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Abstract

Protocols solving the Distributed Discrete Logarithm (DDLog) problem are a core component of
many recent constructions of group-based homomorphic secret sharing schemes. On a high-level,
these protocols enable two parties to transform multiplicative shares of a secret into additive share
locally without any communication. Due to their important applications, various generic optimized
DDLog protocols were proposed in the literature, culminating in the asymptotically optimal generic
protocol of Dinur, Keller, and Klein (J. Cryptol. 2020) solving DDLog in time T with error
probability O(W/T 2) when the magnitude of the secret is bounded by W .

Given that DDLog is solved repeatedly with respect to a fixed group in its applications, a natural
approach for improving the efficiency of DDLog protocols could be via leveraging some precomputed
group-specific advice. To understand the limitations of this approach, we revisit the distributed
discrete logarithm problem in the preprocessing model and study the possible time-space trade-offs
for DDLog in the generic group model. As our main result, we show that, in a group of size N , any
generic DDLog protocol for secrets of magnitude W with parties running in time T using precomputed
group-specific advice of size S has success probability ε = O

(
T 2/W + max{S, log W } · T 2/N

)
. Thus,

assuming N ≥ W log W , we get a lower bound ST 2 = Ω(εN) on the time-space trade-off for DDLog
protocols using large advice of size S = Ω(N/W ). Interestingly, for DDLog protocols using small
advice of size S = O(N/W ), we get a lower bound T 2 = Ω(εW ) on the running time, which, in the
constant-error regime, asymptotically matches the running time of the DDLog protocol without any
advice of Dinur et al. (J. Cryptol. 2020). In other words, we show that generic DDLog protocols
achieving constant success probability do not benefit from any advice of size S = O(N/W ) in the
online phase of the DDLog problem.
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6:2 On the Distributed Discrete Logarithm Problem with Preprocessing

1 Introduction

The Distributed Discrete Logarithm problem (DDLog) serves as an abstraction for a non-
interactive multiplicative-to-additive share conversion procedure central to many recent
constructions of homomorphic secret sharing schemes [4, 2, 11]. On a high-level, during
a homomorphic evaluation of a restricted multiplication straight-line program using a ho-
momorphic secret sharing scheme, two parties hold encryptions of the secret inputs under
some homomorphic public-key encryption scheme (e.g., ElGamal encryption in [4] or Pail-
lier encryption in [11]), as well as the additive shares of the inputs. After performing the
multiplication operation “multiply an input value by a memory value”, the parties naturally
obtain multiplicative shares of the result. Though, additive shares are needed for further
evaluation, and this is where the DDLog problem plays its crucial role.

Distributed discrete logarithm problem for prime-order groups

Let (G, ·) be a group in the multiplicative notation. Two parties P0 and P1 are holding
h0 ∈ G and h1 ∈ G (respectively) such that h1

h0
= ωx for some ω ∈ G and secret x ∈ Z.

Without communicating, the parties need to convert their multiplicative shares h0 and h1 to
additive shares a0 ∈ Z and a1 ∈ Z such that a1 − a0 = x. For example, in the case of [4],
the underlying group is a prime-order group and the element ω is its generator. Next, we
consider the DDLog problem in this case in more detail.

Let (G, ·) be a cyclic group of prime-order N with a generator g. A natural parameter of
the DDLog problem is the magnitude of the secret x. In the distributed discrete logarithm
problem in G on interval of size W ∈ N such that W ≤ N , the parties P0 and P1 get as input
gb and gb+x respectively, where x← {x ∈ Z∩[−W/2, W/2]} and b← ZN . The representation
of the group G and the generator g is known to both the parties. At the end of their local
executions, the parties output elements P0(gb), P1(gb+x) ∈ ZN respectively and they succeed
in solving the distributed discrete logarithm problem instance if P1(gb+x)− P0(gb) = x.

[4] gave a protocol solving the DDLog problem achieving error probability at most ε

with time complexity O(Wε−1 log(ε−1)) group operations. Using a pseudorandom function
shared among the parties, their protocol selects a set of “special” group elements and each
of the parties searches through T points closest to her input, in sense of multiplication by
the group generator g. When a party finds a “special” point, the output of the DDLog
procedure on her input is the number of steps (i.e., multiplications by g) she made until
finding the “special” point. It is clear that if both parties find the same “special” point,
P0(gb)−P1(gb+x) = x holds. Therefore, the success probability of the above DDLog protocol
is exactly the probability of the parties synchronizing on the same “special” point. In
the application towards a construction of a homomorphic secret sharing scheme, the error
probability introduced by the DDLog protocol propagates throughout the whole homomorphic
evaluation process and, subsequently, significantly affects its efficiency.

The DDLog problem in prime-order groups was further explored in [7]. First, the authors
proposed a more sophisticated DDLog protocol resulting in error probability O(W/T 2) in T

group operations. Their procedure consists of iterating random walks with carefully chosen
parameters of maximal step-length and number of steps in each stage in a way that they
continuously reduces the probability of the two parties not synchronizing on their path.

Second, the authors also analyzed the limitations of protocols solving the DDLog problem.
By a reduction of the Discrete Logarithm in Interval (DLI) problem to the DDLog problem,
they proved that the error probability of DDLog protocols running in time T is Ω(W/T 2) in
specific families of groups where the DLI problem is hard. Additionally, [7] also analyzed the
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DDLog problem in the generic group model [12, 9], i.e., in a model inhibiting the attacker
from exploiting a particular structure and properties of the underlying group. Specifically,
they showed that the error probability of any generic DDLog protocol is Ω(W/T 2).

Due to the matching negative results, the DDLog protocol can be considered as optimal.
The error probability Ω(W/T 2) also implies a non-negligible correctness error in the HSS
construction from [4].

DDLog as a synchronization problem

Note that, at its core, the distributed DLog problem is different than the standard DLog.
In order to succeed, the parties can “merely” synchronize on some special element with
high probability. In particular, they certainly do not need to find the discrete logarithms of
their respective inputs to synchronize.1 One could thus attempt to construct more efficient
DDLog protocols by leveraging some precomputed group-specific advice that, on one hand,
would allow to synchronize with high probability faster while, on the other hand, would not
compromise the security of the DLog problem in the underlying group. This approach is
particularly well motivated, for example, from the perspective of trying to amortize the cost
of the many DDLog instances generated during a homomorphic evaluation in a homomorphic
secret sharing scheme.

1.1 Our Results
In this work, we focus on the distributed discrete logarithm problem for prime-order groups
in the preprocessing model and examine to what extent can preprocessing help to solve
the distributed discrete logarithm problem. In other words, we allow an offline phase of
the protocol for precomputing a bit-string of length S before receiving the challenge pair
(gb, gb+x) without any restriction on the time of its computation. Then, the precomputed
advice bit-string is passed as an additional input to the two parties running in the online
phase, i.e., after receiving the respective challenges. Regarding the time complexity of the
protocol, we are interested in the performance of the online phase. To examine whether the
additional advice computed during the offline phase can help to reduce the error probability
in the DDLog problem, we study this question in the generic group model.

▶ Theorem 1 (main – informal). Let N, W ∈ N, such that N > W , N be a prime. Then any
generic protocol solving DDLog in a group of order N in time T using precomputed advice of
size S has success probability

ε = O

(
T 2

W
+ max{S, log W} · T 2

N

)
,

where W denotes the length of the interval in the DDLog problem. Furthermore, if N ≥
W · log W then

ε = O

(
T 2

W
+ S · T 2

N

)
.

Our main result summarized above is an upper bound on the success probability of
protocols leveraging preprocessing. Assuming N ≥ W log W , our bound for a “large”
preprocessing advice of size S = Ω(N/W ) translates into a bound on time-space tradeoff

1 Importantly, standard DLog is hard in the groups employed in the current applications of DDLog.
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6:4 On the Distributed Discrete Logarithm Problem with Preprocessing

in the DDLog problem ST 2 = Ω(εN). Note that this bound matches the lower bounds for
standard discrete logarithm problem with preprocessing given by [5] and [6]. As the DDLog
problem naturally reduces to two instances of the classical discrete logarithm problem, the
DLog algorithms matching these lower bounds give an optimal algorithm for DDLog in this
regime of parameters.

For any “small” preprocessing advice of size S = O(N/W ), our bound translates to a
lower bound on the time complexity of the DDLog problem T 2 = Ω(εW ). Interestingly, for
DDLog protocols with constant success probability in this regime of parameters, our lower
bound on time-complexity of protocols with preprocessing is matched by the time complexity
of the protocol with no preprocessing running in time T 2 = O( W

1−ε ) from [7]. Hence, if we
want to achieve a constant success probability in the DDLog problem, then allowing the
attacker to precompute a preprocessing advice of size S = O(N/W ) does not asymptotically
help to save computation time in the online phase of the DDLog problem.

Finally, let us consider the regime of parameters relevant to the application of DDLog
in homomorphic secret sharing, i.e., the original motivation for DDLog. There, we expect
W to be a polynomial function in the security parameter, i.e., W = O(polylog(N)). In this
case, our assumption N ≥ W log W is fulfilled. Then, in order to leverage the time-space
trade-off matching our lower bound, we would need to allow advice of size S = Ω(N/ log N),
which is larger than, e.g., S = 3

√
N . Moreover, advice of this size allows to calculate discrete

logarithms in polynomial time, which would ultimately break the security of the HSS scheme.

Non-generic DDLog protocols

It is important to stress that neither our results nor the results of Dinur et al. [7] rule out
non-generic DDLog protocols exploiting particular structure of some groups in which DLI is
not a difficult problem, or where the order of the underlying group is not prime. For example,
this is the case of the DDLog protocol and a subsequent construction of homomorphic
secret sharing in [11] from Paillier encryption scheme. Specifically, [11] exploits the fact that
computing discrete logarithms is easy in a particular subgroup of the Paillier group, which
allowed them to construct an efficient protocol with perfect correctness. Nevertheless, the
problem of designing efficient generic DDLog protocols is of interest besides the applications
to homomorphic secret sharing schemes. For example in the recent work of Boyle et al. [3],
the DDLog protocol of Dinur et al. [7] was exploited towards constructions of a new flavour
of locality-preserving hash function.

1.2 Our Techniques
On a high-level, our approach is similar to works that studied the standard discrete logarithm
problem with preprocessing in the generic group model [6, 5]. Though, as explained above,
there are significant differences to the standard DLog problem. In particular, the online
adversary is distributed in our context and, thus, we need to introduce the corresponding
formalism. Additionally, the DDLog problem is parameterized by the “magnitude” bound W

corresponding to the width of the interval used for sampling the secret. We strive to derive
quantitative bounds on the power of generic preprocessing adversaries that depend both on
W and the order of the group N , which corresponds to analyzing the power of algorithms
exploiting the knowledge of the parameter W .

Similarly to [5], we use the auxiliary-input generic group model in order to analyze
DDLog protocols with preprocessing. Given that proving lower bounds in the auxiliary-input
model directly is notoriously challenging, we first prove a lower bound in the more amenable



P. Hubáček, Ľ. Jančová, and V. Králová 6:5

bit-fixing model, which captures the presampling technique of Unruh [13]. Then, in order
to translate our lower bound from the bit-fixing model into the auxiliary-input model, we
leverage an analogue of theorem from [5] relating the security of primitives in the bit-fixing
and auxiliary-input model in the presence of distributed online attackers.2

First, we notice that the proof of the correspondence between bit-fixing and auxiliary-
input models in the presence of distributed online attackers follows via minor adjustments
from the analogous correspondence for standard online attackers in [5]. We give the formal
statement (Theorem 17) and a proof sketch highlighting the important points in Section 3.3.

The most technical part of our work is the upper bound on the success probability of a
distributed online attacker for DDLog in the bit-fixing generic group model (BF-GGM). The
high-level approach for proving an upper bound on the success probability in BF-GGM is to
consider an alternative experiment in which the adversary clearly has limited probability of
succeeding and then bounding the power of the adversary to distinguish such alternative
experiment from the real security experiment. In more detail, we can create a list of formal
polynomials capturing the relations among the group elements in terms of the encoding
of the challenge gx induced by the queries of the adversary to the group oracle. In the
context of standard DLog, these are univariate polynomials in ZN [X]. The core of the proof
is then analysing the probability of a collision event when substituting an actual value x

into the polynomials – such a collision event corresponds to an inconsistent answer in the
alternative experiment. In the context of distributed DLog, it is natural to consider bivariate
polynomials in ZN [X, B] that capture relations in terms of the encodings of the DDLog
challenge (gx, gx+b). Though, the most significant technical difference is induced by the
distributed nature of the online attacker. Specifically, we need to additionally handle a
collision event among the queries of the two distributed parts of the online attackers.

2 Preliminaries

Below, we review the Schwartz-Zippel lemma (Proposition 2) and the standard Boole’s
inequality, also known as the union bound (Proposition 3).

▶ Proposition 2 (Schwartz-Zippel). Let F be a field. Let f ∈ F[X1, . . . , Xk] be a non-zero
polynomial of total degree d ≥ 0. Let S be a finite subset of F and let x1, . . . , xk be chosen
independently uniformly at random from S. Then it holds that

Pr[f(x1, . . . , xk) = 0] ≤ d

|S|
.

▶ Proposition 3 (Union Bound). Let n ∈ N and consider events E1, . . . , En, then

Pr
[

n⋃
i=1

Ei

]
≤

n∑
i=1

Pr [Ei] .

2 We note that one could possibly obtain similar results to ours by adapting the more recent technique
from [8] leveraging an alternative characterization of the bit-fixing model.

ITC 2022



6:6 On the Distributed Discrete Logarithm Problem with Preprocessing

3 DDLog with Preprocessing in the Generic Group Model

3.1 The Generic Group Model

In this section, we describe a variant of the generic group model that we consider in this
work, and we define the DDLog problem in this generic group model. We use a variant of
the generic group model [12, 9] similar to the one in [5] with adjustments accommodating
distributed attackers.

Let G be a cyclic group of prime-order N with a generator g. The generic group model
allows to capture the power of algorithms that do not leverage additional knowledge about
the structure of the group or the specific representation of group elements. In more detail, the
structure of G is random in the sense that the access of the adversary to the group elements
is given by a random injective function σ : ZN → [M ] for some natural number M ≥ N .
Thus, the elements of G are represented by the elements from Im(σ), i.e., for a ∈ ZN , the
representation of the group element ga is σ(a). We call the mapping σ an encoding function.

▶ Definition 4 (Encoding function). Let N, M ∈ N be natural numbers such that M ≥ N .
Consider ZN , the additive group of integers modulo N , and the set [M ] = {1, . . . , M}. An
encoding function of ZN on [M ] is an injective mapping σ : ZN → [M ]. We denote IN,M the
set of all encoding functions of ZN on [M ] and Yσ the image of σ.3

In order to perform group operations in the generic group model, the adversary A is
granted access to a group-operation oracle O, which chooses a random encoding function
σ ← IN,M at the beginning of the experiment and then answers adversary’s queries of the
following types:
Forward query: Any query a ∈ ZN is answered by σ(a) ∈ [M ].
Group-operation query: Any query (s1, s2) ∈ [M ]× [M ] is answered by σ(x1 + x2), where

x1, x2 are elements of ZN such that σ(x1) = s1 and σ(x2) = s2. If any of s1, s2 is not in
Yσ, the query is answered by ⊥.

Inverse query: Any query s ∈ [M ] is answered by σ(−x), where x ∈ ZN is the preimage of
s, i.e., σ(x) = s. If s /∈ Yσ, the query is answered by ⊥.

In the generic group model, we measure the time complexity of the attacker by the number
of oracle queries performed during its execution.

▶ Remark 5 (Explicit inverse queries). Unlike previous works studying the standard DLog with
preprocessing [6, 5] and the DDLog without preprocessing [7] in the generic group model,
we allow the adversary to make explicit inverse queries. This choice is important for our
results in order to achieve quantitatively better bounds. Note that an inverse query can be
implemented using O(log N) group-operation queries. Thus, a lower bound in a variant of
the generic group model without explicit inverse queries yields an equivalent lower bound
in our model up to a multiplicative logarithmic factor in N . However, in order to derive
meaningful bounds for the DDLog problem, we cannot afford to neglect logarithmic factors
in N and, therefore, we analyse the performance of protocols that can make explicit inverse
queries. We note that other works previously considered explicit inverse queries in GGM.
See, for example, Neven, Smart, and Warinschi [10] or Blocki and Lee [1].

3 We omit the subscript σ in Yσ when the encoding is clear from the context.
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ExpGO

A (λ):
1. On input 1λ, the challenger C generates a secret x from a space of secrets X and

a challenge (c0, c1) from the challenge space CHx. It forwards (1λ, c0) to A(0) and
(1λ, c1) to A(1).

2. For i = 0, 1:
a. On input (1λ, ci), the attacker A(i) makes queries to oracle O and receives

answers from the oracle.
b. The attacker A(i) chooses a guess xi ∈ X and sends it to C.

3. The output of the experiment is 1 if x1 − x0 = x and 0 otherwise.

Figure 1 Distributed unpredictability experiment.

Unpredictability application

The distributed discrete logarithm problem can also be seen as a problem of guessing
secret information given a challenge from some challenge space dependent on the secret. In
particular, the attacker tries to guess x given the challenge of the form gb, gb+x. Nevertheless,
the unpredictability application does not provide a good representation for this problem, as it
carries several differences compared to it. Especially, the attacker in the distributed discrete
logarithm problem is composed of two algorithms who cannot communicate and each of these
algorithms only gets to see half of the challenge, moreover, “to solve” the DDLog problem, is
to get the secret x secret-shared between these two algorithms, not known explicitly by any
of them. We call this special type of attacker a distributed attacker and we represent similar
problems by distributed unpredictability application.

▶ Definition 6 (Distributed attacker). A distributed attacker (A(0),A(1)) is a pair of inde-
pendent PPT A(0) and A(1), who cannot communicate. We say the distributed attacker runs
in the time T if each of A(0) and A(1) does not make more than T oracle queries during its
execution.

Below, we define a distributed unpredictability application, which captures the problem
of guessing some secret information x given a challenge from a challenge space CHx in the
generic group model.

▶ Definition 7 (Distributed unpredictability application). Let λ ∈ N be a security parameter.
A distributed unpredictability application G in the oracle O-model is defined by a space of
secrets X, a set of challenge spaces {CHx | x ∈ X}, where the elements of CHx are of form
(c0, c1), a PPT challenger C with oracle access and an oracle O. We define the advantage
of the distributed attacker A = (A(0),A(1)) on G, denoted AdvGO

A (λ), as the probability of
success of A in the distributed unpredictability experiment ExpGO

A (1λ) defined in Figure 1, i.e.,

AdvGO

A (λ) = Pr
[
ExpGO

A (λ) = 1
]

.

Now, we define the distributed discrete logarithm problem in the generic group model.

▶ Definition 8 (Distributed discrete logarithm application). Let λ ∈ N be a security parameter,
let N, W ∈ N, N > W and O be a group operation oracle. The (N, W )-distributed discrete
logarithm application GO

DDLog(N, W ) is a distributed unpredictability application in O-model,
where the space of secrets is X = {x | x ∈ Z ∩ [−W/2, W/2]}, the challenge space for x ∈ X

ITC 2022



6:8 On the Distributed Discrete Logarithm Problem with Preprocessing

is defined as CHx = {(σ(b), σ(b + x)) | σ ∈ IN,M , b ∈ ZN}, and the challenger CDDLog is
a PPT that samples b ← ZN and x from the set of integers in the interval [−W/2, W/2]
uniformly at random. Then CDDLog makes two forward queries b, b + x to the oracle and
passes (1λ, σ(b)) as a challenge to A(0) and (1λ, σ(b + x)) as a challenge to A(1).

3.2 Preprocessing in the Generic Group Model
In this section, we introduce the definitional framework of the generic group model for
the algorithms with preprocessing. The framework is adapted from [5] with some small
adjustments in order to capture the distributed attacker. First, we define the preprocessing
oracle.

▶ Definition 9 (Preprocessing oracle). The preprocessing oracle O is an oracle formed by a
pair of oracles (Opre,Omain), where Opre can only be queried during the offline phase of an
experiment, i.e., before the challenge is generated and Omain can only be queried in the online
phase of an experiment.

The attacker in the preprocessing model is composed of two algorithms, one of them
running in the offline phase and having access to Opre, the other one running in the online
phase and having an access to Omain.

▶ Definition 10 ((S, T )-attacker, [5, Definition 1]). Let S, T ∈ N and O = (Opre,Omain) be
a preprocessing oracle. An (S, T )-attacker A = (A0,A1) in the O-model consist of two
probabilistic algorithms:
1. A preprocessing algorithm A0, which is computationally unbounded and which interacts

with Opre and outputs a bit-string of length at most S bits.
2. An online algorithm A1, which takes as input an S-bit output of A0 and a challenge from

the challenger, then makes at most T queries to Omain, and outputs a guess.

Now, we define the notions of unpredictability application and distributed unpredictability
application in the preprocessing model. Definitions 12 and 13 correspond to Definitions 6
and 7 extended to the preprocessing model. The (S, T )-attacker (Definition 10) and the
unpredictability application with preprocessing (Definition 11) correspond to the model
used by [5], whereas the distributed (S, T )-attacker (Definition 12) and the distributed
unpredictability application with preprocessing (Definition 7) allow us to model the DDLog
problem with preprocessing in the generic group model.

The following definition formalizes the problem of guessing secret information x given a
challenge from a related challenge space CHx, while we allow the attacker to precompute
advice string before receiving the challenge.

▶ Definition 11 (Unpredictability application with preprocessing). Let λ ∈ N be a security
parameter. An unpredictability application with preprocessing G in the oracle (Opre,Omain)-
model is defined by a space of secrets X, a set of challenge spaces {CHx | x ∈ X}, a PPT
challenger C with oracle access to Omain and a preprocessing oracle (Opre,Omain). We define
the advantage of A on G, denoted AdvG(Opre,Omain)

A (λ), as the probability of success of A in the
unpredictability experiment with preprocessing ExpG(Opre,Omain)

A (λ) defined in Figure 2, i.e.,

AdvG(Opre,Omain)

A (λ) = Pr
[
ExpG(Opre,Omain)

A (λ) = 1
]

.

We say that an unpredictability application with preprocessing G is (S, T, ε)-secure in the
(Opre,Omain)-model if, for every (S, T )-attacker A and every λ ∈ N, it holds that

AdvG(Opre,Omain)

A (λ) ≤ ε(λ).
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ExpG(Opre,Omain)

A (λ):
1. The attacker A0 makes queries to oracle Opre and receives answers from the oracle.
2. At the end of its execution, A0 outputs an advice bit-string adv of maximal length

S bits and forwards adv to the online phase attacker A1.
3. The challenger C generates a secret x from the space X and a challenge c from

the challenge space CHx. It forwards (1λ, c) to A1.
4. On input (1λ, adv, c), the attacker A1 makes queries to the oracle Omain and

receives answers from the oracle.
5. The attacker A1 chooses a guess x′ ∈ X and sends it to C.
6. The output of the experiment is 1 if x = x′ and 0 otherwise.

Figure 2 Unpredictability experiment with preprocessing.

As the online attacker in the DDLog problem is not a single algorithm, yet an attacker
composed of two algorithms who cannot communicate, we need to introduce a definition of
such attacker in the preprocessing model.

▶ Definition 12 (Distributed (S, T )-attacker). Let S, T ∈ N and O = (Opre,Omain) be a
preprocessing oracle. A distributed (S, T )-attacker A = (A0, (A(0)

1 ,A(1)
1 )) in the O-model

consist of three probabilistic algorithms:
1. A preprocessing algorithm A0, which is computationally unbounded and which interacts

with Opre and outputs a bit-string of length S bits.
2. A pair of online algorithms (A(0)

1 ,A(1)
1 ), which cannot communicate and each of which

takes as input an S-bit output of A0 and a challenge, then makes at most T queries to
Omain, and outputs a guess.

Now, we define the distributed unpredictability application with preprocessing, which
formalizes the problem of the distributed (S, T )-attacker’s online algorithms guessing additive
shares of secret information x, given a challenge from the related challenge space CHx.

▶ Definition 13 (Distributed unpredictability application with preprocessing). Let λ ∈ N be
a security parameter. A distributed unpredictability application with preprocessing G in
the oracle (Opre,Omain)-model is defined by a space of secrets X, a set of challenge spaces
{CHx | x ∈ X}, where the elements of CHx are of the form (c0, c1), a PPT challenger C
with oracle access to Omain and a preprocessing oracle (Opre,Omain). We define the advantage
of a distributed (S, T )-attacker A = (A0,A(0)

1 ,A(1)
1 ) in G, denoted AdvG(Opre,Omain)

A (λ), as the
probability of success of A in the distributed unpredictability experiment with preprocessing
DistExpG(Opre,Omain)

A (λ) defined in Figure 3, i.e.,

AdvG(Opre,Omain)

A (λ) = Pr
[
DistExpG(Opre,Omain)

A (λ) = 1
]

.

We say a distributed unpredictability application with preprocessing G is (S, T, ε)-secure in
the (Opre,Omain)-model if, for every distributed (S, T )-attacker A and every λ ∈ N, it holds
that AdvG(Opre,Omain)

A (λ) ≤ ε(λ).

Now, we define the DDLog problem with preprocessing in the generic group model.

ITC 2022
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DistExpG(Opre,Omain)

A (λ):
1. The attacker A0 makes queries to oracle Opre and receives answers from the oracle.
2. At the end of its execution A0 outputs an advice bit-string adv of maximal length

S bits and forwards adv to the online phase attackers A(0)
1 ,A(1)

1 .
3. The challenger C generates a secret x from the space X and a challenge (c0, c1)

from the challenge space CHx. It forwards (1λ, c0) to A(0)
1 and (1λ, c1) to A(1)

1 .
4. For i = 0, 1 :

a. On input (adv, 1λ, ci) the attacker A(i) makes at most T queries to oracle Omain
and receives answers from the oracle.

b. The attacker A(i) chooses a guess xi ∈ X and sends it to C.
5. The output of the experiment is 1 if x1 − x0 = x and 0 otherwise.

Figure 3 Distributed unpredictability experiment with preprocessing.

▶ Definition 14 (Distributed discrete logarithm application with preprocessing). Let λ ∈ N be
a security parameter, let N, W ∈ N, N > W . The (N, W )-distributed discrete logarithm
application with preprocessing G

(Opre,Omain)
DDLog (N, W ) is a distributed unpredictability application

with preprocessing in (Opre,Omain)-model, where Opre is an oracle that samples σ ← IN,M

at the beginning of the experiment and Omain is a group operation oracle for the encoding
function σ, the space of secrets is X = Z ∩ [−W/2, W/2], the challenge space for x ∈ X is
defined as CHx = {(σ(b), σ(b + x)) | b ∈ ZN}. The challenger CDDLog is a PPT algorithm
that samples x← X and b← ZN . Then CDDLog makes two forward queries b, b + x to the
oracle Omain and passes (1λ, σ(b)) as a challenge to A(0)

1 and (1λ, σ(b + x)) as a challenge
to A(1)

1 .

3.3 The Auxiliary-Input and Bit-Fixing Models
Following the technique of [5], we define two different preprocessing oracles: Auxiliary-input
generic group oracle and Bit-fixing generic group oracle. The auxiliary-input generic group
oracle allows us to model the preprocessing experiment. Nevertheless, it seems difficult to
perform an analysis of complexity directly in this model, while the bit-fixing generic group
oracle offers a model that is easier to analyse. [5, Theorem 1] proved a relation between an
attackers’ success probabilities in these two models. We state this result in Proposition 16.

The auxiliary-input generic group oracle allows modelling the preprocessing experiments
for generic groups, in the sense that the interface Opre allows the offline attacker to see the
entire group structure, i.e., the mapping σ. Then, A0 can choose a bit-string of maximal
length S and pass it to the online phase attacker A1 as an additional input.

On the other hand, the bit-fixing generic group oracle allows the offline attacker to fix P

points (a, s) ∈ ZN × Y and the mapping σ is chosen afterwards, in the way that it respects
these fixed points.

▶ Definition 15. We define:
Auxiliary-input generic group oracle AI-GG(N, M) is a pair (Opre,Omain), where:

Opre: Samples σ ← IN,M and outputs σ.
Omain: Answers forward queries, group-operation queries, and inverse queries using σ

sampled by Opre.
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Bit-fixing generic group oracle BF-GG(P, N, M) is a pair (Opre,Omain), where:
Opre: Samples Y ⊂ [M ] of size N uniformly at random, takes as input at most P ∈ N
pairs of the form (a, s), a ∈ ZN , s ∈ Y with no collisions, and samples σ uniformly
at random from the subset of IN,M containing all the injections consistent with the
sampled image Y and the given fixed points.
Omain: Answers forward queries, group-operation queries, and inverse queries using σ

sampled by Opre.

▶ Proposition 16 ([5, Theorem 1]). Let P, N, M ∈ N, N ≥ 16 and γ > 0. Consider a
(S, T, ε′)-secure unpredictability application with preprocessing G in the BF-GG(P, N, M)-
model. If P ≥ 6(S + log γ−1) · T comb

G , then G is (S, T, ε)-secure in the AI-GG(N, M)-model
for ε ≤ 2ε′ + γ. Where T comb

G denotes the combined number of queries of the attacker and
the challenger.

Proof. For the proof we refer to [5, Appendix A]. ◀

Importantly, Proposition 16 was formulated in [5] only for (S, T, ε)-secure unpredictability
applications with preprocessing, while not considering distributed applications. However,
we are interested in proving upper bounds on the success probability of an attacker in
the distributed discrete logarithm application with preprocessing, which is a distributed
unpredictability application with preprocessing. If we applied Proposition 16 to the DDLog
problem directly, we would be forced to represent the distributed attacker as a non-distributed
attacker in the BF-GG(P, N, M)-model, i.e., an attacker with an online algorithm that gets
both challenges and performs up to 2T oracle queries. Then, we would apply the theorem on
this stronger attacker and we would obtain the bounds in the AI-GG(N, M)-model. Thus, the
clear disadvantage of the distributed attacker of having the challenge given to two separate
algorithms that are not allowed to communicate cannot be exploited in the BF-GG(P, N, M)-
model before applying the Proposition 16. Overall, this approach leads to loose bounds on
the success probability of the distributed attacker. Nevertheless, our central observation is
that the theorem holds in the same way for a distributed attacker.

We also remark that the generic group model used in [5] does not allow the attacker
to perform inverse queries. This approach is justified by the fact that the authors apply
Proposition 16 to derive bounds precise up to polylogarithmic factors in N . The inverse
of an element x in a group of order N is equal to xN−1. Therefore, applying the standard
square-and-multiply algorithm, we can simulate the inverse operation using O(log N) group-
operations. Thus, the analysis in a version of the generic group model without the inverse
queries translates to the result precise up to polylogarithmic factors in N in a model where
these queries are allowed. However, we seek to get bounds for the DDLog problem without
neglecting logarithmic factors in N , and, therefore, we explicitly include the inverse query in
our generic group model. We note that Proposition 16 holds also in our version of the generic
group model. We explain the siginificant differences in more detail in the proof sketch of
Theorem 17 below.

▶ Theorem 17. Let P, N, M ∈ N, N ≥ 16 and γ > 0. Consider a (S, T, ε′)-secure distributed
unpredictability application with preprocessing G in the BF-GG(P, N, M)-model. If P ≥
6(S + log γ−1) · T comb

G , then G is (S, T, ε)-secure in the AI-GG(N, M)-model for ε ≤ 2ε′ + γ.
Where T comb

G denotes the combined number of queries of the attacker and the challenger.

Proof sketch. The proof follows from the proof of Proposition 16 stated in [5, Appendix A]
replacing the (S, T )-attacker with preprocessing by a distributed (S, T )-attacker with prepro-
cessing.
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In order to prove [5, Theorem 1], the authors first prove closeness of two distributions of
encoding functions, in the sense that they bound the probability that a distinguisher which
is allowed to make T forward (query a ∈ ZN is answered by σ(a)) and backward (query
l ∈ [M ] is answered by σ−1(l)) oracle queries succeeds to guess from which distribution the
encoding function σ of ZN on [M ] was chosen. In fact, this part of their proof is general and
can be applied in the same manner in the setting with distributed attackers.

Then, to prove Proposition 16, they construct an (S, T )-attacker A′ = (A′
0,A′

1) for the
BF-GG(P, N, M) oracle model from an (S, T )-attacker A = (A0,A1) for the AI-GG(N, M)
oracle model. Their A′

1 is defined as A1 and their A′
0 first simulates A0 to get the advice

string and, based on it, it fixes at most P points in the encoding function. Thus, A′
0 forces

the oracle to choose the encoding function from a convenient distribution. Then, they let
the distinguisher D for the encoding function internally run the online algorithm A1 on the
advice string calculated by A0 and, subsequently, the challenger C for the unpredictability
experiment with preprocessing. The output of the distinguisher is defined as the output of
the unpredictability experiment with preprocessing resulting from the interaction of A1 and
C. The probability of the distinguisher outputting 1 corresponds either to the probability of
success of A in the AI-GG(N, M) oracle model or to the probability of success of A′ in the
BF-GG(N, M) oracle model, depending on which distribution was σ chosen from. Due to the
bound on the distinguishing probability between the two aforementioned distributions, they
get a relation between the success probabilities of A in the AI-GG(N, M)-model and A′ in
the BF-GG(P, N, M)-model stated in the theorem, which concludes their proof.

If we replace the attacker A by a distributed attacker and define A′ in the same way as
in the original proof, A′ will also be a distributed attacker (as the online algorithms of A
and A′ are defined to be the same) and we can perform the proof in the very same fashion
as in [5] and get the same results for the distributed attacker.

The proof of Proposition 16 can also be adapted to the version of generic group model
which allows inverse queries. When the distinguisher D simulates A1 and C, it must provide
the answers to their oracle queries. In their proof, [5] only dealt with the forward query, which
D passes as a forward query to its oracle and passes the answer back, and the group-operation
query, which is a query of the form (a1, a2) ∈ [M ]2, answered by σ(σ−1(a1) + σ−1(a2)). The
group-operation query is simulated by D by performing two backward queries σ−1(a1), σ−1(a2)
and one forward query σ(σ−1(a1) + σ−1(a2)) to its oracle. In our case, we have to deal
also with the inverse query, which is a query of the form a ∈ [M ], answered by the element
corresponding to the inverse of a. This query can be simulated as one backward query σ−1(a)
and one forward query σ(−σ−1(a)). As in the original proof, our distinguisher makes at
most 3T comb queries, where T comb is the combined number of queries of A1 and C. The rest
of the proof is the same, and the same results follow. ◀

4 Lower Bounds for DDLog with Preprocessing in the Generic Group
Model

Now, we present our main theorem giving an upper bound on the success probability of a
distributed attacker with preprocessing in the DDLog problem. Our theorem is based on [5,
Theorem 10], which examines the discrete logarithm problem in the preprocessing model.
The structure of our proof is similar to the one of [5, Theorem 10]. However, if we simply
adjusted the proof of [5, Theorem 10] to our case, we would get the bound for the success
probability of an attacker ε = O

(
ST 2+T 2·log(W )

W

)
.
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Nevertheless, the distributed attacker allows us to make a more careful analysis and
obtain quantitatively better results. As the distributed attacker is a weaker attacker than its
non-distributed representation, we can obtain a tighter bound in the BF-GG(P, N, M) oracle
model. Then, we translate this bound to the AI-GG(N, M) oracle model using Theorem 17.

▶ Theorem 18. Let N, W ∈ N, N > W , N be a prime. The (N, W )-distributed dis-
crete logarithm application with preprocessing G

AI-GG(N,M)
DDLog (N, W ) is (S, T, ε)-secure in the

AI-GG(N, M)-model for any

ε = O

(
T 2

W
+ max{S, log W} · T 2

N

)
,

where W denotes the length of the interval in the DDLog problem. Furthermore, if N ≥
W · log(W ) the theorem holds for

ε = O

(
T 2

W
+ S · T 2

N

)
.

The proof of Theorem 18 is given in Appendix A.
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1. A0 fixes σ in at most P points (a, s), a ∈ ZN , s ∈ Y. We add each such point to the
table as a pair (a, s), where a is a constant polynomial.

2. To create the challenge sb ∈ Y for A(0)
1 , CDDLog chooses sb from all unused values in Y

uniformly at random. The pair (B, sb) is stored in the table.
3. The execution of A(0)

1 :
a. Upon a forward query q ∈ ZN the table is checked for the occurrence of q ∈ ZN [X, B]

as a constant polynomial. If such occurrence is found, we respond by the corresponding
sq ∈ Y that occurs in the table in a pair with q. Otherwise, we sample sq uniformly at
random from all the unused values in Y and we store the pair (q, sq) in the table.

b. To a group-operation query (s1, s2) we respond by ⊥ if s1 or s2 is not in Y . Otherwise,
if s1 is not in the table, we sample a1 uniformly at random from all unused values in ZN

and we store the pair (a1, s1) in the table. The same applies for s2. Afterwards, both
s1, s2 are already stored in the table in pairs with some polynomials u1, u2 ∈ ZN [B].
We check the table for an occurrence of the polynomial u1 + u2. If there is a record
(u1 + u2, s3) for some s3 ∈ Y in the table, we respond by s3 to the query. Otherwise
we sample s3 uniformly at random from all unused values in Y, we store (u1 + u2, s3)
in the table, and we respond by s3 to the query.

c. To an inverse query s1, we respond by ⊥ if s1 ̸∈ Y . If s1 ∈ Y and s1 is not in the table,
we sample u uniformly at random from all unused values in ZN and we append the pair
(u, s1) to the table. Now, s1 is in the table in pair with some polynomial u ∈ ZN [B].
We check the table for an occurrence of (N − 1) · u, if such entry ((N − 1) · u, s2) is
found for some s2 ∈ Y , we answer the query by s2. Otherwise, we sample s2 uniformly
at random from all unused labels from Y , answer the query by s2, and we add the pair
((N − 1) · u, s2) to the table.

d. At the end of its execution, A(0)
1 outputs x0.

4. To create the challenge sb+x for A(1)
1 , CDDLog chooses sb+x from all unused values in Y

uniformly at random. The pair (B + X, sb+x) is stored in the table.
5. The execution of A(1)

1 is handled in the same way as the execution of A(0)
1 . Except if

A(1)
1 queries a group-operation query (s1, s2) such that either (α · B + β, s1), or

(α ·B + β, s2), for some α, β ∈ ZN , α ̸= 0 is already in the table, or
A(1)

1 queries an inverse query s1 such that (α ·B + β, s1) for some α, β ∈ ZN , α ̸= 0 is
already in the table.

We denote the event when either one of the above bullet points happens as F . If the
event F occurs, we answer the query by ⊥ and we do not append anything to the table.
At the end of its execution, A(1)

1 outputs x1.
6. CDDLog chooses x uniformly at random from all integers in [−W/2, W/2] and b uniformly

at random from ZN . CDDLog outputs 1 if and only if x1 − x0 = x.

Note that all of the polynomials in the table at the end of the execution are distinct, as
we always first check for an occurrence of a polynomial before adding it to the table. We
define a collision event, denoted E, as the event when, after a substitution of the values
x, b chosen by CDDLog for the variables X, B (respectively) in the polynomials in the table,
there exist two entries (a, s) and (a, s′) in the table such that s ̸= s′. Note that the event E

corresponds to a discrepancy in the query responses to the attacker. In other words, there is
no encoding function σ such that all of our query responses would be correct because we
associated the image of a with two distinct elements s, s′. If the event E does not occur
and the event F does not occur either then there exists an encoding function σ compatible
with all of our query responses. Furthermore, as we always choose the elements uniformly
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at random from the appropriate sets, also the distribution of responses in the alternative
experiment is identical to the distribution of responses in the real unpredictability experiment
with preprocessing.

Thus, the distribution of answers seen by A in the alternative experiment differs from the
one in the honest experiment only if at least one of the events E, F occurs. We bound the
probability that the execution differs from the honest execution by bounding the probability
Pr[E ∪ F ] ≤ Pr[E | ¬F ] + Pr[F ].

Below, we introduce a lemma that characterizes the structure of the contents of the table
at the end of the alternative experiment.

▶ Lemma 19. At most 2T + 2 non-constant polynomials are in the table at the end of the
execution of the alternative experiment. Moreover,
1. at most T + 1 of those are of the form αB + β, for some α, β ∈ ZN , α ̸= 0 (we say

“polynomials of type 1”) and they were added either as the challenge for A(0)
1 in the step 2

or as a polynomial corresponding to a group-operation query response during the execution
of A(0)

1 in the step 3 b, or as a polynomial in pair with a response to an inverse query in
the step 3 c. Furthermore, the value s ∈ Y in pair with such polynomial in the table is
never returned as an answer to a query made by A(1)

1 . Also,
2. at most T + 1 of non-constant polynomials in the table are of the form α(X + B) + β,

for some α, β ∈ ZN , α ≠ 0 (we say “polynomials of type 2”) and they were added either
as the challenge for A(1)

1 in the step 4 or as a polynomial corresponding to a group-
operation query response or inverse query response during the execution of A(1)

1 in step 5.
Furthermore, the value s ∈ Y in pair with such polynomial in the table is never returned
as an answer to a query made by A(0)

1 .
There are no non-constant polynomials in the table of forms different than the polynomials of
type 1 and 2.

Proof of Lemma 19. First, notice that a non-constant polynomial can only be introduced in
the table in a pair with a challenge sb, sb+x, or in a pair with a response to a group-operation
or inverse query, where at least one of the queried elements s1, s2 or the queried element s1
(for the inverse query) has already been in the table in pair with a non-constant polynomial.
As there are two challenges and at most 2T queries performed by the distributed attacker,
there is at most 2T + 2 non-constant polynomials in the table at the end of the execution.

Next, we show that the second part of the lemma holds. Notice that the first polynomial
with a non-zero coefficient next to the variable X is added to the table with the challenge sb+x

in the step 4. Therefore, the polynomials with a non-zero coefficient next to the variable X

can be added to the table as a result of a group-operation query or an inverse query only after
this moment. Since there are at most T queries performed after this moment, there cannot
be more than T + 1 polynomials with a non-zero coefficient next to the variable X, and, thus,
not more than T + 1 polynomials of type 2. Furthermore, when a new polynomial is added
to the table, we sample its pair value s from the unused values in Y. As the polynomials
of type 2 appear in the table only after the end of execution of A(0)

1 , none of the values s

in pairs with such polynomials could have been returned as an answer to a query made by A(0)
1 .

Next, we prove that, at the end of the alternative experiment, there are no non-constant
polynomials of forms different than polynomials of type 1 and 2 in the table.

Recall that non-constant polynomials are only being added to the table in the challenge
pair, during a group-operation query as a sum of two polynomials already present in the
table, where at least one of them is non-constant, or during an inverse query as an (N − 1)
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multiple of a polynomial in pair with the queried element if it is non-constant. Therefore, it is
obvious that all polynomials in the table are at most of degree one in both B and X. Now, it
is enough to show there is no polynomial of the form α1B + α2X + β, where α1, α2, β ∈ ZN ,
α2 ̸= 0, α1 ̸= α2 that we refer to as a “polynomial of type 3”. We already know no polynomial
of this form has been added to the table before the step 4 of the experiment because all of the
polynomials until this step are of degree zero in the variable X. The polynomial added with
the challenge in step 4 is X + B, which is a polynomial of type 2. Therefore, it is enough to
look at the polynomials added to the table during step 5. We prove by induction that no
non-constant polynomials of type different than type 2 are added to the table during step 5.
Suppose no non-constant polynomials different than type 2 were added to the table during
step 5 before the i-th query in step 5. For i = 1, the assumption holds trivially. We prove
the inductive step for i + 1 next. By the inductive hypothesis, it follows that there are no
polynomials different from the constant polynomials, polynomials of type 1, and polynomials
of type 2 before the i-th query of step 5 in the table. In case i-th query is a forward query,
either a constant polynomial or no polynomial is added to the table. In case the i-th query
is a group operation query (s1, s2), the following cases can occur:
1. At least one of the pair s1, s2 is not in Y. Then ⊥ is returned and no polynomials are

added to the table.
2. Both s1, s2 lie in Y , and either none of them is in the table or one of them is in the table

in pair with a constant polynomial and the other one is not in the table or both are in
the table in pair with a constant polynomial. Then, only constant polynomials are added
to the table.

3. Both s1, s2 lie in Y, one of them is in the table in pair with a polynomial of type 2, and
the other one is not in the table, is in the table in pair with a constant polynomial, or is
in the table in pair with a polynomial of type 2. Then, the response will be in the table
in pair with a polynomial of type 2 or a constant polynomial.

4. Both s1, s2 lie in Y and one of them is in the table in pair with a polynomial of type 1.
Then, the query is answered by ⊥ and no polynomials are added to the table.

In case the i-th query is an inverse query s1, the following cases can occur:
1. The element s1 does not lie in Y. Then, ⊥ is returned and no polynomials are added to

the table.
2. The element s1 lies in Y and s1 is not in the table, or it is in the table in a pair with a

constant polynomial. Then, only constant polynomials are added to the table.
3. The element s1 lies in Y and s1 is in the table in a pair with a polynomial of type 2.

Then, the response is in the table in pair with a polynomial of type 2.
4. The element s1 lies in Y and s1 is in the table in pair with a polynomial of type 1. Then,

the query is answered by ⊥ and no polynomials are added to the table.

By the above exhaustive case-analysis, no non-constant polynomial of type different than
type 2 was added during the i-th query. Therefore, no non-constant polynomial of type
different than type 2 was added during step 5. Thus, no non-constant polynomials of forms
different than the polynomials of type 1 and 2 are in the table at the end of the execution of
the alternative experiment.

Part 1 of the lemma follows from the fact that no non-constant polynomial of type
different than type 2 is being added to the table during the execution of A(1)

1 . More precisely,
the polynomials of type 1 can only be introduced in the table in a pair with the challenge sb

or in a pair with a response to a group-operation query or an inverse query by A(0)
1 . Since

A(0)
1 makes at most T queries, at most T + 1 polynomials of type 1 are in the table at the
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end of the execution. By the analysis of the possible group-operation and inverse query
responses during step 5, an s in a pair with a polynomial of type 1 is never returned as an
answer to a query made by A(1)

1 . This concludes the proof of Lemma 19. ◀

The following lemma bounds the probability Pr[E | ¬F ] (Due to space restrictions, the
proof of the lemma appears in the full version).

▶ Lemma 20. The probability Pr[E | ¬F ] can by bounded as follows

Pr[E | ¬F ] ≤ (T + 1)2

W
+ (2T + 2) · (P + 6T + 1)

N
.

In the following lemma, we bound the probability Pr[F ] (Due to space restrictions, the
proof of the lemma appears in the full version).

▶ Lemma 21. The probability Pr[F ] can be bounded as follows

Pr[F ] ≤ 2 · T · (T + 1)
N − (P + 5T ) .

By the above Lemmas 20 and 21, we get

Pr[E ∪ F ] ≤ (T + 1)2

W
+ (2T + 2) · (P + 6T + 1)

N
+ 2 · T · (T + 1)

N − (P + 5T ) .

Since x is chosen at the end of the experiment uniformly at random from the integer
values in the interval [−W/2, W/2] in the alternative experiment, the success probability of
any A in the alternative experiment is at most 1/W . By the union bound, we can bound
the success probability ε′ of A in the standard experiment as

ε′ ≤ (T + 1)2 + 1
W

+ (2T + 2) · (P + 6T + 1)
N

+ 2 · T · (T + 1)
N − (P + 5T ) .

In the rest of the proof, we assume that N ≥ 16 (required by Proposition 16). This can
be done without loss of generality since we are proving an asymptotic bound. Now, we apply
Theorem 17 in order to bound the attacker’s success probability ε in the AI-GG(N, M)-model.
It holds that T comb

GDDLog = 2T + 2, and we set γ := 1/W and P := 6(S + log(W )) · (2T + 2). By
Theorem 17, we get that

ε ≤ 2 · ε′ + γ

≤ 2 · (T + 1)2 + 3
W

+ 2 · (2T + 2) · (P + 6T + 1)
N

+ 4 · T · (T + 1)
N − (P + 5T ) .

In the rest of the proof, we assume T ≥ 72. Note that, after proving our result for the
attackers with T ≥ 72, we can bound the advantage of an attacker making less queries
as follows. Suppose an attacker A makes 0 < T < 72 queries during its execution. Note
that any attacker B making T̃ := 72 · T queries can simulate A. However, by our result,

we can bound the advantage of B as ϵB = O

(
T̃ 2

W
+ max{S, log W} · T̃ 2

N

)
. Therefore, the

advantage ϵA of A is also bounded by this expression and, as T̃ = 72 · T , it also holds that

ϵA = O

(
T 2

W
+ max{S, log W} · T 2

N

)
.
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Furthermore, assume that N ≥ 72 · max{S, log(W ), 1} · T . Otherwise if N < 72 ·

max{S, log(W ), 1} · T ≤ max{S, log(W ), 1} · T 2, then max{S, log(W ), 1} · T 2

N
> 1 and the

theorem’s bound is looser than ε = O(1), which holds trivially. Thus, we get

N − (P + 5T ) = N − (6(S + log(W )) · (2T + 2) + 5T )
≥ N − (12 ·max{S, log(W ), 1} · (2T + 2) + 5T )
≥ N − 36 ·max{S, log(W ), 1} · T
≥ N/2.

Consequently, for the sum of the second and the third term, we have

2 · (2T + 2) · (P + 1 + 6T )
N

+ 4 · T · (T + 1)
N − (P + 5T )

≤ 2 · (2T + 2) · (P + 1 + 6T )
N

+ 8 · T · (T + 1)
N

= 4 · (T + 1)(P + 1 + 8T )
N

= 4 · (T + 1)(6 · (S + log W )(2T + 2) + 1 + 8T )
N

= 48 · (T + 1)2 · (S + log W ) + (4T + 4) · (1 + 8T )
N

≤ 96 ·max{S, log(W )} · (T + 1)2 + (4T + 4) · (1 + 8T )
N

≤ 192 ·max{S, log(W ), 1} · T 2

N
,

where the last inequality holds as we assume T ≥ 72. Specifically, for all T ≥ 72, it holds
that

96T 2 ≥ 96 · (2T + 1) + (4T + 4) · (1 + 8T ) = 32T 2 + 228T + 100,

which we use to bound the sub-quadratic terms in T in the nominator.
Therefore, it holds that

ε ≤ 3T 2

W
+ 192 ·max{S, log(W ), 1} · T 2

N
= O

(
T 2

W
+ max{S, log(W )} · T 2

N

)
.

Furthermore, if N ≥ (W · log(W )) then we get that

ε ≤3T 2

W
+ 192 ·max{S, 1} · T 2

N
+ 192 · log(W ) · T 2

N

≤3T 2

W
+ 192 ·max{S, 1} · T 2

N
+ 192 · T 2

W
= O

(
T 2

W
+ S · T 2

N

)
.

The above bounds establish Theorem 18.
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