) + Kr(a2 + b | a) + O(log r)
= Kr(a) + Kr(b | a) + O(log r)
= Kr(a, b) + O(log r),

and so the conclusion holds.
If s = 1, then by [11], for any point x which is random relative to (a, b),

dim(x, ax + b) = 1 + d,

and the claim follows.
If s ≥ d, then Lutz and Stull [11] showed that for any x such that

dima,b(x) = dim(x) = s,

we have dim(x, ax + b) = s + d.
Therefore, we may assume that s ∈ (0, 1) and s < d. Let x be the point constructed in

this section. Let γ > 0. Let j be large enough so that the conclusions of Lemmas 12 and 13
hold for these choices of (a, b), x, s and γ. Then, by Lemmas 12 and 13,

dim(x, ax + b) = lim inf
r→∞

Kr(x, ax + b)
r

≥ lim inf
r→∞

(s + d)r − γr

r

= s + d − γ.

Since we chose γ arbitrarily, we see that

dim(x, ax + b) ≥ s + d.

For the upper bound, let j ∈ N be sufficiently large. Then

Khj
(x, ax + b) ≤ Khj

(x, a, b)
= Khj

(a, b) + Khj
(x | a, b)

≤ dhj + shj

= (d + s)hj .

Therefore,

dim(x, ax + b) ≤ s + d,

and the proof is complete. ◀
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5 High-Dimensional Lines

In this section we prove the following theorem.

▶ Theorem 14. Let (a, b) ∈ R2 be a slope-intercept pair with dim(a, b) > 1.. Then for every
s ∈ [0, 1], there is a point x ∈ R such that

dim(x, ax + b) = 1 + s.

5.1 Overview of proof
In this case, we again apply essential insight of the proof for low-dimensional lines, namely,
encoding (a subset of) the information of a into x. However, when dim(a, b) > 1 constructing
x as before potentially causes a problem. Specifically, in this case, the previous construction
might cause dim(x, ax + b) to become too large.

The overcome this, we rely on a non-constructive argument. More specifically, we begin as
in the construction of x in the low-dimensional case. However at stage j of our construction,
we do not add all hj − shj bits of a to x. Instead we consider the m = hj − shj strings
x0, . . . , xm, where

xn[i] =
{

0 if 0 ≤ i < m − n
1
a [i − (m − n)] if m − n ≤ i ≤ m

(*)

and look at the extension of x with the bits of xn.
Using a discrete, approximate, version of the intermediate value theorem, we are able to

conclude that there is some extension x′ = xxn such that

min
shj≤r≤hj

|Kr(x′, ax′ + b) − (1 + s)r|

is sufficiently small. We then carry on with the argument of the low-dimensional lines until
shj+1.

5.2 Proof for high-dimensional lines
In order to prove Theorem 14, we will, given any slope-intercept pair (a, b) and s ∈ (0, 1),
construct a point x ∈ [0, 1] such that dim(x, ax + b) = 1 + s.

Our construction is best phrased as constructing an infinite binary sequence x, and
then taking x to be the unique real number whose binary expansion is x. We now recall
terminology needed in the construction. We will use bold variables to denote binary strings
and (infinite) binary sequences. If x is a (finite) binary string and y is a binary string or
sequence, we write x ≺ y if x is a prefix of y.

Let (a, b) be a slope intercept pair and let d = dim(a, b). Define the sequence of natural
numbers {hj}j∈N inductively as follows. Define h0 = 2. For every j > 0, let

hj = min
{

h ≥ 2hj−1 : Kh(a, b) ≤
(
d + 2−j

)
h

}
.

We define our sequence x inductively. Let y be a random, relative to (a, b), binary sequence.
That is, there is some constant c such that

Ka,b(y↾r) ≥ r − c, (12)
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for every r ∈ N. We begin our inductive definition by setting x[0 . . . 2] = y[0 . . . 2]. Suppose
we have defined x up to hj−1. We then set

x[r] = y[r], for all hj−1 < r ≤ shj .

To specify the next hj − shj bits of x, we use the following lemma, which we will prove
in the next section.

▶ Lemma 15. For every sufficiently large j, there is a binary string z of length hj − shj

such that

min
shj<r≤hj

|Kr(x, ax + b) − (1 + s)r| <
r

j
,

where x is any real such that xz ≺ x. Moreover, z is of the form (*) of Section 5.1.

For now, we assume the truth of this lemma. If the current j is not sufficiently large,
take z to be the string of all zeros. Otherwise, if j is sufficiently large, we let z be such a
binary string. We then set

x[r] = z[r − shj ], for all shj < r ≤ hj ,

completing the inductive step. Finally, we let xa,b,s be the real number with binary expan-
sion x.

▶ Proposition 16. Let x = xa,b,s be the real we just constructed. Then for every j,
1. Ka,b

shj
(x) ≥ shj − O(log hj), and

2. Kr(x | a, b) ≥ shj + r − hj, for every hj ≤ r < shj+1.

We now show, again assuming Lemma 15, that dim(x, ax + b) = 1 + s, where x = xa,b,s

is the point we have just constructed.
We begin by proving an upper bound on dim(x, ax + b). Note that this essentially follows

from our choice of z.

▶ Proposition 17. Let (a, b) be a slope intercept pair, s ∈ (0, 1) and γ ∈ Q be positive. Let
x = xa,b,s be the point we have just constructed. Then

dim(x, ax + b) ≤ (1 + s) + γ.

Proof. Let j be sufficiently large. By our construction of x,

min
shj<r≤hj

|Kr(x, ax + b) − (1 + s)r| <
γr

4 (13)

Therefore,

dim(x, ax + b) = lim inf
r

Kr(x, ax + b)
r

≤ lim inf
j

min
shj<r≤hj

Kr(x, ax + b)
r

≤ lim inf
j

min
shj<r≤hj

(1 + s)r + γr/4
r

= lim inf
j

min
shj<r≤hj

1 + s + γ/4

= 1 + s + γ

4 . ◀
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We break the proof of the lower bound on dim(x, ax + b) into two parts. In the first, we
give lower bounds on Kr(x, ax + b) on the interval r ∈ (shj , hj ]. Note that this essentially
follows from inequality (13).

▶ Proposition 18. Let (a, b) be a slope intercept pair, s ∈ (0, 1), γ ∈ Q be positive and j be
sufficiently large. Let x = xa,b,s be the point we have just constructed. Then

Kr(x, ax + b) ≥ (1 + s − γ)r

for all shj < r ≤ hj

We now give lower bounds on Kr(x, ax + b) on the interval r ∈ (hj−1, shj ]. The proof of
this lemma is very similar to the analogous lemma for low-dimensional lines (Lemma 13).
Intuitively, the proof is as follows. Using the previous lemma, we can, given a 2−hj -
approximation of (x, ax + b), compute a 2−hj -approximation of (a, b) with a small amount
of extra bits. Having done so, we have to compute the last r − hj bits of (a, b). Importantly,
since r > hj , the last r − hj bits of x are maximal. Thus, we can simply lower the complexity
of the last r − hj bits of (a, b) so that the complexity of these bits is roughly s(r − hj). Thus,
we are again, morally, in the case where dim(x) ≥ dim(a, b) and the techniques of Section 3.1
work.

▶ Lemma 19. Let (a, b) be a slope intercept pair, s ∈ (0, 1), γ ∈ Q be positive and j be
sufficiently large. Let x = xa,b,s be the point we have just constructed. Then

Kr(x, ax + b) ≥ (1 + s − γ)r

for all hj−1 < r ≤ shj

Proof. Intuitively, we will use the approximation of (x, ax + b) at precision hj−1 to compute
(a, b) at precision hj−1. Then we will only search for candidate lines within 2−hj−1 of (a, b).
Formally, the argument proceeds as follows.

We first show that we can compute (a, b) to within 2−hj−1 with an approximation of
(x, ax + b), with few additional bits of information. By Lemma 2 and inequality (13)

Khj−1,r(a, b, x | x, ax + b) ≤ Khj−1,hj−1(a, b, x | x, ax + b) + O(log hj))
= Khj−1(a, b, x) − Khj−1(x, ax + b) [Lemma 2]

≤ Khj−1(a, b, x) − (1 + s)hj−1 + γ

4 hj−1 [(13)]

= Khj−1(a, b) + Khj−1(x | a, b)

− (1 + s)hj−1 + γ

4 hj−1 [Lemma 2]

≤ dhj−1 + hj2−j + Khj−1(x | a, b)

− (1 + s)hj−1 + γhj−1

4 [Definition hj ]

≤ dhj−1 + hj2−j + shj−1

− (1 + s)hj−1 + γhj−1

4 [Proposition 16]

≤ dhj + shj−1

− (1 + s)hj−1 + γhj−1

2 [j large]

≤ dhj − hj + γhj−1

2 . (14)
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Thus, we can, given a 2−r approximation of (x, ax + b), compute a 2−hj−1 -approximation of
(a, b) with

(d − 1)hj + γhj−1

2

additional bits of information. Knowing (a, b) to precision hj−1 allows us to search for
candidate lines within 2−hj−1 of (a, b), i.e., using Lemma 6 with m = hj−1.

Let ŝ ∈ Q ∩ (0, s) be a dyadic rational such that

γ/8 < s − ŝ < γ/4.

Let d̂ ∈ Q ∩ (0, dim(a, b)) be a dyadic rational such that

γ/8 < dim(a, b) − d̂ < γ/4.

Define

α = s(r − hj−1) + dhj−1

r
.

Define

η = ŝ(r − hj−1) + d̂hj−1

r
.

Finally, let ε = γ2/64. Note that

α − η = s(r − hj−1) + dhj−1 − ŝ(r − hj−1) − d̂hj−1

r

= (s − ŝ)(r − hj−1) + (d − d̂)hj−1

r

≤
γ
4 (r − hj−1) + γ

4 hj−1

r

= γ

4 (15)

Similarly,

α − η = s(r − hj−1) + dhj−1 − ŝ(r − hj−1) − d̂hj−1

r

= (s − ŝ)(r − hj−1) + (d − d̂)hj−1

r

>
γ
8 (r − hj−1) + γ

4 hj−1

r

= γ

8 (16)

In particular,

4ε

α − η
≤ γ/4. (17)

We also note that

K(ε, η) ≤ K(γ, ŝ, d̂, r, hj−1) ≤ O(log r), (18)

since j was chosen to be sufficiently large and γ is constant.
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Let D = D(r, (a, b), η) be the oracle of Lemma 8. We now show that the conditions of
Lemma 6 are satisfied for these choices a, b, η, ε, r and δ = α − η, m = hj−1 and A = D.

Let (u, v) be a line such that t := ∥(a, b) − (u, v)∥ ≥ hj−1, and ux + v = ax + b. Then, by
Lemmas 7, 8, and Proposition 16,

KD
r (u, v) ≥ KD

t (a, b) + KD
r−t,r(x | a, b) − O(log r) [Lemma 7]

≥ KD
t (a, b) + Kr−t,r(x | a, b) − O(log r) [Lemma 8]

≥ KD
t (a, b) + s(r − t) − O(log r). [Proposition 16]

By Lemma 8, there are two cases. In the first, KD
t (a, b) = ηr, and so

KD
r (u, v) ≥ KD

t (a, b) + s(r − t) − O(log r)
= ηr + s(r − t) − O(log r)
≥ (η − ε)r + s(r − t) [j is large]
≥ (η − ε)r + δ(r − t) [γ is small]

In the second case, KD
t (a, b) = Kt(a, b), and so

KD
r (u, v) ≥ KD

t (a, b) + s(r − t) − O(log r)
≥ dt − o(t) + s(r − t) − O(log r) [Definition of dim]
= dhj−1 + d(t − hj−1) + s(r − t) − o(r)
= dhj−1 + d(t − hj−1) + s(r − hj−1) − s(t − hj−1) − o(r)
= αr + d(t − hj−1) − s(t − hj−1) − o(r) [Definition of α]
= ηr + (α − η)r + (d − s)(t − hj−1) − o(r)
≥ ηr + (α − η)r − o(r) [d > 1, t > hj−1]
≥ ηr + (α − η)(r − t) − o(r) [α > η]
≥ (η − ε)r + δ(r − t) [j is large]

(19)

Therefore, in either case, we may apply Lemma 6, relative to D which yields

KD
r (a, b, x) ≤ Kr(x, ax + b) + Khj ,r(a, b, x | x, ax + b)

+ 4ε

α − η
r + K(ε, η) + O(log r) [Lemma 6]

≤ Kr(x, ax + b) + dhj − hj + γhj−1

2
+ 4ε

α − η
r + K(ε, η) + O(log r) [(14)]

≤ Kr(x, ax + b) + dhj − hj + γhj−1

2
+ 4ε

α − η
r + O(log r) [(18)]

≤ Kr(x, ax + b) + dhj − hj + γhj−1

2
+ γr

4 + O(log r) [(17)]

≤ Kr(x, ax + b) + dhj − hj + 3γr

4 + O(log r) (20)
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By Lemma 11, and our construction of oracle D,

KD
r (a, b, x) = KD

r (a, b) + KD
r (x | a, b) − O(log r) [Lemma 2]

= ηr + Kr(x | a, b) − O(log r) [Lemma 8]
≥ ηr + shj + r − hj − O(log r) [Lemma 11(2)]

≥ αr − γ

4 r + shj + r − hj − O(log r)

≥ s(r − hj) + dhj − γ

4 r + shj + r − hj − O(log r)

≥ (1 + s)r − (1 − d)hj − γ

4 r. (21)

Rearranging (20) and combining this with (21), we see that

Kr(x, ax + b) ≥ KD
r (a, b, x) − dhj + hj − 3γr

4 − O(log r) [(20)]

≥ (1 + s)r − (1 − d)hj − γ

4 r

− dhj + hj − 3γr

4 − O(log r) [(21)]

= (1 + s)r − γr − O(log r) ◀

We are now able to prove that the Dimension Spectrum Conjecture holds for high
dimensional lines.

Proof of Theorem 14. Let (a, b) ∈ R2 be a slope-intercept pair with

d = dim(a, b) > 1.

Let s ∈ [0, 1]. In the case where s = 0, Turetsky showed (Theorem 1) that 1 ∈ sp(La,b), i.e.,
there is a point x such that dim(x, ax + b) = 1. In the case where s = 1, Lutz and Stull [11]
showed than any point x which is random relative to (a, b) satisfies

dim(x, ax + b) = 2.

Therefore, we may assume that s ∈ (0, 1). Let x = xa,b,s be the point constructed in this
section. By Propositions 17 and 18 and Lemma 19, for every γ,

| dim(x, ax + b) − (1 + s)| < γ.

Thus, by the definition of effective dimension,

dim(x, ax + b) = 1 + s,

and the proof is complete. ◀

5.3 Proof Sketch of Lemma 15
To complete the proof of the main theorem of this section, we now prove Lemma 15. Recall
that this states that, for every j, after setting x[hj−1 . . . shj ] = y[hj−1 . . . shj ], the following
holds.

▶ Lemma 15. For every sufficiently large j there is a binary string z of length hj − shj such
that

min
shj<r≤hj

|Kr(x, ax + b) − (1 + s)r| <
r

j
,

where x is any real such that xz ≺ x. Moreover, z is of the form (*) of Section 5.1.



D. M. Stull 133:19

Let m = hj − shj . For each 0 ≤ n ≤ m, define the binary string xn of length m by

xn[i] =
{

0 if 0 ≤ i < m − n
1
a [i − (m − n)] if m − n ≤ i ≤ m

Thus, for example x0 is the binary string of m zeros, while xm is the binary string containing
the m-bit prefix of 1

a .
Let x be the real number such that xx0 ≺ x, and whose binary expansion contains only

zeros after shj . For each 1 ≤ n ≤ m, let xn be the real number defined by

xn = x + 2−hj+n/a.

Therefore, for every n,

(xn, axn + b) = (xn, ax + b + 2−hj+n).

Since the binary expansion of x satisfies x[r] = 0 for all r ≥ shj , we have, for every n,

xxn ≺ xn (22)

In other words, the binary expansion of xn up to index hj is just the concatenation of x
and xn.

We now collect a few facts about our points xn.

▶ Lemma 20. For every n, r such that 0 ≤ n ≤ m and shj ≤ r ≤ hj the following hold.
1. Kn,hj

(a | xn) ≤ O(log hj).
2. For every n and n′ > n,

|Kr(xn′ , axn′ + b) − Kr(xn, axn + b)| < n′ − n + log(r).

3. Kr−shj ,r(a, b | xm, axm + b) ≤ O(log r).
Note that the constants implied by the big oh notation depend only on a.

6 Conclusion and Future Directions

The behavior of the effective dimension of points on a line is not only interesting from the
algorithmic randomness viewpoint, but also because of its deep connections to geometric
measure theory. There are many avenues for future research in this area.

The results of this paper show that, for any line La,b, the dimension spectrum sp(La,b)
contains a unit interval. However, this is not, in general, a tight bound. It would be
very interesting to have a more thorough understanding of the “low end” of the dimension
spectrum. Stull [17] showed that the Hausdorff dimension of points x such that

dim(x, ax + b) ≤ α + dim(a, b)
2

is at most α. Further investigation of the low-end of the spectrum is needed.
It seems plausible that, for certain lines, the dimension spectrum contains an interval of

length greater than one. For example, are there lines in the plane such that sp(L) contains
an interval of length strictly greater than 1?

Another interesting direction is to study the dimension spectrum of particular classes of
lines. One natural class is the lines La,b whose slope and intercept are both in the Cantor
set. By restricting the lines to the Cantor set, or, more generally, self-similar fractals, might
give enough structure to prove tight bounds not possible in the general case.
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Additionally, the focus has been on the effective (Hausdorff) dimension of points. Very
little is known about the effective strong dimension of points on a line. The known techniques
do not seem to apply to this question. New ideas are needed to understand the strong
dimension spectrum of planar lines.

Finally, it would be interesting to broaden this direction by considering the dimension
spectra of other geometric objects. For example, can anything be said about the dimension
spectrum of a polynomial?
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