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Abstract
Pseudorandom number generators with input (PRNGs) are cryptographic algorithms that generate
pseudorandom bits from accumulated entropic inputs (e.g., keystrokes, interrupt timings, etc.). This
paper studies in particular PRNGs that are secure against premature next attacks (Kelsey et al.,
FSE ’98), a class of attacks leveraging the fact that a PRNG may produce an output (which could
be seen by an adversary!) before enough entropy has been accumulated. Practical designs adopt
either unsound entropy-estimation methods to prevent such attacks (as in Linux’s /dev/random) or
sophisticated pool-based approaches as in Yarrow (MacOS/FreeBSD) and Fortuna (Windows).

The only prior theoretical study of premature next attacks (Dodis et al., Algorithmica ’17)
considers either a seeded setting or assumes constant entropy rate, and thus falls short of providing
and validating practical designs. Assuming the availability of random seed is particularly problematic,
first because this requires us to somehow generate a random seed without using our PRNG, but
also because we must ensure that the entropy inputs to the PRNG remain independent of the seed.
Indeed, all practical designs are seedless. However, prior works on seedless PRNGs (Coretti et al.,
CRYPTO ’19; Dodis et al., ITC ’21, CRYPTO’21) do not consider premature next attacks.

The main goal of this paper is to investigate the feasibility of theoretically sound seedless PRNGs
that are secure against premature next attacks. To this end, we make the following contributions:
1. We prove that it is impossible to achieve seedless PRNGs that are secure against premature-next

attacks, even in a rather weak model. Namely, the impossibility holds even when the entropic
inputs to the PRNG are independent. In particular, our impossibility result holds in settings
where seedless PRNGs are otherwise possible.

2. Given the above impossibility result, we investigate whether existing seedless pool-based ap-
proaches meant to overcome premature next attacks in practical designs provide meaningful
guarantees in certain settings. Specifically, we show the following.

We introduce a natural condition on the entropic input and prove that it implies security of
the round-robin entropy accumulation PRNG used by Windows 10, called Fortuna. Intuitively,
our condition requires the input entropy “not to vary too wildly” within a given round-robin
round.
We prove that the “root pool” approach (also used in Windows 10) is secure for general
entropy inputs, provided that the system’s state is not compromised after system startup.
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1 Introduction

Pseudo-random number generators (PRNGs) are one of the most critical building blocks of
secure systems. In particular, no meaningful cryptography is achievable without (pseudo)
randomness. In practice, PRNGs’ main functionality is to accumulate entropy (modeled
by the function refresh in the syntax) into one or more pools from several sources (such as
keystrokes, interrupt timings, etc.), and to then extract “clean” pseudorandom bits from these
pools (modeled by the function next). In other words, refresh calls is used to accumulate
entropy into the state of the PRNG while next is used to produce outputs from this PRNG
state. While doing this, PRNGs must resist powerful attacks. On the one hand, the available
entropy sources (i.e., the input to the PRNG) may be partially controlled by the adversary
interacting with the system. On the other hand, the state of the PRNG may be compromised,
and we want to protect both prior uses of the PRNG (i.e., we want forward security), as well
as allow for recovery from such compromise. PRNGs, in particular, differ from “traditional”
pseudorandom generators, which instead already assume a fully entropic input.

Several practical PRNG designs have been proposed, including those in operating systems
such as /dev/random [20] for Linux, Yarrow [15] for MacOS/iOS/FreeBSD, and Fortuna [10]
for Windows, and in standards like NIST’s SP 800-90A [2]. Designing secure PRNGs
remains however a complex task, and several flaws have been identified in existing designs
(cf. e.g. [19, 21]).

Seedless PRNGs. One could hope that the best way forward is to develop provably secure
PRNGs, following a line of work initiated by Barak and Halevi [1]. Yet, theoretical validation
presents several technical challenges. In particular, we want such PRNGs to be general, in
that they achieve security under the minimal assumption that the available sources have
sufficient entropy. To address this, much of the prior work has considered a seeded setting,
first proposed by Dodis et al. [7]. Here, the PRNG can rely on a random seed which is
independent from the accumulated entropy (but known to the attacker), an approach inherited
from the necessity of seed for extraction from general entropy sources [17]. Such a seeded
approach was taken by several subsequent works [7, 8, 19, 11, 14, 12]. This seed serves as an
input to both refresh and next.

However, the seeded setting is not necessarily practical. Indeed, since our end goal is that
of generating randomness in the first place, one may question where a uniformly random
and independent seed would come from! Moreover, and perhaps even more importantly, it
is unreasonable to expect our input sources to be truly independent of the seed. (E.g., our
future keystrokes can certainly depend on the prior output of our PRNG, which depends on
the seed.) Unsurprisingly, all practical designs are seedless.

This issue has motivated recent work studying different ways in which the impossibility
of deterministic extraction can be circumvented without the need for seed. Coretti et al. [4]
consider constructions based on cryptographic hash functions modeled as random oracles
and introduced corresponding meaningful notions of entropy in this setting. The formal
definition is presented as Definition 1. Subsequent works by Dodis et al. [6, 5] consider the
simple case in which the inputs are independent and without assuming ideal primitives.
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This paper: Seedless PRNGs & Premature-next attacks. All prior theoretical work on
seedless PRNGs relied heavily on the assumption that the PRNG is allowed sufficient time
to accumulate entropy before having to provide any output, i.e., they do not handle so-called
premature-next attacks [16]. In such an attack, the adversary requests output from the
PRNG before it has accumulated enough entropy to guarantee security. Much prior work
(including all prior work in the seedless setting) simply assumes that all accumulated entropy
is lost upon such a premature-next call. With such a definition, a PRNG might fail to
produce a single pseudorandom bit, regardless of how much entropy is provided!

Linux’s /dev/random [20] attempts to overcome premature-next attacks by blocking the
RNG as long as insufficient entropy has been accumulated, but this approach cannot be
theoretically sound, as estimating entropy is impossible [18, 10]. Indeed, a concrete way
to fool /dev/random’s entropy estimation was given in [7]. In contrast, Yarrow [15] and
Fortuna [10] propose a clever solution to the problem. Abstractly, these constructions have
a register as well as many pools. Only the register is used to provide output. Each time
these PRNGs receive some input, they “add it to one pool” selected in a round-robin fashion.
Then, at different rates, each pool is used to occasionally update the register. We call this
“emptying the pool.” Intuitively, while a premature-next call might completely leak the input
to any pools that have been emptied recently, it will not reveal any information about inputs
to pools that have not been emptied since they received this input.

A generalization of this pool-based approach was analyzed formally by Dodis et al. [8].
However, their analysis either assumes seeds (thus departing from the deterministic approach
taken by Yarrow/Fortuna) or requires that the entropy rate is constant – i.e., that all inputs
have the same (unknown, adversarially chosen) entropy. Both situations are undesirable, and
in this paper, we aim to make progress on the following general question:

Can we have seedless PRNG designs which provably resist (in some meaningful way)
premature-next attacks?

1.1 Our Results
Impossibility of seedless PRNGs. We first address the feasibility question of whether
seedless PRNGs can, in principle, be secure against premature-next attacks. We would like
in particular to assess whether recent positive results on seedless PRNGs, [4, 6, 5] can be
extended to resist premature-next attacks.

Notice that, if the attacker can choose to vary the entropy of the inputs, then no
“deterministic pool-based approach” can work. (As in [8], we formalize this below using the
notion of a scheduler.) In particular, if we require γ bits of entropy to go into a single pool
in order to recover from compromise and the attacker knows when pools will be filled and
emptied, then the attacker can simply provide a bit less than γ bits to each pool before
it is emptied. (This intuition is formalized in [8].) However, one can imagine much more
complicated constructions. E.g., we might choose which pool to fill or empty based on the
(entropic) input (perhaps even with some attempt at entropy estimation like /dev/random),
or we might not use a pool-based approach at all.

Surprisingly, we show that no seedless PRNG can resist premature next attacks, even
if the inputs are sampled independently. In particular, as deterministic extraction without
the seed is possible for independent inputs [3], our impossibility is inherently due to the
premature next problem. In more detail, following [8], we parameterize security by two values,
γ∗, and β. The goal is to guarantee that if the PRNG has obtained γ∗ bits of min-entropy
within T ∗ steps after the last state compromise, then the PRNG will revert to producing
pseudorandom bits within βT ∗ steps after the same state compromise. We prove that for any
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choice of γ∗, β, there exists an efficient adversary providing q ≥ γ∗2β2 PRNG inputs (each
with one independent bit of entropy) which violate the PRNG security against premature
next attacks. Since q is typically huge, this rules out any reasonable settings of γ∗ and β.

In addition to being interesting in its own right, this shows a natural setting where
meaningful PRNG security (e.g., entropy accumulation and extraction) is possible without
premature-next attacks, but impossible with them.

Toward Positive Results. The above strong impossibility result, including the “separation”
between randomness accumulation/extraction and premature-next security, motivates us to
search for positive results even (optimistically) assuming perfect entropy accumulation and
extraction. In fact, we already have two widely used solutions that appear to work in practice.
First, we already mentioned the round-robin pool-based approach, called Fortuna, which is
part of Windows 10 and macOS. Second, Windows 10 [9] uses a special “root pool” to solve
the problem of initial entropy accumulation when the computer starts up. This single pool is
emptied at exponentially increasing intervals (e.g., at time 1, β, β2, ...) to (heuristically) solve
the problem that sometimes the computer might boot with no good source of randomness
for an unknown period of time. Intuitively, if good entropy starts to come in at (unknown)
time t, the root pool will allow the PRNG to produce good random bits by time at most βt.
While this simple approach does not work when one is worried about state compromise at
an unknown time (and this is why more than 1 pool is used for general purpose PRNGs like
Fortuna), it appears quite effective for accumulating entropy at startup.

Given the existence of these two heuristics to accumulate entropy within pools, we ask
whether we can find natural conditions where these approaches provably work, despite our
strong impossibility result above. To make this question formal, we define a clean model of
seedless (pool-based) schedulers, extending the corresponding notion of schedulers [8] to the
seedless setting. Intuitively, if we have k pools, given each entropic sample Xi, the scheduler
decides which pool ini ∈ [k] will accumulate this entropy, and, which pool outi ∈ [k] (if
any) will contribute its accumulated entropy back to the register. Moreover, to model ideal
entropy accumulation and extraction, we assume that the entropy that was thrown to pool i

simply adds up without loss.
In fact, at this level of abstraction, we can completely forget about entropy and PRNGs

and simply consider an abstract notion of a scheduler, whose goal is to distribute a sequence
of weights w1, . . . , wq ∈ [0, 1] into pools, sometimes emptying one of the pools with the
following guarantee. If there are t consecutive weights wt0+1, . . . , wt0+t whose sum is larger
than some threshold α, then there should be a pool that accumulates at least weight 1
in this same time period (without being emptied) and is emptied shortly thereafter, say
before time step t0 + βt. We call this (α, β)-security. Here, a pool accumulating weight 1
in this abstract scheduler game corresponds to a pool accumulating sufficient entropy in a
pool-based PRNG. [8] proved formally that a secure scheduler can be used to convert PRNGs
that are secure in a model that does not allow for premature-next attacks (used for the
individual entropy pools) into a PRNG that is secure in a model with premature-next attacks.
In particular, given an (α, β)-secure scheduler together with a PRNG that recovers from
compromise after receiving γ bits of entropy without allowing for premature-next attacks, we
can construct a PRNG that recovers from compromise even in the presence of premature
next in time βt, where t is the time needed to receive αγ bits of entropy.

Because of our general impossibility result above, we cannot achieve general (α, β)-security.
(We also give direct proof of this fact in the setting of schedulers below.) We then show two
positive results yielding proven security guarantees for the two schedulers used in the real
world, by giving meaningful restrictions to the model.
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First, we show that the root-pool approach achieves nearly optimal (α, β)-security to
accumulate entropy at start-up, where α ≈ logβ q (and we can take any integer β ≥ 2).
Plugging in known constructions yields a PRNG in the root-pool model (i.e., in which we
assume that compromise only happens at time 0) that is exponentially better than our
general-scheduler lower bound stating αβ ≥ √q.
Second, we show that the round-robin Fortuna construction with k ≥ logβ q pools achieves
(α, β)-security with α ≈ logβ q, provided one uses a more conservative notion of entropy
called k-smooth entropy.1 For constant-rate entropy sources, this notion of entropy is
identical to the traditional min-entropy, and our result indeed generalizes the earlier
observation of [8] regarding constant-rate sources. More generally, our notion of k-smooth
entropy essentially captures the idea that wildly fluctuating entropy should be penalized,
which we believe is a practically relevant idea (and in particular seems to be behind
the heuristics used in practice). In other words, despite simple attacks on the Fortuna
scheduler in the unrestricted setting, we found a natural condition where this scheduler
works.

We stress that our scheduler results only solve the premature next problem assuming ideal
entropy accumulation and extraction, but we hope future work will extend them to full-blown
PRNGs, which provably overcome our negative results under similar restrictions.

2 Preliminaries

We write N := {0, 1, 2, . . .} for the set of natural numbers and for positive integers k ≥ 1, we
write [k] := {0, . . . , k − 1} for the natural numbers up to k − 1. When a value x is sampled
uniformly from a distribution X, we will denote it by x ← X. By Un, we will denote a
uniform distribution over bit strings of length n.

We consider PPT adversaries, in some security parameter λ. All our variables in our
security definitions will depend on this security parameter.

Min-Entropy. The prediction probability of a random variable X is Pred(X) :=
maxx P[X = x] and the min-entropy is H∞(X) = − log(Pred(X)).

Security Games. All of the security properties considered in this paper are captured by
considering a game between a challenger and an attacker A, both of which may have access
to an ideal primitive P . The goal of the attacker is to guess a random bit b chosen by the
challenger, who offers a set of oracles to the attacker to aid with this task. The advantage of
A is defined as

2 ·
∣∣ P[A wins]− 1/2

∣∣ ,

where the probability is over the randomness of A, of the challenger, and of the ideal
primitive. The cases where b = 0 and b = 1 are referred to as the real world and the ideal
world, respectively. One may equivalently consider A’s advantage at telling these two worlds
apart, i.e.,∣∣ P[A = 1|b = 0]− P[A = 1|b = 1]

∣∣ .

1 We have a general bound for all k, including a constant number of pools, where α = O(k) and
β = O(q1/k).
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3 Impossibility of “Premature Next” Seedless PRNGs

This section considers the security of seedless PRNGs against premature next attacks [16].
The idea behind such an attack is that next – the algorithm extracting pseudorandom bits
from the PRNG state – is called before the state has accumulated sufficient entropy. The
resulting output will therefore not be fully random, and an adversary can potentially use the
output of many such calls to recover the state. The notion of robustness against premature-
next attacks was formalized by Dodis et al. [8]. Their work generalized and analyzed a key
technique to mitigate such attacks that originated in the designs of the Yarrow [15] and
Fortuna [10] PRNGs. Roughly, the key idea is that the entropic inputs to the PRNG are
carefully distributed to several “smaller” PRNGs, which we refer to as pools, and, with
different frequencies, these pools are used to randomize a register from which random bits
are extracted. (We formalize this approach in detail below.) While both Yarrow and Fortuna
use deterministic scheduling strategies to assign entropic inputs to a pool and to decide when
each pool contributes to the register, the provable robustness against premature-next attacks
is achieved in [8] by relying on a random seed (independent from the inputs) to ensure that
the entropy received from the adversary is roughly evenly distributed among the pools.

It is not hard to see that the fixed pool assignment schedule adopted by Yarrow/Fortuna
cannot be robust against premature next attacks without extreme restrictions on the ad-
versaries (e.g., the constant rate restriction). However, other seedless strategies are possible
(e.g., one could assign entropic inputs to pools chosen depending on the inputs themselves,
or some previous inputs; or one might try to divide each input up into smaller pieces in some
way; or one might not use pools at all), and the larger question remains on the feasibility of a
seedless PRNG which is robust, even with premature next calls. One of course should exercise
some care, a fully secure deterministic PRNG cannot exist (regardless of premature-next
attacks) for the same reasons deterministic extraction is impossible. So, we must make some
restrictions on the input distributions provided by the adversary. For this reason, in the
following, we will focus on the case of independent inputs, for which deterministic extraction
is–in principle–possible.

Even in this setting, the main result of this section is an impossibility result. (So, the
fact that we restrict our attention to independent inputs simply makes our result stronger.)
Specifically, we show that it is impossible to have such a seedless PRNG which is robust
against premature next attacks, even in a setting where the entropic inputs are independent.

Before we present our result, which is stated below as Theorem 5, we introduce some
more syntax and definitions.

3.1 Pseudorandom Number Generators with Input
In this section, we will briefly recall the syntax of this primitive. We will use the seedless
definition for this paper. We refer the readers to the work of Coretti et al. [4] for a detailed
exposition.

Syntax. A PRNG is a stateful cryptographic primitive that accumulates entropy by absorb-
ing inputs which it then uses to produce pseudorandom bits when the entropy of its state is
high. A PRNG consists of two algorithms as defined below:

▶ Definition 1 (Syntax of PRNGs). A pseudorandom number generator with input (PRNG)
is a pair of algorithms PRNG = (refresh, next) sharing a µ-bit state s, where
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refresh takes a state s and an input x ∈ {0, 1}m and produces a new state s′ = refresh(s, x),
and
next takes a state s and produces a new state and an output y ∈ {0, 1}r, i.e, (s′, y) =
next(s).

A PRNG processing m-bit inputs and producing r-bit output is called a (m, r)-PRNG.

For our impossibility result, we will focus on (1, 1)-PRNG. This is without loss of generality,
as we could always buffer m such entropic inputs before applying a “bigger” refresh call on
m such bits, and impossibility for 1 output bit implies that for r ≥ 1 output bits.

Security. The work of Coretti et al. [4] dealt with robustness security game, without support
for Premature Next (ROB). For purposes of this paper, we will focus on robustness security
with Premature Next (NROB), as defined in Figure 1. While we adapt the original definition
from [8] to the seedless setting, we note that we present a highly simplified security game
that is enough to provide for our impossibility result. (We also leave out some functionality
that is not necessary for the attacker in our impossibility result, which again simply makes
our impossibility result much stronger.)

Most significantly, we assume that all of the samples provided by the attacker are
independent from each other (which makes out impossibility much result stronger). Formally,
attacker outputs a distribution Xi for the next entropic sample, and the security game
independently samples a concrete value xi ← Xi from this distribution, without giving any
side information back to the attacker. This allows for much simpler accounting for entropy,
– by simply adding individual entropy of samples Xi produced by the attacker, – without
worrying about (quite subtle) conditional entropy of such samples.

In more detail, NROB game allows adversary A, whose state is represented by the variable
σ, to access the following oracles:

get-next allows the attacker to get pseudorandom outputs by calling the next procedure
on the current state and returning the output y.
next-ror creates a challenge, i.e., if b = 1, it outputs a uniform random value y1 ∈ {0, 1}
instead of the PRNG output y0. Here, the PRNG output is second part of the output of
next procedure.
get-state models state compromises by revealing the value of the state of the adversary.

▶ Definition 2 (Definition of an Attacker). An attacker A is called a (q, τ)-attacker if it
provides at most q input distributions for refresh and runs in time at most τ .

For security, the game keeps track of the entropy counter c which counts the entropy
the attacker injected into the system since the latest compromise. When c reaches a critical
value γ∗, we would like our PRNG to recover. However, instead of demanding immediate
recovery (like in the simpler robustness game ROB discussed in Section A), we allow a factor
of β gap. Concretely, if entropy γ∗ took T ∗ steps to accumulate, we demand recovery by
time T ≤ βT ∗.

▶ Definition 3. The advantage of a (q, τ)-attacker A in the NROB(γ∗, β, q) game is denoted by
AdvNROB

PRNG (A). Further, we say that PRNG is (γ∗, β, q, ϵ, τ)-secure if for any (q, τ)-attacker A,

AdvNROB
PRNG (A) ≤ ϵ.

ITC 2022



9:8 On Seedless PRNGs and Premature Next

Game The PRNG Robustness∗ Game

NROB

σ = ⊥; s = 0; c = 0
b← {0, 1}; corrupt = true
T = 0; T ∗ = 0
for i = 1, . . . , q do

(σ, Xi)← Aget−next,get−state,next−ror(σ)
xi ← Xi

s = refresh(s, xi)
c = c + H∞(Xi)
T = T + 1
if c ≥ γ∗ then

if T ∗ = 0 then
T ∗ = T

if T ≥ βT ∗ then
corrupt = false

b′ ← A(σ)

get− next

(s, y) = next(s)
return y

next− ror

(s, y0) = next(s)
y1 ← {0, 1}r

if corrupt = true then
return y0

return yb

get− state

c = 0 ; corrupt = true
T = 0; T ∗ = 0
return s

Figure 1 The Robustness Game with Premature Next Calls NROB(γ∗, β, q). This is in contrast
to the Robustness Game without Premature Next Calls which is presented in Figure 5.

We refer the readers to the works of Dodis et al. [8] and Coretti et al. [4] for discussions
on different security models. For comparison, though, we provide the formal definition of
the simpler ROB notion in Section A. The critical difference between ROB and NROB is
that the former resets the entropy counter c = 0, if an adversary invokes get− next when
corrupt = true. Additionally, ROB implicitly sets β = 1, meaning immediate recovery when
enough entropy enters the system after the compromise (or any premature next call).

3.2 Impossibility Result

The idea of our attack is that the adversary provides bit inputs such that every n inputs has
one bit of entropy. Further, the premature next call will reveal information about this bit.
We will prove the result through a series of lemmas. As mentioned before, we will assume
that the inputs and the outputs are merely bits.

In the remainder of this section, we will work with a function fPRNG : {0, 1}µ × {0, 1}n →
{0, 1}, for PRNG = (refresh, next). This function fPRNG(s, x) represents the application of n

iterated refresh calls, starting from an initial state s with input x1, . . . , xn ∈ {0, 1}, before
finally applying next to produce an output bit y, or more formally:

fPRNG(s, x1|| . . . ||xn):
for i = 1 to n

s = refresh(s, xi)
(s, y) = next(s)
return y

This is equivalent to applying one “big-refresh” before one next, as indicated before. Further,
we write x−i for x1|| . . . ||xi−1||xi+1|| . . . ||xn, i.e., the binary string x, except for the i-
th bit. Then, we can define x−i,χ to be the string where the i-th bit is set to χ, i.e.
x−i,χ := x1, . . . , xi−1, χ, xi+1, . . . , xn. For any function g and any i, we abuse notation and
write g(x−i,χ) as a shorthand for g(x1|| . . . ||xn) where i-th bit is χ. We will also use X to
denote the random variable corresponding to x1|| . . . ||xn and use X−i to denote the random
variable corresponding to x−i.
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▶ Lemma 4. There exists a randomized O(n2) algorithm Findg with oracle access to any
function g : {0, 1}n → {0, 1}, such that with probability at least 1 − 2−n (over the coins
Findg), Findg outputs (i, z) which satisfies precisely one of the following two (disjoint)
properties:

i = 0, z ∈ {0, 1}, and P[g(Un) = z] ≥ 0.6.
1 ≤ i ≤ n, z ∈ {0, 1}n−1 and g(x−i,0) ̸= g(x−i,1) where x−i = z.

(In other words, Findg either discovers that g(Un) is biased, or it identifies two n-bit strings
that differ in a single bit such that g returns different values on these two strings.)

Proof. The algorithm Findg is defined in Figure 2. The Findg’s output satisfies case 2
unless , after n2 tries, the algorithm fails to find a value in the first loop. Further, in the
second loop, the algorithm merely outputs the majority element.

Analysis of First for Loop. Let us look at trying to determine i, z such that it satisfies the
second property. To this end, we will rely on results from graph theory. Specifically, we will
use the edge isoperimetric inequality for a Hypercube graph [13, §4], which we recall (in our
context) below.

For our setting, we have a Hypercube graph Qn = (V, E) where each vertex corresponds
to a binary vector of length n, i.e., |V | = 2n. Further E is the set of all edges that connects
(u, v) if the Hamming distance between u and v is exactly 1. This gives us that: |E| = n·2n−1.
Now, we are interested in edges between a vertex u and v if g(u) ̸= g(v). Now, for any set S

of size k ≤ 2n−1, the number of “cut” edges C from the set to its compliment is bounded by
the isoperimetric inequality [13, §4.2.1] as follows:

C ≥ k · (n− log2 k) ≥ k

However, now we need to determine how many u ∈ V exists such that g(u) = 0 (or 1). If,
0.4 ≤ E[g(Un)] ≤ 0.6, then we know that there exists 0.4 · 2n vectors u with g(u) = 0 and a
similar number for g(u) = 1.

Therefore, the probability of choosing the desired edge is at least:
k

n · 2n−1 ≥
0.4 · 2n

n · 2n−1 = 0.8
n

In other words, the probability that a randomly chosen edge is the desired edge occurs with
probability p ≥ 0.8/n. Therefore, one can simply pick an edge e ∈ E, uniformly at random,
and then test to see if it is the desired edge. Now, if one were to do n2 such tests, we get:

P[g(x−i,0) ̸= g(x−i,1)] > 1− 2−n

This math follows from the fact that the probability of failure of algorithm is:(
1− 0.8

n

)n2

≤ e−0.8n < 2−n

Note that this result only follows if 0.4 ≤ E[g(Un)] ≤ 0.6.

Analysis of Second for Loop. However, if E[g(Un)] < 0.4 or E[g(Un)] > 0.6, then we know
that the distribution, is biased either in favor of 0 or 1. If it is biased in favor of 1 (i.e.,
E[g(Un)] > 0.6), then we know that > 0.6 · 2n inputs x will evaluated to 1 or < 0.4 · 2n. In
other words, the probability of success p > 0.6. Therefore, one can apply Chernoff bounds,
to get that P[g(Un) = z] ≥ 0.6 with probability 1− 2−n.

The correctness of Findg follows from our earlier discussion. It is easy to see that Findg

runs in time O(n2) as the lines inside the first for loop take constant time if one were to
sample the edge by picking i and x−i. ◀
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Algorithm Findg

for i = 1 to n2:
Pick an edge (u, v) ∈ E, uniformly at random.
Use oracle access to g to compute g(u) and g(v).
if g(u) ̸= g(v) then

Find i such that ui ̸= vi.
By definition, there exists a unique i that satisfies this condition.
return (i, u−i)
break

for i = 1 to 120 · n:
count = 0
Sample x← {0, 1}n

Compute count = count + g(x)
if count > n/2 then z = 1
else z = 0
return (0, z)

Figure 2 Description of Findg.

▶ Theorem 5. There is no (γ∗, β, q, 0.1, τ)-secure PRNG for γ∗β <
√

q and τ ≥ Ω((tnext +
trefresh) · n3) where n = γ∗ · β and tnext and trefresh are the time required to compute next and
refresh respectively.

Proof. We will use the Findg algorithm defined in Lemma 4 to create an adversary A
that wins the NROB(γ∗, β) security game. The pseudocode for the adversary is provided in
Figure 3. Here, the definition of the function g is as follows: g(x) = f(s, x1|| . . . ||xn) where s

is the current state s and n = γ∗ · β. A is aware of the very first state s. The attacker then
runs Findg on this function g and receives (i, z) as output. Now, we have two cases:

i = 0. Recall that i = 0 implies that g(Un) is biased towards the value z. Therefore, A
simply invokes get− state first. This is done not to retrieve the state, but rather to
reset the counters of T and T ∗. Now, A uses the biased nature of g on Un to provide
uniform bit n = γ∗β times. At the end of this process, we have T ∗ = γ∗β and the attacker
is required to break the scheme within another β steps. After the n inputs, A invokes
next− ror to receive its challenge response. If this challenge response is equal to z, then
we know that b = 0, indicating it is the real distribution and not the random distribution.

i ̸= 0. Recall that i ̸= 0 implies that there exists two n-bit strings that differ in one bit,
but g produces different evaluations. i is the bit where the strings differ and z is the value
for the remaining bits. A begins by writing down z in its state, and then provides one
bit of entropy by randomly sampling xi. Now, A uses a “premature” call to get-next
and receives y as response. With knowledge of z, A can compute g for two choices of
input at the i-th bit and then use y to uniquely determine what was the input at xi

which also helps A recover the state. This process is repeated γ∗ times to provide γ∗ bits
of entropy. We keep doing this for γ∗2β2 steps, and then, request next-ror . However,
with knowledge of the state, due to premature next, A knows the challenge and therefore
wins with a non-negligible advantage.

In other words, we have an attacker which can break this scheme, with non-negligible
probability, if q > γ∗2β2.2 ◀

2 Note, that when q < γ∗β, every PRNG is vacuously secure as there is no need for recovery: at least γ∗

steps are needed to inject the required γ∗ bits of entropy, and the attacker simply runs out of refresh
calls to trigger the security requirement. This, of course, assumes ideal entropy accumulation.
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Algorithm A

Set s = 0
σ = ⊥
t = 0
while t ≤ γ∗2β2

Set g(x) = f(s, x)
(i, z)← Findg

if i = 0 then
Invoke get-state to get the current state s∗. // This resets T = 0.
for j = 1 to n:

Output Xt+j = U1 // H∞(Xt+j) = 1.
Invoke next-ror for challenge δ

if δ = z then return 0
else return 1

else
Set Xt+i = U1 // H∞(Xt+i) = 1.
Use z to set Xt+k for k ̸= i. // H∞(Xt+k) = 0 for k ̸= i.
Invoke get-next to get output y.
Let a−i = z

if g(a−i,0) = y then xt+i = 0
else xt+i = 1
for i = 1 to αβ

s = refresh(s, xt+i)
(s, y) = next(s)
t = t + αβ

Invoke next-ror for challenge δ

if next(s) = (·, δ) then return 0
else return 1

Figure 3 Pseudocode for A for Theorem 5.

3.3 Towards Positive Results

The impossibility is, of course, artificial, but it raises questions about how to overcome it,
even assuming ideal entropy accumulation and extraction. In Section 4 we abstract the notion
of the scheduler which models security against premature next attacks using multiple pools
which assume to accumulate entropy optimally (which abstracts away entropy accumulation
and extraction).

In this setting, we will first analyze a single-pool scheduler scheme for the special “root
pool” in Section 5. This scheme uses a single pool with exponentially decaying time intervals
to drain this pool, but the rate of such recovery will depend on the entropy rate counted from
the boot time (as opposed to the latest compromise in the general notion). The latter point
is why we don’t want to use this one-pool scheme for the general-purpose PRNG, where we
would like to recover from compromise no matter when it happens.

For such scenarios, we revisit the round-robin Fortuna scheduler, where [8] observe that
this scheme provably overcomes our impossibility result, by assuming all entropy comes at
a fixed (but unknown) rate. Instead, in Section 6 we significantly generalize this positive
result. The idea is to redefine the notion of entropy we use in a way that makes it more
restrictive than traditional (min-) entropy, but not as restrictive as assuming fixed constant
rate.3 Intuitively, our notion of entropy will not allow attacks where the entropy varies too
widely within a given round-robin (but can change from one round-robin to another) – in a
sense that the attacker will get almost no credit for high-entropy samples when there is at
least one low entropy sample within a given round-robin.

3 We also note that the results about fast entropy accumulation in the register [5] might justify why our
new (more restrictive) notion of entropy might be reasonable to expect in practice.
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Construction: Premature-Next Robust PRNG

refresh∗(x, s)

Parse s as (s0, . . . , sk−1, ρ)
in, out← SC()
sin ← refresh(sin, x)
if out ̸= ⊥ then

(sout, R)← next(sout)
ρ← ρ⊕R

return s = (s0, . . . , sk−1, ρ)

next∗(s)

Parse s as (s0, . . . , sk−1, ρ)
(Y, ρ)← G(ρ)
return

(
s = (s0, . . . , sk−1, ρ), Y

)

Figure 4 Construction of G = (refresh∗, next∗).

4 Seedless Scheduler

For the remainder of this paper, we will assume ideal accumulation and extraction. Further,
rather than working with entropy, we will employ the notion of a sequence of weights
w = (w1, . . . , wq) where the weights have been normalized so that wi ∈ [0, 1] and a pool is
“full” when it has accumulated weight 1. (Specifically, to move between the weight wi and
the entropy γ, one should multiply by the entropy γ∗

rob required for a single pool to recover.)
See [8].

4.1 Syntax of a Scheduler
We define the syntax of the scheduler below. Note that this scheduler is deterministic and
oblivious, i.e., it does not depend on the actual input or its entropy.

▶ Definition 6 (Syntax of Scheduler). A (k, q)-scheduler is a deterministic algorithm SC that
produces q pairs: {(ini, outi)}q

i=1 where ini ∈ [k], outi ∈ [k] ∪ {⊥} for i = 1, . . . , q.

Note that, when the number of “pools” k is not critical to be specified explicitly, a deterministic
(k, q)-scheduling scheduler can be thought of as a sequence of values {empty}q

i=1 corresponding
to the time at which each input i with weight wi is emptied. More formally, we can define:
emptyi := min {j : j > i ∧ outj = ini}

4.2 Seedless PRNG, with Premature Next
Before we venture into the security of such a scheduler, it would be prudent to take a step
back and look at an informal composition of a seedless scheduler with PRNGs that are not
resilient to premature next in order to achieve security with premature next. Indeed, it is
also equally important to frame our composition results, in the face of the impossibility result
from Section 3.2 (and also the unrestricted scheduler impossibility later in this section). This
is precisely the reason why we do not state a formal composition theorem, as it is vacuous
for the most general case. However, the composition is still robust for restricted notions of
scheduler security to yield relaxed forms of PRNG security with premature next.

The composition relies on seedless PRNGs which are not secure with premature next.
These are typically parametrized by just γ∗, which is the minimum entropy needed for the
PRNG to begin producing pseudorandom outputs (see Figure 5). In essence, these have
α = γ∗ and β = 1 with a reset of all counters when an adversary invokes get− next with
corrupt = true. The instantiation of this PRNG can be from the work of Coretti et al. [4]
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or from the work of Dodis et al. [6]. Such a PRNG, secure without premature next and
parametrized by γ∗ is combined with a scheduler. The goal of a scheduler would be to ensure
that the input, as it arrives, is allocated a particular pool such that:

With “enough entropy”, a pool is filled, i.e., accumulates γ∗ amount of entropy.
This pool will be emptied within “sufficient time”, to recover from compromise.

We will formalize these notions of “enough entropy” and “sufficient time” in the next section.
Formally, we define a seedless PRNG, with construction as follows:
Let SC be a scheduler with k pools.
Let Gi = (refreshi, nexti) be seedless PRNGs with input (see Section A), for i = 0, . . . , k−1.
For simplicity, we will assume that each Gi is (m, r)-PRNG. These are PRNGs which are
not secure with premature next calls.
Let G : {0, 1}m → {0, 1}2m be a pseudorandom generator (without input).

Then, we construct a PRNG with input G(SC, {Gi}k−1
i=0 , G) = (refresh∗, next∗) as shown in

Figure 4, where the scheduler mandates which pool Gin to use (via refresh) to accumulate
entropy from a new sample, and which pool Gout (if any) to “empty” (via next) into the main
register ρ for G.

4.3 Security of a Scheduler

We will define different notions of security for a scheduler. As with PRNGs, (k, q)-scheduler
security model is parameterized by two parameters α, β. Informally, it states that if the
adversary chooses to provide α units of fresh entropy (i.e., a sequence of wi values that sum
up to α) within a time t ≤ q/β, then we guarantee recovery within time β · t ≤ q. Formally,

▶ Definition 7 (General Security of Scheduler). A (k, q)-scheduler is (α, β)-general-secure if if
∀t0, t such that t1 = t0 +β · t ≤ q, and ∀ weights w1, . . . , wq ∈ [0, 1] such that

∑t
i=1 wt0+i ≥ α,

the scheme recovers from the compromise in time t0 + βt where recovery occurs if ∃ j ∈ [k]
and ∃ T̂ ∈ [t0 + 1, t0 + β · t] such that:
1. outt0+1, . . . , out

T̂ −1 ̸= j (pool j has not been emptied before time T̂ );

2. out
T̂

= j (pool j is emptied at time T̂ ); and
3. (pool j has filled)

∑
t0<i≤T̂

ini=j

wi ≥ 1 .

4.4 Impossibility Result

We can show that, for general security, there exists an impossibility result. Specifically, we
will show that for any k ∈ N, there exists a choice of q such that any (k, q)-scheduler is
not (α, β)-secure. In other words, for a suitable choice of q, one can break the scheduler to
never recover from compromise for any α, β. Note that this is incomparable to the earlier
impossibility result discussed in Section 3.2 as this assumes the existence of pools.

▶ Theorem 8. For any k ∈ N, there exists q∗ = α2β2 such that a given (k, q)-scheduler is
not (α, β)-secure for any q ≥ q∗.

We defer the proof of this theorem to Section B. The immediate consequence of this impossib-
ility result is the following: there exists input weight sequence w such that, irrespective of the
number of pools, we can inject entropy at a slow rate, such that no scheduler is general-secure.
It also implies that we need to make some relaxations to achieve usable security results.
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5 Reboot Secure Schedulers

The first relaxation corresponds to the situation when the system is just rebooted, i.e., we
are at t0 = 0. We will call this as the “reboot security” of a scheduler. This corresponds
to the situation when you just turn on the computer. For this case, we can have a much
simpler and better RNG, having only one pool. Like Fortuna, this pool is emptied every βi

steps for gradually increasing values of i = 0, 1, 2, . . ., where β is a small integer (Windows
10 uses β = 3).

▶ Definition 9 (Reboot Security of Scheduler). A (k, q)-scheduler is (α, β)-reboot-secure if
for t0 = 0, ∀t such that t1 = t0 + β · t ≤ q, and ∀ weights w1, . . . , wq ∈ [0, 1] such that∑t

i=1 wt0+i ≥ α the scheme recovers from the compromise in time t0 +βt, where the definition
of recovery is as defined in Definition 7.

The composition of such a reboot-secure scheduler with our “not-premature-next” PRNGs
will trivially yield a “premature-next” boot PRNG, i.e., the PRNG that is used at the time
when the system is booting up.

We start with a lower bound on reboot-security, irrespective of the number of pools k.

▶ Theorem 10. For a (k, q)-scheduler to be (α, β)-reboot secure, α ≥ ⌊logβ(q)− log log q⌋− 1
(i.e., q ≤ αβα)

For simplicity let us assume that q = αβℓ+1, for some ℓ > 0. Then, divide the time from
α + 1 to q into intervals of the following form: (αβi−1, αβi] for i = 1 to ℓ + 1. We have the
following claim:

▷ Claim 11. For any (α, β)-reboot secure scheduler with corresponding emptying sequence
empty1, . . . , emptyq and any i ∈ [ℓ], there must exist a t such that emptyt ∈ (αβi, αβi+1]. (In
other words, there must be a pool that is first emptied after roughly βi steps for every i.)

We defer the proof of this claim to Section B.

Proof of Theorem 10. From Claim 11, we get that there are at least ⌊logβ(q/α)⌋ distinct
empties, and there needs to be entropy of 1 emptied in each of these empties. By Pigeonhole
Principle, we will need α ≥ ⌊logβ(q/α)⌋ to have any hope of recovery, which implies
α ≥ ⌊logβ(q)− log log q⌋ − 1. ◀

We now give a scheme that nearly matches the lower bound. This scheme uses the same
strategy as Windows 10’s “Root RNG” which is used at system startup [9].

▶ Construction 12 (Reboot Scheme). The scheme has k = 1. ini = 0 for i = 1, . . . , q.

outi =
{

0 if i = βj

⊥ else

In other words, ∀i ∈ [βj−1, βj), empty at time βj.

▶ Theorem 13. Construction 12 is (α, β)-reboot secure for q = αβα (i.e., α ≈ logβ q −
log log q).

Proof. Define t to be the time within which the adversary provides α entropy, i.e.,
∑t

i=1 wi ≥
α where these wi are adversarially chosen. It is clear that t ≥ α, as we need at least α steps
to provide α entropy when wi ∈ [0, 1].
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Let i be such that α ∈ (βi−1, βi]. Now, it is clear that if t = α, then the empty at βi will
ensure recovery from compromise. We can induct similar to the proof of Claim 11 to get that
if t ∈ [βℓ−1, βℓ) for some ℓ ≥ i, then there ∃j ∈ [βℓ−1, βℓ) such that wj = 1 (or possibly a set
of such j’s which sum up to 1), which is emptied at βi, thus recovering from compromise.
Specifically, if we have t ∈ [βℓ−1, βℓ), then at each of the preceding ℓ− 1 intervals (each with
an empty), A provides 1− ϵ entropy, for some arbitrarily small ϵ. This gives a total of almost
ℓ− 1 entropy across these intervals. Therefore, it follows that the remainder of α− ℓ + 1 > 1
needs to be provided between wβℓ−1 and wt to hit α and all of these are emptied at βℓ,
recovering from compromise. ◀

6 Repeat Secure Schedulers

A general secure scheme is a stronger model of security than the reboot model. This follows
because the value of t0 is also the choice of the adversary, in addition to the choice of t.
However, the impossibility result from Theorem 8 imply a need for relaxation.

Round-Robin Schedulers. Simple round-robin schedulers achieve very good α ≈ logβ(q)
for the special cases when all of the wt are equal to some (unknown, adversarially chosen)
value w, i.e., w1 = w2 = . . . = wq = w and setting the number of pools k ≈ logβ(q) (so 1 or
2 pools are too little). β is a smaller integer usually 2 or 3 in practice, as in [10, 8]. More
formally, such schedulers simply set int = t mod k As for outt, this is set to ⊥ inside one
round (i.e. t mod k ̸= 0). At the the of each round, when t = kℓ, one looks at the largest
index i ≥ 0 such that βi divides ℓ. Then out empties the i-th pool: outt = i

▶ Remark 14. There is a marginal gain in efficiency when we empty all pools ≤ i, instead of
just the i-th pool. In other words, out is a set, rather than a single index. However, for our
analysis below, we will continue to work with the assumption that a single pool is emptied.
(More generally, we do not make much of an attempt to optimize the parameters that we
achieve. See [8] for an optimized version of similar construction.)

k-smooth Sequences. Our main observation is that we can significantly extend the constant-
rate analysis as follows. The idea is to allow support any constant rate within a round-robin
(rather than go for a constant (but unknown) rate scheduler). This constant can change
arbitrarily once the next round-robin is started. Namely, we don’t have to fix the same
constant for all q entropies but can change it every k ≪ q steps. In practice, this means that
while the quality of entropy can change over time, we heuristically assume that it changes
rather smoothly, and we rarely have huge jumps within a given round-robin.

▶ Definition 15 (Repeating Sequences). w = (w1, . . . , wq) with 0 ≤ wi ≤ 1 is called k-
repeating if wjk+1 = wjk+2 = . . . = wjk+k for j = 0, . . . , t− 1 where q = k · t

▶ Definition 16 (Repeat Security of Scheduler). A (k, q)-scheduler is (α, β, k)-repeat-secure
if ∀ t0, t such that t1 = t0 + β · t ≤ q, and ∀ k-repeating weights w1, . . . , wq ∈ [0, 1] such
that

∑t
i=1 wt0+i ≥ α the scheme recovers from the compromise in time t0 + βt, where the

definition of recovery is as defined in Definition 7.

To achieve such repeating sequences, we take any standard w = (w1, . . . , wq) and apply a
k-flattening, as defined below.

ITC 2022



9:16 On Seedless PRNGs and Premature Next

▶ Definition 17 (k-Flattening). Given a sequence w = (w1, . . . , wq) and a number k ≥ 1,
where for simplicity of notation let us assume q = kt, we define k-smooth flattening of w to
be w′ = (w′

1, . . . , w′
q), where for any round-robin j ∈ {0, . . . t− 1} and i ∈ {1 . . . k}, we let

w′
jk+i = min( wjk+1, wjk+2, . . . , w(j+1)k )

Intuitively, we change the entropy wj to the smallest of k surrounding entropies inside a
given round-robin. Of course, k = 1 corresponds to w′

t = wt, but we already know that
1 pool is not enough (as this would give a general scheduler for the unrestricted entropy
setting). For larger k, however, the flattened values could be noticeably lower than the
original. For example, if k = 3 and w = {1, 1/2, 1/3, 1/4, 1/5, 1/6}, the 3-flattening of
w is w′ = {1/3, 1/3, 1/3, 1/6, 1/6, 1/6}. Of course, for a constant rate w1 = . . . wq = w,
k-flattening does not change anything, which explains why our results below naturally
generalize the constant-rate analysis from the work of Dodis et al. [8].

Jumping ahead, we will see that the Fortuna scheduler is “secure” for any (normalized)
entropy sequence w, with the understanding that the attacker gets “entropy credit” within
a single round-robin equals to k times the lowest entropy value in contributes within this
round.

New Result. Now, we show that while the original (α, β)-definition above cannot be achieved
when applied to w itself, the analysis for constant-rate schedulers works for general entropy
sequences, provided we simply apply it to k-flattening of w (where k ≈ logβ q is the number
of pools) instead of w itself! Namely, a given round only gets “credit” for the smallest entropy
(times k) it contributed to any of the k pools. So we do not give the adversary credit if it
wildly changes the entropy values within a given round.

We now present our construction, which is parameterized by the number of pools k and a
base b. One typically takes b = 2 or b = 3, and, e.g., k = 32 or k = 64 in practice, and works
for q ≤ bk.

▶ Construction 18 (Smooth scheduler). Consider the following (k, q := bk)-scheduler for
integers b ≥ 2 and k ≥ 1:

ini = i mod k

outi =
{
⊥ if i mod k ̸= 0
j if i = kℓ

where j ≥ 0 is the largest j such that ℓ mod bj = 0 for

i = kℓ

We now prove that this scheduler is secure (against k-repeating sequences). For simplicity,
we make little attempt to optimize the parameters. See [8] for a carefully optimized version of
this result for the special case where the entropy rate is constant (i.e., the case of q-repeating
weights).

▶ Theorem 19. For any integers b ≥ 2 and k ≥ 1, Construction 18 is (α, β, k)-repeat-secure
for

α := 3k − 2 ≈ 3 logb q; and β := 2b

(
1 + k

α

)
≈ 8b

3 = 8
3 · q

1/k

In particular, for k = logb q and q ≥ b2, we have α ≤ 3 logb q and β ≤ 3b.

Notice, this result explains how the recovery factor β shrinks very quickly as we increase
the number of pools k, starting with (roughly) q all the way down to being a constant. In
particular, β becomes constant once the number of pools becomes logarithmic in q.
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Moreover, up to constant factors in α and β (which, again, we do not attempt to
optimize), Theorem 19 is tight. In particular, [8, Proposition 1] proved that even in
the “constant-rate” case of q-repeating weights, no scheduler can be (α, β)-secure with
αβ ≤ loge q− loge loge q− 1. And our scheduler matches this bound (up to a constant factor)
when b = O(1) and k = O(log q). We defer the proof of the theorem to Section B.
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Game The PRNG Robustness Game

ROB

σ = ⊥; s = 0; c = 0
b← {0, 1}; corrupt = true
for i = 1, . . . , q do

(σ, Xi)← Aget−next,get−state,next−ror(σ)
xi ← Xi

s = refresh(s, xi)
c = c + H∞(Xi)
if c ≥ γ∗ then

corrupt = false
b′ ← A(σ)

get− next

if corrupt = true then
c = 0

(s, y) = next(s)
return y

next− ror

(s, y0) = next(s)
y1 ← {0, 1}r

if corrupt = true then
return y0

return yb

get− state

c = 0 ; corrupt = true
return s

Figure 5 The Robustness Game (without Premature Next Calls) ROB(γ∗, q).

∀j, ∃i such that emptyi ∈ Ij , meaning at least one pool is emptied within all α intervals
Ij .
Set t0 = 0. Then, for j = 1, . . . , α, pick one ℓ such that emptyℓ ∈ Ij . Set, wℓ to be 1− ϵ

for some arbitrarily small ϵ (remaining weights are 0). At the end of this process, the
adversary has provided almost α entropy, but there is no recovery, as all of these entropies
are completely wasted. By making ϵ arbitrarily small, the result follows. ◀

Proof of Claim 11. We prove this by induction. Define t to be the time within which the
adversary provides α entropy, i.e.,

∑t
i=1 wi ≥ α where these wi are adversarially chosen.

Since wi ≤ 1, we get that t ≥ α.
Let us assume to the contrary that there is no emptying in the interval (α, αβ]. Now, if

adversary chooses t = α. Then, this scheme would never recover as there is no empty in the
interval (α, αβ]

Now, let us assume that there is an empty in intervals, (α, αβ], (αβ, αβ2], . . . , (αβi−1, αβi].
We will now show that there needs to be an empty in the interval (αβi, αβi+1]. To this end,
assume to the contrary. Now, note that the adversary can provide the entropy in such a way
that every empty in the preceding intervals empties out 1− ϵ, without recovering. This is
similar to the attack detailed in the proof of Theorem 8. Further, if t = αβi, the scheme has
not recovered in time 1 to t and because it has no empty in (αβi, αβi+1] it can never hope
to recover in time either. Therefore, there is an empty in the interval (αβi, αβi+1]. ◁

Proof of Theorem 19. Let w1, . . . , wq be k-repeating. Let t0 and t be such that (1) t0 +βt ≤
q; and (2)

∑t
i=1 wt0+i ≥ α . We wish to show that in this case the scheduler recovers before

time t0 + βt, i.e., that there exists a j ∈ [k] and T̂ ∈ [t0 + 1, t0 + βt] such that (1) out
T̂

= j;
(2) outt0+1, . . . , out

T̂ −1 ̸= j; and (3)
∑

t0<i≤T̂

ini=j

wi ≥ 1 .

Indeed, we take j to be minimal such that outt0+1, . . . , outt0+t ̸= j. In particular, notice
that after pool j′ is emptied, pool j′ + 1 is not emptied for the next k(bj′ − 1) steps. And,
similarly, after pool j′ + 1 is emptied, pool j′ is not emptied for the next k(bj′ − 1) steps. It
follows that bj−1 ≤ t/k + 1. Since the pool j′ is emptied at least once in every 2kbj′ steps,
it follows that we must have out

T̂
= j for some T̂ − t0 ≤ 2kbj ≤ (2t + 2k)b ≤ 2b(1 + k/α)t,

where in the second inequality we have used the fact that wi ≤ 1, which implies that t ≥ α.
In particular, T̂ ≤ t0 + βt, as needed.
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And, since the wi are k-repeating, we must have∑
t0<i≤T̂

ini=j

wi ≥
∑

t0<i≤T̂

∑
t0<i≤t0+t

ini=j

wi ≥
∑

t′
0<i≤t′

0+t′

ini=j

wi = 1
k
·

∑
t′

0<i≤t′
0+t′

wi ,

where t′
0 := ⌈t0/k⌉k ≥ t0 and t′ := ⌊t/k⌋k ≤ t. And, since wi ≤ 1, we trivially have that∑

t′
0<i≤t′

0+t′

wi ≥
∑

t0<i≤t0+t

wi − 2k + 2 ≥ α− 2k + 2 .

Therefore,∑
t0<i≤t0+t

ini=j

wi ≥
α

k
− 2 + 2/k ≥ 1 ,

as needed. ◀
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