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—— Abstract

We prove strong security guarantees for a wide array of computational and decisional problems,
both in hidden-order groups and in bilinear groups, within the algebraic group model (AGM) of
Fuchsbauer, Kiltz and Loss (CRYPTO ’18). As our first contribution, we put forth a new fine-grained
variant of the Uber family of assumptions in hidden-order groups. This family includes in particular
the repeated squaring function of Rivest, Shamir and Wagner, which underlies their time-lock
puzzle as well as the main known candidates for verifiable delay functions; and a computational
variant of the generalized BBS problem, which underlies the timed commitments of Boneh and
Naor (CRYPTO ’00). We then provide two results within a variant of the AGM, which show that
the hardness of solving problems in this family in a less-than-trivial number of steps is implied by
well-studied assumptions. The first reduction may be applied in any group (and in particular, class
groups), and is to the RSA assumption; and our second reduction is in RSA groups with a modulus
which is the product of two safe primes, and is to the factoring assumption.

Additionally, we prove that the hardness of any computational problem in the Uber family of
problems in bilinear groups is implied by the hardness of the g-discrete logarithm problem. The
parameter g in our reduction is the maximal degree in which a variable appears in the polynomials
which define the specific problem within the Uber family. This improves upon a recent result of
Bauer, Fuchsbauer and Loss (CRYPTO ’20), who obtained a similar implication but for a parameter
q which is lower bounded by the maximal total degree of one of the above polynomials. We discuss
the implications of this improvement to prominent group key-exchange protocols.
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1 Introduction

The algebraic group model (the AGM) was introduced by Fuchsbauer, Kiltz and Loss® [28]
with the aim of striking a middle ground between the generic group model (the GGM) and
the standard model. In contrast to the GGM, algorithms within the AGM (also known as
algebraic algorithms) do receive the representation of group elements and may use it in any

! Following Abdalla, Benhamouda and Mackenzie [3] and Bernhard, Fischlin and Warinschi [10]. Ad-
ditionally, the earlier works of Boneh and Venkatesan [18] and Paillier and Vergnaud [40] considered
algebraic reductions, rather than algebraic adversaries.
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way they see fit. The restriction, however, is that whenever an algebraic algorithm outputs a
group element, it must provide alongside it a representation of it in the basis of its input group
elements. This representation serves as an explanation as to how the output element was
computed from the input elements in an algebraic manner. Given the less restrictive nature
of the AGM when compared to the GGM,? a central line of research over the last couple
of years has focused on establishing the security of cryptographic schemes and assumptions
within the AGM; see for example [28, 39, 38, 1, 6, 16, 7, 24, 25, 29, 34, 37, 44, 2, 33, 35].

The sequentiality of repeated squaring

The “repeated squaring” function in hidden-order groups, first suggested by Rivest, Shamir
and Wagner [43], serves as the basis for the main candidate constructions of both time-lock
puzzles and of verifiable delay functions [13, 41, 47]. For years, however, the sequentiality
of this function remained purely as an assumption, and there was no known reduction (in
idealized models or otherwise) relating it to the hardness of a better-established assumptions.
Recently, Katz, Loss and Xu [37] presented a strengthened version of the AGM (the strong
AGM) and provided evidence for the sequentiality of repeated squaring within this model.?
Concretely, they showed that any strongly-algebraic algorithm which manages to speed-up
the repeated squaring function in the group QRy of quadratic residues modulo N (where
N is the product of two safe primes), can be used in order to factor the modulus N. Their
result provides a novel and important corroboration for the sequentiality of repeated squaring
in the group QRy. However, it is limited in two respects: Firstly, it inherently relies on
the algebraic structure of QRy and does not apply to other hidden-order groups of interest,
such as RSA groups or the class group of imaginary quadratic number fields [23, 11, 15, 47].
Secondly, it addresses only the repeated squaring function, and leaves out other possible
fine-grained problems in hidden-order groups.

The Uber problem in bilinear groups

The Uber family of problems in bilinear groups was introduced by Boneh, Boyen and
Goh [14, 19] as a unified framework for reasoning about computational problems in such
groups. A problem in the family is parameterized by three tuples of multivariate polynomials
F , H , K and three polynomials @1, @2, Q7 and is defined by the following task: Given the
group elements {gf’i(f)}i, {gfi(f)}i, {g;{i(f)}i for a random vector &, compute g?l(f), gé’gQ(i)
and gTT(f)
respectively. Bauer, Fuchsbauer and Loss [7] recently showed that in the AGM, the hardness
of any problem in this family, as long as it does not admit a trivial solution, is implied by the
hardness of the ¢-DLOG problem in one of the source groups.* Their result provides a clean
and succinct characterization of the Uber family, reducing its hardness to that of a seemingly
simpler and better-understood family of problems. However, the parameter ¢ in their result
is lower bounded by the mazimal total degree of the polynomials in F , H , K , which may not
be optimal. To see why that is, consider the following toy problem for any integer n: Given
a generator g and a tuple (g%, g*2, g®3, g"1*3, g"2%2) of group elements for randomly-chosen

, where g1, go and gr are the generators of the source groups and the target group,

The AGM may also be instantiated in the standard model from falsifiable assumptions, as demonstrated
by the elegant work of Agrikola, Hofheinz and Kastner [5]. This is in contrast to the GGM [27].
Another recent result [45], proving the equivalence of speeding-up repeated squaring and factoring
within the generic ring model is discussed in Section 3.

The ¢-DLOG problem in a cyclic group G is defined as: Given a generator g and the ¢ group elements
g°,...,g"" for a randomly chosen x, compute z.
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1, T2, X3, compute g*1*2*3. On the one hand, the result of Bauer et al. can be used to
conclude that the hardness of this problem in the AGM is implied by the hardness of the
2-DLOG problem. On the other hand, it is not hard to see that this problem is actually
equivalent to the Computational Diffie-Hellman (CDH) problem. The CDH problem was
proven equivalent to the DLOG problem (i.e., 1-DLOG) in the AGM [28], suggesting that
the bound of Bauer et al. might not be optimal with respect to the parameter ¢.°

2  Our Results

In this work, we provide stronger hardness results within the AGM, both for a new fine-
grained Uber family of problems in hidden-order groups that we put forth, and for the Uber
family of problems in bilinear groups.

2.1 Our Results for Fine-Grained Computations in Hidden-Order Groups
A fine-grained Uber family

As our first contribution, we present a univariate and fine-grained variant of the Uber family
of problems in hidden-order groups. Our family of problems generalizes the repeated squaring
function [43], as well as well as a computational variant® of the generalized BBS problem
underlying Boneh and Naor’s timed commitments [12, 17] and refinements thereof [31]
(see also [30, 32]). A problem in this family is parameterized by integers w1, ...,us and
an integer w, and requires that the adversary computes z% for a uniformly-chosen group
element z, given (2¥,...,2"¢) as input. Of course, if one can efficiently express w as a
linear combination of w1, ..., u, with integer coefficients, then one can trivially compute z*
from (z%!,...,2") using a polynomial number of group operations. Therefore, we carefully
define what it means for a strongly-algebraic algorithm to non-trivially solve a problem in
our new Uber family, also accounting for the possibility of parallel computations. Looking
ahead, the repeated squaring function is obtained by setting u; = 1 and w = 2T whereas the
generalized BBS problem is obtained by setting u; = 0, u; = 22" for i = 2,...,k+2and
w=22"" Moreover, the repeated squaring function cannot be trivially solved (according to
our triviality notion) in less than T steps, whereas the generalized BBS problem cannot be
trivially solved is less than 2% steps.

The algebraic hardness of the fine-grained Uber problem

Within the strong AGM of Katz, Loss and Xu [37], we provide evidence for the hardness
of our new family of problems. Firstly, we present a general hardness result which may
be applied in any cryptographic group, and prove that the hardness of any problem in the
fine-grained Uber family in a group G (i.e., the hardness of computing the target group
element z* in a less-than-trivial number of steps), is implied by the RSA assumption in the
same group.

5 Though in the specific case of the toy problem considered above, the result of Fuchsbauer, Kiltz and Loss
[28] already shows it to be equivalent to the DLOG problem, this is not the case for general instances of
the Uber family in bilinear groups, motivating Theorem 3 below.

6 In practice, one can always achieve pseudorandomness from this computational variant heuristically by
applying a cryptographic hash function (e.g., SHA) onto the output of the problem [8].
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» Theorem 1 (informal). Let G be a group, let £ € N and let uy,...,up,w € Z. Let A be a
strongly-algebraic algorithm for the (uq, ..., us, w)-univariate fine-grained Uber problem in the
group G, which makes a less-than-trivial number of steps. Then, there exists an algorithm B
for the RSA problem in G whose running time and success probability are polynomially-related
to those of A.

Theorem 1 immediately implies that any strongly-algebraic algorithm that computes the
repeated squaring function in less than T steps in some group G, or solves the generalized
BBS problem in less than 2* steps, can be used in order to solve the RSA problem in the
group. Note that Theorem 1 assumes nothing about the group G, and in particular can
be applied in any group in which the RSA assumption is believed to hold, such as RSA
groups, class groups of imaginary quadratic number fields, and the group QRy with respect
to arbitrary bi-prime moduli. Importantly, Theorem 1 provides evidence for the sequentiality
of repeated squaring in class groups, as the RSA problem has been considered and studied in
these groups for a while now (see for example [23, 11, 26] and the references therein), whereas
the sequentiality of repeated squaring in these groups is a much newer assumption [15, 47].
As far as we are aware, this is the first result supporting the sequentiality of repeated squaring
in class groups.

Our second hardness result for the fine-grained Uber problem considers RSA groups with
a modulus N which is the product of two safe primes. Informally, within the strong AGM,
we prove that in such groups, the hardness of any problem in the fine-grained Uber family is
implied by the hardness of factoring N.

» Theorem 2 (informal). Let N be the product of two safe primes and let ¢ € N and let
Ul ..., ug,w € Z. Let A be a strongly-algebraic algorithm for the (uy,...,us, w)-univariate
fine-grained Uber problem in Z}, which makes a less-than-trivial number of steps. Then,
there exists an algorithm B for factoring N whose running time and success probability are
polynomially-related to those of A.

Observe that Theorem 2 strictly strengthens the result of Katz, Loss and Xu [37] in two
respects. Firstly, by considering our new fine-grained Uber family, which captures in particular
the sequentiality of the repeated squaring function (considered by Katz, Loss and Xu), but
also other problems, such as the generalized BBS problem [17]. Secondly, Theorem 2 considers
RSA groups with respect to moduli which are the product of two safe primes, whereas Katz,
Loss and Xu consider the group QRy with respect to the same family of moduli. Since
a uniformly-random element in Z% is in QRy with probability 1/4, the hardness of any
problem within the fine-grained Uber family with respect to Z}; implies in particular its
hardness with respect to QR .

Interestingly, to the best of our knowledge, Theorems 1 and 2 are the first applications of
the algebraic group model (or a variant thereof) in non-cyclic groups. As far as we are aware,
all previous reductions in the AGM were either in cyclic groups of prime order or in the
cyclic group QRy where N is the product of two safe primes. Hence, our work exemplifies
for the first time the applicability of the AGM beyond cyclic groups.

2.2  Our Results for Bilinear Groups

The Algebraic Hardness of the Uber problem in bilinear groups

We strengthen the characterization of Bauer, Fuchsbauer and Loss [7] of the Uber family
framework in bilinear groups. Concretely, let F', H, K be vectors of polynomials and let
Q1,Q2, Q1 be polynomials. We prove that within the AGM, as long as these polynomials do
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not admit a trivial solution, the hardness of their respective problem in the Uber family is
implied by the ¢-DLOG assumptlon where ¢ is lower bounded by the maximal degree in
which a variable appears in F H K.

» Theorem 3 (informal). Let G be a bilinear group, let H,H,H be vectors of m-variate
polynomials and let Q1,Q2, QT be m-variate polynomials that do not admit a trivial solution
to the (F H K Ql, Q2,Qr)-Uber problem. Let q be the maximal degree in which a variable
appears in F H K. Then, for any algebraic algorithm A for the (F H K ,Q1,Q2, Qr)-Uber
problem in G, there exists an algorithm B for the ¢-DLOG problem in one of the source
groups, whose running time and success probability are polynomially-related to those of A.

Theorem 3 strengthens the result by Bauer, Fuchsbauer and Loss, since the total degree
of a polynomial is always at least the degree of each variable in it, and in many typical
cases it is indeed strictly greater. For example, consider again our toy example from before:
Given g, g™, g"2,¢"3, g"" and ¢g"2"3, compute g*1*2%3. Since the polynomials defining the
input elements of this problem are all multilinear,” Theorem 3 implies that within the AGM,
its hardness is implied by the hardness of the discrete logarithm problem. Recall that the
result of Bauer et al. bases the hardness of the aforesaid problem only on the hardness of the
seemingly easier 2-DLOG problem.

Application: Group Key Exchange

The toy-problem example might seem contrived at first sight, but it is actually a special
case of the Group Computational Diffie-Hellman (G-CDH) problem, which underlies the
highly-influential group key-exchange protocols of Bresson, Chevassut, Pointcheval and
Quisquater [22, 20, 21]. This problem is parameterized by an integer n (which in group
key-exchange applications represents the number of users in the group) and a collection I' of
subsets of {1,...,n}. The adversary is given a generator g of the group, alongside the group

elements {gnies i }S for uniformly-chosen z1,...,z,, and is asked to compute g** " *~.
er

Typically, in group key-exchange protocols I' includes at least one subset of size n — 1. In
such cases, Theorem 3 reduces the hardness of the (n,I')-G-CDH problem to the hardness of
the discrete logarithm problem, whereas the previous bound of Bauer et al. reduces it to the
hardness of the (n — 1)-DLOG problem, where n may be a very large integer and perhaps
not even a-priori bounded.

The decisional Uber problem in bilinear groups

As our second contribution in bilinear groups, we extend Theorem 3 to the decisional setting.
Within the decisional algebraic group model (DAGM) of Rotem and Segev [44] which we
extend to accommodate analysis in asymmetric bilinear groups, we prove that the hardness
of the decisional Uber problem in bilinear groups is implied by the hardness of the ¢-DLOG
problem. Again, the parameter ¢ in our results is the maximal degree in which some variable
appears in polynomials defining the problem.

» Theorem 4 (informal). Let G be a bilinear group, let H,H,H be wvectors of m-variate
polynomials and let Q1 be an m-variate polynomial which does not admit a trivial solution
to the (H, H,H, Qr)-Uber problem. Let q be the maximal degree in which a variable appears
mn H, H7 H, Qr. Then, for any algorithm A for the decisional (ﬁ, H, H, Qr)-Uber problem in
G, there exists an algorithm B for the g-DLOG problem in one of the source groups, whose
running time and success probability that are polynomially-related to those of A.

7 These are the polynomials X1, X2, X3, X1 X3 and X2X3.
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The parameters F , H , K ,Qr play a similar role in the decisional setting to their role in the
computational setting; for a formal definition of the decisional Uber problem, see the full
version. Theorem 4 improves upon a result of Rotem and Segev [44], who showed a similar
result, but in their work the parameter g is strictly greater than the maximal total degree of
the polynomials defining the problem.

3 Additional Related Work

Bauer, Fuchsbauer and Loss [7] also considered additional variants of the (computational)
Uber problem in bilinear groups. Concretely, they proved that their result extends to: The
flexible Uber problem, in which the adversary can choose the target polynomials Q1, Q2, Q;
the Uber problem for rational functions, in which the polynomials F,H K, Q1,Q2 and Qr
are replaced by rational functions; the Uber problem with decisional oracles, in which the
adversary is given access to an oracle for checking whether tuples of group elements satisfy
a polynomial relation in the exponent; and the flexible “GeGenUber” problem in which
the adversary may choose the generators with respect to which the problem is defined. It
seems that the techniques used by Bauer et al. to extend their results to all of the aforesaid
variants can be used essentially as is in order to extend our results (Theorems 3 and 4)
to accommodate these variants as well, but we leave this task to future work. We refer
the reader to [7] for a formal definition of these variants of the Uber problem and for the
techniques used by Bauer et al. in order to extend their result to these variants.

The concurrent work of van Baarsen and Stevens [46] also considered reductions supporting
the sequentiality of repeated squaring in hidden-order groups. They propose a strengthening
of the strong algebraic group model and within it, they reduce the task of speeding up
repeated squaring to that of finding a multiple of the group’s order. It seems that the results
of van Baarsen and Stevens are incomparable to our results in hidden-order groups. On the
one hand, we consider the more general fine-grained Uber problem, which we put forth, while
they only consider the repeated squaring problem. Additionally, the model of van Baarsen
and Stevens seems more restrictive for general hidden-order groups. It assumes that either
every algorithm receives as input a set of generators or the ability to uniformly sample group
elements (as discussed in their paper, the two assumptions are essentially equivalent). This
is essentially the case for Zj};, but in general groups, this poses an additional assumption. In
contrast, our reduction from the RSA problem is algebraic and does not require the ability
to publicly sample uniformly-random group elements. It also works if the group element x
specifying the fine-grained Uber problem instance is sampled uniformly by the challenger in
a private-coin manner, or if it comes from a non-uniform distribution. In the latter case, we
solve that RSA problem for the same distribution. Finally, the reduction of van Baarsen
and Stevens loses a factor of n in running time, where n is an upper bound on the number
of generators of the group. Potentially, n can be as large as logarithmic in the order of the
group. In comparison, our reductions are essentially tight. On the other hand, the reduction
of van Baarsen and Steve is from the problem of finding the group’s order, which is harder
than the RSA problem we consider in general groups. In particular, their result establishes
the equivalence, within the strong AGM (which is equivalent to their strengthened model in
Z%, where sampling is easy), of speeding up repeated squaring in RSA groups and factoring
the RSA modulus, for general bi-prime moduli (whereas we only establish this equivalence
when the modulus is the product of two safe primes).

Rotem and Segev [45] put forth the notion of generic-ring delay functions within the
generic ring model of Aggarwal and Maurer [4], and the notion of a sequentiality depth of
such functions. Informally, they proved that in the ring Zy where N is an RSA modulus,
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generically computing a generic-ring delay function in a number of steps which is less than its
sequentiality depth is equivalent to factoring the modulus N. In particular, they showed that
this implies that within the generic ring model, computing the repeated squaring function [43]
in Zy with respect to delay parameter 7" in less than 7" sequential steps is equivalent to
factoring. Their results are incomparable to ours for several reasons. First, the generic
ring model is incomparable to the strong AGM: On the one hand, the generic ring model
withholds the elements’ representation from the adversary (which the strong AGM does
not do); but on the other hand, it allows the adversary to apply all of the ring operation
onto pairs of ring elements, whereas the strong AGM requires that the adversary explains
how its output was computed solely using the group operation. Secondly, Rotem and Segev
only consider RSA groups (within the ring Zy ), whereas Theorem 1 may be applied in any
group. Finally, when considering the specific case of RSA groups, our result (Theorem 2)
is restricted to RSA groups with respect to a modulus N which is the product of two safe
primes, whereas the result of Rotem and Segev is not.

4 QOverview of Qur Contributions

In this section we provide an informal overview of the main technical ideas underlying our
contributions. We start by presenting the techniques we use to derive Theorems 1 and 2
in hidden-order groups, and then move on to describe our techniques in bilinear groups for
deriving Theorem 3. For brevity, we do not discuss here how we extend Theorem 3 to the
decisional setting to obtain Theorem 4. Due to space limitations, the reader is referred to
the full version for further details and formal theorem statements and proofs.

4.1 Our Reductions in Hidden-Order Groups

For simplicity of presentation in this informal overview, when presenting our reduction from
the factoring problem to the fine-grained Uber problem in RSA group (Theorem 2), and
our reduction from the RSA problem to the fine-grained Uber problem in general groups
(Theorem 1), we restrict our attention to the problem of speeding-up the repeated squaring
function of Rivest, Shamir and Wagner [43]. The reader is referred to the full version for
a formal definition of the fine-grained Uber problem, and for our theorem statements and
reductions in their full generality (applying to all problems within the fine-grained Uber
family, and not just to speeding-up repeated squaring).

The strong AGM

We prove our results for the fine-grained Uber problem in hidden-order groups in the strong
algebraic group model (the SAGM) put forth by Katz, Loss and Xu [37]. Informally speaking,
the SAGM strengthens the AGM, by requiring that whenever a strongly-algebraic algorithm
A outputs a group element y, it outputs alongside it not only a representation of it in the
basis of the input group elements, but also the entire sequence of group operations used to
derive this representation. An important feature of this model, is that the length of this
sequence is dominated by the running time of the algorithm. Hence, if we view the input
elements to a strongly-algebraic algorithm A as polynomials of degree at most d in some
underlying indeterminates, then the output y can be viewed as a polynomial of degree at
most d2 in these indeterminates, where t is the running time of A. This is the case since
each group operation at most doubles the degree of the highest degree polynomial in the
computation up to it. Note that this observation remains true even if A runs in time ¢ on
many processors that may perform group operations in parallel. See the full version for a
formal definition of the model.

13:7
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The reduction of Katz, Loss and Xu in QR

Recall the reduction of Katz et al. from the factoring problem to the problem of speeding-up
the repeated squaring. They focused on the group Q Ry of quadratic residues modulo N, for
a modulus N which is the product of two safe primes; that is N = (2p+ 1) - (2¢ + 1), where
0,q,2p+ 1 and 2g + 1 are all primes. Let T' € N and consider a strongly-algebraic algorithm
A, that given a uniformly random group element x < Q Ry computes 22" in time t < T.
The reduction samples such an element x and invokes A on it. Since A is strongly-algebraic,
it produces alongside its output ¥ an integer o < 2% such that y = 2%, Whenever A succeeds
in computing 22", it means that 2@ = 22", or equivalently, 22" —® = 1 (all equalities are in
the group QRy). Since a < 2! < 27 this implies that w = 27 — « is a non-zero multiple of
the order of = in @QRy. The analysis of Katz et al. proceeds by observing that when N is
the product of two safe primes, then almost all elements in the group are generators, and
that the order of the group is ¢(N)/4 = p - q, where @(+) is Euler’s totient function. Thus,
if A succeeds, then 4w is almost surely a multiple of ¢(N), and the reduction is completed
by invoking a well-known algorithm for factoring N given a multiple of ¢(N) (e.g., [36,

Theorem 8.50]).

Our reduction in RSA groups (Theorem 2)

Unlike in the group QRy, when moving to consider the RSA group Zj;, the group is no
longer cyclic and hence a random element in the group is never a generator. However, our
generalization of the result of Katz et al. to the RSA group Z} is based on the observation
that their reduction actually does not rely on the fact that the sampled z is a generator of
QRy. Instead, it only uses the fact that with overwhelming probability over the choice of z,
its order satisfies a certain relation with ¢(IN). We use this observation to prove that the
reduction of Katz et al. can be applied not only in QRy when N is the product of two safe
primes, but also in Z} when N is of this form. Concretely, denoting N = (2p+1)-(2¢g+1), we
use the isomorphism of Z%; to the product group Z3 x Z, x Z, in order to argue that almost
all elements in Z% have order either p- g = ¢(N)/4 or order 2p-q = p(N)/2. Therefore, it is
still the case that that whenever A succeeds in computing x2T, it must be that 4w = 4(27 — )
is a multiple of ¢(N) and the correctness of the reduction follows.

Our reduction in general groups (Theorem 1)

Let G be an abelian group. The goal of our reduction is to solve the RSA problem in G,
where the problem is parameterized by an integer e which is coprime to the order of G.
That is, given a uniformly random u € G, we need to find a group element w € G such
that w® = u (meaning, w is the eth root of u). Let T' € N and consider a strongly-algebraic
algorithm A, that given a uniformly random group element x <+ G computes 22" in time
t < T. Our reduction starts by invoking A on input « (the input to the RSA problem). As
before, since A is strongly-algebraic, it produces alongside its output y an integer a < 2
such that y = u®. Following a similar argument as in the previous reduction, if y is indeed
equal to uZT, then w = 27 — « is a non-zero multiple of the order of u in G. The new idea
underlying our reduction from the RSA problem, is that we can use this information about
the order of u to find its eth root. Suppose that we could find an inverse d of e modulo w;
i.e., an integer d satisfying ed = n - w + 1 for some integer n. Then, we would be done, since

u® would be the eth root of u:

(ud)e =yl ="t = ()" u=1-u=u, (1)
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where u® = 1 because w is a multiple of u’s order. The problem is that e might not have
an inverse modulo w, as the two integers might not be relatively prime. To remedy this
situation, we factor out from w any common divisors that it shares with e, by computing
w' =w/ged(w, €). On the one hand, we are now guaranteed that w’ and e are coprime, and
we can find an inverse d’ of ¢ modulo w’. On the other hand, the key observation is that
w’ must still be a multiple of u’s order in G. This is because e is coprime to the order of G
and thus, by Lagrange’s theorem, it is also coprime to the order of w. This means that if we
write w = order(u) - ¢ for some integer ¢, then

, w order(u) - ¢ = order(u) - :

YT ged(w, e) - ged(order(u) - ¢, e) ged(c, e)
and ' is indeed a multiple of order(u). Hence, our reduction may simply output ud/, and
the same analysis from Eq. (1) still applies, replacing w and d with w’ and d’ respectively.

4.2 QOur Reduction in Bilinear Groups

For simplicity of presentation, we focus here on the case of symmetric bilinear groups. In
this setting, we consider a single source group G of prime order p € N that is equipped with
a bilinear map e, mapping pairs of elements in G? to elements in a target group Gz. We
also restrict our attention to a simple problem within the Uber family, referred to below
as the (f, h)-Uber problem, as the reduction in this case already captures the gist of the
techniques used in our proof of Theorem 3. In the (f, h)-Uber problem the adversary is given
g and ¢/® and is required to compute g; z , where g is a generator of G, gr = e(g, g) is a
generator of Gr, f and h are polynomials parameterizing the problem, and Z = (z1,...,%m)
is a m-tuple of elements in Z, chosen independently and uniformly at random. We assume
that there are no integers o, 3, € Z, such that h = a + 3 f +~ - f? over Z,, as otherwise
the problem is trivial to solve and we cannot hope to reduce the ¢-DLOG problem (or any
other problem which we believe to be hard) to it.® We start by recalling the reduction of
Bauer et al. [7] and then move to describe our reduction and how it improves upon it.

The reduction of Bauer, Fucshbauer and Loss

Let A be an algebraic algorithm for the (f, h)-Uber problem. The reduction receives as
input ¢, ¢%,...,¢"°" for a uniformly sampled z « Z,, and its goal is to find x. The idea of
Bauer et al. was to have the reduction “plant” m independent randomized versions of the
secret exponent x as the m secret exponents in a random instance of the (f, h)-Uber problem
and then invoke A on this instance. This is done by sampling «;, 8; < Z,, for each i € [m]
and invoking A on input (g,gf(fl)) where z/ = (1 + By oy Qup - T+ B). Since A is
an algebraic algorithm, it provides alongside its output y € G three integers «, 5,7 € Z,,
such that y = e(g,9)* - e(g,gf(“‘?'))ﬁ . e(gf("’;'),gf(ﬁ))”. Whenever A succeeds, it means that

Y= g;("”/), and hence, since g is a generator of G, we obtain that

2

W) = a+ B f@) +- (f@) - (2)

8 If such integers existed, the adversary could simply compute and output e(g,g)* - e(g, g’ @)? .
e(gf(i)’gf(f))w.
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Observe that Eq. (2) is a univariate equation over the finite field F,. Roughly speaking, the
non-triviality of the (f, h)-Uber problem guarantees that with overwhelming probability, Eq.
(2) is not the trivial equation. Therefore, the reduction simply uses any efficient polynomial
factorization algorithm (e.g., Berlekamp’s algorithm [9, 42]) to find all solutions to Eq. (2)
and then checks each of them to see if it is the secret exponent z. Note that in order to
compute g7 (#') given as input to A, the reduction needs access to g, ¢%,...,g*" for ¢ that is
the total degree of f.

Our improved reduction (Theorem 3)

In order to reduce the parameter g needed by the reduction, our idea is to plant the secret
exponent z in place of just one of the exponents z1,...,x,, in a random instance of the
(f, h)-Uber problem, and sample the rest of the exponents uniformly at random. Concretely,
our reduction samples a random index i* < [m] and plants x instead of x;«: It samples

m — 1 additional values x1,...,%;—1, Ti*41,- .., Tm < Zp and invokes A on input (g, gf(z7/))
where o = (x4, .. L1, Ty Tir g 1y - ,Zm). Observe that indeed, in order to compute the
group element g7 (®”) given as input to A, all the reduction needs is access to ¢, ¢*, ..., g%

for a parameter ¢ which is at least the degree of z;« in f. In particular, the reduction can be
efficiently implemented as long as ¢ is at least the maximal degree in which some variable
appears in f. As before, since A is algebraic, it outputs alongside its output y € G three

x/!

integers «, 8,7 € Z, such that y = e(g,9)* - e(g,gf<$7'))ﬁ ~e(gf($7’),gf( ))7, and whenever
y= g;(x”), it holds that

W) = ot B @) 47 (1) 3)

Alas, we can no longer simply solve Eq. (3) for z. The problem is that for our choice
of L1, .., Tix_1,Tix 41, -, Tm, Eq. (3) might be a trivial equation, yielding no information
about x. Worse still, this situation may arise with high probability over the choice of i*
and of x1,..., %1, Ti*41,. .., Tmy. S0 instead, our reduction uses the following observation
by Rotem and Segev [44], which in turn generalizes the previous work of Fuchsbauer, Kiltz
and Loss [28]. For a non-zero polynomial (X7, ..., X,,) in the indeterminates X, ..., X,,,
we define a cascade of multivariate polynomials recursively: We set ¢; = ¢; and for every
i€{2,...,m}, welet £;(X;,...,Xnm) be the first non-zero coefficient of £;_1(X;_1,...,Xm),
when ¢;_; is written as a univariate polynomial in the indeterminate X;_; with coefficients

which are polynomials in X;,..., X,,. Rotem and Segev proved that for every vector
7= (21,...,2m) € Zy" such that £(Z) = 0, there exists ¢t* € [m] such that: The univariate
polynomial v(X) = €y (X, 2441, - - -, Zm) is not the zero polynomial and additionally v(z-) =

0.2 Using this observation, our reduction considers the m-variate polynomial K()? ) =
a+ 8- f(X)+7- (f(X))2 — h(X), and computes the polynomial £;« (X;+y1,...,X,;,) from it
as described by the above recursive procedure, where ¢* is the index sampled by the reduction
when preparing the (f,h)-Uber instance to A. It then factors the univariate polynomial
v(X) =4+ (X, x4+ 41, ..., ) to find all of its roots, where z;+41, ..., Ty, are the random Z,
values chosen by the reduction for generating the (f, h)-Uber instance. As for the success

probability of the reduction, whenever A succeeds in computing the g;(z”), it holds that z”

9 Fuchsbauer, Kiltz and Loss [28] essentially observed that this holds for bi-linear polynomials to reduce
the hardness of the Computational Diffie-Hellman (CDH) problem to that of the discrete log problem
within the AGM.
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is a root of the m-variate polynomial £. By the observation of Rotem and Segev, this means
that there is an index t* € [m] such that if the index i* guessed by the reduction matches it,
then v(X) = £;« (X, %41, ..., Zm) is not the zero polynomial, and z is a root of it. Hence, if
A succeeds and i* = t*, then the reduction will successfully retrieve the secret exponent x of
the ¢-DLOG problem.
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