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Abstract
Property-preserving hash (PPH) function is a class of hash functions that allows an evaluation of
the property of inputs from their hash values. Boyle et al. at ITCS 2019 recently introduced it and
considered the robustness of PPH against an adversary who accesses the internal randomness of
PPH, and proposed two robust PPH constructions for a weak form of Hamming distance predicate.
The second construction received attention for its short hash value, although it relies on an ad-hoc
security assumption. The first construction, which is entirely hash-based and based on the classical
collision-resistance assumption, has been largely overlooked. We study their first construction and
discover its close connection to a seemingly different field of hash/MAC-based (adversarial) error
detection using the theory of Combinatorial Group Testing (CGT). We show some consequences of
this discovery. In particular, we show that some existing proposals in the field of CGT-based error
detection can be converted into a PPH for the Hamming distance property, and they immediately
improve and generalize Boyle et al.’s hash-based PPH proposal. We also show that the idea of Boyle
et al. is useful in the context of a variant of CGT problem.
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1 Introduction

Compressing a large amount of data into small digests while maintaining some of their
properties is one of the fundamental goals in computer science. Popular algorithms such as
Bloom filter [2] or Cukoo hashing [31] offer such property-preserving hashing for approximate
set membership property. Locality-sensitive hash (LSH) functions [22] allow for compressing
two inputs independently and evaluating if they are close or not with respect to some metric
from their digests. These algorithms are randomized and usually studied in the setting where
inputs are independent of the internal random coin. In real-world use cases, this may not be
enough, because we often need to consider an adversary who has an incentive to corrupt the
algorithm by giving maliciously crafted inputs. Such an adversary would somehow try to
learn the internal random coin, however, basic property-preserving hashing algorithms have
no guarantee against such attacks.

Based on this motivation, Boyle et al. [4] (BLV19) initiated the study of robust property-
preserving hash (PPH) functions that resist such attacks. They proposed two constructions
for the Gap Hamming predicate, which is a weak form of Hamming distance predicate. The
first construction was entirely hash-based and relied on the classical collision resistance of
the hash function. The second was based on an ad-hoc assumption related to the hardness
of decoding linear codes. The second construction has a much shorter hash size than the
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first and stipulated research on pairing or lattice-based PPHs for (exact) Hamming distance
predicate with similar hash size, as shown by Fleischhacker and Simkin [18] and Fleischhacker
et al. [17]. In contrast, the first construction has been largely overlooked since the proposal,
possibly because of its large hash size. However, its simplicity and computational efficiency,
and high-security reliance may make it attractive in practical applications.

1.1 Our Contributions
The core idea of BLV19’s first construction (hereafter PPH1) is subsampling. That is, taking
hash values for a predetermined set of input subsequences and concatenating them. We
discover that this idea of PPH1 is closely related to a different application field of hash func-
tions or message authentication codes (MACs), namely hash/MAC function with detection
capability [19, 14, 25]. Such a hash/MAC function can be interpreted as an application of
classical Combinatorial Group Testing (CGT) to the detection of data corruptions, where
detection means to pinpoint the parts of the input data that have been corrupted. For
convention, we say CGT-based hash function to mean this application. Our finding derives
several interesting consequences.

In more detail, we show that known schemes in the aforementioned field of CGT-based
hash can be interpreted as a robust PPH (in the sense of BLV19) for the Hamming distance
predicate, with a much better compression rate, i. e. smaller hash size, than PPH1. Note
that PPH1 only preserves a weaker Gap Hamming distance predicate. CGT-based hash
functions also have smaller computation time for hashing and preserve more informative
properties than plain Hamming distance predicate. The security (robustness) against the
adversary is also proved with minor modifications to the original proofs for the security
notions of CGT-based hash. Moreover, a MAC-based PPH is also naturally derived from the
known CGT-based MACs [19, 25, 26]. As well as the hash-based counterpart, a MAC-based
PPH preserves the Hamming distance property and fulfills a weak form of robustness defined
by BLV19. Moreover, by using the technique of [25], the resulting scheme can significantly
reduce the hashing time thanks to its special structure for the internal MAC function. Finally,
we show that the construction of PPH1, which uses a bipartite expander graph, is also useful
in building a test matrix for CGT that aims at estimating the number of defectives rather
than detecting them [7]. Therefore, the connection is not one-way.

We came up with this finding while studying the existing CGT-based hash/MAC schemes.
Our study did not present any new scheme. Once found, the connection may look rather
obvious, while we are not aware in the literature and present a formal security analysis. We
think bridging two seemingly different areas is important and will help understanding and
development of both areas.

2 Preliminaries

2.1 Notations
Let [i] denote {1, . . . , i} for i ≥ 1. The set of all binary strings is denoted by {0, 1}∗, which
includes the empty string ε. We write the bit length of X ∈ {0, 1}∗ by |X|, where |ε| = 0. The
Hamming weight of a binary string X is denoted by Hw(X). For X = (X1, . . . , Xn) ∈ Xn for
some finite set X and V = (V1, . . . , Vn) ∈ {0, 1}n, let X|V be the sub-sequence of X indexed
by V . That is, X|V is (Xi1 , . . . , Xiv

), where Hw(V ) = v and ij ∈ [n] is the index of the j-th
bit set at V . For X, X ′ ∈ Xn, let D(X, X ′) := (test(X1, X ′

1), . . . , test(Xn, X ′
n)), where test

is a test function (i. e., test(A, B) = 1 if A = B and 0 otherwise). For X, Y ∈ {0, 1}n, X ∨ Y

denotes the bitwise Boolean sum (logical OR) of X and Y .
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For a keyed function F : K × X → Y for key space K, we may write FK(X) instead
of F (K, X). Let negl(λ) for a security parameter λ ∈ N be a negligible function. For a
finite set X we write X

$← X to mean X is uniformly sampled over X . For a probabilistic
polynomial-time (PPT) adversary A and the oracles O1,O2,Oc, AO1,...,Oc → Y denotes the
event that A possibly adaptively queries to Oi in an arbitrarily order and outputs Y . The set
of all functions of domain X and range Y is written as Func(X ,Y) and a uniformly random
function (URF) R : X → Y is a random function that uniformly distributes over Func(X ,Y).

2.2 Advantage Functions
Let F, G : X → Y be two (possibly randomized) functions. Let A be an adversary who tries
to distinguish F from G using oracle access, and outputs a binary decision. We define

AdvIND
F,G(A) := Pr[AF → 1]− Pr[AG → 1]

as the advantage of A in distinguishing F and G. Similarly, let AdvEvent
F (A) denote the

probability of an event Event invoked by A in the game.

2.3 Matrix Representation
Let M be an n×m binary matrix. We write Mi,∗ to denote the i-th row, and M∗,j to denote
the j-th column, and Mi,j to denote the entry at i-th row and j-th column. For simplicity
we may abbreviate Mi,∗ to Mi. The rows and columns of M are interchangeably seen as sets,
e.g. Mi = {j ∈ [m] : Mi,j = 1}, and a ∈ Mi means Mi,a = 1. This may also apply to any
binary string.

2.4 Property-Preserving Hash Function
Following BLV19, we describe the basics of property-preserving hash functions. For a
finite set Z, a Z-valued property for a pair of messages in message space X is a function
P : X × X → Z. When |Z| = 2 it is called a predicate. A property is called promise if it is
undefined for some inputs and otherwise called total. We only consider the latter case. This
paper focuses on two-input properties, but generalization is possible.

▶ Definition 1. Let X = Bn for some set B and a positive integer n. let Hd(X, X ′) for
X, X ′ ∈ X be the generalized Hamming distance defined as

Hd(X, X ′) := Hw(D(X, X ′)).

As we may see a binary string as a set, we also have Hd(X, X ′) = |D(Xi, X ′
i)|. The Hamming

predicate with threshold d ∈ [n] is defined as

HAMd(X, X ′) :=
{

1 if Hd(X, X ′) ≥ d

0 otherwise

Moreover, the (generalized) Gap-Hamming predicate with parameter (d, ϵ) for ϵ ∈ (0, 1) is
defined as

GapHAMd,ϵ(X, X ′) :=


1 if Hd(X, X ′) ≥ d · (1 + ϵ)
0 if Hd(X, X ′) ≤ d · (1− ϵ)
undefined otherwise

As shown above, Gap-Hamming is a premise predicate.
For simplicity, we assume B = {0, 1}b for some b ≥ 1. When b = 1, Hd(∗, ∗) corresponds

to the classical Hamming distance between the bit strings.

ITC 2022
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Figure 1 PPH (top) and CGT-based MAC/Hash scheme defined at Section 4 (bottom).

▶ Definition 2 (Property-preserving Hash Function). Let H : K ×X → Y be a keyed function.
If H is a property-preserving hash (PPH) function for a property P : X ×X → Z, it requires
the following algorithms:

Sampling (key-generation) function Sample(λ) for the security parameter λ that efficiently
samples K over K (we hereafter assume λ as a fixed constant and simply write K

$← K
to represent this)
Hash output evaluation function Hash : K×X → Y that returns H(K, X) on input (K, X)
Property evaluation function Eval : K × Y × Y → Z

We say H is η-compressing if log |Y| ≤ η log |X | for 0 < η < 1.

The role of Eval is to give an estimate of P (X1, X2) for some X1, X2 ∈ X , using the key K

and their corresponding hash values.

2.5 Robustness Notions for PPHs
Let H : K×X → Y be a PPH for a property P : X ×X → Z and let H.hash and H.Eval be
the corresponding Hash and Eval functions. The goal of PPH has some similarities to the
existing objects, such as LSH [22], which is a randomized hashing algorithm that preserves the
distance between the inputs for some metric. However, the security against the adversary who
may query the hashing and evaluation processes or even access the internal randomness has
not been formally studied. Based on this observation, BLV19 introduced multiple robustness
notions of PPH to capture such security, using the security parameter λ. Each robustness
notion has a different adversary model, as shown below.

▶ Definition 3 (Non-Robust PPH [4]). If H is a non-robust PPH for a property P , for any
PPT adversary A,

AdvNR-PPH
H (A)

:= Pr[K $← K : A→ (X, X ′), Eval(K, HK(X), HK(X ′)) ̸= P (X, X ′)] ≤ negl(λ).

▶ Definition 4 (Evaluation-Oracle-Robust PPH [4]). If H is an Evaluation-Oracle (EO) robust
PPH for a property P , for any PPT adversary A,

AdvEO-PPH
H (A)

:= Pr[K $← K; AOH.Eval → (X, X ′) : Eval(K, HK(X), HK(X ′)) ̸= P (X, X ′)]] ≤ negl(λ).
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▶ Definition 5 (Double-Oracle-Robust PPH [4]). If H is an Double-Oracle (DO) robust PPH
for a property P , for any PPT adversary A,

AdvDO-PPH
H (A)

:= Pr[K $← K; AOH.Hash,OH.Eval → (X, X ′) : Eval(K, HK(X), HK(X ′)) ̸= P (X, X ′)]]
≤ negl(λ).

▶ Definition 6 (Direct-Access Robust PPH [4]). If H is a Direct-Access (DA) PPH for a
property P , for any PPT adversary A,

AdvDA-PPH
H (A)

:= Pr[K $← K; (X, X ′)← A(K) : Eval(K, HK(X), HK(X ′)) ̸= P (X, X ′)]] ≤ negl(λ).

A DA-robust PPH may be simply called a robust PPH.

In DA-PPH the adversary is given K, hence can also simulate OHash and OEval.
For example, classical universal hash function [35] can be interpreted as a non-robust

PPH for the collision property (i. e. P (X, X ′) = 1 iff X = X ′). BLV19 provides in-depth
discussions on these notions and relations to the existing ideas such as one-way communication
protocols. They are not relevant to our work, so refer to BLV19 for more details.

2.6 Constructions of PPHs
As described in Introduction, BLV19 showed two constructions of PPH for Gap-Hamming
predicate (Definition 1), which we call PPH1 and PPH2. PPH1 is entirely based on a
collision-resistant hash function. The construction takes hash values for multiple subsets of
the input, where the subsets are specified by a class of bipartite expander graph, and the
output is the concatenation of these hash values (see Sections 4.2 and 5 for more details).
While intuitive, its large hash size is problematic. PPH2 supports a smaller gap and better
efficiency than PPH1 (although the compression rate is constant for both schemes) and is
based on a new assumption related to the hardness of syndrome decoding of LDPC codes.
BLV19 stipulated research on PPHs. Fleischhacker and Simkin [18] showed a PPH for the
(exact, rather than Gap) Hamming distance predicate with a hash length for threshold t,
which is much better than PPH1. The security is based on a new bilinear discrete-logarithm
assumption in pairing friendly curves. Fleischhacker et al. [17] proposed a PPH for the
Hamming distance predicate whose security is proved under a standard lattice hardness
assumption while having a larger hash size than [18]. These studies have been done with
PPH2 in mind.

Compared to PPH2, PPH1 has not been studied since the proposal, possibly for its larger
hash size. However, hash-based constructions may be worth studying for their simplicity,
computational efficiency, and classical security. The reduction to classical symmetric-key
cryptographic assumption is also meaningful in the context of post-quantum cryptography.
These observations made us turn our attention to PPH1. As a result, we discover a connection
between the idea of PPH1 and the classical Combinatorial Group Testing.

3 Combinatorial Group Testing

We provide some basic ideas about Combinatorial Group Testing (CGT). It is a method to
detect defectives among a set of items by using a set of group tests. A group test specifies
a subset S of the whole samples M and returns a binary output indicating if S contains a

ITC 2022
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defective. Originally Dorfman invented CGT in WWII [15] to effectively find blood samples
infected by syphilis. We write M = [n] and I ⊆M to denote the (indices of) whole items
and the defectives, and in the classical setting we know |I| ≤ d for some d ∈ [n]. In the
non-adaptive setting, which is relevant for our case, the set of k group tests is determined by
a k × n binary matrix M, where Mi,j = 1 means j-th item is included in the i-th test.

The fundamental goal of CGT is to detect all the defectives, using as few tests as possible.
In the case of non-adaptive CGT, we detect all the defectives when the test matrix satisfies
a property called d-disjunct [15].
▶ Definition 7. A k × n binary matrix M is d-disjunct if, for any S ⊆ [n] and |S| ∈ [d],
M∗,j ̸⊆

∨
h∈S M∗,h holds for any j ̸∈ S. That is, a sum of any distinct i ≤ d columns of M

does not cover any other column.
An n× n identity matrix is n-disjunct. When the test matrix is d-disjunct and |I| ≤ d, it
is known that the so-called naive decoder can detect all the defectives. Algorithm 1 shows
the naive decoder for n items, k tags using k × n test matrix M, taking the test result
R = (R1, . . . , Rk) ∈ {0, 1}k, where Ri = 1 denotes that i-th test is positive (indicating the
test contains defectives).

Algorithm 1 Naive Decoder.

1: procedure Decode(M, R) ▷ k × n binary matrix M, test result R ∈ {0, 1}k

2: P ← [n]
3: for i = 1, . . . , k do
4: if Ri = 1 then
5: P ← P \Mi

6: return P

Naturally, we want to minimize the number of rows (k) of a d-disjunct matrices given d

and n. Disjunct matrix has extensively been studied from the viewpoint of combinatorics
or designs or codes; refer to Du and Hwang [15] for classical constructions and the bounds.
Most importantly it is known that k = O(d2 log n). Porat and Rothchild (PR11) [32], and
Cheraghchi and Nakos (CN20) [9] presented polynomial-time constructions that achieve this
bound, i. e., these constructions are order-optimal.

Since the inception, the most typical application of CGT is biology, such as DNA
screening [28]. One can also find a recent surge of research on applying CGT to COVID-19
PCR testing (e. g. [27] and there are lots of many others). Moreover, CGT has many other
applications in the field of computer science, such as image compression [21], streaming
computation [10], digital forensics [19] and (aggregate) MAC with detection capability [25,
26, 20, 30].

4 Constructing PPHs from CGT

4.1 CGT-Hash as Direct-Access Robust PPH
4.1.1 Defining CGT-Hash
We describe a class of CGT-based hash function (recall that this is to detect data corruptions
rather than telling the binary verification result). For X = Bn, B = {0, 1}b for some fixed b,
let G : K × [k]×X → T for T = {0, 1}t be the atomic (keyed) hash function, and let M be
a k × n binary matrix. Taking G and M as parameters, CGT-Hash[G,M] : K × X → Y for
Y = T k is defined as

CGT-Hash[G,M](K, X) = (Y1, . . . , Yk), Yi = G(K, i, X|Mi
)
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Note that M is a fixed, public matrix. This could be used to detect corruptions on X ∈ X :
first we take Y = CGT-Hash[G,M](K, X) with key K and store Y to a tamper-free storage.
Later, we take Y ′ = CGT-Hash[G,M](K, X ′) for X ′ which is a possibly corrupted version of
X by the adversary, and try to detect the locations of corruptions (namely, D(X, X ′)) via Y

and Y ′. CGT-Hash is an application of CGT described in Section 3. From the definition of
d-disjunct matrix, if X consists of n items and the adversary can corrupt at most d items, by
using d-disjunct matrix M and the naive decoder (Alg. 1), we can detect D(X, X ′) without
an error, if G is secure. CGT-Hash will bring more useful information than just taking one
hash for the entire X. Moreover, it significantly reduces the size of tamper-free storage than
taking hash values for each item. In other words, it allows a trade-off between the size of
hash values and the resolution of detection.

Effectively the same idea has been seen in Corruption-localizing hashing by Crescenzo et
al. [14] and follow-up works [11, 3], where different attack models and different decoders are
used. From a practical viewpoint, a basic form of hash-based corruption detection (say by
taking hash values for all the files in a server) has been extensively used by major commercial
integrity protection/management products, such as TripWire1 or Splunk2. In principle, the
use of CGT-Hash will reduce the size of tamper-free storage in these applications.

4.1.2 Connection to PPH
We can use CGT-Hash as a PPH for Hamming distance property. By writing H(K, ∗) to
denote CGT-Hash[G,M](K, ∗), Hash procedure just performs HK(X) for input X, and the
Eval procedure taking (K, Y, Y ′) s.t. Y = H(K, X) and Y ′ = H(K, X ′) for some X ̸= X ′ ∈ X
first obtains D(Y, Y ′) and performs the naive decoder. If decoder output is larger than d,
Eval returns 1 and 0 otherwise. Formally, the following theorem shows that CGT-Hash is
a DA-robust PPH for the Hamming distance predicate if G (given the random key K) is
collision-resistant.

▶ Theorem 8. In the aforementioned problem setting, if M is d-disjunct and G is collision-
resistant, CGT-Hash[G,M] is a DA-robust PPH for the (generalized) Hamming predicate with
threshold d (HAMd) over Bn.

Proof. In the game of DA-Robust PPH, suppose the adversary A uses q Hash queries, with
total σ blocks and τ time. Note that Eval oracle does not need the key, hence this can be
accessed for free. The i-th Hash query and the corresponding tag vector are denoted by
X(i) and T (i) = (T (i)

1 , . . . , T
(i)
k ). Let Cons (for consistency) be the event that [∀i, j ∈ [q], i ̸=

j,∀h ∈ [k] : X
(i)
|Mh
̸= X

(j)
|Mh
⇔ T

(i)
h ̸= T

(j)
h ].

It is clear that to invoke

T
(i)
h = T

(j)
h

for some distinct i, j ∈ [q] and h ∈ [k] s.t. X
(i)
|Mh

≠ X
(j)
|Mh

, A needs to invoke a collision on G.
If T

(i)
h ̸= T

(j)
h we must have X

(i)
|Mh
̸= X

(j)
|Mh

for any G. Thus, invalidation of Cons is equivalent
to finding a non-trivial collision on G.

We also observe that, as long as Cons holds, the problem exactly matches with non-
adaptive CGT with error-free tests. Moreover, whenever the difference is larger than d, Eval
will always detect this fact because the decoder output is always larger than d from the

1 https://www.tripwire.com/
2 https://www.splunk.com/
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property of the naive decoder (i. e., it never evicts non-corrupted items). A group testing
scheme with this property is called a strict group testing [13], and any non-adaptive CGT
scheme with a naive decoder and a disjunct test matrix is a strict group testing. This means
that HAMd property is always preserved. Therefore,

AdvDA-PPH
CGT-Hash[G,M](A) ≤ AdvColl

G (B)

holds for some collision adversary B against G using qt queries with total σ blocks, τ ′ =
τ + O(σ) time. ◀

By using order-optimal d-disjunct matrices derived by PR11 or CN20, the compression
rate of CGT-Hash[G,M] is kt/bn for k = O(d2 log n). The evaluation Eval runs in time O(nk)
relying upon the naive decoder. We note that, the evaluation complexity can be greatly
improved if efficient decoder is available for the test matrix. For example, the disjunct matrix
construction by Indyk et al. [23] achieves k = O(d2 log n) tests with O(d4 log n) decoding
time, and that by Ngo et al. [29] achieves k = O(d2 log n + d log n · log logd n) tests with
O(k log2 n) decoding time. The construction by CN20 also has an efficient decoder. More
precisely, it presented a construction achieving k = O(d2 min{log n, (logd n)2}) tests with
O(k + d log2(n/d)) decoding time.

4.2 Beyond Predicate
Theorem 8 is easily extended to a more informative property defined below:

DETECTd(X, X ′) :=
{
D(X, X ′) if Hd(X, X ′) ≤ d

0 otherwise.

The DETECTd property tells exact indices of different components when the difference is
smaller than the threshold, and otherwise tells that the difference is indeed larger than d.
Such a property will facilitate further investigation and is useful for some applications, e. g.,
biometrics or digital forensics.

4.2.1 Comparison with PPH1
BLV19’s first construction (PPH1) is a PPH for the Gap-Hamming property with parameter
(d, ϵ), taking b = 1. It utilizes a bipartite expander graph with a certain regularity. Using
a hash G of t-bit output, its output is k · t bits, where k = O(n/ log n) [4, Lemma 47],
d = O(n/t). Direct comparison is not possible, however, CGT-Hash (for the same input,
using the same G) implements a robust PPH for the exact Hamming distance predicate
with k · t-bit output, where k = O(d2 log n). Thus, the size reduces by a factor of about
n/(d2 log2 n), which is non-negligible when we focus on the case d≪ n.

We remark that PPH for relatively small d is still usable: it allows to check if two inputs
are close even the adversary has full knowledge of the hashing scheme, which is a typical and
intuitive application of PPH to (e. g.) biometrics.

4.3 CGT-MAC as Double-Oracle Robust PPH
We consider a MAC-based counterpart to CGT-Hash. Namely, using a variable-input-length
pseudorandom function (PRF) F : K × [k]×X → T ,

CGT-MAC[F,M](K, X) = (Y1, . . . , Yk), Yi = F (K, i, X|Mi
)
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Table 1 Comparison of Hash-based PPHs. We assume that the baseline hash G runs in O(n)
time for n-bit/item input.

Property Output Hash time Eval time
PPH1 [4] GapHAMd,ϵ O( nt

log n
) O( n2

log n
) O( n

log n
)

CGT-Hash HAMd, DETECTd O(d2t log n) O(d2n log n) O(d2n log n)1)

1) Improved to poly(d2 log n) if efficient decoders are available (see Sec-
tion 4.1)

as in the same manner to CGT-Hash. Eval is identical to that of CGT-Hash and does not
involve the key. We cannot give K to the adversary, as there is no security guarantee for
PRF once the key is known. Thus Robust PPH is impossible in the first place. The next
strong robustness notion is DO-PPH. Assuming F is a monolithic, black-box PRF, proving
DO-PPH security for the above CGT-MAC is almost identical to the DA-PPH security proof
of CGT-Hash, hence we omit it here. Such an instantiation of CGT-MAC scheme is the same
as the core component of what Goodrich et al. [19] proposed for data forensics applications.

To achieve a further efficiency improvement from the above scheme, we take a CGT-based
MAC scheme proposed by Minematsu [25], called GTM. It is a blockcipher-based scheme,
however, instead of a conventional variable-input-length PRF (or MAC) such as CMAC,
GTM uses a variant of vector-input PRF [34] that accepts an empty string as a component
of an input vector, where a vector consists of (a fixed number of) bit strings. Namely, if
the i-th row of the test matrix is (1, 0, 1), the input to the underlying vector-input PRF is
(X1, ε, X3), rather than conventional (X1, X3), together with additional index i. Such a PRF
is easily built on any variable-input-length PRF via an input encoding, but if we adopt a
structure similar to PMAC [1, 33] and simply skip the computation for j-th component if
it is an empty string, it allows a significant computational improvement in our application
while maintaining appropriate security. Concretely, CGT-MAC uses F which is defined as

F (K, i, X|Mi
) = E′

K2, i,
∑

j∈Mi

E(K1, j, Xj)

 . (1)

To learn why this F can be interpreted as a vector-input PRF, please refer to [25]. The
above F is based on two PRFs, E : K1× [k]×X → C for C = {0, 1}c for some positive c, and
E′ : K2 × [k]× C → T . The key is K = (K1, K2). As mentioned above, it is closely related
to PMAC. Let GTM[F,M] denote the PPH using F and the test matrix M that is d-disjunct.
The Hash and Eval procedures are defined as in the same manner to CGT-Hash. We show
that GTM[F,M] is a DO-PPH for HAMd.

▶ Theorem 9. Let F be a keyed function built on E, E′ as Eq. (1). If M is d-disjunct and
E, E′ are PRFs, GTM[F,M] is a DO-robust PPH for the (generalized) Hamming predicate
with threshold d (HAMd) over Bn.

Proof. Since Eval is a keyless function, the proof approach is almost identical to that of
CGT-Hash, and the proof is similar to that of [25]. We first analyze the information-theoretic
setting. Let RF be a function having the same domain and range as F , and uses two b-bit
URFs R, R′ instead of E and E′. Using a similar argument as the proof of Theorem 8, we
observe that breaking the DO-PPH security implies the invalidation of Cons event. Let A
be an adversary using q queries to GTM[RF ,M].Hash oracle and infinite computation time
(note that queries to the key-less GTM[RF ,M].Eval oracle are simulatable hence we omit).
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We have

AdvDO-PPH
GTM[RF ,M](A) ≤ AdvCons

GTM[RF ,M].Hash(A′),

for some adversary A′ using q Hash queries. Let Ideal be the idealized version of GTM[RF ,M],
namely using an independent URF instead of F (K, i, ∗), for each i ∈ [k]. Using the standard
hybrid argument, we have

AdvCons
GTM[RF ,M](A

′) ≤ AdvIND
GTM[RF ,M].Hash,Ideal.Hash(B) + AdvCons

Ideal.Hash(A′′) (2)

Since each component function of Ideal is an independent random function, as in the case
of CGT-Hash, the last term of the right hand side of Eq. (2) is reduced to the collision
probability (in the same component function; we do not have to care about collision between
different components). Let AdvColl

Ideal.hash(A) denote such a collision probability by A. We have

AdvCons
Ideal.hash(A′′) ≤ AdvColl

Ideal.hash(A′′) ≤ q2

2t+1 , (3)

where the last equation follows from the standard collision analysis. For the first term
of the r.h.s. of Eq. (2), define X(i) and T (i) = (T (i)

1 , . . . , T
(i)
k ) as the i-th Hash query

and its response, and let S(i) = (S(i)
1 , . . . , S

(i)
k ) ∈ ({0, 1}c)k be the inputs to R′, i. e.,

S
(i)
j =

∑
h∈Mj

R(K1, h, X
(i)
h ). Based on the analysis [25] (which is also a variant of PMAC’s

security proof [33]), we show that the indistinguishability is reduced to the collision between
S, namely the first term of the r.h.s. of Eq. (2) is bounded by(

q

2

)
· Pr[∃h, h′ ∈ [q], i ∈ [k] : X

(h)
|Mi
̸= X

(h′)
|Mi

, S
(h)
i = S

(h′)
i ] ≤

(
q

2

)
· 1

2c
≤ q2

2c+1 , (4)

where the probability is defined by A′′ and GTM[RF ,M]. The second inequality follows
from the observation that each component of keyed message hashing procedure, Y ←∑

j∈Mi
R(j, Xj), is XOR-universal, that is, for any X(h) and X(h′) and i ∈ [k] such that

X
(h)
|Mi
̸= X

(h′)
|Mi

, the sum S
(h)
i ⊕ S

(h′)
i is uniform. Note that we do not have to count collisions

between different component functions thanks to the “finalization” by R′ taking the index of
component as a part of input (often called a domain separation). From Eqs. (2), (3), and (4),
we have

AdvDO-PPH
GTM[RF ,M](A) ≤ q2

2c+1 + q2

2t+1 . (5)

Eq. (5) immediately tells that the computational security of GTM[F,M] assuming that E

and E′ are PRFs. More precisely, AdvDO-PPH
GTM[F,M](A) for any A with q Hash queries with t time

is at most the sum of PRF advantages of E and E′ (i. e., the advantage in distinguishing
them from the URF), and the bound shown above. This bound is shown via the standard
information-theoretic-to-computational hybrid. ◀

4.3.1 Reduced Hashing Time
A significant difference from the generic CGT-MAC is the time complexity for hashing:
assuming F runs in O(n) for n-block input (where a block is b-bit), which holds for the most
of popular constructions such as HMAC or CMAC, CGT-MAC[F,M] needs O(kn) time for
hashing an input. In contrast, the hashing of GTM needs n calls of E and k calls of E′ –
hence O(k + n) time – by caching the outputs of E (See [25]). If we use the parameters
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of Table 1, hashing time is reduced from O(d2n log n) to O((d2 log n) + n), assuming the
MAC runs in O(n) for n input items. Typically k ≪ n, as otherwise, the hashing does not
compress well, hence this simple trick of [25] allows to reduce the cost of hashing to that of
single MAC/PRF computation3. We also note that this computation cost does not depend
on the contents of M.

4.4 XOR-GTM

Minematsu and Kamiya [26] (MK19) proposed a new approach to CGT-based MAC, dubbed
XOR-GTM. It enables to detect d corruptions among n data items using a significantly
smaller number of MAC tags than O(d2 log n), namely what CGT-MAC or GTM can achieve
with a disjunct matrix.

We only briefly describe the scheme. The scheme has almost the same procedure as GTM,
using a test matrix M and PRF E, except that the final E′ is a tweakable block cipher [24]
taking i ∈ [k] as a tweak. Here, a tweakable block cipher is an extension of a conventional
block cipher that takes a chosen public value, called tweak, as a part of input in addition
to the message block. On the detection of corruptions, it first decrypts the received tags
using the inverse of E′. Next, it takes linear combinations of the decrypted tags, following
the “extended” test matrix MR, which is a submatrix of row span of M. It also takes the
same combinations from the received message and compares the linear combinations. MK19
showed that if MR is d-disjunct, this scheme allows detecting of up to d corrupted items.
Since the communication cost (number of tags) only depends on M, not MR, this implies
the communication cost can be possibly smaller than the limit of the number of rows of
d-disjunct matrix. In other words, what is needed here is a disjunct matrix of small rank for
MR. MK19 presented several such instances using error-correcting codes derived by finite
geometry.

4.4.1 Robustness of XOR-GTM

It is natural to expect DO-PPH security for XOR-GTM in the same manner as GTM. However,
unlike GTM, the Evaluation oracle of XOR-GTM involves the key. This fact makes the
security proof for DO-PPH not directly derived from the original proof of XOR-GTM. Most
importantly, the original security proof of XOR-GTM requires that the forward evaluation of
E′ is pseudorandom, but does not require the pseudorandomness of the inverse. Technically
speaking, MK19 requires Tweakable Pseudorandom Permutation (TPRP, for CPA-secure
TBC) but not Tweakable Strong PRP (TSPRP, for CCA-secure TBC). Proving DO-PPH
security appears to require the latter. This difference comes from the fact that the adversary
in the game defined for XOR-GTM (called Decoder Unforgeability, DUF) in MK19 does not
have freedom in choosing the tag given to the decoder, while the adversary in the game
of DO-PPH notion has no restriction on the choice of tags given to the evaluation oracle.
Considering that XOR-GTM significantly reduces the number of tags beyond O(d2 log n),
proving DO-PPH for XOR-GTM assuming TSPRP for E′ is an interesting open question.

3 A more detailed comparison of GTM and CGT-MAC is possible by instantiating F as a variant of PMAC
using b-bit block cipher, and letting c = b and E and E′ be the same b-bit block cipher. CGT-MAC
needs w = O(kn) block cipher calls, where w denotes the weight of M, and GTM needs (k + n) calls.
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5 Expander Graph-based Constructions for PPH and CGT

As stated earlier, PPH1 relies on a bipartite expander graph. The graph has node sets
L = [n] and R = [k], by defining the i-th test as its neighbors in L for i ∈ R. We find the
relationship between this expander-based PPH with a variant of CGT problem that aims at
determining the number of defectives rather than identifying them. This problem has been
actively studied for its practical and theoretical importance, say [8, 6, 16, 12] for example.

Among these studies, a CGT scheme proposal by Bshouty and Haddad-Zaknoon [7]
(BH21) has an interesting overlap with BLV19’s PPH. In detail, they first proposed the
construction of matrix using a bipartite expander matrix in the same manner as BLV19.
Let M = [n] be the item set and I ⊆ M be the set of defectives. The proposed matrix
allows a distinguisher A(ℓ, ∆) who uses m(ℓ, ∆) tests to distinguish whether |I| < ℓ/∆2 (A
returns 0) or |I| ≥ ℓ/∆ (A returns 1) without error, for certain parameters ℓ and ∆ > 1.
Given the maximum value for |I|, |I| < D, the proposed test (for n items and the defective
set I ) runs A(D/∆i, ∆) for i = 0, 1, . . . , ⌈(log D/ log ∆)⌉, and outputs d̂ = D/∆i+1 for the
smallest i such that A(D/∆i, ∆)→ 1. The d̂ guarantees |I|/∆ ≤ d̂ ≤ |I|∆. Using a known
construction of bipartite expander graphs, the number of tests is (D/∆2) ·2O(log3(log n)). This
construction of A(ℓ, ∆) in BH21 is essentially identical to the idea of PPH1. We note that
the problem setting of BH21 requires D as prior information on |I| and if D is not known
there is no non-trivial testing to estimate |I| [5]. BH21 can be a variant of hash-based PPH
whose goal is to give an estimate of the generalized Hamming distance with a predetermined
margin, however, such a variant is not covered by the original definition of PPH by BLV19.
Therefore, we cannot expect a direct translation from CGT scheme into a PPH as we did in
the previous sections. It may be interesting to further explore the relationships.

6 Conclusions

This paper has shown the connection between the property-preserving hash (PPH) functions
and the adversarial error detection schemes combining the classical Combinatorial Group
Testing (CGT) and hash/MAC functions. Our findings brought several implications and
improvements to the hash/MAC-based PPHs, which has been initially proposed by Boyle et
al. [4] but largely overlooked since the proposal. PPH is still in its infancy as a research field,
and we believe that the connection we have discovered will be useful for developing PPH.
Moreover, we hope that our results will also encourage the CGT research community to look
into research on PPH.
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