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Abstract
Adaptive security is a highly desirable property in the design of secure protocols. It tolerates
adversaries that corrupt parties as the protocol proceeds, as opposed to static security where the
adversary corrupts the parties at the onset of the execution. The well-accepted folklore is that static
and adaptive securities are equivalent for perfectly secure protocols. Indeed, this folklore is backed
up with a transformation by Canetti et al. (EUROCRYPT’01), showing that any perfectly secure
protocol that is statically secure and satisfies some basic requirements is also adaptively secure. Yet,
the transformation results in an adaptively secure protocol with inefficient simulation (i.e., where
the simulator might run in super-polynomial time even if the adversary runs just in polynomial time).
Inefficient simulation is problematic when using the protocol as a sub-routine in the computational
setting.

Our main question is whether an alternative efficient transformation from static to adaptive
security exists. We show an inherent difficulty in achieving this goal generically. In contrast to the
folklore, we present a protocol that is perfectly secure with efficient static simulation (therefore also
adaptively secure with inefficient simulation), but for which efficient adaptive simulation does not
exist (assuming the existence of one-way permutations).

In addition, we prove that the seminal protocol of Ben-Or, Goldwasser and Wigderson (STOC’88)
is secure against adaptive, semi-honest corruptions with efficient simulation. Previously, adaptive
security of the protocol, as is, was only known either for a restricted class of circuits, or for all
circuits but with inefficient simulation.
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1 Introduction

Secure multiparty computation (MPC) [31, 20] enables a set of mutually distrustful parties
to compute a joint function while keeping the privacy of their inputs and the correctness of
their outputs. The seminal results from the ’80s [31, 20, 5, 11, 30] as well as the vast majority
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15:2 Static vs. Adaptive Security in Perfect MPC

of MPC protocols in the literature were proven secure with respect to a static adversary;
that is, security is guaranteed as long as the adversary decides which parties to corrupt at
the onset of the execution. A more realistic setting, first considered by Beaver and Haber [4]
and by Canetti et al. [10], considers an adaptive adversary, who can dynamically decide
which parties to corrupt during the course of the protocol. Adaptive security is known to
be strictly stronger than static security with many impossibility results separating the two
notions, e.g., [10, 9].

In this work we focus on the well-studied setting of perfect security, where all existing
separations from the literature no longer hold. Perfectly secure protocols guarantee security
facing computationally unbounded adversaries without any error probability. This is a highly
desirable property that in some sense provides the strongest security notion for MPC. For
example, Kushilevitz et al. [24] showed that any perfectly secure protocol that is proven
secure in the standalone model using a straight-line and black-box simulation1 automatically
guarantees security under universal composition (UC) [8].2 Most relevant to our work, Canetti
et al. [9] showed that any perfect statically secure protocol, satisfying basic requirements,
remains secure also in the presence of adaptive adversaries. This result, however, comes with
a caveat, since the transformation from static to adaptive security does not preserve the
efficiency of the simulation.

Roughly speaking, a protocol is deemed secure if any attack on an execution of the
protocol in the real world can be simulated also in an ideal world where a trusted party
receives the inputs from all the parties and computes the function on their behalf. It is
desirable that the simulator, i.e., the adversary who simulates the attack in the ideal world,
will use roughly the same resources as the adversary who carries out the attack on the
real-world protocol. In particular, we would like the simulator to run in polynomial time
with respect to the running time of the real-world adversary; if so, we say that the simulation
is efficient.

Unfortunately, the adaptive simulator in [9] does not run in polynomial time with respect
to the real-world adversary. This means that given a perfectly secure protocol against static
adversaries with an efficient simulator, the transformation in [9] guarantees adaptive security,
albeit with an inefficient simulator. This leads us to the following fundamental question:

Does perfect, static security with efficient simulation imply
perfect, adaptive security with efficient simulation?

Stated differently, is there another generic transformation from static to adaptive security,
other than [9], that preserves the efficiency of the simulation? Are there other assumptions
on the structure of the protocol and/or on the static simulation that might lead to such an
efficient transformation? Or, perhaps, do there exist protocols that are statically secure but
for which efficient adaptive simulation simply does not exist?

Efficient vs. inefficient simulation. One may ask whether the efficiency loss in the simulation
makes a difference when considering perfect security: If security is anyway guaranteed against
computationally unbounded adversaries, does it matter if the simulator is inefficient? Indeed,
inefficient simulation is a weaker-yet-acceptable security notion when considering information-
theoretic security.

1 A simulator is called straight-line if it does not rewind the adversary, and is called black-box if it does
not rely on the code of the adversary.

2 We note that Backes et al. [3] showed that this transformation no longer holds if the simulator is not
straight-line.
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It turns out that inefficient simulation has an undesirable impact when considering
composition of secure protocols. For example, consider a perfectly secure protocol π for
computing a function f that is defined over secure communication channels, and consider a
computationally secure realization of secure channels over authenticated channels (e.g., using
non-committing encryption [10]). If π is secure with efficient simulation, then a composition
theorem (e.g., from [7, 8]) can be used to derive a computationally secure protocol for f over
authenticated channels. However, if the simulation is inefficient then the composition will
not go through since it will result with a super-polynomial time adversary that can break
the cryptographic assumptions used to realize secure channels.

A case study: on the adaptive security of the BGW protocol. The seminal results of
Ben-Or, Goldwasser, and Wigderson [5] and of Chaum, Crépeau, and Damgård [11] show
that any function f can be computed by an n-party protocol with perfect security as long
as t < n/2 of the parties are corrupted in the semi-honest setting, and as long as t < n/3
are corrupted in the malicious setting. A full proof of security for the BGW protocol was
given in 2011 by Asharov and Lindell [1, 2]. The proof was specified in the static, standalone
setting, and universally composable security and security against adaptive adversaries were
derived using the transformations of Kushilevitz et al. [24] and Canetti et al. [9], respectively.
However, as discussed above, adaptive security is obtained with an inefficient simulation.

This issue was revisited by Damgård and Nielsen [15], who showed that the semi-honest
version of the BGW protocol achieves adaptive security with efficient simulation. However,
the result of [15] holds only for circuits in which each output wire is a direct output of a
multiplication gate. Obviously, one can manually add such “multiplications with 1” to each
output wire. While this seems suffice, there are two reasons why we revisit this problem:
First, for linear functions, the semi-honest version of the BGW protocol can tolerate up
to n corruptions, whereas the requirement that each output wire is a direct output of a
multiplication gate reduces the corruption threshold to t < n/2. Second, this subtlety has
been neglected by prior works that relied on [15], e.g., Lin et al. [26, Lem. 6.2] claimed that
any degree-2 function can be computed by the BGW protocol in two rounds with adaptive
security and efficient simulation. Yet, when adding multiplication gates the round complexity
increases, which implies a gap in the literature as there is no proof for the claim mentioned
in [26].

Alternatively, one can interpret this additional restriction on the circuit as adding some
re-randomization step at the very end of the protocol before the parties reconstruct their
output. Is this step essential to achieve adaptive security for all circuits? Can one prove the
adaptive security of the original protocol directly, without the additional communication
round?

1.1 Our Results
Our work revisits the question of static versus adaptive in perfectly secure multiparty
computation. We show that in contrast to the “weaker” definition of adaptive security (i.e.,
inefficient simulation), perfect static security no longer implies perfect adaptive security
when demanding the simulation to be efficient, even when merely considering semi-honest
adversaries. Complementarily, we show that the BGW protocol is adaptively secure with
efficient simulation even without changing the underlying circuit; this answers an open
question posed by Damgård and Nielsen [15]. We focus on semi-honest security, which is
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15:4 Static vs. Adaptive Security in Perfect MPC

enough to highlight the subtleties that arise; indeed, the gap in the literature discussed above
already appears in this setting. We conjecture that the analysis extends to the malicious
case using standard secret-sharing techniques.

We proceed to describe our results in more details.

Separating perfect adaptive security from perfect static security. Our first result shows
that under some cryptographic assumptions, there is no hope of finding an alternative
(efficient) transformation to that of Canetti et al. [9], and that inefficiency of the adaptive
simulation is inherent. More precisely, that there exist protocols that admit perfect, static
security with efficient simulation but for which an efficient adaptive simulation does not exist.

▶ Theorem 1. Assume the existence of a one-way permutation. Then, there exists an n-party
functionality f and a protocol that securely computes f with efficient perfect static simulation,
but for which efficient perfect adaptive simulation does not exist.

The theorem is proven by showing a protocol for which all the additional requirements
of [9] hold and therefore (inefficient) adaptive simulation does exist for this protocol, but
an efficient adaptive simulator can be used to invert the one-way permutation with inverse-
polynomial probability. Interestingly, this implies that the protocol is regarded as adaptively
secure in the perfect setting, but the exact same protocol is not adaptively secure in the
computational setting, where both the adversary and the simulator should run in polynomial
time in the security parameter. We therefore derive the following somewhat counter-intuitive
corollary.

▶ Corollary 2. Assume the existence of a one-way permutation. Then, there exists an n-party
functionality f and a protocol that securely computes f with perfect adaptive security, but
that does not securely compute f with computational adaptive security.

Revisiting adaptive security in the standalone setting. The above does not rule out the
possibility of finding additional requirements from the protocol that would imply efficient
adaptive simulation. This is exactly the approach taken by Damgård and Nielsen [15], who
showed that under additional requirements of the protocol, an efficient adaptive simulation
exists.

The transformation of [15] is directly proved in the UC framework with its full generality,
capturing reactive functionalities and concurrency issues at once. However, the strong
guarantees do not come without a price, since the requirements from the static simulator
must capture multiple input phases (as required for reactive computations) and deal with
the technical overhead needed for concurrent composition, e.g., incorporating an “online”
environment to the definition. As a small side contribution we simplify this transformation.

Specifically, in addition to proving perfect static security, the transformation of [15]
requires an additional (efficient!) algorithm, called “Patch,” for sampling randomness that
explains the simulated protocol whenever a corruption occurs. The adaptive simulator
invokes the static simulator on a dynamically growing set of corrupted parties (initially
empty). At any point, the simulation of the protocol towards the adaptive adversary is done
by forwarding messages from the adaptive adversary to the static simulator, and vice-versa.
Upon a corruption of a new party, say of Pi, the Patch algorithm receives the state of the
static simulator until this point together with the input and output of Pi, and outputs a
new state for the static simulator that allows the continuation of the simulation as if Pi was
statically corrupted from the beginning.
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We then propose an alternative recipe for proving universal composability and (efficient)
adaptive security in the perfect setting:
1. Prove that the protocol is (efficiently) statically secure in the perfect standalone setting

and that the protocol satisfies some natural requirements (similar to those in [9]).
2. Show the existence of an efficient “Patch” algorithm corresponding to the static simulator.
3. We show a transformation (which is essentially a distilled version of [15]) that the protocol

is perfectly adaptively secure with an efficient simulator in the standalone setting.
4. Using [24], the protocol is also secure in the perfect adaptive setting with efficient

simulation and with universal composability.

We remark that this result is not technically novel and is inspired by [15]. We hope that
providing an alternative definition in the standalone setting would simplify proofs of efficient
adaptive security in the future, as the designer of the protocol can focus on the standalone
setting.

Adaptive security of the BGW protocol. Finally, we follow our recipe proposed above and
show that the (semi-honest) BGW protocol is efficiently adaptively secure. No additional
step to the protocol is needed, and the proof works for any circuit (as opposed to the proof
of [15]). This result solves an open problem raised by [15], whether the assumption on the
circuit (that each output wire is a direct output of a multiplication gate) is necessary. This
reaffirms the security of the BGW protocol [5], and closes a gap in the proofs of [1, 15],
providing sound foundations for cryptography.

▶ Theorem 3. Let f be a deterministic n-party functionality. The BGW protocol securely
computes f with perfect adaptive security and efficient simulation facing a semi-honest
adversary corrupting t < n/2 parties.

Further, if f is a linear function, the BGW protocol securely computes f with perfect
adaptive security and efficient simulation facing a semi-honest adversary corrupting t < n

parties.

1.2 Related Work
Adaptive security is known to be strictly stronger than static security in many settings, with
many impossibility results separating the two notions. Below, we compare our separation to
existing separations between static and adaptive security from the literature.

The first separation was presented by [10] and relied on a positive error probability of the
statically secure protocol. They considered a dealer that secret shares a value to a random
set of parties and later announces their identities; an adaptive adversary can corrupt the
members of the set and learn the value while a static adversary can only guess this set
ahead of time and succeed with negligible (yet positive) probability. In this setting, the
seminal protocol of Rabin and Ben-Or [30] that guarantees statistical information-theoretic
security is not secure in the adaptive setting, as illustrated by Cramer et al. [14], who gave
an adaptively secure variant of the protocol. Separations based on statistical security are
different than ours as we consider perfect protocols that have zero error probability.

In the computational-security setting, many statically secure primitives do not remain se-
cure under adaptive corruptions. For example, Nielsen [29] showed that public-key encryption
for unbounded messages requires a programmable random oracle. Canetti et al. [9] separated
adaptively secure commitments from statically secure ones. Lindell and Zarosim [27] showed
that achieving adaptively secure oblivious transfer (OT) requires stronger assumptions
than statically secure OT. Katz et al. [23] ruled out adaptively secure fully homomorphic
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15:6 Static vs. Adaptive Security in Perfect MPC

encryption; the latter result was generalized in [13]. Separations based on computational
assumptions are different than ours as we consider information-theoretic protocols that
remain secure against computationally unbounded adversaries.

Canetti et al. [9] showed a separation based on the ability of the adversary to corrupt
a party and change its input to the protocol based on messages that have already been
transmitted. Similar separations were illustrated also for broadcast protocols [22, 12]. Canetti
et al. [9] showed that such separations no longer hold when considering protocols that have a
committal round [28], i.e., a fixed round in which all inputs to the protocol are committed.
These separations hold only for malicious adversaries that can deviate from the protocol; our
separation applies for semi-honest adversaries that cannot deviate from the protocol in any
way.

Other separations are known when considering restricted interaction patterns, as was
shown by Garay et al. [17] for protocols with sublinear communication, and by Boyle et
al. [6] for protocols whose communication graph admits a sublinear cut. Our separation
relies on the BGW protocol that induces a complete communication graph.

Finally, Garg and Sahai [18] showed that constant-round MPC with black-box simulation
in the plain model cannot tolerate corruption of all of the parties. Our result holds irrespective
of the number of rounds and does not require corrupting all the parties.

Organization of the paper. In Section 2 we present a technical overview of our results,
in Section 3 the preliminaries, and in Section 4 we prove our separation result, showing
the existence of a protocol that has inefficient adaptive simulation but no efficient adaptive
simulation (assuming one-way permutations exist). Due to space limitation we omit the
definition of secure multiparty computation and the proof of adaptive security of the BGW
protocol, and refer the reader to the full version of this paper.

2 Technical Overview

We provide a technical overview of our results. In Section 2.1 we review our separation result,
showing the existence of a protocol that has inefficient adaptive simulation but no efficient
adaptive simulation (under some cryptographic assumptions). In Section 2.2, we review the
adaptive security of the BGW protocol.

2.1 Static Security Does Not Imply Adaptive Security
Definition of adaptive security. We first recall the definition of adaptive security. We
remark that since the transformation of [9] assumes some additional properties from the
statically secure protocol and its simulation (specifically, it assumes that the protocol has a
straight-line, black-box simulation), our description here incorporates those properties in the
informal definition.

Given a protocol π, an adaptive adversary might corrupt parties on the fly as the protocol
proceeds. Upon corruption, the adversary sees the corrupted party’s random tape, the input
it used, and all the messages it received so far. From that point on, the adversary completely
controls the behavior of Pi. As the protocol proceeds, the adversary might decide to corrupt
additional parties, as a function of whatever it saw so far.

We follow the ideal/real simulation paradigm and say that a protocol is adaptively secure
if for every such an adversary in the real world, there exists a simulator in the ideal world that
simulates its behavior. In the ideal world, the simulator invokes the real-world adversary and
simulates the honest parties sending their message to the corrupted parties (without knowing
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the inputs of the honest parties). At every round, the adversary might ask to corrupt some
party Pi in the simulated protocol, and the simulator corrupts the corresponding party in
the ideal world. Upon corruption, the simulator learns the input of Pi (and its output, if it
was already computed by the trusted party), and it has to provide the adversary the input
together with randomness that explains the messages sent by this party in the simulation
until this point (known also as “equivocality” in the literature).

This is the challenging part of the proof as the simulator has to first simulate Pi without
knowing its input, “commit” to some messages on its behalf, and later upon corruption find a
randomness ri that explains all the messages that were sent so far according to the input xi.
Note that the simulator is not allowed to rewind the adversary at any point of the execution,
i.e., the simulation is “straight-line.”

First attempt. The transformation of [9] shows that for any perfectly secure protocol,
randomness ri describing the behavior of Pi so far, exists. This implies that the simulator
can always find it; however, finding it might not be an efficient procedure. Our first attempt
is adding some cryptographic hardness while targeting exactly this procedure of finding
the matching randomness. That is, our goal is making the finding of the randomness a
computationally hard problem.

It is intuitive to simply take the BGW protocol, even just for semi-honest security and
for computing a linear function, with one modification: Before a party starts the protocol, it
takes its random tape r, and uses OWP(r) as its randomness in the protocol, where OWP
is a one-way permutation. The intuition is that whenever the adversary asks to corrupt
some party, the simulator would effectively have to invert the one-way permutation, which is
computationally infeasible. The construction is still statically secure since the static simulator
only goes “forward”; that is, it chooses some randomness r and then uses OWP(r) as the
randomness of the simulated honest party. Moreover, an efficient simulation exists since
r exists; however, it seems that an adaptive adversary will have to move “backward” and
invert the one-way permutation.

To elaborate further, let n be the number of parties, and consider the function
f(a1, . . . , an) =

∑n
i=1 ai; that is, all parties receive the same output, which is the sum

of their inputs. We consider some finite field F with |F| > n. The protocol is as follows:
Input: Pi has ai ∈ F as input, and randomness ri.
The protocol:

1. Pi computes (ri,1, . . . , ri,n−1) = OWP(r), where each ri,j ∈ F.
2. Pi secret shares its input ai using Shamir’s secret sharing scheme with degree n− 1,

using the polynomial hi(x) = ai + ri,1x + . . . + ri,n−1xn−1. It gives to each party Pj

privately a point hi(αj).
3. Upon receiving h1(αi), . . . , hn(αi) from all the parties, the party Pi computes βi =∑n

i=j hj(αi) and sends βi to all other parties.
4. Upon receiving β1, . . . , βn, each party reconstructs the unique polynomial H(x) for

which it holds for every αj that H(αj) = βj , and outputs H(0).

Simulating this protocol. The above protocol can be simulated for every t < n parties.
Consider an adaptive simulator, and assume that the adversary already corrupted n − 2
parties on the onset of the execution, say P3, . . . , Pn. The simulator then simulates just
two honest parties: P1 and P2. As it does not know their inputs it just gives the adversary
2 ·(n−2) independent random points as the messages of the two honest parties it is simulating.
For concreteness, assume that the messages the simulated P1 sent are (γ3, . . . , γn), where γi
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15:8 Static vs. Adaptive Security in Perfect MPC

is supposed to be delivered to Pi. Now, assume that the adversary asks to corrupt P1 and
that the simulator receives its input a1. The simulator can now find a random polynomial
h1(x) of degree n− 1 under the constraints that

h1(0) = a1, and h1(α3) = γ3 . . . h1(αn) = γn .

Note that these constraints define overall n− 1 points. Since h1(x) has n coefficients, there
are |F| different polynomials that satisfy these n− 1 constraints. The simulator can pick one
more point at random, and then uniquely determine the polynomial h1(x) using interpolation.
For that particular polynomial, the simulator has to invert the one-way permutation and
find the corresponding randomness.

The problem – the reduction to OWP. It is hard to use the above adaptive simulator
to construct an inverter for the one-way permutation on some challenge point y∗ ∈ |F|n−1,
corresponding to the n− 1 leading coefficients, say y∗ = (r1,1, . . . , r1,n−1). The problem is
that once the adaptive simulator “commits” to the values (γ3, . . . , γn), it might be the case
that there is no input a1 for which the polynomial h1(x) = a1 + r1,1x + . . . + r1,n−1xn−1

satisfies the constraints h1(α3) = γ3, . . ., h1(αn) = γn. That is, there is no input a1 in the
support that agrees with the challenge y∗ and with the simulated view, simultaneously.

Second attempt. To solve the above technicality, we change the functionality and the
protocol. Instead of having the input of each party Pi be just ai ∈ F, it is augmented to be a
polynomial gi(x) of degree n− 1 over F. The functionality is then defined as:

f
(

g1(x), . . . , gn(x)
)

=
n∑

i=1
gi(0).

Note that the parties input polynomials, while all the leading coefficients do not affect the
output of the computation. In the protocol, each party Pi then invokes (ri,1, . . . , ri,n−1) =
OWP(ρi) where ρi is its random tape, and then defines the polynomial hi(x) ..= gi(x) +
ri,1x + . . . + ri,n−1xn−1. It then sends to each other party Pj the point hi(αj), just as in
Step 2 in the previous protocol.

The difference is that now, no matter what points (γ3, . . . , γn) the adversary commits to as
the messages P1 had sent, for any challenge y∗ = (r∗1 , . . . , r∗n−1), the inverter of the OWP can
choose an input g1(x) such that the polynomial g1(x)+r∗1x+ . . .+r∗n−1xn−1 is in the support
of the polynomials that the adaptive simulator might choose. To see that, given a challenge
y∗ = (r∗1 , . . . , r∗n−1) to the inverter, and given (γ3, . . . , γn) that were chosen by the simulator
as the messages P1 had sent in the first round, the inverter chooses two additional points γ1
and γ2 at random. It then interpolates the unique polynomial h(x) such that for every i ∈ [n]
it holds that h(αi) = γi. It computes the polynomial g1(x) = h(x)− (r∗1x + . . . + r∗n−1xn−1),
and gives g1(x) to the adaptive simulator as the input of P1.

The simulator now has to reply with some randomness ρ′ for which (r′1,1, . . . , r′1,n−1) =
OWP(ρ′) such that h′1(x) = g1(x)+

∑n−1
k=1 r′1,kxk and it holds that h′1(α3) = γ3, . . . , h′n(αn) =

γn. Since h′1(α1) and h′2(α2) are not determined, the simulator essentially has |F|2 different
polynomials to chose from. However, one of them corresponds to the challenge y∗. Moreover,
y∗ is distributed uniformly in the support of all valid solutions for the simulator. Since the
adaptive simulator simulates with perfect security, the inverter succeeds in inverting y∗ with
probability 1/|F|2. By tuning the parameters (such that |F| is polynomial in the security
parameter), this is an inverse-polynomial advantage. Assuming that OWP is a one-way
permutation, this implies that the adaptive simulator cannot run in polynomial time.
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2.2 Adaptive Security of the BGW Protocol

The BGW Protocol. We briefly recall the semi-honest version of the BGW protocol [5]
that is secure for t < n/2 corruptions; see [1] for more details.
Input sharing: Initially, each party Pi secret shares its input xi using a (t + 1)-out-of-n

Shamir secret sharing (t is the privacy threshold and t + 1 are needed for reconstruction),
and sends the jth share to Pj . Specifically, Pi chooses a random polynomial qi of degree
(at most) t with constant term xi, and sends to Pj the share qi(αj).

Circuit emulation: The parties evaluate the circuit gate by gate on their shares. Addition
and scalar-multiplication gates are evaluated locally; that is, each party performs the
operation on its shares. Multiplication requires a dedicated sub-protocol in which each
party inputs shares for two values a and b, and obtains a share for the product ab as
output. For simplicity of the technical overview, we consider that this operation is done
using the help of a trusted party (i.e., we work in the fmult-hybrid model).

Output reconstruction: Upon conclusion of the circuit emulation, each party holds one share
for each output wire. For simplicity, assume that output wire oi is the private output for
Pi. Then, each party Pj sends the relevant share βj→i for Pi, who can reconstruct the
polynomial gi interpolating the points (α1, β1→i), . . . , (αn, βn→i), and obtain gi(0) as its
output.

Static simulation. To simulate the view of the adversary for the set of corrupted parties I

of cardinality at most t, the static simulator simulates the input-sharing phase by choosing
randomness for the corrupted parties (which, in turn, determines the polynomials they use
in the input-sharing phase). Moreover, for the honest parties, the simulator just chooses
|I| random elements for each honest party and simulates the honest parties sending their
shares on their inputs to the adversary. The simulator can then locally compute the shares of
the corrupted parties on each internal wire of the circuit, while for simulating an invocation
of fmult, the simulator again just provides the adversary with |I| random shares. In the
output-reconstruction phase, the simulator has to provide all shares on the output wires of
corrupted parties. It knows the constant term of each such wire, and it knows |I| shares
on each wire, and therefore it is possible to interpolate a random polynomial that passes
through the |I| ≤ t shares and the known constant term, and simulate the honest parties
sending shares on this polynomial to the adversary. When |I| = t this is a deterministic
process as we already have t + 1 shares that are determined on the output wires; however,
when |I| < t, the simulator needs to generate some new shares on that output wires.

The assumption on the circuit. Damgård and Neilsen assumed that the output wires
are direct outputs of multiplication gates. As a result, the shares on each output wire are
independent of each other – and the simulator can just choose additional |I| − t random
shares on the output wire to interpolate the polynomial on that wire. When considering
arbitrary circuits, output wires that are not a result of a multiplication gate may have some
linear relation between them. To illustrate the challenge, consider output wires o1, o2, and o3,
corresponding to three corrupted parties P1, P2, and P3, respectively, such that o3 = o1 + o2.
Denote the output values by y1, y2, and y3, respectively. The shares that the parties hold on
the output wires define polynomials g1(x), g2(x) and g3(x), respectively. In the real execution
it holds that g3(x) = g1(x) + g2(x), and therefore the simulator must choose the shares on
the output wires wisely to guarantee the same dependency, which makes the simulation more
challenging.
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Our static simulator. To guarantee such consistencies, our static simulator generates t

random shares on each input wire and each output of a multiplication wire. That is, while
the adversary corrupt some set I, the simulator, “in its head,” chooses an arbitrary set Î ⊇ I

of cardinality exactly t and simulates the shares for all parties in Î, while giving the adversary
only shares for the parties in I. As a result, we have no random choice when simulating the
output wires. The simulator holds t shares on each output wire, and also knows the constant
term on the output wires of the corrupted parties. It can deterministically interpolate the
polynomials on the output wire, and simulate the honest parties sending their shares on
those wires. This guarantees that if there is any dependency between output wires, then the
simulator provides consistent shares.

Our adaptive simulator. Assume that the adaptive adversary corrupts some party Pi∗ . If
i∗ ∈ Î \ I, then providing the view of that party is easy. The simulator has already sampled
all the shares that Pi∗ is supposed to receive. On the other hand, if i∗ ̸∈ Î \ I, then we face
a new obstacle. This is because the simulator has already defined t shares on each wire, and
defining an additional share on each wire would completely determine each polynomial. Let
j∗ ∈ Î \ I. The key idea of our adaptive simulator is to “replace” the sampling of shares for
party Pj∗ with sampling shares for party Pi∗ . Specifically, we show that each random choice
made for Pj∗ that leads to the current view of the adversary, can also be interpreted by a
random choice made for Pi∗ that leads to the exact same view. This procedure then changes
the set of the simulator and “forgets” all the random choices made for Pj∗ , but instead
samples matching choices for Pi∗ . This is essentially sampling random shares for Pi∗ on the
input wires of all honest parties and the outputs of fmult, under the constraints posed by the
shares of Pj∗ on the output wires. Such sampling can be performed efficiently by solving
a linear set of equations. Then, we are back to the previous case, where the corruption is
made on some i∗ ∈ Î \ I.

3 Preliminaries

Our results hold in any natural model that captures perfect adaptive security, for example,
[10, 7, 16, 8, 25, 21]. For concreteness, we will state our results using the modular (non-
concurrent) composability framework of Canetti [7]. Indeed, the separation in this limited
setting extends to any of the models listed above, whereas our positive results translate to
the universal-composability setting via the transformation in [24]. Before describing the
security model, we give basic notation and define the cryptographic primitive used in our
separation.

Notation. We denote by λ the security parameter. For n ∈ N, let [n] = {1, . . . , n}. Let poly
denote the set of all positive polynomials and let PPT denote a probabilistic algorithm that
runs in strictly polynomial time. A function ν : N→ [0, 1] is negligible if ν(λ) < 1/p(λ) for
every p ∈ poly and large enough λ. Given a random variable X, we write x← X to indicate
that x is selected according to X, and given a set X we write x← X to indicate that x is
selected uniformly at random from X .

One-way permutations. Our separation in Section 4 will rely on the existence of a one-way
permutation (OWP); that is a one-way function which is length preserving and one-to-one;
we refer the reader to [19] for more details.
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▶ Definition 4 (OWP). A polynomial-time function f : {0, 1}∗ → {0, 1}∗ is a one-way
permutation if the following conditions are satisfied.
1. For every λ ∈ N, f induces a permutation over {0, 1}λ, i.e., f : {0, 1}λ → {0, 1}λ is

one-to-one and onto.
2. There exists a deterministic polynomial-time algorithm A such that on input x ∈ {0, 1}∗

the algorithm A outputs f(x).
3. For every PPT algorithm A, every positive polynomial p(·), and all sufficiently large λ’s,

it holds that

Pr
x←{0,1}λ

[
A(f(x)) = x

]
<

1
p(λ) .

4 Static Security Does Not Imply Adaptive Security

In this section we prove Theorem 1. We show a functionality together with a protocol that
privately computes it with perfect static security and efficient simulation. Further, we show
that if the protocol privately computes the functionality with perfect adaptive security and
efficient simulation, then one-way permutations do not exist.

We start by defining the functionality and the protocol. Next, in Lemma 6 we prove
static security and in Lemma 9 we prove that adaptive security with efficient simulation
cannot be achieved assuming OWP. Combined, this proves Theorem 1.

4.1 The Functionality
The n-party functionality fsum is parametrized by a finite binary field F2ℓ such that 2ℓ > n.
Looking ahead, having a binary field will enable using a one-way permutation OWP :
{0, 1}∗ → {0, 1}∗ that is applied on a vector of field elements in a clean way. During the
proof below, we will denote the field by F ..= F2ℓ . The private input of every party is a
polynomial of degree (at most) n− 1 over F, and the common output is the sum of the free
coefficients.

Input: The input of party Pi is a polynomial gi(x) of degree n− 1, that is define by n

coefficients ai,0, . . . , ai,n−1 ∈ F such that gi(x) =
∑n−1

k=0 ai,kxk.
Output: The output of every party is

∑n
i=1 gi(0) =

∑n
i=1 ai,0.

4.2 The Protocol
The n-party protocol πsum is parametrized by the field F and assumes the existence of a
one-way permutation OWP : Fn−1 → Fn−1, i.e., OWP : {0, 1}ℓ(n−1) → {0, 1}ℓ(n−1).

Protocol 5: Separating Protocol πsum.

Private input: The input of party Pi is a polynomial gi(x) of degree n− 1 over F.
Randomness: The random tape of party Pi is ρi ← Fn−1.
Common inputs: n distinct non-zero elements α1, . . . , αn ∈ F.
The protocol: code for party Pi:

1. Compute (ri,1, . . . , ri,n−1) = OWP(ρi).
2. Consider the polynomial

hi(x) ..= gi(x) + ri,1x + . . . + ri,n−1xn−1

= ai,0 + (ai,1 + ri,1)x + (ai,2 + ri,2)x2 + . . . + (ai,n−1 + ri,n−1)xn−1 .
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3. Send to every Pj its share γi→j
..= hi(αj).

4. Having received all shares γ1→i, . . . , γn→i, party Pi locally computes βi =
∑n

j=1 γj→i

and sends βi to all other parties.
5. Having received β1, . . . , βn, party Pi finds the unique degree-(n− 1) polynomial H(x)

satisfying H(αj) = βj for every j ∈ [n].
Output: H(0).

4.3 Static Security
We start by proving static security of πsum. We note that static security holds even if OWP
is simply a permutation that is not necessarily one way and can be inverted efficiently.

▶ Lemma 6. Protocol πsum statically (n−1)-privately computes fsum with perfect semi-honest
security and efficient simulation.

Proof. Let A be a static semi-honest adversary and let I ⊂ [n] of size |I| < n denote the set
of corrupted parties’ indices. We construct a simulator S as follows:
1. The simulator initially receives auxiliary information z and the inputs of the corrupted

parties (gi(x))i∈I . First, S sends (gi(x))i∈I to the trusted party and receives back the
output value y. Next, S invokes A on z and (gi(x))i∈I .

2. To simulate the first round, for every j /∈ I, the simulator chooses a random ρj ← Fn−1

and computes (rj,1, . . . , rj,n−1) = OWP(ρj). Next, S chooses arbitrary polynomials
(g̃j(x))j ̸∈I , each of degree at most n− 1, under the constraint that∑

j ̸∈I

g̃j(0) = y −
∑
i∈I

gi(0),

and defines for every j /∈ I

hj(x) = g̃j(x) + rj,1x + . . . + rj,n−1xn−1.

Finally, for every j /∈ I and i ∈ I, the simulator sends γj→i
..= hj(αi) to A as the message

from an honest Pj to a corrupted Pi, and receives the messages γi→j from A as the
message from a corrupted Pi to an honest Pj .

3. To simulate the second round, for every j /∈ I, the simulator computes βj
..=

∑n
k=1 γk→j

and sends βj as the message from Pj . Next, S receives the message βi from A on behalf
of every corrupted Pi.

4. Finally, S outputs whatever A outputs, and halts.

Note that by construction, the simulator S runs in polynomial time in the running time of A.

▷ Claim 7. {REALπsum,I,A(x, z)}(x,z)∈({0,1}∗)n+1 ≡ {IDEALfsum,I,S(x, z)}(x,z)∈({0,1}∗)n+1 .

Proof. Note that the only difference between the real execution of the protocol and the
simulated execution in the ideal world is the construction of the constant terms of the
polynomials (hj(x))j ̸∈I :

In the real protocol, these constant terms are the constant terms of the original inputs of
the honest parties (gj(x))j /∈I . In this case, by the linearity of Shamir’s secret sharing and
by the correctness of the interpolation, it holds that the output equals

∑n
i=1 gi(0).
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In the simulated execution, these constant terms are the constant terms of the polynomials
(g̃j(x))j /∈I . These polynomials are generated under the constraint that

∑
j ̸∈I g̃j(0) =

y −
∑

i∈I gi(0), where y is computed by the trusted party to be
∑n

i=1 gi(0). It follows
that∑

j ̸∈I

g̃j(0) =
∑
j ̸∈I

gj(0).

The claim now follows by the perfect privacy of Shamir’s secret sharing. ◁

This concludes the proof of Lemma 6. ◀

4.4 Inefficient Adaptive Security
By the construction of the static simulator it is clear that the simulation is straight-line and
black-box; further, since we consider a semi-honest adversary that in particular does not
change the corrupted parties’ inputs, “round zero” (the beginning of the protocol) can be set
as the committal round. Therefore, we can use [9] to derive the following corollary.

▶ Corollary 8. Protocol πsum adaptively (n− 1)-privately computes fsum with perfect semi-
honest security.

4.5 No Efficient Adaptive Simulator
We proceed to prove that an efficient adaptive simulator can be used to invert the one-way
permutation.

▶ Lemma 9. Assume that OWP is a one-way permutation. Then, Protocol πsum does not
adaptively (n − 1)-privately computes fsum with perfect semi-honest security and efficient
simulation.

Proof. Let λ denote the security parameter, i.e., the one-way permutation is defined as
OWP : {0, 1}λ → {0, 1}λ. For simplicity, assume that λ = (n− 1) log(n + 1) for some n such
that n + 1 is a power of 2 (this holds without loss of generality, since the security of the
OWP holds for all sufficiently large λ’s). We consider the n-party functionality fsum that
is defined with respect to the field F = F2ℓ where ℓ = log(n + 1); then, indeed, |F| > n as
required and OWP induces a permutation over Fn−1.

Defining the adversary and the environment. Consider the following adaptive, semi-honest,
(n− 1)-limited adversary A and the environment Z for πsum.
1. The environment does not send any auxiliary information to the adversary at the begin-

ning.
2. The adversary A starts by corrupting the parties P3, . . . , Pn and learns their inputs

(g3(x), . . . , gn(x)) and random tapes (ρ3, . . . , ρn). The environment does not send any
auxiliary information to the adversary for these corruptions.

3. Next, A receives first-round messages γ1→3, . . . , γ1→n from P1 and γ2→3, . . . , γ2→n from
P2.

4. The adversary completes the execution honestly and outputs its view.
5. The environment corrupts P1 in the PEC phase and learns (amongst other things) its

input g1(x), randomness ρ1, and the values (r1,1, . . . , r1,n−1) computed in Step 1 of πsum.
6. The environment checks whether (r1,1, . . . , r1,n−1) = OWP(ρ1); if so it outputs real and

otherwise ideal.
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The corresponding adaptive simulator. By the assumed security of πsum, there exists an
efficient adaptive simulator S for A and Z. Note that by construction, the adversary A runs
in polynomial time with respect to the parameter λ; hence, S is PPT with respect to λ. We
will use S to construct a PPT inverter D for the OWP.

Constructing the inverter from the simulator. The inverterD receives as input the challenge
y∗ ∈ {0, 1}λ. We will consider y∗ as element of Fn−1, i.e., y∗ = (r∗1 , . . . , r∗n−1) ∈ Fn−1. The
inverter D proceeds as follows:
1. D invokes the simulator S and emulates the ideal computation of fsum toward S; initially,
D sends nothing as the auxiliary information to S.

2. When S corrupts the parties P3, . . . , Pn in the emulated ideal computation, D chooses
arbitrary polynomials (g3(x), . . . , gn(x)) of degree at most n− 1 over F and hands gi(x)
to S as the input value of Pi; D sends nothing as the auxiliary information to S.

3. When S sends inputs to the trusted party on behalf of the corrupted parties, D responds
with an arbitrary output value y ∈ F.

4. Once S generates its output, containing the view of A, the inverter D extracts the first-
round messages that each corrupted party received from the honest party P1, denoted
γ1→3, . . . , γ1→n.

5. D samples two field elements γ1, γ2 ← F and interpolates the unique polynomial h of
degree n− 1 satisfying the constraints:

h(α1) = γ1, h(α2) = γ2, h(αi) = γ1→i for i ∈ {3, . . . , n}.

Next, D computes g1(x) = h(x)−
∑n−1

k=1 r∗kxk.
6. D sends a “corrupt P1” request to S during the PEC phase. When S corrupts P1 in the

emulated ideal computation, D sets the input of P1 to be g1(x). Next, S responds with
the view of P1, containing the content of its random tape ρ1.

7. D outputs ρ1.

Efficiently inverting the OWP. First, notice that by construction, the running time of the
inverter D is polynomial with respect to its input y∗ and to the running time of S; therefore,
D is PPT with respect to the parameter λ. We proceed to show that the success probability
of D in inverting a random challenge y∗ ← {0, 1}λ is non-negligible.

▷ Claim 10. Pr
y∗←Fn−1

[
OWP(D(y∗)) = y∗

]
= 1
|F|2 .

Proof. In our proof, we do not assume any specific behavior of the adaptive simulator S (i.e.,
we do not know how the simulator generates its output messages). However, based on the
assumed perfect security of the protocol, the adaptive simulator S operates according to the
following interface:
1. S corrupts parties P3, . . . , Pn and learns their inputs (g3(x), . . . , gn(x)).
2. S sends the inputs (g3(x), . . . , gn(x)) to the trusted party and obtains the output value y.
3. S generates the simulated view of the adversary, which in particular contains the messages

γ1→3, . . . , γ1→n from P1 to parties P3, . . . , Pn.
4. S corrupts party P1 and learns its input g1(x).
5. S outputs the view of P1, including its random tape ρ1 and values (r1,1, . . . , r1,n−1) =

OWP(ρ1), such that the polynomial h1(x) = g1(x) +
∑n−1

k=1 r1,kxk satisfies h1(αi) = γ1→i

for i ∈ {3, . . . , n}.
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Recall that in Step 5 of the construction of the inverter, D samples γ1, γ2 ← F and
interpolates the polynomial h(x) that satisfies the following constraints:

h(α1) = γ1, h(α2) = γ2, h(αi) = γ1→i for i ∈ {3, . . . , n} .

First, for every choice of γ1, γ2 ∈ F there exists a unique polynomial of degree n− 1 over
F satisfying these constraints. In the other direction, every polynomial h′(x) of degree at
most n− 1 over F, satisfying h′(αi) = γ1→i for i ∈ {3, . . . , n}, induces two points γ1 = h′(α1)
and γ2 = h′(α2) in F.

It follows that the inverter succeeds in inverting y∗ if and only if h1(α1) = γ1 and
h1(α2) = γ2 (where h1(x) is the polynomial defined by S). Indeed, in this case h1(x) = h(x),
which means that h1(x)− g1(x) = h(x)− g1(x), i.e.,

∑n−1
k=1 r1,kxk =

∑n−1
k=1 r∗kxk, and finally

(r1,1, . . . , r1,n−1) = (r∗1 , . . . , r∗n−1). Since γ1 and γ2 are sampled uniformly at random from F,
this happens with probability 1/|F|2. ◁

Finally, note that y∗ ∈ Fn−1, i.e., y∗ ∈ {0, 1}(n−1) log(n+1) = {0, 1}λ. However, the
inverting probability is 1/|F|2 = 1/22 log(n+1) = 1/(n + 1)2, which is non-negligible in λ. We
conclude that D is PPT in λ and succeeds in inverting OWP with non-negligible probability.
This contradicts the assumption that OWP is a one-way permutation. ◀
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